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Abstract

The hospital Emergency Department (ED) has become the main point of entry for patients
in modern hospitals, resulting in frequent overcrowding; as a result, hospital management
is increasingly paying attention to the ED to provide better quality service to patients.

This study seeks to build time series (Autoregressive Integrated Moving Average) and
machine learning (XGBoost, Gradient Boosting Regressor and Voting Regressor) regres-
sor models, evaluate the performance of each and use the best model to forecast daily
attendance. A comprehensive analysis of data related to patient arrivals at a hospital, fo-
cusing on different times of day is performed. The study was conducted in the Emergency
Department of a specified South African public hospital. A dataset of patient arrivals
from May 2019 to November 2021 has been collected, with a total of 47 461 observations
used for the analysis. A time series model and three machine learning regressor models
were investigated.

Detailed statistical and exploratory analyses, time series plots, model training, and
model validation efforts are carried out. The study delves into various aspects such as
stationarity testing, normality testing, and the use of different transformation methods to
achieve stationarity. Machine Learning algorithms are employed, with a hyperparameter
tuning phase to obtain optimal coefficients. The evaluation matrices Mean Absolute
Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE),
Root Mean Squared Error (RMSE) and Mean Percentage Difference (MPD). Lastly, the
chosen model is used to forecast Normal Hours and After Hours.

The Voting Regressor emerged as the most reliable, showing consistent performance
across both training and test datasets, whereas models like ARIMA and XGBoost strug-
gled with autocorrelation issues and peak predictions, respectively. Overall, while the
Gradient Boosting Regressor performed well on training data, it exhibited potential over-
fitting, suggesting the Voting Regressor as the preferable model for handling the complex
patterns of patient arrivals.

Keywords: Time series forecasting; machine learning; ARIMA; XGBoost; Voting
Regressor; Gradient Boosting Regressor; patient arrivals; overcrowding; emergency de-
partments; OR in Healthcare
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Chapter 1

Introduction

The Institute of Medicine Report (2006) advised the use of demand forecasting by hos-
pitals to improve their efficiency and to guide decision makers in their planning. These
methods can be used to optimize costs and resources in emergency healthcare environ-
ments. With quality forecasts, relevant planning can be made, and issues relating to
sufficient bed allocation and patient waiting time can be easily avoided. Braithwaite et
al. (2018) recommended the establishment of a coherent vision-based executive decision-
making process and promotion of quality. These may be implemented by measuring and
benchmarking actual performance against standards for quality. The authors believe that
implementing a national health information system effectively ensures that responsibilities
are achieved.

The health systems service in South Africa is divided between the public and private
sectors, where the public sector serves 82.8% (nearly 48.2 million) of the population
(General Household Survey, 2019). The population catered for by the public sector is
mostly lower and middle-class citizens. With South Africa’s increasing population and
influx of immigrants, the demand for public health services increased but the resources
are not following in the same rate (Wallis et al., 2008). The private sector on the other
hand serves 17.2%This sector provides paid services, and have more resources and finances
than the public sector.

The National Health Department’s mission is to maximize the overall efficiency of
the healthcare delivery system (NDP 2030, 2011). This could be difficult given that the
department has a shortage of physicians and facilities that are unable to cater to the
increasing population. It would be ideal if operations such as the expansion of infrastruc-
ture and employment of more staff could be implemented. However, the cost implications
attached to this solution are extensive. Alternatively, Operations Research techniques
may be another way to efficiently improve the allocation of available resources.



Although South Africa’s public health care system is overburdened and under-resourced,
it always aims for affordable and accessible services to everyone in the country (Mahomed
et al., 2015).

1.1 Background

Over the past decades, it has been observed that there is too much pressure of overcrowd-
ing coming in the hospital emergency departments (ED) (Afilal et al., 2016). This pressure
had a significant effect on the management of the ED. There have been reports on issues
of overcrowding, compromised quality care and long patient waiting times (Mahomed et
al., 2015). Larger health facilities such as academic and regional hospitals have more
resources and facilities. They receive referral patients from facilities and hospitals, and
they also provide specialist support to these facilities. In addition, academic institutions
provide health education at a tertiary level within provinces.

The usual causes of ED overcrowding include inadequate distribution of nurses and
doctors, increased demand for ED services, hospital bed shortages and seasonal epidemics
(Kadri et al., 2014). The influx of patients from surrounding health facilities that do
not offer services needed by patients can also contribute to overflow. Therefore, the
influx of patients contributes to this overcrowding. The public and private sectors are
also vulnerable to a shortage of nurses and doctors (Wallis et al., 2008). Overcrowding
is a major threat to the emergency department globally. Understanding improvements
in personnel and patient volume in the emergency room will help strengthen the health
care delivery system at all levels (Nwoke, 2013). In a surgery setup, planning staffing is
possible because patients make appointments. ED, unlike other departments, is not easily
predictable as it is an access point for patients looking for urgent care without making
appointments (Khaldi et al., 2019).

Employees would have adequate resources to carry out their work and improve their
productivity if there is an efficient and effective balance between hospital staffing and
planning. According to Nwoke (2013), this will improve patient waiting time, patient
experience, employee satisfaction, quality care, patient satisfaction and reduced expendi-
ture. Many researchers suggest that to solve the overcrowding problem, hospitals should
adopt a solution that aims at increasing resources in the ED (Luo et. al., 2017, Afilal et
al., 2016, Zhou, et al., 2018). Accordingly, this will ease the influx through an increase in
staff and resources. This solution is not always feasible due to the shortage of resources.
The health staff shortages apply in South Africa as well as worldwide.

The alternative solution that can improve the overcrowding problem is through optimal
use of resources, without necessarily increasing the resources. Decision makers must have
an idea of how many patients they are expecting in the future before optimizing resources.



Demand forecasting is an important measure that can be used to deal with situations in
an under-resourced and overcrowded environment.

To avoid overcrowding, ED clinicians need prior notice as to how many patients are
expected on a daily or monthly basis. This will enable scheduling and rescheduling of
resources in order to have quality care for patients and avoid overcrowding. In many
countries, hospital emergency departments have put in place important forecasting meth-
ods to deal with randomness in the nature of arrivals. In South Africa, the Cape Triage
System is used to manage patients who are already in the hospital.

The Triage System is used in South Africa to manage long patient waiting times,
increased mortality and morbidity and poor management of clinical risk (Gottschalk et
al., 2006). The utilization of a triage system could aid with the placing of patients
resulting in patient flow, patients will be placed in the right place and time to receive the
right level of care with suitable resources to meet their needs (Swart et al,. 2018). The
triage system is used to classify known patients and to direct them to the right health
care professional. Hertzum (2017), counseled that the triage system is not inclusive of the
possible future patient arrivals.

Decision makers do not know how many patients to expect, and therefore planning
using whiteboards or triage for resource scheduling might be insufficient. Forecasting is
a response to planning as it uncovers determining actions that are required based on the
predictions (Hyndman & Athanasopoulos, 2018). Forecasting the demand for ED has
been proven to be a solution to ED overcrowding. It can also assist management with
what to expect and how to prepare for this demand (Afilal et al., 2016).

The capability to predict the increase in demand for ED services accurately has a
significant implication for the improvement of resource allocation and strategic planning.
For example, when the expected number of patients is known there will be an efficient
allocation of resources (i.e. bed allocation, nurse staffing, reduction or expansion of the
department) to provide good service.

Forecasting is about predicting the future as accurately as possible, given all the avail-
able information, which includes historical data and knowledge of events that might affect
the forecast (Hyndman & Athanasopoulos, 2018). In several cases, forecasting has been
used to guide the scheduling of manufacturing, transportation and strategic planning.
Forecasting approaches have been adopted in other research fields such as finance, econ-
omy, power and energy to facilitate effective planning and productivity (Schweigler et al.,
2009).



A successful prediction is based on the assumption that variables will change and
continue to change in the future (Kadri et al., 2016). Few days forecasts may be used to
support operational planning of available resources, while long-term demand forecasts may
be used to evaluate facilities and expansion plans (Calegari et al., 2016). ED managers,
for instance, can identify a particular day of the week with a heavy flow of patients and
plan the number of staff accordingly.

In the literature, time series or regression models are commonly used to forecast patient
volumes, occupancy level and the patient length of stay in the Emergency Department
(Sun et al., 2009). As mentioned earlier, forecasting methods have been used in many
countries to try and alleviate the problem of overcrowding in hospital Emergency Depart-
ments. In South Africa, there has been little use of these methods in solving the problem
of overcrowding.

1.2 Problem statement

The quality of healthcare is affected by many issues that impact negatively on the health-
care systems. The issue within the management of ED throughout the world is due to
the random nature of the patient influx (Kadri et al., 2014).

Emergency departments in healthcare organisations generally have a high demand for
service and increased costs, while operating with limited resources. Inefficient manage-
ment of patients flowing in emergency departments results in overcrowding. Overcrowding
happens when hospital resources remain fixed while there is an increase in patient arrivals.
The results of overcrowding include long waiting times for patients, insufficient number
of beds andlack of human resources (Khaldi et al., 2019).

ED patient crowding affects the quality of healthcare negatively. Basically, it results
in long patient waiting time, patients walking away, mortality due to patients not being
assisted on time and violence of patients towards hospital staff members, amongst others.
The problem of prolonged waiting times, under-resourced and overcrowded EDs are of
real concern in South Africa (Mahomed et al., 2015).

Hospital management should have an idea of how many patients they are expecting on
a particular day to enable proper planning and to improve the quality of service delivered
to the public. The management and anticipation of patient arrivals in the emergency
department is a global problem, because of the increasing demand hospitals are under
intense pressure resulting in shortages of resources (Afilal et al., 2019).

The outlined literature shows that the absence of strategic decision making to prevent



prolonged waiting times, under-resources and overcrowded EDs is a concern for South
African hospitals. This problem results in patients not getting medical attention on time
and efficiently which ruins the reputation of a medical institution and creates stress for
its employees.

Literature has shown that there has not been an empirical study done on predicting
patient arrivals to emergency departments (ED) in the context of South African health-
care. It is necessary to investigate forecasting’s applicability to South Africa due to its
recognized usefulness as a critical modeling tool in the management of ED operations
worldwide. By putting such forecasting models into practice, hospital administrators
may be able to better control patient flows and allocate resources while also increasing
operational efficiency and patient care management. This thesis has the potential to sig-
nificantly advance research and assist the South African healthcare system in real-world
ways.

1.3 Objectives of the study

The structured objectives of the study are as follows:

e To conduct an exploratory data analysis of the time series data of patient arrivals at
a designated public hospital in South Africa.

To develop a traditional Time series and Machine Learning Regressor models for the
number of daily patient arrivals.

To evaluate the performance of each forecasting model.

To make recommendations based on the expected forecasts to assist the hospital with
resource allocation.

1.4 Importance of the study

The accurate forecasting of daily patient arrivals at an emergency department (ED) is
crucial for effective resource allocation, optimal staffing, and ensuring timely and efficient
patient care. Forecasting models play a vital role in helping healthcare facilities prepare
for the demand and allocate resources appropriately. As far as we are aware, this is the
first study of forecasting patient arrival in the ED in a public hospital in South Africa.
As already discussed, this study will help the decision makers to predict the number of
daily arrivals and to plan the use of resources accordingly. The study will demonstrate
that better forecasting is an important tool in ED management.



1.5 Ethical considerations

This study will not include human participation, it tends to only focus on the analysis
of the secondary data sourced from the use case of a specified public hospital, in South
Africa. A permission letter was obtained from the Management of the hospital. Any
information that is obtained in connection with this study will remain confidential and
will not be disclosed to identify the source of data. The data will be protected and will
not be disclosed to any third parties. The data was first transformed and encoded so as
not to expose different EDs mentioned in the analysis. Ethical clearance was obtained
from the UNISA College of Economics and Management Sciences ethical committee.

The dissertation is structured into five chapters, thoroughly exploring the application
of forecasting models for patient arrivals in emergency departments. Chapter 1 sets the
foundational context, detailing the background, objectives, and significance of the study,
while also addressing the ethical considerations involved. A comprehensive evaluation of
the literature is carried out in Chapter 2, with an emphasis on forecasting techniques.
In-depth discussion of the methodology is provided in Chapter 3, which also includes the
study design, data sources, and particular models that were tested, including ARIMA
and machine learning regressors like XGBoost and Gradient Boosting. The accuracy
metrics that are essential for forecasting success are also assessed in this chapter. Chap-
ter 4 presents comprehensive data analysis and interpretation. Finally, conclusions and
recommendations are made in Chapter 5.



Chapter 2

Literature Review

This literature review chapter explores existing studies and research on the topic of fore-
casting daily patient arrivals at the emergency department of a hospital.

Forecasting daily patient arrivals at an emergency department is a complex task due
to various factors that influence patient flow, including time of day, day of the week,
seasonal variations, and external events. Traditional statistical methods, such as time
series analysis, have been widely used for forecasting patient arrivals. For instance, Smith
et al. (2017) employed an autoregressive integrated moving average (ARIMA) model
to forecast daily patient arrivals, demonstrating its effectiveness in capturing temporal
patterns and trends.

Furthermore, the literature review chapter examines studies that incorporate additional
factors such as weather conditions, holidays, and community events in their forecasting
models. These factors have been found to impact patient arrivals and can enhance the
accuracy of the predictions. For example, a study by Johnson et al. (2020) considered
weather data in combination with patient demographics to forecast daily patient arrivals,
resulting in improved forecasting accuracy.

The chapter also discusses the evaluation metrics commonly used to assess the per-
formance of forecasting models, known as mean absolute percentage error (MAPE), root
mean square error (RMSE), and mean absolute error (MAE). These metrics provide in-
sights into the accuracy of the forecasting models and allow for comparisons between
different approaches.



2.1 Operations Research in Healthcare

The increase in health expenditure makes healthcare delivery a topic of interest. Hospitals
are increasing, becoming bigger and more difficult to manage (Xie & Lawley, 2015). The
2019/2020 budget expenditure for healthcare services in South Africa was approximately
R222.6bn, which calls for a closer look at cost ”saving” measures. This might not be
clearly appropriate due to the high demand for healthcare services.

Operations Research is used in many fields as a decision support tool including the
health sector. Its methodologies and techniques aim to solve problems relating to schedul-
ing and allocation. The growing population and increased longevity have brought several
crucial and relevant concerns in healthcare besides optimization problems (Rais & Viana,
2011). Some recent applications of OR in healthcare include service planning, bed occu-
pancy and patient admission, among others.

OR has been used as a resource optimization tool in healthcare. Patient safety was the
driving force of the historical evolution of OR in the healthcare sector. It has a number
of significant applications that are based on quantitative models. OR methods have the
possibility to develop the operational, strategic and decision making of the healthcare
system and have been recognised as vital to strengthening healthcare programs (Priyan,
2017).

Romero-Conrado (2017) studied the historical evolution of OR application in the
healthcare through the use of bibliometric analysis and reviewing of literature. His find-
ings were that even in the 21st century, and generally, management of resources is a
priority in the health system. There is a development pattern in the clinical decision
support system which can be observed from the significant publishing of papers on OR
methods contributions to healthcare. The increase in the number of journals published
in OR are proof that it is a growing field in healthcare (Xie & Lawley, 2015).

The provision of adequate and proper resource allocation in healthcare requires plan-
ning. The estimation of the future demand is one of the recently studied issues in OR.
Demand forecasting is an essential technique for healthcare planning and some notable
research has been done on quantitative analysis for better accuracy (Rais & Viana, 2011).



2.2 Emergency Department Overcrowding in Healthcare

According to the South African constitution, all people have the right to hospital services.
According to Wallis et al. (2008), South Africa does not have nationally a accepted
strategies for managing patients. The 2010 FIFA World Cup to South Africa was a move
that emphasised the necessity for improved emergency care. Nonetheless, the country’s
growing population is a challenge that also calls for improved emergency care.

According to Wallis and Twomey (2007), emergency centres have been experiencing a
more than 10% yearly increase in patient volumes in South Africa. This can be observed
from the long queues in South African public hospitals. If resources do not increase, then
there will be further increases in patient volumes.

Almost half of all emergency departments in the United States of America (USA)
reported being overcrowded at least once a week. The economic cost of ED overpopulation
is substantial. In 2017, it was projected that the entire cost of ED overcrowding in the
USA was $ 30 billion (Rosen & Davis, 2016). Factors contributing to this cost include
increased healthcare costs, decreased productivity, and an increased chance of death.

Lindner and Woitok (2019) came up with approaches to analyze overcrowding. They
outlined the causes of overcrowding to arise in three ways: input, flow, and outflow factors.
Influenza season and patients who do not require immediate care were found to be factors
leading to an increase in inpatient admission in the ED. Flow factors such as shortages
in human capacity, delayed consultations and diagnostics are factors that were deemed to
favour ED overcrowding. The shortage of inpatient beds was also identified as a common
root of ED overcrowding. These factors can be observed locally in South Africa.

McCarthy and Quan (2015) investigate the link between ED overcrowding and death.
The authors used data from the National Hospital Ambulatory Medical Care Survey
(NHAMCS) to identify overcrowded emergency departments (EDs). In this study, the
authors compared the mortality rates of patients treated in overcrowded EDs to the
mortality rates of patients treated in non-overcrowded EDs. The researchers discovered
that patients treated in overcrowded EDs were more likely to die than patients treated
in non-overcrowded EDs. Patients admitted to the hospital via the ED had the highest
chance of mortality. The authors also discovered that the risk of death was increased for
patients who were treated in overcrowded EDs for longer periods.

The issue of overcrowding in the ED has severe consequences such as increased waiting
times and leaving the ED without examination and this can even result in an increased
mortality rate. Yarmohammadian et al. (2017) stated that a lack of predicting accurate
emergency department demand to improve capacity might lead to overcrowding. Proper



planning can be made when a good approximation of the expected arrivals is made.

Richards and Derlet (2013) examine the influence of ED overcrowding on patient sat-
isfaction. The authors compared the patient satisfaction scores of patients treated in
overcrowded EDs to the patient satisfaction scores of patients treated in non-overcrowded
EDs using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS).
Patients treated in overcrowded EDs were less happy with their care than patients treated
in non-overcrowded EDs, according to the authors. Patients treated in congested emer-
gency departments were more likely to claim that they waited too long to see a doctor,
that they did not receive enough information about their care, and that they were not
treated with respect.

The article by Derlet and Richards (2017) examines the impact of ED overcrowding
on patient outcomes. The authors reviewed the literature on ED overcrowding and found
that overcrowding is associated with several negative outcomes i.e increased patient wait-
ing time and compromised patient care. According to the findings of Derlet & Richards
(2017), ED overcrowding has a negative impact on patient outcomes. The authors con-
clude that initiatives to alleviate ED overcrowding may enhance patient outcomes.

According to Gatignon & Xie (2011), ED congestion is a public health concern. A
public health crisis, according to the authors, is a circumstance in which a huge number of
individuals are in danger of injury. They claim that ED overpopulation fits this description
since it exposes patients to longer wait times, lower quality care, and an increased risk
of death. The authors attribute ED overpopulation to the aging population, increased
healthcare costs, a shortage of primary care physicians, and the increasing complexity of
medical care. The authors conclude that ED congestion is a severe issue with a variety
of negative repercussions for both patients and hospitals. They identified expanding
access to primary care, changing the way patients are triaged, educating patients about
appropriate ED use, and improving ED efficiency as potential solutions to the problem
of ED overcrowding but also stated that more research is needed to determine which
solutions are most effective.

2.3 Forecasting Methods in Emergency Department Manage-
ment

Forecasting patient arrivals in hospitals for emergency departments (ED) is a fundamen-
tal aspect of healthcare management, aiming to predict patient volumes accurately and
efficiently allocate resources (Wang et al., 2018). Accurate forecasting enables hospitals
to better plan staffing levels, optimize patient flow, and ensure timely and effective pa-
tient care (Murray et al., 2019). Given the dynamic and unpredictable nature of patient
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arrivals, accurate forecasting models play a crucial role in enhancing overall operational
efficiency and patient satisfaction (Johnson et al., 2020).

Sun et al. (2009), Kadri et al. (2014), Afilal et al (2016), Calegari(2016) and Hertzum
(2017) conducted studies on patient arrivals in the ED environments and used techniques
such as univariate time series known as autoregressive moving averages (ARMA) and
other statistical methods. In these global studies, the importance of forecasting cate-
gorised patient flow was outlined. Emergency attendances in the ED were studied using
forecasting.

Kadri (2014) focused on the Multicentric Emergency Department Study group (GEMSA)
classification, which groups patients based on the outcome of leaving ED. This classifi-
cation offers useful details, which may be planned or unplanned, regarding the arrival of
the patient. The ARMA method was applied to three categories of GEMSA and the total
patient attendances. The three categories are G2 (Unplanned, patients returned home
after treatment), G4 (Unplanned, patients hospitalised after treatment), and total daily
attendances. The best ARMA models for the three categories were non-seasonal station-
ary ARMA models. Upon modelling and forecasting the time series for three categories,
preliminary statistics were carried out to identify features such as seasonality, outliers,
important fluctuations, and trends. Results from these tests showed that patient flow
varied between epidemic periods/winter and normal periods. The number of ED arrivals
also varied based on the day and week of the month.

The statistical plots, Henry’s line and histogram were used for residual analysis (Kadri
et al., 2014). The models fitted the data well, residuals were normally distributed, and no
dependence was observed between observations. These authors concluded that although
ARMA modelling offered robust forecasts in many cases, forecasting hourly ED arrivals
would be beneficial as it can be used in facilitating rosters and staff deployment. Multi-
plicative and additive models are basic models commonly used for long term forecasting.
In this case, the additive model was used because daily attendance did not show decreased
seasonality. Autoregressive Moving Average (ARMA) models were used to generate short
term forecasts. Short term forecasts are deemed more accurate than long term forecasts.
ARMA models are effective in using recent observations to predict the future.

To avoid the difficulty of choosing an accurate time series model, Bergs et al. (2014)
used an automated exponential smoothing approach to forecast monthly ED arrivals. The
accuracy of the forecasts was done in two ways: the in-sample and post-sample forecast
accuracy. Post-sample accuracy of the forecasting method performance was the main
objective of interest for this study. The limitations of the study included a small number
of ED participants, implying that the model cannot be adopted by hospitals and hospitals.
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The model selected by the automatic algorithm might not be the one chosen if specific
time series models were used to model patient arrivals.

Xiao et al. (2022) forecasted emergency department (ED) visits using machine learning
(ML) techniques. The authors did a comprehensive assessment of the literature to identify
research that employed machine learning techniques to forecast ED visits. They comprised
studies published in English between 2010 and 2022. They rejected papers that were not
peer-reviewed, were not original research, or did not apply machine learning approaches to
predict ED visits. The researchers found 15 studies that satisfied their inclusion criteria.
The research was carried out in a range of settings, such as hospitals, clinics, and academic
institutions. ML methods such as decision trees, random forests, and support vector
machines were used in the experiments. The research discovered that ML approaches
could predict ED visits with a high degree of accuracy. The authors examine the possible
advantages of employing machine learning techniques to forecast ED visits. They contend
that ML approaches can be utilized to improve ED planning and operations, reduce ED
overcrowding, and improve patient care. They also acknowledge the current research’s
shortcomings, such as the small number of studies included and the lack of long-term
follow-up data. According to the authors, ML approaches have the potential to be a
valuable tool for forecasting ED visits.

Chen K. and Wang H’s (2021) research focuses on forecasting the amount of daily
emergency department visits using a recurrent neural network (RNN). The authors offer
a unique method for improving forecasting accuracy and providing significant insights
for hospital management and resource allocation. Because of its capacity to simulate
long-range dependencies, this study used a special type of RNN known as the long short-
term memory (LSTM) network. External factors such as weather data and public holi-
days are also used as input features to increase forecasting accuracy. The authors assess
the effectiveness of the proposed LSTM model by comparing its forecasts to the actual
daily emergency department visits in the testing set. The study’s findings show that
the LSTM-based forecasting model is excellent at predicting daily emergency department
visits. Traditional forecasting approaches are outperformed by the suggested method,
producing more accurate forecasts. The LSTM model, for example, had a MAPE of
8.2% and an RMSE of 12.6, compared to 10,7% and 15.3 for the baseline model. The
addition of external factors improves the model’s performance even further by capturing
the impact of these factors on patient arrivals. The study illustrates that the proposed
approach is effective and has the potential to improve resource allocation and patient care
in emergency departments.

Using a hybrid ensemble model, Wang, H., and Xie, S (2017) describe a different
way to forecasting emergency department attendance. The study indicates the ensemble
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model’s superiority over individual models and traditional methodologies. The study’s
findings show that the hybrid ensemble model beats individual forecasting models as well
as traditional methods. The hybrid ensemble model, for example, had an MAE of 6.23,
MAPE of 8.52% and RMSE of 8.92, whereas the individual models (ARIMA, SVR, and
NN) had greater error rates. This suggests that combining predictions from many models
can result in more accurate forecasts. The hybrid ensemble model is an efficient method for
projecting emergency department visits and can help hospitals improve resource allocation
and patient flow management.

Silva and Sousa’s (2016) study focuses on estimating the number of emergency depart-
ment visits using machine learning techniques and ensemble models. The paper begins
by emphasizing the significance of precise forecasting in emergency department manage-
ment. Forecasting effectively can help optimize personnel numbers, resource allocation,
and patient care. Traditional forecasting methods, on the other hand, frequently fail to
capture the complex patterns and uncertainties involved with emergency room visits, ne-
cessitating the investigation of machine learning methodologies. The authors present a
framework for anticipating emergency department visits that integrate machine learning
algorithms such as support vector regression (SVR), random forest (RF), and k-nearest
neighbors (k-NN). The training data is used to train the latter individual machine learn-
ing algorithms. Using a weighted average approach, the ensemble model aggregates the
predictions of these models. The study’s findings show that the ensemble model beats
both individual machine learning algorithms and traditional forecasting methodologies.
The ensemble model, for example, had a MAPE of 8.4% RMSE of 13.9% and MAE
of 7.2, but the individual models had larger error rates. This suggests that combining
predictions from various machine learning algorithms results in more accurate forecasts.

Kim et al. (2018) offer a hybrid model for accurately predicting the number of emer-
gency department visits. For forecasting emergency department visits, the authors suggest
a hybrid model that incorporates ARIMA and SVR approaches. The ARIMA component
detects linear patterns in the data, whereas the SVR component detects nonlinear corre-
lations and seasonality. To obtain the final projection, the two models are blended using a
weighted average approach. The authors assess the hybrid model’s effectiveness by com-
paring its forecasts to the actual emergency department visits in the testing set. Several
evaluation metrics are used to assess forecast accuracy. The study’s findings show that
the hybrid model beats both the separate ARIMA and SVR models. The hybrid model
had a MAPE of 7.6% RMSE of 13.1% and MAE of 10.4% showing that it was more
accurate than the individual models. This implies that combining linear and nonlinear
forecasting approaches results in better forecasts.

The hybrid model provides an innovative and effective method for precisely project-
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ing emergency department visits, allowing hospitals to optimize resource allocation and
patient flow management (Bao & Liu, 2020). For forecasting emergency department vis-
its, the authors propose a hybrid model that combines time series analysis, ARIMA, and
machine learning techniques such as RF, SVR, and LSTM networks. The linear trends
and seasonality are captured by the time series analysis component, while nonlinear re-
lationships and complicated patterns are captured by the machine learning models. The
training data is used to train the time series analysis and machine learning models, and
their predictions are integrated using a weighted average approach to generate the final
forecast. The authors assess the hybrid model’s effectiveness by comparing its forecasts
to the actual emergency department visits in the testing set. The study’s findings show
that the hybrid model beats both separate time series analysis and machine learning ap-
proaches. The hybrid model had a MAPE of 8.3% an RMSE of 12.7% and an MAE of
10.2, showing that it was more accurate than the individual models. This implies that
combining the skills of time series analysis and machine learning approaches results in
better forecasts. The findings emphasise the approach’s potential for optimising resource
allocation and boosting emergency department operations.

Ye et al. 2019 published a study that focuses on predicting the number of emergency
department visits using internet search data and machine learning algorithms. To improve
forecast accuracy, the authors suggest a new approach that merges internet search data
and machine learning algorithms. The authors use a search engine to obtain online search
data about emergency department symptoms and disorders. This dataset is coupled with
data from previous emergency department visits. SVR and RF machine learning methods
are used to model the link between internet search data and emergency room attendance.
The training data is used to train the machine learning models, and the predictions
are compared against the actual emergency department visits in the testing set. The
authors examine the accuracy of the predictions and provide a quantifiable measure of
performance by evaluating the models’ performance using several evaluation metrics. The
study’s findings show that using internet search data to forecast emergency department
visits is beneficial. The SVR and RF models both outperform the baseline model, which
just uses past visit data. The MAPE of the SVR model was 7.2% the RMSE was 13.5,
and the MAE was 9.1, while the RF model was 6.9% the RMSE was 13.3, and the MAE
was 8.9. These findings suggest that integrating internet search data enhances forecast
accuracy.

Kim and Kim’s 2018 research study focuses on using calendar variables and ARIMA
models to accurately forecast the number of daily emergency department visits. For
predicting daily emergency department visits, the authors suggest a forecasting strategy
that incorporates calendar variables with ARIMA models. Calendar variables such as
weekdays, months, and public holidays are used as exogenous variables in the ARIMA
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model. These variables reflect the systemic patterns and temporal dependencies associated
with ER visits. The dataset is separated into two parts: training and testing. The
ARIMA model is trained using the training data, with the calendar variables acting as
exogenous inputs. The model’s performance is assessed by comparing its predictions to
the actual emergency department visits in the testing set. The authors evaluate the
accuracy of the ARIMA model. The study’s findings show that integrating calendar
variables into the ARIMA model for forecasting daily emergency department visits is
useful. ARIMA with calendar variables outperforms ARIMA without exogenous inputs.
The model had a MAPE of 8.2% an RMSE of 12.7% and an MAE of 9.5, showing that
it was more accurate in capturing temporal patterns and changes. The paper concludes
by exploring the research findings’ implications. Incorporating calendar variables into the
ARIMA model provides an excellent method for projecting daily emergency department
attendance. This method allows hospitals to better allocate resources, plan for peak
times, and enhance overall patient flow management. The authors acknowledge several
limitations, such as the requirement for constant model updates and potential differences
in calendar effects among locations.

Choi et al. (2017) focused on using deep learning algorithms to effectively forecast
the number of emergency room visits. In forecasting emergency room visits, the authors
propose using deep learning techniques, specifically LSTM networks. LSTM networks are
recurrent neural networks that can detect long-term dependencies and temporal patterns
in sequential data. The LSTM network learns the underlying patterns and trends by
modeling the past visit data as a time series. The LSTM network is trained using the
training data, and its predictions are compared against the actual emergency department
visits in the testing set. The authors evaluate the LSTM network’s performance using a
variety of metrics, including MAPE, RMSE and MAE. The study’s findings show that
LSTM networks are good at forecasting emergency room visits. The baseline ARIMA
model is outperformed by the LSTM model. The MAPE of the LSTM network was 7.1%
the RMSE was 11.8, and the MAE was 9.3, suggesting its higher accuracy in capturing
complicated patterns and nonlinear interactions. The results highlight the potential of
deep learning techniques in improving emergency department operations and resource
allocation based on complex temporal patterns.

To predict emergency department admissions, Rocha and Rodrigues (2021) offered a
forecasting approach that combines time series analysis and machine learning approaches.
To construct complete forecasting models, they evaluate a variety of criteria such as past
admissions data, demographic information, temporal patterns, and external variables.
The authors utilize time series analysis techniques, such as ARIMA, to capture the tem-
poral patterns in the data. Furthermore, machine learning methods like random forest
and XGBoost are used to incorporate additional relevant elements and increase prediction
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accuracy. The study’s findings illustrate the efficacy of the proposed forecasting models
for emergency department admissions. When time series models and machine learning
techniques, particularly XGBoost, are combined, prediction accuracy is enhanced over
traditional methods. The recurrent neural networks with one layer (sMAPE = 23.26%,
three layers (sSMAPE = 23.12%, and XGBoost (sMAPE = 23.70% produced the most
accurate hourly time predictions. The effectiveness of the XGBoost approach has greatly
surpassed that of the other methods. The study’s findings show that machine learning
algorithms are good at forecasting emergency department visits.

In a comparative study by Chen et al. (2021), the performance of the XGBoost algo-
rithm in predicting emergency department admissions is compared with other commonly
used forecasting methods. The study aims to shed light on the efficacy of XGBoost in
enhancing emergency department administration and resource allocation. The authors
highlight the difficulties associated with the dynamic nature of emergency room admis-
sions (i.e. unpredictable patient influx, resource allocation, staffing levels), as well as the
necessity for better forecasting tools to capture complicated trends. The research com-
pares the performance of XGBoost to various forecasting approaches such as random forest
and support vector regression. For training and testing the models, a dataset containing
historical emergency department admission data as well as different relevant character-
istics such as temporal trends, meteorological conditions, and demographic information
is used. According to the findings of the study, the XGBoost algorithm surpasses the
other techniques in anticipating emergency department admissions. XGBoost achieved
reduced MAPE, RMSE, and MAE values, suggesting its greater accuracy in forecasting
admissions. According to the comparison investigation, XGBoost is better at capturing
complicated patterns and nonlinear correlations in data. The study underlines the need
to use advanced machine learning techniques such as XGBoost to improve forecasting
accuracy and optimize emergency department operations.

The literature review outlined in this chapter covers a general examination of fore-
casting methods used for predicting daily patient arrivals at emergency departments. It
discusses traditional statistical models like ARIMA, which, despite their effectiveness in
identifying temporal patterns, may not completely capture the complex dynamics of pa-
tient arrivals. Complex methods that integrate external factors like weather and special
events show promise in enhancing forecast accuracy.

Further exploration reveals that while machine learning models such as XGBoost and
Gradient Boosting Regressor are effective at general trend recognition, they struggle with
predicting peak values and may overfit the data. One of the most important gaps found is
the incomplete incorporation of outside factors, such local events and the weather, which
have been demonstrated to have a major impact on patient flow and may improve model
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accuracy. Furthermore, while the existing models are good at handling broad patterns,
they frequently struggle to forecast peak arrival dates and deal with outliers.
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Chapter 3

Research Methodology

Research methodology is the path through which researchers need to conduct their re-
search, Rocha and Rodrigues (2021). The two concepts of research design and research
methodology need to be clarified first to clear up the confusion that is often associated
with their usage, particularly by emerging researchers. Each of these concepts is presented
as a compound word, with the concepts of design and methodology attached to the noun
research.

This chapter describes the methodological approach used in this study. Data on the
number of daily arrivals of patients were collected from a specified hospital and they were
analysed using the software Python. The first section gives a description of the data and

the data transformation processes. The following sections will expand on the description
of the models that have been selected to be used in this study, ARIMA, XGBoost, GBR,
and the VR. Lastly, the model evaluation section is introduced to assess the model section.

3.1 Study design, settings, and data source

The data to use in the study was collected from a specified hospital in the form of Excel
Registers that were locked and password protected. A dataset of patient arrivals from the
date May 2019 to November 2021 has been collected, with a total of 47 461 observations
used for the analysis. The data received from the hospital had daily patient arrivals for
normal hours (07:00 - 15:59), after hours (16:00 - 06:59) and the priority units.

The variables in the data include:
e The date and the time of arrival of the patient

e Patient’s arrival for Normal Hours (NH)
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e Patient’s arrival for After Hours (AH)

The analysis will be carried out using Python, which is widely used for data analysis,
machine learning, deep learning, and general programming.

3.1.1 Data Transformation

The data transformation stage is key for the data analysis and fitting of traditional time
series models. This process includes:

e ensuring that the file can be cleaned or edited (that includes removal of security on
each Excel workbook received),

e ensuring the data quality (which includes checking if the columns should only contain
numerical values, contains numeric values only, no strings or special characters as
this can render our data unclean),

e checking the data integrity

3.1.2 Raw Datafile Transformation

A Python script was used to import all the files sitting in a local folder, remove any
security settings and export them with the same name to a cleaned folder.

3.1.3 Datafile Cleaning and Data Integrity Checks

To fulfill the datafile cleaning step, the analyst needs to select the relevant columns from
the provided or cleaned file only and the relevant columns include: date, Normal Hours
arrival time (timestamped) and After Hours arrival time (timestamped). An Unassigned
column was added to cater for visits that took place and there was no priority assigned.
These incidents could not be thrown away because the trained model still needs to know
how many patients visited the hospital in a day. This was a manual process.

Several Excel macro (VBA) codes were written to assist in speeding up the process of
data quality checking. The first process was to add the days to the cleaned data so that
the Time Series model could be exposed to daily data.

3.1.4 Explanatory Data Analysis of Time Series Variables
This section begins by presenting the fundamental characteristics of the dataset, including

the number of variables and observations, and affirms the completeness of the data by
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confirming there are no missing values. This assurance of data integrity is crucial for
reliable statistical analysis.

Further, the section offers a meta-analysis of the dataset, providing an at-a-glance
understanding of the data’s structure. The descriptive statistics are then presented in a
tabular format, which outlines key measures of central tendency and dispersion for each
variable, such as mean, standard deviation, and range. These measures are essential for
summarising the data and providing insights into the typical values and variability of
patient arrivals.

The visual comparative analysis then explores the patterns of patient visits within
the hospital, identifying the most crucial time frames for patient influx by differentiating
between regular business hours and after-hours. The hospital can more effectively assess
and manage its resources thanks to the graphic representation of this comparison, which
reveals informative trends regarding the busiest days and times for patient arrivals.

In addition, we will focus on the statistical properties of the data. Histograms are
employed to unpack the normality or non-normality of the distribution of patient arrivals
across different priority wards during both normal and after working hours. This anal-
ysis is pivotal for understanding the underlying statistical structure of the data and for
preparing it for further modeling and analysis.

All things taken into account, the exploratory data analysis offers a strong basis for
comprehending the intricate dynamics of patient visits and acts as a model for more
sophisticated analytical methods that could be used with the time series data.

3.2 Nonlinear Models

3.2.1 Tsay’s Test

Tsay (1986) developed a test that helps improve the power of the above-mentioned nonlin-
earity tests. To improve the power of the nonlinearity tests developed by Keenan (1985)
and Ramsey (1969), Tsay (1986) proposed to use a different set of explanatory variables
for the test. The test is based on running an auxiliary equation in the form:

i, = B4 4wy (3.1)
where

Z; = vech( X X])
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is a vector of predetermined variables, their squares and cross products, and vech(.)
denotes a half-stacking operator. The version of the test statistic is defined as:

p(p+1)

TSAY (p) = TR*d—x* ( 5

(3.2)

where T denotes the sample size, and R? is the coefficient of determination from an
auxiliary model. In a special case when p = 1, the Tsay coincides with the Keenan test
proposed by Keenan (1985).

3.3 Nonlinear Unit Root Test

3.3.1 Kapetanios, Shin and Shell (KSS)

The traditional unit root test, like the ADF-GLS previously mentioned, may not be
sufficient to detect stationarity in time series data when nonlinearity is present. It is
crucial to employ stationarity tests that account for nonlinearity in such a situation, like
the KSS test. The Augmented Dickey-Fuller (ADF) test is modified into the KSS test
based on the following nonlinear model specification, Kapetanios et al., 2003.

Y, =BY 1 +7Yi {1 — exp (—9Yidﬂ + &, (3.3)
which when parameterised yields:
AY, =0Y,o1 +7Yi [1 — exp (—gytad)} + &ty

where 6 = 8 — 1 -, 0 are parameters that must be estimated and ¢; is the residual
term. The KSS test sets 6 = 0 and the decay parameter, d = 1, so that the test is formally
based on the following specification:

AXy =X [1—exp (—0X7 )] + =, (3.4)

The KSS tests the null hypothesis of linear stationarity by setting § = 0 against the
alternative that 8§ > 0. However, Kapetanios et al.,2003 argue that it is impossible to
directly test the null hypothesis since the speed of reversion, 7, is unknown. Using a
first-order Taylor series approximation, Luukkonen et al.,1998 reformulated an estimable
nonlinear specification for testing nonlinear stationarity in X, as:

AXt = 52{#1 —l— Et.
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To account for the possibility of serial correlation in the error term, the equation is
augmented with lags of the first-difference of X, as:

p
AXy =X} + D 6AX, ; + &

j=1

where £ is the coefficient used to test the presence of a unit root. From the nonlinear
stationarity specification, the KSS-NADF unit root test is based on the t-statistic:

3
TNL = = 3.9
s.e.(§) (3:5)

Three distinct nonlinear model specifications—raw data, demeaned data, and de-
trended data—are used to construct three distinct asymptotic critical values (Kapetanios
et al., 2003). The scenarios listed below are most common:

e If X, has a zero mean, then the appropriate data to use is Y; = X, the raw data.

e If X; has a non-zero mean and zero trend, then the appropriate data to use is
Y, = X; — X, the demeaned data, where X is the mean of the data.

e If X; has a non-zero mean and non-zero trend, then the appropriate data to use is
Y; = Xi — (o + agt), the detrended data, where o + 4t is the trendline obtained
by regressing X, on timepoint t = 1,2, 3,...,n with an intercept term.

The selection of the lag length, p, has an impact on the KSS-NLADF test. Using Hall’s
(1994) general-to-specific method is one well-known way to choose p. To do this, set up
the Schwert (1987) suggested upper bound, pyq. :

Pmaz = integer [12 (1750) 4] (3.6)

where n is the sample size, estimating the test regression with p = pras

Liew et al. (2004) recommend a lag length of 8, which is what this study will adhere to.
If the final included lag is significant at the 1% 5% or 10% level, it is kept as the ideal lag
and utilized in the KSS-NLADF unit root test. The ideal lag for the KSS-NLADF unit
root test is determined by reducing p by one lag until the last included lag is significant.
This process is carried out if the last included lag is not significant. If the t-statistic
exceeds the critical value at a certain significance level, the alternative hypothesis—the
nonlinear unit root — is accepted.
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3.4 Autoregressive Moving Integrated Moving Average (ARIMA)
models

Autoregressive Moving Integrated Moving Average (ARIMA) models refer to a class of
time series models that result in a linear combination of moving average (MA) and auto
regression (AR) models together with the differential operator (I). They constitute a com-
prehensive family of models that are suitable to capture a large set of linear relationships.
As will be discussed in subsequent sections, ARIMA models have been successfully applied
to model time series of patient volumes in emergency departments.

ARIMA models were popularised by statisticians George Box and Gwilym Jenkins and
there are sometimes referred to as “Box-Jenkins models”.

Our main reference for this section is the book by Shumway and Stoffer (2016).
A time series (x;) is called an ARMA(p, ¢) time series if it can be represented as

Ty = ¢1$t_1 + gbgl’t_g + ...+ ¢pxt—p —+ wy + let_l + ngt_g + ...+ qut_q
(3.7)

where @1, @2, ..., ¢p,01,02,...,0, are real numbers and w; is a white noise.

The parameters ¢1, o, .. ., ¢, are called the autoregression coefficients and 01, 6s, . .., 0,
the moving average coefficients. Clearly a ARMA(p,0) model is the same as a AR(p)
model and similarly a ARMA(0, ¢) is a MA(gq) model.

Box and Jenkins (1976) introduced a methodical process for constructing ARIMA mod-
els through a cycle of three steps: pinpointing the model type, estimating parameters, and
conducting diagnostics. Initially, one ensures the model aligns with certain theoretical au-
tocorrelation characteristics expected from an ARIMA-generated series. Comparing these
with empirical data helps select suitable model candidates. Tools like autocorrelation and
partial autocorrelation functions aid in determining the ARIMA model’s order. For ef-
fective model construction, data must be stationary, often requiring transformations like
converting stock prices to returns and testing stationarity through the augmented Dickey-
Fuller test.

Stationary series exhibit constant statistical features, such as mean and autocorrela-
tion, over time. Differencing and power transformations may be applied to data with
trends or volatility to meet stationarity prerequisites before fitting the ARIMA model.
Parameter estimation is fairly direct, involving nonlinear optimization to minimize error.
Unlike neural networks, ARIMA does not incorporate various technical indicators, which
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can be both a limitation and a simplification since more inputs don’t always enhance fore-
cast precision. The final step involves diagnostic checks to confirm model adequacy by
inspecting error assumptions, fitting quality, and residual plots. If the model falls short,
one must reformulate it, estimate parameters again, and re-evaluate until a satisfactory
model is developed for forecasting purposes.

3.5 The XGBoost Model and Gradient boosting algorithms

3.5.1 Introduction

The XGBoost is also called the Newton boosting because of its relation to the classical
Newton’s optimisation method. Assume that the following data have been collected:

(x17y1)7 <x2ay2)> ceey (xnayn)

It is assumed that yq,vs, . .., y, are independent random realisations of a random variable
Y and xy, 21, . .., 21 also independent realisations of a random variable X = (X3, Xs, ..., X,).
The random variable Y is the response or dependent variable and the random variables
(X1, X, ..., X,) are the predictors, explanatory or independent variables. Here there are
p explanatory or independent variables.

In order to make a prediction, consider a model, that is a function

f: X =R, z— f(x)

that is assumed to represent the data as closely as possible and is able to generalise to
values that are not in the data set. Then for a given point x; € X, we can make the
prediction that a; = f(x;). Of course in general this prediction is not necessarily exact,
that is, generally a # y;. In general, assume that we make the prediction y = f(x) for
generic point x € X and that the exact point corresponding to x is y.

Then the corresponding loss is given by:

L(y,9)

where L is a specified loss function such as:

Ly, 9) = ly—1l,

L(y,y) = log(1+exp(y) —yv)
N lifty=yg

L(%?J) = { Oify#g.

For a model f, the empirical risk corresponding to the given data is given by:

24



R = jliuyi,f(xi)).

Given a certain class of functions C', the problem it to select a function f in the class
C such that f minimises the empirical risk. We shall consider the tree model where
the class of functions is defined as trees, that is, functions that can be written as linear
combinations of indicators functions:

o(x) = ]; O 1R, (2)

where Ry, R, ..., Ry are subsets of the input space X, (6,0, ...,0y) are parameters
and Ip, is the indicator function of Ry.

Generally, the subsets R; are obtained by subdividing the space X into rectangulars
of parallel and equal sides.

For a specified class C of functions (called the learner base) the boosting of a model
corresponds to sequentially constructing functions

]?(1)> ]?(2)’ o 7]?(M)

defined by:
Frm(x) = 00+ Y Oroi()
k=1
where ¢1, ¢a, ..., ¢y are functions in ® and 0y, 04,0, ...,0, are parameters. At step

m, the function ¢,, and the parameter 6, are choosen to minimise some quantity depend-
ing on the given loss function.

n

Z L(y:, f(m_l) (i) + Omdm (i) -

=1

3.5.2 XGBoost algorithm

The XGBoost algorithm or Newton boosting algorithm is is described with the following
steps: (see Chen & Guestrin, 2016 and Nielsen, 2016 for more details.)

(1) The input is:
— The data set (z1,y1), (2, 2),-- -, (Tn, Yn)-
— The loss function L.

— A class of functions (the learner base) C.

— The number M of iterations.
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— A parameter 7 called learning rate.

(2) Initial step: the initial function f© is the constant 0, obtained by minimising the

loss
n

ZL(%,@)7

k=1
with respect to 6.

(3) For each number m =1,2,3,..., M,

— Compute the gradient g,,(z;) of the loss function at the current function f (m=1),
that is,
OL(y;, 2
() = 2H2) .
“ L=fmn@)

— Compute also the second derivative:

O?L(y;, 2
o) = S5

2=fn= (a;)

— Find a function ¢ € C' that minimises the quantity

n

Eothtod (-5 -ote)

or equivalently the function ¢ that minimises the quantity

L (23) (6(2))” + g (i) H (1)

-

=1

and denote such a function ggm
— Take

Fr () = fo D (@) + nm ().
(4) Return
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Now for the particular case of Newton boosting for trees, the base learner is taken to
be the class of tree functions, that is, functions that can be written as linear combinations
of indicators functions:

¢(x) = Zl w; g, ()

where R; are rectangles in the input space and as before Ig; is the indicator function
of R,,; and w,,; are parameters. Generally, the subsets I; are obtained by subdividing
the space X into rectangulars of parallel and equal sides.

3.5.3 XGBoost algorithm for trees

The XGBoost algorithm or Newton boosting algorithm for trees is the following. At each
step, the goal is to choose a tree function ¢ that minimises the quantity:

(1) The input is:
— The data set (x1,91), (T2, Y2), - - -, (Tn, Yn)-
— The loss function L
— The number of terminal nodes T’
— The number M of iterations
— A parameter 7 called learning rate
— Parameters v and .

(2) Initial step: the initial function f ©) is the constant @E obtained by minimising the

loss
n

ZL(yi,9)7

k=1
with respect to 6.

(3) For each number m =1,2,3,..., M,

— Compute the gradient g,,(z;) of the loss function at the current function f(mfl),
that is,
OL(y;, 2z
() = 2H2) .
S L lCh

— Compute also the second derivative:

O?L(y;, 2
b(a) = %

z:}\(mfl)(ri)
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— Find a tree structure and the corresponding tree function ¢ that minimises the
quantity:

L () (6(2:))° + g (2:)(:) + () (3-8)

1

where
Qo) =T + $AI0]1*.
Write such tree function as

( where I(x € A) is the indicator function of the set A).
— Compute the weights of the leaf j of the tree by:

’[D~ o EiEIj gm(x’t)
where [ is the set of all indices ¢ such that the input point z; is the region R,
— Take

T
Fr(2) = f (@) + 0> @il (x € Rjp)

(4) Return A 7
f(z) = F0(x).

To find a tree function that minimises (3.8) at iteration m, one can start with a tree
with a single node and iteratively add branches by splitting nodes into two others. If at
a certain step, the node represented by the set [ is split into two nodes with sets I}, and
I then as discussed in Chen & Guestrin (2016), loss reduction or gain resulting from the
split is given by:

[ & a2, e
— + —_ R
2\Hr+X Hrp+ )X Hr+ X
where

GL=Y gn(2:);Gr =Y gm(xi); Gr=2_ gm(x:)

el i€lR el
Hy =3 hm(x:); Hr =Y h(x:);  Hr = hin().
= iclp icl
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More details can be found in Chen & Guestrin (2016), Friedman (2001), and Nielsen
(2016).

Parameter Tuning

A summary of the tuned parameters is given below

alpha: Usually, this parameter is connected to regularization methods. It could be
referring to the alpha quantile of the loss function in quantile regression while discussing
gradient boosting models. An alpha of 0.9, for instance, would concentrate on the 90th
percentile, which is frequently employed to forecast higher values in the data distribution.

learning rate (eta): This is the shrinkage of step size that keeps overfitting from
happening. We can immediately obtain the weights of newly added features after each
boosting step, and eta reduces the feature weights to make the boosting procedure more
cautious.

gamma: Also referred to as the minimal loss reduction needed to create an additional
partition on a tree leaf node. It functions as a phrase for regularization.

max_depth: It stands for a tree’s maximum depth. The model will become more
sophisticated and perhaps more prone to overfit if this value is increased.

min_child _weight: The child’s minimal required instance weight (hessian) sum. The
building process will give up on further partitioning if the tree partition phase yields a
leaf node with the sum of instance weight less than min_child_weight.

n_estimators: This indicates how many trees there are in the forest. Although more
trees can collect more information from the data, they can also slow down the training
process and increase the risk of overfitting if the learning rate is not changed.

min_samples_leaf: This is the bare minimum of samples that must be present at a
leaf node. Raising this value can help the model become more smooth, particularly in
regression tasks, as it will stop the model from producing noisy leaves with small sample
sizes.

min_samples_split: It specifies how few samples are needed to split an internal node.

Again, higher values aid in reducing overfitting by preventing the creation of nodes that
represent too fine-grained patterns.
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colsample_bytree: The subsample ratio of columns used to build each tree is this
parameter. There is one subsampling for each tree that is built.

reg_lambda: The L2 regularization term on weights. It is used to avoid overfitting.

subsample: The fraction of data to be used for fitting each unique base learner is
defined by this parameter. Stochastic gradient boosting, in which every tree is trained on
a random subset of the data, is applied when the value is less than 1.0. This method can
aid in lowering variance and boosting the resilience of the model.

3.6 Model Validation

To establish a robust methodology for evaluating the prediction of the models, the follow-
ing metrics will be utilized: Mean Squared Error (MSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and
Mean Percentage Difference (MPD). These metrics offer various lenses through which
the model’s forecast accuracy and performance can be scrutinized.

Mean Squared Error (MSE) measures the average of the squares of the errors, that
is, the average squared difference between the estimated values and the actual value. The
MSE is calculated as:

MSEYY

i (3.9)

where Y] is the actual value, Y; is the forecast value, and n is the number of observations.

Mean Absolute Error (MAE) is a measure of errors between paired observations
expressing the same phenomenon. The formula for MAE is:

N 1
MAE(Y)Y) = = > |Y; - Yil. (3.10)

Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy

in a forecasting model, calculated as the average of the absolute percentage errors. The
formula for MAPE is:

N 100% &
MAPE(Y,Y) = % S
n =1

Yio ¥ (3.11)
| .

)
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Root Mean Squared Error (RMSE) is the square root of the average of squared
differences between prediction and actual observation. The formula for RMSE is the
square root of MSE:

n
A

RMSE(Y,Y) = J =3 (Vi -Y;)? (3.12)

ni4

RMSE adds a little more weight to large errors and is useful when large errors are
particularly undesirable.

Mean Percentage Difference (MPD) is used to calculate the average of percentage
differences between forecasted and actual values. It’s a relatively less common metric but
useful in certain contexts to understand the deviation in terms of percentage. Its formula
is:

. 100% & (Y- Y,
MPD(Y,Y) = % Z < ) (3.13)
no= Yi
MPD differs from MAPE in that it does not take the absolute value, which can provide
insights into the direction of the errors.

Each of these metrics will be computed using the actual and forecasted values from the
models under consideration. The choice of metric should align with the specific objectives
of the forecast and the cost of errors in the particular application, James et al., (2013).

3.7 Model Selection

3.7.1 Auto ARIMA Model Selection

Auto ARIMA model selection is a process of automatically selecting the optimal parame-
ters for an ARIMA model (Hydman& Athanasopoulos, 2021). ARIMA models are a class
of statistical models that are used to forecast future values of a time series based on its
past values. Auto ARIMA model selection can save time and effort, as it does not require
manually testing different ARIMA models. It can also help to identify models that would
not have been considered otherwise (Hydman& Athanasopoulos, 2021).

The most common methods of auto ARIMA model selection are the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC). These methods penalize
models that are too complex, and the model with the lowest AIC or BIC is considered
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to be the best model. Other methods of auto ARIMA model selection include cross-
validation, information criteria such as the Hannan-Quinn information criterion (HQIC),
and statistical tests such as the Ljung-Box test.

To perform auto ARIMA model selection in practice, the data is first split into train-
ing and testing sets. The ARIMA models are then fitted to the training set, and their
performance is evaluated on the testing set. The model with the best performance on the
testing set is selected as the optimal model.

3.7.2 Machine Learning Model Selection

The methods with the best initial prediction performance are mostly used to select ma-
chine learning models.

To check model performance, the dataset was divided into training and testing subsets.
This method reduces overfitting and is necessary for an objective assessment (Varma
& Simon, 2010). Before adjusting the hyperparameters to choose the top-performing
algorithms for the main model selection, several preselected algorithms were used to train
the model.

Hyperparameter optimization is an integral part of model selection, with grid search,
random search, and more sophisticated methods like Bayesian optimization often being
utilized (Snoek, Larochelle, & Adams, 2012). The use of automated machine learning
(AutoML) systems, which automate the process of selecting models and hyperparameters
and save time and resources while frequently producing more repeatable results, is another
recent trend in model selection (He & Garcia, 2010; Feurer et al., 2015).

Once a model is selected, you should conduct a final validation using the test set
to ensure the robustness and predictive power of the model. The model with the best
test performance, considering both accuracy and generalization, is typically chosen for
deployment. Frequently, this iterative process calls for several training, fine-tuning, and
validation cycles (Bergstra et al., 2011).

The use of traditional time series and modern machine learning models in the study
aligns closely with the objectives to enhance forecasting accuracy for patient arrivals at
a public hospital. These models facilitate a comprehensive Exploratory Data Analysis
(EDA) to decipher complex patterns in patient arrival data, supporting the objective
to develop robust forecasting models. ARIMA, XGBoost, Gradient Boosting Regres-
sor (GBR), and Voting Regressor have been chosen based on their proven capabilities
in handling various data behaviors, thus ensuring reliable predictions which are crucial
for optimizing resource allocation. FEvaluating the performance of each model against
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real-world data ensures that the most effective methods are recommended for practical
application, ultimately aiding the hospital in strategic planning and improving patient
management processes.
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Chapter 4

Data Analysis and Interpretation

The current chapter will report on the data summary, exploratory data analysis, prelimi-
nary analysis, the interpretation of predictive characteristics found in the time series, and
the clarity of the model outputs.

The dataset is first explored, split into series types i.e., Normal Hours train sample
(used for model building) and test samples (used to evaluate the reliability and the fore-
casting /predictive power of the model). Further statistical investigations are conducted to
treat non-normality and non-stationarity in the training sample prior to model building.
The chapter will illustrate all properties found in the dataset in the forms of statistical
graphs and table outputs with their respective interpretations.

The chapter is structured systematically, covering various aspects of time series anal-
ysis. It begins with an exploratory data analysis followed by an examination of time
series plots for Normal and After Hours. It delves into the identification of time series
components. Subsequently, the chapter explores the testing of stationarity assumptions
and normality assumptions for different time periods.

The chapter culminates in the model, aiming to identify the best-fit model across

all variations. Finally, a concluding section of the chapter, with the subsequent section
focusing on performance evaluation.
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4.1 Preliminary Data Analysis Of Time Series Variables

Preliminary data analysis is centered on exploring unique properties contained in the
time series and establishing significant relationships that might influence the dependent
variables. The overall data contains 1007 daily observations (from May 2019 to November
2021). The data is divided into two main groups: Normal Hours and After Hours. Patients
in the Normal Hours group are those who arrive at the emergency department between
8:00 and 16:00 and those in the After Hours group are those who arrive between 16:00
and 08:00.

4.1.1 Visual Comparative Analysis

This section show a graphical representation of the comparison between Normal versus
After Hours to see which of the two contributes to the peak periods.

Patient Visits by Day of Week

Values

m Normal Hours

B After Hours
Wed Thu Fri Sat

Figure 4.1 — Comparison of Normal vs After Hours
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Figure 4.1 implies that for days around the weekend namely Friday, Saturday, Sunday
and Monday, the most patient arrivals are after working hours. While during the week
most patients arrive at the hospital during Normal Hours.
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Patient Arrival - Normal & After hours
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Figure 4.2 — Series for Normal and After Hours

The pattern is almost similar between the two series samples, with the exception of the
NH sample spiking above the average and AH hitting the trough line more often than the
other as depicted by Figure 4.2. However, the generalised pattern between the two series
averages is the same, meaning by visual inspection the two series are not significantly
different.

4.1.2 Descriptive Analysis

Variable Mean Std. | Variance Skewness Kurtosis
Std. Deviatio Std. Std.
N Range | Statistic | Error n Statistic | Error | Statistic | Error
NH 1007 64 23,41 0,273 8.650| 74,816| -0,250 0,077 1,106 0,154
AH 1007 56 24,59 0,286 9.061] 82,108| -0.416 0,077 0,493 0,154

Table 4.1 — Descriptive Statistics of Daily Patient Arrivals for each variable

Table 4.1 presents descriptive statistics for daily patient arrivals, comparing two vari-
ables: Normal Hours (NH) and After Hours (AH). Both variables were observed across
the same number of days, N = 1007.

For Normal Hours, the maximum number of daily patient arrivals was 64, with a
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mean (average) of 23.41. This suggests that, on average, about 23 patients arrived during
normal hours across the observed days, but on at least one day, this number spiked to
64. The standard deviation, a measure of the spread or dispersion of the data, was 8.650,
indicating that the number of patient arrivals typically varied by about 8-9 patients from
the mean. The standard error of the mean, at 0.273, suggests that the mean of 23.41
is relatively precise as an estimate of the true average number of arrivals. The variance,
which is the square of the standard deviation, was 74.816, confirming the spread in the
data.

Skewness for NH is -0.250 with a standard error of 0.077, indicating a slight negative
skew meaning that the tail on the left side of the distribution is longer or fatter than the
right side, showing a slight tendency for days with fewer than average arrivals. Kurtosis,
at 1.106 with a standard error of 0.154, suggests a distribution that is slightly ”peakier”
than a normal distribution (which has a kurtosis of 3). The Jarque-Bera test, which tests
the hypothesis that the data follows a normal distribution, yielded a statistic of 61.931
and a very small p-value (3.564e-14), strongly suggesting that the patient arrivals during
Normal Hours are not normally distributed.

For After Hours, the maximum number of patient arrivals was lower at 56, and the
mean was slightly higher at 24.59. This suggests that, on average, there are more patient
arrivals during after hours compared to normal hours, with a lower maximum number
observed. The standard deviation was slightly higher at 9.061, indicating a wider variation
in the number of patient arrivals during after hours. The standard error of 0.286 reflects
a similarly precise estimate of the mean compared to NH. The variance was 82.108, which
is higher than NH, showing more variability in the AH data.

The skewness for AH is more pronounced at -0.416, with the same standard error as
NH, indicating a more noticeable negative skew compared to NH. The kurtosis is lower at
0.493, suggesting a flatter distribution compared to NH and much flatter than a normal
distribution. The Jarque-Bera test for AH produced a statistic of 46.643 and a very small
p-value (7.439e-11), also rejecting the normality of the distribution for patient arrivals
during After Hours.

In conclusion, both NH and AH patient arrivals show significant variation, with AH
showing a slightly higher average but lower peak and more pronounced negative skewness.
Neither distribution is normal, with AH being flatter and NH being more peaked compared
to a normal distribution. This non-normality is confirmed by the very small p-values in
the Jarque-Bera test for both variables.
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4.1.3 Nonlinearity Tests

The following is a table that shows the results of Teraesvirta’s neural network test for
nonlinearity, comparing Normal Hours to After Hours.

Teraesvirta's neural network test X-squared df p-value
MNormal Hours 10.5367 2 0.005152093
After Hours 39.00126 2 3.396128e-09

Table 4.2 — Teraesvirta’s neural network test for nonlinearity

These results are indicative of testing for nonlinearity. The null hypothesis usually
assumes linearity and a low p-value suggests evidence against linearity.

The chi-squared statistic of 10.5367 and the p-value of 0.005152093 indicate that there
is significant nonlinearity in patient arrivals during NH. This suggests that patient ar-
rivals during NH do not follow a simple linear pattern. There could be various factors
contributing to this nonlinearity, such as:

e Daily Fluctuations in Patient Volume: The number of patients arriving at the emer-
gency department might naturally exhibit a nonlinear pattern throughout the day,
with peak periods in the morning and evening hours (Akenfeldt et al., 2012).

e Variations in Staff Availability: Staffing levels might vary throughout the day, which
could impact the capacity to handle patient arrivals and potentially introduce non-
linearity into the waiting time or treatment duration (Doran et al., 2010).

The chi-squared statistic of 39.00126 and the p-value of 3.396128e-09 indicate that
there is even more pronounced nonlinearity in patient arrivals After Hours. This suggests
that patient arrivals After Hours exhibit a more complex and unpredictable pattern com-
pared to Normal Hours (Akenfeldt et al., 2012). Several factors could contribute to this
heightened nonlinearity:

e Reduced Staffing and Resources: After hours, the emergency department might oper-
ate with reduced staffing and resource availability, which could lead to longer waiting
times and increased congestion, potentially influencing the nonlinearity of patient ar-
rivals (Doran et al., 2010).

e Urgent and Emergent Cases: A higher proportion of patients arriving after hours
might present with urgent or emergent conditions, leading to more unpredictable
arrival patterns (Schwartz et al., 1998).
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e Lack of Scheduled Appointments: The absence of scheduled appointments or proce-
dures after hours could further contribute to the nonlinearity of patient arrivals.

Tsay's Test for nonlinearity F-stat p-value
Normal Hours 1.726049 3.051213e-10
After Hours 39.00126 3.396128e-09

Table 4.3 — Tsay’s neural network test for nonlinearity

Table 4.3 reports on Tsay’s Test for results. The test involves examining the null
hypothesis that a time series is linear against the alternative hypothesis that it is nonlinear.

In both cases, the p-values are extremely small (close to zero), which typically leads to
rejecting the null hypothesis. In the context of Tsay’s Test, this would suggest evidence
of nonlinearity in the time series for both Normal Hours and After Hours.

4.1.4 Nonlinear Unit Root Test

This table presents the results of a Kapetanios, Shin, and Snell (KSS) Nonlinear Unit
Root Test. The optimal lag length for each variable is selected using the general-to-
specific method suggested by Hall (1994) This test is designed to determine whether a
time series is stationary or has a unit root, which would indicate non-stationarity.

Critical values of the KSS-NLADF test with constant and trend at the 10% 5% and
1% significant levels are -3.13, -3.40 and -3.93, respectively.

Variable :::tll:mal Estimate |Std. Error [t-value ([P-value KSS
Mormal Hours 0]-0.0004282 [0.0000760 |-5.634 |2.24e-08 *** |-5.634
After Hours 0|-7.049e-04 [8.036e-05 |-8.773 |0.00681 *** |-8.773

Table 4.4 — KSS Nonlinear Unit Root Test
The results suggest that the variable Normal Hours has a statistically significant neg-

ative nonlinear unit root. The t-value is -5.634, and the p-value is very close to zero
(2.24e-08), indicating strong evidence against the presence of a unit root.
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The results for the variable After Hours also indicate a statistically significant negative
nonlinear unit root. The t-value is -8.773, and the p-value is 0.00681, suggesting strong
evidence against the presence of a unit root.

In summary, based on the KSS Nonlinear Unit Root Test, both Normal hours and
After hours variables appear to be stationary without a unit root. The negative estimates
and significant t-values provide evidence against the presence of a unit root in these series.

4.2 Model estimation

In this section, we discuss the estimated models for the data. We will consider ARIMA,
XGBoost, GBR and VR.

4.2.1 ARIMA Model Training

This section will cover the training of ARIMA model in the context of Normal working
hours and After Working Hours.

Normal Hours

Parameter Estimations

This area section shows the number of parameters to be included in the fitting of
the ARIMA model by uncovering the relevant ARIMA input. The section does that
by showing the Autocorrelation function (ACF) and Partial autocorrelation functions

(PACF).

ACF plot for:NA PACF piot forNA
100 T
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Figure 4.3 — ACF and PACF plots
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Based on the spike by the ACF plot, the greatest decline is shown of value if 1 followed
by other declines and the PACF plot also shows the same. This suggests that the cor-
relation functions deem several options as optimal but a value of 1 being the best. This
means the best ARIMA model based on ACF and PACF is ARIMA(0,0,1) and it will be

confirmed by later discoveries.

Tuning the ARIMA Hyper-Parameters

The previous area of a sub-section uncovered ARIMA(0,0,1) to be the best, and this
section will verify the discovery by performing an iterative search for the best parameters.
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Figure 4.4 — ARIMA Optimal Parameter Searching for Normal Hours
The above result shows that iteration 1 is the best as it has the minimum error.

Therefore ARIMA(0,0,1) should be fitted to obtain the best results as it is also supported
by ACF and PACF plots.

ARIMA(0,0,1) Parameters - output
Interpreting the various statistics and components of an ARIMA(0,0,1) model is im-

portant for understanding the model’s goodness of fit and whether it is suitable for the
data assessed.
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Based on Figure 4.5, the following learning points from the model parameters are
highlighted:

The log likelihood was estimated to be -3372.238 and as a rule of thumb; a more
negative log likelihood indicates a better fit for the model, this means the model performs
relatively well.

The model has the Akaike Information Criterion (AIC) value of 6750.476, a Bayesian
Information Criterion (BIC) value of 6765.64, and a Hannan-Quinn Information Criterion
(HQIC) value of 6765.064, which are all meant to measure the trade-off between goodness
of fit and the model’s complexity but mainly focusing on penalising for complexity. Since
all the measured values (AIC, BIC, and HQIC) are relatively high, they suggest that the
trade-off was not balanced which results in a highly complex model.

¢<¢=== 1, MODEL PARAMETERS ============s===s================33)
SARIMAX Results
Dep. Variable: NA  No. Observations: 956
Model: SARIMAX(@, @, 1) Log Likelihood -3372.238
Date: Thu, 18 Aug 2823 AIC 675@.476
Time: 13:46:07 BIC 6765 .064
Sample: a5-81-2e819 HQIC 6756.832
- 12-11-2021

Covariance Type: opg

coef std err z Pr|z] [e.825 8.975]
intercept 27.1788 @.344 78.964 @, 008 26.504 27.853
ma.Ll 2.2861 a.e22 13.3@7 @.0ee @.244 @8.328
sigma2 67.8247 2.451 27.675 8.080 63.021 72.628
Ljung-Box (L1) (Q): 2,99 Jarque-Bera (JB): 75.80
Prob(Q): 8.85 Prob(JB): 9.20
Heteroskedasticity (H): 9.40 Skew: -9.12
Prob(H) (two-sided): 8.8@  Kurtosis: 4.36
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
{{{==============s=========================================333

Figure 4.5 — ARIMA Model Parameters for Normal Hours

The Intercept parameter was estimated to a value of 27.1788, which represents the
constant term as an expected value of the time series when lagged values are not con-
sidered. The model has a Moving Average Coefficient (ma.L1) value of 0.2861, which is
a coefficient associated with the moving average term of order 1. And it measures the
influence of the most recent error term on the current value which indicates a positive
effect in this case.

A Residual Variance (Sigma2) of 67.8247 was estimated, which represents the estimated
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variance of the residuals. The higher the Sigma2 value, the greater the variability of the
residuals, which is the case for this model. Ljung-Box Statistic of 3.99 was estimated,
which tests for autocorrelation in the residuals. Due to the low value of this statistic,
it suggests that there may be no significant autocorrelation in the residuals. Ljung-Box
Test (Prob(Q)) p-value was estimated to be 0.05, which suggests that there might be
some residual autocorrelation, but it’s not extremely significant.

Heteroskedasticity was estimated to a value of 0.40, which suggests that there is no
strong evidence of heteroskedasticity (changing variance) in the residuals. Prob(H) Two-
Sided was estimated to be 0.00, that is when associated with heteroskedasticity is very
low, this affirms a significant presence of constant variance in the residuals. The Jarque-
Bera statistic (JB Statistic) was estimated to be 75.80 by testing for the normality within
the residuals, this indicates departures from normality in the residuals. Jarque-Bera Test
p-value (Prob(JB)) was estimated to a value of 0.00, the very low p-value that is associated
with the previous JB statistic of 0.00 confirms the non-normality (that the residuals are
not normally distributed).

The Skewness was estimated to a value of -0.12, which is a slight leftward or negative
skew in the residuals, this indicates that the distribution is skewed to the left slightly. The
Kurtosis was also estimated to a value of 4.36, this indicates heavy tails in the residuals,
meaning there is the presence of outliers or extreme values in the series.

In summary, this ARIMA(0,0,1) model has relatively good log likelihood and low
Ljung-Box statistic, which indicate a decent fit to the data and no significant autocor-
relation. However, the high AIC and BIC values suggest that the model may be overly
complex. The low p-value for the JB test and high kurtosis indicate that the residuals
are not normally distributed and have heavy tails. The negative skewness suggests a
slight leftward skew. Additionally, the low p-value for Prob(H) indicates the presence
of constant variance. Further model refinement or exploration may be necessary, espe-
cially regarding the non-normality of residuals. In this case other models will be explored
instead.

Model Evaluation

With a Mean Squared Error (MSE) of 59,51 for the training set, the average squared
deviation between the model’s predicted values and the actual values is rather high. An
average of 6 units separates the model’s predictions from the actual values, according to
the Mean Absolute Error (MAE) of 5,65. It’s highly unlikely for a model to have zero
error unless the actual values are also zero, so this is an unusual occurrence that could
indicate a potential calculation or reporting error. The Mean Absolute Percentage Error
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(MAPE) of 0,33 indicates almost perfect prediction accuracy. The average magnitude of
the error, corrected for its squared units back, is indicated by the Root Mean Squared
Error (RMSE), which is 7,71.

METRIC TRAIN TEST
MSE 59,51 54,66
MAE 5,65 6,31

MAPE 0,33 0,20
RMSE 7,71 7,39
MPD 3,16 1,86

Table 4.5 — Results of evaluation metrics for NH

With a Mean Squared Error (MSE) of 54,66 for the training set, the average squared
deviation between the model’s predicted values and the actual values is rather high. An
average of 6 units separates the model’s predictions from the actual values, according to
the Mean Absolute Error (MAE) of 6,31. It’s highly unlikely for a model to have zero
error unless the actual values are also zero, so this is an unusual occurrence that could
indicate a potential calculation or reporting error. The Mean Absolute Percentage Error
(MAPE) of 0,20 indicates almost perfect prediction accuracy. The average magnitude of
the error, corrected for its squared units back, is indicated by the Root Mean Squared
Error (RMSE), which is 7,39.

In a nutshell, the average prediction appears to be 3% off from the actual values, as
indicated by the Mean Percentage Difference (MPD) of 3. However, it is important to
note that this metric is not standard and requires additional context to fully understand.
After Working Hours
This sub-section will cover the training of ARIMA model in the context of After working

hours.

Parameter Estimations

This area of the subsection shows the number of parameters to be included in the
fitting of the ARIMA model by uncovering the relevant ARIMA input. The section does
that by showing the Autocorrelation function (ACF) and Partial autocorrelation functions
(PACF).

Based on the spike by ACF plot, the greatest decline is shown on value if 1 followed by
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other declines and the PACF plot also shows the same. This suggests that the correlation
functions deem more several options as optimal but a value if 1 being the best.

This means the best ARIMA model based on ACF and PACF is ARIMA(0,0,1) and it
will be confirmed by later discoveries.

ACF plot farAd PACF plot for:Ak

Figure 4.6 — ACF and PACF plots After Hours

Tuning the ARIMA Hyper-Parameters

The area of a sub-section will perform an iterative search for the best parameters.
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Figure 4.7 — ARIMA Optimal Parameter Searching After Hours
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The result below shows that iteration 1 is the best as it has the minimum error.
Therefore ARIMA(0,0,1) should be fitted to obtain the best results as it is also supported
by ACF and PACF plots.

ARIMA(0,0,1) Parameters — output

Interpreting the various statistics and components of an ARIMA(0,0,1) model is im-
portant for understanding the model’s goodness of fit and whether it is suitable for the
data assessed.

Based on Figure 4.8, the following learning points from the model parameters are
highlighted:

€¢¢=== 1. MODEL PARAMETERS ==== =333
SARIMAX Results

Dep. Variable: AA  No. Observations: 956

Model: SARIMAX(@, @, 1) Log Likelihood -3384.573

Date: Thu, 31 Aug 2823 AIC £775.148

Time: ©9:17:25 BIC 6789.734

sample: ©95-81-2819  HQIC 6788.782
- 12-11-2e21

Covariance Type: opg

intercept 28.2427 @.36e7 76.871 @.e2e 27.523 28.963

ma.Ll B8.3258 9.825 12.786 2.008 8.278 B.376
sigma2 6%.5955 2.868 24.264 2.822 63.974 75.217
Ljung-Box (L1) (Q): £.27 Jarque-Bera (1B): 21.45
Prob(Q): 2.88 Prob{JBE): e.00
Heteroskedasticity (H): 28.75  Skew: -8.24
Prob(H) (two-sided): .81 Kurtosis: 3.56
warnings:

[1] covariance matrix calculated using the outer product of gradients (complex-step).
Cii= = ==300

Figure 4.8 — ARIMA Model Parameters for After Hours

The log likelihood was estimated to be -3384.573 and as a rule of thumb; a more neg-
ative log likelihood indicates a better fit for the model, which means the model performs
relatively well.

The model has the Akaike Information Criterion (AIC) value of 6775.146, a Bayesian
Information Criterion (BIC) value of 6789.734, and a Hannan-Quinn Information Criterion
(HQIC) value of 6780.702, which are all meant to measure the trade-off between goodness
of fit and the model’s complexity but mainly focusing on penalising for complexity. Since
all the measured values (AIC, BIC, and HQIC) are relatively high, they suggest that
the trade-off was not balanced which results in a highly complex model. The Intercept
parameter was estimated to a value of 28.2427, which represents the constant term as an
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expected value of the time series when lagged values are not considered.

The model has a Moving Average Coefficient (ma.L1) value of 0.3258, which is a
coefficient is associated with the moving average term of order 1. And it measures the
influence of the most recent error term on the current value which indicates a positive effect
in this case. A Residual Variance (Sigma2) of 69.5955 was estimated, which represents
the estimated variance of the residuals. The higher the Sigma2 value, the greater the
variability of the residuals, which is the case for this model.

Ljung-Box Statistic of 8.27 was estimated, which tests for autocorrelation in the resid-
uals. Due to the high value of this statistic, it suggests that there is some degree of
autocorrelation in the residuals. Ljung-Box Test (Prob(Q)) p-value was estimated to
be 0.00, which suggests that there is significant autocorrelation in the residuals. Het-
eroskedasticity was estimated to a value of 0.75, which suggests that there is no strong
evidence of heteroskedasticity (changing variance) in the residuals. Prob(H) Two-Sided
was estimated to be 0.01, which indicates some evidence of constant variance in the esti-
mated residuals.

The Jarque-Bera statistic (JB Statistic) was estimated to 21.45 by testing for the
normality within the residuals, this indicates departures from normality in the residuals.
Jarque-Bera Test p-value (Prob(JB)) was estimated to a value of 0.00, due to a low value
of this statistics, it then confirms that the residuals are not normally distributed. The
Skewness was estimated to a value of -0.24, which is a slight leftward or negative skew
in the residuals, this indicates that the distribution is skewed to the left slightly. The
Kurtosis was also estimated to a value of 3.56, this indicates heavy tails in the residuals,
meaning there is the presence of outliers or extreme values in the series.

In summary, this ARIMA(0,0,1) model has a reasonable log likelihood, indicating a
decent fit to the data. However, the AIC, BIC, and HQIC values are relatively high,
suggesting potential model complexity. The relatively high Ljung-Box statistic and low
p-value (0.00) indicate significant autocorrelation in the residuals, which may suggest that
the model is not adequately capturing the temporal patterns in the data. Additionally,
the JB statistic and its low p-value (0.00) suggest non-normality in the residuals. Further
analysis and model refinement may be needed to address these issues. In this case other
models will be explored instead.
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Model Evaluation

METRIC TRAIN TEST
MSE 59,22 97,24
MAE 5,77 8,42

MAPE 0,30 023
RMSE 7.70 9,86
MPD 3.11 3,03

Table 4.6 — Results of evaluation metrics for AH

The average squared difference between the estimated and actual values is measured
by the Mean Squared Error (MSE). The MSE for the training set is 59.22, indicating a
reasonably good match between the model and the training data. The model does not
perform as well on unseen data, which may be an indication of overfitting, as the MSE
for the test set is substantially higher at 97.24. The mean absolute error (MAE) between
the expected and actual values is calculated. Compared to MSE;, it is less vulnerable to
outliers. The MAE rises to 8.42 for the test set from 5.77 for the training set. Once more,
this demonstrates a decline in performance from testing to training.

The mistake is expressed as a percentage of the actual values by MAPE. It is partic-
ularly helpful when you wish to utilize a more intuitive interpretation of the error sizes.
For the training set, the MAPE is 0.30, while for the test set, it is 0.23. It’s interesting
to note that the MAPE is lower for the test set, which may indicate that even though
the mistakes are bigger overall (as indicated by the MSE and MAE), they are reduced in
relation to the scale of the predicted data.

The square root of the mean statistical error (RMSE) can occasionally be more easily
understood by providing error terms in the same units as the projected result. Similar
to MSE, the RMSE rises from 7.70 in the training set to 9.86 in the test set, indicating
a decrease in predicted accuracy when the model comes into contact with fresh data.
Although the MPD measure is not as standard as the others, it often shows the average
percentage difference between the values that were predicted and those that were seen.
The MPD, which is 3.03 for testing and 3.11 for training, is comparatively stable be-
tween the test and train sets. This implies that both datasets have comparable relative
disparities between predictions and actuals.
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4.2.2 XGBoost Model Training

This section will cover the training of XGBoost model in the context of NH and AH.
XGBoost is a gradient-boosting algorithm that is often used for machine learning tasks
such as regression and classification. It is a powerful algorithm that can learn complex
relationships in the data.

Normal Hours

Tuning an XGBoost Model

”Validation” and "RMSE” (which most likely stands for mean squared error) are terms
used in machine learning to describe the process of model validation and the search for
optimal parameters.

The output represents a parameter tuning exercise for an XGBoost model.

Each entry in the output is the result of a single model run with a specific set of param-
eters. The naming convention validation_0-MSE, validation_1-rmse, and so on suggests
that we are looking at cross-validation results from different folds or parameter sets.

[e] validation_1-rmse:2 51] validation_1.rmse:
[1] valigation_1-rmse: 52] validation_1-rms
(2] validation_i.rmse:; 53] validation_1-rms
3] i validetion 1-rmse: 5] validaticn_1-rms
[2] validation validation_1-rmse: 55] validation_1-rms:
[s) validgation & validation_1-rmse:: {561 validation 1-rms
[&l valigation validation 1-rmse: (7] validation 1-rms
[71 validation validation_1-rmse: [55] validation_1-rms
(=) validati validation_1-rms 58] validation 1.rms
[3]  valigation validation_1-rms s validation 1.rms
[18]  validetion 2 validation_1-rms: 1 Ber
[11] validation_ - validation_1-rms 2] validation 1.rms
[12]  validation_g.rm: “ validation_1.rms - T
[13]  valigation_e-rmse:s, 40088 validation_1-rms 53] validation 1-rms
[13]  validation 326 validstion_1-rms 41 valigstion_L-ras
[15]  valigation_-rm 8570 validation_1-rmsa:3. 65] validation_1.rms
[18]  validation_g. validation_1-rmse:s. 58] validstion 1-rms
[17]  valigation alidation_1-rms 1671 validation 1-res
[18]  validation validstion_1-rms le] VL2
[13]  validation validation_1-rms: 162] velidation_1-rms
[20]  walidation_e. validation_1-rms 78] validation_1.rms
[21] validation_1-rme 71] validaticn_1-rms:
[22] validation_1-rms 72] validation_1-rms
[22] validation_1-rms 73] validation 1.rms
[24] validation_1-rms 74] validation_1-rms
[25]  valication ¢ validotion_1-rms: (7] valigation_1-ras
[26] validation_g validation_1-rms [7s] validation_1.rmse:
2711 validation_1-rms [77] validsticn_1-rms
[25] validetion 1-rms (78] validation 1-res
[29] validation_1-rms [79] validation_1.rms:
[28] alidation_1-rms [se] validation_1-rms
[31] validation 1-rms [s1] validation_1.rmse:
32] validation_1-rms [s2] validation_1-rs
[22] validation_1-rmsi 23] validation 1-rms
{3‘} wlidstion 1-rms 34] validaticn_1-rms
35 s sali -
[36] validation 1-rms o o
271 validation_1-rmse:9. & -t validation 1.rms
t==1 ° valiostion 1-rms ss} validation_i-rms
[33]  wvalication_ validation_1-rms 39] validation 1.rms
[4a] validation_g validation_1-rms 98] validation 1-rme
[41]  valigation e validation_1-rms -

2 o e fe1] validation 1-ras
[#2]  walicetion validation_1-rms 92 alidation 1
[s3]  valigation validation_1-rmse:3. [22] VLA L1
[44] validation_1.rms [#2] velidation_1-rms
[45] validstion i-rms 241 velldetion 1-res
[46]  validation validation_1-rms 35] validation_1-ras
[47]  validation_g. validation_1-rms: 6] validstion_1-ras
[48]  validation validation 1-rms 97] ¢ validaticn_1.rms
[as1  validation e.rm validation 1 rme 58]  validation_g-rm valigstion_1-rms
[s8]  validation_@-rmse:2.02584 validation_1-rmse: %3] validation o-rmse:e. validation 1-rms

Figure 4.9 — XGBoost Optimal Parameter Searching for Normal Hours
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Validation_0, Validation_1, and so on are different validation folds or iterations. The
metric used to evaluate the model’s performance is denoted by RMSE. The numerical
value (for example,.21367) represents the RMSE for that specific run.

Parameter Estimations

The output lists various XGBoost model configuration parameters, but all of them are
shown with their default values or set to 'None,” indicating that no specific value has been
assigned to them in this output. Machine learning models such as XGBoost include a
set of default parameters that are a good starting point for many datasets and problems.
The default settings can provide a solid baseline and may be sufficient for initial model
development.

Parameter Value
Learning rate 0,30
gamma 0

max_depth

min_child_weight 1
n_estimators 100
colsample bytree 1
reg_lambda 1

Table 4.7 — Parameters used in XGBoost for NH.

With no further regularization on the tree leaves (gamma = 0), the XGBoost model for
predicting outcomes during Normal Hours at an emergency department uses a relatively
aggressive learning rate of 0.30, allowing for quick learning. It has a minimum child
weight of 1 to support fine-grained data splits and a balanced tree depth of 6 to capture
intricate patterns without overfitting. To prevent overfitting by penalizing large weights,
the model builds 100 trees utilizing all of the features that are available for each tree
(colsample_bytree = 1) and incorporates an L2 regularization (reg_lambda = 1) to create
a resilient model that performs well when applied to new data.

These parameters are chosen to develop a predictive model that is complex enough to
capture the intricate patterns in the data without overfitting.

The lack of custom values suggests that the model may not be fully optimized for

the dataset’s unique characteristics concerning daily patient arrivals at an emergency
department.

50



Model Validation

The XGBoost model’s performance is compared in the graphs below; one shows in-
sample predictions, while the other shows out-of-sample predictions. The values predicted
by the XGBoost model are shown by the ”Prediction” line, although the ”NH” line appears
to match the actual values.

We usually examine the degree to which the predictions agree with the actual values to
evaluate the performance of the fitted XGBoost model for the in-sample and out-of-sample
datasets.
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Figure 4.10 — In sample Testing for Normal Hours

Because the model has been trained on the in-sample data, it is anticipated to produce
superior predictions for that set of data. With a few notable exceptions, particularly in
regions where the real values show spikes, the forecasts in the first image mostly correspond
with the patterns of the actual values. This is common behavior for many predictive
models, which may have trouble with abrupt changes or noise in the training set. The
model appears to smooth out the spikes.
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Figure 4.11 — Out of sample Testing for Normal Hours
The model may not be as good at generalizing to new data, as evidenced by the more
noticeable difference between the out-of-sample predictions and the actual results. This

could be because the model has not learned the new characteristics of the out-of-sample
data, or it could be the result of overfitting to the in-sample data.

Model Evaluation

METRIC TRAIN TEST
MSE 35,87 81,10
MAE 4,49 7,27
MAPE 0,28 0,23
RMSE 5,99 9,01
MPD 1,58 3,28

Table 4.8 — Results of evaluation metrics for NH

The evaluation metrics hint that there may be overfitting because the model’s per-
formance on the training data does not translate well to the testing data. The model’s
Mean Squared Error (MSE) rises to 81.10 on testing data, despite achieving a lower MSE
of 35.87 on training data. This indicates bigger average squared errors in predictions for
unknown data. The model’s predictions were off by an average of 4.49 on the training
data and by a more significant 7.27 on the testing data, according to the Mean Absolute
Error (MAE), which displays a similar trend.
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The testing data shows an interesting improvement in the Mean Absolute Percentage
Error (MAPE), which drops from 0.28 to 0.23. This suggests that the relative percentage
of errors is a little lower on the test set. As with the other measures, the Root Mean
Squared Error (RMSE) shows higher average mistakes in the model’s predictions, with a
reasonable value of 5.99 on the training data and an increase of 9.01 on the testing data.
Finally, when switching from training to testing, the MPD measure rises from 1.58 to
3.28, indicating once more a decline in predicting accuracy on fresh data.

Overall, these metrics suggest that while the model seems to fit the training data
reasonably well, its predictive power diminishes when applied to the test data, which is a
common sign of overfitting in machine learning models.

After Hours

This area of the subsection will cover the training of the XGBoost Model in the context
of After working hours.

Parameter Estimations

Parameter Value
learning_rate 0,30
gamma 0
max_depth
min_child_weight 1
n_estimators 100
colsample_bytree
reg_lambda

Table 4.9 — Parameters used in XGBoost for AH.

The XGBoost model employs a learning rate of 0.30 for quick learning in the emergency
room of a hospital after hours. This is highly proactive, but it runs the risk of overfitting
if rigorous cross-validation isn’t done. Since the gamma value is set to 0, no further
regularization is applied to the tree leaves, allowing the model to develop unhindered if it
produces a smaller training loss. Because the maximum depth is limited to 6, the model
can learn intricate patterns without getting overly dependent on the training set. The
model can generate children nodes with a finer granularity when min_child_weight is set
to 1, which is helpful for subtle patterns that might emerge in the After Hours scenario.
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With 100 estimators produced by the model, there will be a sizable but manageable
ensemble size for prediction. When splits are made, all features are taken into account
(colsample_bytree is at its maximum of 1), which could be significant if all features have
the potential to hold essential information for the After Hours scenario. Finally, a modest
level of L2 regularization is applied with a reg_lambda of 1, penalizing big weights in the
model to promote generalization to fresh data. These settings are selected to maintain
a model that performs well in novel, unseen After Hours scenarios while also learning
intricate data patterns.

Model Validation

The performance of a fitted XGBoost model is displayed in the graphs below, which
compare the actual and predicted values for the in-sample and out-of-sample data sets
after hours. The phrase ”after hours” usually describes data points or occurrences that
take place outside of a market’s or environment’s regular business hours and frequently
show distinct patterns or behaviors from regular hours.

After Hours forecasts, both in-sample and out-of-sample, demonstrate the model’s
ability to partially mirror the trend of the real data.
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Figure 4.12 — XGBoost In sample Testing for Normal Hours
Since this data was used to train the model, it is not surprising that the in-sample

predictions are more accurate. The fact that the prediction line closely tracks the actual
line suggests that the model has done a good job of learning the in-sample data.
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Figure 4.13 — XGBoost Out of sample Testing for Normal Hours
The out-of-sample predictions have greater discrepancies, suggesting potential overfit-

ting to in-sample data or a lack of generalization to new data patterns occurring after
hours.

Model Evaluation

METRIC TRAIN TEST
MSE 0.85 150,58
MAE 0,67 10,05
MAPE 0,03 0,30
RMSE 0,92 12,27
MPD 0,04 6,74

Table 4.10 — Results of evaluation metrics for AH

An emergency department’s After Hours data was used to evaluate the XGBoost model,
and the assessment metrics show a notable difference in performance between the training
and testing datasets. With a mean squared error (MSE) of 0.85, mean absolute error
(MAE) of 0.67, mean absolute percentage error (MAPE) of 0.03, root mean square error
(RMSE) of 0.92, and mean percentage difference (MPD) of 0.04 during training, the model
performs admirably.

These low values imply a close match between the model and the training set. All
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error metrics, however, are significantly higher when applied to the test data (MSE of
150.58, MAE of 10.05, MAPE of 0.30, RMSE of 12.27, MPD of 6.74), suggesting that
the model may have overfitted to the training set and is not well suited to generalizing to
new data. A major challenge for the model’s practical use in a hospital context is that its
predictions become far less accurate when confronted with After Hours data that it has
never seen before.

4.2.3 Gradient Boosting Regressor Model

This section will cover the training of the Gradient Boosting Regressor Model in the
context of NA and AH . A Gradient Boosting Regressor is a Machine Learning algorithm
that is used to predict a continuous value in regression tasks.

Normal Hours

Table 4.11 represents the hyperparameters for a Gradient Boosting Regressor model.
These parameters govern how the model learns from data.

Model Parameter Estimation

Parameter Value
alpha 0.9
learning_rate 0.1
max_depth 3
n_estimators 100

min_samples_leaf
min_samples_split
subsample

= M) | =

Table 4.11 — Parameters used in GBR for NH.

The following parameter values are used for the Gradient Boosting Regressor (GBR)
model customized for Normal Hours at an emergency department: A model that uses
the 'quantile’ loss function, which is normally intended to forecast higher values, is said
to concentrate on capturing the 90th percentile of the data distribution, according to an
alpha value of 0.9. The model learns from the data at a moderate rate when the learning
rate is set to 0.1, which balances the learning rate with the danger of overfitting. In
order to avoid over-complexity in individual trees and to facilitate the generalization of
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the model to new data, the maximum depth of trees is set to 3. The model can improve
its accuracy via a significant number of iterations with 100 estimators.

The model can construct splits and generate leaf nodes even with very few data points,
possibly capturing complex data patterns but also running the risk of overfitting from
noise. A minimum sample leaf of 1 and minimum sample split of 2 indicate this. Lastly,
if the model’s complexity is not managed in any other way, a subsample value of 1 means
that every tree in the model is trained using all of the data, not just a part of it. This can
result in more reliable predictions, but it also runs the risk of overfitting. Together, these
parameters are selected such that the GBR model may learn intricate patterns during
emergency department regular business hours without being unduly sensitive to noise or
unique characteristics of the training set.

Model Validation
The graphs below compare in-sample and out-of-sample performance during regular

business hours, displaying real versus predicted values for the Gradient Boosting Regressor
model.
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Figure 4.14 — GBR In sample Testing for Normal Hours

The model fits the in-sample data well, as seen by how well the predictions match
the actual values. Both the real and anticipated lines exhibit discernible variability; the
forecasts, though somewhat smoothed at the peaks and troughs, largely follow the same
pattern as the actual values. This implies that the model has successfully acquired the
in-sample data patterns during regular business hours.
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Figure 4.15 — GBR Out of sample Testing for NH

The accuracy of the out-of-sample predictions significantly declines, particularly as the
plot nears its conclusion, which may be a sign of problems with the model’s generalization
ability.

Model Evaluation

When the Gradient Boosting Regressor model is applied to Normal Hours at an emer-
gency department, the evaluation metrics reveal a significant discrepancy between the
model’s performance on the training and test sets. The model produces a good fit with
very low errors on the training data, as seen by the following metrics: Mean Squared
Error (MSE) of 0.83, Mean Absolute Error (MAE) of 0.66, Mean Absolute Percentage
Error (MAPE) of 0.03, and Root Mean Squared Error (RMSE) of 0.91. A very accurate
training performance is further supported by the Mean Percentage Difference (MPD) of
0.04, which is caused by overfitting or a shift in distribution between the training and
testing datasets..

METRIC TRAIN TEST
MSE 0,83 92,70
MAE 0,66 7,62
MAPE 0,03 0,25
RMSE 0,91 9,63
MPD 0,04 5,04

Table 4.12 — Results of evaluation metrics for NH
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All error metrics, on the other hand, dramatically rise when the model is applied to
the test set, suggesting a less accurate model performance on unseen data: the MSE soars
to 92.70, the MAE to 7.62, the MAPE to 0.25, the RMSE to 9.63, and the MPD to 5.04.
The model may have overfitted or experienced a shift in distribution between the training
and testing datasets, as indicated by these elevated error values on the test set, despite
the fact that the model has learned the training data well.

After Hours

The configuration parameters of a Gradient Boosting Regressor model designed to forecast
patient arrivals at an emergency department after hours are shown in Table 4,39 output
below:

Model Parameter Estimation

Parameter Value
alpha 0.9
learning_rate 0.1
max_depth 3
n_estimators 100

min_samples_leaf
min_samples_split
subsample

= (M) | =

Table 4.13 — Parameters used in GBR for AH.

The following parameter settings apply to the Gradient Boosting Regressor (GBR)
customized for an emergency department’s after-hours data: If a quantile loss function
were employed, aiming for higher-end predictions, a "alpha” of 0.9 suggests the quantile
to which the model may assign greater weight; however, since the loss is ”squared_error,”
this is irrelevant. To balance accuracy and generalization without rapidly overfitting,
the model updates its findings at a modest pace, which is ensured by a ’learning_rate’
of 0.1. The’'max_depth’ parameter, which is set to 3, helps keep the trees from being
overly complicated, which helps prevent overfitting and guarantees that the model can
successfully generalize to new, untested data.

The model has a good amount of trees to deal with when 'n_estimators’ is set to
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100. These trees can capture intricate patterns without being overly computationally
demanding. To capture the subtleties and unpredictability typical of After Hours cir-
cumstances, the model must be able to construct leaves and splits even with little quan-
tities of data, which can render the model vulnerable to noise.’min_samples_leaf’ at 1
and’'min_samples_split” at 2 support this capacity. Last but not least, setting 'subsample’
to 1 guarantees that every tree is trained using the entire dataset, giving every tree the
most data possible and maybe producing a stronger model.

These parameters provide a balance between capturing the specifics in the data and
creating a well-generalizable model. They are intended to simulate the unpredictable and
perhaps sparse data patterns that arise during the After Hours operations of an emergency
department.

Model Validation

The graphs, one for in-sample data sets and the other for out-of-sample data sets,
display the actual values and the anticipated values for after-hours data using a Gradient
Boosting Regressor model.
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Figure 4.16 — In sample Testing for After Hours
The prediction line seems to smooth down the extremes, but it still closely tracks the

actual value line. When the model is trained on this particular set of data, this is typical
behavior for in-sample predictions.
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The larger difference between the expected and actual values implies that the model’s
capacity to generalize to new data may be restricted, as indicated by the out-of-sample
predictions.
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Figure 4.17 — Out of sample Testing of After Hours

As anticipated, the model performs better for after-hours predictions on the training
set of data, but its performance noticeably declines when predicting fresh data.

Model Evaluation

METRIC TRAIN TEST
MSE 37,06 111,12
MAE 4,67 8,54
MAPE 0,27 0,25
RMSE 6,09 10,54
MPD 1,58 4,12

Table 4.14 — Results of evaluation metrics for NH

An emergency department’s After Hours data evaluation metrics point to a model that
does well on the training set but noticeably worse on the test set. The Mean Squared
Error (MSE) of the training data is 37.06, which is a pretty low figure. However, on the
test set, this value rises substantially to 111.12, indicating that the model’s predictions
are much less accurate on data that it hasn’t seen before. Larger average mistakes in the
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model’s predictions on the test data are indicated by the Mean Absolute Error (MAE),
which more than doubles from 4.67 in training to 8.54 in testing.

Interestingly, the Mean Absolute Percentage Error (MAPE) drops from 0.27 to 0.25,
suggesting that the absolute errors may not accurately reflect the relative amount of the
errors relative to the actual values. Nonetheless, there is an increase in the Root Mean
Squared Error (RMSE) from 6.09 to 10.54, indicating a higher degree of unpredictability
in the test predictions. Additionally, there is a greater average percentage difference in
the predictions made during After Hours, as indicated by the Mean Percentage Difference
(MPD), which rises from 1.58 to 4.12. When taken as a whole, these indicators point to the
model being overfit to the training set and maybe underfitting to the more unpredictable
situations that the emergency department experiences after hours.

4.2.4 Voting Regressor Model

This section will cover the training of the Voting Regressor model, starting with the
parameter optimisation in the context of Normal Hours and After Hours. A Voting Re-
gressor is a Machine Learning model that uses a voting mechanism to combine predictions
from multiple regression models. It is a type of ensemble learning, which is a technique
for improving predictive performance by combining multiple models.

Normal Working Hours

The configuration details the parameters of the Voting Regressor, which includes three
different regressor models:

VR Model Parameters

Parameter GBR Value XGB Value
n_estimators 100,00 100,00
learning_rate 0.1 0.1
max_depth 3,00 6,00
min_samples_leaf 1,00 1,00
min_samples_split 2,00 1,00
subsample 1.0 1.0

Table 4.15 — Parameters used in VR for NH.

The Voting Regressor for Normal Hours at an emergency department combines pre-
dictions from both a Gradient Boosting Regressor (GBR) and an XGBoost Regressor
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(XGBoost), using the following parameter settings. The fact that both models are set up
with 100 estimators means that they each employ 100 trees in their ensemble, striking
a compromise between computational efficiency and prediction accuracy. Both models
have a learning rate of 0.1, which is a reasonable speed that permits sufficient model
modifications without running the risk of overfitting too rapidly.

In terms of tree complexity, the XGBoost is given more leeway with a max depth of
6, possibly catching more subtle patterns at the cost of fitting to noise, while the GBR
is limited to a cautious max depth of 3, which helps prevent overfitting. Small leaf nodes
and fine-grained data segmentation are made possible by the minimum sample leaf of
1 used by both models, which might be crucial in a changing environment such as an
emergency room. In contrast to the XGBoost, which is set to default and usually requires
a min_child_weight of 1 to split, the GBR requires at least 2 samples to split a node, which
can assist reduce overfitting and perhaps provide a more sophisticated model.

Last but not least, both models have a subsample rate of 1.0, meaning that they learn
from all of the available data points. This can result in more accurate predictions, but it
may also introduce noise into the training process. The combination of models suggests
a robust approach to capturing various patterns and relationships within data, which can
be critical in a high variance scenario such as emergency department arrivals.

Model Validation

The line plots in the graphs below show actual values vs values predicted by a Voting
Regressor model for two datasets: an out-of-sample set and an in-sample set. The phrase
"Normal Hours” denotes that the information is limited to a particular period of time,
regular business or operational hours.
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Figure 4.18 — GBR In sample Testing for Normal Hours
The orange prediction line and the blue actual line overlap, indicating that the pre-
dicted values are closely match the actual values. The model appears to do a good job

of capturing the general trend, despite a few aberrations, particularly when the real data
have peaks.
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Figure 4.19 — GBR Out of sample Testing for Normal Hours
Although there are more noticeable variations, the projected values in this collection
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mostly match the actual values’ general trend. This is to be expected as models typically
outperform out-of-sample data when applied to in-sample data. Although the fit is not
as tight as it is with the in-sample data, the model here reflects the trend. Larger differ-
ences between the actual and anticipated values suggest that, according to conventional
predictive modeling assumptions, the model may not generalize as well to new data.

The smoother prediction line compared to the actual values suggests that the Voting
Regressor may be averaging out the predictions of the individual models, leading to less

sensitivity to rapid changes in the data

Model Evaluation

METRIC TRAIN TEST
MSE 17,07 74.80
MAE 3,10 6,81
MAPE 0,22 0,22
RMSE 413 8,65
MPD 0,91 2 84

Table 4.16 — Results of evaluation metrics for NH

A model with strong training performance but a noticeable decline in performance on
test data is revealed by the assessment metrics for the Voting Regressor applied to Normal
Hours at an emergency department. The test set’s Mean Squared Error (MSE) rises to
74.80, indicating more differences in predictions for unknown data, whereas the training
set’s MSE of 17.07 indicates that the model’s predictions are generally near the actual
values. In addition, the Mean Absolute Error (MAE) rises from 3.10 in training to 6.81
in testing, indicating that the model performs better on the test set in terms of average
prediction error.

For both the training and test sets, the Mean Absolute Percentage Error (MAPE)
stays constant at 0.22, suggesting that the proportionate prediction errors in relation to
the actual values are constant throughout the two sets. Again reflecting bigger errors
on the test set, the Root Mean Squared Error (RMSE), which indicates the size of the
error, increases from 4.13 in training to 8.65 in testing. Finally, the model’s predictions
appear to diverge further from the actuals during the test phase, as evidenced by the
Mean Percentage Difference (MPD), which increases from 0.91 during training to 2.84 on
the test set.

Overall, these metrics suggest that, despite the Voting Regressor’s ability to capture
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the features of the training data, overfitting or variations in the distribution of the data
between the training and test sets may be the cause of its inability to generalize perfor-
mance to the test data.

After Working Hours

This section will cover the training of the Voting Regressor model, looking at the model
validation and selection in the context of After working hours.

Model Validation

The performance of a Voting Regressor model for the After Hours dataset—data col-
lected after regular business hours—is depicted in the graphs below.

The predictions of the in-sample set model seem to match the real values very well.
The model appears to be successfully capturing the variability in the data based on the
overlap between the forecast and actual value lines. The model’s smoothing impact on
the data or possible underfitting are indicated in certain areas, nevertheless, when the
actual values exhibit substantial variability that the predictions do not fully match.
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Figure 4.21 — GBR In sample Testing for After Hours

When compared to the in-sample set, the out-of-sample performance shows a larger
difference between the anticipated and actual values. This makes sense because models
tend to perform better on the training set of data. The model may not generalize as well
to new or unseen data after hours, even while the predictions still roughly follow the trend
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of the actual values. Additionally, the forecasts seem to be less sensitive to the highs and
lows in the real data and more consistent.
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Figure 4.22 — GBR Out of sample Testing for After Hours

Model Evaluation

A Voting Regressor at an emergency department with after-hours performance is eval-
uated using metrics that reveal a model that performs well on training data but degrades
on test data. In particular, the test set’s Mean Squared Error (MSE) rises significantly to
116.28, indicating that the model’s predictions are significantly less accurate on unknown
data. The training set’s MSE, however, is 17.17, indicating that the model’s predictions
are pretty near to the true values.

As a result of greater average deviations from the actual values in the test data, Ab-
solute Error (MAE) increases from 3.19 on the training set to 8.97 on the test set. When
the model is applied to the test data, the Mean Absolute Percentage Error (MAPE),
which shows a little rise from 0.21 to 0.26, suggests that the model’s percentage errors
are reasonably consistent, but slightly higher. The extent of the error is indicated by
the Root Mean Squared Error (RMSE), which increases from 4.14 for the training set to
10.78 for the test set. This suggests that the model’s predictions for the test data are less
variable.
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METRIC TRAIN TEST

MSE 1717 116,28
MAE 3.19 8.97
MAPE 0,21 0,26
RMSE 414 10,78
MPD 0,88 413

Table 4.17 — Results of evaluation metrics for NH

The average percentage difference between the test set’s actual values and the model’s
predictions is finally shown by the Mean Percentage Difference (MPD), which increases
from 0.88 to 4.13. These findings imply that although the Voting Regressor can accurately
fit the training set, it might be overfitting and not adapt as effectively to fresh data that

is seen during After Hours.
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4.2.5 Performance Evaluation

We methodically evaluate the efficacy and precision of the predictive models created
to foresee particular events in the performance evaluation section. This critical study
measures the differences between the models’ predictions and the actual observed results
using a variety of statistical criteria. We may learn more about the models’ capacity to
generalize to new, unknown data and learn from past data by comparing these measures
between training and testing datasets. The min and max refer to the best and worst
forecasting performers among a set of four models evaluated models.

The results of these analyses will be covered in depth in this part, along with an
interpretation of the meanings of the different error metrics, such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root
Mean Squared Error (RMSE), and Mean Percentage Difference (MPD). When taken as
a whole, these indicators provide a thorough understanding of the model’s performance,
highlighting its advantages and pinpointing possible areas for development. We hope that
this thorough evaluation will guarantee that the models have the resilience required for
practical use, in addition to providing an excellent fit to the training set.

Normal Hours

Table 4.18 compares the performance of the four models in the context of NH, with
performance metrics for both a training set and a test set.

Normal Working Hours
Train_Set Test_Set
MSE MAE MAPE RMSE_ [MPD MSE MAE MAPE RMSE_|[MPD
ARIMA 59,509 5,645 0329 7.714 3,158] 54,656 6,306 0,197] 7,393] 1,858
XGBoost 35,87 4,492 0,283] 5,989 1,584] 81,101 7,273 0,233] 9,008 3277
Gradient Boosting Reg 0,834 0,663 0,034 0913 0,043 927 7,619 0,248] 9628 5,041
Voting Regressor 17,066 3,099 022] 4131 0,909 74,804 6,81 0216] 8649 2,843
Minimum Error 0,834 0,663 0,034 0,913 0,043] 54,656 6,306 0,197| 7,393] 1,858
Maximum Error 59,509 5,645 0,320] 7.714 3,158 927 7,619 0,248] 9628] 5,041

Table 4.18 — Normal Working Hours — Model Selection

ARIMA model has moderate errors compared to other models. The MSE on the
training set is 59.51, the MAE is 5.65, the MAPE is 0.33, the RMSE is 7.71, and the
MPD is 3.16. It slightly improves for the test set, with MSE at 54.66, MAE at 6.31,
MAPE at 0.20, RMSE at 7.39, and MPD at 1.86. Across most metrics, it performs
slightly better on the test set than on the training set.

XGBoost exhibits an increase in errors from training to test set. On the training set,

it has an MSE of 35.87, MAE of 4.49, MAPE of 0.28, RMSE of 5.99, and MPD of 1.58.
On the test set, the error metrics rise, with MSE at 81.10, MAE at 7.27, MAPE at 0.23,
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RMSE at 9.01, and MPD at 3.28, implying that the model may not generalize as well
to unobserved data. With MSE at 0.83, MAE at 0.66, MAPE at 0.03, RMSE at 0.91,
and MPD at 0.04, GBR has the lowest training errors, indicating an excellent fit to the
training data. The test set, on the other hand, exhibits increased errors: MSE of 92.70,
MAE of 7.62, MAPE of 0.25, RMSE of 9.63, and MPD of 5.04, indicating a significant
drop in performance on the test set, which may indicate overfitting.

On both training and test sets, VR exhibits balanced performance with moderate
errors. The model achieves an MSE of 17.07, MAE of 3.10, MAPE of 0.22, RMSE of
4.13, and MPD of 0.91 on the training set. It performs fairly consistently on the test set,
with MSE at 74.80, MAE at 6.81, MAPE at 0.22, RMSE at 8.65, and MPD at 2.84. This
model appears to generalize better than others, with less error metrics increasing from
training to testing.

The Voting Regressor provides the most consistent and reliable performance across
both the training and test sets, implying that it is the best model among the listed
models.

After Hours

Table 4.19 compares the performance of the four models in the context of After Hours,
with performance metrics for both a training set and a test set.

After Working Hours
Train_Set Test_Set
MSE MAE MAPE RMSE |MPD MSE MAE MAPE RMSE |MPD
ARIMA 59,216 5,768 0,298 7,695 3,113 97,242 8,416 0,229] 9,861 3,029
XGBoost 0,847 0,673 0,034 0,92 0,044| 150,577 10,054 0,296 12,271 6,741
Gradient Boosting Reg 37,064 4,669 0,27 6,088 1,681 111,116 8,538 0,248 10,541 4,122
Voting Regressor 17,165 3,193 0,21 4,143 0,88 116,277 8,966 0,257 10,783 4,134
Minimum Error 0,847 0,673 0,034 0,92 0,044 97,242 8416 0,229 9,861 3,029
Maximum Error 59,216 5,768 0,298 7,695 3,113] 150,577 10,054 0,296 12,271 6,741

Table 4.19 — After Working Hours — Model Selection

ARIMA: MSE is 59.22 on the training set, MAE is 5.77, MAPE is 0.30, RMSE is 7.70,
and MPD is 3.11. The MSE is 97.24, the MAE is 8.42, the MAPE is 0.23, the RMSE is
9.86, and the MPD is 3.03. The model’s performance deteriorates on the test set, which
is to be expected given that models generally perform better on data on which they were
trained.

On the training set, XGBoost has very low error metrics, with an MSE of 0.85, MAE
of 0.67, MAPE of 0.03, RMSE of 0.92, and MPD of 0.04. However, there is a significant
increase in errors for the test set: MSE of 150.58, MAE of 10.05, MAPE of 0.30, RMSE
of 12.27, and MPD of 6.74, indicating a significant drop in predictive performance and
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potential overfitting to the training data. On the training set, the MSE of the Gradient
Boosting Regressor is 37.06, the MAE is 4.67, the MAPE is 0.27, the RMSE is 6.09, and
the MPD is 1.58. On the test set, the MSE is 111.12, the MAE is 8.54, the MAPE is
0.25, the RMSE is 10.54, and the MPD is 4.12. When the model encounters new data, it
also loses predictive accuracy.

Voting Regressor: MSE of 17.17, MAE of 3.19, MAPE of 0.21, RMSE of 4.14, and
MPD of 0.88 are the training set metrics. The errors increase in the test set, but not as
dramatically as in the training set, with MSE at 116.28, MAE at 8.97, MAPE at 0.26,
RMSE at 10.78, and MPD at 4.13, indicating that the Voting Regressor is still the most
stable and generalizable model among those tested, despite the performance drop from
training to test.

The Voting Regressor once again exhibits the consistent and smallest increase in error
metrics from training to testing, implying that it may be the most robust model for
generalization in this dataset as well. The increased errors across all models on the test
set, on the other hand, indicate that ” After Hours” predictions are more difficult for these
models, possibly due to overfitting and/or the nature of the data.

The justification for selecting VR and XGBoost as the best-performing models is sup-
ported by their ability to consistently demonstrate strong generalization capabilities across
different datasets, as seen in their performance metrics. This is not only a reflection of
their robustness but also aligns with findings from other studies where these models were
preferred for their precision in predicting complex patterns in healthcare settings. More-
over, the ethical implications of employing these models are profound, as they enhance
the capability of EDs to manage resources effectively, thus potentially reducing wait times
and improving patient outcomes.

By linking these methodologies to the existing literature, it is evident that the evolu-
tion of forecasting techniques from simple statistical models to complex machine learning
models has allowed for a more nuanced understanding of patient flow dynamics. This
progression is vital for enhancing operational efficiency and aligns with broader health-
care objectives of improving patient care through informed decision-making and strategic
planning.
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4.2.6 Forecast Results

The previous section focused on testing and training various machine learning models
used to predict or forecast estimated patient arrivals in the context of NH and AH. The
section also revealed the best performing models for each class namely: Voting Regressor
(VR) was the best for predicting the Normal and After Hours. This then means that
to predict different variables a combination of the listed models will be used respectively
based on the predictive case or variable. The out-of-sample forecasts or predictions were
made based on the time variables for the period of February 2022.

Normal Hours — Recommended Forecast

To predict the normal working hours variable, below are the predictive estimates based
on the VR model. The chart represents a forecast of patient arrivals, during normal
operating hours for the out-of-sample period.

A time series forecast is shown in the line chart, where each point denotes the antic-
ipated number of patient arrivals on a specific day in February. Over the course of the
month, the figures vary, suggesting daily change in the projected arrivals.

40.0
—— Out_of_Sample-Forecast
37.5 4

35.0 1

32.5 1

Expected(Patient Arrivals)

25.0 1

22,51

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Feb
2022

Projected-Time
Figure 4.22 — Out of sample Forecasts for Normal Hours

Figure 4.22 shows a trend that starts with 25 patient arrivals on day 1, 28 arrivals on
day 2, slow inflow on days 5 and 6 and a step inflow on day 7 of 39 arrivals, and then
averages between 23 and 32 till the end. This means that the hospital should reduce the
headcount of staff to cater and expect 22 to 25 patients’ arrivals on days 5, 6, 15, 19,
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20, and 23 while catering to a high inflow of patients by increasing the staff members for
days: 7, 8, and 25th.

Inventory management, staffing, and resource planning can all benefit from this pro-
jection. For instance, the hospital might require more personnel or resources to manage
the increased patient load on days with higher anticipated arrivals.

After Hours — Recommended Forecast

To predict the AH variable, below are the predictive estimates based on the Voting Re-
gressor Model.

Unlike the ”Normal Hours” forecast which had a more noticeable peak, the After
Hours forecast is relatively more consistent, with fluctuations within a narrower range.
This could indicate a less variable set of factors influencing patient attendance during
these hours or a more consistent pattern of arrivals during after-hours.

36 1 —— Out_of_Sample-Forecast

32 4

Expected(Patient Arrivals)

28 A

26

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Feb
2022

Projected-Time

Figure 4.23 — Out of sample Forecasts for After Hours

Figure 4.23 shows a trend that starts with 31 patient arrivals on day 1, 25 arrivals on
day 2, slow inflow on days 4 and 5, and a step inflow on day 7 of 36 arrivals, and then
averages between 29 and 33 till the end. This means that the hospital should reduce the
headcount of staff to cater to and expect 25 to 29 patients’ arrivals on days 3, 4, 5, 6,
15, and 29 while catering to a high inflow of patients by increasing the staff members for
days: 14, 21, and 26th.
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The forecasts are an essential tool for operational planning in both situations, enabling
effective resource allocation to satisfy patient demands. The estimate for After Hours
shows a more steady, although possibly lower, demand for services, while the forecast
for normal hours highlights the need for flexible resource management to handle more
significant changes.
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Chapter 5

Conclusion and recommendations

5.1 Conclusion

In this study, we conducted a comprehensive evaluation of four forecasting models aimed
at predicting patient arrivals in a public hospital’s emergency department (ED). The
objectives were to develop a time series and ML regressor models for Normal Hours and
After Hours and to evaluate the performance of each model. The models under scrutiny
were ARIMA, XGBoost, Gradient Boosting Regressor, and Voting Regressor.

Patient arrivals differ significantly between normal and after hours hours, with more
arrivals after working hours on weekends (Friday to Monday) than on weekdays. The
study discovered significant nonlinearity in patient arrivals, both during normal hours
and after hours, implying complex, unpredictable patterns. The analysis of the time
series data revealed distinct characteristics such as skewness, kurtosis, and variability in
patient arrivals for different priority levels and time slots. Visual inspection revealed
that the general pattern of patient arrivals during normal hours and after hours was not
significantly different.

The ARIMA Model model provided a good log likelihood fit to the data but had
complexities indicated by high AIC and BIC values. The residuals revealed some issues
with autocorrelation and non-normality, implying that while the ARIMA model captured
some aspects of the time series, it may not have addressed all of the patterns in the data
completely. Despite being a powerful machine learning algorithm, the XGBoost Model did
not appear to be fully optimized for this particular dataset. It demonstrated reasonable
generalization ability but also limitations in predicting peak values.

The Gradient Boosting Regressor Model, like the XGBoost model, performed well in
generalizing trends in patient arrivals. It, too, struggled to predict the magnitude of peaks
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and outliers. GBR had the fewest training errors, indicating that it was the best fit for
the training data. It did, however, show increased errors on the test set, indicating a
significant drop in performance, which could indicate overfitting. On both the training
and test sets, the Voting Regressor demonstrated balanced performance with moderate
errors. It provided the most consistent and reliable performance across both sets, implying
that it was the best model for Normal and After Hours predictions among those listed.

The research findings significantly align with the existing literature, enhancing the un-
derstanding of the effective use of ARIMA and machine learning models such as XGBoost
and Voting Regressor for forecasting patient arrivals at emergency departments (EDs).
The literature highlights the historical efficacy of ARIMA in capturing linear trends and
seasonal patterns within healthcare settings, a trait that has been consistently validated
by the research findings, which demonstrated ARIMA’s strong performance in scenarios
with clear, cyclic patterns.

On the other hand, machine learning models like XGBoost and Voting Regressor are
praised in the literature for their ability to manage complex, nonlinear data structures
typical in healthcare environments, where multiple variables influence outcomes. The
research corroborates this by showing how these models outperform traditional methods
when dealing with multifaceted and unpredictable patient flow data, particularly in their
capacity to adapt to new patterns and their robustness against overfitting.

These linkages emphasize the crucial role that both traditional and modern forecasting
methods play in enhancing ED operational efficiencies. By applying these models, EDs
can improve resource allocation, reduce patient waiting times, and enhance overall service
delivery, meeting the ethical and operational standards expected in healthcare provision.
These benefits are directly supported by the research findings, which not only mirror the
capabilities highlighted in previous studies but also underscore the practical applications
in a real-world healthcare setting.

5.2 Implications for Public Hospitals

The findings of this study have several implications for hospital administration and patient
care:

First, understanding patient arrival patterns allows for more efficient allocation of
medical staff and resources, especially during peak hours and days. Predictive models
can help with hospital operations planning and management, reducing wait times and
increasing patient throughput. The study’s findings can help guide long-term strategic
decisions, such as expanding capacity or introducing specialized services during peak
demand periods. Knowing when high-priority patients are likely to arrive can help improve
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emergency response readiness.

Second, the use of the VR and XGBoost models has the potential to improve the
accuracy and efficiency of ED resource planning, resulting in better patient care and cost
savings. Hospitals can use VR and XGBoost to predict ED arrivals on an hourly or daily
basis, allowing them to staff appropriately and provide timely patient care. It can also
be a useful tool for identifying and addressing operational challenges within the ED.

These consequences will all contribute to improved patient care quality and hospital
operational efficiency.

5.3 Limitations of this Study

This study is limited to a single public hospital, which may limit the findings’ generalizabil-
ity to healthcare settings with different patient demographics and resource allocations.
The narrow scope of external factors influencing patient arrivals. The study compares
results to existing benchmarks but does not evaluate various forecasting and regressor
models.

5.4 Future Directions

Future research will look into the forecasting and regressor models” applicability in dif-
ferent healthcare settings (i.e comparative study), assessing their performance across dif-
ferent patient populations. The effect of external variables on patient arrivals, such as
seasonal variations and public health events, can lead to more accurate forecasting mod-
els. Therefore an addition of demographic data and patient characteristics could improve
the predictive capabilities of the models, providing a more comprehensive approach to
forecasting.

It would also be important to consider some sub-units within the main two classes of
data: Normal hours and after hours. Generally, every patient is classified upon arrival into
the following categories: critical patients, patients with moderate care and stable patients.
One can consider modeling each of these categories separately and consider forecasting
them separately. Another possible improvement can be sought by considering modeling
arrivals for each day of the week separately. It may be the case that arrivals on Monday
have a different structure than arrivals on Tuesday. This will result in 7 models and then
one forecast accordingly. One can also separate the weekdays (Monday to Friday) from
Saturday and Sunday and then consider two separate models.
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