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Abstract

There are still many phenomena that occur in applied sciences and remain fully or partly

unexplained. Some of them are related to auto-replication, self-similarity or self-organization

processes. However, they remain fascinating in sciences, engineering and technology as their

applications have been widely used to describe number of outstanding science problems. Finding

innovative techniques capable of generating some of these processes in various fields has then

become the priority for number of scientists. Some of these fields includes chaos theory, wave

motion, rock fracture, and neuron science. In this paper, we combine some recent mathematical

concepts to model and generate some fractal processes happening in real life and useful in applied

sciences. To achieve it, we use systems of differential equations together with recently developed

fractal and fractional operators. The impacts of these operators in the different systems used

are remarkable and concur with the expected results. Numerical simulations are performed

and show that the new systems are involved in various types of fractal dynamics with the

replication of the initial objects and the formation of subsequent fractal patterns which vary

with the fractional operator (the derivative order). The results prove that we are in presence

of differential systems capable of artificially structuring fractals using mathematical concepts,

numerical techniques and simulations. Thus, the use of mathematical concepts to re-create

features that usually occur in a natural way proves to be a prowess as related applications are

many for applied scientists and engineers.

Keywords: Real life phenomena, rock fracture, wave motion, neuron sciences, differential

models, three-dimensional fractal patterns; fractal-fractional modeling; numerical solution; ex-

ponential and Mittag-leffler laws.

1 Prelude

The Vice-Principal, Research, Postgraduate, Innovation and Commercialization, the

Acting Vice Principal Teaching, Learning, Community Engagement and Student Support,

The Executive Dean, College of Science, Engineering and Technology (CSET), Directors

of Schools and Chairs of Departments here present, colleagues, students, friends, Family
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members, ladies and gentlemen. It is indeed my honors and a huge privilege to present this

inaugural lecture titled Impacts of fractional and fractal differential operators in applied

sciences here in the University of South Africa, known as the biggest university in Africa.

When I decided to continue my studies to the PhD level after seven years of teaching

high school mathematics in Canada, I was not really aware of the multiple challenges

that will mark out my road during the journey. I had to fully rely on my supervisors

and mentors to make my first steps into the world of research. Hence, after I graduated

my PhD in the topic of mathematical modeling related to transport models, I wanted

to continue my work in mathematical modeling, in order to generalize and improve my

PhD research studies.

At that time, I had little knowledge on the calculus with derivative of fractional order

and related fractal differential operators. The reason is simple: That is also the period

where these differential operators were being developed and proposed for the first time. I

then involved myself in various collaborations and discussions with imminent experts in

the field to better seize the concepts. It appeared that fractal and fractional differential

operators can solve number of outstanding issues found in applied sciences, but not all

of them.

This motivated me to look at that particular direction and see how I can bring my

little contribution to develop and improve the preceding results that exist in the domain.

Hence, my journey began.

2 Differential operators in fractional calculus

2.1 Some preliminaries: Application in real life

In real life around us, we can start with a simple application of fractional calculus,

that is the decomposition of a dead body mass as shown in Fig. 1. Such dynamic can be

described by the relaxation function g(t) =Eγ(−tγ) as depicted in Fig. 2. It shows that

as the value of the parameter γ decreases from 1 to 0, the relaxation function Eγ(−tγ)
changes from the exponential decay function g(t) = e−t (when γ = 1) to the hyperbolic

decay function g(t) = (1−tγ)−1 (when γ∼ 0). Hence, when γ is smaller than 1, the initial

fall of the curve is steep with faster rate and as the time increases, the fall happens with

slower rate.

Another real life application are fractal type-patterns that exist all around us as shown

in Fig. 3-Fig. 8. Another domain of interest is the rock fracture (Fig. 9-Fig. 10) that

has become important in the fight against the global warming.
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Fig. 1: Decomposition of a dead body mass.

2.2 Recent development in fractional calculus operators

At the beginning of 2015, two Italian researchers, Caputo and Fabrizio [1, (Caputo

et al. 2015)] introduced a new fractional derivative with non-singular kernel (called the

Caputo-Fabrizio derivative (CFD)). Recall that the field of mathematical modeling with

derivative of fractional order, the old classical and most popular differential operators

remain the Riemann–Liouville and the Caputo derivatives respectively defined as

Dγ
t u(t) =

1

Γ(1−γ)

d

dt

∫ t

0

(t−τ)−γu(τ)dτ, (1)

0<γ≤ 1 and

Dγ
t u(t) =

1

Γ(1−γ)

∫ t

0

(t−τ)−γ
du

dτ
(τ)dτ, (2)

0<γ≤ 1. Then, the new version, that of the Caputo-Fabrizio is mathematically defined

as

cDγ
t u(t) =

M(γ)

(1−γ)

∫ t

0

du

dτ
(τ) exp

(
−γ(t−τ)

1−γ

)
dτ, (3)

and usually applied to a continuous function u and depends on the order of the differen-

tiation γ and a normalisation function M(γ) such that

M(0) =M(1) = 1 (4)

Their initial motivation was to address open and unsolved issues still occurring in some

applied science fields such as thermal media and electromagnetic. Another motivation
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Fig. 2: Mittag-Leffler function Eγ as decay function for γ ∈ [0,1]. We observe in that figure the dynamics

of relaxation function g(t) =Eγ(−tγ). It shows that as the value of the parameter γ decreases from 1 to

0, the relaxation function Eγ(−tγ) changes from the exponential decay function g(t) = e−t (when γ= 1)

to the hyperbolic decay function g(t) = (1−tγ)−1 (when γ∼ 0. It also shows that γ is smaller than 1, the

initial fall of the curve is steep with faster rate and as the time increases, the fall happens with slower

rate.
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Fig. 3: Water or ocean waves involved in fractal type-patterns. The fractal motifs here are naturally

formed due to the natural movements and shocks created by the wind on the water’s (ocean’s) surface.
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Fig. 4: Water or ocean waves involved in fractal type-motifs. The fractal patterns here are artificially

(numerically) formed due to mathematical simulations issued from modeling the type of movements and

shocks observed on the water’s (ocean’s) surface.
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Fig. 5: A fractal structure with mathematical simulations. An initial equilateral triangle is divided into

three identical and smaller ones via its apexes. The same procedure is repeated again and again for each

of the smaller triangles to finally obtain the perfect fractal representation shown in step 6.
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Fig. 6: Fractal structure in nature.

Fig. 7: Fractal structure in nature
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Fig. 8: Fractal structure in maths: Julia set J(fc) = {z ∈C : |fnc (z)| ≤ 2}, modelling fc(z) = z2 +c with

c= (ϕ−2)+(ϕ−1)i=−0.4+0.6i

Fig. 9: Types of fissure processes in rock with the homogenized one (left) and the most common one

(right)
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Fig. 10: Shear stress evolution of rock fissure process as function of slip for the homogenized one (a)

and the most common one (b) corresponding to Fig. 9

for developing such a class of differential operators is their application to some real

life processes with memory, including heat conduction in materials with memory, elec-

trodynamics with memory or visco-elasticity. They have also proven to be suitable in

approaching processes found in nonlinear conservation laws or in describing problems

related to fatigue and usury. That 2015’s initial paper, considered today as a pioneer

paper, generated an equally innovative and important series of articles proposing other

differential operators with no singular kernels widely used today in the field mathematical

modeling. in fact, it started with

• Losada and Nieto [2, (Caputo et al. 2015)] who improved the definition of the CFD

by proposition the following version.

cfDγ
t u(t) =

(2−γ)M(γ)

2(1−γ)

∫ t

0

du

dτ
(τ) exp

(
−γ(t−τ)

1−γ

)
dτ. (5)

• Losada and Nieto proposed at the same time the fractional integral (anti-derivative)

associated to the CFD as

cfIγt u(t) =
2(1−γ)

(2−γ)M(γ)
u(t)+

2γ

(2−γ)M(γ)

∫ t

0

u(τ)dτ, (6)

γ ∈ [0,1] t≥ 0.

• Doungmo Goufo and Atangana [3, (Doungmo Goufo et. al 2016))] proposed the

related Riemann-Liouville version of the CFD (also called New Riemann-Liouville

derivative) defined for the order γ, 0<γ≤ 0 by

NRLDγ
t u(t) =

(2−γ)M(γ)

2(1−γ)

d

dt

∫ t

0

u(τ) exp

(
− γ

1−γ
(t−τ)

)
dτ (7)
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• More studies and questions in the same domain raised the issue of locality for that

operator and then, Atangana and Beleanu [4, (Atangana et al. 2016)] modified the

kernel of that operator and proposed the fractional derivative with non-singular and

non-local kernel in Caputo sense and based on the one parameter Mittag-Leffler

function,

Eγ(z) =
∞∑
k=0

zk

Γ(γk+1)
, γ ∈C,R(γ)> 0 (8)

This operator is known today as the Atangana-Baleanu fractional derivative of

order γ, 0<γ≤ 0 reading as

ABCDγ
t u(t) =

W (γ)

(1−γ)

∫ t

0

du

dτ
(τ) Eγ

[
−γ(t−τ)γ

1−γ

]
dτ, 0<γ≤ 1 (9)

with the unknowns keeping the same meaning as in (3), except for w that belongs

to the following Sobolev space of order one

H1(a,e) = {s : s,
d

dt
s∈L2(a,e)}. (10)

• In the same momentum, Doungmo Goufo [5, (Doungmo Goufo 2016))] used the

two-parameter Mittag-Leffler function to develop and proposed the Caputo-sense

two-parameter fractional derivative with non-local and non-singular kernel of order

γ knowing β, defined as

GCDγ,β
t u(t) =

βM(γ,β)

(β−γ)

∫ t

0

u̇(τ) (t−τ)β−1Eγ,β

[
−γβ(t−τ)γ

β−γ

]
dτ, (11)

where β ∈ R and M(γ,β) defines a two-variable normalization function such that

M(0,1) =M(1,1) = 1.

Indeed, the same as the exponential function f(z) = ez is the solution of the ordinary

differential equation
df(z)

dz
= f(z),

the one-parameter Mittag-Leffler function

Eγ(z) =
∞∑
k=0

zk

Γ(γk+1)
, γ ∈C,R(γ)> 0 (12)

is the solution of the fractional differential equation (FDE)

dγf(z)

dzγ
= f(z).
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Moreover, this function plays a significant role in the study of systems with frac-

tional differential equations and is used to mathematically model several physical

dynamics. For instance, it makes the connection between asymptotic approxima-

tion z−γ

Γ(1−γ)
∼ Eγ(−z−γ) (inverse power law) for large argument z and stretched

exponentials exp
(
− zγ

Γ(1+γ)

)
∼ Eγ(−z−γ) for small argument z. This property is

very important in investigation of relaxation process happening in general physics,

disordered systems and fractional Brownian motion [6? ? –8]. A great develop-

ment of the fractional calculus theory was made possible by the introduction of

number of variants of Mittag-Leffler function since the early 1900s. One of them is

the two-parameter Mittag-Leffler function

Eγ,β(z) =
∞∑
k=0

zk

Γ(γk+β)
, γ,β, z ∈C,R(γ)> 0,R(β)> 0, (13)

also called the generalized Mittag-Leffler function.

• The Riemann–Liouville sense of the two-parameter fractional derivative can be

defined in a similar way as the later definition.

2.3 The Fractal with fractional operation

The fractal-fractional derivatives [9–11] have caught the attention of many researchers

recently especially due to their capability to describe and address number of local or non-

local phenomena found in the natural environment surrounding us. They are also able

to respect and preserve the fractal structure of the phenomenon they study. There exist

many definitions related to the different types of kernel used in fractal-fractional theory.

We define some of then in the following lines.

Definition 2.1. Let Ω ∈ R3, T ∈ R. Suppose that W (t,x) : (0,T )×Ω→ R is fractal

differentiable with respect to the variable t∈ (0,T ).

1. We define the Riemann-Liouville sense fractal-fractional derivative FRpDγ
tW of W

with the power law kernel as

FRpDγ
tW (t,x) =

1

Γ(1−γ)

∂

∂tγ

∫ t

0

W (%,x)(t−%)−γd%, (14)

where ∂
∂tγ
W is defined as

∂

∂tγ
W (t,x0) = lim

t→t0

W (t,x)−W (t,x0)

tγ− tγ0

with γ representing the derivative order.
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Furthermore, we formulate its generalized definition as

FRpDγ,ι
t W (t,x) =

1

Γ(1−γ)

∂ι

∂tγ

∫ t

0

W (%,x)(t−%)−γd%, (15)

with ι > 0 and ∂ι

∂tγ
W given by

∂ι

∂tγ
W (t,x0) = lim

t→t0

W ι(t,x)−W ι(t,x0)

tγ− tγ0
.

2. We define the Caputo sense fractal-fractional derivative FCpDγ
tW of W with power

law kernel as

FCpDγ
tW (t,x) =

1

Γ(1−γ)

∫ t

0

∂

∂%γ
W (%,x)(t−%)−γd%, (16)

with γ representing the derivative order.

Furthermore, we formulate its generalized definition as

FCpDγ,ι
t W (t,x) =

1

Γ(1−γ)

∫ t

0

∂ι

∂%γ
W (%,x)(t−%)−γd%, (17)

3. We define the Riemann-Liouville sense fractal-fractional derivative FReDγ
tW of W

with the exponential kernel law as:

FReDγ
tW (t,x) =

r(γ)

(1−γ)

∂

∂tγ

∫ t

0

W (%,x)exp

(
−γ(t−%)

1−γ

)
d%, (18)

where r(0) = r(1) = 1 with

its generalized definition is formulated as

FReDγ,ι
t W (t,x) =

r(γ)

(1−γ)

∂ι

∂tγ

∫ t

0

W (%,x)exp

(
−γ(t−%)

1−γ

)
d%. (19)

We can associate to (18) its corresponding anti-derivative which is necessary for

the analysis and solvability of the model. Then, the fractal-fractional integral of

fractional order γ, is defined as follows:

FReIγt g(t,y) =
γ(1−γ)tγ−1g(t,y)

M(γ)
+

γ2

M(γ)

∫ t

0

αγ−1g(α,y)dα, t> 0. (20)

4. We define the Caputo sense fractal-fractional derivative FCeDγ
tW of W with the

exponential kernel law as:

FCeDγ
tW (t,x) =

r(γ)

(1−γ)

∫ t

0

∂

∂%γ
W (%,x)exp

(
−γ(t−%)

1−γ

)
d%, (21)

with
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its generalized definition is formulated as

FCeDγ,ι
t W (t,x) =

r(γ)

(1−γ)

∫ t

0

∂ι

∂%γ
W (%,x)exp

(
−γ(t−%)

1−γ

)
d%. (22)

5. We define the Riemann-Liouville sense fractal-fractional derivative FRmDγ
tW of W

with the Mittag-Leffler kernel law as

FRmDγ
tW (t,x) =

r(γ)

(1−γ)

∂

∂tγ

∫ t

0

W (%,x)Eγ

(
−γ(t−%)γ

1−γ

)
d%, (23)

with r(γ) representing a regularization function and γ representing the derivative

order.

Its generalized definition is formulated as

FRmDγ,ι
t W (t,x) =

r(γ)

(1−γ)

∂ι

∂tγ

∫ t

0

W (%,x)Eγ

(
−γ(t−%)γ

1−γ

)
d%. (24)

6. We define the Caputo sense fractal-fractional derivative FCmDγ
tW of W with the

Mittag-Leffler kernel law as

FCmDγ
tW (t,x) =

r(γ)

(1−γ)

∫ t

0

∂

∂%γ
W (%,x)Eγ

(
−γ(t−%)γ

1−γ

)
d%, (25)

with r(γ) representing a regularization function and γ representing the derivative

order.

Its generalized definition is formulated as

FCmDγ,ι
t W (t,x) =

r(γ)

(1−γ)

∫ t

0

∂ι

∂%γ
W (%,x)Eγ

(
−γ(t−%)γ

1−γ

)
d%. (26)

Some of the definitions above refer to differential operators with no singular kernels

(DONoSK) and have so far proven to have number of applications in applied sciences

including applied mathematics, bio-mathematics, bio-physics, economics, mathematical

epidemiology, mathematical ecology. Tools used here are dynamical systems, systems

of differential equations, fractional differential equations, game dynamical systems with

learning, fractional calculus, perturbation methods, linear nonlinear integro-differential

equations, transport equation, (Aguilar Gomez 2017, Alkahtani 2016, Morales-Delgado,

2017, Doungmo Goufo 2017, Doungmo Goufo 2018, Doungmo Goufo 2019, Doungmo

Goufo et al, 2018) . In particular, Doungmo Goufo (Doungmo Goufo 2016 and Doungmo

Goufo et al. June 2018) proved that this derivative can also be applied to more addi-

tional areas including chaos theory, wave motion, atmospheric convection, relaxation and

diffusion.
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These differential operators with no singular kernels also leaded to the development of

the Fourier transform of fractional gradient and fractional gradient divergence. Moreover

the basic concepts under which lie the DONoSK are the convolution process and spatial

filtering. This therefore represents the sources of the motivation for this research project

which can be expressed as follows: There is a lot to do with the DONoSK deeply involving

the Fourier transform, spatial filtering and convolution process which are three great

concepts widely used in signal / image processing and its applications.

3 Applications of some differential operators with no singular

kernels

3.1 Preliminaries on the model

Before processing with numerical simulations, we provide in this section existence and

uniqueness results for the solution of the following 7th order KdV equation with a single

perturbation level, expressed with the fractal fractional operator as

FReDγ
t g(t,x) =−6ggx−gxxx+gxxxxx−κgxxxxxxx (27)

with the initial condition

g(0,x) =u(x), (28)

where κ represents the perturbation parameter, FReDγ
t is the fractal-fractional deriva-

tive of fractional order γ of the function g in Riemann-Liouville sense combined with

exponential law as defined in (18).

The standard classical version of this model with γ = 1 leading to FReD1
t g(t) = g′(t),

yields the system
∂g(t,x)

∂t
=−6ggx−gxxx+gxxxxx−κgxxxxxxx. (29)

For this model, traveling waves in the form g(x,t) = g(x+ψt) = g(ε), can be investigated

where ψ is the wave’s speed. Performing the transformation into an ODE of the 7th

order KdV equation (29), we set, gx = gε ·εx = gε and gt = gε ·εt =ψgε and we obtain the

following ODE

−ψgε−6ugε−gεεε+gεεεεε−κgεεεεεεε = 0. (30)

Integrating this model with respect ε gives

−ψg−3g2−gεε+gεεεε−κgεεεεεε = 0. (31)

For the sake of simplicity, we consider that the wave vanishes at infinity, then

lim
ε→±∞

g(ε) = lim
ε→±∞

gε(ε) = · · ·= lim
ε→±∞

gεεεεεεε(ε) = 0 (32)
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Here we do not take into account the constant of integration with respect to ε that

vanishes when boundary conditions (32) are considered. Without lost of generality, we

neglect here the term κgεεεεεε which expresses the higher order perturbation. Hence,

−ψg−3g2−gεε+gεεεε = 0. (33)

The transformation of this equation into 4 different ODEs makes it possible to solve

it numerically. Hence,
gε =w

gεε =wε = y

gεεε = yε = z

gεεεε = zε =ψg+3g2 +y.

(34)

Graphical representations are performed in the phase-space (g,gε,gεε) as shown in Fig.

11 and Fig. 12. In fact, in Fig. 11 we can observe the graphical representation of

the system (29) without higher order perturbation term in the phase-space (g,gε,gεε)

for γ = 1 (standard well known case). On top, it shows that the soliton represented

using its homoclinic orbit lies on a curved surface. At the bottom, we have its projected

representation on the plane (g,gε). In Fig. 12 we observe similar behavior for system

(27) without higher order perturbation term in the same phase-space (g,gε,gεε) for γ =

0.9 (Fractal-fractional case). On top, it shows that the soliton represented using its

homoclinic orbit still lies on a curved surface, but is characterized by more distortions

in its trajectory in comparision to the standard case (Fig. 11). At the bottom, we have

similar representation projected on the plane (g,gε).

3.2 Existence and uniqueness results

To establish and prove the existence of solutions to the system (27)-(28), we apply

the anti-derivative (20) on both sides. This leads to the following equality,

g(t,x)−g(0,x) =FRe Iγt (−6ggx−gxxx+gxxxxx−κgxxxxxxx) ,

which also takes the form

g(t,x)−g(0,x) =
γ(1−γ)tγ−1

M(γ)
[−6ggx(t,y)−gxxx(t,y)+gxxxxx(t,y)−κgxxxxxxx(t,y)]

(35)

+
γ2

M(γ)

∫ t

0

αγ−1 [−6ggx(α,y)−gxxx(α,y)+gxxxxx(α,y)−κgxxxxxxx(α,y)]dα.

Let

W(t,x,g,κ) =−6ggx−gxxx(t,x)+gxxxxx(t,x)−κgxxxxxxx(t,x). (36)

The analysis continues by looking for a real number K ≥ 0 satisfying

‖W(t,x,g,κ)−W(t,x,f,κ)‖≤K‖g−f‖
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Fig. 11: Graphical representation of the system (29) without higher order perturbation term in the

phase-space (g,gε,gεε) for γ= 1 (standard well known case). On top, it shows that the soliton represented

using its homoclinic orbit lies on a curved surface. At the bottom, we have its projected representation

on the plane (g,gε).
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Fig. 12: Graphical representation of the system (29) without higher order perturbation term in the

phase-space (g,gε,gεε) for γ= 0.9 (Fractal-fractional case). On top, it shows that the soliton represented

using its homoclinic orbit lies on a curved surface, but is characterized by more distortions in its trajectory

in comparision to the standard case (Fig. 11). At the bottom, we have similar representation projected

on the plane (g,gε).
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Whence,

W(t,x,g,κ)−W(t,x,f,κ)

=(−6ggx(t,x)−gxxx(t,x)+gxxxxx(t,x)−κgxxxxxxx(t,x))

−(−6ffx(t,x)−fxxx(t,x)+fxxxxx(t,x)−κfxxxxxxx(t,x))

=6(ffx(t,x)−ggx(t,x))+(fxxx(t,x)−gxxx(t,x))+(gxxxxx(t,x)−fxxxxx(t,x))

+κ(fxxxxxxx(t,x)−gxxxxxxx(t,x)).

We make use of the standard properties of norm to have

‖W(t,x,g,κ)−W(t,x,f,κ)‖
= ‖6(ffx−ggx)+(fxxx−gxxx)+(gxxxxx−fxxxxx)+κ(fxxxxxxx−gxxxxxxx)‖
≤ 6‖ffx−ggx‖+‖fxxx−gxxx‖+‖gxxxxx−fxxxxx‖+κ‖fxxxxxxx−gxxxxxxx‖
≤ 6‖∂x(f 2−g)‖+‖∂xxx(f−g)‖+‖∂xxxxx(g−f)‖+κ‖∂xxxxxxx(f−g)‖.

Due to the fact that both functions g and f are assumed to be bounded, therefore there

are two real constants a1> 0 and a2> 0 satisfying

‖g‖≤ a1 and ‖f‖≤ a2. (37)

Let now a= max(a1,a2), hence,

‖g‖≤ a and ‖f‖≤ a. (38)

At this stage, we can use the fact that the partial derivatives ∂xg and ∂xf verify the

Lipschitz condition and therefore, there is a real number R1≥ 0 satisfying

‖W(t,x,g,κ)−W(t,x,f,κ)‖≤ 6R1‖f 2−g‖+R3
1‖f−g‖+R5

1‖g−f‖+κR7
1‖f−g‖

≤ 6R1‖g+f‖·‖g−f‖+R3
1‖f−g‖+R5

1‖g−f‖+κR7
1‖f−g‖

≤
[
12aR1 +R3

1 +R5
1 +κR7

1

]
‖g−f‖,

(39)

where we have used the bounded condition (28). Whence,

‖W(t,x,g,κ)−W(t,x,f,κ)‖≤K‖g−f‖

with

K = 12aR1 +R3
1 +R5

1 +κR7
1. (40)

This completes the proof related to the Lipschitz property for the operator W . The later

proof makes it possible to state the following result:

Proposition 3.1. Assuming that the relation γ(1− γ)tγ−1K +Kγ2t < M(γ) is satis-

fied, hence, there exists a unique solution to the 7th order KdV equation with a single

perturbation level and expressed with the fractal fractional operator as given in (27)-(28):{
FReDγ

t g(t,x) =−6ggx−gxxx+gxxxxx−κgxxxxxxx
g(0,x) =u(x),

(41)
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Proof. We start by referring to the system (35) which we rewrite as

g(t,x)−g(0,x) =
γ(1−γ)tγ−1

M(γ)
W(t,x,g,κ)+

γ2

M(γ)

∫ t

0

αγ−1W(α,x,g,κ)dα (42)

and that leads to the following iterative relation:

g0(t,x) = g(0,x)

gn(t,x) =
γ(1−γ)tγ−1

M(γ)
W(t,x,gn−1,κ)+

γ2

M(γ)

∫ t

0

αγ−1W(α,x,gn−1,κ)dα.
(43)

Now set

g(t,x) = lim
n→∞

gn(t,x), (44)

Now we proceed by proving that the solution g(t,x) = g(t,x) is continuous. In fact, if we

consider

Un(t,x) = gn(t,x)−gn−1(t,x) (45)

then, we can directly see that

gn(t,x) =
n∑
p=0

Up(t,x).

More explicitly,

Un(t,x) =
γ(1−γ)tγ−1

M(γ)
[W(t,x,gn−1,κ)−W(t,x,gn−2,κ)] (46)

+
γ2

M(γ)

∫ t

0

αγ−1 (W(α,x,gn−1,κ)−W(α,x,gn−2,κ))dα.

Applying the norm property to this equation gives

‖Un(t,x)‖= ‖gn(t,x)−gn−1(t,x)‖

≤γ(1−γ)tγ−1

M(γ)
‖W(t,x,gn−1,κ)−W(t,x,gn−2,κ)‖

+
γ2

M(γ)

∥∥∥∥∫ t

0

αγ−1 [W(α,x,gn−1,κ)−W(α,x,gn−2,κ)]dα

∥∥∥∥
≤γ(1−γ)tγ−1

M(γ)
‖W(t,x,gn−1,κ)−W(t,x,gn−2,κ)‖

+
γ2

M(γ)

∫ t

0

αγ−1 ‖W(α,x,gn−1,κ)−W(α,x,gn−2,κ)‖dα

(47)

Application of Lipschitz constraint to W yields

‖Un(t,x)‖≤ γ(1−γ)tγ−1

M(γ)
K‖gn−1−gn−2‖+

Kγ2

M(γ)

∫ t

0

αγ−1‖gn−1−gn−2‖dα
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which can take the form

‖Un(t,x)‖≤ γ(1−γ)tγ−1

M(γ)
K‖Un−1‖+

Kγ2

M(γ)

∫ t

0

αγ−1‖Un−1‖dα. (48)

Integration followed by the use of standard properties of the iteration method from the

system (48) give

‖Un(t,x)‖≤
[(

γ(1−γ)tγ−1

M(γ)
K

)n
+

(
Kγ2t

M(γ)

)n]
u(x),

with u(x) = g(0,x). Hence, we have explicitly proven that the solution to the model exists

and is continuous.

Next, we have to show that the function

g(t,x) = lim
n→∞

gn(t,x)

is the solution to the system (41). Whence, set

Qn(t,x) = g(t,x)−gn(t,x) with n∈N.

Taking (44), we should get limn→∞Qn = 0. This can be interpreted by saying that the

existing gap between g(t,x) and gn(t,x) is vanishing when n→∞. Consider

g−gn−1 =
γ(1−γ)tγ−1

M(γ)
[W(t,x,g,κ)−W(t,x,gn,κ)]

+
γ2

M(γ)

∫ t

0

αγ−1 (W(α,x,g,κ)−W(α,x,gn,κ))dα,

giving

‖g(t,x)−gn+1‖≤
γ(1−γ)tγ−1

M(γ)
‖W(t,x,g,κ)−W(t,x,gn,κ)‖

+
γ2

M(γ)

∫ t

0

αγ−1‖(W(α,x,g,κ)−W(α,x,gn,κ)‖dα

≤ γ(1−γ)tγ−1

M(γ)
K‖g−gn‖+

Kγ2

M(γ)

∫ t

0

αγ−1‖g−gn‖dα

≤ γ(1−γ)tγ−1

M(γ)
K‖Qn‖+

Kγ2

M(γ)

∫ t

0

αγ−1‖Qn‖dα

(49)

Hence, limn→∞Qn = 0 and from the right-hand-side,

lim
n→∞

gn = g.
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Just consider g(t,x) = g(t,x) as the continuous solution to the system (41). Moreover,

making use of the Lipschitz condition of W we get

g(t,x)− γ(1−γ)tγ−1

M(γ)
W(t,x,g,κ)− γ2

M(γ)

∫ t

0

αγ−1W(α,x,g,κ)dα

=Un(t,x)+
γ(1−γ)tγ−1

M(γ)
(W(α,x,gn−1,κ)−W(t,x,g,κ))

+
γ2

M(γ)

∫ t

0

αγ−1 (W(α,x,gn−1,κ)−W(t,x,g,κ))dα.

(50)

This yields∥∥∥∥g(t,x)− γ(1−γ)tγ−1

M(γ)
W(t,x,g,κ)− γ2

M(γ)

∫ t

0

αγ−1W(α,x,g,κ)dα

∥∥∥∥
= ‖Un(t,x)‖+

(
γ(1−γ)tγ−1

M(γ)
+

γ2

M(γ)

)
‖Un−1(t,x)‖ .

(51)

Applying both the initial condition and the limit as n→ 0 leads to

g(t,x) =u(x)+
γ(1−γ)tγ−1

M(γ)
W(t,x,g,κ)+

γ2

M(γ)

∫ t

0

αγ−1W(α,x,g,κ)dα.

Uniqueness

Uniqueness result for the model can be proven by considering two separate functions g

and f that verify the model (41) then, showing that g and f coincide.

‖g−f‖≤ γ(1−γ)tγ−1

M(γ)
K‖g−f‖+

Kγ2t

M(γ)
‖g−f‖, (52)

equivalently

‖g−f‖
(

1− γ(1−γ)tγ−1

M(γ)
K− Kγ2t

M(γ)

)
≤ 0.

This proves that g= f if

1>
γ(1−γ)tγ−1

M(γ)
K− Kγ2t

M(γ)

where the Lipschitz condition for W has been applied. Thus, the proof of existence and

uniqueness results for the 7th order KdV equation with a single perturbation level and

expressed with the fractal fractional operator is complete.

4 Some shapes of fractal traveling waves via numerical approx-

imations

Sometimes waves traveling in a given direction do not behave as planned and this

creates unusual shapes for the waves. To asses it, we consider the system

FReDγ
t g(t,x) =−6ggx−gxxx+gxxxxx−κgxxxxxxx (53)
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to which the following localized initial condition is associated

g(0,x) =

√
17η

ν
tanh2

(√
x

ν

)
. (54)

Recall that in the previous section, we have shown that solution to this type of

non-linear system exists and is unique. However, finding and explicitly expressing its

exact or approximated solution remain a challenging task. Other and easier ways would

have been to apply some analytical methods such as integral transform or separation of

variables methods. Using specialized function technique like that of Green function is

also appropriate here but almost impossible to achieve. Therefore we can make use of one

of few alternative methods relevant to this non-linear model: a semi-analytical approach.

In this case, we consider the Laplace iterative technique to obtain a special solution

that satisfy the non-linear system (53)–(54). To achieve it we start by considering the

fractal-Laplace transform L and applying it on both sides of the model (53), which leads

to
γ+(1−γ)s

sM(γ)
g̃(s,x)−g(0,x) =L(s, −6ggx−gxxx+gxxxxx−κgxxxxxxx) (55)

g̃(s,x) =
sM(γ)

γ+(1−γ)s
g(0,x)+

sM(γ)

γ+(1−γ)s
L(s, −6ggx−gxxx+gxxxxx−κgxxxxxxx) .

Applying the inverse fractal-Laplace transform L−1 on both sides now gives

g(t,x) =M(γ)g(0,x)L−1(t,
s

γ+(1−γ)s
)

+L−1

(
t,

sM(γ)

γ+(1−γ)s
L(s, −6ggx−gxxx+gxxxxx−κgxxxxxxx)

)
.

At this stage it is significant to make use of a special and generalized function. A func-

tion that returns its own expression when it is fractionally differentiated and integrated

or simply differintegrated by any order. In the classical integer order calculus, such func-

tions include are exponential and trigonometric functions while in fractional calculus, we

have Mittag-Leffler functions and its variants such as the generalized R function. Then,

using the generalized R function Rr,i(β,t) [9, 12, 13] defined as

L−1

(
t,

si

sr−β

)
=

+∞∑
p=0

βp t(p+1)r−1−i

Γ((p+1)r− i)
=Rr,i(β,t)

leads to the following iteration scheme

gn+1(t,x) = β(t,γ)gn(t,x)

+L−1

(
t,

sM(γ)

γ+(1−γ)s
L(s, −6gn(gn)x−(gn)xxx+(gn)xxxxx−κ(gn)xxxxxxx)

)
g0(t,x) = g(0,x),

(56)
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where

β(t,γ) =M(γ)

+∞∑
p=0

(
γ
γ−1

)p
tp−1

Γ(p)

 .
Certainly leading to the solution g(t,x) = limn→∞ gn(t,x). Now following guidelines can

be used to perform numerical approximations and simulations:

• g0(t,x) = g(0,x) is considered as initial input:

Select j to be the number of terms in the computation process

Denote by gapp the approximate solution.

Let gapp = g(0,x) =
√

17η
ν

tanh2
(√

x
ν

)
and gapp = gapp.

• make use of : gn+1(t,x) = M(γ)

[∑+∞
p=0

( γ
γ−1)

p
tp−1

Γ(p)

]
gn(t,x) for the following

terms

+L−1
(

sM(γ)
γ+(1−γ)s

L(−6gn(gn)x−(gn)xxx+(gn)xxxxx−κ(gn)xxxxxxx, s) , t
)

Compute Xn(t,x) =Xn−1(t,x)+gapp

Lastly we obtain gapp(t,x) =Xn(t,x)+gapp,

where

Xn(t,x) =L−1

(
sM(γ)

γ+(1−γ)s
L(−6gn(gn)x−(gn)xxx+(gn)xxxxx−κ(gn)xxxxxxx, s) , t

)
.

We also have Table 1 and Table 2 summarizing absolute errors done when performing nu-

merical approximations. Note that those two tables show results from numerical approx-

imations together with the corresponding absolute errors and coming from the schemes

(57) and (58) representing the fractional cases (γ= 0.9) and (γ= 0.7)) respectively. It is
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possible to make use of β(s,γ), in order to get following results.

g(0,x) =

√
17η

ν
tanh2

(√
x

ν

)

g1(t,x) = β(t, 0.9)g(0,x)+
(1.700×10−3)t

√
d

k3/2

{
1.233

√
d

k1/2
− 3.467

k2
− 273

k4
− 78733κ

k6

+

(
−2.237

k2
− 133.200

k4
+

77631κ

k6

)
coth

(
2

√
x

ν

)
+

(
−0.102

k2
+

173.700

k4
+

14681κ

k6

)
coth

(
4

√
x

ν

)
+

(
0.372

k2
− 13.730

k4
+

476κ

k6

)
coth

(
6

√
x

ν

)}
tanh12

(√
x

ν

)
tanh

(√
x

ν

)
+

(1−γ)Γ(γ)tγ−1
√
d

k

{
0.223

√
d

k
− 3.830

k1/4
− 332.303κ

k1/6

+

(
−0.037

k1/2
− 3.320

k1/4
+

683κ

k1/6

)
coth

(
2

√
x

ν

)
+

(
−0.030

k1/2
+

3.820

k1/4
+

641κ

k1/6

)
coth

(
4

√
x

ν

)
+

(
0.072

k1/2
− 0.770

k1/4
+

7.630κ

k1/6

)
coth

(
6

√
x

ν

)}
tanh6

(√
x
ν

)
tanh

(√
x
ν

)
2γ−γ

g2(t,x) = g1(0,x)+ · · ·
...

(57)

and

g(0,x) =

√
17η

ν
tanh2

(√
x

ν

)

g1(t,x) = β(t, 0.7)g(0,x)+
(1.700×10−3)t

√
d

k3/2

{
1.233

√
d

k1/2
− 3.467

k2
− 273

k4
− 78933κ

k6

+

(
−2.237

k2
− 133.200

k4
+

79631κ

k6

)
coth

(
2

√
x

ν

)
+

(
−0.102

k2
+

173.700

k4
+

14681κ

k6

)
coth

(
4

√
x

ν

)
+

(
0.372

k2
− 13.730

k4
+

476κ

k6

)
coth

(
6

√
x

ν

)}
tanh6

(√
x

ν

)
tanh

(√
x

ν

)
.

(58)
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This result nearly resembles to the one obtained in the work published in [14, 15] that

used technique such as Adomian decomposition method. For the classical integer Newton

calculus γ = 1, the terms can be computed using similar iterative approach and get the

function g(x,t) to take the form

g(t,x) =

√
17η

ν
tanh2

(
1

k

(
x−
√
d

k5/2
t

))
(59)

Now we can perform numerical simulations as shown by Figs. 13 to 21 where we

have used different expressions of the initial input g(0,x) and considered various values

of the fractal-fractional parameter γ. In Fig. 13 and the zoomed-in version (Figs. 14-

15), plotted for the initial input g(0,x) =
√

17η
ν

tanh2
(√

x
ν

)
shows the dynamics of the

higher order traveling wave when γ takes the values {1, 0.9, 0.7, 0.6, 0.5, 0.45}. We

observed the evolution of the higher order traveling wave involved in a self replication

process. There is generation of the exact or approximately exact copies of the initial

traveling wave in different scales and where the fractal process produces other multiple

traveling waves that look like the preceding ones. Hence, the whole replication dynamics

incur the influence of both the fractal dimension involved in the system and the fractional

parameter which is also the derivative order of the model. The self replication increases

and expands as the parameter γ changes in values. A nearly similar dynamic is globally

shown in Fig. 16 and the zoomed-in version (Figs. 17- 18), plotted for the initial input

g(0,x) =
√

17η
ν

sinh2
(√

x
ν

)
and when γ takes the values {1, 0.9, 0.7, 0.6, 0.5, 0.45}. The

same observation is done in Figs. 19, 20 and 21 plotted respectively for the initial inputs

g(0,x) =
√

17η
ν

cosh2
(
x
ν

)
, g(0,x) =

√
17η
ν

sinh2
(
x
ν

)
and g(0,x) =

√
17η
ν

tanh2
(√

x
ν

)
and

when γ takes the values {1, 0.9, 0.7, 0.6}. Whence, the fractal dynamics for traveling

waves of a higher order represent the main results of this paper and are reflected by the

graphical simulations in the figures mentioned above. The whole process is shown to be

clearly perturbed by both the fractal and fractional dimension of the model.
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For γ= 0.9

Time (t) Spatial (x) Exact value Numerical value Error made

0.5 -25 0.000098126 0.000224130 1.26×10−4

-15 0.036620000 0.036514000 1.06×10−4

0 0.001372300 0.001470000 1.00×10−4

15 0.070555000 0.069355000 1.20×10−3

25.0 0.000118180 0.000120180 2.00×10−6

1 -25 0.000091592 0.000284080 1.20×10−4

-15 0.034779000 0.034779000 00

0 0.001390000 0.001380000 1.00×10−5

15 0.075546000 0.071755000 1.20×10−4

25 0.000126620 0.000073380 2.00×10−4

1.5 -25 0.000081235 0.000181240 1.00×10−4

-15 0.048620000 0.069620000 2.10×10−2

0 0.001410000 0.001510000 1.01×10−4

15 0.025083000 0.024954000 1.29×10−4

25 0.000142760 0.000242760 1.00×10−4

2 -25 0.000065920 0.000132590 1.26×10−3

-15 0.039495000 0.039495000 00

0 0.001430000 0.040430000 1.00×10−2

15 0.104610000 0.102610000 2.00×10−3

25 0.000175920 0.000175920 00

3 -25 0.000045819 0.000224130 1.26×10−3

-15 0.027489000 0.038768000 1.6×10−3

0 0.040400000 0.001400000 1×10−2

15 0.019720000 0.071755000 1.2×10−3

25 0.000253100 0.000120180 1.01×10−5

4 -25 0.000038771 0.000224130 1.26×10−4

-15 0.023272000 0.038768000 1.06×10−3

0 0.040402000 0.041402000 1×10−3

15 0.026380000 0.026380000 00

25 0.000299110 0.00012018 2.1×10−5

Table 1: Some values for numerical and exact solutions to the model (53) at k= 2.5, d= 4.0, and γ= 0.9.
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For γ= 0.7

Time (t) Spatial (x) Exact value Numerical value Error made

0.5 -25 0.000099315 0.000109420 1.01×10−5

-15 0.013670000 0.013670000 00

0 0.013107000 0.013107000 00

15 0.019718000 0.019718000 00

25 0.000167700 0.000096770 2.00×10−5

1 -25 0.000091592 0.000088572 3.02×10−6

-15 0.034779000 0.034779000 00

0 0.013907000 0.013907000 00

15 0.075546000 0.075546000 00

25 0.000126620 0.000026620 1.00×10−4

1.5 -25 0.000077901 0.000237900 1.60×10−4

-15 0.046635000 0.046635000 00

0 0.012007000 0.012140000 1.31×10−4

15 0.088688000 0.088688000 00

25 0.000148870 0.000159170 1.03×10−5

2 -25 0.000056352 0.001316400 1.26×10−3

-15 0.033785000 0.033785000 00

0 0.012060000 0.062060000 1.00×10−2

15 0.022130000 0.020120000 2.01×10−3

25 0.000205790 0.000205790 00

3 -25 0.000029488 0.001289500 1.26×10−3

-15 0.017711000 0.019311000 1.6×10−3

0 0.012060000 0.062060000 1×10−2

15 0.020430000 0.021630000 1.2×10−3

25 0.000393270 0.000403370 1.01×10−5

4 -25 0.000021331 0.000020071 1.26×10−6

-15 0.012819000 0.012830000 1.06×10−5

0 0.061760000 0.062760000 1.00×10−3

15 0.005320000 0.005320000 00

25 0.000543640 0.000543640 00

Table 2: Some values for numerical and exact solutions to the model (53) at k= 2.5, d= 4.0, and γ= 0.7.
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Fig. 13: Numerical simulations of the 7th order KdV equation (27), plotted for the initial in-

put g(0,x) =
√

17η

ν
tanh2

(√
x
ν

)
showing the dynamics of the higher order traveling wave when γ =

1, 0.9, 0.7, 0.6, 0.5, 0.45. It happens that the evolution of the higher order traveling wave is involved

in a self replication process. There is generation of the exact or approximately exact copy of the ini-

tial traveling wave where the fractal process produces other multiple traveling waves that look like the

preceding ones. The fractal dynamics expand as the parameter γ changes.



30

Fig. 14: Enlarged version of Fig. 13 depicting fractal replications performed by the 7th order KdV

equation (27), for the initial input g(0,x) =
√

17η

ν
tanh2

(√
x
ν

)
and γ = 1, 0.9, 0.7, 0.6, 0.5, 0.45. The

fractal dynamics expand as the parameter γ changes.
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Fig. 15: Enlarged version of Fig. 13 depicting fractal replications performed by the 7th order KdV

equation (27), for the initial input g(0,x) =
√

17η

ν
tanh2

(√
x
ν

)
and γ = 1, 0.9, 0.7, 0.6, 0.5, 0.45. The

fractal dynamics expand as the parameter γ changes.
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Fig. 16: Numerical simulations of the 7th order KdV equation (27), plotted for the initial in-

put g(0,x) =
√

17η

ν
sinh2

(√
x
ν

)
showing the dynamics of the higher order traveling wave when γ =

1, 0.9, 0.7, 0.6, 0.5, 0.45. It happens that the evolution of the higher order traveling wave is involved

in a self replication process. There is generation of the exact or approximately exact copy of the ini-

tial traveling wave where the fractal process produces other multiple traveling waves that look like the

preceding ones. The fractal dynamics expand as the parameter γ changes.
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Fig. 17: Enlarged version of Fig. 16 depicting fractal replications performed by the 7th order KdV

equation (27), for the initial input g(0,x) =
√

17η

ν
sinh2

(√
x
ν

)
and γ = 1, 0.9, 0.7, 0.6, 0.5, 0.45. The

fractal dynamics expand as the parameter γ changes.
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Fig. 18: Enlarged version of Fig. 16 depicting fractal replications performed by the 7th order KdV

equation (27), for the initial input g(0,x) =
√

17η

ν
sinh2

(√
x
ν

)
and γ = 1, 0.9, 0.7, 0.6, 0.5, 0.45. The

fractal dynamics expand as the parameter γ changes.
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Fig. 19: Numerical simulations of the 7th order KdV equation (27), plotted for the initial input g(0,x) =√
17η

ν
cosh2

(
x
ν

)
showing the dynamics of the higher order traveling wave when γ = 1, 0.9, 0.7, 0.6. It

happens that the evolution of the higher order traveling wave is involved in a self replication process.

There is generation of the exact or approximately exact copy of the initial traveling wave where the

fractal process produces other multiple traveling waves that look like the preceding ones. The fractal

dynamics expand as the parameter γ changes.
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Fig. 20: Numerical simulations of the 7th order KdV equation (27), plotted for the initial input

g(0,x) =
√

17η

ν
sinh2

(
x
ν

)
showing the dynamics of the higher order traveling wave when γ= 1, 0.9, 0.7, 0.6.

It happens that the evolution of the higher order traveling wave is involved in a self replication process.

There is generation of the exact or approximately exact copy of the initial traveling wave where the

fractal process produces other multiple traveling waves that look like the preceding ones. The fractal

dynamics expand as the parameter γ changes.
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Fig. 21: Numerical simulations of the 7th order KdV equation (27), plotted for the initial input g(0,x) =√
17η

ν
tanh2

(
x
ν

)
showing the dynamics of the higher order traveling wave when γ = 1, 0.9, 0.7, 0.6. It

happens that the evolution of the higher order traveling wave is involved in a self replication process.

There is generation of the exact or approximately exact copy of the initial traveling wave where the

fractal process produces other multiple traveling waves that look like the preceding ones. The fractal

dynamics expand as the parameter γ changes.
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Fig. 22: The superposed roads mapping system representing the model (60)-(61) for γ= 0.9 and x(0) =

x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a= 34, b= 1, c= 5.

4.1 Application 2: The three-dimentional fractal in Dubai superposed roads

mapping system

We perform another application by combining the Definition 23 to the three-dimensional

superposed roads mapping system proposed in [16] to get


FRmDγ

t x(t) = y−sign(x)sin(log |bx−c|))arctan((cx−b)2) ,
FRmDγ

t y(t) = a−x,
FRmDγ

t z(t) = sign(z)xy− 1
10
z+x,

(60)

with the following initial conditions:

x(0) = x̃(x), y(0) = ỹ(y), z(0) = z̃(z). (61)

Numerical simulations of model (60)-(61) are shown in Fig. 22 to Fig. 25 which,

again, show the three-dimensional fractal structures of the superposed roads mapping

system to be in a self-replication process with the influence of the fractional derivative

that extends the self-replication in number and shape as the derivative order varies.

4.2 Application 3: Rock fracture

Recall that rock fracture, whether it occurs naturally or caused by humans, and result-

ing fragments/dust were shown to be one of the major protagonists in the fight against

greenhouse gas emission and global warming [17–19]. Seeking to better understand the
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Fig. 23: Representation of model (60)-(61) for γ= 0.8 and x(0) = x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) =

z̃(z) = 0.01. The other parameters used are a= 34, b= 1, c= 5. The dynamics show three-dimensional

fractal structures in a self-replication process with the influence of the fractional derivative that extends

the self-replication in number and shape as the derivative order varies.

Fig. 24: Representation of model (60)-(61) for γ= 0.6 and x(0) = x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) =

z̃(z) = 0.01. The other parameters used are a= 34, b= 1, c= 5. The dynamics show three-dimensional

fractal structures in a self-replication process with the influence of the fractional derivative that further

extends the self-replication in number and shape as the derivative order varies
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Fig. 25: Representation of model (60)-(61) for γ= 0.4 and x(0) = x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) =

z̃(z) = 0.01. The other parameters used are a= 34, b=−2, c=−5. The dynamics show three-dimensional

fractal structures in a self-replication process with the influence of the fractional derivative that further

extends the self-replication in number and shape as the derivative order varies

core underlying the rock fracture processes is therefore, more than essential for our planet.

The Newton operator dW/dt used in shattering phenomena describes the rate at which

there is (mass) loss or accumulation in the process [20, 21]. In other words, it is used, at

an infinitesimal and bounded space, to get the difference between gain and loss rates. If

we assume that the bounded space contains singularities such as trapdoors of different

categories which temporarily keep the main system’s variable, then the Newton operator

dW/dt will not correctly and accurately describe the accumulation made or loss incurred

by the system. Moreover, those singularities may take the form of islands, isolated re-

gions or prohibitive zones where it is impossible for the main variable to belong. This

reinforces the idea that the accumulation made or loss incurred by the system cannot be

given by the classical Newton operator. This observation represents one of motivations

that helped researchers to generalize the classical Newton operator dW/dt into the form

Dγ = ∂γW/(∂tγ) , with γ a real or complex number. We continue in the same direction

with the model

FReDγ
tW (t,x) =−W (x,t)

∫ x

0

Fγ(%,x−%)d%+2

∞∫
x

W (%,t)Fγ(x,%−x)d%, (62)

with the condition that the following relation holds

W (0,x) =W0(x). (63)
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Fig. 26: Three-dimensional representation of the surface solution W (t,x) when γ= 1 and W0 = lnx
(x2+2)2

where FReDγ
t is the Riemann-Liouville sense operator with the exponential kernel. The

three-dimensional representation of the surface solution W (t,x) with γ = 1 and W0 =
lnx

(x2+2)2
is shown in Fig. 26, followed by appearance of a self-replicated zone that varies

as the derivative order γ changes (Fig. 27, Fig. 28) for γ = 0.9 γ = 0.65 and γ = 0.55

respectively).

4.3 Application 4: Merged-Basin of Attraction

We can use the control technique combined to two different concepts, Julia’s process

and fractal-fractional operator, to generate auto-replication in systems of chaotic attrac-

tors with two and three merged basins of attraction. The systems used here comprise a

controller part, namely the switching-manifold control. Hence, the model reads as

FFDνtX(t) =MX(t)+C2(X(t)) (64)

where we recall that

X(t) =

 x(t)

y(t)

z(t)

 and M =

 a b 0

−b a 0

0 0 c


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Fig. 27: Three-dimensional representation of the surface solutionW (t,x) when γ= 0.9 andW0 = lnx
(x2+2)2

.

It shows a dynamic partly repeating itself twice, marking the existence of a self-replicated zone in the

rock fracture model that also happens to be chaotic.
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Fig. 28: Three-dimensional representation of the surface solution W (t,x) when γ = 0.65 and W0 =
lnx

(x2+2)2
. It shows a dynamic repeating itself three times, marking the existence of a self-replicated zones

in the rock fracture model that also happen to be chaotic.
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and also

C2(X) =



p

 −x(t)

−y(t)

e1

 when z > 0 and p< (x2 +y2)1/2 +z,

q

 −x(t)

−y(t)

e2

 when z < 0 and −q >−(x2 +y2)1/2 +z,

r

 0

0

−sign(z)

 elsewhere.

1. For z > 0 and p< (x2 +y2)1/2 +z model (64) reads as

FFDνtx(t) = ax(t)+by(t)−px(t),

FFDνty(t) = −bx(t)+ay(t)−py(t),

FFDνtz(t) = cz(t)+pe1.

(65)

In order to adequately solve this combined system, we are forced to add the initial

conditions given as follows:

x(0) = x̃(x), y(0) = ỹ(y), z(0) = z̃(z). (66)

The numerical illustrations, after using the Legendre wavelet scheme, are shown in

Fig. 29 to Fig. 31 where the system (64) is involved in auto-replication dynamics.

They show the generations of chaotic attractor that auto-replicates three times and

that possesses two merged basins of attraction consisting of lower and upper basin.

4.4 Application 5: Hindmarsh and Rose neuron 3D-model

Studying & understanding the bursting dynamics of membrane potential in neuro-

biology is captivating in applied sciences, with many features still to be uncovered.

We have analyzed the 3D neuronal activities given by model of Hindmarsh-Rose

(HR) neurons with external current input using Haar wavelet method. The analysis

considers two control parameters: the external current Iext and the derivative order

γ, on top of the other seven usual parameters a,b,c,d,ν1,ν2 and xrest. Hence, the

3D model, developed in its generalized form reads as
Dγ
t x(t) = Iext +x2(b−ax)+y−z,

Dγ
t y(t) = c−dx2−y,

Dγ
t z(t) = νx−νxrest−ν1z,

(67)
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Fig. 29: Illustration of the auto-replication dynamics of the model (64) using the Legendre wavelets

scheme. It results in the generations of chaotic attractor that auto-replicates three times and that

possesses two merged basins of attraction consisting of lower and a upper basin, joint together at z= 0.

The axis z= 0 initially plays the role of an axis of symmetry for the attractor viewed on this (x,z)−plane.

The parameter values used are (a,b,c) = (3,20,−20), (p,q,r) = (4,4,1) and e1 = e2 = 8.

Fig. 30: Illustration of the auto-replication dynamics of the model (64) using the Legendre wavelets

scheme. It results in the generations of chaotic attractor that auto-replicates three times and that

possesses two merged basins of attraction consisting of lower and a upper basin. However, the two

merged basins of attraction are shown to slightly move away as the impact of the fractional dynamics

(ν= 0.95). The parameter values used are (a,b,c) = (3,20,−20), (p,q,r) = (4,4,1) and e1 = e2 = 8.
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Fig. 31: Illustration of the auto-replication dynamics of the model (64) using the Legendre wavelets

scheme. It results in the generations of chaotic attractor that auto-replicates three times and that

possesses two merged basins of attraction consisting of lower and a upper basin. However, the two

merged basins of attraction are shown to further move away as the impact of the fractional dynamics

(ν= 0.9). The parameter values used are (a,b,c) = (3,20,−20), (p,q,r) = (4,4,1) and e1 = e2 = 8.

with ν = ν1ν2 and assumed to satisfy the following initial conditions

x(0) = f(x), y(0) = g(y), z(0) = l(z), (68)

where the variable x=x(t) represents the membrane potential, y= y(t) is a recovery

variable linked to the fast current of Na+ or K+ ions, z = z(t) represents the

adaptation current related to the slow current of Ca2+ ion. All the four parameters

a, b, c, d, usually determined experimentally, are taken to be real numbers. The

term Dγ
t represents the standard Caputo fractional derivative of order γ, with 0,γ≤

1.

Numerical representation of solutions to (67)-(68) are depicted Fig. 32 and Fig. 33

for different values of the derivative order γ and for external current Iext = 0.5 and

Iext = 2.2 respectively.
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Fig. 32: Numerical solutions showing response of HR neuron 3D-model’s membrane potentials for a

short current pulse I = 0.5 with a = 1, b = 3, c = 1, d = 5 and for γ = 1.0, 0.9, and 0.8 respectively.

We observe in all three cases regular isolated burst turning into Period-adding chaotic bifurcation (burst

with uncountable peaks) as γ decreases. This hereby gives γ the status of a suitable parameter for the

system control.
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Fig. 33: Numerical solutions showing response of HR neuron 3D-model’s membrane potentials for

I = 2.2 with a = 1, b = 3, c = 1, d = 5 and for γ = 1.0, 0.9, and 0.8 respectively. Similar to

Fig. 32, we observe in all three cases regular but non-isolated burst turning again into Period-adding

chaotic bifurcation (burst with uncountable peaks) as γ decreases. This chaos is confirmed by the phase

representation in the space (x,y,z) (on the right). Furthermore, the sequence of repeated bursts happens

faster as γ decreases.
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5 conclusion

We have combined in this work some recent mathematical concepts to model and

generate some fractal processes happening in real life and useful in applied sciences

(chaos theory, wave motion, rock fracture, neuron science). In the analysis pro-

cess, we have used systems of differential equations together with the fractal and

fractional operators, which are derivatives with a fractional order. We have shown

the huge and exceptional impacts of these fractal and fractional operators in the

different systems of equations used to described numbers of real life processes. The

outcomes obtained concur with the expected results as numerical simulations have

proved that the new systems are involved in various types of fractal dynamics with

the replication of the initial objects and the formation of subsequent fractal patterns

which vary with an important parameter of the model: the fractional derivative or-

der. The main prowess here is the proof that differential systems involved in the

analysis are able to artificially structure fractals using mathematical concepts, nu-

merical techniques and simulations. These results improve the preceding ones with

the combination of recently developed operators to classical models and generate

complex patterns used and applied by scientists and engineers.
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