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Abstract

The mathematical study of fractals is deeply embedded in iterated function sys-

tems (IFS) formulated by Hutchinson in 1981. Since then, the development of

iterated function systems in metric space setup, has caught the attention of many

researchers.

In the current work, the scope of iterated function systems is extended to more

generalized settings such as partial metric spaces, Hausdorff semi-metric spaces,

and G-metric spaces. The existence and uniqueness of new attractors and com-

mon attractors of generalized iterated function systems in various spaces is proved

with the assistance of generalized and generalized cyclic contractive mappings.

Well-posedness of attractor based problems of the Hutchinson operators is estab-

lished. Applications to dynamic programming and nonlinear integral equations

are presented.
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Introduction and Preliminaries

1.1. Background

Nowhere has the non-linearity of nature been so well captured than in Mandel-

brot’s work on fractal geometry [81]. The study of fixed point theory, which has

numerous applications in a number of fields of non-linear analysis, is theoretically

based on the idea of Banach contraction mapping. For many years now, several

researchers have worked extensively to enhance and broaden the discipline of fixed

point theory in metric spaces, (see [11, 18, 20, 22, 27, 30, 33, 36, 37, 40, 43, 46,

49, 54, 58, 83, 98, 104]).

Nadler [73], in particular, is credited with pioneering the field of fixed point

theory in metric spaces endowed with multi-valued operators, resulting in the

Banach fixed point principle being extended to set-valued contraction mappings.

In recent years, there has been a substantial surge in interest in the study of

metrical fixed point theory, which has resulted in a wide range of applications

both within and beyond mathematics (see [5, 26, 24, 40, 62, 57, 69, 94, 95]).

Applications to variational inequalities, integral equations, differential equations,

optimization, and split feasibility theory are particularly noteworthy [56].

Fixed point theory has numerous helpful and crucial applications in tack-

ling real-world problems. The fixed point theory of Schaefer and Krasnoselski

has been shown to be particularly useful in the investigation of the existence

of solutions in chemical graph theory [100]. Many scholars have shown that

problems in economic theories, neutron transport theory, chemical reactions, epi-

demiology, steady-state temperature distribution, mathematical psychology, en-

gineering, and applied sciences can be formulated as functional equations whose

solutions can be obtained by using fixed point techniques, (see for example in

[52, 99]).

Hutchinson’s [42] groundbreaking 1981 work, established the concept for con-

structing fractals called iterated function system (IFS) on a solid mathematical

foundation. He accomplished this by demonstrating that the Hutchinson opera-
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tor, which was developed using a finite collection of contraction mappings on a

set of q-tuples of real numbers, denoted by Rq, has as its fixed point a non-void,

closed, and bounded subset of Rq known as an attractor of the iterated function

system [25, 53, 76, 77, 78].

Secelean [90, 91] investigated generalized countable iterated function systems

on a metric space, however, in our current work, we present some new results on

generalized iterated function systems in more generalized settings such as par-

tial metric spaces, semi-metric spaces, and G-metric spaces. The existence and

uniqueness of attractors for single valued mappings and like-wise common attrac-

tors for multi-valued mappings involving a pair of self-mappings are established

with the assistance of finite families of contractive and generalized contractive

mappings respectively, defined on partial metric spaces. We confirmed the well-

posedness of attractor based problems.

We extended the Banach contraction principle to non-continuous mappings

with the aid of cyclic contractive mappings, and obtain valuable results on the ex-

istence and uniqueness of attractors. We obtain some results in semi-metric spaces

whose definition omits the triangle inequality, followed by non-commutative map-

pings in G-metric spaces. Applications of iterated function systems in dynamic

programming and integral equations are provided.
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1.2. Organization of the Thesis

The introduction to this chapter (Chapter 1) provides a brief overview of iterated

function systems in metric spaces. The remaining chapters in this thesis are

organized in the manner described below.

Chapter 2. Iterated Function System of Generalized Contractions in

Partial Metric Spaces

In order to create an attractor, this chapter uses a finite family of generalized

contraction mappings, each of which belongs to a particular class of mappings

defined on a complete partial metric space. As a result, distinct outcomes for

iterated function systems satisfying various generalized contractive conditions are

established. In order to prove the findings made here, we provide some example.

Our present study extends, generalizes, and brings together a number of findings

from recent research.

Chapter 3. Generalized iterated function system for common attrac-

tors in partial metric spaces

With the help of a finite family of generalized contractive mappings that are

members of a distinct class of mappings defined on a complete partial metric

space, the purpose of this chapter is to construct new common attractors. As a

result, different iterated function system outcomes satisfying various generalized

contractive conditions are obtained. To support the findings demonstrated here,

we provide an example. These expand upon, generalize, and combine numerous

established results found in the literature.

Chapter 4. Iterated Function System of Generalized Cyclic Contrac-

tions in Partial Metric Spaces

We generate a fractal using a finite collection of generalized cyclic contraction

mappings, belonging to a particular category of mappings defined on a complete

partial metric space. As a consequence, different results are obtained for iter-

ated function system that satisfy a different set of generalized cyclic contraction

conditions. The chapter will culminate with a brief discussion of applications

of cyclic iterated function system to dynamic programing problems and integral

equations. With these results, we extend, unify and generalize some common

results in recent literature.

Chapter 5. Iterated Function System of Generalized Rational Contrac-

tions in Semi-Metric Spaces

Using finite families of generalized contractive mappings from the distinct class of

mappings defined on a Hausdorff semi-metric space, we are able to create several

3



new common attractors in this chapter. As a result, different iterated function

system outcomes satisfying varied generalized contractive criteria are established.

To reinforce the results proved herein, an example is presented. These findings

extend, generalize, and consolidate a number of findings from recent literature.

Chapter 6. Common Attractors of Generalized Iterated Function Sys-

tem in G-Metric Spaces

With the aid of a finite family of generalized contractive mappings that are part of

a certain class of mappings defined on a G-metric space, we create a new common

fractal. As a result, various results are acquired and confirmed by an example for

G-iterated function systems that meet a different set of generalized contractive

criteria. These findings generalize, integrate, and expand a variety of conclusions

seen in recent literature.

Chapter 7. Generalized Iterated Function System of Cyclic Contrac-

tions in G-Metric Spaces

This chapter’s major goal is to construct fractals using a finite family of gen-

eralized cyclic contractions that are members of a particular class of mappings

defined on a G-metric space. As a result, different iterated function system out-

comes satisfying various generalized cyclic contractive requirements are obtained.

An example is provided to support the results demonstrated here. Our findings

extend, generalize, and bring together a number of findings from recent literature.

Chapter 8. Conclusion In this chapter, a summary of our work is presented.
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2

Iterated Function System of

Generalized Contractions in Partial

Metric Spaces

2.1. Partial Metric Spaces

This section provides some preliminary definitions and results to serve as a foun-

dation for eventual construction of fractal sets of generalized iterated function

systems on complete partial metric spaces.

It is worth noting that the Hutchinson operator, which is defined on a finite fam-

ily of contractive mappings on a complete partial metric space, is a generalized

contractive mapping on a family of compact subsets of a set, say W. A final frac-

tal is generated by successively applying a generalized Hutchinson operator, and

following that, a non-trivial example is presented to support the proven result.

We recall the definition of a standard metric space:

Definition 2.1.1. [12, 25] Let W be a (non-void) set, a function d : W ×W → R
is said to be a metric (a distance or dissimilarity function [31]) on W if for all

%, ς, ϕ ∈ W , d satisfies the following properties:

(i) 0 ≤ d(%, ς) and 0 = d(%, ς) if and only if % = ς,

(ii) d(%, ς) = d(ς, %),

(iii) d(%, ς) ≤ d(%, ϕ) + d(ϕ, ς).

The pair (W,d) consisting of the (non-void) set W and the metric d is called

a metric space.

We now consider one of the many generalizations of the standard metric

spaces, introduced by Matthews [61] in his work on denotational semantics of

dataflow networks [102].
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Definition 2.1.2. [21, 72] A non-void set W together with a mapping

pm : W ×W → R[+] is called a partial metric space denoted by (W, pm) if for all

%, ς, ϕ ∈ W the following properties hold:

(pm1) % = ς if and only if pm(%, %) = pm(%, ς) = pm(ς, ς),

(pm2) pm(%, %) ≤ pm(%, ς),

(pm3) pm(%, ς) = pm(ς, %),

(pm4) pm(%, ς) ≤ pm(%, ϕ) + pm(ϕ, ς)− pm(ϕ, ϕ).

Looking at Definition 2.1.2 we observe that, the distance between a point

and itself is not necessarly equal to zero as is the case in Definition 2.1.1, and the

triangle inequality is expanded by subtracting self distance for the third point

under the partial metric. Thus a partial metric space if a generalization of the

standard metric space.

Furthermore, from Definition 2.1.2 we note that if pm(%, ς) = 0, then properties

(pm1) and (pm2) imply that % = ς but the implication is not reversible in

general. A partial metric space (R[+], pm), endowed with a partial metric

pm(%, ς) = max{%, ς} is a common elementary example [21].

Example 2.1.1. [21, 61] If W = {[%1, %2] : %1, %2 ∈ R, %1 ≤ %2}, then

pm([%1, %2], [%3, %4]) = max{%2, %4} −min{%1, %3}

defines a partial metric on W .

Following [7, 21, 61], a T0 topology τpm whose base is a class of open pm-balls

{Bpm(%, ε) : % ∈ W, ε > 0}, such that Bpm(%, ε) = {ς ∈ W : pm(%, ς) < pm(%, %) +

ε}, for all % ∈ W and ε > 0, is generated by each partial metric pm on W .

In a partial metric space (W, pm), define psm : W × W → R[+] by psm(%, ς) =

2pm(%, ς) − [pm(%, %) + pm(ς, ς)], for all %, ς ∈ W , then (W, psm) is a metric space

[21, 61].

Moreover, the sequence {%a} converges to % ∈ W if and only if

lim
a,η→+∞

pm(%a, %η) = lim
a→+∞

pm(%a, %) = pm(%, %).

Definition 2.1.3. [49, 61] In a partial metric space (W, pm),

(i) {%a} is said to be a Cauchy sequence, provided lim
a,η→+∞

pm(%a, %η) exists,
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(ii) (W, pm) is said to be complete, if every Cauchy sequence {%a} in W con-

verges to a point % ∈ W relative to the topology τpm such that pm(%, %) =

lim
a→+∞

p(%a, %), and

(iii) a function h : W → W is continuous at a point u0 ∈ W if, for each ε > 0,

there exists ς > 0 such that h(Bpm(u0, ς)) ⊆ Bpm(hu0, ε).

Lemma 2.1.1. [21] If (W, pm) is a partial metric space, then

(i) {%a} is a Cauchy sequence in (W, pm) if and only if it is a Cauchy sequence

in (W, psm).

(ii) (W, pm) is a complete partial metric space if and only if (W, psm) is a complete

metric space.

We denote by CBpm(W ), a family of all non-void closed and bounded subsets of

a partial metric space (W, pm).

Let J ∗,O∗ ∈ CBpm(W ) and ω ∈ W , define

pm(ω,J ∗) = inf{pm(ω, µ) : µ ∈ J ∗}, δpm(J ∗,O∗) = sup{pm(µ,O∗) : µ ∈ J ∗}

and

δpm(O∗,J ∗) = sup{pm(η,J ∗) : η ∈ O∗}.

Remark 2.1.1. [21] Let (W, pm) be a partial metric space and J ∗ be any non-

void subset of W , then

pm(µ, µ) = pm(µ,J ∗) if and only if µ ∈ J ∗.

Furthermore J ∗ = J ∗ if and only if J ∗ is closed in (W, pm).

Proposition 2.1.1. [21] Let (W, pm) be a partial metric space. Then for any

L∗,J ∗,O∗ ∈ CBpm(W ), the following statements hold:

(a) δpm(L∗,L∗) = sup{pm(`, `) : ` ∈ L∗}.

(b) δpm(L∗,L∗) ≤ δpm(L∗,J ∗).

(c) δpm(L∗,J ∗) = 0 implies thatL∗ ⊆ J ∗.

(d) δpm(L∗,J ∗) ≤ δpm(L∗,O∗) + δpm(O∗,J ∗)− infη∈O∗ pm(η, η).

Let (W, pm) be a partial metric space. Define the mapping Hpm : CBpm(W ) ×

7



CBpm(W )→ R[+], by

Hpm(J ∗,O∗) = max{δpm(J ∗,O∗), δpm(O∗,J ∗)}, for all J ∗,O∗ ∈ CBpm(W ).

Then Hpm is referred to as a partial Hausdorff metric induced by pm.

Proposition 2.1.2. [21] Let (W, pm) be a partial metric space and L∗,J ∗,O∗ ∈
CBpm(W ), then

(a) Hpm(L∗,L∗) ≤ Hpm(L∗,J ∗),

(b) Hpm(L∗,J ∗) = Hpm(J ∗,L∗),

(c) Hpm(L∗,J ∗) ≤ Hpm(L∗,O∗) +Hpm(O∗,J ∗)− infη∈O∗ pm(η, η).

Corollary 2.1.1. [21] If (W, pm) is a partial metric space, then

Hpm(J ∗,O∗) = 0 implies that J ∗ = O∗

for all J ∗,O∗ ∈ CBpm(W ).

Next it can be noted, as demonstrated by the example below, that in general, the

converse of Corollary 2.1.1 is not true.

Example 2.1.2. [21] Let W = [0, 1] be equipped with the partial metric

pm : W ×W → R[+] such that

pm(%, ς) = max{%, ς}.

From (a) of Proposition 2.1.1, we get

Hpm(W,W ) = δpm(W,W ) = sup{% : 0 ≤ % ≤ 1} = 1 6= 0.

Definition 2.1.4. In a partial metric space (W, pm) let Cpm ⊆ W . Then Cpm is

compact if every sequence {va} of elements in Cpm has a subsequence {vai} which

converges to a point in Cpm .

It is crucial to note that closed and bounded subsets of an Euclidean space

Rq are compact. Similarly, every finite subset of Rq is compact whereas the

(0, 1] ⊂ R is not compact since {1, 1
2
, 1

22
, ...} ⊂ (0, 1] does not have any convergent

subsequence. Similarly, Z ⊂ R the set of integers, is not compact.

Let (W, pm) be a partial metric space and let Cpm(W ) denote the collection of

8



all non-void compact subsets of W . If J ∗,O∗ ∈ Cpm(W ), then

Hpm(J ∗,O∗) = max{ sup
η∈O∗

pm(η,J ∗), sup
µ∈J ∗

pm(µ,O∗)},

where pm(%,J ∗) = inf{pm(%, µ) : µ ∈ J ∗} shows how far a point % is from the set

J ∗. In this case, the mapping Hpm is said to be the Pompeiu-Hausdorff metric

induced by the partial metric pm. If (W, pm) is a complete partial metric space,

then (Cp(W ), Hpm) is also a complete partial metric space [76].

Lemma 2.1.2. In a partial metric space (W, pm), let K∗,L∗,J ∗,O∗ ∈ Cpm(W ),

then the following hold:

(a) If L∗ ⊆ J ∗, then sup
k∈K∗

pm(k,J ∗) ≤ sup
k∈K∗

pm(k,L∗).

(b) sup
%∈K∗∪L∗

pm(%,J ∗) = max{ sup
k∈K∗

pm(k,J ∗), sup
`∈L∗

pm(`,J ∗)}.

(c) Hpm(K∗ ∪ L∗,J ∗ ∪ O∗) ≤ max{Hpm(K∗,J ∗), Hpm(L∗,O∗)}.

Proof. (a) Since L∗ ⊆ J ∗, for all k ∈ K∗, we have

pm(k,J ∗) = inf{pm(k, µ) : µ ∈ J ∗}

≤ inf{pm(k, `) : ` ∈ L∗} = pm (k,L∗) ,

which shows that

sup
k∈K∗

pm(k,J ∗) ≤ sup
k∈K∗

pm(k,L∗).

(b)

sup
%∈K∗∪L∗

pm (%,J ∗) = sup{pm (%,J ∗) : % ∈ K∗ ∪ L∗}

= max{sup{pm (%,J ∗) : % ∈ K∗}, sup{pm (%,J ∗) : % ∈ L∗}}

= max{ sup
k∈K∗

pm (k,J ∗) , sup
`∈L∗

pm (`,J ∗)}.

(c) We observe that

sup
%∈K∗∪L∗

pm(%,J ∗ ∪ O∗)

≤ max{ sup
k∈K∗

pm(k,J ∗ ∪ O∗), sup
`∈L∗

pm(`,L∗ ∪ O∗)} (from (b))

≤ max{ sup
k∈K∗

pm(k,J ∗), sup
`∈L∗

pm(`,O∗)} (from (a))

≤ max

{
max{ sup

k∈K∗
pm(k,J ∗), sup

µ∈J ∗
pm(µ,K∗)},max{sup

`∈L∗
pm(`,O∗), sup

η∈O∗
pm(η,L∗)}

}
= max {Hpm (K∗,J ∗) , Hpm (L∗,O∗)} .
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Likewise,

sup
v∈O∗∪J ∗

pm(v,L∗ ∪ K∗) ≤ max {Hpm (K∗,J ∗) , Hpm (L∗,O∗)} .

Thus, it is evident that

Hpm(K∗ ∪ L∗,O∗ ∪ J ∗) = max

{
sup

v∈L∗∪O∗
pm(v,K ∪ L∗), sup

%∈K∗∪L∗
pm(%,J ∗ ∪ O∗)

}
≤ max {Hpm (K∗,J ∗) , Hpm (L∗,O∗)} .

Theorem 2.1.1. [61] Let (W, pm) be a complete partial metric space and h :

W → W be a contraction such that, for any contractive coefficient λ ∈ [0, 1),

pm (h%, hς) ≤ λpm(%, ς)

is true for all %, ς ∈ W. Then there exists a unique fixed point ũ of h in W and

for every v0 in W the sequence {v0, hv0, h
2v0, ...} converges to ũ.

Theorem 2.1.2. [76] Let (W, pm) be a partial metric space and h : W → W a

contraction mapping, then the following hold:

(a) Elements in Cpm(W ) are mapped to elements in Cpm(W ) by h.

(b) If

h(J ∗) = {h(%1) : %1 ∈ J ∗}, for any J ∗ ∈ Cpm(W ),

then h : Cpm(W )→ Cpm(W ) is a contraction on (Cpm(W ), Hpm).

Proof. (a) It is known that every contraction mapping is continuous. Further-

more, for every continuous mapping h : W → W , a compact subset’s image

is also compact, which implies that, if

J ∗ ∈ Cpm(W ) then h(J ∗) ∈ Cpm(W ).

(b) Let J ∗,O∗ ∈ Cpm(W ). Because h : W → W is a contraction, we get that

pm (h%1, h (O∗)) = inf
%2∈O∗

pm (h%1, h%2) ≤ λ inf
%2∈O∗

pm (%1, %2) = λpm (%1,O∗) .

Also

pm (h%2, h (J ∗)) = inf
%1∈J ∗

pm (h%2, h%1) < λ inf
%1∈J ∗

pm (%2, %1) = λpm (%2,J ∗) .
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Now

Hpm (h (J ∗) , h (O∗)) = max{ sup
%1∈J ∗

pm(h%1, h (O∗)), sup
%2∈O∗

pm(h%2, h (J ∗))}

≤ max{λ sup
%1∈J ∗

pm(%1,O∗), λ sup
%2∈O∗

pm(%2,J ∗)}

= λHpm (J ∗,O∗) .

As a result, h satisfies.

Hpm (h (J ∗) , h (O∗)) ≤ λHpm (J ∗,O∗) , for all %1, %2 ∈ Cpm(W ),

and so h : Cpm(W )→ Cpm(W ).

Theorem 2.1.3. [76] In a partial metric space (W, pm), assume {ha : a =

1, 2, ..., q} is a finite collection of contraction mappings on W with contraction

constants λ1, λ2, ..., λq, respectively. Let Ψ : Cpm(W )→ Cpm(W ) be defined by

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ hq(J ∗)

= ∪qa=1ha(J ∗),

for each J ∗ ∈ Cpm(W ). Then Ψ is a contraction mapping on Cpm(W ) with con-

traction constant, λ = max{λ1, λ2, ..., λq}.

Proof. We shall demonstrate the claim for q = 2. Choose two contractions,

h1, h2 : W → W and J ∗,O∗ ∈ Cpm(W ). From Lemma 2.1.2 (c), we get that

Hpm(Ψ(J ∗),Ψ(O∗)) = Hpm(h1(J ∗) ∪ h2(J ∗), h1(O∗) ∪ h2(O∗))

≤ max{Hpm(h1(J ∗), h1(O∗)), Hpm(h2(J ∗), h2(O∗))}

≤ max{λ1Hpm(J ∗,O∗)), λ2Hpm(J ∗,O∗))}

≤ λHpm(J ∗,O∗),

where λ = max{λ1, λ2}.

Theorem 2.1.4. [76] In a complete partial metric space (W, pm), let {ha : a =

1, 2, ..., q} be a finite family of contraction mappings on W and

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ hq(J ∗)

= ∪qa=1ha(J ∗),
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for each J ∗ ∈ Cpm(W ). Then

(i) Ψ : Cpm(W )→ Cpm(W ),

(ii) Ψ has a unique fixed point Ũ1 ∈ Cpm(W ), in other words, Ũ1 = Ψ(Ũ1) =

∪qa=1ha(Ũ1),

(iii) for any choice of an initial set J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ(J ∗0 ),Ψ2(J ∗0 ), ...}

of compact sets converges to Ũ1.

Proof. (i) Because each ha is a contraction, the conclusion follows immediately

from the definitions of Ψ and Theorem 2.1.2. (ii) Ψ : Cpm(W ) → Cpm(W ) is

a contraction as well, by Theorem 2.1.3. Thus if (W, pm) is a complete partial

metric space, so is (Cpm(W ), Hpm). As a result, (ii) and (iii) can be deduced from

Theorem 2.1.2.

Definition 2.1.5. A mapping Ψ : Cpm(W ) → Cpm(W ) is called a generalised

Hutchinson contraction operator in a complete partial metric space (W, pm) if a

constant λ ∈ [0, 1) exists such that for any J ∗,O∗ ∈ Cpm(W ),

Hpm (Ψ (J ∗) ,Ψ (O∗)) ≤ λSΨ(J ∗,O∗),

where

SΨ(J ∗,O∗) = max{Hpm(J ∗,O∗), Hpm(J ∗,Ψ (J ∗)), Hpm(O∗,Ψ (O∗)),
Hpm(J ∗,Ψ (O∗)) +Hpm(O∗,Ψ (J ∗))

2
, Hpm(Ψ2 (J ∗) ,Ψ (J ∗)),

Hpm(Ψ2 (J ∗) ,O∗), Hpm(Ψ2 (J ∗) ,Ψ (O∗))}.

It is important to note that if Ψ (defined in Theorem 2.1.3) is a contraction,

then it is a generalised Hutchinson contraction operator but the converse does

not hold.

Example 2.1.3. Let W = [0, 1] and pm : W ×W → R[+] be a partial metric

space defined as pm (w1, w2) = 1
4
|w1 − w2| + 1

2
max{w1, w2} for all w1,w2 ∈ W .

Consider h1, h2 : W → W defined as h1 (w) =
w

3
if w ∈ [0, 1) and h1 (1) =

1

6
,

h2 (w) =
w

2
if w ∈ [0, 1) and h2 (1) =

1

4
. Let Cpm(W ∗) be the collection of all

singleton subsets of W and Ψ : Cpm(W ∗) → Cpm(W ∗) be a mapping defined as

Ψ (J) = h1 (J) ∪ h2 (J) for all J ∈ Cpm(W ∗). Ψ is not a contraction as it is

12



discontinuous at w = 1. But it satisfies condition of Definition 2.1.5 for λ =
5

6
.

Definition 2.1.6. Let (W, pm) be a complete partial metric space, then a map-

ping Ψ : Cpm(W ) → Cpm(W ) is called a generalized rational Hutchinson con-

traction operator if λ∗ ∈ [0, 1) exists such that for any J ∗, O∗ ∈ Cpm(W ), the

following holds:

Hpm (Ψ (J ∗) ,Ψ (O∗)) ≤ λ∗RΨ(J ∗,O∗),

where

RΨ(J ∗,O∗) = max

{
Hpm(J ∗,Ψ (O∗))[1 +Hpm(J ∗,Ψ(J ∗))]

2(1 +Hpm (J ∗,O∗))
,

Hpm(O∗,Ψ (O∗))[1 +Hpm(J ∗,Ψ(J ∗))]
1 +Hpm (J ∗,O∗)

,

Hpm(O∗,Ψ (J ∗))[1 +Hp(J ∗,Ψ (J ∗))]
1 +Hpm(J ∗,O∗)

}
.

Definition 2.1.7. Suppose (W, pm) is a complete partial metric space and let

ha : W → W , a = 1, 2, ..., q be a finite collection of contraction mappings, then

{W ;ha, a = 1, 2, · · · , q} is called an iterated function system (IFS).

Definition 2.1.8. [76] If J ∗ ⊆ W is a non-void compact set, then J ∗ is an

attractor of the iterated function system, provided

(i) Ψ(J ∗) = J ∗ and

(ii) an open set V1 ⊆ W exists, such that J ∗ ⊆ V1 and lim
a→+∞

Ψa(O∗) = J ∗, for

any compact set O∗ ⊆ V1, where the limit is taken relative to the partial

Hausdorff metric.

As a result, the maximal open set V1 satisfying (ii) is known as a basin of attrac-

tion.

2.2. Generalised Hutchinson and Generalised Rational

Hutchinson Contraction Operators

We now present and prove some theorems regarding the existence and uniqueness

of a fixed point of the generalised Hutchinson contraction operator Ψ.

Theorem 2.2.1. In a complete partial metric space (W, pm), let {W ;ha, a =

1, 2, · · · , q} be an iterated function system and define a mapping Ψ : Cpm(W ) →

13



Cpm(W ) by

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ ha(J ∗)

= ∪qa=1ha(J ∗),

for each J ∗ ∈ Cpm(W ). If Ψ is a generalized Hutchinson contraction operator,

then it has a unique attractor Ũ1 ∈ Cpm(W ), that is

Ũ1 = Ψ(Ũ1) = ∪qa=1ha(Ũ1).

Furthermore, for an arbitrarily chosen initial set J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , ...}

of iterates of compact sets converges to the distinct attractor of Ψ.

Proof. Choose J ∗0 randomly in Cpm(W ). If J ∗0 = Ψ (J ∗0 ) , then we have the

required results. Suppose J ∗0 6= Ψ (J ∗0 ), and let

J ∗1 = Ψ(J ∗0 ), J ∗2 = Ψ (J ∗1 ) , ...,J ∗a+1 = Ψ (J ∗a )

for a ∈ N.

If J ∗a = J ∗a+1 for some a, then J ∗a = Ψ(J ∗a ) and the proof is complete. Assume

that J ∗a 6= J ∗a+1 for all a ∈ N, then from Definition 2.1.5, we get

Hpm(J ∗a+1,J ∗a+2) = Hpm(Ψ (J ∗a ) ,Ψ
(
J ∗a+1

)
)

≤ λSΨ

(
J ∗a ,J ∗a+1

)
,

14



where

SΨ

(
J ∗a ,J ∗a+1

)
= max{Hpm(J ∗a ,J ∗a+1),

Hpm (J ∗a ,Ψ (J ∗a )) , Hpm

(
J ∗a+1,Ψ

(
J ∗a+1

))
,

Hpm

(
J ∗a ,Ψ

(
J ∗a+1

))
+Hpm

(
J ∗a+1,Ψ (J ∗a )

)
2

,

Hpm(Ψ2 (J ∗a ) ,Ψ (J ∗a )), Hpm

(
Ψ2 (J ∗a ) ,J ∗a+1

)
,

Hpm

(
Ψ2 (J ∗a ) ,Ψ

(
J ∗a+1

))
}

= max{Hpm(J ∗a ,J ∗a+1), Hpm(J ∗a ,J ∗a+1), Hpm

(
J ∗a+1,J ∗a+2

)
,

Hpm

(
J ∗a ,J ∗a+2

)
+Hpm

(
J ∗a+1,J ∗a+1

)
2

,

Hpm(J ∗a+2,J ∗a+1), Hpm(J ∗a+2,J ∗a+1), Hpm

(
J ∗a+2,J ∗a+2

)
}

≤ max{Hpm(J ∗a ,J ∗a+1), Hpm

(
J ∗a+1,J ∗a+2

)
,

Hpm

(
J ∗a ,J ∗a+1

)
+Hpm

(
J ∗a+1,J ∗a+2

)
2

}
= max{Hpm

(
J ∗a ,J ∗a+1

)
, Hpm

(
J ∗a+1,J ∗a+2

)
}.

Thus, we have

Hpm(J ∗a+1,J ∗a+2) ≤ λmax{Hpm

(
J ∗a ,J ∗a+1

)
, Hpm

(
J ∗a+1,J ∗a+2

)
}

= λHpm

(
J ∗a ,J ∗a+1

)
,

for all a ∈ N. Taking a, n ∈ N with n > a, we have

Hpm (J ∗a ,J ∗n ) ≤ Hpm

(
J ∗a ,J ∗a+1

)
+Hpm

(
J ∗a+1,J ∗a+2

)
+ ...+Hpm

(
J ∗n−1,J ∗n

)
− inf

µa+1∈J ∗a+1

pm(µa+1, µa+1)− inf
µa+2∈J ∗a+2

pm(µa+2, µa+2)−

· · · − inf
µn−1∈J ∗n−1

pm(µn−1, µn−1)

≤
n−a∑
k=1

Hpm

(
J ∗n−k,J ∗n+1−k

)
=

n−a∑
k=1

Hpm

(
Ψn−k(J ∗0 ),Ψn−k(J ∗1 )

)
≤

n−a∑
k=1

λn−kHpm (J ∗0 ,J ∗1 )

= [λa + λa+1 + ...+ λn−1]Hpm (J ∗0 ,J ∗1 )

= λa[1 + λ+ λ2 + · · ·+ λn−a−1]Hpm(J ∗0 ,J ∗1 )

≤ λa

1− λ
Hpm (J ∗0 ,J ∗1 ) ,
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and thus lim
a,n→+∞

Hpm(J ∗a ,J ∗n ) = 0. Hence the sequence {J ∗a } is Cauchy in W.

But (Cpm(W ), Hpm) is a complete partial metric space, so J ∗a → Ũ1 as

a→ +∞ for some Ũ1 ∈ Cpm(W ), that is,

lim
a→+∞

Hpm(J ∗a , Ũ1) = lim
a→+∞

Hpm(J ∗a ,J ∗a+1) = Hpm(Ũ1, Ũ1).

Now for some Ũ1 ∈ Cpm(W ), J ∗a → Ũ1 as a → +∞, that is,

lim
a→∞

Hpm(J ∗a , Ũ1) = 0.

To show that Ũ1 is the fixed point of Ψ, we assume in the contrary that

Hpm(Ũ1,Ψ(Ũ1)) > 0. So

Hpm(Ũ1,Ψ(Ũ1)) ≤ Hpm(Ũ1,J ∗a+1) +Hpm(J ∗a+1,Ψ(Ũ1))

− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

= Hpm(Ũ1,J ∗a+1) +Hpm(Ψ(J ∗a ),Ψ(Ũ1))

− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

≤ Hpm(Ũ1,J ∗a+1) + λSΨ(J ∗a , Ũ1)− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

where

SΨ(J ∗a , Ũ1) = max{Hpm(J ∗a , Ũ1), Hpm(J ∗a ,Ψ(J ∗a )), Hpm(Ũ1,Ψ(Ũ1)),

Hpm(J ∗a ,Ψ(Ũ1)) +Hpm(Ũ1,Ψ(J ∗a ))

2
, Hpm(Ψ2(J ∗a ),Ψ(J ∗a )),

Hpm(Ψ2(J ∗a ), Ũ1), Hpm(Ψ2(J ∗a ),Ψ(Ũ1))}

= max{Hpm(J ∗a , Ũ1), Hpm(J ∗a ,J ∗a+1), Hpm(Ũ1,Ψ(Ũ1)),

Hpm(J ∗a ,Ψ(Ũ1)) +Hpm(Ũ1,J ∗a+1)

2
,

Hpm(J ∗a+2,J ∗a+1), Hpm(J ∗a+2, Ũ1), Hpm(J ∗a+2,Ψ(Ũ1))}.

Now we examine the following seven cases:

(1) Suppose SΨ(J ∗a , Ũ1) = Hpm(J ∗a , Ũ1), then

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(J ∗a , Ũ1)

and on taking the limit as a→ +∞, we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(Ũ1, Ũ1),

so Hpm(Ũ1,Ψ(Ũ1)) = 0, and so Ũ1 = Ψ(Ũ1).
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(2) If SΨ(J ∗a , Ũ1) = Hpm(J ∗a ,J ∗a+1), then

Hpm(Ψ(Ũ1), Ũ1) ≤ λHpm(J ∗a ,J ∗a+1),

and taking the limit as a→ +∞

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(Ũ1, Ũ1),

which implies that, Ũ1 = Ψ(Ũ1).

(3) In case SΨ(J ∗a , Ũ1) = Hpm(Ũ1,Ψ(Ũ1)), we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(Ũ1,Ψ(Ũ1))

which gives Ũ1 = Ψ(Ũ1).

(4) Assume SΨ(J ∗a , Ũ1) =
Hp(J ∗a ,Ψ(Ũ1)) +Hpm(Ũ1,J ∗a+1)

2
, then

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ

2
[Hpm(J ∗a ,Ψ(Ũ1)) +Hpm(Ũ1,J ∗a+1)]

≤ λ

2
[Hpm(J ∗a , Ũ1) +Hpm

(
Ũ1,Ψ(U1

)
)

− inf
ũ∈Ũ1

pm(ũ, ũ) +Hpm(Ũ1,J ∗a+1)],

and as a→ +∞, we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ

2
[Hpm(Ũ1, Ũ1) +Hpm(Ũ1,Ψ(Ũ1))

− inf
ũ∈Ũ1

pm(ũ, ũ) +Hpm(Ũ1, Ũ1)]

= λ{Hpm(Ũ1, Ũ1) +
1

2
[Hpm(Ũ1,Ψ(Ũ1))− inf

ũ∈Ũ1

pm(ũ, ũ)]},

that is,

Hpm(Ũ1,Ψ(Ũ1)) ≤ 2λ

2− λ
[Hpm(Ũ1, Ũ1)− inf

ũ∈Ũ1

pm(ũ, ũ)]

which gives us Hpm(Ũ1,Ψ(Ũ1)) = 0 and so Ũ1 = Ψ(Ũ1).

(5) For SΨ(J ∗a , Ũ1) = Hpm(J ∗a+2,J ∗a+1), then as a→ +∞, we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(Ũ1, Ũ1),

which gives Ũ1 = Ψ(Ũ1).
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(6) Taking SΨ(J ∗a , Ũ1) = Hpm(J ∗a+2, Ũ1), then as a→ +∞, we have

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(Ũ1, Ũ1),

and so Ũ1 = Ψ(Ũ1).

(7) Lastly if SΨ(J ∗a , Ũ1) = Hpm(J ∗a+2,Ψ(Ũ1)), we have

Hpm(Ũ1,Ψ(Ũ1)) ≤ λHpm(J ∗a+2,Ψ(Ũ1))

≤ λ[Hpm(J ∗a+2, Ũ1) +Hpm(Ũ1,Ψ(Ũ1))− inf
ũ∈Ũ1

pm(ũ, ũ)]

and on taking limit as a→ +∞, yields

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ[Hpm(Ũ1, Ũ1) +Hpm(Ũ1,Ψ(Ũ1))− inf
ũ∈Ũ1

pm(ũ, ũ)]

(1− λ)Hpm(Ũ1,Ψ(Ũ1)) ≤ λ[Hpm(Ũ1, Ũ1)− inf
ũ∈Ũ1

pm(ũ, ũ)]

which implies that Hpm(Ũ1,Ψ(Ũ1)) ≤ 0 and so Ũ1 = Ψ(Ũ1). As a result, in all

cases, Ũ1 is the attractor of Ψ. To prove the uniqueness of the attractor, we

assume that Ũ1 and Ũ2 are both attractors of Ψ with Hpm(Ũ1, Ũ2) > 0. From the

definition of Ψ, we get

Hpm(Ũ1, Ũ2) = Hpm(Ψ(Ũ1),Ψ(Ũ2)).

≤ λmax{Hpm(Ũ1, Ũ2), Hpm(Ũ1,Ψ(Ũ1)), Hpm(Ũ1,Ψ(Ũ2)),

Hpm(Ũ1,Ψ(Ũ2)) +Hpm(Ũ2,Ψ(Ũ1))

2
,

Hpm(Ψ2(Ũ1), Ũ1), Hpm(Ψ2(Ũ1), Ũ2), Hpm(Ψ2(Ũ1),Ψ(Ũ2))}

= λmax{Hpm(Ũ1, Ũ2), Hpm(Ũ1, Ũ1), Hpm(Ũ2, Ũ2),

Hpm(Ũ1, Ũ2) +Hpm(Ũ2, Ũ1)

2
,

Hpm(Ũ1, Ũ1), Hpm(Ũ1, Ũ2), Hpm(Ũ1, Ũ2)}

= λHpm(Ũ1, Ũ2),

which implies that, (1 − λ)Hpm(Ũ1, Ũ2) ≤ 0, so Hpm(Ũ1, Ũ2) = 0 and hence

Ũ1 = Ũ2. Thus Ũ1 ∈ Cpm(W ) is the only attractor of Ψ.

Remark 2.2.1. In Theorem 2.2.1, let Spm(W ), the collection of all singleton

subsets of the space W, then Spm(W ) ⊆ Cpm(W ). Moreover, taking ha = h for

each a = 1, 2, · · · , q, where h = h1 implies that

Ψ(%1) = h(%1).
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As a result, the fixed point result shown below is obtained.

Corollary 2.2.1. Let {W ;ha, a = 1, 2, · · · , q} be a generalized iterated function

system defined in a complete partial metric space (W, pm), and let h : W → W be

as in Remark 2.2.1. If some λ ∈ [0, 1) exists such that for any %1, %2 ∈ Cpm (W )

with pm(h%1, h%2) 6= 0, the following holds:

pm (h%1, h%2) ≤ λSh(%1, %2),

where

Sh(%1, %2) = max{pm(%1, %2), pm(%1, h%1), pm(%2, h%2),
pm(%1, h%2) + pm(%2, h%1)

2
,

p(h2%1, %2), pm(h2%1, h%1), pm(h2%1, h%2)},

then h has a unique fixed point ũ ∈ W. Furthermore, for any v0 ∈ W , the

sequence {v0, hv0, h
2v0, ...} has as a limit, a fixed point ũ of h.

Corollary 2.2.2. Let {W ;ha, a = 1, 2, · · · , q} be an iterated function system

defined in a complete partial metric space (W, pm) and each ha for a = 1, 2, ..., q

be a contractive self-mapping on W. Then Ψ : Cpm(W ) → Cpm(W ) defined in

Theorem 2.2.1 has a unique fixed point in Cpm(W ). Furthermore, for any initial set

J ∗0 ∈ Cpm(W ), the sequence {J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , · · · } of compact sets converges

to a fixed point of Ψ.

Example 2.2.1. [21] Let W = [0, 10] be endowed with the partial metric

pm : W ×W → R[+] defined by,

pm(%, ς) =
1

2
max{%, ς}+

1

4
|%− ς|

for all %, ς ∈ W.

Define h1, h2 : W → W as

h1 (%) =
10− %

2
for all % ∈ W and

h2 (%) =
%+ 4

4
for all % ∈ W.
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Now for %, ς ∈ W , we have

pm (h1 (%) , h1 (ς)) =
1

2
max

{
10− %

2
,
10− ς

2

}
+

1

4

∣∣∣∣10− %
2
− 10− ς

2

∣∣∣∣
=

1

2

[
1

2
max{10− %, 10− ς}+

1

4
|%− ς|

]
≤ λ1pm (%, ς) ,

where, λ1 = 1
2
.

Also for %, ς ∈ W , we have

pm (h2 (%) , h2 (ς)) =
1

2
max

{
%+ 4

4
,
ς + 4

4

}
+

1

4

∣∣∣∣%+ 4

4
− ς + 4

4

∣∣∣∣
=

1

4

[
1

2
max{%+ 4, ς + 4}+

1

4
|%− ς|

]
≤ λ2pm (%, ς) ,

where λ2 = 1
4
.

Let {W ;h1, h2} be an iterated function system and define Ψ : Cpm (W )→ Cpm(W )

by

Ũ = Ψ(Ũ) = h1(Ũ) ∪ h2(Ũ) for all Ũ ∈ Cpm(W )

then for J ∗,O∗ ∈ Cpm(W ), we have by Theorem 2.2.1,

Hpm (Ψ (J ∗) ,Ψ (O∗)) ≤ λ∗Hpm (J ∗,O∗) ,

where, λ∗ = max{1
2
, 1

4
} = 1

2
.

Thus all conditions of Theorem 2.2.1 are satisfied. Moreover, for any initial set

J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , ...}

of compact sets is convergent and has for a limit, the attractor of Ψ.

Now we establish the existence and uniqueness of an attractor of the generalized

rational Hutchinson contraction operator, Ψ defined in Definition 2.1.6.

Theorem 2.2.2. In a complete partial metric space (W, pm), let {W ;ha, a =

1, 2, · · · , q} be an iterated function system. Define Ψ : Cpm(W )→ Cpm(W ) as

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ ha(J ∗)

= ∪qa=1ha(J ∗),
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for each J ∗ ∈ Cpm(W ). Suppose Ψ is a generalized rational Hutchinson contrac-

tion operator, then Ψ has a unique attractor Ũ1 ∈ Cpm(W ), that is

Ũ1 = Ψ(Ũ1) = ∪qa=1ha(Ũ1).

Furthermore, for any arbitrarily chosen initial set J ∗0 ∈ Cpm(W ), the sequence of

compact sets

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , ...}

converges to the attractor of Ψ, that is Ũ1.

Proof. Choose an arbitrary element J ∗0 in Cpm(W ). If J ∗0 = Ψ (J ∗0 ) , then the

proof is complete. Suppose J ∗0 6= Ψ (J ∗0 ) and define

J ∗1 = Ψ(J ∗0 ), J ∗2 = Ψ (J ∗1 ) , ...,J ∗a+1 = Ψ (J ∗a )

for a ∈ N.

Assume that J ∗a 6= J ∗a+1 for all a ∈ N, else J ∗a = Ψ(J ∗a ) for some a and there is

nothing further to show. Consider J ∗a 6= J ∗a+1 for all a ∈ N. Then

Hpm(J ∗a+1,J ∗a+2) = Hpm(Ψ (J ∗a ) ,Ψ
(
J ∗a+1

)
)

≤ λ∗RΨ

(
J ∗a ,J ∗a+1

)
,
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where,

RΨ(J ∗a ,J ∗a+1) = max

{
Hpm(J ∗a ,Ψ

(
J ∗a+1

)
)[1 +Hpm(J ∗a ,Ψ(J ∗a ))]

2(1 +Hpm

(
J ∗a ,J ∗a+1

)
)

,

Hpm(J ∗a+1,Ψ
(
J ∗a+1

)
)[1 +Hpm(J ∗a ,Ψ(J ∗a ))]

1 +Hpm

(
J ∗a ,J ∗a+1

) ,

Hpm(J ∗a+1,Ψ (J ∗a ))[1 +Hpm(J ∗a ,Ψ (J ∗a ))]

1 +Hpm(J ∗a ,J ∗a+1)

}
= max

{
Hpm(J ∗a ,J ∗a+2)[1 +Hpm(J ∗a ,J ∗a+1)]

2(1 +Hpm

(
J ∗a ,J ∗a+1

)
)

,

Hpm(J ∗a+1,J ∗a+2)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm

(
J ∗a ,J ∗a+1

) ,

Hpm(J ∗a+1,J ∗a+1)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a ,J ∗a+1)

}
= max

{
Hpm(J ∗a ,J ∗a+2)

2
, Hpm(J ∗a+1,J ∗a+2),

Hpm(J ∗a+1,J ∗a+1)}

=
Hpm(J ∗a ,J ∗a+2)

2
.

Thus, we have

Hpm(J ∗a+1,J ∗a+2) ≤ λ∗
2

[Hpm(J ∗a ,J ∗a+1) +Hpm(J ∗a+1,J ∗a+2)

− inf
ξa+1∈J ∗a+1

pm (ξa+1, ξa+1)]

≤ λ∗
2

[Hpm(J ∗a ,J ∗a+1) +Hpm(J ∗a+1,J ∗a+2)],

2Hpm(J ∗a+1,J ∗a+2)− λ∗Hpm(J ∗a+1,J ∗a+2) ≤ λ∗[Hpm(J ∗a ,J ∗a+1)],

Hpm(J ∗a+1,J ∗a+2) ≤ λ∗
2− λ∗

Hpm(J ∗a ,J ∗a+1),

that is, for η∗ =
λ∗

2− λ∗
< 1, we have

Hpm(J ∗a+1,J ∗a+2) ≤ η∗Hpm(J ∗a ,J ∗a+1)
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for all a ∈ N. Thus for a, n ∈ N with a < n,

Hpm(J ∗a ,J ∗n ) ≤ Hpm(J ∗a ,J ∗a+1) +Hpm(J ∗a+1,J ∗a+2) + · · ·+Hpm(J ∗n−1,J ∗n )

− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)− inf
µa+2∈J ∗a+2

pm(µa+2, µa+2)−

· · · − inf
µn−1∈J ∗n−1

p(µn−1, µn−1)

≤ ηa∗Hpm(J ∗0 ,J ∗1 ) + ηa+1
∗ Hpm(J ∗0 ,J ∗1 ) + · · ·+ ηn−1

∗ Hpm(J ∗0 ,J ∗1 )

≤ [ηa∗ + ηa+1
∗ + · · ·+ ηn−1

∗ ]Hpm(J ∗0 ,J ∗1 )

≤ ηa∗ [1 + η∗ + η2
∗ + · · ·+ ηn−a−1

∗ ]Hpm(J ∗0 ,J ∗1 )

≤ ηa∗
1− η∗

Hpm(J ∗0 ,J ∗1 ).

This gives us, Hpm(J ∗a ,J ∗n ) → 0 as a, n → +∞. Therefore {J ∗a } is a Cauchy

sequence in W. But (Cpm(W ), Hpm) is complete, so J ∗a → Ũ1 as a → +∞ for

some Ũ1 ∈ Cpm(W ), in other words, lim
a→+∞

Hpm(J ∗a , Ũ1) = lim
a→+∞

Hpm(J ∗a ,J ∗a+1) =

Hpm(Ũ1, Ũ1).

To prove that Ũ1 is the fixed point of Ψ, we assume in the contrary that

Hpm(Ũ1,Ψ(Ũ1)) > 0. This implies that

Hpm(Ũ1,Ψ(Ũ1)) ≤ Hpm(Ũ1,J ∗a+1) +Hpm(J ∗a+1,Ψ(Ũ1))− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

= Hpm(Ũ1,J ∗a+1) +Hpm(Ψ(J ∗a ),Ψ(Ũ1))− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

≤ Hpm(Ũ1,J ∗a+1) + λ∗RΨ(J ∗a , Ũ1)− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1),

where

RΨ(J ∗a , Ũ1) = max

{
Hpm(J ∗a ,Ψ(Ũ1))[1 +Hpm(J ∗a ,Ψ(J ∗a ))]

2(1 +Hpm(J ∗a , U1))
,

Hpm(Ũ1,Ψ(Ũ1))[1 +Hpm(J ∗a ,Ψ(J ∗a ))]

1 +Hpm(J ∗a , Ũ1)
,

Hpm(Ũ1,Ψ(J ∗a ))[1 +Hpm(J ∗a ,Ψ(J ∗a ))]

1 +Hpm(J ∗a , Ũ1)

}

= max

{
Hpm(J ∗a ,Ψ(Ũ1))[1 +Hpm(J ∗a ,J ∗a+1)]

2(1 +Hpm(J ∗a , Ũ1))
,

Hpm(U1,Ψ(Ũ1))[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)
,

Hpm(Ũ1,J ∗a+1)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)

}
.
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Consider the following three cases:

(1) Let

RΨ(J ∗a , Ũ1) =
Hpm(J ∗a ,Ψ(Ũ1))[1 +Hpm(J ∗a ,J ∗a+1)]

2(1 +Hpm(J ∗a , Ũ1))
,

then

Hpm(Ũ1,Ψ(Ũ1) ≤ λ∗[Hpm(J ∗a , Ũ1) +Hpm(Ũ1,Ψ(Ũ1)

2(1 +Hpm(J ∗a , Ũ1))

−
inf ũ∈Ũ1

pm(ũ, ũ)][1 +Hpm(J ∗a ,J ∗a+1)]

2(1 +Hpm(J ∗a , Ũ1))

− inf
µa+1∈J ∗a+1

pm(µa+1, µa+1)

≤ λ∗[Hpm(J ∗a , Ũ1) +Hpm(Ũ1,Ψ(Ũ1)]

2(1 +Hpm(J ∗a , Ũ1))

×
[1 +Hpm(J ∗a ,J ∗a+1)]

2(1 +Hpm(J ∗a , Ũ1))
,

and on taking limit as a→ +∞, we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗[Hpm(Ũ1, Ũ1) +Hpm(Ũ1,Ψ(Ũ1)

2(1 +Hpm(Ũ1, Ũ1))

−
inf
ũ1∈Ũ1

pm(ũ1, ũ1)][1 +Hpm(Ũ1, Ũ1)]

2(1 +Hpm(Ũ1, Ũ1))
.

Which implies that

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗
2− λ∗

Hpm(Ũ1, Ũ1),

where
λ∗

2− λ∗
< 1 and so Hpm(Ũ1,Ψ(Ũ1)) = 0.

(2) If RΨ(J ∗a , Ũ1) =
Hpm(Ũ1,Ψ

(
Ũ1

)
)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm

(
J ∗a , Ũ1

) , we have

Hpm(Ũ1,Ψ(Ũ1) ≤ λ∗

{
Hpm(Ũ1,Ψ(Ũ1))[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)

}

≤ λ∗

{
Hpm(Ũ1,Ψ(Ũ1))[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)

}
,
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and taking the limit as a→ +∞, yields

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗

{
Hpm(Ũ1,Ψ(Ũ1))[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ1)

}
(1− λ∗)Hpm(Ũ1,Ψ(Ũ1)) ≤ 0, a contradiction,

so Ũ1 = Ψ(Ũ1).

(3) For RΨ(J ∗a , Ũ1) =
Hpm(Ũ1,J ∗a+1)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)
, we obtain

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗

{
Hpm(Ũ1,J ∗a+1)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)

}

≤ λ∗

{
Hpm(Ũ1,J ∗a+1)[1 +Hpm(J ∗a ,J ∗a+1)]

1 +Hpm(J ∗a , Ũ1)

}
.

Taking the limit as a→ +∞,

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗

{
Hpm(Ũ1, Ũ1)[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ1)

}
(1− λ∗)Hpm(Ũ1,Ψ(Ũ1)) ≤ Hpm(Ũ1, Ũ1),

that is Ũ1 = Ψ(Ũ1).

Thus in all three cases it was shown that Ũ1 is an attractor of the mapping Ψ.

For the uniqueness of attractor of Ψ, assume that Ũ1 and Ũ2 are both attractors

of Ψ with Hpm

(
Ũ1, Ũ2

)
not equal to zero. Since Ψ is a generalized rational

contraction, we obtain that
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Hpm(Ũ1, Ũ2) = Hpm(Ψ(Ũ1),Ψ(Ũ2))

≤ λ∗max

{
Hpm(Ũ1,Ψ(Ũ2))[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1, Ũ2))
,

Hpm(Ũ2,Ψ
(
Ũ2

)
)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1, Ũ2)
,

Hpm(Ũ2,Ψ(Ũ1))[1 +Hpm(Ũ1,Ψ
(
Ũ1

)
)]

1 +Hpm(Ũ1, Ũ2)


= λ∗max

{
Hpm(Ũ1, Ũ2)[1 +Hpm(Ũ1, Ũ1)]

2(1 +Hpm(Ũ1, Ũ2))
,

Hpm(Ũ2, Ũ2)[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ2)
,
Hpm(Ũ2, Ũ1)[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ2)

}
≤ λ∗Hpm(Ũ1, Ũ2),

and so (1 − λ∗)Hpm(Ũ1, Ũ2) ≤ 0, which implies that Hpm(Ũ1, Ũ2) = 0 and hence

Ũ1 = Ũ2. Thus Ũ1 ∈ Cpm(W ) is a unique attractor of Ψ.

Corollary 2.2.3. Let {W ;ha, a = 1, 2, · · · , q} be a generalized iterated function

system on a complete partial metric space (W, pm) and define h : W → W as in

Remark 2.2.1. If for any %1, %2 ∈ Cpm (W ) with pm(h(%1), h(%2)) 6= 0, there exists

some λ∗ ∈ [0, 1) satisfying,

pm(h%1, h%2) ≤ λ∗Rh(%1, %2),

where

Rh(%1, %2) = max

{
pm(%1, h%2)[1 + pm(%1, h%1)]

2(1 + pm(%1, %2))
,
pm(%2, h%2)[1 + pm(%1, h%1)]

1 + pm(%1, %2)
,

pm(%2, h%1)[1 + pm(%1, h%1)]

1 + pm(%1, %2)

}
,

then h has a unique fixed point ũ ∈ W . In addition, for any initial choice of

ũ0 ∈ W, the sequence {ũ0, hũ0, h
2ũ0, ...} converges to ũ.

2.3. Well-posedness of Iterated Function Systems

This section investigates the well-posedness of attractor based problems for gen-

eralized Hutchinson contractive operator and generalized rational Hutchinson

contractive operator which appear in Definition 2.1.5 and Definition 2.1.6, in
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a Hausdorff partial metric space setup, respectively. The existence, uniqueness,

and stability of solutions to fixed point equations are often connected with well-

posedness, which is an important aspect in the construction of fractals. Some

significant results on well-posedness of fixed point problems are well presented in

[6, 56, 59].

Definition 2.3.1. An attractor based problem of a mapping Ψ : Cpm(W ) →
Cpm(W ) is said to be well-posed if Ψ has a unique attractor Θ∗ ∈ Cpm(W )

and for any sequence {Θa} in Cpm(W ), lim
a→+∞

Hpm(Ψ(Θa),Θa) = 0 implies that

lim
a→+∞

Hpm(Θa,Θ
∗) = Hpm(Θ∗,Θ∗), that is, lim

a→+∞
Θa = Θ∗.

Theorem 2.3.1. Let (W, pm) be a complete partial metric space and define

Ψ : Cpm(W ) → Cpm(W ) as in Theorem 2.2.1. Then Ψ has a well-posed attractor

based problem.

Proof. According to Theorem 2.2.1, Ψ has a unique attractor Z∗, say. Let {Za}
be a sequence in Cpm(W ) such that lim

a→+∞
Hpm(Ψ(Za),Za) = 0. We want to show

that Z∗ = lim
a→+∞

Za for every positive integer a. As Ψ is a generalized contractive

Hutchinson operator, then

Hpm(Z∗,Za) ≤ Hpm(Ψ(Z∗),Ψ(Za)) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

p(βa, βa)

≤ λSΨ(Z∗,Za) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

where

SΨ(Z∗,Za) = max {Hpm(Z∗,Za), Hpm(Z∗,Ψ(Z∗)), Hpm(Za,Ψ(Za)),
Hpm(Z∗,Ψ(Za) +Hpm(Za,Ψ(Z∗))

2
, Hpm(Ψ2(Z∗),Ψ (Z∗)),

Hpm(Ψ2(Z∗),Za), Hpm(Ψ2(Z∗),Ψ (Za))
}

= max {Hpm(Z∗,Za), Hpm(Za,Ψ(Za)),
Hpm(Z∗,Ψ(Za) +Hpm(Za,Z∗)

2
, Hpm(Z∗,Ψ (Za))} .

The following arise:

(i) For SΨ(Za,Z∗) = Hpm(Z∗,Za), then

Hpm(Z∗,Za) ≤ λHpm(Z∗,Za) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)

Hpm(Z∗,Za)− λHpm(Za,Z∗) ≤ Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)
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Hpm(Z∗,Za) ≤
1

1− λ
[Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)],

and as a→ +∞ we have

lim
a→+∞

Hpm(Z∗,Za) ≤
1

1− λ
[ lim
a→+∞

Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

lim
a→+∞

pm(βa, βa)],

thus lim
a→+∞

Za = Z∗.

(ii) When SΨ(Za,Z∗) = Hpm(Za,Ψ(Za)), then

Hpm(Z∗,Za) ≤ λHpm(Za,Ψ(Za))+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

lim
a→+∞

pm(βa, βa)],

and as a→ +∞ we have,

lim
a→+∞

Hpm(Z∗,Za) ≤ λ lim
a→+∞

Hpm(Ψ(Za),Za) + lim
a→+∞

Hpm(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

lim
a→+∞

pm(βa, βa),

thus lim
a→+∞

Za = Z∗.

(iii) In case SΨ(Za,Z∗) =
Hpm(Z∗,Ψ(Za) +Hp(Za,Z∗)

2
, then

Hpm(Z∗,Za) ≤
λ

2
[Hpm(Z∗,Ψ(Za) +Hpm(Za,Z∗)]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)

≤ λ

2
[Hpm(Z∗,Za) +Hpm(Za,Ψ(Za))

− inf
ba∈Za

pm(ba, ba) +Hpm(Za,Z∗)]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

Hpm(Z∗,Za)− λHpm(Z∗,Za) ≤
λ

2
[Hpm(Za,Ψ(Za))− inf

ba∈Za
pm(ba, ba)]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

Hpm(Z∗,Za) ≤
λ

2(1− λ)
[Hpm(Za,Ψ(Za))− inf

ba∈Za
pm(ba, ba)]

+
1

1− λ
[Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)],
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and as a→ +∞ we have

lim
a→+∞

Hpm(Z∗,Za) ≤
λ

2(1− λ)
[ lim
a→+∞

Hpm(Za,Ψ(Za))− inf
ba∈Za

lim
a→+∞

pm(ba, ba)]

+
1

1− λ
[ lim
a→+∞

Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

lim
a→+∞

pm(βa, βa)],

which implies that lim
a→+∞

Za = Z∗.

(iv) If SΨ(Za,Z∗) = Hpm(Z∗,Ψ (Za)), then

Hpm(Z∗,Za) ≤ λHpm(Z∗,Ψ (Za)) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)

≤ λ[Hpm(Z∗,Za) +Hpm(Za,Ψ (Za))− inf
ba∈Za

pm(ba, ba)]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

Hpm(Z∗,Za)− λHpm(Z∗,Za) ≤ λ[Hpm(Za,Ψ (Za))− inf
ba∈Za

pm(ba, ba)]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

Hpm(Z∗,Za) ≤
λ

1− λ
[Hpm(Za,Ψ (Za))− inf

ba∈Za
pm(ba, ba)]

+
1

1− λ
[Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)],

and as a→ +∞ we have

lim
a→+∞

Hpm(Z∗,Za) ≤ λ lim
a→+∞

Hpm(Ψ(Za),Za) + lim
a→+∞

Hpm(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

lim
a→+∞

pm(βa, βa),

giving us that lim
a→+∞

Za = Z∗.

Theorem 2.3.2. Consider a complete partial metric space (W, pm) with

Ψ : Cpm(W ) → Cpm(W ) defined as in Theorem 2.2.2. Then Ψ has a well-posed

attractor based problem.

Proof. From Theorem 2.2.2, it follows that the map Ψ has a unique attractor say

Z∗. Consider the sequence {Za} in Cpm(W ) such that lim
a→+∞

Hpm(Ψ(Za),Za) = 0.

We show that Z∗ = lim
a→+∞

Za for every a ∈ N. Since Ψ is a generalized rational
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contractive Hutchinson operator, then

Hpm(Za,Z∗) ≤ Hpm(Ψ(Za),Ψ(Z∗)) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

p(βa, βa)

≤ λ∗RΨ(Za,Z∗) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

where

RΨ(Za,Z∗) = max

{
Hpm(Za,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
,

Hpm(Z∗,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]
1 +Hpm(Za,Z∗)

,

Hpm(Z∗,Ψ(Za))[1 +Hpm(Za,Ψ(Za))]
1 +Hpm(Za,Z∗)

}
.

We consider the following three cases:

(i) For RΨ(Za,Z∗) =
Hpm(Za,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
, we have

Hpm(Z∗,Za) ≤ λ∗
Hpm(Za,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)

≤ λ∗Hpm(Za,Z∗)[1 +Hpm(Za,Ψ(Za))]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa).

Therefore

Hpm(Z∗,Za)− λ∗Hpm(Za,Z∗)[1 +Hpm(Za,Ψ(Za))] ≤ Hpm(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

pm(βa, βa),

thus

Hpm(Z∗,Za) ≤
1

1− λ∗[1 +Hpm(Za,Ψ(Za))]
[Hp(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

pm(βa, βa)],

and on taking the limit as a→ +∞, we get

lim
a→+∞

Hpm(Z∗,Za) ≤ 0,

which implies that lim
a→+∞

Za = Z∗.
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(ii) If RΨ(Za,Z∗) =
Hpm(Z∗,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za, B∗)
, then

Hpm(Z∗,Za) ≤ λ∗

(
Hpm(Z∗,Ψ(Z∗))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)

)
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)

= Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

and applying the limit as a→ +∞, gives

lim
a→+∞

Hpm(Z∗,Za) ≤ 0,

which implies that lim
a→+∞

Za = Z∗.

(iii) And if RΨ(Za,Z∗) =
Hpm(Z∗,Ψ(Za))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
, then

Hpm(Z∗,Za) ≤ λ∗
Hpm(Z∗,Ψ(Za))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)

≤ λ∗[Hpm(Z∗,Za) +Hpm(Za,Ψ(Za))− inf
ηa∈Za

pm(ηa, ηa)]

[1 +Hpm(Za,Ψ(Za))] +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

so

Hpm(Z∗,Za)− λ∗Hpm(Z∗,Za)[1 +Hpm(Za,Ψ(Za))]

≤ λ∗[Hpm(Za,Ψ(Za))− inf
ηa∈Za

pm(ηa, ηa)][1 +Hpm(Za,Ψ(Za))]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

therefore

Hpm(Z∗,Za) ≤
1

(1− λ∗) [1 +Hpm(Za,Ψ(Za))]
[λ∗[Hpm(Za,Ψ(Za))

− inf
ηa∈Za

pm(ηa, ηa)][1 +Hpm(Za,Ψ(Za))] +Hpm(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

pm(βa, βa),

which implies that lim
a→+∞

Za = Z∗. Hence the required results.
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3

Generalized iterated function

system for common attractors in

partial metric spaces

3.1. Introduction

The construction of a common attractor of generalized iterated function system

of generalized contractions in the framework of partial metric spaces is the focus

of our current discussion. We note that the Hutchinson operator is itself a gen-

eralized contractive mapping on a family of compact subsets of W , defined on

a finite family of contractive mappings on a complete partial metric space. The

final common attractor is generated by using a generalized Hutchinson contrac-

tion operator repeatedly, and this is followed by the presentation of a non-trivial

example to support the proved result. To conclude the chapter, an application of

our findings will be given.

3.2. Generalized Iterated Function System

Some findings on generalized iterated function system for multivalued mappings

in metric spaces do appear in [35]. In this section, we define the generalized

iterated function system in the context of partial metric spaces.

Definition 3.2.1. [35] Let (W, pm) be a partial metric space, and let h, g : W →
W be two mappings. Then a pair (h, g) is a generalized contraction provided

λ ∈ [0, 1) exists such that

pm (h%, gς) ≤ λpm (%, ς)

for all %, ς ∈ W.
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Theorem 3.2.1. In a partial metric space (W, pm) let h, g : W → W be a

couple of continuous mappings. If (h, g) is a pair of generalized contractions with

λ ∈ [0, 1), then

(1) both h and g map elements in Cpm(W ) to elements in Cpm(W );

(2) if for any J ∗ ∈ Cpm(W ), the mappings h, g : Cpm(W )→ Cpm(W ) are defined

as

h(J ∗) = {h(%) : % ∈ J ∗} and

g(J ∗) = {g(ς) : ς ∈ J ∗},

then the pair (h, g) is a generalized contraction on (Cpm(W ), Hpm).

Proof. (1) Since h is a continuous mapping and the image of a compact subset

under a continuous mapping, h : W → W is compact, then

J ∗ ∈ Cpm(W ) implies that h(J ∗) ∈ Cpm(W ).

Similarly, we have

J ∗ ∈ Cpm(W ) implies that g(J ∗) ∈ Cpm(W ).

(2) Let J ∗,O∗ ∈ Cpm(W ). Since the pair (h, g) is a generalized contraction, then

pm (h%, gς) ≤ λpm (%, ς) for all %, ς ∈ W,

where λ ∈ [0, 1).

Thus, we have

pm (h%, g (O∗)) = inf
ς∈O∗

pm (h%, gς)

≤ inf
ς∈O∗

λpm (%, ς)

= λpm (%,O∗) .

Also

pm (gς, h (J ∗)) = inf
%∈J ∗

pm (gς, h%)

≤ inf
%∈J ∗

λpm (ς, %)

= λpm (ς,J ∗) .
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Now

Hpm (h (J ∗) , g (O∗)) = max{ sup
%∈J ∗

pm(h%, g (O∗)), sup
ς∈O∗

pm(gς, h(J ∗))}

≤ max{ sup
%∈J ∗

λpm(%,O∗), sup
ς∈O∗

λpm(ς,J ∗)}

= max{λ sup
%∈J ∗

pm(%,O∗), λ sup
ς∈O∗

pm(ς,J ∗)}

= λmax{ sup
%∈J ∗

pm(%,O∗), sup
ς∈O∗

pm(ς,J ∗)}

= λHpm (J ∗,O∗) .

Consequently,

Hpm (h (J ∗) , g (O∗)) ≤ λHpm (J ∗,O∗) .

Thus, (h, g) is a generalized contraction mapping pair on (Cpm(W ), Hpm).

Proposition 3.2.1. In a partial metric space (W, pm). Let ha, ga : W → W for

a = 1, 2, · · · , q be a collection of continuous mappings such that

pm (ha%, gaς) ≤ λapm (%, ς) for all %, ς ∈ W,

where λa ∈ [0, 1) for each a ∈ {1, 2, · · · , q} . Then the mappings Ψ,Φ : Cpm(W )→
Cpm(W ) defined as

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ hq(J ∗)

= ∪qa=1ha(J ∗) for each J ∗ ∈ Cpm(W )

and

Φ(J ∗) = g1(J ∗) ∪ g2(J ∗) ∪ · · · ∪ gq(J ∗)

= ∪qa=1ga(J ∗) for each J ∗ ∈ Cpm(W )

also satisfy

Hpm (ΨJ ∗,ΦO∗) ≤ λ̃Hpm(J ∗,O∗) for all J ∗,O∗ ∈ Cpm(W ),

where λ̃ = max{λa : a ∈ {1, 2, ..., q}}. Furthermore the pair (Ψ,Φ) is a generalized

contraction on Cpm(W ).

Proof. We shall prove the result for q = 2. Let h1, h2, g1, g2 : W → W be two
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contractions. For J ∗,O∗ ∈ Cpm(W ) and using Lemma 2.1.2 (c), we have

Hpm(Ψ (J ∗) ,Φ(O∗)) = Hpm(h1(J ∗) ∪ h2(J ∗), g1(O∗) ∪ g2(O∗))

≤ max{Hpm(h1(J ∗), g1(O∗)), Hpm(h2(J ∗), g2(O∗))}

≤ max{λ1Hpm(J ∗,O∗), λ2Hpm(J ∗,O∗)}

≤ λ̃Hpm(J ∗,O∗).

Definition 3.2.2. Consider a partial metric space (W, pm) with the mappings

Ψ,Φ : Cpm(W )→ Cpm(W ). A pair of mappings (Ψ,Φ) is called

1. a generalized Hutchinson contractive operator if a constant λ ∈ [0, 1) exists

such that for any J ∗,O∗ ∈ Cpm(W ), the following holds:

Hpm (Ψ (J ∗) ,Φ (O∗)) ≤ λSΨ,Φ(J ∗,O∗),

where

SΨ,Φ(J ∗,O∗) = max{Hpm(J ∗,O∗), Hpm(J ∗,Ψ (J ∗)), Hpm(O∗,Φ (O∗)),
Hpm(J ∗,Φ (O∗)) +Hpm(O∗,Ψ (J ∗))

2

}
,

2. a generalized rational Hutchinson contractive operator if a constant λ∗ ∈
[0, 1) exists such that for any J ∗,O∗ ∈ Cpm(W ), the following holds:

Hpm (Ψ (J ∗) ,Φ(O∗)) ≤ λ∗RΨ,Φ(J ∗,O∗),

where

RΨ,Φ(J ∗,O∗) = max

{
Hpm(J ∗,Φ(O∗))[1 +Hpm(J ∗,Ψ(J ∗))]

2(1 +Hpm (J ∗,O∗))
,

Hpm(O∗,Φ (O∗))[1 +Hpm(J ∗,Ψ(J ∗))]
1 +Hpm(J ∗,O∗)

,

Hpm(J ∗,O∗)[1 +Hpm(J ∗,Ψ (J ∗))]
1 +Hpm(J ∗,O∗)

}
.

Note that if the pair (Ψ,Φ) defined as in Proposition 3.2.1 is generalized con-

traction on Cpm(W ), then the pair (Ψ,Φ) is a generalized Hutchinson contractive

operator but not conversely.

Definition 3.2.3. Let (W, pm) be a complete partial metric space. If
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ha, ga : W → W , a = 1, 2, ..., q are continuous mappings such that each pair

(ha, ga) for a = 1, 2, ..., q is a generalized contraction, then {W ; (ha, ga) , a =

1, 2, · · · , q} is called a generalized iterated function system (GIFS).

Definition 3.2.4. Let J ∗ ⊆ W be a non-void compact set, then J ∗ is a common

attractor of the generalized iterated function system if

(i) Ψ(J ∗) = Φ(J ∗) = J ∗ and

(ii) there exists an open set V1 ⊆ W such that J ∗ ⊆ V1 and lim
a→+∞

Ψa(O∗) =

lim
a→+∞

Φa(O∗) = J ∗ for any compact set O∗ ⊆ V1, where the limit is taken

with respect to the partial Hausdorff metric.

As a result, the maximal open set V1 satisfying (ii) is referred to as a basin of

common attraction.

3.3. Generalized common attractors of Hutchinson

contractive operators

In the setting of partial metric space, we state and prove some results on the

existence and uniqueness of a common attractor of generalized and generalized

rational Hutchinson contractive operators, beginning with the following theorem.

Theorem 3.3.1. Let (W, pm) be a complete partial metric space and

{W ; (ha, ga), a = 1, 2, · · · , q}, a generalized iterated function system. Define

Ψ,Φ : Cpm(W )→ Cpm(W ) by

Ψ(J ∗) = ∪qa=1ha(J ∗),

and

Φ(O∗) = ∪qa=1ga(O∗)

for each J ∗,O∗ ∈ Cpm(W ). If the pair (Ψ,Φ) is a generalized Hutchinson con-

tractive operator, then Ψ and Φ have a unique common attractor Ũ1 ∈ Cpm(W ),

that is,

Ũ1 = Ψ(Ũ1) = Φ(Ũ1).

Furthermore, for an arbitrarily chosen initial set J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ(J ∗0 ),ΦΨ(J ∗0 ),ΨΦΨ(J ∗0 ), ...}

of compact sets converges to the common attractor Ũ1 of Ψ and Φ.

Proof. We choose an arbitrary element J ∗0 in Cpm(W ) and define Ψ and Φ
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respectively by

J ∗1 = Ψ(J ∗0 ), J ∗3 = Ψ (J ∗2 ) , ...,J ∗2a+1 = Ψ (J ∗2a)

and

J ∗2 = Φ(J ∗1 ), J ∗4 = Φ (J ∗3 ) , ...,J ∗2a+2 = Φ
(
J ∗2a+1

)
for a ∈ {0, 1, 2, ...}.

Now, as the pair (Ψ,Φ) is generalized Hutchinson contractive operator, we have

Hpm(J ∗2a+1,J ∗2a+2) = Hpm(Ψ (J ∗2a) ,Φ
(
J ∗2a+1

)
)

≤ λSΨ,Φ

(
J ∗2a,J ∗2a+1

)
,

where

SΨ,Φ

(
J ∗2a,J ∗2a+1

)
= max

{
Hpm(J ∗2a,J ∗2a+1), Hpm (J ∗2a,Ψ (J ∗2a)) ,

Hpm

(
J ∗2a+1,Φ

(
J ∗2a+1

))
,

Hpm

(
J ∗2a,Φ(J ∗2a+1

)
) +Hpm

(
J ∗2a+1,Ψ(J ∗2a)

)
2

}
= max

{
Hpm(J ∗2a,J ∗2a+1), Hpm(J ∗2a,J ∗2a+1) ,

Hpm

(
J ∗2a+1,J ∗2a+2

)
,

Hpm

(
J ∗2a,J ∗2a+2

)
+Hpm(J ∗2a+1,J ∗2a+1)

2

}
≤ max{Hpm(J ∗2a,J ∗2a+1), Hpm

(
J ∗2a+1,J ∗2a+2

)
,

Hpm(J ∗2a,J ∗2a+1) +Hpm

(
J ∗2a+1,J ∗2a+2

)
2

}
= max

{
Hpm

(
J ∗2a,J ∗2a+1

)
, Hpm

(
J ∗2a+1,J ∗2a+2

)}
.

Thus, we have

Hpm(J ∗2a+1,J ∗2a+2) ≤ λmax
{
Hpm

(
J ∗2a,J ∗2a+1

)
, Hpm

(
J ∗2a+1,J ∗2a+2

)}
= λHpm

(
J ∗2a,J ∗2a+1

)
.

Also,

Hpm

(
J ∗2a+2,J ∗2a+3

)
= Hpm

(
J ∗2a+3,J ∗2a+2

)
= Hpm(Ψ

(
J ∗2a+2

)
,Φ
(
J ∗2a+1

)
)

≤ λSΨ,Φ

(
J ∗2a+2,J ∗2a+1

)
,
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where

SΨ,Φ

(
J ∗2a+2,J ∗2a+1

)
= max{Hpm(J ∗2a+2,J ∗2a+1), Hpm

(
J ∗2a+2,Ψ

(
J ∗2a+2

))
,

Hpm

(
J ∗2a+1,Φ

(
J ∗2a+1

))
,

Hpm

(
J ∗2a+2,Φ

(
J ∗2a+1

))
+Hpm

(
J ∗2a+1,Ψ

(
J ∗2a+2

))
2

}
= max{Hpm(J ∗2a+2,J ∗2a+1), Hpm

(
J ∗2a+2,J ∗2a+3

)
,

Hpm

(
J ∗2a+1,J ∗2a+2

)
,

Hpm

(
J ∗2a+2,J ∗2a+2

)
+Hpm

(
J ∗2a+1,J ∗2a+3

)
2

}
≤ max{Hpm(J ∗2a+2,J ∗2a+1), Hpm

(
J ∗2a+2,J ∗2a+3

)
,

Hpm

(
J ∗2a+1,J ∗2a+2

)
+Hpm

(
J ∗2a+2,J ∗2a+3

)
2

}
= max{Hpm

(
J ∗2a+2,J ∗2a+1

)
, Hpm

(
J ∗2a+2,J ∗2a+3

)
}.

Thus, we have

Hpm(J ∗2a+2,J ∗2a+3) ≤ λmax{Hpm

(
J ∗2a+2,J ∗2a+1

)
, Hpm

(
J ∗2a+2,J ∗2a+3

)
}

= λHpm

(
J ∗2a+2,J ∗2a+1

)
.

Therefore, for all a ∈ {0, 1, 2, ...}, we have

Hpm(J ∗a+1,J ∗a+2) ≤ λHpm

(
J ∗a ,J ∗a+1

)
≤ λ2Hpm

(
J ∗a−1,J ∗a

)
≤ · · ·

≤ λa+1Hpm (J ∗0 ,J ∗1 ) .

Now, we have for l > a, with a, l ∈ {0, 1, 2, ...},

Hpm (J ∗a ,J ∗l ) ≤ Hpm

(
J ∗a ,J ∗a+1

)
+Hpm

(
J ∗a+1,J ∗a+2

)
+ · · ·+Hpm

(
J ∗l−1,J ∗l

)
− inf

ma+1∈J ∗a+1

pm(ma+1,ma+1)− inf
ma+2∈J ∗a+2

pm(ma+2,ma+2)−

· · · − inf
ma−1∈J ∗a−1

pm(ma−1,ma−1),

≤ [λa + λa+1 + · · ·+ λl−1]Hpm (J ∗0 ,J ∗1 ) ,

= λa[1 + λ+ λ2 + · · ·+ λl−a−1]Hpm(J ∗0 ,J ∗1 )],

≤ λa

1− λ
Hpm (J ∗0 ,J ∗1 )

and so lim
a,l→+∞

Hpm(J ∗a ,J ∗l ) = 0. Thus {J ∗a } is a Cauchy sequence in Cpm(W ).
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Since (Cpm(W ), Hpm) is a complete partial metric space, there exists Ũ1 ∈ Cpm(W )

such that lim
a→+∞

J ∗a = Ũ1, that is,

lim
a→+∞

Hpm(J ∗a , Ũ1) = lim
a→+∞

Hpm

(
J ∗a ,J ∗a+1

)
= Hpm(Ũ1, Ũ1)

and so, we have lim
a→+∞

Hpm(J ∗a , Ũ1) = 0.

To show that Ψ(Ũ1) = Ũ1, we consider

Hpm(Ψ(Ũ1), Ũ1) ≤ Hpm(Ψ(Ũ1),Φ(J ∗2a+1)) +Hpm(Φ(J ∗2a+1), Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1),

≤ λSΨ,Φ(Ũ1,J ∗2a+1) +Hpm(J ∗2a+2, Ũ1)

− inf
m2a+1∈J ∗2a+1

p(m2a+1,m2a+1)

for all a ∈ {0, 1, 2, ...}, where

SΨ,Φ(Ũ1,J ∗2a+1) = max
{
Hpm(Ũ1,J ∗2a+1), Hpm(Ũ1,Ψ(Ũ1)) ,

Hpm(J ∗2a+1,Φ(J ∗2a+1)),

Hpm(Ũ1,Φ(J ∗2a+1)) +Hpm(J ∗2a+1,Ψ(Ũ1))

2

}
− inf

m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

= max{Hpm(Ũ1,J ∗2a+1), Hpm(Ũ1,Ψ(Ũ1)),

Hpm(J ∗2a+1,J ∗2a+2),

Hpm(Ũ1,J ∗2a+2) +Hpm(J ∗2a+1,Ψ(Ũ1))

2

}
− inf

m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1).

Now, we examine the following cases:

(1) If SΨ,Φ(Ũ1,J ∗2a+1) = Hpm(Ũ1,J ∗2a+1), then

Hpm(Ψ(Ũ1), Ũ1) ≤ λHpm(Ũ1,J ∗2a+1) +Hpm(J ∗2a+2, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ λHpm(Ũ1,J ∗2a+1) +Hpm(J ∗2a+2, Ũ1),

which together with our taking the limit as a→ +∞, gives

Hpm(Ψ(Ũ1), Ũ1) ≤ λHpm(Ũ1, Ũ1) +Hpm(Ũ1, Ũ1),
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and we get Hpm(Ψ(Ũ1), Ũ1) = 0, that is, Ũ1 = Ψ(Ũ1).

(2) Provided SΨ,Φ(Ũ1,J ∗2a+1) = Hpm(Ũ1,Ψ(Ũ1)), then

Hpm(Ψ(Ũ1), Ũ1) ≤ λHpm(Ũ1,Ψ(Ũ1)) +Hpm(J ∗2a+2, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ λHpm(Ũ1,Ψ(Ũ1)) +Hpm(J ∗2a+2, Ũ1),

that is,

Hpm(Ψ(Ũ1), Ũ1) ≤ 1

1− λ
Hpm(J ∗2a+2, Ũ1),

which together with our taking the limit as a → +∞ implies that

Hpm(Ψ(Ũ1), Ũ1) ≤ 0 and so Ũ1 = Ψ(Ũ1).

(3) In the case of SΨ,Φ(Ũ1,J ∗2a+1) = Hpm(J ∗2a+1,J ∗2a+2), we get

Hpm(Ũ1,Φ(Ũ1)) ≤ λHpm(J ∗2a+1,J ∗2a+2) +Hpm(J ∗2a+2, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ λHpm(J ∗2a+1,J ∗2a+2) +Hpm(J ∗2a+2, Ũ1),

which together with our taking the limit as a→ +∞ implies that Ũ1 = Ψ(Ũ1).

(4) If SΨ,Φ(Ũ1,J ∗2a+1) =
Hpm(Ũ1,J ∗2a+2) +Hpm(J ∗2a+1,Ψ(Ũ1))

2
, then

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ

2
[Hpm(Ũ1,J ∗2a+2) +Hpm(J ∗2a+1,Ψ(Ũ1))]

+Hpm(J ∗2a+2, Ũ1)− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ λ

2
[Hpm(Ũ1,J ∗2a+2) +Hpm(J ∗2a+1, Ũ1) +Hpm(Ũ1,Ψ(Ũ1))

− inf
ũ∈Ũ1

pm(ũ, ũ)] +Hpm(J ∗2a+2, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ λ

2
[Hpm(Ũ1,J ∗2a+2) +Hpm(J ∗2a+1, Ũ1) +Hpm(Ũ1,Ψ(Ũ1))]

+Hpm(J ∗2a+2, Ũ1),

which together with our taking the limit as a→ +∞, we get

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ

2
Hpm(Ũ1,Ψ(Ũ1)),

giving us Hpm(Ũ1,Ψ(Ũ1)) = 0, and so Ũ1 = Ψ(Ũ1).
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Thus, from the above cases, Ũ1 is the attractor of Ψ.

Similar reasoning, gives

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) +Hpm(J ∗2a+1,Φ(Ũ1))

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

= Hpm(Ũ1,J ∗2a+1) +Hpm(Ψ(J ∗2a),Φ(Ũ1))

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) + λEΨ,Φ(J ∗2a, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1),

where

SΨ,Φ(J ∗2a, Ũ1) = max{Hpm(J ∗2a, Ũ1), Hpm(J ∗2a,Ψ(J ∗2a)), Hpm(Ũ1,Φ(Ũ1)),

Hpm(J ∗2a,Φ(Ũ1)) +Hpm(Ũ1,Ψ(J ∗2a))
2

}
= max{Hpm(J ∗2a, Ũ1), Hpm(J ∗2a,J ∗2a+1), Hpm(U1,Φ(Ũ1)),

Hpm(J ∗2a,Φ(Ũ1)) +Hpm(Ũ1,J ∗2a+1)

2

}
.

As a consequence, we observe that:

(1) If SΨ,Φ(J ∗2a, Ũ1) = Hpm(J ∗2a, Ũ1), then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) + λHpm(J ∗2a, Ũ1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) + λHpm(J ∗2a, Ũ1),

which in combination with our taking the limit as a→ +∞, gives

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1, Ũ1) + λHpm(Ũ1, Ũ1),

and we get Hpm(Ũ1,Φ(Ũ1)) = 0, that is, Ũ1 = Φ ˜(U1).

(2) For SΨ,Φ(J ∗2a, U1) = Hpm(J ∗2a,J ∗2a+1), then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) + λHpm(J ∗2a,J ∗2a+1)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) + λHpm(J ∗2a,J ∗2a+1),
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which together with our taking the limit as a→ +∞, we have

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1, Ũ1) + λHpm(Ũ1, Ũ1),

which implies that Hpm(U1,Φ(Ũ1)) ≤ 0 and so U1 = Φ(Ũ1).

(3) In the case of SΨ,Φ(J ∗2a, Ũ1) = Hpm(Ũ1,Φ(Ũ1)), we get

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) + λHpm(Ũ1,Φ(Ũ1))

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) + λHpm(Ũ1,Φ(Ũ1)),

that is,

Hpm(Ũ1,Φ(Ũ1)) ≤ 1

1− λ
Hpm(Ũ1,J ∗2a+1),

which together with our taking the limit as a → +∞, we can write

Hpm(Ũ1,Φ(Ũ1)) ≤ 0 and so Ũ1 = Φ ˜(U1).

(4) If SΨ,Φ(J ∗2a, Ũ1) =
Hpm(J ∗2a,Φ(Ũ1)) +Hpm(Ũ1,J ∗2a+1)

2
, then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) +
λ

2

[
Hpm(J ∗2a,Φ(Ũ1)) +Hpm(Ũ1,J ∗2a+1)

]
− inf

m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) +
λ

2
[Hpm(J ∗2a,Φ(Ũ1)) +Hpm(J ∗2a, Ũ1)

+Hpm(Ũ1,Φ(Ũ1))− inf
ũ∈Ũ1

pm(ũ, ũ) +Hpm(Ũ1,J ∗2a+1)]

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hpm(Ũ1,J ∗2a+1) +
λ

2
[Hpm(J ∗2a,Φ(Ũ1)) +Hpm(J ∗2a, Ũ1)

+Hpm(Ũ1,Φ(Ũ1)) +Hpm(Ũ1,J ∗2a+1)],

which together with our taking the as a→ +∞ implies

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1, Ũ1) +
λ

2
[Hpm(Ũ1,Φ(Ũ1)) +Hpm(Ũ1, Ũ1)

+Hpm(Ũ1,Φ(Ũ1)) +Hpm(Ũ1, Ũ1)]

= λHpm(Ũ1,Φ(Ũ1)),

giving us Hpm(Ũ1,Φ(Ũ1)) = 0 and so Ũ1 = Ψ(Ũ1).

Thus Ũ1 = Ψ(Ũ1) = Φ(Ũ1), which means that Ũ1 is the common attractor of Ψ

and Φ.To establish the uniqueness of the common attractor, let Ũ2 be another
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common attractor of Ψ and Φ. Since the pair (Ψ,Φ) is generalized Hutchinson

contractive operator, we have

Hpm(Ũ1, Ũ2) = Hpm(Ψ(Ũ1),Φ(Ũ2))

≤ λmax{Hpm(Ũ1, Ũ2), Hpm(Ũ1,Ψ(Ũ1)), Hpm(Ũ2,Φ(Ũ2)),

Hpm(Ũ1,Φ(Ũ2)) +Hpm(Ũ1,Ψ(Ũ1))

2

}
= λmax{Hpm(Ũ1, Ũ2), Hpm(Ũ1, Ũ1), Hpm(Ũ2, Ũ2),

Hpm(Ũ1, Ũ2) +Hpm(Ũ1, Ũ1)

2

}
≤ λHpm(Ũ1, Ũ2),

and so (1 − λ)Hpm(Ũ1, Ũ2) ≤ 0, that is, Hpm(Ũ1, Ũ2) = 0 and hence Ũ1 = Ũ2.

Thus Ũ1 ∈ Cpm(W ) is a unique common attractor of Ψ and Φ.

The theorem below shows that, beginning with an arbitrary set, it is possible

to find a generalized iterated function system whose common attractor is the

given set.

Theorem 3.3.2 (Generalized Collage). Let (W, pm) be a complete par-

tial metric space. For a given generalized iterated function system

{W ;h1, h2..., hq; g1, g2,..., gq} with a common contractive constant λ ∈ [0, 1) and

for a given ε ≥ 0, if for any J ∗ ∈ Cpm(W ), we have either

Hpm(J ∗,Ψ(J ∗)) ≤ ε,

or

Hpm(J ∗,Φ(J ∗)) ≤ ε,

where Ψ(J ∗) = ∪qa=1ha(J ∗) and Φ(J ∗) = ∪qa=1ga(J ∗), then

Hpm(J ∗, Ũ1) ≤ ε

1− λ
,

where Ũ1 ∈ Cpm(W ) is a common attractor of Ψ and Φ.

Proof. It follows from Proposition 3.2.1 that the pair of the mappings

Ψ,Φ : Cpm(W )→ Cpm(W )
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satisfies

Hpm(Ψ(J ∗),Φ(O∗)) ≤ λHpm(J ∗,O∗) for all J ∗,O∗ ∈ Cpm(W ).

From Theorem 3.3.1, there exists a unique common attractor Ũ1 ∈ Cpm(W ) of

mappings Ψ and Φ, that is, Ũ1 = Ψ(Ũ1) = Φ(Ũ1).

In addition, for any J ∗0 ∈ Cpm(W ), a sequence {J ∗a } defined by J ∗2a+1 = Ψ (J ∗2a)
and J ∗2a+2 = Φ

(
J ∗2a+1

)
for a = 0, 1, 2, ..., we have

lim
a→+∞

Hpm(Ψ(J ∗2a), Ũ1) = lim
a→+∞

Hpm(Φ(J ∗2a+1), Ũ1) = 0.

Assume that Hpm(J ∗,Ψ(J ∗)) ≤ ε for any J ∗ ∈ Cpm(W ), one can write

Hpm(J ∗, Ũ1) ≤ Hpm(J ∗,Ψ(J ∗)) +Hpm(Ψ(J ∗),Φ(Ũ1))− inf
α∈Ψ(J ∗)

pm(α, α)

≤ ε+ λHpm(J ∗, Ũ1),

which further implies that

Hpm(J ∗, Ũ1) ≤ ε

1− λ
.

Similarly, suppose that Hpm(J ∗,Φ(J ∗)) ≤ ε for any J ∗ ∈ Cpm(W ). Then,

Hpm(J ∗, Ũ1) ≤ Hpm(J ∗,Φ(J ∗)) +Hpm(Φ(J ∗),Ψ(Ũ1))− inf
α∈Φ(J ∗)

pm(α, α)

≤ ε+ λHpm(J ∗, Ũ1),

implies

Hpm(J ∗, Ũ1) ≤ ε

1− λ
.

Remark 3.3.1. If we take in Theorem 3.3.1, Spm(W ) the collection of all sin-

gleton subsets of the given space W, then Spm(W ) ⊆ Cpm(W ). Furthermore, if we

take a pair of mappings (ha, ga) = (h, g) for each a, where h = h1 and g = g1

then the pair of operators (Ψ,Φ) becomes

(Ψ (%1) ,Φ (%2)) = (h(%1), g (%2)) .

Consequently, the following common fixed point result is obtained.

Corollary 3.3.1. Suppose {W ; (ha, ga) , a = 1, 2, · · · , q} is a generalized iterated

function system defined in a complete partial metric space (W, pm) and define a
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pair of mappings h, g : W → W as in Remark 3.3.1. If some λ ∈ [0, 1) exists

such that for any %, ς ∈ W , the following condition holds:

pm (h%, gς) ≤ λSh,g(%, ς),

where

Sh,g(%, ς) = max

{
pm(%, ς), pm(%, h%), pm(%, gς),

pm(%, gς) + pm(ς, h%1)

2

}
.

Then h and g have a unique common fixed point ũ ∈ W. Furthermore, for any

ũ0 ∈ W , the sequence {ũ0, hũ0, ghũ0, hghũ0, · · · } converges to the common fixed

point of h and g, that is ũ.

Corollary 3.3.2. Let {W ; (ha, ga) , a = 1, 2, · · · , q} be a generalized iterated func-

tion system defined in a complete partial metric space (W, pm) and (ha, ga) for

a = 1, 2, ..., q be a pair of generalized contractive self-mappings on W. Then the

pair (Ψ,Φ) : Cpm(W )→ Cpm(W ) defined in Theorem 3.3.1 has at most one com-

mon attractor in Cpm(W ). Furthermore, for any initial set J ∗0 ∈ Cpm(W ), the

sequence {J ∗0 ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , · · · } of compact sets has a limit point which

is the common attractor of Ψ and Φ.

With the following example, we establish the validity of Corollary 3.3.1.

Example 3.3.1. Let W = [0, 10] be endowed with the partial metric

pm : W ×W → R[+] defined by,

pm(%, ς) =
1

2
max{%, ς}+

1

4
|%− ς| for all %, ς ∈ W.

Define h1, h2 : W → W as,

h1 (%) =
10− %

3
for all % ∈ W,

h2 (%) =
16− %

4
for all % ∈ W,

and g1, g2 : W → W as

g1 (ς) =
15− ς

3
for all ς ∈ W,

g2 (ς) =
ς + 4

4
for all ς ∈ W.
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Now, for %, ς ∈ W, we have

pm (h1 (%) , g1 (ς)) =
1

2
max

{
10− %

3
,
15− ς

3

}
+

1

4

∣∣∣∣10− %
3
− 15− ς

3

∣∣∣∣
=

1

3

[
1

2
max{10− %, 15− ς}+

1

4
|(10− %)− (15 + ς)|

]
≤ λ1pm (%, ς) ,

where λ1 =
1

3
.

Also, for %, ς ∈ W, we have

pm (h2 (%) , g2 (ς)) =
1

2
max

{
16− %

4
,
ς + 4

4

}
+

1

4

∣∣∣∣16− %
4
− ς + 4

4

∣∣∣∣
=

1

4

[
1

2
max{16− %, ς + 4}+

1

4
|(16− %)− (ς + 4)|

]
≤ λ2pm (%, ς) ,

where λ2 =
1

4
.

Consider the generalized iterated function system {W ; (h1, g1) , (h2, g2)} with the

mappings Ψ,Φ : Cpm(W )→ Cpm(W ) given as

(Ψ,Φ) (Ũ1) = (h1, g1)(Ũ1) ∪ (h2, g2)(Ũ1) for all Ũ1 ∈ Cpm(W ).

Using Proposition 3.2.1, for J ∗,O∗ ∈ Cpm(W ), we have

Hpm (Ψ (J ∗) ,Φ (O∗)) ≤ λ∗Hpm (J ∗,O∗) ,

where λ∗ = max

{
1

3
,
1

4

}
=

1

3
.

Thus, all conditions of Corollary 3.3.1 are satisfied. Moreover, for any initial set

J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , · · · }

of compact sets is convergent and has a limit point which is the common attractor

of Ψ and Φ.

The following result shows the existence of unique common attractor of general-

ized rational Hutchinson contractive operators in partial metric space.

Theorem 3.3.3. Consider a complete partial metric space (W, pm) and the gen-

eralized iterated function system given as {W ; (ha, ga), a = 1, 2, · · · , q}. Let
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Ψ,Φ : Cpm(W )→ Cpm(W ) be defined by

Ψ(J ∗) = ∪qa=1ha(J ∗)

and

Φ(O∗) = ∪qa=1ga(O∗),

for each J ∗,O∗ ∈ Cpm(W ). If the pair (Ψ,Φ) is generalized rational Hutchin-

son contractive operator, then Ψ and Φ have a unique common attractor Ũ1 ∈
Cpm(W ), that is,

Ũ1 = Ψ(Ũ1) = Φ(Ũ1).

Furthermore, for arbitrarily chosen initial set J ∗0 ∈ Cpm(W ), the sequence

{J ∗0 ,Ψ(J ∗0 ),ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , · · · }

of compact sets converges to a common attractor Ũ1.

Proof. Let J ∗0 be arbitrarily chosen in Cpm(W ). Define

J ∗1 = Ψ(J ∗0 ), J ∗3 = Ψ (J ∗2 ) , · · · ,J ∗2a+1 = Ψ (J ∗2a)

and

J ∗2 = Φ(J ∗1 ), J ∗4 = Φ (J ∗3 ) , · · · ,J ∗2a+2 = Φ
(
J ∗2a+1

)
for a ∈ {0, 1, 2, · · · }. Now, since the pair (Ψ,Φ) is a generalized rational Hutchin-

son contractive operator, we have

Hpm(J ∗2a+1,J ∗2a+2) = Hpm(Ψ (J ∗2a) ,Φ
(
J ∗2a+1

)
)

≤ λ∗RΨ,Φ

(
J ∗2a,J ∗2a+1

)
for a ∈ {0, 1, 2, · · · }, where

RΨ,Φ

(
J ∗2a,J ∗2a+1

)
= max

{
Hpm(J ∗2a,Φ

(
J ∗2a+1

)
)[1 +Hpm(J ∗2a,Ψ(J ∗2a))]

2(1 +Hpm

(
J ∗2a,J ∗2a+1

)
)

,

Hpm(J ∗2a+1,Φ
(
J ∗2a+1

)
)[1 +Hpm(J ∗2a,Ψ(J ∗2a))]

1 +Hpm

(
J ∗2a,J ∗2a+1

) ,

Hpm(J ∗2a,J ∗2a+1)[1 +Hpm(J ∗2a,Ψ (J ∗2a))]
1 +Hpm(J ∗2a,J ∗2a+1)

}
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= max

{
Hpm(J ∗2a,J ∗2a+2)[1 +Hpm(J ∗2a,J ∗2a+1)]

2(1 +Hpm

(
J ∗2a,J ∗2a+1

)
)

,

Hpm(J ∗2a+1,J ∗2a+2)[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm

(
J ∗2a,J ∗2a+1

) ,

Hpm(J ∗2a,J ∗2a+1)[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a,J ∗2a+1)

}
= max

{
Hpm(J ∗2a,J ∗2a+2)

2
, Hpm(J ∗2a+1,J ∗2a+2) ,

Hpm(J ∗2a,J ∗2a+1)
}

= max

{
Hpm(J ∗2a,J ∗2a+2)

2
, Hpm(J ∗2a,J ∗2a+1)

}
.

Thus, we have

Hpm(J ∗2a+1,J ∗2a+2) ≤ λ∗
2

[Hpm(J ∗2a,J ∗2a+1) +Hpm(J ∗2a+1,J ∗2a+2)

− inf
α2a+1∈J∗2a+1

pm (α2a+1, α2a+1)]

≤ λ∗
2

[Hpm(J ∗2a,J ∗2a+1) +Hpm(J ∗2a+1,J ∗2a+2)],

that is,

Hpm(J ∗2a+1,J ∗2a+2) ≤ λ∗
2− λ∗

Hpm(J ∗2a,J ∗2a+1)

and for η∗ =
λ∗

2− λ∗
< 1, we have

Hpm(J ∗2a+1,J ∗2a+2) ≤ η∗Hpm(J ∗2a,J ∗2a+1)

for all a ∈ {0, 1, 2, ...}. Therefore for a < l, with a, l ∈ {0, 1, 2, ...}

Hpm(J ∗a ,J ∗l ) ≤ Hpm(J ∗a ,J ∗a+1) +Hpm(J ∗a+1,J ∗a+2) + · · ·+Hpm(J ∗l−1,J ∗l )

− inf
αa+1∈J ∗a+1

pm(αa+1, αa+1)− inf
αa+2∈J ∗a+2

pm(αa+2, αa+2)−

· · · − inf
αl−1∈J ∗l−1

pm(αl−1, αl−1),

≤ ηa∗Hpm(J ∗0 ,J ∗1 ) + ηa+1
∗ Hpm(J ∗0 ,J ∗1 ) + · · ·+ ηl−1

∗ Hpm(J ∗0 ,J ∗1 ),

≤ [ηa∗ + ηa+1
∗ + · · ·+ ηl−1

∗ ]Hpm(J ∗0 ,J ∗1 ),

≤ ηa∗ [1 + η∗ + η2
∗ + · · ·+ ηl−a−1

∗ ]Hpm(J ∗0 ,J ∗1 ),

≤ ηa∗
1− η∗

Hpm(J ∗0 ,J ∗1 ).

By convergence towards 0 from the right hand side, we get Hpm (J ∗a ,J ∗l )→ 0 as

a, l→ +∞. Therefore {J ∗a } is a Cauchy sequence in Cpm(W ). But (Cpm(W ), Hpm)

is complete, so we have J ∗a → Ũ1 as a → +∞ for some Ũ1 ∈ Cpm(W ), in other
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words, lim
a→+∞

Hpm(J ∗a , Ũ1) = lim
a→+∞

Hpm

(
J ∗a ,J ∗a+1

)
= Hpm(Ũ1, Ũ1) and we have

lim
a→+∞

Hpm(J ∗a , Ũ1) = 0.

To prove that Ũ1 is a common attractor of Ψ and Φ, we have

Hpm(Ψ(Ũ1), Ũ1) ≤ Hpm(Ψ(Ũ1),Φ
(
J ∗2a+1

)
) +Hpm(Φ

(
J ∗2a+1

)
, Ũ1)

− inf
α2a+1∈J ∗2a+1

pm(α2a+1, α2a+1),

≤ λ∗RΨ,Φ(Ũ1,J ∗2a+1) +Hpm(J ∗2a+2, Ũ1)

− inf
α2a+1∈J ∗2a+1

pm(α2a+1, α2a+1),

for all a ∈ {0, 1, 2, ...}, where

RΨ,Φ(Ũ1,J ∗2a+1) = max

{
Hpm(Ũ1,Φ(J ∗2a+1))[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1,J ∗2a+1))
,

Hpm(J ∗2a+1,Φ
(
J ∗2a+1

)
)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
,

Hpm(J ∗2a+1, Ũ1)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)

}
,

that is,

RΨ,Φ(Ũ1,J ∗2a+1) = max

{
Hpm(J ∗2a+2, Ũ1)[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1,J ∗2a+1))
,

Hpm(J ∗2a+1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
,

Hpm(Ũ1,J ∗2a+1)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)

}
.

Consider the following three cases:

(1) If RΨ,Φ(Ũ1,J ∗2a+1) =
Hpm(Ũ1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1,J ∗2a+1))
, then we have

Hpm(Ψ(Ũ1), Ũ1) ≤
λ∗Hpm(Ũ1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1,J ∗2a+1))
+Hpm(J ∗2a+2, Ũ1)

− inf
α2a+1∈J ∗2a+1

pm(α2a+1, α2a+1),

which together with our taking the limit as a→ +∞, gives Hpm(Ũ1,Ψ(Ũ1)) ≤ 0

and so Ũ1 = Ψ(Ũ1).
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(2) If RΨ,Φ(Ũ1,J ∗2a+1) =
Hpm(J ∗2a+1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
, we have

Hpm(Ψ(Ũ1), Ũ1) ≤ λ∗
Hpm(J ∗2a+1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
+Hpm(J ∗2a+2, Ũ1)

− inf
α2a+1∈J ∗2a+1

p(α2a+1, α2a+1)

≤ λ∗
Hpm(J ∗2a+1,J ∗2a+2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
+Hpm(J ∗2a+2, Ũ1)),

which together with our taking the limit as a→ +∞, yields Hpm(Ũ1,Ψ(Ũ1)) ≤ 0

and thus Ũ1 = Ψ(Ũ1).

(3) In case of RΨ,Φ(U1,J ∗2a+1) =
Hpm(J ∗2a+1, Ũ1)[1 +Hpm(Ũ1,Ψ(U1))]

1 +Hpm(Ũ1,J ∗2a+1)
, we obtain

Hpm(Ũ1,Ψ(Ũ1)) ≤ λ∗
Hpm(J ∗2a+1, Ũ1)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
+Hpm(J ∗2a+2, Ũ1)

− inf
α2a+1∈J ∗2a+1

pm(α2a+1, α2a+1)

≤
λ∗Hpm(J ∗2a+1, Ũ1)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1,J ∗2a+1)
+Hpm(J ∗2a+2, Ũ1),

which together with our taking the limit as a→ +∞, produce

Hpm(Ũ1,ΨŨ1)),

that is, Ũ1 = Ψ(Ũ1).

In a similar manner, one can obtain

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1) +Hpm(J ∗2a+1,Φ(Ũ1))

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

= Hpm(Ũ1,J ∗2a+1) +Hpm(Ψ (J ∗2a) ,Φ
(
Ũ1

)
)

− inf
m2a+1∈J ∗2a+1

pm(m2a+1,m2a+1)

≤ Hp(Ũ1,J ∗2a+1) + λ∗RΨ,Φ(J ∗2a,Φ(Ũ1)),

where

RΨ,Φ(J ∗2a, Ũ1) = max

{
Hpm(J ∗2a,Φ(Ũ1))[1 +Hp(J ∗2a,Ψ(J ∗2a))]

2(1 +Hpm(J ∗2a, Ũ1))
,

50



Hpm(Ũ1,Φ(Ũ1))[1 +Hpm(J ∗2a,Ψ(J ∗2a))]
1 +Hpm(J ∗2a, Ũ1)

,

Hpm(J ∗2a, Ũ1))[1 +Hpm(J ∗2a,Ψ(J ∗2a))]
1 +Hpm(J ∗2a, Ũ1)

}

= max

{
Hpm(J ∗2a,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

2(1 +Hpm(J ∗2a, Ũ1))
,

Hpm(Ũ1,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)
,

Hpm(J ∗2a, Ũ1)[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)

}
.

Again, we have the following three cases:

(1) If RΨ,Φ(J ∗2a, Ũ1) =
Hpm(J ∗2a,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

2(1 +Hpm(J ∗2a, Ũ1))
, then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1)+λ∗

{
Hpm(J ∗2a,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

2(1 +Hpm(J ∗2a, Ũ1))

}
.

Which together with our taking the limit as a→ +∞, we get

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1, Ũ1) +
λ∗
2

{
Hpm(Ũ1,Φ(Ũ1))[1 +Hpm(Ũ1, Ũ1)]

(1 +Hpm(Ũ1, Ũ1))

}
,

that is, (
1− λ∗

2

)
Hpm(Ũ1,Φ(Ũ1)) ≤ 0,

thus, Ũ1 = Φ(Ũ1).

(2) If RΨ,Φ(J ∗2a, Ũ1) =
Hpm(Ũ1,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)
, then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a+1)+λ∗

{
Hpm(Ũ1,Φ(Ũ1))[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)

}
,

which together with our taking the limit as a→ +∞, we get

(1− λ∗)Hpm(Ũ1,Φ(Ũ1)) ≤ 0,

which implies that Ũ1 = Φ(Ũ1).
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(3) If RΨ,Φ(J ∗2a, Ũ1) =
Hpm(J ∗2a, Ũ1)[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)
then

Hpm(Ũ1,Φ(Ũ1)) ≤ Hpm(Ũ1,J ∗2a) + λ∗

{
Hpm(J ∗2a, Ũ1)[1 +Hpm(J ∗2a,J ∗2a+1)]

1 +Hpm(J ∗2a, Ũ1)

}
,

which together with our taking the limit as a→ +∞, we get Hpm(Ũ1,Φ
(
Ũ1

)
) ≤

0, which gives Ũ1 = Φ(Ũ1).

Thus Ũ1 is a common attractor of the mappings Ψ and Φ.

For the uniqueness, assume that Ũ1 and Ũ2 are distinct common attractors of

Ψ and Φ. Since the pair (Ψ,Φ) is generalized rational Hutchinson contractive

operator, we obtain that

Hpm(Ũ1, Ũ2) = Hpm(Ψ(Ũ1),Φ(Ũ2))

≤ λ∗max

{
Hpm(Ũ1,Φ(Ũ2))[1 +Hpm(Ũ1,Ψ(Ũ1))]

2(1 +Hpm(Ũ1, Ũ2))
,

Hpm(Ũ2,Φ(Ũ2))[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1, Ũ2)
,

Hpm(Ũ1, Ũ2)[1 +Hpm(Ũ1,Ψ(Ũ1))]

1 +Hpm(Ũ1, Ũ2)

}

= λ∗max

{
Hpm(Ũ1, Ũ2)[1 +Hpm(Ũ1, Ũ1)]

2(1 +Hpm(Ũ1, Ũ2))
,

Hpm(Ũ2, Ũ2)[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ2)
,
Hpm(Ũ1, Ũ2)[1 +Hpm(Ũ1, Ũ1)]

1 +Hpm(Ũ1, Ũ2)

}
≤ λ∗Hpm(Ũ1, Ũ2),

and so (1 − λ∗)Hpm(Ũ1, Ũ2) ≤ 0, which implies that Hpm(Ũ1, Ũ2) = 0 and hence

Ũ1 = Ũ2. Thus Ũ1 ∈ Cpm(W ) is a unique common attractor of Ψ and Φ.

Corollary 3.3.3. Consider a generalized iterated function system {W ;ha, ga, a =

1, 2, · · · , q} on a complete partial metric space (W, pm) and the mappings h, g :

W → W as given in Remark 3.3.1. If there exists λ∗ ∈ [0, 1) such that for any

%1, %2 ∈ W , the following condition holds:

pm (h%1, g%2) ≤ λ∗Rh,g(%1, %2),
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where

Rh,g(%1, %2) = max

{
pm(%1, g%2)[1 + pm(%1, h%1)]

2(1 + pm(%1, %2))
,
pm(%2, g%2)[1 + pm(%1, h%1)]

1 + pm(%1, %2)
,

pm(%1, %2)[1 + pm(%1, h%1)]

1 + pm(%1, %2)

}
.

Then a unique common fixed point for h and g exists. Furthermore, for any initial

choice of v0 ∈ W , the sequence {v0, hv0, ghv0, hghv0, ...} converges to the common

fixed point of h and g.

3.4. Well-posedness of common attractor based problems

Now, in the framework of Hausdorff partial metric spaces, we investigate the

well-posedness of attractor-based problems of generalized Hutchinson contractive

operators pair and generalized rational Hutchinson contractive operators pair

given in Definition 3.2.2. [56] contains some useful results on the well-posedness

of fixed-point problems.

We begin by defining the well-posedness of the common attractor-based problem.

Definition 3.4.1. For a pair of mappings Ψ,Φ : Cpm(W ) → Cpm(W ) , a

common attractor-based problem is said to be well-posed if the pair (Ψ,Φ)

has a unique common attractor Θ∗ ∈ Cpm(W ) and for any sequence {Θa} in

Cpm(W ) such that lim
a→+∞

Hpm(Ψ(Θa),Θa) = 0 and lim
a→+∞

Hpm(Φ(Θa),Θa) = 0,

then lim
a→+∞

Hpm(Θa,Θ∗) = Hpm(Θ∗,Θ∗), that is, lim
a→+∞

Θa = Θ∗.

The following result demonstrates the well-posedness of a generalized Hutchinson

contractive operators’ common attractor-based problem.

Theorem 3.4.1. Suppose (W, pm) is a complete partial metric space and define

Ψ,Φ : Cpm(W ) → Cpm(W ) as in Theorem 3.3.1. The pair (Ψ,Φ) , then has a

well-posed common attractor-based problem.

Proof. According to Theorem 3.3.1, it follows that the mappings Ψ and Φ have

a unique common attractor, Z∗.

Let a sequence {Za} in Cpm(W ) be such that lim
a→+∞

Hpm(Ψ(Za),Za) = 0 and

lim
a→+∞

Hpm(Φ(Za),Za) = 0. We want to show that Z∗ = lim
a→+∞

Za. As the pair
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(Ψ,Φ) is generalized Hutchinson contractive operator, so that

Hpm(Z∗,Za) ≤ Hpm(Ψ(Z∗),Φ(Za)) +Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa)

≤ λSΨ,Φ(Z∗,Za) +Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa),

where

SΨ,Φ(Z∗,Za) = max {Hpm(Z∗,Za), Hpm(Z∗,Ψ(Z∗)), Hpm(Za,Φ(Za)),
Hpm(Z∗,Φ(Za) +Hpm(Za,Ψ(Z∗))

2
}.

Then we have the following cases:

(i) If SΨ,Φ(Z∗,Za) = Hpm(Z∗,Za), then

Hpm(Z∗,Za) ≤ λHpm(Z∗,Za) +Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa),

which further implies

(1− λ)Hpm(Z∗,Za) ≤ Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa),

that is,

Hpm(Z∗,Za) ≤
1

1− λ
[Hpm(Φ(Za),Za)− inf

βa∈Φ(Za)
pm(βa, βa)].

As a→ +∞, we have

lim
a→+∞

Hpm(Z∗,Za) ≤
1

1− λ
lim

a→+∞
[Hpm(Φ(Za),Za)− inf

βa∈Φ(Za)
pm(βa, βa)],

this implies that lim
a→+∞

Za = Z∗.

(ii) In case of SΨ,Φ(Z∗,Za) = Hpm(Z∗,Ψ(Z∗)), we have

Hpm(Z∗,Za) ≤ λHpm(Z∗,Ψ(Z∗)) +Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa).

As a→ +∞, we have

lim
a→+∞

Hpm(Z∗,Za) ≤ λHpm(Z∗,Ψ(Z∗))+ lim
a→+∞

[Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa)].

Thus lim
a→+∞

Za = Z∗.
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(iii) If SΨ,Φ(Z∗,Za) = Hpm(Za,Φ (Za)), then

Hpm(Z∗,Za) ≤ λHpm(Za,Φ (Za)) +Hpm(Za,Φ(Za))− inf
βa∈Φ(Za)

pm(βa, βa)

= (λ+ 1)Hpm(Za,Φ (Za))− inf
βa∈Φ(Za)

pm(βa, βa)

On taking the limit as a→ +∞, we have that lim
a→+∞

Za = Z∗.

(iv) Finally, if SΨ,Φ(Z∗,Za) =
Hpm(Z∗,Φ(Za) +Hpm(Za,Ψ(Z∗))

2
, then we have

Hpm(Z∗,Za) ≤
λ

2
[Hpm(Z∗,Φ(Za) +Hpm(Za,Ψ(Z∗))]

+Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa)

≤ λ

2
[Hpm(Z∗,Za) +Hpm(Za,Φ(Za)) +Hpm(Za,Ψ(Z∗))

− inf
ba∈Za

pm(ba, ba)] +Hpm(Φ(Za),Za)− inf
βa∈Φ(Za)

pm(βa, βa)

=
λ

2
[Hpm(Z∗,Za) +Hpm(Za,Φ(Za)) +Hpm(Za,Z∗)

− inf
ba∈Za

pm(ba, ba)] +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

which gives

Hpm(Z∗,Za) ≤
λ+ 2

2(1− λ)
[Hpm(Za,Φ(Za))− inf

ba∈Za
pm(ba, ba)]− inf

βa∈Ψ(Za)
pm(βa, βa)]

and by taking the limit as a→ +∞, we obtain

lim
a→+∞

Hpm(Z∗,Za) ≤ 0,

which implies that lim
a→+∞

Za = Z∗.

With the result below, we show the well-posedness of a common attractor-based

problem of a generalized rational Hutchinson contractive operators.

Theorem 3.4.2. Consider a complete partial metric space (W, pm) with Ψ,Φ :

Cpm(W ) → Cpm(W ) defined as in Theorem 3.3.3. Then the pair (Ψ,Φ) has a

well-posed common attractor-based problem.

Proof. From Theorem 3.3.3, it follows that the mappings Ψ and Φ have a unique

common attractor (say) Z∗.

Let a sequence {Za} in Cpm(W ) be such that lim
a→+∞

Hpm(Ψ(Za),Za) = 0 and
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lim
a→+∞

Hpm(Φ(Za),Za) = 0. We want to show that Z∗ = lim
a→+∞

Za. As the pair

(Ψ,Φ) is generalized rational Hutchinson contractive operator, so that

Hpm(Za,Z∗) ≤ Hpm(Ψ(Za),Ψ(Z∗)) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)

≤ λ∗RΨ,Φ(Za,Z∗) +Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

where

RΨ,Φ(Za,Z∗) = max

{
Hpm(Za,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
,

Hpm(Z∗,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]
1 +Hpm(Za,Z∗)

,

Hpm(Z∗,Za)[1 +Hpm(Za,Ψ(Za))]
1 +Hpm(Za,Z∗)

}
.

The following cases arise:

(i) RΨ,Φ(Za,Z∗) =
Hpm(Za,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
, implies that,

Hpm(Za,Z∗) ≤ λ∗
Hpm(Za,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]

2(1 +Hpm(Za,Z∗))
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
p(βa, βa)

≤ λ∗Hpm(Za,Z∗)[1 +Hpm(Za,Ψ(Za))]

+Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa),

which leads to,

Hpm(Za,Z∗)− λ∗Hpm(Za,Z∗)[1 +Hpm(Ψ(Za),Za)]

≤ Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa)

and so

Hpm(Za,Z∗) ≤
1

1− λ∗[1 +Hpm(Ψ(Za),Za)]
[Hpm(Ψ(Za),Za)

− inf
βa∈Ψ(Za)

pm(βa, βa)].

And taking the limit as a→ +∞ gives,

lim
a→+∞

Hpm(Za,Z∗) ≤ 0,

which implies that lim
a→+∞

Za = Z∗.

56



(ii) If RΨ,Φ(Za,Z∗) =
Hpm(Z∗,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
, then

Hpm(Za,Z∗) ≤ λ∗

(
Hpm(Z∗,Φ(Z∗))[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)

)
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa)

= Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa).

Taking the limit as a→ +∞, we have

lim
a→+∞

Hpm(Za,ZB∗) ≤ 0,

which implies that lim
a→+∞

Za = Z∗.

(iii) Finally, assume RΨ,Φ(Za,Z∗) =
Hpm(Z∗,Za)[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
, then

Hpm(Za,Z∗) ≤ λ∗
Hpm(Z∗,Za)[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
+Hpm(Ψ(Za),Za)− inf

βa∈Ψ(Za)
pm(βa, βa),

that is,

Hpm(Za,Z∗)[1− λ∗
[1 +Hpm(Za,Ψ(Za))]

1 +Hpm(Za,Z∗)
]

≤ Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

p(βa, βa),

which further implies

Hpm(Za,Z∗)[1− λ∗[1 +Hpm(Za,Ψ(Za))]]

≤ Hpm(Ψ(Za),Za)− inf
βa∈Ψ(Za)

pm(βa, βa).

On taking the limit as a→ +∞, gives lim
a→+∞

Hpm(Za,Z∗) ≤ 0 implies that

lim
a→+∞

Za = Z∗. Thus the proof is complete.
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3.5. Application to dynamic programming problems

In this section, we apply our obtained results to solve functional equations arising

in dynamic programming.

Let W1 and W2 be two Banach spaces with J ∗ ⊆ W1 and O∗ ⊆ W2. Suppose

that

κ : J ∗ ×O∗ −→ J ∗, g1, g2 : J ∗ ×O∗ −→ R, h1, h2 : J ∗ ×O∗ × R −→ R.

If we consider J ∗ and O∗ as the state and decision spaces respectively, then the

problem of dynamic programming reduces to the problem of solving the functional

equations (see [92]):

q1(%1) = sup
ς∈O∗
{g1(%1, ς) + h1(%1, ς, q1(κ(%1, ς)))}, for %1 ∈ J ∗ (3.1)

q2(%1) = sup
ς∈O∗
{g1(%1, ς) + h2(%1, ς, q2(κ(%1, ς)))}, for %1 ∈ J ∗. (3.2)

Reformulating (3.1) and (3.2), gives

q1(%1) = sup
ς∈O∗
{g2(%1, ς) + h1(%1, ς, q1(κ(%1, ς)))} − b, for %1 ∈ J ∗ (3.3)

q2(%1) = sup
ς∈O∗
{g2(%1, ς) + h2(%1, ς, q2(κ(%1, ς)))} − b, for %1 ∈ J ∗, (3.4)

where b > 0.

We study the existence and uniqueness of the bounded solution of the functional

equations (3.3) and (3.4) arising in dynamic programming in the setup of partial

metric spaces.

Let B̃(J ∗) denote the set of all bounded real valued functions on J ∗. For an

arbitrary η∗ ∈ B̃(J ∗), define ‖η∗‖ = sup
t∈J ∗
|η∗(t)|. Then (B̃(J ∗), ‖·‖) is a Banach

space. Now consider

p
B̃

(η∗, ξ∗) = sup
t∈J ∗
|η∗ (t)− ξ∗ (t)|+ b,

where η∗, ξ∗ ∈ B̃(J ∗). Then p
B̃

is a partial metric on B̃(J ∗) (see also [4]).

Assume that:

(D1) : g1, g2, h1 and h2 are bounded and continuous.
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(D2) : For %1 ∈ J ∗, η∗ ∈ B̃(J ∗) and b > 0, take Ψ,Φ : B̃(J ∗)→ B̃(J ∗) as

Ψη∗(%1) = sup
ς∈O∗
{g2(%1, ς) + h1(%1, ς, η

∗(κ(%1, ς)))} − b, for %1 ∈ J ∗, (3.5)

Φη∗(%1) = sup
ς∈O∗
{g2(%1, ς) + h2(%1, ς, η

∗(κ(%1, ς)))} − b, for %1 ∈ J ∗. (3.6)

Moreover, for every (%1, ς) ∈ J ∗ ×O∗, η∗, ξ∗ ∈ B̃(J ∗) and t ∈ J ∗ implies

|h1(%1, ς, η
∗ (t))− h2(%1, ς, ξ

∗ (t))| ≤ λSΨ,Φ(η∗ (t) , ξ∗ (t))− 2b, (3.7)

where

SΨ,Φ(η∗ (t) , ξ∗ (t)) = max
{
p
B̃

(η∗ (t) , ξ∗ (t)), p
B̃

(η∗ (t) ,Ψη∗ (t)), p
B̃

(ξ∗ (t) ,Φξ∗ (t)) ,

p
B̃

(η∗ (t) ,Φξ∗ (t)) + p
B̃

(ξ∗ (t) ,Ψη∗ (t))

2

}
.

Theorem 3.5.1. Assume that the conditions (D1) and (D2 ) hold. Then, the

functional Equations (3.3) and (3.4) have a unique common and bounded solution

in B̃(J ∗).

Proof. Note that (B̃(J ∗), pB̃) is a complete partial metric space. By (D1), Ψ and

Φ are self-mappings of B̃(J ∗). By (3.5) and (3.6) in (D2), it follows that for any

η∗, ξ∗ ∈ B̃ (J ∗) and b > 0, choose %1 ∈ J ∗ and ς1, ς2 ∈ O∗ such that

Ψη∗ < g2(%1, ς1) + h1(%1, ς1, η
∗(κ(%1, ς1))), (3.8)

Φξ∗ < g2(%1, ς2) + h2(%1, ς2, ξ
∗(κ(%1, ς2))), (3.9)

which further implies that

Ψη∗ ≥ g2(%1, ς2) + h1(%1, ς2, η
∗(κ(%1, ς2)))− b, (3.10)

Φξ∗ ≥ g2(%1, ς1) + h2(%1, ς1, ξ
∗(κ(%1, ς1)))− b. (3.11)

From (3.8) and (3.11) together with (3.7) implies

Ψη∗ (t)− Φξ∗ (t) < h1(%1, ς1, η
∗(κ(%1, ς1)))− h2(%1, ς1, ξ

∗(κ(%1, ς1))) + b

≤ |h1(%1, ς1, η
∗(κ(%1, ς1)))− h2(%1, ς1, ξ

∗(κ(%1, ς1)))|+ b

≤ λSΨ,Φ(η∗ (t) , ξ∗ (t))− b. (3.12)
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From (3.9) and (3.10) together with (3.7) implies

Φξ∗ (t)−Ψη∗ (t) < h2(%1, ς2, ξ
∗(κ(%1, ς2)))− h1(%1, ς2, η

∗(κ(%1, ς2))) + b

≤ |h1(%1, ς2, η
∗(κ(%1, ς2)))− h2(%1, ς2, ξ

∗(κ(%1, ς2)))|+ b

≤ λSΨ,Φ(η∗(t), ξ∗(t)− b. (3.13)

From (3.12) and (3.13), we get

|Ψη∗ (t)− Φξ∗ (t)|+ b ≤ λSΨ,Φ(η∗ (t) , ξ∗ (t)). (3.14)

The inequality (3.14) implies that

pB̃(Ψη∗ (t) ,Φξ∗ (t)) ≤ λSΨ,Φ(η∗ (t) , ξ∗ (t)), (3.15)

where

SΨ,Φ(η∗ (t) , ξ∗ (t)) = max{p
B̃

(η∗ (t) , ξ∗ (t)), p
B̃

(η∗ (t) ,Ψη∗ (t)), p
B

(ξ∗ (t) ,Φξ∗ (t)),

p
B̃

(η∗ (t) ,Φξ∗ (t)) + p
B̃

(ξ∗ (t) ,Ψη∗ (t))

2

}
.

Therefore, all conditions of Corollary 3.3.1 hold. Thus, there exists a common

fixed point of Ψ and Φ, that is, η∗ ∈ B̃(J ∗), where η∗ (t) is a common solution

of functional equations (3.3) and (3.4).
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4

Iterated Function System of

Generalized Cyclic Contractions in

Partial Metric Spaces

4.1. Introduction

We construct fractal sets of the generalized iterated function systems based on

cyclic contractive operators in the framework of partial metric spaces. We notice

that the Hutchinson operator, defined on a finite collection of cyclic contraction

mappings in a complete partial metric space, is a generalized contractive

mapping on a class of compact subsets of a given set W. We apply a generalized

Hutchinson operator successively to obtain a final fractal. We conclude this

chapter by discussing two applications of our results in Sections 4.5 and 4.6.

We extend the introductory concepts covered in Section 2.1 to the study of iter-

ated function systems of generalized cyclic contractions.

4.2. Cyclic Contractive Mappings

In this section we introduce the notion of cyclic contraction mappings, which need

not to be continuous, a key advantage over Banach based contractions [82].

Definition 4.2.1. [55] Consider two non-void subsets J ∗ and O∗ of W. ~ : W →
W is said to be a cyclic mapping if ~ (J ∗) ⊂ O∗ and ~ (O∗) ⊂ J ∗.

Definition 4.2.2. [8, 50, 51] Let W be a non-void set and ~ : W → W a self-map.

W = ∪qa=1Wa is a cyclic representation of W relative to ~ if

c1) all the sets Wa, a = 1, 2, · · · , q are non-void,

c2) ~(W1) ⊂ W2, · · · , ~(Wq−1) ⊂ Wq and ~(Wq) ⊂ W1.
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Definition 4.2.3. Let (W, pm) be a complete partial metric space and {Ba}qa=1

a class of non-void closed subsets of W . A self-map ~ : ∪qa=1Ba → ∪
q
a=1Ba is a

cyclic contraction on {Ba}qa=1 if

(a) ~(Ba) ⊆ Ba+1 for a = 1, 2, · · · , q, where Bq+1 = B1,

(b) pm (~µ, ~η) ≤ λpm (µ, η) for all µ ∈ Ba, η ∈ Ba+1 with a = 1, 2, · · · , q,

where λ ∈ [0, 1). ~ is said to be a cyclic function, if condition (a) is satisfied.

Definition 4.2.4. In a complete partial metric space (W, pm), we say,

{W ; ~a, a = 1, 2, · · · , q} is a cyclic iterated function system if for a = 1, 2, · · · , q,
each ~a : W → W is a cyclic contraction mapping.

Example 4.2.1. Let W = [0, 2] be equipped with a partial metric pm : W×W →
R[+] given by pm (µ, η) = max{µ, η} for all µ, η ∈ W. Let B1 = [0, 1], B2 = [0, 2]

and define a map ~ : B1∪ B2 → B1∪ B2 by

~(µ) =


µ
3

if 0 ≤ µ ≤ 1
1
3

if 1 < µ ≤ 3
2

1
5

if 3
2
< µ ≤ 2.

Now

~(B1) =
[
0, 1

3

]
⊆ [0, 2] = B2 and

~(B2) =
[
0, 1

5

]
⊆ [0, 1] = B1.

The map ~ is not continuous at µ = 3
2
. Consider,

Case 1: Let µ ∈ B1, η ∈ B2, then

η ∈ [0, 1], gives

pm (~ (µ) , ~ (η)) = pm(µ
3
, η

3
)

= max{µ
3
, η

3
}

= 1
3

max{µ, η}

= 1
3
pm(µ, η) with λ = 1

3
,
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η ∈ (1, 3
2
], gives

pm (~ (µ) , ~ (η)) = pm
(
µ
3
, 1

3

)
= max

{
µ
3
, 1

3

}
= 1

3
max{µ, 1}

≤ 1
3

max{µ, η}

= 1
3
pm (µ, η) with λ = 1

3
,

and η ∈
(

3
2
, 2
]
, gives

pm (~ (µ) , ~ (η)) = pm
(
µ
3
, 1

5

)
= max

{
µ
3
, 1

5

}
= 1

3
max{µ, 3

5
}

≤ 1
3

max{µ, η}

= 1
3
pm (µ, η) with λ = 1

3
.

Case 2: Let µ ∈ B1, η ∈ B2, then

µ ∈ [0, 1], gives

pm (~ (µ) , ~ (η)) = pm
(
µ
3
, η

3

)
= max

{
µ
3
, η

3

}
= 1

3
max{µ, η}

= 1
3
pm (µ, η) with λ = 1

3
.

µ ∈
(
1, 3

2

]
, gives

pm (~ (µ) , ~ (η)) = pm
(
µ
3
, 1

3

)
= max

{
µ
3
, 1

3

}
= 1

3
max{µ, 1}

≤ 1

3
max{µ, η}

= 1
3
pm (µ, η) with λ = 1

3
.
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η ∈
(

3
2
, 2
]
, gives

pm (~ (µ) , ~ (η)) = pm
(

1
5
, η

3

)
= max

{
1
5
, η

3

}
= 1

3
max{3

5
, η}

≤ 1
3

max{µ, η}

= 1
3
pm (µ, η) with λ = 1

3
.

Thus ~ is a cyclic contraction on B1∪ B2 with contraction constant λ = 1
3
.

The result stated below confirms that in a complete partial metric space, a cyclic

contraction mapping has a fixed point which is unique.

Proposition 4.2.1. [74] In a complete partial metric space (W, pm), let {Ba}qa=1

be a class of non-void closed subsets of W. Suppose ~ : {Ba}qa=1 → {Ba}
q
a=1 such

that

pm (~µ, ~η) ≤ λmax

{
pm (µ, η) , pm (µ, ~µ) , pm (η, ~η) ,

pm (η, ~µ) + pm (µ, ~η)

2

}
for all µ ∈ Ba, η ∈ Ba+1 with a = 1, 2, · · · , q and λ ∈ [0, 1), then ~ has a unique

fixed point.

Theorem 4.2.1. In a partial metric space (W, pm) , let {Ba}qa=1, be a class of non-

void closed subsets of W, and ~ : ∪qa=1Ba → ∪
q
a=1Ba be a continuous generalized

cyclic contraction map. Then ~ : ∪qa=1Cpm (Ba)→ ∪qa=1Cpm (Ba) is also a general-

ized cyclic contraction mapping under the Hausdorff partial metric pH∗m with the

contractive constant given by λ ∈ [0, 1).

Proof. Let O∗ ∈ Ba for some a = 1, 2, · · · , q. Using the definition of a cyclic map,

we note that ~(O∗) ⊆ Ba+1 and since ~ is continuous, then ~(O∗) is a compact

set. Therefore, ~(O∗) ∈ Cpm(Ba+1) implies that ~(Cpm(Ba)) ⊆ Cpm(Ba+1) for each

a = 1, 2, · · · , q.

Now we take O∗ ∈ Cpm(Ba) and J ∗ ∈ Cpm(Ba+1) for some a = 1, 2, · · · , q. We

assume that

sup
~µ∈~(O∗)

pm (~µ, ~(J ∗)) ≤ λ sup
µ∈O∗

pm (µ,J ∗) .

But ~ is a cyclic contraction map, thus we get

pm (~µ, ~η) ≤ λpm (µ, η) for all µ ∈ Ba, η ∈ Ba+1 for a = 1, 2, · · · , q,
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and so

sup
~µ∈~(O∗)

pm (~µ, ~(J ∗)) = sup
~µ∈~(O∗)

inf
~η∈~(J ∗)

pm (~µ, ~η)

≤ λ sup
µ∈O∗

inf
η∈J ∗

pm (µ, η)

≤ λ sup
µ∈O∗

pm (µ,J ∗) .

In a similar manner,

sup
~η∈~(J ∗)

pm (~η, ~(O∗)) ≤ λ sup
η∈J ∗

pm (η,O∗) ,

and so

pH∗m (~(O∗), ~(J ∗)) = max

{
sup

~µ∈~(O∗)
pm (~µ, ~(J ∗)) , sup

~η∈~(J ∗)
pm (~η, ~(O∗))

}

≤ λmax

{
sup
µ∈O∗

pm (µ,J ∗) , sup
η∈J ∗

pm (η,O∗)
}

≤ λpH∗m (O∗,J ∗).

Hence ~ is a generalized cyclic contraction mapping on Cpm{Ba}qa=1.

Theorem 4.2.2. Consider a collection { Ba}qa=1 of non-void closed subsets of

a partial metric space (W, pm) and let K be a fixed natural number. If ~j :

∪qa=1Ba → ∪
q
a=1Ba for j = 1, 2, · · · , K are generalized cyclic contractions, then

the map Ψ : ∪qa=1Cpm(Ba) → ∪qa=1Cpm(Ba) defined by Ψ (O∗) = ∪Kj=1~j(O∗) for

every O∗ ∈ ∪qa=1Cpm(Ba) is as well, a generalized cyclic contraction.

Proof. Let O∗ ∈ Cpm(Ba) for some a = 1, 2, · · · , q. With the aid of Theo-

rem 4.2.1, for each j = 1, 2, · · · , K, ~j is a generalized cyclic contraction. Thus

~j(O∗) ∈ Cp(Ba+1) for all j = 1, 2, · · · , K, implying that Ψ (O∗) = ∪Kj=1~j(O∗) ∈
Cpm(Ba+1) and as a consequence, Ψ (Cpm(Ba)) ⊆ Cpm(Ba+1) for a = 1, 2, · · · , q.
From the cyclic contraction condition of each ~j, where j = 1, 2, · · · , K, we get

pH∗m (~j(O∗), ~j(J ∗)) ≤ λpH∗m (O∗,J ∗),

for all O∗ ∈ Cpm(Ba) and J ∗ ∈ Cpm(Ba+1), with a = 1, 2, · · · , q. Therefore

pH∗m (Ψ (O∗) ,Ψ (J ∗)) = pH∗m
(
∪Kj=1~j(O∗),∪Kj=1~j(J ∗)

)
≤ max

{
pH∗m (~1(O∗), ~1(J ∗)) , · · · , pH∗m (~K(O∗), ~K(J ∗))

}
≤ λpH∗m (O∗,J ∗).
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Definition 4.2.5. Let {Ba}qa=1 be a class of non-void closed subsets of W , in

a complete partial metric space (W, pm). We say that Ψ : ∪qa=1 Cpm(Ba) →
∪qa=1Cpm(Ba) is a generalized cyclic Hutchinson contractive operator, provided

that a contraction factor λ ∈ [0, 1) exists with J ∗ ∈ Cpm(Ba), O∗ ∈ Cpm(Ba+1),

such that

pH∗m (Ψ (J ∗) ,Ψ (O∗)) ≤ λSΨ(J ∗,O∗),

where

SΨ(J ∗,O∗) = max{pH∗m (J ∗,O∗), pH∗m (J ∗,Ψ (J ∗)), pH∗m ( O∗,Ψ (J ∗)),
pH∗m (J ∗,Ψ (O∗)) + pH∗m (O∗,Ψ (J ∗))

2
, pH∗m (Ψ2 (J ∗) ,Ψ (J ∗)),

pH∗m (Ψ2 (J ∗) ,O∗), pH∗m (Ψ2 (J ∗) ,Ψ (O∗))}.

Definition 4.2.6. Let {Ba}qa=1 be a class of non-void closed subsets of W , in

a complete partial metric space (W, pm). We say that Ψ : ∪qa=1 Cpm(Ba) →
∪qa=1Cpm(Ba) is a generalized cyclic rational Hutchinson contraction operator,

provided that a contractive factor λ ∈ [0, 1) exists with J ∗ ∈ Cpm(Ba), O∗ ∈
Cp(Ba+1), such that

pH∗m (Ψ (J ∗) ,Ψ (O∗)) ≤ λ∗RΨ(J ∗,O∗),

where

RΨ(J ∗,O∗) = max

{
pH∗m (J ∗,Ψ (J ∗))[1 + pH∗m (J ∗,Ψ(J ∗))]

2(1 + pH∗m (J ∗,O∗))
,

pH∗m (O∗,Ψ (O∗))[1 + pH∗m (J ∗,Ψ(J ∗))]
1 + pH∗m (J ∗,O∗)

,

pH∗m (O∗,Ψ (J ∗))[1 + pH∗m (J ∗,Ψ (J ∗))]
1 + pH∗m (J ∗,O∗)

}
.

4.3. Generalized Cyclic Hutchinson Contractive Operator

In this section, we prove that the generalized cyclic Hutchinson contractive oper-

ator has a unique attractor.

Theorem 4.3.1. In a complete partial metric space (W, pm) with a family

{Ba}qa=1 of non-void closed subsets of W and {W ; ~a, a = 1, 2, · · · , q}, a general-

ized cyclic iterated function system, let the map Ψ : ∪qa=1Cpm(Ba)→ ∪qa=1Cpm(Ba)
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be defined by

Ψ(J ∗) = ∪qa=1~a(J ∗)

for each J ∗ ∈ ∪qa=1Cpm( Ba). Suppose Ψ is a generalized cyclic Hutchinson con-

traction operator, then Ψ has exactly one attractor U1 ∈ Cpm(Ba), that is,

U1 = Ψ (U1) = ∪qa=1~a(U1).

In addition, for an arbitrary set J ∗0 ∈ ∪
q
a=1Cpm(Ba),

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , ...}

converges to U1.

Proof. Let J ∗0 ∈ ∪
q
a=1Cpm(Ba) be an arbitrarily chosen set. Then some a0 exists

such that J ∗0 ∈ Cpm(Ba0). Similarly, Ψ (Cpm(Ba0)) ⊆ Cpm(Ba0+1) implies that

Ψ (J ∗0 ) ∈ Cpm(Ba0+1). Thus there exists J ∗1 ∈ Cpm(Ba0+1), such that Ψ (J ∗0 ) = J ∗1 .
It follows that Ψ

(
Cpm(Ba0+1)

)
⊆ Cpm(Ba0+2) which implies that J ∗2 = Ψ (J ∗1 ) ∈

Cpm(Ba0+2). The same argument results in the construction of a sequence {J ∗δ }
such that

J ∗1 = Ψ(J ∗0 ), J ∗2 = Ψ (J ∗1 ) , ...,J ∗δ+1 = Ψ (J ∗δ )

for δ ∈ N ∪ {0}.

Assume that J ∗δ 6= J ∗δ+1 for all δ ∈ N ∪ {0}, otherwise, J ∗s = J ∗s+1 for some

s, which implies that J ∗s = Ψ(J ∗s ), and hence the proof. Thus J ∗δ 6= J ∗δ+1 for

all δ ∈ N ∪ {0}. Definition 4.2.5, with J ∗δ ∈ Cpm(Baδ+1
) and J ∗δ+1 = Ψ (J ∗δ ) ∈

Cpm(Baδ+2
), yield

pH∗m (J ∗δ+1,J ∗δ+2) = pH∗m (Ψ (J ∗δ ) ,Ψ
(
J ∗δ+1

)
)

≤ λSΨ

(
J ∗δ ,J ∗δ+1

)
,

where

SΨ

(
J ∗δ ,J ∗δ+1

)
= max{pH∗m (J ∗δ ,J ∗δ+1), pH∗m (J ∗δ ,Ψ (J ∗δ )) , pH∗m

(
J ∗δ+1,Ψ

(
J ∗δ+1

))
,

pH∗m
(
J ∗δ ,Ψ

(
J ∗δ+1

))
+ pH∗m

(
J ∗δ+1,Ψ (J ∗δ )

)
2

, pH∗m (Ψ2 (J ∗δ ) ,Ψ (J ∗δ )),

pH∗m
(
Ψ2 (J ∗δ ) ,J ∗δ+1

)
, pH∗m

(
Ψ2 (J ∗δ ) ,Ψ

(
J ∗δ+1

))
}
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= max{pH∗m (J ∗δ ,J ∗δ+1), pH∗m
(
J ∗δ ,J ∗δ+1

)
, pH∗m

(
J ∗δ+1,J ∗δ+2

)
,

pH∗m
(
J ∗δ ,J ∗δ+2

)
+ pH∗m

(
J ∗δ+1,J ∗δ+1

)
2

,

pH∗m (J ∗δ+2,J ∗δ+1), pH∗m
(
J ∗δ+2,J ∗δ+1

)
, pH∗m

(
J ∗δ+2,J ∗δ+2

)
}

≤ max{pH∗m (J ∗δ ,J ∗δ+1), pH∗m
(
J ∗δ+1,J ∗δ+2

)
,

pH∗m
(
J ∗δ ,J ∗δ+1

)
+ pH∗m

(
J ∗δ+1,J ∗δ+2

)
2

}
= max{pH∗m

(
J ∗δ ,J ∗δ+1

)
, pH∗m

(
J ∗δ+1,J ∗δ+2

)
}.

Thus, we get

pH∗m (J ∗δ+1,J ∗δ+2) ≤ λmax{pH∗m
(
J ∗δ ,J ∗δ+1

)
, pH∗m

(
J ∗δ+1,J ∗δ+2

)
}

= λpH∗m
(
J ∗δ ,J ∗δ+1

)
,

for all δ ∈ N ∪ {0}. Now

pH∗m (J ∗δ ,J ∗n ) ≤ pH∗m
(
J ∗δ ,J ∗δ+1

)
+ pH∗m

(
J ∗δ+1,J ∗δ+2

)
+ · · ·+ pH∗m

(
J ∗n−1,J ∗n

)
− inf

µδ+1∈J ∗δ+1

pm(µδ+1, µδ+1)− inf
µδ+2∈J ∗δ+2

pm(µδ+2, µδ+2)−

· · · − inf
µn−1∈J ∗n−1

pm(µn−1, µn−1)

≤ [λδ + λδ+1 + · · ·+ λn−1]pH∗m (J ∗0 ,J ∗1 )

= λδ[1 + λ+ λ2 + · · ·+ λn−δ−1]pH∗m (J ∗0 ,J ∗1 )]

≤ λδ

1− λ
pH∗m (J ∗0 ,J ∗1 ) ,

for all δ, n ∈ N ∪ {0} with n > δ. So lim
δ,n→+∞

pH∗m (J ∗δ ,J ∗n ) = 0, and so the

sequence {J ∗δ } is Cauchy in W. Since the partial metric space, (∪qa=1Cpm(Ba), pH∗m )

is complete, then taking the limit as δ → +∞ gives J ∗δ → U1 for some U1 ∈
∪qa=1Cpm(Ba), that is,

lim
δ→+∞

pH∗m (J ∗δ , U1) = lim
δ→+∞

pH∗m
(
J ∗δ ,J ∗δ+1

)
= pH∗m (U1, U1) .

It turns out that {J ∗δ } is a sequence with an infinite number of terms in

Cpm(Ba) for each a = 1, 2, · · · , q. We can therefore construct a convergent subse-

quence of {J ∗δ } in each Cpm(Ba) for a = 1, 2, · · · , q which has U1 as a limit and

since each element in Cpm(Ba) for a = 1, 2, · · · , q is closed, we conclude that

U1 ∈ ∩qa=1Cpm(Ba) 6= ∅.
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Let V1 = ∩qa=1Cpm(Ba) and Cpm(V1) be the collection of all non-void compact

subsets of V1. Then Ψ|Cpm (V1) : Cpm(V1)→ Cpm(V1) is a self-mapping on compact

sets and so from Definition 2.1.5 and Theorem 2.2.1, we conclude that Ψ|Cpm (V1)

has exactly one attractor U1 in Cpm(V1).

Remark 4.3.1. If we take ∪qa=1Spm(Wa), the union of the family of all singleton

subsets of W in Theorem 4.3.1, then ∪qa=1Spm(Wa) ⊆ ∪qa=1Cpm(Wa). In addition,

taking ~a = ~ for each a, with ~ = ~1, we note that the mapping Ψ is expressed

as

Ψ(µ) = ~(µ).

As an outcome of Remark 4.3.1, we present the following result.

Corollary 4.3.1. Suppose (W, pm) is a complete partial metric space with

{W ; ~a, a = 1, 2, · · · , q} a generalized cyclic iterated function system and ~ :

W → W a map defined as in Remark 4.3.1 If

pm (~µ, ~η) ≤ λS~(µ, η),

where

S~(µ, η) = max{pm(µ, η), pm(µ, ~µ), p(η, ~η),
pm(µ, ~η) + pm(η, ~µ)

2
,

p(~2µ, η), pm(~2µ, ~µ), pm(~2µ, ~η)},

for µ ∈ Cpm (Wa), η ∈ Cpm (Wa+1) and λ ∈ [0, 1), then u ∈ W is a unique fixed

point for the mapping ~. In addition, for any u0 ∈ W , {u0, ~u0, ~2u0, ...} converges

to u.

Corollary 4.3.2. In a complete partial metric space (W, pm), let {W ; ~a, a =

1, 2, · · · , q} be a generalized cyclic iterated function system with contraction self-

mappings ~a for each a = 1, 2, ..., q. Suppose {Ba}qa=1 is a class of non-void closed

subsets of W. Then Ψ : ∪qa=1Cpm(Ba)→ ∪qa=1Cpm(Ba) defined as in Theorem 4.3.1

has a unique attractor. In addition, for any choice of initial set J ∗0 ∈ Cpm (Ba),

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , · · · } is a convergent sequence with the attractor of Ψ as its

unique limit.

Proof. If each ~a, is a cyclic contraction mapping on W, for a = 1, 2, ..., q, then

by Theorem 4.3.1 we have that the mapping Ψ : ∪qa=1Cpm(Ba) → ∪qa=1Cpm(Ba)
defined by Ψ(J ∗) = ∪qa=1~a(J ∗) for all J ∗∈ Cpm(Ba) is a contraction on Cpm(Ba)
relative to the Hausdorff partial metric pH∗m , hence the result from Theorem 4.3.1.

69



Example 4.3.1. Let (W, pm) be a complete partial metric space. Suppose W =

[0, 2] and define pm : W ×W → R[+] by

pm(µ1, η1) =

{
max{µ1, η1} if µ1, η1 /∈ [0, 1)

|µ1 − η1| if µ1, η1 ∈ [0, 1),

Suppose B1 = [0, 1], B2 = [1
2
, 2], B3 = B1 and W = B1 ∪ B2 = [0, 2].

Define ~ : W → W by ~(µ1) = 1
2

if µ1 ∈ [0, 1) and ~(1) = 0. Note that B1 and

B2 are closed subsets of (W, pm). Furthermore ~(Ba) ⊂ Ba+1 for a = 1, 2 and so

B1 ∪ B2 is a cyclic representation of W relative to the mapping ~.

So

pm (~µ1, ~η1) ≤ λS~(µ1, η1),

where

Sh(µ1, η1) = max{pm(µ1, η1), pm(µ1, ~µ1), pm(η1, ~η1),
pm(µ1, ~η1) + pm(η1, ~µ1)

2
,

pm(~2µ1, η1), pm(~2µ1, ~µ1), pm(~2µ1, ~η1)},

holds.

We look at the following:

I. For µ1 ∈ B1, η1 ∈ B2 with µ1 ∈ [0, 1
2
] and η1 ∈ [1

2
, 1), we have

pm(~(µ1), ~(η1)) = pm(1
2
, 1

2
) =

∣∣∣∣12 − 1

2

∣∣∣∣ = 0,

and for µ1 ∈ [0, 1
2
] and η1 = 1,

pm(~(µ1), ~(η1)) = pm(1
2
, 0) = 1

2
,

and

Sh(µ1, η1) = max{|µ1 − 1| ,
∣∣µ1 − 1

2

∣∣ , |1− 0| ,
|µ1 − 1|+

∣∣1− 1
2

∣∣
2

,∣∣1
2
− 1
∣∣ , ∣∣1

2
− 1

2

∣∣ , ∣∣1
2
− 0
∣∣}.

Thus

pm (~µ1, ~η1) ≤ λS~(µ1, η1),

with λ =
3

4
.
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II. For µ1 ∈ B2, η1 ∈ B1 with µ1 ∈ [1
2
, 1] and η1 ∈ [0, 1

2
), we have that

pm(~(µ1), ~(η1)) = pm(1
2
, 1

2
) = 0,

and for µ1 = 1 and η1 ∈ [0, 1
2
],

pm(~(µ1), ~(η1)) = pm(0, 1
2
) = 1

2

and

Sh(µ1, η1) = max{|η1 − 1| ,
∣∣η1 − 1

2

∣∣ , |η1 − 1|+
∣∣1− 1

2

∣∣
2

,∣∣1
2
− 1
∣∣ , ∣∣1

2
− 1

2

∣∣ , ∣∣1
2
− 0
∣∣}.

Thus

pm (~µ1, ~η1) ≤ λS~(µ1, η1),

with λ =
3

4
.

Therefore Corollary 4.3.1 is verified and, 1
2

is a distinct fixed point of ~ and in

addition we note that ~ is not continuous at 1.

4.4. Generalized Cyclic Rational Hutchinson Contraction

Operator

In this section, we prove that the generalized cyclic rational Hutchinson contrac-

tion operator has a unique attractor.

Theorem 4.4.1. In a complete partial metric space (W, pm), let {Ba}qa=1 be a

collection of non-void closed subsets of W with {W ; ~a, a = 1, 2, · · · , q}, a gener-

alized cyclic iterated function system. Suppose Ψ : ∪qa=1Cpm(Ba) → ∪qa=1Cpm(Ba)
defined by

Ψ(J ∗) = ∪qa=1~a(J ∗)

for all J ∗ ∈ ∪qa=1Cpm(Ba). If Ψ is a generalized cyclic rational Hutchinson con-

traction operator. Then Ψ has a unique attractor U1 ∈ ∪qa=1Cpm(Ba), which is to

say,

U1 = Ψ (U1) = ∪qa=1~a(U1).

In addition, for any initial set J ∗0 ∈ ∪
q
a=1 Cpm(Ba), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,Ψ2 (J ∗0 ) , ...}

of compact sets, converges to the attractor U1.
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Proof. Choose J ∗0 ∈ ∪qa=1Cpm(Ba). Then some a0 exists such that J ∗0 ∈
Cpm(Ba0). Similarly, Ψ (Cpm(Ba0)) ⊆ Cpm(Ba0+1) implies that Ψ (J ∗0 ) ∈ Cpm(Ba0+1).

Thus there exists J ∗1 ∈ Cpm(Ba0+1), such that Ψ (J ∗0 ) = J ∗1 . It follows that

Ψ
(
Cpm(Ba0+1)

)
⊆ Cpm(Ba0+2) which implies that J ∗2 = Ψ (J ∗1 ) ∈ Cpm(Ba0+2).

Consequently, a sequence {J ∗b } is define by

J ∗1 = Ψ(J ∗0 ), J ∗2 = Ψ (J ∗1 ) , ...,J ∗b+1 = Ψ (J ∗b )

for b ∈ N ∪ {0} is obtained.

Assume that J ∗b 6= J ∗b+1 for all b ∈ N ∪ {0}. Otherwise, J ∗s = Js+1 for some s,

implies that J ∗s = Ψ(J ∗s ) and there is nothing further to show. Now take J ∗b 6=
J ∗b+1 for all b ∈ N ∪ {0}. For J ∗b ∈ Cpm(Bab+1

) and J ∗b+1 = Ψ (J ∗b ) ∈ Cpm(Bab+2
),

Definition 4.2.5 gives us that

pH∗m (J ∗b+1,J ∗b+2) = pH∗m (Ψ (J ∗b ) ,Ψ
(
J ∗b+1

)
)

≤ λ∗RΨ

(
J ∗b ,J ∗b+1

)
,

where

RΨ(J ∗b ,J ∗b+1) = max

{
pH∗m (J ∗b ,Ψ

(
J ∗b+1

)
)[1 + pH∗m (J ∗b ,Ψ(J ∗b ))]

2(1 + pH∗m
(
J ∗b ,J ∗b+1

)
)

,

pH∗m (J ∗b+1,Ψ
(
J ∗b+1

)
)[1 + pH∗m (J ∗b ,Ψ(J ∗b ))]

1 + pH∗m
(
J ∗b ,J ∗b+1

) ,

pH∗m (J ∗b+1,Ψ (J ∗b ))[1 + pH∗m (J ∗b ,Ψ (J ∗b ))]

1 + pH∗m (J ∗b ,J ∗b+1)

}
= max

{
pH∗m (J ∗b ,J ∗b+2)[1 + pH∗m (J ∗b ,J ∗b+1)]

2(1 + pH∗m
(
J ∗b ,J ∗b+1

)
)

,

pH∗m (J ∗b+1,J ∗b+2)[1 + pH∗m (J ∗b ,J ∗b+1)]

1 + pH∗m
(
J ∗b ,J ∗b+1

) ,

pH∗m (J ∗b+1,J ∗b+1)[1 + pH∗m (J ∗b ,J ∗b+1)]

1 + pH∗m (J ∗b ,J ∗b+1)

}
= max

{
pH∗m (J ∗b ,J ∗b+2)

2
, pH∗m (J ∗b+1,J ∗b+2), pH∗m (J ∗b+1,J ∗b+1)

}
=

pH∗m (J ∗b ,J ∗b+2)

2
.
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Thus, we have

pH∗m (J ∗b+1,J ∗b+2) ≤ λ∗
2

[pH∗m (J ∗b ,J ∗b+1) + pH∗m (J ∗b+1,J ∗b+2)− inf
ξb+1∈J ∗b+1

p (ξb+1, ξb+1)]

≤ λ∗
2

[pH∗m (J ∗b ,J ∗b+1) + pH∗m (J ∗b+1,J ∗b+2)],

2pH∗m (J ∗b+1,J ∗b+2)− λ∗pH∗m (J ∗b+1,J ∗b+2) ≤ λ∗[p
H∗
m (J ∗b ,J ∗b+1)],

pH∗m (J ∗b+1,J ∗b+2) ≤ λ∗
2− λ∗

pH∗m (J ∗b ,J ∗b+1),

that is, for η∗ =
λ∗

2− λ∗
< 1, we have

pH∗m (J ∗b+1,J ∗b+2) ≤ η∗p
H∗
m (J ∗b ,J ∗b+1)

for all b ∈ N ∪ {0}. Thus for b, s ∈ N ∪ {0} with b < s, we have

pH∗m (J ∗b ,J ∗s ) ≤ pH∗m (J ∗b ,J ∗b+1) + pH∗m (J ∗b+1,J ∗b+2) + · · ·+ pH∗m (J ∗s−1,J ∗s )

− inf
µb+1∈J ∗b+1

pm(µb+1, µb+1)− inf
µb+2∈J ∗b+2

pm(µb+2, µb+2)−

· · · − inf
µs−1∈J ∗s−1

pm(µs−1, µs−1)

≤ ηb∗p
H∗
m (J ∗0 ,J ∗1 ) + ηb+1

∗ pH∗m (J ∗0 ,J ∗1 ) + · · ·+ ηs−1
∗ pH∗m (J ∗0 ,J ∗1 )

≤ [ηb∗ + ηb+1
∗ + · · ·+ ηs−1

∗ ]pH∗m (J ∗0 ,J ∗1 )

≤ ηb∗[1 + η∗ + η2
∗ + · · ·+ ηs−b−1

∗ ]pH∗m (J ∗0 ,J ∗1 )

≤ ηb∗
1− η∗

pH∗m (J ∗0 ,J ∗1 ),

and so lim
b,s→+∞

pH∗m (J ∗b ,J ∗s ) = 0, hence the sequence {J ∗b } is Cauchy in W. Since

(∪qa=1Cpm(Ba), pH∗m ) is a complete partial metric space, J ∗b → U1 as b → +∞
for some U1 ∈ ∪qa=1Cpm(Ba), that is, lim

b→+∞
pH∗m (J ∗b , U1) = lim

b→+∞
pH∗m

(
J ∗b ,J ∗b+1

)
=

pH∗m (U1, U1) .

It can be noted that {J ∗b } has an infinite number of terms in Cpm(Ba) for each

a = 1, 2, · · · , q. Therefore, a subsequence of {J ∗b } that converges to U1 can be

constructed in each Cpm(Ba) with a = 1, 2, · · · , q. Considering that each member

in Cpm(Ba) for a = 1, 2, · · · , q is closed, we can conclude that U1 ∈ ∩qa=1Cpm(Ba) 6=
∅.

Now let V1 = ∩qa=1Cpm(Ba) and set Cpm(V1) to be a collection of all nonvoid

compact subsets of V1. Then Ψ|Cpm (V1) : Cpm(V1) → Cpm(V1) is a self-mapping

on compact sets and so using Definition 2.1.6 and adopting the proof of Theo-

rem 2.2.2, we conclude that Ψ|Cpm (V1) has a unique attractor in Cpm(V1).
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Corollary 4.4.1. In a complete partial metric space (W, pm), let {W ; ~a, a =

1, 2, · · · , q} be a generalized cyclic iterated function system with ~ : W → W

defined as in Remark 4.3.1. If for any µ ∈ Cpm (Wa) and η ∈ Cpm (Wa+1), some

λ∗ ∈ [0, 1) exists such that,

pm(~µ1, ~η1) ≤ λ∗R~(µ1, η1),

where

R~(µ1, η1) = max

{
pm(µ1, ~η1)[1 + pm(µ1, ~µ1)]

2(1 + pm(µ1, η1))
,
pm(η1, ~η1)[1 + pm(µ1, ~µ1)]

1 + pm(µ1, η1)
,

pm(η1, ~µ1)[1 + pm(µ1, ~µ1)]

1 + pm(µ1, η1)

}
.

Then u ∈ W is a unique fixed point of ~. Additionally, for any choice of u0 ∈ W ,

the sequence {u0, ~u0, ~2u0, ...} converges to u.

4.5. Application in dynamic programming

We provide an application of the obtained results in solving functional equations

which arise in dynamic programming.

Consider two Banach spaces, W1 and W2 with F∗ ⊆ W1 and J ∗ ⊆ W2. Suppose

that

γ : F∗ × J ∗ −→ F∗, f1 : F∗ × J ∗ −→ R, g1 : F∗ × J ∗ × R −→ R.

If we regard F∗ to be the state space and J ∗ the decision space, then the dy-

namic programming problem may be reduced to that of finding a solution to the

functional equation:

ρ(m) = sup
z∈J ∗
{f1(m, z) + g1(m, z, ρ(γ(m, z)))}, for m ∈ F∗ (4.1)

Reformulation of equation (4.1) gives

ρ(m) = sup
z∈J ∗
{f1(m, z) + g1(m, z, ρ(γ(m, z)))} − β, for m ∈ F∗ (4.2)

where β > 0.

We would like to investigate the existence and boundedness of a unique solu-

tion of the functional equation (4.2) which arise in dynamic programming in the

framework of partial metric spaces.
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Let the set of all bounded real-valued functions on { F∗a}
q
a=1 be denoted by B̃1(F∗a )

and choose any ξ ∈ B̃1(F∗a ), such that ‖ξ‖ := sup
t1∈F∗a

|ξ(t1)|. Then (B̃1(F∗a ), ‖·‖) is

a Banach space. Consider

p
B1

(ξ,κ) = sup
t1∈M∗a

|ξ (t1)− κ (t1)|+ β,

where ξ ∈ B̃1(F∗a ) and κ ∈ B̃1(F∗a+1). Then p
B1

is a partial metric on B̃1(F∗a )

(see [4]).

We assert

(E1): f1 and g1 are bounded and continuous.

(E2): For m ∈ F∗a , ξ ∈ B̃1(F∗a ) and β > 0, take Ψ : ∪qa=1B̃(F∗a )→ ∪qa=1B̃1(F∗a ) as

Ψξ(m) = sup
z∈J ∗a
{f1(m, z) + g1(m, z, ξ(γ(m, z)))} − β, for m ∈ F∗a (4.3)

Moreover, for every (m, z) ∈ F∗a × J ∗a , ξ ∈ B̃1(F∗a ), κ ∈ B̃1(F∗a+1) and t1 ∈ F∗a
implies

|g1(m, z, ξ (t1))− g1(m, z,κ (t1))| ≤ λSΨ(ξ (t1) ,κ (t1))− 2β, (4.4)

where

SΨ(ξ (t1) ,κ (t1))

= max{p
B1

(ξ (t1) ,κ (t1)), p
B1

(ξ (t1) ,Ψ (κ (t1))), p
B1

(κ (t1) ,Ψ (κ (t1))),

p
B

(ξ (t1) ,Ψ (κ (t1))) + p
B1

(κ (t1) ,Ψ (ξ (t1)))

2
, p

B1
(Ψ2 (ξ (t1)) ,Ψ (ξ (t1))),

p
B1

(Ψ2 (ξ (t1)) ,κ (t1)), p
B1

(Ψ2ξ (t1) ,Ψ (κ (t1)))}.

Theorem 4.5.1. Suppose that (E1) and (E2) are true. Then, there exists a

bounded and unique solution to the functional equation (4.2) in B̃1(F∗a ).

Proof. We observe that (B̃1(F∗a ), p
B1

) is a complete partial metric space. Since

Ψ is a self-mapping of B̃1(F∗a ) to itself, using (4.3) in (E2) we have that for any

ξ,κ ∈ B̃1(F∗a ) and β > 0, with m ∈ F∗a and z1 ∈ J ∗a such that

Ψξ < f1(m, z1) + g1(m, z1, ξ(γ(m, z1))) (4.5)

Ψκ < f1(m, z1) + g1(m, z1,κ(γ(m, z1))), (4.6)
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implies that

Ψξ ≥ f1(m, z1) + g1(m, z1, ξ(γ(m, z1)))− β (4.7)

Ψκ ≥ f1(m, z1) + g1(m, z1,κ(γ(m, z1)))− β. (4.8)

(4.5) and (4.8) together with (4.4) gives us

Ψξ (t1)−Ψκ (t1) < g1(m, z1, ξ(γ(m, z1)))− g1(m, z1,κ(γ(m, z1))) + β

≤ |g1(m, z1, ξ(γ(m, z1)))− g1(m, z1,κ(γ(m, z1)))|+ β

≤ λSΨ(ξ (t1) ,κ (t1))− β. (4.9)

(4.6) and (4.7) together with (4.4) implies

Ψκ (t1)−Ψξ (t1) < g1(m, z2,κ(γ(m, z1)))− g1(m, z1, ξ(γ(m, z1))) + β

≤ |g1(m, z2,κ(γ(m, z1)))− g1(m, z1, ξ(γ(m, z1)))|+ β

≤ λSΨ(ξ (t1) ,κ (t1))− β. (4.10)

From (4.9) and (4.10), we get

|Ψξ (t1)−Ψκ (t1)|+ β ≤ λSΨ(ξ (t1) ,κ (t1)). (4.11)

Using inequality (4.11) we get

p
B1

(Ψξ (t1) ,Ψκ (t1)) ≤ λSΨ(ξ (t1) ,κ (t1)), (4.12)

where

SΨ(ξ (t1) ,κ (t1))

= max{p
B1

(ξ (t1) ,κ (t1)), p
B1

(ξ (t1) ,Ψ (ξ (t1))), p
B1

(κ (t1) ,Ψ (κ (t1))),

p
B1

(ξ (t1) ,Ψ (κ (t1))) + p
B1

(κ (t1) ,Ψ (ξ (t1)))

2
,

p
B1

(Ψ2 (ξ (t1)) ,Ψ (ξ (t1))), p
B1

(Ψ2ξ (t1) ,κ (t1)),

p
B1

(Ψ2 (ξ (t1)) ,Ψ (κ (t1)))}.

Hence, all conditions of Corollary 4.3.1 are satisfied, thus Ψ has a fixed point,

ξ∗ ∈ ∩qk=1B̃1(F∗a ), and so ξ∗ (t1) is a solution of functional equation (4.2).
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4.6. Application to the solution of Integral Equations

We now look at the existence and uniqueness of solutions to a family of non-linear

integral equations shall be established, using Corollary 4.3.1 as a motivation.

Let

w(y1) =

∫ J

0

K (y1, t1)h (t1, w(t1))dt1 for all y1 ∈ [0, J ], (4.13)

be a nonlinear integral equation, where J > 0, h : [0, J ] × R → R and K :

[0, J ]× [0, J ]→ R[+] are both continuous mappings (see [75]).

Let W = C ([0, J ]) be the set continuous functions with real values on the interval

[0, J ] and endow W with a partial metric

p (η, ε) = max
y1∈[0,J ]

|η (y1)− ε(y1)|+ b for all η, ε ∈ W and some b > 0.

Let (α1, β1) ∈ W ×W and (α∗0, β
∗
0) ∈ R× R such that

α∗0 ≤ α1 (y1) ≤ β1 (y1) ≤ β∗0 for all y1 ∈ [0, J ] . (4.14)

Suppose for all y1 ∈ [0, J ] ,

α1 (y1) ≤
∫ J

0

K (y1, t1)h(t1, β1 (t1))dt1 (4.15)

and

β1 (y1) ≥
∫ J

0

K (y1, t1)h(t1, α1 (t1))dt1. (4.16)

Further assume that h (t1, ·) is a decreasing function for all t1 ∈ [0, J ] , that is

r ≥ s implies that

h (y1, r) ≤ h (y1, s) for all r, s ∈ R. (4.17)

We also suppose that

sup
y1∈[0,T ]

∫ J

0

K (y1, t1) dt1 ≤ 1. (4.18)

Moreover, for all t1 ∈ [0, J ] , or all r, s ∈ R with (r ≤ β0 and s ≥ α1) or

(r ≥ α0 and s ≥ β0) ,

|h (t1, r)− h (t1, s)| ≤ λZh(r, s)− b for some b > 0 (4.19)
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where

Zh (r, s) = max{p(r, s), p(r, hr), p(s, hs), p(r, hs) + p(r, hs)

2
,

p(h2r, s), p(h2r, hr), p(h2r, hs)}.

Let

C = {w ∈ C [0, J ] : α1 ≤ w (y1) ≤ β1 for all y1 ∈ [0, J ]}.

Consider the following result.

Theorem 4.6.1. Suppose that all the conditions (4.14)-(4.17) hold. Then the

integral equation (4.13) has at most one solution w∗ ∈ C.

Proof. Let M1 and M2 be closed subsets of W such that

M1 = {w ∈ W : w ≤ β1}

and

M2 = {w ∈ W : w ≥ α1}.

Define the mapping

Ψ : W → W

by

Ψw(y1) =

∫ J

0

K(y1, t1)h(t1, w(t1))dt1 for all y1 ∈ [0, J ] .

We shall show that

Ψ(M1) ⊆M2 and Ψ(M2) ⊆M1. (4.20)

Let w1 ∈M1, that is,

ζ(t) ≤ β1(t) for all y1 ∈ [0, J ] .

With the aid of condition (4.17), since K(y1, t1) ≥ 0 for all y1, t1 ∈ [0, J ] , we get

that

K(y1, t1)h(t1, w(t1)) ≥ K(y1, t1)h(t1, β1(t1)) for all y1, t1 ∈ [0, J ] .

Combining the above inequality with condition (4.15), gives∫ J

0

K(y1, t1)h(t1, (ζ(t1))dt1 ≥
∫ J

0

K(y1, t1)h(t1, β1(t1))dt1 ≥ α1(y1) for all y1 ∈ [0, J ] .
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Thus

Ψw ∈M2.

In a similar manner, let w ∈M2, so w(t1) ≥ α1(t1) for all y1 ∈ [0, J ] . Making use

of condition (4.17), since K(y1, t1) ≥ 0 for all y1, t1 ∈ [0, J ] , we get

K(y1, t1)h(t1, w(t1)) ≤ K(y1, t1)h(t1, α1(t1)) for all y1, t1 ∈ [0, J ] .

Together with condition (4.16) the above inequality implies that∫ J

0

K(y1, t1)h(t1, (w(t1))dt1 ≤
∫ J

0

K(y1, t1)h(t1, α1(t1))dt1 ≤ β1(y1) for all y1 ∈ [0, J ] .

Thus we have

Ψw ∈M1.

and we conclude that (4.20) holds.

Now, let (µ, η) ∈M1 ×M2, that is for all y1 ∈ [0, J ] ,

µ(y1) ≤ β1(y1), η(y1) ≤ α1(y1).

Together with (4.14), this implies that

µ(y1) ≤ β∗0 , η(y1) ≥ α∗0 for all y1 ∈ [0, J ] .

With the use of conditions (4.18) and (4.19), we have

|Ψµ(y1)−Ψη(y1)| ≤
∫ J

0

K(y1, t1) |h(t1, µ(t1)− h(t1, η(t1)| dt1

≤
∫ J

0

K(y1, t1) (λmax{p(µ, η), p(µ, hµ), p(η, hη),

p(µ, hη) + p(η, hµ)

2
, p(h2µ, η), p(h2µ, hµ), p(h2µ, hη)} − b

)
dt1

≤ λmax{p(µ, η), p(µ, hµ), p(η, hη),
p(µ, hη) + p(η, hµ)

2
,

p(h2µ, η), p(h2µ, hµ), p(h2µ, hη)}∫ J

0

K(y1, t1)dt1 − b
∫ J

0

K(y1, t1)dt1

≤ λmax{p(µ, η), p(µ, hµ), p(η, hη),
p(µ, hη) + p(η, hµ)

2
,

p(h2µ, η), p(h2µ, hµ), p(h2µ, hη)}.

Thus

p (Ψµ,Ψη) ≤ λp (µ, η)
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It can be shown, in the same manner, that the above inequality holds for (µ, η) ∈
M2×M1, so Corollary 4.3.1 is satisfied, and we deduce that Ψ has a unique fixed

point w∗ ∈M1 ∩M2, and so w∗ ∈ C is a unique solution of (4.13).
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5

Iterated Function System of

Generalized Rational Contractions

in Semi-Metric Spaces

5.1. Introduction

In the past decades, metric fixed point theory has proved to be an effective and

versatile tool for solving scientific problems. Its vast range of applications, which

include among others, iterative methods for solving linear and nonlinear differ-

ential, integral and difference equations, split feasibility problems, equilibrium

problems and optimization problems attracted several researchers to intensify

and extend the scope of fixed point theory in metric spaces, see for example

[24, 28, 30, 3, 41, 65, 84, 88]. The notion of metric between two points is impor-

tant in the definition of the nature of the topology of an underlying space. For

example, Frechet [34] defined a metric space on a non-void set W that induces

a Hausdorff topology on W. This was followed by several generalizations of the

metric function, which includes the notion of a symmetric or semi-metric space

giving rise to a non-Hausdorff topology [56].

Some useful results on contractive mappings in semi-metric space were ob-

tained in [1, 2, 19, 38, 39, 44, 45, 48, 66, 93, 101, 105]. Hutchinson [42] intro-

duced iterated function systems in the setting of metric spaces for generating

fractals from contractive self-mappings. Since then, numerous researchers have

been inspired to acquire a range of iterate function system findings in other spaces

[32, 56, 14, 15, 16, 17, 63, 60].

Our primary objective in this chapter is the construction of a fractal set of general-

ized iterated function system of a generalized rational contraction in semi-metric

space. We observe that the Hutchinson operator defined on a finite family of

contractive mappings on a complete semi-metric space is itself a generalized con-

tractive mapping on a family of compact subsets of W. By successive application
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of a generalized Hutchinson operator, a final fractal is obtained without the use

of triangle inequality and this shall be followed by a non-trivial example.

For the purposes of our subsequent discussion, we give the following preliminary

definitions and results.

Definition 5.1.1. [56] Let W be any non-void set. A mapping ds : W×W → R[+]

is called a Hausdorff semi-metric on W if for all %, ς ∈ W , the following properties

hold:

(ds1) ds(%, ς) = 0 if and only if % = ς;

(ds2) ds(%, ς) = ds(ς, %).

A set W equipped with a Hausdorff semi-metric ds is called a Hausdorff semi-

metric space.

Example 5.1.1. [56] Let W = R[+] and define a semi-metric ds : W ×W → R[+]

by

ds (2, %) = ds(%, 2) =
2 + %

4
if % 6= 2,

ds(%, ς) = |%− ς| for all %, ς ∈ W\{2} and ds (2, 2) = 0.

We observe that ds is not a metric on W since the triangle inequality is not

satisfied, that is ds(0, 3) � ds(0, 2) + ds(2, 3).

In a Hausdorff semi-metric space (W,ds), let

Bo(ς, r
∗) = {% ∈ W : ds(ς, %) < r∗}

define an open ball with center ς ∈ W and radius any r∗ > 0. One can represent

a topology τds on W by

{U ∈ τds such that for every ς ∈ U , Bo(ς, r
∗) ⊂ U with r∗ > 0}.

Definition 5.1.2. [103] Let (W,ds) be a Hausdorff semi-metric space. Then for

every % ∈ W and ς > 0, the open ball Bo(%, r
∗) is a neighborhood of % with respect

to the topology τds . Moreover, lim
a→+∞

ds(%a, %) = 0 if and only if the sequence %a

converges to % in the topology τds .

We give some properties each of which serve as a useful partial replacement

of the triangle inequalty in a Hausdorff semi-metric space (W,ds). Let {%a}, {ςa}
and {υa} be sequences in semi-metric space (W,ds) with %, ς ∈ W. Then [56]
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(W0) lim
a→+∞

ds(%a, %) = 0 and lim
a→+∞

ds(%a, ς) = 0 implies % = ς;

(W1) lim
a→+∞

ds(%a, %) = 0 and lim
k→+∞

ds(%a, ςa) = 0 implies that lim
a→+∞

ds(%, ςa) = 0;

(W2) lim
a→+∞

ds(%a, ςa) = 0 and lim
a→+∞

ds(ςa, υa) = 0 imply that lim
a→+∞

ds(%a, υa) = 0;

(J) lim
a→+∞

ds(%a, ςa) = 0 and lim
a→+∞

ds(ςa, υa) = 0 imply that

lim
a→+∞

ds(%a, υa) 6= +∞;

(CC) lim
a→+∞

ds(%a, %) = 0 implies that lim
a→+∞

ds(%a, ς) = ds(%, ς).

Wilson [103] introduced properties (W0) and (W1), Mihet [63] property (W2),

Jachymski et al. [45] property(J) and Cho et al. [29] property (CC).

Definition 5.1.3. [39, 45] If {%a} is a sequence in a Hausdorff semi-metric space

(W,ds), then

(a) {%a} is said to be a ds-Cauchy sequence if, given ε > 0, there exists a natural

number aε such that, ds(%a, %k) < ε, for all a, k ≥ aε.

(b) (W,ds) is called an S-complete space if for each ds-Cauchy sequence {%a}
in W , an element % in W exists such that lim

a→+∞
ds(%a, %) = 0.

(c) (W,ds) is known as a ds-Cauchy complete Hausdorff semi-metric space if

every ds-Cauchy sequence {%a} in W converges to % ∈ W.

For a non-void set W , we say

N(W ) = {K : K is a non-void subset of W},

B(W ) = {K : K is a non-void bounded subset of W},

CL(W ) = {K : K is a non-void closed subset of W},

CBds(W ) = {K : K is a non-void closed and bounded subset of W},

Cds(W ) = {K : K is a non-void compact subset of W}.

Definition 5.1.4. [56] Suppose (W,ds) is a Hausdorff semi-metric space. V∗ ∈
N(W ) is ds-closed if and only if V∗ = V∗, where V∗ = {v∗ ∈ W : ds(v

∗,V∗) =

0} and ds(v
∗,W ) = inf{ds(v∗, w∗) : w∗ ∈ W}.

Let J ∗,O∗ ∈ CBds(W ), define the map Hds : CBds(W )× CBds(W )→ R[+] by

Hds(J ∗,O∗) = max{ sup
ς∈O∗

ds(ς,J ∗), sup
%∈J ∗

ds(%,O∗)},

then we say Hds is a Pompeiu-Hausdorff semi-metric induced by ds. If (W,ds)

is a ds-Cauchy complete semi-metric space, then (CBds(W ), Hds) is a ds-Cauchy
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complete semi-metric space too.

In the context of a Hausdorff semi-metric space, we state the following Lemmas

for later use [73].

Lemma 5.1.1. [56, 73] Let (W,ds) be a Hausdorff semi-metric space and

J ∗,O∗ ∈ CBds(W ). If % ∈ J ∗, then ds(%,O∗) ≤ Hds (J ∗,O∗) .

Lemma 5.1.2. [56, 73] Let (W,ds) be a Hausdorff semi-metric space and

J ∗,O∗ ∈ CBds(W ). Then for any given ε > 0, satisfying Hds(J ∗,O∗) < ε,

there exist an element ς ∈ O∗ such that ds(%, ς) < ε for every % ∈ J ∗.

Lemma 5.1.3. [56, 73] Let (W,ds) be a Hausdorff semi-metric space and

J ∗,O∗ ∈ CBds(W ). Then for any % ∈ J ∗, there exists ς ∈ O∗ such that

ds(%, ς) ≤ λHds(J ∗,O∗) for λ > 1.

Lemma 5.1.4. [56, 53, 73] Let (W,ds) be a Hausdorff semi-metric space. Then

for all K∗,L∗,J ∗,O∗ ∈ CBds(W ), the following conditions hold:

(a) If L∗ ⊆ J ∗, then sup
k∈K∗

ds(k,J ∗) ≤ sup
k∈K∗

ds(k,L∗),

(b) sup
t∈K∗∪L∗

ds(t,J ∗) = max{ sup
k∈K∗

ds(k,J ∗), sup
`∈L∗

ds(`,J ∗)},

(c) Hds(K∗ ∪ L∗,J ∗ ∪ O∗) ≤ max{Hds(K∗,J ∗), Hds(L∗,O∗)}.

Theorem 5.1.1. [45, 56] Let (W,ds) be a ds-Cauchy complete Hausdorff semi-

metric space and h : W → W be a contractive mapping such that,

ds(h%, hς) ≤ λds(%, ς)

is satisfied for all %, ς ∈ W and 0 ≤ λ < 1. If (W,ds) is a bounded Haus-

dorff semi-metric space, that is, if there exists some constant X ∗ such that

X ∗ = sup{ds(%, ς) : %, ς ∈ W} < ∞, then h has a unique fixed point ũ in W,

in addition for every %0 ∈ W, the sequence {%0, h%0, h
2%0, · · · } converges to the

unique fixed point ũ of h.

Theorem 5.1.2. [56, 53] Let (W,ds) be a Hausdorff semi-metric space and

h : W → W be a contraction mapping with 0 ≤ λ < 1, then

(a) elements in Cds(W ) are mapped by h to elements in Cds(W ).

(b) If for any J ∗ ∈ Cds(W ),

h(J ∗) = {h(%) : % ∈ J ∗},
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then the mapping h : Cds(W )→ Cds(W ) is a contraction on (Cds(W ), Hds).

5.2. Generalized Iterated Function System in Hausdorff

Semi-Metric Spaces

Goyal reported some results on generalized iterated function systems for multi-

valued mappings in metric spaces in [35]. This section expands on the principles

presented in Section 3.2 on generalized iterated function system in partial metric

spaces set-up [53] to the context of Hausdorff semi-metric spaces. The definition

of a generalized contraction self-map will be followed by some preliminary results.

Definition 5.2.1. Let (W,ds) be a Hausdorff semi-metric space and h, g : W →
W be two mappings. A couple (h, g) is called a generalized contraction if

ds (h%, gς) ≤ λds (%, ς)

for all %, ς ∈ W, where 0 ≤ λ < 1.

Example 5.2.1. Let W be a closed and bounded subset of R[+], and define a

Hausdorff semi-metric ds on W by ds(r, t) = (r − t)2 for all r, t ∈ W. Define

h, g : W → W by

h(r) =
3r

5(r + 1)
and g(t) =

3t

5(t+ 2)
.

Then note that

ds (h(r), g(t)) =

(
3r

5(r + 1)
− 3t

5(t+ 2)

)2

=
9

25

(
r

r + 1
− t

t+ 2

)2

=
9

25

[(
r

r + 1

)2

− 2

(
r

r + 1

)(
t

t+ 2

)
+

(
t

t+ 2

)2
]

≤ 9

25

(
r2 − 2rt+ t2

)
=

9

25
(r − t)2,

that is, ds (h(r), g(t)) ≤ λds (r, t) with λ =
9

25
. Thus the couple (h, g) is a

generalized contraction.

Theorem 5.2.1. Suppose (W,ds) is a Hausdorff semi-metric space and h, g :
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W → W are two continuous mappings. If the pair (h, g) is a generalized contrac-

tion with a common contractive constant λ such that 0 ≤ λ < 1, then

(a) elements in Cds(W ) are mapped to elements in Cds(W ) under a pair (h, g),

(b) if for any J ∗,O∗ ∈ Cds(W ), the mappings h, g : Cds(W ) → Cds(W ) are

defined as

h(J ∗) = {h(%) : % ∈ J ∗} and

g(O∗) = {g(ς) : ς ∈ O∗}

then the couple (h, g) is a generalized contraction on (Cds(W ), Hds).

Proof. (a) Since h is a continuous mapping and the image of a compact subset

under a continuous mapping, h : W → W is compact, then

J ∗ ∈ Cds(W ) implies that h(J ∗) ∈ Cds(W ).

In a similar manner we have

O∗ ∈ Cds(W ) implies that g(O∗) ∈ Cds(W ).

(b) Let J ∗,O∗ ∈ Cds(W ). Since the couple (h, g) is a generalized contraction,

then for 0 ≤ λ < 1),

ds (h%, gς) ≤ λds (%, ς) for all %, ς ∈ W.

Thus we have

ds(h%, g(O∗)) = inf
ς∈O∗

ds(h%, gς)

≤ inf
ς∈O∗

λds(%, ς)

= λds(%,O∗).

Also

ds(gς, h(J ∗)) = inf
s∈J ∗

ds(gς, h%)

≤ inf
%∈J ∗

λds(ς, %)

= λds(%,J ∗).
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Now

Hds(h(J ∗), g(O∗)) = max{ sup
s∈J ∗

ds(h%, g(O∗)), sup
ς∈O∗

ds(gς, h(J ∗))}

≤ max{ sup
%∈J ∗

λds(%,O∗), sup
ς∈O∗

λds(ς,J ∗)}

= λmax{ sup
%∈J ∗

ds(%,O∗), sup
ς∈O∗

ds(ς,J ∗)}

= λHds(J ∗,O∗).

As a result, the pair (h, g) is a generalized contraction mapping on (Cds(W ), Hds).

Proposition 5.2.1. Let (W,ds) be a Hausdorff semi-metric space and (ha, ga),

a ∈ {1, 2, · · · , q}, a finite family of contractive mappings. If

ds (ha%, gaς) ≤ λads (%, ς) for all %, ς ∈ W,

for 0 ≤ λa < 1), a ∈ {1, 2, · · · , q}, then the mappings Ψ,Φ : Cds(W ) → Cds(W )

such that

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ hq(J ∗)

= ∪qa=1ha(J ∗) for each J ∗ ∈ Cds(W )

and

Φ(O∗) = g1(O∗) ∪ g2(O∗) ∪ · · · ∪ gq(O∗)

= ∪qa=1ga(O∗) for each O∗ ∈ Cds(W )

satisfy

Hds (Ψ (J ∗) ,Φ (O∗)) ≤ λ̃Hds (J ∗,O∗) for all J ∗,O∗ ∈ Cds(W ),

where λ̃ = max{λa : a = 1, 2, · · · , q} and the pair (Ψ,Φ) is a generalized contrac-

tion on Cds (W ).

Proof. We shall prove the result for q = 2. Let h1, h2, g1, g2 : W → W be
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contraction mappings. For J ∗,O∗ ∈ Cds(W ) and using Lemma 5.1.4 (c), we have

Hds(Ψ (J ∗) ,Φ(O∗)) = Hds(h1(J ∗) ∪ h2(J ∗), g1(O∗) ∪ g2(O∗))

≤ max{Hds(h1(J ∗), g1(O∗)), Hds(h2(J ∗), g2(O∗))}

≤ max{λ1Hd(J ∗,O∗), λ2Hd(J ∗,O∗)}

≤ λ̃Hds(J ∗,O∗)

where λ̃ = max{λ1, λ2}.

Theorem 5.2.2. Suppose (W,ds) is a ds-Cauchy complete Hausdorff semi-metric

space and ha, ga : W → W , a = 1, 2, · · · , q, a finite family of contractive mappings

on W with contraction constants λa, a = 1, 2, · · · , q, respectively. Define Ψ,Φ :

Cds(W )→ Cds(W ) by

Ψ(J ∗) = ∪qa=1ha(J ∗),

and

Φ(O∗) = ∪qa=1ga(O∗)

for each J ∗,O∗ ∈ Cds(W ). Assume (W,ds) is a bounded Hausdorff semi-metric

space, then the following relations hold:

(a) Ψ,Φ : Cds(W )→ Cds(W ).

(b) The pair (Ψ,Φ) has a unique common fixed point Ũ1 ∈ Cds(W ), which implies

that, Ũ1 = Ψ(Ũ1) = Φ(Ũ1) = ∪qa=1ha(Ũ1) = ∪qa=1ga(Ũ1).

(c) The sequence

{J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , ...}

of compact sets converges to the common fixed point Ũ1 of Ψ and Φ for an

arbitrarily chosen initial set J ∗0 ∈ Cds(W ).

Proof. (a) Since (ha, ga) for a = 1, 2, · · · , q is a pair of contactive mappings,

using the definition of the pair (Ψ,Φ) and Theorem 5.2.1, we get the result.

From Proposition 5.2.1, we see that the pair (Ψ,Φ) is a generalized contraction on

Cds (W ) . Furthermore, since (W,ds) is ds-Cauchy complete then as a concequence

(Cds(W ), Hds) is also complete. As a result, from Theorem 5.1.1 we get (b) and

(c).

Definition 5.2.2. Suppose (W,ds) is a Hausdorff semi-metric space with Ψ,Φ :

Cds(W )→ Cds(W ). Then a pair of mappings (Ψ,Φ) is called a generalized rational

Hutchinson contractive operator if λ∗ ∈ [0, 1) exists, such that for all J ∗,O∗ ∈
Cds(W ), the following holds:
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Hds (Ψ (J ∗) ,Φ (O∗)) ≤ λ∗RΨ,Φ(J ∗,O∗),

where

RΨ,Φ(J ∗,O∗) = max {Hds(J ∗,O∗), Hds(J ∗,Ψ (J ∗)), Hds(O∗,Φ (O∗)) ,
Hds(O∗,Φ (O∗))[1 +Hds(J ∗,Ψ(J ∗))]

1 +Hds (J ∗,O∗)
,

Hds(O∗,Ψ (J ∗))[1 +Hds(J ∗,Ψ (J ∗))]
1 +Hds(J ∗,O∗)

}
.

Definition 5.2.3. Let (W, ds) be a Hausdorff semi-metric space. If

ha, ga : W → W , are such that each pair (ha, ga) , a = 1, 2, ..., q is a finite family of

generalized contractions, then {W ; (ha, ga) , a = 1, 2, · · · , q} is called a generalized

iterated function system.

Definition 5.2.4. Let (W,ds) be a Hausdorff semi-metric space and

Ψ,Φ : Cds(W ) → Cds(W ) a pair of mappings. Let Q∗ ⊆ W be a non-void

closed and bounded set, then Q∗ is a unique common attractor of the generalized

iterated function system if

(i) Ψ(Q∗) = Φ(Q∗) = Q∗ and

(ii) there exists an open set V1 ⊆ W such that Q∗ ⊆ V1 and lim
a→+∞

Ψa( O∗) =

lim
a→+∞

Φa(N ∗) = Q∗ for any closed and bounded set N ∗ ⊆ V1, where the

limit is taken relative to the Hausdorff semi-metric.

5.3. Generalized Hutchinson contractive operator in

semi-metric spaces

We now turn our attention to some result on the existence and uniqueness of a

common attractor of generalized rational Hutchinson contractive operator in a

Hausdorff semi-metric space framework.

Theorem 5.3.1. Let (W,ds) be a ds-Cauchy complete Hausdorff semi-metric

space and {W ; (ha, ga), a = 1, 2, · · · , q}, the generalized iterated function system.

Suppose a pair of mappings Ψ,Φ : Cds(W )→ Cds(W ) defined by

Ψ(J ∗) = ∪qa=1ha(J ∗)

and

Φ(O∗) = ∪qa=1ga(O∗),
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for each J ∗,O∗ ∈ Cds(W ) is a generalized rational Hutchinson contractive op-

erator. If (W,ds) is bounded, then Ψ and Φ have a unique common attractor

Ũ1 ∈ Cds(W ), that is,

Ũ1 = Ψ(Ũ1) = Φ(Ũ1).

Moreover, for the arbitrarily chosen initial set J ∗0 ∈ Cds(W ), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , · · · }

of compact sets converges to the unique common attractor of both Ψ and Φ.

Proof. Choose J ∗0 arbitrarily in Cds(W ) and define the sequences

J ∗1 = Ψ(J ∗0 ), J ∗3 = Ψ (J ∗2 ) , · · · ,J ∗2a+1 = Ψ (J ∗2a)

and

J ∗2 = Φ(J ∗1 ), J ∗4 = Φ (J ∗3 ) , · · · ,J ∗2a+2 = Φ
(
J ∗2a+1

)
for a ∈ {0, 1, 2, · · · }.

Now, since the pair (Ψ,Φ) is a generalized rational Hutchinson contractive oper-

ator, we have

Hds(J ∗2a+1,J ∗2a+2) = Hds(Ψ (J ∗2a) ,Φ
(
J ∗2a+1

)
)

≤ λ∗RΨ,Φ

(
J ∗2a,J ∗2a+1

)
for a ∈ {0, 1, 2, · · · , }, where

RΨ,Φ(J ∗2a,J ∗2a+1) = max
{
Hds(J ∗2a,J ∗2a+1), Hds(J ∗2a,Ψ (J ∗2a)),

Hds(J ∗2a+1,Φ
(
J ∗2a+1

)
),

Hds(J ∗2a+1,Φ
(
J ∗2a+1

)
)[1 +Hds(J ∗2a,Ψ(J ∗2a))]

1 +Hds

(
J ∗2a,J ∗2a+1

) ,

Hds(J ∗2a+1,Ψ (J2a))[1 +Hds(J ∗2a,Ψ (J ∗2a))]
1 +Hds(J ∗2a,J ∗2a+1)

}
.

= max
{
Hds(J ∗2a,J ∗2a+1), Hds(J ∗2a,J ∗2a+1),

Hds(J ∗2a+1,J ∗2a+2)

Hds(J ∗2a+1,J ∗2a+2)[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds

(
J ∗2a,J ∗2a+1

) ,

Hds(J ∗2a+1,J ∗2a+1)[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds(J ∗2a,J ∗2a+1)

}
.

= max
{
Hds(J ∗2a,J ∗2a+1), Hds(J ∗2a+1,J ∗2a+2)

}
.
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If RΨ,Φ

(
J ∗2a,J ∗2a+1

)
= Hds(J ∗2a+1,J ∗2a+2) then

Hds(J ∗2a+1,J ∗2a+2) ≤ λ∗Hds(J ∗2a+1,J ∗2a+2)

which is a contradiction. Thus RΨ,Φ

(
J ∗2a,J ∗2a+1

)
= Hds(J ∗2a,J ∗2a+1) so that

Hds(J ∗2a+1,J ∗2a+2) ≤ λ∗Hds(J ∗2a,J ∗2a+1)

for a ∈ {0, 1, 2, · · · }. Continuing in this manner, gives

Hds(J ∗2a+1,J ∗2a+2) ≤ λ∗Hds(J ∗2a,J ∗2a+1)

≤ λ2
∗Hds(J ∗2a−1,J ∗2a)

≤ · · ·

≤ λa+1
∗ Hds(J ∗0 ,J ∗1 ).

Furthermore, this implies that

Hds(J ∗2a,J ∗2a+n) ≤ λa∗Hds(J ∗0 ,J ∗n )

≤ λa∗X ∗ for all a, n = 0, 1, 2, · · · .

Thus lim
a→+∞

λa∗X ∗ = 0. Therefore {J ∗a } is a ds-Cauchy sequence in Cds(W ). But,

(Cds(W ), Hds) is complete, so we have J ∗a → Ũ1 as a → +∞ for some Ũ1 ∈
Cds(W ), in other words, lim

a→+∞
Hds(J ∗a , Ũ1) = lim

a→+∞
Hds

(
J ∗a ,J ∗a+1

)
= Hds(Ũ1, Ũ1)

and so lim
a→+∞

Hds(J ∗a , Ũ1) = 0.

To prove that Ũ1 is a common attractor of both Ψ and Φ, we consider

Hds(J ∗2a+1,Φ(Ũ1)) = Hds(Ψ (J ∗2a) ,Φ
(
Ũ1

)
)

≤ λ∗RΨ,Φ(J ∗2a, Ũ1).

for all a ∈ {0, 1, 2, ...}, where
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RΨ,Φ(J ∗2a, Ũ1) = max
{
Hds(J ∗2a, Ũ1), Hds(J ∗2a,Ψ (J ∗2a)), Hds(Ũ1,Φ(Ũ1)) ,

Hds(Ũ1,Φ(Ũ1))[1 +Hds(J ∗2a,Ψ(J ∗2a))]
1 +Hds(J2a, Ũ1)

,

Hds(Ũ1,Ψ(J ∗2a))[1 +Hds(J2a,Ψ(J ∗2a))]
1 +Hds(J ∗2a, Ũ1)

}
.

= max
{
Hds(J ∗2a, Ũ1), Hds(J ∗2a,J ∗2a+1), Hds(Ũ1,Φ(Ũ1)) ,

Hds(Ũ1,Φ(Ũ1))[1 +Hds(J2a,J ∗2a+1)]

1 +Hd(J ∗2a, Ũ1)
,

Hds(Ũ1,J ∗2a+1)[1 +Hds(J ∗2a,J2a+1)]

1 +Hds(J ∗2a, Ũ1)

}
.

We observe that:

(1) In a case where RΨ,Φ(J ∗2a, Ũ1) = Hds(J2a, Ũ1), we have

Hds(J ∗2a+1,Φ(Ũ1)) ≤ λ∗Hds(J ∗2a, Ũ1),

which, on taking the limit as a→ +∞, gives Hds(Ũ1,Φ(Ũ1)) ≤ 0, so Ũ1 = Φ(Ũ1).

(2) Suppose RΨ,Φ

(
J ∗2a, Ũ1

)
= Hds(J ∗2a,J ∗2a+1), then

Hds(J ∗2a+1,Φ(Ũ1)) ≤ λ∗Hds(J ∗2a,J ∗2a+1)

and taking the limit as k → +∞, yields Hds(Ũ1,Φ(Ũ1)) ≤ 0, thus Ũ1 = Φ(Ũ1).

(3) In case RΨ,Φ(J ∗2a, Ũ1) = Hds(Ũ1,Φ(Ũ1)), we have

Hds(J ∗2a+1,Φ(Ũ1)) ≤ λ∗Hds(Ũ1,Φ(Ũ1)),

which on taking the limit as a → +∞, implies that Hds(Ũ1,Φ(Ũ1)) ≤ 0 and so

Ũ1 = Φ(Ũ1)

(4) If RΨ,Φ

(
J ∗2a, Ũ1

)
=
Hds(Ũ1,Φ(Ũ1))[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds

(
J ∗2a, Ũ1

) , we obtain

Hds(J ∗2a+1,Φ(Ũ1)) ≤ λ∗
Hds(Ũ1,Φ(Ũ1))[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds(J ∗2a, Ũ1)
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which, together with our taking the limit as a → +∞, gives Hds(Ũ1,Φ(Ũ1)) ≤
λ∗Hds(Ũ1,Φ(Ũ1)) and so Ũ1 = Φ(Ũ1).

(5) When RΨ,Φ(J ∗2a, Ũ1) =
Hds(Ũ1,J ∗2a+1)[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds(J ∗2a, Ũ1)
, we obtain

Hds(J ∗2a+1,Φ(Ũ1)) ≤ λ∗
Hds(Ũ1,J ∗2a+1)[1 +Hds(J ∗2a,J ∗2a+1)]

1 +Hds(J ∗2a, Ũ1)

which on taking the limit as a → +∞ gives, Hds(Ũ1,Φ(Ũ1)) ≤ 0, that is Ũ1 =

Φ(Ũ1). Thus we conclude that Ũ1 is an attractor of Φ.

Using the same argument, we obtain

Hds(Ψ(Ũ1),J ∗2a+2) = Hds(Ψ(Ũ1),Φ(J ∗2a+1))

≤ λ∗RΨ,Φ(Ũ1,J ∗2a+1),

where

RΨ,Φ(Ũ1,J ∗2a+1) = max
{
Hds(Ũ1,J ∗2a+1), Hds(Ũ1,Ψ(Ũ1)) ,

Hds(J ∗2a+1,Φ(J ∗2a+1)),

Hds(J ∗2a+1,Φ(J ∗2a+1))[1 +Hds(Ũ1,Ψ ˜(U1))]

1 +Hds(Ũ1,J ∗2a+1)
,

Hds(J ∗2a+1,Ψ(Ũ1))[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1,J ∗2a+1)

}
.

= max
{
Hds(Ũ1,J ∗2a+1), Hds(Ũ1,Ψ(Ũ1)),

Hds(J ∗2a+1,J ∗2a+2),

Hds(J ∗2a+1,J ∗2a+2)[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1,J ∗2a+1)
,

Hds(J ∗2a+1,Ψ(Ũ1))[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1,J ∗2a+1)

}
.

Again, we look at five cases:

(1) Suppose RΨ,Φ(Ũ1,J ∗2a+1) = Hds(Ũ1,J ∗2a+1), then

Hds(Ψ(Ũ1),J ∗2a+2) ≤ λ∗Hds(Ũ1,J ∗2a+1),

This, combined with our interpretation of the limit as a → +∞, leads to

Hds(Ψ(Ũ1), Ũ1) ≤ 0, which is a contradiction, so Ψ(Ũ1) = Ũ1.
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(2) If RΨ,Φ(Ũ1,J ∗2a+1) = Hds(Ũ1,Ψ(Ũ1)), we have

Hds(Ψ(Ũ1),J ∗2a+2) ≤ λ∗Hds(Ũ1,Ψ(Ũ1))

This, combined with our interpretation of the limit as a → +∞, implies that

Hds(Ψ(Ũ1), Ũ1) ≤ 0 and thus Ψ(Ũ1) = Ũ1.

(3) In case, RΨ,Φ(Ũ1,J ∗2a+1) = Hds(J2a+1,J2a+2), we have

Hds(Ψ(Ũ1),J ∗2a+2) ≤ λ∗Hds(J ∗2a+1,J ∗2a+2))

This, combined with our interpretation of the limit as a → +∞, implies that

Hds(Ψ(Ũ1), Ũ1) ≤ 0 and thus Ψ(Ũ1) = Ũ1.

(4) If RΨ,Φ(Ũ1,J ∗2a+1) =
Hds(J ∗2a+1,J ∗2a+2)[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds

(
Ũ1,J ∗2a+1

) , we obtain

Hds(Ψ(Ũ1),J ∗2a+2) ≤ λ∗
Hds(J ∗2a+1,J ∗2a+2)[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1,J ∗2a+1)

This, combined with our interpretation of the limit as a → +∞, implies that

Hds(Ψ(Ũ1), Ũ1) ≤ 0 and so Ψ(Ũ1) = Ũ1.

(5) In case of RΨ,Φ(Ũ1,J ∗2a+1) =
Hds(J ∗2a+1,Ψ(Ũ1))[1 +Hds(Ũ1U1,Ψ(Ũ1))]

1 +Hds(Ũ1,J2a+1)
, we

obtain

Hds(Ψ(Ũ1),J2a+2) ≤ λ∗
Hds(J2a+1,Ψ(Ũ1))[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1,J ∗2a+1)

This, combined with our interpretation of the limit as a → +∞, gives

Hds(Ψ(Ũ1), Ũ1) ≤ 0 so that is, Ψ(Ũ1) = Ũ1.

Thus Ũ1 is an attractor of the mappings Ψ and so we have shown that Ũ1 is

a common attractor of both Ψ and Φ.

To prove uniqueness, assume that Ũ1 and Ũ2 are distinct common attractors

for both Ψ and Φ. Because the pair (Ψ,Φ) is generalized rational contractive

Hutchinson operator, we get

Hds(Ũ1, Ũ2) = Hds(Ψ(Ũ1),Φ(Ũ2))

≤ λ∗RΨ,Φ(Ũ1, Ũ2)
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where

RΨ,Φ(Ũ1, Ũ2) = max
{
Hds(Ũ1, Ũ2), Hds(Ũ1,Ψ(Ũ1)), Hds(Ũ2,Φ(Ũ2)) ,

Hds(Ũ2,Φ(Ũ2))[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1, Ũ2)
,

Hds( Ψ(Ũ1))[1 +Hds(Ũ1,Ψ(Ũ1))]

1 +Hds(Ũ1, Ũ2)

}
.

= max
{
Hds(Ũ1, Ũ2), Hds(Ũ1, Ũ1), Hds(Ũ2, Ũ2) ,

Hds(Ũ2, Ũ2)[1 +Hds(Ũ1, Ũ1))]

1 +Hds(Ũ1, Ũ2)
,

Hds(Ũ2, Ũ1)[1 +Hds(Ũ1, Ũ1)]

1 +Hds(Ũ1, Ũ2)

}

= max

{
Hds(Ũ1, Ũ2),

Hds(Ũ2, Ũ1)

1 +Hds(Ũ1, Ũ2)

}
= Hds(Ũ1, Ũ2)

and so (1 − λ∗)Hds(Ũ1, Ũ2) ≤ 0, which implies that Hds(Ũ1, Ũ2) = 0 and hence

Ũ1 = Ũ2. Thus Ũ1 ∈ Cds(W ) is a unique common attractor of Ψ and Φ.

Remark 5.3.1. Let Sds(W ) represent the collection of all singleton subsets of

W in Theorem 5.3.1. Then Sds(W ) ⊆ Cds(W ). Moreover, suppose that a couple

of mappings (ha, ga) = (h, g) for every a, where h = h1 and g = g1 then, the

operator pair (Ψ,Φ) : Sds(W )→ Sds(W ) becomes

(Ψ (J ∗) ,Φ (O∗)) = (h(J ∗), g (O∗)) for all J ∗,O∗ ∈ Sds(W ).

As a result, the common fixed point result is as follows.

Corollary 5.3.1. Suppose (W,ds) is a generalized ds-Cauchy complete Haus-

dorff semi-metric space. Let the mappings Ψ,Φ : Sds(W ) → Sds(W ) be as in

Remark 5.3.1. Suppose 0 ≤ λ∗ < 1 exists such that for all J ∗,O∗ ∈ Cds(W ), the

following condition holds:

Hds (Ψ(J ∗),Φ(O∗)) ≤ λ∗RΨ,Φ(J ∗,O∗),
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where

RΨ,Φ(J ∗,O∗) = max {Hds(J ∗,O∗), Hds(J ∗,Ψ (J ∗)), Hds(O∗,Φ (O∗)) ,
Hds(O∗,Φ (O∗))[1 +Hds(J ∗,Ψ(J ∗))]

1 +Hds (J ∗,O∗)
,

Hds(O∗,Ψ (J ∗))[1 +Hds(J ∗,Ψ (J ∗))]
1 +Hds(J ∗,O∗)

}
and (W,ds) is bounded, then Ψ and Φ have a unique common attractor Ũ1 ∈
Cds(W ), which means,

Ũ1 = Ψ(Ũ1) = h(Ũ1) = g(Ũ1) = Φ(Ũ1).

Furthermore, for any singleton set J ∗0 ∈ Sds(W ), the sequence of

{J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , ...}

converges to the unique common attractor of both Ψ and Φ.

Corollary 5.3.2. Suppose is (W,ds) a generalized ds-Cauchy complete Hausdorff

semi-metric space, and {W ;ha, ga, a = 1, 2, · · · , q}, a generalized iterated func-

tion system. Let a pair of mappings Ψ,Φ : Cds(W ) → Cds(W ) be defined as in

Theorem 5.3.1. If (W, ds) is bounded, then Ψ and Φ have a unique common at-

tractor Ũ1 ∈ Cds(W ). Moreover, for any initial set J ∗0 ∈ Cds(W ), the sequence

{J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , ...} converges to the unique common attractor

of both Ψ and Φ.

Proof. From Proposition 5.2.1, we observe that if every pair of mappings (ha, ga),

a = 1, 2, · · · , q is a contraction on W, then the pair of mappings Ψ,Φ : Cds(W )→
Cds(W ) defined by

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗) ∪ · · · ∪ ha(J ∗)

= ∪qa=1ha(J ∗)

and

Φ(O∗) = g1(O∗) ∪ g2(O∗) ∪ · · · ∪ ga(O∗)

= ∪qa=1ga(O∗),

for each J ∗,O∗ ∈ Cds(W ) is a generalized contraction on Cds(W ) and in reference

to Theorem 5.3.1, the result follows.
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Example 5.3.1. Let W = [0, 1] and ds be a Hausdorff semi-metric on W defined

as ds(r, t) = (r − t)2 for all r, t ∈ W. Let ha, ga : W ×W → W, for a = 1, 2 be

defined as

h1(r, t) =

(
2r

3 (r + 1)
,

t

2 (t+ 2)

)
,

h2(r, t) =

(
2 sin r

5 (sin r + 1)
,

sin t

3 (sin t+ 3)

)
.

and

g1(r, t) =

(
2r

3 (r + 2)
,

t

2 (t+ 1)

)
,

g2(r, t) =

(
2 sin r

5 (sin r + 2)
,

sin t

3 (sin t+ 2)

)
,

for all (r, t) ∈ W.

Now r = (r1, r2) , t = (t1, t2) ∈ W, gives

ds(h1(r), g1(t) =
4

9

(
r1

r1 + 1
− t1
t1 + 2

)2

+
1

4

(
r2

r2 + 2
− t2
t2 + 1

)2

+
2

3

(
r1

r1 + 1
− t1
t1 + 2

)(
r2

r2 + 2
− t2
t2 + 1

)
≤ 2

3

[
(r1 − t1)2 + (r2 − t2)2 + 2 (r1 − t1) (r2 − t2)

]
= λ1ds(r, t)

where λ1 =
2

3
. We also have

ds(h2(r), g2(t) =
4

25

(
sin r1

sin r1 + 1
− sin t1

sin t1 + 2

)2

+
1

9

(
sin r2

sin r2 + 2
− sin t2

sin t2 + 1

)2

+
1

3

(
sin r1

sin r1 + 1
− sin t1

sin t1 + 2

)(
sin r2

sin r2 + 2
− sin t2

sin t2 + 1

)
≤ 4

5

[
(r1 − t1)2 + (r2 − t2)2 + 2 (r1 − t1) (r2 − t2)

]
= λ2ds(r, t)

where λ1 =
4

5
.

Thus the iterated function system {W ;ha, ga, a = 1, 2} with Ψ,Φ : Cds(W )→
Cds(W ) defined as

Ψ(J ∗) = h1(J ∗) ∪ h2(J ∗)

and

Φ(O∗) = g1(O∗) ∪ g2(O∗)
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for all J ∗,O∗ ∈ Cds(W ), we have that

Hds (Ψ(J ∗),Φ(O∗)) ≤ λRΨ,Φ(J ∗,O∗)

is satisfied, with λ = max{λ1, λ2} =
4

5
and

RΨ,Φ(J ∗,O∗) = max {Hds(J ∗,O∗), Hds(J ∗,Ψ(J ∗)), Hds(O∗,Φ(O∗)) ,
Hds(O∗,Φ (O∗))[1 +Hds(J ∗,Ψ(J ∗))]

1 +Hds (J ∗,O∗)
,

Hds(O∗,Ψ (J ∗))[1 +Hds(J ∗,Ψ (J ∗))]
1 +Hds(J ∗,O∗)

}
.

Thus the pair (Ψ,Φ) satisfies the conditions of generalized rational contractive

Hutchinson operator and for an abitrarly chosen initial set J ∗0 ∈ Cds(W ), the

sequence {J ∗0 ,Ψ (J ∗0 ) ,ΦΨ (J ∗0 ) ,ΨΦΨ (J ∗0 ) , ...} converges to the unique common

attractor of both Ψ and Φ.
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6

Common Attractors of Generalized

Iterated Function System in

G-Metric Spaces

6.1. Introduction

By introducing the concept of G-metric space, Mustafa and Sims [68] expandeded

the generalization of metric spaces. Many authors have since obtained fixed

point theorems for mappings satisfying various contractive conditions in G-metric

spaces [70, 71, 67, 69, 87, 96]. The study of a common fixed point theory in

generalized metric spaces [10] was motivated by Abbas and Rhoades [23, 64, 89].

Several researchers have obtained useful results for iterated function systems

in the setting of metric spaces (see [76, 81, 90] and references therein). This

chapter deals with the construction of common attractors of generalized iterated

function system of generalized contractions in a G-metric space setup. We note

that the Hutchinson operator, defined on a finite family of contractive mappings

on a complete G-metric space is itself a generalized contractive mapping on a

family of compact subsets of W. We apply the generalized Hutchinson operator

successively to obtain a final fractal. Our findings do not depend on the concept

of continuity nor commutativity of mappings under consideration.

Consistent with Mustafa and Sims [70, 68], we state the following preliminary

results.

Definition 6.1.1. [68] Let W be a non-void set. A G-metric on W is a mapping

G : W ×W ×W → R[+] with the following properties:

(1) G(%1, %2, %3) = 0 if %1 = %2 = %3 (coincidence),

(2) 0 < G(%1, %1, %2) for all %1, %2 ∈ W, with %1 6= %2,

(3) G(%1, %1, %2) ≤ G(%1, %2, %3) for all %1, %2, %3 ∈ W, with %2 6= %3,

(4) G(%1, %2, %3) = G(p{%1, %2, %3}), where p is a permutation of %1, %2, %3 (sym-
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metry),

(5) G(%1, %2, %3) ≤ G(%1, b, b) +G(b, %2, %3) for all %1, %2, %3, b ∈ W.

The pair (W,G) consisting of the non-void set together with the G-metric is

called a G-metric space.

If G(%1, %2, %2) = G(%2, %1, %1) for all %1, %2 ∈ W, then the G-metric is said to be

symmetric.

Example 6.1.1. [9] Consider a usual metric space (W,d) and let the function

G : W ×W ×W → R[+], be defined by

G(%1, %2, %3) = max{d(%1, %2), d(%2, %3), d(%3, %1)}

or

G(%1, %2, %3) = d(%1, %2) + d(%2, %3) + d(%3, %1)

for all %1, %2, %3 ∈ W , then (W,G) is a G-metric space.

Example 6.1.2. [9] Let (W,G) be a G-metric space and define the function

dG : W ×W → R[+], by

dG(%1, %2) = G(%1, %2, %2) +G(%2, %1, %1) for all %1, %2 ∈ W,

then (dG,W ) is a usual metric space.

Definition 6.1.2. [9] If {zi} is a sequence in a G-metric space (W,G), then

a) {zi} ⊂ W is a G-convergent sequence if, for a given ε > 0, there is a point

z ∈ W and a natural number N0 such that for all i, j ≥ N0, G(z, zi, zj) < ε;

b) {zi} ⊂ W is a G-Cauchy sequence if, for any ε > 0, there exist a natural

number N0 such that for all i, j, k ≥ N0, G(zi, zj, zk) < ε;

c) (W,G) is G-complete if every G-Cauchy sequence in a space W is convergent

in W. {zi} converges to z ∈ W if and only if G(zi, zj, z) → 0 as i, j → ∞
and {zi} is Cauchy if and only if G(zi, zj, zk)→ 0 as i, j, k → +∞.

Definition 6.1.3. [9] Suppose (W,G) and (W ′, G′) are two G-metric spaces.

Then the map h∗ : (W,G)→ (W ′, G′) is said to be G-continuous at b ∈ W , if and

only if, for a given given ε > 0, there exists a δ > 0, such that %1, %2 ∈ W and

G(b, %1, %2) < δ implies G′(h∗(b), h∗(%1), h∗(%2)) < ε. A map h∗ is G-continuous

on W if and only if it is G-continuous at every b ∈ W.

Proposition 6.1.1. [67] Given that (W,G) and (W ′, G′) are G-metric spaces,
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then h∗ : W → W ′ is continuous at z ∈ W if and only h∗ is G-sequentially

continuous at z; in other words, whenever {zi} is G-convergent to z, {h∗(zi)} is

G-convergent to h∗(z).

Proposition 6.1.2. [9] Let (W,G) be a G-metric space. Then the following

claims are true:

1. G(%1, %2, %3) is simultaneously continuous in all three of its variables,

2. G(%1, %2, %2) ≤ 2G(%2, %1, %1).

Next consider the following families of subsets of a G-metric space (W,G) [56].

N(W ) = {K : K is a non-void subset of W}.

B(W ) = {K : K is a non-void bounded subset of W}.

CL(W ) = {K : K is a non-void closed subset of W}.

CB(W ) = {K : K is a non-void closed and bounded subset of W}.

CG(W ) = {K : K is a non-void compact subset of W}.

Remark 6.1.1. [47] Let (W,G) be a G-metric space. A mapping HG : CB(W )×
CB(W )× CB(W )→ R[+] defined as

HG(D,E, F ) = max{ sup
%1∈D

G(%1, E, F ), sup
%2∈E

G(%2, F,D), sup
%3∈F

G(%3, D,E)}

for all D,E, F ∈ CB(W ), where G(%1, E, F ) = inf{G(%1, %2, %3) : %2 ∈ E, %3 ∈ F}
is called a Hausdorff G-metric on CB(W ).

If (W,G) is G-complete, then the pair (CB(W ), HG) is also an HG-complete metric

space.

Lemma 6.1.1. Let (W,G) be a G-metric space, then for all

P∗,Q∗,R∗,S∗,U∗,V∗ ∈ CG(W ), the following conditions are true:

(a) If Q∗ ⊆ R∗, then sup
k∈P∗

G(k,R∗,R∗) ≤ sup
k∈P∗

G(k,Q∗,Q∗);

(b) sup
t∈P∗∪Q∗

G(t,R∗,R∗) = max{ sup
k∈P∗

G(k,R∗, R∗), sup
`∈Q∗

G(`,R∗,R∗)};

(c) HG(P∗ ∪Q∗,R∗ ∪ S∗,U∗ ∪ V∗) ≤ max{H∗G(P∗,R∗,U∗), HG(Q∗,S∗,V∗)}.

Proof. (a) Since Q∗ ⊆ R∗, for all k ∈ P∗, we have

G(k,R∗,R∗) = inf{G(k, µ, µ) : µ ∈ R∗}

≤ inf{G(k, `, `) : ` ∈ Q∗} = G (k,Q∗,Q∗) ,
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this implies that

sup
k∈P∗

G(k,R∗,R∗) ≤ sup
k∈P∗

G(k,Q∗,Q∗).

(b) Note that

sup
t∈P∗∪Q∗

G(t,R∗,R∗) = max{sup{G (t,R∗,R∗) : t ∈ P∗},

sup{G (t,R∗,R∗) : t ∈ Q∗}}

= max{ sup
k∈P∗

G(k,R∗,R∗), sup
`∈Q∗

G (`,R∗,R∗)}.

(c) We observe that

sup
t∈P∗∪Q∗

G(t,R∗ ∪ S∗,U∗ ∪ V∗)

≤ max{ sup
k∈P∗

G(k,R∗ ∪ S∗,U∗ ∪ V∗), sup
`∈Q∗

G(`,Q∗ ∪ S∗,U∗ ∪ V∗)} (from (b))

≤ max{ sup
k∈P∗

G(k,R∗,U∗), sup
`∈Q∗

G(`,S∗,V∗)} (from (a))

≤ max

{
max{ sup

k∈P∗
G(k,R∗,U∗), sup

µ∈R∗
G(µ,P∗,U∗)},

max{sup
`∈Q∗

G(`,S∗,V∗), sup
η∈S∗

G(η,Q∗,V∗)}
}

= max {HG (P∗,R∗,U∗) , HG (Q∗,S∗,V∗)} .

Similarly,

sup
v∈R∗∪S∗

G(v,Q∗ ∪ P∗,U∗ ∪ V∗) ≤ max {HG (P∗,R∗,U∗) , HG (Q∗,S∗, V∗)} .

Hence

HG(P∗ ∪Q∗,R∗ ∪ S∗,U∗ ∪ V∗) = max

{
sup

v∈P∗∪ Q∗
G(v,R∗ ∪ S∗,U∗ ∪ V∗),

sup
t∈R∗∪S∗

G(t,P∗ ∪Q∗,U∗ ∪ V∗)
}

≤ max {HG (P∗,R∗,U∗) , HG (Q∗,S∗,V∗)} .

Mustafa et al. [71] obtained the following useful result of a unique fixed point of

generalized G-contraction on W in G-metric space (W,G).

Theorem 6.1.1. [71] In a complete G-metric space (W,G), let h∗ : W → W be
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a generalized G-contraction on W , that is, for all %1, %2, %3 ∈ W, either

G (h∗%1, h
∗%2, h

∗%3) ≤ κ1G (%1, %2, %3) + κ2G (%1, h
∗%1, h

∗%1) + κ3G (%2, h
∗%2, h

∗%2)

+κ4G (%3, h
∗%3, h

∗%3)

or

G (h∗%1, h
∗%2, h

∗%3) ≤ κ1G (%1, %2, %3) + κ2G (%1, %1, h
∗%1) + κ3G (%2, %2, h

∗%2)

+κ4G (%3, %3, h
∗%3) ,

where κj ≥ 0 for j ∈ {1, 2, 3, 4} with 0 ≤ κ1 + κ2 + κ3 + κ4 < 1. Then h∗ has

a unique fixed point, ũ in W . Moreover, for any choice v0 ∈ W, the sequence

of iterates {v0, h
∗v0, (h

∗)2v0, (h
∗)3v0, ...} converges to ũ. Furthermore, h∗ is G-

continuous.

Theorem 6.1.2. In a G-metric space (W,G) consider a G-contraction, h∗ : W →
W . Then

a) h∗ maps elements in CG(W ) to elements in CG(W ).

b) If for any R∗ ∈ CG(W ),

h∗(R∗) = {h∗(%1) : %1 ∈ R∗},

then h∗ : CG(W )→ CG(W ) is a G -contraction on (CG(W ), HG).

Proof. (a) We observe that every generalized contraction mapping is continuous.

Moreover, under every continuous map h∗ : W → W , the image of a compact set

is also compact, that is, if

R∗ ∈ CG(W ), then h∗(R∗) ∈ CG(W ).

(b) Let Q∗,R∗,S∗ ∈ CG(W ) and h∗ : W → W be a generalized contraction

mapping, then

G (h∗%1, h
∗ (R∗) , h∗ (S∗)) = inf{G (h∗%1, h

∗%2, h
∗%3) : %2 ∈ R∗, %3 ∈ S∗}

≤ inf{κG (%1, %2, %3) : %2 ∈ R∗, %3 ∈ S∗}

= κ inf{G (%1, %2, %3) : %2 ∈ R∗, %3 ∈ S∗}

= κG (%1,R∗,S∗) ,
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similarly

G (h∗%3, h
∗ (R∗) , h∗ (Q∗)) = inf{G (h∗%3, h

∗%2, h
∗%1) : %2 ∈ R∗, %1 ∈ Q∗}

≤ inf{κG (%3, %2, %1) : %2 ∈ R∗, %1 ∈ Q∗}

= κ inf{G (%3, %2, %1) : %2 ∈ R∗, %1 ∈ Q∗}

= κG (%3,R∗,Q∗) ,

and

G (h∗%2, h
∗ (Q∗) , h∗ (S∗)) = inf{G (h∗%2, h

∗%1, h
∗%3) : %1 ∈ Q∗, %3 ∈ S∗}

≤ inf{κG (%2, %1, %3) : %1 ∈ Q∗, %3 ∈ S∗}

= κ inf{G (%2, %1, %3) : %1 ∈ Q∗, %3 ∈ S∗}

= κG (%2,Q∗,S∗) .

Now

HG (h∗ (R∗) , h∗ (S∗) , h∗ (Q∗))

= max{supG (h∗%1, h
∗ (R∗) , h∗ (S∗)) , supG (h∗%3, h

∗ (R∗) , h∗ (Q∗)) ,

supG (h∗%2, h
∗ (Q∗) , h∗ (S∗)) ; %1 ∈ Q∗, %3 ∈ S∗, %2 ∈ R∗}

≤ max{supκG (%1,R∗,S∗) , supκG (%3,R∗,Q∗) ,

supκG (%2,Q∗,S∗) ; %1 ∈ Q∗, %3 ∈ S∗, %2 ∈ R∗}

= κmax{supG (%1,R∗,S∗) , supG (%3,R∗,Q∗) ,

supG (%2,Q∗,S∗) ; %1 ∈ Q∗, %3 ∈ S∗, %2 ∈ R∗}

= κHG (R∗,S∗,Q∗) .

Thus h : CG(W )→ CG(W ) is a G-contraction.

Theorem 6.1.3. Consider a G-metric space (W,G) and let {h∗a : a = 1, 2, ..., q}
be a finite family of G-contractions on W with contraction constants κ1, κ2, ..., κq,

respectively. Define Ψ : CG(W )→ CG(W ) by

Ψ(R∗) = h∗1(R∗) ∪ h∗2(R∗) ∪ · · · ∪ h∗q(R∗)

= ∪qa=1h
∗
a(R∗),

for every R∗ ∈ CG(W ). Then Ψ is also a G -contractive mapping on CG(W ) with

contraction constant κ = max{κ1, κ2, ..., κq}.

Proof. We demonstrate the assertion for q = 2. Let h∗1, h
∗
2 : W → W be two
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contractions. Take R∗,S∗,Q∗ ∈ CG(W ). From Lemma 6.1.1 (c), we have

HG(Ψ(R∗),Ψ(S∗),Ψ(Q∗)) = HG(h∗1(R∗) ∪ h∗2(R∗),

h∗1(S∗) ∪ h∗2(S∗), h∗1(Q∗) ∪ h∗2(Q∗))

≤ max{HG(h∗1(R∗), h∗1(S∗), h∗1(Q∗)),

HG(h∗2(R∗), h∗2(S∗), h∗2(Q∗))}

≤ max{κ1HG(R∗,S∗,Q∗), κ2HG(R∗,S∗,Q∗)}

≤ κHG(R∗,S∗,Q∗),

where κ = max{κ1, κ2}.

Theorem 6.1.4. In a complete G-metric space (W,G), let {h∗a : a = 1, 2, ..., q} be

a finite family of G-contraction mappings on W. Define a mapping Ψ on CG(W )

by

Ψ(R∗) = h∗1(R∗) ∪ h∗2(R∗) ∪ · · · ∪ h∗q(R∗)

= ∪qa=1h
∗
a(R∗),

for each R∗ ∈ CG(W ). Then

(i) Ψ : CG(W )→ CG(W ).

(ii) Ψ has exactly one fixed point Ũ1 ∈ CG(W ), that is, Ũ1 = Ψ(Ũ1) =

∪qa=1h
∗
a(Ũ1).

(iii) for any set R∗0 ∈ CG(W ), the sequence

{R∗0,Ψ (R∗0) ,Ψ2 (R∗0) , ...}

converges to Ũ1.

Proof. (i) Since each h∗a is a G-contraction mapping, the conclusion follows, from

the definition of Ψ and Theorem 6.1.2.

(ii) Using Theorem 6.1.3 we note that Ψ : CG(W ) → CG(W ) is also a G-

contraction mapping. Thus if (W,G) is a complete G-metric space, then

(CG(W ), HG) is complete. Consequently, we deduce (ii) and (iii) from Theo-

rem 6.1.2.
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Example 6.1.3. Consider W = [0, 1] and let

G(w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|}

be a G-metric on W. Define h∗1, h
∗
2, h
∗
3 : W → W by

h∗1(w1) =


w1

50
if 0 ≤ w1 <

1
2

w1

48
if 1

2
≤ w1 ≤ 1,

h∗2(w1) =


w1

46
if 0 ≤ w1 <

1
2

w1

44
if 1

2
≤ w1 ≤ 1,

h∗3(w1) =


w1

42
if 0 ≤ w1 <

1
2

w1

40
if 1

2
≤ w1 ≤ 1.

Then, clearly {h∗a : a = 1, 2, 3} is a finite family of G-contraction mappings

on W. We define a map Ψ : CG(W ) → CG(W ) by Ψ(R∗) = h∗1(R∗) ∪ h∗2(R∗) ∪
h∗3(R∗) for R∗ ∈ CG(W ). Then there exists a unique set Ũ1 = {0} in CG(W )

that satisfies Ψ
(
Ũ1

)
= Ũ1. Moreover, for any set R∗0 ∈ CG(W ), the sequence

{R∗0,Ψ (R∗0) ,Ψ2 (R∗0) , ...} converges to Ũ1.

Definition 6.1.4. Let (W,G) be a G-metric space. If h∗a : W → W , a = 1, 2, ..., q

areG-contraction mappings, then {W ;h∗a, a = 1, 2, · · · , q} is aG-iterated function

system (G -IFS).

It follows that the G-iterated function system is composed of a G-metric space

and a finite family of G-contractions on W.

Definition 6.1.5. Let (W,G) be a G -metric space with R∗ ∈ CG(W ), then R∗

is called an attractor of the G-iterated function system if

(i) Ψ(R∗) = R∗ and

(ii) there exists an open set V ∗1 ⊆ W such that R∗ ⊆ V ∗1 and lim
a→∞

Ψa( S∗) = R∗

for any compact set S∗ ⊆ V ∗1 , where the limit is taken with respect to the

G-Hausdorff metric.

The maximal open set V ∗1 such that (ii) is satisfied is known as a basin of

attraction.
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6.2. Generalized Iterated Function System in G-metric Spaces

Some results on generalized iterated function system for multi-valued mapping in

a metric space appear in [35]. We discuss a generalized iterated function system

in the context of G-metric spaces.

Definition 6.2.1. In a G-metric space (W,G), let f ∗, g∗, h∗ : W → W be three

self-mappings. (f ∗, g∗, h∗) is a triplet of generalized G-contraction mappings if

G (f ∗%1, g
∗%2, h

∗%3) ≤ λG (%1, %2, %3)

for all %1, %2, %3 ∈ W, where λ ∈ [0, 1).

Theorem 6.2.1. Consider a G-metric space (W,G) and let f ∗, g∗, h∗ : W → W

be continuous mappings. If the triplet (f ∗, g∗, h∗) is a generalized G-contraction

with λ ∈ [0, 1). Then

(1) the elements in CG(W ) are mapped to elements in CG(W ) under f ∗, g∗ and

h∗;

(2) if for an arbitrary J∗ ∈ CG(W ), the mappings f ∗, h∗, g∗ : CG(W ) → CG(W )

are defined as

f ∗(J∗) = {f ∗(%1) : %1 ∈ J∗},

g∗(J∗) = {g∗(%2) : %2 ∈ J∗},

h∗(J∗) = {h∗(%3) : %3 ∈ J∗},

then the triplet (f ∗, g∗, h∗) is a generalized G-contraction on (CG(W ), HG).

Proof. (1) Since f ∗ is a continuous mapping and the image of a compact subset

under a continuous mapping, f ∗ : W → W is compact, then

J∗ ∈ CG(W ) implies that f ∗(J∗) ∈ CG(W ).

Similarly,

J∗ ∈ CG(W ) implies that g∗(J∗) ∈ CG(W ) and h∗(J∗) ∈ CG(W ).

(2) Let Q∗,R∗,N ∗ ∈ CG(W ). Since the triplet (f ∗, g∗, h∗) consists of generalized

G-contraction mappings on W , then we have

G (f ∗%1, g
∗%2, h

∗%3) ≤ λG (%1, %2, %3) for all %1, %2, %3 ∈ W,
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where λ ∈ [0, 1).

Now

G (f ∗%1, g
∗ (R∗) , h∗ (N ∗)) = inf{G (f ∗%1, g

∗%2, h
∗%3) : %2 ∈ R∗, %3 ∈ N ∗}

≤ inf{λG (%1, %2, %3) : %2 ∈ R∗, %3 ∈ N ∗}

= λG (%1,R∗,N ∗) .

In the same manner,

G (g∗%2, f
∗ (Q∗) , h∗ (N ∗)) = inf{G (g∗%2, f

∗%1, h
∗%3) : %1 ∈ Q∗, %3 ∈ N ∗}

≤ inf{λG (%2, %1, %3) : %1 ∈ Q∗, %3 ∈ N ∗}

= λG (%2,Q∗,N ∗)

and

G (h∗%3, f
∗ (Q∗) , g∗ (R∗)) = inf{G (h∗%3, f

∗%1, g
∗%3) : %1 ∈ Q∗, %2 ∈ R∗}

≤ inf{λG (%3, %1, %2) : %1 ∈ Q∗, %2 ∈ R∗}

= λG (%3,Q∗,R∗) .

Now

HG (f ∗ (Q∗) , g∗ (R∗) , h∗ (N ∗))

= max{ sup
%1∈Q∗

G(f ∗%1, g
∗ (R∗) , h∗ (N ∗)),

sup
%2∈R∗

G(g∗%2, f
∗ (Q∗) , h∗ (N ∗)), sup

%3∈N ∗
G(h∗%3, f

∗ (Q∗) , g∗ (R∗))}

≤ max{ sup
%1∈Q∗

λG(%1,R∗,N ∗), sup
%2∈R∗

λG(%2,Q∗,N ∗), sup
%3∈N ∗

λG(%3,Q∗,R∗)}

= λmax{ sup
%1∈Q∗

G(%1,R∗,N ∗), sup
%2∈Q∗

G(%2,Q∗,N ∗), sup
%3∈N ∗

G(%3,Q∗,R∗)}

= λHG (Q∗,R∗,N ∗) .

Hence, (f ∗, g∗, h∗) is a triplet of generalized G-contraction mappings on

(CG(W ), HG).

Proposition 6.2.1. In a G-metric space (W,G), suppose the mappings

f ∗a , g
∗
a, h

∗
a : W → W for a = 1, 2, · · · , q are continuous and satisfy

G (f ∗a%1, g
∗
a%2, h

∗
a%3) ≤ λaG (%1, %2, %3) for all %1, %2, %3 ∈ W,

where λa ∈ [0, 1) for each a ∈ {1, 2, · · · , q} . Then the mappings Υ,Ψ,Φ :
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CG(W )→ CG(W ) defined as

Υ(Q∗) = f ∗1 (Q∗) ∪ f ∗2 (Q∗) ∪ · · · ∪ f ∗q (Q∗)

= ∪qa=1f
∗
a (Q∗), for each Q∗ ∈ CG(W ),

Ψ(R∗) = g∗1(R∗) ∪ g∗2(R∗) ∪ · · · ∪ gq(R∗)

= ∪qa=1g
∗
a(R∗), for each R∗ ∈ CG(W )

and

Φ(N ∗) = h∗1(N ∗) ∪ h∗2(N ∗) ∪ · · · ∪ h∗q(N ∗)

= ∪qa=1h
∗
a(N ∗), for each N ∗ ∈ CG(W )

also satisfy

HG (ΥQ∗,ΨR∗,ΦN ∗) ≤ λ∗HG (Q∗,R∗,N ∗) for all Q∗,R∗,N ∗ ∈ CG(W ),

where λ∗ = max{λa : a = 1, 2, ..., q}, that is, the triplet (Υ,Ψ,Φ) is a generalized

G-contraction on CG (W ).

Proof. We give a proof for q = 2. Let f ∗a , g
∗
a, h

∗
a, : W → W, a ∈ {1, 2} be

self-mappings such that (f ∗1 , g
∗
1, h

∗
1) and (f ∗2 , g

∗
2, h

∗
2) are triplets of generalized G-

contractions. For Q∗,R∗,N ∗ ∈ CG(W ) and from Lemma 6.1.1 (c),

HG(Υ(Q∗),Ψ (R∗) ,Φ(N ∗)) = HG(f ∗1 (Q∗) ∪ f ∗2 (Q∗), g∗1(R∗) ∪ g∗2(R∗),

h∗1(N ∗) ∪ h∗2(N ∗))

≤ max{HG(f ∗1 (Q∗), g∗1(R∗), h∗1(N ∗)),

HG(f ∗2 (Q∗), g∗2(R∗), h∗2(N ∗))}

≤ max{λ1HG(Q∗,R∗,N ∗), λ2HG(Q∗,R∗,N ∗)}

≤ λ∗HG(Q∗,R∗,N ∗).

Definition 6.2.2. In a G-metric space (W,G), let Υ,Ψ,Φ : CG(W ) → CG(W ).

The mappings (Υ,Ψ,Φ) are called

(I) generalized G-Hutchinson contractive operators (type I) if for any
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Q∗,R∗,N ∗ ∈ CG(W ),

HG(Υ(Q∗),Ψ (R∗) ,Φ(N ∗)) ≤ AΥ,Ψ,Φ(Q∗,R∗,N ∗)

holds, where

AΥ,Ψ,Φ(Q∗,R∗,N ∗) = αHG(Q∗,R∗,N ∗) + βHG(Q∗,Υ(Q∗),Υ(Q∗))

+γHG(R∗,Ψ (R∗) ,Ψ (R∗)) + ηHG(N ∗,Φ (N ∗) ,Φ (N ∗)),

with α, β, γ, η ≥ 0 and α + β + γ + η < 1.

(II) generalized G-Hutchinson contractive operators (type II) if for any

Q∗,R∗,N ∗ ∈ CG(W ),

HG(Υ(Q∗),Ψ (R∗) ,Φ(N ∗)) ≤ EΥ,Ψ,Φ(Q∗,R∗,N ∗)

holds, where

EΥ,Ψ,Φ(Q∗,R∗,N ∗) = λ1HG(Q∗,R∗,N ∗) + λ2[HG(Q∗,Q∗,Υ(Q∗))

+HG(R∗,R∗,Ψ (R∗)) +HG(N ∗,N ∗,Φ (N ∗))]

+λ3[HG(Υ(Q∗),R∗,N ∗) +HG(Q∗,Ψ (R∗) ,N ∗)

+HG(Q∗,R∗,Φ (N ∗))],

with λj ≥ 0 for j ∈ {1, 2, 3} and λ1 + 3λ2 + 4λ3 < 1.

Note that if the mappings (Υ,Ψ,Φ) defined as in Proposition 6.2.1 are gen-

eralized G-contractions on CG (W ), then (Υ,Ψ,Φ) is a triplet of generalized G-

Hutchinson contractive operators, but the converse is not true.

Definition 6.2.3. In a complete G-metric space (W,G), let f ∗a , g
∗
a, h

∗
a : W → W ,

a = 1, 2, ..., q be continuous mappings such that each triplet (f ∗a , g
∗
a, h

∗
a) for a =

1, 2, ..., q is a generalized G-contraction, then {W ; (f ∗a , g
∗
a, h

∗
a) , a = 1, 2, · · · , q} is

called the generalized G-iterated function system.

As a consequence, the generalized G-iterated function system consists of a G-

metric space and a finite collection of generalized G-contraction mappings on

W.

Definition 6.2.4. Let (W,G) be a complete G-metric space and Ũ1 ⊆ W a non-

void compact set. Then Ũ1 is the common attractor of the mappings Υ,Ψ,Φ :

CG(W )→ CG(W ) if
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i) Υ(Ũ1) = Ψ(Ũ1) = Φ(Ũ1) = Ũ1 and

ii) there exists an open set V∗1 ⊆ W such that Ũ1 ⊆ V∗1 and lim
a→+∞

Υa(Q∗) =

lim
a→+∞

Ψa(R∗) = lim
a→+∞

Φa(N ∗) = Ũ1 for any compact sets Q∗,R∗,N ∗ ⊆ V∗1 ,

where the limit is taken relative to the G-Hausdorff metric.

6.3. Generalized G-Hutchinson contractive operators in

G-metric spaces

We state and prove some theorems on the existence and uniqueness of a common

attractor of generalized G-Hutchinson contractive operators in the framework of

G-metric spaces.

Theorem 6.3.1. In a complete G-metric space (W,G), let {W ; (f ∗a , g
∗
a, h

∗
a), a =

1, 2, · · · , q} be the generalized G -iterated function system. Define Υ,Ψ,Φ :

CG(W )→ CG(W ) by

Υ(Q∗) = f ∗1 (Q∗) ∪ f ∗2 (Q∗) ∪ · · · ∪ f ∗q (Q∗)

= ∪qa=1f
∗
a (Q∗),

Ψ(R∗) = g∗1(R∗) ∪ g∗2(R∗) ∪ · · · ∪ g∗q (R∗)

= ∪qa=1ga(R∗),

and

Φ(N ∗) = h∗1(N ∗) ∪ h∗2(N ∗) ∪ · · · ∪ h∗q(N ∗)

= ∪qa=1h
∗
a(N ∗)

for Q∗,R∗,N ∗ ∈ CG(W ). If the mappings (Υ,Ψ,Φ) are a triplet of generalized G-

Hutchinson contractive operators (type I), then Υ,Ψ and Φ have a unique common

attractor Ũ1 ∈ CG(W ), that is,

Ũ1 = Υ(Ũ1) = Ψ(Ũ1) = Φ(Ũ1).

Additionally, for any arbitrarily chosen initial set R∗0 ∈ CG(W ), the sequence

{R∗0,Υ (R∗0) ,ΨΥ (R∗0) ,ΦΨΥ (R∗0) ,ΥΦΨΥ (R∗0) , ...}

of compact sets converges to the unique common attractor Ũ1.

Proof. We show that any attractor of Υ is an attractor of Ψ and Φ. To that
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end, we assume that Ũ1 ∈ CG(W ) is such that Υ(Ũ1) = Ũ1. We need to show

that Ũ1 = Ψ(Ũ1) = Φ(Ũ1). As the mappings (Υ,Ψ,Φ) are a triplet of generalized

G-Hutchinson contractive operators (type I), we get

HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)) = HG(Υ(Ũ1),Ψ(Ũ1),Φ(Ũ1))

≤ αHG(Ũ1, Ũ1, Ũ1) + βHG(Ũ1,Υ(Ũ1),Υ(Ũ1))

+γHG(Ũ1,Ψ(Ũ1),Ψ(Ũ1)) + ηHG(Ũ1,Φ(Ũ1),Φ(Ũ1))

= γHG(Ũ1,Ψ(Ũ1),Ψ(Ũ1)) + ηHG(Ũ1,Φ(Ũ1),Φ(Ũ1))

≤ (γ + η)HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)),

thus

HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)) ≤ λHG(Ũ1,Ψ(Ũ1),Φ
(
Ũ1

)
),

where λ = γ + η < 1, which implies that HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)) = 0 and so

Ũ1 = Ψ(Ũ1) = Φ(Ũ1). In an analogous manner, for Ũ1 = Φ(Ũ1) or for Ũ1 = Ψ(Ũ1),

we obtain that Ũ1 is the common attractor of Υ, Ψ and Φ.

We proceed by showing that Υ, Ψ and Φ have a unique common attractor. Let

R∗0 ∈ CG(W ) be chosen randomly. Define a sequence {R∗a} by R∗3a+1 = Υ(R∗3a),
R∗3a+2 = Ψ(R∗3a+1) and R∗3a+3 = Φ(R∗a+2), a = 0, 1, 2, · · · . If R∗a = R∗a+1 for

some a, with a = 3n, then Ũ1 = R∗3a is an attractor of Υ and from the Proof

above, Ũ1 is a common attractor for Υ, Ψ and Φ. The same is true for a = 3n+ 1

or a = 3n+ 2. We assume that R∗a 6= R∗a+1 for all a ∈ N, then

HG(R∗3a+1,R∗3a+2,R∗3a+3)

= HG(Υ(R∗3a),Ψ
(
R∗3a+1

)
,Φ
(
R∗3a+2

)
)

≤ αHG(R∗3a,R∗3a+1,R∗3a+2) + βHG(R∗3a,Υ(R∗3a),Υ(R∗3a))

+γHG(R∗3a+1,Ψ
(
R∗3a+1

)
,Ψ
(
R∗3a+1

)
) + ηHG(R∗3a+2,Φ

(
R∗3a+2

)
,Φ
(
R∗3a+2

)
)

= αHG(R∗3a,R∗3a+1,R∗3a+2) + βHG(R∗3a,R∗3a+1,R∗3a+1)

+γHG(R∗3a+1,R∗3a+2,R∗3a+2) + ηHG(R∗3a+2,R∗3a+3,R∗3a+3)

≤ αHG(R∗3a,R∗3a+1,R∗3a+2) + βHG(R∗3a,R∗3a+1,R∗3a+2)

+γHG(R∗3a+1,R∗3a+2,R∗3a+3) + ηHG(R∗3a+1,R∗3a+2,R∗3a+3).

Thus, we have

(1− γ − η)HG(R∗3a+1,R∗3a+2,R∗3a+3) ≤ (α + β)HG(R∗3a,R∗3a+1,R∗3a+2).

Hence,

HG(R∗3a+1,R∗3a+2,R∗3a+3) ≤ λHG(R∗3a,R∗3a+1,R∗3a+2),
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where λ =
α + β

1− γ − η
, with 0 < λ < 1. Similarly, one can show that

HG(R∗3a+2,R∗3a+3,R∗3a+4) ≤ λHG(R∗3a+1,R∗3a+2,R∗3a+3)

and

HG(R∗3a+3,R∗3a+4,R∗3a+5) ≤ λHG(R∗3a+2,R∗3a+3,R∗3a+4).

Thus, for all a,

HG(R∗a+1,R∗a+2,R∗a+3) ≤ λHG

(
R∗a,R∗a+1,R∗a+2

)
≤ · · · ≤ λa+1HG (R∗0,R∗1,R∗2) .

Now, for l,m, a, with l > m > a,

HG(R∗a,R∗m,R∗l ) ≤ HG(R∗a,R∗a+1,R∗a+1) +HG(R∗a+1,R∗a+2,R∗a+2)

+ · · ·+HG(R∗l−1,R∗l−1,Rl)

≤ HG(R∗a,R∗a+1,R∗a+2) +HG(R∗a+1,R∗a+2,R∗a+3)

+ · · ·+HG(R∗l−2,R∗l−1,R∗l )

≤ [λa + λa+1 + · · ·+ λl−2]HG (R∗0,R∗1,R∗2)

≤ λa

1− λ
HG(R∗0,R∗1,R∗2).

Note that if l = m > a, we get identical results and if l > m = a, then

HG(R∗a,R∗m,R∗l ) ≤
λa−1

1− λ
HG(R∗0,R∗1,R∗2).

and so lim
a,m,l→+∞

HG(R∗a,R∗m,R∗l ) = 0. Thus {R∗a} is a G-Cauchy sequence in

CG(W ). Since (CG(W ), HG) is a complete G-metric space, there exists Ũ1 ∈
CG(W ) such that lim

a→+∞
R∗a = Ũ1, that is, lim

a→+∞
HG(R∗a,R∗a, Ũ1) = 0.

Assume that Υ(Ũ1) = Ũ1, otherwise, we see that

HG(Υ(Ũ1),R∗3a+2,R∗3a+3)

= HG(Υ(Ũ1),Ψ
(
R∗3a+1

)
,Φ
(
R∗3a+2

)
)

≤ αHG(Ũ1,R∗3a+1,R∗3a+2) + βHG(Ũ1,Υ(Ũ1),Υ(Ũ1))

+γHG(R∗3a+1,Ψ
(
R∗3a+1

)
,Ψ
(
R∗3a+1

)
) + ηHG(R∗3a+2,Φ

(
R∗3a+2

)
,Φ
(
R∗3a+2

)
)

= αHG(Ũ1,R∗3a+1,R∗3a+2) + βHG(Υ(Ũ1), Ũ1,R∗3a+1)

+γHG(R∗3a+1,R∗3a+2,R∗3a+2) + ηHG(R∗3a+2,R∗3a+3,R∗3a+3).
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So lim
a→+∞

HG(Υ(Ũ1),R∗3a+2,R∗3a+3) = HG(Υ(Ũ1), Ũ1, Ũ1), that is to say

HG(Υ(Ũ1), Ũ1, Ũ1) ≤ βHG(Υ(Ũ1), Ũ1, Ũ1),

which is a contradiction as β < 1. Thus Υ(Ũ1) = Ũ1. Following the conclusion

above, we conclude that Ũ1 is the common attractor of Υ, Ψ and Φ.

For uniqueness, assume that Ũ2 is also a common attractor of Υ, Ψ and Φ. Then

HG(Ũ1, Ũ2, Ũ2) = HG(Υ(Ũ1),Ψ(Ũ2),Φ(Ũ2))

≤ αHG(Ũ1, Ũ2, Ũ2) + βHG(Ũ1,Υ(Ũ1),Υ(Ũ1))

+γHG(Ũ2,Ψ(Ũ2),Ψ(Ũ2)) + ηHG(Ũ2,Φ(Ũ2),Φ(Ũ2))

= αHG(Ũ1, Ũ2, Ũ2) + βHG(Ũ1, Ũ1, Ũ1)

+γHG(Ũ2, Ũ2, Ũ2) + ηHG(Ũ2, Ũ2, Ũ2)

= αHG(Ũ2, Ũ2, Ũ2)

from which we conclude that HG(Ũ1, Ũ2, Ũ2) = 0 and thus Ũ1 = Ũ2. Hence Ũ1 is

a unique common attractor of Υ,Ψ and Φ.

Theorem 6.3.2. (Generalized Collage I) In a complete G-metric space

(W,G), let {W ; (f ∗a , g
∗
a, h

∗
a), a = 1, 2, · · · , q} be the generalized G-iterated func-

tion system. Define Υ,Ψ,Φ : CG(W )→ CG(W ) by

Υ(Q∗) = ∪qa=1f
∗
a (Q∗),

Ψ(R∗) = ∪qa=1g
∗
a(R∗),

and

Φ(N ∗) = ∪qa=1h
∗
a(N ∗)

for Q∗,R∗,N ∗ ∈ CG(W ). Suppose that the mappings (Υ,Ψ,Φ) are a triplet of

generalized G-Hutchinson contractive operators (type I) and Ũ1 ∈ Cp(W ) is the

common attractor for Υ, Ψ and Φ. Then for any given ε > 0 and R∗ ∈ CG(W )

the following hold:

(a) HG(R∗,Υ(R∗),Υ(R∗)) ≤ ε, implies that

HG(R∗, Ũ1, Ũ1) ≤ ε (1 + β)

1− α
.
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(b) HG(R∗,Ψ(R∗),Ψ(R∗)) ≤ ε, implies that

HG(R∗, Ũ1, Ũ1) ≤ ε (1 + γ)

1− α
.

(c) HG(R∗,Φ(R∗),Φ(R∗)) ≤ ε, implies that

HG(R∗, Ũ1, Ũ1) ≤ ε (1 + η)

1− α
.

Proof. To prove (a): Let HG(R∗,Υ(R∗),Υ(R∗)) ≤ ε for any R∗ ∈ CG(W ), then

HG(R∗, Ũ1, Ũ1) ≤ HG(R∗,Υ(R∗),Υ(R∗)) +HG(Υ(R∗), Ũ1, Ũ1)

= HG(R∗,Υ(R∗),Υ(R∗)) +HG(Υ(R∗),Ψ(Ũ1),Φ(Ũ1))

≤ ε+ αHG(R∗, Ũ1, Ũ1) + βHG(R∗,Υ(R∗),Υ(R∗))

+γHG(Ũ1,Ψ(Ũ1),Ψ(Ũ1)) + ηHG(Ũ1,Φ(Ũ1),Φ(Ũ1))

= ε+ αHG(R∗, Ũ1, Ũ1) + βHG(R∗,Υ(R∗),Υ(R∗)),

which further implies that

HG(R∗, Ũ1, Ũ1) ≤ ε (1 + β)

1− α
.

To prove (b): Assume that HG(R∗,Ψ (R∗) ,Ψ(R∗)) ≤ ε for any R∗ ∈ CG(W ).

Then,

HG(R∗, Ũ1, Ũ1) ≤ HG(R∗,Ψ(R∗),Ψ(R∗)) +HG(Ψ(R∗), Ũ1, Ũ1)

≤ ε+HG(Υ(U1),Ψ(R∗),Φ(Ũ1))

≤ ε+ αHG(Ũ1,R∗, Ũ1) + βHG(Ũ1,Υ(Ũ1),Υ(Ũ1))

+γHG(R∗,Ψ(R∗),Ψ(R∗)) + ηHG(Ũ1,Φ(Ũ1),Φ(Ũ1))

= ε+ αHG(R∗, Ũ1, Ũ1) + γHG(R∗,Ψ(R∗),Ψ(R∗)),

which further implies that

HG(R∗,R∗, Ũ1) ≤ ε (1 + γ)

1− α
.

To prove (c): Assuming that HG(R∗,Φ(R∗),Φ(R∗)) ≤ ε for any R∗ ∈ CG(W ),
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we have

HG(R∗, Ũ1, Ũ1) ≤ HG(R∗,Φ(R∗),Φ(R∗)) +HG(Φ(R∗), Ũ1, Ũ1)

≤ ε+HG(Υ(Ũ1),Ψ(Ũ1),Φ(R∗))

≤ ε+ αHG(Ũ1, Ũ1,R∗) + βHG(Ũ1,Υ(Ũ1),Υ(Ũ1))

+γHG(Ũ1,Ψ(Ũ1),Ψ(Ũ1)) + ηHG(R∗,Φ(R∗),Φ(R))

= ε+ αHG(R∗, Ũ1, Ũ1) + ηHG(R∗,Φ(R∗),Φ(R∗)),

from which we have

HG(R∗, Ũ1, Ũ1) ≤ ε (1 + η)

1− α
.

Theorem 6.3.3. (Generalized Collage II) In a complete G-metric space

(W,G), suppose {W ; (f ∗a , g
∗
a, h

∗
a), a = 1, 2, · · · , q} is a generalized G-iterated func-

tion system with contractive constant λ ∈ [0, 1). Given any R∗ ∈ CG(W ) and

ε > 0 such that either

HG(R∗,R∗,Υ(R∗)) ≤ ε

or

HG(R∗,R∗,Ψ(R∗)) ≤ ε

or

HG(R∗,R∗,Φ(R∗)) ≤ ε,

where Υ(R∗) = ∪qa=1f
∗
k (R∗), Ψ(R∗) = ∪qa=1g

∗
a(R∗) and Φ(R∗) = ∪qa=1ha(R∗),

there exist a common attractor, Ũ1 ∈ Cp(W ) for the Hutchinson operators Υ,

Ψ and Φ, such that

HG(R∗,R∗, Ũ1) ≤ ε

1− λ
.

Proof. Assume that HG(R∗,R∗,Υ(R∗)) ≤ ε for any R∗ ∈ CG(W ), then

HG(R∗,R∗, Ũ1) ≤ HG(R∗,R∗,Υ(R∗)) +HG(Υ(R∗),Υ(R∗), Ũ1)

≤ HG(R∗,R∗,Υ(R∗)) +HG(Υ(R∗),Υ(R∗),Υ(Ũ1))

≤ ε+ λHG(R∗,R∗, Ũ1),

which further implies that

HG(R∗,R∗, Ũ1) ≤ ε

1− λ
.
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Similarly, if we assume that HG(R∗,R∗,Ψ(R∗)) ≤ ε for any R∗ ∈ CG(W ). Then,

HG(R∗,R∗, Ũ1) ≤ HG(R∗,R∗,Ψ(R∗)) +HG(Ψ(R∗),Ψ(R∗), Ũ1)

≤ HG(R∗,R∗,Ψ(R∗)) +HG(Ψ(R∗),Ψ(R∗),Ψ(Ũ1))

≤ ε+ λHG(R∗,R∗, Ũ1),

giving us

HG(R∗,R∗, Ũ1) ≤ ε

1− λ
.

Lastly by assuming that HG(R∗,R∗,Φ(R∗)) ≤ ε for any R∗ ∈ CG(W ), we get

HG(R∗,R∗, Ũ1) ≤ HG(R∗,R∗,Φ(R∗)) +HG(Φ(R∗),Φ(R∗), Ũ1)

≤ HG(R∗,R∗,Φ(R∗)) +HG(Φ(R∗),Φ(R∗),ΦŨ1))

≤ ε+ λHG(R∗,R∗, Ũ1),

from which we have

HG(R∗,R∗, Ũ1) ≤ ε

1− λ
.

Remark 6.3.1. In Theorem 6.3.1, take the collection SG(W ), of all singleton

subsets of the given space W, then SG(W ) ⊆ CG(W ). Furthermore, if we take

the mappings (f ∗a , g
∗
a, h

∗
a) = (f ∗, g∗, h∗) for each a, where f ∗ = f ∗1 , g

∗ = g∗1 and

h∗ = h∗1, then the operators (Υ,Ψ,Φ) become

(Υ(ṽ1),Ψ(ṽ2),Φ(ṽ3)) = (f ∗(ṽ1), g∗(ṽ2), h∗(ṽ3)),

for ṽ1, ṽ2, ṽ3 ∈ W.

Concequently, the following common fixed point result is established.

Corollary 6.3.1. Let {W ; (f ∗a , g
∗
a, h

∗
a) , a = 1, 2, · · · , q} be a generalized G-

iterated function system in a complete G-metric space (W,G) and define the

mappings f ∗, g∗, h∗ : W → W as in Remark 6.3.1 If some α, β, γ, η ≥ 0 exist

with α + β + γ + η < 1 such that for any ṽ1, ṽ2, ṽ3 ∈ W , the following holds

HG (f ∗ṽ1, g
∗ṽ2, h

∗ṽ3) ≤ αHG(ṽ1, ṽ2, ṽ3) + βHG(ṽ1, f
∗(ṽ1), f ∗(ṽ1))

+γHG(ṽ2, g
∗ (ṽ2) , g∗ (ṽ2)) + ηHG(ṽ3, h

∗ (ṽ3) , h∗ (ṽ3)).

Then f ∗, g∗ and h∗ have a unique common fixed point ũ1 ∈ W.

Additionally, for an arbitrary element ũ0 ∈ W , the sequence
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{ũ0, f
∗ũ0, g

∗f ∗ũ0, h
∗g∗f ∗ũ0, f

∗h∗g∗f ∗ũ0, · · · } converges to the common fixed

point of f ∗, g∗ and h∗.

Corollary 6.3.2. Let {W ; (f ∗a , g
∗
a, h

∗
a) , a = 1, 2, · · · , q} be a generalized G-

iterated function system in a complete G-metric space (W,G) and define the

mappings f ∗, g∗, h∗ : W → W as in Remark 6.3.1. If (f ∗, g∗, h∗) is a triplet

of generalized G-contraction mappings, then (Υ,Ψ,Φ) defined on CG(W ) as in

Theorem 6.3.1 has exactly one common fixed point in CG (W ) . Moreover, for any

initial set R∗0 ∈ CG (W ) , {R∗0,Υ (R∗0) ,ΨΥ (R∗0) ,ΦΨΥ (R∗0) ,ΥΦΨΥ (R∗0) , · · · }
converges to the common fixed point of Υ,Ψ and Φ.

Example 6.3.1. Let W = [0, 1] and G(w1, w2, w3) =

max{|w1 − w2| , |w2 − w3| , |w3 − w1|} be a G-metric on W. Define

f ∗a , g
∗
a, h

∗
a : W → W, a = 1, 2 by

f ∗1 (w1) =


w1

18
if 0 ≤ w1 <

1
2

w1

16
if 1

2
≤ w1 ≤ 1,

f ∗2 (w1) =


w1

14
if 0 ≤ w1 <

1
2

w1

12
if 1

2
≤ w1 ≤ 1,

g∗1(w1) =


w1

10
if 0 ≤ w1 <

1
2

w1

8
if 1

2
≤ w1 ≤ 1,

g∗2(w1) =


w1

6
if 0 ≤ w1 <

1
2

w1

4
if 1

2
≤ w1 ≤ 1,

h∗1(w1) =


w1

9
if 0 ≤ w1 <

1
2

w1

7
if 1

2
≤ w1 ≤ 1,

h∗2(w1) =


w1

5
if 0 ≤ w1 <

1
2

w1

3
if 1

2
≤ w1 ≤ 1.
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We observe that the maps f ∗1 , f
∗
2 , g

∗
1, g
∗
2, h

∗
1 and h∗2 are discontinuous. Moreover,

f ∗1 g
∗
1

(
1
2

)
= f ∗1

(
1
16

)
= 1

224
, g∗1f

∗
1

(
1
2

)
= g∗1

(
1
32

)
= 1

320
,

f ∗2 g
∗
2

(
1
2

)
= f ∗2

(
1
8

)
= 1

112
, g∗2f

∗
2

(
1
2

)
= g∗2

(
1
24

)
= 1

48
,

g∗1h
∗
1

(
1
2

)
= f ∗2

(
1
14

)
= 1

140
, h∗1g

∗
1

(
1
2

)
= f ∗2

(
1
16

)
= 1

144
,

g∗2h
∗
2

(
1
2

)
= f ∗2

(
1
6

)
= 1

36
, h∗2g2

(
1
2

)
= f ∗2

(
1
8

)
= 1

40
,

f ∗1h
∗
1

(
1
2

)
= f ∗2

(
1
14

)
= 1

252
, h∗1f

∗
1

(
1
2

)
= f ∗2

(
1
32

)
= 1

288
,

f ∗2h
∗
2

(
1
2

)
= f ∗2

(
1
6

)
= 1

84
, h∗2f

∗
2

(
1
2

)
= f ∗2

(
1
24

)
= 1

120
,

and so the mappings f ∗a , g
∗
a and h∗a for a = 1, 2 do not commute.

Now, for w1, w2, w3 ∈ [0, 1
2
], we have

G (w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|},

G (w1, f
∗
1w1, f

∗
1w1) = max{

∣∣w1 − w1

18

∣∣ , ∣∣w1

18
− w1

18

∣∣ , ∣∣w1

18
− w1

∣∣} = 17w1

18
,

G (w1, f
∗
2w1, f

∗
2w1) = max{

∣∣w1 − w1

14

∣∣ , ∣∣w1

14
− w1

14

∣∣ , ∣∣w1

14
− w1

∣∣} = 13w1

14
,

G (w2, g
∗
1w2, g

∗
1w2) = max{

∣∣w2 − w2

10

∣∣ , ∣∣w2

10
− w2

10

∣∣ , ∣∣w2

10
− w2

∣∣} = 9w2

10
,

G (w2, g
∗
2w2, g

∗
2w2) = max{

∣∣w2 − w2

6

∣∣ , ∣∣w2

6
− w2

6

∣∣ , ∣∣w2

6
− w2

∣∣} = 5w2

6
,

G (w3, h
∗
1w3, h

∗
1w3) = max{

∣∣w3 − w3

9

∣∣ , ∣∣w3

9
− y3

9

∣∣ , ∣∣w3

9
− w3

∣∣} = 8w3

9
,

G (w3, h
∗
2w3, h

∗
2w3) = max{

∣∣w3 − w3

5

∣∣ , ∣∣w3

5
− w3

5

∣∣ , ∣∣w3

5
− w3

∣∣} = 4w3

5
.

Thus

G (f ∗1w1, g
∗
1w2, h

∗
1w3)

= max{
∣∣w1

18
− w2

10

∣∣ , ∣∣w2

10
− w3

9

∣∣ , ∣∣w3

9
− w1

18

∣∣}
= 1

10
max{

∣∣5w1

9
− w2

∣∣ , ∣∣w2 − 10w3

9

∣∣ , ∣∣10w3

9
− 5w1

9

∣∣}
≤ 1

10
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
10

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

10
+ w2

10
+ w3

10

= 1
10

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 7
65

(
13w1

14

)
+ 1

9

(
9w2

10

)
+ 7

60

(
6w3

7

)
= α1G (w1, w2, w3) + β1G (w1, f

∗w1, f
∗w1) + γ1G (w2, g

∗w2, g
∗w2) + η1G (w3, h

∗w3, h
∗w3)
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and

G (f ∗2w1, g
∗
2w2, h

∗
2w3)

= max{
∣∣w1

14
− w2

6

∣∣ , ∣∣w2

6
− w3

5

∣∣ , ∣∣w3

5
− w1

14

∣∣}
= 1

6
max{

∣∣3w1

7
− w2

∣∣ , ∣∣w2 − 6w3

5

∣∣ , ∣∣6w3

5
− 3w1

7

∣∣}
≤ 1

6
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
6

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

6
+ w2

6
+ w3

6

= 1
6

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 7
39

(
13w1

14

)
+ 1

5

(
5w2

6

)
+ 5

24

(
4w3

5

)
= α2G (w1, w2, w3) + β2G (w1, f

∗w1, f
∗w1) + γ2G (w2, g

∗w2, g
∗w2) + η2G (w3, h

∗w3, h
∗w3) .

Therefore

G (f ∗aw1, g
∗
aw2, h

∗
aw3) = αG (w1, w2, w3) + βG (w1, f

∗
aw1, f

∗
aw1) + γG (w2, g

∗
kw2, g

∗
kw2)

+ηG (w3, h
∗
aw3, h

∗
aw3)

for a = 1, 2, where 0 < α + β + γ + η = 0.755 < 1 and

α = max{α1, α2} = max{ 1
10
, 1

6
} = 1

6
,

β = max{β1, β2} = max{ 1
85
, 7

39
} = 7

39
,

γ = max{γ1, γ2} = max{1
9
, 1

5
} = 1

5
,

η = max{η1, η2} = max{ 9
80
, 5

24
} = 5

24
.

For w1, w2, w3 ∈ [1
2
, 1],

G (w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|},

G (w1, f
∗
1w1, f

∗
1w1) = max{

∣∣w1 − w1

16

∣∣ , ∣∣w1

16
− w1

16

∣∣ , ∣∣w1

16
− w1

∣∣} = 15w1

16
,

G (w1, f
∗
2w1, f

∗
2w1) = max{

∣∣w1 − w1

12

∣∣ , ∣∣w1

12
− w1

12

∣∣ , ∣∣w1

12
− w1

∣∣} = 11w1

12
,

G (w2, g
∗
1w2, g

∗
1w2) = max{

∣∣w2 − w2

8

∣∣ , ∣∣w2

8
− w2

8

∣∣ , ∣∣w2

8
− w2

∣∣} = 7w2

8
,

G (w2, g
∗
2w2, g

∗
2w2) = max{

∣∣w2 − w2

4

∣∣ , ∣∣w2

4
− w2

4

∣∣ , ∣∣w2

4
− w2

∣∣} = 3w2

4
,

G (w3, h
∗
1w3, h

∗
1w3) = max{

∣∣w3 − w3

7

∣∣ , ∣∣w3

7
− y3

7

∣∣ , ∣∣w3

7
− w3

∣∣} = 6w3

7
,

G (w3, h
∗
2w3, h

∗
2w3) = max{

∣∣w3 − w3

3

∣∣ , ∣∣w3

3
− w3

3

∣∣ , ∣∣w3

3
− w3

∣∣} = 2w3

3
.
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Thus

G (f ∗1w1, g
∗
1w2, h

∗
1w3)

= max{
∣∣w1

16
− w2

8

∣∣ , ∣∣w2

8
− w3

7

∣∣ , ∣∣w3

7
− w1

16

∣∣}
= 1

8
max{

∣∣w1

2
− w2

∣∣ , ∣∣w2 − 8w3

7

∣∣ , ∣∣8w3

7
− w1

2

∣∣}
≤ 1

8
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
8

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

8
+ w2

8
+ w3

8

= 1
8

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 2
15

(
15w1

16

)
+ 1

7

(
7w2

8

)
+ 7

48

(
6w3

7

)
= α1G (w1, w2, w3) + β1G (w1, f

∗
1w1, f

∗
1w1) + γ1G (w2, g

∗
1w2, g

∗
1w2) + η1G (w3, h

∗
1w3, h

∗
1w3)

and

G (f ∗2w1, g
∗
2w2, h

∗
2w3)

= max{
∣∣w1

12
− w2

4

∣∣ , ∣∣w2

4
− w3

3

∣∣ , ∣∣w3

3
− w1

12

∣∣}
= 1

12
max{|w1 − 3w2| , |3w2 − 4w3| , |4w3 − w1|}

≤ 1
12

[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
12

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

12
+ w2

12
+ w3

12

= 1
12

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 1
11

(
11
12
w1

)
+ 1

9

(
3
4
w2

)
+ 1

8

(
2
3
w3

)
= α2G (w1, w2, w3) + β2G (w1, f

∗
2w1, f

∗
2w1) + γ2G (w2, g

∗
2w2, g

∗
2w2) + η2G (w3, h

∗
2w3, h

∗
2w3) .

Therefore

G (f ∗aw1, g
∗
aw2, h

∗
aw3) = αG (w1, w2, w3) + βG (w1, f

∗
aw1, f

∗
aw1) + γG (w2, g

∗
aw2, g

∗
aw2)

+ηG (w3, h
∗
kw3, h

∗
kw3)

for a = 1, 2 where 0 < α + β + γ + η = 0.547 < 1 and

α = max{α1, α2} = max{1
8
, 1

12
} = 1

8
,

β = max{β1, β2} = max{ 2
15
, 1

11
} = 2

15
,

γ = max{γ1, γ2} = max{1
7
, 1

9
} = 1

7
,

η = max{η1, η2} = max{ 7
48
, 1

8
} = 7

48
.
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For w1 ∈ [0, 1
2
), w2, w3 ∈ [1

2
, 1],

G (w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|},

G (w1, f
∗
1w1, f

∗
1w1) = max{

∣∣w1 − w1

18

∣∣ , ∣∣w1

18
− w1

18

∣∣ , ∣∣w1

18
− w1

∣∣} = 17w1

18
,

G (w1, f
∗
2w1, f

∗
2w1) = max{

∣∣w1 − w1

14

∣∣ , ∣∣w1

14
− w1

14

∣∣ , ∣∣w1

14
− w1

∣∣} = 13w1

14
,

G (w2, g
∗
1w2, g1w2) = max{

∣∣w2 − w2

8

∣∣ , ∣∣w2

8
− w2

8

∣∣ , ∣∣w2

8
− w2

∣∣} = 7w2

8
,

G (w2, g
∗
2w2, g

∗
2w2) = max{

∣∣w2 − w2

4

∣∣ , ∣∣w2

4
− w2

4

∣∣ , ∣∣w2

4
− w2

∣∣} = 3w2

4
,

G (w3, h
∗
1w3, h

∗
1w3) = max{

∣∣w3 − w3

7

∣∣ , ∣∣w3

7
− w3

7

∣∣ , ∣∣w3

7
− w3

∣∣} = 6w3

7
,

G (w3, h
∗
2w3, h

∗
2w3) = max{

∣∣w3 − w3

3

∣∣ , ∣∣w3

3
− w3

3

∣∣ , ∣∣w3

3
− w3

∣∣} = 2w3

3
.

Thus

G (f ∗1w1, g
∗
1w2, h

∗
1w3)

= max{
∣∣w1

18
− w2

8

∣∣ , ∣∣w2

8
− w3

7

∣∣ , ∣∣w3

7
− w1

18

∣∣}
= 1

8
max{

∣∣4w1

9
− w2

∣∣ , ∣∣w2 − 8w3

7

∣∣ , ∣∣8w3

7
− 4w1

9

∣∣}
≤ 1

8
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
8

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

8
+ w2

8
+ w3

8

= 1
8

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 9
68

(
17
18
w1

)
+ 1

7

(
7
8
w2

)
+ 7

48

(
6w3

7

)
= α1G (w1, w2, w3) + β1G (w1, f

∗
1w1, f

∗
1w1) + γ1G (w2, g

∗
1w2, g

∗
1w2) + η1G (w3, h

∗
1w3, h

∗
1w3)

and

G (f ∗2w1, g
∗
2w2, h

∗
2w3)

= max{
∣∣w1

14
− w2

4

∣∣ , ∣∣w2

4
− w3

3

∣∣ , ∣∣w3

3
− w1

14

∣∣}
= 1

14
max{

∣∣w1 − 7w2

2

∣∣ , ∣∣7w2

2
− 14w3

3

∣∣ , ∣∣14w3

3
− w1

∣∣}
≤ 1

14
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
14

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

14
+ w2

14
+ w3

14

= 1
14

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 1
13

(
13w1

14

)
+ 2

21

(
3w2

4

)
+ 3

28

(
2w3

3

)
= α2G (w1, w2, w3) + β2G (w1, f

∗
2w1, f

∗
2w1) + γ2G (w2, g

∗
2w2, g

∗
2w2) + η2G (w3, h

∗
2w3, h

∗
2w3) .

Therefore

G (f ∗aw1, g
∗
aw2, h

∗
aw3) = αG (w1, w2, w3) + βG (w1, f

∗
aw1, f

∗
aw1) + γG (w2, g

∗
aw2, g

∗
aw2)

+ηG (w3, h
∗
aw3, h

∗
aw3)
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for a = 1, 2, where 0 < α + β + γ + η = 0.546 < 1 with

α = max{α1, α2} = max{1
8
, 1

14
} = 1

8

β = max{β1, β2} = max{ 9
68
, 1

13
} = 9

68

γ = max{γ1, γ2} = max{1
7
, 2

21
} = 1

7

η = max{η1, η2} = max{ 7
48
, 3

28
} = 7

48
.

For w1, w2 ∈ [0, 1
2
) and w3 ∈ [1

2
, 1],

G (w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|},

G (w1, f
∗
1w1, f

∗
1w1) = max{

∣∣w1 − w1

18

∣∣ , ∣∣w1

18
− w1

18

∣∣ , ∣∣w1

18
− w1

∣∣} = 17w1

18
,

G (w1, f
∗
2w1, f

∗
2w1) = max{

∣∣w1 − w1

14

∣∣ , ∣∣w1

14
− w1

14

∣∣ , ∣∣w1

14
− w1

∣∣} = 13w1

14
,

G (w2, g
∗
1w2, g

∗
1w2) = max{

∣∣w2 − w2

10

∣∣ , ∣∣w2

10
− w2

10

∣∣ , ∣∣w2

10
− w2

∣∣} = 9w2

10
,

G (w2, g
∗
2w2, g

∗
2w2) = max{

∣∣w2 − w2

6

∣∣ , ∣∣w2

6
− w2

6

∣∣ , ∣∣w2

6
− w2

∣∣} = 5w2

6
,

G (w3, h
∗
1w3, h

∗
1w3) = max{

∣∣w3 − w3

7

∣∣ , ∣∣w3

7
− w3

7

∣∣ , ∣∣w3

7
− w3

∣∣} = 6w3

7
,

G (w3, h
∗
2w3, h

∗
2w3) = max{

∣∣w3 − w3

3

∣∣ , ∣∣w3

3
− w3

3

∣∣ , ∣∣w3

3
− w3

∣∣} = 2w3

3
.

Thus

G (f ∗1w1, g
∗
1w2, h

∗
1w3)

= max{
∣∣w1

18
− w2

10

∣∣ , ∣∣w2

10
− w3

7

∣∣ , ∣∣w3

7
− w1

18

∣∣}
= 1

10
max{

∣∣5w1

9
− w2

∣∣ , ∣∣w2 − 10w3

7

∣∣ , ∣∣10w3

7
− 5w1

9

∣∣}
≤ 1

10
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
10

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

10
+ w2

10
+ w3

10

= 1
10

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 9
85

(
17
18
w1

)
+ 1

9

(
9w2

10

)
+ 7

60

(
6w3

7

)
= α1G (w1, w2, w3) + β1G (w1, f

∗
1w1, f

∗
1w1) + γ1G (w2, g

∗
1w2, g

∗
1w2) + η1G (w3, h

∗
1w3, h

∗
1w3)

and

G (f ∗2w1, g
∗
2w2, h

∗
2w3)

= max{
∣∣w1

14
− w2

6

∣∣ , ∣∣w2

6
− w3

3

∣∣ , ∣∣w3

3
− w1

14

∣∣}
= 1

14
max{

∣∣w1 − 7w2

3

∣∣ , ∣∣7w2

3
− 14w3

3

∣∣ , ∣∣14w3

3
− w1

∣∣}
≤ 1

14
[max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1 + w2 + w3]

= 1
14

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ w1

14
+ w2

14
+ w3

14

= 1
14

max{|w1 − w2| , |w2 − w3| , |w3 − w1|}+ 1
13

(
13w1

14

)
+ 3

35

(
5w2

6

)
+ 3

28

(
2w3

3

)
= α2G (w1, w2, w3) + β2G (w1, f

∗
2w1, f

∗
2w1) + γ2G (w2, g

∗
2w2, g

∗
2w2) + η2G (w3, h

∗
2w3, h

∗
2w3) .
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Therefore

G (f ∗aw1, g
∗
aw2, h

∗
aw3) = αG (w1, w2, w3) + βG (w1, f

∗
aw1, f

∗
aw1) + γG (w2, g

∗
aw2, g

∗
aw2)

+ηG (w3, h
∗
aw3, h

∗
aw3)

for a = 1, 2, where 0 < α + β + γ + η = 0.426 < 1 with

α = max{α1, α2} = max{ 1
10
, 1

14
} = 1

10
,

β = max{β1, β2} = max{ 9
85
, 1

13
} = 9

85
,

γ = max{γ1, γ2} = max{1
9
, 3

35
} = 1

9
,

η = max{η1, η2} = max{ 7
60
, 3

28
} = 3

28
.

We notice that 0 is the only common fixed point of f ∗, g∗ and h∗.

Let {W ; (f ∗1 , f
∗
2 , g

∗
1, g
∗
2, h

∗
1, h
∗
2)} be the generalized G-iterated function system with

the mappings Υ,Ψ,Φ : CG(W )→ CG(W ) defined by

Υ(Q∗) = f1(Q∗) ∪ f ∗2 (Q∗),

Ψ(R∗) = g1(R∗) ∪ g2(R∗),

Φ(N ∗) = h1(N ∗) ∪ h2(N ∗)

for all Q∗,R∗,N ∗ ∈ CG(W ). From Proposition 6.2.1, we have that

HG(Υ(Q∗),Ψ(R∗),Φ(N ∗)) ≤ κHG(Q∗,R∗,N ∗),

where κ = max{0.755, 0.547, 0.546, 0.426} = 0.755. Thus, all of the conditions

of Theorem 6.3.1 are met, and additionally, for any initial set R∗0 ∈ CG(W ), the

sequence {R∗0,Υ (R∗0) ,ΨΥ (R∗0) ,ΦΨΥ (R∗0) ,ΥΦΨΥ (R∗0) , · · · } of compact sets is

convergent and has for a limit, the common attractor of Υ,Ψ and Φ.

Theorem 6.3.4. Suppose (W,G) is a complete G-metric space, and let

{W ; (f ∗a , g
∗
a, h

∗
a), a = 1, 2, · · · , q} be the generalized G -iterated function system.

Define Υ,Ψ,Φ : CG(W )→ CG(W ) by

Υ(Q∗) = f ∗1 (Q∗) ∪ f ∗2 (Q∗) ∪ · · · ∪ f ∗q (Q∗)

= ∪qa=1f
∗
a (Q∗),

Ψ(R∗) = g∗1(R∗) ∪ g∗2(R∗) ∪ · · · ∪ g∗q (R∗)

= ∪qa=1g
∗
a(R∗)
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and

Φ(N ∗) = h∗1(N ∗) ∪ h∗2(N ∗) ∪ · · · ∪ h∗q(N ∗)

= ∪qa=1h
∗
a(N ∗)

for Q∗,R∗,N ∗ ∈ CG(W ). If the mappings (Υ,Ψ,Φ) are a triplet of generalized

G -Hutchinson contractive operators (type II), then Υ,Ψ and Φ have a unique

common attractor Ũ1 ∈ CG(W ), that is,

Ũ1 = Υ(Ũ1) = Ψ(Ũ1) = Φ(U∗).

Moreover, for an arbitrarily chosen initial set R∗0 ∈ CG(W ), the sequence

{R∗0,Υ(R∗0),ΨΥ(R∗0),ΦΨΥ(R∗0),ΥΦΨΥ(R∗0), ...}

of compact sets converges to the common attractor U∗.

Proof. We show that any attractor of Υ is an attractor of Ψ and Φ. To that

end, we assume that Ũ1 ∈ CG(W ) is such that Υ(Ũ1) = Ũ1. We need to show that

Ũ1 = Ψ(Ũ1) = Φ(Ũ1). As

HG(Ũ1,Ψ(Ũ1),ΦŨ1))

= HG(Υ(Ũ1),Ψ(Ũ1),Φ(U∗))

≤ λ1HG(Ũ1, Ũ1, Ũ1) + λ2[HG(Ũ1, Ũ1,Υ(Ũ1)

+HG(Ũ1, Ũ1,Ψ(Ũ1)) +HG(Ũ1, Ũ1,Φ(Ũ1))]

+λ3[HG(Υ(Ũ1), Ũ1, Ũ1) +HG(Ũ1,Ψ(Ũ1), Ũ1)

+HG(Ũ1, Ũ1,Φ(Ũ1))]

= (λ2 + λ3)
[
HG(Ũ1,Ψ(Ũ1), Ũ1) +HG(Ũ1, Ũ1,Φ(Ũ1))

]
≤ (λ2 + λ3)

[
HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)) +HG(Ũ1,Ψ(Ũ1),Φ(Ũ1))

]
= 2(λ2 + λ3)HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)),

that is, (1−2λ2+2λ3))HG(Ũ1,Ψ(Ũ1),Φ(Ũ1)) ≤ 0 and so HG(Ũ1,Ψ(Ũ1),ΦŨ1)) = 0

since 2λ2 + 2λ3 < 1. Thus Ũ1 = Υ(Ũ1) = Ψ(Ũ1) = Φ(Ũ1). Similarly, if we take

Ũ1 = Φ(Ũ1) or Ũ1 = Ψ(Ũ1), we conclude that Ũ1 = Υ(Ũ1) = Ψ(Ũ1) = Φ(Ũ1).

We show that Υ,Ψ, and Φ have a unique common attractor. Let R∗0 ∈ CG(W )

be chosen arbitrarly and define {R∗a} by R∗3a+1 = Υ(R∗3a), R∗3a+2 = Ψ(R∗3a+1),

and R∗3a+3 = Ψ(R∗3a+2), for a ∈ N∪{0}. If R∗a = R∗a+1 for some a, with a = 3n,

then Ũ1 = R∗3a is an attractor of Υ and from the proof above, Ũ1 is a common
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attractor for Υ,Ψ and Φ. The same is true for a = 3n + 1 or a = 3n + 2. We

assume that R∗a 6= R∗a+1 for all a ∈ N, then

HG(R∗3a+1,R∗3a+2,R∗3a+3)

= HG(Υ(R∗3a),Ψ
(
R∗3a+1

)
,Φ
(
R∗3a+2

)
)

≤ λ1HG(R∗3a,R∗3a+1,R3a+2) + λ2[HG(Υ(R∗3a),R∗3a,R∗3a)

+HG(R∗3a+1,Ψ(R∗3a+1),R∗3a+1) +HG(R∗3a+2,R∗3a+2,Φ(R∗3a+2))]

+λ3[HG(Υ(R∗3a),R∗3a+1,R∗3a+2) +HG(R∗3a,Ψ
(
R∗3a+1

)
,R∗3a+2)

+HG(R∗3a,R∗3a+1,Φ
(
R∗3a+2

)
)]

= λ1HG(R∗3a,R∗3a+1,R∗3a+2) + λ2[HG(R∗3a+1,R∗3a,R∗3a)

+HG(R∗3a+1,R∗3a+2,R∗3a+1) +HG(R∗3a+2,R∗3a+2,R∗3a+3)]

+λ3[HG(R∗3a+1,R∗3a+1,R∗3a+2) +HG(R∗3a,R∗3a+2,R∗3a+2)

+HG(R∗3a,R∗3a+1,R∗3a+3)]

≤ λ1HG(R∗3a,R∗3a+1,R∗3a+2) + λ2[HG(R∗3a,R∗3a+1,R∗3a+2)

+HG(R∗3a,R∗3a+1,R∗3a+2) +HG(R∗3a+1,R∗3a+2,R∗3a+3)]

+λ3[HG(R∗3a,R∗3a+1,R∗3a+2) +HG(R∗3a,R∗3a+1,R∗3a+2)

+{HG(R∗3a,R∗3a+1,R∗3a+2) +HG(R∗3a+1,R∗3a+2,R∗3a+3)}].

Thus, we have

(1− λ2 − λ3)HG(R∗3a+1,R∗3a+2,R∗3a+3) ≤ (λ1 + 2λ2 + 3λ3)HG(R∗3a,R∗3a+1,R∗3a+2).

Hence,

HG(R∗3a+1,R∗3a+2,R∗3a+3) ≤ λHG(R∗3a,R∗3a+1,R∗3a+2),

where λ =
λ1 + 2λ2 + 3λ3

1− λ2 − λ3

, with 0 < λ < 1. In a similar manner, it can be proved

that

HG(R∗3a+2,R∗3a+3,R∗3a+4) ≤ λHG(R∗3a+1,R∗3a+2,R∗3a+3)

and

HG(R∗3a+3,R∗3a+4,R∗3a+5) ≤ λHG(R∗3a+2,R∗3a+3,R∗3a+4).

Thus, for all a,

HG(R∗a+1,R∗a+2,R∗a+3) ≤ λHG

(
R∗a,R∗a+1,R∗a+2

)
≤ · · · ≤ λa+1HG (R∗0,R∗1,R∗2) .
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Now, we have for l,m, a, with l > m > a,

HG(R∗a,R∗m,R∗l ) ≤ HG(R∗a,R∗a+1,R∗a+1) +HG(R∗a+1,R∗a+2,R∗a+2)

+ · · ·+HG(R∗l−1,R∗l−1,R∗l )

≤ HG(R∗a,R∗a+1,R∗a+2) +HG(R∗a+1,R∗a+2,R∗a+3)

+ · · ·+HG(R∗l−2,R∗l−1,R∗l )

≤ [λa + λa+1 + · · ·+ λl−2]HG(R∗0,R∗1,R∗2)

= λa[1 + λ+ λ2 + · · ·+ λl−a−1]HG(R∗0,R∗1,R∗2)

≤ λa

1− λ
HG(R∗0,R∗1,R∗2).

We note that if l = m > a, we get similar results and if l > m = a, then

HG(R∗a,R∗m,R∗l ) ≤
λa−1

1− λ
HG(R∗0,R∗1,R∗2),

so lim
a,m,l→+∞

HG(R∗a,R∗m,R∗l ) = 0. Thus {R∗a} is a G-Cauchy sequence in CG(W ).

Since (CG(W ), HG) is a complete G-metric space, there exists Ũ1 ∈ CG(W ) such

that lim
a→+∞

R∗a = Ũ1, that is, lim
a→+∞

HG(R∗a,R∗a, Ũ1) = 0.

Assume that Υ(Ũ1) = Ũ1, else

HG(Υ(Ũ1),R3a+2,R∗3a+3)

= HG(Υ(Ũ1),Ψ
(
R∗3a+1

)
,Φ
(
R∗3a+2

)
)

≤ λ1HG(Ũ1,R∗3a+1,R∗3a+2) + λ2[HG(Ũ1, Ũ1,Υ(Ũ1)

+HG(R∗3a+1,R∗3a+1,Ψ
(
R∗3a+1

)
) +HG(R∗3a+2,R∗3a+2,Φ(R∗3a+2))]

+λ3[HG(Υ(Ũ1),R∗3a+1,R∗3a+2) +HG(Ũ1,Ψ(R∗3a+1),R∗3a+2)

+HG(Ũ1,R∗3a+1,Φ
(
R∗3a+2

)
)]

= λ1HG(Ũ1,R∗3a+1,R∗3a+2) + λ2[HG(Ũ1, Ũ1,ΥŨ1)

+HG(R∗3a+1,R∗3a+1,R3a+2) +HG(R∗3a+2,R3a+2,R3a+3)]

+λ3[HG(Υ(Ũ1),R3a+1,R∗3a+2) +HG(Ũ1,R∗3a+2,R∗3a+2)

+HG(Ũ1,R∗3a+1,R∗3a+3)]

and as a→ +∞, we gives

HG(Υ(Ũ1), Ũ1, Ũ1) ≤ (λ2 + λ3)HG(Υ(Ũ1), U1, Ũ1)

which is a contradiction as (λ2 + λ3) < 1. Thus Υ(Ũ1) = Ũ1. Likewise, we can

show that Ψ(Ũ1) = Ũ1 and Φ(Ũ1) = Ũ1. Assume that Ũ2 is likewise a common
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attractor of Υ,Ψ and Φ. to demonstrate uniqueness. Then

HG(Ũ1, Ũ2, Ũ2) = HG(Υ(Ũ1),Ψ(Ũ2),Φ(Ũ2))

≤ λ1HG(Ũ1, Ũ2, Ũ2) + λ2[HG(Ũ1, Ũ1,Υ(Ũ1) +HG(Ũ2, Ũ2,Ψ(Ũ2))

+HG(Ũ2, Ũ2,Φ(V1))] + λ3[HG(Υ(Ũ1), Ũ2, Ũ2)

+HG(Ũ1,Ψ(Ũ2), Ũ2) +HG( ˜̃U1, Ũ2,Φ(Ũ2))]

= λ1HG(Ũ1, Ũ2, Ũ2) + λ2[HG(Ũ1, Ũ1, Ũ1) +HG(Ũ2, Ũ2, Ũ2)

+HG(Ũ2, Ũ2, Ũ2)] + λ3[HG(Ũ1, Ũ2, Ũ2) +HG(Ũ1, Ũ2, Ũ2)

+HG(Ũ1, Ũ2, Ũ2)]

= (λ1 + 3λ3)HG(Ũ1, Ũ2, Ũ2)

from which we conclude that HG(Ũ1, Ũ2, Ũ2) = 0 and thus Ũ1 = Ũ2. Hence Ũ1 is

a unique common attractor of Υ,Ψ, and Φ.

Example 6.3.2. Let W = [0, 1] and G be a G-metric on W as defined in Example

. Define f ∗a , g
∗
a, h

∗
a : W → W, a = 1, 2 by

f ∗1 (u1) =


u1

20
if 0 ≤ u1 <

1
2

u1

15
if 1

2
≤ u1 ≤ 1,

f ∗2 (u1) =


u1

17
if 0 ≤ u1 <

1
2

u1

12
if 1

2
≤ u1 ≤ 1,

g∗1(u1) =


u1

13
if 0 ≤ u1 <

1
2

u1

16
if 1

2
≤ u1 ≤ 1,

g∗2(u1) =


u1

9
if 0 ≤ u1 <

1
2

u1

8
if 1

2
≤ u1 ≤ 1,

h∗1(u1) =


u1

10
if 0 ≤ u1 <

1
2

u1

14
if 1

2
≤ u1 ≤ 1,

h∗2(u1) =


u1

12
if 0 ≤ u1 <

1
2

u1

13
if 1

2
≤ u1 ≤ 1.

Then, clearly the maps f ∗1 , f
∗
2 , g

∗
1, g
∗
2, h

∗
1 and h∗2 are discontinuous and satisfying

the condition of Theorem Theorem 6.3.4.

Now, by taking the generalized G-iterated function system

{W ; (f ∗1 , f
∗
2 , g

∗
1, g
∗
2, h

∗
1, h
∗
2)}, we define mappings Υ,Ψ,Φ : CG(W ) → CG(W )
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by

Υ(Q∗) = f1(Q∗) ∪ f ∗2 (Q∗),

Ψ(R∗) = g1(R∗) ∪ g2(R∗),

Φ(N ∗) = h1(N ∗) ∪ h2(N ∗)

for all Q∗,R∗,N ∗ ∈ CG(W ). Then it is easy to verify that mappings (Υ,Ψ,Φ) are

a triplet of generalized G-Hutchinson contractive operators (type II), that is, for

any Q∗,R∗,N ∗ ∈ CG(W ),

HG(Υ(Q∗),Ψ (R∗) ,Φ(N ∗)) ≤ EΥ,Ψ,Φ(Q∗,R∗,N ∗)

holds, where

EΥ,Ψ,Φ(Q∗,R∗,N ∗) = λ1HG(Q∗,R∗,N ∗) + λ2[HG(Q∗,Q∗,Υ(Q∗))

+HG(R∗,R∗,Ψ (R∗)) +HG(N ∗,N ∗,Φ (N ∗))]

+λ3[HG(Υ(Q∗),R∗,N ∗) +HG(Q∗,Ψ (R∗) ,N ∗)

+HG(Q∗,R∗,Φ (N ∗))],

with λ1 = 8
9

and λ2 = λ3 = 1
18
. Clearly, λj ≥ 0 for j ∈ {1, 2, 3}

and λ1 + 3λ2 + 4λ3 < 1. Thus, all of the conditions of Theorem 6.3.4

are met, and additionally, for any initial set R∗0 ∈ CG(W ), the sequence

{R∗0,Υ (R∗0) ,ΨΥ (R∗0) ,ΦΨΥ (R∗0) ,ΥΦΨΥ (R∗0) , · · · } of compact sets is conver-

gent and has for a limit, the common attractor of Υ,Ψ and Φ.

Corollary 6.3.3. In a complete G-metric space (W,G), let {W ; f ∗a , g
∗
a, h

∗
a, a =

1, 2, · · · , q} be a generalized iterated function system and define the mappings

f ∗, g∗, h∗ : W → W as in Remark 6.3.1. If there exist λj ≥ 0 for j ∈ {1, 2, 3}
with λ1 + 3λ2 + 4λ3 < 1 such that for any w1, w2, w3 ∈ CG (W ), the following

holds:

G (f ∗w1, g
∗w2, h

∗w3) ≤ Ef∗,g∗,h∗(w1, w2, w3),

where

Ef∗,g∗,h∗(w1, w2, w3) = λ1HG(w1, w2, w3) + λ2[HG(w1, w1, f
∗(w1)

+HG(w2, w2, g
∗ (w2)) +HG(w3, w3, h

∗ (w3))]

+λ3[HG(f ∗(w1), w2, w3) +HG(w1, g
∗ (w2) , w3)

+HG(w1, w2, h
∗ (w3))].

Then f, g and h have a unique common fixed point. In addition, for a ran-
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domly chosen v0 ∈ W , the sequence {v0, f
∗v0, g

∗f ∗v0, h
∗g∗f ∗v0, f

∗h∗g∗f ∗v0, ...}
converges to a common fixed point of f ∗, g∗ and h∗.

6.4. Well-posedness of Attractor based problem in G-Metric

Spaces

We extend the discussion in Section 2.3 to the attractor-based problems of gen-

eralized Hutchinson contractive operators (type I) and generalized Hutchinson

contractive operators (type II) in the framework of Hausdorff G-metric spaces.

Some useful results on well-posedness of fixed point problems appear in [8, 56].

Definition 6.4.1. A common attractor-based problem of mappings Υ,Ψ,Φ :

CG(W ) → CG(W ) is said to be well-posed if the triplet (Υ,Ψ,Φ) has a unique

common attractor Θ∗ ∈ CG(W ) and any sequence {Θa} in CG(W ) is such

that lim
a→+∞

HG(Υ(Θa),Υ(Θa),Θa) = 0, lim
a→+∞

HG(Ψ(Θa),Ψ(Θa),Θa) = 0, and

lim
a→+∞

HG(Φ(Θa),Φ(Θa),Θa) = 0 then lim
a→+∞

HG(Θa,Θa,Θ∗) = 0, that is to say,

lim
a→+∞

Θa = Θ∗.

Theorem 6.4.1. Let (W,G) be a complete G-metric space and Υ,Ψ,Φ : CG(W )

→ CG(W ) be defined as in Theorem 6.3.1. Then the mappings Υ,Ψ,Φ have a

well-posed common attractor-based problem.

Proof. From Theorem 6.3.1, we deduce that the mappings Υ,Ψ and Φ have

a unique common attractor Z∗, say. Let a sequence {Za} in CG(W ) be such

that lim
a→+∞

HG(Υ(Za),Υ(Za),Za) = 0, lim
a→+∞

HG(Ψ(Za),Ψ(Za),Za) = 0, and

lim
a→+∞

HG(Φ(Za),Φ(Za),Za) = 0.

We show that Z∗ = lim
a→+∞

Za. As the mappings (Υ,Ψ,Φ) are a triplet of general-

ized G-Hutchinson contractive operators (type I), then

HG(Za,Za,Z∗) ≤ HG(Za,Υ(Za),Υ(Za)) +HG(Υ(Za),Ψ(Za),Z∗))

= HG(Υ(Za),Ψ(Za),Φ(Z∗)) +HG(Za,Υ(Za),Υ(Za))

≤ αHG(Za,Za,Z∗) + βHG(Za,Υ(Za),Υ(Za))

+γHG(Za,Ψ(Za),Ψ(Za)) + ηHG(Z∗,Φ (Z∗) ,Φ (Z∗))

+HG(Za,Υ(Za),Υ(Za)).

Thus

HG(Za,Za,Z∗) ≤
β + 1

1− α
HG(Za,Υ(Za),Υ(Za)) +

γ

1− α
HG(Za,Ψ (Za) ,Ψ (Za)).
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Taking limit on both sides as a→ +∞ gives us lim
a→+∞

HG(Za,Za,Z∗) = 0 and so

lim
a→+∞

Za = Z∗.

Theorem 6.4.2. Let (W,G) be a complete G-metric space and Υ,Ψ,Φ : CG(W )

→ CG(W ) be defined as in Theorem 6.3.4. Then the mappings Υ,Ψ,Φ have a

well-posed common attractor-based problem.

Proof. From Theorem 6.3.4, it follows that the mappings Υ,Ψ and Φ have a

unique common attractor Z∗, say.

Let a sequence {Za} in CG(W ) be such that lim
a→+∞

HG(Υ(Za),Υ(Za),Za) = 0,

lim
a→+∞

HG(Ψ(Za),Ψ(Za),Za) = 0 and lim
a→+∞

HG(Φ(Za),Φ(Za),Za) = 0.

We want to show that Z∗ = lim
a→+∞

Za. As the mappings (Υ,Ψ,Φ) are generalized

G-Hutchinson contractive operators (type II), so that

HG(Za,Za,Z∗)

≤ HG(Za,Za,Ψ(Za)) +HG(Ψ(Za),Ψ(Za),Z∗)

≤ 2HG(Za,Ψ(Za),Ψ(Za)) +HG(Υ(Z∗),Ψ(Za),Φ(Z∗))

≤ 2HG(Za,Ψ(Za),Ψ(Za)) + λ1HG(Z∗,Za,Za) + λ2[HG(Z∗,Z∗,Υ(Z∗)

+HG(Za,Za,Ψ (Za)) +HG(Za,Za,Φ (Za))]

+λ3[HG(Υ(Z∗),Za,Za) +HG(Z∗,Ψ (Za) ,Za) +HG(Z∗,Za,Φ (Za))]

≤ 2HG(Za,Ψ(Za),Ψ(Za)) + λ1HG(Z∗,Za,Za) + 2λ2[HG(Za,Ψ (Za) ,Ψ (Za))

+HG(Za,Φ (Za) ,Φ (Za))] + λ3[H(Z∗,Za,Za) +HG(Z∗,Za,Za)

+HG(Za,Ψ (Za) ,Za) +HG(Z∗,Za,Za) +HG(Za,Za,Φ (Za))]

≤ 2HG(Za,Ψ(Za),Ψ(Za)) + λ1HG(Z∗,Za,Za) + 2λ2[HG(Za,Ψ (Za) ,Ψ (Za))

+HG(Za,Φ (Za) ,Φ (Za))] + λ3[3H(Z∗,Za,Za)

+2HG(Za,Ψ (Za) ,Ψ (Za)) + 2HG(Za,Φ (Za) ,Φ (Za))].

Thus

HG(Za,Za,Z∗) ≤
1

1− λ1 − 3λ3

[2 (1 + λ2 + λ3)HG(Za,Ψ(Aa),Ψ(Za))

+2 (λ2 + λ3)HG(Za,Φ (Za) ,Φ (Za))].

Taking limit on both side implies that lim
a→+∞

Za = Z∗.

131



7

Generalized Iterated Function

System of Cyclic Contractions in

G-Metric Spaces

7.1. Introduction

In the previous chapter, we considered the construction of common attractors

of generalized iterated function system of generalized contractions in G-metric

spaces. We extend our discussion to generalized iterated function system of gen-

eralized cyclic contractions in G-metric spaces.

The concept of cyclic contraction mapping was introduced by Rus [85]. Further

expansions were made by considering fixed point results for cyclic ϕ-contractions

in the framework of metric spaces [80, 81]. In Chapter 4 we explored iterated

function system of generalized cyclic contractions in partial metric spaces. Kara-

pinar et al.[51] obtained some results for cylic contractions on G-metric spaces.

Definition 7.1.1. [80] For a non-void set W , let h : W → W be a mapping

of W to itself. A finite family {W1,W2, · · · ,Wq} of non-void subsets of W with

W = ∪qa=1Wa is said to be a cyclic representation of W with respect to h if

h(W1) ⊂ W2, · · · , h(Wq−1) ⊂ Wq, and h(Wq) ⊂ W1.

Theorem 7.1.1. [51] In a G -complete G-metric space (W,G), let {B}qa=1 repre-

sent a class of non-void G -closed subsets of W. Let W = ∪qa=1Ba and Ψ : ∪qa=1Ba

→ ∪qa=1Ba be a map satisfying Ψ(Ba) ⊆ Wa+1, a = 1, 2, · · · , q where Bq+1 = B1.

Suppose there exists λ ∈ [0, 1) such that G(Ψu,Ψv,Ψw) ≤ λG(u, v, w) for all

u ∈ Ba and v, w ∈ Ba+1, a = 1, 2, · · · , q, then Ψ has a unique fixed point in

∩qa=1Ba.

132



7.2. Generalized Iterated Function System of Cyclic

Contractions in G-metric spaces

In [35], we find results on generalized iterated function system for multi-valued

mappings in a metric spaces. We consider the generalized iterated function system

of cyclic contractions in G-metric space setting.

Definition 7.2.1. For a G-metric space, (W,G), let ha : W → W , a ∈ Nq be

a finite family of G-contractions, then {W ;ha, a ∈ Nq} is called a G-iterated

function system (G-IFS).

Definition 7.2.2. Let (W,G) be a G-metric space with J ∗ ⊆ W, a non-void

compact set, then J ∗ is called an attractor of the G-IFS if

(i) Ψ(J ∗) = J ∗ and

(ii) there exists an open set V1 ⊆ W such that J ∗ ⊆ V1 and lim
a→+∞

Ψa(O∗) = J ∗

for any compact set O∗ ⊆ V1, where the limit is taken with respect to the

G-Hausdorff metric.

As a necessary consequence, the maximal open set V1 satisfying (ii) is referred to

as a basin of attraction.

Definition 7.2.3. Let {Ba}qa=1 be a collection of non-void closed subsets of a

G-metric space, (W,G). A self-mapping h : ∪qa=1Ba → ∪qa=1Ba is known as a

cyclic G-contraction on {Ba}qa=1, provided there exists a λ ∈ [0, 1) , such that

(i) h(Ba) ⊆ Ba+1 for a ∈ Nq, where Bq+1 = B1;

(ii) G(hu, hv, hw) ≤ λG(u, v, w) for all u ∈ Ba, and v, w ∈ Ba+1 for a ∈ Nq.

If h satisfies condition (i), then h is a cyclic function.

Theorem 7.2.1. [51] Suppose {Ba}qa=1 is a family of non-void G-closed subsets

of a G-metric space (W,G). Let h : ∪qa=1Ba → ∪qa=1Ba be a cyclic map satisfying

h(Ba) ⊆ Ba+1, a ∈ Nq,where Bq+1 = B1.

Suppose there exists λ ∈ [0, 1) such that

G(hu, hv, hw) ≤ λG(u, v, w)

for all u ∈ Ba, and v, w ∈ Ba+1 for a ∈ Nq, then h has a unique fixed point

u ∈ ∩qa=1Ba.
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Definition 7.2.4. In a complete G-metric space (W,G), suppose that fa, ga, ha :

W → W , a ∈ Nq are continuous maps such that each (fa, ga, ha), a ∈ Nq is a

triplet of generalized G-contractions, then {W ; (fa, ga, ha) , a ∈ Nq} is the gener-

alized G-iterated function system.

Definition 7.2.5. Let (W,G) be a complete metric space. A set

{W ; (fa, ga, ha) , a ∈ Nq} is said to be a generalized cyclic G-iterated function

system if each triplet fa, ga, ha : W→W is a generalized cyclic contraction for

a ∈ Nq.

Theorem 7.2.2. Let {Ba}qa=1 be a family of non-void closed subsets of a G-

metric space (W,G) and f, g, h : ∪qa=1Ba → ∪qa=1Ba a triplet of continuous cyclic

contractions. Then, the triplet of mappings f, g, h : CG(∪qa=1Ba) → CG(∪qa=1Ba)

is also a cyclic contraction relative to the Hausdorff metric HG sharing a similar

contractive constant, λ.

Proof. Choose L ∈ Ba, for some a ∈ Nq. From the definition of cyclic map, we

obtain that f(L) ⊆ Ba+1. Also, since f is continuous, then f(L) is a compact

set. Therefore, f(L) ∈ CG(Ba+1) which implies that f(CG(Ba)) ⊆ CG(Ba+1) for

each a ∈ Nq.

We take J ∗1 ∈ CG(Ba), J ∗2 ∈ CG(Ba+1) and J ∗3 ∈ CG(Ba+2) for some a ∈ Nq.
First, we claim that

sup
f(m1)∈f(J ∗1 )

G(f(m1), g(J ∗2 ), h(J ∗3 )) ≤ λ sup
m1∈J ∗1

G(m1J ∗2 ,J ∗3 ).

As the triplet (f,g,h) is a cyclic G-contraction, we obtain

G(f(m1),g(m2), h(m3)) ≤ λG(m1,m2,m3) for all m1 ∈ Ba, m2 ∈ Ba+1

and m3 ∈ Ba+2 where a ∈ Nq.

Thus

sup
f(m1)∈f(J ∗1 )

G(f(m1), g(J ∗2 ), h(J ∗3 ))

= sup
f(m1)∈f(J ∗1 )

(
inf

g(m2)∈g(J ∗2 ),h(m3)∈h(J ∗3 )
G(f(m1), g(m2), h(m3)

)

≤ λ

(
sup

m1∈J ∗1

(
inf

m2∈J ∗2 ,m3∈J ∗3
G(m1,m2,m3)

))

≤ λ

(
sup

m1∈J ∗1
G(m1,J ∗2 ,J ∗3 )

)
.
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Similarly, we have

sup
g(m2)∈g(J ∗2 )

G(f(J ∗1 ), g(m2), h(J ∗3 )) ≤ λ

(
sup

m2∈J ∗2
G(J ∗1 ,m2,J ∗3 )

)

and

sup
h(m3)∈h(J ∗3 )

G(f(J ∗1 ), g(J ∗2 ), h(m3)) ≤ λ

(
sup

m3∈J ∗3
G(J ∗1 ,J ∗2 ,m3)

)
.

So

HG(f(J ∗1 ), g(J ∗2 ),J ∗3 ))

= max{ sup
f(m1)∈f(J ∗1 )

G(f(m1), g(J ∗2 ), h(J ∗3 )), sup
g(m2)∈g(J ∗2 )

G(f(J ∗1 ),g(m2), h(J ∗3 )),

sup
h(m3)∈h(J ∗3 )

G(f(J ∗1 ), g(J ∗2 ), h(m3))}

≤ λmax{ sup
m1∈J ∗1

G(m1J ∗2 ,J ∗3 ), sup
m2∈J ∗2

G(J ∗1 ,m2,J ∗3 ), sup
m3∈J ∗3

G(J ∗1 ,J ∗2 ,m3)}

= λHG(J ∗1 ,J ∗2 ,J ∗3 ).

Hence, (f,g,h) is a triplet of cyclic G-contraction mapping on {Ba}qa=1.

Theorem 7.2.3. Let {Ba}qa=1 be the collection of non-void closed subsets of a

G-metric space (W,G), and q a fixed natural number. If fa, ga, ha : ∪qa=1Ba →
∪qa=1Ba for all a ∈ Nq are generalized cyclic contractions, then the maps Υ,Ψ,Φ :

CG(∪qa=1Ba)→ CG(∪qa=1Ba) defined by

Υ(J ∗1 ) = f1(J ∗1 ) ∪ f2(J ∗1 ) ∪ · · · ∪ fa(J ∗1 )

= ∪qa=1fa(J ∗1 ), for each J ∗1 ∈ CG(∪qa=1Ba),

Ψ(J ∗2 ) = g1(J ∗2 ) ∪ g2(J ∗2 ) ∪ · · · ∪ ga(J ∗2 )

= ∪qa=1ga(J ∗2 ), for each J ∗2 ∈ CG(∪qa=1Ba)

and

Φ(J ∗3 ) = h1(J ∗3 ) ∪ h2(J ∗3 ) ∪ · · · ∪ ha(J ∗3 )

= ∪qa=1ha(J ∗3 ), for each J ∗3 ∈ CG(∪qa=1Ba)
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also satisfy

HG (Υ(J ∗1 ),Ψ(J ∗2 ),Φ(J ∗3 )) ≤ λ∗HG (J ∗1 ,J ∗2 ,J ∗3 ) for all J ∗1 ,J ∗2 ,J ∗3 ∈ CG(∪qa=1Ba),

where λ∗ = max{λa : a ∈ Nq}, that is, the triplet (Υ,Ψ,Φ) is a generalized cyclic

contraction map on CG (W ).

Proof. Let J ∗ ∈ CG(Ba) for some a ∈ Nq. By Theorem 7.2.2, for each a ∈ Nq,
the triplet (fa, ga, ha) is a generalized cyclic contraction. Therefore, fa(J ∗) ∈
CG(Ba+1) for all a ∈ Nq which implies that Υ(J ∗) = ∪qa=1fa(J ∗) ∈ CG(Ba+1),

and consequently, Υ(CG(Ba)) ⊆ CG(Ba+1) for a ∈ Nq. In the same manner we

have Ψ(CG(Ba)) ⊆ CG(Ba+1) and Φ(CG(Ba)) ⊆ CG(Ba+1) for a ∈ Nq.

Since the triplet (fa, ga, ha) is generalized cyclic contraction for each a ∈ Nq, we

have

HG(fa(J ∗1 ), ga(J ∗2 ), ha(J ∗3 )) ≤ λHGJ ∗1 ,J ∗2 ,J ∗3 )

for all J ∗1 ∈ CG(Ba),J ∗2 ∈ CG(Ba+1) and J ∗3 ∈ CG(Ba+2) for each a ∈ Nq. If

J ∗1 ∈ CG(Ba), J ∗2 ∈ CG(Ba+1) and J ∗3 ∈ CG(Ba+2) for some a ∈ Nq, then we have

HG (Υ(J ∗1 ),Ψ(J ∗2 ),Φ(J ∗3 )) = HG(∪qa=1fa(J ∗1 ),∪qa=1ga(J ∗2 ),∪qa=1ha(J ∗3 ))

≤ max{HG(f1(J ∗1 ), g1(J ∗2 ), h1(J ∗3 )),

· · · , HG(fq(J ∗1 ), gq(J ∗2 ), gq(J ∗3 ))}

≤ λ∗HG(J ∗1 ,J ∗2 ,J ∗3 ).

Definition 7.2.6. For a G-metric space (W,G), let {Ba}qa=1 be a collection of

non-void closed subsets of W. Then Υ,Ψ,Φ : CG(Ba) → CG(Ba) is a triplet of

generalized cyclic G-Hutchinson contractive operators (type I) if for any L ∈
CG(Ba), M∈ CG(Ba+1) and N ∈ CG(Ba+2),

HG(Υ(L),Ψ (M) ,Φ(N )) ≤ SΥ,Ψ,Φ(L,M,N )

holds, where

SΥ,Ψ,Φ(L,M,N ) = αHG(L,M,N ) + βHG(L,Υ(L),Υ(L))

+γHG(M,Ψ (M) ,Ψ (M)) + ηHG(N ,Φ (N ) ,Φ (N )),

with α, β, γ, η ≥ 0 with α + β + γ + η < 1.
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Definition 7.2.7. In a G-metric space (W,G), let {Ba}qa=1 represent a family of

non-void closed subsets of W. The triplet Υ,Ψ,Φ : CG(Ba) → CG(Ba) is called

a generalized cyclic G-Hutchinson contractive operator (type II) if for any L ∈
CG(Ba), M∈ CG(Ba+1) and N ∈ CG(Ba+2),

HG(Υ(L),Ψ (M) ,Φ(N )) ≤ RΥ,Ψ,Φ(L,M,N )

holds, where

RΥ,Ψ,Φ(L,M,N ) = λ1HG(L,M,N ) + λ2[HG(L,L,Υ(L))

+HG(M,M,Ψ (M)) +HG(N ,N ,Φ (N ))]

+λ3[HG(Υ(L),M,N ) +HG(L,Ψ (M) ,N )

+HG(L,M,Φ (N ))],

with λi ≥ 0 for i ∈ {1, 2, 3} and λ1 + 3λ2 + 4λ3 < 1.

Definition 7.2.8. Let (W,G) be a complete G-metric space. If fa, ga, ha : W →
W , a = 1, 2, ..., q are continuous mappings such that each triplet (fa, ga, ha) for

a ∈ Nq is a generalized cyclic G-contraction, then {W ; (fa, ga, ha) , a ∈ Nq} is

called the generalized cyclic G-iterated function system.

As a result, the generalized cyclic G-iterated function system is made up of a

G-metric space and a finite family of generalized cyclic G-contractions on W .

Definition 7.2.9. Let (W,G) be a complete G-metric space and Ũ1 ⊆ W be

a non-void compact set. Then Ũ1 is the common attractor of the mappings

Υ,Ψ,Φ : CG(W )→ CG(W ) if

(i) Υ(Ũ1) = Ψ(Ũ1) = Φ(Ũ1) = Ũ1 and

(ii) there exists an open set V1 ⊆ W such that Ũ1 ⊆ V1 and lim
a→∞

Υa(L) =

lim
a→∞

Ψa(M) = lim
a→∞

Φa(N ) = Ũ1 for any compact sets L,M,N ⊆ V1, where

the limit is taken with respect to the G-Hausdorff metric.

7.3. Generalized cyclic G-Hutchinson contractive operators

In the context of G-metric space, we state and prove some results about the exis-

tence and uniqueness of a common attractor of generalized cyclic G-Hutchinson

contractive operators. To begin, consider the following outcome.

Theorem 7.3.1. In a complete G-metric space (W,G), suppose {Ba}qa=1 is a col-

lection of non-void closed subsets of W and {W ; (fa, ga, ha), a ∈ Nq} is a general-
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ized cyclic G-iterated function system. If the mappings Υ,Ψ,Φ : CG(∪qa=1Ba) →
CG(∪qa=1Ba) defined by

Υ(L) = f1(L) ∪ f2(L) ∪ · · · ∪ fq(L)

= ∪qa=1fa(L) for L ∈ CG(∪qa=1Ba)

Ψ(M) = g1(M) ∪ g2(M) ∪ · · · ∪ gq(M)

= ∪qa=1ga(M) for M∈ CG(∪qa=1Ba+1)

and

Φ(N ) = h1(N ) ∪ h2(N ) ∪ · · · ∪ hq(N )

= ∪qa=1ha(N ) for N ∈ CG(∪qa=1Ba+2)

are generalized cyclic G-Hutchinson contractive operators (type I), then Υ,Ψ and

Φ have a unique common attractor Ũ∗1 ∈ CG(Ba), that is,

Ũ∗1 = Υ(Ũ∗1 ) = Ψ(Ũ∗1 ) = Φ(Ũ∗1 ) = ∪qa=1fa(Ũ
∗
1 ) = ∪qa=1ga(Ũ

∗
1 ) = ∪qa=1ha(Ũ

∗
1 ).

Furthermore, for an arbitrarily chosen initial setM0 ∈ CG(∪qa=1Ba), the sequence

{M0,Υ (M0) ,ΨΥ (M0) ,ΦΨΥ (M0) ,ΥΦΨΥ (M0) , ...}

of compact sets converges to the common attractor Ũ∗1 .

Proof. We show that any attractor of Υ is an attractor of Ψ and Φ. To that end,

we assume that Ũ∗1 ∈ CG(W ) is such that Υ(Ũ∗1 ) = Ũ∗1 . We need to show that

Ũ∗1 = Ψ(Ũ∗1 ) = Φ(U∗), else for Ũ∗1 6= Ψ(Ũ∗1 ) and Ũ∗1 6= Φ(Ũ∗1 ), we get

HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )) = HG(Υ(Ũ∗1 ),Ψ(Ũ∗1 ),Φ(Ũ∗1 ))

≤ αHG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 ) + βHG(Ũ∗1 ,Υ(Ũ∗1 ),Υ(Ũ∗1 ))

+γHG(Ũ∗1 ,Ψ(Ũ∗1 ),Ψ(Ũ∗1 ))

+ηHG(Ũ∗1 ,Φ(Ũ∗1 ),Φ(Ũ∗1 ))

= αHG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 ) + βHG(Ũ∗1 , Ũ

∗
1 , Ũ

∗
1 )

+γHG(Ũ∗1 ,Ψ(Ũ∗1 ),Ψ(Ũ∗1 ))

+ηHG(Ũ∗1 ,Φ(Ũ∗1 ),Φ(Ũ∗1 ))

= γHG(Ũ∗1 ,Ψ(Ũ∗1 ),Ψ(Ũ∗1 )) + ηHG(Ũ∗1 ,Φ(Ũ∗1 ),Φ(Ũ∗1 ))

≤ (γ + η)HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )),
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thus

HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )) ≤ λHG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )),

where λ = γ + η < 1, which is a contradiction. In an analogous manner, for

Ũ∗1 6= Ψ(Ũ∗1 ) and U∗ = Φ(U∗) or for Ũ∗1 6= Φ(Ũ∗1 ) and Ũ∗1 = Ψ(Ũ∗1 ) similar

argument as above yields a contradiction. Hence we conclude that Ũ∗1 = Υ(Ũ∗1 ) =

Ψ(Ũ∗1 ) = Φ(Ũ∗1 ). We also note that the same conclusion holds for Ũ∗1 = Ψ(Ũ∗1 ) or

Ũ∗1 = Φ(Ũ∗1 ).

Next we show that Υ,Ψ, and Φ have a unique common attractor. Let M0 ∈
CG(W ) be an arbitrary point. Define a sequence {Ma} by M3a+1 = Υ(M3a),

M3a+2 = Ψ(M3a+1),M3a+3 = Φ(M3a+2), a = 0, 1, 2, · · · . If Ma = Ma+1 for

some n, with a = 3n, then Ũ∗1 = M3a is an attractor of Υ and from the Proof

above, Ũ∗1 is a common attractor for Υ, Ψ, and Φ. The same is true for a = 3n+1

or a = 3n+ 2. We assume that Ma 6=Ma+1 for all a ∈ N, then

HG(M3a+1,M3a+2,M3a+3)

= HG(Υ(M3a),Ψ (M3a+1) ,Φ (M3a+2))

≤ αHG(M3a,M3a+1,M3a+2) + βHG(M3a,Υ(M3a),Υ(M3a))

+γHG(M3a+1,Ψ (M3a+1) ,Ψ (M3a+1)) + ηHG(M3a+2,Φ (M3a+2) ,Φ (M3a+2))

= αHG(M3a,M3a+1,M3a+2) + βHG(M3a,M3a+1,M3a+1)

+γHG(M3a+1,M3a+2,M3a+2) + ηHG(M3a+2,M3a+3,M3a+3)

≤ αHG(M3a,M3a+1,M3a+2) + βHG(M3a,M3a+1,M3a+2)

+γHG(M3a+1,M3a+2,M3a+3) + ηHG(M3a+1,M3a+2,M3a+3).

Thus, we have

(1− γ − η)HG(M3a+1,M3a+2,M3a+3) ≤ (α + β)HG(M3a,M3a+1,M3a+2).

Hence,

HG(M3a+1,M3a+2,M3a+3) ≤ λHG(M3a,M3a+1,M3a+2),

where λ =
α + β

1− γ − η
, with 0 < λ < 1. In a similar manner, it can be shown that

HG(M3a+2,M3a+3,M3a+4) ≤ λHG(M3a+1,M3a+2,M3a+3)

and

HG(M3a+3,M3a+4,M3a+5) ≤ λHG(M3a+2,M3a+3,M3a+4).

139



Thus, for all a,

HG(Ma+1,Ma+2,Ma+3) ≤ λHG (Ma,Ma+1,Ma+2)

≤ · · · ≤ λa+1HG (M0,M1,M2) .

Now, for l,m, a, with l > m > a, we have that

HG(Ma,Mm,Ml) ≤ HG(Ma,Ma+1,Ma+1) +HG(Ma+1,Ma+2,Ma+2)

+ · · ·+HG(Ml−1,Ml−1,Ml)

≤ HG(Ma,Ma+1,Ma+2) +HG(Ma+1,Ma+2,Ma+3)

+ · · ·+HG(Ml−2,Ml−1,Ml)

≤ [λa + λa+1 + · · ·+ λl−2]HG (M0,M1,M2)

= λa[1 + λ+ λ2 + · · ·+ λl−a−1]HG(M0,M1,M2)

≤ λa

1− λ
HG(M0,M1,M2).

We note that if l = m > a, we get similar results and if l > m = a, then

HG(Ma,Mm,Ml) ≤
λa−1

1− λ
HG(M0,M1,M2),

and so lim
a,m,l→+∞

HG(Ma,Mm,Ml) = 0. Thus {Ma} is a G-Cauchy sequence

in CG(W ). Since (CG(W ), HG) is a complete G-metric space, there exists

Ũ∗1 ∈ CG(W ) such that lim
a→+∞

Ma = Ũ∗1 , that is, lim
a→+∞

HG(Ma, Ũ
∗
1 ) =

lim
a→+∞

HG(Ma,Ma+1) = HG(Ũ∗1 , Ũ
∗
1 ) and so we have lim

a→+∞
HG(Ma, Ũ

∗
1 ) = 0.

To prove that Υ(Ũ∗1 ) = Ũ∗1 , we claim

HG(Υ(Ũ∗1 ),M3a+2,M3a+3)

= HG(Υ(Ũ∗1 ),Ψ(M3a+1),Φ(M3a+2))

≤ αHG(Υ(Ũ∗1 ),M3a+1,M3a+2) + βHG(Ũ∗1 ,Υ(Ũ∗1 ),Υ(Ũ∗1 ))

+γHG(M3a+1,Ψ(M3a+1),Ψ (M3a+1)) + ηHG(M3a+2,Φ (M3a+2) ,Φ (M3a+2))

= αHG(Ũ∗1 ,M3a+1,M3a+2) + βHG(Υ(Ũ∗1 ), Ũ∗1 ,M3a+1)

+γHG(M3a+1,M3a+2,M3a+2) + ηHG(M3a+2,M3a+3,M3a+3),

where upon taking the limit as a→ +∞, we obtain

HG(Υ(Ũ∗1 ), Ũ∗1 , Ũ
∗
1 ) ≤ βHG(Ũ∗1 , Ũ

∗
1 , Ũ

∗
1 ),

which is a contradiction. Thus Υ(Ũ∗1 ) = Ũ∗1 . In a similar manner we can show
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that Ψ(Ũ∗1 ) = Ũ∗1 and Φ(Ũ∗1 ) = Ũ∗1 . For uniqueness, we suppose that V1 is another

common attractor of Υ, Ψ, and Φ then

HG(Ũ∗1 , V1, V1) = HG(Υ(Ũ∗1 ),Ψ(V1),Φ(V1))

≤ αHG(Ũ∗1 , V1, V1) + βHG(U∗,Υ(Ũ∗1 ),Υ(Ũ∗1 ))

+γHG(V1,Ψ (V1) ,Ψ (V1)) + ηHG(V1,Φ (V1) ,Φ (V1))

= αHG(Ũ∗1 , V1, V1) + βHG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 )

+γHG(V1, V1, V1) + ηHG(V1, V1, V1)

= αHG(Ũ∗1 , V1, V1)

from which we conclude that HG(Ũ∗1 , V1, V1) = 0 and thus Ũ∗1 = V1. Hence Ũ∗1 is

a unique common attractor of Υ,Ψ, and Φ.

Example 7.3.1. Let W = [0, 3] be a non-empty set, and G(w1, w2, w3) =

max{|w1 − w2| , |w2 − w3| , |w3 − w1|} for all w1, w2, w3 ∈ W be a complete G-

metric. Suppose Q∗1 = [0, 1],Q∗2 = [0, 2], and Q∗3 = [0, 3] are subsets of W . Define

g∗ : ∪3
a=1Q∗a → ∪3

a=1Q∗a by

g∗(w1) =


w1

5
if 0 ≤ w1 ≤ 1

1
3

if 1 < w1 ≤ 2

w1

3
if 2 < w1 ≤ 3.

We note that

g∗(Q∗1) =
[
0, 1

5

]
⊆ [0, 2] = Q∗2,

g∗(Q∗2) =
[
0, 1

3

]
⊆ [0, 3] = Q∗3,

and

g∗(Q∗3) = [0, 1] ⊆ [0, 1] = Q∗1.

Hence, Q∗1 ∪ Q∗2 ∪ Q∗3 is a cyclic representation of W with respect to g∗. Next,

define f ∗a , g
∗
a, g
∗
h : W → W by

141



f ∗1 (w1) =


w1

24
if 0 ≤ w1 <

1
2

w1

16
if 1

2
≤ w1 ≤ 1,

f ∗2 (w1) =


w1

18
if 0 ≤ w1 <

1
2

w1

14
if 1

2
≤ w1 ≤ 1,

g∗1(w1) =


w1

12
if 0 ≤ w1 <

1
2

w1

8
if 1

2
≤ w1 ≤ 1,

g∗2(w1) =


w1

6
if 0 ≤ w1 <

1
2

w1

4
if 1

2
≤ w1 ≤ 1,

h∗1(w1) =


w1

9
if 0 ≤ w1 <

1
2

w1

7
if 1

2
≤ w1 ≤ 1,

h∗2(w1) =


w1

5
if 0 ≤ w1 <

1
2

w1

3
if 1

2
≤ w1 ≤ 1.

Similar arguments as in Example 6.3.2 shows that the results of Theorem 7.3.1

holds.

Remark 7.3.1. Let W = ∪qa=1Wa. If we take in Theorem 7.3.1, SG(∪qa=1Wa)

the union of all singleton subsets of the given space W, then SG(∪qa=1Wa) ⊆
CG(∪qa=1Wa). Furthermore, if we take the mappings (fa, ga, ha) = (f, g, h) for

each a, where f = f1, g = g1 and h = h1 then the operators (Υ,Ψ,Φ) become

(Υ (y1) ,Ψ (y2) ,Φ (y3)) = (f(y1), g (y2) , h (y3)) .

Consequently, obtain the following common fixed point result.

Corollary 7.3.1. Suppose {W ; (fa, ga, ha) , a ∈ Nq} is a generalized cyclic G-

iterated function system, defined in a complete G-metric space (W,G) and let the

mappings f, g, h : W → W be defined as in Remark 7.3.1. If some λ ∈ [0, 1)

exists such that, for any y1 ∈ CG(Wa), y2 ∈ CG(Wa+1) and y3 ∈ CG(Wa+2), the

following holds:

G (f(y1), g(y2), h(y3)) ≤ αHG(y1, y2, y3) + βHG(y1,Υ(y1),Υ(y1))

+γHG(y2,Ψ (y2) ,Ψ (y2)) + ηHG(y3,Φ (y3) ,Φ (y3)).

Then f, g and h have a unique common fixed point u ∈ W. In addition, for any

initial point u0 ∈ W , the sequence {u0, fu0, gfu0, hgfu0, fhgfu0, · · · } converges

to the common fixed point of f, g and h.

Corollary 7.3.2. Let {W ; (fa, ga, ha) , a ∈ Nq} be a generalized cyclic G-iterated
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function system, defined in a complete G-metric space (W,G),and let (fa, ga, ha)

for a ∈ Nq be a triplet of generalized cyclic contractive self-mappings on W. Sup-

pose {Ba}qa=1 is a collection of non-void closed subsets of W. Then the triple

(Υ,Ψ,Φ) : CG(∪qa=1Ba)→ CG(∪qa=1Ba) defined in Theorem 7.3.1 has at most one

common fixed point. Furthermore, for any initial set M0 ∈ CG (Ba) , the se-

quence {M0,Υ (M0) ,ΨΥ (M0) ,ΦΨΥ (M0) ,ΥΦΨΥ (M0) , · · · } of compact sets

have for a limit, the common fixed point of Υ,Ψ and Φ.

Theorem 7.3.2. For a complete G-metric space (W,G), suppose {Ba}qa=1 is a

family of non-void closed subsets of W and {W ; (fa, ga, ha), a ∈ Nq} is a general-

ized cyclic G-iterated function system. If the mappings Υ,Ψ,Φ : CG(∪qa=1Ba) →
CG(∪qa=1Ba) defined by

Υ(L) = f1(L) ∪ f2(L) ∪ · · · ∪ fq(L)

= ∪qa=1fa(L) for L ∈ CG(∪qa=1Ba)

Ψ(M) = g1(M) ∪ g2(M) ∪ · · · ∪ gq(M)

= ∪qa=1ga(M) for M∈ CG(∪qa=1Ba+1)

and

Φ(N ) = h1(N ) ∪ h2(N ) ∪ · · · ∪ hq(N )

= ∪qa=1ha(N ) for N ∈ CG(∪qa=1Ba+2)

are generalized cyclic G-Hutchinson contractive operators (type II), then Υ,Ψ,

and Φ have a unique common attractor Ũ∗1 ∈ CG(Ba), that is,

Ũ∗1 = Υ(Ũ∗1 ) = Ψ(Ũ∗1 ) = Φ(Ũ∗1 ) = ∪qa=1fa(Ũ
∗
1 ) = ∪qa=1ga(Ũ

∗
1 ) = ∪qa=1ha(Ũ

∗
1 ).

Moreover, for an arbitrarily chosen initial set, M0 ∈ CG(∪qa=1Ba), the sequence

{M0,Υ (M0) ,ΨΥ (M0) ,ΦΨΥ (M0) ,ΥΦΨΥ (M0) , ...}

of compact sets converges to the common attractor Ũ∗1 .

Proof. We show that any attractor of Υ is an attractor of Ψ and Φ. To that end,

we assume that Ũ∗1 ∈ CG(W ) is such that Υ(Ũ∗1 ) = Ũ∗1 . We need to show that
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Ũ∗1 = Ψ(Ũ∗1 ) = Φ(U∗), else for U∗ 6= Ψ(Ũ∗1 ) and Ũ∗1 6= Φ(Ũ∗1 ), we get

HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )) = HG(Υ(Ũ∗1 ),Ψ(Ũ∗1 ),Φ(Ũ∗1 ))

≤ λ1HG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 ) + λ2[HG(Ũ∗1 , Ũ

∗
1 ,Υ(Ũ∗1 )

+HG(Ũ∗1 , Ũ
∗
1 ,Ψ(Ũ∗1 )) +HG(Ũ∗1 , Ũ

∗
1 ,Φ(Ũ∗1 ))]

+λ3[HG(Υ(Ũ∗1 ), Ũ∗1 , Ũ
∗
1 ) +HG(Ũ∗1 ,Ψ(Ũ∗1 ), Ũ∗1 )

+HG(Ũ∗1 , Ũ
∗
1 ,Φ(Ũ∗1 ))]

= (λ2 + λ3)
[
HG(Ũ∗1 ,Ψ(Ũ∗1 ), Ũ∗1 ) +HG(Ũ∗1 , Ũ

∗
1 ,Φ(Ũ∗1 ))

]
≤ (λ2 + λ3)

[
HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 ))

+ HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 ))
]

= 2 (λ2 + λ3)HG(Ũ∗1 ,Ψ(Ũ∗1 ),Φ(Ũ∗1 )),

which is a contradiction. If we take Ũ∗1 6= Ψ(Ũ∗1 ) and Ũ∗1 = Φ(Ũ∗1 ) or Ũ∗1 6= Φ(Ũ∗1 )

and Ũ∗1 = Ψ(Ũ∗1 ), similar argument as above yields a contradiction. Hence we

conclude that Ũ∗1 = Υ(Ũ∗1 ) = Ψ(Ũ∗1 ) = Φ(Ũ∗1 ). We also note that the same

conclusion holds for Ũ∗1 = Ψ(Ũ∗1 ) or Ũ∗1 = Φ(Ũ∗1 ).

We show that Υ,Ψ, and Φ have a unique common attractor. LetM0 ∈ CG(W )

be an arbitrary point. Define a sequence {Ma} by M3a+1 = Υ(M3a),M3a+2 =

Ψ(M3a+1),M3a+3 = Ψ(M3a+2), a = 0, 1, 2, · · · . If Ma =Ma+1 for some a, with

a = 3n, then Ũ∗1 = M3a is an attractor of Υ and from the Proof above, Ũ∗1 is a

common attractor for Υ,Ψ, and Φ. The same is true for a = 3n+1 or a = 3n+2.

Let us assume that Ma 6=Ma+1 for all a ∈ N, then

HG(M3a+1,M3a+2,M3a+3)

= HG(Υ(M3a),Ψ (M3a+1) ,Φ (M3a+2))

≤ λ1HG(M3a,M3a+1,M3a+2) + λ2[HG(M3a,M3a,Υ(M3a)

+HG(M3a+1,M3a+1,Ψ (M3a+1)) +HG(M3a+2,M3a+2,Φ (M3a+2))]

+λ3[HG(Υ(M3a),M3a+1,M3a+2) +HG(M3a,Ψ (M3a+1) ,M3a+2)

+HG(M3a,M3a+1,Φ (M3a+2))]

= λ1HG(M3a,M3a+1,M3a+2) + λ2[HG(M3a,M3a,M3a+1)

+HG(M3a+1,M3a+1,M3a+2) +HG(M3a+2,M3a+2,M3a+3)]

+λ3[HG(M3a+1,M3a+1,M3a+2) +HG(M3a,M3a+2,M3a+2)

+HG(M3a,M3a+1,M3a+3)]
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≤ λ1HG(M3a,M3a+1,M3a+2) + λ2[HG(M3a,M3a+1,M3a+2)

+HG(M3a,M3a+1,M3a+2) +HG(M3a+1,M3a+2,M3a+3)]

+λ3[HG(M3a,M3a+1,M3a+2) +HG(M3a,M3a+1,M3a+2)

+{HG(M3a,M3a+1,M3a+2) +HG(M3a+1,M3a+2,M3a+3)}].

Thus, we have

(1−λ2−λ3)HG(M3a+1,M3a+2,M3a+3) ≤ (λ1+2λ2+3λ3)HG(M3a,M3a+1,M3a+2).

Hence,

HG(M3a+1,M3a+2,M3a+3) ≤ λHG(M3a,M3a+1,M3a+2),

where λ =
λ1 + 2λ2 + 3λ3

1− λ2 − λ3

, with 0 < λ < 1. Using the same argument, it can be

shown that

HG(M3a+2,M3a+3,M3a+4) ≤ λHG(M3a+1,M3a+2,M3a+3)

and

HG(M3a+3,M3a+4,M3a+5) ≤ λHG(M3a+2,M3a+3,M3a+4).

Thus, for all a,

HG(Ma+1,Ma+2,Ma+3) ≤ λHG (Ma,Ma+1,Ma+2)

≤ · · · ≤ λa+1HG (M0,M1,M2) .

Now, we have for l,m, a, with l > m > a,

HG(Ma,Mm,Ml) ≤ HG(Ma,Ma+1,Ma+1) +HG(Ma+1,Ma+2,Ma+2)

+ · · ·+HG(Ml−1,Ml−1,Ml)

≤ HG(Ma,Ma+1,Mka+2) +HG(Mka+1,Mka+2,Mka+3)

+ · · ·+HG(Ml−2,Ml−1,Ml)

≤ [λa + λa+1 + · · ·+ λl−2]HG (M0,M1,M2)

= λa[1 + λ+ λ2 + · · ·+ λl−a−1]HG(M0,M1,M2)

≤ λa

1− λ
HG(M0,M1,M2).

We note that if l = m > a, we get similar results and if l > m = a, then

HG(Ma,Mm,Ml) ≤
λa−1

1− λ
HG(M0,M1,M2).
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as such, lim
a,m,l→+∞

HG(Ma,Mm,Ml) = 0. Thus {Ma} is a G-Cauchy se-

quence in CG(W ). Since (CG(W ), HG) is a complete G-metric space, there exists

Ũ∗1 ∈ CG(W ) such that lim
a→∞
Ma = Ũ∗1 , that is, lim

a→∞
HG (Ma,Ma+1,Ma+2) =

HG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 ).

To prove that Υ(Ũ∗1 ) = Ũ∗1 , we claim in the contrary

HG(Υ(Ũ∗1 ),M3a+2,M3a+3) = HG(Υ(Ũ∗1 ),Ψ (M3a+1) ,Φ (M3a+2))

≤ λ1HG(Ũ∗1 ,M3a+1,M3a+2)

+λ2[HG(Ũ∗1 , Ũ
∗
1 ,Υ(Ũ∗1 )

+HG(M3a+1,M3a+1,Ψ (M3a+1))

+HG(M3a+2,M3a+2,Φ (M3a+2))]

+λ3[HG(Υ(Ũ∗1 ),M3a+1,M3a+2)

+HG(Ũ∗1 ,Ψ (M3a+1) ,M3a+2)

+HG(Ũ∗1 ,M3a+1,Φ (M3a+2))],

that is,

HG(Υ(Ũ∗1 ),M3a+2,M3a+3) = λ1HG(Ũ∗1 ,M3a+1,M3a+2)

+λ2[HG(Ũ∗1 , Ũ
∗
1 ,Υ(U∗)

+HG(M3a+1,M3a+1,M3a+2)

+HG(M3a+2,M3a+2,M3a+3)]

+λ3[HG(Υ(Ũ∗1 ),M3k+1,M3a+2)

+HG(Ũ∗1 ,M3a+2,M3a+2)

+HG(Ũ∗1 ,M3a+1,M3a+3)]

and taking the limit as a→ +∞, we get

HG(Υ(Ũ∗1 ), Ũ∗1 , Ũ
∗
1 ) ≤ (λ2 + λ3)HG(Υ(Ũ∗1 ), Ũ∗1 , Ũ

∗
1 ),

which is not possible. Thus Υ(Ũ∗1 ) = Ũ∗1 . In a similar manner we can show that

Ψ(Ũ∗1 ) = Ũ∗1 and Φ(Ũ∗1 ) = Ũ∗1 . Turning to uniqueness, we suppose that V1 is
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another common attractor of Υ,Ψ and Φ, then

HG(Ũ∗1 , V1, V1) = HG(Υ(Ũ∗1 ),Ψ (V1) ,Φ (V1))

≤ λ1HG(Ũ∗1 , V1, V1) + λ2[HG(Ũ∗1 , U
∗,Υ(Ũ∗1 )

+HG(V1, V1,Ψ (V1)) +HG(V1, V1,Φ (V1))]

+λ3[HG(Υ(Ũ∗1 ), V1, V1) +HG(Ũ∗1 ,Ψ (V1) , V1)

+HG(Ũ∗1 , V1,Φ (V1))]

= λ1HG(Ũ∗1 , V1, V1) + λ2[HG(Ũ∗1 , Ũ
∗
1 , Ũ

∗
1 ) +HG(V1, V1, V1)

+HG(V1, V1, V1)] + λ3[HG(Ũ∗1 , V1, V1) +HG(Ũ∗1 , V1, V1)

+HG(Ũ∗1 , V1, V1)]

= (λ1 + 3λ3)HG(Ũ∗1 , V1, V1),

from which we conclude that HG(Ũ∗1 , V1, V1) = 0 and thus Ũ∗1 = V1. Hence Ũ∗1 is

a unique common attractor of Υ,Ψ, and Φ.

Example 7.3.2. Let (W,G) be a complete G-metric space having W = [0, 5], and

G(w1, w2, w3) = max{|w1 − w2| , |w2 − w3| , |w3 − w1|} for all w1, w2, w3 ∈ W . Let

Q∗1 = [0, 1],Q∗2 = [0, 2], and Q∗3 = [0, 3] be subsets of W . Define g∗ : ∪3
a=1Q∗a →

∪3
a=1Q∗a, by

g∗(w1) =


w1

7
if 0 ≤ w1 ≤ 1

1
3

if 1 < w1 ≤ 2

w1

3
if 2 < w1 ≤ 3.

Observe that

g∗(Q∗1) =
[
0, 1

7

]
⊆ [0, 2] = Q∗2,

g∗(Q∗2) =
[
0, 1

3

]
⊆ [0, 3] = Q∗3,

and

g∗(Q∗3) = [0, 1] ⊆ [0, 1] = Q∗1.

Hence, Q∗1 ∪ Q∗2 ∪ Q∗3 is a cyclic representation of W with respect to g∗. Next,
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define f ∗a , g
∗
a, h

∗
a : W → W by

f ∗1 (w1) =


w1

54
if 0 ≤ w1 <

1
2

w1

46
if 1

2
≤ w1 ≤ 1,

f ∗2 (w1) =


w1

38
if 0 ≤ w1 <

1
2

w1

34
if 1

2
≤ w1 ≤ 1,

g∗1(w1) =


w1

30
if 0 ≤ w1 <

1
2

w1

24
if 1

2
≤ w1 ≤ 1,

g∗2(w1) =


w1

16
if 0 ≤ w1 <

1
2

w1

14
if 1

2
≤ w1 ≤ 1,

h∗1(w1) =


w1

19
if 0 ≤ w1 <

1
2

w1

13
if 1

2
≤ w1 ≤ 1,

h∗2(w1) =


w1

11
if 0 ≤ w1 <

1
2

w1

7
if 1

2
≤ w1 ≤ 1.

Similar arguments as in Example 6.3.2 confirm the validity of Theorem 7.3.2

holds.

Corollary 7.3.3. For a generalized cyclic G -iterated function system

{W ; fa, ga, ha, a ∈ Nq} on a complete G-metric space (W,G), define the map-

pings f, g, h : W → W as in Remark 7.3.1. If some λ∗ ∈ [0, 1) exists, such that

for any y1 ∈ CG(Wa), y2 ∈ CG(Wa+1) and y3 ∈ CG(Wa+2), the following holds:

G (fy1, gy2, hy3) ≤ Rf,g,h(y1, y2, y3),

where

Rf,g,h(y1, y2, y3) = λ1HG(y1, y2, y3) + λ2[HG(y1, y1, f(y1)

+HG(y2, y2, g (y2)) +HG(y3, y3, h (y3))]

+λ3[HG(f(y1), y2, y3) +HG(y1, g (y2) , y3)

+HG(y1, y2, h (y3))].

Then a unique common attractor for f, g, and h exists. Additionaly, for any initial

choice of u0 ∈ W , the sequence {u0, fu0, gfu0, hgfu0, fhgfu0, · · · } converges to

an attractor of f, g, and h.
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Conclusion

The results in this thesis expanded the scope of iterated function system to non-

standard metric spaces, such as partial metric spaces, semi-metric spaces, and

G-metric spaces. The existence and uniqueness of attractors for single valued

mappings and like-wise common attractors for multi-valued mappings involving

a pair of self-mappings were established with the assistance of finite families of

contractive and generalized contractive mappings respectively, defined on a par-

tial metric space. The well-posedness of attractor based problems was confirmed.

With a broader class of cyclic contractive mappings, the Banach contraction

principle was extended to include non-continuous mappings, and useful results on

the existence and uniqueness of attractors were obtained. This was followed by

results in semi-metric space whose definition omits the triangle inequality. The

omission was remedied by working in a bounded Hausdorff semi-metric space.

Further investigations yielded some results for non-commutative mappings in

G-metric spaces. We culminated our work with a study of generalized iterated

function system of cyclic contractions in G-metric spaces.

It was shown that our results not only have applications in the field of dynamic

programming where they provide effective tools for solving functional equations,

but are very efficient in establishing the existence and uniqueness of solution to

integral equations.

Open Problems

There are some open problems for researchers that are working in the filed

of pure and applied mathematics. It is envisioned that, current work may be

extended by exploring iterated function systems of generalized contractions of

integral type on a framework of complete S-metric spaces [79]. One may expand

the applications to establish the existence and uniqueness of solution to Volterra

integral equation. We believe that characterizing iterated function systems in the

setting of parametric metric spaces will be an attractive open challenge. The find-

ings in this paper can be utilized to further research in more general spaces such
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as quasi metric spaces and controlled metric spaces. The existence of common

attractors of a finite set of generalized contractive mappings could be extended

to study generalized F -contractions and may also be extended to the problem of

Smyth completeness in quasi metric spaces.

It is also very interesting to generate fractals by employing finite family of

generalized contractions in the setup of varies generalized metric spaces such as

quasi metric spaces, controlled metric spaces and dislocated metric spaces.
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