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Abstract

The mathematical study of fractals is deeply embedded in iterated function sys-
tems (IFS) formulated by Hutchinson in 1981. Since then, the development of
iterated function systems in metric space setup, has caught the attention of many
researchers.

In the current work, the scope of iterated function systems is extended to more
generalized settings such as partial metric spaces, Hausdorff semi-metric spaces,
and G-metric spaces. The existence and uniqueness of new attractors and com-
mon attractors of generalized iterated function systems in various spaces is proved
with the assistance of generalized and generalized cyclic contractive mappings.
Well-posedness of attractor based problems of the Hutchinson operators is estab-
lished. Applications to dynamic programming and nonlinear integral equations

are presented.
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List of Notation

Below is a list of some important symbols to be used and a brief explanation of

their meaning.

R The set of real numbers.
R, The set of non-negative real numbers.
RY?  The set of g-tuples or real numbers.
N The set of natural numbers.

N, The set of first ¢ natural numbers.
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1

Introduction and Preliminaries

1.1. Background

Nowhere has the non-linearity of nature been so well captured than in Mandel-
brot’s work on fractal geometry [81]. The study of fixed point theory, which has
numerous applications in a number of fields of non-linear analysis, is theoretically
based on the idea of Banach contraction mapping. For many years now, several
researchers have worked extensively to enhance and broaden the discipline of fixed
point theory in metric spaces, (see [11}, 18, 20} 22, 27, 30, 33|, 36, 37, 40, 43, 146
49, 54, (58], 183, O8], [104]).

Nadler [73], in particular, is credited with pioneering the field of fixed point
theory in metric spaces endowed with multi-valued operators, resulting in the
Banach fixed point principle being extended to set-valued contraction mappings.
In recent years, there has been a substantial surge in interest in the study of
metrical fixed point theory, which has resulted in a wide range of applications
both within and beyond mathematics (see [5], 26, 24], 40, [62], 57, 69 04, 95]).
Applications to variational inequalities, integral equations, differential equations,

optimization, and split feasibility theory are particularly noteworthy [56].

Fixed point theory has numerous helpful and crucial applications in tack-
ling real-world problems. The fixed point theory of Schaefer and Krasnoselski
has been shown to be particularly useful in the investigation of the existence
of solutions in chemical graph theory [100]. Many scholars have shown that
problems in economic theories, neutron transport theory, chemical reactions, epi-
demiology, steady-state temperature distribution, mathematical psychology, en-
gineering, and applied sciences can be formulated as functional equations whose
solutions can be obtained by using fixed point techniques, (see for example in
[52, 99]).

Hutchinson’s [42] groundbreaking 1981 work, established the concept for con-
structing fractals called iterated function system (IFS) on a solid mathematical

foundation. He accomplished this by demonstrating that the Hutchinson opera-



tor, which was developed using a finite collection of contraction mappings on a
set of g-tuples of real numbers, denoted by RY, has as its fixed point a non-void,
closed, and bounded subset of R? known as an attractor of the iterated function
system [25, 53], [76], [77, [7§].

Secelean [90], 91] investigated generalized countable iterated function systems
on a metric space, however, in our current work, we present some new results on
generalized iterated function systems in more generalized settings such as par-
tial metric spaces, semi-metric spaces, and G-metric spaces. The existence and
uniqueness of attractors for single valued mappings and like-wise common attrac-
tors for multi-valued mappings involving a pair of self-mappings are established
with the assistance of finite families of contractive and generalized contractive
mappings respectively, defined on partial metric spaces. We confirmed the well-

posedness of attractor based problems.

We extended the Banach contraction principle to non-continuous mappings
with the aid of cyclic contractive mappings, and obtain valuable results on the ex-
istence and uniqueness of attractors. We obtain some results in semi-metric spaces
whose definition omits the triangle inequality, followed by non-commutative map-
pings in G-metric spaces. Applications of iterated function systems in dynamic

programming and integral equations are provided.



1.2. Organization of the Thesis

The introduction to this chapter (Chapter 1) provides a brief overview of iterated
function systems in metric spaces. The remaining chapters in this thesis are

organized in the manner described below.

Chapter 2. Iterated Function System of Generalized Contractions in
Partial Metric Spaces

In order to create an attractor, this chapter uses a finite family of generalized
contraction mappings, each of which belongs to a particular class of mappings
defined on a complete partial metric space. As a result, distinct outcomes for
iterated function systems satisfying various generalized contractive conditions are
established. In order to prove the findings made here, we provide some example.
Our present study extends, generalizes, and brings together a number of findings

from recent research.

Chapter 3. Generalized iterated function system for common attrac-
tors in partial metric spaces

With the help of a finite family of generalized contractive mappings that are
members of a distinct class of mappings defined on a complete partial metric
space, the purpose of this chapter is to construct new common attractors. As a
result, different iterated function system outcomes satisfying various generalized
contractive conditions are obtained. To support the findings demonstrated here,
we provide an example. These expand upon, generalize, and combine numerous

established results found in the literature.

Chapter 4. Iterated Function System of Generalized Cyclic Contrac-
tions in Partial Metric Spaces

We generate a fractal using a finite collection of generalized cyclic contraction
mappings, belonging to a particular category of mappings defined on a complete
partial metric space. As a consequence, different results are obtained for iter-
ated function system that satisfy a different set of generalized cyclic contraction
conditions. The chapter will culminate with a brief discussion of applications
of cyclic iterated function system to dynamic programing problems and integral
equations. With these results, we extend, unify and generalize some common

results in recent literature.

Chapter 5. Iterated Function System of Generalized Rational Contrac-
tions in Semi-Metric Spaces
Using finite families of generalized contractive mappings from the distinct class of

mappings defined on a Hausdorff semi-metric space, we are able to create several



new common attractors in this chapter. As a result, different iterated function
system outcomes satisfying varied generalized contractive criteria are established.
To reinforce the results proved herein, an example is presented. These findings

extend, generalize, and consolidate a number of findings from recent literature.

Chapter 6. Common Attractors of Generalized Iterated Function Sys-
tem in G-Metric Spaces

With the aid of a finite family of generalized contractive mappings that are part of
a certain class of mappings defined on a G-metric space, we create a new common
fractal. As a result, various results are acquired and confirmed by an example for
G-iterated function systems that meet a different set of generalized contractive
criteria. These findings generalize, integrate, and expand a variety of conclusions

seen in recent literature.

Chapter 7. Generalized Iterated Function System of Cyclic Contrac-
tions in G-Metric Spaces

This chapter’s major goal is to construct fractals using a finite family of gen-
eralized cyclic contractions that are members of a particular class of mappings
defined on a G-metric space. As a result, different iterated function system out-
comes satisfying various generalized cyclic contractive requirements are obtained.
An example is provided to support the results demonstrated here. Our findings

extend, generalize, and bring together a number of findings from recent literature.

Chapter 8. Conclusion In this chapter, a summary of our work is presented.



2

Iterated Function System of
Generalized Contractions in Partial

Metric Spaces

2.1. Partial Metric Spaces

This section provides some preliminary definitions and results to serve as a foun-
dation for eventual construction of fractal sets of generalized iterated function
systems on complete partial metric spaces.

It is worth noting that the Hutchinson operator, which is defined on a finite fam-
ily of contractive mappings on a complete partial metric space, is a generalized
contractive mapping on a family of compact subsets of a set, say W. A final frac-
tal is generated by successively applying a generalized Hutchinson operator, and

following that, a non-trivial example is presented to support the proven result.
We recall the definition of a standard metric space:

Definition 2.1.1. [I2,25] Let W be a (non-void) set, a functiond : W xW — R
is said to be a metric (a distance or dissimilarity function [31]) on W if for all

0,5, € W, d satisfies the following properties:
(i) 0 <d(p,¢) and 0 = d(p, ) if and only if o =g,
(i) d(e;) = d(s; 0),

(iii) d(o,<) < d(e,p) + d(,5)-

The pair (W, d) consisting of the (non-void) set W and the metric d is called

a metric space.

We now consider one of the many generalizations of the standard metric
spaces, introduced by Matthews [61] in his work on denotational semantics of
dataflow networks [102].



Definition 2.1.2. |21, [72] A non-void set W together with a mapping
Pm : W X W — Ry is called a partial metric space denoted by (W, py,) if for all
0,6, € W the following properties hold:

Pmy) 0 = if and only if p,,(0, 0) = pm(0,S) = Pm(s, ),

)
me) pm( )<pm(Qa )
Pms) Pm(0:S) = Pml(S, 0),

) p

(
(
(
(

Pms) Pm(0,6) < Dm0, 9) + Pm(0, <) — Pm(0, ©).

Looking at Definition [2.1.2] we observe that, the distance between a point
and itself is not necessarly equal to zero as is the case in Definition and the
triangle inequality is expanded by subtracting self distance for the third point
under the partial metric. Thus a partial metric space if a generalization of the

standard metric space.
Furthermore, from Definition we note that if p,,(0,<) = 0, then properties

(Pm,) and (pn,) imply that ¢ = ¢ but the implication is not reversible in
general. A partial metric space (Ry,pm), endowed with a partial metric

pm(0,5) = max{p,<} is a common elementary example [21].

Example 2.1.1. 211 61] If W = {[o1, 02] : 01,00 € R, 01 < 02}, then

Pm (01, 02], [0, 04]) = max{0s, 04} — min{o, 03}

defines a partial metric on W.

Following [7, 21], 61], a T topology 7,,, whose base is a class of open p,,-balls
{Bp,.(0,€) : 0 € W,e > 0}, such that By, (0,€) = {c € W :pm(0,¢) <pm(e,0) +
e}, for all p € W and ¢ > 0, is generated by each partial metric p,, on W.

In a partial metric space (W, p,,), define p;, : W x W — Ry by p(o,¢) =
20m(0,5) — [Pm(0, 0) + Pm(s, )], for all o, € W, then (W, p? ) is a metric space
21, 61].

Moreover, the sequence {g,} converges to o € W if and only if

im  pm (04, 0n) = ligloopm(ga, 0) = pm(0, 0).

a,n—+00

Definition 2.1.3. [49, [61] In a partial metric space (W, p,,),

(1) {04} is said to be a Cauchy sequence, provided hni Pm(0a, 0) exists,
an—



(ii) (W,pn) is said to be complete, if every Cauchy sequence {g,} in W con-
verges to a point p € W relative to the topology 7,,, such that p,,(o, 0) =

lim_p(0a, o), and

a——+00

(iii) a function h : W — W is continuous at a point ug € W if, for each € > 0,
there exists ¢ > 0 such that h(B,,, (uo,s)) C By, (hug, €).

Lemma 2.1.1. [21] If (W, p,,) is a partial metric space, then

(i) {o.} is a Cauchy sequence in (W, py,) if and only if it is a Cauchy sequence
in (W, py,)-

(ii) (W, pm) is a complete partial metric space if and only if (W, ps,) is a complete

metric space.

We denote by CBP™ (W), a family of all non-void closed and bounded subsets of

a partial metric space (W, p,).

Let J*,O0* € CB'™ (W) and w € W, define
pm(w, JT7) = inf{pp(w,p) : p € T}, 6, (T, O) = sup{pm(p, O%) : p € T}

and

0p,, (O, T*) = sup{pm(n, T*) : n € O}

Remark 2.1.1. [2I] Let (W, p,,) be a partial metric space and J* be any non-
void subset of W, then

P (pts 1) = pm(p, T*) if and only if p € J*.
Furthermore J* = J* if and only if J* is closed in (W, pm)-

Proposition 2.1.1. [21] Let (W,p,,) be a partial metric space. Then for any
L5 TJ*, 0% e CBP™ (W), the following statements hold:

(a) 9,,, (L% L) =sup{pm((,0) : L € L*}.

( )
(b) 0p,.(L5,L7) <6, (L7, T7).
(€) &, (L5 T7)

(
0 implies that £* C J*.
(d) 6p,, (L7 T*) < 6p,, (L5,0%) + 6, (0, T*) — infyeor pm(n,1)-

Let (W,pm) be a partial metric space. Define the mapping H,,  : CB™ (W) x



CBpm(W) — RH]’ by
H, (J*,0%) = max{,, (J*,O0"),0,, (0", T)}, forall J*, 0" € CB™(W).

Then H,,, is referred to as a partial Hausdorff metric induced by py,.

Proposition 2.1.2. [21] Let (W, py,) be a partial metric space and L*, T*, O* €

CBP™ (W), then

(a) Hp, (L L7) < Hy, (L7,T7),

(b) Hp, (L7, T") = Hy, (T*, L),
(L7

(€) Hy(£7,T%) < Hy (£7,0°) + Hy, (0%, T%) — infycor ).

Corollary 2.1.1. [21] If (W, p,) is a partial metric space, then
H, (J*,0) =0 implies that J* = O"

for all J*,0* € CB™(W).

Next it can be noted, as demonstrated by the example below, that in general, the

converse of Corollary is not true.

Example 2.1.2. [21] Let W = [0, 1] be equipped with the partial metric
Pm : W x W — Ry such that

Pm(0,<) = max{o,c}.
From (a) of Proposition [2.1.1} we get

H, (W,W) =20, (WW)=sup{o:0<p<1} =1#0.

Definition 2.1.4. In a partial metric space (W, p,,) let CP C W. Then CP™ is
compact if every sequence {v,} of elements in CP™ has a subsequence {v,, } which

converges to a point in CP™.

It is crucial to note that closed and bounded subsets of an Euclidean space
R? are compact. Similarly, every ﬁnite subset of R? is compact whereas the

(0,1] C R is not compact since {1, 2 ..} € (0, 1] does not have any convergent

) 90 22a .
subsequence. Similarly, Z C R the set of integers, is not compact.

Let (W, p,,,) be a partial metric space and let CP (W) denote the collection of



all non-void compact subsets of W. If J*, O* € CP»(W), then

Hpm (j*a O*) = maX{ SU.p pm(777 j*)v Sup pm(/“L7 O*)}J

neO* neJ*

where p,, (0, J*) = inf{pm (0, ) : p € J*} shows how far a point g is from the set
J*. In this case, the mapping H,,, is said to be the Pompeiu-Hausdorff metric
induced by the partial metric p,,. If (W,p,,) is a complete partial metric space,

then (CP(W), Hy,,) is also a complete partial metric space [76].

Lemma 2.1.2. In a partial metric space (W, py,), let K, L* T*, O € CP~(W),
then the following hold:

(a) If L* C J*, then sup pu(k,J*) < sup pn(k,L*).
keK* kex*

(b) sup pmlo, J*) = max{sup p,(k, T*),sup pm(f, T*)}.
EK*UL* ke leLl*

(C) Hpm (’C* U E*’ \7* U O*) S ma’X{Hpm (’C*7 j*)7 Hpm<£*7 O*>}
Proof. (a) Since £* C J*, for all k € K*, we have

pm(k, T*) = inf{pm(k,p) - p€ T}
< inf{pn(k,0): € L} =pn (k, L),

which shows that

sup pm(k, J*) < sup pp(k, L").
keK* kekx

(b)
sup  pm (0, T) = sup{pm (0, T*) :0€ K"UL"}

0eK*UL*
= max{sup{pm (0, T") : 0 € K*},sup{pm (0, T*) : 0 € L }}
= max{sup p,, (k, J*), sup pm, ({,T")}.

)
kelC* leL*

(c) We observe that

sup  pm(0, J U O")

pEX*UL*
< max{sup py,(k, J*UO%), sup p,,(¢, L UO*)} (from (b))
kek* teL
< max{sup p,(k, "), sup p,,(¢,0")}  (from (a))
kek* e
<

max {max{ sup pm(k, J*), sup pm(p, K£*)}, max{sup p,, (¢, O*), sup pm(n,ﬁ*)}}
keK* peg* teL neo*

max {H, (K*,J*), H,, (L O},



Likewise,

sup  pm(v, L°UK") < max {H,, (K*,T), Hy,, (L*,0")}.

veOQ*UJT*

Thus, it is evident that

H, (K*UL0"uJ") = max{ sup  pm(v, K ULY), sup pm(g,j*u(’)*)}

veL*UO* 0 ULH

< max{H,, (K,J"),H,, (L,0")}.
]

Theorem 2.1.1. [61] Let (W,p,,) be a complete partial metric space and h :
W — W be a contraction such that, for any contractive coefficient A € [0,1),

Pm (ho, he) < Apm(0,5)

is true for all o, € W. Then there exists a unique fized point u of h in W and

for every vy in W the sequence {vg, hvg, h*vy, ...} converges to .

Theorem 2.1.2. [76] Let (W, py,) be a partial metric space and h : W — W a

contraction mapping, then the following hold:

(a) Elements in CP™(W) are mapped to elements in CP™(W) by h.

(b) If
MT*) ={h(01) : 01 € T*}, for any T* € CP(W),

then h : CP™(W) — CP~(W) is a contraction on (CP™(W), Hp,,).

Proof. (a) It is known that every contraction mapping is continuous. Further-
more, for every continuous mapping h : W — W, a compact subset’s image

is also compact, which implies that, if

J* € CP (W) then h(J*) € CP(W).

(b) Let J*,O* € CPm(W). Because h : W — W is a contraction, we get that

Pm (ho1, h (O%)) = inf p,, (hoi, ho2) < A inf py, (01, 02) = A\pm (01, O7).
02€0* 02€0*

Also

Pm (ho2, h (T*)) = inf pp, (hoo, hor) < A inf pp, (02, 01) = Apm (02, T7) -
01ET* 01E€ET*

10



Hy, (h(T*),h(0%) = max{ sup pn(hoi,h(O%)), sup pn(hos, h(T"))}

01€T* 02€0*
< max{\ sup pm(01,0%), A sup pm(02,T")}
01ET* 02€0O*

— AH,, (J°,07).
As a result, h satisfies.
H, (h(J"),h(0")) <AH,, (J*,07), for all o1, 0, € CP™(W),

and so h : CP™(W) — CP(W).

]

Theorem 2.1.3. [76] In a partial metric space (W, py), assume {h, : a =
1,2,...,q} is a finite collection of contraction mappings on W with contraction
constants A\, Mg, ..., Ag, respectively. Let W : CPm (W) — CPm (W) be defined by

U(T") = (T )Uh(T")U---Uhy(T")
= Ug:lha(j*)a

for each J* € CP»(W). Then V is a contraction mapping on CP™ (W) with con-

traction constant, A = max{A1, Ag, ..., \¢}.

Proof. We shall demonstrate the claim for ¢ = 2. Choose two contractions,

hi,hy : W — W and J*, O* € CP»(W). From Lemma[2.1.2] (c), we get that

H,, (¥(J7),¥(0")) Hy, (hi(T") Uha(T7), hi(O7) U he(O7))
maX{H m(hl(j*)> hl (O*)), Hpm (hZ(j*)a hQ(O*)>}
max{\ H,, (J*,O0%), \oH,, (J*,0%))}

AHy, (T, 0%),

IAIA

IN

where A\ = max{A1, \2}. O

Theorem 2.1.4. [70] In a complete partial metric space (W, py,), let {hy : a =
1,2,...,q} be a finite family of contraction mappings on W and

U(T") = (T )Uh(T")U---Uhy(T")
= UZZlha(j*)a

11



for each J* € CPm(W). Then
(i) W : P (W) — CPm (W),

(ii) U has a unique fired point Uy, € CP»(W), in other words, Uy = W(U,) =
Ug:lha([jl)v

(iii) for any choice of an initial set J; € CPm(W), the sequence
{\70*7 \Ij(k70*>7 \Ij2(\70*)7 }
of compact sets converges to [jl.

Proof. (i) Because each h, is a contraction, the conclusion follows immediately
from the definitions of ¥ and Theorem [2.1.2] (ii) ¥ : CP(W) — CP(W) is
a contraction as well, by Theorem m Thus if (W, p,,) is a complete partial
metric space, so is (CP™ (W), Hp,,). As a result, (ii) and (iii) can be deduced from
Theorem 2.1.21 O

Definition 2.1.5. A mapping ¥ : CP»(W) — CP (W) is called a generalised
Hutchinson contraction operator in a complete partial metric space (W, p,,) if a
constant A € [0,1) exists such that for any J*, O* € CP(W),

Hy,, (U (J7),¥(07)) < ASe(T",07),
where

S\P<~7*7O*) = maX{H m(j*7 O*)vam<\7*7 v (j*))a Hpm(O*a v (O*))a
Moo (TSR ON (O YIT)) g, w2 (5.0 (7)),
H,, (U (J), 0"), Hy, (P2 (T*) , ¥ (0"))}.

It is important to note that if U (defined in Theorem [2.1.3)) is a contraction,
then it is a generalised Hutchinson contraction operator but the converse does

not hold.

Example 2.1.3. Let W = [0,1] and p,, : W x W — R[+] be a partial metric

space defined as p,, (wy, ws) = 71; lwy — we| + %max{wl,wg} for all wy,wy € W.

1

Consider hy,hy : W — W defined as h; (w) = % if we [0,1) and Ay (1) = 5
1

hy (w) = % if w e [0,1) and hy (1) = 7 Let CPm(W*) be the collection of all

singleton subsets of W and ¥ : CP~(W*) — CP~(W*) be a mapping defined as

U (J) = h(J)Uhy(J) for all J € CP»(W*). W is not a contraction as it is

12



5
discontinuous at w = 1. But it satisfies condition of Definition [2.1.5|for A\ = 6

Definition 2.1.6. Let (W, p,,) be a complete partial metric space, then a map-
ping ¥ : CP»(W) — CP(W) is called a generalized rational Hutchinson con-
traction operator if A, € [0, 1) exists such that for any J*, O* € CP~(W), the
following holds:

Hy,, (W (J7), ¥ (07) < ARu(J", 07),

where

. H, (T,9(O0")1+H,, (T, Y(JT"
Ry(T* 0% = max{ ( 2(§+>[—[)[pm (j*,(’g*)) ()] ;
H,,, (O, ¥ (0"))[1 + H,,, (T, ¥(T))]

1+ H,, (J*,0%) ’
Hpm(O*,\D(j*))[l+Hp(j*,\11(j*))]}‘
1+ H,, (J* 0%

Definition 2.1.7. Suppose (W, p,,) is a complete partial metric space and let
he : W — W, a=1,2,...,q be a finite collection of contraction mappings, then
{W;hg,a=1,2,--- ¢} is called an iterated function system (IFS).

Definition 2.1.8. [76] If J* C W is a non-void compact set, then J* is an
attractor of the iterated function system, provided

(i) V(J*)=J* and

(ii) an open set Vi C W exists, such that 7* C V} and lim W*(O*) = J*, for

a——+00
any compact set O* C Vi, where the limit is taken relative to the partial

Hausdorfl metric.

As a result, the maximal open set V] satisfying (ii) is known as a basin of attrac-

tion.

2.2. Generalised Hutchinson and Generalised Rational

Hutchinson Contraction Operators

We now present and prove some theorems regarding the existence and uniqueness

of a fixed point of the generalised Hutchinson contraction operator W.

Theorem 2.2.1. In a complete partial metric space (W,py,), let {W:hy,a =
1,2,--- ,q} be an iterated function system and define a mapping ¥ : CP™(W) —

13



cr(W) by

U(T") = m(T)Uho(T)U--Uha(T")
= nglhtl(j*)?

for each J* € CP~(W). If ¥ is a generalized Hutchinson contraction operator,
then it has a unique attractor Uy € CP»(W), that is

U = U(U)) = UL_ ha(Uh).
Furthermore, for an arbitrarily chosen initial set J; € CP™(W), the sequence
{k70*7 v (\70*) ’ \112 (jo*) ’ }

of iterates of compact sets converges to the distinct attractor of V.

Proof. Choose J; randomly in CP(W). If Jy = ¥ (J;), then we have the
required results. Suppose J; # ¥ (J;), and let

I =V(T5), Ty =V (I7), --'M7a*+1 =V ()

for a € N.

If 7 = Jz,., for some a, then J; = V(7 ) and the proof is complete. Assume
that J; # J;,, for all @ € N, then from Definition [2.1.5] we get

Hpm( :+17 ;+2) = Hpm<\p(~7a*)a\1’( ;+1>)
< AS\I’ (j;7j;+1)7

14



where

S (j;a ja*+1)

Thus, we have

H

o

*

a+1>

IA

maX{H m(j;a j;+1)7
Hy, (T30 (T) s Hy, (T2 W (T0)) -
Hpm (‘-7;7 \IJ ( ;—l—l)) + Hpm ( c;k-i-l? \I’ (‘7;)>

2 )
Hpm<\p2 (ja*) I \I] (ja*))? Hpm (\Dz (ja*) 7\7;4-1) )
H,y,, (W2 (J7), 9 (T5a))}

max{H,, (I, ;+1)7Hpm(j;7 :+1)=Hpm( a*+17 ;+2)7

Hpm (‘7:7 ;—1-2) + Hpm ( a*+17 a*—l-l)
9 )

Hpm (j;—‘rQ? \7;4-1)7 Hpm (‘7;—{-27 \7;+1)? Hpm (\7(2*—‘,-27 \7;—‘,-2)}

maX{H m(j:’ ja*-q-l)aH m (\7:+1v«7;+2) )
Hy,, (T, Ti1) + Hy (Tii1, ;;2)}

2
max{H,, (JJ, ;H) , Hy,, ( a1 a*+2)}'

a*+2) < )\max{Hm(jj, ;+1)7Hpm( a*+17 a*+2)}
= >‘Hpm («7;7 a*Jrl)u

for all @ € N. Taking a,n € N with n > a, we have

LIS VARNAY

IN

Hpm (\7;7 ;+1) + Hpm ( t1*+17 :+2) +.t Hpm ( T:;D
— inf atls May1) —  inf at2s lat2) —
Ma+l€j;“pm(/~b +1 Ha+1) ot Pm(Hat2, Hayz)
A lnf Pm (H’n—la ,Un—l)

Hn71€g7571

n—a
k=1

% Hy, (T"(J5), " (J7))

k=1

Y NFH,, (T T7)
k=1
A+ 2 N H, (T T

MNHAN+ N+ NN H, (T, T7)

Aa * *
1 _ )\Hpm (\70 7\71 ) )

15
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and thus lim H, (J,J;) = 0. Hence the sequence {J;} is Cauchy in W.

a,n—+00

But (CP"(W), H,,,) is a complete partial metric space, so J* — U, as
a — +oo for some Uy € CP= (W), that is,

lim H, (J:,U)) = lim H, (J:J'"\) = H,, (U, U).

a—+00 a——+00

Now for some U, € CP»(W), J* — U, as a — +oo, that is,
lim H,, (7, Uy) = 0.

a— 00
To show that U, is the fixed point of W, we assume in the contrary that
H,, (U, ¥(U,)) > 0. So

Hpm(Ula \P(Ul)) < Hpm(Ulv ja*+1> + Hpm(j;+1> lI](Ul))
- inf pm(,ua+17 Na+1>

Hat+1€T5 4

= M, (U1, T5) + Hy, (U(T;), ¥ (Uh))

- inf  py, (,Ua—&-l y Ha+1 )

Ha+1 EJ;+1

< Hpm(Uh \7;—&-1) + /\S\I’(jczk7 Ul) - inf pm(ﬂa-&-h :ua—l—l)

Ha+1 ej;+1

where

S\I/(j;v[jl) = maX{Hm(j;7U1)’Hpm(j;a\D(j;))>Hpm(Ula\Ij(Ul))v

Hpm(ja*’ ‘Il([jl» —; Hpm(Ula ‘I’(j;)) : Hpm(qJQ(j;)v \Ij(ja*))’

Hy,, (V*(T,), U1), Hy,, (¥*(T;), ¥(01))}
= maX{Hm<j;>U1)7HPm(\7;7 ;+1)7Hpm(U17\II<U1)>’

H,, (T2, U(O) + Hy, (U1, T51)
2 b
Hy (T Tin)s Hyo (Tia Un) Hy, (T4, U (UD)) )

Now we examine the following seven cases:

(1) Suppose Sy (T, Ul) =H, (T, Ul), then
H,, (Uy, ¥ (Uh)) < AH,, (T, Uy)
and on taking the limit as a — 400, we get
H,,, (U1, W(Uh)) < AH,, (Ur, Uy),
so H,, (U, ¥(U,)) =0, and so Uy = U(TU)).

16



(2) If Su (T, Uh) = Hy,, (T2, T ), then
Hpm(\ll((jl)v Ul) < )‘Hpm(ja*7 \7;+1)7
and taking the limit as a — +o00

Hpm<(j17 \I[(Ul)) S A‘[—1177n([j17 UI)J

which implies that, U; = W(U7).

(3) In case Sy(J,Uy) = H,, (U, ¥(U,)), we get
H,,,(Ur, ¥ (01)) < AH,, (Ur, ¥(0h))

which gives Uy, = ¥(U).
Hp(ja*v ‘IJ(U1>> + Hpm([j17 j;ﬂ)

(4) Assume Sg(J7,Uy) = 5 , then
. 5 A 5 5
Hy,, (U, ¥(Uh)) < 5[Hp, (J0, U () + Hp,, (U1, Totn)]
\ 5 5
< SHp (T2, Uh) + Hy, (Ul,\I/(U1>)

— nf py (i1, 0) + H,,, (Ur, J;)l,
ueUy

and as a — 400, we get

y N A L N 3
Hy,, (U, ¥()) < 5[Hy,, (U1, Uh) + Hy,, (U1, ¥ (Uh))
— inf p, (@, @) + Hy,, (Uy, Uh))]
aeU;
= )\{H 7n(U17 Ul) + E[HPTVL(Ul’ \P(Ul)) - ~1n£ pm(u7 u)]}?
ueU1
that is,
- ~ 2\ -~ - . -
H,,, (U1, ¥(Uh)) < 5— [Hp,, (U1, Ur) — inf pp(a, )]
2—A uelU;

which gives us H, (U, ¥(U;)) =0 and so U; = ¥(U)).

(5) For Sg(J*,Uy) = H,, ( oy Jay1), then as a — 400, we get

H,, (Uy, ¥(Uy)) < AH,, (U, Uh),

which gives Uy = ¥(U).

17



(6) Taking Sy (J*, Up) = Hy, (Jrs U,), then as a — 400, we have

Hpm<(j17 \I[(Ul)) S A‘[—‘Ipm(Umvla UNI)J

and so U, = \I’(Ul)

(7) Lastly if Sy(J7,Uy) = H,,,( 2> W(U,)), we have

H,, (U, ¥(U1)) < AH,, (T, ¥ (Uh))

< ANH,, (T Uh) + H,, (U, 9(U))) — inf p,,(a,a)]

ucU;

and on taking limit as a — 400, yields

H,, (U1, ¥(Uh))

IN

)‘[Hpm((jly Ul) + Hpm(Ula qj(Ul)) - inf pm(ﬂv 71)]

aelU;
(1= N H,, (U, W(0h) < AH,, (U, 0h) - inf pm(t, )]
uely
which implies that H, (U, ¥(U;)) < 0 and so U; = ¥(U;). As a result, in all
cases, U, is the attractor of U. To prove the uniqueness of the attractor, we
assume that Ul and UQ are both attractors of ¥ with H, m(ljl, U~2) > 0. From the
definition of ¥, we get

H,,(U,U) = H, (U(U),¥(0s)).
S )\maX{Hm(Ul,Ug),Hpm(U1,\D(Ul)),Hpm(Ul,\I/(Uz)),
H,, (U, 9 (Uy)) + Hp, (Us, ¥(Uy))
2 M
H,, (V(Uy),0h), H,,, (V*(Uy), Us), Hy, (V2 (Uy), ¥ (Us))}
= )\maX{Hm(Ul,[jQ),Hpm((jl,Ul),Hpm(ﬁQ,UQ),
Hpm(Ul, Ug) + Hpm(UQ, U1)
2 b
H,, (U, Uh), H,, (U1, Us), Hy, (U1, Us)}
= /\Hpm(UMUQ)v

which implies that, (1 — A\)H,, (U,Us) < 0, so H,, (U;,Us) = 0 and hence
Ul = UQ. Thus Ul € CP~ (W) is the only attractor of W. O

Remark 2.2.1. In Theorem [2.2.1] let SP= (W), the collection of all singleton
subsets of the space W, then SP=(W) C CPm(W). Moreover, taking h, = h for
each a =1,2,--- ,q, where h = hy implies that

‘I’(Ql) = h(@1)-

18



As a result, the fixed point result shown below is obtained.

Corollary 2.2.1. Let {W;hg,a =1,2,--- ,q} be a generalized iterated function
system defined in a complete partial metric space (W, pp,), and let h : W — W be
as in Remark . If some X\ € [0,1) ezists such that for any 01,00 € CP™ (W)
with pm(hoi, hog) # 0, the following holds:

Pm (ho1, ho2) < ASw(o1, 02),

where

Pm (01, hos) + pm(02, ho1)
2 )

Sh(@17Q2) = max{pm(QbQZ)upm(Qbth)upm(Q2ahQQ>7
P(hQQb QQ)apm(hQQla th)apm(hQQb th)},

then h has a unique fized point uw € W. Furthermore, for any vo € W |, the

sequence {vg, hvg, h*vg, ...} has as a limit, a fized point @ of h.

Corollary 2.2.2. Let {W;hg,a = 1,2,--- ,q} be an iterated function system
defined in a complete partial metric space (W, py,) and each h, for a =1,2,....q
be a contractive self-mapping on W. Then W : CPm(W) — CP™(W) defined in
Theorem has a unique fized point in CP™(W). Furthermore, for any initial set
Jg € Crm(W), the sequence { T,V (J5), V2 (T5), - } of compact sets converges
to a fixed point of V.

Example 2.2.1. [2I] Let W = [0, 10] be endowed with the partial metric
Pm : W X W — Ry defined by,

1 1
pm(0,6) = §ma><{9,<} + Z'Q — |

for all o,¢c € W.

Define hy,hy : W — W as

10 —p

hi (o) = ) for all p € W and
4
he (0) = QZ for all p € W.

19



Now for p,¢ € W, we have

1

Pm (h1(0),h1(s)) = 3 max{

10 —p0 10 —¢ 1{10—p0 10—¢
2 72 4 2 2

171
= 5{2max{10—g,10—€}+ \@—d}

S )\lpm (Q, §) 3

where, A\ = %

Also for p,¢ € W, we have

P (h2 (0) 2 (<)) = max{ﬁ <+} g+ <+

1
2 4

171
= Z{Qmax{9+4<+4}+ |9—<|}
S /\2pm(97§)7

where Ay = }L.

Let {W; hy, ha} be an iterated function system and define W : CPm (W) — CPm (W)
by
U=U(U)=hi(U)Uhy(U) forall U e CP(W)

then for J*,O* € CP»(W), we have by Theorem [2.2.1]

Hy, (V(T7),V(07) < X'H,,, (T7,07),

where, \* = max{3,1} =

Thus all conditions of Theorem [2.2.1| are satisfied. Moreover, for any initial set
Jg € CPm (W), the sequence

{75, 9 (7). ¥ (F), -}

of compact sets is convergent and has for a limit, the attractor of W.

Now we establish the existence and uniqueness of an attractor of the generalized

rational Hutchinson contraction operator, ¥ defined in Definition [2.1.6

Theorem 2.2.2. In a complete partial metric space (W,py,), let {W;hy,a =
1,2,--+ ,q} be an iterated function system. Define W : CPm (W) — CP™(W) as

U(T*) = (T )Uh(T*) U Uhu(T")
= nglha<\7*)7

20



for each J* € CPm(W). Suppose VU is a generalized rational Hutchinson contrac-

tion operator, then U has a unique attractor Uy € CP (W), that is

U1 == \P(Ul) = nglha(Ul)-

Furthermore, for any arbitrarily chosen initial set J5 € CPm(W), the sequence of

compact sets

{‘-70*7 v (*70*) ’ \IIQ (jo*) ) }

converges to the attractor of U, that is U;.

Proof. Choose an arbitrary element J; in CP»(W). If J; = ¥ (Jy;), then the
proof is complete. Suppose J; # V¥ (J;) and define

I =V¥(Ty), T =V (I7), SRVARE S (J2)

for a € N.

Assume that J # J,, for all a € N, else J = U(J) for some a and there is
nothing further to show. Consider J; # J,,, for all @ € N. Then

Hpm(tz;—la \7(1*-1-2) = Hpm(\p (ja*) U (\7(1*4-1))
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where,

Hy, (T3 V(T + Hy, (T2, 9(T)))]
201+ H,,, (T3, T71)) ’
Hy, (T2, U (T50)) L+ Hy, (T5,%(T))]
L+ Hy, (T Ti) ’
H,, ( JH,\I'(J;))D+Hpm(JJ,‘If(J;>>]}
]' + Hpm (‘7;7 a*+1)
=g S o (T Tia) 1+ By, (T ;H)J’
201+ H,p,, (T3, T51))
Hy, (T, Tio) L+ Hy, (T3 T
1+Hpm (ja*7 ;-i-l) ’
Hy, (Tf Ti)L + Hy, (T, ;+1)]}
1+ H,, (T7, Tk
H * *
max{ e Jiss) (7203,
Hy,, (Ti1 Tav1)}
Hpm(ja*7 ;+2)

Ru(T; Tr) = max{

2
Thus, we have
* * >\* * * * *
Hpm(ja+17 ja+2) < ?[Hpm(j(l ) ja—l—l) + Hpm(ja—‘rl? ja+2)
I f m a ) Sa
LA (€av15&ar1)]
As

< ?[Hpm(ja*a ja*—i-l) + Hpm(j;—‘rl? «7;-1-2)]7

2‘[—‘[Pm (\7;+17 j;+2) - /\*Hpm (jtz*Jrl? «7;+2) S >\* [Hpm(j;7 j;Jrl)]v

A

Hpm( a*+17 ;+2)§2_—pr771(~7;, a*+l)7

A
that is, for n, = 51X < 1, we have

*

Hpm (‘70:-1’ j:—}—?) S n*Hpm (‘7;’ ja*—&—l)
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for all @ € N. Thus for a,n € N with a < n,

Hpm(j;v j;:) < Hpm(j;7 \7a*+1) + Hpm(j(::rl? j;+2> +ot Hpm(j;fla »7:)

- #H}Telggﬂ P (Hat1; at1) — #a+igg:+2 P (Hat2;s fat2) —
T ,Un—}rél\ff[,l P(fn—1, fn—1)
< niH,, (J5, J0) + 772+1Hpm(‘70*7 T+ + nf_alm(Jo*, JV)
< [t 0T, (TS )
< el A+ 0T, (T T
< ()

This gives us, Hp, (J5, JF) — 0 as a,n — +o00. Therefore {J} is a Cauchy

sequence in W. But (CP=(W), H,, ) is complete, so J* — U, as a — +oo for

some U; € CP»(W), in other words, ligl H, (J:U,) = liril Hy, (Jr . Jl) =
a—+00 a—+00

H,y, (U1, U1).

To prove that U is the fixed point of U, we assume in the contrary that
H,, (U, ¥(U;)) > 0. This implies that

Hpm(Uh \I/(Ul)) < Hpm(U17 jjﬂ) + Hpm(j:+17 \I/(UI» - inf pm<,ua+la ,ua—i-l)

Na+1€s7;+1

= Hpm(U17 ja*+1) + Hpm(\p(ja*)? \Ij(Ul)) - inf pm(MaJrla ,uaJrl)

Pa+1€T 511

S Hpm(Ul’ \7;+1) + A*R‘I’(j;a UNl) - Hlf pm(ﬂa—‘rh lj'a—&-l))

Ha+1 EJ;+1

where

Hy,, (T2, Y (O)) (1 + Hy,, (T2 U(T2))]
2(1 + Hy,, (J7, Uh)) |

Hy,, (Uy, W(U))[L+ Hy,, (T, W (T;))]
1+ Hpm(ja*a Ul)

Hy,, (U, W(ID)L + H,y, (T U(T))]
1+ Hpm(ja*a Ul)

= maX{Hpm(j;’\P<Ul))[1+Hpm(\7a*v ;—&-1)]

R (T, Ul) = max {

Y

Y

2(1+ H,,, (T, Uh))
Hy, (U, WU+ Hp,, (T3 T )]
1+ H,, (Jr, Uh)

Hy (00, T2 )L+ Hy (T2 T20)] |
1 + Hpm (\7;’ Ul)

Y
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Consider the following three cases:
(1) Let

Hy,, (T3, W (U)[L+ Hy,, (T, Tasn)]
2(1 + H,p,, (J5, U1))

R\I/(j;a Ul)

Y

then

M[H,, (T35, Uh) + H,,, (U, ¥(Uy)
21+ H,, (T;, Uh))
_infaey, pm(t, 0)][1 + Hy,, (T35, T10)]
2(1 + Hy, (T, 1))
- inf  py, (/la—&-l? Na—&-l)

Ha+1€T 5
MN[Hy, (T3, Uh) + H,,, (U, ¥(U))]
21+ H,, (7, Uh))
y L+ Hp, (Jd, T
2(1+ H,p, (J;, Uh))

H

Pm

(U1, W(Uh)

IN

IN

and on taking limit as a — +o00, we get

H, (000 < M |H,, (U1, Uy) + H, (U, U(U)
pmAT D BV = 21+ H,, (Uy,U1))
inf py, (g, @)|[1 + H,, (Uy,U))]

u1 €1

2(1+ H,, (U,,U))

Which implies that

- A, N
Hpm(Ul’\Ij(Ul)) S 2 )\ Hpm(U17U1)7

— N

< 1andso H,, (U, ¥(U,)) = 0.

A
h
where S

H, (U, ( ))[1 H, (T
1+ H, (ja , U1>

*
a+1)]
, we have

(2) If Ry (T, Uy) =

IN

Hpm(Ul?\Ij([jl) 1+H (j* []‘1)
Pm a’

| o O WO+ Hy, (2 T
1 +Hpm<‘7;7U1) ,

\ {Hpm(ﬁl,wl»u + Hy, (T, ;;1)]}

IN
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and taking the limit as a — +o00, yields

H, (U, %(U;)) < )\*{Hpm(Ula\Ij(Ul))[l+Hpm(U1,Ul)]}

1+ H, (U, T))
(1 —=X\)H,, (U, ¥(U;)) < 0,a contradiction,

so U, = \II(U~1)

(3) For Ry(J;,Uh) = Hy,, (U1, Jaa) + Hy, (T Tiisa)]

1 + Hpm (‘7;7 U~1)

, we obtain

H, (U, ¥(U,)) < 7
pm< L¥() < l—I—Hpm(ja*aUl)

)\ Hpm((jl? u:»l)[]‘ + Hpmfjék? a:»l)] )
1 + Hpm(j;? Ul)

N {Hpmwl, s+ By, (T ;Hn}

<

Taking the limit as a — 400,

H,, (0, %(0h)) < A {HPmWhU?)U + Hpm@ﬂl)]}

1+ H,, (U,,0)
(1= A\) Hy,, (U, U(Uh)) < H,p, (U, Uh),
that is U; = ¥(U,).
Thus in all three cases it was shown that U, is an attractor of the mapping .

For the uniqueness of attractor of ¥, assume that Ul and UQ are both attractors
of ¥ with H,, (Ul,UQ> not equal to zero. Since ¥ is a generalized rational

contraction, we obtain that
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H,, (U,U,) = H, (¥(U,),¥(Us))

H,, (U, V(Us))[1 + H,, (Uy, ¥(Uh))]
2(1 4+ H,, (U1, Us))

H,,, (U3, @ (0 ))[1 + Hy, (Ur, W(01))]
1+ Hp, (U, Us)
Hy, (Ua, WO+ Hy,, (01,9 (0)))]
1+ Hp, (Uy,Us)
i {Hpmwlﬁz)u+Hpm<U1,U1>1
" 21 + H,, (Uy,Uy))

H,, (Us, U)[1 + H,, (U1, U1)] H,, (Us, U1)[1 + H,, (Uy,Uy)]
14 H,, (U, Us) ’ 14 H,, (U, Us)
< )‘*Hpm(UbU?)v

IN

A\, max

?

?

Y

and so (1 — \,)H,, (Uy,Us,) < 0, which implies that H,, (U;,U,) = 0 and hence
U, = U,. Thus U, € CP~ (W) is a unique attractor of U. 0

Corollary 2.2.3. Let {W;hg,a =1,2,--- ,q} be a generalized iterated function
system on a complete partial metric space (W, p,,) and define h - W — W as in

Remark[2.2.1. If for any o1, 02 € CP™ (W) with py,(h(01),h(02)) # 0, there exists
some \, € [0,1) satisfying,

Pm(ho1, hoa) < MRnu(01, 02),

where

Y

Rh(@l, QZ) — ma {pm(@l; hQZ)[l + pm(@b h’@l)] : pm(g27 hg2)[1 + pm(gh h@l)]
2(1 4 pm(o1, 02)) 1+ pm(01, 02)
Pm (02, ho1)[1 + pm (01, ho1)] }
14 pm(01, 02) ’

then h has a unique fived point u € W. In addition, for any initial choice of

g € W, the sequence {1y, hig, h*y, ...} converges to .

2.3. Well-posedness of Iterated Function Systems

This section investigates the well-posedness of attractor based problems for gen-
eralized Hutchinson contractive operator and generalized rational Hutchinson

contractive operator which appear in Definition [2.1.5] and Definition [2.1.6] in
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a Hausdorff partial metric space setup, respectively. The existence, uniqueness,
and stability of solutions to fixed point equations are often connected with well-
posedness, which is an important aspect in the construction of fractals. Some
significant results on well-posedness of fixed point problems are well presented in
[6], 56, (9]

Definition 2.3.1. An attractor based problem of a mapping ¥ : CP"(W) —

CPm(W) is said to be well-posed if U has a unique attractor ©* € CPm (W)
and for any sequence {©,} in CP(W), aEToo H, (¥(0,),0,) = 0 implies that
lim H,, (0, 0*) = H, (0%,0%), that is, aginoo 0, = 0%

a——+00

Theorem 2.3.1. Let (W, p,,) be a complete partial metric space and define
U CPm (W) — CP™ (W) as in Theorem [2.2.1. Then ¥ has a well-posed attractor

based problem.

Proof. According to Theorem [2.2.1], ¥ has a unique attractor Z,, say. Let {Z,}

be a sequence in CP™ (W) such that hI}_l H, (Y(Z,),2,) =0. We want to show
a——+00

that Z, = lim Z, for every positive integer a. As ¥ is a generalized contractive

a—+00
Hutchinson operator, then

Hy (202 < Hy (V(E)WE)) + H,, (WZ). 20— inf pl(f )
< .
< ASu(Z., Z2,) + H,,, (Y(Z2,), Z4) Baelfl’l(fza)pm(ﬁa,ﬂa),
where

S‘P<Z*>Za) = maX{Hm<Z*7Za)7Hpm<z*7qj(z*))>Hpm(Zau\II<Za))7
Hpm<Z*7\IJ(Za)+Hpm<Za>\Ij(Z*)) H (\IIQ(Z*),\I/(Z*)),

2 ) Pm

H,, (V*(2.), Z4), Hy,, (V*(2.), ¥ (2.)) }

= maX{H m(Z*7Za)7Hpm<Za7qj(Za))7

Hpn (20, W(Z0) + By (20 2) 55001

2 ’ Pm

The following arise:

(i) For Su(Z2., 2.) = Hp,,(Z., Z,), then

Hpm (Z*, Za) < AH, m (Z*, Za) + Hpm(\I!(Za), Za) - 5 i\II}(fZ )pm(ﬁavﬁa)
ae a

Hp, (24 24) — AHp,, (24, 24) < Hp,, (V(24), Za) —  inf - pu(Ba, Ba)

Ba€EY(Z4)

m
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(2,22 € ——[H, (W(Z.),2)—  inf pu(Ba o))

H
—1-A Ba€¥(Za)

Pm

and as a — +o0o we have

lim H, (Z.,2.) < ——[ lim H, (U(Z.), Z)— inf  lim pm(Be o),

a—+00 — 1= )Xa=too Ba€V(Z,) a—r+00

thus lim Z, = Z,.

a—+00

(ii) When Sy(Z,,Z,) = H,, (Z,,U(Z,)), then

Hpm (Z*a Za) < /\Hpm (Zav \I[(Za))+Hpm(\Ij(Za)a Za)_ inf lim pm(ﬁmﬁa)]a

Ba€¥(Z,) a—+00

and as a — +00 we have,

| N |
ln (2, 2) < Al H,, (¥(2,),2)+ lin A, (¥(Z,), Z,)

a—+00
ﬁaelllln( 2)a 1m pm(ﬁaa 60,)7

thus lim Z, = Z,.

a——+00
H, (Z.,Y(2,)+ Hy)(Z,, 2))
2

(iii) In case Sy(2,, 2,) = , then

A
H, (Z.,2,) < §[Hpm(Z*,\II(Za)—|—Hpm(Za,Z*)]

+Hpm(\Ij(Za)a Za) - Bael\ll}(fza)pm(ﬁa’ ﬁa)
A

§[Hpm (Z*v Za) + Hpm (Zaa \D(Za))

=0 pu(be, bo) + Hy, (20, 2.)]
ae a
+Hpm(\Ij(Za)7ZG) - inf pm(ﬁaaﬂa)v

Ba€Y(Za)

IN

A
H, (2.2, —\H,, (2., 2,) < §[Hpm(Za, U(Z,)) — bing Pm(ba, ba)]
H.E a

+Hpm(\p(za)7 Za) - 6a61‘IP1(fZa)pm(ﬁa7 /Ba)a

[Hpm (Zaa \I](Za)) — inf pm(ba; ba)]

ba€Z,

PN Hpm(\I;(Za)v Za) - ,Baei\%(fza) pm(ﬂa; ﬁa)L
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and as a — +0o0 we have

A
lim H,, (2.2, < ——[1lim H, (Z,,¥Y(Z,))— inf lim p.,(bs,b,)]

a——+o00 2(]_ — /\) a—+00 bo€EZ4 a——+00
1
— | lim H, (V(Z,),2Z, — inf i m(Pas Pa)l,
L, Hon (¥(2a), Za) = 0f 0 T pr (B, o)

which implies that lim Z, = Z,.

a——+00

(iv) If Sy(Za, 2,) = H,, (2., (Z,)), then

Hy, (Z.,2,) < AH,, (2,V(Z2,)+ H,p, (Y(Z,),2,) — inf pu(Ba, ba)

Ba€Y(Z4)
< AlHp, (20, 20) + Hy,y (20,0 (20) = i0f pralba ba)]

+Hpm(\p(Za)?Za) - lnf pm(ﬁmﬁa)?

Ba€¥(Za)

Hy, (24, 20) — Ay, (24, 24) < AH,p, (24, Y (Z2,)) — inf pp(ba, ba)]

ba€Zq

+Hpm(\Ij(Za)>Za)_ inf )pm(ﬁaaﬂa)a

BaEY(Z,

<« N .
Hpm (Z*7 Za) = 7. [Hpm(zaa v (Za)) balgga pm(baa ba)]

+—[Hpm(\1/<za)7 Za) - ﬁaei\%(fza) pm(ﬁaa 60,)]7

and as a — +o0o we have

. . .
lim H,,(2.,2) < Al H, (V(Z).2)+ lim H, (V(Z,), Z,)

a——+00
- .l’lf lm m\Mayr Ma)
ﬁael‘ll(Za) a—lH-oop <ﬁ 5 )

giving us that lim Z, = Z,.

a—+00

Theorem 2.3.2. Consider a complete partial metric space (W, p,,) with
U . CPm(W) — CPm (W) defined as in Theorem [2.2.2, Then ¥ has a well-posed

attractor based problem.

Proof. From Theorem [2.2.2] it follows that the map ¥ has a unique attractor say
Z,. Consider the sequence {Z,} in CP™ (W) such that lirf H, (Y(Z,),Z2,) =0.
a——+00

We show that Z, = liI_iI_l Z, for every a € N. Since V¥ is a generalized rational
a—r—+00
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contractive Hutchinson operator, then

Hyo(Zan Z) < Hy (W(20), W(Z2) + Hy, (V(Z2), Z) = inf p(fu, o)

< MRu(Z4, 20) + Hy, (W(24), 24) = inf pr(Ba, Ba),

- Ba€¥(Za)

where

Hp,, (24, V(Z.))[1 + Hp,. (24, V(Z,))]
2(1 + H,, (24, Z.)) ’
H,, (24, V(Z,))[1 + Hp,,(Za, ¥(Z4))]
1+ H,, (24, Z.) ’
Hpm (Z*7 \IJ(ZG))[l + Hpm (Zaa \I!(Za))] }
1+ H,, (2., Z2.) '

Ry(Z4, 2.) = max {

We consider the following three cases:

. _ Hp (20, V(2))[1 + Hp,. (24, ¥(Za))]
(1) For Ry (Za, 2.) = 20+ H, (Za, 2.))

, we have

H

0 (2.2 < aHmEoVENL Ay, (2, V(2,))

21+ H,,, (24, 2.))
+Hpm (\II(ZG)’ Za) - inf pm(ﬁm Ba)

Ba€¥(Za)
< MNH,, (24, 201+ H,y, (24, V(Z2,))]

+Hpm(\lj(za)a Za) - Baelg(fza)pm(ﬁa, Ba)~

Therefore

Hy, (2., Za) = Al (24, 24)[1 + Hp, (24, ¥(Z4))] < Hp, (V(Z4), Za)
- inf Pm (ﬁm ﬁa)a

Ba€Y(Z4)
thus

1
S 1o N[+ Hp, (24, U(Z,))] |
— inf )pm(ﬁavﬁa)]a

Ba€Y(Za

Hpm (Z*’ Za)

Hp(q](Za)a Za)

and on taking the limit as a — 400, we get

lim H, (2., 2,) <0,

a——+00

which implies that lim Z, = Z,.

a——00
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H

(i) T Ry (Z,, 2,) = Ton(Ze WE) L+ Hp,\ (20, W(Z4))

1+ H,, (2., B.)

, then

H,, (2., V(Z,))[1 + Hp,, (24, V(Z,))]
Hp (2, 2a) < A ( 1+ H,, (2., 2.) )

+Hpm(\1}<za)7 Za) - inf pm(ﬂaa ﬁa)

Ba€Y(Z4)

= Hpm(\D(Za)vZa) — inf pm(ﬁa’ﬂa)’

Ba€EY(Z,)

and applying the limit as a — 400, gives

lim H, (2., 2,) <0,

a——+00

which implies that lim Z, = Z,.

a—+00

H

(i) And if Ry(Z,, 2,) = Hon(Ze VZ)1+ Hy, (20, V(Z4))]

1+ H,, (24, 24)

, then

H

H, (2,20 < A Den(Ze VE)L+ Hy, (20, ¥(Z20))

1+ H,, (24, 24)
+Hpm (\IJ(Za)’ Za) - inf pm(ﬁm Ba)

Ba€¥(Za)

< MHp, (24 20) + Hp, (24, ¥(2,)) — nf P (Nas 1a)]
[1 + Hy,, (Za; \I[(Za))] + Hpm(qj(za): Z,)— inf )pm<ﬁaa Ba)s

Ba€Y(Z4

SO

Hy, (24, 24) — MHy, (24, 20)[1 + Hyp, (24, ¥(Z4))]
< AdHy, (26, 9(20) = i0f P, n0)I[L + Hy,, (Za, U(Z0))]
+Hpm<\I]<Za>7 Za) - inf )pm(ﬁm Ba)a

Ba€EY(Z4

therefore

1
Sy MR TRk
— inf pim(Ma; ma)][1 + H,y,, (24, V(24))] + Hpm(\Ij(Za% Z,)

Na€Za

- inf )pm(ﬁaaﬁa)y

Ba€¥(Z,

Hy, (2., Za) My, (Za, ¥(Za))

which implies that lim Z, = Z,. Hence the required results.
a—+00
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3

Generalized iterated function
system for common attractors in

partial metric spaces

3.1. Introduction

The construction of a common attractor of generalized iterated function system
of generalized contractions in the framework of partial metric spaces is the focus
of our current discussion. We note that the Hutchinson operator is itself a gen-
eralized contractive mapping on a family of compact subsets of W, defined on
a finite family of contractive mappings on a complete partial metric space. The
final common attractor is generated by using a generalized Hutchinson contrac-
tion operator repeatedly, and this is followed by the presentation of a non-trivial
example to support the proved result. To conclude the chapter, an application of

our findings will be given.

3.2. Generalized Iterated Function System

Some findings on generalized iterated function system for multivalued mappings
in metric spaces do appear in [35]. In this section, we define the generalized

iterated function system in the context of partial metric spaces.

Definition 3.2.1. [35] Let (W, p,,) be a partial metric space, and let h,g: W —
W be two mappings. Then a pair (h,g) is a generalized contraction provided
A € [0,1) exists such that

Pm (ho, 95) < Apm (0,5)

for all o,c € W.
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Theorem 3.2.1. In a partial metric space (W,py,) let h,g : W — W be a

couple of continuous mappings. If (h, g) is a pair of generalized contractions with

A€ 0,1), then
(1) both h and g map elements in CP™(W) to elements in CP™(W);

(2) if for any J* € CP~(W), the mappings h,g : CP»(W) — CP~(W) are defined

as

hMT*) = {h(o):0€ T} and
9(T") = {9(c):c€ T},

then the pair (h,g) is a generalized contraction on (CPm(W), H,, ).

Proof. (1) Since h is a continuous mapping and the image of a compact subset

under a continuous mapping, h : W — W is compact, then
J* € CPm(W) implies that h(J™) € CP"(W).
Similarly, we have

J* € CPm(W) implies that g(J*) € CP(W).

(2) Let J*, O* € CP~(WW). Since the pair (h, g) is a generalized contraction, then

Pm (ho, 9S) < Apm (0,¢) for all o,c € W,

where A € [0,1).

Thus, we have

Pm (ho,g(0%)) = inf py (ho, g<)
seO

IN

nf Apm (0:<)
Apm (0, 0%).

Also

pm (95,7 (T7)) = inf pm (g5, ho)
0eJ

IA

inf Ap,, (<,
nf Apn (5, 0)
Apm (5, T7).
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Now

H,, (h(T*),g(0") = max{sup py(ho,g(O")), sup pu(gs, h(T*))}

QGJ* SeO*
< max{ sup )\pm(g’ O*), sup )‘pm(ga j*>}
0ET* ceO*
= max{\ sup pn (0, 0"), A sup pn(s,J*)}
0ET* ceO*
= Amax{ sup pn (0, 0"), sup pn(s, T*)}
oET* seO*

= M\H,, (J*,0).
Consequently,
Hy, (h(T7),9(07) < AH,, (T7,07).

Thus, (h, g) is a generalized contraction mapping pair on (CP™ (W), H,, ).

]

Proposition 3.2.1. In a partial metric space (W, py,). Let hg,go - W — W for

a=1,2,---,q be a collection of continuous mappings such that

Pm (Ra0, GaS) < Xapm (0,6) for all o, € W,

where A\, € [0,1) for eacha € {1,2,--- ,q}. Then the mappings ¥, ® : CP»(W) —
CPm (W) defined as

V(T") = h(T7)Uha(T*)U--- Uhe(T)
= UI_ h(J") for each J* € CP™(W)

and

O(TY) = (T )Ug(T)U-Ugy(T")
= U!_,9,(T") for each J* € CP™ (W)
also satisfy

H, (VJ*,®0%) <\H, (J*, 0O forall J*,O* € CP"(W),

where X\ = max{)\, : a € {1,2, ..., ¢}}. Furthermore the pair (¥, ®) is a generalized

contraction on CPm(W).

Proof. We shall prove the result for ¢ = 2. Let hy, hs, g1,90 : W — W be two
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contractions. For J* O* € CP(W) and using Lemma (c), we have

Hy, (V(J7), 2(07))

Hp,, (hi(T*) U ha(T7), 91(07) U g2(O7))
max{H,,, (h1(T"), g1(0")), Hp,, (h2(T "), 92(O"))}
max{\ H,, (J*,O0%), H,, (J*, 0"}

XH,, (J*, 0.

IN A

IN

]

Definition 3.2.2. Consider a partial metric space (W, p,,) with the mappings
U, ®: CPm(W) — CP»(W). A pair of mappings (U, ®) is called

1. a generalized Hutchinson contractive operator if a constant A € [0, 1) exists
such that for any J*, O* € CP~ (W), the following holds:

Hy,, (V(T7),2(0%) < ASwe(J",0%),
where

Sve(J",0%) = max{H,, (T, 0%), Hy, (T, ¥ (T")), Hy, (O, (0")),
Hpm(J*@(O*))+Hpm((9*,‘11(\7*))}
5 :

2. a generalized rational Hutchinson contractive operator if a constant A\, €
[0, 1) exists such that for any J*, O* € CP (W), the following holds:

Hy, (W (T7),2(07) < ARue(T",07),

where

. Hy, (T, ®(0O")[1 + H,, (T, ¥ (T
H,,, (0", @ (O0"))[1 + H,,, (T, ¥(T"))]
1+ H,, (J* 0% ’
H,,, (T, 0")[1 +Hpm(u7*,‘11(~7*))]}
1+ H,, (J* 0% '

Note that if the pair (¥, ®) defined as in Proposition is generalized con-
traction on CPm (W), then the pair (U, ®) is a generalized Hutchinson contractive

operator but not conversely.

Definition 3.2.3. Let (W, p,,) be a complete partial metric space. If

35



ha,go - W — W, a = 1,2,...,q are continuous mappings such that each pair
(hay ga) for a = 1,2,...,q is a generalized contraction, then {W; (h,, g.),a =
1,2,--- ,q} is called a generalized iterated function system (GIFS).

Definition 3.2.4. Let J* C W be a non-void compact set, then [J* is a common

attractor of the generalized iterated function system if
(i) ¥(J") = ®(J") = J" and

(ii) there exists an open set V3 C W such that J* C Vj and lim U*(O*) =

a—+00

lim ®*(O*) = J* for any compact set O* C V;, where the limit is taken

a—+0o0
with respect to the partial Hausdorff metric.

As a result, the maximal open set V] satisfying (ii) is referred to as a basin of

common attraction.

3.3. Generalized common attractors of Hutchinson

contractive operators

In the setting of partial metric space, we state and prove some results on the
existence and uniqueness of a common attractor of generalized and generalized

rational Hutchinson contractive operators, beginning with the following theorem.

Theorem 3.3.1. Let (W,p,) be a complete partial metric space and
{W;(hay9a),a = 1,2,--- q}, a generalized iterated function system. Define
U, P Com (W) — CP (W) by

U(T") = Uz ha(T7),

and

O(0") = Ugz19a(07)

for each J*,O* € CP~(W). If the pair (V,®) is a generalized Hutchinson con-
tractive operator, then ¥ and ® have a unique common attractor U, € crm(W),
that s,

Furthermore, for an arbitrarily chosen initial set J; € CP™(W), the sequence
{\-70*7 \Ij(jo*>> (I)\I](\ZJ*)v \I[(I)\IJ<*7O*)7 }
of compact sets converges to the common attractor Uy of U and ®.

Proof. We choose an arbitrary element J; in CP"(W) and define ¥ and &
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respectively by
T =T, T =V (T5) s T = ¥ (F5)

and
Jo =@(T), TS =P(F5), - Toura =P (‘72*‘”1)
for a € {0,1,2,...}.

Now, as the pair (¥, ®) is generalized Hutchinson contractive operator, we have

Hpm (*—72*(1—1-17 j2tz+2) = Hpm (\Ij (*—72*51) ) o (jZ*a+l)>
>~ )\S‘If,q) (jQ*LN j2*a+1> )

A

where

Sv.e (jQ*a? jQ*a+1) = max {H o (Toas Toat1)s Hpp (T30 ¥ (T50)) 5
Hy, (j2*a+17 o (j2*a+1)) )
Hpm (\722’ (I)(j;:z—&-l)) + Hpm (‘722-{-17 \I[(j;;)) }

2
= max {H,,, (Tow Tous1)s Hpp (Tras Tras1) -
H,y,, (-72*a+1a j2*a+2) )

Hpm (j2*a7 j2*a+2) + Hpm (jZ*aJrlJ j2*a+1) }
2

max{ H,,, (Tz,, u72*a+1)7 Hy,, (j2*a+17 u72*a+2) )
Hy, (T T3oi1) + Hp, (Tt Tsiyn) }

IA

2
= max{H m (J;;, ~72*a+1) Hy, <j22+1u722+2)} .

Thus, we have

Hpm(~72*a+1>~72*a+2) < )\maX{H m (j;mj;aﬂ) , Hp, (‘722—&-17‘72*@—&-2)}
= AH,, (*72*mj2*a+1) .

Also,

Hpm (t72*a+2> jZ*a—i-S) = Hpm (‘-72*a+37 ‘72*a+2)
Hy,, (Y (T5012) » © (Fa11))
ASuo (Tonias Tonin)

IA
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where

S\I/,<I’ ('-72*a+27\72*a+1) = maX{H m(j2*a+27 j2*a+1)a Hpm (j2*a+27 v (j2*a+2)) )
Hy,, (T5ar15® (Tzas1)) +

Hpm (‘722+27 o (jQ*a—l-l)) + Hpm (‘72*a+17 v (\72*(14-2)) }
2

= max{H m(x72*a+2a j22+1)a Hy,, (‘72*(1—1—27 jzt;+3) )
Hpm (‘72*(1+17 *72*a+2) )
Hyp, (T Tasa) + Hou (Tgsrs Toiss) }

2
maX{Hpm (jz*a+2= j2*a+1>a Hy, (jz*a+2= j2*a+3) )
Hy,, (T50i1: Tsva) + Hppo (Tsia: Tsss) }

IN

2
= max{H,, (j22+27 \72*a+1) Hy, (j22+27 ~72*Q+3)}-

Thus, we have

Hpm(j22+27‘72*a+3) < Amax{H,, (*72*a+27\72*a+1) . Hy, (jQ*a—i-Q’ -722+3)}
= >‘Hpm (*—72*a+27 jZ*aJrl) .

Therefore, for all a € {0, 1,2, ...}, we have

Hy (T2 Tia) < My, (T5.T5)
< NH,, (J01 ;)
<
< N, (T3, T7).

Now, we have for [ > a, with a,l € {0,1,2,...},

Hpm (ja*a ~71*) < Hpm (ja*a j;—i-l) + Hpm (ja*—H? \7a*+2) +eeet Hpm (~7l*—17 \7l*>

- lnf N pm(ma-l—la ma—l—l) - lnf N pm(ma+2>ma+2) -
Ma+1€T 511 Ma+2€T, 15

. inf . pm(maflamafl)a
Mmae-1€J} 4

< AT N H,, (T T

_ )\a[l+)\+)\2+..._l_)\l_a_l]Hpm(jo*ajl*)]v
)\a * *

S mem (\707\71)

and so lim H, (Jf,J*) = 0. Thus {J;} is a Cauchy sequence in CP"(W).

a,l—+o00
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Since (CP= (W), H,,,) is a complete partial metric space, there exists U, € CPm (W)

such that lim J' = U,, that is,

a——+00

hm Hpm (‘7[1*7 (jl) = aEEI-lOO Hpm (\7(1*7 ‘70:-1) = Hpm(U17 Ul)

a——+00

and so, we have lim H, (J*,U;) = 0.

a——+00

To show that W(U,) = Uy, we consider

Hy, (V(U1),U1) < Hy,, (¥(01), ©(Tp011)) + Hp,, (2(Tps1), U1)

- inf . DPm (m2a+17 m2a+1)7
m2a+1 €J2a+1

< )‘S\I/,‘b((jla Toar1) T Hp, (To i, Ul)

- inf . P(Maat1, Maay1)
mM2a+1€J5,11

for all a € {0,1,2,...}, where
S‘P,‘P(Ub j2*a+1) = max {Hpm(ﬁlv j2*a+1)7 Hpm<Ul7 \Ij([jl)) )

Hpm (\72*0,—!-17 Q(jQ*(z—i-l))?
Hy, (U1, ®(T5011)) + Hp, (Tsirr, W(OL)) }

2

- inf . Pm(Maat1, M2ar1)
M2a+1€J5,11

- maX{H m(U17 t72*a+1)7 Hpm(Ulv \Ij(Ul))7
Hpm (j22+17 ‘-722-&-2)7
H,, (U1, J3s) + Hy, (T5sr, W(01)) }

2

- inf . Prm(M2at1, M2a41).
M2a+1€JT5441

Now, we examine the following cases:

(1) It S‘I’,‘D(Uh \72*a+1) = Hpm(Ula \72*a+1>7 then

Hpm (\I’(Ul)> Ul) < )‘Hpm([jla ‘~72*a+1) + Hpm (jZ*a-i-?’ Ul)

_ inf  pp, (M2qt1, M2a+1)
M2a+1€J5,11

< AHPW(Ul’ L72*114-1) + Hpm (jQ*a—i-Q? Ul)>

which together with our taking the limit as a — +o00, gives

Hpm(\Ij(Ul)a Ul) S )\Hpm([jlv Ul) + Hpm((jla U1)>
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and we get H, (U(U,),U;) =0, that is, U; = ¥(U).

(2) Provided Sy ¢(U1, Jss1) = Hp, (Ur, U(U1)), then

H,, (U(U)),U1) < AH,, (U, ¥(Uh)) + Hy, (Tsysn, Ut)

- inf N Pm (m2a+17 m2a+1)
m2a+1 €j2a+l

S )\Hpm((jl’ \Il(Ul)) + Hpm (‘72*11—0—27 Ul)?

that is,
.- 1 i} .
Hy,, (¥(U1), Uh) < 17— Hp,(Faay2r 1),
which together with our taking the limit as a — +4oo implies that

Hpm(qj((jl), Ul) § 0 and so Ul = \D(Ul)

(3) In the case of Sy.a(Ur, T5oi1) = Hp (Tsi1s Tooso), We get

Hpm((jla (I)((jl)) < >‘Hpm (jZ*aJrh jz*a+2) + Hpm (\72*a+27 Ul)

- inf ” Pm (m2a+17 m2a+1)
m2a+1 €j2a,+l

< )‘Hpm (*72*114-17 jZ*a—i—Q) + Hpm (\72*11-1-27 Ul):

which together with our taking the limit as a — 4-oo implies that U; = W(U).

. H, (U, Js H « L U(U
(4) If S\I/,@(Ulajzerl) _ pm( 1"-72a+2) +2 Pm(j2a+1a ( 1))’ then
. . A - . .
H,, (U, ¥(Uy)) < §[Hpm(U1a Toar2) T Hp, (Tsi1, Y (U1))]
+Hpm(j2*a+2, Ul) - inf ) pm(m2a+17m2a+1)
m2a4+1€J5,41

A T * * T T T

< i[Hpm(Ula ‘72a+2> + Hpm(j2a+17 Ul) + Hpm(Ub \I](Ul))
- }nUf pm(ﬁ/7 ,&’):I + Hpm (‘72*(1—}—27 Ul)

ucUq

- mmj}é@g@ﬂ pm(m2a+17 m2a+1)
A T * * T T T

< S[Hp, (Ui, Togio) + Hp, (Tsi1, Ur) + Hy,, (Ur, ¥ (UL))]

2
+Hpm (‘72*a+27 Ul)a

which together with our taking the limit as a — +o0, we get

H,, (U, ¥(Uh)) < =H,, (Uy, ¥(Uh)),

| >

giving us H,, (U, ¥(U;)) = 0, and so U; = ¥(U).
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Thus, from the above cases, U, is the attractor of .

Similar reasoning, gives

Hy, Uy, (V1)) < Hy,, (Ur, Tpg1) + Hp, (T, 2(01))

- inf » pm<m2a+17 m2a+1)
m2a+1 6\72a+1

= Hpm(U17 Toar1) + Hp,, (V(T5n), (1))

_ inf P (M2at1, M2g41)
M2a+1€J50 41

< Hy (U1, Tgor1) + ABy s (T5, Un)

- inf ; Pm(M2at1, Maat1),
M2a+1€T55 41

where

S‘If,q’(j;a?(jl) = maX{Hm(jQ*a?[jl) pm(anv j2a Pm U17(I)(U ))7
Hy,, (T3o ®(01)) + H,, (U, ¥ (J5,) }

2
= maX{Hpm(j;;?Ul) pm(\72a7\72a+1 y Ldpm Ulv(I)(U ))7

Hy (T30 ®(U1)) + Hy,, (U, T }
) .

As a consequence, we observe that:

(1) If S\Ij7¢(\72*a7 Ul) == Hpm (\72*(1, Ul), then

Hpm(Uhq)(Ul)) S Hpm((j17*72*a+l) + )\Hpm(j;:p[jl)

- inf . Pm (m2a+1> m2a+1)
m2a+1 €j2a+l

S Hpm<U17 *72*a+1) + AHPm(‘-72*a7 Ul)?
which in combination with our taking the limit as a — 400, gives

Hpm(Ul7 Q(Ul)) S Hpm(U17 Ul) + )\Hp'rn(Ul? Ul)?

and we get Hpm(Ul,CI)(Ul)) = O, that iS, Ul = q)(Ul)
(2) For Sw,0(Js0.Ur) = H,y,,, (T34 T3a41), then

Hpm (Ub ®(Ul>) S Hpm (Ub ‘72*a+1) + >\Hpm (jQ*CU jQ*a—i-l)

- inf N DPm (m2a+17 m2a+1)
m2a4+1€J5,41

S Hpm((jb \72*a+1) + AHpm(j;a? \72*0,—4—1)7
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which together with our taking the limit as a — +o00, we have
Hpm(U17 (I)(Ul)) < Hpm(Ula Ul) + )\Hpm(UN17 Ul)a

which implies that H, (U, ®(U;)) <0 and so U; = ®(U).

(3) In the case of Sy o(Ts,, Ur) = H,, (Uy, ®(U1)), we get

Hpm(Ulvq)(Ul)) < HPM(U17\.72*(1+1)+)\Hpm(U17q)(Ul))

- inf N Pm (m2a+17 m2a+1)
m2a+1 6‘72a+1

< H,, Uy, Tgor) + M, (Ur, @(Uh)),

that is,
1

H,, (Uy, ®(0h)) < mem(UbszH),
which together with our taking the limit as a — +oo, we can write
H,, (U, ®(U,)) < 0 and so U, = ®(U)).

Hpm (‘72*(17 (I)(Ul)) + Hpm(Ulv jQ*a—i-l)

(4) If Sy 0(T5,, Ur) = 5

, then

. . . Y 5 .
Hy, (U, 0(01) < Hyy (Ur, Foid) + 5 [y (T ©(00) + Hy, (U1, T

_ inf P (Maa41, M2a41)
mM2a+1 6‘72a+1

5 A\ N N
Hy, (Ur, Jppi) + §[Hpm(~7£2a ®(Uh)) + Hp,, (T, Ut)

+Hy,, (U1, ®(0) — inf pu (@, @) + Hy,, (U, Tpor)]

uelU;

- inf . P (M2at1, M2a+1)
M2a+1€J5, 41

IN

IN

N A\ 5 N
Hy, (Ur, Joui1) + §[Hpm(-75;a o(Uh)) + Hp,, (T, Ut)
+H,, (U, ®(Uh)) + H,, (U1, Tppi1)],

which together with our taking the as a — +o00 implies

5 5 .. 5 5
Hy,(Ur, ®(0h)) = H,, (U1, 1) + 5 [Hy, (Ur, ®(01)) + Hy, (Ur, Uh)
+H,,, (U, @(U1)) + Hy,, (U1, Ur)]
= )‘Hpm(Ula(I)(Ul))7
giving us H,, (U, ®(U;)) = 0 and so U; = U(U7).

Thus U, = \IJ(Ul) = (IJ(Ul), which means that U, is the common attractor of ¥

and @.To establish the uniqueness of the common attractor, let Us be another
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common attractor of ¥ and ®. Since the pair (¥, ®) is generalized Hutchinson

contractive operator, we have

H,, (U, Us) H,y, (¥(Uy), ®(Us))
< Amax{H, m(Ul, [j2>, Hpm(Uh \I’(Uﬂ); Hpm(ﬁ% (I)([j2))a

) H,, (U, ®(Us)) + H,, (Uy, ¥ (U))) }

2
= /\III&X{H m((jl, UQ), Hpm([jl, Ul), Hpm([jz, UQ),
H,, (U1,Us) + H,,, (U, U) }

2
S )\Hpm (Ul? UQ)’

and so (1 — \)H,, (Uy,U,) < 0, that is, H, (U;,Us) = 0 and hence U; = U,.
Thus U; € CP»(W) is a unique common attractor of ¥ and ®. O

The theorem below shows that, beginning with an arbitrary set, it is possible
to find a generalized iterated function system whose common attractor is the

given set.

Theorem 3.3.2 (Generalized Collage). Let (W,p,,) be a complete par-
tial metric space. For a given generalized iterated function system
{W;hi,ha...;hg; 91, 2. G b With a common contractive constant A € [0,1) and
for a given € > 0, if for any J* € CP~(W), we have either

Hpm<‘7*7qj<‘7*)) S g,
or
H, (T, ®(J")) <e,

where WU(J*) = Ul_ h(T*) and ©(T*) = UL_,9.(T*), then

3

H *U,) <
pm(j 7U1)— 1_)\7

where Uy € CPm(W) is a common attractor of ¥ and ®.
Proof. It follows from Proposition that the pair of the mappings

U, CP (W) — CP (W)
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satisfies

H, (¥(J"),®(0")) < A\H,, (J*,0) for all J*,O0* € CP"(W).
From Theorem m there exists a unique common attractor U; € CPm(W) of
mappings ¥ and ®, that is, U; = ¥(U;) = &(U,).

In addition, for any J; € CP"(W), a sequence {J} defined by J5,., = ¥ (J5,)
and Jy, o = ® (.72*;“) fora=0,1,2,..., we have

lim H,, (¥(Jy,),01) = lim H,, (2(T5),Ui) = 0.

a——+00 a—+00

Assume that H,, (J*,V(J*)) < ¢ for any J* € CPm(W), one can write

H, (T 0) < H, (T U(T) + H,, (¥(T"),®(Uh)) - aegn(fj*)pm(av a)

< € + )\Hpm(j*7 Ul)’

which further implies that

Hpm (\7*’ U~1) S

5
1—A
Similarly, suppose that H, (J*, ®(J*)) < ¢ for any J* € CP"(W). Then,

H, (T°U) < Hpm(J*ﬁP(J*))+Hpm(<1>(J*),\I/(U1>>—aeg%fj*)pm(aya)
< e+ \H, (T, U),

implies

Hpm (\7*’ UNl) S

€
1—X\

[
Remark 3.3.1. If we take in Theorem SPm(W) the collection of all sin-
gleton subsets of the given space W, then SPm(W') C CP~(W). Furthermore, if we
take a pair of mappings (ha,gs) = (h,g) for each a, where h = hy and g = ¢
then the pair of operators (¥, ®) becomes

(W (01), ®(02)) = (h(e1), g (2)) -

Consequently, the following common fixed point result is obtained.

Corollary 3.3.1. Suppose {W; (hq,9a),a =1,2,--- q} is a generalized iterated

function system defined in a complete partial metric space (W, p,,) and define a

44



pair of mappings h,g : W — W as in Remark 3.3.1. If some X\ € [0,1) exists
such that for any o,¢ € W, the following condition holds:

Pm (R0, 95) < AShg(0,9),

where

Pm (0, 95) + Pm (s, ho1) } '

Shg(0,¢) = max {pm(g, S), Pm(0, ho), Pm (0, 9s), 5

Then h and g have a unique common fized point u € W. Furthermore, for any
g € W, the sequence {tg, hty, ghtig, hght, - - -} converges to the common fized

point of h and g, that is u.

Corollary 3.3.2. Let {W; (ha,9.),a = 1,2,--+ ,q} be a generalized iterated func-
tion system defined in a complete partial metric space (W, py) and (hq, ga) for
a=1,2,...,q be a pair of generalized contractive self-mappings on W. Then the
pair (¥, ®) : CPm (W) — CPm(W) defined in Theorem [3.3.1] has at most one com-
mon attractor in CP™(W). Furthermore, for any initial set Jy € CP™(W), the
sequence {Jy, OV (T5) , YOV (T), -+ } of compact sets has a limit point which

is the common attractor of ¥ and .
With the following example, we establish the validity of Corollary |3.3.1]

Example 3.3.1. Let W = [0, 10] be endowed with the partial metric
Pm W X W — Ry defined by,

1 1
pm(0,5) = 5 max{o,c} + Z|Q —¢| for all o, € W.

Define hq, hy : W — W as,

10 —
hi (o) = 3gforallg€VV,
16 —
ho (0) = 1 QforallgEVV,
and g1,90 : W — W as
15 —
9 = =5 * forall ¢ € W,
4
g () = gl— for all ¢ € W.
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Now, for g,¢ € W, we have

1 10— o 15—§} 1‘10—@ 15 —¢
4

Pm (h1(0),91(5)) = §max{ 3 3 3 3

111 1
— 5 |pma10- 215 -+ {100- 0 - 15+ 9

S )\lpm (Qa g) )

1
where A\ = —.
3

Also, for g, € W, we have

1 16 — 4
pm(h2<g)792(§)) = §max{ 64 Q,%}_i_

1 16—@_§—|—4
4| 4 4

11 1
— 3 |pmestio - g+ a4 106- 0 - (e 1)
< Aopm (0:6)

where \y = 7
Consider the generalized iterated function system {W; (h1, 1), (he, g2)} with the
mappings U, & : CP (W) — CP= (W) given as

(¥, @) (Uh) = (h1,91)(U1) U (ha, g2)(Uh) for all Uy € CP(W).
Using Proposition [3.2.1] for J*, O* € CP(W), we have

H,, (V(T7),®(07) <X H,, (T, 07),

11 1
where max { 1 4} 3
Thus, all conditions of Corollary are satisfied. Moreover, for any initial set
Jg € CPm (W), the sequence

{j0*7 N4 (kTO*) , U (jo*) , Pow (jo*) y }

of compact sets is convergent and has a limit point which is the common attractor
of ¥ and 9.

The following result shows the existence of unique common attractor of general-

ized rational Hutchinson contractive operators in partial metric space.

Theorem 3.3.3. Consider a complete partial metric space (W, p,,) and the gen-
eralized iterated function system given as {W;(ha,9.),a = 1,2,--- q}. Let
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U, O CPm(W) — CPm (W) be defined by
U(T") =Ygz ha(T7)

and
P(0%) = Ug_194(07),

for each J*,O* € CP~(W). If the pair (V,®) is generalized rational Hutchin-
son contractive operator, then ¥ and ® have a unique common attractor Ul €
CPm (W), that is,

U, = 0(U,) = o(Uh).

Furthermore, for arbitrarily chosen initial set J5 € CPm (W), the sequence

of compact sets converges to a common attractor Uy .

Proof. Let J; be arbitrarily chosen in CP(W). Define
jl* — \I{(jo*)’ jg* =y (j;) o 7\722+1 =V <j2>';>

and

j2* = (I)(jl*)a j4* = (j?)*) )T ’j2*a+2 = (‘72*a+1)

for a € {0,1,2,---}. Now, since the pair (¥, ®) is a generalized rational Hutchin-

son contractive operator, we have

Hpm(jQ*a—i-l?j;a—i—Q) = Hpm(\IJ (jQ*a)’q)<¥72*a+l))
< ARus (T30 Trarn)

N

for a € {0,1,2,---}, where

Hy, (T3 ® (T51) 1 + Hp, (T5i, U(T5,))]
2(1+ Hy,, (T5 Ts0r1))
Hy, (Tsi1, ® (T 1)1+ Hy, (T, O(Ts))]
L+ Hy,, (T30 Tii1) ’
Hp, (T30 Tpar) 1 + Hp, (505 ¥ (T5))] }
1 + Hpm (\72*117 j2*a+1)

Y

Ruo (Toy Togs1) = max{
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= max Hpm <‘72*a7 ‘-72*a+2) [1 + Hpm (jZ*m jZ*a-i-l)]
2(1 + Hpm (*72*(17 *72*a+1)) ’

Hpm (k72*a+17 j2*a+2) [1 + H ™ ('-72*(17 '-72*(14-1)]

1+ Hy, (T Toin) ’
Hpm (‘72*(17 \72*a+1) [1 + Hpm (‘72*a7 ‘72*a+1)] }

1+ Hpm(thw j2*a+1)
max { Hpm(j2;7 j2a+2)
Hpm ('-72*117 '~72*a+1) }

= max { HPM(j;;’ Tir2) s Hp,, (T jQ*a-i-l)} .

9 Hpm (\-72*a+17 ‘-72*a+2) )

Thus, we have

* * /\* * * * *
Hpm (\72a+17 ‘72a+2) S ?[Hpm (\72(17 j2a+1) + Hpm (*72(1—}—17 \72a+2)

inf Pm (Oé2a+1, 042a+1)]
a2ﬂ’+1€‘72*a+1

/\* * * * *
< 7[Hpm (anv j2a+1) + Hpm (j2a+17 j2a+2)]7
that is,
* * )\* * *
Hpm (*72a+17 j2a+2> S mem (‘72(17 ‘72a+1)
and for n, = " <1, we have

2 — .
Hy,, (j2*a+17 s72*a+2) < n.Hp, ('-72*(17 s72*a+1)

for all @ € {0,1,2,...}. Therefore for a < [, with a,l € {0,1,2,...}

Hpm(ja*7 jl*) < Hpm<~7;, »7:+1) + H, m(jc:k—l-lv ja*+2) +eet Hpm(jl*—p jz*)

- inf . pm(aa-i-la aa—i—l) - inf ) pm(aa+2> aa+2> -
aa+1€ja+1 aa+2€\7a+2
T inf* P01, —1),
1€,

anpm (s70*a jl*) + 77$+1Hpm(~70*> ~71*) +oeee ﬁi_alm(\yo*, k71*)7

< [+ttt H,, (T8 T,

< 4o+t 4+ H,, (T T7),
UM .

< ——H, (Jy,J)).

1 —n.

By convergence towards 0 from the right hand side, we get H, (7, J*) — 0 as
a,l — +oo. Therefore {7} is a Cauchy sequence in C*=(W). But (C*(W), H,,,)
is complete, so we have J* — U, as a — +oo for some U; € CP»(W), in other

48



words, aEr-Poo Hp:n(j;,[jl) = GEIEOOHPW (j;, a*+1) = H,, (U;,U;) and we have
lim H, (J;,U)=0.

a——+00

To prove that U; is a common attractor of U and ®, we have

H,, (V(U)),01) < H,, (U(U1),® (Tspi1)) + Hpo (2 (Tsnir) - Ur)

- inf . pm(a2a+la a2a+1)a
a2a4+1€J5, 11

< )\*R\p,cb(ﬁh Tsas1) T Hp, (Tsg i, Ul)

- 1nf . pm(a2a+1; a2a+1)a
a2a+1€x72a+1

for all a € {0,1,2,...}, where

H,, (U1, ®(J5,.1))[1 + H,, (U1, 9(0)))]
2(1+ Hpm(Ub Tzai1))
Hy, (Tsi1, ® (T3n)) L+ H,,, (U1, W(T7))]
1+ H,, (U1, T3 1)
Hy, (T5ppr, UL + H,, (U, 9(0)))] }
1 + Hpm([jb ‘-72’;-&-1) ’

Y

Rw,@(U17s72*a+1) = max{

Y

that is,

Hy, (T, UD)[L + H,, (U1, ()]
21+ Hy, (U1, T51))
Hy, (Tooi1, Tonia)[1 + Hpm(Ub ‘I’(Uﬂ)]
1 + Hpm([jl? j2*a+1)
H,, (U1, T3, 1)1 + H,, (U1, 9(0)))] }
1+ HPM(U17 jZ*a—i-l) ‘

)

Ruo(Ui, Toir) = max{

)

Consider the following three cases:

Hy,, (U1, T30) [+ Hy,, (U1, W (U1))]

1) If Ryo(U, Toyi) = i
(1) If Ry.a (U, T5y1) 201+ H,, (Uy, T 1))

, then we have

S NeH,,, (U1, T i) + Hy,, (U, ¥ (Uh))]
2(1+ H,, (U1, T5,41))

- lnf* pm(a2a+la a2a+1)7
a2a4+1€J5, 11

+ Hpm (*72*a+27 Ul)

which together with our taking the limit as a — +00, gives Hpm(Ul, ‘Il(Ul)) <0
and so U; = U(U7).
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Hpm (\72*(14—17 \72*a+2) [1~+ Hpm (Ula \I’(Ul))]
1+ Hpm(U17 ‘-72*a+1)

(2> If R\If@((jla j2*a+1> -

, we have
Hyp, (Tsi1s Tor2) (L + Hy,,, (Ur, W(0h))]

1+ Hpm(U~17 j2*a+1)

- mf* P(@2a+41, 02441)
a2a+1€s72a+1

o, (¥(h),U0) < X\ + Hy, (To0: Th)

Hy (T Tous2) L+ Hy, (U1, W (U1)]
1 + Hpm(Ula jZ*aJrl)

< )\* +Hpm(‘722+27(j1))7

which together with our taking the limit as a — +oo, yields H,, (U, ¥(U;)) <0
and thus Ul = \I/(Ul) _ ~
Hpm (\72*a+17 Ul)[l + Hpm(U17 \II(U1>)]

(3) In case of Ry .o(Ur, Toyrq) = - , we obtain
2oed 1 + Hpm(U17 j2*a+1)

Hyp, (Tgs1; D)1 + Hy,, (Uy, ¥ (U)))]
]‘ + Hpm(U17 \72*a+1)

- Hlf* pm<052a+17 a2a+1)
Q2q41 €j2a+1

)\*H *a 7U 1 + H m U ’\Ij U * Ji
o (T30 115 U1)] _ i (0, W(0h))] + Hy,,(Tza12, Un),
1+ H,, (U, J51)

H, (U, ¥(0y) < A\ + Hy, (Toa: Uh)

which together with our taking the limit as a — +o0o, produce
Hpm(Ulﬁ \IJUl))a

that iS, Ul == \I/((jl)
In a similar manner, one can obtain
H,, (Uy,®(Uh)) < Hp, (Ur, Tsi) + Hy (T, ®(U1))

— inf . Pm (m2a+l> m?a—i—l)
M2a+1€T5041

= H,, (U, Tsai1) + Hp, (¥ (T3,) , @ <U1>)

- inf " Pm (m2a+17 m2a+1)
m2a+1 €j2a+1

S HP(Ub *72*(1—1—1) + A*R‘l/,q)(j;p q)(Ul))a
where

Tsas QO + Hy( T3, ¥(T5))]
2(1+ Hy,, (T3, U1))

)

~ H
R\y@(j;;,Ul) = max{ pm(
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Hy,, (U1, ®(U)[1 + Hy,, (T3, ¥ (T50))]
1 + Hpm<j2tz’ Ul)
Hy, (T UD)L+ Hy, (T3, 9 (T5))]
L+ Hy,, (T, Ur)
= d B (T2 @UO)[L+ By, (T T
2(1+ Hy,, (T50, U1)
Hy,, (U1, U))[1+ Hy,, (T5r o))
1 + Hpm (jQ*LN Ul)
Hy,, (T3 U0+ Hyo (T i) |
L+ Hy,, (T3, )

Y

Y

Y

Again, we have the following three cases:

Hp,, (T30 ®(01)[1 + Hyp, (T30 Trs1)]
2(1+ Hp,, (T3, Uh))

(]‘> It R\Il,q)(j;a) Ul) - ) then

(T ®OD)L+ Hy (Tar T } |

o (U1, ©(Uh)) < Hy,, (Ur, T 1)+ { 201+ H,, (5., U1))

Which together with our taking the limit as a — +o00, we get

N N A
H,, (Uy, ®(Uh)) < Hp,, (U, Uy) + —- {

H,, (U, (0))[1 +Hpm<U1,Ul>1}
; ,

(14 H,, (U1, Uh))

that is,
As ~ ~
(1 — 7) H, (U, ®(U;)) <0,

thus, U; = CID(Ul).

Hy,, (Ur, ®(O0)[L + Hy,, (Tpas T5ai1)]

2) If Ry o(J5,,Up) = -
(2) If Ry o(J5,, Ur) i (70

, then

Hy (02, ®(00)) < Hy (Us, T+ {Hpm<Ul"I’(U1))“ ¥ P (o T } ,

1 + Hpm<‘72>tl’ U]-)

which together with our taking the limit as a — +o0, we get
(1= ) Hy,, (U, &(01)) <0,

which implies that U; = ®(U).

o1



Hpm (\72*(17 Ul)[l + Hpm (jQ*LN j;;,—i—l)]

= then
1 + Hpm<‘72*a7 Ul)

(3) If Ry,a (T, Ut) =

H, (U1, ®(U))) < H,, (U1, J5) + A {Hpm(ﬁ;, UL+ Hy, (T5 Toir)] } |

1 + Hpm (jZ*aJ Ul)

which together with our taking the limit as a — 400, we get Hpm((jl, ) <U1>) <
0, which gives U; = @(Ul).

Thus U, is a common attractor of the mappings ¥ and ®.

For the uniqueness, assume that U; and U, are distinct common attractors of
U and ®. Since the pair (¥, ®) is generalized rational Hutchinson contractive

operator, we obtain that

H,, (U, Us) = H,, (¥(Uy),®(Us))
. maX{Hpmwl,@(@))u + H,, (U, U(0))
o 2(1+ H,p,, (Uy,Us))
H,, (Us, ®())[L + H,, Uy, ¥(U)))]
1+ H,, (U,U,)
Hy,, (Uy, Us)[1 + Hy, (Uy, W(01))] }

Y

)

1 + Hpm<U17 UQ)
o max 4 Hon (U1 o)1+ Hy,, (U1, 0)
2<1 + Hpm<Ul7 U2))
Hpm(UQ’ U2)[1 + Hpm(Ul’ U~1)] Hpm<(j17 UQ)[]' + Hpm<(j17 Ul)]
1+ H,,, (U, Us) 7 1+ H,, (Uy,U,)
< A*Hpm(U17 U2)7

Y

and so (1 — \,)H,, (U,U,) < 0, which implies that H,, (U;,U;) = 0 and hence
U, = U,. Thus U; € CPm (W) is a unique common attractor of ¥ and &. O

Corollary 3.3.3. Consider a generalized iterated function system {W; hq, ga,a =
1,2,--+ ,q} on a complete partial metric space (W, py,) and the mappings h,g :
W — W as given in Remark . If there exists A\ € [0,1) such that for any
01,02 € W, the following condition holds:

Pm (Ro1,902) < MR g(01, 02),
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where

Pm(01,902)[1 + pm(01, ho1)] Pm(02,902)[1 + P01, ho1)]
R ) = max )
nol0102) { 2(1 + pim(o1, 02)) L+ pm(01,02)
Pm (01, 02)[1 + pm (01, th)]}
]- +pm(gla QQ)

Y

Then a unique common fixed point for h and g exists. Furthermore, for any initial
choice of vy € W, the sequence {vg, hvg, ghvg, hghvy, ...} converges to the common
fixed point of h and g.

3.4. Well-posedness of common attractor based problems

Now, in the framework of Hausdorff partial metric spaces, we investigate the
well-posedness of attractor-based problems of generalized Hutchinson contractive
operators pair and generalized rational Hutchinson contractive operators pair
given in Definition [3.2.2] [56] contains some useful results on the well-posedness

of fixed-point problems.
We begin by defining the well-posedness of the common attractor-based problem.

Definition 3.4.1. For a pair of mappings ¥, : CP»(W) — CP~(W) , a
common attractor-based problem is said to be well-posed if the pair (¥, ®)
has a unique common attractor ©, € CP~(WW) and for any sequence {O,} in
CPm (W) such that QETOO H, (¥(0,),0,) = 0 and aEr&oHpm(@(@a),@a) =0,
then aErJPoo H, (0,,0.)=H, (0.,0,), that is, GEIEOO 0, = 0..

The following result demonstrates the well-posedness of a generalized Hutchinson

contractive operators’ common attractor-based problem.

Theorem 3.4.1. Suppose (W, py,) is a complete partial metric space and define
U, o : CPm(W) — CP™(W) as in Theorem (3.3.1 The pair (U, ®) , then has a

well-posed common attractor-based problem.

Proof. According to Theorem [3.3.1] it follows that the mappings ¥ and ® have

a unique common attractor, Z,.

Let a sequence {Z,} in CP» (W) be such that lim H, (¥(Z,),2Z,) =0 and

a——+00

lim H,, (®(Z,),2,) = 0. We want to show that Z, = lim Z,. As the pair

a—+00 a—+00
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(U, ®) is generalized Hutchinson contractive operator, so that

Hyo(2020) < Hy (W20, 9(20) + Hy (W20, 2 = | itk po(Bas )

< )‘S‘I’@(Z*’Za)“’Hpm(@(Za)»Za)_ inf  pr(Ba, Ba),

o Ba€D(Z4)

where

Sve(Z:,2.) = max{H,, (2. 2.), ), (2., Y(Z.)), Hp, (2, 2(Z.)),
Hy, (2, ®(Z4) + Hy,, (24, V(Z))

5 }-
Then we have the following cases:
(i) If Sve(2., 2,) = Hp,, (2., Z,), then
Hp, (2. 24) < AHyp, (24, 24) + Hp, (P(Z2,), 24) — ; Elg(fz )pm(ﬁa,ﬁa)

which further implies

(]. )\) Hpm(Z*uza) -~ Hpm<q)(2a)7za> ﬁaelglel)pm</8a7/8a)7

that is,

Hy (20 22) < —[H, (B(22), Z2) —  inf pua(Bas Bu)]

BaEP(Za)

As a — 400, we have

lim H, (z*,za>§% lim [H,, (®(Z,), Z.) —  inf  pu(Ba, Ba)l,

a—-+oo — )\ a—+oo Ba€EP(Za)

this implies that lim Z, = Z,.

a——+00

(ii) In case of Sy o(Z., Z,) = Hp,, (2, V(Z,)), we have

H, (2.2, <AH, (Z.,¥Y(2,)+ H,, (P(2,),2,) — inf py(Ba;Ba)-

BaEP(Za)

As a — 400, we have

lim H,, (2. 2,) <AH,, (Z2.,V(Z2))+ lim [H,, (9(2,),Z,)— inf py(Ba,Ba)l-

a—+oo a—-+00 BaEP(Za)

Thus lm Z, = Z.,.

a——+00
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(iii) If Sp.0(Z., Z,) =

Hpm (Z*7 Za)

<

H,, (2, ®(Z,)), then

)\Hpm (Zm CI) (Za)) + Hpm (Zm (I)(Za>) - 1nf )pm<5a; ﬁa)

BaEP(Z,

(>‘ + 1)Hpm (Zaa P (Za)) - inf )pm(ﬂaa 511)

Ba€D(Z,

On taking the limit as @ — 400, we have that lim Z, = Z,.

a——+00

, then we have

H, (2., 9(Z2,) + Hp, (2., ¥ (Z.
(iv) Finally, if Sy o(Z., 2,) = Hen(Ze )z o (Zas W(2.))
A
H, (2. 2,) < E[Hpm(z*,Q(Za)+Hpm(za’q;(g*))]

+Hpm ((I)(Za>7za) - inf pm(ﬁayﬁa)

Ba€EP(Za)
A

IN

2

- b:gga pm(baa ba)] + Hpm(q)(za)a Za) - 8

A

_[Hpm (Z*’ Za) + Hpm (Zav CI)(Za>) + Hpm (Zaa \II(Z*))
)pm(ﬁaa fBa)

= _[Hpm(Z*7Za) +Hpm(Za7(I)(Za)) +Hpm(Z(l7Z*>

2

= 0E b)) + Hp, (¥(20), 2,) =

which gives

A+2

H Z*; Za S ar1 N
pn ) 2(1 —\) ba€Za

and by taking the limit as a — 400, we obtain

lim H, (2., 2,) <0,

a——+00

which implies that lim Z, = Z,.

a——+00

[Hpm(zay (I)(Za)) — inf pm(ba; ba)] -

a

inf
€U(Za

)

)pm(/BGJ/BCL)J

pm(ﬁaa ﬁa)]

]

With the result below, we show the well-posedness of a common attractor-based

problem of a generalized rational Hutchinson contractive operators.

Theorem 3.4.2. Consider a complete partial metric space (W, p,,) with U, ® :
Crm(W) — CPm(W) defined as in Theorem [3.3.3. Then the pair (¥,®) has a

well-posed common attractor-based problem.

Proof. From Theorem[3.3.3] it follows that the mappings ¥ and ® have a unique

common attractor (say) Z..

Let a sequence {Z,} in CP»(W) be such that lim H, (V¥(Z,),Z,) = 0 and

a—+o00
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hr_{l H, (®(2,),2,) = 0. We want to show that Z, = lim Z,. As the pair
a——+00

a—+00
(U, @) is generalized rational Hutchinson contractive operator, so that

Hy, (24, 2.) < Hp, (V(Za),V(Z.) + Hp, (V(Za), Za) = i0f  piu(fa, fa)

Ba€Y(Za)
< .
-~ )\*R\II,Q(Z(M Z*) + Hpm (\II(ZQ)7 Za) ﬁaGI\IIll(fZa) pm(ﬁa; /Ba)7
where
Hy, (24, ®(Z2.))[1 + Hy,, (24, V(Z,))]
R Za; Z* = maX{ Pm ’ Pm ! ,
vel ) 2(1+ H,, (24, 2,))

H,, (2, 2(2,))[1 + H,,, (Za, ¥(Za))]
1+ H,, (2., Z.) ’
Hpm (Z*7 Za)[l + Hpm (ch \P(Za))] }
1+ H,, (2., 2,) '

The following cases arise:

.  Hy, (2.,9(2.))[1 + H,p,,(Z,,Y(2,))]
(1) Ry.o(2a, 2:) = 20+ H, (Za, 2.))

, implies that,

H

H, (Z,2) < A\ o (Za, ®(ZN[1 + Hp, (24, U(Z,))]

21+ H,,, (24, 2)))
+Hpm(\I](Za)7 Za) - inf )p(ﬁmﬁa)

Ba€V(Z4

Al (2o, 2)[1+ H,y,, (24, ¥(Z4))]
+Hpm<\II(Z&>7 Za) - inf )pm(ﬁm 611)7

Ba€EV(Z4

IN

which leads to,

Hy, (24, 2.) — MHyp, (24, Z2)[1 + Hp,, (V(24), 24)]
S Hpm(\If(Za), Za) - 5 ellrlll(fz )pm<ﬂaa Ba)
and so
1
<
Tn(Z02) S T3 R, Wz 2 e ) 2

- inf )pm(ﬁaaﬁa)]-

Ba€Y(Z4

And taking the limit as a — 400 gives,

lim H, (2., 2,) <0,

a——+00

which implies that lim Z, = Z,.

a——+00
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Hpm (2*7 (I)(Z*))[l + Hpm (Zm W(Za))]
1+ Hp, (24, 2.)

(ii) If Ry.o(Za, Z.) = , then

Hpm (ZCU Z*) S )\*

<Hpm(3*, (2.)[1 + Hy,,(Z, \I’(Za))])
1+ H,, (24, Z4)

+Hpm(\1j(Za)v Za) - inf pm(ﬁa’ﬁa)

Ba€¥(Za)
= U(Z,),2,) — f
Hpm( ( a)? a) ﬁaég(za pm(ﬁmﬁa)

Taking the limit as a — 400, we have

lim H,, (2, ZB.) <0,

a——+00

which implies that lim Z, = Z,.

a—+00

H

2, 21+ H, (2., (2,
(iii) Finally, assume Ry (24, Z.) = o )L+ Hy,( (Za))]

1+ H,, (24, Z4)

, then

H

H, (2., 2) < AJen(ZoZo)lLt By, (20, W(2))]

1 + Hpm(Za7Z*)

+Hpm(\D(Za)a Za) - Bael\%(fza)pm<5a’ ﬁa)v

that is,

1+ Hy, (24, V(Z4))]

* _A*
Hpm(Za7Z)[1 1+H (ZQ,Z) ]

< Han(\D(Za)vZa)_ﬁ lg(fz p(ﬁaaﬁa)

which further implies

Hpm(ZOH Z*)[l - >‘*[1 + Hpm(ZCH \P(Za))“
S Hpm (\Ij(za)a Zzz) - inf pm(ﬁaa ﬁa)

Ba€V(Za)

On taking the limit as a — +o0, gives lim H, (Z,, Z.) < 0 implies that

a——+00

lim Z, = Z,. Thus the proof is complete.

a——400
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3.5. Application to dynamic programming problems

In this section, we apply our obtained results to solve functional equations arising

in dynamic programming.
Let W, and W5 be two Banach spaces with J* C Wy and O* C W,. Suppose
that

kT xO"— T g1,92: T xO"— R, hy,hy: T"xO" xR — R.

If we consider J* and O* as the state and decision spaces respectively, then the
problem of dynamic programming reduces to the problem of solving the functional

equations (see [92]):

(o) = sué){gl(gl,g) + hi(o01,5, 1 (k(01,5)))}, for o1 € T* (3.1)
seO*

QQ(Ql) = SU(%D{91(Q1,§) + h2(91’§,Q2(H(91,€)>)}7 for o1 € J". (3.2)
seO*

Reformulating (3.1]) and (3.2)), gives

q1(01) = Sug{g2(91a§) + hi(o1,5, q1(k(01,5)))} — b, for o1 € T* (3.3)
seO*
@(01) = sug) {92(01,5) + h2(01,5, ¢2(k(01,5)))} — b, for o1 € T*, (3.4)
seO*
where b > 0.

We study the existence and uniqueness of the bounded solution of the functional
equations (3.3]) and (3.4) arising in dynamic programming in the setup of partial

metric spaces.

Let B(J*) denote the set of all bounded real valued functions on J*. For an
arbitrary n* € B(J*), define ||*|| = sup |*(t)|. Then (B(J*),]||-]|) is a Banach
teJ*

space. Now consider

p,(n*, &) = Sup " (t) — & (t)] + 0,

where 7*,&* € B(J*). Then p is a partial metric on B(J*) (see also []).
Assume that:

(D1) : g1, g2, b1 and hy are bounded and continuous.
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(Dy) : For o € J*, n* € B(J*) and b > 0, take ¥, ® : B(J*) — B(J*) as

Un*(01) = Su(%){g2(917§) + hi(o1,s,m"(K(01,5)))} — b, for o1 € T™, (3.5)
ceO*

Pn*(01) = sup{ga(01,5) + halo1,5, 7" (k(01,5)))} — b, for oy € T*. (3.6)

seO*

Moreover, for every (o1,¢) € J* x O*, n*, € € B(J*) and t € J* implies
|hi(o1, s, n* (t) — halo1,6. " (1)) < ASwa(n® (t), £ (1)) —2b,  (3.7)
where

Swa(n (t),& (1) = max{p,(n" (t).£ (1), p,(n" (), ¥n" (1)), p, (& (), PE" (1)) ,
Py (0" (1), €7 () +p, (€7 (1), " (t))}
5 :

Theorem 3.5.1. Assume that the conditions (Dy) and (Dy ) hold. Then, the
functional Equations and have a unique common and bounded solution
in B(J*).

Proof. Note that (B(j*),pg) is a complete partial metric space. By (D;), ¥ and

® are self-mappings of B(J*). By (3.5) and (3.6 in (D,), it follows that for any
0, e B (J*) and b > 0, choose g1 € J* and ¢, € O* such that

\IJTI* < 92(917 gl) + hl(Qlagla T]*(’%(gla §1)>), (38)

D" < ga(01,2) + halo1, 52, § (K01, 2))), (3.9)

which further implies that

\I’T]* 2 g?(@la §2) + hl(Ql; <2, 77*(’%(@17 §2)>> - ba (310)

DL > ga(o1,1) + ha(o1, <1, § (K01, 1))) — D (3.11)
From (3.8) and (3.11)) together with (3.7)) implies

< hior, 51,1 (K(01,61))) — ha(o1, 61, (k(01,1))) + b
< |ha(o1,s1,m%(K(01,61))) — halo1, 61, (K(01,61)))| + b
< ASwa(n (1), (1)) —0. (3.12)

W (t) — @€ (1)
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From (3.9) and (3.10]) together with (3.7) implies

DT (t) — W (1) ho(01, %2, & (K(01,52))) — ha(o1,s2,m*(K(01,%2))) + b

<
< |ha(o1,52,m%(K(01,%2))) — halo1, %2, §(K(01,52)))| + b
< ASwa(n(t),8°(t) — 0. (3.13)

From and , we get

(U™ (t) — P (1) +b < ASwa(n” (1), € (1)) (3.14)
The inequality implies that

p(Wn” (), @7 (1)) < ASw.e(n” (1), €7 (1)), (3.15)
where

Swa(n” (1), (1) = max{p, (" (t),& (1)), (" (), ¥n" (1)), ps(" (£), PE (1)),
Py (" (1), @€ () +p,; (€7 (1), Un" (t))}
; :

Therefore, all conditions of Corollary hold. Thus, there exists a common
fixed point of ¥ and ®, that is, n* € B(J*), where n* (t) is a common solution

of functional equations (3.3 and (3.4)). O
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4

Iterated Function System of
Generalized Cyclic Contractions in
Partial Metric Spaces

4.1. Introduction

We construct fractal sets of the generalized iterated function systems based on
cyclic contractive operators in the framework of partial metric spaces. We notice
that the Hutchinson operator, defined on a finite collection of cyclic contraction
mappings in a complete partial metric space, is a generalized contractive
mapping on a class of compact subsets of a given set W. We apply a generalized
Hutchinson operator successively to obtain a final fractal. We conclude this
chapter by discussing two applications of our results in Sections and [4.0]

We extend the introductory concepts covered in Section to the study of iter-

ated function systems of generalized cyclic contractions.

4.2. Cyclic Contractive Mappings

In this section we introduce the notion of cyclic contraction mappings, which need

not to be continuous, a key advantage over Banach based contractions [82].

Definition 4.2.1. [55] Consider two non-void subsets J* and O* of W. b : W —
W is said to be a cyclic mapping if h(J*) C O* and h(O*) C J*.

Definition 4.2.2. [§ 50, 51] Let W be a non-void set and i : W — W a self-map.
W = Ul_,W, is a cyclic representation of W relative to h if

c¢y) all the sets W,, a =1,2,--- ¢ are non-void,

) h(Wi) C W, -+ h(W,_1) C W, and R(W,) C Wj.

61



Definition 4.2.3. Let (W,p,,) be a complete partial metric space and {B,}_,
a class of non-void closed subsets of W. A self-map h: Ul_ B, — Ul_ B, is a

cyclic contraction on {B,}?_, if
(a) h(B,) C Buy1 for a=1,2,--- ¢, where B 11 = By,
(B) P (Ape, hn) < Apy (p1,m) for all p € By, m € Boya with a=1,2,--- ¢,
where A € [0,1). & is said to be a cyclic function, if condition (a) is satisfied.
Definition 4.2.4. In a complete partial metric space (W,p,,), we say,

{W; hgy,a=1,2,--- ,q} is a cyclic iterated function system if fora = 1,2,--- g,
each h, : W — W is a cyclic contraction mapping.

Example 4.2.1. Let W = |0, 2] be equipped with a partial metric p,, : WxW —
Ry given by pr, (1, n) = max{p,n} for all p,n € W. Let By = [0,1], B, = [0,2]
and define a map h : BiU By — B1U By by

L oifo<pu<l
hu)=q & if1<p<}
Tifd<p<2
Now
KBy) = [0,3] €10,2] =B, and
hBy) = [0,3] €[0,1] =By

The map A is not continuous at u = % Consider,
Case 1: Let € By, n € B, then

n € [0, 1], gives

pm(h(#)vh(n)) - pm(%’%)
= max{%, 3

= imax{u,n}

= %pm(,u,n) with A = %,
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n € (1, %], gives

Pm (A (1), 2 (1))

P (5. 3)

Y
max{3,3

a1}

L masc{ys )

%pm (u,m) with A = %,

IN

and 7 € (%, 2] , gives

P (B (1) () = pm (£,1)

= ipm(um) with A=z

Case 2: Let p € By, n € By, then

p € [0,1], gives

pm(h(ﬂ)7h(n)) = Pm (%’g)
= max {41
= Lmax{u,n}

= §Pm () with A= 3.
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ne (%,2], gives

Pm (A (1), 2 (1))
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$Pm (,m) with A = 3.

1

Thus h is a cyclic contraction on ByU By with contraction constant A = 3

The result stated below confirms that in a complete partial metric space, a cyclic

contraction mapping has a fixed point which is unique.

Proposition 4.2.1. [74] In a complete partial metric space (W, py,), let {B,}!_,
be a class of non-void closed subsets of W. Suppose b : {B,}i_, — {Ba}l_, such
that

P (1, Apt) + Do (1, i) }
2

Pm (A, hn) < Amax {pm (1, 1) s D (12 Bopt) s P (0, i)

for all p € By, € Byyy witha =1,2,--- ,q and X € [0,1), then h has a unique
fixed point.

Theorem 4.2.1. In a partial metric space (W, py,) , let {B,}._,, be a class of non-
void closed subsets of W, and h : Ul_ B, — UI_ B, be a continuous generalized
cyclic contraction map. Then h: Ul_,CPm (B,) — UL_,CP™ (B,) is also a general-
ized cyclic contraction mapping under the Hausdorff partial metric pf+ with the

contractive constant given by A € [0, 1).

Proof. Let O* € B, forsomea = 1,2, --- ,q. Using the definition of a cyclic map,
we note that A(O*) C B, and since h is continuous, then A(O*) is a compact
set. Therefore, h(O*) € C"™ (B,41) implies that h(CP™(B,)) C CP™(B,.1) for each
a = 1727”' g

Now we take O* € CP™(B,) and J* € CP™(By+1) for some a = 1,2,--- ,q. We

Y

assume that

sup P (g, A(T ™)) < X sup pr (1, T¥) -
hueh(O*) neo*

But A is a cyclic contraction map, thus we get

Pm (FL,U, hﬂ) < /\pm (:uun) for all e Ba?” € Ba+1 for a = 17 27 4,
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and so

sup  pm (A, (J™)) = sup  inf py, (hp, hn)
huch(O*) hueh(O*) Imeh(T™)

A sup inf p,, (u,
sup inf p (12,m)

< Asup p (1, JT7)-
neo*

IN

In a similar manner,

sup  pm (An, A(O¥)) < A sup pr, (1, 0%),
hmeh(J*) neJg*

and so

P (MO, WT*)) = maX{ sup  pm (A, A(JT™)), sup pm(ﬁn,h(o*))}

hpeh(O*) hneh(T*)

< Amax { sup pm (1, I*), sup pm (1, O*)}
neo* neJg*

< Ap, (O, T%).

Hence £ is a generalized cyclic contraction mapping on CP"{B,}?_,. O

Theorem 4.2.2. Consider a collection { B,}!_, of non-void closed subsets of
a partial metric space (W, p,) and let K be a fized natural number. If h; :
Ul B, — Ul_ B, for j = 1,2,--- K are generalized cyclic contractions, then
the map ¥ : UL_,CP™(B,) — UL_,CP™(B,) defined by W (O*) = UL h;(O*) for

every O* € Ul_,CP(B,) is as well, a generalized cyclic contraction.

Proof. Let O* € CP(B,) for some a = 1,2,---,q. With the aid of Theo-
rem for each j = 1,2,--- , K, h; is a generalized cyclic contraction. Thus
hi(O*) € CP(Byyq) for all j =1,2,--- , K, implying that ¥ (O*) = UL, h,;(O0*) €
CPm(B,41) and as a consequence, ¥ (CPm(B,)) C CP™(Byy1) for a = 1,2,--- ,q.

From the cyclic contraction condition of each h;, where j =1,2,--- | K, we get
H, * * H. * *
Pm” (15(0%), 1h;(T7)) < App” (O, T7),
for all O* € CP™(B,) and J* € C"™(By+1), with a = 1,2, --- | q. Therefore

P (U (0, W (T%) = phr (U5 7 (0F), UL 5;(T))
< max {pl (h(O"), 7 (T*)) - o (hic(OF), hic(T)) }
< Apy (O, T7).
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Definition 4.2.5. Let {B,}?_, be a class of non-void closed subsets of W, in
a complete partial metric space (W,p,,). We say that ¥ : Ul_, CP"(B,) —
ul_,CPm(B,) is a generalized cyclic Hutchinson contractive operator, provided
that a contraction factor A € [0,1) exists with J* € CP(B,), O* € CP"(B,11),
such that

P (U (T7), W (07)) < ASe (T, 0),

where

S‘l’(j*70*) = max{pm*(j*,O*),prn*(j*,\If(j*)),pfi*(O*,\I’(j*)),

pg* (j*v v (O*)) —;_pm* (O*’ v (\7*)) 7pg*(\112 (j*) 7 i} (j*)),
P (2 (T7), O%), py (V2 (T7) , ¥ (07)) .

Definition 4.2.6. Let {B,}?_, be a class of non-void closed subsets of W, in
a complete partial metric space (W,p,,). We say that ¥ : Ul_, CP"(B,) —
ul_,CP(B,) is a generalized cyclic rational Hutchinson contraction operator,
provided that a contractive factor A € [0,1) exists with J* € CP~(B,), O* €
CP(B,+1), such that

P (P (T7), ¥ (0) < ARe(T*,07),

where

ooy i (T W (T + pil(T*, 9(T))]
Re(T* 0% = max{ 21T i (7. 0) ;
P (OF, W (O)[1 4 pi= (T*, 9(T*))]

1+ pl- (J*, 0%) ’
P (O, W (TN + pl- (T, 9 (T))] }
1+ pH(J*, O%) '

4.3. Generalized Cyclic Hutchinson Contractive Operator

In this section, we prove that the generalized cyclic Hutchinson contractive oper-

ator has a unique attractor.

Theorem 4.3.1. In a complete partial metric space (W,p,,) with a family
{B.}!_, of non-void closed subsets of W and {W;hq,a =1,2,--- ,q}, a general-
ized cyclic iterated function system, let the map ¥ : U?_,CP~(B,) — Ui_,CPm(B,)
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be defined by
U(T") = Uszrha(T7)

for each J* € UL_,CP( B,). Suppose ¥ is a generalized cyclic Hutchinson con-

traction operator, then ¥ has exactly one attractor U, € CP™(B,), that is,
Uy =V (Uy) =Ul_ h,(Uh).

In addition, for an arbitrary set J; € UL_,CPm(B,),
{7 v (), v (T5) -}

converges to Uy .

Proof. Let J5 € Ul_,CP~(BB,) be an arbitrarily chosen set. Then some ag exists
such that J; € CP»(B,,). Similarly, ¥ (CP"(B,,)) € CP"(B,,,,) implies that
U (Jy5) € CP(Ba,,, ). Thus there exists J;* € CP™(B,,, ,), such that ¥ (J5) = J;".
It follows that W (CP(By,.,,)) C CP(Ba,,,) which implies that J5 = U (Jy) €
CP(Bay,,)- The same argument results in the construction of a sequence {J;'}
such that

j1* - \I’(jo*)a jz* =V (»71*) ) "'7t76*+1 =V (»75*)

for 6 € NU{0}.

Assume that J;" # J5,, for all 6 € NU {0}, otherwise, J; = J, for some
s, which implies that J; = W¥(J;), and hence the proof. Thus J; # Jj,, for
all 6 € NU {0}. Definition , with J5 € CP"(By,,,) and J3\, = ¥ (Jy) €
CPm (B, ,), vield

P (T5, Tf) = pir (@ (jé*)"l’(jail))
< ASu (T5,T50)

A\

where

S\IJ (-75*7 ‘7511) = max{pm* (*76*7 *-75*+1>7p71;1[* (‘-76*7 v (*—76*» 7pg* (jz;:rl? v (‘-7511)) 9

B (T35 9 (T5)) + ol (T3 Y (TG ) )
D ( s ( 6+1))2p ( 51 Y ( 5)),pg*(‘112(j5),\11(j5)),
e (VT3 Tgr) ol (W2 (T5), ¥ (T50)) 3
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= max{pm* (‘75*7 \7(5*+1)7pr}£* (\76*7 t75*+1) 7]95* (*76*4—17 J;*+2) 5
P’ (‘7;“7612) + P (j5*+17~7511)
2 )
pg* (*76*+27 j&il);pg* (‘76127 \-76*+1> >pg* (\7(5*+27 jgig)}

S max{pm* (jé*a 4.7511),])%* (jé*+17 \7¢5*+2) )
P («75*7 \76*+1) + P (\76*+1’ \76*+2) }
2
= max{pﬁ* (\76*’ \76*—1—1) 7anq,* (\75*—1-1a \7(5*4—2)}
Thus, we get

pg*(\ZS*-i-la j5*+2) < /\max{pm* («Zs*a \75*+1) aprli* (\76:-17\7512)}
= )‘pm* (\76*“75:1) )

for all § € NU{0}. Now

P (T3, T7) < plf (T3 T5) +po (T51: Tsa) + -+ o (i1, T)
— inf  pulpstr, psr1) —  inf . Pm(fsy2, fhsr2) —

Ho+1€T5 4 Ho+2€ 52
P p— 1 f m n—1, ~n—
#njreljffflp (M o 1)
< I E N e X (T T
= N AF A2 4 AT (T )]
A0 * %
S 1_)\pg*(j07\-71>’

for all §,n € N U {0} with n > 4. So s lini pE(Jx, JF) = 0, and so the
n——+00

sequence {J; } is Cauchy in W. Since the partial metric space, (UZ_,CP"(B,), pi+)
is complete, then taking the limit as 6 — +oo gives J5 — U; for some U; €
ul_,CPm(B,), that is,

. . * T « * * _ . Hs
Jm p (J5,00) = dim pp (T8 T5) = o (U U).

It turns out that {J;} is a sequence with an infinite number of terms in

CPm(B,) for each a = 1,2,--- ,q. We can therefore construct a convergent subse-
quence of {J§} in each CP~(B,) for a = 1,2,--- ,q which has U; as a limit and
since each element in CP(B,) for a = 1,2,--- ¢ is closed, we conclude that

Uy € N0_,CP"(B,) # 0.
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Let Vi =n?_,CP~(B,) and CP~(V}) be the collection of all non-void compact
subsets of Vi. Then W|com vy : CP(V4) — CP(V}) is a self-mapping on compact
sets and so from Definition and Theorem , we conclude that U|cem (vy)
has exactly one attractor U; in CPm(1]). O

Remark 4.3.1. If we take Ul_,8P~(W,), the union of the family of all singleton
subsets of W in Theorem then U_ 8P (W,) C UL_,CP~(W,). In addition,
taking h, = h for each a, with h = hy, we note that the mapping V is expressed

as

As an outcome of Remark [4.3.1] we present the following result.

Corollary 4.3.1. Suppose (W,p,) is a complete partial metric space with
{W;he,a = 1,2,--+ ,q} a generalized cyclic iterated function system and h :
W — W a map defined as in Remark If

P (g, b)) < ASk(p, 1),

where

Pt im) 4 D (0, Apt)
2 b)

Sn(p,n) = max{p, (1, 1), pm (e, hpe), p(n, hn),
(P21, 1), D (R 1, Bgn), pr (R, ) 3,

for p e CP™ (W,), n € CP» (Way1) and X € [0,1), then u € W is a unique fized
point for the mapping h. In addition, for any ug € W, {ug, hug, h*uy, ...} converges

to u.

Corollary 4.3.2. In a complete partial metric space (W, py,), let {W;hy,a =
1,2,--+ ,q} be a generalized cyclic iterated function system with contraction self-
mappings h, for each a = 1,2, ...,q. Suppose {B,}!_, is a class of non-void closed
subsets of W. Then ¥ : UL_,CP(B,) — UL_,C"(B,) defined as in Theorem[4.3.1]
has a unique attractor. In addition, for any choice of initial set J; € CP™ (B,),
{T5, 9 (J5), 2 (J3), -+ }is a convergent sequence with the attractor of U as its

unique limit.

Proof. If each h,, is a cyclic contraction mapping on W, for a = 1,2, ..., q, then
by Theorem we have that the mapping ¥ : U?_,CP(B,) — Ul_,CP"(B,)
defined by ¥(J*) = Ul_, h,(J*) for all J*€ CP"(B,) is a contraction on CP(B,)
relative to the Hausdorff partial metric pZ+, hence the result from Theorem m

O
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Example 4.3.1. Let (W, p,,) be a complete partial metric space. Suppose W =
[0, 2] and define p,, : W x W — Ry by

max{p,m} if g, m ¢ [0,1)
Pm(pin,m) = .
|,u1_771| 1f,u1>771 € [Ovl)a

Suppose By = [0,1], By = [3,2], Bs =By and W = B, UB, = [0,2].
Define h: W — W by h(u1) = % if uy € [0,1) and k(1) = 0. Note that B; and
By are closed subsets of (W, p,,,). Furthermore h(B,) C B,.1 for a = 1,2 and so

By U By is a cyclic representation of W relative to the mapping h.

So
P (Bper, By ) < ASp(pa,m),

where

P (p1, A1) + P (71, Pptn)
2 )

Sh(/il,?h) = maX{pm(Ml,Th);pm(ubhﬂl)apm(m,hm)a
P (R 11, m1) o (B a1, gy ), o (B2 i, i) 3,
holds.
We look at the following:
I. For py € By, m € By with py € [0, %] and 7, € [%, 1), we have

1

() ) = (3 = | 5 = [ =0

and for p; € [0, %] and n, = 1,

Pm(R(p1), h(m)) = pm(3,0) = 3,

and

— 141t
Sn(pa,m) = max{\ul—u,!ul—%\,\l—o!,|”1 |2‘ 2!7

s =1z =l s ol

Thus
D (Bpa, b)) < ASp(pa,m1)s

with A = —.
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II. For py € By, m € By with py € [%, 1] and n; € [0, %), we have that

Pm(h(p1), h(m)) = pm(3,35) = 0,

and for y; =1 and 7y € [0, 1],

P (P(p1), R(11)) = P (0, %) = %

and
I — 1+ |1 -3
Sh(/hﬂ?l) = max{|771—1],‘771—% ) 2 | 2‘7
5= 1] [3—3].13 - 0[}.
Thus
Pm (Fper, ) < ASk(pa, m),
3
ith A = —.
wi 1

Therefore Corollary is verified and, 1 is a distinct fixed point of /& and in

» 2
addition we note that A is not continuous at 1.

4.4. Generalized Cyclic Rational Hutchinson Contraction

Operator

In this section, we prove that the generalized cyclic rational Hutchinson contrac-

tion operator has a unique attractor.

Theorem 4.4.1. In a complete partial metric space (W,pp,), let {B.}_, be a
collection of non-void closed subsets of W with {W;h,,a =1,2,--- ,q}, a gener-
alized cyclic iterated function system. Suppose ¥ : Ul_,CP(B,) — Ul_,CP(B,)
defined by

U(T") = Ugzr ha(T7)

for all T* € UI_,CPm(B,). If ¥ is a generalized cyclic rational Hutchinson con-
traction operator. Then U has a unique attractor Uy € Ul_,CP™(B,), which is to

say,

U1 = ‘If (Ul) = nglha(Ul)-

In addition, for any initial set Jy € Ul_, CP™(B,), the sequence
{~70*> v (ty()*) ’ \IJQ (j0*> ’ }

of compact sets, converges to the attractor U;.
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Proof. Choose J; € U!_,CP~(B,). Then some ag exists such that J; €
CPm (B, ). Similarly, W (CP™(B,,)) C CP™(B,,,,) implies that ¥ (J5) € CP™ (B, )-
Thus there exists J; € CPm(B,,,,), such that ¥ (J;) = Ji. It follows that
U (CP™(Bay,,)) € CP™(Bay,,) which implies that J5° = U (Jf) € CP™(Bay,,)-
Consequently, a sequence {7} is define by

T =9T), T =v(IJ), ---vjb*ﬂ = V(7))

for b € NU {0} is obtained.

Assume that J;" # J;,, for all b € NU {0}. Otherwise, J; = J,41 for some s,
implies that J = ¥(J.) and there is nothing further to show. Now take J" #
Ty for all b € NU {0}. For J; € CP"(B,,,,) and J;,, = ¥ (J") € CP(B,,,, ),
Definition gives us that

pg* (‘-7;;-17 ‘-7;1—2) = pﬁ*(\p (‘717*) ) v (‘-71;-1))
< ARy (k7b*7 k7bil) ’

where

P (T W (T L + ol (T, 9( ;)]
2(1+plie (T, T51)) ’
P (Tiiens ¥ (T L+ oy (T, O ()]
L+ pie (T3 T) ’
P (Tfrs O (T + i (T ¥ (F)] }
L+ pi-(Fy, Ta)

~ max {pﬁ* (T Trn) L+ P (T Tiu)]

R‘I/(%*’\yl;—l) = maX{

201+ pl- (T, Ta)) 7
P (Tons T 1+ 0l (T T
1 + pt- (jl)*’ jb*—s—l) 7
pg* (\71;-1’ ‘-71:1-1”1 + pg* (t7b*7 ‘-71;-1)] }
L+ pfi(TFy, Tya)
— nax {p{r{ (\71;;’ Tr2)
pg* (t7b*7 *-71;—2)
-

,pﬁ*ml,ma,pﬁ*(m,%’m}
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Thus, we have

Pg*(jbﬂajbm) < E[ern*(\Z) a\7b+1) +p7Hn*(%+1>~Zy+2) T mf* P (§pr1, Epr1)]
b+1€Tp 4
/\* * * * *
< 7[297Hn(\7b s Toi1) +p7Hn*<\7b+17 T2l

2pm*(‘71;:-17 u7b*+2> - )‘*pg*(jb:la jb*+2) < )‘*[pfi*(%*a jb*+1)]7

As
2 -\

ph (Ty1s Ta) < P (T, Tri1)s

*

that is, for n, = 5 < 1, we have

*

pg* (‘-71):—1a jbtrz) < 77*1’%* («71;*, jb*+1)

for all b € NU{0}. Thus for b,s € NU {0} with b < s, we have

— inf  pr(pess, porr) —  Anf pu(peg2, o) —

Bo+1€T5 Ho+2€Ty o
S
< nfipﬁ*(%*, Jv) + UZHPTFrIL*(jo*v Ti)++ ni”pﬁ*(jo*y J7)
< lAntt e e (T I
< et e (5 I7)
b
< 12—*77*19%070*: I,

and so \ lim pf- (JF, J) = 0, hence the sequence {7, } is Cauchy in W. Since
,8—>+00
(Ul_,CP(B,),pl+) is a complete partial metric space, J; — U; as b — +00
for some Uy € U!_,CP(B,), that is, lim pH+ (77, Uy) = lim pf (Jyr, J7) =
b—+o0o b——+o00
ern* <U17 Ul) .

It can be noted that {J;} has an infinite number of terms in C*"(B,) for each
a = 1,2,---  q. Therefore, a subsequence of {J;} that converges to U; can be
constructed in each CP™(B,) with a = 1,2,--- ,¢. Considering that each member
in CP(B,) fora =1,2,--- ,qis closed, we can conclude that Uy € NI_,CPm(B,) #
0.

Now let Vi = NI_,CP(B,) and set CP"(V}) to be a collection of all nonvoid
compact subsets of Vi. Then W|com vy : CPm (Vi) — CPm(V4) is a self-mapping
on compact sets and so using Definition [2.1.6] and adopting the proof of Theo-
rem , we conclude that W|eem(1;) has a unique attractor in CP= (V7). O
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Corollary 4.4.1. In a complete partial metric space (W, py,), let {W;hq,a =
1,2,--- ,q} be a generalized cyclic iterated function system with h : W — W
defined as in Remark [1.3.1] If for any p € CPm (W,) and n € CP™ (Waia), some
A« €10,1) ewists such that,

P (B, B ) < MNRp(pr, ),

where

Rilpnm) = max{pm(ul,hm)[l +pm(u1,ﬁu1)]7pm(m,hm)[l + P (1, Py}
2(1 + p(pa,m)) L+ pm(pe1,m)

P (01, A1) [1 + P (pi1, g )] }

L+ o (pt1,m1)

Thenu € W is a unique fized point of h. Additionally, for any choice of ug € W,

the sequence {ug, hug, h*ug, ...} converges to u.

4.5. Application in dynamic programming

We provide an application of the obtained results in solving functional equations

which arise in dynamic programming.
Consider two Banach spaces, W; and W, with F* C W, and J* C W,. Suppose
that

v F'xJ" — F, fi: FFxJ —R, g:F xJT xR—R

If we regard F* to be the state space and J* the decision space, then the dy-
namic programming problem may be reduced to that of finding a solution to the

functional equation:

p(m) = Zsellﬁ{fl(m7 2) + g1(m, 2, p((m, 2)))}, for m € F (4.1)

Reformulation of equation (4.1)) gives

plm) = sup {fi(m, ) + gi(m, 2, p(y(m, 2)))} = B, for m € 7~ (4.2)

where g > 0.

We would like to investigate the existence and boundedness of a unique solu-
tion of the functional equation (4.2)) which arise in dynamic programming in the

framework of partial metric spaces.
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Let the set of all bounded real-valued functions on { F}?_, be denoted by B (FY)
and choose any ¢ € By(F?), such that ||€]| := sup |£(t1)]. Then (By(F),|-|) is
tieFx

a Banach space. Consider

Py, (&%) = sup [§(t) — 3 (ta)] + B,

tieM;

where ¢ € By(F?) and » € By(Fr,,). Then pp, is a partial metric on By (Fr)
(see [4]).

We assert
(E1): f1 and g; are bounded and continuous.

(Ey): Form € F¥, £ € By(Fr) and § > 0, take W : Ul_ B(F¥) — UI_, B, (F?) as

W§(m) = sup {fi(m, 2) + g1(m, z,§(v(m, 2)))} = B, for m € F; (4.3)

2€T}

Moreover, for every (m,z) € F* x J*, & € By(F¥), » € B~1(]-";+1) and t, € F;

implies
|gl(m> 25 5 (tl)) - gl(mv 2 %(t1)>| < )\S\IJ(S (tl) ) %(tl)) - 2ﬁ7 (44)

where

Su((t1), 7 (t))

= max{p, (£(t1), 2 (1)), Py, (€ (1), W (% (1)), Py, (3¢ (1) , W (52 (11))),

o€t REABIN 2 2o, o) B (0 e 1) 0 )
oy (W2 (€ (1)) 52 (1)) 2y, (V€ (1) 0 32 (1))

Theorem 4.5.1. Suppose that (E1) and (E2) are true. Then, there exists a
bounded and unique solution to the functional equation (4.2)) in By (F?).

Proof. We observe that (B (F?), Pp,) is a complete partial metric space. Since
U is a self-mapping of By (F?) to itself, using (4.3) in (E;) we have that for any
€ € Bi(Fr) and > 0, with m € F* and z; € J* such that

a

Ve < fl(m7 Zl) +91(ma 21?5(7(7”?21))) (4'5)
Wse < fi(m, 21) + gi(m, 21, 3(7(m, 21))), (4.6)
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implies that

W > fi(m, z1) + gi(m, z1,§(v(m, 21))) — B (4.7)
Wi > fi(m, z1) + g1(m, 21, #(y(m, 21))) — B.

(4.5) and (4.8)) together with (4.4]) gives us

VE (1) — Wae (t) < g1(m, 21,€(v(m, 21))) — g1(m, 21, 3¢(v(m, 21))) + B
< |gl(m7 zlaf(V(m7Z1))) - gl(mv “y %(7(m7 Zl)))l + 6
< ASw(E(th), 5 (t1)) — B. (4.9)

(4.6) and (4.7)) together with (4.4) implies

W (t1) — WE (t) < gi(m, 22, 3(y(m, 21))) — g1(m, 21, £(v(m, 21))) + B
< [gi(m, 2z, 22(y(m, 21))) — g1(m, 21, §(v(m, 21)))| + B
< ASu(€ (1), 5 (1)) — B. (4.10)

From and (4.10), we get

(WE (t1) — Wae ()] + B < ASw(& (t) , 5 (1)) (4.11)
Using inequality we get

P, (WE (1), Wi (1)) < ASw (& (t) , 2 (t1)), (4.12)

where

Sw(§ (t1), 2 (t1))

= max{p,, (§(t), 7 (1)), s, (€ (1) . W (E(11))), Py, (52 (1), ¥ (3¢ (1)),
Py, (€ (1), W (5 (1)) + Py, (52 (1), W (€ (1))
9 )
Pg, (\1/2 (5 (t1>> W (5 (tl)))vpsl (\1125 (tl) y % (tl))7
Pg, (\Ij2 (5 (h)) ' (% (tl)))}

Hence, all conditions of Corollary are satisfied, thus ¥ has a fixed point,
& e nl_ B (Fr), and so £* (t;) is a solution of functional equation (4.2). O
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4.6. Application to the solution of Integral Equations

We now look at the existence and uniqueness of solutions to a family of non-linear
integral equations shall be established, using Corollary as a motivation.

Let
J
w(y) :/ K (g1, 1) B (b, w(tr))dts for all yy € [0, ], (4.13)
0

be a nonlinear integral equation, where J > 0, h : [0,J] x R — R and K :
0, J] x [0, J] = R4 are both continuous mappings (see [75]).

Let W = C' ([0, J]) be the set continuous functions with real values on the interval

[0, J] and endow W with a partial metric

p(n,e) = m[%%]] In (y1) — e(y1)| + b for all n,e € W and some b > 0.
y1€|0,

Let (a1, 81) € W x W and (o, 55) € R x R such that
ay <o (y1) < Bi(y) < B for all yy € [0, J]. (4.14)

Suppose for all y; € [0, J],

J
a1 (y1) S/O K (y1,t1) h(t1, B (t1))dt; (4.15)

and ;
ﬁl <y1> 2 /0 K <y1, t1) h<t1; (6%} (tl))dtl. (416)

Further assume that h(t1,-) is a decreasing function for all ¢; € [0, J], that is

r > s implies that

h(yi,r) < h(y1,s) forall r,s € R. (4.17)
We also suppose that
J
sup / K (y1,t1)dty < 1. (4.18)
y1€[0,7] J0

Moreover, for all ¢t; € [0,J], or all r,s € R with (r <y and s > ;) or
(r>agand s > f),

|h (t1,7) — h(t1,s)] < AZp(r,s) — b for some b > 0 (4.19)
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where

Zy (r,s) = max{p(r,s),p(r,hr),p(s, hs), p(r, hs) —2|—p(r, h5)7

p(R*r, ), p(h?r, hr), p(h?r, hs)}.

Let
C={weC[0,J]:a; <w(y) < p forall y; €10, J]}.

Consider the following result.

Theorem 4.6.1. Suppose that all the conditions -[4.17) hold. Then the
integral equation has at most one solution w, € C.

Proof. Let M; and M5 be closed subsets of W such that
Mlz{wEngﬂl}

and

My={weW:w>a}.

Define the mapping
v.wW—-w

by ;
Vw(y,) :/ K (y1,t1)h(ty, w(ty))dt; for all y, € [0, J].
0

We shall show that
\I](Ml) Q M2 and \II(MQ) Q Ml. (420)

Let w; € M;, that is,
C(t) < Bu(t) for all y €10, J].

With the aid of condition (4.17)), since K (y1,t1) > 0 for all y1,¢; € [0, J], we get
that

K(yi, t1)h(t, w(ty)) > K(yi, t1)h(t1, Bi(t1)) for all yy,t; € [0, J].

Combining the above inequality with condition (4.15)), gives

/O K(yr, t0)h(t, (C(t)dt 2/0 Ky, t)h(t, By(8))dts > an(ys) for all gy € [0,.7].

78



Thus
Yw € MQ.

In a similar manner, let w € Ms, so w(ty) > «ay(ty) for all y; € [0, J]. Making use
of condition (4.17)), since K (y1,t1) > 0 for all y1,t; € [0, J], we get

K(yl,tl)h(tl,'LU(t1>> S K(yl,tl)h(tl,ozl(tl)) fOI' all ylatl c [0, J] .

Together with condition (4.16]) the above inequality implies that

/0 Ky, t)h(t, (w(ts))dt, g/o Ky, t)h(t, ar (b))t < Bu(ys) for all gy € [0,.7].

Thus we have
Yw € Ml.

and we conclude that (4.20]) holds.

Now, let (u,n) € My x Ms, that is for all y; € [0, J],
p(y) < Bily),  n(y) < aa(y).
Together with , this implies that
u(n) < By, nlyr) > ap forall yy €[0,.J].

With the use of conditions (4.18)) and (4.19)), we have

W) — Unl)| < / K (g, t1) (Bt () — Bt m(t)] dey

< / K (yn, t1) (vmasc{p(u n), p(, he), p(, ),

p(, hn) + p(n, hit)
2

(R, ), p(h?u, hp), p(hPp, b))} — b) dt,

p(p, hm) + p(n, hyt)

< Amax{p(p,n), p(u, hyt), p(n, hn), 5 )
p(h?,m), p(h? g, hys), p(h®p, hp) }
J J
/K(yl,h)dtl—b/ K(y1,t1)dt
0 0
p(, hn) + p(n, hu
< Amax{p(p,n), (i, hyr), p(n, hn), ( >2 ( ),

p(h?p,m), p(R?, hit), p(h* 1, hn) }.

Thus
p (W, ¥n) < Ap(p,n)
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It can be shown, in the same manner, that the above inequality holds for (u,n) €

Mj x M, so Corollary is satisfied, and we deduce that ¥ has a unique fixed
point w, € M; N Ms, and so w, € C is a unique solution of (4.13]). H
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5

Iterated Function System of
Generalized Rational Contractions

in Semi-Metric Spaces

5.1. Introduction

In the past decades, metric fixed point theory has proved to be an effective and
versatile tool for solving scientific problems. Its vast range of applications, which
include among others, iterative methods for solving linear and nonlinear differ-
ential, integral and difference equations, split feasibility problems, equilibrium
problems and optimization problems attracted several researchers to intensify
and extend the scope of fixed point theory in metric spaces, see for example
[24, 28, (30} 3], 4T, 65, [84) [88]. The notion of metric between two points is impor-
tant in the definition of the nature of the topology of an underlying space. For
example, Frechet [34] defined a metric space on a non-void set W that induces
a Hausdorff topology on W. This was followed by several generalizations of the
metric function, which includes the notion of a symmetric or semi-metric space

giving rise to a non-Hausdorff topology [56].

Some useful results on contractive mappings in semi-metric space were ob-
tained in [I, 2, (19, B8, B9, 44, 45, 48, 66, 03] 0T, [105]. Hutchinson [42] intro-
duced iterated function systems in the setting of metric spaces for generating
fractals from contractive self-mappings. Since then, numerous researchers have
been inspired to acquire a range of iterate function system findings in other spaces
132, (56, (14, (15, (16, 17, 63, 60].

Our primary objective in this chapter is the construction of a fractal set of general-
ized iterated function system of a generalized rational contraction in semi-metric
space. We observe that the Hutchinson operator defined on a finite family of
contractive mappings on a complete semi-metric space is itself a generalized con-

tractive mapping on a family of compact subsets of W. By successive application
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of a generalized Hutchinson operator, a final fractal is obtained without the use

of triangle inequality and this shall be followed by a non-trivial example.

For the purposes of our subsequent discussion, we give the following preliminary

definitions and results.

Definition 5.1.1. [56] Let W be any non-void set. A mapping d, : WxW — Ry
is called a Hausdorff semi-metric on W if for all p, ¢ € W, the following properties
hold:

(ds,) ds(0,5) = 0 if and only if o = ;

(ds,) ds(0,6) = ds(s, 0).

A set W equipped with a Hausdorff semi-metric d, is called a Hausdorff semi-

metric space.

Example 5.1.1. [56] Let W = R} and define a semi-metric d, : W x W — Rpy;

240 .
ds (2749) = dS(Qaz> = T 1f0#27
ds(0,6) = |o—g¢| forall p,¢ € W\{2} and d, (2,2) = 0.

We observe that ds is not a metric on W since the triangle inequality is not
satisfied, that is ds(0, 3) £ ds(0,2) + ds(2, 3).

In a Hausdorff semi-metric space (W, dy), let
B,(s,m") ={0€ W :ds(s,0) <77}

define an open ball with center ¢ € W and radius any r* > 0. One can represent

a topology 74, on W by

{U € 74, such that for every ¢ € U, B,(s,r") C U with r* > 0}.

Definition 5.1.2. [I03] Let (W, d,) be a Hausdorff semi-metric space. Then for

every o € W and ¢ > 0, the open ball B,(p, r*) is a neighborhood of ¢ with respect

to the topology 74,. Moreover, liin ds(0a, 0) = 0 if and only if the sequence g,
a—r—+00

converges to o in the topology 74..

We give some properties each of which serve as a useful partial replacement
of the triangle inequalty in a Hausdorff semi-metric space (W, d;). Let {0,}, {<a}
and {v,} be sequences in semi-metric space (W, d,) with o,¢ € W. Then [50]
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(Wy) hI_El ds(04,0) =0 and lim d,(g,,s) = 0 implies o = ;
a——+00

a——+400

(W1) lim ds(0a,0) =0 and lim d,(0a,s,) = 0 implies that lim d,(o,<.) = 0;
a—+00 k—+o0 a—~o0

(W3) lim dy(04,5,) = 0and lim dys(s,, v,) = 0 imply that hm ds(0a,Va) = 0;

a——+00 a——+00
(J) hm ds(0a, <) = 0 and hIJP ds(Sa, Vg) = 0 imply that
a—r—+00
i d(0n, ) # oo

(CC) lim ds(04,0) = 0 implies that lim ds(04,<) = ds(0,5)-
a——+400 a——400
Wilson [103] introduced properties (W) and (W), Mihet [63] property (W),
Jachymski et al. [45] property(J) and Cho et al. [29] property (CC).
Definition 5.1.3. [39, [45] If {o,} is a sequence in a Hausdorff semi-metric space

(W,ds), then

(a) {0.} issaid to be a ds-Cauchy sequence if, given € > 0, there exists a natural

number a, such that, d(g4, 0x) < €, for all a, k > a..

(b) (W,ds) is called an S-complete space if for each ds-Cauchy sequence {g,}
in W, an element ¢ in W exists such that lir+n ds(0a, 0) = 0.
a—r—+00

(c) (W,dy) is known as a ds-Cauchy complete Hausdorff semi-metric space if

every ds,-Cauchy sequence {g,} in W converges to o € W.

For a non-void set W, we say
N(W) ={K : K is a non-void subset of W},
B(W) ={K : K is a non-void bounded subset of W},
CL(W)={K : K is a non-void closed subset of W},
CB% (W) = {K : K is a non-void closed and bounded subset, of W},
Cd (W) ={K : K is a non-void compact subset of W}.
Definition 5.1.4. [56] Suppose (W,d;) is a Hausdorff semi-metric space. V* €

N (W) is ds-closed if and only if V* = V*, where V* = {v* € W : d,(v*, V*) =
0} and ds(v*, W) = inf{ds(v*, w*) : w* € W}.

Let J*, O € CB%(W), define the map Hy, : CB%™(W) x CB%(W) — Ry, by

Hy (T, 0%) = max{sup ds(s, J), sup ds(0, 0"},

seO* 0EeT*

then we say Hy, is a Pompeiu-Hausdorff semi-metric induced by ds. If (W, d;)
is a d,-Cauchy complete semi-metric space, then (CB% (W), Hy ) is a d,-Cauchy
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complete semi-metric space too.

In the context of a Hausdorff semi-metric space, we state the following Lemmas

for later use [73].

Lemma 5.1.1. [56, [73] Let (W,ds) be a Hausdorff semi-metric space and
J*, 0 € CB:(W). If o € J*, then dy(0,0*) < Hy, (J*,O%).

Lemma 5.1.2. [56, [73] Let (W,ds) be a Hausdorff semi-metric space and
J*, 0% € CB%(W). Then for any given € > 0, satisfying Hy, (J*, O*) < e,
there exist an element ¢ € O such that ds(o,s) < € for every o € J*.

Lemma 5.1.3. [50, [73] Let (W,d;) be a Hausdorff semi-metric space and
J*, 0% € OB%*(W). Then for any o0 € J*, there exists ¢ € O* such that
ds(0,6) < AHg (T*, OF) for A > 1.

Lemma 5.1.4. [56] 53, [73] Let (W,ds) be a Hausdorff semi-metric space. Then
for all KC*, L*, J*, O* € CB% (W), the following conditions hold:

(a) If L* C TJ*, then sup ds(k, J*) < sup ds(k, L"),
kel kelC*

(b) sup ds(t, J*) = max{sup ds(k,T*), sup ds(¢, T*)},
tekcr UL ke ter*

(c) Ha (K" UL, T*UO%) < max{Hy, (K%, T*), Hy,(L*, O%)}.

Theorem 5.1.1. [45, 56] Let (W, d,) be a ds-Cauchy complete Hausdorff semi-

metric space and h : W — W be a contractive mapping such that,
ds(ho, he) < Ad(o,¢)

is satisfied for all o,¢ € W and 0 < X < 1. If (W,d) is a bounded Haus-
dorff semi-metric space, that is, if there exists some constant X* such that
X* = sup{ds(0,5) : 0,6 € W} < oo, then h has a unique fized point @ in W,
in addition for every gy € W, the sequence {oo, hoo, h*00, -} converges to the
unique fixed point u of h.

Theorem 5.1.2. [50, 53] Let (W, dy) be a Hausdorff semi-metric space and
h:W — W be a contraction mapping with 0 < A < 1, then

(a) elements in C% (W) are mapped by h to elements in C%(W).
(b) If for any J* € C% (W),



then the mapping h : C% (W) — C% (W) is a contraction on (C% (W), Hy,).

5.2. Generalized Iterated Function System in Hausdorff

Semi-Metric Spaces

Goyal reported some results on generalized iterated function systems for multi-
valued mappings in metric spaces in [35]. This section expands on the principles
presented in Section on generalized iterated function system in partial metric
spaces set-up [53] to the context of Hausdorff semi-metric spaces. The definition

of a generalized contraction self-map will be followed by some preliminary results.

Definition 5.2.1. Let (W, d) be a Hausdorff semi-metric space and h,g: W —

W be two mappings. A couple (h, g) is called a generalized contraction if
ds (ho, gs) < Ad; (0,¢)
for all o, € W, where 0 < \ < 1.

Example 5.2.1. Let W be a closed and bounded subset of Ry, and define a
Hausdorff semi-metric d, on W by d,(r,t) = (r — t)? for all r,t € W. Define
h,g: W — W by

3r 3t

M) =55y @ 90 =5y

Then note that

ds (h(r), 9(t)) =

m () () (o)

(7"2 —2rt + t2)

(’l” - t)2>

|©§|© c“ﬁlw Sle 7

25

9
that is, ds (h(r),g(t)) < Ads(r,t) with A = % Thus the couple (h,g) is a

generalized contraction.

Theorem 5.2.1. Suppose (W,ds) is a Hausdorff semi-metric space and h,g :
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W — W are two continuous mappings. If the pair (h, g) is a generalized contrac-

tion with a common contractive constant A such that 0 < X\ < 1, then
(a) elements in C% (W) are mapped to elements in C% (W) under a pair (h, g),

(b) if for any J*,0* € C%(W), the mappings h,g : C=(W) — C%(W) are
defined as

RT*) = {h(o):0€ T*} and
9(0") = {g(c) :c € 07}

then the couple (h,g) is a generalized contraction on (C% (W), Hy,).

Proof. (a) Since h is a continuous mapping and the image of a compact subset

under a continuous mapping, h : W — W is compact, then
J* € C% (W) implies that h(J*) € C%(W).

In a similar manner we have
O* € C% (W) implies that g(O0*) € C%(W).

(b) Let J*,O* € C%(W). Since the couple (h,g) is a generalized contraction,
then for 0 < X\ < 1),

ds (ho, gs) < M (0,<) for all o,c € W.
Thus we have

ds(he,9(07)) = inf dy(he, g<)
i2f M9
Ads(0, O).

IN

Also

ds(gs,h(T7)) = inf di(gs, ho)
inf Ad,(s,
nf, Ads (s, o)
(0, T7).

IN

86



Now

Hy, (M(T*),9(0%)) = max{sup d,(ho,g(O")), sup ds(gs, h(T*))}

seJ* seO*

< max{sup Ads(o, O), sup \ds(s, T")}

0ET* ceO*

= Amax{sup ds(g, O"), sup ds(s,T")}

0ET* ceO*

= ANHq. (J", 0.

As a result, the pair (h, g) is a generalized contraction mapping on (C% (W), Hy,).
O

Proposition 5.2.1. Let (W,ds) be a Hausdorff semi-metric space and (hq, ga),
a€{l,2,---,q}, a finite family of contractive mappings. If

ds (ha0, 9as) < Auds (0,6) for all p,¢ € W,

for0 <\, <1),a€{1,2,---,q}, then the mappings ¥, ® : C¥(W) — C%= (W)
such that

U(T") = h(T)Uh(T) U Uhy(T7)
= U!_ ho(T") for each J* € C%=(W)

and
O(07) = q(O")Ug(O7)U---Ug(O7)
= U!_,9,(0%) for each O* € C% (W)
satisfy
Hy, (T (J*),®(0%) < AHy, (J*,0%) for all J*, 0" € C*(W),
where \ = max{\, :a=1,2,--- ,q} and the pair (U, ®) is a generalized contrac-

tion on C% (W).

Proof. We shall prove the result for ¢ = 2. Let hy,ho, 91,90 : W — W be
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contraction mappings. For J*, O* € C% (W) and using Lemma (c), we have

Hy, (W (T7), ®(07))

Ha, (hi(T*) U ha(T7), 91(O7) U g2(O7))
max{Hq, (h1(J"), 91(0%)), Ha,(h2(T "), 92(O")) }
max{\ Hq(T*, O%), \gHay(T*, O*)}

AHy, (T, 0%)

IAIA

IN

where X = max{\;, o} O

Theorem 5.2.2. Suppose (W, d;) is a ds-Cauchy complete Hausdorff semi-metric
space and hy, go - W — W, a=1,2,--- ,q, a finite family of contractive mappings
on W with contraction constants A\,, a = 1,2,--- ,q, respectively. Define ¥, ® :
Ch(W) — C4(W) by

U(T") = Uszrha(T7),

and

O(0") = Ugz19a(07)

for each J*,O* € C4(W). Assume (W,d,) is a bounded Hausdorff semi-metric

space, then the following relations hold:
(a) W, ®:Co% (W) — C(W).

(b) The pair (¥, ®) has a unique common fized point U, € C% (W), which implies
that, Ul = ‘I’(Ul) = CI)(Ul) - Ug:1ha((j1) = nglga(ﬁl)-

(c) The sequence

{‘-70*7 v (\70*) ’ oW (-70*) ) vow (jo*) ) }

of compact sets converges to the common fized point Uy of U and ® for an
arbitrarily chosen initial set J; € C%(W).

Proof. (a) Since (h,,g,) for a = 1,2,--- ,q is a pair of contactive mappings,
using the definition of the pair (¥, ®) and Theorem [5.2.1 we get the result.
From Proposition , we see that the pair (U, @) is a generalized contraction on
Cd (W) . Furthermore, since (W, d,) is d,-Cauchy complete then as a concequence
(C4= (W), Hy,) is also complete. As a result, from Theorem we get (b) and
(c). O

Definition 5.2.2. Suppose (W, dy) is a Hausdorff semi-metric space with W,  :
Cd (W) — C%(W). Then a pair of mappings (¥, ®) is called a generalized rational
Hutchinson contractive operator if A\, € [0, 1) exists, such that for all J*, O* €
Cd: (W), the following holds:
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Hy, (U (T7), @ (07) < ARye(T", 0%,
where

RT,Q)(j*?O*) = max {Hds(j*7 O*>7Hds(\7*7 v (j*))7 Hds(0*7 ¢ (O*)) )
Hy, (07, @ (07))[1+ Hy, (T, 9(T7))]
1+ Hy, (T*,0%) ’
Hq, (07, W (T7))[1 + Hy, (T, ¥ (T7))] }
1+ Hy (J*, 0% ’

Definition 5.2.3. Let (W, d,) be a Hausdorff semi-metric space. If
ha, o : W — W, are such that each pair (hq,g4), a = 1,2, ..., ¢ is a finite family of
generalized contractions, then {W; (hq, ga),a = 1,2,--- | ¢} is called a generalized

iterated function system.

Definition 5.2.4. Let (W, d,) be a Hausdorff semi-metric space and
U & : Ch(W) — C% (W) a pair of mappings. Let Q* C W be a non-void
closed and bounded set, then Q* is a unique common attractor of the generalized

iterated function system if
(i) ¥(Q7) = ¢(Q") = Q" and

(ii) there exists an open set V4 C W such that @* C V; and lirJP ve( 0" =
a—r—+00
lim ®*(N*) = Q* for any closed and bounded set N* C V;, where the

a——+00
limit is taken relative to the Hausdorfl semi-metric.

5.3. Generalized Hutchinson contractive operator in

semi-metric spaces

We now turn our attention to some result on the existence and uniqueness of a
common attractor of generalized rational Hutchinson contractive operator in a

Hausdorff semi-metric space framework.

Theorem 5.3.1. Let (W,ds) be a ds-Cauchy complete Hausdorff semi-metric
space and {W; (ha, 92),a = 1,2,--- ,q}, the generalized iterated function system.
Suppose a pair of mappings U, ® : C¥ (W) — C% (W) defined by

U(T") = Uz ha(T)

and

O(0") = Ugz194(07),
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for each J*,0* € C% (W) is a generalized rational Hutchinson contractive op-

erator. If (W,ds) is bounded, then ¥ and ® have a unique common attractor
U, € C%(W), that is,
Ul = ‘I’(Ul) - (I)(Ul)

Moreover, for the arbitrarily chosen initial set J; € C% (W), the sequence

{\70*7 v (\70*) ) QW (\70*) ) o (\70*) T }

of compact sets converges to the unique common attractor of both ¥ and P.

Proof. Choose J; arbitrarily in C% (W) and define the sequences
T = ‘I’(jo*)a Jy =V (J5) s+ ajz*aﬂ =V (T5)
and
j2* = q)(jl*)a \74* = (\73*) )t ’j2*a+2 =& (‘72*a+1)
for a € {0,1,2,---}.

Now, since the pair (¥, ®) is a generalized rational Hutchinson contractive oper-

ator, we have

Hds(j2*a+1a \72*0,-‘,—2) = Hds(\l' (\72*(1) , @ (j22+1))
< MR (Toys Togin)

A

fora € {0,1,2,--- |}, where

Ruo(Togs Togs1) = max {Hds(j;p Tsat1)
Hds(j;:l-‘rl?@ (jQ*a+1))>
Hds(j2*a+17 P («72*a+1))[1 + Hds(Jﬁ;, \Ij(j;:z))]

1+ Hy, (T3, T5i1) ’
Ha, (Ta11: Y (J2a) )[1 + Ha, (T30, ¥ (T54))] }
1+ Hy (T Togs1) '
= maX{Hds(j;;’\72*a+1)7Hds('~72*a7j2*a+1)7
Hag, (j2*a+17 \72*a+2)
Ha, (Togi1: Tzar2) L + Ha (Tous T5gi1)]
1+ Hg, (\72*a7 \72*a+1) 7
Ha, (Tai1> Tzar) L + Ha (T3, T3ai1)] }
1+ Ha, (T30 Toa41) .
= max {Hds(j;p Tsas1)s Ha (Toai1 \72*a+2)} ‘

7Hds (\72*117 v (\722))’
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If Rye (jz*aa «72*a+1) = Hds(jQ*aHa ~722+2) then
Hds(jQ*aJrl? jz*a+2) < /\*Hds(jz*aﬂa j2*a+2)
which is a contradiction. Thus Ry o (jQ*a, T +1) = Hy (T35, Toyyq) so that
Hds(j22+17j2*a+2) < )‘*Hds(jz*mjz*aﬂ)

for a € {0,1,2,---}. Continuing in this manner, gives

Hds(jZ*a—l—l?jQ*a—l-Z) < A*Hds(j;;?j;a—&-l)
< Ains(jQZ—lvj;z)
<
< MNTHy (T3, T7).

Furthermore, this implies that

Hds(jQ*ij*a—i—n) < )‘lins(jO*7j:)
< ANX* foralla,n=0,1,2,---.

Thus lim A\eX* = 0. Therefore {J} is a d,-Cauchy sequence in C%(W). But,

a——+00

(C% (W), Hy,) is complete, so we have J* — Uy as a — +oo for some U; €
C% (W), in other Wordsi Jm Hy (75,00 = lim Hy, (77, J55) = He, (U, U)
and so lim Hy (7', U;) = 0.

a—+00

To prove that U, is a common attractor of both ¥ and ®, we consider

Ho, (T ®(00) = Ha (¥ (T3).@ (0)))
< ARua(Ts, Ur).

for all a € {0,1,2,...}, where
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Ruo(Ts, U1) = max {Hds(j;a? U1), Ha, (T30, ¥ (T3,)), Ha,(Ur, ®(U1))
Hy, (Uy, (Uh))[1 + Hds(«?z*a, U (T5,))]
1+ Hy, (Joa, Uy)
Hy, (U1, 9(J5,))[1 + Ha, (Foa, ¥(T5,))]
1+ Hds (*7227 Ul)
= maX{Hds(j;a? U1), Ha(Tsgy Towir)s Ha, (U1, @(U71))
Hy, (Ur, ®(U)[1 + Ha,(Faa, Top1)]
1 + Hd(jQ*av ﬁl)
Hds(Uh j2*a+1>[1 + Hds<j2*a7 j2a+1>]
1 +Hd5(\72*a7U1) '

Y

Y

We observe that:

(1) In a case where Ry o(Js,, U1) = Hy,(Joa, Ur), we have
Ha,(Tsurs @(01)) < AeHa, (T Uh),

which, on taking the limit as a — +oo, gives Hy_ (U1, ®(U1)) < 0, so Uy = ®(U).

(2) Suppose Ra,o (T U ) = Ha, (Ts T then

Hds(jQ*a—i-l’ (I)(Ul)) < )\*Hds(j;a? j2*a+1)

and taking the limit as k — 400, yields Hy (Uy, ®(U;)) < 0, thus Uy = &(U).

(3) In case Ry.o(Ts,, Ur) = Hy, (Uy, ®(U,)), we have
Ha,(Tz0s1, @(U1)) < AHy, (Ur, ®(U1)),

which on taking the limit as a — +oo, implies that Hy (U, ®(U;)) < 0 and so
U, = o(Uh)

- H U q) U 1 H * ’ *
(4> If R\IJ,'I' <t72*a7 Ul) = dS( 1) 1<+12[ Z_j*ds;jryja j2a+1)]
ds 2a7 Y1

, we obtain

Hay, Uy, ®(U0)[1 + Ha, (T5) Tus1)]
I+ Hds (*7227 ﬁl)

Hy (Jsqi1, @(Ul)) < A\
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which, together with our taking the limit as a — +oo, gives Hy, (Uj, @(Ul)) <
)\*Hds((jla @(Ul)) and so Ul = CD(Ul)

Hy, (U, Taus )1+ Ha (Tgs Toi1)]

5) When Ry.o(J5,, Ui) = .
(5) w6 (T30, Ut) Lt Hy (7O

, we obtain

: ; Hy, (U1, Tg )L+ Ha (T5 T5
Hi (J5i1, ®(U1)) < A 4 (U1 T5041)| *d\(~ 50 J3a+1)]
1 +Hds(\72a7U1)

which on taking the limit as a — +oo gives, Hy (Uy, ®(Up)) < 0, that is U; =
®(U,). Thus we conclude that U; is an attractor of ®.

Using the same argument, we obtain

Hds(\Ij(Ul)7\72*a+2) = Hds<\II(U1)7¢(‘72*a+l))
< )\*R\P,<1>(Ul>u72*a+1)v

where

Rua(U1, Tspn) = max {Ha, (U, Tgpy). Ha, (U2, W(0))
Hds (‘-722—4-17 @(‘72*(14-1))7 .
Hds(j2*a+17 (I)(jz*a+1))~[1 + Hds(U17 \I/(Ul))]

L+ Hy, (Uy, J511) 7

Ha, (Tgrs V(O)[L + Hy, (U, U (U))]

14+ Hy, (Ur, T5ipi1)

= max { (01, 1), Ha, (01, W(00)),

Hds (\72*a+17 \722—&—2)) ~ R
Hds(j2>';,+l7\722+2)[]‘~+ Hds<U17 \IJ(UI))]

1 + Hds(U17 t72*a+1) ’
Ha, (Tgprs V(O [1 + Hy, (U, U (U1))]

1+ Hy, (Ur, T5o1) ‘

Again, we look at five cases:

(1) Suppose Ry (U1, J5,1) = Ha (U1, T5 i), then
Hds(\lj(ﬁl)v j2*a+2) < /\*Hds(Ula j2*a+1)7

This, combined with our interpretation of the limit as a — 400, leads to
H, (U(Uy),U;) <0, which is a contradiction, so ¥(U;) = U;.
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(2) If Ryo (U, Ty1) = Ha, (U1, U(U7)), we have
Ha, (U(U1), Tgyn) < AeHa, (Ur, U(U1))

This, combined with our interpretation of the limit as a — +o0, implies that
Hds(\P(Ul)a Ul) S 0 and thus \I/<U~v1) = U~1.

(3> In case, R\P,@([jla .72*;“) = Hds(j2a+17 j2a+2)7 we have
Hds(q’(ﬁl)a jztu—z) < A*Hds(j22+1»s722+2))

This, combined with our interpretation of the limit as a — +oo, implies that

Hy (U(U),U,) < 0 and thus ¥(U,) = U.

Hds(j2>tl+17 ‘-72*a+2>[1 + Hds(Ula ‘I’([jl))]
1 Hy, (U1, Ty )

, we obtain

(4) If R‘I’,‘I’(Ula j2*a+1) -

Hds(jZ*aJrl’ jQ*a+2)[1~+ Hds([jla ‘I’(UH))]
1+ Hds(U17 j2*a+1)

Hds<\11<ljl>7 \72*@+2) S )\*

This, combined with our interpretation of the limit as a — +o00, implies that
Hds(\lf((jl), Ul) S 0 and so \IJ(Ul) = (jl.

Hy, (T30, U(U)[1 + Hy, (U1Uy, U (Uh)))]

5) In case of Rye(Uy, 5. ) = -
®) vt Tiota 1+ Hg, (Ur, Jaat1)

, we
obtain

Hds (\.72a+17 \Il(Ul))[1~+ Hds([jla \Ij(Ul))]
1+ Ha, (Uy, T5pir)

Ha, (Y (U), Toara) < A

This, combined with our interpretation of the limit as a — 400, gives
H, (U(Uh),Up) < 0 so that is, ¥(U;) = U.

Thus U, is an attractor of the mappings ¥ and so we have shown that U, is

a common attractor of both ¥ and ®.

To prove uniqueness, assume that Ul and Ug are distinct common attractors
for both ¥ and ®. Because the pair (¥, ®) is generalized rational contractive

Hutchinson operator, we get

Hy, (U, Us) = Hy,(U(0,), ®(Us))
< A*R\Iacb((jl,@)
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where

R\p@([jl, UQ) = maX{HdS(Ul, UQ),HdS(Ul,\I/(U1>),HdS(U2,(I)(U2)) s
Hy, (Uy, ®(U))[1 + Hy, (U1, U(T)))]

1+ Hy, (U, Uy)
Hy, (W(O)[1 + Ha, (Ur, ¥(01))] } |

9

1+ Hy, (U, Us)
= maX{Hds(ﬁla(jQ)des([jhUl)aHds(U%[jQ)7
Ha,(Us, Us)[1 + Ha, (Uy, Uh))]

1+ Hy (U, Uy)

Hy, (Us, Uh)[1 + Hy, (Uy, Uy)]
1+ HdS(Ula UQ)

I

. H, (U, U
_ maX{Hds(Ul,Ug) 0.(U2, U) }

"1+ Hy (U, Us)
- Hds(U~17 U?)

and so (1 — A\,)Hg, (U1, Us) < 0, which implies that Hy (Uy,U;) = 0 and hence
U, = U,. Thus U, € C%(W) is a unique common attractor of ¥ and &. O

Remark 5.3.1. Let 8% (W) represent the collection of all singleton subsets of

W in Theorem [5.3.1] Then S% (W) C C%(W). Moreover, suppose that a couple
of mappings (ha,g9.) = (h,g) for every a, where h = hy and g = ¢, then, the
operator pair (¥, ®) : S (W) — 8% (W) becomes

(U (T%),®(0%) = (W(JT*), g (O%)) for all T*,0° € 8% (W).

As a result, the common fixed point result is as follows.

Corollary 5.3.1. Suppose (W, ds) is a generalized ds-Cauchy complete Haus-
dorff semi-metric space. Let the mappings VU, ® : S4(W) — S%=(W) be as in
Remark [5.3.1. Suppose 0 < A\, < 1 exists such that for all J*,O* € C% (W), the

following condition holds:

Hy, (U(T7), 2(07)) < ARue(T", 0),
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where

RW,Q)(\T*?O*) = Inax {Hds(j*7 O*>7Hds(t7*7 v (j*)), Hds(0*7 ¢ (O*)) )
Hy, (0", @ (O7))[L + Hy, (T, ¥ (T))]
L+ Hgy, (J*,0%) ’
Hq, (07, W (T7))[1 + Hy, (T, ¥ (T7))] }
14+ Hy (T, 0%)

and (W,d,) is bounded, then ¥ and ® have a unique common attractor U, €
Cds (W), which means,

Furthermore, for any singleton set Jy € S%(W), the sequence of
{j0*> v (\70*) ) Y (‘-70*) ) vow (\70*) ) }

converges to the unique common attractor of both W and ®.

Corollary 5.3.2. Suppose is (W, ds) a generalized dg-Cauchy complete Hausdorff
semi-metric space, and {W;hg, go,a = 1,2,--- ,q}, a generalized iterated func-
tion system. Let a pair of mappings ¥, ® : C4 (W) — C%(W) be defined as in
Theorem . If (W, dy) is bounded, then ¥ and ® have a unique common at-
tractor Uy € C%(W). Moreover, for any initial set J; € C% (W), the sequence
{T5 Y (Ty), PV (T) , YOV (Jy), ...} converges to the unique common attractor
of both ¥ and ®.

Proof. From Proposition[5.2.1, we observe that if every pair of mappings (hq, ga),
a=1,2,---,qis a contraction on W, then the pair of mappings ¥, ® : C% (W) —
Cd: (W) defined by

U(T") = (T )Uh(T*)U---Uha(T")
= Ug:lha(j*)

and

O(0") = gi(0")Uga(O7)U---Uga(O7)
= nglga(O*)7

for each J*, 0* € C4 (W) is a generalized contraction on C% (W) and in reference
to Theorem [5.3.1], the result follows. O
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Example 5.3.1. Let W = [0, 1] and ds be a Hausdorff semi-metric on W defined
as dy(r,t) = (r —t)? for all 7, t € W. Let ho,gq : W X W — W, for a = 1,2 be
defined as

ha(r,t) = (3<fqu’zai—m)’

ho(r 1) 2sinr sint
T = .
2 5(sinr + 1)’ 3(sint + 3)

and

( t) 2r t

T =

gi\r, 3(7’+2)72(t+1) 9
2sinr sint

g2(rit) = (5 (sinr +2)" 3 (sint + 2)) ’

for all (r,t) € W.

Now r = (r1,r9) , t = (t1,t2) € W, gives

4 r t 21 r t ’
dy(h t) = - (—-—, 7l G Rl
( 1("")791( ) 9 <7’1 +1 tl +2) + 4 (7,2—|—2 t2+ 1
+2 ™ 1 T2 to
3\rm+1 th+2)\rn+2 t+l

g [(’I"l — t1)2 + (7‘2 - t2)2 + 2 (’I"l - tl) (7“2 - tg)} = Alds(r, t)

IN

2
where A\ = 3 We also have

4 sin rq sin tq S| Sin 7o sin ¢
ds(ha(r),92(t) = — | = - = —| = — =
(ha(r), g2(2) 25 (smrl—f—l smt1+2> +9 sinrg +2  sintg + 1
1 sin sin tq sin ry sin ty

+§ <sinr1 +1 sint —|—2) <Sinr2 +2  sinty + 1)

gﬁn—hf+m—@ﬁ+zm—hx@—hﬂ:MQmw

IN

4
where A\ = 5

Thus the iterated function system {W;h,, gs,a = 1,2} with ¥, ® : C%&(W) —
Cd: (W) defined as
U(T") = m(T7) Uha(T7)

and

(07) = 9:1(0") U g2(O7)
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for all J*, O* € C% (W), we have that

Hy, (U(T7), (07)) < ARw,e(J", O7)
. . : 4
is satisfied, with A = max{A;, Ao} = R and

Ruo(J"0%) = max{Hy (J",0%), Ha (T", V(T")), Ha, (O, 2(O%))
Hy, (07, @ (O"))[1 + Hy, (T, ¥ (T7))]
1+ Hy, (J*,0%) ’
Hy, (07, W (T7))[1 + Ha, (T, Y (T7))] }
1+Hds<j*>0*) .

Thus the pair (W, ®) satisfies the conditions of generalized rational contractive
Hutchinson operator and for an abitrarly chosen initial set J; € C% (W), the
sequence {J, VU (J5) , PV (J5) , ¥OW (Jy), ...} converges to the unique common
attractor of both ¥ and .
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6

Common Attractors of Generalized
Iterated Function System in
G-Metric Spaces

6.1. Introduction

By introducing the concept of G-metric space, Mustafa and Sims [68] expandeded
the generalization of metric spaces. Many authors have since obtained fixed
point theorems for mappings satisfying various contractive conditions in G-metric
spaces [70, [71, 67, 69, 87, ©6]. The study of a common fixed point theory in
generalized metric spaces [10] was motivated by Abbas and Rhoades [23] [64} [89].

Several researchers have obtained useful results for iterated function systems
in the setting of metric spaces (see [70, 8T, O0] and references therein). This
chapter deals with the construction of common attractors of generalized iterated
function system of generalized contractions in a G-metric space setup. We note
that the Hutchinson operator, defined on a finite family of contractive mappings
on a complete G-metric space is itself a generalized contractive mapping on a
family of compact subsets of W. We apply the generalized Hutchinson operator
successively to obtain a final fractal. Our findings do not depend on the concept
of continuity nor commutativity of mappings under consideration.

Consistent with Mustafa and Sims [70, [68], we state the following preliminary

results.

Definition 6.1.1. [68] Let W be a non-void set. A G-metric on W is a mapping
G: W xW xW — Ry with the following properties:

(1) G(o1,092,03) =01if o = 0o = 03 (coincidence),
(2) 0 < G(o1,01,00) for all 1,0, € W, with 01 # 0o,
(3) G(o1,01,02) < G(01,02,03) for all o1, 02,05 € W, with 09 # 03,

(4) G(o1,02,03) = G(p{01, 02, 03}), where p is a permutation of 01, 02, 03 (sym-
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metry),
(5) G(Qla 02, 93) S G(Ql) ba b) + G(b7 02, 93) for all 01, 02, 03, b eW.

The pair (W, G) consisting of the non-void set together with the G-metric is

called a G-metric space.

If G(o1, 02, 02) = G(02, 01, 01) for all g1, 0o € W, then the G-metric is said to be

symmetric.

Example 6.1.1. [9] Consider a usual metric space (W, d) and let the function
G: W xW xW — Ry, be defined by

G(o1, 02, 03) = max{d(p1, 02),d(02, 03),d(03, 01)}
or
G(01, 02, 03) = d(01, 02) + d(02, 03) + d(03, 01)

for all 01, 02, 03 € W, then (W, G) is a G-metric space.

Example 6.1.2. [9] Let (W,G) be a G-metric space and define the function
dG:WXW%RH_], by

da(o1, 02) = G(o1, 02, 02) + G(02, 01, 01) for all g1, 0, € W,

then (dg, W) is a usual metric space.

Definition 6.1.2. [9] If {z;} is a sequence in a G-metric space (W, G), then

a) {zi} C W is a G-convergent sequence if, for a given € > 0, there is a point

z € W and a natural number Ny such that for all 7, j > Ny, G(z, 2, zj) < ¢&;

b) {z} € W is a G-Cauchy sequence if, for any € > 0, there exist a natural
number Ny such that for all 7, j, k > Ny, G(2;, 2;, 21,) < €;

c) (W, G) is G-complete if every G-Cauchy sequence in a space W is convergent

in W. {z;} converges to z € W if and only if G(z;,2;,2) = 0 as i,j — o0
and {z} is Cauchy if and only if G(;, zj, 2z) — 0 as i, j, k — +o00.

Definition 6.1.3. [9] Suppose (W,G) and (W’',G’) are two G-metric spaces.
Then the map h* : (W, G) — (W', G') is said to be G-continuous at b € W, if and
only if, for a given given ¢ > 0, there exists a 6 > 0, such that g1, 0, € W and
G(b, 01, 02) < ¢ implies G'(h*(b),h*(01),h*(02)) < . A map h* is G-continuous
on W if and only if it is G-continuous at every b € W.

Proposition 6.1.1. [67] Given that (W,G) and (W', G") are G-metric spaces,
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then h* : W — W' is continuous at z € W if and only h* is G-sequentially
continuous at z; in other words, whenever {z;} is G-convergent to z, {h*(z;)} is

G-convergent to h*(z).

Proposition 6.1.2. [9] Let (W,G) be a G-metric space. Then the following

claims are true:
1. G(o1, 02, 03) is simultaneously continuous in all three of its variables,
2. G(o1, 02, 02) < 2G(02, 01, 01)-
Next consider the following families of subsets of a G-metric space (W, G) [56].
N(W) ={K : K is a non-void subset of W}.
B(W) ={K : K is a non-void bounded subset of W}.
CL(W)={K : K is a non-void closed subset of W}.
CB(W) ={K : K is a non-void closed and bounded subset of W}.
CY(W) ={K : K is a non-void compact subset of W}.

Remark 6.1.1. [47] Let (W, G) be a G-metric space. A mapping Hg : CB(W) x
CB(W) x CB(W) — Ry defined as

Hq(D, E,F) = max{sup G(o1, E, F), sup G(o2, F, D), sup G(o3, D, E)}

01€D 02€F o3€F

forall D, E, F € CB(W), where G(p1, E, F) = inf{G(p1, 02, 03) : 02 € E, 03 € F}
is called a Hausdorff G-metric on CB(W).
If (W, G) is G-complete, then the pair (CB(W), H;) is also an Hg-complete metric

space.

Lemma 6.1.1. Let (W,G) be a G-metric space, then for all
P*,Q* R*, S* U, V* € CE(W), the following conditions are true:

(a) If QF CR*, then sup G(k,R*,R*) < sup G(k, Q*, QF);
keP* keP*

(b) sup G(t,R*,R*) = max{sup G(k,R*, R"),sup G({,R*,R*)};
teP*uUQ* kepP* LeQ*

(c) He(P*U Q" R*US*,U* UV*) < max{HS(P*, R*,U*), Hz(Q*,S*,V*)}.

Proof. (a) Since Q* C R*, for all k € P*, we have

Gk, R\ R*) = inf{G(k,pu,p):pneR"}
< inf{G(k,0,0): L€ Q'} =G (k,Q",Q"),
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this implies that

sup G(k,R*,R*) < sup G(k, Q", Q").
kP kP

(b) Note that

sup G(t,R*,R*) = max{sup{G (t,R*,R*) :t € P*},
teP*UQ*

sup{G (t,R",R*) : t € Q"}}

= max{sup G(k,R*,R"),sup G ({,R*,R")}.
kep* LeQ*

(c) We observe that

sup G(t,R*U S ,U"UV")

teP*uUQ*
< max{sup G(k,R*US*", U UV*), sup G({, Q" US*, U UV*)} (from (b))
kep* LeQ*
< max{sup G(k,R*,U*), sup G({,S*,V*)}  (from (a))
kep* LeQ*
< max {max{sup Gk, R*,U), sup G(u, P*,U")},
keP* HER*
max{sup G(¢,S*,V*), sup G(n, Q", V*)}}
LeQ* nesS*
= max{Hg (P*,R*\U*),Hc (Q", 8", V")}.
Similarly,

sup G(v, Q*UP U UV*) <max{Hg (P*,R*\U*),Hs (Q",S*, V")}.

VER*US*

Hence

He(PrUQ R US U UV = maX{ sup G(v, R*US", U UV"),
vEP*U OF
sup G(t,P*U Q" U" U V*)}
tER*US™
< max{Hg (P*,R",U*),Hg (Q",S*,V*)}.

]

Mustafa et al. [71] obtained the following useful result of a unique fixed point of

generalized G-contraction on W in G-metric space (W, G).

Theorem 6.1.1. [71] In a complete G-metric space (W, G), let h* : W — W be
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a generalized G-contraction on W, that is, for all o1, 02,03 € W, either

G (h*Qh h* 09, h*03) < mG (917 02, 93) + koG (Qb h* o1, h*Ql) + k3G (927 h* 0, h*Qz)
+r4G (03, h* 03, W 03)

or

G (h*Qh h* 09, h*Qs) < kG (917 02, 93) + koG (01, 01, h*91) + r3G (02, 02, h*Q2)
+H4G (Q37Q3ah*g3)a

where k; > 0 for j € {1,2,3,4} with 0 < Ky + kg + K3 + k4 < 1. Then h* has
a unique fized point, w in W. Moreover, for any choice vq € W, the sequence
of iterates {vg, h*vg, (W*)*vg, (h*)?vy, ...} converges to u. Furthermore, h* is G-

continuous.

Theorem 6.1.2. In a G-metric space (W, G) consider a G-contraction, h* : W —
W. Then

a) h* maps elements in CE(W) to elements in C%(W).

b) If for any R* € CY(W),
h*(R*) = {h*(e1) - 01 € R7},
then h* : CY(W) — CY(W) is a G -contraction on (C¢(W), Hg).

Proof. (a) We observe that every generalized contraction mapping is continuous.
Moreover, under every continuous map h* : W — W, the image of a compact set

is also compact, that is, if
R* € CY(W), then h*(R*) € C%(W).

(b) Let Q*, R*,8* € CY(W) and h* : W — W be a generalized contraction
mapping, then

G (h*o1, h™ (R*),h" (S*)) = inf{G (h"01,h"02,h"03) : 02 € R", 03 € S*}
< inf{xkG (01,02, 03) 1 02 € R, 03 € S}
kinf{G (01, 02, 03) : 02 € R*, 03 € S*}

kG (01, R*, 8",

A
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similarly

G (h"03,h* (R"), h* (Q")) inf{G (h* o3, h*02,h*01) : 02 € R*, 01 € Q"}
in{liG <Q37 QQ?QI) 102 € R*, 01 € Q*}
Klnf{G (937 02, Ql) 102 € R*, 01 € Q*}

kG (Q?n R*7 Q*) )

[ VAN

and

G (h* 02, h* (Q%) , h* (S¥))

inf{G (h* 2, h*01,h"03) : 01 € Q", 03 € S*}
inf{xkG (02, 01,03) : 01 € Q", 03 € S*}
kinf{G (02, 01,03) : 01 € Q", 03 € §*}

kG (02,Q",S7).

A

Now
He (b (RY),h"(87), h* (Q7))
= max{sup G (h*o1,h" (R*),h* (S*)),sup G (h*p3, h* (R*),h* (Q")),
sup G (h* g2, h* (Q") ,h* (S87));01 € Q%03 € S*, 00 € R"}
< max{sup kG (01, R*,S*),sup kG (03, R*, Q)
sup kG (02, Q*,8%) ;01 € Q*, 03 € 8%, 0, € R}
= rmax{supG (01, R*,S"),supG (o3, R*, Q%),
sup G (02, Q",8%) ;01 € Q%,03 € S, 02 € R™}
= kHg(R*,S*, Q).
Thus h : C¢(W) — C%(W) is a G-contraction. O

Theorem 6.1.3. Consider a G-metric space (W, G) and let {h}:a=1,2,...,q}
be a finite family of G-contractions on W with contraction constants k1, Ka, ..., Kq,

respectively. Define W : CE(W) — CE(W) by

U(R*) = h(R)UM(R*)U---Uhy(R")
= ngth(R*),

for every R* € CY(W). Then V is also a G -contractive mapping on C¢(W) with

contraction constant k = max{ky, Ko, ..., Kq}-

Proof. We demonstrate the assertion for ¢ = 2. Let hj,h; : W — W be two
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contractions. Take R*,S*, Q* € C(W). From Lemma [6.1.1] (c), we have

He(U(RY), ¥(5%),¥(Q7) = Hg(hi(R")Uhy(RY),

hi(S*) U hy(S7), h(Q7) U hy(QY))
max{Hg(hi(R), hi(57), h1(Q7)),
He(hy(RY), h3(S™), hy(Q7))}
max{k1Hg(R",S8*, Q"), ke Hg(R",S*, Q%)}
kHg(R*,S*, QY),

IN

IA

IN

where k£ = max{ki, ka2 }. O

Theorem 6.1.4. In a complete G-metric space (W, G), let {h: :a=1,2,...,q} be
a finite family of G-contraction mappings on W. Define a mapping ¥ on C%(W)
by

U(R*) = hi(R)Uhy(R*)U---Uh (R
= ngth(R*)a
for each R* € C¢(W). Then
(i) U :CYW) — CE(W).

(ii) U has exactly one fived point U, € CE(W), that is, Uy = U(U;) =
Ua_ihs (D).

(iii) for any set Ry € CY(W), the sequence
{Re ¥ (Rp) . ¥* (Rg) -}

converges to Uy .

Proof. (i) Since each h} is a G-contraction mapping, the conclusion follows, from
the definition of ¥ and Theorem [6.1.21

(ii) Using Theorem we note that ¥ : CY(W) — CY(W) is also a G-
contraction mapping. Thus if (W,G) is a complete G-metric space, then
(CY(W), Hg) is complete. Consequently, we deduce (i) and (iii) from Theo-
rem [0.1.2 [
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Example 6.1.3. Consider W = [0, 1] and let
G (w1, we, ws) = max{|w; — wy|, |wy — ws|, |ws —wi|}

be a G-metric on W. Define hj, h3, hi : W — W by

( W1 . wy . 1
=0 if O§w1<% 6 if 0<w <3
hi(w) = hs(w1) =
w1 . 1 ﬂ . 1
kElfgéwlél, m if 5 <w <1,
w .
(4—21 if O§w1<%
hy(w1) =
w1 . 1
\E if 2§’UJ1<1

Then, clearly {h} : a = 1,2,3} is a finite family of G-contraction mappings
on W. We define a map ¥ : C¢(W) — C%(W) by ¥(R*) = h{(R*) Uh}(R*) U
h5(R*) for R* € CE(W). Then there exists a unique set U; = {0} in C%(W)
that satisfies ¥ <U1> — U,. Moreover, for any set Ry € CY(W), the sequence
{RE, U (R, U2 (RE), ...} converges to U,.

Definition 6.1.4. Let (W, G) be a G-metric space. If b} : W — W, a=1,2,...,q
are G-contraction mappings, then {W;h%, a = 1,2,--- ,q} is a G-iterated function
system (G -IFS).

It follows that the G-iterated function system is composed of a G-metric space

and a finite family of G-contractions on W.
Definition 6.1.5. Let (W, G) be a G -metric space with R* € C¢(W), then R*
is called an attractor of the G-iterated function system if

(i) U(R*) =R* and

(ii) there exists an open set V;* C W such that R* C V}* and lim ¥*( §*) = R*
a—0o0
for any compact set S* C V}*, where the limit is taken with respect to the

G-Hausdorff metric.

The maximal open set Vj* such that (ii) is satisfied is known as a basin of

attraction.
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6.2. Generalized Iterated Function System in G-metric Spaces

Some results on generalized iterated function system for multi-valued mapping in
a metric space appear in [35]. We discuss a generalized iterated function system

in the context of G-metric spaces.

Definition 6.2.1. In a G-metric space (W, G), let f* g*,h* : W — W be three

self-mappings. (f*, g%, h*) is a triplet of generalized G-contraction mappings if

G (f*01,9%02, " 03) < AG (01, 02, 03)

for all 01, 02, 03 € W, where X\ € [0,1).

Theorem 6.2.1. Consider a G-metric space (W, G) and let f* g*,h* : W — W

be continuous mappings. If the triplet (f*, g%, h*) is a generalized G-contraction
with A € [0,1). Then

(1) the elements in CE(W) are mapped to elements in CE(W) under f*, g* and
I

(2) if for an arbitrary J* € CE(W), the mappings f*,h*,g* : C¢(W) — CE(W)

are defined as

) = {f (o) o1 € J},
g (J) = {97(02) : 02 € J"},
h*(J*) = {h*(es): 03 € J'},

then the triplet (f*,g*, h*) is a generalized G-contraction on (CY(W), Hg).

Proof. (1) Since f* is a continuous mapping and the image of a compact subset

under a continuous mapping, f*: W — W is compact, then
J* € CY(W) implies that f*(J*) € CY(W).
Similarly,
J* € C%(W) implies that ¢*(J*) € C¥(W) and h*(J*) € CE(W).

(2) Let Q*, R*, N* € CY(W). Since the triplet (f*, g%, h*) consists of generalized

G-contraction mappings on W, then we have

G (01,9 02, 0" 03) < AG (01, 02, 03) for all p1, 09, 05 € W,
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where A € [0,1).

Now

G (f 01,9" (R"),h" (N7)) inf{G (f*01,9 02, h"03) : 02 € R, 03 € N*}

< inf{AG (01,02, 03) : 02 € R", 03 € N*}
= )\G(Ql,R*,N*).
In the same manner,
G (9702, [M(Q),h" (N7)) = inf{G (g 02, fT01,h"03) : 01 € Q",03 € N'}
< inf{AG (02,01, 03) : 01 € Q", 03 € N*}
= MG (02, Q" N7)
and
G(hos, [7(Q7).g" (RY)) = inf{G (R s, fT01,9703) : 01 € Q", 00 € R"}
< inf{AG (03,01,00) : 01 € @, 00 € R"}

AG (03, Q", R™).

Now
He (f(Q7),9" (R7),h" (N7))
= max{ sug G(f*o1,9" (R"),h* (N7)),
01€9Q*
sup G(g" 02, f*(Q7),h™ (N7)), sup G(h g3, f*(Q7),9" (R"))}
02€R* 03EN™*
< max{ sup A\G(g1, R*,N7), sup AG(0q, Q", N*), sup AG(03, Q",R")}
01€9* 02ER* 03EN*
= Amax{ sup G(o1,R",N7), sup G(g2, 2", N”), sup G(e3, 2", R")}
01EQ* 02€0Q* 03EN*

= A-EIG (Q*aR*vN*) :

Hence, (f*, g*,h*) is a triplet of generalized G-contraction mappings on
(CG(W)7HG’) L]

Proposition 6.2.1. In a G-metric space (W,G), suppose the mappings
frgi bl W =W fora=1,2,---,q are continuous and satisfy

G(f;th;QQ,hZQ?,) < \G (917 02, 93) for all g1,092,03 €W,

where A\, € [0,1) for each a € {1,2,---,q}. Then the mappings T,V & :
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CE(W) — CY(W) defined as

T(Q) = fI(QIUf(Q)U---Uf(Q)
= U, f5(Q"), for each Q* € CE(W),

U(R") = gi(R)Ug(RY)U---Uge(RY)
= U_ g5 (R"), for each R* € CE(W)

and

DN*) = AN )URN*)U---Uhg(N)
= UI_ A (N™), for each N* € CE(W)

also satisfy
He (TQ*, UR* ®N*) < \ Hg (QF, R*,N*) for all Q*, R*, N* € CY(W),

where N\, = max{\, : a = 1,2,...,q}, that is, the triplet (Y, ¥V, ®) is a generalized
G-contraction on C% (W).

Proof. We give a proof for ¢ = 2. Let ff gi hi,: W — W, a € {1,2} be
self-mappings such that (f], g7, h}) and (f5, g3, h3) are triplets of generalized G-
contractions. For Q*, R*, N'** € C%(W) and from Lemma (c),

Ho(T(Q), ¥ (R"),®N")) = Ha(fi(Q)U f3(Q),g1(R") Ugs(R"),
hi(N*) U hy(N))

max{Hc(f{(Q7),91(R"), hi(N7)),

He(f3(Q7), 95(R7), h3(N7))}

max{\ Hq(Q", R*,N*), \oHq(Q", R*, N*)}

ANHe(Q", R*,N™).

IN

IN

IN

]

Definition 6.2.2. In a G-metric space (W, G), let T, ¥, & : C¢(W) — CY(W).
The mappings (YT, ¥, @) are called

(I) generalized G-Hutchinson contractive operators (type I) if for any
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Q*,R*,N* c CG(W)’
Ha(T(Q), ¥ (R, ®(N7)) < Ay y.o(QF, R*,N¥)
holds, where

Arwo(Q R N") = aHg(Q R, N7) + BH(Q",T(Q"), T(Q"))
+7He(R", W (R"), ¥ (RY)) + nHa(N™, & (N7), @ (N7)),

with o, B,v,m>0and a+ +~v+1n < 1.

(IT) generalized G-Hutchinson contractive operators (type II) if for any
Q*, R, N* € CE(W),

Ho(Y(Q"), ¥ (R"),PNY)) < Exwo(Q", R N)
holds, where

Eywo(Q R N*) = MHq(Q R N")+ \[Ha(Q", 9", T(Q"))
FHG(RYRE, W (RY) + Ho(N*, N, (M)
+A3[He(YT(Q7), R*, N™) + Ha(Q", ¥ (R") ,N7)
+Ha(Q", R, @ (N7))],

with )‘j >0 fOI'j € {1,2,3} and A; + 3y + 43 < 1.

Note that if the mappings (T, ¥, ®) defined as in Proposition are gen-
eralized G-contractions on C% (W), then (Y, ¥, ®) is a triplet of generalized G-

Hutchinson contractive operators, but the converse is not true.

Definition 6.2.3. In a complete G-metric space (W, G), let fF gt hi W — W,
a =1,2,...,q be continuous mappings such that each triplet (f¥, g*, h’) for a =
1,2,...,q is a generalized G-contraction, then {W; (f¥ g5, h*),a =1,2,--- q} is

called the generalized G-iterated function system.

As a consequence, the generalized G-iterated function system consists of a G-
metric space and a finite collection of generalized G-contraction mappings on
W.

Definition 6.2.4. Let (W, G) be a complete G-metric space and U; C W a non-
void compact set. Then U, is the common attractor of the mappings Y, ¥, :
CEW) — CE(W) if
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i) Y(U,) = W¥(U,) = ®(U,) = U, and
ii) there exists an open set V¥ C W such that U; C V; and liIF T4(Q%) =
a—r—+00
lim U*(R*) = lir+n d*(N*) = U, for any compact sets Q*, R*, N* C V¥,
a—r—+00

a——+o0
where the limit is taken relative to the G-Hausdorff metric.

6.3. Generalized G-Hutchinson contractive operators in

G-metric spaces

We state and prove some theorems on the existence and uniqueness of a common
attractor of generalized G-Hutchinson contractive operators in the framework of

G-metric spaces.

Theorem 6.3.1. In a complete G-metric space (W, G), let {W; (f¥, g%, hi),a =
1,2,---,q} be the generalized G -iterated function system. Define T, WU, & :
CE(W) — CE(W) by

T(Q) = f(QHULL(Q)U---U fr(QF)
= Up_1 fa(QY),
U(R") = g(R")Ug(R)U---Ugy(R")
- Ug:lga<R*)7
and

P(N™)

MINT) U (N*) U -+~ U hy(N7)
= ngth(./\/*)

for Q*, R*, N* € CY(W). If the mappings (T, ¥, ®) are a triplet of generalized G-
Hutchinson contractive operators (type 1), then Y, U and ® have a unique common
attractor U, € CE(W), that is,

Additionally, for any arbitrarily chosen initial set Ry € CY(W), the sequence
{Ri, T (Ry), UT (Ry), DUY (RS), YOUT (R;), ..}
of compact sets converges to the unique common attractor Ul.

Proof. We show that any attractor of T is an attractor of ¥ and ®. To that

111



end, we assume that U; € CY(W) is such that T(Ul) = U,. We need to show
that U, = U(U,) = ®(U,). As the mappings (Y, ¥, ®) are a triplet of generalized

G-Hutchinson contractive operators (type I), we get

He(Uy, W(Uh),®(Uh)) = Ha(Y(Uh), ¥(Uh), d(Uh))

< aHg(Uy,Uy,Uh) + BHa(Uy, Y(Uh), Y(U7))
+yHe(Uy, O(Uy), (Uh)) + nHe(Uy, ®(Uy), ®(Uh))
vHe(Ur, O (Uh), U(Uh)) + nHe(Uy, ®(Uy), ®(Uh))
(v +n)Ha(Ur, ¥ (Uh), ®(0h)),

IN

thus
He(U,, W(UY), ®(Uh)) < MHe (U, U(U,), @ (Ul)),

where A = v + 7 < 1, which implies that Hg(Uy, U(U;), ®(U;)) = 0 and so
U, = \If((jl) = @(Ul). In an analogous manner, for U; = <I>(U1) or for U; = \If(Ul),

we obtain that U; is the common attractor of T, U and ®.

We proceed by showing that T, ¥ and ® have a unique common attractor. Let
Ry € CY(W) be chosen randomly. Define a sequence {R:} by R5,.1 = T(R3,),
Riara = W(R3apy) and Ri,5 = ®(Riy,), a = 0,1,2,--- . I R = Ry, for
some a, with @ = 3n, then U; = Rj;, is an attractor of T and from the Proof
above, (71 is a common attractor for T, ¥ and ®. The same is true for a = 3n+1
or a = 3n + 2. We assume that R # R, for all a € N, then

He(R3a41: Riata: Riars)

Ho(T(R30): ¥ (Rair) » @ (Riass))

aHa(R30: Rigi1s Riayo) + BHG(RS,. T(R3,), T(R3,))

AYHG(Ri015 ¥ (Riar) s ¥ (Riin)) + 1HG(Riui0: @ (Riuta) s @ (Rigy2))
aHe(R3,, Rigi1s Rigya) + BHG(R30: Riar1: Riara)

+YHe(Riai1 Rigsos Rigso) + 1HG(R3012: Rtz Riars)

aHa(Ri0: Rigi1s Rigye) + BHG(Rie: Rigir, Riasa)

+YHG(Rias1: Rigios Riars) + nHG(Riai1: Rigio, Riars)-

IN

IA

Thus, we have

(1= =mHa(R3u41, Riur2, Riars) < (@ + B)Ha(R3,, Riui1, Riara)

Hence,
HG (R§a+17 R§a+27 Rga—&—S) S )\HG (,R’ga’ Rga—l—l? R§a+2)7
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atf
I—v—n

where \ = , with 0 < A < 1. Similarly, one can show that

HG (R§a+27 R§a+3’ R§a+4) < /\HG (Rga—&—l’ R§a+27 Rga—&-f&)

and
HG(R;;a—i—EI? R§a+47 R§a+5) S AHG(R;;@—&—Z? R;;a-‘r?)’ 7:‘)’;a—l—4)'

Thus, for all a,

Ho(Ri, RiiaRivs) < Mg (Ri,Risy, Rirs)
< <N HG (R, R RS)

Now, for [, m,a, with [ > m > a,

H(;(RZ,R;,RZ‘) < HG(RZ7RZ+17RZ+1) + HG(RZ+1:RZ+27RZ+2)
+- -+ He(R_1, R, Ri)

< He(Re Ry, Rogo) + Ha(Rojr, Rates Rays)
+-+ Ho(Rio, Riz1, Ry)

A+ A AT He (RS, R RS)
)\CL
1—A

IN

<

He(R5, Ri,R3).

Note that if [ = m > a, we get identical results and if [ > m = a, then

)\a—l
He(RE, Ry Ri) < 7= Ha(Rg, RT, R).

and so l}m He(R:,RE,Rr) = 0. Thus {R} is a G-Cauchy sequence in
a,m,l—-+oco

CE(W). Since (C%(W), Hg) is a complete G-metric space, there exists U; €
CE(W) such that lim R* = U, that is, lim Ho(R:,R:,Uy) = 0.
a——+00

a—+00

Assume that Y(U;) = Uy, otherwise, we see that

Ha(T(Uh), Riaror Riass)
= Ho(T(01), ¥ (Rigs1) , @ (Riusa))
aHg(Uy, Riqirs Riars) + BHa(Uy, T(U1), T(Uh))
+YHG(Ria1, ¥ (Riar1) ¥ (Rias1)) + 1He(Riuia, ® (Rigsa) @ (Riasa))
aHG([jlle’;aJrl?R;aJrZ) + BHG<T(01)7 [j1>R§a+l>
+YHG(Riai1 Riaros Rigsro) T 1HG(R3012: Riarz Riars)-

IN
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So lim Hg(Y(U1), Riyror Riars) = Ha(Y(U1), Uy, Uy), that is to say

a——+400
He(T(Uh), Uy, Uy) < BHG(Y(Uy), U, Uh),

which is a contradiction as < 1. Thus T (U;) = U;. Following the conclusion

above, we conclude that U; is the common attractor of T, U and ®.

For uniqueness, assume that Us is also a common attractor of T, ¥ and ®. Then

He(Uy,Us,Us) = He(Y(Uh), ¥(Us), ®(Us))

aHG(Ul,UQ,Ug) +6HG(U1,T( U1), Y(Uh))

+yHg(Us, W(Us), W (Uy)) + 1He(Us, ®(Us), D(Us))

= aHg(Uy,Us, Uy) + BHG (UL, Uy, Uy)
+vHe(Us, Uz, Us) + nHe(Us, Us, Us)

= aHg(Usy, Uy, Uy)

IN

+
U1, U

from which we conclude that Hg(Ul, Us, (jg) = 0 and thus U; = Us. Hence U is

a unique common attractor of T, ¥ and ®. n

Theorem 6.3.2. (Generalized Collage I) In a complete G-metric space
(W, G), let {W;(f, g5 h),a = 1,2,--- ,q} be the generalized G-iterated func-
tion system. Define T, W, ® : C¢(W) — CE(W) by

T(Q") = Uamr f2(Q9),

U(RY) = Uz_19,(R"),
and
DNT) = Uiy hp(N7)

for Q" R* N* € CE(W). Suppose that the mappings (T, ¥, ®) are a triplet of
generalized G-Hutchinson contractive operators (type I) and Uy € CP(W) is the

common attractor for T, Wand ®. Then for any given ¢ > 0 and R* € CE(W)
the following hold:

(a) Ho(R*, T(R*), Y(R*)) < e, implies that

5(14—5)‘

He(R*, U, Uy) <
G(R7U17U1)_ 1—a
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(b) Ho(R*, U (R*), ¥(R*)) < &, implies that

e(1+7)
1l—a

Hg(R*, Ul, Ul) S

(¢c) Ho(R*, ®(R*), ®(R*)) < e, implies that

e(1+n)
1l—a

HG(R*a Uh Ul) S

Proof. To prove (a): Let Hg(R*, T(R*), T(R*)) < ¢ for any R* € C¢(W), then

IN

Hg(R*, Uy, Uh) Hg(R", T(RY), T(R")) + Ha(T(R"),

Uy, Uy)
= H(R",T(R"),T(R")) + Ha(T(R"), ¥
),
(
")

(Uh), ®(01))
T(R ))
U1). 2(Uh))

, T(RY)),

IA

6+04H0(R*,U1,U1)+6H0(R* (
+yHe(Uy, O(U), O(U)) + nHe(U,, ®
= e+ aHg(R*, U, Uy) + BHa(R*, T(R

which further implies that

5(1+B)'

Ho(R*, Uy, Up) <
G(R7U17U1)_ 1—a

To prove (b): Assume that Hg(R*, ¥ (R*),¥(R*)) < € for any R* € CY(W).
Then,

IN

Ho(R*, U(R), U(RY)) + He(U(R*), Uy, Uy)

e+ He(Y(Uh), (R, ®(U,))

e+ aHg(Uy, R*, Uh) + BHe(Uy, Y (U), Y(Uh))
+yHg(R*, W(RY), ¥(R*)) + nHa(Ur, ®(Uh), d(Uh))
e+ aHg(R*, Uy, Uy) + vHe(R*, U(RY), ¥(R")),

HG<R*7 U17 [71)

IA

IN

which further implies that

5(1+7).

H * * TT <
G(RaRaUl)_ 1—a

To prove (c): Assuming that Hg(R*, ®(R*), ®(R*)) < € for any R* € CY(W),
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we have

HG(R*7 U17 Ul)

IA

Ho(R*, ®(R¥), ®(R*)) + He(®(RY), Uy, Uy)

e+ He(Y(Uh), ¥ (1), ®(RY))

e+aHg(Ui, Uy, R*) + BHG(Uy, Y(Uy), Y(Uh))
+yHe(Uy, W(Uh), U(Uh)) + nHa(R", ®(R), ®(R))
e+ aHg(R*, Uy, Uy) 4+ nHg(R*, ®(R*), ®(R*)),

IN

IN

from which we have

He(R*, 0y, ) < 21

l—«

]

Theorem 6.3.3. (Generalized Collage II) In a complete G-metric space
(W, G), suppose {W; (f*, g, h’),a=1,2,---  q} is a generalized G-iterated func-
tion system with contractive constant A € [0,1). Given any R* € C¢(W) and
e > 0 such that either

He(R* R, T(R")) <¢

or
He(R*, R, U(R")) <¢

or
Hq(R*, R*, ®(R")) < ¢,

where T(R*) = Ug_y ff(R"), U(R") = Us195(RY) and O(R*) = Uz_1ha(R7),
there exist a common attractor, U; € CP(W) for the Hutchinson operators Y,
W and O, such that

~ €
H * * < .
G’(RaRle)_l_)\

Proof. Assume that Hg(R*, R*, T(R")) < ¢ for any R* € CY(W), then

A
<

He(R*,R*,U1) < He(R*,R',T(R"))+ Ha(T(R*), T(R*), U)
He(R*,R*, T(RY)) + Ha(T(R"), T(R"), T(Uh))

< e+ NHg(R*, R UY),

IN

which further implies that

5
1—X\

HG(R*aR*v Ul) S
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Similarly, if we assume that Hg(R*, R*, ¥(R*)) < ¢ for any R* € C%(W). Then,

HG(R*7 R*a Ul)

IN

Ho(R*, R*,¥(R")) + Hg(¥(R"), ¥(R)
He(R*, R*, ¥(R")) + Hg(¥(R"), ¥ (R")
< e+ NHg(R*,R*, 1Y),

JU1)
V(D)

IN

giving us

HG’(R*aR*a[jl) < 1i .

Lastly by assuming that Hg(R*, R*, ®(R*)) < ¢ for any R* € CY(W), we get

>

Hg(R*, R*, ®(R")) + Ho(®(R"), ®(R*), U1)

< Hg(R*,R*,®(R*)) + He(®(RY), B(R*), dUL))
< e+ MHg(R*, R*,Uy),

HG(R*7 R*u Ul)

VAN VAN

from which we have

HG’(R*aR*a Ul) S

5
1=\
0

Remark 6.3.1. In Theorem take the collection S¢(W), of all singleton
subsets of the given space W, then S¢(W) C CY(W). Furthermore, if we take
the mappings (fr, g%, h) = (f*, g%, h*) for each a, where f* = ff, ¢ = g and
h* = h3, then the operators (Y, W, ®) become

fOT’ 171, U~2, U~3 e W.

Concequently, the following common fixed point result is established.
Corollary 6.3.1. Let {W;(f* g5, ht),a = 1,2,---,q} be a generalized G-
iterated function system in a complete G-metric space (W,G) and define the
mappings f*, g h* : W — W as in Remark If some o, B,v,n > 0 exist
with o+ B+ v+ n < 1 such that for any vy, 0y, v3 € W, the following holds

Hg (f*v1, g"vp, h*03) < aHg(v1, U, v3) + BHg(v1, f*(01), (1))
+7He(02, 9% (02) , 9" (02)) + nHe (03, B (03) , h* (U3)).

Then f* g° and h* have a wunique common fized point uw, € W.

Additionally,  for an arbitrary element € W, the sequence
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{1y, f*uo, g* g, h*g* f*o, f*h*g* f*io, -} converges to the common fized
point of f*,g* and h*.

Corollary 6.3.2. Let {W;(f* g5, ht),a = 1,2,---,q} be a generalized G-
iterated function system in a complete G-metric space (W, G) and define the
mappings f*,g*,h* :+ W — W as in Remark[6.3.1 If (f*, g%, h*) is a triplet
of generalized G-contraction mappings, then (T, ¥, ®) defined on C¢(W) as in
Theorem has ezactly one common fized point in C¢ (W) . Moreover, for any
initial set Ry € CY (W), {Rs, T (RS, VY (Ry),PUY (RE), TOUY (Ry),- -}

converges to the common fized point of T, ¥ and .

Example 6.3.1. Let W = 0,1]  and  G(wq,ws,ws) =
max{|w; — ws|, |wy —ws|, |ws —wi|} be a G-metric on W. Define
arJashy W — W, a=1,2by

¢ W1 . 1 wy . 1
1_8 if O§w1<§ ﬁ if O§w1<§
fi(wr) = f3(wr) =
w1 . 1 w1 . 1
k1_6 if §§w1§1, E if §§”LU1§1,
w . w .
(1—5 if 0§w1<% (Fl if O§w1<%
gi(wr) = g3(w1) =
w . w .
\gl if %gwlgl, \Il if %<w1<1,
T 0w <) (S 0<wi <]
hi(wy) = hs(wy) =
w . w .
71 if %gwlgl, \?1 if %gwlgl
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We observe that the maps f, f5, 91,95, hi and h} are discontinuous. Moreover,
1 1 1 1 1 1
figi(3) = (%) = 9ifi (3) =91 () = 500
1 1 1 1 1
G =HG=m  $6ALG)=050G)=%
1 1y _ 1 1\ _ 1y _ 1
i) =6G)=m  haG)=5G)=m
1 1 1 1 1
%hs (3) =1 (5) = % 592 (3) = 15 (5) = 1
G =G =% NG =£G) =
s (3) =F6G) = WEG)=£G)=m
and so the mappings f, g: and h} for a = 1,2 do not commute.
Now, for wy, wsy, w3 € [0, %], we have
G (wy,we,ws) = max{|w; — wa|, |wy —ws|, |ws —wl},
G('UJ flwalwl) = max{lwl—ﬂ 1_81_%|’ zf_gl wl‘}zl’?gvla
G (wi, fywn, fywn) = max{jw — G|, | - O] |5 —wl} =55
G (wg, giwa, giws) = HlaX{|U)2— ) %_%|7 % wQ‘}_gl%’
G(w2ag2w2792w2) = maX{|w2—% ) %_%L %_wQ‘}_E)%a
G (w3, hjws, hjws) = max{|w3—% ; %—%L %—wg‘}zg%,
G (ws, hyws, hyws) = max{|w3—% , %—%L %—wgl}—‘l%
Thus
G (ffw1, giwa, hjws)
= max{ - 5. |5 - 5] 1% - %)
e P )
< 10 [max{|w1—w2] ’ w3] IIU3—’LU1|}—|—U}1+’IU2+U)3]
= 10 max{\wl U)Q‘ |w2 U)3| |w3 — U)1|} + + llug + ﬁ
= g max{fwr —wsf, [wy —ws|, [ws —wn|} + 55 (1) + 5 () + 55 (%)

a1 G (w1, we, ws) + B1G (wr, frwy, ffwr) + 1 G (w2, g ws, g*ws) + mG (ws, K ws, h ws)
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and

G (fé‘wl,gé‘wz,hzwg)

— max{|gt %% 2|2 - %)

= %max{‘%—wﬂ _Gﬂl _3w1‘}

< é[maX{\wl—wzl,Iwg—w3|,|w3—w1|}+w1+wz+w3]

— %max{]wl wol , [wy — wsl, |ws —w |} + G+ R+

~ dmlon — . o vl s = l) +  (2) +§(58) + 5 (459

= @G (wy,wy, ws) + BoG (wy, frwy, ffwr) + 712G (w2, " w2, g*ws2) + 12G (w3, K ws, h*ws) .
Therefore

G (fow, gowe, hyws) = aG (wy, wa, w3) + BG (wy, frwr, fowr) + G (w2, grws, grws)
+nG (w3, hiws, hlws)

fora=1,2, where 0 <a+ 3 +v+n=0.755 <1 and

= max{o,a} = max{, ¢} = ¢,
max{ﬁlaﬁZ} = maX{815 lg} = %7
— e} = max(}. 4} = 1

= max{nb?h} = max{%a %} =

I 2 ™ 9
Il

For wy, wy, w3 € (3, 1],

G (w1, we,w3) = max{|w; — ws|,|ws — wsl|, |wsz — ws|},
G (wy, fiw, fiw) = max{|w; — %[, [% — 9|, |9 —w|} = B9,
G (wy, fywr, fowy) = max{|w; — L[, |2 — 9|, |D —w|} = Lo,
G (wy, giwe, giws) = max{|w2—% , %_%L %_wﬂ}_ 71802’
G (w2, gywa, gswa) = max{|wy — 22|, |92 — L2] |22 _ |} = 32
G (w3, hjws, hjws) = max{|ws — 4|, |4 - B|,|D — wy|} = %,
G (ws, hjws, hyws) = max{|w3—% , %_%L %—'I.Ugl}—%
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Thus

(fl*wla gfwm hfw:s)

— max{|g - . [% - .5 - 4
T R )
< ¢ max{|w; — wa|, w2 — w3, lws — w1 ]} + w1 + wy + ws]
= %max{]wl wol , [wy — wsl, |ws —w |} + -+ 2+ 2
= gmax{|w —ws|, Jwp —ws], Jws —wil} + & (5F) + 7 (52) + 55 (%)
= oG (wy, wy, w3) + B1G (w1, fws, fwr) +nG (wa, giwa, giws) +mG (ws, hjws, hjws)
and
(fz*wl,g;wg,h;wg)
— (|3 - |2 - 5] - B0
= & max{|w — 3ws|, [3ws — dws]|, |[4ws — wy |}
< & [max{|w; — wsl, Jws — ws|, [ws — wi|} + w1 + wa + w)]
= imax{\wl—wg\,\wg ws|, |lws —wy|} + 5% + 2+ 3
= 12 5 max{|wi — wy|, [wa — ws, |wy —wi|} + 1 11 (12w1) +3 (%UJ?) + % (§w3)
- a2G (wly Wa, 'U)3) + ﬁQG <w17 f;wh f2*w1> + ’)/2G <w27g>2kw27g;w2) + 772G (U)g, h;'lUg, h’;w3) .
Therefore

G (fow, gowe, hyws) = aG (wy, wa, w3) + BG (wy, frwr, fowr) + G (w2, gyws, giw2)

+nG (w3, hjws, hjws)

fora=1,2 where 0 < a+ 3+ v+1n=0.547 < 1 and

o = max{m,m} =max{g, 5} =3,
B = max{f,fa} = max{%, -} = =,
v = max{y, v} =max{f, 5} = 1,

n = max{n,n} =max{f, :} = &
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For wy € [0, )w2>w3€[ 1],

G (wy, wo, ws3) = max{|w; — wy|, |wy — wsl|, |ws — w |},
G (wi, fiwy, fiwy) = max{|w; — 2|, [% — 2| |8 — |} = e
G (wy, fyws, fywr) = max{|w1—ﬂ %_%L %—wﬂ}:%,
G (wa, giws, g1ws) = max{|w2—% , %_%L %—wg‘}:%,
G (wy, gywy, gws) = max{|w2—% ,’%_%L %—wﬂ}:%7
G (w3, hjws, Kjws) = max{|wy — L], [ — 2| L — |} = O,
G (wy, hyws, hyws) = max{|ws — 2|, [ — |, [% — wy|} = 28,
Thus
G (fiwr, gws, hjws)
= maX{‘__w |w_w 73 |}
= %max{‘zl%—wﬂ’ w2_8%| _4w1‘}
< %[maxﬂwl—w2|,|w2—w3|,|w3—w1|}+w1+w2+w3]
= %maX{’wl Wy, |wy — ws|, Jwg —wy |} 4+ B + %2 4
= fmaxflu = wal s — sl fus = wal} + 5 (Fn) + § (Fua) + & (%)

= a1G (wy,wy, ws) + SiG (wy, f{wy, ffwy) + G (we, giws, giws) + 771G(w3,h ws, hws)

and
G (f2*w17 g;wQ, h;U)3)
= max{‘ﬂ—% |w _ w3
)
= gy max{lwy — 732, — - | — )
S ﬁ[maX{|w1_WQ|,|w2—w3| |w3—w1|}+w1+w2+w3]
= ﬁmaX{‘wl - U)Q‘ ) ‘w2 - U)g‘ , ‘wg — w1|} + 1_3 (%) + % (%) 4 % (2%)
G (wy, wa, ws) + BoG (wr, fywr, fywr) + 712G (w2, g3wa, gyws) + n2G (w3, hyws, hjws) .
Therefore

G (fawy, gowa, hyws) = oG (wy, wy, w3) + BG (wy, frwy, fywr) + G (w2, gaws, gyws)
+11G (ws, hrws, Brws)
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for a =1,2, where 0 < a+ 3+ v+ n =0.546 < 1 with

= max{o, o} = max{g, 5} =

&
B = max{f,fa} = max{Z 15} = &%
-
Ui

= maX{/yl 72} - max{'p % = %

= maX{??l 772} maX{48> %} = 4_78

For wy,w, € [0, 3) and w; € [3, 1],

G (w1, wy,w3) = max{|w; — ws|, |wy —ws|, |ws —w|},
G(wlaflwlaflwl) = max{|w1—’f—§ ) %_%|7 7.1081 _wll}_ 1?801’
G(w17f2w17f2w1) = In‘a“X{lu)l_ﬂ ) ﬂ_%|7 %_wl‘}: 1?11411]17
G (wsq, gjwe, giws) = max{|w2—ﬂ ﬂ—%|, %—wz‘}zg%,
G<w2)92w2792w2) — max{|w2_% ) %_%|7 %_wQI}:E)%)
G(w37hw37hw3) = max{lwi’)_% ) %_%L %_wi’)‘}:&;g?

G (w3, hyws, hyws) = max{|ws — 2|, |4 — 9| |9 —wy|} = 20
Thus
G(ffwlagfw%hfw?,)
= (]2 31,12 22 -5
= 110max{|5“’1—wz‘,’wg—m;m! M_Wl‘}
< 15 [max{|w; — wsl, |we — ws|, [ws — wi|} + wy + wa + wy]
= 10ma:><;{|w1—wQ| lwy — wsl, [ws —wy |} + 53 + 52+ 5
= 1 o max{|wi —wsl, [ws —ws|, |ws —wi} + g 85 Ggwl) + % (91%) + % (6%)
= G (wy, wy, ws) + S1G (wy, frwy, fiwr) + G (w2, giws, giws) + mG (ws, hjws, hjws)
and
G(f%‘wl,g;‘wz,héwg)
= st %)
(- ][5 - 1
< 14[max{|w1 w2| ’wg—w3’ ]wg—w1|}+w1+w2+w3]

g max{lwy —wal , lwy — ws|, [wg —wn |} + G + 2+ 5

Lomax{|wy — ws|, [wy — ws|, jwg —wy [} + & (Be) 4 L (Bwz) 4 B (2u)

oG (wy, wa, ws) + BoG (w1, fywr, fowr) + 7G (w27g2w2,92w2) 772G (w3, hyws, hyws) .
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Therefore

G (fiw, gowe, hyws) = aG (wy, wa, w3) + BG (wy, frws, fowr) + vG (w2, gyws, giw2)
+nG (w3, hiws, hlws)

for a =1,2, where 0 < a+ 8+ v+ n =0.426 < 1 with

a = max{ag,a} = max{%, ﬁ} = %,
g = max{f, [} :max{s%,l—ls} = %,
v = max{y, Y} = max{%, % = %,

n = max{n,n:} = max{g, 5} = 5.

We notice that 0 is the only common fixed point of f*, g* and h*.

Let {W: (fy, f3, 97,93, hi, h)} be the generalized G-iterated function system with
the mappings T, ¥, ® : CY(W) — CY(W) defined by

T(Q) = A(QHUf(QY),
U(RY) = g1(RY)Ug(RY),
ON) = m(N")Uha(N7)

for all Q*, R*, N** € CY(W). From Proposition [6.2.1} we have that
Hg(T(Q"), ¥(RY), ®(N7)) < kH(Q", R*, N7),

where £ = max{0.755,0.547,0.546,0.426} = 0.755. Thus, all of the conditions
of Theorem are met, and additionally, for any initial set R € C¢(W), the
sequence {R§, T (R) , Y (R§),PYY (RS), TOUTY (R}), - -} of compact sets is

convergent and has for a limit, the common attractor of T, ¥ and ®.

Theorem 6.3.4. Suppose (W,G) is a complete G-metric space, and let
W5 (fr gi,h),a = 1,2,---  q} be the generalized G -iterated function system.
Define T, W, ® : CY(W) — CE(W) by

T(Q) = [(Q)HUf(Q)U---Uf(QY)
= Ug:lf;(g*)a

U(R*) = gi(R")UgGR)U---Ugi(R")
= UZ:IQZ(R*)
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and

ON*) = WMWN")UZN")U---Uhi(N7)
Ua=1ha(N7)

for Q* R* N* € CE(W). If the mappings (T, V¥, ®) are a triplet of generalized
G -Hutchinson contractive operators (type II), then Y,V and ® have a unique
common attractor Uy € C%(W), that is,

Uy =YU) =¥ (U,) =oU").
Moreover, for an arbitrarily chosen initial set R € CG(W), the sequence
{R§, T(Ry), YT (R;), PYY(R;), TOYY(R;), ...}
of compact sets converges to the common attractor U*.

Proof. We show that any attractor of T is an attractor of ¥ and ®. To that
end, we assume that U; € CY%(W) is such that T(Ul) = U,. We need to show that
U, = W(U,) = &(U,). As

He(Uy, O(UY), ®UL))
He(Y(Th), U (Uy), ®(UY))
MHq(Uy, Uy, Uy) + M [He(Uy, Uy, T(UY)
+He(Uy, Uy, O(Uh)) + He(Uy, Uy, ®(0;))]
+Xs3[He(Y(UL), Uy, Uy) + He(Uy, O(UY), Uy)
+He(Uy, Uy, ®(0h))]

= (Dot \a) [HG(Ul,\IJ(Ul)

IN

0h) + Ho(Uh, Uy, ©(0h) |
(Uh) + Ho(Uy, 9(0h), o(01))]

< (ot A) [ Ho(U), w(0)),
= 2\ + Ag)Ha(Uy, ¥(Uh), ®(1h)),
that is, (1—2X\42X3))Ha(Uy, U(U,), ®(U;)) < 0 and so Hg(Uy, U(Uy), ®UL)) = 0
since 2\ + 23 < 1. Thus U; = Y(U,) = ¥(U,) = ®(U,). Similarly, if we take
U, = ®(Uy) or Uy = U(U,), we conclude that Uy = T(U,) = ¥(U;) = &(Uy).

We show that T, ¥, and ® have a unique common attractor. Let R € C¢(W)
be chosen arbitrarly and define {R}} by R5,.; = T(R5,), Rieie = ¥(Riei1),
and Rj, 53 = V(R5,.), for a € NU{0}. If R} = R, for some a, with a = 3n,

then U, = Rj, is an attractor of T and from the proof above, U, is a common
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attractor for T, ¥ and ®. The same is true for a = 3n+ 1 or a = 3n + 2. We
assume that R} # R, for all a € N, then

Heg (R§a+1v R§a+27 R§a+3)

Ho(Y(R30), ¥ (Rias1) » @ (Riasa))

MHG(R30, Riasr, Raarz) + A2[Ha(T(R3,), Riq, Ria)
THe(Riar1: V(Rigi1)s Rigi) + Ho(Rigy0, Riago, P(Rigi2))]
FA3[Ha(Y(R30): Riusrs Riara) + Ho(Ri ¥ (Rigs1) s Rigso)
+HG(R§(17 R§a+1a s (R§a+2))]

= MHG(Ri., Rigr, Riare) + Ao[Ha(Riar1s Ries Ri,)
THe(Riar1: Rigsos Ria1) + Ho(Riaio, Riarer Riays)]
FA3[Ha(Riar15 Riar1: Riara) + Ho(Rie: Riato Riaya)
+He(R 30, Riaq1 Riars)]

MHG(R3.: Rigins Riare) + Ao[Ha(Riw Riai1s Rigyo)
+HG<R§a> R§a+1a R§a+2) + HG(R;)Q—&-D R§a+2a R§a+3)]
+A3[HG(Riqs Rigs1, Riare) + Ha(Ria, Riarrs Riasra)
+{HG<R§m R§a+1a R§a+2) + HG<R§(1+17 R§a+27 R§a+3)}]'

IA

IN

Thus, we have

(1 — Ay — >‘3)HG(R§a+17 R§a+27 R§a+3> < <)‘1 +2X + 3)‘3)HG(R§a7 R?’;a—&-l? R§a+2)'

Hence,
He(R3a11, Riara Riars) < AMa(R3q, Raar1, Riaya),
where \ = )\11-1-_2;\2 Zj ;):3, with 0 < A < 1. In a similar manner, it can be proved
that
HG(R§Q+27 R§a+37 R§a+4) < )\HG<R§a+17 R§a+27 R§a+3)
and

HG (R§a+37 R§a+47 R§a+5) S )‘HG(R;a-‘rQ? R§a+3? R§a+4)'

Thus, for all a,

Hc(RZ+1,RZ+2,RZ+3) < )‘HG (R:>RZ+1>RZ+2)
< < ANTMUHG (R, R RS
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Now, we have for I, m,a, with [ > m > a,

HG(R:H ,Rw*na R?)

<

IN

IN

<

Ha(Ry, Rar1: Ravr) + Ho(Roy1, Rojo, Ras)
+--+He(R;_|,R"1-1,R])

HG(RZ7 R;+17 R;+2) + H(;('RZH, R;+27 R;+3)
+- HG(RZk—m R7—1> R?)

A+ A N HG(RE, R RS)

N[+ A+ A 4+ N HG (R, R, R3)
)\CL
1—A

Ha(R5, Ri,R3).

We note that if [ = m > a, we get similar results and if [ > m = a, then

Ho(R;, Ry Ri) <

so lim  Hg(R:, R, Ry) =0. Thus {R:} is a G-Cauchy sequence in C%(W).

a,m,l——+o00

Since (C(W), Hg) is a complete G-metric space, there exists U; € C%(W) such

a—1

)\HG(R(*)7 RT? R;)7

that lim R = U, that is, lim He(R:,RE,Uy) = 0.
a——+00

a—+00

Assume that Y(U,) = Uy, else

Hg(T(Ul), R3a+2a R§a+3)

IN

HG(T(U1)7 v (’R’;a-i-l) 7q) (R§a+2))
MHe(U1, Rigirs Riara) + Xe[Ha(Uy, Uy, Y(U:)

+Ha(Riui1s Riarns ¥ (Riar1)) + Ho(Rioia Rigya ®(Ria4))]
+)‘3[HG(T(U1>a R:’;a—i-l? R§a+2) + HG(UI» \P(Rj‘;a—i-l)? R§a+2>
+HG<U17 R§a+1a o (R§a+2))]

= MHG(U1, Rigprs Rigss) + Ao[Ha(Ur, Uy, TUY)
+He(Riui1> Riaar1s Raavz) + Ha(R3, 12, Raat2, Raats)]
+X3[Ho(T(U), Raar1, Rira) + Ha(Ur, Rigzs Rigso)
+HG(U17 Riar1: Riays)]

and as a — 400, we gives

He(Y(U), Uy, Uy) < (Mo + \s) Ho(Y(UL), Uy, Uy)

which is a contradiction as (Ay + A3) < 1. Thus YT(U;) = U,. Likewise, we can
show that \II(UI) = U, and @(Ul) = U,. Assume that U, is likewise a common
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attractor of T, U and ®. to demonstrate uniqueness. Then

Hg(Uy, Uy, Up) = Hg(Y(Uh), U(Uy), ®(Uy))

MHG(Ur, Us, Us) + Ao[He(Ur, Uy, Y(Uy) + Hg(Us, Us, W(Uy))

+HG(U2, U, o(W))] + Ag[HG(T(Uﬁ, U, Uz)

+He (U, W (Us), U) + He(Uy, Us, ®(U))]

= MH(U,Us, Us) + Xo[He(Uy, Uy, Uy) + He(Us, Us, Us)
+HG(U27 Us, IJQ)] + )\3[HG([j1, Us, Uz) + HG(Uh Us, UQ)
+He(Uy, Uy, Us)]

= (A1 +3\3) He(Uy, Us, Uy)

IN

from which we conclude that Hg(Ul, Us, Ug) = 0 and thus U; = Us,. Hence U, is

a unique common attractor of T, ¥, and &. O

Example 6.3.2. Let W = [0, 1] and G be a G-metric on W as defined in Example
. Define f, g5, hy W — W, a=1,2 by

( U1 . 1 uy . 1

% if OSU1<§ ﬁ if 0§U1<§
fi(ur) = f3(ur) =

BT Ur o1

\ 15 if 5 <wu <1, [ T3 if 5 <wu <1,

¢ Ui . 1 ¢ U1 . 1

1—3 if OSU1<§ g if 0§U1<§
gi(u1) = g5(u1) = <

Moyl LITA

\ 16 if 5 <wu <1, l 3 if 5 <wu <1,

( U1 . ( U1 . 1

0 if 0<u; <= T2 if 0<u <3
hi(u) = s (u1) =

Do Loy, <1 B Loy, <1

VI SEERE

Then, clearly the maps f;, f5, g7, g5, h and h} are discontinuous and satisfying
the condition of Theorem Theorem [6.3.4]

Now, by  taking the  generalized  G-iterated function  system
(W (ff, £3. 91, 95, 17, h3)}, we define mappings Y, ¥, ® : CE(W) — C%(W)
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T(Q) = fi(Q)Uf3(QY),
V(R = q1(R")Ug(RY),
PNT) = m(N7)Uhy(N7)

for all Q*, R*, N** € C%(W). Then it is easy to verify that mappings (T, ¥, ®) are
a triplet of generalized G-Hutchinson contractive operators (type 1I), that is, for
any Q* R*, N* € CY(W),

He(Y(Q"), ¥ (RY),PNY)) < Exwo(Q", R N)
holds, where

Exwo(Q R N*) = MHq(Q" R N")+ \[Hs(Q", Q",T(Q))
+HG(R*,R*, W (R)) + Ho(N*, N*, & (N*))]
A [He(Y(QY), R*N*) + He(QF, U (RY) , %)
+He(Q, R™, & (N7))],

with Ay = % and Ay = A3 = %. Clearly, A\; > 0 for j € {1,2,3}

and Ay + 33Xy + 4X\3 < 1. Thus, all of the conditions of Theorem
are met, and additionally, for any initial set R € CY(W), the sequence
{RET(RE), Y (Ry), PUY (RE), TOPUTY (R),---} of compact sets is conver-

gent and has for a limit, the common attractor of T, ¥ and ®.

Corollary 6.3.3. In a complete G-metric space (W, G), let {W; fr, gt hi,a =
1,2,--- ,q} be a generalized iterated function system and define the mappings
59 h W — W as in Remark . If there exist \; > 0 for j € {1,2,3}
with A\ + 3\g + 4X3 < 1 such that for any wy,wy, w3 € CY (W), the following
holds:

G (ffwy, g"we, K ws) < Epe gr pr (w1, wo, w3),

where

Epe ge pe (w1, w2, w3) = M He(wy, we, w3) + Ao[He(wr, wy, f*(w1)
+He(we, we, g* (we)) + He(ws, ws, h* (w3))]
+\3[He(f*(wy), we, w3) + Hg(wr, g* (ws) , ws)
+He(wy, we, h* (w3))].

Then f,qg and h have a unique common fized point. In addition, for a ran-
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domly chosen vy € W, the sequence {vo, f*vo, g* f*vo, h*g* f*vo, f*h*g* f*vo, ...}

converges to a common fized point of f*,g* and h*.

6.4. Well-posedness of Attractor based problem in G-Metric

Spaces

We extend the discussion in Section to the attractor-based problems of gen-
eralized Hutchinson contractive operators (type I) and generalized Hutchinson
contractive operators (type II) in the framework of Hausdorff G-metric spaces.

Some useful results on well-posedness of fixed point problems appear in [8, [56].

Definition 6.4.1. A common attractor-based problem of mappings T, ¥, ® :

CY(W) — CY(W) is said to be well-posed if the triplet (Y, ¥, ®) has a unique

common attractor ©, € CY W) and any sequence {©,} in C¢(W) is such

that aETmHG(T(@“)’T(@“)’@“) =0, QEIEOOHg(\D(@a),\IJ(@a),@a) = 0, and

aErJPoo He(9(0,),9(0,),0,) = 0 then aEToo H;(04,0,,0,) = 0, that is to say,
lim 6, = 06,.

a——+00

Theorem 6.4.1. Let (W, G) be a complete G-metric space and Y, ¥, ® : CE(W)
— CG(W) be defined as in Theorem . Then the mappings T,V & have a

well-posed common attractor-based problem.

Proof. From Theorem [6.3.1] we deduce that the mappings T, ¥ and ® have
a unique common attractor Z,, say. Let a sequence {Z,} in C¢(W) be such
that QE?WHG(T(ZG),T(ZG),ZG) =0, GETmHG(q](Z“)’ql(Z“)’Za) = 0, and
Tim Ho(®(2,), ®(2,), 2,) =0

We show that Z, = lim Z,. As the mappings (T, ¥, @) are a triplet of general-

a——+00
ized G-Hutchinson contractive operators (type I), then

Ho(Z,,24,2,) < Hg(2,,Y(2,),Y(2,))+ Ha(Y(Z,),¥(Z2,), Z.))
- HG<T(Z¢1>’ \I[(Za)v CI)(Z*)) + HG(Zm T(Za>’ T(Za))
S aHG(Zaa Zm Z*) + /BHG(ZQ7 T(Za)a T(Za))
+7He (24, V(2a), ¥(Z0)) + nHa(Z2,, @ (2.), 2 (2.))
+HG(Za7T(Za)a T(Za))
Thus
Ho(Z0, 20, 2)) < ff;HG(za,T(za), T(Z,) + ﬁHG(Za, V(Z,),V(Z)).
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Taking limit on both sides as a — o0 gives us lim Hg(Z,, Z,, Z,) = 0 and so

a——+00

lim Z, =2Z,. [l

a——+00

Theorem 6.4.2. Let (W, G) be a complete G-metric space and Y, ¥, ® : CE(W)
— CG(W) be defined as in Theorem . Then the mappings T,V , & have a

well-posed common attractor-based problem.

Proof. From Theorem [6.3.4] it follows that the mappings T, ¥ and ® have a

unique common attractor Z,, say.

Let a sequence {Z,} in CY(W) be such that ligl Ha(Y(Z2,),Y(2.), 2.) = 0,
a—r—+00
lim He(U(2,),U(2,),2,) =0 and lim Hg(®(2,), ®(2Z,), Z,) = 0.
a—400

a—+00

We want to show that Z, = lim Z,. As the mappings (T, ¥, ®) are generalized

a—+00
G-Hutchinson contractive operators (type II), so that

Ha(Z4, 24, 2.)

Ha(Z4, 24, V(2,)) + Ho(Y(2,), V(24), Z.)
2Ha(Z4,V(Z,),¥(Z2,)) + Ho(Y(Z,), V(Z,), ©(Z.))

2HG(Z4,V(2,), Y (2,)) + MHG( 2., Za, 20) + No[Ha(Z,, 2., T(Z.)
+Ha(Z4, 24,V (2,)) + Ho(Z4, 24, © (Z,))]

+X3[Ha(Y(2.), Za, Z0) + Ho( 2,V (2,) , 24) + Ho( 2., 24, D (2,))]
2HG(Z,,9(Z2,),Y(Z,)) + MHg (24, 24, Z4) + 200[Ha(Z4, Y (Z,), ¥ (Z,))
+Ha(Z4, P (Z2,), P (24))] + Ns[H (24, 2o, Za) + Ha(24, 24, 24)

+HG (24, Y (24), 2a) + Ho(Zs, 24, 20) + Ha(Z4, 24, P (Z4))]
2Ho(Z4,V(2,),V(2,)) + MHa( 2., 24, 24) + 20[Ha(Z,, ¥ (Z2,) , ¥ (Z,))
+He(Z,,®(2,), D (2,))] + Xs[3H(Z,, 24, Z4)

T2He(Z0, ¥ (24), Y (Z4)) + 2H (24, P (Z2a) ,  (24)))-

IN A

IN

IA

IN

Thus

HG<Za7 Za7 Z*) < —[2 (1 + >\2 + )\3) HG<Za7 ‘P<Aa)a \I]<Za))
1 =X =33

12 (o 4+ Ng) He (20, ® (2,), 3 (2.))].

Taking limit on both side implies that lim Z, = Z,. O

a—+00
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7

Generalized lterated Function
System of Cyclic Contractions in
G-Metric Spaces

7.1. Introduction

In the previous chapter, we considered the construction of common attractors
of generalized iterated function system of generalized contractions in G-metric
spaces. We extend our discussion to generalized iterated function system of gen-

eralized cyclic contractions in G-metric spaces.

The concept of cyclic contraction mapping was introduced by Rus [85]. Further
expansions were made by considering fixed point results for cyclic ¢-contractions
in the framework of metric spaces [0, 81]. In Chapter {4 we explored iterated
function system of generalized cyclic contractions in partial metric spaces. Kara-

pinar et al.[5I] obtained some results for cylic contractions on G-metric spaces.

Definition 7.1.1. [80] For a non-void set W, let h : W — W be a mapping
of W to itself. A finite family {W;, Wy, .-, W,} of non-void subsets of W with

W = Ul_,W, is said to be a cyclic representation of W with respect to h if
h(W1) C Wa, -+, h(W,—1) C W, and h(W,) C W;.

Theorem 7.1.1. [51] In a G -complete G-metric space (W, Q), let {B}_, repre-
sent a class of non-void G -closed subsets of W. Let W =U!_, B, and ¥ : U!_, B,
— Ul_ B, be a map satisfying V(B,) C Wyq1, a =1,2,--- ,q where B,y = By.
Suppose there exists A € [0,1) such that G(Vu, Vv, Yw) < AG(u,v,w) for all
u € B, and v,w € Byi1,a = 1,2,--- q, then U has a unique fized point in
NI_,B,.
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7.2. Generalized lterated Function System of Cyclic

Contractions in G-metric spaces

In [35], we find results on generalized iterated function system for multi-valued
mappings in a metric spaces. We consider the generalized iterated function system

of cyclic contractions in G-metric space setting.

Definition 7.2.1. For a G-metric space, (W,G), let h, : W — W, a € N, be
a finite family of G-contractions, then {W;h,,a € N,} is called a G-iterated
function system (G-IFS).

Definition 7.2.2. Let (W,G) be a G-metric space with J* C W, a non-void
compact set, then J* is called an attractor of the G-IFS if

(i) U(J*)=J* and

(ii) there exists an open set V; C W such that J* C Vj and lim ¥*(O*) = J*

a—+00
for any compact set O* C V;, where the limit is taken with respect to the

G-Hausdorff metric.

As a necessary consequence, the maximal open set V; satisfying (ii) is referred to

as a basin of attraction.

Definition 7.2.3. Let {B,}!_, be a collection of non-void closed subsets of a
G-metric space, (W,G). A self-mapping h : U!_;B, — U!_, B, is known as a
cyclic G-contraction on {B,}?_;, provided there exists a A € [0,1) , such that

(i) h(B,) C Bayi for a € N, where B,1 = By;
(i) G(hu, v, hw) < AG(u,v,w) for all u € B,, and v,w € B, for a € N,.

If h satisfies condition (i), then h is a cyclic function.

Theorem 7.2.1. [51] Suppose {B,}_, is a family of non-void G-closed subsets
of a G-metric space (W, G). Let h: Ul_ B, — Ul_| B, be a cyclic map satisfying

h(B,) C Byi+1,a € Ny, where B,y = By.
Suppose there exists A € [0,1) such that
G(hu, hv, hw) < AG(u, v, w)

for all w € B,, and v,w € Bay1 for a € Ny, then h has a unique fized point
wen!_ B,.
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Definition 7.2.4. In a complete G-metric space (W, G), suppose that f,, ga, hq :
W — W, a € N, are continuous maps such that each (f,, ga, ha), @ € N, is a
triplet of generalized G-contractions, then {W; (fa, ga, ha) ;@ € N,} is the gener-

alized G-iterated function system.

Definition 7.2.5. Let (W,G) be a complete metric space. A set
{W:(fa9a, ha),a € N,} is said to be a generalized cyclic G-iterated function
system if each triplet f,, 9., he : W—W is a generalized cyclic contraction for
a € Ng.

Theorem 7.2.2. Let {B,}!_, be a family of non-void closed subsets of a G-
metric space (W, G) and f,g,h : Ul_ B, — UL_ B, a triplet of continuous cyclic
contractions. Then, the triplet of mappings f,g,h : C¢(UI_B,) — C%(U'_,B,)
15 also a cyclic contraction relative to the Hausdorff metric Hg sharing a similar

contractive constant, \.

Proof. Choose L € B,, for some a € N,. From the definition of cyclic map, we
obtain that f(L) C B,y1. Also, since f is continuous, then f(L) is a compact
set. Therefore, f(L) € C%(Byy1) which implies that f(C%(B,)) C C%(Byy1) for
each a € N.

We take J; € CY(B.), J5 € CY(Bay1) and J; € CY(Baya) for some a € N,.

First, we claim that

sup  G(f(my),9(J5),h(T5)) <A sup G(m Ty, J5).
fm)ef(Iy) m1EJ}

As the triplet (f,g,h) is a cyclic G-contraction, we obtain

G(f(my),9(my), h(mg)) < AG(mi,my, mg) for all my € B,, my € Baya

and m3 € Bgio where a € N,

Thus

sup  G(f(m1),9(J5), h(T5))
Fm)ef(T7)

= sup ( inf
Fm)ef(Ty) \9(m2)€g(T3),h(m3)eh(T5)

Al sup inf G(my, ma, m3)
mieJy \M2€Jz ms€T3

A ( sup G(mlaj;?j?)*)) :

m1eJy

G<f<m1>,g<mz>,h<m3>)

IN

IN
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Similarly, we have

sup  G(f(J7), 9(m2), h(T5)) < A ( sup G(\Z*vm%j{i*))

9(m2)€g(J3) m2€Jy
and
sup  G(f(J7),9(T3), h(ms)) < A ( sup 0(71*772*,m3)> '
h(ms)eh(T) ma €5
S0
He(f(T7),9(F5), J5))
= max{ sup  G(f(m),9(F5) MT5)), sap  G(f(T).9(my), M(T5)),
Fm)ef(T7) g(ma)eg(J5)
sup  G(f(T7), 9(T5), h(my))}
h(ma)eh(T3)
< Amax{ sup G(mJy,J3), sup G(J;" ,my, J3), sup G(T;,T5,ms)}
mieJ; mo€Js mzeJq
= Ma(JV, T3, T5).
Hence, (f,g,h) is a triplet of cyclic G-contraction mapping on {B,}I_;. O

Theorem 7.2.3. Let {B,}._, be the collection of non-void closed subsets of a
G-metric space (W,G), and q a fized natural number. If fo,ga,he : UI_ B, —

Ul_, B, for all a € N, are generalized cyclic contractions, then the maps T, U, ® :
CY(UI_B,) — CY(UI_|B,) defined by

T(J7)

v(Jy)

and

fl(jl*) U f2<~71*> U---u fa(jl*)
Ui_1 fa(J7), for each Ji € C¥(Ul_, Ba),

91(J5) U g2(T3) U -+~ U ga(T5)
U1 9a(T5), for each J; € CY(U!_,B,)

hi(J5) U ha(T5) U+ U he(J5)
UI_ ha(TJ5), for each J5 € CY(UI_,B,)
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also satisfy
Hg (T(jl*)7 \Il('-72*)7 (I)(jii*)) < /\*HG (\71*7 j2*7 k73*> for all \71*7 j2*7 \73* S CG(UZ:IBa)a

where A, = max{\, : a € N}, that is, the triplet (T, ¥, ®) is a generalized cyclic

contraction map on C¢ (W).

Proof. Let J* € CY(B,) for some a € N,. By Theorem , for each a € N,
the triplet (fa,ga,he) is a generalized cyclic contraction. Therefore, f,(J*) €
CY%(Bay1) for all @ € N, which implies that Y(J*) = Ul_; fo(J*) € C%(Bas1),
and consequently, T(C%(B,)) C C%(Bay1) for a € N,. In the same manner we
have W(CY(B,)) C C%(B,41) and ®(C%(B,)) C C%(B,11) for a € N,.

Since the triplet (fa, g, ha) is generalized cyclic contraction for each a € Ny, we

have
He(fa(T7), 9a(T5 ), ha(T5)) < AH TV, T5, J5)

for all J; € CY%(B.),Jy € CY(Bat1) and J; € CY(Baya) for each a € N,. If
T € CY(B,), Iy € C¢(Bay1) and J5 € CE(Byy2) for some a € N, then we have

HG (T(jl*)7 \I/(j;)v (b(jg*)) HG’(nglfa(jl*)a nglga(j;)? Ug:lha(\%*))
< maX{Hg(fl(jl*),gl(jQ*),hl(t73*) )
e HaU (T 0T, 0T}

)‘*HG(jl*v -72*7 «73*)-

IA

O

Definition 7.2.6. For a G-metric space (W, G), let {B,}._; be a collection of
non-void closed subsets of W. Then T, ¥, ® : CY(B,) — C%(B,) is a triplet of
generalized cyclic G-Hutchinson contractive operators (type I) if for any £ €
C%(B,), M € C%Bay1) and N € C%(Byy2),

Ha(T(L), ¥ (M), 2(N)) < Srye(l, M,N)
holds, where

ST,\I/,<I>(£7M7N) = O‘HG(EvM’N) + BHG(£> T(£)> T(‘C))
+7He(M, ¥ (M), ¥ (M)) +nHeN, @ (N), @ (N)),

with o, 8,v,n >0 witha+8+~v+n < 1.
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Definition 7.2.7. In a G-metric space (W, G), let {B,}{_, represent a family of
non-void closed subsets of W. The triplet T, ¥, ® : C¢(B,) — CY(B,) is called

a generalized cyclic G-Hutchinson contractive operator (type II) if for any £ €
C%(B,), M € CY(Bay1) and N € C%(Byy2),

He(Y(L), ¥ (M), 2(N)) < Rywe(l,MN)
holds, where

Rrwae(L,MN) = MHg(L,MN)+ Xo[Ho(L, L, Y(L))
+Ha(M, M, ¥ (M) + He(N, N, @ (N))]
+X3[He(Y(L), M,N) + He(L, ¥ (M), N)
+Ha(L, M, @ (N))],

with A; > 0 for i € {1,2,3} and A\; + 3\y + 43 < 1.

Definition 7.2.8. Let (W, G) be a complete G-metric space. If fo, go, ho : W —
W, a=1,2,...,q are continuous mappings such that each triplet (fs, ga, ha) for
a € N, is a generalized cyclic G-contraction, then {W;(fa, ga, ha),a € Ny} is

called the generalized cyclic G-iterated function system.

As a result, the generalized cyclic G-iterated function system is made up of a

G-metric space and a finite family of generalized cyclic G-contractions on W.

Definition 7.2.9. Let (W,G) be a complete G-metric space and U; € W be
a non-void compact set. Then U is the common attractor of the mappings
T, 0, ®:CHW) — CHW) if

(1) T(Ul) = \I/(UI) = @(Ul) = Ul and

(i) there exists an open set Vi C W such that U; € V; and lim T%(L) =
a—r 00
lim U*(M) = lim ®*(N) = U; for any compact sets £, M, N C Vi, where
a— 00

a—r 00

the limit is taken with respect to the G-Hausdorff metric.

7.3. Generalized cyclic G-Hutchinson contractive operators

In the context of G-metric space, we state and prove some results about the exis-
tence and uniqueness of a common attractor of generalized cyclic G-Hutchinson

contractive operators. To begin, consider the following outcome.

Theorem 7.3.1. In a complete G-metric space (W, G), suppose { B,}2_, is a col-
lection of non-void closed subsets of W and {W; (fa, ga, ha),a € Ny} is a general-
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ized cyclic G-iterated function system. If the mappings T, ¥, ® : C¢(UI_,B,) —
CY(UI_|B,) defined by

T(L) = AL)URLU---Uf(L)

= Ul fa(L) for £ € CY(UI_,B,)

Y(M) = g(M)UgM)U---Ugy(M)
= Ug—19a(M) for M € CG(Uzlea-&-l)

and

PN) = hN)Uhay(N)U---Uhy(N)
= UL ho(N) for N € CE(UL_, Bays)

are generalized cyclic G-Hutchinson contractive operators (type I), then Y,V and

® have a unique common attractor U € C%(B,), that is,

Up =T(07) = W(07) = ©(UF) = Uim ful0F) = Uima9a(07) = Uiy (7).
Furthermore, for an arbitrarily chosen initial set My € C¢(UI_, B,), the sequence
{Mp, T (My),TT (M), 20T (M), TOUT (M,),...}

of compact sets converges to the common attractor Ul*.

Proof. We show that any attractor of T is an attractor of ¥ and ®. To that end,
we assume that U € C%(W) is such that T(U}) = UF. We need to show that
Ur = U(UF) = ®(U*), else for Uy # U(U;) and Uy # &(U;), we get

He (U7, (07),@(U)) = Hea(Y ( 1, (7)), e(07))

IN
%
Q
Qﬁ
+
=
!
Q.
=
S
3
S

= OéHG(U f f)—i_BHG( fa fa 1*)
)

+nHe( 1* o(Uy), ‘P(Ui‘))

= He(U7, W (07), W(U7)) + nHe (U7, (07), o(T7))
(4 ) BT 0(07), 9(07)),

IN
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thus

He(UF, W (U7), ®(U)) < MHe (U7, W(U7), ®(07)),
where A = v+ 7 < 1, which is a contradiction. In an analogous manner, for
Ur # U(U) and U* = ®(U*) or for U # ®U;) and UF = W(U;) similar
argument as above yields a contradiction. Hence we conclude that U = Y(U}) =
U(UF) = ®(U;). We also note that the same conclusion holds for U} = ¥(U}) or
Up = ®(U7).

Next we show that Y, ¥, and ® have a unique common attractor. Let Mg €
CY(W) be an arbitrary point. Define a sequence {M,} by Mszay1 = T(Ms,),
Msaro = U(Msai1), Msars = ®(Msera), a = 0,1,2,--- . If M, = M, for
some n, with a = 3n, then Uf = Mgj, is an attractor of T and from the Proof

above, [Nfl* is a common attractor for T, ¥, and ®. The same is true for a = 3n+1
or a = 3n + 2. We assume that M, # M, for all a € N, then

Hg(Msar1, Mgy, M3qay3)

Ha(T(Msa), ¥ (Mzat1), @ (Maar2))

aHg(Msa, M3ay1, M3ay2) + BHa(Mza, T(Ms,), T(Maa,))

+YHa(Mszar1, ¥ (Mzay1) , U (Mser1)) + nHa(Mzayz, ® (Msata) , @ (Msar2))
aHe(Mza, M3ay1, Mzar2) + BHa(Maza, Mzat1, M3ayr)

+YHa(Msat1, Msata; Mzare) + nHa(Msayz, Msays, Msays)

aHg(Mza, Maat1, Maat2) + BHG(Maa, Msat1, Maaya)

+yHa(Msari, Msara, Msars) + nHo(Mszar1, Mzara, Mzays).

IN

IN

Thus, we have

(1 - U)HG(M3Q+1, Msaqa, M3a+3) < (Oé + 5)HG(M3a, May1, M3a+2)~

Hence,
He(Msgi1, Msgya, Msays) < AHg(Msq, Msaq1, Msaqa),
a+p , .. .
where A = — with 0 < A < 1. In a similar manner, it can be shown that
He(Msar2, Msays, Msara) < AHa(Msair, Msara, Msays)
and

HG(M3a+37 M3a+47 M3a+5) S AHG(M3CL+27 M3a+37 M3a+4)'
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Thus, for all a,

Hg(Ma+17Mtl+27Ma+3) < )\HG (Ma;Ma+1;Ma+2)
< < /\a+1HG (MO7M17 M2> .

Now, for [, m, a, with [ > m > a, we have that

He(Ma, My, My) < Hg(Ma, Mayi, Mayr) + Ho(Maga, Mata, Mayo)
+-o+ Ho(Mi_y, Mi_1, M;)

< He(Mg, My, Mays) + Ho(Mai1, Maio, Mays)
Food Ho(Mi_y, Mi_i, M)

< AT 4 AT H (Mg, My, M)

= N[1+A+ A+ N Hg (Mo, My, M)

< 1);(1)\]‘]@(/\/10,/\/{17/\/12)'

We note that if | = m > a, we get similar results and if [ > m = a, then

>\a—1
1—A

HG(MaaMmaMl> S HG(M05M17M2)7

and so lim Hg(My, M, M;) = 0. Thus {M,} is a G-Cauchy sequence

a,m,l—400
in CY(W). Since (CY(W),Hg) is a complete G-metric space, there exists
Ur € C%W) such that lim M, = U, that is, lim Ho(M,,Up) =
a—r—+00 a—r+00

lim Heg(M,, May1) = He(Us, UF) and so we have hI—P He(M,, Ur) = 0.
a—r+00

a—+00

To prove that Y(U;) = U;, we claim

*

1

He(Y(UY), Msata, Maasa)

He(Y(U}), ¥(Msat1), ®(Maays))

aHg(Y(U), Maar1, Maaya) + BHa(UF, Y(UF), Y(UY))

+yHg(Msat1, U (Msar1), ¥ (Msay1)) + nHa(Msayra, @ (Msara) , @ (Msei2))
aHe(Uf, Mas1, Msaia) + BHG(Y(UT), Uf, M3as1)

+vHa(Msat1, Mzara, Mzara) + nHa(Msayr2, Msays, Msays),

)7
)7

IN

where upon taking the limit as a — +00, we obtain

which is a contradiction. Thus T(U;) = U;. In a similar manner we can show
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that W(U;) = U and ®(U;) = U;. For uniqueness, we suppose that V; is another

common attractor of T, ¥, and ® then

He(U;, Vi, Vi) = He(Y(U7), ¥(V), (1))
aHe(Up, Vi, Vi) + BHG(U, Y (U7), Y(T7))
+vHe(Vi, ¥ (V1), ¥ (V1)) + nHg(V1, @ (V1) , @ (V1))
aHG(Ul,Vl,Vl)+BHG(U1,U1,U1)
+yHe(Vi, Vi, Vi) + nHe(Vi, Vi, Vh)

= aHa(Uy, Vi, Vi)

IA

from which we conclude that He(U, Vi, V;) = 0 and thus U; = V. Hence U is

a unique common attractor of T, ¥, and . m

Example 7.3.1. Let W = [0,3] be a non-empty set, and G(wy,ws,ws) =

max{|w; — ws|, |wy — ws|, |wz —wi|} for all wy,wy, w3 € W be a complete G-

metric. Suppose QF = [0, 1], Q5 = [0, 2], and O} = [0, 3] are subsets of W. Define
Ua=1Qa = Uama Q5 by

% fo<w <1
% if 2 <w; <3.
We note that
9*(Q1) = [0,£] €[0,2] = 93,

g*(Q3) = [0,3] €0,3] = Q3
and

9°(Q) = 10,11 € [0,1] = Q5.

Hence, Q7 U Q5 U Q5 is a cyclic representation of W with respect to ¢g*. Next,
define f, g%, g5 : W — W by
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( W1 . 1 ( W1 1
ﬂ if O§w1<§ 1_8 if O<w1<§
fi(wr) = f3(w1) =
wy . 1 wn 1
k1_6 if nglgl, Kﬁ if §§”LU1§1,
w w
(1—21 if 0<w1<% (FI if O<w1<%
g1 (w1) = g3(w1) =
w . w .
\gl if %gwlgl, \Il if %gwlgl,
5 if 0w <} (S 0<wi <}
hi(wr) = hs(w:) =
w . w .
71 if %gwlgl, \?1 if %gwlgl.

Similar arguments as in Example shows that the results of Theorem [7.3.]
holds.

Remark 7.3.1. Let W = UZ_,W,. If we take in Theorem [7.3.1 S¢(U’_,W,)
the union of all singleton subsets of the given space W, then S¢(U!_,W,) C
CY(Ul_,W,). Furthermore, if we take the mappings (fa, da,ha) = (f,g,h) for
each a, where f = fi,g = g1 and h = hy then the operators (T, ¥, ®) become

(T (y1), ¥ (y2), @ (y3) = (f(v1): 9 (v2) , h (y3)) -

Consequently, obtain the following common fixed point result.

Corollary 7.3.1. Suppose {W; (fa, s ha) a0 € Ny} is a generalized cyclic G-
iterated function system, defined in a complete G-metric space (W, G) and let the
mappings f,g,h : W — W be defined as in Remark . If some X € [0,1)
exists such that, for any y; € C¢(W,),ya € CE(Way1) and yz € CY(Woys), the
following holds:

G(fn),9(y2), h(ys)) < aHg(yr, y2,y3) + BHa(yr, Y(y1), T(v1))
+vHe (Y2, U (y2) , ¥ (32)) + nHe(ys,  (y3) , P (y3))-

Then f,qg and h have a unique common fixed point w € W. In addition, for any
initial point ug € W, the sequence {uyg, fuo, gfuo, hgfuo, fhgfug, -} converges
to the common fized point of f,qg and h.

Corollary 7.3.2. Let {W; (fa, g, ha) ,a € Ny} be a generalized cyclic G-iterated
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function system, defined in a complete G-metric space (W, G),and let (fa, ga, ha)
for a € Ny be a triplet of generalized cyclic contractive self-mappings on W. Sup-
pose {B,}l_, is a collection of non-void closed subsets of W. Then the triple
(T, ¥, ®):CYUI_,B,) — CY(UL_,B,) defined in Theorem has at most one
common fived point. Furthermore, for any initial set My € CY(B,), the se-
quence { My, T (My) ,¥T (M;),dUT (M), TOPUYT (My),---} of compact sets
have for a limit, the common fized point of T,V and .

Theorem 7.3.2. For a complete G-metric space (W, G), suppose {B,}l_, is a
family of non-void closed subsets of W and {W; (fa, ga, ha),a € Ny} is a general-
ized cyclic G-iterated function system. If the mappings T, ¥, ® : C¢(U!_,B,) —
CY(UI_B,) defined by

T(L) = f(L)UfAAL)U---U f(L)
= Ul_, fa(£L) for £ € CY(UL_, Ba)

Y(M) = g(M)Ug(M)U---U gy(M)
= Ul_1ga(M) for M € C(Ul_, Bas1)
and

PN) = hN)Uhoy(N)U---Uhy(N)
Ul_1ha(N) for N € CE(U2_, Baya)

are generalized cyclic G-Hutchinson contractive operators (type II), then Y, ¥,

and ® have a unique common attractor U € C(B,), that is,

U; = Y(07) = ¥(U7) = 2(U7) = Uy fu(UF) = Uio19a(07) = Ui_iha(07).
Moreover, for an arbitrarily chosen initial set, My € CY(U_,B,), the sequence
{Mo, T (Mp),UT (M), PP¥Y (M), TOUT (M), ...}

of compact sets converges to the common attractor Uf

Proof. We show that any attractor of T is an attractor of ¥ and ®. To that end,
we assume that UF € CY(W) is such that Y(U;) = Uf. We need to show that
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Ur = W(UF) = &(U*), else for U* # U(U?) and Up # ®(U;), we get

He(U}, w(07), @(07)) = Ha(X(07), w(0}), &(0

MHe(UF, U7 UF) + Mol He(UF, U7, T (U7)
+HG(U17U17 (Nik)) (ﬁfaﬁl*’q)(Nf))]
+)\3[HG’(T(U1) Uikv ~*) +HG(U;<7\IJ(~T)> ~1*)
+Ha (U7, U7, (07))]

= (o Ag) [Ha(O7, W(07), 07) + Ho (U7, U, (7))
< (o) [Hewl, (7,207

- 2<A2+A3>HG< < 1. (07)),

1))

IN

which is a contradiction. If we take U # W(U;) and Uy = ®(UF) or Ur # ®(U?)

and U = U(U}), similar argument as above yields a contradiction. Hence we

conclude that U = YT(UF) = W(UF) = ®(U;). We also note that the same
conclusion holds for U = W(U}) or U = &(U}).

We show that T, ¥, and ® have a unique common attractor. Let My € C¢(W)
be an arbitrary point. Define a sequence {M,} by Mz, = T(Ms,), Magia =
U(Msei1), Msars = U(Mseia),a=0,1,2,--- . If M, = Mgy for some a, with
a = 3n, then U = Ma, is an attractor of T and from the Proof above, U is a
common attractor for T, ¥, and ®. The same is true for a = 3n+1 or a = 3n+ 2.
Let us assume that M, # M, for all a € N, then

Hg(Msay1, M3saio, M3ays)

HG(T(M3a)a v (M3a+1) , @ (M3a+2))

MHg(Msg, M3ay1, Maay2) + Ao[Ha(Msa, Msq, T(Ms,)

+Hg(Msar1, Mzar1, ¥ (Msat1)) + Hog(Msato, Mzata, @ (Msei2))]

+A3[Ha (T (Msa), Maat1, Maar2) + Ha(Maa, ¥ (Maai1)  Maasi2)

+Ha(Msa, Maay1, ® (Mazar2))]

= MHg(Msa, Msat1, Msay2) + Xa[Ho(Maa, M3q, Mszai)
+He(Mazat1, Mzar1, Maata) + Ho(Maat2, Maata, Mazayis)]
+A3[Ha(Msat1, Maat1, Maata) + Ho(Msa, Maaya, Msaia)
+Hg(Msa, M3ay1, M3ays)]

IN
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< MHGMsa, Maast, Maaro) + Ae[Ha(Mse, Maat1, Msarz)
+Hg(Msg, M3ay1, Msay2) + Ho(Msar1, Mg, Maays)]
+A3[Hg(M3a, Mzat1, M3aya) + Ho(Msa, Mzart, M3ayz)
+H{He(Maa, Mzar1, Maare) + Ho(Maat1, Maatz, Maais) }H-

Thus, we have

(I=Xa—A3) Ho(Masai1, Maaio, Msars) < (AM42X0+3X3) Hg(Msa, M3ai1, Msarz).

Hence,
HG(MSa-i-la M3a+27 M3a+3) S )\HG(M3G,7 M3a+17 M3a+2)a
AL+ 2X + 3
where A\ = 11+ 3 2 +)\ 3, with 0 < A < 1. Using the same argument, it can be
— A2 — A3
shown that
Hag(Msaga, Msags, Msags) < AHg(Msaqr, Magqo, M3ays)
and

He(Masats, Msara, Maasrs) < AHa(Msara, Msays, Magia).
Thus, for all a,

HG(Ma—I—l; Ma+27 Ma+3) S )\HG (Maa Ma—i—l; Ma+2>
< e S Aa—’—l-[——lG (M())MDMQ)'

Now, we have for [, m,a, with [ > m > a,

HG(Mau Mma MZ) S HG(Mau Ma+17 Ma+1) + HG(MCH'l’ Ma+2’ Ma+2)
4+ 4+ H(;<Ml—17Ml—17Ml)

< Ho(Ma Mart, Miar2) + Ho(Muast, Miara, Miass)
+oo 4 Ho(My_g, Mi_1, M)

< NN L A2 H (Mo, My, M)

= ML A+ N+ N Hg (Mo, My, M)

< 1)j>\HG(MO,M1,M2).

We note that if | = m > a, we get similar results and if [ > m = a, then

>\a—1
1—X

He(Mg, My, M) < He(Mo, My, M,).
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as such, lim He(Mg, My, M;) = 0. Thus {M,} is a G-Cauchy se-

a,m,l——+o00

quence in C¢(W). Since (C¢(W), Hg) is a complete G-metric space, there exists

Ur € C5(W) such that lim M, = Uf, that is, lim Hg (Mg, Mas1, Mais) =
a—r 00 a—ro0

HG(UT’ Uy, Ul*)

To prove that Y(U;) = U, we claim in the contrary

He(Y(U), Mata, Msays) = Ha(T(U7), U (Msara), ® (Msayo))
AMHe (U}, M3as1, Msaso)
+Xo[Ho(UF, UF, Y(UF)
+Ha(Msar1, Mzar1, ¥ (Msag1))
+Hg(Msara, Msara,  (Msai2))]
+)\3[HG(T(UT),M3(1+17M3a+2)
+He (U7, ¥ (Msgs1) , M3as2)
+He(Uf, Mair, ® (Msag2))],

IN

that is,

He(Y(U7), Msasa, Msars) = MHa(Uf, Msar1, Msqso)
+Xo[Ha (U7, U, T(UY)
+Ha(Msay1, Msag1, Msay2)
+Hg(Msara, Mzara, M3zai3)]
+)\3[HG(T(U1*), Mg y1, M3ay2)
+He(Uf, M3aya, Maaa)
+He(Uf, Msas1, Msais)]

and taking the limit as a — 400, we get

He(Y(U7), U7, U7) < (Ao + ) Ha(Y(U7), UF, UY),

which is not possible. Thus Y(U;) = U;. In a similar manner we can show that

U(Ur) = U and ®(U7) = U;. Turning to uniqueness, we suppose that V; is
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another common attractor of T, ¥ and &, then

He(Up, Vi, Vi) = He(Y(U7),¥ (W), (1))

MHG(U7F, Vi, Vi) + Ao He (U5, U*, Y (U7)

+Ha(Vi, V1, (V1)) + Hg(Vi, Vi, @ (V1))]

+A3[Ho(Y(UF), Vi, Vi) + Ha(U7, ¥ (1), 1)

+He(U7, Vi, @ (V1))

= MHq(U; Vi, VA + Xo[Ha(UF, U, UF) + Ha(Vi, Vi, Vi)
+He(Vi, Vi, Vi)l + As[He (U7, Vi, Vi) + He(U7, Vi, Vi)
+He (U}, Vi, V1))

= (A +3X\3) Ho(U7, Vi, ),

IN

from which we conclude that Hg(UF, Vi, Vi) = 0 and thus U = Vi. Hence U} is

a unique common attractor of T, ¥, and . ]

Example 7.3.2. Let (W, G) be a complete G-metric space having W = [0, 5], and
G (w1, we, w3) = max{|w; — wa|, |wy — ws|, |wz — w;|} for all wy, we, ws € W. Let
Q1 =10,1], Q5 = [0,2], and Qf = [0,3] be subsets of W. Define ¢g* : U3_, OF —
Up—195, by

% fo<w <1
g*(wl) = % if 1 <w; <2
% if 2 <w; <3.
Observe that
9*(Q1) = [0,3] €0,2] = 93,
9*(93) = [0,3] € [0,3] = @3,

and

9°() = 10,11 € [0,1] = Q5.

Hence, Q7 U Q35 U Q3 is a cyclic representation of W with respect to ¢g*. Next,
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define 7, g% h}

(

fi(wr) =

g5 (wy) =

hi(wy) =

W — W by
% i 0<u
ZU_EIS if %Swl
% i 0<u
% if %Swl
% i 0<u
% if %SUM

<3

[y (wr) =
<1,
<3

g5 (wy) =
<1,
<3

hy(wy) =
<1,

\

w1

38

w1

34

w1

16

w1

14

w1

11

w1

7

if

if

if

if

if

D=

N =

AN
g
AN
N[ —=

IA
g
AN
N =

<1

Similar arguments as in Example confirm the validity of Theorem [7.3.2

holds.

Corollary 7.3.3. For a generalized cyclic G

-iterated function system

{W5 fa, gas haya € Ny} on a complete G-metric space (W, G), define the map-
pings f,g,h : W — W as in Remark|[7.3.1,. If some \, € [0,1) exists, such that
for any y1 € CE(W,),y2 € CY(Woy1) and ys € C¥(Ways), the following holds:

where

G (fyi, 9y2, hys) < Rygn(y1, Y2, Y3),

Rign(yi,y2,y3) = MHa(y1,y2,y3) + Aa[He (v, y1, f(y1)
+He (Y2, y2, 9 (v2)) + He(ys: ys, 1 (y3))]
+As[He(f (1), y2,93) + Ha(y1, 9 (y2) . y3)
+Hea(y1, y2, b (y3))]-

Then a unique common attractor for f, g, and h exists. Additionaly, for any initial

choice of uy € W, the sequence {uo, fug, gfuo, hgfuo, fhgfuo,---} converges to
an attractor of f, g, and h.
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Conclusion

The results in this thesis expanded the scope of iterated function system to non-
standard metric spaces, such as partial metric spaces, semi-metric spaces, and
G-metric spaces. The existence and uniqueness of attractors for single valued
mappings and like-wise common attractors for multi-valued mappings involving
a pair of self-mappings were established with the assistance of finite families of
contractive and generalized contractive mappings respectively, defined on a par-

tial metric space. The well-posedness of attractor based problems was confirmed.

With a broader class of cyclic contractive mappings, the Banach contraction
principle was extended to include non-continuous mappings, and useful results on
the existence and uniqueness of attractors were obtained. This was followed by
results in semi-metric space whose definition omits the triangle inequality. The

omission was remedied by working in a bounded Hausdorff semi-metric space.

Further investigations yielded some results for non-commutative mappings in
G-metric spaces. We culminated our work with a study of generalized iterated

function system of cyclic contractions in G-metric spaces.

It was shown that our results not only have applications in the field of dynamic
programming where they provide effective tools for solving functional equations,
but are very efficient in establishing the existence and uniqueness of solution to

integral equations.
Open Problems

There are some open problems for researchers that are working in the filed
of pure and applied mathematics. It is envisioned that, current work may be
extended by exploring iterated function systems of generalized contractions of
integral type on a framework of complete S-metric spaces [79]. One may expand
the applications to establish the existence and uniqueness of solution to Volterra
integral equation. We believe that characterizing iterated function systems in the
setting of parametric metric spaces will be an attractive open challenge. The find-

ings in this paper can be utilized to further research in more general spaces such
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as quasi metric spaces and controlled metric spaces. The existence of common
attractors of a finite set of generalized contractive mappings could be extended
to study generalized F-contractions and may also be extended to the problem of

Smyth completeness in quasi metric spaces.

It is also very interesting to generate fractals by employing finite family of
generalized contractions in the setup of varies generalized metric spaces such as

quasi metric spaces, controlled metric spaces and dislocated metric spaces.
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