
Enhancing Research Capacity via Quantile 

Regression in an Inter-disciplinary

Setting

Edmore Ranganai

Department of Statistics

CSET, UNISA

Date: 5 Dec 2023



Appreciation

Family

• My wife Christabell and two beautiful daughters

oTrinity and Tallia

• My parents and Grandparents

Supervisors, Collaborators & Funders

• Prof Tertius de Wet & the late Dr Johan van Vuuren

• Collaborators, UNISA and Funders

• Colleagues



Introduction

Coined in 1976

• A model is a simplified representation of a 

(data generating) system.

• It follows simple rules (assumptions) 

formalized into

o mathematical equations or 

o computational algorithm.

• All models are wrong at least in some of their 

details, but their overall direction is very likely 

to be correct.



Introduction

Coined in 1976

• Inter-disciplinary scenarios call for a multiplicity of 

approaches depending on whether

o It is of essence  for the model to 

capture the overall direction of the 

data generating system (distribution) or

o Or at a local level, e.g. in the tails of

the distribution.

o Or all of these aspects.

• As coined in the Mosteller and Tukey (1977) concern.



Introduction

• The average salary in South Africa for 2023 is R31,300

before taxes and other

deductions, according to

SalaryExplorer.

• 75% of employees earn

R41,100 (Q3)a month or

less.

• 50% of employees earn R27,100 (Q2) a month or less

• 25% of employees earn less than

R19,600 (Q1) per month.



Introduction
• Characterization and quantification of the tail behaviour of

rare events is

important
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The unconditional (univariate) case 

• Denote the order statistics of the sample by ( ) ( ) ( )1 2 n
,..., ,Y Y Y    and the empirical 

distribution function (edf) by 
1

1

( ) ( ).
n

n i

i

F y n I Y y−

=

=   

• Since 
nF  is an estimator for F , a natural estimator for q  is the th  sample quantile , 

( )
1

[n ]
ˆ ( )nq F Y 

−  

where [ ]x  denotes the largest integer less than or equal to x  and  

• The sample the sample quartiles given as 

o 
1 0.25

ˆFirst Quatile, Q q= , 

o 
0.5

ˆSecond Quartile (sample median) q=  and 

o 
0.75

ˆThird sample median q= . 

 

 

Preliminaries



Preliminaries

• The mean

• The median

• All quantiles:

Source: www.wiley.com/go/quantile_regression
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Formulation of the linear programming (LP) problem 

• Naturally we can define the sample quantiles, q̂  as the solution to the corresponding 

minimization problem based on the sample , viz.,  

( )
1

ˆ arg min ( ) .
n

i

q Y 


 


=

= −  

• This minimization problem may be reformulated as  

min (1 )

subject to ,

,

n n

n n n

 



−

−

−

  + − 

  = + −



+

+

+

1 u 1 u

Y 1 1 u 1 u

u u 0

,  

where n1  is the vector of ones  and , : 1,...,i iu u i n+ − =  represent the positive and the 

negative residuals respectively.  

• In this formulation it is clearly a linear programming (LP) problem to which the available LP 

tools could be applied (see e.g. Koenker, 2005). 

 

 

Preliminaries



Motivation: In the Regression Case
• Quantile Regression (QR) addresses the Mosteller and Tukey (1977)

concern in their influential remark:

“What the Ordinary Least Squares (OLS) regression curve does is give

a grand summary for the averages of the distributions corresponding

to the set of covariates. We could go further and compute several

different regression curves corresponding to the various percentage

points of the distributions and thus get a more complete picture of the

set. Ordinarily this is not done, and so regression often gives a rather

incomplete picture. Just as the mean gives an incomplete picture of a

single distribution, so the regression gives a correspondingly

incomplete picture for a set of distributions.”



Motivation: In the Regression Case

• The Koenker and Basset (1978) quantile regression

(QR) falls under the domain of robust statistical

methodologies.

• QR like other robust statistical methodologies is able

to detect outliers by first fitting the majority of the

data and then flagging data points that deviate from

it; filling a void left by classical statistical methods

such as ordinary least squares (OLS) based

methods



Motivation: In the Regression Case

• While the OLS needs the assumption of data

Normality (homoscedasticity of the error term) for

both mathematical tractability and to produce the

best possible coefficient estimates, QR performs well

on data drawn from a wide range of probability

distributions.

• QR has been applied to a multiplicity of

interdisciplinary areas which include electricity

demand, medical reference charts, survival analysis,

financial economics, environmental modelling and

the detection of heteroscedasticity and high leverage

points, etc to minimal extent.



Motivation: In the Regression Case
In a nutshell:

o QR is the robust method of choice since unlike other 

robust procedures QR is not only supplementary to the 

OLS procedure but also complementary (and alternate) to 

it due to its versatility QR procedure can detect 

heterogeneous effects of covariates at different quantiles).

o Unequal variation implies that there is more than a single 

slope (rate of change) describing the relationship between 

a response variable and predictor variables measured on a 

subset of factors.



Motivation: In the Regression Case

In a nutshell:

o Quantile regression estimates multiple rates of change 

(slopes) from the minimum to maximum response, providing 

a more complete picture of the relationships between 

variables missed by other regression methods.

o In some areas research often focus on rates of change in 

quantiles near the maximum/minimum response, where a 

much smaller subset of limiting factors are measured, e.g., 

ecology, extreme electricity demand; and near the minimum, 

e.g., value at risk.



Questions

• Why is QR still playing a second fiddle role to the 

OLS despite its inherent advantages?

• Are statistical practitioners employing appropriate 

methodologies/technologies?

• If not, what are their reasons?

• What needs to be done to popularise the use of 

QR?



What do we know or Challenges?

➢Robust statistics is now about some 40 years old: 

• Tukey (1960), Huber (1964), and Hampel (1968) 

laid the foundations of modern robust statistics’

• The Koenker and Basset (1978) quantile regression (QR) 

falls under the domain of robust statistical methodologies.

➢A common understanding

• required to routinely use both OLS and robust estimators and 

only examine the data more closely in case of “large” 

discrepancies-whatever this means?



What do we know or Challenges?

• at the interface of statistics and its applications there are 

non-statisticians who find it insurmountable

o to deal with this vague idea of “large” discrepancies and the 

necessary choices of types of estimators 

o and tuning constants involved in the robust statistical 

methodology.



Possible Answers

• Encouraging statistical practitioners to adopt the 

recommendation to use OLS and QR as a robust procedure of 

choice due to the latter’s versatility.

• To make the robust estimators more appealing to statistical 

practitioners, an endeavor to studentize robust estimators

has been undertaken by some researchers (Mckean and 

Sheather 1991; Yohai et al. 1991).

• I have demonstrated that studentization can be achieved via 

relating QR to the OLS.

• Actually, many useful statistics derive from this relationship.



Possible Answers

➢Workshop at 

the University of 

Venda
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• Consider the linear model in the usual notation: 

   ( )0 , with ~ ,i F say +Y =1 Xβ +ε .    

• Unlike the univariate case, in the regression case (structured) the data cannot be ordered. 

• As Analogues to sample quantiles the th  regression quantile (RQ) based on the  

sample ( , ), 1,..., ,i iY i n=x  is 

( )
0

0
, 1

ˆ ( ) arg min ( ) ,
n

i i

i

Y


  
=

= − +
β

β x β  

where 
i
x  is the thi  row of the design matrix X  without the constant covariate,  

0  is the intercept term, β  is the slope coefficient and ( )u  as defined earlier.  

 

Quantile Regression
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• Let | ( )YQ x  denote the conditional quantile function of Y given the covariate x . 

o Since we have the linear shift model,  

 

1

| 0 1

0 1

ˆ ˆˆ ( ) ( ) ( )

ˆ ˆ( ) ( ).

Yq F   

  

− = + +

= +

x x β

x β
 

 

Quantile Regression
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• This can be written as  

                        

( )|

1

0 0

1 1

ˆˆ ( ) 1 ( ),

with

ˆ ˆ( ) ( )
ˆ( ) .

ˆ ˆ( ) ( )

Yq

F

 

   


 

−

=

   +
= =   
   
   

x x β

β
β β

 

• Clearly ˆ( )β  estimates ( )β . The former is the th  population regression quantile estimator.  

• Note that ˆ( )β  is an M-estimator (see e.g. Huber, 1981) with check function (.) .  

 

Quantile Regression
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• RQs are fairly robust to -spaceY  outliers since their influence functions  

are bounded in the -Y space. 

• Also, for 0.5 =  we obtain the usual 
1L  (median) regression estimator. 

• Unlike the explicit solution giving the ordinary least squares (OLS) estimator 

 

 

 

01

1

ˆ
ˆ ( ) .

ˆOLS


−

 
 = =  

 
 

β XX XY
β

Quantile Regression
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• The minimization problem; consider the vector of residuals  

( ) ( ) ( ) ( ),n

+ −= −  −r b Y 1 X b r b r b   

then we can write 

1 1 1

( ( )) ( ) (1 ) ( ).
n n n

i i i

i i i

r r r  + −

= = =

= + −  b b b  

• Hence in vector-matrix notation the minimization problem becomes 

min ( ) (1 ) ( )

subject to ( ) ,

, .

n n

n

  −

−

+ −

  + − 

= + −



+

+

1 r b 1 r b

Y 1 X b r (b) r (b)

r (b) r (b) 0

 

 

 

Quantile Regression
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• The optimal LP basic solution gives a RQ corresponding to the p  (equal to the  

number of covariates) points of the data set. 

• The LP problem optimal solution ˆ( )β  coefficient coincide with the OLS coefficient 

( )
1

1 ,ˆ  J J J J J J J      

−
− = =X X X Y X Yβ   

for non-singular J
X  where the subset J  corresponds to the set of subscripts  

1{ ,..., }ph h  such that ( , )
i ih h
x y , 1,...,i p= , is the the thi  case of elemental set (ES) J ;  

in other words, an elemental regression (ER) .J  

• Using simple example with a historical perspective the connection between RQs  

and ESs is easily illustrated. 

 

 

 

Quantile Regression Link to OLS
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Example: Boscovitch’s ellipticity of the earth 

• Arc length is measured as the excess over 56 700 toise per degree where one toise ≈ 6.39 feet or 1.95 

meters. 

Table 1: Boscovich data set 

  Latitude 2sin (Latitude)  Arc Length 

Quito 
00 0  0 51 

Cape of Good Hope 
033 18  0.2987 337 

Rome 
042 59  0.4648 279 

Paris 
049 23  0.5762 374 

Lapland 
066 19  0.8386 722 

 

• Here RQs are illustrated using a very simple bivariate data set by considering the Boscovich (1755)’s 

approximation for short arcs by 

2siny a b = +  

in Table 1. 

Quantile Regression Link to OLS
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• The total number of ESs (ERs) is 
!

.
( )! !

n n
K

p n p p

 
= = 

− 
 

• So in this case we have 
5 5!

10 ESs.
2 3!2!

K
 

= = = 
 

 

• Now, let  

  

be the complete set of solutions to the LP problem giving =4 RQs,  

where  is approximately equal to  as n increases. 

  

 

 

Quantile Regression Link to OLS
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• The solutions to the LP problem (2.2) do not change over  

the intervals . 

• Thus, the  RQs corresponding to  specific ERs are efficiently  

computed from LP problem drastically reducing the  

computational load since computing all the  ERs is avoided. 

• The LP problem optimal solution ˆ( )β  coefficient coincide 

 with the OLS coefficient ( )
1

1 ,ˆ  J J J J J J J      

−
− = =X X X Y X Yβ   

for nonsingular J
X   

 

 

Quantile Regression Link to OLS
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• Thus we have 

 

such that ( , )
i ih h
x y , 1,...,i p= , is the the thi  case of elemental set (ES) J , i.e.,  

o  ( , ), : Quito,Rome
i ih h ix y corresponds to  for 

1 (0,0.213).    

o  ( , ), : Quito,Paris
i ih h ix y corresponds to  for 

2 (0.213,0.478).   

o  ( , ), : Quito,Lapland
i ih h ix y corresponds to  for 

3 (0.478,0.732).   

o  ( , ), : Capehope,Lapland
i ih h ix y corresponds to  for 

4 (0.732,1).   

• Here we have only 10K =  Ess (ERs) but for a data set with 50 and 8n p= = we  

have 536 878 650.K =  

 

 

 

 

Quantile Regression Link to OLS
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• The Linear Model can be expressed as  

   
J J

I I

   
=   

   

Y X
β+ε

Y X
  

 where : , is non-singular, : ( ) , : 1,J Ip p n p p n −  X X ε  : 1pβ . 

• thJ   elemental regression is  

 ( )
1 1ˆ ,J J J J J J J

−  =
-

β = X X X Y X Y           

 where 
JX  is square and assumed to be nonsingular. 

Quantile Regression Link to OLS
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• ES Residuals (Exact fit property): 

 
0,

, 1,2,...,
ˆ ,

i

i i J

i J
e i n

Y i I


= =

−  x β
. 

• Thus ESs are based only on the minimum number  

of observations to estimate the parameters of the model  

(see e.g. Hawkins et. al. 1984). 

Quantile Regression Link to OLS
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• The properties of ESs (ERs) can be developed and used study RQs under 

design space data aberrations. 

• Also, ordinary least squares (OLS) statistics can be expressed as weighted 

averages of ES statistics e.g. 

 
( ) ( )

ˆ ˆ

ˆ ˆ .

OLS J JJ

J J J JJ B J B 



 
 

=

= +



 

β β

β β
 

where | |J J J  = X X X X is the elemental regression weight such that 0 1J   

and 1JJ
 = . 

• Furthermore, the three-tier relationship amongst RQs, ESs and OLS 

procedures can be used to address problems of interest in the RQ 

scenario. 

Relationship between OLS and ESs
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• RQs are affected more adversely by design space aberrations viz. leverage 

and collinearity.  This is so since RQs were designed for dealing with 

outliers and therefore they are fairly robust to them. 

• In 1755, half a century before the advent of OLS due to Legendre’s work, 

Boscovich used ER procedure when he was attempting to find the length 

of the median arc near Rome. 

• Today the OLS are the standard tools of statistical analysis due to their 

mathematical tractability under Normality Assumptions, hence they are 

part of standard statistical software. 

• However, the OLS are amenable to deviations from the Normality 

(Classical) Assumptions. 

Relationship between OLS and ESs
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• Today the OLS are the standard tools of statistical analysis due to  

their mathematical tractability under Normality Assumptions, hence  

they are part of standard statistical software. 

• OLS are amenable to deviations from the Normality (Classical)  

Assumptions (outliers). 

• However, due the perceived complexity of the robust statistical  

methodology QR is still playing a second fiddle role to the OLS  

estimator like their robust counterparts despite, 

Remarks
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o Giving a more comprehensive view of the relationship between  

covariates and the response variable (including extremes of the  

conditional distribution of response), i.e., its versatility. 

o Being robust to response variable outliers. 

o The inherent three-tier relationship amongst ESs (ERs), QR and  

the OLS which can be exploited fruitfully in model development. 

• Thus, QR has to be viewed as both an alternative and  

complementary approach in interdisciplinary settings. 

 

Remarks
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Stellenbosch University and Manchester University Collaborations 

Model Diagnostics and Inference
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Some individually authored articles 

Model Diagnostics and Inference
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• Unlike the OLS which susceptible to both outliers and predictor space data 

aberrations (collinearity and high leverage points, QR (a robust procedure) is 

only susceptible to predictor space data aberrations. 

• QR penalized with the RIDGE (
2-squaredl ) penalty (Hoerl and Kennard, 1970) 

denoted by QR-RIDGE is given by the minimization problem 

             ( )
1

2

0

1 1

arg min ( ) , 1,2,..., and 0 tunning parameter .
p

pn

i i j
R i j

Y i n    
−

 = =

 
− − + =  

 
 

β

x β  

• QR penalized with the LASSO (
1l ) penalty (Hoerl and Kennard, 1970) denoted 

by QR-LASSO is given by the minimization problem 

 
1

0

1 1

arg min ( ) , 1,2,..., and 0.
p

pn

i i j
R i j

Y n i n    
−

 = =

 
− − + =  

 
 

β

x β  

• While QR-RIDGE does not shrink any coefficients to zero (fails to select any 

variables) QR-LASSO tend to be too “greedy”.  

 

Variable Selection and Regularization
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• Therefore a compromised version of the approaches is a combination of the two 

penalties via QR penalized with the elastic NET penalty (QR-E-NET) given by 

1 1
2

0

1 1 1

arg min ( ) (1 ) , 1,2,..., and 0,
p

p pn

i i j j
R i j j

Y i n       
− −

 = = =

 
− − + + − =  

 
  

β

x β  

where [0,1]  is the mixing parameter between RIDGE ( 0 = ) and LASSO 

( 1 = ). 

• Adaptive versions of penalized QR where the tunning parameter for 1,j j i p = = −  

tend to perform better than their non-adaptive counterparts. 

Variable Selection and Regularization
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Work with student 

Variable Selection and Regularization



Take home message

• Critical review on postgraduate curriculum. 

• Developing robust statistics that parallels the OLS.

• Sensitize young students to research in/ using QR.

• More workshops.

• More interdisciplinary collaboration using QR. 




