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Abstract

This thesis is concerned with the study of remote sublocales which are a pointfree version of

remote subsets which we define using van Mill’s definition of a remote collection. Unlike in van

Mill’s case though, the remote sublocales and remote subsets in this thesis do not necessarily

need to be closed and no separation axioms are imposed on locales and spaces. We characterize

both of these concepts and further show that in a T1-space, the collection of isolated points is

the largest remote subset of the space. Using the motivation that remote points were initially

introduced with respect to a dense subspace of the Stone-Čech compactification, we introduce

and study properties of some versions of remote sublocales called remote (resp. ∗remote) from

a dense sublocale.

We also examine localic maps that preserve and reflect remote sublocales and their versions.

We prove that the localic maps whose image functions send remote sublocales to remote

sublocales are precisely those with weakly open left adjoints. We also use the result about the

reflection of remote sublocales to prove that the Booleanization of a locale is the largest remote

sublocale of the locale, a result with no pointset topological counterpart. For the preservation

and reflection of sublocales that are remote from dense sublocales, we use the Stone extension,

realcompact reflector and the Lindelöf reflector as particular cases.

Veksler defined a maximal nowhere dense subset of a Tychonoff space as a closed nowhere

dense subset which is not a nowhere dense subset of any closed nowhere dense subset of the

space; it is called homogeneous maximal nowhere dense in case all of its regular-closed subsets

are maximal nowhere dense in the space. We introduce pointfree versions of (homogeneous)

maximal nowhere dense subsets and examine a relationship between the introduced sublocales

and remote sublocales where we show, among other results, that every closed nowhere dense

sublocale which is ∗remote from its supplement is maximal nowhere dense. Regarding preserva-

tion and reflection of (homogeneous) maximal nowhere dense sublocales, we show that every

open localic map that sends dense elements to dense elements preserves and reflects maxi-

mal nowhere dense sublocales, and if such a localic map is further injective, then it sends

homogeneous maximal nowhere dense sublocales back and forth.

In the category of bilocales, we provide a comprehensive study of (i, j)-nowhere dense
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sublocales and subsequently introduce (i, j)-remote sublocales and prove that the (i, j)-remote

sublocales of a bilocale whose i-part coincides with the total part of the bilocale are precisely

the sublocales that are (i, j)-remote from dense subbilocales. For a bilocale (L,L1, L2), we

introduce and study the sublocale RemBL which is the collection of all elements of L inducing

the closed (i, j)-remote sublocales of L.

Keywords: sublocale, localic map, compactification, bilocale, subbilocale, remote point, re-

mote sublocale, nowhere dense sublocale, maximal nowhere dense sublocale, subbilocale, dense

subbilocale, (i, j)-nowhere dense sublocale, (i, j)-remote sublocale
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Basic Notations

βR: The Stone-Čech compactification of the set of real numbers R.

OX: Locale of opens of a space X.

a∗: The pseudocomplement of a.

BL: Booleanization of a locale L.

S̃: Sublocale induced by a subset S.

Nd(L): The largest nowhere dense sublocale of a locale L.

S(L): Collection of all sublocales of a locale L.

Srem(L): Collection of all remote sublocales of a locale L.

ND(L): Collection of all nowhere dense sublocales of a locale L.

Srem(Ln S): Collection of sublocales of L which are remote from S ∈ S(L).

∗Srem(Ln S): Collection of sublocales of L which are ∗remote from S ∈ S(L).

Rem(L): All elements of a locale L inducing closed remote sublocales.

Rem(L n S): Collection of all elements of a locale L inducing closed sublocales which are

remote from S ∈ S(L).

∗Rem(Ln S): The set of elements of a locale L inducing closed sublocales which are ∗remote

from S ∈ S(L).

Rs(Ln S): The largest sublocale of a locale L remote from S ∈ S(L).

∗Rs(Ln S): The largest sublocale of a locale L ∗remote from S ∈ S(L).

(L,L1, L2): Bilocale.

a•: The bilocale pseudocomplement of a.

RemBL: Collection of all elements of L inducing the closed (i, j)-remote sublocales of (L,L1, L2).

Obj(A): Collection of all objects of a category A.

Top: Category of topological spaces whose morphisms are continuous maps.

Loc: Category of locales whose morphisms are localic maps.

CRegLoc: Category of completely regular locales whose morphisms are localic maps.

CFLocR: Category of locales which are also coframes whose morphisms are Rem-maps.

BooLocR: Full subcategory of CFLocR whose objects are Boolean locales.

BiLoc: Category of bilocales whose morphisms are bilocalic maps.
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RemBiLocR: Category of bilocales (L,L1, L2) inducing RemBL.

TBiLoc: Full subcategory of BiLoc whose objects are bilocales (L,L1, L2) satisfying the con-

dition that each L2-dense member of L1 is complemented in L.

BiCFLoc: Full subcategory of BiLoc where objects are bilocales whose total parts are

coframes.

RemBiLoc: Full subcategory of BiLoc whose objects are bilocales (L,L1, L2) giving rise to

the sublocale RemBL.

BiCFLocR: Subcategory of BiCFLoc whose morphisms are RemB-maps.

RemBiLocR: Subcategory of RemBiLoc whose morphisms are RemB-maps.

RemBiLocRB: Full subcategory of RemBiLocR whose objects are bilocales (L,L1, L2) with

1 the only L2-dense element of L1.
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Chapter 1

Introduction and Preliminaries

1.1 A brief history on remote points and remote collec-

tions

The notion of a remote point was first introduced by Fine and Gillman [27] in 1962, as a

point p ∈ βR that is not in the closure of any discrete subset of R. Subsequent to that, other

authors considered remote points of arbitrary Tychonoff spaces (see, for instance, Mandelker

[45] and [46]). Van Douwen [14], in 1981, undertook a systematic study of remote points and

gave several characterizations. He referred to remote points as points of βX rX missing the

closure of every nowhere dense subset of a Tychonoff space X, while those missing the closure

of every discrete subset of X as far points. It was shown by Woods [60] in 1971 that these

notions are equivalent in the context of metric space with no isolated points. Van Mill [48],

in 1982, introduced the notion of a remote collection as a collection of closed subsets of a

Tychonoff space in which some member of the collection misses every nowhere dense subset of

the space.

In the pointfree setting, Dube [17], in 2009, approached the characterization of remote

points provided by van Douwen in [14] with a definition heavily dependent on points of com-

pletely regular locales. Subsequent to that, Dube and Mugochi [21], in 2015, generalized the

notion of remote points to arbitrary extensions of locales, and their work depended on points.

The study of remoteness in pointfree topology which does not rely on points is introduced here

for the first time. We aim to introduce remote sublocales using van Mill’s concept of a remote

collection. This will be achieved through defining a remote subset from a singleton remote
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collection, and transfer this notion to locales to get remote sublocales. Remote sublocales

are extensions of remote points that were initially introduced by Dube in [17]. We do not

claim that the study of these objects is a completely new work. This thesis contributes to the

theory of sublocales. We wish to adapt most of the work done in [17] and [21] to sublocales,

with no reference to points whatsoever. This is not an outrageous idea. In support of this,

it suffices to mention that the concept of remainder preservation (which refers to points) was

first considered for locales in [22]. A much improved view which deals only with sublocales

and not points was presented in [26].

The work done in [17] only focuses on investigating certain frame homomorphisms such

that the Stone extension transfers remote points back and forth. In this work, we do not only

consider the Stone extension, but also the realcompact reflector and the Lindelöf reflector.

To our knowledge, little to none has been done regarding remoteness in the categories of

bitopological spaces and bilocales. In this thesis, we include results about bilocalic remoteness.

1.2 Synopsis of the thesis

This thesis is organized as follows. The last six sections of this chapter provide some back-

ground results that are needed throughout the thesis.

The second chapter introduces the concept of a remote sublocale. The first section of this

chapter begins with a definition of a remote subset constructed from van Mill’s definition of a

remote collection. The remote subsets introduced are not necessarily closed and no separation

axiom is assumed on the space. This is then followed by a definition of a remote sublocale

which turns out to be conservative in locales, in the sense that a subset is remote if and only

if the sublocale it induces is remote in the locale of opens. We show that in T1-spaces, the

collection of isolated points is the largest remote subset. Since the concept of remoteness

was initially introduced with respect to a dense subspace of the Stone-Čech compactification,

we also introduce and study some properties of sublocales that are remote (resp. ∗remote)

from dense sublocales. The chapter ends with two sections that respectively consider algebraic

aspects of remoteness and remoteness in binary coproducts.
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Chapter 3 discusses preservations and reflections of the concepts of remoteness introduced

in Chapter 2. The first section focuses on examining localic maps that send remote sublocales

back and forth. It turns out that the localic maps whose image functions send remote sublocales

to remote sublocales are precisely those with weakly open left adjoints. We use a result about

the reflection of remote sublocales to prove that the Booleanization of a locale is the largest

remote sublocale of the locale, a result which does not have a counterpart in spaces. The last

section focuses on localic maps preserving remote sublocales from a dense sublocale. Particular

cases in this section are the Stone extension, realcompact reflector and the Lindelöf reflector.

We prove that under certain conditions, the preservation of remote sublocales is equivalent to

the preservation of sublocales that are remote from a dense sublocale.

Since nowhere density plays a crucial role in the study of remote sublocales, in Chapter

4, we introduce some variants of nowhere dense sublocales, particularly maximal nowhere

dense and homogeneous maximal nowhere dense sublocales. These were initially introduced

in spaces, so we show that their localic definitions are conservative in locales and prove some

properties of these sublocales. We further examine a relationship between (homogeneous)

maximal nowhere dense sublocales and remote sublocales via the introduction of (almost)

inaccessible sublocales. We show that every closed nowhere dense sublocale which is ∗remote

from its supplement is maximal nowhere dense. The chapter ends with a study of localic maps

that preserves and reflects (homogeneous) maximal nowhere dense sublocales. It is apparent

that every open localic map that sends dense elements to dense elements preserves and reflects

maximal nowhere dense sublocales. If such a localic map is further injective, then it sends

homogeneous maximal nowhere dense sublocales back and forth.

In the last chapter, Chapter 5, we transfer the notion of remoteness to bilocales. The first

section provides a comprehensive study of (i, j)-nowhere dense sublocales which are localic

counterparts of (τi, τj)-nowhere dense subsets. Unlike in locales, certain conditions must be

imposed on a bilocale for (i, j)-nowhere dense sublocales to be characterized by the smallest

dense sublocale of the total part of the bilocale. The second section introduces (i, j)-remote

sublocales. We show that for a bilocale (L,L1, L2), if Li = L, then the (i, j)-remote sublocales

of (L,L1, L2) are precisely the sublocales that are (i, j)-remote from dense subbilocales of

(L,L1, L2). Unlike in the case of locales, the preservation of (i, j)-remoteness fails to be
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characterized using the preservation of (i, j)-nowhere dense sublocales. The last section of

this chapter studies the sublocale RemBL of a bilocale (L,L1, L2) which is the collection of all

elements of L inducing the closed (i, j)-remote sublocales of (L,L1, L2). We prove that every

bilocale (L,L1, L2) in which either all L2-dense members of L1 are complemented in L or the

total part L of (L,L1, L2) is also a coframe, induces the sublocale RemBL. We consider the

category RemBiLocR whose objects are bilocales (L,L1, L2) inducing the sublocale RemBL,

and morphisms are RemB-maps, and show that there is a natural transformation from the

functor RemB : RemBiLocR → Loc to the forgetful functor G : RemBiLocR → Loc.

1.3 Locales and localic maps

We direct the reader to [50] and [26] for more details on meanings presented in this section.

A locale (or frame) is a complete lattice L satisfying the following distributive law:

x ∧
∨
A =

∨
{x ∧ a : a ∈ A}

for all A ⊆ L and x ∈ L. The top element and the bottom element of a locale L will be

denoted by 1L and 0L, respectively, with subscripts dropped when L is clear from the context.

A subset F of a locale L closed under finite meets and arbitrary joins in L is called a subframe

of L. By a point of L we mean an element p < 1 such that a ∧ b ≤ p implies a ≤ p or b ≤ p,

for all a, b ∈ L.

The pseudocomplement of an element a ∈ L is denoted by

a∗ :=
∨
{x ∈ L : a ∧ x = 0}.

An element a ∈ L is said to be

1. dense if a∗ = 0.

2. compact if a ≤
∨
A for each A ⊆ L implies that a ≤

∨
B for some finite B ⊆ A.

3. complemented if a ∨ a∗ = 1.

4. rather below an element b ∈ L, denoted a ≺ b, if a∗ ∨ b = 1.
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5. completely below b ∈ L, denoted by a ≺≺ b, if there is a sequence (xq) of elements of L

indexed by Q ∩ [0, 1] such that a0 = a, a1 = b and xq ≺ xr whenever q < r.

A locale L is

1. compact if 1 is compact.

2. Boolean in case every element is complemented.

3. regular provided that for every a ∈ L,

a =
∨
{x ∈ L : x ≺ a}.

4. completely regular if for all a ∈ L,

a =
∨
{x ∈ L : x ≺≺ a}.

A frame homomorphism is a map between locales which preserves binary meets (including

the top element) and arbitrary joins (including the bottom element). It is called dense in case it

maps only the bottom element to the bottom element, a quotient map provided it is surjective,

and an extension if it is a dense quotient map. Associated with a frame homomorphism

h : M → L is its infima preserving right adjoint h∗ : L→M given by

h∗(x) =
∨
{a ∈M : h(a) ≤ x}.

It is usually called a localic map. Left adjoints of localic maps, say g, are represented by g∗.

In this thesis, h is assumed to be a frame homomorphism whose right adjoint will always be

represented by f . Similarly, f will be a localic map whose left adjoint will always be h. By a

closed frame homomorphism, we mean a frame homomorphism h : M → L such that

f(x ∨ h(y)) = f(x) ∨ y

for all x ∈ L and y ∈M . A localic map f : L→M is dense if f(0) = 0.

A sublocale of a locale L is a subset S ⊆ L such that:

1. S is closed under all meets, and
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2. x→ s ∈ S, for all x ∈ L and s ∈ S,

where → is a Heyting operation on L satisfying:

a ≤ b→ c if and only if a ∧ b ≤ c

for every a, b, c ∈ L. The smallest sublocale of L is the sublocale O = {1}. A sublocale S of

L is void if S = O and non-void if S 6= O. Sublocales are locales in their own rights. The

collection S(L) of all sublocales of L is a lattice where 0S(L) = O, 1S(L) = L, meet operation

is given by intersection and join operation is given by∨
i∈I

Si =
{∧

M : M ⊆
⋃
i∈I

Si

}
.

The collection S(L) is a coframe in the sense that, for every S ∈ S(L) and every collection

{Ai} ⊆ S(L),

S ∨
⋂

Ai =
⋂

(S ∨ Ai) .

We shall use the prefix S- for localic properties defined on a sublocale S of L. A sublocale

S ⊆ L misses a sublocale T of L if S ∩ T = O. It is complemented if it has a complement in

S(L), and linear if

S ∩
∨
{Ci : i ∈ I} =

∨
{S ∩ Ci : i ∈ I}

for each family {Ci : i ∈ I} ⊆ S(L).

Every sublocale S of L has a supplement, denoted by S# or Lr S, where

Lr S =
∨
{A ∈ S(L) : A ∩ S = O}.

The closed and the open sublocales induced by a ∈ L are the sublocales

c(a) = {x ∈ L : a ≤ x} and o(a) = {x ∈ L : a→ x = x} = {a→ x : x ∈ L},

respectively, and are complements of each other. We shall write A sublocale is clopen if it is

both closed and open. Just like in spaces and subspaces, open sublocales in a sublocale S are

the oS(a) = S ∩ o(a), and similarly we have the closed sublocale of S, cS(a) = S ∩ c(a). The

closure of S ∈ S(L) is denoted by

cl(S) = S = c
(∧

S
)

=
⋂
{c(x) : S ⊆ c(x)}

6



and its interior is denoted by

int(S) = o
(∧

(Lr S)
)

=
∨
{o(x) : o(x) ⊆ S}.

By a regular-closed sublocale we mean a sublocale which is the closure of some open sublocale.

Here are some properties of open and closed sublocales.

• o(0) = c(1) = O and c(0) = 0(1) = L.

• c(x) ⊆ o(a) if and only if x ∨ a = 1.

• o(x) ⊆ c(a) if and only if x ∧ a = 0.

• o(x) ∩ o(a) = o(x ∧ a) and
∨
i∈I o(xi) = o

(∨
i∈I xi

)
.

• c(x) ∨ c(a) = c(x ∧ a) and
⋂
i∈I c(xi) = c

(∨
i∈I xi

)
.

• o(a) = c(a∗) and (c(a))◦ = o(a∗).

A sublocale S ⊆ L is said to be dense if S = L. This is equivalent to requiring S to contain

0. The subset

B(L) = {x→ 0 : x ∈ L} = {x ∈ L : x = x∗∗}

of L is the least dense sublocale of L, usually called the Booleanization of L. A sublocale is

nowhere dense if it misses the smallest dense sublocale.

For a localic map f : L→M , the localic image function f [−] : S(L)→ S(M), given by

f [S] = {f(x) : x ∈ S}

is the left adjoint of the localic preimage function f−1[−] : S(M)→ S(L) given by

f−1[T ] =
∨
{A ∈ S(L) : A ⊆ f−1(T )}.

For a localic map f : L→M , x ∈M and A ∈ S(L),

f−1[cM(x)] = cL(h(x)); f−1[oM(x)] = oL(h(x)) and f [A] ⊆ f [A].

A localic map f : L→M is dense if and only if f [L] is dense in M .

An alternative representation of a sublocale of L is given by the notion of a nucleus which

is defined as a mapping ν : L→ L such that
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1. a ≤ ν(a),

2. a ≤ b =⇒ ν(a) ≤ ν(b),

3. νν(a) = ν(a), and

4. ν(a ∧ b) = ν(a) ∧ ν(b)

for every a, b ∈ L. The set Fix(ν) = {a ∈ L : ν(a) = a} is a locale with meets in L. For a

sublocale S ⊆ L there is the quotient map νS : L→ S defined by

νS(a) =
∧
{s ∈ S : a ≤ s}.

Open sublocales and closed sublocales of a sublocale S of L are given in terms of nucleus as

oS(νS(a)) = S ∩ o(a) and cS(νS(a)) = S ∩ c(a),

respectively, for a ∈ L. For any S ∈ S(L) and x ∈ L, S ⊆ o(x) if and only if νS(x) = 1. The

joins in a sublocale S of a locale L are given by

S∨
xi = νS

(∨
xi

)
.

A noteworthy result about dense sublocales is that pseudocomplementation in a dense

sublocale is precisely that in the locale. This is so because, if A is a dense sublocale of L and

x ∈ A, then writing x∗A and →A for, respectively, the pseudocomplement of x in A and the

Heyting operation in A, we have the equalities

x∗A = x→A 0A = x→ 0L = x∗.

1.4 Category theory

Our main reference for this section is [34].

By a category we mean a quadruple A = (Obj(A), hom, id, ◦) where

1. Obj(A) is a class whose members are called objects of A or simply A-objects,
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2. for each pair (A,B) of A-objects, homA(A,B) is a set whose members are called A-

morphisms from A to B, indicated in terms of arrows by writing f : A→ B with A the

domain of f (notation: dom(f)) and B the codomain of f (notation: codom(f)),

3. for each A ∈ Obj(A), idA : A → A is an A-morphism called the A-identity morphism,

and

4. there is a composition law associating with each pair (f, g) of A-morphisms satisfying

dom(f) = codom(f) an A-morphism g ◦ f : dom(f)→ codom(g), satisfying:

(a) h ◦ (g ◦ f) = (h ◦ g) ◦ f (associativity) whenever the compositions are defined.

(b) A-identities act as identities with respect to composition, i.e., for A-morphisms

f : A→ B, we have idB ◦ f = f and f ◦ idA = f .

(c) the sets homA(A,B) are pairwise disjoint.

A morphism f of a category A is said to be an isomorphism provided that there is another

morphism g of A such that f ◦ g and g ◦ f are A-identity morphisms.

We shall use Loc to represent the category whose objects are locales and morphisms are

localic maps. We denote by Frm the category whose objects are frames and morphisms are

frame homomorphisms.

By the opposite category of a category A we mean a category having the same class of

objects and morphisms as A, but with reversed directions of morphisms. It is often denoted

by Aop. Loc is the opposite category of Frm.

A functor is a function F : A → B between categories A and B that assigns to each A-

object A a B-object FA and to eachA-morphism f : A→ A′ a B-morphism F (f) : FA→ FA′,

in such a way that F preserves composition and identity morphisms. A construction with the

properties similar like those of a functor, only modified by reversing the directions of morphisms

is called a contravariant functor. By an endofunctor we refer to a functor that maps objects

and morphisms from one category back to the same category. We shall use idA to indicate the

identity functor from category A to itself. A functor F : A → B between categories A and B is

said to be faithful if for all A,A′ ∈ Obj(A), the restriction F : homA(A,A′)→ homB(FA, FA′)

is injective.
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For functors F : A → B and G : A → B between categories A and B, we define a natural

transformation ω : F → G as a function that assigns to each A-object A a B-morphism

ωA : FA −→ GA in such a way that the following condition holds: For every g ∈ homA(A,A′),

the following square commutes:

FA GA

FA′ GA′

F (g)

ωA

G(g)

ωA′

(1.4.1)

If all the ωA’s are isomorphisms, then ω is said to be a natural isomorphism. We say that two

functors are naturally isomorphic if there exists a natural isomorphism between them.

By a monad on a category A we mean a triple (T, η, µ) where T : A → A is a functor, and

η : idA → T and µ : T ◦ T → T are natural transformations such that the diagrams

T ◦ T ◦ T T ◦ T

T ◦ T T

µT

Tµ

µ

µ

(1.4.2)

and

T T ◦ T T

T

id

Tµ

µ

ηT

id
(1.4.3)

commute. The opposite of a monad is a comonad.

A category B is called a subcategory of a category A in case

1. Obj(B) ⊆ Obj(A),

2. homB(B,B′) ⊆ homA(B,B′) for every B,B′ ∈ Obj(B),

3. for each B-object B, the A-identity morphism on B is the B-identity morphism on B,

and

4. the composition law in B is the restriction of the composition law in A to B-morphisms.
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If a category B is a subcategory of A with the condition that homB(B,B′) = homA(B,B′)

for every B,B′ ∈ Obj(B), then B is said to be a full subcategory of A.

A subcategory B of a category A is called a reflective subcategory of A provided that for

every A ∈ Obj(A), there is a B ∈ Obj(B) and a B-morphism rB : A→ B such that for every

A-morphism f : A→ B′, where B′ ∈ Obj(B), there is a unique B-morphism f ′ : B → B′ such

that f ′ ◦ rB = f . The morphism rB is called the B-reflection for A. The opposite of the notion

of a reflective subcategory of a category A is coreflective subcategory of category A and the

opposite of the concept of the B-reflection for A is called the B-coreflection for A.

1.5 Compactifications

We refer to [50], [9] and [23] for the general theory of compactifications of locales.

A compactification of a locale L is a pair (M,h) where:

1. M is a compact and regular locale, and

2. h is a dense and onto frame homomorphism from M to L.

An ideal of a locale L is a subset I of L such that:

1. 0 ∈ I,

2. I is closed under binary joins, and

3. a ≤ b implies a ∈ I, for all a ∈ L and each b ∈ I.

A filter F is defined dually and is proper if 0 /∈ F , otherwise it is improper. An ideal I of a

locale L is regular (resp. completely regular) if for every a ∈ I, there is b ∈ I such that a ≺ b

(resp. a ≺≺ b). The collection CRJL of all completely regular ideals of a locale L, ordered by

inclusion, is a compact and completely regular locale where 0CRJL = {0}, 1CRJL = L, meet is

given by intersection and join is given by

∨
i∈I

Ii =
{∨

F : F is finite and F ⊆
⋃
i∈I

Ii

}
.
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The Stone-Čech compactification of a locale L is the pair (βL, βL), where βL = CRJL and βL

is the join map βL→ L which is an extension. The right adjoint of βL is given by the localic

embedding

rL : x 7→ {y ∈ L : y ≺≺ x}.

For any localic map f : L→M between completely regular locales L and M , there is a localic

map β(f) : βL→ βM , called the Stone extension, defined by

β(f) : I 7→
∨
{J ∈ βM : h(J) ⊆ I}

with its left adjoint β(h) : βM → βL given by

β(h) : J 7→ {x ∈ L : x ≤ h(y) for some y ∈ J}.

[7] Cozero elements of a locale L are precisely those elements a ∈ L such that

a =
∨
{xn : xn ≺≺ a}

for some sequence (xn) in L, or equivalently,

a =
∨
{an : an ≺≺ an+1}

for some sequence (an) in L.

The cozero part of L, denoted by CozL, is the collection of all cozero elements of L.

Let L be a completely regular locale. An ideal of CozL is a σ−ideal if it is closed under

countable joins. The locale of σ-ideals of CozL, denoted by λL, is the regular Lindelöf reflection

of L and the extension λL : λL → L defined by I 7→
∨
I, is the regular Lindelöf coreflection

map whose right adjoint is called the regular Lindelöf reflection map, [44]. This is a special case

of a more general result concerning κ-locales (see [43]). We define the extension kL : βL→ λL

by I 7→ 〈I〉σ, where 〈·〉 signifies σ-ideal generation in CozL.

For any x ∈ L, let

[x] = {a ∈ Coz L : a ≤ x}.

The map

` : λL→ λL, I 7→
[∨

I
]
∧
∧
{P ∈ Pt(λL) : I ≤ P}
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is a nucleus. The locale υL defined to be Fix(`) is the realcompact reflection of L with

the realcompact reflection map given by the join map vL : vL → L which is an extension.

The extension λL → υL effected by ` is denoted by `L. See [8] for the construction of the

realcompact reflection.

When βL is regarded as the locale of regular ideals of CozL, we get the following commuting

diagram in the category CRegLoc of completely regular locales whose morphisms are localic

maps between them. It puts into perspective the collection of the maps described above.

L M

υL υM

λL λM

βL βM

rL

(υL)∗

(λL)∗

f

(υM )∗

(λM )∗

rM(`L)∗

υ(f)

(`M )∗

(κL)∗

λ(f)

(κM )∗

β(f)

(1.5.1)

For any completely regular locale L and x ∈ L, we have

`L([x])(λL)∗(x) = (υL)∗(x) = (`L)∗([x]) = [x].

By a γ-lift we mean the localic morphism γ(f) : γL→ γM , where γ ∈ {β, λ, υ}.

For γ ∈ {β, λ, υ}, the assignment

γ : CRegLoc→ CRegLoc

f 7→ γ(f)

is a functor.

1.6 Remote points

For detailed meanings of the notions introduced in this section, we refer to [14] and [18].
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In point-set topology, a point p ∈ βX rX, where βX is the Stone-Čech compactification

of a completely regular space X, is remote if p /∈ NβX
, for every nowhere dense set N ⊆ X.

In point-free setting, for a completely regular locale L, a point I ∈ βL is a remote point if

for each nowhere dense quotient map h : M → L, I ∨ rM(h∗(0)) = 1βM , where h is nowhere

dense if for every non-zero x ∈M there exists a non-zero y ≤ x in M such that h(y) = 0.

1.7 Binary coproducts of locales

See [50, 10, 13] as references for binary coproducts of locales.

For any two locales L and M , we construct the binary coproduct L⊕M as follows. Consider

the set

D(L×M) = {U ⊆ L×M : ↓U = U 6= ∅},

ordered by inclusion. A member U of D(L×M) is said to be saturated in case

1. {a} ×B ⊆ U implies (a,
∨
B) ∈ U for every a ∈ L, B ⊆M , and

2. A× {b} ⊆ U implies (
∨
A, b) ∈ U for all A ⊆ L, b ∈M .

For each a ∈ L, b ∈M , the set

a⊕ b = {(0, b), (a, 0)}∪ ↓(a, b)

is the least saturated member of D(L×M) containing ↓(a, b). The collection

L⊕M = {U ∈ D(L×M) : U is saturated}

is a locale and the maps

qL : L→ L⊕M,a 7→ a⊕ 1

and

qM : M → L⊕M, b 7→ 1⊕ b

are frame homomorphisms which are usually called coproduct injections.

The top element and bottom element of L⊕M are denoted by 1L⊕M and 0L⊕M , respectively.

For any a, c ∈ L and b, d ∈M , if 0L⊕M 6= a⊕b ≤ c⊕d, then a ≤ c and b ≤ d. For every (a, b) ∈

L×M , a⊕ b = 0L⊕M if and only if a = 0 or b = 0. Consequently, (a⊕ b)∗ = (a∗⊕1)∨ (1⊕ b∗).
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1.8 Bilocales

We recall some terminology from [5, 51].

A bilocale is a triple (L,L1, L2) where L1, L2 are subframes of a locale L and for all a ∈ L,

a =
∨
{a1 ∧ a2 : a1 ∈ L1, a2 ∈ L2 and a1 ∧ a2 ≤ a}.

We call L the total part of (L,L1, L2), and L1, L2 the first and second parts, respectively.

We use the notations Li, Lj to denote the first or second parts of (L,L1, L2), always assuming

that i, j = 1, 2, i 6= j.

For c ∈ Li we denote

c• =
∨
{x ∈ Lj : x ∧ c = 0}.

A subbilocale of a bilocale (L,L1, L2) is a triple (S, S1, S2) where S is a sublocale of L and

Si = νS[Li] for i = 1, 2.

A biframe homomorphism (or biframe map) h : (M,M1,M2) → (L,L1, L2) is a frame

homomorphism h : M → L for which

h(Mi) ⊆ Li (i = 1, 2).
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Chapter 2

On Remote Sublocales

This chapter aims to introduce and provide a study of a concept of remoteness in locales. The

information in this chapter forms part of the research paper: M.S. Nxumalo, On sublocales

that miss every nowhere dense sublocale, Quaest. Math., (2023)(Under Review).

2.1 Introducing remote sublocales

The objective in this section is to extend to pointfree topology the notion of a remote subset

introduced by van Mill in [48]. Unlike in [48], where remoteness is defined only for Tychonoff

spaces and remote subspaces are required to be closed, we broaden the scope by working in

arbitrary spaces and do not require remote subspaces to be closed.

Recall that a subspace of a topological space is called nowhere dense if its closure has an

empty interior. In the introduction, we recalled van Mill’s definition of a remote collection

which is a collection F of closed subsets of a Tychonoff space X where every nowhere dense

subset of X misses some member of F . In the event that F is a singleton, say F = {A}, this

then reduces to saying the closed set A is remote. Since van Mill does not explicitly mention

the remoteness of arbitrary subsets of arbitrary spaces, we formulate the following definition.

Definition 2.1.1. A subset A of a space X is remote if A ∩ N = ∅ for every nowhere dense

N ⊆ X.

We shall extend this concept to locales by merely replacing subspaces with sublocales, and

then show that the extension is conservative, in the sense that a subset A of a space X is
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remote if and only if the induced sublocale of OX is remote.

Definition 2.1.2. We say a sublocale of a locale L is remote if it misses every nowhere dense

sublocale of L.

Before we proceed, we give examples of remote sublocales and show that unlike in the case

of nowhere denseness (recall that, in [53], Plewe shows that the closure of a nowhere dense

sublocale is nowhere dense), the closure of a remote sublocale need not be remote.

We need the following lemma which will also be used elsewhere. In [53], Plewe observed

that a complemented sublocale is nowhere dense if and only if its closure has a void interior.

Since a sublocale of a nowhere dense sublocale is nowhere dense, it follows then that a sublocale

is nowhere dense if and only if its closure is nowhere dense.

Lemma 2.1.3. A sublocale N of a locale L is nowhere dense iff
∧
N is dense in L. In

particular, c(a) is nowhere dense iff a is dense.

Proof.

N is nowhere dense ⇐⇒ c
(∧

N
)

is nowhere dense

⇐⇒ c
(∧

N
)◦

= O

⇐⇒ o
((∧

N
)∗)

= o(0)

⇐⇒
(∧

N
)∗

= 0,

which proves the lemma.

A consequence of this lemma which we are going to use further below, is the following

corollary.

Corollary 2.1.4. A sublocale N of L is nowhere dense iff LrN is dense.

Proof. By Lemma 2.1.3, N is nowhere dense if and only if
∧
N is dense, which is true if and

only if o(
∧
N) is dense. So, from the equalities

LrN = Lr c
(∧

N
)

= o
(∧

N
)
,

it follows that N is nowhere dense if and only if LrN is dense.
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Observation 2.1.5. From Corollary 2.1.4, we also observe that an open sublocale is dense if

and only if its supplement is nowhere dense. Indeed, o(x) is dense if and only if x is dense if

and only if c(x) is nowhere dense if and only if Lr o(x) is nowhere dense.

Another consequence of Lemma 2.1.3 is the following result.

Corollary 2.1.6. Every closed remote sublocale is clopen.

Proof. Consider an arbitrary closed sublocale c(x) which is remote. Since c(x∨x∗) is nowhere

dense, c(x) ∩ c(x ∨ x∗) = O, which implies c(x ∨ x ∨ x∗) = c(1), whence x ∨ x∗ = 1 showing

that x is complemented, and hence c(x) is clopen.

Using Lemma 2.1.3, we prove the following proposition, which will enable us to present the

examples alluded to above.

Proposition 2.1.7. A locale is remote as a sublocale of itself iff it is Boolean.

Proof. (=⇒): Let L be a locale which is a remote sublocale of itself. If a ∈ L is dense and

a < 1, then the nowhere dense sublocale c(a) is non-void, which is not possible since L misses

every nowhere dense sublocale of itself. Thus a = 1. Hence for any x ∈ L, x ∨ x∗ = 1 because

x ∨ x∗ is dense. This shows that L is Boolean.

(⇐=): Suppose that L is Boolean. First, observe that a locale M is Boolean if and only if

the void sublocale is its only nowhere dense sublocale. Indeed, if M is Boolean, then cM(a) is

nowhere dense if and only if a = 1. On the other hand, for any a ∈M , a ∨ a∗ is dense, hence

c(a ∨ a∗) is nowhere dense, making cM(a ∨ a∗) = O, hence a ∨ a∗ = 1, whence M is Boolean.

Therefore, the only nowhere dense sublocale of L is O. Thus L misses every nowhere dense

sublocale of itself, making it a remote sublocale of itself.

This naturally raises a question as to when a space is remote as a subspace of itself. We

answer that in Proposition 2.1.9 below. Recall, for instance, from [41], that a space is almost

discrete if each closed subset is open (equivalently, each open subset is closed). We start by

showing that almost discrete spaces are precisely those whose locales of opens are Boolean.

Proposition 2.1.8. A space X is almost discrete if and only if OX is Boolean.
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Proof. (=⇒): Assume X is almost discrete and let U ∈ OX. Then U = U , so U ∨ U∗ =

U ∪ (X r U) = X = 1OX , where U∗ is the pseudocomplement in OX of U given by

U∗ = X r U = (X r U)◦,

showing that OX is Boolean.

(⇐=): Suppose that OX is Boolean and let U be an open subset of X. Then U ∈ OX

and so, in light of OX being Boolean, X = U ∨U∗ = U ∪ (X rU). Since U ∩ (X rU) = ∅, it

follows that U ⊆ U so that U = U . Thus U is closed.

Proposition 2.1.9. A space X is remote as a subset of itself iff it is almost discrete.

Proof. (=⇒): Let A ⊆ X be closed. Then XrA is open so that X r A∩A is nowhere dense.

Since X is remote, we have that ∅ = X ∩X r A ∩ A = A ∩X r A. Therefore

A ⊆ X rX r A

= int(X r (X r A)) = int(A).

Thus A is open. Hence X is almost discrete.

(⇐=): Recall from [40] that the only nowhere dense subset of an almost discrete space is

the empty set. So X misses every nowhere dense subset of itself, making it a remote subset of

itself.

We note some examples.

Example 2.1.10. (1) The sublocales O and BL are remote sublocales. This shows, among

other things, that a locale always has a dense remote sublocale.

(2) Every sublocale contained in a remote sublocale is remote.

Remark 2.1.11. The closure of a remote sublocale is not necessarily remote. For instance, if

L is not Boolean, then BL is a remote sublocale whose closure is not remote because BL = L

and, as observed above, a locale is remote if and only if it is Boolean.

We are now going to show that in the class of TD-spaces localic remoteness is “conservative”

in the sense that a subset of a TD-space is remote if and only if the sublocale it induces is
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remote. Firstly, we note that the following proposition holds by virtue of Plewe’s results

recalled above.

Proposition 2.1.12. A sublocale is remote iff it misses every closed nowhere dense sublocale.

Secondly, we need to know that a subspace of a TD-space is nowhere dense if and only if

the sublocale it induces is nowhere dense. We have not seen a proof of this in the literature,

so we furnish one. We require two lemmas, the first of which is proved in [24, Lemma 3.5]

but for Tychonoff spaces; however a closer look at the proof given in that paper shows that

the result holds for all TD-spaces. Before we state the first lemma, we recall that if X is a

topological space and A ⊆ X, then the induced sublocale Ã is the set

Ã = {int ((X r A) ∪G) : G ∈ OX}.

In particular, if A is closed, then

Ã = {(X r A) ∪G : G ∈ OX}.

The lemma states the following.

Lemma 2.1.13. [24] For any subset S of a TD-space X, S̃ = S̃.

The second lemma was mentioned in [1] without a proof. We furnish its proof.

Lemma 2.1.14. [1] If K is a closed subset of a space X, then K̃ = cOX(X rK).

Proof. By what we observed above,

K̃ = {(X rK) ∪G : G ∈ OX} ⊆ cOX(X rK).

On the other hand, if V ∈ cOX(X rK), then X rK ⊆ V so that V = (X rK) ∪ V . This

makes V ∈ K̃. Thus cOX(X rK) ⊆ K̃.

Lemma 2.1.15. A subset S of a TD-space X is nowhere dense iff S̃ is a nowhere dense

sublocale of OX.
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Proof. We first prove the result for closed subsets. So let K be a closed subset of X. Since

K̃ = cOX(X rK), int K̃ = oOX
(
(X rK)∗

)
, and so

K̃ is nowhere dense ⇐⇒ oOX
(
(X rK)∗

)
= O

⇐⇒ (X rK)∗ = 0OX

⇐⇒ X rX rK = ∅

⇐⇒ K◦ = ∅

⇐⇒ K is nowhere dense.

Therefore, for any S ⊆ X,

S is nowhere dense ⇐⇒ S is nowhere dense

⇐⇒ S̃ is nowhere dense since S is closed

⇐⇒ S̃ is nowhere dense by Lemma 2.1.13

⇐⇒ S̃ is nowhere dense.

This proves the proposition.

As in [50], for any topological space X and x ∈ X, we set

x̃ = X r {x},

and recall that {x̃, 1OX} is a sublocale of OX. In general, if p is a point in a locale L, then

{p, 1} is a sublocale of L, and these are what are called the one-point sublocales of L. In [49],

the authors show that if X is a topological space and Y ⊆ X, then

Ỹ =
∨{
{ỹ, 1OX} : y ∈ Y

}
,

where the join is calculated in S(OX). This says that the locale Ỹ is covered by the one-point

sublocales of OX associated with the elements of Y .

In the upcoming proof we shall use the fact that complemented sublocales are linear,

[35, 36]. We shall also use [50, Proposition VI. 1.3.1], which states that if X is a TD-space,

then for any x ∈ X and A ⊆ X, x̃ ∈ Ã if and only if x ∈ A.

Theorem 2.1.16. A subset of a TD-space is remote iff the sublocale it induces is remote.
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Proof. (=⇒): Let S be a subset of a TD-space X. We suppose, first, that S is remote, and

prove that S̃ is remote. In accordance with the definition, we need to show that S̃ misses every

nowhere dense sublocale of OX. By Proposition 2.1.12, it suffices to show that S̃ misses every

closed nowhere dense sublocale of OX. So, let B be a closed nowhere dense sublocale of OX.

Then there is an open set U ⊆ X such that, in light of Lemma 2.1.14,

B = cOX(U) = cOX(X r
(
X r U)

)
= X̃ r U

since X r U is closed in X. By Lemma 2.1.15, X r U is nowhere dense in X, and so

S ∩ (X r U) = ∅. Note that, by [49, Proposition VI. 1.3.1], if s ∈ S, then s̃ /∈ X̃ r U , and so

X̃ r U ∩ {s̃, 1OX} = O. Now,

S̃ ∩B = X̃ r U ∩ S̃ = X̃ r U ∩
∨{
{s̃, 1OX} : s ∈ S

}
=

∨{
X̃ r U ∩ {s̃, 1OX} : s ∈ S

}
since X̃ r U is complemented

= O,

showing that S̃ is remote.

(⇐=): Suppose that S̃ is remote. Let K be a nowhere dense subset of X. Then K

is nowhere dense in X which implies that K̃ is a nowhere dense sublocale of OX, and so

S̃ ∩ K̃ = O. If there was an element w ∈ S ∩K, then, for the one-point sublocale {w̃, 1OX} we

would have K̃ ∩{w̃, 1OX} 6= O, and so, by the calculation observed in the preceding paragraph

of the proof, we would have K̃ ∩ S̃ 6= O. It follows therefore that S ∩ K = ∅ which implies

that S ∩K = ∅. Thus S is remote.

Observation 2.1.17. Inside the proof of the forward direction of Theorem 2.1.16, we deduce

that for a TD-space X and subsets A and B of X where A is either closed or open, A∩B = ∅

if and only if Ã ∩ B̃ = O.

We introduce the following notations, for any locale L. We set

Srem(L) = {S ∈ S(L) : S is a remote sublocale},

and for elements we set

Rem(L) = {a ∈ L : c(a) ∈ Srem(L)}.
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We aim to characterize remote sublocales in Theorem 2.1.18 below. We first give a charac-

terization with no restriction on sublocales and, subsequently, a characterization restricted to

complemented sublocales. Towards that end, we remind the reader of the following notation

from [25]:

Nd(L) =
∨
{S ∈ S(L) : S is nowhere dense} =

∨
{c(x) : x is a dense element of L}.

In [25], the authors further observe that

Nd(L) = LrBL.

We shall at times use this description of the sublocale Nd(L).

Theorem 2.1.18. Let L be a locale and A ∈ S(L). The following statements are equivalent.

1. A ∈ Srem(L).

2. For all nowhere dense N ∈ S(L), A ∩N = O.

3. A is contained in every dense open sublocale of L.

4. For all dense a ∈ L, νA(a) = 1.

5. For every open sublocale U ∈ S(L), A ⊆ U implies A ⊆ U .

6. For each N ∈ S(L), BL ∩N ∩ A = O implies A ∩N = O.

Proof. (1) =⇒ (2): Follows since every closure of a nowhere dense sublocale is nowhere dense.

(2) =⇒ (3): Follows since o(x) is dense if and only if x is dense if and only if c(x) is nowhere

dense.

(3) =⇒ (4): True because νA(x) = 1 if and only if A ⊆ o(x).

(4) =⇒ (5): Let U = oL(x) be such that A ⊆ oL(x). Then A ∩ oL(x∗) = O which implies

oA(νA(x∗)) = A ∩ oL(x∗) = O. We get that νA(x∗) = 0A. Because x ∨ x∗ is dense in L, it

follows that

νA(x ∨ x∗) = νA(x) ∨ νA(x∗) = 1.

Therefore νA(x) = 1. Thus A ⊆ o(x).
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(5) =⇒ (6): Let N ∈ S(L) be such that BL∩N ∩ A = O. Then BL ⊆ LrN ∩ A so that

LrN ∩ A is dense hence A ⊆ LrN ∩ A. The hypothesis in (5) implies that A ⊆ LrN ∩ A.

Since LrN ∩ A is complemented,

O = A ∩ Lr (LrN ∩ A) = A ∩N ∩ A ⊇ (N ∩ A) ∩N ∩ A = N ∩ A.

(6) =⇒ (1): Let C be a nowhere dense sublocale of L. Then A∩C is a nowhere dense sublocale

of L. Since this implies A ∩ C is a nowhere dense sublocale of L, we have BL ∩ A ∩ C = O.

It follows that A ∩ C = O.

In view of the equivalence of (1) and (3) in the foregoing theorem, we have that:

A sublocale of L is remote if and only if it is contained in the intersection of all

dense open sublocales of L.

In the event of complemented sublocales, we also have the following characterization.

Proposition 2.1.19. A complemented sublocale of a locale L is remote iff it misses Nd(L).

Proof. Recall that the closed nowhere sublocales of L are precisely the sublocales c(x), for x

dense in L. Now, if A is a complemented sublocale of L, then

A ∩ Nd(L) = O ⇐⇒ A ∩
∨
{c(x) : x is dense in L} = O

⇐⇒
∨
{A ∩ c(x) : x is dense in L} = O

⇐⇒ A ∩ c(x) = O for all dense x ∈ L

⇐⇒ A is remote

which proves the result.

Next, we show that every locale has the largest remote sublocale. In the first section of

Chapter 3, we will show that this largest remote sublocale is precisely the Booleanization of a

locale.

Proposition 2.1.20. The join of remote sublocales is remote.
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Proof. Let {Ai : i ∈ I} be a family of remote sublocales and N a closed nowhere dense

sublocale of L. Then since complemented sublocales are linear,

N ∩
∨
i

Ai =
∨
i

(N ∩ Ai) = O,

which proves that
∨
iAi is remote.

This result enables us to show that Srem(L), partially ordered by inclusion, is a coframe.

In this regard, recall that a subset S of a coframe H is called a subcolocale of H if it closed

under joins and if for all s ∈ S and x ∈ H, sr x ∈ S, where

sr x =
∧
{a ∈ H : s ≤ a ∨ x}.

Since for any sublocales S and T , the sublocale S r T is contained in S, and since a

sublocale smaller than a remote sublocale is remote, we deduce from Proposition 2.1.20 the

following result.

Proposition 2.1.21. For any locale L, Srem(L) is a coframe.

We have just mentioned that in Chapter 3 we will show that for any locale L, BL is the

largest remote sublocale of L. In the case of fit locales, we can actually deduce this result from

the characterization that a sublocale is remote if and only if it is contained in the intersection

of all dense open sublocales. To do this, we recall that a locale is fit if and only if every

sublocale is a meet of open sublocales.

Corollary 2.1.22. If L is a fit locale, then BL is the largest remote sublocale of L.

Proof. Since L is fit, BL is an intersection of open, hence dense open, sublocales. But every

dense sublocale of L contains BL, hence

BL =
⋂
{U ∈ S(L) : U is open and dense},

that is BL is the intersection of all open dense sublocales of L. So, by the equivalence of

conditions (1) and (3) in Theorem 2.1.18, a sublocale is remote if and only if it is contained

in BL. Since BL is remote, it follows that BL is the largest remote sublocale of L.
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Observation 2.1.23. The above corollary tells us that, BL is the only dense and remote

sublocale of a fit locale L. This is because, if A is dense and remote, then its density gives

BL ⊆ A and its remoteness implies A ⊆ BL.

The equivalences (1), (2), (3) and (5) of Theorem 2.1.18 can be obtained for TD-spaces as

a corollary to Theorem 2.1.18. It turns out, however, that these equivalences hold even for

spaces that are not TD, as we show in the next theorem.

Theorem 2.1.24. Let X be a space and S ⊆ X. The following statements are equivalent.

1. S is remote.

2. S ∩N = ∅ for each nowhere dense N ⊆ X.

3. S is contained in every dense open subset of X.

4. If S ⊆ U , then S ⊆ U for each open subset U ⊆ X.

Proof. (1) =⇒ (2): Let N ⊆ X be nowhere dense. Then N is nowhere dense. It follows that

S ∩N = ∅ as required.

(2) =⇒ (3): Let U be a dense and open subset of X. Since the complement of a dense

open set is nowhere dense, we have that X r U = X r U is nowhere dense. By condition (2),

S ∩ (X r U) = ∅ so that S ⊆ U .

(3) =⇒ (4): Let U ⊆ X be open such that S ⊆ U . Since (X r V ) ∪ V = X for every open

V ⊆ X, by condition (3), S ⊆ (X r U) ∪ U . Therefore S = S ∩ U ⊆ U .

(4) =⇒ (1): Let N ⊆ X be nowhere dense. Then X rN is open and dense. We get that

S ⊆ X rN . By (4), S ⊆ X rN ⊆ X rN . Therefore S ∩N = ∅ making S remote.

As in locales, from the equivalence of (1) and (3) in the foregoing theorem, we have that:

A subset of a space X is remote if and only if it is contained in the intersection of

all dense open subsets of X.
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Just like in locales, the union of remote subsets is remote. This is because, for any collection

{Ai : i ∈ I} of remote subsets of X and any nowhere dense N ⊆ X,

N ∩
⋃
i∈I

Ai =
⋃
i

{N ∩ Ai : i ∈ I} = ∅.

This tells us that every space has the largest remote subset. In T1-spaces, we can actually

identify this subset. Recall that a point x ∈ X is called an isolated point in case {x} is an

open subset of X. We denote by Iso(X) the set of all isolated points of X.

Proposition 2.1.25. In a T1-space X, Iso(X) is the largest remote subset of X.

Proof. We start by showing that x is isolated if and only if {x} is remote. Indeed, suppose that

x is isolated and choose a closed nowhere dense N ⊆ X. Then X rN is dense in X. But the

nonempty set {x} is open, so {x} ∩ (X rN) 6= ∅, which implies that {x} ∩N = ∅. Therefore

{x} is remote. Conversely, suppose that {x} is remote. Then {x} misses every nowhere dense

subset of X. This means that {x} is not nowhere dense in X. Observe that,

{x} is not nowhere dense ⇐⇒ X r {x} is not dense

⇐⇒ {x} is open

⇐⇒ x is isolated

which proves the converse.

Since every subset contained in a remote subset is remote, we get that, if R ⊆ X is

remote, then {x} is remote for each x ∈ R. Therefore each x ∈ R belongs to Iso(X), making

R ⊆ Iso(X). Because {x} is remote for each x ∈ Iso(X), we have that
⋃
x∈Iso(X){x} = Iso(X)

is remote. Thus Iso(X) is the largest remote subset of X.

Corollary 2.1.26. If a T1-space has no isolated points, then the empty set is the only remote

subset of the space.

We observe from Proposition 2.1.25 that

In a T1-space, a subset is remote if and only if it consists entirely of isolated

points.
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From the above paragraph, we get that remote subsets of a Tychonoff space are precisely the

remote subsets of its Stone-Čech compactification. This follows since the isolated points of

the Stone-Čech compactification of a Tychonoff space are precisely the isolated points of the

underlying space.

Remark 2.1.27. In a T1-space X, the pair (Iso(X),Srem(X)), where Srem(X) is the collection

of all remote subsets of X, is a discrete topological space. This follows since every subset of

Iso(X) is a remote subset of X, hence belonging to Srem(X).

Having characterized closed remote sublocales, it makes sense to characterize elements that

induce closed remote sublocales. That is, we seek to have other descriptions of the elements

that belong to Rem(L). The descriptions follow easily from the fact that c(a)∩ c(b) = c(a∨ b)

and O = c(1).

Proposition 2.1.28. The following are equivalent for an element a ∈ L.

(a) a ∈ Rem(L).

(b) a ∨ d = 1 for every dense d ∈ L.

(c) d∗ ≤ a implies d ∨ a = 1 for every d ∈ L.

The result in Proposition 2.1.28(b) enables us to show that Rem(L) is a filter in L. Indeed,

(i) 1 ∈ Rem(L) (ii) if a ≤ b and a ∈ Rem(L), then b ∈ Rem(L), and (iii) if a, b ∈ Rem(L) and

d is dense, then

(a ∧ b) ∨ d = (a ∨ d) ∧ (b ∧ d) = 1,

showing that a ∧ b ∈ Rem(L).

Observation 2.1.29. For any locale L, the set Rem(L)∪{0} is a subframe of L, as one checks

routinely.

In the following corollary, we give yet another characterization of when a locale L is Boolean

in terms of Rem(L).

Corollary 2.1.30. A locale L is Boolean iff L = Rem(L).
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Proof. (=⇒) : Suppose that L is Boolean. Then the only dense element of L is the top element,

so the bottom element of L joins all dense elements of L at the top, hence 0 ∈ Rem(L). Since

Rem(L) is a filter, Rem(L) is then an improper filter, i.e., Rem(L) = L.

(⇐=) : Assume that L = Rem(L) and let x ∈ L. Then x ∈ Rem(L). But x ∨ x∗ is dense,

so by Proposition 2.1.28, x ∨ x ∨ x∗ = 1, i.e., x ∨ x∗ = 1, showing that L is Boolean.

Another corollary of Proposition 2.1.28 is the following. In the proof we shall use the

following lemma.

Lemma 2.1.31. A closed sublocale of a locale which is also a coframe is itself a coframe.

Proof. Let L be a locale which is a coframe and c(x) ∈ S(L). Then, for each a, bi ∈ c(x),

a ∨c(x)
(∧

bi

)
= νc(x)

(
a ∨

(∧
bi

))
since

∨
S

di = νS

(∨
di

)
for all di ∈ L, S ∈ S(L)

= νc(x)

(∧
(a ∨ bi)

)
since L is a coframe

= νc(0c(x))

(∧
(a ∨ bi)

)
since c(x) is closed

= 0c(x) ∨
(∧

(a ∨ bi)
)

since νc(d)(c) = d ∨ c for all c, d ∈ L

=
∧(

0c(x) ∨ (a ∨ bi)
)

since L is a coframe

=
∧(

νc(x)(a ∨ bi)
)

=
∧(

a ∨c(x) bi
)
.

Thus c(x) is a coframe.

Corollary 2.1.32. If L is a locale which is also a coframe, then Rem(L) is a sublocale of L.

Furthermore, Rem(L) is a closed remote sublocale and hence a coframe.

Proof. Let {ai : i ∈ I} be a subset of Rem(L). For any dense d ∈ L,

d ∨
∧

ai =
∧

(d ∨ ai) = 1

hence
∧
ai ∈ Rem(L). Next, if x ∈ L and a ∈ Rem(L), then, in light of the fact that

a ≤ x → a, the element x → a joins every dense element of L at the top, showing that

x→ a ∈ Rem(L). Therefore Rem(L) is a sublocale of L.
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Rem(L) is a remote sublocale of L: Consider any closed sublocale c(x) which is nowhere

dense. Then x is dense. Thus, if a ∈ c(x) ∩ Rem(L), then x ≤ a and x ∨ a = 1 which implies

a = 1, showing that c(x) ∩ Rem(L) = O. Therefore Rem(L) is a remote sublocale.

Rem(L) is closed: Let x ∈ RemL and choose a dense y ∈ L. Then 0RemL =
∧

RemL ≤ x.

Since 0RemL ∈ RemL, y ∨ 0RemL = 1 so that y ∨ x = 1. Thus x ∈ RemL making RemL a

closed sublocale of L.

We have, so far, introduced what we can refer to as remoteness on a single locale. In what

follows, we consider sublocales of a locale which are remote from the locale’s dense sublocales.

This is supported by the reason that remoteness already present in the literature is for points

of the Stone-Čech compactification βL with respect to underlying locale L.

The following variants of remoteness shall be frequently referred to as remoteness from a

dense sublocale, to differentiate them from the remoteness introduced in Definition 2.1.2.

Definition 2.1.33. Let S ⊆ L be a dense sublocale of L. Then

1. T ∈ S(L) is remote from S if T ∩NL
= O for every S-nowhere dense N ∈ S(S).

2. A sublocale T ⊆ L r S is *remote from S if T ∩ NL
= O for every S-nowhere dense

N ∈ S(S).

We shall drop the superscript L from the closure of N in the above definition to mean that

the closure is taken in the whole locale L.

The motivation for Definition 2.1.33(2) is that remote points were initially defined in spaces

to be points belonging to βXrX and not contained in the closure of any nowhere dense subset

of X.

In the case of a single locale L, T being remote in L is equivalent to T missing the closure

of every nowhere dense sublocale of L, which suggests that the author in [48] still had in mind

the definition of a remote point which involves missing the closure of a nowhere dense subset

when he formulated the definition of a remote collection. This is not the case for T being

remote from a dense sublocale. So, the choice of missing N instead of just N is to align with

the idea of missing the closure of a nowhere dense subset from remote points.
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For a sublocale S of a locale L, set

Srem(Ln S) = {A ∈ S(L) : A is remote from S},

∗Srem(Ln S) = {A ∈ S(L) : A is *remote from S},

and for elements, set

Rem(Ln S) = {a ∈ L : cL(a) ∈ Srem(Ln S)},

∗Rem(Ln S) = {a ∈ L : cL(a) ∈ ∗Srem(Ln S)}.

Since the set Srem(LnS) does not restrict where its members come from, we have the following

result.

Proposition 2.1.34. For every dense sublocale S of a locale L, ∗Srem(Ln S) ⊆ Srem(Ln S).

Observation 2.1.35. For a non-void Boolean locale L, we have that ∗Srem(LnL) ⊂ Srem(Ln

L). This is because L ∈ Srem(Ln L) but L is not contained in Lr L = O.

In an attempt to obtain an equality in Proposition 2.1.34, we start by recalling from [53]

that a sublocale is rare if its supplement is the whole locale. Restricting our sublocales to dense

and rare sublocales yields the following proposition which is easy to prove. Sublocales which

are simultaneously dense and rare do exist. For instance, recall that Plewe in [53] defines a

locale to be dense in itself if every Boolean sublocale has a dense supplement. He then shows

that a locale is dense in itself if and only if its Booleanization is rare. The locale O(R), where

R is the set of real numbers, is an example of a dense in itself locale. This is motivated by the

fact that the space R is dense in itself (because it has no isolated points) and since, according

to [53], every sober space is dense in itself if and only if its locale of opens is dense in itself,

the real line being sober and dense in itself makes O(R) dense in itself.

Proposition 2.1.36. If S is a dense and rare sublocale of a locale L, then ∗Srem(L n S) =

Srem(Ln S).

We collect into one proposition some observations about the variants of remoteness intro-

duced in Definition 2.1.33. Observe that if K is a dense sublocale of L, then BL = BK since,

as presented in the preliminaries, x∗K = x∗ for every x ∈ K. As a result of this, a sublocale of

K is nowhere dense in K if and only if it is nowhere dense in L.
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Proposition 2.1.37. Let S be a dense sublocale of a locale L. Each of the following statements

holds.

1. Srem(LnBL) = S(L).

2. ∗Srem(LnBL) = {T ∈ S(L) : T ⊆ LrBL}.

3. For each A,B ∈ S(L), if A ⊆ B and B ∈ Srem(Ln S), then A ∈ Srem(Ln S).

4. Srem(L) ⊆ Srem(Ln S) for every dense S ∈ S(L).

5. For any sublocale T of L with S ⊆ T , Srem(L n T ) ⊆ Srem(L n S) and ∗Srem(Ln T ) ⊆
∗Srem(Ln S).

6. If A ⊆ L is remote from S, then A ∩ S ∈ Srem(L).

7. S ∈ Srem(Ln S) iff S = BL.

Proof. (1) If A ∈ S(L) and N ∈ S(BL) is nowhere dense in BL, then N = O which implies

thatA∩N = O. ThusA ∈ Srem(LnBL). Hence S(L) ⊆ Srem(LnBL), making Srem(LnBL) =

S(L) since the other containment always holds.

(2) Can be deduced from (1).

(3) This is trivial.

(4) Follows since a remote sublocale of L misses the closure of every nowhere dense sublocale

of L, and hence the closure of every nowhere dense sublocale of S since S is a dense sublocale

of L.

(5) Let T ∈ S(L) and S ⊆ T , so that T is also dense in L. That Srem(LnT ) ⊆ Srem(LnS)

follows because every S-nowhere dense sublocale is T -nowhere dense, which follows since S is

dense in T . The containment ∗Srem(Ln T ) ⊆ ∗Srem(Ln S) uses the facts that Lr T ⊆ Lr S

and Srem(Ln T ) ⊆ Srem(Ln S).

(6) Assume that A ∈ Srem(LnS) and let N be nowhere dense in L. Since N∩S ⊆ N , N∩S

is nowhere dense in L which in turn makes it S-nowhere dense. By hypothesis, A∩S ∩N = O.

This makes (A ∩ S) ∩N = O. Thus A ∩ S ∈ Srem(L).
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(7) (=⇒) : Let N be S-nowhere dense. Then since S ∈ Srem(L n S), S ∩ N = O which

implies that O = S ∩ N = N . This makes S Boolean. So, S = BL because the only dense

Boolean sublocale of L is BL.

(⇐=) : Follows since BL ∈ Srem(L), hence by (4), S = BL ∈ Srem(Ln S).

Observation 2.1.38. (1) From Proposition 2.1.37(2), observe that when L is not dense in

itself, we get another case where ∗Srem(L n S) 6= Srem(L n S). This is because we have that

L 6= LrBL so that by Proposition 2.1.37(1), L ∈ Srem(LnBL) but L /∈ ∗Srem(LnBL).

(2) Using Proposition 2.1.37(1) and the fact that L ∈ Srem(L) if and only if L is Boolean

(from Corollary 2.1.30), it is easy to see that for a non-Boolean locale L, L ∈ Srem(LnBL) but

L /∈ Srem(L). This is a particular case where we do not have equality in Proposition 2.1.37(4).

However, Srem(Ln L) = Srem(L).

We note some examples.

Example 2.1.39. (1) Recall from preliminaries the notion of a remote point of βL. A point

I ∈ βL is remote if and only if c(I) is remote from L. This follows since, for any dense x ∈ L,

I ∨ rL(x) = > if and only if c(I) ∩ c(rL(x)) = O.

(2) In Top (the category of topological spaces whose morphisms are continuous functions

between them), we say that A ⊆ X rY , where Y is a dense subspace of X, is ∗remote from Y

in case A ∩NX
= ∅ for any nowhere dense subset N of Y . For a Tychonoff space X, a point

p ∈ βX rX is remote if and only if {p} is ∗remote from X. To see this, observe that a point

p ∈ βX rX if and only if {p} ⊆ βX rX, and also, for a nowhere dense subset N of X, p is a

remote point if and only if p /∈ NβX
if and only if {p} ∩NβX

= O if and only if {p} is ∗remote

from X.

The following proposition shows that BL is the only dense sublocale from which L is

remote.

Proposition 2.1.40. Let S be a dense sublocale of L. The following statements are equivalent.

1. L is remote from S.
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2. S is a Boolean algebra.

3. S = BL.

Proof. (1) =⇒ (2): We start by showing that O is the only S-nowhere dense sublocale of S.

Let N ∈ S(S) be S-nowhere dense. Since L is remote from S, we have that O = L∩N , which

implies that N = O. This makes O the only S-nowhere dense sublocale of S, hence S is a

Boolean algebra.

(2) =⇒ (3): The only dense Boolean sublocale of any locale is its Booleanization.

(3) =⇒ (1): Follows from Proposition 2.1.37(1).

Observation 2.1.41. A locale is dense in itself if and only if it is ∗remote from its Booleaniza-

tion. To verify this, observe that L is dense in itself if and only if BL is rare if and only if

L ⊆ L rBL if and only if L ∈ {T ∈ S(L) : T ⊆ L rBL} = ∗Srem(LnBL), where the last

equality holds by Proposition 2.1.37(2).

We characterize members of Srem(L n S) and ∗Srem(Ln S). The proof of the following

proposition relies on the fact that

cS(a) = c
(∧

(cS(a))
)

= c(a)

for each a ∈ S ∈ S(L). We shall only prove the equivalence of statements (2) and (3) regarding

the set Srem(Ln S).

Proposition 2.1.42. Let S ∈ S(L) be dense in a locale L and A ∈ S(L) (resp. A ∈ S(LrS)).

The following statements are equivalent.

1. A ∈ Srem(Ln S) (resp. A ∈ ∗Srem(Ln S)).

2. A ∩N = O for each S-closed and S-nowhere dense N .

3. For all S-dense x ∈ S, A ∩ c(x) = O.

4. For all S-dense x ∈ S, A ⊆ o(x).

5. For every S-dense x ∈ S, νA(x) = 1.
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Proof. (2) =⇒ (3): Let x ∈ S be S-dense. Then cS(x) is S-closed and S-nowhere dense. By

(2), O = A ∩ cS(x) = A ∩ c(x).

(3) =⇒ (2): If N ∈ S(S) is S-closed and S-nowhere dense, then
∧
N is S-dense. It follows

from (3) that O = A ∩ c (
∧
N) = A ∩N which proves the result.

Comment 2.1.43. The equivalence of (4) in Proposition 2.1.42 tells us that, A is remote (resp.

*remote) from S if and only if it is contained in every open dense sublocale of L induced by

an element of S. This is reminiscent of the characterization of the remote sublocales of L as

precisely those that are contained in every dense sublocale of L.

Proposition 2.1.42 leads us to another example of a sublocale of L which is remote from a

dense sublocale S.

Example 2.1.44. If S is a dense sublocale of L, then the sublocale LrNd(S) is remote from

S. To see this, choose an S-dense x ∈ S, then cS(x) is S-nowhere dense and contained in

Nd(S), so that c(x) = cS(x) ⊆ Nd(S). Therefore c(x) ∩ (L r Nd(S)) = O. By Proposition

2.1.42(3), Lr Nd(S) is remote from S.

Concerning the above example, there is a case where LrNd(S) is different from O. Firstly,

recall from [15] that if cS(a) is nowhere dense in a dense sublocale S of L, then c(a) is nowhere

dense in L. Now, consider a dense sublocale S ∈ S(L) where Nd(S) is S-nowhere dense

and L 6= O (for instance, a locale whose Booleanization is complemented, see [25, Corollary

4.16]). Since Nd(S) is the largest S-nowhere dense sublocale and its closure in S is S-nowhere

dense, Nd(S) = Nd(S)
S

making it S-closed nowhere dense. Because S is dense in L, Nd(S) is

nowhere dense in L so that Nd(S) is nowhere dense in L. Therefore L 6= Nd(S) which means

that Lr Nd(S) 6= O.

Just like in Proposition 2.1.20, from Proposition 2.1.42 one can deduce that every locale

has the largest sublocale which is remote (resp. *remote) from a given dense sublocale. We

formalise this deduction in the following proposition.

Proposition 2.1.45. Let S ∈ S(L) be dense in a locale L. The join of sublocales of L remote

(resp. *remote) from S is remote (resp. *remote) from S.
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For S ∈ S(L) dense in L, set

Rs(Ln S) =
∨
{A ∈ S(L) : A ∈ Srem(Ln S)}

and

∗Rs(Ln S) =
∨
{A ∈ S(L) : A ∈ ∗Srem(Ln S)}.

Observation 2.1.46. (1) Since, according to Example 2.1.39(3), BL is remote from S, we

have that BL ⊆ Rs(Ln S), which makes Rs(Ln S) a dense sublocale of L.

(2) In any locale L, ∗Rs(LnBL) = LrBL. This follows since, by Proposition 2.1.37(2),

L r BL ∈ ∗Srem(LnBL) making L r BL ⊆ ∗Rs(LnBL). Also all ∗remote sublocales

(including ∗Rs(LnBL)) belong to the set {T ∈ S(L) : T ⊆ LrBL}.

We noticed in Example 2.1.44 that LrNd(S) is remote from a dense sublocale S of L. In

the following result, we give a necessary and sufficient condition for it to be precisely Rs(LnS).

Let us start by recalling that an extension map sends dense elements to dense elements. This

was stated in [10] and later proved in [12] in terms of weakly open maps, which we shall discuss

in the next chapter.

Proposition 2.1.47. Let S be a dense sublocale of a locale L. The following statements are

equivalent.

1. Rs(Ln S) = Lr Nd(S).

2. Nd(S) is S-nowhere dense.

Proof. (1) =⇒ (2): Assume that Rs(L n S) = L r Nd(S). Since BL ⊆ Rs(L n S), we have

that BL ⊆ L r Nd(S). Therefore BL ∩ Nd(S) = O which implies that BL ∩ Nd(S) = O.

Therefore Nd(S) is nowhere dense making
∧

Nd(S) dense in L. But S is dense, so νS is an

extenstion so that νS (
∧

Nd(S)) =
∧

Nd(S) is S-dense. By Lemma 2.1.3, Nd(S) is S-nowhere

dense.

(2) =⇒ (1): Since L r Nd(S) ⊆ Rs(L n S), we need to only show that Rs(L n S) ⊆

L r Nd(S). Nd(S) being S-nowhere dense implies that Rs(L n S) ∩ Nd(S) = O. This gives

Rs(Ln S) ⊆ Lr Nd(S).
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We observed above that Srem(L) = Srem(LnL). In Chapter 5, we will give a case where the

equality Srem(L) = Srem(L n S) holds even for sublocales S 6= L. For now, we only establish

a relationship between Srem(S) and Srem(Ln S) which, incidentally, is one of the main results

within this section.

Proposition 2.1.48. Let S be a dense sublocale of a locale L. Then

S(S) ∩ Srem(Ln S) = Srem(S).

Proof. S(S) ∩ Srem(Ln S) ⊆ Srem(S): Let A ∈ S(S) ∩ Srem(Ln S) and choose an S-nowhere

dense N ∈ S(S). Then A ∩N = O which implies that A ∩N = O. Thus A ∈ Srem(S).

Srem(S) ⊆ S(S) ∩ Srem(L n S): Let A ∈ Srem(S) and choose an S-nowhere dense N .

Then N
S

is S-nowhere dense so that O = A ∩ NS
= A ∩ N ∩ S = A ∩ N . Thus A ∈

S(S) ∩ Srem(Ln S).

Below, we consider a relationship between Rem(Ln S) and Rem(S). We start by charac-

terizing members of Rem(L n S) just like we did in Proposition 2.1.28. We also include the

characterization of members of ∗Rem(Ln S).

Proposition 2.1.49. Let S ∈ S(L) be dense.

1. a ∈ Rem(Ln S) iff a ∨ x = 1 for all dense x ∈ S.

2. For c(a) ⊆ Lr S, a ∈ ∗Rem(Ln S) iff a ∨ x = 1 for all dense x ∈ S.

We also note the following proposition about members of the set Rem(Ln S).

Proposition 2.1.50. Let S ∈ S(L) be dense. If a ∈ S ∩ Rem(L n S), then x∗ ≤ a implies

a ∨ x = 1 for all x ∈ S.

Proof. Let a ∈ S ∩Rem(LnS) and choose x ∈ S such that x∗ ≤ a. Since x∨ x∗ is dense in L

and νS is an extension, νS(x ∨ x∗) = νS(x) ∨ νS(x∗) is dense in S. It follows from Proposition

2.1.49(1) that a ∨ νS(x) ∨ νS(x∗) = 1. But x∗ ≤ a, so νS(x∗) ≤ νS(a) implying that

1 = a ∨ νS(x) ∨ νS(a) = νS(x) ∨ νS(a) = x ∨ a,

where the latter equality holds since x, a ∈ S.
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Observation 2.1.51. The preceding result also holds for a ∈ ∗Rem(Ln S) ∩ S. When S is

complemented, we get that S ∩ (L r S) = O which implies a = 1 making the statement of

Proposition 2.1.50 trivial for the case of ∗Rs(Ln S).

For the following proof, we need a condition on a sublocale S such that the localic em-

bedding i : S ↪→ L is uplifting (according to [20], a localic map f : L → M is uplifting if

x∨ y = 1 implies f(x)∨ f(y) = 1). This is rather a weaker condition of a flat sublocale which

was defined by Johnstone in [39] as a sublocale of a locale which is a sublattice of the locale.

So, we shall say that S is weakly flat in case the localic embedding i : S ↪→ L is uplifting.

Proposition 2.1.52. Let S ∈ S(L) be dense and weakly flat. Then S∩Rem(LnS) = Rem(S).

Proof. Observe that

x ∈ S ∩ Rem(Ln S) ⇐⇒ x ∈ S and x ∨ y = 1 for all S-dense y ∈ S

⇐⇒ x ∈ S and x ∨S y = 1 for all S-dense y ∈ S,

since S is weakly flat

⇐⇒ x ∈ Rem(S),

which proves the result.

2.2 Algebraic approach to remoteness

We now wish to consider an algebraic notion of remoteness motivated by remoteness of sublo-

cales.

Recall from Theorem 2.1.18 that a sublocale A of L is remote precisely when the corre-

sponding frame surjection νA : L→ A sends every dense element to the top. This motivates the

following definition which applies to frame homomorphisms which are not necessarily quotient

maps.

Definition 2.2.1. We say a frame homomorphism h : M → L is heavy if h(a) = 1 for every

dense a ∈M .
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For the following characterization of heavy quotient maps, we start by recalling from [18]

that a quotient map g : M → L is nowhere dense if and only if g∗(0L) is dense in M .

Proposition 2.2.2. Let h : M → L be a quotient map. The following statements are equiva-

lent.

1. h is heavy.

2. h∗[L] is a remote sublocale of M .

3. Fix(h∗h) ⊆
∧
{Fix(νo(x)) : x is dense in M}.

4. h∗[L] ∩ α∗[N ] = O for every nowhere dense quotient map α : M → N .

Proof. (1) =⇒ (2): Let a ∈ M be dense in M . We show that νh∗[L](a) = 1. Let x ∈ h∗[L] be

such that a ≤ x. Then h(a) ≤ h(x). Since h is heavy, h(a) = 1 so that h(x) = 1. Therefore

x = 1 making
∧
{z ∈ h∗[L] : a ≤ z} = νh∗[L](a) = 1. It follows from Theorem 2.1.18(4) that

h∗[L] is remote.

(2) =⇒ (3): Let y ∈ Fix(h∗h) and z be a dense element of M . Then y = h∗(h(y)), making

y ∈ h∗[L]. Since h∗[L] is a remote sublocale of M and o(z) is a dense sublocale of M , by

Theorem 2.1.18, h∗[L] ⊆ o(z). We get that y ∈ o(z), i.e., y = z → y = νo(z)(y). Thus

y ∈
∧
{Fix(νo(x)) : x is dense in M}.

(3) =⇒ (4): Let α : M → N be a nowhere dense quotient map. Then α∗(0N) is dense in M .

Choose x ∈ h∗[L]∩α∗[N ]. Then x = h∗(b) and x = α∗(c) for some b ∈ L and c ∈ N . Therefore

x = h∗(b) = α∗(c) ≥ α∗(0N) making x dense in M . Since h∗(h(h∗(h(a)))) = h∗(h(a)) for every

a ∈ M , h∗(h(x)) ∈ Fix(h∗h). It follows from condition (3) that h∗(h(x)) ∈ Fix(νo(x)), i.e.,

νo(x)(h∗(h(x))) = h∗(h(x)). Therefore x→ h∗(h(x)) = h∗(h(x)) which implies that

h∗(h(x)→ h(x)) = h∗(h(x)).

But a → a = 1 for every a, so h∗(1) = h∗(h(x) → h(x)) = h∗(h(x)) which implies h(x) = 1.

Therefore x = 1 so that h∗[L] ∩ α∗[N ] = O as required.

(4) =⇒ (1): Let x ∈ M be dense. Then c(x) is M -nowhere dense which implies that the

left adjoint i∗ : M → c(x) of the localic embedding map i : c(x) ↪→ M is a nowhere dense
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quotient map. By (4), O = h∗[L] ∩ (i∗)∗[c(x)] = h∗[L] ∩ c(x). Observe that h∗(h(x)) ∈ h∗[L]

and h∗(h(x)) ∈ c(x) where the latter statement follows since a ≤ h∗(h(a)) for every a ∈ M .

Therefore h∗(h(x)) = 1 making h(x) = 1. Thus h is heavy.

Remark 2.2.3. We note that, since a heavy frame homomorphsim h : M → L sends dense

elements to the top element, then x∨x∗ being dense implies that 1 = h(x∨x∗) = h(x)∨h(x∗)

for all x ∈M . Since h(x)∧h(x∗) = h(x∧x∗) = 0, h(x) is a complemented element. Therefore

h sends every element to a complemented element. It follows from [39] that there is a unique

frame homomorphism k : S(M)op → L such that k ◦ c = h, where c : M → S(M)op is given

by a 7→ c(a).

We close this section with an introduction and a discussion of some variant of heavy

homomorphisms in line with the definition of sublocales that are remote from dense sublocales

which was introduced in Definition 2.1.33. We showed in Proposition 2.1.42 that for any dense

sublocale S of a locale L, a sublocale A of L is remote from S if and only if the corresponding

quotient map νA : L→ A sends all S-dense elements to the top. This motivates the following

definition.

Definition 2.2.4. Let h : M → L be a frame homomorphism. A frame homomorphism

g : M → T is said to be h-weakly heavy in case g(h∗(a)) = 1 for every L-dense a.

We shall drop the prefix h- when there is no danger of confusion.

We consider a relationship between heavy frame homomorphisms and weakly heavy frame

homomorphisms. The first result explores heaviness on a single frame homomorphism.

Proposition 2.2.5. Let h : M → L be a frame homomorphism.

1. If h∗ sends dense elements to dense elements, then h is heavy implies h is weakly heavy.

2. If h is weakly open, then h is weakly heavy implies h is heavy.

Proof. (1) Let x ∈ L be L-dense. Since h∗ sends dense elements to dense elements, h∗(x) is

dense in M . It follows that h(h∗(x)) = 1 making h a weakly heavy frame homomorphism.

(2) Let x ∈M be dense. The weakly openness of h implies that h(x) is L-dense. Therefore

h(h∗(h(x))) = 1 so that h(x) = 1. Thus h is heavy.
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Observation 2.2.6. We also get that if a frame homomorphism h : M → L is heavy and h∗

sends dense elements to dense elements, then L is Boolean. To verify this, let x ∈ L be dense.

We show that x = 1. Since h∗ sends dense elements to dense elements, h∗(x) is dense in M .

Heaviness of h implies h(h∗(x)) = 1 making x = 1. Thus L is Boolean.

Proposition 2.2.7. Let h : M → L and g : M → T be frame homomorphisms.

1. If h∗ sends dense elements to dense elements, then h is heavy implies g is weakly heavy.

2. If h is injective and weakly open, then g is weakly heavy implies g is heavy.

Proof. (1) Let x ∈ L be L-dense. Since, by Observation 2.2.6, L is Boolean, x = 1. Therefore

g(h∗(x)) = g(1) = 1 making g weakly heavy.

(2) Let x ∈ M be dense. Then h(x) is dense in L by weakly openness of h. Since g is

weakly heavy, g(h∗(h(x))) = 1. Because h is injective, 1 = g(x) = g(h∗(h(x))). Thus g is

heavy.

Next, we characterize weakly heavy quotient maps. The proof follows a similar sketch of

the proof of Proposition 2.2.2 taking into account that if h : M → L is a quotient map, then

h∗ : L → h∗[L] is a frame isomorphism, and hence sends dense elements back and forth. We

shall only prove the equivalence of (1) and (2).

Proposition 2.2.8. Let h : M → L be an extension and consider a quotient map g : M → T .

The following statements are equivalent.

1. g is h-weakly heavy.

2. g∗[T ] is remote from h∗[L].

3. Fix(g∗g) ⊆
∧
{Fix(νo(x)) : x is dense in h∗[L]}.

4. For every nowhere dense quotient α : L→ N , c[(αh)∗(0N)] ∩ g∗[T ] = O.

Proof. (1) =⇒ (2): Let a ∈ h∗[L] be dense in h∗[L]. We show that νg∗[T ](a) = 1. Choose

x ∈ g∗[T ] such that a ≤ x. Then a = h∗(y) for some y ∈ L. Such y is clearly dense in L.
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We get that g(a) = g(h∗(y)) ≤ g(x). Since g is weakly heavy, 1 = g(h∗(y)) = g(a) so that

g(x) = 1. Therefore x = 1 which implies νg∗[T ](a) = 1. Thus g∗[T ] is remote from h∗[L] by

Proposition 2.2.2(4).

(2) =⇒ (1): Let x ∈ L be L-dense. Since h is a quotient map, h∗ : L → h∗[L] is a

frame isomorphism making h∗(x) dense in h∗[L]. By condition (2), νg∗[T ](h∗(x)) = 1. Since

g∗(g(h∗(x))) ∈ g∗[T ] and h∗(x) ≤ g∗(g(h∗(x))), g∗(g(h∗(x))) ∈ {t ∈ g∗[T ] : h∗(x) ≤ t} so that

1 =
∧
{t ∈ g∗[T ] : h∗(x) ≤ t} = νg∗[T ](h∗(x)) ≤ g∗(g(h∗(x))).

Therefore g(h∗(x)) = g(g∗(g(h∗(x)))) = 1 making g weakly heavy.

2.3 Remoteness in binary coproducts

We close this chapter with a short discussion of remoteness in binary coproducts. We have

expended a great deal of effort in trying to prove the result we present below for arbitrary

coproducts, but our efforts were not successful. The main difficulty seems to emanate from

the behaviour of coproduct injections in arbitrary coproducts; even coproducts of countably

many locales. We thus leave the general case as an (at the moment) unresolved matter, which

we plan to pursue in another undertaking.

Our focus will be on members of the set Rem(L⊕M). We start by recalling from prelim-

inaries that a frame homomorphism h : M → L is closed if f(a ∨ h(b)) = f(a) ∨ b for every

a ∈ L, b ∈ M . We also recall from [21, Proposition 4.3.] that if an element a ∈ L is dense in

L, then a⊕ 1 is dense in L⊕M . To see this, using the fact that (x⊕ y)∗ = (x∗⊕ 1)∨ (1⊕ y∗)

for all x ∈ L, y ∈M (from [10]), we get that

(a⊕ 1)∗ = (a∗ ⊕ 1) ∨ (1⊕ 1∗) = (0⊕ 1) ∨ (1⊕ 0) = 0L⊕M .

Proposition 2.3.1. Let L and M be locales such that the coproduct injection L L⊕MqL

is closed. If for any x ∈ L and y ∈M , x⊕y ∈ Rem(L⊕M), then x ∈ Rem(L). Consequently,

if L L⊕M M
qL qM

are closed coproduct injections, then for any x ∈ L and y ∈M ,

x⊕ y ∈ Rem(L⊕M) implies x ∈ Rem(L) and y ∈ Rem(M).

Proof. Let x ∈ L, y ∈ M and assume that x ⊕ y ∈ Rem(L ⊕ M). For any dense a ∈ L,
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we get that qL(a) = a ⊕ 1 is dense in L ⊕ M . Since x ⊕ y ∈ Rem(L ⊕ M), we get that

(x⊕ y)∨ (a⊕ 1) = 1L⊕M , which implies that (x⊕ y)∨ qL(a) = 1L⊕M . Therefore in light of qL

being a closed homomorphism, (qL)∗(x⊕ y)∨ a = 1. If a = 1, then we are done. If a 6= 1, then

(qL)∗(x⊕ y) =
∨
{b ∈ L : qL(b) ≤ x⊕ y} =

∨
{b ∈ L : b⊕ 1 ≤ x⊕ y} 6= 0.

Therefore there exists b 6= 0 in L such that 0L⊕M 6= b ⊕ 1 ≤ x ⊕ y, which implies that b ≤ x

and y = 1. Therefore

1 = (qL)∗(x⊕ y) ∨ a = (qL)∗(x⊕ 1) ∨ a = (qL)∗(qL(x)) ∨ a = x ∨ a,

where the latter equality holds since qL is injective. Thus x ∈ Rem(L). Similarly, y ∈ Rem(M)

whenever qM is closed.

Remark 2.3.2. We note that there are cases where the coproduct injections are closed. For

instance, according to [13], the injection qL is closed whenever either M is compact or L is a

coframe.
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Chapter 3

Preservation and Reflection of
Remoteness

The work presented in this chapter is part of the research paper: M.S. Nxumalo, On sublocales

that miss every nowhere dense sublocale, Quaest. Math., (2023)(Under Review).

3.1 Pushing forward and pulling back of remote sublo-

cales

In this section, we focus on describing localic maps that send the sublocales introduced in

Definition 2.1.2 back and forth. We shall say that a localic map preserves sublocales with

property P if it takes a sublocale with property P to a sublocale with property P .

We begin this section by considering a localic map f such that f [−] preserves remote

sublocales.

Recall from [11] that a frame homomorphism h : M → L is weakly open (or skeletal) if

h(x∗∗) ≤ h(x)∗∗ for every x ∈ M . We shall frequently make use of the following equivalent

condition of a weakly open map which was proved in the cited paper:

h sends dense elements to dense elements.

We have the following characterization of weakly open maps in terms of nowhere dense sublo-

cales.
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Lemma 3.1.1. A frame homomorphism h : M → L is weakly open iff f−1[−] sends nowhere

dense sublocales to nowhere dense sublocales.

Proof. (=⇒): Assume that h : M → L is weakly open and let N ∈ S(M) be nowhere dense.

By Lemma 2.1.3,
∧
N is dense. The hypothesis implies that h (

∧
N) is dense in L. Therefore

c (h (
∧
N)) = f−1[N ] is nowhere dense. But f−1[N ] ⊆ f−1[N ], so f−1[N ] is nowhere dense.

(⇐=): Let x ∈ M be dense. Then c(x) is nowhere dense. By hypothesis, f−1[c(x)] is

nowhere dense. But f−1[c(x)] = c(h(x)), so h(x) is dense in L, as required.

We note that the forward implication of the previous lemma provides a different way of

proving the result by Stephen in her doctoral thesis [57, Lemma 4.2.20(2)], where she showed

that, if h is dense and onto, then f−1[−] preserves nowhere dense sublocales. This follows

since, according to [10], every dense and onto frame homomorphism is weakly open.

We now characterize localic maps whose localic image functions preserve remote sublocales.

As in [50], if S is a sublocale of L, we shall write jS : S → L for the mapping x 7→ x.

Theorem 3.1.2. Let f : L→M be a localic map. The following statements are equivalent:

1. f [−] preserves remote sublocales.

2. f [BL] is a remote sublocale of M .

3. f−1[−] preserves nowhere dense sublocales.

4. f−1[−] preserves closed nowhere dense sublocales.

5. h is weakly open.

6. There is a unique localic map Bf : BL→ BM such that the diagram

BL BM

L M

Bf

jBL jBM

f

(3.1.1)

commutes.
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Proof. (1) =⇒ (2): Since BL ∈ S(L) is remote, it follows from (1) that f [BL] ∈ S(M) is

remote.

(2) =⇒ (3): If N is nowhere dense in M , then f [BL] ∩N = O since f [BL] is remote, by

(2). Therefore

O = f−1[O] = f−1[f [BL] ∩N ] = f−1[f [BL]] ∩ f−1[N ] ⊇ BL ∩ f−1[N ],

making f−1[N ] nowhere dense in L.

(3) =⇒ (4): Trivial.

(4) =⇒ (5): Similar to Lemma 3.1.1.

(5)⇐⇒ (6): Follows from [10, Proposition 1.1.].

(6) =⇒ (1): Let A ∈ Srem(L). If o(a) is dense in M , then

BM ⊆ o(a) =⇒ Bf [BL] ⊆ o(a) since Bf [BL] ⊆ BM

=⇒ jBM [Bf [BL]] ⊆ o(a)

=⇒ f [jBL[BL]] ⊆ o(a) by commutativity of diagram 3.1.1

=⇒ f [BL] ⊆ o(a)

=⇒ BL ⊆ f−1[o(a)] = o(h(a)).

We get that the open sublocale f−1[o(a)] is dense in L, so A ⊆ f−1[o(a)] since A is remote.

Therefore f [A] ⊆ o(a), showing that f [A] is contained in every open dense sublocale, and

therefore is remote.

Remark 3.1.3. In [38], Johnstone gives other characterizations (in terms of sublocales) of

localic maps whose left adjoints are weakly open homomorphisms. None of the characteriza-

tions in the foregoing theorem appears in Johnstone’s cited paper except that condition (2) in

Theorem 3.1.2 is a re-wording of Johnstone’s condition that states that f restricts to a localic

map BL→ BM .

We include a case where a localic map sends members of Rem(L) to members of Rem(M).

Recall from [47] that a frame homomorphism h : M → L is said to be weakly closed in case

a ∨ h(b) = 1 implies f(a) ∨ b = 1 for every a ∈ L and b ∈ M . This is clearly a weakening
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of the condition that defines closed homomorphisms, but agrees with it if the domain of the

homomorphism is regular, as shown in [18].

Proposition 3.1.4. Let f : L → M be a localic map. If h is weakly open and weakly closed,

then f [Rem(L)] ⊆ Rem(M).

Proof. Let x ∈ Rem(L) and choose a dense y ∈M . By hypothesis, h(y) is dense in L, making

x ∨ h(y) = 1. But h is weakly closed, so f(x) ∨ y = 1. Thus f(x) ∈ Rem(M).

In the following result we show that if the left adjoint of an injective localic map is heavy,

then the localic map preserves remote sublocales.

Proposition 3.1.5. Let f : L → M be an injective localic map whose left adjoint is heavy.

Then f [−] preserves remote sublocales. Moreover, if L is Boolean, then h is heavy iff f [−]

preserves remote sublocales.

Proof. Assume that h : M → L is heavy. It follows from Proposition 2.2.2 that f [L] is a

remote sublocale of M . Therefore the localic image of every sublocale of L (including remote

sublocales of L) under f is a remote sublocale of M . Thus f [−] preserves remote sublocales.

For the special case, if L is Boolean, then L = BL. So, f [−] preserves remote sublocales

implies f [L] = f [BL] is a remote sublocale of M , making h heavy.

In the special case of the preceding proposition we saw the impact of a Boolean domain of

a localic map. In the following proposition, we consider a Boolean codomain of a localic map.

Proposition 3.1.6. If f : L → M is a localic map and M is Boolean, then f [−] preserves

remote sublocales.

Proof. Follows since in a Boolean locale, every sublocale is remote.

We move to giving conditions on localic maps such that their localic preimage functions

preserve remote sublocales. En route to that, we record the following result.

Lemma 3.1.7. Let f : L → M be a localic map. Then f sends dense elements to dense

elements iff f [−] preserves nowhere dense sublocales.
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Proof. (=⇒): Suppose that f sends dense elements to dense elements and let N be a nowhere

dense sublocale of L. Then
∧
N is dense making f [

∧
N ] =

∧
f [N ] dense in M , by hypothesis.

So, by Lemma 2.1.3, c (
∧
f [N ]) is a nowhere dense sublocale of M . Because c (

∧
f [N ]) =

f [N ] ⊇ f [N ], we get that f [N ] is a nowhere dense sublocale of M .

(⇐=): Recall that f [c(a)] = c(f(a)) for every a ∈ L, because

f [c(a)] = c
(∧

f [c(a)]
)

= c
(
f
(∧

c(a)
))

because f preserves meets

= c(f(a)).

Now, if x ∈ L is dense, then c(x) is a nowhere dense sublocale of L which, by hypothesis,

implies that f [c(x)] is a nowhere dense sublocale of M . But the closure of a nowhere dense

sublocale is nowhere dense, so f [c(x)] = c(f(x)) is nowhere dense, making f(x) dense.

The proof of Proposition 3.1.8(1) below follows since the preimage function f−1[−] of a

localic map f preserves meets and O. We only prove Proposition 3.1.8(2) since the proof of

(1) is along the lines of the proof of the implication (2) =⇒ (3) in Theorem 3.1.2.

Proposition 3.1.8. Let f : L → M be a localic map that sends dense elements to dense

elements. Then:

1. The preimage function f−1[−] : S(M)→ S(L) preserves remote sublocales.

2. h(Rem(M)) ⊆ Rem(L).

Proof. (2) Let y ∈ Rem(M) and choose a dense x ∈ L. By hypothesis, f(x) is dense in

M . Therefore y ∨ f(x) = 1, making 1 = h(y ∨ f(x)) = h(y) ∨ h(f(x)) ≤ h(y) ∨ x. Thus

h(y) ∈ Rem(L).

We give some examples.

Example 3.1.9. (1) Let N be a nowhere dense sublocale of L. The map jN : N → L sends

dense elements to dense elements. Indeed, if x ∈ N is N -dense, then cN(x) is N -nowhere

dense. Because every sublocale contained in a nowhere dense sublocale is nowhere dense, we
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have that cN(x) is nowhere dense in L. It follows that cN(x) is nowhere dense in L, i.e., c(x)

is nowhere dense. Thus x = jN(x) is dense in L.

(2) Using Proposition 3.1.8(1), it follows that the localic preimage function (jN)−1[−] in-

duced by the localic embedding in (1) preserves remote sublocales. However, we can show this

without relying on the fact that jN sends dense elements to dense elements. Indeed, for each

A ∈ S(N) and each B ∈ Srem(L), we have that B ∩ A = O. Therefore

O = (jN)−1[B ∩ A] = (jN)−1[B] ∩ (jN)−1[A] = (jN)−1[B] ∩ A.

Thus (jN)−1[B] ∈ Srem(N).

(3) In a given localic map f : L → M with Boolean locale M , L is Boolean if and only if

f−1[M ] is a remote sublocale of L. This follows since L = f−1[M ].

(4) In Top, the author of [32] defined a continuous mapping from a space X onto a space

Y as closed irreducible if the image under f of every proper closed subset of X is a proper

closed subset of Y . The author further proved that if a continuous map f : X → Y is closed

irreducible, then the image of every closed nowhere dense subset of X under f is closed and

nowhere dense in Y . We claim that the preimage of a remote subset of Y under a closed

irreducible continuous map f : X → Y is a remote subset of X. Indeed, let A be a remote

subset of Y and F be nowhere dense in X. Then F is nowhere dense. It follows that f [F ] is

nowhere dense (and closed) in Y . Therefore A∩f [F ] = ∅ so that f−1[A]∩F = ∅. This implies

that f−1[A] ∩ F = ∅. Thus f−1[A] is a remote subset of X.

We characterize remote-preserving localic maps below in terms of BL. We start by giving

Proposition 3.1.10 below which shows that BL is the largest remote sublocale of a locale L.

Recall that in Chapter 2 we showed that the join of remote sublocales of any locale is a remote

sublocale, hence every locale has the largest remote sublocale. Hence this proposition identifies

BL as the largest sublocale of L.

Proposition 3.1.10. Let L be a locale. Then BL is the largest remote sublocale of L.

Proof. Let A ∈ S(L) be the largest remote sublocale of L which exists according to Proposition

2.1.20. Since BL is remote, we have that BL ⊆ A, making A dense. We show that A is a
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Boolean algebra. Since the map jA : A→ L sends dense elements to dense elements, it follows

from Proposition 3.1.8 that (jA)−1[A] is a remote sublocale of A. Since A = (jA)−1[A], A is a

remote sublocale of itself. It follows from Proposition 2.1.7 that A is Boolean. But BL is the

only dense and Boolean sublocale of L, so A = BL.

Therefore we have the following proposition which characterizes remote sublocales in terms

of the smallest dense sublocale.

Proposition 3.1.11. A sublocale is remote if and only if it is contained in the smallest dense

sublocale.

Although the result in the foregoing proposition informs us where to locate all the remote

sublocales of a given locale, it does not give a fuller description of them. We shall now describe

these sublocales. Towards that end, we recall (from our main reference [50]) that for every

a ∈ L, the set

b(a) = {x→ a : x ∈ L}

is a sublocale of L, and furthermore:

• b(a) is the smallest sublocale of L containing a. “Smallest” here means that b(a) is

contained in every sublocale of L which contains a.

• A sublocale of L is Boolean if and only if it is of the form b(x) for some x ∈ L.

Theorem 3.1.12. For any locale L,

Srem(L) = {b(x∗) : x ∈ L}.

Proof. Let A be a remote sublocale of L. Then by Proposition 3.1.11, A ⊆ BL. Since every

sublocale of a Boolean locale is Boolean, A is a Boolean sublocale of L and so there is an a ∈ L

such that A = b(a). Since a ∈ b(a), it follows that a ∈ BL, and so a = a∗∗. This proves the

containment ⊆ in the claimed equality.

To reverse the containment, let x ∈ L and consider the sublocale b(x∗) of L. Since x∗

belongs to BL and b(x∗) is the smallest sublocale containing x∗, we have b(x∗) ⊆ BL, and so
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b(x∗) is a remote sublocale of L by Proposition 3.1.11. This proves the containment ⊇, and

hence establishes the claimed equality.

Observation 3.1.13. (1) Among other things, Proposition 3.1.10 tells us that a sublocale is

nowhere dense if and only if it misses every remote sublocale, because

S is nowhere dense in L ⇐⇒ S ∩BL = O

⇐⇒ S ∩R = O for every remote sublocale R.

(2) For a dense sublocale S of L we have Rs(Ln S) ∩ S = BL. To see this, we have that

BL ⊆ Rs(LnS)∩S since both Rs(LnS) and S are dense in L, where density of Rs(LnS) was

recorded in Observation 2.1.46. For the other containment, recall from Proposition 2.1.37 (6)

that for a locale M and a dense sublocale T of M , A ∈ Srem(M nT ) implies A∩T ∈ Srem(M).

Since Rs(Ln S) ∈ Srem(Ln S), it follows that Rs(Ln S) ∩ S ∈ Srem(L). Now, BL being the

largest remote sublocale of L gives Rs(Ln S) ∩ S ⊆ BL. Thus Rs(Ln S) ∩ S = BL.

Remark 3.1.14. In Chapter 2 we commented that for fit locales, the smallest dense sublocale

of a locale is the only sublocale which is simultaneously dense and remote. At that stage, we

did not have enough machinery to relax the fitness condition. We are now able to remove this

condition and state that:

For any locale L, BL is the only sublocale which is simultaneously dense and re-

mote.

Remark 3.1.15. In any T1-space X, Iso(X) is a remote subset of X, hence Ĩso(X) is a remote

sublocale of OX, and therefore Ĩso(X) ⊆ B(OX). Thus, if Iso(X) is dense in X, then Ĩso(X)

is dense in OX, hence B(OX) ⊆ Ĩso(X), implying that Ĩso(X) = B(OX). This is one of

those instances where the smallest dense sublocale of a spatial locale is induced by a subspace.

We use Proposition 3.1.10 to characterize remote preserving localic maps in terms of the

least dense sublocale.

Theorem 3.1.16. Let f : L→M be a localic map. The following statements are equivalent.

1. f−1[−] preserves remote sublocales.
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2. f−1[BM ] is a remote sublocale of L.

Proof. We only show that (2) =⇒ (1): Let B ∈ Srem(M). Since BM is the largest member

of Srem(M), we have that B ⊆ BM . Therefore f−1[B] ⊆ f−1[BM ]. Since, by hypothesis,

f−1[BM ] ∈ Srem(L), using the fact that a sublocale of a remote sublocale is remote, we get

that f−1[B] ∈ Srem(L).

We proved in Corollary 2.1.32 that Rem(L) is a remote sublocale whenever the locale

L is a coframe. Since we now know that BL is the largest remote sublocale of a locale L,

Rem(L) ⊆ BLmaking Rem(L) Boolean because every sublocale of a Boolean locale is Boolean.

Since a locale M is Boolean if and only if M = Rem(M), Rem(Rem(L)) = Rem(L). Unlike

in the situation of Pel∞(L) given by Dube in [17], the sequence of Remδ(L)’s, where δ is an

ordinal, stabilizes at Rem(L).

Definition 3.1.17. Define a Rem-map to be a localic map f : L→M such that f [Rem(L)] ⊆

Rem(M).

Denote by CFLocR the category of locales which are also coframes whose morphisms are

Rem-maps, and by BooLocR the full subcategory of CFLocR whose objects are Boolean

locales.

We show that BooLocR is a coreflective subcategory of CFLocR. That is, for each L ∈

Obj(CFLocR), we shall find a Boolean locale P and a Rem-map c : P → L such that for every

Rem-map f : N → L, from a Boolean locale N , there exists a unique Rem-map f ′ : N → P

such that c ◦ f ′ = f .

Proposition 3.1.18. BooLocR is a coreflective subcategory of CFLocR.

Proof. Let L ∈ Obj(CFLocR). Since Rem(L) is a remote sublocale, it is therefore contained

in the largest remote sublocale BL of L making it a Boolean locale so that it belongs to

BooLocR.

The map c = jRem(L) : Rem(L)→ L is a Rem-map. Indeed,

c[Rem(Rem(L))] = Rem(Rem(L)) ⊆ Rem(L)
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making c a Rem-map.

Let f : N → L be a Rem-map where N is a Boolean locale. Then N = Rem(N). So,

there is a localic map, say f ′ : N → Rem(L), which maps as f . This localic map is clearly a

Rem-map satisfying c ◦ f ′ = f .

f ′ is unique: Let k : N → Rem(L) be a Rem-map such that c ◦ k = f . Then, for each

x ∈ N , k(x) = c(k(x)) = f(x) = c(f ′(x)) = f ′(x). Thus k = f ′ so that f ′ is unique.

Recall that if f : L → M is a localic map with S ∈ S(L) and T ∈ S(M) such that

f [S] ⊆ T , then the restriction map f|S : S → T is a localic map. It is clear that for a Rem-

map f : L→ M , where L,M ∈ Obj(CFLocR), the function f|Rem(L) : Rem(L)→ Rem(M) is

a localic map because f [Rem(L)] ⊆ Rem(M), Rem(L) ∈ S(L) and Rem(M) ∈ S(M). Using

this argument, one can easily show that there is an endofunctor Rem : CFLocR → CFLocR

which maps each Rem-map f : L→ M to the restriction map f|Rem(L) : Rem(L)→ Rem(M).

We formalize this in the following result.

Proposition 3.1.19. The assignment

Rem : CFLocR → CFLocR, (f : L→M) 7→ (f|Rem(L) : Rem(L)→ Rem(M))

is an endofunctor.

The fact that Rem(L) = Rem(Rem(L)) = Rem(Rem(Rem(L))) for every L ∈ Obj(CFLocR)

leads to the realization that the endofunctor Rem : CFLocR → CFLocR forms a comonad.

That is, there are natural transformations η : Rem → idCFLocR and µ : Rem → Rem ◦Rem

such that the following diagrams commute:

Rem
µ //

id

((

µ

��

Rem ◦Rem

ηRem

��
Rem ◦Rem

Rem η
// Rem

Rem
µ //

µ

��

Rem ◦Rem

Remµ

��
Rem ◦Rem

µRem
// Rem ◦Rem ◦Rem

(3.1.2)

Proposition 3.1.20. The triple (Rem, η, µ) where
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1. Rem is the endofunctor Rem : CFLocR → CFLocR,

2. η : Rem → idCFLocR is a function that assigns to each L ∈ Obj(CFLocR) the map

ηL = jRem(L) : Rem(L)→ L, and

3. µ : Rem → Rem ◦Rem is a map assigning to each L ∈ Obj(CFLocR) the map µL =

idRem(L) : Rem(L)→ Rem(Rem(L))

is a comonad.

Proof. η : Rem → idCFLocR is a natural transformation: Let L ∈ Obj(CFLocR) and define

ηL = jRem(L). It is clear that ηL is a localic map and ηL[Rem(Rem(L))] = ηL[Rem(L)] ⊆

Rem(L), making ηL a Rem-map. For each Rem-map f : L→M , the diagram

Rem(L)
ηL //

Rem(f)

��

idCFLocR(L) = L

idCFLocR
(f)=f

��
Rem(M) ηM

// idCFLocR(M) = M

(3.1.3)

commutes. Indeed, for each x ∈ Rem(L),

f(ηL(x)) = f(x) = Rem(f)(x) = ηM(Rem(f)(x)).

Thus η is a natural transformation.

µ : Rem→ Rem ◦Rem is a natural transformation: Choose L ∈ Obj(CFLocR) and let µL

be the localic map idRem(L) : Rem(L)→ Rem(Rem(L)) which exists because Rem(Rem(L)) =

Rem(L). Then µL[Rem(Rem(L))] = µL[Rem(L)] = Rem(L) = Rem(Rem(Rem(L))) so that

µL is a Rem-map. For each f ∈ homCFLocR(L,M) where M ∈ Obj(CFLocR), we have that

Rem(Rem(f)) = Rem(f|Rem(L))

= (f|Rem(L))|Rem(Rem(L))

= (f|Rem(L))|Rem(L)

= f|Rem(L)

= Rem(f).
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Therefore the following diagram commutes:

Rem(L)
µL //

Rem(f)

��

Rem(Rem(L)) = Rem(L)

Rem(Rem(f))=Rem(f)

��
Rem(M) µM

// Rem(Rem(M)) = M

(3.1.4)

Thus µ is a natural transformation.

ηRem ◦ µ = id: Let L ∈ Obj(CFLocR). Then

(ηRem)L ◦ µL = ηRem(L) ◦ idRem(L) = jRem(Rem(L)) = idRem(L) .

Rem η ◦ µ = id: For each M ∈ Obj(CFLocR),

(Rem η)M ◦µM = Rem(ηM) ◦ idRem(M) = (ηM)|Rem(Rem(M)) = (jRem(M))|Rem(Rem(M)) = idRem(M) .

Remµ ◦ µ = µRem ◦ µ: Let N ∈ Obj(CFLocR). Then

(Remµ)N ◦ µN = Rem(µN) ◦ idRem(N)

= (µN)|Rem(Rem(N)) ◦ idRem(N)

= idRem(Rem(N)) ◦ idRem(N)

= µRem(N) ◦ idRem(N)

= (µRem)N ◦ µN .

Thus (Rem, η, µ) is a comonad.

We close this section with a description of localic maps f : L→M such that:

1. A ∈ Srem(L) if and only if f [A] ∈ Srem(M);

2. x ∈ Rem(L) if and only if f(x) ∈ Rem(M);

3. f−1[A] ∈ Srem(M) if and only if A ∈ Srem(M); and

4. h(y) ∈ Rem(L) if and only if y ∈ Rem(M).

We have the following results.

55



Proposition 3.1.21. Let f : L→M be localic map such that f sends dense elements to dense

elements and h is weakly open. Then:

1. A ∈ Srem(L) iff f [A] ∈ Srem(M) for each A ∈ S(L).

2. If f is closed, then x ∈ Rem(L) iff f(x) ∈ Rem(M) for all x ∈ L.

Proof. The forward implications of (1) and (2) follow from Theorem 3.1.2 and Proposition

3.1.4, respectively. We only prove the reverse direction of (1). The proof for (2) follows a

similar sketch. Let A ∈ S(L) be such that f [A] ∈ Srem(M) and let o(x) be dense in L. Then

x is dense in L. Since f sends dense elements to dense elements, f(x) is dense in M so that

o(f(x)) is also dense in M . The remoteness of f [A] gives f [A] ⊆ o(f(x)) which implies that

A ⊆ f−1[f [A]] ⊆ f−1[o(f(x))] = o(h(f(x))) ⊆ o(x).

Thus A is contained in every open dense sublocale of L, making it a remote sublocale of L.

Proposition 3.1.22. Let f : L → M be localic map such that f [−] is surjective, f sends

dense elements to dense elements and h is weakly open. Then:

1. f−1[B] ∈ Srem(L) iff B ∈ Srem(M) for all B ∈ S(M).

2. h(y) ∈ Rem(L) iff y ∈ Rem(M) for each y ∈M .

Proof. The reverse directions of both (1) and (2) were proved in Proposition 3.1.8. For the

forward directions, we only give a proof for (1). Let B ∈ S(M) be such that f−1[B] ∈ Srem(L)

and choose a dense sublocale o(x) of M . Since h is weakly open and x is dense in M , h(x) is

dense in L so that o(h(x)) is a dense sublocale of L. It follows that f−1[B] ⊆ o(h(x)) because

f−1[B] is a remote sublocale of L. Therefore

B = f [f−1[B]] ⊆ f [o(h(x))] = f [f−1[o(x)]] ⊆ o(x).

Thus B ∈ Srem(M).

Here is an example of a localic map with the features hypothesized above which is not an

isomorphism.
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Example 3.1.23. Consider a Boolean locale L with a subframe M 6= L and M not isomorphic

to L. For instance, the two-element chain as a subframe of the four-element Boolean algebra.

Let f : L→M be the localic map whose left adjoint is the identical embedding M ↪→ L. Then

f is surjective and not an isomorphism. We claim that f [−] : S(L)→ S(M) is surjective. To

see this, consider any sublocale T of M . Since M is Boolean, T is a closed sublocale of M and

hence T = c(x) for some x ∈ M . Since f is onto, there is a ∈ L such that f(a) = x. In light

of all sublocales of M being closed,

f [c(a)] = f [c(a)] = c(f(a)) = c(x) = T,

showing that f [−] is surjective. Since the only dense element in any Boolean locale is the

top element, both f and its left adjoint send dense elements to dense elements, hence the left

adjoint of f is weakly open. This is also an example of a localic map that is not an isomorphism

yet it is closed, sends dense elements to dense elements and has a weakly open left adjoint.

Comment 3.1.24. In [20], the authors show that for any localic map f : L → M , if f [−] :

S(L) → S(M) is surjective, then f is also surjective. They however do not comment about

surjectivity of localic image function if the underlying localic map is surjective. The calculation

in the foregoing example shows that if a surjective localic map has a Boolean codomain, then

the induced localic image function is also surjective.

3.2 Pushing forward and pulling back of sublocales which

are remote (resp. *remote) from dense sublocales

This section focuses on discussing preservation and reflection of sublocales that are remote

(resp. *remote) from dense sublocales. For the rest of this section, we regard βL as the locale

of regular ideals of CozL so that the diagram 1.5.1 commutes.

Consider a commuting diagram

S T

L M

g

α ω

f

(3.2.1)

57



where S, T, L and M are locales, f and g are localic maps and the downward morphisms are

dense injective localic maps. Our discussion will make use of the information provided in

diagram 3.2.1. We commented in the preliminaries that a localic map k : P → Q is dense if

and only if k[P ] is a dense sublocale of Q. So, α[S] and ω[T ] are dense sublocales of L and

M , respectively. Since for an extension v : W → Y , v∗ : Y → v∗[Y ] is an isomorphism, we will

sometimes write S and T for the sublocales α[S] and ω[T ], respectively.

A particular case of the situation depicted in diagram 3.2.1 is that of γ-lifts given in diagram

1.5.1.

For ∗remoteness, we note that, A ∩ α[S] = O implies A ⊆ Lr α[S] but A ⊆ Lr α[S] does

not always imply that A misses α[S] unless α[S] is complemented. We will sometimes treat

these cases differently.

We start by recording a description of localic maps that preserve remoteness from a dense

sublocale. For the following result, we recall from [26] that a localic map f : L → M takes

A-remainder to B-remainder if f [L r A] ⊆ M r B where A ∈ S(L), B ∈ S(M). We shall

write f : L → M takes S-remainder to T -remainder to mean that f takes α[S]-remainder to

ω[T ]-remainder.

Proposition 3.2.1. Assume that g∗ in diagram 3.2.1 is weakly open and f ∗◦ω = α◦g∗. Then

1. f [Srem(Ln S)] ⊆ Srem(M n T ).

2. If f ∗ is weakly closed, then f [Rem(Ln S)] ⊆ Rem(M n T ).

3. Suppose that f takes S-remainder to T -remainder, then

(a) f [∗Srem(Ln S)] ⊆ ∗Srem(M n T ).

(b) If f ∗ is weakly closed, then f [∗Rem(Ln S)] ⊆ ∗Rem(M n T ).

Proof. (1) Let A ∈ Srem(Ln S) and choose an ω[T ]-dense y ∈ ω[T ]. Then y = ω(t) for some

t ∈ T . Because g∗ is weakly open, g∗(t) is S-dense so that α(g∗(t)) is α[S]-dense since α : S →

α[S] is an isomorphism. Therefore O = A ∩ cL(α(g∗(t)) = A ∩ cL(f ∗(ω(t)) where the latter

equality follows since f ∗ ◦ ω = α ◦ g∗. Therefore A ⊆ o(f ∗(ω(t))) = f−1[o(ω(t))] = f−1[o(y)].
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We get that f [A] ⊆ f [f−1[o(y)]] ⊆ o(y). This tells us that f [A] is contained in every open

sublocale induced by an ω[T ]-dense element, so by Proposition 2.1.42(3), f [A] ∈ Srem(M n T ).

(2) Let x ∈ Rem(Ln S) and choose an ω[T ]-dense t ∈ ω[T ]. Therefore t = ω(y) for some

y ∈ T . Since g∗ is weakly open, g∗(y) is S-dense, making α(g∗(y)) α[S]-dense. It follows that

α(g∗(y)) ∨ x = 1. Because α ◦ g∗ = f ∗ ◦ ω, f ∗(ω(y)) ∨ x = 1. The weakly closedness of f ∗

implies that 1M = ω(y) ∨ f(x) = t ∨ f(x). Thus f(x) ∈ Rem(M n T ).

(3) With the assumption that f takes S-remainder to T -remainder, it is clear that A ⊆

Lrα[S] implies f [A] ⊆ f [Lrα[S]] ⊆M rω[T ] for all A ∈ S(L). This together with (1) and

(2) show that (3)(a) and (3)(b) hold.

Observation 3.2.2. (1) In terms of γ-lifts, the condition f ∗ ◦ ω = α ◦ g∗ on f resembles that

of a γ-map which was defined in [23] as a frame homomorphism t : M → L that satisfies

γ(t) ◦ (γM)∗ = (γL)∗ ◦ t.

(2) For Proposition 3.2.1(3), in the case where α[S] is complemented, we replace f takes

S-remainder to T -remainder with the condition that f is injective and f [α[S]] = ω[T ]. From

this we get that A ⊆ L r α[S] implies A ∩ α[S] = O. Therefore O = f [O] = f [A ∩ α[S]] =

f [A] ∩ f [α[S]] so that f [A] ⊆M r f [α[S]] = M r ω[T ].

We digress to explore localic maps with the properties given in Proposition 3.2.1(1) and

Proposition 3.2.1(3)(a). We shall say that g in diagram 3.2.1 is f -remote preserving if

f [Srem(L n S)] ⊆ Srem(M n T ) and f -∗remote preserving if f [∗Srem(L n S)] ⊆ ∗Srem(M n T ).

In the case of γ-lifts, we shall say that f is γ-remote preserving if γ(f) [Srem(γLn L)] ⊆

Srem(γM nM) and γ-∗remote preserving provided that γ(f) [∗Srem(γLn L)] ⊆ ∗Srem(γM nM).

Since BL ∈ Srem(LnS) for every dense sublocale S of L, in the next result, we characterize

f -remote preserving maps in terms of the Booleanization of a locale. We also include, in the

same result, a characterization in terms of the largest sublocale remote from a given dense

sublocale. We recall that if w : P → Q is a dense injective localic map, then for all x ∈ P , x

is P -dense if and only if w(x) is L-dense.

Theorem 3.2.3. Suppose that f ∗ ◦ ω = α ◦ g∗. The following statements are equivalent.

1. g is f -remote preserving.
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2. f [BL] ∈ Srem(M n T ).

3. f [Rs(Ln S)] ∈ Srem(M n T ).

4. f [Rs(Ln S)] ⊆ Rs(M n T ).

Proof. (1) =⇒ (2): Since BL is remote from every dense sublocale of L and α[S] is a dense

sublocale of L, BL is remote from α[S]. By (1), f [BL] ∈ Srem(M n T ).

(2) =⇒ (3): Let a ∈ ω[T ] be ω[T ]-dense. Then a = ω(x) for some x ∈ T . By hypothesis,

f [BL] ⊆ o(ω(x)). Therefore BL ⊆ f−1[o(ω(x))] = o[f ∗(ω(x))]. Since f ∗ ◦ ω = α ◦ g∗,

BL ⊆ o[α(g∗(x))], making α(g∗(x)) L-dense so that g∗(x) is S-dense and hence α(g∗(x)) is

α[S]-dense. But Rs(Ln S) is remote from α[S], so Rs(Ln S) ⊆ o[α(g∗(x))]. Therefore

f [Rs(Ln S)] ⊆ f [o(α(g∗(x)))] = f [o(f ∗(ω(x)))] = f [f−1[o(ω(x))]] ⊆ o(ω(x)) = o(a).

Thus f [Rs(Ln S)] ∈ Srem(M n T ).

(3) =⇒ (4): Follows since Rs(M n T ) is the largest sublocale remote from ω[T ].

(4) =⇒ (1): Let A ∈ Srem(L n S). Then A ⊆ Rs(L n S) so that f [A] ⊆ f [Rs(L n S)].

But f [Rs(L n S)] ⊆ Rs(M n T ), so f [A] ⊆ f [Rs(M n T )]. Since sublocales contained in

members of Srem(M n T ) are remote from ω[T ], f [A] is remote from ω[T ]. Thus g is f -remote

preserving.

We give the following characterization of f -∗remote preserving maps.

Proposition 3.2.4. Assume that the downward embeddings α and ω in diagram 3.2.1 are

dense and f ∗ ◦ ω = α ◦ g∗. The following statements are equivalent.

1. g is f -∗remote preserving.

2. f [∗Rs(Ln S)] is ∗remote from ω[T ].

3. f [∗Rs(Ln S)] ⊆ ∗Rs(M n T ).

Proof. (1) =⇒ (2): Follows since ∗Rs(Ln S) ∈ ∗Srem(Ln S).

(2) =⇒ (3): Trivial.
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(3) =⇒ (1): Proof is similar to that of Theorem 3.2.3 (4) =⇒ (1).

In Proposition 3.2.6 below, we explore a relationship between f -remote preservation and

preservation of remote sublocales. We give the following lemma which will be useful in proving

the result.

Lemma 3.2.5. The following statements hold.

1. A ∈ Srem(S) iff α[A] ∈ Srem(Ln S).

2. A ∈ Srem(Ln S) implies (α)−1[A] ∈ Srem(S).

Proof. (1) Recall from Proposition 2.1.48 that Srem(K) = Srem(LnK)∩ S(K) for each dense

K ∈ S(L). Therefore α[A] ∈ Srem(α[S]) if and only if α[A] ∈ Srem(Ln S)∩S(α[S]). Since α :

S → α[S] is an isomorphism, it is easy to see that A ∈ Srem(S) if and only if α[A] ∈ Srem(α[S])

if and only if α[A] ∈ Srem(Ln S) ∩ S(α[S]).

(2) Let x ∈ S be S-dense. Then α(x) is α[S]-dense. It follows that A ∩ cL(α(x)) = O.

Therefore

O = (α)−1[A] ∩ (α)−1[cL(α(x))] = (α)−1[A] ∩ cS((α)∗(α(x))) = (α)−1[A] ∩ cS(x)

proving the result.

Proposition 3.2.6. Assume that f ∗ ◦ ω = α ◦ g∗. Then g is f -remote preserving iff g[−]

preserves remote sublocales.

Proof. (=⇒) : Since α[S] is dense in L, Bα[S] = BL making Bα[S] = α[BS] remote from

α[S]. Because g is f -remote preserving, we have that f [α[BS]] ∈ Srem(M n T ) which implies

that ω[g[BS]] ∈ Srem(M n T ) since ω∗ ◦ f = g ◦ α∗. It follows from Lemma 3.2.5(2) that

(ω)−1[ω[g[BS]]] ∈ Srem(T ). But g[BS] ⊆ (ω)−1[ω[g[BS]]], so g[BS] ∈ Srem(T ). By Theorem

3.1.2(2), g preserves remote sublocales.

(⇐=) : We show that f [BL] is remore from ω[T ]. Since BL ∈ Srem(L n S), it follows

from Lemma 3.2.5(2) that (α)−1[BL] ∈ Srem(S). By hypothesis, g[(α)−1[BL]] ∈ Srem(T ).

By Lemma 3.2.5(1), ω[g[(α)−1[BL]]] ∈ Srem(M n T ) which implies that f [α[(α)−1[BL]]] ∈

61



Srem(MnT ) since f ◦α = ω◦g. But BL = Bα[S] ⊆ α[S] and using the fact that α : S → α[S]

is an isomorphism,

f [α[(α)−1[BL]]] = f [α[(α)−1[Bα[S]]]] = f [Bα[S]] = f [BL] ∈ Srem(M n T )

as required.

Consider a commuting diagram

S T

R U

L M

i

α

g

k

ω
ϕ

θ σ

f

(3.2.2)

where S, T,R, U, L andM are locales, the downward arrows are dense injective localic maps and

the horizontal arrows are localic maps. We find a relationship between f -remote preservation

and ϕ-remote preservation. En route to that, we give the following lemma.

Lemma 3.2.7. From diagram 3.2.2, θ[Srem(Rn S)] ⊆ Srem(Ln S).

Proof. We have that α is dense since it is the composite of two dense localic maps i and θ.

Let A ∈ Srem(R n S) and choose an α[S]-dense y ∈ α[S]. Then y = α(x) for some x ∈ S.

Since α : S → α[S] is an isomorphism, x is S-dense so that i(x) is i[S]-dense. Therefore

A ∩ cR(i(x)) = O. Observe that θ[A] ∩ cL(α(x)) = O. To see this, let a ∈ θ[A] ∩ cL(α(x)).

Then a = θ(b) for some b ∈ A and α(x) ≤ a. We have that

i(x) = θ∗(θ(i(x))) = θ∗(α(x)) ≤ θ∗(θ(b)) = b

since θ is injective and α = θ ◦ i. Therefore b ∈ A ∩ cR(i(x)) which implies b = 1 so that

a = θ(b) = 1. Thus θ[A] ∩ cL(α(x)) = O. Hence θ[A] ∈ Srem(Ln S).

Since θ[R] ⊆ L, we have that

{B ∈ S(θ[R]) : B ∩ α[S] = O} ⊆ {C ∈ S(L) : C ∩ α[S] = O}

so that

θ[R]r α[S] =
∨
{B ∈ S(θ[R]) : B ∩ α[S] = O} ⊆

∨
{C ∈ S(L) : C ∩ α[S] = O} = Lr α[S].
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As a result of this and Lemma 3.2.7, we have the following result.

Lemma 3.2.8. From diagram 3.2.2, θ[∗Srem(Rn S)] ⊆ ∗Srem(Ln S).

Observation 3.2.9. In light of the preceding two lemmas and the relationship between the

β, υ and λ extensions depicted in diagram 1.5.1, we have

Srem(υLn L) ⊆ Srem(λLn L) ⊆ Srem(βLn L)

and

∗Srem(υLn L) ⊆ ∗Srem(λLn L) ⊆ ∗Srem(βLn L).

Proposition 3.2.10. If g in diagram 3.2.2 is f -remote preserving, then it is ϕ-remote pre-

serving.

Proof. Let A ∈ Srem(R n S). It follows from Lemma 3.2.7 that θ[A] ∈ Srem(L n S). Since g

is f -remote preserving, f [θ[A]] ∈ Srem(M n T ) making σ[ϕ[A]] ∈ Srem(M n T ). By Lemma

3.2.5(2), (σ)−1[σ[ϕ[A]]] ∈ Srem(U) ⊆ Srem(U nT ). Since ϕ[A] ⊆ (σ)−1[σ[ϕ[A]]] and a sublocale

of any member of Srem(U n T ) belongs to Srem(U n T ), we have that ϕ[A] ∈ Srem(U n T ).

Thus g is ϕ-remote preserving.

Observation 3.2.11. Recall from [26] that given a localic map f : L→M and any K ∈ S(L),

f [L rK] ⊆ M r f [K] whenever K = f−1[J ] for some J ∈ S(M). Since for the ∗remoteness

case of Proposition 3.2.10 we need ϕ[R r i[S]] ⊆ U r k[T ], we assume that i[S] = ϕ−1[k[T ]]

and ϕ[−] is surjective in diagram 3.2.2. Then

ϕ[Rr i[S]] ⊆ U r ϕ[i[S]] = U r ϕ[ϕ−1[k[T ]]] = U r k[T ]

so that A ∈ ∗Srem(R n S) implies ϕ[A] ∈ ∗Srem(U n T ). This approach also helps in verifying

∗remoteness cases of Corollary 3.2.13 and Proposition 3.2.15(2) and (3) below.

Observation 3.2.12. The converse of Proposition 3.2.10 holds if α[−] is surjective (hence an

isomorphism). Indeed, assume that g is ϕ-remote preserving and let A ∈ Srem(L n S). By

Lemma 3.2.5(2), α−1[A] ∈ Srem(S). Therefore i[α−1[A]] ∈ Srem(R n S) by Lemma 3.2.5(1).

Since g is ϕ-remote preserving, ϕ[i[α−1[A]]] ∈ Srem(U nT ). By Lemma 3.2.7, σ[ϕ[i[α−1[A]]]] ∈

Srem(M n T ) so that f [θ[i[α−1[A]]]] ∈ Srem(M n T ) because f ◦ θ = σ ◦ ϕ. Since θ ◦ i = α and
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α[−] is surjective, f [θ[i[α−1[A]]]] = f [α[α−1[A]]] = f [A] ∈ Srem(M n T ). Thus g is f -remote

preserving.

Corollary 3.2.13. We have that

β-remote preserving =⇒ λ-remote preserving =⇒ υ-remote preserving.

Observation 3.2.14. To get the reverse directions of Corollary 3.2.13, we observe that the

morphisms υL, βL and λL are isomorphisms whenever L is compact. The case of λL follows

since, according to [37], λL is injective (hence an isomorphism) whenever L is Lindelöf. Because

every compact locale is Lindelöf, we have that λL is an isomorphism whenever L is compact.

We end our digression with the following result.

Proposition 3.2.15. Consider a commuting diagram

L M

N

f

t
ϕ (3.2.3)

where f, g and t are localic maps and L,M and N are locales.

1. If ϕ and f are γ-remote preserving, then t is γ-remote preserving.

2. If t is γ-remote preserving, ϕ sends elements to dense elements, then f is γ-remote

preserving.

3. If t is γ-remote preserving and A ⊆ γ(f)[BγL] for all A ∈ Srem(γM nM), then ϕ is

γ-remote preserving.

Proof. (1) For each A ∈ S(γL), we have

A ∈ Srem(γLn L) =⇒ γ(f)[A] ∈ Srem(γM nM) since f is γ-remote preserving

=⇒ γ(ϕ)[γ(f)[A]] ∈ Srem(γN nN) since ϕ is γ-remote preserving

=⇒ γ(ϕ ◦ f)[A] ∈ Srem(γN nN) since γ is a functor

=⇒ γ(t)[A] ∈ Srem(γN nN).
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(2) Let A ∈ Srem(γLnL) and choose dense x ∈M . Since t is γ-remote preserving, we have

that γ(t)[A] ∈ Srem(γN nN). Since ϕ sends dense elements to dense elements, we have that

ϕ(x) is dense in N . It follows that γ(t)[A] ⊆ o((γN)∗(ϕ(x))). But (γN)∗ ◦ϕ = γ(ϕ) ◦ (γM)∗, so

γ(t)[A] ⊆ o(γ(ϕ)((γM)∗(x))). Therefore γ(ϕ)−1[γ(t)[A]] ⊆ o((γM)∗(x)) making γ(ϕ)−1[γ(t)[A]]

remote from M . Since γ(ϕ)[γ(f)[A]] = γ(t)[A] implies γ(f)[A] ⊆ γ(ϕ)−1[γ(t)[A]], we have that

γ(f)[A] is remote from M .

(3) Let A ∈ Srem(γM nM). Then A ⊆ γ(f)[BγL] which implies that

γ(ϕ)[A] ⊆ γ(ϕ)[γ(f)[BγL]] = γ(t)[BγL].

But γ(t)[BγL] is remote from N , so γ(ϕ)[A] is remote from N . It follows that ϕ is γ-remote

preserving.

Observation 3.2.16. We commented in Observation 3.2.11 that the approach given in that

observation can be used to prove the ∗remoteness case of Proposition 3.2.15(2) and (3). The

∗remoteness case of Proposition 3.2.15(1) follows the similar sketch of the proof of Proposition

3.2.15(1) where γ-remote preserving is replaced by γ-∗remote preserving.

We return to descriptions of localic maps that reflect and preserve the variants of remoteness

introduced in Definition 2.1.33.

Proposition 3.2.17. Assume that the morphism g in diagram 3.2.1 sends dense elements to

dense elements. Then

1. f [A] ∈ Srem(M n T ) implies A ∈ Srem(Ln S) for every A ∈ S(L).

2. f(x) ∈ Rem(M n T ) implies x ∈ Rem(Ln S) for all x ∈ L.

3. Suppose that ω[T ] is a complemented sublocale of M and f−1[ω[T ]] = α[S]. Then

(a) f [A] ∈ ∗Srem(M n T ) implies A ∈ ∗Srem(Ln S) for every A ∈ S(L).

(b) f(x) ∈ ∗Rem(M n T ) implies x ∈ ∗Rem(Ln S) for all x ∈ L.

Proof. (1) Assume that f [A] ∈ Srem(M n T ) and let a ∈ α[S] be α[S]-dense. Then a = α(x)

for some x ∈ S where such x is S-dense. Since g sends dense elements to dense elements,
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g(x) is T -dense so that ω(g(x)) is ω[T ]-dense. It follows that f [A] ⊆ o(ω(g(x))) which implies

f [A] ⊆ o(f(α(x))) because k ◦ g = f ◦ α. Therefore

A ⊆ f−1[f [A]] ⊆ f−1[o(f(α(x)))] = o(h(f(α(x)))) ⊆ o(α(x)) = o(a).

Thus A ∈ Srem(Ln S).

(2) Follows similar sketch of the proof of (1).

(3) We only show that f [A] ⊆ M r ω[T ] implies A ⊆ Lr α[S]. Observe that for comple-

mented ω[T ] in M with f−1[ω[T ]] = α[S],

f [A] ⊆M r ω[T ] ⇐⇒ f [A] ∩ ω[T ] = O

=⇒ A ∩ f−1[ω[T ]] = O

⇐⇒ A ∩ α[S] = O

=⇒ A ⊆ Lr α[S].

for all A ∈ S(L).

Proposition 3.2.18. Suppose that the localic map g in diagram 3.2.1 sends dense elements

to dense elements. Then

1. f−1[Srem(M n T )] ⊆ Srem(Ln S).

2. h[Rem(M n T )] ⊆ Rem(Ln S).

3. If f−1[ω[T ]] = α[S] and ω[T ] is complemented in M , then:

(a) f−1[
∗Srem(M n T )] ⊆ ∗Srem(Ln S).

(b) h[∗Rem(M n T )] ⊆ ∗Rem(Ln S).

Proof. (1) Let A ∈ Srem(M n T ) and choose an S-dense a ∈ S. Then a = α(x) for some x ∈ S

which is S-dense. g(x) is T -dense because g sends dense elements to dense elements. It follows

that A ⊆ o(ω(g(x))) since ω(g(x)) is ω[T ]-dense and A ∈ Srem(M n T ). Therefore

f−1[A] ⊆ f−1[o(ω(g(x)))] = o(h(ω(g(x)))) = o(h(f(α(x)))) ⊆ o(α(x)) = o(x)

making f−1[A] ∈ Srem(Ln S).

66



(2) Proof follows similar sketch of the proof of (1).

(3) Assume that f−1[ω[T ]] = α[S] and ω[T ] is complemented in M . We only show that

A ⊆ M r ω[T ] implies f−1[A] ⊆ L r α[S] which is needed for both 3(a) and 3(b). We have

that A ⊆ M r ω[T ] gives A ∩ ω[T ] = O. Therefore O = f−1[A] ∩ f−1[ω[T ]] = f−1[A] ∩ α[S],

which implies that f−1[A] ⊆ Lr α[S].

Proposition 3.2.19. Suppose g∗ in diagram 3.2.1 is a weakly open map.

1. The following hold for α ◦ g∗ = f ∗ ◦ ω and surjective f [−].

(a) f−1[A] ∈ Srem(Ln S) implies A ∈ Srem(M n T ) for all A ∈ S(M).

(b) If f takes S-remainder to T -remainder, then f−1[A] ∈ ∗Srem(Ln S) implies A ∈
∗Srem(M n T ) for every A ∈ S(M).

2. The following statements hold for either weakly closed f ∗ and surjective g or α◦g∗ = f ∗◦ω

and surjective f .

(a) For each x ∈M , f ∗(x) ∈ Rem(Ln S) implies x ∈ Rem(M n T ).

(b) If f [L r α[S]] ⊆ M r ω[T ], then f ∗(x) ∈ ∗Rem(Ln S) implies x ∈ ∗Rem(M n T )

for all x ∈M .

Proof. (1) Assume that α ◦ g∗ = f ∗ ◦ ω and surjective f [−].

(a) Let A ∈ S(M) be such that f−1[A] ∈ Srem(Ln S) and choose an ω[T ]-dense b ∈ ω[T ].

Then b = ω(x) for some x ∈ T with x a T -dense element. The weakly openness of g∗ implies

that g∗(x) is S-dense so that α(g∗(x)) is α[S]-dense. Therefore

O = f−1[A] ∩ c(α(g∗(x))) = f−1[A] ∩ c(f ∗(ω(x))) = f−1[A] ∩ f−1[c(ω(x))] = f−1[A ∩ c(ω(x))].

Since f [−] is surjective, O = f [f−1[A ∩ c(ω(x))]] = A ∩ c(ω(x)) = A ∩ c(b). Thus A ∈

Srem(M n T ).

(b) We only show that f−1[A] ⊆ Lr α[S] implies A ⊆ Lr α[S]. Observe that

f−1[A] ⊆ Lr α[S] =⇒ f [f−1[A]] ⊆ f [Lr α[S]] =⇒ A ⊆M r ω[T ].
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(2) (a) Suppose that f ∗ is weakly closed, g is surjective and let T ∈ T be T -dense. Then

t = ω(b) for some b ∈ T which is T -dense. Then g∗(b) is S-dense since g∗ is weakly open.

Because f ∗(x) ∈ Rem(Ln S), we get that

f ∗(x) ∨ α(g∗(b)) = 1. (3.2.4)

The weakly closedness of f ∗ gives x ∨ f(α(g∗(b))) = 1. Therefore

1 = x ∨ ω(g(g∗(b))) = x ∨ ω(b) = x ∨ t

where the second equality holds since g is surjective. Thus x ∈ Rem(M n T ).

Assume that α ◦ g∗ = f ∗ ◦ ω and f is surjective. Then from equation 3.2.4, we get that

f ∗(x) ∨ f ∗(t) = 1 which implies that

f(f ∗(x ∨ t)) = f(f ∗(x) ∨ f ∗(t)) = f(1) = 1

so that by surjectivity of f , x ∨ t = 1 making x ∈ Rem(M n T ).

(b) Can be deduced from 1(b) and 2(a).
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Chapter 4

Maximal Nowhere Density

In [59], Veksler introduced a notion of a maximal nowhere dense subset. Since nowhere density

is of paramount importance when discussing remoteness, we dedicate this chapter to introduc-

ing and studying maximal nowhere dense sublocales from Veksler’s classical definition, and

also establishing a relationship between maximal nowhere density and remoteness.

This chapter has four sections. The first section discusses maximal nowhere dense sublo-

cales, the second section discusses homogeneous maximal nowhere density which is a variant of

maximal nowhere density that was also introduced by Veksler in the cited article. In Section

4.3, we examine a relationship between the introduced notions of maximal nowhere density

and remoteness. The last section shows how localic maps transfer (homogeneous) maximal

nowhere dense sublocales back and forth.

This chapter forms part of the results in the paper: M.S. Nxumalo, On maximal nowhere

dense sublocales, Appl. Gen. Topology, (2023)(Under Review).

4.1 Maximal nowhere dense sublocales

This section introduces a localic notion of maximal nowhere density from that of Veksler. We

will further show that the localic definition of maximal nowhere density is conservative in

locales and finally discuss some properties of maximal nowhere dense sublocales.

Let us recall from [59] that a closed nowhere dense subset F of a Tychonoff space X is

maximal nowhere dense if there is no closed nowhere dense K ⊆ X such that F is nowhere
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dense in K.

We broaden our study to arbitrary nowhere dense subsets of any topological space. We

give the following definition.

Definition 4.1.1. A nowhere dense subset N of a topological space X is maximal nowhere

dense in case there is no nowhere dense subset K of X such that N is nowhere dense in K.

We define maximal nowhere dense sublocales by replacing subsets with sublocales from

Definition 4.1.1.

Definition 4.1.2. Let L be a locale. A nowhere dense sublocale N of L is maximal nowhere

dense (m.n.d) if there is no nowhere dense sublocale S of L such that N is nowhere dense in

S.

Denote by M(L) the collection of all maximal nowhere dense sublocales of a locale L.

In what follows, we consider some examples. We remind the reader that the only locale

that is nowhere dense in itself is the trivial one. That is, L is nowhere dense as a sublocale of

itself if and only if L = {1}.

Example 4.1.3. (1) In a non-Boolean strongly submaximal locale L (according to [19], a locale

is strongly submaximal if each of its dense sublocales is open), Nd(L) is maximal nowhere dense.

To see this, we start by showing that in a strongly submaximal locale L, Nd(L) is nowhere

dense. Indeed, observe that in a strongly submaximal locale L, the dense sublocale BL is

open (in particular, complemented), so

BL ∩ Nd(L) = BL ∩
∨
{S : S is nowhere dense}

=
∨
{BL ∩ S : S is nowhere dense}

=
∨
{O} = O

making Nd(L) nowhere dense.

Now, let A ∈ S(L) be nowhere dense such that Nd(L) is nowhere dense in A. By the

nature of Nd(L), A = Nd(L), making Nd(L) nowhere dense as a sublocale of itself. Hence

Nd(L) = O. This means that O is the only nowhere dense sublocale of L, which contradicts

that L is non-Boolean.
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(2) O is not maximal nowhere dense. This follows since O is nowhere dense as a sublocale

of itself. As a result, we get that a Boolean locale does not have a maximal nowhere dense

sublocale. This also tells us that N in Definition 4.1.2 cannot be open. Otherwise, by Propo-

sition 2.1.4, LrN is dense making LrN dense because LrN ⊆ LrN . Since N is non-void

(since it is maximal nowhere dense making it different from O) and open, we must have that

(LrN) ∩N 6= O which is not possible because N is complemented.

(3) A non-closed maximal nowhere dense sublocale: Consider the set X = {a, b, c, d} en-

dowed with OX = {∅, X, {a}, {a, c}}. We have that Bτ = {∅, X} and {̃c} = {{a}, X}.

Therefore {̃c} is a non-closed nowhere dense sublocale of OX. The only nowhere dense sublo-

cales of OX containing {̃c} are {{a}, {a, c}, X} and {̃c}. It is easy to check that the sublocale

{̃c} is not nowhere dense in any of the nowhere dense sublocales of OX, making it a non-closed

maximal nowhere dense sublocale.

In Proposition 4.1.5 below, we give a characterization of maximal nowhere dense sublocales

some part of which will be used in calculations that involve maximal nowhere dense sublocales.

Recall from the preliminaries that for a sublocale A of L, x∗A denotes the pseudocomple-

ment of an x ∈ A, calculated in A.

For use below, we prove the following lemma.

Lemma 4.1.4. A sublocale N of a locale L is nowhere dense in K ∈ S(L) iff N is nowhere

dense in K.

Proof. Recall that BS = BL for every dense S ∈ S(L). Because every sublocale is dense in

its closure, we have N ∩BK = N ∩BK, which implies N is nowhere dense in K if and only

if N is nowhere dense in K.

We shall use ND(L) to denote the collection of all nowhere dense sublocales of a locale L.

Proposition 4.1.5. Let N be a nowhere dense sublocale of a locale L. The following state-

ments are equivalent.

1. N is maximal nowhere dense.
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2. There is no closed nowhere dense sublocale c(y) of L in which N is a nowhere dense

sublocale of c(y).

3. N is maximal nowhere dense.

4. N is not a nowhere dense sublocale of any closed nowhere dense sublocale of L.

5. There is no dense y ∈ L such that y ≤
∧
N and (

∧
N)∗c(y) = y.

Proof. (1) =⇒ (2): Follows since there is no nowhere dense (particularly, closed nowhere

dense) sublocale A of L in which N ∈ ND(A).

(2) =⇒ (3): Suppose that there is a nowhere dense sublocale K such that N is nowhere

dense in K. Since every sublocale of a nowhere dense sublocale is nowhere dense, N is nowhere

dense in K. By Lemma 4.1.4, N is nowhere dense in the closed nowhere dense sublocale K,

which contradicts the hypothesis in condition (2). Thus N is maximal nowhere dense.

(3) =⇒ (4): Trivial.

(4) =⇒ (5): Let y ∈ L be dense such that y ≤
∧
N and (

∧
N)∗c(y) = y. This means that∧

N is c(y)-dense which implies that cc(y) (
∧
N) is c(y)-nowhere dense. Because cc(y) (

∧
N) =

N ∩ c(y) = N , we have that N is nowhere dense in the closed sublocale c(y), which contradicts

the hypothesis.

(5) =⇒ (1): Assume that N is nowhere dense in a nowhere dense sublocale K of L. By

Lemma 4.1.4, N is nowhere dense in the closed nowhere dense sublocale K. Therefore
∧
K is

a dense element of L such that
∧
K ≤

∧
N and (

∧
N)∗K =

∧
K, which is a contradiction.

In terms of closed nowhere dense sublocales, we have the following result which holds since
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for every a, b ∈ L,

a∗c(b) =
∨
c(b)

{x ∈ c(b) : a ∧ x = 0c(b) = b}

= νc(b)

(∨
{x ∈ c(b) : a ∧ x = b}

)
= b ∨

(∨
{x ∈ L : a ∧ x = b}

)
= b ∨ (a→ b)

= a→ b.

Corollary 4.1.6. Let L be a locale and c(x) ∈ S(L). Then c(x) is maximal nowhere dense if

and only if there is no dense y ∈ L such that y ≤ x and x→ y = y.

Proposition 4.1.5 suggests that, when doing calculations about maximal nowhere dense

sublocales, there is no loss of generality with restricting to closed nowhere dense sublocales.

We give the following result regarding binary intersections of induced sublocales which will

be used below. Recall from [1] that o(U) = Ũ for all U ∈ OX.

Lemma 4.1.7. Let X be a space. For any A,B,C ⊆ X with B either open or closed, A∩B ⊆

C implies Ã ∩ B̃ ⊆ C̃.

Proof. Assume that A ∩ B ⊆ C. Then A ⊆ C ∪ (X r B). Because S̃ ∪ T = S̃ ∨ T̃ for all

S, T ⊆ X, we have that Ã ⊆ C̃ ∨ X̃ rB. If B is open, then X̃ rB = c(B) so that

Ã ⊆ C̃ ∨ c(B) =⇒ Ã ∩ o(B) ⊆ C̃ since c(B) is complemented

=⇒ Ã ∩ B̃ ⊆ C̃ since o(B) = B̃.

If B is closed, then X̃ rB = o(X rB). Therefore

Ã ⊆ C̃ ∨ o(X rB) =⇒ Ã ⊆ C̃ ∨ (OX r c(X rB))

=⇒ Ã ∩ c(X rB) ⊆ C̃

=⇒ Ã ∩ B̃ ⊆ C̃ since c(X rB) = B̃.

In both cases, A ∩B ⊆ C implies Ã ∩ B̃ ⊆ C̃.
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Using the preceding result, we show below that a subset is nowhere dense in a subspace of

a TD-space precisely when the sublocale it induces is nowhere dense in the sublocale induced

by the subspace. We shall make use of [3, Proposition 4.1.] which states that a sublocale is

nowhere dense if and only if its closure has a void interior. Incidentally, this result generalizes

a similar one of Plewe’s which is stated only for complemented sublocales. We remind the

reader that open sublocales of a sublocale S of a locale L are the oS(a) = S ∩ o(a) for a ∈ S.

So, in OX, open sublocales of S ∈ S(OX) are the oS(U) = S ∩ o(U) = S ∩ Ũ for U ∈ S.

Lemma 4.1.8. Let X be a TD-space and F ⊆ X. Then A ⊆ F is F -nowhere dense iff Ã is

F̃ -nowhere dense.

Proof. (=⇒) : Let U ∈ F̃ be such that oF̃ (U) ⊆ Ã
F̃

. Then U ∈ OX and Ũ ∩ F̃ ⊆ Ã
F̃

= Ã∩ F̃

so that Ũ ∩ F ⊆ Ũ ∩ F̃ ⊆ Ã. Therefore U ∩F ⊆ A making U ∩F ⊆ A
F

. Since A is F -nowhere

dense, U ∩ F = ∅. By Observation 2.1.17, Ũ ∩ F̃ = O making intF̃

(
Ã
F̃
)

= O. Thus Ã is

F̃ -nowhere dense.

(⇐=) : Let U ∈ OX be such that U ∩ F ⊆ A
F

= A ∩ F . Then U ∩ F ⊆ A. Since U is

open, it follows from Lemma 4.1.7 that Ũ ∩ F̃ ⊆ Ã which gives Ũ ∩ F̃ ⊆ Ã ∩ F̃ . Because Ã is

F̃ -nowhere dense, Ũ ∩ F̃ = O implying that U ∩ F = ∅. Therefore A is F -nowhere dense.

We are now in a position to show that the notion of maximal nowhere density introduced

in Definition 4.1.2 is conversative in locales.

Proposition 4.1.9. Let X be a TD-space. A subset F of X is maximal nowhere dense in X

iff F̃ ∈M(OX).

Proof. (=⇒) We prove this by contradiction. Let F ⊆ X be maximal nowhere dense. It follows

from Proposition 4.1.5 that F is maximal nowhere dense. We will show that F̃ ∈ M(OX)

which, by Proposition 4.1.5, will imply that F̃ ∈ M(OX). Suppose that there is a closed

S ∈ ND(OX) such that F̃ ∈ ND(S), i.e., F̃ ∈ ND(S). Because S is a closed sublocale of

OX, choose a closed set K ⊆ X such that S = c(X rK) = K̃. It follows from Lemma 4.1.8

that F is K-nowhere dense making F to be K-nowhere dense which is a contradiction. Thus

F̃ ∈M(OX) which implies that F̃ ∈M(OX).
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(⇐=) Suppose that F̃ is maximal nowhere dense in OX but F is not maximal nowhere

dense in X. Then F is nowhere dense in some nowhere dense subset K of X. It follows from

Lemma 4.1.8 that F̃ is nowhere dense in the nowhere dense sublocale K̃ of OX, contradicting

that F̃ is maximal nowhere dense in OX. Thus F is maximal nowhere dense in X.

We close this section with a consideration of some results about maximal nowhere dense

sublocales.

For the proof of Proposition 4.1.11(2), we start by recalling from [26] that for any sublocale

S of L,

int(S) = o
(∧

(Lr S)
)

= Lr c
(∧

(Lr S)
)

= Lr Lr S.

The above can also be applied to all complemented sublocales of a locale, as shown below.

Lemma 4.1.10. Let L be a locale. Then a sublocale F of a complemented sublocale A of L is

A-nowhere dense if and only if A ⊆ A ∩ (Lr F ).

Proof. We have that

F is nowhere dense in A ⇐⇒ intA

(
F
A
)

= O

⇐⇒ intA
(
F ∩ A

)
= O

⇐⇒ Ar (Ar
(
F ∩ A

)
)
A

= O

⇐⇒ Ar
(
Ar

(
F ∩ A

)
∩ A

)
= O

⇐⇒ A ∩
(
Lr

(
Ar

(
F ∩ A

)
∩ A

))
= O

⇐⇒ A ∩
((
Lr

(
Ar

(
F ∩ A

)))
∨ (Lr A)

)
= O

⇐⇒
(
A ∩

(
Lr

(
Ar

(
F ∩ A

))))
∨ (A ∩ (Lr A)) = O

⇐⇒ A ∩
(
Lr

(
A ∩

(
Lr

(
F ∩ A

))))
= O

⇐⇒ A ∩
(
Lr

(
A ∩

((
Lr F

)
∨ (Lr A)

)))
= O

⇐⇒ A ∩
(
Lr

(
A ∩

(
Lr F

))
∨ (A ∩ (Lr A))

)
= O

⇐⇒ A ∩
(
Lr

(
A ∩

(
Lr F

)))
= O

⇐⇒ A ∩
(
Lr

(
A ∩

(
Lr F

)))
= O

⇐⇒ A ⊆ A ∩
(
Lr F

)
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which proves the result.

Proposition 4.1.11. Let L be a locale and F a non-void nowhere dense sublocale of L. Then

1. If A ∈ ND(L), F ∈M(L) and F ⊆ A, then A ∈M(L).

2. If F ∩ (LrN) 6= O for all N ∈ ND(Lr F ), then F ∈M(L).

Proof. (1) If A ∈ ND(L), F ∈ M(L), F ⊆ A and N ∈ ND(L) such that A ∈ ND(N), then

F ∈ ND(N), which is a contradiction. Thus A ∈M(L).

(2) Assume that there is a nowhere dense sublocale c(x) such that F ∈ ND(c(x)). We get

that c(x)∩
(
Lr c(x) ∩ (Lr F )

)
= O. Observe that c(x)∩ (Lr F ) ∈ ND(Lr F ). This is so

because for each a ∈ L, o(a) ∩ (L r F ) ⊆ (Lr F ) ∩ c(x) implies o(a) ∩ (L r F ) ⊆ c(x). But

c(x) ∈ ND(L) and c(a) ∩ (L r F ) is open in L so c(a) ∩ (L r F ) = O. Therefore o(a) ⊆ F .

Since F is nowhere dense in L, o(a) = O making o(a) ∩ (L r F ) = O as required. Now, by

hypothesis, F ∩ (L r c(x) ∩ (Lr F )) 6= O. That is, c(x) ∩ (L r (Lr F ) ∩ c(x)) 6= O since

F ⊆ c(x). This is a contradiction. Thus F ∈M(L).

Observation 4.1.12. Using the fact that a finite join of nowhere dense sublocales is nowhere

dense, Proposition 4.1.11(1) tells us that any finite join of maximal nowhere dense sublocales

is maximal nowhere dense.

In what follows, we show that a nowhere dense sublocale which is maximal, in the usual

sense of not being contained in any other nowhere dense sublocale other than itself, exists

precisely when a locale has the largest nowhere dense sublocale.

Let us call a nowhere dense sublocale N of a locale L strongly maximal nowhere dense if,

for any nowhere dense sublocale A, N ⊆ A implies A = N .

Proposition 4.1.13. Let L be a locale. The following statements are equivalent.

1. L has a strongly maximal nowhere dense sublocale.

2. Nd(L) is nowhere dense.

If L is non-Boolean, this is further equivalent to:
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3. Nd(L) is maximal nowhere dense.

Proof. (1) =⇒ (2): Let A ∈ S(L) be strongly maximal nowhere dense. We show that Nd(L) ⊆

A which will make Nd(L) nowhere dense. Choose a nowhere dense N ∈ S(L). Then N and A

are nowhere dense sublocales making N ∨A nowhere dense. But A ⊆ N ∨A and A is strongly

maximal nowhere dense, so A =N ∨ A. Therefore N ⊆ N ∨ A = A. Since N was arbitrary,

Nd(L) =
∨
{S ∈ S(L) : S ∈ ND(L)} ⊆ A. Thus Nd(L) ⊆ A implying that Nd(L) is nowhere

dense.

(2) =⇒ (1): If Nd(L) is nowhere dense, then there is no other nowhere dense sublocale

containing Nd(L) other than itself. Thus Nd(L) is a strongly maximal nowhere dense sublocale

of L.

Assume that L is non-Boolean. The equivalence (2)⇐⇒ (3) follows since Nd(L) contains

every nowhere dense sublocale of L and Nd(L) 6= O.

4.2 Homogeneous maximal nowhere dense sublocales

Related to a maximal nowhere dense subset is a homogeneous maximal nowhere dense subset

which was defined for spaces by Veksler in [59] as a closed nowhere dense subset F of a

Tychonoff space X in which each non-empty F -regular-closed subset is maximal nowhere

dense in X. In this thesis, we do not only focus on Tychonoff spaces, but all topological

spaces.

We extend Veksler’s definition of a homogeneous maximal nowhere dense subset of any

topological space to locales as follows. We start by reminding the reader that we use prefix S-

for a localic property defined on a sublocale S.

Definition 4.2.1. A closed nowhere dense sublocale N of a locale L is homogeneous maximal

nowhere dense (h.m.n.d) if each non-void N -regular-closed sublocale is maximal nowhere dense

in L.

Without the closedness requirement in Definition 4.2.1, we give the following definition.
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Definition 4.2.2. A nowhere dense sublocale F of a locale L is strongly homogeneous maximal

nowhere dense if each non-void F -regular-closed sublocale is maximal nowhere dense in L.

Denote by HM(L) the collection of homogeneous maximal nowhere dense sublocales of a

locale L.

Observation 4.2.3. We note that regular-closed sublocales of a closed nowhere dense sublo-

cale c(x) of L are of the form c(a→ x) for some a ∈ L. Indeed, A is c(x)-regular-closed if and

only if A = o(a) ∩ c(x) ∩ c(x) for some a ∈ L. Therefore

o(a) ∩ c(x) ∩ c(x) = c
(∧

(o(a) ∩ c(x))
)
∩ c(x)

= c
(∧(

co(a)(νo(a)(x))
))
∩ c(x)

= c
(
νo(a)(x)

)
∩ c(x)

= c (a→ x) ∩ c(x)

= c (a→ x) since x ≤ a→ x.

In light of Observation 4.2.3 and the characterizations of maximal nowhere dense sublocales

given in Proposition 4.1.5, we get the following characterizations of homogeneous maximal

nowhere dense sublocales. The proof is straightforward and shall be omitted.

Proposition 4.2.4. Let L be a locale and x ∈ L. The following statements are equivalent.

1. c(x) ∈ HM(L).

2. For each a ∈ L, c(a→ x) ∈M(L).

3. For each a ∈ L, there is no dense y ∈ L such that y ≤ a→ x and (a→ x)∗c(y) = y.

In the next result, we show that the definition of a homogeneous maximal nowhere dense

sublocale given in Definition 4.2.1 is conservative in locales. Prior to that, we give the following

lemma which is related to Lemma 4.1.8. The notation Ã of a sublocale induced by a subset A

of a space X fails to display for long equations. To address this issue, we adopt [49]’s notation

SA of a sublocale induced by a subset A of a space X which we shall use interchangeably with

the usual notation Ã.
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Lemma 4.2.5. Let X be a TD-space, U ∈ OX, K ⊆ X and F a closed subset of X such that

U ∩ F ⊆ K. Then U ∩ F is K-nowhere dense iff Ũ ∩ F̃ is K̃-nowhere dense.

Proof. (=⇒) : Since U is open in X, Ũ ∩ F̃ ⊆ K̃ by Lemma 4.1.7. Let V ∈ OX be such that

Ṽ ∩ K̃ ⊆ Ũ ∩ F̃ ∩ K̃. Then Ṽ ∩K ⊆ Ũ ∩ F̃ . Since

Ũ ∩ F̃ = o(U) ∩ c(X r F )

= c
(∧

(o(U) ∩ c(X r F ))
)

= c(U → (X r F ))

= c(int(X r (U ∩ F )))

= S(Xrint(Xr(U∩F )))

= S(Xr(Xr(U∩F )))

= Ũ ∩ F ,

we have that V ∩K ⊆ U ∩ F ∩K. Since U ∩ F is K-nowhere dense and V ∩K is K-open,

V ∩K = ∅ which gives Ṽ ∩ K̃ = O. Thus Ũ ∩ F̃ is K̃-nowhere dense.

(⇐=) : Let V ∈ OX be such that V ∩K ⊆ U ∩ F ∩K. Since V is open and Ã ∩B ⊆ Ã ∩ B̃

for all A,B ⊆ X, it follows from Proposition 4.1.7 that

Ṽ ∩ K̃ ⊆ Ũ ∩ F = Ũ ∩ F ⊆ Ũ ∩ F̃

making Ṽ ∩ K̃ ⊆ Ũ ∩ F̃ ∩ K̃. Therefore O = Ṽ ∩ K̃ ⊇ Ṽ ∩K making V ∩K = ∅. Thus U ∩F

is K-nowhere dense.

Observation 4.2.6. Observe that for closed subsets A and B of a TD-space X,

Ã ∩ B̃ = c(X r A) ∩ c(X rB) = c((X r A) ∪ (X rB)) = c(X r (A ∩B)) = Ã ∩B.

So, for closed subsets F and C of X, it follows from Lemma 4.1.8 that F ∩ C is K-nowhere

dense if and only if F̃ ∩ C = F̃ ∩ C̃ is K̃-nowhere dense.

Proposition 4.2.7. Let X be TD-space. A closed set F ⊆ X is homogeneous maximal nowhere

dense iff F̃ ⊆ OX is homogeneous maximal nowhere dense.
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Proof. (=⇒) : Suppose that F ⊆ X is homogeneous maximal nowhere dense in X. Let S be a

non-void F̃ -regular-closed sublocale and assume that there is a closed sublocale K of OX such

that S ∈ ND(K). Since both S and K are closed in OX, where closedness of S follows since

F̃ is closed in OX, we have S = Ã and K = Ẽ for some closed sets A,E ⊆ X. Both A and

E are non-empty. Because Ã is non-void regular-closed in F̃ , there is a non-empty U ∈ OX

such that Ã = F̃ ∩ Ũ ∩ F̃ = F̃ ∩ Ũ . The sublocale F̃ ∩ Ũ is clearly non-void. Since F̃ ∩ Ũ ⊆ Ã

and Ã is nowhere dense in Ẽ, we must have that F̃ ∩ Ũ is nowhere dense in Ẽ. By Proposition

4.2.5, F ∩ U is E-nowhere dense. It follows from Observation 2.1.17 that F ∩ U 6= ∅. Since

E is closed, F ∩ UE
= F ∩ U ⊆ E making F ∩ U ∈ ND(E). Since subsets contained in a

nowhere dense subset are nowhere dense, the non-empty F -regular-closed subset F ∩ U ∩F is

E-nowhere dense which is a contradiction. Thus F̃ ∈ HM(OX).

(⇐=) : Suppose that F̃ is homogeneous maximal nowhere dense in OX. Let U ∈ OX

be such that U ∩ F ∩ F is non-empty and K-nowhere dense for some closed nowhere dense

K ⊆ X. Observe that U ∩ F ⊆ K and since U is open, it follows from Proposition 4.1.7 that

Ũ ∩ F̃ ⊆ K̃. Because K is closed, we have that K̃ = K̃ so that Ũ ∩ F̃ ∩ F̃ ⊆ K̃. It is easy to

see that the sublocale Ũ ∩ F̃ ∩ F̃ is F̃ -regular-closed and non-void. Since U ∩ F ∩F is nowhere

dense in K, we have that U ∩ F is also K-nowhere dense. It follows from Lemma 4.2.5 that

Ũ ∩ F̃ is K̃-nowhere dense. This makes Ũ ∩ F̃ ∩ F̃ a K̃-nowhere dense sublocale which is a

contradiction. Thus F is homogeneous maximal nowhere dense.

The following result tells us that homogeneous maximal nowhere density is regular-closed

hereditary.

Proposition 4.2.8. Let L be a locale and F be a closed nowhere dense sublocale of L. If

F ∈ HM(L) and A is a non-void F -regular-closed sublocale, then A ∈ HM(L).

Proof. Let N be a non-void regular-closed sublocale of A and suppose that there is B ∈

ND(L) such that N ∈ ND(B). Because A is F -regular-closed and N is A-regular-closed,

A = o(x) ∩ F ∩ F and N = o(y) ∩ A ∩ A for some x, y ∈ L. Since both F and A are closed,

A = o(x) ∩ F and N = o(y) ∩ A so that N = o(y) ∩ o(x) ∩ F . Therefore

o(y) ∩ o(x) ∩ F = o(y ∧ x) ∩ F ⊆ N.
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The sublocale o(y) ∩ o(x) ∩ F 6= O, otherwise o(y)∩o(x)∩F = O making o(y)∩o(x) ∩ F = O

which is not possible. Since N is nowhere dense in B, we get that o(y ∧ x) ∩ F is nowhere

dense in B making o(y ∧ x) ∩ F ∩ F ∈ ND(B). This is not possible because o(y ∧ x) ∩ F ∩ F

is non-void and regular-closed in F which must be maximal nowhere dense in L. Thus A ∈

HM(L).

We close this section by considering a relationship between maximal nowhere dense sublo-

cales and (strongly) homogeneous maximal nowhere dense sublocales.

Proposition 4.2.9. Every homogeneous maximal nowhere dense (resp. strongly homogeneous

maximal nowhere dense) sublocale is maximal nowhere dense.

Proof. Follows since every locale is a regular-closed sublocale of itself.

4.3 Remoteness and maximal nowhere density

The aim of this section is to explore a relationship between remote sublocales and (homoge-

neous) maximal nowhere dense sublocales.

We begin by introducing inaccessible and almost inaccessible sublocales from Veksler’s

notions of inaccessible points and almost inaccessible points. To do this, we shall start by

transferring inaccessible points from spaces to locales.

Recall from [59] that a point x ∈ E ⊆ X is E-inaccessible (resp. almost E-inaccessible) if

x /∈ N (resp. x /∈ intE(N ∩ E)) for all (X r E)-closed nowhere dense N .

Our journey to introducing localic notions of inaccessible and almost inaccessible points

will start with inaccessible points and end with almost inaccessible points.

In a Tychonoff space X, we have that x /∈ N if and only if {x} ∩ N = ∅ if and only if

(X r {x}) ∪ (X r N) = X for every x ∈ X, N ⊆ X. So the definition of an E-inaccessible

point x ∈ E ⊆ X is equivalent to:

(X r {x}) ∪ (X rN) = X for all (X r E)-closed nowhere dense N .
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Recall that X rA = 0Ã for any subset A of a space X. This and the preceding paragraph

motivate the following localic definition of an inaccessible point.

Definition 4.3.1. A point p of a sublocale S of a completely regular locale L is S-inaccessible

if for each (Lr S)-closed nowhere dense sublocale N , 0N ∨ p = 1, where the join is calculated

in L.

Recall from [2, Lemma 3.2.1] that for a subset A of a TD-space X,∨
{{X r {x}, X} : x /∈ A} = X̃ r A

is the supplement of Ã, i.e., X̃ r A = X̃ r Ã.

According to [21, 54], a regular locale is T1 in the sense that every point is a maximal

element. Hence a point p of a regular locale L has a property that a ∨ p = 1 if and only if

a � p for every a ∈ L.

In what follows, we show that a point x of a Tychonoff space X is inaccessible if and only

if x̃ is inaccessible, where x̃ is the point of OX induced by x ∈ X. We shall need the following

lemma.

Lemma 4.3.2. Let X be a topological space, F a closed subset of X and A ⊆ X. Then∧
(F̃ ∩ Ã) = int((X r A) ∪ (X r F ))

Proof. We have that X r F ⊆ (X r A) ∪ (X r F ), making

X r F = int(X r F ) ⊆ int((X r A) ∪ (X r F ))

so that int((X rA)∪ (X rF )) ∈ F̃ . Also, since X rF is open, int((X rA)∪ (X rF )) ∈ Ã.

Therefore int((X r A) ∪ (X r F )) ∈ F̃ ∩ Ã, making
∧

(F̃ ∩ Ã) ≤ int((X r A) ∪ (X r F )).

On the other hand, let V ∈ F̃ ∩ Ã. Then X r F ⊆ V and V = int((X rA) ∪G) for some

G ∈ OX. We get that

int((X r A) ∪ (X r F )) ⊆ int((X r A) ∪ V )

= int ((X r A) ∪ int((X r A) ∪G))

⊆ int((X r A) ∪G)

= V.
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Therefore int((XrA)∪(XrF )) ≤
∧

(F̃∩Ã) and hence
∧

(F̃∩Ã) = int((XrA)∪(XrF )).

Proposition 4.3.3. Let X be a Tychonoff space and x ∈ E ⊆ X. Then x is E-inaccessible

iff x̃ is Ẽ-inaccessible.

Proof. (=⇒) : Let K be an (X̃ r Ẽ)-closed nowhere dense sublocale. Choose a closed subset

F of X such that K = F̃ ∩ (X̃ r Ẽ). Since X̃ r Ẽ = X̃ r E, K = F̃ ∩ X̃ r E ⊇ S(F∩(XrE)).

It follows from Lemma 4.1.8 that F ∩ (X r E) is an (X r E)-closed nowhere dense subset.

Since x is E-inaccessible, (
X r {x}

)
∪
(
X r F ∩ (X r E)

)
= X.

Because x̃ = X r {x} is a point and every completely regular locale is regular and hence

T1, it follows that X r F ∩ (X r E) � x̃. Since X r F ∩ (X r E) = int(E ∪ (X r F )) and

int(E ∪ (X r F )) =
∧

(F̃ ∩ X̃ r E) by Lemma 4.3.2,
∧

(F̃ ∩ X̃ r E) � x̃ so that

∧
(F̃ ∩ X̃ r E) ∨ x̃ = 0K ∨ x̃ = 1OX

because OX is T1. Thus x̃ is a Ẽ-inaccessible point.

(⇐=) : Let C be an (X rE)-closed nowhere dense subset. Set C = F ∩ (X rE) for some

closed F ⊆ X. If follows from Proposition 4.2.5 that F̃ ∩ X̃ r E is (X̃ r E)-closed nowhere

dense. But X̃r Ẽ = X̃ r E, so the (X̃r Ẽ)-closed sublocale F̃ ∩ (X̃r Ẽ) is (X̃r Ẽ)-nowhere

dense. By hypothesis, x̃ ∨ 0K = 1OX . By Lemma 4.3.2, 0K = X r F ∩ (X r E). Therefore(
X r {x}

)
∪
(
X r F ∩ (X r E)

)
= X which implies that

∅ = {x} ∩ F ∩ (X r E) = {x} ∩ F ∩ (X r E).

Thus x /∈ F ∩ (X r E) = C, making x E-inaccessible.

To transfer almost inaccessibility to locales, we recall that for x ∈ E ⊆ X,

x /∈ intE(N ∩ E) ⇐⇒ x /∈ E ∩
(
X r E ∩ (X rN)

)
⇐⇒ x ∈ E ∩ (X rN).

The above equivalence motivates the following localic definition of an almost inaccessible point.
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Definition 4.3.4. A point p of a sublocale S of a completely regular locale L is almost

inaccessible if for each (Lr S)-closed nowhere dense sublocale N , p ∈ clS
(
S ∩

(
LrN

))
.

In what follows we prove that a point x of X is almost inaccessible precisely when x̃ is

almost inaccessible.

Proposition 4.3.5. Let X be a Tychonoff space. A point x of a subset E of X is almost

E-inaccessible iff x̃ is almost Ẽ-inaccessible.

Proof. (=⇒) : It is clear that x̃ is a point belonging to the closed sublocale Ẽ = Ẽ. Choose

an (X̃ r Ẽ)-closed nowhere dense K. Then K = F̃ ∩ (X̃ r Ẽ) for some closed F ⊆ X. Since

X̃ r Ẽ = X̃ r E, K = F̃ ∩ X̃ r E. It follows from Proposition 4.2.5 that F ∩ (X r E)

is (X r E)-closed nowhere dense. Therefore x /∈ intE(F ∩ (X r E) ∩ E) which means x ∈

E ∩ (X r F ∩ (X r E)). We show that x̃ ∈ Ẽ ∩ (X̃ rK). Let U ∈ OX be such that Ẽ ∩

(X̃rK) ⊆ c(U). Then Ẽ ∩
(
X̃ r F̃ ∩ (X̃ r Ẽ)

)
⊆ c(U), i.e., Ẽ ∩

(
X̃ r F̃ ∩ X̃ r E

)
⊆ c(U).

We get that

Ẽ ⊆ c(U) ∨ F̃ ∩ X̃ r E

= c(U) ∨ c
(∧(

F̃ ∩ (X̃ r E)
))

= c(U) ∨ c(X r F ∩ (X r E)) since
∧(

F̃ ∩ (X̃ r E)
)

= X r F ∩ (X r E)

= c
(
U ∩ (X r F ∩ (X r E))

)
= S((XrU)∪F∩(XrE)) by Lemma 2.1.14.

Therefore E ⊆ (X rU)∪ F ∩ (X r E) so that E ∩ (X r F ∩ (X r E)) ⊆ X rU . Because U

is open, X rU is closed, making x ∈ E ∩ (X r F ∩ (X r E)) ⊆ X rU since U was arbitrary.

Therefore x̃ ∈ X̃ r U = c(U) implying that x̃ ∈ Ẽ ∩ (X̃ rK). Thus

x̃ ∈ Ẽ ∩ (X̃ rK) ∩ Ẽ = clẼ

(
Ẽ ∩ (X̃ rK)

)
which means that x̃ is almost Ẽ-inaccessible.

(⇐=) : Let N be an (X r E)-closed nowhere dense subset and set N = F ∩ (X r E) for

some closed F ⊆ X. It follows from Proposition 4.2.5 that F̃ ∩ X̃ r E = F̃ ∩ (X̃ r Ẽ) is

(X̃ r E = X̃ r Ẽ)-closed nowhere dense. Therefore

x̃ ∈ clẼ

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
.
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We show that x ∈ E ∩ (X rN). Let K be a closed set such that E ∩ (X r N) ⊆ K. Then

E ⊆ N ∪K so that

Ẽ ⊆ Ñ ∨ K̃ = Ñ ∨ K̃ = S(F∩(XrE)) ∨ K̃ ⊆ F̃ ∩
(
X̃ r Ẽ

)
∨ K̃.

Therefore

Ẽ ∩
(
X̃ r F̃ ∩

(
X̃ r Ẽ

))
⊆ K̃.

Because K̃ is a closed sublocale,

clẼ

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
= Ẽ ∩

(
Ẽ ∩

(
X̃ r F̃ ∩ (X̃ r Ẽ)

))
⊆ K̃

so that x̃ ∈ K̃. Therefore x ∈ K. Thus x ∈ E ∩ (X rN) which implies x ∈ clE
(
E ∩ (X rN)

)
.

As a result, x /∈ intE
(
E ∩N

)
. Hence x is almost E-inaccessible.

In terms of sublocales, we define inaccessibility and almost inaccessibility on arbitrary

locales. We give the following definition.

Definition 4.3.6. Let S be a sublocale of L. A sublocale T ∈ S(S) is S-inaccessible (resp.

almost S-inaccessible) if for all (L r S)-nowhere dense sublocale N , T ∩ N = O (resp. T ⊆

clS
(
S ∩

(
LrN

))
).

We introduce the following notations for any locale L and S ∈ S(L):

SInac(S) = {A ∈ S(L) : A is S-inaccessible},

and

SAinac(S) = {A ∈ S(L) : A is almost S-inaccessible}.

We shall drop the prefix S- if the sublocale is clear from the context.

In what follows, we characterize inaccessible sublocales. The proof is similar to that of

Proposition 2.1.42 and shall be omitted.

Proposition 4.3.7. The following are equivalent for a sublocale of S of L.

1. T ∈ S(S) is S-inaccessible.

85



2. T ∩ c(x) = O for each (Lr S)-dense x ∈ Lr S.

3. T ⊆ o(x) for every (Lr S)-dense x ∈ Lr S.

4. νT (x) = 1 for each (Lr S)-dense x ∈ Lr S.

For sublocales F and A of a locale L, we have that

F ⊆ clF (F ∩ A) ⇐⇒ F = clF (F ∩ A) ⇐⇒ F ∩ A is F -dense.

As a result of this, we have the following observation regarding almost inaccessible sublocales.

Observation 4.3.8. Let F be a sublocale of a locale L. The following statements are equiv-

alent.

1. F ∈ SAinac(F ).

2. F = clF (F ∩ (LrN)) for every (Lr F )-nowhere dense N .

3. F ∩ (LrN) is F -dense for every (Lr F )-nowhere dense N .

We give the following lemma which we shall use below.

Lemma 4.3.9. Let L be a locale, N ∈ S(L), S a complemented sublocale of L and T ∈ S(S).

Then T ⊆ clS(S ∩
(
LrN

)
) iff T ∩ intS

(
S ∩N

)
= O.

Proof. We have that

T ⊆ clS(S ∩
(
LrN

)
) ⇐⇒ T ⊆ S ∩

(
LrN

)
⇐⇒ T ∩

(
Lr S ∩ (LrN)

)
= O

⇐⇒ T ∩ S ∩
(
Lr S ∩ (LrN)

)
= O

⇐⇒ T ∩ intS
(
S ∩N

)
= O

which proves the result.

The preceding lemma leads us to the following characterization of almost inaccessible sublo-

cales of complemented sublocales. We only prove the equivalences (2)⇐⇒ (3).
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Proposition 4.3.10. The following are equivalent for a complemented sublocale S of a locale

L and T ∈ S(S).

1. T is almost S-inaccessible.

2. T ∩ intS(S ∩N) = O for each (Lr S)-nowhere dense sublocale N .

If in particular, S is closed, this is further equivalent to:

3. a→ (
∧
S) ≤

∧
T for every (Lr S)-dense a.

Proof. (2)⇐⇒ (3): Let a be (LrS)-dense. Then c(LrS)(a) is (LrS)-nowhere dense. By (2),

T ∩ intS(S ∩ c(LrS)(a)) = O ⇐⇒ T ⊆ clS

(
S ∩

(
Lr c(LrS)(a)

))
since S is complemented

⇐⇒ T ⊆ S ∩
(
Lr c(LrS)(a)

)
⇐⇒ T ⊆ S ∩ (Lr c(a)) since c(LrS)(a) = c(a)

⇐⇒ T ⊆ c
(∧

(S ∩ o(a))
)

⇐⇒ T ⊆ c
(
a→

(∧
S
))

since S is closed

⇐⇒ T ⊆ c
(
a→

(∧
S
))

⇐⇒ a→
(∧

S
)
≤
∧

T.

Starting the above argument with an (Lr S)-nowhere dense N and using the fact that N is

(Lr S)-nowhere dense if and only if
∧
N is (Lr S), gives the desired equivalence.

Next, we collect into one proposition some results about inaccessible sublocales and almost

inaccessible sublocales.

Proposition 4.3.11. Let L be a locale and S ∈ S(L).

1. Every S-inaccessible sublocale is almost S-inaccessible.

2. If A ∈ S(L) is S-inaccessible (resp. almost S-inaccessible) and S(L) 3 B ⊆ A, then B

is S-inaccessible (resp. almost S-inaccessible).

3. If S is open in L, then S is S-inaccessible.
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4. L is L-inaccessible and hence by (2) every sublocale of L is L-inaccessible.

5. If S is complemented, then every sublocale T of L r S which is open in L is (L r S)-

inaccessible.

6. A join of S-inaccessible (resp. almost S-inaccessible) sublocales is S-inaccessible (resp.

almost S-inaccessible).

7. If S is open, then S ∩ Rs(L n S) is S-inaccessible. Moreover, if S is dense and open,

then BL is S-inaccessible.

Proof. (1) Let T ∈ S(S) be such that T is S-inaccessible. Then T ∩ N = O for all N ∈

ND(Lr S), which implies that T ⊆ LrN . Therefore T ⊆ S ∩ (LrN) ⊆ clS(S ∩ (LrN))

which proves the result.

(2) Straightforward.

(3) Assume that S is open in L and choose N ∈ ND(L r S). It is clear that N ⊆ L r S

since L r S is closed. Because S is complemented, we have that S ∩ (L r S) = O so that

S ∩N = O. Thus S ∈ SInac(S).

(4) Because L is open as a sublocale of itself, it follows from (3) that L is L-inaccessible.

Therefore, by (2), every sublocale of L is L-inaccessible.

(5) Let T be a sublocale of Lr S which is open in L. We must show that T ∩N = O for

every (L r (L r S))-nowhere dense N , i.e., for every S-nowhere dense N . Since T ⊆ L r S,

T ∩ S = O because S is complemented. So, for any S-nowhere dense N , T ∩ N = O. But T

is open in L so T ∩N = O.

(6) We only verify the case of S-inaccessible. Let Ui ∈ SInac(S) (for i ∈ I) and choose

N ∈ ND(L r S). Since N is complemented, N ∩
∨
Ui =

∨(
N ∩ Ui

)
=
∨
{O} = O. Thus∨

Ui ∈ SInac(S).

(7) Since S is open and hence complemented, we have that

S ∩ Rs(Ln S) = S ∩
∨
{A ∈ S(L) : A ∈ Srem(Ln S)} =

∨
{A ∩ S : A ∈ Srem(Ln S)}.

Because a join of S-inaccessible sublocales is S-inaccessible, it suffices to show that each

sublocale of the form S∩A for some A ∈ Srem(LnS) is S-inaccessible. Since S ∈ SInac(S) and
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every sublocale contained in an inaccessible sublocale is inaccessible, we get that sublocales

of the from S ∩ A for some A ∈ Srem(L n S) are S-inaccessible. Thus S ∩ Rs(L n S) is

S-inaccessible.

Since, according to Observation 3.1.13(2), BL = T ∩ Rs(L n T ) for any dense T ∈ S(L),

we have that BL = S ∩ Rs(Ln S) is S-inaccessible for dense and open S.

Observation 4.3.12. Proposition 4.3.11(4) differentiates between remoteness and inacces-

sibility. Recall that a necessary and sufficient condition for a locale L to be remote as a

sublocale of itself is that it must be Boolean. Yet, every locale L (not necessarily Boolean) is

L-inaccessible as a sublocale of itself.

Remark 4.3.13. We note from the preceding observation that since every sublocale S of

a locale L is a locale in its own right, it is therefore S-inaccessible as a sublocale of itself.

However, in this thesis, the notion S ∈ SInac(S) for S ∈ S(L), read as S is inaccessible as a

sublocale of L with respect to itself, shall mean S ∩N = O for every (L r S)-nowhere dense

sublocale N . This also applies to S ∈ SAinac(S).

We note some examples.

Example 4.3.14. (1) In a completely regular locale L, a point p of L is c(p)-inaccessible (resp.

almost c(p)-inaccessible) if and only if c(p) is c(p)-inaccessible (resp. almost c(p)-inaccessible).

(2) [58] In Top, we have that a point p ∈ βX rX, where X is Tychonoff, is remote if and

only if p is (βX rX)-inaccessible.

Observe that for each dense and complemented S ∈ S(L), T ∈ S(L r S) is (L r S)-

inaccessible if and only if T ∩ N = O for every (L r (L r S))-nowhere dense sublocale N ,

i.e. for every S-nowhere dense sublocale N . This shows that sublocales of L r S which are

∗remote from a dense and complemented sublocale S of L are precisely the (LrS)-inaccessible

sublocales. We formalise this in the following proposition.

Proposition 4.3.15. A sublocale T ∈ S(L r S) where S is dense and complemented in a

locale L, is (Lr S)-inaccessible iff it is ∗remote from S.
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In the following result, we codify the variants of remoteness and inaccessibility for dense

and complemented sublocales.

Proposition 4.3.16. Let L be a locale, S a dense and complemented sublocale of L and

T ∈ S(Lr S). We have the following situation where arrows indicate implications:

(1) T ∈ Srem(L). (2) T ∈ Srem(Ln S). (3) T ∈ ∗Srem(Ln S).

(4) T ∈ SInac(Lr S).

(5) T ∈ SAinac(Lr S).

Proof. (1) =⇒ (2): Follows from Proposition 2.1.37(4).

(2)⇐⇒ (3): This is a combination of Proposition 2.1.34 and the fact that T ⊆ Lr S.

(3)⇐⇒ (4): Follows from Proposition 4.3.15.

(4) =⇒ (5): For each S-nowhere dense N , we have that T ∩ N = O by (4). Therefore

T ⊆ (Lr S) ∩ (LrN) which implies that T ⊆ clLrS
(
(Lr S) ∩ (LrN)

)
, as required.

We give the following theorem in which some of its statements prepare us for a relationship

between maximal nowhere density and remoteness in Proposition 4.3.23.

Theorem 4.3.17. Let L be a locale and F be a non-void and closed nowhere dense sublocale

of L. Then each of the following statements holds.

1. If F ∈ SAinac(F ), then F ∈M(L).

2. If L is compact, then F ∈M(L) implies that there is x ∈ F such that x /∈ intF (N ∩ F )

for every (Lr F )-nowhere dense N .

3. F ∈ HM(L) implies that every sublocale of F is almost F -inaccessible.

Proof. (1) Let F = c(b) for some b ∈ L and choose c(c) ∈ ND(L) such that F ⊆ c(c). We

show that F is not nowhere dense in c(c). Observe that c(c)r c(b) ∈ ND(o(b)). Indeed, if

o(x) ∩ o(b) ⊆ c(c)r c(b)
o(b)

= c(c) ∩ o(b) ∩ o(b) = c(c) ∩ o(b),
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then o(x) ∩ o(b) = o(x ∧ b) ⊆ c(c). But c(c) ∈ ND(L), so o(x ∧ b) = O. Thus c(c) r c(b) ∈

ND(o(b)).

Since c(b) ∈ SAinac(c(b)), we have that

c(b) = clc(b)

(
c(b) ∩

(
Lr (c(c)r c(b))

))
= clc(b)

(
c(b)r (c(c)r c(b))

)
.

Because c(b) is non-void, c(b)r (c(c)r c(b)) 6= O. Since c(b) ⊆ c(c), c(c)r (c(c)r c(b)) 6= O.

We must have that c(b) /∈ ND(c(c)), otherwise

O = intc(c)

(
c(b)

c(c)
)

= c(c) ∩
(
Lr (c(c) ∩ Lr c(b))

)
= c(c) ∩

(
Lr (c(c)r c(b))

)
= c(c)r (c(c)r c(b))

which is not possible. So there is no closed K ∈ ND(L) such that F ∈ ND(K). Thus

F ∈M(L).

(2) Assume that L is compact, F = c(b) ∈M(L) and suppose that for each x ∈ F , there is

an o(b)-nowhere dense Nx such that x ∈ intc(b)(c(b)∩Nx). Set intc(b)(c(b)∩Nx) = o(ax)∩ c(b).

Then

c(b) ⊆
∨
x∈c(b)

(o(ax) ∩ c(b)) ⊆ o

 ∨
x∈c(b)

ax

 .

Therefore b ∨
(∨

x∈c(b) ax

)
= 1. By compactness of L, there is a finite set B ⊆ c(b) such that
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b ∨
(∨

x∈B ax
)

= 1. We get that

c(b) ⊆ c(b) ∩ o

(∨
x∈B

ax

)
= c(b) ∩

∨
x∈B

o(ax)

=
∨
x∈B

(c(b) ∩ o(ax))

=
∨
x∈B

(
intc(b)(c(b) ∩Nx)

)
⊆

∨
x∈B

(
c(b) ∩Nx

)
= c(b) ∩

∨
x∈B

Nx

⊆
∨
x∈B

Nx

=
∨
x∈B

Nx.

Observe that Nx ∈ ND(L). This is so because Nx is nowhere dense in a dense sublocale

o(b) of L making it nowhere dense in L. Therefore Nx ∈ ND(L). Since finite joins of closed

nowhere dense sublocales are nowhere dense,
∨
x∈B Nx =

∨
x∈B Nx is nowhere dense in L. We

show that c(b) is nowhere dense in
∨
x∈B Nx which will contradict that c(b) ∈M(L).

Set A =
∨
x∈B Nx. Observe that

intA

(
c(b)

A
)

= A ∩
(
Lr (A ∩ Lr c(b)

)
= A ∩

(
Lr (A ∩ o(b)

)
= A ∩

Lr(∨
x∈B

Nx ∩ o(b)

)
⊆ A ∩

Lr((∨
x∈B

Nx

)
∩ o(b)

)
= A ∩

(
Lr

∨
x∈B

Nx

)
since

∨
x∈B

Nx ⊆ o(b)

= O.

Thus c(b) is nowhere dense in A which is a contradiction.
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(3) Suppose that there is B ∈ S(F ) such that B /∈ SAinac(F ). Then, by Proposition 4.3.10,

B ∩ intF (N ∩ F ) 6= O for some N ∈ ND(L r F ). We get that intF (N ∩ F ) 6= O. Set

A = intF (N ∩ F ). Then A
F

= A is a non-void F -regular-closed sublocale. Since F ∈ HM(L),

A is maximal nowhere dense in L. We show that A is nowhere dense in N which will contradict

that it is a maximal nowhere dense sublocale. It is clear that A ⊆ N . Furthermore, observe

that

intN

(
A
N
)

= intN(A)

= N ∩
(
LrN ∩ Lr A

)
⊆ N ∩

(
LrN ∩ Lr F

)
since A ⊆ F

⊆ N ∩
(
LrN ∩ Lr F

)
= N ∩

(
LrN

)
since N ⊆ Lr F

= O.

Thus A is nowhere dense in N which is not possible. Hence every sublocale of F belongs to

SInac(F ).

If we consider F -clopen sublocales, we get the following result.

Proposition 4.3.18. Let F be a non-void nowhere dense sublocale of L. If F is homogeneous

maximal nowhere dense, then each F -clopen sublocale is almost inaccessible as a sublocale of

L with respect to itself.

Proof. Let A be an F -clopen sublocale and assume that A ∩ intA(N ∩ A) 6= O for some

N ∈ ND(Lr A). Then intA(N ∩ A) is F -open so that intA(N ∩ A) ∩ F = intA(N) is a non-

void regular-closed sublocale of F . By hypothesis, intA(N ∩ A) is maximal nowhere dense.

Following the argument used in last part of the proof of Theorem 4.3.17(3) and using the fact

that A is F -closed, we get that intA(N ∩ A) is nowhere dense in N which is not possible.

We note the following example.

Example 4.3.19. (1) If X is a Hausdorff space with no isolated point, then every one-point

sublocale of OX which is almost inaccessible as a sublocale of OX with respect to itself is
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maximal nowhere dense. To see this, it suffices to show that such sublocales are non-void

closed nowhere dense in OX. Since every Hausdorff space is sober, each point p of OX is of

the form p = X r {x} for some x ∈ X. Applying Hausdorffness again gives p = X r {x}

which is open and dense in X, making {x} closed nowhere dense in X. It follows from Lemma

2.1.15 that {̃x} is closed and nowhere dense in OX. But {̃x} = {Xr{x}, 1OX} = {p, 1OX}, so

the one-point sublocale {p, 1OX} is non-void closed nowhere dense. Now, if such a one-point

sublocale {p, 1OX} is an almost inaccessible sublocale of L with respect to itself, it follows from

Proposition 4.3.17(1) that {p, 1OX} is maximal nowhere dense.

(2) The sublocales described in (1) are homogeneous maximal nowhere dense. This is so

because for any point p ∈ OX, {p, 1OX} is the only non-void sublocale contained in {p, 1OX}.

Therefore all non-void {p, 1OX}-regular-closed sublocales are maximal nowhere dense in OX.

We include the following result where we make use of Theorem 4.3.17(3) to show that

a homogeneous maximal nowhere dense sublocale is regular-closed in every complemented

nowhere dense sublocale containing it.

Proposition 4.3.20. Let L be a locale and F a non-void closed nowhere dense sublocale of

L. If F ∈ HM(L) and F ⊆ A, where A is a complemented nowhere dense sublocale of L, then

F is an A-regular-closed sublocale.

Proof. Assume that F 6= intA(F ). Because it is always true that intA(F ) ⊆ F , this assumption

says that F * intA(F ). Therefore the F -open sublocale F r intA(F ) = F ∩
(
Lr intA(F )

)
is
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non-void. Also, F r intA(F ) ⊆ Ar F . Indeed,

F r intA(F ) ⊆ F ∩ (Lr intA(F ))

= F ∩
(
Lr

(
A ∩ (Lr A ∩ (Lr F ))

))
= F ∩

(
(Lr A) ∨ (Lr (Lr A ∩ (Lr F )))

)
= F ∩

(
(Lr A) ∨ A ∩ (Lr F )

)
= (F ∩ (Lr A)) ∨ (F ∩ A ∩ (Lr F ))

= O ∨ (F ∩ A ∩ (Lr F )) since A is complemented and F ⊆ A

= F ∩ A ∩ (Lr F )

⊆ A ∩ (Lr F ) = Ar F .

This makes
(
F r intA(F )

)
∩ intF (F ∩ Ar F ) 6= O. Observe that A r F ∈ ND(L r F ). To

see this, let U be an open sublocale of L r F contained in Ar F
(LrF )

= Ar F ∩ (L r F ).

Then U ⊆ A. But A ∈ ND(L) and an open sublocale of L r F is open in L, we have that

U = O. Thus A r F ∈ ND(L r F ). We have found a sublocale F r intA(F ) of F and

A r F ∈ ND(L r F ) such that
(
F r intA(F )

)
∩ intF

(
F ∩ Ar F

)
6= O, i.e, a sublocale of

F which is not almost F -inaccessible. By Theorem 4.3.17(3), F is not homogeneous maximal

nowhere dense, which is a contradiction.

In what follows, we characterize locales in which every non-void nowhere dense sublocale

is maximal nowhere dense. Recall from [19] that the boundary of a sublocale S of a locale L

is given by bd(S) = S r int(S) and a sublocale S of L is preopen if S ⊆ int (S). For an open

sublocale o(x) ∈ S(L), bd(o(x)) = c(x ∨ x∗) which is nowhere dense. Call a sublocale S of a

locale L semi-open in case S ⊆ int(S) and α-open provided that S ⊆ int(int(S)).

Theorem 4.3.21. Let L be a locale. The following statements are equivalent.

1. Every non-void nowhere dense sublocale of L is maximal nowhere dense.

2. Every non-void closed nowhere dense sublocale is maximal nowhere dense.

3. Every non-void open sublocale induced by a non-complemented element of L has a max-

imal nowhere dense boundary.
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4. Every non-void closed nowhere dense sublocale of L is homogeneous maximal nowhere

dense.

5. Every non-void closed nowhere dense sublocale is almost inaccessible as a sublocale of L

with respect to itself.

6. Every non-void closed nowhere dense sublocale is inaccessible as a sublocale of L with

respect to itself.

7. Every non-void preopen sublocale of a closed nowhere dense sublocale is maximal nowhere

dense.

8. Every non-void semi-open sublocale of a closed nowhere dense sublocale is maximal

nowhere dense.

9. Every non-void α-open sublocale of a closed nowhere dense sublocale is maximal nowhere

dense.

Proof. (1)⇐⇒ (2): Follows from Proposition 4.1.5.

(2) =⇒ (3): Let o(x) ∈ S(L) be non-void with x non-complemented. Then x ∨ x∗ 6= 1

making bd(o(x)) = c(x ∨ x∗) a non-void closed nowhere dense sublocale. It follows from (2)

that bd(o(x)) is maximal nowhere dense.

(3) =⇒ (4): Let c(x) be a non-void nowhere dense sublocale of L and choose y ∈ L such

that o(y) ∩ c(x) ∩ c(x) 6= O. Then

o(y) ∩ c(x) ∩ c(x) = o(y) ∩ c(x) = c(y → x) 6= O

implying that y → x 6= 1. But c(y → x) ⊆ c(x) ∈ ND(L), so c(y → x) ∈ ND(L) making

o(y → x) non-void, open and

(y → x) ∨ (y → x)∗ = (y → x) ∨ 0 = y → x 6= 1.

It follows from (3) that

bd(o(y → x)) = c((y → x) ∨ (y → x)∗) = c(y → x) = o(y) ∩ c(x)
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is maximal nowhere dense. Thus c(x) is homogeneous maximal nowhere dense.

(4) =⇒ (5): Follows from Theorem 4.3.17(3).

(5) =⇒ (6): Let c(x) be a non-void nowhere dense sublocale and assume that N ∩ c(x) 6= O

for some N ∈ ND((Lrc(x)) = o(x)). Since o(x) is dense in L, N is nowhere dense in L so that

the non-void sublocale N∩c(x) is closed nowhere dense in L. It follows from (5) that N∩c(x) is

almost
(
N ∩ c(x)

)
-inaccessible. Observe that N ∈ ND(Lr(N∩c(x))). To see this, let a ∈ L be

such that o(a)∩
(
Lr (N ∩ c(x))

)
⊆ N∩

(
Lr (N ∩ c(x))

)
. Then o(a)∩

(
Lr (N ∩ c(x))

)
⊆ N .

Because N ∈ ND(L) and o(a) ∩
(
Lr (N ∩ c(x))

)
is open, o(a) ∩

(
Lr (N ∩ c(x))

)
= O.

Therefore o(a) ⊆ N ∩ c(x) making o(a) = O since N ∩ c(x) = N ∩ c(x) is nowhere dense in L.

Thus N ∈ ND(Lr (N ∩ c(x))).

Therefore N ∩ c(x) ⊆
(
N ∩ c(x)

)
∩
(
LrN

)
= O = O which is not possible. Thus c(x) ∩

N = O making c(x) ∈ SInac(c(x)).

(6) =⇒ (7): Let F be closed nowhere dense and A be a non-void F -preopen sublocale.

Then A is closed nowhere dense in L and non-void. It follows from (6) that A ∈ SInac(A).

Because SInac(A) ⊆ SAinac(A) by Proposition 4.3.11(1), it follows from Theorem 4.3.17(1) that

A is maximal nowhere dense. Because A ⊆ F , it follows from Proposition 4.1.11(1) that F is

maximal nowhere dense.

(7) =⇒ (8): Let F be a closed nowhere sublocale of L and A a non-void F -semi-open

sublocale. Then intF (A)
F

= intF (A) 6= O since O 6= A ⊆ intF (A)
F

and F is closed. Since

every open sublocale is preopen, intF (A) is preopen, non-void and nowhere dense because

it is contained in the nowhere dense sublocale intF (A)
F

which is nowhere dense by virtue

of being a sublocale of the nowhere dense sublocale F . It follows from (6) that intF (A) is

maximal nowhere dense. By Proposition 4.1.5, intF (A) is maximal nowhere dense. Observe

that A = intF (A). Indeed, intF (A) ⊆ A ⊆ A implying that intF (A) ⊆ A. On the other hand,

A ⊆ intF (A) implies A ⊆ intF (A). Thus A = intF (A). Therefore A is maximal nowhere dense.

Applying Proposition 4.1.5 yields A is maximal nowhere dense.

(8) =⇒ (9): Let F be a closed nowhere sublocale of L and A ∈ S(F ) be such that O 6= A ⊆

intF

(
intF (A)

F
)

. Then A is nowhere dense in L and O 6= A ⊆ intF

(
intF (A)

F
)
⊆ intF (A) so

that A is non-void F -semi-open. By (7), A is maximal nowhere dense.
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(9) =⇒ (1): Let F be a non-void nowhere dense sublocale of L. Then F is non-void

nowhere dense. Since every locale is α-open as a sublocale of itself, F is F -α-open. It follows

from (8) that F is maximal nowhere dense. By Proposition 4.1.5, F is maximal nowhere

dense.

In the following example we show that there is a locale having the properties described in

Theorem 4.3.21.

Example 4.3.22. Consider the three-element chain 3 = {1, 0, a}. Clearly, 3 is non-Boolean

and the only non-void closed nowhere dense sublocale of 3 is c(a) which is maximal nowhere

dense because it is not nowhere dense as a sublocale of itself.

Using Proposition 4.3.16 and the fact that if S ∈ S(L) is open and dense, then S# = LrS

is nowhere dense, we get the following result about remoteness and maximal nowhere density.

Proposition 4.3.23. Let S 6= L be an open dense sublocale of L.

1. If S# ∈ ∗Srem(Ln S), then S# ∈M(L).

2. If S# ∈ HM(L), then every S#-remote sublocale is ∗remote from S.

Proof. (1) If S# ∈ ∗Srem(Ln S), then, by Proposition 4.3.16, S# ∈ SAinac(S
#). It follows from

Theorem 4.3.17(1) that S# ∈M(L).

(2) Let A ∈ Srem(S#) and choose an S-nowhere dense N . Since, by Theorem 4.3.17(3),

sublocales of homogeneous maximal nowhere dense sublocales are almost inaccessible as sublo-

cales of L with respect to themselves, S# is almost S#-inaccessible, i.e., intS#(S# ∩N) = O.

Since S# ∩N = S# ∩N
S#

, we get that S# ∩N is S#-nowhere dense. Because A ∈ Srem(S#),

O = A ∩ S# ∩N = A ∩N.

Thus A ∈ Srem(Ln S) making A ∈ ∗Srem(Ln S) since A ⊆ S#.
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4.4 Preservation and reflection of maximal nowhere den-

sity

We end this chapter with a discussion of localic maps that send maximal nowhere density back

and forth. We shall also include results about inaccessibility.

Proposition 4.4.1. Let f : L → M be a localic map such that both f and h send dense

elements to dense elements. Then f reflects maximal nowhere dense sublocales.

Proof. Let N ∈ S(M) be maximal nowhere dense in M . Then N ∈M(M). Since h is weakly

open, it follows from Theorem 3.1.2 that f reflects closed nowhere dense sublocales so that

f−1[N ] (which is equal to c(h(
∧
N))) is nowhere dense in L. It is left to show that it is maximal

nowhere dense. Suppose not, that is, there exists a nowhere dense sublocale c(b) of L such

that f−1[N ] is nowhere dense in c(b). Since f sends dense elements to dense elements, f(b)

is dense in M making c(f(b)) nowhere dense in M . The sublocale N is nowhere dense in the

nowhere dense sublocale c(f(b)). Indeed, if o(x) ∩ c(f(b)) ⊆ N
c(f(b))

= N ∩ c(f(b)) for some

x ∈M , then o(x) ∩ c(f(b)) ⊆ N so that

o(h(x)) ∩ c(b) ⊆ o(h(x)) ∩ c(h(f(b))) = f−1[o(x) ∩ c(f(b))] ⊆ f−1[N ].

Therefore o(h(x)) ∩ c(b) ⊆ f−1[N ] ∩ c(b). Since f−1[N ] ∈ ND(c(b)) and o(h(x)) ∩ c(b) is

open in c(b), o(h(x)) ∩ c(b) = O which implies that c(b) ⊆ c(h(x)) = f−1[c(x)]. Therefore

f [c(b)] ⊆ f [f−1[c(x)]] ⊆ c(x) implying that c(f(b)) = f [c(b)] ⊆ c(x) = c(x). This makes

c(f(b)) ∩ o(x) = O. Therefore N is nowhere dense in c(f(b)) which contradicts that N is

maximal nowhere dense in M . Therefore f−1[N ] is maximal nowhere dense in L.

In the next result, we discuss localic maps that preserve maximal nowhere dense sublocales.

We recall from [52] that if a localic map f : L → M is open, then f−1[A] = f−1[A] for each

A ∈ S(M). We also note that an open localic map has a weakly open left adjoint. Indeed,

assume that f : L → M is an open localic map, let x ∈ M be dense and choose y ∈ L such

that h(x)∧y = 0. Then o(y) ⊆ c(h(x)) so that f [o(y)] ⊆ f [c(h(x))] = f [f−1[c(x)]] ⊆ c(x). But

c(x) is nowhere dense and f [o(y)] is open by openness of f , we get that f [o(y)] = O. Therefore

o(y) ⊆ f−1[f [o(y)]] = f−1[O] = O. Thus y = 0 making h(x) dense in L.
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Observation 4.4.2. Not every open localic map sends dense elements to dense elements.

Consider the localic map f : L → 2 where L is non-Boolean. Since 2 is Boolean, every

sublocale of 2 is open making the localic image of each open sublocale of L to be open in 2.

Hence f is open. However, f does not send all dense elements to dense elements since the only

element (dense) of L that is mapped to 12 (the only dense element of 2) is 1. But 1 is not the

only dense element of L otherwise L is Boolean.

Proposition 4.4.3. Let f : L→M be an open localic map that sends dense elements to dense

elements. Then f preserves maximal nowhere dense sublocales.

Proof. Let N ∈ M(L). We show that f [N ] ∈ M(M). It follows from Lemma 3.1.7 that

f [N ] is nowhere dense in M so that f [N ] = c (f(
∧
N)) is nowhere dense in M . Suppose that

c (f(
∧
N)) ∈ ND(c(y)) for some c(y) ∈ ND(M). By Lemma 4.1.10, c(y) ⊆ c(y) ∩ o (f(

∧
N)).

Therefore f−1[c(y)] = c(h(y)) ⊆ f−1

[
c(y) ∩ o (f(

∧
N))

]
. By openness of f ,

c(h(y)) ⊆ f−1

[
c(y) ∩ o

(
f(
∧

N)
)]

= c(h(y)) ∩ o
(
h
(
f
(∧

N
)))

⊆ c(h(y)) ∩ o
(∧

N
)

= c(h(y)) ∩
(
LrN

)
.

Therefore c(h(y)) ∩
(
Lr c(h(y)) ∩

(
LrN

))
= O. This makes N ∈ ND(c(h(y))), where

c(h(y)) ∈ ND(L), contradicting that N ∈ M(L). Therefore f [N ] is maximal nowhere dense

so that by Proposition 4.1.5, f [N ] is maximal nowhere dense sublocales.

Since in Proposition 4.4.1 we only needed a condition that both f and h send dense elements

to dense elements and because the left adjoint of an open localic map is weakly open, we have

the following result.

Corollary 4.4.4. Every open localic map that sends dense elements to dense elements pre-

serves and reflects maximal nowhere dense sublocales.

In the next result, we discuss preservation and reflection of strongly homogeneous maximal

nowhere dense sublocales by localic maps.
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Proposition 4.4.5. Let f : L→M be an open localic map that sends dense elements to dense

elements.

1. Then f preserves strongly homogeneous maximal nowhere dense sublocales.

2. If f is injective, then it reflects (strongly) homogeneous maximal nowhere dense sublo-

cales.

Proof. (1) Let F be a strongly homogeneous maximal nowhere dense sublocale of L and choose

a non-void sublocale o(y) ∩ f [F ]∩ f [F ] where y ∈M . Such a sublocale is f [F ]-regular-closed.

The F -regular-closed sublocale o(h(y)) ∩ F ∩ F is non-void otherwise, o(h(y)) ∩ F = O so

that f [F ] ⊆ f [c(h(y))] = f [f−1[c(y)]] ⊆ c(y). Therefore f [F ] ∩ o(y) = O which is not possible.

Since F is strongly h.m.n.d, o(h(y)) ∩ F ∩ F is m.n.d. Because open localic maps that send

dense elements to dense elements preserve maximal nowhere dense sublocales (by Proposition

4.4.3), f
[
o(h(y)) ∩ F ∩ F

]
is m.n.d in M . Since

f
[
o(h(y)) ∩ F ∩ F

]
⊆ f

[
o(h(y)) ∩ F

]
∩ f [F ]

⊆ f [o(h(y)) ∩ F ] ∩ f [F ]

⊆ f [o(h(y))] ∩ f [F ] ∩ f [F ]

⊆ o(y) ∩ f [F ] ∩ f [F ]

and because o(y) ∩ f [F ] ∩ f [F ] is nowhere dense in M , it follows from Proposition 4.1.11(2)

that o(y) ∩ f [F ] ∩ f [F ] is m.n.d. Thus f [F ] is strongly homogeneous maximal nowhere dense

in M .

(2) We only prove reflection of strongly homogeneous maximal nowhere dense sublocales.

That of homogeneous maximal nowhere dense sublocales follows the same sketch. Let K

be a strongly homogeneous maximal nowhere dense sublocale of M and consider a non-void

sublocale o(x) ∩ f−1[K] ∩ f−1[K] where x ∈ L. We must show that this f−1[K]-regular-closed

sublocale is m.n.d. We have that o(f(x)) ∩K∩K is a non-void K-regular-closed sublocale. To

see that it is non-void, observe that having o(f(x)) ∩K∩K = O implies that o(f(x))∩K = O

so that

O = f−1[o(f(x))] ∩ f−1[K] = o(h(f(x))) ∩ f−1[K] = o(x) ∩ f−1[K]
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where the latter equality follows from injectivity of f . This cannot be true, so o(f(x)) ∩K∩K

is non-void. Since K is strongly homogeneous maximal nowhere dense, o(f(x)) ∩K ∩ K is

m.n.d in M . Because open localic maps are weakly open and f sends dense elements to dense

elements, it follows from Proposition 4.4.1 that f−1[o(f(x)) ∩K ∩K] is m.n.d. Observe that

f−1[o(f(x)) ∩K ∩K] = f−1[o(f(x)) ∩K] ∩ f−1[K] = f−1[o(f(x))] ∩ f−1[K] ∩ f−1[K]

where the latter equality follows from openness of f . By injectivity of f ,

f−1[o(f(x)) ∩K ∩K] = o(x) ∩ f−1[K] ∩ f−1[K]

making o(x) ∩ f−1[K] ∩ f−1[K] m.n.d. in L. Thus f−1[K] is strongly homogeneous maximal

nowhere dense in L.

Observation 4.4.6. For the preservation of homogeneous maximal nowhere dense sublocales,

the localic map f in Proposition 4.4.5 must also preserve closed sublocales. That is, it must

also be closed which is a rather too stringent condition.

Open localic maps also allow us to study, under certain conditions, preservation and re-

flection of inaccessible and almost inaccessible sublocales as presented below.

Proposition 4.4.7. Let f : L → M be an open and injective localic map. Then for all open

S ∈ S(L),

1. f [SInac(S)] ⊆ SInac(f [S]), and

2. f [SAinac(S)] ⊆ SAinac(f [S]).

Proof. (1) Let S = o(x) for some x ∈ L and choose A ∈ SInac(S). Observe that f [A] ⊆ f [S].

To show that f [A] is f [S]-inaccessible, select an (M rf [S])-nowhere dense sublocale N . Since

f is open, we have that f [S] is open so that f [S] = o(y) for some y ∈ M . Now, N ⊆ c(y)

which implies that f−1[N ] ⊆ f−1[c(y)] = c(h(y)). Observe that c(h(y)) = c(x). To see this, let
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a ∈ c(h(y)). Then

h(y) ≤ a =⇒ y ≤ f(h(y)) ≤ f(a)

=⇒ o(y) ⊆ o(f(a))

=⇒ f [o(x)] ⊆ o(f(a)) since f [o(x)] = f [S] = o(y)

=⇒ o(x) ⊆ f−1[f [o(x)]] ⊆ f−1[o(f(a))] = o(h(f(a))) ⊆ o(a)

=⇒ c(a) ⊆ c(x)

so that a ∈ c(x). On the other hand, for a ∈ c(x), we have

x ≤ a =⇒ o(x) ⊆ o(a)

=⇒ f [o(x)] ⊆ f [o(a)]

=⇒ o(y) ⊆ f [o(a)] since f [o(x)] = f [S] = o(y)

=⇒ o(h(y)) = f−1[o(y)] ⊆ f−1[f [o(a)]] = o(a) since f is injective

=⇒ c(a) ⊆ c(h(y))

making a ∈ c(h(y)).

Therefore f−1[N ] ⊆ c(x). We show that f−1[N ] ∈ ND(Lr S). Since N ∈ ND(M r f [S]),

i.e., M r f [S] = c(y) ⊆ c(y) ∩M rN , we have c(y) = c(y) ∩ o (
∧
N). Therefore

c(h(y)) = f−1[c(y)] ⊆ f−1

[
c(y) ∩ o

(∧
N
)]

= f−1

[
c(y) ∩ o

(∧
N
)]

since f is open

= c(h(y)) ∩ o
(
h
(∧

N
))

= c(h(y)) ∩
(
Lr c

(
h
(∧

N
)))

= c(h(y)) ∩
(
Lr f−1[N ]

)
= c(h(y)) ∩

(
Lr f−1[N ]

)
since f is open.

Therefore c(h(y)) ∩
[
Lr c(h(y)) ∩

(
Lr f−1[N ]

)]
= O making f−1[N ] ∈ ND(c(h(y))). Be-

cause c(h(y)) = c(x) = Lr S, we have that

f−1[N ] ∈ ND(Lr S). (4.4.1)
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Since A ∈ SInac(S), A ∩ f−1[N ] = O. Because f is open, A ∩ f−1[N ] = O. Since f−1[N ] =

c (h (
∧
N)), A ⊆ o (h (

∧
N)) = f−1[o (

∧
N)] so that f [A] ⊆ f [f−1[o (

∧
N)]] ⊆ o (

∧
N). There-

fore O = f [A] ∩ c (
∧
N) = f [A] ∩N . Thus f [A] ∈ SInac(f [S]).

(2) Choose A ∈ SAinac(S) and an (M rf [S])-nowhere dense sublocale N . (4.4.1) still holds

since it does not require A to be S-inaccessible. Therefore A ⊆ S ∩ S ∩ Lr f−1[N ] so that

A ⊆ S ∩ S ∩ f−1[o (
∧
N)] because f is open. We get that

f [A] ⊆ f

[
S ∩ S ∩ f−1

[
[o
(∧

N
)]]

⊆ f [S] ∩ f
[
S ∩ f−1

[
o
(∧

N
)]]

⊆ f [S] ∩ f
[
S ∩ f−1

[
o
(∧

N
)]]

⊆ f [S] ∩ f [S] ∩ f
[
f−1

[
o
(∧

N
)]]

⊆ f [S] ∩ f [S] ∩ o
(∧

N
)

= f [S] ∩ f [S] ∩
(
M r c

(∧
N
))

= f [S] ∩ f [S] ∩ (M rN).

Thus f [A] ∈ SAinac(f [S]).

Proposition 4.4.8. Let f : L→M be localic map such that both f and h send dense elements

to dense elements and let T ∈ S(M) be closed nowhere dense. Then

1. f−1[SInac(T )] ⊆ SInac(f−1[T ]), and

2. If f is open, then f−1[SAinac(T )] ⊆ SInac(f−1[T ]).

Proof. (1) Let T ∈ S(M) be closed and nowhere dense and choose A ∈ SInac(T ). Then

f−1[A] ⊆ f−1[T ]. Let N ∈ ND(Lr f−1[T ]). Since, by [26], P r g−1[C] ⊆ g−1[RrC] for every

localic map g : P → R with C ∈ S(R), we get that N ⊆ Lr f−1[T ] ⊆ f−1[M r T ]. Therefore

f [N ] ⊆ f [f−1[M r T ]] ⊆ M r T . We show that f [N ] ∈ ND(M r T ). Because h is weakly

open, it follows from Theorem 3.1.2 that f−1[−] : S(M) → S(L) preserves closed nowhere

dense sublocales so that f−1[T ] is closed nowhere dense in L. By Corollary 2.1.4, L r f−1[T ]

is open and dense. Now, N being nowhere dense in L r f−1[T ] implies N is nowhere dense
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in L. Since f sends dense elements to dense elements, it follows from Lemma 3.1.7 that f [−]

preserves nowhere dense sublocales so that f [N ] is nowhere dense in M . Observe that f [N ] is

nowhere dense in MrT . To see this, let y ∈M be such that o(y)∩(MrT ) ⊆ f [N ]∩(MrT ).

Then o(y)∩ (M rT ) ⊆ f [N ]. Because M rT is open in M and f [N ] ∈ ND(M), we have that

o(y) ∩ (M r T ) = O making o(y) ⊆ T . But T is nowhere dense in M , so o(y) = O implying

that

f [N ] ∈ ND(M r T ). (4.4.2)

S-inaccessibility of A implies A ∩ f [N ] = O. Therefore

O = f−1

[
A ∩ f [N ]

]
= f−1[A] ∩ f−1

[
f [N ]

]
= f−1[A] ∩ c

(
h
(
f
(∧

N
)))

⊇ f−1[A] ∩N.

Thus f−1[A] ∈ SInac(f−1[T ]).

(2) Assume that f is open. Set T = c(b) for some b ∈M and choose A ∈ SAinac(T ). (4.4.2)

still holds, so

A ⊆ c(b) ∩ c(b) ∩
(
M r f [N ]

)
= c(b) ∩ c(b) ∩ o

(∧
f [N ]

)
.

Therefore

f−1[A] ⊆ c(h(b)) ∩ f−1
[
c(b) ∩ o

(∧
f [N ]

)]
= c(h(b)) ∩ f−1

[
c(b) ∩ o

(∧
f [N ]

)]
since f is open

= c(h(b)) ∩ c(h(b)) ∩ o
(
h
(
f
(∧

N
)))

⊆ c(h(b)) ∩ c(h(b)) ∩ o
(∧

N
)

= f−1[T ] ∩ f−1[T ] ∩
(
LrN

)
= clf−1[T ]

(
f−1[T ] ∩

(
LrN

))
.

Thus f−1[A] ∈ SAinac(f−1[T ]).
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Chapter 5

Remoteness in Bilocales

In mathematics (particularly, frame theory), it is prevalent to want to know how an introduced

notion fits in other settings. In this chapter, we present an extension of remoteness in the

category of bilocales.

5.1 (i, j)−nowhere dense sublocales

We devote this section to introducing (i, j)-nowhere dense sublocales from (i, j)-nowhere dense

subspaces and studying some of their properties. (i, j)-nowhere dense sublocales will be used

in the theory of (i, j)-remote sublocales that will follow after this section.

Recall from [30] that for a bitopological space (bispace in short) (X, τ1, τ2), where intτi

and clτi (for i = 1, 2) denote the τi-interior and τi-closure, respectively, a subset A of X is

(τi, τj)-nowhere dense in X if intτj(clτi(A)) = ∅ (i 6= j). We will extend this notion to locales

and explore some of its bilocalic properties.

We recall the following notions of bilocales from Chapter 1. A bilocale is a triple (L,L1, L2)

where L1, L2 are subframes of a locale L and for all a ∈ L,

a =
∨
{a1 ∧ a2 : a1 ∈ L1, a2 ∈ L2 and a1 ∧ a2 ≤ a}.

We call L the total part of (L,L1, L2), and L1, L2 the first and second parts, respectively.

We use the notations Li, Lj to denote the first or second parts of (L,L1, L2), always assuming

that i, j = 1, 2, i 6= j.
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For c ∈ Li we denote

c• =
∨
{x ∈ Lj : x ∧ c = 0}.

For a bilocalic notion of (τi, τj)-nowhere density, we introduce bilocalic counterparts of the

notions of closure and interior. Let (L,L1, L2) be a bilocale. In [51], the authors introduced

the following notation for a sublocale S ⊆ L:

cli(S) =
⋂
{c(a) : a ∈ Li, S ⊆ c(a)} = c

(∨
{a ∈ Li : S ⊆ c(a)}

)
(i = 1, 2).

We define inti(S) as follows:

inti(S) =
∨
{o(a) : a ∈ Li, o(a) ⊆ S} (i = 1, 2).

We shall refer to these concepts as bilocale closure and bilocale interior, respectively.

Throughout this thesis, we assume that i 6= j ∈ {1, 2}, unless otherwise stated.

We define an (i, j)-nowhere dense sublocale as follows.

Definition 5.1.1. Let (L,L1, L2) be a bilocale. A sublocale S of L is (i, j)-nowhere dense if

intj(cli(S)) = O (i 6= j ∈ {1, 2}).

Our discussion of (i, j)-nowhere density involves bilocale interiors and bilocale closures.

Before we consider the properties of bilocale closures and bilocale interiors which will be

useful below, we collect some properties of the bilocale pseudocomplement in the following

proposition. We remark that some of these might be part of bilocale folklore.

Proposition 5.1.2. Let (L,L1, L2) be a bilocale and i 6= j ∈ {1, 2}. Then

1. 0• = 1Li.

2. For every a ∈ Li, a ∧ a• = 0.

3. a ∧ b = 0 iff a ≤ b• for all a ∈ Lj, b ∈ Li.

4. a ≤ b implies b• ≤ a• for all a, b ∈ Li.

5. For each a ∈ Li, a ≤ a••.
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6. For each a ∈ Li, a• = a•••.

7. (a ∨ b)• = a• ∧ b• for every a, b ∈ Li.

Proof. (1) By definition of a bilocale pseudocomplement,

0• =
∨
{x ∈ Li : x ∧ 0 = 0} = 1Li .

(2) If a ∈ Li, then

a ∧ a• = a ∧
∨
{x ∈ Lj : x ∧ a = 0} =

∨
{a ∧ x : x ∈ Lj, x ∧ a = 0} = 0

where the second equality follows since L is a locale.

(3) Let a ∈ Lj and b ∈ Li.

(=⇒): If a ∧ b = 0, then a ∈ {x ∈ Lj : x ∧ b = 0} . So, a ≤ b• =
∨
{x ∈ Lj : x ∧ b = 0}.

(⇐=): Assume that a ≤ b•. Since b• is the largest element in Lj missing b, a must also

miss b.

(4) Let a, b ∈ Li be such that a ≤ b and let c = b•. Then c ≤ b• and c ∈ Lj. It follows

from (3) that c ∧ b = 0 so that c ∧ a = 0. Therefore c ≤ a•. Thus b• ≤ a•.

(5) For each a ∈ Li, we have that a•• =
∨
{x ∈ Li : x∧ a• = 0}. But a∧ a• = 0 and a ∈ Li

so a ≤ a••.

(6) Let a ∈ Li. From (5) we have that a ≤ a•• so that by (4), a••• ≤ a•. For the other

inequality, we have from (2) that a• ∧ (a•)• = 0. Now that a• ∈ Lj and (a•)• ∈ Li, application

of (3) gives a• ≤ (a•)•• = a•••. Thus a• = a•••.

(7) Let a, b ∈ Li and y = (a ∨ b)•. Since Li is a subframe, a ∨ b ∈ Li so that y ∈ Lj. It

follows from (3) that y∧ (a∨ b) = 0, i.e., (y∧a)∨ (y∧ b) = 0. Therefore y∧a = 0 and y∧ b = 0

making y ≤ a• and y ≤ b•, by (3). Thus y ≤ a• ∧ b•.
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On the other hand, we have that

(a ∨ b) ∧ (a• ∧ b•) = ((a ∨ b) ∧ a•) ∧ ((a ∨ b) ∧ b•)

= ((a ∧ a•) ∨ (b ∧ a•)) ∧ ((a ∧ b•) ∨ (b ∧ b•))

= (b ∧ a•) ∧ (a ∧ b•)

= 0.

Therefore a• ∧ b• ≤ (a ∨ b)•. Thus (a ∨ b)• = a• ∧ b•.

We discuss some properties of bilocale closure and bilocale interior in the next result.

Proposition 5.1.3. Let (L,L1, L2) be a bilocale and S, T ∈ S(L). The following statements

hold for i 6= j ∈ {1, 2}.

1. [51] S ⊆ S ⊆ cli(S).

2. If T ⊆ S, then cli(T ) ⊆ cli(S).

3. cli(cli(S)) = cli(S).

4. c(a) = cli(c(a)) for every a ∈ Li.

5. inti(S) = o (
∨
{a ∈ Li : o(a) ⊆ S}).

6. inti(S) ⊆ int(S) ⊆ S.

7. If T ⊆ S, then inti(T ) ⊆ inti(S).

8. inti(inti(S)) = inti(S).

9. o(a) = inti(o(a)) for every a ∈ Li.

10. For each a ∈ Li, c(a•) = clj(o(a)).

11. For each a ∈ Li, o(a•) = intj(c(a)).

12. For each a ∈ Li, clj(o(a)) = Lr intj(c(a)).

13. For each a ∈ Li, intj(c(a)) = Lr clj(o(a)).
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14. For each a ∈ L, Lr inti(o(a)) = cli(c(a)).

15. For each a ∈ L, Lr cli(c(a)) = inti(o(a)).

Proof. (1) Observe that {a ∈ Li : S ⊆ c(a)} ⊆ {b ∈ L : S ⊆ c(b)}. Therefore

∨
{a ∈ Li : S ⊆ c(a)} ≤

∨
{b ∈ L : S ⊆ c(b)}

so that

S ⊆ S = c
(∨
{b ∈ L : S ⊆ c(b)}

)
⊆ c

(∨
{a ∈ Li : S ⊆ c(a)}

)
= cli(S).

(2) Let T ⊆ S. Then

{a ∈ Li : S ⊆ c(a)} ⊆ {b ∈ Li : T ⊆ c(b)} =⇒
∨
{b ∈ Li : S ⊆ c(b)} ≤

∨
{a ∈ Li : T ⊆ c(a)}.

Therefore

cli(T ) = c
(∨
{a ∈ Li : T ⊆ c(a)}

)
⊆ cli(S) = c

(∨
{a ∈ Li : S ⊆ c(a)}

)
.

(3) It suffices to show that cli(cli(S)) ⊆ cli(S):

cli(cli(S)) = cli

(
c
(∨
{x ∈ Li : S ⊆ c(x)}

))
= c

(∨
{y ∈ Li : c

(∨
{x ∈ Li : S ⊆ c(x)}

)
⊆ c(y)}

)
= c

(∨
{y ∈ Li : y ≤

∨
{x ∈ Li : S ⊆ c(x)}}

)
.

Observe that

{x ∈ Li : S ⊆ c(x)} ⊆ {y ∈ Li : y ≤
∨
{x ∈ Li : S ⊆ c(x)}}

which implies

cli(cli(S)) = c
(∨
{y ∈ Li : y ≤

∨
{x ∈ Li : S ⊆ c(x)}}

)
⊆ c

(∨
{x ∈ Li : S ⊆ c(x)}

)
= cli(S).

(4) We have

cli(cl(a)) = c
(∨
{x ∈ Li : c(a) ⊆ c(x)}

)
= c

(∨
{x ∈ Li : x ≤ a}

)
= c(a)
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for all a ∈ Li.

(5) We have

inti(S) =
∨
{o(a) : a ∈ Li, o(a) ⊆ S} = o

(∨
{a ∈ Li : o(a) ⊆ S}

)
.

(6) Observe that {o(a) : a ∈ Li, o(a) ⊆ S} ⊆ {o(b) : b ∈ L, o(b) ⊆ S}. Therefore,

inti(S) =
∨
{o(a) : a ∈ Li, o(a) ⊆ S} ⊆

∨
{o(b) : o(b) ⊆ S} = inti(S) ⊆ S.

(7) Similar to the proof of (2).

(8) Similar to the proof of (3).

(9) Similar to the proof of (4).

(10) We have that

clj(o(a)) = c
(∨
{x ∈ Lj : o(a) ⊆ c(x)}

)
= c

(∨
{x ∈ Lj : x ∧ a = 0}

)
= c(a•)

for each a ∈ Li.

(11) Similar to the proof of (10).

(12) Combination of (10) and (11).

(13) Similar to the argument of (12).

(14) Observe that

Lr inti(o(a)) = Lr o
(∨
{x ∈ Li : o(x) ⊆ o(a)}

)
= Lr o

(∨
{x ∈ Li : c(a) ⊆ c(x)}

)
= c

(∨
{x ∈ Li : c(a) ⊆ c(x)}

)
= cli(c(a))

for all a ∈ L.

(15) Similar to the proof of (14).

We consider i-dense sublocales. Recall from [55] that a subset A of a bitopological space

(X, τ1, τ2) is i-dense if clτi(A) = X. This recalled notion motivates the following definition of

an i-dense sublocale.
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Definition 5.1.4. A sublocale A of a bilocale (L,L1, L2) is i-dense if cli(A) = L.

We work towards showing that a subset A of a bitopological space (X, τ1, τ2) is i-dense if

and only if Ã is i-dense.

Recall from [42] that given a topological property P , a bitopological space (X, τ1, τ2) is

sup-P if (X, τ1 ∨ τ2) has property P . We say that (X, τ1, τ2) is sup-TD if (X, τ1 ∨ τ2) is TD.

In bilocalic terms, we denote the sublocale induced by a subset A of X as follows:

Ã = {intτ1∨τ2((X r A) ∪G) : G ∈ τ1 ∨ τ2}.

We shall denote by τ the topology τ1 ∨ τ2.

Lemma 5.1.5 below provides a useful property of bilocale closure.

Lemma 5.1.5. Let A be a subset of a sup-TD-bispace (X, τ1, τ2). Then

c̃lτi(A) = cli(Ã) for i = 1, 2.

Proof. Since A ⊆ clτi(A), Ã ⊆ c̃lτi(A). Because clτi(A) is τ -closed, Ã ⊆ c(Xrclτi(A)) = c̃lτi(A)

by Lemma 2.1.14. By Proposition 5.1.3(2), cli(Ã) ⊆ cli(c(Xrclτi(A))). Since Xrclτi(A) ∈ τi,

it follows from Proposition 5.1.3(4) that cli(c(X r clτi(A))) = c(X r clτi(A)) which gives

cli(Ã) ⊆ c(X r clτi(A)) = c̃lτi(A).

On the other hand, since cli(Ã) = c
(∨
{U ∈ τi : Ã ⊆ c(U)}

)
, set

∨
{U ∈ τi : Ã ⊆ c(U)} =

V for some V ∈ τi. Then Ã ⊆ c(V ) = X̃ r V implying that A ⊆ X r V . Therefore

clτi(A) ⊆ clτi(X r V ) = X r V since X r V is τi-closed. We get V ⊆ X r clτi(A) so that

c(V ) ⊆ c(X r clτi(A)). Therefore cli(Ã) ⊆ c̃lτi(A).

Thus cli(Ã) = c̃lτi(A).

As a result of Lemma 5.1.5, we have the following proposition which shows that in the

class of sup-TD-bispaces, the definition of i-density given in Definition 5.1.4 is conservative in

bilocales in a sense that a subset A of a sup-TD-bispace (X, τ1, τ2) is i-dense precisely when Ã

is i-dense in the bilocale (τ, τ1, τ2).
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Proposition 5.1.6. Let A be a subset of a sup-TD-bispace (X, τ1, τ2). Then A is i-dense iff

Ã is i-dense.

Proof. A subset A of X is i-dense if and only if clτi(A) = X if and only if c̃lτi(A) = X̃ if and

only if cli(Ã) = X̃ if and only if Ã is i-dense.

We give an elementary notion of i-density.

Definition 5.1.7. Define an element x ∈ Lj of a bilocale (L,L1, L2) to be Li-dense (or just

i-dense) if x• = 0.

The following result gives a characterization of i-dense elements.

Proposition 5.1.8. Let (L,L1, L2) be a bilocale and x ∈ Lj. Then the following statements

are equivalent.

1. x is i-dense.

2. o(x) is i-dense.

3. For all a ∈ Li, a ∧ x = 0 implies a = 0.

Proof. (1)⇐⇒ (2): Observe that for any x ∈ Lj,

x• = 0 ⇐⇒ c(x•) = L

⇐⇒ cli(o(x)) = L since c(x•) = cli(o(x)) from Proposition 5.1.3(10)

⇐⇒ o(x) is j-dense.

(2) =⇒ (3): If a ∈ Li such that x ∧ a = 0, then o(x) ⊆ c(a) which implies that

L = c(0) = cli(o(x)) ⊆ cli(c(a)) = c(a).

Thus a = 0.

(3) =⇒ (1): Recall that x• ∧ x = 0 by Proposition 5.1.2(2). The hypothesis gives x• = 0.

Thus x is i-dense.
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Observation 5.1.9. Every y ∈ Li such that x ≤ y for some i-dense x ∈ Lj is i-dense. Indeed,

if a ∈ Li is such that a ∧ y = 0, then a ∧ x = 0 so that a = 0 because x is i-dense.

In the next result, we show that in the class of sup-TD-bispaces, the definition of (i, j)-

nowhere density given in Definition 5.1.1 is conservative in bilocales. Recall that for each

U ∈ τi,

U• =
∨
{G ∈ τj : G ∩ U = ∅}

=
∨
{G ∈ τj : G ⊆ X r U}

= intτj(X r U)

= X r clτj(U).

Proposition 5.1.10. Let (X, τ1, τ2) be a sup-TD-bispace. A subset A ⊆ X is (τi, τj)-nowhere

dense iff Ã is (i, j)-nowhere dense.

Proof. Observe that

intτj(clτi(A)) = ∅ ⇐⇒ X r intτj(clτi(A)) = X

⇐⇒ clτj(X r clτi(A)) = X

⇐⇒ X r clτj(X r clτi(A)) = ∅

⇐⇒ (X r clτi(A))• = ∅ since U• = X r clτj(U) for all U ∈ τi

⇐⇒ o((X r clτi(A))•) = O

⇐⇒ intj(c(X r clτi(A))) = O from Proposition 5.1.3(9)

⇐⇒ intj

(
c̃lτi(A)

)
= O since clτi(A) is τ − closed

⇐⇒ intj

(
cli(Ã)

)
= O since c̃lτi(A) = cli(Ã)

which proves the result.

The following result gives a characterization of (i, j)-nowhere dense sublocales.

Theorem 5.1.11. Let (L,L1, L2) be a bilocale and S ∈ S(L). The following statements are

equivalent.
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1. S is (i, j)-nowhere dense.

2. Lr cli(S) is j-dense.

3. (
∨
{x ∈ Li : S ⊆ c(x)})• = 0.

4.
∨
{x ∈ Li : S ⊆ c(x)} is j-dense.

5. cli(S) is (i, j)-nowhere dense.

Proof. (1)⇐⇒ (2): We have that

intj(cli(S)) = O ⇐⇒ o
(∨
{a ∈ Lj : o(a) ⊆ cli(S)}

)
= O

⇐⇒ c
(∨
{a ∈ Lj : o(a) ⊆ cli(S)}

)
= L

⇐⇒ c
(∨
{a ∈ Lj : (Lr cli(S)) ⊆ c(a)}

)
= L,

since cli(S) is complemented.

⇐⇒ clj(Lr cli(S)) = L by Proposition 5.1.3(4).

(2)⇐⇒ (3): Observe that

clj(Lr cli(S)) = L ⇐⇒ clj

(
Lr c

(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇐⇒ clj

(
o
(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇐⇒ c
((∨

{x ∈ Li : S ⊆ c(x)}
)•)

= L by Proposition 5.1.3(10)

⇐⇒
(∨
{x ∈ Li : S ⊆ c(x)}

)•
= 0.

(3)⇐⇒ (4): Follows from definition of j-density.
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(4)⇐⇒ (5): We have that

∨
{x ∈ Li : S ⊆ c(x)} is j-dense ⇐⇒

∨
{x ∈ Li : cli(S) ⊆ cli(c(x)) = c(x)} is j-dense

⇐⇒
∨
{x ∈ Li : o(x) ⊆ Lr cli(S)} is j-dense

⇐⇒ clj

(
o
(∨
{x ∈ Li : o(x) ⊆ Lr cli(S)}

))
= L

⇐⇒ clj

(
o
(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇐⇒ clj

(
Lr c

(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇐⇒ clj (Lr cli(S)) = L

⇐⇒ Lr clj (Lr cli(S)) = O

⇐⇒ o
(∨
{a ∈ Lj : Lr cli(S) ⊆ c(a)}

)
= O

⇐⇒ o
(∨
{a ∈ Lj : o(a) ⊆ cli(S)}

)
= O

⇐⇒ intj
(

cli(S)
)

= O

⇐⇒ intj
(

cli(cli(S))
)

= O since cli(cli(S)) = cli(S)

⇐⇒ cli(S) is (i, j)-nowhere dense.

(5)⇐⇒ (1): Follows since cli(cli(S)) = cli(S).

In terms of closed sublocales, we get the following characterization of (i, j)-nowhere dense

sublocales.

Corollary 5.1.12. An element a ∈ Li is j-dense iff c(a) is (i, j)-nowhere dense.

We give more properties of (i, j)-nowhere dense sublocales.

Proposition 5.1.13. Let (L,L1, L2) be a bilocale and S ∈ S(L). The following statements

hold.

1. S is (i, j)-nowhere dense whenever cli(S) ∩BL = O.

2. Let T ∈ S(L). If S is (i, j)-nowhere dense and T ⊆ S, then T is (i, j)-nowhere dense.
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Proof. (1) Observe that

cli(S) ∩BL = O ⇐⇒ BL ⊆ Lr cli(S) since cli(S) is complemented

⇐⇒ Lr cli(S) = L

=⇒ clj(Lr cli(S)) = L by Proposition 5.1.3(1)

⇐⇒ intj(cli(S)) = O

where the latter equivalence can be deduced from the proof of Proposition 5.1.11(4)⇐⇒ (5).

(2) If T ⊆ S, then cli(T ) ⊆ cli(S) by Proposition 5.1.3(2). This implies that intj(cli(T )) ⊆

intj(cli(S)). But intj(cli(S)) = O, so intj(cli(T )) = O.

To characterize (i, j)-nowhere dense sublocales in terms of BL, we recall from [29] that a

bilocale (L,L1, L2) is balanced if x ∈ L1 implies x∗ ∈ L2 and x ∈ L2 implies x∗ ∈ L1.

In a balanced bilocale (L,L1, L2), a
∗ = a• for all a ∈ Li. Indeed, it is clear that a• ≤ a∗.

Furthermore, if y = a∗, then y ∈ Lj and y ∧ a = 0. Therefore y ∈ {x ∈ Lj : a ∧ x = 0}. Thus

y = a∗ ≤
∨
{x ∈ Lj : a ∧ x = 0} = a•.

Proposition 5.1.14. Let (L,L1, L2) be a balanced bilocale and N ∈ S(L). Then N ∈ S(L) is

(i, j)-nowhere dense iff BL ∩ cli(N) = O.

Proof. For each N ∈ S(L), we have that

N is (i, j)-nowhere dense ⇐⇒
(∨
{x ∈ Li : N ⊆ c(x)}

)•
= 0 by Theorem 5.1.11

⇐⇒
(∨
{x ∈ Li : N ⊆ c(x)}

)∗
= 0 since (L,L1, L2)

is balanced

⇐⇒ o
(∨
{x ∈ Li : N ⊆ c(x)}

)
is dense

⇐⇒ BL ⊆ o
(∨
{x ∈ Li : N ⊆ c(x)}

)
⇐⇒ BL ∩ c

(∨
{x ∈ Li : N ⊆ c(x)}

)
= O

⇐⇒ BL ∩ cli(N) = O

which proves the result.
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We recalled in preliminaries the frame-theoretic definition of a nowhere dense quotient

map which was defined by Dube in [16]. This notion was motivated by Plewe’s definition

of a nowhere dense sublocale. In bilocales, we could only get the following result in an at-

tempt to get a notion of an (i, j)-nowhere dense biframe homomorphism in such a way that

a sublocale S of a bilocale (L.L1, L2) is (i, j)-nowhere dense precisely when the biframe map

νS : (L,L1, L2)→ (S, S1, S2) is (i, j)-nowhere dense.

Proposition 5.1.15. Let (L,L1, L2) be a bilocale and S ∈ S(L). If S is (i, j)-nowhere dense,

then for each non-zero x ∈ Lj, there exists a non-zero y ∈ L with y ≤ x such that νS(y) = 0S.

Proof. Let x be a non-zero element of Lj. Since S is (i, j)-nowhere dense, the Li-element

∨
{a ∈ Li : S ⊆ c(a)} =

∨{
a ∈ Li : a ≤

∧
S
}

is j-dense by Theorem 5.1.11. It follows from Proposition 5.1.8 that
∨
{a ∈ Li : a ≤

∧
S}∧x 6=

0. Set y =
∨
{a ∈ Li : a ≤

∧
S} ∧ x. Then y ≤ x, y 6= 0 and

νS(y) = νS

(∨{
a ∈ Li : a ≤

∧
S
}
∧ x
)

= νS

(∨{
a ∈ Li : a ≤

∧
S
})
∧ νS(x) ≤ 0S

which proves the result.

We show below that the converse of Proposition 5.1.15 is not always true.

Example 5.1.16. Let (X, τ1, τ2) be a bitopological space where X = {a, b, c}, τ1 = {∅, X, {a}}

and τ2 = {∅, X, {a, b}}. Then the triple (τ = {∅, X, {a}, {a, b}}, τ1, τ2) is a bilocale and the

sublocale S = {X, {a}} is not (1, 2)-nowhere dense but for each non-empty A ∈ τ2, there is a

non-empty B ∈ τ such that B ⊆ A and νS[B] = 0S = {a}.

We introduce certain types (i, j)-nowhere dense sublocales which give the converse of Propo-

sition 5.1.15. In light of Proposition 5.1.8(3), we give the following definition.

Definition 5.1.17. Let (L,L1, L2) be a bilocale.

1. An element y ∈ L is said to be almost i-dense in case y ∧ a = 0 implies a = 0 for all

a ∈ Li.
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2. A sublocale of L is almost i-dense if it meets every non-void open sublocale induced by

an element of Li.

3. A sublocale N of L is almost (i, j)-nowhere dense if 0N is almost j-dense.

We give the following results, some of which will be used below.

Proposition 5.1.18. Let (L,L1, L2) be a bilocale.

1. For both elements and sublocales, i-density implies almost i-density.

2. An element y ∈ Lj is i-dense if and only if it is almost i-dense.

3. Every y ∈ L such that x ≤ y for some i-dense (resp. almost i-dense) x ∈ Lj is almost

i-dense.

4. Every element that is dense in the total part of a bilocale is almost i-dense.

5. (i, j)-nowhere density implies almost (i, j)-nowhere density.

6. A sublocale N ⊆ L is almost (i, j)-nowhere dense iff N is almost (i, j)-nowhere dense.

7. For each N ∈ S(L), if cli(N) is almost (i, j)-nowhere dense, then N is almost (i, j)-

nowhere dense.

Proof. (1) The proof for elements is clear.

For sublocales, let S ∈ S(L) be i-dense. We show that for every x ∈ Li, S ∩ o(x) = O

implies o(x) = O. Let x ∈ Li. Then

S ∩ o(x) = O =⇒ S ⊆ c(x)

=⇒ L = cli(S) ⊆ cli(c(x)) = c(x)

=⇒ o(x) = O.

(2) Trivial.

(3) Let y ∈ L be such that x ≤ y for some i-dense x ∈ Lj. If z ∈ Li is such that y ∧ z = 0,

then x ∧ z = 0. Since x is i-dense, z = 0, making y almost i-dense.
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The other part follows since by (2), almost i-dense = i-dense for all x ∈ Lj.

(4) Let x ∈ L be dense in L and choose a ∈ Li such that x ∧ a = 0. Then a ≤ x∗ = 0,

making a = 0. Thus x is almost i-dense.

(5) Let S ∈ S(L) be (i, j)-nowhere dense. It follows from Theorem 5.1.11 that
∨
{a ∈ Li :

S ⊆ c(a)} is j-dense. Since
∨
{a ∈ Li : S ⊆ c(a)} =

∨
{a ∈ Li : a ≤ 0S} ≤ 0S, it follows from

(3) that 0S is almost j-dense. Thus S is almost (i, j)-nowhere dense.

(6) Follows since 0N = 0N for every N ∈ S(L).

(7) Because 0cli(N) =
∨
{a ∈ Li : a ≤ 0N} ≤ 0N , it follows from (3) that 0N is almost

j-dense whenever 0cli(N) is. Thus if cli(N) is almost (i, j)-nowhere dense, then N is almost

(i, j)-nowhere dense.

We get the following result where the left to right implication is proved similarly to Propo-

sition 5.1.15. We shall therefore only prove the converse.

Proposition 5.1.19. Let (L,L1, L2) be a bilocale and S ∈ S(L). Then S is almost (i, j)-

nowhere dense iff for each non-zero x ∈ Lj, there exists a non-zero y ∈ L with y ≤ x such that

νS(y) = 0S.

Proof. (⇐=): We show that 0S is almost j-dense, i.e., 0S ∧ x 6= 0 for every non-zero x ∈ Lj.

Let x ∈ Lj be such that x 6= 0. By hypothesis, there is a non-zero y ∈ L with y ≤ x such that

νS(y) = 0S. Because y ≤ νS(y) and y ∧ x 6= 0, we have that 0S ∧ x 6= 0. Thus 0S is almost

j-dense making S almost (i, j)-nowhere dense.

Observation 5.1.20. The combination of Proposition 5.1.19 and Proposition 5.1.15 tells us

that (i, j)-nowhere density implies almost (i, j)-nowhere density.

5.2 (i, j)-remote sublocales

The aim of this section is to introduce and study (i, j)-remote sublocales. These are bilocale

counterparts of remote sublocales introduced in Chapter 2.

We give a definition of an (i, j)-remote sublocale.
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Definition 5.2.1. Let (L,L1, L2) be a bilocale. A sublocale S ⊆ L is (i, j)-remote if N∩S = O

for every (i, j)-nowhere dense sublocale N of L.

In bispaces, we shall say that a subset A of a bispace (X, τ1, τ2) is (τi, τj)-remote in case

N ∩ A = ∅ for all (τi, τj)-nowhere dense subset N of X.

We consider some examples.

Example 5.2.2. (1) The void sublocale is (i, j)-remote.

(2) In a balanced bilocale (L,L1, L2), BL is (i, j)-remote. This follows from Proposition

5.1.14.

(3) In a symmetric bilocale, which was defined in [4] as a bilocale (L,L1, L2) in which

L = L1 = L2, the sublocale BL is (i, j)-remote.

(4) If A is an (i, j)-remote sublocale of L, then every sublocale of L contained in A is

(i, j)-remote.

Next, we define sublocales that are (i, j)-remote from a dense subbilocale. Recall from

Chapter 1 that a subbilocale of a bilocale (L,L1, L2) is a triple (S, S1, S2) where S is a sublocale

of L and

Si = νS[Li] for i = 1, 2.

We shall say that (S, S1, S2) is a dense subbilocale of L in case S is dense in L. To avoid

confusion, we shall use subscripts iS and jS for subframes of a sublocale S.

Definition 5.2.3. Let (S, S1, S2) be a dense subbilocale of a bilocale (L,L1, L2). A sublocale

T ⊆ L is (i, j)-remote from (S, S1, S2) if cli(N) ∩ T = O for every (iS, jS)-nowhere dense

N ∈ S(S), for i 6= j ∈ {1, 2}.

We combine into one theorem results about both the notions of (i, j)-remoteness given in

Definition 5.2.1 and Definition 5.2.3. In the same theorem, we give a condition such that all

the results are equivalent.

We start by observing that, for a subbilocale (S, S1, S2) of a bilocale (L,L1, L2), cli(cS(x)) =
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cli(c(x)) for every x ∈ Si. Indeed,

cli(cS(x)) = c
(∨
{y ∈ Li : cS(x) ⊆ c(y)}

)
= c

(∨
{y ∈ Li : cS(x) ⊆ c(y)}

)
= c

(∨
{y ∈ Li : c(x) ⊆ c(y)}

)
since cS(x) = c(x)

= cli(c(x)).

We remind the reader that for any dense sublocale S of a locale L, 0S = 0L and hence

νS(x) = 0S if and only if x = 0L.

The following lemma will be useful below.

Lemma 5.2.4. Let (S, S1, S2) be a dense subbilocale of a bilocale (L,L1, L2). An element y of

Li is j-dense iff νS(y) is j-denseS.

Proof. (=⇒): Let y ∈ Li be a j-dense element. Since νS[Li] = Si, νS(y) ∈ Si. Now, choose

a ∈ Sj such that a ∧ νS(y) = 0. Then a = νS(x) for some x ∈ Lj. Therefore

0 = νS(x) ∧ νS(y) = νS(x ∧ y) ≥ x ∧ y.

Since y is j-dense and x ∈ Lj, x = 0 so that νS(x) = 0. Thus νS(y) is j-denseS.

(⇐=): Let y ∈ Li be such that νS(y) is j-denseS and choose a ∈ Lj such that a ∧ y = 0.

Then 0 = νS(a ∧ y) = νS(a) ∧ νS(y). But νS(y) is j-denseS, so νS(a) = 0 by Proposition

5.1.8(3). Since a ≤ νS(a), a = 0 making y j-dense.

Theorem 5.2.5. Let (S, S1, S2) be a dense subbilocale of a bilocale (L,L1, L2) and let A ∈

S(L). Consider the following statements.

1. A is (i, j)-remote.

2. A ∩ cli(C) = O for every (i, j)-nowhere dense C ∈ S(L).

3. A ∩N = O for every (i, j)-nowhere dense N .

4. A ∩ c(x) = O for each j-dense x ∈ Li.

5. A ⊆ o(a) for every j-dense a ∈ Li.
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6. νA(d) = 1 for every j-dense d ∈ Li.

7. A is (i, j)-remote from S.

8. A ∩ cli(c(c)) = O for each j-denseS c ∈ Si.

9. A ⊆ inti(o(p)) for every j-denseS p ∈ Si.

Then 1⇐⇒ 2⇐⇒ 3⇐⇒ 4⇐⇒ 5⇐⇒ 6 =⇒ 7⇐⇒ 8⇐⇒ 9. Moreover, all these statements

are equivalent whenever Si = Li (with i not neccessarily equal to j).

Proof. (1) ⇐⇒ (2): Follows since a sublocale C of L is (i, j)-nowhere dense if and only if

cli(C) is (i, j)-nowhere dense.

(2) =⇒ (3): Let N ∈ S(L) be (i, j)-nowhere dense. Since N ⊆ cli(N), it follows from

Proposition 5.1.13(2) that N is (i, j)-nowhere dense. Therefore A ∩N = O.

(3) =⇒ (4): Let x ∈ Li be j-dense. It follows that c(x) is (i, j)-nowhere dense. By (3),

O = A ∩ c(x) = A ∩ c(x).

(4)⇐⇒ (5): Follows since A∩ c(y) = O if and only if A ⊆ o(y) for all A ∈ S(L) and every

y ∈ L.

(5) =⇒ (6): Let d ∈ Li be j-dense. By (5), A ⊆ o(d). Since νB(a) = 1 if and only if

B ⊆ o(a) for every a ∈ L,B ∈ S(L), νA(d) = 1.

(6) =⇒ (1): Let N ∈ S(L) be (i, j)-nowhere dense. It follows from Theorem 5.1.11 that∨
{a ∈ Li : N ⊆ c(a)} is a j-dense element of Li. By hypothesis, νA(

∨
{a ∈ Li : N ⊆ c(a)}) = 1

which implies that A ⊆ o (
∨
{a ∈ Li : N ⊆ c(a)}). Therefore

O = A ∩ c
(∨
{a ∈ Li : N ⊆ c(a)}

)
= A ∩ cli(N).

(6) =⇒ (7): Choose an (iS, jS)-nowhere dense N ∈ S(S). Then cliS(N) is (iS, jS)-nowhere

dense. But cliS(N) = cS
(∨

S

{
b ∈ Si : N ⊆ cS(b)

})
, so set c =

∨
S

{
b ∈ Si : N ⊆ cS(b)

}
. Then

c ∈ Si and j-denseS. Since Si = νS[Li], there is y ∈ Li such that νS(y) = c. It follows from
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Lemma 5.2.4 that y is j-dense. By (6),

νA(y) = 1 ⇐⇒ A ⊆ o(y) since νB(a) = 1 if and only if B ⊆ o(a) for every a ∈ L,B ∈ S(L)

=⇒ A ∩ c(y) = O

⇐⇒ A ∩ cli(c(y)) = O by Proposition 5.1.3(4)

=⇒ A ∩ cli(c(νS(y))) = O since c(νS(y)) ⊆ c(y)

=⇒ A ∩ cli(cS(c)) = O

⇐⇒ A ∩ cli(cliS(cS(c))) = O by Proposition 5.1.3(4)

⇐⇒ A ∩ cli(cliS(cliS(N))) = O

=⇒ A ∩ cli(N) = O.

(7) =⇒ (8): Let c ∈ Si be j-denseS. Then cS(c) is (iS, jS)-nowhere dense. By (7),

O = cli(cS(c)) ∩ A = cli(c(c)) ∩ A.

(8) ⇐⇒ (9): We have that A ∩ cli(c(x)) = O if and only if A ⊆ L r cli(c(x)) = inti(o(x))

for all A ∈ S(L) and every x ∈ L.

(9) =⇒ (7): Let N ∈ S(S) be (iS, jS)-nowhere dense. We get that
∨
S{a ∈ Si : N ⊆ cS(a)}

is a j-denseS element of Si. By (9), A ⊆ inti (o (
∨
S{a ∈ Si : N ⊆ cS(a)})) which implies that

O = A∩

(
Lr inti

(
o

(∨
S

{a ∈ Si : N ⊆ cS(a)}

)))
= A∩cli

(
c

(∨
S

{a ∈ Si : N ⊆ cS(a)}

))

where the last equality follows from Proposition 5.1.3(14). But

cli

(
cS

(∨
S

{a ∈ Si : N ⊆ cS(a)}

))
⊆ cli

(
c

(∨
S

{a ∈ Si : N ⊆ cS(a)}

))
,

so

O = A ∩ cli

(
cS

(∨
S

{a ∈ Si : N ⊆ cS(a)}

))
= A ∩ cli (cliS(N)) ⊇ A ∩ cli(N).

For the special case, assume that Si = Li. We prove (7) =⇒ (4). For each j-dense

a ∈ Li, we have that a ∈ Si and a is j-denseS, so that c(a) is (iS, jS)-nowhere dense. By (7),

cli(cS(a)) ∩ A = O which implies that O = cli(c(a)) ∩ A = c(a) ∩ A.
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We give a neccessary and sufficient condition for the total part of a bilocale to be (i, j)-

remote as a sublocale of itself.

Proposition 5.2.6. Let (L,L1, L2) be a bilocale. The following statements are equivalent.

1. L is (i, j)-remote as a sublocale of itself.

2. 1 is the only j-dense element of Li.

Proof. (1) =⇒ (2): Let x ∈ Li be j-dense. We show that x = 1. Since L is (i, j)-remote as a

sublocale of itself, L ∩ c(x) = O by Theorem 5.2.5(3). Therefore c(x) = O making x = 1.

(2) =⇒ (1): Let x ∈ Li be j-dense. By (2), x = 1 so that c(x) = O. Therefore L∩c(x) = O.

Thus L is (i, j)-remote as a sublocale of itself.

Next, we discuss (i, j)-remoteness of closed sublocales.

Proposition 5.2.7. Let (L,L1, L2) be a bilocale and a ∈ L. Then c(a) is (i, j)-remote iff

a ∨ x = 1 for every j-dense x ∈ Li.

Proof. For each j-dense x ∈ Li, Theorem 5.2.5 implies that

c(a) ∩ cli(c(x)) = O ⇐⇒ c(a) ∩ c(x) = O

⇐⇒ c(a ∨ x) = O

⇐⇒ a ∨ x = 1

which proves the result.

Following Proposition 5.2.7, we get the following result for the case of sublocales that are

(i, j)-remote from a dense subbilocale.

Proposition 5.2.8. Let (S, S1, S2) be a dense subbilocale of a bilocale (L,L1, L2) and a ∈ L.

Then c(a) is (i, j)-remote from S iff a ∨ x = 1 for every j-denseS x ∈ Si.

In what follows, we move the introduced notions of (i, j)-remoteness to bispaces.
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Proposition 5.2.9. Let (X, τ1, τ2) be a sup-TD bitopological space and A ⊆ X. Then Ã is

(i, j)-remote iff A is (τi, τj)-remote, where i 6= j ∈ {1, 2}.

Proof. (=⇒) : Let N ⊆ X be (τi, τj)-nowhere dense. By Proposition 5.1.10, Ñ is (i, j)-nowhere

dense in τ . By hypothesis, Ã∩cli(Ñ) = O. But cli(Ñ) = c̃lτi(N), so Ã∩c̃lτi(N) = O. Therefore

S(A∩clτi (N)) = O making A ∩ clτi(N) = ∅.

(⇐=) : Let F be an (i, j)-nowhere dense sublocale of τ . By Theorem 5.1.11, cli(F ) is (i, j)-

nowhere dense in τ . But cli(F ) is τ -closed, so there is a τ -closed B ⊆ X such that cli(F ) = B̃.

It follows from Proposition 5.1.10 that B is (τi, τj)-nowhere dense. Therefore B ∩ A = ∅. By

Observation 2.1.17,

O = B̃ ∩ Ã = cli(F ) ∩ Ã

which implies that F ∩ Ã = O as required.

In bispaces, recall that the authors of [31] define a subbispace of a bispace (X, τ1, τ2) as a

triple (S, Sτ1 , Sτ2) where Sτi is a topology induced on S ⊆ X by τi, for i ∈ {1, 2}. For a bispace

(X, τ1, τ2), we shall say that A ⊆ X is (τi, τj)-remote from a dense subbispace (S, Sτ1 , Sτ2) of

(X, τ1, τ2) in case A misses the τi-closure of every (Sτi , Sτj)-nowhere dense N ⊆ S. To transfer

the notion of a sublocale which is (i, j)-remote from a dense subbilocale, we start by showing

that (i, j)-nowhere density of subbilocales is conservative in bilocales. For a bispace (X, τ1, τ2)

and S ⊆ X, set νS̃[τ1] = S̃1 and νS̃[τ2] = S̃2. It is clear that the triple (S̃, S̃1, S̃2) is a subbilocale

of (τ, τ1, τ2).

Lemma 5.2.10. Let (S, S1, S2) be a subbilocale of a bilocale (L,L1, L2). Then cliS(N) =

cli(N) ∩ S for each N ∈ S(S), where i ∈ {1, 2}.

Proof. Let x ∈ cliS(N) and choose c(a) ∈ S(L) where a ∈ Li and N ⊆ c(a). Then N ⊆

c(a) ∩ S = cS(νS(a)) and νS(a) ∈ Si since νS[Li] = Si. Therefore x ∈ cS(νS(a)) ⊆ c(a). Thus

x ∈ cli[N ] ∩ S.

On the other hand, let x ∈ cli[N ]∩S and a ∈ Si be such that N ⊆ cS(a). Since Si = νS[Li],

a = νS(y) for some y ∈ Li. Because cS(a) = c(a) ∩ S,

N ⊆ c(a) ∩ S = c(νS(y)) ∩ S ⊆ c(νS(y)) ⊆ c(y).
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Therefore x ∈ c(y) making x ∈ c(y) ∩ S = cS(νS(y)) = cS(a). Thus x ∈ cliS(N).

Proposition 5.2.11. Let (X, τ1, τ2) be a sup-TD-bispace and S ⊆ X. Then N ⊆ S is

(Sτi , Sτj)-nowhere dense iff Ñ ⊆ S̃ is (iS̃, jS̃)-nowhere dense, where i 6= j ∈ {1, 2}.

Proof. (=⇒): We show that∨
S̃

{
oS̃(U) : U ∈ S̃j, oS̃(U) ⊆ cli

S̃
[Ñ ]
}

= O.

Let U ∈ S̃j be such that oS̃(U) ⊆ cli
S̃

(
Ñ
)

. Because S̃j = νS̃[τj], U = νS̃(V ) for some V ∈ τj.

We get that oS̃(U) = oS̃(νS̃(V )) = o(V )∩S̃ = Ṽ ∩S̃. Since cli
S̃

(
Ñ
)

= cli(Ñ)∩S̃ = c̃lτi(N)∩S̃

by Lemma 5.2.10, Ṽ ∩ S̃ ⊆ c̃lτi(N)∩ S̃. Therefore Ṽ ∩ S ⊆ c̃lτi(N) making V ∩S ⊆ clτi(N)∩S.

But V ∈ τj, so V ∩S ∈ Sτj . Therefore V ∩S = ∅. Because V ∈ τ , it follows from Observation

2.1.17 that O = Ṽ ∩ S̃ = oS̃(U) making intj
S̃

(
cli

S̃

(
Ñ
))

= O. Thus Ñ is (iS̃, jS̃)-nowhere

dense.

(⇐=): Let U ∈ Sτj be such that U ⊆ clτi(N). Then U = V ∩ S for some V ∈ τj. Since V

is τ -open, it follows from Lemma 4.1.7 that Ṽ ∩ S̃ ⊆ c̃lτi(N) = cli(Ñ). Therefore

oS̃(νS̃(V )) = o(V ) ∩ S̃ = Ṽ ∩ S̃ ⊆ cli(Ñ) ∩ S̃ = cli
S̃
(Ñ).

Such νS̃(V ) belongs to νS̃[τj] = S̃j. Since Ñ is (iS̃, jS̃)-nowhere dense,

O = oS̃(νS̃(V )) = Ṽ ∩ S̃ ⊇ Ṽ ∩ S.

Therefore ∅ = V ∩ S = U . Thus N is (Sτi , Sτj)-nowhere dense.

Now, we show that the definition of a sublocale (i, j)-remote from a dense subbilocale is

conservative in bilocales. The proof is similar to that of Proposition 5.2.9, taking into account

the result proved in Proposition 5.2.11. It shall be omitted.

Proposition 5.2.12. Let (X, τ1, τ2) be a sup-TD-bispace and S ⊆ X. Then A ⊆ X is (τi, τj)-

remote from (S, Sτ1 , Sτ2) iff Ã ∈ S(τ) is (i, j)-remote from (S̃, S̃1, S̃2).

We close this section with a short discussion on how (i, j)-remote sublocales are sent back

and forth by bilocalic maps as defined below. We start by recalling that a biframe map

h : (M,M1,M2)→ (L,L1, L2) is a frame homomorphism h : M → L for which

h(Mi) ⊆ Li (i = 1, 2).

127



Definition 5.2.13. We call f : (L,L1, L2)→ (M,M1,M2) a bilocalic map if (i) f : L→M is

a localic map, (ii) f [Li] ⊆Mi for i = 1, 2, and (iii) f ∗ : (M,M1,M2)→ (L,L1, L2) is a biframe

map, where f ∗ : M → L is the left adjoint of f .

For a bilocalic map f : (L,L1, L2) → (M,M1,M2), the localic map f : L → M is called

the total part of f : (L,L1, L2)→ (M,M1,M2).

For a bilocalic map f : (L,L1, L2) → (M,M1,M2), f [−] : S(L) → S(M) and f−1[−] :

S(M)→ S(L) are respectively the usual localic image and localic preimage functions induced

by the total part of f .

We have not seen the above introduced concept of a bilocalic map in the literature.

Example 5.2.14. For a locale L and S ∈ S(L), the localic embedding map (S, S, S) ↪→

(L,L, L) is a bilocalic map.

Proposition 5.2.15. Let f : (L,L1, L2) → (M,M1,M2) be a bilocalic map. Consider the

following statements:

1. f ∗ sends j-dense elements to j-dense elements.

2. f−1[−] : S(M)→ S(L) preserves (i, j)-nowhere dense sublocales.

3. f [−] : S(L)→ S(M) preserves (i, j)-remote sublocales.

Then for i 6= j ∈ {1, 2}, (1) ⇐⇒ (2) =⇒ (3). Moreover, if (L,L1, L2) is balanced, then

(1)⇐⇒ (2)⇐⇒ (3).

Proof. (1) =⇒ (2): Let A ∈ S(M) be (i, j)-nowhere dense. Then
∨
{x ∈Mi : A ⊆ c(x)} ∈Mi

is j-dense. It follows that f ∗
(∨
{x ∈ Mi : A ⊆ c(x)}

)
is j-dense and f ∗

(∨
{x ∈ Mi : A ⊆

c(x)}
)
∈ Li because f ∗ is a biframe homomorphism. Therefore

c
(
f ∗
(∨
{x ∈Mi : A ⊆ c(x)}

))
= f−1

[
c
(∨
{x ∈Mi : A ⊆ c(x)}

)]
= f−1[cli(A)]

is (i, j)-nowhere dense by Proposition 5.1.12. Because f−1[A] ⊆ f−1[cli(A)], it follows from

Proposition 5.1.13(2) that f−1[A] is (i, j)-nowhere dense.
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(2) =⇒ (1): Let a ∈ Mi be j-dense. By Corollary 5.1.12, c(a) is (i, j)-nowhere dense. By

hypothesis, f−1[c(a)] is (i, j)-nowhere dense. But f−1[c(a)] = o(f ∗(a)), so c(f ∗(a)) is (i, j)-

nowhere dense, making f ∗(a) ∈ Li j-dense by Proposition 5.1.12.

(2) =⇒ (3): Let A ∈ S(L) be (i, j)-remote and choose an (i, j)-nowhere dense sublocale N

of M . Set cli(N) = c(a) for some a ∈Mi. By (2),

cli(f−1[c(a)]) ∩ A = cli(c(f
∗(a))) ∩ A = O.

But f ∗(a) ∈ Li, so c(f ∗(a)) ∩ A = O. Clearly c(a) ∩ f [A] = O. Thus cli(N) ∩ f [A] = O.

For the special case, we prove (3) =⇒ (1). Assume that (L,L1, L2) is balanced, f [−]

preserves (i, j)-remote sublocales and let a ∈ Mi. It follows from Example 5.2.2(2) that BL

is (i, j)-remote. Since (i, j)-remote sublocales are contained in every open sublocale induced

by Lj-elements and f [−] preserves (i, j)-remote sublocales, f [BL] ⊆ o(a). Therefore BL ⊆

f−1[o(a)] = o(f ∗(a)), making the Li-element f ∗(a) a dense element of L. By Proposition

5.1.18(4), f ∗(a) is almost j-dense so that it is j-dense by Proposition 5.1.18(2).

Proposition 5.2.16. Let f : (L,L1, L2)→ (M,M1,M2) be a bilocalic map that sends j-dense

elements to j-dense elements. Then f−1[−] preserves (i, j)-remote sublocales.

Proof. Let A ∈ S(M) be (i, j)-remote and choose a j-dense x ∈ Li. Since f [Li] ⊆ Mi and f

sends j-dense elements to j-dense elements, f(x) ∈Mi is j-dense. Therefore A ∩ c(f(x)) = O

which implies that f−1[A] ∩ c(x) = O, as required.

To give an example of a bilocalic map f such that f−1[−] preserves (i, j)-remote sublocales,

we consider the following notations.

Definition 5.2.17. Let f : (L,L1, L2)→ (M,M1,M2) be a bilocalic map. We call f :

1. Dense if its total part is dense.

2. Injective if the restrictions f |Li : Li →Mi are injective maps, for i ∈ {1, 2}.

It is clear that an injective bilocalic map has an injective total part.
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Example 5.2.18. For a dense and injective bilocalic map f : (L,L1, L2) → (M,M1,M2),

f−1[−] preserves (i, j)-remote sublocales. To verify this, it suffices to show that f sends j-

dense elements to j-dense elements. Let y ∈ Li be j-dense and choose x ∈ Mi such that

x ∧ f(y) = 0. Then

f ∗(x) ∧ y = f ∗(x) ∧ f ∗(f(y)) = f ∗(x ∧ f(y)) = f(0) = 0.

Since y is j-dense, f ∗(x) = 0. Therefore x = f(f ∗(x)) = 0. Thus f(y) is j-dense. It follows

from Proposition 5.2.16 that f−1[−] preserves (i, j)-remote sublocales.

5.3 A sublocale RemBL

In this section, we construct a sublocale from a collection of elements inducing (i, j)-remote

sublocales. Some properties of this sublocale will be studied.

For a bilocale (L,L1, L2), set

RemBL = {x ∈ L : c(x) is (1, 2)-remote} = {x ∈ L : x ∨ a = 1 for every 2-dense a ∈ L1}.

In the following result, we put some restrictions on (L,L1, L2) so that RemBL is a sublocale

of L.

Proposition 5.3.1. Let (L,L1, L2) be a bilocale such that:

1. L is a coframe, or

2. Every L2-dense member of L1 is complemented in L.

Then RemBL is a sublocale of L.

Proof. We only verify (2). Let each aα ∈ RemBL and y ∈ L1 be 2-dense. Since y is comple-

mented in L,

y ∨
∧

aα =
∧

(y ∨ aα) =
∧
{1} = 1

so that
∧
aα ∈ RemBL.
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Furthermore, let x ∈ L, a ∈ RemBL and y ∈ L1 be L2-dense. Then y ∨ a = 1. Since

a ≤ x→ a, we have that y ∨ (x→ a) = 1. Thus x→ a ∈ RemBL.

Hence RemBL is a sublocale of L.

Comment 5.3.2. The idea of having a subframe Li of L whose members are complemented

in L is not outrageous. Zarghani et. al. in [62] and [61] define a topoframe as a pair (L, τ)

where L is a frame and τ a subframe of L all of whose elements are complemented in L.

Denote by:

1. BiLoc the category of bilocales whose morphisms are bilocalic maps.

2. TBiLoc the full subcategory of BiLoc whose objects are bilocales (L,L1, L2) satisfying

the condition that each L2-dense member of L1 is complemented in L.

3. BiCFLoc the full subcategory of BiLoc where objects are bilocales whose total parts

are coframes.

4. RemBiLoc the full subcategory of BiLoc whose objects are bilocales (L,L1, L2) giving

rise to the sublocale RemBL.

Observation 5.3.3. Proposition 5.3.1 tells us that TBiLoc and BiCFLoc are full subcate-

gories of RemBiLoc.

We consider some examples.

Example 5.3.4. (1) Consider the bitopological space (X, τ1, τ2), where X = {a, b, c}, τ1 =

{∅, X, {a}, {b, c}} and τ2 = {∅, X, {b}}. It is clear that all τ2-dense members of τ1 are comple-

mented in τ = {∅, X, {a}, {b}, {b, c}, {a, b}} and RemBτ = c({a}) is a sublocale of τ .

(2) Consider the bitopological space (X, τ1, τ2), whereX = {a, b, c, d}, τ1 = {∅, X, {b, c}, {b}}

and τ2 = {∅, X, {a, b}, {c, d}}. It is clear that all τ2-dense members of τ1 are complemented in

τ = {∅, X, {b}, {c}, {b, c}, {a, b}, {c, d}, {a, b, c}, {b, c, d}}

and RemBτ = {X}.
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(3) The total parts of the bilocales in (1) and (2) are coframes. In fact, in both (1) and

(2) we considered the category TBiLoc∩BiCFLoc. For a different perspective, consider the

bilocale (OR, L1 = {∅,R}, L2 = OR). We have that (OR, L1, L2) /∈ Obj(BiCFLoc) (see, for

instance, [33]). Since 1 = R is the only L2-dense element of L1 and 1 is complemented in L,

(OR, L1, L2) ∈ Obj(TBiLoc).

(4) Consider the bitopological space (X, τ1, τ2), whereX = {a, b, c, d}, τ1 = {∅, X, {c}, {a, c}}

and τ2 = {∅, X, {b, c}}. Clearly,

τ = {∅, X, {c}, {a, c}, {b, c}, {a, b, c}}

is a coframe so that (τ, τ1, τ2) ∈ Obj(BiCFLoc), but {c} is a τ2-dense member of τ1 which is

not complemented in τ , making (τ, τ1, τ2) /∈ Obj(TBiLoc).

(5) A bilocale is Boolean, [56], if x ≺i x for each x ∈ Li, i = 1, 2, i.e., there is c ∈ Lj (i 6= j)

such that x∧c = 0 and x∨c = 1. This tells us that each x ∈ Li, i = 1, 2, is complemented in L.

As a result of this, every Boolean bilocale is an object of TBiLoc and hence of RemBiLoc.

A symmetric Boolean bilocale is an object of TBiLoc∩BiCFLoc. This is so because every

Boolean locale is a coframe.

(6) Recall from [28] that the collection CL of all congruences on the locale L form a locale.

The triple (CL,∇L,∆L), where ∇L = {∇a : a ∈ L} and ∆L is the subframe of CL generated

by {∆a : a ∈ L}, is a bilocale called the congruence bilocale of L. The congruence bilocale of

a locale is an object of TBiLoc. This follows since every member of ∇L is complemented in

CL.

(7) For a symmetric bilocale (L,L1, L2), RemBL = L if and only if L is Boolean. The

verification is similar to that of Corollary 2.1.30.

In what follows, we consider conditions such that the bilocale of ideals of a locale L induce

RemBL. Recall from [4] that the triple (JL, (JL)1, (JL)2), where JL is the locale of all ideals

of L and (JL)i (i = 1, 2) is the subframe of JL consisting of all ideals J ⊆ L generated by

J ∩Li, is a bilocale called the ideal bilocale. A locale is called Noetherian if all of its elements

are compact. All ideals in the following result are in the total part of the bilocale.

Proposition 5.3.5. A bilocale (L,L1, L2) is an object of TBiLoc only if (JL, (JL)1, (JL)2) ∈
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Obj(TBiLoc). Moreover, if L is Noetherian, then (L,L1, L2) is an object of TBiLoc iff

(JL, (JL)1, (JL)2) ∈ Obj(TBiLoc)

Proof. Let x ∈ L1 be L2-dense. Since a ≤ x ∈ L1 ∩ ↓x for each a ∈ ↓x and ↓x ∈ JL,

↓x ∈ (JL)1. The ideal ↓x is (JL)2-dense. Indeed, let J ∈ (JL)2 be such that J ∧ ↓x = 0JL.

If a ∈ J , then a ≤ b for some b ∈ J ∩ L2. But (
∧
J) ∧ x = 0 and b ≤

∨
J , so b ∧ x = 0

making b = 0 since x is L2-dense. Therefore a = 0. Thus J = 0JL so that ↓x is (JL)2-dense.

By hypothesis, ↓x is complemented in JL, i.e., there is I ∈ JL such that I ∧ ↓x = 0JL and

I ∨ ↓x = 1JL =↓1. Since I ⊆ ↓(
∨
I), (

∨
I) ∨ x = 1. Since we also have that (

∨
I) ∧ x = 0, x

is complemented in L. Thus (L,L1, L2) ∈ Obj(TBiLoc).

For the special case, let J ∈ (JL)1 be (JL)2-dense. Recall from [6] that a locale is Noethe-

rian if and only if each ideal is principal. So, ↓
∨
J = J , making

∨
J ∈ J . Therefore

∨
J ≤ x

for some x ∈ L1 ∩ J , making
∨
J = x ∈ L1. Observe that

∨
J is L2-dense. To see this, choose

y ∈ L2 such that y ∧ (
∨
J) = 0. Then (↓

∨
J) ∩ ↓y = 0JL. But J ⊆ ↓(

∨
J), so J ∩ ↓y = 0JL, so

that ↓y = 0JL. Therefore y = 0 and hence
∨
J is L2-dense. Since (L,L1, L2) ∈ Obj(TBiLoc),∨

J is complemented in L, i.e., there is a ∈ L such that a ∨ (
∨
J) = 1 and a ∧ (

∨
J) = 0.

Therefore 1JL = (↓
∨
J) ∨ ↓a = J ∨ ↓a and 0JL = (↓

∨
J) ∧ ↓a = J ∧ ↓a. Therefore J is

complemented in JL. Thus (JL, (JL)1, (JL)2) ∈ Obj(TBiLoc).

Proposition 5.3.6. Let (L,L1, L2) ∈ Obj(RemBiLoc). Then RemBL is a closed sublocale

of L.

Proof. We show that for every A ∈ S(L), A ⊆ RemBL implies A ⊆ RemBL. Assume that

A ⊆ RemBL and let x ∈ A and y ∈ L1 be 2-dense. Since
∧
A ∈ RemBL, (

∧
A) ∨ y = 1. But∧

A ≤ x, so x ∨ y = 1. Thus x ∈ RemBL. Consequently, RemBL ⊆ RemBL, making RemBL

a closed sublocale.

Observation 5.3.7. Since BL is seldomly complemented, Proposition 5.3.6 tells us that

RemBL is not always the same as BL. This is also confirmed by Example 5.3.4(1) where

Bτ = {∅, X, {a}, {b, c}} 6= RemBτ . Noting the fact that Bτ ∩ RemBτ = {{a}, X}, we also

get that RemBL is not always nowhere dense. Since 0RemBτ = {a} does not meet the non-zero

{b} ∈ τ2, RemBτ is also not almost (1, 2)-nowhere dense (hence, not (1, 2)-nowhere dense).
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Lastly, RemBτ is not remote because it does not miss the τ -nowhere dense sublocale c({a, b}).

We showed earlier that every closed sublocale of a locale which is also a coframe is a

coframe. As a result of this, we have that if (L,L1, L2) ∈ Obj(BiCFLoc), then RemBL is

closed and hence a coframe. We get the following immediate result.

Proposition 5.3.8. If (L,L1, L2) ∈ Obj(BiCFLoc), then (RemBL, ν(RemBL)[L1], ν(RemBL)[L2])

is an object of RemBiLoc.

In the following result, we give neccessary and sufficient conditions for RemBL to be the

whole locale.

Proposition 5.3.9. Let (L,L1, L2) ∈ Obj(RemBiLoc). The following statements are equiv-

alent.

1. RemBL = L.

2. L is (1, 2)-remote as a sublocale of itself.

3. 1 is the only 2-dense element of L1.

4. 0 ∈ RemBL.

Proof. (1) =⇒ (2): Let x ∈ L1 be 2-dense. Since 0 ∈ RemBL, we have that 0∨x = 1, implying

that x = 1. Thus 1 is the only 2-dense element of L1.

(2)⇐⇒ (3): Follows from Proposition 5.2.6.

(3) =⇒ (4): Since 1 is the only 2-dense element of L1, we have that 0 ∨ x = 1 for every

2-dense x ∈ L1, making 0 ∈ RemBL.

(4) =⇒ (1): Follows since RemBL is closed.

Observation 5.3.10. One should not confuse Example 5.3.4(5) with Proposition 5.3.9. The

conditions in Proposition 5.3.9 do not always imply that the total part L is Boolean. For

instance, consider the set X = {a, b, c} endowed with topologies τ1 = {∅, X, {a}} and τ2 =

{∅, X, {b}}. We have that τ = {∅, X, {a}, {b}, {a, b}} and the only τ2-dense member of τ1 is
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X which is complemented in τ making (τ, τ1, τ2) ∈ Obj(TBiLoc). It follows from Proposition

5.3.9 that RemBτ = τ , but τ is not Boolean since, for instance, the element {a} is not

complemented.

We consider a condition on (L,L1, L2) ∈ Obj(RBiLoc) such that RemBL is a remote

sublocale of L.

Proposition 5.3.11. Let (L,L1, L2) be a bilocale. If

1. (L,L1, L2) ∈ Obj(BiCFLoc), OR

2. (L,L1, L2) ∈ Obj(TBiLoc) with L1 = L,

then RemBL is a remote sublocale of L.

Proof. The case of (L,L1, L2) ∈ Obj(BiCFLoc) follows from Corollary 2.1.32.

For (L,L1, L2) ∈ Obj(TBiLoc), let y ∈ L be dense. By Proposition 5.1.18(4), y is almost

2-dense. But y ∈ L1, so y is 2-dense by Proposition 5.1.18(2). It follows from Theorem 5.2.5

that c(x) ⊆ o(y) for every x ∈ RemBL. That is x ∈ o(y) for all x ∈ RemBL. Therefore

RemBL ⊆ o(y). Thus RemBL is a remote sublocale of L.

Observation 5.3.12. (1) The converse of Proposition 5.3.11 is not always true. Example

5.3.4(1)-(4) are counter examples.

(2) Since BL is the largest remote sublocale of a locale L, Proposition 5.3.11 tells us that

RemBL ⊆ BL whenever L1 = L.

Since, according to [50], the frame homomorphism ∇L : L→ CL is an isomorphism if and

only if L is Boolean, we have the following result which holds since RemBL is remote and

hence Boolean for (L,L1, L2) ∈ Obj(BiCFLoc).

Corollary 5.3.13. For every (L,L1, L2) ∈ Obj(BiCFLoc), ∇RemBL : RemBL → CRemBL

is an isomorphism.

In light of Example 5.3.4(7), we have the following result.
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Proposition 5.3.14. Let (L,L1, L2) ∈ Obj(RemBiLoc). Then

(RemBL,RemBL,RemBL) = (L,L, L)

iff L is Boolean.

Proposition 5.3.15. Let (L,L1, L2) ∈ Obj(RemBiLoc). Then νS[RemBL] ⊆ RemBS for

every dense subbilocale (S, S1, S2) ∈ Obj(RemBiLoc) of (L,L1, L2).

Proof. Let x ∈ RemBL and choose a 2S-dense y ∈ Si. Then y = νS(a) for some a ∈ L1. It

follows from Lemma 5.2.4 that a is 2-dense. Therefore x ∨ a = 1 so that

1 = νS(x ∨ a) = νS(x) ∨S νS(a) = νS(x) ∨S y.

Thus νS(x) ∈ RemBS.

Observation 5.3.16. If (L,L1, L2) ∈ Obj(BiCFLoc), then all open subbilocales and closed

subbilocales of (L,L1, L2) are objects of BiCFLoc. The case of closed subbilocales was verified

in Chapter 2 where we showed that every closed sublocale of a locale that is a coframe is itself

a coframe. We verify the case of open subbilocales. Choose x ∈ L. We show that o(x) is a

coframe. Let aα ∈ o(x) for each α and y ∈ o(x). Then

y ∨o(x)
∧

aα = νo(x)

(
y ∨

∧
aα

)
= νo(x)

(∧
(y ∨ aα)

)
since L is a coframe

= x→
∧

(y ∨ aα)

=
∧

(x→ (y ∨ aα)) since b→
∧

cα =
∧

(b→ cα), for all b, cα ∈ L

=
∧

(νo(x)(y ∨ aα))

=
∧

(y ∨o(x) aα).

Recall from [51] that, for any subframe L′ and sublocale S of a locale L, there is a frame

homomorphism

L′ L S.
⊆ νS

For a closed sublocale S, say S = c(x) for some x ∈ L, the above frame homomorphism

νS ◦ ⊆ : L′ → S takes each a ∈ L′ to a ∨ x. We give the following result.
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Proposition 5.3.17. Let (L,L1, L2) ∈ Obj(RemBiLoc). Then the frame homomorphism

α : L1 → RemBL, defined by x 7→ x ∨ 0RemBL, sends L-dense elements of L1 to the top.

Proof. Let x ∈ L1 be L-dense. It follows from Proposition 5.1.18(4) that x is almost 2-dense so

that it is 2-dense by Proposition 5.1.18(2). Since 0RemBL ∈ RemBL, 1 = x∨0RemBL = α(x).

In Proposition 5.3.18 below, we give conditions on a bilocalic map f : (L,L1, L2) →

(M,M1,M2) such that the restriction map between RemBL and RemBM is a localic map. By

a weakly closed biframe homomorphism we mean a biframe map whose total part is weakly

closed.

Proposition 5.3.18. Let (L,L1, L2), (M,M1,M2) ∈ Obj(RemBiLoc) and f : (L,L1, L2) →

(M,M1,M2) be a bilocalic map such that h : (M,M1,M2) → (L,L1, L2) is weakly closed and

sends 2-dense elements to 2-dense elements. Then

f|RemBL : RemBL→ RemBM

is a localic map.

Proof. It suffices to show that f [RemBL] ⊆ RemBM . Choose x ∈ RemBL and let y ∈M1 be

2-dense. Since h sends 2-dense elements to 2-dense elements, h(y) ∈ L1 is 2-dense. Therefore

h(y) ∨ x = 1. But h is weakly closed so y ∨ f(x) = 1. Thus f(x) ∈ RemBM .

Definition 5.3.19. Call a bilocalic map f : (L,L1, L2) → (M,M1,M2) a RemB-map if

f [RemBL] ⊆ RemBM .

Example 5.3.20. The bilocalic maps described in the statement of Proposition 5.3.18 are

RemB-maps.

Denote by BiCFLocR and RemBiLocR the subcategories of BiCFLoc and RemBiLoc,

respectively, whose morphisms are RemB-maps.

There is a functor between RemBiLocR and Loc, as one checks routinely.

Proposition 5.3.21. The assignment

RemB : RemBiLocR → Loc,

137



(L,L1, L2) 7→ RemBL,

RemB(f : (L,L1, L2)→ (M,M1,M2)) = f|RemBL

with the usual composition in Loc, is a functor.

Using the fact that each RemBL ∈ Obj(BooLoc) for every (L,L1, L2) ∈ Obj(BiCFLoc),

we have the following result.

Proposition 5.3.22. The assignment Rem′B : BiCFLocR → BooLoc mapping as RemB is

a functor.

Recall from [5] that there is a faithful functor U : BiFrm → Frm which takes the total

part. It is clear that there is also a functor F : BiLoc → Loc behaving the same as the

functor U . Furthermore, one can easily see that there is a functor G : RemBiLocR → Loc

which maps as F .

In what follows, we show that there is a natural transformation from RemB to G.

Proposition 5.3.23. There is a natural transformation η : RemB → G.

Proof. Let (L,L1, L2) ∈ Obj(RemBiLocR) and η(L,L1,L2) be the map jRemBL : RemBL → L.

The map η(L,L1,L2) is clearly a localic map. Now, choose f : (L,L1, L2) → (M,M1,M2) ∈

Morp(RemBiLocR). Then the diagram

RemBL L

RemBM M

RemB(f)

η(L,L1,L2)

G(f)

η(M,M1,M2)

(5.3.1)

commutes. Indeed, for each x ∈ RemBL,

G(f)(η(L,L1,L2)(x)) = G(f)(x) = f(x) = η(M,M1,M2)(f(x)) = η(M,M1,M2)(RemB(f)(x))

which proves the result.

Denote by RemBiLocRB the full subcategory of RemBiLocR whose objects are bilocales

(L,L1, L2) with 1 the only L2-dense element of L1.
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Proposition 5.3.24. The assignment RemRB : RemBiLocRB → Loc, where RemRB L =

RemBL and RemRB(f) = RemB(f), is a faithful functor.

Proof. We only prove faithfulness: Let f, g : (L,L1, L2)→ (M,M1,M2) ∈ Morp(RemBiLocRB)

be such that RemRB(f) = RemRB(g). Since, by Proposition 5.3.9, RemBL = L and RemBM =

M , we have that

total part of f = f|RemBL = RemRB(f) = RemRB(g) = g|RemBL = total part of g.

So that f = g, making RemRB faithful.

Consider the functor Ĝ : RemBiLocRB → Loc which maps as G : RemBiLocR → Loc.

We have the following result.

Proposition 5.3.25. The functors Ĝ and RemRB are naturally isomorphic.

Proof. Consider the natural transformation ω : RemRB → Ĝ which maps as the natural

transformation η : RemB → G given in Proposition 5.3.23. Since L = RemR L = RemRB L for

every (L,L1, L2) ∈ Obj(RemBiLocRB), each component ω(L,L1,L2) = jRemBL : RemBL→ L is

an isomorphism. Thus ω is a natural isomorphism.
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