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A B S T R A C T   

Functionally graded materials provide a flexible and individualized strategy for material design, allowing for 
optimization of properties and performance for particular purposes. The investigation considers the effects of 
simply supported (SS), clamped-clamped (CC) and clamped-free (CF) configurations. The study examines the 
vibration characteristics of bi-directional functionally graded porous beams (BDFGPB) using the third-order 
shear deformation theory, considering both even and uneven porosity conditions. The Hamilton method is 
used to derive equilibrium equations for beams, which are then solved using the Kuhn-Tucker technique and R- 
program. The BDFGPB’s validity was verified by comparing it with open literature, revealing deviations of 
3.19%, 1.25%, and 2.15% in non-dimensional natural frequency for SS, CC and CF boundary conditions. 
Furthermore, as the porosity index increases, the dimensionless natural frequency decreases, reducing beam 
stiffness and rigidity. This study demonstrates that porosity plays a critical role in the design of modern struc-
tures, as its ratio greatly impacts their performance and responsiveness.   

1. Introduction 

Functionally graded materials (FGMs) are a category of engineered 
materials that possess a gradual and continual variation in composition, 
microstructure or properties across the volume. The FGMs are modelled 
in such a way that the properties may change systematically from one 
region to another, unlike conventional materials with uniform proper-
ties throughout. The continual variation in properties within FGMs al-
lows them to overcome limitations found in traditional homogeneous 
materials. Designing FGMs allows for a smooth transition from a mate-
rial with high strength and low thermal expansion to another material 
with high toughness and high thermal expansion [1]. This gradient in 
properties helps to minimize stress concentrations and improve the 
overall performance and reliability of the material [2]. Porous structures 
introduce voids or empty spaces within the material, affecting its me-
chanical behaviour and dynamic response. Porosity can vary along the 
beam’s length or cross-section, influencing parameters like mass den-
sity, stiffness and damping characteristics. The amount of porosity 
(porous and non-porous) has an impact on the vibration behaviour of the 

plate or beam [3–5]. The internal distribution of pores within the 
structure may exhibit various patterns, such as uniform, non-uniform, 
trigonometric, exponential and others. FGMs in the biomedical field 
find application in dental implants [6] and orthopaedic implants [7], in 
aerospace applications [8], civil engineering [9], Energy absorption 
devices [10], electronics and electrical engineering [11] and in thermal 
management applications [12]. Hai Qing and Lu Wei [13] investigated 
the natural frequency behaviour of functionally graded beams (FGB). 
They considered different porosity distributions and material property 
variations across the thickness. Their study used mathematical models 
and numerical techniques to analyze the natural frequencies occurring 
in the beams. Another study by Nguyen et al. [14] proposed an approach 
to predicting the free vibration as well as the mode shapes of FGBs. The 
approach used two-variable shear deformation theory, porosity distri-
bution functions and a power-law disparity of material properties to 
obtain analytical solutions. 

Engineering structures integrate with other structures, leading to 
numerous investigations into their mechanical characteristics. Refrafi 
et al. [15] used HSDT to study buckling behaviour in sandwich plates 
made of FGMs under hygro-thermal and mechanical loads. Mudhaffar 
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et al. [16] analyzed the bending analysis of ceramic-metal plates under 
stress and viscoelastic foundations. Phuong et al. [17] used the Timo-
shenko beam theory for the structural analysis of FGBs with porosities. 
The neutral surface theory was proposed to eliminate coupling effects. In 
a study by Zhao et al. [18], they offered a modified Fourier series 
methodology to assess the natural frequency developed in the func-
tionally graded porous beams (FGPB). The method considered the 
porosity distribution and material property variations across the thick-
ness. Comparisons with numerical results validated the accuracy of the 
methodology. Van Vinh et al. [19] used the nonlocal elasticity theory 
into consideration and the consequences on a smaller scale. They 
deduced the governing equations and further estimated the natural 
frequencies, as well as the mode, shapes through numerical techniques. 
A study by Arefi and Meskini [20] proposed a hyperbolic shear defor-
mation theory (HYSDT) to examine the vibration behaviour of FGPBs. 
They considered material property variations, porosity effects and 
transverse shear deformation. The free vibration was obtained by 
applying Navier’s method. Another study by Jena et al. [21] studied the 
vibration phenomenon of FGPB using the modified couple stress theory 
[11] while considering the impact of porosity and material grading. An 
analytical approach based on a power series expansion obtained the 
natural frequencies. Gao et al. [22] examined the influence of uncertain 
parameters on the vibration behaviour of FGPB. They used a probabi-
listic approach to model the uncertainties in material properties and 
porosity. The fuzzy method was employed to analyze the random vi-
bration response and obtain statistical information. Hung et al. [23] 
assessed the dynamic response of a sandwich beam composed of FGM 
and graphene platelets. Parametric studies were executed to estimate 
the impact of the porosity coefficient on the beam’s dynamic properties. 
They used Lagrange’s equations and Newmark’s acceleration method to 
derive the governing equations. 

Researchers have utilized analytical, numerical and probabilistic 
techniques to assess the impact of material grading, porosity and the 
effect of boundary conditions on the dynamic behaviour of such beams 
and plates. Quang Hung et al. [24] established a mesh-free method for 
structural analysis and response of intelligent piezoelectric porous 
beams. They adapted the Halpin–Tsai micro-mechanical model to esti-
mate core properties. Also, they examined boundary conditions, the 
material parameters’ impact on beam deflection, and stresses under 
mechanical and electrical loads, emphasizing piezoelectricity’s impact 
on static bending regulation. Lim et al. [25] developed a model that 

accounts for nonlocal strain gradients by integrating a nonlocal integral 
model and one based on strain gradients. Ebrahimi and Barati [26] 
utilized an advanced refined beam model of higher order to examine the 
vibration-damping response of an FG beam that was installed in a 
Winkler-Pasternak foundation [27]. Sahmani and Aghdam [28] exam-
ined the nonlinear vibration as well as bending analysis of nanobeams 
applying the two-step perturbation technique; microtubes were adapted 
by She et al. [29], and nanotubes by Gao et al. [30]. Ghazwani et al. [31] 
studied vibration characteristics of porous functionally graded nano-
beams, analyzing four porosity distributions and using Eringen’s 
nonlocal parameter elasticity theory and Hamilton’s principle to 
establish motion equations. They solved eigenvalues with a closed-form 
solution. Mellal et al. [32] proposed an analytical approach for assessing 
the free vibration and stability of FGBs supported by variable elastic 
foundations. Their study focused on three unknown functions, trans-
verse shear stresses, and examined the impact of porosity. Avcar et al. 
[33] investigated natural frequencies in perfect/imperfect functionally 
graded sandwich beams supported by elastic foundations, using trigo-
nometric shear deformation theory and Hamilton’s principle. Hadji and 
Avcar [34] introduced a nonlocal HYSDT for the free vibration of porous 
functionally graded nanobeams, examining the impact of nonlocal pa-
rameters on dynamic responses. Al-Shujairi and Mollamahmutoglu [35] 
and Liu et al. [36] used the general differential quadrature method to 
study the impact of thermal effects on the Timoshenko beam model. 

The study conducted by Guo et al. [37] and Lu et al. [38] utilized the 
Galerkin approach to investigate the transverse vibration as well as the 
vibro-buckling properties of a simply supported Euler-Bernoulli beam 
that is both axially moving and rotating. An investigation was conducted 
on the fluctuating dynamics of carbon nanotubes by Mohammadian 
et al. [39], adapting a Timoshenko beam model. Karami et al. [40] 
utilized the GDQM to investigate the free vibration behaviour of a 
bi-directionally functionally graded Timoshenko beam featuring a 
tapered cross-sectional geometry. The Kirchhoff plate was utilized by 
Mir and Tahani [41] in the study of a resonator composed of a graphene 
sheet. They employed the Melnikov integral method to derive analytical 
considerations concerning the occurrence of oscillations. Hadji et al. 
[42] analyzed the bending and free vibration characteristics of FGPB 
supported by elastic foundations, finding constant variation in material 
characteristics throughout thickness. They acknowledged the linear, 
homogeneous, and isotropic nature of the foundation medium. Dah-
mane et al. [43] studied the impact of inclined transverse cracking on 

Nomenclature 

α The porosity coefficient (0 ≤ α ≤ 0.4) 
m The presence of metal 
c The presence of ceramic 
Vf Volume fraction of one constituent 
px The gradient index describing the behavior of a volume 

fraction throughout the beam’s length 
pz The gradient index describing the behavior of a volume 

fraction throughout the beam’s thickness 
Ea The Modulus of elasticity 
ρa Mass density 
U Axial displacements 
W Transverse displacement 
∅ The shear slope 
∂w0
∂x Bending slope 
δU The potential energy of the strain 
δK The kinetic energy of the strain 
Mx The bending moment 
Qx The shear force 
Px The functional characteristics of the material 

x The axial direction 
z The direction of thickness 
g where, θi, φi, and ψ i are the three different boundary 

conditions and 
λ The scalar 
ANN Artificial Neural Network 
BDFGPB Bi-directional Functionally Graded Porous Beam 
CC Clamped - Clamped 
CF Clamped - Free 
FEA Finite Element Analysis 
FEM Finite Element Method 
FGB Functionally Graded Beam 
FGPB Functionally Graded Porous Beam 
FGM Functionally Graded Material 
GDQM General Differential Quadrature Method 
HSDT Higher Order Shear Deformation Theory 
HYSDT Hyperbolic Shear Deformation Theory 
KT Kuhn-Tucker 
P/IP-FGSB Perfect/Imperfect Functionally Graded Sandwich Beams 
SS Simply Supported  
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Euler-Bernoulli-model defective FGBs, finding factors like porosity 
values, crack depth, and fracture position significantly influencing nat-
ural frequencies. They also studied the dynamic response of wave 
propagation in bidirectional-graded porous cantilever beams [44]. Hadji 
et al. [45] studied the impact of pore distribution on free vibration 
analysis in porous plates using HYSDT. Madan et al. [46] found a 
negative correlation between grading indices and aspect ratio with 
limited speed, highlighting the potential of exponential disks for in-
dustrial applications. Sayyad et al. [47] used higher-order hyperbolic 
circular beam theory for static and vibration analysis. Sayyad et al. [48] 
conducted thermal buckling studies on multi-directional plates, estab-
lishing critical material grading indices. Hadji et al. [49] utilized HSDT 
to evaluate the static response of functionally graded plates, demon-
strating its variational consistency and similarity to conventional plate 
theory across dimensions. Turan et al. [50] used FOSDT to analyze the 
buckling and natural frequency of FGPB, using Finite Element Method 
(FEM) and Artificial Neural Network (ANN) methodologies. They used 
Ritz’s method, Lagrange’s principle, and the power-law rule to derive 
equations of motion. Various researchers used FEM to assess free vi-
brations, discretizing the beam into finite elements and establishing 
natural frequencies and mode shapes [51–55]. 

In the light of literature discussed, the studies mentioned focus on the 
mechanical characteristics of various engineering structures, particu-
larly sandwich plates, ceramic-metal plates and beams made of func-
tionally graded materials (FGMs) and functionally graded porous beams 
(FGPBs). These studies utilized analytical, numerical, and probabilistic 
techniques to assess the impact of material grading, porosity and 
boundary conditions on the dynamic behaviour of such structures. Other 
studies focused on nonlocal strain gradients, vibration-damping 
response, mesh-free methods and the impact of thermal effects on 
beam models. However, to the best of the authors’ knowledge, there is 
no available analysis of vibration in FGB with porous structures, 
particularly those that utilize Kuhn-Tucker (KT) conditions. The study 
presents a novel approach using mathematical techniques, including the 
KT conditions solution and R-program, to analyze the free vibration and 
equilibrium of a beam made of functionally graded porous material. It 
explores how factors like boundary conditions, material distribution, 
porosity, and gradient indices impact the beam’s natural frequency. 
Third-order shear deformation theory is used to evaluate vibrational 
characteristics, with analysis using the Hamilton formulation account-
ing for power-law distribution in thickness. 

2. Theory and formulation 

2.1. Formulation of BDFGPB 

The current investigation focuses on a beam that demonstrates 
functional grading, possessing a length L and a rectangular cross- 
sectional shape characterized by its width ‘b’ and height ‘h’. Fig. 1 de-
picts the spatial dimensions of the beam represented by the x-, y- and z- 
coordinates, which correspond to the horizontal direction, the trans-
verse direction and the longitudinal direction, respectively. Generally, 
functionally graded materials consist of ceramics and metal, with ce-
ramics being a structural material that can withstand high heat and low 
heat transfer constant, and metal offering flexibility. As depicted in 
Fig. 1, the BDFGPB is comprised of ceramic at the top and metal at the 
bottom. The material composition varies along the thickness of the beam 
according to a power law formulation. Additionally, the porosity of the 
beam is described as either even or uneven. The consideration of two 
porosity distribution patterns, even and uneven, in this study, is for a 
simplification aimed at comparing the effects of porosity patterns on 
material properties by exploring fundamental aspects of material 
behaviour which are analytically tractable. This allows for a clearer 
understanding of how different distribution patterns influence me-
chanical behaviours. 

The BDFGPB is restricted to the behaviour of materials that exhibit 

linear elasticity. The selection of displacement fields for different shear 
deformation beam theories is predicated on certain assumptions. The 
axial as well as transverse displacements are divided into bending as 
well as shear components and the cross-sectional dimensions of the 
beam continue to be planar as well as perpendicular to the deformed axis 
after deformation. The transverse shear strain is considered to be con-
stant across the thickness, and the shear deformation is assumed to be 
independent of the bending deformation. Assume linear elastic material 
behaviour, where the stress-strain relationship is attributed to being 
linear and Hooke’s law is valid. Lastly, the shear component of the axial 
displacement results in higher-order fluctuations of shear strain, which 
consequently generates shear stress throughout the beam’s depth. This 
shear stress is such that it disappears on the top and bottom surfaces. 

The volume fraction (Vf ) of BDFGPB is governed by power law, as 
given in Eq. (1), as stated in Ref. [56]. 

Vf (x, z)=
(

z
h
+

1
2

)Pz(x
L
+

1
2

)Px

(1)  

Vm +Vc = 1  

where Vm, Vc are the volume fraction of the metal and ceramic, 
respectively. 

The variables Pz and Px represent the gradient index along the 
thickness (h) and length (L), respectively. At Px = 0 and Pz = 0, the beam 
exhibits a homogeneous nature. The expression of material character-
istics (Fa) that are beneficial in uniformly distributed BDFGPB can be 
represented as Eq. (2a), as stated in Ref. [57]. 

F(x, z)= (Fc − Fm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ Fm −
α
2
(Fc +Fm) (2a)  

The symbol α denotes the porosity coefficient, which is constrained to 
the range of 0 – 0.4 [24]. The variables ‘m’ and ‘c’, respectively, refer to 
metal and ceramic materials. As per the above-mentioned correlation, 
the determination of material stiffness for uniformly distributed 
BDFGPB can be achieved through the utilization of the modulus of 
elasticity (Ea) and mass density (ρa) as presented in Eqs. (2b) and (2c). 

Ea(x, z)= (Ec − Em)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ Em −
α
2
(Ec +Em) (2b)  

ρa(x, z)= (ρc − ρm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ ρm −
α
2
(ρc + ρm) (2c) 

Poisson’s ratio (μ) is regarded as a constant due to the utilization of 
the mean value in calculations. Similarly, the characteristics of non- 
uniformly distributed BDFGPB can be approximated by utilizing Eq. 

Fig. 1. BDFGPB geometry with even and uneven porosity.  
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(2d): 

Fa(x, z)= (Fc − Fm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ Fm −
α
2
(Fc +Fm)

(

1 −
2|z|
h

)

(2d)  

Ea and ρa for unevenly distributed BDFGPB could be expressed in Eqs. 
(2e) and (2f): 

Ea(x, z)= (Ec − Em)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ Em −
α
2
(Ec +Em)

(

1 −
2|z|
h

)

(2e)  

ρa(x, z)= (ρc − ρm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+ ρm −
α
2
(ρc + ρm)

(

1 −
2|z|
h

)

(2f)  

2.2. Kinematics and constitutive equations 

Structures composed of beams and plates made from FGM need to be 
carefully designed to ensure their durability and minimize production 
costs, especially when they are subjected to static and dynamic stresses. 
When analyzing these FGM structures using traditional beam and plate 
theories, it is often found that in most cases, the anticipated deflections 
are lower than what is really measured, whereas the natural frequencies 
are expected to be higher than they are. The displacement field for the 
BDFGPB adapting HSDT is shown in Eqs. (3a) and (3b), as stated in 
Ref. [56]. 

u(x, z)= u0(x)+ z∅(x) − f (z)
(

∅(x)+
∂w0

∂x
(x)
)

(3a)  

w(x, z)=w0(x) (3b)  

where " u" and " w" represent the axial and transverse displacements, 
respectively. At the given location on the neutral axis, u0 and w0 are the 
axial and transverse displacements, respectively. The partial derivative 
of w0 with respect to x represents the bending slope, while ∅  denotes the 
shear slope. The present investigation considers the function f(z) [58] as 
the shape function that governs the transverse shear deformation dis-
tribution, expressed in Eq. (4). 

f (z)=
4z3

3h2 (4) 

The equations for computing the strain field (εx, γxz), which are non- 
zero, can be derived using the Eqs. (3a), (3b) and (4) are presented as 
Eqs. (5a) and (5b): 

εx =
∂u
∂x

=
∂u0

∂x
+

∂z
∂z

∅ − f (z)
(

∂∅
∂x

+
∂2w0

∂x2

)

(5a)  

γxz = f ′(z)
[

∅+
∂w0

∂x

]

(5b) 

The stress field equations (σx, τxz) can be derived from Eq. (5a), and 
(5b) by applying Hooke’s Law, as demonstrated in Eq. (6a), and (6b): 

σx =
E(x, z)
1 − μ2εx (6a)  

τxz =
G(x, z)

2(1 + μ)γxz (6b)  

2.3. Governing equations of motion 

One of the fundamental concepts in classical mechanics is the notion 
of least action. According to the Hamilton principle, the trajectory fol-
lowed by a physical system between two places in configuration space is 

such that the action functional remains constant, as given in Eq. (7), as 
stated in Ref. [59]. 

∫t2

t1

(δU − δK)dt= 0 (7)  

In which, time intervals are denoted as t1 and t2, while δU, and δK are 
changes in the potential energy, and the kinetic energy, respectively, 
while the change in potential energy in BDFGPB is given in Eq. (8a). 

δU =
1
2

∫ L

0

∫ +h
2

− h
2

(
σxεx + τxzγxz

)
dzdx (8a) 

substituting Eqs. (5a), (5b) and (6a), and (6b) into Eq. (8a), the po-
tential energy could be deduced as, 

δU =

∫L

0

∫ +h
2

− h
2

{

σx

[
duo

dx
+ 2

d∅
dx

− f (z)
(

d∅
dx

+
∂2w0

∂x2

)]

+ σxz

[(
∂w0

∂x
+ ∅

−
4z2

3h2

(

∅+
∂w0

∂x

))]}

dzdx (8b)  

δU =

∫L

0

∫ +h
2

− h
2

{

σx

[
duo

dx
+ 2

d∅
dx

−
4z2

3h2
d∅
dx

−
4z2

3h2
∂2w0

∂x2

]

+ σxz

[(
∂w0

∂x
+ ∅

−
4z2

h2 ∅ −
4z2

h2

∂w0

∂x

)]}

dzdx

(8c)  

where, Mx, Qx are the higher order terms in bending moment while, Nx, 
Px, and Rx are the stress resultants. 

Mx =

∫ +h
2

− h
2

zσxdz  

Px =

∫ +h
2

− h
2

z3σxdz  

Nx =

∫ +h
2

− h
2

σxdz  

Rx =

∫ +h
2

− h
2

z2σxzdz  

Qx =

∫ +h
2

− h
2

σxzdz  

δU =

∫L

0

[

Nx
du0

dx
+Mx

d∅
dx

−
4

3h2Px
d∅
dx

−
4

3h2Px
d2w0

dx2 +Qx
dw0

dx
+Qx ∅

−
4
h2Rx ∅ −

4
h2Rx

dw0

dx

]

(8d) 

The change in kinetic energy of a BDFGPB can be presented as, 
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δK =
1
2

∫ L

0

∫ +h
2

− h
2

[(

ρ(x, z)E(x, z)

(

I0

(
∂u0

∂z

)2

− 2J1
∂u0

∂t
d2w0

dxdz
+(2I1 − 2J1)

∂u0

∂z
∂∅
∂z

+K1

(
d2w0

∂xdz

)2

+(2I1

− 2I1J1)
d2w0

dxdz
∂∅
∂z

+(I2 − 2I1J1 + K1)

(
∂∅
∂z

)2
))

+ ρ(x, z)E(x, z)

(

∅2(1

− 2I2 +K1)+ ∅
∂w0

∂z
(2 − 4I2 − 2J2)+

(
d2w0

dxdz

)2

(1 − 2I2 − J2)

)]

dx

(9)  

(I0, I1, I2, J1, J2,K1)=

∫ +h
2

− h
2

(
1, z, f′, f, (f′)2

, (f)2)

The mass inertias are denoted as I0, I1, I2, J1, J2, K1. The governing 
equations could be solved using KT conditions after functions u0(x, z), 
w0(x, z) and ∅(x, z) having infinite dimensions are represented as 
generalized coordinates. 

2.4. Kuhn-Tucker solution 

The utilization of KT conditions in the study offers an optimization 
framework that enables the incorporation of constraints pertaining to 
material distribution, porosity, and finding the solutions for the gov-
erning equations. By taking into account the impact of limited optimi-
zation on the structural behavior, this strategy improves the precision of 
predictions especially in the considered beam model where the con-
straints are inequal. Assume that fk(x) (k= 0,1, 2,….. m) could be 
differentiated when the function f0(x) reaches to the point x0, subjected 

to the given set K =
{

x
fi(x) ≤ 0(i= 1,2, 3,…….m)

}
then the Lagrange 

multiplier, U0 satisfies the following conditions for local minimum [60]. 

∂f0(x0)

∂xj
+
∑m

i=1
U0

i
∂f0(x0)

∂xj
= 0 (j= 1, 2, 3,……, n)

fi
(
x0) ≤ 0 (i= 1, 2, 3,…. m)

u0
i fi
(
x0)= 0 (i= 1, 2, 3,….,m)

u0
i ≥ 0 (i= 1, 2, 3,…. m)

Whereas, for maximization, the non-negativity condition U0 ≤ 0, are 
called the KT condition [60], as presented in Fig. 2. 

L(x, z, u)= f0(x) +
∑m

i=1
ui
(
fi(x)+ z2

i

)

The necessary condition for its local minimum is 

∂L
∂xj

=
∂f0(x0)

∂xj
+
∑m

i=1
u0

i

∂
[
fi(x0) +

(
z0

i

)2
]

∂xj
= 0  

∂L
∂zi

= 2u0
i z0

i = 0 (j= 1, 2, 3,…. n)

∂L
∂ui

= fi
(
x0)+

(
z0

i

)2
= 0 (i= 1, 2, 3,…m)

∂f0[x0(b)]
∂bi

= − u0
i (i= 1, 2, 3,…. m)

Without slack variables, the mathematical problem, 

L(x, u)= f0(x) +
∑m

i=1
uifi(x)

The KT condition can be rewritten as [60], 

∂L(x0, u0)

∂xj
= 0 (j= 1, 2, 3,…..n)

∂L(x0, u0)

∂ui
≤ 0 (i= 1, 2, 3,…..m)

u0
i
∂L(x0, u0)

∂ui
= 0 (i= 1, 2, 3,…..m)

u0
i ≥ 0 (i= 1, 2, 3,…m)

If the multiplier ui is positive, then the corresponding ith constraint is 
the boundary solution. When the function u0(x,z), w0(x, z) and ∅0(x, z)
are expressed as generalized co-ordinates, it can be represented as 
Lagrange equations. 

u0(x, z)=
∑m

i=1
fi
(
x0)θieiλz (10)  

w0(x, z)=
∑m

i=1
fi
(
x0)φie

iλz (11)  

∅0(x, z)=
∑m

i=1
fi
(
x0)ψie

iλz (12)  

where, θi, φi, and ψ i are the three different boundary conditions and λ is 
the scalar. 

2.5. R-programming for KT conditions 

The utilization of the R programming language facilitates the pro-
vision of comprehensive code documentation, promotes seamless 
cooperation, and enables the creation of user-friendly tools for subse-
quent applications. The R programming language is well recognized for 
its adaptability in managing mathematical and statistical calculations, 
rendering it highly suitable for the implementation of intricate analyt-
ical models and the execution of parametric investigations. By inte-
grating R programming into the analysis of KT conditions [61], one can 
take advantage of R’s robust mathematical libraries and data manipu-
lation capabilities. Incorporating R into the process allows for the effi-
cient computation of gradients, Hessians and constraint functions, 
which are crucial components of KT conditions. R’s extensive package Fig. 2. KT condition.  
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ecosystem, including ’optim’, ’nloptr’, and ’quadprog’, can be leveraged 
to find numerical solutions to optimization problems while adhering to 
KT conditions. This enables a thorough investigation into the impacts of 
several parameters, such as the distribution of materials and the level of 
porosity on the vibration properties. Furthermore, R’s data visualization 
capabilities enable the effective representation of optimization results, 
aiding in the interpretation and decision-making process. By writing R 
scripts to handle KT conditions, practitioners gain a flexible and cus-
tomizable approach to solving complex optimization problems with 
constraints. This integration not only streamlines the analysis but also 
provides a platform for analysis and model validation, ensuring the 
reliability and accuracy of optimization solutions in various real-world 
applications. R-program for KT boundary conditions are utilized for 
mathematical calculations as stated in Table 1. 

From Table 1, the following conditions are formulated: 

u0(x, z)=
∑m

i=1
fi
(
x0)θieiωz (13)  

w0(x, z)=
∑m

i=1
fi
(
x0)φie

iωz (14)  

∅0(x, z)=
∑m

i=1
fi
(
x0)ψie

iωz (15)  

where, θi, φi, and ψ i are the three different boundary conditions and ω is 
the natural frequency. Substituting Eqs. (13)–(15) into Eqs. (8d) and (9), 
the equation of motion is derived and shown in Eq. (16). 

∂U
∂fj

+
∂
dt

(
∂F
∂fj

)

= 0 (16)  

⎧
⎨

⎩

⎡

⎣
F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤

⎦ − ∂2

⎡

⎣
N11 N12 N13
N21 N22 N23
N31 N32 N33

⎤

⎦

⎫
⎬

⎭

⎡

⎣
X1
X2
X3

⎤

⎦=

⎡

⎣
0
0
0

⎤

⎦

where [Fkl] are the stiffness matrices and [Nkl] are the mass matrices. 

F11(i, j)=X1

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

θi,jθj,zdx  

F12(i, j)=F21(i, j)= − αX3

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

θi,jφj,xdx  

F13(i, j)=F31(i, j)= (X2 − αX1)

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

θi,jψj,xdx  

F22(i, j)=α2[K12(i, j)][K13(i, j)]

F23(i, j)=F32(i, j)=
(
α2 − αF

)
[F22(i, j)]

F33(i, j)=
(
α2 − αF

)
[F23(i, j)]

N11(i, j)=K0

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

θiθjdx  

N12(i, j)=N21(i, j)= − αK1

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

θiφj,xdx  

N13(i, j)=N31(i, j)= (K0 − αK1)

∫ +L/2

− L/2
e

ωx

(

x
L+

1
2

)

φiψjdx  

N22(i, j)=
(
α2K1 − αK1

)
[N11(i, j)]

N23(i, j)=N32(i, j)=
(
β2K0 − αK1

)
[N22(i, j)]

N33(i, j)=
(
K2 +α2K1 − 2αβ

)
[N23(i, j)]

where, i, j = 1, 2, 3, …. n 

3. Results and discussion 

3.1. The influence of Px, and Pz on natural frequency of BDFGPB 

A BDFGPB with a length that ranges from 0 to L and a thickness that 
ranges from –h/2 to + h/2 is an example that is taken into consideration 
in order to evaluate the correctness of the suggested theory in terms of 
calculating natural frequencies and non-dimensional natural frequency 
(λ). Al/Al2O3 is the composition of the beam, and its characteristics are 
as follows: alumina has an Ec value of 380 GPa, a ρc value of 3960 kg/m3 

and a μc value of 0.3. On the other hand, aluminum has an Em value of 
70 GPa, a ρm value of 2702 kg/m3, and a μm value of 0.3, as stated in 
Ref. [56]. By employing Equation (17) as stated in Ref. [58], it is 
possible to estimate a natural frequency (λ) that is also dimensionless. 

λ=
ωL2

h

̅̅̅̅̅
ρa

Ea

√

(17)  

where ω is the natural frequency. 
The displacement functions with varied numbers of terms (m = 2, 4, 

6, 8, 10 and 12) have been employed for the purposes of convergence 
and verification studies [58,62]. The results of the calculation are pro-
vided in the form of a dimensionless free vibration that takes into 
consideration gradient indices in both directions and boundary condi-
tions. Studies conducted in the past by Reddy and Kumar [62] for 
dimensionless free vibration are used to compare the present results and 
summarized in Tables 2–4 for the SS, CC and CF boundary conditions, 
respectively, at L/h = 5. The λ of SS, CC and CF beams converged at the 
4th term, but the results were evaluated up to the 12th term. Reddy and 
Kumar [62] have used the two directional functionally graded porous 
beam to analyze the free vibrations by applying HSDT and adapting 
Lagrange’s method and Navier’s method in solving the governing 
equations. In Tables 2–4, the natural frequencies of the BDFGPB did not 
converge at the 2nd term. Instead, it happened from the 4th term with 
the use of KT conditions and the R program further the calculations are 
done up to the 2nd term while the results in Reddy and Kumar [62] 
converged in the 6th and 8th term. This can be attributed to the 
complexity of the problem and the need for higher-order terms to 
accurately capture the behaviour of the system. In the analysis of com-
posite structures like FGBs, higher-order terms are often required to 
account for material gradients, boundary conditions as well as geometric 
properties. The second-term approximation may not capture all the 
gradations of the system, leading to discrepancies in the predicted nat-
ural frequencies. BDFGPB with larger gradation exponents have, on 
average, more natural frequencies than FGBs with smaller gradation 
exponents. In contrast, a beam with a lower gradation exponent is less 

Table 1 
The boundary conditions based on the R-programming and KT conditions.  

Demand/Boundary 
condition 

x = 0 x = L 

SS = q u = 0, w = 0 w = 0 
CC = z u = 0, w = 0, ∅ = 0, 

w′ = 0 
u = 0, w = 0, ∅ = 0, 
w′ = 0 

CF = d u = 0, w = 0, ∅ = 0, 
w′ = 0 

–  
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rigid, resulting in a reduced natural frequency. According to the power 
law, greater values of gradation exponents result in a greater power of 
z/L, causing a more rapid modification of the material’s characteristics 
along the length and thickness axes. 

3.2. The influence of Px, and Pz on the frequency of natural 
phenomenon 

The gradient index effect is influential because the free vibration 
decreases as the gradient index increases (Figs. 3–5). Material and cross- 
sectional shape affect the beam stiffness under SS boundary conditions 
as can be seen in Fig. 3. It is observed from Fig. 3 that, at L/h = 5, the 
values of λ for Pz = 0.1, at Px = 0.1, 0.3, 0.5, 0.7 and 0.9 were found to be 
2.294, 2.260, 2.241, 2.231 and 2.226 respectively. Whereas at Pz = 0.7, 
at Px = 0.1, 0.3, 0.5, 0.7 and 0.9 were found to be 2.222, 2.188, 2.171, 
2.162 and 2.131 respectively. On the other hand, at L/h = 5 and Px =

0.2, the values of λ for Pz = 0.1, 0.3, 0.5, 0.7, 0.9 were found to be 2.277, 
2.253, 2.229, 2.215, 2.211 respectively and at Px = 0.8, the values of λ 

for Pz = 0.1, 0.3, 0.5, 0.7, 0.9 were found to be 2.267, 2.244, 2.220, 
2.206, 2.202 respectively. The gradient index effect is influential 
because the free vibration decreases as the gradient index increases. A 
similar trend was observed in Karamanli [58] and Reddy and Kumar 
[62]. 

Fig. 4 depicts material and cross-sectional shape affect the beam 
stiffness under CC boundary conditions. It is observed from Fig. 4 that, at 
L/h = 5, the values of λ for Pz = 0.1, at Px = 0.1, 0.3, 0.5, 0.7 and 0.9 
were found to be 4.116, 3.994, 3.872, 3.793 and 3.682 respectively. 
Whereas at Pz = 0.7, at Px = 0.1, 0.3, 0.5, 0.7 and 0.9 were found to be 
4.099, 3.987, 3.856, 3.777 and 3.667 respectively. On the other hand, at 
L/h = 5 and Px = 0.2, the values of λ for Pz = 0.1, 0.3, 0.5, 0.7, 0.9 were 
found to be 4.086, 4.078, 4.058, 4.034 and 4.006 respectively. It can be 
inferred that the change in the volume fraction could result in a greater 
variation in the elastic modulus along the length which enhances the 
beam’s overall stiffness and consequently, its natural frequency. 
Increasing the gradient index for a CC boundary condition can decrease 
stiffness. The impact of the gradient index on the natural frequency of a 

Table 2 
The influence of Px, and Pz, on λ for a SS BDFGPB at L/h = 5.  

Beam Theory Px Pz 

0 0.1 0.3 0.5 0.7 0.9 1 
[62] 0 3.218 3.212 3.202 3.186 3.165 3.154 3.379 
Present 2 terms 3.481 3.452 3.395 3.388 3.373 3.367 3.337 

4 terms 3.343 3.319 3.307 3.291 3.273 3.261 3.253 
6 terms 3.343 3.319 3.307 3.291 3.273 3.261 3.253 
8 terms 3.343 3.319 3.307 3.291 3.273 3.261 3.253 
10 terms 3.343 3.319 3.307 3.291 3.273 3.261 3.253 
12 terms 3.343 3.319 3.307 3.291 3.273 3.261 3.253 

[62] 0.5 3.213 3.208 3.197 3.180 3.159 3.148 3.375 
Present 2 terms 3.476 3.448 3.392 3.382 3.367 3.36 3.329 

4 terms 3.338 3.315 3.304 3.285 3.267 3.254 3.245 
6 terms 3.338 3.315 3.304 3.285 3.267 3.254 3.245 
8 terms 3.338 3.315 3.304 3.285 3.267 3.254 3.245 
10 terms 3.338 3.315 3.304 3.285 3.267 3.254 3.245 
12 terms 3.338 3.315 3.304 3.285 3.267 3.254 3.245 

[62] 1.0 3.185 3.180 3.169 3.154 3.133 3.121 3.351 
Present 2 terms 3.026 2.985 2.947 2.893 2.862 2.819 2.776 

4 terms 2.888 2.847 2.809 2.755 2.724 2.681 2.638 
6 terms 2.888 2.847 2.809 2.755 2.724 2.681 2.638 
8 terms 2.888 2.847 2.809 2.755 2.724 2.681 2.638 
10 terms 2.888 2.847 2.809 2.755 2.724 2.681 2.638 
12 terms 2.888 2.847 2.809 2.755 2.724 2.681 2.638  

Table 3 
The influence of Px, and Pz, on λ for a CC BDFGPB at L/h = 5.  

Beam Theory Px Pz 

0 0.1 0.3 0.5 0.7 0.9 1 

[62] 0 6.243 6.242 6.236 6.224 6.205 6.180 6.166 
Present 2 terms 6.222 6.221 6.215 6.202 6.184 6.159 6.145 

4 terms 6.179 6.178 6.172 6.160 6.141 6.117 6.103 
6 terms 6.179 6.178 6.172 6.160 6.141 6.117 6.103 
8 terms 6.179 6.178 6.172 6.160 6.141 6.117 6.103 
10 terms 6.179 6.178 6.172 6.160 6.141 6.117 6.103 
12 terms 6.179 6.178 6.172 6.160 6.141 6.117 6.103 

[62] 0.5 6.248 6.247 6.241 6.231 6.213 6.185 6.171 
Present 2 terms 6.215 6.214 6.208 6.195 6.177 6.152 6.138 

4 terms 6.172 6.171 6.165 6.153 6.134 6.11 6.096 
6 terms 6.172 6.171 6.165 6.153 6.134 6.11 6.096 
8 terms 6.172 6.171 6.165 6.153 6.134 6.11 6.096 
10 terms 6.172 6.171 6.165 6.153 6.134 6.11 6.096 
12 terms 6.172 6.171 6.165 6.153 6.134 6.11 6.096 

[62] 1.0 6.273 6.272 6.266 6.254 6.235 6.21 6.196 
Present 2 terms 6.211 6.21 6.204 6.191 6.173 6.148 6.134 

4 terms 6.168 6.167 6.161 6.149 6.130 6.106 6.092 
6 terms 6.168 6.167 6.161 6.149 6.130 6.106 6.092 
8 terms 6.168 6.167 6.161 6.149 6.130 6.106 6.092 
10 terms 6.168 6.167 6.161 6.149 6.130 6.106 6.092 
12 terms 6.168 6.167 6.161 6.149 6.130 6.106 6.092  
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CF BDFGPB (Fig. 5.) is distinct from that of CC and SS boundary con-
ditions. As the displacement at the free end is not present, the rigidity of 
a CF beam is independent of changes in the volume fraction of solid 
material near the free end. Consequently, the gradient index exerts less 
influence on the natural frequency of a CF BDFGPB as compared with 
the SS and CC BDFGPBs. 

The x-direction gradient index signifies a variation in material 
characteristics throughout the beam’s length. A rise in the gradient 
index along the x-direction indicates a greater degree of variation in the 
qualities of the material. Greater variations in material properties might 
result in enhanced flexibility or reduced stiffness along the x-direction. A 
drop in natural frequency is observed as a consequence of reduced 
stiffness. Consequently, the beam exhibits more flexibility and vibrates 
at reduced frequencies and this could be advantageous in situations 
where there is a need for vibration control or dampening. The variation 
in material properties throughout the height of the beam is shown by the 
gradient index in the z-direction. An augmentation in the gradient index 
along the z-direction signifies a heightened degree of vertical variation 
in material properties. The observed variability has the potential to 
impact the dispersion of shear forces and bending moments inside the 
beam, hence exerting an influence on its composite stiffness. Analogous 
to the x-direction, an augmentation in flexibility or a diminution in 

Table 4 
The influence of Px, and Pz, on λ for a CF BDFGPB at L/h = 5.  

Beam Theory Px Pz 

0 0.1 0.3 0.5 0.7 0.9 1 

[62] 0 1.286 1.286 1.284 1.280 1.275 1.268 1.264 
Present 2 terms 1.252 1.251 1.25 1.246 1.241 1.234 1.230 

4 terms 1.184 1.184 1.182 1.178 1.173 1.166 1.162 
6 terms 1.184 1.184 1.182 1.178 1.173 1.166 1.162 
8 terms 1.184 1.184 1.182 1.178 1.173 1.166 1.162 
10 terms 1.184 1.184 1.182 1.178 1.173 1.166 1.162 
12 terms 1.184 1.184 1.182 1.178 1.173 1.166 1.162 

[62] 0.5 1.172 1.172 1.170 1.166 1.158 1.151 1.150 
Present 2 terms 1.160 1.160 1.159 1.155 1.147 1.14 1.139 

4 terms 1.138 1.138 1.136 1.133 1.125 1.118 1.117 
6 terms 1.138 1.138 1.136 1.133 1.125 1.118 1.117 
8 terms 1.138 1.138 1.136 1.133 1.125 1.118 1.117 
10 terms 1.138 1.138 1.136 1.133 1.125 1.118 1.117 
12 terms 1.138 1.138 1.136 1.133 1.125 1.118 1.117 

[62] 1 1.024 1.024 1.022 1.019 1.015 1.010 1.007 
Present 2 terms 1.007 1.007 1.006 1.003 0.999 0.994 0.991 

4 terms 0.975 0.975 0.974 0.971 0.967 0.962 0.959 
6 terms 0.975 0.975 0.974 0.971 0.967 0.962 0.959 
8 terms 0.975 0.975 0.974 0.971 0.967 0.962 0.959 
10 terms 0.975 0.975 0.974 0.971 0.967 0.962 0.959 
12 terms 0.975 0.975 0.974 0.971 0.967 0.962 0.959  

Fig. 3. Variation in λ of SS beam with respect to aspect ratios along Px and Pz  

Fig. 4. Variation in λ of CC beam with respect to aspect ratios along Px and Pz  

Fig. 5. Variation in λ of CF beam with respect to aspect ratios along Px and Pz  
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rigidity in the z-direction might result in a decline in the natural fre-
quency. This trend applies to designs that require vertical flexibility or 
aim to decrease vibration. 

Eq. (17) suggests that the λ is influenced by the system’s parameters 
such as ω, L, h, ρa and Ea. Pz and Px are the gradient indices that control 
the spatial variation of material properties along the x and z directions. 
The effect of variations in material properties can be indirectly assessed 
by examining their influence on the overall response of the beam as 
presented in Eqs. (2b), (2c), (2e) and (2f). Higher gradient indices, in 
both the x and z directions, have the potential to affect the configuration 
of stiffness as well as mass inside the beam, hence influencing its natural 
frequency and dynamic characteristics in such a way that the natural 
frequency decreases with an increase in the gradient index in both di-
rections. Moreover, a higher natural frequency or larger characteristic 
length tends to increase the λ, while a larger thickness, mass density or 
Young’s modulus tends to decrease the λ. 

3.3. The influence of porosity on the frequency of natural phenomenon 

Table 5 and Figs. 6–8 show the natural frequency changes in a 
BDFGPB with porosity for SS, CC and CF beams. The porosity and 
porosity index influence the material gradation and subsequently the 
non-dimensional natural frequency. The latter finding is in good 
agreement with the fact that typically, the natural frequency of a 
BDFGPB increases as its porosity increases. Because of the presence of 
pores, the material’s rigidity and density decrease, and the beam’s 
resistance to deformation and oscillation is also affected. For instance, 
an increase in the porosity index results in a more uniform distribution 
of rigidity and mass, subsequently it leads to a higher natural frequency. 
Even the distribution of porosity within BDFGPB results in greater ho-
mogeneity in the distribution of mass and rigidity, which could lead to a 
higher natural frequency. A more homogenous distribution of mass and 
rigidity increases the likelihood of local stress concentrations and de-
creases the beam’s resistance to deformation and oscillation [64]. 
Alternatively, an uneven porosity in a BDFGPB may lead to an uneven 
distribution of mass and rigidity, which will decrease the natural fre-
quency. The non-uniform distribution of mass and rigidity can 
contribute to the concentration of tension in specific regions, resulting in 
a lesser stiffness and, consequently, a lesser natural frequency. 

As depicted in Fig. 6(a) and (b), the effect of uniform porosity on the 
natural frequency of an SS BDFGPB is significant. Specifically, the nat-
ural frequency decreases as the gradient index in the material increases. 
Because of this, the porosity reduces the effective rigidity, resulting in a 
lower natural frequency, while the even porosity can influence the 

beam’s mode configurations. It can be seen from Fig. 6(a) that the even 
porosity may lead the mode forms to be symmetric about the axis of the 
beam cross-section. This can have significant repercussions for the 
structure of the beam. The even porosity of this beam has the potential to 
influence the proportions of aluminium as well as alumina, and that in 
turn has the potential to change the effective stiffness along with mass of 
the beam. In addition, the inclusion of alumina in the BDFGPB might 
result in the introduction of extra stiffness as well as mass effects. This is 
because alumina has a naturally high density as well as stiffness. From 
Table 5, under even porosity of an SS beam (Fig. 6(b)), at α = 0.1, Pz = 2 
and Px = 2, λ = 2.0673 whereas, under uneven porosity conditions, at α 
= 0.1, Pz = 2, Px = 2, λ = 2.0440. This shows a decrease in natural 
frequency under uneven porosity distribution as compared with even 
porosity distribution for the same gradient index value. Uneven distri-
bution of porosity, on the other hand, can also result in a non-uniform 
distribution of alumina throughout the beam. This, in turn, can have 
an additional impact on the effective stiffness as well as the mass of the 
beam in particular locations [65]. It can be observed from Table 5 that 
for an SS beam under even porosity, at α = 0.2, Px = 4, Pz = 4, λ = 1.7919 
whereas, α = 0.3, Px = 10, Pz = 10, then λ = 1.4418. Additionally, the 
uneven distribution of porosity, as well as, alumina could also lead to 
non-symmetric mode forms of the beam, which could make the BDFGPB 
structural response to dynamic loading more complicated. 

In contrast to an SS beam, the boundary constraints of the CC enforce 
a set limit at each end of the beam, which might lead to differences in the 
mode shapes as well as natural frequencies that are manifested in Fig. 7 
(a) and (b). SS beams usually vibrate at their supports, which suggests 
that the support points might cause maximum displacement and mini-
mal bending moment, resulting in a beam with reduced effective stiff-
ness, which in turn lowers natural frequency [63]. On the contrary, CC 
beams are stationary at both ends, which shows that the beam’s center 
vibrates rather than the support points being fixed. Fixed boundary 
conditions improve the beam’s natural frequency and effective stiffness 
[64]. In addition, the beam’s mode forms might change across boundary 
circumstances. The mode shapes of CC beams have the greatest ampli-
tude near the beam’s center. 

The difference among different types of porosity distribution may 
grow more obvious with an increase in the porosity index (α). This infers 
that the porosity in the direction of thickness (z) has a larger effect on 
vibration than that in the axial direction (x). BDFGPB with an even 
porosity distribution experience free vibration more frequently than 
those with an asymmetrical porosity distribution [65]. The value of a CF 
beam’s free vibration decreases as the gradation exponents in the x and z 
directions increase and increases as the porosity index increases as 

Table 5 
The effect of α on λ for SS, CC, and CF BDFGPB at aspect ratio L/h = 5.  

Boundary 
Condition 

Px & Pz Even Porosity with porosity coefficient Uneven Porosity with porosity coefficient 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

SS 0 5.1532 5.2202 5.3021 5.4013 5.1532 5.2202 5.3021 5.4013 
2 2.0408 2.0673 2.0998 2.1391 2.0408 2.0440 2.0483 2.0532 
4 1.7416 1.7642 1.7919 1.8254 1.7416 1.7443 1.7480 1.7522 
6 1.5486 1.5687 1.5934 1.6232 1.5486 1.5510 1.5543 1.5580 
8 1.4622 1.4812 1.5045 1.5326 1.4622 1.4645 1.4676 1.4711 
10 1.3756 1.3935 1.4154 1.4418 1.3756 1.3777 1.3807 1.3840 

CC 0 10.0321 10.1620 10.3224 10.5154 10.0321 10.1620 10.3224 10.5154 
2 4.2677 4.3230 4.3912 4.4733 4.2677 4.2859 4.3080 4.3318 
4 3.3517 3.3951 3.4487 3.5132 3.3517 3.3660 3.3833 3.4021 
6 2.7647 2.8005 2.8447 2.8979 2.7647 2.7765 2.7908 2.8062 
8 2.5067 2.5392 2.5792 2.6275 2.5067 2.5174 2.5304 2.5444 
10 2.2395 2.2685 2.3043 2.3474 2.2395 2.2490 2.2606 2.2731 

CF 0 1.8948 1.9202 1.9505 1.9869 1.8948 1.9202 1.9505 1.9869 
2 0.7696 0.7799 0.7922 0.8070 0.7696 0.7706 0.7718 0.7729 
4 0.6716 0.6806 0.6913 0.7043 0.6716 0.6725 0.6735 0.6745 
6 0.6060 0.6141 0.6238 0.6355 0.6060 0.6068 0.6077 0.6086 
8 0.5732 0.5809 0.5900 0.6011 0.5732 0.5739 0.5748 0.5757 
10 0.5408 0.5480 0.5567 0.5671 0.5408 0.5415 0.5423 0.5431  
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shown in Fig. 8(a) and (b). This is because, as the value of porosity in-
creases, the flexible rigidity of the beam decreases [59]. When the 
gradient index equals zero, a beam is deemed to be made of pure metal, 
and its rigidity is diminished [66]. As the gradient index approaches 
infinity, a beam approaches the rigidity of pure ceramic, which reduces 
vibration. 

4. Conclusion 

The current study focused on the analysis of the free vibration 
behavior of BDFGPB, considering different boundary conditions, namely 
simply supported, clamped-clamped and clamped-free. The following 
are the most notable findings:  

• The beam theory utilized in this study to resolve the free vibration 
responses of the BDFGPB ensures that the top and bottom surfaces of 
the beam satisfy the zero traction boundary conditions. 

• As compared with the existing solution methods, the novel applica-
tion of KT conditions method using R-program in this computational 
method proves its adaptability and that the results of the non- 
dimensional natural frequency are found to be converged at 4th 
term.  

• In comparison to the reference study, the non-dimensional natural 
frequencies for the SS, CC, and CF boundary conditions deviated by 
3.19%, 1.25%, and 2.15%, respectively, at Px = 0.5 and Pz = 0.5  

• The dimensionless natural frequency for the CC boundary condition 
is highest followed by SS and CF. When switching from CC to merely 

Fig. 6. Effect of α on λ for SS BDFGPB with even (a) and uneven (b) porosity at 
aspect ratio L/h = 5. 

Fig. 7. Effect of α on λ for CC BDFGPB with even (a) and uneven (b) porosity at 
aspect ratio L/h = 5. 
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SS and CF boundary conditions, the dimensionless natural frequency 
decreases and the drop reflects a decrease in beam stiffness and 
rigidity.  

• Gradient indices strongly affect the dimensionless natural frequency 
of the BDFGPB. The dimensionless natural frequency decreases as Px 
and Pz increases. Variations in the beam’s stiffness and subsequent 
effects on its vibration characteristics are influenced by different 
values of the gradient indices and boundary conditions.  

• The influence of porosity on the dimensional natural frequency of 
even and uneven BDFGPB can vary based on the boundary 
conditions.  

• As the porosity index increases, both even and uneven porosity 
conditions result in an increase in the dimensionless natural fre-
quency of the BDFGPB for SS, CC and CF boundary conditions. 

Porosity is an essential factor in modern structure design, affecting 

efficacy and responsiveness. Understanding how porosity impacts the 
natural frequency of a beam is crucial for optimizing its behavior. 
Therefore, to predict this, both porosity distribution and material 
properties must be considered. The discussion presented in this study 
will serve as a benchmark result for studying bi-directionally function-
ally graded porous beams subjected to thermal stresses, showing 
agreement with prior research and validating the beam model. 
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