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Abstract

Portfolio analysis is bene�ting from the surge of alternative sources of data coupled with

new modelling frameworks, introduced by machine-learning. I collected alternative data and

applied new frameworks (machine-learning techniques and technology) to the domain of

private debt. This is an interesting and complex asset class, which has a signi�cant shortage

of data from which to model. To counter this issue, I incorporated advanced macro-�nance

and asset-pricing models. Such will provide the correct context in which to model this asset

class as part of a sophisticated multi-asset portfolio construction framework. To ensure that

the credit-risk models are fully understood, I selected a modelling technique from a broad

array of options in a mature environment of credit modelling largely performed in banking

(whilst ensuring the technique is suitable for asset management). The modelling framework

is geared to account for the dynamics of business cycles, this being an important results

driver in unlisted credit and other asset classes alike. My thorough macro-�nance research

allows me to design non-trivial processes to incorporate alternative signals as part of an

asset-pricing framework on which to generate information for use in portfolio construction

via the data simulated. My economic scenario generator considers the relative changes

to asset classes at various points in the business cycle as part of a long-term investment

program suitable for a de�ned-bene�t pension funds portfolio. The �nal portfolio models

are put together using a reinforcement learning framework. This framework connects the

macro-�nance theory dealing with the business cycle dynamics, together with the credit-risk

techniques, to portfolio modelling techniques which I believe compounds to a sophisticated

modelling framework for strategic asset allocation in a data-sparse environment.

Key terms

Macro-�nance, asset-pricing, private debt, business cycles, alternative data, natural language

processing, sentiment analysis, neural networks, economic-scenario-generation and reinforce-

ment learning.
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Opsomming

Portefeulje-analise trek voordeel uit die opwelling aan alternatiewe databronne, gekoppel met

nuwe modelleringsraamwerke wat uit masjienleer spruit. Ek het alternatiewe data versamel

en nuwe raamwerke (masjienleertegnieke en -tegnologie�e) toegepas in die gebied van private

skuld. D��t is 'n interessante en komplekse bateklas wat 'n beduidende gebrek aan mod-

elleringsdata het. Om di�e kwessie die hoof te bied, het ek gevorderde makro�nansi�ele en

batebeprysingsmodelle ge��nkorporeer.

Daardeur word die korrekte konteks verskaf vir die modellering van hierdie bateklas as

deel van die raamwerk vir die 'n geso�stikeerde meerbate-portefeuljekonstruksie. Ten einde

te verseker dat die kredietrisiko-modelle volledig begryp word, het ek 'n modelleringstegniek

gekies uit 'n uitgebreide reeks opsies binne 'n volgroeide kredietmodelleringsomgewing wat

hoofsaaklik in die bankwese verwend word (onderwyl daar verseker word dat die tegniek geskik

is vir batebestuur).

Die modelleringsraamwerk is gerat om die dinamiek van die konjunktuur (sakesiklus) in

berekening te neem aangesien d��t 'n beduidende dryfkrag is vir ongenoteerde krediet en

eweneens vir ander bateklasse. My deeglike navorsing in makro�nansies laat my toe om

nie-triviale prosesse te ontwerp om alternatiewe seine as deel van 'n batebeprysingsraamwerk

waarop inligting vir gebruik in die portefeuljekonstruksie gegenereer word, te inkorporeer.

My generator vir ekonomiese scenarios neem die relatiewe veranderings in bateklasse op

verskillende tydstippe in die konjunktuur in ag as deel van 'n langtermyn-beleggingsprogram

wat geskik is vir 'n gede�nieerde voordeel-pensioenfondsportefeulje. Die uiteindelike porte-

feuljemodelle word saamgestel deur 'n versterkingsleer-raamwerk te gebruik. Di�e raamwerk

verbind die makro�nansies-teorie vir die konjunktuurdinamiek asook die kredietrisiko-tegnieke

met portefeuljemodelleringstegnieke wat (volgens my) tesame 'n geso�stikeerde modeller-

ingsraamwerk vir strategiese batetoewysing in 'n data-arm omgewing daarstel.

Sleutelbegrippe

Makro�nansies, batebeprysing, privaat skuld, konjunktuur, alternatiewe data, natuurlike taalver-

werking, sentimentanalise, neurale netwerke, generering van ekonomiese scenarios, versterk-

ingsleer,
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Isi�nyezo sokuqukethwe

Ukuhlaziywa kwephothifolio kuyinzuzo ekuqhubukeni kominye imithombo yedatha kanye nez-

ihlaka eziyisibonelo eyethulwe yinqubo yokufunda yomshini. Ngiqoqe olunye uhlobo lwe-

datha mtase ngifaka uhlaka lusha ( inqubo yokufunda yomshini enobuchwepheshe ) esizindeni

sesikweletu sangasese. Loki kuyinto ethokozisayo futhi nesigab sempahla esiyinkimbinkimbi,

okunoku shoda kakhulu kwedatha ekuzomodelwa kuyo. Ukulwa naloludaba , ngihlanganise

imali enkulu ethuthukiswe nokuthuthukisa imodeli yentengo yempahla. Lokhu kuzohlinzeka

umongo olungile lokumodela isigaba sempahla nje ngenxenye yohlaka oluyinkimbinkimbi lok-

wakhiwa kwephothifoliyo yezimpahla eziningi. Ukuqinisekisa ukuthi kamamodeli engciphe

yekhredithi aqondwa ngokugcwele, ngikhethe imodeli elinobuchwepheshe kusuka kuhlu ol-

ubanzi uma izinketho endaweni evuthiwe yokumodela izikweletu eyenziwa kakhulu emab-

hange (ngenkathi eqinisekisa ubuchwepheshe okufanele ukuphatha kwempahla). Loluhlaka

lokumodela kwenzelwe ukulandelisa ngokuguquguquka kwemijikelezo yebhizinisi lokhu kuy-

imiphumela ebalulekile ekushayeleni kwekhredithi engafakwanga nezinye isigaba zempahla

ngokufanayo. Ugcwaningo lwemali enkulu olujulile lungivumele ukuklama inqubo engey-

ona into encane ukuhlanganisa ezinye izimpawu njengenxenye yohlaka lwentengo yempahla

lokhu kuzoletha imininingwane yokusebenzisa ukwakhiwa kwephothifoliyo ngedatha elingisiwe.

Ijeneretha yami yesimo somnotho ibheka izinguquko ezihambisanayo ukuthola ikilasi lempahla

ezindaweni ezahlukahlukene kwezamabhizinisi nje ngenxenye yohlelo lotshalozimali lwesikhathi

eside ezifanele iphothifoliyo yezikwama zempesheni ezichaziwe. Amamodeli nephothifoliyo

okugcina ahlanganiswe ngokusebenzisa uhlaka lokufunda oluqinisayo. Loluhlaka luhlanganisa

imibono yezimali ezinkulu ekubhekene nemijikelezo okushintshashinrsha kwebhizinisi, kanye

nequbo yobungozi besikweletu, kumasu nokumodela iphothifoliyo engikholwa engikholwa ih-

langisa uhlaka lokumodela oluyindida ngokwabiwa kwempahla yeah endaweni eyingcosana

yedatha.

Imigomo ebalulekile

Imali enkulu, Intengo yempahla, Imijikelezo yebhizinisi, Enye idatha, Ukucutshungulwa kol-

wimi lwemvelo, Ukuhlaziywa kwemizwelo, Amanethiwekhi angathathi hlangothi, Isizukulwane

sesimo sezomnotho, Ukuqinisa ukufunda
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Part I

Introduction

In this research, I am primarily interested in the use of quantitative techniques and research

to provide the necessary tooling for a sophisticated quantitative approach to a multi-asset

portfolio-choice problem. This task is set against a current theme in portfolio management

of modelling and risk management of complex assets, such as private debt or credit, as part

of a strategic asset allocation program for long-term �nancial returns. This is fashioned for

use in pension funds investment programs.

My strategy is based on the tenets of macro-economic research and is aimed at an

advanced portfolio theory for speci�c assets. I will also be discussing the methods and theories

developed to tackle di�cult problems in this area. Part of this complexity is to con�gure an

appropriate framework for dealing with business cycles. This is because business cycles relate

to returns achievable over and above the risk free benchmark (referred to as risk premia),

especially the challenges presented by illiquid credit. I research the macro-�nance theory for

dealing with business cycles, connecting the reader with the theory underpinning the portfolio

construction approach taken later in this study. The use of non-traditional or alternative data

sources then becomes a major focus of my investigation. My data is both readily available and

raw, which is important as it is not, essentially, procured signal information. How I deal with

much of this data, advancing the research point for techniques that are used for processing

unstructured data, using modern machine-learning techniques, is a pertinent study theme. I

dedicated much time to consider whether more complex modelling techniques are bene�cial.

The modern techniques and technology that are freely available are relatively easy to use

and are so powerful and exible. In the case of market signals from NLP, I found powerful

and exible contemporary methods, however the shortage of time-series data and the typical

nuances found in �nancial markets need to be accounted for.

In part II, I research macro-�nance methods to understand the key asset-pricing and

business cycle models in this complex and interesting research area. Important foundational

concepts such as stochastic deator and utility theories are discussed. I provide an overview

of advanced asset-pricing techniques as they relate to my central problem. In part III, I

forecast a risk appetite proxy using machine-learning analysis. My experiment uses live data

from alternative data sources and machine-learning for a time-series analysis for providing
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1 OVERVIEW OF THIS STUDY

forward-looking sentiment signals. In part IV, I provide some quant modelling techniques and

theory which support my approach to asset-pricing and private debt credit-risk measurement.

In part V, I detail an economic scenario-generator modelling section explaining components

of my integrated asset-pricing model. I also detail the portfolio construction techniques,

a portfolio choice model and planning model using reinforcement learning methods. This

section is analytical and illustrative in demonstrating to the reader not only the underlying

assumptions, but also the rich information made possible only by sophisticated modelling and

simulation techniques.

As context around the need for a study of this nature, the importance of risk management

of private debt in the investment management environment should not be underestimated as

the extent of the private asset investing is more extensive and private lending is more signif-

icant. Kokoszka (2023) reports that International Organisation of Securities Commissions

(IOSCO) suggests that private credit funds may �nance portfolio companies that take on

levels of leverage that exceed the risk appetite of banks; and this additional debt, alongside

leverage incurred at the fund level, could have a cumulative negative impact on the �nancial

system. The UK Financial Conduct Authority (FCA) is gearing up to initiate a examination

of valuations in the private market, driven by the combination of increasing interest rates

and an economic downturn. This situation is placing signi�cant strain on private equity �rms

and the companies within their portfolios. The FCA is concerned about the robustness of

current market practices for valuing privately held assets (Kokoszka, 2023). This study is

focussed on methods to advance risk management practice for private debt exposures as part

of a larger investment solution. My approach is a robust framework that is useable in the

construction of a portfolio with comprising private assets.

1 Overview of this study

I will begin by providing an overarching explanation of the document, the areas of focus in

this study and how these are interrelated. This study is an exercise in thorough academic

research of key components of a market practitioner's portfolio construction process. In

this study I do not consider the full portfolio construction process, for example I wont detail

aspects such as environmental, social, and governance (ESG) factors, or di�erences in cost

due to legal wrappers. This focus here is on balancing long-term investment returns against

the costs associated with market and credit risk, in the context of an investment portfolio
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1 OVERVIEW OF THIS STUDY

for a private asset portfolio. The alignment in the approach to quantifying the risks between

liquid and illiquid assets is an important advancement.

Portfolio 
construction 
‘use cases’

Asset pricing 
and ESG 

simulation

Signals and 
factors

Macro-
finance 
setting 

(Part II) (Part III & IV) (Part V Ch. 18) (Part V Ch. 19)

Figure 1: High level schema of the interrelated component parts in this study, as part of

a broader framework for constructing a portfolio. This document is structured

to represent key stages of the portfolio construction for long-term liability based

investments.

The document starts with a macro-�nance section where I investigate the underlying theory

and available models, so as to correctly frame the investment portfolio problem. With the

macro-�nance context set, I then focus on speci�c market signals in Part III and asset

class risk drivers and modelling in Part IV. The next section, Part V Chapter 18, I design the

simulation of asset pricing pathways to more fully represent �nancial risks. Simulation of asset

prices is an exercise in mathematical formulation and analytical review. The asset pathways

are useful in next phase which is an exercise in portfolio optimisation, back-testing and stress-

testing. This �nal stage, Part V Chapter 19, is an asset allocation optimisation framework

to complete the portfolio construction process. In this particular 'use-case' we focus on

solving for a long-term planning problem that requires asset liability modelling (ALM), I have

also selected to make use of more sophisticated machine learning techniques. The following

subsections go into bit more of the detail you will read in each section.

1.1 Long term �nancial returns

Over the past 40 years both stock and bond returns have seen sustained periods of higher

returns than their respective long-term averages (calculated from 1900). Dobbs et al. (2016)

explain that lower ination and interest rates are largely responsible for the increased returns

on �nancial asset classes, with three decades of low ination driving most of the interest rate

changes in the European Union and the United States. Paul Volker, chairman of the Federal
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Reserve Board from 1979 to 1987, was the �rst to implement ination targeting measures,

which set the ball in motion. This action, and the actions of other central banks, quickly

stabilised ination rates to acceptable levels (e.g. ination at 25% in 1979 in the U.K. was

reduced to 0.54% by 1982). An early drop in interest rates, followed by successive rate cuts

as a result of a decline in the perceived risk of unexpected ination and the accompanying

ination risk premium, explains the decelerating pace of ination. (Dobbs et al., 2016).

To understand the dynamics of �nancial asset class returns, we must review the decline in

investment returns over the thirty years from 1985 to 2014; Dobbs et al. (2016) explore these

dynamics well. Interest rates are inuenced by a number of variables, including unanticipated

inationary shifts, central bank actions and communication, rising credit supply and demand,

and country risk (referring to investment uncertainty introduced from a particular country

operating pro�ts or value of assets). Of the last thirty years in which the amount bond

returns have increased, the most signi�cant driver relates to higher nominal capital gains

as a result of lowering yields. The second-largest contribution is from lower ination rates

as a consequence of ination targeting policies, and lastly due to lower nominal yields on

bonds (Dobbs et al., 2016). For equity returns, the reduction in ination transmits increases

in equity returns through the e�ect on the price-to-equity ratio (PE) and the dividend pay

out ratio (Dobbs et al., 2016). The PE ratio has increased over the previous 30 years,

while the equity price has increased by 3.6% above its long-term average. This gain is due

to adjustments in PE by 2.5% and increases in the net income margin by 1.1% during a

protracted period of falling ination (Dobbs et al., 2016). It is evident from their research

that the decline in ination and interest rates over the past four decades has impacted

both bond and stock prices (Dobbs et al., 2016). The near-zero-bound interest rate and

low ination environment have been constraining factors for investment managers of �xed-

income asset classes. If the reduction in yields (now close to zero bound) and low ination

are driving core asset-class returns, this does not bode well for future asset-class returns.

Historically, equities and �xed-income investments have been insurers' and pension funds'

primary asset classes due to their income-generating potential and risk-diversi�cation quali-

ties. Concerned about decreased returns, investors with a long-term horizon have examined

alternative asset classes that o�er equivalent yields at comparable levels of risk. This circum-

stance necessitates that asset managers and asset owners re-evaluate existing methodologies

for balancing equity and bond allocations to meet return and risk requirements.
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1.2 Alternative assets

Alternative investments o�er a range of options for investors seeking returns that are not

correlated with traditional assets. Possible investment strategies include investments in real

estate, infrastructure, hedge funds, structured goods, and alternative �nancing sources such

as private debt (including investments in or direct exposure to loans to small-to-medium and

corporate entities). Baker and Filbeck (2013) declare that the rising demand in alternative

asset markets is a result of the prolonged bear market and low interest rate environment.

Classic investments are often seen as `long-only' holdings in equities, �xed-income, and cash.

Chambers et al. (2015) stress that other assets, such as stamps and wine, can be categorised

as `alternative'. The de�ning characteristic of an alternative investment is that it ful�ls the

standards for institutional grade in order to be included in the investment plans of insurers

and pension funds. Benrud (2011) explain that institutional investors and fund managers

are focusing on alternative assets having distinctive and compelling characteristics, such as

longer-term illiquid investments.

Alternative assets have the potential to increase the return on a portfolio by providing

additional return (or alpha, which is de�ned as the return in excess of a selected benchmark)

at a lower volatility risk pro�le. In stressed markets, alternative assets o�er a compelling

alternative to the low rates on the �xed-income market, which are not considered correlating

with growth assets. This enticing notion is accompanied by a health warning: alternative

asset risks are more di�cult (the risks are more complex and mostly hard to measure, or

have a complete lack of data to quantify) and generally more complex than traditional asset

risks. However, this barrier to entry enables a professional investor to ourish in markets,

implementing investing methods that are normally too complex for retail investors.

1.3 Private debt and credit-risk

Investors have traditionally regarded credit as the purchase of investment grade corporate and

sovereign debt. Reviewing liquid assets, Whyte (2018) and Nimisha (2010) underline that

alternative credit encompasses securities such as high-yield bonds, structured credit, emerg-

ing market debt, and bank loans. The illiquid side of investments includes distressed debt

purchases, unlisted direct lending, and speciality �nance. Whyte (2018) notes that private

debt provides a solution for institutional investors grappling with low interest rates, higher-

than-average volatility, and an environment of rising debt levels, making it an increasingly
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prevalent option for strategic asset allocation. Credit loans o�er a smooth return pro�le in

good times, as a result of their ability to generate income and risk-diversi�cation attributes,

highly favourable asset class features.

Private credit loans (private debt) are one type of alternative asset that investors �nd

particularly appealing. We gain insight into the annual alternative asset-management survey

by Preqin in 2017; 2018; 2019; 2022. These researchers announce that large �nancial institu-

tions intend on extending their private debt holdings in the future. Low-yielding �xed-income

is generally thought to correlate with growth assets in times of economic stress, making al-

ternative assets an attractive option. Giuzio et al. (2018) comment that portfolios invested

in private debt, such as direct lending, result in portfolios with higher returns. Such portfolios

are more e�cient, reporting improvements in investment risk metrics, such as drawdown and

the Sharpe ratio.

3 2022 Q3 Capital Market Assumptions For Financial Professional use only. Not for use with the public. 
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US Equities

EM Equities Unhedged

Developed REITs Unhedged

Japan Equities Unhedged

US Private Equity - Venture Capital

US Private Equity - Buyout

UK Equities Unhedged

Developed International ex-US Equities Unhedged

US REITs

Global Equities Unhedged

US Small Cap

Global Aggregate Bonds Hedged

Global Treasury Bonds Hedged
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US Long Treasury
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Source: PGIM Quantitative Solutions as of 6/30/2022. Forecasts are not a reliable indicator of future performance.

Fixed Income: Global sovereign interest rates continued to rise markedly in the second quarter of 2022 as inflationary pressures prompted a 
ratcheting up in expectations for global central bank interest rate hikes. Our long-run forecast for hedged Global Aggregate Bonds is 3.9%, 
an upward revision from the second quarter’s forecast of 2.7%, and up from just 1.3% from the first quarter of this year. Our long-run 
forecast for US Aggregate Bonds is 4.1%, consistent with higher initial yields in the US. At the end of our 10-year forecast horizon, we 
expect the US Fed’s policy rate to be approximately 2.4%, which is about 80 basis points higher than the midpoint of the policy rate target 
range at the end of the second quarter. Outside the US, developed market central banks are forecast to also increase policy rates from lower 
levels in many cases, as longer-run policy normalization is expected. In US credit markets, we are forecasting average spreads will decline 
somewhat from the elevated levels witnessed at the end of the second quarter over the next 10 years, following a meaningful  rise in the first 
half of 2022, informing expected returns of 4.9% and 7.5% for US Investment Grade (IG) and High Yield Bonds, respectively.

Real Assets: Real Assets are broadly defined to include asset classes that have physical properties or have returns that are highly correlated 
with inflation. We include Commodities, REITs and TIPS as Real Assets in our Capital Market Assumptions (CMAs). Our forecasts for all 
these asset classes are expected to outperform our 10-year US inflation forecast of 2.5%.

Private Assets: Given the increasingly important role private asset classes play in a growing number of institutional allocations, beginning 
in the fourth quarter of 2021 PGIM Quantitative Solutions introduced forecasts for US Buyout Private Equity, US Venture Capital Private 
Equity and US Mezzanine Private Debt. Our methodology for forecasting these private assets ties the forecast outcomes of private assets to 
those of public market assets and assigns a premium consistent with historical empirical outcomes, acknowledging the underlying illiquidity 
and potential leverage employed in these asset classes relative to public market counterparts. Beginning in the first quarter of 2022, we 
as well introduced forecasts for Core and Opportunistic US Private Real Estate based on inputs from the NCREIF property indices and 
linkages to forecast economic growth and inflation.

Currency and Currency Hedging Returns: Over the next 10 years, we are forecasting mixed returns for the US dollar relative to developed 
market peers, with outcomes ranging from an annualized loss of 0.5% for the Australian dollar to a gain of 1.2% for the Japanese yen. Forecast 
outcomes for emerging market currencies range from an expected loss of 2.7% for the South African rand to a gain of 0.6% for the Taiwan 
dollar. Long-term currency hedging returns against a market-weighted basket of developed market exposures are forecast to be net positives for 
US investors as short-term interest rates are anticipated to be higher over the long term in the US relative to the Eurozone and Japan.

60/40 Portfolio Return2: Based on our long-term forecasts, a balanced portfolio of 60% Global Equities unhedged and 40% Global 
Aggregate Bonds hedged is forecast to return 6.6% annually over the next 10 years. This forecast represents a material increase of 1.5% from 
the second quarter, attributable to both the rise in global interest rates to date in 2022 as well as improved equity market valuations.

2 For illustrative purposes only. All model portfolios have significant inherent shortcomings and do not consider many real-world frictions. There is no current PGIM 
Quantitative Solutions client portfolio with this composition of assets. It does not constitute investment advice and should not be used as the basis for any investment decision.

Figure 2: Ten year forecast of returns and volatility plotted in the familiar risk return scat-

terplot, with data sourced from PGIM (2022), page 23. This comparable XY

chart shows the comparable expected volatility and expected return spectrum credit

strategies. This the risk/return assumptions for one asset manager, where later in

this study I summarise a broad range of asset manager's capital market assump-

tions.
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Over the past �ve decades, private credit has expanded quickly relative to gross domestic

product (GDP), mainly in industrialised economies but also in emerging markets. Real estate,

construction, and other non-trading industries have seen a rise in lending as access to credit

has decreased in tradable industries (M�uller and Verner, 2021). This is also explained by

historically low mortgage rates and the increase in demand for real estate. Durdu and Zhong

(2021) discuss, in their paper on banking intermediation between banks and non-banks, that

there has been a dramatic rise in borrowing over the previous sixty years, with much of this

expansion coming from non-bank sources. In this context, non-bank lending encompasses

any form of credit extended by any �nancial institution, this is compared as an asset class

in chart 2. Financial institutions include pension funds, traditional banking, foreign entities,

mutual funds, insurance companies, and money market funds. Whyte (2018) remark that

this rise in private debt is driven by three primary factors that I outline below:

� Pension fund trustees and asset managers are unable to obtain su�cient returns from

traditional income assets in a low yield environment. Solvency II's regulatory capital

requirements similarly limit the capacity of insurance businesses to increase risk in

pursuit of higher returns. Solvency II is a risk-based capital framework for insurers

comparable to Basel II in the banking industry;

� Investors are willing to trade yield for the liquidity premium on o�er in assets such as

private debt with strong default protective clauses as a response to liquidity risk; and

� Banks have curtailed lending to the lower end of the middle market, in part due to

industry consolidation and increased regulatory capital requirements imposed by banks.

Preqin (2022) and Nimisha (2010) both report that private debt continues to be a favoured

asset class with increases in assets under management (AUM), reaching record levels. Preqin

(2022) forecasts that private debt will continue to grow, with AUM more than doubling to

$2.69 trillion by 2026, to become the second-largest private capital asset class. To con�rm,

private debt is comprised of loans, which di�er from corporate bonds in that they are more

cyclical in nature; both the potential for default (PD) and the loss given default (LGD) are

related to and positively correlated with the business cycle. Keijsers et al. (2018) enlighten

that, fundamentally, loans di�er for the following reasons:

� Bonds do not attain the same level of on-going monitoring achieved by loans.

� Most loans are more senior and secured by collateral that the bank can actively manage.
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Figure 3: The graph depicts fund types targeted by investors in private debt. Within the

private debt space direct lending is already the most signi�cant, and it is expected

to increase. If we consider a broader view, direct lending will surpass other asset

classes and by 2026 to become the second-largest class of private capital assets,

according to Preqin (2022)).

� Another feature relates to the lender being able to hold onto collateral for longer,

avoiding the need to sell under �re-sale conditions, where recovery values are stressed.

� LGDs are based on actual workouts, whereas bond studies are implied, often by struc-

tural models linked to equity prices.

� The most important di�erence is that loan losses can exceed 100% and be lower than

0%. Corporate bonds, however, lie strictly within the interval from 0% to 100%. Such

is determined in contractual terms, whereas banking loans are subject to a recovery

process that can extend beyond that range. This feature means that losses are not nor-

mally distributed and will often have the majority of losses with a small loss percentage

and a tiny proportion with signi�cant loss levels.

� Bank losses are bimodal in shape, with losses from the loan-recovery process often

low (in the range 0% to 20%); and a second cluster of losses closer to a full write-

o�, ranging from 80% to 100% of the value of the loan amount granted to the bank

customer.

Private debt is not without risk. For loan portfolios there is an inherent risk of asymmetric

losses due to defaulting credit assets, which can increase in stressed credit markets (C�elik and

Isaksson, 2020). Long-term investors, many of whom are more likely to feel the repercussions
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of the full credit cycle, will �nd the risk especially strong as they are subject to the full

e�ect of the credit dynamics and credit quality trends. Smith and Balint (2019) interviewed

private-debt asset-managers, speci�cally professionals in the private debt-asset-management

industry, asking them to name the risks they were most concerned about. The impact of the

business and credit cycle on private debt assets emerged as their highest ranked concern.

Private debt, despite its attractive bene�ts, is experiencing `material deterioration in

credit underwriting', therefore private debt managers will seek to specialise (Towers Watson,

2018). According to the OECD 2020 report, the quality of non-�nancial issued credit has

deteriorated between 2009 and 2019. Recent evidence suggests that the current loan stock is

of lower quality, has larger repayment requirements, and provides inferior investor protection

compared to that of past cycles C�elik and Isaksson (2020). Credit sanctioning entities will

need to improve their credit scoring and underwriting capabilities for this growing market

space. The market has seen an increase in interest-rates over the recent past which has

increased the debt-service coverage ratio, making it more di�cult to repay debts.

1.4 Risk premium framework

Public �nance, modern �nance and business cycle theory have all made use of the neo-

classical growth model and its various expansions, such as stochastic extensions (Mehra,

2007). Much of our economic intuition revolves around the key concepts of current and

future consumption. Traditional models of this kind are often built on the assumption of a

trade-o�; where an individual considers holding o� on consumption due to their perception

of future improved pricing of the goods. The desire of a person to substitute between these

items is proportional to the relative pricing of the goods, if the �rm is capable of o�ering the

choices. Investors are rewarded in the form of a risk premium when they purchase an asset.

This is the compensation that investors receive for taking on more risk than they would

with a risk-free asset (Schularick et al., 2019). According to Martellini and Milhau (2017),

risk premiums are interpreted as an investor's utility of intertemporal consumption and are

described in terms of stochastic discount factors linked to variables. Stochastic discount

factors (SDFs) in consumption-based models are adjusted to reect changes in marginal

utility (Martellini and Milhau, 2017). This is a crucial link, investors seeking compensation

for retaining assets not compensated timeously. In this instance, the investor's wealth is low,

but the investor's marginal utility is exceptionally high (Martellini and Milhau, 2017). This

is known as a risk premium, which is passed on to the investor for bearing risk. Schularick

Page 15



1 OVERVIEW OF THIS STUDY

et al. (2019) posit that log-normal returns with power utility for investors' risk appetite are

the most accessible and arguably the clearest explanation. For the introduction to this study

I will keep this simplifying assumption: use the risk aversion parameter , to determine how

steeply the utility curve slopes; this is illustrated below using the constant relative risk aversion

(CRRA) utility curve, utility U from per capita consumption ct , reected in Mehra (2007).

Upc; q � c
1�

1�  for 0      8;  � 1 (1)

Upc; q � logpcq for  � 1 (2)

Setting  to 1 de�nes the function as a logarithmic utility curve1, which has been widely

used in growth models and business cycle models (Mehra, 2007). An intertemporal framework

should span several time periods. This framework is an expression in which the marginal utility

of one unit now equals Ri ;t�1 units in the future, the foundational connection for applying

the Euler equation to value assets (this will be covered in Section 26). This SDF sets up the

risk premium framework. Assuming that the growth rate and dividend are independent and

identically distributed (i.i.d.) and log-normally distributed (log-normal), the risk-premium as

Mehra (2007) outline the SDF as follows:

logEpRiq � logEpRf qlooooooooooooomooooooooooooon
Risk premium

� loomoon
Risk aversion

� �plogRi ; log gqloooooooomoooooooon
Covariance of return & growth

The expected return of asset i , the risk free rate, and consumption growth are denote as

Ri , Rf and g respectively. In reviewing the CRRA utility characteristics, one can express the

rate of increase in real gross consumption per person as follows: gt � ct�1

ct
. If the correlation

holds, a risk-averse investor will be less likely to put money into assets that track or `covary'

with consumer spending. For the equilibrium to persist, there must be a reward for taking

on this level of risk.

According to Tenreyro (2018), business cycle and macro-economic causation analysis re-

quires sifting through a mountain of data. At times, models must be resorted to make sense

of the complex web of relationships between various aggregate-level economic parameters.

Expecting to comprehend this intricacy using merely linear relationships would be unproduc-

tive. Tenreyro (2018) opine that models are used, even knowing that the underlying data

can be sparse, to make sense of the macroeconomy that is highly interrelated, many market-

level attributes depending on one another. This process is not the same as reviewing simple

correlations to explain causality.

1This can be shown by using L'Hospital's rule applied to the CRRA utility model, in equation 1.
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1.5 Alternative data signals

Exciting alternative data streams have emerged in �nancial services as a result of the growth

of new forms of data. Improved processing power at a fraction of the cost and hardware that

is a fraction of the size greatly facilitate this. In addition, advancements in data storage and

a signi�cant decline in the price of data hosting have made data more accessible. Sentiment

analysis has indeed become a fascinating �eld of study with applications in various areas,

including business, marketing, politics, and �nance. As mentioned, recent research has shown

that mathematical techniques can be used to extract emotion cues from large amounts

of voice data in order to better understand sentiment and its impact on decision-making.

Early indications from Azar and Lo (2019) demonstrate application in �nancial markets

where the Federal Open Market Committee (FOMC) sentiment signals may be extracted

using mathematical techniques applied to a huge database of equity-news events rated for

sentiment, relevance, and novelty. Azar and Lo (2019) developed the Composite Sentiment

Score (CSS), which measures news sentiment. Another study by Feuerriegel and Gordon

(2018) shows that signals taken from news language can more accurately predict market

performance.

I investigate the use of natural language processing and machine-learning techniques in

this study. I also provided a review and comparison of the incremental bene�ts from the use

of alternative data, machine-learning techniques and traditional methods such as econometric

techniques. Finally, I directly modelled the use of alternative data in investigating econometric

signals based on natural language sentiment modelling. I applied these techniques not only to

model against well-known sentiment indices; I also used these indices as modelling variables

for three separate regions (South Africa, United Kingdom and United States) over a period

from 2000 to 2020, to understand the interaction of business cycles and asset class returns,

notwithstanding private debt values.

1.6 Economic scenario generation

A computer-based model known as an economic scenario generator (ESG) will predict the

likely range of values for a wide range of economic and �nancial variables in the future. These

scenarios, together with an analysis of the stochastic distribution of scenario outcomes, shed

light on the nature of risk factors inside the economy that underpin �nancial unpredictability.

An ESG can, therefore, shed light on the advantages and disadvantages of various operational
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and strategic options.

Although most ESGs share a common structure, there is some variation in the number

of modules included and how they work together. Input, output, and the intermediate com-

ponents are the three main components of every model, and ESG models are no exception.

An ESG simulation can provide a more accurate picture of scenario probabilities, a larger

variety of scenario outcomes, and a higher level of scenario complexity than deterministic

economic scenarios, econometric models, and macro-�nance models only. Risk-neutral (or

market-consistent) frameworks are mandated by certain regulatory bodies for the assessment

of insurance liabilities. Real-world modelling is more suited to forecasting the future values

of economic and �nancial variables often used in portfolio modelling { this is the focus of

this study.

I designed and built a novel ESG that generates pathways to represent the evolution of

private debt assets of the investment returns. This is all built as part of an integrated multi-

asset and liability modelling program that takes as input the current states of the business

cycle e�ect and extrapolates for the full term of an investment. There is special focus on

the underlying fundamentals that determine a credit asset return and cost of credit using

sophisticated modelling techniques to cater for market anomalies, such as the credit puzzle

and correlation breakdown. I created a framework for the relative comparison of asset-class

returns in a non-trivial way. This is useful in designing investment strategies in private debt

for `use-cases' such as pension fund investing requirements.

1.7 Portfolio construction

The prior sections come together in the portfolio construction section. Portfolio construction

is an exercise in understanding how asset classes, funds, and weightings a�ect performance,

risk, and investor goals. One must examine all assets, investments, and debts before designing

the portfolio investment and setting short- and long-term �nancial goals. Given that this

exercise only deals with asset classes in aggregate at an index level, the purpose of this

analysis is not to select speci�c securities. After establishing a risk-return pro�le, I construct

a diversi�ed, high-return asset allocation strategy using optimisation programs. In this study,

I split out the portfolio construction phase into two parts. Firstly, I create two di�erent

building-block portfolios constructed with the aim of reducing downside risk in the form of

drawdowns. The �rst building block is based on core �xed-income, I compare the various

results in the introduction of credit loans (investment grade and sub-investment grade asset
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sub-asset classes). The �nal section of portfolio construction is on investigating the optimal

planning for long-term investment needs. In this study I probe the use of reinforcement

learning techniques and this is an important link in this study, as the core of these methods

is directly related to the underlying theory we established in the asset-pricing section (Part

II) that I explore in the next section.

1.8 Contributions of this study

A summary of the work documented in Part III of this document has been accepted for

publication in the ORiON journal2, which is the o�cial journal of the Operations Research

Society of South Africa (ORSSA) and is published biannually.

2https://orion.journals.ac.za/
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Part II

Macro-�nance

A simple question can be posed, that reveals the natural human aversion to certain risks,

elucidates Cochrane (2017): if equity shares are so much more rewarding on a cumulative

basis over long horizons, then why wouldn't an investor only hold equity shares? The answer

seems to lie somewhere in how we, as humans, perceive risk. Cochrane (2017) points out

the key challenge is not one of seeking to explain facts or understanding what is happening

now but rather to �nd veri�able, quanti�ed and theoretically sound measures that can be

used to express risky outcomes and account for asset price puzzles and uctuations.

Macro-�nance is the study of macro-economic uctuations and their relationship with

asset-prices (Cochrane, 2017). Practically, this refers to stocks and bonds, where price

growth is improves in good times and depreciates in stressful periods, or where real and

nominal rates uctuate over the business cycle. No model can adequately explain the fun-

damental sources of risk that account for returns and as Campbell and Cochrane (1999)

explain, standard economic models cannot replicate these cyclical features perfectly. Current

economic conditions may have a profound inuence on future predicted pricing, and this

section outlines some of the fundamental theories and models in this area. It would be an

oversight not to speculate on the historical evolution of economic cycles and the underlying

ideas in such a complex and fascinating �eld. In this section I review business cycle theory

and risk premia models that attempt to explain business cycles.

2 Historical introduction to business cycle theory

Early business cycle studies were all concerned with the instability of inventories, �xed capital,

and real asset purchases �nanced by a supply of institutional credit, according to Zarnowitz

(1992). Borio (2012) explains that �nancial cycles also include attitudes towards risk, �-

nancing constraints, and perceptions of value and risk. All these factors result in cycles of

expansion and contraction over time.

Business cycle theory has two broad schools of thought: �rstly the classical (neo-classical

or supply-side) school, which is anchored in the view that macro-economic changes are driven

by exogenous causes such as the impact of monopolies, natural causes, unions, or the impact
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of government (Zarnowitz, 1992). The second school is the Keynesian (or demand side)

school that holds the view of a change in the macroeconomy is explained by known features,

or endogenous causes. One such theory, the �nancial instability hypothesis in the work

by Minsky (1978), looks at the dynamics of �rms and bank lending. In this model during a

period of growth, low interest rates encourage increased borrowing and excessive debt, which

ultimately cause the economy to move into a recession. Since the great depression in the

1930s, Keynesian economics has been the primary view from which business cycles have been

understood or explained. Since the recent great �nancial crisis (GFC) starting in 2007, there

has been a resurgence of neo-classical approaches, like the real business cycle (RBC) theory.

Dobrescu et al. (2012), another literature review on business cycles, starts with Austrian

economists Ludwig von Mises and Friedrich von Hayek (thus the name of the class of business

cycle models they developed), proceeding to today. The model assumed that low interest

rates would allow for credit expansion, but that new business owners would take advantage

of this opportunity to make more, riskier, investments thanks to the reduced cost of credit.

This would set up a cycle in which risky investments would be �nanced further, leading to an

unsustainable situation. A recession would correct such a situation, and a subsequent credit

crunch would be the result.

 

3 
 

(1999)) and financial frictions (Hall (2013), Duval et al (2017)). However, as pointed out by 
DeLong and Summers (1986) and Zarnowitz (1992), the historical relationship between 
financial panics and business cycle contractions is not as close as sometimes thought.  

Our study focuses on the longer swings associated with financial cycles, a phenomenon 
plainly visible in Graph 1. Various features of the financial cycles are notable. The financial 
cycle does not coincide with the business cycle. So we are not focusing on the amplification 
mechanism of the conventional financial accelerator but capturing phenomenon of the type 
described by Borio et al (2012) and Schularick and Taylor (2012). Financial cycles are generally 
of a longer duration (or, in other words, they are a lower frequency phenomenon) than 
business cycles, and the duration (and amplitude) changes over time.  

In addition, when looking at measures of the financial cycle over an even longer time span, 
the financial cycles do not appear to be solely regime-dependent, at least in some respects. 
Since the late 1880s, for example, various exchange rate, monetary, fiscal and regulatory 
regimes have been in place. This is not to say that these regimes, amongst other things, did 
not influence the shape of the financial cycle. Certainly, periods of financial repression, for 
example, tended to influence the shape of the financial cycle (see, eg, Burnside et al (2016)). 
But through it all, recurrent long swings in financial forces are evident. 

The financial and business cycles in the United States Graph 1

 
1  The financial cycle as measured by a frequency-based (bandpass) filters capturing medium-term cycles in real credit, the credit-to-GDP 
ratio and real house prices.    2  The business cycle as measured by a frequency-based (bandpass) filter capturing fluctuations in real GDP over 
a period from one to eight years. 

Source: M Drehmann, C Borio and K Tsatsaronis, “Characterising the financial cycle: don’t lose sight of the medium term!”, BIS Working Papers, 
no 380, June 2012. 

One challenge in exploring the financial cycle’s recurrent nature is the ostensible 
differences of each cycle over time, as is evident in Graph 1. Conventional time-series plots 
of financial cycles, on the face of it, suggest that the financial cycles are not at all alike. 
However, as Burns and Mitchell (1946) emphasised when researching business cycles 
regularities, conventional time-series plots (in calendar time) may obscure some of important 

Figure 4: Graph 1 from Filardo et al. (2019) showing the di�erent cycles; included are the

business cycle and �nancial cycle in the USA. The terms `business' and `�nancial'

cycle are clearly di�erent (please refer to Filardo et al. (2019) for detailed de�nitions

of how these indices are compiled).

From the 1960s onward, Keynes's famous writings emphasise the importance of money

and policy, but they only care about large-scale shifts in demand, which are tied to inexible

shifts in output and wages (Zarnowitz, 1992). Real-world data does not align with this view,

leading to the more recent advances of the `neo-classical' or `new-Keynesian' models driven
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by the need to match basic empirical data using stochastic dynamic models. The next part

is to accept the micro-foundations are consistent with the utility-maximising behaviour of

�rms and individuals. Zarnowitz (1992) notes that this ramped up the level of complexity,

and looking to solve both is a more than ambitious task.

In a review of business cycles one should understand fully how the particular business

cycle index is compiled; there are di�erences between the global and local business cycles,

according to Borio et al. (2019). The domestic cycle covers a particular country, with the

global cycle covering them all, including cross-border co-movement. Stiglitz (2017) explain

that open economies, with their short-term expectations on capital and volatile ows of

capital across borders, have arguably led to higher levels of macro-economic volatility. Borio

et al. (2019) go on to explain that the domestic cycle covers credit and housing prices, often

an aggregate of the two. The global cycle, however, also includes debt and equity, as well

as cross-border ows and �nancial market prices. Herwartz et al. (2020) explains that co-

movement of the business and �nancial cycles, in particular contractions, can lead to more

severe changes in the business cycle.

2.1 Theories of friction and exogenous shocks

In this section we review two recognised classes of macro-economic model: neo-classical and

Austrian models. The key point of di�erence between the two classes is the interpretation

of the mechanism that is said to cause key variables (productivity and consumption) to

uctuate in a business cycle. Neo-classicalists believe that the cyclical evolution of macro-

economic variables is driven by the general equilibrium framework, whereas the Austrians

believe that the business cycle is a systematic inter-temporal imbalance (Dobrescu et al.,

2012). L�opez-Salido et al. (2017) explain that many of the mainstream models (Bernanke

and Gertler (1998) and Kiyotaki and Moore (1997)) follow this class of framework, where

�nancial market frictions play a central role in the propagation and ampli�cation of shocks

in the economy. Also the central assumption is that role players are all seen to be rational.

This assumption is often questioned in macro-economics, especially since the GFC.

L�opez-Salido et al. (2017) go into greater detail on how these models are focused on

balance-sheet metrics, credit growth, and leverage. Central focus in this theory is the control

of credit limits (as a function of exogenous frictions or endogenous borrower limits), with

debt contracts being the primary mode of �nance. This relates to the fact that the key

mechanism and propagator of ampli�cation or a credit cycle are exogenous shocks, however
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there is not much detail around the driver of a credit cycle or how it is expected to be

triggered.

Bernanke and Gertler (1998) and Kiyotaki and Moore (1997) incorporated agency issues

between borrowers and lenders to represent �nancial market frictions as endogenous variables.

A direct result of this is a rise in the price of both external �nancing and credit. Bernanke

and Gertler's model of the economy and �nance contributed greatly to our comprehension

of the credit market. The model was a neo-classical model using a balance-sheet approach,

reviewing the impact of macro-economic uctuations on real variables. Economic expansion

improves the net worth of borrowers, causing a reduction in demand for funding and therefore

the cost of borrowing, and ampli�es investments, this has become known as the `�nancial

accelerator' (Bernanke and Gertler, 1998). It establishes a connection between the cost of

external �nancing and the level of actual output for �xed-income assets. Since the external

�nancial premium is inversely proportional to the �nancial strength of the borrower, widening

credit spreads is associated with the widening of the external �nancial premium.

The real business cycle (RBC) belongs to the category of new-classical3 models that con-

sider economic uctuations to be real rather than mere nominal shocks. Kiyotaki and Moore

(1997) explains that RBC is a coherent dynamic stochastic general equilibrium (DSGE) that

is e�cient due to the use of exogenous shocks and that can be calibrated to reect a very

wide range of economic indicators. The RBC models may also incorporate aggregate util-

ity functions, where Kiyotaki and Moore (1997) use a log-utility function of wealth levels.

RBC, on the other hand, disregards credit and money issues and does not account for pricing

variations, large unexpected changes in production technology with no evidence and that

unemployment is a reection of the fact that individuals would prefer to work less. This is

simply not plausible in an economic crisis (the very thing it seeks to explain). According to

Kiyotaki and Moore (1997), what is di�cult to detect in the data is a major external shock to

aggregate productivity as the underlying mechanism for triggering the RBC. This challenge

remains true for many macro-economic models today.

2.2 Theories of behaviour and endogeneity

As soon as the theory of rational expectations was adopted in the 1970s, mainstream eco-

nomics largely overlooked the impacts of psychological e�ects once, explains Sahin (2021).

Prior to Keynes, there was a focus on business uncertainty and the associated volatility of

3Not to be mistaken here with Neo-classical models.
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expectations. Life-cycle and income theories of consumption are linked to consumer sen-

timent, which is a better indication of the future of income than an extrapolation based

on the recent past. Zarnowitz (1992) explains the notable divergence between accelerator

multiplier models that focus on endogenous factors featuring non-linearities and lags, and

the exogenous models that are driven by shocks. This divergence was primarily driven by the

adoption of mathematical techniques in the 1930s and 1940s. The early macro-economic

models then adopted exogenous stochastic approaches. This is perhaps explained by the

absence of readily available technology and processing power to deal with the non-linearities

in sophisticated analytical and econometric techniques. Borio et al. (2019) argue that the

discovery of endogenous linkages between policy measures and sensitivities or weaknesses in

an economy that allow for a more complete understanding of the dynamics of boom and bust

cycles is crucial for long-run macro-�nancial stability. Nowzohour and Stracca (2017) cite

the 2008 �nancial crisis as proof that extreme shifts in public opinion can have major e�ects.

There are three competing frameworks to explain the transition mechanism for shocks and

to explain how sentiment is related to the business cycle, following Nowzohour and Stracca

(2017):

� Irrational animal spirits. This term was coined by Keynes (1936), where business

cycles, which are linked to pessimism and optimism in waves that cause macro-economic

uctuations. The implication is that animal spirits lead to booms and busts even when

the fundamentals are not reecting the same measure of change.

� Self ful�lling animal spirits also based on the belief that sentiment drives macro-

economic uctuations. This is caused by sentiment waves (pessimism and optimism),

which then cause expectation changes and the change to materialise.

� News signals show that agents have access to details of the economy and future

developments, implying that there are recurrent booms and infrequent busts linked to

correct signals and incorrect signals, respectively.

2.3 Modelling of business cycles

One would be pleased to have a scenario where the models that have been developed for

macro-economics both �tted the data well and had a tight elegant theoretical structure

(Blanchard, 2018). The reality is that the theory is often complex, abstract and at times

simply does not �t the data well. From working in this �eld and in other quantitative �elds,
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I always �nd it surprising how long one needs to consider and work with data (challenging to

�nd, hard work to organise and estimated parameters are often unstable overtime). When

working with economic data, or any data that is the aggregate of individuals' behaviour into

one measure or attribute, Blanchard (2018) explains, the process of aggregation needs to

be carefully examined as the underlying correlations can be more complex than an aggregate

proxy reports. On this, there are many modelling techniques in macro-economics, and one

form of modelling is not better than another. Models can be seen as having a part to play in

the process of understanding the inner workings of a large and intricate system, that is the

macro-economy. According to Blanchard (2018) �ve broad classes of models are found in

macro-economics (and, applicable to macro-�nance).

� Foundational. This model class is intended to establish deep theoretical learnings that

are conveyed. This may include such models as the equity premium model and the

overlapping generational model (Blanchard, 2018).

� Dynamic stochastic general equilibrium (DSGE). This group of models is designed

to dig into the consequences of economic distortions. These models are useful to

policy makers and researchers when discussing macro-economic functions. Blanchard

(2018) explains that the model design should be based on a central model that should

the agreed-upon base model, this is currently the RBC model and this seems to be

at odds with reality. Another important consideration is the use of forward-looking

models based on Euler equations and rational expectations (which may be too focused

on a forward-looking approach, can be an agent-based approach that relies heavily as

network e�ects). These models really aim to align with reality, as Blanchard (2018)

explains, DSGE models require more accurate �tting but are useful as policy models.

� Policy. As one can infer, policy models are needed to support policymakers with

decisions as they pertain to the economy at large. The models will provide answers

to hard questions, such as `if production in China slows down, what is the e�ect in

South Africa?'. These models need to capture dynamics by using shocks and tracing

the e�ects of the insertion of policies into the same model.

� Toy. This class of models allows for a quick �rst pass question and answer approach and

this pedagogical approach that is often featured in undergraduate text books, examples

of this include the original RBC, IS-LM models and New Keynesian model (Blanchard,
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2018).

� Forecasting. This class needs no introduction. With the primary objective of providing

the most accurate forecast, this is the territory of statistical methods that can be over-

parameterised (Blanchard, 2018).

I have chosen a few of sections that I would like to explore further, as these relate to topics

in this study.

2.3.1 Dynamic stochastic general economic (DSGE) models

DSGE models �rst appeared with the introduction of the RBC model by Edward C. Prescott

(1986). In her speech Tenreyro (2018) starts by detailing macro-economic models, start-

ing with John Maynard Keynes in his famed paper `General Theory'. Tenreyro (2018) ex-

plains that this theory, with its clear focus on demand management, set a new course and

most macro-economic models now follow this philosophy. From this, the well-known IS-

LM model stems. Tenreyro (2018) goes further to explain that large-scale models in the

1970s failed, partially due to stagation and oil shocks that bore witness to the Philips curve

breakdown. The general models were further reassessed with the introduction of the `Lucas

critique'4.Tenreyro (2018) and Blanchard (2018) separately explain the �rst prototype DSGE

model, developed by Finn Kydland and Edward Prescott, called the RBC. The model only

had a few variables (consumption, labour output, investment input, and labour productivity)

and had no role for central banks. The real bene�t of the RBC at the time was the way it

connected the theory to the data by using exogenous shocks into the model that are linked to

known functions in the economy. Shocks are introduced to preferences, technology, or market

structure. The model's outputs gradually failed to match the data. Since then, DSGE mod-

els have converged and are often referred to as `post-Keynesian'. With the introduction of

an assumption that �rms would take time to adjust to policy changes or shocks, then model

frictions where introduced to the model. These new model features began to match data

and have now elevated themselves and avoided criticisms from the 1970s. Blanchard (2018)

explains that a DSGE model built with clear micro-economic assumptions makes the models

easier to extend and relate to market dynamics. In terms of frictions being endogenous, the

4The Lucas critique, named after Robert Lucas's economic policy work. Policy acts will impact relation-

ships, so one can assume that stable relationships in historical data are not independent of policy (Campante

et al., 2021).
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RBC approach is aligned in this assumption.

Kiyotaki and Moore (2019) use a dynamic stochastic general equilibrium (DSGE) ap-

proach to model the economy. They use a model that looks at how the capacity to sell

assets a�ects market liquidity overall. The model incorporates a premium between cash and

stock returns and it is assumed that this di�erence in risk premiums is explained by vari-

ances in the assets' liquidity and resale value. It is assumed in the DSGE model (where the

shocks are calibrated with long-run US data in an structural vector auto-regression (SVAR)

model) that the bond-market channel cushions an economy alongside bank lending, reducing

ampli�cation by 10%-70% relative to a world without this channel (Drechsler et al., 2018).

I also reviewed how accelerator multiplier models focusing on endogenous factors with

non-linearities and lags diverged from classic exogenous models driven by shocks. Many of

these models are developed using highly speci�ed vector autoregression (VAR) and econo-

metric approaches. I will summarise a few studies in this areas for context below.

2.3.2 Econometric and VAR modelling of business cycles

The introduction of econometric and VAR modelling of business cycles can be directly linked

to the progression of mathematical and statistical techniques that emerged in the 1930s and

1940s. Until more recently, the available technology and processing power was either too

expensive or not powerful enough to deal with the non-linearities in sophisticated analytical

and econometric techniques. This section will summarise some recent econometric studies

that are related to business cycles. There is a signi�cant body of available research, which is

briey focussed on here to provide context.

Using a Bayesian VAR model, Evgenidis and Malliaris (2022) examine and analyse �-

nancial stability from the standpoint of a central bank. As part of their research, Evgenidis

and Malliaris (2022) evaluate how unexpected events a�ect consumer sentiment and over-

all spending patterns in the economy. The BVAR model utilises data segments including

credit, asset prices and spread, altogether, the model totals �fteen parameters. To start,

the structural VAR models are speci�ed, per Evgenidis and Malliaris (2022) as follows:

yt � c �
p̧

j�1
yt�jBj � "t (3)

Where c is a vector of constants, yt is an endogenous variable matrix, that is a function

of p-lags on itself and other endogenous variables in the system. Thus Bj is the coe�cient

matrix, and �nally the residual covariance matrix is captured in "t � Np0;°q. Evgenidis
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and Malliaris (2022) point out that since the above speci�cation is based on the ordinary

least squares method and su�ers from the curse of dimensionality, they use Bayesian shrink-

age methods to solve it, hence BVAR. Evgenidis and Malliaris (2022) perform an extensive

econometric analysis of business cycle tracking, �nding that a rise in the non-�nancial sec-

tor shock leads to a temporary drop in industrial production, but a more sustained drop in

economic activity over the longer term. Interestingly, their deeper investigation reveals that

this decline is attributable to �nancial distress and consumer mood, as opposed to a sys-

temic monetary contraction caused by a credit shock. Finally, Evgenidis and Malliaris (2022)

discover that, across the board, unique shocks to credit and asset-price variables have a

large e�ect on manufacturing output. It is shown that the BVAR model can be used as an

early warning system for economic decline. Evgenidis and Malliaris (2022) conclude that the

model demonstrates that decreases in economic growth associated with a credit shock is due

to an increase in �nancial distress and a fall in consumer con�dence rather than a systemic

monetary contraction caused by the credit shock.

Financial and macro-economic indicators provide valuable information both before and

after the GFC. Kucera (2017) models economic shocks using economic and �nancial vari-

ables in a vector auto-regression (VAR) model to explain this phenomena. The sentiment of

the �nancial markets has been a major contributor to understanding the movement of term

premiums in recent years. This is clearly demonstrated by the fact that bond yields have

steadily dropped from the highs in the 1980s to historical lows since the GFC despite improv-

ing economic conditions and optimistic forecasts for the future of interest rates. Sentiment

may be a suitable measure in relation to �nancial variables. A good example is the time of

the Brexit vote, as this was a �nancial period where economic and �nancial metrics were

favourable, whereas the sentiment variables at the time would have not signalled the same

conditions.

Afanasyeva et al. (2020) l built a model in a similar way, structured as a BVAR on

macro-factors. This model factors in an empirical review of the Minsky hypothesis, which

describes the build-up of a buoyant economic environment where risk tolerance changes,

expectations increase and constraints loosen. Afanasyeva et al. (2020) seek to develop an

approach to quantify this relationship. The model is based on macro-economic fundamentals

including the output gap, GDP growth rate, and unemployment gap, and the Chicago FED's

National Financial Conditions Index (NFCI) measures �nancial stability. Their �ndings show

that buoyant �nancial conditions are early signals of economic stress and that business cycle
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shocks are not insigni�cant contributors to non-�nancial leverage.

Pesaran et al. (2003) study lenders and discuss that they face commercial uctuations due

to the business cycle. Pesaran et al. (2003) build a model or modelling framework that links

credit assets and measurable macro-economic inputs. This model shows a di�erence in risk

between �rm-speci�c (or idiosyncratic) and systemic risk. Their model is based on a set of

publicly traded loans in twenty countries globally, including Western Europe, South East Asia,

the Middle East, and Latin America. Pesaran et al. (2003) used a GVAR framework as part

of an arbitrage pricing theory (APT) model to isolate �rm-speci�c risk. That approach has

the added advantage of retaining the correlation structure of the macro-economics variables

under investigation. Pesaran et al. (2003) make use of a Merton approach to recognise

the value of a �rm, using equity returns and volatilities as proxies. The �rm-speci�c default

probability model is denoted as, following Pesaran et al. (2003):

rj i ;t�1 � �j i ;t � �j i ;t�1 (4)

Where rj i ;t�1 is the return of a �rm j in region i over period t to t � 1, the conditional mean

� is forecastable, but � is not, for all regions i over time t. The � part is composed of �rm-

speci�c factors that can be modelled, whereas � is the unexpected part that is inuenced

by the e�ects of shocks, whether macro-economic, �rm-level, or global shocks that are

exogenous, or outside of the model.

Pesaran et al. (2003) �nd that symmetric shocks do not result in symmetrical loss. They

also �nd that losses are not proportional either. The Pesaran et al. (2003) model is capable

of producing multi-period forecasts that cover the entire range of losses or distributions that

are conditionally linked to the macro-economic environment. Another approach was taken by

Prabheesh et al. (2020) who use the SVAR model and a dynamic conditional control (DCC)

generalized auto-regressive conditional heteroskedasticity (GARCH), (DCC-GARCH) model

to analyse the relationship between the global �nancial cycle and the domestic cycle of

Indonesia and India. In the case of India, the global credit cycle was strongly synchronised

with the domestic credit cycle. Dees (2016) reviews international spillovers with macro and

�nancial variables related to credit supply shocks. He uses a GVAR model applied to the

global markets. Dees (2016) investigates the link between business and �nancial cycles using

a GVAR model. The GVAR model can be expressed as a vector of country VAR models,

following Dees (2016):

�ipL; piqx i ;t � ai0 � ai1t ��ipL; qiqd t � �pL; qiqx�i ;t � u i ;t (5)
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Where x i ;t is a vector of modelled variables that are constructed as country-speci�c trade-

weighted averages over the values of the other countries, d t is a vector of international

macro-variables, x�i ;t . �ipL; piq are the domestic and country speci�c foreign variables and

the �pL; qiq is the lag operator L of �ipL; piq. Finally, the �ipL; qiq vector is the set of

country stresses, as part of the idiosyncratic shocks, dt and ui ;t is a vector country shocks.

Using a modelled e�ect of credit and asset prices, Dees (2016) evaluates the true economic

activity in 38 nations. The model illustrates the connection between credit and asset-price

swings and their signi�cance in explaining observable shifts in the economy. International

shock propagation can be substantial and long-lasting. Dees (2016) con�rms that global

�nancial cycles are heavily impacted by the US economy and have strong impacts on real

variables.

2.4 Credit, lending and business cycles

According to Azariadis (2018) a business cycle is characterised by substantial cross-correlation

between credit, output and the persistence of credit over the course of a business cycle. The

research of Azariadis (2018) looks into the possibility that shocks in people's con�dence in

the credit market can trigger cycles. Credit is highly pro-cyclical, as demonstrated by the

research on unsecured debt in a business cycle (Azariadis, 2018). Gilchrist and Zakraj�sek

(2012) examine the inner workings of the GFC, when credit spreads transmit vital signals

about the state of the actual economy, economic activity, and asset prices. Substantial

evidence now suggests that risk premiums change over time and are countercyclical, as

explained by Gourio (2013). Recession-related optimism and pessimism can be part of the

time-varying views discussed in Gourio (2013), which is very di�erent from an objectively

measured probability of disaster models.

Credit spreads are an excellent early warning signal and can be used to anticipate business

cycles, according to Berndt et al. (2018). They �nd that credit-risk premia are subject to

timing and pro-cyclicality and are heightened by time-varying market (il)liquidity. Berndt

et al. (2018) estimate corporate credit premia by considering the di�erence between the true

cost of credit and the (priced) default losses, which provide a healthy additional premium,

also known as the \Credit Puzzle". Following Berndt et al. (2018), credit premiums can be

calculated using the credit default swap rate and compared to the actual losses from sold

reference assets.

Herwartz et al. (2020) advance the understanding of the source a credit shock and its

Page 30



2 HISTORICAL INTRODUCTION TO BUSINESS CYCLE THEORY

link to the real economy and business cycles in their study. They see demand and supply

shocks in credit working slightly di�erently, but both play a role. The credit demand shock

relates to the exogenous factors a�ecting the borrower's preferences for taking credit, and the

supply shock is when the lender's appetite for lending increases. Both shocks would increase

the volume of credit in the market, but the e�ects are di�erent depending on whether

they were driven by a supply shock or a demand shock. Herwartz et al. (2020) point out

that it is understood that supply shocks driven by intermediaries' increasing volumes a�ect

business cycle uctuations, and spreads are used to signal changes in stressed markets. They

observe that second area of understanding is where the composition of credit matters, be it in

private or public markets. Public credit is funnelled to government activities, whereas private

credit is directed to household lending activities, which di�er in productivity. Herwartz et al.

(2020) note that shocks to private lending have had negative consequences for household

consumption in the medium term (such was the case for the GFC). The impacts of shocks

on public credit volumes are not as clear. Herwartz et al. (2020) build a factor model to

link global liquidity to the proposed underlying factors or drivers. Modelling by Herwartz

et al. (2020) can explain signi�cant proportions of the uctuations of �nancial and monetary

indicators. In stressed market conditions, public entities are known to require credit, whereas

private individuals and businesses tend to borrow more in favourable market conditions or in

the run-up to crises.

M�uller and Verner (2021) explore the impact of di�erent sector borrowing e�ects on

�nancial fragility and business cycles. Their explanation of the theory of the economy provides

three links, in an open economy, to boom and bust cycles driven by sectors. The paper reviews

the relative impacts of sectoral allocation as it pertains to cycles. First, household credit

and non-tradable �rm credit can set up unsustainable demand booms that end in busts.

Secondly, the relatively non-tradable sectors contribute to fragility, and lastly, allocation to

non-tradable sectors may cause ine�cient allocation of resources across sectors, given the

tradable sectors' higher productivity. M�uller and Verner (2021) �nd that with aggregate

credit growth, the relative lending activities in the non-tradable sectors increase. This is also

associated with a lower growth rate than tradable lending. When I review the impact that

non-tradable sector lending has during boom times, with increases in consumption relative to

GDP, non-tradable activity, and exchange appreciation, the enabling factor can be attributed

to credit expansions in the non-tradable sectors. Naturally, if the lending goes to �nancially

sensitive �rms, �nancial fragility is likely to be the result. According to M�uller and Verner
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(2021), the non-tradable loan non-performing rate was double that of the tradable sector

at the height of crisis periods, and most of the losses were from the non-tradable sector.

Although an increase in �rm debt is typically associated with economic underperformance in

the long-run, this is not always the case because the sector one lends into is a factor, as

pointed out by M�uller and Verner (2021). This is because of the relatively higher growth

rate of the non-tradable �rms, �nancing moves into these sectors where medium-term labour

and total factor productivity are lower. Increasing household and non-tradable debt can lead

to a real appreciation of non-tradable products, increased labour costs, and a decline in

competitiveness, according to M�uller and Verner (2021). Collateralised debt with real-estate

collateral is also far more widespread in the non-tradable sector, as evidenced by statistics

from 56 nations (M�uller and Verner, 2021); this may imply riskier debt due to the reliance

on collateral to cover the debt exposure.

Durdu and Zhong (2021) review the fragility in the lending systems, as part of a DSGE

model design. Their interests include understanding the links between the business cycle and

interest rates on non-�nancial lending. One of the key areas of analysis is how the lending

activities of entrepreneurs are linked to shocks. Durdu and Zhong (2021) show that the

entrepreneurial shock accounts for more than 50% of the changes to lending levels. They

also argue that as much as 70% of all lending is linked to inter-sectoral stresses and shocks.

They also �nd that entrepreneurial shocks are speci�cally important to the non-�nancial

lending sector, even more so than sectoral shocks as a factor.

Gulen et al. (2019)'s study accurately depicts the inuence of credit sentiment on cor-

porate �nance for both publicly traded and privately held companies in the United States.

They suggest using analysts' revision and forecast restatements to estimate disappointment

(a measure of expectation). Credit market sentiment is connected with earnings estimates

by analysts (Gulen et al., 2019). Gulen et al. (2019) have shown that an increase in an-

alysts' expectations is linked to both the growth in credit and the decline in credit quality

the following year. Systematic downward revisions in analysts' expectations follow credit

upswings.

2.5 Sentiment and credit cycles

Consumer sentiment is often treated as an independent variable where the law of large

numbers would have the impact of cancelling out the individual e�ects (Katona, 1947). Then,

Katona (1947) goes on to summarise, at times aggregate behaviour measures fail because we
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know that correlations exist and the inuence of media or other outside inuences can drive

aggregate behaviour. In an age of mass social media, I can think of an example, the enabling

force that a free platform such as Facebook had during the Arab Spring (Abdulrahman

Naef Farhan and Varghese, 2018). Returning to an investor context, Sahin (2021) contends

that as consumer sentiment decreases, so does the perception of �nancial distress, with

investors moving toward safer asset classes.

Sahin (2021) concludes from the literary evidence that consumer con�dence is funda-

mentally linked and a�ects savings, borrowing, consumption, and therefore income. Sahin

(2021) builds a stock and ow model that captures this dynamic and tests the e�ects on

various economic factors. The consumer con�dence indicator (CCI) is the variable of inter-

est among many others. All readings above 0 are considered to be positive, with a normal

reading sitting at zero on the CCI's scale of -1 to 1. In the Sahin model, CCI is used as an

exogenous variable in the logistic function, as follows:

� � 1

1� epCCI�1q (6)

 is a sensitivity parameter, � is the household target wealth durables proportion. Sahin

(2021) shows consumer sentiment shocks and scenarios in the model to explain changes

to aggregate household income, consumption, and leverage, highlighting that this model

considers portfolio choice, consumption, and borrowing behaviour. Macro-economic variables

in a particular country can be materially impacted by consumer sentiment, with negative

feedback loop delays coupled with strengthened positive feedback loops. This is reminiscent

of aggregate credit extrapolation and in this study I adopt CCI to denote a credit cycle

variable.

The work of Correa et al. (2020) is a review of sentiment using the text from the IMF

and ECB �nancial stability reports. These reports present key fundamentals and commentary

from 63 countries with great relevance to central banks. The text analysis was performed

using natural language processing (NLP) methods, using simple dictionary methods for map-

ping words to sentiment valence. In their case, they created their own �nancial stability

dictionary using Harvard's general inquirer and Tim Loughran and Bill McDonald �nancials

dictionary, adding 30% more words using this dictionary method. This was used in the mod-

elling to create a set of �nancial stability sentiment (FSS) indexes. Valence is a numerical

ranking construct (which is simply applying low ranking buckets to low FSS scores and visa
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versa) for the sentiment values. The FSS index is de�ned as:

FSSt;j � �ve words��ve words
Total words

(7)

�ve words (�ve words) refers to words that have been mapped to a negative (positive)

sentiment. For each time period t and country j , the index increases when the proportion

of words that are negative grows, showing higher levels of negative sentiment during those

times. Correa et al. (2020) investigate what is driving the FSS index using a topic analysis

of the underlying text that produces the FSS index. This is done with the use of sub-FSS

indices based on topics. Separate indices are created in the same way as the Economist

r-index (indicator the Economist created for use to measure the severity of a recession; uses

the proportion of words in a corpus containing recession as a weighted measure of overall

word usage). The topics indexed are external, banking, real estate, valuation, household,

corporate, and sovereign (refer to Correa et al. (2020), page 100 for the full de�nition).

Their study covers a few areas, but the question of interest in this study is how the FSS

index created from NLP methods is related to the �nancial cycle. Correa et al. (2020)

modelled using a panel VAR model, with the dependent variables being �nancial variables

and their FSS index as a time varying function of the topic indexes for each topic j and

country i . The topic attribution model is broken down by country and time period by the

following model.

FSS � u �
Ş

j�1
BjFSS

j �
Ş

j�1
CjFreq

j � e (8)

Bj is the sensitivity coe�cient per topic j . Freq is the frequency of each topic found in

the report, and C then becomes the sensitivity of FSS to this variable. At the 1% level of

signi�cance, the following topics are shown to be statistically signi�cant.

Banking External Valuation

Household Corporate Real estate

From that con�rmed set of data, it was used to develop a panel VAR model, denoted as:

Xi ;t � ci �
p̧

z�1
Xi ;t�pAl � ei ;t (9)

c is the vector of country parameters, ei ;t is the vector of idiosyncratic variables, and Xi ;t

is a vector of the dependent variables that includes variables related to the �nancial cycle

and a FSS index. p is the number of lags in the autocorrelation exercise. Al is a matrix
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that was estimated using a generalised method of moments (GMM) procedure. Correa et al.

(2020) �nd that a protracted decrease in the �nancial cycle follows the sentiment decreases.

Similarly the debt service cover ratio, asset prices follow the increases in FSS index. Correa

et al. (2020) also �nds, using the probit model, that the sentiment of the central bank

communication is a signi�cant predictor of the GFC. When viewed through a di�erent lens,

one that uses the credit-to-GDP ratio as a proxy for the �nancial cycle (therefore o�ering

more data points than the recessions data in a typical �nancial cycle variable), their model

shows that FSS has considerable predictive capacity or model power. Correa et al. (2020)

conclude that central banks communicate crisis e�ectively, this is evidenced by the increase

in their FSS index signals a sentiment risk and the real risk of �nancial cycle reductions.

Chen et al. (2021) investigate the connection between a macroeconomy with particular

focus on sentiment, which they de�ne as the way people are inclined to be negative (positive)

in low (high) sentiment values. Chen et al. (2021) observe that sentiment is inuenced by

macro-variables and, in turn, inuences macro-variables. For this reason sentiment is seen

as the bridge between �nancial markets and macro-variables. Chen et al. (2021) point

out that the relationship between �nancial markets and sentiment is well-known (such as

certain sectors rallying during high-sentiment regimes). More recently, the focus has turned

to how sentiment and the macro-economy are linked (please refer to Chen et al. (2021)'s

introduction for further examples in �nance literature). Often, the approach to sentiment

modelling in �nancial literature is to treat variables as exogenous, which means that there

is no inquiry into what determines market sentiment. In the Minsky hypothesis, during an

economic upswing, payments for �rm debt are made earlier and the resulting euphoria and

positive sentiment get �rms borrowing further (Chen et al., 2021). In general, when debt

levels rise, interest rates fall, they go further to explain that at a certain threshold, the debt

burden becomes a binding constraint, with leverage levels too high; resulting in a �nancial

crisis. Chen et al. (2021) construct a model by using a the DSGE design. Sentiment is

incorporated using the expected premium (rate di�erential) and the connection to the state

of the economy. Sentiment is seen as the expected pro�t rate di�erential, � and modelled

as follows.

�t � 0 � 1�t�1 � 2pit�1 � �t�1q � 3r st�1 (10)

Where � and i are nominal interest rates, long and short term rates respectively. r s is the

stock market return over one period (logP s
t � logP s

t�1). The measure of lagged sentiment is

1 and 2 is the interest rate. Lastly, the e�ect on the stock market return on sentiment is
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3. Chen et al. (2021) explain that when investors plan for the long term, they use estimates

of growth rates that includes an expectation of future dividends, ErDivs and ��t denotes the
change in �t . The modelled sentiment is then incorporated into the expected future stock

price, as Chen et al. (2021) describe in the following model:

EtrDivt�1s � p1� cp��tqDivt (11)

This model structure then allows for sentiment changes to be directly connected to the

valuation of a security, through the sensitivity of sentiment to lagged sentiment, interest

rates, and stock price increases. Gupta et al. (2021) explain that there was widespread

acceptance that sentiment played a role over the course of the GFC. Gupta et al. (2021)

argue that policy shocks are known to impact markets due to their e�ect on prices due

to changes in expectations. This mechanism can inuence the cost of capital or preferred

discount rate that is used to calculate a present value of future cash ows. These impacts

will have a bearing on market risk premiums and valuations.

Their model is set to review regime changes when considering the impact of monetary

policy shocks. The model is an econometric VAR on panel data with sentiment and macro-

variables. Gupta et al. (2021) reason that the high-sentiment states are subject to mispricing

mechanisms. It is at this point that noise traders enter and the role of animal spirits, herd

behaviour, and over extrapolation occur, driving a period of overvaluation where the macro-

fundamentals don't adequately explain the returns. Greenwood et al. (2016) explain that

agents sustain the incorrect perceptions with a view of `this time will be di�erent' perception.

One of the main claims of the Gupta et al. study is that it details a new transmission

mechanism by which policy shocks might a�ect stock prices: the behaviour channel. Given

the rational investor, both high and low sentiment regimes should garner a similar response,

and this was tested. The VAR model in Gupta et al. (2021) speci�ed as follows:

Xi ;t � �i � P pZqiXi ;t�1 � Ri"i ;t (12)

Where Xi ;t is a vector of endogenous variables like GDP and consumer con�dence and � is

a vector of country constants i . P pZqi is a back shift operator for the matrix of polynomials
and �nally the contemporaneous disturbances denoted as Ri"i ;t . Gupta et al. (2021) test

their hypothesis that the policy impacts on prices are more e�ective during times of high

sentiment, using the VAR model. This evidence supports the hypothesis for the entire panel

of data and at the country level, which is, on the face of it, compelling.
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2.6 Expectations and diagnostic extrapolation

Greenwood et al. (2016) discuss the growing body of research in support of people's ex-

pectations of �nancial markets and that the results are extrapolative. Their work reviews

extrapolated investors' beliefs linked to recent and past credit market outcomes. Greenwood

et al. (2016) explain how fundamentals can cause markets to swing from boom to bust, with

fundamentals shifting temporarily during periods of strong credit-market optimism and ex-

trapolated beliefs based on low defaults. This mechanism can create scenarios that increase

market fragility, where there is a mass increase in leverage during times when economic

fundamentals are deteriorating.

Default 
traps

Credit 
boom

Increase debt 
levels

Rising asset 
prices

Reducing
debt levels

Asset price 
shocks

Default 
reductions

Increasing 
defaults

Figure 5: This illustration is adapted from Greenwood et al. (2016), page 6. The study

describes the evolution of credit markets and the role that feedback plays in a

theoretical framework. In the case of a low default environment, access to �nance

and lending is easier, bond yields decrease, the sentiment and forward expectation

beliefs of the market sustaining this virtuous cycle. Higher default environments

make re�nancing more harder and this can lead to stressed market conditions and

�re-sales of asset in illiquid markets.
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Signi�cant rises in outstanding levels of credit is a driver in the run-up to the GFC and

L�opez-Salido et al. (2017) study this with the use of a group of models and empirical studies

focused on balance sheet measurements, credit growth, and �nancial leverage. Credit spread

forecasts based on lagging valuation indicators are less informative about future economic

activity than actual credit spread movements, as explained by L�opez-Salido et al. (2017).

Diagnostic extrapolation is inherently forward looking and therefore, Bordalo et al. (2018)

argue, it is not subject to the Lucas critique. Diagnostic extrapolations is applied to a

macro-economic model of investment, where Bordalo et al. (2018) indicated that the model

could explain the empirical aspects of credit cycles without resorting to �nancial frictions.

Diagnostic extrapolation and �nancial frictions can lead to models that can account for

both optimistic forecasts and sharp downturns in the economy, as stated by Bordalo et al.

(2018). L�opez-Salido et al. (2017) uses a set of proxies for expected return on credit assets

rather than the frictions approach, which focuses on balance sheet measures. They forecast

credit spread deltas (the change in credit spread over a time period) by using lagged credit

spread values. L�opez-Salido et al. (2017) hypothesise that a lagged value of credit market

sentiment (at t � 2) at a peak is a signal for a negative change in credit spreads (widening),

when combined with economic recessionary measures at t. L�opez-Salido et al. (2017) on

the other hand, maintain that elevated sentiment changes the debt composition of external

�nance, equity issuance increases, and net debt issuance declines. L�opez-Salido et al. create

credit indicators showing that the pricing of credit-risk becomes increasingly aggressive as it

is approaching a cyclical high. After this point, the credit spread widens, and the economy

undergoes a severe deceleration that we call a recession. L�opez-Salido et al. also found

that an increase in sentiment proxies occurs around the time a shift occurs in the debt

composition. This is the stage in which additional funding could be secured through stock

sales. As a result loans supply decreases, especially for businesses with poor credit ratings,

or limited avenues for additional funding.

Greenwood et al. (2016) observed that present perceptions on loan defaults greatly in-

uenced future views. This extrapolation is a forecast, in the case of good news, the expec-

tation is that the `good times' would continue. This is captured by Bordalo et al. (2018)

in their model where news that falls short of peoples expectations serves as the mechanism

for contraction. Bordalo et al. (2018) draw the conclusion that credit spreads are often

very unstable, with predictable reversals and disproportionate reactions to news. Greenwood

et al. (2016) evidence this by showing that current credit spreads are low enough, investors
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routinely underestimate future credit spreads, as we observe from surveys. L�opez-Salido

et al. (2017) contend that belief based models whilst reviewing segmentation in sentiment

between equity and credit linked assets, show that there is a belief based expectation is-

sue in both expected cash-ows and lower tail probability. L�opez-Salido et al. (2017) note

that the predictive power of sentiment for credit markets is more powerful when modelled

alongside debt levels, where high debt levels provide a further signal. They conclude that

credit market sentiment has good forecasting potential for credit supply approximately two

years in advance, which in a stress scenario can account for a good portion of the economic

deterioration.

According to Pedro Bordalo and Terry (2021), investment growth, GDP declines, and

credit spreads rise in developed markets during economic and �nancial boom-bust cycles. Too

much optimism drives excessive expansion, which in turn cools when prices are overreached

with credit markets tighten, real business activity drops o�, and defaults increase. Therefore,

the role of expectations, in particular overinated expectations, plays an important role. Pe-

dro Bordalo and Terry (2021) indicate there is evidence to support this in expectations data.

Pedro Bordalo and Terry (2021) model diagnostic extrapolations into a DSGE framework,

using a model anchored in overreactions of people to news into a mainstream business cycle

model. They explain some of the insights from the model results, namely that a negative

shock to total factor productivity (TFP) is far more damaging when it occurs just after good

times, whereas positive shocks have left �rms, in aggregate, being further leveraged as a

consequence of overoptimism. This leaves �rms in a riskier position going into a crisis, such

as the GFC. The economy is then said to be fragile and not able to withstand shocks. Ac-

cording to Pedro Bordalo and Terry (2021), economies are more sensitive to shocks during

good times than during bad times. They showed that overreaction to news without the need

for exogenous shocks can generate data resembling realistic credit cycles. Pedro Bordalo and

Terry (2021) remind us that this result is drawn from a standard economic model of RBC

with one parameter (overreaction) that is measured using company manager expectations

about their pro�tability, based on �rm level data. Pedro Bordalo and Terry (2021) conclude

that micro-level overreactions to news by managers, when exaggerated, create conditions

for credit cycles and fragility in boom times, therefore setting the stage for sharp reversals

in bust times. Bordalo et al. (2018) introduce the human biases that can be explained as

part of a behavioural theory, such as `conjunction and disjunction fallacies' and `base rate

neglect.' An example is when one's future beliefs are overweighted in light of the information
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they currently have. These explanations have signi�cant implications. Based on the same

fundamentals, the path of improving news can lead to optimism, and the path of deterio-

rating news sentiment can in turn lead to pessimism. Bordalo et al. (2018)'s models are

classi�ed as behavioural models because they use expectation as an endogenous factor and

then include additional information as factors.

Bordalo et al. (2018) formalise the model for representativeness that deals with judgmen-

tal biases and sets up the model for diagnostic extrapolation. If the true joint distribution is

hpT � t|Sq, an individual may have judged the representativeness of trait T for group S, so

the representative likelihood ratio is calculated as follows:

hpT � t|Sq
hpT � t|Sq (13)

where S is the comparison group. In this case, the ratio would represent the example quoted

in Bordalo et al. (2018) who used Irish people with red hair as an example to review. The

true distribution of people with red hair in Ireland is 10%, whereas the world average is 1%.

The representative likelihood ratio is therefore 10 (10%1% ), and this model therefore predicts

the exaggerated frequency of Irish hair colour. The model has a variable to capture the limits

of working memory, �. The likelihood variable then captures the relative focus that people

put on the recent past, where larger values cause extrapolation. When taking into account

the representative likelihood ratio, � represents the agent's memory; if � ¡ 0, the agent will

not fully correct in the representative sample, and will, by implication, overweight the most

recent information.

E�
t pwt�1q � Etpwt�1q � � � rEtpwt�1q � Et�1pwt�1qs (14)

The diagnostic extrapolation is represented linearly to that of rational expectations at time t

and t � 1, where the extent of the oversampling for the future state is added to the current

state in this function. Etp�q represents the rational expectation, wt�1 the value of total

factor productivity (TFP) in the future, and � the reaction amplitude controlling parameter.

If � ¡ 0, this will drive overreactions to news about TFP. The base model uses the same

construct, and has the � � 0, which implies this model is strictly the rational expectations

model. Pedro Bordalo and Terry (2021) report that their rational expectations model matches

macro-economic data outcomes well. The overreaction model created scenarios where the

volatility of beliefs disproportionately a�ected the supply of credit. In the model credit

demand uctuates, with decreases furthered by narrowing spreads and increased bankruptcy

Page 40



2 HISTORICAL INTRODUCTION TO BUSINESS CYCLE THEORY

costs. This implies that overoptimistic investors supply capital at a reduced spread. The

rational expectation model generates results with pro-cyclical spreads, which is due to shifts

in demand being stable. Interestingly, Pedro Bordalo and Terry (2021) review the size of the

TFP shock that is required to create a credit spread increase such as was observed in the

GFC, the introduction of a TFP decrease of 1.5% generates a scenario that matches the

credit spreads observed in the GFC. Other economic variables include a drop in investment,

earnings, and credit demand, these are all consistent with the GFC data. If I review the

rational expectations model, it cannot generate the same increase in credit spreads.

In another approach, Beaudry and Portier (2014) make use of information from the news,

which is then processed as a signal. News can thus be simply modelled as an ARIMA process

that "t are innovations of the process, following Beaudry and Portier (2014):

St � "t�q � �t (15)

Signal, St at time t, using a linear model with �t is the variance or noise in the signal. Falato

and Xiao (2020) observe that, despite the growing volume of literature, there is still very little

written about the links between actual economic outcomes in real markets and credit markets.

There is nothing speci�cally written about the underlying transmission mechanism. Falato

and Xiao (2020) argue that if investors see a signal of pro�t deteriorating, this can be the

cause of pessimism in credit-risk of corporates. In fact, Falato and Xiao (2020) establish that

a key feature of credit cycles is a contribution from both micro-economic and macro-economic

information in the expectations of corporate pro�ts. The interplay between �nancial and

information frictions is a new ampli�cation channel through which changes in expectations

are developed, not simply or directly a change in key fundamentals. The Falato and Xiao

(2020) paper follows the �eld of research linking changes in expectations as the source

of business cycle uctuations and speci�cally news shocks in credit markets are captured by

public sentiment indices. These shocks have forecasting power for determining credit spreads

and real activity. The information a�ecting investors is based on public data and relates to

incomplete markets with asymmetric information. The signals are noisy, but as investors'

beliefs about future prices change, they incorporate more information in a dynamic fashion,

which Falato and Xiao (2020) explain this is not a departure from rational expectations model.

Falato and Xiao (2020) use data from the professional forecasters corporate earnings survey

that provides a quarterly update on earnings expectations. After a revision of a company's

corporate pro�ts, they measure the change in investor expectations for the next quarter
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corporate pro�ts, Revt :

Revt � Etr�t�1s � Et�1r�t�1s (16)

The second variable of choice is the volatility measure �t , which is incorporated into the credit

premium model, which is calibrated using a multi-variate regression to forecast changes in

investor expectations:

RtÑt�k � �� �Xt � �Ct � ut�k (17)

RtÑt�k is the the excess return per quarter, k . C is the vector of macro-fundament control

variables, including aggregate consumption, business investment, GDP, return on assets,

excess stock returns, treasuries, and fed fund rate). The explanatory variable, Xt , was tested

for both the Rev and �, the dispersion of Rev. � is the factor loading of X. The simulations

reveal that a 0.14 percentage point decrease in bond returns can be transmitted for every one

standard deviation change in market expectations, this reveals the strong predictive power of

expectation in forecasting bond returns.

3 The origins of utility theory

Utility is a key input in portfolio and asset-pricing theory, where mean-variance optimisation

(MVO) is just one example of a useful model that incorporates the crucial concept of utility

into its construction. Probability theory also plays an essential role in this framework. In

the following section I provide a historical perspective on the development of key models in

portfolio and asset-pricing theory.

3.1 Historical background

Christiaan Huygens, Blaise Pascal, and Pierre de Fermat laid the groundwork for probability

theory in the seventeenth century, and it was widely employed for decision making in uncertain

scenarios and is still in use today. For a �nite random variable A, its expected value can be

expressed as EpAq � °
xipi , where the probabilities are p and values x . In 1738, Daniel

Bernoulli questioned the idea that rational choices could be made based on nothing but

projected return. He said that expected value might not be the most useful guiding concept

for decisions because the value of a �nancial gain or loss might vary from person to person

depending on factors like socioeconomic status. His main point was that projected return

was not the only thing that could be used to make logical judgements. He focused on his
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argument that something's worth to a person is based on how much it helps that person.

Bernoulli's studies laid the groundwork for what is now called Expected Utility Theory (EUT).

Based on this theory, one can think of a utility function that ties rising income to at least a

corresponding rise in satisfaction. To make a selection, one must �rst ascertain the highest

value that may be reasonably anticipated from the utility (Hens and Rieger, 2010).

3.2 Risk aversion coe�cient

A useful and related notion is the Arrow-Pratt risk-aversion measure after the work done by

Arrow (1965) and Pratt (1964). It is a standard measure of risk aversion is widely used in

portfolio management. This measure is exible yet stable even after an a�ne transformation,

where the second derivative is divided by the �rst derivative of the agents utility function

Upwq, for absolute levels of wealth �pwq:

�pwq � �U
2pwq
U
1pwq (18)

The equivalent relative measure, �, is a follows:

�pwq � �wU
2pwq

U
1pwq (19)

A risk-averse investor is one whose utility function is concave, meaning it rises more slowly

as wealth rises (Back, 2010). When investing, a risk-averse person will go for the safer,

more certain option (Back, 2010). A risk-averse investor's Arrow-Pratt score decreases as

wealth increases. That is why it is crucial for a risk-averse investor's utility function to have a

positive �rst derivative, U 1 ¡ 0. The concavity of the investor's utility curve is important and

is governed by its second derivative in utility case this is most often expected to be negative,

U2 ¤ 0. Linear utility functions, quadratic utility functions, power utility functions, and

logarithmic utility functions are some of the most used. The utility function exists as long as

von Neumann-Morgenstern's axioms are satis�ed. If we consider expected utility theory, then

a rational person is one who makes decisions that are complete, transitive, independent of

irrelevant alternatives, and continuous. For more technical review please refer to the work of

Varian (1999). Back (2010) explains that the aggregate risk tolerance for an economy with

the hypothetical aggregation of H investors' risk aversion coe�cient, which is the reciprocal

of the coe�cient of risk tolerance.

� � 1°H
h�1 1{�h

(20)
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The harmonic mean is essentially the mean function in this formula. This aggregate function

does not speci�cally deal with the impact of correlation. This assumption could be a chal-

lenge, when we consider these models apply to all investors with time-varying risk tolerance.

3.3 Stochastic deater function

This section is seemingly simple, however there are a few short equations that require much

thought, as their meanings are deep. These simple equations are central to many �nance

and economic theories, most especially asset-pricing models. It is natural to think of asset

prices represented the by the value of a stream of discounted expected payments or asset

payo�s (Cochrane, 2005). He explains the discount function is the investors marginal utility

and so the asset prices change in a recession or boom time as they are explained by marginal

utility and its covariance with consumption. This means that an asset of little value may be

of higher value in a boom state (where consumption is higher and the investor feel wealthy)

by comparison to that asset in a recessionary state where the investor feels poor (Cochrane,

2005).

The stochastic discount factor (SDF) is a stochastic process that is used when discounting

a set of expected future cash ows to determine its current value. The SDF is also known in

literature as a state price deator, state price kernel, state price density and marginal rate of

substitution. Whereas a pricing kernel is a commonly used mathematical term, a stochastic

discount factor (SDF) broadens asset pricing concepts to adjust for risk, sometimes referred

to as `risk adjusted'. The SDF is also central to the `law of one price', which is a fundamental

law of pricing. For the law of one price to hold, we require that one SDF is applied to all

cashows, pricing all assets simultaneously (I explain the law of one price more in Section

4.3). By using SDFs, investors are able to evaluate a choice of investments and make their

choices based on their risk-adjusted return pro�les for the proposed investments.

Back (2017) and Martellini and Milhau (2017) explain that the SDF determines risk

premium; this is also expressed in a way that relates an investor's utility of inter-temporal

consumption to measurable variables, which is a real challenge. Martellini and Milhau (2017)

adds that linkages between marginal utility of consumption and the SDF are at the heart of

consumption-based models. So this link is key, it explains the value of a risk premium and the

rewards required for holding assets using an investor's wealth (Martellini and Milhau, 2017).

We know that a reward is passed to an investor for bearing risk and the reward needs to be

compelling enough for the investment to take place. In factor models, this is represented with
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a beta weighted combination of factor risk premia. I formalise this process by considering

the intertemporal portfolio choice problem for an investor who can trade in asset i . This is

a maximisation problem that that incorporates a time separable utility function, where �j is

a discount factor over time t, following Campbell et al. (1997):

Max Et

� 8̧

j�0
�jUpCt�jq

�
(21)

Where Ci�j is the investor's consumption at time i � j and Up�q is the utility of consumption
over time i � j . Cochrane (2005) explains this is the basic pricing equation which is an

investors �rst-order conditions that help us understand the value of an uncertain array of

income (without the uncertainty it would be a simple case of discounting of cash-ows).

What we need now is a way of capturing a typical investor's valuation of the cash ows with

a mathematical model, that is achieved by way of a utility function, as Cochrane (2005)

explains and I will detail. Campbell et al. (1997) explain the utility function for the optimal

consumption plan where U 1pCtq is the marginal utility of consuming one unit at time t, as

follows:

U 1pCtq � �Et
�p1� Ri ;t�1qU 1pCt�1q

�
(22)

Asset i generates returns of a rate of p1 � Ri ;t�1q. This equation explains the expected

marginal utility that an individual expects from asset returns and the consumption of proceeds

at time t�1. Back (2010) explains that this is the �rst-order condition for portfolio choice in
a dynamic setting, also called the `Euler equation'. This equation captures both the investors

risk appetite or aversion to risk and their desire to consume now, or impatience. As Cochrane

(2005) explains that the impact is captured in the � factor, it is known as the subjective

discount factor. The curvature of the utility function introduces the aversion of risk and the

link to intertemporal substitution5. You'll notice at this point, that asset pricing it is not

simply a discussion around the relative ratio of asset returns to volatility.

So, how do we capture the decisions of the investor such as what to buy and when to

buy it? Would this be done by using a mathematical model? To help me, I follow Cochrane

(2005) to develop a model that describes the investor choice and solving it to form the �rst-

order condition, this function is known as the stochastic deater. Let us assume e represents

5For me this term requires a helpful reminder of the intuition: intertemporal substitution refers to the

saving and spending decisions that individuals make, as well as the e�ects of those decisions on the future.
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the opening consumption level and � denotes the amount the investor chooses to buy. The

investor choice problem can stated as, following Cochrane (2005).

max
�
UpCiq � Etr�UpCt�1qs s:t:

Ct � et � pt�

Ct�1 � et�1 � Rt�1� (23)

Price pt at time t and the constraints are then substituted into the objective function and

solving the equation obtained by calculating the derivative with respect to � and setting the

result equal to zero, we get the optimum consumption and portfolio choice function.

ptU
1pCtq � Et

�
�U 1pCt�1qRt�1

�
pt � Et

�
�
U 1pCt�1q
U 1pCtq Rt�1

�
(24)

This is a consumption pricing equation and Cochrane (2005) explains that we can now

compartmentalise into two parts that are more intuitive. The �rst part is p � EpMRq. The
second part is M �

�
�
U1pCt�1q
U1pCtq Rt�1

�
and then Mt�1 is the is the stochastic deator function

(SDF). To complete this equation, we equate the marginal cost and marginal bene�t, and if

we divide both sides of equation(22) by U 1pCtq the resultant equation is:

1 � Et rp1� Ri ;t�1qMt�1s (25)

Mt�1 � �U 1pCt�1q{U 1pCtq and we know that Mt�1 is the pricing kernel and is the SDF.

This is comparable to the discounted marginal utility ratio, often known as the intertemporal

marginal substitution rate. This can be restated to suit an asset-pricing problem, Campbell

et al. (1997) explains this is based on the one period unconditional form, 1 � Erp1�Ri ;tqMt ].

Er1� Rits � 1

ErMts p1� CovrRi ;t ;Mtsq (26)

can then be addressed by assuming a zero beta asset for SDF and this implies that the assets

expected gross return pEr1 � R0ts � 1{ErMtsq can be substituted into equation(26). This

is the excess return of asset i over a zero-beta return,

ErZits � ErRi ;t � R0;ts � �Er1� R0;tsCovrRi ;t ;Mts (27)

which shows that higher returns imply a smaller covariance with the pricing kernel. The

intuition is that an investor requires a higher risk premium if the asset does not have enough
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return when it is most needed by the investor and this drives the requirement for higher risk

premiums (Campbell et al., 1997). Back (2017) explains that the SDF and risk premia are

in fact consistent, where asset-pricing theory is based on an SDF that determines a speci�c

form of for Mt , then risk premia are essentially a set of covariances between variables.

To consider this for a moment, as Cochrane (2005) explains, a single SDF to encapsulates

all risk corrections. The key is that the utility function can change, and from formula(24)

would still enable one to connect the SDF to the data. This is powerful and it prevents

the need to redesign the modelling framework when researching new approaches to model

asset-pricing anomalies (Cochrane, 2005). When I review the more advanced asset-pricing

models, in Section 5, we can see how the framework has has been utilised to express many

di�erent asset-pricing models of an uncertain space that is market asset pricing.

4 Basic asset pricing, factor models

The detail in prior sections are a good foundation to now explore asset-pricing models and

advanced asset-pricing models, starting with factor premium models. As a reminder, factors

are used to help explain returns within asset classes and are often expressed as an asset class

return relative to a risk free asset such as cash.

4.1 Factor and risk premium recognition

Cochrane (2017) highlights that well established factors do exist such as momentum, value

and earnings premium. According to Roncalli (2017), the goal of factor investing is to deepen

our understanding of asset classes in what they o�er in terms of systematic risk factors and

diversi�cation. As an introduction, investment returns can be explained by the standard price

factors from asset-pricing theory. When factor returns are higher than or equal to predicted

returns based on the systematic risk borne by the asset, then it is said the factor is `priced',

and that the factor earns a risk premium (asset returns in excess of the risk-free rate) over

longer time horizons. So, this is fundamentally important in asset management.

Cochrane (2017) reports that many factor models exist (in one count there are more than

three hundred), many of which are spurious or simply correlated with other factors. Munk

(2013) explains that a lot of work is required in identifying factors, it is not only about parsing

lots of data using machine-learning techniques and powerful hardware to extract patterns that

explain a `data-only' factor. This approach of simply using data can be inappropriate and
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Figure 6: This is a representation of Bass et al. (2017), page 3. It is a nice way to capture

the core market risk factors and de�nitions.

leads to data snooping. The best known data-only model is that of Fama (1970). Munk

(2013) explains that the real challenge is to make use of fundamental reasoning in factor

design that is supported by formal economic arguments or a fundamentally sound asset-

pricing model (this is arguably the overarching goal in this study and my belief is this is

the correct way to de�ne asset-pricing for asset classes that are not data rich). Without

adding to the increased set of factors, there are a few factors that already explain the largest

proportion of risk; this includes rates (real and nominal), ination, economic growth (equity

exposure). Commodity, emerging market, and credit factors also play a signi�cant role.

Foreign exchange (FX) however is not compensated with a risk premium over the long-run,

but it should still be taken into account when building a portfolio because of its profound

impact on portfolio volatility (Bass et al., 2017).

Unlike the traditional long-only fundamental factors, such as size, value, and momentum

identi�ed in Fama (1970), alternative risk premia can be exposed to not only bonds and

equities but also credit, rates, commodities, and currency. Alternative factors and risk premia

provide a schedule of returns outside of what is generally o�ered in equities and bonds,

which is a desirable characteristic in asset management. Roncalli (2017) highlights that

in low yielding rate markets, alternative risk premia will provide an interesting option for

generating returns. Sheikh (2018) explains that factor models are often used in industry

as multi-variate models used to generate random paths for asset-pricing. He explains that

commercial software such as RiskMetrics and MSCI Barra use asset-pricing models such

as arbitrage pricing theory (APT) and the capital asset-pricing model (CAPM) with large

variance-covariance matrices. Due to the demand of this commercial software, we know

there is a high penetration of these models in the market.

There are two distinct classes of factor models, APT and the CAPM (Martellini and
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Milhau, 2017). The APT is based on the seminal research of Professor Ross (1976) and

incorporates multi-factors in the model. CAPM is a well-known model and it relies on a single

market component to determine the investments value.

4.2 Single-factor models

There are a few versions of the CAPM, but really the foundation for these models was laid

by Markowitz. Two notable versions include Black (1972) and those by Sharpe (1964) and

Lintner (1961). Black's version is more general and is based o� a zero-beta portfolio in the

absence of a risk-free asset and a market portfolio, whereas Lintner and Sharpe's version

is based o� a risk free rate Rf . There is no speci�c measure of market portfolio, so core

equity indices such as S&P500 or FTSE100 are used to proxy the market portfolio m. Here,

I follow Campbell et al. (1997) who de�nes the more general Black version:

ErRi s � Rf � �i ;mpErRms � Rf q (28)

Where �i ;m is equal to

�i ;m � CovrRi ; Rms
VarrRms : (29)

4.3 Multi-factor models

The `law of one price', Fabozzi et al. (2007) explain, is a foundational axiom in �nance. The

value of a �nancial asset must have one price in the market, regardless of how the asset is

implemented (security type, contract type), and then this asset can be synthetically created

for trading in the market. Ross (1976) introduced the law of one price, it is a key assumption

of factor models, therefore foundational for the APT model. Fabozzi et al. (2007) explain

that equilibrium prices are maintained because of market liquidity and traders actively closing

down the pricing di�erential on single stocks, including arbitrage opportunities. This is one

major factor in why only systematic risk will be rewarded and not unsystematic risk (that

is related to the underlying covariance with common factors). In the following section, we

follow Back (2017) in his detailing of risk premia and asset-price modelling. Factor pricing

models are con�gured as linear versions of consumption-based marginal utility models. �

is a sensitivity parameter that is calibrated, often by regression. In the case of risk factor

modelling, this is set up as:

ErRt�1s � �� �1ft�1 (30)
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For factor modelling the dependent variable is excess returns, for some constant � and f

factors. Back (2017) explains that there is an equivalence between factor models and SDFs.

An important assumption in asset-pricing and macro-economics alike is how the measures of

aggregate marginal utility are determined and how the measure accounts for bad states of the

world. Back (2017) warns that if this the measure is not appropriately de�ned, the average

return premium in the model will not be high enough to warrant an individual's investment

as the perceived risks would be too high:


U 1pct�1q
U 1pctq � �� �1ft�1 (31)

The left side of the approximation is the same as the SDF that we developed in equation

26 and is the marginal rate of substitution. This is a theme that you will see in this study, I

explore the relative risks in many sections, but in the ESG modelling, part V, I model this for

private credit. If the APT is set out in a linear factor model with factor f , and with a risk

free rate Rz , then following Back (2017), the model is denoted as follows:

ErRs � Rz � 
Covpf ; Rmq
Varpf q (32)

The  is called the factor risk premium, also known as the price of risk, de�ned as the extra

return premium required per unit beta. In the CAPM, the factor model is set up using a

linear model and a risk-free rate of return (per the Sharpe and Lintner con�guration) and it

is termed the market risk premium. The result is the price of risk is the factor mean. For

more detailed readings on the APT model, please refer to Ross (1976) and Roll and Ross

(1984). For an asset the return R, can be broken down into constituents and expressed in a

factor model as follows:

ErRs � �� �f � " (33)

ErRs is the expected return of the security or asset and � is the asset return constant. The

beta loading of an asset to movements in the systematic factor is denoted as �. The system-

atic returns are denoted by f and the �nal term, ", the `noise term' (Roll and Ross, 1980).

This is the residual of the model's ability to predict the asset value, and this is attributed

to idiosyncratic factors. The error term represents idiosyncratic risk, and as diversi�cation

increases so the error term is expected to decrease. Roll and Ross (1984) explain that id-

iosyncratic risks can be reduced to zero through diversi�cation when dealing with a large

enough portfolio. In their opinion, three to four indicators are su�cient to characterise the
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risk. The vector form of the APT model can be written as:

ErRs � Rf �
Ķ

k�1
�kpEpFkq � Rf q � " (34)

EpFkq � Rf is the excess return of the k th systematic factor over the risk free rate, Rf .

This relationship is referred to as the APT, unlike the simpli�ed CAPM, which is based on

only one factor, APT takes into account a wider variety of variables. APT can be extended

to include multiple factors. The model designed by Fama and French is arguably the most

famous of the multi-factor market models. A great example of a commercially successful

factor model is MSCI's Barra active risk model that Alexander (2008a) de�nes as

ErRs � �� �X � �FRF � �IRI � ": (35)

� and � are relative portfolio alpha and portfolio beta values respectively (these are found

by o�-setting portfolio returns with the de�ned market benchmark), X denotes the market

returns. ErRs is the expected active portfolio return, Rf and RI are returns on risk indices

and industrial indices respectively, which are represented in bold to denote a vector. � is

the benchmark speci�c return and " is the portfolio speci�c return, not explained by market

and risk factors and industry factors. There are however four classes of multi-factor models

(Fabozzi and Pachamanova, 2016):

� Statistical approach making use of the available historical data, by applying methods

such as principal component analysis (PCA), panel regression, and econometric analyses

such as autoregression, vector-error correction, and cointegration. In general, data

methods are used in the search for factors, because the data typically contains a large

number of stocks for a short time period, data reduction techniques were required.

� Macro-economic approach models are based on macro-economic factors and data

that can fundamentally explain stock returns. Typical factors can include interest rates

(real or nominal), debt levels, gross domestic product, ination indices, sentiment

indices, and money supply.

� Fundamental approach. These models are based on fundamentally recognised factors,

starting with the work of Fama and French, whose model includes factors such as small-

minus-big and high-minus-low. Typical factors include credit ratings, price-to-earnings

ratios, momentum, and equity dividends.

� Hybrid models approach Fabozzi and Pachamanova (2016) explain that hybrid models

use traditional sets of factors to explain as much of the variation of returns as possible,
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then make use of statistical methods to further explain what remains in the residual.

According to Fabozzi and Pachamanova (2016), hybrid models provide the best of

both worlds, where �nancial theory and economic context impose a structure and then

relatively sophisticated techniques are used to mine the data for what the theoretical

model does not predict.

4.4 Factor and risk premium modelling

Factor investing is a speci�c approach that targets the true source of excess return by taking

a comprehensive review of what factors are driving that return. In this section I provide an

overview of these core factors.

4.4.1 Rate

Core to a factor framework is the rate of return from risk-free assets, which is the primary

building block for establishing other assets' rate of return above risk-free assets. Understand-

ing risk-free rates entails understanding elements of short-end rate securities models, which

are workhorses in �nance and have been extensively researched. Refer to Munk (2011) for a

detailed modelling review. The short rate, or level factor, incorporates macro-economic data

to describe monetary authorities' decisions, one of which is current rate and expectations of

rates. Rates are often described by the driving factors using the Taylor rule, and I follow the

notation of Ang (2014),

SRt � r� � �t � 0:5p�t � ��q � 0:5It (36)

Here SRt is the short rate, r� is the long-run real interest rate, �t is the current ination

rate, �� is the target ination rate, and I is the output gap, which is the di�erence between

the potential and real GDP growth rate. The �rst term, which is made up of real rates

and ination, is also described by the well-known Fisher hypothesis. What is critical in this

model is the rate term. Often termed the `level' of rate, it is material to the degree that it

accounts for the majority of the total variance of �xed-income factors (Alexander, 2008b).

It is in this category that one should expect to see models such as the Vasicek, Cox-Ingersoll-

Ross (CIR), Hull-White-Vasicek (HWV), Ho-Lee, and Black-Karansinki as prevalent. The

multi-factor models that incorporate further information in describing bond prices are more

accurate at explaining bond prices, an example of this is the multi-factor model build by Ang

and Piazzesi (2003).
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4.4.2 Term

The next �xed-income factor has to do with the premium earned from bearing the risk that

interest rates for bonds may change over the life of the bond. The di�erence between rates

when comparing a bond or treasury at di�erent maturities is known as the `term premium.'

For the full range in tenor, the term premium increases with the term to maturity. What

explains this increase in premia is a question of the shape of the term structure of interest

rates. The theories that have traditionally been used to explain the `term premium' include:

� Expectations theory explains the term structure of interest rates as this reects the

markets expectations of future spot rates.

� Liquidity preference theory is a macro-economic theory that was developed by Keynes

in his book `The General Theory of Employment, Interest and Money' written in 1936

to explain interest by supply and demand for money. The theory explains that investors

are risk averse and prefer shorter maturities, so longer term securities will have to o�er

additional returns to compel investors for their investment money.

� Preferred habitat theory is a variation of the liquidity preference theory. This theory

states that aside from the liquidity preference investors have a preference of maturity,

and for investors to purchase bonds at a di�erent maturity they require a premium.

� Market segmentation is slightly di�erent where long and short interest rates are not

assumed to be related. Yield curves are simply a result of di�ering demand levels

between markets with di�erent segments along the term structure.

In the next section I go into a bit more detail around how the underlying �xed-income factors

are dealt with.

4.4.3 Slope, level and curve

Modelling �xed-income factors is closely tied to well-known term structure models, where an

a�ne approach is often used by industry practitioners and academia. The a�ne modelling

framework is exible, tractable and often more robust (Munk, 2011). An important part of

the modelling is to decompose the term premium, this often done, quite accurately, using a

principal component analysis (PCA). Three underlying factors that explain the term premium

are well-known in the industry. The factors are `slope', `level', and `curve' and refer to a

yield curve's inuence, not the economy's shocks. Fixed-income models can explain asset-

pricing movements without arbitrage, unlike general equilibrium asset-pricing models. Ang
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and Piazzesi (2003) create a model that adds macro factors to term structure model latent

factors (`slope', `level', and `curve'). Ination is linked to slope and level factors.

Ang (2014) explains that long-dated bonds are more sensitive to unexpected changes in

macro-economics. The term premium is the driving factor and changes in the interest rates

of risk-free bonds and can be harvested by investing in government bonds. Thus, longer-

term bonds are sensitive to risk due to certain factors, which therefore expect adequate risk

premiums so as to reward the customer for bearing risk. Alexander (2008b) con�rms in a

PCA analysis that two other factors, the `twist' factor and the `buttery' factor, explain up

to 20% of the variance. Macro-economic information, mean reversion, and more complex

volatility models are speci�ed in multi-factor short rate models.

Even with additional considerations, term spreads' predictive potential remains strong,

according to Engstrom and Sharpe (2018). The one- to two-year spread indicates the mar-

ket's monetary policy expectations. When negative, the market expects a recession, and

actual data suggests that it is usually right (Engstrom and Sharpe, 2018). Interestingly,

many market participants use the near-term spread to predict recessions. Economic factors

a�ect mid-to-long-term spread more than short-term spread, according to Connolly et al.

(2018). The market knows that the FED and BOE e�ect term spread, market expecta-

tions and ination speci�cally a�ect the short-term spread. The short-term curve is normally

upward-sloping, but the ten-year term spread is usually downward-sloping, unless rates are

expected to fall soon. Yield volatility and higher convexity drive term-structure (Engstrom

and Sharpe, 2018).

4.4.4 Credit default premium

Credit and duration are the two traditional factors in �xed-income (Martellini and Milhau,

2017). It has been observed that bonds subject to default are higher yielding than safe

treasury bonds. This is especially true given that credit defaults are likely to occur during

economically di�cult or stressed markets. Dor et al. (2012) explain the credit spread premium

is harvested by investing in credit risky bonds, where the investor can expect a return premium

over and above the loss attributed to credit in the bond. This is an interesting feature as

corporate bonds are not seen to provide impressive investment returns in recent history. In

fact, the corporate bonds from 1990 to 2009 as measured by the U.S. Corporate Index

returned 0.27% above duration matched treasury bonds, which is low even in today's low

yield environment.
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Gourio (2012) explains that there is a puzzling market feature in holding credit assets

to maturity. According to Houweling and van Zundert (2017), the bene�t of investing in

corporate bonds is the ability to harvest both the term premium and the default premium.

Dor et al. (2012) conclude that investors who are able to hold the bonds through the stressed

periods without having to liquidate the portfolio will recoup the spread net of default losses

and bene�t from the wide credit spread (approximately 90% of the credit spread exceeds

the amount required to cover credit losses). This is because investments in private debt or

unlisted credit carry a large additional liquidity premium. Anson et al. (2011) de�ne credit-

risk as �nancial instruments issued by organisations or entities that have the potential to

default, where outstanding money owing to the investor is at risk of default. There is reward

for holding assets that are exposed to credit risk and it can be shown empirically by comparing

credit spreads to the expected cost of credit, expressed as the potential for default multiplied

by the loss owing to that default (assumed to be 50%). In a traded market setting, corporate

bonds default with a 0.4 percent probability and have experienced recoveries of around 50%,

resulting in a credit cost of 0.2 percent, whereas the BAA-AAA credit spread is 1 percent.

The corporate bonds are therefore being priced at a discount, and the investor can expect

increased excess returns, at a premium (Anson et al., 2011).

Berndt et al. (2018) highlight that the movement in risk premia for high-yield (HY)

�rms is less correlated with macro-fundamentals than investment grade (IG) �rms. Berndt

et al. (2018) conclude that the relationship between risk premia and macro-economic fun-

damentals, once controlled for �rm and market based variables, is clear and contributes to

a powerful model. Berndt et al. (2018) discuss how in stressed periods (including 2002 and

2009) will have to show marked decreases in risk-bearing capacity relative to the actual risk

levels. This will likely explain the larger increases in the risk premia relative to the expected

losses. Finally, Berndt et al. (2018) conclude that the risk premia to expected losses, when

reviewed over the full time horizon, is actually less pronounced for HY �rms than it is for IG

�rms.

4.4.5 Final considerations

Campbell et al. (1997) warn that using a factor approach without limits has two major aws.

First, the statistics-only models will over-�t the data because of data-snooping bias, where

data is misused or manipulated to arti�cially generate meaningful results. This means that

the models can't be used to predict returns outside of the sample or out-of-time, so they
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are not very useful. The second major reason, which ties neatly to large parts of this thesis,

is that these models do not account for market ine�ciency or investor irrationality, both

of which will imply Sharpe ratios that are modelled above what can be expected when one

considers the equilibrium of the underlying market. This, I suspect, is a matter of truly

understanding the risk levels.

5 Advanced consumption-based asset models

In the next section I summarise the more advanced asset-pricing models. Part of this thesis

is a review of the literature of puzzles that the asset-pricing pricing models look to solve and

will include parts from macro-economics and �nance.

5.1 Inter-temporal substitution models

The standard power utility consumption-based model, following Cochrane (2017):

Mt�1 � e��
�
Ct�1
Ct


�
or EpRe

t�1q �  cov p�Ct�1; Re
t�1q (37)

C is consumption, �C represents the consumption growth and  is the coe�cient of risk

aversion. Essentially, as the risk of a recession increases, so consumption falls. Excess returns

are denoted as Re . This is a quanti�able measure-based approach, and in the work from

Mehra and Prescott (1985) and Hansen and Jagannathan (1991) shows from the analysis

that a risk coe�cient would need to be very large to induce an equity risk premium that is

as high one can capture in the market:

EpReq
�pReq ¤ �p�Ct�1q (38)

If a representative agent can accept the high risk aversion, the model would require that

risk-free rate levels are inconsistent, explains Cochrane (2017). Lastly, the risk premium is

known to display time variation, with a clear relationship to the business cycle, and this can

be calibrated by regression of the following form Re
t�1 � a�byt �"t�1. Regression variables

may include prices, dividends, price-dividend ratios, and bond spreads. The predictive power

of these models is not a useful approach with low R2 values. Macro-�nance models are

non-vacuous and when processed in a formal testing framework would be rejected. Cochrane

(2017) points out that at the top (bottom) of a cycle, expected returns are low (high), risk

premiums are low (high) and prices are high (low). Another feature is the excess volatility in
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equity, due in part to the dividend expectation for stocks that have relatively high prices so

we consider the model: either the dividend is expected to increase or the prices will decrease.

Cochrane (2017) explains that the economic state we are in when equity shares fall

sharply is just around the same time one may be at real risk of losing a job or their business.

So what is this fear really about? How can it be measured? And how is this connected to

the business cycle? These central questions point to a subtle di�erence: that people fear

recession more than can rationally be explained, and when people are in a recession, their

risk appetite is a�ected, implying a high risk premium required to bear future risk (Cochrane,

2017). Recessions seem to capture both the risk of loss in the here-and-now, coupled with

the additional risk aversion for future prospects. These may in fact be interrelated; the fear

of loss may cause people to sell stocks, and the well-known e�ect of inelastic supply could

in fact drive deeper recessions.

5.1.1 Power utility

The power utility model is often seen in academic articles, it makes uses of a time-separable

power utility function for a representative function as follows (Campbell et al., 1997):

UpCq � C1� � 1

1�  (39)

The coe�cient of risk aversion is denoted as  . A key, interesting, mathematical feature

here is that as  approaches one, the function becomes UpCtq � logCt . The features of this

model, power utility, is that it is scale invariant, which implies that even individuals that are

at di�ering wealth levels, than be aggregated to a representative investor, which is a strong

justi�cation of the use of this model in the Consumption CAPM (CCAPM) (Campbell et al.,

1997). The model is a power form and this means that it implies a restrictive elasticity of

intertemporal substitution assumption.

5.1.2 Recursive utility

Cochrane (2017) explains that although the many approaches adopted by di�erent speci�-

cations, including technology, markets, preferences, which can be altogether di�erent argu-

ments, the models end up looking quite similar. The recursive utility model is one in which

the future and current utility are connected, using a non-linear function, again following
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Cochrane (2017):

UtpCtq �
�
p1� �qC1��

t � �
�
Et

�
U
1�
t�1 pCt�1q

	� 1�e
1�

� 1
1��

(40)

Elasticity of inter-temporal substitution is 1
� (that is, � is the relative risk aversion) and risk

aversion is set to . Cochrane (2017) explains that with � �  this gives a time-separable

power utility. The discount factor then arrives with the following formulation, following

Cochrane (2017):

Mt�1 � �

�
Ct�1
Ct


��
$'&
'%

Ut�1Ct�1�
Et

�
U
1�
t�1 Ct�1

	� 1
1�

,/.
/-

��

(41)

The tricky issue with the models is that U, the utility index, is not observable, and this needs

to be swapped for something that is (Cochrane, 2017). For wealth portfolio outcomes,

Cochrane (2017) explains that Epstein et al. (2014) used market returns as a proxy. More

recent advances utilise data on consumption to generate a utility.

5.1.3 Habit model

The habit model explains more than one puzzle, such as a low short rate with low volatility,

high equity risk premium and cyclical variation of volatility stock prices (something akin

volatility clustering that increases during economic decline). The habit model is based on

a standard power utility that introduces a benchmark or subsistence point called `external

habit'. First, I will de�ne the standard model here, following Hansen and Jagannathan (1991):

E

� 8̧

t�0
�t
pCt � �Ct�1qp�1q � 1

 � 1

�
(42)

C is consumption and when � � 0 this model becomes a contingent claims market where all

consumers have the same preferences. When � ¡ 0, which is the assumption in economics

models, there is an intertemporal substitution from consumption goods. This means the

consumer would rather forgo consuming now to consume at a later date (Hall, 1988). He

explains that this is a central question in macro-economics and where customers are sensitive

to changes in interest rate. In another approach in Campbell and Cochrane's habit model

is that it speci�es that an individual will have spending habits that are linked to the history

of aggregate consumption, rather than an individuals personal history on consumption levels

after one period. The model is speci�ed in a way that changes to habit are slow moving

relative to changes in current consumption. As Campbell and Cochrane (1999) explain,
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this replicates mean-reversion in price, dividends and stock returns for longer horizons. This

model is de�ned as, following Campbell and Cochrane (1999):

E

� 8̧

t�0
�t
pCt �Xtqp1�q�1

1� 

�
(43)

The formula expresses the maximised utility of an individual or agent. This model does

not consider how current consumption decisions will a�ect future risk aversion (such as

in non-separable goods models). The time-varying benchmark (or subsistence level) X is

determined externally to the model by observing others' consumption, so surplus consumption

is St � pCt � Xtq{Ct . This ratio is con�gured so that when St � 0, this is a bad state of

consumption that equals the habit level Xt . The curvature of the utility function then

becomes

�CU
2pCqq

U 1pCq � 

�
C

C �X


� 

S
(44)

S is the surplus consumption ratio, X subsistence level and consumption C. As I previously

explained, the habit is determined by historical aggregate consumption, following Campbell

and Cochrane (1999):

Sat �
Ca
t �Xt

Ca
t

(45)

The reaction of an individual to aggregate consumption can be modelled as an autoregression

(AR(1), accounting for heteroskedasticity) where dependent variable sat � logSat . Camp-

bell and Cochrane (1999) go on to specify the slow moving habit formation model where

Xt � �Xt�1 � kCt . This formulation allows for a changing appreciation for risk aversion as

consumption grows and likewise as consumption drops (e.g., wealth levels drop) the bench-

mark changes too, and thus the risk aversion rises. This model is a regression and can be

speci�ed to match local characteristics and therefore be directly linked to a market. The

e�ect is that the returns required to account for the changes in risk aversion increase. This

would result in lower dividend asset prices.

Cochrane (2017) explains that if the dividends were constant, then changes in the dividend

ratio would be entirely driven by varying risk premiums. This model can then explain expected

dividends by comparison to excess price volatility. The model naturally creates time-varying

recession-linked risk premia and returns related to dividend yields, especially at long horizons.

For habit models, risk free rates are usually a challenge. So to de�ne a slowly uctuating

pro-cyclical interest rate function, with marginal utility pC�Xq� , following Cochrane (2017):

rdt � �dt � 
�

C

C �X


E

�
dC

C



� 1

2
p � 1q

�
C

C �X

2

�2
�
dC

C



(46)
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The subjective discount factor � denotes the real interest rate that is added to the inverse

elasticity of inter-temporal substitution multiplied by the expected consumption growth, plus

risk aversion squared times the variance of consumption growth. This habit model features

a recession indicator (S � pC �Xq{Cq) for the power utility model.

Mt�1 � e��
�
Ct�1
Ct


� �
St�1
St


�
(47)

The model will reect a small e�ect when stock prices decrease; this is due to the impact of

 = 2 relative to the recession indicator. Cochrane (2017) summarises the model capability,

stating that the model does feature an equity risk premium, a reasonable Sharpe ratio and

low constant time varying risk free rate. The model is successful in generating the observed

returns, volatility and even generates heteroscedastic returns. It still features a relatively high

risk aversion and, as such, it does not fully solve the equity risk-premium puzzle.

5.1.4 Long-run risks

Long-run, idiosyncratic, and rare disaster models feature time-varying risk variables (Bansal

and Zhou, 2002) and can explain many features of �nancial markets. These models, as

Bansal (2007) explains, are focussed on economic uncertainty and changing long-run growth

potential, and this drives equity risk premia and price volatility. The models for non-separable

goods work in a way that a�ects a person's appetite for risk depending on the size of their

consumption (i.e., the size of your house may a�ect your risk aversion). For models of

the behavioural or risk ambiguity type, a person's probability assessments vary over time.

Preferences are not inherent to �nance models, but the leverage value of intermediaries can

a�ect the market's risk capacity. The approaches listed above look di�erent but are often

discount factors and/or marginal utility generalisations.

Mt�1 � �

�
Ct�1
Ct




Yt�1 (48)

Cochrane (2017) explains that Yt�1 is the more signi�cant contributor in the model. Even

the probability distortion or behavioural models follow this basic form, where the expectation

is a sum over states s:

ptU
1pCtq � �

¸
s

�sU
1pCt�1;sqxt�1;s (49)

Payo� and price are p and x respectively. � is the market beta, � is the probability assess-

ments, that are can e�ectively distorted to account for the impacts of sentiment. The state

variable Y is there to set distortion in probability or marginal utility (given these always enter
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the equation together, so it is the same thing), Cochrane (2017). In this model, time-varying

risk aversion for individuals is endogenous, where an individual will be less willing to take on

risk during stressed market scenarios. Bansal (2007) concludes that the strength of the

model is in how it describes the features of �nancial markets and can be used in an economic

policy setting for markets.

5.1.5 Long-run equity premium

The long-run equity premium is a surprising result (Cochrane, 2017). From research per-

formed by Hansen and Jagannathan (1991), we know that the need for greater levels of

volatility are required to explain the equity premium, which is a central theme in this class

of model. It is not only consumption that drives the habit discount factor, if we de�ne the

model following Cochrane (2017):

Mt;t�k � e�k�
�
Ct�k
Ct


� �
St�k
St


�
(50)

The long term horizon is k . The S term provides the additional habit model volatility, as

Cochrane (2017) explain it is a contributing factor in asset prices and expectations of return

rates in the long term. The second term is stationary, whereas C is a random walk that

increase with term, so asset-price variability is less of a feature over the long term horizons

(Cochrane, 2017).

5.1.6 Heterogeneous preferences

Heterogeneous preferences is an interesting and dynamic setting where people relate to

di�ering levels of risk aversion, where more risk averse people hold less stock. A short

introductory note on Pareto optimality is needed here. For an economy the goal of a social

planner is to maximise individuals' wealth over the planning horizon, in a way that the expected

utility for one investor will not reduce or sacri�ce the expected utility of another investor, if

this is achieved, then the property is termed Pareto optimality (Back, 2010). Munk (2013)

explains that Pareto optimality allows for aggregate consumption risk in a that is shared

amongst the participants in the economy, thus allocation is seen to be is solved when the

allocation of resources in the most e�cient way possible. This being the case, larger stock

brokers will lose a greater proportion of their money during a shock resulting in a smaller

share of the market, thus the overall market risk aversion goes up. In the heterogeneous

preferences model, Gârleanu and Panageas (2015) review the scenario where di�ering risk
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aversions in a time-varying wealth setting, the less risk averse people then to hold more stock.

They explain the dynamics, where sharp drops in the market will mean that the people with

the lower risk aversion will account for a smaller proportion of the market, and hence the risk

aversion will increase as a result. Cochrane (2017) de�nes this relationship in the following

model, where two consumers are denoted as A and B respectively:

�t � �Ae
��tC�AA;t � �Be

��tC��B

B;t (51)

�t is a discount factor and �i are time invariant Pareto weights. Phrased using risk-aversion

terminology, I get Ct � CA;t � CB;t for total aggregate consumption across time and dis-

counting (aggregate of all individuals), denoted as:

1

m;t
� 1

B

CB;t

Ct
� 1

A

CA;t

Ct
(52)

From the model, I recognise the same working mechanics as the habit model: after the

aggregate individuals' sharp decrease in consumption reduces their risk capacity, this is due

to a relative increase in risk-averse people during stressed periods. This poses a good question:

why do markets show changes in risk aversion in stressed markets, however the individuals

do not? Cochrane (2017) elaborates on how risk aversion of the representative agent may

change over time, whereas the risk aversion of an individual does not necessarily do so.

5.1.7 Rare disasters

Another reason that could go to explaining the equity premium is the substantial e�ect and

perceived risk from a very low probability event with signi�cant impact, otherwise known as

the `Peso problem' (Back, 2017). Barro (2006) notes that macro-�nance models have made

the connection of asset-pricing puzzles and rare disasters. These models are controlled where

the equity premium and other asset-pricing features are triggered by the fear of extremely

unlikely events. The foundational assumption describes the relationship of real per capita

consumption C, described in the following equation:

logpCt�1q � logpCtq � g � ut�1 � vt�1 (53)

When g ¥ 0 the productivity increases that is an exogenous variable. The rare shock variable

is covered by ut�1. The last term is set as a stochastic variable (i.i.d.) representing the

expected levels of macro-economic variability. The arrival of these rare events are seen to

arrive at a low frequency. Barro (2006) cite the use of a power-law density for the arrival
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distribution. To discuss, I make use of similar functionality later in this study, although the

distribution for the rate of arrival is di�erent.

Nakamura et al. (2013) provide a di�erent approach in a model seeking to explain the

consumption disasters with crises and recoveries. They conclude that the stock premium is

low for a given level of risk aversion and that disaster risk dramatically magni�es the equity

premium, which persists for years. This was a study using an empirical model of 24 nations

spanning 100 years.

ci ;t�1 � ~ci ;t�1 � vi ;t�1 � Idi;t�1 d
i;t�1 (54)

~c represents the error in the measure of consumption c . The volatility of c is denoted at

v and is normally distributed (i.i.d.). The second shock is denoted as Idi;t�1 
d
i;t�1 and this

produces the disaster induced shock in consumption. This function has two parts, where

I is a dummy variable and  the extent of addition consumption and has a distribution of

Np�d ; 1q. Nakamura et al. (2013) has introduced a break in volatility with a second shock

they refer to as a transitional variation in consumption due to rare stressful events. This

features a binary variable I and  is the extent of the disaster due to the shock. Nakamura

et al. (2013) explains that this model extends the work done in Bansal (2007).

5.1.8 Other considerations

Finding an explanation for why, or what drives, a factor risk premium is the real work of

macro-�nance (Cochrane, 2017). Factors can be explained as features that describe portfolio

returns over time. Importantly, �nance cannot by itself explain premiums. Using the CAPM

model as an example, it will explain average stock returns but says nothing about equity risk

premiums; it sits as a free parameter that needs macro-�nance to explain it.

Cochrane (2017) argues that macro-�nance is de�ned by risk premiums that uctuate

over time and the accompanying changes in risk aversion, that it is linked to precautionary

savings, and that it is central to economic cycles. Business cycles are not caused by changes

in the risk-free government interest rate or by consumers seemingly and collectively delaying

their purchases in order to save money for a rainy day. Cochrane (2017) argues that recessions

are de�nitely not times when individuals are just driven to be thrifty and, hence, make savings

for a better tomorrow, and these are not times of high interest rates. The macro-�nance

view is that individuals are in a state of real fear and are concerned about job losses and

business failures in their personal capacity. This is not simply a case of consuming less and
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having the wrong level of overnight rates. This fear also drives insurance premiums higher.

Cochrane (2017) concludes that no model is superior; they di�er in many ways, but

the habit and recession will always be a function of risk-bearing capacity, which inuences

investment decisions and the level of risk taken while investing. He points out that business

cycles deal with risk premiums and movements from riskier aggregate positions to the safer

options. What it is not is a detailed interpretation of subtle movements of the risk-free rate

or driven by the view that during stressful periods an individuals need to substitute their

consumption of today versus some future state changes, or is even a consideration.

5.2 Individual optimality

As Cochrane (2001) highlights, consumption-based asset prices provide the theoretical answer

to most asset-pricing questions, but the link to actual markets is not as clearly demonstrated.

The most popular use of models is the linear factor-based pricing models, which are most often

calibrated in discrete time. The optimal consumption of utility-maximising individuals in a

market can be studied with the use of an SDF, which will also take care of the state contingent

dividends and development at various periods of time (Munk, 2013). In a consumption model

an individual's consumption c at time t � 0 and again at time t � 1, is denoted as c0 and

c1 respectively. The individual's initial wealth is e0 ¥ 0, which will be greater than zero

at time t � 0. I assume this is based on the law of one price for cash invested from the

client portfolio, denoted as �, then the price of P � � �TP � °I
i�1 �iPi , and similarly, the

portfolio will deliver dividends D� � �TD � °I
i�1 �iDi . The budget constraints are therefore,

following Munk (2013):

c! ¤ e! �D�
! � e! �

I̧

i�1
Di!�i for all ! P 


c0 ¤ e0 � P � � e0 �
I̧

i�1
�iPi (55)

The individual considers the portfolio � and consumption at (c0; c1), which is also set to

be non-negative, with a marginal utility at zero consumption levels following a CRRA. The

consumption at c will be informed, just as the consumption at t � 1 will be informed based

on the portfolio performance � for all states !, which become very large. In this model of

solving optimal choice, by assuming a concave shaped utility curve, this allows for solving

the problem by �rst-order maximisation, as the second-order maxima are already satis�ed

(Munk, 2013).
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5.2.1 Time-additive expected utility

If we consider a model based on a concave utility, using a single date, set as a time-additive

expected utility problem for individuals that would express their optimisation problem, follow-

ing Munk (2013):

max
�
Upcoq � Ere��Upc1qs (56)

The subjective time preference rate is denoted as �. When the budget constraints are added,

then:

max
�
U

�
e0 �

I̧

i�1
�iPi

�
� Ere��Upe �

I̧

i�1
�iPiqs (57)

The portfolio's �rst order criterion is:

�PiU 1
�
e0 �

I̧

i�1
�iPi

�
� E

�
e��DiU

1
�
e �

I̧

i�1
�iDiq

��
(58)

This formula then shows, for consumption c1 and c0 that:

PiU
1pc0q � Ere��DiU

1pc1qs (59)

Pi � Ere�� U
1pc1q

U 1pcoqDi s

This forms the consumption plan that is generated by the � optimal portfolio at t � 1, which

can then be restated as the price. This can then be restated as the price deator:

� � e��
U 1pc1q
U 1pcoq (60)

This is a good time to explain that the state price deator � represents the willingness of

the individual consumption at time t � 0 for the individual to hold o� and consume at time

t � 1.

5.2.2 Habit formulation in a discrete time framework

This framework extends so that individuals that have a investing strategy � � p�tqt�0;1;:::;T ,
choose consumption at various states or time periods, c � pctqtPT and where time is a de�ned

set, time t. The individual also has a starting endowment then the endowment is denoted

by e � petqtPT , with income, et , at state times t. If I now consider a time non-additive

preference con�guration, the objective function is as follows, per Munk (2013):

max
��p�tqt�0;1;:::;T�1

E

�
Ţ

t�0
e��tUpct ; htq

�
(61)
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The habit level, ht , is governed by ht � �ct�1, and from this we know that prior habits drive

current habits, time preference rate is denoted by �, this is a one period framework. � will

lie between 0 and 1, and if � � 0 then we are back to a time additive utility. The variational

argument is applied, c � pctqtPT and h � phtqtPT that denote consumption and the habit

levels respectively. " represents the perturbation in consumption by purchases. The habit

levels will be e�ected from the perturbation as follows ht�1��"Pi ;t and ht�1��"pDi ;t�Pi ;tq
for time t � 1 and t � 2. This function then features quite a few variables, following Munk

(2013):

Upct � "Pi ;t ; htq � Upct ; htq

� e��Et rUpct�1 � "pDi ;t�1 � Pi ;t�1q; ht�1 � �"Pi ;tq � Upct�1; ht�1qs

� e�2�Et rUpct�2; ht�2 � �"pDi ;t�1 � Pi ;t�1qq � Upct�2ht�2qs ¤ 0 (62)

This function is then divided by ", with allowing " ÝÑ 0 and rearranging terms and as Munk

(2013) explains the last step involves the law of iterated expectations, arriving at:

Pi ;t � Et

�
e��

Ucpct�1; ht�1q � �e��Et�1 rUhpct�2; ht�2qs
Ucpct ; htq � �e��Et rUhpct�1; ht�1qs pDi ;t�1 � Pi ;t�1q

�
(63)

and �nally the state price deater is represented by the following formula:

�t � e��t
Ucpct ; htq � �e��Et rUhpct�1; ht�1qs
Ucpc0; h0q � �e��E rUhpc1; h1qs (64)

As discussed, the formula reverts to time additive utility when � � 0. If the habit levels are

considered to be related to all prior values, possible in a way that aggregates, then I could

use ht �
°t�1

s�0 �
t�scs . The state price deater will then be, following Munk (2013):

�t � e��t
Ucpct ; htq �

°T�t
s�1 �

se��sEt rUhpct�s ; ht�sqs
Ucpc0; h0q �

°T
s�0 �e��sE rUhpcs ; hsqs

(65)

As Munk (2013) notes that the formulation is complicated with many terms. This formulation

has a simplifying assumption of the utility function, Upc; hq, that assumes the individual utility
is dealt with via exogenous factors, which then brings it back to a time-additive utility with

marginal utility linked to exogenous factors.

�t � e��t
Ucpct ; Xtq
Ucpc0; X0q (66)

This is the state price deator for a discrete time preference rate � with the time additive

preferences in the utility function Upc;Xq which feature exogenous stochastic process X �
pXtqtPT , where the individual's optimal consumption plan c � pctqtPT and the deator process

is � � p�tqtPT .
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5.2.3 Dynamic programming

In this section, I introduce optimisation techniques for solving complex problems that span

multiple time periods. These solutions are termed \dynamic programming". I'll share an

amusing anecdote from Bellman (1984) about how he came up with the name:

What title, what name, could I choose? In the �rst place I was interested in

planning, in decision making, in thinking. But planning, is not a good word for

various reasons. I decided therefore to use the word, `programming'. I wanted

to get across the idea that this was dynamic, this was multistage, this was

time-varying|I thought, let's kill two birds with one stone. Let's take a word

that has an absolutely precise meaning, namely dynamic, in the classical physical

sense. It also has a very interesting property as an adjective, and that is it's

impossible to use the word, dynamic, in a pejorative sense. Try thinking of some

combination that will possibly give it a pejorative meaning. It's impossible. Thus,

I thought dynamic programming was a good name. It was something not even a

congressman could object to. So I used it as an umbrella for my activities.

5.2.4 Optimality in discrete time

Firstly, we need to de�ne maximum expected utility as the key equation for indirect utility,

but this will need to be expressed over the current and future utility of consumption (Munk,

2013). Keeping in mind that wealth levels Wt will determine the levels of consumption, as

will larger investments that can a�ect consumption in the long-run, all these variables that

can a�ect consumption will be bound by one parameter, xt , where indirect utility is denoted

as J. Following Munk (2013):

Jt � sup
pcs ;�sqTs�t

Et

�
Ţ

s�t
e��ps�tqUpcsq

�
(67)

Et denotes the start of a continuous-time Euler equation. Munk (2013) explains that xt is

concerned with multiple variables and when one review pWt ; xtq is a Markov process, in which

case the indirect utility takes the following form Jt � JpWt ; xt ; tq. This problem requires no

portfolio choice for the �nal step, and this means we set �T to zero. I display a very important

assumption for this approach is the envelope condition, which is the partial derivative of J

with respect to Wealth, Wt :

U 1pctq � JW pWt ; xt ; tq (68)
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The logic inherent in this model is that one would need to attain equal value from consuming

an extra unit at a time as would be returned from the markets from investing in an optimal

way. From this envelope condition, the following can be determined, the state price deator:

�t � e��t
U 1pctq
U 1pc0q � e��t

JW pWt ; xt ; tq
JW pW0; x0; 0q (69)

If I now turn to the portfolio dynamics, where risk free assets and market exposed risky assets

are invested into a portfolio �. Following Munk (2013), I see the wealth of an individual from

t to t � 1 is captured in the following program.

Wt�1 �Wt �
ḑ

i�0
�i ;tpPi ;t�1 � Pi ;tq � t � ct

� Wt � t � Ct �
ḑ

i�0
�i ;tPi ;tri ;t

� pWt � t � Ctq
�
1�

ḑ

i�0
�i ;tri ;t

�

� pWt � t � CtqRW
t�1 (70)

� represents a fraction of investment in di�erent assets �i ;t � �i ;tPi ;t

Wt�t�ct . The risky assets �t ,

where it is assumed for now that there are no dividends paid. t represents the individual's

income at time t. RW
t�1 � �Tt rRt�1 � Rf

t 1s. Maximising over the entire solution, for both

current and future expected consumption is a complicated task, hence breaking it down, as

follows, into smaller maximisation problems, following Munk (2013):

Jt � sup
pcs ;�sqTs�t

E

�
Ţ

s�t
e��ps�tqUpcsq

�

� sup
pcs ;�sqTs�t

E

�
Upctq �

Ţ

s�t�1
e��ps�tqUpcsq

�

� sup
pcs ;�sqTs�t

E

�
Upctq � Et�1

�
Ţ

s�t�1
e��ps�tqUpcsq

��

� sup
pcs ;�sqTs�t

E

�
Upctq � e��Et�1

�
Ţ

s�t�1
e��ps�pt�1qqUpcsq

��

� sup
pct ;�tq

Et

�
Upctq � e�� sup

pcs ;�sqTs�t�1

Et�1

�
Ţ

s�t�1
e��ps�pt�1qqUpcsq

��

This then is a set of equalities, built by separating the current time period from that of the

future. The inner supremum is the same as indirect utility; however, for t � t � 1, I then

arrive at:

Jt � sup
ct ;�t

Et
�
Upctq � e��Jt�1

� � sup
ct ;�t

tUpctq � e��EtrJt�1su (71)

Page 68



6 SUMMARY OF ANALYSIS

This is also known as the Bellman equation, with J, the indirect utility, having dynamic

programming properties. Munk (2013) explains that one can consider the optimal decisions

for the current time period and then consider the optimal decisions for future periods, which

also need to be considered together as they are inherently linked due to the ct and �t e�ect

on future investments, portfolios, and consumption. The dynamic programming is suited

to the backward iterative procedure that begins with an optimal view based on terminal

values using �rst-order conditions, or an Euler equation subject to constraints per equation

70 above. This requires numerous of scenarios to work with. Ultimately, the maximisation

will depend on the choices for �t and ct . To solve for optimal decisions, the modeller will

make use of the indirect utility function, as this problem cannot be solved directly, which is

where the envelope condition is used, and solved using the partial derivatives. This process

will eventually lead back to the SDF.

6 Summary of analysis

Asset pricing, like economics has a both positive and a normative conict. Cochrane (2005)

observe that this is to do with how one seeks to answer a question, from the perspective of

`how the world works' versus `how the world should work'. Asset pricing can be understood

by posing questions about asset prices, as Cochrane (2005) notes, can be posed in two ways.

Firstly, the absolute prices must be reviewed with the goal of explaining what makes up the

full price of the asset. This will require an understanding of asset exposure to macroeco-

nomic risks. Secondly, the relative pricing route that seeks to answer, given the prices of

other assets in the market, what the price of the asset is, with very little explanation of

where the price comes from or what fundament factors the asset is exposed to (Cochrane,

2005). The researcher cites the Black-Scholes model as an example of this relative approach.

Cochrane argues that, and I agree, the most appropriate way to approach an asset-pricing

problem is to consider both techniques. This allows one not to be caught in either extreme

therein becoming idealistic, but to rather review and assess the problem at hand, then being

purposeful in one's calculation methods (Cochrane, 2005). In this study, I endeavour to walk

this path, seeking to proxy with data from areas where data is available and at all times to

provide an adequate absolute perspective from the research and theory. This provides a solid

departure point, because I know, regardless of my data-access constraints here, there is no

appropriate end-to-end data available at this point in time. So, I will thus compile a pricing
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framework which I describe as an ensemble of many methods and techniques, to my mind is

structured, and always underpinned by dedicated research. I posit that, relative to investing

models in use for data-rich assets, this framework be applied to private debt as part of an

SAA. Such is my most signi�cant innovation in this study { it brings closer the alignment of

modelling frameworks with more sophisticated data rich asset-pricing environments. From

the perspective of introducing and alternative asset in an SAA process, this is, I argue, crucial.

In this part I provided the broad set of foundational concepts. I also provided an up

to date review, in both business cycles and asset-pricing, assisted with a macro-�nance

framework. I started by investigating business cycles, in which we review the main classes

of models, classical and neo-classical models. The recent use of post Keynesian models

that focus heavily on monetary policy are under scrutiny. Another school of thought brings

the behaviour and beliefs in as they are now known to have a bearing on and helping us to

understand the nature of the driving factors of business cycles.

I detailed the key modelling techniques and approaches taken in literature. Recent ev-

idence points to the link between credit and the business cycle, in which tradable versus

non-tradable lending can have a direct bearing on the characteristics of the credit cycle. In-

teresting insights included are the direct contribution that entrepreneurs make to on cyclical

variability. Looking further into the research on the behavioural conditions and credit lending

during business cycles, I found evidence citing the powerful e�ects of diagnostic extrapolation

on large changes in business cycles.

I also detailed the key asset-pricing models and broken down the factor risk premium

framework and the most prominent models that explain the asset-pricing models. The chal-

lenge with all asset-pricing models is their ability to replicate what we observe in the market,

these not being able to account for all the known market `puzzles'. Lastly I detail the key

models that one would use when considering the intertemporal portfolio choice. These mod-

els rely on an important, classic, technique for optimisation by dynamic programming using

the Bellman equations.
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Part III

Forecasting risk appetite using

machine-learning sentiment analysis

An exciting consequence of the advent of alternative data coupled with machine-learning

techniques is the topic for this part. As a part of my research into the causes and e�ects of

business cycles by making use of machine learning techniques coupled with alternative sources

of information. This investigation required that I codify a natural language programming

interface to multiple sources of unstructured data, with data processing components and

data analytics. The analytics outputs were then used to investigate usefulness in a time-

series modelling analysis. This was a very interesting journey, that required signi�cant e�ort

to research the available data, then to source the data (freely available) that adequately

covered each region (including South Africa, United Kingdom and United States) in this scope

of study. I also provided a detailed review of the modelling techniques for use in the �eld of

NLP, as it pertains to modelling in time-series analysis. This study was interesting, challenging

at times (as the e�ort required to process data is signi�cant), but the insights from the

analysis are revealing, especially to do with the relative merits of modelling techniques and

alternative data.

7 Introduction

In addition to its practical uses in business, sentiment analysis is a rapidly expanding �eld of

study in the academic world. For instance, a recent work by Azar and Lo (2019) demonstrated

that mathematical techniques may be successfully applied to massive amounts of voice data in

order to identify emotion cues from the Federal Open Market Committee (FOMC) speeches.

Dang et al. (2020) discuss areas of application, including modelling product review data for

user acceptance, voice recording processing to understand products and processes, product

and client recommendation systems. Sources of input for sentiment analysis include web-

scraped data from internet pages, online social media, blog sites, and user forums, all of

which require a big data approach for processing unstructured data (Dang et al., 2020).

This new era of alternative data in the �nancial sector is promising. My interest is in how to

process signals for macro-economic and asset class returns based new data types and analysis
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of this kind.

Questions of interest and focal points The following questions have been asked prior to

the design and build of the models and I will end this part with a conclusion that includes a

review of these questions.

� Are social media data appropriate or value adding in macro-econometric and investment

signal research?

� Does the inclusion of additional sources of information, such as social media or news

data, improve modelling accuracy of sentiment indices?

� Does the geographic meta data increase predictive power of modelling sentiment in-

dices?

� Do more independent factors improve the predictive power when modelling sentiment

indices?

� Do lagged factors improve the predictive power when modelling sentiment indices, for

both single-factor and multi-factor models?

� Will traditional modelling techniques improve machine-learning only models?

� How e�ective are freely available modelling frameworks and trading?

Alternative data in �nance Pozzi et al. (2017) point out that social media has quickly

become a part of peoples everyday lives. Popular platforms include blogs, online chats fo-

rums, and platforms such as Facebook, LinkedIn, Twitter, Instagram, YouTube, WeChat and

WhatsApp. We now have a wealth of data to describe individuals, markets, and networks.

The initial use of analytics to comprehend this data begins with so-called vanity metrics such

as 'number of clicks,' 'number of followers,' and 'number of page visits' (Pozzi et al., 2017).

More recently the types of analysis that can further improve our understanding of the data

and reveal new information, this includes how emotion and opinion are conveyed in natural

persons writing and this is achieved with natural language processing techniques. Pozzi et al.

(2017) explain that an online digital media platform is media hosted on digital technologies

that are di�erent from those classic media sources, including radio, press, television, etc. A

subset of this digital media is social media and social networks, which include those platforms

(not only the world wide web), where people connect and share information with each other.
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Base data sources include data feeds, news articles on blogs, and social media data such

as Twitter feeds. The data may then be examined for information and powerful signals, such

as demand-side sentiment and economic signals using machine-learning on signal processing.

Preqin (2019) identi�es a force of change in the application of advanced data analytics to

the creation of more customised investments products. The most probable e�ects will be

on the incorporation of alternative data into credit evaluation, and speci�cally on the quality

of credit. Fundamental data, although it is di�erentiated by source (like individuals trends,

business process and sensor data), it is characterised because it is primary information which

has not been used (Prado, 2018). He goes on to explain that alternative data can often be

di�cult to process and even harder to use (transform, �lter, store), it does o�er the allure

of new information which could translate to alpha (or more e�cient risk-adjusted returns).

The three core types of �nancial data

Fundamental data Market data Alternative data

Balance sheet information Prices Satellite/CCTV

Income statement information Returns and dividends Internet search data

Macro-economic variable information Risk numbers (e.g. volatility) Social media sentiment

Financial ratios of companies Fixed-income data (yield, coupons,

duration)

News Sentiment

Earnings data Rates data Twitter chats

Analyst recommendations Commodities / property speci�c data Card expenditure data

Credit ratings Private debt scoring history

Table 1: The breakdown of broad data types in the table explains that fundamental data

is well-known and a normal input into the market pricing process, thus regularised

with low value to add in terms of alpha contributions. Market data encompasses all

publicly available pricing and trading information from exchanges. As I move to the

right, we start to see more diversi�ed sources of information, ranging from satellite

data showing infrastructure project progress to retail credit card spend trends to

internet browser searches (Prado, 2018)

.
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8 Basics of NLP and sentiment analysis

In terms of introduction, linguistic programming is concerned with language at increasingly

complex levels. In the �rst chapter of his book, Mitkov (2005) explains that the �rst level

is the morphological level, which examines word structure and word creation by examining

each word in isolation. In the process of deconstructing words (i.e., pre�x, stem, and su�x),

which are the smallest units of meaning, morphemes are de�ned. Pre�xes and su�xes can

alter the meaning of stemmed words; for instance, the pre�x `un' modi�es the meaning of

`untidy'.

The next level, lexical, is concerned with the meaning of words within the context of

speech, explains Mitkov (2005). This technique extracts more meaning than the individual

words, producing a lexeme as the fundamental unit of lexical meaning. An example in �nance

is the di�erence between `this show may collect a lot of interest' and 'this loan may collect

a lot of interest. Next, a syntactic level analysis is performed by tagging the output of the

lexical analysis' part-of-speech tags. Complexity in this �eld increases when one ventures

into semantic, discourse, and pragmatic processing, which is not covered as part of the

scope in this study. Kurdi (2016) indicates that NLP is an interdisciplinary �eld incorporating

computer science, cognitive psychology, and arti�cial intelligence (AI). The classic approach

to natural language processing and sentiment analysis consists of a series of discrete tasks

(Kurdi, 2016). Liu (2015) contributes that the prerequisite for sentiment modelling is to

determine which scoring level applies. The �rst level is at the message level, which is a

review of a whole passage of text or paragraph. At the sentence level, sentiment scoring is

applied to each sentence, followed by �ne-grained analysis, which is based on the idea that

an opinion has a sentiment component and a target.

8.1 Component parts of the NLP process

The following general steps are a high-level introduction to an NLP process and pipeline:

1. Tokenisation. This involves processing substantial amounts of text (paragraphs or

sentences) into words, or chunks of data, which can be seen as the unit of grammar in

text processing languages (Goldberg and Hirst, 2017). This is slightly more challenging

than splitting by spaces, as words like `high-end' need to be either split or collected as

a term, which makes the task complicated and involves establishing the set of single

words, terms, and n-grams (of words like `ice cream', which can be seen as a bi-gram).
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In this �rst step of the NLP pipeline, care must be taken the rest of the analysis being

impacted by the decision made here.

2. Lexical analysis. The next step will be to �nd the morphemes and grouping the

words into lexemes. Then, the next step involves grouping together tokenised words to

form single meanings in a process known as stemming or lemmatization. For example,

`sickness' and `sickest' would be mapped to the word `sick'. This can then be applied

to term frequency distributions in documents.

3. Syntactical analysis. The analysis focuses on capturing the meaning of text, builds

up a structure for a part of the text in a sentence and allows for the relationships

between words and the dependency between words to be established. This can then

be illustrated using a `parse tree', a sort of structural and hierarchical diagram. This

phase entails checking the grammar rules to determine the meaning of the text and to

detect deviations in sentence structure from the grammar rules. This includes part-of-

speech mapping, which is a key grammatical task and involves mapping each word to

one of the eight parts of speech (noun, pronoun, adjective, verb, adverb, preposition,

conjunction, and interjection). The output of the task is to apply a Part-of-speech

(POS) tag to each token, which can then be linked to a syntactical category. Syntax

is the grammatical structure of the text, whereas semantics is the meaning being

conveyed. This allows a program to determine whether a sentence, such as `hot on

sauce any-more' or `man corn-dog his this', makes any sense according to grammar

rules.

4. Semantic Analysis. The semantic analysis operation articulates the proper meaning

of a sentence. This is an analysis that is broader than sentiment. This analysis will

also identify the meaning held in the text, the relationships between words, expressing

how the meaning of text changes with various combinations of words. This area that

can become very complex and nuanced.

5. Corpus. This is referring to a collection, or body, of texts (written or spoken), used

in language research, that allow a machine to annotate text or speci�c words. There

are numerous corpora available, which can be domain-speci�c (medical, �nancial, or

military) or language-speci�c. As language is constantly changing over time, to be

updated constantly. The ease with English is that because of the features of language,
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or the signi�cant use of the language rather than the size of the corpus or demand

(Boiy and Moens, 2009).

8.2 Framework for dealing with unstructured text data

The framework is a structured process that is put in place to extract the key parts of the text

that can provide information; and to map words to remove features that serve no purpose.

The following frameworks are in place for this study:

� Pre-processing

� Removal of punctuation

� Setting text to lower case

� Remove stop words which are uninformative, such as `the' and `and'

� Case-folding is the process by which decisions are made to normalise words consolidat-

ing words with di�erent spellings but the same meaning. Dealing with all-caps words

is another aspect of case folding Goldberg and Hirst (2017).

� N-gram: I touched on this earlier, N-gram refers to combining words into term-based

vectors, which may be composed of one word (uni-grams) or two words (bi-grams) or

longer (length dependent N-gram). An example of a bi-gram is `machine-learning'.

� Stemming and lemmatization of words removes redundancy and assists in frequency-

based measures (so words such as `frequent' and `frequently' are set to the same stem).

The �nal root form of the word is mapped; and this process is called lemmatization

(Rao and McMahan, 2019).

� Part of speech mapping: This is made simpler by the lemmatization step, however this

process involves marking up each word's functional role in the sentence and tagging it

with the part of speech (POS) tag. For example, a POS is mapped in brackets: `David

(propn) ate (verb) the (det) cold (adj) meat (noun)'.

� Negation: This process of changing the valence of a word to negative (or positive)

depends on whether there are other words immediately before it that may change the

meaning, for example, `not an amazing experience'.

In Figure 7, I provided an illustration of natural language processing methods at a high level.

One may read how a sentence is inuenced at each phase, beginning with text replacement,

�ltering, tokenising paragraphs into smaller word-size pieces, stemming to prepare for map-

ping, and lastly constructing the syntactical tree. In this study, I perform these codi�cation
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steps using Python and the Python Natural Language Toolkit (NLTK) package for natural

language processing of unstructured text data.

Characters

Tokens

Stemmed tokens

Pipeline 
component

Data 
table

Data 
Example

De-duplication

Regular expression

Tokenizer

n-grams

Stemming

POS tagger

Remove unwanted duplication and deal with retweets

“After writing about sentiment I will take my dog for a walk”

(“After”,  “writing”, “about” , “sentiment”, “I”, “will”, “take”, “my”, “dog” , “for” , “a”, “walk”)

Joining words to make bi-grams or tri-grams. For example, `Not_Like’ and `seriously_not_happy’

After write about sentiment, I will take my dog for a walk [using python NLTK]

[('After', 'IN conjunction, subordinating or preposition'),
('write', ‘VBG: verb, gerund or present participle'),
('about', ‘IN: conjunction, subordinating or preposition'),
('sentiment', ‘NN: Noun, singular or mass'),
('I', ‘PRP: pronoun, personal'),
('will', ‘MD: verb, modal auxiliary'),
('take', ‘VB: verb, base form'),
('my', 'PRP$’: pronoun, possessive),
('dog', 'NN : Noun, singular or mass '),
('for', ‘IN: conjunction, subordinating or preposition'),
('a', ‘DT: determiner'),
('walk', 'NN : Noun')]

Syntactical tree

Bi/Trigrams

Tagged tokens

[Retweets]

Figure 7: Example layers for an NLP pipeline. At the POS tagging step, the information is

mapped to words so as to enable further �ltering and information addition. The

steps are carried out using the Python NLTK package.

8.2.1 Nuances of Twitter data ('un-wanted tweets').

Modelling with NLP can be a challenge for one who is used to structured data. I invested a

signi�cant amount of time in learning methods of extraction and processing, for instance, by

collecting from websites, making use of API's and data storage techniques in Python using

formats such as xml or json. This was not time wasted, as the challenges of NLP were also

heightened once the Twitter data was collected in a database. However, I need to highlight

that the process of collecting Twitter data was by no measure simple or easy, it involved

the near constant supervision to stream data; lasting more than a year. This is because

Twitter does not supply large amounts of free historical data; therefore streaming was the

only option. In contrast, the collection of newspaper data has been made easy as the APIs

are relatively simple to connect to, the data is well organised, and one can work with the
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data immediately.

Twitter data, however, requires a fair amount of cleaning prior to use. The data would

not even parse in the Python NLP package NLTK or other packages �t for NLP modelling

purposes. Cleaning included the removal of white spaces, punctuation marks, non-characters,

retweets (RT), `RT @', `@links' and emoticons, foreign language, hidden characters that are

obviously hard to detect. A note on retweets; I needed to work on multiple �ltering methods

to ensure that the retweets are either removed, or de-duplicated. This was frustrating as

I had already set the data feed up as a �ltered search in which retweet indicator is already

set to exclude retweets. Table 2 below shows that the largest proportion of tweets still

came through as being manually retweeted. One must also consider whether to remove the

retweets in the �rst place, depending on the modeller's goals. As a retweet could be seen

as a positive momentum, as a signal. Basically, from the representative sample statistics in

Table 2, most of the data was not useful.

Tweet sample Filtered sample of tweets % of total sample

Regular tweets (usable data) 3,180 18.52%

Reply 2,516 14.65%

Retweet (RT @) 7,158 41.68%

Foreign language 4,321 25.16%

Grand Total 17,175 100.00%

Table 2: Sample of the Twitter data collected (streamed on 19th Dec'20). Most of the data

was not useful and not possible to �lter out in the collection process, one needs to

model a �ltering process.

8.3 Descriptive analysis of data sources

A descriptive analysis is used to quantitatively describe the contents of the data. The purpose

is to provide estimates as they relate to the study objectives by using simple summaries,

tables, and graphical analysis. We may be interested in presenting a cursory review of patterns

and unexpected results that may require further inquiry in the study.
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8.3.1 Social media: Twitter data

Twitter is a freely available micro-blogging website and mobile phone application that allows

free publication of 140 character posts called `tweets'. Twitter provides streaming data via

the Twitter API version 2, as well as historical data at a signi�cant cost.

Figure 8: The Twitter word cloud is a representation of the most frequently used words from

the Twitter database. The sizes of the words are determined by their frequency.

Importantly, this analysis is based on the remaining text after the stop words have

been removed, emojis, special characters have been removed, and lastly, internet

address strings such as `https'.

8.3.2 News data: The Guardian

The Guardian newspaper is a daily broadsheet that has been published since 1821. The

Guardian provides complete access to news articles that are freely available via API. The

UK news regulator, OFCOM 6, provides readership reports on news sources, including TV,

newspapers, and social media. With a readership of about 22%, The Guardian newspaper

is unquestionably a mainstream news source in the UK. Relative to other news sources, the

6Ofcom is the regulator for the communications services, this include news.
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readership is reasonably well spread across gender, age, and the UK National Readership

Survey social grading of ABC1 (middle class) and C2DE (working class), with a slight tilt

toward ethnic versus white readers (OFCOM, 2020).

8.3.3 News data: The New York Times

The New York Times is a daily morning newspaper from New York City. It has a long history,

having been founded in 1851. It is an important newspaper that is regarded as the `newspaper

of record'. The New York Times makes data freely available via an API.

8.3.4 News data: GDELT

Google built a free sentiment scoring solution and this been available since January 2017

that is based on a massive database of the world's broadcast, print, and web news sites. The

project provides free outputs and is supported by Google Jigsaw and GDELT.

9 Methods for modelling of NLP and sentiment analysis

Liu (2015) states that sentiment analysis (SA) is a technique that originated in the �eld of

computer science and is mostly used to classify text into categories. It has entered the realms

of economics and �nance as well as management science. In the �eld of natural language

processing, sentiment analysis has seen a great deal of attention. Opinion mining is another

name for sentiment analysis. Pozzi et al. (2017) enlighten that businesses and governments

both place a premium on citizens' thoughts and opinions. In sentiment analysis, the bulk

of the e�ort goes toward labelling utterances and natural language text as either positive

or negative. Other methods of analysis, such as subjectivity analysis, opinion and sentiment

extraction, and emotion analysis, are listed in Pozzi et al. (2017).

There are two types of models used in text-based analytics and linguistics: those that use

prede�ned rules and/or algorithms to convert text from unstructured data into quantitative

measures (referred to as `rules-based' methods). The rules-based approach includes meth-

ods that incorporate detailed mapping and complexity-based corpus rules, known as lexical

methods. The second category includes methods that employ statistical approaches, which

can range from simple frequency type measures to more sophisticated learning approaches

known as machine-learning. Kalamara et al. (2020) notes that the most common technique

used for text analysis are rule-based approaches, as these techniques are freely available and
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their use does not require calibration (which is an intensive data exercise that consumes large

volumes of data with speci�c hardware processing requirements to deal with the load).

Shapiro et al. (2020) also explain that sentiment analysis is a key method in NLP and is

primarily a classi�cation problem, in which sentiment texts (passages, paragraphs, sentences,

and words) are classi�ed as either positive, negative, or neutral; this is often then added to

a scoring/rating model that generates valence (rating from 1{5). This allows the user to

specify more grades between positive and negative. Shapiro et al. (2020) posit that NLP

sentiment analysis can be classi�ed using the following broad approach to standardising the

scores into categories for analysis; such will be adopted in this study. The Valence Aware

Dictionary and sEntiment Reasoner (VADER) is a lexicon and rule-based sentiment analysis

tool that is speci�cally attuned to sentiment expressed in social media. VADER is fully open-

sourced under an MIT License. VADER calculated a compound score is the main output of

the VADER tool; this is a valence score calculated by adding the scores of each scored word

in the document, which is then normalised between -1 and 1, with -1 (1) being the most

extreme negative (positive) sentiment score; and standardised by establishing bands, that I

illustrate below.

Sentiment band �

$'''''&
'''''%

compoundscore  � �0:05 ÝÑ negative sentiment

�0:05   compoundscore   0:05 ÝÑ neutral sentiment

compoundscore ¡� 0:05 ÝÑ positive sentiment

(72)

Shapiro et al. (2020) constructed a series of sentiment indices using a simple `bag of

words' approach. This included the Harvard General Inquirer (GI) and the updated version

of Loughran's indices (Loughran, 2014), which have the bene�t of being �nance-domain-

speci�c; and are a useful contextualising example of the various sentiment analysis techniques

deployed. Language is complex; simply mapping words to meaning in a general manner can

produce inaccurate results. For example, words such as interest, liability, and tax carry dif-

ferent meanings when used in the context of �nance and family relationships. According to

Shapiro et al. (2020), the general `o�-the-shelf' models are widely available and free; how-

ever these models are frequently tailored to a speci�c domain, such as movie reviews. In the

context of �nancial and macro-economic outcomes this may produce an unacceptable level

of accuracy.

The Hu and Liu lexicon (L&M) is a lexicon approach based on movie reviews featuring

more words mapped to negative and positive sentiment. Hu and Liu (2004) �nd that none
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of the lexicons are outright winners in this task of scoring �nance and economics news based

text. Tim Loughran and Bill McDonald (2014) appears frequently in economics and �nance

articles but not in general text. Given this, Shapiro et al. (2020) decided to combine the

outputs of lexicons to increase the power of the models. They also note that a large number

of words were simply not scored. According to Shapiro et al. (2020), VADER's performance

is equivalent to the combined L&M lexicon. A simple but powerful rule added to the `bag-

of-words' approach is the negation rule (multiplying the valence score by -1 for each word

found with a negative word within three words preceding it).

This increment improved the scores slightly. Overall, the highest scoring model was the

L&M and Liu's lexicon model with the negation rule applied. Shapiro et al. (2020) consider

two other lexical based NLP models. One is the GloVe, developed by the Stanford NLP

group (Pennington et al., 2014), the other is BERT, developed by Google (Devlin et al.,

2018). Both models use pre-trained word vectors that embed semantic information about

each word. BERT also has bidirectional, context-aware word and document embeddings that

review text both forward and backward, which makes for a powerful NLP model. Shapiro

et al. (2020) tested using the 700 articles in the training and development data set and

testing using 100 articles, their results show the GloVe model performs worse then and the

BERT model performs better than the lexical models.

9.1 Preliminary de�nitions, notations and terminology

In preparation for the modelling and literature section, I formalise the following foundational

terms, following Blei et al. (2003):

� a single unit vector (1; : : : ; V ) is used to represent words. This structure is also �t for

purpose for working with a corpus, a dictionary or vocabulary. Using the superscripts

to represent component parts, the v th word is vector w , such that w v � 1 and wu � 0

for u � v .

� a document, M, is sequence of words, N, denoted by w � pw1; w2; : : : wNq, where wn
is the nth word in a sequence.

� a corpus can then be de�ned as a collection of documents, D whereD � pw1;w2; : : :wMq.

9.2 Lexical, rule-based, models

Pozzi et al. (2017) document that the �rst sentiment resource was started in 1966 and
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was con�gured so that sentiment was scored as a categorical binary output, called General

Inquirer. The �rst lexicon, that looks at nuances across and within parts-of-speech, is the

extension to WordNet (from Princeton University) called SentiWordNet. In this tool, senti-

ment is seen as a gradient and not as a categorical feature. This lexicon is seen to have a

positive bias, though, and does not detect negative opinions well.

9.2.1 Simple lexical approaches

Lexical approaches are based on a database or corpus of prede�ned words that are tagged

for emotion, which in this case is sentiment, and sentiment valence is added. This simple

approach uses sets of words to match against and then tag emotional characteristics, the

structural hierarchy, and parts of speech. Lane et al. (2019) explain that this approach will

not consider the context of a word or order within the text; this is often termed the `bag

of words' approach. Pozzi et al. (2017) also designed a popular lexicon, the opinion lexicon,

based on 6800 English words manually classi�ed as positive or negative. The lexicon also

uses a part-of-speech approach to assess polarity and thus can recognise the ambiguous parts

of a sentence that would not be understood at the word level.

9.2.2 Simple dictionary-mapped models

The next of the simple models is based on a mapping to dictionary terms, tags, de�nitions.

The user would be able to easily provide sentiment (or other scores), based on speci�c words.

Again the use of stemming can help reduce the corpus load. Simple mappings may include

high sentiment scores for `awesome' and low scores for `horri�c'. Passages of text with these

words appearing frequently, or at all would presuppose a simple sentiment score by mapping

to words found in the text. A signi�cant bene�t of the approach would be the ease of being

able to manage speci�c domain related terms, such as the word `growth' in economics may

arguably carry a higher sentiment mapping than in cancer research. Simple dictionary-based

methods would not be context-aware and would potentially score the sentiment in a phrase

incorrectly due to the word being part of a sentence with meaning (e.g., `less than expected

growth').
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9.2.3 Orientation-based sentiment lexicons models

Lexicon models use dictionaries to mark words as negative or positive, which is why they are

called binary orientation lexical classi�cations. Labelling words according to their sentiment

is not a new technique; it is a central goal in linguistic programming. Other objectives include

opinion and sarcasm detection. Hutto and Gilbert (2014) summarise the di�erent notable

lexical-sensational analysis models. The �rst was a high speed, accurate model which is

widely used in the in social media application is called the linguistic inquiry and word count

(LIWC), by Pennebaker et al. (2001). LIWC uses a dictionary of 4500 word and sentiment is

scored using a set of only 905 words, which are split into 406 positive words and 499 negative

words. There are many other categories that cover other topics than sentiment (in total,

there are 76 categories). Hutto and Gilbert (2014) mention that no emoticons or slang are

listed in the dictionary, which may be an issue in this study given the application to social

media.

General Inquirer. This lexicon model was designed by Stone et al. in 1966 for use by

social scientists, politicians, and psychologists as a content analysis tool to identify charac-

teristics of written messages. This lexicon was dictionary-based, with a set of 11,000 words,

1,915 of which were labelled positive and 2,291 of which were labelled as negative. The

merits of the lexicon, much like others in the orientation-based category, are that valance or

sentiment intensity is not resolved, context is not taken into account, and social text such

as slang is not included (Hutto and Gilbert, 2014). Hutto and Gilbert (2014) also discuss

a more recent addition which was initially constructed by a bootstrapping method, this was

created by Hu and Liu (2004) and Pennebaker et al. (2007). Both of these models are word

based, where the `Hu-Liu04' model is a lexicon which maintains 6,800 words (2,006 positive

and 4,783 negative words). WordNet, introduced in 1998 by Fellbaum (1998), is another

popular English based method that also does not cater for emoticons, slang, or valence.

9.2.4 Valence based sentiment lexicon models

Hutto and Gilbert (2014) note that A�ective-Norms-for-English-Words (Anew) was intro-

duced by Bradley and Lang (1999). This was the �rst in a list of intensity-based lexicons to

be introduced. This lexical method is also a list of dictionary words. Whereas the binary-

based methods do not have valence, the words in this dictionary are ranked by valence. The

valence score is based on a lower score (sentiment) of 1 to the highest sentiment (positive)
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at 9, where a neutral word is set at 5. This dictionary also ranks in terms of dominance,

pleasure, and arousal. Much like other binary methods (such as GI and LIWC), this lexicon

does not cater for social text, such as slang and emoticons. SenticWordNet is an extension

to WordNet, but Hutto and Gilbert (2014) report that this Lexicon is noisy and fails to

score many synsets that do not get mapped. Cambria et al. (2017) explains that SenticNet

introduced by in 2012 and was constructed using AI and Semantic Web techniques, including

network graphs. Sentiment uses scoring, and the valence is reported as a number between -1

and 1, with zero being neutral. SenticNet also applies common-sense concepts like adoration

and wrath to sentiment scores and word mappings, this specialises in concept-level sentiment

analysis and maps to sixteen core emotions. SentiWordNet is based on the dictionary from

SentiWord and provides a measure of valence, consider the POS mapping in the sentence.

9.2.5 Context aware lexicon models

The challenge for simple lexical techniques, is that a word could be positive, but if the

preceding word is negative, this changes the meaning completely, which is not a simple �x.

Context awareness in lexicons starts with a more signi�cant understanding of a sentence; a

way to do this is by understanding the parts of speech, which is a deeper lexical feature in

linguistics (Hutto and Gilbert, 2014). Word sense disambiguation provides better context for

a single word and how it is used in a sentence. This context-aware lexicon was introduced by

(Akkaya et al., 2009). A prominent lexical approach that deals with the issues is an open-

source Python package named VADER (Valence Aware Dictionary and sEntiment Reasoner),

developed by Hutto and Gilbert (2014). VADER is a hybrid approach that uses a lexical

approach based on a unigram of several thousand words that are scored (from -4 to 4) and a

second set of guided heuristic rules that examine the sentence containing the word in question

and establish the context around the word's meaning or sentiment. The initial lexical score

is then scaled and multiplied by a factor that is based on context rules for the work within

the sentence. An example is a word that is preceded by a degree modi�er such as not, sadly

and other examples include capitalisation and exclamation.

Shapiro et al. (2020) explains that sentiment analysis is a rich �eld of study. A core part

of the modelling is dealing with the meaning of words and this can vary depending on the

domain one is working in. For instance, the language used in �nance may be very di�erent

from that used in rating movies. Words such as `liability', `taxing', and `mean outcomes'

could imply di�erent totally di�erent things from a sentiment perspective when comparing
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�nance and common language. Shapiro and Shapiro (2019) argue that context-speci�c words

in �nance are important since dictionaries such as the Harvard psycho-sociological dictionary

can mis-classify neutral �nancial terms such as liability, tax, excess, and capital. One would

prefer to create models or rules-based dictionaries based on a domain speci�c collection of

words, or corpus. The second critical factor is the language's complexity, which is greater

than can be determined by word counts. There are multiple levels of complexity in language,

starting with simple negation (`not' in front of `happy' will convey the opposite sentiment

or valence). There are many more examples of how the use of words is structured in any

language with hidden and/or subtle meanings that impact the sentiment score.

Hutto and Gilbert (2014) �nd in their study, which includes comparisons to popular

machine-learning techniques, that VADER was the best-performing technique for scoring

sentiment on tweets, Amazon reviews, and New York Times articles. The only time the

technique was beaten was for movie reviews from rottentomato.com, where Naive Bayes and

maximum entropy placed �rst. Hutto (2014) concludes that VADER is a simple and e�ective

approach with gold-standard NLP characteristics because it is domain-agnostic and requires

no setup or calibration.
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Figure 9: Timeline of the creation of sentiment scoring methods (lexical, rules-based, dic-

tionary, term frequency, and count-based). Two things stand out. First, the �rst

methods were established a long time ago. Second, as time passes, the rate of

arrival of new techniques increase dramatically.

Page 87



9 METHODS FOR MODELLING OF NLP AND SENTIMENT ANALYSIS

9.3 Statistical frequency models

9.3.1 Frequency counts

The simplest of rule-based approaches is frequency counting. This is based on the measure-

ment of the frequency of terms or words in a passage of text. As Rao and McMahan (2019)

explain, this is technically accomplished by aggregating terms across the one-hot matrix rep-

resentation (which is a sparse matrix of each tokenised term along each axis that is set to

one down the diagonal). The terms and words can then be mapped using a single term

mapping to sentiment values or speci�c terms that are of interest in the particular study.

The word counts are then weighted by article length, which provides the relative magnitude

of the measure. A sensible approach would be to pre-process the data, including a stemming

and/or lemmatization function that would then naturally group terms, which would then get

the appropriate weighting in the aggregation. The frequency{inverse document frequency

model is also denoted as td-idf. This is a simple model that shows how important a word is

in a paragraph/corpus. This model is essentially the ratio of the frequency of the term by

the number of terms in the paragraph of corpus under review. The more a word appears in a

corpus of text, the higher the measure will be (Larsen and Thorsrud, 2019). One technique

for measuring word similarity that can be used to improve on simple word counting is the

comparison of word vector representations with cosine similarity. Goldberg and Hirst (2017)

explains that this is e�cient if I use the cosine angle (theta) between two vectors, as follows:

A � B � |A||B| � cos� (73)

This function has handy properties for machine-learning in that the output lies between 1 and

-1. So `two-word' vectors will be classed as similar if the above equation is used to minimise

the cosine angle between vectors.

9.3.2 Word / term vectors

The word and term vector construct include word vector representations: word vectors are

used to translate text into a set of vectors of numbers that represent the meaning of a

word. These vectors can be used to measure the level of association with other words or

passages. These vectors allow for some powerful applications in NLP, such as understanding

the context that a word was used in. Word vectors can be organised in a number of ways,

including by frequency or by predictions. Examples of frequency vectors are the count vector,
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the ubiquitous tf-idf vector, and the co-occurrence vector. The use of word vectors for

prediction can encompass methods like skip-gram neural network models. For instance, the

well-known algorithm word2vec uses not one but two context models (CBOW and skip-gram)

and goal functions (Negative-Sampling and Hierarchical Softmax).

9.4 Machine-learning models

Goldberg and Hirst (2017) explain that ML is especially good at problems that involve sce-

narios with a set of rules used for inputs that have an easily recognisable, or measurable

set of outputs and are straight forward to annotate or label. Natural language processing

is one such problem, with an unspeci�c set of rules that have large amounts of ambiguity

and embedded context that can change meanings, hence the results. The words that make

up a language are compositional, meaning that the meaning of a sentence or paragraph is

more than the sum of its parts. One feature of language is that it evolves with time, but if

you picture reading a newspaper in ten years, much of it will be incomprehensible owing to

changes in the names of persons (such as the president of a country), buildings, companies,

etc. This, as Goldberg and Hirst (2017) explain, leads to data sparseness in the modelling

process.

A prominent method for predicting an audience's emotional reaction is a probabilistic

model trained on massive amounts of text. These models are constructed from a training

dataset based on human-labelled sentiment scores. The analysis improves by including all

the context and complexity that the lexical model leaves out. When dealing with domain-

speci�cs, it is crucial to use training data from that domain. The extra bene�t of the ML

approach is the possibility to use advanced techniques such as linear classi�ers and deep

learning approaches that can be con�gured to dynamically re-weight components when new

data is added (learning ability). All ML models will be bound by the quality of the training

data sets, which may contain bias and inaccuracy. This represents the greatest obstacle. It

has been demonstrated that ML models improve the performance of forecasting not just in

NLP applications, but also in many other use cases or domain applications. This additional

power does not come without a price. All of the strategies involve large amounts of data

and requires the creation of a comprehensive training database. This can be time-consuming

and costly (CPU, gathering, scrubbing, wrangling, processing, scoring and storing data).

There are many techniques that have been used to apply to the problem of scoring text

in unstructured data into sentiment based valence scores, these include:
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� Decision tree classi�er: decision trees are known to be relatively easy to train and are

fast, in the simplest form, however this approach can have limited accuracy. Decision

trees have been updated by pruning techniques and boosting to improve the accuracy.

The tree based classi�ers are very useful in cases where the speed of the algorithm is

important whilst allowing for slightly less accuracy.

� Linear and non-linear classi�ers : Simple regression and non-linear classi�ers are well-

known techniques in statistics, not formalised here, which can be utilised in simple NLP

models.

9.4.1 k-nearest neighbour (KNN)

Under the umbrella term of machine-learning models, the KNN-algorithm is reasonably

straightforward, non-parametric, and one of the simplest strategies (Pang et al., 2002;

Mitkov, 2005). This method is used to categorise classes using the nearest neighbour of

each data point, with each data point serving as a vote in the classi�cation process. The

number of neighbours is determined by k , this input represents the number of nearest training

examples in a dataset, must be provided as an input to the model (k is a positive integer,

typically small). Patel (2019) explains that this technique belongs to a class of methods

known as `lazy learners' since they do not require particular modelling, calibration (training),

and are non-parametric, which is easy to use and fast to implement.

The KNN method is a learning method whereby the unknown data points in the sample

are compared to the trained data. The comparison is made with distance as a measure using

techniques such as Euclidean distance to Pearson or Spearman coe�cients, these are the

same measures used in correlation models. The data points can then use the smallest distance

to data points in the training set to allocate a category classi�er. The weakness in the

techniques, however, is that as the k term grows, it becomes computationally burdensome.

Each document in a corpus requires distance measurements to every other document, so

assuming a 100k dimensional space, the routine would have a billion operations (Mitkov,

2005; Bengfort et al., 2018).

9.4.2 Naive Bayes

Naive Bayes (NB) is also a simple algorithm that is part of a simple set of probabilistic

classi�ers that rely on simplifying, naive assumptions. In this instance, it is assumed that

features such as the lengths of the document are independent of each other (Kalamara
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et al., 2020). The Naive Bayes method, as described in detail by Bengfort et al. (2018), is

predicated on Bayes' probability theorem, which is both straightforward and potent. Using

only the previous tag and probabilities learned from the training data, it may anticipate the

next tag of a piece of text. This technique is relatively easy in training and implementation

and has been successfully used in many classi�cation tasks, such as part-of-speech tagging

(i.e., whether it is a noun, adjective, etc.). As it is a probabilistic classi�er, a direct output

will be to generate probabilities. Following Pang et al. (2002), I de�ne the Naive Bayes in

the context of NLP, where I assign a given document, g. I start by �rst looking to the classic

Bayes formula, as:

P ph|gq � P phqP pg|hq
P pgq (74)

P pgq � 0, the numerator is a function of the conditional probability of event h taking place

given that g, multiplied by the marginal probability of h. This is the probability of observing

g and all terms are divided by the probability of observing g. Intuitively the model can be

described as pprior� likelihoodq � evidence and in the context of text classi�cation, where f

is the number of features in document d the number of times fi appears in d is nipdq and a

class, h� � argmaxh P pc |dq. This is formalised, following Pang et al. (2002), utilising Bayes
classical rule:

PNBpc |dq :�
P pcq

�±m
i�1 P pfi |cqni pdq

	
P pdq (75)

Pang et al. (2002) argues that even with the model assumption of independence that is not

so in the real world, the model holds up well, even in cases where dependant features are

part of the underlying data.

9.4.3 Maximum entropy

Maximum entropy (ME) is a model belonging to the exponential category of models. It

is a more sophisticated model than NB. It is not, however, based on an assumption of in-

dependence. As Pang et al. (2002) explains, the model accounts for information entropy,

and may allow for a performance improvement by comparison to NB when conditional in-

dependence assumptions are not met, as there are no speci�c assumptions about feature

relationships. Following Pang et al. (2002), based on Naive Bayes (NB), I see that P ph|gq
takes the following exponential form:

PMEph|gq :� 1

Zpdq exp
�¸

i

�i ;hFi ;hpg; hq
�

(76)

Page 91



9 METHODS FOR MODELLING OF NLP AND SENTIMENT ANALYSIS

We use � as feature-weight parameters, Zpdq is a normalisation function. For feature fi and
class h, Fi ;h is de�ned as:

Fi ;hpg; h1q :�

$'&
'%
1 nipgq ¡ 0 and h1 � h

0 0 otherwise

(77)

Relationships and assumptions between features are not assumed in this model. This is in

contrast to the NB model, which means this model could perform relatively well when as-

sumptions around independence break down. Pang et al. (2002) explain that in this model,

assumptions are kept to a minimum while distribution entropy is maximized, resulting incon-

sistent model data and the model.

9.4.4 Support vector machines

Support vector machines (SVM) is another technique that can be used to model classi�cation

and also be used as part of a statistical regression (Pang et al., 2002). This technique is

part of the discriminant model. This is more powerful, and it has been shown to outperform

NB techniques (Pang et al., 2002). The method is not based on probability, but rather a

margin method where the training method uses hyperplanes, �nding the optimal hyperplane

to separate features (Cambria et al., 2017). The technique also makes use of a relatively

simple method, as Aggarwal (2020) explains: for a model scoring two categories, each data

point is measured on a hyperplane vector, and hyperplanes are used to represent classes; the

algorithm will then seek to �nd a solution to the largest margin between hyperplanes that

separates the classes.

The SVM technique ultimately determines hyperplanes that help to distinguish between

points in the next class, it classi�es points into two categories. To classify a data point is

as simple as establishing on which side of the hyperplane it lies (in the two-class case). Yu

and Nwet (2020) explain that the SVMs require little training data to calibrate and require

less memory to build than the KNN. However, SVM training on large data sets takes more

time than other methods, making it less viable in some cases. Aggarwal (2020) explains

that a basic SVM model is essentially a constrained optimisation problem, referred to as a

cutting-plane method, and there are many formulations that include the use of kernels, using

regularised optimisation, logistic regression using an L1 or L2 regularised logistic regression,

and LASSO7 variable selection.

7least absolute shrinkage and selection operator (LASSO).
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An example of the classical SVM method is formulated below, where gj P t�1; 1u is the
correct class of document (which in this case is negative or positive) for the target variable.

�X is a row vector containing, in this instance, the rows of document data and �W is a column

vector resultant weights, following Aggarwal (2020) the L2-loss SVM formulation is:

J � 1

2

i�1̧

n

max
 
0; p1� gi r �W � �XT

i sq
(2 � �

2
|| �W ||2 (78)

J is the objective function. For interest, I formulate another popular formulation, following

Aggarwal (2020) the Hinge-loss SVM:

J �
i�1̧

n

max
 
0; p1� gi r �W � �XT

i sq
(� �

2
|| �W ||2 (79)

As one can see, these methods are similar, but when compared to the least squares method,

it is known that well-de�ned, or separated data, is not penalised in the loss function, which

is not the case for least squares regression (Aggarwal, 2020).

9.4.5 Generative models

One problem with discriminant models is that they cannot be used in the absence of direct

observation to characterise complicated interactions between dependent and independent

variables, for example SVMs (Cambria et al., 2017). In the context of opinion and sentiment

modelling, generative models' ability to reveal hidden relationships between variables is an

asset.

The N-gram models are the most basic generative models, and they have been widely

used in phrase similarity mapping, speech recognition, and text query similarity for doc-

uments. Language probability models are speci�ed with distributions over sequences of

text. Cambria et al. (2017) formalise a model of a given set of words (w1; : : : ; wk�1) as

a P pwk |w1; : : : ; wk�1q multinomial distribution over words as follows:

P
�
w1; w2; : : : ; wn

	
� P

�
w1

	
P
�
w2|w1

	
P
�
w3|w2w1

	
: : : P

�
wn|w1w2; : : : ; wn�1

	

�
n¹

k�1
P
�
wk |w1; : : : ; wk�1

	

This is built using the chain rule of two or more random variables. The chain rule connects

the joint probability of a sequence of words to their conditional probability given the preceding

words in the sequence (Cambria et al., 2017). The reader may see that the model is burdened

because the probability of a word is then conditional on whatever sequence of words that was
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previous seen in the sequence, which get large, quickly. On a practical note the volume of

text required to inform the probability matrix gets large very quickly, it grows exponentially.

I therefore start to look at simplifying assumptions.

N-gram models. N-gram models are the �rst and possibly simplest solution to this,

the probability is approximated by only using a section of the prior words in the sequence and

not all the words. When the set of words compared to the previous word only, this is then a

Markov model (Cambria et al., 2017). On the other-hand, if I assume that the current word

is totally independent of prior words, then I have a `unigram' model of `bag-of-words' model,

denoted as:

P
�
w1; w2; : : : ; wn

	
�

n�1¹
k�1

P
�
wk

	
(80)

In this model, as I will review of later, the order of the words is also not important. The

n-gram models (bigram, trigram) are used to capture dependencies between words.

Latent Semantic Indexing. Latent Semantic Indexing (LSI) in this scenario is a document

is modelled as a collection of latent topics. Generative models are used to reveal these

hidden patterns in the data. Each concept in probabilistic Latent Semantic Indexing (pLSI)

is represented as a multinomial distribution over the words, which allows for more accurate

modelling of the data. Cambria et al. (2017) explain that the generative process in the

pLSI is not complete as it does not deal with the document-level generative process. Recall

the simplifying assumption that topics z for words in a document g are independent of the

document index. So the joint probability of a document d , and the underlying words w , and

respective topic assignments (Blei et al., 2003).

P
�
g; w1; w2; : : : ; wN

	
� P pgq

N¹
i�1

¸
zi

P
�
wi |zi

	
P
�
zi |g

	
(81)

wi are words, indexed from i : : : N, of sequence of word in a document, M of length N, that

belongs to a corpus, G, of documents. The generative process will resolve for the latent

topics k , each of which is modelled using the multinomial-distribution.

Latent Dirichlet allocation (LDA). The LDA is a model that reduces a large volume of

text into a smaller set of words to best describe the document as a set of representative

topics. Larsen and Thorsrud (2019) explain that LDA models are a form of unsupervised

learning model, very useful at separating words into clusters of topics. The term `Dirichlet'
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is from the use of a conjugate Dirichlet prior used to draw the topics. This method is

very useful in providing labels to where apriori categorisation into topics is needed (Bengfort

et al., 2018). Tran-The (2020) explains that for the purpose of generating textual topics

and �nding recurrent themes throughout a body of documents, LDA is a popular generative

probabilistic model. In each document, the proportion of topics, ppz |�; gq is modelled as

a multi-dimensional vector, �, is drawn from a Dirichlet distribution with a concentration

parameter, �. The gamma function is denoted as �. The Dirichlet function as denoted here,

where I follow Blei et al. (2003).

pp�|�q �
�
�°k

i�1 �i
	

±k
i�1 �p�iq

�
�i�1
i � � � ��k�1

k (82)

To formalise the model here, I again follow Blei et al. (2003), where they initially de�ne the

model with further, simplifying, assumptions. Second, the probabilities are estimated and set

a �xed quantity to words as parameter matrix B (k�V ), in which Bpi ;jq � ppw j � 1|z i � 1q.
With the given parameters for � and �, the sets of words, w, the set of z topics, of a given

joint topic mixture, �, and number of words/topics, N, is given by (Blei et al., 2003).

p
�
�; z;w|�; �

	
� p

�
�|�

	 N¹
n�1

p
�
zn|�

	
p
�
wn|zn; �

	
(83)

The modelling can be �ne-tuned using the hyper-parameter which is the number of topics.

Blei et al. (2003) explain that in the context of risk disclosures, a low number of topics

will produce topics which are more broad, showing key risks reported by most �rms such as

`currency risk' or `supplier risk'. Blei et al. (2003) explains that this solution will not be stable

one once number of topics start to get larger (say ¡50 topics).

9.4.6 Deep learning and neural networks

Introduction to neural networks. Neural networks (NN) have proven to be exible enough

and capable to dealing with the challenges inherent in NLP problems (Goldberg and Hirst,

2017). A key functional component of neural network architecture is an embedding pro-

cess which provides mapping of sparse discrete symbols to continuous vectors, thus enabling

mathematical functions and processes to be operated on. Goldberg and Hirst (2017) ex-

plain that a sub-category of machine-learning including the Deep Learning techniques and

the original architectures were called NN but have been recently been resurfaced as Deep

Learning, or Deep NN. The `learning' term stems from the mathematical parametrization of
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layers of di�erentiable functions, which, in the case of deep learning are due to the layers of

di�erentiable function that are chained together (Goldberg and Hirst, 2017). Goldberg and

Hirst (2017) explain that although machine-learning techniques are all trained, or learning

based, on past data and larger volumes of the data is key to making more accurate predic-

tions; deep-learning techniques, however these models once they have converged it correctly

represents the data.

The resurgence of the techniques is largely linked to the improvement and cost in tech-

nology as the techniques have been in existence for a long time. For example, the �rst

machine-learning was introduced by Rosenblatt in 1957. This process has also been likened

to the processes in brain cells in Rosenblatt's paper this analogy the brain cell (neuron) as

used to describe the signal processing for image recognition. The analogy that is often used

is a neuron cell, with dendrites (signal interpreters), sending �ring electric signals via the

axon. If we extend that analogy, not all dendrites are created equal, they can be more sen-

sitive and change dynamically over-time. Lane et al. (2019), amusingly, end the analogy as

a `lot of hand waving about biology and electric current', goes onto to introduce the more

important parts of the concept. I will follow Goldberg and Hirst (2017), where mathematical

descriptions are used to formalise these models.

So, as in other �elds, data is used to identify independent variables (regressor in statis-

tics, factors in �nance or features machine-learning) to predict a dependant variable (target

variables, or regress and statistics) in the model (or algorithm) is fed into a model. In the

case of NN however, this only the �rst layer, which provides further information into another

layer of models and this process improves the predictions. NN are often termed `black boxes'

due to hidden layers are not often reported as they form part of a larger algorithm. Math-

ematically, I would like to express a neural network problem by starting with a simple linear

problem adding in the `layers'. So, following Goldberg and Hirst (2017), I denote a simple

linear model, which is the simplest of neural network models:

NNLMpxq � xW � b (84)

where W is the parameter matrix and b is a term used to track the bias. This is a single

layer perceptron, where NN more than one layer, they are multi-layered; thus the following

is a multi-layered (two layered) perceptron:

NNMLP1pxq � gpxW 1 � b1qW 2 � b2 (85)
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The activation function g is non-linear, which is an important feature allowing for full exibility

and non-linearity models. This can then be further layered by adding another layer and

activation function:

NNMLP2pxq � g2pg1pxW 1 � b1qW 2 � b2qW 3 (86)

This equation is possibly clearer when decomposed into separate functions:

NNMLP2pxq � y

h1 � g1px1W 1 � b1q

h2 � g2ph1W 2 � b2q

y � h2W 3 (87)

From what I can now see from the �nal representation, the layers are evident. Neural nets can

have multiple layers these are known as deep learning NN. The �rst two layers are hidden; the

last layer produces the result and is known as the output layer. This is a exible framework and

the layers can be achieved in di�erent ways to achieve objectives. The di�erent constructs

are discussed further along in the study and this includes such as convolutional or pooling

layers. The layers of matrices and bias terms are collectively referred to as parameters and

denoted here as �.

Figure 10: Source: Lane et al. (2019), pg. 158. Basic perceptron, where X is the collection

of each feature, xi . Associated weights, wi , for each feature. The �nal block, the

activation function, which is introduced in more detail below.

The activation function, which in the case of the a neuron will be one (�re a signal) or zero
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(not �re a signal), based on threshold t, for all instances in the analysis i :

f pwq � 1 if

ņ

i�0
xiwi ¡ t else 0 (88)

A key innovation in neural networks is backpropagation, which allows for the combined learn-

ing of multiple models (neurons) simultaneously, allowing updating learnings to be `cross-

pollinated'. This process sets layers where the �rst neuron feeds the next layer of neurons

with information by updating parameter weights, wi , and this contributes to the error. This

architecture or model design, sets up an intermediate layer where the information is fed into,

it is not directly observed in the model features. This is where the term `hidden-layer' stems

from neural networks (Lane et al., 2019).
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Figure 11: The architecture or model schematic describes the basic components of a neural

network model. This includes the underlying data targets and features, the model

and activation function, to the loss function and resulting weights (parameters).

This construct provides a good concept ow for the descriptions below.

This is a good in time to introduce the loss function and explain the overall objectives of the

neural network modelling framework. Lane et al. (2019) posit that the error, the di�erence

between a predicted and actual value for each point in the analysis, exi � |Y � f pxiq|, the
neural network model objective is to minimise this error, by way of a minimisation of the

`loss function', Jpxq � min
°n

i�1pexi q. Once this objective is solved the user can consider

that this model will be the best representation of the data. The econometrics �eld will

recognise the model as functionality similar to an autoregressive model and potentially a

vector error correction function. A key process in the neural network design the introduction

an appropriate loss function (and optimisation techniques).
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Sigmoid function: Until now the activation function has been set up so as to return a

binary result ([0,]) using a sigmoid function, Spxq � 1
1�expx . This is really just the inverse of

the well-known logistic function and this approach is also used prevalent in credit modelling.

Neural network activation function requirements are that the functions is di�erentiable so

that key mathematical techniques such as the chain rule can be applied.

Hyperbolic tangent function: Other common non-linear activation strategies include the

hyperbolic tangent function (tanh), which is cosmetically similar, with a bit of transformation

is mathematically similar and the output is also S-shaped, with values strictly between -1 and

1 (Goldberg and Hirst, 2017). The tanh function is de�ned as, following Goldberg and Hirst

(2017): tanhpxq � e2x�1
e2x�1 .

Recti�ed linear units (ReLu): Another, very simple, activation function is the ReLu ac-

tivation function, which oors each unit to zero below a certain level, x   0 then 0; else x ,

otherwise expressed as (following Goldberg and Hirst (2017)): f pxq � maxp0; xq. This func-
tion has provided excellent results and surprisingly has been introduced more recently than

other functions (Rao and McMahan, 2019). An issue can arise where the activation function

does not provide any information if it stays below zero. This is elevated with the use of

the Leaky ReLu and Parametric ReLu. Leaky ReLu is a variant of the ReLu that has a

small constant gradient, �, for values below zero which will solve for the hard oor set at

zero for RELU. Rao and McMahan (2019) details the LRelu / PReLu activation function:

f pxq � maxpx; �xq.

Softmax: This function is useful when working with categorical data, like the sigmoid

function it provides an output range of 0 to 1, the values of predicted values will sum to one.

Goldberg and Hirst (2017) explains that this make it interpretable as a discrete probability

distribution of the observations of the event over `i' di�erent events, as follows (following

Rao and McMahan (2019)):

SoftMaxpxiq � exi°k
j�1 exj

(89)

Exponential Linear Unit (ELU): The ELU function is known to converge quickly and

provides high accuracy. This function also caters for negative results, whereas the ReLu is

not a smooth function and transitions to zero abruptly, this function slowly moves towards
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the lowest value and denoted as follows:

f pxq � max
�
x; �pex � 1q

	
(90)

Although this is not an exhaustive list, I can see that there a numerous types of function

and careful consideration is needed when selecting the correct activation function. Loss

functions are an important component in the neural network modelling techniques. This logic

is consistent in that the predicted value and the target are compared and the measurement of

these di�erences are known as loss functions, which are also used in evaluating pure statistics

models. Thus I will only list an briey introduce common loss functions here:

Hinge: The hinge function is used for binary classi�cation models, such as Logistic regres-

sion. The function uses the following formula that is sign speci�c, as follows:

Lhingepy ; ŷq � maxp0; 1� y � ŷq (91)

As Goldberg and Hirst (2017) points out, the loss is zero if the predicted value, ŷ , and target

value, y are the same sign. Larger values signify worse prediction in the model, where are

fair model will requires a measure less than 1.

Mean squared error (MSE): MSE is broadly used in regression problems for continuous

dependant (target) and independent (feature) variables. It is measured as the mean of the

di�erence between predicted and targeted, summed and squared.

MSEpyi ;ŷi q �
°n

i�1 pyi � ŷiq2
n

(92)

Mean absolute error (MAE): MAE is similar to the MSE above, where the di�erences

are measured in absolute and then added.

MAEpyi ;ŷi q �
°n

i�1 |yi � ŷi |
n

(93)

Cross-Entropy: Cross-Entropy is a another common loss function that has two variants,

binary and categorical cross entropy loss functions (Rao and McMahan, 2019). In the case

of binary cross entropy, also known as logistic loss function, it is assumed the activation

function is a sigmoid function. The binary classi�cation is set up as if ŷ   0:5 then 0,

and when ŷ ¡ 0:5 this binary indicator is 1. The binary cross entropy model is de�ned as,

following Goldberg and Hirst (2017):

LLCEpy ; ŷq � �y log ŷ � p1� yq logp1� ŷq (94)
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The categorical cross-entropy loss function is also known as the negative log-likelihood and is

assumed to have an underlying activation function set as a Softmax function. This is used to

assess models of multi-class categorisation (Rao and McMahan, 2019). Following Goldberg

and Hirst (2017), the categorical cross-entropy measures the dissimilarity between predicted

and target, it is de�ned as:

LBCEpy ; ŷq � �
¸
i

yi logpŷiq (95)

As is that case on the activation functions, this study is not a comprehensive review of loss

functions, but rather to give the reader an idea of the types of function and provide an

overview.

Backpropagation: This is an important component that applies to NN, and this technique

is also known as backward error propagation and has become a standard in training neural

network models and is based on the chain rule. This process has been adopted by many

domains as it is easy to program, fast and simply based on the mathematics chain rule

that is used to decompose the loss by using the chain rule, allowing the direct connection

between change in loss and partial derivative with respect to weight. The initial weights are

random and serve only to initiate the �rst error calculations as a start to the optimisation,

which is performed recursively. The error term is denoted as e here. Backpropagation is

the process of systematically calculating the derivatives of a complex function used in a

neural network; the algorithm is an extension to the gradient descent models which updates

weights with the aim �nding a local minimum of the error function. Backpropagation is a

supervised learning method that calculates the loss function gradient by requiring a known

output for each input value. The weights are generated in the output layer �rst from the initial

feed forward model and then used to update the weights of the other layers, starting with

�nal layer and proceeding backwards until the �rst layer is updated. Rojas (1996) explains

that the backpropagation step provides an implementation of the chain rule. The extended

optimisation function uses weights from the primary optimisation as a set of inputs against

the result of the loss function. Rojas (1996) emphasises that it is a continuous di�erentiable

function used to minimise e in a gradient descent model, of n weights, w1 � � �wn, in the

neural network model.

re �
�
�e

�w1
;
�e

�w2
; � � � ; �e

�wn



(96)

This results in a function to update the weights of the network by the following increment,
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where  is the learning rate governing the length change in increment, following Rojas (1996):

re � � �e
�wi

for i � 1; � � � ; ` (97)

This incremental change in weights seeks to reduce the loss or error value, e, minimising as

much as possible.

Regularisation: Regularisation is a way that a learning algorithm is amended so as to not

impact training error whilst reducing generalisation error. The process of �nding a solution

to this problem is as crucial as optimisation. There are many solutions these can be either

implicitly or explicitly determined. Regularization is a key consideration in AI models such as

neural nets, coupled with optimisation. These components are vital, they are the reason the

methods are so powerful and they represent the data accurately. The regularisation is a way

of controlling the complexity parameter whilst still controlling for over �tting.

Optimisation techniques: At this point, the problem has not been solved which is in

the model training and this also provides weights, that are `learned' (Goldberg and Hirst,

2017). Problems that cannot be solved using closed form (which is found in most real world

problems) are achieved via an optimisation program. This full solution, including the data,

parameters, model, activation function, loss function and regulatorisation function, requires

an optimisation to solve for the weights, or using machine-learning terminology to `train'

the model. Optimisations are set up to solve for the weights by minimising the error of

prediction. Optimisation is a very deep �eld and central to the operations research �eld. I

review a few of the more prominent methods here, by introducing the concepts and detail

around optimisation techniques for neural nets. I start with a simple linear model, building it

up to the a more advanced gradient based methods (this is only a summary view, for detail

or complete review, please refer Aggarwal (2020)).

Linear model (closed form, normal, linear regression): Many applications of machine-

learning involve optimisation of linear systems, partly due of the ease with which one can

solve the problem (in closed form). It is also due to number of problems that can be handled

by a linear system, or a combination of linear systems, which is explained by Cornuejols and

Tutuncu (2007) for a use-case of stochastic programming and simple linear problems. As

Aggarwal (2020) points out, solving linear programs is also known as linear regression and

is a fundamental machine-learning problem. This problem is a solution for a set of linear
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equations, expressed as Ax � b, as it relates to a linear model of y � Ax . One way, a well

used approach, will be to minimise the following objective function J � ||b{Ax ||2, where
r � ||b{Ax ||2 � ||°n

j�1 ajxj � b||2 is the measure of the residuals, setting r to zero solves

the linear equation. This is the classical least squares approach which seeks to �t a function

in which the di�erences between the predicted value and observed data (measured as the

squared di�erence) is minimised. Aggarwal (2020) notes that the equivalent approach would

be to use a geometric approach and calculus. The assumption is that A is invertible and the

observation are linearly independent. This is a task which relies on the closest point from a

hyperplane to a speci�c point is always the orthogonal of the hyperplane itself, I detail here

following Aggarwal (2020):

minimise ||A�x � b||2

by setting r � AT p�x � Aq to 0

ATA�x � ATb

x � pATAq�1ATb

Equivalently one could solve x is orthogonal to span(A). This is a good example of the opti-

mal solution being found in the closed form (Aggarwal, 2020). This is a fortunate result used

in linear regression problems where the observations are linear and independent. Aggarwal

(2020) explains that unfortunately this is not always the case and this would require one to

consider di�erent approaches such as the gradient descent approach.

Gradient descent methods: Gradient descent models are important in machine-learning.

These methods are put to use when the function cannot be solved by means of a closed-

form solution, such as the linear regression using the normal equations. Aggarwal (2020)

delineates that, when the gradient descent method is used, a simple inversion is replaced by a

computational algorithm. Algorithms such as this are initiated with a random number, �S and

incremental changes are parsed. If the objective function is lower than before (with respect

to the negative derivative of the objective function, bringing it closer to zero), then it is then
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repeated with the objective of �nding a global minimum value. This is shown below:

Linear normal :

� BJ
Bw1 : : :

BJ
Bwd

�
� pATAq�1ATb

Gradient descent :rw1 : : : wd sT ð rw1 : : : wd sT � �
� BJ
Bw1 : : :

BJ
Bwd

�T
� pATAq�1ATb

Gradient vector :rJpAq � rw1 : : : wd sT ð rw1 : : : wd sT � �
� BJ
Bw1 : : :

BJ
Bwd

�T
� pATAq�1ATb

(98)

One can see the di�erence between the �rst equation (linear normal) and the second, which

is the equivalent statement for gradient descent function, that the solution approaches the

optimal w with incremental changes �. Aggarwal (2020) outlines that one can therefore

simply write a gradient descent model as follows:

Að A� �rJpAq (99)

The size of the incremental change is referred to as the `learning rate' and determined by the

size of �. The gradient descent process will continue until the measured bene�t from each

increment is no longer material enough for it to be useful, the solution is said to `converge'.

It is at this point that the solution is approximately equal to the optimal solution.

Stochastic gradient descent (SGD): This method is also an iterative approach to min-

imise the objective function with respect to the model parameters. This is achieved by moving

in the opposite direction from the objective function gradient. The SGD function, unlike the

vanilla gradient descent method, does not pull all the data into each iteration whilst it is

learning. At each iteration a new parameter set is then updated. The sample is based on

the batch of similar gradient instance in the data and is reshu�ed with each iteration, hence

the term `stochastic'. Relatively, the descent path is not smooth, it appears noisy, but the

reduction in redundancy (due to targetted samples) enhances the speed of convergence. The

speedier convergence means it is often referred as the `Online' SGD (Goldberg and Hirst,

2017). Ruder et al. (2017) point out that due to the change in parameter at each iteration,

the later change in path reduces the chance of getting caught in a local minimum, which is

a big bene�t. The stochastic gradient descent model will then perform a parameter update

for each iteration in training, x i , for each label, y i , denoted as follows (Ruder et al., 2017):

Að A� �rJpA; x piq; y piqq (100)
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The algorithm of a simple SGD (Online) per Goldberg and Hirst (2017) is set out in Table

3.

Online SGD algorithm

Input:

� Function of f px;�q parameterised with parameters �

� Training set of inputs x1 : : : xn and expected outputs y1 : : : yn

� Loss function l
While stopping criteria are not met do:

Sample training example xi ; yi

Compute Loss lpf pxi ;�q; yiq
ĝ Ð gradients of lpf pxi ; �q; yiq w.r.t. �
�Ð �� nt ĝ
return �

Table 3: Steps and ow of the Online stochastic gradient descent algorithm.

Mini-batch SGD: Mini-batch SGD is an enhancement of the SGD method. The loss model

noise can be reduced by using a sample of the gradients examples when calculating the error

estimates (Goldberg and Hirst, 2017). This method shows a general improvement in the

accuracy and also allows for an improvement in computational e�ciency. The mini-batch

SGD will then perform a parameter update for each iteration in training, x i , for each label.

For each mini-batch of n training samples, I follow Ruder et al. (2017), denoted as:

Að A� �rJpA; x pi :i�nq; y pi :i�nqq (101)

It may be interesting to contrast the mini-batch SGD algorithm, within the algorithm below,

following Goldberg and Hirst (2017). One can see that aside from the subset of information

used, this algorithm performs the same steps.

Batching in models is designed for greater e�ciency in the optimisation. Batching is to

do with the way data is fed at each iteration of the loop. The �rst is the batch learning

technique. This method is very slow as it minimises the error cost function (the loss function)

over the whole of dataset the data in one batch. The next, a more e�cient method, is to

break up the data set into the small sub-sets minimising these mini-batches; hence the name
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Mini-batch SGD algorithm

Input:

� Function of f px;�q parametrised with parameters �

� Training set of inputs x1 : : : xn and expected outputs y1 : : : yn

� Loss function l
While stopping criteria are not met do:

Mini-batch training sample m examples px1; y1q; : : : pxm; ymq
ĝ Ð 0

for i � 1 to m do:

Compute Loss lpf pxi ;�q; yiq
ĝ Ð ĝ + gradients of 1

2Lpf pxi ; �q; yiq w.r.t. �
�Ð �� nt ĝ
return �

Table 4: Steps and ow of the Mini-batch stochastic gradient descent algorithm.

mini-batch gradient descent. When the batch size equals one, this is then referred to as

full online-learning in which weights are updated for every data input. This is also known as

stochastic gradient descent. If one considers that this technique has to do with the data

feed and not the optimiser, this can be applied to any optimisation technique. The three

modes are full-online, mini-batch and full-batch.

Momentum based gradient descent algorithms: This technique is inspired by the `local

minimum' or `hill climbing' technique introduced by Currey (1944). These techniques are

based on gradient functions that have further enhancements which again deal with speed

of convergence (as a general goal), being trapped in suboptimal local minima, choosing the

correct learning rates especially when it comes to sparse data (NLP is not an exception

to this) and lastly the learning rate scheduling (such as annealing) (Ruder et al., 2017).

The ravine type surface (such as an elliptical surface) is an issue for an SGD algorithm. The

descent path makes little forward progress relative to the zigzag movements in a local minima.

The momentum enhancement places more reliance on the longer term direction of consistent

movement. The addition of a momentum term, , provides impetus and counterbalance the

oscillations. The -term is multiplied by the previous step vector vt and the term itself is a
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factor, which is often set in the region of 0.9 (Ruder et al., 2017). This is denoted as:

vt � vt�1 � �rJpAq

A � A� vt

As Aggarwal (2020) explains, this process imports the previous velocity from the iteration,

providing the necessary direction and momentum to speed up the convergence and avoid

getting slowed or stuck in a at region or local minima. A drawback is that the algorithm

can overshoot the minima, but with the correct  term, this will not be an issue.

Nesterov Accelerated Gradient Descent (NAG): The NAG is a slightly smarter algorithm

that will have information on when to slow down. This algorithm provides a forward view by

enhancing the gradient based on the future expected parameters (restated by the momentum

term):

vt � vt�1 � �rJ
�
A� vt�1

	
A � A� vt (102)

This enhancement will ameliorate for an overshoot, not completely but it will make an im-

provement (Ruder et al., 2017).

Adagrad and Adadelta: Aggarwal (2020) explains that the Adagrad algorithm is adaptive

in that is keeps track of the size of the frequency of parameters, providing for larger updates of

infrequent parameters. This is an e�ective enhancement when working with sparse matrices,

which is, as Aggarwal (2020) explains, why it was used to train GloVe word embeddings for

the NLP. At each iteration an update is made with respect to the objective function, J, which

includes the impact of the squared magnitude:

Ai ð Ai �
� BJ
Bwi


2

; (103)

each parameter is updated as follows:

wi ð wi � �?
Ai

� BJ
Bwi


2

(104)

The update to the learning rate, �, at processed each time step whilst the algorithm aggre-

gates the sum of past gradients with respect to the parameters (Ruder et al., 2017). The

bene�t of this algorithm is that it does not require manual tuning of the learning rate, 
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parameter. It is an accumulation in the denominator, which has the e�ect of monotonically

reducing the learning rate. This challenge of an ever decreasing learning rate is resolved by

the Adadelta and RMSprop algorithms (Aggarwal, 2020; Ruder et al., 2017). The Adadelta

method will simply aggregate a sample or window instead of aggregating the sum of past

gradients with respect to the parameters.

RMSprop: As Aggarwal (2020) explains, this algorithm has the same aim as the AdaGrad,

with the exception of the sum of past gradients. Such is not simply aggregated but uses an

exponential decaying average of past returns. This is a slightly di�erent from the Adagrad

formation, shown in Equation 103, denoted as follows:

Ai ð �Ai � p1� �q
� BJ
Bwi


2

(105)

where � is the running squared aggregate. The advantage here is that the older gradients

decay over-time, where the oldest of them are not material.

Adam. Adam is a very popular algorithm as it combines the bene�ts of both worlds, in which

the RMSprop algorithm has the momentum component added (Ruder et al., 2017; Aggarwal,

2020). It is an adaptive learning process in which rates are paramterised for each parameter.

There are two key di�erences between RMSprop and Adam, the gradient is replaced by an

exponentially smoothed decay parameter, as when following Aggarwal (2020):

Ai ð �f FiAi � p1� �f q
� BJ
Bwi


2

(106)

The learning rate is then updated for each iteration of t:

wi ð wi � �?
Ai
Fi (107)

The last di�erence is that the learning rate is now governed using exponential smoothing and

incorporating the momentum:

�t � �

�?
1� �t
1� �tf



(108)

Ruder et al. (2017) and Aggarwal (2020) note that the Adam algorithm is a successful im-

plementation of the adaptive models such as RMSprop. The Adam algorithm has the bene�t

of momentum enhancements. The �nal enhancement stems from the Adam incorporating

the NAG model momentum enhancement, this makes it superior to the vanilla momentum

enhancements.
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Important optimisation techniques for NN can also include Newton methods (e.g. Newton-

Raphson Method), dynamic programming (e.g. Bellman equations), stochastic methods (e.g.

stochastic linear programming), evolutionary algorithms and genetic algorithms. Please refer

to Kiranyaz (2013); Rojas (1996), Sra et al. (2011), Aggarwal (2020) for further reading

and detail on methods applied to building neural network frameworks. A more general review

of optimisation techniques, to name a few, can be found in Kwon (2013), Cornuejols and

Tutuncu (2007) and Rao (2009).

Convolutional neural network (CNN): Goldberg and Hirst (2017) explain that CNN's

are named as such due to the functional sliding over data or `convolving' over a window of

data within the data under investigation (Goldberg and Hirst, 2017). Can be used for NLP

tasks and in a simple CNN model words are processed and compiled into a word embedding

matrix, using a non-linear learned function to extract important information using sliding

windows over the text. Bengfort et al. (2018) explain that CNN's feature architecture which

builds up a feature map by combining a convolutional layer and multilayer perceptrons; it also

features a pooling stage to collect and store the most informative features. CNN have their

beginnings in signal processing and image recognition, which explains the terminology aligned

to the computer vision and signal processing. The CNN architecture is really e�ective when

put to use in classi�cation tasks and image data modelling. The convolutional layers with

backward reference to words in a sequence are a strength showing promising results in text

classi�cation, sentiment analysis, POS tagging, question answering and more (Goldberg and

Hirst, 2017). Lopez and Kalita (2017) explain that CNN's are really quite similar to ordinary

NN in that they both have weights generated from a learning process and biases. The main

di�erence is that NN's have each input neuron is connected to each output neuron, whereas

CNN has additional layers of convolutions and non-linear activation functions.

CNN Basics: The CNN architecture is made up of a few key steps or actions which is

detailed below.

� Convolution. This is the �rst step in the process, that involves a data window iterating

through the larger data table. This step requires specifying the stride length (deter-

mines the degree of reduction), depth (number of �lters needed) and zero-padding

needs. Zero-padding inserts zeros around the border of the matrix (often used in im-

age recognition). At each stride matrix multiplication will be performed and results
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stored. Using the correct terminology, the window is said to convolve over the data

with a stride size which can drive the `blurring e�ect' in image processing. The kernel

and the data sample are multiplied, using matrix mathematics, and the answer stored

for each iteration, or stride, forming a new, reduced, matrix of data that retains the

high-level features of the data and the spatial relationships are maintained Lane et al.

(2019).

� Feature extraction - Non linear activation is the layer that is introduced to extract

salient information by using an activation function, most often the RELU. Practically,

this function that is used in a pairwise matrix multiplication as part of the convolution.

When coupled with a kernel or �ltering mechanism, is then known as a convolutional

net, or Covnet (Lane et al., 2019). The kernel partially plays the role of reducing the

size of the information in the larger data set (where image recognition data is very

large), keeping the pertinent information needed for making the prediction (Goldberg

and Hirst, 2017).

� Pooling is used to combine the results of the convolution in a vector and has an im-

portant role, to control the size of the output to a �xed size vector or matrix (Lopez

and Kalita, 2017). The convolutions layer is also very e�ective at data reduction whilst

retaining the most salient information (Lopez and Kalita, 2017). The aggregation or

pooling is done by using the max function, average function or dynamic pooling (which

take di�erence pooling functions depending on the location of the matrix locations).

This pooling technique can be useful in domains where the position can make a di�er-

ence (such as the centre of an image or the end of a sentence).

� Classi�cation layer. The results of the pooling layer are fed back into the neural

network for modelling predictions (Goldberg and Hirst, 2017). The modeller can use

of a Softmax function as the last layer and this would allow for the multiple category

or object classi�cations, as part of a fully connected layer is a traditional multi layer

perceptron model. The Softmax procedure takes the values of the input vectors and

returns a vector with values between zero and one (representing the probabilities of

taking a value).

Mathematical representation of a CNN convolution The following is a convolution op-

eration in one dimension. If one considers a passage of text, which is a collection of word
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Figure 12: The above illustration represents a simple CNN that is based on text analysis,

which could be a sentiment analysis based on the same data sources and sentiment

analysis output in this study.

strings, de�ned as T1:n � T1; :::; Tn. The convolution operation is an iterative process of a

sub-sample of a matrix of width k , progresses at a given stride length, until each position

has been covered. The operation will also be �ltered using a function designed to extract

features and information. With each convolution I create a vector, T . I follow Goldberg and

Hirst (2017) in de�ning the convolution:

pi � gpxi � uq

xi � `pTi :i�k�1q

pi � gpxi �U� bq (109)

b is a bias vector that is added. The resultant output is a vector, pi for each of the �lter

value, ui and the `pTi :i�k�1q function is the aggregation of vectors from all the rolling

windows, T.

Pooling: The pooling function is set up to combine the vectors from the convolution by

aggregation into a single vector, c. The vector of salient information will be sent to the

network layers for training weights that can then be used in predictions. Pooling requires an

aggregation technique, the most common use is max-pooling. This is e�ective in highlighting

the most salient features in each window by only taking the max value from pi ,

crjs � maxpirjs (110)

virjs denotes the j th component of vi . Average pooling is another popular technique which
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is simply an average of the underlying vector vi :

c � 1

m

m̧

i�1
vi (111)

Recurrent neural networks (RNN) Bengfort et al. (2018) describe RNN in the context

of modelling sequential language data, not to be confused with recursive neural networks

(RecNN) which is an architecture composed of structured inputs that are handled best with

a tree or tree-like architecture. The RNN makes use of a recursive process of applying a

calculation that is conditional on prior iterations with information retained as the sequence

is iterated on. In the context of language processing, bag-of-words (BOW), even the more

advanced Continuous BOW (CBOW), fail to accurately capture the meaning of the phrases

or words being analysed when sentences or the order of the words, or even the context of

a group of sentences are not picked up (Goldberg and Hirst, 2017). RNN's are designed

in such a way that when information is fed in sequence and stored for referencing (a form

of memory), it becomes more sensitive than lexical or BOW approaches. The sequencing

of data in the RNN model retains the word order and POS of the sentences and words. In

addition, the model tracks long-running dependencies between words as part of the inbuilt

architecture (Goldberg and Hirst, 2017). Later in this chapter, I will discuss how one model,

long short-term memory (LSTM), has been prove particularly successful.

RNN models can be broadly grouped by their function; the focus in this study is on

acceptor models, rather than encoder and transducer models. This construct will sequentially

take word by word sequences with the aim of predicting the sentiment of the text. I start

with a simple RNN (sRNN) abstraction, vectors are denoted as xi ; : : : ; xj as xi :j . This model

returns a vector yn � RNNpx1:nq. Such can be expressed as, following Goldberg and Hirst

(2017):

RNNpx1:n;S0q � y1:n

y � OpSiq

si � RpSi�1;xiq (112)

This output function can then be embedded for further prediction. The RNN is de�ned by

recursion, with Si�1 as an input. The input vector, xi will returns an output vector, si , where

s0 is usually omitted. Finally si is translated or mapped into the �nal output vector yi using

a simple deterministic function, Op�q.
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R, O 

yi

xi

Si-1 Si

q

Figure 13: The above illustration represents a simple RNN schematic (Goldberg and Hirst,

2017).

When I consider the same representation mathematically, if we are to `unroll' the notation,

the stacked functions, this can then be represented by R and O, representing the way in

which the network is structured:

S3 � RpS2; x3q

� RpRpS1; x2q; x3q

� RpRpRpS0; x1q; x2q; x3q (113)

R, O 

y1

x1

S0 S1 R, O 

y2

x2

S2 R, O 

y3

x3

S3

q

Figure 14: The above illustration represents a simple RNN that is unrolled, like a net that

has been rolled out and laid down (Goldberg and Hirst, 2017). Note that the �

function is present in each node, as illustrated by the arrow pointing to each node

from below.

Goldberg and Hirst (2017) explain that training the RNN involves a computational graph for

each node in the sequence, which is coupled with a loss function for the whole unrolled network
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and this then `backpropogated', (Goldberg and Hirst, 2017). Lane et al. (2019) elucidate

that long short-term model (LSTM) introduces a state variable to correlate meaning related

to words which may be far apart in a sentence, or even in other sentences.

There is an enhancement to the RNN which is relevant in an NLP use-case. The �xed

window of words which are considered at each step is opened up to include words that

are further down the sequence of the sentence. This is a bidirectional RNN (biRNN) and

is applicable for sentiment analysis (given that I am not trying to predict a future word

that is already in the observation window) (Goldberg and Hirst, 2017). The mechanism for

this method involves having an RNN for the previous words in the sentence and a second

RNN, which reviews the words in reverse order. The algorithm then solves for each RNN

independently with results that are concatenated.

Recursive neural networks (RecNN): RecNN is a series of interconnected neurons forming

a network of interacting connections. Goldberg and Hirst (2017) note that a RecNN is a

natural and desirable approach to use in language processing, providing good mechanisms

with which to model sequential data. RNN networks are chain structures, RecNN on the

other hand, are based on hierarchical data models with a tree structure. Bengfort et al.

(2018) comment that model hidden layers that make use of activation functions, coupled

with a dimensionality compression function to match requirements. Goldberg and Hirst

(2017) write that RecNN models are one of the more promising techniques to come from

machine-learning in the domain of natural language processing. The technique does not

rely on the Markov assumptions which many of the work-horse models in natural language

processing have relied on, whilst taking word order into account. A signi�cant advantage of

the model is that it can serve as a source of data for other models, as an input, such as the

required �xed vectors needed for the feed forward modelling to predict the next word in a

phrase. The LSTM model is an extension to the RecNN which has memory component for

solving the problem of vanishing gradients. It has gates, the �rst is an input gate that stops

or accepts updates. The second gate trims the neurons that are not needed (determined

by immaterial weights resulting from the algorithm) and lastly a control gate for outputting

information.

The next important architecture, or RNN design, deals with gradient issues such as

vanishing gradients and di�culties of training the simple RNN. Hochreiter and Schmidhuber

(1997) designed a gated architecture called Long Short Term Memory (LSTM) which is
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highly e�ective. As Lane et al. (2019) remark, the LSTM model was set up in order to

overcome challenges such as vanishing gradients. Goldberg and Hirst (2017) underline that

the simple RNN operates each step with in�nite memory, it is not controlled. This brings the

introduction of gates, which control what is passed into memory and what is excluded from

the analysis. Goldberg and Hirst (2017) explain that the use of a binary vector (g P 0; 1d)
will serve the role of a gate. By way of element wise multiplications, useful information can

be let through (g � 1), whilst useless data can be excluded (g � 0). However this simple

component still requires a trigger to move from the open state, g � 1, to a closed state.

An available solution is to use the sigmoid function, which can easily be mapped to a binary

result, before being trained using gradient-based methods.

tanhσ σ

tanh

σ

Ct-1

ht-1

xt

ht

Ct

ht

Figure 15: The above illustration is a schematic of the LSTM model, which has been adapted

from Alom (2019).

A model that has risen to prominence that uses the gating mechanism is the Long Short

Term Memory (LSTM), Goldberg and Hirst (2017) argue that LSTM models are the great-

est contribution to natural language that has come from the statistics domain (following

Goldberg and Hirst (2017)):
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sj � RLSTMpsj�1; xjq � rcj : hj s

cj � f d cj�1 � i d z rMemory cells

hj � o d tanhpcjq rHidden layers

i � �pxjW xi � hj�1W hiq rInput gates

f � �pxjW xf � hj�1W hf q rForget gates

o � �pxjW xo � hj�1W hoq rOutput gates

z � tanhpxjW xz � hj�1W hz q

yj � OLSTMpSjq � hj (114)

The forget, input and output gate values are calculated by combining the latest and previous

state data, xj , and hj�1 respectively, then parsed through an activation function (in this case

a sigmoid function mapping to a binary outcome). The update variable is also a combination

of xj , and hj�1 but passed through a tanh activation function. The memory cell, cj , is a

function of the forget and input gates. The input gate will determine what new information

enters downstream functions (idz), the forget gate determines the retained level of previous
information (f d cj�1). The �nal step determining hj , or yj , involves an activation function,

tanh and the output from the memory function, cj .

LSTM architecture is currently the most powerful with acceptable modelling results in

many domains (Goldberg and Hirst, 2017). Albeit a complex set up, the elegance of LSTM

architecture is that trained neural nets contain self contained rules for state memory (Lane

et al., 2019).

9.5 Examples of NLP and sentiment analysis in �nancial literature

Market instruments and securities are early targets for unstructured text modelling, as demon-

strated by Antweiler and Frank (2004). By investigating the claim that online discussion

forums for the �nancial sector can a�ect the market, they hope to shed light on this topic.

Where they review 1.5 million messages extracted from Yahoo! Finance and Raging Bull with

reference to 45 companies found on the Dow Jones internet index. When The Wall Street

Journal was used as a control, the e�ect of these messages on stock prices was found to be

signi�cant but economically insigni�cant. Antweiler and Frank (2004) �nd, interestingly, that

disagreement among the people posting is also associated with increased trading volume.
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According to the �ndings of Bollen et al. (2011), using certain variables of public senti-

ment can greatly enhance forecasts of the index value of the Dow-Jones Industrial Average.

According to a recent article by Mudinas et al. (2019), sentiment analysis is well-suited

for predicting future economic performance, as well as identifying and understanding human

emotions and behavioural shifts (such as happiness, rage, and sadness). Analysis of economic

news and consumer sentiment by Shapiro et al. (2020) demonstrate that positive shocks to

sentiment based on a large corpus of �nancial newspapers are followed by rises in output,

interest rates, and consumption while lowering ination.

For investing timing techniques using the MSCI World Index, Beckers (2018) indicates

that news-based sentiment delivers a more consistent signal than sentiment gleaned from

social media. According to a study by Beckers (2018), sentiment signals gleaned from news

and social media can be used to predict the performance of major stock markets in the

months ahead. Shapiro and Shapiro (2019) measure tonality by measuring sentiment in

the U.S. Federal Open Market Committee's (FOMC) internal discussions, then use this to

create an index, which is used as a proxy for a loss estimate. Using textual data from the

public archives stored on the Federal Reserve Board of Governors website, the sentiment

model measures style and tone in speaking by di�erent members' speeches and remarks from

1976 to 2013, allowing for heterogeneity 8. The speeches and remarks are then �ltered to

only include sentences and remarks with one economic-related term de�ned in the Oxford

Dictionary of Economics (ODE).

Non-traditional data sources like Twitter and Stock-Twits where used by Liew and Bu-

davari (2017) to index company-speci�c tweet sentiment. Azar and Lo (2019) investigated

the relationship between Stock-Twits and Twitter as it relates to liquidity measures. They

also point out that negative social media sentiment has a two-fold greater liquidity e�ect

than positive sentiment, which is consistent with the idea that fear and panic have a greater

impact on markets than manias or booms. Azar and Lo (2019) show that the Twitter data

contains information and can be used to predict returns and volatility by using a regression

on the Twitter data and controlling for other factors (Fama-French factors), all based on

excess returns.

Recently, Karagozoglu and Fabozzi (2017) used social media sentiment as an input for

VIX volatility trading and discovered that the information available on social media provided

for a meaningful trading strategy that outperformed the benchmark. Liew and Budavari

8https://www.federalreservegov/monetarypolicy/fomc historical.htm
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(2017) view is that idiosyncratic risk can be broken down into two components, noise and

social sentiment. Liew and Budavari (2017) explain that Stock-Twits allowed them access

to their historical data. Liew and Budavari (2017) �nd lots of evidence of information at the

security level from social media information sources. These applied to time series data are

signi�cant in explaining security returns, even after being controlled for traditional factors of

Fama-French.

Liew and Budavari (2017) report that Twitter users with greater followers numbers have

a stronger inuence on returns. Sul et al. (2016) conclude in their work that S&P500 returns

and sentiment polarity drawn from Twitter are positively correlated. What is also recognised

is that Twitter users with more followers have a inuence on returns. Erlwein-Sayer (2018)

reviews the relationship of the economic fundamentals that are seen by many market players

as drivers of sovereign spread, their study �nds that the yield spread forecasting can be

enhanced by using a daily news sentiment. Erlwein-Sayer (2018) continue in their conclusion,

that macro-economic news sentiment and sovereign bonds of the �ve European countries are

signi�cantly correlated (especially in the case of yields spread, spread changes and volatility

of spreads). In bull markets, bonds spreads are negatively correlated to the volume of positive

news, whereas positive correlation are found for news volumes in the case of bear markets.

Using newspaper articles from economic and �nancial sources, Shapiro et al. (2020)

created a new economic consumer sentiment time series spanning January 1980 to April 2015.

The objective of their study is to compare the accuracy of the time series sentiment index to

well-known survey-based consumer sentiment indexes developed by the University of Michigan

and Conference Board. The �ndings of Kalamara et al. (2020) indicate that linguistic analysis

of newspaper material considerably enhances the forecasting of important macro-economic

variables. This study examined variables such as GDP, ination, and employment. Kalamara

et al. (2020) discovered that the utilised methodologies were particularly e�ective during

times of economic stress; they examine the power of news text for sentiment and uncertainty

signals. They discovered that news sources contained more robust signals for evaluating

sentiment than economic uncertainty. Kalamara et al. (2020) �nd that simple methods

which target text based variables do not perform as well as the combination of linear and

non-linear supervised machine-learning algorithms.

Nyman et al. (2018) show that sentiment build-ups prior to a �nancial collapse are linked

to sentiment; and narratives also play a role in �nancial markets. The analysis of these

researchers centred on two measures { excitement and anxiety { whose di�erence expressed
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as a percentage of size forms the sentiment index as a time series. Souleles (2004), Carroll

et al. (1994), and Bram and Ludvigson (1998) are good examples of studies showing how

sentiment measures have predictive power for individual spending.

Kalamara et al. (2020) maintain that the news text substantially improves forecasts of

variables such as ination, gross domestic product, and employment levels. The researchers

point out that this will assist in augmenting less frequent and more expensive survey methods

currently in use. Kalamara et al. (2020) discuss that newspapers are an independent source

of information and potentially capture the inuence of `animal spirits'. They test the di�erent

techniques of extracting information from text by comparing word counts, which perform well

considering how basic the method is, to methods that use a dictionary of �nancial stability

words and perform better. The most powerful of the methods is based on machine-learning

methods trained on text-derived regressor variables, which outperform the other methods.

Non-linear NN ultimately performs the best when considering dependent variables, sources

of information, and time in each analysis.

Garcia (2013) used data from The New York Times to model the long history of stock

prices from 1905 to 2005. They demonstrate that stock price prediction during market down-

turns can be attributed in part to news sentiment, after accounting for standard variables.

A one-standard-deviation shock to the news sentiment indicator is followed by a decrease

in the Dow Jones Industrial Average, suggesting that the data is concentrated at times of

extreme market volatility. Manela and Moreira (2017), on the other hand, used data from

The Wall Street Journal front page to investigate the relationship between how a news-based

uncertainty measure performs. Manela and Moreira (2017) observe that, over the long-run

(1890-2009), their uncertainty measure predicts higher future returns in normal times, which

is also predictive of economic disaster due to an increase in the uncertainty measure just

before the business cycle change.

In another example of text based modelling by Lang et al. (2017), they show that buyer

emotions can potentially be a�ected by news sentiment, ultimately a�ecting the prices of US

commercial real estate. They compare the use of a NB and a SVMs against 40,000 news

articles extracted by �ltering news data from 2005 to 2015. Fundamental economic variables

alone do not explain commercial real estate returns (Lang et al., 2017).

Larsen and Thorsrud (2019) take a slightly di�erent approach, examining the impact of

Norwegian newspaper articles and the ability of news text sentiment to predict economic

variables. They reveal that many topics have forecasting ability and predictive power for
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key macro-economic variables. Unexpected changes in the news index have been linked to

long-term e�ects and changes in asset prices, including e�ects on credit and borrowing.

10 Implementation of sentiment modelling

When applied to text written in a natural language, sentiment analysis can determine if the

writer is being positive or negative. NLP techniques are largely focused on unstructured

sources of information that require a degree of pre-processing in order to get the information

in a usable format for modelling. Text data can then be classi�ed into sentiment categories

such as positive, negative, or neutral; this is often added to a scoring/rating model that

generates valence (a rating from 1{5). A valence score can be generated using di�erent

methods, such as lexical analysis, simple statistics, or frequency based counting, or more

advanced techniques such as machine-learning. Lexical models can range from simple word-

based scoring systems that apply scores to words based on a list of positive and negative words

(such as Textblob), to more advanced systems allocating valence scores and a secondary set

of heuristic rules. Some of the tools can now review in the context of the word within a

sentence, a�ecting the sign and scale of the valence score. VADER is one such tool; it is a

free Python package that I use in this analysis.

Given the magnitude and scale of the data and modelling in this exercise, the next

section I dedicated to the process I undertook to collect, transform, pre-process, structure,

and ultimately analyse the sentiment in the news and social media text. This is an important

foundation for more advanced modelling. What is important to highlight, often, is the extent

of the exercise that collecting Twitter data was. This included six to eight hour checking

that the process of collecting streaming tweets continued, for more than a year. The data

was voluminous, billions of lines long, that was largely �ltered out (the process and net result

I detail later in the chapter).

10.1 Alternative data extraction and modelling process

The approach I took in this study was to independently create a solution for market related

signals, using readily available information, modelling frameworks and tooling. This approach

requires that I independently researched, sourced, cleaned and collated, signal processed and

aggregated data for each of the three regions in this study. I also con�rmed an appropriate

business cycle proxy as a dependent variable. The platform to deal with data was fully codi�ed
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by myself using data extracted from APIs into a Google Colab environment or onto my local

machine using a data base. A signi�cant proportion of my time was invested in cleaning

up the unstructured data, some sources were more di�cult to deal with (I explained the

challenges of working with Twitter data). Even when data was relatively easy to work with,

for example the news sources, the challenge of dealing with large volumes of unstructured

data should not be underestimated. Stemming and cleaning data required many iterations of

programming and review to ensure that the data was adequately processed and the natural

language programming techniques are appropriate for the investigation in this study. I found

the only way to really understand the techniques, was to make use of the technique and

observe the results. I summarised the net results of the favoured techniques only, I note here

that many were not reported in the �nal study (for instance CNN and LDA analyses). The

same is true for the modelling for prediction of the business cycle proxy, many techniques

failed (for instances making use of the data as a corpus and directly modelling the dependant

variable). The e�ort and time required for this �nal result set in this study was signi�cant.

I organised this analysis in a way that is logical and follows the lifecycle of the data in this

study, I illustrated this in Figure 16.

News - Guardian

News – New York Times

Social media - Twitter

A) Data sourcing B) ETL C) Pre-processing                 D) Modelling            E) Modelling results

API data 
extraction

Text pre-
processing

Data

Model
specification

Transforms

Train

Test

Figure 16: The above process details the high-level steps for the data and modelling processes

using a simple process ow diagram. This type of analysis is an e�ective way to

describe the interrelated processes that are needed for the data and modelling in

this study. This �nancial and economic data have been included in the diagram

for completeness, as they are part of the larger study but are not detailed until

later. The diagram is annotated in a way that aligns with the document write-up

that follows.

10.1.1 Data sourcing

Independent variables sourcing. The following sections provide a summary of the types

of data and respective sources that are extracted from the alternative data sources, including
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Twitter, The New York Times, and The Guardian.

Category Source Access Description of data source Start date Article

count

UK News The

Guardian

Free API The Guardian newspaper is a daily broadsheet format that

has been published since 1821 Guardian provides full ac-

cess to news articles freely available via API.

Jan'1980 531,408

US News The New

York Times

Free API Daily morning newspaper from New York city, it has a

long history, founded in 1851. It is important newspaper

that is regarded as the `newspaper of record'. New York

times make available freely data via an API.

Jan'1980 2,379,005

Social media Twitter Free API Microblogging site and application, allowing free publica-

tion of 140 character posts called tweets. Twitter make

streaming data available via the Twitter API version 2.

Sept'2020 2,347,319

Local news

sentiment

GDELT Free API Supported by Google Jigsaw, this services hosts live mon-

itors of the world's media including web articles, blogs,

newspapers and news sites.

Jan'2017 7,434,976

Table 5: Description of alternative data sources, article counts and start date. I have not

speci�cally listed it in the table, but the end date for all sources is December 2020.

Dependant (target) variables sourcing The indexation of economic variables is a complex,

data-intensive task. There are di�erent indices that are available in a particular region, but

these approaches are only local. In this study, I need to select an index that best represents

business sentiment at a given point in time. This needs to be consistently measured across

the three regions in this study. The principles I applied for index selection are as follows:

� Independent indexation and data sourcing (i.e. not using own data or indexation ap-

proach).

� Globally recognised source of data.

� Consistent methodology across the regions.

� Freely available data that is updated in a timely fashion.

� Final choice of index will be the index that best aligns to the business segment under

investigation. In this case the index that best represents the small-to-medium enterprise

segment.
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The OECD is a global organisation that specialises in econometric indexes. The methods

of calculation and underlying philosophy for how they construct their indices and composite in-

dices. The methods are published and transparent (https://www.oecd.org/ sdd/42495745.pdf).

The target variables in this analysis are sentiment indices that have been provided by the

OECD database service and can be found in the main economic indicators section, (OECD,

2021). I make use of Quandl data API to access and retrieve the OECD data indices.

OECD index name Index

code

OECD index description: sourced and directly quoted from OECD (2021) and the same index

is drawn for each of the three regions selected in the study (GBR, USA, RSA).

The Business Con�-

dence Index

BCI This business con�dence indicator provides information on future developments, based upon

opinion surveys on developments in production, orders, and stocks of �nished goods in the

industry sector. It can be used to monitor output growth and anticipate turning points in

economic activity. Numbers above 100 suggest increased con�dence in near future business

performance, and numbers below 100 indicate pessimism towards future performance.

The Composite

Leading Indicator

CLI This index is intended to provide early warning signs of business cycle turning points by displaying

uctuations in economic activity around its long-term potential level. CLI's show short-term

economic movements in qualitative rather than quantitative terms.

Consumer con�-

dence index

CCI This consumer con�dence indicator provides an indication of future developments in households'

consumption and saving, based upon their answers regarding their expected �nancial situation,

their sentiment about the general economic situation, unemployment, and their capability of

saving. An indicator above 100 signals a boost in the consumers' con�dence towards the future

economic situation, as a consequence of which they are less prone to save and more inclined to

spend money on major purchases in the next 12 months. Values below 100 indicate a pessimistic

attitude towards future developments in the economy, possibly resulting in a tendency to save

more and consume less.

10.1.2 Extract, transform and load (ETL)

The following table represents the steps that are followed in the coded data extraction script

in Python. Each script di�ers slightly depending on the underlying data source. Rather

than include the scripts, I represented this process in a table below, with each data source

indicating whether this is included in that particular script. What is noticeable, relative to

the other sources, is the extra steps required for Twitter extraction (i.e., streaming data for

a full year to collect tweets is a slightly larger task than one extraction of historical news

data, as is the case with The New York Times and The Guardian).
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Section Data engineering steps Sources ÝÑ Guardian NYT Twitter GDELT

Extraction  List dates X X X X

 List search terms (refer to 26.4) X X

 Call API (using API key) in a loop for each date X X X X

 Collect tweets from Twitter API streaming (on-

going) and occasionally save a new JSON �le (size

dependant)

X

 Filter on business, markets and �nance sections X X

 Filter by Language = `ENG' X

 Extract required �elds X X X X

 Concatenate text with extended tweets using tweet

mode = `extended' and concatenate `full text' �eld

X

 Exclude retweets by �ltering for `RT @' and excluding

tweets with retweet ind set as positive

X

 De-duplicate data, removing all duplicate tweets X

 Save JSON �les returned from API endpoint X X X X

Sentiment

Scoring (1)

 Using Textblob and VADER, scored text and retrieve

sentiment scores

X X X X

Transform

and save

 Transform dictionary �le and append as CSV X X X X
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10.1.3 Pre-processing of unstructured data

The next step is the pre-processing of the natural language data, following the process that

was described in Section 8.2. This is the key step in preparing the data for the sentiment

scoring process. Some of the steps may not seem necessary, such as removing @RT from the

Twitter text, this being inconsequential for the net result; however it does clean up the text

and reduce the overall size of the data. The language text is �rst scored using the sentiment

packages (VADER and Textblob) and then scored after the pre-processing steps have been

concluded. The second round of scoring is conducted using the exact same technology as

the �rst, but performed on the raw text that has not been preprocessed. What will be of

interest is the di�erence in sentiment source, which I will investigate later (i.e., testing the

impact of preprocessing).

The following processes were used for each of the data sources: Pre-processing (removal

of special characters and punctuation, stemming, vectorisation using the Keras framework).

Sentiment scoring using Python TextBlob and VADER; and lastly feature engineering (rolling

variables, exponentially moving weighted average and rolling percentiles).

Section Data engineering steps Sources ÝÑ Guardian NYT Twitter GDELT

Pre-

processing

 Remove the following: special characters, single

characters, any remaining `RT @' or '@RT', remove

`HTTPS', replace double spacing with single, exclude

emoticons

X X X X

 n-gram analysis: create bi-grams using NLTK and

thereafter extend to tri-grams using NLTK

X X X X

 Stemming: stem remaining text using NLTK X X X X

 Vectorization: vectorisation of the remaining text

using the Keras framework

X X X X

Sentiment

Scoring (2)

 Using Textblob and VADER, score pre-processed and

stemmed text and retrieve sentiment scores

X X X X

Feature engi-

neering

 Summarise Textblob and VADER outputs, including

volatility, rolling averages, EMWA, percentile trends

(of average score of 3 month window of 75th and 25th

percentile). Repeat for both raw text and text that

has been stemmed and pre-precessed

X X X X
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10.1.4 Scaling variables

Scaling is an important process used to ensure the training and target variables are on the

same measurement scale. Scaling can be important, as variables that are �tted in models

at di�erent scales will not contribute equally and can therefore introduce bias into the �nal

model function. The process has to do with changing the range of a variable, which does not

a�ect the shape of the distribution or the trend of the time-series data over time. Scaling is

often done by transforming the variable range to be between 0 and 1 or between -1 and 1.

Min-max scaling is one of the most commonly used and simplest methods in machine-learning

problems. The method is as easy to perform as it is to reverse (which is needed for models

to produce a prediction). Min-max scaling is de�ned as:

x 1 � x �minpxq
maxpxq �minpxq (115)

The Python scikit-learn pre-processing package has a scaler function called MinMaxScaler.

I detail the key algorithm below, and further detail of the function can be found on scikit-

learn technical pages 9. The second technique for dealing with data on di�erent scales is

standardisation. Using the formula below, the standardisation technique is applied to normally

distributed variables and scales by setting the mean to zero and the standard deviation to

one. Standard scaling is de�ned to be, where � is the mean and � is the standard deviation:

z � x � �
�

To summarise, the dependent variable is transformed to account for autocorrelation in sen-

timent variables before being standardised and scaled for plotting with the StandardScaler.

The result is a range between negative four and four standard deviations from the mean.

The Python scikit-learn pre-processing package has a scaler function called StandardScaler.

Algorithm detail and function can be found on scikit-learn technical pages 10.

10.2 Modelling data descriptive analytics

In the following section, I describe the variables used to build the models, both the target

variables and independent variables.

9https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
10https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html).
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2000 2004 2008 2012 2016 2020

92

94

96

98

100

102

104

RSA BCI % change standardised
RSA CLI % change standardised
RSA CCI % change standardised

Target variable RSA: sentiment indices - standardized bucket

Figure 17: The sentiment indices I selected are available across di�erent regions using a

standard methodology, the OECD methodology. The South African CCI, CLI,

and BCI indices are plotted in a time series above using the month end values,

these numbers have been standardised (therefore will lie between 0 and 100).

Signi�cant downturns in sentiment can be seen, �rst during the GFC around

2008, and more recently, with the COVID pandemic beginning in 2020.

2000 2004 2008 2012 2016 2020

0.075

0.050

0.025

0.000

0.025
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0.100 RSA BCI % change
RSA CLI % change
RSA CCI % change

Target variable RSA: sentiment indices - standardized bucket

Figure 18: South African CCI, CLI, and BCI indices are transformed to year-on-year percent-

age change and re-plotted in the above time-series using month-end values, these

numbers have been standardised (therefore will lie between 0 and 100).

10.2.1 Target variables

In the following section is an analysis to highlight salient features in the trends displayed in the

target variables, the OECD sentiment indices. I plotted a time-series chart for each region

and included the raw OECD data for each of the three sentiment indices (BCI, CCI, and CLI);

refer to �gures 19, 21 and 22. The �rst discernible feature is the distinct periods of negative

downturn or drawdown in the sentiment indices between 2008 and 2020, corresponding to

the Great Recession and the more recent COVID pandemic. Secondly, all three indices in

all regions showed a sharp increase in and around the time of the announcement of COVID

vaccine approvals in 2020.

A review of each regional index reveals that CLI sentiment has a consistent trend across
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Figure 19: The above �gure demonstrates an example of scaling by standardisation on the

RSA BCI sentiment variable (therefore will lie between 0 and 100). The same

sentiment indices have now been transformed using the standard normalisation

technique. The time-series dynamics are not impacted by this technique, which

is evident when comparing to Figure 20.
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1.0 RSA BCI % change normalised
RSA CLI % change normalised
RSA CCI % change normalised

Target variable RSA: sentiment indices - standardized bucket

Figure 20: The above �gure demonstrates an example of scaling, using MinMax scaling on

the RSA BCI sentiment variable. What is clear is that even though the scale is

transformed to lie between 0 and 1, the trend has been retained. An attractive

feature of scaling is the ease of plotting multiple variables on the same axis, which

allows for direct comparability.

regions (UK CLI index correlation of 72% in RSA and 75% in USA, respectively). If I observe

the CCI index, this index appears to reect more localised events, such as the RSA CCI index

showing a sharp increase in 2018 (refer to Figure 17) which aligns with the election of Cyril

Ramaphosa as South Africa's president (the UK and US did not experience the same upturn).

Similarly, the UK CCI shows a sharp decline in 2016, around the time of the Brexit vote (refer

to Figure 21). Knowing the test data will include the recent pandemic (by design), it will

be interesting to see whether sentiment scores from news and social media data will have

power to predict an event which is a human crisis, where the models are trained from data

which is based on an event born of a GFC (training data will not include the period when the
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pandemic took place).

The �nal decision on which sentiment value to use was taken by considering which variable

reects sentiment that is linked to the small-to-medium business segment. The sentiment

variable that is closest to this is the OECD BCI, or business con�dence index (BCI).

2000 2004 2008 2012 2016 2020
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0
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4

GBR BCI % change bucket
GBR CLI % change bucket
GBR CCI % change bucket

Target variable UK: sentiment indices - standardized bucket

Figure 21: Trend analysis for UK target variables, including OECD BCI, CCI, CLI variables.
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USA CCI % change bucket

Target variable USA: sentiment indices - standardized bucket

Figure 22: Trend analysis for USA target variables, including OECD BCI, CCI, CLI variables.

10.2.2 Training data and factor analytics

The following section is a brief analytical review of the lexical analysis and variables created

from the process of feature engineering performed on the lexical sentiment scores. I also

compared the lexical results to the target variables to get an indication of the predictive

capacity of the factor data. I start with the summary of the data sources in Figure 23,

measured by the number of rows of data in the �nal training and test data. The signi�cance

of the number of data points from Twitter is interesting on two counts. Firstly, this collection

of Twitter data only spans one year (the other sources include more than 12 years), and

secondly, the data excludes all the rows (or tweets) that are retweets, duplicates, or in

foreign languages. On the other hand, the size of text carried in each row of news data is

signi�cantly larger (as the comparative run times on the lexical modelling, stemming, and

vectorization will have proven). The length of the natural language varies by the di�erent
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sources (The New York Times, The Guardian and Twitter), from an average length of tweets

in the Twitter data at 176 characters, up to an article length in The Guardian being 4926

characters long on average.

GDELT articles 
7,434,976 

60%

NewYorkTimes 
2,079,599 

17%

Guardian 
531,302 

4%

Twitter 
2,347,319 

19%

Figure 23: Key data sources and their respective contributions to the training data table The

most signi�cant source of information is the GDELT data set.

The analysis reported in Table 6, is a review of the news text processed using the Textblob

and VADER lexical engines. The scoring was performed on the pre-processed data and then

re-performed using data that had been stemmed and n-gram analysis completed. The n-gram

and stemming have clearly had an e�ect, with negative and positive sentiment returning

higher sentiment valence measures. The mean shifts from negative to positive for VADER,

and this can be largely explained by the improved mapping of words from the lexicon (a

central task in NLP). Importantly, the trend analysis (refer to Figure 24) will show that the

lexical engine results are very similar since 2007.

Guardian � � Min Max

VADER compound clean 9.7% 7.6% -27.0% 14.2%

VADER compound clean stem 15.2% 6.5% -14.4% 29.3%

Textblob polarity clean 6.4% 4% 5.1% 9.0%

Textblob polarity clean stem 7.1% 5% 5.5% 9.8%

Table 6: The Guardian lexical scoring summary table.

If I compare the bene�t of creating factor indices with full processing (including stemming

and cleaning) and compare the results of the trend of the indices, see Figure 24, the di�erence

is small. The Pearson correlation of VADER sentiment scores between stemmed text and
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raw text is 83% and 77% for VADER and Textblob, respectively. This di�erence drops

even further from 2007 (the correlation moves to 97% and 96% for VADER and Textblob,

respectively). This shows that full processing, such as stemming and n-gram, does not

dramatically a�ect the results. If I consider the time taken to execute the stemming program,

it can be seen as an optional step for articles with lots of text, such as the data from The

Guardian.
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Figure 24: Textblob and VADER score raw data based upon stemmed text plotted for

Guardian text. The Pearson correlation of VADER sentiment scores between

stemmed text and raw text is 83% and 77% for VADER and Textblob, respec-

tively.

The Textblob sentiment trend is atter than the VADER sentiment trend, arguably, the

Textblob sentiment trend does not show much activity, less than one may have expected over

two periods of signi�cant market stress and another of human stress in the COVID pandemic.

VADER mean based sentiment variables are plotted on Figure 25, on The Guardian and New

York Times, which is quite interesting to review, where both show a similar sentiment trend

toward the middle of the GFC, January 2008 onwards. What is di�erent is in the run-up

to the GFC, where The New York Times shows a signi�cant and sharp decrease and The

Guardian, from a low base, shows a gradual decrease from 2005 to 2008. Both indices

show signi�cant deterioration from the end of 2019 and into 2020, in particular. The New

York Times shows a signi�cant increase in the sentiment score as the e�ects of a successful

COVID vaccine are announced and rolled out.

Now I review the rolling volatility of VADER scores. The 75th percentile of the VADER

scores shows a distinct increase around the time of the GFC and again around the time
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Figure 25: This �gure is of the rolling six-month average of the average sentiment, which

was generated using the Python VADER package and reported by both The New

York Times and The Guardian.

of the pandemic. This indicates signi�cant changes in the aftermath of the GFC and the

pandemic, as shown in Figure 25. The second variable of interest on the Figure 26, is the

75th percentile of VADER sentiment scores, which shows an increase around the GFC but

not during the pandemic.
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Figure 26: The above �gure features variables that have been created from the VADER

sentiment results, including the 75th percentile of VADER sentiment scores that

are aggregated and, secondly, the volatility of VADER scores.

Figure 27 is a plot of the sentiment scores that are generated by GDELT data. GDELT

data is a time-series reaching back to 2017. The grey line represents the average scores

from GDELT by extracting data based on a set of search terms. The green line the same

sentiment measure weighted by the relative volume of articles (GDELT returns the number

of articles relating to the search term). Both lines indicate a signi�cant decline during the
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pandemic. GDELT is the only sentiment data source included in this study that accurately

captures the true of di�culties during the epidemic that I would expect to see from sentiment

scoring. The GDELT data project's comprehensive coverage of information and news outlets,

from national and international news outlets to popular blogs, enables readers to get insight

into the true sentiment at the business level. The increasing coverage can only be seen

as bene�cial, especially when the less prominent local news sources may not be as closely

controlled in terms of their content and information emerges through sentiment analysis.
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Figure 27: GDELT tone and intensity-weighted tone GDELT data shows a signi�cant drop

in sentiment around the time of the COVID pandemic, more so than other trend

variables.

As a contrast, when I review the Twitter data, which does not span a period that is

long enough to make sense of the longer-term trends, what I can see is a slow increase in

VADER sentiment scores during the holiday season, with a sharp decrease in early 2020,

which attens. The longer trend (12 month line) shows a gradual improvement to tweets

sentiment over the period of investigation; this is indicated by the light blue line continually

trending slowly up.

10.2.3 De�nition of training and test data

The following list sets out the key principles and techniques used to structure the modelling

data set, and the method to allocate the data into training and test data sets:

� Test/train spit. Two thirds of the data is use as training data, which ended up being

68% of the data, to ensure the data could be factorized for use in the Keras framework.

� Data range. Training data starts in January 2000 and ends in March 2014. Test or
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Figure 28: Twitter VADER scores, including rolling average scores with trailing windows of

1, 3, 6, and 12 months. Interestingly, the Twitter data (as de�ned by the Twitter

handles listed in the appendix 26.4) does not show a signi�cant change over the

period of investigation.

validation data starts in April 2014 and ends in February 2021.

� Predicted variable horizon. Target variable is set as the next month's sentiment index

value, t+1 months.

� Trading window. To keep a realistic trading window, ten days prior to sentiment

variable change, I �lter out these rows of news/tweet data.

� Factors. Simple factors were created based on sentiment scores from VADER. Factors

included 30 day. rolling percentile scores (25th, 75th), 30 day rolling volatility of score,

index of �ltered terms, frequency of �ltered terms (r index, terms such as default,

recession, liquidity shock BUT not using pandemic nor coronavirus).

� Prominent factors. The r-index and 75th percentile VADER score, and mean VADER

score.

� Goodness of �t. The following assessment criteria have been used to assess the

predictive power of models in this section.

� Visual inspection is a signi�cant secondary review criterion, with a particular

emphasis on the test predictions timeliness of sentiment direction shifts and on dramatic

negative events (including corona virus pandemic and the GFC).

� Review metrics. Alexander (2008a) explain that distance metrics such as Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE) commonly used for
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assessing both the in-sample model �t and out-of-sample predictions, or forecasts, for

time series models. Both measures produce negatively oriented scores, and as such, a

model with a lower score produces a better result. The metrics are de�ned, following

Alexander (2008a):

RMSE �

gffeT�1
Ţ

t�1
prt � r̂tq2;

MAE � T�1
Ţ

t�1
|rt � r̂t |;

(116)

where r denotes the realised target variable and r̂ the predicted target variable. As I

can see from equation 116 above, the RMSE function squares residuals, which, relative

to MAE, punishes larger variances in the scored metric and is therefore always expected

to be larger than the MAE metric. This di�erence in results can provide further insight

into the model residuals. So, when the residuals have a large range of values, the

greater the di�erence will be between the RMSE and MAE metrics. If the residuals are

uniform in size (not likely), the RMSE and MAE will be equal.

To model economic variables (such as GDP, employment, sentiment, and price indices),

one must be cognisant of data time series exhibiting sluggishness or inertia, which

manifests as autocorrelation, (Gujarati, 1999). According to Gujarati (1999), the

e�ect of business cycles is that variables will exhibit `momentum'. RMSE and MAE

can also be utilised to evaluate the autocorrelation of the anticipated variable as well

as the empirical autocorrelation of the time series data.
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Full run complete: 11/10/2021 21:24:17

622

Figure 29: Training and test review are also enabled by the design of a set of standard charts.

The �rst set of charts above is a plot of the target variable, and beneath it is a

set of model performance and model loss charts that plot the results from the

modelling of each epoch.
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10.3 Machine-learning model parameters and architecture

The following table is a summary of the modelling techniques, inputs and technologies.

Model features Machine-learning

Model objectives Test the e�ectiveness of using alternative data streams, (including news and social media) and

utilising more sophisticated machine-learning techniques to forward predict globally recognised

sentiment indices.

Variables Independent: text data for each of the data sources, factors derived from VADER and Textblob

scores such as rolling average (1m, 3m 6m, 1 year), volatility of VADER/Textblob scores, 75th

and 25th percentile of rolling sentiment, article count based on �lters (such as search for the

word `depression') and ARIMA terms such as prior month target.

Dependant: Market Sentiment proxied by OECD sentiment indices (CCI, BCI and CLI), mod-

elled using month end data.

Data source News based data (The Guardian and New York Times), GDELT, Social media, Twitter and

Sentiment scores from lexical models.

Tools Python, VADER, Google Colab, Textblob, Keras modelling framework, statsmodel package.

Models tested Neural Networks, Recurrent Neural Networks (Long-Short-Term-Memory) models; Recursive

Neural Networks, and Convolutional Neural Networks, ARIMA model.

Lagged variables Single-period models are as such and not lagged, but multi-period models are lagged for 3

months of data using all independent variables. This decision was based on an inspection of the

p-ACF and ACF numbers of lags that feature autocorrelation.

Hyper-parameters

Activation function Sigmoid

Optimisers Adam

Epochs 1000

Train/Test split 68%, database size symmetry dimension that 66.667% does not allow for, using 68% worked.

Testing framework

Visual Graphical analysis of the out-of-sample test results is plotted as a time series of the actual

versus the predicted value. Autocorrelation is identi�ed and managed using the autocorrelation

function (ACF) and the partial ACF.

RMSE Root Mean Square Error, negative parameter which requires selecting models with lowest value

of the out-of-sample test results. A proposed 6% RMSE and 5% MAE will be used to classify

good models from models that would not be selected.

MAE Mean Absolute Error, negative parameter which requires selecting models with lowest value of

the out-of-sample test results.

Table 7: Sentiment models description, objectives, variables and data sources.
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The following report is a mix of model inputs, model architecture summary, and accuracy

statistics that have been compiled using Python and Keras, which I stored for a detailed

archive of modelling results and metadata.

Training and test data dimensions:

Train X: (170, 6, 7) Test X: (80, 6, 7) Train y: (170,) Test y: (80,)

6/6 [==============================] - 0s 3ms/step

Timestamp: NN modelling completed on 29/07/2021 at 08:36:05

Mode reference: "sequential_6A"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv1d_1 (Conv1D) (None, 5, 64) 960

_________________________________________________________________

max_pooling1d (MaxPooling1) (None, 2, 64) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 128) 0

_________________________________________________________________

dense_12 (Dense) (None, 50) 6450

_________________________________________________________________

dense_13 (Dense) (None, 1) 51

=================================================================

Total params: 7,461 | Trainable params: 7,461 | Non-trainable params: 0

_________________________________________________________________

Model Name: NN, Multi-Factor, Multi-step completed: 29/07/2021 08:36:05

X Variables included: `VADER_compound_clean_stem', `VADER_compound_clean_stem_75th_filtered',

`Article_count_30_filtered', `GDELT_weighted_tone_augmented', `Article_count_30_filtered_scaled,

`OECD_CLI_MEI_GBR2_scaled'

Target variable (Y): OECD_CLI_MEI_GBR2_scaled

Epochs = 1000 | Timesteps = 3 | Train/Split = 0.68

Train Accuracy [Root Mean Squared Error]: 0.023

Test Accuracy [Root Mean Squared Error]: 0.069

Train Accuracy [Mean absolute error]: 0.036

Test Accuracy [Mean absolute error]: 0.049

Saving model results: 29/07/2021 08:36:06

The example results above are of a testing model that was executed on July 27, 2021. It

was based on a CNN architecture and predicts the UK CLI index (OECD CLI MEI GBR)

using multiple predictive factors.
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10.4 Modelling results, testing and accuracy

I detail the results of the modelling to understand the most appropriate models and data

sources.

10.4.1 Results following a progression in modelling technique

To fully understand the relative strengths of modelling techniques, combinations of data

sources, and hyper-parameters, the following exercise is based on running iterations of the

models using planned scenarios (in the same style as a grid search with multiple models).

The model types are a combination of single factor with a single time step, multi-factor,

and multi-step. The multi-step feature has been established in a prior analysis. The analysis

was performed on time steps ranging between two and six months. The modelling results

showed an improvement to the RMSE and MAE results by increasing the time steps to

three months; thereafter, the results did not improve. The autocorrelation function (ACF)

validates this conclusion. In summary, the ACF plot is one of a set of common methods

for identifying autocorrelation characteristics in data. The ACF measures the coe�cient

of correlation between two successive values in a time series and illustrates the relationship

between time-series data and its lag variable. The chart is a device for identifying autocor-

relation characteristics. Autocorrelation is highlighted when lagged variables go outside of

the band (highlighted in pink). This procedure requires iteration (using lag terms, di�erenc-

ing, and moving averages) until the autocorrelation e�ects are tolerable. For this modelling

study, a three-period time lag based on the percentage change of the emotion variable was

su�cient (the modelling review process requires that each time you make a change to the

model variables, the autocorrelation function (ACF) and partial ACF must be re-performed

and reviewed). One of the modelling strategies includes the introduction of variables to deal

with autocorrelation (ARIMA terms); this was performed to determine whether the inclusion

of the lagged target variable enhances the �nal model scenario.

The �nal results of each modelling scenario were generated and stored. Considering

there was a huge volume of analytics and charts, this amounts to well over 100 A4 pages

per scenario. I only selected the summary views that can best answer the questions raised

in the study. The following is a summary result view of machine-learning techniques based

on visual inspection of in-sample and out-of-sample charts, in Figure 32. In the charts that

following, I summarised the results from the basic feed-forward neural network model to the
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Figure 30: Autocorrelation function (ACF) for the scenario of GBR Guardian modelling. This

analysis is predicated on a goal variable representing the standard deviation of the

percentage change in the BCI sentiment value.

Model Type Data source(s)
Single factor Guardian

 LSTM Single factor, Multi-step Guardian | GDELT
 LSTM, Single-factor, Single-step Guardian | Twitter
 NN, Single-factor, Single-step Guardian | NewYorkTimes Country Total models
 NN, Single-factor, Multi-step Guardian | NewYorkTimes | Twitter GBR

Multi-factor NewYorkTimes USA
NN, Multi-variate, Single-step NewYorkTimes | Twitter RSA
 LSTM, Multi-variate, Single-step NewYorkTimes | GDELT
 NN, Multi-variate, Multi-step NewYorkTimes | Twitter | GDELT
 LSTM, Multi-variate-factor, Multi-step, ARIMA terms Guardian | NewYorkTimes | GDELT
 LSTM, Multi-variate, Multi-step Guardian | NewYorkTimes | Twitter | GDELT 

297

Figure 31: Modelling scenarios are used to generate results from di�erent model types. This

requires iterating data source combinations for each region and model types in-

vestigated. Importantly, these models are only those that were executed and

returned reasonable results (or any results) across all scenarios.

models with more structure such as such as the Long Short Term Memory (LSTM) model,

see Figure 32.
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Figure 32: Multi-factor neural network model with no lag variables (timed steps). Visual

inspection reveals a model that fails to predict sentiment movements both in and

out of sample.
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Figure 33: Neural network model with multi-factor and multi-lag variables (timed steps).

With reasonably good directional predictions and timing of sentiment changes,

the in-sample model shows real promise. The out-of-sample model performance

shows results that diverge in more recent time periods, but the directionality and

timing of signi�cant shifts are reasonable. Refer to the Appendix 26.9 for a more

complete set of modelling results covering the di�erent regions.

10.4.2 Summary modelling results

The �rst analysis of the results tests the e�ect of increasing the number of data sources

and reviewing them on the category of factors. The results in the bar chart, Figure 35,

measure the out-of-sample RMSE of the test database; that is, the out-of-sample data.
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Figure 34: LSTM modelling that includes multi-variate, multi-lagged variables (times steps).

The �nal model I reviewed in this instance has a highly favourable modelling

result, with RMSE and MAE lower than 6% and 5% respectively. The timing,

directionality, and scale of peak-to-trough are accurate.

It is clear from the modelling result (in Figure 35), that including additional data sources

does not improve the RMSE; it actually increases the RMSE on average. By contrast, by

including further factors, the modelling results improve signi�cantly, and this is true for each

of the three regions. The underlying detail will be further analysed by reviewing each of the

respective regions below. I continue the overall summary analysis by comparing the e�ects

of various modelling techniques while maintaining the single- and multi-factor split. This

analysis aims to isolate the impact of modelling technique in relation to single or multiple

factors in the model, based on out-of-sample RMSE. The analysis reveals what drives large

parts of the accuracy in the modelling.

Figure 36 reports the full result set for both the RMSE and MAE, together with the

in-sample and out-of-sample data. This analysis has been broken down to show the aver-

age results for single- or multi-factor, as well as single- or multi-step model scenarios. As

expected, the RMSE results will be higher than the MAE due to the residuals being squared,

that contributes a greater weight to the �nal RMSE in comparison with the same errors

contributing to the MAE result. The multi-factor, multi-step models produce out-of-sample

errors that are on average close to the 6% RMSE and 5% MAE thresholds, respectively.

The modelling technique has less of an impact than the combination of multi-factor anal-

ysis and modelling technique. I show this result in the left part of the bar chart in Figure

37. This result is approximately equal when we review across the modelling techniques. This
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Figure 35: Out-of-sample RMSE test results broken down by factor category, number of

data sources and region.
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Figure 36: Reports the results of the modelling using RMSE and MAE for both in-sample

and out-of-sample, broken down by step category (single or multi-step) and factor

category (single or multi-step).

indicates that modelling technique alone has little impact. The results on the right half of

Figure 37 show the impact of modelling using di�erent techniques and single- or multi-step

time lags. In a multi-factor and multi-time-step model, both the neural network model (circa

40%) and the LSTM model shows a signi�cant reduction in RMSE, with the LSTM show-

ing a signi�cant drop in RMSE of around 40%. The LSTM model with multi-factor and

multi-step models produces out-of-sample errors that are greater than the 6% RMSE and
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Figure 37: Out-of-sample RMSE test results broken down by factor category, single/multi

factor category, model type and region.

5% MAE thresholds, respectively.
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Figure 38: RMSE results where I compare the e�ects of including Twitter in the modelling

data. In all the modelling categories, the results are worse o� for including Twitter

data. The multi-step model using LSTM is the best performing model that uses

the NLP sentiment signal data.

In the next sections, I review the results for each of the speci�c locations and go into
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more granular detail around the data sources.

10.4.3 UK modelling results
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Figure 39: RMSE results from the UK modelling exercise. What is clear from the chart is

that LSTM, multi-step, and ARIMA terms improve the results. The inclusion of

Twitter data, even with the shorter observation period, only adds noise to the

model results.

The following analysis is constructed solely on the basis of the data collected from the

UK BCI index. I will be able to generate a more granular review and analytics. In Figure

39 I go over the detailed model types as well as the underlying data sources, both single-

and multi-step. When I review the single-step model results, the best results are from those

models based on a single news data source. What is also clear is that the inclusion of Twitter

data impairs the results (in every case). If I review the multi-step modelling and focus on the

best results by model type (LSTM without ARIMA terms), a single new data source again

proves to be the best con�guration. Surprisingly, the best combinations are The New York

Times and The New York Times + GDELT, followed by The Guardian and The Guardian +

GDELT. When the Twitter data is added, the result is impaired, and lastly, the combination

of more than two data sources also impairs the result. The Guardian's single data source

produces the most consistent results. A �nal observation is that the combination of the two

primary news data sources (New York Times and The Guardian) produces a worse RMSE

result than using either of the single data sources alone.
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10.4.4 USA modelling results

The following analysis is based on the results for the USA BCI index only. I will also be able

to generate more granular review and analytics.

In Figure 41 I examine single/multi-step model types and data sources. Single-news data

source single-step models perform the best. Twitter data also degrades outcomes (in every

case). If I analyse multi-step modelling and focus on model type (LSTM without ARIMA

terms), single news data source again performs better. The New York Times and GDELT

are the �nest, followed by The Guardian and GDELT. Twitter data a�ects the result, as does

using more than two data sources. The Guardian has the most consistent data. Finally, the

combination of the two key news data sources (New York Time and The Guardian) yields a

higher RMSE than either data source alone.

10.4.5 RSA modelling results

Only the results of the RSA BCI index are used in the following analysis, which you may �nd

below. I will be able to produce a more granular assessment and statistics with the help of

this �lter. In Figure 43 I reviewed at the underlying data sources too and the detailed model

types, separating them into single and multi-step categories. When I look at the results of
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Figure 40: UK in-sample and out-of-sample MAE and RMSE testing results are reported

above. What is clear is that the LSTM model, multi-step and multi-factor, with

no ARIMA terms, performs best, with RMSE and MAE values lower than the

proposed 6% and 5% thresholds.
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Figure 41: RMSE results from the US modelling exercise. Both the results are included

(excluding Twitter data and including Twitter data). What is clear from the

chart is LSTM modelling, multi-step and ARIMA terms improve the results. The

inclusion of Twitter data, albeit over shorter time periods, provides signi�cant

noise to the modelling.

single-step models, I �nd that the models based on a single news data source produce the

most accurate predictions. It is also clear from the results that including data from Twitter

brings about a degradation in the outcomes (in every case).

When I look back at the multi-step modelling and concentrate on the best results ac-

cording to model type (LSTM without ARIMA terms), I �nd that using a single data source

for the news is, once again, the optimal set up. It is interesting to see that The New York

Times and The New York Times combined with GDELT produce the best results, followed

by The Guardian and The Guardian combined with GDELT. The outcome is degraded each

time the data from Twitter is added, and additionally, the use of more than two di�erent

data sources also has the e�ect of degrading the outcome. The results obtained from The

Guardian's one and only data source are the ones that are the most reliable. A last obser-

vation is that making use of both of the key news data sources (New York Time and The

Guardian) together generates a result with a higher RMSE than making use of just one of

the data sources on its own.
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Figure 42: The �ndings of both in-sample and out-of-sample RMSE and MAE tests in the US

are presented up top. Results for both RMSE and MAE are below the speci�ed

thresholds of 6% and 5%, respectively, suggesting that the LSTM model, which

is both multi-step and multi-factor, without any ARIMA components, performs

best.

11 Summary of analysis

This section has been a revealing investigation into the use of alternative data and contem-

porary modelling techniques that extract macro and fundamental risk factors. In terms of

review, I inspected the incremental bene�t of incorporating each technique, revealing the

true bene�t. I separately explored the data types, methods, and how one would use factors

to deal with autocorrelation, thereafter reviewing each part to understand its impact. The

greater part of this review is investigating the relative bene�ts of using various sources of

alternative data, both reviewing the di�culty in handling the data and the information the

respective data sources hold.

When I reviewed the power of alternative data for use in building signals, I found the

following. The statistics from the news are easily available and o�er a comprehensive history

(e.g. The New York Times has provided free access since 1900). According to my analysis,
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Figure 43: The results of the RMSE exercise that was performed with the RSA model. Both

of these results are included (those that do not include Twitter data as well as

those that do include Twitter data). The graphic makes it abundantly evident

that LSTM modelling, multi-step, and ARIMA terms all contribute to improved

results. The inclusion of Twitter data, even if it was collected over shorter time

periods, adds a considerable amount of noise to the modelling.
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Figure 44: RSA in-sample and out-of-sample MAE and RMSE testing results are reported

above. What is clear is that the LSTM model, multi-step and multi-factor, with-

out any ARIMA terms performs the best, with RMSE and MAE results lower than

the 6% and 5% proposed threshold.

the information that is presented in the news possesses predictive power. Collecting Twitter

data can be a challenging endeavour (streaming data can be obtained without charge, but
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historical data draws might be greatly slowed down and/or require payment). It was di�cult

to maintain and clean the data that was based on �ltered terms, which resulted in minimal

proof of its predictive value (albeit over shorter time periods). The data from Twitter

provides a great deal of noise even over the short horizon of investigation. On the other-

hand, the signals provided by Google's GDELT has shown to provide a signi�cant dip in

measured sentiment during the pandemic that other news sources did not display. News

sources provide relevant signals, especially when reviewed within a particular geography.

When it comes to my investigation of modelling techniques for the time-series data,

machine-learning models, in particular LSTM, are a good choice. The use of ARIMA mod-

elling in neural network frameworks and lexical outputs as factors are examples of hybrid

modelling considerable improvements over machine-learning models used alone. Hybrid mod-

elling strategies, which make use of the judgements of subject matter experts, will produce

variables that have predictive value and be sensible to the domain user in question. All said,

the best results was based on univariate ordinary least squares model using ARIMA terms

(please keep in mind, the purpose here is to consider alternative data, however a benchmark

model is of interest too).

I would like to provide a view on the tooling that I used during this analysis by design

readily available at no material cost, or free of charge. This was greatly encouraging { I found

that quick access to powerful modelling can be accomplished with the help of frameworks

such as Keras and Python notebooks. These frameworks enable hybrid modelling systems

that are easy to use and are free of charge. Google Colab has a low cost GPU option;

prevents the need make a considerable �nancial investment to purchase GPU hardware.

In summary, the analysis was interesting and revealing. Given the scope of this study

and the information available in a full newspaper history, I maintain that I only scratched

the surface of its capability. The advent of new technology to wrap up existing techniques

into freely available frameworks at a fraction of the cost is compelling. I am still left with

the view that unless one has a speci�c use case against which the extraction of information

using NLP technologies and utilizing highly advanced machine-learning packages may need

careful consideration. It is still an onerous task to curate the data and extract value from

it. I also found that �nancial data features, �rstly autocorrelation, have the most signi�cant

overriding impact for modelling. This draws me to a natural conclusion for �nance, domain

knowledge and understanding of techniques is the real benchmark or departure point for these

new techniques and alternative data sources.
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Part IV

Private debt and credit-risk measurement

12 Introduction

Anson et al. (2011) de�ne credit-risk as instruments issued by corporations or entities that

may default, where outstanding money owed to the investor is at risk of default. These

models clearly indicate for an investor to bear �nancial risk and invest in this instrument they

seek additional incentives over and above the risk-free rate of return. The extra yield is usually

measured as a spread charged over a reference curve, in the case of a private credit loan the

reference rate could be the base lending plus an additional spread. For example, for a bond

issued by a corporation, the reference curve is usually the swap curve. Traditionally, the credit

portfolio risk can be understood by observing the level of credit spreads. The average spread

di�erence is 1.4%, which indicates that private debt with similar losses would thus carry a

high reward. I focus on private debt market that this is not traded in liquid markets and risk

are not thoroughly understood. In the following section I will detail the core credit-risk theory

and models which will assist me in approach the building out of the most appropriate model

for private credit, whilst considering asset-pricing features such as the credit puzzle. I will

also analyse the available credit data and start to build the core parameters that are needed

for simulation of asset class returns. In this analysis, I also directly investigate the use of the

DE-CCI proxy data that I �nalised in part III.

12.1 Preliminaries: credit modelling parameters

The Financial Account Standards Board (FASB) for credit-risk and from the statutory per-

spective, the International Accounting Standards Board (IASB) have also been updated with

the introduction of the International Financial Reporting Standards number nine (IFRS9) for

the quanti�cation and reporting of loan loss provisions (Engelmann, 2021). Both Basel II

and IFRS9, in the three applications of risk management (minimum capital, loan loss pro-

visions, and stress testing), require internally estimated credit-risk estimates (Engelmann,

2021). The three key parameters are loss given default (LGD), default probability (PD), and

exposure at default (EAD). Please refer to Table 9 for a good visual de�nition of TTC and

PIT PD.
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The Basel II accord is a prescriptive framework for banks that standardise credit measures

as part of their risk and capital management framework. This framework directly impacts

bank capital requirements and earnings to satisfy regulatory (Basel II) and statutory (IFRS)

requirements for products and risk parameters. As these standards de�ne the core building

blocks for credit-risk measurement and have been broadly adopted in banks and elsewhere, I

list them below.

12.2 Probability of default

Trueck and Rachev (2009) explain that all banks using internal ratings for Basel II use a

Probability of default (PD) to estimate the risk for borrower (or obligors11) default. The PD

de�ned by Basel II is a conservative long-run average PD estimate, based on historical expe-

rience and supported by empirical validation. The Basel Committee on Banking Supervision

de�nes that a default is considered to have occurred with regard to a particular obligor when:

� obligor is considered to not be capable of paying its credit obligations in full, also not

by making use of collateral held.

� obligor has not paid (past due) on a material payment by more than 90 days.

� overdrafts or revolving facilities are equivalently past due when a client has been in

excess of the agreed limit by more than 90 days.

In �nancial circles lending and credit-risk have standard de�nitions now, the likelihood that

a borrower will not meet their �nancial obligations and debt over a de�ned period of time

is known as the probability of default (PD). The time horizon for the PD is an important

assumption in credit system core approaches are:

� Point in time (PIT) PD - one year estimate of the current expected PD based on

current economic conditions. A PIT credit-risk measure takes into account all relevant

data as of a speci�c date in order to capture the PD for a client over a speci�c period

of time.

� Long-run or through the cycle (TTC) PD - based on the average long-run PD that

take into consideration a full business cycle.

11A legal term: a person who owes or undertakes an obligation to another by contract or other legal

procedure.
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Traditionally, the PD has been the central focus for credit-risk measurement. The advent of

Basel II meant that other key measures got formalised for all banks. The following section

describe the other key measures, starting with the exposure at default.
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Figure 45: Comparison of PD across country for one year PD.
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Figure 46: Illustration of a Potential for Default (PD) showing a representation of PD mea-

sure. The left panel shows how the PD measures vary through-the-cycle. The

right panel explores the same concept by illustrated through the VaR loss distri-

bution.

12.2.1 Exposure at default

This measure was set to account for cash drawdowns an obligor is likely to have made in the

run-up to their default. The exposure at default (EAD) is an adjustment to the loan exposure

to account for any further drawdowns up to the point of default (Trueck and Rachev, 2009).

I make the assumption that the EAD is 100% in this analysis, which is a conservative but
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appropriate assumption.

12.3 Loss given default

The loan loss given default (LGD) metric is used to determine the extent of loss that the

bank will incur if the loan goes into default. Losses are not always linear with respect to

loan-to-value for the LGD; the loss is largely related to contract-speci�c characteristics that

include the value of the underlying collateral, the loan-to-value ratio, and the seniority of

the claim. In times of stress, the market liquidity of the collateral can heavily inuence the

resultant losses, we know this from the experience in GFC. The LGD might be any value

from 0% to 100% if no workout fees have been incurred by the bank. There are various

types of LGDs; I list a few of the recognised methods:

� Implied market is based on the credit spreads have been measured and reported in the

market place.

� Market on the other-hand is based on the residual value of market debt instruments

after default.

� Work-out is based on the actual residual value after accounting for the sale of collateral

held coupled with the cost of the recovery process.

According Araten et al. (2004), the bene�t of a work-out recovery is that the true value of

recovery is revealed, whereas the market LGD is further inuenced by demand and supply,

liquidity and risk aversion, and taxes. Because the market LGD has been found to system-

atically underestimate the true recovery rate, standard market practice gives the LGD three

ways to account for the business cycle (again, recognising the LGD's instability over time).

The three methods are as follows:

� Point in time (PIT) - a one year estimate of the current expected LGD based on

economic conditions.

� Long-run or through the cycle (TTC) - based on the average long-run LGD that

take into consideration a full business cycle.

� Down-turn (DT) - calibrated from facility and loan loss data from stressed markets.

Trueck and Rachev (2009) explain that senior claims start with the LGD value of 45% and

for subordinated exposures this value is closer to an LGD of 75%. These values will then be
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scaled in accordance to collateralization levels, with separate levels used for real estate. In

a perfect world one would have an extensive modelling data set, rich in feature to support

LGD parametrisation and then specify an advanced multi-variate LGD modelling approach

with own loss data. This approach can be used to calibrate at an exposure level, factors

may include sub-industry, product or legal characteristics and geographical location (Trueck

and Rachev, 2009). Keijsers et al. (2018) point to studies and loss data that show the

variation over the cycle. Cycles can a�ect bank capital requirements by more than a factor

of two, which is signi�cant. The most signi�cant portion of this change is driven by the LGD

uctuations over the cycle.

13 Rating and risk modelling techniques

The development of credit modelling began with the �rst models to aid in credit judgement

with active signals of potential default, followed by models such as Altman's Z-score (Ben-

zschawel, 2017). In this development, there was an advancement in real-world modelling

that was not as useful to broker dealers to hedge their credit exposures, as they did not have

the correct data to calibrate models. Benzschawel (2017) explains that due to a general lack

of data to build structured models, practitioners developed an easy way to apply the general

credit-risk framework by using a simpli�ed reduced-form modelling framework (Benzschawel,

2017). In the following sections I summarise key models and frameworks used in credit-risk

modelling.

Numerous studies and commercial models (including reduced-form models like Cred-

itRisk+, structural models like the Merton model, and banking scoring models) have been

developed to assess the risk in a credit portfolio. As a result, we know that the risks asso-

ciated with a credit loan portfolio uctuate over time and resemble the credit cycle. Both

business results and overall economic activity a�ect the credit cycle. Recent studies have

concluded that the collateral levels and recovery values are not independent from the credit

cycle (Moody's (2010), Han (2019) and Fischer et al. (2019)). Exciting research is being

conducted on news-based projections of macro-economic indicators (Feuerriegel and Gor-

don, 2019) and variable selection strategies for credit recovery models (Nazemi and Fabozzi,

2018). This is a brief overview of credit modelling technique and it is by no means exhaustive,

I grouped them into four distinct classes of credit models.
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13.1 Rating agencies

Trueck and Rachev (2009) explain the rating agency services had a recorded start in 1860,

with formal debt and government ratings. The �rst ratings used to be allocated for a 75+

year horizon. In today's �nance world, rating agencies are designated and referred to as

nationally recognised statistical rating organizations, which include such well-known names

as Moody's, S&P as well as Fitch (there are more, but not covered here). Trueck and

Rachev (2009) note that S&P and Moody's have very similar rating approaches. The ratings

are issued with speci�c rating bands that can be summarised as investment grade or sub-

investment grade. Corporates will generally approach a rating agency prior to a new debt

issue, where rating agencies provide two primary ratings:

� Issuer credit ratings: These ratings are an assessment of the overall capacity to meet

obligations

� Issue-speci�c credit ratings: are assessments on a speci�c obligation, whether the

structure and cash-ows and obligors will meet the obligation with a measure of rank,

or rating category

Di�erences between the issuer and issue speci�c ratings are referred to as `notching'. Where

security issues are said to be `notching' up relative to the issuer rating. Trueck and Rachev

(2009) add that ratings are based on a lot of underlying measurement factors, set into two

categories: �rstly, �nancial risk (�nancial factors, policies, pro�tability, structure, protection

of cash ows, and agility) and secondly, business risk (including, industry factors, competition,

marketing, technology, e�ciency, regulation, and management). Other factors are captured

by sovereign, currency, and emerging markets factors, which are considered (Trueck and

Rachev, 2009).

Alexander (2004) explains that listed debt is rated by public rating agencies. There

are three main agencies that supply ratings for listed debt instruments. The ratings include

details on the quality of the debt and the obligor's ability to service that debt. The role of the

rating agency as an independent party that lowers information barriers caused by information

asymmetry (the company has more information about its ability to service debt than the

prospective investor) is critical. I am only focused on private credit, so this brief introduction

be enough to place context around the modelling later on in the chapter.
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Rating agency scales mapping

Fitch S&P Moody's

Investment grade

AAA AAA Aaa

AA+ AA+ Aa1

AA AA Aa2

AA- AA- Aa3

A+ A+ A1

A A A2

A- A- A3

BBB+ BBB+ Baa1

BBB BBB Baa2

BBB- BBB- Baa3

Sub-Investment grade

BB BB Ba2

BB- BB- Ba3

B+ B+ B1

B B B2

B- B- B3

CCC CCC Caa

CC CC Ca

C C C

D D D

Table 8: The above ratings scale comparison table between Moody's, S&P and Fitch long

term ratings

13.2 Scoring models

Linear probability models, logit models, probit models, discriminant analysis, NN and, more

recently, ensemble models covered in the credit scoring approaches of Trueck and Rachev

(2009). Interestingly, neural network models are not new and have been used in credit

scoring since the early 1990s, but continue to be hampered by the fact that attribution to

the factors that drive credit scores is not systematically possible (Trueck and Rachev, 2009).

Page 157



13 RATING AND RISK MODELLING TECHNIQUES

Early credit scoring was formalised by Altman (1968), this method was to score a company

based on its �nancial ratios (including sales/total sales, retained earnings/total earnings and

market capitalisation / debt) on a Z-score. Large retail and commercial banks have made

use of scoring techniques in the sanctioning process for a long time, at varying levels of

sophistication. The advent of Basel II formalised the modelling of credit-risk, in particular for

large homogeneous portfolios such as retail credit loan books, which has become reasonably

standardised. There are various methods used, but the ratings are most commonly established

by using factors that predict obligor default in a Logit or Probit model, which is then mapped

to a rating table.

13.2.1 Probit models

The Probit model's method can be thought of as being analogous to that of a multivariate

non-linear function, where Y is the dependent variable and X is the independent variables or

vector of variables, following Trueck and Rachev (2009):

P pY � 1|x1; : : : ; xkq � f px1; : : : ; xkq: (117)

The Probit model makes slightly di�erent assumptions:

P pY � 1|x1; : : : ; xkq � �px1; : : : ; xkq (118)

where pi is the default probability for obligor i . the di�erence in the Probit function is that

it is based on a cumulative standard normal distribution (�), that transforms data in the

regression into an interval space [0,1], a handy result for credit modelling as we are solving

for PD range is between [0,1].

Probit ÝÑ pi � 1?
2�

» x1;:::;xk

�8
e�

z2

2 dz (119)

13.2.2 Logit models

Logit models, or logistic regressions, are quite similar, where the mapping, or mathematical

transform, of the same factors is via the Logit transformation and calibrated using this

method in a process called a logistic regression, with � loadings calibrated from historical

data of X, following Alexander (2004):

Logit ÝÑ pi � 1

1� expp�0 � �i1X1; ::::;��nX i
nq

(120)
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Trueck and Rachev (2009) explains that the Logit and Probit functions will produce results

that are similar, in particular in rank. There will be di�erences in the extreme tails, though.

The interpretation of the Probit results is easier in that the coe�cients are already in a metric

to directly compare with the standard normal cumulative distribution. For the Logit function,

the regression results for company i must be translated into a prediction of defaulted status

(y = 1) or non-defaulted status (y = 0). This is achieved with a default threshold K, where:

Yi �

$'&
'%
0 if zi ¤ k1

1 if zi ¡ k1

(121)

this approach can be extend to a series of categories and this can be extended to rating

categories so as to align to rating agencies rating buckets.
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Figure 47: The graph above depicts the Logit and Probit cumulative distribution, highlighting

the distinctive S-curve that allows for a ranking area that shifts from one binary

value to another over a short range in the x-axis. The illustration is set to

demonstrate the s-shaped curve and the relative di�erence in the tails between

the two approaches, where the Probit model has wider tails.

13.2.3 Z-score (Altman)

Altman explored the use of a multivariate regression, using a multiple discriminant approach.

Altman's Z-scores were calibrated on historical data that included company defaults using

a discriminant model, which was readily adopted in the 1980's. The model solves for linear
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combinations using the following equation, per Trueck and Rachev (2009):

Z � w0 � w1X1; : : : ; wnXn (122)

Z is the discriminant score, often called the Z-score. w0 is the constant and the remainder

of the w -weights, Xipi � 1; : : : ; n) are coe�cients that minimise the error in the regression,

but are in practice used to `load' the independent variables or factors, X in the equation.

Altman (1968) discovered that bankrupt �rms that defaulted within a year can be ranked by

looking at the following key accounting ratios:

� Working capital/total assets (w1 = 0.012)

� Retained earnings / total assets (w2 = 0.014)

� Earnings before interest and taxes / total assets(w3 = 0.033)

� Market value of equity/book value of total liabilities (w4 = 0.006)

� Sales / total assets (w5 = 0.999)

The model was used for credit lending decisions, where the Z-score was compared to some

cut-o� level (originally 1.8), with higher scores implying better credit worthiness and lower

scores implying di�culty in meeting the cut-o� criteria for lending.

13.3 Structural models

In the following section I provide a brief overview of structural credit-risk models. Unlike in

reduced form, these models are de�ned by their view on how to calculate the PD for a �rm

based on the value of its assets and liabilities. So certainly targetting corporate exposures

where the modelling technique requires lots of data.

13.3.1 Merton model

These credit-risk models, often known as `Merton' models, are characterised by their exten-

sive reliance on assumptions about the company's �nancial statements. Default is treated

as an endogenous variable in the models, with its eventual value tied to the �rm's balance

sheet. The approach is predicated on an appreciation of a company's balance sheet's re-

silience under pressure. To put it another way, this is the level of the company's assets below
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which the company will be unable to continue operations, and this level is established as a

proxy for the point at which the company will default.

Modigliani and Miller (1958) laid the groundwork for what would become the famous

Merton model by providing the necessary bridge between debt and equity. Investor indi�erence

toward debt and asset �nancing operations, as described by Modigliani and Miller (1958).

Following on from this work, Black and Scholes (1973) established their well-known options

theory, which shows how a �rm's value relates to its total debt.

Structural models are the �rst type of credit models, and these models all stem from

Merton's seminal 1974 paper as it connected how equity and debt levels are related to the

value and volatility of a �rm's assets under speci�c circumstances. Many subsequent models

relied heavily on this assumption and approach. The core underlying theory that the Merton

model is based on is option theory, as it is applied to a speci�c single �rm's value of assets

and liabilities. This analysis then models the contingent claims on the �rm. The equity value

of the �rm can be thought of as the value of a call option on the �rm's assets, and this

option value can be used to calculate the �rm's value. This is known as a default when the

�rm's assets are worth less than its liabilities. Moody's famous commercial KMV model,

which is rooted in Merton theory, is widely used and well-known. In this scenario, the default

probability is assumed to be proportional to the �rm's balance sheet assets value, structure,

and volatility (Alexander, 2004).

As a result of the development of Moody's KMV, also known as the CreditEdge model,

I now have a way to correlate the time to default with the likelihood that default will occur,

known as the expected default frequency (EDF). The function was based on segmenting

�rms into distance-to-default buckets and the default experience for years n=1 to n=5 and

placing a oor and cap of 0.05% and 20% for default mappings, respectively. Moody's KMV

has been a huge commercial success. The one-factor Merton model is based on asset returns,

ri per borrower i , that are fully described by a single risk factor for each �rm. To begin with,

the Merton model posits that a zero-coupon bond represents the value of debt with face

value D that matures at time T , and models the asset value of the �rm as St for each time

period t. As soon as Dt ¤ Et , the obligor's asset's value, Xt , becomes negative. Assuming

a geometric Brownian motion (GBM) model, this approach treats the obligor's asset value,

At , as stochastic. This relationship is denoted in a stochastic di�erential equation:

dAi � �Aidt � �iAidxi (123)
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where x is a Wiener process or Brownian motion. Solving this stochastic di�erentiable

equation (as described in Hu and Liu (2004)), showing the value of �rm A asset as, following

Chatterjee (2015):

AtpT q � eAp0q��iT� 1
2
�2
i
T��i

?
TXi (124)

If a �rm is said to default when assets are less than debts values, AipT q ¤ Bi , then the

probability of such an event is, again following Chatterjee (2015):

P rAipT q ¤ Bi s � P rXi   ci s � NpCiq � p� (125)

where N is the cumulative distribution function and is a �eld derived from (124) above, this

is an indication of the probability of a single obligor default. If we consider more than one

obligor at a time, we impose a correlation structure between obligors. We assume that Xi is

correlated with correlation coe�cient �. Thus a �rms value can now be seen as a combination

of an idiosyncratic risk factor "i and another single factor, the systemic risk factor Z that is

linked to exogenous shocks. The systematic risk factor and asset return have a correlation,

denoted by �. c is the de�ned level of asset value, that can be shown to be a function of

the TTC PD and default threshold is de�ned as default when Xi ¤ c . Given that the �rms

are assumed to be normal and similarly correlated, Xi can be represented as the sum of S

and Z that represent the systematic and idiosyncratic component respectively and I detailed

this model below:

ri � St
?
��

a
1� �iZi (126)

where
?
1� �iZi can be seen as the �rm's idiosyncratic risk and

?
�iZ is a �rm's exposure

to the systematic risk factor, that is assumed to be normally distributed, Z � Np0; 1q.
To summarise, structural models have proven to be invaluable in both academia and

industry. There are a few issues though, which include the required processing power and

expense of the models; an overly simplistic view based on debt and equity (which misses

important underlying events such as M&A activity) and the extent of the information required

to support the models. Benzschawel (2012) explain that the Black and Scholes model is so

detailed, with so many data attributes, it is di�cult to support with real data. The data to

support key measures are not directly observable, notably �rm asset values.

13.3.2 CreditPortfolioView (McKinsey)

Another reduced-form model is CreditPortfolioView, this model can be classed a hybrid

macro-simulator. The modelling approach has a credit transition matrix at the centre that
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Expected value of assets (μ)

Volatility  of returns 
(σ)

Default probability

Asset value 
at t =0 > 100

Debt levels

Figure 48: Merton's model is based on stochastic asset values that are simulated over a hold-

ing period. These are compared to a reference debt level, and the distance from

that debt level is modelled by using underlying data points, which are plotted as

a histogram on the right part of the illustration. This is a well-known illustration,

however I modelled this data a plotted a chart that is an adaption of Benzschawel

(2012) on page 82.

varies through the business cycle. In times of economic stress the output results in default

probability increases, this is seen in the data as credit downgrades increase and upward mi-

grations decrease (Alexander, 2004). The model uses a Logit regression model to establish

conditional PD denoted as pj;t in period t and counter party grade, j (such as speculative

grade), following Trueck and Rachev (2009):

pj;t � 1

1� e�yt (127)

The index yj;t is based on a multi-variate regression time-series model, denoted per Trueck

and Rachev (2009) as follows:

yt � �0 � �1X1;t � � � � � �mXm;t � vt (128)

where X macro-economic variables determine the index yt and error vt is the error term.

The macro-economic factors are modelled as an autoregressive stochastic process AR(2),
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Figure 49: Moody's KMV is based on the Merton approach, where the �nal mapping consid-

ers the modelled distance-to-default and maps this back to an expected default

frequency, as I demonstrated in the above chart.

where e � Np0; �e;k;tq:

Xk;t � k;0 � k;1Xj;k;t�1 � k;2Xk;t�2 � ek;t (129)

This information can then be used to shift the transition matrix in a way which is linked to

the changing economic conditions. Wilson (1997) explains that intuitively the conditional

one year Markov transition matrices, I follow the notation from Wilson (1997):

Mt � �i�1:::tM
�
Pt

'Pt



(130)

Mt is the conditional cumulative rating distribution for all points over the horizon T . Pt

is the realised default rate, 'Pt is the average default rate and �i�1:::t is the operator for

multiplication. Therefore Mt will therefore shifts the probability mass closer to default when

the ratio is greater than one. In the CreditPortfolioView approach, the transitional matrices

are sub divided by industry, which improves the accuracy of the models.
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13.4 Reduced form models

The next important category of credit models is called reduced-form models, and these mod-

els go by several names including rating-based models, intensity-based models, and actuarial

models. In this framework, default and the associated recovery process are treated as exoge-

nous. These models, although they cannot explain the reason for the default of a particular

�rm, provide a favourable match to market data.

13.4.1 Fons model

The �rst of these models was developed by Fons (1994) who modelled credit spreads and

recovery rates in a risk-neutral setting. This model did not make use of �rm information

related to balance sheets or �rm value. The model was based on Moody's corporate bond

data that featured 473 issuer defaults. Fons (1994) model looked at how to value the bonds

by incorporating the quality of credit a�ected as a function of spread, this is used as part

of discount rate of the bond over time. An insight that Fons (1994) explains that credit

rating curves show that low credit quality �rms improve in credit quality as over time horizon,

whereas the reverse is true for the highest rated �rms. Trueck and Rachev (2009) explain

the how the credit-risk is handled for a risk free bond and a bond that has credit-risk in

following bond discounting equation, where a bond price Bp0; T q with face value B matures

at time T , is as follows:

Bp0; T q � Be�rTloooooooooomoooooooooon
risk free bond

Bp0; T q � Be�pr�sqTloooooooooooomoooooooooooon
credit risky bond

(131)

The second equation also features a credit spread s and yield r . When we consider the credit

spread or cost of credit we need to calculate the PD (which is equivalent to 1- rate of survival)

that we denote as dR is the default probability in a year. Another key metric is cumulative

probability of default SR for a bond of over time t is as follows, SRptq � �t
j�1p1 � dRpjqq.

The �nal credit spread of a zero risk bond can be determined using the following formula:

s � � 1

T

�
Ţ

t�1
SRpT � 1q � dRptq � � � e�rpt�T q � SRpT q

�
(132)

From the Fons model Jarrow et al. (2008) further enhanced the model to include Markov

framework in a discrete time model. Wilson (1997) and Wilson (1998) advanced this ap-
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proach by incorporating credit migrations using conditional transition matrices (I detailed this

model in Section 13.3.2, which is a structural hybrid model).

13.4.2 Intensity models

The next set of reduced-form models are intensity models, these models focus on the rela-

tionship between the surprise of defaults and an underlying process that governs this default

timing, as an exogenous input. This is referred to as the `instantaneous rate of default', �.

This model is often expressed as a function of time, where default intensity P r � �t�t. Most

often the default frequency is mathematically driven with the use of a Poisson process, so as

to keep in tune with the discrete and rare events in a jump process. In order to account for

the recovery rate ' as a percentage of the market value before default, Du�e and Singleton

(1999) provide the following addition to the model:

Rt � rt � �tp1� 'q (133)

13.4.3 CreditRisk+ (Credit Suisse)

Another commercial model was developed by Credit Suisse and called the CreditRisk+ model

(CR+). This model is based on actuarial methods applied in insurance mortality modelling.

According to Alexander (2004), one signi�cant di�erence between structural models and the

reduced form is that the default timing is treated as a surprise and is an absorbing state, to

use Markov terminology. The Poisson distribution is used to control the rate of arrival of

defaults. The models assume that defaults are independent and assigned as a probability pi

for each �rm i , allowing for default portfolio aggregation that is developed for the probability

generating function, following Trueck and Rachev (2009):

Fipzq � p1� piqz0 � piz1 � pipz � 1q (134)

then the probability generating function (pgf) will produce for the portfolio:

F pzq �
¹
i

p1� pipz � 1qq (135)

Using the approximation:

1� pipz � 1q � epi pz�1q (136)
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and setting � � �ipi and working with a bit of simple algebra, the probability of n defaults

is:

Prpnq � �ne�

n!
(137)

This approach is often used for credit modelling where data sparseness is an issue, which is

the case in this study.

13.4.4 CreditMetrics (JP Morgan)

The last of the reduced-form models I discuss here is the CreditMetrics model. This was

disclosed to the market by JP Morgan and Gupton in 1997. This approach uses the market

value of a �rm to determine the PD and bond value. This approach can be extended to all

manner of securities; it relates to �nal market values data.

The CreditMetrics approach assumes that at the beginning of a time period t, if a �rm

is not in a state of default, the value of a bond or loan can be calculated by discounting the

expected cashows by including the credit-risk spread in the discounting function. So, the

underlying assumption is that the value of a bond at time T is essentially tied to the rating at

a point in time i . Future cash ows are discounted based on the credit spread and risk-free

rate r . A distribution is provided by utilising the information in the rating probabilities at time.

The current rating state i is given by a probability P pX � i). This is compiled for all states i

in t creates the transition matrix P . The rating data is then used to create a new probability

transition rating matrix piptq � �iP ptq. This probability matrix allows for a forward price

adjustment of the bonds, di�erentiating between default and non-default conditions. The

bonds are essentially discounted using future adjusted information for non-defaulting bonds

as follows:

Bjpt; T q �
ţ

k�1
Ckp1� f �pt; kqqk�t �

Ţ

k�t�1

Ck

p1� fjpt; kqqk�t �
B

p1� fjpt; T qqT�t (138)

where f � is the risk free rate and fj is the forward rate. B is the nominal principle payment

and Ck denotes nominal coupon in year k . For defaulted bonds, the following applies:

BKpt; T q � R �
�

Ţ

k�1
CK � B

�
(139)

where R is the expected recoverable amount in nominal cash ows. Based on the bond's

seniority, the CreditMetrics methodology simulates the probability of recovery using a beta

distribution. The �nal value of the bonds can then be aggregated at the portfolio level, and
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risk analytics can be applied. Knowing the resulting Distribution of Values (DoV as Cred-

itMetrics term it) are not normal and feature a heavy tail in the loss side, so classic VaR

analytics are not possible, one can make use of the Basel II terms and review unexpected

losses. It is due to the use of equity values, rating, and bond information that the Credit-

Metrics approach is not a true reduced form but can be classi�ed as a hybrid (Trueck and

Rachev, 2009).

For modelling purposes, it is known that default rates, credit spreads, and the rating

upgrade/downgrade ratio all vary through the credit cycle. Benzschawel (2017) explains

that published one-year transition matrices can be used in a simple analysis for a known

entity to understand changes to ratings at a point in time or a joint transition matrix analysis

can be used in a VaR credit portfolio approach. The matrices are not very useful though

for estimating spread volatility of expected losses. This has to do with rating being state

dependant in stages of the credit cycle. Benzschawel (2017) emphasises that the current

macro-economic setting needs to drive the updating of the default matrix using a known

variable such as the upgrade/downgrade ratio (Benzschawel, 2017). A bond spread can

be decomposed into a compensation for default and a spread that is related to its level of

volatility. For a given transition matrix Pt the expected spread value for an given bond (in

this example, AAA), can approximated as:

ŜAAA �
¸
j�D

PAAAÑj°
j�D PAAAÑj

�
�
�Sj � �Sjd

	
� �SAAAd (140)

where ŜAAA is the estimated bond spread, j is the credit state at time t. The transitioning

from moving from AAA to j is PAAAÑj , �Sj is the market spread for a given state j and �Sjd is

the default spread for state j at time t. Benzschawel (2017) explains that stochastic credit

spreads can be generated using the Ornstein-Uhlenbeck and the current one year transition

matrix as follows:

dpt � �p�� ptqdt � �dz (141)

where � is the term average default rate, pt is the current default rate at time t and � is the

rating volatility and � is the speed of mean reversion. This allows for ratings to be simulated

and generated in a pattern that follows the term structure of credit ratings and volatility

pattern. Benzschawel (2017) explain how this approach is useful in risk management for

estimation of spread moves and credit related losses.

Credit spreads are not known to be explained by �nancial and/or macro-economic vari-

ables, and Benzschawel (2017) explain that an insigni�cant portion of the risk premium from
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markets is attributed to the actual cost of default. At times, the non-default side of the

spread can be 10 times greater than the default spread (3.83% vs 0.36% respectively for

BB- bonds). This is termed the `credit-risk premium puzzle', which currently remains un-

solved and is regarded as a big issue in credit modelling. Benzschawel (2017) goes further to

explain that the bond spread can be decomposed to s � sd � s�, this compensation is now

split between default and spread volatility:

sd � 1

T
ln r1� ppT � LGDqs and s� � �t� (142)

This can then be translated into an expression of default spread only, using real world spreads,

CAPM Sharpe ratios, risk neutral theory to convert PD to spreads:

s � �t� � 1

T
ln r1� ppT � LGDqs (143)

This model, having inferred spread to volatility ratio, � and utilising the recent credit spreads

can allow for a market implied PD for an obligor or entity.

13.5 Credit dependence

I documented that correlation of asset class returns and PLC is not always stable through

time. In times of extreme stress, one can see the correlation increasing, this is referred to as

the leverage e�ect, otherwise referred to as `correlation breakdown' (Buraschi et al., 2010).

Evidence shows correlation is time-varying and also linked to the business cycle (Ledoit and

Wolf, 2002).

13.5.1 Copulas

Fabozzi and Pachamanova (2010) explain that the Latin word `copula' means `link'. Not

only are copulas methods simple and relatively easy to use, but the method can handle more

general dependence between the variables being modelled. Trueck and Rachev (2009) explain

that a copula is a random vector distribution function with standard uniform marginals.

The copula function facilitates the connection between the distribution functions of two

or more random variables and their marginal distribution functions. The copula was �rst

formulated by Sklar (1959) and a fairly recent application of copula methods in �nance is

the work of Schweizer and Wol� (1981), and the well-known one-factor copulas by Vasicek

(1987). These methods were more recently extended by Li (2000). As Trueck and Rachev

(2009) explain this process allows for the joining of multivariate and univariate distributions
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in a very simple way, making statistical problems of dependence a lot simpler. As Fabozzi

and Pachamanova (2010) explain, copulas are useful in how they separate the modelling of

dependence from the modelling of a distribution. As Trueck and Rachev (2009) explain, all

copulas have the following mathematical properties:

Cpu1; ::::::unq is increasing for each sequential part of ui
Cp1; :::; 1; ui ; 1; ::::; 1q � ui

For all pai ; ::::; anq; pb1; :::; bnq P r0; 1sn with ai ¤ bi :

2̧

i1�1
� � �

2̧

in�1
p�1qii�����inCpu1i1 ; : : : ; uninq ¥ 0 (144)

where C is the copula, uj1 � aj and uj2 � bj for all j P 1; : : : ; n. Let X � pX1; : : : ; Xnq1 be a
random vector of real values that have a dependence structure that can be fully catered for

by the following function that is a joint distribution, following Trueck and Rachev (2009):

F px1; : : : ; xnq � P pX1   x1; : : : ; Xn   xnq

� P rF1pX1q   F1px1q; : : : FnpXnq   Fnpxnqs

� CpF1px1q; : : : ; Fnpxnqq (145)

As I denoted C as the copula function which is a joint distribution function that has uniform

marginals and is a real valued function that transforms a multi-variate n dimensional function:

C : r0; 1sn Ñ r0; 1s (146)

For univariate function Gipuiq P r0; 1s, marginals that are uniformly distributed with a unit

interval r0; 1s and i P N, then there exists a copula function, C. Gipuiq are marginal dis-

tributions, Fn is the joint cumulative distribution function, F�1i is the inverse of Fn and �F

is the correlation structure of Fn. The easier way of explaining a copula, for two variables

x and y that are not normally distributed, x is mapped to u1 per each percentile along its

respective range, which then connects it to a standard normal distribution. The same process

is used to transform y into a new variable u2 that are as a linked using a bivariate normal

distribution. The correlation, however, has given a dependence structure denoted as �. The

random vector (u1 and u2), are assumed to follow a bivariate normal distribution, given by:

f pu1; u2q � 1

2��X�X
a
1� �2 exp

�
� 1

2p1� �2q
�px � �Xq2

�2X
�py � �Y q

2

�Y
�2�px � �Xqpy � �Y q

�X�Y

��

(147)
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where � is the correlation between u1 and u2, and �Y ¡ 0 and �X ¡ 0. There are many

copula variations within a copula family. Figure 50 is a schema showing a `copula family'

and it summarises many of the main copulas used in the �nancial arena. The correlation

characteristics of �nancial markets will aid in the selection of a coe�cient.

 

Copulas

One factor copula

Gaussian Archimedian

Gumbel

Clayton

Frank

Two factor copula

Student’s t

Frechet

Marshall-
Olkin

Figure 50: Schematic of the commonly used copulas, known as a copula family.

The chart on the left of Figure 51 presents data generated using a Gaussian copula and

this shows the correlation that is set up to indicate that in extreme events, the correlation will

increase. A copula that features an asymmetric correlation structure is the Clayton copula.

This feature allows the modeller to mimic dependency features of asset-pricing data, such as

correlation breakdown, in a exible way.

From the Figure 51, I can see an illustration of how two very di�erent correlation surfaces

from two sets of asset returns in which the linear correlation is equal. The most extreme

negative events show elevated correlation, this is evident chart of Figure 51, data generated

using the Clayton copula. This simple component like approach used in copula technology is

powerful and exible.

Clayton copula and t-copula. As a result of the non-linearities in correlation structures

between asset class returns that were experienced in the GFC, using a symmetrical copula

such as the Gaussian copula may not be the most appropriate for �nancial asset class returns.

Other copula functions, such as the t-copula, generate distributions that have increased
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Figure 51: Independent bivariate distribution on the left and bivariate distribution with cor-

relation on the right.

Figure 52: Correlation breakdown, comparison between t-copula and Clayton-copula. This

surface is a great way to represent the level of correlation between asset as points

in the credit cycle.

correlation in the deep tails, which refers to the extreme outer margins of a distribution

(refer to Figure 51). If the �nancial returns in review also show asymmetrical correlation

and we observe higher correlations in the left tail than the right tail, then the Clayton copula
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function can be used. The formulation of the t-copula is as follows per Munk (2011):

Cpy1; y2q � tv;2

�
t�1v py1q; t�1v py2q; �



(148)

where tv is the one-dimensional t-distribution that has v degrees of freedom. The formulation

of the Clayton copula is as follows per Munk (2011):

Cpy1; y2q �
��
py��1 � 1q� � py��2 � 1q�

�1{�
� 1

��1{�
(149)

where � ¥ 1 and � ¥ 1. As a result of the Clayton copula being explicit functions, this

makes the copula easier to handle, where the dependency structure for the Clayton copula is

driven by changing �, this value is 0   �   8. As � increases, so the data follows a tighter

correlation, in particular the lower tail.

A key market feature that I am interested in mimicking when simulating asset return paths

is correlation breakdown, as was the case in the GFC for PD and LGD. To use an example,

bonds and equity typically have a small to negative correlation; that was not the case during

the GFC, a time of extreme market stress when both equity and bonds had simultaneous

drawdowns, at a point in time reversing the correlation from negative to positive. This can

result in the unfortunate situation of underestimating the risk in the portfolio (when the

power of diversi�cation cannot be relied on).

14 Literature surveys: risk premiums, regulations and cycles

14.1 Regulatory approach and modelling requirements (Basel & IFRS9)

Risk modelling in credit often follows the Bernoulli law covering discrete events, where y can

take the value of 1 or 0 and y � 1 in credit-risk this indicates an obligor is in a default state

(Trueck and Rachev, 2009). The Merton model is a core model that has been utilised for

Basel II regulation. In this, default is linked to asset values against a set established threshold,

D, representing the contracted value of its obligations, therefore P pY � 1q � P pV   Dq.
The Basel II framework (Gordy, 2003) de�nes asset value Zi ;t of obligor i over time

tenor t. This is the constructed as a single factor model, where Zi ;t is associated with the

Gaussian distribution having �i ;t � 0 and �i ;t � 1, as I de�ned in (124). This construct, also

termed the asymmetric single risk factor model features a systematic variable, Xt and an

idiosyncratic variable " and
?
� is known as a factor loading of systemic risk, which measures

the sensitivity to systematic risk (Trueck and Rachev, 2009). The probability of default is
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then denoted as P pYi ;t � 1q � P pZi ;t   ciq � �pciq. Trueck and Rachev (2009) explain that
this is known as the unconditional probability of default, where � denotes the cumulative

standard normal distribution function and a default threshold for �rm i of ci . The conditional

probability of default is:

P pYi ;t � 1|Xt � xq � P pZi ;t   ci |Xt � xq

� P p?�Xt �
a
1� �"i ;t ¤ ci |Xt � xq

� P

�
"i ;t   ci �

?
�Xt?

1� � |Xt � x




� �

�
ci �?�x?

1� �



(150)

with the model for a PD of an obligor con�rmed for a portfolio of loans, assuming the same

default threshold c , then depending on the state of the economy Y , the number of defaults

follows a binomial distribution with ppxq � �rpc �?�xq{p?1� �qs:

P

�
ņ

i�1
Yi ;t � k |Xt � x

�
�

�n
k

	
ppxqkp1� ppxqqn�k pk � 0; :::; nq (151)

This implicitly assumes independence between obligor defaults. Trueck and Rachev (2009)

explain that by using the law of iterated expectations, the expected value of conditional

probability of k defaults can assumed to be the same as the probability of k defaults:

P

�
ņ

i�1
Yi ;t � k

�
�

» �8

8
P

�
ņ

i�1
Yi ;t � k |Xt � x

�
�pxqdx

�
» �8

8

�n
k

	�
�

�
c �?�x?

1� �


k �

1��

�
c �?�x?

1� �


n�k

�pxqdx
(152)

Trueck and Rachev (2009) explain that this model is quite simple to apply to a single loan to

establish the VaR, right up to a portfolio of loans (i.e., VaR(99.9%) = ��1(0.001)). The

expected loss of a loan is set as:

ErLi |Xt � �0:999s � LGD ��
�
ci �?���1p0:001q?

1� �



(153)

We recall that the unconditional PD is de�ned by:

PDi � P pYi ;t � 1q � P pZi ;t   ciq � �pciq (154)

and following the Gaussian distribution allows one to infer the following:

PDi � �pciq ô ��1pPDiq � ci (155)
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The formula in (153) and (155) is the basis for calculating the capital formula for the capital

requirements of Basel II for a single loan. This becomes for the following formula, referred

to as the worst-case default rate (WCDR), as Trueck and Rachev (2009):

WCDR � �

�
��1pPDiq � ?���1p0:999q?

1� �



(156)

where the �nal Basel II formula for capital calculations is 8%
�

1
12:5

�
of RWA:

WCDR �
8%hkkikkj
12:5 �

RWAhkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj
EAD � LGD � pWCDR� PDq �MA (157)

where MA is the maturity adjustment that is based on standard assumptions that are linked

to the loan characteristics. The original formulation, is heavily dependent on asset correlation

and was set to 20%. This approach was not approved by the market. The �nal decision was

to use PD, as follows:

� pPDq � 0:12 �
�
1� e�50PD
1� e�50



� 0:24 �

�
1�

�
1� e�50PD
1� e�50




(158)

this has subsequently been amended to the following function that is a very close approxi-

mation:

�pPDq � 0:12 � �1� e�50PD� (159)

where � is correlation, this is set to increase with an increase of PD of a �rm (idiosyncrasies)

of a �rm and not systematic market factors. Therefore this implies that as a �rm becomes

less creditworthy, the correlation parameter decreases. This assumption was only set this way

due to the fear that small to medium-sized companies would receive Basel II capital charge

that was too high (Trueck and Rachev, 2009). Trueck and Rachev (2009) point out is that

the internal ratings based (IRB) method is an incentive approach to adopt the Advanced-IRB

modelling approach12, but capital levels can in fact be higher than the standard assumptions,

and a decrease in WCDR for an increase in PD due to correlation is questionable. I do question

whether the blind use of banking techniques for asset management purposes, speci�cally loans

to SMEs is sensible.

There are fundamental di�erences between the measures depending on the risk manage-

ment framework, Basel II used long-run average PD and downturn LGD's, whereas the IFRS9

are all forward looking parameters. IFRS9 does not detail speci�cs on how to calculate the

12this approach requires a bank to internally develop the models using internal risk history and internally

developed models
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models, nor determinants for loan quality, this is left up to the bank to model internally En-

gelmann (2021). For a loan of tenor n years, with �xed interest rate z . Loan loss provision,

as denoted by Engelmann (2021):

LLP1 � cp1 � `1 � N1 (160)

which pertains to the loss category one, were cp1 is the cumulative probability until the client

default in year t. The loss in the instance of the default, `1 and �nally, this is multiplied with

the full loan amount or exposure, N1. Where loans are materially impaired, the loan moves

to an expected lifetime loss methodology, per Engelmann (2021):

LLP2 �
ņ

l�1

1

p1� zqt�1 � pcpt � cpt�1q � `1 � Nt (161)

which is e�ectively a probability weighted cash ow. When I consider the Basel II regula-

tory modelling needed to determine banking capital requirements, the same parameters are

needed, PD, EAD, and LGD. However, these are slightly di�erent in their modelling appli-

cations. The Basel II capital requirements are set from the capital formula from the original

works in Gordy (2003), following Engelmann (2021).

Kmin � EAD � LGD �
�
�

�
��1pPDq � ?� ���1p0:9999q?

1� �


� PD

�
(162)

Where the additional variables are �, the asset correlation, and the � is the cumulative

standard normal distribution. This equation is a single risk factor model that represents the

value at risk at a 99.9% level of the loss distribution. Key assumptions include that it is

a large (homogenous) loan portfolio with no concentration and driven by one systematic

risk factor. Here, the emphasis is on core parameters that need to stressed as part of the

analysis. Each parameter has to be calibrated in a di�erent way depending on the regulation

under review. Please refer to Section 46 for the de�nitions of PD. Table 9 shows the various

modelling assumptions used in the parametrisation process Engelmann (2021):

Unlike the single-horizon models used (e.g., one year for the PIT), the IFRS9 and stress

testing models require a multi-year horizon. Further to this, using di�erent underlying as-

sumptions may cause alignment issues between the reserves held for asset provisioning and

the capital requirements (given that the provisions are a subset of the reserves held). If the

current macro-environment calls for lower provisions given the PIT nature of the modelling

assumptions, this would have an impact on the overall capital held (given the requirement

for TTC PD, EAD, and downturn LGD). The regulatory assumption is metered in the Basel
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Reg framework PD LGD EAD

Basel II/III TTC DT TTC

IFRS9 PIT PIT PIT

Stress Test DT DT DT

Table 9: Regulatory assumptions for parametrisation of PD, EAD, LGD.

II capital formula, refer to (162), where the provisions are subtracted from the amount held.

To account for this mismatch, the following mechanism is used, following Engelmann (2021):

k̂min � Kmin �minpLLP� ELB; 0:06 � RWAq (163)

where LLP represents the loan loss provision and ELB represents the e�ective provision

calculated using the Basel II parametrization of PD, EAD, and LGD. Engelmann (2021)

explains that if the LLP is lower, additional capital will need to reserved, but where the

LLP is higher, then the capital will be topped up by 6% of the Risk Weighted Asset (RWA)

amount. Please refer to Engelmann (2021) for a good summary of the key literature in the

development and re�nement of the models, including TTC to PIT conversions and methods

applied to meet the requirements in speci�c regulatory regimes (i.e., IFRS9, Basel, and

stress testing). Engelmann (2021) points out that much of the literature is based on the

assumption of a long data series with which to calibrate/parametrise the models, their study

develops a method for shorter time horizons of data. The basis of the default probabilities

for Basel II PIT-TTC framework is a one-factor risk model for a one-period log-return r of

a borrowers credit-risk assets, following Engelmann (2021):

r � ?
�Z �

a
1� � � " (164)

where Z and " denote the independent standard normally distributed random variables, and

� is the correlation between two assets. Z denotes the systematic risk factor, and with this

formulation, this a�ects borrowers at the same time. r is designed in such a way that a

default occurs when an asset falls below a certain threshold, �:

PD � P pr   �q ñ � � ��1PD (165)

The default probability is conditional on the realisation z of Z, is:

PDPIT � �

�
��1pPDq � ?� ���1 � z?

1� �



(166)
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Engelmann (2021) explains the above formulation can be used to transform PD between

TTC and PIT. The PDpzq can be viewed as the conditional state of the economy that is

aligned to the de�nition of the PIT PD, which changes with the state of the economy. The

PD can be interpreted as the TTC PD:

PDPIT � �

�
��1pPDTTCq � ?� ���1 � z?

1� �



(167)

In order to utilise this framework the only outstanding variable is �, the asset correlations.

Now this formalises the relation of PIT PD to TTC PD. An econometric model can be used

to model the relationship between PIT and TTC, where Ct is the proxy for the realised PIT

PD, then following Engelmann (2021):

��1pCtq � �0 � �1X1;t�l � � � � � �1Xk;t�l � " (168)

This can then be used in (167) and solved using a number of methods, including the method

of moments. With this formula, one can then imply the time series history for PIT PD or

Zt .

Smith and Balint (2019) interviewed private debt asset managers and speci�cally asked

them to name the risks that they were most concerned about. The impact of the business

and credit cycle on private debt assets emerged as their most highest ranked concern. This

topic is a core part of this study and warrants a speci�c review of the current literature on

the topic.

14.2 Credit premium

The ratio of bank �nancing to �rm debt shifts over business cycles and this may play a role in

the transmission of economic shocks (Drechsler et al., 2018). Debt restructuring in favour of

bonds, as demonstrated by Drechsler et al. (2018), has been shown to mitigate the negative

e�ects of economic cycle swings. As a result of the Volker rule and the Basel accords, which

impose limits on how much leverage �nancial institutions can use, the availability of loans

has shrunk. The real economy experiences more signi�cant business cycle uctuation when

the composition relies heavily on bank-based �nance.

Gilchrist and Zakraj�sek (2012) investigate the relationship between corporate bond spreads

and economic activity and involved the creation of a proxy for the credit spread index. They

created an index, the `GZ spread', for measuring economic activity based on the credit spread

index. This spread has shown to be better in predicting economic activity than using a simple
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BAA-AAA corporate bond spread, or a rated bond versus a treasury or commercial bill. The

GZ spread is based on corporate bonds already in circulation, not on the primary market,

over a long period (1973-2010). Gilchrist and Zakraj�sek (2012) separate the GZ spread into

two parts: 1) a part isolating the countercyclical movements in expected defaults; and 2)

an excess bond premium, the di�erence between the credit spread and the empirical default

measures. This construct then allows one to easily align with the so-called credit-spread

puzzle, which captures an unexplained premium, potentially a liquidity premium that is time-

varying (Gilchrist and Zakraj�sek, 2012). Gilchrist and Zakraj�sek (2012) conclude that the

excess bond premium uctuation is linked to pricing changes to default risk and that the

excess bond premium movements can explain all the predictive information inherent in the

GZ spread, when measured between 1985 and 2010.

Lin et al. (2020) argue that time-varying risk premium and asset-return predictability are

linked. The driving force of this relationship is changing economic business cycles. They

investigate the predictive power of the credit index spread for long- and short-run corporate

bond returns. They report that the GZ spread has greater predictive power than the conven-

tional term structure variables and default spread (Lin et al., 2020). The key is that the GZ

index is linked to business cycles and captures time-varying bond risk premiums (Lin et al.,

2020).

Gourio (2012) explains that the credit puzzle is shown empirically by the credit spreads

being greater than the cost of credit, expressed as the potential for default multiplied by the

loss due to that default (assumed to be 50%). The corporate bonds default with a probability

of 0.4% and have experienced recoveries of around 50%, which would amount to a credit

cost of 0.2%, whereas the BAA-AAA credit spread is 1%. The corporate bonds are therefore

being priced at a discount and the investor can expect higher excess return premium, this

again is the credit puzzle. Gourio (2012) �nd that defaults are primarily driven by insolvency

and not liquidity shortfalls.

A well-known measure of the cost of credit in traded markets is shown by the option-

adjusted spread (OAS). When compared to the actual cost of credit losses over time, the

OAS is positive over time, by quite a margin. Evidence from median credit default swap

(CDS) rates and expected losses points to a huge risk premia during stress periods such as

2002 and the GFC in 2009. Berndt et al. (2018) observe a net bene�t for holding credit-risk

assets from a lowest spread of 0.075% to a highest spread of 1%, which is more than a

ten-factor increase. The premia increase if one take a cross-sectional view, with the higher
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rated (Aaa) bonds o�ering less of a risk premia than the lower rated bonds (Ca-C), with a

median risk premia of 0.1% and 7% respectively. From a sector perspective, utilities bonds

carry the highest risk premia and �nancial �rms carry the lowest premia bene�t (Berndt et al.,

2018).

Refer to Berndt et al. (2018) for more examples of CDS and bond spillover e�ects

connected to the IG-HY segmentation e�ect. Berndt et al. (2018) build a model to predict

the corporate credit premia from CDS expected losses based. They use an econometric panel

data regression using observable factors including equity volatility, interest rates, sentiment

variables, liquidity factors, �rm credit ratings, and sector dummies. Berndt et al. (2018)

�nd that detailed Moody's ratings (i.e., in the format of Ba2) are signi�cant factors for

predicting cross-sectional spreads of credit-risk as measured by CDS rates. Giuzio et al.

(2018) in their paper seek to decompose and attribute risk premium using a multivariate

analysis using factors such as volatility, credit spreads, and interest rate spreads. Giuzio

et al. (2018) build a portfolio to take advantage of low correlations. Giuzio et al. (2018)

�nd that loan spreads are the most signi�cant contributors and most persistent, and Giuzio

et al. (2018) conclude that private debt has a complexity premium that is large enough and

persistent enough to take advantage of and invest in. There is a substantial and persistent

1.4% di�erential between private debt and corporate bond premia at the same credit-risk,

rating, and maturity (Giuzio et al., 2018). Interestingly, the private debt risk experience is

lower than that of the corporate bonds. Giuzio et al. (2018) explain the di�erence in private

markets can be attributed to information asymmetry, low transaction frequency, and at times,

complexity and reasons we mention in this section.

14.3 Modelling approach to credit premium

Bon�m (2009) makes use of a rich database covering 30,000 Portuguese �rms' credit-

risk history and associate �nancial information, augmented with macro-econometric data

to establish what the relative power of idiosyncratic and macro-economic data that explains

credit-risk, in bank loan defaults. Bon�m (2009) bases their modelling framework on the

Merton model, but makes two key amendments. The �rst is to allow a more exible approach

to idiosyncratic and systematic risk, supported by empirical evidence. These are modelled

concurrently using the following model, which is a departure from the (124):

Ri ;t � �Xt � �Zi ;t (169)
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where � and � are vectors for the modelling parameters and following Bon�m (2009) can be

modelled using a panel regression:

Ri ;t � �� Xt � �Zi ;t � ui ;t where Ri ;t ¤ ci ;t ô Yi ;t � 1 (170)

where � is a modelling constant and ui ;t the modelling error term. � and � are estimates

of  and � respectively. The default threshold is ci ;t . Given Ri ;t is not observable, Bon�m

(2009) de�nes the PD,�i ;t for each �rm i and time t, as:

�i ;tpXt ; Zi ;tq � pui ;t ¤ ci ;t � �� Xt � �Zi ;t |Xt ; Zi ;tq � F p~�� ~Xt � ~�Zi ;tq (171)

where F p�q is the cumulative distribution of the error term, � � ~ and �� � ~�. Assumptions

can then be made around the nature of these errors, which Bon�m (2009) keeps as a standard

normal distribution function �. The model was then conclude to be a Probit model:

�i ;tpXt ; Zi ;tq � �p~�� ~�Xt � ~�Zi ;tq (172)

The second di�erence in the modelling relative to the Merton model is in how the defaults

are modelled, by way of a survival model using a duration model so as to completely describe

the timing of defaults. Bon�m (2009) concludes from their modelling exercise that �rm

defaults are directly a�ected by the idiosyncratic variables such as �rm structure, liquidity,

sales performance and investment policy. Finally, when macro-economic variables are taken

into account, the results show an improved modelling result that is independent from the

idiosyncratic variables. This demonstrates that a �rm must be evaluated not only for its

characteristics but also for the economic conditions.

Duan and Zhu (2020) explain that the credit-to-GDP ratio and credit growth rate can

act as early warning indicators for a GFC, in their analysis they explore the interplay between

credit-risk and quantity of credit. They posit that quantity measures are forward-looking

indicators for �nancial stresses. The Basel Committee on Banking Supervision (BCBS) also

uses the country ratio of credit to GDP as a key measure for banks capital. Duan and

Zhu (2020) point out that the classic indicators of credit such as default rate, insolvencies,

bankruptcy, corporate default, and loan payment indicators are all ex-post and will therefore

not give warning indicators for build-ups of macro-economic stresses. Duan and Zhu (2020)

build an index, their credit cycle index (CCI) predicts PD based on �rm characteristics and

macro-economic factors. This model enables risk aggregation across �rms, sectors, and

countries. Berndt et al. (2018) develop a model for predicting the temporal variation, cross-

sectional �ve year credit-risk premia. The modelling starts with a base model to explain

Page 181



14 LITERATURE SURVEYS: RISK PREMIUMS, REGULATIONS AND CYCLES

the movements in time-series credit-risk premia using expected losses. The model is de�ned

below, following Berndt et al. (2018):

log

�
Ct

ExpLt



� �0 � �1 logpExpLtq � Xt�X � Yt�y � "i ;t (173)

where the observed CDS rate Ct and the hypothetical CDS rate ExpLt are modelled. X and

Y are vectors of �rm speci�c and macro-speci�c predictors, with coe�cient vectors of �X

and �Y respectively. The model is set up as a log-log model so as to ensure the e�ects of

heteroscedasticity are dealt with. Naturally, "it is the random noise term.

Berndt et al. (2018) �rstly model, as a base, the expected losses only as the predictor

variables and this model reports an R2 of 0.261. With the addition of �rm-speci�c information

(this includes dummy variables for alphanumeric rating) in the model, this result increases

dramatically to 0.576 which is a signi�cant improvement. Berndt et al. (2018) go further to

include equity market volatility as a predictor, then adds the smirk from a volatility surface

by linking changes in HY/IG ratings (recent upgrades or downgrades). The overall model

reports an R2 of 0.72. When market sentiment is included in this walk-forward modelling

paradigm, the R2 value increases to 0.81. Berndt et al. (2018) again highlight the movement

in risk premia for HY �rms is less correlated with macro-fundamentals than the IG �rms.

Berndt et al. (2018) conclude that the relationship between risk premia and macro-economic

fundamentals, once controlled for �rm and market-based variables, is clear and contributes

to a powerful model. Berndt et al. (2018) discuss that the stressed periods (including 2002

and 2009) will have experienced marked decreases in capacity to bear risk at various levels.

This will likely explain the larger increases in the risk premia relative to the expected losses.

According to the �ndings of a recent study by Berndt et al. (2018), the ratio of risk premia

to projected losses varies over time more for investment �rms than for high yield �rms.

14.4 Credit-risk and cycle modelling

Credit spreads are known to vary in conjunction with the credit cycle; this can be seen from

rating agency data, CDS spreads, and defaults over time. A further feature is that volatility

of credit spreads is more pronounced for riskier businesses and products. Now the di�erence

in the yield is reected by the increase in risk and does not directly translate to an increase

in the returns. Spreads are understood to be composed of a credit premium and a liquidity

premium. The credit premium is relatively stable over time, whereas the liquidity premium

can be signi�cant. According to Gilchrist and Zakraj�sek (2012), much of the predictive

Page 182



14 LITERATURE SURVEYS: RISK PREMIUMS, REGULATIONS AND CYCLES

power of the excess bond premium is related to uctuations in the excess bond premium, and

not changes in the underlying default risk. From 1985 to 2010, the excess bond premium

is shown by Gilchrist and Zakraj�sek (2012) to be the sole determinant of the GZ spread's

predictive power. Lin et al. (2020) investigate the predictive power of the credit index spread

for long and short run corporate bond returns. Lin et al. (2020) note that the index's link to

future economic conditions gives the speculative grade component greater predictive power

for future bond returns (even after controlling for macro-economic and policy variables). As

a result, the GZ spread outperforms the default spread and other standard term structure

factors in predictive power (Lin et al., 2020). The GZ index reects time-varying bond

risk premiums and is related to business cycles, which is an interesting �nding (Lin et al.,

2020). Drechsler et al. (2018) review this from another perspective, they highlight that the

corporate debt composition varies over business cycles, where the use of bank �nance versus

corporate debt varies, and this can play a role in the transition of economic shocks. Drechsler

et al. (2018) argue that changing the composition of debt in favour of bonds would have

the a�ect of dampening the e�ects of a adverse business cycle uctuations. Drechsler et al.

(2018) show that the ratio of bank to bond �nance falls in response to a shock from either

a monetary or �nancial source, but it does increase following a negative supply shock. They

show that changes in the corporate debt composition have a dampening e�ect on business

cycles, but when the composition is based primarily on bank-based �nance, this is associated

with a stronger cycle where the contraction in the real economy is greater.

14.5 Dealing with dependence in credit-risk

Modelling a single loan is a good starting point for portfolio credit-risk, then creating a book

of loans that are independent is relatively easy to attain risk statistics of your choice. Trueck

and Rachev (2009) explain that as soon as we review the statistics of a portfolio of loans,

how these statistics are aggregated requires more careful attention, as dependence factors

in and the reliability of the statistic starts to reduce. Sometimes this e�ect is called the

portfolio e�ect, in the next section I provide a targetted review as it pertains to PD and LGD

dependence.
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14.5.1 Modelling credit migrations

Trueck and Rachev (2009) model credit migrations using two methods: �rst, forecasting

conditional transitional credit rating matrices using the correlation with the systematic risk

factor and the idiosyncratic �rm-speci�c factor, which is governed by a threshold correlation

with the systematic risk factor. In their model they extend the Merton method to a multi-

variate formulation as follows:

zi j � �px � xiq �
a
1� 2�2 � "i ;j (174)

where xi denote rating class speci�c factors and "i j represents the idiosyncratic factor. The

x factors represent all the relevant economic factors relevant for rating changes.

The second method uses Gaussian and student-t copulas to demonstrate the impacts of

dependence and portfolio choice. This exercise demonstrates that the higher the correlation,

in terms of a VaR result for a portfolio, the results are signi�cantly di�erent for dependent

portfolios, particularly in the case of the skewed heavy-tailed distribution such as the student-

t.

14.5.2 Time varying LGD modelling

Sheikh (2018) explains that LGD models are now considered non-normal and often follow a

beta distribution with a large proportion of losses close to zero and a distinct spike of losses

around 100 percent (as losses are known to be higher than 100 percent). LGD models have

been linked to PD correlation from the earlier forms of the modelling, including Frye (2000)

who rescaled the LGD variable, as part a larger single factor risk model for the PD variable,

as follows:

LGDj � �j � �jPDpXj;t;T q (175)

where �j and �j represent the mean and standard deviation of losses for a bank segment j ,

respectively. What is encouraging in this model is that PD-LGD correlation is taken care of,

but the model also features a normal distribution assumption. This may be hard to justify.

Sheikh (2018) notes that modelling approaches have often taken a risk factor approach,

which indicates that the LGD is driven by such factors as:

� �rm-speci�c factors

� instrument speci�c factors
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� industry speci�c factors

� macro-economic factors

This amounts to a model that can be delivered in a VAR format, including sensitivities to the

above listed factor risks. Although these models are exible and relatively easy to calibrate

(given the approach volume of data), these approaches still use a normal distribution as a

basis which again is hard to justify. Sheikh (2018) argues that where the micro-prudential rule

setting is perceivably stable (Basel II impacts), it can become macro-prudentially dangerous

though. Key areas that can go undetected in a system that focuses on micro-rule setting will

not detect correlation risks (both intra-parameter and intra-parameter). As banks regulatory

and statutory requirements are not geared at picking up correlation (due to the simpli�ed

application of an asymmetric-single risk-factor model with a predetermined correlation vari-

able) and concentration risks that can remain undetected, this is exactly why the regulatory

bodies continue with economic capital monitoring for Pillar II. Sheikh (2018) also highlights

that in the case of structured lending for banks, LGD factors are not considered, which are

the most important risk drivers, and PD is really not as important.

14.5.3 PD LGD dependence (PLC)

Keijsers et al. (2018) provide an in depth analysis of loan losses on a vast banking default and

loss database, the Global Credit Data consortium13. Keijsers et al. (2018) use a VAR model

that is centred on a set of latent factors, that have been identi�ed to a�ect loan losses.

Vectors of factors include vectors for macro factors, loan factors and LGD factors. A credit

concentration may not be revealed or fully understood until a time of crisis where the levels

of credit losses are greater than expected. The combined stresses in PD and LGD are shown

to take hold during a crisis, this is known as `correlation breakdown' (i.e., the breakdown of

the `no correlation assumption'). The current Basel II accord standards for capital adequacy

for banks do not incorporate PD and LGD correlation (Moody's, 2010). The downturn LGD

measure is used and calibrated over periods of stress. However, evidence to the contrary is

overwhelming and points out that recovery in a default event is linked to macro-economic

conditions. The relationship can be understood by considering that during times of economic

stress, the recovery sale is into a market in which the �rm's peers are also stressed, arguably

13review https://globalcreditdata.org/about-gcd/ for more information relating to this banking consortium

of credit-risk data
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a�ecting the liquidity in that market (Moody's, 2018).

Moody's (2010) tests the two methods to account for this issue, �rstly by using a stressed

LGD that is calibrated with adverse economic conditions (much like the downturn LGD

used in Basel) and secondly by expanding the model to incorporate the PD-LGD correlation

(PLC). Moody's (2010) �nd that the downturn LGD model and stressed LGD model are not

conservative enough, especially in the tail of the distribution (which is where the unexpected

loss calculations are based). In this article, a PLC was used to determine the portfolio's �nal

risk, reducing risk by as much as 40% compared to a portfolio assessed with a conventional

LGD. Ignoring this could materially underestimate credit-risk in the portfolio. This is a speci�c

detail that will be analysed from the perspective of investment portfolio losses attributable

to the correlation between the PD and LGD bands.

The approach of Ozdemir (2017) to PLC is looking at the impact of the correlation

of PD and LGD during times of stress. Ozdemir (2017) notes that the default correlation

assumption and parameter in the Merton model is constant, based on a cross-section across

obligors and through time. Ozdemir (2017) explains the model used to cover for correlation

between parameters, PD and LGD, was modelled by observing the asymmetric correlation

pattern, as credit-risk is sensitive to factors and indicate higher levels of correlation during

stressful times. This is also known as a correlation breakdown. Ozdemir (2017) models this

process as stochastic and makes use of a logistic regression:

R2 � 1

1� e����f p�q�m��t
(176)

where f p�q � f pX1
t ; X

2
t ; :::::; X

J
t qq are the observable factors, such as macro-economic factors

or instrument detail. The core of Keijsers et al.'s study is to understand uctuations in loan

losses and their links to the macro-economic business cycle (with adequate data to control

for seniority, product type, product, counterparty, and domicile). The Keijsers et al. (2018)

model shows how LGD and PD variation sources change during the business cycle. There

are two layers: �rst, the latent factors can be seen as the driver of time variation and

dependence among variables. The latent variable structure has been shown to cover the

speci�c interplay between variables (Keijsers et al., 2018). The second captures the LGD

speci�cs from a panel structure of loss observations, allowing for time variation and cross-

sectional e�ects to be collected simultaneously. The model used in Keijsers et al. (2018)

considers macro-economic variables, default rates, and LGD with latent factors, using mixed

distributions to create the bimodal shape. The losses may be severe or not, but this will be
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determined by a set of factors, that are cyclically linked. Keijsers et al. (2018) show that

there is both a macro-based business cycle link and another function that is default speci�c,

capturing the variation in credit cycle. Keijsers et al. (2018) found that LGD varies across

industries due to factor sensitivity rather than speci�c cycles. SME's show higher cyclical

variability than large corporates do. Losses on collateral loans are markedly lower, however,

they uctuate more than unsecured lending over the credit cycle. Keijsers et al. (2018) point

to studies and data that show the variation over the cycle can create signi�cant changes

in capital requirements. Changing the capital requirements by a factor of more than two,

and a signi�cant portion of this change is driven from the LGD uctuations over the cycle.

Keijsers et al. (2018) determine that the time variation in defaults, LGD, and macro variables

is su�ciently captured by the model that includes the macro-factor and loan factor (but not

the default factor).

Keijsers et al. (2018) note some stylised facts, which are largely reinforcing what is intu-

itive, that unsecured loans have a lower LGD, larger borrowers (corporate) su�er lower losses

than SME do, and in terms of industrials, �nancials feature higher losses than industrials or

consumer staples. From a business cycle perspective, loans with collateral are more a�ected

by business cycles to a higher degree, and when I consider the industrial sector it is the most

stable and �nancials are the most a�ected. According to Keijsers et al. (2018), calculating

economic capital by reviewing time variation in LGD implies a much higher capital require-

ment (measured by an expected loss number). The expected loss moves from 0.61 (0.03%)

to 2.37 (0.12%). During the GFC, the time-varying LGD produces an economic capital

number of 5.64 versus the constant downturn LGD of 5.03. Keijsers et al. (2018) con-

clude that default measures explain changes to the credit cycles during times of high-stress

environments, whereas the business cycle is explained by macro-factors.

15 Credit-risk parameter modelling

The modelling of credit-risk for the purpose of investment strategy is started in the follow-

ing section. The modelling will be primarily descriptive and inferential in nature, with the

goal of determining the level of credit-risk for a set of counterparties. The data has been

supplied for research purposes by NUS-CRI 14. This data is used as the primary data source

14The Credit Research Initiative (CRI) is a non-pro�t undertaking under the Asian Institute of Digital

Finance (AIDF) of the National University of Singapore (https://nuscri.org/en/about/).
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and represents the list of investable entities against which direct loans are provided. These

loans form the private debt building block for pension requirements. Another signi�cant set

of data is the sentiment indices used in part III. The remainder of the data requirement for

this study is collected from academic texts in the form of parameter assumptions, such as

PD or LGD.

Credit parameter programming I coded the credit analysis using Python and Python pack-

ages as part of a Colab hosted program that I coded. I provided details of the address of the

Google Colab �les in the appendix; Section 30.

15.1 Catalogue of parameters and sources of data

In Table 10, I provided a description of the key data attributes used in this modelling analysis.

The �rst table is a summary of available data sources.

Category Parameter Description of data source

Sentiment OECD BCI The sentiment proxies sourced the forecasting risk appetite in part III. This includes the

sentiment variables from the survey approach from the OECD (BCI, CCI, and CLI) that

have been generated using TextBlob and Vader. In this chapter, instead of concerning

myself with how well newspapers can predict the sentiment variables (BCI, CCI, and

CLI), I will now consider these as modelling factors for assessment in modelling credit-

risk spreads for the next twelve months.

Vader

TextBlob

The sentiment proxies I generated by The Guardian newspaper is used in the UK, The

New York Times is used in the US, and GDELT-augmented sentiment is used in the

RSA. These combinations are based on the best performing sentiment analysis from

Chapter III.

Credit SRI NUS-CRI Probability of Default (NUS-CRI PD) is a daily measure that is a forward-

looking PIT PD. The data covers all exchange listed issuers worldwide (80,000). The

PIT is reported at points ranging from 1 month to 5 years. Analytics are easily aggre-

gated, however, aggregate measures are also provided by country, sector, or region.

Table 10: Description of alternative data sources, article counts and start date.

15.2 Simulation parameters inferential analysis

The following data and academic analysis are intended to establish the most appropriate

parameters for the simulation of private debt assets as part of a multi-asset economic scenario
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generator (ESG). The data on private debt is sparse and for the most part, this is a real-world

feature. The parameters in this study will best represent the true value of assets enabled by

direct loans to corporations and small and medium-sized businesses. The analysis will be partly

empirical, using NUS-CRI data and I provide an analysis is a summary of parameters from

academic text that can be considered direct inputs and/or reference benchmarks, keeping

the overall analysis reasonable.

The �rst analysis summary shows the summary statistics of the twelve-month SRI EDF

using the NUS-CRI PD data. The largest proportion of �rm data comes from the USA,

followed by the United Kingdom and, understandably, South Africa. I also summarised the

number of rows of data (DB rows). The mean PD value is highest for the USA and lowest

for the UK (this is a unweighted average and not weighted in accordance with the economy).

The sentiment and credit cycle indicators are both scaled using the same approach taken in

Section 10.1.4.

Domicile Entities / Grade Row count Mean Std Min 25% 50% 75% Max

GBR 1,439 454,488 0.4% 1.5% 0.0% 0.0% 0.1% 0.4% 92.1%

Investment 392,298 0.3% 0.6% 0.0% 0.0% 0.1% 0.3% 62.6%

Sub-investment 13,961 2.6% 4.0% 0.0% 0.6% 1.4% 3.0% 69.1%

USA 4,837 1,751,433 0.9% 3.6% 0.0% 0.0% 0.1% 0.5% 99.7%

Investment 1,487,428 0.4% 1.0% 0.0% 0.0% 0.1% 0.4% 96.9%

Sub-investment 73,326 5.6% 8.1% 0.0% 1.2% 3.0% 6.6% 99.7%

RSA 327 102,705 0.8% 2.2% 0.0% 0.1% 0.2% 0.6% 74.8%

Investment 83,466 0.4% 0.6% 0.0% 0.1% 0.2% 0.5% 26.2%

Sub-investment 7,741 3.9% 4.6% 0.0% 1.4% 2.5% 4.6% 65.8%

Table 11: Long-run credit parameters for Economic Scenario Generation. These results are

based on the results of a data analysis of SRI data. I summarised the NUS-CRI

PD data, categorised it by country, investment grade and also provides descriptive

data points, including number of entities, rows of data and summary statistics of

the NUS-CRI 12m PD. Notably, this shows a signi�cant proportion of data as

investment grade, possibly not representative of the economy at large.
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Figure 53: The bar chart is a country-level visual of the degree to which companies change

PD from the average value to the maximum value; this is a proxy for an average

TTC versus downturn PD. The USA is showing a far higher value (24%) than

the UK or RSA (8% and 10% respectively). A visual comparison of the di�erence

between the average monthly credit spread values and the maximum values for

each country, as well as a summary of the underlying sectors. The US features

the largest range between what can be considered TTC PD and DT PD.

15.2.1 Credit cycle index (CCI) and diagnostic extrapolation (DE)

The following empirical analysis explores the relationship between the proxy for diagnostic

extrapolation, the scaled sentiment variable and credit spread. The credit cycle index is prox-

ied using the twelve month forward credit spread, which is then compared to our sentiment

variables in Table 10. The parameters from that analysis are core to the simulation of data

in Part V, the portfolio construction and optimisation part of this study. Instead of looking

for subtle correlations using advanced analytical techniques on limited data. Which is the

method for analysis will de�ne parameters for modelling that have already been checked for

reasonability using research of the academic literature and market participant public informa-

tion. I consider the visualisations in selecting the most appropriate index for forward credit

spread simulation.
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GBR CCI-DE analysis The following analysis is based on the results for the UK BCI index

only. With this �lter, I will be able to review the credit dynamics for each country and the

relationship of the DE proxy to the forward credit spread. In the UK, reviewing the OECD

BCI index as time-series rolling six-month index, it is the Textblob data that performs the

best. This index appears to be well connected, with a clear negative relationship in times of

stress. I can see a distinct drop in sentiment just before and during the GFC in 2009, as well

as from 2002 to 2004. The sentiment levels were high in the run-up to the GFC, in 2016,

and in the more recent period, beginning in 2019. The favourable feature of this time series

is the sharp drops in sentiment around shock periods, with well-timed turning points.
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Figure 54: UK Textblob based on The Guardian data plotted against the 12 month UK credit

spread 12 months forward. Please note that the data is e�ectively lagged, hence

the negative relationship, that may on inspection be interesting.

This analysis has been performed for using the outputs from the my analysis using Textblob,

and Vader on data sources such as The Guardian and The New York Times (please refer to

III. I reviewed factor variables as the analysis was completed for OECD BCI, Textblob, and

Vader (please refer to the appendix; Section 26). The analysis includes a time-series chart

for each factor and the complete series of XY charts for the term structure. The variables

that show the most consistent relationship over the term structure and the clearest pattern

on the XY chart have been selected and are therefore reported in the body of this thesis. In

Figure 55 there is clear evidence of a negative relationship between the Textblob variable and

the 12 month forward credit spread in the UK. This relationship continues through the term

structure of the credit spread and is still in place for the next 12 months (far right chart). A

clear feature in this data is the tight grouping of results with low credit spreads and DE (as

measured by Textblob sentiment valence). The relationship appears to increase in variability,

albeit still negative, as DE is lower. This relationship will now be summarised and used in

the simulation of asset pricing in Chapter V.
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Figure 55: UK Credit spread as it relates to business Textblob. Both variables have been

scaled for this analysis. The XY chart indicates a negative relationship that

extends through the term structure of credit spread. Note the tighter grouping

of results in the high-DE to low-credit spread segment of the chart.

USA CCI-DE analysis The following analysis is based on the results for the USA BCI index

only. I will also be able to generate a more granular review and analytics. I will also be able

to review the credit dynamics for the RSA based only on the relationship of the DE proxy to

the forward credit spread. In the RSA analysis, I reported the US OECD BCI index factor

only in this chapter; other factors are reported in the appendix; Section 26.9).

2004 2009 2014 2019
Date

0.005

0.010

0.015

0.020

0.025

USA Credit spread 12m (black, LHS) vs OECD CCI MEI USA % change (blue, RHS)

94

96

98

100

102

104

Figure 56: US OECD BCI (as the DE proxy for US) data plotted against the 12 month UK

credit spread 12 month forward.

US OECD BCI, which is promoted as a USA DE index, appears to be well correlated, with

a clear negative relationship in times of stress. I can see a distinct drop in sentiment just

before and during the GFC in 2009, as well as from 2002 to 2004. The sentiment values

are consistently high in the run up to the GFC, 2016 and the more recent period, 2019

onwards. The favourable feature of this time series is the sharp drops in sentiment around

shock periods, with well-timed turning points.
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Figure 57: US credit spread as it relates to business: US, OECD BCI, DE proxy. Both

variables have been scaled for this analysis. The XY chart indicates a negative

relationship that extends through the term structure of the credit spread. Note

the tighter grouping of results in the high-DE to low-credit spread segment of

the chart.

RSA CCI-DE analysis The following RSA analysis is based on the results for the Vader

index performed on The Guardian and The New York times data only. I will also be able to

generate a more granular review and analytics. With this �lter, I will be able to review the

credit dynamics for the RSA based only on the relationship of the DE proxy to the forward

credit spread. In the RSA analysis, I reported the RSA Vader index factor only in this chapter;

other factors are reported in the appendix; Section 26.9).
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Figure 58: RSA Vader index based on data from both The Guardian and The New York times

(as the DE proxy for US) data plotted against the 12 month RSA credit spread

12 month forward.

The Vader index, which is promoted as a RSA DE index, is plotted in the Figure 58 shows

a negative relationship between the variables and a concentration in times of DE stress. I

can see a distinct drop in sentiment just before and during the GFC in 2009, as well as from
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2002 to 2004. Sentiment levels were consistently high in the run-up to the GFC in 2016,

and in the more recent period, beginning in 2019. The favourable feature of this time series

is the sharp drops in sentiment around shock periods, with well-timed turning points.
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Figure 59: RSA Credit spread as it relates to the RSA VADER Index based on data from

both The Guardian and The New York times. Both variables have been scaled for

this analysis. The XY chart indicates a negative relationship that extends through

the term structure of credit spread. Note the tighter grouping of results in the

high-DE to low-credit spread segment of the chart.
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15.2.2 Transform variables - PD distribution

UK PD distribution analysis The distribution of default entity risk is measured as the

twelve-month forward distribution of realised SRI-EDF ratings. The framework relates to

economic states as they are de�ned by the CCI-DE. In this analysis, I provided a perspective

based on the company EDFs as they are mapped to CCI-DE deciles.

De
ns

ity

1

De
ns

ity

2

De
ns

ity

3

De
ns

ity

4

De
ns

ity

5

De
ns

ity

6

De
ns

ity

7

De
ns

ity

8

10 5 0 5 10
US IG EDF 12m % change

De
ns

ity

9

UK CCI-DE ridgeplot 
 <----- CCI-DE deciles

De
ns

ity

1

De
ns

ity

2

De
ns

ity

3

De
ns

ity
4

De
ns

ity

5

De
ns

ity

6

De
ns

ity

7

De
ns

ity

8

12 10 8 6 4 2 0 2 4
UK SIG EDF 12m % change

De
ns

ity

9

UK CCI-DE ridgeplot 
 <----- CCI-DE deciles    

Figure 60: Joint plot showing the distributions of UK investment-grade (IG) SRI EDF and

sub-investment-grade (SIG) SRI EDF ridge plots, respectively. In the case of the

IG distribution, it is clearly more stable than the CCI-DE deciles and has a tighter

distribution. The SIG ratings report a less stable distribution over the CCI-DE

deciles, where the EDF shows a signi�cant hump in the tail in CCI-decile = 0,

thereafter the distribution is skewed in the opposite tail.
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US PD distribution analysis The distribution of default entity risk is measured as the

twelve month forward distribution of realised SRI-EDF ratings. the framework relates to

economic states as they are de�ned by the CCI-DE. In this analysis I provided a view based

on the company EDF's as they are mapped to CCI-DE deciles.
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Figure 61: Joint plot showing the distributions of the US investment-grade (IG) SRI EDF

and sub-investment-grade (SIG) SRI EDF ridge plots respectively. In the case of

the IG distribution is clearly more stable over the CCI-DE deciles and has a tighter

distribution. The SIG ratings report a less stable distribution over the CCI-DE

deciles, where the EDF shows a signi�cant hump in the tail in CCI-decile = 0,

thereafter the distribution is skewed in the opposite tail.
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RSA PD distribution analysis The distribution of default entity risk is measured as the

twelve month forward distribution of realised SRI-EDF ratings. The framework relates to

economic states as they are de�ned by the CCI-DE. In this analysis I provided a view based

on the company EDF's as they are mapped to CCI-DE deciles.
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Figure 62: Joint plot showing the distributions of RSA investment-grade (IG) SRI EDF and

sub-investment-grade (SIG) SRI EDF ridge plots, respectively. In the case of the

IG distribution, it is clearly more stable than the CCI-DE deciles and has a tighter

distribution. The SIG ratings report a less stable distribution over the CCI-DE

deciles, where the EDF shows a signi�cant hump in the tail in CCI-decile = 0,

thereafter the distribution is skewed in the opposite tail.
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16 Summary of analysis

Credit-risk modelling is a key part of this study. In this section I reviewed the underpinning

theory of the core credit-risk models. This allowed for a deeper understanding of the under-

lying assumptions that are used for banking, which are not ideal for the purposes of asset

management and portfolios that are not large, nor homogenous. In this section I investigated

the key methods for credit-risk modelling, detailing the key underlying assumptions and mod-

elling frameworks with the aim of detailing the most appropriate modelling technique for use

in this study.

This is an important section in which I established the core methods, models and theories

needed for credit modelling. I started by de�ning the key variables (PD and LGD) and their

measurement frameworks (PIT, TTC and DT). I provided a detailed review of the Basel

II banking methodology for understanding portfolio credit-risk. I surveyed and summarised

the core modelling techniques and their history in developing the commercial solutions that

banks use today. Modelling includes the approaches taken to retail and commercial banking

models such as Logit models and Altman's Z-score. I detailed the data rich modelling of

KMV Moody's to the slender reduced form models, that have become a vital method for this

study. The review in banking modelling was noteworthy when I built a portfolio of loans in

which the modelling in banking appears ubiquitous. Understanding the models is essential,

as these theories all too often being based on an assumption of large portfolios. One key

assumption that is not solid is the independence of PD and LGD in which I detailed a key

method to model if there is a break down in assumptions. I went further into detail when there

is also a breakdown in assumption in stressed markets, identi�ed as correlation breakdown.

In the last section, I modelled the relationship between my sentiment measure based

on news signals, as a simple measure of reaction based on news sentiment, con�rming the

time series relationship with the expected credit spreads. I made use of the aggregate CCI

proxies from Part III, to understand whether there is more information when compared with

the credit data, when such was based on a large sample of companies and corporates. The

distribution of the expected credit shows a widening of distribution and longer tails as the

cycle indicator moves toward as stressed scenario.
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Part V

Economic scenario generator and portfolio

modelling

The next section describes the designs of a suitable economic scenario generator (ESG) that

takes into account the complexity of the private debt asset class, contends with the phases of

the credit business and is part of an integrated market data generator. Following that, I use

the scenarios to build a portfolio choice solution that includes an analysis of reinforcement

learning (RL) strategies for sequential planning.

17 Introduction

I will now describe the asset-pricing models by de�ning the mathematical models I used. I

also illustrated the model using charts to elucidate the underlying intuition for the bene�t of

the reader. The aspect part of the model is the embedded credit-risk simulation technique.

This technique allows me to con�gure a reasonable set of return and cost pathways for the

private debt building blocks. I have taken special care to explain the use of copula techniques

that reect the correlation between PD and LGD. This model is dynamic, depending on the

current economic cycle, and my innovation is to utilise the forward view of distributions using

the sentiment based information that is cycle-dependent (outputs from the modelling in Part

IV).

To better understand the potential future scenarios and dynamics of the economy and

capital markets, ESG models are utilised. The output can then be e�ectively utilised for

risk-based decisioning strategies, giving decision makers a good view of where their risks

lie. The Society of Actuaries (2016) de�nes an ESG as a software tool set up to simulate

future economic scenarios that drive prices for �nancial assets. Although the mathematical

approaches and economic concepts can be identical, ESG models have a di�erent framework

from other economics and �nance models, the ultimate purpose being di�erent. These are

interest rate sensitive and are an integrated view of the asset class universe, providing a full

view of potential extreme values for both assets and liabilities.
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18 Asset price scenario generation

The output from the ESG is a set of simulated interconnected paths for each asset type

speci�ed. Each path represents a possible and plausible economic outcome of an asset

over time. A full set of paths is vital. When used correctly, such can be crucial to asset

managers (such as a de�ned-bene�t pension fund manager) in making investment decisions

(Society of Actuaries, 2016). The ESG will output a set of integrated plausible asset/security

distributions across various scenarios interrelated in a meaningful way (i.e., correlations are

considered). The working parts of the ESG model are structured such that they cater to

correlation; this is made possible by means of a hierarchical cascade structure. At the core

of the ESG is an interest-rate projection, and many other components can be built around

this, such as risk premia models. Society of Actuaries (2016) explains that ESG models are

usually set up to perform on risk-neutral and real-world modelling frameworks, depending

on the intended product or trading environment (in my case, a real-world projection). A

high-level taxonomy of models as illustrated below:

� These models can be categorised �rstly by whether they have been developed using dis-

crete time or continuous time. Continuous time models are most often in �xed-income

markets as they allow for analytical tractability, especially when pricing derivatives.

� The second consideration is whether the model is arbitrage-free or an equilibrium model.

Equilibrium models consider the utility of the investor and a full description of the

economy. This method presupposes economic equilibrium, in contrast to the arbitrage-

free models which assume no arbitrage opportunities. Instead, these models make

assumptions about the stochastic behaviour of interest rates and the price of market

risk. This is a subtle but important di�erence.

� Thereafter, the models are developed using either a single or multiple factors. The

one-factor models, often referred to as one factor short-rate models, are based on

the short rate, which describes the corresponding term structure. Single-factor models

assume that all the information about a term structure is captured by one speci�c

factor, the short-term interest rate.

When I consider the more advanced requirements for �nancial assets, in which simulations

are generated for use in risk management, investment planning, and pricing, I consider the

following speci�c stylised features, also detailed in the Society of Actuaries (2016):
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� Fixed-income Short-term bonds are more likely to produce lower yields than long-

term bonds. This can be reversed in the case of an inverted bond curve. The reverse

relationship is true for uctuations over a month, in which a long-term bonds are

more stable than short-term bonds. Even when compared with other parameters,

term spreads have shown strong predictive ability, as argued by Engstrom and Sharpe

(2018). Since the GFC, term structure models have been performing especially poorly;

and economic aspects have been mainly stripped out of macro-�nance models, as

evaluated by Kucera (2017).

� Rates are not zero-bound and, in today's �nancial world, can be negative. More

recently, this has started to reverse, with rates moving up in key economies.

� Corporate credit spreads are expected to decrease as the rating of the underlying bond

improves. This proportion of the spread is not only due to credit; it is partly attributed

to the liquidity factor. This approach is considered important when reviewing private

debt as an asset class.

� Default factors that a�ect the PD (more than rating alone) include �rm, industry

sector and country.

� Equity returns are expected to have a higher range and average value than those seen

in �xed-income, with volatility varying over time.

� Economic recession and uctuation tend to disrupt credit spreads and the probability

of default.

� Correlation between variables is also not stable, one can expect this to change over

an economic cycle.

In summary, a good ESG model will �nd the right balance between simplicity and modelling

of critical historical features, and must be shown to capture extreme events. This approach

is preferable to using an over-�tted VAR model that �ts the data but does not have well-

thought-through-dynamics that are modelled and can be explained (Society of Actuaries,

2016). Going forward, I will detail the ESG model I built to generate asset-pricing paths.

ESG programming I coded the full ESG model, this model provides asset-pricing pathways

needed in the portfolio construction Section 19. I utilised Python and Python packages as
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part of a Colab hosted program. I provided details of the address of the Google Colab �les

in the Appendix; Section 30.

18.1 Mathematical preliminaries

I summarised typical features of the pricing model, providing context around use this model to

generate asset-class data. I will now start to formalise the mathematical model I use as part

of a simulation program. Far from trivial, an important step is to appropriately describe the

mathematical model I use to generate the simulated pathways. The ESG model has primarily

focussed on asset class return scenarios used to describe hidden risks and opportunities as

asset pathways, determined by a reasonable set of input parameters.

18.1.1 Discretised probability space

I consider a �ltered probability space that satis�es regular conditions; this is formalised using

measure theory. Measure theory becomes important when I am working with continuous or

discrete variables and distributions; the probability theory is a special case of measure theory.

Foundational components, using measure theory, for a probability space include the \triple"

that consists of 
;F , and P. To explain further, 
 denotes the sample space, F denotes a

sigma-algebra (�-algebra), and P denotes the probability measure. The triple is critical when

de�ning a su�cient statistic for random processes, explained here:

� 
 is the sample space, the set of possible outcomes or state space. An element is

where ! P 
 represents a speci�c realization from among all possible uncertain objects

of the model. An event is a subset of 
, which in this case is a collection of events.

� F is a sigma algebra, or �-algebra on 
, that is a collection of events of subsets 


with the properties:

� H P F , this is the unique set having no elements and its size is zero

� 
 P F

� For any set F P F , the compliment F c is also in F

� If F1; F2; :::: P F , then the union
�8

n�1 Fn P F

� F is the collection of all events that can be assigned a probability.
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� Lastly P is the probability of an event on F , for each of the events that are part of

the �-algebra that are to have a probability associated with it. P probability measure

is a function P : F ÝÑ r0; 1s with Pp
q � 1 and the property that Pp�8
m�1 Amq �°8

m�1PpAmq for any sequence A1; A2; ::: of disjoint events each in F .

According to Munk (2011), in the case of multi-period models, the state space is a consider-

ation of all factors and all conceivable combinations of events for all periods in time speci�ed

t P T , where t P r0; T s simply where T ¡ 0. This leads to a tremendously vast state space.

18.1.2 Wiener process to generate random numbers.

For a modeller to denote random processes, a special notation is used. For this study, I used

a well-known process, the standard Wiener process. It is a key part of the modelling for many

asset-pricing models, also known as Brownian motion. Fabozzi and Markowitz (2011) de�ne

the Wiener process as Wt , reecting the following properties:

� For any time s   t, the di�erence Wt{Ws is a normal random variable with mean zero

and variance pt{sq. The di�erence can be expressed as ?t � s � "̂, where "̂ is a standard
normal random variable

� For all time 0 ¤ t1 ¤ t2 ¤ t3   t4 , the di�erences W pt2q{W pt1q and W pt4q{W pt3q
are independent random variables, said di�erently these increments are independent

� The value of the Wiener process at the beginning is almost surely zero, P pW pt0q �
0q � 1

The properties above characterise the Weiner process, in which these properties can be

considered a mathematical formula representation of a Brownian motion. I make use of same

mathematical notation in developing stochastic di�erential equations (SDE). Such can be

use to provide a model of Brownian motion.

dXt � �dt � �dW (177)

In order to denote return increments from discrete to in�nitesimal time steps, � change to

d . The Wiener process is a form of Markov stochastic process that is frequently used to

research Brownian motion. This is an important factor in traditional asset pricing, and it is

the random value or random element used to express uncertainty.
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18.1.3 Random walk models

With a random number generated, we also require a model that appropriately generates the

asset pricing with prede�ned known market characteristics. The mathematics foundations

are de�ned, I now consider random number process and the limits imposed by speci�c random

walk models. Campbell et al. (1997) have categorised these random walk models into the

following classes:

� Random walk I (RW1): Independent identically distributed (IID) increments. The

random walk models are simplest because they only require that the random num-

bers, or increments in the asset-pricing path, be independent and identically distributed

(functions of the increments must also be independent). This is the only one of the

categories that results in a Weiner process.

� Random walk II (RW2): Independent increments. If I soften assumptions around the

persistence of increments in RW1, the error term also may allow for heteroskedasticity

in RW2. The key is that increments are independent, not identically distributed.

� Random walk III (RW3): This is the weakest form of random walk, in which the

independence assumptions are also relaxed. In the realm of random walks, this class

has the widest applicability. The RW version used in this research is one of the most

extensively researched and tested types of market model.

I de�ned the core elements of the mathematical methods and statistical assumption sets

before proceeding with the ESG model development.

18.2 ESG model logic and parameters

To introduce the model, before I denote the model mathematically, I explain the model

logic or intuition, using simple formulas and asset paths to illustrate the key asset-pricing

mechanisms. Central to the risk premium model is the net bene�t. The net bene�t is

the return in addition to a risk-free cash asset, from investing in a speci�c systematic risk

premia in a speci�c domicile (in our analysis: UK, USA, RSA). In the case of a private debt

asset, I am really introducing two systematic risk premia: �rst, the bene�t from default risk,

and second, the systematic bene�t from bearing the liquidity risk. In this analysis, the risk

premia are expressed as a percentage return per year; and the additional cost is expressed as a
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percentage cost per year, hence the requirement that the strategy be net positive. Therefore,

capture the private debt strategy in a formula:

ErCs � rratesrf � rprivate debt premiumsi � rexpected lossessi � rfeessi (178)

i represents asset class risk factor and rf denotes a risk-free asset. To expand, the expected

cost of credit can be further broken down into its component parts. The expected loss is

de�ned as the \potential for default" multiplied by the magnitude of loss given said default

(ErLosss � PD � LGD). The relationship can then be restated as follows:

ErCs � rratesrf � rdefault premiumsi � rliquidity premiumsiloooooooooooooooooooooooooomoooooooooooooooooooooooooon
private debt premium

�rPD � LGDsiloooooomoooooon
expected loss

�fees (179)

I will later detail how this model caters for di�erence cycle e�ects, correlations whilst con-

sidering di�erent asset classes.

18.2.1 Parameter illustrations

In this section, I introduce key features of asset-price simulation in a set of charts for this

analysis that can also be used to report results. I introduce concepts incrementally to explain

the model and in developing the model logic. First, I demonstrate the value of an arbitrary

portfolio of over-time. The portfolio is invested in a risk-free asset, such as cash, that

accumulates interest over the full horizon.

� Risk-free asset (ratei): a core underlying building block in the simulation of asset-

prices is the rate of return received on risk-free assets. The cash value of the portfolio

nicely demonstrates the cumulative compounding of returns over time.

� Asset pricing mean reversion: this view reports only the rates that the portfolio is

receiving in return over the investment horizon. The rate increases over time and

attens out to a steady rate. This is a key underlying concept that I stylise in the

simulation of asset prices in this analysis: that the current rate will converge toward

a long-run average over time, known as `mean reversion'. In the illustration, in Figure

64, the current rate starts close to 3% per annum and evens out 15% per annum

(note the chart y-axis is reported in monthly rate return). Another consideration is

how rapidly the rate of return converges on the long-run rate; this is known as the rate

of convergence, or speed of mean reversion and denoted by (�).
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Figure 63: This view is a demonstration of the compounding e�ect of invested cash in con-

tinuously compounding markets, the upward curved index of portfolio value. The

colours in the charts only serve to highlight di�erent paths or scenarios.
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Figure 64: Simulation of rates, showing the mean reverting nature of rates. Another key

feature that has been introduced to this stylised analysis is the volatility factor,

which is the cause of the random nature of the return series.

� Asset pricing correlation: In this study, we expect that asset prices are also driven

by correlation between the assets; this is therefore a multidimensional approach to

modelling the assets. This is not a di�cult process and is standard for asset class

simulations.

� Credit jumps: using a jump di�usion model introduced by Merton (1976) and adopted

for use in a credit-risk reduced form model, a sudden change in asset value linked to

the default of the company is driven by a stochastic process called a jump. The jump

mechanism in this context drives a signi�cance change �rm value. So the frequency of

each jump is a key parameter (and how it functions across an economic cycle).
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� Loss given default (LGD): This is the loss associated with each credit jump. The

loss variable is always negative, however, its impact is latent, as it is multiplied with

the jump variable, which is mostly zero until a jump arrives.

0 25 50 75 100 125 150 175

0.25

0.20

0.15

0.10

0.05

0.00

Credit Jumps incorporated into rates 
 (jump magnitude over time)

Figure 65: For credit-risk, the jumps are associated with a signi�cant loss, which, varies

between -20% and -25%. What is notable, is the extent of a credit loss relative

to the rate of return in each period; the rates of return in Figure 64 pale in

comparison to the losses associated with a default event, or jump. The change

in value, can be clearly seen in this rate chart, that is now augmented with the

value change due to credit-risk jumps. Basically the investor sees that value of

her asset instantaneously fall when a default occurs.

� Credit dependence: An important theme in this study is time variation of the credit

cycle. I also detailed how the diagnostic extrapolation (DE) is connected to busi-

ness cycles and credit-risk cycles. The time-varying dynamics capture variation in the

credit/business cycle per the following parameters:

� DE impacts systemic risk as it drives the PD variable and respective variability.

� DE that is a connection to herding behaviour is connected to a resulting credit

cycle. The DE drives a correlation factor between sentiment and the credit cycle,

impacting the � in the Clayton copula. The net impact is that the losses associated

with a jump is also expected to increase due to herding behaviour. This is because

assets are expected not to receive their full value in a sale during stressed times.

Liquidity in the asset markets is anticipated to be reduced.

The cash value of a portfolio is one way of summarising a journey; while a histogram or

density chart can be used to summarise a distribution. A time-series plot can be used to

summarise the path of the value of the asset. Figure 67 conveys the paths and distributions
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Figure 66: This is a �nal illustration of the progression of a few indexed asset pathways. This

chart also demonstrates the impact of a default when it occurs (an example is the

purple line showing the distinct negative jump just after the 125th time interval).

Bear in mind, these stylised paths are not derived from real calibrated values. Such

does demonstrate the impact on value that a credit-risk event has relative to the

slower incremental increases from cash ows (this is true in real-world data). This

analysis also features a few paths that show a second or third default. Such may

be rarer in the real world (the rate of arrival may not be as high). In all cases, the

net impact over the full horizon is signi�cantly di�erent when a credit default has

occurred. The colours in this chart only serve to illustrate the di�erent scenarios

or asset pricing paths.

together with the resulting distribution, to the right of the path plot, shows a marginally

skewed distribution. The results of the simulation clearly indicate the e�ect of credit losses,

where certain paths illustrate a clear loss in value. As it has been explained, this loss is a

function of default intensity and the magnitude of the loss. Figure 68 separately illustrates

PD on the left and the LGD distribution on the right. Both distributions vary over the credit

cycle. Such can a�ect the shape (skewness), the median value, and the standard deviation.

The LGD distribution in this study follows the beta distribution, with high proportions of loss

reported closer to each tail (0% loss and 100% loss). The typical U shaped distribution of

credit losses is illustrated to the right of the Figure 68.

As I explained earlier, the impact of the PD and LGD correlation is attenuated in

favourable markets and heightened in stressed markets. This feature has also been referred

to as \correlation breakdown", which negatively correlated assets become more correlated

in stressful markets.
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Figure 67: Path plots on the left, featuring asset path scenarios with a step change in value,

due to the loss incurred from a credit event (jump default).
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Figure 68: PD and LGD distributions for defaults and loss expectations respectively. The

PD distributions is skew and in this illustration is a gamma distribution. The LGD

is based on a beta distribution.
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Figure 69: Joint plot of the DE-CCI and the PD distributions with two di�erent values for

the Clayton copula � variable. To account for the di�erent correlation, the chart

on the right is an illustration of a correlation breakdown (described above). Here

the marginal distributions are the same as in the left-hand chart; however the

concentration of losses is shown in right chart.
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18.3 ESG mathematical formulation

What is well-established in �nancial markets is that the parameters exhibit mean reversion,

the phenomenon in which returns revert to the long-term mean. In this research, I add a

discrete mean-reverting process to the ESG model, similar to a process in the continuous

space is known as the Ornstein-Uhlenbeck process (Munk, 2013). This model belongs to

a RW3 model category from Campbell et al. (1997) as the model assumptions account for

endogenous variables linked to market sentiment.

18.3.1 Risk free asset pricing model

The risk-free asset is one with a certain future return and no risk of loss and is denoted in

this study as:
dp

p
� rptqdt (180)

Where r is the risk free rate and seen as a deterministic function. This represent the change

in yield in the market and as this is, by comparison to other assets, not going to feature

many risk types that reect its value, hence the simple representation of rate r over time.

18.3.2 Liquid asset model

The traded liquid asset is captured by the structure of the geometric mean reversion (GMR)

model. This model is used in a standardised way for equity, �xed-income, property and gold

returns. Parts of the model follow a similar approach in this modelling taken by Uhlen-

beck and Ornstein (1930) however this model is set in discrete time, following Fabozzi and

Pachamanova (2010), as follows:

drt � � p� � rtq dt � �
?
rtdWt (181)

where � represents the speed of adjustment and correlated multi-variate at the asset classes

level. The magnitude of � is positively related to the speed that the process takes to return

to the long-term average.

18.3.3 Illiquid private credit model

This model is a natural extension of the GMR while keeping the analytical tractability of bond

prices. Credit-risk is dealt with by incorporating stochastic jump into the GMR model. Jump

models have been widely utilised in �nance to estimate asset pricing, especially for options.
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The jump di�usion models are made up of two parts: a jump portion and a di�usion part.

The di�usion process is driven by the beta distribution and this determines the extent of

the expected loss (a value between 0% and 100%). On the other hand, the Poisson process

determines the jump that allows one to simulate abrupt and unexpected price increases in the

underlying asset. In my model, this change is due to a realised default. The beta distribution

approach to this model is also widely, Moody's (2007) even providing the average � and �

variables used. Notice also that the jumps is positive; however, it is subtracted from the

asset value for all-time period where a jump indicator is greater than one. For each asset

class, i that is e�ected by the DE proxy, �, the asset-pricing dynamics are determined by

the following stochastic jump di�usion model:

drt;� � � p� � rt;�q dt � ��dWt � dJ�� ����;�� (182)

where the mean reversion function, denoted by � p� � rtq, is driven by the speed of mean

reversion �, long-term asset returns � and current asset prices rt . The loss � associated with

the default and jump intensity dJ are both connected to the diagnostic extrapolation proxy,

the CCI level denoted as �. The jump model is a component of the pricing model. The

jump model is based on the Poisson process driven by the intensity of default. This Poisson

process is often used in asset-pricing methods, in which asset returns are the occurrence of

spikes in returns, often asymmetrically (I detail this in Figure 183).

18.3.4 Jump frequency, intensity model (PD

This technique has been often used in academic studies and by market-based practitioners,

when dealing with reduced-form credit-risk models. The default risk is modelled by intro-

ducing a stochastic jump, randomly using a Poisson distribution that impacts the value of

the asset (in this case negatively). This technique can therefore mimic the spike in asset

value after a default. The Poisson process models the value spike by randomly sampling in

accordance with a frequency directly related to the expected PD, the jump intensity, � in this

model. If necessary, the magnitude of the jump, �, representing the loss incurred, can be

modelled using an appropriate distribution (often a beta distribution for loss-given default).

For a time-homogeneous Poisson process with intensity, �, and for t ¡ 0, the number of

arrivals of a jump, Jt , in the case of Nt , is given by:

PNt
pnq � �nt e

��t

n!
(183)
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18.3.5 Loss associated with default (LGD, �).

The magnitude of the jump in this stochastic process, drives the magnitude of the shock �

and is akin to the loss given default, LGD, in bank credit modelling. When multiplied by the

shock arrival rate N which is akin to the PD, please refer to (183). In this study I make use of

the very exible beta distribution, as this has often been used for LGD modelling, in particular

for simulation based approaches. This includes Moody's KMV portfolio manager and the

CreditMetrics model. The beta distribution only requires two variables, the beta distribution's

centre parameter, �d , and a shape parameter �d . The beta distribution probability density

function is de�ned as:

f pxq � X��1p1� xq��1
Bp�; �q (184)

where the function is normalised in B, ensuring that the function lies within the range of

zero to one. The mean of the distribution is calculated to be:

� � EpLGDq � �

�� � (185)

The variance of the distribution is calculated as:

�2 � �p1� �q
�

(186)

where � � � � �. I made assumptions around the shape of the distribution (the standard

shape is a bi-model u-shaped distribution) and I assume a mean and variance that aligns with

the standard assumption that Moody's utilise in their LGD models. The beta distribution is

also used with a mean equal to 50%; and a standard deviation equal to 26% (Moody's, 2007).

The standard assumptions are followed for the DE proxy that represents a standard market

(CCI=50%). More signi�cant changes are applied in the case of an expected economic

shock or boom (in which CCI=0% and 100% respectively). Please refer to the remaining

assumptions in Table 15.

18.3.6 Jump and loss dependence (Clayton copula) model

Macro based LGD models deal with parameter correlation to the PD variable forms of the

modelling, including that of Frye (2000) who rescaled the LGD variable, as part of a larger

single factor risk model for the PD variable. In my model both the LGD and PD are a�ected

by a common variable linked to expected credit cycles. The formulation of the Clayton copula
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is as follows per Munk (2011):

Cpy1; y2q �
��
py��1 � 1q� � py��2 � 1q�

�1{�
� 1

��1{�
(187)

where � ¥ 1 and � ¥ 1. Where � is governed by my CCI diagnostic expectation proxy �.

As a result of the Clayton copula and Gaussian copula being explicit functions, these are

largely easier to handle than the Gaussian copula. The dependency structure is determined

by �, where 0   �   8. The higher the value of � causes a tighter correlation pattern, in

particular the lower tail.

19 Portfolio construction design and implementation

Optimisation in �nance is a broad and challenging area of research. In this thesis my interest

in the use of an optimisation model that is a rapid and stable algorithm, which has at its

core a control for downside risk. The algorithm needs to be based on the same downside

measure we are controlling in this problem, and designed for sample paths. Chekhlov et al.

(2004) introduced an optimisation technique that is directly related and robust, as their

popular method in Rockafellar and Uraysev (2002). This method is termed the conditional

drawdown at risk (CDAR) portfolio optimisation. In the following sections, I provide a detailed

description of the optimisation modelling approach, the parameters used, and the results of

the optimisation.

19.1 Portfolio optimisation modelling

Chekhlov et al. (2004) introduced a family of risk measures that deal with drawdown. This

is a key risk measure in both asset management and for their client portfolios. Examples are

pension fund and insurance investing, both set against a benchmark, and for those invest-

ments linked directly to a liability. The drawdown measure is often used to state a maximum

risk level acceptable in the writing of mandates. Maximum drawdown (MDD) is de�ned as

measure of an asset price historical high (often measured locally over a sensible time horizon,

which is closer to the investors investment time horizon). As Chekhlov et al. (2004) explain,

the CDAR is the measure of the average of the worst drawdowns over a sample set, that are

greater than a threshold selected by the user (� is often set at 5%). For example, over a

selected time horizon, the CDAR is then the mean of the worst (1-�) percentage of draw-

downs experienced. Chekhlov et al. (2004) go further to explain that the Rockafellar and
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Uraysev (2002) method for optimisation using CVAR is linear, and can be directly used for

this problem. The problem has been cast as a linear problem that has been broken down into

sections by using a linear piecewise convex model. This then means that the problem can be

solved using linear programming. Such has the advantage of being rapid, stable, and robust.

I follow Chekhlov et al. (2004) for the formulation of the model, in which x � px1; x2; : : : ; xnq
represented the asset classes weights for m asset classes. The drawdown function is de�ned

as:

Dpx; tq � max
0¤�¤t

twpx; �qu � wpx; tq (188)

where the drawdown function is the peak maximum value of the asset price over the time

horizon of:

max
0¤�¤t

twpx; �qu (189)

t less the current value at the time. Let ��pxq represent the threshold and CDAR optimisation

is represented by the following linear function:

max
xPX

1

dC
yN � x

s:t: � � 1

p1� �qN
Ņ

k�1
rmaxtyj � xu � yk � x � �s� ¤ V C (190)

d is the number of years and C is the capital value of the investment. Capital values is

measured as CAGR in our example over the investment horizon of r0; T s, that has been set

at 1 and 5 in this study (given the mean reversion, the �rst year is interesting, relative to a

sensible time horizon of 5 years for a long term investment problem). Rpxq is the expected
return, measured as the inner product, 1

dC yN � x , y represents the cumulative return and V

represents the allowable losses in capital value.

Optimisation programming I made use of Chekhlov et al. (2004) for the portfolio modelling,

Chekhlov et al. supply the optimisation logarithm in github15. I utilised this program to run

the optimisation as part of the larger colab-hosted program that I coded; and I provided

details in the Appendix; Section 30.

19.2 Portfolio construction implementation

This section provides a summary and high level process for the optimisation modelling and

portfolio construction.

15https://riskfolio-lib.readthedocs.io/en/latest/portfolio.html
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19.2.1 Investable asset classes

The universe of asset classes is the foundation from which all portfolios can be constructed.

Assets Description GBR RSA USA

Cash and Fixed-income

Cash and

equivalents

De�ned by U.S. GAAP & IFRS, cash and cash equivalents, cash convertible

within 3 days, e.g. commercial paper, short term government bonds.

X X X

HY Bonds,

Sov Bonds,

Inv Bonds

Fixed-income assets featuring payments referred to coupons, plus the orig-

inal principle returned at term. Coupons rates are agreed on schedule and

bought in secondary markets from Sovereign and corporate issuers.

X X X

Growth assets

Equity Equity investments, public direct company share holdings. Return from the

change in price of shares and dividends that the company pays out.

X X X

Property Real Estate Investment Trusts (REIT), returns from income producing real

estate with earnings from properties and rentals distributed to shareholders.

X X X

Alternatives

DC Inv Direct holding loans as direct credit (DC), held to maturity. Priced with ref-

erencing rate, such RSA JIBAR, plus a spread for expected costs (primarily

default and liquidity) and a premium.

X X X

DC Sub-

Inv

DC Sub-Inv represents higher risk loans. The loan pricing will need to be

priced far higher to cover for the increased risks and associated costs.

X X X

Gold Represented by the gold price can be accessed via an exchange traded fund. X X X

Table 12: De�nition of asset classes used in this analysis
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19.2.2 ESG input parameters

The data used for asset class input parameters has been directly sourced from signi�-

cant global asset managers' long term capital market assumptions. This includes (JPM

(2022),TPriceRowe (2022), GSAM (2022), Investec (2022), NorthernTrust (2022), PGIM

(2022), CTI (2022), MorganStanley (2022), Invesco (2022), Robeco (2022), BlackRock

(2022), AQR (2022), Schroders (2022) and NinetyOne (2022)). There is a great degree of

variability and I have taken care to regulate such that the numbers are plausible. Because of

the size of the assets invested by the asset managers I listed above, I believe the use of these

capital market assumptions to be representative. I see these parameters as a reasonable,

representative set of parameter inputs informed by a market view and historical data.

As I described, the ESG modelling parameters are representative and are forward-looking

parameter assumptions that the investment house would utilise in their investment process.

I make use of these parameters as they have already incorporated multiple levels of review

and scrutiny prior to being published (it is a house view). The key to an ESG model is to

ensure that the input assumptions are reasonable and that they follow the SOA guidelines in

design.
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Figure 70: Mean reversion is shown in the chart, where the economy in this chart starts

from a bust state (lowest 10% of historical observations), showing the asset class

tendency to eventually slow down or revert back to its long-term average. This can

be represented in a chart as a trend line that shows the economy moving upwards,

but eventually levelling o� or dropping back down to its historical average.
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Based on the review of the list of asset manager capital market assumptions, the following

key long-term parameters have been used in this analysis:

Region UK USA RSA

Metric ÝÑ Return Volatility Return Volatility Return Volatility

Cash & Income

Cash 1.5% 0.6% 2.0% 0.7% 6.0% 3.0%

Sov Bonds 2.3% 2.2% 2.6% 3.5% 7.5% 4.8%

Inv Bonds 2.6% 4.3% 3.2% 4.5% 8.0% 6.3%

Growth assets

Equity 6.8% 17.2% 6.0% 18.0% 13.0% 22.0%

Property 6.9% 15.5% 5.4% 16.0% 12.5% 19.5%

Alternatives

DC Inv 5.8% 5.2% 8.7%

DC Sub-Inv 7.75% 7.15% 13.0%

Gold 5.0% 14.6 5.0% 14.7 9.0% 16.5

Table 13: Long-run asset-class input parameters (DC = Direct credit / Private debt).

My ESG model accounts for temporal dynamics of asset paths, and considers that asset

classes have completely di�erent assumptions for di�erent stages of an economic/credit

cycle using an index, plotted in Figure 71.
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Correlations are also provided by asset managers where available and that can be mapped

from available information; the primary source of correlations in this analysis is from JPM

(2022). The private debt correlation assumptions are implied from the cash assumptions, as

this ESG mode builds on an expected cash plus premium plus the e�ects of defaults (dealt

with separately in the model).

UK Cash Agg FI corp FI corp Equity Property DC DC Sub Gold

Assets Bonds Inv Long Inv Inv

Cash 1.00

Agg Bonds 0.18 1.00

FI corp Inv -0.15 0.55 1.00

FI corp Long -0.13 0.49 0.79 1.00

Equity -0.12 0.06 0.44 0.45 1.00

Property -0.26 0.03 0.05 0.40 0.39 1.00

DC Inv 0.84 0.17 0.02 0.02 -0.12 -0.20 1.00

DC Sub Inv 0.54 0.17 0.02 0.02 -0.12 -0.20 0.85 1.00

Gold 0.17 0.27 0.15 0.13 -0.06 -0.28 0.36 0.30 1.00

Table 14: UK asset correlation assumptions used in the ESG asset simulation, please refer

to RSA and USA regions correlation matrices at Tables number 44 and 45, re-

spectively.

19.2.3 Transform variables - PLC/LGD

The following section illustrates the key parameters used in simulating private credit assets

in a dynamic time-series framework. The business cycle framework, as it has been described

in a diagnostic extrapolation model proxied by the CCI parameter that I modelled in Part III.
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Figure 72: Return input assumptions, showing the changes in assumption per CCI assump-

tions, where 0% represents the worst credit cycle experience to CCI 100% which

is signifying bull regimes. Key simulation and transform variables have been illus-

trated in the charts above. The PD and standard deviation of the PD variable is

positively related to DE-CCI. The loss impact, LGD is also positively correlated to

the DE-CCI. The Clayton copula theta variable drives the presence of PLC over

the credit cycle. This will simulate the extent to which variables are clustered

to reect the clustering indicated by the analysis in Section 15.2.1, showing a

concentration in a favourable DE-CCI and low credit spread.
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Figure 73: Standard deviation input assumptions, showing the changes in assumption per

CCI assumptions, where 0% represents the worst credit cycle experience to CCI

100% which is signifying bull regimes.
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19.2.4 Simulation outputs and results
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Figure 74: Distribution of sovereign bond returns output from the ESG simulation, reported

for each expected phase of an economic cycle. Two clear patterns emerge, the

distribution is broader in the bust than boom, and the return expectation is nat-

urally higher in boom periods (CCI=1).
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Figure 75: Distribution of equity �ve year CAGR returns output from the ESG simulation, re-

ported for each expected phase of an economic cycle. Two clear patterns emerge,

the distribution is broader in the bust than boom, and the return expectation is

naturally higher in boom periods.
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Figure 76: The pattern for gold is slightly di�erent as it is known to feature strong returns

when the market is in stressed conditions.
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19.2.5 Credit parameters

Metrics ÝÑ CCI PD LGD Beta LGD Beta Clayton Credit and

by region bands mean (alpha) (beta) theta liquidity Premium

UK Investment grade

0% 6.0% 10.0% 4.00% 0.4 4.30%

50% 0.5% 0.70% 0.85% 2.0 4.30%

100% 0.1% 0.60% 20.0% 9.0 4.30%

Sub-investment grade

0% 9.0% 10.0% 2.50% 0.4 7.00%

50% 5.0% 0.80% 0.85% 4.0 7.00%

100% 2.0% 1.50% 13.0% 9.0 7.00%

USA Investment grade

0% 7.0% 10.0% 4.00% 0.4 2.70%

50% 0.5% 0.70% 0.85% 2.0 2.70%

100% 0.1% 0.60% 20.0% 9.0 2.70%

Sub-investment grade

0% 10.0% 10.0% 2.50% 0 7.00%

50% 5.0% 0.8% 0.85% 4 7.00%

100% 2.0% 1.5% 13.0% 9 7.00%

RSA Investment grade

0% 9.0% 10.0% 4.00% 0 3.20%

50% 0.7% 0.7% 0.85% 2 3.20%

100% 0.2% 0.6% 13.0% 9 3.20%

Sub-investment grade

0% 12.0% 10.0% 2.50% 0 4.15%

50% 7.5% 0.8% 0.85% 4 4.15%

100% 2.8% 1.5% 13.0% 9 4.15%

Table 15: Investment-grade and sub-investment-grade assumptions that includes the PD and

LGD parameters.
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Figure 77: Having selected the Clayton copula, I use the input parameter theta to determine

the correct level of linear correlation. In the chart I have shown what the e�ect

of increasing the Clayton copula theta-variable is and also reported what the

resultant linear correlation coe�cient looks like. Page 226
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Impact of parameter scenarios on credit-risk expected loss. ESG simulations can be

a complex build, with modelling features set up to cascade with an embedded integrated

cost of credit part. This includes an inverse transform sampling method to build the PD

distribution that is incorporated into the loss distribution as the Poisson � parameter. � is

dependant on the CCI parameter. This is cascaded to a dynamic cycle dependant Beta LGD,

all the while dependant on credit cycle states. When simpli�ed, results in lower expected loss

values, as table 17 demonstrates, by progressively simplifying modelling approach. This is

done by running scenarios and storing the results after removing features of the model. The

�nal model uses a at LGD and �.

DC Inv A. full B. no C. no copula, D. at PD, at LGD

CCI=0% estimate copula at LGD and no copula

PD YOY distribution YOY distribution YOY distribution Point

LGD distribution: beta distribution: beta distribution: single beta Point

Copula Yes No No No

Table 16: Credit modelling assumptions for demonstrating the e�ect on expected losses.

From this analysis, the real risk in credit-risk modelling challenge is understanding the full

extent of asymmetry in losses. If this is not correct, the risk is unanticipated losses in

investment portfolio, with no chance of an upside return. In the following analysis, I show

the impact on expected losses by removing modelling features.

UK A. full B. no C. no copula, D. at PD, at LGD

CCI=0% estimate copula at LGD and no copula

IG EL 29% 27% 25% 22%

SIG EL 37% 36% 34% 33%

Table 17: Simulated expected losses by incrementally reducing the simulation model features.

Table 17 shows a gradual decrease in expected risk for the UK Sub-Inv and UK Inv as-

sets, which is true for the other regions. Losses will mostly occur during the bust scenario

(CCI=0%), leaving the investor with unanticipated losses at risky periods. I feel this con-

servative approach to modelling is warranted, especially as measurements are not based on

directly observable data (both in this study and for many asset managers).
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Summarising the results of the simulation An ESG data model has the bene�t of pro-

viding lots of integrated data to analyse, however, I needed to carefully consider what part

of the data to study and how to summarise it. So in practice, the simulations are set up

in a nested loop structure, with each draw generating a set of asset paths over the de�ned

investment horizon. Always using the correlation structure imposed on the assets. Speci�c

results are then summarised in a table structure that can be used in the analysis and portfolio

modelling and to review the variables that have been modelled for correctness.

Asset ÝÑ Country CCI Scenario Cash DC DC Equity Gold HY � � �

Stats # Inv Sub Inv Bond � � �

# defaults UK 0.5 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

average default UK 0.5 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average return UK 0.5 1 0.00 0.02 0.00 0.00 0.04 -0.01 0.00

Standard deviation UK 0.5 1 0.01 0.02 0.02 0.11 0.12 0.08 0.04

Final value UK 0.5 1 106.5 125.3 126.4 131.9 145.2 112.2 112.3

Final CAGR UK 0.5 1 0.01 0.05 0.05 0.06 0.08 0.02 0.02

Start Value UK 0.5 1 100 100 100 100 100 100 100

...
...

...

Looping ÷ [next scenario]

Table 18: Each loop in the simulation reports a set of rates and asset pathway indexes, as

illustrated in the respective charts. The loops are then set for each scenario, CCI

variable, and country (UK, USA, RSA), using the full set of parameters.
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19.2.6 Portfolio optimisation speci�cation

The following table is a summary of the modelling techniques, inputs and technologies that

have been used in the optimisation of the portfolios and building blocks.

Model features

Optimisation model: CDAR optimisation

Returns: CAGR measured over the full 5 year horizon

Risk parameter: CDAR

Time Horizon Five years

Model objectives: Maximal Sharpe ratio

Constraints Long-only, no other constraints

Portfolio building blocks

Fixed-income (pre-credit): Sov bonds and inv bonds

Credit Including: Sov bonds, Inv bonds, DC inv and DC sub-inv

Pro�t seeking portfolio: Property, equity, gold (set at 30% of portfolio)

Tools

Data: ESG simulated returns

Python packages Python: riskfolio, Mosek, CPLEX, pyplot,

matplotlib, plotly, numpy, pandas

Table 19: ESG optimisation model description, objectives, tools and data sources.

19.3 Portfolio construction results and analysis

Learning how various asset categories (growth, �xed-income and alternatives) and asset

classes weightings a�ect one another, how their performance and risk compare, and how

these factors relate to an investor's goals is essential when constructing a portfolio. In

the following section I describe how the building block portfolios are made up from two

blocks. The �rst building block is made up of the credit and �xed-income assets and the

second block consists of the growth related assets. This portfolio is then combined with an

optimised growth portfolio into the �nal SAA portfolio. I lastly provide a view of the TAA

portfolio which can be created through the use of my forward looking DE-CCI indicator.
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19.3.1 Credit and income building block

The credit building block is optimised on the �ve year CAGR asset class simulation scenarios.

I make use of the CDAR technique in an unconstrained optimisation. The challenge for

balancing the credit block is to set the minimum level of liquidity and credit default premium

such that it covers the expected cost of credit.

Country = GBR | CCI: 0 | Asset classs: Sub Inv

Country = GBR | CCI: 1 | Asset classs: Sub Inv

Country = GBR | CCI: 0 | Asset classs: Sub Inv Country = GBR | CCI: 1 | Asset classs: Sub Inv

Figure 79: This illustration con�rms that the cost of credit is expected to increase dramat-

ically over the credit cycle. The excess earned in boom times needs to shield

the portfolio from the excess losses that investors can experience in a stressed

market.

I created a method to directly review the net impact on the portfolio with private credit

introduced, relative to pure �xed-income (can be seen in Table 20). This is a comparison

of two sets of portfolio results, both optimised in exactly the same optimisation program,

with one including the private credit assets. The ideal scenario is that the cycle balanced

credit and �xed-income block out performs the �xed-income only scenario. From Table 20,

in all cases the CCI=0% produces returns that are inferior to the �xed-income only scenario,

for both the CAGR over one and �ve years. The reverse is expected for both CCI=50%

and 100% scenarios. Overall the use of private credit, given that private credit loans can be

sanctioned with these risk levels (lending rates are implied by cash plus default and liquidity

premium). For both the CCI=50% and 100% scenarios, a fairly high excess return is on o�er

for a �xed-income asset, making this proposition compelling.

The distribution charts below are an interesting visual that shows a comparison of the RSA
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Credit block CAGR (1YR) CAGR (5YR)

Excl. private Incl. private Excl. private Incl. private

Portfolio returns credit credit credit credit

CCI=0% 3.9% 3.6% 4.2% 3.4%

UK 1.9% 1.7% 2.2% 1.8%

RSA 7.6% 6.9% 7.7% 6.1%

USA 2.2% 2.2% 2.7% 2.2%

CCI=50% 4.9% 6.0% 4.5% 4.9%

UK 2.9% 3.7% 2.6% 2.4%

RSA 8.4% 9.3% 8.0% 7.8%

USA 3.3% 4.9% 3.0% 4.6%

CCI=100% 6.4% 6.5% 3.8% 4.9%

UK 4.6% 4.7% 3.0% 2.9%

RSA 9.7% 9.9% 8.5% 8.5%

USA 4.8% 5.0% 0.0% 3.3%

Table 20: Fixed-income and credit building block expected returns.

�xed-income and credit building block expected returns over the three CCI scenarios. Using

the RSA portfolio to demonstrate, I start with the boom time (CCI=0%) in Figure 80, where

the impact of credit losses to the portfolio is relatively limited which is at a level that does not

detract from the portfolio upside (additional earnings from the credit and liquidity premium).

Importantly, there are still defaults and losses that are visible on the far left in green.

0.020% 0.040% 0.060% 0.080% 0.100%
0

50

100

150

200

250

Fr
eq

ue
nc

y

CAGR (1YR) Portfolio results | Country: RSA | CCI:  1
RF pre-credit
RF incl credit
RF pre-credit
RF incl credit

Figure 80: CAGR (1YR) CCI=100%: RSA.

As the cycle moves into a more stable setting (refer to Figure 81), I can see the impact

Page 232



19 PORTFOLIO CONSTRUCTION DESIGN AND IMPLEMENTATION

of the losses is more signi�cant, but can also see the bulk of the green portfolio attains

higher levels of return (further to the right). Finally, as the portfolio moves into a full stress

scenario, CCI=0% (Figure 82), the proportion of the portfolio in default is higher and the

extent of the defaults are greater (shown by taller green bars on the far left).
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Figure 81: CAGR (1YR) CCI=50%: RSA.
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Figure 82: CAGR (1YR) CCI=0%: RSA.
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19.3.2 Performance seeking portfolio (PSP)

The PSP portfolio is also optimised using the same program but the assets included are

equity, property and gold only. This results in an expected portfolio result for the one and

�ve year horizon in Table 21 below. The results are as expected (given the simulation input

parameters), where the returns start higher in good years (CCI=0%) and revert toward

the mean over the 5 year investment horizon. RSA, as expected, produces higher levels of

compound return. What is also true, given the assumptions that this model hold, returns

after a crisis (CCI=0%) require longer than 5 years to recover the losses.

PSP portfolio CAGR (1YR) CAGR (5YR)

UK / CCI Ó 5.9% 5.0%

0% 4.4% 3.7%

50% 5.6% 5.0%

100% 10.2% 6.6%

RSA 10.5% 10.1%

0% 9.5% 7.9%

50% 9.8% 10.2%

100% 17.3% 11.8%

USA 5.2% 4.3%

0% 4.3% 3.6%

50% 4.8% 4.2%

100% 9.3% 5.4%

Table 21: Pro�t seeking portfolio results over the one and �ve year horizon.
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19.3.3 Strategic asset allocation Static portfolio results

With the credit and growth portfolio optimised and having balanced premium levels (this

requires numerous runs of the simulation with setting the premium levels to the appropriate

level, to establish the minimum level), I can again see the impact of including/excluding the

credit from the portfolio. The strategic asset allocation (SAA) portfolio is based on the

CCI=50%, as this portfolio would carry the long run assumptions and typically an expected

return for the current market. The results are then calculated o� the full scenario set.

SAA static CAGR (1YR) CAGR (5YR)

Portfolio returns Pre-credit Credit Pre-credit Credit

UK / CCI Ó 2.96% 2.97% 2.68% 2.62%

0% 0.95% 0.86% 1.83% 1.64%

50% 2.96% 2.98% 2.70% 2.65%

100% 4.96% 4.99% 3.35% 3.34%

RSA 7.21% 7.26% 7.00% 6.95%

0% 3.93% 3.44% 5.89% 5.10%

50% 7.30% 7.40% 7.03% 7.06%

100% 9.78% 9.92% 7.83% 7.96%

USA 2.99% 3.19% 2.68% 2.80%

0% 1.17% 1.11% 1.79% 1.53%

50% 2.97% 3.19% 2.71% 2.86%

100% 5.00% 5.25% 3.34% 3.55%

Table 22: Summary of expected portfolio returns from the SAA portfolio.
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19.3.4 Tactical asset allocation with sentiment signals

Given the DE-CCI proxy is a forward leading indicator, I would make use of this information

to directly a�ect the liquid portfolio, the growth assets. This would mean that the portfolio

manager would tilt the portfolio, as part of the tactical asset allocation (TAA) to capture

the gains of gold in stressed times relative to the normal periods and also tilt toward the

higher expected return pro�les for future periods of expected gains (CCI=100%).

TAA Tactical CAGR (1YR) CAGR (5YR)

Portfolio returns Pre-credit Credit Pre-credit Credit

UK / CCI Ó 3.76% 3.80% 3.24% 3.17%

0% 2.63% 2.59% 2.66% 2.61%

50% 3.63% 3.67% 3.24% 3.17%

100% 5.88% 6.06% 3.79% 3.74%

RSA 9.10% 9.25% 8.67% 8.69%

0% 8.14% 7.89% 7.77% 7.04%

50% 8.92% 9.03% 8.71% 8.75%

100% 11.55% 12.36% 9.29% 9.91%

USA 3.79% 4.01% 3.36% 3.67%

0% 2.85% 2.83% 2.95% 2.94%

50% 3.63% 3.81% 3.35% 3.57%

100% 6.03% 6.80% 3.91% 5.29%

Table 23: Summary of expected portfolio returns from the TAA portfolio with active delta.

The di�erence in returns is reported in this active delta portfolio. The gains are primary

from capturing the e�ects of timing using signals, whilst capturing the net gains from holding

private credit in the portfolio.

19.4 Modern portfolio-planning design and implementation

In the following section, I complete the analysis by providing a review of a powerful machine-

learning technique for sequential decision making, where portfolio planning is a good example.

This framework is both exible and capable of high power optimisation techniques. I provide

a novel example that is a building block for future innovation, however, this is a key and

important method as it directly connects the asset-pricing model theory for optimal asset
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Active delta CAGR (1YR) CAGR (5YR)

Portfolio returns Pre-credit Credit Pre-credit Credit

UK / CCI Ó 0.80% 0.83% 0.56% 0.55%

0% 1.68% 1.73% 0.83% 0.98%

50% 0.68% 0.68% 0.54% 0.52%

100% 0.92% 1.06% 0.44% 0.40%

RSA 1.89% 1.99% 1.68% 1.74%

0% 4.21% 4.46% 1.89% 1.94%

50% 1.61% 1.63% 1.68% 1.69%

100% 1.77% 2.44% 1.46% 1.95%

USA 0.80% 0.82% 0.68% 0.88%

0% 1.67% 1.73% 1.16% 1.41%

50% 0.66% 0.62% 0.64% 0.70%

100% 1.03% 1.55% 0.57% 1.74%

Table 24: Summary of expected portfolio active returns from the TAA portfolio.

pricing and portfolio optimisation.

19.4.1 Context for my portfolio choice problem

Pension fund investments. The Society of Actuaries (2016) explain that the pension fund

investment is based on a larger range than that in the insurance framework due to the

di�erent regulatory constraints in place. On the liability front, there are more factors that

concern the liability values, such as wage ination, consumer price ination, employment

factors, retirement indicators, and disability rates, all of which are a�ected in a cash-ow

analysis.

19.4.2 Reinforcement learning introduction

Reinforcement learning (RL) is a general class of algorithms in machine-learning and is a

natural �t for the kind of problem in which the end result or reward is a function of time;

such can be delayed from the point in time at which the decision was made. As part of a core

long-term investment program, such as our pension fund problem, I use a deep reinforcement

learning algorithm to solve the portfolio choice problem. The core of RL is to learn from

experience and make improvements. As I will explain, the core component of this modelling
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framework for sequential problems and stochastic planning, such as long-run asset allocation,

is successfully modelled using an Markov decision process (MDP) at its core (Silver, 2015).

This modelling framework became the de-facto model for sequential planning. The introduc-

tion to the RL framework follows Silver (2015). Chen (2019) explains that RL models can

be categorised in two approaches:

� Model-based RL that takes into account the experience from Markov, or conditional

probabilities and a policy is utilised. Dynamic programming (also known as policy

iteration and value iteration) is a classic example of a model-based algorithm. Such

uses the model's predictions or distributions of the subsequent state and reward to

choose the best course of action. In Dynamic Programming, in particular, the model

must include transition probabilities between states and predicted rewards for each

given state and action combination. Keep in mind this is not typically a learnt model.

� Model-free RL. The model free RL provides various policy functions; and learning

takes place by means of a search function, such as a gradient ascent. Model-free

RL algorithms, include methods such as the Monte Carlo Control, SARSA, Q-learning,

and Actor-Critic, learning solely via sampling from experience. Instead of on computer-

generated forecasts of the future state and reward to guide their actions, they depend

on data collected directly from the environment (although they might sample from

experience memory, which is close to being a model).

This category is strongly aligned with the machine-learning approach. The RL is a construct

that makes use of existing techniques. The elements include an agent, a reward (or loss),

and an environment. By interacting with the environment at each state, the agent recognises

some reward and thus learns. I briey introduce these components below.

19.4.3 Reinforcement learning model component implementation

Markov decision process. Given the uncertainty, or stochastic nature of asset classes in

�nancial markets, it is natural to use a Markov decision process (MDP). The MDP is an

extension of a Markov chain that allows for actions partly under the control of a decision-

maker, or agent. A key component of the RL model formulation is the MDP. In my model

setup, the agent interacts at discrete time periods with the environment (also known as the

`agent state'). At each point this is known as the state, St at time t. The agent will consider

the state and based on this information, will take an action At . The net result of the action,
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Figure 83: The goal of a reinforcement learning model, demonstrated in this chart, is to

develop an agent, aware of its environment, that performs actions at a sequential

state and assesses the value of a reward (or loss) with the aim of maximising this

reward.

At , is that the agent receives a reward, R at t � 1. The key with the MDP is that the agent

gains an awareness of its own state due to the MDP, thus applying a preference of actions

into the next so-called \decision epoch" (Chen, 2019). Remembering that the agent will

seek to make a cumulative set of decisions that optimise the cumulative loss function. The

goal of MDP is to �nd the best policy, one that attains the highest reward. The MDP is

best described as the probability p of each reward r and state s combination, after having

taken an action a:

pps 1; r |s; aq � PrpSt�1 � x 1; Rt�1|St � x; At � aq (191)

As Chen (2019) explains, the goal of an MDP is to solve for the optimal policy �� that

translates to the maximum reward from executing the policy. RL is a process of learning

in which problems are solved by testing each state, accounting for uncertainty and di�ering

scenarios. For agents basing policy learning on simulations, this is known as o�ine learning.

A policy may be de�ned:

�� 9� argmax
�
v�psq @s P S (192)

where v�psq is the value function that is the result of actions (a) from an agent following a

policy � at each state s.
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State space. As part of an MDP, a state space S contains all states s, that an agent can

transition into, so s P S. This will be de�ned for each time period t over the horizon K, so

t P 0; 1; 2; 3; : : : ; K.

Action space. The set of actions, a P AK , is used to control the system state. Each

action a taken at time t is the action space, A. Chen (2019) explains this is dependent on

the agents current state, denoted as Apstq.

Transition function. Once an action a has been applied to a state s, the system will

transition from state s to a new state s 1. This is often associated with the probability

of moving from one state to another, across a range of variables, describing a probability

distribution. In this MDP, the key is that the system is Markovian in that it depends on

historical states, not just the current state.

Value function. This is the prediction of the future reward. As the agent progresses

through each epoch, or time period in the horizon K, there is an action required for each

state. This is captured in a decision rule �t , which maps each s P S into action a P A.

Reward function. Is where v�psq is known as the Value function (Chen, 2019). The

expected reward in future is therefore simply de�ned as:

v�psq 9�E�
�

Ķ

i�t�1
Ri

�����St � s

�
(193)

For the MDP process to converge,  is used and lies between zero and one, 0      1

and this serves as a discount factor. By splitting out the �rst state in the value function

(dependent on policy �), as follows (Chen, 2019):

v�psq 9�E�
�

Ķ

i�t�2
 i�t�2Ri

�����St � s

�
(194)

The function can also be extended to work for state-action pairs (s; a) as follows:

q�ps; aq 9�E�
�

Ķ

i�t�1
�i�t�1Ri

�����St � s; At � a

�
(195)

this is also known as the action-value-function for policy �. Summarised by isolating the

sum of expected rewards, Gt , denoting the sum of reward
°K

i�t�1 
i�t�1Ri , this changes the

value function to:

v�psq 9�E�
�
Rt�1 � Gt�1

�����St � s

�
(196)
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Bellman equations. Now, moving on, Chen (2019) explains the connection to the Bellman

equation, which I use to set in the context of a reinforcement learning model. This requires

describing the second term, letting the policy �a|s be the probability of action a, for states

St � s and letting reward Rt � r and the next state be determined by function ppr; s 1|s; aq,
this equation becomes, following Chen (2019):

¸
aPApsq

�pa|sqE�
�
Rt�1 � Gt�1

�����St � s; At � a

�

�
¸

aPApsq
�pa|sq

¸
s 1

¸
r 1

ppr; s 1|s; aq
�
r � E�rGt�1|St�1 � s 1s

�

ñ v�psq �
¸

aPApsq
�pa|sq

¸
s 1

¸
r 1

ppr; s 1|s; aq
�
r � v�ps 1q

�
(197)

As Chen (2019) explains, Equation 197 is the Bellman equation for v�psq, showing that

the optimal rule St is the choice of actions that will maximise the expected reward plus the

discounted future state. There are several ways to solve an MDP, including linear stochastic

programming as part of a dynamic programming framework. However, the standard method

for large systems is reinforcement learning (Abrate et al., 2021). Chen (2019) explains that

the collection of decision rules is referred to as a policy � and the ultimate goal in an MDP is

to �nd the optimal policy. The optimal policy can be achieved with a model which will solve

it directly or by making use of a model-free environment. This environment does not rely on

the perfect model; but rather uses simulation and policy iteration to �nd the optimal model,

known as iterative policy evaluation. The �nal step is to re�ne the policy, thus �nding the

best model. This is often achieved through a combination of exploitative and exploration

techniques that are part of a deep reinforcement learning solution.

19.4.4 RL model de�nition and implementation

Now I deal with a de�ned-bene�t asset liability problem, in which we are looking to understand

the best policy for investing, selecting between two asset building-blocks options (�xed-

income including private debt and a portfolio-seeking portfolio), given di�erent points in the

economic cycle. Asset values, are however, compared to the liability values. This is a dynamic

problem as the following are core drivers of liabilities, following Shang (2015).

� Discount rate. The future value of the portfolio is speci�cally a�ected by the discount

rate. This is often the sovereign rate of debt reective of the cost of �nance in the
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market. This is also an investable asset on the asset side, thus becoming an integrate

analysis. This is a key driver in this study.

� Ination. This is particularly important when we consider medical bene�ts payments,

where the cost of medical is more closely linked to the consumer price index. This is

not a focus of this study.

� Claims rate. This is a�ected by the mortality rate, morbidity rate, the drawdown of

pension amount and more closely aligned with insurance asset owner characteristics.

This is not a focal point in this study.

� Policy behaviour. Such as lapse rate as part of a long-term insurance policy. This is

not a feature of this analysis.

The following table is a summary of the features of the reinforcement learning Q model,

inputs, and technologies that have been used in the optimisation of a portfolio planning

model. The purpose of the model is to understand how to fairly allocate the �xed-income

portfolio and the PSP portfolio. This has been provided per a model-free environment, using

the Bellman equation.

I de�ned a reinforcement model to assist with how we understand the optimal investment

strategy, �, based on S reects the states of at the time decisions (�) by the agent. In our

analysis the states are the CCI levels that I have been modelling. The strategy is de�ned

as the actions that maximise the reward function Q�ps; aq, where a is the available actions,
determined by the strategy ��psq, following Shang (2015):

��psq � max
a
Q�ps; aq (198)

Reinforcement learning programming I coded the RL model using the Python logic in the

Bellman function from https://www.datahubbs.com/reinforcement-learning-markov-decision-

processes/. The ESG model pathways provides asset-pricing pathways needed in to create

the transition probability matrices. I also utilised Python and Python packages as part of a

Colab hosted program that I coded. I provided details of the address of the Google Colab

�les in the Appendix; Section 30.

19.5 RL modelling results

An important consideration in ALM modelling, in the case where goal is to understand the

assets relative to the liabilities, when we consider how the liabilities will vary, and this is to
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Model features

Optimisation model: Bellman optimisation

Returns: Distribution of returns over a one year horizon, analysis covers

the full 5 year horizon. Liabilities are con�gured as part of this analysis.

Risk parameter: Risk adjusted over full distribution

Time Horizon Five years

Model objectives: Expected Returns over full distribution

Constraints Long-only, no other constraints

Portfolio building blocks

Credit Including: Sov bonds, Inv bonds, DC inv and DC sub-inv

Pro�t seeking portfolio: Property, equity, gold

Tools

Data: ESG simulated returns

Python packages Python: numpy, pandas

matplotlib, sklearn LinearRegression, scipy.stats

Table 25: ALM Bellman optimisation model description, objectives, tools and data sources.

do with the horizon of the cash-ow expectations.

The analysis shows that when we consider the planning problem in an ALM setting, the

reinforcement techniques that I applied show that even considering the downside distribu-

tion, an investor would bene�t from investing in performance seeking portfolios. This is

understandable if we consider that a lot of the portfolio risk is reduced by the diversi�cation

bene�t from the inclusion of gold and property into a portfolio seeking portfolio. We have

already established that private credit can improve the �xed-income building block. Now the

modeller can base the modelling on a risk budgeting approach, where the level of pro�t seek-

ing portfolio contribution is maximally allocated for a given constraint of risk (that may be

determined as volatility, drawdown and liquidity). From a portfolio planning and construction

perspective, this is a simple balancing process of risk consumption with an asset owner.

20 Summary of analysis

The models used in credit have been well researched and documented: this is clear from

my broad overview, I also detailed the context for incorporating credit modelling from the
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Figure 84: De�ned-bene�t pension liability pro�le, showing a typical set of liabilities for pen-

sioners and those pension members still in the workforce (actives). This liability

pro�le has been modelled using a simple Chi-Squared distribution.

investment management perspective. To solve the problem of asset allocation for longer

term asset allocation, that considers a credit cycle, I provided a framework that can be used

to understand the relative risks of private debt asset building blocks relative to core assets

in an SAA. The results of this analysis show that there is indeed a bene�t to a correctly

priced portfolio of private credit as part of a strategic investment program. Simulation of

asset classes, making use of models that cascade information in a such way that both the

dynamics of the cost of credit, whilst accounting for cyclical e�ects on all asset classes, can

be handled (as these are integrated). As with all portfolios with limited data, the experts' role

in the input assumptions is vital; but equally important are the features incorporated into the
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Region CCI 25% 50% 75%

GBR 0% 1.81% 1.90% 1.98%

GBR 50% 2.77% 2.81% 2.84%

GBR 100% 4.23% 4.26% 4.28%

RSA 0% 7.91% 8.21% 8.56%

RSA 50% 8.51% 8.69% 8.88%

RSA 100% 9.30% 9.43% 9.59%

USA 0% 1.52% 1.65% 1.78%

USA 50% 2.54% 2.64% 2.74%

USA 100% 3.72% 3.79% 3.85%

Table 26: This table reports the liability discounting percentiles (25th, 50th and 75th). The

rates are based on asset manager capital market assumptions. The interesting

factor here is that the variance in rates is expect due to changes in the CCI rather

the percentiles of rate within a CCI percentile. Please refer to Section 29 in the

appendix to see further illustrations of the liability distributions.
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Figure 85: Once the liability cash ows are discounted, using the di�erent scenarios reporting

in Table 26, the e�ects to liability values is clear. When interest rate are expected

to be higher (CCI=0), the liability values are lower and vice versa. This is in

contrast to the asset values that tend to be higher in boom times (CCI=1).

modelling of the credit costs. As I demonstrated, if the true cost of credit is not understood,

the investor will e�ectively import a structured loss into the portfolio with no real chance of

recovering that loss. In particular, when cycles a�ect many parameters simultaneously, there

is potential for signi�cant changes to the expected losses in credit. Moreover, an informed
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Figure 86: Asset returns Bellman Q values. This chart indicates the optimal values from

using the Bellman function to establish the optimal �xed mix allocation of the

portfolio seeking portfolio. In each case, this short term analysis yields the same

result, 100% allocation to the portfolio seeking portfolio. What is also clear in

this analysis is that the variance in portfolio value is attributed to changes in the

cycle indicator, as we would expect, the lowest values are in bust periods (CCI=0).

The implication here is that, unless one has a risk constraint, the best allocation

strategy is to add as much portfolio seeking asset as possible.

signal that is related to the credit cycle allows the investor to take advantage of an active

allocation program for liquid assets. I demonstrated the value this can o�er the portfolio.

The sub-investment portfolio should allow the lender to access greater premiums (base rate

plus premiums) than the investment portfolio would be able to bear (obligors may well have

choice), but again, this is dependant on the modellers understanding the correct expected

cost of credit.

One �nal thought, the simulation approach allows the modeller (of both credit and in-

vestment) to integrate a complete analysis of their investment. Because the underlying

correlations have a framework on which to model, the analysis can be implemented in a way

that is repeatable and aggregated. The modeller would not need to use credit assumptions

that are designed for banking portfolios with the assumptions of large homogenous portfolios

and banking risk management (Trueck and Rachev, 2009; Engelmann, 2021) and therefore

not have to make adjustments for concentration and correlation.
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Part VI

Conclusion

In conclusion I will highlight my innovation and development for the key topics of the study. I

believe that prior research and up to date methods have been thoroughly and clearly demon-

strated in this study. I put together an appropriate framework showing how to include private

debt assets in a SAA program in a meaningful way, whilst bene�ting from contemporary

methods and toolkits. I summarised the parts of this study below.

21 Macro-�nance and credit cycles

Business cycle theory, as it pertains to asset pricing and macroeconomics, is a complex and

interesting �eld. For investment managers, the data shows that it is clearly a fundamental

driver of returns in the market. As I show from models in macro-�nance, there are powerful

frameworks that seek to answer questions regarding what drives the uctuation in asset

prices. I found these to be helpful constructs for thinking about modelling when the modeller

has limited data. My literature review shows that the correct approach is not yet settled.

Depending on the modelling context, various di�erent frameworks can be appropriate. Thus

important decision-making entities, such as monetary authorities, rely on varied models,

however really, some of the model assumptions require an update. Chen et al. (2021) observe

that sentiment is inuenced by macro-variables which, in turn, inuences macro-variables.

For this reason sentiment is seen as the bridge between �nancial markets and macro-variables.

We understand from a review of the literature that credit cycles and credit puzzles can be

predicted with reasonable certainty by understanding how sentiment is linked. An important

feature of this predictability is the human component, I investigate the theories of how humans

extrapolate information and collectively react to market settings based on the recent past

and on sentiment.

We must understand how business cycle peaks or troughs are ampli�ed by diagnostic

expectations, this cycle ampli�cation further adding to sentiment. A spiral is then set up,

which in a case of a stress event is based on fear. This highlights how the human bias cannot

be completely ignored in macro-economic modelling and especially in pricing of �nancial

assets. Cochrane (2017) explained it very well, that recessions are not times at which
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individuals just happen to consume less, having the view that the future is a better time to

consume. Rather the individuals are in a state of real fear and are concerned about losing

a job or seeing their business fail. Another key learning is what happens in a crisis, and the

residual excess held for caution as part of the investment risk premium, which goes some way

to describe asset puzzles. Taking into account these powerful factors and their respective

links to credit cycles is a vital theme in this study. An investment manager utilizes asset-price

modelling to predict market prices, focusing on predicting market trends rather than solely

focusing on exogenous shocks. I show that existing macro-economics frameworks and asset-

pricing models can e�ectively cater to these features and models using endogenous variables.

In this study I explained the various di�erent modelling frameworks and their merits. Lastly,

I suggested a preferred approach in the context of private debt.

This section is �nalised by introducing the core concepts for individual optimality and

reinforcement learning techniques. These models are in-fact based on the same mathematical

modelling, MDP and the Bellman equations are central to both models that optimise a

value policy at a future date. Such methods are primarily used in the modelling of ALM

portfolio approaches that I utilise in the portfolio modelling sections in Section 19.1. The

key aspects of macro-economic links between the real economy and �nancial markets as they

relate to forward-looking risk signals for private debt have been researched and I provided an

appropriate framework to incorporate in an SAA program.

22 Sentiment, NLP and ML

This section is my investigation of how to e�ectively build indices for use in business cycle

modelling and investment management of private debt as an asset class. I made use of freely

available information and tools only, I found this approach revealing, in understanding the use

of alternative data and tools such as Google's Colab. I invested a great deal time and e�ort

in fully understanding the practical application of contemporary modelling techniques, such

as ML and NLP for factor modelling, ascertaining their relative strengths. Part of this was to

review the alternative sources of data and how much information the respective data sources

held. From the analysis I found news data to be easy to work with, whereas collecting Twitter

data can be seriously challenging, required streaming, a disproportional amount of cleaning

for use in NLP with little to no bene�t in the modelling. By contrast, the signals provided by

Google's GDELT provided the clearest sentiment dip during the pandemic that other news
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sources did not display (a fascinating analysis will become available as GDELT data history

lengthens and time-series analysis becomes more realistic). Overall, news sources provide

relevant signals, especially when reviewed within a particular geography.

When I compared modelling techniques in a time series modelling review using my DE-

CCI proxy to forecast sentiment data, I found that LSTM models were a stable and therefore

a good choice. What was also clear is how much impact well-known �nancial data features

such as autocorrelation has on the modelling, compared with the impacts due to advanced

modelling techniques. The use of simple ARIMA factors as part of the ML framework pro-

vided considerable improvements to modelling results, certainly when compared to machine-

learning models alone. This analysis highlights the limited data volume needed to improve

the predictivity of ML models, despite their attractiveness and power. This was reected in

that the best modelling result in my analysis was the combination of an ordinary least squares

model with ARIMA factors.

From the perspective of natural language processing to extract information from a vol-

ume of unstructured data, I believe that this analysis was merely scratching the surface.

Given time and a speci�c exploratory focus on the unstructured data, freely available data

has the potential to reveal more information. To summarise, I investigated contemporary

NLP techniques for measuring sentiment and have successfully applied these techniques to

identify forward-looking signals for credit-risk measurement and business-cycle dynamics, us-

ing related social media and news. To conclude on this section, I recognise an opportunity

to reveal information using NLP on alternative data sources, whilst respecting that �nancial

data features, primarily autocorrelation, have signi�cant bearing on how one should approach

the modelling of �nancial time series.

23 Credit modelling

In this important section I establish the core methods, models and theories needed for credit

modelling of private debt. I start with de�ning the key modelling parameters (PD and LGD)

and their measurement frameworks (PIT, TTC and DT). I provide a detailed review of the

Basel II banking methodology and assumptions coupled with core credit modelling techniques

in use today. I have shown in my research that a key assumption in these banking models may

not be appropriate for asset management and speci�cally SME lending. This can be an issue

when this is applied to unlisted private debt in the form of loans. One speci�c assumption of
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real concern is that the assumption of independence between the PD and LGD parameters

over the di�erent phases of the credit cycle. I go further into detail when there is also a

breakdown in assumptions in stressed markets, known as correlation breakdown.

This study has much to do with establishing a robust modelling framework in asset

management for sparse data modelling environments. I found that the reduced form credit

modelling has been used in very similar modelling studies and is well suited. I again show that

there are methods employed in this modelling environment that allow for endogenous variables

to account for di�erent economic phases or parts of the credit cycle, whilst also accounting

for a �nancial market mean reversion in asset prices. I also found that the simpli�cation

brought about by copula modelling, in particular the Clayton copula, is appealing. This

modelling technique allows for a relatively easy way of reecting important features of the

relationship between PD and LGD in a stressed market environment (such as correlation

asymmetries).

I modelled a set of CCI proxies, in Part III, that have been used to investigate which proxy

best di�erentiates the credit cycles and a representative sample of company level credit data

for each of the three regions. Speci�cally, I model the relationship between my sentiment

measure based on news signals, as a simple measure of reaction based on news sentiment

con�rming the time series relationship with the expected credit spreads. It turns out that

the NLP DE-CCI proxies perform better than the survey based OECD CCI data. The �nal

distribution of the expected credit shows the forecast of widening of distribution and longer

tails as the cycle indicator moves toward a stressed scenario, as determined by the CCI proxies

modelled in Part III.

24 ESG and portfolio summary of analysis

I de�ned and built an ESG model to simulate future economic scenarios that drive prices

between asset classes, including private debt, and liabilities. These asset classes all have

interest rate sensitivity at their core and are based on a cascaded modelling approach that

provides a comprehensive view of potential extreme values for both assets and liabilities. This

modelling framework is appropriate for use into building a picture in the SAA modelling and

portfolio construction phase.

I also provided detailed research on how to model private credit assets appropriate from

the investment management perspective. It is clear in my analysis that modelling credit to
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account for correlation of PD and LGD is crucial; this gives the modeller a more accurate

view of the risk, which is conservative. Part of this challenge for asset management planning

is to solve the problem of asset allocation for longer term asset allocation, that considers a

credit cycle. I provided a framework that can be used to understand the relative risks for

private debt asset building blocks that evolves as assets mean revert. At centre of this is a

credit premium that is dynamic over the credit cycle.

I conducted extensive research and developed a modelling framework that gives a modeller

con�dence that the credit assumptions are not designed for banking portfolios. Banking

credit modelling frameworks are based on a core assumption of large homogenous portfolios

formulated for use in bank capital management functions. I also included my DE-CCI proxy

as the forward looking signal. This signal is used to assist the portfolio manager to identify

the onset of a credit cycle shift, reacting to this accordingly. I showed that active portfolios

using this information are likely to attract higher rewards.

The �nal part of my analysis is to review the building block allocation from the perspective

of ALM planning. The problem is formulated as a policy problem using transition matrices

that inherently rely on the MDP, solved using the Bellman equation. I employed the machine-

learning reinforcement framework to solve the �nal problem. Across the cycle, the assumption

set that I developed show that the portfolio construction requires maximal levels of PSP

portfolio allocation. To put this into context, the results are totally unconstrained. Results

should be seen as the allocation in which investors do not have speci�c risk criteria, such as

volatility or drawdown constraints.

To summarise, the adoption of private credit is not only possible, but is a bene�t from

a factor modelling perspective. The return that this type of portfolio introduces is not, for

structural reasons correlated to with other investment asset classes. The risk premium is

available and dynamic over a credit cycle and when it is modelled appropriately, it can be

e�cient. The market signals that I researched are powerful in that they bring together the

dynamics from a macro-�nance perspective that can be used as information for all asset

classes in the universe.
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25 Limitations and opportunities for further research

This study has its natural limitations and some areas that I see are areas that can be inter-

esting to research. I listed these below.

� Credit data shortage. This study is based on freely available credit risk data; it does

not include any information on credit losses from the sale of collateral at di�erent

points in the business cycle. Data companies have rich credit data based on bank

lending, with a reasonable time-series across di�erent geographies and product types.

The use of this data for research is available, but not to all. An area for future research

would be to understand the di�erences in losses between credit exposure for tradable

and non-tradable companies, I believe this would be an interesting avenue of research.

� Liquidity data. No speci�c information is used to model of liquidity for SMEs at various

points in the credit cycle. The liquidity measures are a signi�cant portion of the cost

of credit as part of the risk premium. Portfolio construction with added information on

liquidity risk would an important risk characteristic to understand and monitor, yielding

insight to the portfolio construction process.

� ALM modelling. ALM modelling in this study is not performed using historical cash

ows and liability pro�les, which would be propriety information from a pension fund

or life book at an insurer. Monitoring the integrated risks over the various points of

the credit risk cycle would be an appealing avenue of research and a true test of the

machine learning technology when applied to ALM problems.

� South African news data. The news publications in this study are not speci�c to

South Africa when I extract data for NLP analysis. Data for South African newspapers

are not accessible with a reasonable historical window.

Page 252



25 LIMITATIONS AND OPPORTUNITIES FOR FURTHER RESEARCH

Possible areas of future research:

� NLP news signal mining. Information that is held in news data is not mined to its full

potential. Obligor speci�c research that investigates the cycle impacts and how this

can be understood from an asset pricing perspective would provide for more information

to model the risk premia.

� GDELT signal mining. The utilisation of GDELT in this study was high-level and for

speci�c purposes. A full investigation of the available information in GDELT, especially

if it pertains to speci�c security names and comparison of the securities for selection by

using cross sectional analytics would provide interesting avenues of research. The use

of this information to build credit and market cycles would be a very interesting area of

research. Please refer to GDELT (2020) for meta-data on the GDELT database and

publications based on the use of GDELT data. A good example of GDELT data in use

for a sovereign bond study is found in Consoli et al. (2020).

� Machine learning techniques to further inform risk premia. The task of under-

standing risk premia will always be a key factor in SAA analysis and modelling. Further

research and methods to understand these factors, such as Iworiso and Vrontos (2020)

can provide interesting steer for further research. If coupled with data from credit

consortiums; coupled with the appealing data that is now available in GDELT, will be

more interesting as the length of time-series data increases.

� Private data attribution. Both the methodologies and available data for private

companies is improving. Given the overarching focus of private assets in this study,

further improvements by way of private data or risk attribution methods, such as in

Brown et al. (2020), will be interesting and provide value from a market practitioner

perspective.

Page 253



REFERENCES

Part VII

Bibliography

References

Abdulrahman Naef Farhan, A. and Varghese, P. (2018). Facebook utilization and Arab spring

movement: A study among Yemeni youth. International Journal of Social Sciences and

Management, 5:5.

Abrate, C., Angius, A., De Francisci Morales, G., Cozzini, S., Iadanza, F., Puma, L. L.,

Pavanelli, S., Perotti, A., Pignataro, S., and Ronchiadin, S. (2021). Continuous-action

reinforcement learning for portfolio allocation of a life insurance company. In Dong, Y.,

Kourtellis, N., Hammer, B., and Lozano, J. A., editors, Machine Learning and Knowledge

Discovery in Databases. Applied Data Science Track, pages 237{252, Cham. Springer

International Publishing.

Afanasyeva, E., Jerow, S., Lee, S. J., and Modugno, M. (2020). Sowing the seeds of �nancial

imbalances: The role of macroeconomic performance. Finance and Economics Discussion

Series 2020-028, Board of Governors of the Federal Reserve System (U.S.).

Aggarwal, C. (2020). Linear Algebra and Optimization for Machine Learning. Springer

International Publishing, New York.

Akkaya, C., Wiebe, J., and Mihalcea, R. (2009). Subjectivity word sense disambiguation. In

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Process-

ing: Volume 1 - Volume 1, EMNLP '09, page 190{199, USA. Association for Computa-

tional Linguistics.

Alexander, C. (2004). Volume I: Finance Theory, Financial Instruments and Markets. PRMIA

pulications, Wilmington, DE.

Alexander, C. (2008a). Market Risk Analysis II: Practical Financial Econometrics. Wiley,

Chichester.

Alexander, C. (2008b). Market Risk Analysis IV: Pricing, Hedging and Trading Financial

Instruments. Wiley, Chichester.

Page 254



REFERENCES

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate

bankruptcy. The Journal of Finance, 23(4):589{609.

Ang, A. (2014). Asset Management: A Systematic Approach to Factor Investing. Oxford,

New York, 1st edition.

Ang, A. and Piazzesi, M. (2003). A no-arbitrage vector autoregression of term structure

dynamics with macroeconomic and latent variables. Journal of Monetary Economics,

50(4):745{787.

Anson, M. J., Fabozzi, F. J., and James, F. J. (2011). Asset classes, alternative Investments,

Investment Companies, and Exchange Traded Funds. In Fabozzi, F. J. and Markowitz,

H. M., editors, The theory and practice of investment management, pages 45{78. John

Wiley & Sons, Hoboken, New Jersey, 1st edition.

Antweiler, W. and Frank, M. Z. (2004). Is all that talk just noise? The information content

of internet stock message boards. The Journal of Finance, 59(3):1259{1294.

AQR (2022). AQR: 2022 Capital Market Assumptions for Major Asset Classes. [available

online at https://www.aqr.com/-/media/AQR/Documents/Alternative-Thinking/AQR-

Alternative-Thinking-1Q22-Capital-Market-Assumptions.pdf, accessed on 03 Nov 2022].

Araten, M., Jacobs, M., and Varshney, P. (2004). Measuring LGD on commercial loans: an

18-year internal study. The Journal of the Risk Management Association, 2:28{35.

Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Yrjo Jahnssonin Saatio.

Reprinted in: Essays in the Theory of Risk Bearing, Markham Pubishing Company.

Azar, P. D. and Lo, A. W. (2019). The wisdom of Twitter crowds: Predicting stock market

reactions to FOMC meetings via Twitter feeds. The Journal of Portfolio Management,

42(5):123{134.

Azariadis, C. (2018). Credit cycles and business cycles. Review, Federal Reserve Bank of St.

Louis.

Back, K. E. (2010). Asset Pricing and Portfolio Choice Theory. Oxford University Press,

New York.

Back, K. E. (2017). Asset Pricing and Portfolio Choice Theory, Revised edition. Oxford

University Press, New York.

Page 255



REFERENCES

Baker, H. K. and Filbeck, G. (2013). Alternative Investments: Instruments, Performance,

Benchmarks, and Strategies. John Wiley & Sons.

Bansal, R. (2007). Long-run risks and �nancial markets. NBER Working Papers 13196,

National Bureau of Economic Research, Inc.

Bansal, R. and Zhou, H. (2002). Term structure of interest rates with regime shifts. The

Journal of Finance, 57(5):1997{2043.

Barro, R. J. (2006). Rare disasters and asset Markets in the twentieth century. The Quarterly

Journal of Economics, 121(3):823{866.

Bass, R., Gladstone, S., and Ang, A. (2017). Total portfolio factor, not just asset, allocation.

The Journal of Portfolio Management, 43(5):38{53.

Beaudry, P. and Portier, F. (2014). News-driven business cycles: Insights and challenges.

Journal of Economic Literature, 52(4):993{1074.

Beckers, S. (2018). Do social media Trump news? The relative importance of social media

and news based sentiment for market timing. The Journal of Portfolio Management,

45(2):58{67.

Bellman, R. (1984). Eye of the Hurricane: An Autobiography. World Scienti�c Publishing

Company.

Bengfort, B., Bilbro, R., and Ojeda, T. (2018). Applied Text Analysis with Python: Enabling

Language-Aware Data Products with Machine Learning. O'Reilly Media, Inc., Sebastopol,

California, 1st edition.

Benrud, E. (2011). Portfolio selection. In Baker, H. K. and Filbeck, G., editors, Alternative

Investments: Instruments, Performance, Benchmarks, and Strategies, pages 37{52. John

Wiley & Sons, Hoboken, New Jersey, 1st edition.

Benzschawel, T. (2012). Credit Modelling: Facts, Theory and Applications. Risk Books,

London.

Benzschawel, T. (2017). Credit Modelling: Advanced Topics. Risk Books, London.

Bernanke, B. and Gertler, M. (1998). The �nancial accelorator in a quantitative business

cycle framework. NBER Working Paper No. 6455.

Page 256



REFERENCES

Berndt, A., Douglas, R., Du�e, D., and Ferguson, M. (2018). Corporate credit risk premia.

Working Paper 24213, National Bureau of Economic Research.

Black, F. (1972). Capital market equilibrium with restricted borrowing. The Journal of

Business, 45(3):444{455.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal

of Political Economy, 81(3):637{654.

BlackRock (2022). Black Rock: Capital Market Assumptions. [available

online at https://www.blackrock.com/institutions/en-us/insights/charts/capital-market-

assumptions, accessed on 03 December 2022].

Blanchard, O. (2018). On the future of macroeconomic models. Oxford Review of Economic

Policy, 34(1-2):43{54.

Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet Allocation. Journal of Machine

Learning Research, 3(1):993{1022.

Boiy, E. and Moens, M.-F. (2009). A machine learning approach to sentiment analysis in

multilingual web texts. Information Retrieval, 12:526{558.

Bollen, J., Mao, H., and Zeng, X.-J. (2011). Twitter mood predicts the stock market.

Journal of Computational Science, 2(1):1{8.

Bon�m, D. (2009). Credit risk drivers: Evaluating the contribution of �rm level information

and of macroeconomic dynamics. Journal of Banking & Finance, 33(2):281{299.

Bordalo, P., Gennaioli, N., and Shleifer, A. (2018). Diagnostic expectations and credit cycles.

The Journal of Finance, 73(1):199{227.

Borio, C. (2012). The �nancial cycle and macroeconomics: What have we learnt? BIS

Working Papers No 395., Bank of International Settlements.

Borio, C., Drehmann, M., and Xia, D. (2019). Predicting recessions: Financial cycle versus

term spread. BIS Working Papers No. 818 , Bank of International Settlements.

Bradley, M. M. and Lang, P. J. (1999). A�ective norms for English words (ANEW): In-

struction manual and a�ective ratings. Technical Report C-1, The Center for Research in

Psychophysiology, University of Florida.

Page 257



REFERENCES

Bram, J. and Ludvigson, S. (1998). Does consumer con�dence forecast household expendi-

ture? A sentiment index horse race. Economic Policy Review, 4(Jun):59{78.

Brown, G. W., Ethridge, F., Johnson, T., and Keck, T. (2020). Private Portfolio Attribution

Analysis. Social Science Research Network.

Buraschi, A., Porchia, P., and Trojani, F. (2010). Correlation risk and optimal portfolio

choice. Journal of Finance, 65(1):393{420.

Cambria, E., Das, D., Bandyopadhyay, S., and Feraco, A. (2017). A Practical Guide to

Sentiment Analysis. Springer Publishing Company, Incorporated, 1st edition.

Campante, F., Sturzenegger, F., and Velasco, A. (2021). Advanced Macroeconomics. LSE

Press, London.

Campbell, J. Y. and Cochrane, J. H. (1999). By force of habit: A consumption-based expla-

nation of aggregate stock market behavior. Journal of Political Economy, 107(2):205{251.

Campbell, J. Y., MacKinlay, A. C., and Lo, A. Y. (1997). The Econometrics of Financial

Markets. Springer, New York.

Carroll, C. D., Fuhrer, J. C., and Wilcox, D. W. (1994). RATS code for does consumer

sentiment forecast household spending? If so, why? QM&RBC Codes, Quantitative

Macroeconomics & Real Business Cycles.

Chambers, D. R., Anson, M. J. P., Black, K. H., and Hossein, K. (2015). Alternative

Investments: CAIA Level I, 3rd Edition. John Wiley & Sons.

Chatterjee, S. (2015). Centre for Central Banking Studies: Modelling credit risk. Bank of

England.

Chekhlov, A., Uryasev, S., and Zabarankin, M. (2004). Portfolio Optimization With Draw-

down Constraints. In Pardalos, P. M., Migdalas, A., and Baourakis, G., editors, Supply

Chain And Finance, World Scienti�c Book Chapters, chapter 13, pages 209{228. World

Scienti�c Publishing Co. Pte. Ltd.

Chen, K.-C. (2019). Arti�cial Intelligence in Wireless Robotics. River Publishers.

Chen, Z., Lien, D., and Lin, Y. (2021). Sentiment: The bridge between �nancial markets

and macroeconomy. Journal of Economic Behavior & Organization, 188:1177{1190.

Page 258



REFERENCES

Cochrane, J. H. (2001). Asset pricing. Princeton University Press, Princeton, New Jersey,

United States.

Cochrane, J. H. (2005). John H. Cochrane, Asset Pricing (Revised Edition), Princeton Uni-

versity Press, Princeton and Oxford (2005). Journal of Economic Behavior & Organization,

60(4):603{608.

Cochrane, J. H. (2017). Macro-Finance. Review of Finance, 21(3):945{985.

Connolly, R., Dubofsky, D., and Stivers, C. (2018). Macroeconomic uncertainty and the

distant forward-rate slope. Journal of Empirical Finance, 48:140{161.

Consoli, S., Pezzoli, L. T., and Tosetti, E. (2020). Using the GDELT Dataset to Analyse the

Italian Sovereign Bond Market. In Nicosia, G., Ojha, V., La Malfa, E., Jansen, G., Sciacca,

V., Pardalos, P., Giu�rida, G., and Umeton, R., editors, Machine Learning, Optimization,

and Data Science, pages 190{202. Springer International Publishing.

Cornuejols, G. and Tutuncu, R. (2007). Optimization Methods in Finance. Cambridge, New

York.

Correa, R., Garud, K., Londono, J. M., and Mislang, N. (2020). Sentiment in cen-

tral banks' �nancial stability reports. Review of Finance, 25(1):85{120. eprint:

https://academic.oup.com/rof/article-pdf/25/1/85/36302154/rfaa014.pdf.

CTI (2022). Columbia Threadneedle: Solutions Enhanced:

Capital Market Assumptions 2022. [available online at

https://www.columbiathreadneedle.co.uk/en/inst/insights/solutions-enhanced-capital-

market-assumptions-2022-making-a-transition/, accessed on 03 December 2022].

Currey, H. B. (1944). The method of steepest descent for non-linear minimization problems.

Quarterly of Applied Mathematics, 2(3):258{261.

Dang, N. C., Moreno-Garc��a, M. N., and De la Prieta, F. (2020). Sentiment analysis based

on deep learning: A comparative study. Electronics, 9(3):483.

Dees, S. (2016). Credit, asset prices and business cycles at the global level. Economic

Modelling, 54:139{152.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv, eprint (1810.04805).

Page 259



REFERENCES

Dobbs, R., Koller, T., Lund, S., Ramaswamy, S., Harris, J., Krishnan, M., and Kau�-

man, D. (2016). Diminishing returns: Why investors may need to lower their ex-

pectations. McKinsey and Company, McKinsey Global Institute [available online at

https://www.mckinsey.com, accessed on 25 October 2017].

Dobrescu, M., Badea, L., and Paicu, C. (2012). Business cycle theories and their relevance

to the current global crisis. Procedia - Social and Behavioral Sciences, 62:239{243.

Dor, A. B., Dynkin, L., Hyman, J., and Phelps, B. D. (2012). Quantitative Credit Portfolio

Management: Practical Innovations for Measuring and Controlling Liquidity, Spread, and

Issuer Concentration Risk. John Wiley & Sons, New York.

Drechsler, I., Savov, A., and Schnabl, P. (2018). A Model of Monetary Policy and Risk

Premia. The Journal of Finance, 73(1):317{373.

Duan, J.-C. and Zhu, Y. (2020). Credit risk cycle indices: Properties and macroprudential

policy. Technical report, National University of Singapore.

Du�e, D. and Singleton, K. (1999). Modeling the term structure of defaultable bonds.

Review of �nancial studies, 12:687{720.

Durdu, C. B. and Zhong, M. (2021). Understanding bank and non-bank credit cycles: A

structural exploration. BIS Working Papers No 919, Bank for International Settlements.

Engelmann, B. (2021). A simple and consistent credit risk model for Basel II/III, IFRS 9 and

stress testing when loan data history is short. Technical report, Working paper.

Engstrom, E. and Sharpe, S. A. (2018). (Don't Fear) the Yield Curve. Social Science

Research Network, SSRN Scholarly Paper.

Epstein, L., Farhi, E., and Strzalecki, T. (2014). How much would you pay to resolve long-run

risk? American Economic Review, 104(9):2680{97.

Erlwein-Sayer, C. (2018). Macroeconomic News Sentiment: Enhanced Risk Assessment for

Sovereign Bonds. Risks, 6(4):1{27.

Evgenidis, A. and Malliaris, A. G. (2022). Monetary policy, �nancial shocks and economic

activity. Review of Quantitative Finance and Accounting, 59:429{456.

Page 260



REFERENCES

Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., and Focardi, S. M. (2007). Robust

Portfolio: Optimization and Management. John Wiley & Sons, Hoboken, New Jersey.

Fabozzi, F. J. and Markowitz, H. M. (2011). The Theory and Practice of Investment

Management. John Wiley & Sons, Hoboken, New Jersey.

Fabozzi, F. J. and Pachamanova, D. (2010). Simulation and Optimization in Finance. John

Wiley & Sons, Hoboken, New Jersey.

Fabozzi, F. J. and Pachamanova, D. A. (2016). Portfolio Construction and Analytics. John

Wiley & Sons, Hoboken, New Jersey, 1st edition.

Falato, A. and Xiao, J. (2020). Credit markets, learning, and the business cycle. In Credit

Markets, Learning, and the Business Cycle.

Fama, E. F. (1970). E�cient capital markets: Review of theory and empirical work. The

journal of Finance, 25(2):383{417.

Fellbaum, C. (1998). A semantic network of English: The mother of all WordNets. Com-

puters and the Humanities, 32(2):209{220.

Feuerriegel, S. and Gordon, J. (2018). Long-term stock index forecasting based on text

mining of regulatory disclosures. Decision Support Systems, 112:88{97.

Feuerriegel, S. and Gordon, J. (2019). News-based forecasts of macroeconomic indicators:

A semantic path model for interpretable predictions. European Journal of Operational

Research, 272(1):162{175.

Filardo, A. J., Lambardi, M., and Raczko, M. (2019). Measuring �nancial cycle time: Sta�

Working Paper No. 776. Bank of England.

Fischer, M., K�ostler, C., and Jakob, K. (2019). Modeling stochastic recovery rates and

dependence between default rates and recovery rates within a generalized credit portfolio

framework. Journal of Statistical Theory and Practice, 10(2):342{356.

Fons, J. S. (1994). Using default rates to model the term structure of credit. Financial

Analysts Journal, 50(5):25{33.

French, C. W. (2003). The Treynor capital asset pricing model. The journal of investment

management, 1(2):60{72.

Page 261



REFERENCES

Frye, J. (2000). Collateral Damage: A Source of Systematic Credit Risk . Federal Reserve

Bank of Chicago, Risk Magazine.

Garcia, D. (2013). Sentiment during recessions. The Journal of Finance, 68(3):1267{1300.

GDELT (2020). The Empirical Use of GDELT Big Data in Academic Research. Google

GDELT report - GLOBE { The European Union and the Future of Global Governance.

Gilchrist, S. and Zakraj�sek, E. (2012). Credit spreads and business cycle uctuations. Amer-

ican Economic Review, 102(4):1692{1720.

Giuzio, M., Gintschel, A., and Paterlini, S. (2018). The components of private debt perfor-

mance. The Journal of Alternative Investments, 20(4):21{35.

Goldberg, Y. and Hirst, G. (2017). Neural Network Methods in Natural Language Processing.

Morgan & Claypool Publishers.

Gordy, M. (2003). A risk-factor model foundation for ratings-based bank capital rules. Journal

of Financial Intermediation, 12(3):199{232.

Gourio, F. (2012). Disaster risk and business cycles. American Economic Review,

102(6):2734{2766.

Gourio, F. (2013). Credit risk and disaster risk. American Economic Journal: Macroeco-

nomics, 5(3):1{34.

Greenwood, R., Hanson, S. G., and Jin, L. J. (2016). A model of credit market sentiment.

Harvard Business School Working Paper, 17(015):1{44.

GSAM (2022). Goldman Sachs Asset Management: Market Insights. [available on-

line at https://www.gsam.com/content/gsam/uk/en/advisers/market-insights.html, ac-

cessed on 03 December 2022].

Gujarati, D. (1999). Essentials of Econometrics. McGraw-Hill economics series.

Irwin/McGraw-Hill.

Gulen, H., Ion, M., and Rossi, S. (2019). Credit cycles, expectations, and corporate invest-

ment. CEPR Discussion Papers 13679, C.E.P.R. Discussion Papers.

Page 262



REFERENCES

Gupta, R., Cepni, O., and Ji, Q. (2021). Sentiment Regimes and Reaction of Stock Markets

to Conventional and Unconventional Monetary Policies: Evidence from OECD Countries.

Working Papers 202126, University of Pretoria, Department of Economics.

Gupton, G. M. (1997). Credit Metrics - An publically disclosed internal JP Morgan technical

document. JP Morgan.
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26 NATURAL LANGUAGE PROCESSING

Part VIII

Appendix

26 Natural language processing

26.1 Social media data sourcing

Twitter data is the source of information from social media sources. The data is accessed

via the Twitter API version 2 using Python and the Tweepy package. Tweepy is a pre-

customised package to draw data using Twitter API in a relatively quick and easy fashion,

which suits a use case of NLP modelling well without needing to make use of the full capability

of Twitter's API v2. Two mechanisms were used for extracting or �ltering the tweets from

Twitter. Firstly using search terms, the following string based �lters have been set up to

isolate those topics which will be �ltered from Twitter, using the string search endpoint

functionality as part of the Twitter API 2.
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26.2 Twitter table structure

Field name Description and example Format

Twitter Table: Followers

id Unique Twitter user key Integer

create at Creation time of Tweet example: : `Wed Oct 10 20:19:24

+0000 2018'

datetime

screen name Name of follower as it appears on the Twitter screen String

name Name of follower String

description Description that the user has written describing themselves String

followers count Total number of followers this tweet pro�le carries Integer

friend count Total number of friends this pro�le has Integer

favourites count Total number of tweets that the user pro�le has liked Integer

list of followers Twitter id list of all the followers of this particular follower Integer

list of friends Twitter id list of all the friends of this particular follower Integer

coordinates coordinates of the user for users exposing location whilst using

the Twitter application [-77.119759,38.791645]

geoJSON

Twitter Table: Twitter Tweets

id str String representation of the unique identi�er for this Tweet. String

id user Unique Twitter user key [1050118621198921728] Integer

tweet text Text captured in the tweet by the user pro�le String

date Datetimestamp marking the time of the data draw Datetime

retweet count Count of the number of retweets Integer

retweet status Indicator for retweets, where users can broadcast tweets from

other users

true/false

lang Language of the user - default set by pro�le user (lang = `en') String

truncated Indicator for tweets longer than 140 characters, which are trun-

cated and end with an ellipsis, ...

Boolean

Table 27: Social data description, keys, �eld names and data sources.
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26.3 Twitter search terms

Search terms

ACWI FOMC Non-Farm Payrolls

AllShare FTSE100 production manufacturing

FTSE350 GDP purchase managers index

10 year bond gross domestic product real business cycle

short rate expectations housing starts retail sales

balance of trade interest rates S&P500

business cycle market sentiment stock market performance

Consumer Price Index market volatility unemployment rate

Table 28: Twitter search terms used to �lter data from Twitter.

26.4 Twitter handles

Streaming tweets, using Twitter's free API. Tweets are �ltered from the streaming data,

based on search terms and 50 prominent economics and market pro�les and news pro�les.

I captured streaming data from 01 September 2020 to 30 August 2021, using Python and

the Twitters API endpoint accessed using package. In the tables that follow, I detailed the

tables structure, then search terms for this study and lastly the twitter handles I followed for

data extraction.
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Name Screen Name Location Description Follower Count

Adam Posen AdamPosen Washington,

DC

President, Peterson Institute for International Economics;

proclaims on monetary, �scal and trade policy, advises investors.

43,060

Al Jazeera AJEnglish Doha, Qatar English, Hear the human story and join the discussion. 6,539,036

Amine Ouazad amine ouazad Canada Econ prof @HEC Montreal. Researcher in urban, real estate,

climate, �nance.

2,350

Annie Lowrey AnnieLowrey San Francisco,

CA

Sta� writer for @TheAtlantic, author of `Give People Money',

new Californian. Say hi on annie@theatlantic.com.

97,285

Antonio Fatas AntonioFatas Singapore Professor of Economics at INSEAD, an international business

school with campuses in Singapore, France and Abu Dhabi.

5,942

Atif Mian AtifRMian Princeton I do �nance and macro ... with data, at Princeton.

Austan

Goolsbee

Austan Goolsbee Chicago Econ prof at U.Chicago's Booth School of Business and former

Chairman of the Council of Economic Advisers.

101,333

Barry

Eichengreen

B Eichengreen Berkeley,

California

George C. Pardee and Helen N. Pardee Professor of Economics

and Political Science, University of California, Berkeley, NBER

Research Associate, CEPR Res Fellow

35,945

Barry Ritholtz ritholtz NYC Welcome to the Dopamine factory! Chair/CIO of RWM

https://t.co/n78eQEY6QZ Masters-in-Business podcast/radio

host Director of Twitter Cognitive Dissonance

171,920

BBC News BBCBreaking London, UK Breaking news alerts and updates from the BBC. 46,885,235

Ben Casselman bencasselman Econ/business/data reporter for @nytimes. Formerly:

@�vethirtyeight, @WSJ. Adjunct @newmarkjschool

63,794

Ben White morningmoneyben NYC POLITICO Chief Economic Correspondent and Morning Money

columnist.

116,392

Ed Dolan dolanecon Northwest

Michigan

Sr. Fellow @NiskanenCenter. Healthcare, environment, poverty,

lots of other stu�. Author of intro econ text by BVT

4,772

Edward

Harrison

edwardnh Credit Writedowns / Real Vision 33,893

Erik

Brynjolfsson

erikbryn Stanford Director @DigEconLab; Jerry Yang and Akiko Yamazaki

Professor and Ralph Landau Senior Fellow @Stanford; Co-author

@2MABook and @MPCBook. https://t.co/8Ounj6hmzw

188,710

Evan Soltas esoltas Cambridge, MA PhD student @MITEcon, interested in public �nance and labor

economics.

9,822

Table 29: Twitter handles table (1/8).
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Name Screen Name Location Description Follower Count

Betsey Steven-

son

BetseyStevenson Ann Arbor Former Member of the President's Council of Economic Advisers

and Chief Economist at Labor. Current academic economist at

Michigan. Always an economist at home.

47,864

Bloomberg business New York and

the World

The �rst word in business news. 6,828,441

Boris Johnson BorisJohnson United King-

dom

Prime Minister of the United Kingdom and @Conservatives

leader. Member of Parliament for Uxbridge and South Ruislip.

3,179,577

Brian Ro-

manchuk

RomanchukBrian Montr�eal,

Qu�ebec

Writes on bond market economics 2,862

Cameron Crise 5thrule Westport and

Gotham

Macro strategist at Bloomberg writing for the Markets Live blog.

Former macro HF PM. Always on the hunt for pink amingos.

6,981

Catherine L

Mann

CLMannEcon New York City Global Chief Economist, Citi. International, analytical, policy

(Fed, OECD), research (PIIE, Brandeis), private sector (Citi).

My views. Loves Cocker Spaniels

7,056

Catherine Ram-

pell

crampell New York City Syndicated op-ed columnist @washingtonpost, commentator

@cnn, special correspondent @newshour. Previously econ/the-

ater NYT. Econ, immigration, tax, politics etc

184,625

Charlie Bilello charliebilello Founder and CEO of Compound Capital Advisors. Sharing ideas

that compound over time. https://t.co/1zNIPqZdEH

199,826

Chris Dillow CJFDillow Oakham One of Rutland's most prominent Marxist economists. 12,530

Christophe Bar-

raud

C Barraud Nice/Paris FR Chief Economist, Strategist | PhD | Bloomberg Top

Forecaster of the US [2012-2019], EU [2015-2019] and CN

Economy [2017-2019] | RT does not equate to endorsement

74,554

Cullen Roche cullenroche Encinitas, CA Former mail delivery boy turned multi-asset investment man-

ager, author, Ironman & chicken farmer. Probably should have

stayed with mail delivery....

53,571

Dani Rodrik rodrikdani Cambridge, MA Economist at Harvard Kennedy School 161,575

Daniel Lacalle dlacalle IA London, UK PhD #Economist, #Author. Chief Economist @Tres-

sisSV. #Professor @IEbusiness @IEB Spain @UNED. #Advisory

@frdelpino. Married, 3 kids https://t.co/Cfm6rqzR1F

90,463

Darrick Hamil-

ton

DarrickHamilton Brooklyn, NY Henry Cohen Professor of Economics and Urban Policy and Uni-

versity Professor @TheNewSchool

37,244

Table 30: Twitter handles table (2/8).
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Name Screen Name Location Description Follower Count

Dave Giles DEAGiles L'Amable, ON

Canada

Tame econometrician; professor retired from @UVic; mild-

mannered ex-blogger; gone �shin'.

3,126

David Andol-

fatto

dandolfa St Louis, MO Construction worker turned academic turned central banker.

Opinions expressed here are my own, not St. Louis Fed nor

U.S. Fed Reserve System.

17,934

David Boaz David Boaz Washington DC Executive Vice President of The Cato Institute; Author, The

Libertarian Mind; opinions are my own.

23,538

Dean Baker DeanBaker13 Utah Senior economist at the Center for Economic and Policy Re-

search (@ceprdc). Blog{ Beat the Press (@beat the press)

59,508

Diane Coyle DianeCoyle1859 London, Cam-

bridge

The Enlightened Economist. Bennett Professor of Public Policy,

University of Cambridge.

26,773

Donald J.

Trump

realDonaldTrump Washington,

DC

45th President of the United States of America 88,649,448

Dr. Jennifer

Doleac

jenniferdoleac Austin & Col-

lege Station

Economics professor @TAMU. Director @JusticeTechLab. Host

of the @ProbCausation podcast. I study crime & discrimination.

34,845

Dr. Shelly

Lundberg

ShellyJLundberg Economist; Broom Professor of Demography @ucsantabarbara;

Mostly about women in economics

14,804

Five Minute

Macro

5 min macro Macro Trader; tweeting on rates, FX, equities, commods, life's

rich pageant...in roughly that order. Not looking to set the world

to rights in 140 characters

18,856

Forbes Forbes New York, NY O�cial Twitter account of Forbes, the world's leading voice for

entrepreneurial success and free enterprise.

16,457,772

Frances `Cas-

sandra' Coppo-

las

Frances Coppola United King-

dom

Finance & economics writer and commentator. Author of 'The

Case For People's Quantitative Easing' (Polity Books). Sings a

bit too. Always right, never believed.

57,096

Gita Gopinath GitaGopinath Washington,

D.C.

Chief Economist of the International Monetary Fund. On leave

of public service from Harvard University's Economics Depart-

ment. Views are my own.

80,145

Heidi Hartmann HeidiatIWPR Washington,

DC

Founding President @IWPResearch: policy issues, gender anal-

ysis & women in economics. Distinguished Economist in Resi-

dence, American Univ. First Generation.

1,989

Table 31: Twitter handles table (3/8).

Page 279



26 NATURAL LANGUAGE PROCESSING

Name Screen Name Location Description Follower Count

Heidi Shierholz hshierholz Washington,

DC

Director of Policy, @EconomicPolicy. Former Chief Economist

at the US Dept of Labor. Bike commuter, backyard beekeeper.

Tweets my own. She/her.

13,492

James Picerno jpicerno Editor (US Business Cycle Risk Report), author (Quan-

titative Investment Portfolio Analytics In R), blogger

(https://t.co/prQ9D8e8ID)

1,671

Jared Bernstein econjared Washington,

DC

CEA Member for President Biden. Former Chief Economist &

Adviser to VP Biden during the Obama-Biden administration.

72,989

Je� Deist je�deist Ex uno plures. 20,262

Jesse Colombo TheBubbleBubble Dallas, TX Economic analyst, Zero Hedge & Forbes contributor. Warns

about dangerous bubbles. Recognized by the London Times for

predicting the Global GFC.

168,975

Jessie Hand-

bury

jessiehandbury Economist and Assistant Professor of Real Estate at Wharton 1,076

Jim Cramer jimcramer New York City Founder of @TheStreet & I run charitable trust portfolio

https://t.co/0UYF2L7v5y. I also host @MadMoneyOnCNBC

& blog daily on https://t.co/sGTJX6GWO2. Booyah!

1,451,582

Jodi Beggs jodiecongirl Cambridge, MA Behavioral Economist, data scientist, Economists Do It With

Models, We the Economy, Homer-Economicus.

30,444

Joe Biden JoeBiden Wilmington,

DE

President-elect, husband to @DrBiden, proud father & grandfa-

ther. Ready to build back better for all Americans.

21,110,233

Joe Weisenthal TheStalwart New York City Co-host of the Odd Lots podcast and 'What'd You Miss?' on

Bloomberg TV. Editor. Chess and Bakers�eld fan.

233,371

John Burn-

Murdoch

jburnmurdoch Doncaster Lon-

don

Stories, stats & scatterplots for @FinancialTimes | Daily up-

dates of the coronavirus trajectory tracker

314,890

John Van

Reenen

johnvanreenen Cambridge, MA Professor in MIT Economics & Sloan. OBE. Jansson Award

winner. Fellow of British Academy & Econometric Soc #FBPE

27,197

Jonathan

Portes

jdportes London Professor of Economics, King's College London; Senior Fellow,

UK in a Changing Europe. Personal views only.

71,123

Mark Thoma MarkThoma Eugene, Ore-

gon

44,839

Table 32: Twitter handles table (4/8).
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Name Screen Name Location Description Follower Count

Mariana Maz-

zucato

MazzucatoM London UCL Professor, Director of Institute for Innovation & Public

Purpose. Author of Entrepreneurial State; Value of Everything.

4 kids keep me laughing. Bread maker

145,694

Marie Mora Marietmora Provost/Exec VC for Academic A�airs @UMSL; Prof of Econ.

@PAESMEM recipient; @FocusEconomics Top 75 Econ Inu-

encer; Econ Rockstar. RT isn't an endorsement.

4,237

Mark Thornton DrMarkThornton Austrian School Economist at the Ludwig von Mises Institute,

Skyscrapers and Business Cycles, not afraid of deation

15,646

Matthew E.

Kahn

mattkahn1966 Bloomberg Distinguished Professor of Economics and

Business at Johns Hopkins University. @jhu cities ,

https://t.co/qisqzsF9FO

5,737

Michael Bat-

nick

michaelbatnick Long-distance reader 124,400

Mike `Mish'

Shedlock

MishGEA Crystal Lake, IL 21,706

Miles Kimball mileskimball Superior, CO Eaton Professor of Economics at the University of Colorado,

Bloomberg columnist, and independent blogger on economics,

politics, religion & �ghting obesity

21,201

Mises Institute mises Auburn, Al-

abama

Promoting Austrian economics, freedom, and peace in the tra-

dition of Ludwig von Mises through research, publishing, and

education. IG: misesinstitute

128,298

Mises Media mises media Auburn, Al-

abama

Featured Audio & Video from the Mises Institute|the research

and educational center of classical liberalism, libertarian political

theory, & Austrian economics.

13,044

Mohamed A.

El-Erian

elerianm USA President, Queens' College, Cambridge University. Chief Eco-

nomic Adviser, Allianz. Chair, Gramercy Funds Mng. Wharton

Professor. Lauder Institute Senior Fellow

355,219

David Wessel davidmwessel Washington,

D.C.

Director, Hutchins Center on Fiscal & Monetary Policy, Brook-

ings. Contributing correspondent, Wall Street Journal. Views

in tweets are strictly my own.

86,284

Nate Silver NateSilver538 New York Editor-in-Chief, @FiveThirtyEight. Author, The Signal and the

Noise (https://t.co/EYTxvN6BLY). Sports/politics/food geek.

3,665,986

New York Fed NewYorkFed New York City,

USA

Serving the Second District and the Nation. Tweets from Pres-

ident John Williams are signed -JCW.

169,906

Table 33: Twitter handles table (5/8).
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Name Screen Name Location Description Follower Count

Noah Smith Noahpinion San Francisco,

CA

Bloomberg Opinion writer. Founder, https://t.co/j9CinPoHlo.

Writes about economics, tweets about rabbits. Also blogs at

https://t.co/OBEFRT6Hei

187,073

Nouriel Roubini Nouriel New York Stern School NYU Prof; Roubini Macro Associates CEO;

@RosaRoubini CoFounder; Crisis Economics author; Time100,

FT, FP, Forbes, Coindesk Most Inuential Awards

512,360

Owen Zidar omzidar Princeton, NJ Professor of Economics and Public A�airs at Princeton. 8,498

Paul Krugman paulkrugman New York City Nobel laureate. Op-Ed columnist, @nytopinion. Author, `The

Return of Depression Economics', `The Great Unraveling', `Ar-

guing With Zombies', + more.

4,646,837

Faisal Islam faisalislam London(head)

Manch-

ester(heart)

Economics Editor, BBC. Fin crisis book @theDefaultLine ..

Brexitologist. Host award-winning 2016 EUref TV interviews

& 2017 live GE debate. United ST.

365,872

Pedro Nicolaci

da Costa

pdacosta Washington,

DC

Federal Reserve & economy correspondent at Market News In-

ternational @MNINews Previously: @Reuters, @WSJ, @PIIE. I

see Fed people. Opinions my own. Wear a mask.

139,631

Peter Brandt PeterLBrandt CO, MN and

AZ

Futures/fx career trader since 1975. Author and publisher of

the Factor Report. I Tweet charts w/o comments & about

stu� I've learned the hard way.

386,559

Prof. Steve

Hanke

steve hanke Baltimore &

Paris

Economist @JohnsHopkins | Sr Fellow & Director #TledCur-

rencies Project @CatoInstitute | @NRO | FX & Commodity

Trader | Reagan White House | Views are my own

313,034

Quant Insight Quant Insight London, UK Analyses data using science and technology to understand mar-

kets. Not investment advice. Look Up.

513

Rachel Glenner-

ster

rglenner London, Eng-

land

Development economist, researcher, FCDO Chief Economist.

Tweet on evidence, econ policy, education, life. Tweets my

personal views not FCDO policy.

22,616

Joseph E.

Stiglitz

JosephEStiglitz New York The o�cial account of Joseph E. Stiglitz, Nobel laure-

ate economist based @Columbia University. President @pol-

icy dialogue.

337,910

Justin Wolfers JustinWolfers Ann Arbor, MI Professor @UMichEcon & @FordSchool | @NYTimes contrib-

utor | Senior Fellow @BrookingsInst & @PIIE | Intro Econ

textbook author | Think Like an Economist podcast

206,827

Larry Mishel LarryMishel DC Distinguished Fellow & former pres, EPI. Dad(4), husband,

grandpa(3), Bella (pure mutt). Economist.

7,059

Table 34: Twitter handles table (6/8).
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Name Screen Name Location Description Follower Count

Lars Chris-

tensen

MaMoMVPY Copenhagen,

Denmark

International economist, `Money Doctor', sports analytics

nerd, research associate Copenhagen Business School, lac-

sen@gmail.com +45 52 50 25 06

11,139

Lars P Syll LarsPSyll Sweden Professor at Malm�o University. Primary research interest - the

philosophy, history and methodology of economics.

1,998

Leah Boustan leah boustan Economic history @Princeton. Stay-at-home mom x3. Jew.

Talmud @leah dafyomi.

27,136

Liz Ann Son-

ders

LizAnnSonders New York Chief Investment Strategist, Charles Schwab & Co., Inc. Dis-

closures: https://t.co/nswxFWxPYE

155,609

tylercowen tylercowen new book *Big Business*, https://t.co/rQrQ30aCGt, Conver-

sations with Tyler, Bloomberg Opinion.

174,264

UK Prime Min-

ister

10DowningStreet 10 Downing

Street, London

O�cial page for Prime Minister @BorisJohnson's o�ce, based

at 10 Downing Street

5,851,505

Wiley Eco-

nomics

WileyEconomics Global We publish Economics research and books. We'll help you build

your career, get published and connect you.

9,260

William E.

Spriggs

WSpriggs Washington,

DC

Chief Economist, @AFLCIO and Professor, Dept. of Eco-

nomics, @HowardU

10,531

William East-

erly

bill easterly New York City NYU Economics Professor. Field is Development. I am an

expert on the other experts.

125,833

Wolf Richter wolfofwolfst San Francisco Publisher of �nance and econ site https://t.co/Xt9NMmBHdg 19,957

Raoul Pal RaoulGMI Little Cayman,

Cayman Islands

Founder/CEO - Global Macro Investor and Real Vision Group,

Business Cycle Economist, Investment Strategist, Economic

Historian, Traveller and Rum Drinker..

297,037

Reuters Reuters Around the

world

Top and breaking news, pictures and videos from Reuters. For

more breaking business news, follow @ReutersBiz.

22,796,915

Rishi Sunak RishiSunak Member of Parliament, Richmond. Chancellor of the Exchequer. 436,297

Robert P. Mur-

phy

BobMurphyEcon Illinois Christian, Austrian economist, and theorist of non-violent so-

cial mechanisms. Senior Fellow at Mises Institute. Author of

*Choice*. Host of https://t.co/ByuMumY4eb

46,447

Robert Wenzel WenzelEconomics San Francisco Writes at: https://t.co/7qiNAuFk25 Videos:

https://t.co/AM06Hfb4HA Author of \The Fed Flunks:

My Speech at the NY Fed" https://t.co/SSWDfwSh2y

4,541

Roger E. A.

Farmer

farmerrf London UK and

Los Angeles

USA.

Roger Farmer's Economic Window. Professor of Economics,

Warwick University and Distinguished Professor of Economics

UCLA.

14,025

Table 35: Twitter handles table (7/8).
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Sandy Darity SandyDarity Durham, NC Now in the fourth print run From Here to Equality! 41,502

Scott Minerd ScottMinerd USA Global Chief Investment O�cer of @GuggenheimPtnrs. These

are my views on the global economy and �nancial markets

https://t.co/G7sajGQUxG

87,721

Stephen Red-

ding

ReddingEcon Princeton, NJ Economist. Tweets and retweets are not endorsements. 2,301

Steve Burns SJosephBurns Tennessee USA I tweet about trading, �nancial markets, and �nancial freedom.

I also share what I �nd inspiring & motivating. I am a trader &

the founder of https://t.co/gqmZ6wZxcM

307,616

Steve Keen ProfSteveKeen Sutton, London We need a new economics. Help me build it

https://t.co/arS8Ordxqy Debunking Economics, Minsky UCL

Honorary Research Fellow profstevekeen@moneybutton.com

74,583

Stocktwits Stocktwits New York, NY The world's largest community of investors and traders. 737,035

Sven Henrich NorthmanTrader Britannia Navigating changing markets. Keeping it real. Occasional sar-

casm. To subscribe: ttps://t.co/ZyyUuwbyMz. . .

236,435

The Economist TheEconomist London News and analysis with a global perspective. Subscribe here:

https://t.co/SHA0LZG0e2

25,271,206

The Sunday

Times

thesundaytimes London The best of our journalism. Become a subscriber:

https://t.co/Kq4ItERnQC. Contact our customer service team:

https://t.co/VIDSmdIL

447,915

The Wall Street

Journal

WSJ New York, NY Sign up for our newsletters and email alerts:

https://t.co/WFU7oLKkip

18,351,907

The Washing-

ton Post

washingtonpost Washington,

DC

Democracy Dies in Darkness. 16,951,889

Thomas Piketty PikettyLeMonde Compte o�ciel de Thomas Piketty, professeur @EHESS fr &

@PSEinfo, co-directeur @WIL inequality

172,297

Tim Harford TimHarford Oxford Author of \How To Make The World Add Up". Cautionary

Tales podcast. Undercover conomist at the FT. BBC More or

Less. Views my own, of course.

172,906

Tim Worstall worstall Messines, Por-

tugal

Senior Fellow @ASI Editor: @ItsExpunct Usually in @Forbes,

@WSJ, @NYtimes, @Telegraph, DCExaminer.

6,287

TIME TIME Breaking news and current events from around the globe. 17,742,072

Timothy Taylor TimothyTTaylor Minnesota Journal of Economic Perspectives, Conversable Economist 7,154

Tom Woods ThomasEWoods Harmony, FL New York Times bestselling author, and host of The Tom

Woods. Show

96,602

Table 36: Twitter handles table (8/8).
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26.5 UK based news - Guardian news

Field name Description and example Format

Data provider: The Guardian News

�rst pub date First recorded date that the article was published. This is a primary

date �eld, if missing, then web pub date is used [YYYY-MM-DD]

Datetime

web pub date Date that article was published on-line [YYYY-MM-DD] Datetime

section name Section name �lter (\Sport", \Business", \Markets"). String

head line Headlines of the articles as it is featured in the newspaper String

author Author's name as it appears in the newspaper String

paper page num Page of the print newspaper where the article appeared Integer

word count Number of words in the article, character cound available Integer

body text The text in the article. String

Data provider: New York Times

pub date date that article was published on-line. Format arrives as date,

month, day [\2020-05-02"] , or YYYY-MM-DD

datetime

abstract Short abstract of the article String

document type This �eld is used to categorise whether it is video, print, audio and

it is used to �lter content, to print only

String

web url Current URL of the article String

lead paragraph Lead paragraph of the article String

section name Each article is list under sections, such as \Sport", \Business",

\Markets". This will be used to �lter out data which is not required,

such as \Sport"

String

subsection name Each article is list under sub-sections, such as \Rugby" within a

section of \Sports". This may again be used to �lter out data

which is not required, such as \Sport"

String

word count Number of words used in the article Integer

Table 37: The Guardian & The New York News data API description, keys, �eld names and

data sources.
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26.6 Google GDELT data

Field name Description and example Format

Data provider: Google GDELT

start date Required - The start date for the �lter [\2020-05-01"] YYYY-MM-DD

end date Required - The end date for the �lter [\2020-05-02"] YYYY-MM-DD .

num records The number of records to return. Article list mode, up to 250 Integer

keyword Return articles containing the exact phrase keyword within the

article text. [\climate change"]

String

domain Return articles from the speci�ed domain. Filtering �eld

[\bbc.co.uk", \nytimes.com"]

String

country Return articles published list of countries, formatted as the FIPS

2 letter country code. Filtering �eld [\UK", \US"]

String

theme Return articles that cover one of GDELT's GKG Themes. A full

list of themes. Filtering �eld [\GENERAL HEALTH]

String

repeat Return articles containing a single word repeated at least a number

of times. Use repeat() eg. repeat = repeat(3, \environment")

String

timelinevol A timeline of the volume of news coverage matching the �lters,

represented as a percentage of the total news articles monitored.

Integer

timelinevolraw Similar to timelinevol, but has the actual number of articles and a

total rather than a percentage

Integer

timelinelang Similar to timelinevol but breaks the total articles down by pub-

lished language. Each language is column in the DataFrame.

String

timelinesourcecountry Similar to timelinevol but breaks the total articles down by the

country they were published in, returns a DataFrame column

String

timelinetone a timeline of the average tone of the news coverage matching the

�lters. See GDELTs documentation for more information.

Float

Table 38: GDELT Events data description, keys, �eld names and data sources.
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26.7 Modelling data

26.7.1 Training data - The Guardian
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Figure 87: The green line plots the rolling cumulative sentiment value, showing expected

increases in the run up to the GFC and a sharp decrease toward the beginning of

the pandemic. The standard deviation of the simple moving average (SMA30 day)

and the range between the 75th and 10th percentile show a dramatic increase

during 2002 and 2003, with an even sharper increase at the beginning of the

pandemic.
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26.7.2 Training data - New York Times
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Figure 88: Textblob and VADER, clean plotted and stemmed text plotted for New York

Times text. Unlike the same analysis for The Guardian, the stemmed results

follow the same trend as the raw text, but it does widen signi�cantly.
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Figure 89: The New York Times cumulative sentiment (CUM30) and simple moving average

standard deviation (SMA30 std) are quite a volatile trend, but features shocks

around the periods of the 2002 crisis, the GFC. There is a notable increase in

sentiment for the CUM30 variable in 2021, which is counter-intuitive.
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Figure 90: The simple moving average plot of The New York Times show large decreases

over the 2002 period, 2008 GFC, and early 2021 pandemic.
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26.8 Lexical analysis

New York Times mean std min 25% 50% 75% max

VADER compound clean 0.090 0.031 -0.021 0.071 0.087 0.105 0.191

VADER compound clean stem 0.080 0.030 -0.151 0.066 0.078 0.092 0.148

Textblob polarity clean 0.079 0.012 0.055 0.071 0.078 0.084 0.214

Textblob polarity clean stem 0.074 0.014 0.053 0.068 0.072 0.078 0.247

Table 39: New York Time lexical summary statistics.

Twitter mean std min 25% 50% 75% max

VADER compound clean 0.060 0.167 -0.418 -0.025 0.049 0.153 0.422

VADER compound clean stem 0.070 0.149 -0.399 0.017 0.076 0.127 0.494

Textblob polarity clean 0.069 0.068 -0.091 0.038 0.074 0.111 0.268

Textblob polarity clean stem 0.077 0.059 -0.05 0.044 0.075 0.106 0.208

Table 40: Twitter lexical summary statistics.
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26.9 Modelling results

26.9.1 LSTM modelling results
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Figure 91: Neural network model with multi-factor and multi-lagged variables (times steps).
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Figure 92: LSTM model results - single factor.
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Figure 93: LSTM modelling that includes multi-variate, no lagged variables (times steps).
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Figure 94: LSTM modelling that includes multi-variate, multi-lagged variables (times steps).
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26.9.2 All country results
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Figure 95: Out-of-sample RMSE test results broken down by factor category, single/multi

factor category and region.
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Figure 96: Out-of-sample RMSE test results broken down by data source, single/multi factor

category across all regions per country.
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Figure 97: Out-of-sample RMSE test results broken down by data source, single/multi factor

category across all regions.
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Figure 98: Out-of-sample RMSE test results broken down by data source and region for

single/multi factor category split.
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26.9.3 UK modelling results
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Figure 99: Out-of-sample RMSE test results broken down by model type category and num-

ber of data sources.
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Figure 100: MAE and RMSE test results modelling type category and data sources.
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26.9.4 USA modelling results
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Figure 101: Out-of-sample RMSE test results broken down by model type category and

number of data sources.
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Figure 102: RMSE test results modelling type category and data sources.
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26.9.5 RSA modelling results
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Figure 103: Out-of-sample RMSE test results broken down by model type category and

number of data sources.
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Figure 104: MAE and RMSE test results modelling type category and data sources.
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26.9.6 UK sentiment vs credit spread results

From the time-series data I can see a relationship in and around the GFC in 2009 and the

period of 2002 to 2004. The relationship is also observed at and around 2016, which reects

the time period of the Brexit vote.
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Figure 105: UK OECD BCI index relative to the 12 month UK credit spread 12 month

forward.

The Vader, three month rolling window, shows a similar pattern, with drawdowns in sentiment

around the shock periods, however, this relationship is not as clear as the Textblob index.
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Figure 106: UK Vader based on The Guardian data plotted against the 12 month UK credit

spread 12 month forward.
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Figure 107: UK Credit spread as it relates to Business Con�dence Indicator, Vader and

TextBlob.
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26.9.7 USA sentiment vs credit spread results
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Figure 108: US Credit spread as it relates to Business Con�dence Indicator and TextBlob.

There are times where the red (textblob) provides a leading indicator for stress

events.
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Figure 109: US Credit spread as it relates to Business Con�dence Indicator, and simple mov-

ing average of the Vader time-series. The green line (Vader SMA) is directionally

showing properties, in that the directionality of the green line precedes the credit

spread before the GFC, after the GFC too.
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Figure 110: For investigating the correlation between the Business Con�dence Indicator,

VADER and textblob variables, versus the US credit spread, I make use of a

the XY plot, at di�ering lag time periods and this also helps to review which

variabSle shows a more clear signal for credit spread. From this analysis, the

signal appears to be more clear for the original OECD variable than it does for

the VADER or textblob NLP variables.
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26.9.8 RSA sentiment vs credit spread results
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Figure 111: RSA Credit spread as it relates to Business Con�dence Indicator, TextBlob polar-

ity. The trend of the textblob time-series does not appear, on visual inspection,

to be a leading indicator for the credit spread variable.
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Figure 112: RSA Credit spread as it relates to textblob polarity variable, the trends do not

appear to correlate.
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Figure 113: For investigating the correlation between the Business Con�dence Indicator,

VADER and textblob variables, versus the RSA credit spread, I make use of a

the XY plot, at di�ering lag time periods and this also helps to review which

variable shows a more clear signal for credit spread. From this analysis, the

signal appears to weaken after the 12 month lag.
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27 Economic scenario generator

27.1 Economic scenario assumptions

Region UK USA RSA

Metric ÝÑ Return Volatility Return Volatility Return Volatility

Cash & Income

Cash 1.5% 0.6% 2.0% 0.7% 6.0% 3.0%

Sov Bonds 2.3% 2.2% 2.6% 3.5% 7.5% 4.8%

Inv Bonds 2.6% 4.3% 3.2% 4.5% 8.0% 6.3%

Growth assets

Equity 6.8% 17.2% 6.0% 18.0% 13.0% 22.0%

Property 6.9% 15.5% 5.4% 16.0% 12.5% 19.5%

Alternatives

DC Inv 5.8% 5.2% 8.7%

DC Sub-Inv 7.75% 7.15% 13.0%

Gold 5.0% 14.6 5.0% 14.7 9.0% 16.5

Table 41: Short term asset class input parameters for CCI=0% (DC = Direct credit / Private

debt).
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Region UK USA RSA

Metric ÝÑ Return Volatility Return Volatility Return Volatility

Cash & Income

Cash 1.5% 0.6% 2.0% 0.7% 6.0% 3.0%

Sov Bonds 2.3% 2.2% 2.6% 3.5% 7.5% 4.8%

Inv Bonds 2.6% 4.3% 3.2% 4.5% 8.0% 6.3%

Growth assets

Equity 6.8% 17.2% 6.0% 18.0% 13.0% 22.0%

Property 6.9% 15.5% 5.4% 16.0% 12.5% 19.5%

Alternatives

DC Inv 5.8% 5.2% 8.7%

DC Sub-Inv 7.75% 7.15% 13.0%

Gold 5.0% 14.6 5.0% 14.7 9.0% 16.5

Table 42: Short term asset class input parameters for CCI=50%(DC = Direct credit / Pri-

vate debt).
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Region UK USA RSA

Metric ÝÑ Return Volatility Return Volatility Return Volatility

Cash & Income

Cash 1.5% 0.6% 2.0% 0.7% 6.0% 3.0%

Sov Bonds 2.3% 2.2% 2.6% 3.5% 7.5% 4.8%

Inv Bonds 2.6% 4.3% 3.2% 4.5% 8.0% 6.3%

Growth assets

Equity 6.8% 17.2% 6.0% 18.0% 13.0% 22.0%

Property 6.9% 15.5% 5.4% 16.0% 12.5% 19.5%

Alternatives

DC Inv 5.8% 5.2% 8.7%

DC Sub-Inv 7.75% 7.15% 13.0%

Gold 5.0% 14.6 5.0% 14.7 9.0% 16.5

Table 43: Short term asset class input parameters for CCI=100% (DC = Direct credit /

Private debt).

USA Cash Sov FI corp FI corp Equity Property DC DC Sub Gold

Assets Bonds Inv HY Inv Inv

Cash 1.00

Agg Bonds 0.18 1.00

FI corp Inv 0.04 0.79 1.00

FI corp HY -0.08 0.19 0.57 1.00

Equity -0.15 0.07 0.27 0.52 1.00

Property -0.42 -0.20 -0.10 0.28 0.22 1.00

DC Inv 0.84 0.17 0.02 0.02 -0.12 -0.20 1.00

DC Sub Inv 0.54 0.17 0.02 0.02 -0.12 -0.20 0.85 1.00

Gold 0.10 0.43 0.27 -0.08 -0.02 -0.24 0.30 0.36 1.00

Table 44: US asset correlation assumptions used in the ESG asset simulation.
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USA Cash Sov Corp bonds Equity Real DC DC Sub Gold

Assets Cash Bonds Inv estate Inv Inv

Cash 1.00

Sov Bonds 0.66 1.00

Corp bonds Inv 0.42 0.80 1.00

Large Cap 0.25 0.45 0.55 1.00

Real Estate -0.18 0.03 0.05 0.40 1.00

DC Inv 0.84 0.57 0.40 0.20 -0.12 1.00

DC Sub Inv 0.84 0.57 0.40 0.20 -0.12 0.85 1.00

Gold 0.06 0.02 0.15 0.36 -0.27 0.05 0.10 1.00

Table 45: RSA asset correlation assumptions used in the ESG asset simulation.
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27.2 Simulation results and visualisations

Country = GBR | CCI: 0 | Asset classs: Inv

Country = USA | CCI: 0 | Asset classs: Inv

Country = GBR | CCI: 0 | Asset classs: Inv Country = USA | CCI: 0 | Asset classs: Inv

Figure 115: UK and US Investment grade CCI=0%.

Country = GBR | CCI: 0.5 | Asset classs: Inv

Country = USA | CCI: 0.5 | Asset classs: Inv

Country = GBR | CCI: 0.5 | Asset classs: Inv Country = USA | CCI: 0.5 | Asset classs: Inv

Figure 116: UK and US Investment grade CCI=50%.

Country = GBR | CCI: 1 | Asset classs: Inv

Country = USA | CCI: 1 | Asset classs: Inv

Country = GBR | CCI: 1 | Asset classs: Inv Country = USA | CCI: 1 | Asset classs: Inv

Figure 117: Cost of credit for the sub-investment grade credit block (UK on the left, USA on

the right), per CCI deciles, where CCI = 1 is top credit cycle decile and CCI=0

is the lowest CCI decile. Note the signi�cant cost di�erentiate and upfront

planning required for the premium.

Page 311



27 ECONOMIC SCENARIO GENERATOR

Country = GBR | CCI: 0 | Asset classs: Sub Inv

Country = USA | CCI: 0 | Asset classs: Sub Inv

Country = GBR | CCI: 0 | Asset classs: Sub Inv Country = USA | CCI: 0 | Asset classs: Sub Inv

Figure 118: UK and US Sub-Investment grade CCI=0%.

Country = GBR | CCI: 0.5 | Asset classs: Sub Inv

Country = USA | CCI: 0.5 | Asset classs: Sub Inv

Country = GBR | CCI: 0.5 | Asset classs: Sub Inv Country = USA | CCI: 0.5 | Asset classs: Sub Inv

Figure 119: UK and US Sub-Investment grade CCI=50%.

Country = GBR | CCI: 1 | Asset classs: Sub Inv

Country = USA | CCI: 1 | Asset classs: Sub Inv

Country = GBR | CCI: 1 | Asset classs: Sub Inv Country = USA | CCI: 1 | Asset classs: Sub Inv

Figure 120: Cost of credit for the sub-investment grade credit block (UK on the left, USA on

the right), per CCI deciles, where CCI = 1 is top credit cycle decile and CCI=0

is the lowest CCI decile. Note the signi�cant cost di�erentiate and upfront

planning required for the premium.
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Country = RSA | CCI: 0 | Asset classs: Sub Inv

Country = RSA | CCI: 0 | Asset classs: Inv Country = RSA | CCI: 0 | Asset classs: Sub Inv

Figure 121: EL waterfall CCI=0% DC Investment grade and Sub-Investment grade RSA.

Country = RSA | CCI: 0.5 | Asset classs: Sub Inv

Country = RSA | CCI: 0.5 | Asset classs: Inv Country = RSA | CCI: 0.5 | Asset classs: Sub Inv

Figure 122: EL waterfall CCI=50% DC Investment grade and Sub-Investment grade RSA.

Country = RSA | CCI: 1 | Asset classs: Sub Inv

Country = RSA | CCI: 1 | Asset classs: Inv Country = RSA | CCI: 1 | Asset classs: Sub Inv

Figure 123: Cost of credit for the RSA region (Investment on the left, Sub-investment on the

right), per CCI deciles, where CCI = 1 is top credit cycle decile and CCI=0 is the

lowest CCI decile. Note the signi�cant cost di�erentiate and upfront planning

required for the premium.
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Figure 124: ESG distributions 1yr cash.

0.02 0.04 0.06 0.08 0.10
Sov Bonds

0

50

100

150

200

250

300

Co
un

t

Region = GBR

0.02 0.04 0.06 0.08 0.10
Sov Bonds

Region = USA

0.02 0.04 0.06 0.08 0.10
Sov Bonds

Region = RSA

CCI
0.0
0.5
1.0

Figure 125: ESG distributions 1yr Sov Bonds.
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Figure 126: ESG distributions 1yr Inv Bonds.
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Figure 127: ESG distributions 1yr DC Investment grade.
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Figure 128: ESG distributions 1yr Sub-Investment grade.
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Figure 129: ESG distributions 1yr property.
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Figure 130: ESG distributions 1yr equity.
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Figure 131: ESG distributions 1yr gold.
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Figure 132: Credit distribution simulation example, note the scaling di�erence between DC

Investment grade and DC Sub-Investment grade.
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(a) Sampled PD distributions.
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Figure 133: Credit distribution simulation example, note the scaling di�erence between DC

Investment grade and DC Sub-Investment grade, signi�cant di�erent in scaled

values between Inv and Sub-Investment grade in this speci�c scenario/sample.
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Figure 134: LGD distribution for CCI=100%.
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Figure 135: LGD distribution for CCI=50%.
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Figure 136: LGD distribution for CCI=0%.
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28 Building block portfolio returns
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Figure 143: CAGR (1YR) CCI=0%: UK.
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Figure 144: CAGR (1YR) CCI=50%: UK.
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Figure 145: CAGR (1YR) CCI=100%: UK.
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Figure 146: CAGR (1YR) CCI=0%: USA.
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Figure 147: CAGR (1YR) CCI=50%: USA.
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Figure 148: CAGR (1YR) CCI=100%: USA.
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Figure 149: CAGR (1YR) CCI=0%: RSA.
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Figure 150: CAGR (1YR) CCI=50%: RSA.
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Figure 151: CAGR (1YR) CCI=100%: RSA.
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Figure 152: CAGR (5YR) CCI=0%: UK.
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Figure 153: CAGR (5YR) CCI=50%: UK.
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Figure 154: CAGR (5YR) CCI=100%: UK.
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Figure 155: CAGR (5YR) CCI=0%: US.
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Figure 156: CAGR (5YR) CCI=50%: US.
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Figure 157: CAGR (5YR) CCI=100%: US.
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Figure 158: CAGR (5YR) CCI=0%: RSA.

0.040% 0.050% 0.060% 0.070% 0.080%
0

50

100

150

200

250

300

Fr
eq

ue
nc

y

CAGR (5YR) Portfolio results | Country: RSA | CCI:  0.5
RF pre-credit
RF incl credit
RF pre-credit
RF incl credit

Figure 159: CAGR (5YR) CCI=50%: RSA.
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Figure 160: CAGR (5YR) CCI=100%: RSA.
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29 Liability parameters

0.0 0.5 1.0
CCI

0.015

0.020

0.025

0.030

0.035

0.040

0.045

So
v 

Bo
nd

s

UK sovereign bonds plot

0.0 0.5 1.0
CCI

0.010

0.015

0.020

0.025

0.030

0.035

0.040

So
v 

Bo
nd

s

USA sovereign bonds plot

0.0 0.5 1.0
CCI

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

So
v 

Bo
nd

s

RSA sovereign bonds plot

Figure 161: Box plots featuring the distribution of the one year expected rates for Sovereign

bonds in each region and boom, bust or normal markets.
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Figure 162: Box plots featuring the distribution of the �ve year expected rates for Sovereign

bonds in each region and boom, bust or normal markets.
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Figure 163: Once the liability cash ows are discounted, using the di�erent scenarios report-

ing in table 26, the e�ects to liability values is clear. When interest rate are

expected to be higher (CCI=0%), the liability values are lower and visa versa.

The chart indicates the proportion of FV the PV represents.
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30 Software and Python packages

30.1 Colab and Python code

Please refer to the following Github (https://github.com/sroydenturner/50797891-PhD) for

the coded sets. Password on request (50707981@mylife.unisa.ac.za).

30.2 Python packages

from datetime import date, timedelta datetime from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler from dateutil.relativedelta import relativedelta

from gdeltdoc import GdeltDoc, Filters, near, repeat from time import gmtime, strftime, strptime

from gensim.corpora.dictionary import Dictionary from timeit import default timer as timer

from gensim.models import CoherenceModel from nltk.sentiment.vader SentimentIntensityAnalyzer

from gensim.models.coherencemodel import boto3

from gensim.models.ldamodel import LdaModel import calendar

from gensim.utils import lemmatize import csv

from gensim.utils import simple preprocess import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder import matplotlib.ticker as mtick

from keras.layers import Dense import datetime as dt

from keras.layers import Flatten import datetime as dt

from keras.layers import GlobalMaxPooling1D import datetime as dt

from keras.layers import LSTM import dateutil.parser

from keras.layers.convolutional import Conv1D import dateutil.parser as parser

from keras.layers.convolutional import MaxPooling1D import gensim

from keras.layers.core import Activation, Dropout import gensim.corpora as corpora

from keras.layers.embeddings import Embedding import json

from keras.models import Sequential import logging

from keras.preprocessing.text import one hot import math

from keras.preprocessing.text import Tokenizer from textblob import TextBlob

from keras preprocessing.sequence import pad sequences

from math import sqrt import nltk

from matplotlib import pyplot import nltk; nltk.download('stopwords')

from nltk.corpus import stopwords import numpy as np

nltk.download('punkt') import pandas as pd

nltk.download('vader lexicon') import pandas.util.testing as tm

from numpy import array import quandl

from numpy import concatenate import re

from numpy import zeros import requests

from os import makedirs import scipy.interpolate as interpolate

from os.path import join, exists import seaborn as sns

from pandas import concat import sidetable

import riskfolio.Portfolio as pf import spacy # lemmatization
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from pandas import read csv import statsmodels.api as sm

from scipy.stats import beta import statsmodels.formula.api as smf

from scipy.stats import binned statistic import tensorow.keras.layers as layers

from sklearn.feature extraction.text import CountVectorizer import tensorow.keras.models as models

from sklearn.metrics import mean squared error import time

from sklearn.metrics import roc curve, auc import timeit

from sklearn.model selection import train test split import warnings

from sklearn.model selection import train test split import waterfall chart
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