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Abstract

In this thesis, we extensively explore the role of matrices as substitutes for derivative

and integral operators. By expressing an approximate solution of a partial differential in

an implicit form involving polynomials, we demonstrate how to deduce novel composite

operational matrices. We also show how to utilise the laws of matrix multiplication to

come up with a single matrix that performs the role of differentiation and integration. In

conjunction with the Garlekin technique, we apply these composite matrices to numeri-

cally solve partial differential equations. Through practical examples, we prove that these

composite operational matrices are convenient in approximating the solution of partial

differential equations using a computer algebra system like Mathematica.

Keywords: Variable order differential equations, Operational matrices, Caputo fractional

derivative, Approximate solution, Garlekin technique, Polynomials, Composite derivative

matrix, Composite integral matrix, Matrix multiplication, Associative Law, Commutative

Law.
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Chapter 1

Introductory Remarks

1.1 Introduction

The Matrix, a versatile concept in mathematics is a rectangular array of symbols, num-

bers or expressions arranged in the form of rows and columns. The size of the matrix is

described in the form of the number of rows and columns that it has, starting with the

rows and then columns. For example, a 3×4 matrix implies it has 3 rows and 4 columns.

Positioning of the elements in the matrix is very important as they determine the unique-

ness of the matrix. The conventional way of describing the position of an element in the

matrix is ai j, this tells us that an element a occupies the ith row and jth column. Changing

positions of the elements in a matrix will change the whole matrix, and therefore changing

the intended results it sets to accomplish.

Matrices have varied applications in mathematics. In linear algebra, matrices represent

coefficients of variables in a system of equations. In this situation, with the set up matrix,

we can apply the Gauss-Jordan elimination [38, 39] or the Gauss elimination [38] to find

the solutions of the equation. This is a classical example where the concept of the matrix

can be of use in solving a system of equations.

In numerical analysis, matrices play various roles. A specific example is in the finite el-

1



Introduction 2

ement method where the concept of the matrix is applied in the creation of the stiffness

matrix [2]. This stiffness matrix is in the form of a system of equations that needs to be

solved so as to approximate the solutions of partial differential equations of elliptic na-

ture.

In geometrical transformations, matrices play the role of mappings. We have matrices for

rotation both clockwise and counter clockwise, for reflection, enlargement and stretches.

The coordinates of the object have to be in the form of a matrix so that we are able to

multiply it with the applicable transformation matrix to get the coordinates of the image.

An analogy of geometric transformations in calculus is differentiation and integration.

These two operators take the original function and transform it into a different state.

Therefore, we can also understand differentiation and integration as mappings. In this

way, we can comprehend that it is feasible to represent these two operations with matri-

ces. However, with differentiation and integration, we are mapping both functions and

real numbers, unlike in geometrical transformations where we deal with real numbers.

In this thesis, our main aim is to explore the role of matrices as substitutes for differen-

tiation and integration. We are going to refer to these matrices as operational matrices,

since they operate on a function to change its form. Furthermore, we intend to investi-

gate the application of operational matrices in the solution of differential equations (DEs).

DEs are mathematical models that represent the rate of change of one or more variables

with respect to the other variable(s). Therefore, DEs play a pivotal role in modelling

systems that exhibit change over time. Such systems include, weather patterns, chemical

reactions, derivative markets in finance and many other systems. The classical differential

equations are the ones with an order of the derivative being an integer. However, it is also

possible, although not common in introductory texts of calculus to have the integer order

derivative extended to accommodate fractions resulting in a fractional differential equa-

tion (FDE). Therefore a FDE is a generalisation that includes an integer order differential

equation.

The definition of the fractional derivative is an area under active research. There are many
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definitions of the fractional derivative being proposed by researchers, with each defini-

tion possessing some form of deficiency. When it comes to applications, the common

fractional derivatives that researchers make use of are, the Caputo [1, 37], the Caputo-

Fabrizio [28] and the Atangana-Baleanu [29].

To some extent, the results from different fractional derivatives are not the same, although

the deviation is not that much. A common example is the comparison of the results from

the Caputo and Caputo-Fabrizio. It is noticed that the past events have a lesser influence

on the current events when applying the former derivative than the later. Therefore, there

is a general consensus that the practical situation under consideration dictates the choice

of the fractional derivative.

It has been witnessed through several different experimental observations that the results

from the fractional derivative outperform those from the classical derivative. The theo-

retical explanation for this important observation is that the fractional part of the FDE

captures some important practical information that the classical derivative is incapable of.

This has promoted the widespread use of the fractional derivative as researchers are able

to build a detailed mathematical model that yield more realistic results.

Of late, there have been suggestions to further extend the fractional derivative by replacing

the fraction in the derivative with a function. This function can be of one or several vari-

ables. This type of derivative becomes more complex than both the integer and fractional

order. Due to the complexity that comes with this development in terms of computations,

there has been a noticeable reluctance in pursuing research along these lines.

Although the fractional derivative might result in a robust mathematical model that yields

more desirable results compared to its integer counterpart, one major drawback is that

it is more cumbersome to solve. This is due to an extra parameter that is added, and

allowed to vary within a specified range. Thus careful consideration should be taken

in choosing a solution method that will lessen the computational difficulties, but at the

same time achieving accurate results. It has to be pointed out that there are no special

solution methods reserved for fractional differential equations. Any solution method that
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can be used for integer order differential equations can be successfully implemented in a

fractional derivative setting.

Most mathematical models that capture real life situations are complex, and in the con-

text of differential equations, they are best represented in the form of non linear DEs and

Partial differential equations (PDEs). Notable examples include, the Van der Pol equa-

tion that has applications in electrical circuits, the heat equation that finds applications in

probability, and the Navier-Stokes equations that model viscous flow.

1.2 Definitions and notations

Analytical Solution- This is the solution obtained when a differential equation is solved

leading to the dependent variable being expressed as a function of independent variable(s)

in an algebraic equation. The solution is expressed in closed form.

Numerical Solution- This is an approximate solution to a differential equation. In most

cases, the solution is not in closed form.

Steady state solution- This is a solution that is independent of time.

Garlekin methods- These are a class of methods that convert a continuous operator prob-

lem, for example a differential equation to a discrete problem.

Operational matrix- This is a matrix that represents a derivative or integral operator.

We now explain some notation that we will be using in this research.
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Table 1.1: Table showing important notations and meaning.

Notation Meaning

n ∈ N n is the element of natural numbers.

n ∈ N0 or n ∈ N ∪ 0 n is the element of natural numbers including zero.

x ∈ R x is the element of Real numbers.

Rn x = (x1, x2, ..., xn) : xm ∈ R; m = 1, 2, ..., n

x ∈ (a, b) x ∈ R : a < x < b

x ∈ [a, b] x ∈ R : a ≤ x ≤ b

x ∈ [a, b) x ∈ R : a ≤ x < b

x ∈ (a, b] x ∈ R : a < x ≤ b

Given matrices A, B and C having the dimensions M × N, then the following matrix

operations hold,

(i) A + B = B + A, matrix addition is commutative.

(ii) AB , BA, in general matrix multiplication is not commutative, however, we do have

some exceptions.

(iii) A(B + C) = AB + AC, distributive.

(iv) An = A × A × A × · · · × A, n times.

(v) A−1, denotes the inverse of matrix A.

(vi) A0 = I, where I denotes the identity matrix.

(vii) AT denotes the transpose of matrix A, the rows change to columns and the columns

change to rows.

(viii) (AB)T = BT AT .

(ix) IT = I, the transpose of an identity matrix is an identity matrix.

If y is a function of t, then,
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y′ =
dy
dt ,

y′′ =
d2y
dt2 .

If y is a function of two variables, x and t, then,

yt =
∂y
∂t = ∂ty, yx =

∂y
∂x = ∂xy,

ytt =
∂2y
∂t2 = ∂tty, yxx =

∂2y
∂x2 = ∂xxy.

1.3 Outline of the Thesis

The research is divided into six chapters as follows. The current chapter introduces the

thesis to the reader, we also provide some terminology and shorthand notations that we

use throughout the thesis. In chapter 2, we do a review of the necessary literature and

indicate how this research fit into the existing body of knowledge. Chapter 3 focuses

on reviewing the operational matrices of derivative and integral. In addition to this, we

suggest another way of deducing an integral matrix using integral transforms. In chapter

4, we present completely new results. We explain how partial differential equations lend

themselves to matrices that are functions of other matrices. In chapter 5, we deal with

applications of the proposed concepts. In particular, we use the diffusion equation as our

case study. The summary of our research findings are found in chapter 6, this includes,

our results, the challenges encountered during research and directions for future research.



Chapter 2

Literature Review

Surprisingly, not much ground is being covered in the use of operational matrices in partial

differential equations (PDEs). More focus in the literature is on the ordinary differential

equations (ODEs). Considering the importance of PDEs in mathematics and real world

applications, it is essential that the use of operational matrices in PDEs be brought on par

with ODEs. This thesis seeks to make a contribution that addresses the issue of this gap.

Operational matrix is a broad term that basically encompasses two operations, namely,

the differential and integral operator matrices. The terms differentiation matrix and the

derivative matrix are also used in place of the differential operator matrix. Also, the

integral operator matrix is known as the integration matrix.

On their own, operational matrices do not possess the capability of solving differential

equations. They are used in conjunction with other methods, in particular numerical tech-

niques. Thus, at least for now any method that involves the application of operational

matrices will be a numerical method.

There are many numerical methods that are successfully employed to approximate the

solution of DEs and PDEs. Some of the most common numerical methods include, the fi-

nite difference [1,2], the finite element [2], Galerkin methods [16], collocation [7,11,17],

Adomian decomposition [3], iterative method [5], Homotopy perturbation [4]. There has

7
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also been successful attempts in applying hybrid techniques [32]. In such situations, the

integral operator is replaced with an integral transform, and another numerical technique

is applied to complete the solution procedure. In the Laplace Adomian hybrid method,

the Laplace transform is coupled with the Adomian decomposition [21]. A combination

of the Laplace transform and the Homotopy technique yields another common hybrid

method [6].

However, even though we are spoilt for choice of the numerical techniques at our dis-

posal, the nature of the problem to solve and the given conditions limits us to particular

solution methods.

In the application of the operational matrices to solve differential equations, the two most

common used techniques are the collocation and the Galerkin methods. The most sensible

explanation for this might be, the nature of the operational matrices facilitate the use of

these two methods. The role of these two techniques in the solution process is to construct

a system of equations. The solutions of the system of these equations play a pivotal role

in the approximate solution of the DEs.

Polynomials are the backbone for the construction of operational matrices. The elements

of an operational matrix are dependent on the polynomial under consideration. Thus

different polynomials will yield operational matrices with different elements. Among the

common polynomials that have been used in the construction of operational matrices are,

Chebyshev [36], Bernstein [12, 18, 35], Genocchi [19] and Bernoulli [16]. A special note

on the connection between Euler and Bernoulli polynomials is provided in [34].

Rada, Kazemb, Shabanc and Paranda deduce integral, derivative and product operational

matrices from the Bernoulli polynomials [16]. In conjunction with the Garlekin method,

they apply these operational matrices to approximate the solutions of variable coefficient

non linear and linear ODEs. The authors provide a clear explanation of what constitutes

an operational matrix of product. They clearly illustrate that there are certain terms in

an equation that determine if the solution procedure warrants a product operational ma-

trix. The Bernoulli polynomials are written in the form of a product of two matrices,

this feature is exhibited by almost all the polynomials and its very helpful in simplifying

calculations.
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Isah and Chang Phang construct the derivative operational matrix based on Genocchi

polynomials [11]. They use this matrix with the collocation technique to numerically

solve delay differential equations. The authors do not only make a comparison of their

results with analytic solutions, but they also do so against the solutions from other nu-

merical techniques. They also use their solutions to emphasize that an increase in the

dimensional size of the operational matrix brings along with it an improvement in the

results.

Isah, Chang Phang and Piau Phang use the same technique as in [11] to numerically solve

ODEs of fractional order [17]. Since the computations involving FDEs are cumbersome,

the authors choose to use particular numerical values to represent fractional derivatives

rather a variable. This decision has a tremendous effect on reducing computational dif-

ficulties. The authors use evidence from the results to argue that the first few number of

polynomials are adequate to yield accurate solutions.

Liu, Li and Wu make use of Chebyshev polynomials of the second kind to construct

operational matrices. The main intention of building these matrices is to apply them in

ODEs of variable order [8]. They use the collocation method to create a system consisting

of algebraic equations in their numerical solution.

Saadatmandi and Dehghan demonstrate how to use the Legendre polynomials in the nu-

merical solution of constant coefficient fractional ordinary differential equations. They

apply the collocation and tau methods as their numerical techniques [10]. The authors

provide a splendid explanation on how to transition from the operational matrix with in-

teger order to that with fractional order.

Ganji and Jafari utilise the Jacobi polynomials to numerically solve variable order differ-

ential equations [7]. To be more specific, they use the operational matrices derived from

the shifted Chebyshev and Legendre polynomials as these are known to be the special

cases of the Jacobi polynomials. It is shown that different functions such as, exponen-

tial, trigonometric, quadratic and linear can be taken as the order of the derivative. The

authors compare their solutions with analytic ones, and they illustrate that the first few

polynomials are enough to attain good approximations.
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Phang Chang et al apply an operational matrix deduced from Legendre polynomials to

numerically solve constant coefficient partial differential equations [22]. Yang, Ma and

Wang use the same operational matrix, but they approximate the solution of PDEs with

variable coefficients [24].

Yin, Song, Lu and Leng employ the Legendre wavelets in conjunction with Laplace trans-

form to numerically ODEs that are both non linear and linear [20]. An operator that con-

sists of the Laplace transform together with its associated inverse is discussed, in fact, this

operator resembles an integral operator.

Rani and Mishra couple the Adomian decomposition method together with Laplace trans-

form to solve non linear ordinary differential equations [21]. They make use of the integral

operational matrix constructed from the Bernoulli polynomials in their solution process.

Most of the literature pertaining the application of operational matrices is related to ODEs.

When it comes to constructing operational matrices for partial derivatives, researchers

have up to this date been very cautious not to deviate much from the formulation used

in the ordinary differential equations. With this traditional formulation, the spatial and

time variable are explicitly constructed. The consequence of this approach implies the

operational matrices representing the space and time variables are written separately,

see [27, 30, 40]. Thus, the application of operational matrices on ODEs is carried over

to PDEs. There is some comfort drawn from such a decision in the sense that one is ma-

noeuvring in a simpler and familiar territory.

In this research, we break away from this culture in ways that we will clarify later and

investigate the implications of our decision on operational matrices. In brief, we will at-

tempt to amalgamate the spatial and time variable with the aim of creating an operational

matrix in which these two variables coexist.

In the context of this research, the term variable order implies that the order of the differ-

ential equation can be integer, fractional and at certain times a function.



Chapter 3

Operational Matrices

Abstract

In this chapter, we provide a detailed explanation on how to go about deducing operational

matrices from polynomials. The theory concerning the extraction of these matrices from

polynomials is provided. Specific examples are given to show the solution procedure

in the application of operational matrices. Since this chapter introduces the reader to

operational matrices and lays important foundation for the next chapter, we will limit the

scope of our work to a single variable.

3.1 Introduction

The contents of this chapter pertains to introducing the concept of the operational matrix,

specifically, we dwell on the differentiation and integral operational matrices. We describe

in great depth how to deduce the operational matrices from polynomials and subsequently

apply them in the numerical solution of differential equations. There are many types of

polynomials from which the operational matrices can be deduced, but we will concentrate

on the Shifted Legendre polynomials.

When it comes to an integral operational matrix, we show that, besides deducing this

matrix through direct integration, it is possible to derive it from integral transforms. In

11
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particular, we will show how to achieve this through the use of two integral transforms,

the generalised integral transform that was recently introduced by Jafari and the Laplace

transform. Furthermore, we will discuss about the difference between two types of inte-

gral operational matrices.

We will demonstrate that, given a fractional differential equation, one has the option of

either using the derivative or the integral operational matrix. In this regard, we will in-

vestigate how utilising different operational matrices impact the solutions of a fractional

differential equation.

We use the Garlekin technique coupled with operational matrices to approximate the solu-

tion of ODEs. To test the reliability of our results, we compare them against the analytical

solutions, perform absolute error calculations and convergence analysis.

3.2 Fractional calculus and the General Jafari transform

We discuss the basic definitions of fractional calculus and a generalised transform intro-

duced by Jafari. We will also include the Laplace transform in our discussion so that we

can demonstrate how the General Jafari transform (GJT) is related to the Laplace trans-

form.

Caputo’s concept of defining the fractional derivative is arguably the most used in appli-

cations, we give its definition below.

Definition 3.2.1. According to Caputo, the fractional derivative with order µ has the

following definition [1],

D
µ
t y(t) =


y(p)(t) if µ = p;

1
Γ(p−µ)

t∫
0

y(p)(s)ds
(t−s)µ−p+1 if µ ∈ (p − 1, p].

(3.1)

Γ[.] represents Euler’s Gamma function. Gamma function’s purpose here is to accommo-

date the factorial calculations of non integer numbers. The useful connection between the

factorial and Gamma function is given below [1],

Γ[n + 1] = n!. (3.2)



Fractional calculus and the General Jafari transform 13

We are able to evaluate the factorial of non integer terms by utilising the Gamma function

on the left hand side of (3.2).

Another important concept that makes use of the Gamma function in fractional calculus

is the Mittag-Leffler function. This is regarded as a general function, imposing particular

conditions on it yields common functions like the cosine, sine and exponential functions.

We give the definition of this function below.

Definition 3.2.2. We define Mittag-Leffler function having two parameters as [1],

Eµ,ν(t) =

∞∑
k=0

tµk

Γ(µk + ν)
, t, µ, ν ∈ (0,∞). (3.3)

The anti derivative of (3.1) is referred to as the Riemann-Lioville fractional integral, we

provide its formal definition below.

Definition 3.2.3. The fractional integral having order µ and operating upon y(t) known

as the Riemann-Liouville can be represented in the form [1],

Ĩµy(t) =


1

Γ(µ)

t∫
0

y(s)ds
(t−s)1−µ , if µ > 0, t > 0 ;

y(t), if µ = 0.
(3.4)

We need to state the properties of the integral given in (3.4). These properties describe

how to execute the functions of this integral [1].

(i) ĨµĨαy(t) = Ĩ
µ+α
t y(t), µ, α ∈ (0,∞).

(ii) Ĩµtν =
Γ(ν+1)

Γ(ν+µ+1) t
µ+ν, ν ∈ (−1,∞), µ, t ∈ (0,∞).

(iii) ĨµDµy(t) = y(t) −
p−1∑
m=0

tm
m!y

(m)(0), µ ∈ (p − 1, p],

Dµ is the Caputo fractional derivative that we previously defined.

Property (iii) above serves to demonstrate that the integral in (3.4) is applicable to the

Caputo fractional derivative [1].

Integral transforms can be viewed as an alternative to integration. The Laplace transform
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is most probably the widely used of all the integral transforms. Its formal definition is

given below.

Definition 3.2.4. The Laplace transform of the function y(t) is defined as [2],

L[y(t)] = Y(s) =

∞∫
0

e−sty(t)dt, s > 0. (3.5)

The Laplace transform will be defined only if the integral on the right hand side of (3.5)

exists.

There is a generalised integral transform that was discovered by Jafari. This General

Jafari transform (GJT) is a transform that incorporates many different integral transforms.

Imposing certain conditions on the GJT yields other integral transforms. We give the

definition of this transform below.

Definition 3.2.5. We define the GJT of the function y(t), T [s], as [14, 15],

T[y(t)] = T [s] = r(s)

∞∫
0

e−w(s)ty(t)dt, t ≥ 0, w(s) > 0, r(s) , 0. (3.6)

The above integral transform is based on the assumption that the integral defined above

exists. If r(s) = 1 and w(s) = s, then the GJT reduces to the Laplace transform [14].

We refer the reader to [14, 15] for information on how the GJT is associated with other

integral transforms.

Integral transforms are also applicable to special functions and derivatives with fractional

order [1]. In the next theorems, we state without proof, the Laplace transforms of the

special function in (3.3) and the Caputo fractional derivative.

The Laplace transform of (3.3) is proved in [1], we give the result below.

Definition 3.2.6. The special function in (3.3) has it’s Laplace transform given as [1],

L[tν−1Eµ,ν(∓c2tµ)] =
sµ−ν

sµ ± c2 , c ∈ R µ, ν ∈ (0,∞), sµ > |c|. (3.7)
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Definition 3.2.7. We can effect the Laplace transform in (3.5) on the Caputo’s definition

of the fractional derivative in (3.1) such that [1],

L[Dµ
t y(t)] = sµY(s) −

p−1∑
m=0

s−1+µ−my(m)(0), p − 1 < µ ≤ p, p ∈ N. (3.8)

Theorem 3.2.1. The GJT of a p order integer derivative is stated as,

T[y(p)(t)] = wp(s)T (s) − r(s)
p−1∑
m=0

wp−1−m(s)y(m)(0). (3.9)

The proof of (3.9) is found in [14].

It follows that we can deduce the GJT of (3.1) by replacing n with µ in (3.9) . The result

is written in the corollary below.

Corollary 3.2.1. The GJT of the fractional derivative definition given in (3.1) can be

stated as,

T[Dµ
t y(t)] = wµ(s)T (s) − r(s)

p−1∑
m=0

wµ−1−m(s)y(m)(0), p − 1 < µ ≤ p, p ∈ N. (3.10)

Table 3.1 gives results of applying the GJT and Laplace transforms to some common

functions and of the first order derivative [1, 14].

Table 3.1: Table showing GJT and Laplace transforms of basic functions.

y(t) T (s) Y(s)

functions 1 r(s)
w(s)

1
s

and their sin(ct) cr(s)
w(s)2+c2

c
s2+c2

respective t r(s)
w2(s)

1
s2

transforms et r(s)
w(s)−1

1
s−1

tµ Γ[µ+1]r(s)
wµ+1(s)

Γ[µ+1]
sµ+1

First derivative y′(t) w(s)T (s) − r(s)y(0) sY(s) − y(0)

We illustrate how to apply the GJT to find the solution of an ODE.



Shifted Legendre polynomials and operational matrices 16

Example 3.1. Suppose we are presented with the following ODE,

y′(t) − y(t) = 0, (3.11)

y(0) = 1,

whose analytic solution is y(t) = et.

We begin by effecting the GJT on each term in (3.11),

T[y′(t)] − T[y(t)] = 0,

applying (3.9) in the above equation gives,

w(s)T (s) − r(s)y(0) − T (s) = 0.

Substituting for the initial condition and then solving for T (s) yields,

T (s) =
r(s)

w(s) − 1

To get the solution y(t), we take the inverse GJT as,

T−1T (s) = T−1
( r(s)
w(s) − 1

)
,

Referring to the Table 3.1, we can tell that,

y(t) = et. (3.12)

3.3 Shifted Legendre polynomials and operational matri-

ces

We want to demonstrate how operational matrices of the derivative and integral can be

deduced from Shifted Legendre polynomials.

Definition 3.3.1. The nth degree Shifted Legendre polynomials (SLPs) on [0, 1] are defined

as [13],

Pn(t) =

n∑
i=0

ωn,iti, (3.13)
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where ωn,i are numbers generated as,

ωn,i =
(−1)n+1(n + i)!

(n + i)!(i!)2 .

We can easily generate the first few polynomials from (3.13) as follows,

P0(t) = 1, (3.14)

P1(t) = −1 + 2t, (3.15)

P2(t) = 1 − 6t + 6t2, (3.16)

P3(t) = −1 + 12t − 30t2 + 20t3. (3.17)

The next two definitions will be essential in the derivation of operational matrices. In

the next definition, we arrange the shifted Legendre polynomials in the form of a column

matrix.

Definition 3.3.2. We define a column matrix of SLPs, P(t), in the form,

P(t) = [P0(t),P1(t),P2(t), ...,Pn(t)]T , n ∈ N, (3.18)

the superscript T denotes the transpose.

Definition 3.3.3. We define a column vector of polynomials as [16],

M(t) = [1, t, t2, ..., tn]T , n ∈ N. (3.19)

There is a very useful relation between (3.18) and (3.19), we elaborate this in the next

section.

3.3.1 Deducing the derivative operational matrices

We describe in detail how to deduce the operational matrices from the SLPs.

The following Lemma states the relation between P(t), and the column matrixM(t).
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Lemma 3.3.1. The SLPs given in (3.18) can be represented as a product of matrices, such

that,

P(t) = AM(t), (3.20)

A is an (n + 1) × (n + 1) matrix whose entries are the coefficients of the SLPs.

We note that since most polynomials can be expressed in the form (3.20), then (3.20) is

applicable to other polynomials. The exception being trigonometric, hyperbolic and ex-

ponential polynomials.

Having introduced the necessary definitions pertaining to the operational matrices, we can

now state without proof the following result that is crucial throughout the thesis.

Theorem 3.3.1. An (n+1)×(n+1) operational matrix of the derivative, D̃, can be written

in place of the usual derivative operator such that [13],

dP(t)
dt

= D̃P(t), (3.21)

for a detailed discussion on how to compute the matrix D̃, we refer the reader to [13].

There is another different way of presenting the operational matrix besides the form in

(3.21). We explain how to get the elements of this matrix in the theorem below.

Theorem 3.3.2. The derivative operational matrix,D, with order (n+1)×(n+1) deduced

fromM(t) can be written as,

D =



0 0 . . . 0 0

1 0 . . . 0 0

0 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . n 0


. (3.22)



Shifted Legendre polynomials and operational matrices 19

Proof. Differentiating the variable t on both sides of (3.20),

dP(t)
dt

=

d
(
AM(t)

)
dt

= A
d
(
M(t)

)
dt

= A



0

1

2t
...

ntn−1



= A



0 0 . . . 0 0

1 0 . . . 0 0

0 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . n 0





1

t

t2

...

tn



Thus, we can replace the derivative operator with the matrix,D =



0 0 . . . 0 0

1 0 . . . 0 0

0 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . n 0


. �

We proved for the derivative of the first order. The next corollary explains how we cater

for other derivatives higher than one.

Corollary 3.3.1. The jth order derivative for j ∈ N0 is given as,

d jP(t)
dt j = AD jM(t). (3.23)

The consequences of this corollary imply that, to obtain the jth derivative, the matrix D

has to multiply itself j times.
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We explain two important consequences from (3.21) and (3.22) . Firstly, the operational

matrix D̃ in (3.21) is a mapping that acts specifically on the SLPs. Thus, D̃ cannot be

necessarily used on other polynomials. Secondly, we can applyD to any polynomial that

can be written in the form (3.20).

We have discussed the application of the derivative matrix pertaining to the integer order.

We can adopt the same principle to the fractional derivatives. The following theorem de-

tails how to deduce the fractional derivative matrix.

Theorem 3.3.3. The differentiation operational matrix, Dµ
t , with order (n + 1) × (n + 1)

deduced fromM(t) can be written as,

D
µ
t =



0 0 . . . 0 0
t1−µ

Γ[2−µ] 0 . . . 0 0

0 2t1−µ
Γ[3−µ] . . . 0 0

...
...

. . .
...

...

0 0 . . . Γ[n]t1−µ

Γ[n+1−µ] 0


. (3.24)
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Proof. Applying the operatorDµ
t as defined in (3.1) on both sides of (3.20) with p = 1,

D
µ
t P(t) = D

µ
tAM(t)

= ADµ
tM(t)

= A



0
t1−µ

Γ[2−µ]

t2−µ
Γ[3−µ]
...

Γ[n]tn−µ

Γ[n+1−µ]



= A



0 0 . . . 0 0
t1−µ

Γ[2−µ] 0 . . . 0 0

0 2t1−µ
Γ[3−µ] . . . 0 0

...
...

. . .
...

...

0 0 . . . Γ[n]t1−µ

Γ[n+1−µ] 0





1

t

t2

...

tn


. (3.25)

Thus, we can replace the fractional derivative operator by the matrix,

D
µ
t =



0 0 . . . 0 0
t1−µ

Γ[2−µ] 0 . . . 0 0

0 2t1−µ
Γ[3−µ] . . . 0 0

...
...

. . .
...

...

0 0 . . . Γ[n]t1−µ

Γ[n+1−µ] 0


. �

Corollary 3.3.2. If µ = 1, the matrixDµ
t simplifies to its integer equivalenceD.

Corollary 3.3.3. We can infer from the results of the previous theorem that the (µ j)th order

derivative for j ∈ N can be expressed as,

D
µ j
t P(t) = ADµ j

t M(t). (3.26)

We will now apply the matrix (3.24) to numerically solve a fractional ODE.

Example 3.2. Suppose we have a fractional differential equation,

D
µ
t y(t) − y(t) = 0, µ ∈ (0, 1], (3.27)

y(0) = 1.
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We will first solve (3.27) analytically before we go into detail concerning its approxima-

tion.

Introducing the Laplace transform on each term of (3.27),

L[Dµ
t y(t)] − L[y(t)] = 0 (3.28)

Applying (3.8) in (3.28),

sµY(s) − sµ−1y(0) − Y(s) = 0. (3.29)

Substituting for y(0) and making Y(s) the subject of the formula,

Y(s) =
sµ−1

sµ − 1
. (3.30)

To recover the original function t, we impose inverse Laplace transform on (3.30),

L−1[Y(s)] = L−1
( sµ−1

sµ − 1

)
. (3.31)

With reference to (3.3) and (3.7), (3.31) becomes,

y(t) = Eµ,1 =

∞∑
k=0

tµk

Γ[µk + 1]
, (3.32)

which is the analytical solution of (3.27). For practical purposes, we have to terminate

terms generated from (3.32) at some point. Fortunately, we get good solutions for the first

few terms.

If µ = 1, then (3.32) becomes,

y(t) = et. (3.33)

Now, we attempt to approximate the solution of (3.27), which we assume takes the form,

y(t) = γTP(t)

= γTAM(t), (3.34)

with γ =

(
γ0 γ1 γ2 . . . γn

)T
and M(t) is given in (3.19). If we take n = 2, then,

(3.34) becomes,

y(t) =

(
γ0 γ1 γ2

) 
1 0 0

−1 2 0

1 −6 6



1

t

t2

 , (3.35)
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also,Dµ
t becomes,

D
µ
t =


0 0 0

t1−µ
Γ[2−µ] 0 0

0 2t1−µ
Γ[3−µ] 0

 . (3.36)

Substituting (3.34) in (3.27) implies,

D
µ
t γ

TAM(t) − γTAM(t) = 0

γTADµ
tM(t) − γTAM(t) = 0. (3.37)

Using (3.35) on (3.37), we get,

(
γ0 γ1 γ2

) 
1 0 0

−1 2 0

1 −6 6




0
t1−µ

Γ[2−µ]

2t1−µ
Γ[3−µ]

 −
(
γ0 γ1 γ2

) 
1 0 0

−1 2 0

1 −6 6



1

t

t2

 = 0

−γ0 + γ1 − t(2γ1 − 6γ2) +
t1−µ(2γ1 − 6γ2)

Γ[2 − µ]
− γ2 − 6γ2t2 +

12t2−µγ2

Γ[3 − µ]
= 0. (3.38)

We define the residual from (3.38) as,

R2(t) = −γ0 + γ1 − t(2γ1 − 6γ2) +
t1−µ(2γ1 − 6γ2)

Γ[2 − µ]
− γ2 − 6γ2t2 +

12t2−µγ2

Γ[3 − µ]
, (3.39)

the subscript 2 in R denotes that n = 2. We create two equations from (3.39) using the

Galerkin [16],

1∫
0

R2(t)M0(t)dt = 0, (3.40)

and,

1∫
0

R2(t)M1(t)dt = 0. (3.41)

Utilising the initial condition y(0) = 1 in (3.35) implies that,

γ0 − γ1 + γ2 = 1. (3.42)

We then solve (3.40)–(3.42) for γ0, γ1 and γ2 and then substitute these values in (3.35) to

get the approximate solution of (3.27). We get the following approximate solutions for
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different values of µ.

If µ = 1,

y(t) =
12
7

+
6
7

(−1 + 2t) +
1
7

(1 − 6t + 6t2). (3.43)

If µ = 0.8,

y(t) = 1.9985553721927587 + 1.1394258704072866(−1 + 2t)

+ 0.14087049821452802(1 − 6t + 6t2). (3.44)

If µ = 0.5,

y(t) = 2.8643539855722806 + 1.9630958204704716(−1 + 2t)

+ 0.0987418348981914(1 − 6t + 6t2). (3.45)

Figures 3.1–3.3 depicts the plots of the approximate and analytical solutions together with

the associated absolute errors. The absolute error is computed as yer =| yanal − yapprox |,

with yanal and yapprox being the analytic and approximate solutions of (3.27) respectively.

n=2 n=7

Figure 3.1: Approximate solutions of (3.27) using the derivative operational matrix (3.24) com-

pared with the analytic solution for µ = 1.
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n=2 n=7

Figure 3.2: Approximate solutions of (3.27) using the derivative operational matrix (3.24) com-

pared with the analytic solution for µ = 0.8.

n=2 n=7

Figure 3.3: Approximate solutions of (3.27) using the derivative operational matrix (3.24) com-

pared with the analytic solution for µ = 0.5.

We take note from Figure 3.1–3.3 that as the number of polynomials used increase, the

accuracy of the approximate solution improves. This result is true for all values of µ that

we used. Also, we notice that the approximate solution tend to be better as µ→ 1.

We have discussed about the derivative operational matrices and their involvement in

the approximate solution of differential equations. We now turn our attention to integral

operational matrices.
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3.3.2 Deducing the integral operational matrices

The integral operational matrix acts as a substitute for an integral operator. It is of neces-

sity that we first discuss about function approximation before attempting to discuss the

integral operational matrices. The next theorems discusses the details of function approx-

imation.

Theorem 3.3.4. A function f (t) can be written as a product of some 1 × (n + 1) matrix

and a column of polynomials as [16],

f (t) ≈ vM(t), (3.46)

v = [v0, v1, v2, ..., vn] are the unknown coefficients that are to be calculated.

The theorem below details how to compute the entries of v.

Theorem 3.3.5. The entries of v stated in (3.46) are calculated as [16],

v =
〈

f (t),MT (t)
〉〈
M(t),MT (t)

〉−1
, (3.47)

provided the matrix
〈
M(t),MT (t)

〉
is invertible,

where,〈
f (t),MT (t)

〉
=

1∫
0

f (t)MT (t)dt and
〈
M(t),MT (t)

〉
=

1∫
0
M(t)MT (t)dt.

We explain how to deduce integral operational matrices in the following theorems.

Theorem 3.3.6. The matrix of integral, Ĩ, with order (n + 1)× (n + 1) deduced fromM(t)

can be written as,

Ĩ =



0 1 0 . . . 0

0 0 1
2 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
n

v0 v1 v2 . . . vn


(3.48)

v =

(
v0 v1 v2 . . . vn

)
are the coefficients that we discussed in the previous theorem.
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Proof. Taking the integral ofM(t),

t∫
0

M(τ)dτ =



t
t2
2

t3
3
...

tn+1

n+1



≈



0 1 0 . . . 0

0 0 1
2 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
n

v0 v1 v2 . . . vn





1

t

t2

...

tn


= ĨM(t).

�

Next, we explain the derivation of the fractional integral matrix Ĩµ.

Theorem 3.3.7. The matrix of integral, Ĩµ, with order (n+1)× (n+1) deduced fromM(t)

can be written as,

Ĩµ =



0 tµ−1

Γ[µ+1] 0 . . . 0

0 0 tµ−1

Γ[µ+2] . . . 0
...

...
...

. . .
...

0 0 0 . . . Γ[n]tµ−1

Γ[µ+n]

v0 v1 v2 . . . vn


. (3.49)
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Proof. Applying (3.4) onM(t),

1
Γ(µ)

t∫
0

M(s)ds
(t − s)1−µ =



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]
...

Γ[n+1]tµ+n

Γ[µ+n+1]



≈



0 tµ−1

Γ[µ+1] 0 . . . 0

0 0 tµ−1

Γ[µ+2] . . . 0
...

...
...

. . .
...

0 0 0 . . . Γ[n]tµ−1

Γ[µ+n]

v0 v1 v2 . . . vn





1

t

t2

...

tn


= ĨµM(t).

Thus the proof is complete. �

Corollary 3.3.4. If µ = 1, the matrix Ĩµ simplifies to its integer equivalence Ĩ.

We note that in matrices Ĩµ and Ĩ, we have to compute the numerical values of the entries

of the last row using (3.47) as,

v =

〈
Γ[n + 1]tµ+n

Γ[µ + n + 1]
,MT (t)

〉〈
M(t),MT (t)

〉
, (3.50)

and

v =

〈 tn+1

n + 1
,M(t)

〉〈
M(t),MT (t)

〉
. (3.51)

The functions f (t) = Γ[n+1]tµ+n

Γ[µ+n+1] and f (t) = tn+1

n+1 are the results of fractional and integer

integration of the last term ofM(t) respectively.

It is possible to determine another matrix of integration that does not involve the approx-

imation of the last row in matrices Ĩ and Ĩµ. More details are provided in the theorem

below.
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Theorem 3.3.8. The matrix I that replaces the integral operator can be written as,

I =



t 0 0 . . . 0

0 t
2 0 . . . 0

0 0 t
3 . . . 0

...
...

...
. . .

...

0 0 0 . . . t
n+1


. (3.52)

Proof.

t∫
0

M(τ)dτ =



t 0 0 . . . 0

0 t
2 0 . . . 0

0 0 t
3 . . . 0

...
...

...
. . .

...

0 0 0 . . . t
n+1





1

t

t2

...

tn



=



t
t2
2

t3
3
...

tn+1

n+1


,

this is the result that we expect from direct integration ofM(t). �

We can tell from the previous theorem what the entries of the fractional integration matrix

will be.

Corollary 3.3.5. The fractional integral matrix Iµ can be written as,

Iµ =



tµ
Γ[1+µ] 0 0 . . . 0

0 Γ[2]tµ

Γ[2+µ] 0 . . . 0

0 0 Γ[3]tµ

Γ[3+µ] . . . 0
...

...
...

. . .
...

0 0 0 . . . Γ[n+1]tµ

Γ[n+1+µ]


. (3.53)
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We have shown how the integral operational matrices can be deduced from the polynomi-

als by direct integration. We can deduce the same integral operational matrices through

the use of integral transforms. In our case, we will demonstrate how to achieve this using

the GJT and the Laplace transform.

Theorem 3.3.9. The (n×1)× (n×1) operational matrix Iµ in (3.53) can be deduced from

the GJT.

Proof. Taking the GJT of P(t),

T[P(t)] = AT[M(t)]

= AT



1

t

t2

...

tn



= A



r(s)
w(s)

r(s)
w2(s)

Γ[3]r(s)
w3(s)
...

Γ[n+1]r(s)
wn+1(s)


.
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Multiplying both sides by 1
wn(s) ,

1
wn(s)

T[P(t)] = A
1

wn(s)



r(s)
w(s)

r(s)
w2(s)

Γ[3]r(s)
w3(s)
...

Γ[n+1]r(s)
wn+1(s)



= A



r(s)
wn+1(s)

r(s)
wn+2(s)
Γ[3]r(s)
wn+3(s)
...

Γ[n+1]r(s)
w2n+1(s)


.
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Taking the inverse of the GJT,

T−1
[ 1
wn(s)

T[P(t)]
]

= T−1A



r(s)
wn+1(s)

r(s)
wn+2(s)
Γ[3]r(s)
wn+3(s)
...

Γ[n+1]r(s)
w2n+1(s)



= A



T−1
(

r(s)
wn+1(s)

)
T−1

(
r(s)

wn+2(s)

)
T−1

(
Γ[3]r(s)
wn+3(s)

)
...

T−1
(

Γ[n+1]r(s)
w2n+1(s)

)



=



tn
Γ[n+1]

tn+1

Γ[n+2]

2tn+2

Γ[n+3]
...

Γ[n+1]tn

Γ[2n+1]



=



tn
Γ[1+n] 0 0 . . . 0

0 Γ[2]tn

Γ[2+n] 0 . . . 0

0 0 Γ[3]tn

Γ[3+n] . . . 0
...

...
...

. . .
...

0 0 0 . . . Γ[n+1]tn

Γ[n+1+n]





1

t

t2

...

tn


If we consider the fractional integral, then n has to change to µ, thus we get the matrix Iµ

in (3.53). �

We again show that the same result can be achieved using the Laplace transform in the

theorem below.

Theorem 3.3.10. An operational matrix Iµ in (3.53) can be deduced from the Laplace

transform.
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Proof. Taking the Laplace transform of P(t),

L[P(t)] = AL[M(t)]

= AL



1

t

t2

...

tn



= A



1
s

1
s2

Γ[3]
s3

...

Γ[n+1]
sn+1


.

Multiplying both sides by 1
sn ,

1
sn T[P(t)] = A

1
sn



1
s

1
s2

Γ[3]
s3

...

Γ[n+1]
sn+1



= A



1
sn+1

1
sn+2

Γ[3]
sn+3

...

Γ[n+1]
s2n+1


.
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We recover the original function through the application of inverse Laplace transform,

L−1
[ 1

snL[P(t)]
]

= L−1A



1
sn+1

1
sn+2

Γ[3]
sn+3

...

Γ[n+1]
s2n+1



= A



L−1
(

1
sn+1

)
L−1

(
1

sn+2

)
L−1

(
Γ[3]
sn+3

)
...

L−1
(

Γ[n+1]
s2n+1

)



=



tn
Γ[n+1]

tn+1

Γ[n+2]

2tn+2

Γ[n+3]
...

Γ[n+1]tn

Γ[2n+1]



=



tn
Γ[1+n] 0 0 . . . 0

0 Γ[2]tn

Γ[2+n] 0 . . . 0

0 0 Γ[3]tn

Γ[3+n] . . . 0
...

...
...

. . .
...

0 0 0 . . . Γ[n+1]tn

Γ[n+1+n]





1

t

t2

...

tn


If we consider the fractional integral, then n becomes µ, thus yielding the matrix Iµ in

(3.53). �

There is some connection that is worth noting between the two transforms in deducing

the integral transforms.
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The operator T−1
[

1
wn(s)T[P(t)]

]
in the GJT is given as,

T−1
[ 1
wn(s)

T[P(t)]
]

= T−1A



r(s)
wn+1(s)

r(s)
wn+2(s)
Γ[3]r(s)
wn+3(s)
...

Γ[n+1]r(s)
w2n+1(s)


. (3.54)

The operator L−1
[

1
snL[P(t)]

]
in the Laplace transform is given as,

L−1
[ 1

snL[P(t)]
]

= L−1A



1
sn+1

1
sn+2

Γ[3]
sn+3

...

Γ[n+1]
s2n+1


. (3.55)

If w(s) = s and r(s) = 1 in (3.54), then we get the result in (3.55), confirming that the

Laplace transform is a particular case of the GJT.

3.3.3 Approximating the solutions of fractional ODEs.

We demonstrate how the operational matrix of integration can be used in the approxima-

tion of fractional differential equations, we consider (3.27) as our case study.

We assume the approximate solution of (3.27) takes the form (3.34), if n = 2, then,

〈
M(t),MT (t)

〉
=

1∫
0


1

t

t2

 .
(
1 t t2

)
dt =


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

 ,
therefore,

〈
M(t),MT (t)

〉−1
=


9 −36 30

−36 192 −180

30 −180 180

 .
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We need to approximate 2t2+µ

Γ[3+µ] , thus,〈 2t2+µ

Γ[3 + µ]
,MT (t)

〉
=

2
Γ[3 + µ]

(
1

Γ[3+µ]
1

Γ[(4+µ]
1

Γ[5+µ]

)
.

Hence,

v =

(
v0 v1 v2

)
=

〈 2t2+µ

Γ(3 + µ)
,MT (t)

〉〈
M(t),MT (t)

〉−1

=

 2

(
9

3+µ−
36

4+µ+ 30
5+µ

)
Γ(3+µ)

2

(
−36
3+µ+ 192

4+µ−
180
5+µ

)
Γ(3+µ)

2

(
30

3+µ−
180
4+µ+ 180

5+µ

)
Γ(3+µ)

 .
The integral operational matrix that acts uponM(t) is thus given as,

Ĩµ =


0 tµ−1

Γ[1+µ] 0

0 0 tµ−1

Γ[2+µ]

2

(
9

3+µ−
36

4+µ+ 30
5+µ

)
Γ[3+µ]

2

(
−36
3+µ+ 192

4+µ−
180
5+µ

)
Γ[3+µ]

2

(
30

3+µ−
180
4+µ+ 180

5+µ

)
Γ[3+µ]


. (3.56)

Taking the fractional integral of each term in (3.27),

ĨµDµt y(t) − Ĩµy(t) = 0,

y(t) − y(0) − Ĩµy(t) = 0. (3.57)

Substituting for the initial condition in (3.57) yields,

y(t) − 1 − Ĩµy(t) = 0. (3.58)

Substituting (3.34) in (3.58),

γTAM(t) − 1 − Ĩµ
(
γTAM(t)

)
= 0

γTAM(t) − 1 − γTAĨµM(t) = 0 (3.59)

We define the residual from (3.59) as ,R2(t) = γTAM(t)− 1− γTAĨM(t), thus, we create

two equations from,
1∫

0

R2(t)Mi(t)dt, i = 0, 1,
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and the third equation is obtained from the initial condition as,

y(0) = γTAM(0) = 1.

The three equations that we have just set up are,

− 1 +

(
1 −

1
Γ[2 + µ]

)
γ0 +

( 1
Γ[2 + µ]

−
2

Γ[3 + µ]

)
γ1 −

γ2

Γ[2 + µ]
+

6γ2

Γ[3 + µ]

−
12γ2

Γ[6 + µ]

(
20 + 9µ + µ2

)
= 0, (3.60)

2
(1 + µ)Γ[2 + µ]

(
−γ0 + γ1 − γ2

)
+

2
(3 + µ)Γ[2 + µ]

(
−(7 + µ)γ1 + (15 + µ)γ2

)
+

2
Γ[3 + µ]

(
γ1 − 3γ2

)
+

γ0

2 + µ
+
γ1

3
−

12(2 + µ)γ2

Γ[5 + µ]
= 0, (3.61)

and

γ0 − γ1 + γ2 − 1 = 0. (3.62)

With the assistance of Mathematica, we solve (3.60)-(3.62) to get the unknowns γ0, γ1

and γ2, we do this for specific values of µ. After computing the numerical values of γ0, γ1

and γ2, we substitute them in (3.34) to get the approximate solution of (3.27).

If µ = 1, we get,

y(t) =
67
39

+
11
13

(
−1 + 2t

)
+

5
39

(
1 − 6t + 6t2). (3.63)

If µ = 0.8, then,

y(t) = 2.0045218327422374 + 1.1157231198255249
(
−1 + 2t

)
+ 0.1112012870832878

(
1 − 6t + 6t2). (3.64)

If µ = 0.5,

y(t) = 2.874998700129662 + 1.9077563386708574
(
−1 + 2t

)
+ 0.032757638541195414

(
1 − 6t + 6t2). (3.65)

In Figures 3.4–3.6, we plot the approximate solutions of (3.27) versus the analytic solution

together with the associated absolute errors, we do this for different combination pairs of

µ and n.
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n=2 n=5

n=6 n=7

Figure 3.4: Approximate solutions of (3.27) using the integral operational matrix (3.49) com-

pared with the analytic solution for µ = 1.
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n=2 n=5

n=6 n=7

Figure 3.5: Approximate solutions of (3.27) using the integral operational matrix (3.49) com-

pared with the analytic solution for µ = 0.8.
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n=2 n=5

n=6 n=7

Figure 3.6: Approximate solutions of (3.27) using the integral operational matrix (3.49) com-

pared with the analytic solution for µ = 0.5.

We notice two important observations from Figures 3.4–3.6. Firstly, as we increase the

value of n, the number of polynomials used, then the accuracy of the approximate solution

improves, this result is consistent regardless the value of µ. Secondly, as the value of µ

approaches 1, the approximate solution improves.

We have managed to use the matrix Ĩ to approximate the solution of (3.27). We repeat

the whole process using the integral matrix I and we show the results below.

If µ = 1 with n = 2, we get,

y(t) =
67
39

+
11
13

(
−1 + 2t

)
+

5
39

(
1 − 6t + 6t2), (3.66)



Shifted Legendre polynomials and operational matrices 41

µ = 0.8, then,

y(t) = 2.004521832742238 + 1.1157231198255249
(
−1 + 2t

)
+ 0.11120128708328729

(
1 − 6t + 6t2), (3.67)

and µ = 0.5, then,

y(t) = 2.8749987001296615 + 1.9077563386708567
(
−1 + 2t

)
+ 0.0327576385411953

(
1 − 6t + 6t2). (3.68)

We notice from (3.66)–(3.68) that the results from the matrix I are exactly the same as

those from the matrix Ĩ for µ = 1. We also observe that there is an insignificant difference

in results from I and Ĩ for values of µ not equal to 1, in particular, for µ = 0.5 and 0.8.

In Figures 3.7–3.9, we plot our results for different values of n and µ together with the

absolute errors.

n=2 n=7

Figure 3.7: Approximate solutions of (3.27) using the integral operational matrix (3.53) com-

pared with the analytic solution for µ = 1.
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n=2 n=7

Figure 3.8: Approximate solutions of (3.27) using the integral operational matrix (3.53) com-

pared with the analytic solution for µ = 0.8.

n=2 n=7

Figure 3.9: Approximate solutions of (3.27) using the integral operational matrix (3.53) com-

pared with the analytic solution for µ = 0.5.

We can conclude that, in general, the results from both the matrices Ĩ and I are the same.

The only noticeable difference is when n = 2 and µ = 1, with the matrix I giving better

results than Ĩ.

We now want to investigate convergence of the results from the operational matrices Ĩ, I

and Dµ
t . We will first discuss a theorem that guarantees convergence of solutions gener-

ated from (3.34).

The following definition will form a foundation for the next theorem.
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Definition 3.3.4. We define the function υn(t), the difference between two consecutive

terms generated from (3.34) as,

υn(t) = yn+1(t) − yn(t), n = 1, 2, . . . (3.69)

In [26], the authors discuss a theorem that guarantees convergence of a series solution.

We can adopt this theorem in our case on the basis that as we change the value of n in

(3.34), we are generating a sequence.

The following theorem guarantees the convergence of the solutions generated from (3.34)

[26].

Theorem 3.3.11. The sequence, υn, υn+1, υn+2, . . . , will converge whenever,

‖ υn ‖>‖ υn+1 ‖>‖ υn+2 ‖> . . .

In our case, the norms in the above theorem are computed over the interval [0, 1] as,

‖ υn ‖=

√√√√√ 1∫
0

| υn(t) |2 dt, (3.70)

of course one can use any integration limits that suits a particular situation.

The consequence of the above theorem is that as we increase the value of n, then we expect

the magnitude of the differences between two consecutive terms to become smaller and

smaller if the results converge.

The other important information that we can deduce from this theorem concerns the rate

of convergence. This concept is particularly useful when comparing the convergence of

different numerical methods and it can play a decisive role in selecting the best method.

The smaller the values of ‖ υn ‖, then the faster the convergence of a method. Generally,

it might be best to choose a numerical method with a faster rate of convergence as this

implies that we get closer to the desired solution faster.

We compute the values of ‖ υn ‖ for different combination sets of n and µ using results

computed from matrices Ĩ, I and Dµ
t . The convergence results are displayed in Tables

3.2–3.4.
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Table 3.2: Convergence results for different values of n for µ = 1.

‖ υ ‖ Differential matrix (Dµ) Integral matrix (Ĩ) Integral matrix (I)

‖ υ2 ‖ 0.09115778913 0.02185080461 0.02185080461

‖ υ3 ‖ 0.022377038351 0.01931698320 0.01931698320

‖ υ4 ‖ 0.00488583557 0.00432128028 0.00432128028

‖ υ5 ‖ 0.00098452564 0.00088266313 0.00088266313

‖ υ6 ‖ 0.00018447595 0.00016691349 0.00016691349

Table 3.3: Convergence results for different values of n for µ = 0.8.

‖ υ ‖ Differential matrix (Dµ) Integral matrix (Ĩ) Integral matrix (I)

‖ υ2 ‖ 0.14181076161 0.14498498599 0.14498498599

‖ υ3 ‖ 0.07418689351 0.08648991335 0.08648991335

‖ υ4 ‖ 0.06162478449 0.07196032536 0.07196032536

‖ υ5 ‖ 0.05057729135 0.05997744431 0.05997744430

‖ υ6 ‖ 0.04294762124 0.05144070680 0.05144070552
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Table 3.4: Convergence results for different values of n for µ = 1
2 .

‖ υ ‖ Differential matrix (Dµ) Integral matrix (Ĩ) Integral matrix (I)

‖ υ2 ‖ 0.26983933473 0.29023758456 0.29023758456

‖ υ3 ‖ 0.19587578646 0.21846510279 0.21846510279

‖ υ4 ‖ 0.16705724682 0.18783810524 0.18783810524

‖ υ5 ‖ 0.14545274053 0.16471559804 0.16471559807

‖ υ6 ‖ 0.12952705220 0.14740940791 0.14740940802

There is a lot of interesting information that we can deduce from Tables 3.2–3.4. We re-

alise that our approximate solutions converge to the analytic solution as number of poly-

nomials used increase, this result is consistent for all the three matrices.

There is faster rate of convergence for µ = 1 compared with other values of µ, this also is

true for all the three matrices.

The results from the integral matrices converge faster than the derivative matrix when

µ = 1. We observe the exact opposite when µ = 0.8 and µ = 0.5, the derivative matrix

converges faster than the integral matrices.

We also observe that, both integral matrices, Ĩ and I yield the same convergence results

regardless of the value of µ. In instances where the integral matrices give different con-

vergence results, these results tend to be very close and we have very few occasions of

these scenarios.

We have up to now compared our approximate solutions against analytic solutions. We

now want to compare our approximate solution (3.66) with the results from the Adams-

Bashforth-Moulton method (ABM), a numerical technique described in [24]. Note that in

the table, we name our suggested approach the Garlekin, this is because it is the numerical

method that we used in conjunction with the operational matrices to approximate the

solution of (3.27).
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Table 3.5: Comparison of the approximate solutions of (3.27) using the Galerkin and the

ABM for µ = 1.

t Garlekin ABM Analytic

0.1 1.1 1.105170833 1.105170918

0.2 1.2153846153846153 1.22041776 1.221402758

0.3 1.3461538461538463 1.347699705 1.349858808

0.4 1.4923076923076921 1.489408691 1.491824698

The information in Table 3.5 indicate that the results from our suggested technique and

from the ABM are in close agreement. It is imperative to take into account that the ap-

proach of these two techniques is very different. The ABM uses the step size to calculate

solutions at particular points of the independent variable. The smaller the step size, the

more cumbersome the ABM gets, but then the more accurate the results become. With

the Garlekin, we observed from the previous examples that, it is increasing the number of

polynomials that improves the solutions.

There is no conventional rule which links the number of polynomials in the Garlekin tech-

nique and the step size in the ABM. This makes it a bit tricky to compare the two methods

which might be the reason for the differences in the solutions in Table 3.5.

However, we think that the step size and the number of polynomials used to produce the

results in Table 3.5 are a close match.

3.4 Applying operational matrices to the fractional Van

der Pol equation

Non linear ODEs are of immense importance in the field of Applied Mathematics, an

example of such an equation is the Van der Pol. This differential equation has yielded

impressive results in various fields such as in electrical circuits, science, technology and

biology [25].

One of the challenges when using the Van der Pol equation in modelling is the attainment
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of its solutions due to the non linear terms it possesses. Thus many researchers resort to

numerical methods to approximate its solution.

We will apply techniques in the previous section to approximate the solution of the Van

der Pol equation, but we make a minor change in an effort to lessen the computational

difficulties. We will do this by dropping the matrix A in (3.34), this is equivalent to taking

this matrix as an identity. It implies that we will approximate our solution using M(t)

polynomials. Thus our approximate solution of the Van der Pol equation will take the

form,

y(t) = γTM(t). (3.71)

The forced Van der Pol differential equation of fractional order can be written as [25],

D
µ
t y(t) − σ(1 − y2(t))y′(t) + y(t) + ρy3(t) = 0, µ ∈ (1, 2] (3.72)

y(0) = y0, y′(0) = y′0,

σ and ρ represent the parameters whose numerical values vary depending on the situation

under consideration. We can explicitly write (3.72) in the form,

D
µ
t y(t) = σy′(t) − σy2(t)y′(t) − y(t) − ρy3(t), (3.73)

y(0) = y0, y′(0) = y′0.

Applying the fractional integral on each term in (3.73),

Iµ[Dµ
t y(t)] = Iµ[σy′(t)] − Iµ[σy2(t)y′(t)] + Iµ[y(t)] + Iµ[ρy3(t)],

y(t) − y(0) − y′(0) = Iµ[σy′(t)] − Iµ[σy2(t)y′(t)] + Iµ[y(t)] + Iµ[ρy3(t)]. (3.74)

Substituting for the initial conditions and solving for y(t) in (3.74) yields,

y(t) = y0 + y′0 + Iµ[σy′(t)] − Iµ[σy2(t)y′(t)] + Iµ[y(t)] + Iµ[ρy3(t)], (3.75)

Considering the particular case of (3.73) as given in [25], σ = 0.1, ρ = 0.01, y(0) = 2 and

y′(0) = 0. Thus, (3.75) becomes,

y(t) = 2 + Iµ[0.1y′(t)] − Iµ[0.1y2(t)y′(t)] + Iµ[y(t)] + Iµ[0.01y3(t)]

= 2 + 0.1Iµ[y′(t)] − 0.1Iµ[y2(t)y′(t)] + Iµ[y(t)] + 0.01Iµ[y3(t)]. (3.76)
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Next, we assume that the approximate solution of (3.76) takes the form (3.71) and we

replace the derivative operator by the matrixD, thus from (3.76), we get,

γTM(t) = 2 + 0.1IµD
(
γTM(t)

)
− 0.1Iµ

[(
γTM(t)

)2

D

(
γTM(t)

)]
+ Iµ[γTM(t)] + 0.01Iµ

[(
γTM(t)

)3]
. (3.77)

If we take n = 2, (3.77) becomes,

(
γ0 γ1 γ2

) 
1

t

t2

 = 2 + 0.1
(
γ0 γ1 γ2

)
IµD


1

t

t2



−
1
10
K1I

µD



1

t

t2

t3

t4

t5


+

(
γ0 γ1 γ2

)
Iµ


1

t

t2



+
1

100
K2I

µ



1

t

t2

t3

t4

t5

t6



, (3.78)

where,

K1 =

(
γ2

0γ1 2γ0γ
2
1 + 2γ2

0γ2 γ3
1 + 6γ0γ1γ2 4γ2

1γ2 + 4γ0γ
2
2 5γ1γ

3
2 2γ3

2

)
,

and

K2 =

(
γ3

0 3γ2
0γ1 3γ0γ

2
1 + 3γ2

0γ2 γ3
1 + 6γ0γ1γ2 3γ2

1γ2 + 3γ0γ
2
2 3γ1γ

2
2 γ3

2

)
.
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We will now write down the derivative and integral matrices that we will make use of in

(3.78).

The derivative matrices that we are going to utilise in (3.78) are given as,


0 0 0

1 0 0

0 2 0

 and



0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

0 0 0 0 5 0


.

Substituting these matrices in (3.78) gives,

(
γ0 γ1 γ2

) 
1

t

t2

 = 2 + 0.1
(
γ0 γ1 γ2

)
Iµ


0

1

2t



−
1

10
K1I

µ



0

1

2t

3t2

4t3

5t4


+

(
γ0 γ1 γ2

)
Iµ


1

t

t2



+
1

100
K2I

µ



1

t

t2

t3

t4

t5

t6



. (3.79)



Applying operational matrices to the fractional Van der Pol equation 50

Then the integral matrices Iµ will be as follows,

Iµ


0

1

2t

 =


0 0 0

0 tµ
Γ[µ+1] 0

0 0 tµ
Γ[µ+2]




0

1

2t


=


0
tµ

Γ[µ+1]

tµ+1

Γ[µ+2]

 . (3.80)

Iµ



1

t

t2

t3

t4

t5


=



tµ
Γ[µ+1] 0 0 0 0 0

0 tµ
Γ[µ+2] 0 0 0 0

0 0 2tµ
Γ[µ+3] 0 0 0

0 0 0 6tµ
Γ[µ+4] 0 0

0 0 0 0 24tµ
Γ[µ+5] 0

0 0 0 0 0 120tµ
Γ[µ+6]





1

t

t2

t3

t4

t5



=



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+4]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]


. (3.81)

Iµ


1

t

t2

 =


tµ

Γ[µ+1] 0 0

0 tµ
Γ[µ+2] 0

0 0 2tµ
Γ[µ+3]



1

t

t2


=


tµ

Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

 . (3.82)
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Iµ



1

t

t2

t3

t4

t5

t6



=



tµ
Γ[µ+1] 0 0 0 0 0 0

0 tµ
Γ[µ+2] 0 0 0 0 0

0 0 2tµ
Γ[µ+3] 0 0 0 0

0 0 0 6tµ
Γ[µ+4] 0 0 0

0 0 0 0 24tµ
Γ[µ+5] 0 0

0 0 0 0 0 120tµ
Γ[µ+6] 0

0 0 0 0 0 0 720tµ
Γ[µ+7]





1

t

t2

t3

t4

t5

t6



=



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+3]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]

720tµ+6

Γ[µ+7]



. (3.83)
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Substituting (3.80)-(3.83) into (3.79),

(
γ0 γ1 γ2

) 
1

t

t2

 = 2 + 0.1
(
γ0 γ1 γ2

) 
0
tµ

Γ[µ+1]

tµ+1

Γ[µ+2]



−
1

10
K1



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+4]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]


+

(
γ0 γ1 γ2

) 
tµ

Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]



+
1

100
K2



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+3]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]

720tµ+6

Γ[µ+7]



. (3.84)
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We derive the residual R2(t) from (3.84) as,

R2(t) =

(
γ0 γ1 γ2

) 
1

t

t2

 − 2 − 0.1
(
γ0 γ1 γ2

) 
0
tµ

Γ[µ+1]

tµ+1

Γ[µ+2]



+
1

10
K1



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+4]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]


−

(
γ0 γ1 γ2

) 
tµ

Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]



−
1

100
K2



tµ
Γ[µ+1]

tµ+1

Γ[µ+2]

2tµ+2

Γ[µ+3]

6tµ+3

Γ[µ+3]

24tµ+4

Γ[µ+5]

120tµ+5

Γ[µ+6]

720tµ+6

Γ[µ+7]



. (3.85)

We create a single equation from (3.85),
1∫

0

R2(t)M0(t)dt = 0, (3.86)

and two equations from the initial conditions,

γTM(0) = 2,

γ0 = 2, (3.87)

γTM′(0) = 0,

γ1 = 0. (3.88)

Solving (3.86)-(3.88) for the unknowns with µ = 2 yields the results shown in the Ap-

pendix A1 . We note that there are several combinations of solutions emanating from
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(3.86)-(3.88), but there is only one set of combination composed of real numbers only,

the rest have complex numbers as one of the solution. We choose the combination set

with real numbers only.

Thus, the approximate solution of (3.72) for µ = 2 is,

y(t) = 2 − 0.9343075950635839t2. (3.89)

If we take n = 3 and µ = 2, the combination of solutions is given in Appendix A2. We

choose solutions that consists of only real numbers, thus we get the approximate solution

as,

y(t) = 2 − 1.0521192366798373t2 + 0.1617057020400526t3. (3.90)

The authors in [25] make use of the restarted Adomian decomposition method to approx-

imate the solution of (3.72), they compared their results with the Adomian decomposition

method (ADCMP).

We use the results from the ADCMP in [25] to compare with the results from our pro-

posed scheme, the graphical comparison is shown in Figure 3.10 for different values of n.

n=2 n=3

Figure 3.10: Comparison of the Garlekin technique and the ADCMP.

In figure 3.10, the values of n are specifically for the Garlekin technique, the method

we used with the operational matrices. Concerning the ADCMP, a series approximation

with four terms was used, we therefore believe that this is a fair comparison of the two

techniques, particularly when n = 3 for the Garlekin. We observe that as n increases, the
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two methods tend to agree. Unfortunately, there is no analytical solution of (3.72) that we

can use to compare with our proposed scheme.

3.5 Conclusion

We have managed to show how to deduce the operational matrices that represent both

the derivative and integral. Different ways are explained on how to go about deducing

the integration matrix. We demonstrated that it is possible depending on the set up of

an ordinary differential equation to use only derivative operational matrix or an integral

operational matrix. We had to show that results from these two operational are very close,

suggesting that result wise, it does not matter which operational matrix is used. Compar-

ing our results against the analytic solutions revealed that only the first few polynomials

are enough to give good approximations.

Due to the nature of the Van der pol equation, we had to apply both the derivative and

operational matrices. We compared our results with the Adomian decomposition method,

and the results were in close agreement.

The results from this chapter, in particular the theoretical aspects will form a basis of the

work in the next chapter. We will show how the matrices attained in this chapter act as

building blocks of more larger matrices. These larger matrices will act as the substitutes

for both the partial integral and derivative operators.



Chapter 4

Composite operational matrices

Abstract

This chapter constitutes our main contribution to the existing knowledge of operational

matrices. We show how it is possible to build large operational matrices that accommodate

more than one variable, in particular we focus on two variables. We will refer to these

matrices as composite matrices, since the entries of these matrices are also matrices. The

matrices from the previous chapter are the components of the matrices that we are going

to construct. In addition to the discussion of these composite operational matrices, we

describe the solution procedure that we follow in the application of these matrices to

solve PDEs.

4.1 Introduction

As we mentioned in the introduction of this research, most of the work on operational

matrices has been on ordinary differential equations, most probably this is due to the fact

that it is much easier to deal with computations in ODEs than PDEs. Of course there

has been noticeable achievements on the application of operational matrices on PDEs, but

there is no doubt that more needs to be done along these lines. In this chapter, we bring a

new dimension that reveals the effectiveness of operational matrices on PDEs.

56
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By writing our approximate solution in an implicit format, we illustrate how partial deriva-

tives and integrals lend themselves to composite operational matrices. The entries of these

composite matrices are themselves matrices.

We will show how the commutativity and associativity law of matrix multiplication ap-

plies in the context of operational matrices. Of more interest to us in this work will be the

associativity law, using this law, we will be able to construct a single matrix that performs

the same duty as both the differential and integral matrices.

After the construction of the operational matrices, we apply them in the approximate so-

lution of the initial boundary value problems (IBVPs). We write our approximate solution

as a product consisting of polynomials and unknown coefficients. We will have to be able

to find numerical values of the coefficients for us to be able to obtain a function that ap-

proximate the solution of the IBVP. To achieve this goal, we create a system of equations

involving these unknown coefficients, and then solve for the unknowns. These system of

equations are deduced from the initial and boundary conditions and then supplemented

with those from the Garlekin technique.

Every numerical method should undergo tests for accuracy of its results so that we can

rely on it. We will discuss a theorem that guarantees convergence of our approximate

solution.

4.2 Derivative and integral composite operational matri-

ces

The following definitions concern the polynomials and column matrices that we will make

use of in the next two chapters. Some of these definitions are similar to the ones we used

in the previous chapter, we will state them again for the sake of convenience.
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Definition 4.2.1. We define polynomials,M(t) andM(x) as,

M(t) =

(
1 t t2 . . . tn

)T
, (4.1)

M(x) =

(
1 x x2 . . . xn

)T
, n ∈ N. (4.2)

We can conglomerate the matrices,M(t) andM(x) into a single matrix. We describe how

to achieve this goal in the next theorem.

Theorem 4.2.1. We define a matrixM(x, t), a composition ofM(t) andM(x) in an im-

plicit format as,

M(x, t) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T
. (4.3)

Proof.

MT (t)MT (x) =

(
1 t t2 . . . tn

) (
1 x x2 . . . xn

)
. (4.4)

Expanding the right hand side,

(
1 t . . . tn x

(
1 t . . . tn) . . . xn(1 t . . . tn)).

Thus, we have,

MT (t)MT (x) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)
, (4.5)

Taking the transpose on both sides,(
MT (t)MT (x)

)T

=

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T

M(x)M(t) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T

M(t)M(x) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T
.

Thus, we can write,

M(x, t) =M(t)M(x) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T
.

�
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It is possible use the previous theorem to write (4.3) in another form with different ele-

ments. We state this in the following corollary.

Corollary 4.2.1. We can also writeM(x, t) as,

M(x, t) =

(
M(x) tM(x) t2M(x) . . . tnM(x)

)T
. (4.6)

We now want to discuss how to replace the derivative and integral operators acting on

(4.3) and (4.6) with matrices.

In the next theorem, we show how to replace a derivative operator acting on (4.3) with a

matrix.

Theorem 4.2.2. The composite derivative operational matrix Dx that acts upon (4.3) can

be written as,

Dx =



0 0 . . . 0 0

I 0 . . . 0 0

0 2I . . . 0 0
...

...
. . .

...
...

0 0 . . . nI 0


, (4.7)

where I =



1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 0 0
...

...
. . . 1

...

0 0 0 0 1


is an identity matrix and 0 represents a zero matrix whose

dimensions are the same as those of I.
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Proof.

∂xM(x, t) =

(
0 M(t) 2xM(t) . . . nxn−1M(t)

)T

=



0 0 . . . 0 0

I 0 . . . 0 0

0 2I . . . 0 0
...

...
. . .

...
...

0 0 . . . nI 0





M(t)

xM(t)

x2M(t)
...

xnM(t)


= DxM(x, t).

�

Adopting the same concept, we can deduce the second order composite derivative matrix.

Corollary 4.2.2.

Dxx =



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

2I 0 0 . . . 0 0 0

0 6I 0 . . . 0 0 0

0 0 12I . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 n(n − 1)I 0 0



(4.8)

The same concept of the operational matrices in the integer order can be extended to en-

compass operational matrices that represent the fractional derivatives. The next theorem

serves to illustrate this concept. We will particularly dwell on the time variable, but the

same result is applicable on the spatial variable.

Theorem 4.2.3. The composite operational matrix Dµ
t that acts upon (4.3) can be written
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as,

Dµ
t =



D
µ
t 0 0 . . . 0

0 D
µ
t 0 . . . 0

0 0 D
µ
t . . . 0

...
... 0 . . . 0

0 0 0 . . . D
µ
t


, (4.9)

whereDµ
t is the operational matrix given in (3.24) and 0 is the zero matrix whose dimen-

sions are similar to those ofDµ
t .

Proof.

D
µ
tM(x, t) =

(
D

µ
tM(t) xDµ

tM(t) x2D
µ
tM(t) . . . xnD

µ
tM(t)

)T
, (4.10)

Applying Theorem 3.3.3 on (4.10),

D
µ
tM(x, t) =





0
t1−µ

Γ[2−µ]

t2−µ
Γ[3−µ]
...

Γ[n]tn−µ

Γ[n+1−µ]


x



0
t1−µ

Γ[2−µ]

t2−µ
Γ[3−µ]
...

Γ[n]tn−µ

Γ[n+1−µ]


x2



0
t1−µ

Γ[2−µ]

t2−µ
Γ[3−µ]
...

Γ[n]tn−µ

Γ[n+1−µ]


. . . xn



0
t1−µ

Γ[2−µ]

t2−µ
Γ[3−µ]
...

Γ[n]tn−µ

Γ[n+1−µ]





T

=



D
µ
t 0 0 . . . 0

0 D
µ
t 0 . . . 0

0 0 D
µ
t . . . 0

...
... 0 . . . 0

0 0 0 . . . D
µ
t





M(t)

xM(t)

x2M(t)
...

xnM(t)


= Dµ

tM(x, t). (4.11)

�

The composite matrices Dx, Dxx and Dµ
t are not unique, the entries in these matrices are

dependent on the arrangement of entries in the matrixM(x, t).

Next, we demonstrate how to write Dx, Dxx and Dµ
t in different formats.
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Theorem 4.2.4. The composite matrix Dx that acts uponM(x, t) can be written as,

Dx =



Dx 0 0 . . . 0

0 Dx 0 . . . 0

0 0 Dx . . . 0
...

... 0 . . . 0

0 0 0 . . . Dx


, (4.12)

whereDx is the matrix defined in (3.22) and 0 is the zero matrix with the same dimensions

asDx.

Proof. RewritingM(x, t) as,

M(x, t) =

(
M(x) tM(x) t2M(x) . . . tnM(x)

)T
.

Performing the first derivative ofM(x, t) on x,

∂xM(x, t) =

(
M′(x) tM′(x) t2M′(x) . . . tnM′(x)

)T

=





0

1

2x
...

nxn−1


t



0

1

2x
...

nxn−1


t2



0

1

2x
...

nxn−1


. . . tn



0

1

2x
...

nxn−1





T

=



Dx 0 0 . . . 0

0 Dx 0 . . . 0

0 0 Dx . . . 0
...

... 0 . . . 0

0 0 0 . . . Dx





M(x)

tM(x)

t2M(x)

. . .

tnM(x)


= DxM(x, t). (4.13)

�
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By the same principle, we can deduce the matrix Dxx.

Corollary 4.2.3.

Dxx =



Dxx 0 0 . . . 0

0 Dxx 0 . . . 0

0 0 Dxx . . . 0
...

... 0 . . . 0

0 0 0 . . . Dxx


(4.14)

The next theorem explains how we can write the matrix Dµ
t with components different

from the ones in (4.9).

Theorem 4.2.5. The composite derivative matrix Dµ
t that acts uponM(x, t) can also be

written as,

Dµ
t =



0 0 0 . . . 0

0 Γ[2]t−µ

Γ[2−µ]I 0 . . . 0

0 0 Γ[3]t−µ

Γ[3−µ]I . . . 0
...

... 0 . . . 0

0 0 0 . . . Γ[n+1]t−µ

Γ[n+1−µ]I


, (4.15)

where I =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

... 0 . . . 0

0 0 0 . . . 1


is the identity matrix. The subscript t in Dµ

t emphasizes that

we are taking the derivative with respect to t.
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Proof. TakingM(x, t) =

(
M(x) tM(x) t2M(x) . . . tnM(x)

)T
, then,

D
µ
tM(x, t) =

(
D

µ
tM(x) Dµ

t tM(x) Dµ
t t2M(x) . . . D

µ
t tnM(x)

)T

=

(
0 t1−µ

Γ[2−µ]M(x) 2t2−µ
Γ[3−µ]M(x) . . . Γ[n+1]tn−µ

Γ[n+1−µ]M(x)
)T

=

(
0 Γ[2]t−µ

Γ[2−µ] tM(x) Γ[3]t−µ

Γ[3−µ] t
2M(x) . . . Γ[n+1]t−µ

Γ[n+1−µ] t
nM(x)

)T

=



0 0 0 . . . 0

0 Γ[2]t−µ

Γ[2−µ]I 0 . . . 0

0 0 Γ[3]t−µ

Γ[3−µ]I . . . 0
...

... 0 . . . 0

0 0 0 . . . Γ[n+1]t−µ

Γ[n+1−µ]I





M(x)

tM(x)

t2M(x)
...

tnM(x)


= Dµ

tM(x, t). (4.16)

�

The composite matrices are also applicable to integral operators, the next two theorems

describe how to go about deducing these matrices.

Theorem 4.2.6. The composite integral operational matrix Iµt that acts uponM(x, t) can

be written as,

Iµt =



Iµ 0 0 . . . 0

0 Iµ 0 . . . 0

0 0 Iµ . . . 0
...

... 0 . . . 0

0 0 0 . . . Iµ


, (4.17)

Iµ is the fractional integral operational matrix (3.53) that we discussed in chapter 3 and

0 is the zero matrix whose dimensions are the same as those of Iµ. The subscript t in Iµt
emphasises that we are integrating with respect to the variable t.
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Proof. We first evaluate the fractional integral ofM(t),

1
Γ[µ]

t∫
0

M(s)
(t − s)1−µds =

(
tµ

Γ[µ+1]
tµ+1

Γ[µ+2]
2tµ+2

Γ[µ+3] . . . Γ[n+1]tµ+n

Γ[µ+n+1]

)T
. (4.18)

We let λ(t) =

(
tµ

Γ[µ+1]
tµ+1

Γ[µ+2]
2tµ+2

Γ[µ+3] . . . Γ[n+1]tµ+n

Γ[µ+n+1]

)T
for our convenience.

Computing the fractional integral ofM(x, t) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T
,

1
Γ[µ]

t∫
0

M(x, s)
(t − s)1−µds =

(
λ(t) xλ(t) x2λ(t) . . . xnλ(t)

)T

=



Iµ 0 0 . . . 0

0 Iµ 0 . . . 0

0 0 Iµ . . . 0
...

... 0 . . . 0

0 0 0 . . . Iµ





M(t)

xM(t)

x2M(t)

. . .

xnM(t)


= IµtM(x, t). (4.19)

�

As we have seen with the composite derivative matrix, the integral composite matrix Iµt is

also not unique. In the next theorem, we show how this is possible.

Theorem 4.2.7. The composite integral operational matrix Iµt that acts uponM(x, t) can

be presented in the form,

Iµt =



tµ
Γ[µ+1]I 0 0 . . . 0

0 tµ
Γ[µ+2]I 0 . . . 0

0 0 2tµ
Γ[µ+3]I . . . 0

...
... 0 . . . 0

0 0 0 . . . Γ[n+1]tµ+n

Γ[µ+n+1] I


, (4.20)
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where I =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

... 0 . . . 0

0 0 0 . . . 1


is the identity matrix.

Proof. We evaluate the fractional integral ofM(x, t),

1
Γ[µ]

t∫
0

M(x, s)
(t − s)1−µds =

(
tµM(x)
Γ[µ+1]

tµ+1M(x)
Γ[µ+2]

2tµ+2M(x)
Γ[µ+3] . . . Γ[n+1]tµ+nM(x)

Γ[µ+n+1]

)T

=

(
tµM(x)
Γ[µ+1]

tµtM(x)
Γ[µ+2]

2tµt2M(x)
Γ[µ+3] . . . Γ[n+1]tµtnM(x)

Γ[µ+n+1]

)T

=



tµ
Γ[µ+1]I 0 0 . . . 0

0 tµ
Γ[µ+2]I 0 . . . 0

0 0 2tµ
Γ[µ+3]I . . . 0

...
... 0 . . . 0

0 0 0 . . . Γ[n+1]tµ+n

Γ[µ+n+1] I





M(x)

tM(x)

t2M(x)

. . .

tnM(x)


= IµtM(x, t). (4.21)

�

In the next theorem, we show how to apply the associativity law of matrix multiplication

to the composite matrices Dx, Dxx and Iµt .

Theorem 4.2.8. According the associativity law of matrix multiplication,

Iµt
(
DxM(x, t)

)
=

(
Iµt Dx

)
M(x, t)

= CtxM(x, t). (4.22)
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Proof. We have,

M(x, t) =

(
M(t) xM(t) x2M(t) . . . xnM(t)

)T
,

DxM(x, t) =

(
0 M(t) 2xM(t) . . . nxn−1M(t)

)T
,

Iµt
(
DxM(x, t)

)
=

(
0 λ(t) 2xλ(t) . . . nxn−1λ(t)

)T
.

Considering the right hand side,

Iµt Dx =



Iµ 0 0 . . . 0

0 Iµ 0 . . . 0

0 0 Iµ . . . 0
...

... 0 . . . 0

0 0 0 . . . Iµ





0 0 . . . 0 0

I 0 . . . 0 0

0 2I . . . 0 0
...

...
. . .

...
...

0 0 . . . nI 0



=



0 0 . . . 0 0

IµI 0 . . . 0 0

0 2IµI . . . 0 0
...

...
. . .

...
...

0 0 . . . nIµI 0


= Ctx. (4.23)

Now,

CtxM(x, t) =



0 0 . . . 0 0

IµI 0 . . . 0 0

0 2IµI . . . 0 0
...

...
. . .

...
...

0 0 . . . nIµI 0





M(t)

xM(t)

x2M(t)

. . .

xnM(t)


=

(
0 λ(t) 2xλ(t) . . . nxn−1λ(t)

)T
, (4.24)

thus the proof is complete. �

In the next theorem, we only change the elements ofM(x, t), and show that we achieve

the same result as in the previous theorem.
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Theorem 4.2.9. If we takeM(x, t) =

(
M(x) tM(x) t2M(x, t) . . . tnM(x)

)
, we can

achieve the result proven in the previous theorem.

Proof. We have,

DxM(x, t) =

(
M′(x) tM′(x) t2M′(x) . . . tnM′(x)

)T
,

Iµt
(
DxM(x, t)

)
=

(
tµ

Γ[µ+1]M
′(x) tµ+1

Γ[µ+2]M
′(x) 2tµ+2

Γ[µ+3]M
′(x) . . . Γ[n+1]tµ+n

Γ[µ+n+1]M
′(x)

)T
.

Considering the right hand side,

Iµt Dx =



tµ
Γ[µ+1]I 0 0 . . . 0

0 tµ
Γ[µ+2]I 0 . . . 0

0 0 2tµ
Γ[µ+3]I . . . 0

...
... 0 . . . 0

0 0 0 . . . Γ[n+1]tµ

Γ[µ+n+1]I





Dx 0 0 . . . 0

0 Dx 0 . . . 0

0 0 Dx . . . 0
...

... 0 . . . 0

0 0 0 . . . Dx



=



tµ
Γ[µ+1]IDx 0 0 . . . 0

0 tµ
Γ[µ+2]IDx 0 . . . 0

0 0 2tµ
Γ[µ+3]IDx . . . 0

...
... 0 . . . 0

0 0 0 . . . Γ[n+1]tµ

Γ[µ+n+1]IDx


= Ctx. (4.25)

Now,

CtxM(x, t) =



tµ
Γ[µ+1]IDx 0 0 . . . 0

0 tµ
Γ[µ+2]IDx 0 . . . 0

0 0 2tµ
Γ[µ+3]IDx . . . 0

...
... 0 . . . 0

0 0 0 . . . Γ[n+1]tµ

Γ[µ+n+1]IDx





M(x)

tM(x)

t2M(x)

. . .

tnM(x)


=

(
tµ

Γ[µ+1]M
′(x) tµ+1

Γ[µ+2]M
′(x) 2tµ+2

Γ[µ+3]M
′(x) . . . Γ[n+1]tµ+n

Γ[µ+n+1]M
′(x)

)T
,(4.26)

thus the proof is complete. �
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Corollary 4.2.4. By the same token,

Iµt
(
DxxM(x, t)

)
=

(
Iµt Dxx

)
M(x, t)

= CtxxM(x, t). (4.27)

The previous two theorems were concerned about the associativity law of matrix multipli-

cation. The important conclusion we deduce from this result is that we can combine two

matrices, the composite integral and composite derivative into a single operational matrix.

We can then use this single matrix to achieve the same goal as applying the integral and

derivative matrices separately.

Another important observation that we deduce from the previous two theorems is com-

mutativity in matrix multiplication. In general, multiplication of matrices is non commu-

tative, although there are some exceptions. In our case, from the previous theorem, matrix

multiplication is commutative. This is due to the presence of identity and zero matrices.

The next corollary summarises this important observation.

Corollary 4.2.5.

Iµt Dx = DxIµt ,

and

Iµt Dxx = DxxIµt .

In the context of derivative and integral operators, which is our case here, there is a simpler

explanation that we can offer on why matrix multiplication is commutative. It does not

matter whether one starts with integration or differentiation of a function, the end result

will be the same. We have to emphasize that this observation is based on two variables,

with one variable to be differentiated and the other to be integrated. Therefore, it will be

a whole different matter when one considers a single variable.
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4.3 Methodology

4.3.1 Description of the numerical method

We now use the concepts developed in the preceding section to construct a numerical

method. We will demonstrate how to apply this numerical technique to approximate the

solution of the IBVPs. Thereafter, we discuss theoretical aspects of convergence.

Our main intent is to approximate solution of the IBVP,

D
µ
t y = yxx, µ ∈ (p − 1, p], p ∈ N, (x, t) ∈ [0, 1] × [0, 1], (4.28)

y(q)(x, 0) = f (x), q = 0, 1, ..., p − 1, (4.29)

y(0, t) = β(t), (4.30)

y(1, t) = ρ(t), (4.31)

with y = y(x, t).

We write approximate solution of (4.28)–(4.31) as a product,

y(x, t) ≈ γTM(x, t), (4.32)

where γT is given as,

γT =

(
γ00 γ10 . . . γn0 γ01 γ11 . . . γn1 . . . γ0n γ1n . . . γnn

)
andM(x, t) is given in (4.6).

The main task in hand is to calculate the numerical values of γ in (4.32), we intend to

achieve this goal in two steps. Firstly, we utilise the initial and boundary conditions and

thereafter, we make use of the Garlekin technique.

We write both the initial and boundary conditions in Taylor series form expanded about

the point x = 0 and t = 0,

f (x) = f (0) + x f ′(0) +
x2

2!
f ′′(0) + · · · +

xn

n!
f (n)(0) + εn, (4.33)
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β(t) = β(0) + tβ′(0) +
t2

2!
β′′(0) + · · · +

tn

n!
β(n)(0) + εn, (4.34)

and

ρ(t) = ρ(0) + tρ′(0) +
t2

2!
ρ′′(0) + · · · +

tn

n!
ρ(n)(0) + %n, (4.35)

where εn, %n and εn denote the truncation errors.

Imposing the initial condition on the approximate solution (4.32),

γTM(x, 0) = γTM(x)

= γ00 + γ10x + γ20x2 + · · · + γn0xn (4.36)

= f (x).

Equating the coefficients of (4.33) without the error term with those of (4.36),

f (0) + x f ′(0) +
x2

2!
f ′′(0) + · · · +

xn

n!
f (n)(0) = γ00 + γ10x + γ20x2 + · · · + γn0xn, (4.37)

gives us, γ00 = f (0), γ10 = f ′(0), γ20 =
f ′′(0)

2! and γn0 =
f (n)(0)

n! .

Similarly, imposing the boundary condition on (4.32),

γTM(0, t) = γTM(t)

= γ00 + γ01t + γ02t2 + · · · + γ0ntn (4.38)

= β(t).

Equating the coefficients of (4.34) without the error term with those of (4.38),

β(0) + tβ′(0) +
t2

2!
β′′(0) + · · · +

tn

n!
β(n)(0) = γ00 + γ01t + γ02t2 + · · · + γ0ntn, (4.39)

gives us, γ00 = β(0), γ01 = β′(0), γ02 =
β′′(0)

2! and γ0n =
β(n)(0)

n! .
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Also,

γTM(1, t) = γTM(t)

+ γ00 + γ10 + γ20 + · · · + γn0

+ γ01t + γ11t + γ21t + · · · + γn1t

+ γ02t2 + γ12t2 + γ22t2 + · · · + γn2t2

+
... (4.40)

+ γ0ntn + γ1ntn + γ2ntn + · · · + γnntn

= ρ(t).

Equating the coefficients of (4.35) without the error term with those of (4.40), we get the

equations,

ρ(0) = γ00 + γ10 + γ20 + · · · + γn0

ρ′(0) = γ01 + γ11 + γ21 + · · · + γn1

1
2
ρ′′(0) = γ02 + γ12 + γ22 + · · · + γn2

... =
... (4.41)

1
n!
ρ(n)(0) = γ0n + γ1n + γ2n + · · · + γnn

We have completed the first stage of computing the numerical values of γ, we point out

an essential result from this. We realise that from the initial condition γ00 = f (0), whilst

from the boundary condition, (4.30), γ00 = β0. What this communicates is that for this

technique to work, the numerical values of f (0) and β0 should be equal.

The first stage of computing the numerical values of γ does not give all the values that we

need. To get the rest of the numerical values of γ, we move to the next stage where we

use the Garlekin method.

ReplacingDµ
t with the composite matrix Dµ

t and introducing the composite matrix Dxx on

the right hand side of (4.28) gives,

Dµ
t y(x, t) = Dxxy(x, t). (4.42)
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Substituting for y(x, t) in (4.42) using (4.32),

Dµ
t y(x, t) = Dxxy(x, t)

Dµ
t

(
γTM(x, t)

)
= Dxx

(
γTM(x, t)

)
γT Dµ

tM(x, t) = γT DxxM(x, t). (4.43)

We then deduce the residual R(x, t) from (4.43),

R(x, t) = γT Dµ
tM(x, t) − γT DxxM(x, t). (4.44)

Applying the Garlekin technique using (4.44) and polynomials from M(x, t), we create

equations,

1∫
0

1∫
0

R(x, t)tM(x)dxdt = 0

1∫
0

1∫
0

R(x, t)t2M(x)dxdt = 0

... =
... (4.45)

1∫
0

1∫
0

R(x, t)tnM(x)dxdt = 0.

There are a couple of important points that we need to emphasize about the equations

created in (4.45). Firstly, we get n equations from each equation, for example,
1∫

0

1∫
0
R(x, t)tM(x)dxdt = 0, will generate equations,

1∫
0

1∫
0
R(x, t)xtdxdt = 0,

1∫
0

1∫
0
R(x, t)x2tdxdt = 0, . . . ,

1∫
0

1∫
0
R(x, t)xntdxdt = 0.

Secondly, the number of equations generated from (4.45) are more than enough to sup-

plement the equations generated from (4.41). In this research, we are going to use the first

equations starting from the top in (4.45).

If we use the composite differential and integral matrices, we first have to write (4.28) as

an integral equation. We do this by taking the fractional integral (3.4) on both sides of
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(4.28)

y(x, t) −
p−1∑
q=0

y(q)(x, 0) = Iµt yxx. (4.46)

We then substitute (4.32) in (4.46) and introduce the differential composite matrix Dxx,

γTM(x, t) −
p−1∑
q=0

γTM(q)(x, 0) = Iµt Dxx

(
γTM(x, t)

)

γTM(x, t) −
p−1∑
q=0

γTM(q)(x, 0) = γT
(
Iµt Dxx

)
M(x, t). (4.47)

Applying (4.27) and substituting for the initial condition in (4.47),

γTM(x, t) − f (x) = γT CtxxM(x, t). (4.48)

Note that in (4.48), we can choose to use f (x) in either its original form or in its series

form. SinceM(x, t) is written as polynomials, then we will prefer to use f (x) in the series

form.

We deduce the residual function from (4.48) as,

R(x, t) = γTM(x, t) − f (x) − γT CtxxM(x, t). (4.49)

We can then use the residual R(x, t) from (4.49) to substitute in place of R(x, t) in (4.45)

to create equations to supplement those generated from (4.41).

Note that the residuals from (4.44) and (4.49) are not the same, therefore, we expect

different results from using them.

4.3.2 Convergence and rates of convergence

In using (4.32) to approximate (4.28)-(4.31), there is no rule that specifies the value of n,

this value of n stipulates how many polynomials are to be used for approximation. In as

far as the aforementioned numerical approach is concerned, any number of polynomials

that yield a good approximation is acceptable. Since there will be a different approximate

solution for each value of n, then we need to investigate the behaviour of the solution as
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we change the value of n. One way of doing this is to find out if the approximate solution

does converge as we increase the number of polynomials used. We will briefly discuss a

concept that guarantee convergence of the approximate solution.

We will use the convergence concepts developed in the previous chapter, the only dif-

ference is that we are now dealing with two independent variables instead of one. The

following definition forms the basis for the theorem that guarantees convergence.

Definition 4.3.1. We define the function, υn(x, t), the difference between two consecutive

functions from (4.32) as,

υn(x, t) = yn+1(x, t) − yn(x, t), n = 1, 2, . . . (4.50)

The next theorem guarantees convergence of the different solution generated from (4.32),

we state this theorem without proof. We write υn(x, t) = υn for simplicity.

Theorem 4.3.1. The sequence, υn, υn+1, υn+2, . . . , will converge whenever [26],

‖ υn ‖≥‖ υn+1 ‖≥‖ υn+2 ‖≥ . . .

The norms in the above theorem are computed over the interval [0, 1] as,

‖ υn ‖=

√√√√√ 1∫
0

1∫
0

| υn(x, t) |2 dxdt. (4.51)

As we discussed the rate of convergence in the previous chapter for a one independent

variable scenario, the implications are the same for a two independent variable situation.

The smaller the values of ‖ υn ‖, then the faster the rate of convergence of a numerical

method.

4.4 Conclusion

Besides the success we had in constructing the composite matrices, there is so much that

we learnt about these matrices. The idea of the commutativity law in matrix multipli-

cation is satisfied in a way that can be easily explained in the context of integration and
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multiplication. The product of composite matrices using the commutativity law shows us

that it makes no difference which one comes first, integrating or differentiating a function,

the result is the same. Also, the product of composite integral and derivative operational

matrices to get one composite matrix means that one is now dealing with a single matrix

that performs two functions. This is certainly an advantage that minimises the number

of computations. The methodology used in the application of the composite operational

matrices together with the Garlekin method in solving the PDEs is discussed. Thereafter,

the theory related to analysing the convergence of the results from this solution procedure

is explained. The methodology described in this chapter is put to test in the next chapter.

Using this methodology, we attempt to approximate the solutions of the heat and wave

equations.



Chapter 5

Applications

Abstract

The purpose of this chapter is to test the theoretical concepts that we developed in the

previous chapter. We choose the heat and wave equations as our case studies. For the heat

equation, we compare our practical results against the analytic solutions. Then, for the

wave equation, we compare our results, firstly, against the analytic solutions and secondly,

against the results from Legendre operational matrix where the Collocation technique was

used as a numerical method. We also test for convergence of the results to ascertain the

reliability of our methodology.

5.1 Introduction

Our main intention in this chapter is to put the theoretical concepts we developed in the

previous chapter into practice. We apply our suggested numerical technique to approxi-

mate the solution of a diffusion equation.

In particular, we focus on the heat and wave equations. The heat equation is a partial

differential equation (PDE) that models the diffusion of heat in a rod or space. This is

one of the mostly studied equations in both pure and applied mathematics. Along with

its variants, the heat equation is immensely important in various fields. Some of the com-

77
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mon examples which utilise the variant of the heat equation are the Black-Scholes PDE

in mathematical finance and the Schrödinger equation in quantum mechanics.

The wave equation is a PDE that finds practical applications mostly in classical physics.

In particular, this equation is of vital importance in situations that exhibit wave propaga-

tion. Thus, this equation is important in electromagnetism, sound waves, acoustics, fluid

dynamics and various other fields.

As a way of ascertaining accuracy and consistency of the results from this novel scheme,

we compare our results against analytical solutions. We do this through the computations

of absolute errors and performance of convergence analysis.

5.2 Approximate solution of the heat equation

We intend to approximate the solution of the following [27],

D
µ
t y =

1
2

x2yxx, µ ∈ (0, 1], (x, t) ∈ [0, 1] × [0, 1], (5.1)

y(x, 0) = x2, (5.2)

y(0, t) = 0, (5.3)

y(1, t) = et. (5.4)

If the value of µ = 1, then the analytical solution of (5.1)-(5.4) is y(x, t) = x2et.

We assume the approximate solution of (5.1)-(5.4) takes the form (4.32). If we take n = 3,

then, from (4.32), we get,

y(x, t) = γ00 + γ10x + γ20x2 + γ30x3 + γ11xt + γ12xt2 + γ13xt3 + γ21x2t

+ γ22x2t2 + γ23x2t3 + γ31x3t + γ32x3t2 + γ33x3t3 + γ01t + γ02t2 + γ03t3. (5.5)

We can deduce from (5.2) and (5.5) that,

y(x, 0) = γ00 + γ10x + γ20x2 + γ30x3 = x2,
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giving us γ00 = 0, γ10 = 0, γ20 = 1 and γ30 = 0.

Again, from (5.3) and (5.5), we get,

y(0, t) = γ00 + γ01t + γ02t2 + γ03t3 = 0,

yielding γ00 = 0, γ01 = 0, γ02 = 0 and γ03 = 0. Also, from (5.4) and (5.5), we get,

y(1, t) = γ00 + γ10 + γ20 + γ30 + γ11t + γ12t2 + γ13t3 + γ21t + γ22t2 + γ23t3

+ γ31t + γ32t2 + γ33t3 + γ01t + γ02t2 + γ03t3 (5.6)

= et

≈ 1 + t +
1
2

t2 +
1
6

t3.

Since we are already aware of the values of γ00, γ10, γ20, γ30, γ01, γ02 and γ03. We substitute

these values in (5.6) to get,

y(1, t) = 1 + γ11t + γ12t2 + γ13t3 + γ21t + γ22t2 + γ23t3

+ γ31t + γ32t2 + γ33t3

= et

≈ 1 + t +
1
2

t +
1
6

t3.

Equating the coefficients of t in the above equation implies that,

γ11 + γ21 + γ31 = 1 (5.7)

γ12 + γ22 + γ32 =
1
2

(5.8)

γ13 + γ23 + γ33 =
1
6
. (5.9)

We have so far made use of the initial and boundary conditions to deduce some numerical

values of γ, substituting these in (5.5) gives,

y(x, t) = x2 + γ11xt + γ12xt2 + γ13xt3 + γ21x2t + γ22x2t2 + γ23x2t3

+ γ31x3t + γ32x3t2 + γ33x3t3, (5.10)

as the approximate solution of (5.1)-(5.4).
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In matrix form, (5.10) can be written as,

y(x, t) =

(
1 γ11 γ12 γ13 γ21 γ22 γ23 γ31 γ32 γ33

)



x2

xt

xt2

xt3

x2t

x2t2

x2t3

x3t

x3t2

x3t3



, (5.11)

with, γT =

(
1 γ11 γ12 γ13 γ21 γ22 γ23 γ31 γ32 γ33

)
andM(x, t) =



x2

xt

xt2

xt3

x2t

x2t2

x2t3

x3t

x3t2

x3t3



.

Replacing the derivative operators with composite derivative matrices in (5.1), we get,

Dµ
t y =

1
2

x2Dxxy,

γT Dµ
tM(x, t) =

1
2

x2γT DxxM(x, t) (5.12)

We then create the residual R(x, t), such that,

R(x, t) = γT Dµ
tM(x, t) −

1
2

x2γT DxxM(x, t). (5.13)
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We then apply the Garlekin method to create a system of equations,
1∫

0

1∫
0

R(x, t)xtdxdt = 0 (5.14)

1∫
0

1∫
0

R(x, t)xt2dxdt = 0 (5.15)

1∫
0

1∫
0

R(x, t)xt3dxdt = 0 (5.16)

1∫
0

1∫
0

R(x, t)x2tdxdt = 0 (5.17)

1∫
0

1∫
0

R(x, t)x2t2dxdt = 0 (5.18)

1∫
0

1∫
0

R(x, t)x2t3dxdt = 0 (5.19)

1∫
0

1∫
0

R(x, t)x3tdxdt = 0 (5.20)

1∫
0

1∫
0

R(x, t)x3t2dxdt = 0 (5.21)

1∫
0

1∫
0

R(x, t)x3t3dxdt = 0 (5.22)

Combining equations (5.7)–(5.9) and (5.14)-(5.22), we have enough number of equations

to enable us to compute the remaining numerical values of γ in (5.11). We solve these

equations with the help of Mathematica, and for µ = 1, we get,

γ11 = 3056
226001 , γ12 = − 11502

226001 , γ13 = 6511
226001 , γ21 = 221410

226001 , γ22 = 512245
904004 , γ23 = 587545

2712012 , γ31 =

1535
226001 , γ32 = − 14235

904004 and γ33 = − 71225
904004 .

Thus, the approximate solution becomes,

y(x, t) = x2 +
3056

226001
tx −

11502
226001

t2x +
6511

226001
t3x +

221410
226001

tx2 +
512245
904004

t2x2

+
587545

2712012
t3x2 +

1535
226001

x3t −
14235

904004
x3t2 −

71225
904004

x3t3. (5.23)



Approximate solution of the heat equation 82

If we use the composite integral and differential matrices, we will first substitute for the

derivative operator on the right hand side of (5.1) with a composite derivative matrix and

thereafter, we introduce the composite integral matrix on both sides, such that,

Iµt y = Iµt
(1
2

x2Dxxy
)

y(x, t) − y(x, 0) =
1
2

x2Iµt Dxxy(x, t)

y(x, t) − f (x) =
1
2

x2Ctxxy(x, t) (5.24)

Substituting (5.11) and for the initial condition in (5.24),

y(x, t) − x2 =
1
2

x2Ctxxy(x, t), (5.25)

giving the residual,

R(x, t) = y(x, t) − x2 −
1
2

x2Ctxxy(x, t). (5.26)

Note that, the residual created from the composite differential matrices, (5.13), is different

from the one created from the composite integral and differential matrices, (5.26). Thus,

in this respect, we expect the approximate solutions fromR(x, t) and R(x, t) to be different.

To get the approximate solution from the composite integral and differential matrices, we

have to solve equations (5.7)–(5.9) and (5.14)–(5.22). However, we have to take note that

we now use the residual R(x, t) instead of R(x, t) in (5.14)–(5.22). After solving for γ and

substituting in (5.10), we attain the following approximate solution,

y(x, t) = x2 +
5570

1004147
tx −

62145
2008294

t2x +
31905

2008294
t3x +

3984733
4016588

tx2 +
4304393
8033176

t2x2

+
712516

3012441
t3x2 +

9575
4016588

x3t −
39225

8033176
x3t2 −

86100
1004147

x3t3. (5.27)

Figure5.1 depicts the diagrammatic representation of the analytic solution and approxi-

mate solutions from the composite derivative matrices. The diagrams are constructed for

different combination sets of n and µ.
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Figure 5.1: Approximate solutions of (5.1)-(5.4) from the composite derivative matrices for

different combination sets of µ and n are compared against the analytic solution.

We note from Figure 5.1 that solutions from our technique are very close to the analytic

solution. We also note that, we have one diagram with µ = µ(x, t) = 1 − x4t4
5 , thus µ is

a function. This means that it is possible to take the order of a derivative to be a func-

tion. However, we have to stress that this concept of taking the order of a derivative as a

function is in its infancy, therefore there is nothing much that we can say about it. The

main challenge one encounters in the function derivative order is the enormous sizes of
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the values of γT . That is the reason why we were only able to do the calculations for

n = 3, which means few numbers of polynomials used, thus lessening the computational

difficulty.

To get a much clear view of the relation between the analytic and approximate solution,

we compute the absolute errors yer,

yer =| yanal(x, t) − yappr(x, t) |, where yanal and yappr are the analytical and approximate

solutions respectively.

Figure 5.2 shows the absolute errors for various combinations of n and µ.
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Figure 5.2: Error analysis of the results from Figure 5.1

It is apparent from Figure 5.2 that our approximate solution improves with increasing

number of polynomials used.

In Figure 5.3, we depict approximate solutions resulting from the composite integral and

differential matrices. Then in Figure 5.4, we depict the corresponding absolute errors. We

do this for various combination sets of n and µ.
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Figure 5.3: Approximate solutions of (5.1)-(5.4) from the composite integral and derivative

matrices for various combination sets of µ and n.
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Figure 5.4: Error analysis of the results from Figure 5.3.
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One striking observation from Figures 5.1–5.4 is that it does not make any difference

whether we use only composite derivative matrices or both the integral and derivative

composite operational to approximate the solution of (5.1)-(5.4). The results look the

same from the diagrams.

To corroborate this important observation, we show results from the convergence analysis

in Table 5.1.

Table 5.1: Convergence results of (5.1)–(5.4) from composite operational matrices.

Dµ
t and Dxx Iµt Dxx

‖ υ3 ‖ 0.004785699922751591 0.004521594889883231

‖ υ4 ‖ 0.0008391604751856951 0.0010672764814549862

‖ υ5 ‖ 0.00012478378609025523 0.00018117011293624844.

In Table 5.1, the middle column are the results from the composite derivative matrices,

then the last column are the results from the composite integral and derivative matrices.

We can tell from Table 5.1 that as we increase the value of n, then ‖ υ ‖ gets smaller,

implying the difference between consecutive terms of y(x, t) become smaller and smaller,

thus the approximate solution converges.

The results from Table 5.1 between the composite differential and composite integral and

differential matrices are very close, suggesting that it does not matter much which option

we choose in approximating solution of (5.1)-(5.4).
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5.3 Approximate solution of the wave equation

We intend to approximate the solution of the wave equation [23],

D
µ
t y = yxx, µ ∈ (1, 2], (x, t) ∈ [0, 1] × [0, 1], (5.28)

y(x, 0) = sin(x), (5.29)

yt(x, 0) = 0, (5.30)

y(0, t) = 0, (5.31)

y(1, t) = sin(1) cos(t). (5.32)

If the value of µ = 2, then the analytical solution of (5.28)-(5.32) is y(x, t) = sin(x) cos(t).

We assume the approximate solution of (5.28)-(5.32) takes the form of (4.32), thus for

n = 3, we get (5.5).

We can tell from (5.29) and (5.5) that,

y(x, 0) = γ00 + γ10x + γ20x2 + γ30x3 (5.33)

= sin(x)

≈ x −
1
6

x3. (5.34)

Equating the coefficients of x in (5.33) and (5.34), gives, γ00 = 0, γ10 = 1, γ20 = 0 and

γ30 = −1
6 .

Imposing the initial condition (5.30) on (5.5) implies,

yt(x, 0) = γ11x + γ21x2 + γ31x3 + γ01 = 0, (5.35)

thus, we are able to deduce from (5.35) that, γ11 = 0, γ21 = 0, γ31 = 0 and γ01 = 0.

Imposing the condition (5.31) on (5.5) means,

y(0, t) = γ00 + γ01t + γ02t2 + γ03t3 = 0, (5.36)

thus, we can deduce that, γ00 = 0, γ01 = 0, γ02 = 0 and γ03 = 0.

We also use (5.32) and (5.5) to get,

y(1, t) = γ00 + γ10 + γ20 + γ30 + γ11t + γ12t2 + γ13t3 + γ21t + γ22t2 + γ23t3

+ γ31t + γ32t2 + γ33t3 + γ01t + γ02t2 + γ03t3. (5.37)

= sin(1) cos(t). (5.38)
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Since, we already know some numerical values of γT , we substitute these in (5.37). We

also expand cos(t) in (5.38) about the point t = 0. Thus, from (5.37) and (5.38), we get,

y(1, t) =
5
6

+ γ12t2 + γ13t3 + γ22t2 + γ23t3

+ γ32t2 + γ33t3. (5.39)

= sin(1) − sin(1)
1
2

t2. (5.40)

Equating the coefficients of t in (5.39) and (5.40) yields the equations,
5
6

= sin(1), (5.41)

γ12 + γ22 + γ32 = −
sin(1)

2
, (5.42)

γ13 + γ23 + γ33 = 0. (5.43)

There are a couple of important points that we need to mention in (5.41)-(5.43). Since,

(5.5) is an approximate solution, in (5.41), the left hand side is approximately equal to the

right hand side. Also, in (5.43), we will assume the solution to be γ12 = γ23 = γ33 = 0.

Thus, up to this far, we have attained some values of γT , we substitute these in (5.5) such

that,

y(x, t) = x −
1
6

x3 + γ12xt2 + γ22x2t2 + γ32x3t2. (5.44)

In matrix form, (5.44) can be written as,

y(x, t) =

(
1 −1

6 γ12 γ22 γ32

)


x

x3

xt2

x2t2

x3t2


, (5.45)

with γT =

(
1 −1

6 γ12 γ22 γ32

)
andM(x, t) =



x

x3

xt2

x2t2

x3t2


.

We replace the derivative operators with the composite derivative matrices in (5.28) such
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that,

Dµ
t y = Dxxy,

γT Dµ
tM(x, t) = γT DxxM(x, t). (5.46)

The residual from (5.46) is given as,

R(x, t) = γT Dµ
tM(x, t) − γT DxxM(x, t). (5.47)

We then create a system of equations from the residual (5.47) as,
1∫

0

R(x, t)xt2dxdt = 0, (5.48)

1∫
0

R(x, t)x2t2dxdt = 0, (5.49)

1∫
0

R(x, t)x3t2dxdt = 0. (5.50)

Solving a system of equations (5.42), (5.43) and (5.48), we are able to get the numerical

values of the remaining unknowns in (5.44). Through the assistance of Mathematica with

the value of µ = 2, we get the values, γ12 = −135
304 , γ22 = − 5

228 and γ32 = 15
304 . Therefore,

we get the approximate solution,

y(x, t) = x −
x3

3
−

135
304

xt2 −
5

228
x2t2 +

15
304

x3t2. (5.51)

If we use the composite differential and integral matrices, then the residual becomes,

R(x, t) = y(x, t) − sin(x) − Iµt Dxxy(x, t),

= γTM(x, t) −
(
x −

x3

6

)
− γT CtxxM(x, t). (5.52)

We formulate equations as in (5.48)-(5.50), but we use the residual R(x, t) given in (5.52).

Solving a system of equations (5.42), (5.43) and (5.48) with residual R(x, t) and µ = 2

gives us γ12 = −1375
3216 , γ22 = − 245

1072 and γ32 = 385
1608 . Thus, our approximate solution is,

y(x, t) = x −
x3

3
−

1375
3216

xt2 −
1375
3216

x2t2 +
385

1608
x3t2. (5.53)

We depict plots of the analytical solution and approximate solutions of (5.28)-(5.32) ob-

tained from the composite derivative matrices in Figure 5.5 for various combination sets

of n and µ.
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Figure 5.5: Approximate solutions of (5.28)-(5.32) from the composite derivative matrices for

different combination sets of µ and n are compared against the analytic solution.

We observe from Figure 5.5 that the results from the analytical and approximate solutions

are very close. A diagrammatic presentation of the absolute errors is shown in Figure 5.6

for various values of n with µ = 2.
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Figure 5.6: Error analysis of the results from Figure 5.5 for different values of n with µ = 2.

The results in Figure 5.6 indicate that as we increase the number of polynomials for ap-

proximations, the accuracy improves.

In Figure 5.7, we plot the approximate solutions of (5.28)-(5.32) obtained from the com-

posite differential and integral matrices. In Figure 5.8, we plot the associated absolute

errors.
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Figure 5.7: Approximate solutions of (5.28)-(5.32) from the composite integral and derivative

matrices for different combination sets of µ and n.
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Figure 5.8: Error analysis of the results from Figure 5.7 for different values of n with µ = 2.
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We note from Figure 5.7–5.8 that the approximate solutions are very close to the analytic

solution, also, as we increase the value of n, the accuracy of the numerical approach

improves.

Comparing results from Figure 5.6–5.8, we realise that it does not make any difference if

one uses composite derivative or composite derivative and integral matrices, the results are

very close. To emphasize this important observation, we perform convergence analysis of

the results in Table 5.2.

Table 5.2: Convergence results of (5.28)–(5.32) from composite operational matrices.

Dµ
t and Dxx Iµt Dxx

‖ υ3 ‖ 0.005006360460823758 0.010041424385944648

‖ υ4 ‖ 0.003769572156940589 0.006657994660073802

‖ υ5 ‖ 0.0007407665777154791 0.0017596044581037545

We notice from Table 5.2 that the convergence results from the composite differential

matrices and composite integral and differential are close. However, for this example,

we seem to be converging faster to the analytic solution through the use of the composite

derivative matrices. The sensible explanation for this observation might be in the con-

struction of the residuals. When using the derivative operational matrices, the residual

function, 5.47, does not involve the initial condition. But, when using the composite

integral and derivative matrices, we have to utilise the approximate initial condition in

constructing the residual (5.52).

In [22], the authors use the Legendre operational matrix together with the collocation

technique to approximate the solution of fractional differential equations. We use the

technique described in [22] to approximate the solution of (5.28)-(5.32). We then make a

comparison of the results from this technique against our own results. The comparisons

are given in the form of diagrams in Figure 5.9.
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Figure 5.9: Comparison of the results, multli-coloured diagrams are results from our technique

and blue colour are the results from the Legedre operational matrix using the collocation.

We observe from Figure 5.9 that results from our technique and those from the method

described in [22] are in close agreement.

5.4 Conclusion

The results from our suggested numerical approach converge to the analytic solutions

as we increase the number of polynomials. A more crucial observation of our results

point out to the fact that we only need just the first few polynomials to get good results.

Thus this approach has fast rate of convergence. We observe that the approximation of

the initial condition does compromise the accuracy of the results. This is clearly evident

from the convergence results of the approximate solution of the wave equation where

the composite integral operational was applied. However, in general, we do observe that

it does not make much difference whether one chooses to use differential operational
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matrices or a combination of the integral and derivative operational matrices.



Chapter 6

Summary

In the first chapter, we introduced the thesis by stating our research objectives and giving

sufficient background. In addition, we gave the necessary mathematical definitions and

some notations that were useful throughout the thesis.

In the second chapter, we solely focused our attention to the review of the literature rele-

vant to our research. We discuss the developments of the use of operational matrices and

explain how the objectives of our research contribute to the existing body of knowledge.

In chapter three, we introduce the idea of an operational matrix, in particular, we explain

how operational matrices can be deduced from polynomials. We discuss how matrices

can function as differential and integral operators. To put the theory of operational ma-

trices into practice, we apply them in the approximate solution of ordinary differential

equations. Of prominent importance in this chapter is the application of operational ma-

trices in the approximate solution of the Vander Pol differential equation.

The fourth chapter is reserved to the contribution that we make to the existing knowledge

of the operational matrices. We deviate from the tradition of writing an approximate so-

lution of a partial differential equation in a specific way, and by so doing we unravel new

notion of constructing operational matrices. This discovery leads us to realise that the

partial derivatives and integrals can be represented by operational matrices whose entries

are themselves matrices. We point out clearly how this new knowledge perfectly fits in

the already existing notion of operational matrices.

99
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In chapter five, we apply the knowledge developed in chapter four to solve practical prob-

lems. Specifically, we approximate the solutions of the heat and wave equations. We

demonstrate that a small increment in the dimensions of the operational matrices dras-

tically improves the accuracy of our approximate solution. Also, the results reveal that

operational matrices with low dimensions are sufficient to give good approximations.

When we have a function derivative order, the calculations become challenging. In fact,

we were not able to write results from Mathematica when solving variable order differ-

ential equations due to their considerable length. This difficulty prevented us from doing

calculations with operational matrices of higher dimensions. Also the variable order con-

cept is a relatively new idea that is still under development, because of this, there are few

results in literature that we were able to use for comparison with our work. Mostly, we

had to compare the results from our work with those from integer order derivatives.

There are numerous directions of future research that we had to pick up in the course of

doing this research, but we will mention only two of them that we think are worth pur-

suing. Firstly, perhaps, to reduce the large volume of the results we experienced from

variable order differential equations, other numerical techniques besides the Garlekin can

be explored. Secondly, we managed to develop the new concept of the composite opera-

tional matrices and used it in conjunction with the Garlekin technique to approximate the

solutions of PDEs. In our solution process, we had to approximate the initial and bound-

ary conditions using the Taylor expansion. We chose to do this for the sake of consistency

since we were using polynomials for our approximations. However, it will be worth find-

ing out what is the effect on the approximate solution when one chooses to use the given

initial conditions as functions without approximating them.



2  5.184459105694016` 24.007554165344665` , 0  2.`, 1  0.`,
2  5.184459105694016` 24.007554165344665` , 0  2  2.`, 1  0.`,
2  0.9343075950635839`, 0  2.`, 1  0.`

Appendix  A1.nb 1



2  80.05833087020494` 109.8153787495283` ,
3  119.7654599121798` 100.81576905305629` , 0  2.`, 1  0.`,

2  80.05833087020494` 109.8153787495283` ,
3  119.7654599121798` 100.81576905305629` , 0  2.`, 1  0.`,

2  36.00128586033101` 164.12747533815937` ,
3  39.626957908282925`  220.3144440239099` , 0  2.`, 1  0.`,

2  36.00128586033101` 164.12747533815937` ,
3  39.626957908282925`  220.3144440239099` , 0  2.`, 1  0.`,

2  1.0521192366798373`, c3  0.1617057020400526`, c0  2.`, c1  0.`,
2  5.477418057270716` 37.49060249939382` ,

3  10.402140680299341` 68.81312144858306` , 0  2.`, 1  0.`,
2  5.477418057270716` 37.49060249939382` ,

3  10.402140680299341` 68.81312144858306` , 0  2.`, 1  0.`,
2  28.965398746885466`  130.81784748004927` ,

3  71.45186919442399` 132.72530574090675` , 0  2.`, 1  0.`,
2  28.965398746885466`  130.81784748004927` ,
3  71.45186919442399` 132.72530574090675` , 0  2.`, 1  0.`

Appendix  A2.nb 1
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