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Abstract 

The objective of the thesis was two-fold: to investigate the potential of 

implicit modelling techniques for modelling geometallurgical parameters in 

mine planning and to generate synthetic geometallurgical data using 

Generative Adversarial Networks (GAN) models. Several geometallurgical 

parameters, including ore grade, Bond work index (BWI), rod mill index, rock 

quality designation (RQD), drop weight index (DWI), Axb, and Abrasion 

index (Ai), were modelled in this thesis using implicit and geostatistical 

methods, and their results were compared. 

To generate synthetic geometallurgical data, GAN-based models were 

used, namely, Conditional Tabular Generative Adversarial Network 

(CTGAN), Copula Generative Adversarial Network (CopulaGAN), and 

Gaussian Copula. The process was conducted in Python® using a Synthetic 

Data Vault (SDV) library, based on original geometallurgical data obtained 

from previous research papers, theses, and online databases. 

Geometallurgical block models were produced using implicit (Radial Basis 

Function) and geostatistical (Ordinary Kriging) methods and compared. The 

following software packages were used in this study. Leapfrog® Geo, 

Microsoft® Excel®, and Microsoft® Paint®. The results of the 

Geometallurgical Block Model (GMBM) were compared using parameters 

of mine planning, such as the grade-tonnage curve and resource 

estimations. 

In conclusion, the study found that the synthetic geometallurgical data 

generated in this research was of high quality and demonstrated that implicit 

modelling methods can improve the accuracy and efficiency of mine 

planning by modelling geometallurgical parameters. However, more 

research is recommended to explore other implicit-based methods, such as 

the potential field and the Hermite Radial Basis Function (HRBF). 

Keywords: Implicit modelling, geostatistical modelling, synthetic data 

generation, geometallurgy. 
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𝑄    Number of data points 

𝑓(𝑥)   Implicit potential field function 𝑘 − 𝑡ℎ 

𝑝(𝑥)    Low-degree polynomial. 

𝑝 = (𝑥, 𝑦, 𝑧)   Point in 2D/3D space. 

𝑠(𝑥)   Implicit radial basis field function 

𝜎   Number of gradient constraints 

𝜏 and 𝑡𝜇+𝜎+𝑙   Number of tangent constraints 
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Chapter 1 Introduction 

 

1.1 Background of the research 

Geometallurgy is a field of study that combines geology, engineering, 

economics, and environmental factors to maximize the benefits of mining 

while minimizing negative impacts (Bye, 2011; Ehrig, 2013; Dominy et al., 

2018). It is useful for improving mine planning and plant performance by 

gathering information on variations in metallurgical and mining 

characteristics (Garrido et al., 2018 & 2020). The incorporation of key 

metallurgical factors in orebody models helps to address processing 

difficulties and optimize mineral resources, leading to enhanced profitability 

(Philander and Rozendaal, 2013; Coward and Dowd, 2015; Ortiz et al., 

2015; Garrido et al., 2018; Lishchuk, 2018). 

Orebody models are computerized representations of geological data below 

the surface of the earth (Fallara et al., 2006; Birch, 2019). They provide 

valuable information for exploration and mining and are important for mine 

planning and other downstream mine practices (Cowan et al., 2003). Two 

types of methods are used to generate orebody models: explicit or 

traditional wireframe and implicit modelling (Jessell et al., 2014; Vollgger et 

al., 2015; Guo et al., 2018). Explicit models are created by manually drawing 

orebody outlines as individual cross-sections. In contrast, implicit models 

use mathematically derived surfaces in 3D space. Both methods have 

advantages and limitations. 

While orebody models have traditionally been based on geological grade 

factors, incorporating processing-related factors can also be important in 

determining the cost of mining and mineral projects. Recent studies have 

demonstrated the potential of implicit modelling in mine planning. For 

example, Hillier et al. (2014) used implicit modelling to create 3D geological 

models by integrating scattered multivariate data. Additionally, Stoch et al. 

(2018) used an implicit modelling method to create a detailed 3D model of 
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the entire mining volume of the Sishen mine. The method allowed for the 

development of continuous geological surfaces. 

Although the results of implicit modelling in mine planning are promising, 

more research is needed to fully explore their potential. Challenges still exist 

in selecting suitable interpolation functions and integrating complex data 

types such as geometallurgical data. This is because they are often under-

sampled in comparison to standard geological grade variables. This 

presents a challenge in incorporating them into resource models using 

traditional approaches (Hunt et al., 2013). Overall, the use of implicit 

modelling methods and geometallurgical models has become increasingly 

important in mine planning. This is because they seek to maximize the 

economic value of mineral deposits. This thesis aims to contribute to the 

growing body of literature on geometallurgy and mine planning. It does so 

by exploring the use of implicit modelling as a tool for modelling and 

predicting geometallurgical data. 

Generative Adversarial Networks (GANs) are a powerful tool for synthetic 

data generation (Salehi et al., 2020). GANs consist of a generator and a 

discriminator network that compete in a game-theoretic manner (Goodfellow 

et al., 2020). The generator aims to produce realistic synthetic data, while 

the discriminator distinguishes between real and generated data. Through 

iterative training, GANs learn to generate synthetic data that closely 

resembles real data. GANs have applications in data augmentation, privacy 

preservation, and addressing data scarcity (Hernandez et al., 2022). They 

open new avenues for creating high-quality synthetic data. They enhance 

training, testing, and exploration in machine learning application. Their 

adversarial training paradigm offers unprecedented potential for creating 

realistic synthetic data (Ganguly, 2017). 

To address this challenge, synthetic geometallurgical parameters were 

generated using a Generative Adversarial Networks-based model. The 

geometallurgical parameters were subsequently modelled using an implicit 

method and compared with geostatistical methods. The results from both 
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methods were then utilized to calculate mine planning parameters such as 

tonnage and volume of materials. Additionally, they were used to produce 

an orebody model that incorporates geometallurgical parameters. 

 

1.2 Problem statement 

Although geometallurgical variables are critical in the evaluation of the final 

cost of mining and mineral projects, orebody models have traditionally been 

based on geological grade variables. While some researchers (e.g., 

Dunham and Vann, 2007; Wambeke and Benndorf, 2014; Deutsch, 2015; 

Deutsch et al., 2016; Musafer and Thompson, 2017; Lishchuk, 2018; 

Navarra et al., 2018; Vieira and Costa, 2018; Abildin et al., 2019; Addo 

Junior, 2019) have all incorporated geometallurgical parameters into their 

orebody models, the potential of using implicit modelling methods to model 

geometallurgical parameters have still not been explored. 

Furthermore, researchers such as Garrido et al. (2018 & 2020) and 

Lishchuk (2018) have highlighted how access to real geometallurgical data 

is very limited in practice. This is due to confidentiality restrictions and/or 

budget limitations as undertaking geometallurgical analysis of samples is 

quite expensive. This has made it difficult for practitioners, researchers, and 

students to test models, conduct research and reproduce results in the field 

of geometallurgy (Garrido et al., 2018). 

The use of synthetic data has become increasingly popular in 

geometallurgical practices. However, there are only a few research studies 

available in the literature that focus on the generation of synthetic 

geometallurgical data (Garrido et al., 2018, 2020; Lishchuk, 2018). 

Furthermore, there is a lack of research that specifically investigates the use 

of Generative Adversarial Networks (GAN) models for generating synthetic 

data for geometallurgy. As a result, there is a knowledge gap regarding the 

application of implicit modelling methods for modelling geometallurgical 

data and the use of GAN models for generating synthetic geometallurgical 
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data. Therefore, this thesis aims to fill this knowledge gap by exploring the 

application of implicit modelling methods for modelling geometallurgical 

data. Additionally, it aims to use GAN models to generate synthetic 

geometallurgical data. 

 

1.3 Aim and objectives of the research 

Implicit modelling methods offer numerous advantages over explicit 

modelling methods, including faster computation, automation, and the 

ability to update geological models with new data. Consequently, there is a 

growing interest in utilizing implicit algorithms to model geometallurgical 

data. Traditionally, orebody models focused primarily on geological grade 

variables, but the significance of geometallurgical parameters has been 

increasingly recognized in recent years in mine planning. These parameters 

have a substantial impact on the cost and value of extracted minerals, 

making them crucial for effective mine planning (Bye, 2011; Dominy et al., 

2018; Lishchuk, 2018; Dehaine et al., 2021). However, the potential of 

employing implicit modelling methods to incorporate geometallurgical data 

into orebody models remains largely unexplored. Therefore, there is a 

pressing need for research and investigation into the capabilities of implicit 

modelling in integrating geometallurgical data effectively. 

The objective of this doctoral study is to utilize Generative Adversarial 

Network (GAN) models to generate synthetic geometallurgical data. 

Additionally, the study aims to explore the potential of implicit modelling 

methods in the context of modelling geometallurgical parameters for mine 

planning. The ultimate goal is to improve the accuracy and efficiency of mine 

planning by incorporating geometallurgical parameters. The specific 

research objectives were set as follows. 

• To generate synthetic geometallurgical data using GAN-based 

models for geometallurgical modelling. 
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• To model the geometallurgical data using an implicit method and 

compare the results with traditional geostatistical methods. 

• To develop an orebody model that incorporates geometallurgical 

data using the results of the implicit modelling approach and evaluate 

its application in mine planning. 

Based on the information presented above, the primary research question 

for this thesis is whether a modelled orebody generated using implicit 

modelling can be as complex and useful for mine planning as models 

generated using geostatistical modelling. To answer this question, 

geometallurgical parameters were modelled using both implicit and 

geostatistical methods, and the results were compared. A geometallurgical 

block model was generated from the results and used to calculate 

parameters for mine planning. This study further provides insights into the 

use of implicit modelling for geometallurgical modelling and to evaluate its 

potential for generating useful and complex orebody models. 

 

1.4 Scope and limitations of the research 

The scope of this thesis is to model geometallurgical parameters using the 

implicit method, specifically the radial basis function (RBF) method. The 

study focuses on seven parameters, namely ore grade, Bond work index 

(BWI), rod mill index, rock quality designation (RQD), drop weight index 

(DWI), Axb and abrasion index (Ai). These parameters are important in mine 

planning and are mostly available in literature. The study relies exclusively 

on historical geometallurgical data and data published in previous research 

work or shared by other researchers (Mboyo, 2018; Dehaine et al., 2021; 

Mambwe et al., 2022). This is due to the cost and time required for 

undertaking a real geometallurgical program. 

However, the limitations of the thesis include the narrow focus on a limited 

set of geometallurgical parameters, which may not represent the entirety of 

variables relevant to mine planning. Moreover, the study exclusively relies 
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on the RBF method due to software constraints (Cowan et al., 2011; Birch, 

2014; de la Varga et al., 2019; Grose et al., 2021). This may limit the 

generalizability of the findings to other implicit modelling methods. Finally, 

the use of synthetic data to validate the model may have limitations in 

accurately capturing the variability and complexity of real-world data. 

 

1.5 Contribution to the body of knowledge 

The contribution of the body of knowledge in this thesis is significant in 

several ways. Firstly, it fills the gap in knowledge regarding the use of 

implicit modelling methods for geometallurgical modelling. This is important 

because, as noted earlier, the potential of using implicit modelling methods 

to model geometallurgical parameters has not been explored, and this has 

limited the ability of practitioners, researchers, and students to test models, 

conduct research, and reproduce results in the field of geometallurgy. 

Secondly, the thesis provides a methodology for generating synthetic 

geometallurgical data using GAN models. This is important because the 

limited access to real geometallurgical data due to confidentiality restrictions 

and budget limitations (Garrido et al., 2018) has made it difficult for 

researchers to test models and conduct research in this field. The use of 

synthetic data provides a means of overcoming this challenge, and the 

methodology presented in this thesis can be useful for future research in 

geometallurgy. 

Thirdly, the thesis contributes to the understanding of the level of complexity 

and usefulness of models generated using implicit modelling methods 

compared to geostatistical modelling methods for mine planning. This is 

important because mine planning requires accurate and reliable models that 

can guide decision-making processes. The results of this study provide 

insights into the strengths and limitations of both modelling methods, and 

this can help practitioners to make informed decisions regarding the choice 

of modelling method for their specific needs. 
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Overall, the contribution of the body of knowledge in this thesis can improve 

the understanding and practice of geometallurgy and can help to enhance 

the accuracy and reliability of models used in mine planning. 

 

1.6 Organization of the thesis 

This section outlines the structure of the thesis as well as the material 

covered in each chapter. 

This thesis is organized into eight chapters. Chapter 1 introduces the 

background and context of the study, presents the objectives and motivation 

for the study. 

In Chapter 2, a thorough literature review was conducted on various 

synthetic data-generating methods and implicit and geostatistical modelling 

methods. The review identified a research gap which this study aimed to 

address. The chapter also presented an in-depth discussion of Generative 

Adversarial Networks (GAN), geometallurgical block modelling, and implicit 

orebody modelling. Additionally, the chapter discussed the successful 

applications of these models in generating synthetic data and orebody 

modelling. 

Chapter 3 explains the methodology adopted for synthetic data generation 

and geometallurgical modelling using implicit and geostatistical methods. 

The methodology covered the type of GAN models used, and the steps 

followed in python to generate the data. The method also includes the steps 

followed when modelling geometallurgical data using implicit and 

geostatistical methods. 

Chapter 4 presents the results of synthetic data generation, while Chapter 

5 presents the results of implicit modelling of geometallurgical parameters. 

Chapter 6 provides the results of the geostatistical modelling of 

geometallurgical data. 



 
 

8 

 

Chapter 7 presents a comparison of implicit and geostatistical methods and 

their application in mine planning. 

Finally, Chapter 8 summarizes the main conclusions and provides 

recommendations for further research. 
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Chapter 2 Literature review 

 

2.1 Introduction 

Implicit modelling techniques have gained significant attention in the mining 

industry as a powerful tool to create three-dimensional (3D) geological 

models, particularly when dealing with complex orebodies. In recent years, 

there has been a growing interest in applying implicit modelling techniques 

to orebody modelling. This provides a more comprehensive understanding 

of the ore deposit and facilitates better decision-making in mine planning 

and mineral processing. 

This chapter provides a review of Generative Adversarial Networks (GAN) 

as a synthetic data generator for geometallurgical data. The review covers 

the fundamentals of GAN, including its architecture and training process. It 

also covers different types of GAN methods used in generating tabular data. 

Additionally, the basis of the implicit modelling method and its application 

orebody are reviewed. The literature review covers various aspects of 

implicit modelling. This includes the definition of implicit modelling, its 

advantages and disadvantages over other modelling methods, and the 

different methods used in implicit modelling. The review also explores the 

applications of implicit modelling in the mining industry, with particular 

emphasis on orebody modelling. The other modelling methods reviewed in 

this chapter are the explicit methods and the geostatistical methods. Past 

work is also reviewed to highlight the successful application of implicit 

modelling in the mining industry. 

This literature review offers a thorough examination of the current 

advancements in synthetic data generation and implicit modelling. The main 

emphasis is on the utilization of GAN-based models and implicit methods 

for the purpose of generating synthetic and modelling geometallurgical data. 

The insights gained from this review serve as the foundation for the 

subsequent chapters of the thesis, where the focus shifts towards exploring 
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the practical application of these methods in the context of modelling 

geometallurgical data. 

 

2.2 Synthetic data generation 

Synthetic data is created using a mathematical model and algorithm that 

copies the characteristics of real data with the intention to solve data 

science problems (Assefa et al., 2020; Jordon and Weller, 2022). Wu et al. 

(2019) and Keylock (2019) show how synthetic data can be used to solve 

data science issues. Wu et al. (2019) used synthetic data to enhance the 

accuracy and robustness of fault segmentation by training an end-to-end 

convolutional neural network (CNN). Keylock (2019), on the other hand, 

proposed using synthetic data for hypothesis testing in geosciences. This 

approach addresses the limitations of traditional methods, such as limited 

data sample size and difficulty in obtaining independent data. 

The creation of synthetic data can be achieved through three methods. 

These are through perturbing real data, combining attributes from real data, 

and generating data from a defined distribution (Brenninkmeijer, 2019). In 

recent years, a new method known as Generative Adversarial Network 

(GAN) was introduced by Goodfellow et al. (2014). GANs are a type of 

generative deep learning technique that utilizes artificial neural networks. 

One of the key features of GANs is that the generative component does not 

have direct access to the original data during training. This allows for the 

production of synthetic data without the risk of directly interacting with the 

original data, which could reduce the potential for disclosure (Little et al., 

2021). 

Since their introduction, GANs have been applied in a variety of fields 

including medicine (Norgaard et al., 2018; Hernandez et al., 2022), finance 

(Assefa et al., 2020), and machine learning (Sivakumar et al., 2022). 

However, the majority of these applications have been limited to the 

generation of synthetic image data. 
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Several branches of GANs based models have emerged over the years to 

generate table-based datasets rather than images. These models for 

tabular data generation include Conditional Generative Adversarial 

Networks (CTGAN) (Xu et al., 2019), Tabular Generative Adversarial 

Networks (TGAN) (Park et al., 2018; Xu and Veeramachaneni, 2018), 

Gaussian Copula Model (Patki et al., 2016a), and Copula Generative 

Adversarial Network Model (CopulaGAN) (Patki et al., 2016b). The 

aforementioned models for generating tabular data are discussed further in 

the subsequent sections. 

 

2.2.1 Generative adversarial networks 

Generative Adversarial Networks (GAN) are a powerful form of neural 

network that employs an innovative approach to unsupervised learning 

(Salehi et al., 2020). GANs can generate realistic samples by discovering 

underlying structures, learning patterns and rules from the real data 

distribution (Ganguly, 2017). Since their inception as a concept for semi-

supervised and supervised learning, GANs have attracted considerable 

attention. They are now considered as one of the most interesting 

developments in data generation over the years (Goodfellow et al., 2014; 

Hernandez et al., 2022). 

The framework of a GAN is made up of two parts: a model that creates data 

and another model that checks if the data is real (original) or fake (synthetic). 

The second model gets better at telling if the first model is made of real or 

fake data as it goes along. The two models keep improving until the fake 

data made by the first model is so good that the second model cannot tell if 

it is real or fake (Salehi et al., 2020). Figure 2.1 illustrates how GANs 

generate fake data using two components: a generator and a discriminator. 
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Figure 2.1: Example of a generative adversarial network architecture (Little 

et al., 2021) 

Goodfellow et al. (2014) stated that the discriminative and generative 

models in GANs are typically implemented as multilayer neural networks. 

These networks are trained using algorithms such as backpropagation or 

dropout. The backpropagation and dropout algorithms are used to help the 

neural network learn from data and make accurate predictions on new data. 

In GAN frameworks, training is performed alternately with the discriminator 

being trained while the generator is kept constant and vice-versa. As such, 

the discriminator can be thought of as a supervised classification model. 

The discriminator in GANs (see Figure 2.1) takes in batches of labelled real 

and generated data samples, and produces a single output for each sample, 

representing the probability that it came from the real data distribution rather 

than being generated by the generator (Little et al., 2021). 

The next three sub-sections discuss the CTGAN, CopulaGAN, and 

Gaussian Copula models respectively. These three models are all based on 

the GAN framework. 
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2.2.2 Conditional tabular generative adversarial network 

Zhang et al. (2021) have shown that GAN models are effective in various 

machine-learning applications, including tabular data generation. The 

conditional tabular generative adversarial network (CTGAN) is a GAN-

based method specifically designed to model tabular data distributions and 

sample rows from them. The CTGAN method was developed to improve 

how tabular data is modelled using a type of artificial intelligence called 

GANs (Xu et al., 2019). In order to make this process more effective, 

CTGAN includes several important improvements including mode-specific 

normalization. This process converts continuous values into a bounded 

vector, which is a more suitable format for neural networks. When a model 

is being trained, the data used to train it must be diverse and balanced. One 

way to achieve this is to ensure that all the categories in columns that 

contain categorical data (such as colours, types of products, etc.) are evenly 

represented in the training data (Bourou et al., 2021). This means that the 

model is exposed to an equal amount of each category, which can help it 

learn to make accurate predictions across all categories. 

The CTGAN method uses a type of data representation called a one-hot 

encoded conditional vector. This enables the model to condition the value 

of a specific column during the generation process. 

In terms of architecture, the CTGAN model also includes a generator as 

shown in Figure 2.1. This generator is designed to create new data based 

on random noise and the one-hot encoded conditional vector. The model 

uses this information to learn and generate synthetic data that matches the 

desired conditional value. 

During the training process, CTGAN uses a loss function called Wasserstein 

GAN (WGAN) with a gradient penalty to improve the accuracy of the model 

(Xu et al., 2019). The GAN model includes a critic, which evaluates the 

generated data by measuring the distance between the learned (generated) 

distribution and the real distribution (Bourou et al., 2021). This is done to 
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ensure that the generated data is accurate and representative of the original 

dataset. 

 

2.2.3 Copula generative adversarial network 

Copula Generative Adversarial Network (CopulaGAN) refers to a variation 

of CTGAN where the cumulative distribution function transformation is 

applied via GaussianCopula while the network attempts to learn the 

correlations between columns in a table (Patki et al., 2016a; Cullen et al., 

2022). 

The CopulaGAN model utilizes a transformation based on the cumulative 

distribution function, using Gaussian Copula, to learn the data types and 

format of the training data. Copulas describe the intercorrelation between 

random variables. During the training procedure, non-numerical and null 

data are transformed using reversible data transformation (Patki et al., 

2016b). This process creates a fully numerical representation from which 

the model can learn the probability distributions of each table column. This 

approach allows CopulaGAN to learn the data easily and accurately 

(Bourou et al., 2021). It should be noted that the CopulaGAN is implemented 

and included in the synthetic data vault (SDV) open-source library. 

 

2.2.4 Gaussian copula model 

The Gaussian Copula model is a statistical model used in synthetic data 

generation that describes the correlation between variables in a dataset 

(Patki et al., 2016a). It is particularly useful for modelling complex 

dependencies between variables, such as those found in financial data or 

other complex systems. 

In the context of synthetic data generation, the Gaussian Copula model is 

often used as a component of a larger generative model such as 

CopulaGAN or CTGAN (Meyer et al., 2020; Benali et al., 2021). These 
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models use the Gaussian Copula to describe the correlation between 

variables. Once the correlation is modelled, other techniques are used to 

generate synthetic data that follow the same statistical patterns as the 

original dataset (Patki et al., 2016a; Bourou et al., 2021). 

The basic idea behind the Gaussian Copula model is to transform the 

marginal distributions of each variable in the dataset into a standard normal 

distribution (Meyer et al., 2020). After the transformation, a copula function 

is used to describe the correlation between variables. The copula function 

takes as input the marginal distributions of each variable and produces a 

joint probability distribution that describes the correlation between the 

variables (Patki et al., 2016a). 

The Gaussian Copula model has been used in a variety of applications, 

including risk management, finance, and insurance. Copula-based synthetic 

data generation is useful for preserving the privacy and confidentiality of the 

original data. It can also generate synthetic data that closely resembles the 

statistical patterns of the original dataset (Patki et al., 2016b). 

 

2.2.5 The synthetic data vault 

The Synthetic Data Vault (SDV) is an open-source library that was 

developed by Patki et al. (2016b). It can be accessed at 

https://sdv.dev/SDV/index.html (last accessed on June 11, 2022). The 

library uses a three-step process. First, the data navigator extracts relevant 

information from the dataset. Then, the modeller creates generative models 

of the input, and finally, the sampler generates synthetic rows of data 

(Hittmeir et al., 2019). The data is provided in comma-separated-value 

(CSV) files, while its structure and data types are specified in a Javascript-

Object-Notation (JSON) file. 

This section reviewed the fundamental principle of GAN-based models, 

which highlights their potential to generate high-quality geometallurgical 

data. These models can be utilized to generate synthetic geometallurgical 

https://sdv.dev/SDV/index.html
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data that can be useful in mining. The subsequent section will discuss some 

of the methodologies used in generating synthetic geometallurgical data. 

 

2.2.6 Successful use of synthetic data generated for geometallurgical 

purposes 

There seems to be a scarcity of published research on the generation of 

synthetic data for geometallurgical purposes. The existing research on 

methodologies for simulating geometallurgical block models appears to be 

limited, with notable contributions found in the works of Lishchuk (2018) and 

Garrido et al. (2020). These studies report cases where synthetic data was 

generated for use in geometallurgical applications. 

The first application is the thesis by Lishchuk (2018) in which he proposed 

a methodology, termed geometallurgical testing framework, for building a 

synthetic ore deposit model for data integration. This framework was done 

by using a synthetic deposit, mine production constrained by a mine plan, 

and a simulated beneficiation process. According to the thesis, the Synthetic 

Deposit Module utilizes a three-dimensional voxel model and database to 

describe its features. The primary function of the module is to define the 

boundaries of the deposit and assign geological, mining, processing, and 

economic characteristics to each voxel in the model. 

As shown in Figure 2.2, the synthetic orebody model is comprised of two 

modules: the synthetic deposit module and the synthetic sampling module. 

Each of these modules consists of a spatial component that takes into 

account the location of every point in a physical space. Additionally, there is 

a database that stores non-spatial quantitative and qualitative data for each 

point. The spatial and non-spatial data are linked using a unique 

identification number allocated to each point in the physical space and a 

corresponding record in the database. Both the deposit module and the 

sampling module databases have identical metadata. They also contain the 

same kind of information including elemental composition, mineralogy, 
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recoveries, throughput, mining costs, value, and so on. For each block 

within the synthetic deposit and for each segment of a synthetic drill core. 

 

Figure 2.2: Structure of the synthetic orebody model (Lishchuk, 2018) 

A mine production plan was created using the synthetic deposit model to 

generate a simulated process feed. The process feed contained information 

on modal mineralogy, the chemical composition of minerals, grain size, and 

specific gravity. This type of information is known to be necessary for a 

beneficiation process simulation. Using the synthetic system, the benefits of 

a geometallurgical program developed for actual cases were evaluated. 

This strategy offers a lot of flexibility compared to production analysis which 

is only optimized for the head grade. Other advantages include a 

dependable sampling strategy and confidence in the forecast of feed quality 

for economic assessment. Most importantly, Lishchuk (2018) found the 

synthetic deposit model to be a suitable tool for the evaluation of various 

geometallurgical scenarios. 

The second case is a research paper by Garrido et al. (2020) who proposed 

a geostatistical methodology for simulating synthetic geometallurgical block 
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models. The steps involved in the approach are listed below while 

associated tools are summarised in Figure 2.3: 

1. Identification of variable types. 

2. Generation of a consolidated database. 

3. Simulation of geological primary variables: 

a. Definition of geometallurgical domains. 

b.  Simulation of domains. 

c. Compositional geostatistical simulation of minerals.  

d. Geochemical simulation. 

4. Simulation of geometallurgical responses 

a. Simulation of variables for comminution process 

b. Simulation of variables for flotation process 

5. Simulation of spatial drillholes 

a. Topographic simulation 

b. Simulation of density of drillholes 

c. Survey and length simulation 

 

Figure 2.3: Global methodology and tools for each stage (Garrido et al., 

2020) 
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Garrido et al. (2020) showed that the simulated geometallurgical drillholes 

that were generated through the methodology are realistic. The 

methodology exhibits consistency with respect to input statistics, geology, 

and mineralogy. It also generates authentic processing metallurgical 

performance responses. The generated data can be used to evaluate and 

compare different geometallurgical modelling methods and mine planning 

optimization solvers as well as perform risk assessments based on various 

blending schemes. Moreover, the datasets created are openly available in 

a public repository. The proposed methodology also provides a clear and 

understandable way of simulating synthetic geometallurgical data, and any 

algorithm that follows this methodology is likely to perform well. However, if 

other algorithms are used that are not aligned with this methodology, their 

performance may be poor. This is a limitation of any simulation method, as 

the accuracy and effectiveness of the simulations are closely tied to the 

underlying assumptions and algorithms used in the model. 

As highlighted in this section, it is possible to generate synthetic 

geometallurgical datasets that are realistic and that can be used to test 

various mine planning scenarios. This can be done by voxel simulation 

using mathematical functions (Lishchuk, 2018) and by simulation using 

geostatistics (Garrido et al., 2020). One drawback of these simulation 

methods is that their accuracy and effectiveness are tied to the underlying 

assumptions and the algorithms themselves. This means that if the 

methodology is not followed correctly, the results may be poor. However, 

GAN-based models may solve this issue as they learn the structure of the 

dataset first before producing synthetic data. The generated 

geometallurgical data can be used to create block models. This is presented 

in the next section. 

 

 

 



 
 

20 

 

2.3 Geometallurgical block modelling 

This section provides an overview of the fundamental principles of 

geometallurgical block modelling, the processes involved in generating a 

block model, and a summary of their applications in geometallurgical block 

modelling. A geometallurgical block model is typically a 2- or 3-dimensional 

block model enriched with geometallurgical parameters (Dunham and 

Vann, 2007; Deutsch et al., 2016; Garrido et al., 2018; Lishchuk, 2018). 

 

2.3.1 Basic principles of block modelling 

A block model represents a mineral deposit and its surroundings in a 

simplified manner, created using computer-generated "bricks" or cells that 

reflect small volumes of ore and waste rock (Poniewierski, 2019). It is a 

subdivision of an ore deposit into smaller blocks of dimensions determined 

according to required parameters (e.g., lithology, hydrogeology, dominant 

foliation/bedding orientation, shear strength) (Creus et al., 2019). These 

cells contain estimates of geological attributes such as elemental grade, 

density, and mineral composition. The block model is constructed by 

georeferencing the orebody model. It is then divided into fixed-size blocks 

using a model framework that describes the rectangular area in which the 

cells are located (Abzalov, 2006). 

The position of each block can be determined by the coordinates of its 

centroid or the vertex closest to the framework origin. The dimensions of 

each block may remain constant or vary depending on the structure of the 

orebody. Figure 2.4 shows a model framework used in block modelling, 

which includes an origin distance and specific unit lengths and directions for 

each axis. 
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Figure 2.4: Example of a block model (Poniewierski, 2019). 

To build the geological block model, the desired properties from drill core 

samples are transferred or interpolated into the blocks. This process is 

commonly known as Kriging, where local properties from the drill core 

samples are propagated throughout the orebody (Dominy et al., 2018; 

Poniewierski, 2019; Adeli et al., 2021). The basic principle of Kriging is 

reviewed in the next section. 

 

2.3.2 Basic principle of kriging 

Kriging, also known as Gaussian process regression, is a widely used 

spatial interpolation technique that considers each input as a random 

variable. The main objective is to minimize the covariance function in order 

to obtain the best linear unbiased predictor (Matheron, 1981; Cressie, 1990; 

de la Varga et al., 2019). Kriging generates weights from surrounding 

measured values to predict values at an unmeasured location. The 

technique was first introduced by Danie Krige, a South African mining 

engineer in the 1950s (Myers and Armstrong, 2000; Webster and Oliver, 

2008). Since then, Kriging has been applied in various fields including 

mining, geology, geography, ecology, and environmental science (Zůvala et 

al., 2016). 
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Kriging is founded on the notion that the spatial autocorrelation of the data 

can be represented mathematically by a variogram (Myers and Armstrong, 

2000; Chilès and Desassis, 2018). This variogram is used to calculate the 

spatial covariance between data points separated by varying distances and 

directions. These estimates are then used by the Kriging method to 

interpolate the data at unsampled locations and estimate the ambiguity of 

the interpolated data (Matheron, 1981; Myers, 1992). 

Kriging differs from traditional interpolation methods in two ways. First, it 

predicts the value of a function at any unsampled location. Second, it 

provides an estimate of the predicted value's uncertainty at that unsampled 

location (the Kriging variance) (Cressie, 1990). Another appealing feature 

of Kriging is its ability to generate highly complex functional landscapes from 

a small number of sample locations (Myers, 1982; Chilès and Desassis, 

2018). Kriging is extremely popular as a surrogate model due to this 

characteristic. The location of the samples determines the quality of a 

Kriging-based surrogate model, and deciding the sampling locations is an 

open question. Strategic sampling schemes are techniques that aim to 

answer this question. 

Kriging is expressed as: (Cressie, 1990; Myers, 1992; Chilès and Desassis, 

2018; Chung et al., 2019): 

𝑍k
∗ =  ∑ 𝜆𝑖𝑍𝑖

𝑛
𝑖=1         (2.1) 

Where 𝑍𝑘
∗ is the estimated value of the variable at the location of interest 

(𝑘). 

𝜆𝑖 is the weight assigned to the measured value 𝑍𝑖 at location 𝑖 

∑𝜆𝑖 = 1 (The sum of weights equals 1). 

Figure 2.5 provides an example of grade estimation for drillhole data, 

illustrating Kriging in action. In this example, drill core samples are 

characterized and recorded in a geological database that includes the 

spatial locations of each segment based on the collar and in-situ orientation 
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of the drill core. Equation (2.1) is then utilized to interpolate and estimate 

the grade of the mineral or ore where drillhole data is not available. 

 

Figure 2.5: Grade estimation with exploratory boreholes Kriging method 

(view to the North) (Mousavi, 2022) 

There are several types of Kriging methods: Ordinary Kriging, Simple 

Kriging, Universal Kriging, and Indicator Kriging available (Deutsch and 

Journel, 1998). Each method has its assumptions and limitations, and the 

choice of method depends on the nature of the data and the objectives of 

the analysis. The following sections highlight the principles of Simple Kriging 

(SK) and Ordinary Kriging (OK). 

 

2.3.3 Simple kriging 

The Simple Kriging (SK) is a fundamental but limited approach that can be 

utilized for constructing a geological block model. It is based on the 
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assumption that the average value 𝑚 of the stationary random variable is 

unchanging and already known before the Kriging process (Deutsch and 

Journel, 1998).  

The basic equation used in SK can be expressed as follows (Rojimol, 2013): 

𝑍𝑆𝐾
∗ (𝑥) = 𝑚 +  ∑ 𝜆𝑖[𝑍(𝑥𝑖) − 𝑚]𝑛

𝑖=1       (2.2) 

Where 𝑍(𝑥𝑖) is the value of a random variable at 𝑖𝑡ℎ location. 

𝑛 is the total number of data locations. 

𝜆𝑖 is the Kriging weight for the measured value to be determined. 

𝑚 is the mean value of the stationary variable. 

The SK method is used to estimate the deviations from a known reference 

value ω. Therefore, it is also known as "Kriging with known mean" in some 

contexts (Wackernagel, 2003). SK is an exact interpolator that assumes the 

Kriging weights 𝜆𝑖 are unbiased in the estimation of the residuals. It also 

uses the average of the entire dataset while the values of the weights do 

not sum to unity. This is why SK is less accurate than Ordinary Kriging but 

produces a smoother result (Rojimol, 2013). 

 

2.3.4 Ordinary kriging 

The Ordinary Kriging (OK) method is a type of non-stationary algorithm that 

estimates a constant mean value (Rojimol, 2013). In this technique, a 

location-dependent estimate of the mean is computed by moving search 

neighbourhoods. What sets OK apart from other Kriging methods is that it 

treats the trend component of the variable as an unknown local constant 

within the area being interpolated as noted by Lundqvist (2022). This 

distinguishes it from Universal Kriging which permits the mean to vary with 

location. 

Mathematically, OK is defined as follows (Deutsch and Journel, 1998): 

𝑍𝑂𝐾
∗ (𝑥) =  ∑ 𝜆𝑖(𝑥). [𝑍(𝑥𝑖) − 𝑚(𝑥)]𝑛

𝑖=1      (2.3) 
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Where 𝑚(𝑥) = 𝐸{𝑍(𝑥)] is the location-dependent expected value of 𝑍(𝑥) 

and 𝜆𝑖(𝑥) is the estimated Kriging weight. 

 

2.3.5 A note on geometallurgical block models 

Traditional geostatistical methods such as SK and OK are mainly used to 

construct block models in terms of grade (Lotfolah Hamedani et al., 2012). 

In this case, the block models produced are spatial grade distribution 

models of mineral deposits also known as grade models. In contrast, 

geometallurgical block models are expected to display the distribution of key 

metallurgical and mining parameters including grade throughout the 

orebody. 

These additional attributes are informed by the requirements underpinning 

the financial analysis and planning of mining projects. Incorporating 

geometallurgical modelling into 3D block models and mine planning yields 

a comprehensive approach for quantifying inherent geological variability, 

thereby enabling a better understanding of its impact on metallurgical 

performance and mine economics. 

This method facilitates the quantification of geological variations and helps 

in evaluating their effects on the efficiency and profitability of the mine. It 

also serves as the foundation for several other benefits, such as enhancing 

energy efficiency, mitigating technical risk, optimizing the economics of 

mineral production, and maintaining sustainable mine development (Adeli 

et al., 2021). 

Coward and Dowd (2015) explained that geometallurgical modelling is 

about identifying the variables required to understand critical process 

responses. And as stated by Dominy et al. (2018), geometallurgical 

modelling is also about sampling and measuring these variables, 

developing techniques to estimate and simulate them spatially at the correct 

scale, and incorporating their respective values into a block model. 
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From the above, it is evident that samples, drill cores, and block models 

constitute the three main units in geometallurgical modelling (Lishchuk, 

2018). However, the modelling exercise itself is concerned with the 

variability of process parameters. In a highly heterogeneous orebody, this 

exercise is usually involving but can be simplified by what is known as 

domaining. This is the delineation of the continuous areas with 

homogeneous processing or geological properties (David, 2007; 

Sanchidrián et al., 2012). 

The description of the variability of process parameters within an orebody 

or a domain is done by classifying the ore samples, drill core samples or 

blocks in a block model. The classification procedure assigns process 

properties to the block based on the geological properties of the block. 

These properties include elemental grade, mineral grade, grain size, 

lithological type, colour, and specific gravity amongst others. 

In the preceding section, the importance of geometallurgical block models 

in mining was highlighted. Although geostatistical methods are commonly 

used to build block models, there are other methods available in orebody 

modelling, including explicit and implicit modelling methods. The next 

section will explore these methods in more detail. 

 

2.4 Orebody modelling 

An orebody model is a comprehensive representation of a mineral deposit, 

which provides a detailed understanding of its geometry, mineral content, 

and grade distribution (Roy et al., 2000). It is an essential tool used by 

mining engineers and geologists to make informed decisions on mine 

planning, design, and optimization. The model is created using data from 

various sources, including drilling, geophysics, and geology, and can be 

updated as new information becomes available. 

The accuracy of the orebody model is critical, as it directly affects the overall 

economic viability of a mining project. The concept of orebody modelling 
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has been widely studied and discussed in the mining industry, with several 

peer-reviewed publications highlighting its importance (Lotfolah Hamedani 

et al., 2012; Powell, 2013; Wang et al., 2016). For example, an orebody 

model plays a crucial role in the estimation of ore reserves and the 

optimization of mining operations (Chanderman, 2017; Abuntori et al., 

2021). 

Two techniques are commonly used in the creation of the orebody model. 

These are explicit, also known as geometric modelling and implicit 

modelling (Cowan et al., 2002 & 2003; Birch, 2014; Jessell et al., 2014; 

Vollgger et al., 2015; Guo et al., 2020). The mining industry's current usage 

of the terms "implicit" and "explicit" originated from the paper by Cowan et 

al. (2003). This section provides an in-depth review of two techniques, their 

respective advantages and disadvantages as well as their applications in 

orebody modelling. 

 

2.4.1 Explicit orebody modelling 

An explicit/traditional orebody model is created by using a type of modelling 

method called a wireframe. Wireframes refer to Sectional polylines that are 

tied in three-dimensions and are an ambiguous representation of a solid 

volume (Cowan et al., 2011). This design is based on information gathered 

from the geological logging of boreholes (Birch, 2014). 

Cowan et al. (2003) considered a wireframe model to be a straightforward 

method. The shape of the orebody is drawn by hand, piece by piece, based 

on the information gathered from the drilling holes. This creates a model of 

the orebody that shows the arrangement of different parts of the orebody 

(Figure 2.6). The orebody is then divided into sections and the sections are 

connected by strings to make the wireframe. 
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Figure 2.6: Process of creating an explicit orebody model (Abdollahi Sharif 

et al., 2020) 

Despite its appeal, explicit modelling has a lot of drawbacks. Firstly, it is 

important to carefully check this method for any errors, such as cross-over 

lines or gaps (Kentwell, 2019). These errors can prevent the model creation 

software (such as Datamine®) from filling the wireframe with blocks for 

evaluation (Birch, 2014). The amount of data, the complexity of the 

geological features, the level of detail desired in the model, and the 

orientation of the model parts all significantly impact explicit modelling 

(Stoch et al., 2018). Creating the wireframe by hand and linking the cross-

sections requires a lot of simplification of the design (Cowan et al., 2002 & 

2003; Jessell et al., 2014), which may not accurately reflect the geological 

or structural complexities (Vollgger et al., 2015). 

The manual digitization process is time-consuming and labour-intensive. 

Additionally, the final model is unique to each geologist's interpretation, 

making it nearly impossible to reproduce the same model by different 

geologists (Cowan et al., 2003). Making changes or adding to the model 

requires intricate and time-consuming manipulation, which results in models 

that are not frequently updated. As a result, orebody models cannot easily 

be modified when new or updated data becomes available. Birch (2014) 

acknowledged the drawbacks of the traditional modelling technique. To 
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address these limitations, a new method for orebody modelling was 

proposed called implicit modelling. 

 

2.4.2 Implicit orebody modelling 

The concept of implicit modelling was first introduced in computer graphics 

literature (Bloomenthal et al., 1997). It refers to the creation of 

mathematically derived surfaces in three-dimensional space (Caumon et 

al., 2013). Implicit modelling eliminates the problem of the segment-based 

method giving biased results. This results in smooth and more accurate 

cross-sections of any orientation within the modelled orebody, unlike explicit 

modelling. Implicit orebody modelling is a technique that creates and 

updates orebody models from borehole data, outcrop data, manually 

interpreted vertical or horizontal portions, and structural data using a special 

type of mathematical function (Cowan et al., 2011; Birch, 2014). It is a 

relatively simple and efficient method. The implicit orebody modelling 

method does not require the use of arbitrary rules when digitizing and 

putting together information about rock types. This leads to a more accurate 

picture of complex rock information (Stoch et al., 2018). 

Cowan et al. (2003 & 2011) first investigated a technique called "direct-to-

block" geological modelling. This method uses information from drillholes to 

fill in a block model using mathematical calculations. This approach can be 

considered a precursor to creating an orebody model without specific rules. 

Instead, mathematical techniques are used to create the model based on 

available data. 

Implicit modelling creates a 3D orebody model through computer-generated 

reconstruction of the surface using an implicit function (Figure 2.7) (Zhong 

et al., 2019). This approach, due to its high degree of automation and ability 

to quickly update the model, is becoming increasingly popular. It has been 

researched and applied in various fields such as digital terrain modelling, 
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geological structure modelling, reservoir modelling, hydrogeological 

modelling, and orebody modelling (Wang et al., 2018). 

 

Figure 2.7: Implicit modelling of orebody from drillholes (Zhong and Wang, 

2020) 

As stated in this section, there are differences between explicit and implicit 

orebody models. The major difference is that explicit models utilize 

wireframes (as seen in Section 2.4.1) while implicit models use a 

mathematical function as highlighted above. Further discussion on the 

difference between the two methods is presented in the following section. 

 

2.4.3 Implicit over explicit orebody modelling 

Table 2.1 provides a comparison between explicit and implicit orebody 

modelling. According to Birch (2014), there is no evidence supporting the 

claim that explicit modelling is superior to implicit modelling in generating 

orebody models. Implicit geological modelling employs interpolation 

methods that do not rely on cross-sectional information, making it a more 

favourable choice for creating accurate 3D models such as ore bodies. In 

contrast, traditional modelling constructs the 3D model based on multiple 
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interpretations from cross-sectional data, which presents a limitation 

(Cowan et al., 2011). 

Table 2.1. Explicit orebody modelling method compared with implicit 

orebody modelling (Birch, 2014) 

Aspect Explicit modelling Implicit modelling 

Drillhole contact 

honouring 

Yes (manual) Yes (automated) 

Minimum curvature fit 

between points 

No. Only straight lines. 

Curvatures are 

manually digitized 

Yes 

Modelling speed Slow Very fast 

True 3D modelling, 

i.e., drillhole sectional 

fences are not needed 

No. Limited to 

sectional digitization 

Yes. Not limited to a 

sectional interpretation 

Models can be 

replicated 

No. manual digitization 

cannot be replicated 

Yes. Given the same 

variables 

Can multiple models 

be generated from the 

same data? 

Yes. But not very 

practical as it is very 

time-consuming 

Yes 

 

Through the review highlighted in Section 2.4, it appears that implicit 

modelling offers more advantages than explicit modelling. Because of the 

advantages the implicit modelling method offers over the explicit modelling 

method, it is given more attention in the next section. 
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2.5 Implicit modelling methods 

Implicit methods for orebody modelling are becoming increasingly popular 

in mining applications. This section focuses on reviewing three specific 

implicit modelling methods: the radial basis function-based method, the 

potential field-based method, and the signed-distance method. 

 

2.5.1 Radial basis function-based method 

The Radial Basis Function (RBF) is a mathematical method used to 

approximate multivariate functions based on sample data (Buhmann and 

Levesley, 2004; Hillier, 2020). It involves representing a function as a linear 

combination of radial basis functions centred at different locations in space 

(Guo et al., 2020). The RBF method is commonly used for the implicit 

modelling of orebodies due to its ability to accurately capture the non-linear 

relationship between input data and output data (Zhong et al., 2019). Over 

the years, several radial basis function methods have been developed for 

orebody. These include the simple radial basis function, the leapfrog 

methodology, the Fast Radial Basis Function (FastRBF), the Hermite Radial 

Basis Function (HRBF), and the Generalised Radial Basis Function 

(GRBF). 

The simple radial basis function involves using a set of radial functions to 

approximate a given function. The FastRBF method is an optimization of 

the simple RBF method that reduces the computational time required for 

processing large amounts of data. It is particularly useful in geospatial 

modelling where vast amounts of data are commonly used (Guo et al., 

2020). The Leapfrog® methodology is a form of the FastRBF method 

developed by Seequent as a proprietary method for their implicit modelling 

software called Leapfrog® Geo. The Hermite Radial Basis Function (HRBF) 

is an extension of the RBF method that includes first-order derivatives in the 

function approximation.  
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The Generalised Radial Basis Function (GRBF) is a type of RBF method 

that allows for the representation of functions with arbitrary smoothness 

properties. This method is commonly used for the implicit modelling of 

geological structures such as orebodies, as it can effectively capture the 

complex relationships between input data and output data (Zhong et al., 

2019). 

Each of these radial basis function-based methods has its strengths and 

weaknesses, and the choice of method for implicit modelling of orebodies 

depends on the specific requirements and characteristics of the orebody 

being modelled. 

 

2.5.1.1 Simple radial basis function 

Radial Basis Functions (RBFs) were initially introduced as a mathematical 

tool for interpolating scattered data in the field of surveying and mapping by 

Hardy (1971). They were later utilized for approximating solutions to partial 

differential equations in various disciplines including fluid mechanics and 

engineering (Piret et al., 2020). Biancolini (2018) stated that RBFs are a 

popular way to estimate values for scattered data (Figure 2.8). They can 

give very accurate estimates at any point, even if there is no data at that 

exact spot. This is because they use specific data points to make an overall 

estimate. The RBF interpolant can be expressed mathematically as follows 

(Jakobsson et al., 2009; Zhong et al., 2019 – 2021): 

𝑠(𝑥) =  ∑ 𝑎𝑗  Φ(𝑥, 𝑥𝑗  ) + 𝑝(𝑥)
µ
𝑗=1       (2.4) 

where µ is the number of domain constraints; 𝑎𝑗 are polynomial coefficients 

to be determined; Φ(𝑥, 𝑥𝑗) is a radial basis function and 𝑝(𝑥) is a low-degree 

polynomial. 

RBFs have found extensive usage in mathematics, computer science, 

physics, and geospatial modelling, with a superior fitting effect on scattered 

data as exemplified in Figure 2.8 (Li et al., 2022). Most geological and mine 
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planning packages for implicit modelling, such as Leapfrog®, utilize radial 

basis functions as a basis for interpolation (Cowan et al., 2003; Choudhury, 

2017; Hillier, 2020). 

 

Figure 2.8: RBF interpolation of scatter points (Hines, 2022) 

The simple radial basis function (RBF) method has the advantage of 

flexibility, allowing it to be applied to various applications such as 

interpolation, surface fitting, and data smoothing (Sharkawy, 2020). In 

addition, the method is relatively easy to implement and does not require 

complex programming (Yu et al., 2011). 

However, the simple RBF method has some limitations. One of the major 

disadvantages is its scalability. The method can be computationally 

expensive for large datasets, which limits its scalability (Biancolini, 2018). 

Another issue is overfitting, which occurs when the number of radial basis 

functions is too large, leading to poor generalization performance 

(Sharkawy, 2020). Therefore, careful consideration of these limitations is 

necessary when applying the simple RBF method to a practical problem. 
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2.5.1.2 Fast radial basis function 

In the previous section, a basic Radial Basis Function was introduced, but 

it has limitations when it comes to interpolating data sets with more than 

10 000 interpolation constraints (Beatson et al., 2001; Biancolini, 2018; 

Zhong et al., 2019; Zhong and Wang, 2020). This is due to the resulting high 

computational costs and processing power. As a result, a new type of Radial 

Basis Function-based method was introduced. 

The FastRBF method is a technique used to solve the equations for radial 

basis function interpolation (Equation 2.5). This method uses a domain 

decomposition approach to reduce the computational cost when dealing 

with large datasets that have over 10 000 interpolation constraints. To 

further enhance the performance of the FastRBF method, a better radial 

basis is chosen to replace the natural radial basis within the same subspace 

of the RBF interpolant. The resulting method is better conditioned and more 

efficient. The FastRBF interpolant has the following form (Beatson et al., 

2001; Zhong et al., 2019; Zhong and Wang, 2020): 

𝑠(𝑥) = ∑ 𝛽𝑗𝑝𝑘(𝑥) +  ∑ 𝑎𝑗Φ(𝑥, 𝑥𝑗)
µ
𝑗=𝑄+1

𝑄
𝑗=1      (2.5) 

Where 𝛽𝑗 and 𝑎𝑗 are unknown coefficients and can be also determined by 

solving the corresponding linear system of interpolation conditions. 𝑄 is 

defined as the number of data points that are used for interpolation. 𝛽𝑗 and 

𝑝𝑘(𝑥) are the coefficients and basis functions for a polynomial of degree 𝑄 −

1, respectively. The other variables like 𝑝(𝑥) still have the same meaning as 

Equation (2.4). 

One of the advantages of the FastRBF method is its ability to achieve high 

accuracy in approximating complex orebody models (Zhong and Wang, 

2020). The FastRBF method is also computationally efficient and can 

process large datasets quickly, which can improve productivity and reduce 

costs. However, the FastRBF method has some limitations, including its 

sensitivity to kernel parameters, which can be difficult to determine 

(Biancolini, 2018). 
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2.5.1.3 Leapfrog® methodology 

The Leapfrog® methodology utilizes a similar approach to the FastRBF 

method, which was discussed in the previous Section 2.5.1.2. Although the 

exact algorithm and mathematical formula of the Leapfrog method are not 

publicly available, and it is proprietary. Hence, only the fundamental concept 

of their method is discussed here. 

Cowan et al. (2003) introduced the concept of volume functions in geology, 

which was based on the work of Savchenko et al. (1995) for modelling 

objects that interpolate volume functions. A volume function is defined as 

the distance to an interface that separates two different domains and can 

be either positive or negative depending on whether the location is inside or 

outside of the domain (Rolo et al., 2017). The interface of interest is usually 

the surface corresponding to a particular iso-value of the volume function, 

which is typically the iso-surface zero (McLennan, 2007). To define the 

boundary interface, the volume function must be interpolated using an RBF 

method, which is a fast-scattered interpolator. The RBF method represents 

the interpolator as a linear combination of basic functions, similar to dual 

Kriging (Journel, 1989). 

Leapfrog® software has one of the earliest commercial implementations of 

implicit boundary modelling. The methodology for implicit boundary 

modelling involves five steps: data validation and compositing, interpolation 

and meshing, incorporation of geological morphology, interpolation of the 

geological morphology, and morphologically constrained interpolation (Rolo 

et al., 2017). However, RBF functions cannot incorporate anisotropy into the 

boundaries because they do not derive covariance functions from the data. 

As a result, anisotropy must be manually injected in the form of deterministic 

morphological constraints (Mclennan and Deutsch, 2006). Additionally, 

dealing with multiple domains is not straightforward in this approach 

(McLennan, 2007). 
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2.5.1.4 Hermite radial basis function 

The Hermite Radial Basis Functions (HRBF) were introduced by Macêdo 

(2009 & 2011). This technique combines Hermite-Birkhoff interpolation 

theory with the radial basis function (Wang et al., 2018). Hermite-Birkhoff 

interpolation theory is a mathematical technique used for approximating a 

function using a set of sample points first introduced by Georges Birkhoff in 

1934 (Allasia et al., 2018; Kashpur, 2021). 

Hermite Radial Basis Function (HRBF) is a technique that is used to create 

a function that can interpolate scattered data points (Wang et al., 2018; 

Zhong et al., 2019). It does this by building an implicit function which can 

approximate the position and normal direction of the scattered data points 

(Macêdo et al., 2009). HRBF makes use of the positions of the scattered 

data points to create the function, and this helps it to fully utilize the field 

effect of these positions (Guo et al., 2020). Additionally, the function value 

of HRBF is dependent only on the distance from the scattered data points' 

position, unlike other methods. 

The HRBF interpolant can take the form below (Liu et al., 2016; Guo et al., 

2018; Zhong et al., 2021): 

𝑠(𝑥) =  ∑ 𝑎𝑗Φ(𝑥, 𝑥𝑗) +  ∑ 〈𝑏𝑘, ∇′Φ(𝑥, 𝑥µ+𝑘)〉 + 𝑝(𝑥)𝜎
𝑘=1

𝜇
𝑗=1   (2.6) 

where 𝜎 is the number of gradient constraints same as the number of 

domain constraints µ; 𝑎𝑗 are scalar coefficients; 𝑏𝑘 are vector coefficients 

with three components; ∇′ is the differential operator concerning the second 

variable, Φ(𝑥, 𝑥𝜇+𝑘), which represents the radial basis function evaluated at 

the k-th gradient centre, where μ is the number of data points used as 

centres in the RBF interpolant, and k ranges from 1 to the number of 

gradient centres σ. and 〈. , . 〉 is an inner product operation of two vectors. 

The other variables are still the same as Equations (2.4) and (2.5). 

The advantages of HRBF are that it can provide a high degree of 

smoothness in the interpolant, which can be beneficial in applications where 
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the underlying function is expected to be smooth (Macêdo et al., 2011). The 

HRBF approach can handle functions with higher-order derivatives, which 

can be useful in applications where the function has complex behaviour or 

features (Kashpur, 2021). The limitations of HRBF are that it can be 

sensitive to the choice of parameters, such as the number and placement 

of centres and the shape parameter of the radial basis function. The HRBF 

approach can be prone to overfitting, especially when the number of centres 

is large, or the function has noise or outliers. 

 

2.5.1.5 Generalised radial basis function. 

Hillier et al. (2014) introduced a generalized interpolation framework that 

uses RBFs to model three-dimensional continuous geological surfaces from 

scattered multivariate structural data. The multivariate structural data 

include on-contact, gradient, tangent and inequality (off-contact) constraints 

(Figure 2.9). This method permits multiple independent geological 

constraints by deriving linearly independent functions for each constraint. 

The Generalized Radial Basis Function (GRBF) interpolant is also based on 

the generalized Hermite-Birkhoff interpolation theory with RBFs, similar to 

HRBF discussed in Section 2.5.1.4 (Hillier et al., 2017). 

 

Figure 2.9: Structural constraint types used for the implicit surface 

modelling in sparse data environments (Hillier et al., 2014). 
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The GRBF interpolant can be expressed as follows (Hillier et al., 2014 & 

2017; Zhong et al., 2019): 

𝑠(𝑥) = ∑ 𝑎𝑗Φ(𝑥, 𝑥𝑗) +  ∑ 〈𝑏𝑘, ∇′Φ(𝑥, 𝑥μ+𝑘)〉 +𝜎
𝑘=1

𝜇
𝑗=1

              ∑ 𝑒𝑙〈𝑡µ+𝜎+𝑙, ∇′Φ(𝑥, 𝑥𝜇+𝜎+𝑙)〉 + 𝑝(𝑥)𝜏
𝑙=1     (2.7) 

where 𝜏 and 𝑡𝜇+𝜎+𝑙  are the number of tangent constraints which are used 

to capture second-order derivative information. 𝑎𝑗, 𝑒𝑡 are scalar coefficients 

and 𝑏𝑘 are vector coefficients with three components. The other variables 

are still the same as Equations (2.4), (2.5) and (2.6). 

The advantage of the GRBF is that it can provide a high degree of accuracy 

in the interpolant, which can be beneficial in applications where the 

underlying function is complex or noisy. Furthermore, it can be flexible in 

the choice of basis functions, which can allow for better adaptation to the 

structure of the data. Its limitation is that it can be sensitive to the choice of 

parameters, such as the number and placement of centres and the shape 

parameter of the basis functions. It can also be prone to overfitting, 

especially when the number of centres is large or the function has noise or 

outliers (Zhong et al., 2019). 

The preceding section discussed the fundamental principles of RBF-based 

methods and their pros and cons. The next section examines the effective 

implementation of these methods in orebody modelling. 

 

2.5.2 Applications of RBF-based methods in orebody modelling 

According to existing knowledge, the first documented work on the use of 

RBF-based methods for orebody modelling could be attributed to Cowan et 

al. (2002). In their paper, the authors had proposed and successfully 

implemented the RBF-based framework in geological modelling. The 

method had been encapsulated into specialized software for RBF-based 

data interpolation, which had been integrated into Leapfrog® software. 
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The method was used to model a variety of exploration and grade control 

data. Cowan et al. (2002) evaluated the pertinence of the RBF-based 

method over the explicit method as discussed in Section 2.5.1. The 

researchers reached a conclusion that the utilization of Radial Basis 

Functions (RBFs) led to a significant reduction in the time needed for 

geologic modelling. 

Instead of taking weeks or months to generate an orebody model using 

explicit modelling methods, the model could be generated in just a matter of 

hours using RBFs. Furthermore, models built using RBFs could be updated 

and rebuilt as new data became available, while explicit orebody models 

could not be updated, as referred to in Section 2.4.3. 

Cowan et al. (2003) highlighted several case studies on the possibility of 

applying an RBF-based method to model geological surfaces directly from 

drillhole databases without digitization. The RBF-based technique was 

applied to six distinct types of geological constraints. The first case study 

focused on the near-mine investigation and targeting of the Cosmo Howley 

gold deposit. 

After Harmony Gold acquired the deposit, an internal review was conducted 

to identify drillhole targets and assess the resource within the existing 155 

m deep pit (Cowan et al., 2002). The main data used for this review was a 

resource and grade control drillhole database. To identify the major trends 

in mineralization below the pit, 3D solids of grade cut-off mesh were 

constructed using the data. 

Initially, the researchers attempted explicit modelling with manual 

digitization. However, due to the high nugget effect of the assay data, it was 

difficult to assess grade continuity, and the manual digitization was deemed 

inappropriate. 

To overcome this issue, the researchers chose to model the grade data 

using an RBF method, which did not require time-consuming pre-processing 

steps. The RBF method was employed to interpolate 293,690 composite 
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grade values and generate seamless grade iso-surfaces. This process took 

2 hours and 40 minutes and successfully identified approximately 4 million 

tons of resources below the present pit. The implicit modelling method not 

only saved time but also provided valuable insights into the grade trends, 

making it suitable for presentation purposes. 

The second application of the RBF-based technique was the delineation of 

ore boundaries for resource estimation of the Saratoga gold deposit. The 

challenge was that the deposit lacked distinct lithological limits governing 

gold mineralization, which is generally the case in many deposits (Cowan et 

al., 2003). The team determined the ore-waste boundary of the gold deposit 

using both explicit and RBF-based implicit techniques. 

The explicit technique took more than a month to model a single-grade cut-

off and complete the geological validation. The cut-off grade was 

determined to be 0.25 g/t for the explicit modelling. In contrast, using the 

RBF-based implicit technique, the team achieved a faster result, taking only 

2 days and 1.2 hours to validate the cut-off grade of 0.5 g/t. 

The third case study focused on the geological modelling and delineation of 

the kimberlite pipe at the BHP Billiton Ekati Diamond Mine. The objective 

was to determine whether the kimberlite pipe model could be efficiently 

updated when new drillhole data became available. Explicit modelling, as 

known, is time-consuming as each iteration requires 1 to 2 days of hand 

digitization and editing. However, with implicit modelling, the entire process 

was completed in just 10 minutes, significantly faster than the explicit 

method which would typically take an hour. 

In the fourth case study, the team explored contour modelling without tie-

lines. The researchers demonstrated how the RBF method could be 

employed for 3D modelling of mineral deposits, with a particular focus on 

kimberlite pipes, using the drillhole database without the need for 

digitization. Unlike the explicit approach, which involves digitizing numerous 

polylines, the implicit modelling technique directly utilizes these polylines to 

construct the 3D surface models. This approach eliminates the time-
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consuming and potentially challenging task of digitizing tie-lines, which can 

be particularly burdensome in large operations with hundreds of contours to 

process. 

The process involved converting the polyline data into a suitable format, 

creating signed off-surface polylines, interpolating the data using RBFs, and 

evaluating the zero iso-surface wireframe mesh. This method eliminated the 

need for tie-lines and allowed for the modelling of surfaces that are 

overturned or bifurcating. 

The implicit modelling technique can also be applied to interpolate other 

three-dimensional attributes and evaluate them on the surface. Additionally, 

the polyline node density on the implicit surface serves as a confidence map 

for the interpolation. 

The fifth application involved the single-domain geological modelling of a 

granite-porphyry unit in an anonymous gold deposit located in the Western 

Australian goldfields. The study used this example to showcase the 

effectiveness of implicit modelling. The intrusion patterns of the granite-

porphyry unit demonstrated a consistent anisotropic trend, which could be 

easily modelled by assuming continuity patterns. 

By using this approach, multiple conditional models could be generated to 

test various 'what-if' scenarios. This capability allowed for the assessment 

of mining risks associated with each geological model, providing valuable 

insights for decision-making and resource management. 

The study revealed that the implicit modelling method was remarkably 

straightforward and efficiently meshed the granite-porphyry data, which 

included 1 594 drillholes, within just 20 minutes. In comparison, manual 

digitization would have taken many days to achieve the same result. The 

ability to generate multiple conditional models with implicit modelling was 

also highlighted as a significant advantage. Trying to create multiple models 

using manual digitization would be impractical due to the substantial time 

and effort required for each iteration. 
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The results demonstrated that implicit modelling offered a practical and 

efficient approach to generating multiple conditional geological wireframe 

models. These models were valuable for testing various scenarios that 

could potentially impact grade estimations and subsequent mining 

procedures. Consequently, the use of implicit modelling enabled a more 

comprehensive assessment of mining risks associated with each geological 

model. 

In conclusion, implicit modelling proved to be a viable solution to the 

challenges of digitizing geological boundaries from drillhole datasets. Its 

application facilitated more efficient and accurate orebody modelling, 

allowing for improved decision-making and resource management in mining 

operations. 

The last case study focused on modelling the Wallaby gold deposit using a 

user-defined geological morphology. The unconstrained isotropic modelling 

of grade from composited grade control and resource drilling gold assays in 

the Wallaby gold deposit was shown to have disjointed high grades, which 

could be more realistically interpreted as being continuous along convex-up 

planes.  

These planes were saved as a geological morphology data file that could 

be used to constrain the grade interpolation, resulting in grade boundary 

meshes that honoured the trends envisaged by the geologist. 

The constrained interpolation technique saved time and bypassed the need 

for time-consuming manual digitizing. Various geological morphologies 

were defined and then used to generate contrasting conditional models that 

honoured the data. This approach allowed for the direct construction of 

multiple grade distribution or lithological models from sparse drillhole data 

without the necessity for gridding the data. 

The user-dependent contouring method not only saved time in producing a 

geologically realistic model but also allowed multiple geological ideas to be 

used to generate 'what if?' scenarios for testing. This method enabled 
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geologists to incorporate their knowledge and expertise into the modelling 

process, leading to more accurate and reliable geological models. These 

models were valuable for mining risk assessment, grade estimation, and 

downstream mining procedures. 

Now, let us discuss the construction of orebody models. Birch (2014) 

investigated if a geologist student might construct accurately a basic model 

from a borehole dataset using Leapfrog®, the RBF-based implicit modelling 

software of choice. From his observations, Birch (2014) noted that implicit 

techniques speed up the geological modelling process and produce reliable 

results irrespective of the level of competency of the geologist. 

As such, Leapfrog® can be regarded as a good tool because it gives one 

more time to focus on the interpretation of the output model and its quick 

revision when required. Furthermore, the learning of the RBF-based implicit 

modelling software is faster than that of the explicit method. The skillset 

necessary for the creation of successful models is also decreased. In view 

of the above, Birch (2014) concluded that Leapfrog® as an implicit 

geological modelling software is superior to traditional methods and is one 

of the best practice tools for geological modelling. 

Hillier et al. (2014) also utilized a GRBF (see Section 2.5.1) method to 

implicitly model continuous 3D geological surfaces from dispersed 

multivariate data. The authors implemented their implicit method using a 

generalized interpolation approach that was then tested in two scenarios. 

The first scenario involved studying the impact of adding local anisotropy to 

the modelling process, using a sparse data configuration. 

This occurred when gradient constraints were not sufficient to create an 

accurate geologic surface with isotropic methods. RBF interpolation using 

an isotropic weighting scheme often resulted in radially symmetrical 

spherical surfaces, which were not always realistic. To obtain more realistic 

solutions that followed the fold geometry of the data, the method involved 

modelling local anisotropy through Eigen analysis of the gradient 

constraints. 
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The eigenvectors obtained from the analysis were interpolated and 

incorporated into the modelling process as tangent constraints. In the 

second scenario, the researchers employed inequality constraints to 

represent geological surfaces, as depicted in Figure 2.10A-D. Figure 2.10A 

depicts a synthetic fold structure with data constraints. Figure 2.10B 

illustrates the linear solution, which incorporates only on-contact and 

gradient constraints. 

In contrast, the quadratic solution (Figure 2.10C) incorporates stratigraphic 

inequality constraints and exhibits superior geometric correspondence to 

the synthetic surface when compared to the solution that includes only on-

contact and gradient constraints. Notably, the modelled surface in Figure 

2.10C represents parasitic folds, whereas the regionally smooth surface in 

Figure 2.10D lacks these fold structures. 

For a comparison from a down plunge view, Figure 2.10D displays cross 

sections of the synthetic fold structure (white), the solution using only on-

contact and gradient constraints (green), and the solution incorporating all 

constraints (red). 

The model was created using data from 24 on-contact points, 20 gradient 

planes, and 155 inequality constraints. The model was created using the 

conditionally positive definite function and a Lagrange polynomial basis. The 

weights for the model are obtained using a quadratic optimization algorithm. 

The resulting model shows parasitic folds, which are not present in a similar 

model created using only on-contact and gradient constraints. 

The authors' work was special because it allowed for different kinds of limits 

to be added to the model using straight lines and inequality constraints, 

which was not possible in the previous RBF method presented in Section 

2.5.1.1. 



 
 

46 

 

 

Figure 2.10: Inequality constraints in synthetic fold structure with cross-

section comparison. A) Synthetic fold structure with data constraints, B) 

modelled surface using only on-contact and gradient constraints, C) using 

all constraints and D) cross section comparison (Hillier et al., 2017). 

Vollgger et al. (2015) used the Leapfrog® methodology (see Section 2.5.1) 

to analyse and evaluate the structural framework of the Navachab gold 

deposit in Namibia. The objective of the study was to interpret the structural 

features of the Navachab gold deposit using a 3D geological model. The 

interpretation was based on drillhole data, as well as structural data 

obtained from geological maps and field surveys. The authors implemented 

a 3D implicit modelling workflow, focusing on areas with dense drillhole 

data. 

The researchers successfully generated 3D models of the Navachab gold 

deposit without the need for manual digitization, distinguishing their 

approach from traditional explicit modelling methods. In explicit modelling 

(as discussed in Section 2.4.1), 3D models were constructed based on pre-

assumed geological and structural frameworks derived from cross-sections. 

In contrast, the authors demonstrated that their 3D implicit models 
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accurately captured the geometries of ore bodies and their relationships 

with local and regional structural patterns. 

The most important factors for economic mineralization were included in 

their 3D models for the Navachab gold deposit. To further support their 

structural interpretation, small-scale structures that couldn't be captured by 

their models were also taken into account. The authors utilized an isotropic 

spatial interpolation method to minimize modelling bias and enable the 3D 

implicit models to be used effectively for structural interpretation. 

The results suggested that this workflow improved the identification and 

evaluation of structural controls on mineralization when combined with 

structural fieldwork. The proposed RBF-based implicit method was found to 

reduce user-based modelling bias. This was because the implicit method 

created a closed surface from geochemical, lithological, or structural data 

without human digitization or connection of sections or level plans. Instead, 

a mathematically defined spatial interpolation was employed to construct 3D 

models that revealed trends and patterns in huge drillhole datasets. 

In a follow-up work, Hillier et al. (2017) described an interpolation algorithm 

that was developed to model 3D geological surfaces and its application in 

modelling regional stratigraphic horizons in the Purcell basin. The algorithm 

utilized a generalized interpolation framework that employed RBFs to 

implicitly model 3D continuous geological surfaces from scattered 

multivariate structural data. 

This framework allowed for the inclusion of additional geologic information 

in the interpolation process, such as stratigraphic data from above and 

below targeted horizons, modelled anisotropy, and orientation constraints 

like planar and linear constraints. 

The GRBF algorithm was applied in a project under the Targeted 

Geoscience Initiative (TGI) 4 program to construct a regional 3D structural 

model of the Purcell Anticlinorium in Southern British Columbia, Canada. 
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The algorithm was used to model individual fault surfaces separately using 

interpretative map traces of the fault and limited structural observation data 

at the surface. Key stratigraphic horizons were also modelled separately 

within each modelled fault domain using appropriate structural and 

stratigraphic data from its domain. 

The complete set of modelled stratigraphic horizon patches and fault 

network were used in a Subsurface Knowledge Unified Approach (SKUA) 

workflow that employed a Uniform Value Table (UVT) transformation to 

generate a complete 3D structural model topologically consistent 

throughout the model space (even across faults). 

The final model provided insights into the upper and Lower Aldridge 

Formation contact, which is a key stratigraphic target horizon and host of 

the Sullivan Zn-Pb-Ag deposit. The authors recommended that future work 

involves enhancing the algorithm to model multiple surfaces simultaneously 

and incorporating geological rules such as stratigraphic relationships. 

developed an RBF-based method centred on domain decomposition. The 

proposed methodology was a non-stationary boundary interpolation 

technique that worked well when there was an abundance of data and local 

anisotropic properties could be directly inferred from the samples. This was 

often the case in mining, where there is a wealth of data available for model 

construction, and accurately representing complex orientations of continuity 

in 3D using advanced visualization is crucial. 

The proposed methodology was demonstrated using a dataset of 8 527 

samples from 316 drillholes, which sampled a large Cu-porphyry deposit. 

The resulting boundaries smoothly honoured the data locations within the 

partitioning framework while considering global anisotropy. 

However, upon inspection of the model, it was found that the variogram 

model might need refinement, or sub-domaining may be required to 

separate zones with distinct local anisotropic properties. The highest 

continuity modelled from the variograms for categories 3 and 4 was found 
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to be steeply dipping and variably oriented in some areas, which could be 

exaggerated due to parameterization issues (Figure 2.11). 

Similar conclusions were drawn for category 3, where the northwest portion 

of Figure 2.11 remained relatively isotropic, but anisotropy was inferred in 

the southeast based on the local geometry implied by the data. In areas 

where data density was sparser, the interpretation was more varied, relying 

on the local data and changing anisotropic properties. 

The researchers concluded that the proposed methodology was a useful 

tool for modelling complex geological datasets with locally varying features, 

provided there was sufficient sample density. It allowed for the automatic 

inference of local anisotropy from the data, akin to a "bootstrap" workflow. 

By considering features extracted from previous models, a better model 

could be constructed. This methodology offered experts a better starting 

point for modelling geology and had the potential to improve the accuracy 

of geological models. 

 

Figure 2.11: Comparison of the boundaries for categories 2, 3 and 4 

modelled with A), C), and E) global anisotropy. The red ellipsoid shows the 

global anisotropy used in each interpolation in A), C) and E). Automatic local 

anisotropy refinements are shown in B), D) and F) (Martin and Boisvert, 

2017) 
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Basson et al. (2017) also investigated the ore structural connections at the 

Sishen mine in South Africa using an RBF-based implicit 3D model within 

the Leapfrog® methodology. The authors presented a detailed analysis of 

the structural setting of mineralization at Sishen Mine using a newly 

developed, fully constrained, implicit 3D model of the entire mining volume. 

This approach provided a comprehensive understanding of the deposit and 

the surrounding rock mass, which was essential for the optimal extraction 

of the ore. 

The contact points were used to create implicit radial base function surfaces 

in Leapfrog®. From these surfaces, solids were generated and exported for 

additional analysis. Their study revealed that the position, depth, and 

geometry of both laminated and conglomeratic ore were influenced by 

several overlapping controls at various scales. These controls were mostly 

structural and could be related to the kinematic history of the volume, major 

structures, and their intersections. 

Stoch et al. (2018) proposed a detailed methodology for creating a fully 

constrained, 3D implicit model in Leapfrog® covering a vast volume of more 

than 70 km3 and incorporating more than 60 years of data. This 

comprehensive model provided a detailed understanding of the entire life-

of-mine volume at Sishen, allowing for a reassessment of lithological, 

unconformity, and structurally related controls on the ore. 

The model was built to the original, pre-mining surface, providing a unique 

opportunity to re-evaluate Sishen in the context of its regional geological 

setting and current research on large, high-grade iron deposits. The 

development of a 3D model construction workflow based on observed 

geological relationships and dense data sets resulted in a fully constrained 

3D implicit geological model of ore solids, non-ore solids, and major 

structures at Sishen Mine. 

Spatial analysis of several parameters derived from this model suggested 

that the majority of iron mineralization at Sishen was not contained in 

sinkholes or palaeosinkholes. 
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Guo et al. (2018) presented a modified HRBF interpolation, as discussed in 

Section 2.5.1, for creating 3D geological models using geological 

boundaries, attitudes, and sections. The method involved the use of 

interactive tools that enabled geologists to sketch constraint lines and 

transform their expert knowledge into models. 

The geometric characteristics of section lines were abstracted to 

coordinates and normal vectors, and these, along with the transformed 

coordinates and vectors from boundaries and attitudes, were used to co-

calculate the implicit geological surface function parameters of the HRBF 

equations. This process formed constrained geological interfaces from 

topographic and subsurface data. 

The novelty of this method lay in the integration of manual interactive 

manipulation tools, allowing geologists to add their expert knowledge to the 

models. Additionally, the approach treated geological sections as auxiliary 

constraints, contributing to the construction of more reasonable 3D 

geological models. 

The experimental results showed that the constrained models were 

consistent with expert explanations, and all boundary, attitude, and section 

data were well represented. The advantages of this method were that it 

allowed for the creation of more reasonable 3D geological models and 

provided a flexible and convenient way for geologists to transform and apply 

their expert knowledge. 

Although the method allows for the construction of topologically consistent 

3D models, the reasonability and accuracy of non-supervised subsurface 

modelling may be limited without further modifications generated through 

analyses performed by geology experts. Overall, the findings demonstrate 

the feasibility and effectiveness of the modified HRBF interpolation method 

for creating 3D geological models, and the interactive tools for adding expert 

knowledge provide a useful addition to the field. 
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Zhong et al. (2019) described a method for the implicit modelling of complex 

orebodies using an anisotropic Generalized Radial Basis Function (GRBF) 

interpolant. This method allowed for the conversion of geological constraints 

into interpolation constraints and constraint rules, which facilitated the 

creation of smooth, continuous, and closed geological surfaces.  

The RBF-based method proved particularly useful for constraint-based 

modelling of sparse drillhole data, enabling the modelling of local continuity 

and extension trends in mineralization areas. 

The anisotropic GRBF method was demonstrated to be effective in 

modelling complex orebodies in sparse data environments. By converting 

geological constraints into interpolation constraints and constraint rules, the 

resulting implicit models were smooth, continuous, and closed without any 

mistakes such as intersections. The method was also suitable for constraint-

based modelling of sparse drillhole data and could be used to construct 

anisotropic orebody models by constraining the geological trends in different 

directions. 

The performance of the method mainly depended on the number of 

constraints and the resolution size. The running time was primarily 

influenced by solving large-scale linear systems in the interpolation stage 

and evaluating sampling grids in the reconstruction stage. The improved 

algorithm demonstrated faster reconstruction efficiency compared to 

traditional Marching Cube and parallel Marching Cube extraction methods, 

especially when dealing with larger solution equations or lower 

reconstruction resolutions. 

Based on their numerical findings, the processing technique could rapidly, 

accurately, and dynamically recreate the 3D orebody model. The rebuilt 

modules were guaranteed to be smooth, continuous, and closed geological 

surfaces, free of errors like junctions. 

The main advantage of this method was its ability to model complex 

orebodies using sparse drillhole data and its suitability for constraint-based 
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modelling. Anisotropic constraints were utilized to construct geological 

trends in different directions based on the interpretation requirements of 

structural geologists. The resulting implicit models were smooth and 

continuous, allowing for easy representation of orebody models with 

complex topology and enabling Boolean operations to be performed 

effectively. 

One of the limitations of the method is that it still requires input from a 

structural geologist to ensure that the reconstructed models are consistent 

with the actual geological conditions of the drillhole data and the trend of the 

mineralization domain. This dependency on expert input may introduce 

subjectivity and potential biases into the modelling process. 

Another limitation is that the performance of the method depends on the 

number of constraints and the size of the resolution. The running time is 

dominated by the solution of large-scale linear systems in the interpolation 

stage and the evaluation of sampling grids in the reconstruction stage. This 

can be computationally demanding, particularly for large datasets or high-

resolution models, and may lead to longer processing times. 

Overall, the findings of this article suggest that the anisotropic GRBF 

method is an effective and efficient approach for the implicit modelling of 

complex geological orebodies, especially when compared to traditional 

radial basis functions without constraints. However, further research is 

needed to explore ways to reduce the reliance on input from structural 

geologists and improve the running time of the algorithm to make it more 

practical for large-scale applications. 

Zhong and Wang (2020) discussed an approach to solve the large RBF 

interpolation problem for efficient reconstruction of complex orebody 

models. The authors focused on optimizing the RBF equation to improve 

the efficiency of a single iteration by simplifying the problem and utilizing a 

fast evaluation method. 
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The authors employed the FastRBF method with a two-level domain 

decomposition approach to iteratively solve the large RBF interpolation 

problem. To enhance conditioning and achieve an efficient solution, the 

authors introduced a new kernel and anisotropic RBF interpolant. 

The optimized solution method, based on the FastRBF method, was 

successfully applied to two real orebody modelling case studies. In the first 

case study, the authors utilized their method to interpolate drillhole data 

from a tungsten deposit containing 72 drillholes with 2 778 constraints. The 

researchers employed a two-level domain decomposition approach, 

breaking the domain into subdomains, and further decomposed each 

subdomain into smaller domains.  

The FastRBF method was used iteratively to interpolate the drillhole data. 

The researchers employed the centre reduction strategy to reduce the 

number of constraints to 1 195, while setting the fitting accuracy to ϵ = 2.5. 

In the second case study, the authors applied their method to interpolate 

the drillhole data in a copper deposit, which consisted of 59 drillholes with 

14 105 constraints. Following a similar approach as in the first case study, 

the authors decomposed the domain into subdomains and iteratively 

applied the FastRBF method. Through the centre reduction strategy, the 

researchers reduced the number of constraints to 4,056, setting the fitting 

accuracy to ϵ = 5.0. 

In both case studies, the authors compared the reconstructed implicit 

models using the marching cubes method with the actual orebody models 

to assess the accuracy of their approach. The results demonstrated high 

accuracy, indicating that the optimized solution method based on the 

FastRBF method is an efficient and accurate approach for orebody 

modelling. 

The authors also emphasized the potential for further improvements in the 

method, including studying the efficiency of matrix-vector product 
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calculation and implementing a multilevel domain decomposition method to 

increase the rate of convergence for larger drillhole data sets. 

The experimental results from several drillhole data sets showed that the 

optimized solution method rapidly converged within a small number of 

iterations. Moreover, the implementation was kernel independent, making it 

easily extendable for other radial basis functions in various applications. 

In the future, the method can be improved by further studying the efficiency 

of matrix-vector product calculation and avoiding overlapping interpolation 

centres. The paper also suggests implementing a multilevel domain 

decomposition method to increase the rate of convergence for larger 

drillhole data sets. 

Zhong et al. (2021) proposed a novel implicit geological modelling method 

based on the combination of multiple constraints. The proposed method 

utilizes an RBF interpolation to build an implicit function that satisfies 

multiple geological constraints. 

The method starts by defining the geological constraints, such as the 

orientation of geological layers, the position of ore bodies, and the trend of 

mineralization. Then, the RBF interpolation is used to interpolate the 

constraints and build the implicit function. The article proposes a 

combination of two different RBF functions, one for the position constraints 

and one for the orientation constraints. The combination of these RBF 

functions produces a unified implicit function that satisfies all the constraints. 

The proposed method was tested on a complex geological model, and the 

results show that the method can successfully handle multiple constraints 

and produce accurate geological models. The method is also shown to be 

more efficient and accurate than traditional explicit modelling methods. 

One advantage of this method is that it can handle multiple constraints and 

produce accurate geological models. Additionally, the method is shown to 

be more efficient and accurate than traditional explicit modelling methods. 
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However, the article does not provide a detailed comparison of the proposed 

method with other existing methods. 

Overall, the article provides a promising method for implicit geological 

modelling that can handle multiple constraints and produce accurate 

geological models. 

Using the HRBF implicit function in Equation (2.5), Guo et al. (2022) 

presented a three-dimensional geological modelling method using multiple 

point geostatistics (MPS) for borehole data. The method uses an MPS 

algorithm to simulate the geological facies based on a set of training images 

and then applies a geological boundary extraction algorithm to extract the 

geological interfaces from the simulated facies. A stochastic simulation 

algorithm is also used to estimate the uncertainty of the model (Figure 2.12). 

 

Figure 2.12: Flow chart of the new algorithm (Guo et al., 2022) 

The proposed method is evaluated on a synthetic dataset, and the results 

show that the method can effectively capture the geological features and 

reproduce the facies distribution. The uncertainty analysis shows that the 

method can effectively estimate the uncertainty of the geological model. The 
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method is also compared with a traditional sequential indicator simulation 

(SIS) method, and the results show that the MPS-based method 

outperforms the SIS method in terms of accuracy and efficiency. 

The proposed method has several advantages over traditional modelling 

methods. First, it can handle complex geological structures and reproduce 

facies distribution with high accuracy. Second, it can estimate the 

uncertainty of the geological model and provide a measure of the model's 

reliability. Third, it can automatically extract geological interfaces from the 

simulated facies, which saves time and effort. Finally, the method is 

computationally efficient and can be applied to large datasets. 

One limitation of the proposed method is that it requires a set of training 

images, which may be difficult to obtain in some cases. Another limitation is 

that the method assumes stationarity, which may not hold in some 

geological environments. Overall, the proposed method provides a 

promising approach for automatic geological modelling and uncertainty 

analysis for borehole data. 

Zhong et al. (2022) designed an autonomous modelling technique for 

narrow vein-type ore bodies based on Boolean combination restrictions.  

In contrast to the direct interpolation method, the researchers created 

implicit functions for the hanging wall and footwall surfaces. Using the 

Boolean combination constraints, the combined implicit function is then 

created to represent the entire orebody model. Finally, the orebody is 

produced by performing a Boolean operation on the hanging wall and 

footwall surfaces. 

The approach is applicable to narrow vein-type ore bodies (for example, 

vein gold deposits and mineral sand deposits) that are big in two dimensions 

but narrow in three. Utilizing genuine geological sample data from mines, 

numerous experiments are conducted using the implicit function of radial 

basis functions interpolation. The experimental findings demonstrate that 

the approach is appropriate for modelling thin vein-type ore deposits. 
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RBF-based methods have proven to be efficient and accurate approaches 

for geological modelling. From the literature review conducted above, it is 

evidence that there is potential for further research and development in this 

area, particularly in the application of RBF-based methods for orebody 

modelling. There are still opportunities to improve and refine RBF-based 

methods to enhance their accuracy and efficiency in geological modelling 

applications. 

 

2.6 Potential field-based implicit method 

This section reviews the potential field-based implicit method, including its 

fundamental principles and its application in orebody modelling. The 

potential field method has been widely used in various geologic and 

geophysical tasks (Wang et al., 2015). The implicit potential field method 

can integrate multiple types of data, such as contact points and structural 

orientations, into the model by solving a co-kriging system (Lajaunie et al., 

1997; Chiles et al., 2004; Calcagno et al., 2008; Gonçalves et al., 2017). 

This method involves using various data types to construct a 3D model that 

represents the geological features of an area. Specifically, the potential field 

method is a co-kriging system that takes contact points and orientations as 

inputs (Lajaunie et al., 1997; Aug et al., 2005) and outputs an implicit 

function, called a potential field, to represent geological data (Chilès and 

Delfiner, 1999; Calcagno et al., 2008; Gonçalves et al., 2017; de la Varga 

et al., 2019). The implicit potential field function 𝑓(𝑥) is then used to 

represent the mineralisation domain of the orebody model (Zhong et al., 

2022). 

The potential field method was originally designed to construct 3D 

geological models from data available in geology and mineral exploration, 

such as geological maps, associated digital terrain models (DTMs), 

structural data, borehole data, and interpretations of geologists (Chiles et 
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al., 2007). Figure 2.13 in the source illustrates the principle of potential field 

interpolation in 2D. 

 

Figure 2.13: Principle of the potential-field interpolation method in 2D: (a) A 

geological formation mapped by the position of its interfaces; (b) The 

geological formation modelled by the potential-field method (Calcagno et 

al., 2008) 

The primary purpose of the fundamental technique is to represent a single 

geological interface, or a series of sub-parallel interfaces denoted by 𝑙𝑘, 𝑘 =

1, 2 … (Lajaunie et al., 1997). The method involves summarizing the geology 

using a scalar function 𝑇(𝑝) of any point 𝑝 = (𝑥, 𝑦, 𝑧) in 2D/3D space, known 

as the potential field (Figure 2.13). The interface 𝑙𝑘 is defined as an iso-

potential surface, where the set of points 𝑝 that satisfies 𝑇(𝑝) = 𝑡𝑘 

represents the interface. Similarly, the geological formation between two 

successive interfaces, 𝑙𝑘 and 𝑙𝑘
′  can be defined by all the points p whose 

potential-field value lies in the interval between 𝑡𝑘 and 𝑡𝑘
′  (Calcagno et al., 

2008). 

To estimate the potential increment 𝑇(𝑝) − (𝑝𝑜) at any point 𝑝, an arbitrary 

origin 𝑝0 is fixed, and a co-kriging estimator of the form is used (Feng et al., 

2010). This is achieved using a co-kriging estimator of the form: 

𝑇∗(𝑝) − 𝑇∗(𝑝0) = ∑ 𝜇𝛼[𝑇(𝑝𝛼) − 𝑇(𝑝𝛼
′ )] + ∑ 𝑣𝛽

𝜕𝑇

𝜕𝜇𝛽
(𝑝𝛽)𝑁

𝛽=1
𝑀
𝛼=1   (2.8) 
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where the weights 𝜇𝛼 and 𝑣𝛽 determined by the co-kriging system, are 

functions of 𝑝 (and 𝑝0). Equation (2.8) is related to multiple-point 

geostatistics-based three-dimensional automatic geological modelling. 

Below is an explanation of the terms in Equation (2.8): 

• 𝑇∗(𝑝): The estimated value of the property 𝑇  at location 𝑝. 

• 𝑇∗(𝑝0): The estimated value of the property 𝑇 at a reference location 

𝑃0. 

• 𝜇𝛼: A weight assigned to the difference between the property values 

at the location 𝑃𝛼  and 𝑃𝛼
′, where 𝑝𝛼

′  is the corresponding location in a 

training image. 

• 𝑇(𝑝𝛼): The property value at the location 𝑝𝛼 in the training image. 

• 𝑣𝛽: A weight assigned to the derivative of the property 𝑇 with respect 

to a conditioning variable 𝜇𝛽 at location 𝑃𝛽. 

• 𝜕𝑇/(𝜕𝜇𝛽)(𝑝𝛽): The partial derivative of the property 𝑇 with respect to 

the conditioning variable 𝜇𝛽 at location 𝑝𝛽. 

• 𝑀: The number of matched patterns between the simulation grid and 

the training image. 

• 𝑁: The number of conditioning variables. 

 

2.6.1 Applications of potential field implicit in ore modelling 

In terms of applications in orebody modelling, Lajaunie et al. (1997) 

presented and evaluated a modelling method based on the principle of a 

potential field. Equation (2.8) was utilized by the researchers to develop 

their methodology. The proposed method incorporates both known 

locations on a geological interface and plane orientation data, such as 

stratification or foliation planes. The objective was to estimate the values of 

the scalar field for certain sites with unknown values. This was achieved by 

utilizing the known gradient of the scalar field or a perpendicular direction to 

it at other points. 
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The method is based on the interpolation of a scalar field defined in the 

space the gradient, which is orthogonal to the orientations, given that some 

points have the same but unknown scalar value (points of the same 

interface), and that scalar gradient is known on the other points (foliations). 

The modelled interfaces are represented as iso-values of the interpolated 

field. 

The findings of the study demonstrate the validity of the method based on 

preliminary two-dimensional tests carried out with different covariance 

models. The method is easily transposable in three-dimensions. The 

method provides a way to model geological interfaces that take into account 

both known points and plane orientation data, improving the accuracy of 

geological models. 

This approach has the benefit of incorporating several forms of independent 

geological information in the same interpolator. Known points on interfaces, 

orientation data at other sites, and gradient data are examples of such 

information. 

Chiles et al. (2004) analysed the practical implementation and construction 

of 3D geological models using the potential field method. Subsequently, 

issues related to the method were identified by the researchers. These 

challenges encompassed managing faults, accurately representing 

borehole ends, accounting for interactions between multiple interfaces, and 

integrating gravimetric and magnetic data. The non-exhaustive list was 

compiled mostly from the application of the potential field method to a 

deposit in the Broken Hill area of Australia. 

McInerney et al. (2007), on the other hand, used the potential field 

interpolation to model the Elk gas field of the Eastern Papuan Basin in 

Papua New Guinea. The validation of the model was then done by 

calculating the anticipated gravity signature and comparing it with the 

observed gravity data. This consequently led to the creation of an improved 

3D geology model of the gas field. 
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The model honoured the available geology constraints from outcrop, drilling, 

and seismic data. This was achieved while also having a modelled gravity 

response that was more consistent with the observed gravity data. The 

research enhanced the understanding of the structure of the Elk field which 

has limited seismic control. 

Calcagno et al. (2008) proposed a new method for creating three-

dimensional (3D) geological models based on geological map data. The 

authors identified the limitations of traditional 2D mapping and the 

advantages of 3D modelling, including increased accuracy and improved 

visualisation. A method was proposed by the researchers, which involves 

combining geological map data with Digital Elevation Models (DEM) to 

generate a 3D geological model. 

The method involves several steps, including the digitisation of geological 

maps and the creation of a DEM, which are combined to form a digital 

geological map. This digital map is then converted into a 3D geological 

model using a voxel-based approach. The authors also developed a new 

method for visualising the 3D geological models using colour-coded 

surfaces to represent different geological units. 

The proposed method was tested in a study area in the Czech Republic, 

and the results showed that the method was effective in creating accurate 

and detailed 3D geological models. The authors also noted that the method 

is flexible and can be easily applied to other areas using different geological 

map data. 

Overall, the article provides a valuable contribution to the field of geological 

modelling and highlights the importance of incorporating 3D models in 

geological studies. The proposed method has the potential to enhance the 

accuracy and efficiency of geological mapping and could be used in various 

applications such as mineral exploration, groundwater management, and 

environmental studies. 
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Renard et al. (2013) proposed a method for modelling geological interfaces 

that incorporates both known points on the interface and plane orientation 

data such as stratification or foliation planes. The aim is to determine 

surfaces that pass through the known points on the interfaces and are 

compatible with the orientation data, even if the orientations do not belong 

to one of the interfaces but rather sample the main anisotropy of the 

geological formation. 

The principle of the method is to derive the geometry of the domain under 

study from a 3D interpolation of a scalar field, known as the potential field. 

This is achieved by co-kriging from information on contacts from drillholes 

and on structural data linked with the gradient of the potential field. 

The potential field method efficiently adds soft information to the hard 

contact data using control points processed with the Gibbs sampler 

algorithm. By-products of the potential field approach include the co-kriging 

variance and the gradient of the estimated potential field, which can be 

turned into an uncertainty measure on the location of the domain boundary 

or used to map the probability to be within the given domain. 

In a case study of a gold porphyry deposit in the Central Cordillera of 

Colombia, hardness measurements related to lithology and alteration were 

collected on exploration drill cores using the Equip hardness tester. After 

the simple pre-processing of this data, one domain was modelled, and a 

probability map was calculated. 

A potential field method is a valuable tool for mineral deposit modelling, 

particularly when there is a large amount of drillhole data available but 

limited structural data. The method allows for the efficient incorporation of 

soft information and provides useful by-products such as uncertainty 

measures and probability maps. Further testing and validation of the method 

in other mineral exploration scenarios would be beneficial to fully assess its 

capabilities and limitations. 
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de la Varga et al. (2019) proposed an open-source geomodelling method 

based on an implicit potential-field interpolation approach. This method can 

construct complex full 3-D geological models, including fault networks, fault-

surface interactions, unconformities, and dome structures. The algorithm is 

implemented in Python®, making use of a highly efficient underlying library 

for efficient code generation that enables a direct execution on a Graphical 

Processing Unit (GPU). 

The authors also provide additional assets for advanced scientific 

investigations, such as machine learning and Bayesian inference 

frameworks, which enable stochastic geological modelling and inversions. 

Additionally, the authors provide methods to analyse model topology and 

compute gravity fields on the basis of the geological models and assigned 

density values. Overall, the authors aim to provide a basis for open scientific 

research using geological models, with the aim to foster reproducible 

research in the field of geomodelling. 

In another paper, Li et al. (2021) proposed an optimized potential field 

interpolation modelling method based on co-kriging for geological modelling 

of the Beishan preselected High-Level Radioactive-Waste (HLW) geological 

disposal repository. This method combines geological knowledge of fault 

networks with sequence identification to construct a 2D boundary/3D 

surface and a complex geological model.  

The co-kriging method is used to integrate multiple related variables 

obtained through site observations and to determine weight coefficients 

through its semi-deviation function. The proposed method is suitable for 

geological modelling when only a small volume of outcrop data is available. 

A robustness verification is performed, which confirms the significance of 

the proposed method for repository site selection and roadway design 

optimization in deep geological environments with low data density. An 

optimized potential field co-kriging modelling algorithm was proposed to 

establish a complex geological model for the Beishan HLW disposal 

repository. 
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Due to the lack of deep underground data, the algorithm was used to 

construct a regional model based on limited available outcrop and constraint 

data. The results show that the model is capable of demonstrating the 

geological structural characteristics and stratigraphic fault relationships of 

the study area, as well as the overlying and intrusive contact relationship 

between rock layers and the degree of influence between the fault network 

and the stratigraphic sequence. 

However, the potential field interpolation effect depends on the quality and 

distribution of the data, and the algorithm tends to be spatially smooth, 

leading to weaknesses in dealing with problems of spatial disproportion. 

These issues can be further solved using the uncertainty method or by 

manual adjustment.  

The established model can be verified and optimized with future detailed 

survey data, and a series of works can be carried out based on the model, 

providing strong reference points for the site selection, design, and 

construction of a repository. Overall, the proposed modelling algorithm is a 

valuable tool for predicting and approximating complex geological bodies 

with limited data density. 

Finally, Yang et al. (2021) presented a unique framework based on the 

divide-and-conquer approach. The basic concept of the framework was to 

generate intermediate 3D geological models that fit subsets of data. From 

there, the subsets were merged into a single large 3D geological model 

while keeping data and geological rule restrictions in mind.  

A large-scale banded iron ore formation in Western Australia was modelled 

using the framework. The outcome was the generation of a single 

geologically accurate 3D structural model that suited all of the data. The 

addition of stochastic orientations and the splitting of dense contact spots 

improved the model. This consolidated the robustness of the divide-and-

conquer approach to orebody modelling. 
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2.7 Signed-distance interpolation method. 

The signed-distance interpolation approach for multiple categories is a 

deterministic implicit modelling technique that constructs the implicit 

function by interpolating a distance measure based on conditioning data 

(Silva, 2015; Rolo et al., 2017). As the implicit function, the signed-distance 

function (SDF) represents the shortest distance between any two sample 

locations of a distinct category (Deutsch and Wilde, 2013). 

The distance between a sample and the nearest sample from the opposite 

domain is determined and allocated to each sample (Figure 2.14). This 

means that the SDF calculates the separation of domains from one another 

(Silva, 2015). And for samples within the domain, negative values denote 

the distance to the boundary.  

In other words, the sign of the calculated signed-distance values determines 

the interface that divides the areas in space (Rolo et al., 2017). The distance 

function is calculated at every data location to generate the new distance 

function variable (Osher and Fedkiw, 2002). To construct the new distance 

function variable, the distance function is computed at each data point. Each 

data location must be labelled as a sample or a non-sample. 

 

Figure 2.14: Simple two-dimensional example illustrating signed-distance 

function modelling workflow (adapted from Silva, 2015; Rolo et al., 2017) 
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The existence of the sample is indicated by a binary flag, 𝑖(𝑢), (Deutsch and 

Wilde, 2013): 

𝑖𝑘(𝑢𝛼) =  {
1, 𝑖𝑓 𝑍(𝑢𝛼) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒

0, 𝑖𝑓 𝑍(𝑢𝛼) 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒
      (2.9) 

Equation (2.9) represents the indicator function for a spatial location 𝑢𝛼. If 

the variable 𝑍 at the location 𝑢𝛼 is inside a defined domain, then the function 

𝑖𝑘(𝑢𝛼) equals 1 (Figure 2.14). Otherwise, if 𝑍 at 𝑢𝛼 is outside the domain, 

then the function 𝑖𝑘(𝑢𝛼) equals 0 (Figure 2.14) (Mallet, 2003; Silva, 2015). 

At each data location 𝑢, the nearest data location 𝑢′ is determined such that 

𝑀𝑖𝑛 {𝑢 − 𝑢′}, 𝑖(𝑢) ≠ 𝑖(𝑢′). 

For each data location, the algorithm finds the nearest neighbouring data 

location that is not from the same data set. This is done using the Euclidean 

distance between the two locations. The purpose of this is to avoid any bias 

in the estimation of the potential caused by having multiple data points in 

the same location. By using neighbouring data points that are not from the 

same location, the estimation is more robust and less likely to be affected 

by any noise or errors in the data. 

Let us now review two pertinent applications of SDF-based methods in 

orebody modelling. 

In the first selected application, Deutsch and Wilde (2013) proposed a 

methodology for modelling multiple coal seams using signed-distance 

functions and global Kriging is presented. The first step of the methodology 

involves data preparation, where two variables are calculated at each 

drillhole: coal accumulation and distance function. 

Coal accumulation is the total amount of coal present at a location, while 

the distance function estimates the distance between the location and the 

coal/non-coal interface. The distance can be positive or negative, 

depending on whether the data is inside or outside the coal using Equation 

(2.8). 
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The second step is to interpolate coal accumulation using a global 

interpolation algorithm such as global Kriging. This algorithm assigns a 

weight to each data and calculates an estimate without searching for data 

since all of the data are used to estimate at every location. 

The third step is to interpolate the distance function at every cell in the 3D 

grid. This is done by identifying the appropriate data and applying the global 

Kriging weight assigned to a given drillhole to each of the data from that 

drillhole that fall within the vertical search window. 

The fourth step involves determining the locations of the coal seams by 

considering individual columns of distance function estimates from the 3D 

grid. This is done by applying a distance function threshold, which identifies 

the neighbourhoods where the distance function should be estimated on a 

finer grid. The distance function threshold is adjusted until the thicknesses 

match. 

Finally, the methodology is extended to multiple coal seams, where the 

same procedure for interpolating coal thickness and distance function is 

followed. Applying a distance function threshold to a column of distance 

function estimates can identify any number of seams in the column. 

The resulting numerical model of the coal seams can be gridded for various 

post-processing steps such as flow simulation or mine planning. Examples 

in the paper demonstrate the efficiency and precision of the methodology in 

locating numerous thin coal seams. 

The final paper with selected applications is by Rolo et al. (2017). In this 

case, the researchers investigated the use of the signed-distance function 

methodology for implicit geologic modelling. The study aimed to determine 

the applicability of this methodology in providing accurate estimates of the 

grade and location of mineral deposits in the subsurface. 

The implicit orebody modelling methodology was introduced in the field of 

geology by  Cowan et al. (2003) and is based on the concept of a volume 

function attached to the distance to an interface, which separates two 



 
 

69 

 

distinct domains. The bounding interface of interest is usually the iso-

surface zero of the volume function. To define the boundary interface, the 

volume function was interpolated using an RBF, which is a fast-scattered 

interpolator method. The study found that the SDF methodology is a simple 

and fast way to model multiple coal seams. A categorical scatterplot was 

constructed to compare the results of the algorithm with those of a trained 

professional. 

The scatterplot showed a high linear correlation coefficient of 0.93, 

indicating that 95% of the estimated blocks were consistent in both models. 

However, the study also identified some limitations of the method, including 

the non-stationarity of the distances, which can make variogram modelling 

arbitrary and questionable. Additionally, the method is based on Kriging, so 

only linear relationships between domains are modelled, unless a large 

amount of data is available. 

Overall, the study concludes that while the SDF methodology cannot 

replace a trained professional, its simplicity and speed justify its usage, 

especially in the early stages of modelling. Future research could focus on 

combining boundary simulation with the deterministic method to overcome 

some of the limitations of the method. 

 

2.8 Concluding remarks 

This section summarizes the review work conducted in Chapter 2, which 

focused on identifying limitations and gaps in the methods and models used 

for synthetic geometallurgical data generation and implicit orebody 

modelling. The section provides a brief overview of the gaps identified and 

offers a way forward to address them. 

In Section 2.2, the reviewed literature suggests that the use of techniques 

for synthetic data generation in geometallurgy is still not widely adopted. Out 

of the limited number of scientific articles dealing with synthetic data in 

geometallurgy, only two methods were identified: synthetic orebody 
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modelling using a mathematical function through a three-dimensional voxel 

model (Lishchuk, 2018) and geostatistical simulation (Garrido et al., 2018). 

The limitation of the work by Lishchuk (2018) is that it assumes the ore 

response uncertainty during the process is only influenced by factors such 

as extraction sequence, processing techniques, operator team, and 

blending of the extracted block. Other factors that may influence the 

uncertainty are not considered. 

Furthermore, in real-world applications, there may be other factors that 

could influence the ore response uncertainty, and these factors are not 

accounted for in the model. Additionally, the model assumes that the 

database for each point in the physical space is identical, which may not 

always be the case in real-world applications, where there may be variations 

in the quality and quantity of data available. 

The limitation of the work by Garrido et al. (2018) is that their proposed 

methodology requires a consolidated database to generate synthetic 

geometallurgical block models. This means that if there are gaps or 

inaccuracies in the data, the resulting models may not be representative of 

the actual deposit. 

Additionally, the methodology relies on certain assumptions about the 

underlying geology and mineralogy, and if these assumptions are incorrect, 

the simulated data may not accurately reflect the true characteristics of the 

deposit. Another potential limitation is that the methodology may not be 

suitable for deposits with complex geometries or mineralogy, as the 

simulation may oversimplify these features. 

The two scientific studies mentioned above suggest that more work is 

needed in the field of generating synthetic geometallurgical data. 

Additionally, the literature review conducted in Section 2.4 indicates that no 

studies have yet utilized GAN-based models to generate synthetic 

geometallurgical data, despite the well-established methodology and 

principles of using GANs for this purpose. Therefore, the researcher of this 
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thesis believes that there is still an opportunity to explore the use of GAN-

based models for generating synthetic geometallurgical data. 

The utilization of implicit modelling algorithms for creating geospatial 

surface models has been in practice since the late 1990s. The pioneering 

work in using implicit methods for orebody modelling was conducted by 

Lajaunie et al. (1997) as discussed in Section 2.6. A 3D geological model 

was developed by the researchers using the potential field approach. 

Cowan et al. (2003) later presented an RBF framework upon which the 

widely accepted 3D geological modelling software package Leapfrog® is 

based. Over the years, the RBF and potential field techniques have 

established themselves as the preferred methods for implicit geological 

modelling. However, in recent times, the signed-distance function (SDF) has 

emerged as another type of implicit method that can also be utilized in 

orebody modelling (Rolo et al., 2017). 

Over the last few decades, research in implicit geological modelling has 

mostly concentrated on method development and application (Feng et al., 

2010; Choudhury, 2017; Zhong et al., 2019; Zhong and Wang, 2020; Zhong 

et al., 2021). And as a relatively new thematic area when compared to 

explicit orebody modelling, implicit modelling has received a lot of interest 

and consistent improvements of underlying algorithms (Wellmann and 

Caumon, 2018). 

However, this has resulted in numerous problem-specific solutions. In 

simple terms, the researchers concluded that the proposed implicit solutions 

can only be effectively utilized for the specific issues they were designed for 

until modifications are made. The research conducted on implicit methods 

has resulted in the development of several software packages, including 

Leapfrog®, 3D GeoModeller®, and Gocad-SKUA®, which are commonly 

used (Birch, 2014). 

However, these products often have black-box algorithms that are tied to 

commercial software, limiting researchers' ability to scrutinize or modify the 



 
 

72 

 

underlying algorithms or adjust key parameters. Fortunately, recent years 

have seen an increase in the development of open-access software, with 

examples such as Gempy® and Loopstructural® (de la Varga et al., 2019; 

Grose et al., 2021). 

The implicit framework is particularly useful for creating geometries of 

mineral deposits that are too complex to be manually digitised. Moreover, 

the implicit modelling algorithms enable a significant reduction in the ratio of 

time spent building models to time spent considering the geological 

implications of the models. 

This is because the algorithms automate the process of creating complex 

geometries. Additionally, implicit modelling algorithms have been shown to 

produce solutions that were not previously considered due to operator bias 

and experience (Cowan et al., 2003; Grose et al., 2017; Zhong, et al., 2019). 

Despite the advantages of implicit modelling approaches, there are also 

limitations to consider. Firstly, there are costs associated with geological 

model automation. Converting geological data and concepts into a matching 

3D model using automated methods can be challenging. 

Secondly, seemingly basic tasks such as maintaining a smooth and uniform 

stratigraphic thickness within a stack of conformable surfaces can yield 

unsatisfactory results. Laurent et al. (2016) reported inconsistencies caused 

by upright or inverted cones when horizons were force-fitted around good 

markers. Additionally, there is a risk that implicit models, which can be 

quickly constructed and appear polished, may be incorrect. 

Significant work has been done on the implicit modelling of orebodies (e.g., 

Newell, 2018; Wang et al., 2018; Zhong et al., 2019 & 2021; Zhong and 

Wang, 2020; Guo et al., 2022). Based on the review of the papers in this 

section, several gaps in the literature were identified. 

One significant research gap is the consistent lack of the use of real-world 

data in the evaluation of available implicit algorithms. Instead, most 
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proposed implicit algorithms are tested using computer-generated data, 

which is more predictable than real-world data. 

The other research gap is related to the role of uncertainties in primary data 

on geospatial models. Zhong et al. (2019) attempted to establish an implicit 

modelling framework and explore the concept of data uncertainty. The 

conclusion of the study suggests that constraints, unknown geological data, 

and geospatial models are subject to uncertainties and limitations 

originating from the collection and processing of primary data. Further 

research is needed to gain a better understanding of the extent of this 

problem. 

Another topical theme is scenario testing. Indeed, one benefit of implicit 

modelling resides in its ability to evaluate alternative orebody situation 

models without wasting time or money. These various models may be used 

to simulate 'what-if' scenarios that could affect grade prediction and 

downstream mining operations. 

Consequently, the tested scenarios would allow for an assessment of 

mining hazards associated with each geological model (Cowan et al., 2003). 

Future studies should concentrate on scenario testing to enhance not just 

the algorithms but also the models. The problem is that much of the work 

done to date is centred on orebody modelling for grade distribution. 

Extension to other geometallurgical parameters is the next logical move that 

may benefit the mining industry at large. 

The last note is that lithology, structural information, grade, and assay are 

the parameters most employed in orebody modelling (Steward, 2014; 

Laurent et al., 2016; Grose et al., 2017; Stoch et al., 2018; Zhong et al., 

2022). Emerging trends are now exploring the incorporation of 

geometallurgical data such as the Bond work index. However, there has not 

been much research on how implicit modelling algorithms can deal with 

geometallurgical data. 
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It is conjectured for this doctoral research that implicit methods can 

effectively and accurately model geometallurgical parameters for use in 

mine planning, leading to improved decision-making and potentially 

increased profitability for mining operations. This is important because, as 

noted earlier, the potential of using implicit modelling methods to model 

geometallurgical parameters has not been explored. 

The objective of this doctoral research is to develop a novel methodology to 

model geometallurgical parameters using implicit methods, thus 

contributing to the body of knowledge and bridging the gap in the application 

of implicit methods in geometallurgy. By doing so, a better understanding of 

the potential and limitations of implicit methods in geometallurgy can be 

achieved. 
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Chapter 3 Research methodology and data collection 

 

3.1 Introduction 

This chapter details the computer modelling methodology followed in the 

collection of data for subsequent analysis. The chapter is divided into three 

sections. The first is the generation of synthetic data using Generative 

Adversarial Networks (GANs). The second is the implicit Radial Basis 

Function and geostatistical (Ordinary Kriging) modelling of geometallurgical 

parameters. The third section highlights the challenges and limitations 

encountered in this chapter. 

As stated in Section 1.4, the geometallurgical parameters which will be 

modelled in this thesis are, Bond work index, rod mill index, rock quality 

designation, drop weight index, Axb, and abrasion index. These parameters 

were selected due to their availability in literature. 

The Bond work index (BWI) is a measure of how much energy is required 

to break down a certain material from a starting size to a smaller, final size 

(Napier-Munn et al., 1999; Chakrabarti, 2000). The BWI is specifically the 

amount of energy needed to reduce the size of the material until 80% of it 

can pass through a sieve with very small holes (100 μm in size). 

The abrasion index (Ai) is used as a measure of the relative abrasivity of 

different rock materials on metal (Clout and Manuel, 2022). It is important to 

understand process plant design and operation in crushing, screening, and 

especially grinding. 

The rod mill work index is measured using Bond’s standard rod mill 

grindability test, which is conducted in locked-cycle mode to emulate the 

continuous closed-circuit operation (Ahmadi et al., 2013). 

The JK Drop Weight Test (DWT) is a laboratory test to measure the 

breakage parameters of a rock sample (Öfner and Zaunrith, 2016). The 

https://www.sciencedirect.com/topics/materials-science/abrasion
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DWT comprises a simple mechanism that makes use of a drop weight of 

known mass falling under the influence of gravity from a known height. 

Rock quality designation (RQD) is a standard technique in the mining 

industry for the qualitative and quantitative assessment of rock quality and 

degree of jointing, fracturing, and shearing in a rock mass. RQD is defined 

as the percentage of intact drill core pieces longer than 10 cm recovered 

during a single core run (Abzalov, 2006). 

The Axb parameter is a measure of the abrasiveness of a rock sample, 

commonly used in the mining industry due to the wear and tear that a 

material can cause to grinding equipment (Danish, 2017). Axb describes the 

hardness of the ore. A higher value of Axb represents soft material and vice 

versa. The Axb parameter is determined through laboratory tests that 

involve crushing a sample of the material and measuring the energy 

required to produce a specific particle size distribution. 

BWI, Ai, DWI, and Axb are all important parameters used in mining to 

optimize ore processing and mine planning. These parameters help to 

develop efficient process flowsheets that are tailored to the specific 

characteristics of the deposit. In block modelling, they can be used to 

estimate energy costs and wear rates, optimize mine planning, and select 

appropriate equipment for ore processing. 

All experiments in this chapter were run on a Windows® 11 operating 

system, utilizing a computer with an Intel i5 CPU featuring 10 cores, 8 GB 

of memory, and 1 TB of storage space. 

 

3.2 Description of the original dataset 

This section provides a detailed account of the original data used in the 

generation of synthetic data. The data utilized in the study was drillhole data 

that was obtained from a previous study conducted by Mboyo (2018). The 

drillhole data were acquired during a cobalt exploration drilling campaign in 

the Democratic Republic of Congo by Iverland Mining. Due to the high cost 
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of collecting geometallurgical data on-site or in the laboratory, this data was 

obtained from previous research papers by Dehaine et al. (2021) and 

Mambwe et al. (2022). 

The data for drillholes are recorded in collar data, which contains both 

categorical and numerical information. The numerical data is organized in 

65 rows/columns, while the categorical data includes column headers like 

'Hole_ID', 'X', 'Y', 'Z', and 'Depth_max', as listed in Table 3.1. The 'Hole_ID' 

header serves to identify each drillhole with its unique coordinates (latitude, 

longitude, and elevation) indicated by 'X', 'Y' in decimal degrees (DD), and 

'Z' in meters (m) respectively.  

The 'Depth_max' in meters (m) column indicates the maximum depth for 

each drillhole. The mean X (DD) coordinate is estimated to be around 

530,120.5, accompanied by a standard deviation of 131.9. Y (DD) remains 

constant at 8,710,000.0 for all observations. The mean Z (m) value is found 

to be 1,330.6 m, with a standard deviation of 0.9 m. 

The range of Depth_max (m) spans from 77.0 to 287.0 m, while the mean 

depth recorded is 148.3 m, with a standard deviation of 45.4 m. These 

statistics provide valuable insights into the distribution and characteristics of 

the dataset, facilitating an understanding of the variability and central 

tendencies of the variables. 

Table 3.1. Representative of the original collar data 

 
X (DD) Y (DD) Z (m) Depth_max (m) 

count 66.0 66.0 66.0 66.0 

mean 530 120.5 8 710 000.0 1 330.6 148.3 

Std 131.9 139.0 0.9 45.4 

Min 529 863.8 8 710 000.0 1 328.9 77.0 

25% 530 027.7 8 710 000.0 1 329.9 116.6 

50% 530 123.0 8 710 000.0 1 330.6 144.8 

75% 530 218.6 8 710 000.0 1 331.3 170.0 

Max 530 397.3 8 710 000.0 1 332.6 287.0 
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The assay data for the original drillholes is structured in 4 717 rows and is 

categorized into four headers: 'Hole_ID', 'Depth_From', 'Depth_To', and 

'TCo'. The "depth from" and "depth to" in meters refer to the starting and 

ending depths of a specific interval in the drillhole. The "depth from" is the 

depth at which the interval starts, while the "depth to" is the depth at which 

the interval ends. 

These measurements are used to define the location and boundaries of 

geological features, mineralization zones, and other geological data in the 

drillhole. The 'TCo' header represents the total cobalt concentration 

analyzed in the ore of the drillhole. The values for 'TCo' are expressed as 

grades in percentages (%), indicating the amount of total cobalt in the ore. 

Table 3.2 provides a summary of the structure of the assay data. 

The descriptive statistics reveal that the mean depth from the surface is 

approximately 80.9 m, with a standard deviation of 36.8 m. The minimum 

and maximum depths recorded are 2.0 m and 197.5 m, respectively. The 

median depth (50th percentile) is 79.5 m, indicating that half of the 

observations fall below this value.  

The TCo values range from 0.0% to 25.4%, with a mean of 0.8% and a 

standard deviation of 1.8%. The dataset provides a comprehensive 

overview of the distribution and characteristics of the measurements, 

enabling a better understanding of the variables' variability and central 

tendency. 

Table 3.2. Representative of the original assay data 

 
Depth_From (m) Depth_To (m) TCo (%) 

count 4 717 4 717 4 717 

mean 80.9 81.6 0.8 

std 36.8 36.8 1.8 

min 2.0 2.4 0.0 

25% 52.2 52.8 0.1 

50% 79.5 80.4 0.2 

75% 107.2 107.9 0.8 

max 197.5 198.5 25.4 
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The geometallurgical data is comprised of 1 122 rows and 9 columns, with 

headers including 'Hole_ID', 'Depth_From', 'Depth_To', 'Bond work index', 

'Rod mill index', 'RQD', 'Drop weight index', 'Abrasion index', and 'Axb'. See 

Section 3.1 for an explanation of these geometallurgical parameters.  

These columns contain various parameters related to the geometallurgical 

properties of the drillhole data. Table 3.3 presents an example of the 

metallurgical data for a single drillhole, ranging from the horizon to a depth 

of 27.0 m. As stated in Section 3.1, the geometallurgical data were obtained 

from historical papers and online databases. 

Descriptive statistics reveal that the mean values for Depth_From, 

Depth_To, Bond_Work, Abression, Rodmill_In, Drop_Weigh, RQD, AxB, X, 

Y, Z, and Depth_max are approximately 76.61, 85.32, 11.12, 0.29, 13.48, 

8.56, 49.58, 21.55, 530 120.57, 8 714 420.00, 1 330.58, and 150.07, 

respectively. 

The standard deviations provide information about the spread of the data, 

with values of 51.80, 51.77, 4.48, 0.45, 5.22, 6.58, 20.34, 17.67, 123.72, 

127.70, 0.82, and 43.79 for each respective variable. The minimum, 

maximum, and quartile values further characterize the range and 

distribution of the data. 
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Table 3.3. Representative of historical geometallurgical data for cobalt 

 
Depth_From 

(m) 

Depth_To 

(m) 

Bond_Work 

(kWh/t) 

Abression 

(kWh/t) 

Rodmill_In 

(kWh/t) 

Drop_Weigh 

(kWh/t) 

RQD 

(%) 

AxB 

(kWh/t) 

count 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 

mean 76.61 85.32 11.12 0.29 13.48 8.56 49.58 21.55 

std 51.80 51.77 4.48 0.45 5.22 6.58 20.34 17.67 

min 0.00 4.80 0.00 0.00 0.00 0.00 0.00 0.00 

25% 33.83 44.63 7.00 0.00 12.00 0.02 36.33 0.32 

50% 70.5 77.60 12.00 0.02 13.80 11.30 54.74 29.10 

75% 112.15 122.38 14.30 0.78 18.90 12.43 70.00 41.10 

max 281.80 287.50 19.60 6.70 18.90 21.00 72.00 41.10 

 
 

Depth_From 

(m) 

Depth_To 

(m) 

X (DD) Y (DD) Z (m) Depth_max 

(m) 

count 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 1 122.00 

mean 76.61 85.32 530 120.57 8 714 420.00 1 330.58 150.07 

std 51.80 51.77 123.72 127.70 0.82 43.79 

min 0.00 4.80 529 863.84 8 714 125.00 1 328.93 77.00 

25% 33.83 44.63 530 029.72 8 714 331.00 1 329.94 118.50 

50% 70.95 77.60 530 119.97 8 714 418.00 1 330.59 154.50 

75% 112.15 122.38 530 218.65 8 714 516.00 1 331.13 171.50 

max 281.80 287.50 530 397.28 8 714 717.00 1 332.65 287.00 
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The final dataset in this study is the survey data, which provides information 

on the dip and azimuth of the drillhole data. This dataset is comprised of 

1 122 rows and 4 columns, including 'Hole_ID', 'Depth', 'Azimuth', and 'Dip'. 

The 'Azimuth' column represents the horizontal angle measured in degrees 

between a line in a horizontal plane and a line in the direction of the drillhole. 

The 'Dip' column measured in degrees () represents the angle between a 

line in a vertical plane and the drillhole. 

Together, these measurements provide important information on the 

orientation and structure of the geological features present in the drillhole 

data, which can be used to guide further exploration and resource 

estimation efforts. 'Depth' refers to the vertical depth of the survey data point 

in meters. Each survey data point corresponds to a specific depth in the 

drillhole. The 'Depth' column in the survey data provides information on the 

location of the survey data point along the vertical axis of the drillhole. Table 

3.4 provides a summary of the structure of the survey data. 

The summary of descriptive statistics reveals that the average depth is 

approximately 80.73 m, with a standard deviation of 64.57 m. The depth 

measurements range from 0.00 to 287.00 m. The azimuth values range 

from 80.40 to 140.40, with an average of 113.96 and a standard deviation 

of 19.72. The dip measurements range from -65.10 to -45.80, with an 

average of -55.65 and a standard deviation of 3.40. 

Table 3.4. Representative of the original survey data 

 
Depth (m) Azimuth (Degree) Dip (Degree) 

count 278.00 278.00 278.00 

mean 80.73 113.96 -55.65 

std 64.57 19.72 3.40 

min 0.00 80.40 -65.10 

25% 50.00 91.90 -57.40 

50% 81.50 126.05 -55.75 

75% 125.00 130.10 -54.43 

max 287.00 140.40 -45.80 
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Tables 3.1 – 3.4 displays the original datasets that will be utilized in this 

study to create synthetic data. The objective of the study is to predict 

whether synthetic survey data can be created from the original data without 

any loss of quality. This is an important task as synthetic data has a variety 

of useful applications, such as preserving privacy when original data cannot 

be shared. 

However, the value of the synthetic data is highly dependent on the quality 

of the original data. Therefore, the study aims to investigate whether the 

original data is of sufficient quality to generate synthetic data that can be 

used for various purposes without any loss of important information. By 

evaluating the original data and its ability to generate high-quality synthetic 

data, the study provides insights into the suitability of using synthetic data 

for a range of applications. 

 

3.3 Pre-processing of the original data 

Before any experiment or modelling could be undertaken, the original data 

was pre-processed. This consisted in cleaning up and transforming the 

original raw data coming from different sources like historical data, stream 

data, and application data so that it is structured for the intended purpose 

(Pandey et al., 2020). In this doctoral study, Python® libraries were used to 

pre-process the original data following the steps below: 

 

Step 1. Importing relevant libraries 

The pre-processing of raw data involved several steps. The datasets were 

pre-processed using Python® version 3.10.10. The first step was to import 

all the necessary libraries relevant to the pre-processing. Figure 3.1 shows 

the commands used for this purpose. The libraries used to pre-process data 

were Pandas, NumPy, os, matplotlib, and seaborn. Pandas are used to 

import, export datasets and create data structures. NumPy is used for 
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mathematical calculations. The os module is used to manage files and 

directories and Retrieve information about the file system. Matplotlib and 

seaborn are used for data visualization. 

After importing the necessary libraries, the original data was cleaned up and 

transformed into a structured format suitable for synthetic data generation. 

 

Figure 3.1: Libraries used in Python® for data pre-processing. 

 

Step 2. Loading the datasets 

The next step after importing the libraries is loading the datasets. Using 

Python®, one can read data files of different formats like image files, 

comma-separated value files (or CSV files), Excel® files, text files, HTML, 

hierarchical data formats, audio files, video files and many more. 

The following Pandas instruction illustrates how the original datasets in 

Excel® CSV formats were loaded and read in Python®: 

Variable_name = pd.read_FileFormat(“file_location/path 

of the file”) 

where Variable_name is the name of the variable in which the data will 

get stored; pd means Pandas® libraries were used to read the datasets; 

and FileFormat is the format that the datasets were saved under; 

file_location is the location where the file was saved; and path of 

the file was the location where the file originated in the computer. 

The datasets were loaded using the following code: 
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collar=pd.read_csv("C:/Users/TIYANI/Videos/Final/Collar

.csv"). 

with collar representing the name of the collar dataset. The other 

datasets were loaded the same way while replacing the collar, with either 

assay, survey or geometallurgical data. 

 

Step 3. Checking data 

This step entailed checking the first 5 rows of the data, the data type, the 

data columns, missing values, and the statistic of the data. 

The head() function was made use of to display a few rows of data. 

Alternatively, the print() function could be invoked to display the loaded 

datasets. 

The following codes were also used during this process: collar.head(), 

collar.columns, collar.isna().any(), collar.describe(). 

These steps were repeated for the other datasets, with the only change 

being the replacement of the term "collar" with either "assay", 

"survey", or "geomet". Table 3.5 shows statistics of collar data based on 

the following code. collar.describe … was entered. 

Table 3.5. Summary of statistics of the original collar data. 

 
X (DD) Y (DD) Z (m) Depth_max (m) Target 

count 66 66 66 66 66 

mean 530 120.5 8.71E+06 1330.575 148.2652 1.121212 

Std 131.8543 1.39E+02 0.914364 45.39292 0.328875 

Min 529 863.8 8.71E+06 1328.925 77 1 

25% 530 027.7 8.71E+06 1329.912 116.625 1 

50% 530 123 8.71E+06 1330.555 144.75 1 

75% 530 218.6 8.71E+06 1331.29 170 1 

Max 530 397.3 8.71E+06 1332.649 287 2 
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Step 4. Handling the null values 

The next and most crucial step in data pre-processing is to handle the 

missing values or null values rendered in Python® as NaN. 

The simplest way of handling null values is to drop the entire row containing 

the null values. This sometimes tends to produce unpredictable results and 

therefore may not be the best way of handling missing values. Other options 

include the use of specialised Python® libraries or implementing strategies 

involving computing the mean, median or mode depending upon the 

problem and the data at hand. However, the most common strategies are 

to assess “mean” or “std” or “Zero” or to drop the column with missing data. 

In the case of this doctoral study, geometallurgical data was noted to have 

a lot of missing values. The following instruction was used to check for 

missing values: geomet.isnull().sum(). Then, the columns with 

missing values were dropped to keep the analysis as simple as possible. 

 

Step 5. Converting categorical data to numerical data. 

To facilitate synthetic data generation and ensure proper handling in the 

process, the categorical data in the 'Hole_ID' column needed to be 

converted into numerical data. The Figure 3.2 presents the code that was 

used. In this step, the scikit-learn library in Python® was used to perform 

label encoding on a column named 'Hole_ID’. 

 

Figure 3.2: Code used in Python® to convert categorical data to numerical 

data 
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Label encoding is a preprocessing technique used to convert categorical 

(textual) data into numerical values. It is often necessary because many 

machine learning algorithms work with numerical data and cannot directly 

handle categorical features. 

After running this step, the 'Hole_ID' column in the 'survey' DataFrame will 

contain integer values instead of the original text labels. These integer 

values will represent the different categories present in the 'Hole_ID' 

column, allowing the data to be used in machine learning models that 

require numerical input. Each unique label will be mapped to a unique 

integer value. 

 

3.4 Methods for generating the synthetic data 

This section outlines a study that focused on data augmentation using 

GANs. The research involved the use of CTGAN, CopulaGAN, and 

Gaussian Copula to generate synthetic data that could accurately replicate 

the distribution and relationships present in the original data. It should be 

noted that Section 2.2 of this thesis provides detailed information regarding 

the GANs employed in this section. The section discusses the particulars of 

CTGAN, CopulaGAN, and GaussianCopula, which were the GANs 

employed to generate synthetic data for data augmentation. 

To generate synthetic data, it is crucial to have access to the original 

datasets to enable the GANs to learn from the data. The original data used 

in this study, are four diverse datasets that included the collar, assay, 

geometallurgical and survey datasets. The datasets used in the study 

contained both categorical and numerical attributes. The categorical 

attribute was 'Hole_ID,' while the numerical attributes were 'X (DD),' 'Y 

(DD),' 'Z (m),' and 'Depth_max (m).' For more information about the original 

datasets used in this study, refer to Section 3.2 of the thesis. 
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In this section, a summary of the steps used in generating synthetic data is 

provided, while the detailed code used for each step can be found in 

Appendix A, which contains Jupyter® notebooks. 

 

3.4.1 Computer-based generation of the synthetic data 

To create synthetic data for the study, various methods were employed, 

including CTGAN, Gaussian Copula, and CopulaGAN models, which were 

discussed in Section 2.2. Additionally, the SDV libraries version 0.18.0 (see 

Section 2.2.4), which consist of multiple modules for synthetic data 

generation, were utilized. The following steps were employed during the 

synthetic data generation process. 

 

Step 1: The initial data was generated in such a way that it met the 

requirements of the original data presented in Section 3.2.1. This step 

involves pre-processing and preparing the data for modelling, which was 

carried out using the steps outlined in Section 3.2.2. 

 

Step 2: The SDV library was loaded in python® using the following code: 

import SDV. If the SDV library is not available in python® it can be installed 

using the following code: pip install SDV. From the SDV library, the 

models used the generate synthetic data was loaded. These are CTGAN, 

CopulaGAN and Gaussian Copula. The code that was used for loading the 

model was, from sdv.tabular import CTGAN. The rest of the models 

were loaded the same way by replacing CTGAN from the code with either 

CopulaGAN or GaussianCopula. 

Step 3: Constraints were set for data. Constraints refer to the specific 

conditions and limitations that are applied to the process of generating 

synthetic data. In order for synthetic data to inherit the qualities and data 

structure of the original data constraints need to be set. The SDV library has 
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predefined constraints that are commonly found in the datasets. The 

constraints include FixedCombination constraints, inequality, scalar 

inequality as well as positive and negative constraints among others. More 

information can be obtained at 

https://sdv.dev/SDV/user_guides/single_table/handling_constraints.html#p

redefined-constraints. 

For this study, the FixedCombination and negative constraints were 

used (Figure 3.3). 

The FixedCombinations constraint enforces that the combinations 

between a set of columns are fixed, that is, no other permutations or 

shuffling is allowed other than what is already observed in the real data. The 

data utilized in this study contains a FixedCombinations constraint. 

Specifically, for collar data (as shown in Figure 3.3), the variables X (DD), Y 

(DD), Z (m), and max_depth (m) is subject to this constraint. Similarly, for 

assay data, the variables Depth_From (m) and Depth_To (m) are 

constrained. 

For survey data, the variables Depth (m), Azimuth (degree), and Dip 

(degree) are subject to the constraint. Finally, for Geometallurgy data, the 

parameters were Depth_From (m), Depth_To (m), BWI (kWh/t), rod mill 

index (kWh/t), RQD (%), DWI (kWh/t), Ai (KWh/t), and Axb (kWh/t) are 

constrained. It is important to note that these variables should not be 

shuffled or mixed up in the synthetic data, as they must remain in their 

original form to ensure the quality and accuracy of the data. 

In the data, the negative constraint was defined. All the Dip values must be 

negative from the synthetic data. The code for negative constrains was as 

follows: from sdv.constraints import Negative 

dip= Negative(column_name='Dip'). 

 

https://sdv.dev/SDV/user_guides/single_table/handling_constraints.html#predefined-constraints
https://sdv.dev/SDV/user_guides/single_table/handling_constraints.html#predefined-constraints
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Figure 3.3: Example of constraints set for original assay data 

Step 4: The model was fitted to the data. Once the constraints were set and 

the data prepared, this data was set for fitting on the model. Figure 3.4 

illustrates the code that was used to fit and set the model. Model fitting and 

training are important steps in the process of creating a machine-learning 

model. 

In general, model fitting involves selecting a model architecture and defining 

the parameters to be used to generate the model. This is typically done 

using a training dataset, which is a set of data that the model will be trained 

on to learn the relationship between the input data and the target variable. 

During model training, the model is adjusted to optimize its performance on 

the training data, which involves adjusting the model parameters to 

minimize the difference between the predicted values and the actual values 

in the training data. 

 

Figure 3.4: Code used for model training and data fitting for synthetic data 

generation 

 

Step 5: Hyperparameters were set. This step involved setting 

hyperparameters, which are user-defined parameters used to control the 

learning process of the synthetic data generation models. By optimizing the 

hyperparameters, the models can perform better. The hyperparameters 
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used in this study for synthetic data generation are: The primary key, 

epochs, batch size, generator_dim and 

discrimination_dim, verbose, field_distribution, and 

disct. The primary key is a column in a table that serves as the index 

or unique identifier for each row of data in the table. It helps to identify and 

locate specific data within the table. 

The primary key hyperparameter was used for all the models during 

synthetic data generation. However, for datasets that did not have a unique 

Hole ID, like assay data, the primary key was not used. The 

hyperparameters, epochs and batch size, shown in Figure 3.4, 

determine how many times the model will update its parameters and how 

many samples are used in each update during the optimization process. 

These parameters were used for CTGAN and CopulaGAN models. 

The generator_dim and discrimination_dim hyperparameters are 

used to control the size of the output of the generator and discriminator 

networks, respectively. This helps to ensure that the generated synthetic 

data is of an appropriate size. The defaults values for these two parameters 

were 256, 256, and 256. 

These values were used as they performed better during model training. 

The verbose hyperparameter, on the other hand, is used to control whether 

the fit progress is printed on the screen. By default, this setting is false, but 

it can be changed if necessary. These hyperparameters were used for all 

the models. 

The Gaussian Copula algorithm uses the field_distribution 

hyperparameter to specify the distribution that can be used for a particular 

column in the dataset. The disct argument can be set to one of the 

following possible values: 

• "gaussian": This value indicates the use of a Gaussian distribution 

for the column. 
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• "gamma": This value indicates the use of a Gamma distribution for 

the column. 

• "beta": This value indicates the use of a Beta distribution for the 

column. 

• "student_t": This value indicates the use of a Student t-distribution for 

the column. 

• "gaussian_kde": This value indicates the use of a non-parametric 

GaussianKDE distribution for the column. However, if this value is 

used, the get_parameters function cannot be used. 

• "truncated_gaussian": This value indicates the use of a Truncated 

Gaussian distribution for the column. 

For more information on the hyperparameters of the two modules can be 

accessed here 

https://sdv.dev/SDV/user_guides/single_table/ctgan.html#advanced-

usage. 

In this research, the beta was used as it showed better performance in 

generating synthetic data during the training process. 

 

Step 6: Generation of the synthetic data. In this step, synthetic data was 

generated through the trained model. Model training is the process of 

feeding a machine learning algorithm with a set of input data and their 

corresponding output labels to enable the algorithm to learn patterns and 

relationships between the data. The trained model can then be used to 

make predictions on new, unseen data. 

Once the model is trained with the appropriate hyperparameters, it can be 

used to generate synthetic data. The process of generating synthetic data 

involves feeding random noise into the generator of the model, which 

produces new data points that are similar to the real data in the training set 

as explained in Section 2.2. To generate synthetic data with the trained 

model, the sample method of the SDV library was used. 

https://sdv.dev/SDV/user_guides/single_table/ctgan.html#advanced-usage
https://sdv.dev/SDV/user_guides/single_table/ctgan.html#advanced-usage
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The sample method takes as input the name of the Table is used to 

generate data for, and the number of rows used want to generate. In this 

case, the name of the Table was new_assay and the number of rows was 

4 717. The code in Figure 3.5 was used to generate the data. 

The resulting synthetic data variable contained a Pandas data frame with 

4 717 rows of synthetic data for the new_assay Table. This step was 

repeated for all the datasets presented in Section 3.2.1 using the different 

models in Section 2.4. 

 

Figure 3.5: Code used o generating synthetic data 

 

Step 7: Evaluate the quality of the data using a table_evaluator. 

Table_evaluator is a library that is commonly used to evaluate the 

quality of synthetic datasets generated using GANs. The library evaluates 

how similar the synthesized dataset is to the real data. To use the library, 

the code in Figure 3.6 was used, and the 'target' column was specified as 

the target for evaluation. To visualize the results, the following code was 

utilized table_evaluator.visual_evaluation(). 

This step was crucial to obtain a visual comparison between the synthetic 

and original data, as well as to analyse the mean, standard deviation, and 

principal component analysis of the data. To enhance the figures obtained, 

Matplotlib® library was employed. 

 

Figure 3.6: Code used to call up table_evaluator function 
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Step 8: Compute the correlation matrix and calculate the percentage of 

correlation coefficient. The Pandas® library was employed to calculate the 

correlation matrix and percentage between the original data and the 

synthetic data. To obtain the correlation matrix, the code corr = 

survey.corr() was utilized. For calculating the percentage, the code 

percentage_corr = r * 100 was used to derive the percentage score 

representing the correlation between the original data and the synthetic 

data. 

 

3.4 Implicit modelling methodology 

This section of the thesis provides a detailed discussion of the software and 

methodology used for implicit modelling of the geometallurgical parameters. 

It outlines the step-by-step process followed during modelling and presents 

the methodology used for modelling geometallurgical parameters. 

 

3.4.1 Software 

Leapfrog® Geo is a popular software used for geological modelling and 

resource estimation. In this study, Leapfrog® Geo version 5.2.1 was used 

for implicit modelling and geostatistical modelling of drillhole data. The 

software was selected because it offers the FastRBF implicit method, as 

discussed in Section 2.5.1, which is a powerful and efficient method for 

building geological models from drillhole data. 

One of the key advantages of Leapfrog® Geo is that it offers a range of 

geostatistical methods, including Kriging, which allows for the accurate 

estimation of values at unsampled locations. The software also enables the 

inclusion of different estimates and parameters into its block model, which 

allows for the comparison of multiple estimates in a single block model.  

Overall, Leapfrog® Geo is a powerful and versatile software that offers a 

range of tools for geological modelling and resource estimation. Its user-
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friendly interface and geostatistical methods make it a popular choice for 

researchers and professionals in the field marking it more popular to use 

than any other software packages. 

 

3.4.2 Loading drillholes dataset 

The original drillhole dataset and the historical geometallurgical datasets 

generated were utilized for implicit modelling. The drillhole data can be seen 

in Figure 3.8. The first step in utilizing these datasets for implicit modelling 

involved importing them into Leapfrog® Geo, which was done using the 

"import drillhole data" menu (refer to Figure 3.7). The data was uploaded in 

the following files: the collar data under "collar" and the survey data under 

"survey". The geology, assay, and geometallurgy data were uploaded under 

the "interval" menu. 

Once the files were imported, the next step involved verifying the data. This 

step is essential to check all the columns and to decide whether all the 

columns should be uploaded or not. It also enables the user to specify which 

column represents what, using the Leapfrog® menu. For instance, in the 

collar data, X and Y denote the coordinates, while in Leapfrog® Geo, the 

coordinates are represented by East and North.  

Therefore, this needs to be specified before proceeding. In this study, X and 

Y were specified as East and North, respectively, while Z representing 

elevation and Depth_max in the drillhole data was specified as Elev and 

Max_depth in Leapfrog®. In the case of survey data, the column names 

were the same in Leapfrog® and the data uploaded. Dip, Azimuth, and 

Depth were represented the same in Leapfrog®. 

The assay and geometallurgical data contained numerical data that required 

specification before uploading. Hence, the TCo and geometallurgical 

parameters were specified as numerical data to enable Leapfrog® to 

process them. After specifying all these details, the data was uploaded into 

Leapfrog® Geo. 
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Figure 3.7: Importing drillhole data into Leapfrog® Geo 

 

Figure 3.8: Original drillhole data with displayed in Leapfrog® Geo with their 

collar ID 

 

3.4.3 Validation of the original drillhole dataset 

Before beginning orebody modelling/estimation of a resource, it is important 

to assess the reliability of the exploration data through data validation. While 

this step may seem small in comparison to the overall project, it has the 
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potential to uncover database errors that could negatively impact the 

reporting of resource tonnage, grade, and classification. 

Data validation helps identify and remove database errors that could 

potentially affect the accuracy of resource estimation. Regardless of the 

experience of the modelling geologist, inaccurate input data will result in 

inaccurate estimates. This highlights the importance of data validation as a 

critical stage in resource modelling to ensure the reliability of the resource 

model produced.  

To prevent unpleasant surprises during the geostatistical estimation phase, 

a database audit was conducted to identify any inconsistencies such as 

duplicated collar data, and incorrect entries of drillhole depth and assay 

values. 

Upon importing the drillhole data into Leapfrog® Geo software, several 

errors were identified and flagged on the screen (as shown in Figure 3.9). 

These errors included collar max-depth exceeded, invalid value handling, 

missing values, missing intervals, and hole-id not in the collar table. 

Leapfrog® Geo software provides users with the option to fix errors within 

the software or to download the data and fix it outside the software. 

For this study, the errors were fixed within the software. The collar max-

depth exceeded error was resolved by using the "fix max depth input" option 

in the software, which corrected drillhole data that exceeded the maximum 

depth. Invalid value handling, missing values, and missing intervals were 

fixed by omitting them, which ensured that Leapfrog® Geo software would 

not process this data during modelling. The same approach was applied to 

the Hole_ID, not in collar table error, which was resolved by omitting it from 

the data. 



 
 

97 

 

 

Figure 3.9: Validating drillhole data in Leapfrog® Geo. Errors in the drillhole 

dataset are highlighted in the red circle 

 

3.3.4 Numerical composite of drillholes dataset 

The process of compositing numeric data involves converting unevenly 

spaced drillhole data into regularly spaced data, which can then be 

interpolated (Seequent®, 2022). In the current study, compositing was 

performed on the entire assay drillhole data using a composite length or 

interval of 2 m, which was close to the original average intervals of the 

drillholes. 

Additionally, the residual length was set to 0, meaning that any drillhole 

length that was less than zero would be discarded from the dataset. The 

data between 0 and 2 m in length is typically combined or averaged to create 

a single data point. This consolidation helps to simplify and condense the 

information, reducing the overall dataset size and providing a representative 

value for the composite interval. Figure 3.10 provides a visual 

representation of the various settings that were applied during the numeric 

compositing process. 
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Figure 3.10: Settings used for the numerical composite of drillhole datasets 

in Leapfrog® Geo 

The minimum coverage parameter is used to handle the impact of missing 

intervals in the drillhole data during processing, and in this study, it was set 

to 50%. However, since the drillhole data had no missing intervals, this 

parameter had no effect. This is because the missing intervals were 

removed during drillhole validation in Section 3.3.3. The additional weighting 

column can also be used to adjust the influence of each interval or sample 

on the final estimate based on its perceived reliability or accuracy. However, 

no additional weighting column was set for this study. 

Once the compositing parameters were set, the “Output Columns” tab was 

selected to choose the numerical data columns. In this case, both the assay 

and geometallurgical data were selected since they both contained 

numerical data. Clicking "OK" created a table of the numerical composite of 

the drillhole data. 

 

3.3.5 Economic composition of the drillhole dataset 

Assay data is categorized into "ore" and "waste" by economic compositing, 

which considers grade thresholds, mining dimensions, and allowable 

internal dilution, according to Seequent® (2022). As a result, an interval 

table is produced that includes a column for ore/waste category data and a 

column for composited interval values.  
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In addition, the table contains extra columns that indicate the length, linear 

grade, included dilution length, included dilution grade, and the proportion 

of the composite that is made up of missing (and subsequently filled) interval 

data (Appendix B). 

Economic compositions were created using the TCo numerical values for 

the assay data. A cut-off grade of 0.5% was used to delineate the drillholes 

from ore and waste. This cut-off grade was selected based on the study by 

Mboyo (2018) who used the same drillhole data for their research. Figure 

3.11 shows how settings were entered for the economic composting of the 

drillhole data. 

 

Figure 3.11: Settings used for the economic composition of the drillhole 

dataset in Leapfrog® Geo 

A “Log scale in x” and a “Bin count” of 25 were used to control the 

distribution of data in the histogram. This resulted in a normal distribution of 

the data. The x-axis scale can be changed between a linear and logarithmic 

scale. 

The Dilution rule affects how ore composites are created. There are three 

options: Basic, Advanced, and Advanced+. Basic simply averages the 

composite and waste-ore section, but it may create longer waste and ore 

composites. Advanced and Advanced+ are more cautious and create more 
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precise ore composites, with Advanced+ having an additional rule that 

checks if adding a waste-ore section will create a segment below the cut-off 

grade made up of waste-ore-waste.  

For this study, the advanced dilution rule was chosen for creating ore 

composites. The minimum length for an ore composite was set to 2 m, 

based on the length of the numeric composite used in Section 3.3.4. The 

compositing direction was set to both down and up, which means that the 

entire length of the drillhole will be used to create the composites. Other 

optional settings, such as the true thickness, were left blank as they have 

minimal impact on the results needed for this study. 

 

3.3.6 Orebody delineating using Indicator RBF 

In this study, RBF-based interpolation was used to create a 3D model of the 

orebody using assay-grade data. To do this, a spheroidal variogram was 

used to set a geological threshold grade for the interpolation. The spheroidal 

interpolant function in Leapfrog® was selected to create the grade envelope 

based on the fixed-range spherical variogram used in geostatistical 

modelling. 

The settings shown in Figure 3.12 for spheroidal models were used to 

improve the performance of the module. The indicator RBF Interpolant 

numeric modelling tool was used to create the orebody model in this study. 

This tool assigns a value of 1 to all data above a certain indicator grade 

value and a value of 0 to all data below it. 

A shell is generated at a defined iso-value between 0 and 1 to avoid issues 

caused by high-grade data "blow-outs" and unrealistic volume estimates 

that result from them. Blow-outs can occur when using standard-grade shell 

modelling with highly skewed data populations. 
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Figure 3.12: Settings for used for indicator RBF in Leapfrog® Geo 

In Figure 3.12, the total cobalt grade assay data was used to create an 

orebody model. The boundary of the interpolation extent was set to be the 

drillhole data boundary. A cut-off grade of 0.5% was used to determine the 

ore and waste. The trend line was automatically set based on the orientation 

of the drillhole data. 

The spheroidal interpolant was used, with a total sill of 0.2, a nugget of 0.00, 

a base range of 200 and an accuracy of 0.00500. The non-drift was used, 

which means the interpolant pulls down to zero away from the data. The 

spheroidal interpolant is used for metallic ores when there is a limited range 

beyond which the data has no significant influence on the model. The values 

used were set based on the drillhole data. 

 

3.4 Variogram model for implicit and geostatistical modelling 

A variogram is a tool used to display the spatial variability of grades within 

a region, and it plays a crucial role in mineral resource estimation 

(Seequent®, 2022). It is used to select appropriate sample weighting in 
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Kriging and RBF estimators and calculate the diagnostic statistics and 

associated quality of the estimators. The Spatial Models folder in Leapfrog® 

Geo-domains estimations is used to create and modify variograms. 

Using a linear variogram for grade interpolation is not recommended, as it 

assumes that two samples, regardless of their distance apart, have a direct 

linear relationship, which is never true in reality. Understanding the 

relationship between samples is essential for accurate grade interpolation.  

Two samples side by side will show some difference due to the nugget 

effect, and as the distance between samples increases, they lose their 

relationship, eventually bearing no relationship to each other. When two 

samples side by side bears no relationship at all, a pure nugget effect 

occurs, making it difficult to estimate a pure nugget deposit. 

While Leapfrog® is known for its ability to rapidly assess a deposit, 

generating complex variograms is not necessary. A basic understanding of 

how a variogram should behave for various deposit types will allow for the 

approximation of the variogram for a specific dataset. 

 

Figure 3.13: Settings used for variogram model for RQD data in Leapfrog® 

Geo 

In Leapfrog® Geo domains estimations, variograms are created and 

modified using the Spatial Models folder. The variogram model if 

automatically calculated but the user can adjust it to fit the data properly. 

Figure 3.13 indicate the settings used to create the variogram model in 

Figure 3.14. The direction in Figure 3.13 referred to the direction of the data 

with the greatest continuity. This was set from a plane using the same 

settings as in Section 3.3.3. for the variogram model, a normal sill was used. 
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The nugget was calculated to be 0.1781 and the total sill to be 1.081. The 

variance is calculated automatically, and it was found to be 240.657. A 

spheroidal variogram was used same as Figure 3.12. 

 

Figure 3.14: Variogram model of RQD data 

 

3.5 Implicit modelling of geometallurgical data 

An RBF-based implicit method was used to interpolate the geometallurgical 

data within the boundary of the orebody. The Leapfrog® Geo methodology 

discussed in Section 2.5.1 was used in this study. As mentioned in Section 

2.5.1, Leapfrog® Geo uses the FastRBF method to implicitly model 

numerical and orebody models.  

There are two ways to implicit model data in Leapfrog® using the RBF 

method. The first is to use the estimator folder and the second is to use the 

numerical model folder. For this study, the estimator folder was used so that 

it can easily be compared to a geostatistical method which is also located 

in the estimator folder. The settings in Figure 3.15 were used to prepare the 

interpolation method. Leapfrog® Geo was used to model geometallurgical 

data using the implicit method. 

In Figure 3.15, the variogram model created in Section 3.4 was used to 

interpolate geometallurgical data. The fitting parameters were as follows: 
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the drift explained in the section was specified so that the mean values of 

the data can be used. The mean of RQD data was 52.50. Leapfrog® Geo 

estimates the accuracy of the data values by taking a fraction of the smallest 

difference between measured data values (Seequent®, 2022). 

The values were clipped between the lower and upper bound of the data so 

that the interpolator does not under or overestimate the data. The outputs 

were automatically generated by Leapfrog® Geo, which generates the iso-

surfaces of the RQD after interpolating the data. 

 

Figure 3.15: Settings used for implicit model geometallurgical data for 

RQD data 
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3.6 Geostatistical modelling of geometallurgical data 

A geostatistical method was also used to model geometallurgical data. The 

reason for doing so was to compare the results of the geostatistical method 

with the implicit method. To evaluate which method performs better, the 

study selected the Ordinal Kriging (OK) geostatistical method discussed in 

Section 2.3. This is because OK is one of the most used geostatistical 

estimators in modelling (Abzalov, 2006). 

 

3.6.1 Ordinary kriging of geometallurgical dataset 

Kriging is a widely recognized and accepted technique used to estimate 

values for points that have not been directly measured or observed, by using 

measured data from neighbouring points. In other words, it is a method of 

interpolation that provides estimates for locations where data is missing or 

incomplete. Kriging relies on statistical models to analyse the spatial 

relationships between measured data points and the point being estimated, 

in order to generate a prediction with the lowest possible error. 

Leapfrog® Geo was used for Kriging interpolation with relevant settings 

shown in Figure 3.16. The same variogram model created in Section 3.4 

and used in Section 3.5 was also used in this section. For the Kriging option, 

Ordinary Kriging was used and does not require the mean values of the 

data. All values that were less than zero were set to be zero. Discretisation 

was automatically set by Leapfrog® to be X-5, Y-5, and Z-2. 

Discretisation sets the number of discretisation points in the X, Y and Z 

directions for block Kriging (Seequent®, 2022). Block Kriging provides a 

means of estimating the best value for a block instead of only at the centre 

of the block. Just like in implicit modelling (Section 3.3), the values were 

clipped between the min and max boundaries. The ellipsoid was also the 

same as the implicit model. The outputs were set to be the values and 

statuses that will be generated after interpolating. 
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Figure 3.16: Setting used for kriging interpolation of geometallurgical 

dataset 

 

3.7 Block modelling of geometallurgical data 

A block size of 10 m (X) × 10 m (Y) × 10 m (Z) was used. This block size 

was used taking into consideration the processing time of the model and the 

size of the data. For larger data, it is advisable to use a larger block size to 

reduce processing time, as smaller block sizes can increase processing 

time. Figures 3.17 and 3.18 show the parameters of the setting required 

when creating a block model. Extents refer to the extent to which the block 

model should cover. This was set to enclose the orebody created in Section 

3.3.6. The process depicted in Figures 3.17 and 3.18 refer to the method 

used to analyse and model the data into a block model. The evaluation 

method used in Sections 3.5 and 3.6 were selected (Figure 3.18). Thus, the 
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radial basis function and Ordinary Kriging were used as evaluating methods. 

After setting the parameter, “OK” was clicked and the block model was 

created. 

 

Figure 3.17: Settings used in Leapfrog® Geo for block modelling 

geometallurgical data 

 

Figure 3.18: Evaluations selections for block modelling geometallurgical 

data in Leapfrog® Geo 
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3.8 Challenges encountered 

This section addresses the challenges faced throughout the thesis journey, 

specifically focusing on the difficulties encountered during data collection, 

data analysis, and the thesis write-up. 

The initial challenge happened during the process of data generation using 

the CTGAN model. When attempting to generate a large bulk of synthetic 

data through the CTGAN approach, a notable issue surfaced regarding the 

model's slow performance. Substantial efforts were made to optimize the 

CTGAN model specifically, focusing on enhancing its speed. 

The second challenge encountered was when using table_evaluator to 

evaluate the quality of the synthetic data generated. The 

table_evaluator is a tool used to compare the statistics of the synthetic 

data with the original data. However, when the table_evaluator 

encounters columns with multiple values, it becomes difficult to evaluate the 

quality of the data. 

To overcome this, a target column was added with only two distinct values. 

This target column was used to evaluate the quality of the synthetic data by 

comparing the statistics of the original and synthetic data for each value in 

the target column. This allowed for a more accurate evaluation of the 

synthetic data quality. 

The last issue was that the geometallurgical data could not be measured 

directly due to budget constraints. Instead, historical data and synthetic data 

generated through a data generator were used, as obtaining this data 

requires expensive equipment that was not feasible within the allocated 

budget for the study. 
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Chapter 4 Results of synthetic data generation 

 

The synthetic data generated in Section 3.2 is appraised in this chapter. The 

aim is to evaluate the quality of the generated synthetic geometallurgical 

data using GAN models. The study utilized three types of GAN-based 

models: namely, CTGAN, CopulaGAN, and Gaussian Copula. 

To evaluate the quality of the generated synthetic data, the Python®-based 

table_evaluator module was used. The module uses various evaluating 

matrices to check the quality of the synthetic data against the original data. 

These evaluating matrices included the similarity score, absolute mean and 

standard deviation comparison, visual evaluation, and principal component 

analysis (PCA). 

The similarity score measured how close the synthetic dataset was to the 

real dataset, while PCA was a statistical method used to reduce 

dimensionality without losing information. The visual evaluation employed 

various tools such as column-wise mean and standard deviation, cumulative 

sums, and column correlations to assess the generated data. The 

comprehensive report presented in Chapter 4 highlighted the benefits and 

drawbacks of each synthetic data generation technique used in the study. 

The findings and analysis presented in this chapter are important for 

researchers and practitioners who utilize synthetic data generation 

techniques for various applications, especially in cases where data privacy 

and scarcity are issues. The results obtained based on the similarity score, 

visual evaluation and PCA, are presented and discussed in detail below. 

 

4.1 Comparison of similarity scores of synthetic data generated by 

CTGAN, CopulaGAN, and Gaussian Copula 

Figures 4.1 to 4.4 depict the similarity scores for synthetic data generated 

for collar, assay, geometallurgy, and survey data. The data was generated 
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using CTGAN, CopulaGAN and Gaussian Copula models. These Figures 

were plotted using Matplotlib® is Python® environment. The data itself was 

generated using a program called table_evaluator (as discussed in 

Section 3.2.3) in Python®. 

The results of the synthetic collar data show that all three models generated 

synthetic data with a good degree of similarity to the real data (Figure 4.1). 

The CTGAN, CopulaGAN and Gaussian Copula models achieved perfect 

score for basic statistics, which is 1.00 respectively. For correlation column, 

CTGAN and CopulaGAN models achieved a low score of 0.31 and 0.45 

respectively. This suggests that the two models had a hard time capturing 

the column corelations more accurately. 

Compared to these two models, GaussianCopula had the highest score of 

0.51, indicating that is captured the column correlations more accurately 

than the other the other two models. For the mean correlation between fake 

and real columns, all models achieved a correlation above 0.90. 

For similarity score the GaussianCopula model achieved the highest 

similarity score of 0.76, indicating its superior performance in generating 

synthetic data that closely resembled the real data. In comparison, CTGAN 

and CopulaGAN achieved similarity scores of 0.71 respectively. 

 

Figure 4.1: The similarity score of synthetic collar data compared among 

CTGAN, CopulaGAN and Gaussian Copula 
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The evaluation of synthetic data for the assay dataset indicates that CTGA, 

CopulaGAN, and GaussianCopula models performed well in generating 

data similar to the real data (Figure 4.2). For basic statistics, all models 

achieved a perfect score of 1.00, demonstrating their ability to capture 

essential data characteristics accurately. 

Regarding correlation column correlations, the models exhibited strong 

performance. CTGA achieved a correlation of 0.92, CopulaGAN achieved 

0.93, and GaussianCopula achieved the highest correlation of 0.98. This 

indicates that GaussianCopula excels in preserving the column-to-column 

relationships of the original data. 

For mean correlation, CTGA achieved a score of 0.89, CopulaGAN 

achieved 0.92, and GaussianCopula achieved 0.96. These results 

demonstrate that all models effectively captured the overall correlation 

patterns in the synthetic data. 

CTGA and CopulaGAN achieved a similarity score of 0.92 and 0.94 

respectively. GaussianCopula achieved the highest score among the 3 

models, which was 0.97. This indicate that all models produced synthetic 

data that closely resembled the real data. However, GaussianCopula 

achieved the highest similarity score. 

 

Figure 4.2: The similarity score of synthetic assay data compared among 

CTGAN, CopulaGAN and Gaussian Copula 
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The CTGA, CopulaGAN, and GaussianCopula models were evaluated on 

their ability to generate synthetic geometallurgical (Figure 4.3). In terms of 

basic statistics, all models achieved high scores: CTGA scored 0.99, 

CopulaGAN 0.98, and GaussianCopula scored 0.99. 

When examining the correlation column relationships, all models performed 

well. CTGA and CopulaGAN achieved a correlation of 0.81 and 0.86 

respectively. GaussianCopula reached the highest correlation of 0.91, 

showcasing its strength in preserving the column-to-column relationships of 

the original data. 

In the context of the mean correlation between fake and real columns, all 

models displayed good performance. CTGA and CopulaGAN scored 0.89 

and 0.93 respectively while GaussianCopula obtained the highest score of 

0.98, highlighting their capability to effectively capture overall correlation 

patterns in the synthetic data. 

Regarding similarity scores, CTGA and CopulaGAN achieved scores of 

0.84 and 0.82 respectively. GaussianCopula obtained an impressive score 

of 0.94. These similarity scores indicate that all models generated synthetic 

geometallurgical data closely resembling the real data. Notably, 

GaussianCopula outperformed the other models, indicating its superiority in 

generating synthetic data that closely aligns with the real data. 
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Figure 4.3: The similarity score of synthetic geometallurgical data 

compared among CTGAN, CopulaGAN and Gaussian Copula 

For synthetic survey data (Figure 4.4), all three models achieved a perfect 

score of 1.00 for basic statistics. This indicates their excellent performance 

in capturing essential data characteristics. For correlation column CTGA 

demonstrated a correlation score of 0.07, CopulaGAN scored 0.24, while 

GaussianCopula obtained the highest score of 0.81. 

The low score of CTGAN and CopulaGAN indicate that the two models 

struggled to preserve the relationships between columns in the original data. 

CTGA achieved a mean correlation score of 0.96, CopulaGAN scored 0.94, 

and GaussianCopula obtained the highest score of 0.97. This highlights 

their capability to effectively capture the overall correlation patterns between 

fake and real columns in the synthetic data. 

Gaussian Copula models generated synthetic data with a high degree of 

similarity to the real data, with a similarity score of 0.91, respectively. The 

CTGAN and CopulaGAN model produced a similarity score of 0.64 and 

0.72, respectively. These scores indicate how closely the generated 

synthetic data of each model resembled the real data, with GaussianCopula 

showing the highest similarity. 
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Figure 4.4: The similarity score of synthetic survey data compared among 

CTGAN, CopulaGAN and Gaussian Copula 

 

4.2 Mean and standard deviation of original and synthetic data 

Figures 4.5 to 4.8 display a comparison of the mean and standard deviation 

for original and synthetic datasets generated by CTGAN, CopulaGAN, and 

Gaussian Copula. The red circle drawn in Microsoft® Paint® represent the 

mean and standard deviation not captured by the models. The evaluation 

was performed on collar, assay, geometallurgical, and survey data, with the 

results, plotted on the log-transformed values of all numeric columns. 

Computing the mean and standard deviation of the numeric columns in the 

synthetic data can help assess how well the synthetic data matches the 

statistical properties of the original data. If the mean and standard deviation 

of the synthetic data is close to those of the original data, it suggests that 

the synthetic data is a good representation of the original data. The 

assumption is that failure to capture these basic statistical properties could 

result in the inability to capture more complex features (Brenninkmeijer, 
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2019). The Figures were generated using the table_evaluator program 

in Python® and then edited using Microsoft® Paint®. 

Based on the findings presented in Figure 4.5 for synthetic collar data, the 

models CTGAN and Gaussian Copula achieved a close match to almost all 

the log mean values of the original data, with the exception of one mean 

value, specifically the target. As for CopulaGAN, it managed to match 4 out 

of 6 of the means, with the mean of Depth_max (m) coming closer to the 

original data (Figure 4.5b). However, CopulaGAN failed to accurately match 

the Depth_max (m) mean, though it was relatively close. 

In terms of log standard deviations, all models, except for CopulaGAN, 

successfully matched the properties of the original data. CopulaGAN 

showed a slight deviation in replicating the Depth_max (m) standard 

deviation (Figure 4.5b). 

Overall, Gaussian Copula demonstrated the best performance among all 

the models, as it better matched both the mean and standard deviation 

properties of the original data. 
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Figure 4.5: Mean and standard deviation of real and fake collar data: a) 

CTGAN; b) CopulaGAN; and c) Gaussian Copula 

Based on the comparison of the synthetic assay data using the three 

models, as illustrated in Figure 4.6, it is evident that Gaussian Copula and 

CopulaGAN outperformed CTGAN in matching the log mean of the original 

data. Specifically, CTGAN only managed to match one out of the five 

means, indicating poor performance in this aspect. On the other hand, 

Gaussian Copula and CopulaGAN demonstrated better accuracy in 

reproducing the log mean values. 

Regarding the standard deviation, all three models fell short in matching one 

of the five standard deviations of the original data. CTGAN and Gaussian 

Copula were unable to match the target, while CopulaGAN failed to match 

the Hole_ID. These discrepancies are depicted with red circles in Figure 
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4.6, highlighting the areas where the models struggled to replicate the log 

mean and standard deviation accurately. 

In summary, Gaussian Copula and CopulaGAN showed superior 

performance in matching the log mean values of the original data, while all 

three models faced challenges in reproducing the standard deviations 

precisely. The visual representations in Figure 4.6 provide clear insights into 

the areas of success and limitations for each model in their synthetic assay 

data generation. 

 

Figure 4.6: Mean and standard deviation of real and fake for assay data: 

a) CTGAN; b) CopulaGAN; and c) GaussianCopula 
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In Figure 4.7, the comparison of geometallurgical data using the three 

models revealed their performance in matching the log mean and log 

standard deviation values of the original data. 

CTGAN struggled to match five out of the ten log mean and log standard 

deviation values, indicating limitations in accurately capturing the central 

tendencies and variability of the original data. 

CopulaGAN showed relatively better performance, failing to match only 

three out of the ten mean and two out of ten for standard deviation values. 

This suggests that CopulaGAN achieved a higher level of fidelity in 

representing the characteristics of the original data compared to CTGAN. 

Same goes for Gaussian Copula method that demonstrated remarkable 

proficiency by accurately capturing seven out of the ten mean and standard 

deviations of the original data. However, for log standard deviation it didn’t 

perform better than CapulaGAN as it only failed to match three of the ten 

log standard deviations.  

This superior ability to represent the variability of the original data 

establishes Gaussian Copula as the most effective model in generating 

synthetic geometallurgical data that closely resembles the statistical 

properties of the real data. 

The insights from Figure 4.7 indicate that Gaussian Copula stands out as 

the preferred choice for generating synthetic geometallurgical data due to 

its ability to preserve essential data characteristics, making it a valuable tool 

for simulations and analyses in the field of geometallurgy. 
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Figure 4.7: Mean and standard deviation of real and fake geometallurgical 

data: a) CTGAN; b) CopulaGAN; and c) Gaussian Copula 

In Figure 4.8, the evaluation of the models on synthetic survey data showed 

consistent performance across all three models. 

For CTGAN and Gaussian Copula, the log mean matching was generally 

successful, with only the Hole_ID log mean failing to be matched accurately. 

On the other hand, CopulaGAN performed slightly better, as it managed to 

match three out of the five log means, with two log means not being 

accurately captured. 

Regarding the log standard deviation, both CTGAN and CopulaGAN closely 

matched the mean of the original data, indicating good performance in 

preserving the variability of the synthetic survey data. However, Gaussian 

Copula, while generally successful in matching log standard deviations, 
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failed to match one log standard deviation, specifically for the Hole_ID 

variable. 

Overall, the models performed similarly across log mean matching, with 

CopulaGAN showing a slight advantage. However, Gaussian Copula 

demonstrated effective preservation of log standard deviations, with only 

one deviation not being accurately captured. The consistent performance of 

the models suggests that they can be relied upon for generating synthetic 

survey data with satisfactory statistical properties, providing valuable 

insights for survey-related analyses and simulations. 

 

Figure 4.8: Mean and standard deviation of real and fake survey data: a) 

CTGAN; b) CopulaGAN; and c) Gaussian Copula 
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4.3 Comparative visualization of synthetic and original data 

The comparison between synthetic and original data was evaluated through 

visualizations generated using the table_evaluator program in 

Python®. Figures 4.9 to 4.20 show the results of the analysis, where blue 

represents the original data and yellow represents the synthetic data.  

To identify the areas of overlap between real and fake data, a red circle was 

added manually using Microsoft® Paint®. The graphs in Figures 4.9 – 4.20 

depict the cumulative sums per feature, where features are represented by 

the data columns headings such as Hole_ID and Depth_max. 

The comparison of synthetic collar data generated using CTGAN, 

CopulaGAN, and Gaussian Copula models (Figures 4.9 – 4.11) reveals that 

there is some overlapping between the real and synthetic data. In most 

cases, the features in the synthetic data closely resemble the actual data. 

However, the distribution per feature and difference plots of the models 

highlights instances where the generator struggles to replicate the actual 

data. 

All three models successfully match the original data for the "Hole_ID," 

achieving a near-perfect match. CTGAN (Figure 4.9) encounters challenges 

in matching the original data for "X (m)," "Y (m)," and "Z (m)," resulting in 

noticeable differences. Despite these difficulties, CTGAN manages to 

match "Depth_max (m)" and the “target” feature quite well, with only minor 

differences. 

CopulaGAN (Figure 4.10) faces difficulties in matching "X (m)," "Y (m)," 

"Depth_max (m)," and the “target” feature, showing noticeable 

discrepancies. However, it performs well in matching "Z (m)." 

Gaussian Copula (Figure 4.11) struggles only with matching the “target” 

feature, while all other features match quite well, exhibiting only minor 

differences. 

Overall, the similarity between the original and generated data is relatively 

high. Though the synthetic data does not precisely match the real data, its 
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quality is still considered good, as the generated data falls within the range 

of the actual data. This indicates that the models have been reasonably 

successful in replicating the key characteristics of the real data. 

 

Figure 4.9: Visual comparison of original and fake data for collar data 

generated by CTGAN 
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Figure 4.10: Visual comparison of original and fake data for collar data 

generated by CopulaGAN 
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Figure 4.11: Visual comparison of original and fake data for collar data 

generated by Gaussian Copula 

The visual comparison of synthetic assay data using CTGAN, CopulaGAN, 

and Gaussian Copula models (Figures 4.12 – 4.14) revealed that the 

generator faced challenges in accurately replicating the original data for the 

"Hole_ID" feature. The difficulty arose because the original “Hole_ID” values 

in the assay data were not unique. Consequently, the generated data for 

this particular feature did not match the original data closely. 

However, the models demonstrated success in generating data that closely 

resembled the original data for the other features. There were only minor 

differences observed in the generated data for these features, indicating 

that the models were able to capture the essence of the data distribution 

quite well. 
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Both CTGAN (Figure 4.12) and CopulaGAN (Figure 4.13) encountered 

some minor difficulties in replicating the "target" feature of the data. While 

the generated data for this feature was close to the original, there were 

some discrepancies. 

In contrast, Gaussian Copula performed comparatively better than the other 

models. It exhibited fewer minor differences from the original data, as 

depicted in Figure 4.14. 

Overall, all the models performed well in generating synthetic assay data. 

The minor differences observed between the generated and original data 

were not significant and could be considered acceptable. Despite the 

challenges with the "Hole_ID" feature and some minor discrepancies with 

the "target" feature, the models were successful in generating synthetic data 

that closely approximated the original data distribution. 

 

Figure 4.12: Visual comparison of original and fake data for assay data 

generated by CTGAN 
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Figure 4.13: Visual comparison of original and fake data for assay data 

generated by CopulaGAN 
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Figure 4.14: Visual comparison of original and fake data for assay data 

generated by Gaussian Copula 

Figures 4.15 to 4.17 present the visual comparison of geometallurgical data, 

showcasing the differences between the original data and synthetic data 

generated by CTGAN, CopulaGAN, and Gaussian Copula models. 

Similar to the observations made for synthetic assay data (Figures 4.12 – 

4.14), all three models encountered difficulties in accurately replicating the 

"Hole_ID" feature. However, CTGAN (Figure 4.15) performed relatively 

better compared to the other models, displaying some differences but 

achieving closer matching. 
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This is followed by Gaussian Copula, with CopulaGAN performing the worst 

for “Hole_ID” feature. CTGAN demonstrated good performance in matching 

"Depth_From (m)" and "Depth_To (m)," achieving a perfect match. 

However, for other features, some minor differences, represented by red 

circles, were observed where CTGAN struggled. 

Similarly, CopulaGAN faced challenges in replicating the exact original data, 

as evident in Figure 4.16. Like CTGAN, it encountered difficulties in 

matching "Depth_From (m)" and "Depth_To (m)" as well, not performing as 

well as CTGAN in these aspects. 

On the other hand, Gaussian Copula (Figure 4.17) exhibited superior 

performance compared to the other models. Only minor differences were 

observed in "Depth_From (m)," "Depth_To (m)," and the "target" feature. 

For the rest of the features, it performed well, displaying relatively fewer 

discrepancies. 

Overall, while all three models struggled with accurately replicating the 

"Hole_ID" feature, CTGAN showed better results compared to CopulaGAN. 

Gaussian Copula emerged as the most successful model, with fewer 

differences observed in the matched features, particularly for "Depth_From 

(m)," "Depth_To (m)," and the "target" variable. The models' performance 

on the remaining features was generally good, with only minor differences 

observed. 
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Figure 4.15: Visual comparison of original and fake data for 

geometallurgical data generated by CTGAN 
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Figure 4.16: Visual comparison of original and fake data for 

geometallurgical data generated by CopulaGAN 
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Figure 4.17: Visual comparison of original and fake data for 

geometallurgical data generated by Gaussian Copula 

The visual comparison results for survey data are presented in Figures 4.18 

to 4.20. As seen with previous datasets, the models faced challenges in 

 

 

 

 

 

 

  

 



 
 

132 

 

accurately replicating the "Hole_ID" feature of the original data. CTGAN 

(Figure 4.18) came relatively closer than the other models in matching this 

feature, with differences highlighted in red circles. CTGAN also performed 

better when it comes to the "Azimuth (Degree)" feature. 

Minor differences were observed between the original and synthetic data for 

the other features across all models. For CopulaGAN (Figure 4.19), it 

struggled slightly in replicating the "Dip (Degree)" and "target" features. 

Similarly, Gaussian Copula (Figure 4.20) displayed minor differences in the 

"Depth (m)" and "Dip (Degree)" features. 

Overall, all the models performed well in replicating the original assay data. 

CTGAN demonstrated better performance than the other models, 

particularly in matching the "Hole_ID" feature. Despite the challenges with 

this feature, the models generally achieved good results with minor 

differences observed in the matched features. 

It is important to note that while the models struggled with the "Hole_ID" 

feature, they were still able to produce synthetic data that closely resembled 

the original data for the majority of the other features. This indicates that the 

models were successful in capturing the underlying patterns and 

characteristics of the survey data, despite some discrepancies in specific 

features. 
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Figure 4.18: Visual comparison of original and fake data for survey data 

generated by CTGAN 
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Figure 4.19: Visual comparison of original and fake data for survey data 

generated by CopulaGAN 
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Figure 4.20: Visual comparison of original and fake data for survey data 

generated by Gaussian Copula 

 

4.4 Principal component analysis of synthetic and original data 

In this section, principal component analysis (PCA) metrics were used to 

evaluate the synthetic data generated by CTGAN, CopulaGAN, and 

Gaussian Copula models for collar, assay, geometallurgical and survey 

data. The first two principal components in PCA represent the two 

dimensions that capture the most variance in the dataset. In synthetic data 

evaluation, the first two principal components are used to visually compare 

the original and synthetic data using a scatter plot. If the scatter plot of the 
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first two principal components shows a clear separation between the original 

and synthetic data, then it indicates that the synthetic data is significantly 

different from the original data. On the other hand, if the scatter plot of the 

first two principal components shows a significant overlap between the 

original and synthetic data, then it indicates that the synthetic data is similar 

to the original data. 

Figures 4.21 to 4.24 indicate the first two components of synthetic data 

generated using CTGAN, CTGAN, CopulaGAN, and Gaussian Copula 

models for collar, assay, geometallurgical and survey data. The graphs 

were generated using the matplotlib programme in Python® as 

indicated in Section 3.2.3. 

The evaluation results for collar data demonstrate that the models 

successfully replicated the PCA of the real data. A visual comparison of the 

collar data generated by CTGAN and CopulaGAN (Figure 4.21) with the 

original data reveals similarities between the two datasets. This indicates 

that the models were able to capture all essential aspects of the underlying 

distribution and reproduce them in the synthetic collar data. 

Similarly, Gaussian Copula also displayed more similarities with the original 

data, indicating its effectiveness in capturing the underlying distribution 

patterns. 

However, there were some minor differences observed between the real 

and synthetic collar data in the PCA plot for Gaussian Copula. This indicates 

that while the model was able to capture the overall structure and trends of 

the original collar data, there might be some slight variations in the synthetic 

collar data compared to the real collar data. 

Overall, the results suggest that the models performed well in replicating the 

PCA of the collar data and capturing the major distribution characteristics. 

The similarities between the real and synthetic data in the PCA plots 

indicate the ability of models to generate high-quality synthetic data that 

closely resembles the original data. The minor differences observed, 



 
 

137 

 

particularly in the case of Gaussian Copula, could be attributed to the 

inherent complexity of the real-world data and the challenges in perfectly 

reproducing all aspects of the original distribution. 

Despite these minor differences, the success of the models in capturing the 

underlying distribution of the collar data is a positive indication of their 

effectiveness in generating reliable synthetic data for various applications in 

data analysis and modelling. 
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Figure 4.21: Comparison of principal component analysis between original 

and fake data for collar data. a) CTGAN; b) CopulaGAN; and c) Gaussian 

Copula 
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This outcome suggests that the synthetic data generated by all three models 

closely resembles the original assay data, and the models have been 

successful in capturing the essential patterns and variations present in the 

original assay dataset. The fact that the first two components of the PCA 

match perfectly indicates that the models have effectively replicated the 

major sources of variability in the data. 

Having a perfect fit between the real and synthetic assay data in the PCA 

scatter plots is a positive sign and demonstrates the high quality and 

accuracy of the generated synthetic data. It indicates that the synthetic data 

is significantly similar to the original data, making it suitable for various data 

analysis and simulation purposes. 

The successful performance of the models in replicating the PCA 

components further confirms the utility of generative models like CTGAN, 

CopulaGAN, and Gaussian Copula in generating synthetic data that is both 

statistically similar and structurally representative of the original data. These 

results provide confidence in the use of synthetic data for various 

applications, including data privacy protection, model training, and other 

scenarios where access to real data may be restricted or limited. 
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Figure 4.22: Comparison of principal component analysis between original 

and fake data for assay data. a) CTGAN; b) CopulaGAN; and c) Gaussian 

Copula 

The visual comparison of the first two components of PCA for all the models 

(Figure 4.23) indicates that there is a clear and almost perfect match 

between the real geometallurgical data and the synthetic geometallurgical 

data. However, some minor differences can still be observed in all the plots. 
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Among the models, CTGAN shows slightly more differences compared to 

CopulaGAN and Gaussian Copula. CopulaGAN and Gaussian Copula 

seem to produce similar results, with fewer variations when compared to 

CTGAN. 

These findings suggest that the synthetic geometallurgical data closely 

resembles the original geometallurgical data, and the models were able to 

capture the underlying patterns and structure of the original data quite 

effectively. Despite the minor differences observed, the overall similarity 

between the real and synthetic data in the first two PCA components 

indicates that the models have successfully generated synthetic data that 

preserves the essential characteristics and relationships present in the 

original data. 

The results provide confidence in the quality and accuracy of the synthetic 

data, as the models have been able to replicate the key patterns and 

structures of the original data, which is essential for various analytical and 

modelling purposes. It is important to note that the minor differences 

observed in the plots are not unexpected and are considered acceptable, 

given the complexities of real-world data and the generative modelling 

process. Overall, the success of the models in producing synthetic data that 

closely aligns with the PCA components of the original data is a positive 

outcome for their utility and application in various data analysis and 

simulation scenarios. 
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Figure 4.23: Comparison of principal component analysis between original 

and fake data for geometallurgy data. a) CTGAN; b) CopulaGAN; and c) 

Gaussian Copula 

The PCA (Figure 4.24) results for the survey data demonstrate that the 

synthetic survey data generated by all models (CTGAN, CopulaGAN, and 

Gaussian Copula) closely match the original survey data. The scatter plots 

for the first two PCA components reveal a significant overlap between the 

original and synthetic survey data, indicating a high level of similarity 

between the two datasets. 
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This strong overlap in the PCA scatter plots suggests that the generated 

synthetic data is of good quality and effectively captures the major patterns 

and variations present in the original survey data. The models have 

successfully preserved the underlying structure of the data, leading to 

synthetic data points that align closely with the real data in the PCA space. 

The ability of all three models to produce synthetic data that closely 

resembles the original data is a positive outcome. It means that the 

generated data can be used as a representative substitute for the real data 

in various applications, including data analysis, modelling, and simulations. 

The results provide confidence in the use of synthetic data generated by 

CTGAN, CopulaGAN, and Gaussian Copula models for the survey data, as 

it reflects the essential characteristics and relationships present in the 

original dataset. This suggests that the synthetic data can be employed in 

scenarios where access to the real data is limited, or to protect sensitive 

information while still retaining the utility of the data for various analytical 

and modelling purposes. 
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Figure 4.24: Comparison of principal components analysis between original 

and fake data for survey data. a) CTGAN; b) CopulaGAN; and c) Gaussian 

Copula 
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4.5 Column correlations between synthetic and original data 

Figures 4.25 – 4.28 show the correlation matrix for four datasets: collar, 

assay, geometallurgical and survey. The correlation matrix displays the 

pairwise correlations between the original data and the synthetic data 

generated by the CTGAN, CopulaGAN and Gaussian Copula. The 

correlation matrix was calculated using table_evaluator and Pandas® 

cor function. Matplotlib® was used to plot the data. For more see section 

3.4.1 and Appendix A. 

When comparing the correlation matrices of the synthetic datasets to the 

collar dataset (Figure 4.25), it is observed that the sign of the correlations is 

consistent in most cases. The comparison of synthetic data models applied 

to collar data revealed interesting insights into their performance. 

CTGAN, although capable of generating synthetic data, exhibited a 

correlation of 72.82% with the original data, indicating that it only captured 

around 72.82% of the patterns and relationships present in the original collar 

data. 

CopulaGAN fared better, achieving a correlation of 76.47% with the original 

data, implying a closer resemblance to about 76.47% of the patterns and 

relationships. However, the standout performer was GaussianCopula, 

which achieved the highest correlation of 77.73% with the original data. 

GaussianCopula demonstrated superior performance, producing synthetic 

data that closely matched approximately 77.73% of the patterns and 

relationships in the original collar data. These results indicate that 

GaussianCopula is the most effective model for generating synthetic data 

that closely replicates the statistical characteristics of the original data, 

making it the preferred choice for collar data synthesis. 
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Figure 4.25: Comparison of column correlations between original and 

synthetic collar data generated through CTGA, CopulaGAN and 

GaussianCopula 

In Figure 4.26, the results illustrate the correlations between features in the 

original assay dataset and synthetic assay datasets generated using 

different models, including CTGAN, CopulaGAN, and Gaussian Copula. 

The correlation values show that all three models perform well in generating 

synthetic data that resembles the original Assay data.  

GaussianCopula demonstrates the highest correlation of 99.24%, indicating 

that the synthetic data generated by this model captures approximately 

99.24% of the patterns and relationships present in the original Assay data. 

CopulaGAN also performs excellently with a correlation of 97.19%. CTGAN 

shows good performance with a correlation of 96.81%, but it has a slightly 

lower correlation compared to the other two models. 

In summary, all three models, CTGAN, CopulaGAN, and GaussianCopula 

show promising results in generating synthetic data that closely resembles 

the original Assay data. GaussianCopula stands out with the highest 

correlation, suggesting that it is the most effective model for generating 
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synthetic data that accurately replicates the statistical characteristics of the 

original Assay data. 

 

Figure 4.26: Comparison of column correlations between original and 

synthetic assay data generated through CTGA, CopulaGAN and Gaussian 

Copula 

The correlation results of the geometallurgical data (Figure 4.27) indicated 

that the CTGAN, CopulaGAN, and Gaussian Copula methods exhibited 

similar levels of correlation. There was not much difference between the 

three methods. Further examination of the correlation percentages revealed 

that the correlation between the original data and CTGAN was 88.37%. 

Similarly, the correlation between the original data and Gaussian Copula 

was 90.47%. 

Finally, the correlation between the original geometallurgical data and 

Gaussian Copula was 94.47%. These findings suggest that all three 

methods performed reasonably well in generating synthetic data that closely 

resembled the patterns and statistical properties of the original 

geometallurgical data. However, Gaussian Copula demonstrated the 

highest correlation, indicating that it was the most effective method in 

replicating the statistical characteristics of the original data. 
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Figure 4.27: Comparison of column correlations between original and 

synthetic assay data generated through CTGA, CopulaGAN and Gaussian 

Copula 

The results show the correlation matrices for the original survey data (Figure 

4.28) and the synthetic data generated by four different methods: CTGAN, 

CopulaGAN, and Gaussian Copula. 

The analysis of the correlation between the original Survey data and 

synthetic data generated by various models provided valuable insights. 

Among these models, GaussianCopula showed the highest correlation of 

95.33%, indicating a successful capture of around 95.33% of the patterns 

and relationships present in the original Survey data. 

CopulaGAN also performed well, achieving a correlation of 88.07%, which 

closely matched about 88.07% of the patterns and relationships. CTGAN 

had a slightly lower performance with a correlation of 86.25%. 



 
 

149 

 

Overall, both CopulaGAN and GaussianCopula were effective in generating 

synthetic Survey data that closely resembled the statistical properties of the 

original data. However, GaussianCopula demonstrated the highest 

performance, making it the preferred choice for synthesizing Survey data 

due to its superior ability to replicate the complex patterns present in the 

original dataset. 

 

Figure 4.28: Comparison of column correlations between original and 

synthetic assay data generated through CTGA, CopulaGAN and Gaussian 

Copula 

 

4.6 Summarised conclusion 

Chapter 4 of the thesis focuses on the analysis and evaluation of the results 

obtained from synthetic data generation techniques used in Chapter 3. The 

study uses three synthetic data generation techniques: CTGAN, 

CopulaGAN, and Gaussian Copula. The chapter presents the benefits and 

drawbacks of each technique, as well as the findings and analysis of the 

study. 
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The evaluation of the generated synthetic data is based on the table 

evaluator, which employs various parameters to evaluate the data, including 

the similarity score, principal component analysis, and visual evaluation. 

The results indicate that CopulaGAN and Gaussian Copula are better at 

preserving the correlation structure of the original data than CTGAN. The 

synthetic datasets generated by these algorithms are useful for modelling 

and analysis purposes, but caution should be exercised when interpreting 

the results. 

The results show that the percentage of pairs with the same correlation sign 

is highest for the Gaussian Copula method, followed by CopulaGAN and 

CTGAN. Gaussian Copula produced the highest similarity score, indicating 

that it was the most successful in generating synthetic data that closely 

matched the real data. For the mean correlation between fake and real 

columns, all models achieved a correlation above 0.93. 

Overall, the findings and analysis presented in this chapter are important for 

researchers and practitioners who utilize synthetic data generation 

techniques for various applications, especially in cases where data privacy 

and scarcity are issues. 

The results and discussion of the chapter have shown that GAN-based 

modules can be used to produce synthetic data for geometallurgical data. It 

produces high-quality data realistic data. The data can also be modelled 

after the original but be unique and anonymise the original data. 

The geometallurgical data generated in this chapter can be used for any 

application in mine planning. The following chapter presents some of the 

applications where geometallurgical data can be used. 
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Chapter 5 Implicit Geometallurgical modelling with Radial 

Basis Functions 

 

5.1 Introduction 

This chapter focuses on the application of implicit modelling to 

geometallurgical data. The geometallurgical data analysed in this study 

include the Bond Work Index (kWh/t), rod mill index (kWh/t), RQD (%), drop 

weight index (kWh/t), Axb (kWh/t) and abrasion index (kWh/t) as described 

in Section 3.1.1.  

The objective of this chapter is to investigate the application of implicit 

modelling in geometallurgical modelling and to provide insights into the 

spatial distribution and variability of mineral resources and their 

metallurgical characteristics. 

Implicit modelling is a powerful tool that integrates multiple sources of data, 

such as geology, geochemistry, geophysics, and mineralogy, to create 

three-dimensional geological models. The study employs Leapfrog® Geo, 

a software application that utilizes implicit modelling to develop geological 

models, as explained in Section 3.1. 

Leapfrog® Geo offers numerous benefits, such as incorporating multiple 

data sets and providing a user-friendly interface for model visualization. The 

software also enables statistical analysis tests, and model visualisation 

which assists in validating and refining models. 

The outcomes of this study will provide useful information on the use of the 

implicit modelling method in modelling geometallurgical data. This data can 

be utilized to optimize mining activities and improve the efficiency of mineral 

processing. Furthermore, the study highlights the potential of implicit 

modelling as a powerful tool for geometallurgical modelling, which can 

enhance our understanding of complex ore deposits. 
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5.2 Economic model of the original drillhole assay 

Figure 5.1 represents the economic model of the original drillhole assay 

data. It was generated using an economic model in Leapfrog® Geo 

software. The figure also indicates the delineation of an economic model 

using an assay cut-off grade of 0.5% TCo to separate the ore and waste 

zones within the drillholes.  

The grey zone represents the waste with TCo grades below 0.5%, while the 

red zone represents the ore with TCo grades of 0.5% and above. The Figure 

shows the orebody boundary within the drillhole, enabling better 

visualization and understanding of the location and size of the orebody. 

Furthermore, Figure 5.1 highlights the drillholes that contain ore and those 

that contain waste, providing valuable information for economic modelling 

and decision-making processes. 

 

Figure 5.1: The economic model of original drillhole assay data 

 

5.3 Three-dimensional orebody modelling/domain 

Figures 5.2 and 5.3 present the 3D and 2D orebody domains, respectively, 

generated using the Leapfrog® Geo software. The domain boundaries were 

determined based on the grade data of TCo, with more information available 

in Section 3.3.6. An indicator radial base function was employed to create 

the orebody domain, and a cut-off grade of 0.5% TCo, as with the drillhole 
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domain (Section 5.2), was used to delineate the orebody. The two Figures 

illustrate two zones in different colours, with red representing values inside 

the 0.5% TCo, which is the ore, and blue representing values outside 0.5%, 

which is waste. The red colour clearly shows the boundary of the orebody 

within the waste. 

 

Figure 5.2: A 3D orebody model. Red is the ore and blue is the waste 

 

Figure 5.3: Cross-sectional view of the orebody model 
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5.4 Validation of the 3D orebody model 

The purpose of validation is to assess the accuracy and reliability of the 

created model by comparing it with independent data or known results. In 

this case, the 3D model of the orebody was validated by comparing it with 

the original drillhole assay economic model. The validation involved both 

statistical analysis and visual analysis to ensure that the model accurately 

represented the grade and distribution of the orebody. By validating the 

model, it can be used with greater confidence to make predictions as a 

boundary for geometallurgical modelling. The following sections present the 

process used for validation. 

 

5.4.1 Statistical comparison of 3D orebody and drillhole data assay 

economic model 

Table 5.1 compares the statistical results of the ore and waste in the 3D 

model with the drillhole assay data. The purpose of this validation is to check 

the accuracy of the 3D model by comparing it with the known drillhole assay 

data. 

In both the 3D model and the drillhole data, the number of points for ore and 

waste is consistent. Specifically, there are 91 points for ore and 157 points 

for waste. The mean value of the ore in the 3D model is slightly lower than 

that of the drillhole data, with values of 1.62% and 1.78%, respectively. This 

difference in mean values may be due to variations in the sample sizes and 

locations. 

The minimum and maximum values of the ore in the 3D model and drillhole 

data are almost the same, with values ranging from 0.55% to 8.79%. The 

standard deviation and variance of the ore in the 3D model are slightly 

higher than those of the drillhole data, indicating that the data in the 3D 

model is more scattered than that of the drillhole data. 

In terms of waste, the mean, minimum, and maximum values of the 3D 

model and drillhole data are very close to each other. However, the standard 



 
 

155 

 

deviation and variance of the waste in the 3D model are slightly higher than 

those of the waste drillhole data. This may be due to the smaller number of 

waste points in the drillhole data compared to the 3D model. 

Overall, the statistical analysis of the ore and waste in the 3D model and the 

drillhole data show that the 3D model accurately represents the orebody 

and waste, as the differences in the mean, minimum, and maximum values 

are within an acceptable range. However, the higher standard deviation and 

variance of the ore and waste in the 3D model compared to the drillhole 

data indicates some level of uncertainty and variability in the 3D model. 

Table 5.1. Statistical comparison of the 3D orebody model with the 

economic drillhole model 

 
Ore (%) (3D 

Model) 

Ore (%) 

(Drillhole) 

Waste (%) 

(3D Model) 

Waste (%) 

(Drillhole) 

Number of points 91 91 157 157 

Mean value 1.62 1.78 0.08 0.05 

Minimum value 0.55 0.55 0 0.00 

Maximum value 8.79 8.79 0.41 0.41 

Standard deviation 1.19 1.10 0.09 0.06 

Coefficient of 

variance 

0.73 0.62 1.13 1.18 

Variance 1.4 1.21 0.01 0.00 

 

5.4.2 Visual inspection of 3D orebody and economic model 

Visual inspection of the 3D orebody model against the drillhole model is a 

crucial step in validating the accuracy of the model. This involves comparing 

the boundaries and distribution of the orebody as modelled in 3D to the 

actual drillhole data in order to identify any discrepancies that need to be 

addressed. 

Figure 5.4 presents the comparison of the 3D orebody model and the 

economic model of the drillhole. The figure was generated in Leapfrog® 
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Geo. From Figure 5.4a and b, it can be observed that the ore is only located 

in areas where there is a grade above 0.5% TCo. The waste, on the other 

hand, is only in areas where the grade is below 0.5%. The Figure further 

indicates that there is a good intersection between the 3D model and the 

orebody, as the boundaries are clearly defined and match the drillhole 

model. 

 

Figure 5.4: Visual comparison of the 3D orebody model with the drillhole 

data. a) Cross sectional view or be orebody, b) Full view of the orebody 

Overall, the validation of the data presented in this study is crucial for 

ensuring the accuracy and reliability of the 3D orebody model. The statistical 

and visual analyses performed against the drillhole data help to verify that 

the model accurately represents the deposit and identify any discrepancies 

that need to be addressed. The results of the validation process 
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demonstrate that the 3D orebody model produced using Leapfrog® Geo 

software accurately represents the deposit. The results of the validation 

indicate a good agreement between the 3D model and the economic 

drillhole model, and thus the orebody can be used as a reliable boundary 

during geometallurgical modelling using implicit and geostatistical methods. 

the orebody was used as a boundary from the following section up until the 

end of this thesis. 

 

5.5 Implicit geometallurgical modelling 

This section presents the results of implicit geometallurgical modelling. The 

methodology for this analysis is explained in Section 3.5. As stated in this 

chapter, the geometallurgical parameters modelled in this study include the 

BWI, rod mill index, RQD, DWI, Axb and Ai. The data were modelled using 

an implicit method called radial basis function, which is discussed in Section 

2.5. The RBF method is a part of the Leapfrog® Geo software. In this 

section, the results of implicit geometallurgical modelling are presented in 

terms of iso-surfaces, 3D models and block models. 

The iso-surface is a three-dimensional surface that represents a specific 

value of the parameter, with areas above the surface having higher values 

and areas below the surface having lower values. Three-dimensional 

models provide a comprehensive representation of the geometallurgical 

orebody. A block model represents a mineral deposit and its surroundings 

in a simplified manner, created using computer-generated "bricks" or cells 

that reflect small volumes of ore and waste rock (Poniewierski, 2019) 

The iso-surfaces, 3D models and block models provide a comprehensive 

understanding of the geometallurgical parameters within the orebody and 

are a valuable tool for mine planning and optimization. In the following 

sections, modelling results and their implications for mining operations are 

discussed. 
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5.5.1 Iso-surfaces of geometallurgical parameters created using 

implicit methods 

Figures 5.5 to 5.10 display the resulting iso-surfaces of the geometallurgical 

parameters created using the implicit method. The iso-surfaces are divided 

into three intervals. The software automatically selected these intervals by 

analysing the data. 

The BWI iso-surfaces are shown in Figure 5.5, and three iso-surfaces were 

generated: 12 kWh/t (red), 13.2 kWh/t (blue), and 14.3 kWh/t (yellow). The 

iso-surface at 12 kWh/t represents values below this threshold while the iso-

surface at 13.2 kWh/t represents values between 12 kWh/t and 13.2 kWh/t. 

Finally, the iso-surface at 14.3 kWh/t represents values above 13.2 kWh/t. 

 

Figure 5.5: Iso-surface of Bond work index generated in Leapfrog® Geo 

The implicit modelling of the rod mill index produced three iso-surfaces with 

values of 13.7 kWh/t, 15.2 kWh/t, and 18.9 kWh/t (Figure 5.6). The iso-

surface at 13.7 kWh/t represents values below that threshold, while the 15.2 

kWh/t iso-surface represents values between 13.7 kWh/t and 15.2 kWh/t. 

The 18.9 kWh/t iso-surface represents values above 15.2 kWh/t threshold. 
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Figure 5.6: Iso-surface of rod mill index generated in Leapfrog® Geo 

The RQD parameter resulted in three iso-surfaces of 50%, 61%, and 70% 

(Figure 5.7). The iso-surface at 50% represents values below this threshold, 

while the 61% iso-surface represents values between 50% to 61%. The 

70.0% iso-surface represents values above 61%. 

 

Figure 5.7: Iso-surface of RQD generated in Leapfrog® Geo 

For the drop weight index, three iso-surfaces were created: 11.3 kWh/t, 13.7 

kWh/t, and 16 kWh/t (Figure 5.8). The iso-surface at 11.3 kWh/t represents 
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values below this iso-surface. The 13.7 kWh/t represents values between 

11.3 kWh/t and 13.7 kWh/t. The 16 kWh/t iso-surface represents values 

above 13.7 kWh/t. 

 

Figure 5.8: Iso-surface of drop weight index generated in Leapfrog® Geo 

The results of the implicit modelling of the Axb index are presented in Figure 

5.9, which shows three iso-surfaces of 1 kWh/t, 29 kWh/t, and 41.1 kWh/t. 

The iso-surface at 1 kWh/t represents values below this threshold, while the 

29 kWh/t iso-surface represents values between 1 kWh/t to 29 kWh/t. The 

41.0 kWh/t iso-surface represents values above 29 kWh/t. 

 

Figure 5.9: Iso-surface of Axb index generated in Leapfrog® Geo. 
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Finally, for the abrasion index, three iso-surfaces were created (Figure 

5.10), with values of 0.02 kWh/t, 0.4 kWh/t, and 0.78 kWh/t. The iso-surface 

at 0.02 kWh/t represents values below this threshold, while the 0.4 kWh/t 

iso-surface represents values between 0.02 kWh/t to 0.4 kWh/t. The 0.78 

kWh/t iso-surface represents values above 0.4 kWh/t. 

 

Figure 5.10: Iso-surface of abrasion index generated in Leapfrog® Geo. 

The iso-surfaces created in his section are crucial for modelling. This is 

because they are used as a basis for creating a 3D model. The iso-surfaces 

created in this section were used in the following section to generate 

geometallurgical 3D models. 

 

5.5.2 3D geometallurgical model generated from iso-surfaces 

The iso-surfaces that were previously generated in Section 5.5.1 using 

Leapfrog® Geo software are used here as the basis for creating a 3D model, 

as described in Section 5.5.1. Now in this section, the iso-surfaces were 

interpolated using the RBF method reviewed in Section 2.5.1 about the 

Leapfrog® methodology, to generate 3D models. The methodology for 

modelling is highlighted in Section 3.5. 
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The 3D orebody domain created in Section 5.3 was used as a boundary 

during the interpolation of iso-surfaces. The software automatically created 

intervals during interpolation, based on the intervals of the iso-surfaces. In 

the Figures, the intervals are represented by different colours. The resulting 

3D models provide a visual representation of the distribution of the 

geometallurgical parameters within the orebody. 

Intervals for various parameters were generated and represented by 3D 

models. For BWI, the intervals were represented by 12 kWh/t, 13.2 kWh/t, 

and 14.3 kWh/t. The rod mill index had intervals represented 13.7 kWh/t, 

15.2 kWh/t, and 18.9 kWh/t. For the RQD parameter, the intervals were 

represented by 50%, 61%, and 70%. 

The DWI parameter had intervals represented by 11.3 kWh/t, 13.7 kWh/t 

and 16 kWh/t. The Axb index had intervals represented by 1 kWh/t, 29 and 

41.1 kWh/t. Lastly, the Ai had intervals represented by 0.02 kWh/t, 0.4 

kWh/t, and >0.78 kWh/t. Figures 5.11 to 5.16 represent the 3D models of 

the BWI, rod mill index, RQD, DWI, Axb and Ai, respectively. 

 

Figure 5.11: A 3D model of the Bond work index generated using an 

implicit method 
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Figure 5.12: A 3D model of the rod mill index generated using an implicit 

method 

 

Figure 5.13: A 3D model of RQD generated using an implicit method 



 
 

164 

 

 

Figure 5.14: A 3D model of the drop weight index generated using an 

implicit method 

 

Figure 5.15: A 3D model of the Axb index generated using an implicit 

method 
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Figure 5.16: A 3D model of the abrasion index generated using an implicit 

method 

Figures 5.11 to 5.16 indicate the geometallurgical 3D models that were 

interpolated from the iso-surfaces created in Section 5.5.1. The purpose of 

creating 3D models is to use them for block modelling. Block models are 

important in mine planning as they are used to calculate the parameters of 

mine planning. The following section presents the results of the block model 

based on the 3D model generated in this section. 

 

5.5.3 Geometallurgical block models 

This section presents the block modelling results obtained from 3D models 

generated using the implicit method as outlined in Section 3.7. The block 

models were created using Leapfrog® Geo software and are presented in 

Figures 5.17 to 5.22. Tables 5.2 to 5.7 provide the data for each block 

model. Each block model is composed of 6 416.00 blocks, with a total 

volume of 6 416 000.00 cubic metres (m3). The data for the tables were 

obtained from Leapfrog® Geo and plotted into a table format using 

Microsoft® Excel®. 
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The BWI block model results are shown in Figure 5.17 and Table 5.2. The 

blocks in the model are classified into three zones: those with values less 

than 12 kWh/t are shown in red, those between 12 kWh/t and 13.2 kWh/t 

are shown in blue, and those above 13.2 kWh/t are shown in yellow. The 

minimum and maximum values of the BWI among the blocks are 6.49 kWh/t 

and 19.97 kWh/t, respectively. 

Table 5.2. BWI data generated from the implicit block model. 

Name Bond Work Index (kWh/t) 

Block Count 6 416.00 

Volume 6 416 000.00 m3 

Minimum 6.49 (kWh/t) 

Maximum 19.97 (kWh/t) 

 

 

Figure 5.17: BWI-based block model generated using Leapfrog® Geo 

The rod mill index block model results are shown in Figure 5.18 and Table 

5.3. The blocks are separated into those less than 13.7 kWh/t in blue, those 

between 13.7 kWh/t and 15.2 kWh/t in green, and those above 15.2 kWh/t 
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in red. The minimum and maximum values of the rod mill index among the 

blocks are 3.75 kWh/t and 19.89 kWh/t, respectively. 

Table 5.3. Rod mill index data generated from the implicit block model 

Name Rod mill index (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 3.75 (kWh/t) 

Maximum 19.89 (kWh/t) 

 

 

Figure 5.18: Block model of the rod mill index generated using Leapfrog® 

Geo 

The RQD block model results are displayed in Figure 5.19 and Table 5.4. 

The blocks are separated into those lower than 50% in blue, those between 

50% and 61% in yellow, and those above 61% in the red. The minimum and 
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maximum values of the RQD among the blocks are 15.03% and 75.85%, 

respectively. 

Table 5.4. RQD index data generated from the implicit block model 

Name RQD (%) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 15.03 % 

Maximum 75.85 % 

 

 

Figure 5.19: RQD-based block model generated using Leapfrog® Geo 

The DWI block model results are shown in Figure 5.20 and Table 5.5. The 

blocks are separated into those less than 11.3 kWh/h in blue, those between 

11.3 kWh/h and 13.7 kWh/t in yellow, and those above 13.7 kWh/t in red. 
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The minimum and maximum values of the drop weight index among the 

blocks are 0.00 kWh/t and 21.58 kWh/t, respectively. 

Table 5.5. DWI data generated from the implicit block model 

Name Drop_Weight_index (kWh/t) 

Block Count 6 416.00 

Volume 6 416 000.00 m3 

Minimum 0.00 (kWh/t) 

Maximum 21.58 (kWh/t) 

 

 

Figure 5.20: DWI-based block model generated using Leapfrog® Geo 

The Axb index block model results are presented in Figure 5.21 and Table 

5.6. The blocks are separated into those less than 1 kWh/h in blue, those 

between 1 kWh/h and 29 kWh/t in yellow, and those above 29 kWh/t in red. 

The minimum and maximum values of the Axb index among the blocks are 

0.00 kWh/t and 45.49 kWh/t, respectively. 
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Table 5.6. Axb index data generated from the implicit block model 

Name Axb (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 0.00 (kWh/t) 

Maximum 45.49 (kWh/t) 

 

 

Figure 5.21: Block model of Axb index generated using Leapfrog® Geo 

Lastly, the abrasion index block model results are shown in Figure 5.22 and 

Table 5.7. The blocks are separated into those less than 0.02 kWh/h in blue, 

those between 0.02 kWh/h and 0.4 kWh/t in yellow, and those above 0.4 

kWh/t in red. The minimum and maximum values of the abression66 index 

among the blocks are 0 kWh/t and 0.93 kWh/t, respectively. 
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Table 5.7. Abrasion index data generated from the implicit block model 

Name Abrasion_Index (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 0.00 (kWh/t) 

Maximum 0.97 (kWh/t) 

 

 

Figure 5.22: Block model of abrasion index generated using Leapfrog® 

Geo 

 

5.6 Summary of the findings 

The main objective of the chapter was to model geometallurgical data using 

the implicit method. The geometallurgical data modelled in this chapter 

included the Bond work index, rod mill index, RQD, drop weight index, Axb, 

and abrasion index. The radial basis function (RBF) was used to interpolate 
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the data. The workflow that was used to model the geometallurgical data 

was as follows. Firstly, the orebody model was delineated, and the iso-

surfaces of the geometallurgical data were created. The iso-surfaces are 

created automatically during interpolation with RBF. 

The study used Leapfrog® Geo software, which incorporates multiple 

sources of data to create three-dimensional geological models. The 

economic model of the original drillhole domain was delineated based on 

an assay cut-off grade of 0.5% TCo, separating the ore and waste zones. 

The 3D and 2D orebody domains were generated based on grade data of 

TCo, using an indicator radial base function and a cut-off grade of 0.5% 

TCo.  

Validation of the 3D model was done by comparing it with the drillhole 

economic model. The statistical analysis of the ore and waste in the 3D 

model and the drillhole data show that the 3D model accurately represents 

the orebody and waste, as the differences in the mean, minimum, and 

maximum values are within an acceptable range. 

The results of implicit geometallurgical modelling were presented. The 

modelling was conducted using the radial basis function method, which was 

discussed in Chapter 2. The results were presented in the form of iso-

surfaces, 3D models, and block models. Iso surfaces are three-dimensional 

surfaces that represent a specific value of a parameter, with areas above 

the surface having higher values and areas below the surface having lower 

values. The iso-surfaces were divided into three intervals. The software 

automatically selected these intervals by analysing the data. 

The iso-surfaces created for each parameter in this section were used as 

the basis for creating 3D models in the following section. For the Bond work 

index, rod mill index, RQD, drop weight index, Axb index, and abrasion 

index, three iso-surfaces were generated for each parameter. The iso-

surface values for each parameter are presented in detail in Figures 5.5 to 

5.10. 
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The 3D models provide a comprehensive representation of the 

geometallurgical orebody, and the block models represent the mineral 

deposit and its surroundings in a simplified manner. The results of the 

implicit modelling of the parameters were crucial for generating the iso-

surfaces used in the 3D models. 

In Figures 5.11 to 5.16, the 3D models for each parameter are presented. 

The models provide a detailed understanding of the geometallurgical 

parameters within the orebody and are valuable tools for mine planning and 

optimization. The 3D models were generated using Leapfrog® Geo 

software, and each block model was composed of 6 416 blocks with a total 

volume of 6 416 000 m3. The minimum and maximum values for each index 

among the blocks were obtained and presented in Tables 5.2 to 5.7. 

Results of the BWI-based block model showed that the blocks were 

classified into three zones, with the minimum and maximum values among 

the blocks being 6.49 kWh/t and 19.97 kWh/t, respectively. The rod mill 

index block model results were separated into three zones, with the 

minimum and maximum values among the blocks being 4.86 kWh/t and 

20.96 kWh/t, respectively. The RQD block model results were separated 

into three zones, with the minimum and maximum values among the blocks 

being 15.03% and 75.85%, respectively. 

The results of the DWI-based block model were separated into three zones, 

with the minimum and maximum values among the blocks being 3.73 kWh/t 

and 20.57 kWh/t, respectively. The Axb index block model results were 

separated into three zones, with the minimum and maximum values among 

the blocks being 0 kWh/t and 44.67 kWh/t, respectively. Lastly, the abrasion 

index block model results were separated into three zones, with the 

minimum and maximum values among the blocks being 0 kWh/t and 0.93 

kWh/t, respectively. 

The results of this chapter show that implicit geometallurgical modelling 

using the radial basis function method is an effective approach for modelling 

the geometallurgical parameters of an orebody. These models could be 
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useful for orebody characterization, resource estimation, mine planning, 

and decision-making in the mining industry. 
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Chapter 6 Geostatistical modelling of geometallurgical data 

 

6.1 Introduction 

The aim of this chapter is to present the results of geostatistical block 

modelling of geometallurgical data using the Ordinary Kriging method. The 

primary objective of this study was to model the geometallurgical 

parameters for subsequent comparison with implicit geometallurgical 

modelling results (Section 5.5) in Chapter 7. The methodology used in 

generating the geometallurgical block models is discussed in Section 3.6. 

The parameters modelled include BWI, rod mill index, RQD, DWI, Axb and 

Ai. The Leapfrog® Geo software was employed for the estimation and 

generation of the geometallurgical block models. Ordinary Kriging was 

selected as the geostatistical method for estimating the block models due 

to its common use in geostatistical modelling, as referenced. Section 3.6.1 

outlines the methodology used for Ordinary Kriging. Results are presented 

in the form of tables and Figures, with data generated in Leapfrog® geo and 

plotted using Microsoft® Word®. 

The generated block model (Figure 6.1) is made up of 6 416 blocks. The 

volume of the block model is 6 416 000 m3. 

 

6.2 Results of block modelling 

Table 6.1 and Figure 6.1 summarise the results of the BWI-based block 

model, with blocks classified into three zones based on their values. The 

blocks with values less than 12 kWh/t are shown in red, those between 12 

kWh/t and 13.2 kWh/t are shown in blue, and those above 13.2 kWh/t are 

shown in yellow. The minimum and maximum values of the Bond Work 

Index among the blocks are 7 kWh/t and 19.43 kWh/t, respectively. 
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Table 6.1. BWI data generated from the geostatistical block model. 

Name Bond_Work_Index (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 7.00 (kWh/t) 

Maximum 19.43 (kWh/t) 

 

 

Figure 6.1: BWI-based block model generated through the geostatistical 

method 

Similarly, the results of the block models representing the distributions of 

the rod mill index, RQD Index, drop weight index, Axb index, and Ai 

respectively are shown in Figures 6.2 – 6.5 and Tables 6.2 – 6.5, with blocks 

classified into three zones based on their values. The rod mill index blocks 

with values less than 13.7 kWh/t are shown in blue, those between 13.7 

kWh/t and 15.2 kWh/t are shown in green, and those above 15.2 kWh/t are 

shown in red (Figure 6.2). The minimum and maximum values of the rod 
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mill index among the blocks are 4.25 kWh/t and 18.90 kWh/t, respectively 

(Table 6.2). 

Table 6.2. Rod mill index data generated from the geostatistical block 

model 

Name Rod mill index (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 4.25 kWh/t 

Maximum 18.90 kWh/t 

 

 

Figure 6.2: Block model of the rod mill index generated through the 

geostatistical method 

For the RQD-based block model, blocks with values less than 50% are 

shown in blue, those between 50% and 61% are shown in yellow, and those 

above 61% are shown in red (Figure 6.3). The minimum and maximum 

values of the RQD index among the blocks are 16.99% and 71.31% 

respectively (Table 6.3). 
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Table 6.3. RQD data generated from the geostatistical block model 

Name RQD (%t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 16.99 % 

Maximum 71.31 % 

 

 

Figure 6.3: RQD-based block model generated through the geostatistical 

method 

The DWI-based block model shows blocks with values less than 11.3 kWh/t 

in blue, those between 11.3 kWh/t and 13.7 kWh/t in yellow, and those 

above 13.7 kWh/t in red (Figure 6.4). The minimum and maximum values of 

the Drop Weight Index among the blocks are 0.06 kWh/t and 20.97 kWh/t, 

respectively (Table 6.4). 
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Table 6.4. DWI data generated from the geostatistical block model 

Name DWI (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 0.06 kWh/t 

Maximum 20.97 kWh/t 

 

Figure 6.4. DWI-based block model generated through the geostatistical 

method 

The block model of the Axb index displays blocks with values less than 1 

kWh/t in blue, those between 1 kWh/t and 29 kWh/t in yellow, and those 

above 29 kWh/t in red (Figure 6.5). The minimum and maximum values of 

the Axb Index among the blocks are 0.31 kWh/t and 41.10 kWh/t, 

respectively (Table 6.5). 
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Table 6.5. Axb index data generated from the geostatistical block model 

Name Axb (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 0.31 kWh/t 

Maximum 41.10 kWh/t 

 

 

Figure 6.5: Block model of the Axb index generated through the 

geostatistical method 

Finally, the Ai-based block model exhibits blocks with values less than 0.02 

kWh/t in blue, those between 0.02 kWh/t and 0.4 kWh/t in yellow, and those 

above 0.4 kWh/t in red (Figure 6.6). The minimum and maximum values of 

the abrasion index among the blocks are 0.02 kWh/t and 0.78 kWh/t, 

respectively. 
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Table 6.6. Abrasion index data generated from the geostatistical block 

model 

Name Abrasion Index (kWh/t) 

Block Count 6 416 

Volume 6 416 000 m3 

Minimum 0.02 kWh/t 

Maximum 0.78 kWh/t 

 

 

Figure 6.6: Block model of the abrasion index generated through the 

geostatistical method 

 

6.3 Summary and conclusions 

The main purpose of this chapter was to create a block model of 

geometallurgical data using the traditional geostatistical method. Ordinary 

Kriging was used as it is one of the widely used methods in estimation in 

mining. The block models were created using orebody domains as 

boundaries. The statistical data of the block model were used to present the 

results. The block model was also visualised. The block model results for 
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six geometallurgical parameters were presented in this chapter. The Bond 

Work Index block model was classified into three zones: red blocks with 

values less than 12 kWh/t, blue blocks between 12 kWh/t and 13.2 kWh/t, 

and yellow blocks above 13.2 kWh/t. 

The rod mill Index, RQD Index, drop weight Index, Axb Index, and abrasion 

Index block models were also classified into three zones based on their 

respective values. 

The minimum and maximum values for each parameter among the blocks 

were also reported. The BWI had a minimum value of 7 kWh/t and a 

maximum value of 19.43 kWh/t. The rod mill index had a minimum value of 

7.0 kWh/t and a maximum value of 19.42 kWh/t. The RQD Index had a 

minimum value of 16.99% and a maximum value of 71.31%. 

The drop weight Index had a minimum value of 0.06 kWh/t and a maximum 

value of 20.97 kWh/t. The Axb Index had a minimum value of 0.31 kWh/t 

and a maximum value of 41.10 kWh/t. The abrasion Index had a minimum 

value of 0.02 kWh/t and a maximum value of 0.78 kWh/t. 

In conclusion, the geostatistical block modelling using Simple Kriging was 

successfully conducted for six geometallurgical parameters. The results of 

the block models were classified into three zones and the minimum and 

maximum values were reported. These block models will be useful for future 

resource estimation and mine planning. 

As stated at the beginning of this chapter, the purpose of this chapter was 

to model the geometallurgical parameters for subsequent comparison with 

implicit geometallurgical modelling results (Section 5.5). Therefore, the 

following chapter will deal with the comparison between the two methods. 
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Chapter 7 Comparison of implicit modelling method with 

geostatistical method technique 

 

7.1 Introduction 

The objective of this chapter is to assess the efficacy of implicit 

geometallurgical modelling in comparison to geostatistical modelling. 

Specifically, the comparison is done by evaluating the performance of the 

implicit method in modelling geometallurgical data. The implicit 

geometallurgical results presented in Chapter 5 are compared with the 

geostatistical results presented in Chapter 6. 

The comparison is conducted using three different methods: statistical 

comparison, swath plot comparison, and visual plot comparison. Tables and 

Figures generated using Leapfrog® Geo and Microsoft® Excel® software 

are utilized to present the data. 

Tables 7.1 to 7.6 present the statistical comparison of geometallurgical 

parameter modelling between the two methods. Figures 7.1 to 7.6 present 

the swath plot comparison between the two methods. The swath plot is 

compared in the swath X direction, using the averages of the 

geometallurgical parameters. Figures 7.1 to 7.6 represent the visual 

comparison between the two methods. The circles in the Figures indicating 

differences between the block model were drawn using Microsoft® Paint®. 

The geometallurgical parameters being studied in this chapter are the BWI, 

rod mill index, RQD, DWI, Axb and Ai. In addition, this chapter examines 

the results of the implicit geometallurgical block model in comparison to the 

geostatistical block model in mine planning applications. The evaluation is 

done through the use of a grade tonnage graph and resource estimation. 

Again, Leapfrog® Geo and Microsoft® Excel® are utilized to generate the 

data in the various tables and plot the figures. 
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7.2 Comparison of block models of Bond work index generated 

through implicit and geostatistical methods. 

Based on the comparison of BWI between the implicit and geostatistical 

methods, it can be observed that the mean value for the implicit method is 

slightly lower (12.79 kWh/t) than the geostatistical method (12.82 kWh/t) 

(Table 7.1). This suggests that, on average, the implicit method tends to 

estimate slightly lower BWI values than the geostatistical method. 

The standard deviation for the implicit method (2.02 kWh/t) is slightly higher 

than the geostatistical method (1.95 kWh/t), resulting in a higher coefficient 

of variation (0.16 kWh/t) for the implicit method compared to the 

geostatistical method (0.15 kWh/t). 

This indicates that the data points in the BWI distribution are more spread 

out from the mean when using the implicit method, implying a slightly higher 

variability compared to the geostatistical method. 

The variance for the implicit method (4.09 kWh/t) is higher than the 

geostatistical method (3.78 kWh/t). The higher variance for the implicit 

method further confirms that the BWI data points are more dispersed around 

the mean when using this method compared to the geostatistical method. 

In terms of the distribution of the data, the minimum value for the implicit 

method (6.49 kWh/t) is lower than the geostatistical method (7 kWh/t). 

Finally, the maximum value for the implicit method (19.97 kWh/t) is higher 

than the geostatistical method (19.42 kWh/t). 

In summary, the interpretation of the results suggests that while the implicit 

and geostatistical methods for estimating BWI show minor differences in 

their mean values, the geostatistical method appears to provide slightly 

more precise estimates with lower variability. 
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Table 7.1. Statistical comparison between implicit and geostatistical 

methods for the BWI-based block models 

Name Implicit BWI (kWh/t) Geostatistical BWI 
(kWh/t) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 12.79 kWh/t 12.82 kWh/t 

Standard deviation 2.02 kWh/t 1.95 kWh/t 

Coefficient of variation 0.16 kWh/t 0.15 kWh/t 

Variance 4.09 kWh/t 3.78 kWh/t 

Minimum 6.49 kWh/t 7 kWh/t 

Median 13.16 kWh/t 13.17 kWh/t 

Maximum 19.97 kWh/t 19.42 kWh/t 

The swath plot results show that both methods have very similar mean 

values for the BWI, with the geostatistical method having a slightly higher 

mean of 12.88 kWh/t compared to the average of implicit method of 12.81 

kWh/t. However, the difference between the two means is relatively small, 

indicating that both methods perform similarly well in estimating the BWI. 

It is further observed that geostatistical method has higher averages for 

almost all Swath numbers. However, it should be noted that there are Swath 

numbers where the implicit method has higher averages than the 

geostatistical method, particularly for Swath numbers 11 – 14 and 30 – 37. 

 

Figure 7.1: Comparison of swath plots between implicit and geostatistical 

methods for the BWI-based block models 
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The statistical and swath plot comparison indicated a minor difference, 

which can be observed more clearly when the two-block models are 

visualized (see Figure 7.2). As shown in the Figure, the green circle in the 

bottom left corner for the implicit method (Figure 7.2a) contains more blue 

blocks than the geostatistical method (Figure 7.2b) at the same circle. 

Similarly, these subtle distinctions can also be noticed in the black, white, 

brown, and grey circles. 

 

Figure 7.2: Visual comparison between a) implicit method and b) 

geostatistical method for the BWI-based block models 
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7.3 Comparison of block models of rod mill index generated 

through implicit and geostatistical methods. 

The implicit method and geostatistical method both had the same block 

count and volume, indicating that they were analysed using the same spatial 

units. 

In terms of the mean, the geostatistical method produced a slightly higher 

value of 15.19 kWh/t compared to the 15.15 kWh/t mean of the implicit 

method 15.15 kWh/t. This indicates that the geostatistical method provides 

slightly higher average tod mill index estimates compared to the implicit 

method. 

The standard deviation for the geostatistical method was lower at 2.74 

kWh/t compared to the 2.86 kWh/t standard deviation of the implicit method, 

indicating that the geostatistical method had less variability in its results. 

lower standard deviation suggests that the rod mill index estimates from the 

geostatistical method have less variability around the mean, making it 

relatively more precise compared to the Implicit method. 

The coefficient of variation, which is the ratio of the standard deviation to 

the mean, was slightly lower for the geostatistical method at 0.18 kWh/t 

compared to the 0.19 kWh/t CV implicit method. This suggests that the 

geostatistical method provides more consistent estimates relative to the 

mean rod mill index. 

The variance, which is the square of the standard deviation, was lower for 

the geostatistical method at 7.5 kWh/t compared to the 8.18 kWh/t variance 

implicit method. A lower variance in the geostatistical method further 

confirms that its rod mill index estimates have less variability and are more 

tightly distributed around the mean compared to the Implicit method. 

In terms of the minimum, the implicit method had a lower value of 3.73 kWh/t 

compared to the 4.25 kWh/t minimum geostatistical method. Finally, the 

maximum value for the implicit method was higher at 20.57 kWh/t compared 

to the 18.9 kWh/t maximum geostatistical method. Overall, the results 
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suggest that the geostatistical method tends to provide slightly higher mean 

estimates and is more precise in estimating the rod mill index compared to 

the implicit method. The lower standard deviation, variance, and coefficient 

of variation in the geostatistical method indicate that its estimates are more 

consistent and have less variability around the mean. 

Table 7.2. Statistical comparison between implicit and geostatistical 

methods for the rod mill index block models 

Name Implicit rod mill 

index (kWh/t) 

Geostatistical rod mill 

index (kWh/t)) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 15.15 kWh/t 15.19 kWh/t 

Standard deviation 2.86 kWh/t 2.74 kWh/t 

Coefficient of variation 0.19 kWh/t 0.18 kWh/t 

Variance 8.18 kWh/t 7.5 kWh/t 

Minimum 3.73 kWh/t 4.25 kWh/t 

Median 15.04 kWh/t 15.1 kWh/t 

Maximum 20.57 kWh/t 18.9 kWh/t 

In general, the implicit method seems to provide slightly lower average rod 

mill index values compared to the geostatistical method (Table 7.2). For 

instance, for swath number 10, the implicit method yielded an average rod 

mill index of 14.4032 kWh/t, while the geostatistical method yielded a value 

of 15.0712 kWh/t. 

Figure 7.3 shows two different methods, geostatistical and implicit, used to 

estimate the rod mill index across multiple swath numbers. The averages 

for the Implicit method tend to be slightly lower than those for the 

geostatistical method. For implicit method, the mean of the rod mill index 

was 14.80 kWh/t while for geostatistical method being 14.83 kWh/t. This 

indicate that there is not much difference between the two estimates. The 

number of samples varies for different swath numbers, but both methods 
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generally have a similar trend as the swath numbers increase (Figure 7.3). 

It appears that the data is well-distributed with a considerable number of 

samples for most swath numbers. The average corresponding to the implicit 

method was higher than the geostatistical method in swath No. 8 – 9, 25 – 

26 and 47. In these instances, the implicit method yielded higher average 

values compared to the geostatistical method. 

 

Figure 7.3: Comparison of swath plots between the implicit and 

geostatistical method for the block models of the rod mill index 

Overall, while the geostatistical method tends to provide slightly higher 

average rod mill index values, the implicit method appears to be more 

consistent and reliable across swath numbers. 

When the two-block models are visualized (Figure 7.4), the statistical and 

swath plot comparison's minor difference becomes apparent. The white 

circle for the implicit method (Figure 7.4a) contains more blue blocks than 

the geostatistical method (Figure 7.4b) at the same circle. Additionally, the 

black circle for the implicit method (Figure 7.4a) exhibits more green blocks 

than the geostatistical method, while the brown circle for the implicit method 

only has one green block, compared to the 2 green blocks of the 

geostatistical method. These visual observations reinforce the minor 

differences previously observed in the statistical and swath plot comparison. 
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Figure 7.4: Visual comparison between a) implicit method and b) 

geostatistical method for the block models of the rod mill index 

 

7.4 Comparison of block model for RQD index generated through 

implicit and geostatistical methods 

The statistical comparison between implicit and geostatistical methods for 

the RQD-based block model is presented in Table 7.3. The block count and 
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volume are the same for both methods, indicating that they have used the 

same data and assumptions for the analysis. The mean is slightly higher for 

the geostatistical method compared to the implicit method (56.62% vs. 

56.49%). 

This indicates that the geostatistical method provides slightly higher 

average RQD estimates compared to the implicit method. The implicit 

method has a standard deviation of 10.41%, whereas the geostatistical 

method shows a slightly lower standard deviation of 10.04%. A lower 

standard deviation suggests that the RQD estimates from the geostatistical 

method have less variability around the mean, making it relatively more 

precise compared to the implicit method. 

The Coefficient of Variation measures the relative variability of the RQD 

estimates between the two methods. Both methods have the same 

coefficient of variation, which is 0.18%. This indicates that the relative 

variability in RQD estimates is the same for both methods. 

The implicit method has a variance of 108.43%, whereas the geostatistical 

method has a slightly lower variance of 100.81%. A lower variance in the 

geostatistical method confirms that its RQD estimates have less variability 

and are more tightly distributed around the mean compared to the implicit 

method. 

The minimum RQD estimate obtained from the Implicit method is 15.03%, 

while the Geostatistical method yields a slightly higher minimum of 16.99%. 

The maximum RQD estimate from the Implicit method is 75.85%, whereas 

the Geostatistical method gives a lower maximum of 71.31%. The median, 

which represents the middle value, is the same (56.52%) for both methods. 

The results suggest that the geostatistical method tends to provide slightly 

higher mean estimates of RQD and is slightly more precise in estimating 

RQD compared to the implicit method. The lower standard deviation, 

variance, and similar coefficient of variation in the geostatistical method 

indicate that its estimates are more consistent and have slightly less 
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variability around the mean. However, the differences between the two 

methods are relatively small, and both methods seem to provide reasonable 

estimates of RQD. 

Table 7.3. Statistical comparison between implicit and geostatistical 

methods for the RQD-based block models 

Name Implicit RQD (%) Geostatistical RQD (%) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 56.49 % 56.62 % 

Standard deviation 10.41 % 10.04 % 

Coefficient of variation 0.18 % 0.18 % 

Variance 108.43 % 100.81 % 

Minimum 15.03 % 16.99 % 

Median 56.52 % 56.52 % 

Maximum 75.85 % 71.31 % 

From Figure 7.5, it can see that the average RQD values obtained by the 

geostatistical method range from 50.03% to 60.63%, while the implicit 

method gives average RQD values ranging from 48.53% to 58.56%. Both 

methods give similar RQD values for some swath numbers, while for others, 

the difference between the average RQD values obtained by the two 

methods is quite significant. 

For example, in swath number 13, the geostatistical method gives an 

average RQD value of 59.29% while the implicit method gives an average 

RQD value of 58.54%. Similarly, in swath number 47, the geostatistical 

method gives an average RQD value of 55.91%, while the implicit method 

gives an average RQD value of 56.38%. 
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Figure 7.5: Comparison of swath plots between implicit and geostatistical 

methods for the RQD-based block models 

Figures 7.6 offer visual representations that highlight the minor difference 

identified in the statistical and swath plot comparison. Upon observing the 

two block models, it becomes apparent that the white circle for the implicit 

method (Figure 7.6a) contains more red blocks than the geostatistical 

method (Figure 7.6b) at the same circle. 

Additionally, the black circle for the implicit method (Figure 7.6a) displays 

more blue blocks than the geostatistical method, while the green circle for 

the implicit method exhibits two yellow blocks, in contrast to the single yellow 

block present in the geostatistical method. These visual cues reinforce the 

slight distinctions previously observed in the statistical and swath plot 

comparison. 
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Figure 7.6: Visual comparison between a) implicit method and b) 

geostatistical method for the RQD-based block models 

Overall, the results suggest that there are some differences between the 

implicit and geostatistical methods in terms of descriptive statistics, but the 

differences are relatively small. Further analysis and interpretation are 

needed to determine which method is more appropriate for the study. 

 

7.5 Comparison of block model for drop weight index generated 

through implicit and geostatistical methods 

Table 7.4 presents the results of modelling the drop weight index using the 

implicit method and geostatistical method. The block count and volume for 
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both methods are the same, indicating that the same number of blocks were 

used to create the model, and the volume of each block is also the same. 

The mean value for the implicit method is slightly higher than the 

geostatistical method, at 10.75 kWh/t compared to 10.74 kWh/t, 

respectively. However, the difference is not significant. This indicates that 

the two methods provide nearly identical average DWI estimates. 

The implicit method has a standard deviation of 3.79 kWh/t, whereas the 

geostatistical method shows a slightly lower standard deviation of 3.67 

kWh/t. A lower standard deviation suggests that the DWI estimates from the 

geostatistical method have less variability around the mean, making it 

slightly more precise compared to the implicit method. 

The CV for the implicit method is slightly higher at 0.35 kWh/t compared to 

0.34 kWh/t for the geostatistical method. which suggests that the implicit 

method has slightly more variability than the geostatistical method. This 

means that the relative variability in DWI estimates is slightly lower for the 

geostatistical method. 

The implicit method has a variance of 14.36 kWh/t, whereas the 

geostatistical method has a slightly lower variance of 13.48 kWh/t. A lower 

variance in the geostatistical method confirms that its DWI estimates have 

less variability and are more tightly distributed around the mean compared 

to the implicit method. 

The minimum and maximum values for both methods are quite different, 

with the implicit method having a minimum value of 0.05 kWh/t and a 

maximum of 20.97 kWh/t, while the geostatistical method has a minimum 

value of 0 kWh/t and a maximum of 21.26 kWh/t. This indicates that the 

range of values for the implicit method is wider than for the geostatistical 

method. The differences between the minimum and maximum values are 

minimal and may not have significant practical implications. 

The results suggest that both the implicit and geostatistical methods provide 

very similar estimates of DWI, as indicated by their almost identical mean 
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values. The geostatistical method appears to be slightly more precise, as 

evidenced by its lower standard deviation, variance, and coefficient of 

variation. However, the differences between the two methods are relatively 

small, and both methods seem to provide reasonable and comparable 

estimates of DWI. 

Table 7.4. Statistical comparison between implicit and geostatistical 

methods for the DWI-based block models 

 
Implicit DWI (kWh/t) Geostatistical DWI (kWh/t) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 10.75 kWh/t 10.74 kWh/t 

SD 3.79 kWh/t 3.67 kWh/t 

CV 0.35 kWh/t 0.34 kWh/t 

Variance 14.36 kWh/t 13.48 kWh/t 

Minimum 0.05 kWh/t 0.00 kWh/t 

Maximum 20.97 kWh/t 21.26 kWh/t 

Figure 7.7 shows the comparison between the geostatistical method and 

the implicit method for the DWI variable in different swath numbers. The 

average value and number of samples are provided for each method. 

Looking at the results, it can be seen that the average values obtained by 

both methods are generally similar, but there are some differences in certain 

swath numbers. For example, in swath numbers 13, 14, and 15, the implicit 

method produces higher average values compared to the geostatistical 

method. 

On the other hand, in swath numbers 51, 52, 53, 54, 55, 56, 57, and 58, the 

implicit method produces lower average values compared to the 

geostatistical method. The mean values for both implicit and geostatistical 

methods were 11.19 kWh/t and 11.26 kWh/t. It is clear that there is not many 

differences between the two methods in estimating the DWI. 
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Figure 7.7: Comparison of swath plots between implicit and geostatistical 

methods for the DWI-based block model 

It is also important to note the number of samples for each swath number. 

The number of samples is zero for some swath numbers in both methods, 

which could indicate a lack of data in those areas. 

Visual comparisons between the implicit and geostatistical methods are 

illustrated in Figure 7.8, revealing slight disparities between the two 

approaches. Notably, in the white circle, the yellow blocks in the implicit 

method (Figure 7.8a) are clustered together, while they are dispersed in the 

same circle for the geostatistical method (Figure 7.8b). 

Additionally, the white circle for the implicit method contains more yellow 

blocks than for the geostatistical method. Similarly, the black circle also 

displays visual differences between the two methods. 
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Figure 7.8: Visual comparison between a) implicit method and b) 

geostatistical method for the DWI-based block models 

 

7.6 Comparison of block model for Axb index generated through an 

implicit and geostatistical method 

The results show the comparison between the implicit method and 

geostatistical method for modelling Axb data. Both methods used the same 

block count and volume. The mean value obtained through the implicit 

method was 24.04 kWh/t and the geostatistical method was 24.15 kWh/t 
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(Table 7.5). This indicates that the geostatistical method provides slightly 

higher average Axb estimates compared to the implicit method. The 

standard deviation obtained through the implicit method was 13.67 kWh/t 

and for the geostatistical method, it was 14.5 kWh/t. A higher standard 

deviation suggests that the Axb estimates from the geostatistical method 

have more variability around the mean, making it less precise compared to 

the implicit method. 

The CV was 0.57 kWh/t for the implicit method and 0.6 kWh/t for the 

geostatistical method. This means that the relative variability in Axb 

estimates is slightly higher for the geostatistical method. The variance was 

186.91 kWh/t for the implicit method and 210.33 kWh/t for the geostatistical 

method. A higher variance in the geostatistical method confirms that its Axb 

estimates have more variability and are more dispersed around the mean 

compared to the implicit method. 

The minimum value obtained through the implicit method was 0 kWh/t and 

for the geostatistical method, it was 0.31 kWh/t. The maximum value 

obtained through the implicit method was 44.67 kWh/t and for the 

geostatistical method, it was 41.1 kWh/t. These differences in minimum and 

maximum values may indicate that the two methods can provide different 

extreme estimates for Axb. 

Overall, the results suggest that the Geostatistical method tends to provide 

slightly higher mean estimates of Axb compared to the Implicit method. 

However, the Implicit method seems to be slightly more precise, as 

indicated by its lower standard deviation, variance, and coefficient of 

variation. 

It's worth noting that the differences in precision and variance are relatively 

small between the two methods. The minimum and maximum values also 

show some variation between the methods, indicating that extreme 

estimates can differ. Therefore, both methods can be used to model Axb 

data, and the choice of method may depend on other factors such as 

computation time and ease of use. 
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Table 7.5. Statistical comparison between the implicit and geostatistical 

method for the block models of the Axb index 

 
Implicit Axb (kWh/t) Geostatistical Axb (kWh/t) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 24.04 kWh/t 24.15 kWh/t 

SD 13.67 kWh/t 14.5 kWh/t 

CV 0.57 kWh/t 0.6 kWh/t 

Variance 186.91 kWh/t 210.33 kWh/t 

Minimum 0 kWh/t 0.31 kWh/t 

Maximum 44.67 kWh/t 41.1 kWh/t 

Looking at the results for the swath plot comparison (Figure 7.9), it can be 

seen that the average Axb values obtained by both methods are 

comparable across most swath numbers. In the range of swath numbers 7 

to 35, the averages remain relatively close for both methods, indicating a 

reasonable agreement between them. 

For swath numbers 51 to 59, the differences between the average Axb 

values of the two methods become more noticeable. The geostatistical 

method yields significantly lower average values for Swath Numbers 51 to 

58 compared to the implicit method, indicating potential disparities in their 

estimations. 

Furthermore, both methods show similar trends as the swath numbers 

increase. The Axb values tend to decrease gradually from swath numbers 

12 to 25, and then there is a significant decrease at swath numbers 48 to 

59. 
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Figure 7.9: Comparison of swath plots between implicit and geostatistical 

methods for the block models of the Axb index 

Figure 7.10 presents the results of a visual comparison between the two 

methods, revealing significant differences. Notably, the white circle for the 

implicit method (Figure 7.10a) contains no blue blocks, whereas the 

geostatistical method (Figure 7.10b) displays a blue block in the same circle. 

Equally, the black circle for the implicit method has a blue block, while the 

geostatistical method does not. Differences between the two methods are 

also observable in the blue, green, and brown circles. 
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Figure 7.10: Visual comparison between a) implicit method and b) 

geostatistical method for the block models of the Axb index 

Overall, these results suggest that the geostatistical method may be a 

slightly better option for predicting values of the variable of interest within 

the region, although the differences between the two methods are relatively 

small. It is also worth noting that these results only consider performance 

within the specific region studied and may not necessarily generalize to 

other regions or applications. 
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7.7 Comparison of block model for abrasion index generated 

through implicit and geostatistical methods 

The two methods have very similar performance in terms of the mean, with 

both giving a mean abrasion index value of 0.49 kWh/t (Table 7.6). This 

indicates that both methods provide identical average Abrasion Index 

estimates. The geostatistical method has a slightly lower standard deviation 

(0.27 kWh/t compared to 0.28 kWh/t). A lower standard deviation suggests 

that the Ai estimates from the geostatistical method have slightly less 

variability around the mean, making it marginally more precise compared to 

the implicit method. 

The Coefficient of Variation (CV) measures the relative variability of the Ai 

estimates between the two methods. The CV for the Implicit method is 0.58 

kWh/t, while for the geostatistical method, it is slightly lower at 0.56 kWh/t. 

This means that the relative variability in Ai estimates is slightly lower for the 

geostatistical method. 

The implicit method has a variance of 0.08 kWh/t, whereas the geostatistical 

method has a slightly lower variance of 0.07 kWh/t. A lower variance in the 

geostatistical method confirms that its Ai estimates have slightly less 

variability and are more concentrated around the mean compared to the 

implicit method. 

Looking at the minimum and maximum values, it appears that the implicit 

method has a wider range of abrasion index values, with a minimum of 0 

kWh/t and a maximum of 0.93 kWh/t. In contrast, the geostatistical method 

has a minimum value of 0.02 kWh/t and a maximum of 0.78 kWh/t. This 

suggests that the geostatistical method may be more reliable and consistent 

in estimating abrasion index values within a certain range. 

The results suggest that both the Implicit and Geostatistical methods 

provide identical mean estimates of Ai. The Geostatistical method appears 

to be slightly more precise, as indicated by its lower standard deviation, 

variance, and coefficient of variation. However, the differences in precision 



 
 

204 

 

and variance between the two methods are relatively small. The minimum 

and maximum values show some variation between the methods, indicating 

that extreme estimates can differ. 

Table 7.6. Statistical comparison between the implicit and geostatistical 

methods for the block models of the abrasion index 

 
Implicit Ai (kWh/t)) Geostatistical Ai (kWh/t) 

Block Count 6 416 6 416 

Volume 6 416 000 m3 6 416 000 m3 

Mean 0.49 kWh/t 0.49 kWh/t 

SD 0.28 kWh/t 0.27 kWh/t 

CV 0.58 kWh/t 0.56 kWh/t 

Variance 0.08 kWh/t 0.07 kWh/t 

Minimum 0 kWh/t 0.02 kWh/t 

Maximum 0.93 kWh/t 0.78 kWh/t 

The results of the swath plot comparison between the implicit method and 

the geostatistical method are presented in Figure 7.11. The average 

Abrasion Index values obtained by both methods are relatively close to each 

other across most swath numbers. 

This is further confirmed by the mean values for both methods being 0.45 

kWh/t. From swath numbers 7 to 40, the averages remain similar for both 

methods, indicating a reasonable agreement between them. There is not 

much difference between the two methods, meaning that the performed the 

same. 

 

Figure 7.11: Comparison of swath plots between implicit and geostatistical 

methods for the block models of the abrasion index 
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Figure 7.12 displays the visual comparison results between the implicit and 

geostatistical methods, showcasing notable differences between the two 

approaches. In the white circle, the implicit method (Figure 7.12a) contains 

blue blocks, while the geostatistical method (Figure 7.12b) does not. The 

green circle exhibits the same pattern as the white circle, with the implicit 

method displaying blue blocks while the geostatistical method does not. 

Differences between the two methods are also observable in the black and 

brown circles. 

 

Figure 7.12: Visual comparison between a) implicit method and b) 

geostatistical method for the block model of the abrasion index 
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Overall, the swath plot suggests that the geostatistical method is a better 

option for estimating the abrasion index due to its higher average values 

and more consistent results. However, further analysis and comparison with 

other methods may be required to confirm this. 

 

7.8 Application of geometallurgical block model on mine planning 

In this section, the results of comparing the implicit method and 

geostatistical methods for mine planning applications were presented. As 

previously mentioned in this chapter, two methods were utilized: the grade-

tonnage curve and resource estimation. The data used in this section was 

sourced from Section 5.2 and Chapter 6. The data, Figures, and tables in 

this section were generated using Leapfrog® Geo and Microsoft® Excel®. 

 

7.8.1 Grade-tonnage curve: implicit vs geostatistical 

The grade-tonnage curve is a graphical technique used to evaluate the 

performance of different estimation methods relative to each other. The 

curve provides a summary of the estimated tonnage and grade of materials 

at a given cut-off grade. 

A comparison between the implicit and geostatistical methods for grade-

tonnage estimation is shown in Figure 7.13. At the 0.5% cut-off grade, the 

implicit method estimates 11.29 million tonnes above the cut-off, with an 

average grade of 1.12% and containing metal of 90.83% of the ore. The 

Geostatistical method estimates 11.36 million tonnes above the cut-off 

grade, with an average grade of 1.34% and containing metal of 90.50%. 

The curves of the two methods are very similar, with only minor differences. 



 
 

207 

 

 

Figure 7.13: Comparison of grade tonnage curves generated using implicit 

and traditional methods. 

 

7.8.2 Geometallurgical orebody models combined. 

For this illustrative application, the cut-off grade of the deposit was set at 

0.5% TCo based on the work by Mboyo (2018) in which a similar cut-off 

grade was used. The grade classification was divided into four classes as 

shown in Table 7.7. 

 

 



 
 

208 

 

Table 7.7. Grade classes of drillhole data 

Intervals (%) Class 

0 % – 0.5 % Waste 

0.5 % – 1% Low grade 

1% – 3% Medium grade 

3 % – 99% High grade 

The classes that were created in Table 7.7 were used to construct a 

combined geometallurgical model for the orebody (Figure 7.14), which was 

divided into four classes: waste, low-grade ore, medium-grade ore, and 

high-grade ore. 

Each block in the geometallurgical block contained values for the 

geometallurgical parameters, including TCo (%), BWI (kWh/t), rod mill index 

(kWh/t), RQD (%), DWI (kWh/t), Axb (kWh/t), and Ai (kWh/t). An example of 

the scene detail is provided in Figure 7.14. These parameters can then be 

directly utilized for mine planning or mine optimization from the 

geometallurgical block model. 

 

Figure 7.14: Combined geometallurgical block model generated using 

Implicit method 

 

 



 
 

209 

 

7.8.3 Resource estimation: implicit vs geostatistical 

Tables 7.8 and 7.9 present the results of mine planning using the implicit 

and geostatistical methods. The data includes volume, density, mass, and 

several indices for each block within the mine, as well as the total values for 

each method. 

Looking at the total values, the geostatistical method produced a higher TCo 

(%) value (1.05%) compared to the implicit method (0.99%), which indicates 

that the geostatistical method may result in a slightly higher recovery of ore 

from the mine.  

The Axb (kWh/t) values were higher for the implicit method compared to the 

geostatistical method. The average Axb (kWh/t) value for the implicit 

method was 24.04 (kWh/t), while the average Axb (kWh/t) value for the 

geostatistical method was 24.15 (kWh/t). This suggests that the 

geostatistical method has a slightly higher average Axb (kWh/t) value 

compared to the implicit method. 

The Ai (kWh/t) values were the same for the implicit method and the 

geostatistical method, indicating that both methods produced the same 

average. 

The BWI (kWh/t), DWI (kWh/t), and rod mill index (kWh/t) values were all 

slightly higher for the geostatistical method compared to the implicit method. 

The RQD (%) values for both methods were similar, with the geostatistical 

method producing slightly higher values. 

For the class categories (High, Low, Medium and Waste), the implicit 

method produced a lower mass per ton for high-class (383 400.00 t) 

compared to the geostatistical method (683 100.00 t). However, the implicit 

method produced slightly high values for the other classes compared to 

geostatistical methods. 
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Table 7.8. Resource estimation using implicit method 

  
Class 

      Average Value 

Volume Density Mass Tco Abression_Index Axb Bond_Work_Index Drop_Weight_index Rodmill_Index RQD 

  m³ g/cm³ t % kWh/t kWh/t kWh/t kWh/t kWh/t % 

High 253 000.00 2.7 683 100.00 3.04 0.35 18.07 13.83 11.15 13.83 54.37 

Low 2 145 000.00 2.7 5 791 500.00 0.77 0.53 25.83 12.7 10.65 15.55 57.71 

Medium 2 147 000.00 2.7 5 796 900.00 1.39 0.45 22.69 13.02 11.08 14.97 56.75 

Waste 1 871 000.00 2.7 5 051 700.00 0.51 0.51 24.35 12.5 10.39 15.08 55.07 

Total 6 416 000.00 2.7 17 323 200.00 0.99 0.49 24.04 12.79 10.74 15.15 56.49 

 

Table 7.9. Resource estimation using the geostatistical method 

  
Class 

  
Volume 

  
Density 

  
Mass 

Average Value 

TCo  Abression_Index  Axb Bond_Work_Index Drop_Weight_index Rodmill_Index RQD 

  m³ g/cm³ t % kWh/t kWh/t kWh/t kWh/t kWh/t % 

High 142 000.00 2.7 383 400.00 3.78 0.33 16.54 14.04 11.13 13.45 52.35 

Medium 2 049 000.00 2.7 5 532 300.00 1.72 0.42 21.27 13.12 11.41 14.93 56.89 

Low 3 101 000.00 2.7 8 372 700.00 0.71 0.54 26.55 12.68 10.28 15.47 57.07 

Waste 1 124 000.00 2.7 3 034 800.00 0.37 0.49 23.74 12.52 10.8 15.11 55.43 

Total 6 416 000.00 2.7 17 323 200.00 1.05 0.49 24.15 12.82 10.75 15.19 56.62 
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7.9 Summary and conclusion 

This chapter compares the efficacy of implicit geometallurgical modelling 

with geostatistical modelling in mine planning applications. The comparison 

is conducted using statistical comparison, swath plot comparison, and visual 

plot comparison. The results on the comparison between the implicit and 

geostatistical methods for modelling geometallurgical data reveals that both 

methods generally provide similar estimates for the studied factors. 

However, there are subtle differences in precision and variability between 

the two methods. 

The geostatistical method tends to exhibit slightly better precision with lower 

standard deviations and variances for some factors (e.g., RQD and Axb) 

compared to the implicit method. However, these differences are relatively 

small, and both methods generally offer reasonable and comparable 

estimates for the geometallurgical parameters. 

Looking at the results for the swath plot comparison, it can be seen that the 

geostatistical method generally performed better than the implicit method in 

terms of average values predicted in the swaths, although the differences 

are relatively small. The lower quartile and median values are slightly higher 

for the implicit method compared to the geostatistical method, while the 

upper quartile value is slightly higher for the geostatistical method compared 

to the implicit method. 

For the block categories, a cut-off grade of 0.5% TCo for an ore deposit was 

set to classify the grades into four classes. The geometallurgical model was 

constructed based on these classes, and each block in the model contained 

values for geometallurgical parameters, which could be used for mine 

planning or optimization. The geostatistical method produced a high mass 

per ton of high-class (683 100.00 t) compared to the implicit method 

(383 400.00 t), indicating a potentially more profitable mine plan. However, 

the implicit method produced slightly high values for the other classes 

compared to geostatistical methods. The differences in the volume (m3) of 
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materials within each class and the variation in TCo (%) grade have 

contributed to the distinct mass (t) observed between the two methods. 

The geostatistical method produced slightly higher TCo (%) values, 

indicating a slightly higher recovery of ore, while the implicit method showed 

higher values for several indices such as Axb (kWh/t) and Ai (kWh/t), 

indicating potentially more efficient mineral recovery and crushing of ore. 

Overall, the results suggest that the choice of method may depend on the 

priority of the mine plan. If the priority is to recover the maximum volume of 

ore possible, the geostatistical method may be more suitable. However, if 

the priority is to maximize the profitability of the mine plan, the implicit 

method may be a better choice. 

It is important to note that further analysis and considerations beyond these 

results may be necessary to make a final decision. This is because the 

differences between the implicit and geostatistical methods were minor, with 

both methods producing similar results for most parameters. However, the 

geostatistical method may have a slight advantage in terms of TCo and 

mass, while the implicit method may have a slight advantage in terms of 

Axb and Ai. 
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Chapter 8 Conclusions and recommendations 

 

8.1 Introduction 

The main aim of this thesis was to investigate the potential of implicit 

modelling methods for modelling geometallurgical parameters for mine 

planning applications and to generate synthetic geometallurgical data using 

Generative Adversarial Networks (GAN) models. The Bond work index, rod 

mill index, rock quality designation index, drop weight index, Axb index and 

abrasion index were selected for modelling in this thesis.  

For synthetic data generation, three types of GAN-based models were used 

to generate synthetic geometallurgical data (Chapter 4). These are CTGAN, 

CopulaGAN, and Gaussian Copula. An RBF-based implicit method was 

used to model the geometallurgical data using Leapfrog® Geo. 

The results of the implicit geometallurgical modelling (Chapter 5) were also 

compared with the geostatistical method (Chapter 6) analysed in this study 

(Chapter 7). This chapter, therefore, presents the summarised funding of 

the thesis, the overall conclusion and recommendation for future research. 

 

8.2 Summary of the thesis 

In this thesis, three specific research objectives were set in alignment with 

the main objectives. These were to create simulated geometallurgical data 

using Generative Adversarial Networks (GAN) models, analyse the data 

using an implicit method and compare the results with geostatistical 

methods, and finally, develop an orebody model that incorporates 

geometallurgical data and test it in mine planning. 

For synthetic data generation, the study evaluates the generated synthetic 

data using various metrics, including similarity scores, principal component 

analysis, and visual evaluation. The results indicate that GAN-based models 

can effectively generate synthetic geometallurgical data, with Gaussian 
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Copula performing the best in terms of preserving the correlation structure 

of the original data. The evaluation metrics suggest that the synthetic data 

is of high quality and closely resembles the real data. 

Overall, the findings of this chapter demonstrate the potential of GAN-based 

methods in generating synthetic data for various applications, particularly in 

situations where data privacy and scarcity are a concern. The generated 

synthetic geometallurgical data can be used for modelling and analysis 

purposes, and the chapter highlights the importance of caution when 

interpreting the results. 

The second objective of this thesis was to model geometallurgical 

parameters using implicit methods, compare them with geostatistical 

methods, and develop an orebody model for mine planning. An indicator 

RBF implicit method was used to delineate the orebody into two zones, and 

a cut-off grade of 0.5% TCo was used to delineate the ore. 

The Leapfrog® Geo software was used to model the geometallurgical 

parameters using RBF-based methods. The results indicated that the RBF-

based method can be used to model geometallurgical data, and the 

generated block models were compared with geostatistical block models. 

The comparison indicated that the two methods are similar, and the 

generated resources were compared with those estimated using the 

geostatistical method. 

The results indicated no significant differences between the two methods, 

and an orebody model that includes geometallurgical parameters was 

generated for mine planning. 

Lastly, a block model of the geometallurgical parameters was generated 

from the implicit 3D models. The block models are the final stage of 

modelling as they are used for mineral valuation and mine planning. The 

results of implicit modelling indicated that RBF based method can be used 

to model geometallurgical data. 
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To validate the results of the implicit modelling, geostatistical block models 

were compared with the generated implicit block model. The geostatistical 

block models were created using the Ordinary Kriging method. This was 

done through statistical, swath plot and visual comparison. The results of 

the comparison indicated that the two methods are closely similar with minor 

differences this closely similar relationship further validates the results of 

the implicit method. 

The created implicit block models were used in mineral inventory 

application. This was done through the grade tonnage curve and resource 

estimation. The generated resources were compared with the resources 

estimated through the geostatistical method. The results indicated that there 

are not many differences between the two methods. This further validated 

the results from the implicit method. Finally, an orebody which included 

geometallurgical parameters was generated at the end of the study. This 

orebody model can be used for optimising and mine planning. 

 

8.3 Overall conclusion 

Based on the findings of this thesis, it was concluded that implicit modelling 

of geometallurgical data involves several steps. These steps include 

creating iso-surfaces, interpolating them using the radial basis function, and 

generating block models. Synthetic geometallurgical datasets can also be 

generated using GAN-based methods. This novel methodology offers the 

potential to generate realistic and related datasets while maintaining the 

privacy of the original data. 

Furthermore, the thesis demonstrated that resources can be estimated 

using the implicit method, and these estimates were validated using 

traditional geostatistical methods. Comparing the two methods revealed a 

few differences. Additionally, the thesis proposed a methodology for 

incorporating geometallurgical data into a spatial block model, which can be 

useful in mine planning and resource optimization. 
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In conclusion, it can be inferred from this thesis that the implicit method has 

the potential to model geometallurgical parameters with high accuracy. 

Additionally, the GAN model was found to be capable of generating 

synthetic geometallurgical data of high quality that closely resembles the 

original data, but with a different data structure. 

 

8.4 Recommendations for further research 

Based on the scope of this thesis, there are several areas that could be 

explored in future studies. These include: 

• Future research directions could include exploring other synthetic 

data generation methods beyond GAN-based approaches, such as 

investigating the performance of Tabular Generative Adversarial 

Network (TGAN) and Triplet-based Variable AutoEncoders (TVAE) 

models. Additionally, a comparative study could be conducted to 

compare the performance of GAN-based methods and RBF 

interpolation, as explored in the thesis, with alternative approaches 

like CTGAN and Gaussian simulation for generating synthetic 

geometallurgical data.  

• Investigating different hyperparameter settings: The 

hyperparameters used in synthetic data generation can have a 

significant impact on the quality of the generated data. A further study 

could explore different hyperparameter settings to determine if the 

modules can perform better under different conditions. 

• Incorporating additional constraints: This study did not consider all 

constraints when modelling geometallurgical data, such as financial 

constraints. A future study could investigate the impact of including 

these constraints in the modelling process. 

• Exploring different implicit methods: This study used RBF-based 

methods for implicit modelling. Future studies could investigate other 
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implicit-based methods, such as potential field and HRBF, to 

determine their suitability for modelling geometallurgical data. 

• A Study to compare different implicit modelling software packages 

for geometallurgical modelling should be undertaken. 
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APPENDICES 

Appendix A: Python® code for collar synthetic data generation 

Jupyter® notebooks and files used to create synthetic data can be obtained 

on my GitHub channel. 

https://github.com/ChaukeT/Sythetic-data 
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Appendix B: Economic composite of drillhole datasets 
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Appendix C: Drillhole datasets combination 
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Appendix D: Geological modelling created through implicit modelling 

A geological model of Sediment-Hosted Stratiform Copper-Cobalt deposit 

classified according to the geology of the area. 
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