

Formal Methods for an Agile Software Development

Methodology

by

Fisokuhle Hopewell Nyembe

Student number: 37233858

Submitted in fulfilment of the requirements for the degree of

Master of Science

in

Computing

at the

School of Computing

College of Science, Engineering and Technology

Supervisor: Prof. John Andrew van der Poll

Co-Supervisor: Prof. Hugo H. Lotriet

December 2022

 ii

Declaration

I, Fisokuhle Hopewell Nyembe, declare that this research work entitled ‘Formal Methods

for Agile Software Development Methodology’ has been composed by myself. All the work

included in this paper is my own, except where otherwise indicated. This work has not

been submitted for any other degree or professional qualification.

--

Fisokuhle Hopewell Nyembe

December 2022

 iii

Acknowledgments

I would like to thank Prof John Andrew (André) van der Poll for his unending support

and supervision through this daunting work which required his encouragement, insight,

and guidance for years. Lastly, I would like to acknowledge the knowledge provided by

Prof. Hugo H Lotriet who also joined us halfway in the process of completing this re-

search work.

 iv

Dedication

This work is dedicated to my late grandfather and brother, Fakazi and Collen.

 v

Table of Contents

Declaration ...ii

Acknowledgments ... iii

Dedication ...iv

Table of Contents .. v

List of Figures ..ix

List of Schemas ... x

List of Tables ... x

Abstract ... xiii

Okucashuniwe ... xiv

Opsomming ... xvi

Chapter 1: Introduction ... 1

1.1 Background ...1

1.2 Literature review ...2

1.2.1 Agile Software Development ... 3

1.2.2 Formal Methods .. 7

1.3 The research problem statement .. 10

1.4 The research purpose, questions, and objectives .. 11

1.4.1 Research questions ... 11

1.4.2 Research objectives .. 12

1.5 The Research Layout ... 13

1.6 Summary ... 14

1.7 Conclusion .. 14

Chapter 2: Literature Review on Traditional and Agile Methodologies 16

2.1 Traditional software development methodologies ... 17

2.1.1 Waterfall Software Development Methodology ... 20

2.1.2 Incremental Model .. 22

2.1.3 Prototyping .. 23

2.1.4 Spiral model .. 24

2.1.5 RAD (Rapid Application Development) ... 26

2.2 Agile Software Development ... 28

2.2.1 Example 2.1 .. 32

2.2.2 DevOps .. 33

2.2.3 DevOps in Agile ... 39

 vi

2.2.4 Scaled Agile Framework (SAFe) .. 41

2.4.5 Scrum .. 46

2.3 Summary ... 50

2.4. Conclusion ... 50

Chapter 3: Formal Methods ... 51

3.1 Introduction ... 51

3.2 Implementing Formal Methods.. 52

3.3 Formal specification using Z .. 53

3.3.1 Natural language description and basic types ... 53

3.3.2 Definition of the State Space ... 54

3.3.3 Initial state of the system and proof that such state exists. 54

3.3.4 Operation Schemas ... 55

3.3.5 Calculate the precondition of each abstract operations on the state 58

3.3.6 Table showing all the partial operations together with their inputs, outputs and
preconditions .. 59

3.3.7 Definition of all schemas that present error conditions 59

3.3.8 Use the Z schema calculus to make all the partial operations total 61

3.4 Literature review on Formal Methods ... 62

3.4.1 FMs in the requirements elicitation phase ... 62

3.4.2 The Software Product Line Engineering .. 63

3.4.3 Specification formalism .. 65

3.4.4 Using formal verification to evaluate Human-Automation Interaction 67

3.4.5 Incorporating FMs in testing... 68

3.4.6 The myths of Formal Methods ... 70

3.4.7 Challenges in implementing FMs in ASD ... 70

3.4.8 Are Formal Methods ready for Agile? .. 71

3.5 Summary ... 73

3.6 Conclusion .. 73

Chapter 4: Research Design ... 74

4.1 Introduction ... 74

4.2 Philosophy - Positivism .. 76

4.3 Approach to theory development - Abductive and inductive (hybrid) 76

4.4 Methodological choice – Qualitative ... 77

4.5 Research strategy - Case study .. 77

 vii

4.6 Data collection – Observation ... 78

4.7 Trustworthiness .. 78

4.8 Credibility ... 79

4.9 Confirmability .. 79

4.10 Authenticity ... 80

4.11 Validity ... 80

4.12 Summary ... 80

4.13 Conclusion .. 81

Chapter 5: The Dlamini Bank Case Study ... 82

5.1 Introduction ... 82

5.2 The case study – Agile Software Development (Scrum) .. 82

5.3 Dlamini Bank case study ... 84

5.4 Sprint 1 – Day 0 (S1.0) .. 85

5.5 Feature 1 – Account balance .. 91

5.5.1 User-Story objective .. 91

5.5.2 Acceptance criteria .. 91

5.6 Feature 2 – Cash deposit .. 92

5.6.1 User-Story Objective .. 92

5.6.2 Acceptance criteria .. 93

5.7 Feature 3 – Cash withdrawal... 94

5.7.1 User-Story objective .. 94

5.7.2 Acceptance criteria .. 94

Sprint 1 – Day 1 (S1.1) ... 95

Sprint 1 – Day 2 (S1.2) ... 96

Sprint 1 – Day 28 (S1.28)... 98

Sprint 2 – Day 1 (S2.1) ... 101

5.8 Value Proposition of embedding FMs in a Scrum Sprint .. 101

5.9 Framework for embedding FMs in Scrum .. 103

5.9.1 Diagrammatic summary of the Scrum framework .. 104

5.9.2 Workflow for a new backlog item ... 104

5.9.3 Framework for Z Schema within Scrum Sprint... 105

5.10 Summary ... 107

5.11 Conclusion .. 107

Chapter 6: The University eVoting Case Study ... 108

 viii

6.1 Introduction ... 108

6.2 The case study – Using Formal Methods in Agile Software Development 109

6.3 Sprint 1 – Day 0 (S1.0) .. 111

6.4 Feature 1 - Voter Registration ... 115

6.4.1 User-Story Objective: ... 115

6.4.2 Acceptance Criteria ... 116

6.5 Feature 2 – Voting .. 116

6.5.1 User-Story Objective .. 116

6.6 Sprint 1 – Day 1 (S1.1) .. 117

6.7 Sprint 1 – Day 2 till final Sprint day (S1.2, n) ... 118

6.8 Summary ... 120

6.9 Conclusion .. 120

Chapter 7: Conclusion ... 121

7.1 Introduction ... 121

7.2 Revisiting the problem statement.. 122

7.3 Achievement of the research objectives .. 122

7.3.1 The advantages and disadvantages of Agile and FM software development.
 123

7.3.2 Identify what business enterprises would achieve by merging Formal Methods
into Agile Software Development Methodology .. 124

7.3.3 Determine for which Agile development phases it may be appropriate to
implement FMs ... 125

7.3.4 Develop a framework for embedding FMs in an Agile methodology 126

7.4 Contribution of the study .. 126

7.5 Contribution towards a framework for embedding FMs in Scrum 127

7.6 Future work ... 127

7.7 Summary ... 128

References .. 129

Appendix A: Student/Supervisor Agreement ... 138

Appendix B: Ethical Clearance Certificate ... 139

Appendix C: Language Editor Certificate .. 142

Appendix D: Turnitin Report (1st page) ... 143

Appendix E: Journal Article Submission .. 144

 ix

List of Figures

Figure 1.1 Agile Software Methodology (https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm) 4
Figure 1.2 Dissertation Layout ... 13
Figure 2.1 The distribution of traditional software methodologies in Tanzania (Mushashu et al (2019) 18
Figure 2.2 distribution of traditional software methodologies in Globally (Akbar et al., 2017) 19
Figure 2.3 Waterfall Development Methodology (https://www.tutorialspoint.com) 21
Figure 2.4 Incremental Software Development Model (Sabale et al., 2012) .. 22
Figure 2.5 The evolution of a Prototype software development (Rodriguez et al., 2020) 24
Figure 2.6 Spiral model diagram (Krishnan, 2015).. 25
Figure 2.7 Rapid Application Development process (Sabale et al., 2012) ... 27
Figure 2.8 User-Story Template (Hatcher, 2019) .. 31
Figure 2.9 Relationship between DevOps features and software quality (Mishra et al., 2020) 34
Figure 2.10 The DevOps process (Malassu, 2020)... 35
Figure 2.11 DevOps process model (Masombuka, 2020) ... 36
Figure 2.12 DevOps in Agile ecosystem (Roche, 2013) .. 40
Figure 2.13 SAFe levels and teams ... 42
Figure 2.14 Example of a Team Level .. 43
Figure 2.15 Example of a Program Level ... 44
Figure 2.16 Example of a Portfolio Level .. 45
Figure 2.17 Scrum process flow (Bhavsar et al., 2020)... 48
Figure 2.18 Illustration of a Development Team gathered around the Sprint Backlog board
(https://watisscrum.nl/sprint-backlog/) .. 49
Figure 3.1 Executable models of the product line (Schaefer et al., 2011) .. 64
Figure 3.2 Framework facilitating the removing of vagueness or inconsistencies in system requirements 66
Figure 3.3 Formal verification in the testing phase of software development ... 68
Figure 3.4 Agile Software Development process that includes Formal Methods after the developed
system is in production (Sharma et al., 2020) ... 71
Figure 4.1 Universal research onion (Saunders et al., 2018) .. 75
Figure 5.1 Scrum process flow (Bhavsar et al., 2020)... 83
Figure 5.2 Dlamini Bank ATM system's initial use cases (Features) ... 84
Figure 5.3 Illustration of a Development Team gathered around the Sprint Backlog board
(https://watisscrum.nl/sprint-backlog/) .. 85
Figure 5.4 Illustration of a Development Team gathered around the Sprint Backlog board
(https://watisscrum.nl/sprint-backlog/) .. 96
Figure 5.5 Workflow for a New Backlog Item .. 105
Figure 5.6 Framework for Z Schema within Scrum Sprint ... 106
Figure 6.1 Use case diagram for the eVoting system ... 110

 x

List of Schemas

Z Schema 1.1 Formal Method's log in/out example (Butler, 2001) ... 7
Z Schema 3.1 PhoneBook state-space schema .. 54
Z Schema 3.2 InitPhoneBook schema .. 54
Z Schema 3.3 AddName schema for altering PhoneBook ... 56
Z Schema 3.4 Find schema for searching the PhoneBook .. 56
Z Schema 3.5 Delete schema for removing a number ... 57
Z Schema 3.6 preAddName precondition schema... 58
Z Schema 3.7 Success schema .. 60
Z Schema 3.8 Known schema .. 60
Z Schema 3.9 PhoneBook schema ... 60
Z Schema 3.10 NotKnown schema ... 61
Z Schema 5.1 Sprint Backlog .. 86
Z Schema 5.2 Initial Sprint Backlog... 86
Z Schema 5.3 State Space for User-Stories .. 88
Z Schema 5.4 Adding User-Stories ... 88
Z Schema 5.5 State Space User-Story Prioritization ... 89
Z Schema 5.6 User-Story Prioritization ... 90
Z Schema 5.7 ATM Banking State Schema .. 91
Z Schema 5.8 Cash deposit .. 93
Z Schema 5.9 Cash withdrawal... 95
Z Schema 5.10 Sprint_Backlog_User_Stories Statuses .. 98
Z Schema 5.11 AddOpenDefects .. 99
Z Schema 5.12 Sprint_Backlog_User_Stories at the end of the Sprint ... 101
Z Schema 6.1 AddUserStories .. 112
Z Schema 6.2 Populate_Prioritization_User_Stories ... 113
Z Schema 6.3 Sprint_Backlog ... 114
Z Schema 6.4 InitSprint_Backlog .. 115
Z Schema 6.5 Vote ... 116
Z Schema 6.6 eVoting System .. 117
Z Schema 6.7 Sprint_Backlog_User_Stories ... 119

List of Tables

Table 0-1: Acronyms and Keywords.. xii
Table 2-1 Tracking, prioritization of User-Stories towards the satisfaction of customer requirements. 32
Table 2-2 Scrum process components and roles (Bhavsar et al., 2020).. 47
Table 2-3 Daily Scrum's questions and typical answers from the Development Team............................. 49
Table 3-1 Table showing partial operations, inputs/outputs, and preconditions 59
Table 5-1: Sprint Backlog User-Stories .. 87
Table 5-2: Tracking prioritization of User Stories towards the satisfaction of customer requirements 89
Table 5-3 User-Stories details as illustrated in Sprint Backlog board .. 97
Table 5-4 Open Defects List .. 99
Table 5-5 User-Stories details as illustrated in Sprint Backlog board (At the end of Sprint 1) 100
Table 5-6 Value Propositions for imbedding Formal Methods in Scrum .. 102
Table 5-7 Diagrammatic summary of the Scrum framework ... 104
Table 6-1 Product Backlog as presented by the Product Owner ... 111
Table 6-2 First Sprint Backlog Prioritization .. 112

 xi

Table 6-3 User-Stories details as illustrated in Sprint Backlog board .. 119
Table 7-1 The main advantages of using FMs in ASDM ... 123
Table 7-2 The main disadvantages of using FMs in ASDM... 124
Table 7-3 Potential benefits for business enterprises ... 124

 xii

Acronyms and Keywords

Table 0-1: Acronyms and Keywords

Acronyms Short Descriptions

Agile Software Development (ASD)
A software development model that combines iter-

ative and incremental processes

DevOps (Development and Opera-

tions)

It’s a software development methodology that inte-

grates IT operations

Established Strategy (ES) A strategy for drawing up Z specification

Formal Methods (FM)
Mathematical techniques used to verify software

system’s properties

IKIWISI I’ll Know It When I See It

PMI® Project Management Institution

RAD Rapid Application Development

SAFe Scaled Agile Framework

Scrum
An Agile framework with emphasis on managing

software development task in time-boxed iterations

SDLC Software Development Lifecycle

Semi-Formal Methods
Object-oriented design using UML diagram that de-

scribes the structure of a system

UML Unified Modelling Language

SPLE Software Product Line Engineering

URDAD
Use Case, Responsibility Driven Analysis and De-

sign

Waterfall Software Development

(WSD)
A linear-sequence model for software development

 xiii

Abstract

Business software systems are in high demand, which has led to the availability of a wide

range of competitive market solutions. These ranges are also fuelling parallel demand for

effectiveness and high-quality business software systems. To achieve efficiency, depend-

able methods ought to be adopted. One effective technique that has arguably excelled

above others is the Agile Software Development Methodology (ASDM). Agile approaches

possess the capacity to produce software in a way that is flexible to changes, making

them, arguably, a preferred method for software development. Scrum, a recommended

Agile methodology, emphasises the prioritisation of feature coverage and incremental

project structures. Because iterative methodologies encourage engagement from cross-

functional teams, including consumers, Agile provides flexibility in responding to changes

in user requirements.

Despite its fast turnaround time, Agile may lack certain qualities, amongst other, produc-

ing software that is provably correct, as offered through the use of formal methods (FMs)

for software development. Formal Methods usually embody the use of discrete mathe-

matics and logic to develop highly dependable software. Using a case study approach

the researcher investigates the processes embedded in the Scrum methodology by trac-

ing the processes involved in the day-to-day operations of a Scrum team. Possible ambi-

guities and omissions in the processes and deliverables are identified and it is investi-

gated to what extent the use of FMs using the Z specification language may address

these. Aspects considered include formal specifications of the Scrum user stories and the

use of the sprint backlog board to trace the progress of the project. The value proposition

of using an FMs approach is illustrated throughout and a framework for embedding FMs

in Scrum is developed on the strength of the analyses. The findings are validated through

a hypothetical case study.

Keywords: Agile Software Development Methodology (ASDM), DevOps, Formal Meth-

ods, Formal Specification, Framework, Scrum, User Stories, Z.

 xiv

Okucashuniwe

Izinhlelo zesofthiwe yebhizinisi zidingeka kakhulu, okuholele ekutholakaleni ezinhlangeni

ezibanzi zezixazululo zemakethe ezincintisanayo. Lezi zinhlanga ziphinde

zibhebhethekise isidingo esifanayo sokusebenza ngempumelelo nezinhlelo zesofthiwe

yebhizinisi esezingeni eliphezulu. Ukuze kuzuzwe ukusebenza kahle, kufanele kus-

etshenziswe izindlela ezithembekile. Indlela eyodwa esebenzayo eye yaphumelela

ngaphezu kwamanye Indlela Yokuthuthukiswa Kwesofthiwe Esheshayo (ASDM).

Izindlela ezisheshayo zinamandla okukhiqiza isofthiwe ngendlela evumelana nezimo

ezinguqukweni ezizenza, ngokungangabazeki, zibe indlela ekhethwayo yokuthuthukiswa

kwesofthiwe. Uhlaka lokuphathwa kwephrojekthi, indlela esheshayo ephakanyisiwe,

igcizelela ukubeka phambili ukufakwa kwesici kanye nezakhiwo zephrojekthi ezikhulayo.

Ngenxa yokuthi izindlela eziphindaphindayo zikhuthaza ukusebenzelana okuvela

emaqenjini ahlukahlukene, okuhlanganisa nabathengi, indlela esheshayo inikeza uku-

guquguquka ekuphenduleni izinguquko ezidingweni zabasebenzisi.

Naphezu kwesikhathi sayo sokushintsha ngokushesha, indlela esheshayo ingase intule

izimfanelo ezithile, phakathi kokunye, ukukhiqiza isofthiwe elungile njengoba inikezwa

ngokusebenzisa izindlela ezisemthethweni (ama-FM) zokuthuthukiswa kwesofthiwe.

Izindlela Ezihlelekile ngokuvamile zihlanganisa ukusetshenziswa kwezibalo ezihlukene

kanye nengqondo ukuze kuthuthukiswe isofthiwe ethembeke kakhulu. Ngokusebenzisa

indlela yesifundo esiyisibonelo umcwaningi uphenya izinqubo ezishumekwe endleleni

yohlaka lokuphathwa kwephrojekthi ngokulandela izinqubo ezithintekayo ekusebenzeni

kwansuku zonke kweqembu lohlaka lokuphathwa kwephrojekthi. Okungacaci kahle

okungaba khona kanye nokweqiwa ezinqubeni nokulethwayo kuyahlonzwa futhi kuya-

phenywa ukuthi ukusetshenziswa kwama-FM kusetshenziswa ngulimi olucacisa inothi

elisekelwe esifanekisweni kungase kubhekane nalokhu. Izici ezicatshangelwayo zih-

langanisa ukucaciswa okusemthethweni kwezindaba zabasebenzisi bohlaka

lokuphathwa kwephrojekthi kanye nokusetshenziswa kohlu lwezinto zomsebenzi iqembu

lakho elihlela ukuziqedela ngesikhathi sephrojekthi ukulandelela inqubekelaphambili

yephrojekthi. Isiphakamiso sokusungula ukusebenzisa indlela ye-FM sikhonjiswa kuyo

 xv

yonke indawo futhi uhlaka lokushumeka ama-FM ohlakeni lokuphathwa kwephrojekthi

luyathuthukiswa ngamandla okuhlaziya. Okutholakele kuqinisekiswa ngocwaningo lwe-

sifundo sokucatshangelwa.

Amagama asemqoka:

Agile Software Development Methodology (ASDM)

Indlela esheshayo yokuthuthukiswa kweSofthiwe

DevOps

Indlela yokuthuthukiswa kwesofthiwe

Formal Methods

Izindlela ezisemthethweni

Formal Specification

Ukucaciswa Okusemthethweni

Framework

Uhlaka

Scrum

Uhlaka lokuphathwa kwephrojekthi

User Stories

Izindaba Zomsebenzisi

Z

inothi elisekelwe esifanekisweni

 xvi

Opsomming

Daar is ’n groot aanvraag na besigheidsagtewarestelsels, en dit het die beskikbaarheid

van ’n wye verskeidenheid mededingende markoplossings tot gevolg gehad. Hierdie

reekse gee ook aanleiding tot parallelle vraag na doeltreffendheid en

besigheidsagtewarestelsels van hoë gehalte. Om doelmatigheid te bewerkstellig, moet

betroubare metodes in gebruik geneem word. Een doeltreffende tegniek wat stellig ander

tegnieke oortref het, is Agile Software Development Methodology (ASDM). Agile-

benaderings beskik oor die vermoë om sagteware te genereer op ’n manier wat

aanpasbaar is by veranderinge – en dit maak bes moontlik van hierdie benaderings ’n

voorkeurmetode vir sagteware-ontwikkeling. Scrum is ’n aanbevole Agile-metodologie

wat die prioritisering van eienskap-insluiting en inkrementele projekstrukture beklemtoon.

Omdat herhalende metodologieë betrokkenheid van kruisfunksionele spanne, insluitende

verbruikers, aanmoedig, bied Agile buigsaamheid ten opsigte van reaksie op

veranderinge in verbruikersbehoeftes.

Ten spyte van die vinnige omkeertyd daarvan, kan sekere eienskappe by Agile ontbreek

– onder andere om sagteware te genereer wat bewysbaar korrek is soos wat dit

aangebied word deur die gebruik van formele metodes (FM’s) vir sagteware-ontwikkeling.

Formele metodes behels gewoonlik die gebruik van diskrete wiskunde en logika om

hoogs betroubare sagteware te ontwikkel. Die navorser gebruik ’n

gevallestudiebenadering om die prosesse te ondersoek wat in die Scrum-metodologie

ingebed is, deur die prosesse wat by die dag-tot-dag-werksaamhede van ’n Scrum-span

betrokke is, na te gaan. Moontlike dubbelsinnighede en weglagtings in die prosesse en

lewerbares word geïdentifiseer en daar word ondersoek in watter mate die aanwending

van FM’s wat die Z-spesifiseringstaal gebruik, dit kan oorbrug. Aspekte wat oorweeg

word, sluit in formele spesifikasies van die Scrum-gebruikerstories en die gebruik van die

Sprint-agterstandbord om die projekvordering na te gaan. Die waardeproposisie van die

gebruik van ’n FM’s-benadering word deurgaans geïllustreer en ’n raamwerk vir die

inbedding van FM’s in Scrum word ontwikkel op grond van die sterkte van die ontledings.

Die bevindings word gevalideer deur ’n hipotetiese gevallestudie.

 xvii

Sleutelwoorde: Agile Software Development Methodology (ASDM), DevOps, Formele

Metodes, Formele Spesifikasie, Raamwerk, Scrum, User Stories (gebruikerstories), Z.

 1

1. Chapter 1: Introduction

This is a dissertation on the use of Formal Methods (FMs) in an Agile methodology. For-

mal Methods have been shown to facilitate the production of highly dependable software

yet is hard a software engineer to achieve the necessary competency level (Huisman et

al., 2020). Agile on the other hand hastens the software development process, yet may

lead to challenges (i.e., lack of planning, scope creep, budgeting), especially with respect

to mission-critical software development (Moyo, 2021).

In this introductory chapter, the focus is on three main topics, namely, literature review,

problem statement and the formulation of research questions. In the literature review, the

purpose is to identify gaps and weaknesses in prior research work to discover areas that

need development in the chosen research focus area. On the basis of the under-re-

searched areas the research focus area for this dissertation will be delimited and dis-

cussed. For the identified research problem, a series of research questions were formu-

lated.

The main purpose of the chapter is to demonstrate the importance of the research topic

and the research objective and to argue for the appropriateness of the research design

selections, including the research strategy and methodology to achieve mastery of the

subject matter, ultimately with the aim to assist software developers achieve efficiency in

their processes and quality in their output products.

1.1 Background

There is a significant growth in demand for business software systems, resulting in the

availability of a wide variety of competitive market offerings. These software offerings are

also resulting in a concurrent demand for efficiency and quality (Hussain et al., 2019).

Adopting tried-and-true approaches is necessary in the quest for efficiency. Numerous

software development approaches have been developed in response to the need for ef-

ficiency. The Agile Software Development Methodology has been one methodology that

has risen above other methodologies (Holbeche, 2018). The major reason why Agile

methods are seen as a preferred alternative is because of their ability to create software

 2

in a manner that is responsive to change (Holbeche, 2018). It is also considered to have

the ability to balance flexibility and structure (Highsmith, 2003). A popular Agile technique

called Scrum highlights the organisation of projects and feature coverage according to

priority (Rush et al., 2020). This iterative methodology enables flexibility in reacting to any

exigent circumstances by facilitating the participation of cross-functional teams, including

the customer. According to Holbeche (2018), agility is no longer limited to software pro-

jects, but now forms part of overall business strategies.

Achieving methodological efficiency in the development of software is however not

enough. Equal consideration has to be given to ensuring high-quality output (O’Regan,

2020). Using mathematically based techniques known as Formal Methods has the poten-

tial to provide the consistency, completeness and ultimately the quality of the software

system (O’Regan, 2020). Formal Methods have traditionally been associated with the

rigidity of traditional ‘conveyor belt’ development methodologies (Larsen et al., 2010).

Therefore, this research aims at formulating a framework to blend the Agile Software De-

velopment and the Formal Methods for companies to keep up with the increasingly de-

manding software systems business.

1.2 Literature review

The literature review is intended to provide an overview of existing research related to the

research focus area and to identify areas that are under-researched that need to be ad-

dressed as part of the current project. By initially coming up with the research problem, I

was able to narrow the literature review in order to remain within context. In this literature

review I focus primarily on the collection of scholarly material related to the research topic.

The literature review assists in guiding the extent of the research problems, questions

and objectives. In gathering the information, I realised that although there has been sig-

nificant research on the Agile Software Development (ASD) and Formal Methods (FMs),

a combination of the two techniques has been under-researched.

 3

1.2.1 Agile Software Development

Below I discuss aspects that make up Agile Software Development. These topics have

been presented with the intention of keeping us in-touch with what has been researched

in the chosen subject. This methodology has the ability to create more value and rapidly

respond to change. It is also attributed to have the ability to balance flexibility and struc-

ture (Highsmith, 2003). Owing to its widespread use, the research utilised the popular

Agile technique called Scrum, which highlights the management of projects and features

coverage according to priority and also because working software is the primary measure

of progress (Rush et al., 2020). Scrum is also regarded as a development framework for

delivering and maintenance of complex software systems. It is a conceptual framework

that enables individuals to confront multiplex adaptive challenges while efficiently and

innovatively producing goods of the best quality. It is characterised by piece-meal project

cycles, known as “Sprints” that are usable for delivering planned, designed, built, and

tested reviewed software systems (Hatcher, 2019).

1.2.1.1 Requirements are often not upfront

Contrary to the above definitions of a Waterfall software development where full system

requirements are available upfront and enough time is allocated to planning processes

prior to the development, the Agile Software Development (ASD) practice known as IKI-

WISI (I’ll Know It When I See It) implies that full system requirements may not always be

available upfront. This approach also suggests that users can better describe their full

requirements after the initial idea has been translated into a functioning Prototype (Szal-

vay, 2004). This is unlike the Waterfall Software Development (WSD) where customers

are expected to thoroughly specify the desired system, usually without having an oppor-

tunity to periodically review the progress and request changes.

Figure 1.3 illustrates an Agile design with 3 iterations.

 4

Figure 1.1 Agile Software Methodology (https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm)

The above figure is a representation of a 3-iteration Agile software build. Each iteration

consists of the development of the concept, design, building and testing. All of these de-

velopment tasks occur simultaneously, and this is mainly what distinguishes Agile Soft-

ware Development from (e.g.) the Waterfall Software Development.

1.2.1.2 The usage of User-Stories

Tomayko (2017) suggests that there has been a significant movement towards iterative

methodologies and Agile Software Development (ASD) in particular. The ASD uses User-

Stories to interpret how the system should function. These User-Stories assist in advanc-

ing the end-user perspective on the system, and they are the beginning and end points

of the requirements coverage. The User-Stories are a place to start and are simplified in

a non-technical language. They are also continuously developed throughout the develop-

ment as more becomes known about the software product.

 5

1.2.1.3 Responding better to change

The ASD methodology responds better to changing requirements and, therefore, be-

comes suitable for fast paced environments (Tomayko, 2017). ASD enables habits such

as process controlling, particularly when managing highly complex and ever-changing

software requirements. Although Agile has simpler and clearly defined processes, it is

(naturally) not the only answer to effectively manage every dynamic and complex soft-

ware project. The ASD has become less structured in the recent years and has mostly

been characterised by the three (3) faces of simplicity (Tomayko, 2017):

1. Minimalism

2. Quality design

3. Generative rules

1.2.1.4 Requirements elicitation

Arguably, the major difference between the traditional Waterfall Software Development

and Agile Software Development is in how the system requirements are elicited. In com-

parison to the WSD, the main principles of ASD are to facilitate quicker delivery, quicker

change and changes more often (Beedle et al., 2010). Contrary to the WSD, Agile has a

lesser appetite for thorough requirements analysis (Franch et al., 2018). There are three

main requirements analysis techniques in an Agile methodology, namely:

1. JAD (Joint Application Development): It involves a continuous, rigorous interaction

amongst stakeholders. This technique forms a large part of Scrum which prioritizes

individuals and interactions over processes and tools.

2. Modelling: It integrates the analysis of requirements and the designing. The mod-

elling technique relates to the 11th principle of agility. This principle highlights the

importance of best architecture, requirements and design. The 11th principle of

agility is discussed in Section 2.2 in Chapter 2.

3. Prioritization: This involves the prioritization of the system feature. The Scrum

method uses techniques with storyboards, which organise the project and feature

coverage according to priority.

 6

1.2.1.5 ASD’s minimal documentation

One of the ASD’s principles is that of minimal documentation, and this implies that no

formal requirements are to be produced (Franch et al., 2018). In this instance, the features

of the system become piece-meals that will lead developers into a fully functioning prod-

uct required by the client. These features are interpreted in the form of User-Stories, are

recorded on story boards and are tracked daily. Franch et al. (2018), acknowledge the

challenges in the management of requirements in ASD – these difficulties are as a result

of the pressure that comes with expectations of fast deployments.

ASD embody three main practices that are used to record features coverage:

1. Requirements / User-Stories reviews

2. Unit testing

3. Evolutionary prototyping

1.2.1.6 The major Agile Software Development shortcomings

With Agile, teams never know what the end result (or just a few cycles down the line) will

look like from the very beginning; it is, therefore, difficult to estimate what it will cost, how

long it might take, and which resources will be needed in the beginning (especially when

the project gets larger and more complex) (Bhavsar et al., 2020).

The documentation in Agile projects happens continuously, and often "just in time" for the

output, rather than from the beginning. In this manner, it becomes less detailed and is

often put on the back burner (Hatcher, 2019). Agile methodology may be beneficial for

bringing products to market faster, but it also has many drawbacks. Due to the fact that

teams often work on each component in separate cycles, the finished product usually

seems fragmented instead of unified (Hatcher, 2019).

It is relatively easy for Agile to get side-tracked by delivering unexpected features since it

requires minimal planning at the beginning. Furthermore, it means that projects have no

end because it is impossible to visualize what the "final product" will look like (Moyo,

2021). Considering Agile delivers in increments, tracking progress requires a broader

perspective. As a result of the "see-as-you-go" nature, it is impossible to set many KPIs

 7

at the beginning of a project. Progress is difficult to measure this way (Bhavsar et al.,

2020).

In this research paper, the goal is to formulate a framework that will reduce some of the

above-mentioned challenges in the Agile Software Development Methodology by includ-

ing Formal Methods. The following section introduces Formal Methods (FMs) which make

up the second component of this research, Agile being the first component. Formal Meth-

ods are the use of mathematical-based techniques for improving on the integrity, con-

sistency, and completeness of an information system (Schaefer et al., 2011).

1.2.2 Formal Methods

Formal Methods (FMs) use mathematical notation to detail the precision of the software

systems’ properties. Formal Methods at the starting point usually focus on formal specifi-

cations, which is a way to formally describe system requirements (Spivey, 1998). Below

I describe different perspectives and approaches for Formal Methods.

1.2.2.1 Formal Methods defined

Formal Methods in software engineering use discrete mathematics and logic to develop

a system. The FMs simply describe what the system must do, and not how it is to be

achieved. A formal specification serves as a reliable reference point to verify the infor-

mation system functions as determined by the customer. The system’s properties ought

not to unduly constrain the specification as to how the information systems’ correctness

is achieved (Spivey, 1998). One of the major advantages of specification formalism is

overcoming limitations of resilience (Madni et al., 2018). A simple formal specification in

the successful Z specification language of users logging onto and out of a system is given

below as an example (Butler, 2001):

 Log

Users, in, out : ℙ Staff

in ∪ out = users ∧

in ∩ out = {}

Z Schema 1.1 Formal Method's log in/out example (Butler, 2001)

 8

The above example shows a state space with three sets of users in the system and two

states of staff members:

• All users registered in the system.

• Registered users who are currently in.

• Registered users who are currently out.

There are two predicates below the short horizontal line. These state that:

• The union of all in and out users make up all the users in the system.

• No user should be both logged on and logged out.

The following mathematical notation are used in the schema:

• ∩ denotes a binary intersection,

• = denotes simple set-theoretic equality,

• { } denotes an empty set,

• ∧ denotes logical conjunction, and

• ∪ denotes a binary union.

1.2.2.2 FMs within a software development lifecycle

Synthesised from Dongmo (2016), Formal Methods could cover the following SDLC

phases.

1. Requirements elicitation phase: Mathematical notation can be applied as part

of thorough requirements engineering.

2. Specification phase: A formal specification could capture user requirements

otherwise captured in natural language.

3. Design phase: System design conforms to a formal specification.

4. Implementation and maintenance phases: The verification of the implemented

software should be continuous throughout the lifetime of the system. Aspects

of quality and accuracy (correctness) are paramount.

 9

1.2.2.3 FMs in the requirements elicitation phase

The requirements elicitation phase is regarded as being most crucial and most challeng-

ing. The consequences of getting this critical phase wrong are far-reaching and can per-

sist throughout the life of the software system (Pandey et al., 2013). An adequate require-

ments analysis function exposes and predicts error prone areas in the proposed system

(Pandey et al., 2013). Much of the research on Formal Methods has been around the

requirements gathering phase. In most of these research, it is identified that the require-

ments gathering phase enables the formal specification to accurately validate the require-

ments (Pandey et al., 2013). The challenge in ASD therefore becomes continuously

changing requirements, which adds to the complexity of the project.

When introspectively analysing issues arising from the software system development,

one can identify that a significant portion of them come as a result of properly specifying

requirements. The root causes of defects found in system testing are as a result of re-

quirements being unclear, imprecise, incomplete and ambiguous. If the above specifica-

tions’ shortcomings are not addressed, the purpose and objective of the testing process

becomes narrow.

1.2.2.4 Are Formal Methods ready for Agile?

In all the efforts in attempting to use FMs in an Agile Software Development, what then is

to be gained, particularly because of the many opposing differences between the two?

(Nemathaga and van der Poll, 2019). In their work, Gleirscher et al. (2019) assess bene-

fits that will come with combining FMs and ASD. They also assess the readiness of ASD

to support FMs techniques in order to have synergy in the processes. Larsen et al. (2010)

identify the purpose of the Formal Methods as that of eliminating defects in complex com-

puter systems. They further describe FMs as a response to complexity. Such a response

is used to analyse and model software systems as a mathematical entity. These mathe-

matical analyses, therefore, enable every competent stakeholder to verify and refute as-

pects of the requirements specifications in all development phases. It is important to note

that Larsen et al. (2010) dispel the widely held view of regarding Formal Methods as a

software development methodology on their own.

 10

A misreading that Larsen et al. (2010) deal with is that FMs are only effective as a post-

factor verification. In their arguments, they also advise against viewing Agile Software

Development as a methodology that can be implemented in all software development

environments. Each software development enterprise should adopt only the ASD char-

acteristics that are suitable for their environment and their resources (O’Regan, 2020).

Similarly, with any methodology and processes, only the applicable techniques are

adopted based on the environment and sometimes the product being developed.

In a similar vein, formalising requirements ought to be intended at simplifying the specifi-

cations, otherwise it will be irrelevant including them in ASD which aims at rapidly com-

pleting a solution with ‘minimal documentation’. Introducing FMs should not be burden-

some; forms of static analysis and automatic verification can be used to guard that key

properties are preserved from one iteration to the next (O’Regan, 2020). The tools ena-

bling FMs must also facilitate synergy in existing development methodology and enough

research must be conducted in making this a reality, as Larsen (2010) continue to claim.

1.3 The research problem statement

With the wide technology exposure in recent decades, there has been a steep growth in

the demand for business systems. As a result of the market demand, competitiveness

has increased, and consumers have more market offerings to choose from. These various

software outputs have also resulted in the rise in demand for an efficient methodology

and techniques to develop them. Therefore, the existing problem in the markets is ensur-

ing high standards of quality software output within an effective software development

methodology. To achieve efficiency, dependable methodologies have to be adopted. As

a result of the demand for dependable methodologies, various options have emerged in

different eras of software development. ASD has been identified as the methodology that

facilitates rapid development of software. However, this rapidity often leads to faulty soft-

ware systems, particularly the security critical systems.

On the other hand, the use of FMs facilitate the development of provably correct software

systems. However, FMs may be cumbersome to use, leading to perceived delayed

 11

delivery of software systems. Therefore, combining ASD and FMs could be beneficial, but

there has been limited research in the attempt to have the two techniques complementing

each other.

1.4 The research purpose, questions, and objectives

Given the research problem indicated above, the aim of this research is to develop a

framework that combines the best of FMs and ASD, thereby assisting the software devel-

opment industry to improve on software quality. Given the widespread use of Agile, and

the limited use of FMs, I suspect a best practice would be to embed FMs as a component

of Agile. Consequently, this research sought answers to the following questions:

1.4.1 Research questions

• RQ1: What are the advantages and disadvantages of:

o RQ1.1: Agile software development?

o RQ1.2: Using Formal Methods (FMs) for software development?

• RQ2: To what extent can Formal Methods be implemented in an Agile Software

Development Methodology?

o RQ2.1: At what developmental phases could FMs be embedded in an Agile

development process?

o RQ2.2: What will business enterprises achieve by embedding FMs in an

Agile development process?

The major objective of the study was to formulate a framework to blend the Agile Software

Development and the Formal Methods for companies to keep up with the increasing de-

mand for quality and efficiency in software systems business. This objective was broken

into the following five sub-objectives:

 12

1.4.2 Research objectives

• Identify the advantages and disadvantages of Agile and FMs software develop-

ment.

• Identify what business enterprises would achieve by merging Formal Methods

into Agile Software Development Methodology.

• Determine whether Formal Methods can be implemented in both old software

requirements (regression) and new software requirements which are rarely up-

front in ASD.

• Determine for which Agile development phases it may be appropriate to imple-

ment FMs.

• Develop a framework for embedding FMs in an Agile methodology.

Having formulated the above research questions and objectives, I will discuss the re-

search design. The research design is based on the Saunders et al. (2018) Research

Onion, created as per figure 1.4 below.

 13

1.5 The Research Layout

In the below figure, we present the dissertation structure. This layout will guide the exe-

cution of the research work in order to achieve what was proposed in module MPSET92

(Master Proposal - CSET).

Figure 1.2 Dissertation Layout

The above Figure 1.2, I present the dissertation layout for how the research is conducted.

The figure shows that the dissertation begins with the introduction of the research, then

the literature review of software development methodologies and Formal Methods. The

essence of the dissertation is in the presentation of the two hypothetical case studies

where we introduce Formal Methods into an Agile Methodology framework called Scrum.

Chapter 7 contains a conclusion, where I revisit all that is done in order present the suffi-

cient coverage of problem and objectives of the dissertation as was proposed. The con-

clusion chapter also includes a presentation of what the study has contributed to the body

of knowledge.

 14

1.6 Summary

The work in this chapter began with the introduction of the dissertation, where I identified

gaps in prior research works so that I could discover areas that needed development in

the chosen subject matter. From those under researched areas the researcher was able

to formulate the research problems on which the work is based and the potentiality of

using Formal Methods in an Agile Software Development Methodology. This choice of

the research topic was driven by intentions to contribute methodical and efficient ways to

produce dependable software products.

In Chapter 1 the researcher also did a brief literature review of three software develop-

ment methodologies, namely: Waterfall Software Development, V-Model and Agile Soft-

ware Development which is the focal point of this dissertation. I was also able to discuss

Formal Methods in the context of this research.

The research methodology framework of the dissertation was presented in the form of a

research design based on Saunders et al.’s (2018) research process onion. In the work,

I chose the case study research strategy. These choices were informed by intentions to

know more about the uniqueness of the environment under the study and ultimately for-

mulate recommendations in which FMs can be used in an ASD environment.

1.7 Conclusion

By large, success in software development remains an ever-shifting goalpost and the

efforts to improve the methodical ways of achieving successful projects and quality soft-

ware will continue well after this research. With all the research and methods in place,

software development projects are still facing the same challenges that were faced dec-

ades ago. At most, their efficiency is not absolute, and the results are less qualitative

software output. Although organisations that have been able to successfully use the Agile

technique demonstrate the effectiveness of this methodology, the rapidity of the method

emphasises less the quality of the final software product in comparison to the Waterfall

Methodology (Tomayko, 2017). The body of research assembled in this research work

shows that, in terms of both efficiency and quality problems, experiences are essentially

 15

universal. The attempt in this research work was to help find out if Formal Methods can

be implemented in an Agile Software Development Methodology.

In the following chapter, the researcher explores relevant literature on numerous tradi-

tional software methodologies and puts a spotlight on the Agile Software Development

methodology which is the topic of focus.

 16

2. Chapter 2: Literature Review on Traditional and Agile Methodologies

In Chapter 1, I introduced the dissertation. I also laid the foundation for the work through

a brief literature review where I paid a close look at the Waterfall Software Development

and the V-Model Software Development, which are considered as traditional methodolo-

gies. I then reviewed Agile Software Development and the Formal Methods which are the

focus of this dissertation. The introduction of the work is based on the problem statement

that was presented and the purpose of the research is to find answers to the problem.

The problem statement stated in Chapter 1 is a composition of the formulated research

questions and therefore answering these questions became the objective of this disser-

tation.

In Chapter 2, I provide a comprehensive literature review on the traditional software de-

velopment methodologies. I explore the Waterfall Software Development Methodology,

which is a sequential process of software development and, just like in a Waterfall, differ-

ent development phases cascades from one phase to another. I then review the Incre-

mental Model which divides the product into builds, where sections of the project are

created and tested separately. I also discuss prototyping as a methodology. It is where a

throwaway Prototype is built from the initial customer requirements and subsequently

presented back to the customer to confirm if this is indeed what they require. Another

significant methodology is a Spiral model. Regarded as a methodology for high-risk pro-

jects, the Spiral Model combines the characteristics of both the Waterfall model and the

Prototype model. Lastly, as part of the traditional software development methodology, I

review the Rapid Application Development (RAD) which is a results-oriented development

lifecycle designed to give much faster development.

In the second section of Chapter 2 I review the Agile Software Methodology (ASD). ASD

is the popular solution that many are realising (Kim et al., 2021). It emphasises continuous

interaction with the customer, as the Agile methodology is a throughput-focused method

for providing value to customers as soon as feasible.

 17

2.1 Traditional software development methodologies

Software development methodologies are intended to provide frameworks to plan, exe-

cute, and manage processes for the development of software systems (Akbar et al.,

2017). There have been many methodologies adopted, including Waterfall, incremental,

prototyping, spiral, structured, object-oriented, RAD, and Agile methodologies. Each one

of these has its positives that are advocated and negatives which are criticized. The pur-

suit of improved methodologies is based on the attempt to achieve success and efficiency

in project delivery (Akbar et al., 2017). At times, the selection of a methodology may be

dependent on the marketing and research biases which support certain new or industry

practices, while at other times organisations can depend on standards for consistency

and repeatability (Akbar et al., 2017).

A broad overview of the history of software development reveals that the period up to and

including the 1960s was referred to as the "functional era", the 1970s as the "schedule

era", during which the Waterfall methodology was developed, the 1980s as the "cost era",

and the 1990s and later as the "efficiency and quality era" (Akbar et al., 2017). This 1990s

era came with many methodologies, including the Object-Oriented Software Develop-

ment (Akbar et al., 2017). Because software development firms are heavily dependent on

it due to the desirable results of software development approaches, software is becoming

more and more desirable and a significant source of revenue for businesses.

The most important decisions are made in the beginning during the design stage and

once the software system is well designed, the project then continues with the develop-

ment phase and therefore becomes very predictable. In this case, the development stage

of the software product follows what will be the “perfect” design of the system that was

predicted in the initiation of the project. Because the software’s main feature is specified

at the planning phase followed by the designing phase, planning is useful when the pro-

ject is complex, and the level of risk possibly higher. Some projects that are estimated to

take longer are often, even currently, still developed using traditional methodologies (Ak-

bar et al., 2017).

 18

The traditional methodologies of software development comprise of stages which means

that prior to entering the next stage the earlier one must be completed. At the end of each

stage prerequisite detail is acquired. That is the roadmap from both the side of the de-

signer and customer; it prompts and enables the discussions of traditional software de-

velopment methodologies that have created the present framework plans. In this literature

review, I trace back the development of the different software methodologies through the

years.

Tanzania is a developing economy where, similarly to RSA, their software development

industry is crucial to unlocking the Fourth Industrial Revolution. Figure 2.1 shows the dis-

tribution of traditional software methodologies per software product developed in Tanza-

nia.

Figure 2.1 The distribution of traditional software methodologies in Tanzania (Mushashu et al (2019)

In a Tanzanian survey by Mushashu et al. (2019), they discovered that the Waterfall

model was highest on the list of most adopted traditional software development method-

ologies totalling 21 software product outputs out of 51. “It is followed by the prototyping

which had 14 software products of the 51, and 7 of the software products were developed

using Rapid Application Development methodology” (Mushashu et al., 2019). Not a single

0

5

10

15

20

25

Waterfall Prototype RAD Incremental Spiral

Tanzanian Uptake

 19

one of the firms surveyed adopted the V-model development methodology, but they were

familiar with it (Mushashu et al., 2019).

There are however contrasting findings in different parts of the world. A survey conducted

by Akbar et al. (2017) shows a different picture than the one painted by Mushashu et al.

(2019) above.

Figure 2.2 below presents the distribution of traditional software methodologies globally

according to a survey conducted by Akbar et al. in 2017. The global economies surveyed

are China, Pakistan, and Saudi Arabia.

Figure 2.2 distribution of traditional software methodologies in Globally (Akbar et al., 2017)

In a world view, a survey by Akbar et al. (2017) shows that the V-model or V-shaped

model is the most used traditional methodology with over 40% of uptake within the pool

that was sampled. One may also bear in mind that the V-Model is an enhancement of a

Waterfall methodology that adds parallel testing with every cascading phase of the soft-

ware development (Wang et al., 2019). In the survey, they discovered that only 13.6% of

the participants still use the Waterfall Methodology. At 27.3%, the second biggest uptake

was the RUP (Rational Unified Process) which is based on the Unified Modelling Lan-

guage and is accredited to IBM. It is followed by the Spiral model at 18.2%.

0

5

10

15

20

25

30

35

40

45

Watefall V-Model Spiral Model RUP

Global Uptake

 20

2.1.1 Waterfall Software Development Methodology

Waterfall Software Development Methodology’s software engineering was an idea pre-

sented in a publication paper by Winston Royce in 1970. However, he cynically introduced

it as a flawed software development method that has vulnerabilities which may include its

inability to accurately predict and interpret the software testing (Royce, 1970). However,

it is natural that every methodology will have its advocates and critics. The Waterfall meth-

odology has had visible success which is evident through the sustained adoption and

implementation by many software companies. The building and hardware manufacturing

tactics that were in use in the 1970s can be linked to the concept behind the approaches.

This background results in a very organised approach to software development (McCor-

mick, 2012).

The Waterfall methodology, as the name itself signifies, is a sequential process of soft-

ware development. Reconcilable with actual Waterfall where water falls from one height

to another of lower latitude, the software methodology uses the same escarpment where

one phase completes its role then cascades to another phase until a complete software

product is produced. These cascading phases of software development in this methodol-

ogy include requirement specification, system design, integration, testing, implementation

and maintenance. Evidence shows that when software developing organisations adopt

the Waterfall Model, they usually spend a significant amount of time and effort in each

phase of the development to ensure that all the requirements for the phase are met. The

basis of the software development model philosophy is that spending considerable

amount of time in ensuring accuracy of the initial design is in a way of correcting bugs in

advance. Once the design phase has been completed, it becomes easier to code and

implement exactly what was designed and what the customer required without having to

change (except for maintenance at a later stage). In most organisations, usually the anal-

ysis, design and coding teams are split and each team focuses on their phase in the

fulfilment of the developmental process (McCormick, 2012).

The Waterfall methodology model emphasises documenting details for every step of all

the phases during the development of the software products. Other phases including that

 21

of testing can become overburdened by the amount of documentation such as test plans

which result in the phase having to have its own sub-phases that could be equivalent to

the overall project management tasks. Having this kind of a stern process can be seen

less progressive and inflexible in a world of rapid software development as the ‘fixed’

documentations will not allow added requirements and designs that may be forced by

new market inventions (Mushashu et al., 2019).

This methodology can then be more ideal in the development of projects where the final

product can be easily and completely predicted from initiation, where also the design will

not need major and continuous makeovers during development. When the customer has

supplied a detailed list of criteria that are unlikely to be changed, it is an obvious decision.

Regardless of the flaws, mentioned above, Waterfall also has the potential of ascertaining

development costs beforehand.

Figure 2.3 below, illustrates the cascading phases of a Waterfall Development Methodol-

ogy.

Figure 2.3 Waterfall Development Methodology (https://www.tutorialspoint.com)

The above figure represents the multiple phases that form a Waterfall Development Meth-

odology. In this methodology, one phase has to be completed before the next phase can

start. i.e., the requirements extraction phase has to be completed before specifications

documents can be created and this cascade continues until the software system is pro-

moted and ready to be used.

Requirements

Acceptance

Test-
ing

Coding

Design

Analysis

 22

From Winston W. Royce’s first introduction of the Waterfall methodology in 1970, it be-

came widely used in the field of software development. In the figure 2.3 above, the Wa-

terfall Development Methodology is illustrated and explained. It is presented with a well-

designed entity which outlines plans for the project. Once the structured planning is com-

pleted, the process becomes simpler and more effective, and this also applies to the rest

of the phases. The methodology consists of algorithms or flowcharts, which are intended

to plan out the functions that must be performed in order to complete one phase to an-

other. In the software development process, different programme models are used in the

planning of the various phases of developing software applications (Mushashu et al.,

2019). One such model is the Waterfall model.

2.1.2 Incremental Model

The incremental model is a methodology that dissects work into small builds which are

known as increments. Unlike the Waterfall methodology where the customer is presented

with the developed software right at the end, in this approach the customer is presented

with the developed work after each increment. This is to solicit feedback from customers

sooner so that reworks don’t have to include everything. A similarity between the Waterfall

and the incremental model is that the overall requirements are given and gathered in the

beginning of the development process. In incremental models, however, the customer is

enabled to update the requirements when each increment is presented until the last in-

crement which concludes their satisfaction (Alshamrani et al., 2015).

Figure 2.4 indicates how user requirements are broken down into multiple increments.

Figure 2.4 Incremental Software Development Model (Sabale et al., 2012)

 23

This model provides some Waterfall model attributes but in an iterative way. Furthermore,

the incremental model provides a linear sequence which delivers software in a piece-

meal method. The model aims at addressing basic requirements and core products in the

beginning or with the first increment. In this fashion, supplementary features (some

known, others unknown) are delivered in the remaining increments after getting custom-

ers’ feedback and confirmation. The incremental model continuously builds pieces of the

system until a full end-to-end system is completed while it is slowly adding increased

functionality (Alshamrani et al., 2015). In this way, each subsequent release will add a

function to the previous one until all designed functionalities are implemented and fulfil

the requirements.

2.1.3 Prototyping

The prototyping methodology was formulated to address Waterfall’s shortcomings and

limitations. When applying this methodology, the customer requirements are not frozen,

instead a dummy Prototype is created and built from the beginning in order for the cus-

tomer to guide if the build is following what they require. When prototyping, the same

phases as in the Waterfall are applied, except that they do not follow the stringent se-

quence (Tanvir et al., 2018). While the Prototype is being built, the user gets a real insight

into how the development team visualizes the final product and therefore guides them.

The continuous customer involvement is intended at ensuring that the realization of re-

quirements mismatch is identified early. Prototyping is a thorough demonstrative ap-

proach which is a feasible, large and complex software system development where full

and complete customer requirements may not be upfront. However, prototyping is often

not used, as it is perceived to be more costly than Waterfall (Khalifa et al., 2000).

Unlike the Waterfall methodology, prototyping focuses on the visualization of the full soft-

ware product instead of documenting what is expected of the final product. This method

has a potential to have the Prototype approved in advance if it meets the customer re-

quirements early (Tanvir et al., 2018). By allowing users to view and interact with a Pro-

totype, prototyping encourages more user participation and enables users to offer more

detailed and accurate feedback. The creation of the Prototype instead of focusing on the

 24

documentation can also reduce misunderstandings that come with reliance on natural

language (Sabale et al., 2012) and therefore the final product’s feel and performance are

also accepted.

In this research literature review I've described what Prototypes are, how the prototyping

process works, and how software development methodologies include prototyping for ex-

ploration, experimentation, or evolution. The software development methodologies that

use prototyping of some form are categorized in Figure 2.5 below, as well as how the

evolution of a Prototype occurs.

Figure 2.5 The evolution of a Prototype software development (Rodriguez et al., 2020)

In figure 2.5, Rodriguez et al. (2020) represent the evolution of a Prototype. In the process

flow above, an initial Prototype would be presented to the user for review and based on

the responses from the users, the Prototype would be modified accordingly until it be-

comes acceptable and accepted as complete. The core characteristic attributes of the

Prototype methodology are similar in different projects and different industries as gener-

ally identified by the researcher in the subject matter (Rodriguez et al., 2020).

2.1.4 Spiral model

Introduced in 1986 by Barry Boehm, it appeared in an article titled “A Spiral Model of

Software Development and Enhancement". Also known as the Spiral Life Cycle Model,

 25

it is another iterative form of software development model which can be ideal for pro-

jects posing higher risk. This methodology consists of multiple attributes sourced from

the Waterfall and Prototype methodologies. These multiple attributes are then arranged

in a spiral form as presented in the below figure. Every loop represents a development

phase. However, the number of loops are dependent on the size of the project (Krish-

nan, 2015). Figure 2.6 presents the Spiral model diagram where each loop has four

quadrants:

Figure 2.6 Spiral model diagram (Krishnan, 2015)

• In the first quadrant, the purpose is to express the development’s objectives and

the foreseeable constraints. In this quadrant, the development team is made to

comprehend the overall purpose of the project and provide inputs to eliminate pro-

ject constraints.

• In the second quadrant, the risks identified are dissected and analysed. This anal-

ysis includes the formulation of alternatives. Technical and operational issues are

prioritized, then the mitigation of the identified risks from the formulated future ac-

tions.

• The third quadrant shows the implementation of the actual development work. This

is where the product planned for in the above quadrants is put to work. This quad-

rant is also tasked with the testing of the developed product.

 26

• The fourth quadrant formulates a plan for the upcoming phase. It assesses the

progress and informs decisions after evaluating constraints. In this quadrant, the

developers have the option to continue to work on the project or to terminate it. If

problems were identified that could be resolved, those problems could be re-solved

and further steps could be planned. Similar phases are involved in subsequent

loops of spiral models. Here, analysis and engineering efforts are applied. This

type of life cycle is used for big, expensive, and complicated projects. A project

can be stopped if it is determined that it has a high risk of failure and cannot be

managed. Assessments at different phases can be done either internally or exter-

nally. When high risk analysis is required for a mission-critical project like launching

a satellite, the spiral model is ideal.

Spiral models are also referred to as meta-models since they combine the properties of

several SDLC models. Both Waterfall and Prototype models are taken into account in the

Spiral model. As I do software development in the Spiral model, I do so systematically

over a number of loops (similar to the Waterfall model) with a Prototype built after com-

pleting each phase and shown to the user (as in the Prototype model). The approach to

risk assessment and reduction as well as to follow a systematic approach are enhanced

in this way (Krishnan, 2015). In contrast to more traditional requirements-driven, model-

based, or other transformation-oriented approaches to software development, the spiral

model integrates risk into its approach. A risk management factor can be used to estimate

how much time and effort I am willing to devote to other project activities, including plan-

ning, change management, quality factors, formal technical reviews, and testing.

2.1.5 RAD (Rapid Application Development)

Like the previously mentioned evolutionary methodologies. Rapid Application Develop-

ment (RAD) was formed out of frustration with the Waterfall software design process,

which frequently resulted in solutions that were outdated or unproductive by the time they

were launched. James Martin originated the term "rapid application development" (RAD)

in his book "Rapid Application Development" in 1991. According to Martin, RAD is a de-

velopment lifecycle designed to deliver significantly faster development and higher quality

 27

outputs than the standard lifecycle. It is designed to fully utilise the most advanced devel-

opment software of the most recent generation. Martin identifies the four main compo-

nents of rapid development as tools, method, people, and management.

Additionally, he emphasises the RAD software development life cycle, which enables

companies to generate goods more quickly while simultaneously saving money and time.

He also stated that RAD is concentrating on building Prototype models as quickly as pos-

sible in order to obtain user input. The RAD methodology is time-driven rather than re-

quirements-driven, yet the software's functionality is defined by the concise requirements

and ongoing customer interaction (Akbar et al., 2017). Figure 2.7 below presents a Rapid

Application Development process that is evolutionary and a combination of both the Wa-

terfall and Prototype models.

Figure 2.7 Rapid Application Development process (Sabale et al., 2012)

As soon as the customer hand overs the requirements, they are briefly analysed and

designed. They then develop a Prototype that would be presented to a customer for their

guidance towards the fulfilment of their requirements and that is represented by the Pro-

totype cycle in figure 2.7. Once the Prototype fulfils the customer’s requirements, testing

is conducted followed by the deployment. Fundamentals of the RAD methodology thus

include:

• Choosing the most effective combination of techniques and specifying the steps to

take to get there.

 28

• To develop a final product, Prototypes are used, which are then transformed into

evolutionary models.

• Gathering requirements and reviewing design using workshops instead of inter-

views.

• Automating many of the techniques, as well as selecting tools that support the

model, Prototype, and code reusability.

• Time boxed development makes it possible for teams to rapidly construct the sys-

tem's core and refine it in subsequent releases.

• Outlining guidelines for success and describing pitfalls to avoid.

This incremental model is also known as the Rapid Application Development model. The

RAD paradigm's elements or functionalities are produced continuously, as if they were

small projects. The developments are given a set amount of time to complete, then deliv-

ered and built into a functional Prototype. Similar to a Prototype, this can quickly provide

something for the customer to view and use, as well as provide feedback on the delivery

and their requirements (Cosmas et al., 2018). However, RAD has its shortcomings as

follows:

• Relies on great team and individual performances to determine the needs of the

company.

• RAD can only be used to construct systems that can be made modular.

• Needs developers and designers with advanced skills.

• High reliance on scarce modelling abilities

• Not suitable for less expensive projects due to the high expense of modelling and

automated code generation.

2.2 Agile Software Development

There is adequate evidence of the universality of the problems in the software develop-

ment industry. There have also been numerous solutions that the industry and scholars

have formulated. Currently, Agile Software Development is the popular solution that many

are realizing (Kim et al., 2021). A throughput-oriented approach to delivering value to

 29

customers as rapidly as possible is known as an Agile approach. It can also be used as

a task management framework to apply familiar implementation approaches to the task's

completion. The software development industry is under a lot of pressure to provide soft-

ware quickly and affordably in order to preserve or expand its market dominance

(Hatcher, 2019). The main benefit of moving away from conventional approaches was

that they followed a paradigm that presupposed scope could be defined up front, a plan

could be put in place, and the plan could be executed with little change. This paradigm

assumed scope could be defined up front, a plan could be put in place, and the plan could

be executed with little change.

Being nimble is the quality of being able to move rapidly. The incremental and iterative

approach to software development lies at the heart of this software development meth-

odology. Self-organising and cross-functional teams collaborated to create the needs and

solutions (Moyo, 2021). It's a straightforward method of software development that has

been used since the 1990s. The heavyweight models, which were renowned for being

rigidly regulated, disciplined, and micromanaged, served as the foundation for the devel-

opment of this model (Moyo, 2021). Customer satisfaction is the most crucial element of

this strategy, and it may be reached by providing functional software at an inexpensive

price in a timely way (Moyo, 2021). As opposed to the Waterfall model, when the software

is provided over months, it is supplied in regular intervals. Agile modelling uses the many

working models that are presented to the customer as an indicator of progress. The soft-

ware product can readily be modified since it is created in small batches. There is a lot of

space for collaboration between businessmen and developers since needs from busi-

nesspeople arrive often. High emphasis is placed on the value of technical excellence

and software design (Hatcher, 2019). The software development team frequently has to

adapt to shifting conditions.

Agile modelling is a technique for modelling and documenting of software-based systems

that leverages practice. These procedures, which may be applied in more flexible ways,

have replaced traditional modelling approaches in software development projects. It

works in combination with numerous Agile methodologies such as extreme programming,

 30

Agile unified process, and Scrum models (Moyo, 2021). One of this model's greatest ben-

efits is its ability to adapt to shifting project needs. As opposed to other approaches, which

frequently result in wasted work, this assures that the development team's efforts are not

squandered (Moyo, 2021). The changes are quickly put into practice, which will save time

and work in the future. Because of the face-to-face communication and continual con-

sumer input, the development team and client have very few to no assumptions. The use

of natural language to document requirements allows for some uncertainty. As a conse-

quence, the client receives high-quality software in the quickest period of time feasible,

which pleases the client (Moyo, 2021).

The Agile paradigm has apparent benefits for small projects, but it can be challenging to

predict how much time and effort a large project would require throughout the software

development life cycle. There isn't much focus on design and documentation since the

demands shift so frequently. As a consequence, there is little possibility that the project

will deviate from its planned course. Another problem is that the project will be delayed if

the customer service person is unclear. Before their resources are merged with those of

seasoned developers, who are in a better position to make the decisions required for

Agile development, novice programmers have less flexibility to operate (Hatcher, 2019).

Scrum is a well-known Agile software development methodology. Scrum is a develop-

ment, delivery, and maintenance strategy for complex products. It's a paradigm for ap-

proaching difficult adaptive problems and delivering high-value products in a fruitful and

innovative way. Short project cycles, known as "Sprints" are used to plan, design, build,

test, review, and deploy a usable deliverable (Hatcher, 2019). Scrum is described as

"lightweight", "easily understood" and "tough to master". The Scrum framework is com-

prised of Scrum Teams and its associated duties, tasks, activities, objects, and guide-

lines. Every component of the framework serves a particular purpose and is crucial to the

adoption and success of Scrum. Scrum is defined by a small group of people who are

very adaptable and flexible. Scrum Teams iterate and incrementally deliver products,

maximizing possibilities for feedback. The Scrum Team is made up of a Product Owner,

 31

Development Team, and Scrum Master. Scrum Teams are also distinguished by their

capacity to self-organise and collaborate across departments.

In ASD, requirements are defined from the perspective of the user, commonly in the form

of User-Stories (Moyo, 2021). The User-Stories are sorted into a backlog and prioritized.

A backlog is just a list of User-Stories that have been prioritized. User-Stories are as-

signed to a set of interim releases from the backlog (refer to Table 1). One of the major

reasons companies are favouring the ASD is that customers can change their mind from

one release to the next in order to keep the value of the endeavour in line with business

and market realities (Hatcher, 2019). For simplification, the software releases are known

as Sprints and they are intended to deliver quality working product.

Figure 2.8 below is a generic User-Story template, which is how requirements are format-

ted in Scrum. These User-Stories are then put in the product backlog (Table 2.1) and are

regarded as tasks.

Figure 2.8 User-Story Template (Hatcher, 2019)

The above figure represents a structure of a User-Story that qualifies a software require-

ment to be a Sprint task. For a software requirement to become a User-Story, the tem-

plate above must be completed with the user role, goal and the benefit of the requirement.

A Sprint is a time-boxed release management practice where a product of the highest

possible value is created. It could take multiple Sprints to build enough value to deliver a

useful product to the customer in time for a release (refer to table 2.1). As outputs are

committed to manufacturing, value accumulates incrementally. Sprints are of short

 32

duration (usually two weeks to one month) in which full specification, development, and

testing are completed. In other words, a single iteration contains the entire development

cycle.

Every Sprint lasts the same amount of time (#Sprint a month). User-Story completion

can be monitored during Sprint execution to track specific progress. User-Stories can be

tracked inside a Sprint with associated status using software tools. The tracking and man-

agement of Sprints and User-Stories are shown in Table 2.1.

Table 2-1 Tracking, prioritization of User-Stories towards the satisfaction of customer requirements.

User-Stories Sprint Ready Priority Status Sprint

1 Yes Medium In Progress 1

2 Yes Low Complete 1

3 No Low In Progress 1

4 Yes Medium To do 2

5 Yes High To do 2

6 Yes High To do 2

In table 2.1 above, the User-Stories are broken down into tasks and are allocated into

Sprints. These allocations are also based on the prioritization of the tasks and are a piece-

meal towards the achievement of a working software. The Sprint column shows that the

first three User-Stories are allocated to the first Sprint and are to be done within two

weeks, then the remaining three User-Stories are to be done in the following Sprint.

Below I present a real-life example of an ATM withdrawal customer requirement into a

Scrum process of fulfilling the user requirements. Instead of having a detailed require-

ments specification that will include all the functionalities of the ATM system, a piece-

meal approach is used, and, therefore, only one function (withdrawal) is analysed, devel-

oped, tested and presented to the user at the time.

2.2.1 Example 2.1

In the practical examples below, I will use a withdrawal User-Story that will be simplified

in a step-by-step process towards achieving a functional ATM system.

 33

Requirement (User-Story):

1. As a bank customer

I want to withdraw cash from my bank account through ATM

So that I have access to my money at more places.

2. Acceptance criteria:

• The customer must be in possession of a valid bank account as well as a valid

bank card

• Cash withdrawals can only be made once the customer is logged in.

• System checks to see if the request amount exceeds the balance.

• If so, the system displays the balance and asks the user to enter a new amount.

• If amount entered is less than the account balance, cash is dispensed, and the

new balance is displayed.

The User-Story in Example 2.1, therefore, becomes the only specification at the time that

is given to the developers and after it passes the testing or quality gate, it is presented to

the customer for acceptance. This approach assists the delivery by keeping the customer

informed about the tangible progress towards the fulfilment of their requirements and

complies to an Agile principle of being able to add and modify requirements in real-time.

Having discussed Agile Software Development’s purpose, advantages and disad-

vantages above, I next discuss DevOps which is an Agile practice that embeds software

development into the broader business operations in an effort to have thoroughly sup-

ported software systems that talks to everyday business needs (Masombuka, 2020).

2.2.2 DevOps

There is also a newly found appreciation for both the production and the afterlife of a

software product beyond its release. This appreciation insists on a collaboration between

the software development and business operations, thus known as DevOps. The devel-

opment team works with code, whereas operations personnel work with live systems and

are frequently in contact with clients. DevOps combines both of these skill sets. Others in

the industry feel the word refers to new development, testing, release, support, and met-

rics collection requirements. This standardization sanitizes the re-lease and support

 34

processes for many businesses. Collaboration, automation, measurement, information

sharing, and the use of online services underpin DevOps (Erich et al., 2014). The links

between DevOps features and software quality attributes are depicted in Figure 2.9.

Figure 2.9 Relationship between DevOps features and software quality (Mishra et al., 2020)

It is worthwhile to look at DevOps’ continuous delivery and software for on-time comple-

tion with quality since it is an element of fundamental relevance for its success. Continu-

ous delivery entails streamlining and automating the deployment process (Mishra et al.,

2020). Within the DevOps context, continuous delivery can be utilised to help in product

delivery.

Every organisation's culture has an impact on how workers work and share responsibility

for the end product's quality. Shared duties, open communication, trust, and mutual re-

spect are all important aspects of the DevOps culture. When it comes to quality assur-

ance, the interaction of these components is crucial. Figure 2.10 shows an overview of

the DevOps process from the point of view of the software architect.

 35

Figure 2.10 The DevOps process (Malassu, 2020)

The process in figure 2.10 is only defined as a goal to reduce the time between changes

made to the code and deploying the code into production (Malassu, 2020). This definition

does not specify which methods should be used in order to work towards this goal, which

is in contrast to many other common definitions that tend to emphasise the connection

between DevOps and Agile methodology.

Quality assurance is critical in bridging the gap between development, operations, cus-

tomer service, and the customers themselves. It is critical that enterprises, or anyone

advocating for a DevOps transformation, do not view DevOps solely through the lens of

development, which is where DevOps is predominantly geared (Masombuka, 2020). Until

recently, software development and operations were viewed as two distinct disciplines.

The research on DevOps demonstrates that researching the two together has some rel-

evance. This is due to the fact that many companies are reintegrating development and

operations. I recognize that academic research should not be largely influenced by indus-

try trends, which are frequently the topic of hype. Academic research, on the other hand,

should complement industry innovations by locating information that supports or refutes

the value proposition of these developments (Masombuka, 2020). The below figure 2.11

presents the pre-deployment (Dev) and the post-deployment (Ops) phases/tasks.

 36

Figure 2.11 DevOps process model (Masombuka, 2020)

The above figure presentation of the pre-deployment and post-deployment tasks indi-

cates the unending cycle that integrates software development and operations.

In the practical example relating to the ATM User-Story Example 2.1 above, the following

Example 2.2 I will still use a withdrawal User-Story to show how DevOps work and non-

DevOps environments work.

Team A: Develops and delivers an ATM withdrawal function and hands it over to Team B

Team B: Is responsible for the support and maintenance of the ATM withdrawal function

once it is deployed.

• Team B is likely to become frustrated in their task to maintaining a system that they

only have an idea why it was built. It will still take a long time for them to be com-

fortable and know the functions of the system.

• There is likely to be continuous conflicts between Team A and Team B, with both

parties accusing each other and defending their work.

In the non-DevOps environment’s picture painted above, the exemplary difference with

the DevOps is that Team A and Team B will be collapsed and only one team will develop,

support, and maintain systems and their functionalities.

With DevOps being relatively new, it has come at an expense of many misunderstand-

ings. Below I have listed three major myths (Kim et al., 2021).

 37

Myth 1— DevOps replaces Agile: DevOps ideas and practices are consistent with Agile,

and many people believe DevOps is a natural progression from the Agile journey that

began in 2001. Many challenges related with configuration and release management pro-

cesses are solved as processes become completely automated. (e.g., keeping the con-

figuration management database and definitive software libraries up to date).

Myth 2— DevOps and information security and compliance are incompatible: Information

security and compliance professionals may be concerned about the lack of traditional

controls (e.g., segregation of duties, change approval processes, and manual security

reviews at the conclusion of the project). That isn't to say that DevOps firms don't have

strong controls in place. Instead of performing security and compliance operations at the

end of a project, controls are integrated into every stage of everyday work throughout the

software development life cycle, resulting in improved quality, security, and compliance.

Myth 3— DevOps stands for "NoOps", meaning the elimination of IT operations. Many

people misunderstand DevOps to mean that the IT Operations department has been com-

pletely eliminated. This is, however, a rare occurrence. While the type of IT Operations

job may vary, its importance remains constant. IT Operations works with Development

far sooner in the software life cycle, and IT Operations continues to collaborate with De-

velopment even after the code has been delivered to production.

IT Operations (together with QA and Infosec) become more like Development when it

comes to product development, with the product being the platform that developers utilise

to work safely, rapidly, and securely. DevOps has allowed for the creation of a world in

which product owners, development, QA, IT Operations, and Infosec collaborate not just

to aid each other, but also to ensure the overall success of the organisation (Kim et al.,

2021). Development is concerned not only with adding user features, but also with ac-

tively ensuring that their work flows easily and regularly across the full value stream, with-

out causing confusion or disruption to IT Operations or any other internal or external cus-

tomer.

 38

Testing and Infosec activities occur only at the end of a project, too late to address any

flaws detected; and practically any key action needs too much human labour and too

many handoffs, leaving critical chores until the end. I looked at the manufacturing revolu-

tion of the 1980s to better grasp the possibilities of DevOps. Manufacturing companies

improved plant efficiency, customer lead times, product quality, and customer happiness

by using lean principles and practices, allowing them to compete more effectively (de

Vries et al., 2016). Prior to the revolution, the typical wait time for orders at manufacturing

plants was six weeks, with less than 70% of orders being shipped on time. Average prod-

uct lead times had fallen to less than three weeks by 2005, thanks to widespread adoption

of lean methods, and more than 95% of orders were fulfilled on time (Kim et al., 2021).

Organisations that did not adopt lean practices lost market share, and some even went

out of business. What was acceptable in prior decades is no longer acceptable.

According to Kim et al. (2021), by the 2000s, breakthroughs in technology and the adop-

tion of Agile concepts and practices had reduced the time necessary to develop new

features to weeks or months but deploying them into production still took weeks or

months, frequently with disastrous results. "Every industry and corporation that is not

bringing software to the core of their business will be disrupted", said Jeffrey Immelt, the

former CEO of General Electric. More than ever, how I manage and do technological work

determines whether or not I will succeed in the marketplace, let alone survive. IT Opera-

tions will be in charge of providing clients with stable, reliable, and secure IT services,

making it difficult, if not impossible, for anyone to make production adjustments that could

affect output.

I used to embrace approaches like structured programming, which foretold failure and left

people helpless to modify the outcome. Burnout, with its accompanying feelings of ex-

haustion, cynicism, and even hopelessness and despair, was often the result of this im-

potence. Many psychologists believe that one of the most harmful things I can do to fellow

human beings is to create institutions that generate emotions of powerlessness. Instead

of project teams that are reassigned and shifted around after each release, never receiv-

ing feedback on their work, DevOps necessitates that I maintain teams intact so that they

 39

may continue iterating and improving and using what they've learned to better achieve

their goals. Controlled, predictable, reversible, and low-stress releases are also available.

It's not just feature releases that are calmer; all kinds of issues are discovered and fixed

earlier when they're smaller, cheaper, and quicker to fix. They spent 50% less time re-

solving security concerns by incorporating security objectives into all phases of the de-

velopment and operations processes (Kim et al., 2021).

DevOps, on the other hand, demonstrates that with the correct architecture, technical

processes, and cultural standards in place, small teams of developers can build, inte-

grate, test, and release changes into production fast, safely, and autonomously. DevOps-

adopting companies can raise the number of releases each day linearly as the number of

developers increases, as Google, Amazon, and Netflix have done.

2.2.3 DevOps in Agile

The design phase has been replaced in Agile by a less cyclic, democratic development-

to-deployment process. Simultaneously, engineering prowess enables teams to auto-

mate much of the tracking that previously needed 24/7 staffing of human system monitors,

improving the work-life balance of engineers all around the world. The primary motivation

for automating was to collect performance information for benchmarking and stress toler-

ance. Those who did adapt were compelled to shift roles away from the traditional devel-

opment/QA/support architecture and form more collaborative teams to design fault-toler-

ant systems with a functionally unlimited life cycle (Roche, 2013).

DevOps' emphasis on continuous deployment necessitates a development organisation's

ability to achieve appropriate quality in the short time between a source-control submis-

sion and a release. This means that deployment must be undetected to users, who may

have their software version altered out from under them in the middle of a session. It also

implies that any issues that arise over the course of such a covert roll-out will be ad-

dressed quickly and effectively. The most beneficial contribution of the DevOps culture

appears in the software support position to a greater extent and embedding the

 40

accompanying culture throughout the product lifecycle pushes valuable enhancements

all the way back to the application design phase (Roche, 2013).

The testing schedule should evolve away from the archaic Waterfall approach and toward

one that recognises the value of testing and release simulation. This enables DevOps to

encourage a programmatic study of client scenarios or User-Stories. Extending proactive

client scenario analysis should effectively automate the range of use-case paths that a

user might (and, perhaps more significantly, is likely to) encounter (Masombuka, 2020).

As a result, cantankerous roles have almost no place in a Scrum Team, and everyone’s

goal is to have a production environment that is also used as a QA environment. Figure

2.12 shows the DevOps in an Agile ecosystem.

Figure 2.12 DevOps in Agile ecosystem (Roche, 2013)

This above ecosystem shows the continuousness of both the pre-deployment (Dev) and

post-deployment (Ops) activities (Roche, 2013). Figure 2.12 emphasises on the continu-

ousness of the process of software development that goes beyond the release of the

software product. From figure 2.12, I have extracted the following practices:

• The development and testing is collaborative.

• The end-to-end testing of the features is automated.

• The software release is continuous, and the deployment can be done at any time.

• Version control takes priority in managing the frequent releasing of features.

• The production environment is proactively monitored, and continuous feedback is

shared with everyone for the purpose of continuous improvement.

 41

As an illustration, using the continuous deployment methodology, a bank's value-added

service loan to customers could be released to production at any time after Christmas,

ensuring that the feature or value-added service package is kept ready to go-live and

made available after Christmas via a feature toggle.

In the following topic, I discuss Scaled Agile Framework (SAFe) which is an enterprise

level Lean-Agile practice. This framework is divided into three segments Team, Pro-

gramme and Portfolio which will be discussed.

2.2.4 Scaled Agile Framework (SAFe)

The Scaled Agile Framework aims to include lean concepts and Agile techniques at the

enterprise level. To maximize the advantages of the Agile methodology, a number of

frameworks have been put out to give guidance for expanding Agile development across

the organisation. The Scaled Agile Framework is a relatively new and well-known para-

digm (SAFe). Despite these concerns, SAFe has quickly acquired traction in the software

development community and has emerged as a viable option for firms looking to scale up

Agile development (Turetken et al., 2017). It addresses scalability by scaling up "some"

Agile principles in addition to linking new practices and concepts with basic and scaled

Agile activities (such as release train, business, and architecture epics, and portfolio back-

log). The benefits it seeks to provide include a speedier time to market, more productivity

and quality, lower project costs, and decreased risks (Turetken et al., 2017).

Even though some of these advantages have allegedly been proven by successful SAFe

adoptions, most of these tales are self-reported and have a limited scope. Academic study

is required since SAFe is being used more and more in business and practice. A review

of the main SAFe sources, however, indicates the absence of a clear roadmap to guide

firms through the necessary SAFe adoption and preparation. Instead, rather than provid-

ing any particular implementation strategy or method, the SAFe focuses entirely on iden-

tifying the best practices, roles, and artefacts of Agile and lean concepts. Companies

trying to implement SAFe may find it difficult to set priorities and take charge of efforts to

use Agile and SAFe approaches.

 42

SAFe aims to integrate the existing bodies of work from Scrum, XP, lean, and Product

Development Flow. In conclusion, there are three levels in the framework: team, pro-

gramme, and portfolio. These three levels have fictitious borders that work as a model for

separating their differences in scope and size. At the team level of the framework, Agile

teams are in charge of planning, creating, and testing software in fixed-length iterations

and releases. On this level, the SAFe framework blends Agile technological techniques

with Agile project management concepts like Scrum and XP. User-Stories, for example,

are an XP notion, whereas Sprint Planning and daily stand-ups are standard Scrum com-

ponents. Each iteration adopts a ‘Definition of Done' and retrospectives. To promote bet-

ter integration among teams, teams operate on the same cadence and iteration lengths.

These Agile teams are usually made up of nine people (Turetken et al., 2017).

The SAFe Enterprise Levels, shown in Figure 2.13, are a visual depiction of the frame-

work that may be used as both an organisation and a process model for Agile require-

ments practices.

Figure 2.13 SAFe levels and teams

In summary, the framework is divided into three levels: team, programme, and portfolio.

The composition of these levels is also shown in Figure 2.13. These three levels have

artificial borders that serve as a model for abstracting the scope and size between them

(Gustavsson, 2019).

S
A

F
e

 L
e

v
e

ls

Team
Development

Team
Multiple Scrum

Teams

Program
Multiple Scrum

Teams
Program

Management

Portfolio
Program

Management
Enterprise

Management

 43

1. Team Level

SAFe takes a multi-team approach to enterprise software scaling. Many teams collabo-

rate with one another in a mutually beneficial way. But, regardless of the responsibilities

assigned to each team, each team is Agile by nature (Gustavsson, 2019).

Each Scrum Team consists of 5-9 persons working toward a programming goal, as is

typical of Scrum Teams. Once every two weeks, a Systems Team, also known as a De-

sign Build Test (or D/B/T) Team, is in charge of testing and delivering software.

A "Sprint" is defined as a two-week span. During a Sprint, each team uses Extreme Pro-

gramming (XP) methodologies to deliver their share. SAFe varies from standard Agile in

that teams are interconnected, and Sprints can happen at the same time. One of SAFe's

distinctive goals is to establish a perceived rhythm that synchronizes the progress of all

teams. In the team programming environment, the goal is to encourage consistency over

variety.

Figure 2.14 presents a practical example of a Team Level structure.

Figure 2.14 Example of a Team Level

In figure 2.14:

• Scrum A: Is responsible for the withdrawal function of the system.

• Scrum B: Is responsible for the deposit function of the system.

Although these teams are responsible for developing and supporting different functions

in the ATM system, a Scrum of Scrum (SoS) is initiated where both these teams discuss

their developments and impediments faced, particularly the code that may have a level

Scrum of Scrum

Scrum Team A Scrum Team B

 44

of integration. Not every member of Scrum A and B belongs to the SoS, but the a few

members particularly the Scrum Masters are chosen to represent the different teams.

2. Programme Level

An Agile Release Train is made up of three to five teams working together on a piece of

software for a Programme Iteration (PI). During a PI, it is the principal vehicle for deliver-

ing value. Within the programme, the PI is a greater unit of measurement. A PI has nu-

merous teams who were timed to complete a Sprint synchronously, whereas a single

Sprint has only one team generating one component of the software system. The Inno-

vation and Planning Iteration (IP), which occurs at the end of the PI, affects all of the

development (Gustavsson, 2019). All of the work done during the PI is tested and dis-

played, and there is an Inspect and Adapt session.

Figure 2.15 presents an example of a Programme Level structure.

Figure 2.15 Example of a Program Level

In the programme level an SoS dealing with the ATM functionality, an SoS dealing with

backend from a programme group working in sync on a piece of software development

for a Programme Iteration (PI). The programme group consists of different SoSs that de-

velop different end-end functionalities of the software systems.

3. Portfolio Level

The Portfolio is made up of various value streams that have been grouped together.

Through issues like strategy, investment finance, programme management, and govern-

ance, it is linked to the total enterprise software.

Programme
Group

ATM
Functionality

SoS

ATM
Middleware

SoS

ATM Backend
SoS

 45

Each subject aids in overall budget planning for a six to twelve-month period. The devel-

opment needed to realise themes is defined by large development activities from many

programmes within the company (Gustavsson, 2019).

Figure 2.16 presents a practical example of a Portfolio Level structure.

Figure 2.16 Example of a Portfolio Level

This is at an enterprise/organisational level where different programme groups plan, strat-

egise, and budget. In addition to the ATM Programme Group, the portfolio group may

include Web/Online Banking Programme Group and Mobile Banking App Programme

Group.

Many businesses have adopted the SAFe framework since its 2011 introduction, and

they've written white papers or technical reports about their experiences with it. In a cou-

ple of months, these claims assert that they have improved in a number of areas, includ-

ing greater ROI, 20–30% faster time to market, 40–50% fewer post-release problems,

better alignment with customer demands, and a 20–50% increase in productivity (Turet-

ken et al., 2017). Turetken et al.’s (2017) research additionally includes issues like the

need to define the right degree of requirement information at the right point in the lifecycle

and the need to maintain releasability throughout the development lifecycle owing to late

defect discovery.

According to the studies, good release planning requires proper preparation, orchestra-

tion, and facilitation of remote programme events. The results also confirm that geograph-

ically dispersed teams have reduced productivity as a result of a lack of alignment and

programme execution (Turetken et al., 2017). According to Version One and Collabnet's

Portfolio Group

ATM Programme
Group

Web/Online Banking
Programme Group

Mobile Banking
App Programme

Group

 46

12th State of Agile Report, SAFe is now the most frequently used large-scale Agile frame-

work, with a use rate of 29%. According to Scaled Agile Inc., there are 300,000 SAFe-

certified practitioners in 110 countries, and SAFe-certified experts work for 70% of For-

tune 100 firms. In practice, enterprises are unable to fully implement Agile development

principles in a short amount of time. Maturity models can help businesses by pointing

them in the right direction when it comes to practices and how they should be adopted

and implemented (Turetken et al., 2017).

A maturity model is a theoretical framework made up of a collection of best practices that

help businesses enhance their operations in a certain area. The main objective of mature

models is to illustrate the stages of development. Maturity models are generally held ideas

about how an organisation's capabilities develop in a stage-by-stage way along a desired,

logical path. They are based on the assumptions of predictable patterns of organisational

growth and change. Generally speaking, maturity models are distinguished by a finite and

arranged hierarchy of maturity levels, each of which describes the traits or actions nec-

essary to reach that level.

2.4.5 Scrum

Scrum is a methodology for managing projects, while Agile is a way of thinking (Bhavsar

et al., 2020). When you switch to the Agile Software Development Methodology, your

entire team must be committed to re-evaluating how they provide value to their clients.

You may start thinking in this way by using Scrum to apply Agile ideas to your regular

communication and work (Baham, 2019). Scrum is a heuristic framework built on contin-

uous learning and situational adaptation. It acknowledges that at the beginning of a pro-

ject, the team is in the dark about everything and will pick things up along the way. With

built-in prioritization and quick release cycles, it's intended to let teams adjust naturally to

changing circumstances and user requirements so that your team can continuously learn

and get better (Bhavsar et al., 2020).

The core Scrum process components and roles are defined below.

 47

Table 2-2 Scrum process components and roles (Bhavsar et al., 2020)

Process

Components
Definition

Daily Scrum Meetings A meeting when the Scrum Team shows what they accomplished

during the Sprint.

Sprint Backlog A list of the Product Backlog items the team commits to delivering

plus the list of tasks necessary to delivering those Product Backlog

items.

Product Backlog A prioritized list of desired product functionality.

Increment A concrete steppingstone toward the Product Goal.

Sprints The intervals into which the development process is divided.

Sprint Planning

Meetings

A meeting where the Product Owner describes the highest priority

features.

Sprint Reviews A meeting when the Scrum Team shows what they accomplished

during the Sprint. Typically, this takes the form of a demo of the new

features.

Sprint Retrospectives A brief, dedicated period of time set aside at the end of each Sprint

to deliberately reflect on how the team is doing and to find ways to

improve.

Roles Description

The Development

Team

Professionals who do the work of delivering a potentially releasable

increment of “Done” product at the end of each Sprint. These pro-

fessionals mainly consists of Business/System Analysts, Develop-

ers and Testers.

Product Owner A person who is responsible for maximizing the value of the product

and the work of the Development Team.

Scrum Master A person who is responsible for ensuring Scrum is understood and

enacted.

 48

At this stage, I present a figure Scrum process flow. Figure 2.17 provides an overview

picture of a full Sprint. The Sprint is a piece of a project broken down into a two-week

iteration. The product backlog becomes the broken-down piece of requirement that the

Development Team will convert into a Sprint Backlog and finish within the two weeks

timebox (Bhavsar et al., 2020).

Figure 2.17 Scrum process flow (Bhavsar et al., 2020)

A Scrum process flow for a work item is shown in Figure 2.17. Work items are initially

pushed into the Product Backlog. The Development Team adds work items to the Sprint

Backlog in order to achieve the Sprint's DoD (Definition of Done). Completed work items

are confirmed during Sprint Review and then provided as a product increment (Bhavsar

et al., 2020).

2.4.5.1 A day in Scrum environment

Below, I portray a picture of how a typical day of a Scrum’s Development Team and a

Scrum Master unfolds.

 49

Figure 2.18 Illustration of a Development Team gathered around the Sprint Backlog board (https://watisscrum.nl/sprint-back-
log/)

08:30am As per figure 2.18, the Development Team gathers around the Sprint Back-

log/User-Stories board and each one of them updates their allocated User-Stories’ sta-

tuses (To do, Doing, Done)

8:32am The Development Team holds a daily Scrum meeting, where each individual an-

swers the questions:

Table 2-3 Daily Scrum's questions and typical answers from the Development Team

Questions Typical Answers

What did you do yesterday? I completed 50% of the User-Story’s GUI

development.

What will you do today? I will complete the remaining 50% of the

User-Story’s GUI development.

Are there any impediments in your way? Yes, the database team has not com-

pleted migrating the data and therefore in-

tegration cannot be finalized.

8:45am The daily Scrum meeting ends, and members of the Development Team go back

to ensuring they fulfil their commitments.

8:46am The Scrum Master collates the impediments, including defects.

9:30am The Scrum Master meets with other Scrum Masters in what is known as the

Scrum of Scrums (SoS) in discussing each team’s progress towards the completion of a

shippable software product.

During the day The Scrum Master ensures that the Development Team’s impediments

are removed.

 50

During the day The Development Team attends to the iterative tasks from the Sprint

Backlog. These tasks include coding and testing of the User-Stories that will ultimately

form shippable software products.

2.3 Summary

In chapter 2, I presented a literature review on Traditional Software Development Meth-

odologies and Agile Software Development techniques. In the traditional methodologies,

I selected to focus on five specific methodologies that were found to be most popular in

surveys conducted by Akbar et al. (2017) and Mushashu et al. (2019). This was to high-

light how software development methodologies have evolved through time and how they

have assisted software systems to advance to where they are right now. Following the

discussion on the historic traditional methodologies, I then focused on the Agile Software

Development which largely forms part of the dissertation.

2.4. Conclusion

Over the recent years, Agile Software Methodologies have shown a consistent rise in

adoption (Hatcher, 2019). Most of the software industry’s efforts have been dedicated to

the cultivating of this methodology instead of formulating new methodologies. Research-

ers have chosen to cultivate ASD and come up with enhanced techniques that can apply

to different environments. Techniques like DevOps and SAFe are for the incorporation of

other enterprise structure into Agile as the agility concept has become useful beyond the

development of software. Although there has been a significant uptake of Agile Software

Development, the traditional methodologies are still largely prevalent in the software de-

velopment industry. The WSD and V-Model are particularly still used in 55% of the organ-

isations surveyed by Akbar et al. (2017). In this survey, the researchers take into consid-

eration that these two methodologies are significantly similar and therefore the prevalence

of one is somehow seen as correlative.

In the following chapter, I explore the Formal Methods literature, as I attempt to identify

to what extent Formal Methods can be implemented in an Agile Software Development

methodology.

 51

3. Chapter 3: Formal Methods

Following the Chapter 1 introduction, Chapter 2 contained timeline work on the different

traditional software development methodologies and Agile Software Development (ASD)

techniques. The ASD has evolved rapidly in recent years (Hatcher, 2019) with new tech-

niques and versions being introduced regularly. The ASD therefore should not be seen

as absolute, as continuous improvement remains a permanent feature of this methodol-

ogy.

Formal Methods (FM) is a set of mathematical approaches for formally specifying and

deriving a programme from its specification, which I examine in Chapter 3. Formal Meth-

ods can be used to formally express the requirements of a proposed system, to derive a

programme from its mathematical specifications, and to offer proof that the actual pro-

gramme meets those criteria. They've mostly been used in the sphere of safety-critical

applications (O'Regan, 2020).

3.1 Introduction

It has long been believed that Formal Methods are the best way to assist the software

industry produce more reliable and trustworthy software. Despite this firm conviction and

several individual success stories, there doesn't seem to be any appreciable change in

the development of industrial software. The software industry as a whole is actually de-

veloping quickly, and the gap between what Formal Methods can do and standard soft-

ware development practice does not seem to be closing (in fact, it could be expanding)

(Huisman et al., 2020). Using Formal Methods for large software systems represents

mathematical soundness, i.e., a method that can be proven. Formal Methods are report-

edly not well adopted by industry practitioners despite considerable advancements in the

FM field over a long period of time and compelling evidence of their benefits (Nemathaga

and van der Poll, 2019). This issue has been the subject of several hypotheses, some of

which contend that they increase the time of the software development cycle, necessitate

difficult mathematics, require inadequate tools, and are incompatible with other software

 52

products. There is scant evidence to support any of these claims (Nemathaga and van

der Poll, 2019).

3.2 Implementing Formal Methods

Formal Methods (FMs) denote the use of discrete mathematics and logic to develop prov-

ably correct, or at least highly dependable software. One of the aims of the use of FMs is

to eliminate ambiguity and uncertainty of natural language specifications by expressing

constructs and operations using mathematical logic symbol formulas or formal diagrams

with clear meaning. In terms of formal specification languages, examples include lan-

guages that use mathematical symbols and letters, such as logical or process algebra,

and schematic specification languages, such as state-diagram (Bowen, 1996). The term

"formal verification" refers to the use of mathematical and logic verification methods to

determine whether or not the system design and requirements created using the formal

specification process are met.

Every formal approach has a distinct relevant domain, and the results may be obtained

by using it in this area. Furthermore, as noted in the preceding section, the ease of use

should be addressed for the application, as well as numerous concerns such as the se-

lection of a dependable tool to support the formal approach.

One of the successful formal methods is Z, a formal specification language based on first-

order logic and a strongly-typed fragment of Zermelo-Fraenkel set theory (Enderton,

1977).

• The idea to construct a Z Schema of the system is to specify a model with the

below characteristics (Spivey, 1998):

- high level

- idealized details

- does not detail implementation specifics.

• A model of the system consists of (Spivey, 1998):

- description of system state space

- description of system operations.

- Natural-language prose.

 53

An important part of a formal specification is to also describe it in natural language for the

sake of users who may not be proficient in the use of mathematical formalism.

3.3 Formal specification using Z

A Z specification is developed using the Established Strategy (ES) for constructing and

presenting a specification. The ES consists of the following steps (van der Poll and Kotze,

2005):

1. Natural language description and basic types

2. Definition of the State Space

3. Initial state of the system and proof that such state exists, i.e., it can be realised.

4. Operation Schemas

5. Calculate the precondition of each abstract operations on the state.

6. Table showing all the partial operations together with their inputs, outputs and pre-

conditions.

7. Definition of all schemas that present error conditions.

8. Use the Z schema calculus to make all the partial operations total (robust).

Next, we illustrate the use of Z in terms of the ES through developing a specification of

which the functionality is to maintain a phone book with the names and phone numbers

of people.

3.3.1 Natural language description and basic types

As per the ES, the first step is to define the basic types to are to be used in the system.

Basic types in Z serve much the same purpose as types in a programming language, e.g.,

Integer, String, and so forth.

Our basic types are:

[NAME, PHONE]

NAME represents the set of all the names that could ever be entered into our phone book,

while PHONE represents the set of all the possible phone numbers.

 54

Although a person may have more than one phone number and/or a phone number may

be shared amongst multiple persons, for the purposes of this example; we assume that

that is never the case.

3.3.2 Definition of the State Space

Our phone book state space may be defined by the following schema.

(Assume that NAME is a set of names, and PHONE is a set of phone numbers.)

 PhoneBook

known : ℙ NAME

tel : NAME ⇸ PHONE

known = dom tel

Z Schema 3.1 PhoneBook state-space schema

• The declarations part of this schema introduces two variables, called components

in Z: known and tel.

• The component known represents the set of all the names presently in our phone

book. Since it is a set of names, it is of type ℙ NAME, i.e., it is a subset of NAME.

• This variable will be used to represent all the names that we know about — those

that we can give a phone number for.

• The value of tel will be a partial function from NAME to PHONE, i.e., it will associate

names with phone numbers.

• The declarations’ part is separated from the predicate part by the horizontal line.

• The predicate part contains the following invariant:

- The domain of tel equals the set known.

3.3.3 Initial state of the system and proof that such state exists.

 InitPhoneBook

PhoneBook′

name′ = ∅ ∧ phone′ = ∅

Z Schema 3.2 InitPhoneBook schema

 55

Z Schema 3.2 represents the initialisation of the PhoneBook where the NAME and

PHONE are still empty sets.

Proof:

⊢ PhoneBook ′ ⦁ InitPhoneBook (3.1)

(3.1) presents that a state can be realised such that it satisfies the requirements of Init-

PhoneBook. I then need to show:

⊢ ∃ known′ : ℙ NAME; tel′ : NAME ⇸ PHONE |

known′ = ∅ ∧ tel′ = ∅ (3.2)

The proof of (3.2) follows trivially since the empty set values are specified in schema

InitPhoneBook. The proof indicates there is indeed an initial state from which the system

may start. The proof follows trivially, since the empty set values are specified in schema

InitPhoneBook.

3.3.4 Operation Schemas

• In specifying a system operation, we must consider:

- the objects that are accessed by the operation, and of these:

1. the objects that are known to remain unchanged by the operation (cf.

value parameters).

2. the objects that may be altered by the operation (cf. variable parame-

ter).

- the pre-conditions of the operation, i.e., the conditions that must be true

for the operation to succeed.

- the post-conditions —the conditions that hold after the operation, pro-

vided the pre-condition was satisfied before the operation.

Below is a schema to add a name and phone pair to the phone book.

 56

 AddName

Δ PhoneBook

name? : NAME

phone? : PHONE

name? ∉ known

tel′ = tel ∪ {name? ↦ phone?}

Z Schema 3.3 AddName schema for altering PhoneBook

• This schema accesses PhoneBook and may change it (viz. Δ).

• Two inputs: a name (name?) and phone number (phone?).

• Pre-condition: the name is not already in the database.

• Post-condition: tel after the operation is the same as tel before the operation with

the addition of maplet name? ↦ phone?

• Appending a ′ to a variable means ‘the variable after the operation is performed’.

Next is a Z schema specifying the lookup operation:

 Find

Ξ PhoneBook

name? : NAME

phone! : PHONE

name? ∈ known

phone! = tel(name?)

Z Schema 3.4 Find schema for searching the PhoneBook
• Return to the telephone book example and consider the ‘lookup’ operation: we

put a name in and get a phone number out.

- this operation accesses the PhoneBook state.

- it does not change it (viz. Ξ).

- it takes a single ‘input’ - a name for which we want to find a phone num-

ber.

- it produces a single output —a phone number.

- it has the pre-condition that the name is known to the database.

 57

The preceding schemas illustrate the following Z conventions:

• placing the name of the schema in the declarations part ‘includes’ that schema—

it is as if the variables were declared where the name is (cf. the well-known ob-

ject-oriented inheritance).

• ‘input’ variable names are terminated by a question mark.

• the only input is name?.

• ‘output’ variables are terminated by an exclamation mark.

• the only output is phone!.

• the Ξ (Xi) symbol means that the PhoneBook schema is not changed (i.e., it re-

mains invariant).

• if we had written a Δ (delta) instead of Ξ, it would mean that the PhoneBook

schema may change.

• the pre-condition is that name? is a member of known.

• the post-condition is that phone! is set to tel(name?). In standard Z this is written

as tel name?, yet I believe the brackets provide for added clarity.

Next is a Z schema specifying an operation to delete a number from PhoneBook:

 Delete

Δ PhoneBook

name? : NAME

name? ∈ known

tel′ = {name?} ⩤ tel

Z Schema 3.5 Delete schema for removing a number

A correct operation of Delete specifies that the name to be removed from the phone book

must be known, followed by removing the name and phone associated with name? from

the phone book. This is accomplished through the domain subtraction operator (⩤). Es-

sentially the domain subtraction operator removes all the tuples from a set for which the

first coordinate equals the set of values to be removed. In our case it is {name?}.

A precondition of an operation may sometimes be more complicated than what needs to

be, or it may be insufficient to cover all the correct operations. In such cases a

 58

precondition of an operation may be formally calculated, which is what I show next. As

illustration, I calculate the precondition of schema AddName above.

3.3.5 Calculate the precondition of each abstract operations on the state

In Z, preconditions are predicates in operations that apply only to before states and inputs.

Preconditions may be calculated by existentially quantifying the after states and outputs,

and then simplifying the resulting predicate (Potter et al., 1992). As indicated, we calculate

the precondition of AddName, called preAddName below.

Having existentially quantified the after states and outputs, we arrive at:

 preAddName

PhoneBook

name? : NAME; phone! : PHONE

∃ PhoneBook′ ⦁

name? ∉ known ∧

tel′ = tel ∪ {name? ↦ phone?}

Z Schema 3.6 preAddName precondition schema

Next, PhoneBook′ is expanded:

∃ known′ : ℙ NAME ; tel′ : NAME ↦ PHONE •

 known′ = dom tel′ ∧

 name? ∉ known′ ∧

 tel′ = tel ∪ {name? ↦ phone?}

Having applied Z’s one-point rule, we notice that name? ∉ known and tel′ is accordingly

updated, we arrive at dom tel ≠ NAME. Essentially, it means that it is possible to add a

name to the phone book.

Next, a table of all the partial operations is presented.

 59

3.3.6 Table showing all the partial operations together with their inputs, outputs
and preconditions

Table 3-1 Table showing partial operations, inputs/outputs, and preconditions

Operations Inputs/Outputs Preconditions

InitPhoneBook – –

AddName
name? : NAME

phone? : PHONE
name? ∉ known

Find
name? : NAME

phone! : PHONE
name? ∈ known

Delete name? : NAME name? ∈ known

Known
name? : NAME

result! : Report
name? ∈ known

NotKnown
name? : NAME

result! : Report
name? ∉ known

The schemas defined above all denote partial operations in the sense that they cater only

for correct input. Consequently, error conditions denoting incorrect input should be de-

fined.

3.3.7 Definition of all schemas that present error conditions

The behavior of the AddName operation is only defined for correct input (i.e., a name-date

pair whose name is not already in the system). We would like to extend the specification

to indicate what happens when the input is incorrect. The first step is to introduce a free

type which will record the outcome of the operation:

Report ::= OK | AlreadyKnown

In a standard Z specification, we then introduce a separate schema which introduces an

output variable and says that the operation was successful,

 60

 Success

result! : Report

result! = OK

Z Schema 3.7 Success schema

Using conjunction of Z’s schema calculus, we can construct an intermediate specifica-

tion for the partial operation to add a name together with a report of success.

AddName1 ≙ AddName Success

which defines an operation AddName1 which behaves like AddName but also sets an out-

put variable to OK. To extend the Z specification to account for incorrect input, we de-

fine a new schema for each possible error. In this case, there is only one possible error,

namely that the name is already known to the system, and we therefore define:

 AlreadyKnown

Ξ PhoneBook

name? : NAME

result! : Report

name? ∈ known

result! = AlreadyKnown

Z Schema 3.8 Known schema

Here we have used the Z convention for describing operations which do not change the

state. Under this convention, Ξ PhoneBook is understood to have the following definition:

 Ξ PhoneBook

Δ PhoneBook

known′ = known

tel′ = tel

Z Schema 3.9 PhoneBook schema

A robust version of the Find operation must be able to report if the input name is not

known:

 61

 NotKnown

Ξ PhoneBook

name? : NAME

result! : Report

name? ∉ known

result! = not_known

Z Schema 3.10 NotKnown schema

The robust operation either behaves as described by Find and reports success, or re-

ports that the name is not known:

3.3.8 Use the Z schema calculus to make all the partial operations total

The three operations Addname, Find, and Delete have been built up in a structured fashion

from smaller components. This avoids any duplication of effort, allowing us to factor out

common aspects of the design, and results in a clearer, more comprehensible specifica-

tion. Using Z’s schema calculus, we can now define total operations for the three partial

operations as follows:

RobustAddName ≙ AddName1 ∨ AlreadyKnown

 = (AddName ∧ Success) ∨ AlreadyKnown

RobustFind ≙ (Find ∧ Success) ∨ NotKnown

RobustDelete ≙ (Delete ∧ Success) ∨ NotKnown.

The final total (robust) operation, RobustAddName, can now be constructed in Z as follows:

 62

 RobustAddName

Δ PhoneBook

name? : NAME

phone? : PHONE

result! : Report

(name? ∉ known ∧

tel′ = tel ∪ {name? ↦ phone?} ∧

result! = OK)

∨

(name? ∈ known ∧

tel′ = tel ∧

result! = AlreadyKnown)

3.4 Literature review on Formal Methods

The research presented by Knight et al. (1997) addresses the question of why FMs are

not used more widely. For years, academics have suggested that applying Formal Meth-

ods to software development will aid industry in achieving its aims of improving software

processes and quality (Souri et al., 2019). Formal Methods are still not often used by

commercial software organisations (Souri et al., 2019). The study presented in this chap-

ter aims to examine the disconnect between research and industry and determine what

steps should be taken to optimize the advantages of Formal Methods in an Agile environ-

ment for business.

Among the challenges faced were the fact that a single specification language could only

define a small portion of the system, and that key tools were either unavailable, incom-

patible with other development tools, or too sluggish.

3.4.1 FMs in the requirements elicitation phase

The requirements elicitation phase is regarded as the most crucial and the most challeng-

ing. The consequences of getting this critical phase wrong are adverse and can persist

throughout the life of the software system (Pandey et al., 2013). An adequate require-

ments analysis function exposes and predicts error prone areas in the proposed system

 63

(Pandey et al., 2013). Much of the research on Formal Methods has been around the

correctness of the requirement specifications (Pandey et al., 2013). This is precisely be-

cause, while gathering the requirements, requirements’ notation approaches and tech-

niques can also be developed. These will enable the formal specification and the accurate

validation of requirements (Pandey et al., 2013). The challenge in ASD therefore be-

comes continuous variability in requirements. This adds to the complexity of the project,

particularly the developers who have to continuously change the code to comply with

every requirement change.

Before the benefits of formal methods can be realised, they must overcome a number of

relatively minor but significant practical obstacles. While industrial methodologies like Uni-

fied Model Language (UML) are rarely formalized, they are generally well-developed and

understood. Formal Methods must meet this criterion in order to be used in industrial

practice (Knight et al., 1997). The evaluation is based on the necessity for each software

technology, including Formal Methods, to contribute to one overarching goal: cost-effec-

tive high-quality software development. Although Knight's study did not address hardware

verification, I emphasised that the successful application of FMs to hardware design is a

strong indicator that comparable success with software is achievable. FM approaches

such as model checkers and the Z specification are reported to have flaws such as the

state space explosion problem, which consumes a lot of memory and takes a long time

to solve (Knight et al., 1997). In the opinion of the researcher, using a Scrum methodol-

ogy, I will be able to break the software requirements into lean business cases, then User-

Stories that can be easily interpreted into Z specification language.

3.4.2 The Software Product Line Engineering

The development phase includes a lot of anticipation, and that anticipation permeates

every stage of the process until the final artefact is completed. The SPLE (Software Prod-

uct Line Engineering) which informs the foundations, principles and techniques of devel-

oping software, can assist in reducing complexities by providing systems with well-defined

commonalities and variability. In coming up with the software product lines, software de-

velopers come up with customizable and reusable methods. The SPLE introduces a

 64

commercial approach that assists in the improvement of quality and the time it takes to

development software. In a report by medical systems provider Phillips Healthcare, there

was a 50 per cent improvement of quality and the time it took to produce a software

product in the organisations studied (Schaefer et al., 2011). The report also claims that

the introduction of SPLE resulted in a reduction of development effort up to fourfold.

(Schaefer et al., 2011) and also goes further to propose that sizeable investments must

be made for re-architecting, recertification, and re-verification. Modelling formalisms in

different development phases must achieve very specific results. In comparison to the

current state of the art in SPLE, a model-centric development process for software prod-

uct lines based on a single formal modelling framework can grow into a single-source

technology with numerous important advantages. Figure 3.2 below shows the model-cen-

tric development process.

 Family Engineering

 Application Engineering

Figure 3.1 Executable models of the product line (Schaefer et al., 2011)

The product line and individual products are represented as executable models in Figure

3.2, allowing simulation and visualization tools to be utilised throughout the whole process

of family and application engineering. With the upper phases of development reflecting

Validation,
verification

Correctness
of use

Consistency
analysis

Family evolution
Test-case
generation

Family visu-
alization

Rapid pro-
totyping

Code gen-
eration

Product vis-
ualization

Validation,
verification

Test-case
generation

Product
evolution

Product line models with uniform formal semantics

 65

family engineering and the bottom phases representing application engineering, the mid-

dle (orange) depicts product line models. This helps developers find and fix mistakes early

in the development process and enables quick prototyping of products for interaction with

stakeholders. The model is supplied data from tools for various kinds of dynamic and

static analysis, automated test-case generation, model validation, and functional verifica-

tion.

Formalism should also guide the selection of various development tools, particularly for

requirements analysis and automation testing including functional verification (Schaefer

et al., 2011). These tools will enable the formal verification at all the necessary phases,

especially in the analysis phase. A proper requirements analysis can expose potential

system errors and system behaviour at earlier stages of the project. Formalism offers

simulation and visualization tool for the earlier revelation of the system’s potential errors

(Schaefer et al., 2011).

3.4.3 Specification formalism

The critics of FMs, according to Mbala et al. (2017), object to the steep learning curve

involved in grasping the underlying discrete mathematics and formal logic required for

effective application of the methodology. FMs, on the other hand, are critical for the con-

trol of quality parameters such as completeness, correctness, and consistency, as well

as the verification of system requirements (Mbala et al., 2017), and they are based on

(often discrete) mathematical notations and logic to express requirements specifications

clearly and accurately. Mbala et al. (2017) developed a framework (figure 3.3) to help

remove ambiguities and contradictions to some level. Such ambiguity is often present in

natural language specifications.

 66

Figure 3.2 Framework facilitating the removing of vagueness or inconsistencies in system requirements

The matching of the two sets of needs generated through the supply-driven and require-

ments-driven procedures is the critical step in Figure 3.3 above. These needs sets could

be heterogeneous and in various formats, for example, one could contain structured data

(bottom-up data), while the other could contain unstructured data derived from incomplete

and often inconsistent user requirements. Figure 3.3 then presents how these two

streams of requirement are matched, then a single specification document is formulated.

The completed requirements specification document will also include formal specifica-

tions and conceptual schema.

Because natural languages have a potential of being ambiguous, Formal Methods can

be used in the elimination of requirements ambiguities (Dongmo et al., 2009). Dongmo et

al. (2009) continue to draw another parallel by introducing another semi-formal verification

method, Use Case Maps ‘UCMs’, which offers a simpler analysis that can be used to

extract user scenarios of interaction between the system and the user. Dongmo et al.

(2009) further suggest that FMs are not adopted by industry, simply because of the lack

of step-by-step methodologies that embrace architectural and system boundaries.

 67

3.4.4 Using formal verification to evaluate Human-Automation Interaction

Bolton et al. (2013) contrasted formal verification as mathematical technique that is used

to appropriately prove that the Human Automation Interaction (HAI) does not demonstrate

undesirable properties. Bolton et al. (2013) believes that the issues in the HAI may arise

for many reasons, one of which is the automation failing as it is designed for specifically

pre-determined scenarios. Automated Theorem Proving and Model Checking are the two

main techniques used for formal verification in the industry (Bolton et al., 2013). In their

work, Bolton et al. (2013) further argue that Model Checking is more limited than Auto-

mated Theorem Proving. In the theorem proving technique, automation is found to be

reusable for continuous routine proof techniques. The authors assert that if system re-

quirements are simplified and expressed in logical terms, the need for too much automa-

tion decreases. The major task in these techniques and the other formal verifications is

that of model validation. In order to have insight into the proposed requirement’s system,

the model’s validity must be verified. If the models themselves are invalid, the verification

process is flawed and has limited chances of revealing potential software issues. Alt-

hough both FMs and model checking programmes’ effectiveness have been proven, there

has been very little uptake in the market (Bolton et al., 2013).

These methods have been found useful in both hardware and software for their abilities

in predicting failures arising from an interaction between humans and systems. Failures

may go undetected during system tests and assessments because they occur under un-

usual and infrequent combinations of situations. Formal modelling tools and model verifi-

cation technologies that explore the system's operational state space exhaustively may

uncover human and sub-system interactions that result in hazardous operating scenarios.

Bolton et al. (2013) further highlight two categories of failures that Formal Methods have

to address:

1 active failure: are those that immediately lead to adverse consequences, and

2 latent failures: are those for which the damaging results may not become apparent

until much later.

 68

3.4.5 Incorporating FMs in testing

When introspectively analysing issues arising from the software system development,

one can identify that a significant portion of them come as a result of properly specifying

requirements. The root causes of defects found in system testing are as a result of re-

quirements being unclear, imprecise, incomplete and ambiguous. If the above specifica-

tions’ shortcomings are not addressed, the purpose and objective of the testing process

becomes narrow.

Proper testing parameters cannot be defined and these result in a lot of rework once the

system is taken to production and the end-users are not satisfied. Tretmans et al. (1999)

explain that the development of test cases is a task of highly capable humans who ana-

lytically analyse the given specifications in order to come up with scenarios that will thor-

oughly test the expected functionality of the software system. This testing of the functional

and non-functional aspects of the system requires a proper verification of the conform-

ance to the properties specified. The Formal Methods can also be used in this analysis

and checking of the correctness of the system. Using mathematical modelling of the sys-

tem, formal verification can be used to prove properties and the functionality of the sys-

tem.

Figure 3.4 presents how to feature formal verification in the testing phase of software

development.

Figure 3.3 Formal verification in the testing phase of software development

Design

Test Suites &
Formal Verification

Test Execution

Coding

 69

In figure 3.4 Tretmans et al. (1999) presents how the formal verification can feature in a

sequential software development methodology. Figure 3.4 shows the test plan consisting

of test suites and formal verification scripts. The test plan is formulated from the system

design and is executed in the final testing that comes after coding.

The rise of new technologies and the drive for shorter release cycles are raising the bar

for software quality (Smartbear, 2018). Automation, continuous testing, and DevOps have

pushed the software development lifecycle forward by adding speed and flexibility. Teams

are being driven to streamline their testing and development processes in order to get

more done in less time while keeping costs low in order to stay competitive. Every team

aspires to achieve this mix of speed, quality and affordability, and it is also the most diffi-

cult obstacle they face. Quality assurance teams have had to make trade-offs between

the three in the past. Deliver faster, but there's a danger that errors will make it to produc-

tion. Ensure quality while taking a chance on meeting your deadline. When contemplating

automation testing to fulfil the growing need for shorter delivery cycles and bug-free re-

leases, it's critical to analyse whether the return on investment (ROI) is justified. Is there

a way that I can incorporate FMs in this process? And can this incorporation help us

quantify the ROI of FMs?

According to Smartbear (2018) manual testing, automated testing and Formal Methods

aim to achieve the two main goals:

1. Reduction of Defect Leakage

2. Test Redundancy and Reusability

Software testing methods and techniques are continually evolving, and software testing

research is a hot topic in software engineering. Testing is becoming more automated and

integrated into Agile Software Development procedures, which include frequent builds

(Huisman et al., 2020). Instead of marketing Formal Methods to industry as a "standalone"

technique, these methods and processes are a logical location to gradually introduce

them in industry by gradually integrating automated tool support in the testing and verifi-

cation process. Another intriguing possibility is to try to integrate FMs with testing to speed

up the entire verification process, for example, by utilizing Formal Methods to direct

 70

testing efforts to the 'dark corners' that such methods normally uncover (Huisman et al.,

2020).

3.4.6 The myths of Formal Methods

It should be considered that although FMs are mathematical notations to describe in a

precise way the properties which an information system must have (Spivey, 1998), FMs

are not absolute. Hall (1990) was successful in putting together seven myths of Formal

Methods that FMs’ advocates are always faced with whenever I propose them. In the

exercise to identify the usability of FMs within ASD, the work is focused on the below

three myths.

1. Perfection can be guaranteed by implementing Formal Methods (They serve to

identify errors early enough in the development process).

2. The FMs purpose is solely programme proving (They enable serious contem-

plation on the software system being developed).

3. The FMs are particularly for safety critical systems (They are applicable to al-

most all software systems).

4. They escalate development costs (They instead decrease costs).

With the above given myths, Hall (1990) clearly argues the practical benefits of Formal

Methods which I will show in the case study.

3.4.7 Challenges in implementing FMs in ASD

The paper ‘Formal Methods in Agile Development’ concludes that Formal Methods are

more challenging to implement in Agile methodologies (Lowe 2010). He continues to

claim that developers are less keen to educate themselves to master FMs. However, he

does identify a less chaotic Agile methodology that can be suitable for FMs. It is a process

that is used for software systems enhancements where the external behaviour of the sys-

tem does not change. This suggests that FMs can be used in the maintenance phase of

the development when the software system is in production (Sharma et al., 2020). Once

a system is released, the Formal Methods can be included in the requirements specifica-

tion so that formal verification can be done for enhancements that will preserve the

 71

software’s semantics. Figure 3.6 shows how the Formal Methods feature beyond the re-

lease of the system.

Figure 3.4 Agile Software Development process that includes Formal Methods after the developed system is in production
(Sharma et al., 2020)

In any software development methodology, the release of software is accompanied by

regression testing. In the regression testing, thorough testing of functionalities that existed

before and after the new code is confirmed. The regression test packs are then filed and

will be used whenever there are new changes to the system in production (Sharma et al.,

2020). Figure 3.6 then shows the different phases in software development with the im-

plication that Formal Methods can form part of the regression test packs that are for ver-

ifying the core functionality of the system. This is particularly because the core function-

ality of the software system rarely changes throughout its lifespan.

3.4.8 Are Formal Methods ready for Agile?

In all the efforts in attempting to use Formal Methods in an Agile Software Development,

what then is to be gained? Particularly because of the many opposing differences that

exist between the two approaches? In their work, Larsen et al. (2010) assess benefits

that will come with combing FMs and ASD. They also assess the readiness of ASD to

support FMs’ techniques in order to have synergy in the processes. Larsen et al. (2010)

identify the purpose of the Formal Methods as that of eliminating defects in complex

 72

computer systems. They also further describe FMs as a response to complexity. This

response is used to analyse and model software systems as a mathematical entity. These

mathematical analyses therefore enable every competent stakeholder to verify and refute

aspects of the requirements specifications in all development phases. In their work Larsen

et al. (2010) dispel the widely held misconceptions of regarding Formal Methods as a

software development methodology on their own. Figure 3.6 from the previous sub-topic

displays that FMs forms part of a methodology and is not a methodology.

Another misconception that Larsen et al. (2010) deal with is that FMs are only effective

as a post-factor verification. In their arguments, they also advise against seeing Agile

Software Development as a methodology that can only be implemented in a wholesale

fashion. Each software development enterprise should adopt only the ASD characteristics

that are suitable for their environment and their resources. Similarly, with any methodol-

ogy and processes, only the applicable techniques are adopted based on the environment

and sometimes the product being developed. The formalism of the requirements has to

be intended at simplifying the specifications, otherwise it will be irrelevant including them

in ASD which intends at rapidly completing a solution with ‘minimal documentation’. In-

troducing FMs must not be burdensome, and forms of static analysis and automatic veri-

fication can be used to ensure that key properties are preserved from one iteration to the

next. The tools enabling FMs should also enable synergy in existing development meth-

odology and enough research should be conducted in making this a reality.

 73

3.5 Summary

In Chapter 3, I comprehensively discussed Formal Methods which is the highlight of the

dissertation. I excavated past literature that is relevant to the work. The prevalent high-

lights were that the Formal Methods have mostly been used in the Traditional Software

Development Methodology and they have been regarded as belonging to the analysis

phase of the development methodologies (O’Regan, 2020). Software testing has also

been identified as a phase to which FMs can belong (Huisman et al., 2020). However, in

Agile Software Development Methodology, the lines between different phases are blurred

and the principle of the methodology is to nimbly develop software without having sepa-

rated phases (Larsen et al., 2010). Although there have been contemporary companies

like Facebook that have adopted Formal Methods, the level of uptake remains low (Knight

et al., 1997).

3.6 Conclusion

When examining this topic, it is frequently discovered that Formal Methods have long

been regarded as the best technique to assist the software industry produce more de-

pendable and trustworthy software (Huisman et al., 2020). However, many scholars agree

that Formal Methods have not been well received by industry practitioners over time

(Knight et al., 1997). Both the two claims are what has prompted this dissertation. With

Agile Software Development being the most adopted and relevant methodology in the

industry (Kim et al., 2021), merging it with the Formal Methods will enable a realization

that two can complement each other and achieve efficiency and quality benefits.

In Chapter 4 I will pick an Agile Software Development based case study and formulate

a framework that will see the inclusion of Formal Methods in an Agile methodology.

 74

4. Chapter 4: Research Design

The research methodologies and methodology approach are presented in this chapter.

First, the reader is informed about the choice of methodological approach and research

design, providing information about the entire research process and its approach. Next,

the reader is introduced to and given an explanation of the course of action that has been

taken in the research paper. Lastly, I focus on the research study’s quality and discuss

its validity and reliability.

4.1 Introduction

The study design outlines the methodical steps taken to carry out the inquiry and serves

as a manual for researchers as they interpret, gather, and analyse data (Saunders et al.,

2018). The study must be thoroughly recorded in order to be successful. The purpose of

the research design is to offer a suitable framework for a study. There are other intercon-

nected decisions that must be taken but selecting a research strategy is an important

stage in the research design process since it defines how pertinent data for a study will

be obtained (Saunders et al., 2018). This research work was conducted in line with (Saun-

ders et al., 2018) research onion (Figure 4.1) and all the selected options are briefly dis-

cussed below.

 75

Figure 4.1 Universal research onion (Saunders et al., 2018)

The research philosophy had elements of interpretivism as well as positivism. The quali-

tative nature of Agile as a methodology involves interpreting natural language require-

ments expressed by users of the system. Formalizing aspects of Agile through the use of

FMs gives the research also a positivist philosophy.

Turning to the second layer of the onion, the research approach was a mixed abductive

and inductive approach – inductive in the sense that a framework was constructed, and

deductive since the framework was validated by applying it to a case study (Arnold et al.,

2020). The research strategy was that of a case study. In a similar vein, we looked at a

Scrum case study to determine how FMs could be embedded.

The time horizon will be cross sectional since the research will be completed within a

fixed time period, looking at the literature and FMs cases at a point in time (Arnold et al.,

2020). Data collection will be through scholarly literature and the researcher’s knowledge

of the subject.

 76

4.2 Philosophy - Positivism

The research philosophy enables the improvement of the comprehension and application

of the theory to practice, and presentation of the research findings (Alharahsheh et al.,

2020). This section explains what a paradigm is before delving into and debating the

assumptions that underpin scientific and interpretive paradigms (Alharahsheh et al.,

2020).

The positivist paradigm allows researchers to rely more heavily on statistics and general-

ization, which leads to the formation of universal laws and discoveries (Alharahsheh et

al., 2020). Positivism is based on a scientist's philosophical stance when working with

observable reality in society, which leads to the formation of generalizations. Using such,

I use the Scrum guide which sets out the rules of the game and therefore provides the

observable insight into Scrum. A tighter emphasis is placed on pure data and facts that

are unaffected by human interpretation and bias in positivism, which is focused on the

value of what is presented generally (Saunders et al., 2018).

4.3 Approach to theory development - Abductive and inductive (hybrid)

Inductive theorizing is theorizing that starts off with non-theoretical empirical phenomena,

which should ideally result in a proposed or supported theory. In inductive theorizing, the

researcher starts from empirical data and works towards developing a theory based on

that data (Okoli, 2021). In this paper, I use the Scrum guide as the empirical framework

in which Formal Methods can be used. As a result, I will formulate a theory in which FMs

can assist Scrum in achieving quality and efficiency.

Abductive theorizing is theorizing that starts off with a rudimentary theory or theory-in-

progress, which should ideally result in a proposed or supported theory (Okoli, 2021).

Note that contemporary philosophers use the term “abduction” for a similar but distinct

kind of reasoning normally called “inference to the best explanation”; that is, abductive

reasoning now usually refers to considering a specific case and then attempting to infer

the most likely rule that would explain that case (Douven, 2011). During the literature

review chapter in this paper, the researcher discovered how limited the literature is on

 77

Formal Methods being applied to Agile Software Development in general. Therefore, the

starting point of the research was rudimental.

4.4 Methodological choice – Qualitative

This study employs a qualitative, exploratory case study to see where and how Formal

Methods might be included into Scrum. The goal of an exploratory case study is to look

at a phenomenon in the form of a causal relationship that hasn't received much attention.

(Moi et al., 2021). The researcher’s observation is that although FM’s and Scrum have

been widely researched individualistically, the two subjects have not been researched

together. Because the construct of Formal Methods is generally an unexplored phenom-

enon in Agile Software Development, I decided to use exploratory research in this study

because it serves as a prelude to qualitative research. The study's exploratory character

aims to inform software engineering practice in terms of efficiency and quality, a concept

that currently lacks a well-established theory. Furthermore, utilising an exploratory tech-

nique, I can better answer the study questions. Overall, the qualitative technique allowed

us to gain a comprehensive and in-depth understanding of software practitioners' per-

spectives on Scrum, the framework that governs the end-to-end software development

process.

4.5 Research strategy - Case study

The methodological approach used in this Scrum research was a case study. This is an

empirical study of an ongoing event in a situation where it might be difficult to distinguish

between phenomena and context (Cui et al., 2021). The case study was conducted at a

banking institution where Scrum is used as a software development technique of choice.

The reason it was conducted here, was that banking has become technology driven and

their services are almost entirely technological. Banks have capacitated software devel-

opment teams which adopt latest techniques and technologies for efficient and quality

software output.

The process of implementing software, its potential impact on the transformation's future,

and the strengths and weaknesses of the present software product delivery process were

 78

all worth looking into. The bank is the subject of the case study because it always seeks

to enhance its procedures. Furthermore, the study will be generalizable so that the same

techniques are applicable to other industries.

Case studies may be categorised into three categories: explanatory, exploratory, and de-

scriptive (Cui et al., 2021). Since the case study has no predefined goal and a desire to

get a comprehensive and in-depth understanding of the Agile process, it has been carried

out utilising the exploratory technique.

4.6 Data collection – Observation

A qualitative research technique called observational research includes seeing and eval-

uating the target responder or subject in a real-world or natural setting (Rasch et al.,

2020). The empirical study's initial phases and observations seek to add additional details

to subsequent research processes and provide a comprehensive viewpoint (Rasch et al.,

2020). Due to its full implementation of the Scrum approach according to the Agile Soft-

ware Development Methodology in a typical setting, the observed case study in the re-

search was selected. This is done in an effort to record as much information as possible

about the Scrum environment and the development team's participation in order to deter-

mine how Formal Methods may be incorporated.

The observations took place at different Scrum events: the Sprint, Sprint Planning, daily

Scrum, Sprint Review, and Sprint Retrospective session. All the observed events are

thoroughly discussed in Chapter 2, table 2.2. The plan was to observe the Scrum Team

during their everyday tasks, with the aim to analyse the everyday situations and gain

understanding about how the process and software output could be improved with Formal

Methods.

4.7 Trustworthiness

Trustworthiness refers to the reliability of the findings across time, from various view-

points, and throughout the research process itself (Rasch et al., 2020). Due to the nature

of qualitative research, it might be difficult to ensure reliability because the target's

 79

perspective or opinions may vary over time and the data mostly comes from case studies

based on personal experiences. Thus, five essential concepts—credibility, transferability,

dependability, confirmability, and authenticity—are examined in order to assure the re-

search's reliability (Rasch et al., 2020). These ideas are based on the well-known quali-

tative research quality standards system, and by definition the study will be regarded as

highly dependable if all five criteria are met.

4.8 Credibility

The credibility refers to whether or not the findings in the study are representative of the

subjects' own experience (Rasch et al., 2020). Therefore, to ensure that this study is gen-

uine, it was evaluated by peers and verified by a specialist in the subject. Peer review

occurs often while the dissertation is enrolled, offering revisions at every level of the pro-

cedure along with comments, direction, and supervision from Prof. John Andrew (Andre)

van der Poll and Prof. Hugo Lotriet.

4.9 Confirmability

This section explores whether the researcher's bias in any way influences the conclu-

sions. Given that research biases may influence how sources are presented and used, it

is a crucial part of the source dependability section (Rasch et al., 2020). As the investiga-

tion progresses and more is learned about the subject, there is a risk that the abductive

aspect of the research will skew the case study that is undertaken later in the study. The

Scrum guide, which serves as a framework for the implementation of the Scrum ap-

proach, has in some ways addressed it.

Unstructured observations have a significant drawback since the researchers decide what

to observe and how to evaluate and process the data, making them extremely vulnerable

to observer bias (Rasch et al., 2020). The observer's expertise and experience will have

an impact on the empirical quality and findings. This is something that may raise worry

for the dependability of the study and will have to be evaluated during the empirical col-

lecting and analysis.

 80

4.10 Authenticity

If the issue has been examined from a representative spectrum of opposing views and if

the findings have the potential to change lives, the study is real (Rasch et al., 2020). This

is mostly addressed by the real-life case study within the banking institute. Since the pre-

study is an analysis from one organisation’s case study, it could lead to a problem formu-

lation that is biased towards other industries. This is somewhat addressed by the study's

iterative design and frequent re-evaluations of the questions and problems that were ini-

tially posed.

4.11 Validity

Validity is about accuracy if dependability is about consistency. The validity relates to how

effectively the findings measure the target variable (Rasch et al., 2020). Lower validity is

typically caused by bad study design and bad research methodology. If the study is to be

regarded as genuine, it is vital that the choice of research technique adequately repre-

sents the research question and that the research question truly delivers the anticipated

outcomes (Rasch et al., 2020). To improve the study's validity, steps might be done like

triangulation. Nevertheless, there is no way to completely ensure veracity (Moi et al.,

2021). Since the goal of interpretative research is to compile interpretations and explana-

tions for a certain occurrence, high validity frequently results from these investigations.

4.12 Summary

The research design is painting a picture of how the research is conducted using the case

study as the research strategy. I also presented the philosophies that guide us, the qual-

itative nature and how observations are used in the collection of data. All the choices I

used were selected through the guidance by the research onion by Saunders et al. (2018).

Another big consideration in this chapter are the quality controls that come with ensuring

that the work is reliable, credible, transferable, dependable, conforms, is authentic and is

valid.

 81

4.13 Conclusion

As a guide for the researcher in Chapter 4 I presented the research design which will

assist us in interpreting, collecting, and analysing data from the contributing chapters. The

research design described how the investigation was conducted in a systematic manner

(Saunders et al., 2018). Having a clear picture of how research is being conducted en-

hances the chances of its success. The research design provided an appropriate frame-

work for this study.

In the next chapter, I present a case study that demonstrates how Scrum is practiced on

a day-to-day basis.

 82

5. Chapter 5: The Dlamini Bank Case Study

In Chapter 4 I discussed the research design. I outlined the methodology approach and

the research techniques. First, I outlined the methodology I used and the study design

which informed the reader about the entire research process. The methodology then in-

troduced and described the technique used in the research report. Lastly, I focused on

the research study’s quality and discussed its validity and reliability.

In Chapter 5, I show an Agile Software Development case study. The ASD case study

will emphasise the everyday functions of Scrum processes towards fulfilling a requirement

specification of an ATM system. I will expand the banking requirement specification into

more User-Stories and identify in which software development phases Formal Methods

can be efficient and how will business enterprises benefit from embedding FMs in Agile

Software Development. A brief methodology for embedding FMs in the Agile development

process is presented.

5.1 Introduction

The case study selected is an appropriate method for addressing the balance between

the efficient way of developing software and ensuring quality software output (Hilburn et

al., 2020). The qualitative case study method that I am presenting is not aimed at analys-

ing the case, but it is a good way to define the case and to explore a setting in order to

understand the properties of the specific group and environment under study. It is well

suited to software engineering research and provides a deeper understanding of the phe-

nomena under study (Gustafsson, 2017). The case study that I was formulating in this

report explores a real-life experience in the life of a Scrum Team.

5.2 The case study – Agile Software Development (Scrum)

Developers may handle difficult adaptive challenges with the Agile methodology while

producing high-value solutions in a productive and innovative manner (Zayat et al., 2020).

The Scrum framework is made up of Scrum Teams and all of the roles, events, artefacts

 83

and rules that go along with it. Each element of the framework has a distinct function and

is necessary for Scrum to function and be used. In the continuation of a brief Scrum ATM

cash withdrawal example, the case study will show a broadened Sprint scenario with

more focus on the Product Backlog and Sprint Backlog (see figure 5.1).

Figure 5.1 provides an overview picture of a full Sprint. The Sprint is a piece of a project

broken down into a two-week iteration. The product backlog becomes the broken-down

piece of requirement that the Development Team will convert into a Sprint Backlog and

finish within the two weeks’ time box (Bhavsar et al., 2020).

Figure 5.1 Scrum process flow (Bhavsar et al., 2020)

An example of a work item's Scrum process flow is shown in Figure 5.1 above. Work

items are initially put into the Product Backlog. The Development Team adds work items

to the Sprint Backlog with the intention of completing the Sprint's requirements, or DoD

(Definition of Done) as it is known in Scrum. Completed work items are checked off during

the Sprint Review and subsequently delivered as a product increment (Bhavsar et al.,

2020).

Next, I define the case study to be used in this chapter.

 84

5.3 Dlamini Bank case study

As a new banking institution, Dlamini Bank is rolling out ATM systems that will enable

their client to have access to banking functionality in more convenient locations. The con-

cept is given to Mduduzi, the Scrum Product Owner, for this software development project

by the decision-makers (stakeholders) of the Bank. He has to start requirements engi-

neering as one of his first jobs. He discusses the most crucial use cases with the archi-

tects, customers, and other stakeholders before noting them down (figure 5.2). The ar-

chitects provide technical direction that the development team can follow, while customer

representatives and other stakeholders continuously provide requirements’ clarification.

After gathering the high-level use cases and requirements, he enters them into the Scrum

Product Backlog (an understandable and general product backlog is shown in Figure 5.3)

and starts a session with the architects and some senior engineers to estimate and prior-

itize the items. All of the items in the Scrum Product Backlog now have an initial rough

estimate and a priority as a consequence of this session. The high-level requirements are

then divided into smaller-grained User-Stories. He then schedules the first Sprint Planning

meeting with the Scrum Team using this list. Figure 5.2 presents Dlamini Bank ATM’s use

cases which are goals that the ATM user is intended to achieve.

Figure 5.2 Dlamini Bank ATM system's initial use cases (Features)

 85

Figure 5.2 above presents a Dlamini ATM system use case diagram. The diagram con-

sists of an actor who represents the customer using the ATM. It also presents four goals

that the customer intends to achieve. The ATM system will be a tool for the user to be

able to check account balances, deposit cash and withdraw cash. All the mentioned three

goals will be achieved after the ‘Identify Customer’ is achieved.

Next, I present how a full Sprint is run as shown in figure 5.1. I present a practical case

study that shows all the tasks undertaken from Day 0 which represents Sprint Planning

day, until day 28 which is typically an end of the Sprint which never takes longer than one

month (Zayat et al., 2020).

5.4 Sprint 1 – Day 0 (S1.0)

The Scrum Master decides who will be on the team and calls a meeting, having invited

these people.

A Sprint Planning meeting is usually indicated by Day 0. Mduduzi lists the Scrum Product

Backlog items during the Sprint Planning meeting in order of highest importance to lowest

(Table 5.1). At this stage, all the User-Stories have no status as none of them have yet

been undertaken. The team examines each item in a Sprint Planning session to see

whether they have the necessary capacity, expertise, and resources. The team also re-

solves any unresolved questions. Figure 5.3 represents how the development team gath-

ers in front of the Sprint Backlog board for a 15-minute daily Scrum meeting.

Figure 5.3 Illustration of a Development Team gathered around the Sprint Backlog board (https://watisscrum.nl/sprint-backlog/)

 86

Since this is the beginning of a Sprint, the Sprint Backlog board is empty. Once the team

agrees on taking up the User-Stories in Table 5.1, the User-Stories will show on the To

do column of the board.

Embedding Formal Methods in Scrum, I formally specify the contents of the Sprint back-

log board as follows:

I start by defining the basic types of the Sprint Backlog specification:

[To do, Doing, Done]

Next, I define the state space of the backlog board:

 Sprint_Backlog

to do: To do

doing : Doing

done : Done

disjoint (to do, doing) ∧ disjoint (to do, done) ∧ disjoint (doing, done)

Z Schema 5.1 Sprint Backlog

The declaration part of the schema introduces 3 variables: To do, Doing, and Done. The

variables represents the columns in Figure 5.3. The predicate presents the pairwise

disjoint sets (since the same content cannot appear in multiple columns) where a Sprint

Backlog item can move from to do, to doing (when it is in development), to done (when it

is completed).

Following Z’s Established Strategy, the next step is to define an initial state of the board

and subsequently show that such a state can be realized (van der Poll and Kotze, 2005)

 InitSprint_Backlog

Sprint_Backlog′

to do = ∅ ∧ doing = ∅ ∧ done = ∅

Z Schema 5.2 Initial Sprint Backlog

Z Schema 5.2 represents the initialisation of the Sprint Backlog where the three columns

To do, Doing, Done are still empty sets.

 87

Proof:

⊢ Sprint_Backlog′ ⦁ InitSprint_Backlog (5.1)

(5.1) presents that a state can be realised such that it satisfies the requirements of In-

itSprint_Backlog. I then need to show:

⊢ ∃ to do′ : To do; doing′ : Doing; done′ : Done |

to do′ = ∅ ∧ doing′ = ∅ ∧ done′ = ∅ (5.2)

The proof of (5.2) follows trivially since the empty set values are specified in schema

InitSprint_Backlog. The proof indicates there is indeed an initial state from which the sys-

tem may start. The proof follows trivially, since the empty set values are specified in

schema InitSprint_Backlog.

Next, the team divides the use cases into ten (10) User-Stories 1, 2, 3, 4, 5, 6, 7, 8, 9,

and 10. The ten User-Stories can be tracked and managed as initially presented by the

Product Owner in Table 5.1.

Table 5-1: Sprint Backlog User-Stories

Number User-Story

1 Insert Bank Card

2 Insert Deposit Account Number

3 Read Card Pin

4 Verify Customer And Show Personalized Welcome at Landing Page

5 Show Options to Deposit and Withdraw

6 Show Available Balance After Withdrawing Option

7 Enter Deposit Amount

8 Enter Withdrawal Amount

9 Push-out Cash and Show Available Balance

10 Confirm Transaction Success and Printout

Given Table 5.1, I define a next basic type:

[USER_STORIES]

 88

A state space of Table 5.1 is given in Schema 5.3.

 User_Stories

stories: ℕ1 ⇸ USER_STORIES

Z Schema 5.3 State Space for User-Stories

Z Shema 5.3 presents the numbering of user stories as listed in table 5.1.

Next, I populate the user stories as indicated in Table 5.1 into Z Schema 5.3.

 AddUserStories

Δ User_Stories

stories′ = {1 ↦ “Insert Bank Card”,

 2 ↦ “Insert Deposit Account Number”,

 3 ↦ “Read Card Pin”,

 4 ↦ “Verify Customer And Show Personalized Welcome at Landing Page”,

 5 ↦ “Show Options to Deposit and Withdraw”,

 6 ↦ “Show Available Balance After Withdrawing Option”,

 7 ↦ “Enter Deposit Amount”,

 8 ↦ “Enter Withdrawal Amount”,

 9 ↦ “Push-out Cash And Show Available Balance”,

 10 ↦ “Confirm Transaction Success And Printout” }

Z Schema 5.4 Adding User-Stories

The above Schema 5.4 AddUserStories accesses Schema 5.3 User_Stories and adds

the 10 User Stories and maps them sequentially.

The formal specification of Table 5.1 could have followed either of two routes:

1. Initialise the component stories as an empty function, followed by a proof that such

an empty set can be realised, followed by an operation like AddUserStories, or

2. Specify AddUserStories directly as I have done above.

 89

Having considered the User-Stories in Table 5.1 and Schema 5.4, the team indicates they

do not have the capacity to complete User-Stories 5 and 6 in the 1st Sprint. Consequently,

Scrum Product Owner Mduduzi agrees to move them to the 2nd Sprint.

Table 5.2 illustrates how Sprints and User-Stories can be tracked and managed as initially

presented by the Product Owner and change on the backlog board, having moved User-

Stories 5 and 6 to the 2nd Sprint.

Table 5-2: Tracking prioritization of User Stories towards the satisfaction of customer requirements

User-Stories Sprint Ready Priority Status Sprint

1 Yes Medium To do 1

2 Yes Medium To do 1

3 Yes High To do 1

4 Yes Low To do 1

5 No High To do 2

6 No Medium To do 2

7 Yes High To do 1

8 Yes High To do 1

9 Yes Low To do 1

10 Yes Low To do 1

Next, I formally specify Table 5.2

 Prioritization_User_Stories

stories: ℕ1 ⇸ Sprint_Ready × Priority × Status × Sprint

Z Schema 5.5 State Space User-Story Prioritization

Z Schema 5.5 shows the prioritization of the User Stories. In the schema, ℕ1 represents

set of strictly positive numbers showing the numbering of User Stories, where each one

of the has attributes for Sprint_Ready, Priority, Status, Sprint. As indicated with the partial

function symbol, the Sprint readiness, status, Sprint are determined for every User Story.

Next, populate the schema in accordance with the information in Table 5.2:

 90

 Populate_Prioritization_User_Stories

Δ Prioritization_User_Stories

(∀i : ℕ1 ⦁

 stories(i).Status = “To do”

∧

 (if i ∈ {5, 6} then stories (i).Sprint_Ready = “No”

 else stories (i).Sprint_Ready = “Yes”)

∧

 (if i ∈ {1, 2, 6} then stories (i).Priority = “Medium”

 elseif i ∈ {5, 7, 8} then stories(i).Priority = “High”

 else stories(i).Priority = “Low”)

∧

 (if i ∈ {5, 6} then stories (i).Sprint = “2”

 else stories (i).Sprint = “1”)

Z Schema 5.6 User-Story Prioritization

Z used not to have an “if … then … else” … construct, but it was added in the 2nd edition

of the Z user manual (Spivey, 1998) to facilitate the user experience (readability, usability)

of Z. In the above I further extended the syntax to include an “elseif” as indicated.

Considering the differences between Table 5.1 with underlying schema 5.1 and Table 5.2

with schema 5.2 I, note that the “To do” was transformed from an attribute in Table 5.2 (a

component in Schema 5.1) to a mere value of an attribute “Status” in Table 5.2 (cf. a

value in Schema 5.2). Such transformation was elicited further through the formal speci-

fication; it might not readily have been observed in the Agile specification and may be a

source of ambiguity in subsequent system design.

Using Formal Methods, in the following section I verify the three (3) high level ATM bank-

ing system use cases (Figure 5.2) which were also devised into Agile’s User-Stories (Ta-

ble 5.2).

 91

5.5 Feature 1 – Account balance

In reference to the Sprint Backlog board (Table 5.2), the following User-Stories fall under

feature 1.

• User-Story 1: Bank Card Insertion

• User-Story 2: Card Pin Reading

• User-Story 3: Verify Customer and Show Personalized Welcome at Landing Page

• User-Story 5: Show Available Balance After Withdrawing Option (Before With-

drawal)

• User-Story 8: Show Available Balance After Transacting

5.5.1 User-Story objective

As a Dlamini Bank customer:

I want to be presented with my bank balance on inserting my bank card and pin num-

ber at an ATM,

So that I can immediately know how much to withdraw.

5.5.2 Acceptance criteria

1. Customer needs to have inserted a bank card and pin on the ATM.

2. Customer needs to have been validated as an existing customer.

The below is a state schema for the ATM banking system. In the schema, I show custom-

ers’ accounts and balances. I am introducing the set of all accounts and balances as

basic types of the specification:

[ACCOUNT, BALANCE].

 ATM_Banking

known : ℙ ACCOUNT

atm : ACCOUNT ⇸ BALANCE

known = dom atm

Z Schema 5.7 ATM Banking State Schema

Recall from Chapter 3 that Z Schema 5.7 consists of a central dividing line, in which var-

iables are declared, and a part below the line which gives a relationship between the

 92

values of the variables. In this case I am describing the state space of a system, and the

two variables represent important observations which I can make of the state:

• known is the set of accounts in the banking system;

• atm provides functions which, when applied to certain accounts, returns their bal-

ances.

One possible state of the system has three people in the set known, with their balance

recorded by the balance function:

known = {Khulekani, Bheki, Phumlani}

Balance = {Khulekani ↦ R800,

 Bheki ↦ R2000,

 Phumlani ↦ R400}

Note that I use people′s names as the domain element rather than account numbers as

indicated in the state space (ATM_banking) of this system. This is done to avoid

complexities of account numbers.

5.6 Feature 2 – Cash deposit

With reference to the Sprint Backlog board (Table 5.2), the following User-Stories fall

under feature 2.

• User-Story 2: Insert Deposit Account Number

• User-Story 4: Verify Customer and Show Personalized Welcome at Landing

Page

• User-Story 7: Enter Deposit Amount

• User-Story 10: Confirm Transaction Success

5.6.1 User-Story Objective

As a Dlamini Bank customer:

I want to deposit cash into my bank account at an ATM

So that I do not have to wait for bank’s branch working hours.

 93

5.6.2 Acceptance criteria

1. Customer needs to enter a valid account to deposit cash.

2. System needs to validate the existence of the account number.

3. System needs to give the customer an option to enter the amount to be deposited.

Z Schema 5.8 presents a cash deposit formal specification which describes the intended

system behaviour. Having the system formally specified has helped eliminate the obscu-

rity that lies between the system requirements defined purely with natural language and

the actual functionality of the specified system.

 CashDeposit

Δ ATM_Banking

account? : ACCOUNT

deposit? : BALANCE

receipt! : RECEIPT

account? ∈ known ⇒

(∃ balance′ : BALANCE ⦁ balance′ = atm(account?) + deposit? ∧

atm′ = atm ⊕ {account? ↦ balance′})

receipt! = deposit?

Z Schema 5.8 Cash deposit

The declaration Δ ATM Banking alerts us to the fact that the schema is describing a pos-

sible state change: it introduces variables known as components in Z: known, atm, bal-

ance, known!, atm!, and balance!. The first three are observations of the state before the

change, and the last three with output operations (!) are observations of the state after

the change. It must be true both before and after the operation since every pair of varia-

bles is implicitly restricted to meet the invariant. The declarations of the three operation

inputs follow. The names of inputs often terminate with a question mark. The new balance

following the deposit is specified accordingly.

As I had done in the ATM_Banking schema, below I also present how the Cash Deposit

schema picked up specification issues that would have been missed by User-Stories and

other natural language requirements.

 94

5.7 Feature 3 – Cash withdrawal

In reference to the Sprint Backlog board (Table 5.2), the following User-Stories fall under

feature 3.

• User-Story 1: Bank Card Insertion

• User-Story 3: Card Pin Reading

• User-Story 4: Verify Customer and Show Personalized Welcome at Landing

Page

• User-Story 5: Show Options to Deposit & Withdraw

• User-Story 6: Show Available Balance After Withdrawing Option

• User-Story 8: Enter Withdrawal Amount

• User-Story 9: Push-out Cash and Show Available Balance

• User-Story 10: Confirm Transaction Success and Printout

5.7.1 User-Story objective

As a Dlamini Bank customer,

I want to withdraw cash from my bank account through an ATM

So that I can have physical access to my banked money in more locations and at any

time.

5.7.2 Acceptance criteria

1. Customer needs to have inserted a bank card and pin on the ATM.

2. System checks to see if the requested amount exceeds the balance.

3. If so, the system displays the balance and asks the user to enter a new amount.

4. If amount entered is less than the account balance, cash is dispensed, and the

new balance is displayed.

Z Schema 5.9 presents a cash withdrawal formal specification which describes the in-

tended system behaviour.

 95

 CashWithdrawal

Δ ATM_Banking

pin? : PIN

withdrawal? : BALANCE

receipt! : RECEIPT

withdrawal? ≤ atm (account?)

pin? ∈ known ⇒

(∃ balance′ : BALANCE ⦁ balance′ = atm(account?) - withdrawal? ∧

atm′ = atm ⊕ {account? ↦ balance′} ∧

receipt! = balance′)

Z Schema 5.9 Cash withdrawal

The declaration Δ ATM Banking alerts us to the fact that the schema is describing a pos-

sible state change: it introduces variables: pin, balance, receipt, pin?, withdrawal?, and

receipt!. The schema represents a withdrawal scenario, where a known user is presented

with their account’s available balance after being verified. This then proceeds them with

a function to withdraw from the available balance and finally be presented with a receipt

showing their transaction and the remaining balance.

In table 5.1 above, the User-Stories are broken down into tasks and are allocated into

Sprints. These allocations are also based on the prioritization of the tasks and are a piece-

meal towards the achievement of a working software. The Sprint Ready and Sprint

columns show that except for User-Stories 5 and 6, the rest of the User-Stories must be

done in the allocated 28 days.

Sprint 1 – Day 1 (S1.1)

The next Sprint meeting is labelled as Day 1. The team gathers for their daily Scrum

meeting in the morning (figure 5.3). Everyone summarizes what has been accomplished

so far, updates the estimated number of hours left on the cards of the Sprint task board,

discusses what developers are going to work on that day, and mentions any impediments

preventing them from continuing their work. (refer to Section 2.4.5: A day in Scrum Envi-

ronment).

 96

One of the team members shares with the group that one of the software tools he is using

requires a new licence, which presents a problem. To see whether other team members

are experiencing the same issue, Scrum Master Thembi asks them if they want her to

address it after the meeting. Everyone resumes working on their tasks after a fifteen-

minute session. Figure 5.4 represents how the development team gathers in front of the

Sprint Backlog board for a 15-minute daily Scrum meeting. Note that the content of the

Sprint Backlog board in Figure 5.4 is abstract and generic. An example of a backlog board

with specific content appears in Table 5.2.

Figure 5.4 Illustration of a Development Team gathered around the Sprint Backlog board (https://watisscrum.nl/sprint-backlog/)

In figure 5.4 the team and the Scrum Master keep progress of all the User-Stories allo-

cated for the duration of the Sprint. In the daily Scrum meeting, the individual members

of the development team announce what User-Stories they are currently doing and if

there are any impediments hindering their progress. In the beginning of the Sprint (Day

1), the Done column is empty until a User-Story is completed. After the meeting Thembi

updates the Sprint Backlog board by moving the User-Stories’ artefacts between To do,

Doing and Done. Then she follows up and removes all the impediments that affect the

team’s progress following the Sprint 1 – Day 1 meeting.

Sprint 1 – Day 2 (S1.2)

In the morning of Day 2 the whole team meet again for their daily Scrum meeting. After

the meeting, the team disperses and attends to the tasks from the Sprint Backlog that

they had committed to. In the afternoon one of the Scrum Team members is unsure

 97

whether both the ATM withdrawal and deposit functions must print out a customer’s bal-

ance. Thembi then calls Mduduzi the Scrum Product Owner and discusses these options.

Mduduzi then clarifies that only the withdrawal must print out the balance. After that the

team member knows how to proceed; he can continue with the development. Table 5.3

shows how the development team documents the progress for the allocated User-Stories

in the Sprint Backlog board.

Table 5-3 User-Stories details as illustrated in Sprint Backlog board

To do Doing Done

5. Show Options to De-
posit and Withdraw

3. Card Pin Reading 1. Bank Card Insertion

6. Show Available Bal-
ance After Withdrawing
Option

4. Verify Customer and Show

Personalized Welcome at Land-

ing Page

2.Insert Deposit Account

Number

 7. Enter Deposit Amount

 8. Enter Withdrawal Amount

9. Push-out Cash and Show
Available Balance

10. Confirm Transaction Success
and Printout

In Table 5.3, the Scrum Master and development team document and keep track of their

progress towards completing all the items allocated for the Sprint. In the Sprint Backlog

board, individual members of the team move the User-Stories they are working on from

the To do column to Doing column. Once, they have completed the User-Story, they move

it from Doing to Done. This is performed continuously until the Sprint is finished. In this

case study, for instance, this is repeated until day 28 of the Sprint.

 98

 Sprint_Backlog_User_Stories

Δ Sprint_Backlog_User_Stories

(∀i : [1 .. 10] ⦁

 if i ∈ {5, 6} then stories (i).Status = “To do”

 elseif i ∈ {3, 4, 7, 8, 9, 10} then stories(i).Status = “Doing”

 else stories(i). Status = “Done”)

Z Schema 5.10 Sprint_Backlog_User_Stories Statuses

Z Schema 5.10 shows the Sprint Backlog User-Stories statuses. The possible statuses

on the backlog (Figure 5.4) are ‘To do’, ‘Doing’, and ‘Done’. In the Schema, I show using

a condition statement that User-Stories 5 and 6 are still on the ‘To do’ status, while all of

User-Stories 3,4,7,8,9 and10 are in the ‘Doing’ status. The other User-Stories are in

‘Done’ status.

Sprint 1 – Day 28 (S1.28)

Thembi has invited the team to the Sprint Review Meeting on this last day of the first

Sprint. To show Mduduzi, the team has planned a demonstration. Mduduzi then sits in

front of the computer to determine whether the created user stories fulfil his requirements

and whether the features are properly documented. At the end of the Review Session, he

concludes:

• User-Stories 1,2,3,4,8, and 9 are finished as expected.

• User-Stories 5 and 6 were put on hold for Sprint 2.

• User-Stories 7 and 10 couldn't be finished in time because of the number of defects

open.

 99

Table 5.4 shows the open defects that have resulted in User-Story 7 and 10 not to be

completed.

Table 5-4 Open Defects List

Defect ID Description Status User-Story

#15 User is able to enter deposit amount

manually, instead of the ATM determin-

ing deposit amount through the physical

cash put into the machine.

Open 7

#16 ATM printouts the account balance after

the deposit.

Open 10

Table 5.4 shows the 2 defects which were raised in relation to User-Stories 7 and 10.

Thembi, the Scrum Master, will follow up and make sure these defects are corrected and

both User-Stories 7 and 10 are completed in the next Sprint. The next Sprint will also

carry over User-Stories 5 and 6 which the team did not have the capacity to undertake.

Table 5.4 shows the Sprint Backlog board at the end of Sprint 1, i.e., at the end of the 28

days.

Below, I show a Z Schema for the two open defects.

 AddOpenDefects

Δ Open_Defects

DefectID′ = {15 ↦ “User is able to enter deposit amount manually,

 instead of the ATM determining deposit amount through the physical

 cash put into the machine.”,

 16 ↦ “ATM printouts the account balance after the deposit.”}

Z Schema 5.11 AddOpenDefects

Z Schema 5.11 presents the 2 defects that remain open in schema Open_Defects. These

2 defects are mapped using their DefectID and description as also presented in table 5.4.

 100

Next, in Table 5.5, I present a Sprint Backlog board as at the end of the Sprint period.

Table 5-5 User-Stories details as illustrated in Sprint Backlog board (At the end of Sprint 1)

To do Doing Done

5. Show Options to
Deposit and With-
draw

7. Enter Deposit

Amount
1. Bank Card Insertion

6. Show Available
Balance After With-
drawing Option

10. Confirm Trans-

action Success And

Printout

2.Insert Deposit Account Number

 3. Card Pin Reading

4. Verify Customer And Show Personal-
ized Welcome at Landing Page

 8. Enter Withdrawal Amount

9. Push-out Cash And Show Available
Balance

In table 5.5, six (6) User-Stories are completed (Done column). Going into Sprint 2, the

Sprint Backlog board is cleared, and the incomplete User-Stories are once again moved

into the Sprint Planning process and will appear in the To do column.

In the afternoon the team gets together for the Sprint 1 Retrospective Meeting and dis-

cusses what went well during the Sprint and what could be improved. For each of the

User-Stories undertaken during the Sprint, every member who participated gives their

input on what improvements can be started, what must not be done going forward, and

what ideas must be continued in the next Sprints. Important feedback is that there were

many defects which were as a result of the unclear software requirements, and this may

be eliminated by verifying the next Sprint’s requirements through Formal Methods.

Next, I created a Z Schema for Sprint Backlog at the end of the Sprint period.

 101

 Sprint_Backlog_User_Stories

Δ Sprint_Backlog_User_Stories

(∀i : [1 .. 10] ⦁

 (if i ∈ {5, 6} then stories (i).Status = “To do”

 elseif i ∈ {7,10} then stories(i).Status = “Doing”

 else stories(i). Status = “Done”)

Z Schema 5.12 Sprint_Backlog_User_Stories at the end of the Sprint

Z Schema 5.12 shows the Sprint Backlog board User-Stories statuses at the end of the

first Sprint. Using condition statements, the Schema affirms that User-Stories 5 and 6

remain on the ‘To do’ status, while User-Stories 7 and 10 are still in the ‘Doing’ status as

the results of the defects raised against the stories. Lastly, the Schema shows the rest of

the User-Stories are ‘Done’ as they have fulfilled the customer requirements.

Sprint 2 – Day 1 (S2.1)

Based on his most recent stakeholder meetings, Mduduzi, the Scrum Product Owner,

adds new items to the Scrum Product Backlog. The stakeholders claim that the font style

and colour scheme used on the ATM screens do not match the bank's branding and

identity. The team is then invited to the Sprint 2 Planning Meeting by Mduduzi. Under the

direction of Thembi, the Scrum Master, the team discusses and agrees on User-Stories.

The team also allocate time to verify the User-Stories using Formal Methods in order to

address the defects that come with the ambiguity of relying of just natural language de-

scriptions.

5.8 Value Proposition of embedding FMs in a Scrum Sprint

By introducing Formal Methods into this Chapter’s hypothetical Agile case study, Table

5.6 below presents some of the benefits we realized.

 102

Table 5-6 Value Propositions for imbedding Formal Methods in Scrum

Concept Advantages

1. State space as captured by Z

Schema 5.1 Sprint Backlog

The backlog board is defined by three columns,

namely, To Do, Doing, and Done. Formalizing the

board revealed that the three components of the

Sprint Backlog are pairwise disjoint.

2. Proof of Initial Sprint Backlog The proof shows how an initial state of the system

may be realized, an aspect which Scrum develop-

ers may not necessarily pay attention to.

3. Z Schema 5.3 State Space

for User Stories

This schema shows that the use of FMs makes it

explicit that user stories are numbered sequen-

tially starting from 1. This is an important consid-

eration given that days in a Sprint are numbered

from 0.

4. Z Schema 5.5 State Space

User-story Prioritization

The schema presents a Cartesian product which

fixes an ordering among the columns of the table.

Attributes of a record in relational databases are

not necessarily ordered, but the columns in the

prioritization of the user stories (Table 5.2) appear

to be ordered. The Z specification makes this ex-

plicit through the Cartesian product as a type.

5. Extending notation of condi-

tional predicates –

if/else/elseif statements

We have extended the predicate notation of Z by

adding conditional statements in the form of

if/else/elseif statements as these usually occur in

procedural and executable software development

languages.

6. Identification of boundary

conditions – Z Schema 5.9

Cash withdrawal

Boundary conditions not necessarily identified

during a Scrum sprint may become explicit

through formally specifying conditions.

 103

Concept Advantages

The test WRT the amount requested (withdrawal?

≤ atm(account?)) indicates that the amount re-

quested may indeed equal the amount available,

so that afterwards the balance may be zero.

These types of conditions can usually be missed

in the brevity of natural language’s user-stories

and results in defects.

7. Notation for a specific day

within a Sprint was devel-

oped.

The need to identify specific days from 0 to 28 (4

weeks) within specific sprints led to a pseudo FMs

advantage. A notation Sm.n for sprint m, day n

was developed. For example, S1.1 denotes Sprint

1, day 1.

5.9 Framework for embedding FMs in Scrum

In this section I present a framework that can be replicated in order to have Formal Meth-

ods effectively usable in an Agile Software Development. By drawing closer to the subject

matter, I elected to use Z Schemas within Scrum. The framework presented follows the

steps I used when showing the Dlamini Bank case study’s development of their ATM

systems.

It should be noted that Scrum itself is a framework, not a process. This implies that many

decisions made within the Scrum framework are left up to the team to determine rather

than being specified in a specific methodology. In this section, I present a Scrum frame-

work that a team wanting to harness the benefits of Formal Methods can use.

 104

5.9.1 Diagrammatic summary of the Scrum framework

In Table 5.7 below, I show a diagrammatic summary of the Scrum framework:

Table 5-7 Diagrammatic summary of the Scrum framework

In Table 5.7, I present what work item belongs to what process and what task belongs to

what work item. The table shows that the high-level Scrum process consists of Product

Backlog where the business decides on enablement features that will enhance customer

experiences. The Sprint process then consist of a Sprint Backlog which sets out the goals

of what ought to be achieved within the determined period of between one to four weeks.

The Sprint Backlog tasks include the formulation of User-Stories, Acceptance Criterion,

and Z Schemas, all of which must be in fulfilment of Product Backlog features.

Lastly, the Sprint process then includes the issue tracking working item which is a task of

removing impediments in order to achieve the set-out goals.

5.9.2 Workflow for a new backlog item

A Process Flow Chart is a visual diagram which shows the processes and relationships

between the major components in a system.

 105

Figure 5.5 Workflow for a New Backlog Item

The above workflow presents the process followed by Product Backlog items. A new item

is either removed or approved by the Product Owner. The Product Owner then obtains

commitment from the Scrum Team during the Sprint Planning session. After the Scrum

Team commits, the process is set in motion with the development for the Sprint period

until a deliverable is considered completed or done.

5.9.3 Framework for Z Schema within Scrum Sprint

I finally present a framework for incorporating Formal Methods (Z Schemas) within Agile

Software Development’s Scrum.

 106

Figure 5.6 Framework for Z Schema within Scrum Sprint

In the Figure 5.6 Framework I show a Product Backlog presented by the Product Owner

transitioned into a Sprint Backlog after the Scrum Team holds a Sprint Planning meeting

where they prioritize the features presented by the Product Owner into a Sprint Backlog.

In the Framework, I then show the three main tasks to kick-start the Sprint:

1. Creating the User-Stories

2. Formulating the Acceptance Criterion

3. Developing the Z Schemas

After the above feature refinement tasks, the daily Scrum Work Cycle follows the time-

boxed evolution of the development. This evolution is continuously reviewed during the

Sprint Review sessions, which are to confirm which User-Stories can be set to complete

and what to do with the incomplete ones.

The Scrum Team conducts a Spint Retrospective session at the conclusion of the Sprint.

A regular meeting called the "Sprint Retrospective" is held at the conclusion of a Sprint to

examine what worked well during the previous cycle and what may be improved for the

 107

subsequent Sprint. The Scrum framework for creating, delivering, and managing complex

projects must include it.

5.10 Summary

In Chapter 5, I presented a case study of a Scrum software development environment,

where Dlamini Bank is rolling out ATM systems that will enable their client to have access

to banking functionality in more convenient locations. In this case study, I show how the

ATM rollout requirement is initiated and introduced to the development team. Using high-

level features, the development team was able to devise User-Stories that the team iter-

atively develop working software in a piece-meal method. The development team then

followed the Sprint’s time-box in ensuring that the allocated time and scope are delivered

within the Sprint.

In presenting the major research objective, I created a Framework for Z Schema within

Scrum Sprint, where FMs were embedded in the process throughout, culminating in a

methodology for embedding FMs in Scrum, aimed at addressing possible shortcomings

in Scrum.

5.11 Conclusion

After presenting a Scrum case study in Chapter 5, I do it again in Chapter 6 to demon-

strate that Formal Methods may be used in Scrum across a variety of sectors. Due to the

need to present a new case study, I want to make sure you have a solid knowledge of

the Scrum Framework and why it's a framework rather than a method. Furthermore, it will

be clear that the team is self-organising since for each Sprint the team as a whole decides

its own fate.

In the next chapter, I present a university eVoting case study where Formal Methods are

implemented within the Scrum framework.

 108

6. Chapter 6: The University eVoting Case Study

In Chapter 5, I showed a Scrum case study where I used Formal Methods within a Sprint.

The case study emphasised the everyday functions of Scrum processes towards fulfilling

a requirement specification of an ATM system. I also expanded the banking requirement

specification into more User-Stories and identified in which software development phases

Formal Methods can be efficient and how business enterprises will benefit from embed-

ding FMs in Agile Software Development. At the Scrum process level, I formalized the

Sprint Backlog board, adding the User-Stories and the prioritization of User-Stories. By

breaking down User-Stories into categories using the use-case technique I was able to

show how Formal Methods can be useful in Agile Software Development.

Using the same framework in Chapter 6 of embedding Formal Methods in Agile Software

Development as presented in Chapter 5, I use a university eVoting case study to confirm

that the Formal Methods can be usable in other industries’ Agile Software Development

practices.

6.1 Introduction

Technology has now become a critical component in the management, organisation, and

completion of the voting process. The election process should be defined as the actions

that include the creation of the electoral roll, student identification, voting, vote counting,

and results reporting. The process of registering eligible students to vote and assigning

them to geographical campuses and residences begins with the registration procedure.

Electoral commissions throughout the world are currently looking for voter management

systems to handle the electoral roll, students' identity, the act of voting, vote counting,

and results reporting for student body elections. The above technological scenarios will

be used to procure this voter management system in order to elicit system requirements,

with the goal of closing the semantic gap between legal written documentation and the

execution of a voter management system.

 109

Computerizing voting procedures entails the use of computer technology in operations

such as voter registration, voting, and counting votes. Although the initial cost of imple-

menting electronic voting systems would be substantial, the long-term benefits would be

a significant reduction in election costs.

Compliance with election legislation, the unique terminology, and the requirement to have

at the very least, a legal stakeholder who understands and analyses the law are all key

constraints in the procurement of such a system. Finally, it is emphasized the need of

having a requirements specification that includes all of the essential procedures for voting,

as well as all of the various scenarios from which a software design can be created.

6.2 The case study – Using Formal Methods in Agile Software Development

The University is intending on becoming the first South African university to conduct an

election using electronic voter management system. The voter management system is

intending to use students’ information such as their student numbers, ID numbers and

student emails for authentication as guided by the university council rules for a legitimate

election. An introduction of the voter verification process feature is regarded as a major

step in the procurement of the end-to-end eVoting system that will reduce the university

costs for running student leadership elections, which are usually expensive and cumber-

some to run. Thus, a voter verification process for voter management is required for cred-

ible and fair student elections even in other universities that would want to use a similar

system.

The idea is then given to the Scrum Product Owner to devise high-level requirements for

the voter management process system. The Product Owner then constructs UML use

cases to simplify the idea and the need for this voter management process system. The

Product Owner finally reverts back to the university council and presents them with the

constructed high-level requirements in order to get confirmation that indeed this is what

they require. On confirmation by the stakeholders, the Product Owner hands over these

requirements in a form of an intuitive and generic product backlog to the Scrum Master

and this informs the initiation of a Sprint.

 110

Figure 6.1 below presents the high-level eVoting use cases devised by the Product

Owner. Use Cases: Voter Registration, Registration Confirmation, Voting, Student Iden-

tification.

Figure 6.1 Use case diagram for the eVoting system

Figure 6.1 represents the student process for voting electronically. It shows that the iden-

tification of the student is central so that they can be able to register for voting and ulti-

mately vote for their representatives of choice.

 111

6.3 Sprint 1 – Day 0 (S1.0)

The Sprint Planning session kicks off a Sprint by introducing the product backlog to the

development team, which is led by the Scrum Master and Product Owner. Before begin-

ning this Sprint Planning meeting, the Scrum Master and Scrum Product Owner should

assess the team's capability, consider the project's overall timeframe, and be prepared to

act on prior Sprint insights. The development team will analyse this backlog during the

Sprint Planning meeting to see what needs to be done next to keep the project on sched-

ule. The Scrum Team estimates the time or effort it will take to finish each item once they

have the product backlog of items.

The Scrum Master can better manage the project's budget and schedule with the use of

this information. Once the items have been estimated, the team can determine how many

of these User-Stories and in which combinations would fit into the next Sprint based on

the team's capabilities. Table 6.1 below presents the User-Stories as devised by the prod-

uct owner.

Table 6-1 Product Backlog as presented by the Product Owner

User-Story
Number

Use Case User-Story

Voter Registration

1 Insert Student Number

2 Verify Student Registration

3 Register Student to Vote

4 Confirm Registration

Voting

5 Insert Student Number

6 Validate Student Voting Status

7 Vote

8 Consolidate Results

9 Announce Results

 112

Table 6.1 shows User-Stories presented in the product backlog. These are subject for

discussions during the Sprint Planning by the Scrum Team, Scrum Master and Product

Owner.

Next, I populate the User-Stories as indicated in Table 6.1 in a Z schema.

 AddUserStories

Δ User_Stories

stories′ = {1 ↦ “Insert Student Number”,

 2 ↦ “Verify Student Registration”,

 3 ↦ “Register Student to Vote”,

 4 ↦ “Confirm Registration”,

 5 ↦ “Insert Student Number”,

 6 ↦ “Validate Student Voting Status”,

 7 ↦ “Vote”,

 8 ↦ “Consolidate Results”,

 9 ↦ “Announce Results”}

Z Schema 6.1 AddUserStories

In schema AddUserStories I formalize the adding of the nine User-Stories into the prod-
uct backlog.

In table 6.2, I present the Sprint 1 Backlog as decided on by the Scrum Team during
Sprint Planning session.

Table 6-2 First Sprint Backlog Prioritization

User-Stories Sprint Ready Priority Status Sprint

1 Yes Medium To do 1

2 Yes High To do 1

3 Yes High To do 1

4 Yes Medium To do 1

5 Yes Medium To do 1

6 Yes High To do 1

 113

User-Stories Sprint Ready Priority Status Sprint

7 Yes High To do 1

8 No High To do 2

9 No Low To do 2

The Scrum Team quantify the backlog items and their capacity during the Sprint Planning,

where they also prioritize the User-Stories according to the effort required. Because none

of the User-Stories have yet been undertaken, all their statuses are still ‘To do’. The team

then agrees on which User-Stories are ready and are achievable within the first Sprint.

The team decides that they do not have capacity to finish User-Stories 8 and 9. Using the

above Sprint Backlog table 6.2, I then formalize the backlog into the Z Schema 6.2:

 Populate_Prioritization_User_Stories

Δ Prioritization_User_Stories

(∀i : ℕ1 ⦁

 stories(i).Status = “To do”

∧

 (if i ∈ {8, 9} then stories (i).Sprint_Ready = “No”

 else stories (i).Sprint_Ready = “Yes”)

∧

 (if i ∈ {1, 4, 5} then stories (i).Priority = “Medium”

 elseif i ∈ {2, 3, 6, 7, 8} then stories(i).Priority = “High”

 else stories(i).Priority = “Low”)

∧

 (if i ∈ {8, 9} then stories (i).Sprint = “2”

 else stories (i).Sprint = “1”)

Z Schema 6.2 Populate_Prioritization_User_Stories

Schema 6.2 shows the prioritization of User-Stories where all of them are still in the ‘To

do’ status at the beginning of the Sprint. I then specified that User-Stories 8 and 9 are not

ready for the Sprint, and the rest are ready. I also specified the User-Stories by priority

where they are categorised as low, medium and high.

The basic types are:

 114

[To do, Doing, Done]

In the Z Schema 6.3 next, I define the state space of the backlog board.

 Sprint_Backlog

to do: To do

doing : Doing

done : Done

disjoint (to do, doing) ∧ disjoint (to do, done) ∧ disjoint (doing, done)

Z Schema 6.3 Sprint_Backlog

The declaration part of the schema introduces 3 variables: To do, Doing, and Done. The

variables represents the columns in Figure 6.2. The predicate presents the pairwise

disjoint sets (since the same content cannot appear in multiple columns) where a Sprint

Backlog item can move from to do, to doing (when it is in development), to done (when it

is completed).

Figure 5.3 represents how the development team gathers in front of the Sprint Backlog

board for a 15-minute daily Scrum meeting.

Figure 6.2 Illustration of a Development Team gathered around the Sprint Backlog board (https://watisscrum.nl/sprint-backlog/)

As indicated in Figure 6.2 and Z Schema 6.3, the board consists of three components, to

do, doing, and done with types indicated in Z Schema 6.3. Since the same content cannot

appear in multiple columns, the components are pairwise disjoint.

https://watisscrum.nl/sprint-backlog/

 115

Following Z’s established strategy, the next step is to define an initial state of the board

and subsequently show that such a state can be realised.

 InitSprint_Backlog

Sprint_Backlog′

to do = ∅ ∧ doing = ∅ ∧ done = ∅

Z Schema 6.4 InitSprint_Backlog

A proof obligation of the existence of an initial state arises.

Proof:

⊢ Sprint_Backlog′ ⦁ InitSprint_Backlog (6.1)

Hence, I need to show:

⊢ ∃ to do′ : To do; doing′ : Doing; done′ : Done |

to do′ = ∅ ∧ doing′ = ∅ ∧ done′ = ∅ (6.2)

The proof of (6.2) follows trivially, since the empty set values are specified in schema

InitSprint_Backlog.

6.4 Feature 1 - Voter Registration

In reference to the Sprint Backlog board (Table 6.2), the following User-Stories fall un-

der feature 1.

• User-Story 1: Insert Student Number

• User-Story 2: Verify Student Registration

• User-Story 3: Register Student to Vote

• User-Story 4: Confirm Registration

6.4.1 User-Story Objective:

As a student at the University

I want to register to vote

So that I am eligible to vote

 116

6.4.2 Acceptance Criteria

1. The voter needs to be a registered student

[STUDENT, REGISTRATION]

 Vote

known : ℙ STUDENT

vote : STUDENT ⇸ REGISTRATION

known = dom vote

Z Schema 6.5 Vote schema

Schema Vote describes the state space of a system, and the two variables represent

important observations which I can make of the state:

• known is the set of students in the registered for the academic year;

• vote denotes a function which allows registered students to electronically vote for

student leadership of their choice.

6.5 Feature 2 – Voting

• User-Story 1: Insert Student Number

• User-Story 2: Validate Student Voting Status

• User-Story 3: Vote

• User-Story 4: Consolidate Results

• User-Story 5: Announce Results

6.5.1 User-Story Objective

As a student at the University

I want to vote

So that the student body can be led by leaders of my choice

Schema 6.5 presents an eVoting formal specification which describes the intended sys-

tem behaviour.

 117

 eVoting

Δ Vote

student? : STUDENT

evoting? : REGISTRATION

results! : RESULTS

student? ∈ known

vote′ = vote ⊕ {student? ↦ evoting?}

results! = “Student” + student? + “has voted.”

Z Schema 6.6 eVoting System

The declaration Δ Vote alerts us to the fact that the schema is describing a state change:

it introduces variables: student, registration, results, student?, evoting?, and results!. The

schema represents an electronic voting scenario where a registered student is automati-

cally eligible to vote and see the voting results.

6.6 Sprint 1 – Day 1 (S1.1)

The eVoting system development work begins on Day 1 of the project. Every morning,

the complete team comes for their daily Scrum meeting. Everyone gives a quick recap of

what has been completed so far, updates the expected number of hours remaining on the

Sprint Task board cards, outlines what they plan to do for the day, and highlights any

roadblocks to completing their work. One of the team members informs the rest of the

group that he is having trouble obtaining a new licence for one of the software applications

he uses. The Scrum Master verifies that other members of the team are experiencing the

same problem and undertakes to address it following the meeting. Everyone returns to

their duties after 15 minutes. Figure 6.3 depicts how the development team meets for a

15-minute daily Scrum meeting in front of the Sprint Backlog board. The Sprint Backlog

board in Figure 6.3 contains abstract and general content.

 118

Figure 6.3 Illustration of a Development Team gathered around the Sprint Backlog board (https://watisscrum.nl/sprint-backlog/)

As indicated in Chapter 5 as well, the Scrum Master keeps track of all of the User-Stories

that have been assigned for the length of the Sprint. Individual members of the develop-

ment team announce what User-Stories they are presently working on and any impedi-

ments to their progress during the daily Scrum meeting. The Done column is empty at the

start of the Sprint (Day 1) until a User-Story is completed. The Scrum Master updates the

Sprint Backlog board after the meeting by shifting the User-Story artefacts from To do,

Doing to Done. The Scrum Master then follows up and removes all the impediments to

the team's success.

6.7 Sprint 1 – Day 2 till final Sprint day (S1.2, n)

The entire team meets again during Day 2 for their daily Scrum meeting. The team dis-

perses after the meeting and gets to work on the tasks from the Sprint Backlog that they

had committed to. Until the last day of the Sprint (represented by n), the same routine

continues. Each day includes a daily Scrum meeting, where progress for each User-Story

is discussed and the development team and Scrum Master work towards removing im-

pediments until all possible User-Stories are on the Done column (Table 6.3 below).

 119

Table 6-3 User-Stories details as illustrated in Sprint Backlog board

To do Doing Done

8. Consolidate Results 5. Insert Student Number 1. Insert Student Number

9. Announce Results
6. Validate Student Voting
Status

2. Verify Student Registration

 7. Vote 3. Register Student to Vote

 4. Confirm Registration

The Scrum Master and development team document and track their progress towards

achieving all the Sprint's items in Table 6.3. Individual team members transfer User-Sto-

ries they're working on from the To do column to the Doing column on the Sprint Backlog

board. They move the User-Story from Doing to Done once it has been completed. This

is repeated continuously until the Sprint is completed; thereafter Sprint 2 begins. In the

beginning of Sprint 2, the Scrum Product Owner adds new items to the Scrum Product

Backlog based on the stakeholder meetings. This then allows for the repetition of the

Sprint 1 process until all User-Stories are in the Done column of the Sprint Backlog board

and the eVoting system development is completed.

 Sprint_Backlog_User_Stories

Δ Sprint_Backlog_User_Stories

(∀i : [1 .. 10] ⦁

 (if i ∈ {8, 9} then stories (i).Status = “To do”

 elseif i ∈ {5, 6, 7} then stories(i).Status = “Doing”

 else stories(i). Status = “Done”)

Z Schema 6.7 Sprint_Backlog_User_Stories

 120

6.8 Summary

I gave a case study of a Scrum software development environment in Chapter 6, where

the university is implementing an eVoting system that will allow students to vote online

from the comfort of their own homes. I illustrate how the eVoting system rollout need is

launched and presented to the development team in this case study. The development

team was able to create User-Stories using high-level use-cases, allowing them to itera-

tively produce functioning software in a piecemeal manner. The development team then

adheres to the Sprint's time-box to ensure that the Sprint's specified time and scope are

met.

6.9 Conclusion

Computerized voting systems would eliminate the need for ballot boxes, queue manage-

ment, and paper ballots by simulating these functions. This would result in significant cost

savings in terms of printing. The use of electronic voting systems to automate the verifi-

cation process would help to impose necessary rules in order to check whether or not a

person has already cast a vote, eliminating the need for permanent ink.

Having shown the possibility of using Formal Methods within the Agile Software Develop-

ment Methodology, in Chapter 7 below I am concluding the research work.

 121

7. Chapter 7: Conclusion

In Chapter 6 I presented an idea of how a Scrum Team can feature Z Specifications in

establishing clearer software requirements. I was able to model how I can use predicate

calculus and the Z schema calculus in verifying User-Stories. I used the ASD case study

in Chapter 5 in presenting that the use of Formal Methods can be embedded in a Scrum

environment. By also presenting the advantages and disadvantages of Formal Methods,

I was able to identify to what extent they can be usable in order to realise their ultimate

goal of quality software output.

In this chapter, I am summarizing and concluding the research work. I revisit ideas I had

when proposing the research work and compare them with what I have achieved in this

dissertation with respect to research objectives met.

7.1 Introduction

Having arrived at this point of this dissertation, I consider what has been achieved. In

Chapter 1 I introduced the proposed study and provided the context as to why it would be

beneficial for Formal Methods to be normalized and embraced in Agile Software Devel-

opment. I introduced the problem statement, which I believed would be soluble through

undertaking this research work.

In Chapter 2, I conducted a literature review on some of the widely used software devel-

opment methodologies. I collected and reviewed scholarly work relevant to the research

work for both Agile and traditional methodologies. As a central feature of the research, in

Chapter 3 I introduced Formal Methods. I presented a Z Specification example for a pre-

liminary overview of the FM subject and provided scholarly literature in justifying the need

for this software verification technique to be included in Agile Software Methodology.

I then presented the research design in Chapter 4, where I disclosed how the FM/ASD

relationship would be investigated and how I would collect and analyse data. This was

done in a case study as an appropriate method for conducting the research, as presented

 122

in Chapter 5. The case study was based on a day-to-day Scrum practice which is meas-

ured in Sprints. In this case study I showed how the planning is done, up until a shippable

product is delivered. In the Scrum case study, I identified areas of improvement that For-

mal Methods can help the quality of the software product delivered. In Chapter 6, I then

used the same case study to embed the FMs into a Scrum practice and explicitly showed

how the final product would then be improved.

7.2 Revisiting the problem statement

When I proposed the research, I highlighted that I would be focusing on the limitations of

the compatibility of Agile Software Development Methodology and Formal Methods in

addressing the lack of quality software output problem. I identified that Agile Software

Development (ASD) facilitates rapid development of software. However, this rapidity often

leads to faulty software systems, particularly the security critical systems and Formal

Methods (FM) can facilitate the development of provably correct software systems, or at

least highly dependable systems.

The task through this research was to find a way to normalize this relationship between

ASD and FMs. In Chapter 6, I used the day-to-day practice of Scrum in showing how FMs

can feature and how success can still be achieved to keep up with the increasing demand

for quality and efficiency in software systems business. Specifically, I indicated through

tracing formal specifications of selected Agile constructs how Formal Methods may be

embedded in Agile.

7.3 Achievement of the research objectives

The research objective for the study was achieved and presented in the day-to-day prac-

tice of Scrum blending with Formal Methods for companies to keep up with the increasing

demand for quality and efficiency in the software systems business. I consider these next.

 123

7.3.1 The advantages and disadvantages of Agile and FM software development.

7.3.1.1 Advantages

Table 7-1 The main advantages of using FMs in ASDM

Conceptual Advantage Discussion

Higher Value Product The blending of ASD and FMs will help to deliver the

product of higher value.

Measurable Correctness The use of FMs in Scrum provides a measure of the

correctness of a system, as opposed to the current

process quality measures.

Early Detection of Defects
Formal Methods can be applied to the earliest design

artefacts, thereby leading to earlier detection and elimi-

nation of design defects.

Clarity Questions Come

Early

The use of Formal Methods forces the Scrum develop-

ment team to ask questions during planning that would

otherwise be postponed until coding. While Scrum al-

lows the team to have neat visibility of the product be-

ing developed.

Effective and Efficient Test-

Cases

From formal specification, we can systematically derive

effective test cases directly from the product backlog.

It’s a cost-effective way to generate test cases.

Fast and Effective Delivery Using FMs in ASD can help teams carry out project de-

liveries in a fast and effective way.

Improved Design and Prob-

lem Understanding

Using Formal Methods leads to an improved design

and a good understanding of the problem domain in

the Sprint Backlog. FMs provides confidence that the

system under development is correct especially if proof

is tracked User-Stories.

Devising Complex Projects

into Piecemeal Constructs

Large and complex projects can be separated into

practically manageable parts while quality is prioritized.

In this regard the use of Z’s schema calculus allows for

a piecemeal construction of a specification.

Improved Process and

Quality

Process and quality improvements are analysed during

the Sprint Review. ASD works well for dynamic and

fast-moving project improvement, while the use of FMs

 124

Conceptual Advantage Discussion

allows for rigorous design and ultimately highly de-

pendable software.

Stakeholder Feedback

Comprehension

ASD takes and comprehends feedback given by cus-

tomers and stakeholders.

7.3.1.2 Disadvantages

Table 7-2 The main disadvantages of using FMs in ASDM

Conceptual Disadvantage Discussion

Requires Experience to

Succeed

Only experienced team members can be successful in

using the FMs in Scrum. That said, it arguably holds for

most software development approaches.

They may be too Complex

to Succeed

Most important language constructs and software sys-

tem components lack formal semantic definitions or are

too complex to be useful.

FMs is Ideal for Upfront and

Predictable Requirements

In ASD, requirements might be different from what the

user states, and will usually vary with time. This poses

a challenge with traditional FMs as they usually as-

sume that the user requirements are final. Software

system normally takes inputs from external environ-

ment. These inputs may not be predictable. This obvi-

ous ignored issue usually creates the problem of devel-

oping `correct' specifications and deciding what behav-

iour is correct.

7.3.2 Identify what business enterprises would achieve by merging Formal Meth-
ods into Agile Software Development Methodology

Table 7-3 Potential benefits for business enterprises

Business Enterprise Discussion

Efficiently Developed Relia-

ble Software Output

The ultimate achievement for business enterprises is

the efficiently developed reliable software output that is

 125

Business Enterprise Discussion

result of merging Formal Methods into Agile Software

Development Methodology.

Harnessing Positive Agile

Philosophies

Scrum emphasise teams, working software, customer

collaboration, and responding to change. These as-

pects are important for the prosperity of enterprises in

general and not limited to software development.

Better Business Engage-

ment Leading to Greater

Customer Satisfaction

The Agile philosophy creates much better business en-

gagement and leads to greater customer satisfaction.

This is an important benefit that can create more posi-

tive and enduring working relationships.

Ensuring the Building of the

Right Product that will De-

liver the Desired Value and

Benefits

It is common in more traditional projects to deliver a

“successful” project and find that the product is not

what was expected, needed or hoped for. In combining

Agile Software Development and Formal Methods, the

emphasis is placed on building the right product that

will deliver the desired value and benefits.

Delivering Measurably

Within Timescales, Fixed

Budget, and Cost

The Scrum provides of fixed timescales which enables

a fixed budget. The scope of the product and its fea-

tures are variable, rather than the cost. As we are de-

veloping complete slices of functionality, we can meas-

ure the real cost of development as it proceeds, which

will give us a more accurate view of the cost of future

development activities and therefore this allows better

planning at the enterprise level.

7.3.3 Determine for which Agile development phases it may be appropriate to im-

plement FMs

The changing face of the software requirements is the attribute of ASD and therefore for

development teams to realise the FMs’ benefits they have to be usable at every level

where the requirements could change. A list of clear requirements is what the develop-

ment teams need to create the right product. Software requirements translate the expec-

tations and needs of the users to functionalities and features that can be implemented.

They can be clearer even from the beginning of a project, but sometimes they are hidden,

implied and can even occur as unexpected guests in the middle of the development night.

 126

I observed that Formal Methods can be implemented at every level of Scrum. However,

the research has found that FMs are more effective in the Plan and Design steps. The

User-Stories agreed in the first step of each iteration are the basis for the extraction of

the functional and non-functional requirements that will be developed, and this is where

FMs can be effectively embedded.

7.3.4 Develop a framework for embedding FMs in an Agile methodology

In Chapter 5, we presented a framework for embedding FMs into Agile methodology. I

expand on the framework as the major contribution to the study in point 7.5 below.

7.4 Contribution of the study

The main contribution to this study was presented in chapters 5 and 6. Ideas on how a

Scrum Team can feature Z Specifications in establishing clearer software requirements

were presented. I was able to model how I can use predicate calculus and Z’s schema

calculus in verifying User-Stories. I used the ASD case study in Chapter 5 in presenting

that the use of Formal Methods can be embedded in a Scrum environment. By also pre-

senting the advantages and disadvantages of Formal Methods, I was able to identify what

extent can be usable in order to realise their ultimate goal of quality software output.

In enhancing the usability of Formal Methods, I have extended the Z notation schemas

and included conditional statements in the form of if/else/elseif statements as these usu-

ally occur in procedural and executable software development languages. The

if/else/elseif statement executes a block of code or script if a specified condition is true. If

the condition is false, another block of code or script can be executed. Standard Z already

has the if/else specification construct, and I extended it accordingly by adding the elseif.

Formal Methods have been shown to facilitate the production of highly dependable soft-

ware, yet it is hard to achieve the necessary competency level by a software engineer.

Agile on the other hand hastens the software development process, yet may lead to chal-

lenges, especially with respect to mission-critical software development. In this study, I

was able to contribute and show a practical process to overcome these challenges.

 127

7.5 Contribution towards a framework for embedding FMs in Scrum

As a significant contribution into the research, in Chapter 5 I presented a framework that

can be replicated in order to have Formal Methods effectively usable in an Agile Software

Development. By drawing closer to the subject matter, I elected to use Z Schemas within

Scrum.

The framework presents the process followed by Product Backlog items where a new

development item is approved by the Product Owner. The Product Owner then obtains

commitment from the Scrum Team during the Sprint Planning session. After the Scrum

Team commits, the process is set in motion with the development for the Sprint period

until a deliverable is considered completed or done.

The framework, consists of three main tasks to kick-start the Sprint:

1. Creating the User-Stories

2. Formulating the Acceptance Criterion

3. Developing the Z Schemas

After the above tasks, the daily Scrum Work Cycle follows the time-boxed evolution of the

Sprint (one to four weeks). This evolution is continuously reviewed during the Sprint

Review sessions, which are to confirm which User-Stories can be set to complete and

what to do with the incomplete ones.

7.6 Future work

I summarized the results of the study into a framework which could be used as a starting

point for further theoretical and empirical studies on this topic. The framework for embed-

ding Formal Methods into Agile Software Development will be evaluated empirically in the

future. Researchers could use different research methodological instruments to validate

the results of future studies among practitioners in industry by developing measurement

scales for the success of the proposed framework.

 128

The above opportunity for future work will allow the implementation and testing of the

proposed framework. It should provide an opportunity to identify Scrum Teams, training

them in the use of discrete mathematics and Z so that they can implement the process

proposed in Chapter 6.

7.7 Summary

In concluding the research work, I revisited what I had proposed to achieve in Chapter 1.

I revisited the problem statement which was the limitation of Agile Software Methodology

to rigorously verify software specifications in order to achieve qualitative software output.

In another part of the conclusion, I looked at whether the initial research objectives were

achieved. I identified both the advantages and disadvantages of embedding Formal Meth-

ods into Agile Software Development. I also presented what would business enterprises

achieve by having this proposed theory of embedding FMs in ASD. Lastly, I presented

the appropriate phase or level of Scrum process when FMs would be more effective and

the idea of how a Scrum Team can feature Z Specifications in establishing clearer soft-

ware requirements.

Embedding FMs in the Agile software development methodology appears to be feasible,

yet the usual objections to the use of FMs for software development may well arise. I

hope this work will assist in addressing these challenges in the future.

 129

References

Akbar, M.A., Sang, J., Khan, A.A., Shafiq, M., Hussain, S., Hu, H., Elahi, M. and Xiang,
H., 2017. Improving the quality of software development process by introducing a
new methodology–AZ-model. IEEE Access, 6, pp. 4811-4823.

Zefeiti, S.M.B.A. and Mohamad, N.A., 2015, Methodological considerations in studying
transformational leadership and its outcomes. International Journal of Engineering
Business Management, 7, p.10.

Alcazar, E.G. and Monzon, A., 2000, June. A process framework for requirements anal-
ysis and specification. In Proceedings Fourth International Conference on Require-
ments Engineering. ICRE 2000.(Cat. No. 98TB100219) (pp. 27-35). IEEE.

Alharahsheh, H.H. and Pius, A., 2020. A review of key paradigms: Positivism VS inter-
pretivism. Global Academic Journal of Humanities and Social Sciences, 2(3), pp.39-
43.

Alshamrani, A. and Bahattab, A., 2015. A comparison between three SDLC models wa-
terfall model, spiral model, and Incremental/Iterative model. International Journal of
Computer Science Issues (IJCSI), 12(1), p.106.

Andry, J.F., Riwanto, R.E., Wijaya, R.L., Prawoto, A.A. and Prayogo, T., 2019. Develop-
ment Point of Sales Using SCRUM Framework. Journal of Systems Integration
(1804-2724), 10(1).

Araki, K. and Chang, H.M., 2002. Formal methods in Japan: current state, problems and
challenges. In Proceedings of the Third VDM Workshop, VDM.

Arnold, M. and Bashir, T., 2020. Agile Methodologies as a Management Tool for Physi-
cal Systems Engineering Development.

Ayodele Adeola Adesina-Ojo 2013, Towards the formalisation of object-oriented meth-
odologies, University of South Africa.

Azorín, J.M. and Cameron, R., 2010. The application of mixed methods in organisa-
tional research: A literature review. Electronic Journal of Business Research Meth-
ods, 8(2), pp. 95-105.

Baham, C., 2019. Implementing scrum wholesale in the classroom. Journal of Infor-
mation Systems Education, 30(3), p.141.

Bannink, S., 2014, January. Challenges in the Transition from Waterfall to Scrum–a
Casestudy at Portbase. In 20th Twente Student Conference on Information Tech-
nology (Vol. 182).

 130

Beedle, M., Bennekum, A.V., Cockburn, A., Cunningham, W., Fowler, M., Highsmith, J.
and Thomas, D., 2010. Principles behind the agile manifesto. Retrieved on Novem-
ber 11, p.2010.

Bhavsar, K., Shah, V. and Gopalan, S., 2020. Scrum: An agile process reengineering in
software engineering. International Journal of Innovative Technology and Exploring
Engineering, 9(3), pp. 840-848.

Bjørner, D., 1998, April. Formal Methods in the 21’st Century: An Assessment of To-
day—Predictions for the Future. In Proc. ICSE (Vol. 98).

Bolton, M.L., Bass, E.J. and Siminiceanu, R.I., 2013. Using formal verification to evalu-
ate human-automation interaction: A review. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 43(3), pp. 88-503.

Bolton, M.L., Bass, E.J. and Siminiceanu, R.I., 2008, July. Using formal methods to pre-
dict human error and system failures. In Proc. 2nd Int. Conf. appl. human factors er-
gonom.

Bowen, J.P., 1996. Formal specification and documentation using Z: A case study ap-
proach (Vol. 66). London: International Thomson Computer Press.

Butler, M., 2001. Introductory Notes on Specification with Z. Department of Electronics
and Computer Science, University of Southampton.

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.,
Papakonstantinou, I., Purbrick, J. and Rodriguez, D., 2015, April. Moving fast with
software verification. In NASA Formal Methods Symposium (pp. 3-11). Springer,
Cham.

Carr, M. and Verner, J., 1997. Prototyping and software development approaches. De-
partment of Information Systems, City University of Hong Kong, Hong Kong,
pp.319-338.

Comte, A., 2000. The positive philosophy (in three volumes). Paul, Trench, Trubner.

Cosmas, N.I., Christiana, A.F., Jeremiah, O.O. and Ikechukwu, A.C., 2018. Transitions
in System Analysis and Design Methodology. Am. J. Inf. Sci. Technol, 2(2), pp.50-
56.

Cui, Y., Zada, I., Shahzad, S., Nazir, S., Khan, S.U., Hussain, N. and Asshad, M., 2021.
Analysis of service-oriented architecture and scrum software development ap-
proach for IIoT. Scientific Programming, 2021.

De Lucia, A. and Qusef, A., 2010. Requirements engineering in agile software develop-
ment. Journal of Emerging Technologies in Web Intelligence, 2(3), pp.212-220.

 131

De Vries, H. and Van der Poll, H.M., 2016. The influence of Lean thinking on organisa-
tional structure and behaviour in the discrete manufacturing industry. Journal of
Contemporary Management, 13(1), pp.55-89.

Dongmo, C., 2016. Formalising non-functional requirements embedded in user require-
ments notation (URN) models (Doctoral dissertation).

Dongmo, C. and van der Poll, J.A., 2009. Use of Case Maps as an Aid in the Construc-
tion of a Formal Specification.

Dudovskiy, J. 2018, 06/08/2018-last update, Research Methodology. Availa-
ble: https://research-methodology.net/research-methodology/research-ap-
proach/deductive-approach-2/ [2018, 18/09/2018].

Dwivedi, A.K. and Rath, S.K., 2012, December. Model to specify real time system using
Z and Alloy languages: A comparative approach. In International Conference on
Software Engineering and Mobile Application Modelling and Development (ICSEMA
2012) (pp. 1-6). IET.

Eden, A.H., 2001, November. Formal specification of object-oriented design. In Interna-
tional Conference on Multidisciplinary Design in Engineering (pp. 256-263).

Eleftherakis, G. and Cowling, A.J., 2003, November. An agile formal development meth-
odology. In Proceedings of the 1st South-East European Workshop on Formal
Methods (pp. 36-47).

Enderton, H.B., 1977. Elements of set theory. Academic press.

Erich, F., Amrit, C. and Daneva, M., 2014. Report: DevOps literature review. University
of Twente, Tech. Rep.

Franch, X., Gómez, C., Jedlitschka, A., López, L., Martínez-Fernández, S., Oriol, M. and
Partanen, J., 2018, June. Data-driven elicitation, assessment and documentation of
quality requirements in agile software development. In International Conference on
Advanced Information Systems Engineering (pp. 587-602). Springer, Cham.

Fulara, J. and Jakubczyk, K., 2010, January. Practically applicable formal methods.
In International Conference on Current Trends in Theory and Practice of Computer
Science (pp. 407-418). Springer, Berlin, Heidelberg.

Ganesh, N. and Thangasamy, S., 2011. Issues identified in the software process due to
barriers found during eliciting requirements on agile software projects: Insights from
India. International Journal of Computer Applications, 16(5), pp.7-12.

Garg, A., 2009. Agile software development. DRDO Science Spectrum, 1, pp.55-59.

https://research-methodology.net/research-methodology/research-approach/deductive-approach-2/
https://research-methodology.net/research-methodology/research-approach/deductive-approach-2/

 132

Gleirscher, M., Foster, S. and Woodcock, J., 2019. New opportunities for integrated for-
mal methods. ACM Computing Surveys (CSUR), 52(6), pp.1-36.

Gruhn, V. and Striemer, R., 2018. The Essence of Software Engineering. Springer Na-
ture.

Gruner, S., 2010. FM+ AM’09: workshop on formal methods and agile methods. Innova-
tions in Systems and Software Engineering, 6(1), pp.135-136.

Gustavsson, T., 2019, May. Voices from the teams-impacts on autonomy in large-scale
agile software development settings. In International Conference on Agile Software
Development (pp. 29-36). Springer, Cham.

Hall, A., 1990. Seven myths of formal methods. IEEE software, 7(5), pp.11-19.

Hatcher, C.A., 2019. A Conceptual Framework for Flight Test Management and Execu-
tion Utilizing Agile Development and Project Management Concepts. 812th Test
Support Squadron, 812 TSS/ENTI Edwards United States.

Hehner, E.C., 2017. A practical theory of programming. Springer Science & Business
Media.

Herrmannsdörfer, M., Konrad, S. and Berenbach, B., 2008. Tabular notations for state
machine-based specifications. Crosstalk, 21(3), pp.18-23.

Highsmith, J., 2003. Agile software development-why it is hot. Extreme Programming
Perspectives, M. Marchesi, et al., Editors, pp.9-16.

Hinkelmann, K. and Witschel, H.F., 2013. How to choose a research methodology. Uni-
versity of Applied Sciences, Northwestern Switzerland, School of Business, Availa-
ble Online: http://knut. hinkelmann. ch/lectures/project2013/p1_5_how-to-choose-a-
researchmethodology. pdf [Accessed 1 April 2017].

Holbeche, L., 2018. The agile organization: How to build an engaged, innovative and re-
silient business. Kogan Page Publishers.

Huisman, M., Gurov, D. and Malkis, A., 2020. Formal methods: from academia to indus-
trial practice. A travel guide. arXiv preprint arXiv:2002.07279.

Hussain, A., Mkpojiogu, E.O., Ishak, N. and Mokhtar, N., 2019. A Study on the Per-
ceived Mobile Experience of Myeg Users. Int. J. Interact. Mob. Technol., 13(11),
pp.4-23.

Ismail, N.N.S. and Abdullah, H., 2017, March. Implementing Rapid Application Develop-
ment (RAD) methodology in developing Online Laboratory and Room Booking Sys-
tem (ELABAS). In e-Proceedings iCompEx17 Academic Paper.

 133

Kassab, M., Lee, J., Mazzara, M., Succi, G. and Tumyrkin, R., 2016. Software Quality-
Traditional vs. Agile: an Empirical Investigation. arXiv preprint arXiv:1610.08312.

Khalifa, M. and Verner, J.M., 2000. Drivers for software development method us-
age. IEEE Transactions on Engineering Management, 47(3), pp.360-369.

Kim, G., Humble, J., Debois, P., Willis, J. and Forsgren, N., 2021. The DevOps hand-
book: How to create world-class agility, reliability, & security in technology organiza-
tions. IT Revolution.

Knight, J.C., DeJong, C.L., Gibble, M.S. and Nakano, L.G., 1997. Why are formal meth-
ods not used more widely? In Fourth NASA formal methods workshop.

Krishnan, M.S., 2015. Software development risk aspects and success frequency on
spiral and agile model. International Journal of Innovative Research in Computer
and Communication Engineering (An ISO 3297: 2007 Certified Organization), 3(1),
pp.301-310.

Lall, M., van der Poll, J.A. and Venter, L.M., 2012, November. Towards a formal defini-
tion of availability of web services. In The International Conference on Computing,
Networking and Digital Technologies (ICCNDT 2012) (pp. 154-165).

Löwe, M., 2010. Formal Methods in Agile Development. Special issue of Electronic
Communications of the EASST: Graph and Model Transformation, 30, pp.1-6.

Lano, K., 1995, May. Reactive system specification and refinement. In Colloquium on
Trees in Algebra and Programming (pp. 696-710). Springer, Berlin.

Larsen, P.G., Fitzgerald, J.S. and Wolff, S., 2011. Are formal methods ready for agility?
a reality check. In FM+ AM 2010: Second International Workshop on Formal Meth-
ods and Agile Methods, Newcastle University.

Madni, A.M., Sievers, M.W., Humann, J., Ordoukhanian, E., Boehm, B. and Lucero, S.,
2018. Formal methods in resilient systems design: application to multi-UAV system-
of-systems control. In Disciplinary Convergence in Systems Engineering Re-
search (pp. 407-418). Springer, Cham.

Mafuwane, B.M., 2011. The contribution of instructional leadership to learner perfor-
mance (Doctoral dissertation, University of Pretoria).

Manandhar, N. 2008, Agile Software Development, Natick, Massachusetts.

Masombuka, K.T., 2020. A framework for a successful collaboration culture in software
development and operations (DevOps) environments (Doctoral dissertation).

 134

Mbala, I.N. and van der Poll, J.A., 2017, December. Towards Specification Formalisms
for Data Warehousing Requirements Elicitation Techniques. In The 3rd Interna-
tional Conference on Computing Technology and Information Management (IC-
CTIM 2017) (Vol. 1, pp. 45-58).

McCormick, M., 2012. Waterfall vs. Agile methodology. MPCS, N/A, 3.

Meseguer, P., 1992. Towards a conceptual framework for expert system validation. AI
Communications, 5(3), pp.119-135.

Milićević, J.M., Filipović, F., Jezdović, I., Naumović, T. and Radenković, M., 2019.
Scrum agile framework in e-business project management: an approach to teaching
scrum. European Project Management Journal, 9(1), pp.52-60.

Moi, L. and Cabiddu, F., 2021. Leading digital transformation through an Agile Market-
ing Capability: the case of Spotahome. Journal of Management and Govern-
ance, 25(4), pp.1145-1177.

Moyo, B., 2021. The contingent use of systems development methodologies in South
Africa (Doctoral dissertation, North-West University (South Africa)).

Mushashu, E.T. and Mtebe, J.S., 2019, May. Investigating Software Development Meth-
odologies and Practices in Software Industry in Tanzania. In 2019 IST-Africa Week
Conference (IST-Africa) (pp. 1-11). IEEE.

Nemathaga, A.P. and van der Poll, J.A., 2019. Adoption of formal methods in the com-
mercial world. In Eight international conference on advances in computing, commu-
nication and information technology (CCIT 2019) (pp. 75-84).

Novikov, M. and Heuser, N., 2006. "Agile Software Development",1, pp. 1-1-6.

O'Regan, G., 2020. Mathematics in computing. Springer International Publishing.

Pandey, S.K. and Batra, M., 2013. Formal methods in requirements phase of SDLC. In-
ternational Journal of Computer Applications, 70(13), pp.7-14.

Popli, R. and Chauhan, N., 2013. Agile software development. International Journal of
Computer Science and Communication, 4(2), pp.153-156.

Potter, B., Sinclair, J. and Till, D., 1992. An introduction to formal specification and Z.
Prentice-Hall, Inc..

Rasch, L. and Thun, V., 2020. The Road to Become Agile: A case study of agile trans-
formations in the retail market, including an organization development approach.

 135

Roche, J., 2013. Adopting DevOps practices in quality assurance. Communications of
the ACM, 56(11), pp.38-43.

Rodriguez-Calero, I.B., Coulentianos, M.J., Daly, S.R., Burridge, J. and Sienko, K.H.,
2020. Prototyping strategies for stakeholder engagement during front-end design:
Design practitioners’ approaches in the medical device industry. Design Stud-
ies, 71, p.100977.

Royce, W.W., 1970, August. Managing the development of large software systems Dr.
Winston W. Rovce Introduction. In Ieee Wescon (pp. 328-338).

Rush, D.E. and Connolly, A.J., 2020. An agile framework for teaching with scrum in the
IT project management classroom. Journal of Information Systems Educa-
tion, 31(3), pp.196-207.

Sabale, R.G. and Dani, A.R., 2012. Comparative study of prototype model for software
engineering with system development life cycle. IOSR Journal of Engineering, 2(7),
pp.21-24.

Saunders, M., Lewis, P. and Thornhill, A., 2018. Research methods for business stu-
dents. Pearson education.

Schaefer, I. and Hähnle, R., 2011. Formal methods in software product line engineer-
ing. Computer, 44(02), pp.82-85.

Sharma, A. and Bawa, R.K., 2020. Identification and integration of security activities for
secure agile development. International Journal of Information Technology, pp.1-14.

Sirjani, M., Lee, E.A. and Khamespanah, E., 2020, July. Model checking software in cy-
berphysical systems. In 2020 IEEE 44th Annual Computers, Software, and Applica-
tions Conference (COMPSAC) (pp. 1017-1026). IEEE.

Smartbear 2018, 6 Ways to Measure the ROI of Automated Testing, Smartbear, Gal-
way, Ireland.

Solms, F. and Loubser, D., 2010. URDAD as a semi-formal approach to analysis and
design. Innovations in Systems and Software Engineering, 6(1), pp.155-162.

Souri, A., Rahmani, A.M., Navimipour, N.J. and Rezaei, R., 2019. A symbolic model
checking approach in formal verification of distributed systems. Human-centric
Computing and Information Sciences, 9(1), pp.1-27.

Spivey, J.M. and Abrial, J.R., 1998. The Z notation (Vol. 29). Hemel Hempstead: Pren-
tice Hall.

 136

Stocks, P.A., 1993. Applying formal methods to software testing (Doctoral dissertation,
University of Queensland).

Stocks, P. and Carrington, D., 1996. A framework for specification-based testing. IEEE
Transactions on Software Engineering, 22(11), pp.777-793.

Szalvay, V., 2004. An introduction to agile software development. Danube Technolo-
gies. Inc., Bellevue,(November), pp.1-9.

Tanvir, S., Safdar, M., Tufail, H. and Qamar, U., 2018. Merging prototyping with agile
software development methodology. In International Conference on Engineering,
Computing & Information Technology (ICECIT 2018) (pp. 50-54).

Tomayko, J.E., 2017, September. Engineering of unstable requirements using agile
methods. In International Conference on Time-Constrained Requirements Engi-
neering.

Tonchia, S., 2018. Project strategy management. In Industrial Project Management (pp.
81-92). Springer, Berlin.

Torp, C.E., 2003. Method of software validation. Nordtest Report TR, 535.

Tretmans, G.J. and Belinfante, A., 1999. Automatic testing with formal methods (pp.
2011-2012). Centre for Telematics and Information Technology, University of
Twente.

Turetken, O., Stojanov, I. and Trienekens, J.J., 2017. Assessing the adoption level of
scaled agile development: A maturity model for Scaled Agile Framework. Journal of
Software: Evolution and process, 29(6), p.e1796.

Turk, D., France, R. and Rumpe, B., 2002, May. Limitations of agile software processes.
In Third International Conference on eXtreme Programming and Agile Processes in
Software Engineering (XP 2002) (pp. 43-46).

Tutorials Point 2018, SDLC [Homepage of Tutorials Point], [Online].
Available: https://www.tutorialspoint.com/index.htm [2018, 04/09/2018].

Van der Poll, J.A., 2010. Formal methods in software development: A road less trav-
elled. South African Computer Journal, 2010(45), pp.40-52.

Van der Poll, J.A. and Kotzé, P., 2005. Enhancing the established strategy for con-
structing a Z specification: Reviewed article. South African Computer Jour-
nal, 2005(35), pp.118-131.

https://www.tutorialspoint.com/index.htm

 137

Vijayasarathy, L.R. and Butler, C.W., 2016. Choice of software development methodolo-
gies: Do organizational, project, and team characteristics matter?. IEEE soft-
ware, 33(5), pp.86-94.

Vlaanderen, K., Jansen, S., Brinkkemper, S. and Jaspers, E., 2011. The agile require-
ments refinery: Applying SCRUM principles to software product management. Infor-
mation and software technology, 53(1), pp.58-70.

Wang, Y., Li, J., Hongbo, S., Li, Y., Akhtar, F. and Imran, A., 2019. A survey on VV&A
of large-scale simulations. International Journal of Crowd Science, 3(1), pp.63-86.

Woodcock, J. and Davies, J., 1996. Using Z: Specification‚ Refinement‚ and Proof.

Zayat W, Senvar O. Framework study for agile software development via scrum and
Kanban. International journal of innovation and technology management. 2020 Jun
24;17(04):2030002.

Zainal, Z.A.I.D.A.H., 2008. The relationship between reading comprehension and strate-
gies of readers: A case study of UTM students. Research in English Language
Teaching, 1(3), pp.95-118.

Zhang, X., Hu, T., Dai, H. and Li, X., 2010. Software development methodologies,
trends, and implications. Information Technology Journal, 9(8), pp.1747-1753.

 138

Appendix A: Student/Supervisor Agreement

Supervisor: Prof. Van der Poll, John

Co-supervisor: Prof. Lotriet, Hugo

 139

Appendix B: Ethical Clearance Certificate

 140

 141

 142

Appendix C: Language Editor Certificate

 143

Appendix D: Turnitin Report (1st page)

 144

Appendix E: Journal Article Submission

	Declaration
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Schemas
	List of Tables
	Abstract
	Okucashuniwe
	Opsomming
	1. Chapter 1: Introduction
	1.1 Background
	1.2 Literature review
	1.2.1 Agile Software Development
	1.2.2 Formal Methods

	1.3 The research problem statement
	1.4 The research purpose, questions, and objectives
	1.4.1 Research questions
	1.4.2 Research objectives

	1.5 The Research Layout
	1.6 Summary
	1.7 Conclusion

	2. Chapter 2: Literature Review on Traditional and Agile Methodologies
	2.1 Traditional software development methodologies
	2.1.1 Waterfall Software Development Methodology
	2.1.2 Incremental Model
	2.1.3 Prototyping
	2.1.4 Spiral model
	2.1.5 RAD (Rapid Application Development)

	2.2 Agile Software Development
	2.2.1 Example 2.1
	2.2.2 DevOps
	2.2.3 DevOps in Agile
	2.2.4 Scaled Agile Framework (SAFe)
	2.4.5 Scrum

	2.3 Summary
	2.4. Conclusion

	3. Chapter 3: Formal Methods
	3.1 Introduction
	3.2 Implementing Formal Methods
	3.3 Formal specification using Z
	3.3.1 Natural language description and basic types
	3.3.2 Definition of the State Space
	3.3.3 Initial state of the system and proof that such state exists.
	3.3.4 Operation Schemas
	3.3.5 Calculate the precondition of each abstract operations on the state
	3.3.6 Table showing all the partial operations together with their inputs, outputs and preconditions
	3.3.7 Definition of all schemas that present error conditions
	3.3.8 Use the Z schema calculus to make all the partial operations total

	3.4 Literature review on Formal Methods
	3.4.1 FMs in the requirements elicitation phase
	3.4.2 The Software Product Line Engineering
	3.4.3 Specification formalism
	3.4.4 Using formal verification to evaluate Human-Automation Interaction
	3.4.5 Incorporating FMs in testing
	3.4.6 The myths of Formal Methods
	3.4.7 Challenges in implementing FMs in ASD
	3.4.8 Are Formal Methods ready for Agile?

	3.5 Summary
	3.6 Conclusion

	4. Chapter 4: Research Design
	4.1 Introduction
	4.2 Philosophy - Positivism
	4.3 Approach to theory development - Abductive and inductive (hybrid)
	4.4 Methodological choice – Qualitative
	4.5 Research strategy - Case study
	4.6 Data collection – Observation
	4.7 Trustworthiness
	4.8 Credibility
	4.9 Confirmability
	4.10 Authenticity
	4.11 Validity
	4.12 Summary
	4.13 Conclusion

	5. Chapter 5: The Dlamini Bank Case Study
	5.1 Introduction
	5.2 The case study – Agile Software Development (Scrum)
	5.3 Dlamini Bank case study
	5.4 Sprint 1 – Day 0 (S1.0)
	5.5 Feature 1 – Account balance
	5.5.1 User-Story objective
	5.5.2 Acceptance criteria

	5.6 Feature 2 – Cash deposit
	5.6.1 User-Story Objective
	5.6.2 Acceptance criteria

	5.7 Feature 3 – Cash withdrawal
	5.7.1 User-Story objective
	5.7.2 Acceptance criteria

	Sprint 1 – Day 1 (S1.1)
	Sprint 1 – Day 2 (S1.2)
	Sprint 1 – Day 28 (S1.28)
	Sprint 2 – Day 1 (S2.1)
	5.8 Value Proposition of embedding FMs in a Scrum Sprint
	5.9 Framework for embedding FMs in Scrum
	5.9.1 Diagrammatic summary of the Scrum framework
	5.9.2 Workflow for a new backlog item
	5.9.3 Framework for Z Schema within Scrum Sprint

	5.10 Summary
	5.11 Conclusion

	6. Chapter 6: The University eVoting Case Study
	6.1 Introduction
	6.2 The case study – Using Formal Methods in Agile Software Development
	6.3 Sprint 1 – Day 0 (S1.0)
	6.4 Feature 1 - Voter Registration
	6.4.1 User-Story Objective:
	6.4.2 Acceptance Criteria

	6.5 Feature 2 – Voting
	6.5.1 User-Story Objective

	6.6 Sprint 1 – Day 1 (S1.1)
	6.7 Sprint 1 – Day 2 till final Sprint day (S1.2, n)
	6.8 Summary
	6.9 Conclusion

	7. Chapter 7: Conclusion
	7.1 Introduction
	7.2 Revisiting the problem statement
	7.3 Achievement of the research objectives
	7.3.1 The advantages and disadvantages of Agile and FM software development.
	7.3.2 Identify what business enterprises would achieve by merging Formal Methods into Agile Software Development Methodology
	7.3.3 Determine for which Agile development phases it may be appropriate to implement FMs
	7.3.4 Develop a framework for embedding FMs in an Agile methodology

	7.4 Contribution of the study
	7.5 Contribution towards a framework for embedding FMs in Scrum
	7.6 Future work
	7.7 Summary

	References
	Appendix A: Student/Supervisor Agreement
	Appendix B: Ethical Clearance Certificate
	Appendix C: Language Editor Certificate
	Appendix D: Turnitin Report (1st page)
	Appendix E: Journal Article Submission

