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A B S T R A C T   

Functionally graded materials are a class of multifunctional materials that exhibit spatial variation in compo-
sition and microstructure. This deliberate variation is designed to effectively manage and manipulate changes in 
thermal, structural, or functional qualities within the material. The current study explores the system reliability 
of functionally graded porous beams (FGPB) subjected to buckling, focusing on the interplay of gradient index (0, 
0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10), aspect ratio (5, 10, 15, 20, 25, 30 and 35), porosity index (0, 0.1 and 0.2) and 
boundary conditions (simply supported, clamped–clamped and clamped-free), with a particular emphasis on the 
k-out-of-n system reliability assessment, employing three distinct methods such as Evolutionary, GRG Non-linear, 
and Lagrangian. The results show the system’s sensitivity to changes in distribution parameters, with the 
Lagrangian method being the most robust and stable. The 10-out-of-12 system reliability analysis demonstrates 
that aspect ratio and even porosity distribution are reliable, while uneven porosity is not. This study enhances 
structural reliability analysis in FGPBs, enhancing system reliability considerations and paving the way for 
further advancements in structural reliability analysis.   

Introduction 

In engineering applications, composite materials must be created by 
combining materials in either solid or molten states, within the con-
straints of thermodynamic equilibrium limits. Functional gradients are 
composite materials designed to tackle issues in laminates, especially at 
interfaces were stress changes abruptly, causing failure. These materials, 
known as functionally graded materials (FGM), blend different materials 
in varying proportions along one or more spatial coordinates, resulting 
in unique properties [1]. Functionally graded porous material (FGPM) is 
characterized by its numerous interior pores, which can occur either 
during the sintering process or can be intentionally introduced in spe-
cific distribution patterns. The distribution of these pores within the 
structure can take various forms, such as uniform, non-uniform, trigo-
nometric, and exponential distributions [2]. The salient characteristics 
of porous composites are their notable and varied geometries, namely 

the distributions of material, which provide distinct opportunities for 
the design and enhancement of densities. The unique characteristics of 
this FGPM are directly associated with the shape of its interior pores, 
resulting in exceptional mechanical, thermal, chemical, biological and 
electrical properties, hence enhancing its attractiveness [3–5]. The use 
of graded material compositions and the manipulation of porosity dis-
tributions result in the emergence of innovative multifunctional ad-
vantages. The majority of porous composites used for load-bearing 
applications are typically analysed with the assumption that the void 
spaces contain only dry air. In contrast to the comparatively intricate 
and expensive process of integrating two distinct materials, it is simpler 
and more feasible to fabricate modifications in cellular morphologies. 
Furthermore, these modifications exhibit exceptionally appealing 
properties. Numerous investigations have incorporated uniform and 
non-uniform internal pores into metal-ceramic composites, in which the 
structural thickness is traversed by functionally graded porosities and 
metals and ceramics are abundant on opposing surfaces. Karami et al. 
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[6] studied wave propagation on porous nanoplates using FSDT and 
nonlocal elasticity theories, considering factors such as material grada-
tion and wave number. Ebrahimi et al. [7] developed a framework for 
thermo-mechanical dynamic properties of smart shear-deformable 
piezoelectric nanobeams made of porous electro-elastic FGMs, ana-
lysing electro-elastic characteristics and influencing parameters. 

Fiber-reinforced laminated composites are increasingly used in en-
gineering due to advancements in production technology. However, 
porosities can occur during production, causing significant changes in 
composite properties. Yüksel and Akbaş [8] conducted a buckling study 
on a laminated composite plate reinforced with fibers, analysing the 
effects of porosity using the FSDT on plates. They used three distinct 
porosity models and the Navier approach to solve the problem. Ber-
ghouti et al. [9] explored the dynamic behaviour of functionally graded 
porous nano-beams using a nonlocal nth-order shear deformation the-
ory. Kiarasi et al. [10] analysed the natural frequency of a porous 
nanocomposite shell reinforced with graphene platelets. Akbas et al. 
[11] studied the dynamic responses of a composite thick beam with 
three porous layers under a dynamic sine pulse load, considering ma-
terial gradation and porosity distributions. Alnujaie et al. [12] studied 
the forced dynamic response of a thick FGB supported by a viscoelastic 
foundation, demonstrating high efficiency in applications using porous 
fiber-reinforced materials. Akbas [13] studied shifting load in FGBs 
using Lagrange and Ritz techniques, while Alimoradzadeh and Akbas 
[14] analysed nonlinear vibration in a composite beam with carbon 
nanotubes and a viscoelastic foundation. Bensaid and Saimi [15] used 
the GDQM to analyse a viscoelastic beam made of porous FGM, evalu-
ating material characteristics and examining factors such as porosity 

distribution, foundation type and structural damping coefficient. Ben-
trar et al. [16] conducted a free vibration analysis on FGM sandwich 
plates with porosity using FEM and FSDT. Bourada et al. [17] used a 
unique four-variable integral quasi-3D HSDT to analyse wave propaga-
tion in imperfect functionally graded sandwich plates. Addou et al. [18] 
studied the bending behaviour of a porous FGM plate using a unique 
higher quasi-3D hyperbolic shear deformation theory. Alsubaie et al. 
[19] studied the vibration response of a CNTRC beam using simplified 
HSDT and found that porosity significantly influences beam vibrational 
properties. Khorasani et al. [20] studied the vibrational characteristics 
of FGPTBs and found enhanced rigidity. 

Mechanical models have been used to study the operational char-
acteristics of porous structures, such as functionally graded porous 
beams (FGPBs). These models have been developed using various 
techniques, such as finite element modelling (FEM) [21], artificial 
neural network (ANN) techniques [36] and polynomial series functions 
[37]. The impact of porosity distribution patterns on FGPB character-
istics has also been explored. Factors such as side-to-thickness ratio, 
aspect ratio, material index, loading type, porosity and foam shapes 
have also been found to influence critical buckling behavior. Mesbah 
et al. [21] studied FGPB behaviour under vibration and buckling sce-
narios using FEM. They also explored the impact of porosity distribution 
patterns on FGPB characteristics. Kativar et al. [22] developed a porosity 
model for a bi-directional plate with geometric imperfections and po-
rosities. Cuong-Le et al. [23] investigated the linear and nonlinear so-
lutions of a S-FGM nanoplate with porous effects, examining two distinct 
patterns of porosity distribution. Xia et al. [24] studied free vibration in 
porous shell panels reinforced with graphene platelets, revealing that 

Nomenclature 

ANN Artificial neural network 
CC Clamped-clamped 
CF Clamped-free 
CNTRC Carbon nanotube-reinforced composite 
EBT Euler-Bernoulli beam theory 
FEM Finite element method 
FGB Functionally graded beam 
FGM Functionally graded material 
FGP Functionally graded plate 
FGPB Functionally graded porous beam 
FGPM Functionally graded porous material 
FGPTB Functionally graded porous Timoshenko beam 
FSDT First order shear deformation theory 
GDQM Generalized differential quadrature method 
GRG Grey relational grade 
HSDT Higher order shear deformation theory 
KT Kuhn-Tucker 
MTTF Mean time to failure 
RR The reliability range 
S-FGM Sigmoid functionally graded material 
SS Simply supported 
TBT Timoshenko beam theory 
b The width of the beam 
c The presence of ceramic. 
h The thickness of the beam 
L The length of the beam 
m The presence of metal 
α The porosity coefficient (0 ≤ α ≤ 0.4) 
O(x,y,z) Origin in the Co-ordinate system 
Vf Volume fraction of a constituent 
Px The gradient index in the direction of the beam’s length. 
Pz The gradient index in the direction of the beam’s thickness. 

Pc The material properties of ceramic 
Pm The material properties of metal 
Px,z Effective material properties on the beam 
U(x, z) Axial displacements 
W(x, z) Transverse displacement 
u0 Axial displacement at the given point 
w0 Transverse displacement at the given point 
∂w0
∂x Bending slope 
∅ The shear slope 
f(z) The shear shape function 
εx Non- zero axial strain 
γxz Non- zero shear strain 
σx Unilateral stress 
τxz Shear stress 
δU The potential energy of the strain 
δK The kinetic energy of the strain 
Mx The bending moment 
Nx The total axial force 
Px, Qx, Rx The higher order stress resultants 
q(x) The transverse load 
∂V The potential work 
π The total potential energy 
U0 Lagrange multiplier 
θi, φi, ψ i The boundary conditions 
λ The scalar 
Ncr The non-dimensional critical buckling 
Ncr The critical buckling 
L/h The aspect ratio 
R(t) The system reliability 
Ns(t) The number of components that are operating at time t 
Nf (t) The number of components that have failed at time t 
λ(t) The failure rate  
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nanofiller weight significantly affects shell dynamic response. Belabed 
et al. [25] developed a beam finite element model for porous structures, 
while Chitour et al. [26] studied the impact of porosity on sandwich 
plate stability under mechanical loading conditions. Chen et al. [27] 
conducted a study using finite element homogenization and structural 
evaluations to study the buckling and vibration characteristics of lami-
nated FGP made of closed-cell foams. They predicted the foam Young’s 
modulus using representative volume elements and validated the re-
sults. The presence of graded porosities was found to increase beam 
stiffness and the critical buckling load, suggesting they are associated 
with closed-cell aluminium foams. In recent years, both analytical 
[28,29] and numerical [30,31] analyses of the mechanical properties of 
FG porous composite structures have become more popular. This is 
because the described FGP can be used on a wider range of structural 
forms. The functionally graded beam [32], plate [33], tube [34], arch 
[35] and shell are representative instances that exhibit diverse porosity 
distributions along the direction of thickness. These variations give rise 
to graded material properties and, as a result, contribute to the overall 
improvement in performance. Turan et al. [36] developed an analytical 
solution using first-order shear deformation theory to analyse free vi-
bration and buckling behaviour of FGPBs under different boundary 
conditions [37]. Derikvand et al. [38] investigated the buckling prop-
erties of a sandwich beam with a porous ceramic core, finding that the 
critical buckling stress of a three-layer beam surpasses other configu-
rations. Wang et al. [39] examined the bending and buckling properties 
of nanobeams, focusing on porosity distribution. 

Mechanical models have been used to study the operational char-
acteristics of porous structures. Turan et al. [36] developed an analytical 
solution using first-order shear deformation theory to analyse free vi-
bration and buckling behaviour of FGPBs under different boundary 
conditions [38]. Derikvand et al. [37] investigated the buckling prop-
erties of a sandwich beam with a porous ceramic core, finding that the 
critical buckling stress of a three-layer beam surpasses other configu-
rations. Wang et al. [39] examined the bending and buckling properties 
of nanobeams, focusing on porosity distribution. The structural integrity 
of complex materials like FGBs depends on reliability assessment. As 
Truong et al. [40] and Nguyen-Xuan et al. [41] have shown, probabi-
listic methods have advanced dependability analysis. Wang et al. [42] 
have developed a machine learning-assisted method for structural 
analysis of functionally graded structures under static loads. They 
incorporated uncertain system factors like material qualities, di-
mensions, applied loads, and FGM degree. The 3D finite element tech-
nique and the extended support vector regression strategy describe the 
link between structural behaviours and uncertain system inputs. Lieu 
et al. [43] developed a reliability-based design optimization technique 
for multidirectional functionally graded plates. They created two 
distinct non-uniform rational B-spline surfaces using a refinement pro-
cedure that reduced design variables and computing costs while accu-
rately reproducing the plate’s mechanical properties. FGPBs are used in 
various engineering fields, including aerospace [44], automotive [45], 
biomedical [46] and civil engineering [47]. For example, in aerospace, 
lightweight, structurally robust components are needed for wing spars. 
A bi-directional functionally graded porous beam is designed to opti-
mize mechanical properties, enhancing stiffness, strength and toughness 
while minimizing weight. 

Despite significant progress in understanding and highlighting the 
achievements linked to studies on FGMs and FGPMs, several remaining 
gaps require further research. While previous studies have investigated 
these components individually, comprehensive investigations that 
integrate all of them into a framework for reliability analysis are not 
present. To the best of the authors knowledge, integrating multiple 
variables into a unified analysis provides a more holistic understanding 
of the structural response. In addition, there isn’t much research on how 
to use a k-out-of-n system reliability analysis to test the structural 
dependability of FGPBs in different situations. This would allow the 
analysis to go further and figure out the likelihood of failure and the 

most important factors that affect reliability. The study aims to inves-
tigate the impact of aspect ratio on structural dependability in FGPBs. It 
establishes a model using HSDT to integrate the properties of alumina 
and aluminum and solves governing equations for different boundary 
conditions to determine non-dimensional critical buckling loads. The 
study also assesses the system reliability of the beams using Evolu-
tionary, GRG Non-linear, and Lagrangian approaches, as well as 
applying a k-out-of-n system reliability analysis. 

Methodology 

Model of a FGPB 

FGPB, represented in Fig. 1, is a slender structural component 
capable of bending and shearing. The beam is postulated to exhibit 
linearity and straightness along its entire length, incorporating minor 
deformations and linearized equations. The influence of warping effects 
resulting from cross-sectional twisting is neglected, and it is assumed 
that cross-sections that were initially plane maintain their planeness 
even after undergoing deformation. FGPB with length L, width b, and 
thickness h is considered, and the origin ‘O’ is chosen with the coordi-
nate system O(x,y,z). The top side of the beam is composed of ceramic 
(c) while metal (m) is at the bottom. 

Material properties 

Power law distribution is applied to estimate the volume fraction of 
each constituent and can be expressed as in Eqs. (1a) and (1b). 

Vf 1(x, z) =
(

z
h
+

1
2

)Pz(x
L
+

1
2

)Px

(1a)  

Vf 1(x, z)+Vf 2(x, z) = 1 (1b)  

where Px, and Pz are gradient indices, and the length of the varies as 0 ≤
x ≤ l and the thickness varies as 0 ≤ z ≤ h. The effective material 
properties of evenly and unevenly distributed FGPB can be estimated 
using Eqs. (2a) and (2b), respectively. 

Px,z = (Pc − Pm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+Pm −
α
2
(Pc +Pm) (2a)  

Px,z = (Pc − Pm)

(
z
h
+

1
2

)Pz(x
L
+

1
2

)Px

+Pm −
α
2
(Pc +Pm)

(

1 −
2|z|
h

)

(2b)  

where α denotes the porosity coefficient, 0 ≤ α ≤ 0.4. 
Aluminum and alumina have numerous applications in structural 

analysis, and so they are used as structural materials in the present 
study. Aluminum and alumina are utilized in aerospace engineering, 
where lightweight and durable components are critical, to evaluate the 
structural integrity of aircraft components such as fuselages and wings. 
In a similar manner, beams play a critical role in the fabrication of 
bridges and structures within the fields of civil engineering and archi-
tecture. These materials are frequently employed by mechanical engi-
neers in apparatus and systems, with their strength being guaranteed 
through the application of beam theory to enhance design. Aluminum 
alloys also benefit the automotive industry through the reduction of 
component weight and the enhancement of fuel economy. Due to its 
exceptional resistance to corrosion, aluminum is an essential material in 
maritime engineering for vessels and ships. In conjunction with beam 
theory, aluminum and alumina enable the evaluation and enhancement 
of structural performance in a vast array of industries and applications. 
The properties of aluminum and alumina are presented in Table 1. 
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Displacement field and equilibrium equation 

The displacement field equations elucidate the manner in which lo-
cations inside the FGPB undergo deformation when subjected to 
external loads or boundary conditions. These findings offer information 
on how displacements are distributed throughout the length, radial and 
transverse directions of the beam. They take into account changes in 
material qualities and geometrical parameters across the beam’s cross- 
section. The displacement field that fulfils the beam’s postulates is 
determined by the constitutive equations, denoted as Eqs. (3a), (3b) 
[49]. 

U(x, z) = u0(x)+ z∅(x) − f (z)
(

∅(x)+
∂w0

∂x
(x)

)

(3a)  

W(x, z) = w0(x) (3b)  

where axial as well as transverse displacements are represented by U and 
W respectively, at any point (x, z). At any given position along the 
neutral axis, u0 and w0 represent the axial as well as transverse dis-
placements, respectively. The bending slope is denoted by ∂w0

∂x , and ∅ the 
shear slope. 

HSDTs use shear shape functions to better predict thin-walled ob-
jects’ mechanical responses. These shape functions improve analytical 
predictions by adding transverse shear deformation and properly char-
acterizing shear stresses throughout thickness. This allows for more 
precise and reliable structural behavior predictions in various engi-
neering applications. In the present study, the shear shape function f(z) 
used is shown in Eq. (4) [50]. 

f (z) =
4z
h
−

16z3

3h3 (4) 

f(z) describes the variation of the radial displacement with respect to 
the distance from the neutral axis of the FGPB. 4z

h represents the linear 
variation of the radial displacement with respect to the distance from the 
neutral axis. As z increases, the radial displacement increases linearly, 
with the rate of increase determined by the ratio, z

h. −
16z3

3h3 represents a 
cubic variation of the radial displacement with respect to the distance 
from the neutral axis, which introduces nonlinearity in the displacement 
profile and a bending effect in the deformation of the beam. As z in-
creases, the magnitude of the cubic term also increases, leading to a 
more pronounced curvature in the radial displacement profile. The 
deformation behavior is more precisely represented by this shear shape 
function, which incorporates both linear as well as nonlinear compo-
nents with the application of boundary conditions. Non-zero strain 
terms denote the tangible deformations encountered by the material 
when subjected to a load. These deformations encompass alterations in 
length, shape, and distortion caused by shear forces. By differentiating 
Eqs. (3a), (3b) and (4), the non-zero axial and shear strains are derived 
and presented in Eqs. (5a) and (5b). 

εx =
∂U
∂x

=
∂u0

∂x
+ z

∂∅
∂x

− f (z)
(

∂∅
∂x

+
∂2w0

∂x2

)

(5a)  

γxz = (1 − f ′)(∅ +
∂w0

∂x
) (5b) 

The linear correlation between strain and stress in an elastic material 
is characterized by Hooke’s Law. For a uniaxial stress (σx) along the x- 
direction and a shear stress (τxz), Hooke’s law can be applied to establish 
the relation between (σx) and (τxz) as presented in Eqs. (6a) and (6b). 

σx = E(x)εx (6a)  

τxz =
E(x)

2(1 + μ)γxz (6b)  

Fig. 1. FGPB, with even and uneven porosity.  

Table 1 
Properties of constituent material- aluminum and alumina [48].  

Constituent Young’s modulus (GPa) Poisson’s ratio 

Aluminum 70  0.3 
Alumina 380  0.3  
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The strain energy in a FGPB is derived by integrating the strain energy 
density (∂U) over the volume of the beam using Eq. (7). 

∂U =

∫ L

0

∫

A

(
σxεx + τxzγxz

)
dzdx (7)  

by substituting Eqs. (5a), (5b), (6a), and (6b) in Eq. (7), the resulting 
strain energy can be expressed as, 

∂U =

∫L

0

∫

A

{

σx

[
duo

dx
+ z

d∅
dx

− f (z)
(

d∅
dx

+
∂2w0

∂x2

)]

+ σxz

[(

1 −
4
h
+

16z2

h3

)(

∅

+
∂w0

∂x

)]}

dAdx

(8)  

when Nx is the total axial force acting on the cross-section of the beam, 
Mx is the total bending moment about the neutral axis of the beam, Px, 
Qx and Rx are higher-order stress resultants to capture the additional 
effects beyond the conventional axial force and bending moment. These 
variables are of utmost importance in the examination and development 
of beams, as they offer valuable understanding regarding the dispersion 
of internal forces as well as stresses that govern the beam’s character-
istics and reaction to external loads. 

Nx =

∫

A
σxdA  

Mx =

∫

A
zσxdA  

Px =

∫

A
z3σxdA  

Rx =

∫

A
z2σxzdA  

Qx =

∫

A
σxzdA 

The potential work for the transverse load applied, q(x) acting on the 
FGPB, resulting in a displacement w0 at each point along the length of 
the beam, is expressed in Eq. (9). The negative symbol signifies that this 
work is being performed against the exerted force. In the principle of 
virtual work, this is used to determine the displacements and de-
formations in structural analysis by considering the equilibrium of vir-
tual displacements. 

∂V = −

∫L

0

q(x)w0dx (9) 

Applying the principle of virtual displacement and adapting the 
principle of minimum potential energy, the total potential energy (π) 
captures the balance between the internal strain energy stored within 
the structure and the external work done by the applied loads and is 
estimated as given in Eq. (10). By utilizing this principle, it becomes 
possible to assess the equilibrium state of the structure through an 
analysis of potential energy fluctuations related to virtual displace-
ments. It is possible to ascertain the equilibrium configuration of the 
structure and the corresponding displacements through the minimiza-
tion of the total potential energy. 

π = ∂U + ∂V (10)  

π =

[

Nxu0 +

(
4
h

dMx

dx
−

16
h3

dPx

dx
+

(

1 −
4
h

)

Qx +
16
h3 Rx

)

w0 +

(

−
4Mx

h

+
16Px

h3

)
dw0

dx
+

((

1 −
4
h

)

Mx +

(

1 −
4
h

)

Qx

+
16
h3 (Px + Rx)

)

∅
]L

0
+

∫L

0

[

−
dNx

dx
u0 +

((

−
4
h

d2Mx

dx2 +
16
h3

(
d2Px

dx2

−
dRx

dx

)

−

(

1 +
4
h

)
dQx

dx

)

− q
)

w0 +

(

−

(

1 +
4
h

)
dMx

dx

−
16
h3

dPx

dx

)

∅
]

dx

(11)  

Specify the boundary conditions and the displacements at the ends of the 
beam as in Eq. (12). 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0

w0

∂w0

∂x
∅

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

OR

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

4
h

dMx

dx
−

16
h3

dPx

dx
+

(

1 −
4
h

)

Qx +
16
h3 Rx

−
4Mx

h
+

16Px

h3
(

1 −
4
h

)

Mx +

(

1 −
4
h

)

Qx +
16
h3 (Px + Rx)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)  

The equilibrium equations can be expressed as Eqs. (13) - (15) 

−
dNx

dx
= 0 (13)  

(

−
4
h

d2Mx

dx2 +
16
h3

(
d2Px

dx2 −
dRx

dx

)

−

(

1 +
4
h

)
dQx

dx

)

= q (14)  

(

1+
4
h

)
dMx

dx
+

16
h3

dPx

dx
= 0 (15) 

The Eq. (13) states that the rate of change of the axial force Nx in-
dicates equilibrium in the axial direction. While Eq. (14) represents the 
equilibrium of transverse forces and moments with the applied load, and 
Eq. (15) represents equilibrium in the bending moment with respect to x. 
The equilibrium conditions required for buckling analysis are repre-
sented by these equations, which offer valuable insights into the forces 
and moment distribution within the FGPB. They play a vital role in the 
determination of the critical load at which buckling arises and in the 
prediction of the structure’s behavior under diverse loading conditions. 
The solution for Eqs. (13)–(15) is obtained using KT conditions. In order 
to solve the equilibrium equations by employing the KT conditions, it is 
necessary to initially transform the problem into a restricted optimiza-
tion paradigm. In the context of restricted optimization problems, the KT 
conditions are employed to address scenarios where the objective 
function is bound by inequality restrictions. The equilibrium equations 
serve as restrictions in this scenario. 

Kuhn-Tucker conditions 

The KT conditions consist of the following: 

Stationarity: The gradient of the Lagrangian with respect to the 
variables is zero. 
Primal feasibility: The primal variables satisfy the original 
constraints. 
Dual feasibility: The Lagrange multipliers associated with the con-
straints are non-negative. 
Complementary slackness: The product of each Lagrange multiplier 
and its associated constraint must be zero. 
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In order to implement the KT conditions on the equilibrium equa-
tions, it is necessary to construct the Lagrangian. The Lagrangian is 
obtained by adding the goal function, the total potential energy, to the 
products of Lagrange multipliers and constraints. Subsequently, the 
Lagrangian is differentiated with regard to the variables and the 
Lagrange multipliers, and the resultant equations are assigned a value of 
zero. The corresponding slackness condition is likewise enforced. After 
successfully solving the system of equations, the solutions for the vari-
ables and Lagrange multipliers would be derived, which serve as in-
dicators of the system’s equilibrium state. 

Assume that fk(x) (k = 0, 1, 2, ⋯..m) are all differentiable if the 
function f0(x) attains at point x0 a local minimum subject to the set K =
{

x
fi(x) ≤ 0(i = 1, 2, 3,⋯⋯.m)

}
then there exists a vector of Lagrange 

multiplier U0 such that the following conditions are satisfied as shown in 
Fig. 2. 

∂f0(x0)

∂xj
+

∑m

i=1
U0

i
∂f0(x0)

∂xj
= 0(j = 1, 2, 3,⋯⋯, n)

fi
(
x0) ≤ 0(i = 1, 2, 3,⋯.m)

u0
i fi
(
x0) = 0(i = 1, 2, 3,⋯.,m)

u0
i ≥ 0(i = 1, 2, 3,⋯.m)

These conditions are necessary conditions for a local minimum of 
problems, for maximization problems, the non-negativity condition 
U0 ≤ 0, are called the KT condition. 

L(x, y, u) = f0(x)+
∑m

i=1
ui(fi(x) + y2

i ) (16) 

The necessary conditions for its local minimum are, 

∂L
∂xj

=
∂f0(x0)

∂xj
+

∑m

i=1
u0

i

∂
[
fi(x0) + (y0

i )
2
]

∂xj
= 0  

∂L
∂yi

= 2u0
i y0

i = 0(j = 1, 2, 3,⋯.n)

∂L
∂ui

= fi
(
x0)+(y0

i )
2
= 0(i = 1, 2, 3,⋯m)

∂f0[x0(b)]
∂bi

= − u0
i (i = 1, 2, 3,⋯.m)

Without slack variables, the mathematical problem, 

L(x, u) = f0(x)+
∑m

i=1
uifi(x)

The KT condition can be rewritten as, 

∂L(x0, u0)

∂xj
= 0(j = 1, 2, 3,⋯..n)

∂L(x0, u0)

∂ui
≤ 0(i = 1, 2, 3,⋯..m)

u0
i
∂L(x0, u0)

∂ui
= 0(i = 1, 2, 3,⋯..m)

u0
i ≥ 0(i = 1, 2, 3,⋯m)

If the multiplier ui is positive, then the corresponding ith constraint is 
binding (boundary solution). When the function u0(x, y), w0(x, y), and 
∅0(x, y) are expressed as generalised co-ordinates, it can be represented 
as Lagrange equations. Kuhn-Tucker condition can be written as follows 
based on the table values. 

u0(x, y) =
∑m

i=1
fi(x0)θieiλy (17)  

w0(x, y) =
∑m

i=1
fi(x0)φieiλy (18)  

∅0(x, y) =
∑m

i=1
fi(x0)ψie

iλy (19)  

where, θi, φi, and ψ i are the three different boundary conditions and λ is 
the scalar. Kuhn-Tucker boundary conditions are utilized for mathe-
matical calculations as stated in Table 2. 

∂2π
∂M2

j

= 0,
∂2π
∂N2

j

= 0,
∂2π
∂P2

j

= 0 (20)  

⎧
⎨

⎩

⎡

⎣
F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤

⎦ − λ2

⎡

⎣
0 0 0
0 R22 0
0 0 0

⎤

⎦

⎫
⎬

⎭

⎡

⎣
M
N
P

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

⎧
⎨

⎩

⎡

⎣
F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤

⎦ −

⎡

⎣
0 0 0
0 λ2R22 0
0 0 0

⎤

⎦

⎫
⎬

⎭

⎡

⎣
M
N
P

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

F11(i, j) = M
∫ L

0
eλx(x+1)θi,x, θj,xdx  

F12(i, j) = F21(i, j) = P
∫ L

0
eλx(x+1)θi,x, θj,xdx  

F13(i, j) = F31(i, j) = (N − αM)

∫ L

0
eλ(x+1)θi,x,φi,xdx  

F22(i, j) = α2[F12(i, j)][F13(i, j)]

Fig. 2. Kuhn-Tucker condition.  

Table 2 
The boundary conditions based on the KT conditions.  

Boundary condition x = 0 x = L 

SS u = 0, w = 0 w ≤ 0 
CC u = 0, w ≤ 0, ∅ = 0, w′ ≤ 0 u = 0, w ≤ 0, ∅ = 0, w′ ≤ 0 
CF u = 0, w = 0, ∅ = 0, w′ = 0 –  
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F23(i, j) = F32(i, j) = (β2 − αF)[F22(i, j) ]

F33(i, j) = λ2R22

∫ L

0
eλx(x+1)θi, θidx  

R11 = R12 = R13 = R21 = R23 = R31 = R32 = R33 = 0  

R22(i, j) = (α2M − βN)[F33(i, j) ]

where,i, j = 1, 2, 3, ⋯⋯n 
The non-dimensional critical buckling (Ncr) of FGPB is estimated 

using Eq. (21) [51]. 

Ncr = Ncr
12L2

Ech3 (21) 

The Ncr for SS, CC, and CF boundary conditions at different values of 
gradient index (px, pz = 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10), aspect 
ratio (L/h = 5, 10, 15, 20, 25, 30, and 35), porosity index (α = 0, 0.1, 0.2, 
0.3) is presented in Appendix as Tables 4–9. 

System reliability assessment 

Due to the rapid advancement of science and technology and to meet 
the ever-increasing needs of society, industries are increasingly intro-
ducing automation for producing goods ranging from the simplest to 
highly complex systems. The system reliability of a component, device, 
equipment, unit, or system is the probability that it performs its intended 
function adequately for a specified period of time under the given 
operating conditions. Component failure times vary among identical 
components operating under similar conditions, making it challenging 
to predict their exact failure times. Instead, failure can be described in 
probabilistic terms [52]. The effect of porosity (failure rate) on the 
beam’s structural system reliability under buckling conditions is pre-
sented as follows: 

Let N0 identical systems be put into operation at time t = 0 under 
identical conditions. After t units of time, 

Ns(t) = Number of components that are operating at time t (22)  

Nf (t) = Number of components that have failed at time t (23)  

then system reliability R(t) at time t is defined as, 

R(t) =
Ns(t)
N0

(24) 

Thus, system reliability of a component/system at time t is the 
probability that it performs its function without failure. Being a proba-
bility, its value lies between 0 and 1. From Eq. (22), if Ns(t) = 0, then 
R(t) = 0 and if Ns(t) = N0, then R(t) = 1.

By definition, Ns(t) satisfies the following relation: 

0 ≤ Ns(t) ≤ N0 for any time interval [0, t], and 
0

N0
≤

Ns(t)
N0

≤ N0
N0

⇒ 0 ≤ R(t) ≤ 1 

System reliability at time, t in the interval [0, t], can be defined as given 
in Eq. (25). 

R(t) =
Numberofcomponentsperformingintendedfuncitonattimet

Numberofcomponentsatstart(i.e.,whent = 0)
(25) 

Mean Time to Failure (MTTF) is computed as the average duration 
until the initial malfunction of a given system, assembly, or component 
occurs [53]. The MTTF of a given system can be estimated using Eq. (26) 

MTTF =
1
n
∑

i=1
ti (26) 

A sample of 12 experiments is considered, and the time for which 
each of the 12 components operates successfully is estimated as follows: 

MTTF = E(T) =
∫ ∞

0
tf (t)dt =

∫ ∞

0
t
(

−
d
dt

R(t)
)

dt
[

∵f (t) = −
d
dt

R(t)
]

Integrating by parts, 

MTTF = t(− R(t))∞
0 −

∫ ∞

0
(1)( − R(t) )dt = [tR(t)]t→∞ − 0+

∫ ∞

0
R(t)dt 

Since R(t) = e−
∫ ∞

0
λ(t)dt & lim

x→∞
xne− x = 0 for n > − 1 

MTTF =

∫ ∞

0
R(t)dt  

MTTF =
1
λ

orλ =
1

MTTF 

The reliability range (RR) for the 10 experiments in the system are 
presented in MTTF plot (Fig. 3) and in Table 3. It can be seen from Fig. 3 
that Exp. No. 9, and 11 are eliminated as these experiments are not 
reliable as per the system reliability range estimation. 

The bathtub curve offers valuable insights into the temporal patterns 
of failure exhibited by FGPB structures. Understanding factors contrib-
uting to increased failure probability is crucial for improving structure 
dependability and establishing efficient maintenance methodologies. As 
no component is perfect and cannot last forever, after the span of useful 
life, the failure rate of the system starts increasing due to the aging of the 
system in the phase of decreasing failure rates [54], as shown in the 
bathtub curve (Fig. 4). These first failures are often attributed to design, 
manufacturing, or testing errors. In this phase, the failure rate is high, 
but it decreases as faulty components are found and replaced. The 
curve’s center represents the phase of almost constant failure rate, 
which has a low failure rate. The system is considered operationally 
sturdy and unlikely to fail. The system’s dependability throughout the 
experiments depends on proper maintenance and operation. Late in the 
system’s life cycle, phase of increasing failure rate occurs. Due to 
gradient index, aspect ratio, porosity index, and other factors, the system 
may function poorly. In this phase, the failure rate rises, suggesting that 
the system is reaching its end and that the aging mechanisms cause 
wear-out failures, reducing system reliability. 

Results and discussion 

In this study, to estimate the system reliability and section reliability 
for mechanical systems, the k-out of-n system is adapted. The reliabilities 
are calculated using the Evolutionary method, GRG Non-linear, and 
Lagrangian methods in the Excel solver. Evolutionary methods are 

Fig. 3. MTTF plot.  
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useful for complex systems where analytical solutions may be difficult or 
unattainable [55]. They can handle uncertainties and nonlinearities and 
explore a large solution space. Evolutionary algorithms could solve 
reliability engineering challenges like FGBs and buckling behaviour due 
to their flexibility. The GRG Non-linear method is advantageous for its 
ability to handle complex, nonlinear and non-convex optimization 
problems [56]. Its application in reliability analysis allows for the effi-
cient exploration of the design space to identify solutions that satisfy 
reliability requirements. The Lagrangian method is employed in the 
FGPB structural and reliability analysis, as this method is particularly 
useful when dealing with constrained optimization problems where 
both reliability requirements and design constraints need to be satisfied 
simultaneously [57]. Tables 4–9 (Appendix) present the non- 
dimensional critical buckling at gradient index (0, 0.5, 1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10), aspect ratio (5, 10, 15, 20, 25, 30, and 35), porosity 
index (0, 0.1, and 0.2) and boundary conditions (simply supported, 
clamped–clamped, and clamped-free). 

The effect of aspect ratio on non-dimensional critical buckling 

Ncr is significantly influenced by the aspect ratio across all boundary 
conditions for the fixed gradient index in both directions. It is observed 
from Tables 4–6 that for an SS boundary condition, at Px = 0 and Pz =

0 the values of Ncr at L/h = 5, 10, 15, 20, 25, 30 and 35 were found to be 
54.174, 56.761, 59.349, 61.937, 63.231, 63.878 and 64.202, respec-
tively. Whereas, for CC boundary condition, at Px = 0, Pz = 0, the values 
of Ncr at L/h = 5, 10, 15, 20, 25, 30 and 35 were found to be 184.239, 
193.376, 202.514, 211.651, 216.220, 218.504, and 219.646, respec-
tively. However, for the CF boundary condition, at Px = 0, Pz = 0, the 
values of Ncr at L/h = 5, 10, 15, 20, 25, 30 and 35 were found to be 
12.937, 13.579, 14.221, 14.862, 15.183, 15.343, 15.424, respectively. 
This highlights the significance of gradient index, boundary conditions 

and aspect ratio in determining the Ncr of FGPBs. In the case of SS 
boundary conditions, the values of Ncr exhibit a consistent upward trend 
as the aspect ratio increases. This observation implies that there is a 
positive correlation between the length of the beam in relation to its 
thickness and the critical buckling stress, suggesting enhanced stability. 
The impact of the gradient index and material qualities on the rate of 
growth in Ncr with increasing aspect ratio may exhibit variability. In 
contrast, the critical buckling load values for CC boundary conditions 
exhibit a notable increase in comparison to SS boundary conditions. This 
observation suggests that the beam exhibits more stability when 
securely fastened at both ends, leading to an increased ability to with-
stand buckling forces [21]. The Ncr values for CF boundary conditions 
are significantly lower in comparison to SS and CC boundary conditions. 
This suggests that the stability of the beam decreases when one end is 
clamped while the other is free, leading to a reduced ability to withstand 
buckling [28]. Irrespective of the boundary conditions, an increase in 
the aspect ratio often leads to a rise in the critical buckling load. These 
findings indicate that beams with greater length in relation to their 
thickness have increased resistance to buckling, which aligns with the 
principles of HSDT. Furthermore, it is crucial to take into account both 
aspect ratio and boundary conditions while designing and analyzing 
FGPBs in order to guarantee their structural stability and integrity. 

The effect of gradient index on non-dimensional critical buckling 

Ncr is significantly influenced by the gradient index on both di-
rections at the fixed aspect ratio across all boundary conditions. It is 
observed from Tables 4–6 that under the SS boundary condition, at the 
considered gradient index in the x-direction Px = 5 and aspect ratio L/h 
= 20, the values of Ncr at Pz = 0, 5 and 10 were found to be 25.147, 
16.510 and 15.727, respectively. Whereas, under the CC boundary 
condition, at the considered gradient index in x-direction Px = 5 and 
aspect ratio L/h = 20, the values of Ncr at Pz = 0, 5 and 10 were found to 
be 86.302, 60.678 and 58.750, respectively. However, under the CF 
boundary condition, at the considered gradient index in x-direction Px =

5 and aspect ratio L/h = 20, the values of Ncr at Pz = 0, 5 and 10 were 
found to be 6.060, 4.261 and 4.125, respectively. As the Pz increases, the 
Ncr decreases for all boundary conditions, and this observation suggests 
that an increase in the gradient of the material in the z-direction results 
in less structural stability and decreased resistance to buckling [32]. The 
observed decline in Ncr as Pz increases implies that beams exhibiting 
more pronounced alterations in material characteristics along the z-di-
rection are more susceptible to buckling. The Ncr exhibits the largest 
value for any given Pz value under CC boundary conditions, respec-
tively, followed by SS and CF boundary conditions, which highlights the 
impact of boundary conditions on the beam’s structural stabiligy. [48]. 
CC beams offer enhanced support and stability, leading to increased 
critical buckling loads in comparison to circumstances where the ends 
are SS and CF. The observed changes in Ncr as a function of Pz under-
score the importance of material gradient profiles in determining beam 
stability. These findings indicate that the optimization of buckling 
behavior and structural stability in FGPBs is contingent upon the man-
agement of the gradient index in the z-direction [51]. Furthermore, the 
significant variations in Ncr across various boundary conditions under-
score the significance of carefully choosing suitable boundary conditions 
that align with the unique demands and loading circumstances of the 
given application. The relationship between the Ncr and the gradient 
index in the z-direction is inversely proportional. Elevated levels of Pz 

result in diminished Ncr values, hence suggesting a decrease in structural 
integrity. In comparison to beams with steeper gradients, beams char-
acterized by more gradual changes in material characteristics in the z- 
direction have enhanced resistance to buckling. 

For the fixed gradient in the z-direction, Pz = 5 and aspect ratio L/h 
= 20, under SS boundary condition, the values of Ncr at Px = 0, 5 and 10 

Table 3 
The estimations of reliability range and gradient index for the experiments.  

Exp. No. Gradient Index (Px, Pz) Reliability range 

1 0 7 
2 0.5 4 
3 1 10 
4 2 5 
5 3 12 
6 4 3 
7 5 2 
8 6 8 
9 7 0 
10 8 1 
11 9 0 
12 10 6  

Fig. 4. Bathtub curve.  

R. Chintalapudi et al.                                                                                                                                                                                                                          



Results in Physics 60 (2024) 107634

9

were found to be 61.937, 27.458 and 19.453, respectively. Whereas, 
under the CC boundary condition, at the considered gradient index in z- 
direction Pz = 5 and aspect ratio L/h = 20, the values of Ncr at Px = 0, 5 
and 10 were found to be 211.651, 86.302 and 76.233, respectively. 
However, under the CF boundary condition, at the considered gradient 
index in z-direction Pz = 5 and aspect ratio L/h = 20, the values of Ncr at 
Px = 0, 5 and 10 were found to be 14.862, 6.060 and 5.353, respectively. 
The Ncr experiences a notable reduction when the Px is increased, 
regardless of the boundary conditions. This implies that beams exhib-
iting more pronounced heterogeneity in material qualities along the x- 
axis are more susceptible to buckling in comparison to beams with more 
gradual fluctuations [32]. From a physical point of view, a greater 
gradient index in the x-direction signifies a more sudden shift between 
materials, leading to increased stress concentrations and less structural 
stability [48]. The CC exhibits the highest Ncr values followed by the SS 
and CF conditions, similar to the preceding case. In comparison to SS 
and CF conditions, the CC beam offers enhanced support and resistance 
to buckling, leading to increased critical buckling stresses [51]. The 
significance of meticulously tailoring the material gradient profiles, 
especially in the x-direction, to augment the structural stability of FGPBs 
is emphasized, and the buckling behavior is substantially influenced by 
the selection of boundary conditions. 

System reliability assessment based on aspect ratio for SS, CC, and CF 
boundary conditions 

It can be seen from Table 10 that for exponential (0, 5), the variance 
of gradient index using Evolutionary, GRG Non-linear, and Lagrangian is 
estimated to be 25.04 %, 25.04 %, and 24.00 %, respectively. While the 
exponential is estimated to be 0.74, 0.75, and 0.74. The variances for the 
gradient index estimates using Evolutionary, GRG Non-linear, and 
Lagrangian methods are relatively close in both scenarios. This suggests 
a certain level of consistency across the methods in estimating the 
gradient index for the given distributions. The small differences may be 
attributed to the inherent characteristics and numerical behavior of each 
method [33]. Whereas, for exponential (6, 10), the variance of the 
gradient index is estimated to be 75.02 %, 74.62 %, and 74.52 %, 
respectively. The higher variance for exponential (6, 10) suggests that 

the system reliability analysis becomes more sensitive to variations in 
the system parameters when the distribution parameters are higher. Coit 
and Zio [58] suggest that higher variability might be expected in situ-
ations where failure rates are higher, or the system is more prone to 
failure. Notably, in both scenarios, the Lagrangian method shows a 
slightly lower variance compared to the Evolutionary and GRG Non- 
linear methods. This could indicate that the Lagrangian method is 
more robust or less sensitive to parameter variations in these specific 
scenarios [59]. As estimated by the evolutionary algorithm, the variance 
of system parameters such as aspect ratio and gradient index reflects the 
design’s sensitivity to variations in input parameters and model as-
sumptions. Indicating increased uncertainty and variability in the 
response of the system, higher variance values draw attention to possible 
domains that require additional optimization and refinement. In a 
similar trend, the variance derived from the GRG non-linear method 
offers valuable insights regarding the degree to which system parame-
ters are susceptible to variations in design variables and constraints. By 
examining trends in variance across various scenarios, it is possible to 
discern crucial parameters that influence the behavior and depend-
ability of a system. The variance computed utilizing the Lagrangian 
optimization method provides significant insights into the structural 
design’s resilience and constancy. A reduced variance implies enhanced 
consistency and dependability in the estimation of system parameters, 
signifying a system response that is more stable and predictable. 

On the other hand, for exponential (0, 5), the variance of aspect ratio 
using Evolutionary, GRG Non-linear, and Lagrangian is estimated to be 
20.59 %, 19.06 %, and 20.05 %, respectively. The exponential is esti-
mated to be 0.72, 0.71, and 0.72. The variances for the aspect ratio 
estimates using the Evolutionary and Lagrangian methods are similar in 
both scenarios, with the Lagrangian method showing a slightly lower 
variance. This indicates that, for the given distribution parameters, these 
two methods perform comparably in estimating the aspect ratio. 
Whereas, for exponential (6, 10), the variance of aspect ratio is esti-
mated to be 75.34 %, 74.54 %, and 74.65 %, respectively. The higher 
variances observed for the exponential (6, 10) scenario compared to the 
exponential (0, 5) scenario suggest that the aspect ratio is more sensitive 
to variations and complexities in the system under the second set of 
distribution parameters [60]. It can be inferred from Table 10 that the 

Table 10 
System reliability model for non-dimensional critical buckling at various aspect ratios and gradient index.  

System reliability- aspect ratio

Boundary conditions SS, CC, CF SS, CC, CF SS, CC, CF

Reliability methods Methods Evolutionary GRG Non-linear Lagrangian

Polynomial 0.89 0.89 0.8

Exponential 0.53 0.53 0.78

For exponential (0, 5) Variance of gradient index 25.04% 25.04% 24.00%

Variance of aspect ratio 20.59% 19.06% 20. 05%

Exponential 0.74 0.75 0.74

For exponential (6, 10) Variance of gradient index 75.02% 74.62% 74.52%

Variance of aspect ratio 75.34% 74.54% 74.65%

Exponential 0.72 0.71 0.72

Result 10-out of-12 system is reliable 
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10 out of 12 system is reliable. 

System reliability assessment based on even porosity for SS, CC, and CF 
boundary conditions 

Table 11 presents the results of system reliability for FGPB under SS, 
CC, and CF boundary conditions under even porosity, adapting Evolu-
tionary, GRG Non-linear, and Lagrangian methods. It can be seen from 
Table 11 that for exponential (0, 0.1), the variance of porosity index 
using Evolutionary, GRG Non-linear, and Lagrangian methods is found 
to be 28.14 %, 25.79 %, and 57.00 %, respectively. Whereas, for expo-
nential (0.1, 0.2), the variance of porosity index using Evolutionary, 
GRG Non-linear, and Lagrangian methods is found to be 85.78 %, 74.32 
%, and 61.62 %, respectively. The exponential is found to be 0.74, 0.75, 
and 0.74. The results indicate that the porosity index estimates are 
highly sensitive to changes in the distribution parameters, with consis-
tent ordering of variances among the three methods. Across both sce-
narios, the ordering of variances among the three methods remains 
consistent: GRG Non-linear < Lagrangian < Evolutionary. GRG Non- 
linear consistently exhibits the lowest variance, while the Lagrangian 
method consistently has the highest variance. This may suggest that the 
Lagrangian method is more sensitive or less stable in estimating the 
porosity index, especially when dealing with specific distribution pa-
rameters [61]. The larger variances in the exponential (0.1, 0.2) may 
indicate increased complexity or variability in the system. The sub-
stantial rise in variances observed for both porosity and gradient index 
estimates during the transition from exponential (0, 0.1) to exponential 
(0.1, 0.2) distributions underscores the importance of employing resil-
ient optimization techniques to deal with the uncertainties and 
complexity of the system. As the primary objective of design optimiza-
tion endeavours to minimize the impact of distribution parameters on 
performance and dependability, the Lagrangian method consistently 
achieves the lowest variance when estimating the gradient index, indi-
cating its potential applicability in scenarios where stability and 
robustness are critical. 

On the other hand, for exponential (0, 0.1), the variance of gradient 
index using Evolutionary, GRG Non-linear, and Lagrangian methods is 
found to be 28.59 %, 29.06 %, and 28.07 %, respectively. Whereas, for 

exponential (0.1, 0.2), the variance of gradient index using Evolu-
tionary, GRG Non-linear, and Lagrangian methods is found to be 87.12 
%, 84.54 %, and 82.15 %, respectively. The exponential is found to be 
0.76, 0.75, and 0.76. The variances of the gradient index estimates are 
significantly influenced by changes in the distribution parameters. The 
transition from exponential (0, 0.1) to exponential (0.1, 0.2) results in a 
substantial increase in variances for all three methods. This suggests that 
the gradient index is highly sensitive to variations in the mean and 
standard deviation of the exponential distribution. Across both sce-
narios, the ordering of variances among the three methods remains 
consistent: Lagrangian < Evolutionary < GRG Non-linear. Lagrangian 
consistently exhibits the lowest variance, indicating higher stability or 
robustness in estimating the gradient index, while GRG Non-linear 
consistently has the highest variance [62]. It can be inferred from 
Table 11 that the 10 out of 12 system is reliable based on the perfor-
mance criteria given in terms of boundary conditions and distribution 
parameters. This instils assurance in the structural design and indicates 
that the optimized configurations possess the strength to endure ex-
pected loads and environmental circumstances. 

System reliability assessment based on uneven porosity for SS, CC, and CF 
boundary conditions 

Table 12 presents the system reliability results of buckling analysis of 
an FGPB for SS, CC, and CF boundary conditions for uneven porosity 
distribution. It can be seen from Table 12 that for exponential (0, 0.1), 
the variance of porosity index using Evolutionary, GRG Non-linear, and 
Lagrangian is estimated to be 18.14 %, 15.18 %, and 17.00 %, respec-
tively. Whereas, for exponential (0.1, 0.2), the variance of porosity index 
using Evolutionary, GRG Non-linear, and Lagrangian is estimated to be 
55.19 %, 44.12 %, and 51.00 %, respectively. The exponential is found 
to be 0.44, 0.35, and 0.34. The transition from exponential (0, 0.1) to 
exponential (0.1, 0.2) results in an increase in variances for all three 
methods, which indicates that the porosity index is sensitive to varia-
tions. Across both scenarios, the ordering of variances among the three 
methods remains consistent: GRG Non-linear < Lagrangian < Evolu-
tionary. GRG Non-linear consistently exhibits the lowest variance, while 
the Evolutionary method consistently has the highest variance. The GRG 

Table 11 
System reliability model for even porosity.  

System reliability- porosity (even)

Boundary conditions SS, CC, CF SS, CC, CF SS, CC, CF

Reliability methods Methods Evolutionary GRG Non-linear Lagrangian

Polynomial 0.56 0.56 0.5

Exponential 0.46 0.47 0.7

For exponential (0, 0.1) Variance of porosity index 28.14% 25.79% 57%

Variance of gradient index 28.59% 29.06% 28. 07%

Exponential 0.74 0.75 0.74

For exponential (0.1, 0.2) Variance of porosity index 85.78% 74.32% 61.62%

Variance of gradient index 87.12% 84.54% 82.15%

Exponential 0.76 0.75 0.76

Result 10-out of-12 system is reliable 
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Non-linear method consistently shows the lowest variance among the 
three methods, indicating higher stability or robustness in estimating the 
porosity index. This method may be more reliable in providing consis-
tent results under different distribution parameters for this specific 
application. 

On the other hand, for exponential (0, 0.1), the variance of gradient 
index using Evolutionary, GRG Non-linear, and Lagrangian is estimated 
to be 18.59 %, 18.00 %, and 8.07 %, respectively. Whereas, for expo-
nential (0.1, 0.2), the variance of gradient index using Evolutionary, 
GRG Non-linear, and Lagrangian is estimated to be 45.19 %, 34.12 %, 
and 61.00 %, respectively. The exponential is estimated to be 0.34, 0.44, 
and 0.40, respectively. Across both scenarios, the ordering of variances 
among the three methods remains consistent: Lagrangian < Evolu-
tionary < GRG Non-linear. Lagrangian consistently exhibits the lowest 
variance, while GRG Non-linear consistently has the highest variance. 
The Lagrangian method consistently shows the lowest variance among 
the three methods, indicating higher stability or robustness in estimating 
the gradient index. The differences in variances highlight potential 
trade-offs between methods, and the choice of method may depend on 
the specific characteristics of the system under consideration. It can be 
inferred from Table 12 that the system is not reliable. 

Utilized assumptions and limitations 

The reliability analysis executed in the present study is based on the 
assumptions that the FGPB exhibits linear elastic behaviour when sub-
jected to loading conditions, which simplifies the analysis, perhaps 
limiting its ability to effectively represent the behaviour of FGPBs sub-
jected to significant deformations or nonlinear loading conditions. The 
study potentially overlooks dynamic loading or transitory impacts by 
assuming static loading conditions only. Dynamic loading circumstances 
may provide distinct issues and necessitate supplementary consider-
ations, notwithstanding the useful insights offered by static analysis. The 
study assumes of a homogeneous distribution of porosity throughout the 
beams, disregarding any variations or gradients in porosity that may 
arise during the manufacturing process or because of material deterio-
ration over time. The study of the FGPBs assumes of a uniform change in 
gradient index, disregarding any differences or discontinuities in 

material composition that may impact the structural response. To 
maintain simplicity, the analysis also assumes of isotropic material 
properties while dismissing the possibility of anisotropic behaviour 
resulting from factors such as material alignment, fibre orientation, or 
manufacturing procedures. 

The reliability analysis of the FGPB has some potential limitations. 
Simulating the behaviour of the FGPB and reliability analysis could 
include the utilization of simplified mathematical models, but these 
simplifications may fail to consider some intricacies or nonlinearities 
that exist in real-world situations. The buckling behaviour of beams in 
practical applications can be influenced by several factors, such as non- 
uniform loading, transient loads, or dynamic vibrations. The study 
considers a homogeneous border circumstance, so disregarding the 
impact of localized boundary effects such as supports, joints, or interface 
interactions and temperature. The presence of these boundary condi-
tions has the potential to exert a substantial influence on the buckling 
characteristics of the beams in practical scenarios. 

Conclusion 

The study used higher-order shear deformation theory to simulate 
functionally graded porous beams with uniform and non-uniform 
porosity distributions. The material characteristics were characterized 
using power law equations. The behaviour of the beams was examined 
using displacement field and equilibrium equations. Critical buckling 
loads were calculated for various boundary conditions and gradient 
index profiles. The system’s dependability was evaluated using k-out-of- 
n system reliability analysis:  

• The findings highlight the significant impact of changing gradient 
index and boundary conditions on the buckling characteristics of 
functionally graded porous beams.  

• CC beams provide improved stability and support, resulting in 
greater critical buckling stresses when compared to SS and CF beams.  

• For fixed gradient index values in x and z directions (Px = 5, Pz = 5), 
the rate of increase in non-dimensional critical buckling for the SS 
beam is 34.8, 10.9, 8.6, 26.3, 2.7 and 1.1 % at aspect ratios of 5, 10, 
15, 20, 25, 30 and 35, respectively. Whereas, for CC beams, it is 49.9, 

Table 12 
System reliability model for uneven porosity.  

System reliability- porosity (uneven)

Boundary conditions SS, CC, CF SS, CC, CF SS, CC, CF

Reliability methods Methods Evolutionary GRG Non-linear Lagrangian

Polynomial 0.36 0.26 0.6

Exponential 0.26 0.27 0.5

For exponential (0, 0.1) Variance of porosity index 18.14% 15.18% 17%

Variance of gradient index 18.59% 18.00% 8. 07%

Exponential 0.44 0.35 0.34

For exponential (0.1, 0.2) Variance of porosity index 55.19% 44.12% 51%

Variance of gradient index 45.19% 34.12% 61%

Exponential 0.34 0.44 0.40

Result System is not reliable 
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14.5, 4.2, 24.2, 2.6 and 1.2 %, respectively, and 34.2, 12.8, 4.1, 24.1, 
2.6 and 1.3 %, respectively for CF beams.  

• For fixed gradient index in the x-direction (Px = 8) and aspect ratio 
(L/h = 15), the rate of decrease in non-dimensional critical buckling 
for the SS beam at Pz = 0, 5 and 10 are 16.3 % and 16.7 %. Whereas 
for the CC beam, it is 17.1 % and 16.5 % and for the CF beam, it is 
16.8 % and 16.2 %.  

• For a fixed gradient in the z-direction (Pz = 5) and aspect ratio (L/h 
= 20), the rate of decrease in non-dimensional critical buckling for 
the SS beam at Px = 0, 5 and 10 is 40.1 and 7.9 %, respectively. 
Whereas, for the CC beam, it is 28.7 % and 2.7 % and for the CF 
beam, it is 27.5 % and 2.7 %.  

• The Lagrangian method consistently demonstrated superior stability 
and system reliability, yielding lower variances in both gradient and 
porosity indices compared to Evolutionary and GRG Non-linear 
methods. This suggests that the Lagrangian method is well-suited 
for providing reliable estimates of system performance, particularly 
in scenarios with varying levels of complexity.  

• The observed consistent ordering of variances across distribution 
parameters underscores the trade-offs and considerations involved in 
selecting an appropriate system reliability analysis method. While 
the GRG Non-linear method exhibited higher sensitivity, the 
Lagrangian method emerged as a robust choice, offering consistent 
and stable results across different scenarios. 

This research emphasizes the importance of methodological choices 
in system reliability analysis and advocates for careful selection based 

on the specific characteristics of the system under investigation. The 
Lagrangian method, with its demonstrated stability, stands out as a 
promising avenue for advancing the field of system reliability analysis in 
FGPBs and related structural systems. The study offers insights for 
designing and optimizing structural components from FGPBs, assessing 
reliability and evaluating dependability in unpredictable environments. 
It applies to various sectors, emphasizing the importance of structural 
dependability and functionality. 
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Table 6 
Ncr for CF beam at various aspect ratios.  

Exp. 
No. 

Px & 
Pz 

L/h = 5 L/h = 10 L/h = 15 L/h = 20 L/h = 25 L/h = 30 L/h = 35 

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 

1 0  12.937  4.061  3.783  13.579  10.200  4.352  14.221  9.148  4.921  14.862  5.882  5.489  15.183  10.051  5.774  15.343  10.201  5.916  15.424  10.276  5.987 
2 0.5  7.837  3.294  3.012  8.438  6.488  3.577  9.039  6.368  4.143  9.639  4.989  4.708  9.939  7.240  4.990  10.090  7.385  5.131  10.165  7.458  5.202 
3 1  6.295  2.970  2.703  6.883  5.341  3.263  7.472  5.482  3.823  8.060  4.656  4.383  8.354  6.341  4.663  8.501  6.484  4.803  8.575  6.556  4.873 
4 2  5.287  2.752  2.558  5.868  4.609  3.117  6.448  4.935  3.675  7.028  4.433  4.234  7.318  5.788  4.513  7.463  5.930  4.653  7.535  6.001  4.722 
5 3  4.972  2.696  2.523  5.550  4.384  3.081  6.128  4.770  3.639  6.705  4.376  4.198  6.994  5.621  4.477  7.138  5.763  4.616  7.211  5.834  4.686 
6 4  4.658  2.640  2.488  5.233  4.159  3.046  5.808  4.605  3.604  6.383  4.318  4.162  6.670  5.454  4.441  6.814  5.595  4.580  6.886  5.666  4.650 
7 5  4.343  2.584  2.453  4.915  3.933  3.010  5.488  4.440  3.568  6.060  4.261  4.125  6.346  5.287  4.404  6.490  5.428  4.544  6.561  5.499  4.613 
8 6  4.204  2.562  2.439  4.776  3.835  2.996  5.347  4.369  3.554  5.919  4.238  4.111  6.204  5.215  4.390  6.347  5.356  4.529  6.419  5.426  4.599 
9 7  4.155  2.556  2.436  4.726  3.801  2.993  5.297  4.344  3.551  5.868  4.232  4.108  6.153  5.190  4.387  6.296  5.331  4.526  6.368  5.401  4.596 
10 8  3.928  2.517  2.411  4.498  3.639  2.969  5.067  4.226  3.526  5.636  4.191  4.083  5.921  5.070  4.362  6.063  5.211  4.501  6.134  5.281  4.571 
11 9  3.790  2.494  2.398  4.358  3.541  2.955  4.926  4.155  3.512  5.495  4.168  4.069  5.779  4.998  4.348  5.921  5.139  4.487  5.992  5.209  4.556 
12 10  3.652  2.472  2.384  4.219  3.442  2.941  4.786  4.083  3.498  5.353  4.145  4.055  5.637  4.926  4.333  5.778  5.066  4.473  5.849  5.136  4.542   

Table 7 
Ncr for SS beam under even and uneven porosity conditions.  

Porosity Index Px & 
Pz 

Even Porosity Uneven Porosity 

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 

α = 0 0  53.088  50.639  48.285  45.982  43.731  41.531  39.383  62.113  59.247  56.493  53.799  51.165  48.591  46.078 
3  16.813  15.094  13.436  11.845  10.302  8.799  7.344  19.671  17.660  15.720  13.859  12.053  10.295  8.593 
10  13.824  12.132  10.001  8.734  6.433  4.867  3.040  16.174  14.137  11.702  9.127  7.527  5.983  3.557 

α = 0.1 0  48.262  46.035  43.895  41.802  39.755  37.755  35.802  56.466  53.861  51.357  48.908  46.514  44.174  41.889 
3  15.285  13.721  12.215  10.769  9.365  7.999  6.677  17.883  16.054  14.291  12.599  10.958  9.359  7.812 
10  12.567  11.029  9.092  7.940  5.849  4.425  2.764  14.703  12.852  10.638  8.297  6.843  5.440  3.234 

α = 0.2 0  37.125  35.412  33.766  32.155  30.581  29.043  27.540  43.436  41.432  39.506  37.622  35.780  33.980  32.222 
3  11.757  10.555  9.396  8.283  7.204  6.153  5.136  13.756  12.349  10.993  9.692  8.429  7.199  6.009 
10  9.667  8.484  6.994  6.108  4.499  3.404  2.126  11.310  9.886  8.183  6.383  5.264  4.184  2.488   

Table 8 
Ncr for CC beam under even and uneven porosity conditions.  

Porosity Index Px & 
Pz 

Even Porosity Uneven Porosity 

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 

α = 0 0  183.295  176.293  168.059  160.007  152.134  144.442  136.929  214.455  206.262  196.630  187.208  177.997  168.997  160.207 
3  43.792  38.771  33.930  27.347  20.973  14.196  7.650  51.237  45.363  39.698  31.996  24.538  16.609  8.950 
10  36.565  29.452  25.640  17.873  12.063  7.564  2.869  42.782  36.133  29.999  19.635  14.576  9.224  3.357 

α = 0.1 0  166.632  160.266  152.781  145.461  138.304  131.310  124.481  194.959  187.511  178.754  170.189  161.815  153.633  145.643 
3  39.811  35.247  30.846  24.861  19.066  12.905  6.954  46.579  41.239  36.089  29.087  22.307  15.099  8.136 
10  33.241  26.775  23.310  16.249  10.966  6.876  2.609  38.892  32.848  27.272  17.850  13.251  8.385  3.052 

α = 0.2 0  128.178  123.282  117.524  111.893  106.387  101.008  95.755  149.969  144.239  137.503  130.915  124.473  118.179  112.033 
3  30.624  27.113  23.727  19.124  14.666  9.927  5.349  35.830  31.722  27.761  22.375  17.159  11.615  6.259 
10  25.570  20.596  17.930  12.499  8.436  5.289  2.007  29.917  25.268  20.979  13.731  10.193  6.450  2.348   

Table 9 
Ncr for CF beam under even and uneven porosity conditions.  

Porosity Index Px & 
Pz 

Even Porosity Uneven Porosity 

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 

α = 0 0  21.679  20.696  19.751  18.826  17.922  17.038  16.175  25.364  24.214  23.108  22.027  20.969  19.935  18.925 
3  5.107  4.993  4.884  4.700  4.195  3.132  2.105  5.975  5.842  5.715  5.499  4.909  3.665  2.463 
10  3.534  3.417  3.219  2.972  2.362  2.103  1.500  4.135  3.983  3.766  3.108  2.763  2.170  1.755 

α = 0.1 0  19.708  18.814  17.955  17.115  16.293  15.489  14.705  23.058  22.013  21.007  20.024  19.063  18.123  17.204 
3  4.643  4.539  4.440  4.273  3.814  2.848  1.914  5.432  5.311  5.195  4.999  4.462  3.332  2.239 
10  3.213  3.106  2.926  2.702  2.147  1.912  1.364  3.759  3.621  3.424  2.825  2.512  1.973  1.596 

α = 0.2 0  15.160  14.472  13.812  13.165  12.533  11.915  11.311  17.737  16.933  16.160  15.403  14.664  13.940  13.234 
3  3.571  3.492  3.416  3.287  2.934  2.190  1.472  4.178  4.085  3.996  3.846  3.433  2.563  1.722 
10  2.471  2.389  2.251  2.079  1.651  1.471  1.049  2.891  2.786  2.634  2.173  1.932  1.518  1.228  
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