Building hope for a greener future: Celebrating progress in Advanced Oxidation Processes

Water scarcity

6

CLEAN WATER AND SANITATION

Technologies for

water/wastewater treatment

to contribute to improved

access to clean and fresh

water across the globe

World Resources Institute

Advanced Oxidation Processes_Terms

Electrocatalysts Electrochemical Oxidation Activated Carbon Redox Reactions Electron Paramagnetic Resonance Spectroscopy Nanocomposite Photocatalysis Fenton Reaction Oxidation Catalyst Advanced Oxidation et Rays Reaction Contaminants Peroxydisulfate Effluent Catalyst Sol-gel Catalyst Dioxide Contaminants Contaminants Contaminants Peroxydisulfate Contaminants Peroxydisulfate Contaminants Peroxydisulfate Contaminants Peroxydisulfate Contaminants Peroxydisulfate Contaminants Contaminants Peroxydisulfate Contamin Ultraviolet Rays Oxidation Reaction Oxidation Reaction Titanium Dioxide Hydrogen Peroxide Oxide Aluminium Oxide Ferrous Gluconate Removal Biochar Graphite Wastewater Treatmen... Ozone Ultraviolet Radiation Advanced Oxidation Lithium Battery Waste Water Degradation Chlorine Reduced Graphene Oxide Zinc Oxide Photodegradation Nanomaterial Micropollutant Disinfection Electrode **Electrochemical Capacitors**

Top 50 key phrases in Advanced Oxidation Processes related research

Reactive Oxygen Species (ROS)

Oxidation potential of ROS

Oxidant	Oxidation Potential (V)
Fluorine [F2]	3.0
Hydroxyl radical [HO [•]]	2.8
Sulfate radical [SO4'-]	2.5-3.1
Ozone [O ₃]	2.1
Persulfate [S ₂ O _{8²⁻]}	2.1
Peroxymonosulfate [HSO5-]	1.8
Hydrogen peroxide [H ₂ O ₂]	1.8
Permanganate [MnO ₄ -]	1.7
Chlorine dioxide [ClO2]	1.5

Photocatalysis - The roadmap

Japanese Journal of Applied Physics, 44, (12), 8269 - 8285

Environmental Science and Pollution Research, 2021, 28(33):1-29

Spectral region and band positions of some semiconductors

Activated by high energy UV photons

Chem Asian J. 2021, 16, 2596–2609

Light Sources – Artificial vs Natural

Can be UV, UV-Visible, Visible, IR or natural

- Hg/Ar Lamps
 Xe Lamps
- Deuterium Lamps Xe/Hg Lamps
- W-filament

• Florescence

- Solar Simulators
- LEDs
- Natural solar light

UV-lamps (High energy) Expensive UV handling – health hazard

Visible lamps (Low energy)

Cheaper/renewable

World Energy Consumption Vs Solar Energy

Desirable properties of photocatalysts

Motivation for modification or tuning of semiconductor photocatalysts

Modification of semiconductors

	Metal De Pt, Pd, J	eposition Heter Cor Au, Ag CdS, SiC		eneous osites D ₃ , SnO ₂ , Al ₂ O ₃	
Hybrid Nano- CNTs, Fu Graphene Zeo	ls with materials Illerenes, es, POMs, lites	Modific Semicor Photoca	ation of Dye An Iductor Italysts Organ		mplex, hyrins, hic dye
	Fluoride, F Organic n Surfactants Surface /	Phosphate, nolecules, s, Polymers Adsorbates	Meta Nonme co-do Dop	ll-ion etal-ion oping b ing	

Journal of Photochemistry and Photobiology C: Photochemistry Reviews 15 (2013) 1-20

Synthesis methods

J Genet Eng Biotechnol 18, 67 (2020).

Metal deposition, doping and co-doping

Slowing down e-/h+ recombination rate through addition of non metal and metal dopants (Fe, Cu, Pd, Os, Ir etc)

N,Pd co-doped TiO₂ for dye degradation

J. Phys. Chem. C 2011, 115, 45, 22110–22120

sample	indirect band gap (eV)
commercial TiO ₂ (Degussa P25)	2.95
N/Pd-codoped TiO_2 (0.0% Pd)	2.16
N/Pd-codoped TiO ₂ (0.4% Pd)	1.87
N/Pd-codoped TiO ₂ (0.6% Pd)	1.85
N/Pd-codoped TiO ₂ (0.8% Pd)	1.99
N/Pd-codoped TiO ₂ (1.0% Pd)	2.06

sample	% degradation after 180 minutes
commercial TiO ₂ (Degussa P25)	18.2
N/Pd-codoped TiO ₂ (0.0% Pd)	44.0
N/Pd-codoped TiO ₂ (0.4% Pd)	95.7
N/Pd-codoped TiO ₂ (0.6% Pd)	100.0
N/Pd-codoped TiO ₂ (0.8% Pd)	92.5
N/Pd-codoped TiO ₂ (1.0% Pd)	65.8

Comparative study of N,M co-doped TiO₂

Sample	Particle size (nm)	Anatase phase (%)
Commercial TiO ₂ (P25)	26.7	79.2
N, Pd codoped TiO ₂	15.8	97.3
N, Fe codoped TiO_2	26.2	85.8
N, Os codoped TiO ₂	14.0	87.9
N, Cu codoped TiO ₂	24.9	72.1

Sample	Optical band gap (eV)
Comm. TiO ₂ (P25)	3.1
N TiO ₂	2.7
N, Pd TiO ₂	2.1
N, Fe TiO ₂	2.6
N, Os TiO ₂	2.0
N, Cu TiO ₂	2.8

1.0

Composites with carbon materials

sensors

2024/04/25

TiO₂/MWCNT composites

N,Pd co-doped TiO₂ (0.5% Pd)

0.5% MWCNT/N,Pd co-doped TiO₂

(a) Simulated solar light irradiation

(b) Visible light irradiation($\lambda > 450 \text{ nm}$)

Sample	Degradation after 120 min (%)
N, Pd co-doped TiO ₂ (0.5% Pd)	99.30
0.5% MWCNT/N, Pd co-doped TiO ₂	99.55
1.0% MWCNT/N, Pd co-doped TiO ₂	95.21
2.0% MWCNT/N, Pd co-doped TiO ₂	83.18
5.0 % MWCNT/N, Pd co-doped TiO ₂	68.36
10.0 % MWCNT/N, Pd co-doped TiO ₂	43.84 18

Photoelectrocatalysis

Z-scheme photocatalysts_mimicking photosynthesis

Heterojunction (photo)electrocatalysts

Band position determination and alignment

Charge Transfer Mechanisms

Charge separation for efficient oxidation/ reduction process

Use of low energy photons to activate the photocatalysts

p-n heterojunction mechanisms

Diclofenac degradation

p-n heterojunction mechanisms

Photodegradation of bisphenol A and Acid Black 25

p-n heterojunction in PEC

Photoelectrodegradation of sulfamethoxazole

Direct Z-scheme photocatalysis

Degradation of ibuprofen in the presence of trimethoprim

Direct Z-scheme photocatalysis

Degradation of ibuprofen

Direct Z-scheme photocatalysis

Degradation of naproxen

All solid Z-scheme mechanism for dye removal

Dual Z-scheme mechanism

Degradation of carbamazepine

Z-scheme anode - degradation of hydrochlorothiazide

DFT in PEC: Z-scheme mechanism

Photoelectrodegradation of bisphenol A

Article under review in Chemical Engineering Journal

Z-scheme research

Ris

2 23

Documents by author

Compare the document counts for up to 15 authors.

Documents by affiliation ()

Compare the document counts for up to 15 affiliations. University of South Africa University of Johannesburg The Council for Scientific and Industrial Research North-West University 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Documents

Visible Light Driven ZnMoO_4/BiFeWO_6/rGO Z-Scheme Photocatalyst for the Degradation of Anthraquinonic Dye

Citations

51

Altmetric

2

Potlako J. Mafa*, Bulelwa Ntsendwana, Bhekie B. Mamba, and Alex T. Kuvarega*

Engineering Aspects

Volume 612, 5 March 2021, 126004

Synthesis of Bi₅O₇I-MoO₃ photocatalyst via

visible light degradation of ibuprofen

simultaneous calcination of BiOI and MoS₂ for

Potlako J. Mafa 🛚 🙏 🖾, Umhle S. Swana 🖏 Dan Liu 🕫 🖉, Jianzhou Gui 🕫 B. Bhekie B. Mamba 🕫 Alex T. Kuvarega 🏾

© Cite this: J. Phys. Chem. C. 2019, 123, 33, 20605– 20616 Publication Date: July 30, 2019 ∨ https://doi.org/10.1021/acs.jpcc.9b05008 Copyright © 2019 American Chemical Society RIGHTS & PERMISSIONS

119 American Chemical Society IISSIONS Colloids and Surfaces A: Physicochemical and

Article Views

1195

Applied Surface Science Volume 514, 1 June 2020, 145940

Share Add to Export

🤇 📢 (RIS

Full Length Article Fabrication of direct Z-scheme Co₃O₄/BiOI for ibuprofen and trimethoprim degradation under visible light irradiation

Separation and Purification Technology

Volume 282, Part B, 1 February 2022, 120089

Multi-elemental doped g-C₃N₄ with enhanced

naproxen Degradation, Kinetics, effect of

Electrolytes, and mechanism

Alex T. Kuvarega * 😤 🛤

visible light photocatalytic Activity: Insight into

Potlako J. Mafa * 😤 🖾, Mope E. Malefane *, Azeez O. Idris *, Dan Liu *, b, Jianzhou Gui *, b, Bhekie B. Mamba *, b

M.E. Malefane, U. Feleni, P.J. Mafa, A.T. Kuvarega 🞗 🖾

Cobalt oxide/copper bismuth oxide/samarium vanadate ($Co_3O_4/CuBi_2O_4/SmVO_4$) dual Z-scheme heterostructured photocatalyst with high chargetransfer efficiency: Enhanced carbamazepine degradation under visible light irradiation

Potlako J. Mafa* 🞗 🖾 "Mope E. Malefane*, Azeez O. Idris*, Bhekie B. Mamba**, Dan Liu**, Jianzhou Gui*, ^b Alex T. Kuvarea* S. 🚳

Chemical Engineering Journal Volume 452, Part 2, 15 January 2023, 138894

Modulation of Z-scheme photocatalysts for pharmaceuticals remediation and pathogen inactivation: Design devotion, concept examination, and developments

Mope Edwin Malefane 名 留, Potlako John Mafa, Thabo Thokozani Innocent Nkambule , Muthumuni Elizabeth Managa, Alex Tawanda Kuvarega 名 四

Magnetic nanoparticles

CoFe₂O₄

Magnetic nanoparticles

Persulphate-assisted photodegradation methylparaben

Future Trajectory of AOP Water Treatment

Catalytic membranes

Catalytic hydrogenation of alkenes

Visible light active photocatalytic membranes

Catalytic antimicrobial membranes

The Future: Integrated AOP/Membrane Technology SODIS Reactor

The Future: Raceway Pond Reactors for AOPs

AOPs

Municipal or industrial WWTP

Inactivation of pathoges

Degradation of organics

Raceway Pond Reactors

Science of The Total Environment, 2021, 800, 149653

The Future: Small Scale Reactors for AOPs

Custom made visible light LED Reactors

Collaborations

Established Collaborations

Future Planned Collaborations

Acknowledgements

Prof BB Mamba

Prof MS Diallo

Prof D Liu

Prof J Gui

Prof S Rengaraj

Prof R Krause

Prof D Onwudiwe

Prof H Zhang

Prof J Li

Acknowledgements

UNISA

Innovatively addressing current and emerging issues relating to water scarcity and water quality

iNanoWS is a research institute at Unisa's College of Science Engineering and Technology

WATER RESEARCH COMMISSION

UNISA

UNISA

institute for nanotechnology and water sustainability college of science, engineering and technology

ACKNOWLEDGEMENTS

In loving memory

May their souls continue to rest in peace

Prof Kebede K. Kefeni

Mr Kagiso "Kg" Mokalane

Dr Unathi Sidwaba

