

Page | i

Application of Improved density-based

Algorithms to Data Stream and

Performance Evaluation

 by

AKINOSHO, Tajudeen Akanbi

(58300481)

A dissertation submitted in accordance with the requirements for

the degree of

MASTER OF SCIENCE

In the subject

COMPUTING

at the

UNIVERSITY OF SOUTH AFRICA

Supervisors:
+Prof Wang Zenghui.

&
*Mr. Elias Tabane

OCTOBER 2023

+wangz@unisa.ac.za
*tabane@unisa.ac.za

mailto:+wangz@unisa.ac.za
mailto:*tabane@unisa.ac.za

Page | ii

Application of Improved Clustering Algorithms to Data Stream and Performance Evaluation

By

AKINOSHO, Tajudeen Akanbi

Abstract

Density-based algorithms are effective in the detection of clusters with arbitrary shapes and

outliers even when information about the number of clusters is not available. Parameter

specification in data stream clustering remains a challenge. Selecting a suitable parameter-

tuning is germane in having a good clustering quality. The density-based algorithm

DenStream is an example of data stream clustering algorithms that require several parameter

specifications. In this dissertation, an improved DenStream with a modified distance measure

was proposed and demonstrated with parameter-tuning in Massive Online Analysis (MOA)

using synthetic and real-world datasets. The modified DenStream algorithm was compared

against CluStream, ClusTree and DenStream in the presence of noise levels 0%, 10%, and

30% and manually selected epsilon parameters 0.02, 0.03, and 0.05 respectively. The epsilon

parameter range [0.02 – 0.05] was not used due to some algorithm not working on real-world

datasets. The effects on clustering qualities were evaluated and demonstrated using

performance evaluation metrics CMM, Purity, Silhouette Coefficient, and Rand index on the

synthetic and real-world datasets. Finally, the result shows that effectiveness of the

algorithms depends on the parameter-tuning and no single algorithm is a one-size-fits-all for

the performance metrics.

Keywords: data stream clustering, stream clustering, data stream, clustering, MOA, clusters, CluStream,

DenStream, ClusTree, modified DenStream, arbitrary shape

Page | iii

Acknowledgments

All praise and adoration be to Allah (SWT) for HIS Grace over me and for granting me the

opportunity to complete this research after my medical health challenges. I am grateful to

Allah (SWT) that I was able to successfully attain my goal of finishing my master’s degree.

I thank my supervisors, Prof. Zenghui Wang, and Mr. Elias Tabane for their wonderful

support to secure a bursary during my period of need and for their encouragement to do and

complete this research most especially during my medical challenges.

I appreciate my parents' late Alhaji Musibaudeen Akinosho and my mother Alhaja Titilayo

Akinosho (Nee Onitiri) for their love, prayers, and support. Likewise, I appreciate my pillar

of support, my love, and my treasure island, Dr. Maryam Mojisola Bello-Akinosho for her

continuous support, love, and kindness before, during, and after my medical challenges. She

pushed me to the limit to achieve this dream academic height. I also appreciate my children

(Abdus-Samad, Rahmatullah, and Naeemullah) for their support and understanding at

home to complete this academic task.

Everyone needs support and I found that embedded in my family. Over the years, I have

benefitted from the support of my family. You all came together in my difficult times, mostly

during and after my medical challenges. I appreciate my siblings, the Akinoshos from Ikija,

Abeokuta in Ogun state, Nigeria, and the family of my wife the Bellos from Agbole Orunkan,

Owu kingdom in Ogun state, Nigeria., for their financial and moral support and prayers.

I would also like to recognize the unflinching support of the following individuals and

families: Dr and Dr. (Mrs.) Adebesin, Dr. and Mrs. Raji, Prof. Rasheed and Mrs.

Adeleke, Prof Bilamin Oboiren and Dr. Fatima Oboiren, Mr. Idris, Prof Saheed Oke and

Mrs. Oke. Dr. Kashimawo Afolabi and Mrs. Afolabi.

I appreciate the positive contributions of the National Institute for Theoretical Computational

Sciences (NiTheCS) led by Prof. Francesco Petruccione and his team most especially

Binjamin Barsch for providing an in-depth analysis of issues during his regular training

sessions that improved and reshape my knowledge and understanding. I also appreciate Mrs.

Rene Kotze (NiTheCS) for regularly sending me important messages about NiTheCS

training, workshops, colloquium, and mini school.

Page | iv

Declaration of Authorship

Name: AKINOSHO, Tajudeen Akanbi

Student number: 58300481

Degree: Master of Science in Computing

“Application of Improved Clustering Algorithms to Data Stream and Performance

Evaluation”

I declare that the above dissertation is my own work and that all the sources that I have used

or quoted have been indicated and acknowledged by means of complete references.

I further declare that I submitted the dissertation to originality checking software and that it

falls within the accepted requirements for originality.

I further declare that I have not previously submitted this work, or part of it, for examination

at Unisa for another qualification or at any other higher education institution.

 October 4, 2023

 SIGNATURE DATE

Page | v

To my family for all their love.

Page | vi

Table of Contents

Abstract ... ii

Acknowledgments .. iii

Declaration of Authorship .. iv

List of Figure .. viii

List of Tables .. xii

List of abbreviations .. xiii

CHAPTER 1: Introduction ... 2

1.0 Introduction and background ... 2

1.1 Problem Statement... 3

1.2 Research Aim ... 4

1.2.1 Research Objectives .. 4

1.3 Motivation ... 4

1.3.1 The Impact of this Research on Society .. 5

1.4 Overview of Methodological Approach ... 5

1.5 Publications .. 9

1.6 Organization of this Dissertation .. 9

CHAPTER 2: Literature Review ... 10

2.1 Data Stream Clustering ... 10

2.2 Arbitrary Shape Clusters .. 12

2.3 Time Window Techniques ... 18

2.4 Clustering Techniques ... 19

2.4.1 Partitioning Clustering ... 20

2.4.2 Hierarchical-based Clustering ... 20

2.4.3 Grid-based Clustering .. 21

2.4.4 Density-based Clustering .. 21

2.4.5 Model-based Clustering .. 21

2.4.6 Fuzzy Clustering .. 22

2.5 Similarity and Distances .. 24

2.6 Clustering Performance Metrics .. 27

2.7 Summary ... 29

CHAPTER 3: Research Methodology ... 31

3.1 Massive Online Analysis Graphical User Interface (GUI) ... 31

Page | vii

3.2 State-of-the-art Clustering .. 32

3.3 The modified DenStream .. 37

3.4 Data Collection ... 38

3.5 Datasets ... 39

3.5.1 Synthetic dataset .. 39

3.5.2 Real World datasets .. 39

3.6 Evaluation Platform Parameter Setup... 39

3.7 Performance Evaluation .. 40

3.8 Ethical Clearance ... 41

3.9 Summary ... 41

CHAPTER 4: Experimental Results and Analysis ... 42

4.1 Experimental Parameter Setup .. 42

4.2 Experimental with default settings ... 43

4.2.1 RandomRBFGenerator with default Noise Level .. 48

4.2.2 Forest Covertype with default settings. ... 52

4.2.3 Electricity with default settings .. 58

4.2.4 Effects of Epsilon parameter tuning on Synthetic dataset. 64

4.2.6 Effects of Epsilon parameter tuning on Forest Covertype. 79

4.2.8 Effects of Epsilon parameter tuning on Electricity dataset................................... 87

4.3 Discussion.. 95

CHAPTER 5: Conclusions and Future Work ... 98

5.0 Conclusions ... 98

5.1 Future Work ... 100

References ... 101

Appendix A: Ethics Approval form ... 111

Appendix B: Visualized Metrics (Purity, Silhouette Coefficient, and Rand index) 115

Page | viii

List of Figure

Figure 1-1: MOA framework for clustering adapted from (Kranen et al., 2012) 6

Figure 1-2: Option dialog for the RandomRBFGenerator stream data generator adapted from

((Kranen et al., 2010) ... 7

Figure 1-3: The new option dialog of RandomRBFGenerator data generator in MOA. 8

Figure 1-4: The methodology in this dissertation .. 8

Figure 2-1: Online – offline clustering paradigm (Source: Zubaroǧlu and Atalay, 2019). 11

Figure 2-2: Time window models for data stream clustering techniques. Source: Carnein and

Trautmann (2019b). ... 18

Figure 2-3: Data stream clustering methods (adapted from: Ghesmoune et al., 2016a). 23

Figure 3-1: MOA Graphical User Interface (GUI). ... 32

Figure 3-2: MOA graph output interface ... 32

Figure 3-3: MOA Clusterer: CluStream parameter setup .. 33

Figure 3-4: MOA Clusterer: ClusTree parameter setup .. 34

Figure 3-5: MOA Clusterer: DenStream parameter setup ... 34

Figure 3-6: Parameters in DenStream adapted from Li et al. (2020) 35

Figure 3-7: MOA framework adapted from Kranen et al. (2010). .. 36

Figure 3-8: Clustering algorithm setup and result output options. .. 36

Figure 4-1: MOA screenshot of RandomRBF. CluStream is on the right while DenStream is

on the left. The line graph is the output after 205000 instances. ... 44

Figure 4- 2: CluStream (red contour) for RandomRBFGenerator with 10% noise after 205000

instances. .. 44

Figure 4-3: ClusTree (blue contour) for RandomRBF with 10% noise after 205000 instances.

.. 45

Figure 4-4: DenStream for RandomRBF with 10% noise after 205000 instances. 45

Figure 4-5: The modified DenStream for RandomRBF with 10% noise after 205000

instances. .. 46

Figure 4-6: The line graph of RandomRBF with 10% noise level after 205000 instances using

CMM metric for CluStream and DenStream. .. 46

Figure 4-7: The line graph of RandomRBF with 10% noise level after 205000 instances using

CMM metric for CluStream and modified DenStream.. 47

Figure 4-8: RandomRBF for CluStream on the left and ClusTree on the right after 205000

instances. .. 47

Figure 4-9: The line graph of RandomRBF with 10% noise level after 205000 instances using

CMM metric for CluStream and ClusTree. ... 48

Figure 4-10: The line graph of RandomRBF using CMM on ClusTree, CluStream,

DenStream, and modified DenStream. .. 49

Figure 4-11: The line graph of RandomRBF with 10% noise level using Purity on ClusTree,

CluStream, DenStream and modified DenStream. .. 49

Figure 4-12: The line graph of RandomRBF with 10% noise level using Silhouette

Coefficient on ClusTree, CluStream, DenStream and modified DenStream. 50

Page | ix

Figure 4-13: The line graph of RandomRBF with 10% noise level using Rand index on

ClusTree, CluStream, DenStream and modified DenStream... 51

Figure 4-14: Performance metrics barplots of CluStream ClusTree, DenStream and modified

DenStream on RandomRBF with default setting. .. 52

Figure 4-15: The Forest Covertype dataset on CluStream. The red rings show the clustering,

the green rings are micro-clustering, and the black ring is ground-truth. 53

Figure 4-16: The Forest Covertype dataset on ClusTree. The blue rings show the clustering,

the green rings are the micro-clustering, and the black ring is the ground-truth. 53

Figure 4-17: The Forest Covertype dataset on DenStream. The tiny blue rings are the

clustering, the green rings, are the micro-clustering, and the black ring is the ground-truth. . 54

Figure 4-18: The modified DenStream for Forest Covertype dataset. The tiny blue rings are

the clustering, the green rings are the micro-clustering, and the black ring is the ground-truth.

.. 54

Figure 4-19: The line graph of Forest Covertype using CMM on ClusTree, CluStream,

DenStream, and modified DenStream. .. 55

Figure 4-20: The line graph of Forest Covertype using Purity on ClusTree, CluStream,

DenStream, and modified DenStream. .. 56

Figure 4-21: The line graph of Forest Covertype using Silhouette Coefficient on ClusTree,

CluStream, DenStream, and modified DenStream. ... 56

Figure 4-22: The line graph of Forest Covertype using Rand index on ClusTree, CluStream,

DenStream, and modified DenStream. .. 57

Figure 4-23: Barchart showing ClusTree, CluStream, DenStream, and modified DenStream

on Forest Covertype dataset. .. 58

Figure 4-24: CluStream for Electricity dataset after 45000 instances. 59

Figure 4-25: ClusTree for Electricity dataset after 45000 instances.. 59

Figure 4-26: DenStream for Electricity dataset after 45000 instances. 60

Figure 4-27: The modified DenStream for Electricity dataset after 45000 instances 60

Figure 4-28: The line graph of Electricity using performance metric CMM on ClusTree,

CluStream, DenStream, and modified DenStream. ... 61

Figure 4-29: The line graph of Electricity using performance metric Purity on ClusTree,

CluStream, DenStream, and modified DenStream. ... 62

Figure 4-30: The line graph of Electricity using performance metric Silhouette Coefficient on

ClusTree, CluStream, DenStream, and modified DenStream.. 62

Figure 4-31: The line graph of Electricity using performance metric Rand index on ClusTree,

CluStream, DenStream, and modified DenStream. ... 63

Figure 4-32: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream on

Electricity dataset ... 64

Figure 4-33: The line graph of RandomRBF with 0% noise level using CMM on modified

DenStream and DenStream epsilon set at 0.03. ... 65

Figure 4-34: The line graph of RandomRBF with 0% noise level using Purity on modified

DenStream and DenStream epsilon set at 0.03. ... 65

Figure 4-35: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient

on modified DenStream and DenStream epsilon set at 0.03. .. 66

Page | x

Figure 4-36: The line graph of RandomRBF with noise level 0% using Rand index on

modified DenStream and DenStream epsilon set at 0.03. .. 66

Figure 4-37: Bar plots of RandomRBF with noise level 0% on ClusTree, CluStream,

DenStream, and modified DenStream. .. 67

Figure 4-38: The line graph of RandomRBF with noise level 30% using CMM on DenStream

and modified DenStream epsilon set at 0.03. .. 68

Figure 4-39: The line graph of RandomRBF with noise level 30% using Purity on DenStream

and modified DenStream epsilon set at 0.03. .. 69

Figure 4-40: The line graph of RandomRBF with noise level 30% using Silhouette

Coefficient on DenStream and modified DenStream epsilon set at 0.03. 69

Figure 4-41: The line graph of RandomRBF with noise level 30% using Rand index on

DenStream and modified DenStream epsilon set at 0.03. ... 70

Figure 4-42: Bar plots of CluStream ClusTree, DenStream, and modified DenStream epsilon

set at 0.03 on RandomRBF with noise level 30%. .. 71

Figure 4-43: The line graph of RandomRBF with noise level 0% using CMM on modified

DenStream epsilon set at 0.05. ... 72

Figure 4-44: The line graph of RandomRBF with noise level 0% using Purity on modified

DenStream epsilon set at 0.05. ... 72

Figure 4-45: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient

on modified DenStream epsilon set at 0.05. .. 73

Figure 4-46: The line graph of RandomRBF with noise level 0% using Rand index on

modified DenStream epsilon set at 0.05. ... 74

Figure 4-47: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon

set at 0.05 on RandomRB with noise level 0%. ... 75

Figure 4-48: The line graph of RandomRBF with noise level 30% using CMM on modified

DenStream epsilon set at 0.05. ... 76

Figure 4-49: The line graph of RandomRBF with noise level 30% using Purity on modified

DenStream epsilon set at 0.05. ... 76

Figure 4-50: The line graph of RandomRBF with noise level 30% using Silhouette

Coefficient on modified DenStream epsilon set st 0.05. ... 77

Figure 4-51: The line graph of RandomRBF with noise level 30% using Rand index on

modified DenStream epsilon set at 0.05. ... 78

Figure 4-52: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon

set at 0.05 on RandomRBF with noise level 30%. .. 79

Figure 4-53: The line graph of Forest Covertype using CMM on DenStream and modified

DenStream epsilon set at 0.03. ... 80

Figure 4-54: The line graph of Forest Covertype using Purity on DenStream and modified

DenStream epsilon set at 0.03. ... 80

Figure 4-55: The line graph of Forest Covertype using Silhouette Coefficient on DenStream

and modified DenStream epsilon set at 0.03. .. 81

Figure 4-56: The line graph of Forest Covertype using Rand index on DenStream and

modified DenStream epsilon set at 0.03. ... 82

Figure 4-57: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon

set at 0.03 on Forest Covertype dataset. .. 83

Page | xi

Figure 4-58: The line graph of Forest Covertype dataset using CMM on DenStream and

modified DenStream epsilon set at 0.05. ... 84

Figure 4-59: The line graph of Forest Covertype dataset using Purity DenStream and

modified DenStream epsilon set at 0.05. ... 84

Figure 4-60: The line graph of Forest Covertype dataset using Silhouette Coefficient on

DenStream and modified DenStream epsilon set at 0.05. ... 85

Figure 4-61: The line graph of Forest Covertype dataset using Rand index on DenStream and

modified DenStream epsilon set at 0.05. ... 86

Figure 4-62: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon

set at 0.05 on Forest Covertype dataset. .. 87

Figure 4-63: The line graph of Electricity dataset using CMM on DenStream and modified

DenStream epsilon set at 0.03. ... 88

Figure 4-64: The line graph of Electricity dataset using Purity on DenStream and modified

DenStream epsilon set at 0.03. ... 88

Figure 4-65: The line graph of Electricity dataset using Silhouette Coefficient on DenStream

and modified DenStream epsilon set at 0.03. .. 89

Figure 4-66: The line graph of Electricity dataset using Rand index on DenStream and

modified DenStream epsilon set at 0.03. ... 90

Figure 4-67: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon

set at 0.03 on Electricity dataset. ... 91

Figure 4-68: The line graph of Electricity dataset using CMM on DenStream and modified

DenStream epsilon set at 0.05. ... 92

Figure 4-69: The line graph of Electricity dataset using Purity on DenStream and modified

DenStream epsilon set at 0.05. ... 92

Figure 4-70: The line graph of Electricity dataset using Silhouette Coefficient on DenStream

and modified DenStream epsilon set at 0.05. .. 93

Figure 4-71: The line graph of Electricity dataset on DenStream and modified DenStream

epsilon set at 0.05. .. 94

Figure 4-72: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon

set at 0.05 on Electricity dataset. ... 95

Page | xii

List of Tables

Table 2-1: Showing algorithms with Online or hybrid clustering paradigm. 11

Table 2-2: Summary of the Data Stream Clustering Algorithms .. 22

Table 2-3: Internal and external clustering validation measures ... 29

Table 3-1: Summary of algorithms and parameters in MOA (adapted from Carnein et al.,

2020b). ... 35

Table 3-2: System setup ... 40

Table 4-1: RandomRBF with default settings on the algorithms .. 51

Table 4-2: Forest Covertype dataset with default settings on the algorithms. 58

Table 4-3: Electricity dataset with default settings on the algorithms. 63

Table 4-4: RandomRBF 0% noise level with epsilon parameter set at 0.03. 67

Table 4-5: RandomRBF 30% noise level with epsilon parameter set at 0.03. 70

Table 4-6: RandomRBF 0% noise level with epsilon parameter set at 0.05. 74

Table 4-7: RandomRBF 30% noise level with epsilon parameter set at 0.05. 78

Table 4-8: Forest Covertype dataset on epsilon parameter set at 0.03. 82

Table 4-9: Forest Covertype dataset on epsilon parameter set at 0.05. 86

Table 4-10: Electricity dataset on epsilon parameter set at 0.03. .. 90

Table 4-11: Electricity dataset on epsilon parameter set at 0.05. .. 94

Page | xiii

List of abbreviations

ACM Advance Cluster Maintenance

AIS Artificial Immune System

ARFF Attribute Relation File Format

ARI Adjusted Rand Index

ATM Automated Teller Machine

BOCEDS Buffer-based Online Clustering for Evolving Data Stream

CEC Clustering Evolving data streams based on the adaptive Chebychev distance.

CEDAS Clustering Evolving Data streams into Arbitrary Shaped

CEDGM Clustering of Evolving Data via a density Grid-based Method

CF Cluster-Feature

CLARA Clustering Large Applications

CLARANS Clustering Large Applications Based Upon Randomized Search

CMC Core Micro-Cluster

CMM Clustering Mapping Measure

CODAS Clustering Online Data-streams into Arbitrary Shapes

DBSCAN Density Based Spatial Clustering of Applications with Noise

DENCLUE DENsity-based CLUstEring

DenSOINN Density Based Self Organizing Increment Neural Network

DFM Dynamic Feature Mask

DFPS-C Dynamic Fitness Proportionate Sharing Clustering

EDMStream Evolution of Density Mountain stream clustering algorithm

ELKI Environment for Developing KDD-Applications Supported by Index-

Structures

EM Expectation Maximization

HAC Hierarchical Agglomerative Clustering

ICER Irish Commission for Energy Regulation

ICFR Incremental Clustering using F-value Regression analysis.

IoT Internet of Things

MDSC Multi-density Stream Clustering

MOA Massive Online Analysis

Page | xiv

NMI Normalized Mutual Information

ODAC Online Divisive Agglomerative Clustering

OpStream Optimized Stream Clustering algorithm.

PAM Partitioning Around Medoids

PyOD Python Outlier Detection

RFID Radio Frequency Identification

SOM Self-organizing feature maps

SSQ Sum of Squared Distance

STING STatistical INformation Grid

SWEM Sliding Window with Expectation Maximization

WOA Whale Optimisation Algorithm

Page | 2

CHAPTER 1: Introduction

1.0 Introduction and background

The world is witnessing data revolution generated daily in large quantities. Lately, the

volume, speed, and diversity of data from network devices and online resources have

increased astronomically over time. This streaming data is unceasing, potentially unbounded,

and continuously evolving (Abid et al., 2019). Extracting knowledge from such important

data can lead to significant improvements in business, technology, finance, politics,

economics, international relations, and other sectors of society. However, to maximize the

benefits of continuous streams of data and their dynamic evolving nature in a dynamic

environment, sophisticated data mining tools are required. A data stream is unlike the

traditional static database as it is generated from sensor networks, weblogs, radio frequency

identification (RFID), Twitter streams, health monitoring systems, connected Internet of

Things (IoT) devices, mobile devices, and Automated Teller Machine (ATM) transactions

(Agrawal & Adane, 2016). The continued availability of data has provided compelling

reasons for developing tools to extract valuable knowledge. Data stream exploration has

developed into a significant research interest in the data mining community due to the

increasing generation of streaming information and importance of its applications (Agrawal &

Adane, 2016; Amini et al., 2014; Tareq et al., 2022). Data stream clustering poses many

challenges in the literature, such as detecting clusters of arbitrary shape, grouping data

streams into several clusters with no prior knowledge, and preserving clusters dynamically.

Several clustering algorithms are classified into six major groups: Density-based,

Hierarchical-based, Partitioning, Grid-based, Model-based, and Graph-based clustering.

The density-based algorithms is an important and reliable clustering algorithms for the

detection of arbitrary-shaped clusters (Amini et al., 2016).

Researchers recently proposed numerous density-based clustering algorithms including

Clustering Online Data-streams of Arbitrary Shapes (CODAS) (R. Hyde & Angelov, 2015);

an improved version of CODAS (i-CODAS) (Islam et al., 2019b); Clustering of Evolving

data streams based on Chebychev distance with false Merging (CEC-Merge) (Tareq &

Sundararajan, 2020); Buffer-based Online Clustering for Evolving Data Stream (BOCEDS)

(Islam et al., 2019a); and Clustering of Evolving Data-streams into Arbitrary Shapes

(CEDAS) (R. Hyde et al., 2017). Although outlier detection in data streams poses many

Page | 3

challenges (Togbe et al., 2020; Tran et al., 2020; Yao et al., 2018), detecting clusters with

multi-density data also remains a major challenge (Amini et al., 2016).

Outliers are categorized into three main groups: global/point, collective, and contextual

outliers (S. Sadik & Gruenwald, 2014; Thakkar et al., 2016). In some instances,

outliers/anomalies are classified into three main groupings: unsupervised, semi-supervised,

and supervised outlier detection (Goldstein & Uchida, 2016; Han et al., 2012; Pawar et al.,

2014) dependent on whether data are labeled or unlabeled. There are several algorithms

proposed for multi-density data clustering in the literature, but these suffer some

disadvantages: (1) some need more than a single pass; (2) some require the whole data; and

(3) some have high computational time. The density-based clustering algorithm is dependable

in arbitrary shape and noise detection. In this dissertation, the focus is to demonstrate the

effects of adjusting parameters on data stream clustering algorithms.

The Massive Online Analysis (MOA) is an open-source and leading tool for the analysis

and extracting of knowledge from streaming data and unsupervised outlier detection (Bifet et

al., 2018). Arguably, MOA is the most popular framework for data stream mining with a wide

range of algorithms and machine learning (ML) tools for classification, clustering, regression,

outlier detection, multi-label, multi-target concept drift detection, feature analysis, and

experimenter systems. It has a graphical user interface (GUI) and a workflow like the

Waikato Environment for Knowledge Analysis (WEKA). There are several density-based

algorithms for detecting arbitrary shape clusters and noise like CODAS and CEDAS.

However, the focus of this study is to demonstrate the effects of adjusting parameters on data

stream clustering algorithms CluStream, DenStream, and ClusTree found in the Massive

Online Analysis (MOA) framework.

1.1 Problem Statement

In real-time data streaming, clustering analysis is vital to gain valuable knowledge from the

streaming data. While several data stream clustering algorithms are available, there is no

‘one-size-fits-all algorithm for all’ types of problems and data sets. Several data stream

clustering algorithms suffers some deficiencies (Ahmed et al, 2020; Kokate et al., 2018).

There are several open challenges of data stream clustering. Zubaroğlu and Atalay (2020)

identified the challenges as (1) Finding the number of clusters (2) Parameter specification (3)

Lack of de facto evaluation criteria (4) Lack of high-quality benchmark data (5) No

availability of one-size-fits-all algorithms system platforms (6) Lack of algorithms for both

quantitative and categorical data. Parameters are often difficult to determine, notably for high-

Page | 4

dimensionality datasets (Han et al., 2012 p.446). The parameter settings of Density Based

Spatial Clustering of Applications with Noise (DBSCAN) are problematic (Guan et al.,

2019). Cao et al. (2006) tested the sensitivity of parameters on DenStream which is of

interest in this research. Zubaroğlu and Atalay, (2020, p.1226) stated that parameters such as

k, density threshold, decay rate, window length, and distance threshold are very susceptible to

the input data and affect the clustering quality. Bahri et al. (2022) stated that in evolving data

streams, algorithm choice and hyper-parameter tuning is tasking for non-experts because it

requires the domain knowledge and human expertise in achieving optima results. This is of

interest in this dissertation by manually looking at appropriate parameters best for the

datasets.

1.2 Research Aim

Parameter fine-tuning is very challenging in data stream clustering. The aim of this

dissertation is to implement a modified DenStream and investigate the sensitivity of the

parameter settings against the original DenStream and other known bench algorithms

(CluStream and ClusTree) in MOA. The clustering quality of the modified DenStream was

demonstrated in MOA using performance evaluation metrics Clustering Mapping Measure

(CMM), Purity, Silhouette Coefficient, and Rand index. The experimental results of the

algorithms were merged and visualized using Python libraries (pandas and hvplot) for proper

interpretation.

1.2.1 Research Objectives

The research objectives for this dissertation are thus:

(1) To identify the method of building a MOA repository from source to implement the

modified algorithm.

(2) To identify the hyperparameters appropriate for parameter-tuning.

(3) To identify the performance metrics applicable for clustering quality.

1.3 Motivation

Mode of data streams are constantly evolving and arriving at a fast rate. The sources include

smart devices, sensor networks, social media platforms, and financial data, among others.

There is a need to gain useful insights into a large data stream. Many of the suitable

algorithms for extremely high-frequency data stream clustering suffer some limitations

(Ahmed et al., 2020; Haneen et al., 2018). The choice of parameter settings is a challenge

Page | 5

(Carnein et al., 2020c); while varying the density of data streams is relatively hard (Cao et al.,

2006). Setting the appropriate parameters in data stream clustering requires domain

knowledge and human expertise. Fortunately, an open-source data analytic tool, Massive

Online Analysis (MOA), is available to perform the data stream clustering where the

parameters are manually fixed, and evaluation performance metrics selected. This makes it

appropriate for use in this study. It is envisaged that this research will achieve remarkable

results and find usefulness in density-based clustering applications.

1.3.1 The Impact of this Research on Society

Data are unceasingly generated in society in diverse areas such as financial transactions,

telephone calls, radio frequency identification (RFID), telecommunications, sensor

monitoring, weblog clicks, weather monitoring, recommender systems, medical diagnoses,

real-time surveillance, electricity usage prediction, and epidemics/disaster management. It is

important to analyze these datasets as soon as they are generated and extract knowledge from

them for a predictive purpose, as an example. One impact of our approach is the ability to

predict possible future trends based on continuously generated instances. Once a clustering

algorithm has learned how to categorize datasets, then such an algorithm can serve the

purpose of a predictive tool when required. Such algorithms are very useful, for example, in

predicting future load requirements based on online monitoring of electricity usage. Another

possible application is detecting fraud in financial transactions or threats to cyber

infrastructure. The application of unsupervised learning techniques, such as clustering, is

important to any aspect of society where data is being generated continuously.

1.4 Overview of Methodological Approach

The methodology adopted in this dissertation to investigate the data stream clustering

algorithms was by means of three methods using MOA framework in Figure 1-1. Firstly, the

default parameters of the algorithms on MOA using the RandomRBFGenerator for synthetic

datasets is implemented. Secondly, the effects of the default parameters with some noise

levels on the streaming synthetic dataset are quantified. The final method consisted of an

investigation into the behaviour of each algorithm and manually adjusted DenStream epsilon

parameter (see Figure 1-4). The data sources were mainly from a synthetic data generator

using the RBF data generator in MOA. This is the only known data generator for clustering in

MOA framework (see Figure 1-2 and Figure 1-3); and real-world benchmarks and publicly

available datasets in CSV (comma separator variable) file format; or ARFF (attribute relation

Page | 6

file format) files from the University of California Irvin (UCI) Machine Learning Repository

(Dua & Graff, 2019); USP Data Stream Repository(Souza et al., 2020);OpenML platform

(Vanschoren et al., 2014); Stream Clustering (Carnein, 2019); and Stream Data Mining

Repository (X. Zhu, 2010).

im

Figure 1-1: MOA framework for clustering adapted from (Kranen et al., 2012)

The Figure 1-1 shows the MOA workflow described as below:

• A data stream (feed, generator) from a file in ARFF format or CSV format using the

class FileStream or SimpleCSVStream and configured by setting the parameters.

• An algorithm (that is a classifier) is selected and its parameters are set.

• The evaluation metrics are chosen.

• The results can be stored for visualisation after executing the task.

Figure 1-2 displays the settings for the RandomRBFGeneratorEvents stream with adjustable

default parameters.

Page | 7

Figure 1-2: Option dialog for the RandomRBFGenerator stream data generator adapted from ((Kranen et al.,

2010)

Page | 8

Figure 1-3: The new option dialog of RandomRBFGenerator data generator in MOA.

Figure 1-4: The methodology in this dissertation

Page | 9

1.5 Publications

The main goal of this research is to investigate and demonstrate the performance of improved

DenStream algorithm against noise levels and sensitivity to parameter adjustment using

streaming synthetic dataset and real-world datasets. In the following, we report the list of

papers ready for publication.

• Akinosho, T. A., Tabane, E., & Wang, Z. (2023). A Comparative Analysis of Data

Stream Clustering Algorithms. International Journal of Computing, 22(4), 439-446.

https://doi.org/10.47839/ijc.22.4.3350

• Akinosho, T.A., Tabane, E. and Zenghui, W., 2023, October. Performance Evaluation

of Data Stream Clustering Algorithm on Parameter Specification. In International

Conference on Wireless Intelligent and Distributed Environment for Communication

(pp. 173-189). Cham: Springer Nature Switzerland.

1.6 Organization of this Dissertation

The rest of this dissertation is structured in this order:

Chapter 2 presents recent research on density-based clustering algorithms, discusses other

algorithms of interest, and provides a summary of related clustering techniques on

performance metrics.

Chapter 3 describes the methodology of data stream clustering techniques. The MOA open-

source software framework is presented.

Chapter 4 presents the experimental results, effects of the parameter tuning, demonstrated

data visualization with the performance metrics.

Chapter 5 discusses the results of the experimental approach and summarizes the main

contributions and future research directions.

Page | 10

CHAPTER 2: Literature Review

In this chapter, recent research on data stream clustering algorithms will be reviewed.

Arbitrary shape cluster detection and outlier detection, offline-online phases, and parameter

settings in several density-based techniques will be presented. Various clustering techniques

associated with data stream clustering will be previewed and likewise several clustering

techniques similarity distance measures will be presented. The performance evaluation

metrics constantly used in data stream clustering will be described.

2.1 Data Stream Clustering

Clustering is the process of grouping sets of elements having common characteristics into

homogeneous classes. Clustering is an unsupervised machine learning problem (Agrawal &

Adane, 2016) useful for processing unlabeled data and appropriate in recognizing structures

when information about data is available. In data stream clustering, groups of similar and

dissimilar objects are clustered together separately (Ackermann et al., 2012; Carnein et al.,

2020c). The clustering process in stream clustering algorithms is mostly divided into online

and offline phases (Fahy et al., 2019; Ghesmoune et al., 2016b; Haneen et al., 2018; Khalilian

et al., 2016; Xu et al., 2019). The online phase is dedicated to summarizing statistics of the

data converted into micro-clusters used in the offline phase, while the summaries are re-

clustered in the offline phase also called the clustering phase (Zubaroǧlu & Atalay, 2019)to

macro-cluster (Ahmed et al., 2020; Haneen et al., 2018; Roa et al., 2019). Most of the existing

density-based algorithms are either offline or a hybrid of offline and online (Islam et al.,

2019b). Some authors like Islam et al., (2019a), argued that offline algorithms are suitable for

data stream clustering due to the inability to store data stream clustering and clusters in

arbitrary shapes. Aljibawi et al. (2022) proposed an offline-online algorithm eMuDiS which is

an enhanced version of MuDi-Stream algorithm by Amini et al. (2016). Figure 2-1 describes

the online-offline clustering paradigm. Table 2-1 presents some of the stream clustering

algorithms with offline-online phases.

Page | 11

Figure 2-1: Online – offline clustering paradigm (Source: Zubaroǧlu and Atalay, 2019).

Table 2-1: Showing algorithms with Online or hybrid clustering paradigm.

Article Algorithm Online / Offline clustering

 Cao et al., (2006) DenStream offline-online DBSCAN

Zubaroǧlu and Atalay,

(2019)

UMAP

k-Means

Hyde and Angelov, (2015) CODAS Online Grid

Hyde et al., (2017) CEDAS Online Density

Aggarwal et al., (2003) CluStream offline-online k-Means

Islam et al., (2019a) i-CODAS Online Density

Chen and Tu, (2007) D-Stream offline-online Density

Forestiero et al., (2013) FlockStream Online Density

Fahy and Yang, (2019a) MDSC Online Density

Amini et al., (2016) MuDi-Stream offline-online Density & Grid

Li et al., (2022) ESA-Stream offline-online Density & Grid

Tareq et al., (2020a) CEC Online Density & Grid

Bezdek and Keller, (2021) Fuzzy C-Means Offline Fuzzy

Carvalho et at., (2016) SOM Offline Grid

Aljibawi et al., (2022) eMuDiS Offline-online Density

Xu et al., (2019) DenSOINN offline-online Model

Page | 12

2.2 Arbitrary Shape Clusters

Density-based algorithms are resourceful in the detection of arbitrary-shaped clusters and

outliers’ detection. Hyde and Angelov (2015) proposed an Online density-based algorithm

known as Clustering Online Data-streams into Arbitrary Shapes (CODAS). The algorithm

uses a simple local density for micro-cluster initialization which is later merged into clusters.

Rather than using a fixed radius, CODAS employ a global micro-cluster radius that is

constant (Islam et al., 2019b). The micro-cluster in CODAS used for storage has a ‘core’ and

‘non-core’ region (R. Hyde & Angelov, 2015). CODAS uses the Euclidean distance for

distance measurement calculation. CODAS was compared for purity and accuracy with

DenStream, Chameleon (Karypis et al., 1998); DBSCAN (Estert et al., 1996); ELM

(O’Callaghan et al., 2002); and DEC (Oussous et al., 2018) and it achieved comparable

results. Although CODAS was developed for online data stream clustering, clusters are not

allowed to evolve and update discarded micro-clusters (R. Hyde & Angelov, 2015; R. W.

Hyde et al., 2017; Saddam et al., 2020). Islam et al. (2019a) argued that it is erroneous to set

the optimal value of micro-cluster radius, therefore they proposed an improved Clustering

Online Data-streams into Arbitrary Shapes (i-CODAS) to maintain local micro-cluster radius.

According to Islam et al., (2019a), i-CODAS is less dependent on users to set the optimal

value parameter. The formation and separation of clusters in i-CODAS are confirmed by the

minimum or maximum radius values. Both CODAS and i-CODAS can detect arbitrary-

shaped clusters and noise.

Hyde et al. (2017) proposed “Clustering Evolving Data streams into Arbitrary Shaped”

(CEDAS). CEDAS is a fully online two-stage technique that: (i) produces micro-clusters; (ii)

merges the micro-clusters into macro-clusters. The technique uses the Euclidean distance

measure in a fully online method. The authors compared CEDAS against CluStream,

DenStream, and MR-Stream when evaluated using processing speed, detection of intrusion,

dimensional effects, adaptation to evolving data, purity, and Big Data, using both the real-

world London Air Quality and the KDDCup99 datasets. CEDAS can detect arbitrary-shaped

clusters and noise, but its drawback is a lower processing time. CEDAS witnessed some

improvements such as the buffer-based online clustering for evolving data stream (BOCEDS)

proposed by Islam et al., (2019b). BOCEDS is an entirely online density-based algorithm that

reduces dependency on users by recursively updating the micro-cluster radius to its local

optimal level. BOCEDS momentarily separates irrelevant clusters from fully irrelevant

clusters by using a buffer to store the irrelevant micro-clusters. BOCEDS performed well

Page | 13

against CluStream, DenStream CEDAS, and CODAS based on purity, accuracy, noise

sensitivity, speed, memory efficiency, and scalability.

Carnein et al. (2017) carried out an extensive comparison of ten different data stream

clustering algorithms using a standardized testing environment. According to the authors, this

is a novel comparable study of these algorithms. The comparative study was carried out using

numerous synthetic and real-world datasets. The authors proved that: (i) grid-based

algorithms require sufficient micro-clusters and (ii) arbitrary-shaped clusters are difficult to

identify. To reduce computational, memory, and still find arbitrary-shaped clusters, Attaoui et

al., (2022) proposed IMOC-Stream. IMOC-Stream uses the Ant-tree algorithm to determine a

cluster’s neighborhood and is free from user-defined numbers of clusters. The experimental

study was carried out using high-dimensional datasets and the performance evaluation

measures indicate that IMOC-Stream outperforms other algorithms on NMI and ARI.

Tareq et al. (2020a) also proposed an online clustering algorithm known as the clustering

evolving data streams based on the adaptive Chebychev distance (CEC). In CEC, the

summary of evolving data streams is stored as a core micro-cluster (CMCs). CEC is used for

calculating the distance between an inbound data point and the CMC center. CEC was

evaluated against CEDAS based on cluster purity, accuracy, and percentage of data points

assigned to clusters. CEC can handle high-dimensional datasets. Recently, Tareq et al.

(2020b) proposed the “Clustering of Evolving Data via a density Grid-based Method”

(CEDGM). CEDGM is a novel technique that uses grid granularity for the data reduction

process.

Mansalis et al. (2018) presented an analysis of benchmark stream clustering algorithms. The

applications of CluStream, DenStream, and ClusTree were appraised. The authors evaluated

the performance based on metrics such as the Clustering Mapping Measure (CMM), Sum of

Squared Distance (SSQ), and Purity for different parameter settings. The authors, however,

stated that SSQ is not appropriate for arbitrary shaped clusters. They vary two user-specified

parameters of DenStream (outlier threshold β and the decay factor λ) and reported that

DenStream outperformed CluStream and ClusTree on clustering quality based on window

size. The results also show that both ClusTree and CluStream outshined DenStream

performance metric CMM. However, only the real-world datasets Adult-Census, Electricity,

Covertype, and Poker-Hand were used. Roa et al. (2019) proposed a two-stage strategy

clustering algorithm: slower scale density-based algorithm and fast scale distance-based

algorithm to speed up enormous data arriving at a fast rate. The authors evaluated their

Page | 14

algorithm against CluStream and DenStream using performance metrics multi-density test,

robust path-based test, and concept drift experiment. Their algorithm outperformed both

DenStream and CluStream.

Amini et al. (2016) investigated the challenges in clustering algorithms like detecting clusters

in multi-density data. They argue that several of the implemented multi-density clustering

algorithms are inappropriate for data stream clustering and proposed a MuDi-Stream to

address the drawback. The authors point out that the proposed method is an improvement

over the DenStream algorithm. Fahy and Yang (2019a), however, proposed a Multi-density

Stream Clustering (MDSC) algorithm for the gap multi-density and tracing deviations in a

dynamic stream. The method discovers and tracks multi-density clusters continuously. The

MDSC is a cluster-feature (CF) in the form (N, LS, SS, t). The N is the number data of points

in the cluster { 𝑋𝑖 } 𝑖 = {1,⋯ ,𝑁}; LS is the linear sum of points (i.e, ∑ 𝑋𝑖𝑁
𝑖=1); SS is the

square sum of points (i.e., ∑ 𝑋𝑖
2𝑁

𝑖=1); and t is the time stamp. The performance of MDSC was

evaluated using four real and three synthetic datasets on three external evaluation metrics

(Purity, F-measure, and Rand index) and compared against four known density clustering

algorithms. The resultant value shows that MDSC outperforms well against the peer

algorithms. Fahy and Yang (2019a) argue that MDSC can track changes in seasonal and

cyclic behavior and is robust to noise. However, other potentials need to be explored.

Aljibawi et al., (2022) recently proposed an enhanced version of MuDi-Stream, code named

eMuDiS. The algorithm addresses the issue of streaming speed and stream dimension.

Aljibawi et al. (2022) demonstrated that eMuDiS outperforms MuDi-Stream on both real and

synthetic datasets.

Fahy and Yang (2019b) noted three types of changes in the data stream which are concept

evolution, concept drift, and feature level. The authors examine two ways in which changes

occur at the feature level (feature drift and feature evolution). Fahy and Yang (2019b)

highlighted two problems of high-dimensional data: (i) distance measurement; and (ii) the

concept of density. To mitigate the problem, Fahy and Yang (2019b) proposed a dynamic

feature mask (DFM) clustering technique. This method addresses the two documented

challenges of data streams (feature drift and clustering high-dimensional streams). The DFM

technique can detect and track feature drift and feature evolution. Fahy and Yang (2019b)

evaluate the DFM against the density-based algorithms (CEDAS, MDSC, ACSC, and

DenStream). The results showed that DFM improves performance and reduces execution time

Page | 15

when used alongside any density-based stream clustering algorithms and increases accuracy

and lower execution time.

Abid et al. (2019) highlighted some challenges of data stream such as concept drift, infinite

length, feature evolution, novelty detection, and ways of addressing them. They posited that

the developing nature is the most critical aspect of the data stream process. The authors

proposed a novel data stream clustering technique, AIS-Clus. This technique uses the

Artificial Immune System (AIS) meta-heuristic, which is described as a “bio-inspired

algorithm” (Abid et al., 2019). The AIS-Clus is then compared against CluStream and

DenStream on MOA. Yeoh et al. (2019) argue that near-perfect data stream clustering

algorithms should address “concept drift” and “concept evolution”. They proposed a novel

OpStream, an optimized stream clustering algorithm that fused meta-heuristic optimization

with data stream clustering. The authors categorized the novel algorithm into the initialization

and online phases. They investigated the three variations of the novel algorithm which are

Whale Optimisation Algorithm (WOA-OpStrem), BAT-OpStream, and Differential Evolution

(DE-OpStream) against CluStream and DenStream on four synthetic datasets and a real-world

dataset. The results indicated that the three variant algorithms performed better on synthetic

datasets than DenStream and CluStream. However, DenStream showed a more robust

performance than the three algorithms on the KDDC-99 dataset.

Carnein and Trautmann, (2018) proposed evoStream a novel stream clustering algorithm that

utilizes a heuristic optimization algorithm to improve the macro-clusters solution using idle

time and computational resources. The authors applied the DBSTREAM concepts to build the

algorithm for its speed and flexibility. They utilized four real-world datasets Powersupply,

Sensor, KDDCup99, and Covertype to evaluate the algorithm against many state-of-the-art

algorithms. The technique displayed a robust performance against the benchmark algorithms.

However, the authors only utilize the online phase of DBSTREAM for the stream and the Sum

of Squares (SSQ) performance evaluation measure. (Carnein and Trautmann 2019a)

implemented a new stream clustering algorithm userStream in customer segmentation to

identify and track customer segments. The algorithm employs time-faded Clustering Feature

(CF) theory and a two-phase clustering approach: online and offline phase. The authors

appraised the performance of the algorithm using real-world datasets from home furniture and

textile sectors and Silhouette performance measures. The resultant output showed that the

algorithm is valuable in tracking and identifying customer segments. However, the authors

did not test the algorithm against any of the benchmark algorithms.

Page | 16

Recently, Carnein et al. (2020b) proposed confStream, an innovative ensemble-based

approach, to implement an automated algorithm configuration for DenStream. Carnein et al.,

(2020b) used the Silhouette with evaluation measures to appraise the cluster quality of

confStream against DenStream. They use both synthetic dataset Random Radial Basic

Function (Random RBF) and real-world datasets (Covertype, and Sensor). The confStream

has a robust performance over DenStream in improving configuration. This ensemble

approach is, however, more time consuming than individual algorithms (Carnein et al.,

2020a). Ahmed et al. (2020) proposed an online-offline density-based algorithm, DGStream

with a discrete-time step model. This algorithm uses the DBSCAN algorithm at the online

and offline phases and feature vector. Ahmed et al. (2020) argues that DGStream is suitable

for recent information like stock markets. The DGStream algorithm was evaluated with

different parameter settings against DStream, ClusTree, and DenStream on both streaming

synthetic and real-world datasets. Moreover, the DGStream outperforms these algorithms

using Chameleon synthetic dataset performance metrics: F1-score, recall, purity, precision,

and time. On real-world datasets KDDCup’99, Forest Covertype, Adult-Census, and the

National Stocks Exchange of India (NSE Stocks, 2017). Ahmed et al. (2020) state that

DGStream is appropriate for handling outliers and noise with the minimum time complexity.

However, the research only uses numerical variables datasets.

Lee et al. (2019), investigated the challenges of density-based clustering and developed a

hybrid data streams clustering algorithm that fuses density-based and model-based

algorithms. The algorithm tested on both real-world and synthetic datasets performed

excellently in detecting data streams with noise. The authors proved the algorithm could

detect clusters faster and find optimal parameters proficiently. However, the paper compared

the algorithm to only DenStream algorithm.

Gajowniczek et al., (2020) proposed an algorithm for clustering multiple data streams in time

series. The algorithm is evaluated on a smart metering sensor dataset from the Irish

Commission for Energy Regulation (ICER). The authors only utilized 1000 households’

electricity consumption from a total of 4182 households due to missing values. They

observed seasonal cycles for annual, weekly, and daily electricity consumption. The results of

the study indicated that the algorithm is appropriate for clustering the flow of data and

suitable for segmenting electricity consumers, based on their usage and socio-economic

behaviours. Although the study focused on electricity consumption, the authors, however,

Page | 17

make a case for its applications in areas such as the stock market, and banking sectors, among

others.

Xu et al. (2019) proposed a novel data streams clustering algorithm, the Density Based Self

Organizing Increment Neural Network (DenSOINN). The algorithm utilizes both a self-

adaptive distance metric and a novel density-based method to solve problems of data

normalization and finding clusters in a neural network, respectively. The evaluation shows

that DenSOINN has a strong performance on both synthetic and real-world datasets over other

algorithms.

Gong et al. (2018) proposed a novel Evolution of Density Mountain stream clustering

algorithm (EDMStream). The EDMStream has the following abilities: (i) return updated

clustering results faster; (ii) adjust and adapt itself to changes in data distribution; and (iii)

dynamically adjust to the user’s preference. The authors compare the algorithm with well-

known benchmark algorithms: DenStream, D-Stream, DBSTREAM, and MR-Stream, and

reported that EDMStream has a robust performance and exhibits 7-15 high speed over the

other algorithms.

Yan et al., (2019), proposed a two-phased dynamic stream clustering algorithm Dynamic

Fitness Proportionate Sharing Clustering (DFPS-clustering) algorithm. The authors compare

the DFPS-clustering algorithm against other known two-phase algorithms (CluStream,

STREAM, DBStream, D-Stream, and HDDStream). The DFPS-clustering was evaluated using

three synthetic and four real-world datasets. The resultant output suggested that DFPS-

clustering has a robust performance against other algorithms with a limitation of high

computational cost.

Wang and Wang, (2018) proposed the DCluStream algorithm to address the challenges of

judging outliers and eliminating outdated data in time. The algorithm improves the CluStream

algorithm by: (i) adding at the online micro-clustering phase the decay time window

mechanism; and (ii) A buffer processing mechanism for memory storage. The study focuses

solely on improving online micro-clustering. This is divided into two parts: (i) handling new

data in real-time; and (ii) adjusting global micro clusters. The algorithm was compared with

CluStream using the KDDCup99 dataset. The authors reported that DCluStream exhibited an

improved clustering quality and reduces the processing time.

Li et al. (2022), proposed an Efficient Self Adaptive Stream (ESA-Stream) a fully online data

stream algorithm for learning parameter settings dynamically. The algorithm can detect

Page | 18

arbitrary-shaped clusters and speedup dimensionality reduction using the density grid-base

clustering technique. The authors evaluate the performance of ESA-Stream using both

synthetic and real-world datasets. The ESA-Stream outperforms state-of-the-art baselines in

both efficiency and effectiveness.

In the field of medicine, Al-Shammari et al. (2019) proposed a density-based clustering

algorithm that combined Piece-wise Aggregate Approximation and density-based with noise

(PAA+DBSCAN). The algorithm is suitable for the initial clustering of patients with similar

symptoms and Advance Cluster Maintenance (ACM) which is an incremental maintenance

approach in medical clusters. This approach is important in identifying and helping patients

with risks and underlining health challenges such as high blood pressure. The authors argue

that the new algorithm can group new patients into clusters of similar symptoms and track

those whose status is unstable while keeping close contact with those who are stable.

2.3 Time Window Techniques

There are several time-window techniques for data streams. The time-window of data objects

is given as W[i,j] = (xi, xi+1, …, xj), where i < j. The most popular time-window techniques

are damped/fading window, landmark window, sliding window, and tilted window model

(Carnein and Trautmann, 2019b; De Andrade Silva and Hruschka, 2016; Ghesmoune et al.,

2016b; Gomes et al., 2017; Laha and Putatunda, 2018; Yarlagadda et al., 2018; Yeoh et al.,

2019; Youn et al., 2018) see Figure 2.2.

Figure 2-2: Time window models for data stream clustering techniques. Source: Carnein and Trautmann

(2019b).

Page | 19

Agrawal and Adane (2016) summarized the efforts of researchers in data stream mining. They

presented a study of several data stream algorithms. The three data stream models presented

were the landmark, damped, and sliding windows. The authors identified terminologies and

approaches in data stream mining and outlined future research issues which would assist in

further research in the field.

1. Landmark window

In the landmark window model, discarding older data points is not required. The

clustering is applied from the initial starting point or timestamps t1 to the current

timestamps tc, W [t1, tc]. Examples of landmark window models include CluStream

(C. C. Aggarwal et al., 2003); BIRCH (T. Zhang et al., 1996).

2. Sliding windows

There are two basic types of sliding windows, count-based and time-based windows

(Kontaki et al., 2016). In a sliding window, old data expire as new data arrives for

analysis using the principle of first-In-First-Out (FIFO) (J. Shao et al., 2019). The

sliding window model has been proposed in much research (Kontaki et al., 2016; G.

Li et al., 2018; Lin & Su, 2019; Youn et al., 2018).

3. Damped window.

In the damped/fading window model, a data object is assigned varying weights based

on the arrival time where new entries received higher weights than older ones. The

data point weight decreases exponentially with time t through a fading function

𝑓(𝑡) = 2−𝜆𝑡 with 𝜆 > 0. An example of a damped window model is the DenStream

(Cao et al., 2006).

4. Tilted time window.

In the tilted time window model, different granularity levels are used based on recent

data points. The most current data is the finest granularity which becomes coarse as

data points get old. Examples of tilted-time window models are CluStream (C. C.

Aggarwal et al., 2003); HPStream (C. Aggarwal et al., 2004); and StreamKM++

(Ackermann et al., 2012).

2.4 Clustering Techniques

Several stream clustering algorithms in the literature have been implemented in MOA. Those

currently implemented are CluStream (C. C. Aggarwal et al., 2003), DenStream (Cao et al.,

2006); ClusTree (Kranen et al., 2011); D-Stream (Y. Chen & Tu, 2007; Tu & Chen, 2008);

Page | 20

StreamKM++(Ackermann et al., 2012); CobWeb (Fisher, 1996); confStream (Carnein et al.,

2020b), among others. Several of these algorithms are classified into Partitioning, Density-

based, Model-based, Grid-based, Hierarchical-based, and Graph-based (Kokate et al., 2018;

Mansalis et al., 2018); details of which are provided in the next sections.

2.4.1 Partitioning Clustering

The partitioning clustering is a sphere-shaped cluster. It is partitioned into both soft

(fuzzy/probabilistic) clustering and hard (crisp) clustering (Bezdek & Keller, 2021;

Chenaghlou, 2019; Moshtaghi et al., 2019; Rathore, 2018). In crisp clustering, the data point

belongs to a cluster or not whereas, in fuzzy clustering, the data point could be assigned to one

or more clusters, (Kuwil et al., 2020). The hard (crisp) clustering is susceptible to local

minimum than fuzzy clustering (Aggarwal & Reddy, 2014). There are several partitioning-

based techniques in the literature such as k-means (Ordonez, 2003); k-medoids or Partitioning

Around Medoids (PAM) (Kaufman & Rousseeuw, 1990); k-medians, k-mode, k-center,

Clustering LARge Applications (CLARA) (Kaufman & Rousseeuw, 1990); CluStream

(Aggarwal et al., 2003); StreamKM++ (Ackermann et al., 2012); Clustering Large

Applications Based Upon Randomized Search (CLARANS) Ng and Han (2002); (C. C.

Aggarwal & Reddy, 2014; Andreopoulos et al., 2009; Mittal et al., 2019). The most

established are the k-medoids and k-means. The k-means is not suitable for sphere-shaped

clusters although it can be used when the number of clusters is known.

2.4.2 Hierarchical-based Clustering

Hierarchical-based clustering is partitioned into: (i) divisive clustering; (ii) agglomerative

algorithms (Al-shammari, 2019; Hassani, 2015; Lee et al., 2019; Loureiro et al., 2005;

Rathore, 2018). The disivise is a top-down/hierarchical approach while the agglomerative

clustering utilizes the bottom-up/sequential approach. In agglomerative clustering, each

object starts as a single cluster and is merged into large clusters using a similarity measure

until the final cluster condition is met. Divisive clustering, on the other hand, works the

reverse way, it started with all objects in one large cluster and repeatedly splits into smaller

clusters based on the dissimilarity measure (Hassani, 2015; Jiri Skala, 2012). Examples of

divisive and agglomerative approaches are Online Divisive Agglomerative Clustering

(ODAC) and Hierarchical Agglomerative Clustering (HAC) (Rodrigues et al., 2006). In

hierarchical clustering, the distance between two clusters is determined using linkage such as

Single, Complete, or Average linkage (Andreopoulos et al., 2009). The hierarchical-based

Page | 21

clustering in the literature includes Chameleon (Karypis et al., 1998); BIRCH (Zhang et al.,

1996); CURE (Guha et al., 1998); and ROCK (Guha et al., 2000).

2.4.3 Grid-based Clustering

This method uses equal grid cells partitioning to accelerate the clustering process. Compared

to other clustering algorithms, grid-based clustering has an agile processing time and can

competently handle datasets grapple with noise. Most grid-based algorithms can detect

arbitrary-shaped clusters. Grid-based can be combined with other clustering like density-

based to form a hybrid clustering approach. There are several types of grid-based clustering

algorithm which include the fast and grid-based clustering for hybrid data stream (FGCH) (J.

Chen et al., 2019); density-and-grid-based (DGB) clustering (B. Wu & Wilamowski, 2017);

Clustering of Evolving Data streams via a density Grid-based Method (CEDGM) (Tareq,

Sundararajan, Mohd, et al., 2020); Grid-K-means (E. Zhu et al., 2019); and STING

(STatistical INformation Grid approach) (W. Wang et al., 1997).

2.4.4 Density-based Clustering

Density-based algorithms are effectual in the arbitrary-shaped clusters, noise, and outliers

detection. Density-based clustering is non-parametric method due to the non-assumptions

about the number of clusters (Aggarwal & Reddy, 2014). DenStream (Cao et al., 2006);

DBSCAN (Estert et al., 1996); MuDi-Stream (Amini et al., (2016), DENCLUE (DENsity-

based CLUstEring) (Hinneburg & Keim, 2003); CODAS (Hyde and Angelov, 2015), CEDAS

(Hyde et al., 2017); and BOCEDS (Islam et al., 2019b) are examples of density-based

algorithms for clustering evolving data streams.

2.4.5 Model-based Clustering

The model-based clustering method is based on a statistical model and permits objects to be

in multiple groups. The model-driven clustering relies on a specific model for each cluster to

identify the most suitable one. There are several model-based clustering techniques

documented: CobWeb (Fisher, 1996); Expectation Maximization (EM) Moon (1996);

CluDistream (Zhou et al., 2006); Self-organizing feature maps (SOMs) (Carvalho et at.,

2016); SWEM (Sliding Window with Expectation Maximization) (Dang et al., 2009); and

ICFR (Incremental Clustering using F-value Regression analysis). For further information

about model-based clustering see Carnein and Trautmann (2019b); H. Shao et al. (2019);

Sharma et al. (2018); and Singh (2015).

Page | 22

2.4.6 Fuzzy Clustering

In fuzzy C-Means clustering (FCM), objects are connected in the cluster range [0, 1] (Bezdek

& Keller, 2021). The FCM algorithm is sensitive to outliers and each data object could be

grouped into more than one cluster (Rasyid & Andayani, 2018). Many examples of FCM

include FUZZ-CARE by Song et al. (2020); FuzzyStream (de Abreu Lopes & de Arruda

Camargo, 2017); and d-FuzzyStream (Schick et al., 2018) among others.

The summary of some of the data stream clustering algorithms is presented in Table 2-2

below. The table shows the various techniques, the algorithms that have used the techniques,

the Time window model assigned to each algorithm, the cluster shape of each algorithm, their

data type, and how they can handle noise.

Table 2-2: Summary of the Data Stream Clustering Algorithms

Technique Algorithm Time

Window

Model

Cluster

shape

Data type Handle noise

Ordonez, 2003 K-means Arbitrary Numerical No

Ackermann et al.,

2012.

StreamKM++ Pyramidal Spherical Numerical

Kaufman and

Rousseeuw, 1990

PAM Arbitrary Numerical No

Kaufman and

Rousseeuw, 1990

CLARA Arbitrary Numerical No

Ng and Han, 2002 CLARANS

Arbitrary

Numerical No

Aggarwal et al.,

2003

CluStream Pyramidal Arbitrary Numerical No

Zhang et al., 1996 BIRCH Landmark Arbitrary Numerical No

Guha et al., 1998 CURE Arbitrary Numerical Yes

Guha et al., 2000 ROCK Tree Categorical No

Karypis et al., 1998 Chameleon Arbitrary Numerical &

Categorical

No

Rodrigues et al.,

2006

ODAC Hyper-

ellipsis

Categorical

Tareq et al., 2020b CEDGM

Agrawal et al., 1998 CLIQUE Numerical Yes

Page | 23

Wang et al., 1997 STING Arbitrary Spatial Yes

Cao et al., 2006 DenStream Damped Arbitrary Numerical Yes

Estert et al., 1996 DBSCAN Arbitrary Spatial No

Chen and Tu, 2007 D-Stream Damped Arbitrary Yes

Kranen et al., 2011 ClusTree Damped Arbitrary Yes

Hyde and Angelov

(2015)

CODAS Arbitrary Yes

Hyde et al. 2017 CEDAS Damped Arbitrary Yes

Islam et al., 2019b BOCEDS Damped Arbitrary Spatial

Yes

Bezdek and Keller,

2021

FCM

 Numerical Yes

de Abreu Lopes and

de Arruda Camargo,

2017

FuzzyStream Yes

Schick et al., 2018 d-FuzzyStream Yes

Song et al., 2020 FUZZY-CARE

Moon, 1996 EM Spatial

Fisher, 1996 CobWeb Tree Numerical

Carvalho et at., 2016 SOM Numerical No

Zhou et al., 2006 CluDistream

Figure 2-3 presents the flow chart of the data stream clustering algorithms categorization.

Figure 2-3: Data stream clustering methods (adapted from: Ghesmoune et al., 2016a).

Page | 24

2.5 Similarity and Distances

There are many distance measures around that can be found in studies such as those of Zhang

et al. (2023). In this section, the discussion will focus on distance measures for modeling the

similarity of data in the literature. The distance measure is described as a metric in Norm

vector space (that is, a vector space with a norm defined) if the conditions described in Franke

and Geyer-Schulz, (2007; and Rastin (2018) are satisfied:

• Non-negativity: 𝑑(𝑥, 𝑦) ≥ 0 for all x and y

• Identity: 𝑑(𝑥, 𝑦) = 0 if and only if x = y

• Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all x and y

• Triangular inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all x, y and z

Tareq et al. (2020a) state some of the important distance measurement features: (i) the

distance from one point to itself is always zero; (ii) distance is always positive; (iii) distance

in x - y is the same as the distance in y - x; and (iv) the distance from x - y is equal to the sum

of the distance from x - z, and z - y.

The most generalized distance metric is the Minkowski distance defined as:

𝑑(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

𝑘

 (2.1)

 = (∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

)

1/𝑘

 (2.2)

where:

n = number of dimensions

k ≠ 0 is order parameters or any real number

xi, yi = data points

The Minkowski distance is the generalized Lp-norm represented as ‖𝑥 − 𝑦‖p

The value of k in the above formula can be manipulated to derive other distance measures as:

➢ For k = 1, the Minkowski distance gives the Manhattan distance between x and y as:

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖| (2.3)

𝑛

𝑖=1

Page | 25

where:

n = number of dimensions

xi, yi = data points

The Manhattan distance is the L1-norm represented as ‖𝑥 − 𝑦‖1

➢ For k = 2, the Minkowski distance gives the Euclidean distance between x and y as:

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2.4)

where:

n = number of dimensions

xi, yi = data points

The Euclidean distance is the most widely used of the distance measures. The

Euclidean distance is the L2-norm represented as ‖𝑥 − 𝑦‖ 2. The square root of

Euclidean distance when removed gives another metric known as the squared

Euclidean distance (SED) in equation (2.5).

𝑑2(𝑥, 𝑦) = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2.5)

➢ For k = ∞, leads to Chebyshev distance also known as the Chessboard distance.

𝑑(𝑥, 𝑦) = lim
𝑘→∞

(∑|𝑥𝑖 − 𝑦𝑖|𝑘
𝑛

𝑖=1

)

1
𝑘

 (2.6)

 = max
𝑖=1

|𝑥𝑖 − 𝑦𝑖| (2.7)

where:

n = number of dimensions

k = order parameters

xi, yi = data points

Page | 26

The Chebyshev distance is the L∞-norm, represented as ‖𝑥 − 𝑦‖∞. Several studies,

such as Tareq et al. (2020b, 2020a); and Tareq and Sundararajan (2021, 2020) have

used the Chebyshev distance.

Other notable distance measures include:

• Cosine similarity: Cosine similarity is the measure of the angular distance between

two vector points. The cosine similarity has usage in text mining to calculate the

similarity between tweets (Ghaemi & Farnaghi, 2019); outlier detection may

experience difficulties when there is uncertainty in the measurement of

similarity/dissimilarity between two data points (S. Sadik & Gruenwald, 2014; S. M.

Sadik, 2013). The cosine similarity formula is given using the dot product:

cos(𝜃) =
�⃗� .�⃗�

‖�⃗� ‖‖�⃗� ‖
 (2.8)

 =
∑ 𝑎𝑏𝑛

𝑖=1

√∑ 𝑎2𝑛
𝑖=1 √∑ 𝑏2𝑛

𝑖=1

 (2.9)

The cosine distance is the difference between 1 and the cosine similarity, i.e., 1 -

cos(𝜃). As the cosine distance increases, the cosine similarity decreases, and vice

versa. Ghaemi and Farnaghi (2019) used cosine similarity in their research.

• Jaccard index: The Jaccard index or Jaccard coefficient measures the similarity

between two sets. Given two sets A and B, the Jaccard coefficient is the ratio of their

intersection and union.

𝐽(𝐴, 𝐵) =
|𝐴 ∩𝐵|

|𝐴∪𝐵|
 (2.10)

𝐽(𝐴, 𝐵) =
∑ min (𝐴, 𝐵)𝑛

𝑖=1

∑ max (𝐴, 𝐵)𝑛
𝑖=1

 (2.11)

The similarity measure can be transformed to the distance metric as Jaccard distance,

which only takes values between 0 and 1:

𝑑(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) (2.12)

Page | 27

If the Jaccard coefficient is higher, the similarity will be higher and likewise, if lower,

the similarity will be lower (Li et al., 2018). The Jaccard coefficient can also be used

in terms of True Positives (TP), False Positives (FP), and False Negatives (FN). This

formula is the ratio of TP and the summation of TP, FP, and FN (S. M. Sadik, 2013).

𝐽𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.13)

Several studies reportedly used the Jaccard index (see Amini et al., 2016; Rodriguez

et al., 2019; Sadik, 2013).

2.6 Clustering Performance Metrics

The clustering performance metric is divided into intrinsic and extrinsic methods (Ahmed et

al., 2020). When the ground truths are available it is known as the extrinsic/external method

which is a supervised method, otherwise it is an unsupervised method. The extrinsic method

includes the Clustering Mapping Measure (CMM), Recall, Precision, Rand index, and Purity

(Kremer et al., 2011); while an intrinsic method is the Silhouette coefficient. The formulas

are:

➢ Rand index: The Rand index (RI) is the fraction of the sum of TP and TN over the

sum of TP, FP, TN, and FN. The RI measures the accuracy of two clustering using

value range between 0 and 1.

𝑅𝐼 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

(2.14)

Where TP is true positive, TN is true negative, FP is false positive, and FN is false

negative.

➢ Adjusted Rand Index: The adjusted Rand Index (ARI) is an updated form of the Rand

index (RI). The ARI can be used for similarity measures between two data clustering.

𝐴𝑅𝐼 =
𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑛𝑑𝑒𝑥−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥
 (2.15)

𝐴𝑅𝐼 =
𝑅𝐼−𝐸(𝑅𝐼)

max(𝑅𝐼)−𝐸(𝑅𝐼)
 (2.16)

➢ Precision: Precision is the ratio of true positive instances over the sum of TP and FP

instances.

Page | 28

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.17)

➢ Recall: Recall or sensitivity is the ratio of TP instances over the sum TP and FN.

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.18)

➢ Purity: Purity is the rate of suitably classified instances given as:

 𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ max (𝜔

𝑐

𝑘=1

∩ 𝜑) (2.19)

Where 𝜔 refers to the total number of clusters, while 𝜑 refers to the total number of

classes.

➢ Silhouette (Rousseeuw, 1987): The Silhouette coefficient contrast the mean distance in

cluster a against the least mean distance in cluster b between its object i to every other

point in the same cluster. The Silhouette coefficient fuse together the Separation and

Cohesion measures. Its values range between 0 and 1.

𝐽(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 (2.20)

 where:

𝑎(𝑖) = mean dissimilarity of i to all objects of A given in the equation below

 𝑎(𝑖) =
1

|𝐴| − 1
∑ 𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗∈𝐴,𝑖≠𝑗

 (2.21)

 𝑑(𝑖, 𝐶) =
1

|𝐶|
∑𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗∈𝐶

 (2.22)

For all cluster (𝐶 ≠ 𝐴) obtained from 𝑑(𝑖, 𝐶) then

𝑏(𝑖) = mean dissimilarity of i to all objects of A given in the equation below

𝑏(𝑖) = min(𝑑(𝑖, 𝐶))

 (2.23)

The equation of Silhouette can be simplified to

𝑆𝐼(𝑖) = 1 −
𝑎(𝑖)

𝑏(𝑖)

 (2.24)

Page | 29

Table 2-3 presents some of the available internal and external clustering validation measures

in the literature and adapted from Kranen et al. (2010); and Kremer et al. (2011).

Table 2-3: Internal and external clustering validation measures

Internal Measures External Measures

Dunn’s indices (Dunn, 1973)

Completeness (Rosenberg & Hirschberg, 2007)

Tau A (L. J. Hubert & Levin, 1976)

Purity (Zhao & Karypis, 2004)

Tau C (L. J. Hubert & Levin, 1976) Homogeneity (Rosenberg & Hirschberg, 2007)

Tau (Rohlf, 2003)

Precision (Van Rijsbergen, 1979)

Silhouette coefficient (Rousseeuw, 1987)

Recall (Van Rijsbergen, 1979)

Sum of square distance (SSQ) (Aggarwal et

al., 2003)

Rand index (J. Wu et al., 2009)

Davies-Bouldin index (Davies & Bouldin,

1979)

F-measure (Van Rijsbergen, 1979)

Gamma (Baker & Hubert, 1975)

V-measure (Rosenberg & Hirschberg, 2007)

Log Likelihood (Hartigan, 1975)

Hubert Γ statistics (L. Hubert & Arabie, 1985)

Adj. Ratio of Clustering (L. J. Hubert & Levin,

1976)

Minkowski score

Calinski-Harabasz index (Caliński & Harabasz,

1974)
Cluster-based entropy (Zhao & Karypis, 2004)

Fagan’s Index (L. J. Hubert & Levin, 1976) Adjusted Rand Index (L. Hubert & Arabie,

1985)

2.7 Summary

In summary, this section discussed data stream clustering and its recent adoption. Several

windowing techniques (landmark window, damped window, sliding window and tilted

window) were presented. Data stream clustering techniques were also explained (partitioning-

based, hierarchical-based, density-based, grid-based model-based, and graph-based). Several

distance measures like Minkowski, Manhattan, Euclidean, squared Euclidean distance,

Chebyshev, Cosine similarity, and Jaccard index were described. Lastly, the performance

evaluation metrics for evaluation like Recall, Rand index, Precision, Adjusted Rand Index,

Purity, Clustering Mapping Measure (CMM), and Silhouette Coefficient were described.

Page | 30

Page | 31

CHAPTER 3: Research Methodology

In this chapter, the research objective to “the method of building a MOA repository from

source to implement the modified algorithm” was described. The recent version of MOA

framework for data stream clustering is presented. The state-of-the-art data stream clustering

algorithms (DenStream, ClusTree and CluStream) in MOA and the proposed modified

DenStream is described. The repository for stream datasets will also be shown. The

performance metrics used for the experimental evaluation will be outlined. Finally, the

process of obtaining an ethics clearance certificate (see Appendix A) for this study will be

described.

3.1 Massive Online Analysis Graphical User Interface (GUI)

The recent version of MOA released in April 2023 is MOA-2023.04.0-bin. This can be

downloaded along with Java JDK 8 or later. Alternatively, it can be clone from Git repository

using commands:

➢ git clone https://github.com/Waikato/moa.git or

➢ git clone https://github.com/MatthiasCarnein/moa.git

Download and ‘import’ the project in Intellij IDEA. MOA can be run using the graphical user

interface (GUI) (see Figure 3-1 and Figure 3-2). There are two important files to run MOA,

the moa.jar and sizeofag-1.0.4.jar. The files are located at the lib directory of the MOA

framework. To run the command, change directory to the lib in MOA framework and execute

the commands:

java -cp moa.jar -javaagent:sizeofag-1.0.4.jar moa.gui.GUI

The -Xmx4G can be included to increase the maximum heap size to 4GB when the default

setting of 16 to 64MB appears too small (Akinosho et al., 2023). MOA can also be built from

the source code using the guidelines presented in Gomes et al. (2020). The process involves

downloading and installing IntelliJ IDEA latest version and importing the moa.git from

GitHub. The step-by-step method is described in McDonald (2015). Another way of building

MOA code from source is given by Gonmes et. al. (2020) using the IntelliJ IDEA Community

version. In this dissertation, the IntelliJ IDEA Community Edition 2022.2 was used.

https://github.com/Waikato/moa.git
https://github.com/MatthiasCarnein/moa.git

Page | 32

Figure 3-1: MOA Graphical User Interface (GUI).

Figure 3-2: MOA graph output interface

3.2 State-of-the-art Clustering

This dissertation used the three state-of-the-art data stream clustering algorithms in MOA:

➢ CluStream (Aggarwal et al., 2003): The Clutream algorithm is an online-offline

clustering. An online which is a micro clustering model and an offline which is a

macro clustering model. The CluStream is a partitioning-based algorithm with

spherical-shaped cluster. However, CluStream is sensitive to outliers and unable to

detect arbitrary-shaped clusters.

Page | 33

➢ DenStream (Cao et al., 2006): The DenStream algorithm is a density-based algorithm

with the ability to discover arbitrary-shaped clusters in an evolving data stream. The

DenStream algorithm can handle outliers, but it is risky when there is noise. The

DenStream algorithm has three micro-cluster features which are: core micro-cluster

for summarizing clusters with arbitrary-shapes; potential core micro-cluster to

identify potential clusters; and outlier micro-cluster for outliers and not dependent on

many user-defined parameters.

➢ ClusTree (Kranen et al., 2011): The ClusTree is a hierarchical-based algorithm that

can adapt to the speed of the stream due to its parameter less. ClusTree can detect

outliers, novelty in the stream, and concept drift.

The parameter settings for CluStream, ClusTree, and DenStream in MOA are preset and

when selected appear as shown in Figure 3-3, Figure 3-4, and Figure 3-5 respectively.

MOA’s default parameter setting for DenStream is different from Cao et al. (2006).

Figure 3-3: MOA Clusterer: CluStream parameter setup

Page | 34

Figure 3-4: MOA Clusterer: ClusTree parameter setup

Figure 3-5: MOA Clusterer: DenStream parameter setup

The summary of the algorithms and their parameters is given in Table 3-1, while the

description of the parameters of DenStream clustering is shown in Figure 3-6.

Page | 35

Table 3-1: Summary of algorithms and parameters in MOA (adapted from Carnein et al.,

2020b).

Algorithm Configuration Type Range Default

DenStream E Numeric [0,1] 0.02

 B Numeric [0,1] 0.2

 M Integer {0…10000} 1

 O Integer {2…20} 2

 L Numeric [0,1] 0.25

CluStream K Integer {2…20} 5

 M Integer {1…10000} 100

 T Integer {1…10} 2

ClusTree H Integer {1…20} 8

 B Boolean {1,0} 1

Figure 3-6: Parameters in DenStream adapted from Li et al. (2020)

There are several options for analyzing evaluation outputs in MOA given in Kranen et al.

(2010) see Figure 3-7:

➢ The running stream can be stopped with the result passed to a WEKA explorer for

further analysis (see Figure 3-8).

➢ The evaluation measures can be stored at every time intervals in .csv file format

and analyzed offline using any programming languages (Python, R, gnuplot etc).

This is the approach adopted for this dissertation.

Page | 36

➢ We can visualize the clustering results using the performance metrics online. Two

algorithms or one algorithm with two different parameter settings can be

visualized at the same time.

Figure 3-7: MOA framework adapted from Kranen et al. (2010).

Figure 3-8: Clustering algorithm setup and result output options.

Page | 37

3.3 The modified DenStream

We implemented a modified distance/similarity measure of DenStream algorithm in MOA to

improve it. The DenStream algorithm is divided into two phases (online and offline). The

online is described in Algorithm 1 and the offline phase in Algorithm 2 adapted from Cao et

al. (2006). In the offline phase, DenStream algorithm applies DBSCAN algorithm and has

been proving to be computationally expensive. The proposed method is aimed at reducing the

computational overheads through modifying the distance/similarity measure, by taking the

absolute value of the squared differences rather than taking the square root as implemented in

Euclidean distance.

Page | 38

The modified DenStream was implemented in Java, compiled, and run on IntelliJ IDEA

Community Edition 2022.2 as described in Section 3-1.

3.4 Data Collection

Real-world benchmarks and publicly available datasets are from the University of California

Irvin (UCI) Machine Learning Repository (Dua & Graff, 2019); USP Data Stream Repository

(USP DS Repository, n.d.); Stream Clustering (Carnein, 2019); Stream Data Mining

Repository (X. Zhu, 2010); and Outlier Detection Datasets (ODDS) repository (Rayana,

2016). However, there is a shortage of suitable datasets for data stream mining which often

results in researchers using synthetic datasets. A synthetic dataset has the advantage of being

reproduced and cost-effective in terms of storage and transmission. In this research, the

synthetic dataset generator available in MOA was used as well as the publicly available

datasets suitable for data streaming tasks.

Papers/articles were sourced from Google Scholar; the Association of Computing Machinery

(ACM) website; the University of South Africa library, Mendeley Reference Manager

Software; and wizdom.ai website (https://www.wizdom.ai); to study the limitations of data

stream clustering. Keywords with synonyms were used to search current papers/articles and

imported into Mendeley Reference Manager. Those papers/articles that have limited

information were populated and set to the required citation reference style.

https://www.wizdom.ai/

Page | 39

3.5 Datasets

In this dissertation, a streaming synthetic dataset and real-world datasets were used to

evaluate the performance of the modified DenStream algorithm against other algorithms

(CluStream, ClusTree, and DenStream). The streaming synthetic dataset was generated in

MOA with the RandomRBFGenerator while the two real-world datasets Electricity and

Forest Covertype are publicly available.

3.5.1 Synthetic dataset

➢ RandomRBFGenerator: The RandomRBFGenerator stream incessantly changes and

varies the true cluster location. It is available in MOA with some parameters such as

numClusterRange, kernelRadius, modelRandomSeed, instantRandomSeed, and

numCluster among others.

3.5.2 Real World datasets

➢ Forest Covertype dataset: The Forest Covertype contains 581,012 instances, 54

attributes where 10 are continuous attributes and the rest are binary attributes. The

The Forest Covertype is classified into seven types. The dataset is readily available at

the UCI machine learning site, and it is from the US Forest Service (USFS). The

Forest Covertype has been widely applied in several data stream studies. In this

dissertation, the normalized version is used.

➢ Electricity dataset: The Electricity data is publicly available from the Australian

New South Wales Electricity Market. The Electricity data has 45,312 instances. For

performance optimization, the normalized version of the Electricity data is used in this

dissertation. The initial stream used is 5000 instances and then 40000 instances. At the

end, 45000 instances were used for the analysis.

3.6 Evaluation Platform Parameter Setup

The experiment was executed using the current MOA release-2023.04.0 on HP ProBook 450

G7, Processor: Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz; RAM: 16.00 GB.

System type: 64-bit, x64, Operating System: Windows 10 Pro. This is tabulated in Table 3-2.

Page | 40

Table 3-2: System setup

Component Description

System HP ProBook 450 G7

Processor Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz

RAM size 16.00 GB

System type 64-bit x64

Operating System Windows 10 Pro

3.7 Performance Evaluation

Performance evaluation metrics are divided into two types: extrinsic and intrinsic methods

(Ahmed et al., 2020). The ground-truths when available is known as an extrinsic/external

method and it is a supervised method, otherwise it is the intrinsic/internal method, and it is an

unsupervised method. Performance evaluation measures are important in the determination of

the quality of clustering results (Kremer et al., 2011). The external measures employ the

ground truth for comparing clustering but are lacking in most streaming applications

(Ghesmoune et al., 2016). The internal evaluation measures the compactness and separation

(structure and properties) of clusters (Hassani and Seldi, 2017; Kremer et al., 2011).

There are numerous evaluation measures available in MOA. Examples are Clustering

Mapping Measure (CMM), Recall, Rand index, Precision, Purity, Sum of Square distance

(SSQ), Completeness, Homogeneity, and Silhouette. It should be noted that not all evaluation

measures are appropriate for all clustering types. They have the disadvantages of (1) not

being able to handle overlying due to merging, drifting, and noise; and (2) achieving

suboptimal results even with the ground truth test. However, CMM addressed these

shortcomings (Kremer et al., 2011). The evaluation measures (completeness and

homogeneity) are only appropriate for offline and static clustering with ground truth

(Puschmann et al., 2017). In this research, four of the evaluation measures for clustering

quality consisting of both external and internal measures were used. They are CMM, Purity,

Silhouette Coefficient, and Rand index. Their descriptions and formulas have given in Section

2.6, equations 2-14, 2-19, and 2.20 of Chapter Two.

Page | 41

3.8 Ethical Clearance

A request for the research ethics clearance was made to the Unisa College of Science,

Engineering and Technology’s (CSET) Ethics Review Committee on 7 December 2020 in

compliance with the Unisa Policy on Research Ethics and the Standard Operating Procedure

on research Ethics Risk Assessment. Ethics approval was granted for three years until

December 2023. The clearance certificate is attached in Appendix A.

3.9 Summary

In summary, this chapter presented the MOA framework and described the data stream

clustering algorithms used in this dissertation. The data collection source and the datasets for

the study were also presented. The performance evaluation metrics which comprise both

internal and external measures were described with emphasis on the performance metrics

used in this dissertation.

Page | 42

CHAPTER 4: Experimental Results and Analysis

This chapter presents the research objective to “identify the hyperparameters appropriate for

parameter-tuning” by carrying out parameter setup for the synthetic generator in MOA using

RandomRBFGenerator and the state-of-the-art algorithms (CluStream, ClusTree, DenStream)

using their default parameter setup. The parameter-tuning for the research was demonstrated.

The experimental results were merged and visualized using Python libraries (Pandas, Plotly,

and hvplot). The research objective to “identify the performance metrics applicable for

clustering quality” was described. The experimental results will be presented to demonstrate

the clustering quality of performance evaluation metrics (CMM, Purity, Silhouette

coefficient, and Rand index).

4.1 Experimental Parameter Setup

Clustering algorithm parameter settings are important in achieving proper micro-clusters

(Mansalis et al., 2018). The experimental setup for the synthetic generator in MOA using

RandomRBFGenerator and the state-of-the-art data stream clustering algorithms (CluStream,

ClusTree, DenStream) are given in Figure 3-3, Figure 3-4, Figure 3-5. The parameter setting

in MOA is not automated but done manually and are presented as follows:

The RandomRBFGeneratorEvents default parameter setup in MOA.

• KernelRadius = 0.025 (The average radii of the centroids in the model)

• Noise = 0.1 (i.e, every one-tenth data item is randomly generated)

• Speed = 500 (Kernels move a predefined distance of 0.01 every X point)

• SpeedRange = 10 Speed/Velocity point offset)

• noiseLevel (default: 0.1) (Noise level)

• EventFrequency = 50000 (Event frequency. Enable at least one of the events

below and set numClusterRan)

The DenStream (with DBSCAN) default parameter setup in MOA.

✓ horizon = 1000 (Range of the window)

✓ epsilon = 0.02 (Defines the epsilon neighbourhood)

✓ beta = 0.2,

✓ mu = 1,

✓ initPoints = 1000 (Number of points to use for initialization)

Page | 43

✓ offline = 2 (offline multiplier for epsilion)

✓ lambda = 0.25,

✓ processingSpeed = 100 (Number of incoming points per time unit)

The CluStream (WithKmeans) default parameter setup in MOA.

✓ horizon = 1000 (Range of the window)

✓ maxNumKernels = 100 (Maximum number of micro kernels to use)

✓ kernelRadiFactor = 2 (Multiplier for the kernel radius)

✓ k=5 (k of macro k-means (number of clusters))

The ClusTree default parameter setup in MOA.

✓ horizon = 1000 (Range of the window)

✓ maxHeight = 8 (The maximal height of the tree)

✓ breadthFirstStrategy (Use breadth first strategy)

Two vital user-defined parameters of DenStream algorithm are (1) the outlier threshold 𝛽 or

beta; and (2) the decay factor 𝜆 or lambda as stated in Mansalis et al. (2018)which controls

the importance of historical objects.

4.2 Experimental with default settings

This section addressed the research objective 2 and research objective 3. It demonstrates the

effects of parameter tuning and compares the algorithms CluStream, ClusTree, and

DenStream on synthetic data with a manually fixed default 10% noise level, 0% noise level,

and 30% noise level on RandomRBFGenerator for 205000 instances. We have chosen the

RandomRBFGenerator, which continuously evolves to alter the location of the true cluster as

the input stream generator. The RandomRBFGenerator is the lone available streaming

generator in MOA framework. The algorithms were also tested on real-world datasets

(Electricity and Forest Covertype) using 205000 instances and 45000 instances respectively.

The settings started with 5000 instances, then with 50000 instances until 205000 instances in

reached. The output is presented in Figure 4-1 for CluStream and DenStream. The individual

output is presented in Figure 4-2, Figure 4-3, and Figure 4-4 for CluStream, ClusTree, and

DenStream respectively.

Page | 44

Figure 4-1: MOA screenshot of RandomRBF. CluStream is on the right while DenStream is on the left. The line

graph is the output after 205000 instances.

Figure 4-2 shows the output of CluStream in (red contour) for RandomRBFGenerator with

10% noise after 205000 instances. The stream points display in deep colours, and the

black/gray-coloured circles is the ground truth cluster boundaries. The former state is the

gray circles, showing that the clusters are moving. The noise points represented by the black

(faded out to gray) points. Micro-clustering in green contour, and clustering in red rings

because CluStream was selected as Algorithm1.

Figure 4- 2: CluStream (red contour) for RandomRBFGenerator with 10% noise after 205000 instances.

Page | 45

Figure 4-3 shows ClusTree in (blue contour) for RandomRBFGenerator with 10% noise after

205000 instances. The stream points are in deep colours, and ground truth display either

black/gray-coloured circles, micro-clustering in green contour, and clustering in blue rings

since ClusTree was selected as Algorithm 2.

Figure 4-3: ClusTree (blue contour) for RandomRBF with 10% noise after 205000 instances.

Figure 4-4 displays the DenStream for RandomRBFGenerator with 10% noise after 205000

instances. The stream points are deep colours, the black/gray-coloured circles represent the

ground truth cluster, micro-clustering in green contour, and clustering in blue colours because

DenStream was selected as Algorithm 2.

`

Figure 4-4: DenStream for RandomRBF with 10% noise after 205000 instances.

Page | 46

Figure 4-5 is the output of the modified DenStream for RandomRBFGenerator with 10%

noise after 205000 instances. The stream points are in deep colours, the black/gray-coloured

circles represent the ground truth cluster, micro-clustering in green contour, and clustering

blue colour because the modified DenStream was selected as Algorithm 2.

Figure 4-5: The modified DenStream for RandomRBF with 10% noise after 205000 instances.

The visualization of the performance metric CMM for CluStream against DenStream is

presented in Figure 4-6. The figure shows CluStream in red colour and DenStream in blue

colour, the x-axis is the scaling of the instances, and the y-axis is the metrics values. Other

performance metrics (Purity, Silhouette Coefficient, and Rand index) running at background

can be visualized (see Appendix B).

Figure 4-6: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for

CluStream and DenStream.

Page | 47

The visualization of the performance metric CMM for CluStream against the modified

DenStream is presented in Figure 4-7. The figure shows CluStream in red, modified

DenStream in blue, x-axis represents the instances, and the y-axis is the metrics values. Other

performance metrics (Purity, Silhouette Coefficient, and Rand index).

Figure 4-7: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for

CluStream and modified DenStream.

In Figure 4-8, the algorithms CluStream and ClusTree are run against each other. The stream

points are in deep colours, ground truth in black/gray-coloured circle, micro-clustering in

green contour, and CluStream in red-coloured circles because it was selected as Algorithm1

and ClusTree in blue-coloured circles because it was selected as Algorithm2.

Figure 4-8: RandomRBF for CluStream on the left and ClusTree on the right after 205000 instances.

Page | 48

Figure 4-9 shows the visualization of the performance metric CMM on both CluStream and

ClusTree. The figure shows CluStream in red and ClusTree in blue, The visualization of other

performance metrics can be displayed if clicked (see Appendix B).

Figure 4-9: The line graph of RandomRBF with 10% noise level after 205000 instances using CMM metric for

CluStream and ClusTree.

4.2.1 RandomRBFGenerator with default Noise Level

The 10% default noise level on RandomRBFGenerator for the different algorithms was

demonstrated. The average value of the performance evaluation metrics (CMM, Purity,

Silhouette Coefficient, and Rand index) was taken and is presented in Table 4-1.

The Massive Online Analysis (MOA) has no implementation for more than two clustering

algorithms, the output for the paired algorithms was exported as a CSV file, merged in

Microsoft Excel, and read using Python libraries (pandas and hvplot). The Jupyter Notebook

was used to carry out the data visualization. The data visualization for RandomRBFGenerator

with a 10% noise level for the algorithms using the performance metrics CMM is presented in

Figure 4-10. The figure shows modified DenStream has its lowest drop at instance 5000 and

moved up from instance 5100 to maintain an average value of 0.864978. ClusTree has its

lowest drop at instance 53000 but has an overall average value of 0.902690. CluStream

lowest point at instance 49000 and average value of 0.862702 for all instances. DenStream

has its highest point at instance 97000 with a value of 0.925710 and has an overall average of

0.816985. Note the scaling on the x-axis is calibrated per 1000 instances on the hvplot for this

dissertation.

Page | 49

Figure 4-10: The line graph of RandomRBF using CMM on ClusTree, CluStream, DenStream, and modified

DenStream.

In Figure 4-11, the performance metric Purity for RandomRBFGenerator with a noise level of

10% is presented. The line graph shows that DenStream has its lowest point at instance

23000. Its average value is 0.899071. ClusTree lowest point is at instance 20000 with a value

of 0.664741 and its overall average value is 0.864506. CluStream dropped at these instances

(106000, 130000, 135000, 154000, and 180000) and has an overall average value of

0.844106. The modified DenStream average value is 0.951441.

Figure 4-11: The line graph of RandomRBF with 10% noise level using Purity on ClusTree, CluStream,

DenStream and modified DenStream.

Page | 50

The performance metric Silhouette Coefficient for RandomRBFGenerator with 10% noise

level is presented in Figure 4-12. The figure shows that CluStream experienced its lowest

point at instance 20000. Its overall average value is 0.729607. DenStream highest point occur

at instance 193000 with a value of 0.973106 and lowest point at instance 39000 with a value

of 0.430803. ClusTree lowest point is at instance 23000 and lowest point at instance 25000

with a value of 0.469584.

Figure 4-12: The line graph of RandomRBF with 10% noise level using Silhouette Coefficient on ClusTree,

CluStream, DenStream and modified DenStream.

In Figure 4-13 for performance metric Rand index on RandomRBFGenerator with default

10% noise level. The figure shows that DenStream lowest point occurred at instance 23000

with 0.606088 and highest point at instance 128000 with a value of 0.884188. ClusTree has

the highest point at instance 16000 with a value of 0.994054 and the lowest point at instance

23000 with a value of 0.687736. CluStream has its lowest point at instance 23000 with a

value of 0.774931 and the highest point at instance 119000 with a value of 0.993235.

Page | 51

Figure 4-13: The line graph of RandomRBF with 10% noise level using Rand index on ClusTree, CluStream,

DenStream and modified DenStream.

The results in Table 4-1 show that ClusTree outperforms other algorithms on performance

metrics (CMM, Silhouette Coefficient and Rand index) with an average value of 0.902690,

0.771385, and 0.885936 respectively. The modified DenStream outperforms other algorithms

on performance metric Purity with an average value of 0.951441. The modified DenStream

also shows a better performance against DenStream on metrics CMM and Rand index.

Table 4-1: RandomRBF with default settings on the algorithms

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.862702 0.902690 0.816985 0.864978

Purity 0.844106 0.864506 0.899071 0.951441

Silhouette 0.729607 0.771385 0.762202 0.521549

Rand index 0.870000 0.885936 0.788309 0.831517

The performance metrics are combined using a bar chart and shown in Figure 4-14. This

clearly explains the output in Table 4-1 showing the performance of the modified DenStream

against other algorithms especially DenStream which is of interest in this dissertation.

Page | 52

Figure 4-14: Performance metrics barplots of CluStream ClusTree, DenStream and modified DenStream on

RandomRBF with default setting.

4.2.2 Forest Covertype with default settings.

The performance of the algorithms was demonstrated on Forest Covertype dataset using

205000 instances. The clustering qualities were evaluated using the metrics CMM, Purity,

Silhouette Coefficient, and Rand index and the results of the algorithms CluStream, ClusTree,

DenStream and modified DenStream are given in Figure 4-15, Figure 4-16, Figure 4-17, and

Figure 4-18 respectively.

In Figure 4-15, the graph illustrates the CluStream algorithm on Forest Covertype dataset.

Several features of the graph show clustering in red rings, the green rings represent the micro-

clustering, and the black ring, C0, C1, and C4 represent the ground-truth.

Page | 53

Figure 4-15: The Forest Covertype dataset on CluStream. The red rings show the clustering, the green rings are

micro-clustering, and the black ring is ground-truth.

Figure 4-16 visualizes ClusTree algorithm on Forest Covertype dataset. The graph displays

clustering in blue rings since it was selected as Algorithm2, the green rings represent the

micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth.

Figure 4-16: The Forest Covertype dataset on ClusTree. The blue rings show the clustering, the green rings are

the micro-clustering, and the black ring is the ground-truth.

Page | 54

Figure 4-17 shows the output of DenStream on Forest Covertype dataset. In the figure, the

clustering is indicated with tiny blue rings since it was selected as Algorithm2, the green rings

represent the micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth.

Figure 4-17: The Forest Covertype dataset on DenStream. The tiny blue rings are the clustering, the green rings,

are the micro-clustering, and the black ring is the ground-truth.

Figure 4-18 visualizes the output of the modified DenStream on Forest Covertype dataset. As

explained in the other algorithms, the tiny blue rings indicate the clustering, the green rings

represent the micro-clustering, and the black ring, C0, C1, and C4 represent the ground-truth.

Figure 4-18: The modified DenStream for Forest Covertype dataset. The tiny blue rings are the clustering, the

green rings are the micro-clustering, and the black ring is the ground-truth.

Page | 55

The graph plots showing the performance of the algorithms on each metric can be seen in

Figure 4-19, Figure 4-20, Figure 4-21, and Figure 4-22. The performance metric CMM results

on Forest Covertype dataset with default settings is presented in Figure 4-19. In the figure,

DenStream average value is less than 0.5 with its highest point at instance 192000 with a

value of 0.426978 and lowest point at instance 10000 with a value of 0.367879. ClusTree has

its lowest point at instance 185000 with a value of 0.582144 and the highest point at instance

31000 with a value of 0.812673. CluStream average value is 0.749105. The modified

DenStream average value is 0.387108.

Figure 4-19: The line graph of Forest Covertype using CMM on ClusTree, CluStream, DenStream, and

modified DenStream.

In Figure 4-20, the performance metric Purity for the Forest Covertype dataset with the

default parameters of the algorithms is presented. DenStream has the highest mean average

with 0.972418 over CluStream, ClusTree, modified DenStream (see Table 4-2). DenStream

and modified DenStream experienced breaks at instances 11000, 12000, 14000, and 15000.

All the algorithms have an average value over and above 0.910000.

Page | 56

Figure 4-20: The line graph of Forest Covertype using Purity on ClusTree, CluStream, DenStream, and

modified DenStream.

The performance metric Silhouette Coefficient for Forest Covertype on default parameters for

the three algorithms is presented in Figure 4-21. DenStream has its highest points of 1.0000 at

instances (1000 and 6000) and an average value of 0.754788. The highest point of ClusTree

with a value occurs at instances 59000, 87000, 90000, 93000, 97000, 102000, 105000,

128000, 155000, and 163000. ClusTree average value is 0.829813. CluStream average value

is 0.801819. The modified DenStream sharply dropped in instances 122000 and 125000 and

has an average value 0.747071.

Figure 4-21: The line graph of Forest Covertype using Silhouette Coefficient on ClusTree, CluStream,

DenStream, and modified DenStream.

Page | 57

In Figure 4-22, the performance metric Rand index for the Forest Covertype dataset with

default parameters for algorithms is presented. ClusTree highest point is at instance 94000

with a value of 0.783357 and the lowest point is at instance 13000 with a value of 0.202679.

CluStream has its highest point at instance 94000 with a value of 0.784346 and lowest point

at instance 13000 with a value of 0.203417. The highest point of DenStream is at instance

92000 with a value of 0.811588 and the lowest point is at instance 13000 with a value of

0.161694. The modified DenStream experienced its highest point at instance 94000 and

lowest points at instances 6000 and 13000. The modified DenStream average value is

0.579084.

Figure 4-22: The line graph of Forest Covertype using Rand index on ClusTree, CluStream, DenStream, and

modified DenStream.

Table 4-2 illustrates evaluation measure using the Forest Covertype with default setting. The

results show that CluStream outperforms all other algorithms on metrics CMM with a mean

value 0.749105. ClusTree outperforms other algorithms on metric Silhouette coefficient with

a mean value 0.829813. DenStream outperforms other algorithms on performance metrics

(Purity and Rand index) with 0.972418 and 0.582461. However, the modified DenStream

outperforms DenStream on performance metric CMM with 0.387108.

Page | 58

Table 4-2: Forest Covertype dataset with default settings on the algorithms.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.749105 0.564100 0.379326 0.387108

Purity 0.918534 0.911704 0.972418 0.971124

Silhouette 0.801819 0.829813 0.754788 0.747071

Rand index 0.564100 0.562055 0.582461 0.579084

Figure 4-23 illustrates the visualization of the bar chart for the algorithms on Forest

Covertype dataset with the performance metrics CMM, Purity, Silhouette Coefficient, and

Rand index with both DenStream and modified DenStream outperforming CluStream and

ClusTree on metrics Purity and Rand index.

Figure 4-23: Barchart showing ClusTree, CluStream, DenStream, and modified DenStream on Forest Covertype

dataset.

4.2.3 Electricity with default settings

The stream settings for the Electricity dataset start with 5000 instances initially and then run

to 45000 instances for the analysis. The stream outputs for the CluStream, ClusTree,

DenStream and the modified DenStream are indicated in Figure 4-24, Figure 4-25, Figure 4-

26, and Figure 4-27 respectively.

Page | 59

Figure 4-24 displays the output of CluStream on Electricity dataset after 45000 instances with

the stream points displayed in deep colours, ground-truth comes as a black/gray-coloured

circles, micro-clustering in green contours, and clustering in red rings because it was selected

as Algorithm1 in MOA.

Figure 4-24: CluStream for Electricity dataset after 45000 instances.

Figure 4-25 shows the output of ClusTree on Electricity dataset after 45000 instances with the

stream points displayed in deep colours, ground-truth comes as a black/gray-coloured circles,

micro-clustering in green contours, and clustering in blue rings because it was selected as

Algorithm2 in MOA.

Figure 4-25: ClusTree for Electricity dataset after 45000 instances

Page | 60

Figure 4-26 displays the output of DenStream on Electricity dataset after 45000 instances

with the stream points displayed in deep colours, ground-truth comes as a black/gray-

coloured circles, micro-clustering in green contours, and clustering tiny blue rings because it

was selected as Algorithm2 in MOA.

Figure 4-26: DenStream for Electricity dataset after 45000 instances.

Figure 4-27 shows the output of the modified DenStream on Electricity dataset after 45000

instances with the stream points displayed in deep colours, ground-truth comes as a

black/gray-coloured circles, micro-clustering in green contours, and clustering tiny blue rings

because it was selected as Algorithm2 in MOA.

Figure 4-27: The modified DenStream for Electricity dataset after 45000 instances

Page | 61

The line graph charts for the performance metrics CMM, Purity, Silhouette Coefficient, and

Rand index for CluStream, ClusTree, DenStream and modified DenStream are presented in

Figure 4-28, Figure 4-29, Figure 4-30, and Figure 4-31 respectively. In Figure 4-28, the

modified DenStream was on an upward trajectory on metric CMM until it drops at instance

4000 and continues in this way until the end. The highest point experienced by the modified

DenStream is between instance zero and 1000 and has an average value of 0.544408.

CluStream and ClusTree maintained values between 0.65 and 0.85, Their highest points are at

instance 29000 with values 0.830561 and 0.840458 respectively.

Figure 4-28: The line graph of Electricity using performance metric CMM on ClusTree, CluStream, DenStream,

and modified DenStream.

The performance metric Purity for the Electricity dataset using the default settings of the

algorithms is presented in Figure 4-29. CluStream attains its peak point at instance 13000 and

has an average value of 0.776815. ClusTree’s highest point is at instance 21000 and has an

average value of 0.703810. The highest point of DenStream occurs at instance 19000 and

ends with an average value of 0.897288. The modified DenStream’s highest point is at

instance 25000 and has an average value of 0.874840.

Page | 62

Figure 4-29: The line graph of Electricity using performance metric Purity on ClusTree, CluStream, DenStream,

and modified DenStream.

Figure 4-30 presents the performance metric Silhouette Coefficient on Electricity dataset. The

line graph shows that DenStream raises from instance 15000 to its highest point at instance

19000. The modified DenStream dropped from its highest point instance zero to its lowest

point at instance 1000. ClusTree’s highest peak is at instances 26000, 31000, and 36000

respectively. CluStream experienced its highest point at instance 5000.

Figure 4-30: The line graph of Electricity using performance metric Silhouette Coefficient on ClusTree,

CluStream, DenStream, and modified DenStream.

Figure 4-31 illustrates the performance metric Rand index for the Electricity dataset using the

default parameter settings. The highest point of CluStream is obtained at instance 1000 and its

lowest point at instance 22000. ClusTree attains its highest peak point at instance 1000 and

least point at instance 44000. DenStream’s highest point is at instance 35000 and lowest point

at instance 4000. The modified DenStream’s highest point occurs at instance 21000 and

lowest point at instance 16000.

Page | 63

Figure 4-31: The line graph of Electricity using performance metric Rand index on ClusTree, CluStream,

DenStream, and modified DenStream.

The average evaluation metrics for the default parameter settings of the algorithms on

Electricity dataset is presented in Table 4-3. In summary, the average points show that

CluStream outperforms other algorithms on performance metric CMM with a mean value of

0.759476. ClusTree outperforms on metrics Silhouette Coefficient and Rand index with

average values 0.732103, and 0.512624 respectively. DenStream also outperforms other

algorithms on performance metric Purity with 0.897288. However, the modified DenStream

outperforms DenStream on performance metric CMM with a mean value 0.544408.

Table 4-3: Electricity dataset with default settings on the algorithms.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.759476 0.751279 0.486608 0.544408

Purity 0.776815 0.703810 0.897288 0.874840

Silhouette 0.670710 0.732103 0.490165 0.469995

Rand index 0.509466 0.512624 0.511428 0.510279

Figure 4-32 shows the visualization of the bar chart for the average values of the algorithms

on Electricity dataset with the performance metrics CMM, Purity, Silhouette Coefficient, and

Rand index.

Page | 64

Figure 4-32: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream on Electricity dataset

4.2.4 Effects of Epsilon parameter tuning on Synthetic dataset.

In this section, the effects of DenStream and the modified DenStream epsilon 0.03 and 0.05

are demonstrated against CluStream and ClusTree algorithms on RandomRBFGenerator with

0% and 30% noise levels. The line graphs of their performance metrics are presented in

Figure 4-33, Figure 4-34, Figure 4-35, and Figure 4-36. The experimental results are

presented in Table 4-4.

Figure 4-33 presents the line graph of performance metric CMM on RandomRBFGenerator

0% noise level and epsilon parameter set at 0.03 for DenStream and modified DenStream.

ClusTree demonstrates a better performance after the initial value at instance zero and

maintains values between the intervals [0.98, 1.00]. CluStream preserves a value range

between the intervals [0.96, 0.99]. DenStream’s lowest point is at instance 16000 with a value

of 0.583. The modified DenStream has its lowest point at instance 170000.

Page | 65

Figure 4-33: The line graph of RandomRBF with 0% noise level using CMM on modified DenStream and

DenStream epsilon set at 0.03.

Figure 4-34 is the line graph of performance metric Purity on RandomRBFGenerator with 0%

noise level and epsilon parameter of DenStream and modified DenStream set to 0.03.

CluStream outperforms other algorithms with an average value of 0.984838. ClusTree has its

lowest point at instance 136000 with a value of 0.868. DenStream’s lowest point is at instance

133000 with a value of 0.432. DenStream also dropped at instances 19000, 31000, 131000,

134000, 135000, 185000, and 188000. The modified DenStream’s lowest point is at instance

170000.

Figure 4-34: The line graph of RandomRBF with 0% noise level using Purity on modified DenStream and

DenStream epsilon set at 0.03.

Page | 66

Figure 4-35 is the output of performance metric Silhouette Coefficient on

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.03. CluStream outperforms with an average value of 0.821436.

ClusTree has the lowest average value of 0.565896. The modified DenStream’s lowest point

is at instance 167000.

Figure 4-35: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient on modified

DenStream and DenStream epsilon set at 0.03.

Figure 4-36 is the visualized line graph of performance metric Rand index on

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.03. The modified DenStream has its lowest point at instances

28000 and 170000. The modified DenStream outperforms other algorithms with an average

value of 0.889164. DenStream has the lowest average value of 0.823520.

Figure 4-36: The line graph of RandomRBF with noise level 0% using Rand index on modified DenStream and

DenStream epsilon set at 0.03.

Page | 67

In Table 4-4, ClusTree outperforms on performance metrics CMM and Purity with 0.984734

and 0.974619 respectively. CluStream outperforms in terms of performance metric Silhouette

Coefficient with a value of 0.821436. The modified DenStream outperforms on metric Rand

index with an average value 0.889164.

Table 4-4: RandomRBF 0% noise level with epsilon parameter set at 0.03.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.933418 0.984734 0.848488 0.917020

Purity 0.927379 0.974619 0.815577 0.918202

Silhouette 0.821436 0.565896 0.782959 0.751973

Rand index 0.839968 0.830699 0.823520 0.889164

Figure 4-37 presents the visualization of the bar chart for the average values of the algorithms

on RandomRBFGenerator with 0% noise level on performance metrics CMM, Purity,

Silhouette Coefficient, and Rand index. The modified DenStream outperformed DenStream

on metrics CMM, Purity and Rand index.

Figure 4-37: Bar plots of RandomRBF with noise level 0% on ClusTree, CluStream, DenStream, and modified

DenStream.

Page | 68

Figure 4-38 is the line graph of performance metric CMM on RandomRBFGenerator with

30% noise level and epsilon parameter of DenStream and modified DenStream set at 0.03.

DenStream outperforms both CluStream and ClusTree. DenStream’s highest and lowest

points are at instances 46000 and 174000 with values 0.590 and 0.918 respectively. On the

average, DenStream outperforms both ClusTree and CluStream with a value of 0.825596.

ClusTree’s lowest point is at instance zero with a value of 0.603 and its highest point at

instance 46000 with a value of 0.809. CluStream’s values are in between the intervals [0.7,

0.8].

Figure 4-38: The line graph of RandomRBF with noise level 30% using CMM on DenStream and modified

DenStream epsilon set at 0.03.

Figure 4-39 is the visualized line graph of performance metric Purity on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.03. CluStream outperforms both DenStream and ClusTree with

an average value of 0.980379. The lowest point of DenStream occurs at instance 43000 with a

value of 0.704. The lowest point of ClusTree occurs at instance 33000 with a value of 0.926.

Page | 69

Figure 4-39: The line graph of RandomRBF with noise level 30% using Purity on DenStream and modified

DenStream epsilon set at 0.03.

Figure 4-40 is the visualized line graph of performance metric Silhouette Coefficient on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.03. DenStream performs better than both CluStream and

ClusTree with an average value of 0.747127. CluStream’s highest point occurs at instance

2000 with a value of 0.650 and lowest point at instance 175000 with value of 0.240.

ClusTree’s highest point occurs at instance 134000 with value of 0.653.

Figure 4-40: The line graph of RandomRBF with noise level 30% using Silhouette Coefficient on DenStream

and modified DenStream epsilon set at 0.03.

Page | 70

Figure 4-41 is the visualized line graph of performance metric Rand index on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.03. ClusTree outperforms both CluStream and DenStream on

average with a value of 0.841067. DenStream’s lowest point occurs at instance 38000 with a

value of 0.597 and highest point at instance 88000 with a value of 0.878. The lowest point of

CluStream occurs at instance 153000 with a value of 0.750.

Figure 4-41: The line graph of RandomRBF with noise level 30% using Rand index on DenStream and

modified DenStream epsilon set at 0.03.

Table 4-5 summarizes the evaluation performance of the algorithms. The table shows that

DenStream performs better than other algorithms on metrics CMM and Silhouette Coefficient

with 0.825596 and 0.747127 respectively. The modified DenStream outperforms on metric

Rand index with 0.844152. ClusTree outshine on metric Purity with an average value of

0.976311. The modified DenStream also shows a better performance against DenStream on

metric Purity.

Table 4-5: RandomRBF 30% noise level with epsilon parameter set at 0.03.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.725730 0.764806 0.825596 0.792180

Purity 0.744893 0.976311 0.927619 0.956226

Silhouette 0.615896 0.464856 0.747127 0.612858

Rand index 0.811282 0.841067 0.778500 0.844152

Page | 71

Figure 4-42 presents the visualization of the bar chart for the average values of the algorithms

ClusTree, CluStream, and DenStream on RandomRBFGenerator with 30% noise level and

epsilon parameter set at 0.03 on performance metrics CMM, Purity, Silhouette Coefficient,

and Rand index. The modified DenStream outperformed DenStream on performance metrics

Purity and Rand index and at least one algorithm on the other metrics CMM and Silhouette

Coefficient.

Figure 4-42: Bar plots of CluStream ClusTree, DenStream, and modified DenStream epsilon set at 0.03 on

RandomRBF with noise level 30%.

Figure 4-43 is the visualized line graph of performance metric CMM on

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.05. DenStream’s lowest point occurs at instance 173000 with a

value of 0.410 and highest point at instance 46000 with a value of 1.00. CluStream maintains

uniform value within the intervals [0.97, 0.99]. However, ClusTree outperforms both

CluStream and DenStream after the initial poor start with an average value of 0.984734.

Page | 72

Figure 4-43: The line graph of RandomRBF with noise level 0% using CMM on modified DenStream epsilon

set at 0.05.

Figure 4-44 is the line graph of performance metric Purity on RandomRBFGenerator with 0%

noise level and epsilon parameter of DenStream and modified DenStream set to 0.05.

DenStream’s highest point value is 1.00 which occurs at instances 38000 to 42000 and lowest

point value 0.209 at instance 175000. CluStream outperforms both ClusTree and DenStream

with an average value of 0.984838. ClusTree’s lowest point occurs at instance 136000 with a

value of 0.868 and highest point value is 1.00.

Figure 4-44: The line graph of RandomRBF with noise level 0% using Purity on modified DenStream epsilon

set at 0.05.

Page | 73

Figure 4-45 illustrates the output of performance metric Silhouette Coefficient on

RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.05. DenStream outperforms both ClusTree and CluStream with

0.742449. DenStream’s highest point value is 1.00 at instance intervals [171000 – 176000].

CluStream’s lowest point value is 0.436 at instance 174000. ClusTree’s highest point value is

0.729 at instance 113000 and lowest point value occurs at instance zero.

Figure 4-45: The line graph of RandomRBF with noise level 0% using Silhouette Coefficient on modified

DenStream epsilon set at 0.05.

Figure 4-46 is the line graph of performance metric Rand index on RandomRBFGenerator

with 0% noise level and epsilon parameter of DenStream and modified DenStream set to

0.05. DenStream’s lowest point is at instance 175000 with a value of 0.207. ClusTree

outperforms both DenStream and ClusTree with an average value of 0.830699. CluStream

value ranges between the intervals 0.7 and 0.8.

Page | 74

Figure 4-46: The line graph of RandomRBF with noise level 0% using Rand index on modified DenStream

epsilon set at 0.05.

Table 4-6 indicates ClusTree outperforms on performance metrics CMM and Purity with

0.984734 and 0.974619 respectively. CluStream outperforms on performance metrics

Silhouette Coefficient and Rand index with 0.821436 and 0.839968 respectively. The

modified DenStream however, outperforms DenStream on all the metrics.

Table 4-6: RandomRBF 0% noise level with epsilon parameter set at 0.05.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.933418 0.984734 0.767276 0.842120

Purity 0.927379 0.974619 0.723268 0.842179

Silhouette 0.821436 0.565896 0.742449 0.750881

Rand index 0.839968 0.830699 0.745373 0.837461

Figure 4-47 is the visualized bar chart for the average values of the algorithms DenStream,

ClusTree, and CluStream on RandomRBFGenerator with 0% noise level and epsilon

parameter set at 0.05 using performance metrics CMM, Purity, Silhouette Coefficient, and

Rand index. The modified DenStream outperformed DenStream on all the performance

metrics.

Page | 75

Figure 4-47: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.05 on

RandomRB with noise level 0%.

Figure 4-48 is the visualized line graph of performance metric CMM on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.05. DenStream’s highest point is at instance 173000 and lowest

point at instance 74000. ClusTree outperforms other algorithms with an average value of

0.764806. ClusTree’s highest point occurs at instance 46000. The modified DenStream’s

lowest point occurs at instance 4000 and outperforms both DenStream and CluStream with an

average value of 0.731058 and its highest point occurs at instance 145000.

Page | 76

Figure 4-48: The line graph of RandomRBF with noise level 30% using CMM on modified DenStream epsilon

set at 0.05.

Figure 4-49 illustrates the line graph of performance metric Purity on RandomRBFGenerator

with 30% noise level and epsilon parameter of DenStream and modified DenStream set at

0.05. ClusTree outperforms other algorithms with an average value of 0.976311. ClusTree’s

lowest point occurs at instance 33000. CluStream’s highest point occurs at instances 134000

and lowest point at instance 111000. The modified DenStream however, outperformed both

CluStream and DenStream with an average value of 0.943678.

Figure 4-49: The line graph of RandomRBF with noise level 30% using Purity on modified DenStream epsilon

set at 0.05.

Page | 77

Figure 4-50 is the visualized line graph of performance metric Silhouette Coefficient on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set to 0.05. The modified DenStream outperforms other algorithms with

an average value of 0.644882. DenStream’s highest point occurs at instance 134000.

CluStream’s lowest point occurs at instance 175000 and has an average value of 0.615896.

ClusTree’s highest point occurs at instance 134000 and has the least average value of

0.464858.

Figure 4-50: The line graph of RandomRBF with noise level 30% using Silhouette Coefficient on modified

DenStream epsilon set st 0.05.

Figure 4-51 is the visualized line graph of performance metric Rand index on

RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.05. ClusTree outperforms other algorithms with an average

value of 0.841067. DenStream’s lowest point occurs at instance 27000 and highest point at

instance 137000. CluStream’s lowest point occurs at instance 71000 and highest point at

instances 141000 and 145000. The modified DenStream’s highest point occurs at instance

10000 and lowest point at instance 37000. The modified DenStream has an average of

0.830016.

Page | 78

Figure 4-51: The line graph of RandomRBF with noise level 30% using Rand index on modified DenStream

epsilon set at 0.05.

In Table 4-7, ClusTree outperforms on performance metrics CMM, Purity, and Rand index

with 0.764806, 0.976311, and 0.841067 respectively. The modified DenStream outperforms

on metric Silhouette Coefficient with a value of 0.644882. The modified DenStream likewise

outperforms against DenStream on all metrics.

Table 4-7: RandomRBF 30% noise level with epsilon parameter set at 0.05.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.725730 0.764806 0.694887 0.731058

Purity 0.744893 0.976311 0.932780 0.943678

Silhouette 0.615896 0.464856 0.639189 0.644882

Rand index 0.811282 0.841067 0.738834 0.830016

Figure 4-52 presents the visualization of the bar chart for the average values of the algorithms

on RandomRBFGenerator with 30% noise level and epsilon parameter set to 0.05 on

performance metrics CMM, Purity, Silhouette Coefficient, and Rand index. The modified

DenStream outperformed DenStream on all the performance metrics.

Page | 79

Figure 4-52: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.05 on

RandomRBF with noise level 30%.

4.2.6 Effects of Epsilon parameter tuning on Forest Covertype.

We experimented with the effects of DenStream and modified DenStream epsilon parameter

set at 0.03 on real-world dataset Forest Covertype and presented the experimental evaluation.

Figure 4-53 illustrates the line graph of performance metric CMM on Forest Covertype, and

epsilon parameter of DenStream and modified DenStream set to 0.03. ClusTree outperforms

other algorithms with an average value of 0.764913. ClusTree’s highest point occurs at

instance 15000 and lowest point at instance 142000. CluStream’s highest point happens at

instance 12000 and lowest point at instance 35000. DenStream’s lowest point occurs at

instance 191000 and highest point at instance 160000. The modified DenStream’s highest

point occurs at instance 1000 and has an average value of 0.427090.

Page | 80

Figure 4-53: The line graph of Forest Covertype using CMM on DenStream and modified DenStream epsilon

set at 0.03.

Figure 4-54 is the visualized line graph of performance metric Purity on Forest Covertype,

and epsilon parameter of DenStream and modified DenStream set at 0.03. DenStream lowest

point occurs at instance 89000. The modified DenStream’s lowest point occurs at instance

13000 and has an average value of 0.973233. ClusTree’s lowest point appears at instance

16000 and outperforms other algorithm with an average value of 0.983300. CluStream has the

least average value 0.915834.

Figure 4-54: The line graph of Forest Covertype using Purity on DenStream and modified DenStream epsilon

set at 0.03.

Page | 81

Figure 4-55 is the visualized line graph of performance metric Silhouette Coefficient on

Forest Covertype and epsilon parameter of DenStream and modified DenStream set at 0.03.

CluStream outperforms other algorithms with an average value of 0.801819. DenStream’s

highest point occurs at instance 13000 and lowest point at instance 89000. ClusTree’s highest

point occurs at instance 21000 and lowest point at instance zero. The modified DenStream’s

highest point occurs at instance 10000 and has an average value of 0.715490.

Figure 4-55: The line graph of Forest Covertype using Silhouette Coefficient on DenStream and modified

DenStream epsilon set at 0.03.

Figure 4-56 is the visualized line graph of performance metric Rand index on Forest

Covertype and epsilon parameter of DenStream and modified DenStream set at 0.03.

CluStream outperforms other algorithms with an average value of 0.564000 and highest point

at instance 92000. DenStream’s highest point is at instance 92000 and lowest point at instance

13000. ClusTree’s highest point occurs at instance 93000. The modified DenStream’s lowest

point occurs at instance 13000 and has an average value of 0.552186.

Page | 82

Figure 4-56: The line graph of Forest Covertype using Rand index on DenStream and modified DenStream

epsilon set at 0.03.

Table 4-8 presents the performance of the three algorithms on Forest Covertype dataset,

DenStream and modified DenStream epsilon parameter set at 0.03. ClusTree outperforms

other algorithms using performance metrics CMM and Purity with 0.764913 and 0.983300

respectively. CluStream outperforms on performance metrics Silhouette Coefficient and Rand

index with 0.801819 and 0.564100 respectively. The modified DenStream however

outperforms DenStream on metric CMM.

Table 4-8: Forest Covertype dataset on epsilon parameter set at 0.03.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.749105 0.764913 0.399430 0.427090

Purity 0.918534 0.983300 0.978341 0.973233

Silhouette 0.801819 0.613921 0.716577 0.715490

Rand index 0.564100 0.555170 0.564352 0.552186

Figure 4-57 presents the visualization of the bar chart for the average values of the algorithms

on Forest Covertype dataset with epsilon parameter set at 0.03 on performance metrics CMM,

Purity, Silhouette Coefficient, and Rand index. The modified DenStream shows a better

performance against some algorithms at some metrics.

Page | 83

Figure 4-57: Bar plots of ClusTree, CluStream, DenStream, and modified DenStream epsilon set at 0.03 on

Forest Covertype dataset.

Figure 4-58 presents the output of performance metric CMM on Forest Covertype,

DenStream and modified DenStream epsilon parameter set at 0.05. ClusTree outperforms

other algorithms with an average value of 0.764913. ClusTree’s highest point occurs at

instance 15000 and lowest point at instance 142000. DenStream’s highest point happens at

instance 161000 and lowest point at instance 14000. CluStream’s highest point value is at

instance 12000 and lowest point at instance 151000. The modified DenStream has its highest

point at instance 204000 and lowest point at instance 14000. The modified DenStream’s

average value is 0.518633 and outperforms that of DenStream with an average value of

0.484317.

Page | 84

Figure 4-58: The line graph of Forest Covertype dataset using CMM on DenStream and modified DenStream

epsilon set at 0.05.

Figure 4-59 is the visualized line graph of performance metric Purity on Forest Covertype

dataset and epsilon parameter of DenStream and modified DenStream set at 0.05.

DenStream’s lowest point occurs at instance 61000 and has an average value of 0.955072.

ClusTree’s lowest point occurs at instance 125000 and has better performance with an

average value of 0.983300. CluStream’s lowest point occurs at instance 14000 and

underperformed with an average value of 0.918534. The modified DenStream outdoes

DenStream with an average value of 0.960213.

Figure 4-59: The line graph of Forest Covertype dataset using Purity DenStream and modified DenStream

epsilon set at 0.05.

Page | 85

Figure 4-60 is the visualized line graph of performance metric Silhouette Coefficient on

Forest Covertype dataset and epsilon parameter of DenStream and modified DenStream set at

0.05. DenStream’s highest point value is at instance 14000 and lowest point value at instance

166000. CluStream outruns other algorithms with an average value of 0.801819. ClusTree

underperformed with an average value of 0.613921. ClusTree’s highest point value is at

instance 21000 and lowest point at instance zero. The modified DenStream outdoes

DenStream and CluStream with an average value of 0.664602 as against 0.629341 and

0.613921 achieved by DenStream and CluStream respectively.

Figure 4-60: The line graph of Forest Covertype dataset using Silhouette Coefficient on DenStream and

modified DenStream epsilon set at 0.05.

Figure 4-61 is the visualized line graph of performance metric Rand index on Forest

Covertype dataset and epsilon parameter of DenStream and modified DenStream set at 0.05.

CluStream outperforms other algorithms with 0.564100. CluStream’s highest point occurs at

instance 93000. DenStream’s lowest point value is at instance 13000 and highest point is at

instance 48000. The modified DenStream underperformed with an average value of

0.496804.

Page | 86

Figure 4-61: The line graph of Forest Covertype dataset using Rand index on DenStream and modified

DenStream epsilon set at 0.05.

In Table 4-9, the summary of performance of the three algorithms on Forest Covertype,

DenStream and modified DenStream epsilon 0.05 show that ClusTree performed best on

performance metrics CMM and Purity with 0.764913 and 0.983300 respectively. CluStream

outperforms on performance metrics Silhouette Coefficient and Rand index with 0.801819

and 0.564100 respectively. The modified DenStream outperforms DenStream on metrics

CMM, Silhouette Coefficient, and Purity.

Table 4-9: Forest Covertype dataset on epsilon parameter set at 0.05.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.749105 0.764913 0.484317 0.518633

Purity 0.918534 0.983300 0.955072 0.960213

Silhouette 0.801819 0.613921 0.629341 0.664602

Rand index 0.564100 0.555170 0.517388 0.496804

Figure 4-62 is the visualized bar chart for the average values of the algorithms on Forest

Covertype dataset with epsilon parameter set at 0.05 on performance metrics CMM, Purity,

Silhouette Coefficient, and Rand index. The modified DenStream outruns DenStream on

metrics CMM, Purity, and Silhouette Coefficient.

Page | 87

Figure 4-62: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.05 on

Forest Covertype dataset.

4.2.8 Effects of Epsilon parameter tuning on Electricity dataset.

This section demonstrates the performance of the three algorithms on Electricity dataset. The

evaluation shows the effects of epsilon parameter adjustment on modified DenStream and

DenStream against CluStream and ClusTree. The line chart for DenStream and modified

DenStream with epsilon 0.03 against ClusTree and CluStream algorithms are presented in

Figure 4-63, Figure 4-64, Figure 4-65, and Figure 4-66 using performance metrics CMM,

Purity, Silhouette Coefficient and Rand index.

Figure 4-63 is the visualized line graph of performance metric CMM on Electricity dataset

and epsilon parameter of DenStream and modified DenStream set at 0.03. ClusTree

outperforms other algorithms with an average value of 0.795963. ClusTree’s highest point

occurs at instance 40000 and lowest point at instance zero. DenStream highest point value is

at instance 8000 and lowest point is at instance 23000. DenStream has the least average value

of 0.600013. CluStream’s highest point value is at instance 19000 and lowest point is at

instance zero. CluStream’s average value is 0.759476. The modified DenStream outclasses

DenStream with an average value of 0.643626. The modified DenStream’s highest point

occurs at instances zero to 4000.

Page | 88

Figure 4-63: The line graph of Electricity dataset using CMM on DenStream and modified DenStream epsilon

set at 0.03.

Figure 4-64 is the visualized line graph of performance metric Purity on Electricity dataset

and epsilon parameter of DenStream and modified DenStream set at 0.03. ClusTree

outperforms other algorithms with an average value of 0.869373. DenStream’s lowest point

occurs at instance 13000. ClusTree’s lowest point is at instance 12000 and highest point is at

instance zero. The modified DenStream’s highest point is at 24000 and has an average value

of 0.843952 which outruns both DenStream and ClusTree.

Figure 4-64: The line graph of Electricity dataset using Purity on DenStream and modified DenStream epsilon

set at 0.03.

Page | 89

Figure 4-65 is the visualized line graph of performance metric Silhouette Coefficient on

Electricity dataset and epsilon parameter of DenStream and modified DenStream set at 0.03.

CluStream outperforms other algorithms with an average value of 0.670170. CluStream’s

lowest point occurs at instance zero and the highest point is at instance 13000. DenStream’s

highest point value is 1.000 at the instances 13000 - 15000 and lowest point is at instance

17000. ClusTree’s highest point value is at instance 41000. The modified DenStream’s

highest point is at instance zero and its lowest point value is at instance 5000.

Figure 4-65: The line graph of Electricity dataset using Silhouette Coefficient on DenStream and modified

DenStream epsilon set at 0.03.

Figure 4-66 illustrates the line graph of performance metric Rand index on Electricity dataset

and epsilon parameter of DenStream and modified DenStream set at 0.03. DenStream

outperforms other algorithms with an average value of with values 0.511141. DenStream’s

highest point is at instance 8000 with a value of 0.577 and the lowest point is at instances

1000 and 33000 with a value of 0.490. ClusTree’s highest point is at instance 21000 with a

value of 0.538 and lowest point at instance 1000 with a value of 0.460. CluStream’s highest

point value is 0.571 at instance 21000 and lowest point is at instances zero and 19000 with a

value of 0.500. The modified DenStream was outclassed by other algorithms.

Page | 90

Figure 4-66: The line graph of Electricity dataset using Rand index on DenStream and modified DenStream

epsilon set at 0.03.

Table 4-10 presents the tabulated performance of the algorithms on Forest Covertype and

DenStream and modified DenStream epsilon parameter set at 0.03 shows that ClusTree

outperforms on performance metrics CMM and Purity with 0.765963 and 0.869373

respectively. CluStream outperforms on performance metrics Silhouette Coefficient with

0.670710. DenStream outperforms on metric Rand index with a value of 0.511141. However,

the modified DenStream outperforms against DenStream on metrics CMM and Purity.

Table 4-10: Electricity dataset on epsilon parameter set at 0.03.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.759476 0.765963 0.600013 0.643626

Purity 0.776815 0.869373 0.830573 0.843952

Silhouette 0.670170 0.457088 0.485307 0.440715

Rand index 0.509466 0.507946 0.511141 0.504372

Figure 4-67 is the visualized bar chart for the average values of the algorithms on Electricity

dataset with epsilon parameter set at 0.03 on performance metrics CMM, Purity, Silhouette

Coefficient, and Rand index. The modified DenStream outperformed DenStream on metrics

CMM and Purity.

Page | 91

Figure 4-67: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.03 on

Electricity dataset.

Again, the effect of modified DenStream with adjusted epsilon 0.05 was demonstrated against

CluStream, ClusTree, and DenStream algorithms on the Electricity dataset. The performance

metrics CMM, Purity, Silhouette Coefficient, and Rand index were used. The line graph of

the performance metrics is presented in Figure 4-68, Figure 4-69, Figure 4-70, and Figure 4-

71.

Figure 4-68 presents the line graph of performance metric CMM on Electricity dataset,

DenStream and modified DenStream epsilon parameter set at 0.05. DenStream shows a better

performance over ClusTree and CluStream with an average value of 0.783626. The modified

DenStream likewise outperforms both ClusTree and CluStream with an average value of

0.776266. DenStream’s highest point value is at instance instances zero - 4000 and lowest

point at instance 35000. The highest point of the modified DenStream occurs at instances zero

– 4000 and lowest point at instance 18000. CluStream’s lowest point is at instance 11000 and

highest point at instance 29000. ClusTree’s highest point occurs at instance 40000 and lowest

point at instance zero.

Page | 92

Figure 4-68: The line graph of Electricity dataset using CMM on DenStream and modified DenStream epsilon

set at 0.05.

Figure 4-69 is the visualized line graph of performance metric Purity on Electricity dataset

and epsilon parameter of DenStream and modified DenStream set at 0.05. ClusTree

outperforms other algorithms with an average value of 0.869373. The modified DenStream

outperforms both CluStream and DenStream with an average value of 0.784972. DenStream’s

lowest point occurs at instance 5000 and highest point at instance 39000. ClusTree’s lowest

point occurs at instance 12000. CluStream’s highest point occurs at instance 13000 and

lowest point at instance 11000.

Figure 4-69: The line graph of Electricity dataset using Purity on DenStream and modified DenStream epsilon

set at 0.05.

Page | 93

Figure 4-70 is the visualized line graph of performance metric Silhouette Coefficient on

Electricity dataset and epsilon parameter of DenStream and modified DenStream set at 0.05.

DenStream demonstrates a better performance than ClusTree and CluStream with an average

value of 0.569716. DenStream’s highest point of 1.00 occurs along many instances and

lowest point is at instance 42000. ClusTree’s highest point is at instance 41000 and lowest

point is at instance zero. CluStream’s highest point occurs at instance 5000 and lowest point

at instance 24000.

Figure 4-70: The line graph of Electricity dataset using Silhouette Coefficient on DenStream and modified

DenStream epsilon set at 0.05.

Figure 4-71 is the visualized line graph of performance metric Rand index on Electricity

dataset and epsilon parametrer of DenStream and modified DenStream set at 0.05. CluStream

outperforms other algorithms with an average value of 0.509466. CluStream’s highest point

occurs at instance 1000 and lowest point at instances 19000 and 41000. ClusTree’s lowest

point is at instance 1000 and highest point at instance 21000. DenStream’s highest point is at

instance 1000 and lowest point at instance 35000. The modified DenStream however,

underperforms other algorithms with an average of 0.502474.

Page | 94

Figure 4-71: The line graph of Electricity dataset on DenStream and modified DenStream epsilon set at 0.05.

Table 4-11 indicates that DenStream outperforms on performance metric CMM with

0.783626. CluStream outperforms other algorithms on performance metrics Silhouette

Coefficient and Rand index with 0.670170 and 0.509466 respectively. ClusTree outperforms

on performance metric Purity with 0.869373. The modified DenStream outperforms

DenStream on metric Purity.

Table 4-11: Electricity dataset on epsilon parameter set at 0.05.

Metrics CluStream ClusTree DenStream mod-DenStream

CMM 0.759476 0.765963 0.783626 0.776266

Purity 0.776815 0.869373 0.753844 0.784972

Silhouette 0.670170 0.457088 0.569716 0.495679

Rand index 0.509466 0.507946 0.508257 0.502474

Figure 4-72 presents the visualization of the bar chart for the algorithms on Electricity dataset

with epsilon parameter set at 0.05 on performance metrics CMM, Purity, Silhouette

Coefficient, and Rand index.

Page | 95

Figure 4-72: Bar plots of CluStream, ClusTree, DenStream, and modified DenStream epsilon set at 0.05 on

Electricity dataset.

4.3 Discussion

The choice of a suitable parameter settings in data stream clustering requires expert

knowledge. The first research objective to “identify the method of building a MOA repository

from source to implement the modified algorithm” was addressed in chapter 3 with

implementation of the modified DenStream. The second research objective to “identify the

hyperparameters appropriate for parameter-tuning” was used to demonstrate the effects of

noise levels and epsilon parameter-tuning on DenStream and modified DenStream. using

synthetic data stream and real-world datasets. The values 0.02, 0.03 and 0.05 were set as the

epsilon parameter tuning and the noise level set between 0%, 10%, and 30%. Lastly, the third

research objective identifies the performance metrics CMM, Silhouette coefficient, and Rand

index.

The experimental results using the default parameter settings on the RandomRBFGenerator in

Table 4-1. The results indicate that ClusTree outperforms other algorithms on performance

metrics CMM, Silhouette Coefficient and Rand index with an average value of 0.902690,

0.771385, and 0.885936 respectively. The modified DenStream outperforms other algorithms

on metric Purity with an average value of 0.951441 and likewise outperforms DenStream on

metrics CMM and Rand index.

Page | 96

On the performance of Forest Covertype using the default parameter settings in Table 4-2, the

results show that CluStream outperform all other algorithms on metrics CMM with an

average value 0.749105. ClusTree outperforms other algorithms on metric Silhouette

coefficient with a mean value 0.829813. DenStream outperforms other algorithms on metrics

Purity and Rand index with an average value of 0.972418 and 0.582461 respectively. The

average value between DenStream and modified DenStream on metric Purity looks very

similar. However, the modified DenStream outperforms DenStream on metric CMM with

0.387108.

On the performance using the Electricity dataset with default settings in Table 4-3, CluStream

outperforms other algorithms using metric CMM with 0.759476. ClusTree outperforms other

algorithms using metrics Silhouette Coefficient, and Rand index with 0.732103 and 0.512624

respectively. DenStream also outperforms other algorithms on performance metric Purity with

0.897288. The modified DenStream however, outperforms DenStream using metric CMM

with 0.544408.

On RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.03 in Table 4-4, CluStream outperformed all other algorithms on

Silhouette Coefficient with a value of 0.821436. ClusTree outperforms other algorithms using

metrics CMM and Purity with 0.984734 and 0.974619 respectively. Lastly, the modified

DenStream outperforms on Rand index with a value of 0.889164.

On RandomRBFGenerator with 0% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.05 in Table 4-6, ClusTree outperforms other algorithms using

metrics CMM and Purity with 0.984734 and 0.974619 respectively. CluStream outperforms

on performance metrics Silhouette Coefficient and Rand index with 0.821436 and 0.839968

respectively. The modified DenStream however, outperforms DenStream on all the metrics.

On RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.03 in Table 4-5, DenStream outperforms other algorithms using

metrics CMM and Silhouette Coefficient with an 0.825596 and 0.747127 respectively.

ClusTree outperforms other algorithms using metric Purity with 0.976311. The modified

DenStream outperforms other algorithms using metric Rand index with 0.844152. The

modified DenStream also shows a better performance against DenStream on metric Purity.

On RandomRBFGenerator with 30% noise level and epsilon parameter of DenStream and

modified DenStream set at 0.05 in Table 4-7, ClusTree outperforms other algorithms on

Page | 97

performance metrics CMM, Purity, and Rand index with 0.764806, 0.976311, and 0.841067

respectively. The modified DenStream outperforms on metric Silhouette Coefficient with a

value of 0.644882. The modified DenStream likewise outperforms against DenStream on all

metrics.

On the Forest Covertype dataset with epsilon parameter of DenStream and modified

DenStream set at 0.03 in Table 4-8, CluStream outperforms other algorithms using metrics

Silhouette Coefficient and Rand index with 0.801819 and 0.564100 respectively. ClusTree

outperforms other algorithms using metrics CMM and Purity with 0.764913 and 0.983300

respectively. The modified DenStream however outperforms DenStream on metric CMM.

On the Forest Covertype dataset with epsilon parameter of DenStream and modified

DenStream set at 0.05 in Table 4-9, ClusTree has a better performance on metrics CMM and

Purity with 0.764913 and 0.983300 respectively. CluStream outperforms other algorithms

using metrics Silhouette Coefficient and Rand index with 0.801819 and 0.564100

respectively. The modified DenStream outperforms DenStream on metrics CMM, Purity, and

Silhouette Coefficient.

On the Electricity datas with epsilon parameter of DenStream and modified DenStream set at

0.03 in Table 4-10, ClusTree outperforms other algorithms using metrics CMM and Purity

with 0.765963 and 0.869373 respectively. CluStream outperforms other algorithms using

metrics Silhouette Coefficient with 0.670710. DenStream outperforms other algorithms using

metric Rand index with 0.511141. However, the modified DenStream outperforms against

DenStream on metrics CMM and Purity.

On the Electricity dataset with epsilon parameter of DenStream and modified DenStream set

at 0.05 in Table 4-11, DenStream outperforms other algorithms using metric CMM with

0.783626. CluStream outperforms other algorithms using metrics Silhouette Coefficient and

Rand index with 0.670170 and 0.509466 respectively. ClusTree outperforms other algorithms

using metric Purity with 0.869373. The modified DenStream however, outperforms

DenStream on performance metric Purity.

Page | 98

CHAPTER 5: Conclusions and Future Work

5.0 Conclusions

In conclusion, this dissertation demonstrates the performance of a modified DenStream

algorithm against state-of-the-art algorithms CluStream, ClusTree, and DenStream on the

Massive Online Analysis (MOA) tool. The analysis involves the streaming synthetic dataset

generated in MOA using the RandomRBFGenerator and real-world datasets (Electricity and

Forest Covertype). The research objective to “identify the method of building a MOA

repository from source to implement the modified algorithm” was done using the IntelliJ

IDEA Community Edition 2022.2 and we implemented the modified DenStream in Java on it.

We demonstrated the modified DenStream against other algorithms using the default

parameter settings for synthetic dataset generated using RandomRBFGenerator with 205000

instances. On the real-world dataset Forest Covertype, it involves using 205000 instances, and

on the Electricity dataset, it involves using 45000 instances.

To answer the research objective “identify the hyperparameters appropriate for parameter-

tuning”, we identified two hyperparameters (epsilon and minPts) in DenStream suitable for

parameter specification adjustment. We demonstrated the effects RandomRBFGenerator

noise level adjustment between 0%, the default 10%, and 30% on the modified DenStream

against algorithms and implemented epsilon parameter-tuning using the default 0.02, 0.03 and

0.05 respectively. We also compared the effects against other algorithms using

RandomRBFGenerator noise level between 0%, the default 10%, and 30% on real-world

datasets (Electricity and Forest Covertype).

The experimentation involves identifying appropriate performance metrics for clustering

quality which addressed the research objective to “identify the performance metrics

applicable for clustering quality”. We identified the performance metrics CMM, Silhouette

Coefficient, and Rand index and demonstrated the evaluation of the algorithms using these

metrics. The results based on RandomRBFGenerator with default settings show that

CluStream performed better on performance metrics (CMM, Silhouette Coefficient, and Rand

index) compared to other algorithms. The modified DenStream outperforms other algorithms

on metric Purity and shows a better performance against DenStream on metrics CMM and

Rand index.

On Forest Covertype with default settings, CluStream outperforms all other algorithms on

performance metrics CMM, DenStream outperforms other algorithms using metrics Purity

Page | 99

and Rand index, ClusTree outperforms other algorithms using metric Silhouette coefficient.

However, the modified DenStream outperforms DenStream on performance metric CMM.

The Electricity dataset with default settings indicates that CluStream outperforms other

algorithms on metric CMM; ClusTree outperforms other algorithms using metrics Silhouette

Coefficient and Rand index; DenStream also outperforms on performance metric Purity.

However, the modified DenStream outperforms DenStream using metric CMM.

On parameter-tuning and noise levels, the modified DenStream outperformed DenStream on

performance metrics CMM, Purity and Rand index on RandomRBFGenerator with 0% noise

level and epsilon parameter set at 0.03 and 0.05. On RandomRBFGenerator with 30% noise

level and epsilon parameter set at 0.03 and 0.05, the modified DenStream outperformed

DenStream on performance metrics Purity and Rand index and other algorithms (CluStream

and ClusTree) in at least one metric (CMM and Silhouette Coefficient) using epsilon

parameter set at 0.03. The modified DenStream also outperforms other algorithms on

performance metric Silhouette Coefficient with epsilon parameter set at 0.05. The modified

DenStream outruns DenStream on all performance metrics using epsilon parameter at 0.05.

Lastly, using real-world datasets (Electricity and Forest Covertype) shows that on Forest

Covertype with epsilon parameter set at 0.03, the modified DenStream outruns some

algorithms at some metrics. The experimental results using Forest Covertype dataset with

epsilon parameter set at 0.05 show that modified DenStream outclasses DenStream on metrics

CMM, Purity, and Silhouette Coefficient. ClusTree outperforms other algorithms metric

Silhouette Coefficient and DenStream outperforms on metric CMM, CluStream outperforms

other algorithms on metrics Purity and Rand index using Electricity dataset with epsilon

parameter set at 0.03. The Electricity dataset with epsilon parameter set at 0.05, shows that

DenStream outperforms other algorithms using metric CMM. ClusTree outperforms on

performance metric Silhouette Coefficient; and CluStream outperforms other algorithms

using metrics Rand index and Purity. However, the modified DenStream outshine DenStream

on performance metric Purity.

We were unable to demonstrate the performance of the modified DenStream on memory

usage and time because the MOA framework could not display the chart for memory and time

for comparison on the algorithms.

Page | 100

5.1 Future Work

The future work of this research will try to improve on the modified algorithm and

experiment on the effects of hyper-parameters tuning like the decay factor and outlier

threshold. The implementation of an improved algorithm on the most critical challenges of

parameter settings in data stream clustering which can detect clusters of arbitrary shape,

group data streams into clusters, preserve clusters dynamically, and the visualization of the

memory usage and time are other future directions.

Hybrid algorithm is another direction for future research. Proposing a hybrid algorithm robust

arbitrary shapes detection and resistance to noise will be of interest to both researchers and

academia.

Page | 101

References
Abid, A., Jamoussi, S., & Hamadou, A. Ben. (2019). AIS-Clus: A Bio-Inspired Method for

Textual Data Stream Clustering. Vietnam Journal of Computer Science, 06(02), 223–

256. https://doi.org/10.1142/s2196888819500143

Ackermann, M. R., Lammersen, C., Sohler, C., Swierkot, K., & Raupach, C. (2012).

StreamKM++: A Clustering Algorithm for Data Stream. Journal of Experimental

Algorithmics, 17(1), 173–187. https://doi.org/https://doi.org/10.1145/ 2133803.2184450

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A Framework for Clustering

Evolving Data Streams. {VLDB} 2003, Proceedings of 29th International Conference on

Very Large Data Bases, September 9-12, 2003, Berlin, Germany, 81–92.

http://www.vldb.org/conf/2003/papers/S04P02.pdf

Aggarwal, C. C., & Reddy, C. K. (2014). DATA Clustering: Algorithms and Applications. In

CRC Press. CRC Press Taylor & Francis Group.

Aggarwal, C., Han, J., Wang, J., & Yu, P. (2004). A Framework for Projected Clustering of

High Dimensional Data Streams. Proceedings 2004 VLDB Conference, 852–863.

https://doi.org/10.1016/b978-012088469-8/50075-9

Agrawal, L. S., & Adane, D. S. (2016). Models and Issues in Data Stream Mining.

International Journal of Computer Science and Applications, 9(1), 6–10.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace

clustering of high dimensional data for data mining applications. Proceedings of the

1998 ACM SIGMOD International Conference on Management of Data, 94–105.

Ahmed, R., Dalkılıç, G., & Erten, Y. (2020). DGStream: High quality and efficiency stream

clustering algorithm. Expert Systems with Applications, 141, 112947–112959.

https://doi.org/10.1016/j.eswa.2019.112947

Akinosho, T. A., Tabane, E., & Zenghui, W. (2023). Performance Evaluation of Data Stream

Clustering Algorithm on Parameter Specification. International Conference on Wireless

Intelligent and Distributed Environment for Communication, 173–189.

Aljibawi, M., Zakree, M., Nazri, A., Nor, A., & Sani, S. (2022). AN ENHANCED MUDI-

STREAM ALGORITHM FOR CLUSTERING DATA STREAM. Article in Journal of

Theoretical and Applied Information Technology, 15(9).

https://www.researchgate.net/publication/360748957

Al-shammari, A. (2019). Towards Improving Data Summarisation and their Dynamic

Maintenance (Issue September). Swinburne University of Technology.

Al-Shammari, A., Zhou, R., Naseriparsaa, M., & Liu, C. (2019). An effective density-based

clustering and dynamic maintenance framework for evolving medical data streams.

International Journal of Medical Informatics, 126(February), 176–186.

https://doi.org/10.1016/j.ijmedinf.2019.03.016

Page | 102

Amini, A., Saboohi, H., Herawan, T., & Wah, T. Y. (2016). MuDi-Stream: A multi density

clustering algorithm for evolving data stream. Journal of Network and Computer

Applications, 59, 370–385. https://doi.org/10.1016/j.jnca.2014.11.007

Amini, A., Wah, Y., & Saboohi, H. (2014). Amini A, Wah TY, Saboohi H. On density-based

data streams clustering algorithms: A survey On Density-Based Data Streams Clustering

Algorithms: A Survey. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,

29(1), 116–141. https://doi.org/10.1007/s11390-013-1416-3

Andreopoulos, B., An, A., Wang, X., & Schroeder, M. (2009). A roadmap of clustering

algorithms: Finding a match for a biomedical application. In Briefings in Bioinformatics

(Vol. 10, Issue 3, pp. 297–314). https://doi.org/10.1093/bib/bbn058

Attaoui, M. O., Azzag, H., Lebbah, M., & Keskes, N. (2022). Improved Multi-objective Data

Stream Clustering with Time and Memory Optimization. http://arxiv.org/abs/2201.05079

Bahri, M., Salutari, F., Putina, A., & Sozio, M. (2022). AutoML: state of the art with a focus

on anomaly detection, challenges, and research directions. In International Journal of

Data Science and Analytics (Vol. 14, Issue 2, pp. 113–126). Springer Science and

Business Media Deutschland GmbH. https://doi.org/10.1007/s41060-022-00309-0

Baker, F. B., & Hubert, L. J. (1975). Measuring the power of hierarchical cluster analysis.

Journal of the American Statistical Association, 70(349), 31–38.

Bezdek, J. C., & Keller, J. M. (2021). Streaming Data Analysis: Clustering or Classification?

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 91–102.

https://doi.org/10.1109/TSMC.2020.3035957

Bifet, A., Read, J., Holmes, G., & Pfahringer, B. (2018). Streaming Data Mining with

Massive Online Analytics (MOA). Data Mining in Time Series and Streaming

Databases, 1–25.

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications

in Statistics-Theory and Methods, 3(1), 1–27.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-Based Clustering over an Evolving

Data Stream with Noise. SIAM Conference on Data Mining, 328–339.

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006). Density-Based Clustering over an Evolving

Data Stream with Noise. In Proceedings of the 2006 SIAM International Conference on

Data Mining., 328–339. https://doi.org/10.1137/1.9781611972764.29

Carnein, M. (2019). Stream Clustering. https://www.matthias-carnein.de/streamclustering

Carnein, M., Assenmacher, D., & Trautmann, H. (2017). An empirical comparison of stream

clustering algorithms. ACM International Conference on Computing Frontiers 2017, CF

2017, 361–366. https://doi.org/10.1145/3075564.3078887

Carnein, M., & Trautmann, H. (2018). evoStream – Evolutionary Stream Clustering Utilizing

Idle Times. Big Data Research, 14, 101–111. https://doi.org/10.1016/j.bdr.2018.05.005

Page | 103

Carnein, M., & Trautmann, H. (2019a). Customer segmentation based on transactional data

using stream clustering. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11439

LNAI, 280–292. https://doi.org/10.1007/978-3-030-16148-4_22

Carnein, M., & Trautmann, H. (2019b). Optimizing Data Stream Representation: An

Extensive Survey on Stream Clustering Algorithms. Business & Information Systems

Engineering (BISE), 61(3), 277–297.

Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020a). confstream: Automated

algorithm selection and configuration of stream clustering algorithms. Learning and

Intelligent Optimization: 14th International Conference, LION 14, Athens, Greece, May

24–28, 2020, Revised Selected Papers 14, 80–95.

Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020b). confstream: automated

algorithm selection and configuration of stream clustering algorithms. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 12096 LNCS, 80–95. https://doi.org/10.1007/978-3-

030-53552-0_10

Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020c). Towards automated

configuration of stream clustering algorithms. Communications in Computer and

Information Science, 1167 CCIS, 137–143. https://doi.org/10.1007/978-3-030-43823-

4_12

Chen, J., Lin, X., Xuan, Q., & Xiang, Y. (2019). FGCH: a fast and grid-based clustering

algorithm for hybrid data stream. Applied Intelligence, 49(4), 1228–1244.

https://doi.org/10.1007/s10489-018-1324-x

Chen, Y., & Tu, L. (2007). Density-Based Clustering for Real-Time Stream Data. In

Proceedings 13th ACM SIGKDD International Conference on Knowledege Discovery

and Data Mining, 133–142. https://doi.org/10.4135/9781452229669.n66

Chenaghlou, M. (2019). Data Stream Clustering and Anomaly Detection (Issue October).

University of Melbourne.

Dang, X. H., Lee, V. C. S., Ng, W. K., & Ong, K. L. (2009). Incremental and adaptive

clustering stream data over sliding window. Database and Expert Systems Applications:

20th International Conference, DEXA 2009, Linz, Austria, August 31–September 4,

2009. Proceedings 20, 660–674.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2, 224–227.

de Abreu Lopes, P., & de Arruda Camargo, H. (2017). Fuzzstream: Fuzzy data stream

clustering based on the online-offline framework. 2017 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), 1–6.

Page | 104

de Andrade Silva, J., & Hruschka, E. R. (2016). A support system for clustering data streams

with a variable number of clusters. ACM Transactions on Autonomous and Adaptive

Systems, 11(2), 1–26. https://doi.org/10.1145/2932704

Dua, D., & Graff, C. (2019). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated clusters.

Estert, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). Density-Based Clustering Methods. In

KDD, 96(34), 226–231. https://doi.org/10.1016/B978-044452701-1.00067-3

Fahy, C., & Yang, S. (2019a). Dynamic Feature Selection for Clustering High Dimensional

Data Streams. IEEE Access, 7, 127128–127140.

https://doi.org/10.1109/ACCESS.2019.2932308

Fahy, C., & Yang, S. (2019b). Finding and Tracking Multi-Density Clusters in Online

Dynamic Data Streams. IEEE Transactions on Big Data, 20(20), 1–15.

Fahy, C., Yang, S., & Gongora, M. (2019). Ant Colony Stream Clustering: A Fast Density

Clustering Algorithm for Dynamic Data Streams. IEEE Transactions on Cybernetics,

49(6), 2215–2228. https://doi.org/10.1109/TCYB.2018.2822552

Fisher, D. (1996). Iterative optimization and simplification of hierarchical clusterings.

Journal of Artificial Intelligence Research, 4, 147–178.

Forestiero, A., Pizzuti, C., & Spezzano, G. (2013). A single pass algorithm for clustering

evolving data streams based on swarm intelligence. Data Mining and Knowledge

Discovery, 26(1), 1–26. https://doi.org/10.1007/s10618-011-0242-x

Franke, M., & Geyer-Schulz, A. (2009). An update algorithm for restricted random walk

clustering for dynamic data sets. Advances in Data Analysis and Classification, 3(1), 63–

92. https://doi.org/10.1007/s11634-009-0039-6

Gajowniczek, K., Bator, M., Zabkowski, T., Orlowski, A., & Loo, C. K. (2020). Simulation

study on the electricity data streams time series clustering. Energies, 13(924), 1–25.

https://doi.org/10.3390/en13040924

Ghaemi, Z., & Farnaghi, M. (2019). A Varied Density-based Clustering Approach for Event

Detection from Heterogeneous Twitter Data. ISPRS International Journal of Geo-

Information, 8(2). https://doi.org/10.3390/ijgi8020082

Ghesmoune, M., Lebbah, M., & Azzag, H. (2016a). A new Growing Neural Gas for

clustering data streams. Neural Networks, 78, 36–50.

https://doi.org/10.1016/j.neunet.2016.02.003

Ghesmoune, M., Lebbah, M., & Azzag, H. (2016b). State-of-the-art on clustering data

streams. Big Data Analytics, 1(13), 1–27. https://doi.org/10.1186/s41044-016-0011-3

Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data. PLoS ONE, 11(4).

https://doi.org/10.1371/journal.pone.0152173

Page | 105

Gomes, H. M., Bahri, M., & Bifet, A. (2020). Tutorial 6: Building MOA from the source.

https://moa.cms.waikato.ac.nz

Gomes, H. M., Barddal, J. P., Enembreck, A. F., & Bifet, A. (2017). A survey on ensemble

learning for data stream classification. In ACM Computing Surveys (Vol. 50, Issue 2, pp.

23–41). Association for Computing Machinery. https://doi.org/10.1145/3054925

Gong, S., Zhang, Y., & Yu, G. (2018). Clustering stream data by exploring the evolution of

density mountain. Proceedings of the VLDB Endowment, 11(4), 393–405.

https://doi.org/10.1145/3164135.3164136

Guha, S., Rastogi, R., & K. Shim, R. (2000). A robust clustering algorithm for categorical

attributes. Information Systems, 25(5), 345–366.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An Efficient Clustering Algorithm for

Large Databases. ACM Sigmod Record, 27(2), 73–84.

Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. In The Morgan

Kaufmann Series in Data Management Systems (3rd Editio). The Morgan Kaufmann

Series in Data Management Systems. https://doi.org/10.1109/ICMIRA.2013.45

Haneen, A. A., Noraziah, A., & Abd Wahab, M. H. (2018). A Review on Data Stream

Classification. Journal of Physics: Conference Series, 1018(1), 1–7.

https://doi.org/10.1088/1742-6596/1018/1/012019

Hartigan, J. (1975). Quick Clustering Algorithms. In Applied Statistics (Vol. 25).

https://doi.org/10.2307/2346526

Hassani, M. (2015). Efficient Clustering of Big Data Streams.

Hinneburg, A., & Keim, D. A. (2003). A General Approach to Clustering in Large Databases

with Noise. Knowledge and Information Systems, 5(4), 387–415.

https://doi.org/10.1007/s10115-003-0086-9

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

Hubert, L. J., & Levin, J. R. (1976). A general statistical framework for assessing categorical

clustering in free recall. Psychological Bulletin, 83(6), 1072.

Hyde, R., & Angelov, P. (2015). A new online clustering approach for data in arbitrary

shaped clusters. Proceedings - 2015 IEEE 2nd International Conference on Cybernetics,

CYBCONF 2015, 228–233. https://doi.org/10.1109/CYBConf.2015.7175937

Hyde, R., Angelov, P., & MacKenzie, A. R. (2017). Fully online clustering of evolving data

streams into arbitrarily shaped clusters. Information Sciences, 382–383, 96–114.

https://doi.org/10.1016/j.ins.2016.12.004

Hyde, R. W., Angelov, P., Mackenzie, ; A R, & Nie, F. (2017). Fully Online Clustering of

Evolving Data Streams into Arbitrarily Shaped Clusters. Information Sciences, 382, 96–

114.

Page | 106

Islam, M. K., Ahmed, M. M., & Zamli, K. Z. (2019a). A buffer-based online clustering for

evolving data stream. Information Sciences, 489, 113–135.

https://doi.org/10.1016/j.ins.2019.03.022

Islam, M. K., Ahmed, M. M., & Zamli, K. Z. (2019b). I-CODAS: An improved online data

stream clustering in arbitrary shaped clusters. Engineering Letters, 27(4), 752–762.

Jiri Skala, I. (2012). Algorithms for manipulating large geometric data. University of West

Bohemia.

Karypis, G., Han, E. S., & Kumar, V. (1998). CHAMELEON: A Hierarchical Clustering

Algorithm Using Dynamic Modeling. IEEE Computer, 32(8), 68–75.

Kaufman, L., & Rousseeuw, P. J. (1990). Wiley Series in Probability and Mathematical

Statistics. Applied Probability and Statistics. In Finding groups in data: an introduction

to cluster analysis. Wiley New York.

Khalilian, M., Mustapha, N., & Sulaiman, N. (2016). Data stream clustering by divide and

conquer approach based on vector model. Journal of Big Data, 3(1), 1–21.

https://doi.org/10.1186/s40537-015-0036-x

Kokate, U., Deshpande, A., Mahalle, P., & Patil, P. (2018). Data Stream Clustering

Techniques, Applications, and Models: Comparative Analysis and Discussion. Big Data

and Cognitive Computing, 2(4), 32. https://doi.org/10.3390/bdcc2040032

Kontaki, M., Gounaris, A., Papadopoulos, A. N., Tsichlas, K., & Manolopoulos, Y. (2016).

Efficient and flexible algorithms for monitoring distance-based outliers over data

streams. Information Systems, 55, 37–53. https://doi.org/10.1016/j.is.2015.07.006

Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The ClusTree: Indexing micro-clusters

for anytime stream mining. Knowledge and Information Systems, 29(2), 249–272.

https://doi.org/10.1007/s10115-010-0342-8

Kranen, P., Kremer, H., Jansen, T., Seidl, T., Bifet, A., Holmes, G., & Pfahringer, B. (2010).

Clustering Performance on Evolving Data Streams: Assessing Algorithms and

Evaluation Measures within MOA. IEEE International Conference on Data Mining

Workshops , 1400–1403.

Kranen, P., Kremer, H., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer, B., & Read, J.

(2012). Stream Data Mining Using the MOA Framework. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 7239 LNCS(PART 2). https://doi.org/10.1007/978-3-642-29035-0

Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., & Pfahringer, B. (2011).

An effective evaluation measure for clustering on evolving data streams. Proceedings of

the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 868–876. https://doi.org/10.1145/2020408.2020555

Kuwil, F. H., Atila, Ü., Abu-Issa, R., & Murtagh, F. (2020). A novel data clustering algorithm

based on gravity center methodology. Expert Systems with Applications, 156.

https://doi.org/10.1016/j.eswa.2020.113435

Page | 107

Laha, A. K., & Putatunda, S. (2018). Real time location prediction with taxi-GPS data

streams. Transportation Research Part C: Emerging Technologies, 92, 298–322.

https://doi.org/10.1016/j.trc.2018.05.005

Lee, J., Lee, T. H., & Jun, C. H. (2019). Hybrid data stream clustering by controlling decision

error. Intelligent Data Analysis, 23(3), 717–732. https://doi.org/10.3233/IDA-183869

Li, G., Wang, J., Liang, J., & Yue, C. (2018). The application of a double CUSUM algorithm

in industrial data stream anomaly detection. Symmetry, 10(7), 1–14.

https://doi.org/10.3390/sym10070264

Li, M., Croitoru, A., & Yue, S. (2020). GeoDenStream: An improved DenStream clustering

method for managing entity data within geographical data streams. Computers &

Geosciences, 144, 104563.

Li, Y., Li, H., Wang, Z., Liu, B., Cui, J., & Fei, H. (2022). ESA-Stream: Efficient Self-

Adaptive Online Data Stream Clustering. IEEE Transactions on Knowledge and Data

Engineering, 34(2). https://doi.org/10.1109/TKDE.2020.2990196

Lin, L., & Su, J. (2019). Anomaly detection method for sensor network data streams based on

sliding window sampling and optimized clustering. Safety Science, 118(February), 70–

75. https://doi.org/10.1016/j.ssci.2019.04.047

Loureiro, A., Torgo, L., & Soares, C. (2005). Outlier Detection Using Clustering Methods: a

Data Cleaning Application. Proceedings of the Data Mining for Business Workshop, 57–

62.

Mansalis, S., Ntoutsi, E., Pelekis, N., & Theodoridis, Y. (2018a). An evaluation of data

stream clustering algorithms. Statistical Analysis and Data Mining, 11(4), 167–187.

https://doi.org/10.1002/sam.11380

Mansalis, S., Ntoutsi, E., Pelekis, N., & Theodoridis, Y. (2018b). An evaluation of data

stream clustering algorithms. Statistical Analysis and Data Mining, 11(4), 167–187.

https://doi.org/10.1002/sam.11380

McDonald, M. (2015, March 4). Using TortoiseHg with Git.

https://mcmblog.azurewebsites.net/using-tortoisehg-with-git/

Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for

high-dimensional databases: A review. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 9(3), 1–14. https://doi.org/10.1002/widm.1300

Moon, T. K. (1996). EM_tutorial. IEEE Signal Processing Magazine, 13(6), 47–60.

Moshtaghi, M., Bezdek, J. C., Erfani, S. M., Leckie, C., & Bailey, J. (2019). Online Cluster

Validity Indices for Performance Monitoring of Streaming Data Clustering.

International Journal of Intelligent Systems, 34(4), 541–563.

Ng, R. T., & Han, J. (2002). CLARANS: A method for clustering objects for spatial data

mining. IEEE Transactions on Knowledge and Data Engineering, 14(5), 1003–1016.

https://doi.org/10.1109/TKDE.2002.1033770

Page | 108

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-Data

Algorithms For High-Quality Clustering. Proceedings - 18th Int. Conf. Data Eng, 685–

694.

Ordonez, C. (2003). Clustering binary data streams with k-means. Proceedings of the 8th

ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery, 12–19.

Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies:

A survey. Journal of King Saud University - Computer and Information Sciences, 30(4),

431–448. https://doi.org/10.1016/j.jksuci.2017.06.001

Pawar, Ms. A. D., Kalavadekar, Prof. P. N., & Tambe, Ms. S. N. (2014). A Survey on Outlier

Detection Techniques for Credit Card Fraud Detection. IOSR Journal of Computer

Engineering, 16(2), 44–48. https://doi.org/10.9790/0661-16264448

Rastin, P. (2018). Automatic and Adaptive Learning for Relational Data Stream Clustering.

Rasyid, L. A., & Andayani, S. (2018). Review on Clustering Algorithms Based on Data Type:

Towards the Method for Data Combined of Numeric-Fuzzy Linguistics Linguistics.

Journal of Physics: Conference Series, 1097(012082), 1–10.

Rathore, P. (2018). Big Data Cluster Analysis and its Applications (Vol. 45).

https://doi.org/10.1201/9780429465185-12

Rayana, S. (2016). Outlier Detection DataSets. ODDS Library. http://odds.cs.stonybrook.edu

Roa, N. B., Travé-massuyès, L., & Grisales, V. (2019). A novel algorithm for dynamic

clustering: properties and performance. In 15th IEEE International Conference on

Machine Learning and Applications (ICMLA), 565–570.

Rodrigues, P. P., Gama, J., & Pedroso, P. J. (2006). ODAC: Hierarchical Clustering of Time

Series Data Streams ∗. In Proceedings of the Sixth SIAM International Conference on

Data Mining, 499–503.

Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. da

F., & Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. PLoS

ONE, 14(1), 1–34. https://doi.org/10.1371/journal.pone.0210236

Rohlf, F. (2003). Methods of Comparing Classifications. Annual Review of Ecology and

Systematics, 5, 101–113. https://doi.org/10.1146/annurev.es.05.110174.000533

Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based external

cluster evaluation measure. Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL), 410–420.

Saddam, A., Nasser, S. M., & Sundararajan, E. A. (2020). Online Clstering of Evolving Data

Streams into Arbitrary Shaped Clusters (CEDAS) using Parallel Programming.

Page | 109

Sadik, S., & Gruenwald, L. (2014). Research issues in outlier detection for data streams. ACM

SIGKDD Explorations Newsletter, 15(1), 33–40.

https://doi.org/10.1145/2594473.2594479

Sadik, S. M. (2013). Online Detection of Outliers for Data Streams [University of

Oklahoma]. /citations?view_op=view_citation&continue=/scholar%3Fhl%3Dpt-

BR%26as_sdt%3D0,5%26scilib%3D1&citilm=1&citation_for_view=wS0xi2wAAAAJ:

2osOgNQ5qMEC&hl=pt-BR&oi=p

Schick, L., de Abreu Lopes, P., & de Arruda Camargo, H. (2018). D-Fuzzstream: A

dispersion-based fuzzy data stream clustering. IEEE International Conference on Fuzzy

Systems. https://doi.org/10.1109/Fuzz-Ieee.2018.8491534

Shao, H., Zhang, P., Chen, X., Li, F., & Du, G. (2019). A Hybrid and Parameter-Free

Clustering Algorithm for Large Data Sets. IEEE Access, 7, 24806–24818.

https://doi.org/10.1109/ACCESS.2019.2900260

Shao, J., Tan, Y., Gao, L., Yang, Q., Plant, C., & Assent, I. (2019). Synchronization-based

clustering on evolving data stream. Information Sciences, 501, 573–587.

https://doi.org/10.1016/j.ins.2018.09.035

Sharma, N., Masih, S., & Makhija, P. (2018). A Survey on Clustering Algorithms for Data

Streams. International Journal of Computer Applications.

https://doi.org/10.5120/ijca2018918014

Singh, S. (2015). Master Thesis Spatial Temporal Analysis of Social Media Data Submitted

by. Technische Universitat Munchen.

Song, Y., Lu, J., Lu, H., & Zhang, G. (2020). Fuzzy Clustering-Based Adaptive Regression

for Drifting Data Streams. IEEE Transactions on Fuzzy Systems, 28(3), 544–557.

https://doi.org/10.1109/TFUZZ.2019.2910714

Souza, V. M. A., dos Reis, D. M., Maletzke, A. G., & Batista, G. E. A. P. A. (2020).

Challenges in benchmarking stream learning algorithms with real-world data. Data

Mining and Knowledge Discovery, 34(6), 1805–1858. https://doi.org/10.1007/s10618-

020-00698-5

Tareq, M., & Sundararajan, E. A. (2020). A New Density-Based Method for Clustering Data

Stream Using Genetic Algorithm. Technology Reports of Kansai University, 62(11),

6557–6572.

Tareq, M., & Sundararajan, E. A. (2021). An Evolving Approach to Data Streams Clustering

Based on Chebychev with False Merging. Journal of Theoretical and Applied

Information Technology, 99(9), 1955–1965.

Tareq, M., Sundararajan, E. A., Harwood, A., & Bakar, A. A. (2022). A Systematic Review

of Density Grid-Based Clustering for Data Streams. In IEEE Access (Vol. 10).

https://doi.org/10.1109/ACCESS.2021.3134704

Tareq, M., Sundararajan, E. A., & Mohd, M. (2020). Online Clustering of Evolving Data

Stream Based on adaptive Chebychev Distance. In Proc. 281st Int. Conf. IIER, 41–46.

Page | 110

Tareq, M., Sundararajan, E. A., Mohd, M., & Sani, N. S. (2020). Online Clustering of

Evolving Data Streams Using a Density Grid-Based Method. IEEE Access, 8, 166472–

166490. https://doi.org/10.1109/access.2020.3021684

Thakkar, P., Vala, J., & Prajapati, V. (2016). Survey on Outlier Detection in Data Stream.

International Journal of Computer Applications, 136(2), 13–16.

https://doi.org/10.5120/ijca2016908257

Togbe, M. U., Barry, M., Boly, A., Chabchoub, Y., Chiky, R., Montiel, J., & Tran, V. T.

(2020). Anomaly Detection for Data Streams Based on Isolation Forest Using Scikit-

Multiflow. The 20th International Conference on Computational Science and Its

Applications (ICCSA 2020), Jul 2020, Caligari, Italy. Hal-02874869v2 HAL, 1–16.

https://doi.org/10.1007/978-3-030-58811-3_2

Tran, L., Mun, M. Y., & Shahabi, C. (2020). Real-time distance-based outlier detection in

data streams. Proceedings of the VLDB Endowment, 14(2), 141–153.

https://doi.org/10.14778/3425879.3425885

Tu, L., & Chen, Y. (2008). Stream Data Clustering Based on Grid Density and Attraction.

ACM Transactions on Computational Logic, 1(1), 1–26.

USP DS Repository. (n.d.).

Van Rijsbergen, C. J. (1979). Information retrieval 2nd edition butterworths. London

Available on Internet.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: networked science

in machine learning. SIGKDD Explorations, 15(2), 49–60.

https://doi.org/10.1145/2641190.2641198

Wang, W., Yang, J., & Muntz, R. (1997). STING: A Statistical Information Grid Approach to

Spatial Data Mining. Proceedings of the 23rd VLDB Conference, Anthens, Greece, 186–

195.

Wang, X., & Wang, L. (2018). Research on data stream clustering algorithm based on decay

time window. ACM International Conference Proceeding Series, 1–7.

https://doi.org/10.1145/3207677.3277972

Wu, B., & Wilamowski, B. M. (2017). A fast density and grid-based clustering method for

data with arbitrary shapes and noise. IEEE Transactions on Industrial Informatics,

13(4), 1620–1628. https://doi.org/10.1109/TII.2016.2628747

Wu, J., Xiong, H., & Chen, J. (2009). Adapting the right measures for k-means clustering.

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 877–886.

Xu, B., Shen, F., & Zhao, J. (2019). A density-based competitive data stream clustering

network with self-adaptive distance metric. Neural Networks, 110, 141–158.

https://doi.org/10.1016/j.neunet.2018.11.008

Page | 111

Yan, X., Razeghi-Jahromi, M., Homaifar, A., Erol, B. A., Girma, A., & Tunstel, E. (2019). A

novel streaming data clustering algorithm based on fitness proportionate sharing. IEEE

Access, 7, 184985–185000. https://doi.org/10.1109/ACCESS.2019.2922162

Yao, H., Fu, X., Yang, Y., & Postolache, O. (2018). An incremental local outlier detection

method in the data stream. Applied Sciences (Switzerland), 8(8).

https://doi.org/10.3390/app8081248

Yarlagadda, A., Jonnalagedda, M., & Munaga, K. (2018). Clustering Based on Correlation

Fractal Dimension Over an Evolving Data Stream. In The International Arab Journal of

Information Technology (Vol. 15, Issue 1).

Yeoh, J. M., Caraffini, F., Homapour, E., Santucci, V., & Milani, A. (2019). A Clustering

System for Dynamic Data Streams Based on Metaheuristic Optimisation. Mathematics,

7(12), 1229–1252. https://doi.org/10.3390/math7121229

Youn, J., Shim, J., & Lee, S. G. (2018). Efficient Data Stream Clustering with Sliding

Windows Based on Locality-Sensitive Hashing. IEEE Access, 6, 63757–63776.

https://doi.org/10.1109/ACCESS.2018.2877138

Zhang, C., Huang, W., Niu, T., Liu, Z., Li, G., & Cao, D. (2023). Review of Clustering

Technology and Its Application in Coordinating Vehicle Subsystems. Automotive

Innovation, 6(1), 89–115. https://doi.org/10.1007/s42154-022-00205-0

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An Efficient Data Clustering

Method for Very Large Databases. SIGMOD Record (ACM Special Interest Group on

Management of Data), 25(2), 103–114. https://doi.org/10.1145/235968.233324

Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected criterion

functions for document clustering. Machine Learning, 55, 311–331.

Zhou, A., Cao, F., Yan, Y., Sha, C., & He, X. (2006). Distributed data stream clustering: A

fast em-based approach. 2007 IEEE 23rd International Conference on Data

Engineering, 736–745.

Zhu, E., Zhang, Y., Wen, P., & Liu, F. (2019). Neurocomputing Fast and stable clustering

analysis based on Grid-mapping K-means algorithm and new clustering validity index.

Neurocomputing, 363, 149–170. https://doi.org/10.1016/j.neucom.2019.07.048

Zhu, X. (2010). Stream data mining repository. http://www.cse.fau.edu/~xqzhu/stream.html

Zubaroǧlu, A., & Atalay, V. (2019). Online embedding and clustering of data streams. ACM

International Conference Proceeding Series, 142–146.

https://doi.org/10.1145/3372454.3372481

Zubaroğlu, A., & Atalay, V. (2020). Data stream clustering: a review. Artificial Intelligence

Review, 1, 1–38. https://doi.org/10.1007/s10462-020-09874-x

Appendix A: Ethics Approval form

Page | 112

Page | 113

Page | 114

Page | 115

Appendix B: Visualized Metrics (Purity, Silhouette Coefficient, and Rand

index)

The visualization of the metric Purity on CluStream against DenStream running in the

background when other selected metrics is running is presented below.

The visualization of the metric Silhouette coefficient on CluStream against DenStream

running in the background when other selected metrics is running is presented below.

Page | 116

The visualization of the metric Rand index on CluStream against DenStream running in the

background when other selected metrics is running is presented below.

The visualization of the metric Purity on CluStream against ClusTree running in the

background when other selected metrics is running is presented below.

Page | 117

The visualization of the metric Silhouette coefficient on CluStream against ClusTree running

in the background when other selected metrics is running is presented below.

The visualization of the metric Rand index on CluStream against ClusTree running in the

background when other selected metrics is running is presented below.

