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Abstract
This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nano-
particles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and 
ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron 
microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed 
the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phyto-
compounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic 
acid had a higher affinity for interacting with the nanoparticle’s surface than other active compounds. Seeds treated with 
the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-
induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible 
uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed 
amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive 
agent as advised by its unique distribution pattern and effect on amino acid metabolism.
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1  Introduction

Climate change, an ever-increasing global population demanding high quality food, soaring food costs due to fertilizer 
shortages, and the adverse impact of the augmented application of chemical and organic fertilizers on the environ-
ment and soil fertility collectively support the urgent need to develop sustainable agricultural technologies that can 
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revolutionize crop productivity and quality [1, 2]. To address these broad-based challenges, the development and uti-
lisation of so-called nanotechnology-enabled fertilizers or nanofertilizers to substitute traditional agrochemicals, have 
presented with significant prospects in research and agriculture due to their unique physico-chemical make-up, nano-size 
dimensions, and high area to volume ratio facilitating enhanced nutrient use efficiency [3]. A variety of studies on seeds 
and seedling activity of metal-oxide (e.g. MoO, CeO2, CuO, TiO2, and ZnO) [4–6] and metal sulphide (e.g. MoS, Ag2S, ZnS, 
FeS, MnS) [4, 7–10] nanoparticles has been done and showed that metal based nanoparticles impact on plant growth 
vary based on the type, size, shape, concentration and seed/plant species. In contradictory, it has currently been noted 
that nanoparticle synthesis and test methods also have an influence on the development of the plant [11]. Some nano-
particles have shown no influence at all, a study on molybdenum oxide and sulphide nanoparticles showed that the 
growth of Oryza sativa L. was not improved by 100 ppm concentrations of the nanoparticles [4].

A growing number of studies on uptake and seedling activity of particles are focusing on utilizing metal-based nano-
particles such as copper-sulphur-based nano fertilizers to enhance plant nutrition and growth due to their unique effect 
on plant metabolic activities, crop resilience to pathogens, and survival of plants under abiotic stress [12–14]. However, 
reports focused on the effect of Phyto engineered CuS nano fertilizers on plant physiology are lacking. Biogenic metal-
lic nanoparticles developed using Phyto engineering presents as an eco-friendlier, energy efficient, economical, and 
timeous one-pot synthesis approach towards the large-scale production of highly biocompatible and multifunctional 
nanoparticles that have been shown to have unique Physico-chemical properties in terms of size, shape, composition, 
surface functional chemistry, and chemical stability that may have unique benefits to plants [15–20]. Furthermore, 
although the interaction between different plant phytochemical compounds and nanoparticles plays a critical role in 
phyto-engineering a product with unique properties, computational studies delineating the interaction between the 
plant materials used in Phyto engineering and the nanoparticle surface are lacking for metal-based nanofertilizers.

Although nanofertilizers have been applied as foliar or soil nutrition, seed priming with metal-based nanofertilizers 
presents with added advantages since its application can be performed at one of the most important stages of a plant’s 
life cycle and under controlled conditions [21–23]. Ultimately, seed nanopriming with green synthesized metal-based 
nanofertilizers may present as an eco-friendlier approach to applying more bioeffective fertilizers [24]. Seed priming 
studies with nanofertilizers have shown that nanofertilizers have a multifaceted effect on seed physiology [21] However, 
most metal or Cu-based nanofertilizer studies have mainly focused on seed physiology in terms of water uptake and 
germination parameters such as germination time and rate combined with other plant physiological parameters [25]. 
Essentially, nothing is known about the fundamental interaction of green synthesized CuS-based nanofertilizers with 
seeds in terms of its effect on amino acid metabolism which may well reflect the plant’s stress response metabolism to 
the application of a non-traditional fertilizer. Furthermore, nothing is known about the distribution of nanofertilizers in 
seed morphological regions that may have important implications for seed protection and nutrition.

The aim of this study was to screen the interaction of phytoengineered CuS nanoparticles with Pinto beans (Phaseolus 
vulgaris L.) as bean crops serve as a nutritional security cash crop that has a lower carbon footprint, energy consumption, 
land and water use [26, 27]. We describe here (1) the molecular dynamics simulation [28–33]; motivated phytoengineer-
ing of CuS nanoparticles (2) their distribution inside seeds morphological regions and effect on the seed ionome using 
external beam proton induced X-ray emission; and (3) their effect on amino acid metabolism.

2 � Experimental

2.1 � Preparation of avocado aqueous extract and nanoparticle

To prepare the aqueous avocado seed extract, the seeds collected from waste were washed with DI water and grated with 
a blender to obtain the seed powder which was dried overnight in an oven at 50 °C. An aqueous solution of avocado seed 
extract was prepared as previously described [34]. CuS nanoparticles were prepared by modifying a previously reported 
method [35]. The dried powder was annealed under vacuum at 400 °C for 2 h to obtain CuS nanoparticles.

2.2 � Preparation of imbibing solutions and seed imbibing

The nanoparticle solution was freshly prepared at a concentration of 0.3 mg/ml [36] by dispersing the nanoparticles in 
DI water using ultrasonic vibration (100 w, 40 kHz) for 30 min. Only deionized water was used for the control treatment. 
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Healthy Pinto bean seeds that represented one cultivar were obtained from Seeds for Africa (Rivergate Industrial, Cape 
Farms, South Africa) and healthy seeds selected from the same seed lot and used for all the experiments. The seeds were 
rinsed several times with DI water and immediately soaked for 24 h with continuous aeration in the nanofertilizer solu-
tion at a concentration of 0.3 mg/ml and seed weight: solution volume of 1:4 gmL−1.

2.3 � External beam PIXE analysis

The area on all samples was subsequently measured with a proton beam (spot size = 50 µm) of an initial energy of 3 MeV 
that decreased to approximately to 2.98 MeV on the target due to energy loss in the exit window of 200 nm Si3N4 and air 
gap of 4 mm. All samples were measured with an ion current of 1–3 nA. Typically, about 10.000 points were selected for 
each map and the dwelling time in particular point was 3–4 s. The energy range of the detected X-rays was set between 
1.5 and 30 keV. Emitted X-rays were detected by a Si (Li) detector (resolution, 145 eV at 5.89 keV, 4.3 cm from target, 135° 
angle to the beam direction). Apart from the air space between the sample and detector, the X-rays passed a pinhole 
(funny) filter of 50 μm aluminium foil (relative opening, 10%) to balance the intense peaks of light elements and low 
intensity peaks of metal elements. The transmission function was carefully measured and fitted to an analytical function. 
The spectra were normalized according to the signal from the chopper that intersected the beam in vacuum. The meas-
ured quantity included the RBS signal from the gold foil mounted on chopper wings. The spectral fitting was performed 
by the Xantho code and elemental concentrations were determined according to the instrumental constants that was 
determined from the measurement on NIST 620 standard glass. For test measurements, we measured the tomato leaves 
standard NIST 1573a as an unknown target, whilst for the analysis of bean seeds the analysed elements were assumed 
to be imbedded in a cellulose matrix.

2.4 � Seed amino acid extraction and quantification

The seeds were frozen in liquid nitrogen using a liquid nitrogen pre-chilled pestle and mortar and ground to a fine 
powder. The method for amino acid extraction and analysis was completed as described in [37]. After imbibition, the 
dry weight of the samples was recorded. The seeds were subsequently frozen in liquid nitrogen using a liquid nitrogen 
pre-chilled pestle and mortar and ground to a fine powder after the liquid nitrogen had evaporated. A 0.5 ml solution 
containing 6 M of HCl with Norleucine (250 ppm) as the internal standard was added to the dried seed powder for protein 
hydrolysis. AccQ-Tag derivates of amino acids were extracted using an AccQ-Tag Ultra Derivatization Kit according to 
the manufacturer’s instructions (Waters). A Waters Acquity Ultra Performance Liquid Chromatograph system equipped 
with a photodiode array detector (260 nm), binary solvent delivery system, and an auto sampler was used to analyze 
the derivatized amino acids. The sample/standard solution (1 µL) was injected into the mobile phase, which conveyed 
derivatised amino acids onto a Waters AccQ-Tag Ultra C18 column (2.1 × 1000 mm × 1.7 µm) maintained at 60 °C for separa-
tion. Amino acids in the samples were identified by co-elution with an amino acid standard H (Pierce) and commercially 
available individual amino acids (Sigma). Instrument control and data acquisition was performed by MassLynx software 
which integrates the peaks at the defined retention times and plots calibration curves for each amino acid based on the 
peak response (peak area/internal standard peak area) against concentration.

2.5 � Molecular dynamics simulation

The molecular dynamics simulations were conducted using GROMACS 2019 software [30, 31, 38], employing periodic 
boundary conditions along with the CHARMM36 force field [32, 39] and the SPC water model [40]. Additionally, the 
TIP3P model was utilized for the water molecules within the complex [31, 34]. The energy of the systems was optimized 
using the steepest descent algorithm for all atoms [41]. The NVT ensemble (constant number of particles (N), volume 
(V), and temperature (T)) coupled to the V-rescale thermal bath at 300 K for 200 ps and the NPT ensemble coupled to 
the Berendsen pressure bath at 1 atm for 300 ps were used to equilibrate each system. Subsequently, each system was 
subjected to a 50 ns molecular dynamics simulation with a time step of 1 fs and constant conditions of 1 atm and 300 K. 
The H-bond lengths were constrained using the LINCS algorithm [42]. Long-range electrostatics were applied using the 
particle mesh Ewald [43] method. The trajectory data was analyzed using GROMACS utilities, and molecular graphics and 
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visualizations were created using VMD 1.9.3 [44]. CHARMM CGenFF [45] was used to calculate the force fields of CuS and 
compounds. Six active compounds (4-hydroxybenzoic acid, citric acid, protocatechuic acid, pyrocatechol, quinic acid, 
and succinic acid) had their electronic structures determined using the Gaussian program, version 09 [46]. The geometry 
of the molecules was optimized at the B3LYP/6–311++g (d, p) level of theory.

2.6 � Statistical analyses

All the analysis were performed in triplicate. For the amino acid data, the data were summarized using summative 
statistics and an empirical approach used. An unpaired t-test was further used to compare means with significance set 
at p < 0.05. Secondary statistical analysis was performed using a heatmap as previously described [47] and as both a 
visualization and partitioning tool for the amino acid metabolome data.

3 � Results and discussion

3.1 � Characterization of CuS nanoparticles

The TEM image (Fig. 1a) at 50 nm scale shows the shape of the particles to be a mixture of spherical and semi spherical 
with some degree of agglomeration, with an average size of 77.89 nm as shown by the histogram (Fig. 1b). SEM image 
(Fig. 1c) shows that the synthesised CuS nanoparticles have a rough surface morphology that matches with the previ-
ously described CuS nanoparticles [48]. EDX (Fig. 1d) detected carbon, nitrogen and oxygen which could originate from 
phytocompounds in the avocado seed extract [49], with the presence of Cu and S confirming the formation of the CuS 
nanoparticles. The presence of phytochemicals such as phenols, alcohols, amines, and carboxylic acid that are known to 
be present in avocado seeds were further confirmed by comparing the avocado seed powder to the CuS nanoparticle 
FTIR spectrum (Fig. 1e), both spectra show almost identical vibration peaks [50]. One peak at 694 cm−1 from the avocado 
seed split into two peaks in the CuS and appeared at 769 and 688 cm−1 confirming the incorporation of CuS into the 
chemical structure. XRD in Fig. 1f shows no diffraction peaks associated with impurities, However, only pure digenite 
(Cu9S5) phase obtained in reference to JCPDS Cards No. 00-047-1748. The diffraction peaks obtained matched the dif-
fraction peaks obtained in the literature [51]. The Debye–Scherrer equation (D = kλ/βCosθ) was employed to calculate 
the average size of the Cu9S5 nanoparticles from the most intense peak to be 70 nm [52, 53].

3.2 � External beam PIXE analysis

Figures 2 and 3 presents the elemental maps of Cu, Zn, Fe, S, K, and Ca distribution intensity obtained from cross-
sectioned beans representing nanofertilizer imbibed and control samples imbibed with only deionized water and cor-
responding semi-quantitative line scan maps across the seed morphological regions, respectively. Some maps, i.e., those 
of Cu and Fe in the control samples presenting with lower counting statistics and less visually convincing results, were 
also included since it consistently showed dissimilar distribution patterns between test and control samples. The analysis 
revealed that the elemental distribution patterns differed between treated and control samples in terms of distribution 
and intensity and that specific elements tended to accumulate in specific seed morphological regions. For example, in 
treated samples, Cu was mainly accumulated within the micropyle, hilum, and seed coat regions; Zn, Fe, and Ca were 
more concentrated in the seed coat region; S showed hotspots in the seed coat close to the hilum and micropyle regions 
like Cu; and K accumulated within the cotyledon. In control samples, Zn distribution seemed more prominent in the 
seed coat, S showed some hotspots in the testa and seed coat regions, whilst Ca was mainly located within the seed 
coat regions. For K, higher intensities were noted within the testa and seed coat regions. Overall, K, Cu, S, and Zn showed 
notable variation in distribution and intensity patterns between control and treated samples.

The results of the elemental mapping data agree with the study [46] on the localization of chemically synthesized and 
coated iron oxide nanoparticles in tomato seeds. For beans, previous studies have also shown that, depending on the 
bean cultivar, Cu, Zn, Fe, and Ca are mainly localized within the seed coat, whereas K tend to accumulate more within 
the internal seed regions [27]. The distribution patterns observed here may be ascribed to a physiological mechanism 
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whereby bean seeds store specific elements within specific morphological regions [54]. For example, Ca has been shown 
to have restricted movement between the seed coat and embryo due to the presence of insoluble calcium oxalate crystals 
in the mature seed coat [27, 55]. Specific elements may also have a biological function linked to a specific seed morpho-
logical region [56], whilst seed chemistry may likewise play a significant role as seed coat tannins or other biocompounds 
such as amino acids may complex metal containing compounds [27, 57]. Ultimately, differences in the intensity and 
distribution patterns for Cu, Zn, Fe, S, and K between the treatments could be ascribed to the effect of the nanofertilizer 
on the intricate physiological and metabolic mechanisms governing uptake, distribution, and storage of elements in 
seeds. More specifically, the distinct distribution patterns for K between test and control samples could be ascribed to 
the binding of Cu ions to metallothionein proteins in the seed embryonic region [58] which may impact the activity of 
phytases [59]. The end products of phytate breakdown may in turn affect the activity of K channels which mediates K 
transport between seed morphological regions [60]. Alternatively, the distribution pattern and dynamics of K movement 
could be a response to the seed’s multistage hydration dynamics mediated by the nanofertilizer [61], beginning at the 
micropyle and hilum and filling the voids between the cotyledons and seed coat [62, 63].

Interestingly, the CuS nanofertilizer were mainly accumulated within the seed coat area that supports previous stud-
ies showing that nanofertilizers mainly accumulate within this area [64]. More specifically, the nanofertilizer showed 
hotspots within the hilum and micropyle regions that act as a hygroscopic valve responsible for water uptake. On a 
microlevel nanofertilizers may bind to carrier proteins, ion channels, or membrane transporters [65]. It has also been 
hypothesized that nanofertilizers may enter plant material via intercellular spaces, pore size enlargement, the induction 
of new cell wall nanopores, or via endocytosis [66–68]. The creation of nanopores may further upregulate aquaporin 
production and water uptake [67], hence facilitating the entry of an aqueous nanofertilizer solution into the seed [69, 
70]. Alternatively, the nanoparticles forming part of the nanofertilzer may attach to and create nanopores within the 
spongy like and stacked tissue layers of the hilum containing branched, dead tracheid cells with lignified cell walls [71].

Other than the multifaceted chemistry, physiology, homeostasis, and metabolism of the plant region exposed to the 
nanofertilizer, the physico-chemical properties, i.e. size, morphology, chemical composition, surface functionalization, 
and concentration of the individual nanoparticles that constitute the nanofertilizer may also have a multidimensional 
effect on nanofertilizer uptake [67, 72]. Here, the functionalization and coating of the nanofertilizer [53] or its low solubil-
ity [73] that may serve as a barrier to transport into the seed cotyledon, may further explain restriction of the nanofertilizer 
to the seed coat area.

Fig. 1   a TEM image, b size distribution histogram, c SEM image d EDS spectra, e FTIR spectra, and f XRD Patterns of CuS nanoparticles
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Nevertheless, although the interaction between nanofertilizers and the seed coat is generally poorly explored, the 
presence of the CuS nanofertilizer in the seed coat region presents with significance. Since the seed coat is responsible for 
protecting the internal seed regions against biotic and abiotic onslaughts [70, 74], accumulation of a Cu-based nanoferti-
lizer in this region may potentially act as a barrier to infective agents such as fungi due to the antimicrobial properties of 

Fig. 2   Elemental distribu-
tion maps of Cu, Zn, Fe, S, K, 
and Ca in CuS nanofertilizer 
treated and control Pinto 
bean (Phaseolus vulgaris L.) 
seeds treated with water. The 
intensity scale emphasizes 
certain elemental distribution 
features
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metal nanoparticles [75]. Furthermore, since the nanofertilizer accumulated in the seed coat, its application may present 
as versatile carrier platform for not only seed pest control, but also to deliver nutrients or growth factor agents during 
the early stages of plant development [53]. Interestingly, the seed coat also acts as a channel transmitting cues about 
the external environment [76]. To illustrate, external nutrients in the form of a nanofertilizer that may eventually pass 
the seed coat to the internal seed regions to initiate seed development may also trigger downstream macromolecular 
responses to alter seed metabolism in response to external environment changes [77].

3.3 � Amino acid profiling

Nanofertilizer treated and control seeds were analyzed for 16 essential and non-essential amino acids. The mean ± SD of 
amino acid content in treated versus control seeds are presented in Fig. 4a. Descriptive statistical analysis showed that 
some of the amino acids were slightly upregulated in treated seeds, whilst others were slightly downregulated. Phenyla-
lanine showed the highest increase of 20%, whilst lysine showed the highest decrease of 20% between test and control 
samples. No significant differences (p > 0.05) were noted for amino acid levels between the treatments.

Secondary statistical analysis with hierarchical clustering showed the similarities and differences in the amino acid 
contents based on individual treatments and the similarity or differences between individual treatments based on amino 
acid contents. The colour legend of the heatmap (Fig. 4b) indicates a lower average amino acid concentration (blue) or a 
higher average amino acid concentration (red) in a particular sample. The nanofertilizer treated seeds were differentiated 
from and showed the highest dissimilarity (as shown by the brightest colours of the colour map) to the control treatment 
by more extreme z-scores in the negative or below average and positive or above average direction for specific subsets 
of amino acids compared to the control treatment. Interestingly, isoleucine, alanine, and methionine formed a separate 
cluster with the rest of the amino acids that formed part of a bigger cluster. This clustering pattern could be linked to 
the multifunctional interaction of the amino acid groups related to their unique chemistry and physiological roles [78, 
79]. Collectively, the heatmap results support and build on the summative statistical analysis.

In sum, it has been shown that metal nanoparticles trigger changes in biochemical reactions by for example downregulat-
ing or upregulating metabolites such as amino acids that may affect the plant’s adaptive reaction to changing environmental 
conditions [80, 81]. Quantitative determination of amino acids is hence important in mapping the metabolome response to 
environmental cues. Of the amino acids, lysine and phenylalanine showed the most marked response between treatments. 
Lysine—a nutritionally essential amino acid that at high concentrations may retard germination—was downregulated in 
test versus control samples [82]. Phenylalanine representing a non-essential amino acid and involved in the defence system 
of a plant [83, 84] was however upregulated in test versus control samples, although not at a significant level. Furthermore, 
glutamic acid that plays a significant role in nitrogen metabolism, amino acid and protein synthesis, and the synthesis of 
phytochelating agents known for binding metals [85, 86] was slightly upregulated together with arginine that also serves 
as an important nitrogen reserve and precursor for the biosynthesis of polyamines and nitric oxide which regulates nutrient 
uptake and activates disease and stress tolerance mechanisms in plants [87]. Tyrosine that serves as a precursor of various 
specialized metabolites such as electron carriers, antioxidants, and defence compounds was also slightly upregulated [88]. 
Only aspartic acid which serves as a central building block in nitrogen and carbon metabolism and biosynthesis of other 
amino acids, nucleotides, organic acids, sugars, and other compounds vital for plant growth and stress resistance [89] was 
slightly downregulated in addition to isoleucine that is known to play a role in plant stress resistance as an osmo-regulation 
factor [90].

3.4 � Molecular dynamics simulation

Figure 5 illustrates the charge distribution and electrostatic potential maps of six active compounds, highlighting their active 
interaction sites with the nanoparticle surface. We derived the Hirshfeld point charges and electrostatic potentials for these 
compounds’ optimized structures through density functional theory, using water as a solvent. The most intense red regions 
in these maps indicate where the molecules are most likely to interact with the nanoparticle. Specifically, the atoms with 
the strongest attraction to the CuS surface are O3 in 4-hydroxybenzoic acid, O6 in citric acid, O4 in protocatechuic acid, O1 
in pyrocatechol, O3 in quinic acid, and O3/O4 in succinic acid.
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As depicted in Fig. 6, the g(r) has a maximum peak for the atoms O3 in 4-hydroxybenzoic acid, O6 in citric acid, O4 in proto-
catechuic acid, O1 in pyrocatechol, O3 in quinic acid and succinic acid, which exhibit the highest affinity to interact with the 
nanoparticle compared to other types of oxygen and carbon atoms, as was determined by DFT calculations as well.

LogS is a logarithmic measure of a molecule’s solubility in water, expressed as the base-10 log of its solubility in moles per 
liter. This metric is a reliable indicator of a compound’s hydrophilicity. Specifically, LogS values above − 1 signify a molecule’s 
high polarity and affinity for water [91]. Moreover, molecules with LogS values ranging from − 1 to − 5 exhibit a balanced 
profile of water-solubility and lipophilicity, enabling them to associate with hydrophobic entities [91, 92]. Utilizing Playground 
v1.5.0 software, the LogS values for various compounds were calculated to assess their solubility in water [93]. The outcomes 
revealed that 4-hydroxybenzoic acid has the lowest solubility with a LogS value of − 1.07. This is followed by increased solu-
bility in protocatechuic acid (− 0.68), pyrocatechol (− 0.52), and even higher solubility in quinic acid (0.16), citric acid (0.40), 
and succinic acid (0.77), in ascending order.

Figure 7 illustrates that 4-Hydroxybenzoic acid exhibits the most pronounced peak in the radial distribution function (g(r)) 
at approximately 2.5 Å from the nanoparticle’s surface, suggesting a strong affinity for interaction despite its relatively low 
solubility (logS value). In contrast, succinic acid, which displays the smallest g(r) peak, shows a lower propensity to interact 
with the nanoparticle surface, correlating with its high logS value, indicative of greater solubility. Additionally, when analyzing 
the interaction energies, which combine Van der Waals and electrostatic potential energies, a trend emerges: the interaction 
energy is higher near the surface of CuS for the 4-Hydroxybenzoic acid than other compounds in an aqueous environment. 
The data from interaction energies and the radial distribution function (RDF) graphs, as presented in Fig. 6, corroborate the 
logS values’ implications. They collectively suggest that succinic acid is markedly more hydrophilic compared to other active 
compounds, thereby preferring interaction with water molecules over the nanoparticle surface.

4 � Conclusions

To promote our understanding for the rational use of nanotechnology for seed treatment in agriculture, this study 
presents the first report applying computational modelling supported Phyto engineered CuS nanoparticles as a 
seed imbibing agent to study its effect on the distribution of elements across different seed morphological regions 
combined with its effect on the amino acid metabolome using both benchtop and ion beam techniques. Molecular 
dynamics simulations showed that specific phytocompounds had a higher affinity for interacting with the nanopar-
ticle’s surface than other active compounds. The nanofertilizer containing nanoparticles of ca. 77 nm were retained 
within the seed coat region which generally serves as a barrier for seed protection, nutrient reserve, and response 
trigger to a changing environment [80]. Although the reasons supporting the preferential and more intense elemental 
accumulation patterns triggered by the nanofertilizer for some elements are unclear, the intricate crosstalk between 
the chemico-physiology of the bean regions with the unique Physico-chemical properties of the nanofertilizer as 
characterized by physico-chemical analyses and computational modelling may play a significant role. The unique 
changes in the ionome in terms of its distribution between treated and control seeds may have triggered a secondary 
metabolite response in the form of amino acid level changes, with the slight change observed in amino acid levels 
not sufficient to indicate a strong plant defence mechanism. Regardless, the fact that the nanofertilizer accumulated 
within the seed coat regions may have significant implications for the use of this nanofertilizer as a versatile carrier 

Fig. 3   Semi-quantitative (in weight percentage) line scans performed for areas marked in green (A) and blue (B) linked to different seed 
morphological regions. The top image presents control Pinto bean (Phaseolus vulgaris L.) seeds treated with water, whilst the bottom image 
represents nanofertilizer treated Pinto bean seeds, The line scans confirm that Cu, Zn, Fe and Ca were mostly accumulated within the seed 
coat regions, whereas K accumulated within the cotelydon region

▸
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Fig. 3   (continued)
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Fig. 4   Doughnut graph a 
depicting amino acid levels 
between CuS nanofertilizer 
treated Pinto bean seeds 
(inner doughnut chart) and 
seeds treated with only water 
(control, outer doughnut 
chart). Values in the chart are 
expressed as mean ± SD % 
g/100 g dry weight of sam-
ples. b presents a heatmap 
generated using complete 
linkage hierarchical clustering 
based on Euclidean distances 
showing the median amino 
acid abundances (quantified 
as moderated z-scores) of 
clusters for amino acid com-
positions of Pinto bean seeds 
treated with CuS nanofertilizer 
and control seeds treated with 
only water. The relationship is 
presented by a dendrogram 
in which rows represent treat-
ment and columns amino acid 
content, with a specific colour 
representing the magnitude 
of abundance (please refer to 
the text for a full explanation 
of the heatmap results)
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technology to deliver nutrients or antimicrobials [72]. In future, laboratory studies as here described are firstly war-
ranted before applied studies in the field can be executed to screen the growth physiology and performance of seeds 
treated with nanofertilizers as affected by a host of soil Physico-chemistry and environmental factors. For example, 
answering fundamental questions is first and foremost important, such as the distribution of the nanofertilizer within 
seed morphological regions that may also affect for example its seed antimicrobial potential, whilst activation or 
changes in amino acid metabolism by the nanofertilizer may further serve to improve the resilience of the seed to 
abiotic and biotic stress.

Fig. 5   Charge distribution 
(Hirshfeld point charges) and 
electrostatic potential map of 
a 4-hydroxybenzoic acid, b cit-
ric acid, c protocatechuic acid, 
d pyrocatechol, e quinic acid, 
and f succinic acid. The geom-
etry optimization of active 
compounds was carried out 
at the B3LYP/6–311++g(d,p) 
level of theory
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(a) 4-Hydroxybenzoic acid (b) Citric acid

(c) Protocatechuic acid (d) Pyrocatechol

(e) Quinic acid (f) Succinic acid

Fig. 6   Radial distribution function plots for the active sites of a 4-hydroxybenzoic acid, b citric acid, c protocatechuic acid, d pyrocatechol, e 
quinic acid, and f succinic acid with respect to the surface of CuS nanoparticle
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