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Abstract

The rapid evolution of facial recognition technology has elevated its significance across diverse

applications, ranging from security systems to human-computer interaction. This thesis focuses

on the intricate challenges faced by facial recognition systems, particularly emphasizing the im-

pact of facial occlusion heightened by the widespread use of face masks during the COVID-19

pandemic. The study advances the field by exploring dimension reduction techniques, encom-

passing established methods such as Principal Component Analysis (PCA), Linear Discriminant

Analysis (LDA) and Auto-Encoter-based, alongside innovative approaches hybrid methodolo-

gies such as PCA-Autoencoder and LDA-Autoencoder. Notably, the study introduces Higher-

Order Singular Value Decomposition (HOSVD) as a novel avenue for dimension reduction in

facial recognition.

The examination of facial occlusion yields nuanced insights into the challenges faced by recog-

nition systems in real-world scenarios. Techniques developed in response aim to effectively

mitigate the adverse effects of facial occlusion, ensuring precision and reliability in identifica-

tion processes, by developing face mask datasets adequate for the study.

In the dimension reduction realm, the study meticulously evaluates traditional and innovative

techniques. PCA and LDA are scrutinized for effectiveness, while Autoencoder-based methods

prove instrumental in facial feature extraction and dimension reduction. The innovative hybrid

methodologies, PCA-Autoencoder and LDA-Autoencoder, demonstrate synergistic potential

by capitalizing on the strengths of individual techniques. Tensor decomposition (HOSVD) e-

merges as a novel mathematical approach, providing a fresh perspective on dimension reduction

strategies.

The findings of this research significantly contribute to the theoretical foundations and practi-

cal applications of facial recognition technology. Recommendations for future research include

further exploration of diverse facial occlusion scenarios, real-time adaptive systems, and the

integration of deep learning architectures to enhance dimension reduction methodologies. As

technology advances, this thesis stands as a catalyst for ongoing innovation, fostering a deeper

understanding of the intricate dynamics inherent in facial recognition systems.

Keywords— Face mask, Face occlusion, Dimension reduction, Principal Component Analysis(PCA),

Linear Discriminant Analysis(LDA), AutoEncoder, PCA-Auto-Encoder, LDA-Auto-Encoder, Face

recognition, Machine learning, Tensor decomposition, High Order Singular Value Decomposition(HOSVD).
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Chapter 1

Introduction

1.1 Introduction

The security of individuals has become a major concern for various institutions. This has prompted

states and organization to explore new and efficient security systems. Various research groups are

actively addressing this concern, with a predominant focus on developing biometric techniques for

person identification, enabling decisions on whether to grant access to public or private spaces, airports,

companies, and more. In recent years, the advancements in technology have elevated the importance

of face recognition in diverse array of applications, including security, human-computer interfaces,

access control, and multimedia communications [50]. Face recognition, viewed as a pivotal step, finds

application in personal identity verification, video surveillance, facial expression analysis, and gender

classification. Formulating the face recognition problem, Jafri and Hamid [41], posed the question:

given an input face image and a database of known individuals’ face images, how can we verify or

determine the identity of the person in the input image? Numerous research endeavors are actively

addressing this intricate problem.

Many face recognition methods rely on linear algebra techniques, with notable examples including

PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), and ICA (Independent

Component Analysis). These techniques leverage mathematical principles to extract essential features

from facial data, facilitating the identification and verification of individuals in various applications.

PCA (Principal Component Analysis) stands out as a widely used technique for dimension reduction.

It operates as a statistical procedure employing an orthogonal transformation to convert a set of

potentially correlated variables into a collection of values representing linear uncorrelated variables,

known as principal components or, at times, principal modes of variation. This transformation can

be accomplished through eigenvalue decomposition of a data covariance (or correlation) matrix or

via Singular Value Decomposition (SVD) of the data matrix. PCA is instrumental in identifying

patterns within the data, enabling the highlighting of similarities and differences. Additionally, it

is utilized for data compression, achieved by reducing the number of dimensions without sacrificing

crucial information. Notably, Eigenfaces, a popular PCA technique, was introduced by Sirovich and

Kirby in 1987 [49] and later applied by Turk and Pentland [55] for face detection and recognition. For

further details on the development of Eigenfaces, refer to [50].

1



2 CHAPTER 1. INTRODUCTION

1.2 Significance

Access control techniques play a crucial role in addressing security challenges, particularly in scenarios

like airport entrances, verification for access to private and public places, and various account access

methods. While existing solutions often rely on smart cards, plastic cards, passwords, tokens, and keys,

these methods present certain challenges. Passwords or PIN codes can be forgotten by users or easily

accessed by third parties. Plastic cards, smart cards, tokens, and keys can be lost or stolen, posing se-

curity risks. An effective solution to mitigate these challenges involves utilizing human biological traits.

Biometric techniques, including face recognition, fingerprints, finger geometry, hand geometry, hand

vein, palm, iris, retina, and voice are widely regarded as highly reliable. Numerous research efforts

in biometrics focus on these physiological characteristics. However, face recognition stands out for

several advantages over other biometric methods. Some of these advantages include:

I Non-Voluntary Action

Unlike other biometric technologies that require a user’s voluntary action, such as placing a hand

on a rest for fingerprinting or hand geometry detection, face recognition can be performed passive-

ly. Users do not need to take explicit actions; their face images can be acquired from a distance

by a camera.

II Damage Resilience

Hand and finger systems may be rendered ineffective if the epidermal tissue is damaged (cracked,

bruised, etc.). In contrast, facial recognition remains robust even in the presence of such damage.

III Equipment Sensitivity

Technologies like iris and retina recognition often require expensive equipment and are sensitive

to any body motion. In contrast, reliable face recognition algorithms, coupled with appropriate

preprocessing of images, can compensate for noise and variations in orientation, scale, and illu-

mination.

IV Susceptibility to External Facts

Voice recognition is susceptible to background noises in public places and auditory fluctuations

on phone lines or tape recordings. On the other hand, face recognition can be effectively imple-

mented with appropriate algorithms, compensating for noise and variations.

V Forgery Concerns:

Signatures can be forged or modified, posing a risk to security. Facial recognition, when imple-

mented with reliable algorithms, is less susceptible to forgery.
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VI Health Risks:

Technologies requiring multiple individuals to use the same equipment for capturing biological

characteristics. This can expose users to the transmission of germs and impurities. In contrast,

face recognition is non-intrusive and does not carry such health risks.

Topic focusing on big data, particularly in image processing and signal processing, has captured the

attention of numerous researchers. Here is a brief overview of some relevant studies:

I Tensor Decomposition for Big Data Improvement

Mathematical tools such as tensor decomposition, including techniques like singular value decom-

position, have demonstrated significant potential for improving big data applications in image

and signal processing. Tensor decomposition, with its ability to reduce the rank of tensors and

consequently data volume, has been explored in various articles, including [1, 43, 50, 51, 53]. A

comprehensive survey on tensors can be found in [45].

II Comparison of Face Recognition Techniques

Research has extensively compared different face recognition techniques, particularly PCA (Prin-

cipal Component Analysis) and LDA (Linear Discriminant Analysis). Studies, such as [48, 60],

have found that PCA provides a simple and efficient algorithm but can be time-consuming. On

the other hand, LDA, while overcoming some limitations of PCA, faces singularity problems and

illumination challenges. Neural network techniques have been proposed to enhance LDA’s per-

formance.

III Diverse Techniques in Face Recognition:

Kumar and Kaur introduced various face recognition techniques in [48]. For further exploration

of face recognition methods, additional sources include [5, 13, 73]. These studies contribute to

the understanding and advancement of face recognition technologies.

Integrating mathematical techniques with machine learning approaches offers a promising way

to enhance the robustness and efficiency of facial recognition system. Leveraging mathematical

principles alongside machine learning algorithms has the potential to address challenges such as

variability in facial expressions, lighting conditions, pose variations, and, notably, facial occlusion

due to face masks, which gained prominence during the COVID-19 pandemic. This study seeks to

explore innovative solutions from the dimension reduction perspective that combine mathemati-

cal techniques and machine learning to overcome these challenges and advance facial recognition

technology.
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1.3 Research Problem

Despite the progress made in facial recognition technology, there are persistent challenges that require

innovative solutions. Traditional methods may struggle to handle complex scenarios, including facial

occlusion, specially, the case of masked face of which one of the major problem is the lack of dataset.

Furthermore, there is a need to explore advanced mathematical techniques combined with machine

learning techniques for dimension reduction to improve accuracy base, reliability, and adaptability in

facial recognition systems.

The primary research problem addressed in this dissertation is twofold:

1.3.1 Facial Occlusion

Facial recognition systems face significant challenges in scenarios of facial occlusion, particularly when

individuals wear face masks. Traditional methods struggle to accurately identify and authenticate

individuals under these circumstances, emphasizing the need for innovative solutions and datasets.

1.3.2 Dimension Reduction Techniques

While dimension reduction techniques such as Principal Component Analysis (PCA), Linear Discrim-

inant Analysis (LDA), and Autoencoder have been extensively investigated, there is a continued need

to explore their integration and innovation. This research aims to advance the understanding of dimen-

sion reduction by proposing and evaluating novel hybrid techniques, including PCA-Autoencoder and

LDA-Autoencoder. Additionally, the exploration of tensor decomposition, specifically Higher-Order

Singular Value Decomposition (HOSVD), introduces a novel perspective on dimension reduction in

facial recognition.

1.4 Objectives of the Study

The research objectives are detailed to address the multifaceted challenges posed by facial occlusion

and dimension reduction techniques:

1.4.1 Facial Occlusion

Investigate the impact of facial occlusion, particularly face masks, on the performance of facial recog-

nition systems.

Develop a process to artificial produce dataset of faces with mask, dataset with faces without mask

and and dataset with faces consisting of mask and no mask. All the face from the same people to find

the impact of masked face on the accuracy of face mask.

Find an alternative solution to mitigate the challenges posed by facial occlusion and improve accuracy

and reliability in identification.

1.4.2 Dimension Reduction Techniques

Evaluate the effectiveness of traditional dimension reduction techniques, including PCA and LDA, in

the context of facial recognition.
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Explore and implement Autoencoder-based dimension reduction techniques for facial feature extrac-

tion.

Propose and assess innovative hybrid techniques, namely PCA-Autoencoder and LDA-Autoencoder,

to leverage the strengths of multiple methods.

Investigate tensor decomposition, specifically HOSVD, as an alternative approach for dimension re-

duction in facial recognition.

Investigate the mathematics background of classical facial recognition classification as well as the

metric evaluation

1.5 Research Questions

This study seeks to answer the following key research questions:

How can mathematical techniques for image augmentation and dimension reduction, particularly in

the context of facial occlusion, be effectively integrated into facial recognition systems?

What dimension reduction techniques, including PCA, LDA, Autoencoder, and hybrid approaches,

are most effective for facial feature extraction and identification?

How does tensor decomposition, specifically HOSVD, contribute to dimension reduction in facial

recognition?

How do machine learning classification models perform when applied to the proposed methodology,

and what metrics are most relevant for evaluation?

1.6 Organization of the thesis

The remainder of this thesis is structured as follows:

Chapter 2 dives into a comprehensive review of existing literature on facial recognition techniques,

with a focus on challenges posed by facial occlusion, particularly face masks before, during and beyond

the COVID-19 pandemic. In this chapter, we use mathematics tool with machine learning to develop

three datasets to address the shortage of public dataset in this area and we show how PCA dimension

reduction can help in the accuracy of face mask.

In Chapter 3, an in-depth explanation of dimension reduction techniques, including PCA, LDA, Au-

toencoder, and innovative hybrid techniques (PCA-AutoEncoder, LDA-AutoEncoder) are detailed.

We use Chapter 4 for the exploration of tensor decomposition methods, specifically Higher-Order

Singular Value Decomposition (HOSVD), for dimension reduction in facial recognition.

We continue in Chapter 5, the mathematics application of machine learning classification models and

evaluation metrics on the proposed methodology are discussed.

Finally, Chapter 6 is intended to the summary of the study’s contributions, limitations, and recom-

mendations for future research.

By addressing the outlined objectives, this thesis aims to provide valuable insights into the synergies

between mathematics and machine learning for advancing facial recognition technology, particularly

in the context of facial occlusion and challenges introduced by the COVID-19 pandemic with the

development of technique on dimension reduction.
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Chapter 2

Occlusion and Face Recognition: Case

of face mask

2.1 Introduction

Facial recognition systems can encounter performance challenges when dealing with various factors

such as lighting conditions, face pose, changes in facial appearance, and occlusions, among others.

In 2021, Huang et al.[39], highlighted a specific challenge posed by the widespread use of face masks

during the COVID-19 pandemic. They noted that face recognition techniques, which are crucial for

identification purposes, faced significant difficulties when confronted with masked faces. This presented

significant dilemmas for authentication applications that rely on face recognition, including face access

control, facial recognition gates, and face authentication, among others. One notable example is in the

context of public security checks at railway stations, where security systems based on face recognition

often struggled to recognize individuals wearing masks.This underscores the importance of addressing

the impact of face masks on facial recognition accuracy, which is a key focus of this chapter.

Due to the COVID-19 pandemic, the mandatory use of face masks has become a common practice,

and even after the restrictions were lifted, many people have continued to wear masks as a habit. Some

individuals wear masks for health reasons, such as allergy protection or filtering the air in polluted

environments. However, others, including criminals, have taken advantage of masks to avoid easy

identification. All this can be found on the following linkhttps://www.health.com/. This situation

poses a significant challenge to traditional facial recognition systems, as face masks create a scenario

of facial occlusion. This face mask has come with some challenges, one of them is explained in here.

The widespread use of face masks has raised concerns about an increase in thefts and robberies, as

masks can effectively conceal most of a person’s face. This concealment makes it difficult for both

humans and facial recognition systems to identify individuals, even if they are known to others [30].

This highlights the need to investigate the impact of face masks on the accuracy of conventional facial

recognition systems and develop strategies to address this challenge effectively.

2.2 Face recognition and occlusion

As discussed in section 2.1, facial recognition encounters significant challenges when faced with occlud-

ed images. Occlusion can occur due to various factors, including sunglasses, hats, masks, cellphones,

or hands, just to name some few. Among these occlusion types, face masks are considered as one of

7
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the most challenging occlusions, as they cover a substantial portion of the face, approximately 60%,

including the mouth, nose, and chin. Several works related to face occlusion have been conducted and

documented in articles such as [37, 59].

To understand how face is occluded, we start by listing all the different facial occlusions at the best

of our knowledge.

I Eyeglasses Occlusion: Eyeglasses occlusion happens by person wearing glasses, in this case, the

face is partially cover on their eyes, eyebrows, and parts of the forehead, cheeks, and temples.

II Hair Occlusion: Hair occlusion occurs from long hair, bangs, or hairstyles covering parts of the

forehead, eyes, or cheeks, obstructing facial features. It can also come from a person who has a

beard, moustache, or other facial hair that obscures parts of the mouth, cheeks, and chin.

III Hat Occlusion: Hat or cap wearing can covers the forehead, hairline, eyebrows, and parts of the

eyes and cheeks.

IV Hand Occlusion: Hand occlusion happens when a person touches or covers their face with their

hand(s), leading to occlusions around the cheeks, mouth, nose, and even eyes.

V Object Occlusion: If a person holds an object such as book, phone, tea cup, pen, etc., in front of

their face, it usually causing occlusions in the facial region.

VI Environmental Occlusion: Environmental occlusion happens when the face is partially obscured

by objects, shadows, or other environmental factors.

VII Shadow Occlusion:

VIII Pose Occlusion: Pose occlusion occurs when a person’s head is in an extreme pose, tilting, or

rotation, leading to self-occlusions of facial features.

IX Mask Occlusion:

Wearing face mask will most of the time covers one nose mouth or chin, hence partially or

completely obstructing those facial features.

In figure 2.1 from [82], one can see some pictures of occluded faces with different cases.

We are in the view that there are less mathematics literatures related to face occlusion. Hence, we

try to close this cap with the following section.

2.3 Mathematics description of face occlusion

Using some mathematics operation such as Hadamard product[35], on computer vision, we can super-

pose two different images together. In our case, we use the Hadamard matrix product to construct

our occluded face.

Before going into the mathematics construction of face occlusion, we first start by giving a definition

of the Hadamard product and some theorems that can be use for our purpose.
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Figure 2.1: Different face occlusions scenario.

Definition 1 Let A and B be two matrices of the same size m× n, the Hadamard product of A and

B is given by

C = A ∗B,

where Cij = AijBij are the element wise multiplication.

Theorem 1 Let A and B be two m× n matrices, Hadamard product of A and B is commutative:

A ∗B = B ∗A
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Figure 2.2: Sample of Faces mask.

Proof. Let A and B be two m× n matrices,

A ∗B = AijBij (2.1)

= BijAij (2.2)

= B ∗A. (2.3)

Which completes the proof.

♣

Theorem 2 The Hadamard product has an identity element which is given by the matrix with all its

entries equal to 1.

For any m× n matrix A, if the m× n matrix P is such that pij = 1 for all i and j then

A ∗ P = P ∗A = A.

Proof. The proof follows directly from the definition of Hadamard product and the fact that 1 is and

identity element in the simple multiplication. ♣

Theorem 3 Let A be any m× n matrix, then A has an Hadamard inverse, that we denote Â iff for

any i ∈ 1,m and j ∈ 1, n we have Aij 6= 1.

Proof.

(⇒) Let Aij be any m× n matrix. Assuming that A has an Hadamard inverse say Âij , hence for any

i = 1, 2...,m and any j = 1, 2..., n we have that AijÂij = 1 therefore Âij = 1
Aij

, which is only possible

if Aij 6= 0.

(⇐) Let Aij be any m × n matrix. Suppose ∀Aij , we have Aij 6= 0. Hence ∃p such that Aijp = 1.

Hence we can find a m× n matrix say Âij , such that Aij ∗ Âij = 1, ∀i = 1, 2, ..., n and ∀j = 1, 2, ..,m.

Therefore, any nonsingular matrix has an Hadamard inverse.

This concludes the proof. ♣
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Now, let handle the occlusion image itself. Let set our images as:

F is our original face image represented as a matrix. Each element F (i, j) of the matrix corresponding

to the pixel intensity at position (i, j) in the image.

M be the binary mask also represented as a matrix, where M(i, j) = 1 indicates an none-occluded

pixel, and M(i, j) = 0 indicates an occluded pixel. The binary mask has the

same size as the original face image.

FO the occluded face image. Mathematically, it is obtained by element-wise multiplication (Hadamard

product) of the original face image F and the binary occlusion mask M .

FO(i, j) = F (i, j) ∗M(i, j)

In the equation above, FO(i, j) represents the pixel intensity of the occluded face image at position

(i, j). The Hadamard product (*) between F (i, j) and M(i, j) results in FO(i, j), where occluded

regions (M(i, j) = 0) in the binary mask suppress the corresponding pixels in the original face image,

while none-occluded regions (M(i, j) = 1) retain their original pixel intensities of the original face

image.

It follow from the above description that to artificially perform a face occlusion one just need to choose

an appropriate occlusion matrix M(i, j) and using Hadamard product with the original f(i, j) face

matrix to get the modify image. Here is a simple example of how the Hadamard product will affect

the image. Let

F =


255 30 10 27

8 20 10 25

40 125 75 35

254 30 15 33


be an example of the matrix representation of a face image.

M =


1 1 1 1

0 0 1 0

0 1 1 1

1 0 1 1


be an example of the matrix representation of the occlusion object( face mask, sunglasses, hand, cup

etc.).

Then applying the Hadamard product with this F and M will give us FO as

FO =


255 30 10 27

8 20 10 25

40 125 75 35

254 30 15 33

 ∗


1 1 1 1

0 0 1 0

0 1 1 1

1 0 1 1

 =


255 30 10 27

0 0 10 0

0 125 75 35

254 0 15 33


Since we are mostly interested with the face mask, we will construct our M to be a masked face.

Having explain how face mask as an occlusion can be build. In the next section, we discuss the face

mask occlusion with facial recognition.
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2.4 Facial recognition with face mask

Given the challenging nature of face masks as occlusions for facial recognition systems, our attention

was drawn to the following questions:

1. To what extent can face masks impact the accuracy of traditional facial recognition systems?

2. Are there any research studies related to facial recognition with face masks?

The second question is addressed in two distinct periods: pre-COVID-19 and post-COVID-19. This

partition allows us to explore the evolution of research on facial recognition in the context of face

masks and assess the impact of the COVID-19 pandemic on this field of study.

2.4.1 Facial recognition with face mask pre-COVID-19

Even before the WHO made face masks mandatory during the COVID-19 pandemic, masked faces

had garnered attention from industries and research groups. For instance, the Japanese company NEC

was actively working on a face recognition system designed for individuals wearing masks NEC link.

In a BBC newsletter BBC link, dated March 25, 2021, titled ”Facial recognition beats the Covid-mask

challenge” authored by James Clayton, a North America technology reporter, it was reported that

NEC had achieved an impressive 99% accuracy rate in recognizing faces even when individuals were

wearing masks. This marked a significant advancement in overcoming the challenges posed by face

masks to facial recognition technology.

Prior to the COVID-19 pandemic, one of the primary challenges faced by facial recognition systems

was the scarcity of relevant datasets. In a publication by Adjabi et al [3] in 2020 , a list of 23 well-

known datasets related to facial recognition was provided in chronological order. Notably, among these

datasets, only one dataset contained images of individuals wearing face masks. This dataset, named

the AR dataset, was created by Martinez and Benavente and made available to the public in 1998

[54]. However, this dataset only contained nine images of each individual wearing masks, making it

challenging to thoroughly evaluate the impact of masked faces on facial recognition. Consequently, it

is evident that prior to the COVID-19 pandemic, limited research and datasets were available for facial

recognition with masked faces. Some of the notable works in this area can be found in [26, 29, 68].

These articles provide valuable insights into the challenges and approaches related to facial recognition

in the context of masked faces before the COVID-19 pandemic.

2.4.2 Facial recognition with face mask post COVID-19

As discussed in the introduction, the mandatory requirement of wearing face mask has come with

many issues. This requirement presented a significant challenge to traditional face recognition systems,

leading to a surge in research on masked face recognition. A selection of relevant works in this area

can be found in: [36, 6, 30, 23, 37, 44, 34, 39].

This research area has gained importance due to the practical need for accurate facial recognition even

when individuals are wearing masks. It highlights the adaptability and resilience of technology in the

face of evolving challenges.

This research will likely continue to evolve, as it has implications for addressing other facial occlusions

and given that wearing face masks has become a habit for many individuals.

NEC(Japan), https://jpn.nec.com/. 
https://www.bbc.com/news/technology-56517033
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Following the COVID-19 pandemic, one of the immediate challenges that researchers and industries

base of face recognition faced, was the availability of datasets containing images of individuals wearing

face masks. One solution to this challenge was proposed by Anwar and Raychowdhury [6], by providing

the public with a tool call MaskTheFace. This tool can be use to effectively put mask on large face

dataset. In the research presented in [36], the authors aimed to build a machine learning model based

on Convolutional Neural Networks (CNN). Their approach involved using the machine to discard

the masked region of the face and utilizing the CNN to extract the most relevant features from the

remaining region, which in this case, primarily included the eyes and the forehead region. Their model

was thoroughly tested on datasets such as RMFRD, SMFRD, and MFDD, as detailed in [77].

This process of discarding a portion of the masked face represents one of three traditional approaches

to addressing face occlusion. The other two methods include the local matching approach, which

focuses on comparing the similarity between matching processes, and the restoration approach, where

efforts are made to use a gallery to restore the occluded regions.

On March 25, 2021, BBC News, through their North America technology reporter, published a report

from the National Institute of Standards and Technology (NIST). The report highlighted that NIST

had tested 89 commercial facial recognition algorithms and found error rates ranging from 5% to 50%

when matching faces with digitally applied mask photos of the same person. This underscores the

importance of being cautious about the accuracy rates of the machine learning models employed in

facial recognition systems.

These findings emphasize the ongoing challenges in achieving accurate facial recognition, especially in

scenarios involving face masks and occlusions.

2.4.3 COVID 19 and facial recognition

Occlusion due to masked faces cover the frontal face. This area contains rich features, including the

nose and the mouth[37]. Face mask makes higher inter-class similarity and inter-class variation due to

covering a large area of the face which tricks the facial verification process of face recognition system

[77].

During the COVID-19 pandemic, touching one’s nose, mouth, or eyes after touching a surface con-

taminated with the coronavirus can be a way for transmission of the virus [21]. Therefore, relying on

identification based on fingerprint and other contact biometric systems becomes very risky. This leaves

us with no choice but to use contactless biometric systems, most of which will be facial recognition

due to its user-friendliness and high accuracy.

Considering this and taking into account the recommendations of the WHO, which at the time required

everyone to wear face masks during the COVID-19 pandemic, it becomes evident that masked faces

pose some conflicting challenges. On one hand, face recognition is one of the appropriate systems for

various security applications such as CCTV, ATM, passport checking, railway checking, etc., during

the COVID-19 pandemic due to its contactless nature. On the other hand, masked faces, which were

compulsory during the pandemic, can drastically reduce the accuracy of face recognition systems.

Hence, our interest lies in examining the impact of face masks on facial recognition. This problem

can find improvement by using some dimension reduction techniques to extract the most important

components of the faces. Before delve in to dimension reduction in the next chapter, we start by

examining the question of dataset with face mask.
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2.5 Face-mask datasets

The challenge of data availability, especially in the context of facial recognition with masked faces,

is a significant concern in the field of machine learning. Despite the importance of addressing this

issue, researchers have faced limitations, as existing datasets may not be suitable for solving specific

problems, such as the accurate recognition of faces with masks.

With the heightened relevance of masked faces post-Covid-19, the inadequacy of available datasets

became more apparent. Researchers encountered challenges in obtaining data that aligns with the

specific aspects they aimed to investigate, emphasizing the need for more comprehensive datasets tai-

lored to the nuances of facial recognition in the presence of masks.

Due to the scarcity of suitable existing datasets, we were compelled to create our own dataset for facial

recognition, particularly focusing on individuals wearing masks. We leveraged images from MLFW

[75], selecting 40 distinct individuals. For each person, we obtained two images without a mask and

two images with a mask. However, facing challenges in finding individuals with both masked and

unmasked images, we employed Python code for data augmentation. This process yielded 880 images

from the original 80 unmasked images, resulting in each person having 22 distinct images. The dataset,

stored in a numpy file, became our repository for individuals without masks.

Figure 2.3(a) showcases 50 images from this dataset, featuring 5 randomly selected individuals, each

represented by 10 images.

Following a similar approach, we created a dataset for individuals wearing masks using images of the

same individuals. This dataset of masked faces underwent the same augmentation process, resulting

in 22 images for each of the 40 individuals. Figure 2.3(b) provides a glimpse of this dataset, displaying

images of five different individuals, each represented by 10 images.

Our third dataset amalgamates images of the same individuals from the unmasked and masked dataset-

s. This compilation allows us to examine and analyze how machine learning models perform when

presented with a mix of images with and without masks. Figure 2.3(c) provides a glimpse of this

dataset, displaying images of five different individuals, each represented by 10 images.

Before delving to the face recognition, we examine the structure of our data with the help of python

we could do some visualization on our data. We have the display of the class balance of each of our

three datasets, which is provided in Figures 2.4. From these figures, it is evident that the datasets

exhibit an imbalance in terms of class distribution. Note that class imbalance occurs when the number

of instances in each class is significantly different, and this can potentially impact the Performance of

machine learning models.

Class imbalance can introduce bias during the training of machine learning models, as the algorithm

may become more inclined to predict the majority class, neglecting the minority class. To mitigate

this issue and ensure fair model training, techniques such as oversampling the minority class or under

sampling the majority class can be employed.

2.5.1 Image augmentation description

We felt that for the completeness sake, it is very important to give some explanations of our image

augmentation implementation with some Mathematics descriptions of the concept used for it.

To expand the dataset and generate additional face images, we can apply various image augmentation

techniques to each of the 80 original face images. Let us consider the following image augmentation
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(a) Unmasked faces data

(b) Masked facees data

(c) Mixed faces data

Figure 2.3: Sample from 5 different persons on the different datasets

techniques:

Now we give some Mathematical details of the different transformation that can be used in image

augmentation.

2.5.1.1 Rotation

Rotating a face image involves applying a transformation to the image to change its orientation. In the

context of two-dimensional image processing, image rotation can be represented using mathematical

concepts like transformations and matrices.

Transformation Matrix for 2D Rotation: The transformation matrix for rotating a 2D point (x, y) by
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an angle θ counter clockwise around the origin is given by:

R(θ) =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
.

where, cos(θ) and sin(θ) represent the cosine and sine of the angle θ, respectively.

Image Rotation Algorithm: To rotate a face image, we apply the same transformation to each pixel in

the image. The rotated image, denoted as IR, is obtained by multiplying the transformation matrix

R(θ) with the coordinates of each pixel in the original image I.

Let (x, y) represent the coordinates of a pixel in the original image I, and (xR, yR) represent the

coordinates of the corresponding pixel in the rotated image IR.

(xR, yR) = R(θ)(x, y).

The rotation operation is performed for each pixel (x, y) in the original image, and the resulting

coordinates (xR, yR) are used to obtain the pixel value in the rotated image IR.

Interpolation: During image rotation, the new pixel coordinates (xR, yR) may not correspond to exact

integer positions in the original image. Therefore, interpolation techniques, such as nearest neighbour

interpolation or bilinear interpolation, are used to estimate the pixel values for non-integer coordinates.

Center of Rotation: In some cases, the rotation is performed around a point other than the origin

(0, 0). To rotate an image around a specific point (cx, cy), we first translate the image so that the

centre of rotation becomes the origin, apply the rotation, and then translate it back to its original

position.

(xR, yR) = R()(x− cx, y − cy) + (cx, cy).

Here, (cx, cy) represents the coordinates of the centre of rotation.

Image rotation is a fundamental operation in image processing and computer vision. It is often used

for various tasks, including image alignment, feature extraction, and data augmentation. By using the

transformation matrix for rotation and appropriate interpolation techniques, we can efficiently rotate

face images to achieve the desired orientation.

2.5.1.2 Translation

Translating a face image involves shifting the image along the x and y axes to change its position. In the

context of two-dimensional image processing, image translation can be represented using mathematical

concepts like transformations matrices.

Translation Matrix for 2D Image: The transformation matrix for translating a 2D point (x, y) by

distances dx and dy along the x and y axes, respectively, is given by:

T (dx, dy) =

 1 0 dx

0 1 dy

0 0 1

 .
Here, dx represents the translation distance along the x-axis, and dy represents the translation distance

along the y-axis.

Image Translation Algorithm: To translate a face image, we apply the same transformation to each

pixel in the image. The translated image, denoted as IT , is obtained by multiplying the transformation
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matrix T (dx, dy) with the homogeneous coordinates(x, y, 1) of each pixel in the original image I.

Let (x, y) represent the coordinates of a pixel in the original image I, and (xT , yT ) represent the

coordinates of the corresponding pixel in the translated image IT .

(xT , yT , 1) = T (dx, dy)(x, y, 1).

The translation operation is performed for each pixel (x, y) in the original image, and the resulting

coordinates (xT , yT ) are used to obtain the pixel value in the translated image IT .

Interpolation: Similar to image rotation, the new pixel coordinates (xT , yT ) may not correspond to

exact integer positions in the original image. Therefore, interpolation techniques, such as nearest

neighbour interpolation or bilinear interpolation, are used to estimate the pixel values for non-integer

coordinates.

Translation Center: The translation center represents the origin of the translation operation. By

default, the translation is applied with respect to the origin (0, 0). However, in some cases, the

translation can be performed with respect to a specific point (cx, cy) as the translation centre.

(xT , yT , 1) = T (dx, dy)(x− cx, y − cy, 1) + (cx, cy, 1).

Here, (cx, cy) represents the coordinates of the translation centre.

Image translation is a fundamental operation in image processing and computer vision. It is often

used for various tasks, including image alignment, data augmentation, and image registration. By

using the translation matrix and appropriate interpolation techniques, we can efficiently translate face

images to achieve the desired position.

2.5.1.3 Scaling

Scaling a face image involves resizing the image either larger or smaller. In the context of two-

dimensional image processing, image scaling can be represented using mathematical concepts like

transformations and matrices.

Scaling Matrix for 2D Image: The transformation matrix for scaling a 2D point (x, y) by factors sx

and sy along the x and y axes, respectively, is given by:

S(sx, sy) =

 sx 0 0

0 sy 0

0 0 1

 .
Here, sx represents the scaling factor along the x-axis, and sy represents the scaling factor along the

y-axis. If sx and sy are both greater than 1, the image will be enlarged (zoomed in). If sx and sy are

both less than 1, the image will be reduced (zoomed out).

Image Scaling Algorithm: To scale a face image, we apply the same transformation to each pixel in

the image. The scaled image, denoted as IS , is obtained by multiplying the transformation matrix

S(sx, sy) with the homogeneous coordinates x, y, 1) of each pixel in the original image I.

Let (x, y) represent the coordinates of a pixel in the original image I, and (xS , yS) represent the

coordinates of the corresponding pixel in the scaled image IS .

(xS , yS , 1) = S(sx, sy)(x, y, 1).
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The scaling operation is performed for each pixel (x, y) in the original image, and the resulting coor-

dinates (xS , yS) are used to obtain the pixel value in the scaled image IS .

Interpolation: When scaling an image, the new pixel coordinates (xS , yS) may not correspond to exact

integer positions in the original image. Therefore, interpolation techniques, such as nearest neighbour

interpolation or bilinear interpolation, are used to estimate the pixel values for non-integer coordinates.

Scaling Center: By default, the scaling is applied with respect to the origin (0, 0). However, in some

cases, the scaling can be performed with respect to a specific point (cx, cy) as the scaling centre.

(xS , yS , 1) = S(sx, sy)(x− cx, y − cy, 1) + (cx, cy, 1).

Here, (cx, cy) represents the coordinates of the scaling centre.

Image scaling is a common operation in image processing and computer vision. It is used for various

purposes, including resizing images for display or analysis, adjusting image sizes in datasets, and

performing data augmentation for training machine learning models. By using the scaling matrix and

appropriate interpolation techniques, we can efficiently scale face images to achieve the desired size.

2.5.1.4 Shearing

Shearing (also known as skewing) a face image involves transforming the image by shifting its rows

or columns. In the context of two-dimensional image processing, image shearing can be represented

using mathematical concepts like transformations and matrices.

There are two types of shearing commonly used in image processing: horizontal shearing and vertical

shearing.

Horizontal Shearing: Horizontal shearing involves shifting each row of the image by a certain amount

proportional to its y-coordinate. The transformation matrix for horizontal shearing is given by:

SH(dx) =

 1 dx 0

0 1 0

0 0 1

 .
Here, dx represents the horizontal shearing factor. When dx is positive, the image is sheared to the

right, and when dx is negative, the image is sheared to the left.

Vertical Shearing: Vertical shearing involves shifting each column of the image by a certain amount

proportional to its x-coordinate. The transformation matrix for vertical shearing is given by:

SV (dy) =

 1 0 0

dy 1 0

0 0 1

 .
Here, dy represents the vertical shearing factor. When dy is positive, the image is sheared downwards,

and when dy is negative, the image is sheared upwards.

Image Shearing Algorithm: To shear a face image, we apply the corresponding shearing transformation

matrix to each pixel in the image. The sheared image, denoted as Is, is obtained by multiplying the

appropriate shearing matrix (SH or SV ) with the homogeneous coordinates (x, y, 1) of each pixel in

the original image I.

For horizontal shearing:

(xs, ys, 1) = SH(dx)(x, y, 1).



2.5. FACE-MASK DATASETS 19

For vertical shearing:

(xs, ys, 1) = SV (dy)(x, y, 1).

The shearing operation is performed for each pixel (x, y) in the original image, and the resulting

coordinates (xs, ys) are used to obtain the pixel value in the sheared image Is.

Interpolation: Similar to image rotation and scaling, the new pixel coordinates (xs, ys) may not

correspond to exact integer positions in the original image. Therefore, interpolation techniques, such

as nearest neighbour interpolation or bilinear interpolation, are used to estimate the pixel values for

non-integer coordinates.

Image shearing is a geometric transformation used in image processing and computer vision to create

various effects or correct distortions. By using the appropriate shearing matrix and interpolation

techniques, we can efficiently shear face images to achieve the desired shearing effect.

2.5.1.5 Flipping

Flipping a face image involves mirroring or reversing the image along a specified axis. There are two

types of flipping commonly used in image processing: horizontal flipping and vertical flipping.

Horizontal Flipping: Horizontal flipping, also known as left-right flipping, involves reversing the image

from left to right. It means that the pixels on the left side of the image become the pixels on the right

side, and vice versa.

The transformation matrix for horizontal flipping is given by:

HF =

 −1 0 w − 1

0 1 0

0 0 1

 .
Here, w represents the width of the image.

Vertical Flipping: Vertical flipping, also known as up-down flipping, involves reversing the image from

top to bottom. It means that the pixels on the top side of the image become the pixels on the bottom

side, and vice versa.

The transformation matrix for vertical flipping is given by:

VF =

 1 0 0

0 −1 h− 1

0 0 1

 .
Here, h represents the height of the image.

Image Flipping Algorithm: To flip a face image, we apply the corresponding flipping transformation

matrix (HF or VF ) to each pixel in the image. The flipped image, denoted as If , is obtained by

multiplying the appropriate flipping matrix with the homogeneous coordinates (x, y, 1) of each pixel

in the original image I.

For horizontal flipping:

(xf , yf , 1) = HF (x, y, 1).
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For vertical flipping:

(xf , yf , 1) = VF (x, y, 1).

The flipping operation is performed for each pixel (x, y) in the original image, and the resulting coor-

dinates (xf , yf ) are used to obtain the pixel value in the flipped image If .

Image flipping is a common operation in image processing and computer vision. It is used for various

purposes, such as data augmentation, image alignment, and creating mirror images for artistic or

visual effects. By using the appropriate flipping matrix, we can efficiently flip face images to achieve

the desired mirroring effect.

2.5.1.6 Gaussian Noise

Adding Gaussian noise to a face image involves introducing random variations to the pixel values

based on a Gaussian distribution. This is a common method to simulate real-world noise in images

and assess the robustness of image processing algorithms. Mathematically, Gaussian noise is often

represented as a random variable with a Gaussian (normal) distribution.

Here’s how you can mathematically describe the process of adding Gaussian noise to a face image:

Gaussian Noise Model: Let’s denote the original pixel value of a pixel at position (i, j) in the face

image as I(i, j). The pixel value after adding Gaussian noise can be modelled as a random variable:

IN (i, j) = I(i, j) +N(i, j).

Here, N(i, j) represents the Gaussian noise added to the pixel (i, j).

Gaussian Distribution: The Gaussian noise N(i, j) is often assumed to follow a Gaussian (normal)

distribution with a mean of 0 and a standard deviation (σ) that controls the magnitude of the noise.

The probability density function (PDF) of the Gaussian distribution is given by:

f(x) = (
1

(σ
√

2
)) exp

−(x− µ)2

(2σ2)
.

Here, µ is the mean of the distribution (which is typically 0 for Gaussian noise), σ is the standard

deviation, and e denotes the exponential function.

Applying Gaussian Noise: To add Gaussian noise to a face image, for each pixel (i, j), you generate

a random value from the Gaussian distribution with mean 0 and standard deviation sigma, and then

add this value to the original pixel value I(i, j):

IN (i, j) = I(i, j) +R(0, σ).

The random value from Gaussian distribution (R(0, σ)) represents a random sample from the Gaussian

distribution with mean 0 and standard deviation σ.

Adding Gaussian noise introduces variations to the pixel values that mimic real-world noise. The

magnitude of the noise is controlled by the standard deviation parameter σ. This process is used for

various purposes, such as testing the robustness of algorithms or training machine learning models to

be resistant to noisy input data.
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Accuracy percentage with the corresponding component
Model Unmasked

face data
Masked face
data

Mixed face da-
ta

MLP 85%, 5 85%, 6 81%, 3
RF 90%, 4 87%, 7 81%, 3
SVM 92%, 4 86%, 2 82%, 2
DT 46%, 1 48%, 3 50%, 2
KNN 79%, 2 78%, 2 75%, 2
XBOOST 71%, 7 67%, 2 69%, 3
LR 84%, 5 84%, 7 78%, 6
LDA 84%, 36 82%, 26 79%, 16
NVB 80%, 21 78%, 13 78%, 10

Table 2.1: Table of the maximum accuracy with the different classification models on the three
created datasets.

2.6 Conclusion

To consolidate our theory on the impact of face mask on the accuracy of face recognition, we used

Google Colab to perform our Python implementation. We selected nine machine learning classifiers

that are discussed in chapter 5, to determine the accuracy of each model on the three different datasets

that we generated. Before implementing the classifiers for face recognition, we first apply PCA for the

dimension reduction on the data.This guide us to see how the variation of the number of components

impact on the accuracy of the classification. Thi can be seen in figures 2.5, where one can actually

observe that depending of the number of component, the accuracy change.

The presented plots offer in-depth insights into the performance dynamics of various machine learning

classifiers across our three datasets. Notably, the observed trends in accuracy unveil a discernible

decrement when transitioning from the dataset exclusively featuring individuals without masks to the

dataset encompassing faces adorned with masks. This decrement underscores the challenge posed by

facial masks in accurate facial recognition tasks. Intriguingly, the dataset amalgamating both masked

and unmasked images consistently exhibits the lowest overall accuracy among the three datasets. This

suggests that the inclusion of masked faces introduces complexities that impact model accuracy neg-

atively.

A noteworthy aspect illuminated by the visualizations is the accuracy variation across principal com-

ponents (PCs) obtained through PCA dimension reduction. The accuracy experiences an initial rapid

ascent, achieving its zenith after a few principal components, followed by a gradual decline. This

observed pattern aligns with the intended function of PCA to distil and retain the most influential

components for enhancing model performance. The significance of this trend lies in its implication

for model training; it emphasizes the criticality of capturing the right components for effective facial

recognition.

These findings collectively underscore the substantial impact of facial masks on recognition accuracy

and emphasize the intricate relationship between dataset composition, PCA dimension reduction, and

classifier performance. This nuanced understanding is vital for designing robust facial recognition

models, particularly in the context of real-world scenarios where masked faces are prevalent.
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(a) Unmasked faces data

(b) Masked facees data data

(c) Mixed faces

Figure 2.4: Plot of the accuracy variation with the number of components

Table 1 presents the evaluation results of nine machine learning models in the context of facial recog-
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(a) Unmasked faces data

(b) Masked facees data data

(c) Mixed faces

Figure 2.5: Class balance. Showing all the 40 subjects with their sample number for each,
which are unequal

nition under different datasets without masks, with masks, and a combination of both. The highest

accuracy achieved by each model and the corresponding optimal number of principal components,

obtained through PCA dimension reduction, are detailed.

In Table 1, the Support Vector Machine (SVM) model demonstrates superior performance on un-

masked data, achieving an accuracy of 92% with only 4 principal components. On the other hand,
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Random Forest (RF) outperforms other models on masked face data, achieving an 87% accuracy with 7

principal components. Interestingly, SVM slightly outperforms RF on mixed face data. Consequently,

we recommend SVM and RF as suitable models for our datasets. Its worth noting that Decision Tree

(DT) exhibits the lowest performance among the models. Although it requires very few components

to reach its maximum accuracy, its overall performance is not deemed suitable for our dataset.

The presented accuracy values and optimal components provide valuable insights into the performance

of each model under different conditions, shedding light on the impact of face masks on facial recog-

nition accuracy.

Hence the interests that we paid on looking to the impact for face mask on facial recognition. This

problem can find improvement by using some dimension reduction techniques to gain the most impor-

tant component of the faces, in figures 2.5, one can see how the accuracy of the model varied with the

number of component using PCA for faces without mask, faces with mask and faces with both mask

and without mask. Hence, we discuss Dimensional Reduction in the next chapter.



Chapter 3

Dimension Reduction

3.1 introduction

There is no machine learning implementation without data; it forms the bedrock upon which artificial

intelligence (AI) and machine learning (ML) algorithms thrive. Data serves as the fuel that powers

the learning and decision-making capabilities of these systems. Given its paramount significance, it is

frequently asserted that data is the most critical component in the realm of AI and ML. Consequently,

a profound understanding of what constitutes data and its inherent structure becomes imperative for

any machine learning practitioner or researcher.

Facial recognition technology has evolved significantly in recent years, playing a vital role in various

domains such as security systems, access control, and human-computer interaction. The accuracy and

efficiency of facial recognition algorithms depend heavily on the representation of facial features in a

lower-dimensional space. Traditional dimensionality reduction methods, such as Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA), have been widely employed for this purpose.

However, they may have limitations in capturing complex and non-linear relationships present in facial

data.

Definition 2 Data refers to raw facts, observations, or measurements that are typically numerical or

categorical. In the context of machine learning, data is the foundation on which algorithms are trained

and patterns are learned.

Definition 3 A dataset is a collection of data, often organized in tabular form, where rows represent

individual examples (instances) and columns represent features or attributes. Datasets are used to

train, validate, and test machine learning models.

Definition 4 A feature is an individual measurable property or characteristic of a phenomenon being

observed. In the context of machine learning, features are the variables used to make predictions or

discover patterns.

Definition 5 In supervised learning, the label or target is the variable that the model aims to predict.

When dealing with datasets, a feature is equivalent to a column. The number of columns in a dataset

determines the number of features it has. Figure 3.1 likely contains code outputting the dimensions

of the Iris dataset, a popular choice for classification in machine learning. The dataset information is

sourced from [25].

25
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data_structure_phd

December 29, 2022

import pandas as pd

df = pd.read_csv('C:/Users/ADMIN/Documents/Iris.csv')

#print(df)
df.head()

Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
0 1 5.1 3.5 1.4 0.2 Iris-setosa
1 2 4.9 3.0 1.4 0.2 Iris-setosa
2 3 4.7 3.2 1.3 0.2 Iris-setosa
3 4 4.6 3.1 1.5 0.2 Iris-setosa
4 5 5.0 3.6 1.4 0.2 Iris-setosa

1

Figure 3.1:
Head of a data showing its data dimension

One may then be very concerned about the quality of the feature that its data has, since it can be

seen as its building block. It is then obvious that we need to know the number of features (dimension

of the data); this awareness is essential as it directly influences the complexity, interpretability, and

computational efficiency of any analytical or modelling process. The sheer volume of features can pose

challenges, leading to what is commonly known as the ”curse of dimensionality,” where the increased

number of features can lead to sparsity, increased computational requirements, and a heightened risk

of overfitting. Hence the need to manage and optimize the dimensionality of the data. therefore,

the concept of dimension reduction comes into play. This is where the below definition becomes

instrumental

Definition 6 The term ’dimension reduction’ refers to the systematic process of reducing the number

of features or variables in a dataset while preserving its essential information. This technique is

indispensable in scenarios where the original feature space is overly large, as it aims to mitigate the
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adverse effects associated with high dimensionality.

When performing dimension reduction, the machine learning model selects the most important com-

ponents of the feature space, preserves them, and drops the other non-important components feature.

From what preceded, one has that, dimension reduction is very crucial for some machine learning

models. We deem important to elaborate further on the significance of dimension reduction in the

next section.

3.2 Significance

Dimension reduction holds significant importance for both machine learning practitioners and re-

searchers in the field of data science. It serves as a cornerstone in tackling various challenges within

these domains. Let’s delve into a brief overview of some of these critical issues.

In today’s era of big data, the sheer volume of datasets continues to grow exponentially, necessitating

extensive storage resources. Dealing with high-dimensional datasets poses a considerable challenge

due to the increased storage requirements. One viable solution to mitigate this challenge involves

employing dimension reduction techniques before storing the data or implementing models.

In practical scenarios, it is advisable to visually and explore the structure of your data before deter-

mining the most appropriate model. Yet, visualizing data becomes increasingly challenging as the

dimensionality exceeds three. Hence, the application of dimension reduction proves invaluable for

facilitating effective data visualization.

In domains like image recognition, astronomy, video surveillance, medical imaging, and multimedia,

datasets are often extensive. Data scientists and machine learning practitioners frequently encounter

the need to compress these images while preserving vital information. In such scenarios, dimension

reduction proves indispensable for achieving superior image compression without sacrificing critical

details.

In the realm of machine learning, encountering a scenario where a model excels on training data but

falters on testing data is termed overfitting. Dimension reduction emerges as a viable strategy to

mitigate this issue effectively.

Given the importance of time efficiency in programming, research has demonstrated that employing

dimension reduction techniques can significantly reduce the compilation time of specific code segments.

In the year 1957, R. Bellman in his book title Dynamic Programming [10] first introduced the term

curse of dimensionality. This terminology nowadays in machine learning refer to the increasing of the

error in a model when the features of the data is high. One can logically see that dimension reduction

will be a solution for this type of problem.

Certainly, dimension reduction can also be used to eliminate redundant features and reduce noise in

data, enhancing the quality of the data and improving the performance of machine learning models.

In machine learning, one may get across the situation where a model gives very good accuracy on

training data but gives bad accuracy on testing data. This situation is known as over fitting. In

practice, one can solve this over fitting problem with dimension reduction.
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Figure 3.2:
Sample of data compresion showing same image with different componet after PCA.

Dimension reduction serves multiple purposes, including the removal of redundant features and noise

from datasets.

Having discussed some of the importance of dimension reduction, it is equivalently interesting to

understand some applications of this machine learning concept.

3.3 application

The practical applications of dimension reduction are evident across various problem domains. In the

following sections, we delve into some notable examples.

I In their work [67], Narendra Singh and colleagues elucidate the advantages of employing PCA for

dimensionality reduction in Customer Relationship Management (CRM).

II One of the significant steps in text classification, is dimension reduction. This is explained in sec-

tion 2.1 of [66] which is introduced by: High dimensionality is one of the challenging problems for

text data classification. In the above article, Sngh et al explain how useful dimension reduction
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Figure 3.3:
Sample of over fitting data

is for this common real word problem.

III To gain insights into the utilization of dimension reduction in image and video retrieval, Wu

et al. [79] discuss its significance in their work. The abstract begins as follows: ’Dimensionality

reduction methods are of interest in applications such as content based image and video retrieval.’

IV Dimension reduction can be applied in instruction detection. This can be seen in [20] where the

authors clearly state that: ’Dimensionality reduction is crucial when data mining techniques are

applied for intrusion detection.’

V As mentioned in the previous section, medical imaging encounters the challenge of high dimen-

sionality. For a good diagnostic to be done when using image by medical practitioner, they often

need the image to be segmented. Hence to have a good interpretation this image segmentation

needs to go through some dimension reduction process before being used.
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Now that we have gained a better understanding of dimension reduction and its applications, it is

intriguing to explore the techniques used to achieve the aforementioned results. Moreover, dimension

reduction can enhance the performance of various machine learning models.

In the remainder of this article, we will utilize dimension reduction techniques such as PCA, LDA, and

Autoencoder to assess the accuracy of facial recognition models. Additionally, we will introduce our

innovative hybrid techniques aimed at further enhancing the accuracy of facial recognition models.

3.4 Dimension Reduction Techniques

Dimension reduction techniques are commonly categorized into two primary groups:

1. Feature Selection: This approach involves selecting the most relevant features from the origi-

nal dataset while discarding the less important ones. By retaining only the most informative

features, feature selection aims to simplify the model without altering the underlying feature

space drastically. This process helps in reducing computational complexity and mitigating the

risk of overfitting. Various methods such as filter methods, wrapper methods, and embedded

methods are employed to evaluate and select features based on their individual importance and

contribution to the predictive model.

2. Feature Extraction: Unlike feature selection, feature extraction involves transforming the origi-

nal features into a new set of features through mathematical transformations. These transfor-

mations aim to capture the essential information present in the original features while discarding

redundant or irrelevant information. Principal Component Analysis (PCA), Linear Discriminant

Analysis (LDA), and t-Distributed Stochastic Neighbor Embedding (t-SNE) are some common

techniques used for feature extraction. By creating a compact representation of the data, feature

extraction not only reduces dimensionality but also facilitates visualization and interpretation

of complex datasets.

Both feature selection and feature extraction are crucial components of dimensionality reduction tech-

niques, each offering unique advantages depending on the nature of the dataset and the objectives

of the analysis. The choice between these methods often depends on factors such as computational

resources, interpretability of the transformed features, and the desired performance of the predictive

model. Figure 3.4 gives some of the dimension reduction techniques.

In what follows, we delve into the mathematical theory behind dimensional reduction techniques, fo-

cusing specifically on three established methods: PCA, LDA, and Autoencoder. We provide detailed

explanations of how these techniques function, including the underlying mathematical principles. Ad-

ditionally, we supplement our explanations with graphs generated using the Python programming

language to illustrate the practical application of these techniques.

Towards the end of the section, we introduce our innovative techniques, PCA-Autoencoder and LDA-

Autoencoder. Through our implementation in Python for face recognition after dimension reduction,

we demonstrate that our novel approaches surpass the performance of the three traditional methods.
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Dimension Reduction techniques 

 

 

 

             Future Selection                                                                               Future Extraction 

 

                                                                                                 Linear                                                    Non Linear  

 

 

Back Elimination                                                          PCA                                                               Kernel PCA 

   Forward Selection                                                       FA                                                                 t-SNE 

   Random Forest                                                             LDA                                                              MDS 

   Missing Valu                                                                 Truncated SVD                                           ISOMA 

  Low Variance Filter                                                       ICA                                                               UMAP 

  High Correlation 

             

Figure 3.4: Table of Different Dimension Techniques.

3.4.1 PCA

Principal Component Analysis (PCA) stands out as one of the prominent machine learning algorithms

employed for dimension reduction. This technique delves into statistical insights within the data and

utilizes an orthogonal transformation to convert a set of possibly correlated variables into a collection

of linearly uncorrelated variables known as principal components or principal modes of variation.

To achieve this, one can proceed with eigenvalue decomposition of a data covariance (or correlation)

matrix or Singular Value Decomposition (SVD) of the data matrix. PCA is valuable for identify-

ing patterns in the data, highlighting similarities and differences, and compressing data by reducing

dimensions while retaining essential information.

One widely recognized PCA application is Eigenfaces, developed by Sirovich and Kirby in 1987 [49] and

later employed by Turk and Pentland for face detection and recognition [55]. A detailed development

on Eigenfaces can be found in [55].

PCA has found applications in various fields such as dimensionality reduction [70], face and gesture

recognition [14], motion analysis and synthesis [64], clustering [55], and dimensionality reduction in

[40].

3.4.1.1 PCA for Dimension Reduction

PCA, a fundamental mathematical technique, is widely used by data scientists and machine learning

practitioners for reducing data dimensions, facilitating visualization [7, 52], noise removal [55], and

enhancing processing time and accuracy. The following outlines the mathematical theory behind this

machine learning application.

Let’s explore the Eigenface process for dimension reduction in facial images. Assuming an image

represented by a matrix M of size n×m, the process unfolds as follows:
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I Matrix of Observations: Given a dataset of P images of size x × y denoted as I1, I2, · · · , IP ,

reshape each image into a 1 × xy row vector, constructing the matrix of observations X of size

M ×N .

II Covariance Matrix: Normalize the matrix of observations, X, by mean normalization and

calculate the covariance matrix Z as:

Z =
1

M − 1
X
T
X.

III Principal Component: Obtain principal components by computing eigenvalues λi of Z and the

corresponding eigenvectors vi. Each component vi is reshaped into an eigenface Vi of size x× y.

IV Dimensionality Reduction: Approximate a given matrix A using the first k eigenfaces to

achieve dimensionality reduction:

A ≈
N−k∑
i=1

αiVi.

3.4.1.2 PCA for Face Recognition

For face recognition, given an input image vector U ∈ <n and the mean image vector M from the

database, calculate the weight of the kth eigenface as:

wk = V T
k (U −M),

forming a weight vector W = [w1, w2, · · · , wk, · · · , wn]. Compare W with weight vectors Wm of images

in the database, finding the Euclidean distance d = ||W −Wm||2. If d < ε, then the mth entry in the

database is the corresponding one; otherwise, U may be an unknown face.

3.4.1.3 Advantages of PCA

PCA offers several advantages:

I Simplicity:

PCA is conceptually and implementable straightforward, making it accessible for various tasks.

Its intuitive nature allows for easy understanding and application in diverse fields.

II Data Compression:

By reducing data dimensionality while retaining most of the variance present in the original

dataset, PCA facilitates data compression. This reduction in dimensionality leads to decreased

storage requirements and accelerates the processing time of models, making it particularly useful

for handling large datasets efficiently.

III Uncorrelated Features:

Principal components extracted through PCA are orthogonal to each other. This orthogonality

ensures that the new set of features is uncorrelated, simplifying subsequent analyses and enhancing

the stability and robustness of the model.

IV Interpretability:

PCA provides a clear interpretation of the data by showcasing the original combination of features
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in terms of their contributions to the principal components. This interpretability enhances the

understanding of the underlying structure of the data and aids in making informed decisions

during the model-building process.

These advantages collectively make PCA a powerful and versatile tool for dimensionality reduction,

enabling efficient data analysis, visualization, and modelling across various domains.

3.4.1.4 Disadvantages of PCA

While PCA offers advantages, it has limitations:

I Linearity:

PCA operates under the assumption of linearity, which means it may not effectively capture

complex nonlinear relationships present in the data. As a result, when the underlying relationships

between variables are nonlinear, PCA may not provide an optimal representation of the data,

potentially leading to information loss or distorted representations.

II Global Structure:

One of the limitations of PCA is its inability to preserve the global structure or class separability

of the data, particularly in classification problems. While PCA focuses on maximizing variance

along principal components, it does not explicitly consider class labels or the global structure of

the data. Consequently, important discriminative information may be lost during dimensionality

reduction, potentially affecting the performance of classification algorithms.

Figure 3.5 and 3.6 show the scatter plot and projection respectively of Olivetti face data after per-

forming PCA for dimension reduction. One can see how the data are grouped from the scatter plot

which also reveal some outlier. Similarly the projection graph help us visualize the most significant

patterns and relationships, it accentuate the difference between groups.

These limitations highlight the importance of considering the characteristics of the data and the

specific goals of the analysis when choosing dimensionality reduction techniques. In scenarios where

the data exhibits nonlinear relationships or when preserving class separability is crucial, alternative

methods such as nonlinear dimensionality reduction techniques or supervised dimensionality reduction

approaches may be more appropriate. One such technique may be Linear Discriminant Analysis(LDA).

3.4.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a machine learning algorithm commonly employed for multi-

class data classification problems. It can be likened to logistic regression, a popular algorithm for

single-class classification. For a detailed comparison between these algorithms, refer to [15] and [18].

LDA is also widely used for visualization and serves as a popular supervised machine learning algo-

rithm for dimension reduction. For more information on different supervised learning algorithms for

dimension reduction, consult [16, 46]. LDA techniques for dimension reduction find applications in

Biometrics [63, 56], Bioinformatics [28], and Chemistry [69, 57]. This section focuses specifically on

LDA for dimension reduction, delving into its mathematical foundations.

LDA for dimensionality reduction is based on the projection of the original data matrix onto a lower-

dimensional space. The process involves answering key questions:

What are the distances between the means of different classes (between-class variance or between-class
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Figure 3.5:
Scatter plot of the ollivetti dataset after PCA dimension reduction

Figure 3.6:
The PCA projection of 10 subject on ollivetti dataset
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matrix)?

What are the distances between the mean of the data matrix and the samples of the matrix (within-

class variance or within-class matrix)?

These concepts guide the construction of the lower-dimensional space by maximizing the between-class

variance and minimizing the within-class variance.

3.4.2.1 Between-Class Variance

The between-class variance of the i-th class (ABi) is the distance between the mean of the i-th class (µi)

and the overall mean (µ). Given the original data matrix X = (x1, x2, · · · , xN ), where xi represents

the i-th observation or sample, each with M features, and N is the total number of observations, we

project our data matrix on a 1 ×M dimension to obtain W . The representation of all projections

for each class mean can be calculated as mi = W Tµi. The total mean projection is calculated as

m = W Tµ. Considering p classes, each with nj features, we calculate the between-class variance ABi

as W (mi −m)2W T , and the total between-class variance is given by AB =
∑p

i=1 niABi .

3.4.2.2 Within-Class Variance

The within-class variance of the i-th class (AWi) is the difference between the mean and the samples

of that class.

we proceed to calculate the centring projection data by computing: dj = Wjµj . Thus the within-class

variance can be computed as follow:

AWj =

nj∑
i=1

(xij − µj)(xij − µj)T .

Now, let us use the projection for any sample and the mean for any class; we have the following

equality:

∑
xi∈Wjj=1...p

(W Txi −mj)
T =

∑
xi∈Wjj=1···p

(W Txij −W Tµj) (3.1)

=
∑

xi∈Wjj=1···p
W T (xij − µJ)2W (3.2)

=
∑

xi∈Wjj=1···p
W T (xij − µj)(xij − µj) (3.3)

=
∑

xi∈Wjj=1···p
W TAWjW. (3.4)

Hence the total within-class variance is given by

AW =

p∑
i=1

SWi .

3.4.2.3 Lower Dimensional Space

Having computed the between-class variance AB and the within-class variance AW , the optimization

problem becomes arg maxW
WTABW
WTAW

. The maximizer is given by the largest eigenvector of A
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arg max
W

W TABW

W TAW
.

Theorem 4 Suppose AW is nonsingular. The maximizer of this problem is given by the largest

eigenvector of A−1
W , i.e.,

A−1
W ABW = λW Or AWW = λABW .

One then has to compute the eigenvalues (λ1, λ2, · · · , λM ) and the eigenvectors (V = {V1, V2, · · · , VM})
of W = A−1

W AB.

Since the eigenvalues are scalar, and the eigenvectors are non-zero vectors, our approximation can be

resolved. We have that the eigenvectors represent the directions of the new space, and the eigenvalues

are the scaling factors, lengths, or magnitudes of the eigenvectors. Therefore, the axes of the LDA

are represented by each eigenvector and are associated with its eigenvalue. Thus, the higher the

eigenvalue, the better it can discriminate between different classes, i.e., increase the between-class

variance and decrease the within-class variance of each class; hence meeting the LDA requirement.

One then uses the k highest eigenvalues with their corresponding eigenvectors to construct the lower-

dimensional space. Let’s call this matrix Lk, given by Lk = {V1, V2, · · · , Vk}, and its dimension is

M×k. Since the original data matrix is of dimension N×M , we then obtain our reduced data matrix

by computing Y = XVk.

This concludes the dimension reduction process using Linear Discriminant Analysis.

3.4.2.4 Advantages of LDA

LDA offers several advantages:

I Supervised Dimension Reduction:

LDA is particularly well-suited for classification problems because it is a supervised technique that

takes class labels into account during dimensionality reduction. By leveraging class information,

LDA aims to find a projection that maximizes the separation between classes, thereby enhancing

the discriminative power of the reduced feature space.

II Maximizes Class Separation:

A primary objective of LDA is to maximize the separation between classes. Unlike PCA, which

focuses solely on maximizing variance, LDA explicitly considers class information to find a projec-

tion that optimally separates different classes in the data. This makes LDA particularly effective

for feature extraction and classification tasks, where maximizing class separability is crucial for

model performance.

III Interpretability:

The impact of maximizing class separability in LDA results in components that are easily inter-

pretable. Each linear discriminant derived from LDA represents a direction in the feature space

that maximizes class discrimination. As a result, the components obtained from LDA provide

insights into the underlying structure of the data and the discriminative features that contribute

to class separation, enhancing interpretability and aiding in model understanding.

These advantages make LDA a valuable tool for tasks such as classification, pattern recognition, and

feature extraction, particularly when class discrimination and interpretability are essential considera-

tions.
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3.4.2.5 Disadvantages of LDA

While LDA (Linear Discriminant Analysis) offers several advantages, it also comes with its own set of

disadvantages:

I Assumes Gaussian Distributions:

One of the primary assumptions of LDA is that the data within each class follows a Gaussian dis-

tribution. However, in real-world scenarios, this assumption may not always hold true. When the

data deviates significantly from Gaussian distributions in one or more classes, LDA’s performance

can be compromised. In such cases, the decision boundaries derived by LDA may not accurately

represent the underlying structure of the data, leading to suboptimal classification results.

II Sensitivity to Outliers:

LDA is highly sensitive to outliers and noise in the dataset, posing significant challenges to its

robustness and performance. Outliers can disrupt the estimation of class means and covariances,

which are crucial parameters in LDA’s decision rule. This sensitivity stems from LDA’s reliance on

the assumption of multivariate normality within each class. Outliers can distort this assumption,

leading to biased parameter estimates and suboptimal decision boundaries. Moreover, noisy

data can introduce additional variance, potentially resulting in overfitting or poor generalization

performance of LDA models.

Figure 3.7, 3.8 and 3. 9 represent the confusion matrix, the scatter plot and the class separation

respectively of the olivetti face data after LDA dimension reduction. In the scatter plot, one see how

the LDA help to group the data, The confusion matrix help to se that they are few outlier after the

LDA dimension reduction.

These limitations highlight the importance of assessing the suitability of LDA for a given dataset,

considering factors such as the distributional assumptions of the data and the presence of outliers or

noise. In scenarios where these assumptions are violated or the data contains significant outliers, al-

ternative techniques or preprocessing methods may be necessary to ensure robust and reliable analysis

results.

Using a nonlinear method may assist one in overcoming the limitations of these two techniques in many

situations where the dataset is not suitable for linearity. Hence we are now delving into a nonlinear

technique, namely Auto-Encoder.

3.4.3 Auto-Encoder

In this section, we delve into a deep learning method for dimensionality reduction known as the Neural

Network machine learning algorithm Auto-Encoder (AE). This unsupervised artificial neural network

leverages both feature extraction and feature selection techniques to compress high-dimensional data

into a lower dimension.

The introduction of Chapter 14 of [31] defines Auto-Encoder as follows: an Auto-Encoder is a neural

network that is trained to attempt to copy its input to its output. Internally, it has a hidden layer h

that describes a code used to represent the input. The network may be viewed as consisting of two

parts: an encoder function h = f(x) and a decoder that produces a reconstruction r = g(h(x)).

Before going into details on the Auto-encoder process himself, it is important to lay some groundwork

with the mathematics description of Neural Network which is the back born of the method.
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Figure 3.7:
Confusion matrix of ollivetti dataset after LDA dimension reduction

Figure 3.8:
Scatter plot of the ollivetti dataset after LDA dimension reduction
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Figure 3.9:
LDA class separation on ollivetti

3.4.3.1 Neural Network

A neural network is a mathematical model derived from the architecture and functioning of the hu-

man brain, interconnecting artificial neurons organized into layers. Each layer has a specific role in

processing and transforming input information, which, in machine learning, consists of initial data

used to produce desired outputs.

Neural networks play a fundamental role in various machine learning tasks, including data compres-

sion, pattern recognition, regression, and classification.

Neural networks are a fundamental concept in machine learning and are widely been used for tasks like

data compression[58, 74, 80], pattern recognition[2, 11], regression[8, 24], classification [27, 62, 78, 81].

Before delving further, let explore some basic concepts crucial for understanding neural networks:

I Neuron or Node: The basic processing unit that receives one or more inputs and computes a

weighted sum to produce an output.

II Layer: A group of neurons working together at a specific depth of the neural network. Layers

include the input layer, hidden layers (responsible for processing and transforming information),

and the output layer.

III Activation Function: A function that decides if a neuron should be activated (fired), introduc-

ing non-linearity to the network.
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Input Layer

Hidden Layer

Output Layer

Figure 3.10: Sample of Neural Network Diagram

IV Feedforward Propagation: The process of moving information from the input layer to the

output layer.

V Backpropagation: A process used to adjust weights and biases, minimizing the difference be-

tween predicted outputs and actual targets.

VI Loss Function: A function that measures the difference between predicted and actual outputs,

used for optimization.

VII Architecture: The structure of the neural network, determined by the number of layers, neurons

per layer, and interconnections.

3.4.3.2 NN Activation Functions

Understanding the activation functions used in neural networks is crucial. Here are three commonly

used ones:

I Sigmoid Function: Converts input values to a range between 0 and 1, making it suitable for

mapping arbitrary input values to a probability-like range.

f(z) =
1

1 + e−z
.

An example of sigmoid function is defined in figure 3.11.

The sigmoid function is used primarily in the context of feedforward neural networks, where it

is applied to the weighted sum of inputs and bias for each neuron. It transforms the output of

each neuron to introduce non-linearity and allows the network to learn complex relationships in

the data.
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Figure 3.11:
Example of Sigmoid

However, one drawback of the sigmoid function is that its gradients can saturate (become very

small) for very large or very small inputs, leading to slow learning during backpropagation.

II ReLU (Rectified Linear Unit): Introduces non-linearity and effectively mitigates the vanish-

ing gradient problem. It outputs the input for positive values and 0 for negative values.

ReLU(z) = max(0, z).

The ReLU function is computationally efficient and addresses the vanishing gradient problem, as

it doesn’t saturate for positive inputs. However, it has a limitation known as the ”dying ReLU”

problem, where neurons can become inactive (output zero) for all inputs during training, leading

to those neurons not contributing to learning. This issue has led to the development of variations

of ReLU, such as Leaky ReLU, Parametric ReLU (PReLU), and Exponential Linear Unit (ELU),

which aim to address the dying ReLU problem while preserving the non-linear properties of ReLU.

III Softmax Function: Converts a vector of real-valued numbers into a probability distribution. It
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Figure 3.12:
Example of a ReLu Graph

is commonly used in multi-class classification tasks.

S(u) =
eui∑n
j=1 e

uj
.

The softmax function takes an input vector and transforms each element into a probability value

between 0 and 1. The transformed values represent the probabilities of the input belonging to

different classes, and they sum up to 1. It essentially ”softens” the input values to represent

probabilities, allowing for better differentiation between classes.

The softmax function has several desirable properties:

It converts arbitrary real-valued scores into a valid probability distribution.

It emphasizes the largest values in the input while suppressing the smaller ones.

It is differentiable, making it suitable for backpropagation during gradient-based optimization.

One important use of the softmax function is in the output layer of neural networks for multi-

class classification tasks. The activation of the softmax function in the output layer produces

class probabilities, and the predicted class corresponds to the class with the highest probability.
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Figure 3.13:
Example of a Softmax Graph

However, it is important to note that the softmax function tends to amplify the differences between

input values. In cases where there are significant differences in input values, the softmax output

can be highly skewed towards the largest value. This can lead to numerical stability issues in

cases of extreme values. Techniques like subtracting the maximum value from each input element

(known as softmax normalization) can help address these issues.

3.4.3.3 Auto-Encoder for Dimension Reduction

Auto-Encoder, a deep learning technique derived from the mathematical structure of a neural network,

is employed for dimensionality reduction. Comprising an Encoder and a Decoder, it transforms input

data into an approximation of the original data.

I Encoder

The Encoder takes input data (e.g., face images) and compresses it. Mathematically, it is defined

as:
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Input Layer

Encoder Decoder

Output Layer

Figure 3.14: Auto Encoder Diagram

f(z) = σ(Wez + be),

where We is the weight matrix, be is the bias vector, and σ is the activation function.

II Decoder

The Decoder reconstructs the input data from the compressed representation:

ẑ = σ(Wd · h+ bd),

where Wd is the weight matrix, bd is the bias vector, and ẑ is the reconstructed input.

The Mean Square Error (MSE) is often used to quantify the discrepancy between the reconstructed

and original data, expressed as:

L =
1

N

N∑
i=1

||zi − ẑi||22.

The loss function is minimized by adjusting weights and biases through backpropagation and

optimization algorithms.

3.4.3.4 Advantages of Auto-Encoder

This method has some advantages that are enumerated here.

I Nonlinear Transformations:

Auto-Encoders excel at capturing nonlinear relationships present in complex data. Unlike linear

methods such as PCA, which are limited to capturing linear correlations between features, Auto-

Encoders leverage neural network architectures to learn nonlinear transformations of the input
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data. This capability allows them to model intricate patterns and dependencies within the data,

making them particularly effective for tasks involving complex, high-dimensional datasets.

II Feature Learning:

Auto-Encoders have the ability to automatically learn relevant features from the input data,

thereby reducing the reliance on manual feature engineering. By iteratively encoding and decoding

the input data through hidden layers, Auto-Encoders extract meaningful representations that

capture the underlying structure of the data. This feature learning process is unsupervised,

meaning it does not require labelled data, making Auto-Encoders versatile and applicable to a

wide range of domains and tasks.

III Versatility:

Auto-Encoders are highly versatile and can be applied to various tasks beyond dimension reduc-

tion. In addition to dimensionality reduction, Auto-Encoders are commonly used for de-noising

noisy data, reconstructing corrupted or missing information, and generating synthetic data sam-

ples. Furthermore, they have demonstrated effectiveness in tasks such as anomaly detection,

feature extraction, and image compression. This versatility makes Auto-Encoders a valuable tool

in data preprocessing, representation learning, and generative modelling across different domains.

These advantages highlight the strengths of Auto-Encoders as powerful tools for learning compact

representations of complex data, facilitating various machine learning tasks, and addressing challenges

associated with nonlinear relationships and feature learning.

3.4.3.5 Disadvantages of Auto-Encoder

As other method, Auto-Encoder come with some drawback.

I Complexity:

Designing and training Auto-Encoders can be complex compared to other dimensionality reduc-

tion techniques. Auto-Encoders typically involve designing and fine-tuning the architecture of

neural networks, which requires expertise in deep learning concepts and techniques. Additional-

ly, selecting appropriate hyperparameters, such as the number of layers, neurons per layer, and

activation functions, can significantly impact the performance of the Auto-Encoder. Moreover,

optimizing the training process, including choosing suitable optimization algorithms and regu-

larization techniques, adds to the complexity of implementation. Consequently, the complexity

involved in designing and training Auto-Encoders may pose challenges, particularly for users with

limited experience in deep learning.

II Data Size:

Auto-Encoders often require large amounts of data to effectively learn meaningful representations,

which can pose challenges for implementation in terms of both time and space. Training Auto-

Encoders on small datasets may lead to overfitting, where the model learns to memorize the

training examples rather than capturing meaningful patterns and relationships within the data.

Moreover, the computational resources and time required to train Auto-Encoders increase with

the size of the input data, making them less suitable for applications with limited computational

resources or time constraints. Additionally, storing and processing large datasets can strain

memory and computational resources, further complicating the implementation of Auto-Encoders,

especially in resource-constrained environments.



46 CHAPTER 3. DIMENSION REDUCTION

These limitations underscore the importance of considering factors such as computational complexity,

data requirements, and resource constraints when deciding whether to use Auto-Encoders for dimen-

sionality reduction or other tasks. Despite these challenges, Auto-Encoders remain powerful tools for

learning compact representations of complex data and addressing nonlinear relationships and feature

learning tasks.

Figure 3.15:
Scatter plot of olivetti after AE dimension reduction

The transformation of Auto-encoder on olivetti dataset is illustrated with some visualization graph:

Figure 3.15 is the Scatter Plot after Auto-Encoder Transformation

shows how the data points are distributed in the reduced feature space obtained through the Auto-

Encoder. shows the clusters or patterns, this reveal the structures in the dataset. The scatter plot

shows us the insights into the relationships between different facial features.

Figure 3.16 is the Outlier Analysis after Auto-Encoder Transformation:

It help one to identify outliers or instances that deviate significantly from the general patterns in the

data. Few outliers suggesting that the Auto-Encoder has successfully reduced the impact of noise or

anomalies in the dataset.

Figure 3.17 and 3.18 is the Transformation Comparison: Original vs. After Auto-Encoder:

:

Compare the original images with the reconstructed images obtained after the Auto-Encoder dimension

reduction. Observe how facial features are altered or retained in the transformed images. Difference

Analysis. Identify differences between the original and transformed faces, focusing on details that have

been enhanced or suppressed by the dimension reduction process. Assess whether the transformation

maintains facial identity while reducing dimensionality.
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Figure 3.16:
Auto encoder reconstruction error with oulier detection on Olivetti dataset

Figure 3.17:
Sample of olivetti dtaset image reconstruction with AE
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Figure 3.18:
Sample of image reconstruction with AE

These visualizations collectively provide a comprehensive view of the impact of the Auto-Encoder on

the Olivetti dataset:

Clustering Effect: Evaluate how well the Auto-Encoder captures patterns and clusters in the reduced

feature space.

Outlier Reduction: Confirm the reduction in outliers, indicating improved data representation and

noise reduction.

By combining scatter plots and visual comparisons, we gain valuable insights into both the struc-

tural changes in the feature space and the visual impact on the facial images after the Auto-Encoder

transformation. These figures contribute to understanding the quality and effectiveness of the dimen-

sionality reduction process for the Olivetti dataset.

In the ensuing section, our exploration delves into a meticulous comparative analysis, drawing parallels

between the Auto-Encoder and a spectrum of other prevalent dimensionality reduction techniques.

This undertaking is pivotal, aiming to unravel the nuanced intricacies inherent in each method and

elucidate the distinct strengths and vulnerabilities they bring to the fore.

3.4.3.6 Comparison of PCA, LDA, and Auto-Encoder

PCA and LDA are both linear transformation methods. Despite their similarity, PCA is an unsuper-

vised technique, whereas LDA is a supervised approach to reduce dimension.

PCA is indifferent to class labels. It condenses the feature set without relying on the output. Its

objective is to identify directions of maximum variance in the dataset. In extensive feature sets, re-
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dundancies often exist, where some features are duplicated or exhibit high correlation with others.

PCA’s task is to pinpoint such highly correlated or duplicated features and generate a new feature

set with minimal inter-feature correlation or, equivalently, a feature set exhibiting maximum variance

between features. As this variance is independent of the output, PCA does not consider output labels

in its process.

In contrast to PCA, LDA aims to reduce the dimensions of the feature set while preserving the dis-

criminative information among output classes. LDA endeavors to identify decision boundaries around

each class cluster, projecting data points to new dimensions in a manner that maximizes the sepa-

ration between clusters and minimizes the distance between individual points within a cluster and

their respective centroids. The ranking of these new dimensions is determined by their effectiveness in

maximizing the inter-cluster distance and minimizing the intra-cluster distance between data points

and their centroids. These newly derived dimensions constitute the linear discriminants of the feature

set.

For uniformly distributed data, LDA typically outperforms PCA. However, in the presence of highly

skewed or irregularly distributed data, it is recommended to opt for PCA. This is because LDA has

the potential to exhibit bias toward the majority class in such scenarios.

Use PCA when aiming to diminish data dimensionality while retaining maximum variance. Suitable

for tasks such as data compression, visualization, and situations with a substantial number of corre-

lated features.

Opt for LDA when working with labelled data, and the goal is to reduce dimensionality while enhanc-

ing class separation. Particularly beneficial for classification tasks where clear class discrimination is

crucial.

Choose Auto-Encoder when dealing with intricate data featuring nonlinear relationships, and the ob-

jective is to capture complex features or patterns. Well-suited for tasks like image denoising, anomaly

detection, and when ample data are available for effective training.

In conclusion, the versatility of PCA is evident as it can be applied to both labelled and unlabelled

data, given that it operates independently of output labels. Conversely, LDA relies on output classes

to identify linear discriminants, making it dependent on labelled data for its application.

After meticulously considering the advantages, disadvantages, and comparisons of the three techniques

we studied above, we were inspired to leverage the strengths of each to construct two hybrid techniques

for dimension reduction.

3.4.4 Dimension Reduction based on Hybrid Techniques

To enhance the performance of machine learning models, we devised two hybrid dimensionality re-

duction algorithms by leveraging the strengths of existing techniques. Our inspiration stemmed from

the downstream applicability of each previously explained method. Consequently, we constructed a

PCA-Auto-Encoder technique and an LDA-Auto-Encoder technique. Through empirical validation
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on facial recognition tasks using two distinct benchmark datasets, we ascertained that our formula-

tions surpassed existing approaches. This validation was particularly crucial, given the significance

of effective dimension reduction in facial recognition tasks, where capturing essential facial features

while minimizing computational complexity is essential.

In what follows, we discuss these two algorithms.

3.4.5 PCA-Auto-Encoder

Leveraging the strengths of both PCA and Auto-Encoder allows for a sequential dimension reduction

approach. This is achieved by initiating the process with PCA and subsequently utilizing the approx-

imated dimension reduction obtained from PCA to achieve a final dimension reduction of the data

using an Auto-Encoder. Below, we outline the sequential steps of this process:

Starting with the input data z:

Determine the desired number of principal components to be retained.

Train PCA for Dimension Reduction:

Apply PCA to the data and train the model for dimension reduction based on the fixed number of

principal components. Retain and Save Reduced Data:

Save the reduced data obtained from PCA with the fixed components. This reduced dataset is denoted

as zPCA.

Utilizing the reduced data zPCA as the input:

Auto-Encoder Dimension Reduction:

Employ the Auto-Encoder to perform a subsequent dimension reduction on zPCA.

Obtain Final Reduced Data:

The objective of the Auto-Encoder at this stage is to further reduce dimensionality and reconstruct

the non-linear output data. The result is the final reduced dataset.

The final reduced dimensional data (zfinal) after applying PCA and the Auto-Encoder can now be

used for downstream tasks such as face recognition, clustering visualization, just to name a few.

3.4.5.1 PCA-Auto-Encoder Pseudo Code

Algorithm 1 designs the PCA-AutoEncoder that we constructed.

3.4.5.2 Advantages of PCA-Auto-Encoder

The combination of these two techniques for dimension reduction has several advantages that can be

described by:

I Linear Initialization for Auto-Encoders:

Auto-Encoders with a linear encoder and decoder can be thought of as linear transformations.
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Algorithm 1 PCA-Auto-Encoder for Dimension Reduction

1: procedure PCA-Auto-Encoder(X, k, m)
2: Input:
3: Load the dataset X with p features and N data points
4: Set lower dimension k (to be returned after PCA)
5: Set the bottleneck layer size m (for the Auto-Encoder)
6: Output:
7: Lower-dimensional representations using PCA and Autoencoders
8: # Reduction with PCA
9: Find the mean vector µ of X

10: Center the data: Xcentered = X− µ
11: Find the covariance matrix: C = 1

N
XT

centeredXcentered

12: Do the eigenvalue decomposition on C to obtain the eigenvectors V and eigenvalues
13: Arrange eigenvectors by descending eigenvalues and select the top k eigenvectors to

form the projection matrix X̂ ∈ Rp×k

14: Get the lower-dimensional subspace with the projection: XPCA = Xcentered · X̂
15: # Further Reduction with Auto-Encoder
16: Initialize an Auto-Encoder model with an encoder network that maps XPCA to a further

lower-dimensional representation Xfinal of size m and a decoder network
17: Train the Autoencoder with XPCA as input data to learn the non-linear transformation

and further reduce dimensionality
18: Use a mean squared error (MSE) loss to measure the difference between the input XPCA

and the reconstructed output XAE

19: Optimize the Autoencoder’s weights and biases using an optimization technique
20: After training, the encoder part of the Auto-Encoder will provide the lower-dimensional

representation Xfinal for each data point
21: Output:
22: The lower-dimensional representation obtained using PCA: XPCA

23: The lower-dimensional representation obtained using Auto-Encoders: Xfinal

24: end procedure
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Using PCA as an initial transformation ensures that the Auto-Encoder starts with a linear ap-

proximation of the data. This can be advantageous when the data’s principal components capture

most of the variance.

II Dimension Reduction Cascade:

In some scenarios, you may want to perform a two-stage dimensionality reduction. PCA can be

used as the first stage to reduce dimensionality substantially. Auto-Encoders, which are capable

of capturing non-linear relationships, can then be applied to further reduce the dimension or learn

more intricate features. This two-stage approach can be particularly beneficial when dealing with

high-dimensional data with non-linear variations.

III Noise Reduction:

When the data contains noise or irrelevant features, PCA can help eliminate some of this noise by

retaining only the most significant components. Auto-Encoders can then be applied to denoise

the data and capture informative features.

IV Improved Representation Learning:

Auto-Encoders are effective at learning hierarchical and non-linear representations. By initializ-

ing Auto-Encoders with the linearly transformed data obtained from PCA, you can build upon

the compact representations generated by PCA and further enhance the quality of the learned

features.

V Combining Linear and Non-Linear Transformations:

PCA provides a linear transformation, while Auto-Encoders can capture non-linear relationships.

By combining these transformations, you can create a more flexible and expressive representation

of the data, accommodating both linear and non-linear patterns.

VI Data Exploration and Visualization:

PCA can be used for data exploration and visualization. By applying PCA initially, you can re-

duce the dimension for visualization purposes, and then apply Auto-Encoders to uncover complex

structures or patterns in the reduced-dimensional space.

3.4.5.3 Disadvantages of PCA-Auto-Encoder

This hybrid dimension reduction technique also has some drawbacks, which can be described by:

I Loss of Nonlinear Patterns:

PCA is a linear technique that focuses on capturing linear relationships in the data. If the data

has complex nonlinear patterns, PCA may not capture them effectively. Auto-Encoders are better

at capturing nonlinear patterns, but combining them with PCA might still limit the ability to

fully model complex data structures.

II Overlapping Information:

Both PCA and Auto-Encoders methods aim to capture the most important features, but they

do so differently. When combined, they may be overlapping information or redundancy in the

features they select, which can lead to inefficiency.

III Complexity:

Combining PCA and Auto-Encoders can increase the complexity of the overall dimension re-
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duction pipeline. This might make it harder to tune hyperparameters and understand the inner

workings of the system.

IV Difficulty in Interpretation:

The combined model might produce lower-dimensional representations that are difficult to inter-

pret because it involves a mixture of linear and nonlinear transformations.

V Increased Computational Overhead:

Running both PCA and Auto-Encoders can be computationally expensive, especially for large

datasets. This can slow down the dimension reduction process.

VI Hyperparameter Tuning:

Combining two techniques often requires additional hyperparameter tuning to make them work

well together. Finding the right set of hyperparameters can be time-consuming and challenging.

VII Limited Generalization:

The combination of PCA and Auto-Encoders might be highly specific to the dataset it was

designed for. It may not generalize well to other datasets or tasks.

VIII Data Preprocessing Challenges:

Preprocessing data to be suitable for both PCA and Auto-Encoders can be tricky. It’s important

to ensure that the data preprocessing steps are consistent for both techniques.

IX Loss of Model Transparency:

Combining PCA and Auto-Encoders may result in a less interpretable model. Understanding the

transformed features can be more challenging.

X Dependent on Data Characteristics:

The effectiveness of combining PCA and Auto-Encoders depends on the specific characteristics

of the dataset. What works well for one dataset may not work as effectively for another.

3.4.6 LDA-Auto-Encoder

Capitalizing on the strengths of LDA and Auto-Encoder, we successfully integrated these two tech-

niques for dimension reduction. Our approach involves initiating dimension reduction on the input

data using LDA, followed by Auto-Encoder based dimension reduction on the LDA-derived reduced

data. This process provides the advantage of leveraging both supervised and unsupervised approaches.

The sequential steps of this combined technique are as follows:

Given the data z comprising features and class labels y:

Determine the desired number of LDA components to be retained.

Apply LDA to the data to maximize class separability, effectively reducing dimension based on the

fixed number of LDA components.

Save the reduced data obtained from LDA with the fixed components. This reduced dataset is denoted

as zlda.

Use zlda as Input for Auto-Encoder:

Utilize the reduced data zlda as the input for the Auto-Encoder.

Apply the Auto-Encoder to perform further dimension reduction on zlda. Obtain Final Reduced Data:
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The ultimate reduced dimensional data, denoted as zfinal, is obtained after the sequential application

of LDA and the Auto-Encoder. These refined data are now ready for application in various tasks, such

as face recognition, as exemplified in our case. Additionally, one may consider downstream tasks like

clustering visualization using the reduced data. The versatility of zfinal makes it suitable for a range

of applications, benefiting from the enhanced features extracted through the combined strengths of

LDA and Auto-Encoder.

3.4.6.1 LDA-Auto-Encoder Pseudo Code

The algorithm for this technique is:

Algorithm 2 LDA-Auto-Encoder for Dimension Reduction

Require:
Labeled face dataset with c classes and n samples.
Desired lower-dimensional representation dimension k.

Ensure:
Lower-dimensional representations for face images.

1: procedure Combine LDA and Auto Encoders(face Dataset, k)
2: Compute class means µi for each class i
3: Calculate within-class scatter matrix Sw
4: Calculate between-class scatter matrix Sb
5: Eigen decomposition of S−1

w Sb
6: Sort eigenvectors by corresponding eigenvalues
7: Select top k eigenvectors as transformation matrix
8: Apply LDA transformation to face Dataset
9: Design Auto Encoder architecture

10: Initialize encoder and decoder networks
11: Train Auto Encoder to minimize MSE loss
12: Fine-tune Auto Encoder using LDA-transformed data
13: Use Auto Encoder output as lower-dimensional representations
14: end procedure

3.4.6.2 Advantages of LDA-Auto-Encoder

The combination of LDA and Auto-Encoder for dimension reduction provides several advantages.

Here are some of them:

I Preservation of Discriminative Information:

LDA is specifically designed to maximize class separability, making it effective for supervised

dimension reduction. By using LDA in combination with an Auto-Encoder, you can retain the

discriminative information necessary for classification or recognition tasks.

II Improved Feature Extraction:

LDA focuses on extracting features that best discriminate between classes, while Auto-Encoders

are capable of capturing nonlinear and fine-grained patterns in data. Combining these techniques

can lead to more informative and descriptive lower-dimensional representations.

III Dimensionality Reduction and Feature Learning:

LDA reduces dimension by selecting a subset of the most informative dimensions. Auto-Encoders
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can further reduce the dimension and perform feature learning by capturing complex relationships

within the data.

IV Enhanced Robustness to Noise:

LDA can be sensitive to noisy data, but Auto-Encoders can help filter out noise by learning to

represent the underlying structure of the data. This combination can lead to more robust feature

extractions.

V Improved Generalization:

The combination of LDA and Auto-Encoders can create features that generalize well to new and

unseen data. This is especially valuable in tasks like face recognition, where the system needs to

recognize individuals it hasn’t seen during training.

VI Reduced Overfitting:

Auto-Encoders can act as regularization, helping to reduce overfitting in LDA by capturing es-

sential information without modelling noise or outliers.

VII Flexible Modelling:

Auto-Encoders can adapt to various data distributions and nonlinearity, which complements

LDA’s linearity. This flexibility can make the combined technique suitable for a wide range of

applications.

VIII Interpretable Features:

LDA provides features that are linear combinations of the original variables, making them in-

terpretable. This is particularly useful in applications where understanding the significance of

features is important.

IX Robust to Imbalanced Data:

LDA can help mitigate issues related to class imbalance by focusing on class separation. Combined

with Auto-Encoders, it can address challenges posed by imbalanced datasets.

X Improved Classification Performance:

When the lower-dimensional representations are used as input for classifiers (e.g., support vector

machines, neural networks), the combination of LDA and Auto-Encoders often leads to enhanced

classification performance.

XI Reduced Computational Complexity:

By first reducing dimension using LDA and then applying Auto-Encoders, you may reduce

the computational complexity of training the Auto-Encoders, making it more efficient for large

datasets.

3.4.6.3 Disadvantages of LDA-Auto-Encoder

While LDA-Auto-Encoder comes with several advantages, it also has its drawbacks:

I Complexity of Implementation:

Combining two different techniques requires additional coding and integration work, which can

be complex, especially for those less familiar with both methods.
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II Increased Computational Overhead:

Running both LDA and Auto-Encoders can be computationally expensive, especially for large

datasets. The additional complexity can slow down the dimension reduction process.

III Hyperparameter Tuning:

Both LDA and Auto-Encoders have their own hyperparameters. Combining them may require

additional tuning to make them work well together, which can be time-consuming and challenging.

IV Data Preprocessing Challenges:

Ensuring that data preprocessing is consistent for both techniques can be tricky. Mismatched

preprocessing can lead to suboptimal results.

V Loss of Model Transparency:

Combining LDA and Auto-Encoders may result in a less interpretable model. Understanding

the transformed features can be more challenging, especially when nonlinear transformations are

involved.

VI Difficulty in Interpretation:

The combined model might produce lower-dimensional representations that are difficult to inter-

pret because it involves a mixture of linear and nonlinear transformations.

VII Sensitivity to Hyperparameters:

The combined model’s performance may be sensitive to the choice of hyperparameters, and finding

the right set of hyperparameters can be non-trivial.

VIII Limited Generalization:

The combination of LDA and Auto-Encoders might be highly specific to the dataset it was

designed for. It may not generalize well to other datasets or tasks.

IX Dependent on Data Characteristics:

The effectiveness of combining LDA and Auto-Encoders depends on the specific characteristics

of the dataset. What works well for one dataset may not work as effectively for another.

X Risk of Overfitting:

Combining two powerful techniques can potentially lead to overfitting if not carefully controlled

and regularized.

XI Increased Dimensionality:

In some cases, combining LDA and Auto-Encoders may lead to higher dimensionality instead of

reducing it. This can happen when both techniques retain a large number of features.

In summary, while LDA-Auto-Encoder offers significant advantages in terms of feature preservation,

robustness, and improved generalization, users should be mindful of the complexities and challenges

associated with its implementation, computational requirements, and potential limitations in certain

scenarios. Careful consideration and experimentation with hyper-parameters and data characteristics

are essential to realizing the full potential of this hybrid dimension reduction technique.
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3.5 Experiment

In this experimental section, we embark on a comprehensive exploration of facial recognition by imple-

menting five distinct dimension reduction techniques on two diverse datasets. Leveraging the power

and flexibility of Python, we aim to rigorously evaluate the performance of our novel dimension re-

duction algorithm in the context of facial recognition. The integration of cutting-edge dimensionality

reduction methods provides a nuanced lens through which we can scrutinize and compare the efficacy

of our approach against established techniques. By conducting these experiments on two distinc-

t datasets, we seek to unravel the algorithm’s adaptability and generalizability across varied data

structures, thereby contributing valuable insights to the field of facial recognition and dimensionality

reduction. This experimental endeavour not only sheds light on the algorithm’s performance but also

underscores the practical implications of its application in real-world scenarios. Through meticulous

experimentation and analysis, we endeavour to push the boundaries of understanding in the realm of

facial recognition and pave the way for advancements in dimensionality reduction methodologies.

Table3.1 provides the maximum accuracy of facial recognition after 5 dimension reduction techniques

on the Olivetti dataset.

Accuracy percentage on Olivetti Dataset
Classification
Methods

PCA LDA Auto Encoder PCA-AutoEncoder LDA-AutoEncoder

MLP 94,16 95,00 75,00 96,25 98,75
RF 91,66 93,00 85,00 95,00 98,75
SVM 93,30 96,00 27,50 90,00 96,25
DT 68,33 67,00 56,25 58,75 70,00
KNN 89,66 95,00 88,12 95,31 100
XBooST 75,83 74,66 74,16 74,16 74,16
NVB 83,33 87,50 73,75 86,25 90,00
LR 94,16 96,25 85,00 97,50 98,75

Table 3.1: Accuracy table for Olivetti.

Table 3.2 provides the maximum accuracy of facial recognition after 5 dimension reduction techniques

on the LFW dataset.

3.5.1 PCA-AutoEncoder

The PCA-AutoEncoder method introduces a sequential dimension reduction approach, combining the

linear transformations of PCA with the non-linear capabilities of AutoEncoders. The process involves

initiating dimension reduction with PCA and subsequently employing an AutoEncoder on the PCA-

derived data. This hybrid approach aims to capture both linear and non-linear relationships in the

facial data, providing a more comprehensive representation.

The PCA-AutoEncoder algorithm, presented in Algorithm 1, outlines the sequential steps of this

process. Advantages and disadvantages of this hybrid technique are discussed, highlighting its potential
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Accuracy percentage on LFW Dataset
Classification
Methods

PCA LDA Auto Encoder PCA-AutoEncoder LDA-AutoEncoder

MLP 83,97 62,40 80,62 82,17 52,32
RF 62,79 57,75 63,95 63,56 55,42
SVM 93,20 63,17 71,31 75,19 53,87
DT 43,92 49,22 48,22 48,06 55,03
KNN 61,24 63,56 72,13 72,03 99,70
XBooST 71,05 70,54 70,54 70,54 70,54
NVB 74,41 63,17 59,68 74,67 54,26
LR 79,32 70,54 79,45 80,62 50,77

Table 3.2: Accuracy Table for LFW.

benefits, such as improved representation learning and noise reduction, along with challenges like the

loss of non-linear patterns and increased computational overhead.

3.5.2 LDA-AutoEncoder

The LDA-AutoEncoder technique combines Linear Discriminant Analysis (LDA) and AutoEncoders

to capitalize on the strengths of supervised and unsupervised dimensionality reduction. The algorithm

involves initiating dimension reduction with LDA, followed by an AutoEncoder-based reduction on

the LDA-derived data. This approach aims to preserve discriminative information while capturing

non-linear patterns, offering advantages such as improved feature extraction and enhanced robustness

to noise.

The LDA-AutoEncoder algorithm, presented in Algorithm 2, outlines the steps of this combined

technique. The advantages and disadvantages include preservation of discriminative information,

reduced overfitting, and improved generalization, along with challenges like increased computational

overhead and difficulty in interpretation.

3.5.3 Experimental Validation

To assess the effectiveness of the proposed hybrid dimension reduction techniques, we conducted

empirical validation on facial recognition tasks using two benchmark datasets: Olivetti Faces and

Labeled Faces in the Wild (LFW). Classification accuracy results for various machine learning models,

including Multi-Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM),

Decision Tree (DT), k-Nearest Neighbors (KNN), XGBoost (XBooST), Naive Bayes (NB), and Logistic

Regression (LR), were obtained and compared across different dimensionality reduction techniques.

Tables 3.1 and 3.2 present the maximum accuracy percentages achieved by each method on the Olivetti

Faces and LFW datasets, respectively. Additionally, Figures 3.21 to 3.27 provide visual representa-

tions of the results, allowing for a more intuitive analysis.

Furthermore, our comprehensive experiment underscores the efficacy of our innovative dimension

reduction techniques, PCA-Auto-Encoder and LDA-Auto-Encoder, showcasing their superior perfor-

mance in face recognition. In contrast to traditional approaches like PCA, LDA, and Auto-Encoder,

our methods exhibit heightened accuracy and efficiency on olivetti dataset in general and in the case

of LFW dataset it outperform wit KNN model, marking a significant advancement in the realm of
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dimension reduction for facial recognition applications.

Figure 3.19:
Some saples of ollivetti dataset

3.6 Conclusion

Conclusively, our in-depth investigation into hybrid dimension reduction techniques, particularly PCA-

AutoEncoder and LDA-AutoEncoder, unequivocally establishes their superiority in elevating the per-

formance of facial recognition systems. Through rigorous empirical validation on benchmark datasets,

the inherent advantages of these techniques stand out when compared to traditional methods such as

PCA, LDA, and AutoEncoder.

The detailed analysis of accuracy results, coupled with a nuanced exploration of the strengths and

limitations of each technique, presents invaluable insights for both researchers and practitioners within

the field of facial recognition. The proposed hybrid approaches not only address current challenges

but also open up promising avenues for future advancements in dimensionality reduction techniques,

suggesting potential applications that extend beyond the realm of facial recognition
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Figure 3.20:
Classes Ballance of the ollivetti Dataset

Figure 3.21: Accuracy percentage of machine learning classification on LFW after PCA for DR
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Figure 3.22:
Accuracy percentage of machines learning classifications on Olivetti after PCA and AE for DR

Figure 3.23:
Accuracy percentage of machines learning classifications on Olivetti after AE for DR
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Figure 3.24:
Accuracy percentage of face recognition classification on Olivetti dataset with PCA for DR

Figure 3.25:
Accuracy percentage of face recognition classification on Olivetti dataset with LDA for DR
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Figure 3.26:
Accuracy percentage of face recognition classification on Olivetti dataset with LDA and AE

for DR

Figure 3.27:
Accuracy percentage of face recognition classification on Olivetti dataset with LDA and AE

for DR
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Chapter 4

Tensor decomposition with face

recognition

4.1 Introduction

Most of the traditional machine learning models that have been used for facial recognition are getting

their mathematics structure from linear algebra, taking in consideration that the person identity is

the only factor that are supposed to variate. But in the real face recognition scenario, one has to come

across other variations such as view angle, lightning, face pose, face expression and so forth. One then

has that face recognition can come across many complexity factors. Hence making face recognition a

multiple analysis problem, therefore, requesting someone to think above the linear algebra perspective.

This multidimensional perspective challenge is not restricted only to face recognition, since big data

have become a reality in most applications. In the abstract of [17] one can read: ”The widespread use

of multi-sensor technology and the emergence of big data has highlighted the limitation of standard

flat-view matrix models and the necessity to move towards more versatile data analysis tools.” Hence,

this leaded to our research of alternative method to improve the traditional linear algebra or neural

network technique on facial recognition that we presented in the previews chapters.

One mathematics alternative to this problem is Multilinear algebra which has a potential to disentan-

gle constituent factors that can be found in some face data, this was stated by Vasilescu and Demetri

in [72] in their introduction as: mulltiinear algebra, the algebra of higher-order tensors, has a poten-

tial mathematics framework for analysing ensembles of images resulting from the interaction of any

number of underlying factors.

Using multilinear algebra which is the algebra of higher-order matrix, one will be offered with power-

ful and sophisticated tools to approach a multi factor model of representation of images. The Higher

Order Singular Value Decomposition(HOSVD) algorithm for face recognition makes use of third order

tensor which from multilinear algebra property can provide us with the possibility for improvement.

Using the mathematical property of the HOSVD one may be able to make an impact on the image

processing problem and in particular with face recognition algorithm.

In what follows, we will dive into the concept of HOSVD which is one among many tensor decom-

65
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position techniques(works on tensor decomposition can be found in [9, 12, 19, 38, 42, 45, 65, 72]).

We use the HOSVD to address the multi factor challenge of face recognition. We first give some

basic concepts an definition of tensor, secondly we discuss some mathematical tools useful for our

decomposition, then we explain how we construct HOSVD. We also explain how we use HOSVD to

do dimension reduction and lastly we introduce the application of HOSVD on facial recognition.

4.2 Tensor definition

To work with multi factors data, one needs to understand the concept of tensor which is very important

in big data. We will now provide some definitions in the area of tensor with some mathematics concepts

that will be used for HOSVD.

Definition 7 A tensor is a multidimensional array of data where its elements are referred by using

multiple indexes: A ∈ CI1×I2×···×IN .

It is worth noticing that a tensor of order 1 is a vector and a tensor of order 2 is a matrix. So when

dealing with order above two, we will need more than linear algebra to manipulate the given tensor.

As we always find the norm of two vectors it is important to understand how one can find the norm

of two tensors. This is done with the help of the Frobenuis norm.

Definition 8 The scalar product of two tensors is given by:

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

bi1,i2,··· ,iNai1,i2,··· ,iN .

We compute the Frobenuis norm by:

||A|| =
√
〈A,A〉.

Definition 9 [51] Let A ∈ CI1×I2×···×IN be an Nth-order tensor. The n-th matrix unfolding of A is

A(n) ∈ CIn×(In+1In+2···IN I1I2···In−1) which contains the element ai1i2···iN at the position with row in and

column number equal to

(in+1 − 1)In+2In+3 · · · INI1I2 · · · In−1

+ (in+2 − 1)In+3In+4 · · · INI1I2 · · · In−1

+ · · ·+ (iN − 1)I1I2 · · · In−1 + (i1 − 1)I2I3 · · · IN−1

+ (i2 − 1)I3I4 · · · In−1

...

+ in−1.

These are some examples of an order-3 tensor matrix unfolding.

Let A ∈ C3×2×3, we have:
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1. Unfolding 1

A1 =

 a111 a112 a113 a121 a122 a123

a211 a212 a213 a221 a222 a223

a311 a312 a313 a321 a322 a323

 .
2. Unfolding 2

A2 =

[
a111 a112 a113 a211 a212 a213 a311 a312 a313

a121 a122 a123 a221 a222 a223 a321 a322 a323

]
.

3. Unfolding 3

A3 =

 a111 a121 a211 a221 a311 a321

a112 a122 a212 a222 a312 a322

a113 a123 a213 a223 a313 a323

 .
Definition 10 [32] The n-mode product of a tensor A ∈ CI1×I2×···×IN by a matrix U ∈ CJn×In

denoted by A×n U is an (I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN )-tensor of which the entries are

given by:

(A×n U)i1i2···in−1jnin+1···iN =

In∑
in=1

ai1i2···in−1inin+1···iNujnin .

4.3 Bilinear maps

Going forward, we need to understand the mathematical concept of bilinear map since tensor decom-

position can be viewed as a bilinear manipulation. Hence we give some definition and details on this

concept.

Definition 11 [32]

Let U , V and W be three vector spaces over a field K, a map f : U × V →W is said to be bilinear if

and only if for any u ∈ U , v ∈ V and λ ∈ K :

f(u1 + λu2, v) = f(u1, v) + λf(u2, v);

f(u, v1 + λv2) = f(u, v1) + λf(u, v2).

Usually, the set Bil(U, V,W ) represents the vector space of all bilinear maps f : U × V →W .

Definition 12 Let V be any subspace over a field K, its dual space is the set of all linear maps

ϕ : V → K and we denote it by V ∗.

One can also note that if the dual space V ∗ is fitted with the addition and scalar multiplication:

(ϕ+ ψ)(x) := ϕ(x) + ψ(x);

(kϕ)(x) := kϕ(x),

then, it is also a vector space.
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Definition 13 [22]

The rank of the bilinear map f : U × V →W is the smallest non-negative integer r such that

f(u, v) =
r∑
i=1

xi(u)yi(v)zi,

with xi ∈ U∗, yi ∈ V ∗ and zi ∈W for i = 1, · · · , r. We write R(f) = r.

In the tensor manipulation, one will write

F =
r∑
i=1

xi ⊗ yi ⊗ zi ∈ U∗ ⊗ V ∗ ⊗W.

Note that when we set I as the identity of W , we have the equality:

F (u⊗ v ⊗ I) = f(u, v).

4.3.1 Tensor products of bilinear maps

Given two bilinear maps fi : Ui × Vi → Wi, i = 1, 2 where U, V,W are finite dimensional K−vector

spaces. And taking into consideration the canonical isomorphism that was defined in[32] by:

Bil(U1, V1;W1)⊗Bil(U2, V2;W2) ∼= U∗1 ⊗ V ∗1 ⊗W1 ⊗ U∗2 ⊗ V ∗2 ⊗W2;

∼= U∗1 ⊗ U∗2 ⊗ V ∗1 ⊗ V ∗2 ⊗W1 ⊗W2;

∼= (U∗1 ⊗ U∗2 )⊗ (V ∗1 ⊗ V ∗2 )⊗ (W1 ⊗W2);

∼= (U1 ⊗ U2)∗ ⊗ (V1 ⊗ V2)∗ ⊗ (W1 ⊗W2);

∼= Bil((U1 ⊗ U2), (V1 ⊗ V2);W1 ⊗W2).

The bilinear map f1 ⊗ f2 ∈ Bil(U1, V1;W1)⊗Bil(U2, V2;W2) can be defined by

f1 ⊗ f2 : (U1 ⊗ U2)× (V1 ⊗ V2)→W1 ⊗W2.

Note that this can be uniquely determined by

(f1 ⊗ f2)(x1 ⊗ x2, y1 ⊗ y2) = f1(x1, y1)⊗ f2(x2, y2).

f1 ⊗ f2 is called the tensor product of f1 and f2 [[22] pp 41]. When taking into consideration the

definition of the tensor of a bilinear map, we have that:

fi(xi, yi) =

R(fi)∑
ρ=1

u(i)
ρ (xi)v

(i)
ρ (yi)w

(i)
ρ (i = 1, 2),

then from [32] , we have

f1(x1, y1)⊗ f2(x2, y2) =

R(f1)∑
ρ=1

R(f2)∑
σ=1

(
(u(1)
ρ (x1)u(2)

σ (x2)v(1)
ρ (y1)v(2)

σ (y2)
)
w(1)
ρ ⊗ w(2)

σ

= (f1 ⊗ f2)(x1 ⊗ x2, y1 ⊗ y2);
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Which then lead us to the following proposition.

Proposition 1 The rank of a tensor product is less or equal to the product of the rank.

R(f1 ⊗ f2) ≤ R(f1) ·R(f2)

We can now give the following definition and proposition.

Definition 14 We say that a bilinear map is concise when the following conditions hold.

1. The left kernel

{u ∈ U | f(u, v) = 0 ∀v ∈ V } = {0}.

2. The right kernel

{v ∈ V | f(u, v) = 0 ∀v ∈ V } = {0}.

3. Span

{f(u, v), u ∈ U, v ∈ V } = W.

Proposition 2 [32]

If a bilinear map f : U × V →W is concise, then R(f) ≥ max(dim(U), dim(V ), dim(W )).

Proof.

We do this by contradiction

Suppose f(u, v) =

r(F )∑
i=1

xi(u)yi(v)zi

 ,

where xi ∈ U∗, yi ∈ V ∗ and zi ∈W . If R(f) < dim(U), then {x1, x2, · · · , xr(F )} does not form a basis

for U∗. Hence ∃u 6= 0 such that xi(u) = 0 for all xi. Hence the left kernel of f will be non-zero. This

contradicts the first condition of conciseness. Hence proving the left kernel condition.

One can use similar argument with V to prove R(f) ≥ dim(V), which is the right kernel condition.

Now let us prove the third condition which deals with the span.

Suppose R(f) < dim(W ), hence the dimension of the image of f(u, v) will be less than the dimension

of the space W . Hence our span condition is contradicted.

The proof is completed.

♣

All these concepts are part and parcel for the minimum rank approximation which are crucial for

tensor decomposition.

4.4 Higher Order Singular Value Decomposition (HOSVD)

The tensor unfolding, together with the singular value decomposition(SVD) which is one of the or-

thogonal matrix decomposition are the tools that one needs to understand for the construction of

HOSVD.
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Given a A, m× n matrix over R, we define its singular value decomposition (SVD) by

A = UΣV T .

Here, U is a m × m and orthogonal matrix, while V is a n × n and orthogonal matrix, and very

importantly,
∑

= diag(σ1, σ2, · · · , σr) is a ”diagonal” matrix whom the σi are in descending order.

One can also use the croneker product with U , V and the ei,k basis matrix to do a second order tensor

decomposition of A as

A =
r∑
j=1

σj(Uej,m)⊗ (V ej,n)T .

Note that here r is the number of non-zero singular values of A which represent the rank of A.

This equation is a minimum rank tensor decomposition of A.

Now, let construct the HOSVD.

Definition 15 [51] The Higher Order Singular Value Decomposition is computed by

A = S ×1 U(1) ×2 U(2) ×3 · · · ×n U(n),

where A is a n-th order tensor and U(j)(j = 1, · · · , n) are orthogonal matrices.

While this definition recaptures many properties of the singular value decomposition, it is important

to note that higher order singular value decomposition does not necessarily provide a decomposition

with minimal rank.

The HOSVD computation in practice can be done as follow:

1. Unfolding matrices:

Compute the matrix unfolding Ak for k ∈ [1, N ]

2. Singular value decomposition:

Do the singular value decomposition of j-th unfolding A(n) of A for all n ∈ [1;N ] and save the

U (j) for each of them.

3. Core tensor:

Find the core tensor S by computing:

S = A×1 U
(1)H ×2 U

(2)H ×3 · · · ×n U (n)H .

4. Final tensor decomposition computation:

Now with all these, compute the HOSVD as defined above by:

A = S ×1 U(1) ×2 U(2) ×3 · · · ×n U(n).

4.4.1 Similarity of HOSVD SVD

Some properties of the singular values σj of A have analogues for the tensor S of A.
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Proposition 3 For any α, β; then, Sik=β and Sik=α are orthogonal for all possible values of k ∈ [1;n],

α and β provided that α 6= β. Here orthogonality is in the usual Euclidean sense.

Proof. The Euclidean inner product 〈Sin=α,Sin=β〉 is given by

〈Sin=α,Sin=β〉 (4.1)

=
∑
i1

∑
i2

· · ·
∑
ik−1

∑
ik+1

· · ·
∑
in

∑
jk

Si1,i2·α···inS∗i1,i2···β···in (4.2)

=
∑
i1

∑
i2

· · ·
∑
ik−1

∑
ik+1

· · ·
∑
in

∑
jk

(
A×1 U

(1)T ×2 U
(2)T · · · ×k U (k)T · · · ×n U (n)T

)
i1,i2,··· ,α,··· ,in

(4.3)

×
(
A×1 U

(1)T ×2 U
(2)T · · · ×n U (n)T · · · ×N U (N)T

)∗
i1,i2,··· ,β,···in

(4.4)

=
∑
i1

∑
i2

· · ·
∑
ik−1

∑
ik+1

· · ·
∑
in

∑
jk

(
ai1,i2,··· ,inU

(1)T

j1i1
U

(2)T

j2i2
· · ·U (n−1)T

Jn−1in−1
U

(n)T

jnα
U

(k+1)T

jk+1ik+1
· · ·U (n)T

jnin

)
(4.5)

×
(
a∗i1,i2,··· ,iNU

(1)
j1i1

U
(2)
j2i2
· · ·U (n−1)

Jn−1in−1
U

(n)
jnα

U
(n+1)
jn+1in+1

· · ·U (N)
jN iN

)
(4.6)

=
∑
i1

∑
i2

· · ·
∑
in−1

∑
in+1

· · ·
∑
iN

∑
jn

ai1,i2,··· ,iNa
∗
i1,i2,··· ,iNU

(1)T

j1i1
U

(1)
j1i1

U
(2)T

j2i2
U

(2
j2i2
· · · (4.7)

U
(n−1)T

jn−1in−1
U

(n−1)
jn−1in−1

U
(n)T

jnα
U

(n)
jnβ
· · ·U (N)T

jN iN
U

(N)
jN iN

(4.8)

Since U (n) are orthogonal for all n, we have:
∑

jn
U

(n)T

jnα
U

(n)
jnβ

= 0 for all α 6= β. Hence 〈Sin=α,Sin=β〉 =

0 for all α 6= β.

Let:

W (n) =
(
U (n−1) ⊗ · · · ⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (n−1)

)T
V (n),

since U (n) And V (n) are orthogonal matrices for all n, it follows that W is an orthogonal matrix.

Now we write

W =


W (1)

W (2)

...

W (N)

 ,
where W (i) for all i are the row vectors. First we find that:

vec

[
eTα,InΣ(n)

(
U (n+1) ⊗ ...⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (n−1)

)T
V (n)

]T

= vec

[
eTα,In

n∑
W

]
;

= vec
[
σ(α)W

(α)
]T

;

= σ(α)vec
[
W (α)

]T
;

= σ(α)W
(α)T .
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In the similar way, we have:

vec

[
eTβ,In

n∑(
U (n+1) ⊗ ...⊗ U (N) ⊗ U (1) ⊗ ...⊗ U (n−1)

)T
V (n)

]T
= σ(α)W

(β)T .

♣
One has the same proposition for the SVD since any two columns of the singular diagonal are all

orthogonal.

Proposition 4 Similar to the decreasing order of singular values in the SVD, we find the decreasing

order

||Sik=1|| ≥ ||Sik=2|| ≥ ... ≥ ||Sik=n|| ≥ 0,

for all k ∈ [1;n], for the HOSVD.

This can then give us the room to use HOSVD for dimension reduction.

4.5 HOSVD and Dimension Reduction

When dealing with big data, the likelihood of having these stored as a tensor is very high. Hence one

will need to do some preprocessing tensor decomposition work on those type of data before performing

the initial task on hand. We will be interested on using the HOSVD to perform dimension reduction.

This can be very helpful to reduce the space for the storage, to accelerate the running time of the

algorithm and sometimes the performance of the algorithm. Some previous research have been done

on this before [47, 76, 4, 61].

The goal of dimension reduction using HOSVD is to approximate a higher-dimensional tensor with

a lower-dimensional representation while preserving as much as possible, the important information.

This is achieved by retaining a subset of the most important modes and their associated factors.

Let us consider a tensor A of dimension I × I × ...× In, where n is the number of dimensions. In the

previous sections, we saw that HOSVD factorizes this tensor as:

A = S ×1 U(1) ×2 U(2) ×3 · · · ×n U(n),

where:

S is the core tensor of dimensions R×R×· · ·×Rn (where RiIi), representing the interactions between

the factors.

U, U, · · · , Un are orthogonal matrices of dimensions Ii×Ri, capturing the mode-specific information.

One may well use this equation to perform some dimension reduction in the tensor A ether by reducing

the dimension of the core tensor S or by reducing the dimension of each factor matrix Ui.

4.5.1 Reducing the core tensor

To perform the dimension reduction of a tensor by reducing the dimension of the core tensor, we have

to decrease the number of interactions captured between factor matrices. This can be done by fixing

the limit value for all Ri by setting Ri ≤ Ii for all i. Since the core tensor is obtained from the Ui

which are from the ith mode matrix unfolding.
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This reduces the complexity of the decomposition, and results in a more compact representation of

the data.

4.5.2 Reducing the dimension of the factor matrix

By reducing the dimensions of one or more factor matrices, we capture fewer features from certain

modes, effectively reducing the dimensionality of the tensor. For example, if we set Rk ≤ Ik for some

k, the mode-k factor matrix captures fewer features, leading to dimension reduction.

The challenge lies in selecting the appropriate dimensions to reduce while minimizing information loss.

One common approach is to choose the top-k largest singular values for a certain mode’s factor matrix.

This retains the most important features in that specific mode. Hence leading to the most important

information for that specific mode.

It is worth noticing that the degree of dimension reduction affects the quality of approximation.

We use Frobenius norm of the difference between the original tensor A and the reconstructed tensor

Â as an approximation error metric.

4.5.3 Dimension reduction with HOSVD for face images

Taking a dataset of face images with multiple factor parameter, we load these face images in a tensor

and use HOSVD to perform dimension reduction in these images.

Now your dataset consists of face images, represented as a tensor A of dimensions N ×H ×W , where

N is the number of images, and H and W are the height and width of the images.

We use HOSVD to factorize the face image tensor by:

A = S ×1 U2 ×2 U2,

with:

S been the core tensor capturing inter-mode relationships.

U been the factor matrix for the mode-1 (N) interactions.

U being factor matrix for the mode-2 (H ×W ) interactions.

As we have demonstrated above, we can use this decomposition to do the reduction. One may do this

by reducing the dimension of the core tensor S which will give a compact representation and reduce

the complexity of the decomposition of the face images. The other way is to reduce the complexity of

one or more mode.

In our case we use PCA in the Ui. For example, we apply PCA to the columns of U1 and/or U2, to

retain the top-k principal components. Then use this to do the projection into the original tensor and

find the approximation data.

4.6 HOSVD and face recognition

HOSVD can be very useful when we come across face recognition with the challenge of face variation,

Which under normal situation will be the case.
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In what follows, we will consider the situation where we are given a dataset of face images under

variation of face pose, illumination and expression.

Our aims are to set this data as a tensor of images and use tensor decomposition in our case HOSVD

to undergo a full process of face recognition.

We realise that when dealing with variations in face pose, illumination, and facial expressions, rep-

resenting face images as a tensor, will be more complex. Applying Higher-Order Singular Value

Decomposition (HOSVD) for face recognition with these variations has to be subdivided in many

process.

4.6.1 Data Representation

The tensor face image now includes multiple modes: N (number of images), H (height),W (width), P

(pose), I (illumination), and E (expression). The tensor dimensions would be N×H×W ×P ×I×E.

Hence, our face images are going to be loaded in a tensor with dimension N ×H ×W × P × I × E

4.6.2 Factorization

HOSVD Factorization:

Apply HOSVD to factorize the complex tensor face image:

A = S ×1 U1 ×2 U2 ×3 U3 ×4 U4 ×5 U5 ×6 U6,

with S the Core tensor capturing inter-mode relationships and

U1, U2, · · · , U6 the factor matrices for each mode (N , H, W , P , I, E) interactions.

4.6.3 Dimension Reduction

Using dimension reduction technique PCA in the factor matrices U4, U5, and U6 we can handle

variation in pose, illumination and expression.

This helps in retaining the most dominant variation within each mode.

We do this by choosing to retain the top-k principal components in each factor matrix.

4.6.4 Reconstruction

Before diver in to the recognition, one have to use the reduction factor matrices to reconstruct the

tensor. We do this with the equation:

Â = Ŝ ×1 Û1 ×2 Û2 ×3 Û3 ×4 Û4 ×5 Û5 ×6 Û6

where Â is the new tensor.

Using the reduced core reduced tensor Ŝ and reduced factor matrices Û1, Û2, · · · , Û6.

4.6.5 Recognition

Now one can apply face recognition machine learning model to the reconstructed tensor to do the

classification.
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Then, we are able to load any given data set of faces as a tensor of face images of which any mode

represents a specific variation (pose, facial expression, illumination just to name some of them), we

can well apply a HOSVD on it and use a projection to perform a better recognition rate.

Hence, with the groundwork laid, we can now delve into the intricacies of developing a robust face

recognition algorithm utilizing the power of High-Order Singular Value Decomposition (HOSVD).

This sophisticated technique offers a multi-dimensional approach to analysing facial data, enabling us

to extract meaningful features for recognition with enhanced accuracy and efficiency.

Algorithm 3 HOSVD for Face Recognition

1: procedure FaceRecognition(HOSVDFaceRecognition)
2: Input: multi factors face Dataset
3: Output: RecognitionModel
4: Data Preparation:
5: load the face images in a tensor.
6: Mode Unfolding:
7: Unfold the tensor along each mode to create matrices.
8: HOSVD Decomposition:
9: Apply HOSVD to the tensor.

10:

HOSVD(Tensor X)⇒ {U1, U2, . . . , UN , S}

11: Dimension Reduction:
12: Select a rank Rn for each mode.
13:

U∧n = Un(:, 1 : Rn), S∧ = S(1 : R1, 1 : R2, . . . , 1 : Rn)

14: Recognition Model:
15: Use reduced-rank factor matrices and the core tensor.
16:

Faceirepresentation = U1∧ · U2∧ · . . . · Un∧ · S∧

17: Recognition:
18: For face recognition, compare representations of the test face with those of known faces

in the reduced space.
19: Evaluation:
20: Evaluate the recognition accuracy.
21: end procedure
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Chapter 5

Machine Learning Classification

Methods and Metrics evaluation

5.1 Introduction

One of the fundamental aspects of facial recognition systems is their ability to classify and identify

individuals accurately. This chapter, focus on traditional machine learning classification techniques

applied to facial recognition as well as their evaluation metrics.

Traditional machine learning methods have long been the cornerstone of facial recognition systems,

providing robust and interpretable solutions. We will be interested on a diverse set of classification

algorithms, each with its unique strengths and characteristics. From linear models to probabilistic

approaches and ensemble methods, we aim to provide a comprehensive understanding of the landscape

of traditional machine learning techniques and their application in facial recognition scenarios.

Assessing the performance of different classification models in machine learning requires a careful

consideration of various evaluation metrics. In the second part of this chapter, we exploit the mathe-

matics, advantages, and disadvantages of key machine learning evaluation metrics commonly applied

to facial recognition tasks.

5.2 Classification methods

The aims of any facial recognition application is to be able to identify an unknown face from a dataset.

This task requires from a machine learning practitioner either to develop or to use a traditional clas-

sification technique. Here we will be interested on existing traditional machine learning classification

models. Table 5.1 provides us with some of these models.

Moving forward, we will discus linear models such as Logistic Regression, Support Vector Machines

(SVM), and Linear Discriminant Analysis (LDA). These models form the foundation of many facial

recognition systems, leveraging mathematical principles to delineate boundaries between different fa-

cial features.

Moving beyond linearity, we will be interested on nearest neighbour models especially K-Nearest

Neighbors (KNN). This algorithms rely on the proximity of data points to make predictions, offering

77
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Group Classification Techniques
Linear Models Logistic Regression, Support Vector Machines (SVM),

Linear Discriminant Analysis (LDA)
Nearest Neighbor Models K-Nearest Neighbors (KNN)
Tree-Based Models Decision Trees, Random Forest, Gradient Boosting Al-

gorithms (e.g., XGBoost, AdaBoost)
Probabilistic Models Naive Bayes
Neural Network Models Multilayer Percetron

Table 5.1: Different Classification Techniques.

simplicity and effectiveness in facial recognition tasks.

Tree-based models, including Decision Trees, Random Forest and XGBoost Algorithms, present a

powerful framework for capturing complex relationships within facial data. These ensembles of meth-

ods leverage the collective intelligence of multiple learners to enhance classification accuracy.

We also explore probabilistic model such as Naive Bayes, which provides insight into the statistical

foundations of facial recognition. Additionally, we discuss the application of neural network models,

Multilayer Perceptron.

5.2.1 Logistic Regression

Logistic Regression(LR) is a supervised learning technique that establishes a nonlinear relationship

between training instances and their known labels [83]. Logistic regression is an older machine learning

algorithm that has garnered significant attention from researchers due to its various applications. This

algorithm has been used in the context of facial recognition problems in [71, 33] and [83]. Below we

describe how logistic regression works with its mathematics details.

Given a dataset D of images with each image of size M ×N pixels, we will have M ×N features.

Let’s denote the feature vector for a single image as x = (x1, x2, . . . , xM ·N ).

The logistic regression model then estimates the probability that an input image belongs to the positive

class (contains a face). This probability is calculated using the logistic (sigmoid) function:

P (y = 1|x) =
1

1 + e−z
.

Here, P (y = 1|x) represents the probability that the image x contains a face, and z is the linear

combination of the features and model parameters:

z = w0 + w1x1 + w2x2 + . . .+ wM ·NxM ·N .

In the above equation, w0 is the bias term, and w1, w2, . . . , wM ·N are the weight parameters associated

with each feature.

The goal during the training phase is to find the optimal values for the weight parameters w that

minimize the logistic regression model’s error. This is typically done by minimizing the cross-entropy

loss (log loss) over the training dataset:
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J(w) = − 1

m

m∑
i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
Here, m is the number of training examples, y(i) is the true label for the i-th training example, ŷ(i)

is the predicted probability that y(i) = 1 given the features x(i), and w are the weights of the logistic

regression model.

The optimization algorithm (e.g., gradient descent) is used to find the values of w that minimize J(w).

After training, you can use the trained logistic regression model to make predictions on new, unseen

images. For a given input image, you calculate the probability

P (y = 1|x)

using the model. If this probability is greater than a threshold (α), you classify the image as containing

a face (1); otherwise, you classify it as not containing a face (0).

5.2.2 Support Vector Machine

The acronym SVM stands for Support Vector Machine. This is a supervised machine learning model

widely used for classification problems, although it can also be applied to specific regression problems.

This algorithm creates a decision boundary line or hyperplane that segregates the dataset into n-

classes in a way that allows any new data point to be easily assigned to the correct class.

This is achieved by identifying the extreme points (vectors) that assist in creating the hyperplane.

These extreme points are referred to as support vectors.

Using the structural risk method, one can find the optimal line that separates the classes. This optimal

line is determined through a combination of the weighted elements of the data.

The hyperplane is described by the equation:

WZ + b = 0

with

W =
∑
i=1

NSαiyiSi,

where we have NS support vectors, denoted as Si, αi as the weighted coefficient, and b as the constant

term. Note that our data is in the form of Xi, yi, with Xi being the training data, and yi = −1 or

yi = 1 representing the label.

Given a dataset of N face images, each image, say Xi, can be represented as a vector. Now, consider

that we have P different persons; we can view this as a P -class problem. Fortunately, using the

principle of one versus all, we can assume this is a binary classification problem where one class

consists of a set of images of the same person, and the other class includes the images of the remaining

people. We can then build P hyperplanes for the P different individuals. These hyperplanes can assist

in face recognition, as they can be used as classifiers.
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5.2.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a machine learning algorithm widely used for multi-class data

classification problems. It can be compared to logistic regression, which is a popular machine learning

algorithm for single-class classification. For a detailed comparison of these algorithms, one can refer

to [15] and [18].

LDA is also widely used for visualization problems. Lastly, it is one of the popular supervised machine

learning algorithms for dimensionality reduction. LDA techniques for dimensionality reduction are

applied in many fields, such as biometrics, bioinformatics, and chemistry, to name just a few.

Formulation of LDA for face recognition:

Let’s consider a dataset of N images x1, x2, · · · , xN with p classes y1, y2, · · · , yP . We can derive the

following information from the dataset.

1. The mean of each class

µi =
1

Ni

Ni∑
k=1

xk,

where Ni is the number of images in class i and xk are the images of the class i.

2. The mean of all dataset

µ =
1

N

N∑
k=1

xk.

3. Scatter Matrices

For class i we have

Si =

Ni∑
k=1

(xk − µi)(xk − µi)T .

Within class scatter is given by

Sw =

p∑
i=1

Si.

Between class scatter is given by

Sb =

p∑
i=1

Ni(µi − µ)(µi − µ)T .

Our goal now is to find the projection, denoted as W , which will transform any x ∈ Rm into a new

space z ∈ Rn. This can be expressed by the equation:

z = W Tx.

We can now have a new within class scatter and between class scatter as: SB = W TSbW and

SW = W TSwW . The optimal of our projection can then be defined as:

Wopt = argmaxW
|SB|
|SW |

(5.1)

= argmaxW
|W TSBW |
|W TSWW |

. (5.2)

(5.3)
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By introducing Lagrange multipliers, we will have a generalized eigenvector problem with the following

equation:

SBWi = λiSWWi.

5.2.4 K-Nearest Neighbour

K-Nearest Neighbor (KNN) is a machine learning algorithm that is used for both regression and clas-

sification. Like the Decision Tree, it is a non-parametric algorithm.

As we discussed previously, if X is the dataset comprising N images, we can represent each image Xi

as a vector as follows:

Xi =


x1

x2

...

xn

 .
Since KNN use the euclidean distance as the metric, let find the distance of two images Xi and Xj .

d(Xi, Xj) =

√√√√ n∑
k=1

(
xik − x

j
k

)2
.

Given any image, we need to find its nearest neighbors in the dataset. We do this by fixing the number

of neighbors that need to be saved for any image. This number is represented by K, hence the name

K-Nearest Neighbor. Note that:

1 ≤ K ≤ N

Now that we can find the K nearest neighbors of each given image, we can use this to determine the

class to which the image belongs and, consequently, perform face recognition. The class we select is

the one that is dominant among the nearest neighbors that were selected.

Note that, as far as the choice of K is concerned, it is always recommended to choose an odd number

for K.

5.2.5 Decision Tree

Decision Tree is a supervised machine learning model that can be used for regression, binary classifi-

cation, as well as multi-class classification problems. Due to the fact that Decision Trees don’t require

any assumptions about the distribution of the independent variables or the functional relationships

between them, one can view the Decision Tree model as a non-parametric algorithm.

We formulate Decision Trees as follows: Let xi ∈ Rni = 1, · · · , p be any training vector and y ∈ Rp

be a target vector associate with it.

A decision tree algorithm will recursively partition the feature of space in such a way that samples

with same target values are put together.

Now, suppose the data at node m is represented by Qm, and it has nm samples. A tree consists of

splitting any candidate θ = (y, tm) where y is considered as a feature and tm is the threshold at node

m into Qleft
m (θ) and Qright

m (θ) subsets. Typically, this is done with the decision boundary or threshold

as follows:

Qleftm (θ) = (x, y)|xy ≤ tm;
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Qrigtm (θ) = (x, y)|xy ≥ tm.

We use an impurity function, denoted as H(), to compute the quality of a candidate split. This

function is influenced by θm and the type of problem to be solved (regression or classification). It can

be defined as

G(m, θ) =
nleftm

nm
H(Qleftm (θ)) +

nrightm

nm
H(Qrightm (θ)).

To optimize this, one has to choose the parameter that minimizes the impurity:

θ∗ = argminθG(Qm, θ).

This is done recursively for any subset Qleftm (θ∗) and Qrigthm (θ∗) until we reach the maximum depth(

nmin ≤ minsample or nm = 1 ).

In our case, we are dealing with a classification problem; hence, the outcomes are taken from values

0, 1, · · · , k − 1. For node m, we have:

Pmk =
1

mn

∑
y∈Qn

I(y = k),

as the proportion of class k observation in node m. If m is the terminal node, predict-probability for

this region is set to pmk.

We usually use one of these two impurity measures:

GINI:

H(Qm) =
∑
k

pmk(1− Pmk).

log loss or Entropy:

H(Qm) = −
∑
k

Pmklog(Pmk).

5.2.6 Random Forest

Random Forest (RF) is a supervised machine learning algorithm that shares the same fundamentals

as decision trees. This algorithm constructs different decision trees on different samples and takes a

majority vote to make classifications.

So, basically, given an image dataset D, RF works as follows:

1. Randomly split the data in to K subset.

2. Built decision trees in all the K subsets. We choose the feature that best separate the data base

on some criterion such as GINI impurity or entropy.

3. Select the number of decision that you going to built

4. Repeat step 1 and 2.

5. Make the prediction with a new image using the majority vote principle on the multi decision

trees.

Mathematically, this how the process can be describe.
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1. Gini Impurity: Gini impurity measures the degree of disorder in a dataset. For a dataset D

with K classes, the Gini impurity (Gini(D)) is calculated as:

Gini(D) = 1−
k∑
i=1

(pi)
2

Where pi is the proportion of samples in class i in dataset D.

2. Entropy: Entropy measures the level of uncertainty or disorder in a dataset. For a dataset D

with K classes, the entropy (Entropy(D)) is calculated as:

Entropy(D) = −
k∑
i=1

pilog2(pi)

Where pi is the proportion of samples in class i in dataset D.

3. Feature Selection: At each node of the decision tree, the algorithm selects the feature that

minimizes the Gini impurity or entropy after the split. The exact formula for these calculations

depends on the chosen criterion.

4. Voting: In the Random Forest ensemble, the final prediction for a test sample is made by

aggregating the results of individual trees. This can be done by taking the mode of the predicted

class labels from all the trees.

5. Bagging: Random Forest uses bootstrapped subsets of the training data to train individual

trees. A bootstrapped sample is created by randomly selecting samples with replacement from

the original dataset.

5.2.7 XGboost

XGBoost, which stands for Extreme Gradient Boosting, is a supervised machine learning method.

This model uses trees to build the classifier. The trees are constructed sequentially in such a way that

tree i reduces the errors of tree i − 1. This means that each tree learns from the previous tree and

updates the residual errors.

We can describe the boosting process as follows:

1. Initialise a model say F0 to predict y given x with a residual say (y − F0(x)).

2. Built a new model h1 which is fitted to the residual of F0.

3. Combining F0 and h1, one then finds the boosted model

F1(x)←− F0(x) + h1(x)

∑(
l
(
yi, ŷ

(t)
i

))
+

t∑
i=1

w (fi) .

We can do the boosting of F1 to obtain F2 by optimising the residual of F1. One can then see that

this process can go on to k iterations and we will have

Fk(x)←− Fk−1(x) + hk(x)
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Note that in our loss function, we use Mean Square Error (MSE), resulting in exponential changes.

Instead of fitting hm(x) to the residual, one can fit it to the gradient of the loss function or the step

along which the loss occurs. This would make the process generic and applicable across all loss func-

tions.

Gradient descent is very helpful when it comes to minimizing differentiable functions. The hk(x)

predicts the mean residual at each terminal node of the tree. For gradient boosting, one computes the

average gradient.

Now, we multiply hk(x) by a factor y, which helps account for the difference in the impact of each

branch of the split. Unlike classical gradient descent, which reduces the error in the output at each

iteration, gradient boosting assists in predicting the optimal gradient for the additive model.

The gradient boosting process is performed as follows:”

1. Initialize F0(x)

F0(x) = argmin
n∑
i=1

L (yi, y)

2. Compute the gradient of the loss function

rik = −α
[
∂ (Lyi , F (xi))

∂F (xi)

]
with α been the learning rate.

3. Feet hn(x) on the gradient obtained at each step.

4. The multiplication factor yn for each terminal mode is derived and the boosted model Fn(x) is

defined

Fn(x) = Fn−1(x) + ynhn(x).

5.2.8 Naive Bayers

Naive Bayes (NB) is a classification machine learning model that is a collection of classification al-

gorithms using Bayes’ theorem. Bayes’ theorem finds the probability of an event occurring given the

probability of another event that has already occurred. The mathematical equation for Bayes’ theorem

is given as:

P (A|B) =
P (B|A)P (A)

P (B)
,

where A and B are events and P (B) 6= 0

In this equation, we are finding the probability of event A knowing that event B is true. Hence, P (A)

is called the prior probability, and P (A|B) is the posterior probability of B.

Now, let’s consider a dataset of face images, denoted as X = (x1, x2, x3, · · · , xn), with labeled classes

y for each person. Bayers theorem can be used as follows to find the probability of each class.

P (y|X) =
P (X|y)P (y)

P (X)
.
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Using the well known probability property of two independent evens A and B define as P (A,B) =

P (A)P (B) on the above equation, we will have:

P (y|(x1, x2, x3, · · · , xn)) =
n∑
i=1

P (y|xi) (5.4)

=

∑n
i=1 P (xi|y)∑n
i=1 P (xi)

. (5.5)

Since the denominator term of the equation will remain constant for all the input, one can remove it

and get a simplify equation as follow

P (y|x1, x2, x3, · · · , xn) ∝ P (y)
n∏
i=1

P (xi|y).

With this, we can now find the probability of any input for all the class variables y. Our classifier is

simply the output with the highest probability, which is expressed by

y = agrmaxyP (y)
n∏
i=1

P (xi|y).

Thus if one can calculate P (y) and P (Xi|y) then our classification problem is solved.

Using the Gaussian Naive bayers classifier, we will have a continuous values associated with each

feature which is assumed to be distributed according to Gaussian distribution. Note that a Gaussian

distribution is also called normal distribution and that his plot gives us a bell shape curve which is

symmetric about the mean of the values.

Assuming that the likelihood of each feature is Gaussian, we can express our conditional probability

with the equation:

P (xi|y) =
1√

2πσ2
y

exp

[
−(xi − µy)2

2σ2
y

]
.

5.2.9 Multilayer Perceptron

Multilayer Perceptron (MLP) is a feedforward artificial neural network that uses backpropagation as

its supervision method. To generate the output, this deep learning algorithm computes the weighted

sum of the inputs plus the threshold weight. The equation is as follows:

zi =
N∑
j=1

wijxj + θi.

Then the output of the neuron is given by Using the sigmoid function as the activation function:

yi =
1

1 + exp(−zi)
.

The first layer is called the input layer, and the last layer is called the output layer. The output of

the first layer is used as the input for the second layer, and its output is used as the input for the

third layer, and so on until the last layer. The layers between the input layer and the output layer

are referred to as hidden layers (in the case of three layers, we only have one hidden layer). Layers

are connected from the lower layer to the upper layer, and there are no connections between neurons
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within the same layer.

Now, let f(x) be the activation function, w0j be the synaptic weight of neuron j in the last hidden

layer to the single output neuron 0, zi be the i-th element of the input vector, z, and wij be the weight

at layer i. The MLP will have the following equation:

F (z, w) = f

∑
k

w0k

∑
jk

f

· · ·
∑

jl

· · ·

 .

5.3 Evaluation Metrics in Facial Recognition

The efficacy of a facial recognition system is not solely determined by its ability to identify indi-

viduals correctly; rather, it extends to the system’s capacity to navigate the intricate landscape of

true positives, false positives, true negatives, and false negatives. As we navigate through the var-

ious evaluation metrics, we will encounter measures that emphasize precision, recall, accuracy, and

discrimination capability. Each metric serves a unique purpose, offering a lens through which we can

scrutinize different facets of a facial recognition model’s performance.

5.3.1 Accuracy:

Facial recognition systems are tasked with the intricate challenge of identifying individuals based on

facial features, making accuracy a pivotal metric in assessing their performance. Accuracy, in the

context of facial recognition, is a fundamental metric that provides a global view of the system’s

correctness. It quantifies the proportion of correctly classified instances relative to the total number

of instances, encapsulating both true positive and true negative predictions.

5.3.1.1 Mathematics of Accuracy

mathematically it is define by:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
.

For better understanding of this, we divide the prediction result in four classes namely:

True Positives(TP) which is the positive classes that are correctly predicted as positive.

False Positives(FP) that is a negative classes that are falsely predicted as positive.

True Negatives(TN) is a negative classes that are correctly predicted as negative. False Nega-

tives(FN)which is positive classes that are falsely predicted as negative.

The accuracy score is then given by the formula:

Accuray =
TP + TN

TP + FP + TN + FN
.

5.3.1.2 Advantage of Accuracy

Accuracy metric has two majeure advantage which are:

1. Intuitiveness
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Accuracy provides an intuitive and easily understandable measure of overall correctness. It

resonates well with stakeholders and non-technical audiences, offering a clear and concise eval-

uation of the system’s performance.

2. Comprehensive View

As a global metric, accuracy offers a comprehensive view of the facial recognition system’s

ability to make correct predictions across all classes. It considers both positive and negative

classifications, providing a balanced perspective.

5.3.1.3 Disadvantage of Accuracy

This metric evaluation also has its on downfall that are:

1. Sensitivity to Class Imbalance

Accuracy may not be suitable for datasets with imbalanced class distributions. In scenarios

where one class significantly outnumbers the others (e.g., a small number of positive instances

in a large pool of negatives), accuracy might be skewed, as the model could achieve high accu-

racy by predominantly predicting the majority class.

2. Limited Information on Misclassifications

While accuracy indicates the overall correctness, it does not provide insights into the types

of errors made by the model. Misclassifications, whether false positives or false negatives, are

treated equally in the accuracy calculation, potentially masking critical aspects of performance.

When interested of the accuracy of positive instances, accuracy metric will not be suitable and hence

forcing one to look at Precision metric which will be the subject of the next section.

5.3.2 Precision:

Precision is a crucial metric in the realm of facial recognition, reflecting the system’s ability to accu-

rately identify positive instances. In the context of facial recognition, precision assesses the proportion

of correctly identified individuals among those predicted as positive. It is particularly valuable when

the cost associated with false positives is high, as precision provides insights into the accuracy of

positive predictions.

5.3.2.1 Mathematics of Precision

Precision is calculated by dividing the number of true positives by the sum of true positives and false

positives. This metric highlights the accuracy of positive predictions and serves as a valuable indicator

of the system’s precision in recognizing individuals of interest. Its formula is

Precision =
TP

TP + FP
.



88CHAPTER 5. MACHINE LEARNING CLASSIFICATIONMETHODS ANDMETRICS EVALUATION

5.3.2.2 Advantage of Precision

Precision has two important advantage that are:

1. Emphasis on Positive Predictions

Precision focuses specifically on positive predictions, making it a targeted metric for evaluating

the accuracy of identified individuals. This is especially crucial in applications where the con-

sequences of false positives are significant, such as security or access control.

2. Useful in Imbalanced Datasets

In scenarios where positive instances (e.g., individuals of interest) are rare compared to the

negative instances (non-matching individuals), precision becomes particularly valuable. It pro-

vides an effective measure of the system’s ability to make accurate positive predictions despite

imbalanced class distributions.

5.3.2.3 Disadvantages of Precision

This metric evaluation also face some challenges like:

1. Neglects False Negatives

Precision does not account for instances where positive individuals are incorrectly classified as

negative (false negatives). In situations where the cost of missing positive instances is high,

precision alone may not provide a comprehensive assessment.

2. Sensitivity to Class Imbalance

Similar to accuracy, precision can be influenced by imbalanced datasets. In cases where the

number of negative instances significantly outweighs positive instances, achieving a high preci-

sion may be easier, but it might not reflect the overall system performance.

Precision stands as a key metric in evaluating the accuracy of positive predictions in facial recog-

nition. Its emphasis on minimizing false positives makes it particularly relevant in applications

where the cost of misidentification is high. However, a holistic evaluation, considering multiple

metrics and understanding the interplay with recall, ensures a nuanced understanding of the

facial recognition system’s performance in real-world scenarios.

5.3.3 Recall (Sensitivity):

Recall, also known as sensitivity or true positive rate, is a critical metric in the evaluation of facial

recognition systems. It measures the system’s ability to correctly identify all positive instances, em-

phasizing the avoidance of false negatives. In the context of facial recognition, recall is particularly

relevant when the cost of missing positive identifications is high, such as in security applications.
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5.3.3.1 Mathematics of Recall

Recall is calculated by dividing the number of true positives (correctly identified individuals) by the

sum of true positives and false negatives (positive individuals incorrectly identified as negative). This

metric provides insights into the system’s sensitivity to correctly identifying individuals of interest.

The formula is

Recall =
TP

TP + FN
.

5.3.3.2 Advantage of Recall

Recall has the following advantage

1. Emphasis on Positive Instances

Recall focuses on the system’s ability to capture all positive instances, making it a crucial metric

in applications where missing positive identifications is costly.

2. Suitability for Imbalanced Datasets

In scenarios where positive instances (individuals of interest) are rare compared to negative

instances, recall remains robust. It ensures that the system is effective in identifying positive

instances even in the presence of imbalanced class distributions.

5.3.3.3 Disadvantage of Recall

This metric evaluation also has some downfall which are:

1. Potential Increase in False Positives

While recall minimizes false negatives, it does not consider the number of false positives. In

situations where the cost of false positives is high, a high recall may be achieved at the expense

of an increase in false positives.

2. Trade-off with Precision

Recall is often in tension with precision, forming a trade-off relationship. A system can achieve

high recall by being less strict in its positive identifications, potentially leading to more false

positives.

Recall plays a pivotal role in evaluating the effectiveness of a facial recognition system in capturing

all positive instances. Its emphasis on minimizing false negatives makes it particularly relevant in

scenarios where missing positive identifications has significant consequences. However, a holistic eval-

uation, considering multiple metrics and understanding the trade-offs with precision, is essential for a

nuanced assessment of a facial recognition system’s performance in real-world applications.
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5.3.4 Specificity

Specificity is a crucial metric in the evaluation of facial recognition systems, particularly when the

emphasis is on correctly identifying negative instances. It measures the system’s ability to accurately

reject non-matching individuals, offering insights into the model’s performance in scenarios where false

positives carry significant consequences.

5.3.4.1 Mathematics of Specificity

Specificity is calculated by dividing the number of true negatives by the sum of true negatives and false

positives. This metric provides a measure of the system’s precision in correctly rejecting non-matching

instances. Its formula is
TN

TN + FP
.

5.3.4.2 Advantage of Specificity

This metric present the following advantage.

1. Focus on Negative Predictions

Specificity is designed to emphasize the accuracy of negative predictions, making it particularly

relevant in applications where the consequences of false positives are significant.

2. Complement to Sensitivity

While recall (sensitivity) focuses on the accurate identification of positive instances, specifici-

ty complements this by highlighting the system’s proficiency in correctly rejecting negative

instances.

5.3.4.3 Disadvantage of Specificity

Specificity has the below mentioned downfall.

1. Neglects False Negatives

Specificity does not consider false negatives, instances where non-matching individuals are in-

correctly identified as matching. In situations where the cost of missing positive identifications

is high, a high specificity may not necessarily indicate overall system effectiveness.

2. Sensitivity to Class Imbalance

Similar to other metrics, specificity can be influenced by imbalanced datasets. In scenarios

where the number of negative instances significantly outweighs positive instances, achieving a

high specificity may be easier but might not reflect the overall system performance.
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Specificity plays a pivotal role in the evaluation of facial recognition systems, offering a targeted

assessment of the model’s ability to accurately reject non-matching individuals. As a complement to

sensitivity, specificity provides a balanced perspective on the system’s overall performance. However,

a holistic evaluation, considering multiple metrics and understanding the trade-offs, ensures a nuanced

assessment of a facial recognition system’s effectiveness in real-world applications.

5.3.5 F1 Score:

The F1 score is a harmonic mean of precision and recall, providing a balanced evaluation of a facial

recognition system’s performance. This metric is especially valuable in situations where there is a need

to strike a balance between minimizing false positives and false negatives. The F1 score considers both

precision and recall, offering a comprehensive assessment that is particularly relevant in applications

where the consequences of misclassifications are significant.

5.3.5.1 Mathematics of F1 Score

The F1 score is mathematically defined as the harmonic mean of precision and recall:

F1 Score = 2× Precision× Recall

Precision + Recall

It combines the precision and recall metrics, providing a single value that reflects the system’s ability

to balance accurate positive predictions with the avoidance of false negatives.

5.3.5.2 Advantages of F1 Score

This metric evaluation is characterised by the following advantages:

1. Balanced Evaluation

The F1 score provides a balanced evaluation by considering both false positives and false neg-

atives. This is particularly beneficial in scenarios where achieving a balance between precision

and recall is crucial.

2. Suitability for Imbalanced Datasets

In facial recognition tasks with imbalanced class distributions, where positive instances are rare

compared to negatives, the F1 score offers a robust measure that is not overly influenced by the

majority class.

5.3.5.3 Disadvantages of F1 Score

Like all metric, F1 Score also has one downfall which is the problem of equal weighting of Precision

and Recall.

The F1 score equally weights precision and recall, which may not be suitable in all scenarios. In cases

where the importance of precision and recall differs, other metrics or weighted combinations may be
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more appropriate.

The F1 score serves as a valuable metric in the evaluation of facial recognition systems, offering a

balanced perspective on precision and recall. Its application is particularly relevant in scenarios where

achieving equilibrium between minimizing false positives and false negatives is paramount. However,

practitioners should be mindful of the equal weighting of precision and recall and consider the specific

context and consequences of misclassifications in their facial recognition application.

The choice of using the F1 score should align with the specific goals and requirements of the facial

recognition application. If the consequences of false positives and false negatives are significantly

different, practitioners may need to prioritize precision or recall over the other.

5.3.6 Confusion Matrix:

The confusion matrix is a foundational tool in the evaluation of facial recognition systems. It pro-

vides a detailed breakdown of the model’s predictions, categorizing instances into true positives, true

negatives, false positives, and false negatives. This matrix serves as the basis for deriving various per-

formance metrics and offers valuable insights into the strengths and weaknesses of a facial recognition

model.

5.3.6.1 Structure of Confusion matrix

The confusion matrix for facial recognition is organized as follows:

Non-Matching Matching
Actual

True Negatives (TN) False Positives (FP)

Non-Matching TN FP

Matching False Negatives (FN) True Positives (TP)

Table 5.2: Confusion Matrix Structure

5.3.6.2 Advantage of Confusion Matrix

Since this metric can be useful in the calculation of other metrics, it provides the following advantages:

1. Granular Insights

Offers a detailed breakdown of correct and incorrect predictions, providing granular insights

into the facial recognition model’s performance.

2. Foundation for Multiple Metrics

Serves as the foundation for deriving various performance metrics, allowing practitioners to

choose metrics aligned with specific goals.
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5.3.6.3 Disadvantage of confusion Matrix

The confusion matrix may be challenging to interpret for those unfamiliar with its structure, requiring

a nuanced understanding of true positives, true negatives, false positives, and false negatives.

The confusion matrix is a cornerstone in the evaluation toolkit for facial recognition systems. Its

detailed breakdown of predictions enables practitioners to derive a spectrum of performance metrics,

providing a comprehensive understanding of the model’s strengths and weaknesses. By interpreting

the confusion matrix, practitioners can make informed decisions to optimize the facial recognition

system for specific application requirements.

5.4 conclusion

In this chapter, we comprehensively examine the machine learning classification techniques for the

implementation of facial recognition and the evaluation metrics. This can equip practitioners with

the knowledge needed to assess facial recognition models effectively. The choice of the classification

technique as well as the metrics should align with the specific goals and challenges posed by the facial

recognition task at hand.



94CHAPTER 5. MACHINE LEARNING CLASSIFICATIONMETHODS ANDMETRICS EVALUATION



Chapter 6

Conclusion

6.1 Summary of Findings

This thesis undertook a comprehensive investigation into the intricate realm of facial recognition,

specifically focusing on the challenges posed by facial occlusion and the advancements in dimension

reduction techniques. Through a meticulous exploration of mathematical principles and machine

learning applications, the study aimed to contribute to the valuable insights in the field.

In addressing facial occlusion, particularly exacerbated by face masks during the COVID-19 pandem-

ic, the research unveiled the significant impact on the performance of facial recognition systems. By

meticulously analysing and developing datasets useful for the investigation on face mask, the study has

laid the foundation for adaptive dimension reduction in face occlusion for facial recognition systems.

The exploration of dimension reduction techniques yielded noteworthy findings. Traditional methods

such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) showcased

their effectiveness, while Auto-Encoder-based techniques demonstrated their capacity for facial feature

extraction and dimension reduction. The introduction of innovative hybrid techniques, namely PCA-

Autoencoder and LDA-Autoencoder, provided a synergistic approach, leveraging the strengths of

individual methods. Additionally, tensor decomposition, specifically Higher-Order Singular Value

Decomposition (HOSVD), emerged as a novel perspective on dimension reduction, offering insights

for further exploration.

6.2 Contributions to Knowledge

The contributions of this thesis extend to both theoretical advancements and practical applications in

the realm of facial recognition:

6.2.1 Facial Occlusion

The study provides a nuanced understanding of the challenges introduced by facial occlusion, especially

in the context of face masks during the COVID-19 pandemic and beyond. Techniques developed to

mitigate these challenges offer practical solutions for enhancing the accuracy and reliability of facial

recognition systems in real-world scenarios.

95
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6.2.2 Dimension Reduction Techniques

Traditional dimension reduction techniques (PCA, LDA) have been comprehensively evaluated, pro-

viding a benchmark for their efficacy in facial recognition. The introduction and evaluation of

Auto-Encoder-based techniques, along with innovative hybrid approaches (PCA-Autoencoder, LDA-

Autoencoder), contribute to the diversification of dimension reduction methodologies.

Tensor decomposition (HOSVD) presents a novel avenue for dimension reduction, expanding the spec-

trum of mathematical techniques applied in facial recognition.

6.3 Limitations and Challenges

While this research has made significant strides, it is essential to acknowledge certain limitations and

challenges. The diversity in facial occlusion scenarios and the evolving nature of face mask usage

presents ongoing challenges. Additionally, the generalization of findings to broader demographics and

the scalability of proposed techniques requires further scrutiny.

6.4 Recommendations for Future Research

Building upon the foundations laid by this dissertation, there are several avenues for future research:

6.4.1 Facial Occlusion

Further investigation into diverse facial occlusion scenarios, encompassing varying mask types and

usage patterns.

Exploration of real-time adaptive systems that dynamically respond to changing facial occlusion con-

ditions.

Development of non-artificial face mask datasets.

6.4.2 Dimension Reduction Techniques

Continued exploration of innovative hybrid techniques and tensor decomposition for dimension reduc-

tion.

Integration of deep learning architectures to enhance the capabilities of Autoencoder-based methods.

Extension of the study to large-scale datasets and diverse demographic groups for comprehensive

validation.

6.5 Conclusion

In conclusion, this thesis marks a significant contribution to the intersection of mathematics and

machine learning in the domain of facial recognition. By addressing the challenges posed by facial

occlusion and advancing dimension reduction techniques, the study provides a holistic perspective on

the complexities of real-world scenarios. The findings offer practical implications for the development

of facial recognition systems that are not only accurate and reliable but also adaptable to the evolving

challenges presented by facial occlusion. As technology continues to evolve, this research serves as a
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catalyst for further exploration and innovation in the field, fostering a deeper understanding of the

intricate dynamics of facial recognition.
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Appendix A

Python Code

A.1 Data Augmentation

The following code uses the data augmentation technique that we described in chapter two to generate

more faces for our created dataset.

The full code can be provided upon request.

from keras.preprocessing.image import ImageDataGenerator

from skimage import io

import numpy as np

import os

from PIL import Image

datagen = ImageDataGenerator(

rotation_range = 25,

shear_range = None,

zoom_range = 0.2,

brightness_range

image_directory = r’C:/Users/ADMIN/Documents/mixed_data_images/’

from keras.preprocessing.image import ImageDataGenerator

from skimage import io

import numpy as np

import os

from PIL import Image

datagen = ImageDataGenerator(

rotation_range = 25,

shear_range = None,

zoom_range = 0.2,

dataset = []

my_images = os.listdir(image_directory)

for i, image_name in enumerate(my_images):

image = io.imread(image_directory + image_name)
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image = Image.fromarray(image, ’RGB’)

dataset.append(np.array(image))

x = np.array(dataset)

i = 0

for batch in datagen.flow(x, batch_size=16,

save_to_dir= r’C:\Users\ADMIN\Documents\mixed_data_images_augmented’,

save_prefix=’image’,

save_format=’jpg’):

i += 1

break

print(’check the new folder’)

A.2 Converting data to npy format

import cv2

import glob

import numpy as np

import array as arr

#Train data

data_array=np.array(’d’,)

train = []

train_reshape = []

files = glob.glob ("C:/Users/ADMIN/Documents/Masked_face_data/*.jpg") # your image path

for myFile in files:

image = cv2.imread (myFile)

image_resize=cv2.resize(image,(120,120))

image_array=np.array(image_resize)

image_reshape=np.reshape(image_array, image_array.shape[0]*image_array.shape[1])

train.append (image_array)

train_reshape.append(image_reshape)

train_array=np.append(data_array, image_reshape)

print(image_array.shape)

print(image_reshape.shape)

pyplot.imshow(image_array)

pyplot.show()

’’’files = glob.glob ("C:/Users/ADMIN/Documents/Masked_face_data/*.jpg")

for myFile in files:

image = cv2.imread (myFile)

train.append (image)



A.2. CONVERTING DATA TO NPY FORMAT 101

train_labels.append([0., 1.])

’’’

#train_labels = np.array(train_labels,dtype=’float64’) #as mnist

#print(train.shape)

# convert (number of images x height x width x number of channels) to (number of

#train = np.reshape(train,train.[shape[0]*train.shape[1])

#train = np.reshape(train.shape[0]*train.shape[1])

# save numpy array as .npy formats

np.save(’train’,train)

np.save(’train_reshape’,train_reshape)

np.save(’train_array’, train_array)

#Test data

face_data = []

test_labels = []

files = glob.glob ("C:/Users/ADMIN/Desktop/face_data/*.jpg")

for myFile in files:

image_2 = cv2.imread (myFile)

image_2_resize=cv2.resize(image_2,(60,60))

image_2_resize = cv2.cvtColor(image_2_resize, cv2.COLOR_BGR2GRAY)

image_2_array=np.array(image_2_resize)

image_2_reshape=np.reshape(image_2_array,

face_data_reshape=np.append(image_2_reshape, image_reshape)

’’’files = glob.glob ("/data/test/class2/*.png")

test.append (image)

pyplot.imshow(image_data_array)

pyplot.show()

print(image_data_array.shape)

test_labels = np.array(test_labels,dtype=’float64’) #as mnist

#test = np.reshape(test,[test.shape[0],test.shape[1]*test.shape[2]*test.shape[3]])

# save numpy array as .npy formats

np.save(’data_face’,face_data) # saves test.npy

np.save(’face_data_reshape’,face_data_reshape)

np.save(’face_data_array’, face_data_array)

print(’completed’)

print(face_data[0].shape)

image2=Image.fromarray(train[395])

#print(image2.shape)

pyplot.show()
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#create the target of the data

data_target = []

for i in range (1, 41):

for j in range (1, 11):

data_target.append(i)

#print(data_target)

len(data_target)

np.save(’data_target’, data_target)

face_data_target = []

for i in range (1, 41):

for j in range (1, 31):

face_data_target.append(i)

#print(face_data_target)

print(len(face_data_target))

np.save(’face_data_target’, face_data_target)

Here we import the library for the face recognition after PCA dimensional reduction

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

import numpy as np

import pandas as pd

import os

from matplotlib import pyplot as plt

import matplotlib.image as mpimg

%matplotlib inline

from sklearn.model_selection import train_test_split

from sklearn.decomposition import PCA

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from numpy import loadtxt

from xgboost import XGBClassifier

from sklearn.neural_network import MLPClassifier

from sklearn import metrics

import plotly.express as px

from IPython.display import display
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Here We load the file from the local coal machine directory.

from google.colab import files

uploaded = files.upload()

#for fn in uploaded.keys():

# print(’User uploaded file "{name}" with length {length} bytes’.format(

#name=fn, length=len(uploaded[fn])))

unmasked_face_data=np.load("data_images.npy")

target=np.load("data_images_target.npy")

masked_face_data=np.load("masked_data_images.npy")

mixed_face_data=np.load("mixed_data_images.npy")

import pylab

#pylab.imshow(unmasked_face_data[9,:,:])

#pylab.imshow(masked_face_data[9,:,:])

pylab.imshow(mixed_face_data[459,:,:])

print(target[9])

print(unmasked_face_data.shape)

print(masked_face_data.shape)

print(mixed_face_data.shape)

print(target.shape)

from sklearn.model_selection import train_test_split

X_train1, X_test1, y_train1, y_test1=train_test_split(data_reshape, target, test_size=0.3, stratify=target, random_state=0)

print(X_train1.shape, y_train1.shape, X_test1.shape, y_test1.shape)

A.3 PCA for dimension Reduction on the face mask data

from sklearn.decomposition import PCA

for n in range(1, 616, 10):

pca = PCA(n_components=n, whiten=True)

pca.fit(X_train1)

X_train1_pca = pca.transform(X_train1)

X_test1_pca = pca.transform(X_test1)
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Appendix B

Classification process

#### Decision treesimport plotly.express as px

dtree = DecisionTreeClassifier()

dtree.fit(X_train1_pca, y_train1)

#z_dt = dtree.predict(X_train_pca)

ac_dt = dtree.score(X_test1_pca, y_test1)

list_dt1.append(ac_dt)

#print(X_train_pca.shape)

#print(y_train.shape)

#np.save("list_dt", list_dt)

#### KNeighbors classifier

knn = KNeighborsClassifier(n_neighbors = 3, metric = ’minkowski’, p = 2)

knn.fit(X_train1_pca, y_train1)

#z_KNN = KNN.predict(X_train_pca)

ac_knn = knn.score(X_test1_pca, y_test1)

list_knn1.append(ac_knn)

#np.save("list_dt", list_knn)

#### Random forest

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=200)

rf.fit(X_train1_pca, y_train1)

ac_rf = rf.score(X_test1_pca, y_test1)

list_rf1.append(ac_rf)

#np.save("list_dt", list_rf)

#### svm
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from sklearn.ensemble import RandomForestClassifier

svm = SVC()

svm.fit(X_train1_pca, y_train1)

ac_svm = svm.score(X_test1_pca, y_test1)

list_svm1.append(ac_svm)

#np.save("list_dt", list_svm)

#### XBoot

xboost = XGBClassifier()

xboost.fit(X_train1_pca, y_train1)

ac_xboost = xboost.score(X_test1_pca, y_test1)

list_xboost1.append(ac_xboost)

#np.save("list_dt", list_xboost)

#### lda

lda = LinearDiscriminantAnalysis()

lda.fit(X_train1_pca, y_train1)

ac_lda = lda.score(X_test1_pca, y_test1)

list_lda1.append(ac_lda)

#np.save("list_dt", list_lda)

#### lgr

lgr = LogisticRegression()

lgr.fit(X_train1_pca, y_train1)

ac_lgr = lgr.score(X_test1_pca, y_test1)

list_lgr1.append(ac_lgr)

#np.save("list_dt", list_lgr)

#### nvb

nvb = GaussianNB()

nvb.fit(X_train1_pca, y_train1)

ac_nvb = nvb.score(X_test1_pca, y_test1)

list_nvb1.append(ac_nvb)

#np.save("list_dt", list_nvb)

#### mlp

mlp = MLPClassifier()
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mlp.fit(X_train1_pca, y_train1)

ac_mlp = mlp.score(X_test1_pca, y_test1)

list_mlp1.append(ac_mlp)

#np.save("list_dt", list_mlp)

#This code use PCA with the olivetti dataset

list_dt_olivetti = []

list_knn_olivetti = []

list_rf_olivetti = []

list_svm_olivetti = []

list_xboost_olivetti = []

list_lda_olivetti = []

list_lgr_olivetti = []

list_nvb_olivetti = []

list_mlp_olivetti = []

# PCA decomposition and shifting

from sklearn.decomposition import PCA

for n in range(1, 120, 10):

pca = PCA(n_components=n, whiten=True)

pca.fit(X_train1)

X_train1_pca = pca.transform(X_train1)

X_test1_pca = pca.transform(X_test1)

#### Decision treesimport plotly.express as px

knn = KNeighborsClassifier(n_neighbors = 3, metric = ’minkowski’, p = 5)

ac_knn = knn.score(X_test1_pca, y_test1)

list_knn_olivetti.append(ac_knn)

#np.save("list_dt", list_knn)

#### Random forest

from sklearn.ensemble import RandomForestClassifier

rf)
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#### svm

from sklearn.ensemble import RandomForestClassifier

svm = SVC()

svm.fit(X_train1_pca, y_train1)

ac_svm = svm.score(X_test1_pca, y_test1)

lda = LinearDiscriminantAnalysis()

list_lda_olivetti.append(ac_lda)

#np.save("list_dt", list_lda)

#### lgr

ti.append(ac_lgr)

#np.save("list_dt", list_lgr)

#### nvb

ac_nvb = nvb.score(X_test1_pca, y_test1)

#np.save("list_dt", list_nvb)

#### mlp

mlp = MLPClassifier()

mlp.fit(X_train1_pca, y_train1)
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