
PREVENTING CRYPTOGRAPHIC

ATTACKS USED ON THE INTERNET OF

THINGS

Mr. Khumbelo Difference Muthavhine

A thesis submitted for the degree of Doctor of

Engineering in Electrical Engineering

University of South Africa, Department: Electrical

Engineering

May 2022

ii

DECLARATION

I, Mr. Khumbelo Difference Muthavhine, declare that the work I am

submitting for assessment or evaluation contains no sections that have been

copied in whole or in part from any other source unless explicitly specified

or identified in quotation marks and with detailed, complete, and accurate

referencing.

Khumbelo Difference Muthavhine Date

Papers Published From this

Thesis

Journal Papers
i. K. D. Muthavhine and M. Sumbwanyambe, ”Securing IoT Devices

against Differential-Linear (DL) Attack used on Serpent algorithm”,

MDPI, Future Internet, pp. 1-34, 2022.

ii. K. D. Muthavhine and M. Sumbwanyambe, ”Preventing Differential

Cryptanalysis Attacks Using a KDM Function and the 32-Bits Out-

put S-Boxes on AES Algorithm Found on Internet of Things devices”,

MDPI, Cryptography, pp. 1-33, 2022.

Conference Papers
i. K. D. Muthavhine and M. Sumbwanyambe, ”Reconstruction of DES in

Order to Reduce Memory Constraints Found on IoT Devices,” 2021 In-

ternational Conference on Artificial Intelligence, Big Data, Computing

and Data Communication Systems (icABCD), pp. 1-7, 2021.

ii. K. D. Muthavhine and M. Sumbwanyambe, ”Modifying Cast algorithm

in order to Increase Encryption Strength and to Reduce Memory Lim-

itations,” 2021 International Conference on Artificial Intelligence, Big

iii

iv

Data, Computing and Data Communication Systems (icABCD), pp.

1-7, 2021.

iii. K. D. Muthavhine and M. Sumbwanyambe, ”Conversion of Clefia Al-

gorithm to Decrease Memory Restrictions Encountered on IoT by Ap-

plying CMA Method,” 2021 International Conference on Artificial In-

telligence, Big Data, Computing and Data Communication Systems

(icABCD), pp. 1-7, 2022.

Abstract

Cryptographic attacks on Internet of Things (IoT) devices are not highly con-

sidered by the users of IoT. Most cryptographic algorithms commonly used on

IoT devices are vulnerable to cryptographic attacks. Cryptography attacks

refer to mathematical procedures to crack the secret key of the algorithm used

on IoT devices. More needs to be done to prevent attacks on cryptographic

algorithms used on IoT devices. The objectives of this study are: (i)To use

the Khumbelo Difference Muthavhine (KDM) function to prevent Differen-

tial Cryptanalysis (DC) attacks in the AES algorithm used on IoT devices.

(ii) To apply the Blocker function to prevent Differential-Linear Cryptanal-

ysis (DL) attacks in the Serpent algorithm used on IoT devices. (iii) To

use the Khumbelo function to prevent Linear Cryptanalysis (LC), DC, DL,

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks in the Camellia algorithm used on IoT devices.

(iv) Applying the Khumbelo function to protect IoT against LC, DC, DL,

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks. The KDM, Khumbelo, and Blocker functions

prevented cryptographic attacks since all 8 x 8 S-Boxes were changed to 8

x 32 S-Box depending on the particular chapter. The analysis produced re-

markable results in preventing cryptographic attacks from IoT devices using

the KDM, Khumbelo, and Blocker functions. The objectives of the study was

to block the construction of distiguishers. Distinguishers are used by intrud-

ers as first step to conduct any cryptographic attack. Once the construction

v

vi

of distiguishers are blocked, therefore no attacks would be established. The

study managed to block construction of distiguishers to 0% probability com-

pared to (i)50% of LC attacks, (ii) 50% of DL attacks, and (iii) 50% of

DC attacks. The 8 x 32 S-Box was expected to build distinguishers from

28 x 232 = 256 x 4, 294, 967, 296 matrices with 1, 099, 511, 627, 776 elements.

Due to computational space, an ordinary computer could not compute 256

x 4, 294, 967, 296 matrices.

Acknowledgments

First and foremost, I would like to express my gratitude to Prof. Sumb-

wanyambe Mbuyu of the Department of Electrical Engineering at the Uni-

versity of South Africa (UNISA). The professor’s office was always open for

consultation when I had problems or questions about my experiments, re-

sults, or research. Finally, I would like to convey my thanks to my wife,

Mrs. Tintswalo Audrey Mabasa Muthavhine, and my children (Frankie

Muthavhine, Lulama Muthavhine, Mukoni Muthavhine, and Khuliso Muthavhine),

and my father (Mr. Daniel Madume Muthavhine) for providing me with the

necessary support and motivation throughout my research and studies. This

achievement would not have been possible without their assistance. Thank

you so much to you all. Mr. Khumbelo Difference Muthavhine

vii

Contents

DECLARATION ii

Papers Published From this Thesis ii

Journal Papers . iii

Conference Papers . iii

Abstract iv

Acknowledgments vi

List of Figures xi

List of Tables xvi

Abbreviations and Glossary xix

List of Basic Mathematical Operators and Symbols xxii

1 Introduction 1

1.1 Background of Study . 1

1.1.1 Exploration of IoT . 2

1.1.2 Devices (Things, Objects, Machines) 2

1.1.3 Relationship between IoT and Cryptography 4

1.2 Problem Statement . 7

viii

1.3 Research Questions . 8

1.4 Research Objective . 9

1.5 Hypothesis . 9

1.6 Research Methodology . 10

1.7 Benefits . 12

1.8 Limitations and Drawbacks 15

1.9 Significance of the Study . 15

1.10 Outline of Final Thesis . 16

2 Literature Review 18

2.1 IoT Communications and Connections 18

2.1.1 Overviews of the IoT Communication Modes 18

2.2 Cryptographic Algorithms Theory 24

2.2.1 Symmetric Encryption System 24

2.2.2 Asymmetric Encryption System 25

2.2.3 Steganography Encryption System 25

2.2.4 The Vigenère Encryption System 25

2.2.5 Hashing (Authenticated) Encryption System 26

2.3 Related Work of DC attack on AES 26

2.4 Related Work of DL attacks on Serpent Algorithm 28

2.4.1 Related Work of Attacks on the Camellia cipher 29

2.4.2 Chapter Summary . 30

3 The Design and Development of KDM Function to Prevent

DC attacks on AES 31

3.1 Background on Preventing DC Attacks with a KDM Function

on the AES . 32

3.1.1 An AES Algorithm . 35

3.1.2 The DC Attack . 42

3.1.3 Development of the KDM Function 46

ix

3.2 Methodology for Preventing DC Attacks Using a KDM Func-

tion on AES . 52

3.3 Results and Analysis of Preventing DC Attacks Using a KDM

Function on AES . 59

3.3.1 Results of DC attack on Simplified-DES 68

3.3.2 Results of DC attack on DES 70

3.3.3 Results of DC attack on AES 71

3.3.4 Results of DC attack on M AES 72

3.4 Summary of Preventing DC Attacks Using a KDM Function

on AES . 87

4 The Design of Blocker Function to Prevent Differential-Linear

Attacks on the Serpent 88

4.1 Background of Securing IoT Devices against DL Attack used

on Serpent algorithm . 89

4.1.1 Serpent Algorithm . 93

4.1.2 DL Attack . 98

4.1.3 The Magic Number . 100

4.1.4 The numerous DL attacks on Serpent Algorithm 100

4.2 Methods of Securing Serpent against DL Attack 101

4.2.1 A Blocker Function . 113

4.2.2 Results of DL attack on Serpent 119

4.2.3 Procedure of DL attack on a Mag Serpent 120

4.3 Results, Discussions, and Analysis of Securing Serpent against

DL Attack . 123

4.4 Summary of Using Blocker Function to Prevent DL Attack on

Serpent . 138

5 The Design of Khumbelo Function on the Camellia Algo-

rithm to Prevent Attacks 139

5.1 Introduction . 140

x

5.1.1 Relationship between IoT devices and Camellia Algo-

rithm . 143

5.1.2 Cryptographic Attacks 144

5.2 Objective of the Study . 148

5.3 Review of the Camellia Algorithm 149

5.4 Contribution of the study . 154

5.5 The Overview of the Khumbelo Function 155

5.5.1 Mathematical Explanation of the Khumbelo Function . 158

5.6 Materials and Methods Used 159

5.6.1 Why DES? . 163

5.6.2 Why AES? . 166

5.7 Related Work of Cryptographic Attacks on Camellia 167

5.8 Methods of Applying the Khumbelo Function on Camellia . . 171

5.9 Theoretical Analysis and Discussion 174

5.10 Results of Cryptographic Attacks on Camellia 183

5.11 Summary of Using Khumbelo Function to Prevent DC Attacks

on Camellia . 212

6 Conclusion and Objectives Evaluation 213

6.1 Research Contribution and Objective Evaluation 213

6.2 Future Research Recommendations and Suggestions 215

6.3 Closing Statements . 215

Appendices 242

A 243

B 246

C 249

xi

List of Figures

1.1 A flowchart diagram representing general research methodology 14

1.2 Flowchart diagrammatic representation of thesis chapters . . . 16

2.1 IoT Protocols with TCP/IP models [121] 21

2.2 Subdivisions of layers derived from main layers [117] 22

3.1 AES Decryption and Encryption Processes [164] 36

3.2 AES InveSubBytes and SubBytes with an Example [167] . . . 37

3.3 AES Inverse Mix Columns and Mix Columns [164] 39

3.4 An AES’s Key Addition Process [167] 40

3.5 Key Scheduling in AES [164] 41

3.6 A KDM Function for Creating a New 32-S-Box for the Modi-

fied AES Algorithm . 48

3.7 A KDM function flowchart . 53

3.8 AES Research Methodology Schematic Diagram 56

3.9 New Algorithm Modified AES (M AES) with Encryption and

Decryption Process . 58

3.10 C++ DDT experiment with 6 x 4 DES S-Box 61

3.11 DDT Experimental Time Required 64

3.12 Number of Entities to Create the Experimental DDT 65

3.13 Memory Required to Create Experimental DDT 66

3.14 C++ DDT experiment with 8 x 8 AES S-Box 71

3.15 C++ DDT of 4 x 4 Simplified DES experiment 73

xii

3.16 Number of Rounds Cracked during the Experimental Diferen-

tial Crypatanalysis Attack . 75

3.17 S-DES Plaintext Avalanche Effect in Experimental Results . . 77

3.18 S-DES Key Avalanche Effect Experimental Results 78

3.19 DES Plaintext Avalanche Effect Experimental Results 79

3.20 DES Key Avalanche Effect Experimental Results 80

3.21 AES Plaintext Avalanche Effect Experimental Results 81

3.22 AES Key Avalanche Effect Experimental Results 82

3.23 M AES Plaintext Avalanche Effect Experimental Results . . . 83

3.24 M AES Experimental Key Avalanche Effect 84

3.25 Plaintext Avalanche Effect Experimental Analysis in Percentage 85

3.26 Key Avalanche Effect Experimental Analysis in Percentage . . 85

3.27 All Algorithm Image Encryption 86

4.1 Serpent’s 32-Round Function [177] 95

4.2 Serpent’s Key Generation [177] 97

4.3 Serpent Research Methodology Schematic Diagram 104

4.4 New Generated Function called Blocker 118

4.5 C++ Experimental Results of DLCT 128

4.6 DL Attack Outcomes . 128

4.7 Avalanche Experiment Serpent’s Effect Whenever One Bit of

a Key Was Started Flipping 131

4.8 Avalanche Experiment Serpent’s Effect When One Bit of Plain-

text was Flipped . 132

4.9 The Avalanche Effect of Mag Serpent When One Bit of a Key

Was Flipped . 133

4.10 The Avalanche Effect of Mag Serpent when One Bit of Plain-

text was Flipped . 134

4.11 Key Avalanche Effect Experiment in Percentage 135

4.12 Plaintext Avalanche Effect in Percentage Experimental Results 135

4.13 Experimental Results Memory for Serpent Installation 136

xiii

4.14 Experimental Results Memory for Mag Serpent Installation . . 136

4.15 Byte Memory Required for Installation 136

4.16 Encryption and Decryption Images of Serpent and Mag Serpent137

5.1 Camellia Structure [206] . 150

5.2 Camellia Round Function [206] 151

5.3 P Function and its Inverse P−1 [206] 154

5.4 C++ Khumbelo Function . 160

5.5 C++ standard Fiestel Function before Khumbelo Fuction was

Applied . 161

5.6 C++ Modified Fiestel Function after Khumbelo Fuction was

Applied . 162

5.7 Research Methodology based on the Khumbelo 172

5.8 C++ Results of LAT . 176

5.9 C++ Results of DDT . 177

5.10 C++ Results of DLCT . 178

5.11 Memory Needed for DES in C++ 179

5.12 AES’s Plaintext Avalanche Effect in C++ 180

5.13 The Graph of LAT Results . 193

5.14 The Graph of DDT Results 195

5.15 The Graph of DLCT Results 197

5.16 The Key Avalanche Effect Results 199

5.17 The Plaintext Avalanche Effect Results 201

5.18 Results of Speed . 203

5.19 Memory Needed for Installation of Different Algorithms 209

5.20 Image Encryption and Decryption Using C++ of the AES

Algorithm . 210

5.21 Image Encryption and Decryption Using C++ of the Tradi-

tional Camellia Algorithm . 211

5.22 Image Encryption and Decryption Using C++ of the K Camellia

Algorithm . 211

xiv

A.1 AES S-Box with 32-Bit Output 244

A.2 New Inverse AES S-Box with 32-Bit Output 245

B.1 New 32-bit S-Boxes of Serpent written in C++ 247

B.2 New Inverse of 32-bit S-Boxes of Serpent written in C++ . . . 248

C.1 Standard C++ Camellia 8 x 8 S-Box 250

C.2 New Camellia 8 x 32 S-Box 251

C.3 Standard C++ AES 8 x 8 S-Box 252

xv

List of Tables

1.1 Algorithms and their applications on IoT 6

1.2 Algorithm Attacks and Solutions 8

1.3 The casual relationship among research objectives research

questions and research methodology 13

3.1 Simplified DES S-Box . 43

3.2 S-Box Difference Pairs of 4 x 4 44

3.3 DES Difference-Distribution Table (DDT) 45

3.4 The End Product of Creating a Difference-Distribution Table

(DDT) . 63

3.5 The feasibility of creating a Difference-Distribution Table be-

fore and after applying a Novel Approach of using a KDM

function and 32-bit S-Boxes 63

3.6 DC Attack Outcomes . 72

3.7 Results of key bits finding before and a Novel Approach of

employing a KDM function and 32-bits S-Boxes was applied . 75

3.8 Avalanche Effect of Key and Plaintext Bit was Flipped 76

4.1 Serpent’s first S-Box was defined as SB0(X) 94

4.2 Serpent’s second S-Box was defined as SB1(X) 96

4.3 Serpent’s third S-Box was defined as SB2(X) 96

4.4 Serpent’s fourth S-Box was defined as SB3(X) 96

4.5 Serpent’s fourth S-Box was defined as SB4(X) 96

xvi

4.6 Serpent’s sixth S-Box was defined as SB5(X) 96

4.7 Serpent’s seventh S-Box was defined as SB6(X) 98

4.8 Serpent’s eighth S-Box was defined as SB7(X) 98

4.9 The DLCT of the Serpent’s first S-Box SB0(X) 99

4.10 New Generated 32-Bits-output S-Box to replace Table 4.1 . . 105

4.11 New Generated 32-Bits-output S-Box to replace Table 4.2 . . 106

4.12 New Generated 32-Bits-output S-Box to replace Table 4.3 . . 107

4.13 New Generated 32-Bits-output S-Box to replace Table 4.4 . . 108

4.14 New Generated 32-Bits-output S-Box to replace Table 4.5 . . 109

4.15 New Generated 32-Bits-output S-Box to replace Table 4.6 . . 110

4.16 New Generated 32-Bits-output S-Box to replace Table 4.7 . . 111

4.17 New Generated 32-Bits-output S-Box to replace Table 4.8 . . 112

4.18 Results of feasibility of constructing DLCT before and after

32-Bits-output S-Boxes and Blocker were Applied 129

4.19 Results of key discovery before and after 32-Bits-output S-

Boxes and Blocker were Applied 129

4.20 DL Attack Outcomes . 130

4.21 When one bit of the key and plaintext was flipped, the avalanche

effect occurred . 130

4.22 Memory Needed for Installation of Algorithms 130

5.1 Attacks and Distinguishers . 142

5.2 First S-Box (SBox1) of Camellia 152

5.3 Simplified DES’s S-Box . 164

5.4 First S-Box of Serpent defined as SBox0(X) 166

5.5 Feasibility and Number of Entities needed to Construct LAT . 189

5.6 Feasibility and Number of Entities needed to Construct DDT . 190

5.7 Feasibility and Number of Entities needed to Construct DLCT 191

5.8 Probability Results of LAT . 192

5.9 Probability Results of DDT 194

5.10 Probability Results of DLCT 196

xvii

5.11 Results of Key Avalanche Effect 198

5.12 Results of Plaintext Avalanche Effect 200

5.13 Time and Speed . 202

5.14 Discovery of Encryption Keys in Number of Rounds during

LC Attack . 204

5.15 Discovery of Encryption Keys in Number of Rounds during

DC Attack . 205

5.16 Discovery of Encryption Keys in Number of Rounds during

DL Attack . 206

5.17 Data Complexity during LC Attack 207

5.18 Data Complexity during DC Attack 207

5.19 Data Complexity during DL Attack 208

5.20 Memory Needed to Install Algorithm 208

xviii

Abbreviations and Glossary

AE Avalanche effect

AES Advanced Encryption Standard

Bit Perm Bit Permutation Function

DASH7 Alliance Protocol (D7A) which is an open-source wireless sensor

and actuator network protocol

DDT Differential Distribution Table

DES Data Encryption Standard Algorithm

DH Diffie-Hellman

DL Differential-Linear Cryptanalysis Attack

DLCT Differential-Linear Connectivity Table

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptographic Algorithm

ECDH Elliptic-curve Diffie–Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

FEAL Fast Data Encipherment Algorithm

xix

F-function Feistel function

HMAC Hash Message Authentication Code

IDEA International Data Encryption Algorithm

KDM Khumbelo Difference Muthavhine’s Function

LAT Linear Approximation Table

LC Linear Cryptanalysis Attack

M AES New Modified AES

M Cast New modified Cast

Mag Serpent Magic Serpent

MD5 Message Digest Algorithm 5

MDCs Maximum Differential Characteristics

MMB Modular Multiplication-Based Block Cipher

mod modular operation

Mod Blowfish New Modified Blowfish

MPC Modification Process of Cast

P-array Permutation array

RC4 Rivest Cipher 4 algorithm also known as ARC4 or ARCFOUR

RC5 or RC-5 Rivest Cipher 5 algorithm

RC6 Rivest Cipher 6 algorithm

Rec Algorithms Rectified Algorithms

xx

Rec DES Rectified DES Algorithm

RSA Rivest Shimar Aglemen Algorithm

SAC Strict Avalanche Criterion

S-Box Substitution Box

SHA-2 Secure Hash Algorithm 2

SHA-3 Secure Hash Algorithm 3

SPA Simple Power Analysis attack

TEA Tiny Encryption Algorithm

TPS Target Partial Subkeys

xxi

List of Basic Mathematical

Operators and Symbols

▲ Different percentage memory

Ξ℘ Plaintext Difference of XOR

⊕ XOT operator

△ Difference of XOR

+ Addition modular ten

<< Shifting of bits

<<< Rotation of bits

ζ Ciphertext

F − function Fiestel function

for for loop of C++ program

GF (232) Galois Field of order 232

GF (pq) Galois Field of order pq

InPer Initial Permutation

mod Modulo oparetor

ρτ High enough probability

S(X) S-Box operating in an input integer X

SBi(x) S-Box number i operating in an input integer x

xxii

Chapter 1

Introduction

1.1 Background of Study
Security on the Internet of Things (IoT) devices is not highly consid-

ered by the users during the design and implementation of cryptographic

algorithms [1]. Most cryptographic algorithms commonly used on IoT are

vulnerable to attacks such as Linear Cryptanalysis (LC), Differential Crypt-

analysis (DC), Differential-Linear cryptanalysis (DL), boomerang, truncated

differential, meet-in-the-middle, and zero-correlation-linear-distinguisher [2].

Most well-known cryptographic algorithms are not resistant to these attacks

mentioned above [3]. Little has been done to prevent attacks on IoT de-

vices [1]- [2]. This study proposes a novel approach that incorporates the

following:

i. The Khumbelo Difference Muthavhine (KDM) function prevents DC

attacks using the Advanced Encryption Standard (AES) algorithm on

IoT devices.

ii. The Blocker function prevents DL attacks using the Serpent algorithm

on IoT devices.

iii. The Khumbelo function prevents LC, DC, DL, boomerang, truncated

1

differential, meet-in-the-middle, and zero-correlation-linear-distinguisher

attacks in the Camellia algorithm IoT devices.

1.1.1 Exploration of IoT

IoT is now ubiquitous computing that connects people and devices (ob-

jects or things) to enable newly established networks [4] - [6]. IoT is a new

paradigm that connects numerous devices depending on the purpose to be

achieved by the established network [7], [8]. Many objects/things, such as

sensors, cameras, and others, are interconnected to the internet, and to each

other [9] - [12]. These objects/things communicate through the internet,

bringing a new level of involvement to users and leading to different defini-

tions of IoT [7], [13].

1.1.2 Devices (Things, Objects, Machines)

IoT devices appear in a diversity of configurations and capacities. The

most commonly used devices are sensors, smart cards and microcontroller-

platforms [1]- [3]. These are several devices that can be classified as the pave

of IoT [1]- [3].

1.1.2.1 Sensors

IoT employs a wide range of sensors to analyze vast amounts of data

or information [7], [15], [16]. The sensors could be used to measure speed,

temperature, energy, animal behavior (including human behavior), weather,

water content, environmental conditions, changes in individual performance,

and many other things [7], [15], [16]. IoT sensors need several aspects, includ-

ing low cost, acceptable accuracy, acceptable speed, acceptable selectivity,

repeatability, and excellent resolution. The accuracy of Global Positioning

System (GPS) sensors, for example, are driving the growth of IoT, such as

in driverless cars [17].

2

1.1.2.2 Smart Cards

The smart card technology is expected to be used in various applications,

particularly on IoT devices, to enhance security features such as access con-

trol, the ability to perform multiple tasks, and the management security up-

grade [18]. The two types of smart cards are contact and contactless smart

cards [19]. A contact smart card is a device that is physically connected

to the card reader and has a serial connection to a chip on the card’s sur-

face [20]- [24]. Data and card status information are communicated via these

physical contact points [20], [24].

A contactless smart card is a device that communicates with a reader via

radio frequencies (RF) antennas over contactless links [20]- [24]. Data and

information are communicated using an electromagnetic signal from the chip

and RF antennas [20]- [24].

Smart cards are required for various functions, depending on the user.

These functions include security identification, health applications, payment

applications, telecommunication, and others. Identity cards, passports, and

driver’s licenses are now converted to smart cards to perform multiple func-

tions [19]- [22]. For IoT authentication, all information describing a person

is embedded on a smart card [21] - [24]. Other examples include medical

records, which are now kept on smart cards rather than hard copy files [24].

Also, in the banking sectors, payment transactions are handled with contact

and contactless credit and debit cards [20]– [24]. Subscriber Identity Mod-

ules (SIM) cards are used by cell phones to identify a contact number, make

calls, and store contacts [20]– [24].

Smart cards use RFID chip. RFID has been identified as an important

device for enabling IoT functionality [25]. RFID is used in various techniques

to accomplish various tasks such as identification, recording, and controlling

other objects used on IoT [26]. RFID devices are wireless microchips that are

divided into two parts: tags (transmitters/responders) and readers (trans-

mitters/receivers) [26], [27]. RFID identifies different tags in a specific area

3

without needing a line of sight or human intervention [28]. Data and infor-

mation stored on RFID tags can be renewed and updated in real-time [29].

RFID tags have recently been upgraded to serve as barcode substitutes for

wireless reading and updating applications [30].

1.1.2.3 Microcontroller-Platform

Microcontroller-platform hardware has reprogrammable flash memory,

which is required for embedding security applications on IoT [31]. One exam-

ple of microcontroller-platform is Mica2 hardware. Mica2 hardware assists

other devices like sensors by preventing data, information, and signals from

being reported as outputs during IoT communication [32]. Mica2 hardware

can also be used as a base station of IoT [33], [34]. Mica2 hardware is used by

many IoT researchers worldwide because it interfaces with sensors, commu-

nicates with programming boards, stores sensor data logs, and manages re-

sources [35]. The code stored on the Mica2 hardware can be reused [31]– [37].

Most researchers prefer Mica2 hardware over other programmable hardware

devices because of these reusable features [4], [35].

1.1.3 Relationship between IoT and Cryptography

AES, DES, Camellia, and Serpent algorithms are commonly used on

IoT devices [7]. AES is used to secure IoT sensors and contactless smart

cards [38], [39]. For example, the AES algorithm is used on neural networks

as represented in [40]. The modified DES algorithm has been used on neural

networks to avoid attacks [41]. The AES and DES algorithms are used on

inference engines to secure information as represented in [42]. Serpent and

Camellia algorithms are used on platforms such as Big Data Analytics com-

panies [43]. DES and AES algorithms are used in Big Data Analytics found

in the cloud [44].

More often than not, there is a powerful connection between IoT and

cryptographic algorithms [1]- [2]. The most common cryptographic algo-

rithms used on IoT devices are AES, DES, Camellia, and Serpent. Because

4

they are the most commonly used, the literature review will concentrate on

them while ignoring the less commonly used algorithms. Table 1.1 lists all

four algorithms and their applications on IoT.

1.1.3.1 The AES Algorithm

Rijndael created the AES cryptographic algorithm for electronic data se-

curity. AES was submitted to the National Institute of Standards and Tech-

nology (NIST) [47], [48]. The AES specification was published on the Federal

Information Processing Standards (FIPS) in 1997 and was later adopted by

NIST [49], [50]. AES was found to be a block cipher capable of encrypt-

ing/decrypting 128-bit blocks with keys of 128, 196, or 256 bits [51].

1.1.3.2 The Camellia Algorithm

In 2000, three companies, Telephone Corporation, Nippon Telegraph, and

Mitsubishi Electric Corporation, developed the Camellia algorithm [52]. In

2000, ISO/IEC JTC 1/SC 27 examined it as a candidate algorithm for an

international encryption standard [53]. Following analysis, the ISO/IEC

adopted Camellia [54]. Camellia employs 128-bit block lengths and key

lengths of 128, 192, and 256 bits [55], [56]. The Camellia encryption and

decryption follow the same procedure, but the order of the sub-keys is re-

versed during the decryption process [57].

1.1.3.3 The DES Algorithm

DES is a symmetric-key algorithm used to encrypt electronic data [58].

In 1974, IBM and the US government collaborated to create DES [59]. The

National Bureau of Standards (NBS) analyzed the algorithm after it was

developed to see if DES could secure data and information used by the United

States of America (USA) government [60]. Because of flaws discovered in the

length of the key using brute-force attacks, NBS slightly modified DES in

1976. In 1977, the United States Federal Information Processing Standard

(FIPS) published DES. DES employs a 64-bit block and a key of 56 bits [61].

5

Table 1.1: Algorithms and their applications on IoT

Name of

the Algo-

rithms

Algorithm Deployment on IoT

AES Sensors and contactless smart cards use AES for encryption [7], [38],

[39]. Chang et al. [40] showed that the AES algorithm is used on

neural networks. Prajapat et al. [42] indicated that AES algorithms

are used on IoT devices when deployed with Artificial Intelligence (AI).

Rodŕıguez-Lera et al. [45] showed that AES algorithms are used on IoT

devices when deployed on Robotics and, to some extent, humanoids.

Camellia Sensors and contactless smart cards use Camellia algorithms for en-

cryption [7], [39]. Aoki et al. [43] indicated that Big Data Analytics

companies use Camellia algorithms. Aoki et al. [43] demonstrated that

Camellia algorithms are used on IoT platforms such as Robotics and,

to some extent, humanoids.

DES Neural networks use DES to secure most of its devices [7], [38]. Alal-

layah et al. [41] modified the DES algorithm used on neural networks

to avoid attacks. Prajapat et al. [42] indicated that DES algorithms are

used on neural network devices when deployed on Artificial Intelligence.

Rodŕıguez-Lera et al. [45] showed that 3DES algorithms are used on

IoT devices deployed on Robotics and, to some extent, humanoids.

Serpent Sensors also use Serpent for encryption [7], [46]. Aoki et al. [43] in-

dicated that the Serpent algorithm is used by Big Data Analytics de-

ployed with Robotics.

6

To complete encryption, DES requires 16 changes [58], [59]. The encryption

process is identical to the reverse (decryption) process, but subkeys are used

in reverse order [60], [61].

1.1.3.4 The Serpent Algorithm

The Serpent was created in 1998 by Lars Knudsen, Ross Anderson, and

Eli Biham [62], [63]. They intended to submit the algorithm as a candidate

for the DES [64]. The Serpent is derived from the DES algorithm; the S-

Boxes Serpent is derived from DES’ S-Boxes and has a new structure that

gives the attacker diffusion [65]. The Serpent requires a block length of 128

bits and a key length of 128, 192, or 256 bits [62].

1.2 Problem Statement
Concerns have been presented about the security of IoT algorithms against

cryptographic attacks. The source of concern is various attacks (such as

LC, DC, DL cryptanalysis, boomerang, truncated differential, meet-in-the-

middle, and zero-correlation-linear-distinguisher) used by intruders on IoT

cryptographic algorithms to discover certain keys [68]- [80]. An attacker can

quickly use cryptographic algorithms with short output bit lengths of an S-

Box to create probability tables on algorithms to guess the secret encryption

key [[81], pp. 21]. The output sizes of most well-known algorithms are S-

Boxes, which are less than 32 output bits. AES and Camellia, for example,

have eight output bits [[48], pp.16], [[54], pp.18]. DES and Serpent have

four output bits [[58], pp. 13-14], respectively [[64], pp. 3]. [[66], pp, 8].

If the output issues are not appropriately addressed, the problem of attacks

can jeopardize the entire security of the IoT system. This study focuses

on solving attacks (LC, DC, DL cryptanalysis, boomerang, truncated dif-

ferential, meet-in-the-middle, and zero-correlation-linear-distinguisher). The

objectives were applied to prevent the cryptographic attacks:

i. The study uses the KDM function to prevent DC attack in the AES

7

algorithm used on IoT devices.

ii. The study uses the Blocker function to prevent DL attack in Serpent

algorithm used on IoT devices.

iii. The study uses the Khumbelo function to prevent LC, DC, DL, boomerang,

truncated differential, meet-in-the-middle, and zero-correlation-linear-

distinguisher attacks in Camellia algorithm used on IoT devices.

Table 1.2: Algorithm Attacks and Solutions

Name of

the Algo-

rithms

Type of the Attacks Novel Solution Used

AES DC attack. Refer to chapter

three of this study.

The KDM function. Re-

fer to chapter three of this

study.

Camellia LC, DC, DL cryptanal-

ysis, and boomerang,

truncated differential,

meet-in-the-middle, and

zero-correlation-linear-

distinguisher attacks. Refer

to chapter five of this study.

The Khumbelo function.

Refer to chapter five of this

study.

Serpent DL attack. Refer to chapter

four of this study.

The Blocker function. Refer

to chapter four of this study.

1.3 Research Questions
i. How to develop the KDM function that will prevent DC attacks in the

AES algorithm used on IoT devices?

8

ii. How to develop the Blocker function that will prevent DL attacks in

the Serpent algorithm used on IoT devices?

iii. How to develop the Khumbelo function that will prevent LC, DC,

DL, boomerang, truncated differential, meet-in-the-middle, and zero-

correlation-linear-distinguisher attacks in the Camellia algorithm used

on IoT devices?

1.4 Research Objective
i. To develop the KDM function that will prevent DC attacks in the AES

algorithm used on IoT devices.

ii. To develop the Blocker function that will prevent DL attacks in the

Serpent algorithm used on IoT devices.

iii. To develop the Khumbelo function that will prevent LC, DC, DL,

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks in the Camellia algorithm used on IoT de-

vices.

1.5 Hypothesis
The research hypothesis, which will also serve as the statement of the

research, reads:

H1 It is possible to develop the KDM function that will pre-

vent DC attacks in the AES algorithm used on IoT devices.

H2 It is possible to develop the Blocker function that will pre-

vent DL attack in the Serpent algorithm used on IoT devices.

H3 It is possible to develop the Khumbelo function that will

prevent LC, DC, DL, boomerang, truncated differential, meet-

in-the-middle, and zero-correlation-linear-distinguisher attacks

in Camellia algorithm used on IoT devices.

9

1.6 Research Methodology
In this study, the research methodology to be used will be an experimental

simulation-type research method that will be conducted as follows:

i. Developing the KDM function that will prevent DC attack in the AES

algorithm used on IoT devices. IoT devices encrypt data stored and

transmitted during communication using an AES algorithm [82]- [95].

The AES algorithm is frequently subjected to DC attacks [77], [96].

There has been little progress in preventing DC attacks, particularly

on an AES algorithm [77], [96]. The goal of this research is to prevent

DC attacks. The novel approach of using a KDM function and replac-

ing the 8 x 8 S-Boxes with the 8 x 32 S-Boxes prevents DC attacks

on an AES algorithm. A KDM function is a newly developed math-

ematical function that was coined and used on purpose in this study.

Except for this study, no researcher has ever created, defined, or used a

KDM function. A KDM function contains many mathematical modulo

operators. A KDM function creates a new 32-Bit S-Box suitable for the

new Modified AES algorithm and confuses the attacker. These math-

ematical modulo operators are also irreversible. The study managed

to prevent a minimum of 70% of DC attacks on AES and a maximum

of 100% on a Simplified DES. Because no S-Box is used as a building

block, the attack on the new Modified AES algorithm is 0%.

ii. Developing the Blocker function that will prevent DL attacks in the Ser-

pent algorithm used on IoT devices. The DL characteristic’s probabil-

ity produces a Differential-Linear Connectivity Table (DLCT), which is

necessary for DL attack [97], [98]. The DLCT is a probability table that

offers many opportunities for an attacker to deduce the cryptographic

keys for any algorithm, including Serpent, found on IoT devices [97].

To attack algorithms, an attacker first builds DLCT utilizing build-

ing blocks like Substitution-Boxes (S-Boxes), which are common in the

10

structures of many algorithms [98]. This study aims to protect IoT

devices from DL attacks that target the Serpent algorithm using three

magic numbers that are mapped onto a newly created mathematical

function called Blocker. The Blocker is incorporated into Serpent’s in-

frastructure before being placed on IoT devices. To replace the original

Serpent S-Boxes with 4-Bits-output, new S-Boxes with 32-Bits-output

were created for this study. The architecture of Serpent also included

the innovative S-Boxes. The Blocker function and magic numbers, were

influential in this investigation. The findings indicate that an algorithm

with an S-Box made up of 4-Bits-output is more prone to attack than

an algorithm with an S-Box made up of 32-Bits-output. Three magic

numbers and 32-bit output S-Boxes were used in the study to create

a novel blocking technique that prevented the development of DLCT

and DL assaults. The innovative strategy successfully protected IoT

devices’ installed Serpent algorithms from DL attacks.

iii. Developing the Khumbelo function that will prevent LC, DC, DL,

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks in the Camellia algorithm used on IoT de-

vices. Camellia is one of the cryptographic algorithms implemented

on many Internet of Things (IoT) devices [99]. However, an intruder

uses the Substitution Box (S-Box) distinguisher to attack her Camellia

cipher [100]. A distinguisher is a table that provides the probability

of guessing the algorithm’s secret key [99]. Distinguisher’s features are

used in most attacks. The most well-known characteristic features are

the Linear Approximation Table (LAT), Difference Distribution Table

(DDT), and Differential Linear Connections Table (DLCT) [100]. This

work focuses on preventing these attacks by deflecting the construction

of an S-Box distinguisher with a new function called the Khumbelo. The

Khumbelo function prevented distinguisher construction by lowering

the construction probability. The Khumbelo function successfully re-

11

duced the attack probability of LAT (54.6875 percent to 0 percent),

DDT (1.5625 percent to 0 percent), and DLCT (50.0000 percent to 0

percent). The Khumbelo function is generated using a 4-Byte output

S-Box instead of Camellia’s original 1-Byte output S-box. Also, the

Khumbelo function consists of many modulo operators. New 4-Byte

output S-boxes and modulo operators confuse and block intruders to

build distinguishers. After successfully embedding the Khumbelo func-

tion in the traditional camellia, the newly modified camellia was coined

K Camellia.

To summarize the research methodology and the casual relationship be-

tween objectives and questions, refer to Table 1.3 and Figure 1.1. Refer to

chapter three of this study for more information about the DC attack and

KDM function. Refer to chapter four of this study for more information

about the Blocker function DL attack. Refer to chapter five of this study for

more information about the Khumbelo function LC, DC, DL cryptanalysis,

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks.

1.7 Benefits
The practical implementations of the funding can be applied in the real

world if one wants to prevent one of the following attacks using the following

methods, respective to the particular algorithms:

i. The KDM Function has been found to be more effective in preventing

DC attacks in AES.

ii. A Blocker Function has been found to be more effective in preventing

LC attacks in the Serpent.

iii. A Khumbelo function has been found to be more effective in preventing

LC, DC, DL, boomerang, truncated differential, meet-in-the-middle,

and zero-correlation-linear-distinguisher attacks in the Camellia.

12

Table 1.3: The casual relationship among research objectives research ques-

tions and research methodology

Research Questions Research Objective Research Methodol-

ogy

How to use the KDM func-

tion to prevent DC attack in

the AES algorithm used on

IoT devices?

To use the KDM function

to prevent DC attack in the

AES algorithm used on IoT

devices.

Using the KDM function

to prevent DC attack in

the AES algorithm used

on IoT devices.

How to use the Blocker func-

tion to prevent DL attack in

Serpent algorithm used on

IoT devices?

To use the Blocker function

to prevent DL attack in Ser-

pent algorithm used on IoT

devices.

Using the Blocker func-

tion to prevent DL attack

in Serpent algorithm used

on IoT devices.

How to use the Khum-

belo function to prevent

LC, DC, DL, boomerang,

truncated differential,

meet-in-the-middle, and

zero-correlation-linear-

distinguisher attacks in

Camellia algorithm used on

IoT devices?

To use the Khumbelo

function to prevent LC,

DC, DL, boomerang,

truncated differential,

meet-in-the-middle, and

zero-correlation-linear-

distinguisher attacks in

Camellia algorithm used on

IoT devices.

Using use the Khumbelo

function to prevent LC,

DC, DL, boomerang,

truncated differential,

meet-in-the-middle, and

zero-correlation-linear-

distinguisher attacks in

Camellia algorithm used

on IoT devices.

13

Figure 1.1: A flowchart diagram representing general research methodology

14

1.8 Limitations and Drawbacks
Apart from the methods used in this study, there are limitations and

drawbacks that can expose IoT devices to other attacks. The few limitations

and drawbacks are as follows:

i. A powerfully encrypted piece of data can be problematic to access,

even for a lawful user, during a critical period of decision-making. IoT

devices can be attacked and rendered inoperable by an intruder.

ii. The use of cryptography only cannot ensure the security of information.

Other methods of attack prevention are required.

iii. The new algorithms proposed in this study do not protect against the

threats and vulnerabilities arising from poor structure, technique, and

design. These must be addressed through appropriate planning and

establishing a protective IoT network before the algorithms are imple-

mented.

iv. The new algorithms proposed in this study, like any other known algo-

rithms, are not immune to brute-force attacks.

1.9 Significance of the Study
After the study, enhancing and probing the security of three crypto-

graphic algorithms commonly on IoT will benefit the community, develop-

ers, and other researchers in securing their communication, data, and sen-

sitive information stored on devices. Three cryptographic algorithms refer

to (AES, Camellia, and Serpent). For layout of the study, refer to Fig-

ure 1.2. The proposed future work will give other researchers and developers

of the cryptographic algorithm to focus on improving, installing, and imple-

menting IoT security during their future studies and research. It is believed

that the research investigation of the security issues surrounding the IoT

will add yet another dimension to strengthening security like authentication,

15

authorization, confidentiality, non-repudiation, availability, and privacy of

data used on IoT. Few attacks, such as the LC, DC, DL cryptanalysis, and

boomerang, truncated differential, meet-in-the-middle, and zero-correlation-

linear-distinguisher attacks, will be prevented or made more difficult for the

intruder to use and crack the four algorithms.

Figure 1.2: Flowchart diagrammatic representation of thesis chapters

1.10 Outline of Final Thesis
The following chapters will comprise the thesis: given in Figure 1.2:

CHAPTER 1. Introduction: This chapter will contain introduc-

tory background information, problem statements, research objectives,

research questions, definitions, and limitations.

CHAPTER 2. Literarature Review: This chapter will include a

grounded in a comprehensive literature review and theoretical basis for

the study.

16

CHAPTER 3. The KDM Function : This chapter will present

how KDM function prevented DC attack on AES algorithm.

CHAPTER 4. The Blocker Function: This chapter will present

how Blocker function prevented DL attack on Serpent.

CHAPTER 5. The Khumbelo Function: This chapter will present

how Khumbelo Function prevented the boomerang, truncated differ-

ential, meet-in-the-middle, and zero-correlation-linear-distinguisher at-

tacks on Camellia.

CHAPTER 6. Conclusion: This chapter will include a summary of

the research findings, the significance of the contribution, and recom-

mendations for future research.

17

Chapter 2

Literature Review

2.1 IoT Communications and Connections
IoT is a network of networks that connects devices, things, objects, and

machines to the internet [105], [82]- [95]. The IoT media (means of connec-

tions) are network layers, wireless connectivity, protocols, device-to-device

communication models, device-gateway communication models, back-end data

sharing communication models, device-to-cloud communication models, and

small connected devices [3]. In this section, a review of the previously men-

tioned attacks is analyzed to investigate the security of IoT communications

and connections of devices.

2.1.1 Overviews of the IoT Communication Modes

When IoT is compared to the traditional internet, the traditional inter-

net requires physical links [106]. IoT requires wireless connectivity to estab-

lish protocols, network layers, communication models (back-end data sharing

communication, device-to-cloud communication, device-to-device communi-

cation, and device-gateway communication), and tiny devices interconnected

to each other with vast storage, high speed, and adaptability to cloud com-

puting [3].

18

2.1.1.1 IoT Protocols

For IoT devices to function correctly, several protocols inverted by the

International Organization for Standardization (ISO) stack are used, as well

as the implementation of robust cryptographic algorithms to drive the se-

curity of these protocols [107] - [108]. Many protocols are included in the

IoT stack, including the Constrained Application Protocol (CoAP), which is

used for messaging; the Infrastructure Protocol, which is used for network-

ing; and the Identification Protocol, which is used to identify the user [109].

Other application protocols, such as the Message Queuing Telemetry Trans-

port Protocol (MQTT) and Advanced Message Queue Protocol (AMQP),

are managed by the application protocol; refer to Figure 2.1. The discov-

ery protocol is intended to identify the web and neighboring devices. In

addition, other protocols, such as the Data Protocols or the Representa-

tional State Transfer Protocol (REST), are used [111]. REST is intended for

data management and control, such as the web socket [111]. Aside from the

protocols mentioned above, many surplus protocols in Device Management

Protocols (DMP) provide ways to control devices. The Semantic Protocol is

intended to provide web services, while the Stomp Protocol is meant to man-

age text-based messaging [112]. Because of space constraints on IoT devices

and energy supply constraints from batteries, these protocols are designed

to save power, use less memory, and reduce computational time [107], [112].

As a result of these limitations or restrictions, dealing with the IoT security

problem is difficult because most security applications require a large amount

of space and time to run properly after installation [107] – [112]. Extensible

Messaging and Presence Protocol (XMPP) is an accessible communication

protocol for instant messaging (IM), existence information, and directory

of contacts management [110]. Hypertext Transfer Protocol (HTTP) is a

protocol that is used to retrieve resources such as Hypertext Markup Lan-

guage (HTML) documents [107], [112]. HTTP is the foundation of all data

exchange on the Web and is a client-server protocol, meaning the recipient

19

initiates requests, typically the Web browser [111].

2.1.1.2 IoT Architecture

IoT architecture is built using several stack layers [114]. Nonetheless, the

security of these layers necessitates robust cryptographic algorithms [115].

On the one hand, IoT researchers construct different network layers for IoT

architecture by subdividing some of the main layers into sublayers [116].

For example, a user supporting layer from the traditional internet has been

subdivided into the application, presentation, and session layers on the IoT

by [117]. Refer to Figure 2.2. On the one hand, other new layers are

still being developed by [116]. In recent years, many investigators have

become interested in IoT layers, particularly its architecture, consisting of

three layers: the network, perception, and application [114] – [116].

The network layer manages the connection of IoT networks, such as wire-

less or wired networks, while the application layer manages all IoT applica-

tions [115]. The perception layer is intended to collect, bring in, and process

data from the IoT communications [116].

2.1.1.3 Model of Machine-to-Machine Communication

The Machine-to-Machine (M2M) communication model refers to a group

of two or more devices that are directly interconnected to establish commu-

nication [3]. This model typically does not require the implementation of

a gateway, cloud computing, or servers [118]. These devices communicate

via Bluetooth, SHAREit, Z-Wave, or ZigBee managed by data-link proto-

cal [119]. Refer to Figure 2.1. The security and trust of device-to-device

communication are dependent on the devices pairing PINs for authentication.

The pairing PINs on both or all devices should be the exact [120]. No internet

protocol is required on the device-device communication model [118]– [120].

20

Figure 2.1: IoT Protocols with TCP/IP models [121]

21

Figure 2.2: Subdivisions of layers derived from main layers [117]

22

2.1.1.4 Model of Device-to-Cloud Communication

In a device-to-cloud communication model, IoT devices are connected

directly to an internet cloud service, such as an internet service provider

(ISP), to establish communication [122]. This approach uses existing chan-

nels of communication mechanisms, such as Ethernet, mobile phone, service

providers, or Wi-Fi connections, to establish contact and communication be-

tween devices via the internet network, which later connects to cloud comput-

ing [123]. The internet service provider (ISP) is responsible for the security

and privacy [124]. Communication may be hampered if the service provider

disappears or the hosting provider decides to stop [124].

2.1.1.5 Model of Device-to-Gateway Communication

Device-to-Gateway communication model is referred to as device-to-gateway

communication when connected to IoT gateways as a bridge to connect cloud

computing and services [3]. The IoT gateway’s function bridges the commu-

nication gap between IoT devices, other equipment, systems, sensors, cloud

computing, and services [118]. IoT gateways also organize internal process-

ing, application requirements, and storage solutions [124]. Data security

or confidentiality is determined by the website searched, visited, called, or

browsed during communication [123]. If an attacker breaches or hacks in-

formation on a website, it can turn it into a dangerous platform. They

could create or use a bogus webpage to hack or phish information from the

user [124].

2.1.1.6 Communication Model for Back-End Data Sharing

The back-end data sharing communication model introduces a commu-

nication architecture that allows end-users to assign and evaluate data from

a cloud computing service in conjunction with data from other devices and

sources [118], [124]. The Internet Protocol (IP) is not required for back-

end data-sharing communication [123]. The application service providers

are responsible for the security, and trust [125]. Assume the application

23

service provider terminates the services or installs software on a platform

with an open back door. In that case, all information and data from end

users could be manipulated, read, exploited, and transferred to unautho-

rized recipients [119]. IoT devices use cryptographic algorithms to secure

communication [3].

2.2 Cryptographic Algorithms Theory
The mathematical art of converting plaintext (readable message, commu-

nication, or data) to ciphertext (unreadable scrambled message, transmission,

or data) and vice versa is known as cryptography [126]. Converting plain-

text to ciphertext is known as encryption, and converting ciphertext back to

plaintext is known as decryption [7], [127] . In layman’s terms, cryptography

is a required practice to protect commutations, information, and data from

hackers, intruders, and attackers by making everything unreadable, inaudi-

ble, and inaccessible [3].

In most cases, this art of encryption and decryption is accomplished by

using a mathematical procedure known as a cryptographic algorithm [2]. His-

torically, encryption was done with pen-and-paper methods based on letter

substitutions and shifting numbers, such as in Vigenère and Steganogra-

phy encryption [7]. Modern cryptographic algorithms employ digital crypto-

graphic systems such as symmetric, asymmetric, and hash ciphers [127].

2.2.1 Symmetric Encryption System

For secure communication, the symmetric encryption system (algorithm)

uses only one key to secure data from sender to receiver, and vice versa [7],

[127]. Symmetric encryption is defined as uniform or symmetric by Kaur

et al. [128] because it uses only one invariable cryptographic key for en-

cryption and decryption. Examples include: the AES, DES, Camellia, Ser-

pent [129]. They both use the same encryption key to secure communication.

The symmetric encryption system is also known as a block cipher [128].

24

2.2.2 Asymmetric Encryption System

An asymmetric Encryption System (algorithm) is a type of encryption

method in which the key used to decrypt some data or information is different

from the key used to encrypt some data or information [128]. Asymmetric

encryption is also known as public-key encryption [129]. Examples include

the Elliptic Curve Cryptographic Algorithm (ECC), Rivest Shimar Aglemen

(RSA), Diffie-Hellman (DH), and Digital Signature Algorithm (DSA), and

other asymmetric encryption algorithms [7], [130].

2.2.3 Steganography Encryption System

A steganography encryption system displays data or information on other

mediums or platforms discretely [130]. These mediums are typically visible

objects to humans [7]. Photographs, videos, audio files, and paper documents

are examples of such items [131]. The use of unnoticeable/invisible ink to

write messages as hidden text on a picture or piece of paper that contains

visible text, and the receiver will disregard the visible text in favor of the

invisible one written by invisible ink using a candle or other mechanism, is a

simple example of steganography [132]. Another example is when the video is

played, in which the video images, conveyed by an authorized receiver, differs

significantly from a video viewed by an ordinary, or unauthorized person [7].

The videos’ trees, grasses, and pavements could convey messages, which could

be read as plain text or Morse code (for example, dots and dashes, shorts

and longs) [7].

2.2.4 The Vigenère Encryption System

The Vigenère Encryption System is a method of encryption in which

each alphabetical letter is substituted or shifted a predetermined number of

times [133]. A letter A would be shifted three times to become a letter E in a

vigenère encryption of shift 3, a letter Y would become a letter C, a letter B

would become a letter F, and so on [134]. Before communicating, the sender

25

and receiver must agree on how to handle shifting [133]. Vigenère encryption

was used before the invention of computers [135]. Vigenère encryption is done

by the CAESAR algorithm [7], [133]. Because of technological advancements,

no one uses vigenère encryption or the CAESAR algorithm for top-secret

messages [7], [133], [135].

2.2.5 Hashing (Authenticated) Encryption System

The Hashing (Authenticated) Encryption System is a method of encryp-

tion that generates a unique fixed-length signature for each communication,

data, or information set [136]. Minor changes to that communication, data,

or information would be easily be detected because each hash is unique to

that communication, data, or information [7]. An unauthorized person can-

not crack, reverse, or decipher a communication, data, or information that

has been encrypted with Hashing (Authenticated) Encryption [126]. It is

straightforward to determine whether hashed communication, data, or in-

formation received has been tempered with [7]. Hashing (Authenticated)

encryption is used primarily to prevent, detect, or investigate whether an in-

truder has tampered with communication [136]. Hash encryption is demon-

strated by Secure Hashing Algorithms (SHA-2 and SHA-3), Message Digest

Algorithm 5 (MD5), Race Integrity Primitives Evaluation Message Digest

(RIPEMD), and BLAKE2 algorithms [126], [136].

2.3 Related Work of DC attack on AES
Biham and Keller [137] first presented the DC attack on the AES-128 and

reduced it to five rounds, in this work, the secret key was recovered before

the final round. The DC attack was later refined by Cheon et al. [138] to

find six rounds using 291.5 favorite plaintext pairs and time complexity of

2122 for AES-192 and AES-256, Raphael and Phan [139] achieved to attack

both AES-192 and AES-256 reduced it to seven rounds, respectively [140].

in this work, the secret key was recovered before the final round. The DC

26

attack required 292 (AES-192) and 292.5 (AES-256) chosen-plaintext pairs

with time intricacies of 2186 (AES-192) and 2250.5 (AES256) [140]. Overall,

the better DC attack thus far succeeded in breaking through seven rounds

of AES-192 and AES-256 [140].

Lacko-Barto�sova [141] used the DC attack on two rounds of AES, with a

overall complexity calculated on a three-round AES attack. The DC attack

relied on detecting noticeable bitwise differences in the secret key. Data

complexity of the DC attack was 227, where 8 bits of the private key were

recovered, in this work, the secret key was recovered before the final round

[141].

Jakimoski and Desmedt [142] used a related-key DC attack to AES’s

192-bit secret key modification. Jakimoski and Desmedt [142] also indicated

that on four rounds, at least 25 active bytes of the private key were used in

the DC attack. In this work, the secret key was recovered before the final

round. Jakimoski and Desmedt [142] demonstrated that a truncated DC

could be used to improve the attack. Within the case, the number required

of plaintext/ciphertext pairs might be 281, corresponding to a computational

burden of 286. Utilizing an impossible related-key DC attack, Jakimoski and

Desmedt [142] claimed to break a 7-round with computational complexity

of 2116 and 2111 plaintext/ciphertext pairs. The attack on 8-round, re-

quired complexity of about 2183 encryptions and 288 plaintext/ciphertext

pairs [142]. In this work, the secret key was recovered before the final round.

In this work, the secret key was recovered before the final round.

Hu and He [143] utilized a new property of MixColumns Transformation

and constructed a new 4-round possible DC attack path. Hu and He [143]

added 1-round and 3-round of possible DC attack paths before and behind

the approach. Additionally, Hu and He [143] constructed a new 7-round

impossible DC attack path. Hu and He [143] used the approach to analyze

64-bit initial keys of 7-round AES-192, which required 271 pairs of selected

plaintexts, approximately 272 memory cells, and around 2135 encryption and

27

decryption computations. Finally, recovering the secret keys [143]. In this

work, the secret key was recovered before the final round.

Rouquette and Solnon [151] showed that based on the complete distri-

bution ratio and complexity that occurred, Mini-AES algorithms had been

vulnerable to DC attack [151]. The greatest DC attack characterization is

the one that uses a single active S-Box and has a distribution proportion of

8/16. [151]. Rouquette and Solnon [151] used the probability of guessing the

secret key was calculated using the distribution ratio of 8/16. In this work,

the secret key was recovered before the final round.

2.4 Related Work of DL attacks on Serpent

Algorithm
Anderson et al. [152] attacked the Serpent algorithm using the DL and

Differential-Linear Connectivity Table (DLCT) table. Compton et al. [153]

developed the Simple Power Analysis attack (SPA) to attack an 8-bits smart

card encrypted by Serpent. The results showed that Serpent key generation

was weaker to a side-channel attack because of a linear feedback shift reg-

ister (LFSR). LFSRs are common in most cryptographic algorithms. Thus,

suggestions were given that Serpent’s LFSRs should be carefully modified

to reduce attacks. Bar-On et al. [97] developed a new tool called DLCT to

attack Serpent’s secret keys. The tool was used to calculate the probability

of the secret key. In this work, the probability of secret key was recovered

before the final round. Canteaut et al. [98] analyzed the DLCT to get ab-

solute indicators of Serpent’s secret key weakness. According to the results

proposed by [98], the DLCT approach method was found to be similar to

the auto-correlation spectrum entities. Conclusion was drawn that DLCT

was nothing else but Auto Correlation Table (ACT). Further on, Canteaut

et al. indicated that the ACT spectrum was invariable under any equivalence

similarities and was not invariant under changes. Biham et al. [155] attacked

the Serpent algorithm using the DL attack with the aid of the DLCT tool.

28

In this work, the secret key was recovered before the final round [155].

2.4.1 Related Work of Attacks on the Camellia cipher

The Camellia cipher can be attacked using the boomerang, according to Yap,

Khoo, and A. Poschmann [156]. Yap, Khoo, and A. Poschmann [156] man-

aged to attack Camellia using boomerang, the boomering attack revealed

the secret key before round four. Lee, Hong, Lee, Lim, and Yoon [157] in-

troduced a truncated differential cryptanalysis attack of adjusted Camellia

reduced to 7-round and 8-round. They [157] recognized the 8-Bit key on

7-round and the 16-Bit key on 8-round, with 3*281 and 3*282 plaintext, re-

spectively. The other building block of the boomerang attack is the truncated

differential cryptanalysis attack [158], [159].

Bai and Li [160] successfully attacked the 11 rounds of Camellia-128,

11 rounds of Camellia-192, 12 rounds of Camellia-192, and 14 rounds of

Camellia-256 using impossible differential cryptanalysis attacks and with

the time complexities of 2123.6, 2121.7, 2171.4 and 2238.2, respectively.

Wu, Zhang, and Feng [161] used the relationship between the subkeys

and the number of Camellia rounds, combined with several novel approaches

in the secret key retrieval technique, to improve the impossible differential

attack up to 12 rounds of Camellia-128 and 16 rounds of Camellia-256. They

[161] were successful in attacking 12-round and 16-round plaintexts of 265

and 289, respectively.

Lu, Wei, Pasalic, and Fouque [162] characterized the infrequent 5-round

and 6-round impacts of Camellia and eventually used them to attack 10, 11,

and 10 rounds of Camellia using meet-in-the-middle attacks to discover the

128-Bit key, 192-Bit key, and 256-Bit key, respectively.

Using the zero-correlation linear cryptanalysis attack, Liu, Sun, Wang,

Varici, and Gu [163] explored Camellia’s security. As a result of the analysis,

particular weak keys were found. According to Liu, Sun, Wang, Varici, and

Gu [163] proposed some unique properties of the FL/(FL)−1 functions in

29

Camellia.

Liu, Sun, Wang, Varici, and Gu [163] constructed the first known eight

rounds of zero-correlation linear distinguisher of Camellia with FL/(FL)−1

layers for the described weak keys because it covered the same number of

rounds as the best-known zero-correlation linear distinguisher for Camellia

without FL/(FL)−1 layers. According Liu, Sun, Wang, Varici, and Gu [163]

claimed that FL/(FL)−1 layers could not virtually prevent zero-correlation

linear cryptanalysis attacks for specific weak keys.

2.4.2 Chapter Summary

This chapter discussed IoT communication, cryptographic algorithms,

confirmation of difference attacks, symmetric, asymmetric, steganography,

the Vigenère Encryption System, and hash fuction. The aim was to give a

literature review of the research study.

Chapter 3 discusses the design and development of KDM function to

prevent DC attacks on AES. Chapter 4 discusses the development of Blocker

function to prevent DL attacks on the Serpent algorithm for IoT devices.

Chapter 5 discusses the design and development of Khumbelo function on

the Camellia algorithm to prevent attacks on IoT devices.

30

Chapter 3

The Design and Development

of KDM Function to Prevent

DC attacks on AES

The chapter that follows is based on published work by:

i. K. D. Muthavhine and M. Sumbwanyambe, ”Preventing Differential

Cryptanalysis Attacks Using a KDM Function and the 32-Bits Out-

put S-Boxes on AES Algorithm Found on Internet of Things devices”,

MDPI, Cryptography, pp. 1-33, 2022.

Website: https://www.mdpi.com/2410-387X/6/1/11

Status: Published.

Publisher: MDPI.

ii. K. D. Muthavhine and M. Sumbwanyambe, ”Reconstruction of DES in

Order to Reduce Memory Constraints Found on IoT Devices,” IEEE,

pp. 1-7, 2021.

Website: https://ieeexplore.ieee.org/document/9519312

Status: Published.

31

Publisher: IEEE.

Abstract: IoT devices encrypt data stored and transmitted during com-

munication using an AES algorithm [82]- [95]. The AES algorithm is fre-

quently subjected to DC attacks [77], [96]. There has been little progress

in preventing DC attacks, particularly on an AES algorithm [77], [96]. The

goal of this research is to prevent DC attacks. The novel approach of using

a KDM function and replacing the 8 x 8 S-Boxes with the 8 x 32 S-Boxes

prevents DC attacks on an AES algorithm. A KDM function is a newly

developed mathematical function that was coined and used on purpose in

this study. Except for this study, no researcher has ever created, defined, or

used a KDM function. A KDM function contains many mathematical mod-

ulo operators. A KDM function creates a new 32-Bit S-Box suitable for the

new Modified AES algorithm and confuses the attacker. These mathemat-

ical modulo operators are also irreversible. The study managed to prevent

a minimum of 70% of DC attacks on AES and a maximum of 100% on a

Simplified DES. Because no S-Box is used as a building block, the attack on

the new Modified AES algorithm is 0%.

3.1 Background on Preventing DC Attacks

with a KDM Function on the AES
Without a doubt, cryptographic algorithms such as AES are used by

IoT devices and platforms to ensure the safety and confidentiality of highly

classified information and data. [82]- [95].

As a result, new services provided by IoT devices must be adequately

secured using robust cryptographic algorithms such as AES [105]. Simul-

taneously, as the improvement of security and privacy on IoT devices is

observed as increasingly surpassing the use of solid cryptographic algorithms

such as AES, the more attackers create and improve different techniques of

attacking the distinct reliable algorithms [77], [96]. Most common algorithms,

32

such as AES, are being attacked using various mathematical methods, such

as DC attacks [105]- [151]. For example, four-round AES is attacked with

DC attacks [105]. AES has been used to secure data in online transactions,

and smart cards in other IoT devices [105]. An exhaustive research attack

was compared to an AES attack utilizing DC attacks on fewer rounds vari-

ant [140]. DC attacks have proven to be more effective than comprehensive

research attacks, which are regarded as the upper bound attack in cryptog-

raphy [140], [147].

Today, the AES algorithm is still used to secure sensitive information

and data stored on IoT devices [82]- [95]. AES has been discovered to aid

in establishing IoT sensor communication security in various IoT devices

such as intelligent energy grids, Machine to Machine (M2M) communications,

buildings, and data computing devices [84]. To ensure the safety of sensor

nodes as IoT devices, communications are encrypted using the AES algorithm

[85]. One of the IoT devices that uses an AES to secure data privacy and

protection is the PRISEC module of the UbiPri middleware [86].

The newly created 32 output bit S-Boxes protect AES DC attacks on

IoT devices because it contains many mathematical modulo operators. A

KDM function creates a new 32-Bit S-Box suitable for the new Modified

AES Algorithm and confuses the attacker. Furthermore, the majority of

mathematical modulo operators are irreversible.

The primary concern is the DC attack used by trespassers on IoT devices

to identify the cryptographic keys of an AES algorithm. The DC attack

is launched against an AES [105]- [151]. For example, the DC attack has

been tested on the Mini-AES algorithm [146]. The experiment revealed more

than half of the secret keys. To decode the secret key, AES has been attacked

using an algebraic DC attack [145]. The study conducted by [77] conveyed the

basic principle that DC attack has been quested the strong chance of suitable

events of plaintext pair differences and ciphertext pair differences generated

in the deciding round. Lacko-Barto�sova [141] demonstrated a DC two-round

33

AES attack with a complexity approach of a three-round AES attack. Lacko-

Barto�sova [141] has also demonstrated that the DC attack is dependent on

the support of remarkable bitwise text differences. Grassi [144] used the DC

attack and the ”multiple-of-8” rule to attack five-round AES. According to

Tunstall [105], the first attack is a four-round AES DC attack controlled to

a differential completed with a high probability. The second strike is a five-

round AES Square attack that takes 237.5 seconds of time complexity and

28 combinations of ciphertexts to break an AES cryptographic keys [105].

Even though AES is vulnerable, it is used on IoT devices. For exam-

ple, IoT devices need an AES algorithm to encrypt information and transfer

it to the next layer of security, known as the Message Queuing Telemetry

Transport protocol [95]. The Message Queuing Telemetry Transport pro-

tocol (ISO/IEC PRF 20922) is an ISO standard for transferring encrypted

information. The secret message was decrypted on the receiver side using

the AES algorithm [95]. As IoT devices aggregated on recurring links re-

lated to regulating traffic across optimal links [94], the VMware SD-WAN

Edge holds VMware SD-WAN Dynamic Multipath Optimization (DMPO)

and an Extensive Application Recognition.

Furthermore, traffic is routed to other VMware SD-WAN Edges of differ-

ent departments, personal data hubs, academic institutions, and workplaces,

with AES for secure communication [94]. According to Sophia et al. [93],

the department of health is a growing threat to patient safety worldwide. An

e-healthcare Remote Clinical Sensor Network aids in collecting vital body

information from private terminals via sensors such as IoT devices. The rec-

ommended method is based on policy initiatives of implementing a secured

key and encoding it with an AES [93].

With all of this information, this research aims to recover an AES from

DC attacks and secure all IoT devices and data using an AES algorithm. If

not adequately investigated, a DC attack can destroy the complete security of

IoT devices and users. Little research has been done to increase the number

34

of output bits on S-Boxes to combat the DC attack [105]- [151]. This research

focuses on retaliating against a DC attack on an AES.

3.1.1 An AES Algorithm

The AES algorithm is a 128-bit symmetrical cryptosystem that is widely

and commonly used on IoT devices [164] - [167]. An AES has four major

phases called functions, which are as follows: Substitute Byte (SubByte),

Shift Rows (ShiftRows), Mix Columns (MixColumn) and finally Add

Round Key (AddRoundKey) [164] - [167]. Three of these four major func-

tions have reciprocals, namely: Inverse Mix Columns (InvMixColumn),

Inverse Substitute Byte (InvSubByte) and Inverse Shift Rows (InShiftRows).

The only function that does not have an inverse isAdd Round Key (AddRoundKey)

[7], [164]. The main functions are used in the encryption operation, and the

inverses are used in the decryption [164] - [167]. The decryption AND en-

cryption processes are depicted in Figure 3.1.

The first step or function in the encryption process is SubByte. An AES

algorithm employs a Substitution-Box in this function (S-Box). S-Box is a

look-up table with inputs and outputs in the form of bytes [7], [164]. Using

an AES S-Box, each input byte is replaced by a different unconventional byte

in the SubBytes step [164] - [167]. Assume, as shown in Figure 3.2, that

the input byte is c000 in hexadecimal notation, c0 = x for a row, and 00 = y

for a column. c000 is replaced by ba when examined from an AES S-Box on

Figure 3.2, where x and y intersect.

During the decryption process, an AES S-Box is used in reverse. When

inverse an AES S-Box is used, the step is called InvSubBytes and is the third

step in decryption. InvSubByte is the direct inverse of SubByte. Please see

Figure 3.2.

An AES converts a string of plaintext (input) into a 4×4 matrix; the

matrix after the replacement or substitution is referred to as an AES’s state.

Note that a state is the output of each AES step or function. MixColumns

35

Figure 3.1: AES Decryption and Encryption Processes [164]

36

Figure 3.2: AES InveSubBytes and SubBytes with an Example [167]

37

is another critical function that keeps the state running. The mixing method,

also known asMixColumns, is a multiplication method for combining matrix

rows and columns. Using matrix transformation, each 8-bit entity of a row is

multiplied by each 8-bit entity of the state column. Simply put, each row of

the matrix transformation is used to multiply each column of the state [164]

- [167].

The multiplication outputs are XORed to produce a distinct state. InvMixColums

is the inverse transformation of MixColumn. InvMixColumns is obtained

during the decryption process [7], [164]. The size of the states is always the

same, which is a 4mathrmtimes4 matrix. Please see Figure 3.3.

Add Round Key (AddRoundKey) is the final function or step of an AES

during the encryption process. In contrast to other functions, AddRoundKey

does not have an inverse. The AddRoundKey method is used in both

the encryption and decryption processes. During the AddRoundKey op-

eration, either the state produced by MixColumns or the state produced by

InvMixColumns is XORed with the state of key [7], [164]. Refer to Figure

3.4 for more information.

AES supports three original key sizes: 192-Bits, 128-Bits, and 256-Bits

[164] - [167]. The encryption method consists of 10 rounds of key modification

for a 128-bit key, 14 rounds for a 256-bit key, and 12 rounds for a 192-bit

key [7], [164]. All subkeys are generated from an initial key; the size of

the initial key determines the number of subkeys generated. Subkeys are

employed during the encryption and decryption processes [164] - [167]. Figure

3.5 depicts the mathematical steps in generating subkeys.

38

Figure 3.3: AES Inverse Mix Columns and Mix Columns [164]

39

Figure 3.4: An AES’s Key Addition Process [167]

40

Figure 3.5: Key Scheduling in AES [164]

41

3.1.2 The DC Attack

The DC attack takes advantage of the high probability of specific events

of plaintext differences and differences into the final round of the cipher

[105]- [151]. Consider the following algorithmic program with plaintext ℘ =

[℘1, ℘2, ..., ℘n] and ciphertext ζ = [ζ1, ζ2, ..., ζn] [77]. Expect two inputs to

the cipher, ℘
′

and ℘” with additive outputs ζ
′

and ζ”, respectively. The

input difference is calculated using Ξ ℘ = ℘
′ ⊕℘”, the symbol ⊕ shows XOR

bitwise operator, and thus Ξ℘i = ℘
′
i ⊕ ℘”

i , correspondingly to the output

difference where, Ξζ = ζ
′ ⊕ ζ” and Ξζi = ζ

′
i ⊕ ζ”i [96]. TTo apply the DC

attack, the trespasser must recover the high differential probabilities of each

S-Box used in the specific algorithm [105]- [151]. The intruder then calculates

the outputs of high S-box differential probabilities that affect the known-

plaintext difference Ξ℘ = ℘
′ ⊕ ℘” in relation to the ciphertext difference

Ξζ = ζ
′⊕ζ” [96]. Furthermore, the intruder generates Difference-Distribution

tables for each S-Box for input difference Ξ℘ and output difference Ξ℘ in

order to reveal the differential characteristic. Because of the size of both

input and output bits, most S-Boxes implemented on various algorithms are

weak [105]. Because of S-Box’s weakness, the attacker may easily observe

the high difference probabilities of pair (Ξ℘i,Ξζi) of (1/(2n)), where n is the

bit number used as an output [77], [96]. The intruder examines all distinct

pairs of input ℘i and output ζi of an S-Box, where i represents the i − th

bit of the ℘i and ζi, respectively. The high difference probabilities of each

pair (Ξ℘i,Ξζi) are combined and used from round to round, utilizing S-Boxes

as an independent building block of the particular algorithm. Assume that

the differential characteristic for the second last round has a high enough

probability ρτ . In that case, it is simple to find specific bits of the key or

subkey used on the last round subkey by XORing all the potential keys of all

affected nonzero difference bits TPS (Target Partial Subkeys) and operating

one round backward through S-Boxes. The intruder requires 1/ρτ known

plaintext-ciphertext pair differences [77], [96].

42

The intruder examines the difference pairs of the S-Boxes found in the

cryptographic algorithm in the DC attack. For example, suppose the 4 Ö 4

S-Box is shown in Table 3.1 with plaintext ℘ = [℘1, ℘2, ℘3, ℘4] and ciphertext

ζ = [ζ1, ζ2, ζ3, ζ4] [77], [96].

Table 3.1: Simplified DES S-Box

℘ 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(℘) = ζ 4 E D 1 2 F B 8 3 A 6 C 5 9 0 7

All difference pairs of an S-Box illustrated in Table 3.1, (Ξ℘i,Ξζi), can

be examined and the probability of Ξζi given Ξ℘i can be calculated by con-

sidering ciphertext pairs (℘
′
, ℘”) such that Ξ℘ = ℘

′ ⊕ ℘” [105], [148]. For a

4 Ö 4 S-Box such as the one shown in Table 3.1 the intruder only considers

all 16 = (24) values for ℘
′

and then the value of Ξ℘i shows the value of ℘”

to be ℘” = ℘
′ ⊕ Ξ℘ [77], [96].

Using the 4 Ö 4 S-Box shown in Table 3.1, the intruder can calculate the

probability values of Ξζ for each plaintext pair (℘
′
, ℘” = ℘

′⊕Ξ℘) [105], [149].

Table 3.2 shows the binary values of ℘, ζ, and the ciphertext values for

Ξζ for given plaintext pairs (℘, ℘ ⊕ Ξ℘) are presented in for Ξ℘ values of

1011binary number, 1000binary number, and 0100binary number.

Table 3.2 depicts the last three columns of Ξζ values for the ℘ value

row and the specific Ξ℘ value column [105]- [145]. The intruder can see

from Table 3.2, that the occurrence number of Ξζ = 0010binary number for

Ξ℘ = 1011binary number is 8 over 16 possible values, so the probability = 8/16;

the occurrence number of Ξζ = 1011binary number given Ξ℘ = 1000binary number

is 4 over 16; and the occurrence number of Ξζ = 1binary number given Ξζ =

0100binary number is 0 over 16 [105]- [151].

The intruder tabularizes the entire data for the 4 Ö 4 S-Box shown

in Table 3.1 in a Difference-Distribution Table with columns representing

Ξζhexadecimal and the rows representing Ξ℘ values [96], [149].

43

Table 3.2: S-Box Difference Pairs of 4 x 4
Ξζ Ξζ Ξζ

℘ ζ Ξ℘ = 1011 Ξ℘ = 1000 Ξ℘ = 0100

0000 1110 0010 1101 1100

0001 0100 0010 1110 1011

0010 1101 0111 0101 0110

0011 0001 0010 1011 1001

0100 0010 0101 0111 1100

0101 1111 1111 0110 1011

0110 1011 0010 1011 0110

0111 1000 1101 1111 1001

1000 0011 0010 1101 0110

1001 1010 0111 1110 0011

1010 0110 0010 0101 0110

1011 1100 0010 1011 1011

1100 0101 1101 0111 0110

1101 1001 0010 0110 0011

1110 0000 1111 1011 0110

1111 0111 0101 1111 1011

44

Table 3.1 gives the Difference-Distribution Table for the 4 Ö 4 S-Box illus-

trated in Table 3.3 [77], [144]. Table 3.3 depicts the occurrence number of

each element corresponding ciphertext difference Ξζ value given the plain-

text difference Ξ℘ [105], [140], [141], [96]. Aside from the specific cases of

(Ξ℘ = 0,Ξζ = 0), the intruder can see that the highest value in Table 3.1 is

8, corresponding to Ξ℘ = Bhexidecimal and Ξζ = 2hexidecimal [105]- [148].

Table 3.3: DES Difference-Distribution Table (DDT)

Input Difference Ξ℘ Output Difference Ξζ

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0

2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0

3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4

4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0

5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2

6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2

7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4

8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2

9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0

A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0

B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2

C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0

D 0 4 0 8 0 0 0 4 2 0 2 0 2 0 2 0

E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0

F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

45

As a result, the probability of Ξζ = 2hexidecimal knowing an arbitrary pair of

plaintext values that satisfy Ξ℘ = Bhexidecimal is 8/16 [77], [96]. On the other

hand, the smallest value in Table 3.1 is 0 and occurs for various pairs. In this

situation, the probability of the Ξζ value happening knowing the Ξ℘ value

is 0. With all of this information, the intruder can discover the algorithm

with the highest percentage of secrete bits key using a similar S-Box to the

one defined in Table 3.1 [77], [96]. The few remaining secret key bits are

discovered through simple mathematical and statistical analysis, as well as

trial and error.

3.1.3 Development of the KDM Function

A new function known as a KDM is included in this study. Please see Fig-

ure 3.6.

A KDM function is a new C++ function that is only used to increase

DC attack blockage on an AES algorithm that is required on IoT devices.

This function is obtained after modifying the S-Boxes of an AES algorithm

to generate the 32-bit output S-Boxes. A KDM function’s primary function

is to ensure that newly 32-bit output S-Boxes are compatible with an AES

cipher infrastructure.

In layman’s terms, a KDM function coordinates the use of all newly 32-bit

output S-Boxes during the encryption and decryption processes of the newly

adjusted AES algorithm. A KDM function is used to create a new 32-Bit S-

Box suitable for the new Modified AES Algorithm and confuses the attacker

because it contains many mathematical modulo operators. Furthermore, the

majority of mathematical modulo operators are irreversible. Newly generated

32-bit output S-Boxes will not be set in algorithms without a KDM function.

This KDM function has specific properties that ensure the DC attack is

blocked. These are the properties:

i. In contrast to S-Boxes, where a look-up table with determined inputs

and outputs is used, the production of a KDM function is not deter-

46

mined.

ii. The output of a KDM function is hidden and calculated, unlike the

output of an AES S-Box, which is visible on a look-up table.

iii. A KDM function cannot be changed. If an output of a KDM function is

identified, this does not imply that an input can be reverse-calculated

and recovered. The reason for this is that a KDM function is made up

of a large number of modular operators.

iv. Constant numbers used in a KDM function (such as Muthavhine,

Khumbelo, and Difference) are unfactorizable. Refer to Figure 3.6.

v. All of the functions that make up a KDM function are non-linear.

vi. A KDM function’s input is 32 bits long, and the attacker cannot simply

construct the 232 Difference-Distribution Table using a computer.

vii. A KDM function takes the input of 32-bit S-Boxes and processes it.

After that, the modified AES algorithm generates a unique output

value. The attacker is perplexed because a new specific output value is

unpredictable.

viii. state32hold is the output of 32 bits S-Boxes. This output is passed

to the KDM function, which returns an unpredicted variable called

Khumbelo. Refer to Figure 3.6.

ix. Because S-Boxes are mathematically protected and unchangeable in a

KDM function, all functions in an AES algorithm that call S-Boxes

must call or use a KDM function after implementing a KDM function.

x. The 32-bit output S-Boxes are tamper-proof thanks to a KDM function.

M AES will not produce the expected results if the positions of the 32-

bit output S-Boxes are changed or the 32-bit S-Boxes are replaced.

47

Figure 3.6: A KDM Function for Creating a New 32-S-Box for the Modified

AES Algorithm

48

A KDM function contains many mathematical modulo operators. This

study employs a KDM function to create a new 32-Bit S-Box suitable for the

new Modified AES Algorithm and confuse the attacker.

Furthermore, the majority of mathematical modulo operators are irre-

versible. Unlike the traditional S-Boxes used in most AES algorithms, a

KDM function is more resistant to DC attacks. A KDM function success-

fully blocks the DC attack of a recently modified AES algorithm while also

being appropriate for newly 32-bit S-Boxes. A KDM function is built math-

ematically as follows:

Assign: Muthavhine = 4294967296, Khumbelo = 4559351687 andDifference =

4302746963

Create the first for both i and j less than four, where both i and j range

form 0 to 4,

do: assign

T = state32hold[j][i]× (state32hold[j][i]
Muthavhine

). where state32hold[j][i] is an input

of a KDM function from 32-bit S-Box.

do: assign

V = Muthavhine× (Muthavhine
state32hold[j][i]

)

Change the value of state32hold[j][i], to be the value of T+V by assigning

state32hold[j][i] = T + V .

Close the first for loop.

Create an array of six elements calledArraof6 and assign to asArraof6 =

256604724, 40037230360, 7779667, 4294968531, 0273, 4 where Arraof60 is the

first element of Arraof6 defined as Arraof60 = 256604724, Arraof61 =

40037230360,...,Arraof65 = 4.

Create the second for loop both i and j less than four, where both i and

j range form 0 to 4.

Recall the value of state32hold[j][i] calculated from the first for loop.

Compare the value of state32hold[j][i] to the value of Muthavhine.

Create condition one: if state32hold[j][i] is greater than Muthavhine,

49

then do: assign

Khumbelo = Arraof60 ⊕Khumbelo

Difference = (Arraof62 ⊕Muthavhine) modulo (Khumbelo).

Where modulo operation is the mathematical operator that returns the

remainder of a division (Arraof62 ⊕Muthavhine) divided by Khumbelo.

do: assign

Muthavhine = (Arraof62 ⊕Difference) modulo (Arraof63).

Close condition one.

Recall the value of state32hold[j][i] calculated from the first for loop.

Compare the value of state32hold[j][i] to the value of Muthavhine.

Create condition two: if state32hold[j][i] is less than or equal toMuthavhine,

then

do: assign

Muthavhine = (state32hold[j][i] <<< Arraof64) modulo (Khumbelo).

Where <<< is left circular shifting of the bits, for instance, 5 in decimal

= 0101 in binary. If 0101 is left-shifted by 1, then 0101 will be 1010 in binary,

which equals 10 in decimal or A in hexadecimal.

do: assign

Khumbelo = (state32hold[j][i] <<< Arraof65) modulo (Difference).

Difference = (state32hold[j][i] modulo Khumbelo)

<<< Arraof64).

Khumbelo = (Muthavhine⊕Difference) modulo (Arraof62).

Difference = Muthavhine⊕Khumbelo+ Arraof60).

Muthavhine = (Khumbelo⊕Difference) modulo (Muthavhine).

Close condition two and the second for loop.

Create the third for loop where i and j are less than four, where both i

and j range from 0 to 4.

Recall all the returned values calculated from the first and second for

loops. If the value returns to variable Khumbelo, greater than 0, then create

a variable TempState.

50

do: assign

TempState = NOT (state32hold[j][i])ANDKhumbelo.

Where NOT and AND are bitwise operators. Note that NOT return

negative number increased by 1 if an input is a positive integer. For instance,

NOT (2) = −3, NOT (5) = −6, NOT (10) = −11 and so on.

do: assign

state32hold[j][i] = |(state32hold[j][i] ⊕Khumbelo|, where |x| means ab-

solute operator. An absolute operator changes every negative value to be

positive. For instance, | − x| = |x| = x.

do: assign

statehold[j][i] = (state32hold[j][i]
Arraof62⊕Muthavhine

) ⊕Mod4.

do: assign

Khumbelo = TempState <<< 1.

Note that the expression of Khumbelo = TempState <<< 1 always

reduces the value of Khumbelo until Khumbelo is less than 0. It also checks

if Khumbelo is greater than 0. If Khumbelo is greater than 0, repeat the

third for loop until Khumbelo is less than 0.

Else do: assign

TempState = Khumbelo⊕ TempState

Khumbelo = Khumbelo(modulo (Muthavhine))

Send or return the new value of statehold[j][i] to be used by other AES

functions or building blocks

Close the third for loop.

Close a KDM function.

A KDM Function takes 32-bit output value from S-Box as state32hold[j][i]

and returns a new value state32hold[j][i] value as an output. A KDM Func-

tion also makes Muthavhine value, Difference value, and Khumbelo value

unfactorizable polynomials, and then modular operators are used for confu-

sion and diffusion to block reverse engineering for intruders. The modular

operator (modulo) changes the value of the variables inside a KDM Function.

51

The modular operator also gives a confusing input range when intruders re-

verse back a KDM Function to guess the correct information used in that

event. Refer to Figure 3.7.

The value of Muthavhine, Difference, and Khumbelo are also con-

stantly kept unfactorizable polynomial variables non-linear and cumbersome

to construct Difference Distribution Table using any machine. Modular oper-

ators also make variables unknown, invisible, and irreversible to intruders. A

KDM function makes a new 32-Bit S-Box suitable for the new Modified AES

Algorithm and confuses the attacker since it comprises many mathematical

modulo operators. Additionally, most mathematical modulo operators are

irreversible. For more mathematical features of a KDM function and C++

comments, refer to Figure 3.6. For more detail on a KDM function and

flowchart, refer to Figure 3.7.

3.2 Methodology for Preventing DC Attacks

Using a KDM Function on AES
The primary goal of this study was to protect an AES algorithm discov-

ered on IoT devices from a DC attack. The original 8-Bits-output S-Box

and inverse Box of an AES algorithm was replaced in this study with newly

generated 32-Bits-output S-Boxes. For the suitability of newly generated

32-Bits-output S-Boxes, a unique mathematical function called KDM was

developed. The newly generated 32-Bits-output S-Boxes were inserted into

an AES algorithm to obtain a more desirable encryption and decryption pro-

cess with DC attack protection. A KDM function has been used to establish

a new 32-Bit S-Box appropriate for the innovative Modified AES Algorithm

and confuse the intruder because it encompasses many computational mod-

ulo operators, refer to Figure 3.7.

Furthermore, the majority of mathematical modulo operators are irre-

versible. After embedding newly generated 32-Bits-output S-Boxes and a

KDM function in an AES’s infrastructure, a new modified AES algorithm

52

Figure 3.7: A KDM function flowchart

53

was developed. The recently modified AES algorithm, with freshly gener-

ated 32-Bits-output S-Boxes and a KDM function, was dubbed M AES in

this study. The mode of operation of M AES was significantly different from

that of an original AES algorithm because the strength, encryption process,

and resistance to DC attacks were substantially more significant than that

of an original AES algorithm found on IoT devices. The study was carried

out as follows:

i. IoT devices (such as mobile phones, contactless payments, Machine to

Machine (M2M), and sensors) were used to discover an original AES

algorithm.

ii. Using test vectors from the literature review, the precision of an original

AES algorithm was confirmed and inspected.

iii. All procedures implemented on an original AES algorithm throughout

DC attacks were evaluated using C++.

iv. The existing AES 8-Bits-output S-Box and reciprocal S-Box were trans-

formed into the newly established 32-Bits-output S-Boxes.

v. Using C++, the new KDM function was integrated inside an original

AES algorithm infrastructure. Refer to Figure 3.6.

vi. That all the other functions in the original AES algorithm that used

S-Boxes and the invertible of 8-Bits-output were altered to use KDM

functions with new fully 32-Bits-output S-Boxes as feedback. For in-

stance, if

Output = ζ = SBi(℘) (3.1)

Note: SBi(℘) on Equation 3.1 is 8-Bits-output S-Box. Equation 3.1

is substituted using Equation 3.2.

KDMfunction(SBi(℘), Khumbelo), (3.2)

54

SBi(℘) on Equation 3.2 is a newly 32-Bits-output S-Box because an

AES S-Box and its inverse were converted to give new 32-Bits-output

S-Boxes.

vii. The M AES algorithm was used to reconstruct the possibility of DC

attacks. If the DC attacks still were effective after the new fully inte-

grated 32-Bits-output S-Box and a KDM function. Steps (iii) and (iv)

were repeated if it was still possible.

viii. Only when DC attacks were prevented in steps (iii), (iv), and (v) a

new M AES algorithm was accepted as a M AES algorithm, which was

embedded with the newly 32-Bits-output S-Box and a KDM function.

As a result, the M AES algorithm was discovered to be resistant to DC

attacks. Refer to Figure 3.9.

After DC attacks, the research methodology used a more obstreperous

Difference-Distribution Table to prevent attackers from discovering AES keys.

The M AES algorithm’s security is determined by the size of the S-Boxes out-

put bits and a KDM function. AES’s S-Box and its inverse’s original output

bits were low (8-Bits). Intruders can easily compromise such an algorithm.

A newly generated 32-bit output S-Box and its inverse were used to re-

place all 8-bit output S-Boxes, increasing the size of output bits from 8 to

32-bit. The M AES algorithm made output bits more resistant to DC at-

tacks. Experiments revealed that the new 32-bit output S-Box and its inverse

effectively blocked DC attacks. Simultaneously, a KDM function is used to

create a new 32-Bit S-Box suitable for the new Modified AES Algorithm and

confuse the attacker due to many mathematical modulo operators. Further-

more, the majority of mathematical modulo operators are irreversible.

The research methodology was described using the schematic diagram

shown in Figure 3.8.

55

Figure 3.8: AES Research Methodology Schematic Diagram

56

The results successfully prevented the construction of the Difference-

Distribution Table and resulted in a complex process for performing DC

attacks on the M AES algorithm. Please see Figure 3.9. The difference

between Figure 3.1 and Figure 3.9 was the unique 32-bit output S-Box,

exact reverse 32-bit output S-Box, and a KDM function.

The S-Box and its inverse of the AES were found to be 8 x 8, indi-

cating that they had 8-Bits-inputs and 8-Bits-outputs, respectively. The

study discovered that using these S-Box descriptions, it was simple to cre-

ate a Difference-Distribution Table. Back to our example, the 4 Ö 4 S-Box

shown in Table 3.1 produced a Difference-Distribution Table of 24 x 24 il-

lustrated in Table 3.3 with high high-probability components of detecting

secret key bits. When an S-Box has X-Bits of inputs and Y-Bits of output,

its Difference-Distribution Tables are typically a 2X x 2Y matrix. As a result,

the Difference-Distribution Table shown in Table 3.3, was shown to be 24 x

24.

In this research, C++ program was designed to generate a Difference-

Distribution Table of 24 x 24, as shown in Table 3.3, by using Equation 3.2.

Using the 4 Ö 4 S-Box illustrated in Table 3.1, the code proved simple to

attack any algorithm. Furthermore, the code stated that it is to build the

Difference-Distribution Table of 28 x 28, using the 8 x 8 AES Box and its

inversed defined in Figure 3.2.

To guard against DC attacks, a new 32-bit output S-Box and its inverse

were created to replace the 8 x 8 AES Box and its inverse defined in Fig-

ure 3.2.

For example, an AES S-Box in Figure 3.2 was replaced by a new 32-bits

output AES S-Box in Appendix A, Figure A.1. Figure 3.2 inverse S-Box was

replaced with the new 32-bits output AES inverse S-Box found in Appendix

A, Figure A.2.

57

The KDM function was designed to work with the new 32-bit output S-

Box and its inverse in a new M AES algorithm. Because it contains many

mathematical modulo operators, a KDM function creates a new 32-Bit S-

Box suitable for the new Modified AES Algorithm and confuses the attacker.

Furthermore, the majority of mathematical modulo operators are irreversible.

A new 32-Bit S-Box was immune to DC attacks. Please see Figure 3.9. When

comparing Figure 3.1 and Figure 3.9, the M AES algorithm in Figure 3.9

was more resistant to DC attacks than the AES algorithm in Figure 3.1.

Figure 3.9: New Algorithm Modified AES (M AES) with Encryption and

Decryption Process

58

3.3 Results and Analysis of Preventing DC

Attacks Using a KDM Function on AES
The results on an AES demonstrated that the DC attack was feasible.

The estimation of the S-Boxes was the most critical component in determin-

ing all possible outcomes of the DC attack. An AES’s S-Box was 8 x 8,

demonstrating that 8 bits were input and 8 bits were yielded. Difference-

Distribution Table discovered that making the Difference-Distribution Table

with an 8 x 8 AES S-Box was simple.

The consider wrote a C++ program to generate the Difference-Distribution

Table of the 4 x 4, 6 x 4, 8 x 8, and 8 x 32 S-Boxes. The validation of code

was attempted using a rearranged 4 x 4 DES S-Box given in Table 3.1, a 6

x 4 DES S-Box given in [168] page 12 and 13, an 8 x 8 AES S-Box given in

Figure 3.2, and a newly developed 8 x 32 S-Box of M AES algorithm given

in Appendix A, Figure A.1.

The purpose of approving the code was to confirm that the composing

C++ exploratory yield Difference-Distribution Table was correct compared

to the theoretical yields.

Figure 3.15 showed the C++ Difference-Distribution Table of a 4 x 4

S-Box, and the substances were the same as in Table 3.3. As a result, the

C++ Difference-Distribution Table of 4 x 4 carried out good results. The

C++ Difference-Distribution Table of 4 x 4 S-Box execution time was 0.2815

seconds. Refer to Figure 3.15. The 4 x 4 S-Box Difference-Distribution Table

is a matrix of 24 x 24 = 16 x 16 matrix with 256 substances.

Figure 3.10 showed a C++ Difference-Distribution Table of 6 x 4, and the

substances were the same as in the hypothetical Difference-Distribution Table

shown [168] page 12 and 13. As a result, the C++ Difference-Distribution

Table of 6 x 4 carried out good results. The C++ Difference-Distribution

Table of 6 x 4 S-Box execution time was 1.2100 seconds. Refer to Figure 3.10.

It should be noted that the 6 x 4 S-Box Difference-Distribution Table is a

59

framework of 26 x 24 = 64 x 16 matrix with 1024 substances.

The test is carried out on the 8 x 8 AES S-Box shown in Figure 3.14. It

is worth noting that the Difference-Distribution Table of 8 x 8 AES S-Box

is a 28 x 28 = 256 x 256 framework with 65536 substances. Five pages are

required to show a complete unmistakable 256 x 256 network as the Figure

like Figure 3.15 and Figure 3.10. As a result, Figure 3.14 has dots to show

that it is a massive 256 x 256 framework. The C++ Difference-Distribution

Table of 8 x 8 S-Box execution was 23.6800 seconds. Refer to Figure 3.14.

The investigation is carried out on a recently created 8 x 32 S-Box of the

M AES algorithm, as shown in Appendix A, Figure A.1. After three hours,

the program crashed before the Difference-Distribution Table was executed.

No machine or computer can compute the Difference-Distribution Table of

the 28 x 232 = 256 x 4294967296 network, which is expected to contain the

1099511627776 substances. It was absurd to perform the DC attack on a

newly created 8 x 32 S-Box of the M AES algorithm shown in Appendix A,

Figure A.1 without a DDT.

The primary substance of the Difference-Distribution Table of 4 x 4 S-

Box was integer 16, (24) because S-Box required four bits as the most cru-

cial parameter. Refer to Figure 3.15 16 is a byte represented in binary as

00010000. If each component of the 4 x 4 S-Box Difference-Distribution Ta-

ble is treated as a byte, the memory required to construct the 4 x 4 S-Box

Difference-Distribution Table was 8 bits x 256 = 256 bytes. The number of

substances shown on a 4 x 4 S-Box Difference-Distribution Table is 256. A

machine or computer is capable of handling 4096 bytes.

The primary substance of the Difference-Distribution Table of 6 x 4 S-

Box was integer 64, (26) because S-Box required six bits as the most ele-

vated parameter. Refer to Figure 3.10 64 is a byte represented in binary

as 001000000. If each 6 x 4 S-Box Difference-Distribution Table substance

is treated as a byte, the memory required to construct the 6 x 4 S-Box

Difference-Distribution Table was 8 bits x 1024 = 1024 bytes. The number

60

Figure 3.10: C++ DDT experiment with 6 x 4 DES S-Box

61

of substances shown on a 6 x 4 S-Box Difference-Distribution Table is 1024.

One thousand twenty-four machines or computers can easily handle 1024

bytes.

The primary substance of the Difference-Distribution Table of 8 x 8 S-

Box was integer 256, (28) because S-Box required eight bits as the most

elevated parameter. Refer to Figure 3.14 256 is a two-byte word represented

in binary as 0000000100000000. If each 8 x 8 S-Box Difference-Distribution

Table substance is treated as a word, the memory needed to construct an 8

x 8 S-Box Difference-Distribution Table is 16 bits x 65536 = 131072 bytes.

The number of substances shown on an 8 x 8 S-Box Difference-Distribution

Table is 65536. A machine or computer can handle 131072 bytes.

The study predicted that the Difference-Distribution Table of 8 x 32 S-

Box would have the primary integer as 4294967296, which is (232) because

S-Box required thirty-two bits as the most critical parameter. 4294967296

is a triple-word made up of five bytes that are represented in binary as

0000000010000000000000000000000000000.

If each 8 x 32 S-Box Difference-Distribution Table substance were treated

as a triple-word, the memory required to build an 8 x 32 S-Box Difference-

Distribution Table would be 40 bits x 1099511627776 = 5497558138880 bytes.

The anticipated number of substances shown on an 8 x 32 S-Box Difference-

Distribution Table was 1099511627776. A machine or computer does not

appear to be capable of handling a computation memory of 5497558138880

bytes of each substance with ease.

As a result, the 8 x 32 S-Box C++ Difference-Distribution Table program

was smashed before execution. All of the discoveries are listed in Table 3.4,

3.5, and 3.7

The comparison of the findings was illustrated graphically in Figure 3.11,

3.12 and 3.13.

The Difference-Distribution Table of an AES S-Box was a 28 rows x 28

columns table with a high probability of determining a key. To create the

62

Table 3.4: The End Product of Creating a Difference-Distribution Table

(DDT)

Size of S-

Box

Time Taken (in

Seconds) to Cre-

ate Difference-

Distribution Table

(DDT)

Number of

entities re-

quired

Memory

(in bytes)

needed

4 x 4 0.2815 256 256

6 x 4 1.2100 1024 1024

8 x 8 23.6800 65536 131073

8 x 8 ∞ 1099511627776 5497558138880

Table 3.5: The feasibility of creating a Difference-Distribution Table before

and after applying a Novel Approach of using a KDM function and 32-bit

S-Boxes
Name

of

Algo-

rithms

Before a Novel Ap-

proach of using a KDM

function and 32-bits S-

Boxes was Applied

After a Novel Ap-

proach of using a KDM

function and 32-bits

S-Boxes was Applied

AES Construction of Difference-

Distribution Table was fea-

sible.

Construction of Difference-

Distribution Table was in-

feasible due to memory

limitation of a computer.

63

Figure 3.11: DDT Experimental Time Required

64

Figure 3.12: Number of Entities to Create the Experimental DDT

65

Figure 3.13: Memory Required to Create Experimental DDT

66

Difference-Distribution Table of the 8 x 8 AES S-Box, a C++ program was

written. After investigating the strategy, it was determined that using the

Difference-Distribution Table to attack an AES algorithm was feasible. To

anticipate the DC attack on a new 32-Bit S-Box, recently produced 32 yield

bits S-Boxes were used on an AES found on IoT gadgets.

Furthermore, the novel approach of converting 8 x 8 S-Boxes to 8 x 32 S-

Boxes effectively fragments DC attacks on an AES algorithm. In this study,

a KDM function is scientifically created, coined, and used on purpose. A

KDM function was never recently delivered, characterized, or used by any

analyst except in this case. Because it contained numerous scientific modulo

operators, a KDM function was used to create a new 32-Bit S-Box suitable

for the modern AES Algorithm. Furthermore, the majority of numerical

modulo operators were irreversible.

The Difference-Distribution Table of 8 x 32 AES S-Box was created us-

ing a C++ program. The code crashed before constructing a Difference-

Distribution Table of a new S-Box, which was supposed to be a 28 x 232

matrix. Because a computer has limited memory compared to the desired

memory to develop a Difference-Distribution Table of a new S-Box, it was

impossible to form a Difference-Distribution Table of a new 8 x 32 AES S-Box

with a yield of 32-bits.

The preliminary trial was to use a cluster of size 232 = 4294967296; how-

ever, it appeared that input 28 = 256 had to be included. Due to computer

memory constraints avoided creating a Difference-Distribution Table of 8 x 32

AES S-Box due to computer memory constraints. The program for creating

a Difference-Distribution Table of a new S-Box fizzled before completion due

to the amount of memory required by a computer to run, display, and execute

a 256 x 4294967296 matrix. The calculation of 232 x 256 required more than

264 memory allocation, which is impractical when using a computer. Due to

memory limitations distributed on a computer, the investigation concluded

that it was illogical to form a table or network of 256 x 4294967296.

67

Memory boundaries were 264 in Microsoft (Hp) and Mac (Apple) com-

puters, causing Difference-Distribution Table problems for the DC attack.

It was unreasonable to induce probabilities of calculating a key of 32-bits

yielding S-Box. As a result, the anticipated Difference-Distribution Table

development using 32-bits recently yielded S-Boxes and a KDM function,

which were numerically created, coined, and purposefully used in this study.

Except for this ponder, no analyst has recently built, characterized, or

used a KDM function. A KDM was created to test the validity of newly cre-

ated 32-Bits-output S-Boxes within the recently altered AES algorithm. The

study employs a KDM function to generate a new 32-Bit S-Box appropriate

for the new Modified AES Algorithm and perplex the attacker because it

contains numerous scientific modulo administrators. Furthermore, the vast

majority of numerical modulo administrators are irreversible. Refer to Fig-

ure 3.6 for more learning, almost a KDM function.

It was discovered that there was no Difference-Distribution Table and

thus no DC attack. As a result, this study increases the assurance of an AES

against a DC attack.

The C++ executable record of a Difference-Distribution Table described

in Table 3.3 was also performed in Figure 3.15 to confirm that all tactics of

the DC assault utilizing the Difference-Distribution Table were carried out.

Simplified-DES and AES were the targets of the experimental DC attack

by the consider. The investigation in this paper provides clarifications in

the form of discrete rounds of a sensible DC attack. Repeating the same

preparation for each round of an all-out assault makes up the remaining

components.

3.3.1 Results of DC attack on Simplified-DES

The calculation would have eliminated the key necessary if it had used

the distinction of a ciphertext combination of ciphertext, leaving us with

no knowledge of the key: ciphertexta = plaintexta ⊕ key The calcula-

68

tion would have eliminated the key necessary if it had used the distinc-

tion of a ciphertext combination, leaving us with no knowledge of the key:

ciphertexta⊕ciphertextb = plaintexta⊕key⊕plaintextb⊕key ciphertexta⊕
ciphertextb = plaintexta ⊕ plaintextb.

The contrast between the plain and ciphertext appears to be the same

when overworked.

Keep in mind that the simplified DES algorithm is not linear. In this

way, the distinctions between plaintext and ciphertext differ from one an-

other. In simplified DES, the key value determines the distinction in a plain-

text match for a certain distinction in a ciphertext combination. From the

Difference-Distribution Table given in Table 3.3, plaintexta⊕plaintextb = Ξ℘

ciphertexta ⊕ ciphertextb = Ξζ The calculation obtained the output and in-

put values from Table 3.3 under the guidance of the Difference-Distribution

Table. On occasion, when Ξ℘ = 12 and Ξζ = 3, the conceivable of key

occurence 2. That is Ξ℘ = 6 ⊕ 10 or Ξ℘ = 10 ⊕ 6. There are potentially

two input sets: (6, 10) and (10, 6). Consider input combining (6, 10), then

plaintext a = 6, plaintext b = 10 and assume then ciphertext 1 = 3 and

ciphertextb = 0, therefore Ξζ = 3. If the input difference of 4 x 4 S-Box

is denoted by H = Ha ⊕ Hb, let’s assume that Ha = plaintexta ⊕ key and

Hb = plaintextb ⊕ key. From the above inquiry, it appears that the key

has no bearing on the input contrast esteem because it is the same con-

stant esteem, so: Ξ℘ = H = 6 ⊕ 10 = 12, meaning H = 12 = 4 ⊕ 8 if

Ξζ is accepted to be the result of utilizing the Difference-Distribution table.

H = Ha ⊕Hb = 4 ⊕ 8) = 12.

key = H ⊕ Ξ℘. Therefore, key = Ha ⊕ plaintexta and key = Ha ⊕
plaintextb. Subtituting the values key = Ha ⊕ plaintexta = 4 ⊕ 6 = 2,

and key = Ha ⊕ plaintextb = 4 ⊕ 10 = 14. Alternatively key = H ⊕ Ξ℘.

Therefore, key = Hb ⊕ plaintexta and key = Hb ⊕ plaintextb. Subtituting

the values key = Hb⊕plaintexta = 8⊕6 = 14, and key = Ha⊕plaintextb =

8 ⊕ 10 = 2. In this manner, two conceivable key values are found, namely

69

2 and 4. Each key is tested to give the value of Ξζ, the one that gives the

same esteem of combine is the correct key. In this case, 2 is the proper

tried key. Therefore key = 2. With this data, the ponder affirmed that the

Simplified-DES is crackable utilizing a DC attack. The DC attack oversaw

the break of both rounds of Simplified DES, utilizing a ciphertext pair of 210

with a time complexity of 216. At that point, the same method was utilized

on DES. Allude to Table 3.6 and Figure 3.16.

3.3.2 Results of DC attack on DES

The study utilized an input combining Ξ℘ to DES S-Box as (1, 35) where

Ξ℘ = Plaintext1 ⊕ Plaintext2 = 1 ⊕ 35, therefore Ξ℘ = 34. Suppose

Ξζ = D. Ξ℘ = 34, regardless of the key value, becauseHa = Plaintext1⊕key
and Hb = Plaintext2 ⊕ key, therefore H = Ha ⊕ Hb H = (Plaintext1 ⊕
key) ⊕ (Plaintext2 ⊕ key) H = Plaintext1 ⊕ Plaintext2 H = Ξ℘. Also

Ha = Ξ℘⊕key and key = H⊕Delta℘. Utilizing the Difference-Distribution

Table given in Figure 3.10, the conceivable key occurance is 8, which are

{07, 11, 17, 1D, 23, 25, 29, 33}.

In case the same method was rehashed when input combines Ξ℘ to DES

S-Box as (21, 15), but still keeps Ξ℘ = 34 since 21 ⊕ 15 = 34, and changes

Ξζ = 3 rather than utilizing Ξζ = D. Utilizing the Difference-Distribution

Table given in Figure 3.10, the possible key occurence is 6, which are

{00, 14, 17, 20, 23, 34}. The accurate key esteem ought to be visible in both of

these bunches: {07, 11, 17, 1D, 23, 25, 29, 33} and {00, 14, 17, 20, 23, 34} which

{17, 23} either 17 or 23 is the right key value. Each key is tried to provide the

esteem of Ξζ, the one that gives the same esteem of match is the proper key.

In this case, 17 is the correct tried key. The DC attack managed to break all

16 rounds of DES utilizing a ciphertext pair of 214 with a time complexity of

258. At that point, the same method was utilized on AES. Allude to Table

3.6 and Figure 3.16.

70

3.3.3 Results of DC attack on AES

The thinker makes a comparison in a single byte. Eight bits make up a

byte. Then, 28 = 256 potential ciphertexts should be generated. The final

subkey can be verified using the Difference-Distribution Table theories shown

in Figure 3.14 once all 256 possible ciphertexts have been generated. By

examining the conditions of the final subkey byte-by-byte, theories are tested.

The investigation examined whether the inputs added together increased the

final circular to zero. The calculation gives the specific subkey back.

Given that an arbitrary conveyance has an input-combined break-even

with a probability of 1/256 from the Difference-Distribution Table theories

given in Figure 3.14, the study also expects one additional off-base hypothesis

byte-by-byte.

Figure 3.14: C++ DDT experiment with 8 x 8 AES S-Box

71

The investigation led to an anticipated increase in the number of key

hypotheses for the final subkey of 216. The DC attack used a 292 ciphertext

combination with a 2186 time complexity and could decipher seven out of ten

rounds. Make references to the Table 3.6 and Figure 3.16.

3.3.4 Results of DC attack on M AES

Due to memory restrictions on those machines and computers, M AES

used a new 32-bit S-box that failed to execute the C++ Difference-Distribution

Table from those multiple machines and computers. The Difference-Distribution

Table of the 28 x 232 = 256 x 4294967296 matrix, which is predicted to con-

tain 1099511627776 entities, does not appear to be computed by any machine

or computer. It would have been absurd to attempt the DC attack on the

recently created 8 x 32 S-Box of the M AES algorithm shown in Appendix A,

Figure A.1 without the Difference-Distribution Table. Due to a new 32-bit

yield S-Box that prevented the construction of the Difference-Distribution

Table due to machine memory restrictions, no round out of 16 was broken

using the DC attack. Make references to the Table 3.6 and Figure 3.16.

Table 3.6: DC Attack Outcomes

Name of Algo-

rithm

Time Complex-

ity

Ciphertext Pairs Number of

Round in %

Simplified DES (S-

DES)

216 210 2 out 2 or 100%

DES 258 214 16 out 16 or 100%

AES 2186 292 7 out 10 or 70%

M AES ∞ ∞ 0 out 10 or 0%

The possible creation of Table 3.3 was evaluated and composed in work-

able C++ code for approval, testing, and validation. Refer to Figure 3.15

72

and Table 3.3. Figure 3.15 and Table 3.3 had the same probability com-

ponents. The test Difference-Distribution Table was executed by running a

C++ Difference-Distribution Table code, and Figure 3.15 was the theoretical

Difference-Distribution Table. That was done to verify and validate that cre-

ating a Difference-Distribution Table was done using all of the DC attack’s

tactics against an AES.

Figure 3.15: C++ DDT of 4 x 4 Simplified DES experiment

73

To determine whether the DC attack was feasible, the code was connected

to AES and M AES. Table 3.5 and Table 3.7 contain all the discoveries. Table

3.5 occurred throughout the Difference-Distribution Table’s growth, and S-

Boxes were connected after a novel approach that used 32 bits.

The study used a KDM function to build a new 32-Bit S-Box that is

appropriate for the new Modified AES Algorithm and confuses the attacker

because it has many numerical modulo operators. Additionally, the majority

of scientific modulo operators are irreversible. Table 3.7 arose as a result of

the discovery of crucial bits following a novel approach that connected 32-bit

S-Boxes and a KDM function.

In this investigation, M AES was created utilizing the new 8 x 32 S-Boxes

and was resistant to a DC assault. The developer used a KDM function to

create a new 32-Bit S-Box suitable for the new Modified AES Algorithm. It

would confuse the attacker since it has many numerical modulo operators.

Additionally, the majority of modulo operators are irreversible. The new 8

x 32 S-Boxes and KDM function were used to unscramble and scramble the

new M AES successfully. Ask makes it possible to access the latest M AES

code.

Before using a KDM function and the new 8 x 32 S-Boxes, it appeared

from the C++ code that the DC attack was feasible against a standard

AES on numerous rounds. However, it emerged in C++ code that the DC

attack on M AES was successfully averted after using a KDM function and

the unique 8 x 32 S-Boxes. The limited memory of a computer made it

challenging to construct a 232 rows and columns Difference-Distribution Table

architecture. Contain all of the discoveries. Figure 3.11, 3.12 and 3.13 were

used to illustrate the comparison of the discoveries.

The Avalanche Effect is an acceptable attribute of algorithms in cryptog-

raphy [169]. The yield bits must change if one input bit is modified (flipped).

In robust algorithms, such a slight change to the plaintext or key should re-

sult in an extreme contrast in the ciphertext [169].

74

Table 3.7: Results of key bits finding before and a Novel Approach of em-

ploying a KDM function and 32-bits S-Boxes was applied

Name of Algo-

rithms

Before a Novel Ap-

proach of using a KDM

function and 32-bits S-

Boxes was Applied

After a Novel

Approach of using

a KDM func-

tion and 32-bits

S-Boxes was Ap-

plied

AES The key was discovered in

many round.

No key bits were dis-

covered or detected

in all rounds of an

AES.

Figure 3.16: Number of Rounds Cracked during the Experimental Diferential

Crypatanalysis Attack

75

The Strict Avalanche Criterion (SAC), a method that advances the Avalanche

Effect, is used to evaluate the encryption strength of the algorithm [170].

If a single input bit—from either the plaintext or the key changes the

ciphertext with a probability of 50 percent or greater, the SAC is considered

satisfied. This work applied the Avalanche Effect to S-DES, DES, AES, and

M AES to produce SAC. Since the Avalanche Effect of M AES on both the

key and plaintext was about 50 percent probability compared to S-DES and

DES, it appears that the AES and a newly produced M AES method had a

far better SAC property than S-DES and DES. Refer to Table 3.8 and Figure

3.17 to Figure 3.25.

The same image could be encrypted and decrypted using all methods (S-

DES, DES, AES, or M AES). However, encrypted images were not identical.

Please see Figure 3.27.

Table 3.8: Avalanche Effect of Key and Plaintext Bit was Flipped

Name of Algo-

rithm

Plaintext

Avalanche Effect

in Percentage

Key Avalanche

Effect in Per-

centage

Simplified DES

(S-DES)

25 25

DES 60.4003 44.2138

AES 50.0488 50.2807

M AES 49.9023 50.2807

76

Figure 3.17: S-DES Plaintext Avalanche Effect in Experimental Results

77

Figure 3.18: S-DES Key Avalanche Effect Experimental Results

78

Figure 3.19: DES Plaintext Avalanche Effect Experimental Results

79

Figure 3.20: DES Key Avalanche Effect Experimental Results

80

Figure 3.21: AES Plaintext Avalanche Effect Experimental Results

81

Figure 3.22: AES Key Avalanche Effect Experimental Results

82

Figure 3.23: M AES Plaintext Avalanche Effect Experimental Results

83

Figure 3.24: M AES Experimental Key Avalanche Effect

84

Figure 3.25: Plaintext Avalanche Effect Experimental Analysis in Percentage

Figure 3.26: Key Avalanche Effect Experimental Analysis in Percentage

85

Figure 3.27: All Algorithm Image Encryption

86

3.4 Summary of Preventing DC Attacks Us-

ing a KDM Function on AES
The study has confirmed that creating a Difference-Distribution Table of

32-bits produce S-Box is not feasible. It has been suggested that there is no

DC attack and no Difference-Distribution Table. Therefore, they concluded

that the unique method of using a KDM function for the logic of repeatedly

producing 32 bits yields an S-Box, and communication on an AES may foresee

the DC attack.

A new 32-Bit S-Box that is appropriate for the new Modified AES Al-

gorithm and confuses the attacker since it has a lot of numerical modulo

operators was created by the study using a KDM function. Additionally,

the majority of scientific modulo operators are irreversible. The cutting-

edge technique can securely encrypt any private data sent and stored by the

Internet of Things devices.

87

Chapter 4

The Design of Blocker Function

to Prevent Differential-Linear

Attacks on the Serpent

The chapter that follows is based on published work by:

i. K. D. Muthavhine and M. Sumbwanyambe, ”Securing IoT Devices

against Differential-Linear (DL) Attack used on Serpent algorithm”,

MDPI, Future Internet, pp. 1-34, 2022.

Website: https://www.mdpi.com/1999-5903/14/2/55

Status: Published.

Publisher: MDPI.

ii. K. D. Muthavhine and M. Sumbwanyambe, ”Modifying Cast algorithm

in order to Increase Encryption Strength and to Reduce Memory Lim-

itations,” IEEE, pp. 1-7, 2021.

Website: https://ieeexplore.ieee.org/document/9519349

Status: Published.

Publisher: IEEE.

88

Abstract: The Differential-Linear Attack (DL) attack was created by

Langford and Hellman [97] - [98]. Calculating the DL characteristic’s prob-

ability produces a Differential-Linear Connectivity Table (DLCT), which is

necessary for DL attack [97], [98]. The DLCT is a probability table that

offers many opportunities for an attacker to deduce the cryptographic keys

for any algorithm, including Serpent, found on IoT devices [97]. To at-

tack algorithms, an attacker first builds DLCT utilizing building blocks like

Substitution-Boxes (S-Boxes), which are common in the structures of many

algorithms [98]. This study aims to protect IoT devices from DL attacks that

target the Serpent algorithm using three magic numbers that are mapped

onto a newly created mathematical function called Blocker. The Blocker is

incorporated into Serpent’s infrastructure before being placed on IoT devices.

To replace the original Serpent S-Boxes with 4-Bits-output, new S-Boxes with

32-Bits-output were created for this study. The architecture of Serpent also

included the innovative S-Boxes. The Blocker function and magic numbers,

were influential in this investigation. The findings indicate that an algorithm

with an S-Box made up of 4-Bits-output is more prone to attack than an

algorithm with an S-Box made up of 32-Bits-output. Three magic numbers

and 32-bit output S-Boxes were used in the study to create a novel block-

ing technique that prevented the development of DLCT and DL assaults.

The innovative strategy successfully protected IoT devices’ installed Serpent

algorithms from DL attacks.

4.1 Background of Securing IoT Devices against

DL Attack used on Serpent algorithm
Unaware of it or not, the IoT has significantly disrupted people’s lives

in modern times, despite the non-technologically inclined who have started

to make use of the services, comfort, support, and critical insights that con-

tribute to [171], [172], [174]. Given the relationship between IoT devices

and smart thermostats, home hubs, remote door locks, and numerous app-

89

controlled gadgets, it’s likely that everyone is already aware of their impor-

tance in daily life [175].

In actuality, IoT is improving in quality for both daily use and manufac-

turing. It is improving people’s lives in various ways and will continue to

do so in the appropriate manner [176]. The concerns that people are aware

of are that IoT has been resolving issues without understanding they were

issues until the solution was performed in a miraculous way [174].

IoT enables users to work more intelligently, live more creatively, and have

complete control over their lives [174], [175], [176]. IoT devices also provide

confidential assistance for our welfare. In addition to customers’ smart home

appliances, IoT is a vital technology in business and industry since it gives

companies a real-time view into their internal activities [175]. IoT provides

insights into a wide range of processes, including machine production, supply

chains, and logistics from the warehouse to the customer’s door [174], [176].

Businesses can automate processes and spend less money on labor thanks

to IoT. Additionally, IoT reduces waste, improves service delivery, makes

it less expensive to produce and transport products, and increases client

transaction transparency [175]. The IoT allows businesses to reduce costs,

increase security, and improve quality throughout the process, resulting in a

win scenario for both stakeholders and clients. As a result, manufacturing

client assets is expensive, transportation is more common, and businesses

can grow, energizing the administration and expressing the sense of security

the customer can bring to the bank [175], [176]. Even though IoT helps

the community and manufacturers, there are challenges associated with its

deployments, such as concerns over privacy and the security of sensitive in-

formation.

The IoT poses privacy challenges similar to other digital technologies that

generate and acquire data, particularly radio-frequency identification and

cloud computing. IoT devices have proliferated, and users lack understanding

of how to manage data [176].

90

Users should take into account the potential fiscal and social impact of

a possible digital protection occurrence regarding the availability, integrity,

or data confidentiality in the data operation while carrying out an action

that depends on digital technologies, including the IoT [174]. These values

have the potential to deplete resources (for example, by disrupting transac-

tions), endanger reputation (for instance, by disclosing private information

or causing website damage), or alter the business environment (for example,

through deprivation of innovation) [174], [175], [176].

One of the most significant issues is privacy, which includes the methods

through which one might get personal information. Users assume that the

actions are spy-related due to the tracking, validating, and validating of

devices and the collection of private information from various sources [175].

Furthermore, it is easy to recognize characters who have been abducted, lost,

or have been in an accident [174], [175], [176]. It is also a hassle for anyone

who needs to preserve their privacy [176].

One of the issues the IoT frequently faces is security, according to [174].

For secure localization in public spaces, transmitting them unsecured and

sacrificing cyber-attacks, affordable and low-cost broadband connections and

Wi-Fi capabilities in various devices are needed [174], [175]. To provide secu-

rity, IoT distinguishes three key components: authentication, access control,

and secrecy focused on IoT operations [176]. IoT enables consistent data

sharing between similar devices. To safeguard data collected, used, stored,

and transferred using IoT devices, a robust cryptographic technique is re-

quired [174].

The Serpent algorithm is one of the most frequently requested algorithms

for IoT devices. A primary issue is a new tool called DLCT, which exploited

Serpent to learn the covert encryption keys used by intruders to safeguard

the data gathered and stored on IoT devices. The DL attack is the process

of obtaining the key via DLCT [97], [98]. All data encrypted with Serpent

on IoT devices can be easily accessible to attackers once they crack and find

91

the Serpent’s key. This assault has the potential to take advantage of all

IoT users and devices. A cryptographic technique like Serpent has a limited

number of output bits (4-Bits), which can be found on the S-Boxes, making

it simple for an adversary to exploit it [81].

If the DL attack is not considered correctly, it could compromise all IoT

devices’ security. Much hasn’t been done to protect the Serpent algorithm

from DL assaults. To make it challenging to build DLCT using the S-Boxes

of Serpent algorithm, this study focuses on protecting Serpent from DL at-

tack by creating a new additional function called Blocker, employing three

magic numbers, and designing new 32-Bits-output S-Boxes. Analysis has

shown that the DL attack begins with DLCT. Therefore, it is thought that

preventing the building of DLCT will make a DL attack unfeasible.

Cryptographic algorithms are now used without hesitation by IoT devices

to store and transmit confidential information [171] - [154]. While IoT device

security is increasingly improving through robust cryptographic algorithms,

more attackers develop various methods of attacking the notably powerful

algorithms [154]. The Serpent is an algorithm created by Eli Biham and

Lars Knudsen. Like any other algorithm, Serpent is examined to see if it is

vulnerable to the DL attack. Langford and Hellman developed and tested

the DL attack on Serpent [97] - [98].

This research focuses on securing the Serpent algorithm found on IoT

devices against DL attacks by developing a new function called Blocker using

three magic numbers. The first magic number is Q = 4302746963, the second

is P = 4559351687, and the third is M = 4294967296, all of which are

mapped on Blocker and will be inserted into Serpent’s architecture. To

replace the original 4-Bits-output S-Boxes, new 32-Bits-output S-Boxes were

created. In this study, the newly developed 32-Bits-output, S-Boxes, and

Blocker function successfully secured the Serpent algorithm by preventing

the construction of a probability table called DLCT, which is used during

the DL attack process.

92

This study also introduces a newly generated function called Blocker. A

Blocker Function takes a 32-bit output value from S-Box and returns a new

value statehold as an output. A Blocker Function also renders polynomials

with P , M , and Q values unfactorizable. To prevent attackers from reverse

engineering, random numbers and XOR operators are used to add complexity

and confusion. The XOR operator and rand() are used to change the values

of variables within a Blocker Function.

When invaders reverse back a Blocker Function to calculate the exact

information used in that situation, the random numbers and XOR opera-

tors also provide a problematic input range. To construct DLCT using any

machine or computer, the values of M , P , and Q are constantly maintained

as unfactorizable polynomial variables that are non-linear and difficult to

reverse. Intruders can use random numbers and XOR operators to create

hidden, unseen, and unchangeable variables.

A Blocker function generates a one-of-a-kind 32-Bit S-Box suitable for

the new Magic Serpent Algorithm. Because it contains many mathemati-

cal random numbers and XOR operators, a Blocker Function distracts the

attacker. Furthermore, the majority of mathematical XOR operators and

random numbers are irreversible. Figure 4.4 contains additional mathemat-

ical characteristics of a Blocker function as well as C++ explanations.

4.1.1 Serpent Algorithm

The Serpent is a cryptographic algorithm, a block cipher that encrypts and

decrypts a 128-Bit data block using different key sizes, such as 128, 192, and

256-Bits [177]. The Serpent is made up of three main components. The

mathematical function used to construct an algorithm is the building block.

These three major building blocks are as follows:

i. InPer denotes the initial permutation. Using Equation 4.1, the func-

tion of InPer is to reorder an original plaintext order before the en-

cryption process (1). Where OriginalPlaintext is the InPer input. A

93

multiplication operator is represented by the symbol ” ∗ ”. Mod(127)

is a mathematical modulus of 127, and OutputInPer is an output of

InPer. Please see Equation 4.1.

OutputInPer = (OriginalPlaintext ∗ 32)mod(127) (4.1)

ii. Serpent’s 32-round function comprises subkeys (key mixing), eight S-

Boxes, and linear transformation. The 32-round-function in Figure 4.1

is mathematically explained by a mathematical expression.

iii. Serpent has a function called Final Permutation InPer−1, which is the

inverse of Initial Permutation InPer.

During the encryption process, Serpent employs eight 4 x 4 S-Boxes. These

S-Boxes and their inverses are defined in Table 4.1 - Table 4.8. For example,

if SB0(X)’s input is 0 = X, the output is 3, and SB0(0) = 3. If the SB1(X)

input is 1 = X, the output is 12, and SB1(1) = 12. If the SB7(X) input is

2 = X, the output is 15, SB7(1) = 15, and so on. The same is true for the

inverses. Please see Figure 4.1. Serpent necessitates 33 of 128 bits. Before

encryption begins, subkeys are generated from an original key provided by

the user. The user can specify a key length of 128, 192, or 256 bits. The

original 128-Bits key is used in this study to demonstrate how other 33-Bits

subkeys are generated using the mathematical expression shown in Figure

4.2.

Table 4.1: Serpent’s first S-Box was defined as SB0(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB0(X) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C

InvSB0(X) D 3 B 0 A 6 5 C 1 4 4 7 F 9 8 2

94

Figure 4.1: Serpent’s 32-Round Function [177]

95

Table 4.2: Serpent’s second S-Box was defined as SB1(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB1(X) F C 2 7 9 0 5 A 1 B E 8 6 D 3 4

InvSB1(X) 5 8 2 E F 6 C 3 B 4 7 9 1 D A 0

Table 4.3: Serpent’s third S-Box was defined as SB2(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB2(X) 8 6 7 9 3 C A E C 1 E 4 0 B 5 2

InvSB2(X) C 9 F 4 B C 1 2 0 3 6 D 5 8 A 7

Table 4.4: Serpent’s fourth S-Box was defined as SB3(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB3(X) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E

InvSB3(X) 0 9 A 7 B E 6 D 3 5 B 2 4 8 F 1

Table 4.5: Serpent’s fourth S-Box was defined as SB4(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB4(X) 1 F 8 3 C 0 B 6 2 5 4 A 9 E 7 D

InvSB4(X) 5 0 8 3 A 9 7 E 2 C B 6 4 F D 1

Table 4.6: Serpent’s sixth S-Box was defined as SB5(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB5(X) F 5 2 B 4 A 9 C 0 3 E 8 D 6 7 1

InvSB5(X) 8 F 2 9 4 1 D E B 6 5 3 7 C B 0

96

Figure 4.2: Serpent’s Key Generation [177]

97

Table 4.7: Serpent’s seventh S-Box was defined as SB6(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB6(X) 7 2 C 5 8 4 6 B E 9 1 F D 3 A 0

InvSB6(X) F A 1 D 5 3 6 0 4 9 E 7 2 C 8 B

Table 4.8: Serpent’s eighth S-Box was defined as SB7(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SB7(X) 1 C F 0 E 8 2 B 7 4 C A 9 3 5 6

InvSB7(X) 3 0 6 D 9 E F 8 5 C B 7 A 1 4 2

4.1.2 DL Attack

The DL attack involves a probability table called DLCT and using S-Boxes

to guess the keys [97]- [98]. An attacker selects input pairs (℘1, ℘2) from

an S-Box and uses Equation 4.2 to construct DLCT from the output pairs

(ζ1, ζ2). There is Xi, which is calculated as ℘1⊕℘2 and Λ, which is calculated

as ζ1 ⊕ ζ2 from Equation 4.1. The dot multiplication operator is used to

indicate that bits are multiplied rather than entire bytes.

DLCT (Ξ,Λ) =
∑

SBi(x)ϵ[1,0]

(−1)Λ.(SBi(x)⊕SBi(x⊕Ξ)) (4.2)

It has already been stated that Equation 4.1 is used to construct DLCT

using S-Box: for example, if the first Serpent S-Box is defined by Table 4.1,

which has 4-Bits-input and 4-Bits-output, then the DLCT will be a 24 x 24

matrix. Generally, if an S-Box has N-bit of input and M-bit of output, its

DLCT will be a 2N x 2M matrix when built. As a result, the DLCT of the

first Serpent S-Box defined in Table 4.1 is said to be 24 x 24. The DLCT

of Serpent’s first S-Box is constructed using Equation 4.1 and is shown in

Table 4.9.

98

Table 4.9: The DLCT of the Serpent’s first S-Box SB0(X)

Ξ\Λ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 8 0 −4 0 −4 −4 0 4 0 −4 0 0 0 4 0 0

2 8 0 0 0 −4 0 0 −4 −8 0 0 0 4 0 0 4

3 8 −4 0 0 4 −4 0 −4 0 0 −4 0 0 4 0 0

4 8 0 0 −8 0 0 0 0 −8 0 0 8 0 0 0 0

5 8 4 0 0 0 0 −4 0 0 0 4 0 −4 0 −4 −4
6 8 −4 −4 0 0 0 0 0 8 −4 −4 0 0 0 0 0

7 8 0 4 0 0 0 −4 0 0 4 0 0 −4 0 −4 −4
8 8 −4 0 0 −4 0 −4 4 0 0 −4 0 0 0 4 0

9 8 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0

A 8 0 −4 0 4 0 −4 −4 0 −4 0 0 0 0 4 0

B 8 0 0 0 −4 0 0 −4 0 0 0 −8 4 0 0 4

C 8 0 4 0 0 −4 0 0 0 4 0 0 −4 −4 0 −4
D 8 −4 −4 8 0 4 4 0 0 −4 −4 0 0 −4 −4 0

E 8 4 0 0 0 −4 0 0 0 0 4 0 −4 −4 0 −4
F 8 0 0 0 0 4 4 0 0 0 0 −8 0 −4 −4 0

99

An attacker can use probability theory to guess the key with Table 4.9.

In Table 4.9, the highest number is eight (8). The probability of predicting

a key is 8/16, which is about the same probability of guessing the head side

of a coin. In other words, using DLCT, an attacker can easily attack an

algorithm. The attacker examines the relationship between ζ1.Λ and ζ2.Λ.

The key is discovered if the correction is high using DLCT. While the DLCT’s

primary application is to discover a more accurate key investigation of the

DL attack, it can also be used to advance DL attacks to the next advanced

level. This study demonstrated that attackers could use the DLCT to select

the differential for ζ1 and the linear approximation for ζ2 in such a way that

the correlation between ζ1 and ζ2 is exposed to the attackers’ advantage [97].

This research focuses on securing Serpent found on IoT devices against DL

attacks by making DLCT difficult to build with S-Box.

4.1.3 The Magic Number
The anti-design of using a constant integer directly to an algorithm’s source

code is called the magic number. The magic number is used to break one of

the oldest coding functions [172]. The magic number makes it more difficult

for an attacker to modify and analyze the source code [173]. When the same

constant is applied to one section of an algorithm’s source code without the

derivative, attackers are more confused [172], [173].

4.1.4 The numerous DL attacks on Serpent Algorithm
Anderson et al. [152] used the DL attack and DLCT table to attack the

Serpent algorithm. Compton et al. [153] developed the Simple Power Anal-

ysis attack (SPA) to attack an 8-bit Serpent-encrypted smart card. Because

of a linear feedback shift register, the results showed that Serpent key gen-

eration was resistant to a side-channel attack (LFSR). Most cryptographic

algorithms used LFSRs; it was suggested that Serpent’s LFSRs be carefully

modified and guesstimated to reduce attacks. To attack Serpent’s secret

keys, Bar-On et al. [97] created a new tool called DLCT. Canteaut et al. [98]

100

analyzed DLCT observations to obtain absolute indicators of Serpent weak-

nesses. Canteaut et al. [98] expanded on the DLCT and DL attack analytic

results. Canteaut et al. [98] improved on the observations about DLCT and

DL attack. Canteaut et al. [98] discovered that the DLCT approach method

was similar to the auto-correlation spectrum entities, leading to the conclu-

sion that DLCT was nothing more than an Auto Correlation Table (ACT).

The ACT spectrum was invariable under any equivalence similarity and was

not invariant under alterations, according to Canteaut et al. [98]. With the

aid of the DLCT tool, Biham et al. [155] attacked the Serpent algorithm

using the DL attack. Undoubtedly, the DL attack and DLCT table may be

used to attack the Serpent algorithm. Refer to the study’s literature review

for more details on the Serpent attack.

4.2 Methods of Securing Serpent against DL

Attack
The primary goal of this research was to protect Serpent from DL attacks

on IoT devices. The original 4-Bits-output S-Boxes in Serpent were replaced

with newly generated 32-Bits-output S-Boxes. A new mathematical function

called Blocker was created using three magic numbers. To improve encryp-

tion and decryption while resisting DL attacks, Serpent’s infrastructure was

upgraded with new 32-bit output S-Boxes and a Blocker.

A new modified Serpent was created by inserting new 32-Bits-output

S-Boxes and a Blocker into Serpent’s infrastructure. In this study, the mod-

ified Serpent with new S-Boxes and Blocker was dubbed Magic Serpent

(Mag Serpent). Because the encryption process, strength, and resistance

to the DL attack were more substantial than that of an original Serpent

found on IoT devices, the functionality of Mag Serpent was discovered to be

very different from that of an original Serpent. The study was conducted as

follows:

101

i. The Serpent was collected using IoT devices (like sensors, smart cards,

and 8-Bits processors).

ii. The correctness of Serpent was checked and tested using test vectors

provided by Serpent developer reports.

iii. During the DL attack process, all of the procedures implemented on

Serpent were tested and analyzed in C++.

iv. Serpent’s original 4-bit output S-Boxes were all modified with newly

generated 32-bit output S-Boxes.

v. Three magical numbers have been used to generate a new function

called Blocker, which was then implemented in the Serpent infrastruc-

ture using C++. Refer to Figure 4.4.

vi. All original Serpent functions that called S-Boxes with 4-bit output

were changed to call Blocker functions with 32-bit output S-Boxes. As

an example, if

Output = SBi(x) (4.3)

Note: SBi(x) on Equation 4.3 is an S-Box with four bits of output.

Equation 4.3 is omitted in favor of Equation 4.4.

Blocker(SBi(x), Output) (4.4)

SBi(x) Since all original 4-Bits-output S-Boxes were replaced with new

32-Bits-output S-Boxes, on Equation 4.4 is a 32-Bits-output S-Box. On

key generation, defined in Figure 4.2, the Golden ratio ϕ = 9E3779B9

was also replaced by magic number M = 4294967296.

vii. The possibility of a DL attack was examined to see if it was still effective

after applying or inserting new S-Boxes and a Blocker. If it was still

feasible, steps (iii) and (iv) were repeated.

102

viii. If the DL attack was stopped at steps (iii), (iv), and (v), a new al-

gorithm with new 32-Bits-output S-Boxes was introduced, and the

Blocker was accepted as a Mag Serpent. As a result, it was discov-

ered that Mag Serpent is immune to DL attacks.

The research methodology was used to determine how to make DLCT

more challenging to build to prevent attackers from discovering Serpent’s keys

following a DL attack. Serpent’s security is already stated to be dependent

on the size of the output bits of the S-Boxes. The original output bits of

Serpent’s S-Boxes were short (4-Bits).

This type of algorithm is easy for attackers to exploit. To increase the size

of the output bits and protect Serpent from DL attacks, all 4-Bits-output S-

Boxes were replaced with newly generated 32-Bits-output S-Boxes. The new

32-Bits-output S-Boxes successfully prevented DL attacks, while the Blocker

function prevented DLCT construction. A schematic diagram was used to

summarize the research methodology in Figure 4.3. The results successfully

prevented the DLCT from being built, resulting in a complicated process for

carrying out the DL attack on Serpent.

The Serpent’s S-Boxes were found to be 4 x 4, indicating that they had 4-

Bits-inputs and 4-Bits-outputs. The experiment discovered that it was simple

to construct DLCT using these types of S-Boxes. The original Serpent’s S-

Boxes’ DLCT were 24 x 24 matrix tables with high-probability elements for

discovering secret keys. In general, if an S-Box has N bits of input and M

bits of output, its DLCT, when built, will be a 2N x 2M matrix. As a result,

the DLCT of Serpent’s first S-Box was stated to be 24 x 24 in Table 4.1.

Using Equation 4.1, C++ program code was written to construct DLCT of

the original first S-Boxes defined in Table 4.1.

It is simple to attack Serpent with DLCT, as discussed by Bar-On et al.

[97] and Canteaut et al. [98]. To combat the DL attack, new 32-Bits-output

S-Boxes were developed to replace Serpent’s original S-Boxes. Table 4.1 -

Table 4.8 were replaced, for example, with Table 4.10 - Table 4.17. Using the

103

Figure 4.3: Serpent Research Methodology Schematic Diagram

104

C++ code shown in Figure 4.4, the Blocker function was created from three

magic numbers. The magic numbers were Q = 4302746963, P = 4559351687,

and M = 4294967296.

Table 4.10: New Generated 32-Bits-output S-Box to replace Table 4.1

X SB0(X) InvSB0(X)

0 411264f80 411264f80

1 91377da1f 10fc22f87

2 1016b6cf64 7128a6f79

3 21038e4da e15c964be

4 b146544c5 a13ee8f72

5 7128a6f79 f16401a11

6 61213ba26 1016b6cf64

7 c14dbfa18 91377da1f

8 f16401a11 61213ba26

9 e15c964be d1552af6b

A 5119d04d3 c14dbfa18

B 310af9a2d 8130124cc

C 8130124cc b146544c5

D 10fc22f87 21038e4da

E a13ee8f72 5119d04d3

F d1552af6b 310af9a2d

Table 4.10 - Table 4.17 were composed experimentally in C++ programs

and are represented by Appendix B, Figure B.1 and Appendix B, Figure B.2.

In C++, Appendix B, Figure B.1 denoted all new 32-bit S-Boxes, while

Appendix B, Figure B.2 denoted all new 32-bit S-Box inverses.

105

Table 4.11: New Generated 32-Bits-output S-Box to replace Table 4.2

X SB1(X) InvSB1(X)

0 1016b6cf64 1016b6cf64

1 d1552af6b b146544c5

2 310af9a2d 21038e4da

3 8130124cc e15c964be

4 a13ee8f72 61213ba26

5 10fc22f87 411264f80

6 61213ba26 7128a6f79

7 b146544c5 10fc22f87

8 21038e4da 5119d04d3

9 c14dbfa18 a13ee8f72

A f16401a11 f16401a11

B 91377da1f 8130124cc

C 7128a6f79 310af9a2d

D e15c964be d1552af6b

E 411264f80 91377da1f

F 5119d04d3 c14dbfa18

106

Table 4.12: New Generated 32-Bits-output S-Box to replace Table 4.3

X SB2(X) InvSB2(X)

0 91377da1f 91377da1f

1 7128a6f79 1016b6cf64

2 8130124cc 310af9a2d

3 a13ee8f72 a13ee8f72

4 411264f80 5119d04d3

5 d1552af6b 21038e4da

6 b146544c5 e15c964be

7 1016b6cf64 f16401a11

8 e15c964be c14dbfa18

9 21038e4da 7128a6f79

A f16401a11 61213ba26

B 5119d04d3 411264f80

C 10fc22f87 8130124cc

D c14dbfa18 d1552af6b

E 61213ba26 b146544c5

F 310af9a2d 10fc22f87

107

Table 4.13: New Generated 32-Bits-output S-Box to replace Table 4.4

X SB3(X) InvSB3(X)

0 10fc22f87 61213ba26

1 1016b6cf64 10fc22f87

2 c14dbfa18 91377da1f

3 91377da1f 411264f80

4 d1552af6b b146544c5

5 a13ee8f72 a13ee8f72

6 7128a6f79 8130124cc

7 411264f80 f16401a11

8 e15c964be 310af9a2d

9 21038e4da d1552af6b

A 310af9a2d c14dbfa18

B 5119d04d3 7128a6f79

C b146544c5 5119d04d3

D 8130124cc 1016b6cf64

E 61213ba26 e15c964be

F f16401a11 21038e4da

108

Table 4.14: New Generated 32-Bits-output S-Box to replace Table 4.5

X SB4(X) InvSB4(X)

0 21038e4da 10fc22f87

1 1016b6cf64 a13ee8f72

2 91377da1f b146544c5

3 411264f80 8130124cc

4 d1552af6b c14dbfa18

5 10fc22f87 f16401a11

6 c14dbfa18 7128a6f79

7 7128a6f79 e15c964be

8 310af9a2d 411264f80

9 61213ba26 61213ba26

A 5119d04d3 d1552af6b

B b146544c5 310af9a2d

C a13ee8f72 5119d04d3

D f16401a11 91377da1f

E 8130124cc 1016b6cf64

F e15c964be 21038e4da

109

Table 4.15: New Generated 32-Bits-output S-Box to replace Table 4.6

X SB5(X) InvSB5(X)

0 1016b6cf64 1552af6b

1 61213ba26 a13ee8f72

2 310af9a2d 1016b6cf64

3 c14dbfa18 5119d04d3

4 5119d04d3 c14dbfa18

5 b146544c5 f16401a11

6 a13ee8f72 21038e4da

7 d1552af6b 310af9a2d

8 10fc22f87 10fc22f87

9 411264f80 411264f80

A f16401a11 7128a6f79

B 91377da1f e15c964be

C e15c964be 61213ba26

D 7128a6f79 91377da1f

E 8130124cc b146544c5

F 21038e4da 8130124cc

110

Table 4.16: New Generated 32-Bits-output S-Box to replace Table 4.7

X SB6(X) InvSB6(X)

0 8130124cc 61213ba26

1 310af9a2d 91377da1f

2 d1552af6b 310af9a2d

3 61213ba26 f16401a11

4 91377da1f 1016b6cf64

5 5119d04d3 7128a6f79

6 7128a6f79 d1552af6b

7 c14dbfa18 411264f80

8 f16401a11 c14dbfa18

9 a13ee8f72 5119d04d3

A 21038e4da 8130124cc

B 1016b6cf64 a13ee8f72

C e15c964be 21038e4da

D 411264f80 e15c964be

E b146544c5 b146544c5

F 10fc22f87 10fc22f87

111

Table 4.17: New Generated 32-Bits-output S-Box to replace Table 4.8

X SB7(X) InvSB7(X)

0 21038e4da e15c964be

1 e15c964be 411264f80

2 1016b6cf64 c14dbfa18

3 10fc22f87 10fc22f87

4 f16401a11 b146544c5

5 91377da1f 7128a6f79

6 310af9a2d 61213ba26

7 c14dbfa18 d1552af6b

8 8130124cc 21038e4da

9 5119d04d3 f16401a11

A d1552af6b 5119d04d3

B b146544c5 8130124cc

C a13ee8f72 1016b6cf64

D 411264f80 a13ee8f72

E 61213ba26 91377da1f

F 7128a6f79 310af9a2d

112

4.2.1 A Blocker Function

A new function known as a Blocker is introduced in this study. Please refer

to Figure 4.4. A Blocker function is a brand-new C++ function solely re-

sponsible for developing DL attack blockage on the Serpent algorithm, which

is required on IoT devices. This function is called after the S-Boxes of the

Serpent algorithm have been transformed to produce the 32-bit output S-

Boxes. The primary purpose of a Blocker function is to ensure that newly

32-bit output S-Boxes are compatible with the Serpent algorithm infrastruc-

ture. In layman’s terms, a Blocker function governs all-new 32-bit output

S-Boxes that are efficiently used throughout the encryption and decryption

processes of the newly modified Serpent algorithm. A Blocker function pro-

vides a 32-bit S-Box compatible with the new Magic Serpent Algorithm. A

Blocker Function confuses the intruder because it contains many mathemati-

cal random numbers. In addition, the vast majority of mathematical random

numbers are irreversible. Unless a Blocker function is used, newly generated

32-bit output S-Boxes will not be placed in algorithms. This Blocker function

has unique properties that prevent DL attacks. These are the characteristics:

i. Unlike S-Boxes, which use a look-up table with defined inputs and

outputs, the output of a Blocker function is not fixed.

ii. Unlike the Serpent S-Boxes, where the output is visible on a look-up

table, the output of a Blocker function is hidden and calculated.

iii. The presence of a Blocker function is unavoidable. If a Blocker func-

tion output that does not represent an input is recognized, it can be

estimated and retrieved in reverse. A Blocker function is composed of

several random numbers and XOR operators.

113

iv. Magic numbers (such as P , Q, and M) used in a Blocker function are

unfactorizable. Refer to Figure 4.4.

v. A Blocker function is made up of non-linear functions.

vi. A Blocker function’s input is 32 bits long, and an intruder cannot easily

create the DLCT of 232 using a computer or any processor because it

requires a large amount of memory.

vii. A Blocker function takes as input the output of 32-bit S-Boxes and

manipulates it. The Magic Serpent algorithm is then used to generate

an excellent output value. Intruders are confused because a new distinct

output value is unpredictable.

viii. The expression state32hold determines the output of 32-bit S-Boxes.

This output is passed to a Blocker function, which returns an unknown

variable named statehold. Refer to Figure 4.4.

ix. Because S-Boxes in a Blocker function are mathematically preserved

and unalterable, all functions in the Serpent algorithm that recall S-

Boxes must identify or employ a Blocker function after executing a

Blocker function.

x. A Blocker function prevents tampering with the 32-bit output S-Boxes.

Assume that the 32-bit output S-Boxes’ positions are changed or that

the 32-bit S-Boxes are displaced. In that case, Mag Serpent will not

produce the expected results.

This study employs a Blocker function to generate a new 32-bit S-Box

suitable for the new Magic Serpent Algorithm and distract the attacker be-

cause it contains many mathematical random numbers and XOR operators.

In addition, the vast majority of mathematical random numbers and XOR op-

erators are irreversible. To increase robustness against DL attacks, a Blocker

114

function has been added to the traditional S-Boxes used in Serpent algo-

rithms. A Blocker function improves the suitability of new 32-bit S-Boxes

and prevents a DL attack by a newly developed Magic Serpent algorithm. A

Blocker function is mathematically defined as follows:

Assign: M = 4294967296,

do: Change the value of state32hold by using it as an illustration of the

value of:

state32hold = state32hold× (state32hold
M

) +M × (M
state32hold

)

Where state32hold is a 32-bit S-Box Blocker function input.

If the value of state32hold is greater than M , the first loop of the if

statement is opened.

Assign:

Q = 4559351687,

P = 4302746963 and

iSecret is a random number in the range (P ⊕Q). This number will be

combined with the magic numbers throughout the Blocker function. iSecret

is an unpredictable and irreversible random number. Close the first looping

if statement.

If the value of state32hold is less than or equal to M , the second loop

of if or else statements is opened. Assign : iSecret be a random num-

ber with the range from up to (Q ⊕ M). Assign M = state32hold and

Q = state32hold <<< 2. Where <<< represents left round shifting of the

number of bits, for example, 5 in decimal notation = 0101 in binary notation.

If you round 0101 to the left (by one), you get 1010 in binary notation, which

equals 10 in decimal notation or A in hexadecimal notation. As a result, in

decimal notation, 5 <<< 1 = 10.

P = state32hold <<< 4

Q = M ⊕ P

P = M ⊕Q

M = Q⊕ P

115

Change the values of M , P , and Q to a random number between 0 and

iSecret; this can be expressed mathematically as:

M = rand(M) modulo iSecret

P = rand(P) modulo iSecret

Q = rand(Q) modulo iSecret

The modulo operative, is the arithmetical operator that passes the re-

mainder of a division random number x, designated by (rand(x) and iSecret.

x in this research x could be M , P , or Q. Close the second if or else state-

ment loop.

The declared values from the first and second if statements should be

collected. If the recollected values of Q and P are more significant than zero,

a variable called TempState is created. do: Assign

TempState = NOT (state32hold)ANDQ.

In mathematics, NOT and AND are bitwise operators.

If the input is a positive integer, the NOT operator returns a negative

number multiplied by one. NOT (10) = −11, NOT (5) = −6, NOT (2) = −3,

and so on.

do: assign

state32hold = |(state32hold⊕Q|, where |x| denotes an absolute operator.

An absolute operator converts every negative variable to a positive variable.

For example, | − y| = |y| = y. do: assign

statehold = (state32hold
P

) ⊕ 187

iSecret = rand(iSecret) modulo (P ⊕M) do: assign

Q = TempState <<< 1.

It should be observed that the issuance of Q = TempState <<< 1 de-

creases the value of Q indefinitely until Q is less than zero. A Blocker Func-

tion checks to see if Q is greater than zero. If Q is more significant than

zero, either repeat the third for loop until Q is less than zero or change the

values of Q, P , and M to be random numbers ranging from 0 to the value

of statehold. Q = rand(Q) modulo (statehold)

116

M = rand(M) modulo (statehold)

P = rand(P) modulo (statehold)

Convert or substitute the new statehold value used by various Serpent

functions or algorithm building blocks.

Put the third for loop to rest. Deactivate a Blocker function.

A Blocker Function accepts a 32-bit S-Box output value as input and

returns a new statehold value as output. A Blocker Function also makes P ,

M , and Q unfactorizable polynomials. Random numbers and XOR operators

add complexity and confusion to prevent attackers from reverse engineering.

To change the values of variables within a Blocker Function, use the XOR

operator and rand(). When invaders reverse a Blocker Function to calculate

the exact information used in that situation, the random numbers and XOR

operators also provide a problematic input range.

The values of M , P , and Q are continuously maintained as unfactorizable

polynomial variables that are non-linear and difficult to reverse to construct

DLCT using any machine or computer. Intruders can create hidden, unseen,

and unchangeable variables using random numbers and XOR operators. A

Blocker function creates a unique 32-Bit S-Box suitable for the new Magic

Serpent Algorithm. A Blocker Function distracts the attacker by containing

many mathematical random numbers and XOR operators.

Furthermore, most XOR operators in mathematics and random numbers

are irreversible. More mathematical characteristics of a Blocker function and

C++ explanations can be found in Figure 4.4.

117

Figure 4.4: New Generated Function called Blocker

118

4.2.2 Results of DL attack on Serpent
This study experimentally verified and analyzed the DL attack performed

in [178] on a 12-round Serpent. In round 0, the attack was based on the

fundamental 11-round DL attack, which used a plaintext pair and a pair

that provides the input differentials of 28 participating S-boxes. As a result,

changing the Serpent algorithm and launching a 12-round attack against

Serpent with 256-bit keys were viable options.

Dunkelman et al. [178] attempted all possible input differences to round 1,

yielding the difference LT −1(ΞP) = 20000000000001A00E00400000000000x.

S-boxes 2, 3, 19, and 23, for example, had no effect on the difference because

they did not change the participating bits of LT −1(ΞP). As a result, Dunkel-

man et al. [178] built plaintext structures that took this into account and

obtained a 12-round attack on Serpent:

i. Dunkelman et al. [178] picked N = 2123.5 plaintexts, each consisting

of 211.5 structures, and each was chosen by selecting: (a) A plaintext

abitaray ℘0. (b)The plaintexts ℘1, ..., ℘2112−1 that differed from ℘0 by

all 2112 − 1 possibilities of non-empty subgroups of the bits used for

inputs of all S-Boxes but apart from 2, 3, 19, and 23 in round 0 [178].

ii. The ciphertexts of those plaintext structures encrypted using the pri-

vate unknown key K were requested by Dunkelman et al. [178].

iii. Using those 28 S-boxes, partially encrypt all plaintexts in the first round

for each input 112-bit K0 value and use the original 11-round DL attack

on Serpent [178].

iv. Dunkelman et al. [178] for each experimental key revealed. Subkeys of

112 + 20 + 28 = 160 bits. 112-bit round 0, 20-bit round 1, and 28-bit

119

round 11 are tested simultaneously with an accuracy test [178]. With

the appearance of more than 84 percent completion rate, the accurate

estimation of the 160-bit was expected to be the typical frequently

expected value [178].

v. The remaining key bits were obtained using supplementary techniques

[178].

The study experimentally confirmed that the data attack complexity was

2123.5 for the plaintexts used. For the partial encryption in Step (iii), the time

attack complexity is 2123.5× (28
384

)× 2112 = 2231.7, and 2137.4× 2112 = 2249.4 for

the repeated trials of the 11-round DL attack [178].

The study also experimentally confirmed that on a 10-round DL attack

of Serpent using 128-bit keys, the data complexity was 2101.2 for plaintexts

and 2115.2 for time encryption.

4.2.3 Procedure of DL attack on a Mag Serpent

Mag Serpent employed a new 32-bit S-box, which refused to execute the C++

DLCT from various computers and machines due to memory constraints on

those multiple computers and appliances. No computers or devices could

compute the DLCT of a 24 X 232 = 16 x 4294967296 matrix, which was

assumed to contain 68719476736 entities. Without DLCT, a DL attack on a

newly generated 4 x 32 S-Boxes of Mag Serpent algorithm was impractical.

No rounds out of 32 were attacked using the DL attack due to the new 32-

bit output S-Boxes, which hampered the development of the DLCT due to

memory constraints.

Theoretical development of DLCT was examined and experimentally pro-

grammed in C++ code for validation, testing, confirmation, and verification.

The DL attack was possible on the Serpent, according to the results. The

size of the S-Boxes was the primary building block that performed all possi-

bilities of the DL attack. The Serpent’s S-Boxes were 4 x 4, indicating that

120

the input and output were 4 bits. The experiment determined that building

the DLCT with the 4 x 4 Serpent S-Boxes was simple. Refer to Table 4.9

and Figure 4.5.

The DLCT of 4 x 4 and 4 x 32 S-Boxes were generated using a C++

program. The code validation was tested using 4 x 4 Serpent S-Boxes and

a newly developed 4 x 32 Mag Serpent S-Box. The goal of validating the

code was to ensure that the written C++ experimental output DLCT corre-

sponded to the theoretical outputs. It is worth noting that the DLCT of a

4 x 4 S-Box is a matrix of 24 X 24 = 16 x 16 matrix with 256 entities. Refer

to Table 4.9 and Figure 4.5.

The experiment was carried on using a newly developed 4 x 32 S-Box

of the Mag Serpent algorithm. The program failed five hours before the

DLCT was to be executed. The DLCT of a 24 X 232 = 16 x 4294967296

matrix, expected to contain 68719476736 entities, could not be computed

by a computer or machine. Without the DLCT, a DL attack on a newly

developed 4 x 32 S-Box of the Mag Serpent algorithm was impractical. Refer

to Table 4.9 and Figure 4.5.

The first integer in the DLCT of a 4 x 4 S-Box was 16, which is (24) when

S-Box required four bits output as the most specific parameter. In binary

notation, 16 is a byte donated as 00010000. If each 4 x 4 S-Box DLCT is

treated as a byte, the memory needed to build a 4 x 4 S-Box DLCT was 8

bits x 256 = 256 bytes. A 4 x 4 S-Box DLCT can display 256 items at once.

A computer can efficiently handle 4096 bytes. Refer to Table 4.9 and Figure

4.5.

Based on the above calculations, S-Box required 32 bits as the first pa-

rameter. The study assumed that the first number item in the DLCT of a 4

x 32 S-Box would be 4294967296, which is (232). 4294967296 is a triple-word

made up of five bytes donated as follows:

00000000100000000000000000000000000000000 in binary notation.

If each 4 x 32 S-Box DLCT element were treated as a triple-word, the

121

memory required to construct a 4 x 32 S-Box DLCT would be 40 bits× 24×
232 = 343597383680 bytes. The expected number of entities displayed on a

4 x 32 S-Box DLCT was 43597383680. A computer could not easily handle

each item’s computation memory of 343597383680 bytes. As a result, the

C++ DLCT of the 4 x 32 S-Box program failed before execution. Refer to

Table 4.9 and Figure 4.5.

The Serpent S-Box DLCT was a table 24 rows x 24 columns with a high

probability of comprehending a key. The C++ program was used in the

experiment to generate the DLCT of a 4 x 4 Serpent S-Box. The examination

results confirmed that it was possible to attack the Serpent algorithm using

the DLCT. The research used newly created 32 output bit S-Boxes on Serpent

found on IoT devices to prevent a DL attack. Refer to Table 4.9 and Figure

4.5.

Table 4.9 represented the assumed DLCT, and Figure 4.5 represented the

experimentally analyzed DLCT performed by running a C++ DLCT code.

A C++ DLCT code was written to demonstrate and confirm that the study

of building a DLCT was carried out using all methods of DL attack on a

Serpent.

The code was also applied to Serpent and Mag Serpent to see if a DL at-

tack was possible. All of the results were presented and explained throughout

the development of the DLCT, and S-Boxes were implemented using a novel

approach of utilizing 32-bits. A Blocker function was used in the study to

generate a new 32-Bit S-Box suitable for the new Mag Serpent algorithm and

distract the intruder.

When attackers reverse back a Blocker Function to determine the accu-

rate information in that situation, the random numbers and XOR operators

also provide a problematical input range. To construct DLCT using any ma-

chine or computer, the values of M , P , and Q are continuously maintained

as unfactorizable polynomial variables that are non-linear and difficult to

reverse.

122

Intruders can use random numbers and XOR operators to create hidden,

unseen, and unchangeable variables. A Blocker function generates a one-of-a-

kind 32-Bit S-Box suitable for the new Magic Serpent Algorithm. Because it

contains many mathematical random numbers and XOR operators, a Blocker

Function distracts the attacker. Furthermore, the majority of mathematical

XOR operators and random numbers are irreversible. Figure 4.4 contains

additional mathematical characteristics of a Blocker function as well as C++

explanations.

Mag Serpent was resistant to a DL attack in this study and created

the new 4 x 32 S-Boxes. The new 32-bit S-Boxes suitable for the new

Mag Serpent algorithm were inserted into the survey using a Blocker func-

tion. The study used the Blocker function to confuse the attacker because it

contains many mathematical random numbers and XOR operators.

Furthermore, the majority of mathematical XOR operators and random

numbers are irreversible. After incorporating a Blocker function and the new

4 x 32 S-Boxes, the new Mag Serpent successfully decrypted and encrypted.

The code for the newly Mag Serpent is available upon request. The C++

code confirmed that a DL attack was permissible on several rounds, including

round 12, before applying a Blocker function and the new 4 x 32 S-Boxes

to a standard Serpent. Nonetheless, after employing a Blocker function and

the novel 4 x 32 S-Boxes, C++ code confirmed that the study successfully

blocked the DL attack on Mag Serpent. Furthermore, due to a computer’s

memory constraint, creating a DLCT of 232 rows and columns matrix was

challenging.

4.3 Results, Discussions, and Analysis of Se-

curing Serpent against DL Attack
The DL attack was possible on the Serpent, according to the results. The

size of the S-Boxes was the main building block that performed all DL attack

possibilities. S-Boxes on the Serpent were 4 x 4, indicating 4-bit input and

123

4-bit output. The experiment determined that building the DLCT with the

4 x 4 Serpent S-Boxes was simple. Refer to Table 4.9 and Figure 4.5.

The DLCT of 4 x 4 and 4 x 32 S-Boxes were generated using a C++

program. Code validation was investigated using 4 x 4 Serpent S-Boxes

and a newly developed 4 x 32 Mag Serpent S-Box. The goal of validating

the code was to ensure that the written C++ experimental output DLCT

corresponded to the theoretical results. It is worth noting that the DLCT

of a 4 x 4 S-Box is a matrix of 24 X 24 = 16 x 16 matrix with 256 entities.

Refer to Table 4.9 and Figure 4.5.

The experiment used a newly developed 4 x 32 S-Box of the Mag Ser-

pent algorithm. The program failed five hours before the DLCT was to be

executed. The DLCT of a 24 X 232 = 16 x 4294967296 matrix, expected to

contain 68719476736 entities, could not be computed by a computer or ma-

chine. Without the DLCT, a DL attack on a newly developed 4 x 32 S-Box

of the Mag Serpent algorithm was impractical.

The DL attack was possible on the Serpent, according to the results. The

size of the S-Boxes was the main building block that performed all DL attack

possibilities. S-Boxes on the Serpent were 4 x 4, indicating 4-bit input and

4-bit output. The experiment determined that building the DLCT with the

4 x 4 Serpent S-Boxes was simple. Refer to Table 4.9 and Figure 4.5.

The first integer in the DLCT of a 4 x 4 S-Box was 16, which is (24) when

S-Box required four bits output as the most specific parameter. In binary

notation, 16 is a byte donated as 00010000. If each 4 x 4 S-Box DLCT is

treated as a byte, the memory needed to build a 4 x 4 S-Box DLCT was 8

bits x 256 = 256 bytes. It is worth noting that 256 items are displayed on a

4 x 4 S-Box DLCT. A computer can handle 4096 bytes efficiently. Refer to

Table 4.9 and Figure 4.5.

Based on the above calculations, S-Box required 32 bits as the first pa-

rameter. The study assumed that the first number item in the DLCT of a 4

x 32 S-Box would be 4294967296, which is (232). 4294967296 is a triple-word

124

made up of five bytes donated as

00000000100000000000000000000000000000000 in binary notation.

If each 4 x 32 S-Box DLCT element were treated as a triple-word, the

memory required to construct a 4 x 32 S-Box DLCT would be 40 bits× 24×
232 = 343597383680 bytes. The expected number of entities displayed on a

4 x 32 S-Box DLCT was 343597383680. A computer could not easily handle

each item’s computation memory of 343597383680 bytes. As a result, the

C++ DLCT of the 4 x 32 S-Box program failed before execution. Refer to

Table 4.9 and Figure 4.5.

The Serpent S-Box DLCT was a table 24 rows x 24 columns with a high

probability of comprehending a key. The C++ program was used in the

experiment to generate the DLCT of a 4 x 4 Serpent S-Box. The examination

results confirmed that it was possible to attack the Serpent algorithm using

the DLCT. The research used newly created 32 output bit S-Boxes on Serpent

found on IoT devices to prevent a DL attack. Refer to Table 4.9 and Figure

4.5.

Since the new output bits were increased from 4-Bits to 32-Bits, the

new 32-Bits-output S-Boxes prevented the construction of DLCT, which was

assumed to be a 24 x 232 matrix. That is, DLCT requires a 24 x 232 = 256 x

4294967296 matrix, which requires a large amount of computer memory to

compute and display. The experiment demonstrated that constructing the

DLCT of a new 32-Bits-output S-Box using Equation 4.1 was impractical

if the Blocker function was embedded on Serpent’s structure because the

maximum size limitation was limited memory required had been exceeded.

Due to a computer’s memory limitation, the C++ program for construct-

ing the DLCT of the new S-Boxes clashed before DLCT was finally built. A

standard computer cannot create a matrix of 256 columns x 4294967296 rows.

The experiment also confirmed that constructing a 256 x 4294967296 matrix

was impractical because a computer requires a maximum memory of 264,

which is impossible. Without DLCT, there is no DL attack. In this study,

125

using the Blocker function and 32-Bits-output S-Boxes to protect Serpent

from DL attacks worked.

When the Blocker function was added to Serpent’s infrastructure, all

positions of 32-Bits S-Boxes became unchangeable. A new 32-Bits-output

SB0(X), for example, cannot be changed or substituted with any arbitrary

new 32-Bits-output S-Box such as SB2(X),..., or SB7(X). Even if the sizes

are equal, the newly generated S-Boxes cannot be replaced by any 32-Bits-

output S-Box taken from other known algorithms.

This study investigated and carried out all procedures used to attack the

original Serpent with DL attacks. The C++ programs were created to test

whether an original Serpent could be attacked with DLCT and DL attacks.

The C++ programs validated and carried out the same results as shown in

Table 4.9. Table 4.9 contained the theoretical results discovered by Bar-On

et al. [97] when the original Serpent was attacked with the 4-Bits-output

S-Box defined in Table 4.1. All of the procedures used to attack an original

Serpent by Bar-On et al. [97] were performed with the assistance of C++

programs.

The C++ programs in this study confirmed and validated the theoretical

results defined in [97]. Figure 4.5 depicts the experimental results obtained

in this study. The elements in Figure 4.5. Table 4.9 and Figure 4.5 were the

same. The theoretical DLCT results were shown in Table 4.9, as explained

by ar-On et al. [97], and the experimental DLCT results were shown in

Figure 4.5. On rounds 10 and 11, the Serpent was attacked, but Mag Serpent

resisted the DL attack.Refer to Table 4.20 and Figure 4.6.

Before implementing the new S-Boxes and Blocker approach, the C++

experiment demonstrated that a DL attack on an original Serpent was pos-

sible. Nonetheless, the DL attack was blocked on a new modified Serpent

called Mag Serpent after the novelty of using the new 32-Bits-output S-Boxes

and Blocker function. Refer to Table 4.18 and Table 5.15.

The Avalanche Effect is a desirable feature of algorithms in cryptography

126

[169]. If one of the input bits is inverted (flipped), the output bits must

significantly improve. In robust algorithms, such a slight change in either

the plaintext or the key should result in excessive variation in the ciphertext

[169]. The Avalanche Effect is used to develop a method known as the

Strict Avalanche Criterion (SAC) for evaluating the encryption robustness

of algorithm [170].

The SAC is achieved if a specific input bit, either plaintext or key, re-

turns the transformation of ciphertext output bits with a probability of 50

percent [170]. The experiment used the Avalanche Effect on Serpent and

Mag Serpent to obtain SAC. According to the results, the Serpent and a

newly generated Mag Serpent algorithm had a better SAC characteristic.

When compared to SAC characteristics, the Avalanche Effect of Mag Serpent

and Serpent on both key and plaintext was approximately 50%. Refer to Ta-

ble 4.21 and Figure 4.7 to Figure 4.12.

One of the essential parameters in cryptography is the amount of memory

required before installing an algorithm. Regardless of encryption strength, it

is ignored if an algorithm requires more memory than the platform or environ-

ment in which it is installed. The memory of both Serpent and Mag Serpen

was measured in the study using the C++ program. Serpent and Mag Serpen

had memory sizes of 11181 bytes and 13206 bytes, respectively. Refer to Ta-

ble 4.22 and Figure 4.13 to Figure 4.15.

Serpent and Mag Serpent encryption and decryption were tested to see

if both algorithms worked flawlessly for encryption and decryption. Using

an image, the C++ program was used to test the encryption and decryption

of Serpent and Mag Serpent. The results showed that both Serpent and

Mag Serpent encryption and decryption worked as expected. Refer to Figure

4.16.

127

Figure 4.5: C++ Experimental Results of DLCT

Figure 4.6: DL Attack Outcomes

128

Table 4.18: Results of feasibility of constructing DLCT before and after 32-

Bits-output S-Boxes and Blocker were Applied

Name of Al-

gorithms

Before 32-

Bits-output

S-Boxes

and Blocker

were Ap-

plied

After 32-

Bits-output

S-Boxes

and Blocker

were Ap-

plied

Serpent The construc-

tion of the

DLCT was

feasible.

The re-

quirement

of memory

made DLCT

construction

impossible.

Table 4.19: Results of key discovery before and after 32-Bits-output S-Boxes

and Blocker were Applied

Name of Al-

gorithms

Before 32-

Bits-output

S-Boxes

and Blocker

were Ap-

plied

After 32-

Bits-output

S-Boxes

and Blocker

were Ap-

plied

Serpent In each round,

the key was

revealed.

There was no

key discovery

because there

was no DLCT

or DL attack.

129

Table 4.20: DL Attack Outcomes

Name of

Algorithm

Time

Com-

plexity

Data

Com-

plexity

Rounds

At-

tacked

Serpent 2115.5 2101.2 10

Serpent 2231.7 2249.4 11

Mag Serpent ∞ ∞ 0

Table 4.21: When one bit of the key and plaintext was flipped, the avalanche

effect occurred
Name of

Algorithm

Key

Avalanche

Effect in

Percent-

age

Plaintext

Avalanche

Effect in

Percent-

age

Serpent 49.8657 50.3842

Mag Serpent 50.5340 49.7985

Table 4.22: Memory Needed for Installation of Algorithms

Name of Algo-

rithm

Memory Re-

quired in

Bytes

Serpent 11181

Mag Serpent 13206

130

Figure 4.7: Avalanche Experiment Serpent’s Effect Whenever One Bit of a

Key Was Started Flipping

131

Figure 4.8: Avalanche Experiment Serpent’s Effect When One Bit of Plain-

text was Flipped

132

Figure 4.9: The Avalanche Effect of Mag Serpent When One Bit of a Key

Was Flipped

133

Figure 4.10: The Avalanche Effect of Mag Serpent when One Bit of Plaintext

was Flipped

134

Figure 4.11: Key Avalanche Effect Experiment in Percentage

Figure 4.12: Plaintext Avalanche Effect in Percentage Experimental Results

135

Figure 4.13: Experimental Results Memory for Serpent Installation

Figure 4.14: Experimental Results Memory for Mag Serpent Installation

Figure 4.15: Byte Memory Required for Installation

136

Figure 4.16: Encryption and Decryption Images of Serpent and Mag Serpent

137

4.4 Summary of Using Blocker Function to

Prevent DL Attack on Serpent
The study demonstrated that using magic numbers and the Blocker func-

tion, the Serpent algorithm to secure data stored on IoT devices were pro-

tected against DL attacks. It has been confirmed that drawing a DLCT with

an output S-Box of 32− bits is impossible. Furthermore, it has been demon-

strated that without DLCT, there is no DL attack. In this study, a new

modified Serpent named Mag Serpent was created. Future work will com-

pare the power consumption of Mag Serpent to that of a standard Serpent.

138

Chapter 5

The Design of Khumbelo

Function on the Camellia

Algorithm to Prevent Attacks

The following chapter is based on a two journals submitted by:

i. K. D. Muthavhine and M. Sumbwanyambe, ”Applying the Khumbelo

Function on the Camellia Algorithm to Proactively Prevent a Wide

Range of Attacks on IoT Devices”

Status: Submitted to IEEE Access.

ii. K. D. Muthavhine and M. Sumbwanyambe, ”Conversion of Clefia Al-

gorithm to Decrease Memory Restrictions Encountered on IoT by Ap-

plying CMA Method,” IEEE, pp. 1-7, 2022.

Website: https://ieeexplore.ieee.org/document/9856353

Status: Published.

Publisher: IEEE.

Abstract: Camellia is one of the cryptographic algorithms implemented

on many Internet of Things (IoT) devices [99]. However, an intruder uses the

139

Substitution Box (S-Box) distinguisher to attack her Camellia cipher [100].

A distinguisher is a table that provides the probability of guessing the algo-

rithm’s secret key [99]. Distinguisher’s features are used in most attacks. The

most well-known characteristic features are the Linear Approximation Table

(LAT), Difference Distribution Table (DDT), and Differential Linear Con-

nections Table (DLCT) [100]. This work focuses on preventing these attacks

by deflecting the construction of an S-Box distinguisher with a new function

called the Khumbelo. The Khumbelo function prevented distinguisher con-

struction by lowering the construction probability. The Khumbelo function

successfully reduced the attack probability of LAT (54.6875 percent to 0 per-

cent), DDT (1.5625 percent to 0 percent), and DLCT (50.0000 percent to

0 percent). The Khumbelo function is generated using a 4-Byte output S-

Box instead of Camellia’s original 1-Byte output S-box. Also, the Khumbelo

function consists of many modulo operators. New 4-Byte output S-boxes and

modulo operators confuse and block intruders to build distinguishers. After

successfully embedding the Khumbelo function in the traditional camellia,

the newly modified camellia was coined K Camellia.

5.1 Introduction
The Internet of Things (IoT) is a modern critical system of connecting

devices, things, people, objects, digital machines, computers, and objects to

transmit information [179], [99]. IoT is emerging as an effective technology

with devices in key areas for creating needed networks. Depending on the

current task, IoT customers use IoT networks [99], [180]. The company uses

IoT devices and networks to exchange classified information [99], [181]. Some

of this information is transmitted unencrypted or encrypted by algorithms

vulnerable to attacks [99], [181].

Encryption algorithms are primarily used to ensure security and pri-

vacy [181]. One of the cryptographic algorithms used in IoT devices is

Camellia. Section 1A shows that various types of IoT devices use Camel-

140

lia. Some cryptographic algorithms used by IoT devices have been compro-

mised, such as Camellia. Encryption algorithms are unavoidable but should

be pre-designed to withstand attacks [99], [181]. Many organizations ask

researchers to develop algorithms resistant to attacks [182]. For example,

Sleem [183] actively pointed out that improving encryption algorithms is an

ongoing process, as intruders are cracking known algorithms on IoT devices.

The Federal Information Security Agency has pointed out that the fact that

the algorithm has recently proven to be robust does not mean that intruders

will not attack it in the future [184].

Current research shows that intruders use various attack methods to at-

tack the Camellia algorithm. For example:

i. LAT is used in LC attacks. See Table 4, page 11 of [100].

ii. DDT is used for DC attacks. See [100], page 21, Table 7.

iii. Attack DDT with a boomerang. refer [185], page 4.

iv. The truncated derivative is a variant of the DC attack [186]. Moreover,

the shortened differential succeeds with DDT. The previous statement

is also on page VII of [186].

v. The Man-in-the-Middle attack is a variant of the DC attack [187]. Ad-

ditionally, as pointed out in [188] on page 136, Man-in-the-Middle at-

tacks persist from DDT.

vi. The zero-correlation linear attack is a variant of the LC attack that

uses LAT as the LC attack. Page 119 of [187]. [189] also supports the

previous statement.

vii. DL attack is based on DLCT [97].

This work focuses on preventing these attacks by diverting the construction

of S-Box distinguishers using a new function called the Khumbelo function.

141

The Khumbelo function hindered the construction of distinguishers by re-

ducing the probability of guessing the private key. The Khumbelo function

successfully reduced the attack probability of LAT (54.6875 percent to 0

percent), DDT (1.5625 percent to 0 percent), and DLCT (50.0000 percent

to 0 percent). Table 5.1 shows various attacks on these properties. The

Khumbelo function is generated using a 4-Byte output S-Box instead of the

original 1-Byte output S-box in standard Camellia. The Khumbelo function

also consists of several modulo operators. New 4-Byte output S-Boxes and

modulo operators confuse and block intruders to build distinguishers. After

successfully applying the Khumbelo function to the traditional Camellia, a

new modified Camellia was coined K Camellia. In this study, conventional

(standard) Camellia is called Camellia. K Camellia is a new algorithm first

created and defined in this work (novelty) after embedding the Khumbelo

function into Camellia.

Table 5.1: Attacks and Distinguishers

Attacks Distinguishers

The Linear Cryptanalysis (LC) Attack LAT

The Differential Cryptanalysis (DC) At-

tack

DDT

The Boomerang Attack DDT

The Truncated Differential Attack DDT

Meet-in-the-middle Attack DDT

Zero-Correlation Linear Distinguisher At-

tacks

LAT

The Differential Linear (DL) Attacks DLCT

142

5.1.1 Relationship between IoT devices and Camellia

Algorithm

Camellia algorithm is used for privacy and security in many IoT devices,

including smart homes, e-health, e-commerce, smart hospitals, and smart

cities [190]. For instance, the IoT devices embed a Camellia algorithm in

180 nm Complementary metal-oxide-semiconductor (CMOS) technology for

different key lengths [190].

IoT devices like Hardware (MICAz mote) and Riverbed (OPNET) Mod-

eler use Camellia. IoT platform uses hardware (MICAz mote) to enable

low-power and wireless sensor networks [191]. Riverbed (OPNET) Modeler

is a modeling and analysis environment for communication networks and dis-

tributed systems [191]. For security and privacy, hardware (MICAz mote)

and Riverbed (OPNET) embed a Camellia algorithm in Random Access

Memory (RAM) and Read-Only Memory (ROM) [191].

Some IoT devices which use Camellia are the Blockchain-Based Secure

Centralized Big Data (BOBS CRABID) model. The BOBS CRABID model

is made up of three parts. Reduced for Data Clustering, Data Collection

and Processing from IoT Devices, and Multi-Factor Authentication [192]. A

Camellia algorithm is used in Multi-Factor authentication to authenticate

all devices using Internet Protocol (IP) addresses, Identification (ID), Media

Access Control (MAC) addresses, and Physical Unclonable Functions (PUF)

[192].

Actuators and sensors are two other IoT-based devices that use Camellia.

In an Edge Enabled Smart Grid Network, semi-quantum key distribution

(SQKD) and an intrusion detection system (IDS) use actuators and sensors

to communicate [193]. During the communication process, SQKD distributes

the encryption key generated by the Camellia algorithm [193].

According to the preceding statements, there is a connection between IoT

devices and the Camellia algorithm. The relationship is based on confiden-

tiality, security during communication, and data transmission [190]- [193].

143

5.1.2 Cryptographic Attacks
In this section, different cryptographic attacks are explained in detail as

follows:

5.1.2.1 The Linear Cryptanalysis (LC) Attack

The LC attack exploits the most likely linearity conditions affecting plaintext,

ciphertext, and subkey bits [100], following linear analysis of the S-Box [100].

The intruder creates a probability table known as LAT. The intruder employs

LAT to guess the secret keys easily. No LC attack will succeed without

LAT [194]. When the intruder is carrying out the LC attack, LAT is a critical

distinguisher needed [100]. Most attacks rely on the distinguishers. For

instance, the distinguisher of the LC attack is LAT. These distinguishers are

probability tables to assist intruders in guessing secret keys of cryptographic

algorithms like Camellia and DES. Table 5.1 shows different attacks related

to their distinguishers.

The study summarized LC attacks using Simplified Data Encryption

Standard’s S-Box (S-DES). There is a W -Bit key block for every V -Bit

of input (plaintext) and output (ciphertext) blocks, so plaintext is ϱ =

ϱ1, ϱ2, ..., ϱV−1, ϱV , the ciphertext is ⊂=⊂1,⊂2, ...,⊂V−1,⊂V , and the key is

K = K1, K2, ..., KW−1, KW . Then specify

ϱ[γ1, γ2, ..., γa]⊕ ⊂ [η1, η2, ..., ηb] = K[ψ1, ψ2, ..., ψc] (5.1)

Where x =1 or 0, 1 ⩽ γ, b ⩽ V , 1 ⩽ c ⩽ W , and γ, η and ψ represent bit lo-

cations with a probability of ϱ ̸= 0.5. Furthermore, ϱ is calculated from LAT,

with values ranging from 0.5 to 1. The correlation is then calculated; if it is 0

or 1, assume that K[ψ1, ψ2, ..., ψc] = 0 or K[ψ1, ψ2, ..., ψc] = 1, respectively.

To obtain key bits, solve K[ψ1, ψ2, ..., ψc] = 0 and K[ψ1, ψ2, ..., ψc] = 1

simultaneously using chosen plaintext/ciphertext.

A zero-correlation linear distinguisher is also a variant of the LC attack

[195]. Liu, Sun, Wang, Varici, and Gu [195] recovered the secret key after 14-

round of Camellia-256 and 13 rounds of Camellia-192. An S-Box of Cipher is

144

considered substantial (or attack-resistant) if the output bits vary with (1/2)

probability whenever one bit is flipped [194].

5.1.2.2 The Differential Cryptanalysis (DC) Attack

The DC attack is carried out as follows: Intruders consider an S-Box of

cipher to be vital if the output bits show a considerable variation with (1/2)

probability whenever any input bit is complemented [180], [196]. In light

of S- Box’s flaws, intruders can efficiently compute the highest difference

probabilities of (∆ϱj,∆ ⊂j) of (1/(2m)) pairwise comparisons, where m is

the output and j is the jth bit of ϱj and ⊂j, respectively [180] [196]. The

highest difference probabilities of each S-Box pair (∆ϱj,∆ ⊂j) of (1/(2m)) is

incorporated and applied in a different number of rounds until the intruders

recover the secret key [180]. Note that the boomerang, truncated differentials,

Meet-in-the-Middle, and impossible differential attacks are all variants of DC

attacks because they all use the DDT [196]. The intruder employs DDT to

quickly guess the secret keys. No DC attack will succeed without DDT [180],

[196].

Page 21 of [100] gave the theory of constructing the first DDT of DES’s

first S-Box. This study analyzed the theory of constructing the DDT using

the experimental C++ code of DDT to compare and verify the code and the

results on page 21 of [100]. The study conducted the DDT’s experimental

C++ code. The results corresponded to the theoretical results given DDT on

page 21 of [100]. The DC attack on DES was carried out in the study using

DDT and Equation 5.2. When K ⊕ ϱi and K ⊕ ϱj are 4 and 8, respectively,

and ϱi and ϱj are 2 and 4, respectively, the probability of guessing the correct

key using DDT is 2. That is eight 2 or 4 digits. The study tested 2 and 4

to find the correct key and discovered that the valid key is 4. According to

Khurana and Kumari [187], boomerang and truncated differential attacks are

variants of DC attacks. The study used boomerang and truncated differential

attacks on Camellia, which were influenced by Khurana and Kumari [187].

145

∆SBox(K ⊕ ϱi) ⊕ SBox(K ⊕ ϱj) = ϱi ⊕ ϱj

where ϱi = ϱi, ϱj = ϱj and K = Key to be predicated
(5.2)

Liu, Sun, Wang, Varici, and Gu [195] recovered the secret key after 14-

round of Camellia-256 and 13 rounds of Camellia-192.

5.1.2.3 The Boomerang Attack

The boomerang attack is carried out as follows: The encryption scheme is

split into two shorter cryptosystems, E0 and E1 [197] - [200]. For intruders

to apply the boomerang attack, the differential probability of S-Box must

be high, greater than 50% [199] [200]. Assume the intruder divided a 10-

round Camelia S-Box into E0 and E1 with r and 10 − r rounds, respectively

[197], [198]. The differential probability of each sub-characteristic S-Box

will be bounded by Prob0 ≤ (2−30)r/4 and Prob1 ≤ (2−30)(10−r)/4. Where

Prob0 and Prob1 are S-Box probabilities derived from E0 and E1, respectively

[197], [198]. If there are high probabilities, intruders can easily apply the

boomerang attack [199], [200].

According to Lu, Wei, Pasalic, and Fouque [199], the Camellia is attack-

able for up to 9 rounds using the Boomerang attack. The Boomerang attack

uses the probability of distinguishers from the algorithm’s poor S-Boxes [199].

The boomerang attack is a variation (derived from) of the DC attack [187].

Furthermore, the boomerang attack thrives on DDT, as stated on page 4

of [185].

5.1.2.4 The Truncated Differential Attack

The concept of truncated differential attack is an extension of the concept

of DC attack [201]. The DC attack looks for the fundamental difference be-

tween two plaintexts, while the truncated variant looks for only determined

differences [202]. The truncated differential attack generates predictions from

146

only a subset of the block rather than the entire block. The truncated differ-

ential attack is a variation (derivation) of the DC attack [187]. The truncated

differential attack is carried out as follows [201]:

i. The study calculated the differential probability of a useful active S-

Box.

ii. XOR probability of useful active S-Box outputs.

iii. Create a table of DDT.

iv. Create the additional (mathematical or statistical) functions required

to complete the attack.

When intruders use the truncated differential attack, they frequently target

the S-Box. Li, Jia, Wang, and Dong [202] used the truncated differential

attack on Camellia and were successful in attacking 11-round and 12-round

Camellia with 2121.3 and 2185.3 plaintexts, respectively. According to [202]’s

work, the truncated differential attack is the same as the impossible attack.

The truncated differential is a variation of the DC attack [186]. Furthermore,

truncated differential thrives on DDT; the preceding statement is also given

on page vii of [186].

5.1.2.5 Meet-in-the-Middle Attack

The Meet-in-the-Middle attack divides the input of the cipher’s building

block X into two distinct segments, such that X = X1 •X0. Other attacks,

such as the boomerang and truncated differential attacks, are then used to

complete the process [202]. The Meet-in-the-Middle attack is a variant of

the DC attack [187]. Furthermore, the Meet-in-the-Middle attack thrives on

DDT, as stated on page 136 of [188].

Li, Jia, Wang, and Dong [202] used the truncated differential attack on

Camellia and were successful in attacking 11-round and 12-round Camellia

with 2121.3 and 2185.3 plaintexts, respectively.

147

5.1.2.6 Zero-Correlation Linear Distinguisher Attacks

The zero-correlation distinguisher employs a linear hull with correlation zero

[203]. In contrast to the standard LC attack, which employs linear character-

istics with high correlations, this attack is known as linear parameterization

with zero correlation [195]. The LC attack extension of impossible differen-

tial cryptanalysis is a zero-correlation linear attack [203]. S-Box is involved

in the attack process because it is the LC attack extension of impossible

differential cryptanalysis.

The intruder can also employ similar Meet-in-the-Middle technology. Fur-

thermore, the intruder can use impossible differential cryptanalysis to create

a zero-correlation linear distinguisher [195], [203]. Liu, Sun, Wang, Varici,

and Gu [195] recovered the secret key after 14-round of Camellia-256 and 13

rounds of Camellia-192. A zero-correlation linear attack is a variation of the

LC attack [187]. The preceding statement is also supported by [189] on page

119.

5.2 Objective of the Study
Using the Khumbelo function in Camellia, this study aims to distract the

construction of distinguishers (attack engines) from preventing the spread of

attacks. To accomplish the following goals:

i. To prevent attacks by using a novel function called the Khumbelo func-

tion to distract the construction of S-Box distinguishers.

ii. To distract the distinguishers’ construction by reducing the probability

of construction using the Khumbelo function.

iii. To successfully reduce the attack probability of LAT (from 54.6875 per-

cent to 0 percent), DDT (from 1.5625 percent to 0 percent), and DLCT

(from 50.0000 percent to 0 percent) using the Khumbelo function.

148

iv. To generate a 4-Byte output S-Box for a new algorithm using the

Khumbelo function instead of an original 1-Byte output S-Box in Camel-

lia, which is vulnerable to many attacks.

v. To build the Khumbelo function using many irreversible modulo oper-

ators.

vi. To confuse and block intruders from constructing distinguishers and

attacks using the new 4-Byte output S-Box and modulo operators from

the Khumbelo function.

vii. To successfully embed the Khumbelo function in the traditional Camel-

lia, get a newly modified Camellia.

viii. To coin and define the newly modified Camellia as K Camellia, first

and solely inverted in this study.

5.3 Review of the Camellia Algorithm
Camellia is a symmetric algorithm developed by Telephone (NTT) Corp,

Nippon Telegraph, and Mitsubishi Electric Corporation (MEC) [204], [207].

Camellia uses key lengths of 128 bits, 192 bits, and 256 bits to improve

software and hardware performance on standard 32-Bit and 8-Bit processors

(for example, smart cards, embedded systems, OpenPGP, and IPSec) [204],

[206], [207].

Camellia is a Feistel-based cipher with either 18 or 24 rounds depending

on the key used [205]. Every six rounds, the self-styled FL function (a rational

conversion layer) or its inverse is applied [205], [206]. The cipher includes

four 8 x 8-Bit S-Boxes, including output, input affine transformations, and

mathematical functions [205]. This cipher also uses input and output keys

for the whitening process [205], [206].

Camellia is a Feistel-structured cryptographic algorithm, and the round

function has an SPN structure [204] [206], [207]. Figure 5.1 depicts how

149

FL and (FL)−1- functions are incorporated between each 6-round of a cryp-

tosystem [205] [206].

Figure 5.1: Camellia Structure [206]

The linear FL and (FL)−1 - functions are not included in the specific

Feistel structure cited in [206], [207]. Figure 5.2 depicts the architecture of

the encryption process as a Camellia round function. The S transformation

component contains four types of 8 x 8 S-Boxes (1-Byte output S-Box),

which are described below: SBox1(XY), SBox2(XY), SBox3(XY), and

SBox4(XY) given in Table 5.2, where input X and Y intersect the 1-Byte

150

output is generated.

Figure 5.2: Camellia Round Function [206]

For instance, if X = 0 in hexadecimal and Y = 3 in hexadecimal, then

input XY = 03 in hexadecimal. To generate the 1-Byte ouput of XY =

03, 0 and 3 intersect at 236 in the SBox1(XY), therefore, SBox1(XY) =

SBox1(03) = 236 in binary which is 1-Byte, as shown in Table 5.2. SBox2(XY),

151

Table 5.2: First S-Box (SBox1) of Camellia

Input

X

Input Y

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. A. B. C. D. E. F.

0. 112. 130. 44. 236. 179. 39. 192. 229. 228. 133. 87. 53. 234. 12. 174. 65.

1. 35. 239. 107. 147. 69. 25. 165. 33. 257. 14. 79. 78. 29. 101. 146. 189.

2. 134. 184. 175. 143. 124. 235. 31. 206. 62. 48. 220. 95. 94. 197. 11. 26.

3. 166. 225. 57. 202. 213. 71. 93. 61. 217. 1. 90. 214. 81. 86. 108. 77.

4. 147. 13. 154. 102. 251. 204. 176. 45. 116. 18. 43. 32. 240. 177. 132. 153.

5. 223. 76. 203. 194. 52. 126. 118. 5. 109. 183. 169. 49. 209. 23. 4. 215.

6. 20. 88. 58. 97. 222. 27. 17. 28. 50. 15. 156. 22. 83. 24. 242. 34.

7. 254. 68. 207. 178. 195. 181. 122. 145. 36. 8. 232. 168. 96. 252. 105. 80.

8. 170. 208. 160. 125. 161. 137. 98. 151. 84. 91. 30. 149. 224. 225. 100. 210.

9. 16. 196. 0. 72. 163. 247. 117. 219. 138. 3. 230. 218. 9. 63. 221. 148.

A. 135. 92. 131. 2. 205. 74. 144. 51. 115. 103. 246. 243. 157. 127. 191. 226.

B. 82. 155. 216. 38. 200. 55. 198. 59. 129. 150. 111. 75. 19. 190. 99. 46.

C. 233. 121. 169. 140. 159. 110. 188. 142. 41. 245. 249. 182. 47. 253. 180. 99.

D. 120. 152. 6. 106. 231. 70. 113. 186. 212. 37. 171. 66. 136. 162. 141. 250.

E. 114. 7. 185. 85. 248. 238. 172. 10. 54. 73. 42. 104. 60. 56. 241. 164.

F. 64. 40. 211. 123. 187. 201. 67. 193. 21. 227 173. 244. 119. 199. 128. 158.

152

SBox3(XY), and SBox4(XY) are derived as follows from SBox1(XY):

SBox2(XY) = SBox1(XY) <<< 1;

SBox3(XY) = SBox1(XY) >>> 1;

SBox4(XY) = SBox1(XY <<< 1); Where <<< and >>> represent

right and left rotational shifts, respectively.

The S transformation component is made up of z1, z2, ..., z8 and y1, y2, ..., y8,

which are mathematically defined as follows:

z1 = y7 ⊕ y8 ⊕ y4 ⊕ y6 ⊕ y3 ⊕ y1;

z2 = y7 ⊕ y8 ⊕ y1 ⊕ y4 ⊕ y3 ⊕ y6;

z3 = y6 ⊕ y8 ⊕ y1 ⊕ y3 ⊕ y2 ⊕ y5;

z4 = y6 ⊕ y7 ⊕ y2 ⊕ y4 ⊕ y3 ⊕ y5;

z5 = y8 ⊕ y7 ⊕ y6 ⊕ y2 ⊕ y1;

z6 = y7 ⊕ y8 ⊕ y2 ⊕ y3 ⊕ y5;

z7 = y5 ⊕ y6 ⊕ y8 ⊕ y4 ⊕ y3;

z8 = y5 ⊕ y6 ⊕ y7 ⊕ y4 ⊕ y1;

y1 = z6 ⊕ z7 ⊕ z8 ⊕ z4 ⊕ z3 ⊕ z1;

y2 = z5 ⊕ z7 ⊕ z8 ⊕ z4 ⊕ z3 ⊕ z1;

y3 = z5 ⊕ z6 ⊕ z8 ⊕ z4 ⊕ z2 ⊕ z1;

y4 = z5 ⊕ z6 ⊕ z7 ⊕ z3 ⊕ z2 ⊕ z1;

y5 = z5 ⊕ z7 ⊕ z8 ⊕ z2 ⊕ z1;

y6 = z5 ⊕ z6 ⊕ z8 ⊕ z3 ⊕ z2;

y6 = z5 ⊕ z6 ⊕ z8 ⊕ z3 ⊕ z2;

y8 = z6 ⊕ z7 ⊕ z8 ⊕ z4 ⊕ z1;

The P function is depicted in Figure 5.1. The P function is an 8 x 8

matrix with an inverse P−1 as shown in Figure 5.3. The key generation

discussion is not included in this study because the process is the same as

shown in Figure 5.1. The reader should consult other literature reviews for

153

more information on the key generation process. The P and P−1 matrices

are used during the encryption and decryption processes. Since Camellia is a

block cipher, in the decryption process, the round keys are applied in reverse

order compared to the encryption process.

Figure 5.3: P Function and its Inverse P−1 [206]

5.4 Contribution of the study
Using the Khumbelo function in Camellia, the study’s contribution aims

to distract the construction of distinguishers (attack engines) from the spread

of attacks and to secure IoT devices using K Camellia. To accomplish the

following goals:

i. To give awareness of preventing attacks by using a novel function called

the Khumbelo function to distract the construction of S-Box distin-

guishers.

154

ii. To give awareness of the procedure of distracting the distinguishers’

construction by reducing the probability of construction using the Khum-

belo function.

iii. To give awareness of the procedure of successfully reducing the attack

probability of LAT (from 54.6875 percent to 0 percent), DDT (from

1.5625 percent to 0 percent), and DLCT (from 50.0000 percent to 0

percent) using the Khumbelo function.

iv. To give awareness of generating a 4-Byte output S-Box for a new algo-

rithm using the Khumbelo function instead of an original 1-Byte output

S-Box in Camellia, which is vulnerable to many attacks.

v. To give awareness of building the Khumbelo function using many irre-

versible modulo operators.

vi. To confuse and block intruders from constructing distinguishers and

attacks using the new 4-Byte output S-Box and modulo operators from

the Khumbelo function.

vii. To give awareness of the procedure of successfully embedding the Khum-

belo function in the traditional Camellia, get a newly modified Camel-

lia.

viii. To coin and define the newly modified Camellia as K Camellia, which

is resistant to many attacks. K Camellia is firstly and solely inverted

in this study.

5.5 The Overview of the Khumbelo Function
The Khumbelo function employs four 8 x 32 S-Boxes (4-Byte output S-Boxes)

rather than the four 8 x 8 S-Boxes (1-Byte output S-Boxes) defined in the

original Camellia, which are vulnerable to many attacks. All S-Boxes are

converted to four 8 x 32 S-Boxes using the degree 32 polynomial with mod

155

232 during the application of the Khumbelo function. The procedure is as

follows:

i. Using Equation 5.3 to create a polynomial of 32 degrees.

0 + 1 + x+ x2 + x22 + x32

= 80200007hexidecimal

= 2149580807decimal

(5.3)

ii. Create entities of the first 8 x 32 S-Box using Equation 5.3 as follows:

First entity = 2149580807decimal∗Random(2149580807decimal+1)mod232

Second entity = 2149580807decimal∗Random(2149580807decimal+2)mod232

Third entity = 2149580807decimal∗Random(2149580807decimal+3)mod232,

until to the last entity.

Last entity = 2149580807decimal∗Random(2149580807decimal+256)mod232.

iii. Then, after creating the first new 8 x 32 S-Box, say SBox1(XY), the

following three S-Boxes are derived from the newly created S-Box, that

is, SBox1(XY):

SBox2(XY) = SBox1(XY) >>> 2;

SBox3(XY) = SBox1(XY) >>> 2;

SBox4(XY) = SBox1(XY >>> 2);

Whereas the >>> 2 operator is a (twice right rotational shift of bits),

the original Camelia used <<< 1 (once left rotational shift of bits).

Considering that they are derived from the created 8 x 32 SBox1(XY),

then, SBox2(XY), SBox3(XY), and SBox4(XY) are now 8 x 32 S-

Boxes.

iv. Create a for loop that runs from 0 to 7, as shown below: for(i) where

i = 0, 1, 2, ..., 7 FirstInput = X[i]⊕ k[7− i] where k[i] are Y subkeys

156

and X[i] is any input that is required to be used as SBoxi(XY) input

Y. This is equal to X[i] ⊕ k[7 − i] = XY .

v. Replace SBoxi(XY) with SBoxi(FirstInput). Take note that SBoxi(FirstInput)

is now 32-Bit, and generate four 8-Bit from 32-Bit as v[i] where i =

0, 1, 2, 3, 4. Keep v[i] for the Khumbelo function to return the value.

The v[i] are generated by mod 32 and dividing 32-Bit segments. Since

the modulo operator is irreversible, Modulo 32 confuses intruders from

constructing the distinguishers.

vi. SBoxi(XY) should be changed to SBoxi(SecondInput), where SecondInput =

z1 ⊕ z2 ⊕ z3 ⊕ z4. Keep in mind that SBoxi(SecondInput) is now 32-

Bit; generate four 8-Bit from 32-Bit as W [i], where i = 0, 1, 2, 3, 4. The

W [i] are generated by dividing 32-Bit into segments and using mod 32.

Since the modulo operator is irreversible, Modulo 32 confuses intruders

from conducting the attacks. Save the value of W [i] to be used in the

Khumbelo function.

vii. The Khumbelo function is defined above as a function that returns v[i]

and W [i] using 8 x 32 S-Boxes. Fiestel function will call the v[i] and

W [i] variables.

viii. Modify the original Camellia’s Feistel function to use the v[i] and W [i]

from the Khumbelo function as follows:

z1 = y8 ⊕ y7 ⊕ y6 ⊕ v[4] ⊕ v[3] ⊕ v[1]

z2 = y8 ⊕ y7 ⊕ y6 ⊕ v[4] ⊕ v[3] ⊕ v[1]

z3 = y8 ⊕ y6 ⊕ y5 ⊕ v[3] ⊕ v[2] ⊕ v[1]

z4 = y7 ⊕ y6 ⊕ y5 ⊕ v[4] ⊕ v[3] ⊕ v[2]

z5 = y8 ⊕ y7 ⊕ y6 ⊕W [2] ⊕W [1]

z6 = y8 ⊕ y7 ⊕ y5 ⊕W [3] ⊕W [2]

157

z7 = y8 ⊕ y6 ⊕ y5 ⊕W [4] ⊕W [3]

z8 = y7 ⊕ y6 ⊕ y5 ⊕W [4] ⊕W [1]

The study expanded the preceding explanation using C++ code.

Table 5.2 is the original 8 x 8 first S-Box (1-Byte output S-Box) of Camel-

lia, which is vulnerable to many attacks before applying the Khumbelo func-

tion. Appendix C, Figure C.1 is the C++ code of Table 5.2. Appendix

C, Figure C.1 becomes 8 x 32 (4-Byte output S-Box) after the Khumbelo

function is applied, as shown in C++ code in Appendix C, Figure C.2. The

C++ code of the Khumbelo function is embedded in the new K Camellia as

shown in Figure 5.4.

Figure 5.5 depicts the original Feistel function of Camellia before the

Khumbelo function is embedded. Figure 5.5 is changed to Figure 5.6 af-

ter the implementation of the Khumbelo function in the newly K Camellia,

which shows how v[i] and W [i] are returned from the Khumbelo function.

5.5.1 Mathematical Explanation of the Khumbelo Func-

tion
Assume an intruder knows the values of the v[i] and W [i]. To reverse

engineer the Khumbelo function input using v[i] and W [i], the intruder must

first know the exact value of (Output[0]%32) and (Output[1]%32) as shown in

Figure 5.4. In C++ programming, %32 is modulo 32. Also, (Output[0]) and

(Output[1]) are 32-Bit variables from the newly generated 8 x 32 S-Box. An

8-Bit number is any number modulo 32. As a result, regardless of whether

G%32 = D8−Bit will always be 8-Bit because G is driven by %32. If an

intruder knows the value of D, it does not follow that it is simple to solve

and find the ”exact” value of G using G%32 = D8−Bit.

For example, suppose the intruder knows the value of D8−Bit = 21 =

0x15hexadecimal. It is worth noting that the prefix 0x represents hexadecimal

notation. To calculate an exact value of G that is 32-Bit using G%32 =

0x15hexadecimal, the value G yields a long list of non-constant numbers that

158

confuse the attackers, such as G being equal to one of the following numbers:

0x100336b5, 0x1045b1f5, 0x20024ff5, 0x20130b95, 0x30016755, 40016ff5,

and others not mentioned since the roots of G yields long list to satisfy the

condition of G%32 = 0x15hexadecimal.

The intruder will have to learn which root was used as an exact value in

the list to reverse engineer the Khumbelo function input. As a result, the

Khumbelo function is irreversible because it contains more %32 values. The

preceding mathematical explanation explained the confusion and diffusion

properties of the Khumbelo function, as well as the benefits of the proper-

ties.

Assume the intruder is aware of the values of the 8-Bit variables v[i] and

W [i]. Since the Khumbelo function is a hash function, it is also difficult

to guess the values of SubstitutionBox. According to the explanation, it

takes 32-Bit input and produces 8-Bit output. Refer to Figure 5.4 for more

information. The hash function is difficult to crack in cryptography. Consult

hash literature reviews.

The Khumbelo function employs an 8 x 32 S-Box resistant to the con-

struction of many distinguishers, such as LAT, DDT, and DLCT. Since the

Khumbelo function is a hash function, it is resistant to many known at-

tacks [208].

5.6 Materials and Methods Used
The materials used in this study were C++ codes to attack, construct

the distinguishers, measure the probability of guessing the key, and measure

the encryption strength. The codes were applied on AES, DES, Camellia,

and K Camellia.

159

Figure 5.4: C++ Khumbelo Function

160

Figure 5.5: C++ standard Fiestel Function before Khumbelo Fuction was

Applied

161

Figure 5.6: C++ Modified Fiestel Function after Khumbelo Fuction was

Applied

162

5.6.1 Why DES?
In cryptography, most attacks are tested on DES before being applied

to complicated algorithms like Camellia. DES is no longer used for secur-

ing confidential information but for testing and verifying the new upcoming

methods to be applied to complex algorithms like Camellia. DES is no longer

secure since it can be easily broken by spooks and the Electronic Frontier

Foundation (EFF) [209]. DES is also used to teach cryptography to new

students in cryptology classes. Before analyzing all theories on Camellia,

this study tested all theoretical attacks, codes, and methods on DES to en-

sure that the Khumbelo function worked as expected on Camellia. Hence,

the DES is included in this study even though it is no longer used in the

practical world. The focus was to compare Camellia (before applying the

Khumbelo function) with the new K Camellia (after using the Khumbelo

function).

The cryptographic attacks rely on the construction of S-Box distinguish-

ers. The differentiators are probability tables that aid attackers in locating

secret keys. If S-Box outputs have a few bits, the distinguisher has a high

chance of guessing the key. LAT, DDT, and DLCT are the most commonly

used distinguishers. According to Camellia’s literature review, all attacks

are related to LAT, DDT, and DLCT construction. The materials applied

in this study are C++ programs designed to validate the Camellia attack

literature review theory. These C++ programs are as follows:

i. LAT’s C++ code. Intruders use LAT to attack complex algorithms

with LC-related variant attacks (or attacks derived from LC), such as

zero-correlation linear distinguishers attacks [210].

ii. DDT’s C++ source code. DDT attacks Camellia using DC-related

variant attacks (or DC-derived attacks) like a boomerang and truncated

differential attacks [187].

iii. DLCT’s C++ code launches DL-related variant attacks (or attacks

163

derived from DL) against Camellia. Such as LC and DC attacks.

iv. The study used Avalanche Effect C++ code for calculating encryption

strength. The Avalanche Effect investigates the significance of cipher-

text change when one bit of plaintext or key is flipped, regardless of

the algorithm components [211]. When the Avalanche Effect is consid-

ered, an algorithm may have significant encryption strength but still

be vulnerable to attack if intruders identify weak components. Strict

Avalanche Criterion (SAC) is also calculated using the Avalanche Ef-

fect [212]. SAC is passed if the encryption strength from the Avalanche

Effect is between 45% and 55%; otherwise, the algorithm fails the SAC

criterion [212].

Page 11 of [100] gave the theory construction of the first LAT of DES’s

first S-Box. The study analyzed the theory of constructing LAT using the

experimental C++ code of LAT to compare outputs and verify the code. The

S-Box used is 4 x 4, as shown in Table 5.3. Equation 5.4 is used to calculate

LAT [213]. The study conducted the experimental C++ code of LAT. The

results correspond to the LAT’s theoretical results, which are given on page

11 of [100].

Table 5.3: Simplified DES’s S-Box

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SBox(X) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

LAT (Xi, Yi) =
4⊕

i=1

(γXi) ⊕
4⊕

i=1

(ℵYi) (5.4)

Where γϵ[1, 0] and ℵϵ[1, 0]. The results LAT (Xi, Yi) can be tabulated as

LAT.

164

Page 21 of [100] gave the theory construction of the first DDT of DES’s

first S-Box. The study analyzed the theory using the experimental C++ code

of DDT to compare and verify the code. Equation 5.5 is used to calculate

the DDT. The study conducted the DDT’s experimental C++ code. The

experimental results correspond to the theoretical results given DDT on page

21 of [100].

DDT (Xi, Yi) =
4∑

i=1

(Xi ⊕ Yi)(SBox(Xi) ⊕ SBox(Yi)) (5.5)

On page 157 of [211], the theoretical calculation of the Avalanche Effect

of DES when one bit of plaintext is flipped was examined. The bit change

difference from page 157 of [211] is 39. The researchers created a C++ pro-

gram to calculate the Avalanche Effect of DES when one bit of plaintext is

flipped in round 10. The study validated the C++ Avalanche Effect code

against the theory presented on page 157 of [211]. The study conducted the

experimental C++ code for the DES Avalanche Effect with a ciphertext bit

change difference of 39.0000 when the plaintext was changed from 00000000

to 00000001. The study performed the C++ bit flipping from left to right,

changing one bit in each event until 00000001 was reached. When the plain-

text string was 00000001, the Avalanche Effect of DES was the same as the

theoretical Avalanche Effect given on page 157 of [211]. The study conducted

the experimental key Avalanche Effect for an encryption key. The results rep-

resent the key Avalanche Effect in percentage, which was 43.627030 percent.

The result of 43.627030 percent was roughly equal to the theoretical develop-

ment of 43.8721 percent given on page 97 of [215]. The Serpent’s S-Boxes are

DES S-Boxes [216]. The theory construction of the first DLCT of Serpent’s

first S-Box is given on page 9 of [216]. This study analyzed the experimental

C++ code of DLCT to compare and verify the code. The study conducted

the experimental C++ code of DLCT. The results corresponded to the the-

oretical DLCT given on page 9 of [216]. The S-Box used was 4 x 4 size, as

165

shown in Table 5.4. The DL attack is a mathematical approach for cracking

ciphers that use S-Boxes to construct DLCT and guess the secret keys.

Table 5.4: First S-Box of Serpent defined as SBox0(X)

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SBox0(X) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C

InvSBox0(X) D 3 B 0 A 6 5 C 1 4 4 7 F 9 8 2

An intruder selects input (plaintext) pairs of an S-Box (ϱ1, ϱ2) and ana-

lyzes the output (ciphertext) pairs (§1, §2) to construct DLCT using Equation

5.6. There is ∆, which is calculated as ϱ1 ⊕ ϱ2 and κ, which is calculated as

§1⊕§2 from Equation 5.6. The dot operator is used for multiplication, which

means that bits are multiplied rather than entire bytes.

DLCT (∆,κ) =
∑

SBoxi(x)ϵ[1,0]

(−1)κ.(SBoxi(x)⊕SBoxi(x⊕∆)) (5.6)

After verifying all the developed C++ code for this study using DES for var-

ious attacks, the study deployed all of the above codes on Camellia, knowing

that the materials (C++ codes) are tested and working correctly on DES.

5.6.2 Why AES?

AES was also used to compare Camellia and K Camellia. Given that

Camellia is a block cipher with the same level of security as AES and is used in

OpenSSL and TLS, it was reasonable to assume that the vulnerability could

have widespread consequences. The research described and compared AES

susceptibility. Instead of using DES S-Box alone given in Table 5.4, the study

used AES S-Box given in Appendix C, Figure C.3 to calculate LAT, DDT,

and DLCT of AES. Additionally, the study calculated the AES Avalanche

Effect. For the plaintext Avalanche Effect, AES yielded the Avalanche Effect

of 50.5371%. AES yielded the ciphertext Avalanche Effect of 49.5788%.

166

5.7 Related Work of Cryptographic Attacks

on Camellia
. According to the findings, intruders attack the Camellia algorithm

with various attacks such as the LC, DC, boomerang, truncated differen-

tials, Meet-in-the-Middle, impossible differential, and zero-correlation linear

attacks using different distinguishers.

According to Wagner [200], the boomerang attack was based on a DC

attack. Biryukov [217] confirmed Wagner [200]’s statement and added that

the boomerang attack could combine the truncated differentials and Meet-in-

the-Middle approach [217]. Dunkelman, Keller, Ronen, and Shamir [218] also

confirmed that the boomerang attacks were derivatives of differential attacks

that allowed the incorporation of two irrelevant differential properties, q, and

p.

According to the above statements, this study also looked into Camel-

lia’s DC, truncated differentials, and Meet-in-the-Middle attacks, as these

were the foundations of the boomerang attack. Even if intruders attacked

Camellia, the study by Burak and B LaszyŃski [219] discovered that users of

IoT devices still implemented Camellia on the OpenMP Application Program

Interface (API).

According to Yap, Khoo, and A. Poschmann [197], the Camellia algorithm

was attacked using the boomerang. Yap, Khoo, and A. Poschmann [197] con-

verted the traditional Feistel structure into a two-cell GF-NLFSR network

while preserving all other building blocks, such as S-Boxes and linear distri-

bution mapping. Compared to the Camellia algorithm, the p-Camellia was

more resistant to boomerang attacks [197].

According to Aoki et al. [198], the best boomerang option for Camellia

was to reduce Camellia to 8-round, which was bounded at 2−66 and acquired

by pδ = 2−12 of 3-round and pδ = 2−54 of 5-round. Aoki et al. [198] attacked

Camellia and indicated that the 3-round and 5-round attacks were much

167

faster than the full-round Camellia algorithm.

Shirai [220] used the boomerang attack to attack Camellia up to 9 rounds

on the reduced-version of Camellia. By analyzing and comparing the new

Meet-in-the-Middle attack results, Lu, et al. [199] confirmed Shirai [220]’s

work that intruders attacked Camellia. Matsui and Nakajima [221] recom-

mended that Camellia be used for Japanese e-Government platforms without

consideration of attacks.

According to Biryukov and Nikoli [222], the best procedure for discovering

the secret key using the boomerang attack was when the highest character-

istic was on the third round and the lowest on the fourth round, to give a

total of seven rounds of attack. Biryukov and Nikoli [222] discovered that

the boomerang attack’s probability of all active S-Boxes was more significant

than 2−128. Biryukov and Nikoli [222] attacked the reduced version of Camel-

lia up to 7 rounds because the probability was more significant than 2−128,

which was easy to attack. Biryukov and Nikoli [222] attacked Camellia for

more than seven rounds because the probability was less than 2−128.

Lee et al. [223] presented a truncated differential cryptanalysis attack of

altered Camellia that was reduced to 7 and 8 rounds. Lee et al. [223] discov-

ered the 8-Bit key on 7-round and the 16-Bit key on 8-round, with 3*281 and

3*282 plaintext, respectively. The other component of the boomerang attack

is the truncated differential cryptanalysis attack [217], [218]. Even if intrud-

ers attacked Camellia, Moriai and Kato [224] advocated for Camellia’s use

in Cryptographic Message Syntax (CMS) without consideration of attacks.

Bai and Li [225] successfully attacked the 11 rounds of Camellia-128,

11 rounds of Camellia-192, 12 rounds of Camellia-192, and 14 rounds of

Camellia-256 using impossible differential cryptanalysis attacks and time

complexity of 2123.6, 2121.7, 2171.4 and 2238.2, respectively.

Wu, Zhang, and Feng [226] discovered several nontransmissible 8-round

Camellia attacks using impossible differentials. Wu, Zhang, and Feng [226]

indicated that the intruders were aware of the maximum number of 7-round

168

attacks, which was feasible using impossible differentials. According to Wu,

Zhang, and Feng [226], the impossible differentials attack attacked the 12

rounds of Camellia with the chosen plaintext of 2120 and 2181. Even if intrud-

ers attacked Camellia, Poetro [227] recommended that Camellia be used in

cryptographic images (CIs).

Wu, Zhang, and Feng [228] used the relationship between subkeys and

the number of Camellia rounds, combined with several approaches in the

secret key retrieval technique, to improve the impossible differential attack

up to 12 rounds of Camellia-128 and 16 rounds of Camellia-256. Wu, Zhang,

and Feng [228] successfully attacked 12-round and 16-round plaintexts of 265

and 289, respectively. The illustrated results were more successful than any

previously publicized Camellia attack results by Wu, Zhang, and Feng [226].

Lu et al. [199] described the infrequent 5-round and 6-round effects of

Camellia and eventually used the infrequent to attack 10, 11, and 10 rounds

of Camellia using Meet-in-the-Middle attacks to discover the 128-Bit key, 192-

Bit key, and 256-Bit key, respectively. Even if intruders attacked Camellia,

Aoki et al. [198] indicated that Camellia was used in various platforms such

as software and hardware systems without considering attacks.

Mala, Dakhilalian, and Shakiba [229] introduced a hash table extension

technique. Mala, Dakhilalian, and Shakiba [229] used the hash table ex-

tension technique to attack the 16-round Camellia-256 hash table. Mala,

Dakhilalian, and Shakiba [229] continued to use the impossible differential

attack; the attack’s scope of the target subkey expanse was enormous, the

initial phases were conducted slowly, and the hash table extension technique

was very successful. According to Mala, Dakhilalian, and Shakiba [229], the

impossible differential cryptanalysis on Camellia-256 requires 2124.1 known

plaintexts with time complexity of 2249.3.

Liu et al. [230] exploited some fascinating key-dependent layer effects.

Liu et al. [230] improved previously published results on impossible differ-

ential cryptanalysis attacks on reduced-version Camellia and demonstrated

169

new attack scrutiny. Liu et al. [230] introduced some new seven rounds for

weak keys on Camellia using impossible differential attack. According to Liu

et al., [230], the weak keys that work on the impossible differential attack

took up to 75% of the keyspace. As a result, Liu et al. [230] decided to elim-

inate the weak-key speculation and used the multiplier approach to reduce

attacks on the reduced version of Camellia using the original keys. Second,

Liu et al. [230] constructed a slew of differentials containing at least one of

the eight rounds of Camellia using the impossible differential. Following that

new result, Liu et al. [230] demonstrated that the key-dependent transforma-

tions inserted in Camellia could not effectively resist impossible differential

cryptanalysis.

Liu et al. [230] presented a new attack method to scale impossible dif-

ferential attacks on the reduced version of Camellia based on the set of dif-

ferentials. Despite being attacked by intruders, the Camellia algorithm was

still used in IoT protocols [215].

Liu et al. [195] used the zero-correlation linear cryptanalysis attack and

investigated Camellia’s security. Following the discovery of specific weak

keys, Liu et al. [195] proposed some unique properties of the Camellia’s

FL/(FL)−1 functions. Accordingly, Liu et al. [195] built the first known eight

rounds of zero-correlation linear distinguisher of Camellia with FL/(FL)−1

layers for the described weak keys.

The distinguisher covered the same number of rounds as the best-known

zero-correlation as the linear distinguisher for Camellia without FL/(FL)−1

layers. Liu et al. [195] indicated that FL/(FL)−1 layers could not prevent

zero-correlation linear cryptanalysis attack virtually for specific weak keys.

Then, Liu et al. [195] used that new distinguisher to demonstrate key retrieval

attacks on the 13 and 14 of Camellia-192, respectively. Even if the intruders

attacked the Camellia, Čiča [231] indicated that consumers still use Camellia

in modern communication networks.

The research discovered that most cryptographic attacks rely on distin-

170

guishers like LAT, DDT, and DLCT. Although the Camellia had been at-

tacked, the study focused on preventing these attacks by employing a novel

mathematical function known as the Khumbelo function before the entire

IoT platforms, devices, users, and confidential information on IoT are com-

promised.

The Khumbelo function distracted the distinguishers’ construction to pre-

vent these attacks. The Khumbelo function reduced the probability of LAT,

DDT, and DLCT attacks. If the S-Box has N-Bit input and M-Bit output,

that S-Box is defined as N x M S-Box or (M-Bit output S-Box if only output

bits/byte are considered). The Khumbelo function also converted a 1-Byte

output S-Box (8 x 8) of an original Camellia to a 4-Byte output S-Box (8 x

32). The 8 x 8 S-Box constructs distinguishers of 28 x 28 = 256 x 256 ma-

trices. The 256 x 256 matrices have a total of 65536 elements. Any ordinary

computer can compute the 256 x 256 matrices. The 8 x 32 S-Box constructs

distinguishers of 28 x 232 = 256 x 4294967296 matrices with an expected

element count of 1099511627776. Due to computational space, an ordinary

computer could not compute 256 x 4294967296 matrices. The study used the

Khumbelo function in Camellia to distract the construction of distinguishers

(attack engines) from preventing the spread of attacks.

The Khumbelo function generated a 4-Byte output S-Box instead of an

original 1-Byte output S-Box in Camellia. Additionally, the Khumbelo func-

tion is composed of many modulo operators. The new 4-Byte output S-Box

and modulo operators confuse and block intruders to construct distinguish-

ers.

5.8 Methods of Applying the Khumbelo Func-

tion on Camellia
The entire research methodology was summarized based on the novel

approach of using the Khumbelo function to prevent multiple attacks. Refer

to Figure 5.7.

171

Figure 5.7: Research Methodology based on the Khumbelo

172

The methodology used the Khumbelo function to prevent the set number

of rounds against the attacks before the Camellia was attacked. The following

was the research methodology:

i. Select the Camellia algorithm from a list of IoT objects such as OpenMP,

API, e-Government platforms, CMS, CIs, IoT protocols, or IoT soft-

ware and hardware devices.

ii. Verify the accuracy of the Camellia using Camellia developers’ test

vectors.

iii. If Camellia does not produce Camellia developers’ test vectors, then

the algorithm collected from the IoT device is not Camellia. Repeat

step (i) with a different device. Assume that the OpenMP test vectors

do not correspond to the Camellia developers’ test vectors and that

OpenMP failed to produce the expected test vectors.

iv. Check to see if distinguishers like LAT, DDT, and DLCT can be built

with the original 8 x 8 S-Box (1-Byte output S-Box). If so, proceed to

step (v). Otherwise, repeat steps (i) - (iv) again.

v. On a Camellia, see if the boomerang, DC, trucked differential, Meet-

in-the-Middle, zero-correlation linear distinguisher, and LC attacks are

operable. If yes, proceed to step (vi). Otherwise, repeat steps (i) - (iv)

again.

vi. Make use of the Khumbelo function. Use the newly generated 8 x 32 S-

Box (4-Byte output S-Box) as shown in Figure 5.4. Refer to Appendix

C, Figure C.2.

vii. Replace the old Feistel function with the 8 x 32 S-Box generated using

the Khumbelo function. That is, replace Figure 5.5 with Figure 5.6.

173

viii. Check to see if distinguishers like LAT, DDT, and DLCT can be built

with the newly generated 8 x 32 S-Box generated using the Khumbelo

function. Refer to Appendix C, Figure C.2. If so, repeat steps (vi) -

(viii) . Otherwise, proceed to step (ix).

ix. Check whether the boomerang, DC, trucked differential, Meet-in-the-

Middle, zero-correlation linear distinguisher, and LC attacks can be

carried out on a K Camellia, as stated in a literature review. If so,

repeat steps (vi) through (ix). Otherwise, proceed to step (x).

x. Accept a new K Camellia protected by the Khumbelo function as the

recommended cipher against boomerang, DC, trucked differential, Meet-

in-the-Middle, zero-correlation linear distinguisher, DC, and LC at-

tacks when compared to the Camellia cipher.

5.9 Theoretical Analysis and Discussion
This study’s theoretical analysis was based on C++ program experiments

and mathematical analysis to validate the theoretical results of attacks pre-

sented in literature reviews. Before applying K Camellia, the theoretical

analysis was performed on DES, AES, and Camellia. The reason was that

there was a lot of literature review on DES, AES, and Camellia before apply-

ing the code to K Camellia. There will be no literature review of K Camellia

because it is a new algorithm developed in this study. To validate theoretical

analysis using codes, S-Boxes of DES were used.

It should be noted that DES was used in cryptology for learning and

testing purposes, according to [209]. Before attempting to attack any com-

plex algorithm such as Camellia, cryptologists first test the attack codes on

DES [209]. The study compared and verified the theoretical results using

code by analyzing the theory construction of the first LAT of DES’s first

S-Box, on page 11 of [100]. The results were consistent with the theoretical

results presented by LAT on page 11 of [100]. In the study, the LC attack

174

on DES was carried out using LAT. The findings confirmed that DES was

susceptible to LC attack.

The C++ experimental results of LAT construction were shown in Fig-

ure 5.8 to validate theoretical results given on page 11 of [232]. During the

LC attack on DES, the theoretical LAT on [100] was used to calculate the

probability of guessing the key, the number of rounds to attack, and the com-

plexity. By using C++ experimental LAT in Figure 5.8, this study confirmed

the theory presented in [232].

Figure 5.9 depicted the C++ experimental results of DDT construction

to validate the theoretical results presented on page 4 of [233]. During the

DC attack on DES, the theoretical DDT on [233] was used to calculate the

probability of guessing the key, the number of rounds to attack, and the

complexity. This study validated the theory presented on [233] by employing

C++ experimental LAT in Figure 5.9.

The C++ experimental results of DLCT construction were shown in Fig-

ure 5.10 to validate the theoretical results given on page 9 of [216]. During

the DL attack on DES, the theoretical DLCT on [216] was used to calculate

the probability of guessing the key, the number of rounds to attack, and

the complexity. Using C++ experimental LAT in Figure 5.10, this study

confirmed the theory given on [216].

This research only provided the experimental LAT, DDT, and DLCT

of DES. Other algorithms’ experimental LAT, DDT, and DLCT in C++

required more than four pages to display. As a result, the distinguishers

were not displayed in this study. For example, the C++ experimental LAT,

DDT, and DLCT of an 8 x 8 S-Box of Camellia was a 28 x 28 matrix, which

was 256 x 256 matrix that required five pages to display each. Imagining

the display of the C++ experimental LAT, DDT, and DLCT an 8 x 32

S-Box of K Camellia, which would be the matrix of 28 x 232, which was

theoretically calculated as 256 x 4294967296 matrix each, more 500000 pages

would be required to display these matrices. As a result, the distinguishers of

175

other algorithms were not included in this study, but the study did conduct

and analyze the C++ experimental results of the omitted distinguishers.

Section 5.10 contains more information on the theoretical and experimental

attack. The same method was used to analyze all algorithms. Refer to Table

5.5 up to Table 5.10.

Figure 5.8: C++ Results of LAT

176

Figure 5.9: C++ Results of DDT

177

Figure 5.10: C++ Results of DLCT

The study examined the memory required to install all algorithms us-

ing C++ code. For example, to obtain the memory required to install the

DES algorithm, the DES file was accessed via C++, and the code calcu-

lated the file size. Refer to Figure 5.11 for more information. After calling

the DES.CPP file, the size of the DES. CPP file was calculated to be 15019

Bytes. On page 79 of [214], 15019 Bytes confirmed theoretical results of 15

Megabytes of DES. The same method was used to analyze all algorithms.

Refer to Table 5.20 and Figure 5.19 for more information.

The theoretical results of the Avalanche Effect of AES on [215], indicating

that AES passed SAC, were analyzed using C++ coding in the study. Fig-

ure 5.12 depicted the C++ experimental results of AES’s plaintext Avalanche

Effect. Other algorithms’ Avalance Effects were also tested using the code.

Only the plaintext of the Avalanche Effect of AES was displayed in this study

to demonstrate an executable file and how the Avalanche Effect was calcu-

lated and confirmed. The same method was used to analyze all algorithms.

178

Figure 5.11: Memory Needed for DES in C++

For more information, refer to Table 5.12 and 5.11.

Furthermore, the zero-correlation linear distinguisher attack is a variant

of the LC attack, as cited in [210], [187]. When the plaintext/ciphertext

pair N was chosen, Equation 5.7 predicted that p = |N
16
| > 0 from LAT. In

round 8, the study guessed the position of key bits by using a 234 chosen-

plaintext/ciphertext pair. Because zero-correlation linear distinguisher at-

tacks are a variant of the LC attack, the results confirmed that DES was vul-

nerable to them [210], [187]. If the LAT contained a -6 occurrence, p > |−6
16
|

was used.

∆ ⊂ ⊕∆ϱ⊕ SBox(K, ϱ) = ∆K

where ⊂= Ciphertext, ϱ = Plaintext and K = Key
(5.7)

Assume that the probability is p = |1
2
| = 0, Equation 5.8 holds, but ob-

taining key bits is difficult because S-Box is not included in the equation, and

the LAT probability of guessing the key is low, less than 1
2
. Then Equation

5.8 is insignificant.

∆ ⊂ ⊕∆ϱ = ∆K

where ⊂= Ciphertext, ϱ = Plaintext and K = Key
(5.8)

179

Figure 5.12: AES’s Plaintext Avalanche Effect in C++

180

LAT has been used in LC-related variant attacks (attacks derived from

LC), such as zero-correlation linear distinguishers attacks, according to [210].

The study used LC and zero-correlation linear distinguishers attacks on

Camellia, which were influenced by Bogdanov and Vejre’s theoretical analysis

results [210]. The experimental results corroborated the theoretical findings

in [210]. Camellia was found to be vulnerable to LC attacks and a variant of

LC attacks (zero-correlation linear distinguisher attack).

The study compared and verified the experimental C++ code of DDT

with the theory construction of the first DDT of DES’s first S-Box on page

21 of [100]. The DDT’s experimental C++ code was used in the study. The

results were consistent with the theoretical results presented by DDT on

page 21 of [100]. In the study, the DC attack on DES was carried out using

DDT and Equation 5.2. The experimental results matched the theoretical

findings on page 21 of [100]. The boomerang, truncated differentials, Meet-

in-the-Middle, and impossible differential attacks are variants (derivations)

of the DC attack, according to [100]. The findings confirmed that DES was

vulnerable to DC attacks and variants (boomerang, truncated differentials,

Meet-in-the-Middle, and impossible differential attacks).

When K ⊕ ϱi and K ⊕ ϱj are 4 and 8, respectively, and ϱi and ϱj are 2

and 4, respectively, the probability of guessing the correct key using DDT is

2. That is 8, 2, or 4 digits. The study tested 2 and 4 to find the valid key

and discovered that the correct key is 4.

According to [187], the boomerang and truncated differential attacks are

variants of DC attacks. Camellia was attacked with the boomerang and trun-

cated differential attacks in this study. The study examined the theoretical

calculation of the Avalanche Effect of DES when one bit of plaintext was

flipped in round 10 on page 157 of [211]. The bit difference between page

157 of [211] is 39. When one bit of plaintext was flipped in round 10, the

researchers wrote a C++ program to calculate the Avalanche Effect of DES.

The reason was to compare the C++ Avalanche Effect code to the theory on

181

page 157 of [211].

After changing the plaintext from 00000000 to 00000001, the study ran

the experimental C++ code for the DES Avalanche Effect with a ciphertext

bit change difference of 39.0000. The experiment flipped bits from left to

right, changing one bit in each event until 00000001. The Avalanche Effect

of DES was the same as the theoretical Avalanche Effect given on page 157

of [211] when the plaintext string was 00000001.

According to [216], the Serpent’s S-Boxes are DES S-Boxes. This study

analyzed the theory construction of the first DLCT of Serpent’s first S-Box,

which was given on page 9 of [216], and tested the experimental C++ code

of DLCT to compare and verify the code. The DLCT experimental C++

code was used in the study. The experimental results were consistent with

the theoretical results presented by DLCT on page 9 of [216].

The research was based on experimental procedures using C++ codes for

distinguisher constructibility. LAT, DDT, and DLCT were the distinguish-

ers. The study discovered that these distinguishers were the most valuable

and necessary tools for administering the majority of cryptographic attacks.

Many cryptographic attacks would only be possible to carry out with these

distinguishers. For example:

i. The DC attack used DDT to succeed [180], [196].

ii. The LC attack relied on LAT to succeed [100].

iii. DDT was used to help the boomerang attack succeed. Refer to page 4

of [185].

iv. Truncated differential thrived on DDT. Refer to page vii of [186].

v. A zero-correlation linear attack was a variation (derivation of) the LC

attack [187]. Also, refer to page 119 of [189].

vi. DDT was used to succeed in a Meet-in-the-Middle attack. Refer to

page 136 of [188].

182

vii. The DL attack used DLCT to succeed. Refer to page 9 of [216].

These distinguishers provide intruders with a probability table for guess-

ing any algorithm’s secret keys. The study discovered that because all attacks

were based on distinguishers, therefore no construction of distinguishers, no

attacks [199], [203]. As a result, this study aimed to use the Khumbelo

function to prevent cryptographic attacks on Camellia.

Imagining the display of the C++ experimental LAT, DDT, or DLCT

an 8 x 32 S-Box of K Camellia, which would be the matrix of 28 x 232,

which was theoretically calculated as 256 x 4294967296 matrix each. No

ordinary computer could compute and execute the 256 x 4294967296 matrix

using C++. The program crashed before execution. Hence the study found

that executing the 256 x 4294967296 matrix was impractical. Theoretically,

if there are no LAT, DDT, or DLCT, then there are no LC-related, DC-

related, or LC-related attacks. Therefore, the Khumbelo function protected

K Camellia against cryptographic attacks.

The Khumbelo function hampered the development of these distinguish-

ers. The Khumbelo function is generated using a 4-Byte output S-Box instead

of an original 1-Byte output S-Box in Camellia. Additionally, the Khumbelo

function is composed of many modulo operators. The new 4-Byte output

S-Box and modulo operators confuse and block intruders to construct distin-

guishers.

5.10 Results of Cryptographic Attacks on Camel-

lia
The Khumbelo function distracted the distinguishers’ construction to pre-

vent these attacks. The Khumbelo function decreased the probability of LAT,

DDT, and DLCT attacks. If an S-Box has N-Bit input and M-Bit output, it

is defined as N x M S-Box or (M-Bit output S-Box if only output bits/byte

are considered). The Khumbelo function also converted an original Camel-

183

lia’s 1-byte S-Box (8 x 8) to a 4-byte S-Box (8 x 32) output. The 8 x 8

S-Box constructs distinguishers for matrices of 28 x 28 = 256 x 256. There

are 65536 elements in the 256 x 256 matrices. Any ordinary computer can

compute the 256 x 256 matrices. The 8 x 32 S-Box constructs distinguishers

of matrices of 28 x 232 = 256 x 4294967296 with an expected element count of

1099511627776. An ordinary computer could not compute 256 x 4294967296

matrices due to computational space constraints. The Khumbelo function in

Camellia was used in the study to distract the construction of distinguishers

(attack engines) from preventing the spread of attacks. The results of the

construction feasibility of LAT, DDT, and DLCT on different sizes of S-Boxes

were shown in Table 5.5 5.6 and 5.7, respectively. The results showed that it

was impossible to construct distinguishers after applying the Khumbelo func-

tion due to the memory required to construct a matrix of 256 x 4294967296

matrices with a total of 1099511627776 entities. Refer to Table 5.5, 5.6 and

5.7 for more information.

The code for generating distinguishers for a new 4-Byte output S-Box

failed before construction due to the amount of memory required by a com-

puter to run, display, and execute a 256 4294 967 296 matrix. A maximum

of 264 memory allocation was required when building any distinguishers on a

laptop. Calculating 232 x 256 necessitates more memory allocation than 264,

which is impractical. Due to memory constraints in a computer, the research

confirmed that it was impractical to create a table or any distinguishers of

2564 294 967 296. Storage limits on Macintosh (Apple) and Microsoft (HP)

computers were 264, resulting in a complicated construction of distinguishers

for the various attacks. Calculating the probabilities of guessing a secret key

using a 32-Bit output S-Box was impractical. Tables and graphs were used

in this study to analyze and discuss the findings. Table 5.8 and Figure 5.13

showed the LAT results of DES, AES, Camellia, and K Camellia.

DES, AES, and Camellia had probabilities of 37.5 percent, 54.6875 per-

cent, and 54.6875 percent, respectively. Any attack that relied on LAT’s

184

probabilities could quickly attack DES, AES, and Camellia. The study con-

firmed the theoretical results found in [100], [101], and [104] because the

experimental results were the same. For more information, refer to Table

5.8 and Figure 5.13. Furthermore, Table 5.8 and Figure 5.13 demonstrated

that constructing LAT of K Camellia using 8 x 32 S-Box newly generated

using the Khumbelo function was impossible.

Table 5.9 and Figure 5.14 show the DDT results of DES, AES, Camellia,

and K Camellia. Figure 5.14 showed 0% DDT results because no DDT was

constructed due to computer memory constraints.

The probability of guessing the DES, AES, and Camellia keys were 6.25

percent, 1.5625, and 1.5625 percent, respectively. These findings suggest

that any DDT-based attack could use the probabilities discovered in DDT

to attack DES, AES, and Camellia. The study confirmed the theoretical

results found in [100], [234], and [104] because the experimental results were

the same. For more information, refer to Table 5.9 and Figure 5.14. Fur-

thermore, Table 5.9 and Figure 5.14 demonstrated that it was impossible to

construct DDT of K Camellia using 8 x 32 S-Box newly generated using the

Khumbelo function.

The DLCT results of DES, AES, Camellia, and K Camellia were shown

in Table 5.10 and Figure 5.15. Table 5.10 and Figure 5.15 show the DLCT

results of DES, AES, Camellia, and K Camellia. The probabilities for DES,

AES, and Camellia were 50%, 50%, and 50%, respectively. These findings

suggest that any DLCT-based attack could use the probabilities discovered

in DLCT to attack DES, AES, and Camellia. The study confirmed the

theoretical results found in [100], [216], and [104] because the experimental

results were the same. For more information, refer to Table 5.10 and Figure

5.15. In addition, Table 5.10 and Figure 5.15 demonstrated that the DLCT

of K Camellia could not be constructed using an 8 x 32 S-Box generated using

the Khumbelo function. Figure 5.15 showed 0% DLCT results because no

DLCT was constructed due to computer memory constraints.

185

The study discovered that because all attacks were based on distinguish-

ers, there would be no attacks [199], [203]. As a result, the goal of this study

was to use the Khumbelo function to prevent several Camellia attacks. The

development of these distinguishers was blocked by the Khumbelo function.

On a standard computer, it would be impossible to build all 8 x 32 S-Box

distinguishers. In Camellia, the Khumbelo function was generated using a

4-Byte output S-Box rather than the original 1-Byte output S-Box. Further-

more, the Khumbelo function contained a large number of modulo operators.

Intruders were confused and prevented from constructing distinguishers by

the new 4-Byte output S-Box and modulo operators.

As shown in Table 5.11 and Figure 5.16, the key Avalanche Effect of DES

was 43.6270%, which was outside the required SAC criterion range (between

45% and 55%). As a result, DES failed to pass the critical Avalanche Effect.

The AES, Camellia, and K Camellia met the SAC criterion because their key

Avalance Effects were 50.6184, 49.5788, and 50.5666 percent, respectively.

Table 5.11 and Figure 5.16 show that the AES, Camellia, and K Camellia

met the criterion because their SACs were between 45% and 55%. The study

confirmed the theory results in [215], which stated that DES failed the SAC

criterion by 43.8720%, close to the experimental results of 43.6270%. The

study also confirmed the theoretical findings in [215], which stated that AES

and Camellia met the SAC criterion by 49.0661% and 49.6093%, respectively.

Camellia met the SAC criterion by 49.0661% and 49.6093%, respectively,

according to the theoretical and experimental AES results. K Camellia is a

novel algorithm developed for this study. As a result, theoretical results are

still unavailable. Refer to Table 5.11 and Figure 5.16.

As shown in Table 5.12 and Figure 5.17, the plaintext Avalanche Effect

of DES was 62.1337%, which was outside the required SAC criterion range

(between 45% and 55%). As a result, DES failed the plaintext Avalanche

Effect. The AES, Camellia, and K Camellia met the SAC criterion because

their plaintext Avalance Effects were 50.5371, 50.2502, and 49.3774 percent,

186

respectively. Table 5.12 and Figure 5.17 show that the AES, Camellia, and

K Camellia met the criterion because SACs ranged between 45% and 55%.

The study confirmed the theory results in [215], which stated that DES failed

the SAC criterion by 62.8662%, close to the experimental results of 62.1337%.

The study also validated the theoretical results in [215], which stated that

AES and Camellia met the SAC criterion by 49.7924% and 49.4689%, respec-

tively. According to the theoretical SAC criterion results, Camellia met the

SAC criterion by 50.5371% and 50.2502%. K Camellia is a novel algorithm

developed for this study. As a result, theoretical results still need to be made

available. For more information, refer to Table 5.12 and Figure 5.17.

The speed of DES, AES, Camellia, and K Camellia using C++ codes

in an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 GHz of HP during

encryption of a 256 Megabyte (MB) file was measured in the study. According

to the results of the experiments, the speeds of DES, AES, Camellia, and

K Camellia were 41.08 MB/second, 55.44 MB/second, 55.43 MB/second, and

52.54 MB/second, respectively. As a result, DES was the slowest algorithm,

with a speed of 41.08 MB/second, followed by K Camellia, which had a speed

of 52.54 MB/second. AES and Camellia had nearly identical speeds of 55.44

MB/second and 55.43 MB/second, respectively. For more information, refer

to Table 5.13 and Figure 5.18.

The theoretical results showed that the speeds of DES, AES, and Camel-

lia were 21.34 MB/second, 48.23 MB/second, and 77.34 MB/second, re-

spectively. As a result, DES was the slowest algorithm, with a speed of

21.34 MB/second, followed by AES, which had a speed of 48.23 MB/second.

Camellia, with a speed of 77,34 MB/second, was the fastest algorithm com-

pared to DES and AES. K Camellia is a novel algorithm developed for this

study. As a result, theoretical results still need to be made available. All the-

oretical results were discovered using [235] and [198]. For more information,

refer to Table 5.13 and Figure 5.18. Because this study used an Intel(R)

Core(TM) i7-3770 CPU @ 3.40GHz instead of the machines used in [235]

187

and [198], the theoretical results were unrelated to the experimental results.

Refer to [235] and [198] for more information on machines used in theoretical

results.

The experimental and theoretical results of the number of rounds at-

tacked, where the key was discovered on each algorithm during the LC, DC,

and DL attacks, were shown in Table 5.14, 5.15 and 5.16, respectively. DES

revealed the key in all rounds of the LC, DC, and DL attacks, resulting in

a 100% attack because the key was revealed in all 16 rounds. The DES

algorithm has 16 rounds.

AES revealed the key in 6 rounds during LC and DC attacks, that

42.8571% attack since AES is 14 round algorithm. AES revealed the key

after four rounds during the DL attack, a 28.5714% attack. Refer to Table

5.14, 5.15 and 5.16.

Camellia revealed the key after six rounds of LC, DC, and DL attacks,

resulting in a 42.8571% attack because Camellia is a 16-round algorithm. The

42.8571% attack occurred before Camellia was subjected to the Khumbelo

function. The results of the Khumbelo function showed that no keys were

revealed, and no round was attacked because there were no LAT, DDT, or

DLCT constructions. As a result, LC, DC, and DL attacks on K Camellia

were impossible. Refer to Table 5.14, 5.15 and 5.16.

The experimental and theoretical results of data complexity during LC,

DC, and DL attacks were shown in Table 5.17, 5.18, and 5.19, respectively.

DES demonstrated a key after complexity of 243, 242.5, and 242.5 during the

LC, DC, and DL attacks, respectively. AES demonstrated a key after com-

plexity of 2128, 2131, and 2238.5 during the LC, DC, and DL attacks, respec-

tively. In contrast, Camellia demonstrated a key after complexity of 2249.3,

2238.2, and 289 during the LC, DC, and DL attacks, respectively. That was be-

fore the use of the Khumbelo function. After applying the Khumbelo function

to the K Camellia, there was no complexity because the Khumbelo function

prevented the construction of all distinguishers used on attacks. Refer to

188

Table 5.17 to 5.19.

The memory allocation of various algorithms is shown in Table 5.20 and

Figure 5.19. DES required more memory, 16.805 Megabytes, than AES,

which required 13.388 Megabytes. As a result, regarding memory alloca-

tion, AES had a clear advantage over DES. Camellia and K Camellia, on

the other hand, required 8.924 and 8.985 Megabytes for memory allocation,

respectively. If 8.924 and 8.985 Megabytes were rounded off, Camellia and

K Camellia had a total memory allocation of 9 Megabytes for installation.

As a result, the Khumbelo function did not affect the memory of the original

Camellia compared to the K Camellia.

Table 5.5: Feasibility and Number of Entities needed to Construct LAT

Algorithm

Name

S-Box

size

Feasibility Number of Entities

DES 4 x 4 Easy to construct 24 x 24=256

AES 8 x 8 Easy to construct 28 x 28 = 65536

Camellia 8 x 8 Easy to construct 28 x 28 = 65536

K Camellia 8 x 32
Impossible to construct. No

ordinary computer can com-

pute each entity of 28 x

232 = 1099511627776 with-

out crashing due to mem-

ory constraints. Therefore

Khumbelo function blocked

the construction of LAT to

prevent LC attack.

28 x 232 = 1099511627776

All algorithms encrypted and decrypted the same image successfully. Re-

189

Table 5.6: Feasibility and Number of Entities needed to Construct DDT

Algorithm

Name

S-Box

size

Feasibility Number of Entities

DES 4 x 4 Easy to construct 24 x 24 = 256

AES 8 x 8 Easy to construct 28 x 28 = 65536

Camellia 8 x 8 Easy to construct 28 x 28 = 65536

K Camellia 8 x 32
Impossible to construct. No

ordinary computer can com-

pute each entity of 28 x

232 = 1099511627776 with-

out crashing due to mem-

ory constraints. Therefore

Khumbelo function blocked

the construction of DDT to

prevent DC attack.

28 x 232 = 1099511627776

190

Table 5.7: Feasibility and Number of Entities needed to Construct DLCT

Algorithm

Name

S-Box

size

Feasibility Number of Entities

DES 4 x 4 Easy to construct 24 x 24 = 256

AES 8 x 8 Easy to construct 28 x 28 = 65536

Camellia 8 x 8 Easy to construct 28 x 28 = 65536

K Camellia 8 x 32
Impossible to construct. No

ordinary computer can com-

pute each entity of 28 x

232 = 1099511627776 with-

out crashing due to mem-

ory constraints. Therefore

Khumbelo function blocked

the construction of DLCT to

prevent DL attack.

28 x 232 = 1099511627776

191

Table 5.8: Probability Results of LAT

Algorithm

Name

Experimental

Highest Prob-

ability

Theoretical Highest

Probability

Remarks

DES 6
16

= 37.5000% Same as theoretical re-

sults given by [100] that is

37.5000%

The results showed the

feasibility of LAT con-

struction on DES. There-

fore DES is vulnerable to

LC-related attacks

AES 144
256

= 56.2500% Same as theoretical re-

sults given by [101] that is

56.2500%

The results showed the

feasibility of LAT con-

struction on AES. There-

fore AES is vulnerable to

LC-related attacks

Camellia 144
256

= 56.2500% Camellia is the AES candi-

date and inspiration for S-

Box [104]. Therefore LAT

of Camellia is the same as

the LAT Camellia, which is

56.2500%.

The results showed the

feasibility of LAT con-

struction on Camellia.

Therefore, Camellia is

vulnerable to LC-related

attacks

K Camellia
No probability

since the code

crashed due to

memory needed

for computation.

The Khumbelo

function blocked

the construction

of LAT.

K Camellia is a new algo-

rithm for this study. There-

fore the would be no theoret-

ical LAT results in the liter-

ature review.

The results showed NO

feasibility of LAT con-

struction on K Camellia,

therefore K Camellia is

NOT vulnerable to LC re-

lated attacks

192

Figure 5.13: The Graph of LAT Results

193

Table 5.9: Probability Results of DDT

Algorithm

Name

Experimental

Highest Prob-

ability

Theoretical Highest

Probability

Remarks

DES 4
16

= 6.25% Same as theoretical results

given by [100] that is 6.25%.

The results showed the

feasibility of DDT con-

struction on DES. There-

fore DES is vulnerable to

DC-related attacks

AES 4
256

= 1.5625% 1.5625%. Deduced from cal-

culation [234]

The results showed the

feasibility of DDT con-

struction on AES. There-

fore AES is vulnerable to

DC-related attacks

Camellia 4
256

= 1.5625% Camellia is the AES candi-

date and inspiration for S-

Box [104]. Therefore DDT

of Camellia is the same as

the DDT Camellia, which is

1.5625%.

The results showed the

feasibility of DDT con-

struction on Camellia.

Therefore Camellia is vul-

nerable to DC-related at-

tacks

K Camellia
No probability

since the code

crashed due to

memory needed

for computation.

The Khumbelo

function blocked

the construction

of DDT.

K Camellia is a new algo-

rithm for this study. There-

fore the would be no theoret-

ical DDT results in the liter-

ature review.

The results showed NO

feasibility of DDT con-

struction on K Camellia,

K Camellia is NOT vul-

nerable to DC related at-

tacks

194

Figure 5.14: The Graph of DDT Results

195

Table 5.10: Probability Results of DLCT

Algorithm

Name

Experimental

Highest Prob-

ability

Theoretical Highest

Probability

Remarks

DES 8
16

= 50.0% Same as theoretical results

given by [216] that is 50.0%

The results showed the

feasibility of DLCT con-

struction on DES. There-

fore DES is vulnerable to

DL-related attacks

AES 128
256

= 50.0% Same as theoretical results

given by [216] that is 1
2

=

50.0%

The results showed the

feasibility of DLCT con-

struction on AES. There-

fore AES is vulnerable to

DL-related attacks

Camellia 128
256

= 50.0% Camellia is the AES candi-

date and inspiration for S-

Box [104]. Therefore DLCT

of Camellia is the same as

the DLCT of AES, 50.0%

The results showed the

feasibility of DLCT con-

struction on Camellia.

Therefore Camellia is vul-

nerable to DL-related at-

tacks

K Camellia
No probability

since the code

crashed due to

memory needed

for computation.

The Khumbelo

function blocked

the construction

of DLCT.

K Camellia is a new algo-

rithm for this study. There-

fore the would be no theo-

retical DLCT results in the

literature review.

The results showed NO

feasibility of DLCT con-

struction on K Camellia,

therefore K Camellia is

NOT vulnerable to DL

related attacks

196

Figure 5.15: The Graph of DLCT Results

197

Table 5.11: Results of Key Avalanche Effect

Name of

Algorithm

Experimental

Key

Avalanche

Effect in Per-

centage

Theoretical Key

Avalanche Effect in

Percentage

Remarks

DES 43.6270% 43.8720% given by [215]
Failed SAC since out of

range (from 45% to 55%)

AES 49.5788% 49.0661% given by [215]
Passed SAC within (45%

to 55%)

Camellia 50.6184% 49.6093% given by [215]
Passed SAC within (45%

to 55%)

K Camellia 50.5655%
K Camellia is a new algo-

rithm for this study. There-

fore, theoretical results are

yet to be available.

Passed SAC within (45%

to 55%). Therefore

Khumbelo function main-

tained the Avalanche Ef-

fect of K Camellia to be-

tween 45% to 55%, which

is acceptable in cryptog-

raphy.

198

Figure 5.16: The Key Avalanche Effect Results

199

Table 5.12: Results of Plaintext Avalanche Effect

Name of

Algorithm

Experimental

Plaintext

Avalanche

Effect in Per-

centage

Theoretical Plaintext

Avalanche Effect in Per-

centage

Remarks

DES 62.1337% 62.8662% given by [215]
Failed SAC since out of

range (from 45% to 55%)

AES 50.5371% 49.7924% given by [215]
Passed SAC within (45%

to 55%)

Camellia 50.2502% 49.4689% given by [215]
Passed SAC within (45%

to 55%)

K Camellia 49.3774%
K Camellia is a new algo-

rithm for this study. There-

fore, theoretical results are

yet to be available.

Passed SAC within (45%

to 55%). Therefore

Khumbelo function main-

tained the Avalanche Ef-

fect of K Camellia to be-

tween 45% to 55%, which

is acceptable in cryptog-

raphy

200

Figure 5.17: The Plaintext Avalanche Effect Results

201

Table 5.13: Time and Speed

Algorithm

Name

File En-

crypted in

Megabyte

Time in sec-

onds

Experimental

Speed in

MB/seconds

Theoretical

Speed in

MB/seconds

DES 256 6.2312 41.0835 21.340 [235]

AES 256 4.6180 55.4352 48.229 [235]

Camellia 256 4.6183 55.4316 77.34 [198]

K Camellia 256 4.8723 52.5419 No theoretical

results because

K Camellia is a

new algorithm

first coined and

developed in

this study.

202

Figure 5.18: Results of Speed

203

Table 5.14: Discovery of Encryption Keys in Number of Rounds during LC

Attack
Algorithm

Name

Theoretical Rounds

Attacked

Experimental

Rounds Attack

DES 16 rounds, that is 16
16

=

100%

16 rounds, that is 16
16

=

100%

AES 6 rounds, that is 6
14

=

42.8571% [101] - [102].

14 rounds, that is 6
14

=

42.8571%

Camellia 6 rounds, that is 14
16

=

87.5% [225], [195], [228],

[229].

6 rounds, that is 14
16

=

87.5%

K Camellia
No round attacked.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No keys and rounds

were cracked since there

was no LAT construc-

tion after Khumbelo

function was applied.

Therefore LC attack

was impossible

204

Table 5.15: Discovery of Encryption Keys in Number of Rounds during DC

Attack
Algorithm

Name

Theoretical Rounds

Attacked

Experimental

Rounds Attack

DES 16 rounds, that is 16
16

=

100%

16 rounds, that is 16
16

=

100%

AES 6 rounds, that is 6
14

=

42.8571% [101] - [102].

6 rounds, that is 6
14

=

42.8571%

Camellia 14 rounds, that is 14
16

=

87.5% [225], [195], [228],

[229].

14 rounds, that is 14
16

=

87.5%

K Camellia
No round attacked.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No keys and rounds

were cracked since there

was no DDT construc-

tion after Khumbelo

function was applied.

Therefore DC attack

was impossible

205

Table 5.16: Discovery of Encryption Keys in Number of Rounds during DL

Attack
Algorithm

Name

Theoretical Rounds

Attacked

Experimental

Rounds Attack

DES All rounds, that is 100% All rounds, that is 100%

AES 4 rounds, that is 4
14

=

28.5714% [101] - [102].

14 rounds, that is 14
14

=

100%

Camellia 14 rounds, that is 14
16

=

87.5% [225], [195], [228],

[229].

14 rounds, that is 14
16

=

87.5%

K Camellia
No round attacked.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No keys and rounds

were cracked since there

was no DLCT con-

struction after Khum-

belo function was ap-

plied. Therefore DL at-

tack was impossible

206

Table 5.17: Data Complexity during LC Attack

Algorithm

Name

Theoretical Com-

plexity

Experimental Com-

plexity

DES 243 [103] 243

AES 2128 [101] - [102]. 2131

Camellia 2249.3 [229]. 2249.3

K Camellia
No complexity.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No complexity after the

Khumbelo function was

applied since no LAT

was feasible.

Table 5.18: Data Complexity during DC Attack

Algorithm

Name

Theoretical Com-

plexity

Experimental Com-

plexity

DES 242.5 [103] 242.5

AES 2131 [101] - [102]. 2131

Camellia 2238.2 [225]. 2238.2

K Camellia
No complexity.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No complexity after the

Khumbelo function was

applied since no DDT

was feasible.

207

Table 5.19: Data Complexity during DL Attack

Algorithm

Name

Theoretical Com-

plexity

Experimental Com-

plexity

DES 242.5 [103] 242.5

AES 2131 [101] - [102]. 2131

Camellia 289 [228]. 289

K Camellia
No complexity.

K Camellia is a new

algorithm coined in this

study. Therefore no

theoretical results

No complexity after the

Khumbelo function was

applied since no DLCT

was feasible.

Table 5.20: Memory Needed to Install Algorithm

Algorithm

Name

Memory Needed in

Megabyte

DES 15.019

AES 13.388

Camellia 8.924

K Camellia
8.983 Therefore,

the Khumbelo func-

tion marginally in-

creased the memory of

K Camellia, compared

to Camellia’s memory.

208

Figure 5.19: Memory Needed for Installation of Different Algorithms

209

fer to Figure 5.20, 5.21, and 5.22 for more information. Figure 5.20 showed

the encryption and decryption process of the AES. Figure 5.21 showed the

encryption and decryption process of the Camellia. Figure 5.22 showed the

encryption and decryption process of the newly K Camellia. The difference

among Figure 5.20, 5.21, and 5.22 were encryption images. The original

and decrypted images were the same in Figure 5.20, 5.21, and 5.22. The

encrypted images in Figure 5.21 and Figure 5.22 were not the same after ap-

plying the Khumbelo function on Camellia. The new K Camellia algorithm

was the product of applying the Khumbelo function. The newly K Camellia

algorithm encrypted the image differently than the Camellia.

Figure 5.20: Image Encryption and Decryption Using C++ of the AES Al-

gorithm

210

Figure 5.21: Image Encryption and Decryption Using C++ of the Traditional

Camellia Algorithm

Figure 5.22: Image Encryption and Decryption Using C++ of the K Camellia

Algorithm

211

5.11 Summary of Using Khumbelo Function

to Prevent DC Attacks on Camellia
Camellia was found to be one of the encryption algorithms implemented

in many Internet of Things (IoT) devices. However, intruders attacked the

Camellia cipher using S-Boxes’ distinguishers. The distinguishers are tables

that provide probabilities of guessing the algorithms’ secret key. The distin-

guishers were found to be used in the majority of attacks. The most well-

known distinguishers were found to be Linear Approximation Table (LAT),

Difference-Distribution Table (DDT), and Differential-Linear Connectivity

Table (DLCT). This research focused on preventing these attacks by using

a novel function called the Khumbelo function to distract the construction

of S-Box distinguishers. The Khumbelo function distracted the distinguish-

ers’ construction by reducing the probability of construction. The Khumbelo

function successfully reduced the attack probability of LAT (from 54.6875

percent to 0 percent), DDT (from 1.5625 percent to 0 percent), and DLCT

(from 50.0000 percent to 0 percent). The Khumbelo function was generated

using a 4-Byte output S-Box instead of an original 1-Byte output S-Box in

Camellia. Additionally, the Khumbelo function was composed of many mod-

ulo operators. The new 4-Byte output S-Box and modulo operators confused

and blocked intruders from constructing distinguishers.

In the future, the study will apply the Khumbelo function to algorithms

such as Blowfish, Magenta, and Skipjack. The attacks studied were all vari-

ants of LC and DC attacks. The Khumbelo function will be tested to prevent

other upcoming attacks unrelated to LC and DC attacks.

212

Chapter 6

Conclusion and Objectives

Evaluation

In summary, this chapter serves as the essential supporting structure, ty-

ing together the study results to represent the success of preventing cryp-

tographic attacks on the Internet of Things (IoT). This chapter starts by

evaluating the objectives of this research and then summarizes key research

contributions made in this work. It then makes additional research recom-

mendations before finalizing remarks.

6.1 Research Contribution and Objective Eval-

uation
The study aimed to prevent cryptographic attacks on the Internet of

Things (IoT). The study produced remarkable results in preventing crypto-

graphic attacks from IoT devices using the KDM function, Khumbelo func-

tion, and Blocker function. Each study objective is revisited to evaluate the

research findings critically. Reviewing each study objective emphasizes the

crucial areas where this research constructed an original contribution.

213

Objective (i.) To use the KDM function to prevent DC attack in

the AES algorithm used on IoT devices.

The study invented a novel approach called the Khumbelo Difference

Muthavhine (KDM) function to prevent DC attacks. The KDM function

was tested on AES.

Contribution:

A. The KDM function protects against DC attacks.

B. Cryptography and IoT researchers are being introduced to the KDM func-

tion.

Objective (ii.) To use the Blocker function to prevent DL attack in

the Serpent algorithm used on IoT devices.

The study invented a novel approach called the Blocker function to pre-

vent DL attacks. The Blocker function was tested on Serpent.

Contribution:

A. The Blocker function protects against DC attacks.

B. Cryptography and IoT researchers are being introduced to the Blocker

function.

Objective (iii.) To use the Khumbelo function to prevent LC, DC,

DL, boomerang, truncated differential, meet-in-the-middle, and

zero-correlation-linear-distinguisher attacks in the Camellia algo-

rithm used on IoT devices.

The study invented a novel approach called the Khumbelo function to

prevent LC and DC attacks. The Khumbelo function was tested on Camellia.

Contribution:

A. The Khumbelo function provides protection against LC, DC, DL, boomerang,

truncated differential, meet-in-the-middle, and zero-correlation-linear-distinguisher

attacks.

214

B. Cryptography and IoT researchers are being introduced to the Khumbelo

function.

Objective (iv.) To publish papers with an internal and external

organization such as MDPI and IEEE.

This study produced journal and conference papers.

Contribution:

A. Journal papers produced out of this study are published in MDPI.

B. Conference papers produced out of this study are published in IEEE.

6.2 Future Research Recommendations and

Suggestions
Extensive research incorporating the following recommendations and fu-

ture work will be required based on the findings of this thesis.

i. To recommend and suggest using the KDM function in the future to pre-

vent other attacks on the various algorithms (like Blowfish, Twofish and

Rivest-Shamir-Adleman (RSA)) that were not covered by this study [236].

ii. To recommend and suggest using the Blocker function in the future to

prevent other attacks on the various algorithms that were not covered by

this study.

iii. To recommend and suggest using the Khumbelo function in the future

to prevent other attacks on the various algorithms that were not covered by

this study.

iv. To publish journal papers with the organization like MDPI and IEEE.

6.3 Closing Statements
The results described in this study show that the KDM function, Blocker

function, and Khumbelo function are promising methods for preventing vari-

215

ous attacks on the AES, Serpent, and Camellia. The KDM function, Khum-

belo function, and Blocker function managed to prevent cryptographic at-

tacks since all 8 x 8 S-Boxes are changed to 8 x 32 S-Box depending on the

particular chapter. The 8 x 32 S-Box was expected to build distinguishers

from 28 x 232 = 256 x 4, 294, 967, 296 matrices with 1, 099, 511, 627, 776 ele-

ments. Due to memory constraints, an ordinary computer could not compute

256 x 4, 294, 967, 296 matrices. This study was initially thought to be impos-

sible until this study demonstrated the feasibility of using the KDM function,

Blocker function, and Khumbelo function to prevent various cryptographic

attacks on IoT devices. Researchers who read journal and conference papers

from this thesis were inspired to use the KDM, Blocker, Muthavhine, and

Khumbelo functions.

216

Bibliography

[1] S. Millar, ”IoT Security Challenges and Mitigations: An Introduction,”

Rapid7 LLC, pp. 1-5, 2022.

[2] V. O. Nyangaresi, A. J. Rodrigues, and S. O. Abeka, ”Secure Algorithm

for IoT Devices Authentication,” pp. 1-22, 2023.

[3] I. Kuzminykh, M. Yevdokymenko, and V. Sokolov, ”Encryption Algo-

rithms in IoT: Security vs Lifetime,” Researchgate, pp. 1-21, 2021.

[4] A. Čolaković and M. Hadzialic, “Internet of Things (IoT): A Review of

Enabling Technologies, Challenges, and Open Research Issues”, Com-

puter Networks, pp. 11-39, 2018.

[5] H. Suo, J. Wan, C. Zou and J. Liu, “Security in the Internet of Things: A

Review” 2012 International Conference on Computer Science and Elec-

tronics Engineering, pp. 648-651, 2012.

[6] Z. H. Hu, “The Research of Several Key Question of Internet of Things,”

International Conference on Intelligence Science and Information Engi-

neering, pp. 362-365, 2011.

[7] K. D. Muthavhine and M. Sumbwanyambe, “An Analysis and a Com-

parative Study of Cryptographic Algorithms used on the Internet of

Things (IoT) Based on Avalanche Effect”, International Conference on

Information and Communications Technology (ICOIACT), 2018.

217

[8] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of

Things: Definition, Potentials, and Societal Role of a Fast Evolving

Paradigm” Ad Hoc Networks, Elsevier, pp. 1-22, 2016.

[9] K. Ashton, “How to Fly a Horse: The Secret History of Creation, In-

vention, and Discovery”, 2015.

[10] P. P. Ray, “A Survey on Internet of Things Architectures,” Journal of

King Saud University - Computer and Information Sciences, Vol 30, No.

3, pp. 291-319, 2018.

[11] F. Pacheco-Torgal, E. Rasmussen et al., “Start-Up Creation: The Smart

Eco-efficient Built Environment”, One-IT Smart, pp. 1-3, 2018.

[12] K. K. Patel and S. M. Patel, “Internet of Things-IOT: Definition, Char-

acteristics, Architecture, Enabling Technologies, Application and Future

Challenges”, International Journal of Engineering Science and Comput-

ing, Vol. 6, No. 5, 2019.

[13] P. Singh, “Internet of Things (IoT): A Literature Review”, International

Research Journal of Engineering and Technology (IRJET), Vol. 3, No.

12, 2016.

[14] TechTarget IoT Agenda, “Using Digital Twin Tech to Solve IoT Issues”.

[15] IEEE, “IEEE P1451.6 Terms and Definitions,” 2022.

[16] J. Kouns, “Bring Your Own Internet of Things BYO-IoT” 2015 RSA

Conference, pp. 4-5, 2015.

[17] J. Nendick, “Internet of Things Human-Machine Interactions that Un-

lock possibilities,” Media and Entertainment. 2011 Sony Corporation,

Vol. 6114, pp. 1-19, 2011, 2022.

218

[18] A. Zahedi, “Intension to Adopt Smart Cards” Lulea University of Tech-

nology, pp. 1-23, 2022.

[19] Security Technology Alliance, “Smart Card Primer”, pp. 1-23, 2022.

[20] A. Mahajan, A. Verma and D. Pahuja, “Smart Card: Turning Point

of Technology”, International Journal of Computer Science and Mobile

Computing, IJCSMC, Vol. 3, No. 10, pp. 982 – 987, 2014.

[21] M. Hitchcock, “The End of Money: Bible Prophecy and the Coming

Economic Collapse”, 2013.

[22] FirstData, “EMV: A to Z (Terms and Definitions)”, pp. 1-23, 2022.

[23] D. Kearns, ”Where to Learn about Smart Cards”. Network World, 2007.

[24] CardPlus, “Cards Plus Terminology” pp. 1-23, 2022.

[25] A. A. Eteng, S. K. A. Rahim and C. Y. Leow, “RFID in the Internet of

Things”, Wiley Online Library, 2018.

[26] A. Ullah, “IoT: Applications of RFID and Issues”, International Journal

of Internet of Things and Web Services, Vol. 3 pp. 1- 5, 2018.

[27] S. Maharjan, “RFID and IOT: An Overview”, Simula Research Labo-

ratory University of Oslo, pp. 1-25, 2010.

[28] M. Kaur, M. Sandhu, N. Mohan and P. S. Sandhu, “RFID Technology

Principles, Advantages, Limitations and Its Applications”, International

Journal of Computer and Electrical Engineering, Vol. 3, No.1, pp. 151 -

157, 2011.

[29] IoT Agenda, “RFID (Radio Frequency Identification)”, pp. 1-23, 2022.

[30] C. Jechlitschek, “A Survey Paper on Radio Frequency Identity (RIFD)

Trends” Inside the Internet of Things (IoT)”, Radio Frequency Identity

RIFD, pp. 1- 13, 2023.

219

[31] D. Christin, A. Reinhardt, P. S. Mogre and R. Steinmetz, “Wireless

Sensor Networks and the Internet of Things: Selected Challenges”, pp.

32- 34, 2009.

[32] M. Nkomo, G.P. Hancke, A. M. Abu-Mahfouz, S. Sinha and A. J. Onu-

manyi, “Overlay Virtualized Wireless Sensor Networks for Application

in Industrial Internet of Things: A Review”, Vol. 18, No: 10, 2018.

[33] A. A. Halim, N. M. Hassan, A. Zakaria, L. M. Kamarudin and A. H.

A. Bakar, “Internet of Things Technology for Greenhouse Monitoring

and Management Systems Based on Wireless Sensor Network”, ARPN

Journal of Engineering and Applied Sciences, Vol. 11, No. 22, pp. 13169-

13175, 2016.

[34] H. Zhou, “The Internet of Things in the Cloud”, CRC Press Taylor and

Francis Group, pp. 146-321, 2013.

[35] F. Lewis, “Introduction to Crossbow Mica2 Sensors”, Automation and

Robotics Research Institute University of Texas at Arlington, 2017.

[36] Mica2, “Wireless Measurement System”,Mica, pp. 1-23, 2022.

[37] M. G. C. Torres, “Energy Consumption in Wireless Sensor Networks

Using GSP”, Electronics Engineer, Universidad Pontificia Bolivariana,

Medelĺın, Colombia, 2006.

[38] O. Gunnsteinsson, “A Search for a Convenient Data Encryption Algo-

rithm for an Internet of Things Device”, Chalmers University of Tech-

nology, 2016.

[39] P. Walters, “The Risks of Using Portable Devices”, 2016 The United

States Computer Emergency Readiness Team (US-CERT), pp. 1-3,

2016.

220

[40] L. Chang, R. Steinfied, C. Jakob, A. Peel, T. Dinh, and J. Newson, “Sur-

prising Developments in Artificial Intelligence Cryptography”, Scram

Software Securing Data in the Cloud, 2017.

[41] K. M. Alallayah, W. F. A. El-Wahed, M. Amin and A. H. Alhamam,

“Attack of Against Simplified Data Encryption Standard Cipher System

Using Neural Networks”, Journal of Computer Science, Vol. 6, No. 1,

pp. 29-35, 2010.

[42] S. Prajapat, A. Thakur, K. Maheshwari, and R. S. Thakur, “Cryp-

tic Mining in Light of Artificial Intelligence”, (IJACSA) International

Journal of Advanced Computer Science and Applications, Vol. 6, No. 8,

2015.

[43] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,

and T. Tokita, “Camellia: A 128-Bit Block Cipher Suitable for Multiple

Platforms”, International Workshop on Selected Areas in Cryptography,

Springer, Vol. 2012, pp. 39-56, 2012.

[44] B. Sreenivasa, M. Kumar, M. N. Shaikh and S. Sathyanarayana, “A

Study on Encryption Decryption Algorithm for Big Data Analytics in

Cloud”, International Journal of Latest Trends in Engineering and Tech-

nology Special Issue SACAIM, pp. 323-329, 2016.

[45] F. J. Rodŕıguez-Lera, V. Matellán-Olivera, J. Balsa-Comerón, Á. M.

Guerrero-Higueras and C. Fernández-Llamas, “Message Encryption

in Robot Operating System: Collateral Effects of Hardening Mobile

Robots”, Frontiers In ICT, pp. 1-3, 2018.

[46] L. Wei and et al., “An Effective Differential Fault Analysis on the Ser-

pent Cryptosystem in the Internet of Things”, School of Computer Sci-

ence and Technology, Donghua Univ., Shanghai, Vol. 11, 2014.

221

[47] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, Joan Daemen

and Vincent Rijmen, pp. 1-45, 2023.

[48] FIPS Publication 197, “Announcing the Advanced Encryption Standard

(AES)”, Federal Information Processing Standards Publication, pp. 1-

25, 2001.

[49] J. Nechvatal et al., “Report on the Development of the Advanced En-

cryption Standard (AES)”, Journal of Research of the National Institute

of Standards and Technology, Vol. 106, No. 3, pp. 511–577, 2001.

[50] B. Rothke, “A Look at the Advanced Encryption Standard (AES)”,

Information Security Management Handbook, 2007.

[51] K. Laxmi and N. A. Dawande, “Encryption Algorithms Used for Secured

Communication”, International Journal of Science and Research (IJSR),

Vol. 2 No. 12, pp. 2319-7064, 2013.

[52] B. S. W. Poetro, “Implementation of 128 Bits Camellia Algorithm for

Cryptography in Digital Image”, IAES International Conference on

Electrical Engineering, Computer Science and Informatics IOP Pub-

lishing, Vol. 7, No. 5A, pp. 1-23, 2011.

[53] A. M. Alabaichi, “Analysis of Some Security Criteria for S-boxes in

Blowfish Algorithm”, International Journal of Digital Content Technol-

ogy and its Applications, Vol. 190, 2017.

[54] K. Aoki and et al., “Specification of Camellia - a 128-bit Block Cipher”,

Nippon Telegraph and Telephone Corporation and Mitsubishi Electric

Corporation, pp. 1- 33, 2001.

[55] M. Matsui, J. Nakajima and S. Moriai, “A Description of the Camel-

lia Encryption Algorithm”, Mitsubishi Electric Corporation and Sony

Computer Entertainment Inc., pp. 1-35, 2014.

222

[56] S. Moriai and A. Kato, “Use of the Camellia Encryption Algorithm in

Cryptographic Message Syntax (CMS)”, Sony Computer Entertainment

Inc. and NTT Software Corporation, 2014.

[57] Z. Čiča, “Pipelined Implementation of Camellia Encryption Algorithm”,

24th Telecommunications Forum (TELFOR), Vol. 1449, pp. 339-348,

2016.

[58] R. G. Kammer and W. M. Daley, “Data Encryption Standards (DES)”,

The Federal Information Processing Standards Publication Series of the

National Institute of Standards and Technology (NIST), pp. 1-33, 1999.

[59] K. Rabah, “Theory and Implementation of Data Encryption Standard:

A Review”, Information Technology Journal, Vol. 4, No. 4, pp. 307-325,

2005.

[60] P. T. Kenekayoro, “The Data Encryption Standard Thirty Four Years

Later: An Overview”, African Journal of Mathematics and Computer

Science Research Vol. 3, No.10, pp. 267-269, 2010.

[61] C. Ding, “The Data Encryption Standard in Detail”, Department of

Computer Science Hong Kong University of Science and Technology,

pp. 1-50,

[62] R. Anderson and E. Biham and L. Knudsen, “Serpent: A Proposal for

the Advanced Encryption Standard”, Cambridge University, pp. 1-45,

2023.

[63] A. M. Nazlee, F. A. Hussin and F. A. Hussin, “Serpent encryption

algorithm implementation on Compute Unified Device Architecture

(CUDA)”, Proceedings of 2009 Student Conference on Research and

Development (SCOReD), 2009.

223

[64] T. Kohno, J. Kelsey and B. Schneier, “Preliminary Cryptanalysis of

Reduced-Round Serpent”, Reliable Software Technologies and Counter-

pane Internet Security, Inc., pp. 1-19, 2023.

[65] M. H. Taher, A. E. T. El Deen and M. E. Abo-Elsoud, “Hardware

Implementation of the Serpent Block Cipher using FPGA technology”,

International Journal of Electronics and Communication Engineering

and Technology (IJECET), Vol. 5, No. 10, pp. 34-44, 2014.

[66] NIST, “Skipjack and KEA Specifications”, NIST, Vol. 2, pp. 1-23, 1998.

[67] H. Poston and K. Dhandhania, “Cryptographic Attacks: Types of At-

tacks with Examples, and How to Defend Against Them Common

Lounge”, pp. 1-3, 2022.

[68] H. Poston and K. Dhandhania, “Cryptographic Attacks: Types of At-

tacks with Examples, and How to Defend Against Them Common

Lounge”, pp. 1-3, 2022.

[69] O. Lo, W. J. Buchanan and D. Carson, “Power Analysis Attacks on the

AES-128 S-box using Differential Power Analysis (DPA) and Correlation

Power Analysis (CPA)”, Journal of Cyber Security Technology, pp. 1-22,

2016.

[70] P. Kocher, J. Jaffe and B. Jun, “Introduction of Differential Power Anal-

ysis and Related Attacks”, Cryptographic Research, pp. 1-9, 2022.

[71] Lecture Notes on Computer Systems, “Data Encryption Standard

(DES)”, Tribhuvan University Kathmandu, 2016.

[72] D. S. A. Elminaam, H. M. A. Kader and M. M. Hadhoud, “Tradeoffs

between Energy Consumption and Security of Symmetric Encryption

Algorithms”, International Journal of Computer Theory and Engineer-

ing, Vol. 1, No. 3, pp. 1793-8201, 2009.

224

[73] B. J. Mohd and T. Hayajneh, “Lightweight Block Ciphers for IoT: En-

ergy Optimization and Survivability Techniques”, IEEE, Vol. 6, pp.

35966-36789, 2018.

[74] T. S. Messerges, E. A. Dabbish and R. H. Sloan, “Power Analysis At-

tacks of Modular Exponentiation in Smartcards”, Springer-Verlag Berlin

Heidelberg and CHES, Vol. 1717, pp. 144-157, 1999.

[75] E. Biham, “On Matsui’s linear cryptanalysis”, Workshop on the Theory

and Application of Cryptographic Techniques, Advances in Cryptology

— EUROCRYPT’, Vol. 950, pp. 341–355, 1994.

[76] P. Junod, “Linear Cryptanalysis of DES”, ETH Zurich University, pp.

1-75, 2022.

[77] H. M. Heys, “A Tutorial on Linear and Differential Cryptanalysis”, Elec-

trical and Computer Engineering Faculty of Engineering and Applied

Science Memorial University of Newfoundland, pp. 1-33,

[78] A. D. Dwivedi, P. Morawiecki and S. Wojtowicz, “Differential-linear

and Impossible Differential Cryptanalysis of Round-reduced Scream”,

Site Press Science and Technology Publications, pp. 501-506,

[79] B. Sullivan, “Preventing a Brute Force or Dictionary Attack: How to

Keep the Brutes Away from Your Loot”, SPI Dynamics, pp. 1-5,

[80] J. Pawlick and Q. Zhu, “Internet of Things: Privacy and Security in a

Connected World”, Transcript of Workshop at 182. Transcript of Work-

shop, pp. 5-55, 2015.

[81] R. Hosseinkhani and H. H. S. Javadi, “Using Cipher Key to Generate

Dynamic S-Box in AES Cipher System”, International Journal of Com-

puter Science and Security (IJCSS), Vol. 6, No. 1, pp. 19-28, 2012.

225

[82] Y. Javed, A. Shahid Khan, A. Qahar and J. Abdullah, ”Preventing DoS

Attacks on IoT Using AES,” Researchgate, pp. 55-60, 2018.

[83] J. Rokan, G. H Majeed and A. Farhan, ”Internet of Things Security us-

ing New Chaotic System and Lightweight AES,” Journal of Al-Qadisiyah

for Computer Science and Mathematics, pp. 45-52, 2019.

[84] P. S. Munoz, N. Tran, B. Craig, B. Dezfouli and Y. Liu, ”Analyzing

the Resource Utilization of AES Encryption on IoT Devices,” Asia-

Pacific Signal and Information Processing Association Annual Summit

and Conference (APSIPA ASC), pp. 1-8, 2018.

[85] B. M. Alshammari, R. Guesmi, T. Guesmi, H. Alsaif and A. Alzamil,

”Implementing a Symmetric Lightweight Cryptosystem in Highly Con-

strained IoT Devices by Using a Chaotic S-Box,” Symmetry, pp. 1-20,

2021.

[86] D. A. F. Saraiva, V. R. Q. Leithardt, D. de Paula, A. S. Mendes, G.

V. González and P. Crocker, ”PRISEC: Comparison of Symmetric Key

Algorithms for IoT Devices,” Sensors and MDPI, pp. 1-23, 2019.

[87] S. Shanthi Rekha and P. Saravanan, ”Low-Cost AES-128 Implementa-

tion for Edge Devices on IoT Applications,” Journal of Circuits, Systems

and Computers, pp. 1-16, 2019.

[88] Lorawan Security, Full End–to–End Encryption for IoT Application

Providers, Lora-Alliance, pp. 1-4, 2020.

[89] U. Farooq, N. U. Hasan, I. Baig and N. Shehzad, ”Efficient adaptive

framework for securing the Internet of Things devices,” EURASIP Jour-

nal on Wireless Communications and Networking, pp. 1-16, 2019.

[90] V. Nandan and R. G. S. Rao, ”An Efficient AES Algorithm for IoT-

based Applications,” International Journal of Engineering and Advanced

Technology (IJEAT), pp. 1939-1944, 2019.

226

[91] K. D. Muthavhine and M. Sumbwanyambe, ”An Analysis and a Compar-

ative Study of Cryptographic Algorithms used on the Internet of Things

(IoT) Based on Avalanche Effect,” Unisa Institutional Repository, 2018.

[92] K. O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz and S. Rimer, ”A

Survey on the Security of Low Power Wide Area Networks: Threats,

Challenges, and Potential Solutions,” sensors and MDP1, pp. 1-9, 2020.

[93] B.Sophia, L. Jeril, M. K. Harnesh and V. L. Kumar, ”A Secure Remote

Clinical Sensor Network Approach for Privacy Enhancement,” IOP Con-

ference Series: Materials Science and Engineering, pp. 1-8, 2021.

[94] VMware SD-WAN, VMware SD-WAN Edge platform specifications, Ve-

locloud, pp. 1-14, 2020.

[95] J. Ahamed, M.D. Zahid and K. Ahmad, ”AES and MQTT based secu-

rity system in the internet of Things,” Journal of Discrete Mathematical

Sciences and Cryptography, pp. 1589-1598, 2020.

[96] M. Khurana and M. Kumar, ”Variants of Differential and Linear Crypt-

analysis,” International Journal of Computer Applications, pp. 20-29,

2015.

[97] A. Bar-On, O. Dunkelman, N. Keller, and A. Weizman, “DLCT: A New

Tool for Differential-Linear Cryptanalysis,” Lecture Notes in Computer

Science, pp. 313–342, 2019.

[98] A. Canteaut, L. Kölsch and F. Wiemer, “Observations on the DLCT

and Absolute Indicators,” ICAR, pp. 1-18, 2019.

[99] M. A. Guptha, ”Internet of Things and its Applications,” Malla Reddy

College of Engineering and Technology, pp. 1-146, 2021.

[100] H. M. Heys, ”A Tutorial on Linear and Differential Cryptanalysis,”

IOActive, pp. 1-33, 2015.

227

[101] A. Kak, ”Lecture 8: AES: The Advanced Encryption Standard,” Pur-

due University, pp. 1-94, 2022.

[102] A. Biryukov and D. Khovratovich, ”Related-key Cryptanalysis of the

Full AES-192 and AES-256,” ICAR, pp. 1-19, 2022.

[103] P. Junod, ”Linear Cryptanalysis of DES,” ETH, pp. 1-35, 2022.

[104] C. Blondeau, ”Impossible Differential Attack on 13-round Camellia-

192,” Information Processing Letters, vol. 115, no.9, pp. 660-666, 2015.

[105] M. Tunstall, ”Practical complexity Differential Cryptanalysis and fault

analysis of AES,” Journal of Cryptographic Engineering, pp. 219 – 230,

2011.

[106] H. Tran-Dang, ”Towards the Internet of Things for Physical Internet:

Perspectives and Challenges,” IEEE, pp.1-26, 2020.

[107] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A.

Grieco, G. Boggia and M. Dohler, “Standardized Protocol Stack for the

Internet of (Important) Things” IEEE Communications Surveys and

Tutorials, Vol. 15, No. 3, pp. 1-18, 2013.

[108] B. A. R. Azamuddin, “Rotation Project Title: Survey on IoT Security”

Washington University in St. Louis, Vol. 4, No. 4, pp. 1 - 26, 2023.

[109] A. A. Ali, “Constrained Application Protocol (CoAP) for the IoT”,

IoT Seminor, High Integrity System, Frankfurt University of Applied

Sciences, pp. 1-30, 2018.

[110] P. R. Egl, “MQTT - Message Queueing Telemetry Transport Introduc-

tion to MQTT, a protocol for M2M and IoT applications”, Peteregli.net,

pp. 1-33, 2017.

228

[111] M. Laine, “RESTful Web Services for the Internet of Things”, Depart-

ment of Media Technology Aalto University School of Science, pp. 1-23,

2022.

[112] D. Jeevani and M.Balajee, “Effective Device Management for Inter-

net of Things”, International Journal of Engineering and Information

Systems (IJEAIS), Vol. 1 No. 8, pp. 172-181, 2017.

[113] P. Duffy, “Beyond MQTT: A Cisco View on IoT Protocols”, Cisco

Blogs, 2013.

[114] M. R. Abdmeziem, D. Tandjaoui and I. Romdhani, “Architecting the

Internet of Things: State of the Art”, pp. 1-33, 2015.

[115] M. El-hajj, M. Chamoun, A. Fadlallah and A. Serhrouchni, “Analysis

of Cryptographic Algorithms on IoT Hardware platforms”, 2nd Cyber

Security in Networking Conference (CSNet), pp. 1-5, 2018.

[116] M. Burhan, R. A. Rehman, B. Khan and B. Kim, “IoT Elements,

Layered Architectures and Security Issues: A Comprehensive Survey”,

Department of Computer Science, National University of Computer and

Emerging Sciences, pp. 1-19, 2018.

[117] V. Ram, ”The OSI Reference Model,” Tutorialspoint, pp. 1-5, 2020.

[118] O. Bello and S. Zeadally, “Intelligent Device-to-Device Communication

in the Internet of Things” IEEE Systems Journal, Vol. 10, No. 3, pp.

1-11, 2014.

[119] O. Horyachyy, “Comparison of Wireless Communication Technologies

used in a Smart Home: Analysis of Wireless Sensor Node Based on

Arduino in Home Automation Scenario”, Faculty of Computing Blekinge

Institute of Technology, pp. 1-67, 2017.

229

[120] A. Noureen, U. Shoaib and M. S. Sarfraz, “Secure Device Pairing Meth-

ods: An Overview”, (IJACSA) International Journal of Advanced Com-

puter Science and Applications, Vol. 8, No. 9, 2017.

[121] D. Paraskevopoulos, ”5 Things to Know about IoT Protocols,” IoT

Analytics, pp. 1-6, 2022.

[122] Cloud Standards Customer Council, “Cloud Customer Architecture for

IoT” Journal of Systems Integrations, pp. 1-23, 2022.

[123] J. Fernandez, I. Vidal and F. Valera, “Enabling the Orchestration of

IoT Slices through Edge and Cloud Micro service Platforms”, Sensors

(Basel), Vol. 19, No. 13, 2019.

[124] A. Kaushik, “IOT-An Overview”, Tylor and Francis Group, An In-

former Business, pp. 1-23, 2022.

[125] J. Treadway, “Using an IoT Gateway to Connect the ’Things’ to the

Cloud”, IoT Agenda, 2018.

[126] R. Smith, “Understanding Encryption and Cryptography Basics”,

2015.

[127] M. Katagi and S. Moriai, “The 128-Bit Block Cipher Clefia”, Sony

Corporation, Vol. 6114, pp. 1-19, 2011.

[128] J. Kaur and E. M. Kaur, “Data Encryption Using Different Techniques:

A Review”, International Journal of Advanced Research in Computer

Science, Vol. 8, No. 4, pp. 252-255, 2017.

[129] M. Fischlin, “Public-Key Encryption (Asymmetric Encryption)”, Sum-

mer School, Romania 2014.

[130] S. Channalli and A. Jadhav, “Steganography an Art of Hiding Data”,

International Journal on Computer Science and Engineering, Vol. 1, pp.

137-14, 2023.

230

[131] N. G. McDonald, “Past, Present, and Future Methods of Cryptog-

raphy and Data Encryption”, Department of Electrical and Computer

Engineering University of Utah, pp. 1-21, 2015.

[132] A. Toumazis, “Steganography”, 2009.

[133] A. A. Bruen and M. A. Forcinito, “Cryptography, Information Theory

and Error-Correction: A Handbook for the 21st Century”, John Wiley

and Sons, 2011, pp. 21-27, 2023.

[134] K. M. Martin, “Everyday Cryptography”, Oxford University Press,

2012, pp. 142-149, 2023.

[135] L. D. Smith, ”Substitution Ciphers. Cryptography the Science of Secret

Writing: The Science of Secret Writing”, Dover Publications, 1943, pp.

81-90.

[136] M. Behrens, “Understanding the 3 Main Types of Encryption”, 2014.

[137] E. Biham and N. Keller. ”Cryptanalysis of Reduced Variants of Rijn-

dael,” The 3rd AES Candidate Conference. 2000.

[138] J.H. Cheon, , M. Kim, K. Kim, J. Y. Lee and S. Kang, ”Improved

Impossible Differential Cryptanalysis of Rijndael and Crypton”, Infor-

mation Security and Cryptology - ICISC 2001: 4th International Con-

ference, pp. 39-49, 2002.

[139] C. Raphael and W. Phan, ”Impossible Differential Cryptanalysis of 7-

round Advanced Encryption Standard (AES),” Sciencedirect, pp. 33-38,

2004.

[140] M. R. Z’aba and M. A. Maarof, ”A Survey on the Cryptanalysis of the

Advanced Encryption Standard,” Core, pp. 97-102, 2006.

231

[141] L. Lacko-Barto�sova, ”Linear and Differential Cryptanalysis of

Reduced-Round AES,” Slovenska Akademia Vied, pp. 51-61, 2011.

[142] G. Jakimoski and Y. Desmedt, ”Related-Key Differential Cryptanalysis

of 192-bit Key AES Variants,” Research Gate, pp. 208-221, 2003.

[143] Z. Hu and Z. He, ”A New Method for Impossible Differential Crypt-

analysis of 7-Round AES-192,” 2011 2nd International Symposium on

Intelligence Information Processing and Trusted Computing, pp. 1-12,

2011.

[144] L. Grassi, ”Mixture Differential Cryptanalysis and Structural Trun-

cated Differential Attacks on round-reduced AES,” Graz University of

Technology, pp. 1-66, 2017.

[145] S. Simmons, ”Algebraic Cryptanalysis of Simplified AES,” Citeseerx,

pp, 1-9, 2019.

[146] A. D. A. Gemellia, ”Differential Attack on Mini-AES” AIP Conference

Proceedings, pp. 1-10, 2012.

[147] R. Ankele, S. Banik, A. Chakraborti, E. List, ”Related-Key Impossible-

Differential Attack on Reduced-Round Skinny,” Applied Cryptography

and Network Security, pp. 1-11, 2017.

[148] K. Amrita, N. Gupta and R. Mishra, ”An Overview of Cryptanalysis

on AES,” International Journal of Advance Research in Science and

Engineering (IJARSE), pp. 368-649, 2018.

[149] V. Rijmen “10 years of Rijndael,” Research Group Cosic and Ku Leu-

ven, pp. 1-70, 2021.

[150] K. B. Jithendra and T. K. Shahana, ”New Results in Related Key

Impossible Differential Cryptanalysis on Reduced Round AES-192,” The

Institute of Electrical and Electronics Engineers (IEEE), pp. 1-28, 2018.

232

[151] L Rouquette and C. Solnon, ”Abstract XOR: A Global Constraint

Dedicated to Differential Cryptanalysis,” Archive HAL, pp. 566–584,

2020.

[152] R. Anderson, E. Biham and L. Knudsen, “Serpent and Smartcards,”

Cambridge University, pp. 1-8, 2021.

[153] K. J. Compton, B. Timm and J. Van Laven, “A Simple Power Analysis

Attack on the Serpent Key Schedule,” IACR, pp. 1-10, 2009.

[154] R. Anderson, E. Biham and L. Knudsen, “The Case for Serpent,” Case

Study, pp. 1-5, 2012.

[155] E. Biham, O. Dunkelman and N. Keller, ”Linear Cryptanalysis of Re-

duced Round Serpent,” Fast Software Encryption, pp. 1-12, 2001.

[156] H. Yap, K. Khoo and A. Poschmann, ”Parallelizing the Camellia and

SMS4 Block Ciphers- Extended Version,” International Journal of Ap-

plied Cryptography, vol. 3, no. 1, pp. 1-20, 2013.

[157] S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon, ”Truncated Differential

Cryptanalysis of Camellia,” Information Security and Cryptology, pp.

1-15, 2001.

[158] A. Biryukov, ”Boomerang Attack,” Encyclopedia of Cryptography and

Security, pp. 1-59, 2011.

[159] O. Dunkelman, N. Keller, E. Ronen and A. Shamir, ”The Retracing

Boomerang

[160] D. Bai and L. Li, ”New Impossible Differential Attacks on Camellia,”

ICAR, PP. 1-15, 2011.

[161] W. Wu, W. Zhang and D. Feng, ”Improved Impossible Differential

Cryptanalysis of Reduced-Round Camellia,” International Workshop on

Selected Areas in Cryptography, pp. 442–456, 2008.

233

[162] J. Lu, Y. Wei, E. Pasalic and P. A. Fouque, ”Meet-in-the-Middle Attack

on Reduced Versions of the Camellia Block Cipher,” DIENS, pp. 1-18,

2011.

[163] Z. Liu, B. Sun, Q. Wang, K. Varici, D. Gu, ”Improved Zero-Correlation

Linear Cryptanalysis of Reduced-Round Camellia under Weak Keys,”

IET Information Security, pp. 1-9, 2015.

[164] A. Kak, ”AES: The Advanced Encryption Standard,” Engineering Pur-

due, pp. 1-92, 2021.

[165] O. I. Abiodun, E. O. Abiodun, M. Alawida, R. S. Alkhawaldeh and H.

Arshad , ”A Review on the Security of the Internet of Things: Challenges

and Solutions,” Springer, pp. 2603–2637, 2021.

[166] R. Verma and A. K. Sharma, ”Cryptography: Avalanche effect of AES

and RSA,” International Journal of Scientific and Research Publications,

pp. 1-7, 2020.

[167] N. A. M. Ariffin and A. Y. A. Ashawesh, ”Enhanced AES Algorithm

Based on 14 Rounds in Securing Data and Minimizing Processing Time,”

The Electrochemical Society, pp. 1-9, 2021.

[168] E. Biham and A. Shamir, ”Differential Cryptanalysis of DES-like Cryp-

tosystems,” Journal of Cryptology, pp. 3-72, 1991.

[169] A. Subandi, M. S. Lydia1 and R. W. Sembiring, ”Analysis of RC6-Lite

Implementation for Data Encryption,” Scitepress, pp. 42-47,2021.

[170] S. D. Sanap and V. More, ”Performance Analysis of Encryption Tech-

niques Based on Avalanche effect and Strict Avalanche Criterion,” 2021

3rd International Conference on Signal Processing and Communication

(ICPSC), pp. 676-679, 2021.

234

[171] F. Wiemer, “Security Arguments and Tool-based Design of Block Ci-

phers,” Faculty of Mathematics at Ruhr-Universität Bochum, ICAR,

pp. 1-188, 2019.

[172] C. R. Martin, ”Chapter 17: Smells and Heuristics - G25 Replace Magic

Numbers with Named Constants,” pp. 300, 2020.

[173] J. Maguire, ”Bjarne Stroustrup on Educating Software Developers”.

Datamation, 2018.

[174] Blog, IoT, Technology, ”Why is the Internet of Things Important to

our Everyday Lives?,” pp 1-8, 2019.

[175] OECD Digital Economy Policy Papers, The Internet of Things Seizing

the Benefits and Addressing the Challanges,” pp. 1-57, 2016

[176] J. H. Ziegeldorf1, O. G. Morchon and K. Wehrle, ”Privacy in the In-

ternet of Things: Threats and Challenges,” Communication and Dis-

tributed Systems, pp 1-14, 2021.

[177] B. Najafi, B. Sadeghian, M. S. Zamani, A. Valizadeh, “High Speed

Implementation of Serpent Algorithm,” Academia, pp. 718-721.

[178] O. Dunkelman, S. Indesteege and N. Keller, “A Differential-Linear At-

tack on 12-Round Serpent,” International Conference on Cryptology in

India, pp. 308-321, 2008.

[179] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali and A. A. Khan, ”A

Review and State of Art of Internet of Things (IoT),” Archives of Com-

putational Methods in Engineering, pp. 1-20, 2021.

[180] M. Hamza, ”A Beginner’s Guide to The Internet of Things (IoT),”

2022, Disruptive Technologies, pp. 1-15, 2022.

235

[181] M. Schöffel , F. Lauer , C. C. Rheinländer and N. Wehn, ”Secure IoT in

the Era of Quantum Computers—Where Are the Bottlenecks?,” MDPI

Sensors, pp. 1-21, 2022.

[182] D. Moody, ”The Beginning of the End: The Fist NIST PQC Standard,”

Post-Quantum Cryptography Team, pp. 1-31, 2022.

[183] L. Sleem, ”Design and Implementation of Lightweight and Secure Cryp-

tographic Algorithms for Embedded Devices,” HAL Archives-Ouvertes,

pp. 1-111, 2021.

[184] Technical Guideline, ”Cryptographic Mechanisms: Recommendations

and Key Lengths,” Federal Office for Information Security, pp. 1-90,

2022.

[185] I. Whutahaean, A. A. Lestari, and B. H. Susanti, ”A Tutorial of

Boomerang Attack on Small Present,” Journal of Physics: Conference

Series, vol. 1836, no. 012029, pp. 1-8, 2021.

[186] R. H. Makarim ”Relating Undisturbed Bits to Other Properties of Sub-

stitution Boxes,” Middle East Technical University, pp. 1-37, 2014.

[187] M. Khurana and M. Kumari, ”Variants of Differential and Linear

Cryptanalysis,” IACR, pp. 1-10, 2015.

[188] R. AlTawy and A. M. Youssef, ”Differential Sieving for 2-Step Match-

ing Meet-in-the-Middle Attack with Application to Lblock,” Concordia

University, LNCS 8898, pp. 126–139, 2015.

[189] G. Bansod, ”A New Ultra Lightweight Encryption Design for Security

at Node Level,” International Journal of Security and Its Applications,

vol. 10, no. 12, pp.111-128, 2016.

236

[190] B. Rashidi, ”Flexible and High-Throughput Structures of Camellia

Block cipher for Security of the Internet of Things,” IET Computers

and Digital Techniques, pp. 1-14, 2020.

[191] U. Panahi and C. Bayılmış, ”Enabling Secure Data Transmission for

Wireless Sensor Networks based IoT Applications,” Ain Shams Engi-

neering Journal, pp. 1-4, 2022.

[192] B. S. Sawiris, S. A. El-Gaber and M. A. Abdel-Fattah, ”Centralization

of Big Data Using Distributed Computing Approach in IoT,” Interna-

tional Journal of Intelligent Engineering and Systems, vol. 14, no.4, pp.

393-409, 2021.

[193] A. M. Alkhiari, S. Mishra, and M. AlShehri, ”Blockchain-Based SQKD

and IDS in Edge Enabled Smart Grid Network,” Computers, Materials

and Continua, vol. 70, no.2. pp. 2150-2169, 2022.

[194] L. C. N Chew and E. S. Ismail, ”S-Box Construction Based on Linear

Fractional Transformation and Permutation Function,” Symmetry vol.

12, no.5, 2020.

[195] Z. Liu, B. Sun, Q. Wang, K. Varici, D. Gu, ”Improved Zero-Correlation

Linear Cryptanalysis of Reduced-Round Camellia under Weak Keys,”

IET Information Security, pp. 1-9, 2015.

[196] R. Bhatnagar, ”Internet of Things (IoT) The Rise of the Connected

World,” Deloitte, pp. 1-34, 2022.

[197] H. Yap, K. Khoo and A. Poschmann, ”Parallelizing the Camellia and

SMS4 Block Ciphers- Extended Version,” International Journal of Ap-

plied Cryptography, vol. 3, no. 1, pp. 1-20, 2013.

[198] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,

and T. Tokita, ”Camellia: A 128-Bit Block Cipher Suitable for Multiple

Platforms– Design and Analysis,” LNCS, pp. 39–56, 2012

237

[199] J. Lu, Y. Wei, E. Pasalic and P. A. Fouque, ”Meet-in-the-Middle Attack

on Reduced Versions of the Camellia Block Cipher,” DIENS, pp. 1-18,

2011.

[200] D. Wagner, ”The Boomerang Attack,” International Workshop on Fast

Software Encryption, pp 156–170, 1999.

[201] M. Kanda and T. Matsumoto ”Security of Camellia against Truncated

Differential Cryptanalysis,” FSE 2001, LNCS 2355, pp. 286–299, 2002.

[202] L. Li, K. Jia, X. Wang and X Dong, ”Meet-in-the-Middle Technique

for Truncated Differential and Its Applications to Clefia and Camellia,”

IACR, FSE, pp. 1-19, 2015.

[203] K. Zhang and X. Lai, ”Another Perspective on Automatic Construction

of Integral Distinguishers for ARX Ciphers,” MDPI Symmetry, vol. 14,

no. 3, pp. 1-45, 2022.

[204] G. C. Kessler, ”An Overview of Cryptography,” Garykessler.net, pp.

1-1895, 2022.

[205] C. W. Ci, S. Z. M. Naziri, R. C. Ismail, R. Hussin, M. N. M. Isa and

M. S. S. M. Basir, ”Crypto-Core Design using Camellia Cipher,” 5th

International Conference on Electronic Design (ICED) 2020, pp. 1-13,

2020.

[206] Y. Li, H. Lin, M. Liang and Y. Sun, ”A New Quantum Cryptanalysis

Method on Block Cipher Camellia,” IET Information Security, pp. 1-25,

2021.

[207] N. Bagheri, S. Sadeghi, P. Ravi, S. Bhasin and H. Soleimany, ”SIPFA:

Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers,”

IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems, vol. 0, no. 0, pp. 1–24, 2022.

238

[208] A. K. Sharma, S.K. Mittal and S. Mittal, ”Attacks on Cryptographic

Hash Functions and Advances,” International Journal of Information

and Computing Science,” pp. 89-96, 2018.

[209] ”DES is not Secure,” Found in https://www.freeswan.org/freeswan trees/freeswan-

1.5/doc/DES.html

[210] A. Bogdanov and P. S. Vejre, ”Linear Cryptanalysis of DES with Asym-

metries,” Asiacrypt, pp. 187–216, 2017.

[211] Lecture Notes of Cryptography and Network Security from Cleveland

State University, ”Chapter 6: Data Encryption Standard (DES),” YUC,

pp. 143-174, 2019.

[212] L. Li, J. Liu, Y. Guo, B. Liu, ”A New S-Box Construction Method

Meeting Strict Avalanche Criterion,” Journal of Information Security

and Applications, vol. 66, pp. 103-135, 2022.

[213] D. Mukhopadhyay, ”Linear Cryptanalysis,” Indian Institute of Tech-

nology Kharagpur, pp. 1-16, 2020.

[214] J. B. Awotunde1, A. O. Ameen, I. D. Oladipo and A. R. Tomori, M.

Abdulraheem”Evaluation of Four Encryption Algorithms for Viability,

Reliability and Performance Estimation,” Nigerian Journal of Techno-

logical Developmement, Vol. 13, No. 2, 2016.

[215] K. D. Muthavhine and M. Sumbwanyambe, ”An analysis and a Com-

parative Study of Cryptographic Algorithms used on the Internet of

Things (IoT) based on Avalanche Effect,” Uir.Unisa, pp. 1-184, 2018.

[216] A. Bar-On, O. Dunkelman, N. Keller and A. Weizman, ”DLCT: A New

Tool for Differential-Linear Cryptanalysis,” IACR, pp. 1-30, 2019.

[217] A. Biryukov, ”Boomerang Attack,” Encyclopedia of Cryptography and

Security, pp. 1-59, 2011.

239

[218] O. Dunkelman, N. Keller, E. Ronen and A. Shamir, ”The Retracing

Boomerang Attack,” ICAR, pp. 1-45, 2019.

[219] D. Burak, P. B LaszyŃski, ”Parallelization of the Camellia Encryption

Algorithm,” PAK, vol. 55, no.10, 2009.

[220] T. Shirai, ”Differential, Linear, Boomerang and Rectangle Cryptanal-

ysis of Reduced Round Camellia,” In Proceedings of the Third NESSIE

Workshop, 2002.

[221] M. Matsui and J. Nakajima, ”A Description of the Camellia Encryption

Algorithm,” Network Working Group, pp. 1-11, 2004.

[222] A. Biryukov and I. Nikoli, ”Security Analysis of the Block Cipher

Camellia,” Cryptrec, pp. 1-25, 2012.

[223] S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon, ”Truncated Differential

Cryptanalysis of Camellia,” Information Security and Cryptology, pp.

1-15, 2001.

[224] S. Moriai and A. Kato, ”Use of the Camellia Encryption Algorithm

in Cryptographic Message Syntax,” Network Working Group, pp. 1-13,

2004.

[225] D. Bai and L. Li, ”New Impossible Differential Attacks on Camellia,”

ICAR, pp. 1-15, 2011.

[226] W. Wu, W. Zhang and D. Feng, ”Impossible Differential Cryptanalysis

of ARIA and Camellia,” ICAR, pp. 1-15, 2006.

[227] B. S. W. Poetro, ”Implementation of 128 bits Camellia Algorithm for

Cryptography in Digital Image,” IOP Conference Series Materials Sci-

ence and Engineering, pp. 1-5, 2017.

240

[228] W. Wu, W. Zhang and D. Feng, ”Improved Impossible Differential

Cryptanalysis of Reduced-Round Camellia,” International Workshop on

Selected Areas in Cryptography, pp. 442–456, 2008.

[229] H. Mala, M. Dakhilalian, and M. Shakiba, ”Impossible Differential

Cryptanalysis of Reduced–round Camellia–256,” IET Information Se-

curity, vol. 5, no. 3, pp. 129–134, 2011.

[230] Y. Liu, L. Li, D. Gu, X. Wang, Z. Liu, J. Chen and W. Li, ”New Ob-

servations on Impossible Differential Cryptanalysis of Reduced-Round

Camellia,” HAL Open Science, pp 90-109, 2012.

[231] Z. Čiča, ”Pipelined implementation of Camellia encryption algorithm,”

2016 24th Telecommunications Forum, pp. 1-4, 2016.

[232] D. Mukhopadhyay, ”Linear Cryptanalysis,” IIT Kharagpur, pp. 1-17,

2023.

[233] M. Nasiri, ”Cryptanalytic Attacks on DES Block Cipher,” 3rd National

Industrial Mathematics Conference, pp. 1-10, 2016.

[234] M. E. K. Al-Shammary and S. S. M. Al-Dabbagh, ”Differential Dis-

tribution Table Implementation DDT: Survey,” Technium vol. 4, no.10,

pp.15-30, 2022.

[235] A. A. Tamimi, ”Performance Analysis of Data Encryption Algorithms,”

Wustl.edu, pp. 1-14, 2013.

[236] S. Gautam, S. S. Gaur and, H. S. Kalsi, ”A Comparative Study and

Analysis of Cryptographic Algorithms: RSA, Des, Aes, Blowfish, 3-DES,

and Twofish,” IJRECE , No. 1, Vol. 7, pp. 996-999, 2019.

241

Appendices

242

Appendix A

243

Figure A.1: AES S-Box with 32-Bit Output

244

Figure A.2: New Inverse AES S-Box with 32-Bit Output

245

Appendix B

246

Figure B.1: New 32-bit S-Boxes of Serpent written in C++

247

Figure B.2: New Inverse of 32-bit S-Boxes of Serpent written in C++

248

Appendix C

249

Figure C.1: Standard C++ Camellia 8 x 8 S-Box

250

Figure C.2: New Camellia 8 x 32 S-Box

251

Figure C.3: Standard C++ AES 8 x 8 S-Box

252

