THE USE OF APPROPRIATE STATISTICAL TECHNIQUES IN ADDRESSING FOOD PRODUCTION CHALLENGES OF SMALLHOLDER FARMERS

Prof Peter Njuho

14th July 2022

Department of Statistics

Define tomorrow.

Dedication

To my late parents:

- Godfrey Njuho Kioi
- Leah Wanjiru Njuho

Appreciation

Family

- My wife: Wanjiku Mungai
- My sons: Njuho Mungai

Munyeria Mungai

Daughter-in-law: Khanyisile Njuho

Colleagues

• Department of Statistics

Introduction

- Smallholder farmers
 encounter multifaceted
 challenges in food production
- Answers in food security lie in the hands of scientists
- Multi-disciplinary approaches
- Culture and dynamics in food production at farm level

The 1 acre plot

Motivation

- Growing up
- Daily household food
- Harvesting whatever was mature
- Questioned how and why these miseries
- Can smallholder farmers feed the world?
- Where are we now and how can we

address these challenges?

Motivation - Questions

- Why have things remained the same despite the trainings & investment?
- Are our scientists recommending appropriate technologies?
- How do we increase food production at smallholder farms?
- If they are, why then do we still have these challenges?

Motivation - Questions

- Could assumptions made while developing these technologies misplaced?
- Do we really understand the domain of operation at smallholder farm level?
- How could we empower each farmer to make informed decision on adopting technology that works?

- Research concerns:
 - improvement of an existing technology
 - formulating and nurturing an innovation
 - comparing technologies under different environment
- Conventional principals involve:
 - identification of the population of interest
 - deciding on the sampling producer to apply
 - implementing the plan, collecting data
 - analysing data and interpreting the findings

> Statistician role:

- designing of the experiment
- analyzing the data, and
- writing the statistical section
- > A common understanding required
 - to provide solutions to the challenges faced by the smallholder farmers
 - our culture is resistant to new food
 - want to eat what is common and produced elsewhere

- encourage the production of traditional foods
- are resilient to the effects of climate change
- widen the range of Africa's food baskets
 - increase nutrient bioavailability
 - drastically cut food insecurity
 - address malnutrition on the continent
 - integrate African foods both from plants and animals into our different food systems

Smallholder farms differ in

- climate, soil type, management, farmer's knowledge, preferences, and access to new information
- Overcoming these limitations
 - evaluating the new technologies against the farmer's technology
 - apply proper statistical procedures

Scenario -1

- Smallholder farmer
- On-farm animal feed experiment
- Compare new feed (A) against farmers' traditional feed (B)
- Sale of milk is the farmer's income
- Two cows available Cow 1 receives A
 Cow 2 receives B
- Increase in milk production from cow 1
- Farmer abandon feed (B) and
- Feed both animals with (A)

A compromised experiment

Scenario - 2

- East coast fever (ECF) a tropical disease
 - Test a new management strategy to control ECF
 - Strategy involves vaccination and dipping in acaricide
 - Treatment combinations were:
 - \circ vaccination and dipping (VD)
 - \circ no vaccination and dipping (NVD)
 - vaccination and no dipping (VND)
 - no vaccination and no dipping (NVND)

Scientific control (NVND) - Impossible

Lesson from scenarios

- Understand the social and economic factors
- Farmer researcher perception differ
- Make farmer understand long-term benefits
- No amount of data manipulation will result to meaningful solutions to such messy trial

Research Vs Difficulties in Statistics

Questions to answer

- Any justification for recommending New technology to all farmers?
 - based on the assumption of a Common Control
- Are we making the correct decision at Farm level?
 to accept a new technology

Possible Answers

- All farms have the same practice Common Control
- Each farm has it's control
- Common control for a group of farms
- Groups:
 - Group A Farmers who would adopt the new variety
 - Group B Farmers who would stick to their own variety
 - Group C Farmers who would find it difficult to decide

Contribution to solving smallholder farmer challenges

postgraduates

• Error structure

DIRECT: Linear Mixed Model

Work on Response Variable (A)

2PhD and 1 MSc produced

Theses:

- Statistical Techniques for Combining Parameter
 Estimates: Case of Food Production in Sub-Saharan
 Africa
- Discrete Regression Models Using Quasi-Likelihood
 Estimation Method
- Understanding patterns of aggregation in count data

Issues Addressed

- Understanding aggregation, seasonality and other unique patterns associated with parasitological data
- Understanding the occurrence of certain species
 causing diseases in grazed animals
- Low production affect the livelihood of the smallholder farmers

Issues Addressed

- Quasi-score test for testing over dispersed data
- Agricultural production estimates combined to a single stable estimate
- Contribute to the formulation policies on food insecurity

Research output -A

Publications in peer-reviewed journals

- A Comprehensive Approach for Integrating Meta-analysis into Structural Equation Modelling: Case of Food Production. International Journal of Agricultural and Statistical Sciences. Vol.17(2), pp 479-492
- Use of linear mixed effects model in meta-analysis for studies with multiple outcomes. International Journal of Agricultural and Statistical Sciences. Vol. 16 (1), pp11-21
- Improved Structural Equation Models using Factor Analysis. Pakistan Journal of Statistics and Operation Research, Vol. XIV(4), pp 995-1012
- Statistical models for helminth faecal egg counts in sheep and goats. Small Ruminant Research Journal. Vol. 170, pp 26-30

Work on Treatment Structure (B)

2PhD Theses

- Using Mixed Models to Analyze Data from On-Farm Trials
- Analysis of Linear Mixed-Models with an Extension to Three or More Factors Each Having Both Fixed and Random Levels

Issues Addressed

- Performance of one or more improved technologies in comparison to the farmer's practice
- Unpack the assumption-smallholder farmers have a common control
- Same experimental design applicable to all
- Comparing a treatment to different controls
- Different experimental design on each farm

Mixed Model Analysis

• Two components

Y = Fixed Part + Random Part

Random Part = Blocking + Error

Must state which factors are fixed and which are random

Types of Models

- Fixed-fixed (FF)
- Fixed-random (FR)
- Random-fixed (RF)
- Random-random (RR)

Models for each of the combinations			
	Levels of Factor B		
		1,2,,f _b	$f_b + 1, f_b + 2,, f_b + r_b = b$
actor A	1,2,, fa	Fixed-Fixed $y_{FFijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{FFijk}$	Fixed-Random $y_{FRijk} = \phi_i + b_{FRj} + c_{FRij} + \varepsilon_{FRijk}$
Levels of Fa	<i>f_a +1, <i>f_a</i> +2,, <i>f_a</i></i>	Random-Fixed $y_{RFijk} = a_{RFi} + \omega_j + c_{RFij} + \varepsilon_{RFijk}$	Random-Fixed $y_{RRijk} = \mu_{RR} + a_{RRi} + b_{RRj} + c_{RRij} + \varepsilon_{RRijk}$

Smallholder farm experiment

- Two Factors: Weeding methods & Plant Populations
- Fixed Part:
 - Weeding methods (FW1 & FW2)
 - Plant populations (FP1, FP2 & FP3)
- Random part:
 - Weeding methods (RW1, RW2 & RW3)
 - Plant populations (RP1 & RP2)

Pulp yield estimation per tree

Two factors – Height and Diameter

Height

- Fixed (FP1, FP5 & FP8) levels
- Random (RP2, RP3, RP4, RP6, RP7 & RP9) levels

• Diameter

- Fixed (FD1 & FD4) levels
- Random (RD2, RD3 & RD5) levels

P9

P8

P7

P6

P5

P4

P3

P2

P1

Example 2 Disc divided into sections

Five Diameters

- 2 Fixed levels
- 3 Random levels

- 3 fixed levels test for the height effect
- 6 random levels estimate height variability
- Effect of diameter and variability also assessed
- Test: Interaction between height and diameter
- Estimate: Interaction variance component

Research output - B

Publications in peer-reviewed journals

- Analysis of Linear Models with One Factor Having Both Fixed and Random Levels. Journal of Communications in Statistics-Theory and Methods. Vol.34(9) Pp 1979-1989
- Analysis of Linear Models with Two Factors Having Both Fixed and Random Levels. Journal of Communications in Statistics Theory and Methods, 38(14), Pp 2348-2365
- Construction of a linear mixed model with each factor having both fixed and random levels: A case of split-split plot structure in a RCBD. International Journal of Agricultural and Statistical Sciences. Vol.17(2), pp 501-518
- Repeated-Measures Analysis in the Context of Heteroscedastic Error Terms with Factors Having Both Fixed and Random Levels. Stats 2022, 5(2), 458-476
- Mixed models approach to on-farm trials: An alternative to meta-analysis for comparing one treatment to possibly different controls. Proceedings of the 1995, Kansas State University Conference on Applied Statistics in Agriculture. Pp 196-213

Work on Design Structure (C)

1 PhD and 2 MSc Theses

- Using spatial modelling techniques to improve data analysis from agricultural fields trials
- Assessment of Variability in On-Farm Trials: A Uganda Case
- Analysis and Efficiency of Systematic Designs in Intercropping Experiments

Issues Addressed

- Smallholder farms characterized by
 - unique constraints, high variability within and between farms, missing observations, and differing farming knowledge
- Strife to allow farmers' conditions to remain the same while the experiment on the farm progress
- Simple & effective designs needed

o control the inherent farm variability

Issues Addressed

Incomplete block designs

• Allows a farmer decide on the new interventions

Improved design then model to account for the spatial variation

Selection of experimental material

• Monitor the trend per block level

 Soil characteristics non-random, fertility trend, spatial autocorrelation, and periodicity

- A strategy for modelling spatial variability
- Allow for investigation many technologies per farm

Mother-baby design

- Investigation of many technologies on the farm
- Farmer's chance to try any interventions
- Allow for non-replication on the farm
- Block size depends on farmer's ability to handle
- Mother accommodate more technologies
- **Baby** select any technology to try
- On station Mother & babies smallholder farms

Research output -C

Publications in peer-reviewed journals

- Smoothing fertility trends in agricultural field experiments. Statistics: A Journal of Theoretical and Applied Statistics. Vol. 43(3), Pp 275-289
- Monitoring field variability using confidence interval for coefficient of variation. Journal of Communications in Statistics Theory and Methods. Vol. 37(6), Pp 831-846
- Improvement on Papadakis covariate to account for spatial variation. Journal of Agricultural, Biological, and Environmental Statistics
- Optimum plot block dimensions and effect of plot shape on significance tests in potato. Journal of the Ethiopian Statistical Association, Vol. XII, Pp 39-59.
- The Efficiency of Incomplete Block Designs in On-Farm Trials

Work on Error Structure-D

1 PhD and 1 MSc Theses

- Using spatial modelling techniques to improve data analysis from agricultural fields trials
- Assessment of Variability in On-Farm Trials: A Uganda Case
- Analysis and Efficiency of Systematic Designs in Intercropping Experiments

Issues Addressed

- Smallholder farmers' production systems
- Involve constraints that require different solutions
- Characterize different sources of variability
 - High variability leads to inefficient estimates
- Farming systems characterized by:

Crops grown & combinations, animals kept,
 educational & farmer's wealth, cultural practices &
 socio-economic status

Issues Addressed

- Contributors of direct or indirect variation:
 - Agronomic, animal husbandry and socio-economic
- A stochastic relationship

$$y = f(G, E, M, S) + Error$$

- G Plant genotype effect
- E Biophysical environmental effect
- M Past and present management effect
- S Socioeconomic factors effect

Error-Random effects

Indirect Contribution

Indirect contribution

Training agricultural research scientists under:

- RUFORUM Scientific data managements
- AWARD- Science writing and proposal writing skills
- ASARECA- Research on high

value non-staple crops

• IFS - Research on neglected and underutilized crops

Professional contributions

- International Biometric Society (IBS)
 - Board member of directors
 - Educational representative
 - Chair of the Education committee
 - Chair of the Young Statistician Showcase section

Professional contributions

- Sub-Saharan Africa Network (SUSAN)
 Coordinator
- South Africa Statistical Association (SASA)
 Executive member
- IBS Group South Africa
 National Secretary

Take home message

- Critical review on postgraduate curriculum
- Enhance farmer training centres
- Sensitize young students to pursue career in agricultural & statistics
- IT research and innovation on smallholder farms
- Design of experiments which apply to smallholder
- Act now to reverse the decline in food production

Take home message

- Creative scientists are the engines that run innovative technology generation and adoption
 o How can we best **ignite** this creativity?
- Statisticians are servants of science
 Collaborate with them
- Ensure research conducted use gender lens to help in maintaining harmony amongst
 smallholder farmers

smallholder farmers

Take home message

• Smallholder farmers are most affected by climate

change

 Let us all join hands in alleviating the miseries of smallholder farmers in all ways

Acknowledgement

RUFORUM C10 Implementation

KANSAS STATE

university of south africa

Thank you

Define tomorrow.

