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Abstract

A quasi-uniformity, unlike a uniformity, is not determined by its quasi-uniform covers.
It is generally known that covering space theory applies to topological spaces that are con-
nected. In this dissertation, we will define topology induced by strong quasi-uniform cover
which will determine the quasi-uniformity of a quasi-uniform space. And then we will ex-
pand the discussion on strong quasi-uniform covers, detailing how quasi-uniform spaces
via strong quasi-uniform covers give rise to a topological space with some added axioms
which will precisely determine the quasi-uniformity of a given quasi-uniform space.. The
dissertation will further detail on how uniformizable topological spaces are precisely the
completely regular spaces. This erupts from the idea that uniform spaces can be induced
by uniform covers, but in this article, we want to ascertain that the same concept can be
applied with quasi-uniform spaces via strong quasi-uniform covers.
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1 CHAPTER 1

1.1 Introduction

A uniform structure on a given set determines a topological structure on the same set, al-
though different uniform structures may determine the same topological structure. However,
there exist some topological structures which cannot be obtained from a uniform structure.
Metric and topological group structures give rise to uniform structures. As we shall see, a
theory which encompasses many of the essentials of both of these important classes of spaces
is obviously of considerable interest. But what makes uniform spaces essential, as much as
anything, is that every compact Hausdorff space admits a unique uniform structure that is
unique.

Uniform spaces are often described as “carriers for the notions of uniform convergence
and uniform continuity.” Recall, for instance, that any function f : (X, d) Ñ (Y, r) that is
between metric spaces is said to be uniformly continuous if it is given that for every e ° 0,for
any arbitrary two points a, b P X, there is some d ° 0 such that:

d(a, b) † d ñ r( f (a), f (b)) † e.

Such a notion does not exist for non-metrizable topological spaces. The idea of uniform space
corrects this without introducing a metric. Uniform spaces can be introduced via uniform
covers. So it goes without saying that a uniform space can actually be completely charac-
terised using uniform covers. But then the same cannot be said about quasi-uniform spaces.
We will write a comprehensive account detailing how uniform spaces can be introduced via
uniform covers. We will further discuss quasi-uniform spaces and their properties. So we will
define a strong quasi-uniform cover which will determine the quasi-uniformity of a given
quasi-uniform space.

1.1.1 Motivation

Several studies have been done on quasi-uniform spaces. Others have proven that there exists
a topology that can be induced by some quasi-uniformity for every topological space[1]. This
consequently lays the foundation of equivalence of topological spaces with quasi-uniform
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1.1. Introduction

spaces, that is between two topological spaces, if there exists a homeomorphism, continu-
ous map between the spaces which has an continuous inverse. This makes it feasible to
study concepts like completeness, Cauchy nets, Cauchy sequences, etc. Even the properties
of boundedness may be different from ones in uniform spaces [2]. This necessitates the need
for further studies on quasi-uniform spaces.

1.1.2 Research aims and objectives

The aim of the study is to develop a generalised theory that can define a cover that can de-
termine the quasi-uniformity of a given quasi-uniform space. This can be achieved by first
digging deeper into properties of quasi-uniform spaces, and then determine why they can-
not be formulated in terms of their quasi-uniform covers, even if the quasi-uniform space
in question is transitive. From that information, a cover will be defined, and referred to as
a strong quasi-uniform cover with some added axioms which will precisely determine the
quasi-uniformity of a given quasi-uniform space.

1.1.3 Literature ‘Review

The concept of uniform structure that is on a non-empty set X was introduced and well de-
fined by A. Weil in 1937 in terms of subsets of X[3]. The introduction led to several emerging
literature on quasi-uniformities, from L. Nachbin in 1948 who started the study of quasi-
uniform structure but used the term "semi-uniformity," with the exclusion of the symmetry
axiom, for a structure that satisfies the axioms of uniformity[4]. A quasi-uniformity is not
determined by its quasi-uniform covers, unlike uniformity.

Fletcher describes a classical construction which assigns a transitive quasi-uniformity to
each family of interior-preserving open covers[5]. He further brought forward the method
of constructing compatible quasi-uniformities for any topological space. Tamari (1954)
introduced the term "quasi-odoform base", a concept that was later described as "quasi-
uniformity" was by A. Császár in 1960 who tried to prove that every topological space
admits a compatible quasi-uniformity. Pervin in 1962 tried to back Császár, except that his
quasi-uniformity was different in that it had a base that entailed reflexive transitive relations.
These uniformities are referred to as non-archimedean uniformities. A.C.M. van Rooy in
1970 made further literature contributions in the idea of uniformities in 1950 as well as H.C.
Reichel in 1974, B. Banaschewski in 1955 and going back to A.F. Manna in 1950.[6].

Quasi-uniform spaces are discussed in many advanced Topology textbooks and research
work since the early 20th century but we will focus on developing work from some of the
authors. In [7], Isbell details how uniform spaces play a key role for uniform continuity
as topological spaces for continuity. Naimpally in [8] extends generally known results of
function spaces of uniform spaces to quasi-uniform spaces, by additional conditions.

With respect to quasi-uniformity defined in a standard way, Iragi tries to investigate the
ideas of completeness of objects and precompactness in [9]. He further shows that every
quasi-uniformity on a generally reflective subcategory of some arbitrary category C can be
lifted to a coarsest quasi-uniformity on category C for which every reflection morphism is
continuous. For a class of uniform spaces referred to as coverable spaces, Berestovskii and
Plaut construct a generalized covering space theory in [10] by attempting to assign lifting
properties in uniform spaces and uniformly continuous mappings. By detailing its appli-
cation in obtaining compatible non-transitive and any transitive quasi-uniform structure,
Carter in [11] discusses a general method for constructing a compatible quasi-uniform struc-
tures.

2



1.2. Quasi-Uniform Space

We will discuss these in detail in this dissertation. What ascertains the importance of
uniform space is that a compact Hausdorff space admits a unique uniform structure as will
be detailed in subsequent chapters in this paper.

1.2 Quasi-Uniform Space

We need to start by looking into the following definitions before we are able to define quasi-
uniform spaces.

Definition 1.2.1. [12] A filter F in any set X is a collection of non-void subsets of X such that

(a) if A belongs to F and A Ä B Ä X, then B P F and

(b) for any arbitrary A, B P F , A X B P F .

In a topological space X, a filter F converges to a point x iff each neighbourhood of x belongs
to F (that is, the neighbourhood system of x is a subfamily of F ).

Definition 1.2.2. [13] For any set X, we denote the diagonal t(x, x)|x P Xu in X ˆ X by D. We
specify which set X we are referring to by writting D(X). For U, V P X ˆ X, then U ˝ V is the
set given by t(x, y)| for some z, (x, z) P U and (z, y) P Vu.
In a metric space, we observe that x and y are clustered together, iff the point (x, y) is near
the diagonal in X ˆ X. We note that ˝ is a natural extension of the idea of composition of
functions and that U and V are actually relations on X.

Definition 1.2.3. [13] On a set X, a diagonal uniformity is a collection D(X) or just D of subsets
of X ˆ X, called surroundings, which satisfy:

(a) DE P D such that D P D ñ E´1
Ä D

(b) DE P D such that D P D ñ E ˝ E Ä D

(c) D1, D2 P D ñ D1 X D2 P D

(d) D P D, D Ä E ñ E P D

(e) D P D ñ D Ä D

When X has such a structure, we call X a uniform space. We refer to uniformity D as
separating and the set X is said to be separated iff

ì
tD|D P Du = D.

Definition 1.2.4. [14][6][5][15] On a set X quasi-uniformity is a filter U on X ˆ X such that:

(a) @U P U , D Ñ U and

(b) DV P U such that if U Ä U , then V ˝ V Ä U.

A quasi-uniformity is also referred to as a quasi-uniform structure. The members of U are
termed entourage and the pair (X,U ) is referred to as a quasi-uniform space. As a result, if U
is a quasi-uniformity on set X, then U

´1 = tU´1
|U P Uu, the conjugate of U, is also a quasi-

uniformity on set X. Let U ,V be quasi-uniformities on X. We describe U as coarser than V if
U Ñ V .
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1.2. Quasi-Uniform Space

Definition 1.2.5. [5] Let (X,V) be a quasi-uniform space. Then the topology induced by V

(also trace topology or just the topology T (V) of V) is the topology defined in Proposition
1.2.7. If T (V) = T (also denoted TV = T ), then V is referred to as being compatible with
T (and (X, T ) is described as admitting V). On a set X, two quasi-uniformities U and V are
compatible if TU = TV .

TU denotes the topology for X generated by U where U is a quasi-uniformity on a set X.

Corollary 1.2.6. Let (X,V) be a quasi-uniform space. Then tV|V P V and V is T (V´1
ˆ V) openu

is a base for V .

Proposition 1.2.7. Let B be a base for a quasi-uniformity V on X. Let B(x) = tB(x)|B P Bu, for
every x P X. Then for every x P X, there is a unique topology on X such that B(x) is a base for the
neighbourhood filter of x in the topology.

Definition 1.2.8. Let the non-empty collection B Ñ exp (X ˆ X), in a non-empty set X. B

generates, on X, a base for a quasi-uniformity if:

(a) There exists W P B such that W ˝ W Ñ B if B P B.

(b) For each B P B, D Ñ B.

Theorem 1.2.9. [6] Let B be a collection of relations of X such that for every B P B, the diagonal
D Ä B . There is some A P B for every B P B, such that A ˝ A Ä B. Then for a particularly unique
quasi-uniformity, B is a subbase.

Definition 1.2.10. [12][13][16] A collection A is a cover of a set B iff B Ä
î

tA : A P Au; that
is, if and only if every member of B belongs to some member of A. The collection is an open
cover of B iff every member of A is an open set. A subcover of A is a subcollection which is
also a cover.

Definition 1.2.11. [5] A subfamily B of a quasi-uniformity U is a base for U if each member of
U contains a member of B. Axiom (b) of Definition 1.2.4 shows that if B is a base for U and n
is a positive integer, then a countable base tBn

|B P Bu is a base for U . A subfamily U of U is
a subbase for U if the collection of the finite intersection of elements of U is a base for U .

Theorem 1.2.12. [12] (Lindelof) There is a countable subcover of every open cover of a given subset
of a space whose topology has a countable base.

Proof. Suppose that for a set B, B is an open cover of B, and A is a countable base for the
topology. Because every element of B is the union of elements of A there is a subcollection
C of A which also covers B, such that every element of C is a subset of some element of B.
For all the elements of C we may select a containing element of B and so obtain a countable
subcollection D of B. Then D is also a cover of A because C covers B. Hence B has a countable
subcover.

Definition 1.2.13. [6] A quasi-uniform space (X,U ) is initial with respect to a family of func-
tions fa from the quasi-uniform space (X,U ) to arbitrary quasi-uniform spaces (Ya,Va) if the
quasi-uniformity U is the coarsest on X such that all the fa are continuous quasi-uniformly.

Definition 1.2.14. A set L is a directed set if and only if there is some relation § on L that
satisfies the follow:

(a) for every l P L, l § l.

(b) if l1 § l2 and l2 § l3, then l1 § l3.

(c) if l1, l2 P L, then there is some l3 P L with l1 § l3, l2 § l3.
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1.2. Quasi-Uniform Space

This relation § is often called a direction on L, or is referred to as directing L.

Definition 1.2.15. [13] A net is a set X in a function P : L Ñ X, where L is some directed set.
The point P(l) is usually denoted xl, and we can also refer to it as "the net (xl)" or "the net
(xl)lPL".

Definition 1.2.16. Let X have a diagonal uniformity D. A net (xl)lPL in X is Cauchy iff for
each D Ä D, there is some l0 P L such that (xl1 , xl2) P D whenever l1, l2 • l0. The
corresponding covering description is as follows:
(xl)lPL is Cauchy iff for each uniform cover C, there is some l0 P L such that xl1 and xl2 lie
together in some element C whenever l1, l2 • l0.

Before we take on the next example, let us consider the following definitions.

Definition 1.2.17. [17] A point x is adherent to a set A if each neighbourhood of x meets set A.
A set of points adherent to a set A is referred to as the adherence ( or the closure) A of set A
also denoted adh A.

Definition 1.2.18. [18] Let F be a filter on X, (X,U ) be a quasi-uniform space, and U (x) be
the set of all neighbourhoods of x P X. F is said to be U -Cauchy (or just Cauchy) if for each
U (x) = tU(x)|U P Uu, there is some x = x(U) such that U(x) P F . (X,U ) is considered
complete if each U -Cauchy filter has an adherent point and strongly complete if each U -Cauchy
filter converges.

Now, is there a quasi-uniform space which is complete, but not necessarily strongly com-
plete? This is one mystery that generally arises. We will try to address the question using the
following example to show that yes, it does exist, after which we will introduce nets since we
will be using them in this dissertation.

Example 1.2.19. [11] We want to make a T1-space which does not have a T1-completion and of a
quasi-uniform space which is complete, but not strongly complete. So we let the set X be the set of
integers. For every integer n in X, we define Un =

î
t(x, y) such that x • n, y = 0 or 1u. So

for a quasi-uniform structure U on X ˆ X, we have a base tUn : n P Xu where U generates the
discrete topology t. Now, we let F be a Cauchy filter. So we have n = t0, 1, xu, for every x • n and
Un(x) = txu for every x † n. It can be easily concluded that that F would have to be generated by a
finite set and also that adhF ‰ f. Let S be the family of all supersets of t0, 1u. Now limS = f, and
matter of fact, the U-Cauchy filter S is actually the only one that is non-convergent. Therefore this is
enough for us to conclude that the quasi-uniform space (X, U) is complete, but definitely not strong
complete.

We have taken the idea of Cauchy filters to quasi-uniform spaces. So we consider the
definitions:

Definition 1.2.20. With topology T , induced by U , let (X, T ) be a topological space and let
x P U for some U in U such that U(x) P T . A net (xl)lPL Ä X converges to x P X iff for each
U P U , (xl)lPL is in U(x) for sufficiently large l.

Definition 1.2.21. [8] A net (xl)lPL Ä X is Cauchy iff for every U P U , Dx P X such that
(xl)lPL is in U(x) for sufficiently large l.

We can easily conclude that convergent nets are Cauchy from the above definitions.

Definition 1.2.22. On a set X, let tUi|i P Iu be a collection of quasi-uniformities. Then the
coarsest quasi-uniformity on X which is finer than each Ui is said to be a supremum of tUi|i P

Iu. The supremum always exists and is the filter that is coarsest which is finer than each Ui.
The infimum of tUi|i P Iu is the finest quasi-uniformity that is coarser than every Ui. On the
other hand, in the collection of all quasi-uniformities on X, the supremum that is actually
coarser than each Ui is referred to as the infimum, and it always exists.
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1.2. Quasi-Uniform Space

The uniformity that has a (D) as a base is called the discrete uniformity. On a set X, for all
quasi-uniformities the supremum is the discrete uniformity is on set X. Every nonempty set
X has coarsest quasi-uniformity consisting only of X ˆ X.

Proposition 1.2.23. [5] Let B be a base for a quasi-uniformity U on set X, and for every x P X, let
B(x) = tB(x)|B P B(x)u. Then for every x P X, there is a unique topology on set X such that in this
topology, B(x) is a base for the neighbourhood filter of x.

If (X,U ) is a quasi-uniform space, then the topology T (U ) of U (or just the topology
induced by U ) is the topology defined in this Proposition 1.2.23. A subset A of X is an element
of T (U ) iff for every x P A, there is an entourage U P U , such that U(x) Ä A.

Definition 1.2.24. On a set X, a quasi-pseudo-metric is a function d on X ˆ X to the non-negative
real numbers such that for every x, y, z P X, d(x, z) § d(x, y) + d(x, z) and d(x, x) = 0. A
quasi-metric is a quasi-pseudo-metric d such that whenever d(x, y) = 0, x = y. On a set
X, let d be a quasi-pseudo-metric. Then for n P N, the family of every set of the form
t(x, y)|d(x, y) † ( 1

2 )
n
u is a base for a particular quasi-uniformity that is referred to as the

quasi-uniformity generated by d.

Definition 1.2.25. [13][19][12] A topological space X is a Hausdorff space (T2-space or sepa-
rated space) iff whenever x and y are distinct points in space X, there exist disjoint neigh-
bourhoods of x and y.

Theorem 1.2.26. [5] Let U be a quasi-uniformity and X be a set in a quasi-uniform space (X,U ).
Then there is a quasi-pseudo-metric d such that U is a quasi-uniformity generated by d iff U has a
countable base.

Definition 1.2.27. The conjugate U´1 of the quasi-uniformity U , is given by
U

´1 = tU´1(y, x)|U P Uu. If U generates U , then U´1 generates U
´1. Members of the

topology T (U´1
ˆ U ) are called open relative to T (U´1

ˆ U ) or T (U´1
ˆ U )-open, or if only

one topology is under consideration, simply open sets.

Corollary 1.2.28. [5] Let U be the quasi-uniformity for a quasi-uniform space (X,U ). Then tU|U P

U and U is T (U´1
ˆ U ) openu is a base for U .

Definition 1.2.29. [12][13] A topological space is compact (bicompact) if and only if every open
cover has a finite subcover. A subset A of a topological space is compact iff it is, with relative
topology, compact; equivalently A is compact iff every cover of A by open sets in X has a
finite subcover.

Definition 1.2.30. [20] A compact ordered space, denoted by the pair (X, §), is a compact topo-
logical space X equipped with a partial order § on space X, which is closed in the product
topology of X ˆ X.

Theorem 1.2.31. [5] Let § be a partial order that is closed on X and (X, T ) be a compact Hausdorff
space. On X, there is precisely one quasi-uniformity U such that T (U˚) = T and §=

ì
U.

Proof. Suppose that on X, the quasi-uniformity U is such that the partial order § is given by
§=

ì
U and T (U˚) = T . The quasi-uniformity on X whose set of entourages is the trace

of T ˆ T of T , is actually the quasi-uniformity that is induced by the topology T . We prove
that U only has T ˆ T neighbourhoods of §. All elements of U are T ˆ T neighbourhoods of
§, by Corollary 1.2.28. Now, suppose there is a T ˆ T neighbourhood of V or § which is not
an element of U . It can be concluded that tU´V|U P Uu is a base for V, a filter on X ˆ X. But
then, (X, T ) is compact, then V contains (x, y), a T ˆ T cluster point that is not an element
of §. But then again, (x, y) is a cluster point of U from the fact that U is coarser than V. It
can be concluded that the intersection of the closures of elements of U of T ˆ T is §, from
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1.3. Uniform Covers and Transitive Quasi-Uniformities

the preceding corollary ´ which is a contradiction.

To conclude the proof, we establishing that U, the collection of all T ˆ T neighbourhoods
of § is a quasi-uniformity on X in a way that §=

ì
U and T (U˚) = T . It follows thatì

U =§ and that U is a filter on X ˆ X. Suppose that axiom (b) of Definition 1.2.4 of quasi-
uniformity is not satisfied. So, there is some T ˆ T open set U P U such that for every
V P U, V2

´ U ‰ f. Let V1 = t((x, y), z) P X2
ˆ X|(x, y) R U, (x, z) P V, (z, y) P Vu for

every V P U. Clearly, B = tV1
|V P Uu is a filter base on (X ˆ X ´ U) ˆ X. But then B has

a cluster point ((a, b), c) as a consequence of (X ˆ X ´ U) ˆ X being compact. We ascertain
that (a, c) P§. Now, suppose that as § is compact, (a, c) R§. There are some open disjoint
sets H and V such that (a, c) P H and §Ä V. Set W = t((x, y), z)|(x, z) P Hu. Consequently,
W X V1 = f and ((a, b), c) P W; a contradiction. Therefore (a, c) P§ and it can be concluded
as a result that (c, b) P§. Because § is transitive, as will be defined in 1.3.1, we can safely say
(a, b) P§Ä U; turning out to be a contradiction. In conclusion, it is obvious that T (U˚) Ä T
since

ì
U is a partial order T(U˚), which is a Hausdorff topology. Thus T (U˚) = T .

1.3 Uniform Covers and Transitive Quasi-Uniformities

Definition 1.3.1. [21][9] Let U be a quasi-uniformity on set X. A base B for U is transitive if
for every B P B, B ˝ B = B. A transitive quasi-uniformity is a quasi-uniformity with a transitive
base. Each topological space contains the fine transitive quasi-uniformity, which is the finest
compatible transitive quasi-uniformity, denoted FT .

Recall that for a topological space (X, T ), U is described as compatible with (X, T ) on
condition that T = TU .

Definition 1.3.2. [16] On the quasi-uniform space (X,U ), let U be a quasi-uniformity. A filter
F on X is a Cauchy filter on X on condition for every U P U there is some p P X such that
U(p) P F . If every Cauchy filter converges in TU , then the quasi-uniform space (X,U ) is
complete.

Definition 1.3.3. [13] Let C and C
1 be covers of X. C

1 is said to refine C if every C1 in C
1

is contained in some C in C, that is, C1
Ä C

1 for some C P C[22]. Then we refer to C
1 as a

refinement of C. We describe a star of A with respect to C as the set

St(A, C) =
§

tU P C|A X U ‰ qu (1.1)

if C is a cover of X and A Ä X.
We say that C is a star-refinement of C 1, denoted C˚ † C

1 or that C star-refines C
1, if and

only if for every U P C, there exists V P C
1 such that St(U, C) Ä V. More so, if for x P X, the

sets St(x, C) refine C
1, we describe C as a barycentric refinement of C 1, denoted CDC 1.

Definition 1.3.4. A quasi-uniform space (X,U ) has the Lebesgue property provided that for
each TU-open cover C of X there is some U P U such that tU(x) : x P Xu is a refinement of C.

Theorem 1.3.5. [21] Let (X,U ) be a quasi-uniform space. (X,U ) is complete provided that it has the
Lebesgue property.

Proof. On X, we let F be a Cauchy filter and suppose that F is not convergent. For every
x P X, there is some Ux P U such that Ux(x) R F . For every x P X, choose one such Ux and
C = tint[Ux(x)] : x P Xu. There is some U P U such that tU(x) : x P Xu refines C. Since F is a
Cauchy filter, by Definition 1.2.18, there is some p P X such that U(p) P F . Then C X F ‰ f.
This contradicts the method by which the elements of C were chosen.
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1.3. Uniform Covers and Transitive Quasi-Uniformities

Definition 1.3.6. Let (X, T ) be a topological space. Then (X, T ) is orthocompact provided that
if C is an open cover of X, then there is an open refinement R of C such that if x P X thenì

tU P R : x P Uu P T . For rotational convenience throughout this dissertation, if x P X and
R is an open cover of X, we denote

ì
tU P R : x P Uu by UR

x .

Theorem 1.3.7. Let (X, T ) be a topological space. Then (X, T ) is orthocompact if and only if it is a
transitive quasi-uniformity that is compatible with the Lebesgue property.

Proof. Let U be a transitive quasi-informity that is compatible with Lebesgue property in the
topological space (X, T ), and let C be an open cover of X. There is U P U, which we may
assume, without loss of generality, to be a transitive relation on X, whereby tU(x) : x P Xu

refines C. Let

R = tU(x) : x P Xu. (1.2)

We note that R is an open refinement of C. Let

p P UR
z =

£
tR P R : z P Ru, (1.3)

let x, z P X and let q P U(p). Suppose that z P U(x). Then p P U(x) so that
q P U(p) Ä U ˝ U(x) = U(x). Consequently q P UR

z so that U(p) Ä UR
z . It follows

that UR
z P T .

Now suppose U is a fine quasi-uniformity that is transitive, whose existence is guaranteed
by Definition 1.3.1 (that is, each topological space has a fine transitive quasi-uniformity), let
(X, T ) be an orthocompact space and let C be an open cover of X. Then for every x P X, there
exists an open refinement R of C such that, UR

z P T . Let U =
î

ttxu ˆ UR
z : x P Xu. Then

U P U . Clearly:

tU(x) : x P Xu = tUR
z : x P Xu (1.4)

in an open refinement of C. Hence (X,U ) has the Lebesgue property.

Definition 1.3.8. [23] Let (X, T ) be a topological space. Then (X, T ) is a transitive base pro-
vided that for (X, T ), the fine quasi-uniformity is actually the fine transitive quasi-uniformity
FT .

Theorem 1.3.9. [1] Let RB be the binary relation t(x, y)|x P B ñ y P Bu and let (X, T ) be a
topological space. Let F be a collection of subsets of X. The finite intersection of relation RB, B P F
form a base B of entourages of a quasi-uniformity U on X such that their induced topology is exactly
the topology T generated by F on X. This particular quasi-uniformity, denoted P , is said to be a
Pervin quasi-uniformity of the topology on X. One useful property of P is that for any topological
space, this quasi-uniformity is totally bounded.

Definition 1.3.10. [6][16] Let C be a collection of open sets such that
ì

tC P C : x P Cu P T if
x P X, in a topological space (X, T ). Then C is a Q-collection. C is a Q-cover provided C is an
open cover of X.

Corollary 1.3.11. [14] If every compatible quasi-uniformity with the topology T is a Q-cover, then
(X, T ) is a unique compatible quasi-proximity as will be defined in 2.3.1 (or just quasi-uniformity) if
and only if T is finite.

Proposition 1.3.12. [23] Let (X, T ) be a transitive space. Then each Q-cover of X is finite iff (X, T )
has only one compatible quasi-uniformity.
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1.3. Uniform Covers and Transitive Quasi-Uniformities

Proof. Let P be a Pervin quasi-uniformity as described in Theorem 1.3.9. By the same The-
orem, P is totally bounded. If P = FT , then every Q-cover of X is finite. Consequently, if
every Q-cover of X is finite, then FT is totally bounded. Since FT is assumed to be the fine
quasi-uniformity, the result now follows from Corollary 1.3.11.

[10] It is well known that traditional covering space theory, including the isomorphism be-
tween the fundamental group and the group of deck transformations of the universal cover,
applies only to topological spaces that are connected, locally arcwise connected, and semilo-
cally simply connected. Each coverable space is shown to have what we call a uniform uni-
versal cover, which is not a cover in the traditional sense (in particular the mapping is not
a local homeomorphism in general), but which nonetheless has universal and lifting proper-
ties in uniformly continuous functions (as will be defined in this chapter) and uniform spaces
categories. One of the main impediments to generalising the classical construction of the
universal cover is the traditional definition of covering map, the most important property of
which is the ability to lift curves and homotopies. However, this lifting property is tradition-
ally gained at the expense of requiring that a space and its cover be locally homeomorphic in
a fairly strong way.

Definition 1.3.13. A cover of a uniform space (X,D) is refined by a cover of a form C =
tD[x]|x P Xu, where D[x] = ty : (x, y) P Du, for some entourage D P D if and only if it is a
uniform cover.

Theorem 1.3.14. [24][25] The family µ of all uniform covers of a uniform space (X,D) has the
properties:

(a) if U1,U2 P µ then there exists U3 P µ,U3˚ † U1 and U3˚ † U2,

(b) if U † U
1 and U P µ, then U

1
P µ.

Conversely, given any family µ of covers of X satisfying (a) and (b), the collection of all sets DU =î
tU ˆ U|U P U , for U P µu on X is actually a base for a diagonal uniformity, whose uniform covers

are precisely the members of µ.

Proof. (a) It is sufficient to show that any two covers UD1 and UD2 have a common barycen-
tric refinement. Recall from Definition 1.3.3 that a barycentric refinement of a barycentric
refinement of U star-refines U . Pick a symmetric D P D such that

D ˝ D Ä D1 X D2. (1.5)

Then for each x P X, St(x,UD) Ä D1[x]X D2[x] and it follows that UD is a common barycentric
refinement of UD1 and UD2 .

(b) is obvious from definition 1.3.13 of uniform cover.

Thus the uniform covers describe a uniformity as well is its surroundings do. Extended
studies about (possibly non-symmetric) uniform structures in the point-free context were
conducted in several joint papers by Ferreira and Picado[24]. It is well known that in gen-
eral, unlike a uniformity, a quasi-uniformity is not determined by its quasi-uniform covers(as
will be defined in the next chapter). However, a classical construction, due to P. Fletcher,
which assigns a transitive quasi-uniformity to each collection of open covers that are interior-
preserving , allows to describe on the topological spaces, in terms of those collections of
covers, all transitive quasi-uniformities.

Definition 1.3.15. [12] A topological space X is regular iff for every point x and each neigh-
bourhood U of x, there is a closed neighbourhood V of x such that V Ä U; that is, the family
of closed neighbourhoods of each point is a base for the neighbourhood system of the point.

9



1.3. Uniform Covers and Transitive Quasi-Uniformities

Definition 1.3.16. A topological space X is referred to as a T0-space if for any distinct points
x, y P X there is an open set U Ä X containing exactly one of these points.

Definition 1.3.17. [19] A topological space X is called a T1-space if for any distinct points
x, y P X the point x has a neighbourhood Ux Ä X such that y R Ux.

Evidently, every T2-space is T1.

Definition 1.3.18. [13][19] A topological space X is completely regular iff whenever A is a
closed set in X and x R A, there is a continuous function f : X Ñ I such that f (x) = 0 and
f (A) = 1. A completely regular T1-space is called a Tychonoff space.

Transitive quasi-uniform spaces constitute a fundamental subcategory of the uniformly
continuous maps and quasi-uniform spaces categories. They are almost as general and as
instrumental and as quasi-uniform spaces in properties of topological spaces. One highly in-
triguing aspect of transitive quasi-uniformities lies on the fact that they are attainable throgh
the Fletcher construction [26] taking into account the open covers that are interior- preserv-
ing of their corresponding topological spaces. The challenge of figuring out which topological
spaces admit a quasi-uniformity is often swapped under the carpet as hinted by other authors
the likes of Hans-Peter, Császár and Fletcher; since it is theorised that every topological space
admits a quasi-uniformity[2]. However, this conclusion proved to have strong opposition
from other authors, the likes of A. Weil and L. Pontrjagin who ascertained a topological space
is completely regular iff it admits a uniformity, however, quasi-uniformities were developed
in later years.

Definition 1.3.19. [27] In a non-empty set X, let U be non-empty family such that U Ñ

exp(X ˆ X) generates a quasi-uniformity also referred to as generalised quasi-uniformity on
X if:

(a) If DV P U such that V ˝ V Ñ U, then U P U where W ˝ W1 = t(x, z) : Dy P X such that
(x, y) P W, (y, z) P W1

u, for W, W1
P U .

(b) If U Ñ V Ñ X ˆ X and U P U then V P U

(c) @U P U where D = t(x, x) : x P Xu, D Ñ U

Definition 1.3.20. [28] Let X be a non-empty set and µ Ñ exp(X), the set of all finite subsets
of X called the exponential of X. If f P µ and Ua P µ(@a P L) results in

î
Ua P µ, then µ

is referred to as a generalised topology, which is also denoted GT. So (X, µ) is referred to as
generalized topological space or just a GTS in short.

Definition 1.3.21. Let U be a quasi uniformity of the quasi-uniform space (X,U ). If for each
U P U there exists B P B such that B Ñ U, then B Ñ U , which when we we recall is referred
to as a base for U.
We refer to as quasi-uniformity generated by B, the quasi-uniformity U in this particular
instance.

Lemma 1.3.22. Suppose that a strong topological space (X, µ) is as defined in 1.3.24. Now, for G P µ,
B = tBG : G P µu generates a base for an existing quasi-uniformity on X such that µ = µ(B),
whereby BG = (G ˆ G) Y ((XzG) ˆ X).

A "Pervin g-quasi-uniformity" as described in the above Lemma refers to the induced
quasi-uniformity, with reference to simple topological spaces constructed by Pervin in [1].

Theorem 1.3.23. Let U be a quasi-uniformity in the quasi-uniform space (X,U ). For U(g) = tx P

X : (g, x) P Uu, the family tG Ñ X : g P G ñ DU P U such that g P U(g) Ñ Gu yields a strong GT
on X.
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1.3. Uniform Covers and Transitive Quasi-Uniformities

Denoted by µ(U ), we refer to this particular GT as a GT induced by U on X.

Definition 1.3.24. [27] For X P µ, a strong GT is a generalised topology µ on X. If µ is a strong
GT, then space (X, µ) is described as a strong generalised topological space (or just a strong
topological space).

Definition 1.3.25. Let UX and UY be two quasi-uniformities in the quasi-uniform spaces
(X,UX) and (Y,UY) respectively. For every V P UY, there exists P P UX such that (x1, x2) P

P ñ ( f (x1), f (x2)) P V, the function f : X Ñ Y is referred to as a quasi-uniformly continuous
function.

Example 1.3.26. A Pervin quasi-uniformity is transitive for each given strong topological space.
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2 Chapter 2

2.1 Orthocompact and Preorthocompact Spaces

Definition 2.1.1. [29] For every x P X, if V(x) is a neighborhood of x, then the relation V on
X is said to be a neighbornet of X.

Definition 2.1.2. [5] If (X, T ) is a compact metrizable space, then every metric that induces
T has the following property. For each open cover C of X there exists a positive real number
l(C), called a Lebesgue number of C, such that if A Ä X and diam(A) § l(C), then there is
some C P C such that A Ä C. Now, a quasi-uniform cover of A is a cover C of a subset A of a
quasi-uniform space (X,U ) on condition there is some U P U such that for every x P A there
is some C P C such that U(x) Ä C. On a set X, a Lebesgue quasi-uniformity is a quasi-uniformity
U whereby each T (U )-open cover is a quasi-uniform cover. An open cover of a topological
space (X, T ) is a quasi-normal cover provided it is just a quasi-uniform cover of (X,U ) for
some quasi-uniformity U compatible with T . Thus an open cover C of X is a quasi-normal
cover provided there is a normal neighbornet U of X such that tU(x)|x P Xu refines C.

Recall from Definition 1.2.10, the cover A of a set B as defined by Kelley in [12], as well as
its corresponding open cover. A uniform space consists of a set X together with a collection
A of covers of X, and if (X,U ) is the corresponding uniform space as given by Weil and
Pontryagin, then A is the collection of all uniform covers.

Proposition 2.1.3. [5] Let (X,U ) be a quasi-uniform space, let K be a compact subspace and let C be
a family of open subsets of X such that K Ä

î
C. Then there is an entourage V in U such that for each

x P K, DC P C such that V(x) Ä C.

Definition 2.1.4. [13][12][30] A filter F is an ultrafilter iff there is no strictly finer filter G than
F (that is, iff it is properly contained in no filter in X). Thus the ultrafilters are the maximal
filters.

If F is an ultrafilter in X and the union of two sets is a member of F , then one of the two
sets belongs to F .

Definition 2.1.5. [11] Suppose F is a filter on X on a quasi-uniform space (X,U ). We describe
F as a C-filter with respect to the quasi-uniformity U if F meets any of the conditions below:

12



2.1. Orthocompact and Preorthocompact Spaces

(a) lim F ‰ H;

(b) DF P F such that F ˆ F Ä U where U P U .

Obviously, when it comes to the case of the uniform space, the idea of C-filter and Cauchy
filters are in fact similar. The concepts of C-completion, C-strong complete, C-strong comple-
tion and C-complete have definitions in precisely the same apparent manner, incorporating
C-filter in Definition 1.2.18.

Theorem 2.1.6. [13] Every filter F is contained in some ultrafilter.

Theorem 2.1.7. [11] A topological space (X, T ) is C-complete with respect to each compatible quasi-
uniformity iff it is compact.

We need to establish the following lemmas before we can prove Theorem 2.1.7.

Lemma 2.1.8. Each C-filter in a compact quasi-uniform space (X,U ) converges.

Proof. Let us say the C-filter F is non-convergent. x is not a limit point for F, where x P X
and X ‰ H. Hence, there exists Ux P U such that Ux(x) R F. Let Vx P U be such that
Vx ˝ Vx P Ux for every x P X. Now tVx(x) : x P Xu is a neighbourhood covering of X.
Thus, for 1 § i § k, there are finitely many points x1, ..., xk such that X =

î
tVxi (xi)u. For

1 § i § k, let V =
î

tVxi u. There is some set FP F such that FˆF Ä V as a result of C-filter
F being non-convergent. Without loss of generality, we let some p be a member of F. Then
for some 1 § n § k, p P Vxn(xn). Then let a be another arbitrary element of F. But then
(xn, a) P Vxn ˝ Vxn Uxn since FˆF Ä Vxn . Hence FÄ Uxn(xn) which yields the Uxn(xn) P F;
which is a contradiction.

Lemma 2.1.9. Each ultrafilter is a C-filter for a totally bounded quasi-uniform space (X,U ).

Proof. Let U P U and F be an ultrafilter on X. For
î

tBi : 1 § i § ku = X and 1 § i § k, there
are finitely many sets B1, ..., Bk P X such that Bi ˆ Bi Ä U because of the total boundedness of
the quasi-uniform space (X,U ). Again, we know that F is an ultrafilter, so for some 1 § j § k,
Bj is a member of F.

It has already been mentioned in this chapter that in the uniform space case, the concepts
of C-filter and Cauchy filter are precisely the same. It is therefore easy to show that if F is
a filter that satisfies the first condition of the definition of C-filter, then adh F = lim F; and
therefore, if F is a C-filter such that adh F ‰ H, then lim F ‰ H

Lemma 2.1.10. All quasi-uniform spaces are generated by quasi-uniform structures that are totally
bounded.

Proof. By Theorem 1.3.9, Pervin structures are always totally bounded.

Lemma 2.1.11. A totally bounded and C-complete quasi-uniform space (X,U ) is compact.

Proof. In (X,U ), suppose F is some ultrafilter. F is consequently a C-filter according to
Lemma 2.1.9. F converges as a result of (X,U ) being C-complete. Therefore, F has an ad-
herence point and clearly (X,U ) is compact.

Now we can prove Theorem 2.1.7

Proof. Suppose the topological space (X, T ) is compact. (X,U ) is C-complete provided that
U is a compatible quasi-uniform structure, according to Lemma 2.1.8. Now we suppose that
(X, T ) is C-complete with respect to each compatible quasi-uniform structure. Thus (X, T )
is compact by Lemma 2.1.11 and 2.1.10.

13



2.1. Orthocompact and Preorthocompact Spaces

Remark 2.1.12. Since all spaces that are finite have unique compatible quasi-uniform struc-
tures that are generated by unique sets, then we can conclude that all finite spaces are C-
complete.

Definition 2.1.13. A topological space (X, T ) is a transitive space provided that the fine quasi-
uniformity for (X, T ) is the fine transitive quasi-uniformity FT .

Definition 2.1.14. A refines Q or is a Q-refinement iff for each A P A, there exists Q P Q such
that A Ä Q

Proposition 2.1.15. Let (X, T ) be an orthocompact space. Then FT contains every compatible
quasi-uniformity for (X,U ).

Proof. Let U be a compatible quasi-uniformity for the topological space (X, T ) and let U P U .
Let W be an open symmetric entourage such that W ˝ W Ä U, let C = tW(x) : x P Xu and let
R be a Q-refinement of C. Then, for each x P X, UR(x) Ä st(x, C) Ä U(x). Thus UR Ä U so
that U Ä FT .

Definition 2.1.16. [31] A family U of subsets of set X has subinfinite rank if whenever V Ä

U ,
ì

V ‰ H, and V is infinite, then there are two distinct elements of V , one of which is a
subset of the other.

Definition 2.1.17. [32] In a quasi-uniform space (X,U ) where U(x) = ty P X : (x, y) P Uu, a
cover C˚ is called a strong quasi-uniform cover for every x P X, if there is some U P U such that
U(x) Ñ

ì
tH P C

˚ : x P Hu.

Definition 2.1.18. [33][30][5][32] A family U of open subsets of a space X is said to be interior-
preserving if for every U

1
Ä U , the intersection

ì
U is open in X.

Example 2.1.19. It is obvious that tUu is a strong quasi-uniform cover of X for a quasi-uniform space
(X,U ).

The next lemma yields an example of a strong quasi-uniform cover that is non-trivial.

Lemma 2.1.20. [28] Let B be a transitive member of T . and let U be a quasi-uniformity of a quasi-
uniform space (X,U ). It follows that tB(x) : x P Xu is a strong quasi-uniform cover of X.

Proof. Suppose x P X and that B is a transitive element of the quasi-uniformity U . For some
y, z P X, y P B(x) and let x P B(z). So, (z, x), (x, y) P B. Now we have (z, y) P B, that is,
y P B(z) since B is transitive. Therefore, x P B(z)u and x P B(x) Ñ

ì
tB(z) : z P Xu. Thus we

conclude that tB(x) : x P Xu is a strong quasi-uniform cover of X.

Definition 2.1.21. [32] For every C P A, let UC = ty P
ì

tC P C : x P Cu and (x, y) : x P Xu

and let A be a nonempty collection of covers of a set X. It can be verified that every such UC is
transitive and reflexive relation and that for a quasi-uniformity on X, the family tUC : C P Au

is a subbase, which will be denoted UA.

Theorem 2.1.22. For a topological space (X, T ), these statements below are equivalent:

(a) the topological space (X, T ) is orthocompact.

(b) FT is a Lebesgue quasi-uniformity.

(c) Every open cover of X has a precise interior-preserving open refinement.

(d) If C is an open cover of X, there is an open refinement R of C such that for each x P X, eitherì
RX P T or RX is the finite union of monotone collections.
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(e) If C is an open cover of X, there is an open refinement R of C such that for each x P X, eitherì
RX P T or RX is of subinfinite rank.

Proof. (a) ñ (b) : Let R be an open interior-preserving refinement of C where C is an open
cover of X. It follows that UR is the required entourage.

(b) ñ (c) : Let C = tCa|a P Au be an open cover of X. Then there exists a positive en-
tourage U P FT such that tU(x)|x P Xu refines C. Define f : X Ñ A by choosing an arbitrary
a in A for every x in X such that U(x) Ä Ca. For every a P A, let Ra =

î
tU(x)| f (x) = au.

Then R = tRa|a P Au is an open refinement of C. For every p P X, U(p) Ä
ì

Rp. Therefore
R is an open interior-preserving refinement of C such that for every a P A, Ra Ä Ca.

(c) ñ (d) ñ (e) : Evident.
(e) ñ (a) : Let C be an open cover of X. Then there exists an open refinement R of C

such that for each x P X, either
ì

RX P T or RX is of subinfinite rank. Well order R and
for each x P X let RX be the least number of RX . The family R0 = tRX|x P Xu is a subcover
of R with property that each R P R0 contains a point of X that belongs to no predecessor of
R. Suppose that R0 is not interior deserving. Then there is an x P X such that R1 = tR P

R0|x P Ru is of subinfinite rank and
ì

R1 R T . Let R1 denote the least member of R1 and let
R2 = tR P R1|R1 is not a subset of Ru. Then

ì
R1 = R1 X (

ì
R2). Thus

ì
R2 R T and R2 is

infinite. Inductively, let Rn denote the least member of Rn and set Rn+1 = tR P Rn|Rn is not
a subset of Ru; then

ì
Rn = Rn X (

ì
Rn+1) and since

ì
Rn+1 R T ,Rn+1 is infinite. In this

way we obtain an infinite subset tRn|n P N of R0 no two members of which are comparable
- a contradiction. Thus R0 is an interior-preserving open refinement of C.

2.2 Open-Finite Covers

Our interest in open-finite covers stems from the lemma given below, which enables us to con-
struct many examples of spaces that are not preorthocompact and to establish that a product
of metrizable spaces is normal if and only if it is preorthocompact.

Definition 2.2.1. A covering tAa : a P Lu of a topological space (X, T ) is said to be point-finite
provided there is at most finitely many indices a P L such that x P Aa for every x P X.

Definition 2.2.2. If each open covering has open refinement that is point-finite, the topologi-
cal space (X, T ) is reffered to as metacompact.

Definition 2.2.3. An open cover C of a space is open finite provided that no nonempty open
set is a subset of infinitely many members of C.

Definition 2.2.4. [34] If there exists a reflexive relation V on X so that, for every x P X, V(x)
is open and V ˝ V(x) is a refiner of C for every open cover C of X, then the space X is said to
be preorthocompact.

This is well explained by Fletcher in Corollary 2.2.5 below.

Corollary 2.2.5. [34] A topological space X is preorthocompact if and only if for each cover C of X
there is a neighbornet V of X such that tV2(x) = V ˝ V|x P Xu refines C.

Definition 2.2.6. [5] If C and R are collections of subsets of a topological space X, we say that
R is cushioned in C if one can assign to each R P R a CR P C such that for every subcollection
R

1 of R,
î

tR|R P R1u Ä
î

tCR|R P R
1
u. A refinement of C that is cushioned in C is called a

cushioned refinement of C. We say that R is cocushioned in C if one can assign to each R P R

a CR P C such that for every subcollection R
1 of R,

ì
tR|R P R

1
u Ä int (

ì
tCR|R P R

1
u). A

refinement of C that is cocushioned in C is called a cocushioned refinement of C.

Lemma 2.2.7. [5] Every open-finite cover of a preorthocompact space has a point-finite open refine-
ment.

15



2.2. Open-Finite Covers

Proof. Let X be a preorthocompact space and let C be an oGpen-finite cover of X. By Corollary
2.2.5 there is a neighbournet V of X such that tV2(x)|x P Xu refines C. For each C P C, let
G(C) = inttx|V(x) Ä Cu and let G = tG(C)|C P Cu. Let p P X and let C P C such that
V2(p) Ä C. Then p P G(C) so that G is a cocushioned open refinement of C. Since C is open
finite, G is point finite.

Definition 2.2.8. [6] For every x P X, if RC [x] is a T -neighbourhood of x, then a cover C of
(X, T ), a topological space, is referred to as an SN-cover of (X, T ).

Definition 2.2.9. Let A be a family of SN-covers of the topological space (X, T ) such that
there are C1, ..., Cn in A such that

ìn
i=1(RCi [x]) Ä A whenever x P A P T . A is, therefore, said

to be an admissible family of covers.

Lemma 2.2.10. [6] A is an admissible family of Q-covers if it is the family of all open finite (Q´,
locally finite, point finite) covers of the topological space (X, T ). We say UA is the open finite (locally
finite, point finite, Q´) covering quasi-uniformity for (X, T ).

Proposition 2.2.11. [5] Every closed subspace of a preorthocompact space is preorthocompact, and if
each open space of a topological space X is preorthocompact then X is hereditarily preorthocompact.

Proposition 2.2.12. [5] Every countably orthocompact separable T1-space is countably metacompact.

Proof. Let tdn|n P Nu be a countable dense subset of X where X is a countably orthocompact
separable T1-space, and let tGn|n P Nu be a countable open cover of X. For each n P N,
set Rn = Gn ´ tdk|k § n and dk P Yi†nGiu. Then tRn|n P N is an open-finite refinement
of tGn|n P Nu, and so by the proof of Lemma 2.2.7 tGn|n P Nu has a point-finite open
refinement.

Theorem 2.2.13. [15] Let (X, T ) be a symmetric topological space. Now, the finite transitive, point-
finite covering, locally finite covering, and the Pervin quasi-uniformities are each locally right sym-
metric.

Theorem 2.2.14. [5] Then the statements below are equivalent in a topological space (X, T ):

(a) the topological space (X, T ) is metacompact.

(b) (X, T ) is preorthocompact and nearly metacompact.

(c) (X, T ) is preorthocompact and semi-metacompact.

Proof. Clearly, it is obvious that (a) ñ (b) and (b) ñ (c).
(c) ñ (a) Let C be an open-finite refinement of V where V is a cover of X and let (X, T )

be a semi-metacompact preorthocompact space. By Lemma 2.2.7 there is a point-finite open
refinement of C.

Proposition 2.2.15. [5] If X is a preorthocompact space, that is the product of non-empty T1 spaces,
then all but countably many factors are countably compact.

Proof. Suppose that X = PtXi|i P Iu where for uncountably many i, Xi is not countably com-
pact. Then X contains a closed copy of Nw, the set of all w-tuples (ocurrences) of ordered
natural numbers, where w • 0. As Nw is separable but not normal, it is not metacompact.
Since Nw has an open-finite base, it follows from Theorem 2.2.14 that Nw is not preortho-
compact - a contradiction to Proposition 2.2.11.

Corollary 2.2.16. [5] Let X be a product of metrizable spaces. Then X is normal if and only if it is
preorthocompact.
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2.2. Open-Finite Covers

Proof. It is well-known result of A. H. Stone that a product of metrizable spaces is normal if
and only if all but countably many factors are compact.

Lemma 2.2.17. Let t0, 1u have the discrete topology and X be a topological space. Suppose that l is a
cardinal number such that X ˆ t0, 1u is preorthocompact; then each open cover of X having cardinality
not greater than l has a point-finite open refinement.

Proof. Let C = tCa|a † lu be an open cover of X. For each a † l and i = 0, 1, set D(a, i) =
Ca ˆ ty P t0, 1u

l
|y(a) = i; a P lu. Let D = tD(a, i)|a † l, i = 0, 1u. Now D is an open-finite

cover of X ˆ t0, 1u
l. Since X ˆ t0, 1u

l is preorthocompact, from Lemma 2.2.7, it follows that
D has a point-finite open refinement R. Let y P t0, 1u

l. Then tp1(R X (X ˆ tyu))|R P Ru is a
point-finite open refinement of C.

Definition 2.2.18. [35] A space X is developable iff there is a sequence tGnu
8
n=1 of open covers

of X such that for x P X, t st(x, Gn)u8
n=1 is a local base at x. This sequence of covers is called

development.

Definition 2.2.19. Let B be a base for T in a topological space (X, T ). Then B is a uniform
base provided that if U P T and x P U then there are at most finitely many members of B
containing x that are not subsets of U. (X, T ) is metacompact and developable (as defined in
2.2.18) iff T has a uniform base.

Theorem 2.2.20. [23] Every closed subset of an orthocompact space is orthocompact.

Theorem 2.2.21. [5] Let l be a cardinal number and X be a T1-space. Suppose that Xl is preortho-
compact.

(a) If l is infinite, then X is countably metacompact.

(b) If l is uncountable, then X is countably compact.

(c) if l is uncountable and the Lindelöf degree of X does not exceed l, then X is compact.

Proof. (a) We assume, without loss of generality, that X has two points, which we denote by
0 and 1. Then the subspace t0, 1u ˆ t0, 1u

w0 of Xl is closed so that w + 1 = l and therefore
X ˆ t0, 1u

w0 is preorthocompact. By Lemma 2.2.17 X is countably metacompact.
(b) This assertion is an immediate consequence of Proposition 2.2.15
(c) We have from (b) that X is countably compact so that by the well known theorem of

Arens and Dugundji, it suffices to show that X is metacompact. As in the proof of assertion
(a) we have that X ˆ t0, 1u

l is preorthocompact so that by the previous lemma, each open
cover of X having cardinality not greater than l has a point-finite open refinement. Since the
Lindelöf degree of X does not exceed l, X is metacompact.

Definition 2.2.22. [36] A topological space X is called almost 2-fully normal if the set of neigh-
bourhoods of the diagonal of X is in fact a uniformity, that is, if C is an open cover of X then
there exists an open refinement R of C such that if R1 and R2 P R and R1 X R2 ‰ H then there
is set C P C such that R1 Y R2 Ä C.

Theorem 2.2.23. [5] Every almost 2-fully normal preorthocompact space is 2-fully normal.

Proof. Let (X, T ) be an almost 2-fully normal preorthocompact space and let C be an open
cover of X. By Corollary 2.2.5 there is a neighbornet R of X such that tR2(x)|x P Xu refines
C. Since (X, T ) is almost 2-fully normal, the open cover tint[R(x)]|x P Xu has a refinement
G with property that if x1 and x2 P X and st(x1,G) X st(x2,G) ‰ H then there exists an
x P X such that tx1, x2u Ä int[R(x)]. For each x P X let G(x) P G such that x P G(x) and
set H(x) = G(x) X int[R(x)]. We assert that H = tH(x)|x P Xu is an open refinement of
C that satisfies the requirements imposed by the definition of 2-full normality. To establish
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2.3. Quasi-Uniform Covers

this assertion let x and y be members of X such that H(x) X H(y) ‰ H. Since G(x) ‰ H,
there is some z P X such that tx, yu Ä int[R(z)]. Let C P C such that R2(z) Ä C. then
H(x) Y H(y) Ä R(x) Y R(y) Ä R2(z) Ä C.

Definition 2.2.24. [36] We call a subset A of a topological space X a refiner of a cover D of X,
if A is a subset of some member of D.

Lemma 2.2.25. [36] A normal topological space X is almost 2-fully normal if and only if for every
open cover C of X there is a locally finite open cover D of X such that every refiner of D with at most
2 elements is a refiner of D.

Proposition 2.2.26. [34] Every almost 2-fully normal metacompact space is paracompact.

Proof. Let X be an almost 2-fully normal nearly metacompact space and let C be an open
cover of X. There is an open refinement R of C and a dense set D so that R is point finite on
D. There exists a locally finite open cover G of X such that every two-element refiner of G is
a refiner of G. Let G P G. There exists d P G

ì
D. Let x P G. Then there exists R P R such

that tx, du Ä R. It follows that, for each G P G, there is a finite sub-collection C(G) of C so that
G Ä

î
C(G). Thus tG

ì
C : C P C(G) and G P Gu is a locally finite open refinement of C.

Definition 2.2.27. [37] The triple (X, T , §), where (X, §) is linearly ordered (=totally or-
dered) set, and T is the order topology by the order § is called a linearly ordered topological
space (which is abbreviated as LOTS); that is, t(a,+8), (´8, a) : a P Xu is a subbase for T ,
here (a,+8) = tx P X : x ° au, (´8, a) = tx P X : x † au.

A space X is a generalized ordered space (abbreviated GO-space) if X is a subspace of a
linearly ordered topological space Y, where the order of X is the one induced by the order of
Y.

Theorem 2.2.28. [5] Every GO space is orthocompact.

Proof. Let (X, T ) be a GO space and let C be a cover of X by possibly degenerate open in-
tervals. Let Y be a subset of X that is maximal with respect to the property that for each
y P Y, st(y, C) X Y = y. For each y P Y set L(y) = t(–, y) X C|C P Cyu, set R(y) = t(y, Ñ

) X C|C P Cyu, choose Cy P C, and set A(y) = tCyu. Let G =
î

tL(y) Y R(y) Y A(y)|y P Yu. it
follows from the maximality of Y that G is an open refinement of C. For each x P X there is at
most one y P Y such that y § x and x P st(y, C) and there is at most one y P Y such that y • x
and x P st(y, C). Therefore for each x P X,GX is the union at most four monotone subfamilies
and so, by Theorem 2.1.22, X is orthocompact.

2.3 Quasi-Uniform Covers

In Definition 1.2.4 of chapter 1, we discussed and defined a quasi-uniform space, built up
from a quasi-uniformity. We also discussed a transitive set in Definition 1.3.1. In this section,
we will start with the following proposition and definitions:

Definition 2.3.1. [38][5] A quasi-proximity for a set X is a relation d in P(X) such that the
following conditions hold:

(a) the set X �d H and H �d X.

(b) CdA Y B iff CdA or CdB.
A Y BdC if AdC or BdC.

(c) txudtxu for every x P X.
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2.3. Quasi-Uniform Covers

(d) If A �d B , there is some C Ä X such that X ´ C �d B and A �d C.

d´1 is a quasi-proximity on X if d is as well. If quasi-proximity d = d´1, then d is a
proximity. The pair (X, d) is referred to as a quasi-proximity space.

Proposition 2.3.2. [5] In (X, T ), a topological space, let E be a family of functions that are lower
semi-continuous on X such that there is some f P E such that f (X ´ G) = 0 and f (x) = 1 if G P T

and x P G. Let U(e, f ) = t(x, y)| f (x) ´ f (y) † eu be a subbase of the uniformity Ud where d is
the quasi-proximity on X and let S = tU(e, f )| f P E, e ° 0u. Therefore, for quasi-uniformity that is
compatible with T , S is a subbase.

Proof. For a quasi-uniformity U on X, S is a subbase since for e ° 0 and every f P E, U( e
2 , f ) ˝

(U e
2 , f ) Ä U(e, f ) and D Ä U(e, f ). Let x P X, e ° 0 and f P E. So since f is lower semi-

continuous, then f ´1( f (x) ´ e, 8) P T and U(e, f )(x) = ty| f (y) ° f (x) ´ eu = f ´1( f (x) ´

e, 8). Therefore, T(U ) Ä T. Let f P E and x P G where G P T, such that f (X ´ G) = 0 and
f (x) = 1. Thus x P U(1, f )(x) Ä G and hence U is compatible with T and T Ä T(U ).

Definition 2.3.3. In a topological space (X, T ), a semi-continuous quasi-uniformity, denoted
SC, is the quasi-uniformity in Proposition 2.3.2 that is generated by making E a set of every
lower semi-continuous function.

Lemma 2.3.4. The statements below hold:

(a) A1 X A2 is a relation that is transitive on X if A1 and A2 are relations that are transitive on a set
X.

(b) ( f ˆ f )´1(B) is a relation that is transitive on X if B is a relation that is transitive on Y and
f : X Ñ Y is a function.

Proof. (a) Let’s say. Suppose (x, z) P (A1 X A2) ˝ (A1 X A2). and let A1 and A2 be transi-
tive. So there is some y P X such that (x, y) P (A1 X A2) and (y, z) P (A1 X A2). Then
(x, z), (y, z) P A1 and therefore, (x, z) P A1 by transitivity of A1. For the same argument,
(x, z) P A2 by the transitivity of A2. Hence, (A1 X A2) ˝ (A1 X A2) Ä (A1 X A2).

(b) Now let’s say B is transitive and that (x, z) P ( f ˆ f )´1(B) ˝ ( f ˆ f )´1(B). So there
is some y P X such that (y, z) P ( f ˆ f )´1(B) and (x, y) P ( f ˆ f )´1(B). Therefore,
( f (y), f (z)) P B and ( f (x), f (y)) P B. Hence, ( f (x), f (z)) P B, by the transitivity of B.
So, (x, z) P ( f ˆ f )´1(B).

[6] For a quasi-uniformity, if every entourage in subbase B is transitive, then B is said to
be transitive. A quasi-uniformity has a transitive base if it has a transitive subbase, by (a)
above. A transitive quasi-uniformity is a quasi-uniformity with a transitive subbase.

Definition 2.3.5. A cover C is directed (under set inclusion) provided that the union of any
two members of C is a subset of some member of C, and we denote the collection of all finite
unions of members of C as CF. In particular if C is a cover, then C

F is a directed cover and if C
is a directed cover, then C

F refines C.

Corollary 2.3.6. [6][5] For every U P SC in a topological space (X, T ), there is some D, a countable
subset of X, whereby U(D) induced by the collection D of quasi-pseudometrics, is a quasi-uniformity
such that X = U(D).

Theorem 2.3.7. [5] For a completely regular topological space (X, T ) the following statements are
equivalent:

(a) (X, T ) is a Lindelöf space.
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2.3. Quasi-Uniform Covers

(b) Every directed open cover of the Lebesgue uniformity (X, C(X)) is a uniform cover, where C(X)
or simply C denote the set of all real-valued continuous functions of X.

(c) Every directed open cover of (X, SC) is a quasi-uniform cover.

Proof. (a) ñ (b) Suppose that (X, T) is a Lindelöf space. In order to establish condition (b) it
suffices to show that every countable directed open cover of X by cozero sets in a uniform
cover. Leet C = tCn|n P Nu be such a cover and for each n P N, let fn : X Ñ [0, 1] be
a continous function such that cn = X ´ f ´1

n (0). Without loss of generality, we assume
that Cn Ä Cn+1 for each n P N. Define g = 1∞8

i=1
fi
2i

. Then g is continous function so that

V = t(x, y)||g(x) ´ g(y)| § 1u P CX. To show that C is a uniform cover, suppose there
is a p P X such that for each i P N, V(p) ´ Ci ‰ H. For each i P N there is an xi P V(p)
such that f j(xi) = 0 for 1 § j § i. Then for each n P N, g(xn) ° 2n and g(p) • g(xn) ´ 1
- a contradiction.

(b) ñ (c) This implication holds because C(X) Ä SC.

(c) ñ (a) This implication follows from Corollary 2.3.6.

Definition 2.3.8. Let C be a family of subsets of a set X and let the family of every finite union
of elements of C be denoted by C

F. A cover C is directed (under inclusion) provided that the
union of any two members of C is a subset of some member of C. In particular, if C is a cover,
then C

F is a directed cover and if C is a directed cover, then C
F refines C.

Corollary 2.3.9. SC is a transitive quasi-uniformity in a topological space (X, T ).

Definition 2.3.10. For a cover C of a set X, we define

RC = t(x, y) P X ˆ X : (@C P C)(x P C ñ y P C)u (2.1)

For a reflexive relation R, the following defines a cover of X:

CR = tR[x] : x P Xu (2.2)

Proposition 2.3.11. [6] Let CV be a cover of a set X and R be a reflexive relation on X. RCV = V
provided that V is a transitive reflexive relation on X.

Proof. Let x P X Then,

RCV = ty : (@z P X)(x P V[z] ñ y P [z])u
= ty : (@z P X)((z, x) P V ñ (z, y) P V)u

= ty : (x, y) P Vu = V[x].
(2.3)

Definition 2.3.12. If CRC
= C, then the cover C is said to be a reduced cover of a set X. .

Proposition 2.3.13. On a set X, between reduced covers and reflexive transitive relations, there exists
a one-to-one correspondence.

Proof. RCV = V if V is reflexive and transitive. Therefore, CRCV
= CV

Definition 2.3.14. [6] Let a collection of covers of X be A and define RC = t(x, y) P X ˆ X :
(@C P C)(x P C ñ y P C)u. Take B = tRC : C P Au. So B is a subbase for a covering
quasi-uniformity UA on X, which is a transitive quasi-uniformity generated by A.

Theorem 2.3.15. [6] U , a quasi-uniformity on X, is a covering quasi-uniformity iff it is transitive.
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2.3. Quasi-Uniform Covers

Proof. Suppose B is a transitive base for B. Then, the collection tCB : B P Bu of covers is
required, by Proposition 2.3.11.

Definition 2.3.16. Let F be a filter on X, in quasi-uniform space (X,U ). Then F is a weakly
Cauchy filter provided that for each U P U there is a p P X such that for each F P F , F X U(p) ‰

H

Proposition 2.3.17. Each weakly Cauchy filter has a cluster point if and only if in a quasi-uniform
space (X,U ), each directed open cover is a quasi-uniform cover.

Proof. Suppose C is a directed open cover of X and that each weakly Cauchy filter contains a
cluster point. We assume, without loss of generality, that X R C. Then tX ´ C|C P Cu is a filter
base of closed sets that has no cluster point. Consequently, there is a UU such that for each
x P X there is a Cx P C such that U(x) X (X ´ Cx) = H. Evidently tU(x)|x P Xu refines C.

Now suppose a weakly Cauchy filter F contains no cluster point and that each directed
open cover of (X,U ) is a quasi-uniform cover. Then tX ´ F|F P Fu. There exists p P X such
that for every F P F , U(p) X F ‰ H and there is some Fp P F such that U(p) Ä X ´ Fp - a
contradiction.

Corollary 2.3.18. If every directed open cover of a quasi-uniform space (X,U ) is a quasi-uniform
cover, then (X,U ) is complete.

Theorem 2.3.19. [5] Each open cover is a quasi-uniform cover iff the locally compact quasi-uniform
space is uniformly locally compact.

Proof. Suppose each directed open cover is a quasi-uniform cover in a locally compact quasi-
uniform space (X,U ). Let C = tN(x)|x P Xu and N(x) be an open neighbourhood of x
which has a compact closure for every x P X. So there is some entourage U P U such that
tU(x)|x P Xu refines C

F. Let x P X. There exists some finite subset tyi|1 § i § nu of X such
that U(x) Ä Un

i=1N(yi). Since N(yi) is compact for each i with 1 § i § n, U(x) is compact.
Now suppose that the quasi-uniform space (X,U ) is locally compact uniformly and that

F is a weakly Cauchy filter on X. By Proposition 2.3.17 it suffices to show that F has a cluster
point. Let V P U such that for every x P X, V(x) is compact. There is p P X such that for
every F P F , V(p) X F ‰ H. Let F1 = tV(p) X F|F P Fu. Then F1 is a filter on V(p) and F

1

contains a cluster point since V(p) is compact. Therefore, F contains a cluster point.

In Chapter 1, we defined Q-covers in 1.3.10. This remark follows:

Remark 2.3.20. RC [x] is open for every x P X if RC [x] is a neighbourhood of x for every x P X,
by the transitivity of RC . Therefore the Q-covers are simply the open SN-covers.

Theorem 2.3.21. [6] Let U be a compatible quasi-uniformity for the topological space (X, T ). So,
U is generated by an admissible family of reduced Q-covers of (X, T ) if and only if U is transitive
quasi-uniformity.

Proof. Suppose that B is a transitive base for U where for the topological space (X, T ), U is a
compatible transitive quasi-uniformity and B P B. For every x P X, RCB [x] = B[x] which is a
neighbourhood of x, according to Proposition 2.3.11 . Therefore, for every B P B, by Remark
2.3.20, CB is a (reduced) Q-cover of X. Obviously, there is some B P B such that RCB [x] Ä A,
for every x P A P T . Hence, for A = tCB : B P Bu, A is an admissible family of covers.
RCB = B for every B P B, by Proposition 2.3.11. Therefore U = UA.
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3 Chapter 3

3.1 Completely Regular Quasi-Uniformizable Topological Spaces

In chapter 1, we defined and discussed regular spaces and completely regular spaces. In this
section we will look into quasi-uniformizable topological spaces and how they are completely
regular spaces and Hausdorff spaces.

Definition 3.1.1. [13] Let A and B be sets, A is said to be equipotent with B if and only iff
there is a one-one function f from A onto B. Intuitively, equipotent sets have similar cardinal
number. So we postulate the existence of sets, called cardinal numbers, chosen in a way that
each set A is equipotent with exactly one cardinal number, called the cardinal number of A and
denoted |A|.

Definition 3.1.2. The transitivity degree of a quasi-metrizable space X is the supremum of all
n P N such that X admits an effective n-transitive action.

Proposition 3.1.3. [39] For each infinite cardinal b the exists a quasi-metrizable space Xb such that
tq(Xb) ° b, where tq(X) denotes the transitivity degree of X.

Definition 3.1.4. [26] The triple (X, T1, T2) is a bitopological space whereby T1 and T2 are
topologies for set X.

We need to first look at the following definitions before concluding with the Remark 3.1.7
below.

Definition 3.1.5. [40] A filter V on X ˆ X is a semi-uniformity on a set X if for every V P V ,

(a) D(X) = txx, xy : x P Xu Ñ V and

(b) V´1 = txy, xy : xx, yy P Vu P V .

A base (subbase) for V is just a base (subbase) for V considered as a filter provided that
on a set X, V is a semi-uniformity. The members of V are referred to as semineighbourhoods of
the diagonal in X ˆ X. The pair (X,V) is referred to as a semi-uniform space.
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Definition 3.1.6. [40] A subbase B for a semi-uniformity on a set X is locally uniform iff for
all U P B, and for all x P X, there exist V P V : (V ˝ V)[x] Ñ U[x]. If V is a locally uniform
semi-uniformity, then V is a local uniformity, and (X,V) is a locally uniform space.

Remark 3.1.7. We note that for any infinite cardinal m every completely regular topological
space that admits a local uniformity with a base of cardinality m also admits a uniformity
with a base of cardinality m.

Definition 3.1.8. [41] Let (X, T ,S) be a bitopological space consisting of a (non-empty) set X
equipped with the two topologies T and S . If there exists a quasi-uniformity U on X such that
T (U ) = T and T (U´1) = S , it said to be completely regular. (We can say that U is compatible
with the topologies of X). If a completely regular bitopological space’s finest compatible
totally bounded quasi-uniformity is transitive, it is said to be strongly zero-dimensional. It is
observed in that the finest compatible quasi-uniformity is transitive on a non-archimedeanly
quasi-pseudo-metrizable bitopological space.

Definition 3.1.9. [5][42][18] Let (X,V) and (X,U ) be quasi-uniform spaces. A function f :
X Ñ Y is quasi-uniformly continuous provided for every V P V , whenever (x, y) P U, there is
some U P U such that ( f (x), f (y)) P V; that is for every V P V , f ´1

2 [V] P U . Now, let g : Y Ñ Z
and f : X Ñ Y. Since (g ˝ f )2 = g2 ˝ f2, the composition of two quasi-uniformly continuous
functions is quasi-uniformly continuous. If f and f ´1 are quasi-uniformly continuous, the
bijection f : X Ñ Y is a quasi-unimorphism.

Definition 3.1.10. [5][18] Let (X,U ) be a T1 quasi-uniform space. A complete T1 quasi-
uniform space (Y,V) which possesses a dense subspace quasi-unimorphic (with respect to
U and V) to (X,U ) is called a completion of (X,U ).

Definition 3.1.11. [26] Let P be the quasi-uniformity on X for which t(A ˆ A) Y [(X ´ A) ˆ

X] : A P T u is a subbase, in a topological space (X, T ). Then P is the Pervin quasi-uniformity
for (X, T ).

The next construction proves that each quasi-uniform space posseses a simple comple-
tion.
For b R X, suppose that X˚ = X Y tbu in the quasi-uniform space (X,U ) and that S(U) =
U Y t(b, x) : x P X˚

u where U P U . So for U˚, a quasi-uniform structure, B = tS(U) : U P Uu

forms its base. It should be noted that if x P X, for every S(U)[x] = U[x] and U P U ,
S(U)[b] = X˚. Evidently, on X˚ each filter F converges to b. As a result, (X˚,U˚) is strongly
complete. Furthermore, there is a quasi-uniform isomorphism i : (X,U ) Ñ (X˚,U˚) and
U = tU˚

X X ˆ X : U˚
P U

˚
u. The quasi-uniform space (X˚,U˚) is a completion of (X,U ),

from the fact that X is dense in X˚. Actually, TU˚ = TU Y tX˚
u and X˚ is compact.

Now suppose some Cauchy filter L = tF̂ : F is nonconvergent on (X,U )u. So we obtain a
strong completion of (X,U ), using the same construction, which we denote (X̊, Ů ). It is ob-
vious that (X̊, Ů ) is, in general, not the trivial strong completion that was constructed above.

Lemma 3.1.12. [18] Let S be a subbase for U in a quasi-uniform space (X,U ). Then we have S[x] P F

for every S P S iff filter F converges to x.

For this construction, we let T generate the Pervin quasi-uniform structure U . Now, let
U = tU˚

X X ˆ X : U˚
P U

˚
u, let (X˚,U˚) be a completion for the quasi-uniform space

(X,U ) and let X = X˚. Suppose F is a filter on X. So there is some M, an ultrafilter on X,
such that M Å F . M is a Cauchy filter as a result of U being pre-compact. Let M generate
the ultrafilter ÄM on X˚. U˚

X X ˆ X = U P U if U˚
P U

˚ so that there is some x P X such
that U[x] P M. Obviously, U˚[x] P ÄM and therefore, ÄM is Cauchy. But then (X˚,U˚) is
complete, so ÄM converges to x˚ for some x˚

P X˚.
Suppose two Cauchy ultrafilters M1 and M2 on X are equivalent on condition U[x] P M2

iff U[x] P M1. On the set of every Cauchy ultrafilter on X, this is definitely an equivalence
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relation. Now, let the equivalence class that has M be denoted by M̂, let X˚ = X Y L and
let L = tM̂ : M is a Cauchy ultrafilter that is convergent on Xu. For V P B, we will
denote the set of every mapping d from L to X by D(V) such that y P V[d(M̂)]u, S(V, d) =
V Y D Y t(M̂, y) : M̂ P L and V[d(M̂)] P M.

Theorem 3.1.13. [18] (X˚,U˚) is complete.

Proof. Suppose F is a Cauchy filter on X˚. For M being an ultrafilter, we have F Ä M.
U

˚ is complete and F contains an adherent point whenever M converges. Let’s say M is
not convergent. We want to prove that x P M. Suppose S(U, d) P U

˚. Then, there is some
x˚

P X˚ such that S(U, d)[x˚] P M given that M is Cauchy. If x˚ = M̂1 P L, we have

S(U, d)[x˚] = tM̂1u Y U[d(M̂1)]. (3.1)

M being nonconverge to M̂1 suggests that there is some S(V, d) P S
˚ such that

S(V, d)[M̂1] R M. Furthermore, there is some z˚
‰ M̂1 such that S(V, g)[z˚] P M given

the fact that M is Cauchy. So, there is nothing to show if z˚
P X; so we let z˚ = M̂2 P L.

Now, we have M̂1 R M̂2 and

(V[g(M̂2)] Y tM̂2u) X (U[d(M̂1)] Y tM̂1u) P M. (3.2)

Therefore, X P M, from the fact that

X Å V[g(M̂2)] X U[d(M̂1)] P M. (3.3)

Let the ultrafilter M0 = tM P M : M Å Xu on X. We prove that M0 is U -Cauchy. For
V Ä U, there is some V P B provided U P U . Set d P D(V). So there is some x˚

P X˚ such
that S(V, d)[x˚] P M since S(V, d) P U

˚. Now, U[x˚] = M0 since V[x˚] P M provided
x˚

P X. More so, V[d(M̂)] Y tM̂u P M provided x˚ = M̂ P L and the fact that X P M

means V[d(M̂)] P M. As a result, U[d(M̂)] P M0. As a consequence, M0 is Cauchy on X.
There are two cases: M0 is either convergent or is not, on X.
Case (1) affirmative: M0 converges to x. Set S(V, d) P S

˚ so that S(V, d)[x] = V[x] P M0. As
a result, S(V, d)[x] P M which yields the convergence of M to x, a contradiction.
Case (2) negative: M0 is not convergent on X. Consequently, M̂0 P L so we prove that M
converges to M̂0. Now, we have

S(V, d)[M̂0] = V[d(M̂0)] Y tM̂0u, providedS(V, d) P S
˚. (3.4)

So, V[d(M̂)0] P M0. Thus S(V, d)[M̂0] P M. Hence, M converges to M̂0, a contradic-
tion.

Definition 3.1.14. [2] If quasi-uniformity U is such that U = U
´1, then then uniformity U is

said to be symmetric.

Definition 3.1.15. [5] (X, dU ) is point-symmetric in a quasi-uniform space (X,U ) provided for
every x P X and U P U , there is some symmetric V P U such that V(x) Ä U(x); equivalently,
if for every x P X and U P U , there is some V P U such that V´1(x) Ä U(x).

Corollary 3.1.16. Every point-symmetric T1 quasi-uniform space has a completion.

Proposition 3.1.17. Let every quasi-uniformity in the topological space (X, T ) compatible with T

have a completion. Then (X, T ) is compact.

Theorem 3.1.18. [18] (X˚,U˚) is a completion for the quasi-uniform space (X,U ).
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Proof. Clearly, (X˚,U˚) is complete, by Theorem 3.1.13. Set U˚
P U and M̂ P L. So, there is

some S(V1, d1), ..., S(Vn, dn) P S such that
ìn

i=1 S(Vi, di) Ä U˚. We have

S(Vi, di)[M̂] = tM̂u Y Vi[di(M̂)] : i = 1, 2, ..., n. (3.5)

Now,
ìn

i=1 Vi[di(M̂)] ‰ H, for every i = 1, 2, ..., n from the fact that Vi[di(M̂)] P M. So
we have

U˚[M̂] X X Å

 
n£

i=1
S(Vi, di)

!
[M̂] X X

=
n£

i=1
S(Vi, di)[M̂] X X

=
n£

i=1
Vi[di(M̂)] ‰ H.

(3.6)

Hence, X = X˚ and M̂ P X. Let the induced quasi-uniform structure of U˚, be denoted
by U

1, on X. For V Ä U, there is some V P B, provided U P U . Suppose d P D(V), so that
V = S(V, d) X X ˆ X and S(V, d) P U

˚. Thus V P U
1 and hence U P U

1. Let U P U
1 so that

there is some U˚
P U

˚ such that U = U˚
X X ˆ X. There is some S(V1, d1), ..., S(Vn, dn) P S

˚
such that U˚

Å
ìn

i=1 S(Vi, di) from the fact that U˚
P U

˚. As a result,
 

n£

i=1
S(Vi, di)

!
X X ˆ X Ä U˚

X X ˆ X = U. (3.7)

Thus,
ìn

i=1 Vi Ä U and therefore U P U . Hence we have proven that U = U
1. Conse-

quently, it can be concluded that the identity mapping given by i : (X,U ) Ñ (X,U˚
X X ˆ X)

is quasi-uniform isomorphism.

Corollary 3.1.19. [5] Let (X, T ) be a locally compact Hausdorff space. A quasi-uniformity W com-
patible with T contains a uniformity compatible with T iff W is locally symmetric.

Corollary 3.1.20. For every x P X and every U P U , there is a symmetric V P U such that V ˝

V(x) Ä U(x).(It is not asserted that V ˝ V Ä U.)

Theorem 3.1.21. [8] Let (X,U ) be a quasi-uniform space which satisfies Corollary 3.1.20. Then X is
a regular topological space.

Proof. Let G be any open set that has x P X. So there is some symmetric V P U such that
V ˝ V(x) Ä G by Corollary 3.1.20. Let z P V(x) ´ V(x). So there is some y P X such that
y P V(x) X V(z). But then V is symmetric, z P V(y) Ä V ˝ V(x) Ä G. So V(x) Ä G and X is
regular.

Theorem 3.1.22. [18] The following are properties of (X˚,U˚) that can be verified easily:

(a) (X,U ) is completely regular provided (X˚,U˚) is pre-compact and Hausdorff.

(b) the set X is a dense open subset of X˚

(c) (X,U ) has property P provided P is an open hereditary property and (X˚,U˚) has property P.

(d) (X˚,U˚) is T0 iff (X,U ) is T0

(e) the subspace topology on L is the discrete topology and L is closed in X˚.

Apparently the properties hold for (X̊, Ů ) as well.

25



3.2. Completion, completeness and Quasi-Pseudometric Spaces

Proof. (a) (X˚,U˚) must be a compact Hausdorff space since it is complete and provided it
is Hausdorff and pre-compact. Hence (X,U ), the subspace, must be completely regular.

(b) X = X˚, by Theorem 3.1.18. Let S(U, d) P U
˚ and x P X. Then S(U, d)[x] = U[x] Ä X.

Thus X is open in X˚.

(c) Clearly it is a result of (b)

(d) The sufficiency is apparent from the fact that T0 is a hereditary property. Let (X,U ) be
T0, so that given that X is open in X˚ it is sufficient to consider the case where x˚,M̂ P

X˚, x˚
‰ M̂ P L. Suppose S(U, d) P U

˚ so that M̂ R S(U, d)[x˚]. Therefore X˚ is T0.

(e) By (b), L is closed in X˚, and for any S(U, d) P U
˚ it follows that M̂ = L X S(U, d)[M̂]

for any M̂ P L. Thus the subspace topology on L is discrete.

3.2 Completion, completeness and Quasi-Pseudometric Spaces

In this chapter, we defined a completion of a quasi-uniform space and further constructed an
example that proved that a quasi-uniform space has a simple completion. In this section, we
will further our discussion on how the completion is unique up to isomorphism. We further
discussed how quasi-uniform structures generate discrete topologies and what makes them
compatible with topologies. Now let us consider the following definition.

Definition 3.2.1. [18] Two quasi-uniform spaces (X,U ) and (Y,V) are said to be quasi-
uniformly isomorphic relative to U and V if there exists a one-to-one mapping f of X onto
Y such that f and f ´1 are quasi-uniformly continuous.

Definition 3.2.2. [43] A quasi-uniform space (X,U ) can be embedded in a quasi-uniform space
(Y,V) if and only if there exists a quasi-uniform isomorphism from (X,U ) onto a subspace
of (Y,V).

Definition 3.2.3. [6][5] On a set X, a quasi-pseudometric d is a function from X ˆ X into the set
of positive real numbers such that for x, y, z P X :

(a) d(x, y) Æ d(x, z) + d(z, y) and

(b) d(x, x) = 0.

The pair (X, d) is called a quasi-pseudometric space.

Remark 3.2.4. [43] Clearly, for a filter F in a quasi-pseudometric space (X, d) and for every
e ° 0, there is some x P X such that Se(x) = ty P S : d(x, y) † eu P F iff the filter F is Cauchy,
and that (X, d) is a quasi-uniform space.

Theorem 3.2.5. [43] Let tUn : n = 0, 1, ...u be sequence of subsets of X ˆ X such that U0 =
X ˆ X, Un+1 ˝ Un+1 ˝ Un+1 Ñ Un for each n, and each Un contains the diagonal. Then there is a
quasi-pseudometric d on X such that Un Ñ t(x, y) : d(x, y) † 2´n

u Ñ Un´1 for each positive integer
n.

A quasi-uniformity of a set X may be derived from a collection P of quasi-pseudometrics.
For p in P, let Up,r = t(x, y) : p(x, y) † ru. The collection of every set of the form Up,r, for
r ° 0 and p P P, is a subbase for a quasi-uniformity U on X. The quasi-uniformity U is
called the quasi-uniformity generated by P. Each quasi-uniformity for a set X is generated by
a family of quasi-pseudometrics. This serves, together with Theorem 3.4.1, as proof for the
following theorem.
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Theorem 3.2.6. [43] Each quasi-uniform space (X,U ) can be embedded in a product of quasi-
pseudometric spaces.

Definition 3.2.7. [6] A family D of quasi-pseudometrics generates a quasi-uniformity Ud if the
sets t(x, y) : d(x, y) † ru, d P D and r ° 0, form a subbase for U .

Proposition 3.2.8. [22] Let txnu be a sequence of points in the uniform space X. If txnu converges
in the uniform topology, then txnu is a Cauchy sequence.

Proposition 3.2.9. Let F be a filter on the uniform space X. If F converges in the uniform topology,
then F is a Cauchy filter.

Definition 3.2.10. A uniform space M is called sequentially complete if every Cauchy sequence
of points in M converges.

Theorem 3.2.11. A complete uniform space is sequentially complete.

Theorem 3.2.12. [44] Every quasi-pseudometric space (X, d) has has a completion (X˚, d˚) which
is a quasi-pseudometric space.

Proof. We may and do assume that d(x, y) Æ 1 for all x, y P X. Let X = tx : x = txn : n P Nu

is a d-Cauchy sequence in Xu.
Define:

d : X ˆ X Ñ R :

#
d(x, y) = 0 if y is a subsequence of x,
d(x, y) = limn inf limm sup d(xn, ym) otherwise.

(3.8)

Before we define bicompleteness, lets look at the proposition.

Proposition 3.2.13. [5] Let the quasi-uniform space (X,U ) be locally symmetric. Then in F , a
U -Cauchy filter, each cluster point is a limit point of F .

Proof. Suppose that in F , a U -Cauchy filter, p is a cluster point, and that U P U . Let V denote
a symmetric entourage such that V3(p) Ä U(p). Then there is some x P X such that V(x) P F ,
from the fact that the filter F is Cauchy. We have V(x) X V(p) ‰ H from the fact that p is a
cluster point of F . Therefore V(x) Ä U(p) so that F converges to p.

Definition 3.2.14. [41][5] A quasi-uniform space (X,U ) is referred to as bicomplete if each U
˚-

Cauchy filter has a T(U˚)-limit point. By Proposition 3.2.13, a quasi-uniform space (X,U )
is called bicomplete if the uniformity U

˚ is complete. Therefore (X,U´1) is bicomplete iff
(X,U ) is bicomplete.

Proposition 3.2.15. [41] A topological space admits a bicomplete quasi-uniformity if and only if its
fine quasi-uniformity is bicomplete.

Proposition 3.2.16. The fine quasi-uniformity of any quasi-pseudo-metrizable space is bicomplete.

Lemma 3.2.17. Suppose that (X, dX) and (Y, dY) are metric spaces. Let S Ñ X be dense in X. If Y
is complete, then any uniformly continuous map f : S Ñ Y has a unique continuous extension to X.

Definition 3.2.18. [42] A quasi-uniform space (X,U ) is said to be half complete if every U
˚-

Cauchy filter is T (U )-convergent. A T1 quasi-uniform space (Y,V) is called a T1half com-
pletion of (X,U ) if (Y,V) is half complete and (X,U ) is quasi-isomorphic to a T (V)-dense
subspace of Y. (X,U ), quasi-uniform space, is described as being T1half completable if it ad-
mits a T1 half completion.
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Remark 3.2.19. The topological space (X, T (V)) is T1 provided that (X,U ) is a T1 half com-
pletable quasi-uniform space.

Definition 3.2.20. [42] A T1 quasi-uniform space (Y,V) is referred to as a T1
˚-half completion

of a quasi-uniform space (X,U ) provided that (X,U ) is quasi-isomorphic to a T (V˚)-dense
subspace of (Y,V) and that (Y,V) is half complete. If a quasi-uniform space has a T1

˚-half
completion, it is said to be T1

˚-half completable.

Proposition 3.2.21. [42] If a quasi-uniform space (X,U ) has a T1
˚-half completion (Y,V), then the

bicompletion of (Y,V) is quasi-isomorphic to the bicompletion of (X,U ).

Proof. Let (rY, rV) be the bicompletion of (Y,V). Clearly (X,U ) is quasi-isomorphic to a
T (rV˚)-dense subspace of (rY, rV). Therefore (rY, rV) is a T0 bicompletion of (X,U ). So (rY, rV) is
quasi-isomorphic to the bicompletion of (X,U ).

Let (X,U ) be a T0 quasi-uniform space and ( rX, rU ) its bicompletion. We will denote by
G(X) the set of closed points of ( rX, T( rU )). Clearly G(X) = rX whenever ( rX, rU ) is a T1 quasi-
uniform space.

Definition 3.2.22. [5] On (X,U ), a quasi-uniform space, a U
˚-Cauchy filter is said to be mini-

mal if it does not contain any U
˚-Cauchy filter other than itself.

Proposition 3.2.23. [5] On (X,U ), a quasi-uniform space, let F be a U
˚-Cauchy filter. There is

precisely one minimal U˚-Cauchy filter which is couser than F . More so, B0 = tU(B)|B P B and
U is a symmetric member of U˚

u is a base for the minimal U˚-Cauchy filter coarser than F provided
that B is any base for F .

Corollary 3.2.24. For every x P X, let h˚(x) denote T (U˚)-neighbourhood filter of x in a quasi-
uniform space (X,U ). Then h˚(x) is a minimal U˚ filter.

Theorem 3.2.25. [5] Let (X,U ) be a quasi-uniform space. Then each minimal U˚-Cauchy filter has
some base which has T (U )˚-open sets.

Proof. Suppose V P U . Then there exists a symmetric entourage U P U
˚ such that U(x) P

T (U˚) for every x P X, and that U Ä V by Corollary 1.2.6. U(A) is a T (U˚)-open subset of
V(A), for every subset A of X; therefore, by Proposition 3.2.23, the result follows.

[41] Next is a construction of the bicompletion ( rX, rU ) of a quasi-uniform space (X,U ).
Let (X,U ) be a quasi-uniform space. By rX we denote the set of all minimal U˚-Cauchy filters
on X. Moreover, let rU be the quasi-uniformity on rX that is generated by all sets rU where
U belongs to U . Here rU = t(F ,G) P rX ˆ rX : there is some G P G and F P F such that
F ˆ G Ñ Uu. Often a T (U˚)-convergent minimal U˚-Cauchy filter h˚(x) P rX is identified
with its limit point in (X,U˚) and using this identification (X,U ) is considered a subspace of
( rX, rU ).

Proposition 3.2.26. [5] Let (X,U ) be a T0 quasi-uniform space consisting of a bicomplete subspace
(Y,V). Then Y is a closed subspace of (X, T (U˚)).

For the next Theorem, we will let ( rX, rU ) be a bicompletion of (X,U ), where b(X,U ) is a
T0 quasi-uniform space.

Theorem 3.2.27. [42] Let (X,U ) be a T1
˚-half completable quasi-uniform space. Then any T1

˚-
half completion of (X,U ) is quasi-isomorphic to (G(X), rU |G(X)). Hence it is unique up to quasi-
isomorphism. Moreover, (G(X), rU |G(X)) is the uniform completion of (X,U ) provided U is a uni-
formity.
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Proof. Let (Y,V) be a T1
˚-half completion of (X,U ). By Proposition 3.2.21, it follows that

( rX, rU ) is quasi-isomorphic to (rY, rV), and hence (G(X), rU |G(X)) is quasi-isomorphic to
(G(Y), rV |G(Y)) is quasi-isomorphic to (Y,V). More so, G(X) = r(X), so (G(X), rU |G(X))
is the uniform completion of (X,U ) provided U is a uniformity on X.

Definition 3.2.28. [5] In (X,U ), a quasi-uniform space, bicompletion (Y,V) is a bicomplete
quasi-uniform space that has a T(V˚) dense subspace quasi-unimorphic to (X,U ). The main
idea towards the bicompletion of a quasi-uniform space construction is the utilisation of min-
imal U˚-Cauchy filters. On (X,U ) the quasi-uniform space, if a U -Cauchy filter does not
contains any U -Cauchy filter besides itself, it is called a minimal.

Proposition 3.2.29. [5] Let D be a dense subset of (X, T (U˚)) in a quasi-uniform space (X,U ).
(X,U ) is bicomplete provided that each Cauchy filter on (D,U˚

|D ˆ D) converges in (X, T (U˚)).

Proof. It sufficient to prove that on X, each minimal U˚-Cauchy filter F converges. Each
element of F has a nonempty interior, by Theorem 3.2.25. So, F |D is a Cauchy filter on
(D,U˚

|D ˆ D) since D is dense in (X, T (U˚)). Therefore, it is convergent in (x, T (U )˚). Since
F is coarser than the filter on X, determined by F |D, it can be concluded that F converges,
by Proposition 3.2.13.

Definition 3.2.30. [42][5] A compactification of a T1 quasi-uniform space (X,U ) is a compact
T1 quasi-uniform space (Y,V) that has T (V˚)-dense subspace quasi-isomorphic to (X,U ).
A compactification of a Tychonoff quasi-uniform space (X,U ) is a compact Hausdorff quasi
uniform space (Y,V) that has a dense subspace quasi-unimorphic to (X,U ).

Definition 3.2.31. [42] We say that T1 quasi-uniform space (X,U ) is compatifiable if it has a
compactification.

Clearly, (Y,V) is a T1
˚-half completion of (X,U ) provided that (X,U ) has a compactifi-

cation (Y,V).

Corollary 3.2.32. [42] If (X,U ), a T1 quasi-uniform space, has a compactification, then any com-
pactification of (X,U ) is quasi-isomorphic to (G(X), rU |G(X)). Hence, it is unique up to quasi-
isomorphism.

Proof. Let (Y,V) be a compactification of (X,U ). Then (Y,Y) is a T1
˚-half completion of

(X,U ). By Theorem 3.2.27 (Y,V) is quasi-isomorphic to (G(X), rU|G(X)), and thus it is
unique up to quasi-isomorphism.

Theorem 3.2.33. [5] V consists of a uniformity that is compatible with T (V) iff (X,V), a Tychonoff
quasi-uniform space that is totally bounded contains a compactification.

3.3 Quasi-Uniform Structures and Symmetric Quasi-Uniformities

In Definition 1.3.10, we introduced quasi-uniform structures, gave an example of their base
and noted that they generate discrete topologies.

[15][18] Each quasi-uniform structure generates a topology T (U ) = tO Ä X : if x P O,
then there exists U P U such that U[x] Ä Ou. It follows that A =

ì
tU´1[A] : U P Uu

and int(A) = tx : there exists U P U such that U[x] Ä Au. A quasi-uniform structure U

is compatible with a topology T on X provided T = T (U ). Suppose TU = tA Ä X : if
a P A, there exists U P U such that U[a] Ä Au provided that for a set X, U is a quasi-uniform
structure. Thus, generated by U on X, TU is the quasi-uniform topology.

Definition 3.3.1. Let (X,U ) be a quasi-uniform space.
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(a) (X,U ) is called locally left symmetric if for each x P X and U P U there exists V P U such
that V´1(V[x]) Ä U[x].

(b) (X,U ) is called locally right symmetric if for each x P X and U P U there exists V P U such
that V(V´1[x]) Ä U[x].

Lemma 3.3.2. [15] Let (X,U ) be a quasi-uniform space.

(a) If (X,U ) is locally left symmetric, then T (U ) is symmetric.

(b) If (X,U ) is locally right symmetric, then T (U ) is symmetric.

Theorem 3.3.3. Let (X, T ) be a symmetric topological space. Then the fine transitive, point-finite
covering, locally finite covering, and the Pervin quasi-uniformities are each locally right symmetric.

Proposition 3.3.4. [12] A non-void collection B of subsets of X ˆ X is a base for some uniformity for
X iff

(a) each member of B contains the diagonal D;

(b) if U P B, then U´1 contains a member of B

(c) if U P B, then V ˝ V Ä U for some V in B; and

(d) the intersection of two members of B contains a member.

Then this result follows:

Theorem 3.3.5. [12] A collection S of subsets of X ˆ X is a subbase for some uniformity for X if

(a) every element of S has the diagonal D,

(b) the set U´1 has a member of S for each U P S , and

(c) DV P S such that V ˝ V Ä U, for every U P S .

In particular, the union of any families of uniformities for X is the subbase for a uniform for X.

Proof. It must be shown that the collection B of finite intersections of members of S satisfies
Proposition 3.3.4. This is an apparent consequence of the observation: If V =

ì
tVi : i =

1, ..., nu, if U =
ì

tUi : i = 1, ..., nu and if V1, ..., Vn and U1, ...Un are subsets of X ˆ X, then for
each i, whenever Vi Ä U´1

i (respectively, Vi ˝ Vi Ä Ui), V Ä U´1 (or V ˝ V Ä U).

For the uniform space (X,U ), the topology T of the uniformity U , or the uniform topol-
ogy, is the collection of all subsets T of X such that for each x in T there is U in U such that
U(x) Ä T. This is precisely the generalisation of the metric topology, which is the family of
all sets which contain a sphere about each point.

Theorem 3.3.6. [12] The interior of a subset A of X relative to the uniform topology is the set of all
points x such that U[x] Ä A for some U in U .

Proof. It must be shown that the set B = tx : U[x] Ä A for some U in Uu is open relative to the
uniform topology, for B surely contains every open subset of A and, if B is open, then it must
necessarily be the interior of A. If x P B, then there is a member U of U such that U[x] Ä A
and there is V in U such that V ˝ V Ä U. If y P V[x], then V[y] Ä V ˝ V[x] Ä U[x] Ä A, and
hence y P B. Hence V[x] Ä B and B is open.

Lemma 3.3.7. Suppose that for a quasi-uniformity U for E, S is a subbase. Then by Theorem 3.3.5,
U generates a topology TU consisting of all subsets G of E such that there is some U P U such that
U[x] Ä G, for every x P G.
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Definition 3.3.8. A topological space X is said to be uniformizable if there is a uniformity E on
X such that the topology of this uniformity coincides with the topology of X.

Definition 3.3.9. [22] A topological space X is called completely uniformizable if there exists a
uniformity in which X is complete, and which induces the topology of X.

Theorem 3.3.10. [22] (Shirota’s Theorem) A topological space X is completely uniformizable iff:

(a) X is Tychonoff

(b) Every closed discrete subspace of X has nonmeasurable cardinal, and

(c) X is realcompact.

Theorem 3.3.11. A topological space is completely regular iff it is uniformizable .

Theorem 3.3.12. Every topological space is quasi-uniformizable.

We can prove this theorem using Lemma 3.3.13 below:

Lemma 3.3.13. [8] Every topological space (X, T ) has a quasi-uniformity U which induces the orig-
inal topology T ; that is, TU = T .

Proof. If G P T then for every x P G, SG[x] = G and so G will be a TU -neighbourhood of x;
i.e., G P TU . Now suppose G P TU . Then for every x P G, G is a TU -neighbourhood of x and
so there exists a U P U such that U[x] P G. Now by definition of U , U Å SG1 [x] X ... X SGn [x]
and this intersection certainly contains x and is open since SGi [x] is either equal to Gi or E
and both are open. Thus G is a T -neighbourhood of x and G P T .

Definition 3.3.14. [18] A quasi-uniform space (X,U ) is said to have property P if each U P U

is a neighbourhood of D in X ˆ X with respect to the product topology.

Definition 3.3.15. For a quasi-uniform space (X,U ), we say that (X,U ) has property S if
for every x P X, the family tV[x] : V P U , V is symmetric} forms a fundamental system of
neighbourhoods for x with respect to the topology generated by U .

Corollary 3.3.16. [18] For a quasi-uniform space (X,U ), U´1 is compatible with a uniform structure
U on a set X, provided that U satisfies properties P and S.

Corollary 3.3.17. [8] If (X,U ) is a regular quasi-uniform space, then there is some symmetric V P U

such that V ˝ V ˝ V(x) Ä U(x) for every x P X and for every U P U .

Theorem 3.3.18. [18] U´1 satisfies property P for a quasi-uniform space (X,U ) that satisfies the
properties S and P.

Proof. Let U´1
P U

´1. Then there is some V(x) P U such that V(x)[x]ˆ v(x)[x] Ä U, for every
x P X, from the fact that U has property P. Therefore, for every x P X, V(x)[x] ˆ v(x)[x] Ä

U´1. There is some symmetric T(x) P U such that T(x)[x] :Ä V(x)[x], by property S for
each x P X. Since T(x) is symmetric, it follows that T(x) P U

´1 for each x P X. Henceì
tT(x)[x] ˆ T(x)[x] : x P Xu Ä

ì
tV(x)[x] ˆ V(x)[x] : x P Xu Ä U´1. Thus U´1 is a

neighbourhood of L with respect to the product conjugate topology and consequently, U´1

has property P.

Proposition 3.3.19. [23] Let (X, T ) be an orthocompat space. Then FT contains every compatible
uniformity for (X, T ).

Proof. Let U P U where U is a compatible uniformity for (X, T ). Let W be an open symmetric
entourage such that W ˝ W Ä U, let C = tW(x) : x P Xu and let R be a Q-refinement of C.
Then for all x P X, UR(x) Ä st (x, C) Ä U(x). Thus UR Ä U so that U Ä FT .
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3.4. Applications of Strong Quasi-uniform covers

Corollary 3.3.20. Every open symmetric uniformly regular totally bounded quasi-uniformity is a
uniformity.

Definition 3.3.21. [32] (X,U ), a quasi-uniform space, is called a quiet quasi-uniform space
provided that the next property holds: for any U P U , there is some V P U such that, if
x1, x2

P X and tx1
a : a P Au and tx2

b : b P Bu are two nets in X, then from (x1, x1
a) P V for

a P A, (x2
b, x2) P V for b P B and (x2

b, x1
a) Ñ 0 [i.e. for any W P U , there is some aW P A

and bW P B such that (x2
b, x1

a) P W for a • aW , b • bW] then (x1, x2) P U. When a V P U is
connected with some U P U by the above property, V is said to be Q-subordinated to U.

Theorem 3.3.22. [32] Let C be the family of all strong quasi-uniform covers of X and (X,V) be a
quiet-uniform space. Then the properties below hold:

(a) If U P C and U1 is a cover of X such that for each x P X,
ì

tH P U : x P Hu Ñ
ì

tK P U1 : x P

Ku, then U1 P C.

(b) If U1,U2 P C , then there is a U P C such that
ì

tH P U : x P Hu Ñ
ì

tK P U1 : x P Ku andì
tH P U : x P Hu Ñ

ì
tK P U2 : x P Ku, for each x P X.

(c) For U P C , if txa : a P Au and yb : b P B be two nets in (X,V) such that xa P
ì

tH P U : x P

Hu, yb P
ì

tK P U : y P Ku for a P A, b P B and (yb, xa) Ñ 0, then y P
ì

tH P U : x P Hu.

Conversely, suppose C is the family of all covers of set X satisfying conditions (a), (b) and (c). Now,
on X, there exists V , a quiet quasi-uniformity with respect to C is exactly the family of all strong
quasi-uniform covers of X.

Theorem 3.3.23. [12] The family of closed symmetric members of a uniformity U is a base for U .

Proof. If U P U and V is a member of U such that V ˝ V ˝ V Ä U, then V ˝ V ˝ V contains the
closure of V in view of the preceding theorem; hence U contains a closed member of W of U
and W X W´1 is a closed symmetric member.

Theorem 3.3.24. [28] For a quasi-uniform space (X, T ), every strong quasi-uniform cover is a µ(T )-
open cover.

Proof. Let A be a strong quasi-uniform cover of X. So, there exists T P T such that for every
x P X, x P T(x) Ñ

ì
Ax. Let x P A and A P A. So we have x P U(x) Ñ

ì
Ax Ñ A. Thus A is

µ(T )-open, by Theorem 1.3.23.

Theorem 3.3.25. [28] With a compatible quasi-uniformity, let (X, µ) be a strong topological space
having B, a transitive base . Then tB(x) : B P B, x P Xu is a base for µ.

Proof. It follows from Theorem 3.3.24 that B(x) is µ-open for every x P X and B P B. So
let x P G and G P µ. As B is compatible with µ, DB P B such that x P B(x) Ñ G. Thus,
tB(x) : x P X, B P Bu is a base for µ.

3.4 Applications of Strong Quasi-uniform covers

Theorem 3.4.1. [28] Let C be a family of all strong-quasi uniform covers of X in the quasi-uniform
space (X,U ). Now, C P C provided C is a cover of X such that for every x P X,

ì
Cx Ñ

ì
Cx, and

that C P C .
Conversely, let C be a collection of covers of X satisfying the aforesaid condition where X is a non-

empty set. So tUC : C P C u is a transitive base for say UC , a quasi-uniformity, on X, with respect to
which C is exactly the family of all strong quasi-uniform covers of X.
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3.4. Applications of Strong Quasi-uniform covers

Proof. Let C be the family of all strong quasi-uniform covers of (X,U ), a quasi-uniform space.
Now, there is some U P U such that for every x P X, x P U(x) Ñ

ì
Cx holds, since C P C .

More so, C is a cover of X such that
ì

Cx Ñ
ì

Cx for every x P X. Therefore, x P U(x)
ì

Cx
for every x P X. Thus C P C .

Conversely, le C be a family of covers of X, such that the aforementioned conditions hold.
Then, obviously, for each C P C , D Ñ UC . Now, let (x, y) P UC ˝ UC and C P C . Then there
exists z P X such that (z, y), (x, z) P UC . So y P

ì
Cz and z P

ì
Cx. Therefore, (x, y) P UC , that

is, y P
ì

Cx. Consequently, UC ˝ UC = UC .
Thus, for all C P C , UC is transitive. Hence, for UC , a quasi-uniformity on X, tUC : C P C u

is a transitive base.
The remainder of the proof serves to show that for the space (X,UC ), the set of strong

quasi-uniform covers coincides with C . Then let C P C . So, for every x P X, UC(x) = Dx that
is, x P UC(x) Ñ

ì
Cx, for every x P X. Therefore, for (X,UC ), C is a strong quasi-uniform

cover. Now, for (X,UC ), let C be a strong quasi-uniform cover. Then there is some C P C such
that x P UC(x) Ñ

ì
Cx, for every x P X that is, for every x P X,

ì
Cx Ñ

ì
Cx. Thus, C P C

according to the assumed condition. Hence the required outcome.

Theorem 3.4.2. [32] A topological space (X, T ) is metacompact if and only if for every open cover C
of (X, T ), there is some strong quasi-uniform cover C˚ of (X,UA) such that C˚ refines C, where A is
the collection of all point-finite open covers of X.

Proof. Suppose that C is an open cover of (X, T ) where (X, T ) is metacompact. Then there
is a point-finite open refinement C˚ of C. So, C˚ is a point-finite open cover of X, UC˚ P UA

where y P XtC P C : x P Cuu and UC˚ = t(x, y) P X ˆ X : x P X. Then for every x P

X, UC˚(x) = XtC P C
˚ : x P Cu. Thus, for (X,UA), C˚ is a strong quasi-uniform cover.

Conversely, suppose C is an open cover of (X, T ). For (X,UA), there exists a strong quasi-
uniform cover C˚ such that C˚ refines C, by the aforesaid condition. Since C˚ is a strong quasi-
uniform cover of (X,UA), there are finitely many UC1 , UC2 , ..., UCn P UA such that U(x) Ñ

XtC P C
˚ : x P Cu, for every x P X, where U = UC1 , UC2 , ..., UCn , i.e.,

ìn
i=1[XtC P Ci : x P

Cu] Ñ XtC P C
˚ : x P Cu... (i), i.e.,XtC P C1 Y C2 Y ... Y Cn : x P Cu X tC P C

˚ : x P Cu.
Let C 1 = tXtC P C1 Y C2 Y ...Cn : x P Cu : x P X. As C1, C2, ..., Cn are point-finite, XtXtC P

C1 Y C2 Y ...Cn : x P Cu is a finite intersection for every x P X. Thus every set XtXtC P

C1 Y C2 Y ...Cn : x P Cu is an open set in (X, T ). Now C1, C2, ..., Cn being point-finite, C1 is as
well. By (i) C 1 is a refinement of C˚ which in turn is a refinement of C. Thus C

1 is an open
point-finite refinement of C. Thus (X, T ) is consequently metacompact.

Then, for (X,U ), let C be the family of all strong quasi-uniform covers and for a strong
topological space (X, µ), let U be a compatible quasi-uniformity. So, on X, U induces a
transitive quasi-uniformity UC , according to Theorem 3.4.1. Now, the problem erupts as to
whether or not UC and U are similar. We address the mystery in the theorem below.

Theorem 3.4.3. [28] Let U be a quasi-uniformity on X in the strong topological space (X, µ) such
that µ = µ(U ). Let C be a family of all strong quasi-uniform covers of the quasi-uniform space
(X,U ). Then the transitive quasi-uniformity UC , induced on X by C , is a subfamily of U . So UC and
U are similar provided U is transitive. Thus µ(U ) = µ = µ(UC ).

Proof. Let C P C . So, DU P U such that @x P X, U(x) Ñ
ì

Cx. Thus (x, y) P U ñ y P U(x) Ñì
Cx ñ (x, y) P UC . Therefore, U Ñ UC . So UC P U . Thus UC Ñ U that is, UC is a subfamily

of U . Furthermore, UC ‰ U provided U is not transitie.
So, let B P B where B is a transitive base for transitive quasi-uniformity U . Now, by

Lemma 2.1.20, C = tB(x) : x P Xu P C , so that, (x, y) P UC ñ y P
ì

Cx
ì

tB(z) : x P B(z), z P

Xu Ñ B(x), as x P B(x). So (x, y) P B. Thus UC Ñ B and hence U = UC . Then the result
follows.
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3.4. Applications of Strong Quasi-uniform covers

Remark 3.4.4. It can be concluded from the proof above that the family of all strong quasi-
uniform covers with respect to a quasi-uniformity U on a strong topological space X may
coincide with that for a strictly smaller quasi-uniformity on X.

Theorem 3.4.5. [32] A topological space (X, T ) is orthocompact if and only if for every open cover
C of (X, T ), there is a strong quasi-uniform cover C˚ of (X, UA), the topology induced by UA, such
that C˚ refines C, where A is the family of all interior preserving open cover of X.

Proof. Suppose C is an open cover of (X, T ) where (X, T ) is orthocompact . Then there exists
an interior preserving open refinement C˚ of C. So, C˚ is an interior preserving open cover of
X, UC˚ P UA where UC˚ = t(x, y) P X ˆ X : x P X and y P XtC P C

˚ : x P Cuu. Therefore
for every x P X, UC˚(x) = XtC P C

˚ : x P Cu. Thus C
˚ is a strong quasi-uniform cover of

(X,UA).
Conversely, suppose C is an open cover of (X, T ). Then, there exists a strong quasi-

uniform cover C
˚ of (X,UA) such that C

˚ refines C, according to the aforesaid condi-
tion. But then C

˚ is a strong quasi-uniform cover of (X,UA), so there are finitely many
UC1 , UC2 , ..., UCn P UA such that U(x) Ñ XtC P C

˚ : x P Cu, for every x P X, where
U = UC1 X UC2 X ... X UCn , i.e.,

ìn
i=1[XtC P Ci : x P Cu] Ñ XtC P C

˚ : x P Cu...(i), i.e., XtC P

C1 Y C2 Y ... Y Cn : x P Cu Ñ XtC P C
˚ : x P Cu.

Let C 1 = tXtC P C1 Y C2 Y ...Cn : x P Cu : x P Xu. As C1, C2, ..., Cn P A, UCi (x) P T for
i = 1, 2, ..., n and for all x P X. Hence

ìn
i=1 UCi (x) P T , for all x P X. Thus each set of C 1 is

open. Also C1, C2, ..., Cn being interior preserving, C 1 is as well. More so, C˚ refines CC
1 also

refines C˚, by (i). Therefore, there exists an interior preserving open refinement C 1 of C of
(X, T ). Hence (X, T ) is orthocompact.
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4 Conclusion

4.1 Applications

It can be concluded that with respect to a quasi-uniformity U , the family of all strong quasi-
uniform covers on a strong topological space X may coincide with that for a strictly smaller
quasi-uniformity. Applications include but not limited to the use of the concept of strong
quasi-uniform covers to characterize some topological concepts, the likes of Definition ?? of
interior-preserving topological spaces. The rest of Chapter 2 further details other applications
in topological spaces. These include orthocompact topological spaces whenever every open
cover has an interior preserving open refinement. We went on to metacompact topological
spaces whenever each open covering has a point-finite open refinement, as well as reflexive
and transitive relations of subbases for quasi-uniformities. We gave proof how a topological
space is orthocompact if and only if for every open cover of an induced topology, there exists
a strong quasi-uniform cover that refines the open cover, in Theorem 3.4.5.

4.2 Summary

In this dissertation, we gave comprehensive details on how uniform spaces can be introduced
via uniform covers. We introduced a cover, then defined and gave properties, in a topological
spaces, of the concept of strong quasi-uniform cover of X as, for the purpose of this paper,
if DU P U such that for every x P X, x P U(x) Ñ

ì
C

˚. We further characterized quasi-
uniformity axiomatically. We then gave account why they cannot be formulated in terms of
quasi-uniform covers even if they are transitive. However, by applying the concept of strong
quasi-uniform covers by incorporating some axioms, we showed how quasi-uniform spaces
give rise to topological space with additional structure that is used to define quasi-uniform
properties such as completeness, uniform convergence and uniform continuity. We high-
lighted that a quasi-uniformizable topological space is precisely the completely regular space
and that it is Hausdorff space.
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