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By 
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Abstract 

Density-based algorithms are effective in the detection of clusters with arbitrary shapes and 

outliers even when information about the number of clusters is not available. Parameter 

specification in data stream clustering remains a challenge. Selecting a suitable parameter-

tuning is germane in having a good clustering quality. The density-based algorithm 

DenStream is an example of data stream clustering algorithms that require several parameter 

specifications. In this dissertation, an improved DenStream with a modified distance measure 

was proposed and demonstrated with parameter-tuning in Massive Online Analysis (MOA) 

using synthetic and real-world datasets. The modified DenStream algorithm was compared 

against CluStream, ClusTree and DenStream in the presence of noise levels 0%, 10%, and 

30% and manually selected epsilon parameters 0.02, 0.03, and 0.05 respectively. The epsilon 

parameter range [0.02 – 0.05] was not used due to some algorithm not working on real-world 

datasets. The effects on clustering qualities were evaluated and demonstrated using 

performance evaluation metrics CMM, Purity, Silhouette Coefficient, and Rand index on the 

synthetic and real-world datasets. Finally, the result shows that effectiveness of the 

algorithms depends on the parameter-tuning and no single algorithm is a one-size-fits-all for 

the performance metrics. 
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CHAPTER 1: Introduction  

1.0 Introduction and background 

The world is witnessing data revolution generated daily in large quantities. Lately, the 

volume, speed, and diversity of data from network devices and online resources have 

increased astronomically over time. This streaming data is unceasing, potentially unbounded, 

and continuously evolving (Abid et al., 2019). Extracting knowledge from such important 

data can lead to significant improvements in business, technology, finance, politics, 

economics, international relations, and other sectors of society. However, to maximize the 

benefits of continuous streams of data and their dynamic evolving nature in a dynamic 

environment, sophisticated data mining tools are required. A data stream is unlike the 

traditional static database as it is generated from sensor networks, weblogs, radio frequency 

identification (RFID), Twitter streams, health monitoring systems, connected Internet of 

Things (IoT) devices, mobile devices, and Automated Teller Machine (ATM) transactions 

(Agrawal & Adane, 2016). The continued availability of data has provided compelling 

reasons for developing tools to extract valuable knowledge.  Data stream exploration has 

developed into a significant research interest in the data mining community due to the 

increasing generation of streaming information and importance of its applications (Agrawal & 

Adane, 2016; Amini et al., 2014; Tareq et al., 2022). Data stream clustering poses many 

challenges in the literature, such as detecting clusters of arbitrary shape, grouping data 

streams into several clusters with no prior knowledge, and preserving clusters dynamically. 

Several clustering algorithms are classified into six major groups: Density-based, 

Hierarchical-based, Partitioning, Grid-based, Model-based, and Graph-based clustering. 

The density-based algorithms is an important and reliable clustering algorithms for the 

detection of arbitrary-shaped clusters (Amini et al., 2016).  

Researchers recently proposed numerous density-based clustering algorithms including  

Clustering Online Data-streams of Arbitrary Shapes (CODAS) (R. Hyde & Angelov, 2015); 

an improved version of CODAS (i-CODAS) (Islam et al., 2019b); Clustering of Evolving 

data streams based on Chebychev distance with false Merging (CEC-Merge) (Tareq & 

Sundararajan, 2020); Buffer-based Online Clustering for Evolving Data Stream (BOCEDS) 

(Islam et al., 2019a); and Clustering of Evolving Data-streams into Arbitrary Shapes 

(CEDAS) (R. Hyde et al., 2017). Although outlier detection in data streams poses many 
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challenges (Togbe et al., 2020; Tran et al., 2020; Yao et al., 2018), detecting clusters with 

multi-density data also remains a major challenge (Amini et al., 2016).   

Outliers are categorized into three main groups: global/point, collective, and contextual 

outliers (S. Sadik & Gruenwald, 2014; Thakkar et al., 2016). In some instances, 

outliers/anomalies are classified into three main groupings: unsupervised, semi-supervised, 

and supervised outlier detection (Goldstein & Uchida, 2016; Han et al., 2012; Pawar et al., 

2014) dependent on whether data are labeled or unlabeled. There are several algorithms 

proposed for multi-density data clustering in the literature, but these suffer some 

disadvantages: (1) some need more than a single pass; (2) some require the whole data; and 

(3) some have high computational time. The density-based clustering algorithm is dependable 

in arbitrary shape and noise detection. In this dissertation, the focus is to demonstrate the 

effects of adjusting parameters on data stream clustering algorithms.    

The Massive Online Analysis (MOA) is an open-source and leading tool for the analysis 

and extracting of knowledge from streaming data and unsupervised outlier detection (Bifet et 

al., 2018). Arguably, MOA is the most popular framework for data stream mining with a wide 

range of algorithms and machine learning (ML) tools for classification, clustering, regression, 

outlier detection, multi-label, multi-target concept drift detection, feature analysis, and 

experimenter systems. It has a graphical user interface (GUI) and a workflow like the 

Waikato Environment for Knowledge Analysis (WEKA). There are several density-based 

algorithms for detecting arbitrary shape clusters and noise like CODAS and CEDAS. 

However, the focus of this study is to demonstrate the effects of adjusting parameters on data 

stream clustering algorithms CluStream, DenStream, and ClusTree found in the Massive 

Online Analysis (MOA) framework.    

1.1 Problem Statement 

In real-time data streaming, clustering analysis is vital to gain valuable knowledge from the 

streaming data. While several data stream clustering algorithms are available, there is no 

‘one-size-fits-all algorithm for all’ types of problems and data sets. Several data stream 

clustering algorithms suffers some deficiencies (Ahmed et al, 2020; Kokate et al., 2018). 

There are several open challenges of data stream clustering. Zubaroğlu and Atalay (2020) 

identified the challenges as (1) Finding the number of clusters (2) Parameter specification (3) 

Lack of de facto evaluation criteria (4) Lack of high-quality benchmark data (5) No 

availability of one-size-fits-all algorithms system platforms (6) Lack of algorithms for both 

quantitative and categorical data. Parameters are often difficult to determine, notably for high-
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dimensionality datasets (Han et al., 2012 p.446). The parameter settings of Density Based 

Spatial Clustering of Applications with Noise (DBSCAN) are problematic (Guan et al., 

2019).  Cao et al. (2006) tested the sensitivity of parameters on DenStream which is of 

interest in this research. Zubaroğlu and Atalay, (2020, p.1226) stated that parameters such as 

k, density threshold, decay rate, window length, and distance threshold are very susceptible to 

the input data and affect the clustering quality. Bahri et al. (2022) stated that in evolving data 

streams, algorithm choice and hyper-parameter tuning is tasking for non-experts because it 

requires the domain knowledge and human expertise in achieving optima results. This is of 

interest in this dissertation by manually looking at appropriate parameters best for the 

datasets. 

1.2 Research Aim 

Parameter fine-tuning is very challenging in data stream clustering. The aim of this 

dissertation is to implement a modified DenStream and investigate the sensitivity of the 

parameter settings against the original DenStream and other known bench algorithms 

(CluStream and ClusTree) in MOA. The clustering quality of the modified DenStream was 

demonstrated in MOA using performance evaluation metrics Clustering Mapping Measure 

(CMM), Purity, Silhouette Coefficient, and Rand index. The experimental results of the 

algorithms were merged and visualized using Python libraries (pandas and hvplot) for proper 

interpretation. 

1.2.1 Research Objectives 

The research objectives for this dissertation are thus:  

(1) To identify the method of building a MOA repository from source to implement the 

modified algorithm.  

(2) To identify the hyperparameters appropriate for parameter-tuning. 

(3) To identify the performance metrics applicable for clustering quality. 

1.3 Motivation 

Mode of data streams are constantly evolving and arriving at a fast rate. The sources include 

smart devices, sensor networks, social media platforms, and financial data, among others. 

There is a need to gain useful insights into a large data stream. Many of the suitable 

algorithms for extremely high-frequency data stream clustering suffer some limitations 

(Ahmed et al., 2020; Haneen et al., 2018). The choice of parameter settings is a challenge 
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(Carnein et al., 2020c); while varying the density of data streams is relatively hard (Cao et al., 

2006). Setting the appropriate parameters in data stream clustering requires domain 

knowledge and human expertise. Fortunately, an open-source data analytic tool, Massive 

Online Analysis (MOA), is available to perform the data stream clustering where the 

parameters are manually fixed, and evaluation performance metrics selected. This makes it 

appropriate for use in this study. It is envisaged that this research will achieve remarkable 

results and find usefulness in density-based clustering applications. 

1.3.1 The Impact of this Research on Society 

Data are unceasingly generated in society in diverse areas such as financial transactions, 

telephone calls, radio frequency identification (RFID), telecommunications, sensor 

monitoring, weblog clicks, weather monitoring, recommender systems, medical diagnoses, 

real-time surveillance, electricity usage prediction, and epidemics/disaster management. It is 

important to analyze these datasets as soon as they are generated and extract knowledge from 

them for a predictive purpose, as an example. One impact of our approach is the ability to 

predict possible future trends based on continuously generated instances. Once a clustering 

algorithm has learned how to categorize datasets, then such an algorithm can serve the 

purpose of a predictive tool when required. Such algorithms are very useful, for example, in 

predicting future load requirements based on online monitoring of electricity usage. Another 

possible application is detecting fraud in financial transactions or threats to cyber 

infrastructure. The application of unsupervised learning techniques, such as clustering, is 

important to any aspect of society where data is being generated continuously.  

1.4 Overview of Methodological Approach 

The methodology adopted in this dissertation to investigate the data stream clustering 

algorithms was by means of three methods using MOA framework in Figure 1-1. Firstly, the 

default parameters of the algorithms on MOA using the RandomRBFGenerator for synthetic 

datasets is implemented. Secondly, the effects of the default parameters with some noise 

levels on the streaming synthetic dataset are quantified. The final method consisted of an 

investigation into the behaviour of each algorithm and manually adjusted DenStream epsilon 

parameter (see Figure 1-4). The data sources were mainly from a synthetic data generator 

using the RBF data generator in MOA. This is the only known data generator for clustering in 

MOA framework (see Figure 1-2 and Figure 1-3); and real-world benchmarks and publicly 

available datasets in CSV (comma separator variable) file format; or ARFF (attribute relation 
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file format) files from the University of California Irvin (UCI) Machine Learning Repository 

(Dua & Graff, 2019); USP Data Stream Repository(Souza et al., 2020);OpenML platform 

(Vanschoren et al., 2014); Stream Clustering (Carnein, 2019); and Stream Data Mining 

Repository (X. Zhu, 2010).    

im 

 

Figure 1-1: MOA framework for clustering adapted from (Kranen et al., 2012) 

 

The Figure 1-1 shows the MOA workflow described as below: 

• A data stream (feed, generator) from a file in ARFF format or CSV format using the 

class FileStream or SimpleCSVStream and configured by setting the parameters. 

• An algorithm (that is a classifier) is selected and its parameters are set. 

• The evaluation metrics are chosen. 

• The results can be stored for visualisation after executing the task. 

Figure 1-2 displays the settings for the RandomRBFGeneratorEvents stream with adjustable 

default parameters.  
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Figure 1-2: Option dialog for the RandomRBFGenerator stream data generator adapted from ((Kranen et al., 

2010) 
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Figure 1-3: The new option dialog of RandomRBFGenerator data generator in MOA. 

 

 

Figure 1-4: The methodology in this dissertation 
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1.5 Publications 

The main goal of this research is to investigate and demonstrate the performance of improved 

DenStream algorithm against noise levels and sensitivity to parameter adjustment using 

streaming synthetic dataset and real-world datasets. In the following, we report the list of 

papers ready for publication. 

• Akinosho, T. A., Tabane, E., & Wang, Z. (2023). A Comparative Analysis of Data 

Stream Clustering Algorithms. International Journal of Computing, 22(4), 439-446. 

https://doi.org/10.47839/ijc.22.4.3350 

• Akinosho, T.A., Tabane, E. and Zenghui, W., 2023, October. Performance Evaluation 

of Data Stream Clustering Algorithm on Parameter Specification. In International 

Conference on Wireless Intelligent and Distributed Environment for Communication 

(pp. 173-189). Cham: Springer Nature Switzerland. 

1.6 Organization of this Dissertation 

The rest of this dissertation is structured in this order:  

Chapter 2 presents recent research on density-based clustering algorithms, discusses other 

algorithms of interest, and provides a summary of related clustering techniques on 

performance metrics.  

Chapter 3 describes the methodology of data stream clustering techniques. The MOA open-

source software framework is presented.  

Chapter 4 presents the experimental results, effects of the parameter tuning, demonstrated 

data visualization with the performance metrics.  

Chapter 5 discusses the results of the experimental approach and summarizes the main 

contributions and future research directions. 
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CHAPTER 2: Literature Review 

In this chapter, recent research on data stream clustering algorithms will be reviewed. 

Arbitrary shape cluster detection and outlier detection, offline-online phases, and parameter 

settings in several density-based techniques will be presented. Various clustering techniques 

associated with data stream clustering will be previewed and likewise several clustering 

techniques similarity distance measures will be presented. The performance evaluation 

metrics constantly used in data stream clustering will be described. 

2.1 Data Stream Clustering  

Clustering is the process of grouping sets of elements having common characteristics into 

homogeneous classes. Clustering is an unsupervised machine learning problem (Agrawal & 

Adane, 2016) useful for processing unlabeled data and appropriate in recognizing structures 

when information about data is available. In data stream clustering, groups of similar and 

dissimilar objects are clustered together separately (Ackermann et al., 2012; Carnein et al., 

2020c). The clustering process in stream clustering algorithms is mostly divided into online 

and offline phases (Fahy et al., 2019; Ghesmoune et al., 2016b; Haneen et al., 2018; Khalilian 

et al., 2016; Xu et al., 2019). The online phase is dedicated to summarizing statistics of the 

data converted into micro-clusters used in the offline phase, while the summaries are re-

clustered in the offline phase also called the clustering phase (Zubaroǧlu & Atalay, 2019)to 

macro-cluster (Ahmed et al., 2020; Haneen et al., 2018; Roa et al., 2019). Most of the existing 

density-based algorithms are either offline or a hybrid of offline and online (Islam et al., 

2019b). Some authors like Islam et al., (2019a), argued that offline algorithms are suitable for 

data stream clustering due to the inability to store data stream clustering and clusters in 

arbitrary shapes. Aljibawi et al. (2022) proposed an offline-online algorithm eMuDiS which is 

an enhanced version of MuDi-Stream algorithm by Amini et al. (2016). Figure 2-1 describes 

the online-offline clustering paradigm. Table 2-1 presents some of the stream clustering 

algorithms with offline-online phases.  
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Figure 2-1: Online – offline clustering paradigm (Source: Zubaroǧlu and Atalay, 2019). 

 

Table 2-1: Showing algorithms with Online or hybrid clustering paradigm. 

Article Algorithm Online / Offline clustering  

 Cao et al., (2006) DenStream  offline-online DBSCAN 

Zubaroǧlu and Atalay, 

(2019) 

UMAP   

 

k-Means 

Hyde and Angelov, (2015) CODAS  Online Grid 

Hyde et al., (2017) CEDAS  Online Density 

Aggarwal et al., (2003) CluStream  offline-online k-Means 

Islam et al., (2019a) i-CODAS  Online Density 

Chen and Tu, (2007) D-Stream  offline-online Density 

Forestiero et al., (2013) FlockStream  Online Density 

Fahy and Yang, (2019a) MDSC   Online Density 

Amini et al., (2016) MuDi-Stream  offline-online Density & Grid 

Li et al., (2022) ESA-Stream  offline-online Density & Grid 

Tareq et al., (2020a) CEC  Online Density & Grid 

Bezdek and Keller, (2021) Fuzzy C-Means Offline Fuzzy 

Carvalho et at., (2016) SOM Offline Grid 

Aljibawi et al., (2022) eMuDiS Offline-online Density 

Xu et al., (2019) DenSOINN offline-online Model 
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2.2 Arbitrary Shape Clusters 

Density-based algorithms are resourceful in the detection of arbitrary-shaped clusters and 

outliers’ detection. Hyde and Angelov (2015) proposed an Online density-based algorithm 

known as Clustering Online Data-streams into Arbitrary Shapes (CODAS). The algorithm 

uses a simple local density for micro-cluster initialization which is later merged into clusters. 

Rather than using a fixed radius, CODAS employ a global micro-cluster radius that is 

constant (Islam et al., 2019b). The micro-cluster in CODAS used for storage has a ‘core’ and 

‘non-core’ region (R. Hyde & Angelov, 2015). CODAS uses the Euclidean distance for 

distance measurement calculation. CODAS was compared for purity and accuracy with 

DenStream, Chameleon (Karypis et al., 1998); DBSCAN (Estert et al., 1996); ELM 

(O’Callaghan et al., 2002); and DEC (Oussous et al., 2018) and it achieved comparable 

results. Although CODAS was developed for online data stream clustering, clusters are not 

allowed to evolve and update discarded micro-clusters (R. Hyde & Angelov, 2015; R. W. 

Hyde et al., 2017; Saddam et al., 2020). Islam et al. (2019a) argued that it is erroneous to set 

the optimal value of micro-cluster radius, therefore they proposed an improved Clustering 

Online Data-streams into Arbitrary Shapes (i-CODAS) to maintain local micro-cluster radius. 

According to Islam et al., (2019a), i-CODAS is less dependent on users to set the optimal 

value parameter. The formation and separation of clusters in i-CODAS are confirmed by the 

minimum or maximum radius values. Both CODAS and i-CODAS can detect arbitrary-

shaped clusters and noise.  

Hyde et al. (2017) proposed “Clustering Evolving Data streams into Arbitrary Shaped” 

(CEDAS). CEDAS is a fully online two-stage technique that: (i) produces micro-clusters; (ii) 

merges the micro-clusters into macro-clusters. The technique uses the Euclidean distance 

measure in a fully online method. The authors compared CEDAS against CluStream, 

DenStream, and MR-Stream when evaluated using processing speed, detection of intrusion, 

dimensional effects, adaptation to evolving data, purity, and Big Data, using both the real-

world London Air Quality and the KDDCup99 datasets. CEDAS can detect arbitrary-shaped 

clusters and noise, but its drawback is a lower processing time. CEDAS witnessed some 

improvements such as the buffer-based online clustering for evolving data stream (BOCEDS) 

proposed by Islam et al., (2019b). BOCEDS is an entirely online density-based algorithm that 

reduces dependency on users by recursively updating the micro-cluster radius to its local 

optimal level. BOCEDS momentarily separates irrelevant clusters from fully irrelevant 

clusters by using a buffer to store the irrelevant micro-clusters. BOCEDS performed well 
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against CluStream, DenStream CEDAS, and CODAS based on purity, accuracy, noise 

sensitivity, speed, memory efficiency, and scalability.  

Carnein et al. (2017) carried out an extensive comparison of ten different data stream 

clustering algorithms using a standardized testing environment. According to the authors, this 

is a novel comparable study of these algorithms. The comparative study was carried out using 

numerous synthetic and real-world datasets. The authors proved that: (i) grid-based 

algorithms require sufficient micro-clusters and (ii) arbitrary-shaped clusters are difficult to 

identify. To reduce computational, memory, and still find arbitrary-shaped clusters, Attaoui et 

al., (2022) proposed IMOC-Stream. IMOC-Stream uses the Ant-tree algorithm to determine a 

cluster’s neighborhood and is free from user-defined numbers of clusters. The experimental 

study was carried out using high-dimensional datasets and the performance evaluation 

measures indicate that IMOC-Stream outperforms other algorithms on NMI and ARI.  

Tareq et al. (2020a) also proposed an online clustering algorithm known as the clustering 

evolving data streams based on the adaptive Chebychev distance (CEC). In CEC, the 

summary of evolving data streams is stored as a core micro-cluster (CMCs). CEC is used for 

calculating the distance between an inbound data point and the CMC center. CEC was 

evaluated against CEDAS based on cluster purity, accuracy, and percentage of data points 

assigned to clusters. CEC can handle high-dimensional datasets. Recently, Tareq et al. 

(2020b) proposed the “Clustering of Evolving Data via a density Grid-based Method” 

(CEDGM). CEDGM is a novel technique that uses grid granularity for the data reduction 

process.  

Mansalis et al. (2018) presented an analysis of benchmark stream clustering algorithms. The 

applications of CluStream, DenStream, and ClusTree were appraised. The authors evaluated 

the performance based on metrics such as the Clustering Mapping Measure (CMM), Sum of 

Squared Distance (SSQ), and Purity for different parameter settings. The authors, however, 

stated that SSQ is not appropriate for arbitrary shaped clusters. They vary two user-specified 

parameters of DenStream (outlier threshold β and the decay factor λ) and reported that 

DenStream outperformed CluStream and ClusTree on clustering quality based on window 

size. The results also show that both ClusTree and CluStream outshined DenStream 

performance metric CMM. However, only the real-world datasets Adult-Census, Electricity, 

Covertype, and Poker-Hand were used. Roa et al. (2019) proposed a two-stage strategy 

clustering algorithm: slower scale density-based algorithm and fast scale distance-based 

algorithm to speed up enormous data arriving at a fast rate. The authors evaluated their 
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algorithm against CluStream and DenStream using performance metrics multi-density test, 

robust path-based test, and concept drift experiment. Their algorithm outperformed both 

DenStream and CluStream.  

Amini et al. (2016) investigated the challenges in clustering algorithms like detecting clusters 

in multi-density data. They argue that several of the implemented multi-density clustering 

algorithms are inappropriate for data stream clustering and proposed a MuDi-Stream to 

address the drawback. The authors point out that the proposed method is an improvement 

over the DenStream algorithm. Fahy and Yang (2019a), however, proposed a Multi-density 

Stream Clustering (MDSC) algorithm for the gap multi-density and tracing deviations in a 

dynamic stream. The method discovers and tracks multi-density clusters continuously. The 

MDSC is a cluster-feature (CF) in the form (N, LS, SS, t). The N is the number data of points 

in the cluster { 𝑋𝑖  } 𝑖 = {1,⋯ ,𝑁}; LS is the linear sum of points (i.e, ∑ 𝑋𝑖𝑁
𝑖=1  ); SS is the 

square sum of points (i.e., ∑ 𝑋𝑖
2𝑁

𝑖=1 ); and t is the time stamp. The performance of MDSC was 

evaluated using four real and three synthetic datasets on three external evaluation metrics 

(Purity, F-measure, and Rand index) and compared against four known density clustering 

algorithms. The resultant value shows that MDSC outperforms well against the peer 

algorithms. Fahy and Yang (2019a) argue that MDSC can track changes in seasonal and 

cyclic behavior and is robust to noise. However, other potentials need to be explored. 

Aljibawi et al., (2022) recently proposed an enhanced version of MuDi-Stream, code named 

eMuDiS. The algorithm addresses the issue of streaming speed and stream dimension. 

Aljibawi et al. (2022) demonstrated that eMuDiS outperforms MuDi-Stream on both real and 

synthetic datasets. 

Fahy and Yang (2019b) noted three types of changes in the data stream which are concept 

evolution, concept drift, and feature level. The authors examine two ways in which changes 

occur at the feature level (feature drift and feature evolution).  Fahy and Yang (2019b) 

highlighted two problems of high-dimensional data: (i) distance measurement; and (ii) the 

concept of density. To mitigate the problem, Fahy and Yang (2019b) proposed a dynamic 

feature mask (DFM) clustering technique. This method addresses the two documented 

challenges of data streams (feature drift and clustering high-dimensional streams). The DFM 

technique can detect and track feature drift and feature evolution. Fahy and Yang (2019b) 

evaluate the DFM against the density-based algorithms (CEDAS, MDSC, ACSC, and 

DenStream). The results showed that DFM improves performance and reduces execution time 
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when used alongside any density-based stream clustering algorithms and increases accuracy 

and lower execution time.  

Abid et al. (2019) highlighted some challenges of data stream such as concept drift, infinite 

length, feature evolution, novelty detection, and ways of addressing them. They posited that 

the developing nature is the most critical aspect of the data stream process. The authors 

proposed a novel data stream clustering technique, AIS-Clus. This technique uses the 

Artificial Immune System (AIS) meta-heuristic, which is described as a “bio-inspired 

algorithm” (Abid et al., 2019). The AIS-Clus is then compared against CluStream and 

DenStream on MOA. Yeoh et al. (2019) argue that near-perfect data stream clustering 

algorithms should address “concept drift” and “concept evolution”. They proposed a novel 

OpStream, an optimized stream clustering algorithm that fused meta-heuristic optimization 

with data stream clustering. The authors categorized the novel algorithm into the initialization 

and online phases. They investigated the three variations of the novel algorithm which are 

Whale Optimisation Algorithm (WOA-OpStrem), BAT-OpStream, and Differential Evolution 

(DE-OpStream) against CluStream and DenStream on four synthetic datasets and a real-world 

dataset. The results indicated that the three variant algorithms performed better on synthetic 

datasets than DenStream and CluStream. However, DenStream showed a more robust 

performance than the three algorithms on the KDDC-99 dataset. 

Carnein and Trautmann, (2018) proposed evoStream a novel stream clustering algorithm that 

utilizes a heuristic optimization algorithm to improve the macro-clusters solution using idle 

time and computational resources. The authors applied the DBSTREAM concepts to build the 

algorithm for its speed and flexibility. They utilized four real-world datasets Powersupply, 

Sensor, KDDCup99, and Covertype to evaluate the algorithm against many state-of-the-art 

algorithms. The technique displayed a robust performance against the benchmark algorithms. 

However, the authors only utilize the online phase of DBSTREAM for the stream and the Sum 

of Squares (SSQ) performance evaluation measure. (Carnein and Trautmann 2019a) 

implemented a new stream clustering algorithm userStream in customer segmentation to 

identify and track customer segments. The algorithm employs time-faded Clustering Feature 

(CF) theory and a two-phase clustering approach: online and offline phase. The authors 

appraised the performance of the algorithm using real-world datasets from home furniture and 

textile sectors and Silhouette performance measures. The resultant output showed that the 

algorithm is valuable in tracking and identifying customer segments. However, the authors 

did not test the algorithm against any of the benchmark algorithms. 



 

Page | 16 

Recently, Carnein et al. (2020b) proposed confStream, an innovative ensemble-based 

approach, to implement an automated algorithm configuration for DenStream. Carnein et al., 

(2020b) used the Silhouette with evaluation measures to appraise the cluster quality of 

confStream against DenStream. They use both synthetic dataset Random Radial Basic 

Function (Random RBF) and real-world datasets (Covertype, and Sensor). The confStream 

has a robust performance over DenStream in improving configuration. This ensemble 

approach is, however, more time consuming than individual algorithms (Carnein et al., 

2020a). Ahmed et al. (2020) proposed an online-offline density-based algorithm, DGStream 

with a discrete-time step model. This algorithm uses the DBSCAN algorithm at the online 

and offline phases and feature vector. Ahmed et al. (2020) argues that DGStream is suitable 

for recent information like stock markets. The DGStream algorithm was evaluated with 

different parameter settings against DStream, ClusTree, and DenStream on both streaming 

synthetic and real-world datasets. Moreover, the DGStream outperforms these algorithms 

using Chameleon synthetic dataset performance metrics: F1-score, recall, purity, precision, 

and time. On real-world datasets KDDCup’99, Forest Covertype, Adult-Census, and the 

National Stocks Exchange of India (NSE Stocks, 2017). Ahmed et al. (2020) state that 

DGStream is appropriate for handling outliers and noise with the minimum time complexity. 

However, the research only uses numerical variables datasets.  

Lee et al. (2019), investigated the challenges of density-based clustering and developed a 

hybrid data streams clustering algorithm that fuses density-based and model-based 

algorithms. The algorithm tested on both real-world and synthetic datasets performed 

excellently in detecting data streams with noise. The authors proved the algorithm could 

detect clusters faster and find optimal parameters proficiently. However, the paper compared 

the algorithm to only DenStream algorithm.  

Gajowniczek et al., (2020) proposed an algorithm for clustering multiple data streams in time 

series. The algorithm is evaluated on a smart metering sensor dataset from the Irish 

Commission for Energy Regulation (ICER). The authors only utilized 1000 households’ 

electricity consumption from a total of 4182 households due to missing values. They 

observed seasonal cycles for annual, weekly, and daily electricity consumption. The results of 

the study indicated that the algorithm is appropriate for clustering the flow of data and 

suitable for segmenting electricity consumers, based on their usage and socio-economic 

behaviours. Although the study focused on electricity consumption, the authors, however, 
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make a case for its applications in areas such as the stock market, and banking sectors, among 

others.  

Xu et al. (2019) proposed a novel data streams clustering algorithm, the Density Based Self 

Organizing Increment Neural Network (DenSOINN). The algorithm utilizes both a self-

adaptive distance metric and a novel density-based method to solve problems of data 

normalization and finding clusters in a neural network, respectively. The evaluation shows 

that DenSOINN has a strong performance on both synthetic and real-world datasets over other 

algorithms. 

Gong et al. (2018) proposed a novel Evolution of Density Mountain stream clustering 

algorithm (EDMStream). The EDMStream has the following abilities: (i) return updated 

clustering results faster; (ii) adjust and adapt itself to changes in data distribution; and (iii) 

dynamically adjust to the user’s preference. The authors compare the algorithm with well-

known benchmark algorithms: DenStream, D-Stream, DBSTREAM, and MR-Stream, and 

reported that EDMStream has a robust performance and exhibits 7-15 high speed over the 

other algorithms. 

Yan et al., (2019), proposed a two-phased dynamic stream clustering algorithm Dynamic 

Fitness Proportionate Sharing Clustering (DFPS-clustering) algorithm. The authors compare 

the DFPS-clustering algorithm against other known two-phase algorithms (CluStream, 

STREAM, DBStream, D-Stream, and HDDStream). The DFPS-clustering was evaluated using 

three synthetic and four real-world datasets. The resultant output suggested that DFPS-

clustering has a robust performance against other algorithms with a limitation of high 

computational cost.  

Wang and Wang, (2018) proposed the DCluStream algorithm to address the challenges of 

judging outliers and eliminating outdated data in time. The algorithm improves the CluStream 

algorithm by: (i) adding at the online micro-clustering phase the decay time window 

mechanism; and (ii) A buffer processing mechanism for memory storage. The study focuses 

solely on improving online micro-clustering. This is divided into two parts: (i) handling new 

data in real-time; and (ii) adjusting global micro clusters. The algorithm was compared with 

CluStream using the KDDCup99 dataset. The authors reported that DCluStream exhibited an 

improved clustering quality and reduces the processing time.  

Li et al. (2022), proposed an Efficient Self Adaptive Stream (ESA-Stream) a fully online data 

stream algorithm for learning parameter settings dynamically. The algorithm can detect 
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arbitrary-shaped clusters and speedup dimensionality reduction using the density grid-base 

clustering technique. The authors evaluate the performance of ESA-Stream using both 

synthetic and real-world datasets. The ESA-Stream outperforms state-of-the-art baselines in 

both efficiency and effectiveness.  

In the field of medicine, Al-Shammari et al. (2019) proposed a density-based clustering 

algorithm that combined Piece-wise Aggregate Approximation and density-based with noise 

(PAA+DBSCAN). The algorithm is suitable for the initial clustering of patients with similar 

symptoms and Advance Cluster Maintenance (ACM) which is an incremental maintenance 

approach in medical clusters. This approach is important in identifying and helping patients 

with risks and underlining health challenges such as high blood pressure. The authors argue 

that the new algorithm can group new patients into clusters of similar symptoms and track 

those whose status is unstable while keeping close contact with those who are stable.  

2.3 Time Window Techniques 

There are several time-window techniques for data streams. The time-window of data objects 

is given as W[i,j] = (xi, xi+1, …, xj), where i < j. The most popular time-window techniques 

are damped/fading window, landmark window, sliding window, and tilted window model 

(Carnein and Trautmann, 2019b; De Andrade Silva and Hruschka, 2016; Ghesmoune et al., 

2016b; Gomes et al., 2017; Laha and Putatunda, 2018; Yarlagadda et al., 2018; Yeoh et al., 

2019; Youn et al., 2018) see Figure 2.2. 

 

 

Figure 2-2: Time window models for data stream clustering techniques. Source: Carnein and Trautmann 

(2019b). 
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Agrawal and Adane (2016) summarized the efforts of researchers in data stream mining. They 

presented a study of several data stream algorithms. The three data stream models presented 

were the landmark, damped, and sliding windows. The authors identified terminologies and 

approaches in data stream mining and outlined future research issues which would assist in 

further research in the field.  

1. Landmark window 

In the landmark window model, discarding older data points is not required. The 

clustering is applied from the initial starting point or timestamps t1 to the current 

timestamps tc, W [t1, tc]. Examples of landmark window models include CluStream 

(C. C. Aggarwal et al., 2003); BIRCH (T. Zhang et al., 1996). 

2. Sliding windows 

There are two basic types of sliding windows, count-based and time-based windows 

(Kontaki et al., 2016). In a sliding window, old data expire as new data arrives for 

analysis using the principle of first-In-First-Out (FIFO) (J. Shao et al., 2019). The 

sliding window model has been proposed in much research (Kontaki et al., 2016; G. 

Li et al., 2018; Lin & Su, 2019; Youn et al., 2018). 

3. Damped window. 

In the damped/fading window model, a data object is assigned varying weights based 

on the arrival time where new entries received higher weights than older ones. The 

data point weight decreases exponentially with time t through a fading function 

𝑓(𝑡) = 2−𝜆𝑡 with 𝜆 > 0. An example of a damped window model is the DenStream 

(Cao et al., 2006).  

4. Tilted time window. 

In the tilted time window model, different granularity levels are used based on recent 

data points. The most current data is the finest granularity which becomes coarse as 

data points get old. Examples of tilted-time window models are CluStream (C. C. 

Aggarwal et al., 2003); HPStream (C. Aggarwal et al., 2004); and StreamKM++ 

(Ackermann et al., 2012). 

2.4 Clustering Techniques 

Several stream clustering algorithms in the literature have been implemented in MOA. Those 

currently implemented are CluStream (C. C. Aggarwal et al., 2003), DenStream (Cao et al., 

2006); ClusTree (Kranen et al., 2011); D-Stream (Y. Chen & Tu, 2007; Tu & Chen, 2008); 
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StreamKM++(Ackermann et al., 2012); CobWeb (Fisher, 1996); confStream (Carnein et al., 

2020b), among others. Several of these algorithms are classified into Partitioning, Density-

based, Model-based, Grid-based, Hierarchical-based, and Graph-based (Kokate et al., 2018; 

Mansalis et al., 2018); details of which are provided in the next sections. 

2.4.1 Partitioning Clustering 

The partitioning clustering is a sphere-shaped cluster. It is partitioned into both soft 

(fuzzy/probabilistic) clustering and hard (crisp) clustering (Bezdek & Keller, 2021; 

Chenaghlou, 2019; Moshtaghi et al., 2019; Rathore, 2018). In crisp clustering, the data point 

belongs to a cluster or not whereas, in fuzzy clustering, the data point could be assigned to one 

or more clusters, (Kuwil et al., 2020). The hard (crisp) clustering is susceptible to local 

minimum than fuzzy clustering (Aggarwal & Reddy, 2014). There are several partitioning-

based techniques in the literature such as k-means (Ordonez, 2003); k-medoids or Partitioning 

Around Medoids (PAM) (Kaufman & Rousseeuw, 1990); k-medians, k-mode, k-center, 

Clustering LARge Applications (CLARA) (Kaufman & Rousseeuw, 1990); CluStream 

(Aggarwal et al., 2003); StreamKM++ (Ackermann et al., 2012); Clustering Large 

Applications Based Upon Randomized Search (CLARANS) Ng and Han (2002); (C. C. 

Aggarwal & Reddy, 2014; Andreopoulos et al., 2009; Mittal et al., 2019). The most 

established are the k-medoids and k-means. The k-means is not suitable for sphere-shaped 

clusters although it can be used when the number of clusters is known.  

2.4.2 Hierarchical-based Clustering 

Hierarchical-based clustering is partitioned into: (i) divisive clustering; (ii) agglomerative 

algorithms (Al-shammari, 2019; Hassani, 2015; Lee et al., 2019; Loureiro et al., 2005; 

Rathore, 2018). The disivise is a top-down/hierarchical approach while the agglomerative 

clustering utilizes the bottom-up/sequential approach. In agglomerative clustering, each 

object starts as a single cluster and is merged into large clusters using a similarity measure 

until the final cluster condition is met.  Divisive clustering, on the other hand, works the 

reverse way, it started with all objects in one large cluster and repeatedly splits into smaller 

clusters based on the dissimilarity measure (Hassani, 2015; Jiri Skala, 2012). Examples of 

divisive and agglomerative approaches are Online Divisive Agglomerative Clustering 

(ODAC) and Hierarchical Agglomerative Clustering (HAC) (Rodrigues et al., 2006). In 

hierarchical clustering, the distance between two clusters is determined using linkage such as 

Single, Complete, or Average linkage (Andreopoulos et al., 2009). The hierarchical-based 
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clustering in the literature includes Chameleon (Karypis et al., 1998); BIRCH (Zhang et al., 

1996); CURE (Guha et al., 1998); and ROCK (Guha et al., 2000).  

2.4.3 Grid-based Clustering 

This method uses equal grid cells partitioning to accelerate the clustering process. Compared 

to other clustering algorithms, grid-based clustering has an agile processing time and can 

competently handle datasets grapple with noise. Most grid-based algorithms can detect 

arbitrary-shaped clusters. Grid-based can be combined with other clustering like density-

based to form a hybrid clustering approach. There are several types of grid-based clustering 

algorithm which include the fast and grid-based clustering for hybrid data stream (FGCH) (J. 

Chen et al., 2019); density-and-grid-based (DGB) clustering (B. Wu & Wilamowski, 2017); 

Clustering of Evolving Data streams via a density Grid-based Method (CEDGM) (Tareq, 

Sundararajan, Mohd, et al., 2020); Grid-K-means (E. Zhu et al., 2019); and STING 

(STatistical INformation Grid approach) (W. Wang et al., 1997). 

2.4.4 Density-based Clustering 

Density-based algorithms are effectual in the arbitrary-shaped clusters, noise, and outliers 

detection. Density-based clustering is non-parametric method due to the non-assumptions 

about the number of clusters (Aggarwal & Reddy, 2014). DenStream (Cao et al., 2006); 

DBSCAN (Estert et al., 1996); MuDi-Stream (Amini et al., (2016), DENCLUE (DENsity-

based CLUstEring) (Hinneburg & Keim, 2003); CODAS (Hyde and Angelov, 2015), CEDAS 

(Hyde et al., 2017); and BOCEDS (Islam et al., 2019b) are examples of density-based 

algorithms for clustering evolving data streams. 

2.4.5 Model-based Clustering 

The model-based clustering method is based on a statistical model and permits objects to be 

in multiple groups. The model-driven clustering relies on a specific model for each cluster to 

identify the most suitable one. There are several model-based clustering techniques 

documented: CobWeb (Fisher, 1996); Expectation Maximization (EM) Moon (1996); 

CluDistream (Zhou et al., 2006); Self-organizing feature maps (SOMs) (Carvalho et at., 

2016); SWEM (Sliding Window with Expectation Maximization) (Dang et al., 2009); and 

ICFR (Incremental Clustering using F-value Regression analysis). For further information 

about model-based clustering see Carnein and Trautmann (2019b); H. Shao et al. (2019); 

Sharma et al. (2018); and Singh (2015). 
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2.4.6 Fuzzy Clustering 

In fuzzy C-Means clustering (FCM), objects are connected in the cluster range [0, 1] (Bezdek 

& Keller, 2021). The FCM algorithm is sensitive to outliers and each data object could be 

grouped into more than one cluster (Rasyid & Andayani, 2018). Many examples of FCM 

include FUZZ-CARE by Song et al. (2020); FuzzyStream (de Abreu Lopes & de Arruda 

Camargo, 2017); and d-FuzzyStream (Schick et al., 2018) among others. 

The summary of some of the data stream clustering algorithms is presented in Table 2-2 

below. The table shows the various techniques, the algorithms that have used the techniques, 

the Time window model assigned to each algorithm, the cluster shape of each algorithm, their 

data type, and how they can handle noise. 

Table 2-2: Summary of the Data Stream Clustering Algorithms 

Technique Algorithm Time 

Window 

Model 

Cluster 

shape 

Data type Handle noise 

Ordonez, 2003 K-means  Arbitrary Numerical No 

Ackermann et al., 

2012. 

StreamKM++ Pyramidal Spherical Numerical  

Kaufman   and 

Rousseeuw, 1990 

PAM  Arbitrary Numerical No 

Kaufman   and 

Rousseeuw, 1990 

CLARA  Arbitrary Numerical No 

Ng and Han, 2002 CLARANS  

 

Arbitrary 

 

Numerical No 

Aggarwal et al., 

2003 

CluStream Pyramidal Arbitrary Numerical No 

Zhang et al., 1996 BIRCH Landmark Arbitrary Numerical No 

Guha et al., 1998 CURE  Arbitrary Numerical Yes 

Guha et al., 2000 ROCK  Tree Categorical No 

Karypis et al., 1998 Chameleon  Arbitrary Numerical & 

Categorical 

No 

Rodrigues et al., 

2006 

ODAC  Hyper-

ellipsis 

Categorical  

Tareq et al., 2020b CEDGM     

Agrawal et al., 1998 CLIQUE   Numerical Yes 
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Wang et al., 1997 STING  Arbitrary Spatial Yes 

Cao et al., 2006 DenStream Damped Arbitrary Numerical Yes 

Estert et al., 1996 DBSCAN  Arbitrary Spatial No 

Chen and Tu, 2007 D-Stream Damped Arbitrary  Yes 

Kranen et al., 2011 ClusTree Damped  Arbitrary  Yes 

Hyde and Angelov 

(2015) 

CODAS  Arbitrary  Yes 

Hyde et al. 2017 CEDAS Damped Arbitrary  Yes 

Islam et al., 2019b BOCEDS Damped Arbitrary Spatial 

 

Yes 

Bezdek and Keller, 

2021 

FCM 

 

  Numerical Yes 

 

de Abreu Lopes and 

de Arruda Camargo, 

2017 

FuzzyStream    Yes 

Schick et al., 2018 d-FuzzyStream    Yes 

Song et al., 2020 FUZZY-CARE     

Moon, 1996 EM   Spatial  

Fisher, 1996 CobWeb  Tree Numerical  

Carvalho et at., 2016 SOM   Numerical No 

Zhou et al., 2006 CluDistream     

 

Figure 2-3 presents the flow chart of the data stream clustering algorithms categorization. 

 

Figure 2-3: Data stream clustering methods (adapted from: Ghesmoune et al., 2016a).  
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2.5 Similarity and Distances 

There are many distance measures around that can be found in studies such as those of  Zhang 

et al. (2023). In this section, the discussion will focus on distance measures for modeling the 

similarity of data in the literature. The distance measure is described as a metric in Norm 

vector space (that is, a vector space with a norm defined) if the conditions described in Franke 

and Geyer-Schulz, (2007; and Rastin (2018) are satisfied:  

• Non-negativity: 𝑑(𝑥,    𝑦) ≥ 0 for all x and y 

• Identity: 𝑑(𝑥, 𝑦) = 0 if and only if x = y 

• Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all x and y 

• Triangular inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all x, y and z 

Tareq et al. (2020a) state some of the important distance measurement features: (i) the 

distance from one point to itself is always zero; (ii) distance is always positive; (iii) distance 

in x - y is the same as the distance in y - x; and (iv) the distance from x - y is equal to the sum 

of the distance from x - z, and z - y. 

The most generalized distance metric is the Minkowski distance defined as:  

𝑑(𝑥, 𝑦) =  √∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

𝑘

                                                      (2.1) 

          

                                                         

                     = (∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

)

1/𝑘

                                                (2.2) 

where: 

n = number of dimensions 

k ≠ 0 is order parameters or any real number 

xi, yi = data points 

The Minkowski distance is the generalized Lp-norm represented as ‖𝑥 − 𝑦‖p 

The value of k in the above formula can be manipulated to derive other distance measures as: 

➢ For k = 1, the Minkowski distance gives the Manhattan distance between x and y as: 

𝑑(𝑥, 𝑦) =  ∑|𝑥𝑖 − 𝑦𝑖|                                                             (2.3)

𝑛

𝑖=1
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where: 

n = number of dimensions 

xi, yi = data points 

 

The Manhattan distance is the L1-norm represented as ‖𝑥 − 𝑦‖1 

➢ For k = 2, the Minkowski distance gives the Euclidean distance between x and y as: 

 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                    (2.4) 

     

where: 

n = number of dimensions 

xi, yi = data points 

 

The Euclidean distance is the most widely used of the distance measures. The 

Euclidean distance is the L2-norm represented as ‖𝑥 − 𝑦‖ 2. The square root of 

Euclidean distance when removed gives another metric known as the squared 

Euclidean distance (SED) in equation (2.5).  

𝑑2(𝑥, 𝑦) =  ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                    (2.5) 

 

➢ For k = ∞, leads to Chebyshev distance also known as the Chessboard distance. 

𝑑(𝑥, 𝑦) = lim
𝑘→∞

(∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

)

1
𝑘

                                                              (2.6) 

                                                              

            =  max
𝑖=1

|𝑥𝑖 − 𝑦𝑖|                                                                             (2.7) 

where: 

n = number of dimensions 

k = order parameters 

xi, yi = data points 
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The Chebyshev distance is the L∞-norm, represented as ‖𝑥 − 𝑦‖∞. Several studies, 

such as Tareq et al. (2020b, 2020a); and Tareq and Sundararajan (2021, 2020) have 

used the Chebyshev distance. 

Other notable distance measures include: 

• Cosine similarity: Cosine similarity is the measure of the angular distance between 

two vector points. The cosine similarity has usage in text mining to calculate the 

similarity between tweets (Ghaemi & Farnaghi, 2019); outlier detection may 

experience difficulties when there is uncertainty in the measurement of 

similarity/dissimilarity between two data points (S. Sadik & Gruenwald, 2014; S. M. 

Sadik, 2013). The cosine similarity formula is given using the dot product: 

 

cos(𝜃) =
�⃗� .�⃗� 

‖�⃗� ‖‖�⃗� ‖   
                                                                                                (2.8) 

 

                                  =  
∑ 𝑎𝑏𝑛

𝑖=1

√∑ 𝑎2𝑛
𝑖=1 √∑ 𝑏2𝑛

𝑖=1

                                                                                   (2.9) 

 

The cosine distance is the difference between 1 and the cosine similarity, i.e., 1 - 

cos(𝜃). As the cosine distance increases, the cosine similarity decreases, and vice 

versa. Ghaemi and Farnaghi (2019) used cosine similarity in their research. 

• Jaccard index: The Jaccard index or Jaccard coefficient measures the similarity 

between two sets. Given two sets A and B, the Jaccard coefficient is the ratio of their 

intersection and union.  

 

𝐽(𝐴, 𝐵) =  
|𝐴 ∩𝐵|

|𝐴∪𝐵|
                                                             (2.10) 

 

𝐽(𝐴, 𝐵) =  
∑ min (𝐴, 𝐵)𝑛

𝑖=1

∑ max (𝐴, 𝐵)𝑛
𝑖=1

                                          (2.11) 

The similarity measure can be transformed to the distance metric as Jaccard distance, 

which only takes values between 0 and 1: 

 

𝑑(𝐴, 𝐵) =  1 − 𝐽(𝐴, 𝐵)                                           (2.12)  



 

Page | 27 

If the Jaccard coefficient is higher, the similarity will be higher and likewise, if lower, 

the similarity will be lower (Li et al., 2018). The Jaccard coefficient can also be used 

in terms of True Positives (TP), False Positives (FP), and False Negatives (FN). This 

formula is the ratio of TP and the summation of TP, FP, and FN (S. M. Sadik, 2013). 

 

𝐽𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
                                                          (2.13) 

Several studies reportedly used the Jaccard index (see Amini et al., 2016; Rodriguez 

et al., 2019; Sadik, 2013). 

2.6 Clustering Performance Metrics 

The clustering performance metric is divided into intrinsic and extrinsic methods (Ahmed et 

al., 2020). When the ground truths are available it is known as the extrinsic/external method 

which is a supervised method, otherwise it is an unsupervised method. The extrinsic method 

includes the Clustering Mapping Measure (CMM), Recall, Precision, Rand index, and Purity 

(Kremer et al., 2011); while an intrinsic method is the Silhouette coefficient. The formulas 

are: 

➢ Rand index: The Rand index (RI) is the fraction of the sum of TP and TN over the 

sum of TP, FP, TN, and FN. The RI measures the accuracy of two clustering using 

value range between 0 and 1.   

 

𝑅𝐼 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
              

 

 

(2.14) 

   

Where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative.  

➢ Adjusted Rand Index: The adjusted Rand Index (ARI) is an updated form of the Rand 

index (RI). The ARI can be used for similarity measures between two data clustering.  

𝐴𝑅𝐼 =  
𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥
                             (2.15) 

𝐴𝑅𝐼 =
𝑅𝐼−𝐸(𝑅𝐼)

max(𝑅𝐼)−𝐸(𝑅𝐼) 
                                                       (2.16) 

➢ Precision: Precision is the ratio of true positive instances over the sum of TP and FP 

instances. 
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𝑃 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                     (2.17) 

➢ Recall: Recall or sensitivity is the ratio of TP instances over the sum TP and FN. 

𝑅 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                    (2.18) 

➢ Purity: Purity is the rate of suitably classified instances given as: 

 𝑃𝑢𝑟𝑖𝑡𝑦 =  
1

𝑁
∑ max (𝜔

𝑐

𝑘=1

∩ 𝜑)  (2.19) 

Where 𝜔 refers to the total number of clusters, while 𝜑 refers to the total number of 

classes. 

➢ Silhouette (Rousseeuw, 1987): The Silhouette coefficient contrast the mean distance in 

cluster a against the least mean distance in cluster b between its object i to every other 

point in the same cluster. The Silhouette coefficient fuse together the Separation and 

Cohesion measures. Its values range between 0 and 1. 

𝐽(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
                                                          (2.20) 

 where: 

𝑎(𝑖) = mean dissimilarity of i to all objects of A given in the equation below 

  𝑎(𝑖) =
1

|𝐴| − 1
∑ 𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗∈𝐴,𝑖≠𝑗

        (2.21) 

  𝑑(𝑖, 𝐶) =  
1

|𝐶|
∑𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗∈𝐶

         (2.22) 

For all cluster (𝐶 ≠ 𝐴) obtained from 𝑑(𝑖, 𝐶) then 

𝑏(𝑖) = mean dissimilarity of i to all objects of A given in the equation below 

 

 

𝑏(𝑖) = min(𝑑(𝑖, 𝐶)) 

 

               (2.23) 

The equation of Silhouette can be simplified to  

 

 

𝑆𝐼(𝑖) = 1 − 
𝑎(𝑖)

𝑏(𝑖)
 

 

 

                                         (2.24)                   
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Table 2-3 presents some of the available internal and external clustering validation measures 

in the literature and adapted from Kranen et al. (2010); and Kremer et al. (2011). 

  

Table 2-3: Internal and external clustering validation measures 

Internal Measures External Measures 

Dunn’s indices (Dunn, 1973) 

 

Completeness (Rosenberg & Hirschberg, 2007) 

 

Tau A (L. J. Hubert & Levin, 1976) 

 

Purity (Zhao & Karypis, 2004) 

 

Tau C (L. J. Hubert & Levin, 1976) Homogeneity (Rosenberg & Hirschberg, 2007) 

Tau (Rohlf, 2003) 

 

Precision (Van Rijsbergen, 1979) 

Silhouette coefficient (Rousseeuw, 1987) 

 

Recall (Van Rijsbergen, 1979) 

Sum of square distance (SSQ) (Aggarwal et 

al., 2003) 

Rand index  (J. Wu et al., 2009) 

Davies-Bouldin index (Davies & Bouldin, 

1979) 

 

F-measure (Van Rijsbergen, 1979) 

 

Gamma (Baker & Hubert, 1975) 

 

V-measure (Rosenberg & Hirschberg, 2007) 

Log Likelihood (Hartigan, 1975) 

 

Hubert Γ statistics (L. Hubert & Arabie, 1985) 

Adj. Ratio of Clustering (L. J. Hubert & Levin, 

1976) 
 

Minkowski score  

Calinski-Harabasz index (Caliński & Harabasz, 

1974) 
Cluster-based entropy (Zhao & Karypis, 2004) 

Fagan’s Index (L. J. Hubert & Levin, 1976) Adjusted Rand Index (L. Hubert & Arabie, 

1985) 

 

2.7 Summary 

In summary, this section discussed data stream clustering and its recent adoption. Several 

windowing techniques (landmark window, damped window, sliding window and tilted 

window) were presented. Data stream clustering techniques were also explained (partitioning-

based, hierarchical-based, density-based, grid-based model-based, and graph-based). Several 

distance measures like Minkowski, Manhattan, Euclidean, squared Euclidean distance, 

Chebyshev, Cosine similarity, and Jaccard index were described. Lastly, the performance 

evaluation metrics for evaluation like Recall, Rand index, Precision, Adjusted Rand Index, 

Purity, Clustering Mapping Measure (CMM), and Silhouette Coefficient were described. 
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CHAPTER 3: Research Methodology 

In this chapter, the research objective to “the method of building a MOA repository from 

source to implement the modified algorithm” was described. The recent version of MOA 

framework for data stream clustering is presented. The state-of-the-art data stream clustering 

algorithms (DenStream, ClusTree and CluStream) in MOA and the proposed modified 

DenStream is described. The repository for stream datasets will also be shown.  The 

performance metrics used for the experimental evaluation will be outlined. Finally, the 

process of obtaining an ethics clearance certificate (see Appendix A) for this study will be 

described.  

3.1 Massive Online Analysis Graphical User Interface (GUI) 

The recent version of MOA released in April 2023 is MOA-2023.04.0-bin. This can be 

downloaded along with Java JDK 8 or later. Alternatively, it can be clone from Git repository 

using commands: 

➢ git clone https://github.com/Waikato/moa.git  or   

➢ git clone https://github.com/MatthiasCarnein/moa.git 

Download and ‘import’ the project in Intellij IDEA. MOA can be run using the graphical user 

interface (GUI) (see Figure 3-1 and Figure 3-2). There are two important files to run MOA, 

the moa.jar and sizeofag-1.0.4.jar. The files are located at the lib directory of the MOA 

framework. To run the command, change directory to the lib in MOA framework and execute 

the commands: 

java -cp moa.jar -javaagent:sizeofag-1.0.4.jar moa.gui.GUI   

The -Xmx4G can be included to increase the maximum heap size to 4GB when the default 

setting of 16 to 64MB appears too small (Akinosho et al., 2023). MOA can also be built from 

the source code using the guidelines presented in Gomes et al. (2020). The process involves 

downloading and installing IntelliJ IDEA latest version and importing the moa.git from 

GitHub. The step-by-step method is described in McDonald (2015). Another way of building 

MOA code from source is given by Gonmes et. al. (2020) using the IntelliJ IDEA Community 

version. In this dissertation, the IntelliJ IDEA Community Edition 2022.2 was used. 

https://github.com/Waikato/moa.git
https://github.com/MatthiasCarnein/moa.git
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Figure 3-1: MOA Graphical User Interface (GUI). 

 

 

 

Figure 3-2: MOA graph output interface  

 

3.2 State-of-the-art Clustering 

This dissertation used the three state-of-the-art data stream clustering algorithms in MOA: 

➢ CluStream (Aggarwal et al., 2003): The Clutream algorithm is an online-offline 

clustering. An online which is a micro clustering model and an offline which is a 

macro clustering model. The CluStream is a partitioning-based algorithm with 

spherical-shaped cluster. However, CluStream is sensitive to outliers and unable to 

detect arbitrary-shaped clusters. 
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➢ DenStream (Cao et al., 2006): The DenStream algorithm is a density-based algorithm 

with the ability to discover arbitrary-shaped clusters in an evolving data stream. The 

DenStream algorithm can handle outliers, but it is risky when there is noise. The 

DenStream algorithm has three micro-cluster features which are: core micro-cluster 

for summarizing clusters with arbitrary-shapes; potential core micro-cluster to 

identify potential clusters; and outlier micro-cluster for outliers and not dependent on 

many user-defined parameters. 

➢ ClusTree (Kranen et al., 2011): The ClusTree is a hierarchical-based algorithm that 

can adapt to the speed of the stream due to its parameter less. ClusTree can detect 

outliers, novelty in the stream, and concept drift. 

The parameter settings for CluStream, ClusTree, and DenStream in MOA are preset and 

when selected appear as shown in Figure 3-3, Figure 3-4, and Figure 3-5 respectively.  

MOA’s default parameter setting for DenStream is different from Cao et al.  (2006). 

 

 

Figure 3-3: MOA Clusterer: CluStream parameter setup 
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Figure 3-4: MOA Clusterer: ClusTree parameter setup 

 

 

Figure 3-5: MOA Clusterer: DenStream parameter setup 

 

The summary of the algorithms and their parameters is given in Table 3-1, while the 

description of the parameters of DenStream clustering is shown in Figure 3-6. 
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Table 3-1: Summary of algorithms and parameters in MOA (adapted from Carnein et al., 

2020b). 

Algorithm Configuration Type Range Default 

DenStream E Numeric [0,1] 0.02 

 B Numeric [0,1] 0.2 

 M Integer {0…10000} 1 

 O Integer {2…20} 2 

 L Numeric [0,1] 0.25 

CluStream K Integer {2…20} 5 

 M Integer {1…10000} 100 

 T Integer {1…10} 2 

ClusTree H Integer {1…20} 8 

 B Boolean {1,0} 1 

 

 

Figure 3-6: Parameters in DenStream adapted from Li et al. (2020) 

 

There are several options for analyzing evaluation outputs in MOA given in Kranen et al. 

(2010) see Figure 3-7:  

➢ The running stream can be stopped with the result passed to a WEKA explorer for 

further analysis (see Figure 3-8). 

➢ The evaluation measures can be stored at every time intervals in .csv file format 

and analyzed offline using any programming languages (Python, R, gnuplot etc). 

This is the approach adopted for this dissertation. 
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➢ We can visualize the clustering results using the performance metrics online. Two 

algorithms or one algorithm with two different parameter settings can be 

visualized at the same time.  

 

 

Figure 3-7: MOA framework adapted from Kranen et al. (2010). 

 

 

Figure 3-8: Clustering algorithm setup and result output options. 
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3.3 The modified DenStream 

We implemented a modified distance/similarity measure of DenStream algorithm in MOA to 

improve it. The DenStream algorithm is divided into two phases (online and offline). The 

online is described in Algorithm 1 and the offline phase in Algorithm 2 adapted from Cao et 

al. (2006). In the offline phase, DenStream algorithm applies DBSCAN algorithm and has 

been proving to be computationally expensive. The proposed method is aimed at reducing the 

computational overheads through modifying the distance/similarity measure, by taking the 

absolute value of the squared differences rather than taking the square root as implemented in 

Euclidean distance. 
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The modified DenStream was implemented in Java, compiled, and run on IntelliJ IDEA 

Community Edition 2022.2 as described in Section 3-1. 

3.4 Data Collection 

Real-world benchmarks and publicly available datasets are from the University of California 

Irvin (UCI) Machine Learning Repository (Dua & Graff, 2019); USP Data Stream Repository  

(USP DS Repository, n.d.); Stream Clustering (Carnein, 2019); Stream Data Mining 

Repository (X. Zhu, 2010); and Outlier Detection Datasets (ODDS) repository (Rayana, 

2016). However, there is a shortage of suitable datasets for data stream mining which often 

results in researchers using synthetic datasets. A synthetic dataset has the advantage of being 

reproduced and cost-effective in terms of storage and transmission. In this research, the 

synthetic dataset generator available in MOA was used as well as the publicly available 

datasets suitable for data streaming tasks.  

Papers/articles were sourced from Google Scholar; the Association of Computing Machinery 

(ACM) website; the University of South Africa library, Mendeley Reference Manager 

Software; and wizdom.ai website (https://www.wizdom.ai); to study the limitations of data 

stream clustering. Keywords with synonyms were used to search current papers/articles and 

imported into Mendeley Reference Manager. Those papers/articles that have limited 

information were populated and set to the required citation reference style.  

https://www.wizdom.ai/
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3.5 Datasets 

In this dissertation, a streaming synthetic dataset and real-world datasets were used to 

evaluate the performance of the modified DenStream algorithm against other algorithms 

(CluStream, ClusTree, and DenStream). The streaming synthetic dataset was generated in 

MOA with the RandomRBFGenerator while the two real-world datasets Electricity and 

Forest Covertype are publicly available. 

3.5.1 Synthetic dataset 

➢ RandomRBFGenerator: The RandomRBFGenerator stream incessantly changes and 

varies the true cluster location. It is available in MOA with some parameters such as 

numClusterRange, kernelRadius, modelRandomSeed, instantRandomSeed, and 

numCluster among others. 

3.5.2 Real World datasets 

➢ Forest Covertype dataset: The Forest Covertype contains 581,012 instances, 54 

attributes where 10 are continuous attributes and the rest are binary attributes. The 

The Forest Covertype is classified into seven types. The dataset is readily available at 

the UCI machine learning site, and it is from the US Forest Service (USFS). The 

Forest Covertype has been widely applied in several data stream studies. In this 

dissertation, the normalized version is used.  

➢ Electricity dataset: The Electricity data is publicly available from the Australian 

New South Wales Electricity Market. The Electricity data has 45,312 instances. For  

performance optimization, the normalized version of the Electricity data is used in this 

dissertation. The initial stream used is 5000 instances and then 40000 instances. At the 

end, 45000 instances were used for the analysis. 

 

3.6 Evaluation Platform Parameter Setup 

The experiment was executed using the current MOA release-2023.04.0 on HP ProBook 450 

G7, Processor: Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz; RAM: 16.00 GB. 

System type: 64-bit, x64, Operating System: Windows 10 Pro. This is tabulated in Table 3-2. 
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Table 3-2: System setup 

Component Description 

System HP ProBook 450 G7 

Processor Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz   2.11 GHz 

RAM size 16.00 GB 

System type 64-bit x64 

Operating System Windows 10 Pro 

 

3.7 Performance Evaluation 

Performance evaluation metrics are divided into two types: extrinsic and intrinsic methods 

(Ahmed et al., 2020). The ground-truths when available is known as an extrinsic/external 

method and it is a supervised method, otherwise it is the intrinsic/internal method, and it is an 

unsupervised method. Performance evaluation measures are important in the determination of 

the quality of clustering results (Kremer et al., 2011). The external measures employ the 

ground truth for comparing clustering but are lacking in most streaming applications 

(Ghesmoune et al., 2016). The internal evaluation measures the compactness and separation 

(structure and properties) of clusters (Hassani and Seldi, 2017; Kremer et al., 2011).  

There are numerous evaluation measures available in MOA. Examples are Clustering 

Mapping Measure (CMM), Recall, Rand index, Precision, Purity, Sum of Square distance 

(SSQ), Completeness, Homogeneity, and Silhouette. It should be noted that not all evaluation 

measures are appropriate for all clustering types. They have the disadvantages of (1) not 

being able to handle overlying due to merging, drifting, and noise; and (2) achieving 

suboptimal results even with the ground truth test. However, CMM addressed these 

shortcomings (Kremer et al., 2011). The evaluation measures (completeness and 

homogeneity) are only appropriate for offline and static clustering with ground truth 

(Puschmann et al., 2017). In this research, four of the evaluation measures for clustering 

quality consisting of both external and internal measures were used. They are CMM, Purity, 

Silhouette Coefficient, and Rand index. Their descriptions and formulas have given in Section 

2.6, equations 2-14, 2-19, and 2.20 of Chapter Two. 
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3.8 Ethical Clearance 

A request for the research ethics clearance was made to the Unisa College of Science, 

Engineering and Technology’s (CSET) Ethics Review Committee on 7 December 2020 in 

compliance with the Unisa Policy on Research Ethics and the Standard Operating Procedure 

on research Ethics Risk Assessment. Ethics approval was granted for three years until 

December 2023. The clearance certificate is attached in Appendix A. 

 

3.9 Summary 

In summary, this chapter presented the MOA framework and described the data stream 

clustering algorithms used in this dissertation. The data collection source and the datasets for 

the study were also presented. The performance evaluation metrics which comprise both 

internal and external measures were described with emphasis on the performance metrics 

used in this dissertation. 
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CHAPTER 4: Experimental Results and Analysis 

This chapter presents the research objective to “identify the hyperparameters appropriate for 

parameter-tuning” by carrying out parameter setup for the synthetic generator in MOA using 

RandomRBFGenerator and the state-of-the-art algorithms (CluStream, ClusTree, DenStream) 

using their default parameter setup. The parameter-tuning for the research was demonstrated. 

The experimental results were merged and visualized using Python libraries (Pandas, Plotly, 

and hvplot). The research objective to “identify the performance metrics applicable for 

clustering quality” was described. The experimental results will be presented to demonstrate 

the clustering quality of performance evaluation metrics (CMM, Purity, Silhouette 

coefficient, and Rand index). 

4.1 Experimental Parameter Setup 

Clustering algorithm parameter settings are important in achieving proper micro-clusters 

(Mansalis et al., 2018). The experimental setup for the synthetic generator in MOA using 

RandomRBFGenerator and the state-of-the-art data stream clustering algorithms (CluStream, 

ClusTree, DenStream) are given in Figure 3-3, Figure 3-4, Figure 3-5. The parameter setting 

in MOA is not automated but done manually and are presented as follows: 

The RandomRBFGeneratorEvents default parameter setup in MOA. 

• KernelRadius = 0.025 (The average radii of the centroids in the model) 

• Noise = 0.1 (i.e, every one-tenth data item is randomly generated) 

• Speed = 500 (Kernels move a predefined distance of 0.01 every X point) 

• SpeedRange = 10 Speed/Velocity point offset) 

• noiseLevel (default: 0.1) (Noise level) 

• EventFrequency = 50000 (Event frequency. Enable at least one of the events 

below and set numClusterRan) 

The DenStream (with DBSCAN) default parameter setup in MOA. 

✓ horizon = 1000 (Range of the window) 

✓ epsilon = 0.02 (Defines the epsilon neighbourhood) 

✓ beta = 0.2,  

✓ mu = 1,  

✓ initPoints = 1000 (Number of points to use for initialization) 



 

Page | 43 

✓ offline = 2 (offline multiplier for epsilion) 

✓ lambda = 0.25,  

✓ processingSpeed = 100 (Number of incoming points per time unit) 

The CluStream (WithKmeans) default parameter setup in MOA. 

✓ horizon = 1000 (Range of the window) 

✓ maxNumKernels = 100 (Maximum number of micro kernels to use) 

✓ kernelRadiFactor = 2 (Multiplier for the kernel radius) 

✓ k=5 (k of macro k-means (number of clusters)) 

The ClusTree default parameter setup in MOA. 

✓ horizon = 1000 (Range of the window) 

✓ maxHeight = 8 (The maximal height of the tree) 

✓ breadthFirstStrategy (Use breadth first strategy) 

Two vital user-defined parameters of DenStream algorithm are (1) the outlier threshold 𝛽 or 

beta; and (2) the decay factor 𝜆 or lambda as stated in Mansalis et al. (2018)which controls 

the importance of historical objects.  

4.2 Experimental with default settings 

This section addressed the research objective 2 and research objective 3. It demonstrates the 

effects of parameter tuning and compares the algorithms CluStream, ClusTree, and 

DenStream on synthetic data with a manually fixed default 10% noise level, 0% noise level, 

and 30% noise level on RandomRBFGenerator for 205000 instances. We have chosen the 

RandomRBFGenerator, which continuously evolves to alter the location of the true cluster as 

the input stream generator. The RandomRBFGenerator is the lone available streaming 

generator in MOA framework. The algorithms were also tested on real-world datasets 

(Electricity and Forest Covertype) using 205000 instances and 45000 instances respectively. 

The settings started with 5000 instances, then with 50000 instances until 205000 instances in 

reached. The output is presented in Figure 4-1 for CluStream and DenStream. The individual 

output is presented in Figure 4-2, Figure 4-3, and Figure 4-4 for CluStream, ClusTree, and 

DenStream respectively.  



 

Page | 44 

 

Figure 4-1: MOA screenshot of RandomRBF. CluStream is on the right while DenStream is on the left. The line 

graph is the output after 205000 instances. 

 

Figure 4-2 shows the output of CluStream in (red contour) for RandomRBFGenerator with 

10% noise after 205000 instances. The stream points display in deep colours, and the 

black/gray-coloured circles is the ground truth cluster boundaries.  The former state is the 

gray circles, showing that the clusters are moving.  The noise points represented by the black 

(faded out to gray) points. Micro-clustering in green contour, and clustering in red rings 

because CluStream was selected as Algorithm1. 

 

Figure 4- 2: CluStream (red contour) for RandomRBFGenerator with 10% noise after 205000 instances. 
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Figure 4-3 shows ClusTree in (blue contour) for RandomRBFGenerator with 10% noise after 

205000 instances. The stream points are in deep colours, and ground truth display either 

black/gray-coloured circles, micro-clustering in green contour, and clustering in blue rings 

since ClusTree was selected as Algorithm 2. 

 

 

Figure 4-3: ClusTree (blue contour) for RandomRBF with 10% noise after 205000 instances.  

 

Figure 4-4 displays the DenStream for RandomRBFGenerator with 10% noise after 205000 

instances. The stream points are deep colours, the black/gray-coloured circles represent the 

ground truth cluster, micro-clustering in green contour, and clustering in blue colours because 

DenStream was selected as Algorithm 2. 

`  

Figure 4-4: DenStream for RandomRBF with 10% noise after 205000 instances.  
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Figure 4-5 is the output of the modified DenStream for RandomRBFGenerator with 10% 

noise after 205000 instances. The stream points are in deep colours, the black/gray-coloured 

circles represent the ground truth cluster, micro-clustering in green contour, and clustering 

blue colour because the modified DenStream was selected as Algorithm 2. 

 

 

Figure 4-5: The modified DenStream for RandomRBF with 10% noise after 205000 instances.  

 

The visualization of the performance metric CMM for CluStream against DenStream is 

presented in Figure 4-6. The figure shows CluStream in red colour and DenStream in blue 

colour, the x-axis is the scaling of the instances, and the y-axis is the metrics values. Other 

performance metrics (Purity, Silhouette Coefficient, and Rand index) running at background 

can be visualized (see Appendix B). 

 

 

Figure 4-6: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for 

CluStream and DenStream. 
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The visualization of the performance metric CMM for CluStream against the modified 

DenStream is presented in Figure 4-7. The figure shows CluStream in red, modified 

DenStream in blue, x-axis represents the instances, and the y-axis is the metrics values. Other 

performance metrics (Purity, Silhouette Coefficient, and Rand index). 

 

 

Figure 4-7: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for 

CluStream and modified DenStream.  

 

In Figure 4-8, the algorithms CluStream and ClusTree are run against each other. The stream 

points are in deep colours, ground truth in black/gray-coloured circle, micro-clustering in 

green contour, and CluStream in red-coloured circles because it was selected as Algorithm1 

and ClusTree in blue-coloured circles because it was selected as Algorithm2.   

 

Figure 4-8: RandomRBF for CluStream on the left and ClusTree on the right after 205000 instances. 

 



 

Page | 48 

Figure 4-9 shows the visualization of the performance metric CMM on both CluStream and 

ClusTree. The figure shows CluStream in red and ClusTree in blue, The visualization of other 

performance metrics can be displayed if clicked (see Appendix B). 

 

 

Figure 4-9: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for 

CluStream and ClusTree. 

 

4.2.1 RandomRBFGenerator with default Noise Level  

The 10% default noise level on RandomRBFGenerator for the different algorithms was 

demonstrated. The average value of the performance evaluation metrics (CMM, Purity, 

Silhouette Coefficient, and Rand index) was taken and is presented in Table 4-1.   

The Massive Online Analysis (MOA) has no implementation for more than two clustering 

algorithms, the output for the paired algorithms was exported as a CSV file, merged in 

Microsoft Excel, and read using Python libraries (pandas and hvplot). The Jupyter Notebook 

was used to carry out the data visualization. The data visualization for RandomRBFGenerator 

with a 10% noise level for the algorithms using the performance metrics CMM is presented in 

Figure 4-10. The figure shows modified DenStream has its lowest drop at instance 5000 and 

moved up from instance 5100 to maintain an average value of 0.864978. ClusTree has its 

lowest drop at instance 53000 but has an overall average value of 0.902690. CluStream 

lowest point at instance 49000 and average value of 0.862702 for all instances. DenStream 

has its highest point at instance 97000 with a value of 0.925710 and has an overall average of 

0.816985. Note the scaling on the x-axis is calibrated per 1000 instances on the hvplot for this 

dissertation. 
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Figure 4-10: The line graph of RandomRBF using CMM on ClusTree, CluStream, DenStream, and modified 

DenStream. 

 

In Figure 4-11, the performance metric Purity for RandomRBFGenerator with a noise level of 

10% is presented. The line graph shows that DenStream has its lowest point at instance 

23000. Its average value is 0.899071. ClusTree lowest point is at instance 20000 with a value 

of 0.664741 and its overall average value is 0.864506. CluStream dropped at these instances 

(106000, 130000, 135000, 154000, and 180000) and has an overall average value of 

0.844106. The modified DenStream average value is 0.951441.  

 

 

Figure 4-11: The line graph of RandomRBF with 10% noise level using Purity on ClusTree, CluStream, 

DenStream and modified DenStream. 
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The performance metric Silhouette Coefficient for RandomRBFGenerator with 10% noise 

level is presented in Figure 4-12. The figure shows that CluStream experienced its lowest 

point at instance 20000. Its overall average value is 0.729607. DenStream highest point occur 

at instance 193000 with a value of 0.973106 and lowest point at instance 39000 with a value 

of 0.430803. ClusTree lowest point is at instance 23000 and lowest point at instance 25000 

with a value of 0.469584. 

 

 

Figure 4-12: The line graph of RandomRBF with 10% noise level using Silhouette Coefficient on ClusTree, 

CluStream, DenStream and modified DenStream. 

 

In Figure 4-13 for performance metric Rand index on RandomRBFGenerator with default 

10% noise level. The figure shows that DenStream lowest point occurred at instance 23000 

with 0.606088 and highest point at instance 128000 with a value of 0.884188. ClusTree has 

the highest point at instance 16000 with a value of 0.994054 and the lowest point at instance 

23000 with a value of 0.687736. CluStream has its lowest point at instance 23000 with a 

value of 0.774931 and the highest point at instance 119000 with a value of 0.993235. 

 



 

Page | 51 

 

Figure 4-13: The line graph of RandomRBF with 10% noise level using Rand index on ClusTree, CluStream, 

DenStream and modified DenStream. 

 

The results in Table 4-1 show that ClusTree outperforms other algorithms on performance 

metrics (CMM, Silhouette Coefficient and Rand index) with an average value of 0.902690, 

0.771385, and 0.885936 respectively. The modified DenStream outperforms other algorithms 

on performance metric Purity with an average value of 0.951441. The modified DenStream 

also shows a better performance against DenStream on metrics CMM and Rand index.  

 

Table 4-1: RandomRBF with default settings on the algorithms 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.862702 0.902690 0.816985 0.864978 

Purity 0.844106 0.864506 0.899071 0.951441 

Silhouette 0.729607 0.771385 0.762202 0.521549 

Rand index 0.870000 0.885936 0.788309 0.831517 

 

The performance metrics are combined using a bar chart and shown in Figure 4-14. This 

clearly explains the output in Table 4-1 showing the performance of the modified DenStream 

against other algorithms especially DenStream which is of interest in this dissertation. 
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Figure 4-14: Performance metrics barplots of CluStream ClusTree, DenStream and modified DenStream on 

RandomRBF with default setting. 

 

 

4.2.2 Forest Covertype with default settings. 

The performance of the algorithms was demonstrated on Forest Covertype dataset using 

205000 instances. The clustering qualities were evaluated using the metrics CMM, Purity, 

Silhouette Coefficient, and Rand index and the results of the algorithms CluStream, ClusTree, 

DenStream and modified DenStream are given in Figure 4-15, Figure 4-16, Figure 4-17, and 

Figure 4-18 respectively.  

In Figure 4-15, the graph illustrates the CluStream algorithm on Forest Covertype dataset. 

Several features of the graph show clustering in red rings, the green rings represent the micro-

clustering, and the black ring, C0, C1, and C4 represent the ground-truth.  
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Figure 4-15: The Forest Covertype dataset on CluStream. The red rings show the clustering, the green rings are 

micro-clustering, and the black ring is ground-truth.  

 

 

Figure 4-16 visualizes ClusTree algorithm on Forest Covertype dataset. The graph displays 

clustering in blue rings since it was selected as Algorithm2, the green rings represent the 

micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth. 

 

 

 

 

Figure 4-16: The Forest Covertype dataset on ClusTree. The blue rings show the clustering, the green rings are 

the micro-clustering, and the black ring is the ground-truth. 
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Figure 4-17 shows the output of DenStream on Forest Covertype dataset. In the figure, the 

clustering is indicated with tiny blue rings since it was selected as Algorithm2, the green rings 

represent the micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth.  

 

 

Figure 4-17: The Forest Covertype dataset on DenStream. The tiny blue rings are the clustering, the green rings, 

are the micro-clustering, and the black ring is the ground-truth.  

 

Figure 4-18 visualizes the output of the modified DenStream on Forest Covertype dataset. As 

explained in the other algorithms, the tiny blue rings indicate the clustering, the green rings 

represent the micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth. 

 

 

Figure 4-18: The modified DenStream for Forest Covertype dataset. The tiny blue rings are the clustering, the 

green rings are the micro-clustering, and the black ring is the ground-truth. 
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The graph plots showing the performance of the algorithms on each metric can be seen in 

Figure 4-19, Figure 4-20, Figure 4-21, and Figure 4-22. The performance metric CMM results 

on Forest Covertype dataset with default settings is presented in Figure 4-19. In the figure, 

DenStream average value is less than 0.5 with its highest point at instance 192000 with a 

value of 0.426978 and lowest point at instance 10000 with a value of 0.367879. ClusTree has 

its lowest point at instance 185000 with a value of 0.582144 and the highest point at instance 

31000 with a value of 0.812673. CluStream average value is 0.749105. The modified 

DenStream average value is 0.387108.  

 

 

Figure 4-19: The line graph of Forest Covertype using CMM on ClusTree, CluStream, DenStream, and 

modified DenStream. 

 

In Figure 4-20, the performance metric Purity for the Forest Covertype dataset with the 

default parameters of the algorithms is presented. DenStream has the highest mean average 

with 0.972418 over CluStream, ClusTree, modified DenStream (see Table 4-2). DenStream 

and modified DenStream experienced breaks at instances 11000, 12000, 14000, and 15000.  

All the algorithms have an average value over and above 0.910000. 

 



 

Page | 56 

 

Figure 4-20: The line graph of Forest Covertype using Purity on ClusTree, CluStream, DenStream, and 

modified DenStream. 

 

The performance metric Silhouette Coefficient for Forest Covertype on default parameters for 

the three algorithms is presented in Figure 4-21. DenStream has its highest points of 1.0000 at 

instances (1000 and 6000) and an average value of 0.754788. The highest point of ClusTree 

with a value occurs at instances 59000, 87000, 90000, 93000, 97000, 102000, 105000, 

128000, 155000, and 163000. ClusTree average value is 0.829813. CluStream average value 

is 0.801819. The modified DenStream sharply dropped in instances 122000 and 125000 and 

has an average value 0.747071. 

 

Figure 4-21: The line graph of Forest Covertype using Silhouette Coefficient on ClusTree, CluStream, 

DenStream, and modified DenStream. 
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In Figure 4-22, the performance metric Rand index for the Forest Covertype dataset with 

default parameters for algorithms is presented. ClusTree highest point is at instance 94000 

with a value of 0.783357 and the lowest point is at instance 13000 with a value of 0.202679. 

CluStream has its highest point at instance 94000 with a value of 0.784346 and lowest point 

at instance 13000 with a value of 0.203417. The highest point of DenStream is at instance 

92000 with a value of 0.811588 and the lowest point is at instance 13000 with a value of 

0.161694. The modified DenStream experienced its highest point at instance 94000 and 

lowest points at instances 6000 and 13000. The modified DenStream average value is 

0.579084. 

 

 

Figure 4-22: The line graph of Forest Covertype using Rand index on ClusTree, CluStream, DenStream, and 

modified DenStream. 

 

Table 4-2 illustrates evaluation measure using the Forest Covertype with default setting. The 

results show that CluStream outperforms all other algorithms on metrics CMM with a mean 

value 0.749105. ClusTree outperforms other algorithms on metric Silhouette coefficient with 

a mean value 0.829813. DenStream outperforms other algorithms on performance metrics 

(Purity and Rand index) with 0.972418 and 0.582461. However, the modified DenStream 

outperforms DenStream on performance metric CMM with 0.387108. 
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Table 4-2: Forest Covertype dataset with default settings on the algorithms. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.749105 0.564100 0.379326 0.387108 

Purity 0.918534 0.911704 0.972418 0.971124 

Silhouette 0.801819 0.829813 0.754788 0.747071 

Rand index 0.564100 0.562055 0.582461 0.579084 
 

 

Figure 4-23 illustrates the visualization of the bar chart for the algorithms on Forest 

Covertype dataset with the performance metrics CMM, Purity, Silhouette Coefficient, and 

Rand index with both DenStream and modified DenStream outperforming CluStream and 

ClusTree on metrics Purity and Rand index. 

 

Figure 4-23: Barchart showing ClusTree, CluStream, DenStream, and modified DenStream on Forest Covertype 

dataset. 

 

4.2.3 Electricity with default settings 

The stream settings for the Electricity dataset start with 5000 instances initially and then run 

to 45000 instances for the analysis. The stream outputs for the CluStream, ClusTree, 

DenStream and the modified DenStream are indicated in Figure 4-24, Figure 4-25, Figure 4-

26, and Figure 4-27 respectively. 
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Figure 4-24 displays the output of CluStream on Electricity dataset after 45000 instances with 

the stream points displayed in deep colours, ground-truth comes as a black/gray-coloured 

circles, micro-clustering in green contours, and clustering in red rings because it was selected 

as Algorithm1 in MOA. 

 

 

Figure 4-24: CluStream for Electricity dataset after 45000 instances. 

 

Figure 4-25 shows the output of ClusTree on Electricity dataset after 45000 instances with the 

stream points displayed in deep colours, ground-truth comes as a black/gray-coloured circles, 

micro-clustering in green contours, and clustering in blue rings because it was selected as 

Algorithm2 in MOA. 

 

Figure 4-25: ClusTree for Electricity dataset after 45000 instances 
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Figure 4-26 displays the output of DenStream on Electricity dataset after 45000 instances 

with the stream points displayed in deep colours, ground-truth comes as a black/gray-

coloured circles, micro-clustering in green contours, and clustering tiny blue rings because it 

was selected as Algorithm2 in MOA. 

 

 

Figure 4-26: DenStream for Electricity dataset after 45000 instances. 

 

Figure 4-27 shows the output of the modified DenStream on Electricity dataset after 45000 

instances with the stream points displayed in deep colours, ground-truth comes as a 

black/gray-coloured circles, micro-clustering in green contours, and clustering tiny blue rings 

because it was selected as Algorithm2 in MOA. 

 

 

Figure 4-27: The modified DenStream for Electricity dataset after 45000 instances 
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The line graph charts for the performance metrics CMM, Purity, Silhouette Coefficient, and 

Rand index for CluStream, ClusTree, DenStream and modified DenStream are presented in 

Figure 4-28, Figure 4-29, Figure 4-30, and Figure 4-31 respectively. In Figure 4-28, the 

modified DenStream was on an upward trajectory on metric CMM until it drops at instance 

4000 and continues in this way until the end. The highest point experienced by the modified 

DenStream is between instance zero and 1000 and has an average value of 0.544408. 

CluStream and ClusTree maintained values between 0.65 and 0.85, Their highest points are at 

instance 29000 with values 0.830561 and 0.840458 respectively.  

 

 

Figure 4-28: The line graph of Electricity using performance metric CMM on ClusTree, CluStream, DenStream, 

and modified DenStream. 

 

The performance metric Purity for the Electricity dataset using the default settings of the 

algorithms is presented in Figure 4-29. CluStream attains its peak point at instance 13000 and 

has an average value of 0.776815. ClusTree’s highest point is at instance 21000 and has an 

average value of 0.703810. The highest point of DenStream occurs at instance 19000 and 

ends with an average value of 0.897288. The modified DenStream’s highest point is at 

instance 25000 and has an average value of 0.874840. 
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Figure 4-29: The line graph of Electricity using performance metric Purity on ClusTree, CluStream, DenStream, 

and modified DenStream. 

 

Figure 4-30 presents the performance metric Silhouette Coefficient on Electricity dataset. The 

line graph shows that DenStream raises from instance 15000 to its highest point at instance 

19000. The modified DenStream dropped from its highest point instance zero to its lowest 

point at instance 1000. ClusTree’s highest peak is at instances 26000, 31000, and 36000 

respectively. CluStream experienced its highest point at instance 5000. 

 

 
 

Figure 4-30: The line graph of Electricity using performance metric Silhouette Coefficient on ClusTree, 

CluStream, DenStream, and modified DenStream. 

 

Figure 4-31 illustrates the performance metric Rand index for the Electricity dataset using the 

default parameter settings. The highest point of CluStream is obtained at instance 1000 and its 

lowest point at instance 22000. ClusTree attains its highest peak point at instance 1000 and 

least point at instance 44000. DenStream’s highest point is at instance 35000 and lowest point 

at instance 4000. The modified DenStream’s highest point occurs at instance 21000 and 

lowest point at instance 16000.  
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Figure 4-31: The line graph of Electricity using performance metric Rand index on ClusTree, CluStream, 

DenStream, and modified DenStream. 

 

 

The average evaluation metrics for the default parameter settings of the algorithms on 

Electricity dataset is presented in Table 4-3. In summary, the average points show that 

CluStream outperforms other algorithms on performance metric CMM with a mean value of 

0.759476. ClusTree outperforms on metrics Silhouette Coefficient and Rand index with 

average values 0.732103, and 0.512624 respectively. DenStream also outperforms other 

algorithms on performance metric Purity with 0.897288. However, the modified DenStream 

outperforms DenStream on performance metric CMM with a mean value 0.544408. 

 

Table 4-3: Electricity dataset with default settings on the algorithms. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.759476 0.751279 0.486608 0.544408 

Purity 0.776815 0.703810 0.897288 0.874840 

Silhouette 0.670710 0.732103 0.490165 0.469995 

Rand index 0.509466 0.512624 0.511428 0.510279 

 

 

Figure 4-32 shows the visualization of the bar chart for the average values of the algorithms 

on Electricity dataset with the performance metrics CMM, Purity, Silhouette Coefficient, and 

Rand index. 
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Figure 4-32: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream on Electricity dataset 

 

4.2.4 Effects of Epsilon parameter tuning on Synthetic dataset. 

In this section, the effects of DenStream and the modified DenStream epsilon 0.03 and 0.05 

are demonstrated against CluStream and ClusTree algorithms on RandomRBFGenerator with 

0% and 30% noise levels. The line graphs of their performance metrics are presented in 

Figure 4-33, Figure 4-34, Figure 4-35, and Figure 4-36. The experimental results are 

presented in Table 4-4. 

Figure 4-33 presents the line graph of performance metric CMM on RandomRBFGenerator 

0% noise level and epsilon parameter set at 0.03 for DenStream and modified DenStream. 

ClusTree demonstrates a better performance after the initial value at instance zero and 

maintains values between the intervals [0.98, 1.00]. CluStream preserves a value range 

between the intervals [0.96, 0.99]. DenStream’s lowest point is at instance 16000 with a value 

of 0.583. The modified DenStream has its lowest point at instance 170000. 
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Figure 4-33: The line graph of RandomRBF with 0% noise level using CMM on modified DenStream and 

DenStream epsilon set at 0.03. 

 

Figure 4-34 is the line graph of performance metric Purity on RandomRBFGenerator with 0% 

noise level and epsilon parameter of DenStream and modified DenStream set to 0.03. 

CluStream outperforms other algorithms with an average value of 0.984838. ClusTree has its 

lowest point at instance 136000 with a value of 0.868. DenStream’s lowest point is at instance 

133000 with a value of 0.432. DenStream also dropped at instances 19000, 31000, 131000, 

134000, 135000, 185000, and 188000. The modified DenStream’s lowest point is at instance 

170000. 

 

Figure 4-34: The line graph of RandomRBF with 0% noise level using Purity on modified DenStream and 

DenStream epsilon set at 0.03. 
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Figure 4-35 is the output of performance metric Silhouette Coefficient on 

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.03. CluStream outperforms with an average value of 0.821436. 

ClusTree has the lowest average value of 0.565896. The modified DenStream’s lowest point 

is at instance 167000.  

 

 

Figure 4-35: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient on modified 

DenStream and DenStream epsilon set at 0.03. 

 

Figure 4-36 is the visualized line graph of performance metric Rand index on 

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.03. The modified DenStream has its lowest point at instances 

28000 and 170000. The modified DenStream outperforms other algorithms with an average 

value of 0.889164. DenStream has the lowest average value of 0.823520.  

 

Figure 4-36: The line graph of RandomRBF with noise level 0% using Rand index on modified  DenStream and 

DenStream epsilon set at 0.03. 
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In Table 4-4, ClusTree outperforms on performance metrics CMM and Purity with 0.984734 

and 0.974619 respectively. CluStream outperforms in terms of performance metric Silhouette 

Coefficient with a value of 0.821436. The modified DenStream outperforms on metric Rand 

index with an average value 0.889164. 

 

Table 4-4: RandomRBF 0% noise level with epsilon parameter set at 0.03.  

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.933418 0.984734 0.848488 0.917020 

Purity 0.927379 0.974619 0.815577 0.918202 

Silhouette 0.821436 0.565896 0.782959 0.751973 

Rand index 0.839968 0.830699 0.823520 0.889164 

 

 

Figure 4-37 presents the visualization of the bar chart for the average values of the algorithms 

on RandomRBFGenerator with 0% noise level on performance metrics CMM, Purity, 

Silhouette Coefficient, and Rand index. The modified DenStream outperformed DenStream 

on metrics CMM, Purity and Rand index. 

 

 

Figure 4-37: Bar plots of RandomRBF with noise level 0% on ClusTree, CluStream, DenStream, and modified 

DenStream. 
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Figure 4-38 is the line graph of performance metric CMM on RandomRBFGenerator with 

30% noise level and epsilon parameter of DenStream and modified DenStream set at 0.03. 

DenStream outperforms both CluStream and ClusTree. DenStream’s highest and lowest 

points are at instances 46000 and 174000 with values 0.590 and 0.918 respectively. On the 

average, DenStream outperforms both ClusTree and CluStream with a value of 0.825596. 

ClusTree’s lowest point is at instance zero with a value of 0.603 and its highest point at 

instance 46000 with a value of 0.809. CluStream’s values are in between the intervals [0.7, 

0.8]. 

 

 

Figure 4-38: The line graph of RandomRBF with noise level 30% using CMM on DenStream and modified 

DenStream epsilon set at 0.03. 

 

Figure 4-39 is the visualized line graph of performance metric Purity on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.03. CluStream outperforms both DenStream and ClusTree with 

an average value of 0.980379. The lowest point of DenStream occurs at instance 43000 with a 

value of 0.704. The lowest point of ClusTree occurs at instance 33000 with a value of 0.926. 
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Figure 4-39: The line graph of RandomRBF with noise level 30% using Purity on DenStream and modified 

DenStream epsilon set at 0.03. 

 

Figure 4-40 is the visualized line graph of performance metric Silhouette Coefficient on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.03. DenStream performs better than both CluStream and 

ClusTree with an average value of 0.747127. CluStream’s highest point occurs at instance 

2000 with a value of 0.650 and lowest point at instance 175000 with value of 0.240. 

ClusTree’s highest point occurs at instance 134000 with value of 0.653. 

 

Figure 4-40: The line graph of RandomRBF with noise level 30% using Silhouette Coefficient on DenStream 

and modified DenStream epsilon set at 0.03.  
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Figure 4-41 is the visualized line graph of performance metric Rand index on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.03. ClusTree outperforms both CluStream and DenStream on 

average with a value of 0.841067. DenStream’s lowest point occurs at instance 38000 with a 

value of 0.597 and highest point at instance 88000 with a value of 0.878. The lowest point of 

CluStream occurs at instance 153000 with a value of 0.750. 

 

 

Figure 4-41: The line graph of RandomRBF with noise level 30% using Rand index on DenStream and 

modified DenStream epsilon set at 0.03. 

 

Table 4-5 summarizes the evaluation performance of the algorithms. The table shows that 

DenStream performs better than other algorithms on metrics CMM and Silhouette Coefficient 

with 0.825596 and 0.747127 respectively. The modified DenStream outperforms on metric 

Rand index with 0.844152. ClusTree outshine on metric Purity with an average value of 

0.976311. The modified DenStream also shows a better performance against DenStream on 

metric Purity. 

 

Table 4-5: RandomRBF 30% noise level with epsilon parameter set at 0.03. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.725730 0.764806 0.825596 0.792180 

Purity 0.744893 0.976311 0.927619 0.956226 

Silhouette 0.615896 0.464856 0.747127 0.612858 

Rand index 0.811282 0.841067 0.778500 0.844152 
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Figure 4-42 presents the visualization of the bar chart for the average values of the algorithms 

ClusTree, CluStream, and DenStream on RandomRBFGenerator with 30% noise level and 

epsilon parameter set at 0.03 on performance metrics CMM, Purity, Silhouette Coefficient, 

and Rand index. The modified DenStream outperformed DenStream on performance metrics 

Purity and Rand index and at least one algorithm on the other metrics CMM and Silhouette 

Coefficient. 

 

 

Figure 4-42: Bar plots of CluStream ClusTree, DenStream, and modified DenStream epsilon set at 0.03 on 

RandomRBF with noise level 30%. 

 

 

Figure 4-43 is the visualized line graph of performance metric CMM on 

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.05. DenStream’s lowest point occurs at instance 173000 with a 

value of 0.410 and highest point at instance 46000 with a value of 1.00. CluStream maintains 

uniform value within the intervals [0.97, 0.99]. However, ClusTree outperforms both 

CluStream and DenStream after the initial poor start with an average value of 0.984734. 
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Figure 4-43: The line graph of RandomRBF with noise level 0% using CMM on modified DenStream epsilon 

set at 0.05. 

 

Figure 4-44 is the line graph of performance metric Purity on RandomRBFGenerator with 0% 

noise level and epsilon parameter of DenStream and modified DenStream set to 0.05. 

DenStream’s highest point value is 1.00 which occurs at instances 38000 to 42000 and lowest 

point value 0.209 at instance 175000. CluStream outperforms both ClusTree and DenStream 

with an average value of 0.984838. ClusTree’s lowest point occurs at instance 136000 with a 

value of 0.868 and highest point value is 1.00. 

 

 

Figure 4-44: The line graph of RandomRBF with noise level 0% using Purity on modified DenStream epsilon 

set at 0.05. 
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Figure 4-45 illustrates the output of performance metric Silhouette Coefficient on 

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.05. DenStream outperforms both ClusTree and CluStream with 

0.742449. DenStream’s highest point value is 1.00 at instance intervals [171000 – 176000]. 

CluStream’s lowest point value is 0.436 at instance 174000. ClusTree’s highest point value is 

0.729 at instance 113000 and lowest point value occurs at instance zero. 

 

 

Figure 4-45: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient on modified 

DenStream epsilon set at 0.05. 

 

 

Figure 4-46 is the line graph of performance metric Rand index on RandomRBFGenerator 

with 0% noise level and epsilon parameter of DenStream and modified DenStream set to 

0.05. DenStream’s lowest point is at instance 175000 with a value of 0.207. ClusTree 

outperforms both DenStream and ClusTree with an average value of 0.830699. CluStream 

value ranges between the intervals 0.7 and 0.8. 
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Figure 4-46:  The line graph of RandomRBF with noise level 0% using Rand index on modified DenStream 

epsilon set at 0.05. 

 

Table 4-6 indicates ClusTree outperforms on performance metrics CMM and Purity with 

0.984734 and 0.974619 respectively. CluStream outperforms on performance metrics 

Silhouette Coefficient and Rand index with 0.821436 and 0.839968 respectively. The 

modified DenStream however, outperforms DenStream on all the metrics. 

 

Table 4-6: RandomRBF 0% noise level with epsilon parameter set at 0.05. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.933418 0.984734 0.767276 0.842120 

Purity 0.927379 0.974619 0.723268 0.842179 

Silhouette 0.821436 0.565896 0.742449 0.750881 

Rand index 0.839968 0.830699 0.745373 0.837461 

  

 

Figure 4-47 is the visualized bar chart for the average values of the algorithms DenStream, 

ClusTree, and CluStream on RandomRBFGenerator with 0% noise level and epsilon 

parameter set at 0.05 using performance metrics CMM, Purity, Silhouette Coefficient, and 

Rand index. The modified DenStream outperformed DenStream on all the performance 

metrics. 

 



 

Page | 75 

 

 

Figure 4-47: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.05 on 

RandomRB with noise level 0%. 

 

 

Figure 4-48 is the visualized line graph of performance metric CMM on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.05. DenStream’s highest point is at instance 173000 and lowest 

point at instance 74000. ClusTree outperforms other algorithms with an average value of 

0.764806. ClusTree’s highest point occurs at instance 46000. The modified DenStream’s 

lowest point occurs at instance 4000 and outperforms both DenStream and CluStream with an 

average value of 0.731058 and its highest point occurs at instance 145000. 
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Figure 4-48: The line graph of RandomRBF with noise level 30% using CMM on modified DenStream epsilon 

set at 0.05. 

 

Figure 4-49 illustrates the line graph of performance metric Purity on RandomRBFGenerator 

with 30% noise level and epsilon parameter of DenStream and modified DenStream set at 

0.05. ClusTree outperforms other algorithms with an average value of 0.976311. ClusTree’s 

lowest point occurs at instance 33000. CluStream’s highest point occurs at instances 134000 

and lowest point at instance 111000. The modified DenStream however, outperformed both 

CluStream and DenStream with an average value of 0.943678. 

 

 

Figure 4-49: The line graph of RandomRBF with noise level 30% using Purity on modified DenStream epsilon 

set at 0.05. 
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Figure 4-50 is the visualized line graph of performance metric Silhouette Coefficient on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set to 0.05. The modified DenStream outperforms other algorithms with 

an average value of 0.644882. DenStream’s highest point occurs at instance 134000. 

CluStream’s lowest point occurs at instance 175000 and has an average value of 0.615896. 

ClusTree’s highest point occurs at instance 134000 and has the least average value of 

0.464858. 

 

 

Figure 4-50: The line graph of RandomRBF with noise level 30% using Silhouette Coefficient on modified 

DenStream epsilon set st 0.05. 

 

Figure 4-51 is the visualized line graph of performance metric Rand index on 

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.05. ClusTree outperforms other algorithms with an average 

value of 0.841067. DenStream’s lowest point occurs at instance 27000 and highest point at 

instance 137000. CluStream’s lowest point occurs at instance 71000 and highest point at 

instances 141000 and 145000. The modified DenStream’s highest point occurs at instance 

10000 and lowest point at instance 37000. The modified DenStream has an average of 

0.830016. 
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Figure 4-51: The line graph of RandomRBF with noise level 30% using Rand index on modified DenStream 

epsilon set at 0.05. 

 

In Table 4-7, ClusTree outperforms on performance metrics CMM, Purity, and Rand index 

with 0.764806, 0.976311, and 0.841067 respectively. The modified DenStream outperforms 

on metric Silhouette Coefficient with a value of 0.644882. The modified DenStream likewise 

outperforms against DenStream on all metrics. 

 

Table 4-7: RandomRBF 30% noise level with epsilon parameter set at 0.05. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.725730 0.764806 0.694887 0.731058 

Purity 0.744893 0.976311 0.932780 0.943678 

Silhouette 0.615896 0.464856 0.639189 0.644882 

Rand index 0.811282 0.841067 0.738834 0.830016 

 

 

Figure 4-52 presents the visualization of the bar chart for the average values of the algorithms 

on RandomRBFGenerator with 30% noise level and epsilon parameter set to 0.05 on 

performance metrics CMM, Purity, Silhouette Coefficient, and Rand index. The modified 

DenStream outperformed DenStream on all the performance metrics. 
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Figure 4-52: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.05 on 

RandomRBF with noise level 30%. 

 

 

4.2.6 Effects of Epsilon parameter tuning on Forest Covertype. 

We experimented with the effects of DenStream and modified DenStream epsilon parameter 

set at 0.03 on real-world dataset Forest Covertype and presented the experimental evaluation. 

Figure 4-53 illustrates the line graph of performance metric CMM on Forest Covertype, and 

epsilon parameter of DenStream and modified DenStream set to 0.03. ClusTree outperforms 

other algorithms with an average value of 0.764913. ClusTree’s highest point occurs at 

instance 15000 and lowest point at instance 142000. CluStream’s highest point happens at 

instance 12000 and lowest point at instance 35000. DenStream’s lowest point occurs at 

instance 191000 and highest point at instance 160000. The modified DenStream’s highest 

point occurs at instance 1000 and has an average value of 0.427090. 
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Figure 4-53: The line graph of Forest Covertype using CMM on DenStream and modified DenStream epsilon 

set at 0.03. 

 

Figure 4-54 is the visualized line graph of performance metric Purity on Forest Covertype, 

and epsilon parameter of DenStream and modified DenStream set at 0.03. DenStream lowest 

point occurs at instance 89000. The modified DenStream’s lowest point occurs at instance 

13000 and has an average value of 0.973233. ClusTree’s lowest point appears at instance 

16000 and outperforms other algorithm with an average value of 0.983300. CluStream has the 

least average value 0.915834. 

 

 

Figure 4-54: The line graph of Forest Covertype using Purity on DenStream and modified DenStream epsilon 

set at 0.03. 
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Figure 4-55 is the visualized line graph of performance metric Silhouette Coefficient on 

Forest Covertype and epsilon parameter of DenStream and modified DenStream set at 0.03. 

CluStream outperforms other algorithms with an average value of 0.801819. DenStream’s 

highest point occurs at instance 13000 and lowest point at instance 89000. ClusTree’s highest 

point occurs at instance 21000 and lowest point at instance zero. The modified DenStream’s 

highest point occurs at instance 10000 and has an average value of 0.715490. 

 

 

Figure 4-55: The line graph of Forest Covertype using Silhouette Coefficient on DenStream and modified 

DenStream epsilon set at 0.03. 

 

Figure 4-56 is the visualized line graph of performance metric Rand index on Forest 

Covertype and epsilon parameter of DenStream and modified DenStream set at 0.03. 

CluStream outperforms other algorithms with an average value of 0.564000 and highest point 

at instance 92000. DenStream’s highest point is at instance 92000 and lowest point at instance 

13000. ClusTree’s highest point occurs at instance 93000. The modified DenStream’s lowest 

point occurs at instance 13000 and has an average value of 0.552186. 
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Figure 4-56: The line graph of Forest Covertype using Rand index on DenStream and modified DenStream 

epsilon set at 0.03. 

 

Table 4-8 presents the performance of the three algorithms on Forest Covertype dataset, 

DenStream and modified DenStream epsilon parameter set at 0.03. ClusTree outperforms 

other algorithms using performance metrics CMM and Purity with 0.764913 and 0.983300 

respectively. CluStream outperforms on performance metrics Silhouette Coefficient and Rand 

index with 0.801819 and 0.564100 respectively. The modified DenStream however 

outperforms DenStream on metric CMM.   

 

Table 4-8: Forest Covertype dataset on epsilon parameter set at 0.03. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.749105 0.764913 0.399430 0.427090 

Purity 0.918534 0.983300 0.978341 0.973233 

Silhouette 0.801819 0.613921 0.716577 0.715490 

Rand index 0.564100 0.555170 0.564352 0.552186 

 

Figure 4-57 presents the visualization of the bar chart for the average values of the algorithms 

on Forest Covertype dataset with epsilon parameter set at 0.03 on performance metrics CMM, 

Purity, Silhouette Coefficient, and Rand index. The modified DenStream shows a better 

performance against some algorithms at some metrics. 
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Figure 4-57: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.03 on 

Forest Covertype dataset. 

 

 

Figure 4-58 presents the output of performance metric CMM on Forest Covertype, 

DenStream and modified DenStream epsilon parameter set at 0.05. ClusTree outperforms 

other algorithms with an average value of 0.764913. ClusTree’s highest point occurs at 

instance 15000 and lowest point at instance 142000. DenStream’s highest point happens at 

instance 161000 and lowest point at instance 14000. CluStream’s highest point value is at 

instance 12000 and lowest point at instance 151000. The modified DenStream has its highest 

point at instance 204000 and lowest point at instance 14000. The modified DenStream’s 

average value is 0.518633 and outperforms that of DenStream with an average value of 

0.484317. 
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Figure 4-58: The line graph of Forest Covertype dataset using CMM on DenStream and modified DenStream 

epsilon set at 0.05. 

 

 

Figure 4-59 is the visualized line graph of performance metric Purity on Forest Covertype 

dataset and epsilon parameter of DenStream and modified DenStream set at 0.05. 

DenStream’s lowest point occurs at instance 61000 and has an average value of 0.955072. 

ClusTree’s lowest point occurs at instance 125000 and has better performance with an 

average value of 0.983300. CluStream’s lowest point occurs at instance 14000 and 

underperformed with an average value of 0.918534. The modified DenStream outdoes 

DenStream with an average value of 0.960213. 

 

 

Figure 4-59: The line graph of Forest Covertype dataset using Purity DenStream and modified DenStream 

epsilon set at 0.05. 
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Figure 4-60 is the visualized line graph of performance metric Silhouette Coefficient on 

Forest Covertype dataset and epsilon parameter of DenStream and modified DenStream set at 

0.05. DenStream’s highest point value is at instance 14000 and lowest point value at instance 

166000. CluStream outruns other algorithms with an average value of 0.801819. ClusTree 

underperformed with an average value of 0.613921. ClusTree’s highest point value is at 

instance 21000 and lowest point at instance zero. The modified DenStream outdoes 

DenStream and CluStream with an average value of 0.664602 as against 0.629341 and 

0.613921 achieved by DenStream and CluStream respectively.  

 

 

Figure 4-60: The line graph of Forest Covertype dataset using Silhouette Coefficient on DenStream and 

modified DenStream epsilon set at 0.05. 

 

Figure 4-61 is the visualized line graph of performance metric Rand index on Forest 

Covertype dataset and epsilon parameter of DenStream and modified DenStream set at 0.05. 

CluStream outperforms other algorithms with 0.564100. CluStream’s highest point occurs at 

instance 93000. DenStream’s lowest point value is at instance 13000 and highest point is at 

instance 48000. The modified DenStream underperformed with an average value of 

0.496804.  
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Figure 4-61: The line graph of Forest Covertype dataset using Rand index on DenStream and modified 

DenStream epsilon set at 0.05. 

 

In Table 4-9, the summary of performance of the three algorithms on Forest Covertype, 

DenStream and modified DenStream epsilon 0.05 show that ClusTree performed best on 

performance metrics CMM and Purity with 0.764913 and 0.983300 respectively. CluStream 

outperforms on performance metrics Silhouette Coefficient and Rand index with 0.801819 

and 0.564100 respectively. The modified DenStream outperforms DenStream on metrics 

CMM, Silhouette Coefficient, and Purity. 

 

Table 4-9: Forest Covertype dataset on epsilon parameter set at 0.05. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.749105 0.764913 0.484317 0.518633 

Purity 0.918534 0.983300 0.955072 0.960213 

Silhouette 0.801819 0.613921 0.629341 0.664602 

Rand index 0.564100 0.555170 0.517388 0.496804 

 

Figure 4-62 is the visualized bar chart for the average values of the algorithms on Forest 

Covertype dataset with epsilon parameter set at 0.05 on performance metrics CMM, Purity, 

Silhouette Coefficient, and Rand index. The modified DenStream outruns DenStream on 

metrics CMM, Purity, and Silhouette Coefficient. 
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Figure 4-62: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.05 on 

Forest Covertype dataset. 

 

4.2.8 Effects of Epsilon parameter tuning on Electricity dataset. 

This section demonstrates the performance of the three algorithms on Electricity dataset.  The 

evaluation shows the effects of epsilon parameter adjustment on modified DenStream and 

DenStream against CluStream and ClusTree. The line chart for DenStream and modified 

DenStream with epsilon 0.03 against ClusTree and CluStream algorithms are presented in 

Figure 4-63, Figure 4-64, Figure 4-65, and Figure 4-66 using performance metrics CMM, 

Purity, Silhouette Coefficient and Rand index.  

Figure 4-63 is the visualized line graph of performance metric CMM on Electricity dataset 

and epsilon parameter of DenStream and modified DenStream set at 0.03. ClusTree 

outperforms other algorithms with an average value of 0.795963. ClusTree’s highest point 

occurs at instance 40000 and lowest point at instance zero. DenStream highest point value is 

at instance 8000 and lowest point is at instance 23000. DenStream has the least average value 

of 0.600013. CluStream’s highest point value is at instance 19000 and lowest point is at 

instance zero. CluStream’s average value is 0.759476. The modified DenStream outclasses 

DenStream with an average value of 0.643626. The modified DenStream’s highest point 

occurs at instances zero to 4000. 
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Figure 4-63: The line graph of Electricity dataset using CMM on DenStream and modified DenStream epsilon 

set at 0.03. 

 

Figure 4-64 is the visualized line graph of performance metric Purity on Electricity dataset 

and epsilon parameter of DenStream and modified DenStream set at 0.03. ClusTree 

outperforms other algorithms with an average value of 0.869373. DenStream’s lowest point 

occurs at instance 13000. ClusTree’s lowest point is at instance 12000 and highest point is at 

instance zero. The modified DenStream’s highest point is at 24000 and has an average value 

of 0.843952 which outruns both DenStream and ClusTree. 

 

 

Figure 4-64: The line graph of Electricity dataset using Purity on DenStream and modified DenStream epsilon 

set at 0.03. 
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Figure 4-65 is the visualized line graph of performance metric Silhouette Coefficient on 

Electricity dataset and epsilon parameter of DenStream and modified DenStream set at 0.03. 

CluStream outperforms other algorithms with an average value of 0.670170. CluStream’s 

lowest point occurs at instance zero and the highest point is at instance 13000. DenStream’s 

highest point value is 1.000 at the instances 13000 - 15000 and lowest point is at instance 

17000. ClusTree’s highest point value is at instance 41000. The modified DenStream’s 

highest point is at instance zero and its lowest point value is at instance 5000.  

 

 

Figure 4-65: The line graph of Electricity dataset using Silhouette Coefficient on DenStream and modified 

DenStream epsilon set at 0.03. 

 

Figure 4-66 illustrates the line graph of performance metric Rand index on Electricity dataset 

and epsilon parameter of DenStream and modified DenStream set at 0.03. DenStream 

outperforms other algorithms with an average value of with values 0.511141. DenStream’s 

highest point is at instance 8000 with a value of 0.577 and the lowest point is at instances 

1000 and 33000 with a value of 0.490. ClusTree’s highest point is at instance 21000 with a 

value of 0.538 and lowest point at instance 1000 with a value of 0.460. CluStream’s highest 

point value is 0.571 at instance 21000 and lowest point is at instances zero and 19000 with a 

value of 0.500. The modified DenStream was outclassed by other algorithms.  
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Figure 4-66: The line graph of Electricity dataset using Rand index on DenStream and modified DenStream 

epsilon set at 0.03. 

 

Table 4-10 presents the tabulated performance of the algorithms on Forest Covertype and 

DenStream and modified DenStream epsilon parameter set at 0.03 shows that ClusTree 

outperforms on performance metrics CMM and Purity with 0.765963 and 0.869373 

respectively. CluStream outperforms on performance metrics Silhouette Coefficient with 

0.670710. DenStream outperforms on metric Rand index with a value of 0.511141. However, 

the modified DenStream outperforms against DenStream on metrics CMM and Purity. 

 

Table 4-10: Electricity dataset on epsilon parameter set at 0.03. 

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.759476 0.765963 0.600013 0.643626 

Purity 0.776815 0.869373 0.830573 0.843952 

Silhouette 0.670170 0.457088 0.485307 0.440715 

Rand index 0.509466 0.507946 0.511141 0.504372 

 

 

Figure 4-67 is the visualized bar chart for the average values of the algorithms on Electricity 

dataset with epsilon parameter set at 0.03 on performance metrics CMM, Purity, Silhouette 

Coefficient, and Rand index. The modified DenStream outperformed DenStream on metrics 

CMM and Purity. 
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Figure 4-67: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.03 on 

Electricity dataset. 

 

Again, the effect of modified DenStream with adjusted epsilon 0.05 was demonstrated against 

CluStream, ClusTree, and DenStream algorithms on the Electricity dataset. The performance 

metrics CMM, Purity, Silhouette Coefficient, and Rand index were used. The line graph of 

the performance metrics is presented in Figure 4-68, Figure 4-69, Figure 4-70, and Figure 4-

71. 

Figure 4-68 presents the line graph of performance metric CMM on Electricity dataset, 

DenStream and modified DenStream epsilon parameter set at 0.05. DenStream shows a better 

performance over ClusTree and CluStream with an average value of 0.783626. The modified 

DenStream likewise outperforms both ClusTree and CluStream with an average value of 

0.776266. DenStream’s highest point value is at instance instances zero - 4000 and lowest 

point at instance 35000. The highest point of the modified DenStream occurs at instances zero 

– 4000 and lowest point at instance 18000. CluStream’s lowest point is at instance 11000 and 

highest point at instance 29000. ClusTree’s highest point occurs at instance 40000 and lowest 

point at instance zero.  
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Figure 4-68: The line graph of Electricity dataset using CMM on DenStream and modified DenStream epsilon 

set at 0.05. 

 

Figure 4-69 is the visualized line graph of performance metric Purity on Electricity dataset 

and epsilon parameter of DenStream and modified DenStream set at 0.05. ClusTree 

outperforms other algorithms with an average value of 0.869373. The modified DenStream 

outperforms both CluStream and DenStream with an average value of 0.784972. DenStream’s 

lowest point occurs at instance 5000 and highest point at instance 39000. ClusTree’s lowest 

point occurs at instance 12000. CluStream’s highest point occurs at instance 13000 and 

lowest point at instance 11000. 

 

 

Figure 4-69: The line graph of Electricity dataset using Purity on DenStream and modified DenStream epsilon 

set at 0.05. 
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Figure 4-70 is the visualized line graph of performance metric Silhouette Coefficient on 

Electricity dataset and epsilon parameter of DenStream and modified DenStream set at 0.05. 

DenStream demonstrates a better performance than ClusTree and CluStream with an average 

value of 0.569716. DenStream’s highest point of 1.00 occurs along many instances and 

lowest point is at instance 42000. ClusTree’s highest point is at instance 41000 and lowest 

point is at instance zero. CluStream’s highest point occurs at instance 5000 and lowest point 

at instance 24000. 

 

 

 

Figure 4-70: The line graph of Electricity dataset using Silhouette Coefficient on DenStream and modified 

DenStream epsilon set at 0.05. 

 

Figure 4-71 is the visualized line graph of performance metric Rand index on Electricity 

dataset and epsilon parametrer of DenStream and modified DenStream set at 0.05. CluStream 

outperforms other algorithms with an average value of 0.509466. CluStream’s highest point 

occurs at instance 1000 and lowest point at instances 19000 and 41000. ClusTree’s lowest 

point is at instance 1000 and highest point at instance 21000. DenStream’s highest point is at 

instance 1000 and lowest point at instance 35000. The modified DenStream however, 

underperforms other algorithms with an average of 0.502474. 
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Figure 4-71: The line graph of Electricity dataset on DenStream and modified DenStream epsilon set at 0.05. 

 

Table 4-11 indicates that DenStream outperforms on performance metric CMM with 

0.783626. CluStream outperforms other algorithms on performance metrics Silhouette 

Coefficient and Rand index with 0.670170 and 0.509466 respectively. ClusTree outperforms 

on performance metric Purity with 0.869373. The modified DenStream outperforms 

DenStream on metric Purity. 

 

Table 4-11: Electricity dataset on epsilon parameter set at 0.05.  

Metrics CluStream ClusTree DenStream mod-DenStream 

CMM 0.759476 0.765963 0.783626 0.776266 

Purity 0.776815 0.869373 0.753844 0.784972 

Silhouette 0.670170 0.457088 0.569716 0.495679 

Rand index 0.509466 0.507946 0.508257 0.502474 

 

Figure 4-72 presents the visualization of the bar chart for the algorithms on Electricity dataset 

with epsilon parameter set at 0.05 on performance metrics CMM, Purity, Silhouette 

Coefficient, and Rand index. 
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Figure 4-72: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.05 on 

Electricity dataset. 

 

4.3 Discussion 

The choice of a suitable parameter settings in data stream clustering requires expert 

knowledge. The first research objective to “identify the method of building a MOA repository 

from source to implement the modified algorithm” was addressed in chapter 3 with 

implementation of the modified DenStream. The second research objective to “identify the 

hyperparameters appropriate for parameter-tuning” was used to demonstrate the effects of 

noise levels and epsilon parameter-tuning on DenStream and modified DenStream. using 

synthetic data stream and real-world datasets. The values 0.02, 0.03 and 0.05 were set as the 

epsilon parameter tuning and the noise level set between 0%, 10%, and 30%. Lastly, the third 

research objective identifies the performance metrics CMM, Silhouette coefficient, and Rand 

index.  

The experimental results using the default parameter settings on the RandomRBFGenerator in 

Table 4-1. The results indicate that ClusTree outperforms other algorithms on performance 

metrics CMM, Silhouette Coefficient and Rand index with an average value of 0.902690, 

0.771385, and 0.885936 respectively. The modified DenStream outperforms other algorithms 

on metric Purity with an average value of 0.951441 and likewise outperforms DenStream on 

metrics CMM and Rand index.  
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On the performance of Forest Covertype using the default parameter settings in Table 4-2, the 

results show that CluStream outperform all other algorithms on metrics CMM with an 

average value 0.749105. ClusTree outperforms other algorithms on metric Silhouette 

coefficient with a mean value 0.829813. DenStream outperforms other algorithms on metrics 

Purity and Rand index with an average value of 0.972418 and 0.582461 respectively. The 

average value between DenStream and modified DenStream on metric Purity looks very 

similar. However, the modified DenStream outperforms DenStream on metric CMM with 

0.387108.  

On the performance using the Electricity dataset with default settings in Table 4-3, CluStream 

outperforms other algorithms using metric CMM with 0.759476. ClusTree outperforms other 

algorithms using metrics Silhouette Coefficient, and Rand index with 0.732103 and 0.512624 

respectively. DenStream also outperforms other algorithms on performance metric Purity with 

0.897288. The modified DenStream however, outperforms DenStream using metric CMM 

with 0.544408. 

On RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.03 in Table 4-4, CluStream outperformed all other algorithms on 

Silhouette Coefficient with a value of 0.821436. ClusTree outperforms other algorithms using 

metrics CMM and Purity with 0.984734 and 0.974619 respectively. Lastly, the modified 

DenStream outperforms on Rand index with a value of 0.889164.  

On RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.05 in Table 4-6, ClusTree outperforms other algorithms using 

metrics CMM and Purity with 0.984734 and 0.974619 respectively. CluStream outperforms 

on performance metrics Silhouette Coefficient and Rand index with 0.821436 and 0.839968 

respectively. The modified DenStream however, outperforms DenStream on all the metrics. 

On RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.03 in Table 4-5, DenStream outperforms other algorithms using 

metrics CMM and Silhouette Coefficient with an 0.825596 and 0.747127 respectively. 

ClusTree outperforms other algorithms using metric Purity with 0.976311. The modified 

DenStream outperforms other algorithms using metric Rand index with 0.844152. The 

modified DenStream also shows a better performance against DenStream on metric Purity. 

On RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and 

modified DenStream set at 0.05 in Table 4-7, ClusTree outperforms other algorithms on 
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performance metrics CMM, Purity, and Rand index with 0.764806, 0.976311, and 0.841067 

respectively. The modified DenStream outperforms on metric Silhouette Coefficient with a 

value of 0.644882. The modified DenStream likewise outperforms against DenStream on all 

metrics. 

On the Forest Covertype dataset with epsilon parameter of DenStream and modified 

DenStream set at 0.03 in Table 4-8, CluStream outperforms other algorithms using metrics 

Silhouette Coefficient and Rand index with 0.801819 and 0.564100 respectively. ClusTree 

outperforms other algorithms using metrics CMM and Purity with 0.764913 and 0.983300 

respectively. The modified DenStream however outperforms DenStream on metric CMM.   

On the Forest Covertype dataset with epsilon parameter of DenStream and modified 

DenStream set at 0.05 in Table 4-9, ClusTree has a better performance on metrics CMM and 

Purity with 0.764913 and 0.983300 respectively. CluStream outperforms other algorithms 

using metrics Silhouette Coefficient and Rand index with 0.801819 and 0.564100 

respectively. The modified DenStream outperforms DenStream on metrics CMM, Purity, and 

Silhouette Coefficient. 

On the Electricity datas with epsilon parameter of DenStream and modified DenStream set at 

0.03 in Table 4-10, ClusTree outperforms other algorithms using metrics CMM and Purity 

with 0.765963 and 0.869373 respectively. CluStream outperforms other algorithms using 

metrics Silhouette Coefficient with 0.670710. DenStream outperforms other algorithms using 

metric Rand index with 0.511141. However, the modified DenStream outperforms against 

DenStream on metrics CMM and Purity.  

On the Electricity dataset with epsilon parameter of DenStream and modified DenStream set 

at 0.05 in Table 4-11, DenStream outperforms other algorithms using metric CMM with 

0.783626. CluStream outperforms other algorithms using metrics Silhouette Coefficient and 

Rand index with 0.670170 and 0.509466 respectively. ClusTree outperforms other algorithms 

using metric Purity with 0.869373. The modified DenStream however, outperforms 

DenStream on performance metric Purity. 
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CHAPTER 5: Conclusions and Future Work 

5.0 Conclusions 

In conclusion, this dissertation demonstrates the performance of a modified DenStream 

algorithm against state-of-the-art algorithms CluStream, ClusTree, and DenStream on the 

Massive Online Analysis (MOA) tool. The analysis involves the streaming synthetic dataset 

generated in MOA using the RandomRBFGenerator and real-world datasets (Electricity and 

Forest Covertype). The research objective to “identify the method of building a MOA 

repository from source to implement the modified algorithm” was done using the IntelliJ 

IDEA Community Edition 2022.2 and we implemented the modified DenStream in Java on it. 

We demonstrated the modified DenStream against other algorithms using the default 

parameter settings for synthetic dataset generated using RandomRBFGenerator with 205000 

instances. On the real-world dataset Forest Covertype, it involves using 205000 instances, and 

on the Electricity dataset, it involves using 45000 instances.  

To answer the research objective “identify the hyperparameters appropriate for parameter-

tuning”, we identified two hyperparameters (epsilon and minPts) in DenStream suitable for 

parameter specification adjustment. We demonstrated the effects RandomRBFGenerator 

noise level adjustment between 0%, the default 10%, and 30% on the modified DenStream 

against algorithms and implemented epsilon parameter-tuning using the default 0.02, 0.03 and 

0.05 respectively. We also compared the effects against other algorithms using 

RandomRBFGenerator noise level between 0%, the default 10%, and 30% on real-world 

datasets (Electricity and Forest Covertype).  

The experimentation involves identifying appropriate performance metrics for clustering 

quality which addressed the research objective to “identify the performance metrics 

applicable for clustering quality”. We identified the performance metrics CMM, Silhouette 

Coefficient, and Rand index and demonstrated the evaluation of the algorithms using these 

metrics.  The results based on RandomRBFGenerator with default settings show that 

CluStream performed better on performance metrics (CMM, Silhouette Coefficient, and Rand 

index) compared to other algorithms. The modified DenStream outperforms other algorithms 

on metric Purity and shows a better performance against DenStream on metrics CMM and 

Rand index.  

On Forest Covertype with default settings, CluStream outperforms all other algorithms on 

performance metrics CMM, DenStream outperforms other algorithms using metrics Purity 
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and Rand index, ClusTree outperforms other algorithms using metric Silhouette coefficient. 

However, the modified DenStream outperforms DenStream on performance metric CMM. 

The Electricity dataset with default settings indicates that CluStream outperforms other 

algorithms on metric CMM; ClusTree outperforms other algorithms using metrics Silhouette 

Coefficient and Rand index; DenStream also outperforms on performance metric Purity. 

However, the modified DenStream outperforms DenStream using metric CMM. 

On parameter-tuning and noise levels, the modified DenStream outperformed DenStream on 

performance metrics CMM, Purity and Rand index on RandomRBFGenerator with 0% noise 

level and epsilon parameter set at 0.03 and 0.05. On RandomRBFGenerator with 30% noise 

level and epsilon parameter set at 0.03 and 0.05, the modified DenStream outperformed 

DenStream on performance metrics Purity and Rand index and other algorithms (CluStream 

and ClusTree) in at least one metric (CMM and Silhouette Coefficient) using epsilon 

parameter set at 0.03. The modified DenStream also outperforms other algorithms on 

performance metric Silhouette Coefficient with epsilon parameter set at 0.05. The modified 

DenStream outruns DenStream on all performance metrics using epsilon parameter at 0.05. 

Lastly, using real-world datasets (Electricity and Forest Covertype) shows that on Forest 

Covertype with epsilon parameter set at 0.03, the modified DenStream outruns some 

algorithms at some metrics. The experimental results using Forest Covertype dataset with 

epsilon parameter set at 0.05 show that modified DenStream outclasses DenStream on metrics 

CMM, Purity, and Silhouette Coefficient. ClusTree outperforms other algorithms metric 

Silhouette Coefficient and DenStream outperforms on metric CMM, CluStream outperforms 

other algorithms on metrics Purity and Rand index using Electricity dataset with epsilon 

parameter set at 0.03. The Electricity dataset with epsilon parameter set at 0.05, shows that 

DenStream outperforms other algorithms using metric CMM. ClusTree outperforms on 

performance metric Silhouette Coefficient; and CluStream outperforms other algorithms 

using metrics Rand index and Purity. However, the modified DenStream outshine DenStream 

on performance metric Purity. 

We were unable to demonstrate the performance of the modified DenStream on memory 

usage and time because the MOA framework could not display the chart for memory and time 

for comparison on the algorithms. 
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5.1 Future Work 

The future work of this research will try to improve on the modified algorithm and 

experiment on the effects of hyper-parameters tuning like the decay factor and outlier 

threshold. The implementation of an improved algorithm on the most critical challenges of 

parameter settings in data stream clustering which can detect clusters of arbitrary shape, 

group data streams into clusters, preserve clusters dynamically, and the visualization of the 

memory usage and time are other future directions.  

Hybrid algorithm is another direction for future research. Proposing a hybrid algorithm robust 

arbitrary shapes detection and resistance to noise will be of interest to both researchers and 

academia.  
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Appendix B: Visualized Metrics (Purity, Silhouette Coefficient, and Rand 

index) 

 

The visualization of the metric Purity on CluStream against DenStream running in the 

background when other selected metrics is running is presented below. 

 

 

 

The visualization of the metric Silhouette coefficient on CluStream against DenStream 

running in the background when other selected metrics is running is presented below. 
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The visualization of the metric Rand index on CluStream against DenStream running in the 

background when other selected metrics is running is presented below. 

 

 

 

The visualization of the metric Purity on CluStream against ClusTree running in the 

background when other selected metrics is running is presented below. 
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The visualization of the metric Silhouette coefficient on CluStream against ClusTree running 

in the background when other selected metrics is running is presented below. 

 

 

 

The visualization of the metric Rand index on CluStream against ClusTree running in the 

background when other selected metrics is running is presented below. 

 

 

 


