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Abstract

The communicable disease tuberculosis (TB), human immunodeficiency virus/acquired immune
deficiency syndrome (HIV/AIDS) disease, and their co-infection are the most serious public health
issues in the world. In this thesis, three population level mathematical models of the three infections
in Ethiopia are developed and analyzed. The first model considers the dynamics of HIV/AIDS,
which comprise the following exclusive classes of individuals, the aware and unaware suscepti-
bles, undiagnosed HIV infectious, diagnosed HIV infectious with and without AIDS symptoms,
and those under HIV treatment. This model considers the rate of becoming aware and unaware
as a function of media campaigns, whereas screening and treatment rates are constant. The ef-
fective reproduction number, equilibria, and nature of stability were formulated. The bifurcation
occurs when the effective reproduction number is equal to unity. This model is extended to a new
model which incorporates interventions such as preventive, screening, and treatment strategies. In
this model, the optimal control problem is formulated and solved analytically. In addition to this,
the optimality system is derived and solved numerically using the forward-backward sweep method
(FBSM). Finally, the cost-effectiveness of some combined control strategies is derived. The second
model reflects the TB transmission dynamics with drug resistance TB (DR-TB). The two infectious
TB stages, namely drug-sensitive TB and drug-resistant TB, are considered in the model. Assum-
ing that drug-sensitive TB can be cured by first-line anti-TB drugs. In fact, once the Tubercle
Bacilli become resistant to one or more anti-TB drugs, the drug-resistance TB occurs. The model
is analyzed analytically and extended to an optimal control problem via incorporating preventive
efforts, case finding, and case holding. In the study, four different strategies are introduced based on
different combination of measures. The optimal control problem is examined both analytically and
numerically. The third model describes a new mathematical model of human immunodeficiency
virus (HIV) associated with tuberculosis (TB). This full TB-HIV co-infection model is analyzed
analytically. Which is extended to an optimal control problem by using controlling variables such
as preventive efforts, case finding effort for TB, and HIV treatment. We proposed four strategies,
which are combinations of two or more control measures at a time. The model with controls is
analyzed both analytically and numerically. The numerical results are derived using the classical
Runge-Kutta method of order four (RK4-method). The finding suggests that optimal combination
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strategies are used to reduce both the disease burden and the cost of intervention. Further, the
cost- effectiveness of each strategy is assessed to identify the best cost-effective approach the fight
against TB-HIV co-infection in Ethiopia.

Keywords: HIV/AIDS, TB, co-dynamics, RK4-method, Equilibrium, Stability, Bifurcations, Op-

timal control, FBSM, Cost-effective analysis.
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Chapter 1

General introduction

1.1 Background information on HIV/AIDS

The Human Immunodeficiency Virus (HIV) is the causative agent for Acquired Immunodeficiency
Syndrome (AIDS) and has become one of the major global health challenges [fdr13, VTC+14,
O+12]. This virus was identified in 1983, two years later the AIDS cases were reported [cdc20].
HIV infects cells in the central nervous system and the immune system. The main type of cell
that HIV infects is T-helper lymphocytes. These cells are in the immune system whose role is
to organize the actions of other cells in the system. The weak immune system is the result of
a high number of reductions of these cells. T-helper cells have a protein called CD4+ on their
surface. This CD4+ layer can retain the HIV virus before entering the cells. A reader can see
the books Ronald [RJ96] and Brauer [BVdDWA08] for further information. Once HIV enters
into this cell, it produces new copies that are able to infect other cells. Thus, T-helper cells are
responsible for fighting against the diseases, but their numbers are reducing gradually when HIV
infection increases continuously. This disease has been killing people and will continue to do so
unless a breakthrough is made. According to the UNAIDS 2021 report, the total number of people
living with HIV worldwide is estimated to be 37.7 million, with 36.0 million adults and 1.7 million
children under the age of 15. In this report, the number of newly infected people with HIV and
the number of people who died with AIDS in 2020 are estimated at 1.5 million and 680 000,
respectively. The data statistics show that, in Eastern and Southern Africa, there are 20.6 million
people living with HIV, 670 000 people newly infected with HIV and 310 000 people dead due
to AIDS. In Western and Central Africa, approximately 4.7 million people are infected with HIV,
200 000 people are newly infected with HIV, and 150 000 people die as a result of AIDS. In the
year 2020, there will be 4 000 new HIV infections every day in the world, of which 60% are in
Sub-Saharan Africa.
As one of Sub-Saharan Africa country, Ethiopia in 2019, there were around 1 207 826 people living
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with HIV, 22 000 new infected individuals with HIV, and 10 543 people died from an AIDS-related
disease [(EP20]. Of these overall infected individuals, 613 500 are women aged 15− 49, 470 326
are men aged 15 − 49, 51 000 are children aged 0 to 14. The HIV prevalence rate of adults aged
15 to 49 in Ethiopia is 0.897. Here, the HIV prevalence rates of men and women in this range are
0.51 and 0.39 respectively.
So, we should take remedial action towards controlling this endemic disease seriously at a national
level and need more effort than before. To control the burden of this disease, there are different self-
protective measures of HIV/AIDS (absenteeism, faithfulness, and using condom). Till now, there
is no cure or vaccine for this global pandemic. However, there is a treatment called antiretroviral
therapy (ART). ART comprises taking a combination of HIV doses daily. ART is recommended
for every person who is HIV-infected. It cannot cure the HIV virus, but HIV medicines help HIV-
infected individuals prolong their life.

1.1.1 Modes of transmission

HIV transmission is the spread of the HIV virus from person-to-person. Previously, it was spread
accidentally via blood transfusion. Many individuals in the world were infected through this path-
way. However, nowadays the blood supply is more severely tested and controlled. A person can’t
get HIV from donating blood if a new sterile (clean) needle is used for each donation [cx113]. The
HIV transmission risk can also be increased by unsafe sex (sex without condoms), because of the
semen and vaginal secretion. In addition to this, individuals can be infected with HIV when using
injection drugs through sharing needles. Thus, cleaning the needles with a bleach solution before
reusing them is the best way. Experts recommend that using fresh needles at any time can remove
any risk of infection. Moreover, there is also vertical transmission, where pregnant mothers are
HIV positive. The virus can be transferred from an infected mother to her infant during pregnancy
or breast feeding. Given that medical care and HIV drugs for HIV-infected pregnant women are es-
sential to remove the risk of infants getting the virus. mothers who are HIV+ should not breastfeed
their babies.

1.1.2 How HIV is not transmitted

The HIV virus cannot be transmitted unless certain body fluids are interchanged. Everyone can
significantly reduce the HIV transmission risk when injecting drugs through new or clean needles.
These measures are vital to protecting a person from the virus. HIV is not transmitted by kissing
and sharing exercise equipment. It can’t be transmitted when a person is sharing food or drinks,
a shower, bath, or bed used by an HIV-positive person [cx113]. Through time, the HIV virus can
weaken the immune system so it is unable to resist opportunistic infections. Usually, a person who
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has a healthy immune system can control opportunistic infections. However, a person with AIDS
has a weakened immune system. Thus, urgent medical intervention is necessary to prevent certain
opportunistic infections or treat severe diseases.

1.1.3 Stages of HIV/AIDS

The WHO HIV/AIDS department stated the following four distinct stages of HIV/AIDS [Org10].
These are

1. Primary infection stage

This is the first stage of HIV infection. It begins almost immediately after a person first
contracts HIV. This stage is also called acute stage and which takes 2 to 4 weeks. During this
time, some people experience flu-like symptoms such as headaches, rashes, and fever. At this
stage, HIV duplicates quickly and spreads throughout the human body. During the first few
weeks, infected people are highly infectious [xc121, GGD+09]. This phase helps physicians
decide whether the patient is eligible for treatment or not. Often, if an HIV test is done, it
will come back to negative. This is because HIV antibodies are not yet being produced, but
HIV continues to duplicate in the body [Eji11]. Gradually, the antibodies are starting to be
produced in the immune system in response to the virus. This situation is known as sero-
conversion. When this occurs, about 20% of HIV-infected people show symptoms that is not
mild. Nevertheless, HIV diagnosis is missed at this phase [xc121]. Individuals should repeat
the HIV test after six months if they believe they have been exposed to HIV.

2. Asymptomatic stage

This is the second stage. Some individuals may have symptoms within a few years, but
others can go on average 8 years without symptoms. The infectious period is based on a
person characterized by a CD4+ count nearby 500 cells per µl [dcb]. There are no major
AIDS-related symptom at this stage, even if there may be swollen glands. The antibody test
will display a HIV+ result, due to antibodies being differentiable in the blood. This test is a
viral load test which plays a vital role in HIV treatment [xc121].

3. Symptomatic stage

This is the third stage, where the immune system is damaged by HIV and symptoms begin to
appear. This leads to a high level of CD4+ cell destruction, and the immune system cannot
replace the CD4+ cells that are lost. HIV symptoms appear when the immune system fails
to perform its functions. Initially, the symptoms are mild in stage and gradually grow into
a severe stage. Opportunistic infections are also beginning to appear. These can affect just
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about all parts of the body. For instance, tuberculosis, human papillomavirus, shingles, and
cytomegalovirus are known opportunistic infections that appear in HIV-infected individuals.
At this stage, HIV treatment helps HIV-infected people to decrease their viral load. However,
if they are not starting or delaying the treatment, their immune systems will deteriorate,
resulting in the worst HIV symptom [xc121].

4. Advanced AIDS stage

This is the final stage when a person is having AIDS that is diagnosed from a class of similar
HIV symptoms caused by severe infection [xc121] . At this stage HIV+ people can die due
to the cause of these severe infections. A person infected with HIV progressed to AIDS is
having a CD4+ count of 200 per ml or lower. However, a person is having around 1000
per ml in normal situations [Mur01]. Moreover, at this phase opportunistic infections can
develop in an infected individual body parts, such as gastro-intestinal system, respiratory
system, central nervous system, and on the skin also.

1.1.4 Treatment

HIV treatment is crucial for HIV-infected people to reduce the viral load in their body [cdc20].
HIV medicine is known as ART, which can control HIV. However, taking this medicine does not
protect the transmission of sexual transmitted diseases, including HIV.
There is no realistic evidence at which stage HIV treatment should start. The death rates are in-
creasing high when ART treatment is delayed. There was a debate regarding this issue. There was
a panel discussion on ART guidelines for adults and adolescents in 2009. The participants sug-
gested that ART should be given to HIV-infected people with a CD4 count of between 350 – 500
and no lower than 350 cells per µl [STU+10]. They emphasized that every patient starting ART
should be ready for continuing ART as well as they had to understand the benefit and risk of the
treatment [GGD+09]. However, the CDC recommends that all HIV patients can take HIV medicine
irrespective of their health status and how long the virus is in their body. Moreover, if HIV treat-
ment is delayed, HIV will continue to damage the patient’s immune system. This result means HIV
can progress to the AIDS stage and the occurrence of opportunistic infections can increase [cdc20].

1.2 Background information on tuberculosis

Tuberculosis (TB) is a contagious disease caused by the Mycobacterium tuberculosis (a tubercle
bacilli) bacteria. It is spread through the air by people who have active tuberculosis. When infec-
tious individuals are coughing, tiny droplets in the air are duplicated. TB infects millions of people



CHAPTER 1. GENERAL INTRODUCTION 5

every year and it is one of the ten deadliest diseases on the globe. It is also the principal cause of
death, ranking above the Human immunodeficiency Virus (HIV) [MZ18].
When TB disease affects the lungs, it is called pulmonary TB. When it affects other body part such
as brain, glands, kidney, and bones is called extra-pulmonary TB [MGM06, Ade08]. There are
two stages of TB. One is active TB which covers 10% of the total infected people. The remaining
90% is classified as latent infection (a person has TB but does not have any symptoms). People
who develop active TB are infectious; they transmit the virus to others; whereas people in latent
infected stage are not infectious that could not transmit the virus to others.
People who have been in contact for a long time with TB infectious individuals, they have a chance
of being infected by TB [JKW19]. According to a WHO report, it is estimated that about one
third of the world‘s population is infected with TB [cgt21a]. In this report, globally around 8.7-
11 million people develop active TB and around 1.1-1.3 million people die with TB annually. In
2019, the burden of TB disease was high in Africa which takes 25% from the total TB cases in the
world [cgt21b]. In Africa, Ethiopia is one of the 30 high TB burden countries globally. In this year
Ethiopia had 147 168 notified TB cases, TB incidence rate of 140 per 100 000 populations, and
mortality rate of 21 per 100 000 populations [cgt21b].
TB infected people can remain latent for a long period of time [Dav15]. Exposed or latent TB pe-
riods can stay from years to decades based on the immune system of infected individuals [BT10].
People with healthy immune system may not fall with latent TB, but people with feeble immune
system can progress to active stage due to the occurrence of HIV with low CD4 count, under-
feeding, diabetes, smoking and alcohol consumption. If HIV-infected people are ill with TB, they
have a chance of dying with the primary agent of overpowering infection [SN08]. The dual in-
fections of TB and HIV are one of the main worldwide health challenges of the 21st century. In
2016, universal TB/HIV co-infection statistics discovered that number of deaths happened. These
were 374 000 by HIV, 826 000 by TB and 1 300 000 by co-infection of the two diseases. Even
though death related to HIV is less than TB infection. The two (TB and HIV) diseases are over-
whelming the patient’s immunity and curtail the life span if there is no primal diagnosis and treat-
ment [TAG+18].
WHO approximated that 20 times at higher risk of capturing TB on HIV people than counter-
parts [YZN16]. This report shows a small fraction (5–15%) of the expected 1.7 billion people
infected with tubercle bacilli will progress to TB disease during their lifespan.
TB infections can also develop to drug sensitive TB ( active TB ) and drug resistance TB which is
multidrug-resistant strains (MDR-TB) or extensive drug-resistant TB (XDR TB) [RJF+16,cgt21b].
MDR-TB is resistant to at least two of the five first–line antibiotic, namely isoniazid (INH) and ri-
fampicin (RIF), whereas XDR-TB is a rare type of MDR TB plus extra resist to one fluoroquinolone
and one of injectable second-line drugs. These serious drug resistance strains occur when patients
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lack adherence to TB medications.
MDR-TB is an emerging problem of TB worldwide. Ethiopia is one of these nations, as of 2019,
an estimated prevalence rate was 2.7% and new as well as re-treated cases was 14% from total TB
cases [cgt21b]. As of 2020, 1 110 DR-TB patients were under treatment in Ethiopia. Among them
123 patients have died, 17 defaulted from treatment, and the majority are in isolation with treat-
ment [vvv22]. Thus, the most common controlling mechanism is isolating infectious individuals
and applying effective treatment.

1.2.1 Symptoms of tuberculosis

If infected people do not show TB symptoms, then they are under latent TB stage. However, if they
can show TB symptoms, they are under active TB stage [CPJGS+07]. The symptoms are fever,
night sweats, weight loss, chills, loss of appetite, and fatigue [MBR+05]. A person may not show
any symptoms of the disease until the infection is severely advanced. Sometimes the symptoms
can be blaming for other virus.

1.2.2 Treatment of tuberculosis

A person infected with TB can be treated and cured. The primary effort of TB preventive and
controlling measures is vaccination of newborns and detection of active cases to take appropriate
treatment. If left untreated he or she becomes ill and the situation may be leading to life risking
conditions. Thus, the TB disease can be treated by the most powerful first-line anti-TB drugs such
as Isoniazid, rifampin, ethambutol, and pyrazinamide. There are also second and third-line anti-TB
drugs such as streptomycin, cycloserine, para-aminosalicylic acid, and fluoroquinolones. If the TB
treatment is not managed appropriately until completed, the disease may progress to drug resistance
TB (DR-TB) like MDR-TB. It is difficult to treat MDR-TB when an old person is infected by
this DR-TB. Moreover, there is also a disease called XDR-TB which comes after MDR-TB. This
occurs when the TB disease resists both first and second-line drugs. Almost MDR-TB is incurable
by normal first-line treatment and this applies to XDR-TB as well. The best anti-TB drugs in an
MDR-TB program are fluoroquinolones. The WHO recommend that treatment of MDR-TB and
XDR-TB need long duration of time, approximately from 18 to 24 months [O+19].

1.3 Background information on TB-HIV/AIDS co-infection

The two infectious agents HIV and Mtb (the causal agent of TB) co-exist in humans for decades.
We have enough evidence that one of these infections accelerates the progression of the other
[AKNG+10,KE11,PJS+12,DAMPDC99]. The prevalence rate of TB in HIV+ people is increasing
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because of exogenous re-infection and endogenous re-activation [SPGS08]. Individuals infected by
HIV lead to a haggled immune system, subsequently rising susceptibility to Mtb infections. It is
difficult to diagnose TB in HIV infected people [MLV16]. The two pathogens Mtb and HIV may
come either by co-infection or super-infection. One can increase the effect of the other and they
can accelerate the deterioration of immune system function. People living with HIV are 20 up to
30 times at a higher risk of developing active TB disease than their counterparts [ccc20,cgt20]. TB
also remains the primary agent of death in HIV infected people, counting for around 1 in 3 deaths
associated with AIDS [buy21].
The statistics regarding the burden of this disease is available. As of 2017, globally around 16
million people were HIV-TB co-infected [Glo17]. Recently, WHO 2020 report showed that an es-
timated number of over 14 million people can be co-infected [cgt21a]. The report stated that South-
East-Asia and Sub-Saharan Africa were taking the highest portion. More than 90% of TB deaths
occurred in these two regions [WHO20]. TB is also the highest cause of death from TB–AIDS
related deaths, of which 95% of this happened in developing nations [RFCC09, LPNS17].
The burden of TB-HIV co-infection is high in Sub-Saharan Africa (SSA) [Gro15]. As stated by
WHO report of 2019, about 84% of the total number of TB-HIV co-infection cases occurred in
the region. SSA has 12% of the global population, it has accounted for 30% of the 9 million TB
incidence cases and more than 270 000 deaths related to TB [TANO+20]. In this region the HIV
prevalence is high which grips to over 50% of the patients were dually infected.
As one of the Sub-Saharan Africa countries, Ethiopia is severely affected by the TB-HIV co-
epidemics. As of 2019, an incidence rate of TB was 345 per 100 000 of which 33 % are living
with HIV [vvv22]. Moreover, the WHO 2020 report stated that Ethiopia is one of the high TB
and TB-HIV burden countries in the globe [cgt21b]. In 2019, over 23% of people are HIV+ from
active TB individuals in Ethiopia [vvv22]. Co-infection of TB with HIV accelerates the possibility
of progressing from latent to active stage [GGGN10].
We have been working together with the HMFDRE staffs to find the data prepared. The information
in Table (1.1) shows the overall data of the diseases in Ethiopia in the years 2018-2021.

1.3.1 TB-HIV/AIDS co-infection treatment

HIV and TB have different nature and diverse treatment outcomes. Thus an integrative treatment
program is urgently needed for TB-HIV co-infection [AKNG+10, BSL+11]. The well-known
international institutions, such as the UNAIDS and WHO agreed that an integrated approach is
very important to dealing the dual epidemics including preventive measure, diagnosis, and treat-
ment [DUD+14]. Since TB can be cured with appropriate treatment for a period of six up to nine
month, the recommendation for people infected by this co-infection disease is to begin TB treat-
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ment immediately. Thereafter, they can start ART treatment on the appropriate starting time sug-
gested by physicians. Initiating ART at/ or afterwards the start of TB therapy may cause Immune
Reconstitution Inflammatory Syndrome (IRIS). This happens when a high pill burden of antibi-
otics and ART exist. If IRIS occurs, it will worsen TB infection and treatment can be complicated.
Moreover, delaying ART until after TB therapy is completed may increase HIV transmission risk
and death caused by HIV. Hence, it is serious to differentiate the actual time where dual treatment
is given for HIV-TB infected people.

1.4 Literature review

Mathematical models are very important to classify a given sample population in to different sub
population groups such as infected with, immune to or recovered to and so on. A. G. McK-
endrick and W. O. Kermack developed deterministic mathematical model in a paper published in
1927 [Bac11]. Earlier, Daniel Bernoulli developed a mathematical modeling of spread of a small-
pox in 1766 [Ber66]. He trained as a physician, but later he studied focusing on mathematics and
publishing a book in 1724. He investigated the advantage of prevention and vaccination against
smallpox. His model showed that globally inoculate the disease smallpox would raise the lifespan
from 26.5 years to 30 years [BB04].
Daley and Gani investigated the transmission dynamics, controlling mechanisms, and prediction
upcoming course of an outbreak for infectious diseases using mathematical modeling [DG01].
Many literatures relevant to this research were reviewed, developed and analyzed by different re-
searchers. The next portion gives an outlying on some selected models on TB, HIV and their
co-infections.

1.4.1 HIV/AIDS transmission dynamics models

Many authors investigated the application of mathematical modeling on HIV/AIDS. The following
are few works related to our study over the last decades.
Garira et al. have developed new mathematical HIV/AIDS model, in which they considered
public health educational campaigns as an intervention approach without preventative vaccina-
tion [MGT09]. They have classified the total population into four subclasses of populations such as
susceptible S, educated E, infected I, and AIDS A cases at a time t. They analyzed the model qual-
itatively and showed that public health education campaigns can decrease the value of R0 less than
unity as envisioned to controlling the disease. Their numerical results showed the effective control
of the disease whenever effective implementation of educational campaign brought R0 below one.
Tripathi et al. proposed a non-linear HIV/AIDS mathematical model to study the effect of contact
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tracing on HIV infectives [NTS11]. They observed that, if HIV+ people detected by screening and
contact tracing are withdrawn from any transmission method, the disease burden decreases dramat-
ically. However, the disease spreads because of immigration and the absence of contact tracing.
Hence, the contact tracing is an essential practice in reducing the disease prevalence whenever
screening is not practiced well. Finally, they concluded that educating HIV/AIDS people from un-
protected sex or any risky activities is the best effective way to curtail the disease burden.
Nyabadza and Mukandavire analyzed a deterministic HIV/AIDS model that comprises intervention
strategies such as using condom, HIV counseling and testing (HCT) and treatment [NM11]. The
model presented that the HCT campaign has very small influence to decreasing the endemicity of
HIV. This was happened whenever the effectiveness of its endeavor exceeds a calculated parameter
which measure efficiency of screening without backward bifurcation.
Seatlhodi et al. developed a new HIV epidemic model which permits an inflow of infecteds into
the population [Sea15]. They investigated the influence of public health education campaigns on
prevalence of the disease. They used Pontryagin’s maximum principle to describe the control and
find out the optimal system. They generalized that optimal education campaign is much more ef-
fective for reducing the number of infected individuals.
Kassa et al. investigated an optimal control problem for infectious disease of human population
with preventive education and treatment strategies. They found that combination of these interven-
tions minimizes the disease and cost burden [KO15].
Kumar et al. studied an optimal control problem of infectious diseases considering information-
induced vaccination and limited treatment [KSDT20]. Numerically they recognized that the com-
prehensive use of these intervention strategies is most effective and economically viable during
entire epidemic.
More recently, Mushanyu, proposed a mathematical model for HIV/AIDS dynamics. He investi-
gated the impact of late diagnosis of HIV on the transmission of the disease. His numerical re-
sults suggested that premature motivation for HIV/AIDS treatment and improving HIV self-testing
schedules leads to more undiagnosed people to know their status so as to decrease the transmission
of HIV [Mus20].
As per the literature, until now no one proposed a model via considered aware and unaware sus-
ceptible as well as undiagnosed and diagnosed HIV/AIDS infected individuals with preventive,
screening, and treatment controlling mechanisms.This model considers the rate of becoming aware
and unaware as a function of media campaign not constant.
The model considers undiagnosed infectious and susceptible individuals who are the total of aware
and unaware populations. For the reason that there are numerous individuals in Ethiopia catego-
rized as these two subclasses. We compared this mathematical model with the model formulated on
optimal control of HIV/AIDS model with pre-exposure prophylaxis with partial treatment [SS19].
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1.4.2 Tuberculosis (TB) transmission dynamics models

Many scholars studied transmission dynamics of TB disease and developed/ improved mathemat-
ical modelling with or with out controlling strategies. For instance, the first mathematical model
of tuberculosis was developed by Waaler et al. in 1962 [WGA62]. This model has contributed
several applications and improved many times by different authors. In this portion, we reviewed
some articles and summarized the following points.
Kumar et al. studied an optimal control problem of communicable diseases [KSDT20]. They in-
corporated vaccination depending on information and inadequate treatment. They analyzed the op-
timal model both analytically and numerically. The researchers found that the use of two strategies
reduce both the disease and the cost burden. Their numerical result suggested that information-
dependent vaccination is more efficient against the sever epidemic, while treatment is cost effective
strategy for a mild epidemic. Thus, TB is a communicable disease, which is modeled and analyzed
in the present work. However, many points of their work are vital for our study.
Choi et al. proposed optimal control problem for TB from mathematical modelling view point in
Korea [CJ14]. They also proposed effective government budget plan for TB eradication. The inves-
tigators introduced distancing control, case finding, and completing treatment to associate various
schemes. They analyzed the model equation numerically and suggested that distancing method is
the best effective factor of all because of unique Korean living tradition. When the researchers used
these strategies from 2030 plan, the number of high risk latent and infectious people will be almost
0 nearby 2018. This implied that all controls used at a time are pretty well, but the cost needed is
slightly more expensive than other strategies. In order to minimize cost burden they suggested that
the combination of either distancing and case finding or distancing and case holding strategy is best
alternative approach. The scholars also compared their model results from Korean government TB
budget elimination plan. However, the Korean government TB budget is based on mostly on the
case finding around 41% and case holding around 46.4%. Finally, they recommend that the Korean
government should be rearranging the budget and follow their result. we propose in this thesis, a
model which is an extension of the model by Choi et al [CJ14], by accounting for drug resistant TB.
Moreover, it is the best model to describe the current TB situation in Ethiopia and well extended
combination strategies will be presented.
Kelemu et al. modified a TB model [WCJ11] taking into account TB vaccination for newborns
[KMW19]. They calculated the equilibrium points and the basic threshold value. Their sensitivity
analysis displayed that the TB transmission coefficient is the most influential parameter. Here, it is
recommended that reducing the TB transmission coefficient i.e. increasing the isolation of infec-
tious people can be effective strategy to eradicate TB disease in Ethiopia. Moreover, the researchers
endorsed that treatment of both high risk latent and active TB with proper follow-up is an effective
control strategy.
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However, in this thesis the TB model claimed to be an extension of [WCJ11] with drug resistant TB
rather than the vaccination strategy proposed in Kelemu et al [KMW19]. Hence, the two extended
models and results are totally different. We also explored the emergency of drug resistance TB
and how it is controlled. Moreover, we formulated an optimal control problem of our proposed TB
model.
Rodrigues et al. studied an optimal control problem of a TB model accounting for treatment of
both early latent and persistent latent infected people [RST14]. They considered anti-TB drugs for
early latent TB and prophylactic treatment for persistent latent TB infected people. The results
of their analysis showed that at a high reinfection rate the transmission increase rapidly because
treatment effort of persistent latent people is reduced. They used ICER calculation to analyze the
cost-effectiveness of two controlling efforts separately and together at a time. Their result also sug-
gested that at a high transmission rate, the treatment of early latent people is the best cost effective
strategy.
Moualeu et al. developed a mathematical model of TB that comprises undiagnosed and lost sight
infectious [MWED15]. Here, they used two controlling strategies, such as providing education to
individuals about TB and a wide range of diagnosis campaigns. They proposed an optimal control
problem and analyzed it numerically based on the data taken in Cameron. Their results showed
that TB burden may decrease by 80% within 10 years, if both of education and diagnosis activities
through chemoprophylaxis treatment of latently infected people are well implemented.
Asgedom et al. ascertained the existence of MDR-TB and described its related factors in Ethiopia
[ATG18]. They found that in Ethiopia, the average rate and presence of the disease in all TB cases
are 12.6 ± 15.9% and 1.4% respectively. The investigators described that the greatest public risk
factor for MDR-TB is previous contact to anti-TB treatment. The scholars suggested that critical
treatment for both TB and MDR-TB with proper follow-up must be given to control the disease
burden. Whereas the study of TB in this thesis is based on the dynamics of the drug sensitive TB
and DR-TB diseases and controlling strategy according to mathematical modeling rather than only
medical clarification point of view.
Ronoh et al. developed a mathematical model of TB considering DR-TB [RJF+16]. They analyzed
the model analytically and numerically and considered constant and time dependent delays in in-
tervention. Their result shows that MDR-TB patients who fail to go for or delay their treatment,
will persist in the population. Due to temporary immunity to TB the scholars recognized that drug
sensitive TB and MDR- TB will persist at some equilibrium.
Hafidh et.al. studied mathematical model of TB and MDR-TB with optimal control [HAHA18].
They analyzed the model analytically and obtained four equlibra. The researchers also formulated
a gradient algorithm to solve the optimal problem. They used BCG vaccination, first and second
anti-TB drugs as control approaches. Their numerical result suggested that the given strategies can
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effectively reduce the total infected population. However, when the scholars used only one inter-
vention it is recommend that treatment (both first and second anti-TB ) will be effective mechanism
than BCG vaccination.
WHO 2018 reported that Sub-Saharan Africa countries had the highest estimated TB incidence rate
per year [aaa20]. In this region, Ethiopia is one of 22 high TB infected countries in the world and
this disease is the leading cause of illness and mortality. Besides, the presence of MDR-TB and
HIV-TB cases are high in Ethiopia. The incidence and prevalence of TB are 448 and 422 per 100
000 of the people respectively [aaa20]. From all TB new cases, around 13% are HIV co-infected.
The latest national DR-TB surveillance report stated that around 17.8% infected cases have MDR-
TB infected individuals who are previously treated and around 2.3% are TB new cases from all TB
cases.
All in all, the research works summarized above indicate that the burden of the disease (TB) would
be serious not only in Ethiopia but also across the world, unless the current capacity of intervention
strategies will be reformed and updated with multidimensional approach. Hence one important
approach is investigating this disease burden from the mathematical modelling view point.
Thus, another objective of our thesis is to propose the best optimal intervention strategy of TB
control in Ethiopia. To accomplish the goal, we improved the TB mathematical model [WCJ11] by
considering drug resistance tuberculosis (DR-TB) transmission dynamics and extended the model
via control measures. The intervention strategies are preventive, case finding, and case holding for
both drug sensitive tuberculosis (DS-TB) and DR-TB.

1.4.3 Co-infection of TB-HIV disease transmission dynamics models

Mathematical models are also essential to explore the co-dynamics of diseases and to provide in-
sights about preventive and controlling regimes. Existing models on HIV–TB co-infection are
reviewed in the following way.
Navjot et al. formulated TB-HIV co-infection model to study the role of screening and treat-
ment [KGB14]. They considered active sexual adult people in the model. Their result showed that
increasing the rate of screening TB leads to decreasing TB infectious people. The researchers rec-
ommend that strong cooperation between the TB and HIV intervention regime is needed to control
the disease.
Fatmawati et al. studied the effect of antibiotics and ART optimally to control the transmission
dynamics of HIV-TB co-epidemics [FT16]. Their numerical result showed that coupling of ART
and Anti-TB optimal control is the most effective strategy to fight against the disease. However,
they suggested that antibiotics are better than ART when only one control is used.
Hadipour et al. investigated TB–HIV co-epidemics with treatment [LMH20]. They used a math-
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ematical model along with an optimum sliding mode controller. The researchers applied a multi-
objective genetic optimization algorithm to find the optimal values of the control coefficients. Their
result showed that when controls are applied, new infections, disease deaths and total burden values
are reduced.
Grace et.al explored the impact of HIV on TB infection via considered ART and TB treatment in
Kenya [MM18]. Their result suggested that testing and administering latent TB, HIV testing for all
TB patients and vice versa, and treatment for patients are very crucial for Kenyan people.
Cristiana et al. investigated optimal control problem of TB-HIV co-epidemics model [ST15]. They
considered two interventions such as the control p representing both HIV and TB treatment at a time
and the control q representing only TB treatment. They had taken the value of p and q bounded
between 0 and 0.95, because they assumed that there are some budgetary constraints or some re-
sistance from patients in making the treatments. In other words, they assume that one cannot treat
all the people for both diseases or even just for tuberculosis. This is more than reasonable from
biological side. They had tried these controlling strategies optimally in subclasses of infectious
individuals. They conclude that applied both TB and HIV/AIDS treatment at a time is the best
option to reduce both the HIV/AIDS and co-infection disease burden.
Roeger et al. introduced a deterministic model of TB - HIV co-infection [RFCC09]. They analyzed
the model and their numerical result suggested that the presence of HIV leads to increased cases
of co-infectious individuals even if TB reproduction is less than unity. The authors suggested that,
to control TB infection in co-infection individuals, more effort should be given in reducing HIV
prevalence.
Awoke et al. proposed TB-HIV/AIDS co-epidemics model with behavioural modification [AK18].
They extended the model into an optimal control problem by considering behavioural modifica-
tion as preventive measures and treatment efforts as controlling strategies. Their numerical result
showed that applying both preventive and control measures can reduce the disease and cost burden.
The authors declared that the cost of applying preventive effort is very small as compared to treat-
ment, but the cost of administering the infection is huge when the rate of disease transmission is
high. They conclude that applying both prevention and treatment efforts at a time is a best effective
strategy.
However, none of these authors have studied the extension of model [WCJ11] via HIV/AIDS co-
horts and incorporating optimal control efforts. This means none of them explored only high risk
(exposed stage) and low risk latent by treatment of co-infected with HIV in Ethiopia. Hence, in
this thesis we developed a new TB-HIV co-infected model and extended it into an optimal con-
trol problem. The optimal control problem can segregate the possible intervention strategies that
minimize both the disease and the cost burden.
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1.5 Research aim and objectives

The main aim of the thesis is to apply the optimal control theory on tuberculosis, HIV/AIDS and
their co-epidemics using mathematical modelling, with the focus in Ethiopia. To achieve this, the
following objectives are set.

• Propose new mathematical models that describe the dynamics of TB, HIV/AIDS and their
co-infection in Ethiopia.

• Incorporate the controls to the new models and solved targeted control problems whose aims
are to reduce or regulate the transmission of the diseases with the minimum cost possible.

1.6 Limitation of the study

In this thesis, there are some aspects which constrained our investigation. We addressed the limita-
tion of the study as follows.

• Due to lack of real data, the values of some parameters are taken from other related literatures.

• The thesis result did not commented by stakeholders, like health professionals, governmental
organizations, and policy makers.

• As COVID-19 is the current emerging infectious disease, the impact of this global pandemic
is not incorporated in the thesis.

1.7 Organization of the thesis

Rest of the thesis has been organized as follows. Chapter 2 describes some key mathematical tools
and ideas. In chapter 3 the HIV/AIDS disease mathematical model with optimal control is analyzed
while in chapter 4 a comprehensive model of TB disease with optimal control is also analyzed.
Chapter 5 shows the exploration of other deterministic model of TB-HIV/AIDS co-epidemics with
optimal control. In chapter 6 the conclusions outlined from the study, future research, and recom-
mendations are presented.
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Data name In 2018 In 2019 In 2020 In 2021
HIV disease resulting in infectious and 4 213 5 072 16 122 12 799
parasitic diseases
HIV disease resulting in 146 284 2 004 925
mycobacterial infection
HIV disease resulting in 368 751 2 923 2 117
other bacterial infections
HIV disease resulting in multiple infections 453 361 790 811
HIV disease resulting in unspecified infectious 762 657 3 087 1 294
HIV disease resulting in wasting syndrome 198 200 364 621
HIV disease resulting in other conditions 3 521 2 270 9 626 5 937
Acute HIV infection syndrome 646 113 1 700 775
Unspecified HIV disease 2 342 1 802 14 490 8 137
HIV Positivity rate per 100 000 401.3 308.4 706.8 2 184.1
Number of PLHIV ever started on ART 3 293 2 459 7 342 31 572.5
Percentage of STI cases tested for HIV 2 509 4 371.8 1 021.3 24 704
Percentage of adults living with 2 186.8 2 278.6 17 243.1 23 799.3
HIV receiving ART
Percentage of children living with 3 287.4 1 549.3 7 890.3 9 382.2
HIV receiving ART
Proportion of ART for HIV-positive TB patients 1 004.8 1 088 4 290.3 6 170.9
Proportion of TB patients enrolled in DOTS 2 096.3 3 036 9 067.4 15 983.7
who have documented HIV result
Children of PLHIV - received result 4 870 6 772 21 716 23 388
Clients receiving HIV test results 4 091 2 328 462 7 586 286 7 513 723
Clients testing positive for HIV 1 066 11 518 37 580 37 738
DR- TB cases put on second line treatment 203 122 551 548
Estimated number of adult population 690 000 825 678 1 045 123 1 576 799
living with HIV
DR TB cases put on second line treatment 147 121 552 582
by diagnosis type
DR TB cases put on second line treatment 119 124 558 548
by registration group
Estimated number of all forms of TB 135 090 147 168 145 179 144 003
cases in the population
HIV-infected clients who screen negative
receive IPT per national guidelines 1 101 960 4 479 6 029
for active TB
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Data name In 2018 In 2019 In 2020 In 2021
All HIV-infected clients who screen
negative for active TB receive 850 969 4 415 6 045
per national guidelines
TB patients who are completed and 3 245 2 454 10 024 14 427
accurate standardized medical record
Number of relapse (bacteriological
confirmed and clinically diagnosed) 746 661 3 402 3 111
TB cases detected in the quarter
Number of bacteriology confirmed New
Pulmonary TB cases detected in the quarter 11 245 10 589 42 100 45 125
Number of children < 15 year contacts
with index of pulmonary TB cases 8 254 9 903 21 927 39 690
screened negative result for TB
Number of children < 15 year contact
TB screening negative and 8 790 7 322 10 252 27 340
put on LTBI treatment (IPT)
Number of children <15 year contacts
with index of drug susceptible 5 980 10 983 25 343 43 242
pulmonary TB cases
Number of children < 15 year
contracts with index of pulmonary TB 7 610 10 549 24 247 42 034
cases screened for TB
Number of clients enrolled in HIV care 610 789 571 353 2 939 368 2 027 265
who were screened for TB
Number of clinically diagnosed new 4 984 5 140 26 982 25 632
pulmonary TB cases detected in the quarter
Number of clinically diagnosed and
bacteriology confirmed new EPTB 7 740 5 947 32 052 31 789
cases detected in the quarter
Number of clinically diagnosed
and bacteriology confirmed new EPTB 6 711 3 412 17 463 17 512
cases enrolled in the cohort (EPTB)

Table 1.1: Trend the number of notified people for the last 4 years, Ethiopia.
The sources are [vvv22, WHO20, aaa20, cdc22].



Chapter 2

Mathematical preliminaries

This chapter introduces several mathematical terminologies and theorems that will be used in the
thesis. Nowadays, the two approaches (stochastic and non-stochastic) are used to investigate in-
fectious diseases transmission dynamics. In the non-stochastic approach the idea of differential
equations is widely used in the process of mathematical modeling of infectious diseases. This
model development entails different variables, assumptions, and parameters. We introduce the fol-
lowing mathematical preliminaries in terms of definitions and theorems that are crucial to analyze
the model and interrelate to dynamical systems.

Definition 1 Dynamical system is a means of describing how one state develops into another state
over the course of time. [Per01].

It arises in many fields particularly in the sciences focused on describing the behaviour of a system
at a time in space.
A dynamical system on Rn has a general form ft : Rn −→ Rn, where ft is continuously differen-
tiable, Rn is n dimensional real space and t ∈ R is a time.

2.1 Differential Equations (DE)

Definition 2 A DE is an equation that involves one or more derivatives of a quantity with respect
to some independent variable(s).

Differential equations can be classified in to two types. These are ordinary DE and partial DE.
An ordinary DE is one that involves the derivatives of a quantity depending on only one variable,
whereas partial DE is one that involves the derivatives of a quantity depending on more than one
variable. The most part of this thesis will use ordinary DE.

17
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Let x be the state of a dynamical system. Then a general non-linear function f containing x is
expressed by

dx

dt
= f(x, t, λ), (2.1)

where x ∈ Rn and λ ∈ R is a parameter.
Equation (2.1) is known as an Ordinary Differential Equation (ODE). If the time t explicitly ap-
pears in the expression, then the ODE is said to be non-autonomous. However, if t does not appear
explicitly in the right hand side of (2.1), then the equation becomes autonomous ODE. Most math-
ematical models of diseases inclusive the models in the thesis are autonomous systems that can be
expressed like

x
′
= f(x), (2.2)

where x′ = dx
dt

is the time-derivative of state variable x and x = (x1, x2, x3, ..., xn).
If equation (2.2) expressed together with state initial conditions, then the new expression is named
as an Initial-Value Problem (IVP), given below:

x
′
= f(x),with x(t0) = x0 ∈ R. (2.3)

However, when the DE (2.2) is appended with the given data about the initial and final time state,
the expression becomes a Boundary-Value Problem (BVP). In this thesis the proposed models are
compartmental models that comprise the rate of change of population sizes of different compart-
ments. Let say in a particular system with n compartments, the dynamical system which express
the transition of the system can be written as:

dx1
dt

= f1(x1, x2, x3, ..., xn),

dx2
dt

= f2(x1, x2, x3, ..., xn),

.

.

.

dxn−1

dt
= fn−1(x1, x2, x3, ..., xn),

dxn
dt

= fn(x1, x2, x3, ..., xn).

(2.4)

Lemma 1 Let f : f → Rn, where f is an open subset of Rn. If f ∈ C1(f), then f is locally

Lipschitz on f [HSD12].

The general representation f ∈ Ck(f) denotes the kth order derivative of f exist and continuous
on the given set f.
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Theorem 1 (Existence-Uniqueness Theorem [HSD12]). Let f is C1 and consider IVP (2.3). Then

there exist a solutions of (2.3) which is unique. Indeed ∃ a > 0, a unique solution of (2.3) on the

interval [−a, a] satisfying x(t0) = x0.

2.2 Invariant sets and stability analysis

Definition 3 A set V is an invariant set with respect to the flow of (2.2 ) if x(0) ∈ V =⇒ x(t) ∈ V,
∀t ∈ R, provided the solution of (2.2 ) exists ∀t ∈ R. However, if this condition holds for ∀t > 0,

then V is said to be positive invariant set.

Definition 4 Given a system of DEs (2.2), a state x∗ is called an equilibrium point of the model if
f(x∗) = 0 [All08].

These points are also known as critical points. They are found by making the left hand side of the
equations to zero and calculating the value of state variable x.
One important description is also the upcoming evolution of the dynamical system close to the
critical point or not if the system starts initially near to equilibrium.

Definition 5 [All08]

A. An equilibrium point, x∗, of (2.2) is said to be locally stable if ∀ε > 0, ∃δ > 0 such that
‖x0 − x∗‖ < δ =⇒ ‖x(t)− x∗‖ < ε,∀t > 0, provided x(t) exists for all t ≥ 0.

If the equilibrium is not locally stable it is said to be unstable.

B. An equilibrium point , x∗, of (2.2) is said to be locally asymptotically stable if it is locally
stable and additionally every solutions starting nearby x∗ move towards x∗ as t→∞ .
In other words ∃δ > 0 such that ‖x0 − x∗‖ < δ =⇒ limx→∞ ‖x(t)− x∗‖ = x∗.

Proposition 1 A critical point x∗ of (2.2) is locally stable if all eigenvalues of the Jacobian evalu-
ated at x∗ have negative real parts.

Definition 6 The Jacobian of the system (2.2) is expressed by:

J = Df(x) =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn−1

∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn−1

∂f2
∂xn

...
... . . .

...
...

∂fn−1

∂x1

∂fn−1

∂x2
... ∂fn−1

∂xn−1

∂fn−1

∂xn
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn−1

∂fn
∂xn


.
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Definition 7 A critical point x∗ of (2.2) is said to be hyperbolic critical point if all eigenvalues of
the jacobian evaluated at x∗ have non zero real parts, otherwise x∗ is non-hyperbolic.

Proposition 2 (Routh-Hurwitz criteria)

Let the characteristic polynomial of the Jacobian matrix J of the equilibrium x∗ of (2.2) be given

by:

λn + A1λ
n−1 + A2λ

n−2 + A3λ
n−3 + ...+ An−1λ+ An = 0.

If ∆1 = A1 > 0,∆2 =

∣∣∣∣∣ A1 A0

A3 A2

∣∣∣∣∣ = A1A2 − A0A3 > 0,

∆3 =

∣∣∣∣∣∣∣
A1 A0 0

A3 A2 A1

0 A4 A3

∣∣∣∣∣∣∣ = A1A2A3 − A2
1A4 − A0A

2
3 > 0, ... , ∆n =

∣∣∣∣∣∣∣∣∣∣∣

A1 A0 . . . 0

A3 A2
... 0

...
...

...
...

0 0 0 An

∣∣∣∣∣∣∣∣∣∣∣
> 0.

Then, the equilibrium point x∗ is stable. Otherwise it is unstable.

Proof: see [All08].

Theorem 2 (Linearization theorem) [HSD12]. Let x∗ be the hyperbolic equilibrium point of the

non-linear system (2.2). Then, in a neighbourhood of x∗, then the non-linear flow and its lineariza-

tion are conjugate to each other.

This theorem declares that the linearization of (2.2) is enough to assess the local behaviour of a
hyperbolic equilibrium point.

2.3 Global stability analysis

We have two approaches, which are direct and indirect method of Lyapunov. The indirect method
has some limitations to determine the local stability of the equilibrium points. No information
is presented for the level of the basin of attraction (the domain such that all trajectories starting
anywhere towards the equilibrium point). However, this problem can be resolved by the direct
Lyapunov method.

Definition 8 An equilibrium point x∗ is said to be globally asymptotically stable if it is asymptot-
ically stable for all initial condition x0 ∈ Rn.

Lyapunov theory is used to determine the global stability of the critical points beyond compute
the trajectories of a system (2.2). One critical point about the clue of Lyapunov direct method
is how carefully chosen scalar functions. This procedure comprises formulating a differentiable
scalar function say V (x) satisfies the following:
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A. V (x) is positive definite: V (0) = 0;V (x) > 0 ∀x 6= 0 and,

B. ∇V (x).f(x) < 0 ∀x ,

where∇ represent the gradient vector function and “.” denotes the dot product.

Definition 9 Let V (x) be a continuously differentiable function such that V (x) : U ⊆ Rn −→ R,
where the set U contains the origin.

A. V (x) is positive definite (pd) in U if

a. V (0) = 0, and

b. V (x) > 0, ∀x 6= 0 ∈ U .

B. V (x) is positive semi-definite (psd) in U if V (x) ≥ 0, ∀x ∈ U .

C. Conversely, V (x) is negative definite in U if V (x) < 0,∀x ∈ U or −V (x) is pd, and

D. V (x) is negative semi-definite in U if V (x) ≤ 0, ∀x ∈ U or −V (x) is psd.

E. V (x) is Lyapunov function on the region U if V (x) is positive definite and has continuous
first-order partial derivatives at every point of U .

Theorem 3 [JYJS11] Let x∗ = 0 be an equilibrium point of the system (2.2), where f : U −→ Rn

is locally Lipschitz and U ⊂ Rn is a domain that contains the origin. Let V : U −→ R be a

continuously differentiable, positive definite function in U .

a. If V
′
(x) ≤ 0, then x∗ is globally stable.

b. If V
′
(x) < 0, then x∗ is globally asymptotically stable.

Lyapunov functions have great application to proof the global stability of an equilibrium point,
but selecting these functions is somehow difficult. Because of there is no common technique for
formulating the Lyapunov functions.

2.4 Bifurcation analysis

Definition 10 Bifurcation is defined as a change in the qualitative behaviour of a given dynamical
system when an associated parameter varies. The change happens at the points of the parameter
which is known as bifurcation points (values).
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Let
x
′
= f(x, µ), x ∈ Rn, µ ∈ R, n ∈ N (2.5)

be family of ODEs with a parameter µ. A critical point of (2.5) given by: (x, µ) = (0, 0) is
undergoes a bifurcation at µ = 0 if the flow of phase portrait near to µ = 0 and x = 0 is not
qualitatively the same as the flow near x = 0 at µ = 0 [Kie11].
The study of bifurcations for epidemic models is sometime challenging. To solve this challenge,
the center manifold theory stated in [CCS04] is an alternative technique. The theorem is presented
below.

Theorem 4 [CCS04] Consider the following general system of ODEs with a parameter φ.

dx

dt
= f(x, φ), f : Rn × R −→ R and f ∈ C2(Rn × R), (2.6)

where 0 is an equilibrium point of the system (that is, f(0, φ) = 0 ∀φ) and assume

A1. A = Dxf(0, 0) = ∂fi
∂xi

is the linearization matrix of (2.6) around the equilibrium point 0 with

φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative

real parts;

A2. Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the zero

eigenvalue).

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (2.7)

b =
∑n

k,i,j=1 vkwi
∂2fk
∂xi∂xφ

(0, 0). (2.8)

The local dynamics of the system (2.6) around 0 is totally determined by the signs of a and b:

I. a > 0, b > 0. When φ < 0 with φ � 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

II. a < 0, b < 0. When φ < 0 with φ � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium.

III. a > 0, b < 0. When φ < 0 with φ� 1, 0 is unstable, and there exists a locally asymptotically

stable negative equilibrium; when 0 < φ� 1, 0 is stable, and a positive unstable equilibrium

appears.
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IV. a > 0, b < 0. when φ < 0 changes from negative to positive, 0 changes its stability from

stable to unstable. Corresponding to a negative unstable equilibrium becomes positive and

locally asymptotically stable.

Particularly if a > 0 and b > 0 then a backward bifurcation occurs at φ = 0 .

2.5 Compartmental modelling

Compartmental models are a very broad modeling system. Mostly, they are functional to the math-
ematical modelling of communicable diseases. In this model formulation the population is subdi-
vided into epidemiological classes (compartments). These compartments are described based on
the disease condition of the people. They can be labeled as Susceptible (S), Infectious (I), or Re-
covered/Removed (R). The number of individuals in these classes is expressed via a function of
time, by S(t), I(t) and R(t). Individuals can progress from one compartment to the other.

• Susceptible: Individuals who are healthy, but once they have contracted with infectious peo-
ple or object; they can catch by the disease and move to infected class.

• Infected: Individuals that can transmit the disease.

• Recoverd/Removed: Individuals who recover from the disease or remove by obtaining im-
munity / progressed to advanced stage and died by the disease.

If more new people are recruited, then the number of susceptible people can increase. However,
they can decrease due to new infected people through interaction from individuals in I(t) class and
by natural death rate. Infected people who entered in I(t) class can progress to R(t) or may die
naturally. The individuals in R(t) class are recovered or removed by the disease or naturally.
Thus, the total population at a given time is given by:

N(t) = S(t) + I(t) +R(t).
There are different parameters that generate formulation of this type of compartmental model and
its extension. Some of them are: the recruitment rate, progression rate, recovery rate, and death
rate etc...

2.6 The basic reproduction number, R0

One of the main outcome in mathematical modeling of infectious diseases is the notion of the basic
reproduction number. Finding a publication on a mathematical model of disease dynamic without
describing this number is very difficult. Because of this number gives an indication concerning the
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upcoming trend of the infection. Moreover, the number tells us whether the disease will persist or
be eradicated in the specified time.

Definition 11 [DHM90] The basic reproduction number or basic reproduction ratio R0 is de-
fined as the average number of secondary infections generated by a single infected individual in a
completely susceptible population.

When R0 > 1, it means that on average, an infected person infects more than one susceptible per-
son over his/her infectious period. This condition tells us the disease will persist in the community.
However, if R0 < 1, then an infected person infects less than one susceptible over his/her infec-
tious period. This condition tells us the disease cannot grow in the community. Calculating R0 is
very simple for simple models (smaller number of compartments), but it becomes complicated for
models that have several infected compartments. Driessche et al. gave a method of calculating R0

for any epidemic model based on the so-called “next generation matrix” [VdDW02].

2.7 The next generation matrix approach

This method was discovered by Van den Driessche and Watmough [VdDW02]. This is the general
technique of calculating R0 for a model that has over one infected compartment.
Consider a system (2.2), where x = (x1, x2, x3, ..., xn), with xi representing the proportion of peo-
ple in compartment i. Define Fi as the rate of appearance of new infections in class i; V −i is the
rate of transfer of the infected individuals out of class i; and V +

i is the rate of infection transfer into
class i by all other means.
Then x′i = fi(x) = Fi(x)− Vi(x) , where Vi = V −i − V +

i and i = 1, 2, 3, ..., n.
Let Xs = {x ≥ 0|xi = 0, i = 1, 2, ...,m} be the set of non-infected states.
Thus, the functions described in the system satisfies the assumptions listed as follows (see [VdDW02]).

I. If x ≥ 0, then Fi, V −, V + ≥ 0 for all i = 1, 2, ..., n.

II. If xi = 0, then Vi = 0 , In particular if x ∈ Xs, then V − = 0 for all i = 1, 2, ...,m.

III. Fi = 0 if i > m.

IV. If x ∈ Xs = 0, then Fi(x) = 0, V +
i (x) = 0, for i = 1, 2, ...,m.

V. If F (x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.
Here, Df(x0) is the Jacobian matrix derived by Df(x0) = ∂fi

∂xj
at DFE x0.

Lemma 2 [VdDW02] If x0 is a DFE point of (2.2) and fi(x) satisfies (I)-(V), then the Jacobian

matrices DF (x0) and DV (x0) are partitioned as
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DF (x0) =

(
M 0

0 0

)
, DV (x0) =

(
N 0

J3 J4

)
, where M and N are the m × m

matrices defined by

M = [∂Fi
∂xj

(x0)] and N = [ ∂Vi
∂xj

(x0)] with 1 ≤ i, j ≤ m. Further, F is non-negative, V is a non-

singular M-matrix and all eigenvalues of J4 have positive real part.

The next theorem is used to calculate the quantity R0.

Theorem 5 [VdDW02] Consider the disease transmission model given by (2.2) with f(x) satis-

fying conditions (I)–(V). If x0 is a DFE of the model, then x0 is locally asymptotically stable if

R0 < 1, but unstable if R0 > 1, where R0 is defined by

R0 = ρ(FV −1), where ρ(A) denotes the spectral radius of the matrix A.

If R0 = 1, then two equlibra exchange their stability. This phenomenon of changing of stability is
called forward bifurcation and has been seen in various epidemiological models [KM27, HVA87,
CCCHL89,Het00]. The diagram (2.1) shows the description of forward bifurcation. When forward
bifurcation happens, then R0 ≤ 1 is a necessary and sufficient condition for disease elimination.

Figure 2.1: Forward bifurcation diagram.

Another type of bifurcation called backward bifurcation may also happen. When this occurs a
stable endemic equilibrium co-exists with a stable DFE. As R0 approaches one, the number of
disease cases increases rapidly. This shows that R0 ≤ 1 is only a necessary but not sufficient
condition for disease elimination and hence disease eradication cannot just be achieved by making
R0 < 1. Such conditions occurred in [FCCC00, EG06, CCCHL89, DHCC98]. The diagram is as
shown in the Figure (2.2).
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Figure 2.2: Backward bifurcation diagram.

2.8 Optimal control theory

This theory is also the main part of the thesis, which is used to investigate the best method of
controlling HIV/AIDS, TB, and their co-epidemics in Ethiopia. In this part, some terminologies of
this theory are presented. Optimal control problem is an optimization problem that optimizes an
objective function subject to a dynamical system with initial or boundary conditions. For further
development, refer to [Ars11, KDM+22, KMO21, SMB21, OMT20, BM20].
The form of an optimal control problem is given by:

Maximize
∫ tf

0
g(t, x, u)dt,

subject to dx
dt

= f(t, x, u), x(t0) = x0, x(tf )is free and

u(t) ∈ U,∀t ∈ [0, tf ],

(2.9)

where U is Lebesgue measurable set, u(t) is the optimal command, and tf is the length of time for
the control.
The optimal state x(t) can be formed after substituting u(t) in the given state system. Thus, we say
(u(t), x(t)) is an optimal pair. There is a necessary condition for an optimal pair that was developed
in 1950 by Pontryagin and his students. They introduced adjoint (co-state) variables that link the
differential equation to the objective function. The variables are vital for finding optimal control
solutions. This clue is related to Lagrange multipliers in multi-dimensional calculus.
Pontryagin’s maximum principle is stated in the following theorem.
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Theorem 6 [PM86] Let u(t) be a time optimal control and x(t) be the corresponding response of

the system. Then there exists a function λ(t) : [0, tf ] −→ Rn, such that:

x
′
=
dH

dλ
(x, λ, u), x(t0) = x0 (State Equation), (2.10)

λ
′
= −dH

dx
(x, λ, u) (Co-state Equation), (2.11)

λ(tf ) = 0 (Transversality condition), (2.12)

H(x∗, λ, u∗) = max
u∈U

H(x, λ, u) (or
∂H

∂u
= 0), (2.13)

where H = g(t, x, u) + λ(t)f(t, x, u) is called the Hamiltonian of the optimal control problem.

2.9 Sensitivity analysis

The sensitivity analysis is used to assess the model robustness to parameter values, because errors
may occur in pre-assumed values and data collection. This analysis can identify which parameters
have high impact on R0 [CCH06, BD94]. It also allow to measure the relative change in a state
variable when a parameter changes [CCH06]. The sensitivity of each parameter of the model will
be analyzed using normalized forward sensitivity index [CHC08]. The idea can be stated in the
following way.

Definition 12 Let the variableM be differentiable function of the parameter p, then the normalized
forward sensitivity index of a variableM with respect to the parameter p is defined as ΛM

p = ∂M
∂p

p
M

.

2.10 Numerical solutions

Most mathematical models with or without optimal control arising in biology or engineering cannot
be solved analytically. Thus numerical methods are very useful to addressing these problems. The
technique may require iterative calculations to obtain good results. In today’s world, such problems
cannot be an issue due to the high speed computers and softwares available. The softwares are
regularly updated and sophisticated to meet the growing demand. The numerical manipulations of
a disease model can give better understanding about the behavior of disease transmission dynamics.
Thus, a researcher can easily interpret the result of the study after the simulation are performed. The
numerical technique used in this thesis is Forward-Backward fourth order Runge- Kutta method in
MATLAB [LW07]. The technique will be used to solve the mathematical model of TB, HIV/AIDS,
and their co-infection with or without optimal control. Solving optimal control problems in the
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thesis numerically one can find piecewise continuous functions ui(t) that optimize the objective
functional. Keep in mind that any solution of the problem must satisfy the state, co-state equations,
and the optimality conditions. The rough outline of the algorithm is presented below.

Step 1. Make an initial guess for u over the interval. Store the initial guess as u.

Step 2. Using the initial condition x(t0) = x0 and the stored values for u, solve x forward in time
according to its differential equation in the state equations (2.10).

Step 3. Using the transversality condition λ(tf ) = 0 and the stored values for x and u, solve λ
backward in time according to its differential equation (2.11).

Step 4. Update the control u by entering the new x and λ values into the characterization.

Step 5. Check convergence. If values of the variables in this iteration and the last iteration are negli-
gibly small, output current values as solutions. If values are not small, return to Step 2.

While executing the algorithm, in step 1, note that the initial guess u ≡ 0 is almost sufficient
unless when division by u occurs in the problem, in such case an initial guess must be non-zero.
Any ODE solver is applicable for step 2 and step 3, but we applied Runge-kutta 4th order scheme.
Explicitly, if x′ = f(t, x(t)), and x(t) is known, then the approximation of x(t+h), where h > 0 is:

x(t+ h) = x(t) +
h

6
[k1 + 2k2 + 2k3 + k4], (2.14)

where
k1 = f(t, x(t)),

k2 = f(t+ h
2
, x(t) + h

2
k1),

k3 = f(t+ h
2
, x(t) + h

2
k2),

k4 = f(t+ h, x(t) + hk3).
Several type of convergence tests exist for step 5. Usually, finding

∑n
i=1 |u(i) − uold(i)| to be

small is sufficient, where u(i) and uold(i) are the vectors of estimated controls for the current and
old iterations, respectively. Lenhart and T. Workman proposed for the best convergence criterion (
percentage error = |u−uold|

|u| ≤ δ be negligibly small, where δ is the accepted tolerance). With minor
adjustments, they allowed the value of u = 0 and multiplied both sides by u. Thus, they get simple
criteria given by:

δ
∑n

i=1 |u(i)| −
∑n

i=1 |u(i)− uold(i)| ≥ 0.
This criterion is also needed for the variables x and λ. In the Matlab platform taking n = N + 1

with usually N = 1 000 and δ = 0.001 are the best option.
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2.11 Cost effective analysis

Cost-effective analysis is used to compare the costs of executing the proposed intervention strate-
gies [ORM13]. Cost effectiveness ratios can be determined by the following three techniques.

A. Average Cost-Effectiveness Ratio (ACER) deals with a single intervention approach and it
determines that controlling strategy against its baseline option. The ratio of the net cost of an
intervention with the total number of healthy outcomes is used to calculate ACER.

B. Marginal Cost-Effectiveness Ratio (MCER) is used to assess particular changes in cost and
effect when a schedule is contracted or prolonged.

C. Incremental Cost-Effectiveness Ratio (ICER) is used to compare the differences between the
costs and health outcomes of two optional approaches.

The exact formula of these metrics are given in Table (2.1) below.

ACER = Total cost (Intervension A)
Effect (Intervension A)

MCER = Total cost (Intervension A+1) - Total cost (Intervension A)
Total effect (Intervension A+1) - Total effect (Intervension A)

ICER = Total cost (Intervension A) - Total cost (Intervension B)
Total effect (Intervension A) - Total effect (Intervension B)

Table 2.1: ACER, MCER, and ICER [WFR00].

In this thesis, we used ICER approach due to more than two strategies being proposed to mitigate
or eliminate the disease in Ethiopia.



Chapter 3

Modelling of HIV/AIDS disease

3.1 Introduction

Nowadays, there are innovative scientific progression and serious health intervention strategies in
the world, but HIV/AIDS disease is until now an overwhelming illness in human history. Many
countries are severely affected by this disease. At present widespread of HIV infection has an in-
fluence on increasing occurrence of other infectious disease like TB globally [CWW+03].
HIV is the virus that causes HIV infection and it is transmitted by having sex, breast-feeding and
sharing injection drug equipments such as needles with HIV positive people. HIV infectious virus
progress to AIDS which is the most advanced stage of HIV infection [STW+17]. HIV/AIDS affects
many parts of the world, but the disease burden is high in Sub-Saharan Africa [fff21]. Ethiopia is
one of the regions which is severely hit by the disease. Whether we know or not different control-
ling effort mechanisms, very lower control strategies are implemented in Ethiopia. So this epidemic
in our country needs critical intervention approaches within a specific period of time through min-
imal cost possible. Here, we developed and analysed a mathematical model of HIV/AIDS model
with optimal control in Ethiopia, which can guide some of the targeted interventions.
Mathematical model is a description of a dynamical system using the language of mathematics. It
can play a vital role on HIV/AIDS predict and control. Several assumptions and parameters are
key implications to develop a model; whereas a model can be redeveloped using controlling func-
tions. Thus a mathematical model of HIV/AIDS pandemic can be reformulated and the controlling
mechanisms of the disease can be investigated through the concept of optimal control theory.

30
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3.2 Mathematical model of HIV/AIDS

Model assumptions

• The population enter into the susceptible class at a constant rate π. They might be infected
because of direct contact (free sex), blood transfusion from an infected human, or from the
use of a syringe from an infected human.

• The model does not consider HIV infected persons with immigration and vertical transmis-
sion.

• The mode of HIV/AIDS transmission is via heterosexual contacts.

• Individuals in class T are screened HIV infectious individuals, but become aware of their
infection and enter in to drug therapy.

• Infected population under treatment do not have any contribution in viral transmission.

• Undiagnosed infected individuals become HIV infectious individuals with AIDS symptom’s
due to lack or delayed screening test.

We used deterministic(compartmental) model as a technique to simplify the mathematical mod-
elling of infectious disease like for HIV/AIDS. Such idea were during in the early twentieth cen-
tury with the basic SIR (susceptible-infected-removed/recovered) model, developed by Ronald R,
et.al. [And91]. In this study, we discussed SIA model for HIV/AIDS, where A represents AIDS
class. On the basis of this model, we developed a new model by incorporating the following im-
portant points.

• Nowadays, we can divide the given total vulnerable population class into two subclasses de-
pending on the accessibility of pursuing media campaign and take their preventive actions:
namely aware and unaware susceptible individuals against HIV/AIDS say SA and SU respec-
tively. Here, we emphasis that “aware” does not mean “informed” of the prevalence and
existence of the epidemics, but also knowledgeable of disease dynamics and further imple-
menting prevention mechanisms.

• In Ethiopia HIV is often transmitted by unsafe sex with infected individuals. These people
may or may not have disease symptoms, but they don’t know they have the virus and are
therefore categorized as undiagnosed infected people say (L).



CHAPTER 3. MODELLING OF HIV/AIDS DISEASE 32

Thus, the total population N(t) at time t, is subdivide into the following epidemiological sub-
classes.
Aware susceptible individuals (SA): Healthy people not yet exposed, but have taken awareness
from HIV/AIDS as preventive measure.
Unaware susceptible individuals (SU): Healthy people not yet exposed, but haven’t taken aware-
ness from HIV/AIDS as preventive measures.
Undiagnosed infected (L): They have the virus, but they don’t know they are infected or they
haven’t shown HIV symptoms.
Diagnosed HIV infected with-out AIDS symptoms (I): Screened HIV infected individuals who
have developed pre-AIDS symptoms.
HIV-infected people under treatment (T): Individuals who take treatment for HIV infection, but
can-not recover, because one can not cure HIV/AIDS yet.
Diagnosed HIV infectious with AIDS symptoms (A): Individuals with AIDS symptoms after screen-
ing .
Thus, the total population at time t, represented by N(t), is obtained by:

N(t) = SA(t) + SU(t) + L(t) + I(t) + T (t) + A(t).
The aware or unaware susceptible populations are increased due to the recruitment of individuals
(assumed susceptible) into the population at a rate π. Let M(t) represents the amount of media
campaign measured by time t. This can be done through TV, radio, the latest best way of social
media campaign like face-book, telegram, and twitter etc... These media can draw more attention to
the overall of the pandemic. As the information disseminates regarding to HIV/AIDS intentionally
, people respond to it and eventually modify their behaviour to reduce their vulnerability. Usually,
unaware susceptible individuals contract the disease at a higher rate than aware individuals.
Unaware susceptible individuals make sufficient contact with undiagnosed infected, diagnosed in-
fected and AIDS individuals, new infections will occur, and all the newly infected individuals will
enter the L and I classes , or progressed to A class after long period of time or they may die due to
natural causes at each stage. Hence, these individuals acquire HIV infection at a variable rate (force
of infection) is given by λ1 = β1(L+η1I+Aη2)

N
, where β1 is the effective contact rate and ηi{i = 1, 2}

measure the relative infectiousness of individuals in classes I , and A when compared to those in L.
The aware population who undergo successful advertisements can adjust their behaviour, however
they might fade-away or become careless. They can become infected and leave the susceptible
class through direct contact with infected individual, at rate λ2 = β2(L+η1I+Aη2)

N
, where β2 is the

effective contact rate of aware susceptible and infected HIV/AIDS individuals.
The modelling of the recruitment campaign is expressed by the function f(M) which is a function
ofM such that supf(M) = 1, because the movement from SU to SA is proportional to f(M) given
by f(M) = 1− g(M). If no one is joined to I and A sub-classes, then no HIV/AIDS information
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Parameter Discription
π Recruitment rate
µ Natural per capita death rate
θ Rate of unaware susceptible individuals listen to the advertisement campaigns and

become aware or response rate of unaware individual‘s to become aware
φ Rate of aware susceptible individuals stop taking preventive measure and become

unaware due to memory fading or carelessness.
k Screening rate from undiagnosed to diagnosed infected stage
σ Proportion of HIV-infected individuals with no symptom of AIDS after screening
γ Treatment rate of diagnosed HIV infected persons with no clinical symptom of

AIDS
a1 Progression rate to class A for the diagnosed infectious
ε Rate of treated persons in the class T leave in to the class I
a2 Progression rate to class A for those under treatment
ρ Rate of HIV-infected persons with AIDS symptoms are treated for HIV
d Death rate due HIV/AIDS of people in class A

Table 3.1: Descriptions of the parameters.

campaign. Thus f(0) = 0 when I(t) = 0 and A(t) = 0. Owing to this, one can model f(M) by
the following function.

f(M) = p(I+A)
1+q(I+A)

,
where p is growth rate of information and q is saturation constant [BB12]. When large number of
diagnosed infective individuals are counted, the growth of information will be saturated. More-
over, when aware people stop taking preventive measure due to memory fading or carelessness, the
movement from SA to SU is proportional to g(M) given by g(M) = 1− f(M). Thus, the function
g(M) is a function of M such that g(0) = 1 and infg(M) = 0. The infg(M) = 0, when the
supf(M) = 1. The rest of the parameters are described in Table 3.1.
Now depending on the above assumptions and model variables description, the transition diagram

of the model is shown in Figure 3.1.
Thus HIV/AIDS transmission flow diagram in Figure 3.1 described by the following deterministic
system of non-linear ODE:

dSU
dt

= π − λ1SU − θf(M)SU + φg(M)SA − µSU ,
dSA
dt

= θf(M)SU − φg(M)SA − λ2SA − µSA,
dL
dt

= λ1SU + λ2SA − kσL− (k(1− σ) + µ)L,

dI
dt

= kσL+ εT − a1I − γI − µI,
dT
dt

= γI + ρA− a2T − (ε+ µ)T,

dA
dt

= k(1− σ)L+ a1I + a2T − (d+ ρ+ µ)A,

(3.1)
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Figure 3.1: HIV/AIDS transmission flow diagram .

with inital conditions

SU(0) > 0, SA(0) > 0, L(0) > 0, I(0) > 0, T (0) > 0, and A(0) > 0. (3.2)

3.3 Model analysis

3.3.1 Positivity of the solutions

Here, we discussed the condition in which the HIV/AIDS model (3.1) has non-negative solutions.
To be exact this epidemiological HIV/AIDS model reflects human population in different compart-
ments.

Theorem 7 let Ω = {(SU , SA, L, I, T, A) ∈ R6
+ : SU(0) > 0, SA(0) > 0, L(0) > 0, I(0) >

0, T (0) > 0, A(0) > 0}, then the solutions (SU(t), SA(t), L(t), I(t), T (t), A(t)) of (3.1) are posi-

tive for ∀t ≥ 0.
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Proof:
Consider the system (3.1) and let us take the first equation:

dSU (t)
dt

= π − λ1SU − θf(M)SU + φg(M)SA − µSU .
=⇒ dSU (t)

dt
≥ −(λ1 + θf(M) + µ)SU = −(β1(L+η1I+Aη2)

N
+ θf(M) + µ)SU .

=⇒ dSU (t)
dt
≥ −(β1(L+ η1I + Aη2) + θf(M) + µ)SU .

=⇒ dSU
SU
≥ −(β1(L+ η1I + Aη2) + θf(M) + µ)dt.

We solved the above inequality gives:
=⇒ SU(t) ≥ SU(0)exp−µt−

∫
(L(t)+η1I(t)+A(t)η2+θf(M))dt ≥ 0.

let us take the second equation
dSA(t)
dt

= θf(M)SU − φg(M)SA − λ2SA − µSA.
=⇒ dSA(t)

dt
≥ −(β2(L+η1I+Aη2)

N
+ φg(M) + µ)SA.

=⇒ dSA(t)
dt
≥ −(β2(L+ η1I + Aη2) + φg(M) + µ)SA.

=⇒ dSA
SA
≥ −(β2(L+ η1I + Aη2) + φg(M) + µ)dt.

=⇒ SA(t) ≥ SA(0)exp−µt−
∫

(β2(L(t)+η1I(t)+A(t)η2)+φg(M))dt ≥ 0.
Again let us take the third equation

dL
dt
≥ −(k + µ)L.

=⇒ L(t) ≥ L(0)e−(k+µ)t ≥ 0,∀t ≥ 0.

The positivity solution of the rest three equations can be shown in the following way.
First I(t) > 0,∀t ∈ [0, ϑ), where 0 < ϑ ≤ +∞. If it does not hold, then ∃ t1 ∈ [0, ϑ) such that
I(t1) = 0, dI

dt
(t1) ≤ 0 and I(t) > 0,∀t ∈ [0, t1). So there must have T (t) > 0, ∀t ∈ [0, t1). If it

is not true, ∃ t2 ∈ (0, t1) such that T (t2) = 0, dT
dt

(t2) ≤ 0 and T (t) > 0,∀t ∈ (0, t2). Our claim
is A(t) > 0,∀t ∈ [0, t2). If it is not true, then ∃ t3 ∈ (0, t2) such that A(t3) = 0, dA

dt
(t3) ≤ 0 and

A(t) > 0,∀t ∈ (0, t3).
From sixth equation of (3.1):
dA
dt

(t3) = k(1−σ)L(t3)+a1I(t3)+a2T (t3)−(d+ρ+µ)A(t3) = k(1−σ)L(t3)+a1I(t3)+a2T (t3) >

0, which is a contradiction to dA
dt

(t3) ≤ 0. Thus, A(t) > 0,∀t ∈ [0, t2).
So, fifth equation of (3.1):
dT
dt

(t2) = γI(t2) + ρA(t2)− (a2 + ε+ µ)T (t2) = γI(t2) + ρA(t2) > 0, which is a contradiction to
dT
dt

(t2) ≤ 0. Thus, T (t) > 0,∀t ∈ [0, t1).
Similarly we have, A(t) > 0,∀t ∈ [0, t1).

Now we claim I(t) > 0,∀t ∈ [0, ϑ). If it is not true, then ∃ t1 ∈ (0, ϑ) such that I(t1) = 0, dI
dt

(t1) ≤
0 and I(t) > 0,∀t ∈ [0, t1).
From fourth equation of (3.1):
dI
dt

(t1) = kσL(t1) + εT (t1)− (a1 + γ + µ)I(t1) = kσL(t1) + εT (t1) > 0, which is a contradiction
to dI

dt
(t1) ≤ 0. Thus, I(t) > 0,∀t ∈ [0, ϑ).

This completes the proof.
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3.3.2 Invariant region

In this part, we showed the solutions of all state systems are uniformly bounded in the region, as
given by the following theorem.

Theorem 8 The model system ( 3.1 ) is biological significance on the region given by Ω ∈ R6
+ such

that Ω = {(SU , SA, L, I, T, A) ∈ R6
+ : N ≤ π

µ
}.

Proof:
The rate of change of total population dN

dt
can be obtained by adding all the equations in (3.1).

Hence
dN
dt

= dSU
dt

+ dSA
dt

+ dL
dt

+ dI
dt

+ dT
dt

+ dA
dt

,
⇒ dN

dt
= π − µSU − µSA − µL− µI − µT − (d+ µ)A,

⇒ dN
dt

= π − µ(SU + +SA + L+ I + T + A)− dA,

⇒ dN

dt
= π − µN(t)− dA, (3.3)

⇒ dN
dt
≤ π − µN(t).

Therefore, the solution of this last inequality satisfies the relation.
N(t) ≤ π

µ
+ e−µt(N(0)− π

µ
).

Here, if the initial population 0 < N(0) ≤ π
µ

, then we obtain 0 < N(t) ≤ π
µ

for all t ≥ 0. This
shows that Ω is positively invariant. Therefore, for all t ≥ 0 every solution of the model system
(3.1) with initial conditions in Ω remains there and all are bounded.

3.3.3 Disease-free equilibrium (DFE)

The deterministic system of non linear ODE (3.1) has the disease-free equilibrium (DFE). The
DFE is obtained by setting the right hand side of the equations (3.1) to zero in the absence of HIV
infection, which is

dSU
dt

= dSA
dt

= dL
dt

= dI
dt

= dT
dt

= dA
dt

= 0.
In case of no disease, SA = L = I = T = A = 0 which implies the system (3.1) leads to

dSU
dt

= π − λ1SU − θf(M)SU + φg(M)SA − µSU = 0,

but λ1 =
β1(L+ η1I + +Aη2)

N
= 0 and if there is no disease in the community, then there are no

aware individuals that make preventive measures.
Thus dSU

dt
= π − µSU = 0 ⇒ SU = π

µ
.

Therefore, the DFE point say Eh0 = (π
µ
, 0, 0, 0, 0, 0).
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3.3.4 Control reproduction number

Control reproduction number is the threshold parameter that governs the spread of a disease, which
is denoted by say Re. So to compute Re simply it is the spectral radius of the next generation
matrix [VdDW02]. In this approach it is essential to differentiate new infected peoples from all
other class. The infected classes are L, I, T, A. So, we can write system (3.1) as X = F − V and
V = V − − V +, where X = (SU , SA, L, I, T, A), F is the rate of appearance of new infections in
each class, V − is the rate of transfer of the infectious individuals out of each class, and V + is the
rate of transfer into each class by all other means. Hence, the associated matrices F of the new
infection terms and V is the remaining transition terms are given by

F =


λ1SU + λ2SA

0

0

0

 and V =


(k + µ)L

(a1 + γ + µ)I − kσL− εT
(a2 + ε+ µ)T − γI − ρA

(d+ ρ+ µ)A− k(1− σ)L− a2T − a1I

 ,

where λ1 = β1(L+η1I+Aη2)
N

and λ2 = β2(L+η1I+Aη2)
N

.
The entries of the matrix F are say f1, f2, f3 and f4 , where f1 = λ1SU + λ2SA, f2 = 0, f3 = 0

and f4 = 0. We can also write F = (f1 f2 f3 f4)T , where T is the transpose of 1 row matrix.
Also, the entries of the matrix V are say v1 = (k + µ)L, v2 = (a1 + γ + µ)I − kL − εT, v3 =

(a2 + ε+ µ)T − γI − ρA and v4 = (d+ ρ+ µ)A− k(1− σ)L− a2T − a1I .
The next is obtaining the Jacobian matrix of F and V with respect to L, I, T, and A at the disease
free equilibrium Eh0 = (π

µ
, 0, 0, 0, 0, 0). Here, if there is no disease in the community, then the

populations are initial unaware susceptible individuals whose assigned to be SU0 = π
µ

.
Let us say the Jacobian matrix of F and V are f and v respectively. Hence, the entry members of f
and v are in the following way.

f =


∂f1
∂L

∂f1
∂I

∂f1
∂T

∂f1
∂A

∂f2
∂L

∂f2
∂I

∂f2
∂T

∂f2
∂A

∂f3
∂L

∂f3
∂I

∂f3
∂T

∂f3
∂A

∂f4
∂L

∂f4
∂I

∂f4
∂T

∂f4
∂A

 and v =


∂v1
∂L

∂v1
∂I

∂v1
∂T

∂v1
∂A

∂v2
∂L

∂v2
∂I

∂v2
∂T

∂v2
∂A

∂v3
∂L

∂v3
∂I

∂v3
∂T

∂v3
∂A

∂v4
∂L

∂v4
∂I

∂v4
∂T

∂v4
∂A

.

Thus

f =


β1SU + β2SA η1(β1SU + β2SA) 0 η2(β1SU + β2SA)

0 0 0 0

0 0 0 0

0 0 0 0
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= (β1SU + β2SA)


1 η1 0 η2

0 0 0 0

0 0 0 0

0 0 0 0

 and

v =


k + µ 0 0 0

−σk (a1 + γ + µ) −ε 0

0 −γ (a2 + ε+ µ) −ρ
σk − k −a1 −a2 (d+ ρ+ µ)

 =


k + µ 0 0 0

−σk B −ε 0

0 −γ C −ρ
σk − k −a1 −a2 D

,

where

B = a1 + γ + µ, C = a2 + ε+ µ, D = d+ ρ+ µ. (3.4)

Remark: To simplify our work easily use B, C, and D for the whole work as they are required.
Hereafter find the product of fv−1, where v−1 is the inverse matrix of v.
First find v−1 which becomes:
v−1 = 1

det(v)
×

B(CD − ρa2)− ε(ρa1 +Dγ) 0 0 0

k[σ(CD − ρa2 − ερ) + ρε] (k + µ)(CD − ρa2) (k + µ)Dε (k + µ)ρε

k[σ(a1ρ+ γD −Bρ) +Bρ] (k + µ)(a1ρ+ γD) (k + µ)BD (k + µ)ρB

W (k + µ)(Ca1 + γa2) (k + µ)(εa1 +Ba2) (k + µ)(BC − εγ)

 ,
where det(v) = (k+µ)[BCD−Bρa2−Dγε−ερa1],W = k[σ(Ca1 +γa2 +γε−BC)−γε+BC],

and × indicates multiplication.
Thus fv−1 = (β1SU+β2SA)

[BCD−Bρa2−Dγε−ερa1]
×

Σ
k+µ

[C(η1D + η2a1) + a2(γη2 − η1ρ)] [ε(η1D + η2a1) +Ba2η2] [ε(η1ρ− γη2) + η2BC]

0 0 0 0

0 0 0 0

0 0 0 0

 ,
where Σ = (CD − ρa2)(B + kση1)− ε(ρa1 +Dγ) + k[ση2(Ca1 + γ(a2 + ε)−BC) + εη1ρ(1−
σ) + η2(BC − εγ)].
Thus, the dominant eigenvalue of the next generation matrix (fv−1) is control reproductive number
is given by:
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Re =
(β1SU+β2SA)

N

k+µ
[1 + k[ση1(CD−ρa2)+ση2(Ca1+γ(a2+ε)−BC)+εη1ρ(1−σ)+ση2(BC−εγ)]

[BCD−Bρa2−Dγε−ερa1]
].

Therefore, Re = β1
k+µ

[1 + η1k(CDσ−σρa2+ρε−σρε)+kη2(γσa2+Ca1σ+BC+σεγ−εγ−BCσ)
BCD−Bρa2−εγD−ερa1 ].

3.3.5 Local stability of DFE

Theorem 9 The DFE point is locally asymptotically stable if Re < 1 and unstable if Re > 1.

Proof
To prove local stability of DFE, we obtained the Jacobian matrix of the system (3.1) at the DFEEh0.

J(π
µ
, 0, 0, 0, 0, 0) =



−(θf(M) + µ) φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
(θf(M) + µ) −(µ+ φg(M)) 0 0 0 0

0 0 β1 − (k + µ) η1β1 0 η2β1

0 0 kσ −(a1 + γ + µ) ε 0

0 0 0 γ −(a2 + ε+ µ) ρ

0 0 k(1− σ) a1 a2 −(d+ ρ+ µ)


.

=



−(θf(M) + µ) φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
(θf(M) + µ) −(µ+ φg(M)) 0 0 0 0

0 0 β1 − (k + µ) η1β1 0 η2β1

0 0 kσ −B ε 0

0 0 0 γ −C ρ

0 0 k(1− σ) a1 a2 −D


.

Now find the eigenvalues of this matrix, which becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(θf(M) + µ)− λ φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
(θf(M) + µ) −(µ+ φg(M))− λ 0 0 0 0

0 0 β1 − (k + µ)− λ η1β1 0 η2β1

0 0 kσ −B − λ ε 0

0 0 0 γ −C − λ ρ

0 0 k(1− σ) a1 a2 −D − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

0.
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⇒ −(θf(M) + µ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ+ φg(M))− λ 0 0 0 0

0 β1 − (k + µ)− λ η1β1 0 η2β1

0 kσ −B − λ ε 0

0 0 γ −C − λ ρ

0 k(1− σ) a1 a2 −D − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
−

(θf(M) + µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
0 β1 − (k + µ)− λ η1β1 0 η2β1

0 kσ −B − λ ε 0

0 0 γ −C − λ ρ

0 k(1− σ) a1 a2 −D − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

⇐⇒ [µ(θf(M) + µ+ λ) + λ(θf(M) + λ+ µ+ φg(M))] = 0 (3.5)

or

∣∣∣∣∣∣∣∣∣∣
β1 − (k + µ)− λ η1β1 0 η2β1

kσ −B − λ ε 0

0 γ −C − λ ρ

k(1− σ) a1 a2 −D − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

Now f(M) = 0 and g(M) = 1− f(M) = 1 at DFE Eh0.
Hence equation (3.5) becomes: λ2 + (2µ+ φ)λ+ µ2 = 0.
The roots of this quadratic equation are eigenvalues λ1 and λ2.
The eigenvalues λ1 and λ2 have negative real part, since µ and φ are positive.

Again

∣∣∣∣∣∣∣∣∣∣
β1 − (k + µ)− λ η1β1 0 η2β1

kσ −B − λ ε 0

0 γ −C − λ ρ

k(1− σ) a1 a2 −D − λ

∣∣∣∣∣∣∣∣∣∣
=

(β1 − (k + µ)− λ)

∣∣∣∣∣∣∣
−B − λ ε 0

γ −C − λ ρ

a1 a2 −D − λ

∣∣∣∣∣∣∣ -η1β1

∣∣∣∣∣∣∣
kσ ε 0

0 −C − λ ρ

k(1− σ) a2 −D − λ

∣∣∣∣∣∣∣
-η2β1

∣∣∣∣∣∣∣
kσ −B − λ ε

0 γ −C − λ
k(1− σ) a1 a2

∣∣∣∣∣∣∣ = 0.

After long derivation, we simplify the following polynomial expression
λ4 +λ3[k+µ+B+C+D−β1] +λ2[−εγ−β1(B+C+D+ η1kσ) + η2k(1−σ) + (k+µ)(B+

C + D)BC + CD + BD] + λ[−β1(BC + CD + BD + εγ) + η1(Ckσ + kσD) + η2(Kσa1 +

BkCk−Bkσ−Ckσ) + ρa2− (k+µ)εγ− εγD− ερa1] +ABCD+ (k+µ)ρa2− (k+µ)εγD−
(k + µ)ερa1 + β1[−BCD − ρa2 + εγD + ερa1 − η1k(CDσ − σρa2 + ρε− σρρε)−
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kη2(γσa2 + Ca1σ +BC + σεγ − εγ −BCσ)] = 0. (3.6)

Thus, we expressed (3.6) as
A0λ

4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0,
where A0 = 1, A1 = k + µ+B + C +D − β1,

A2 = −εγ − β1(B + C +D + η1kσ + η2k(1− σ)) + (k + µ)(B + C +D)−BC + CD +BD

A3 = −β1(BC +CD+BD− εγ− a2ρ) +A(BC +BD+CD− a2ρ− εγ) + η1(Ckσ+ kσD) +

η2(Kσa1 +Bk + Ck −Bkσ − Ckσ) +B(CD − a2ρ)− ε(γD + a1ρ),

A4 = (k+µ)(BCD−Bρa2− εγD− ερa1) + β1[−BCD+Bρa2 + εγD+ ερa1− η1k(−CDσ+

σρa2 − ρε+ σρε)− kη2(−γσa2 − Ca1σ −BC − σεγ + εγ +BCσ)].
= (k + µ)(BCD −Bρa2 − εγD − ερa1)

[1 + β1
k+µ

(−1− η1k(CDσ−σρa2+ρε−σρε)+kη2(γσa2+Ca1σ+BC+σεγ−εγ−BCσ)
BCD−Bρa2−εγD−ερa1 )].

= (k + µ)(BCD −Bρa2 − εγD − ερa1)[1−Re].
= (k + µ)(BCD −Bρa2 − εγD − ερa1)[1−Re].
= (k + µ)((d+ µ)(a2B + εa1) + µD(ε+B)[1−Re].

Applying the Routh–Hurwitz criterion [All08], it can be shown that the eigenvalues of the 4 × 4

Jacobin matrix (the roots of the characteristic polynomial P (λ) = λ4 +A1λ
3 +A2λ

2 +A3λ+A4

) have negative real parts, if Re < 1. If Re > 1, then A3 < 0, thus the Jacobian matrix has at least
one eigenvalue with positive real part. Hence, DFE Eh0 is locally asymptotically stable if Re < 1

and unstable if Re > 1.
Biologically speaking, this implies that HIV can be eliminated from the community (whenRe < 1).
When the initial size of the population are in the basin of attraction of Eh0.

3.3.6 Global stability of DFE

We used the method which is executed in [CCBVdD+02] to explore the global stability of the DFE
point.
First the model (3.1) can be re-written in the form:dX

dt
= F (X,Z),

dZ
dt

= G(X,Z), G(X, 0) = 0.
(3.7)

Where the vectors X and Z represents the non-infected and infected compartments. Now X =

(SA, SU), Z = (L, I, T, A), and the conditions (H1) and (H2) are:
(H1), dX

dt
= F (X, 0), X∗ is GAS.

(H2), dZ
dt

= QZ − G∗(X,Z), G∗(X,Z) ≥ 0 for (X,Z) ∈ R+
6 , where Q is a Metzler matrix (the

non-diagonal entries of Q are positive.)
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Here Q =


β1 − (k + µ) η1β1 0 η2β1

kσ −(a1 + γ + µ) ε 0

0 γ −(a2 + ε+ µ) ρ

k(1− σ) a1 a2 −(d+ ρ+ µ)

.

Thus, the non diagonal entries of Q, are non-negative.
Again dZ

dt
= G(X,Z) = QZ −G∗(X,Z),

where G∗(X,Z) =


(L+ η1I + η2A)[β1(1− SU

N
)− β2

SA
N

]

0

0

0



=


(L+ η1I + η2A)[β1 − (β1

SU
N

+ β2
SA
N

)]

0

0

0

 =


G∗1(X,Z)

G∗2(X,Z)

G∗3(X,Z)

G∗4(X,Z)

 .
In a matrix G∗(X,Z), we can not conclude that G∗1(X,Z) = β1 − (β1

SU
N

+ β2
SA
N

) is positive.
This leads to the second condition of (H2) is not satisfied.
Thus, Eh0 may not be globally asymptotically stable when Re < 1.

3.3.7 Endemic equilibrium

The endemic equilibrium which means HIV/AIDS is endemic in the community is calculated by af-
ter setting to zero each equations of (3.1). Then solve them independently and express all solutions
in-terms of diagnosed infected I . Then

dSU
dt

= π − λ1SU − θf(M)SU + φg(M)SA − µSU = 0, (3.8)

dSA
dt

= θf(M)SU − φg(M)SA − λ2SA − µSA = 0, (3.9)

dL

dt
= λ1SU + λ2SA − kL− µL = 0, (3.10)

dI

dt
= kL+ εT − a1I − γI − µI = 0, (3.11)

dT

dt
= γI + ρA− a2T − (ε+ µ)T = 0, (3.12)

dA

dt
= k(1− σ)L+ a1I + a2T − (d+ ρ+ µ)A = 0. (3.13)
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Here, from equation (3.8)– (3.13), we obtain T = γI+ρA
a2+ε+µ

, L = (a1+γ+µ)I−εT
k

,
A = a1I+a2T+k(1−σ)L

d+ρ+µ
, L = λ1SU+λ2SA

k+µ
, SA = θf(M)SU

φg(M)+λ2+µ
, and SU = π+φg(M)SA

λ1+θf(M)+µ
.

Then substitute one equation to the other, adding, and subtracting equations simultaneously we
obtain the following results.
Therefore, the endemic equilibrium say Eh1 = (S∗U , S

∗
A, L

∗, I∗, T ∗, A∗), where
S∗U = A[B(CD−ρa2)−ε(γ+ρa1)]I∗

k[(CD−ρa2+ερ)(1−σ)(λ∗1(λ∗2+φg(M)+µ)+λ∗2θf(M))] ,

S∗A = θf(M)A[B(CD−ρa2)−ε(γ+ρa1)]I∗

k(φg(M)+λ∗2+µ)[(CD−ρa2+ερ)(1−σ)(λ∗1(λ∗2+φg(M)+µ)+λ∗2θf(M))] ,

L∗ = [B(CD−ρa2)−ε(γ+ρa1)]I∗

k[(CD−ρa2+ερ)(1−σ)] ,

I∗ = kπ[(CD−ρa2+ερ)(1−σ)(λ∗1(λ∗2+φg(M)+µ)+λ∗2θf(M))(λ∗2+φg(M)+µ)]
A[(λ∗2+φg(M)+µ)(λ∗1θf(M)+µ)B(CD−ρa2)−ε(γ+ρa1)] ,

T ∗ = [B(ρ(1−σ)+γ+ρa1)]I∗

(CD−ρa2+ερ)(1−σ) , and A∗ = [BC(ρ(1−σ)+γ+ρa1)
(CD−ρa2+ερ)(1−σ) − γ]I∗,

where λ∗1 = β1(L∗+I∗+A∗)
N , λ∗2 = β2(L∗+I∗+A∗)

N , f(M) = p(I∗+A∗)
1+q(I∗+A∗) , and g(M) =

1− f(M).

Lemma 3 For Re > 1, a unique endemic equilibrium point Eh1 exist and no endemic equilibrium

otherwise.

Proof. If the disease is endemic in the community, then ∃ t∗ > 0 such that dL(t∗)
dt

> 0, dI(t
∗)

dt
>

0, dT (t∗)
dt

> 0, and dA(t∗)
dt

> 0. Thus, keeping the state variables L, I, T , and A at t∗, we have:

dL

dt
= λ1SU + λ2SA − kL− µL > 0, (3.14)

dI

dt
= kσL+ εT − a1I − γI − µI > 0, (3.15)

dT

dt
= γI + ρA− a2T − (ε+ µ)T > 0, (3.16)

dA

dt
= k(1− σ)L+ a1I + a2T − (d+ ρ+ µ)A > 0. (3.17)

Here from (3.14) λ1SU + λ2SA > (k + µ)L,

⇒ (k + µ)L <
β1(L+ η1I + +Aη2)

N
SU +

β1(L+ η1I + Aη2)

N
SA,

⇒ (k + µ)L < (L+ η1I + η2A)
β1SU + β2SA

N
.
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⇒ (k + µ)L < β1(L+ η1I + η2A)
SU + β2

β1
SA

N
.

Since from the fact that
SU + β2

β1
SA

N
< 1.

Thus
(k + µ)L < β1(L+ η1I + η2A). (3.18)

Again from (3.15), (3.16), and (3.17), we have the following inequalities.
(a1+γ+µ)I < kσL+εT, (a2+ε+µ)T < γI+ρA, (d+ρ+µ)A < k(1−σ)L+a1I+a2T .
Use B, C, D representation, we have the following.

BI < kσL+ εT, (3.19)

CT < γI + ρA, (3.20)

DA < k(1− σ)L+ a1I + a2T. (3.21)

Use inequality (3.19) and (3.20), (3.20) and (3.21) simultaneously to eliminate the term T we obtain
the following.
(BC − εγ)I < kCσL+ ερA and −(γa2 + a1C)I < Ck(1− σ)L+ (ρa2 −DC)A.
Add these inequalities simultaneously and eliminate the term I by multiplying the term (γa2+a1C)

to the first and BC − εγ to the second , we obtain
0 < [kCσ(γa2 + a1C) + kC(1− σ)(BC − εγ)]L+ [ερ(γa2 + a1C) + (a2ρ−DC)(BC − εγ)]A.
And also multiply the first byDC−a2ρ and the second by ερ, then add simultaneously to eliminate
the term A, we obtain the following inequality.
[(BC − εγ)(DC − a2ρ)− ερ(γa2 + a1C)]I < [kCσ(DC − ρa2) + ερCk(1− σ)]L.
These two results gives

A <
kC[σa2γ + σa1C +BC −BCσ + σεγ − εγ]L

[−εργa2 − ερa1C + (DC − a2ρ)(BC − εγ)]
, (3.22)

I <
[kCσ(DC − ρa2) + ερCk(1− σ)]L

[−εργa2 − ερa1C + (BC − εγ)(DC − a2ρ)]
. (3.23)

After this substitute (3.22) and (3.23) in (k + µ)L < β1(L+ η1I + η2A) at (3.18) we obtain,

(k+µ)L < β1[L+η1
[kCσ(DC−ρa2)+ερCk(1−σ)]L

[−εργa2−ερa1C+(BC−εγ)(DC−a2ρ)]+η2
kC[σa2γ+σa1C+BC−BCσ+σεγ−εγ]L
[−εργa2−ερa1C+(DC−a2ρ)(BC−εγ)] ],

⇒ (k+µ)L < β1[1+η1[kCσ(DC−ρa2)+ερCk(1−σ)]+η2kC[σa2γ+σa1C+BC−BCσ+σεγ−εγ]
[−εργa2−ερa1C+(BC−εγ)(DC−a2ρ)] ]L.

Divided both sides by (k + µ)L, we have



CHAPTER 3. MODELLING OF HIV/AIDS DISEASE 45

⇒ 1 < β1[
1

k+µ + η1[kCσ(DC−ρa2)+ερCk(1−σ)]+η2kC[σa2γ+σa1C+BC−BCσ+σεγ−εγ]
(k+µ)[−εργa2−ερa1C+(BC−εγ)(DC−a2ρ)] ].

This reduced to 1 < β1[
1

k+µ+k[η1(σ(DC−ρa2)+ερk(1−σ))+η2(σa2γ+σa1C+BC−BCσ+σεγ−εγ)]
(k+µ)[−ερa1+BCD−εγD−a2ρB] ],

⇒ 1 < β1
π
µ [ 1

(k+µ) + k[η1(σ(DC−ρa2)+ερk(1−σ))+η2(σa2γ+σa1C+BC−BCσ+σεγ−εγ)]
(k+µ)[−ερa1+BCD−εγD−a2ρB] ],

⇒ 1 < Re,
⇒ Re > 1.
This completes the proof.

3.3.8 The global stability of endemic equilibrium

Theorem 10 If Re > 1, the endemic equilibrium Eh1 of (3.1) is globally asymptotically stable on

R6
+0\$, with solutions in $ limiting to Eh0, where $ = (SU , SA, 0, 0, 0, 0).

Proof.
Consider the Lyapunov function

G = (SU −S∗U −S∗U ln SU
S∗U

) + (SA−S∗A−S∗A ln SA
S∗A

) +N1(L−L∗−L∗ ln L
L∗ ) +N2(I − I∗− I∗ ln I

I∗ ) +

(T − T ∗− T ∗ ln T
T ∗ ) +N3(A−A∗−A∗ ln A

A∗ ), where N1, N2, N3 are positive constants to be determined.

This type of Lyapunov function has been mentioned in [MLL03, Hou18].

Now, we can write the time derivative of G as

G
′

= (1− S∗U
SU

)S
′
U + (1− S∗A

SA
)S
′
A + (1− T ∗

T )T
′
+N1(1− L∗

L )L
′
+N2(1− I∗

I )I
′
+N3(1− A∗

A )A
′

= (1 − S∗U
SU

)[(β1(L∗ + η1I
∗ + η2A

∗) + θf(M) + µ)S∗U − φg(M)S∗A − (µ + β1(L + η1I + η2A) +

θf(M))SU +φg(M)SA] + (1− S∗A
SA

)[θf(M)SU − (φg(M) +β2(L+ η1I+ η2A) +µ)SA] + (1− T ∗

T )[γI+

ρA−CT ] +N1(1− L∗

L )[β1(L+ η1I + η2A)SU + β2(L+ η1I + η2A)SA− (k+µ)L] +N2(1− I∗

I )[kL+

εT −BI] +N3(1− A∗

A )[k(1− σ)L+ a1I + a2T −DA].

= (1 − S∗U
SU

)[(β1(L∗ + η1I
∗ + η2A

∗) + θf(M) + µ)S∗A − φg(M)S∗A + φg(M)SA] − (1 − S∗U )(µ +

β1(L + η1I + η2A) + θf(M)) + (1 − S∗A
SA

)θf(M)SU − (φg(M) + β2(L + η1I + η2A) + µ)(1 − S∗A) +

(1− T ∗

T )[γI + ρA]−CT +C[T ∗]) +N1(1− L∗

L )[β1(L+ η1I + η2A)SU + β2(L+ η1I + η2A)SA]− (k+

µ)(1 − (L∗+η1I∗+η2A∗)(β1S∗U+β2S∗A)
k+µ ) + N2(1 − I∗

I )[kL + εT ] − B(1 − [kL
∗+εT ∗

B ])] + N3(1 − A∗

A )[k(1 −
σ)L+ a1I + a2T ]−D(1− [a1I

∗+a2T ∗+k(1−σ)L∗

D ]).

= −(θf(M)+µ)
(SU−S∗U )2

SU
+φg(M)(SA−S∗A)+(1− S∗U

SU
)λ∗1S

∗
U−λ1(SU−S∗U )+(1− S∗A

SA
)θf(M)SU−

(φg(M) + λ2 + µ)(SA− S∗A) + (1− T ∗

T )[γI + ρA]−C(T − T ∗) +N1(1− L∗

L )[λ1SU + λ2SA]−N1(k+

µ)(L−L∗)+N2(1− I∗

I )[kL+εT ]−BN2(I−I∗)+N3(1− A∗

A )[k(1−σ)L+a1I+a2T ]−DN3(A−A∗),

where λ1 = β1(L + η1I + η2A), λ2 = β2(L + η1I + η2A), λ∗1 = β1(L∗ + η1I
∗ + η2A

∗), λ∗2 = β2(L∗ +

η1I
∗ + η2A

∗).

Now, the positive constants N1, N2, and N3 are chosen such that the coefficients of

SUL, SUI, SUA,SAL, SAI, SAA,L, I, and A are equal to zero.
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First take the coefficient of SUL gives

−β1 +N1(β1) = 0,⇒ N1 = 1.

Second take the coefficient of A gives ρ−DN3 = 0⇒ N3 = ρ
D .

Third take the coefficient of I gives −BN2 + γ + a1N3 = 0⇒ γ + a1N3 = BN2.

⇒ N2 = Dγ+a1ρ
BD .

Hence (N1, N2, N3) = (1, Dγ+a1ρ
BD , ρD ).

Next substitute the results of N1, N2, N3 in dG
dt and then collect positive and negative terms, we get to

dG
dt = [2(θf(M) +µ)S∗U +φg(M)SA + λ∗1S

∗
U + λ1S

∗
U + θf(M)SU +S∗A(φg(M) + λ2 +µ) + γI + ρA+

CT ∗ + SU (λ1 + λ2) +L∗(k+ µ) + (Dγ+a1ρ)
BD (kL+ εT ) +BI∗ (Dγ+a1ρ)

BD + ρ
D (k(1− σ)L+ a1I + a2T ) +

ρA∗]− [φg(M)S∗A + (θf(M) + µ)(SU +
(S∗U )2

SU
) +

λ∗1(S∗U )2

SU
+ λ1SU + θf(M)SU

S∗A
SA

+ SA(φg(M) + λ2 +

µ)+ T ∗

T (γI+ρA)+CT + L∗

L SU (λ1 +λ2)+L(k+µ)+ I∗

I
(Dγ+a1ρ)

BD (kL+εT )+BI (Dγ+a1ρ)
BD + A∗

A
ρ
D (k(1−

σ)L+ a1I + a2T ) + ρA].
dG
dt = P −Q, where

P = 2(θf(M) + µ)S∗U + φg(M)SA + λ∗1S
∗
U + λ1S

∗
U + θf(M)SU + S∗A(φg(M) + λ2 + µ) + γI + ρA+

CT ∗+SU (λ1 +λ2)+L∗(k+µ)+ (Dγ+a1ρ)
BD (kL+εT )+BI∗ (Dγ+a1ρ)

BD + ρ
D (k(1−σ)L+a1I+a2T )+ρA∗

and

Q = φg(M)S∗A+(θf(M)+µ)(USh+
(S∗U )2

SU
)+

λ∗1(S∗U )2

SU
+λ1SU +θf(M)SU

S∗A
SA

+SA(φg(M)+λ2 +µ)+
T ∗

T (γI + ρA) +CT + L∗

L SU (λ1 + λ2) +L(k+ µ) + I∗

I
(Dγ+a1ρ)

BD (kL+ εT ) +BI (Dγ+a1ρ)
BD + A∗

A
ρ
D (k(1−

σ)L+ a1I + a2T ) + ρA.
dG
dt = 0 at the endemic equilibrium point Eh1 = (S∗U , S

∗
A, L

∗, I∗, T ∗, A∗) and
dG
dt < 0 if P < Q .

Thus, the largest compact invariant set in {(S∗U , S∗A, L∗, I∗, T ∗, A∗) ∈ Ω : dGdt = 0} is the singleton endemic

equilibrium Eh1. This implies that each solution which intersects R6
+0\{L = I = T = A = 0} limits

to Eh1. By LaSalles invariant principle [LaS76], it implies that Eh1 is globally asymptotically stable on

R6
+0\{L = I = T = A = 0} if P < Q.

3.3.9 Determination of bifurcation at Re = 1

Here, we used center manifold theory to investigate the possibility of forward and backward bifur-

cations of (3.1) by renaming the variables as follows.

Let SU = x1, SA = x2, L = x3, I = x4, T = x5, and A = x6 or to express them in vector no-

tation; x = (x1, x2, x3, x4, x5, x6)T , where T is transpose. Thus (3.1) can be written in the form
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dx
dt

= F (x), where F (x) = (f1, f2, f3, f4, f5, f6)T likes below.

dx1
dt = π − λ1x1 − θf(M)x1 + φg(M)x2 − µx1,

dx2
dt = θf(M)x1 − φg(M)x2 − λ2x2 − µx2,

dx3
dt = λ1x1 + λ2x2 − kσx3 − (k(1− σ) + µ)x3,

dx4
dt = kσx3 + εx5 − a1x4 − γx4 − µx4,

dx5
dt = γx4 + ρx6 − a2x5 − (ε+ µ)x5,

dx6
dt = k(1− σ)x3 + a1x4 + a2x5 − (d+ ρ+ µ)x6,

(3.24)

where λ1 = β1(x3+η1x4+η2x6)
N , λ2 = β2(x3+η1x4+η2x6)

N , f(M) = p(x4+x6)
1+q(x4+x6) ,

g(M) = 1− f(M), and N = x1 + x2 + x3 + x4 + x5 + x6.
The Jacobian matrix of this system at the disease free equilibrium (DFE) Eh0 = (π

µ
, 0, 0, 0, 0, 0) is

already expressed

J(Eh0) =



−(θf(M) + µ) φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
(θf(M) + µ) −(µ+ φg(M)) 0 0 0 0

0 0 β1 − (k + µ) η1β1 0 η2β1

0 0 kσ −B ε 0

0 0 0 γ −C ρ

0 0 k(1− σ) a1 a2 −D


.

(3.25)

Suppose that β1 = β∗1 is a bifurcation parameter of the equation of control reproduction number,
Re = [ 1

k+µ + k[ση1(CD−ρa2)+ση2(Ca1+γ(a2+ε)−BC)+εη1ρ(1−σ)+η2(BC−εγ)]
(k+µ)[BCD−Bρa2−Dγε−ερa1] ]β∗1 .

The center manifold theory can be used to analyse the stability of the endemic equilibriumEh1 near
Re = 1 or bifurcation point, then we obtained
1 = [ 1

k+µ + k[ση1(CD−ρa2)+ση2(Ca1+γ(a2+ε)−BC)+εη1ρ(1−σ)+η2(BC−εγ)]
(k+µ)[BCD−Bρa2−Dγε−ερa1] ]β∗1 .

⇒ β∗1 = (k+µ)[BCD−Bρa2−Dγε−ερa1]
[BCD−Bρa2−Dγε−ερa1+k[ση1(CD−ρa2)+ση2(Ca1+γ(a2+ε)−BC)+εη1ρ(1−σ)+η2(BC−εγ)]] .

The Jacobean matrix near β∗1 = β1, has a right eigenvector u = (u1, u2, u3, u4, u5, u6)T associ-
ated with the zero eigenvalue.
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Thus, we have

−(θf(M) + µ) φg(M) −β1 −η1β1 − θp 0 −η2β1 − θp
θf(M) −(µ+ φg(M)) 0 0 0 0

0 0 β1 − (k + µ) η1β1 0 η2β1

0 0 kσ −B ε 0

0 0 0 γ −C ρ

0 0 k(1− σ) a1 a2 −D





u1

u2

u3

u4

u5

u6


=



0

0

0

0

0

0


.

(3.26)

The system of equation becomes;

−(θf(M) + µ)u1 + φg(M)u2 − β1u3 − β1η1u4 − θpu4 − β1η2u6 − θpu6 = 0,

θf(M)u1 − (µ+ φg(M))u2 = 0,

(β1 − (k + µ))u3 + β1η1u4 + β1η2u6 = 0,

kσu3 −Bu4 + εu5 = 0,

γu4 − Cu5 + ρu6 = 0,

k(1− σ)u3 + a1u4 + a2u5 −Du6 = 0.

(3.27)

Solving system (3.27) we obtain
u2 = 0, since the expression f(M) = 0 and g(M) = 1 at DFE (Eh0).

u1 = −[β1(u3+η1u4+η2u6)+θp(u4+u6)
µ ], where u3 =

β1η1[
σ(DC−a2ρ)+ερ(1−σ)

(BC−εγ)(1−σ)+σ(a1C+a2γ)
]+β1η2

k+µ−β1 ,

u4 = σ(DC−a2ρ)+ερ(1−σ)
(BC−εγ)(1−σ)+σ(a1C+a2γ) , u5 =

γ[
σ(DC−a2ρ)+ερ(1−σ)

(BC−εγ)(1−σ)+σ(a1C+a2γ)
]+ρ

C , and u6 = 1.
The left eigenvectors of (3.25) associated with the zero eigenvalue at β1 = β∗1 is given by v =

(v1, v2, v3, v4, v5, v6)T . Then

−(θf(M) + µ) θf(M) 0 0 0 0

φg(M) −(µ+ φg(M)) 0 0 0 0

−β1 0 β1 − (k + µ) kσ 0 k(1− σ)

−η1β1 − θp 0 η1β1 −B γ a1

0 0 0 ε −C a2

−η2β1 − θp 0 η2β1 0 ρ −D





v1

v2

v3

v4

v5

v6


=



0

0

0

0

0

0


.

(3.28)
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Hence, we get v1 = v2 = 0, v3 = ρεk(1−σ)+kσ(CD+a2ρ)
ρε(k+µ)+kση2Cβ1−ρεβ1 ,

v4 = C[ ρεk(1−σ)+kσ(CD+a2ρ)
ρε(k+µ)+kση2Cβ1−ρεβ1 ]−

a2
ε ,

v5 =
D−η2β1[

ρεk(1−σ)+kσ(CD+a2ρ)
ρε(k+µ)+kση2Cβ1−ρεβ1

]

ρ , and v6 = 1 .

To compute a and b use the formula a =
∑n

k,i,j=1 vkuiuj
∂2fk
∂xi∂xj

(Eh0), and

b =
∑n

k,i=1 vkui
∂2fk
∂xi∂β1

(Eh0) in [CCS04], where f1 = dx1
dt , f2 = dx2

dt , f3 = dx3
dt , f4 =

dx4
dt , f5 = dx5

dt , f6 = dx6
dt (3.24). We can consider the left eigenvectors v3, v4, v5 and v6 , since

v1 and v2 are zero.
Thus ∂2f3

∂x3∂x1
= β1,

∂2f3
∂x4∂x1

= β1η1,
∂2f3
∂x6∂x1

= β1η2,
∂2f3
∂x3∂x2

= β2,
∂2f3
∂x4∂x2

=

β2η1,
∂2f3
∂x6∂x2

= β2η2,
∂2f3
∂x3∂β1

= 1, ∂2f3
∂x4∂β1

= η1,
∂2f3
∂x6∂β1

= η2.
Then, the value of a = v3u1β1(u3 + η1u4 + η2u6) and b = v3(u3 + η1u4 + η2u6).
As we have seen from the derivation of eigenvalues, the values of u1 < 0, u3 < 0 and v3 > 0.
However, the value u3 + η1u4 + η2u6 is positive, since the sum of η1u4 + η2u6 is grater than u3.
Thus a < 0 and b > 0 .
Hence, applying Theorem 4.1 stated in [CCS04], the model (3.1) undergoes a forward bifurcation
at Re = 1.
Therefore, we established the following result.

Theorem 11 The unique endemic equilibrium Eh1 of model (3.1) is locally asymptotically stable

for Re > 1 but close to 1.

3.4 Sensitivity analysis of the parameters

The sensitivity analysis is used to govern the model robustness to parameter values. Thus we
followed [CCH06, BD94] and we can identify which parameters have high impact on Re. The
sensitivity of each parameter also analyzed using normalized forward sensitivity index ( [CHC08]).
Thus ΛRe

β1
= ∂Re

∂β1

β1
Re

= +1, ΛRe
k = ∂Re

∂k
k
Re

, ΛRe
σ = ∂Re

∂σ
σ
Re

, and other indices are ΛRe
a1

, ΛRe
a2

, ΛRe
µ , ΛRe

ε ,
ΛRe
γ , ΛRe

ρ , ΛRe
d , ΛR1

η1
, and ΛR1

η2
. The sign of sensitivity induces of each parameter involved in (Re)

is expressed in the table (3.2).

3.4.1 Interpretation of sensitivity indices

Table (3.2) shows the sensitivity indices of Re to the parameters in the HIV/AIDS model (3.1). The
sign +ve and -ve denote the positive and negative results of the sensitivity of Re to the respective
parameters. We used the values of the parameters in Table (3.3) to find out the positive and negative
indices.
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Parameters Sensitivity indices Parameters Sensitivity indices
β1 +1 a2 +ve
a1 +ve σ -ve
ε +ve γ -ve
ρ -ve d -ve
k -ve µ -ve
η1 +ve η2 +ve

Table 3.2: Indices of sensitivity.

The result shows that when the parameters β1, a1, a2, ε, η1, and η2 are increase keeping others con-
stant they increase the values of Re. This shows us the control reproduction number (Re ) is most
sensitive to the parameters β1, a1, a2, ε, η1, and η2. Thus, they raise the disease burden as they have
positive indices.
However, the parameters ρ, k, γ, σ, d, and µ reduce the values of Re when keeping others constant.
This shows us HIV treatment rate, screening rate, proportion rate to infectious stage, and death
rates have an inversely proportional relationship with Re. This implies that if incrementing those
parameters reduces the control reproduction number (Re) and, consequently, the HIV/AIDS burden
would be reduced.

3.5 Extension of the model into an optimal control

In this part, we apply optimal control theory on the model (3.1) which helps to identify the best
intervention strategy to eradicate the disease in the specified time. From our sensitivity analysis, we
found thatRe is most sensitive to the contact rate β1, shows the effectiveness of preventive measures
in controlling disease transmission. Moreover, the screening and HIV treatment rates have negative
induces implies that incrementing them can reduce the disease burden. Therefore, based on the
analysis we suggested that the time based preventive, screening, and treatment controlling strategies
would be an effective option. This motivates us to incorporate the following three controls defined
as:

1. u1 a preventive effort: HIV/AIDS education campaign through social media and healthy
centres, that protect unaware susceptible from contacting HIV.

2. u2 a screening effort: To help undiagnosed infected individuals to screen themselves.

3. u3 a treatment effort: To minimize infection by treating individuals who have HIV symptoms.

It is often convenient to consider the proportion of each compartment in model (3.1), explicitly
sa = SA

N
, su = SU

N
, l = L

N
, i = I

N
, h = T

N
, a = A

N
, since the total population N(t) = SA(t) +
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SU(t) +L(t) + I(t) + T (t) +A(t) is not constant. The recruitment rate π = ΠN is not a constant,
but the birth rate Π is a constant parameter.
Now, the equation su = SU

N
=⇒ SU = suN.

=⇒ dSU
dt

= dsu
dt
N + dN

dt
su.

=⇒ π+φg(M)SA−(λ1 +θf(M)+µ)SU = dsu
dt
N+(π−µN−dA)su, where dN

dt
= π−µN−dA

(3.3).
=⇒ π

N
+ φg(M)SA

N
− (λ1 + θf(M) + µ)SU

N
= dsu

dt
+ ( π

N
− µ− dA

N
)su, divided both sides by N .

=⇒ Π + φg(M)sa − (λ1 + θf(M) + µ)su = dsu
dt

+ (Π− µ− da)su.
=⇒ dsu

dt
= Π + φg(M)sa − (λ1 + θf(M))su − µsu − (Π− da)su + µsu.

=⇒ dsu
dt

= Π(1− su)− (λ1 + θf(M)− ad)su + φg(M)sa.
Let us take the second equation sa = SA

N
=⇒ SA = saN .

=⇒ dSA
dt

= dsa
dt
N + dN

dt
sa.

=⇒ θf(M)SU − φg(M)SA − λ2SA − µSA = dsa
dt
N + (π − µN − dA)sa.

=⇒ θf(M)SU
N
− φg(M)SA

N
− λ2

SA
N
− µSA

N
= dsa

dt
+ ( π

N
− µ− dA

N
)sa, divided both sides by N .

=⇒ θf(M)su − (φg(M)sa + λ2 + µ)sa = dsa
dt

+ (Π− µ− da)sa.
=⇒ dsa

dt
= θf(M)su − (Π + λ2 + φg(M)− da)sa.

Again let us take the third equation
l = L

N
=⇒ L = lN.

=⇒ dL
dt

= dl
dt
N + dN

dt
l.

=⇒ λ1SU + λ2SA − kσL− (k(1− σ) + µ)L = dl
dt
N + (π − µN − dA)l.

=⇒ λ1SU + λ2SA − (k + µ)L = dl
dt
N + (π − µN − dA)l.

=⇒ λ1
SU
N

+ λ2
SA
N
− (k + µ) L

N
= dl

dt
+ ( π

N
− µ− dA

N
)l, divided both sides by N .

=⇒ λ1su + λ2sa − (k + µ)l = dl
dt

+ (Π− µ− da)l.
=⇒ dl

dt
= λ1su + λ2sa − (k + µ)l − (Π− µ− da)l.

=⇒ dl
dt

= λ1su + λ2sa − (Π + k − da)l.
Similarly, let us take the rest three equations, we have i = I

N
, h = T

N
, a = A

N
=⇒ I = iN, T =

hN,A = aN.

Applying the same procedure we obtain the following three equations.
di
dt

= kσl + εh− (a1 + γ + Π− ad)i
dh
dt

= γi+ ρa− (a2 + ε+ Π− ad)h
da
dt

= k(1− σ)l + a1i+ a2h− (d+ ρ+ Π− ad)a.

Thus, incorporating u1, u2, u3 with state variables sa, su, l, i, h, and a , we obtain the following
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controlled model of HIV/AIDS.

dsu
dt

= Π(1− su)− (λ1(1− u1) + (θ + u1)f(M)− ad)su + φg(M)sa,

dsa
dt

= (θ + u1)f(M)su − (Π + φg(M) + λ2 − ad)sa,

dl
dt

= λ1(1− u1)su + λ2sa − (k + u2 + Π− ad)l,

di
dt

= (kσ + u2)l + εh− (a1(1− u3) + γ + u3 + Π− ad)i,

dh
dt

= (γ + u3)i+ (ρ+ u3)a− (a2 + ε+ Π− ad)h,

da
dt

= k(1− u2)(1− σ)l + a1(1− u3)i+ a2h− (d+ ρ+ u3 + Π− ad)a.

(3.29)

Here, we added a variable preventive effort u1 on θ to increase the aware susceptible individuals
in the community, whereas we multiplied the preventive failure (1 − u1) by force of infection λ1

move to undiagnosed infected class L. Moreover, we added the screening effort u2 to decrease
undiagnosed infected individuals and treatment control to decrease individuals in I and A classes.
Thus, increasing the constant screening rate by time-based screening effort u2 and ρ and γ by time-
based treatment control u3, the disease burden can be minimized.
To study the optimal level of the controls, the control set U is Lebesgue measurable and it is defined
as : U = {u1(t), u2(t), u3(t) : 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, 0 ≤ u3(t) ≤ 1, 0 ≤ t ≤ T}. Here
u1 = 0 is no response and u1 = 1 is the full response of unaware susceptible become aware and
the justification is the same for the remaining interventions.
Let the objective function be:

J(t) = min
u1,u2,u3

∫ tf

0

[b1l(t) + b2i(t) + b3a(t) +
1

2
(w1u

2
1(t) + w2u

2
2(t) + w3u

2
3(t))]dt. (3.30)

where bi’s are coefficients of state variables and coefficients wi are the measure of the relative costs
of the interventions associated to the controls ui [SM14]. Our aim is to obtain a control ui, where
i = 1, 2, 3 that minimize the number of individuals with unaware susceptible, undiagnosed HIV
infected, diagnosed HIV infectious with and without AIDS symptoms alongside with the associated
costs. By its nature, costs are not linear, so we choose the cost expression, 1

2
wiu

2
i where i = 1, 2, 3

is quadratic [GS09, JLLW06].
Existence and characterization of optimal control solution

Theorem 12 (Existence of optimal solution). There exists an optimal control u∗1(t), u∗2(t), u∗3(t)

and corresponding solutions (s∗u, s∗a, l
∗, i∗, h∗, a∗ ) to the state initial value problem (3.29) and

(3.30) that minimizes J(u1, u2, u3) over U .

Proof.
The following conditions are verified thanks to Fleming and Rishel’s theorem.
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1. The set of all solutions to system (3.29) and the corresponding control functions in U is
non-empty.

2. The state system can be written as a linear function of the control variables with coefficients
dependent on time and the state variables.

3. The integrand L in (3.30) of the objective functional given by L(x, u, t) = b1l + b2i+ b3a+
1
2
(w1u

2
1 + w2u

2
2 + w3u

2
3) is convex on U and it also satisfies L(x, u, t) ≥ δ1 | (u1, u2, u3) |β

−δ2, where δ1 > 0 and β > 1 .

To establish condition 1, we refer to [CL55,GCF+08]. In fact, if the state equations are continuous
and its solutions are bounded and Lipschitz in the state variables, then there is a unique solution
corresponding to every admissible control U .
Again, the total population also bounded below by a positive non-zero number N0 and above by π

µ

and also each of the state variables which is a subset of the total population are bounded. It follows
that the state system is continuous and bounded. It is equivalently to show the boundedness of the
partial derivatives with respect to the state variables in the state system [Cod12].
This completes the proof that 1 holds.
Condition 2 is verified by observing the linear dependence of the state equations on controls
u1, u2, u3.
Lastly, to verify condition 3, by definition from [BP12, Ped06], any constant, linear and quadratic
functions are convex. Thus, L(x, u, t) is convex on U .
Now, to prove boundness on the function L, we have the following.
w3u

2
3 ≤ w3, since u3 ∈ [0, 1].

⇒ 1
2w3u

2
3 ≤ w3

2 ⇒
1
2w3u

2
3 − w3

2 ≤ 0.
Then L(x, u, t) = b1l + b2i + b3a + 1

2 [w1u
2
1 + w2u

2
2 + w3u

2
3] ≥ 1

2w1u
2
1 + 1

2w2u
2
2 +

1
2w3u

2
3 − w3

2 ,
⇒ L(x, u, t) ≥ min(w1

2 ,
w2

2 ,
w3

2 )(u2
1 + u2

2 + u2
3)− w3

2 ,
⇒ L(x, u, t) ≥ min(w1

2 ,
w2

2 ,
w3

2 ) || (u1, u2, u3) ||2 −w3

2 .
Therefore, the function L(x, u, t) ≥ δ1 | (u1, u2, u3) |β −δ2, where δ1 = min(w1

2 ,
w2

2 ,
w3

2 ),
δ2 = w3

2 and β = 2.
By using Pontryagin’s maximum principle (PMP) [PM86], we got the necessary conditions which
is satisfied by optimal pair. Thus, by this principle we obtained a Hamiltonian (H) defined as:
H(su, sa, l, i, h, a, u, t) = L(x, u, t) + λ1

dsu
dt + λ2

dsa
dt + λ3

dl
dt + λ4

di
dt + λ5

dh
dt + λ6

da
dt ,

where λi, i = 1, 2, 3, 4, 5, 6 are the adjoint variables to be determined by [PM86] and [FR82] for
existence of optimal control pairs.

Theorem 13 For an optimal control set u1, u2, u3 that minimizes J over U , there is an adjoint
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variable λi, i = 1, 2, 3, 4, 5, 6 such that,

dλ1
dt = λ1[Π + β1(l + η1i+ η2a)(1− u1) + (θ + u1)f(M)− ad]− λ2(θ + u1)f(M)−

λ3β1(1− u1)(l + η1i+ η2a),

dλ2
dt = −λ1φg(M) + λ2[β2(l + η1i+ η2a) + Π + φg(M)− ad]− λ3β2(l + η1i+ η2a),

dλ3
dt = −b1 + λ1β1(1− u1)su + λ2β2sa − λ3[β1(1− u1)su + β2sa − k − u2 −Π + ad]−

λ4(kσ + u2)− λ6k(1− u2)(1− σ),

dλ4
dt = −b2 + [(β1η1(1− u1) + p(θ+u1)

(1+q(i+a))2
)su + pφsa

(1+q(i+a))2
]λ1 − λ2[ p(θ+u1)

(1+q(i+a))2
su + ( pφ

(1+q(i+a))2
− β2η1)sa]

−λ3[(1− u1)β1η1su + β2η1sa] + λ4[a1(1− u3) + γ + u3 + Π− ad]− (γ + u3)λ5 − λ6a1(1− u3),

dλ5
dt = −ελ4 + λ5[a2 + ε+ Π− ad]− λ6a2,

dλ6
dt = −b3 + β1η2(1− u1)su(λ1 − λ3) + β2η2sa(λ2 − λ3) + (λ1 − λ2) (psu(θ+u1)+pφsa)

(1+q(i+a))2

−d(λ1su + λ2sa + λ3l + λ4i+ λ5h− λ6 + 2aλ6) + (ρ+ u3)(λ6 − λ5) + Πλ6,

(3.31)

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, ..., 6. Furthermore, we obtain the control

set (u∗1(t), u∗2(t), u∗3(t)) characterized by:

u∗1(t) = max{0,min(1, u∗1)}, u∗2(t) = max{0,min(1, u∗2)}, u∗3(t) = max{0,min(1, u∗3)},

where u∗1 = [f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)
w1

], u∗2 = l∗[λ3−λ4+λ6k(1−σ)]
w2

, and

u∗3 = [λ4i
∗(1−a1)−λ5(a∗+i∗)+λ6(a1i

∗+a∗)]
w3

.

Proof:
The Hamiltonian H associated to the controlled model is given by:
H = L(x, u, t) + λ1

dsu
dt + λ2

dsa
dt + λ3

dl
dt + λ4

di
dt + λ5

dh
dt + λ6

da
dt . This can be expressed

as:
H = b1l(t)+b2i(t)+b3a(t)+ 1

2
(w1u

2
1(t)+w2u

2
2(t)+w3u

2
3(t))+λ1[Π(1−su)− (λ1(1−u1)+(θ+

u1)f(M)−ad)su+φg(M)sa]+λ2[(θ+u1)f(M)su−(Π+φg(M)+λ2−ad)sa]+λ3[λ1(1−u1)su+

λ2sa− (k+u2 +Π−ad)l]+λ4[(kσ+u2)l+εh− (a1(1−u3)+γ+u3 +Π−ad)i]+λ5[(γ+u3)i+

(ρ+u3)a−(a2 +ε+Π−ad)h]+λ6[k(1−u2)(1−σ)l+a1(1−u3)i+a2h−(d+ρ+u3 +Π−ad)a].
From the second condition of the PMP, there exist adjoint variables λi, i = 1, 2, ..., 6 which satisfy
the following canonical equations.

dλ1
dt = − dH

dsu
, dλ2

dt = −dH
dsa

, dλ3
dt = −dH

dl ,
dλ4
dt = −dH

di ,
dλ5
dt = −dH

dh , dλ6
dt = −dH

da .
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So, we have

dλ1
dt = λ1[Π + β1(l + η1i+ η2a)(1− u1) + (θ + u1)f(M)− ad]− λ2(θ + u1)f(M)−

λ3β1(1− u1)(l + η1i+ η2a),

dλ2
dt = −λ1φg(M) + λ2[β2(l + η1i+ η2a) + Π + φg(M)− ad]− λ3β2(l + η1i+ η2a),

dλ3
dt = −b1 + λ1β1(1− u1)su + λ2β2sa − λ3[β1(1− u1)su + β2sa − k − u2 −Π + ad]−

λ4(kσ + u2)− λ6k(1− u2)(1− σ),

dλ4
dt = −b2 + [(β1η1(1− u1) + p(θ+u1)

(1+q(i+a))2
)su + pφsa

(1+q(i+a))2
]λ1 − λ2[ p(θ+u1)

(1+q(i+a))2
su + ( pφ

(1+q(i+a))2
− β2η1)sa]

−λ3[(1− u1)β1η1su + β2η1sa] + λ4[a1(1− u3) + γ + u3 + Π− ad]− (γ + u3)λ5 − λ6a1(1− u3),

dλ5
dt = −ελ4 + λ5[a2 + ε+ Π− ad]− λ6a2,

dλ6
dt = −b3 + β1η2(1− u1)su(λ1 − λ3) + β2η2sa(λ2 − λ3) + (λ1 − λ2) (psu(θ+u1)+pφsa)

(1+q(i+a))2

−d(λ1su + λ2sa + λ3l + λ4i+ λ5h− λ6 + 2aλ6) + (ρ+ u3)(λ6 − λ5) + Πλ6,

(3.32)

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, ..., 6.

Now, from optimality conditions, dH
du1
|u1=u∗1= 0, dH

du2
|u2=u∗2= 0 dH

du3
|u3=u∗3= 0 .

So, u∗1 = [f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)
2w1

]
1
3 , u∗2 = l∗[λ3−λ4+λ6k(1−σ)]

w2
, and

u∗3 = [λ4i
∗(1−a1)−λ5(a∗+i∗)+λ6(a1i

∗+a∗)]
w3

.
Now, we can write these findings along with the characteristics of control set U , we have

u∗1 =


0, if [f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)

w1
] ≤ 0

[f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)
w1

], if 0 < [f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)
w1

] < 1

1, if [f(M)s∗u(λ1−λ2)+β1(l+η1i+η2a)(λ3−λ1)
w1

] ≥ 1

,

u∗2 =


0, if l∗[λ3−λ4+λ6k(1−σ)]

w2
≤ 0

l∗[λ3−λ4+λ6k(1−σ)]
w2

, if 0 < l∗[λ3−λ4+λ6k(1−σ)]
w2

< 1

1, if l∗[λ3−λ4+λ6k(1−σ)]
w2

≥ 1

,

u∗3 =


0, if [λ4i

∗(1−a1)−λ5(a∗+i∗)+λ6(a1i
∗+a∗)]

w3
≤ 0

[λ4i
∗(1−a1)−λ5(a∗+i∗)+λ6(a1i

∗+a∗)]
w3

, if 0 < [λ4i
∗(1−a1)−λ5(a∗+i∗)+λ6(a1i

∗+a∗)]
w3

< 1

1, if [λ4i
∗(1−a1)−λ5(a∗+i∗)+λ6(a1i

∗+a∗)]
w3

≥ 1

.
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The above expressions of u∗1, u∗2, u∗3 are equivalent to:
u∗1(t) = max{0,min(1, u∗1)}, u∗2(t) = max{0,min(1, u∗2)}, u∗3(t) = max{0,min(1, u∗3)}.

3.6 Numerical results and discussion

We have discussed so far for equilibrium points and their stability conditions of a given HIV/AIDS
transmission dynamical system and also find the optimal control variables which basically mini-
mize the total cost that has been considered. Here, to validate our analytical findings, we shall make
the numerical simulations. We can also find the result of cost function for each strategy.
So, we can solve the control system (3.29) along with (3.30) numerically using the parameter val-
ues provided in table (3.3) and the initial size of populations by fixed final time tf = 10 years.
Thus SU0=366 000, SA0 =634 000, L(0)=144 900, I(0)=363 400, T(0)=448 500, A(0)=181 700 are
approximated data of the year 2019 in Ethiopia [aaa20, fff21, DAA+10]. To represent in propor-
tionality from the total population N=2 138 500, they are SU0=0.17, SA0 = 0.297, L(0)=0.068,
I(0)=0.16993, T(0)=0.21, A(0)=0.08.
Here, we should be underlined that the number of HIV/AIDS infected people are very high in
Ethiopia as compared to the total of diagnosed HIV infectious and AIDS symptom’s, but they are
co-infected with other infectious disease not necessary to this model.
To estimate the constant parameters in model (3.1), we formulate the model as

z
′
= f(t, z, θ), z(t0) = z0. (3.33)

Here, z is the state variable and θ is the parameter value to be determined. To measure our fit to the
real data, we define a least squares objective function

S(θ) =
∑
i=1

(z(i)− z̄(i))2, (3.34)

where z(i) the solution of (3.33) and z̄(i) is the real data. We get the optimum parameter values by
minimizing the objective functionmin

θ
S(θ)

Subject to z
′
= f(t, z, θ), z(t0) = z0.

(3.35)

The algorithm is presented below:

Step 1. Guess initial parameter values a0. Set a = a0.
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Step 2. Using MATLAB version 2013a ode45 routine, solve Eq. (3.33) using a to find the solution
z(i).

Step 3. Evaluate error using Eq. (3.34).

Step 4. Use a to minimize Eq.(3.35) using an optimization algorithm nlinfit to find the parameters â
with 95% confidence interval. Update a = â.

Step 5. Check for the convergence. If the convergence is not satisfied go to Step 2.

Step 6. On convergence, set a = â.

Using the above algorithm the estimated parameter values are given in Table (3.3).
Here N is the total population and N(0) is the initial population. We can take the values of some

Parameters Values References Parameters Values References
η1 0.8 [KO11] k 0.1 estimated
η2 1.05 [KO11] σ 0.88 estimated
β1 0.18 estimated γ 0.25 [ddd21]
β2 0.00014 estimated a1 0.07 [SS19]
π 0.06 estimated a2 0.01 [SS19]
p 0.01 [BdL12] ε 0.35 estimated
q 1 [BdL12] ρ 0.25 estimated
µ 0.07 [zzz22] φ 0.3 estimated
θ 2.5 estimated d 0.016 [ddd21]

Table 3.3: Symbols and values of parameters.

parameters from [ST17] and the reference cited therein. We have taken some of the following data
from [GS09, KO15] and we have assumed some of them just for numerical purpose as below. Un-
fortunately, we don’t have good data on coefficients of costs associated with the control variables
and infected persons.

Coefficient for cost of infected individuals b1 = 1.2 b2 = 1.64 b3 = 1.8

Coefficient for cost of production and
administering the control efforts w1 = 10 w2 = 10 w3 = 20

We can assume that the weight factor w3 associated with control u3 is higher than w1 and w2

because of the following reasons:

1. The cost associated with u1 will include the cost of education on different media and healthy
centres.

2. The cost associated with u2 will include the cost of screening infected individuals.
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3. The cost associated with u3 will include the cost of drugs, medical tests and hospitalization.

We used MATLAB software to show the graphical scenarios of state system with or without opti-
mal control and adjoint system for various cases. The optimal control profiles for each strategy and
state system are plotted together as shown in all graphs. It can be noted that the preventive effort
can work with in a specified period of time to alert unaware susceptible individuals; the screening
effort can work within a specified period of time to decrease undiagnosed infectious individuals;
and the treatment effort can work within a specified period of time to decrease diagnosed infectious
individuals with and without AIDS symptoms. Here, we have used three intervention strategies to
analysis our optimal control model, but Sangeeta Saha and G.P. Samanta have proposed a mathe-
matical model for the transmission of HIV/AIDS including treatment and Pre-exposure prophylaxis
(PrEP) [SS19]. They showed that both interventions are effective to control the disease and reduce
economic burden also. Thus, we used the three intervention approaches with combination of two or
three controls at a time to eliminate or minimize the burden of the disease in our country Ethiopia,
as only single intervention is not effective [KO11, SS19, TMM17]. Thus applying those coupling
two or three control strategies in the state system at a time we interpreted the graphical solutions of
sub-class of populations in the next section. Such ideas and analysis are also confirmed by current
findings of other infectious diseases like Hepatitis C virus and pneumonia [TMM17, ASD+20].

3.6.1 Control with prevention and treatment

We used optimal control of prevention coupled with treatment as an alternative intervention strategy
(i.e.,u1 6= 0, u3 6= 0, and u2 = 0). The graphs (A-D) of figure (3.2) illustrate the graphical
impact of this strategy on HIV/AIDS dynamics. Thus, this combination strategy helps to bring
down undiagnosed HIV infections and overthrow unaware susceptible. It also helps to decrease
diagnosed HIV infectious with and without AIDS symptoms dramatically in the specified period
of time in comparison with no control. Figure (3.6)(A) shows the corresponding control profile of
the current strategy. It shows that, the joint application of u1 and u3 is useful and can be used to
minimize the disease from the community. Both controls are dropped to the lower bound at the final
time. The cost function corresponding to the current strategy is as shown in the figure (3.6) (B).
Here, the overall total cost or cost burden reduced dramatically due to smaller number of unaware
susceptible and HIV/AIDS infected individuals which lead to increase productivity.

3.6.2 Control with prevention and screening

We used optimal control of prevention coupled with screening as an alternative intervention strat-
egy (i.e.,u1 6= 0, u2 6= 0, and u3 = 0 ). The graphs (A-D) of figure (3.3) clarify the graphical



CHAPTER 3. MODELLING OF HIV/AIDS DISEASE 59

impact of this strategy on HIV/AIDS dynamics. This coupled strategy helps to bring down undiag-
nosed HIV infections and overthrow unaware susceptible. It also helps to decrease diagnosed HIV
infectious with and with-out AIDS symptoms dramatically. However, there are more individuals
in AIDS class as compared from the first strategy (due to lack of treatment). The corresponding
control profile has been given in Fig (3.7) (A). It shows that the joint application of u1 and u2 is
useful and can be used to minimize the disease from the community. The control u1 grows up to
0.0146 and then slows down to 0 at the final time, whereas the control u2 decreases dramatically
up to 7 years and then sit on the lower bound 0 up to 3 years. The cost function corresponding
to the current strategy is as shown in the figure (3.7) (B). Here, the cost burden rises to 0.0146
for the first consecutive months. However, the implementation of this control strategy results to
smaller number of unaware susceptible and HIV/AIDS infected individuals which lead to increase
productive people. Owing to this, the economic burden decreases dramatically for the remaining
years.

3.6.3 Control with screening and treatment

In this alternative approach, we set the preventive control equals to zero i.e.,u1 = 0 and consider
the screening coupled with the treatment control to demonstrate the dynamics of the HIV/AIDS
infection. Fig. (3.4)(A-D) shows the effect of this mechanism graphically, whereas the sub-plot
(3.8)(A) shows that the corresponding control profile of this case. In comparison with the first
strategy, screening effort helps to slow down new infectious, and then unaware susceptible de-
creases (i.e., individuals are not vulnerable to the disease). The treatment effort also decreases
diagnosed infectious people dramatically as shown in the figure. The cost function correspond-
ing to the current strategy is as shown in the figure (3.8) (B). Here both control policies are used,
the number of unaware susceptible and HIV/AIDS infected individuals will be minimized lead to
increase productive labors. Owing to this, the cost burden decreases dramatically.

3.6.4 Control with prevention, screening, and treatment

In the preceding three cases, we discussed the effect of different sets of controls and provided the
dynamics of each subclasses of population graphically. Here, in this case, we consider all the three
interventions at a time, that is, u1 6= 0, u2 6= 0 and u3 6= 0. Fig (3.5)(A-D) shows the graphical
solutions of this strategy, whereas the corresponding control outline is as shown in the sub-plot
(3.9)(A). As we observed from the analysis, the unaware susceptible and undiagnosed infectious
throw down for the entire period of time. The diagnosed infectious individuals with and without
AIDS symptoms are also decreased dramatically. The control function u1 rises to 0.0140 for the
first 3 years and then decreases slowly to lower bound 0 at the final time. The control u2 dropped
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to 0 gradually up to 7.2 years, but it sit on the lower bound 0 for the remaining years. The third
control u3 is maximum at the beginning compare from others. This strategy is dropped radically
to the lower bound 0 at the final time. The cost function corresponding to the current strategy is as
shown in the figure (3.9) (B). Here all control policies are used, the number of unaware susceptible
and HIV/AIDS infected individuals will be minimized lead to increase productive labors. Owing
to this, the cost burden decreases dramatically.

Figure 3.2: Simulations of optimal control with prevention and treatment interventions.

3.7 Cost-effectiveness analysis

Here, we discussed the rank of more than one intervention strategies at a time in-terms of their cost.

We can achieve this by (Baba and Makinde, 2014); they had stated that
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Figure 3.3: Simulations of optimal control with prevention and screening interventions.

Incremental Cost-Effectiveness Ratio (ICER)= Difference in costs between strategies
Difference in health effects between strategies .

To implement the intervention strategies mentioned above, we get the total number of infectious

averted and total cost in (3.4), where the total number of infectious averted is the difference be-

tween the total infectious persons without and with control.

Strategies Description Total infectious averted Total cost (USD)
A Prevention and screening 1 904 762 1 080 584.05
B Screening and treatment 1 908 611 1 105 818.35
C Prevention and treatment 1 917 593 1 109 667.65
D Prevention, screening and treatment 1 920 801 1 109 239.95

Table 3.4: Number of infectious averted and total cost of each strategy.

We compare the cost effectiveness of strategy A and B by computing the ICER:

ICER(A) = 1 080 584.05
1 904 762 = 0.5673 and ICER(B) = 1 105 818.35-1 080 584.05

1 908 611-1 904 762 =
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Figure 3.4: Simulations of optimal control with screening and treatment interventions.

6.556.

The comparison showed that ICER(A) < ICER(B), which implies that strategy B was more

costly and less effective than strategy A. Thus, we should exclude strategy B from alternative ap-

proaches, since it is strongly dominated and does not consume limited resource.

Next, we compare the cost effectiveness of strategy A and C.

We already calculated ICER(A) = 0.5673 and ICER(C) = 1 109 667.65-1 080 584.05
1 917 593-1 904 762 =

2.2667.

The comparison showed that ICER(A) < ICER(C), which implies that strategy C was more

costly and less effective than strategy A. Thus, we should exclude strategy C from alternative ap-

proaches.

Finally, we compared the cost effectiveness of strategy A and D.
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Figure 3.5: Simulations of optimal control with prevention, screening & treatment interventions.

Then
ICER(D) = 1 109 239.95-1 080 584.05

1 920 801-1 904 762 = 1.7866 and we already calculated ICER(A) =

0.5673.
Here, the strategy A was less costly and more effective than strategy D.
Therefore, the strategy A is the cheapest as compared with other alternatives.
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Figure 3.6: Control profiles and cost function for strategy (3.6.1).
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Figure 3.7: Control profiles and cost function for strategy (3.6.2).
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Figure 3.8: Control profiles and cost function for strategy (3.6.3).



CHAPTER 3. MODELLING OF HIV/AIDS DISEASE 67

Figure 3.9: Control profiles and cost function for strategy (3.6.4).



Chapter 4

Modelling of tuberculosis disease

4.1 Introduction

Tuberculosis (TB) is one of the top deadly diseases in the world. It affects many parts of the world,
but the disease burden is high in Sub-Saharan Africa [fff21]. Ethiopia is one of the regions which
is severely hit by the disease [fff21]. So this epidemic in our country needs critical intervention
approaches within a specific period of time through minimal cost possible. TB progression is a slow
dynamic and so it needs a long duration of investigation [BT10,FKG+14]. Here, we developed and
analyzed a TB mathematical model with optimal control in Ethiopia, which can guide some of the
targeted interventions.
Mathematical model can play a vital role on TB disease predict and control. Several assumptions
and parameters are key components to develop a model; whereas a model can be redeveloped using
controlling functions. The controlling functions that have a great impact on disease elimination can
be investigated through the concept of optimal control theory.

4.2 Mathematical model of tuberculosis

Model formulation

We incorporated the following assumptions to develop a TB model.

• The recruitment rate is a variable by birth only and no permanent immunity to TB.

• Individual with latent TB are not infectious and cannot transmit TB infection.

• Individuals infected with TB cannot fully recover.

• On recovery there is temporal immunity.

68
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• Only new births individuals not vaccinated against the infection enter in to susceptible class.

• There is no highly risky latently infected individual recruited from infectious due to lack of
treatment.

• At birth all individuals are equally susceptible i.e., there is no vertical transmission (all new
births are susceptible).

• Only nuclei droplet of air can spread TB infection between infectious and susceptible people.

• Active TB infected individuals who do not adhere to treatment move to drug resistance TB
and individuals who have resistance TB are died due to treatment failure.

• The low risk latent compartment comprises recovered individuals by treatment or naturally.

• A low risk latent individuals obtain immunity and there is no inherited immunity.

• Socio-demographic information do not affect the chance of individual been infected.

We developed the new TB model from [WCJ11] by considering the following two cohorts of the
population.

1. There are people infected by drug resistance TB, where TB organisms resistant to the first line
antibiotics (Anti-TB drugs) used in its treatment are widespread and occur in many countries
including Ethiopia. These individuals can be grouped as (DR-TB).

2. There are also latently infected individuals infected by drug resistance TB patients.

Therefore, the total population N(t) at time t, is subdivided into seven subgroups such as Suscep-
tible (S) who are health individuals not yet exposed TB disease; Exposed (high-risk latent indi-
viduals) (E1) infected by drug sensitive TB; Exposed (high-risk latent individuals) (E2) infected
by drug resistant TB; Low-risk latent individuals (L1) infected by active TB(drug sensitive TB);
Low-risk latent individuals(L2) infected by drug resistant TB; Actively Infected peoples (I) who
have active TB and are infectious; Drug resistant TB individuals (ID) who are resistance to the first
line of treatment. Here, high risk and low risk latently infected people are not infectious and they
have not disease symptoms.
Recovered people (naturally or by treatment) are moved from infectious classes to low-risk latent
classes, because treatment cannot fully remove tubercle bacilli. Besides, the populations from class
E1 and E2 who do not progress to infectious classes are moved to classes L1 and L2 respectively.
Thus, N(t) = S(t) + E1(t) + E2(t) + L1(t) + L2(t) + I(t) + ID(t).
The recruitment populations are entering to the susceptible class at a rate bN , where b is birth rate
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and N is total population. Individuals under susceptible subgroup make sufficient contact with
individuals who have active TB and drug resistant TB by a variable rate (force of infection) β1I

N
and

β2ID
N

respectively. The parameters βi{i = 1, 2} are the number of new infections by active TB and
drug resistance TB per unit time respectively.
The following Table [4.1] shows that different rates with their descriptions.

Parameters Description
π Recruitment rate
µ Natural death rate
θ The per capita progress rate from the high risk latent class E1 to infectious class I
φ The per capita progress rate from the class E2 to infectious class ID
ε Resistance rate to treatment
δ Per capita progress rate of individuals from classE1 to class L1 who do not progress

to class I
σ Per capita progress rate of individuals from classE2 to class L2 who do not progress

to class ID
ρ Successful treatment rate of I
γ Successful treatment rate of ID after resist to first line treatment
a1 The relapse rate due to tubercle bacilli reactivation of L1

a2 The relapse rate due to tubercle bacilli reactivation of L2

d1 and d2 Disease related death rate of I and ID respectively.

Table 4.1: Parameters description.
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The transition diagram of the model is shown below.
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Figure 4.1: TB transmission flow diagram .

The TB transmission flow diagram can be modelled by the following system of non-linear ordinary
differential equation (ODE).

dS(t)
dt

= π − ( β1
N(t)

I + β2
N(t)

ID + µ)S,

dE1(t)
dt

= β1S
N(t)

I + a1L1 − (θ + δ + µ)E1,

dE2(t)
dt

= β2S
N(t)

ID + a2L2 − (φ+ σ + µ)E2,

dI(t)
dt

= θE1 − (ε+ ρ+ µ+ d1)I,

dID(t)
dt

= φE2 + εI − (γ + µ+ d2)ID,

dL1(t)
dt

= ρI + δE1 − (a1 + µ)L1,

dL2(t)
dt

= γID + σE2 − (a2 + µ)L2,

(4.1)
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with inital conditions

S(0) > 0, E1(0) > 0, E2(0) > 0, I(0) > 0, ID(0) > 0, L1(0) > 0, and L2(0) > 0. (4.2)

4.3 Model analysis

4.3.1 Positivity of the solutions

Here, we discussed the condition in which the tuberculosis (TB) model (4.1) has non-negative
solutions.

Theorem 14 let Ω = {(S,E1, E2, I, ID, L1, L2) ∈ R7
+ : S(0) > 0, E1(0) ≥ 0, E2(0) ≥ 0, I(0) ≥

0, ID(0) ≥ 0, L1(0) ≥ 0, L2(0) ≥ 0} then the solutions (S(t), E1(t), E2(t), I(t), ID(t), L1(t), L2(t))

of (4.1) are non-negative for ∀t ≥ 0.

Proof:
Consider the system (4.1) and let us take the first equation

dS(t)
dt

= π − ( β1
N(t)

I + β2
N(t)

ID + µ)S.

=⇒ dS(t)
dt
≥ −(β1I + β2ID + µ)S.

=⇒ dS
S
≥ −(β1I + β2ID + µ)dt.

=⇒ S(t) ≥ S(0)exp−µt−
∫

(β1I(t)+β2ID(t))dt > 0 ( since S(0) > 0).
Let us take the second equation

dE1(t)
dt

= β1S
N(t)

I + a1L1 − (θ + δ + µ)E1.

=⇒ dE1(t)
dt
≥ −(θ + δ + µ)E1.

=⇒ dE1

E1
≥ −(θ + δ + µ)dt.

=⇒ E1(t) ≥ E1(0)exp−(θ+δ+µ)t ≥ 0.
Again let us take the third equation

dE2(t)
dt
≥ −(φ+ σ + µ)E2.

=⇒ E2(t) ≥ E2(0)e−(φ+σ+µ)t ≥ 0,∀t ≥ 0.

The positivity solution of the rest four equations can be shown in the following way.
First I(t) > 0,∀t ∈ [0, ϑ), where 0 < ϑ ≤ +∞. If it does not hold, then ∃ t1 ∈ [0, ϑ) such that
I(t1) = 0, dI

dt
(t1) ≤ 0 and I(t) > 0,∀t ∈ [0, t1). So there must have ID(t) > 0,∀t ∈ [0, t1). If it is

not true, ∃ t2 ∈ (0, t1) such that ID(t2) = 0, dID
dt

(t2) ≤ 0 and ID(t) > 0,∀t ∈ (0, t2). Again there
must have L1(t) > 0,∀t ∈ [0, t2). If it is not true, ∃ t3 ∈ (0, t2) such that L1(t3) = 0, dL1

dt
(t3) ≤ 0

and L1(t) > 0,∀t ∈ (0, t3).
Our claim is L2(t) > 0,∀t ∈ [0, t3). If it is not true, then ∃ t4 ∈ (0, t3) such that L2(t4) =

0, dL2

dt
(t4) ≤ 0 and L2(t) > 0,∀t ∈ (0, t4).

From seventh equation of (4.1):
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dL2

dt
(t4) = γID(t4) +σE2(t4)− (a2 +µ)L2(t4) = γID(t4) +σE2(t4) > 0, which is a contradiction

to dL2

dt
(t4) ≤ 0. Thus, L2(t) > 0,∀t ∈ [0, t3).

So, sixth equation of (4.1):
dL1

dt
(t3) = ρI(t3) + δE1(t3)− (a1 + µ)L1(t3) = ρI(t3) + δE1(t3) > 0, which is a contradiction to

dL1

dt
(t3) ≤ 0. Thus, L1(t) > 0,∀t ∈ [0, t2).

Again fifth equation of (4.1):
dID
dt

(t2) = φE2(t2) + εI(t2)− (γ+µ+d2)ID(t2) = φE2(t2) + εI(t2) > 0, which is a contradiction
to dID

dt
(t2) ≤ 0. Thus, ID(t) > 0,∀t ∈ [0, t1).

Similarly we have, L2(t) > 0,∀t ∈ [0, t2).

Now, we claim I(t) > 0,∀t ∈ [0, ϑ). If it is not true, then ∃ t1 ∈ (0, ϑ) such that I(t1) = 0, dI
dt

(t1) ≤
0 and I(t) > 0,∀t ∈ [0, t1).
From fourth equation of (4.1):
dI
dt

(t1) = θE1(t1)− (ε + ρ + µ + d1)I(t1) = θE1(t1) > 0, which is a contradiction to dI
dt

(t1) ≤ 0.

Thus, I(t) > 0,∀t ∈ [0, ϑ).
Similarly we have, ID > 0, L1(t) > 0,∀t ∈ [0, ϑ).

This also leads to L2 > 0,∀t ∈ [0, ϑ).

This completes the proof.

4.3.2 Invariant region

In this part, we showed the solutions of all state systems are uniformly bounded in the region, as
given by the following theorem.

Theorem 15 The model system ( 4.1 ) is biological significance on the region given by Ω ∈ R7
+

such that Ω = {(S,E1, E2, I, ID, L1, L2) ∈ R7
+ : N ≤ π

µ
}.

Proof:
The rate of change of total population dN

dt
can be obtained by adding all the equations in (4.1).

Hence

dN

dt
= π − µN(t)− d1I − d2ID. (4.3)

The equation (4.3) obtained by adding (4.1) simultaneously. Hence, equation (4.3) satisfies the
following relation.

dN
dt
≤ π − µN(t),

N(t) ≤ π
µ

+ e−µt(N(0)− π
µ
).
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Here, if 0 < N(0) ≤ π
µ

, then we derived 0 < N(t) ≤ π
µ

, ∀ t ≥ 0. This shows that Ω is positively
invariant.

4.3.3 Disease Free Equilibrium (DFE), E0

The DFE of the model (4.1) is found by setting dS
dt

= dE1

dt
= dE2

dt
= dI

dt
= dID

dt
= dL1

dt
= dL2

dt
= 0.

If no disease in the community, then E1 = E2 = I = ID = L1 = L2 = 0. Thus, the susceptible
population is equal to total population. Then, the system (4.1) reduced to π − (µ)S∗ = 0, which
gives S∗ = π

µ
.

Therefore, the DFE (E0) is given by (S∗, 0, 0, 0, 0, 0, 0) = (π
µ
, 0, 0, 0, 0, 0, 0).

4.3.4 Control reproduction number ( Re)

In this portion, we derived the threshold value Re that measures the average secondary infectious
individuals generated by a single infected individual in a community when some interventions are
in place. To calculate the number Re, first differentiate new infected people from all other class.
The infected classes are E1, E2, I, ID, L1, L2. So, the system can be written as X = F − V and
V = V − − V +, where X = {S,E1, E2, I, ID, L1, L2}, F is the new infection terms, V − is the
term which represent the transfer of the infectious individuals out of each class, and V + is the term
which represent the transfer of the infectious individuals into each class by all other means.
Here, the matrix f associated with F and the matrix v associated with V can be written as:

f =
[

∂fi(E0)
∂xj

]
and v =

[
∂vi(E0)
∂xj

]
,

where fi is the rate of appearance of new infection terms in state i and vi is the rate of infection
transfer terms from one state i to the other. The range of i and j are running from 1,2,3...,6 corre-
sponding to E1, E2, I, ID, L1, L2.
Now,

fi =



f1

f2

f3

f4

f5

f6


=



β1SI
N

β2SID
N

0

0

0

0


and vi =



v1

v2

v3

v4

v5

v6


=



(θ + δ + µ)E1 − a1L1

(φ+ σ + µ)E2 − a2L2

(ε+ ρ+ µ+ d1)I − θE1

(γ + µ+ d2)ID − (φE2 + εI)

(a1 + µ)L1 − (ρI + ϕδE1)

(a2 + µ)L2 − (γID + ωσE2)


.
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Thus, f =



0 0 β1 0 0 0

0 0 0 β2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


and

v = =



θ + δ + µ 0 0 0 −a1 0

0 φ+ σ + µ 0 0 0 −a2

−θ 0 ε+ ρ+ µ+ d1 0 0 0

0 −φ −ε γ + µ+ d2 0 0

−ϕδ 0 −ρ 0 a1 + µ 0

0 −ωσ 0 −γ 0 a2 + µ


.

The threshold value Re is computed by simply the spectral radius of the next generation ma-
trix [VdDW02]. In other words, it is found by taking the dominant eigenvalue (spectral radius)
of fv−1.

Here, the matrix f =



0 0 β1 0 0 0

0 0 0 β2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


is already calculated and the matrix v−1 is ob-

tained after long derivation.
Hence,

v−1 =



EC
M 0 a1ρ

M 0 a1C
M 0

Ea2γεθ
MN

DF
N

a2γε[ECA−a1Cδ]
CMN

a2γ
N

a2γεa1θ
MN

a2D
N

θE
M 0 ECA−a1Cδ

CM 0 a1θ
M 0

Eθε(BDF−a2σD)
DMN

φF
N ε [ECA−a1Cδ][BDF−a2σD]

CDMN
BDF−a2σD

DN
a1εθ(BDF−a2σD)

DMN
a2φ
N

θρ+Cϕδ
M 0 ρA

M 0 AC
M 0

EγεθB
MN

φγ+σD
N

Bγε[ECA−a1Cδ]
CMN

Bγ
N

a1γεθB
MN

BD
N


,

whereA = θ + δ + µ,B = φ+ σ + µ,C = ε+ ρ+ µ+ d1, D = γ + µ+ d2,

E = a1 + µ, F = a2 + µ,M = ECA− a1(θρ+ Cδ), N = BDF − a2(φγ + σD).
(4.4)
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These representations are useful for the entire chapter.
The product of f and v−1 gives fv−1 =



β1
θE
M 0 β1(ECA−a1Cδ)

CM 0 β1a1θ
M 0

β2
Eθε(BDF−a2σD)

DMN β2
φF
N β2ε

[ECA−a1Cδ][BDF−a2σD]
CDMN β2

BDF−a2σD
DN β2ε

a1θ(BDF−a2σD)
DMN β2

a2φ
N

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

The threshold value Re is defined as:
Re = max{R1, R2}, where R1 = β1

θE
M = β1

θ(a1+µ)
(a1+µ)(ε+ρ+µ+d1)(θ+δ+µ)−a1(θρ+(ε+ρ+µ+d1)δ)

and
R2 = β2

φF
N = β2

φ(a2+µ)
(φ+σ+µ)(γ+µ+d2)(a2+µ)−a2(φγ+σ(γ+µ+d2)) .

Here R1 and R2 are the control reproductive numbers for DS-TB and DR-TB respectively.

4.3.5 Local stability of DFE

Theorem 16 The DFE point is locally asymptotically stable if Re < 1 and unstable if Re > 1.

Proof:

First the Jacobian matrix of (4.1) at the DFE E0 is:

J(πµ , 0, 0, 0, 0, 0, 0) =



−µ 0 0 −β1 −β2 0 0

0 −(θ + δ + b) 0 β1 0 a1 0

0 0 −(φ+ σ + µ) 0 β2 0 a2

0 θ 0 −(ε+ ρ+ µ+ d1) 0 0 0

0 0 φ ε −(γ + µ+ d2) 0 0

0 δ 0 ρ 0 −(a1 + µ) 0

0 0 σ 0 γ 0 −(a2 + µ)


.

=



−µ 0 0 −β1 −β2 0 0

0 −A 0 β1 0 a1 0

0 0 −B 0 β2 0 a2

0 θ 0 −C 0 0 0

0 0 φ ε −D 0 0

0 δ 0 ρ 0 −E 0

0 0 σ 0 γ 0 −F


.

Now, finding the eigenvalues of this matrix, which becomes
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 0 −β1 −β2 0 0

0 −A− λ 0 β1 0 a1 0

0 0 −B − λ 0 β2 0 a2

0 θ 0 −C − λ 0 0 0

0 0 φ ε −D − λ 0 0

0 δ 0 ρ 0 −E − λ 0

0 0 σ 0 γ 0 −F − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

⇒ −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A− λ 0 β1 0 a1 0

0 −B − λ 0 β2 0 a2

θ 0 −C − λ 0 0 0

0 φ ε −D − λ 0 0

δ 0 ρ 0 −E − λ 0

0 σ 0 γ 0 −F − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

⇒ (−µ− λ)(−a2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−A− λ 0 β1 0 a1

θ 0 −C − λ 0 0

0 φ ε −D − λ 0

δ 0 ρ 0 −E − λ
0 σ 0 γ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

(−µ− λ)(F + λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−A− λ 0 β1 0 a1

0 −B − λ 0 β2 0

θ 0 −C − λ 0 0

0 φ ε −D − λ 0

δ 0 ρ 0 −E − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

⇒ (µ+ λ)a2a1

∣∣∣∣∣∣∣∣∣∣
θ 0 −C − λ 0

0 φ ε −D − λ
δ 0 ρ 0

0 σ 0 γ

∣∣∣∣∣∣∣∣∣∣
+
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(µ+ λ)(a2)(E + λ)

∣∣∣∣∣∣∣∣∣∣
−A− λ 0 β1 0

θ 0 −C − λ 0

0 φ ε −D − λ
0 σ 0 γ

∣∣∣∣∣∣∣∣∣∣
+

(−µ− λ)(F + λ)a1

∣∣∣∣∣∣∣∣∣∣
0 −B − λ 0 β2

θ 0 −C − λ 0

0 φ ε −D − λ
δ 0 ρ 0

∣∣∣∣∣∣∣∣∣∣
+

(µ+ λ)(F + λ)(E + λ)

∣∣∣∣∣∣∣∣∣∣
−A− λ 0 β1 0

0 −B − λ 0 β2

θ 0 −C − λ 0

0 φ ε −D − λ

∣∣∣∣∣∣∣∣∣∣
= 0 .

Finally, the above expression gives:
(µ+ λ)[λ3 + (E +A+ C)λ2 + (EC + EA+AC − a1δ − θβ1)λ+M − θβ1E][λ3 + (B +D +

F )λ2 + (BD +BF +DF − a2σ − φβ2)λ+N − Φβ2F ] = 0.

This implies, (µ+λ) = 0 or [λ3+(E+A+C)λ2+(EC+EA+AC−a1δ−θβ1)λ+M−θβ1E] = 0

or [λ3 + (B +D + F )λ2 + (BD +BF +DF − a2σ − φβ2)λ+N − Φβ2F ] = 0.

Now, (µ+ λ) = 0⇒ λ = −µ < 0. Again,

[λ3 + (E + A+ C)λ2 + (EC + EA+ AC − a1δ − θβ1)λ+M − θβ1E] = 0. (4.5)

[λ3 + (B +D + F )λ2 + (BD +BF +DF − a2σ − φβ2)λ+N − Φβ2F ] = 0. (4.6)

These two equation can be written as:

[λ3 + (E + A+ C)λ2 + (EC + EA+ AC − a1δ − θβ1)λ+M(1−R1)] = 0. (4.7)

[λ3 + (B +D + F )λ2 + (BD +BF +DF − a2σ − φβ2)λ+N(1−R2)] = 0. (4.8)

These two equations can be written in the form of A0λ
3 + A1λ

2 + A2λ+ A3 = 0.
Applying the Routh–Hurwitz criterion [All08], the roots of the characteristic polynomial P (λ) =

A0λ
3 + A1λ

2 + A2λ+ A3 have negative real parts, if R1 < 1 and R2 < 1.
This implies max{R1, R2} = Re < 1.
Therefore, the DFE point is locally asymptotically stable if Re < 1 and unstable if Re > 1.
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4.3.6 Global stability of the DFE, E0

Theorem 17 If Re < 1, the DFE E0 of model (4.1) is globally asymptotically stable (GAS) in its

feasible region.

Proof:
To explore the global stability of the DFE point we applied the method executed in [CCBVdD+02].
First the model (4.1) can be re-written in the form:dX

dt
= F (X,Z),

dZ
dt

= G(X,Z), G(X, 0) = 0,
(4.9)

where the vectorsX and Z represents the non-infected and infected compartments. Now,X = (S),
Z = (E1, E2, I, ID, L1, L2), and the conditions (H1) and (H2) are:
(H1), dX

dt
= F (X, 0), X∗ is GAS, where F (X∗, 0) = 0.

(H2), dZ
dt

= QZ − G∗(X,Z), G∗(X,Z) ≥ 0 for (X,Z) ∈ R+
7 where Q is a Metzler matrix (the

non-diagonal entries of Q are non-negative).

The first condition dX
dt

= F (X, 0) =

[
π − µS

0

]
.

Here, this system is GAS around X∗ = (π
µ
, 0). This can be justified from S(t) = π

µ
+ (S(0) −

π
µ
)exp−µt, such that limt→∞ S(t) = π

µ
, which shows that the global convergence of the system in

Ω.
Moreover, from the model (4.1), the matrix Q is expressed by:

Q =



−(θ + δ + b) 0 β1 0 a1 0

0 −(φ+ σ + µ) 0 β2 0 a2

θ 0 −(ε+ ρ+ µ+ d1) 0 0 0

0 φ ε −(γ + µ+ d2) 0 0

δ 0 ρ 0 −(a1 + µ) 0

0 σ 0 γ 0 −(a2 + µ)


.

Again dZ
dt

= G(X,Z) = QZ −G∗(X,Z),

where G∗(X,Z) =



β1(1− S
N

)I

β2(1− S
N

)ID

0

0

0

0


.



CHAPTER 4. MODELLING OF TUBERCULOSIS DISEASE 80

Since 0 ≤ S ≤ N , then G∗(X,Z) ≥ 0. Thus (H1) and (H2) are satisfied.
Therefore, the model (4.1) is GAS when Re < 1.

4.3.7 Endemic Equilibrium point (EEP)

We have three endemic equilibrium points as a special case. They are EEP for DS-TB only model,
DR-TB only model, and both of the two persist in the population.
Firstly, for only DS-TB model the infected classes E2 = 0, ID = 0, L2 = 0, ε = 0. Thus, the model
(4.1) will give the following result.

dS(t)

dt
= π − (

β1

N(t)
I + µ)S = 0, (4.10)

dE1(t)

dt
=

β1S

N(t)
I + a1L1 − (θ + δ + µ)E1 = 0, (4.11)

dI(t)

dt
= θE1 − (ρ+ µ+ d1)I = 0, (4.12)

dL1(t)

dt
= ρI + δE1 − (a1 + µ)L1 = 0. (4.13)

Therefore, the solutions are S1 = π

(
β1I
N(t)

+µ)
, E1 = (ρ+µ+d1)

θ
I, I = θ(a1+µ)(π−µS1)

(θ+δ+µ)(a1+µ)(ρ+µ+d1)−a1(θρ+δ(ρ+µ+d1))
,

and L1 = [ρθ+δ(ρ+µ+d1)
θ(a1+µ)

]I .
Secondly, for only DR-TB model the infected classes E1 = 0, I = 0, L1 = 0. Thus, the model
(4.1) will give the following result.

dS(t)

dt
= π − (

β2

N(t)
ID + µ)S = 0, (4.14)

dE2(t)

dt
=

β2S

N(t)
ID + a2L2 − (φ+ σ + µ)E2 = 0, (4.15)

dID(t)

dt
= φE2 − (γ + µ+ d2)ID = 0, (4.16)

dL2(t)

dt
= γID + σE2 − (a2 + µ)L2 = 0. (4.17)

Hence, we obtain S2 = π

(
β2ID
N(t)

+µ)
, E2 = (γ+µ+d2)

φ
ID, ID = φ(a2+µ)(π−µS2)

(φ+σ+µ)(a2+µ)(γ+µ+d2)−a2(φγ+σ(γ+µ+d2))
,

and L2 = [γφ+σ(γ+µ+d2)
φ(a2+µ)

]ID.



CHAPTER 4. MODELLING OF TUBERCULOSIS DISEASE 81

Lastly, both DS-TB and DR-TB persist in the community, we calculated the EEP as follows.

dS(t)

dt
= π − (

β1

N(t)
I +

β2

N(t)
ID + µ)S = 0, (4.18)

dE1(t)

dt
=

β1S

N(t)
I + a1L1 − (θ + δ + µ)E1 = 0, (4.19)

dE2(t)

dt
=

β2S

N(t)
ID + a2L2 − (φ+ σ + µ)E2 = 0, (4.20)

dI(t)

dt
= θE1 − (ε+ ρ+ µ+ d1)I = 0, (4.21)

dID(t)

dt
= φE2 + εI − (γ + µ+ d2)ID = 0, (4.22)

dL1(t)

dt
= ρI + δE1 − (a1 + µ)L1 = 0, (4.23)

dL2(t)

dt
= γID + σE2 − (a2 + µ)L2 = 0. (4.24)

If we let λa = β1
N
I∗ and λb = β2

N
I∗D, then we obtain S∗ = π

(λa+λb+µ) , E
∗
1 = λaS

∗+a1L
∗
1

θ+δ+µ ,

E∗2 = λbS
∗+a2L

∗
2

φ+σ+µ , I∗ = θE∗
1

ε+ρ+d1+µ , I∗D = φE∗
2+εI∗

γ+d2+µ , L∗1 = ρI∗+δE∗
1

a1+µ , and L∗2 =
γI∗D+σE∗

2

a2+µ .
Therefore, the EE point of both diseases persist in the community sayE∗ = (S∗, E∗1 , E

∗
2 , I
∗, I∗D, L

∗
1, L

∗
2).

Lemma 4 A unique endemic equilibrium point E∗ exist if Re > 1 .

Proof.
If the disease is endemic in the community, then ∃ t∗ > 0 such that dE1(t∗)

dt
> 0, dE2(t∗)

dt
> 0, dI(t

∗)
dt

>

0, dID(t∗)
dt

> 0, dL1(t∗)
dt

> 0 and dL2(t∗)
dt

> 0. Thus, keeping the state variables E1, E2, I, ID, L1, and
L2 at t∗, we have:

dE1

dt
=
β1S

N
I + a1L1 − (θ + δ + µ)E1 > 0, (4.25)

dE2

dt
=
β2S

N
ID + a2L2 − (φ+ σ + µ)E2 > 0, (4.26)

dI

dt
= θE1 − (ε+ ρ+ µ+ d1)I > 0, (4.27)

dID
dt

= φE2 + εI − (γ + µ+ d2)ID > 0, (4.28)

dL1

dt
= ρI + δE1 − (a1 + µ)L1 > 0, (4.29)

dL2

dt
= γID + σE2 − (a2 + µ)L2 > 0. (4.30)
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Firstly, from (4.25), (4.27) and (4.29) we have
(θ + δ + µ)E1 < β1

S
N(t)

I + a1L1,

(ε+ ρ+ µ+ d1)I < θE1,

(a1 + µ)L1 < ρI + δE1.

(4.31)

From the fact that S
N(t)
≤ 1. Thus (4.31) gives:

AE1 < β1I + a1L1,

CI < θE1,

EL1 < ρI + δE1.

(4.32)

Hereafter, solving (4.32) simultaneously by multiplying the first equation with θ and the second
equation with A, then add vertically gives the following inequality.

0 < (β1θ − AC)I + a1θL1. (4.33)

Again, multiplying the first equation with δ and the third equation with A, then add vertically gives
the following inequality.

0 < (β1δ + ρA)I + (a1δ − AE)L1 ⇒ L1 <
(β1δ + ρA)I

AE − a1δ
. (4.34)

Substituting (4.34) at (4.33) with applying rule of inequality and solve the expression gives:
A(CEA− a1(θρ+ Cδ))I < Aβ1θEI .
Now, dividing both sides with A(CEA− a1(θρ+ Cδ))I = AMI gives:

1 <
β1θE

M
= R1. (4.35)

Secondly, from (4.26), (4.28) and (4.30) we have:
(φ+ σ + µ)E2 < β2

S
N(t)

ID + a2L2,

(γ + µ+ d2)ID < φE2 + εI,

(a2 + µ)L2 < γID + σE2.

(4.36)
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This implies, 
BE2 < β2ID + a2L2,

DID < φE2 + εI,

FL2 < γID + σE2.

(4.37)

Hereafter, solving (4.37) simultaneously likes bellow.
First multiplying the first inequality with φ and the second inequality with B, then add vertically
gives the following inequality.

0 < (β2φ−BD)ID + a2φL2 +BεI. (4.38)

Again, multiplying the first equation with σ and the third equation with B, then add vertically gives
the following inequality.

0 < (β2σ + γB)ID + (a2σ −BF )L2 ⇒ L2 <
(β2σ + γB)ID
BF − a2σ

. (4.39)

Substituting (4.39) at (4.38) with applying rule of inequality and solve the expression gives:
B(BDF − a2(φγ +Dσ))ID < β2φFIDB +Bε(BF − a2σ)I .
⇒ 1 < β2φF

N
+ ε(BF−a2σ)I

N
.

⇒ 0 < −(1−R2) +
ε(BF−a2σ) I

ID

N
.

We have two possibilities:

1. Both −(1 − R2) > 0 and
ε(BF−a2σ) I

ID

N
> 0. Here

ε(BF−a2σ) I
ID

N
is always positive, since

BF − a2σ > 0 by (4.39).
Now −(1−R2) > 0⇒ R2 > 1.

2.
ε(BF−a2σ) I

ID

N
> 1−R2 ⇒ R2 > 1−

ε(BF−a2σ) I
ID

N
.

We know that Re = max{R1, R2}.
Therefore, a unique endemic equilibrium exist if R1 > 1 or R2 > 1, which implies Re > 1.

4.3.8 Global stability of the endemic equlibrum

Theorem 18 If Re > 1, the endemic equilibrium (E∗) of (4.1) is globally asymptotically stable on

R7
+0\$, with solutions in $ limiting to E0, where $ = (S, 0, 0, 0, 0, 0, 0).

Proof:
To prove this theorem, we used the method of Lyapunov functions.
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Consider the Lyapunov function
G = (S−S∗−S∗ ln S

S∗
)+(E1−E∗1−E∗1 ln E1

E∗1
)+(E2−E∗2−E∗2 ln E2

E∗2
)+N1(I−I∗−I∗ ln I

I∗
)+

N2(ID − I∗D − I∗D ln ID
I∗D

) + (L1 − L∗1 − L∗1 ln L1

L∗1
) + (L2 − L∗2 − L∗2 ln L2

L∗2
). This type of Lyapunov

function has been mentioned in [MLL03, Hou18].
Now, the derivative of G with respect to time as
G
′
= (S−S

∗

S
)S
′
+ (

E1−E∗1
E1

)E
′
1 + (

E2−E∗2
E2

)E
′
2 + ( I−I

∗

I
)I
′
+ (

ID−I∗D
ID

)I
′
D + (

L1−L∗1
L1

)L
′
1 + (

L2−L∗2
L2

)L
′
2

= (S−S
∗

S
)[π−( β1

N(t)
I+ β2

N(t)
ID+µ)S]+(

E1−E∗1
E1

)[ β1S
N(t)

I+a1L1−(θ+δ+µ)E1]+(
E2−E∗2
E2

)[ β2S
N(t)

ID+

a2L2− (φ+σ+µ)E2] + ( I−I
∗

I
)[θE1− (ε+ρ+µ+d1)I] + (

ID−I∗D
ID

)[φE2 + εI− (γ+µ+d2)ID] +

(
L1−L∗1
L1

)[ρI + δE1 − (a1 + µ)L1] + (
L2−L∗2
L2

)[γID + σE2 − (a2 + µ)L2]

= (1 − S∗

S
)[π − ( β1

N(t)
I + β2

N(t)
ID + µ)S] + (1 − E∗1

E1
)[ β1S
N(t)

I + a1L1 − (θ + δ + µ)E1] + (1 −
E∗2
E2

)[ β2S
N(t)

ID + a2L2− (φ+ σ+ µ)E2] + (1− I∗

I
)[θE1− (ε+ ρ+ µ+ d1)I] + (1− I∗D

ID
)[φE2 + εI −

(γ + µ+ d2)ID] + (1− L∗1
L1

)[ρI + ϕδE1 − (a1 + µ)L1] + (1− L∗2
L2

)[γID + σE2 − (a2 + µ)L2]

= [π − ( β1
N(t)

I + β2
N(t)

ID + µ)S − π S
∗

S
+ ( β1

N(t)
I + β2

N(t)
ID + µ)S∗] + [ β1S

N(t)
I + a1L1 − (θ +

δ + µ)E1 − ( β1S
N(t)

I + a1L1)
E∗1
E1

+ (θ + δ + µ)E∗1 ] + [ β2S
N(t)

ID + a2L2 − (φ+ σ + µ)E2 − ( β2S
N(t)

ID +

a2L2)
E∗2
E2

+ (φ+σ+µ)E∗2 ] + [θE1− (ε+ρ+µ+d1)I− θE1
I∗

I
+ (ε+ρ+µ+d1)I∗] + [φE2 + εI−

(γ + µ+ d2)ID − (φE2 + εI)
I∗D
ID

+ (γ + µ+ d2)I∗D] + [ρI + δE1 − (a1 + µ)L1 − (ρI + δE1)
L∗1
L1

+

(a1 + µ)L∗1] + [γID + σE2 − (a2 + µ)L2 − (γID + σE2)
L∗2
L2

+ (a2 + µ)L∗2]

⇒ G
′
= dG

dt
= [π+ ( β2

N(t)
ID + µ)S∗ + β1S

N(t)
I + a1L1 + (θ+ δ+ µ)E∗1 + β2S

N(t)
ID + a2L2 + (φ+ σ+

µ)E∗2 + θE1 + (ε + ρ + µ + d1)I∗ + φE2 + εI + (γ + µ + d2)I∗D + ρI + δE1 + +(a1 + µ)L∗1 +

γID +σE2 + +(a2 +µ)L∗2]− [( β1
N(t)

I+ β2
N(t)

ID +µ)S+π S
∗

S
+ (θ+ δ+µ)E1 + ( β1S

N(t)
I+a1L1)

E∗1
E1

+

(φ + σ + µ)E2 + ( β2S
N(t)

ID + a2L2)
E∗2
E2

+ (ε + ρ + µ + d1)I + θE1
I∗

I
+ (γ + µ + d2)ID + (φE2 +

εI)
I∗D
ID

+ (a1 + µ)L1 + (ρI + δE1)
L∗1
L1

+ (a2 + µ)L2 + (γID + σE2)
L∗2
L2

]

Thus G′ = dG
dt

= X − Y , where
X = [π+( β2

N(t)
ID+µ)S∗+ β1S

N(t)
I+a1L1 +(θ+δ+µ)E∗1 + β2S

N(t)
ID+a2L2 +(φ+σ+µ)E∗2 +θE1 +

(ε+ρ+µ+d1)I∗+φE2 +εI+(γ+µ+d2)I∗D+ρI+δE1 +(a1 +µ)L∗1 +γID+σE2 ++(a2 +µ)L∗2]

and
Y = [( β1

N(t)
I + β2

N(t)
ID + µ)S + π S

∗

S
+ (θ + δ + µ)E1 + ( β1S

N(t)
I + a1L1)

E∗1
E1

+ (φ + σ + µ)E2 +

( β2S
N(t)

ID + a2L2)
E∗2
E2

+ (ε+ ρ+µ+ d1)I + θE1
I∗

I
+ (γ+µ+ d2)ID + (φE2 + εI)

I∗D
ID

+ (a1 +µ)L1 +

(ρI + δE1)
L∗1
L1

+ (a2 + µ)L2 + (γID + σE2)
L∗2
L2

]

Here X and Y are positive, then dG
dt

= X − Y < 0, when X < Y and dG
dt

= 0, when S = S∗, E1 =

E∗1 , E2 = E∗2 , I = I∗, ID = I∗D, L1 = L∗1, and L2 = L∗2 in Ω

Thus, the largest compact invariant set in {(S∗, E∗1 , E∗2 , I∗, I∗D, L∗1, L∗2) ∈ Ω : dG
dt

= 0} is the
singleton endemic equilibrium E∗. This implies that each solution which intersects R7

+0\{E1 =

E2 = I = ID = L1 = L2 = 0} limits to E0. By LaSalles invariant principle [LaS76], it implies
that E∗ is globally asymptotically stable on R7

+0\{E1 = E2 = I = ID = L1 = L2 = 0} if X < Y .
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4.3.9 Determination of bifurcation at Re = 1

Here, we used center manifold theory to determine the probability of forward and backward bifur-
cations of (4.1) by retitling the compartments like this.
Let S = x1, E1 = x2, E2 = x3, I = x4, ID = x5, L1 = x6 and L2 = x7. Thus (4.1) can be written
in the form dx

dt
= F (x), where F (x) = (f1, f2, f3, f4, f5, f6, f7)T , x = (x1, x2, x3, x4, x5, x6, x7)T ,

and T is transpose. This expression presented likes below.

dx1
dt

= π − ( β1
N(t)

x4 + β2
N(t)

x5 + µ)x1,

dx2
dt

= β1x1
N(t)

x4 + a1x6 − (θ + δ + µ)x2,

dx3
dt

= β2x1
N(t)

x5 + a2x7 − (φ+ σ + µ)x3,

dx4
dt

= θx2 − (ε+ ρ+ µ+ d1)x4,

dx5
dt

= φx3 + εx4 − (γ + µ+ d2)x5,

dx6
dt

= ρx4 + δx2 − (a1 + µ)x6,

dx7
dt

= γx5 + σx3 − (a2 + µ)x7.

(4.40)

The Jacobian matrix of this system at DFE (E0) = (π
µ
, 0, 0, 0, 0, 0, 0) is already expressed.

J(πµ , 0, 0, 0, 0, 0, 0) =

−µ 0 0 −β1 −β2 0 0

0 −(θ + δ + b) 0 β1 0 a1 0

0 0 −(φ+ σ + µ) 0 β2 0 a2

0 θ 0 −(ε+ ρ+ µ+ d1) 0 0 0

0 0 φ ε −(γ + µ+ d2) 0 0

0 δ 0 ρ 0 −(a1 + µ) 0

0 0 σ 0 γ 0 −(a2 + µ)


.

Let β1 = β∗1 and β2 = β∗2 be two bifurcation parameter of the equation of R1 and R2 respec-
tively.
Thus, R1 = β∗1

θE
M = β∗1

θ(a1+µ)
(a1+µ)(ε+ρ+µ+d1)(θ+δ+µ)−a1(θρ+(ε+ρ+µ+d1)δ) and

R2 = β∗2
φF
N = β∗2

φ(a2+µ)
(φ+σ+µ)(γ+µ+d2)(a2+µ)−a2(φγ+σ(γ+µ+d2)) .

Hereafter, we used center manifold theory to analyse stability of the endemic equilibrium E0 near
Re = 1 or bifurcation point.
Hence 1 = β∗1

θE
M

and 1 = β∗2
φF
N

, which implies β∗1 = M
θE

and β∗2 = N
φF

.
The Jacobean matrix near β∗1 = β1 and β∗2 = β2, has a right eigenvector u = (u1, u2, u3, u4, u5, u6, u7)T
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and zero eigenvalue can be written like this.

−µ 0 0 −β1 −β2 0 0

0 −A 0 β1 0 a1 0

0 0 −B 0 β2 0 a2

0 θ 0 −C 0 0 0

0 0 φ ε −D 0 0

0 δ 0 ρ 0 −(a1 + µ) 0

0 0 σ 0 γ 0 −(a2 + µ)





u1

u2

u3

u4

u5

u6

u7


=



0

0

0

0

0

0

0


, (4.41)

where A = θ + δ + µ,B = φ+ σ + µ,C = ε+ ρ+ µ+ d1, D = γ + µ+ d2.
The system of equation becomes;

−µu1 − β1u4 − β2u4 = 0,

−(θ + δ + b)u2 + β1u4 + a1u6 = 0,

−(φ+ σ + µ)u3 + β2u5 + a2u7 = 0,

θu2 − (ε+ ρ+ µ+ d1)u4 = 0,

φu3 + εu4 − (γ + µ+ d2)u5 = 0,

δu2 + ρu4 − (a1 + µ)u6 = 0,

σu3 + γu5 − (a2 + µ)u7 = 0.

(4.42)

Solving system (4.42) we obtain
u1 = − (β1u4+β2u5)

µ
, u2 = β1u4+a1u6

θ+δ+b
, u3 = β2u5+a2u7

φ+σ+µ
, u4 = θu2

(ε+ρ+µ+d1)
,

u5 = φu3+εu4
(γ+µ+d2)

, u6 = δu2+ρu4
(a1+µ)

, and u7 = σu3+γu5
(a2+µ)

.
Again, the left eigenvector associating to the zero eigenvalue given by; v = (v1, v2, v3, v4, v5, v6, v7)T .
Then 

−µ 0 0 0 0 0 0

0 −A 0 θ 0 δ 0

0 0 −B 0 φ 0 σ

−β1 β1 0 −C ε ρ 0

−β2 0 β2 0 −D 0 γ

0 a1 0 0 0 −(a1 + µ) 0

0 0 a2 0 0 0 −(a2 + µ)





v1

v2

v3

v4

v5

v6

v7


=



0

0

0

0

0

0

0


. (4.43)

Hence, we obtain v1 = 0, v2 = θv4+δv6
(θ+δ+b)

, v3 = φv5+σv7
(φ+σ+µ)

, v4 = −β1v1+β1v2+εv5+ρv6
(ε+ρ+µ+d1)

,

v5 =
−β2 π

µN
v1+β2v3+γv7

(γ+µ+d2)
, v6 = a1v2

(a1+µ)
, and v7 = a2v3

(a2+µ)
.
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Now, we need to calculate the bifurcation constants a and b using the formula
a =

∑n
k,i,j=1 vkuiuj

∂2fk
∂xi∂xj

(E0), and b =
∑n

k,i=1 vkui
∂2fk
∂xi∂β1

(E0) in [CCS04], where f1 = dx1
dt
, f2 =

dx2
dt
, f3 = dx3

dt
, f4 = dx4

dt
, f5 = dx5

dt
, f6 = dx6

dt
, f7 = dx7

dt
(4.40).

Hence ∂2f2
∂x4∂x1

= β1,
∂2f3
∂x5∂x1

= β2.

Then a = v2u1u4β1 + v3u1u5β2 and we have two values b1 and b2, due to two bifurcation parame-
ters β∗1 and β∗2 .
Thus b1 = v2u4 and b2 = v3u5.
Hence, a = u1(v2u4β1 + v3u5β2) = − (β1u4+β2u5)

µ
(v2u4β1 + v3u5β2) < 0 and all b′is, where i = 1, 2

are positive.
Thus, this result can be addressed the following theorem.

Theorem 19 If a < 0, implies that there exists a stable positive endemic equilibrium point which

is locally asymptotically stable for R0 > 1 but close to 1.

4.4 Sensitivity analysis of the parameters

The sensitivity analysis is used to govern the model robustness to parameter values. Thus, we
followed [CCH06, BD94] to identify which parameters have high impact on R0. The sensitivity of
each parameter also analyzed using normalized forward sensitivity index ( [CHC08]).
Thus ΛR1

β1
= ∂R1

∂β1

β1
R1

= +1, ΛR2
β2

= ∂R2

∂β2

β2
R2

= +1.

ΛR1

δ = ∂R1

∂δ
δ
R1

= − δµ(ε+ρ+d1+µ)
a1θ(ε+d1+µ)+a1µ(ε+ρ+d1+µ)+µ(ε+ρ+d1+µ)(θ+δ+µ) < 0, which implies

the parameter δ has negative(-ve) sensitivity indices.
ΛR1
ρ = ∂R1

∂ρ
ρ
R1

= − ρ(a1µ+µ(θ+δ+µ))
a1θ(ε+d1+µ)+a1µ(ε+ρ+d1+µ)+µ(ε+ρ+d1+µ)(θ+δ+µ) < 0, which implies the

parameter ρ has negative(-ve) sensitivity indices.
ΛR2
σ = ∂R1

∂σ
σ
R1

= − σµ(γ+d2+µ)
a2φ(d2+µ)+a2µ(γ+d2+µ)+µ(σ+φ+µ)(γ+d2+µ) < 0, which implies the

parameter σ has negative (-ve) sensitivity indices.
ΛR2
γ = ∂R1

∂γ
γ
R1

= − γ(a2µ+µ(φ+σ+µ))
a2φ(d2+µ)+a2µ(γ+d2+µ)+µ(σ+φ+µ)(γ+d2+µ) < 0, which implies the

parameter γ has negative(-ve) sensitivity indices.
The other indices are ΛR1

θ , ΛR1
a1

, ΛR1
µ , ΛR1

ε , ΛR1
d1

, ΛR2
φ , ΛR2

a2
, ΛR2

µ , ΛR2
σ , ΛR2

γ , and ΛR2
d2

. Applying
similar technique, We found the sensitivity indices of the rest of parameters involved in (R1) and
(R2) and presented in Table (4.2) below.

4.4.1 Interpretation of sensitivity indices

Table (4.2) shows the sensitivity indices of the parameters involved in R1 and R2 for the tubercu-
losis model (4.1). We used the values of the parameters in Table (4.3) to find out the sensitivity
induces of the parameters.
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Parameters Sensitivity indices Parameters Sensitivity indices
β1 +1 β2 +1
θ +ve φ +ve
a1 +ve σ -ve
ε -ve γ -ve
ρ -ve d2 -ve
d1 -ve a2 +ve
δ -ve µ -ve

Table 4.2: Indices of sensitivity.

The result shows that when the parameters β1, β2, a1, a2, θ and φ are increased, keeping others con-
stant. They increase the values of R1 or R2.
This shows us the control reproduction number (R1 ) is most sensitive to the parameters β1, a1 and
θ, where as R2 is most sensitive to the parameters β2, a2 and φ. They raise the disease burden as
they have positive indices.
However, the parameters ε, γ, ρ, δ, σ, d1, d2, and µ have negative indices. They reduce the values
of R1 or R2 when keeping others constant. This shows us treatment rates (γ, ρ) and progression
rates (σ, δ) have an inversely proportional relationship with the control reproduction numbers. This
implies that if incrementing those parameters reduces the threshold number (R0 = max{R1, R2})
and, consequently, the TB burden would be reduced.

4.5 Model with optimal control

Here, we apply optimal control theory on the model (4.1) which helps to identify the best interven-
tion strategy to eradicate/minimize the disease in the specified time.
From our sensitivity analysis, we found that R1 and R2 are most sensitive to the contact rate β1

and β2 respectively. This shows the effectiveness of preventive measures in controlling disease
transmission. Moreover, the progression and treatment rates have negative induces implies that
incrementing them can reduce the disease burden. Therefore, based on the analysis we suggested
that the time based preventive, case finding, and case holding controlling strategies would be an
effective option. This motivates us to incorporate the following three controls defined as:

1. u1 and u2: Prevention effort for drug sensitive TB (DS-TB) and drug resistance TB (DR-TB)
disease respectively.

2. u3 and u4: Case finding control for DS-TB and DR-TB respectively.

3. u5 and u6: Case holding control for DS-TB and DR-TB respectively.
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Here, the case finding controls, u3(t) and u4(t) are refers to the effort required to screening of
high-risk exposed individuals and the treatment of latent TB, whereas the case holding controls,
u5(t) and u6(t) are refers to the efforts required to complete the treatment of infectious people.
Thus, the TB model (4.1) can be reformulated as follows.

dS(t)
dt

= π − ((1− u1(t)) β1
N(t)

I + (1− u2(t)) β2
N(t)

ID)S − µS,
dE1(t)
dt

= (1− u1(t)) β1S
N(t)

I + a1L1 − (θ + δ(1 + u3(t)) + µ)E1,

dE2(t)
dt

= (1− u2(t)) β2S
N(t)

ID + a2L2 − (φ+ σ(1 + u4(t)) + µ)E2,

dI(t)
dt

= θE1 − (ε(1− u5(t)) + ρ+ u5(t) + µ+ d1)I,

dID(t)
dt

= φE2 + ε(1− u5)I − (γ(1 + u6(t)) + µ+ d2)ID,

dL1(t)
dt

= (ρ+ u5(t))I + δ(1 + u3(t))E1 − (a1 + µ)L1,

dL2(t)
dt

= γ(1 + u6(t))ID + σ(1 + u4(t))E2 − (a2 + µ)L2,

(4.44)

where N(t) = S(t) + E1(t) + E2(t) + I(t) + ID(t) + L1(t) + L2(t).
We set optimal controls in the set U is defined as : U = {ui(t) : 0 ≤ ui(t) ≤ 1, 0 ≤ t ≤ T}, where
i = 1, 2, ..., 6. Here u1 = 0 is no response and u1 = 1 is the full response which means susceptible
populations applied preventive measures. This explanation is the same for other controlling efforts.
Let the objective function be defined as [PRL+15, BLVDL14]:

J(t) =

∫ tf

0

[b1E1(t) + b2E2(t) + b3I(t) + b4ID(t) +
1

2

6∑
i=1

wiu
2
i (t)]dt, (4.45)

where b1, b2, b3, and b4 are the cost associated with a number of E1, E2, I, and ID compartments
respectively. In addition, the constants wi, i = 1, 2, ..., 6 are the costs of implementing the control
efforts from u1 up to u6 respectively [Mar15].
Thus, we try to find the optimal controls u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5 and u∗6 satisfying:

J(u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6) = min {J(u1, u2, u3, u4, u5, u6)|(u1, u2, u3, u4, u5, u6) ∈ U}, where U is

Lebesgue measurable set expressed above.

Theorem 20 (Existence of optimal solution). There exists an optimal control u∗1(t), u∗2(t), u∗3(t),

u∗4(t), u∗5(t), u∗6(t) and corresponding solutions (S, E1, E2, I , ID, L1, L2) such that the function

J(ui(t)), i = 1, 2, ...6 over U . For given these optimal solutions, there exist adjoint variables,
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λ1(t), ..., λ7(t), satisfying.

dλ1
dt

= λ1[((1− u1)β1I
N

+ (1− u2)β2ID
N

+ µ)]− λ2(1− u1)β1I
N
− λ3(1− u2)β2ID

N
,

dλ2
dt

= −b1 + λ2[θ + δ(1 + u3) + µ)]− λ4θ − λ6δ(1 + u3),

dλ3
dt

= −b2 + λ3[φ+ σ(1 + u4) + µ)]− λ5φ− λ7σ(1 + u4),

dλ4
dt

= −b3 + λ1β1(1− u1) S
N
− λ2β1(1− u1) S

N
+ λ4(ε(1− u5) + ρ+ u5 + µ+ d1)

−λ5ε(1− u5)− λ6(ρ+ u5),

dλ5
dt

= −b4 + λ1β2(1− u2) S
N
− λ3β2(1− u2) S

N
+ λ5(γ(1 + u6) + µ+ d2)− λ7γ(1 + u6),

dλ6
dt

= −λ2a1 + λ6(a1 + µ),

dλ7
dt

= −λ3a2 + λ7(a2 + µ),

(4.46)

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, ..., 7. Moreover, we get the control set

(u∗1(t), u∗2(t), u∗3(t), u∗4(t), u∗5(t), u∗6(t)) characterized by u∗1(t) = max{0,min(1, u∗1)}, u∗2(t) =

max{0,min(1, u∗2)}, u∗3(t) = max{0,min(1, u∗3)}, u∗4(t) = max{0,min(1, u∗4)}, u∗5(t) =

max{0,min(1, u∗5)} , u∗6(t) = max{0,min(1, u∗6)},

where u∗1 =
β1SI
N (λ2−λ1)

w1
, u∗2 =

β2SID
N (λ3−λ1)

w2 , u∗3 = δE1(λ2−λ6)
w3

,

u∗4 = σE2(λ3−λ7)
w4

, u∗5 = I (λ4−ελ4+ελ5−λ6)
w5

and u∗6 = γID(λ5−λ7)
w6

.

Proof:
Consider the following conditions are verified thanks to Fleming and Rishel’s theorem.

1. The set of all solutions of (4.44) and the associated control functions in U is non-empty.

2. The state system is linear equations of the control functions with coefficients are depending
on time and the state variables.

3. The integrand L in (4.45) given by L(x, u, t) = b1E1 + b2E2 + b3I + b4ID + 1
2
(w1u

2
1 +

w2u
2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5 + w6u

2
6) is convex on U and it also fulfills L(x, u, t) ≥ δ1 |

(u1, u2, u3, u4, u5, u6) |β −δ2, where δ1 > 0 and β > 1 .

Firstly, to proof 1, we remarked to [CL55, GCF+08]. In fact, if the solutions of (4.44) are bounded
and Lipschitz, then there is a unique solution associated to any control U .
Thus, the sum N(t) also bounded below by a positive non-zero number N0 and above by π

µ
. Each

compartment which is a subset of N(t) is bounded. In that case, the state systems are bounded and
continuous. Therefore, this shows that in the state system there is the boundedness of the partial
derivatives with respect to the state variables [Cod12].
This concludes the proof that 1 holds.
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Secondly, 2 is confirmed by observing the state equations which are linear functions of the controls
ui, for i = 1, 2, ..., 6.
Lastly, to verify condition 3, we referred to [BP12, Ped06] any constant, linear and quadratic func-
tions are convex. Hence, L(x, u, t) is convex on U . Afterwards, to prove the boundedness on L, as
shown below.
w5u

2
5 ≤ w5, since u5 ∈ [0, 1].

⇒ 1
2w5u

2
5 ≤ w5

2 ⇒
1
2w5u

2
5 − w5

2 ≤ 0.
Then L(x, u, t) = b1E1 + b2E2 + b3I + b3ID + 1

2

∑5
i=1wiu

2
i ≥ 1

2

∑6
i=1wiu

2
i − w5

2 ,
⇒ L(x, u, t) ≥ min(w1

2 ,
w2

2 ,
w3

2 ,
w4

2 ,
w5

2 ,
w6

2 )(u2
1 + u2

2 + u2
3 + u2

4 + u2
5 + u2

6)− w5

2 ,
⇒ L(x, u, t) ≥ min(w1

2 ,
w2

2 ,
w3

2 ,
w4

2 ,
w5

2 ,
w6

2 ) || (u1, u2, u3, u4, u5, u6) ||2 −w5

2 .
Therefore, the function L(x, u, t) ≥ δ1 || (u1, u2, u3, u4, u5, u6) ||β −δ2, where δ1 =
min(w1

2 ,
w2

2 ,
w3

2 ,
w4

2 ,
w5

2 ,
w6

2 ) , δ2 = w5

2 and β = 2.
By using PMP [PM86], we found a Hamiltonian (H) stated as:
H(S,E1, E2, I, ID, L1, L2, u, t) = L(x, u, t) + λ1

dS
dt + λ2

dE1

dt + λ3
dE2

dt + λ4
dI
dt +

λ5
dID
dt + λ6

dL1

dt + λ7
dL2

dt ,
where λi, i = 1, 2, ..., 7 are the adjoint functions. The existence of optimal control pairs, we refer-
eed to [FR82].
To prove the ordinary derivative of the adjoint variables with respect to time and controlling vari-
ables, we used the following principle.
The Hamiltonian function H is expressed by:
H = L(x, u, t) + λ1

dS
dt + λ2

dE1

dt + λ3
dE2

dt + λ4
dI
dt + λ5

dID
dt + λ6

dL1
dt + λ7

dL2
dt .

= b1E1 + b2E2 + b3I + b4ID + 1
2
(w1u

2
1 +w2u

2
2 +w3u

2
3 +w4u

2
4 +w5u

2
5 +w6u

2
6) + λ1[π− ((1−

u1(t)) β1
N(t)

I + (1 − u2(t)) β2
N(t)

ID)S − µS] + λ2[(1 − u1(t)) β1S
N(t)

I + a1L1 − (θ + δ(1 + u3(t)) +

µ)E1] +λ3[(1− u2(t)) β2S
N(t)

ID + a2L2− (φ+ σ(1 + u4(t)) +µ)E2] +λ4[θE1− (ε(1− u5(t)) + ρ+

u5(t) + µ + d1)I] + λ5[φE2 + ε(1 − u5(t))I − (γ(1 + u6(t)) + µ + d2)ID] + λ6[(ρ + u5(t))I +

δ(1 + u3(t))E1 − (a1 + µ)L1] + λ7[γ(1 + u6(t))ID + σ(1 + u4(t))E2 − (a2 + µ)L2].
Next, the second condition of the PMP sates that ∃ adjoint variables λi, i = 1, 2, ..., 7 which satisfy
equations like below.

dλ1
dt = −dH

dS , dλ2
dt = − dH

dE1
, dλ3

dt = − dH
dE2

,
dλ4
dt = −dH

dI ,
dλ5
dt = − dH

dID
, dλ6

dt = − dH
dL1

, dλ7
dt = − dH

dL2

.



CHAPTER 4. MODELLING OF TUBERCULOSIS DISEASE 92

So, we have

dλ1
dt = λ1[((1− u1)β1IN + (1− u2)β2IDN + µ)]− λ2(1− u1)β1IN − λ3(1− u2)β2IDN ,

dλ2
dt = −b1 + λ2[θ + δ(1 + u3) + µ)]− λ4θ − λ6δ(1 + u3),

dλ3
dt = −b2 + λ3[φ+ σ(1 + u4) + µ)]− λ5φ− λ7σ(1 + u4),

dλ4
dt = −b3 + λ1β1(1− u1) SN − λ2β1(1− u1) SN + λ4(ε(1− u5) + ρ+ u5 + µ+ d1)− λ5ε(1− u5)− λ6(ρ+ u5),

dλ5
dt = −b4 + λ1β2(1− u2) SN − λ3β2(1− u2) SN + λ5(γ(1 + u6) + µ+ d2)− λ7γ(1 + u6),

dλ6
dt = −λ2a1 + λ6(a1 + µ),

dλ7
dt = −λ3a2 + λ7(a2 + µ),

(4.47)

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, ..., 7.

Now, from optimality conditions, dH
du1
|u1=u∗1= 0, dH

du2
|u2=u∗2= 0, dH

du3
|u3=u∗3= 0,

dH
du4
|u4=u∗4= 0, dH

du5
|u5=u∗5= 0, dH

du6
|u6=u∗6= 0.

So, u∗1 =
β1SI
N (λ2−λ1)

w1
, u∗2 =

β2SID
N (λ3−λ1)

w2
, u∗3 = δE1(λ2−λ6)

w3
,

u∗4 = σE2(λ3−λ7)
w4

, u∗5 = I (λ4−ελ4+ελ5−λ6)
w5

, and u∗6 = γID(λ5−λ7)
w6

.
Now, these result can be written in U like below:

u1(t) =


0, if u∗1 ≤ 0

u∗1, if 0 < u∗1 < 1

1, if u∗1 ≥ 1

, u2(t) =


0, if u∗2 ≤ 0

u∗2, if 0 < u∗2 < 1

1, if u∗2 ≥ 1

,

u3(t) =


0, if u∗3 ≤ 0

u∗3, if 0 < u∗3 < 1

1, if u∗3 ≥ 1

, u4(t) =


0, if u∗4 ≤ 0

u∗4, if 0 < u∗4 < 1

1, if u∗2 ≥ 1

,

u5(t) =


0, if u∗5 ≤ 0

u∗5, if 0 < u∗5 < 1

1, if u∗5 ≥ 1

, u6(t) =


0, if u∗6 ≤ 0

u∗6, if 0 < u∗6 < 1

1, if u∗6 ≥ 1.

Which is equivalent to:
u∗i (t) = max{0,min(1, u∗i )}, where i = 1, 2, ..., 6.

4.6 Numerical simulations

In this section, we presented the numerical results of the model incorporating with controlling
strategies to validate the analytical findings studied so far. The strategies are used to mainly mini-
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mize the disease and the cost burden.
The estimated initial size of population are E1 = 1.19×107, E2 = 1.4×106, I = 3.73×105, ID =

9.7 × 104, L1 = 2.18 × 107, and L2 = 114.52 × 104 collected from [KMW19, SSA+21, DY14,
cgt21b, SFMA17]. Here, the number of TB and DR-TB patients in Ethiopia are greater than the
data mentioned, because the remaining are co-infected with other infectious diseases not nec-
essarily to this model simulation. The rest is the number of susceptible class is calculated by
S = N − (E1 + E2 + I + ID + L1 + L2) = 456.848× 105, where N=82.4× 106 from [cgt21b].
The fixed final time of this study is tf = 10 years and the inclusive estimation scheme of the value
of the parameters is like bellow.

• The per capita natural death rate is the inverse of life expectancy in Ethiopia. Hence 1
61
≈

0.016.

• The total population N is bounded above by π
µ

. Thus π is calculated by the product of µ and
the average population size of Ethiopia 110 000 000 gives 1.76× 106.

• According to the data found from Federal ministry of health report [vvv22] around 78.3%
and 67.5% are successfully treated from first line and second line anti-TB drugs. Thus, we
calculated ρ = 1

78.3
= 0.78 and γ = 1

67.5
= 0.675.

• The remaining parameters are estimated based on the data collected from Ethiopian tuber-
culosis prevention and control (2018-2020/21), WHO report, and latest literature [vvv22,
cgt21b, KMW19].

Thus, the overall data is summarized in Table (4.3).

Parameters Values References Parameters Values References
π 1.76× 106 Calculated β2 0.014 Estimated
β1 0.00151 [cgt21b] φ 0.001 Assumed
µ 0.016 Calculated σ 0.2 Calculated
θ 0.023 [KMW19] γ 0.675 Estimated
a1 0.0013 [KMW19] a2 0.01 [SS19]
ε 0.01 Estimated d2 0.675 Calculated
ρ 0.78 Calculated δ 0.153 Calculated
d1 0.17 [cgt21b]

Table 4.3: Symbols and values of parameters.

The values of coefficient parameters associated for targeted infected people (b1 = 1, b2 = 1.64, b3 =

1, and b4 = 1.8) are taken from [WCJ11,HAHA18,NM21]. Moreover, we can assume that the val-
ues of weight constants (wi = 104, for i = 1, 2, ..., 6) are the same order [WCJ11] and the remaining
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are just for numerical purpose. However, the accurate data on TB and DR-TB attributes for these
targeted parameters are scarce.
We used MATLAB software and we discussed the graphical scenarios of the state system with
and without optimal approach. The targeted infected individuals and the control profiles of each
strategy are plotted. We applied four intervention strategies which are combination of controlling
efforts described before. This study is a greatest and necessary imputes for minimized DS-TB and
DR-TB burden rather than Solomon et al. investigated the risk factors of MDR TB in our country
Ethiopia [ATG18]. It also showed the occurrence and controlling system of DR-TB rather than
only TB infection were discussed at [WCJ11].
Thus, in this investigation four intervention strategies are considered. They designed two combi-
nations and all strategies at a time. Owing to these approaches both DS-TB and DR- TB were
highly minimized in our country Ethiopia. However, the single intervention is not an effective
[AGM21, SS19, TMM17]. Therefore, applying coupling two or more strategies at a time, we con-
structed the graphical solutions of infected host populations, control profiles, and cost function in
the next portion.

4.6.1 Control with prevention effort and case finding for both diseases

We considered prevention together with case finding as an alternative optimal intervention approach
(i.e.,ui 6= 0, for i = 1, 2, 3, 4 , whereas u5 = 0, and u6 = 0 ). The graphs (A-D) of Figure (4.2)
displays that the effect of these optimal strategies on high risk latent and infectious individuals.
Before this clarification our country Ethiopia is one of the highest TB/MDR-TB burden in WHO
lists from 17 countries in the globe. However, through continuously TB elimination plan proposed
by the government there is a significant improvement has been made over the past 5 years [cgt21b].
That is to say individuals without optimal control strategies also decreased as shown in all plots.
Thus, the numerical simulation at Figure (4.2) shows that the number of E1 and E2 are decreased
as compared from without control. These control strategies have no effect on the numbers of I and
ID individuals around for the first one and half year, but they have a great effect after a while. The
corresponding control profiles have been given in Figure (4.6) (A). The control u1 +u3 is maximum
and constant for around 8.8 years, whereas the control u2 +u4 is maximum and constant for around
7 years. However, they declined left and slow down to 0 at the final time; which means finally these
strategies will be expected to be stopped. The cost function is also shown in the Figure (4.6) (B)
which displayed more economic cost for around seven years. Hereafter, it decreases continuously
and slowing to 0 at the final period. This shows that the cost burden is minimized due to the number
of infectious individuals decreased leads to increase productive people.
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4.6.2 Control with prevention effort and case holding for both diseases

We considered prevention together with case holding as an alternative optimal intervention ap-
proach (i.e.,ui 6= 0, for i = 1, 2, 5, 6 , whereas u3 = 0, and u4 = 0 ). The plots (A-D) of Figure
(4.3) explain that the effect of these optimal strategies on highly risk latent and infectious individ-
uals. These strategies have less effect on individuals with in classes E1 and E2, but more effect
on drug sensitive TB individuals. If no controls used, the drug resistance TB infectious individuals
increased for the first of two years and then decreased dramatically. However, the population in the
class ID declined extremely for the entire period of time. The corresponding control profiles and
the cost function have been given in Figure (4.7) (A and B) respectively. The control u2 + u6 is
maximum for around the first one year and seven months and then it decreases left. Finally, it falls
to 0 at the final time. Whereas the control u1 + u5 is maximum and constant almost for the entire
period of time before drop to 0. The cost function displays that more economic cost for the first
around one year and eight months. Hereafter, it decreases continuously and slowdown to 0 at the
final period.

4.6.3 Control with case finding and case holding for both diseases

We considered case finding together with case holding as an alternative optimal intervention (i.e.,ui 6=
0, for i = 3, 4, 5, 6 , whereas u1 = 0, and u2 = 0). The plots (A-D) of Figure (4.4) clarify the out-
come of these optimal strategies on high risk latent and infectious persons. These schemes can help
to decrease the number of E1, E2 and I intensely rather than without optimal control. The numbers
of drug resistance people increased at the beginning of the year and then after decreased further
in case of without control. Whereas controls are used optimally, these infectious communities are
decreased extremely for the entire period. The control profiles for this strategy have been given in
Figure (4.8) (A). The coupled strategy u3 + u5 would require maximum for almost 9 years before
decreasing to zero. However, the optimal control u4 + u6 would require maximum almost the first
two years. It decreases left for nearby 7.5 years before drop to zero. The cost function is also
shown in the Figure (4.8) (B). Because of more effort needed at the beginning would require more
economic cost almost for 2 years. This function reduced left nearly 7.5 years and dropped to zero
at the final time. As a result, this strategy helps to minimize the targeted individuals as well as the
economic costs.
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Strategies Description Total infected averted Total cost (USD)
B Preventive and Case holding 4.5× 105 12.348× 106

C Case finding and Case holding 1.969× 106 14.617× 106

A Preventive and Case finding 1.989× 106 16.652× 106

D Preventive, Case finding, 2.006× 106 19.574× 106

and case holding

Table 4.4: Total infected averted (increasing order) and total cost.

4.6.4 Control with prevention, case finding, and case holding for both dis-
eases

We considered optimal control of prevention, case finding, and case holding strategies at a time
for both diseases. The plots (A-D) of Figure (4.5) clarify the outcome of these optimal strategies
on E1, E2, I , and ID compartments. The interpretation of this graphical scenario is similar to the
third strategy. The significant difference is as shown on the control profiles and the cost function
are given in Figure (4.9) (A) and (B) respectively.
All efforts of DS-TB would require maximum for almost 8.4 years before radically decrease to
zero. However, the optimal control of all efforts of DR-TB at a time would require maximum
almost the first 1.8 years. Hereafter, they decreased nearby 7.8 years before dropped to zero.
Figure (4.9) (B) shows the graphical result of cost function. Because of more effort needed at the
beginning would require more economic cost around the first 1.8 years. This function reduced left
nearby 6.2 years and intensely decreased later. Finally, it is dropped to zero.
Therefore, this strategy also helps to minimize or eliminate the high risk latent and infectious
individuals in the community.

4.7 Cost-effectiveness analysis

Here, we presented the cost-effectiveness rank of one implemented strategy over the other. We
achieved this by (Baba and Makinde, 2014); they had declared that
Incremental Cost-Effectiveness Ratio (ICER)= Difference in costs between strategies

Difference in health effects between strategies .
We applied this technique by ranked increasing order of effectiveness with respect to infected
averted. The total number of infected averted which is the difference between the total infected
without and with control. Besides to this, the total cost is also mentioned in Table (4.4).
We compare the strategy of B and C by computing the ICER:

ICER(B) = 12.348×106

4.5×105
= 27.44 and ICER (C)= 14.617×106−12.348×106

1.969×106−4.5×105
= 1.4937.

The comparison displayed that ICER(C) < ICER(B), which shows that strategy B is strongly
dominated and does not consume limited resource.
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Figure 4.2: Optimal combined effect of prevention and case finding simulation results.

Hence, the strategy B is more costly and remove from the set of choices.
Next, we compare strategy C and A.

ICER(C) = 14.617×106

1.969×106
= 7.4236 and ICER(A) = 16.652×106−14.617×106

1.989×106−1.969×106
= 101.75.

The comparison showed that strategy A is more costly and less effectiveness than strategy C. Hence,
we should remove strategy A from the set of choices.
Finally, we compare strategy C and D.
Already, we calculated ICER(C) = 7.4236 and

ICER(D) = 19.574×106−16.652×106

2.006×106−1.989×106
= 171.8824.

This implies that, the strategy D is more costly and it should remove from the set of choices.
Therefore, the strategy C is the most cost-effective approach as compared with other alternatives.



CHAPTER 4. MODELLING OF TUBERCULOSIS DISEASE 98

Figure 4.3: Optimal combined effect of prevention and case holding simulation results.
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Figure 4.4: Optimal combined effect of case finding and case holding simulation results.
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Figure 4.5: Optimal combined effect of preventive, case finding, and case holding simulation re-
sults.
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Figure 4.6: Control profiles and cost function for strategy (4.6.1).
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Figure 4.7: Control profiles and cost function for strategy (4.6.2).
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Figure 4.8: Control profiles and cost function for strategy (4.6.3).
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Figure 4.9: Control profiles and cost function for strategy (4.6.4).



Chapter 5

A co-infection model of HIV and TB
diseases

5.1 Introduction

HIV/TB co-infection is an infection caused by both HIV and TB. TB disease is contemplated as
AIDS-defining situation in HIV-infected people. The situation is a severe infection that can be
life-threatening in patients. Similarly HIV can accelerate the rate of TB infection, which can rouse
the latent TB progress to TB disease. This disease affects many parts of the world and becomes
a global burden including Ethiopia. This dual infection disease needs more exploration and the
research communities have to put forward effective control measures from different perspectives.
The best investigation here is we can discover the transmission dynamics and prospect preventive
and control strategies of the disease from a mathematical modelling view point.
Mathematical models are very crucial to study such types of problems. Lots of components are
necessary to develop a model about this dual epidemic and the concept of optimal control theory is
a backbone to analyzing the suggesting control efforts optimally. The ICER calculation in this study
can give the best cost-effective strategy against the burden of TB and HIV/AIDS dual epidemics.

5.2 Mathematical model of TB-HIV/AIDS co-infection diseases

Model assumptions

• The susceptible people enter into the population (N) at a constant rate π.

• Individual with latent TB are not infectious and cannot transmit TB infection.

105
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• Individuals infected with TB cannot fully recover, but to latent TB.

• On recovery there is temporal immunity.

• People in each compartment have equal natural death rate µ.

• Individuals co-infected with AIDS and Active TB are very ill. They have not transmitted
HIV virus due to sexual intercourse.

• HIV infected Individuals under ART treatment are aware of transmitting the disease.

• At birth all individuals are equally susceptible.

• Only nuclei droplets of air can spread TB infection between infectious and susceptible peo-
ple.

• The model does not incorporate vertical transmission of HIV-AIDS and immigrant individu-
als.

• Co-infected individuals started TB treatment before the launch of HIV treatment.

• The human population is variable.

• People leave the susceptible class only as a way of infection and leave the infected class by
recovering from the infection.

• Individuals with AIDS do not completely withdraw from sexual activities due to the disease
[MW09].

• The mode of HIV/AIDS transmission is via heterosexual contacts.

• Susceptible individuals cannot get HIV and TB infection concurrently at the same time.

• Low risk latent TB compartment comprises recovered individuals by treatment or naturally.

We developed the new TB-HIV co-infection model by coupling HIV/AIDS (susceptible, HIV in-
fection with and without AIDS symptoms, and treated individuals from HIV infection ) with TB
model [WCJ11].
Hence, this model divided the human population into the following mutually-exclusive epidemio-
logical compartments. Namely susceptible individuals (S), exposed (or a high-risk latent TB) (E)
that is infected but not infectious individuals, infectious TB (I ), and low-risk latent TB (L), HIV-
infected individuals with no clinical symptoms of AIDS (H), HIV-infected people under treatment
for HIV infection (T), HIV-infected individuals with AIDS clinical symptoms (A), exposed (or a
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high-risk latent TB) co-infected with HIV (HE), low risk latent TB individuals co-infected with
HIV (HL), HIV-infected individuals (pre-AIDS) co-infected with active TB disease (HI), HIV-
infected individuals with AIDS symptoms and co-infected with active TB (AI), low risk latent TB
individuals infected by HIV-infection with AIDS symptoms (AL).
Thus, the total population at time t, denoted by N(t), is given by:
N(t) = S(t)+E(t)+I(t)+L(t)+H(t)+A(t)+T (t)+HE(t)+HL(t)+HI(t)+AI(t)+AL(t).
The susceptible population is increased by the recruitment of individuals at a rate π. These individ-
uals acquire TB and HIV infection at a variable rate:
λT (t) = β1[I(t)+HI(t)+AI(t)]

N(t)
and λH(t) = β2[H(t)+HE(t)+HL(t)+HI(t)+η(A(t)+AL(t))]

N(t)
respectively.

The modification parameter η represents the relative infectiousness of people with AIDS symptoms
compared to HIV infected people without AIDS symptoms. HIV-infected People (pre-AIDS) are
less infectious than people with AIDS symptoms because they have lower viral load and positive
relationship among infectiousness and viral load [WLG+08]. The remaining model parameters are
described in Table (5.1).
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Parameters Description
π Recruitment rate
µ Per capita natural mortality rate
β1 TB transmission rate
β2 HIV transmission rate
k Per capita progression rate from class E to I
α Treatment rate of E
σ The relapse rate due to tubercle bacilli reactivation
1− p Successful treatment rate of I
γ TB treatment rate
ωi, i = 1, 2, 5, 6 Rate of recruitment to receive HIV treatment for H,A,HL, and AL respectively
ω4, ω7 Rate of recruitment to receive both HIV and TB treatment for HI and AI respec-

tively
ω3 Rate of recruitment to receive HIV treatment and treatment of high risk latent TB
ω, θ, ε1, ε2 Modification parameters
δ Progression rate from H to A
ε Per capita progression rate of TB from class HE to HI

φ Fraction of individuals from HI class that receive treatments for TB only
σ1 HIV progression rate from HE to AI
δ1 TB progression rate from HE to AI
θ1 The relapse rate due to tubercle bacilli reactivation
θ2 The recruitment rate of individuals from HE to HL due to treatment of latent TB
(1− ψ) Successful TB treatment rate of HI

ψ1 Progression rate from HI to AI
ϕ Rate of failure to properly adhere to HIV treatment rules
θ3 Progression rate from HL to AL
τ Complete treatment rate of TB from AI to AL
di{i = 1, 2, 3} Per capita TB, HIV, and TB-HIV co-infection induced death rate

Table 5.1: Descriptions of the parameters.
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The transition diagram of the model is like below.
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Figure 5.1: Flow diagram of the TB-HIV/AIDS transmission .
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Depending on the above points mentioned, the TB-HIV transmission dynamics described by
the following deterministic system of non-linear ODE.

dS
dt

= π − (λH + λT + µ)S,

dE
dt

= λTS + γpI + σL− (k + α + ε1λH + µ)E,

dI
dt

= kE − (γ + ε2λH + d1 + µ)I,

dL
dt

= (1− p)γI + αE − (σ + λH + µ)L,

dH
dt

= λH(S + L)− (θλT + δ + ω1 + µ)H,

dA
dt

= δH + ϕT − (ω2 + ωλT + µ+ d2)A,

dHE
dt

= ε1λHE + θλTH + ψγHI + θ1HL − (ε+ ω3 + θ2 + σ1 + δ1 + µ)HE,

dHI
dt

= ε2λHI + εHE − (ψγ + (1− ψ)φγ + (1− φ)ω4 + ψ1 + µ+ d1)HI ,

dHL
dt

= (1− ψ)φγHI + θ2HE − (θ1 + θ3 + ω5 + µ)HL,

dT
dt

= ω1H + ω2A+ ω3HE + ω4(1− φ)HI + ω5HL + ω6AL + ω7AI − (ϕ+ µ)T,

dAL
dt

= τAI + θ3HL − (ω6 + µ+ d2)AL,

dAI
dt

= (σ1 + δ1)HE + ψ1HI + ωλTA− (ω7 + µ+ d3 + τ)AI ,

(5.1)

with inital conditions

S(0) > 0, E(0) > 0, I(0) > 0, L(0) > 0, H(0) > 0, A(0) > 0, HE(0) > 0, (5.2)

HI(0) > 0, HL(0) > 0, T (0) > 0, AL(0) > 0, AI(0) > 0. (5.3)

5.3 Model analysis

5.3.1 Positivity invariance and boundedness of solutions

The system of equation (5.1) expresses that human population in different compartments. Every
state variable and parameters of the model are positive. Thus, the solution of each state variable
with positive initial value is positive, due to M. Bodnar [Bod00] displayed that the solutions of
any physical or biological model that have non-negative initial values are non-negative ∀ t > 0.
Moreover, the condition in which the positivity of the solution set is justifying easily similar to the
method in chapter 3 and 4.
Let Ω be the biological feasible region such that Ω = {(S,E, I, L,H,A, HE, HI , HL, T, AL, AI) ∈
R12

+ : N ≤ π
µ
}. The solution of every state variable in the set remains in the set. Then Ω is positive

invariance.
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We showed this clue by adding (5.1) simultaneously the rate of change of N(t) is given by:

dN

dt
= π − µN(t)− d1I − d1HI − d2A− d2AL − d3AI . (5.4)

Hence, the equation (5.1) which is a first order ODE is specified as follows [Jan95].
dN
dt
≤ π − µN(t),

N(t) ≤ π
µ

+ e−µt(N(0)− π
µ
).

Here, 0 < N(0) ≤ π
µ

, then, we derived 0 < N(t) ≤ π
µ

, ∀ t ≥ 0. This shows that the solutions of
all state variables in co-infection model (5.1) are bounded ∀ t > 0.
This acknowledged the result bellow.

Lemma 5 The region Ω is positively invariant for the model (5.1) with positive initial conditions

in ∈ R12
+ .

Hereafter, we analyzed each sub model before explored the full co-infection model.

5.3.2 HIV-only model

The model that contemplates purely HIV/AIDS (found by setting E = L = I = HE = HI =

HL = AL = AI = 0 ) is arranged by:

dS
dt

= π − (λH + µ)S,

dH
dt

= λHS − (δ + ω1 + µ)H,

dA
dt

= δH + ϕT − (ω2 + µ+ d2)A,

dT
dt

= ω1H + ω2A− (ϕ+ µ)T,

(5.5)

where λH(t) = β2[H(t)+ηA(t)]
N(t)

and N(t) = S(t) + H(t) + A(t) + T (t). Let ΩA be the set such
that ΩA = {(S,E,H,A, T ∈ R4

+ : N ≤ π
µ
}, then similar to lemma (5) we can show that ΩA is

positively invariant and attracting.

5.3.3 Local stability of disease free equlibrum

In the absence of HIV infection, we obtained the DFE of HIV only sub-model (5.5) by equating
the right-hand side of this system to be zero and is given by E0 = (π

µ
, 0, 0, 0).

Theorem 21 The DFE point of system (5.5) is locally asymptotically stable (LAS) if RH < 1 and

unstable if RH > 1.
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Proof:

Firstly, find the basic reproduction number RH which is the spectral radius of the matrix FV −1,

where F is the matrix of new infection terms given by:

F =


β2π
Nµ

β2ηπ
Nµ 0

0 0 0

0 0 0

 =


β2 β2η 0

0 0 0

0 0 0

 and

V is the matrix of remaining transfer terms given by:

V =


δ + ω1 + µ 0 0

−δ ω2 + d2 + µ −ϕ
−ω1 −ω2 (ϕ+ µ)

 at DFE point [VdDW02].

Now, the inverse of V is calculated, which is:

V −1 =


1
A 0 0

δ
AB −

ϕ(δω2+ω1B)
AB(ϕω2−CB)

1
B −

ω2ϕ
B(ϕω2−CB)

−ϕ
ϕω2−CB

δω2+ω1B
A(ϕω2−CB)

−ω2

ϕω2−CB
−B

ϕω2−CB

 ,
where

A = δ + ω1 + µ,B = ω2 + d2 + µ,C = ϕ+ µ. (5.6)

The dominant eigenvalue of FV −1 is the basic reproduction number RH which is simplified to:

RH = β2
(δ+ω1+µ) [1 + η(δϕ+δµ+ω1ϕ)

ϕd2+ϕµ+ω2µ+d2µ+µ2 ].

Now, the jacobian matrix of the system (5.5) at DFE point is given by:

J(π
µ
, 0, 0, 0) =


−µ −β2 −β2η 0

0 β2 − (δ + ω1 + µ) β2η 0

0 δ −(ω2 + d2 + µ) ϕ

0 ω1 ω2 −(ϕ+ ρ)

 .

Secondly, we calculate the eigenvalues of this matrix as follows.∣∣∣∣∣∣∣∣∣∣
−µ− λ −β2 −β2η 0

0 [β2 − (δ + ω1 + µ)]− λ β2η 0

0 δ −(ω2 + d2 + µ)− λ ϕ

0 ω1 ω2 −(ϕ+ ρ)− λ

∣∣∣∣∣∣∣∣∣∣
= 0.



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 113

=⇒

∣∣∣∣∣∣∣∣∣∣
−µ− λ −β2 −β2η 0

0 [β2 − A]− λ β2η 0

0 δ −B − λ ϕ

0 ω1 ω2 −C − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

=⇒ −µ− λ

∣∣∣∣∣∣∣
[β2 − A]− λ β2η 0

δ −B − λ ϕ

ω1 ω2 −C − λ

∣∣∣∣∣∣∣ = 0.

Finally, we obtain a third order polynomial equation like below.
(−µ− λ)[λ3 + λ2(A+B +C − β2) + λ(BA+BC +AC −Bβ2− δβ2−ω2ϕ−Cβ2) +ABC −
CBβ2 − δβ2 + ϕω2β2 − ω2ϕA− ω1ϕηβ2 = 0].
=⇒ −µ− λ = 0 =⇒ λ1 = −µ < 0 or

λ3 + λ2(A+B + C − β2) + λ(BA+BC + AC −Bβ2 − δβ2 − ω2ϕ− Cβ2)+

ABC − CBβ2 − δβ2 + ϕω2β2 − ω2ϕA− ω1ϕηβ2 = 0. (5.7)

The equation (5.7) has the form:
A0λ

3 + A1λ
2 + A2λ+ A3 = 0, where

A0 = 1, A1 = A+B + C − β2, A2 = BA+BC + AC −Bβ2 − δβ2 − ω2ϕ− Cβ2 and
A3 = ABC − CBβ2 − δβ2 + ϕω2β2 − ω2ϕA− ω1ϕηβ2.

= A(ϕω2 −BC)[1− β2(ϕω2−CB−ηδC−ηω1ϕ)
A(ϕω2−CB) ].

= (d2ϕ+ µ2 + µϕ+ µd2 + ω2ϕ)[1−RH ] > 0, if RH < 1.
Applying the Routh–Hurwitz criterion [All08], it can be shown that the eigenvalues of the 3 × 3

Jacobin matrix (the roots of the characteristic polynomial P (λ) = λ3 + A1λ
2 + A2λ + A3 ) have

negative real parts, if RH < 1.
Hence, DFEP E0 is locally asymptotically stable if RH < 1 and unstable if RH > 1.

5.3.4 Global stability of the DFE, E0

The global stability of the DFE can be explored by using the method in [CCBVdD+02]. The model
(5.5) can be expressed likes bellow :dXs

dt
= Q(Xs −XDFE,s) +Q1Xi,

dXi
dt

= Q2Xi,
(5.8)



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 114

where Xs and Xi are vectors which designates the non-transferring and transferring compartments.
If Q has real negative eigenvalues and Q2 is a Metzler matrix, then the DFE is globally asymptoti-
cally stable (GAS).
Thus, Xs = (S, T )T , Xi = (I, A)T , and

Xs −XDFE,s =

[
S

T

]
−

[
π
µ

0

]
=

[
S − π

µ

T

]
.

Now, the following matrices are constructed from Xs and Xi vectors.

Q =

[
−µ 0

0 −(ϕ+ µ)

]
,

Q1 =

[
−β2

S
N(t)

−β2η

ω1 ω2

]
, and Q2 =

[
−(δ + ω1 + µ) 0

δ −(ω2 + d2 + µ)

]
.

As a result, the eigenvalues of Q are negative and real infers that the system dXs
dt

= Q(Xs −
XDFE,s) +Q1Xi is GAS at DFE.

5.3.5 Endemic equilibrium

The endemic equilibrium (EE) point can be obtained by make it zero for the right side of the
equations (5.5), where the disease is persist in the population.
Thus,

dS

dt
= π − (λH + µ)S = 0, (5.9)

dH

dt
= λHS − (δ + ω1 + µ)H = 0, (5.10)

dA

dt
= δH + ϕT − (ω2 + µ+ d2)A = 0, (5.11)

dT

dt
= ω1H + ω2A− (ϕ+ µ)T = 0. (5.12)

Therefore, the solutions are
S∗ = π

λ∗H+µ
, H∗ =

λ∗HS
∗

δ+ω1+µ
, A∗ = δH∗+ϕT ∗

ω2+µ+d2
, and T ∗ = ω1H∗+ω2A∗

ϕ+µ
, where

λ∗H(t) = β2[H∗(t)+ηA∗(t)]
N∗(t)

and N∗(t) = S∗(t) +H∗(t) + A∗(t) + T ∗(t).
Therefore, the EE point say E1 = (S∗, H∗, A∗, T ∗).

Lemma 6 A unique endemic equilibrium point E1 exist if RH > 1 .

Proof.
If the disease is endemic in the community, then ∃ t∗ > 0 such that dH(t∗)

dt
> 0, dT (t∗)

dt
> 0 and

dA(t∗)
dt

> 0. Thus, keeping the state variables H,T and A at t∗, the system (5.5) becomes:
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dH
dt

= λHS − (δ + ω1 + µ)H > 0,

dA
dt

= δH + ϕT − (ω2 + µ+ d2)A > 0,

dT
dt

= ω1H + ω2A− (ϕ+ µ)T > 0.

(5.13)

This becomes, 
(δ + ω1 + µ)H < λHS = (β2[H(t)+ηA(t)]

N(t)
)S,

(ω2 + µ+ d2)A < δH + ϕT,

(ϕ+ µ)T < ω1H + ω2A.

(5.14)

From the fact that S
N(t)
≤ 1. Thus (5.14 ) gives:

(δ + ω1 + µ)H < β2[H(t) + ηA(t)],

(ω2 + µ+ d2)A < δH + ϕT,

(ϕ+ µ)T < ω1H + ω2A.

(5.15)

Next, multiplying the second and the third equation of (5.15) with (ϕ+ µ) and ϕ respectively, then

add vertically gives:

A <
δ(ϕ+ µ) + ω1ϕ

(ϕ+ µ)(ω2 + µ+ d2)− ω2ϕ
H. (5.16)

Substitute (5.16) to the first equation of (5.15), we obtained the following inequality.

(δ + ω1 + µ)H(t) < β2[H(t) + η( δ(ϕ+µ)+ω1ϕ
(ϕ+µ)(ω2+µ+d2)−ω2ϕ

)H(t)].

=⇒ AH(t) < β2[H(t) + η( δC+ω1ϕ
CB−ω2ϕ

)]H(t).

=⇒ 1 < β2
A [1 + η( δC+ω1ϕ

CB−ω2ϕ
)].

=⇒ 1 < β2
A [1 + η( δC+ω1ϕ

CB−ω2ϕ
)] = RH .

=⇒ RH > 1 .
This completes the proof.
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5.3.6 Global stability of the EE point

Theorem 22 The endemic equilibrium (E1) of model (5.5) is globally asymptotically stable (GAS)

on R4
+0 if RH > 1.

Proof: We applied the procedure of Lyapunov functions.
Set the Lyapunov function
G = (S − S∗ − S∗ ln S

S∗
) + (H −H∗ −H∗ ln H

H∗
) + (A−A∗ −A∗ ln A

A∗
) + (T − T ∗ − T ∗ ln T

T ∗
).

Such form of Lyapunov function has been stated in [MLL03, Hou18].
Now, dG

dt
= G

′
= (S−S

∗

S
)S
′
+ (H−H

∗

H
)H

′
+ (A−A

∗

A
)A
′
+ (T−T

∗

T
)T
′

= (S−S
∗

S
)[π − (λH + µ)S] + (H−H

∗

H
)[λHS − (δ + ω1 + µ)H] + (A−A

∗

A
)[δH + ϕT − (ω2 + µ +

d2)A] + (T−T
∗

T
)[ω1H + ω2A− (ϕ+ µ)T ]

= (1− S∗

S
)[π− (λH + µ)S] + (1− H∗

H
)[λHS − (δ+ ω1 + µ)H] + (1− A∗

A
)[δH +ϕT − (ω2 + µ+

d2)A] + (1− T ∗

T
)[ω1H + ω2A− (ϕ+ µ)T ]

= [π− (λH +µ)S]− S∗

S
[π− (λH +µ)S] + [λHS− (δ+ω1 +µ)H]− H∗

H
[λHS− (δ+ω1 +µ)H] +

[δH + ϕT − (ω2 + µ+ d2)A]− A∗

A
[δH + ϕT − (ω2 + µ+ d2)A] + [ω1H + ω2A− (ϕ+ µ)T ]−

T ∗

T
[ω1H + ω2A− (ϕ+ µ)T ]

= [π + S∗(λH + µ) + λHS + H∗(δ + ω1 + µ) + δH + ϕT + A∗(ω2 + µ + d2) + ω1H + ω2A +

T ∗(ϕ+µ)]− [(λH +µ)S + S∗

S
π+ (δ+ω1 +µ)H + H∗

H
λHS + (ω2 +µ+ d2)A+ A∗

A
(δH +ϕT ) +

(ϕ+ µ)T + T ∗

T
(ω1H + ω2A)]

Thus G′ = dG
dt

= X − Y , where
X = [π+S∗(λH+µ)+λHS+H∗(δ+ω1+µ)+δH+ϕT+A∗(ω2+µ+d2)+ω1H+ω2A+T ∗(ϕ+µ)]

and
Y = [(λH + µ)S + S∗

S
π + (δ + ω1 + µ)H + H∗

H
λHS + (ω2 + µ + d2)A + A∗

A
(δH + ϕT ) + (ϕ +

µ)T + T ∗

T
(ω1H + ω2A)]

Here X and y are positive, then dG
dt

= X − Y < 0, when X < Y and dG
dt

= 0, when S = S∗, H =

H∗, A = A∗, and T = T ∗ in Ω

Hence, the largest compact invariant set in {(S∗, H∗, A∗, T ∗) ∈ Ω : dG
dt

= 0} is the singleton EEP
E1. By LaSalles invariant principle [LaS76], it implies that E1 is globally asymptotically stable on
R4

+0 if X < Y .
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5.3.7 TB-only model

The sub-model of (5.1) with no HIV/AIDS disease, that is, HI , HE, H,A,HL, T, AL, AI = 0, is
expressed by: 

dS
dt

= π − (λT + µ)S,

dE
dt

= λTS + γpI + σL− (k + α + µ)E,

dI
dt

= kE − (γ + d1 + µ)I,

dL
dt

= (1− p)γI + αE − (σ + µ)L,

(5.17)

where λT = β1I(t)
N(t)

and N(t) = S(t) + E(t) + I(t) + L(t).
The model (5.17) was formulated and analysed in [WCJ11]. The basic reproduction number of this
model is calculated by the usual approach.

RT = β1[
k(σ+µ)

(k+α+µ)(γ+d1+µ)(σ+µ)−kpγµ−ασ(γ+d1+µ)−kσγ ].
Moreover, the existence, uniqueness, and stability of equlibra point are proven in [KMW19].

5.3.8 Analysis of the full model

We now study the full model (2.1), with the DFEP expressed by:
ε0 = (S0, E0, I0, L0, H0, A0, H0

E, H
0
I , H

0
L, T

0, A0
L, A

0
I) = (π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The associated matrices F and V are expressed as follows.
F =

[
F1 F2

]

with F1 =



0 0 0 0 0 0

λT 0 β1S
N

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

λH 0 0 λH
β2(S+L)

N
β2η(S+L)

N

0 0 0 0 0 0

0 ε1λH 0 0 θλT 0

0 0 ε2λH 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 β1A
N

0 0 ωλT



,
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F2 =



0 0 0 0 0 0

0 β1S
N

0 0 0 β1S
N

0 0 0 0 0 0

0 0 0 0 0 0
β2(S+L)

N
β2(S+L)

N
β2(S+L)

N
0 η β2(S+L)

N
0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 β1A
N

0 0 0 β1A
N



and V =
[
V1 V2

]
with

V1 =



λT + λT + µ 0 β1S
N

0 β2S
N

η β2S
N

0 (k + α + ε1λH + µ) −γp −σ 0 0

0 −k (γε2λH + d1 + µ) 0 ε2β2I
N

η ε2β2I
N

0 −α −(1− p)γ σ + µ+ λH
β2L
N

β2L
N

0 0 θ β1H
N

0 θλT + δ + ω1 + µ 0

0 0 ωβ1A
N

0 −δ U

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −ω1 −ω2

0 0 0 0 0 0

0 0 0 0 0 0



,
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V2 =



β2S
N

β2S
N

β2S
N

0 η β2S
N

0

0 0 0 0 0 0

ε2
β2I
N

ε2
β2I
N

ε2
β2I
N

0 ηε2
β2I
N

0
β2L
N

β2L
N

β2L
N

0 η β2L
N

0

0 θ β1H
N

0 0 0 θ β1H
N

0 ωβ1A
N

0 −ϕ 0 ωβ1A
N

M −ψγ −θ1 0 0 0

−ε P 0 0 0 0

−θ2 (1− ψ)γφ −(θ1 + θ3 + ω5 + µ) 0 0 0

−ω3 −ω4(1− φ) −ω5 (ϕ+ µ) −ω6 −ω7

0 0 −θ3 0 (ω6 + d2 + µ) −τ
−(σ1 + δ1) −ψ1 0 0 0 (ω7 + τ + d3 + µ)



,

where M = ε+ ω3 + θ2 + σ1 + δ1 + µ and P = γ(ψ + φ− ψφ) + ω4(1− φ) + ψ1 + µ+ d1.
The spectral radius of the matrix FV −1 at ε0 are:
R1 = β2

A [1 + η(δC+ω1ϕ)
CB−ϕω2

] = RH and

R2 = β1k(σ+µ)
(k+α+µ)(γ+d1+µ)(σ+µ)−kpγµ−ασ(γ+d1+µ)−kσγ = RT .

Hence, the control reproduction number of (5.1 ) is expressed by:
R0 = max{RH , RT} justified in [VdDW02].

5.3.9 Local stability of DFE point

Theorem 23 The DFE of the full HIV-TB model (5.1) is LAS if R0 < 1, and unstable if R0 > 1.

Proof.
The Jacobian matrix of the model at the DFE point is;
J(π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

[
J1 J2

]
, with

J1(ε0) =



−µ 0 −β1 0 −β2 −β2η

0 −(k + α+ µ) γp+ β1 σ 0 0

0 k −(γ + d1 + µ) 0 0 0

0 α (1− p)γ −(σ + µ) 0 0

0 0 0 0 β2 − (δ + ω1 + µ) β2η

0 0 0 0 δ −(d2 + ω2 + µ)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ω1 ω2

0 0 0 0 0 0

0 0 0 0 0 0



,
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J2(ε0) =

−β2 −(β2 + β1) −β2 0 −β2η −β1

0 β1 0 0 0 β1

0 0 0 0 0 0

0 0 0 0 0 0

β2 β2 β2 0 ηβ2 0

0 0 0 ϕ 0 0

−M ψγ θ1 0 0 0

ε −P 0 0 0 0

θ2 (1− ψ)φγ −(θ1 + θ3 + ω5 + µ) 0 0 0

ω3 ω4(1− φ) ω5 −(ϕ+ µ) ω6 ω7

0 0 θ3 0 −(ω6 + d2 + µ) τ

(σ1 + δ1) ψ1 0 0 0 −(ω7 + d3 + τ + µ)



.

Afterwards, we get the eigenvalues of J in this way.

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 −β1 0 −β2 −β2η

0 −(k + α+ µ)− λ γp+ β1 σ 0 0

0 k −(γ + d1 + µ)− λ 0 0 0

0 α (1− p)γ −(σ + µ)− λ 0 0

0 0 0 0 β2 −A− λ β2η

0 0 0 0 δ −B − λ
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ω1 ω2

0 0 0 0 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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−β2 −(β2 + β1) −β2 0 −β2η −β1

0 β1 0 0 0 β1

0 0 0 0 0 0

0 0 0 0 0 0

β2 β2 β2 0 ηβ2 0

0 0 0 ϕ 0 0

−M − λ ψγ θ1 0 0 0

ε −P − λ 0 0 0 0

θ2 (1− ψ)φγ −(θ1 + θ3 + ω5 + µ)− λ 0 0 0

ω3 ω4(1− φ) ω5 −C − λ ω6 ω7

0 0 θ3 0 −(ω6 + d2 + µ)− λ τ

(σ1 + δ1) ψ1 0 0 0 −(ω7 + d3 + τ + µ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

0.
After huge calculations, we get the following result.
(µ+ λ)(J + λ)(H + λ)[εψγ(G+ λ) + εθ1(1− ψ)φγ + (P + λ)(θ1θ2 − (M + λ)(G+ λ))][(β2 −
A− λ)((B + λ)(C + λ)−ϕω2) + β2η(δ(C + λ) +ϕω1)][k((γp+ β1)(σ+ µ+ λ) + σ(1− p)γ)−
(F + λ)((E + λ)(σ + µ+ λ)− ασ)] = 0, where
A = δ + ω1 + µ,B = ω2 + d2 + µ,C = ϕ + µ,E = k + α + µ, F = γ + d1 + µ,G =

θ1 + θ3 + ω5 + µ,H = ω6 + d2 + µ, J = ω7 + d3 + τ + µ.
The above equation becomes:
(µ+ λ)(J + λ)(H + λ) = 0 =⇒ λ = −µ < 0 or λ = −J < 0 or λ = −H < 0 or

εψγ(G+ λ) + εθ1(1− ψ)φγ + (P + λ)(θ1θ2 − (M + λ)(G+ λ)) = 0. (5.18)

(β2 − A− λ)((B + λ)(C + λ)− ϕω2) + β2η(δ(C + λ) + ϕω1) = 0. (5.19)

k((γp+ β1)(σ + µ+ λ) + σ(1− p)γ)− (F + λ)((E + λ)(σ + µ+ λ)− ασ) = 0. (5.20)

The system (5.18) is simplified to:
λ3 +λ2(P +M +G)+λ(PM +PG+MG−θ1θ2− εψγ)+PMG+ εθ1ψφγ− (Pθ1θ2 + εθ1φγ+

Gεψγ) = 0.
The roots λ1, λ2 and λ3 are negative, because all coefficients are positive after simplification.
Again, the two equations (5.19) and (5.20) can be simplified as:

1
A(BC−ϕω2) [λ

3 + λ2(A + B + C − β2) + λ((BC − ϕω2) + (B + C)A − β2(B +

C + ηδ))] + (1−RH) = 0.

1
(k+α+µ)(γ+d1+µ)(σ+µ)−kpγµ−ασ(γ+d1+µ)−kσγ [λ3 + λ2(α + σ + k + γ + d1 + 3µ) +
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λ((α + k + γ + d1 + 2µ)(σ + µ)− kpγ − ασβ1)] + (1−RT ) = 0.
We applied Routh-Hurwitz criteria [All08], the roots of the above two polynomial expressions will
have negative real part iff the two constant terms (1−RH) > 0 and (1−RT ) > 0.

Thus, RH < 1 and RT < 1 gives R0 < 1, this completed the proof.

5.3.10 Global stability of DFE point

Theorem 24 The fixed point U0 = (X∗, 0) is GAS, if R0 < 1 (LAS) and the two conditions (H1)

and (H2) are satisfied.

We explored the theorem using the technique in [CCBVdD+02]. The model (5.1) can be expressed
likes below :
dX
dt

= F (X,Z),
dZ
dt

= G(X,Z), G(X, 0) = 0,

where X and Z are vectors which designates the uninfected and infected compartments. So
X = (S), Z = (E,L, T, I,H,A,HE, HI , HL, AL, AI) and the conditions (H1) and (H2) are:
(H1), dX

dt
= F (X, 0), X∗ is GAS

(H2), dZ
dt

= QZ − G∗(X,Z), G∗(X,Z) ≥ 0 for (X,Z) ∈ R+
12 where Q is a Metzler matrix (the

non diagonal entries of Q are non-negative).
Thus, Q =

[
Qa Qb

]
with

Qa =



−(k + α+ µ) γp+ β1 σ 0 0

k −(γ + d1 + µ) 0 0 0

α (1− p)γ −(σ + µ) 0 0

0 0 0 β2 − (δ + ω1 + µ) β2η

0 0 0 δ −(d2 + ω2 + µ)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ω1 ω2

0 0 0 0 0

0 0 0 0 0


,

and
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Qb =



0 β1 0 0 0 β1

0 0 0 0 0 0

0 0 0 0 0 0

β2 β2 β2 0 ηβ2 0

0 0 0 ϕ 0 0

−M ψγ θ1 0 0 0

ε −P 0 0 0 0

θ2 (1− ψ)φγ −(θ1 + θ3 + ω5 + µ) 0 0 0

ω3 ω4(1− φ) ω5 −(ϕ+ µ) ω6 ω7

0 0 θ3 0 −(ω6 + d2 + µ) τ

(σ1 + δ1) ψ1 0 0 0 −(ω7 + d3 + τ + µ)


.

The non diagonal entries of Q, are non-negative.

G(X,Z) = QZ −G∗(X,Z),

where G∗(X,Z) =



β1(1− S
N

)[I +HI + AI ]

0

0

β2(1− S
N

)[H +HE +HL +HI + ηAI + ηAL]

0

0

0

0

0

0

0



.

Since 0 ≤ S ≤ N , then G∗(X,Z) ≥ 0 and the model (5.1) is GAS.

5.3.11 EEP of HIV-TB model

The EEP of (5.1) occurs when TB and HIV/AIDS co-infection persist in the community. This can
be calculated by as follows.
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dS
dt

= π − (λH + λT + µ)S = 0,

dE
dt

= λTS + γpI + σL− (k + α + ε1λH + µ)E = 0,

dI
dt

= kE − (γ + ε2λH + d1 + µ)I = 0,

dL
dt

= (1− p)γI + αE − (σ + λH + µ)L = 0,

dH
dt

= λH(S + L)− (θλT + δ + ω1 + µ)H = 0,

dA
dt

= δH + ϕT − (ω2 + ωλT + µ+ d2)A = 0,

dHE
dt

= ε1λHE + θλTH + ψγHI + θ1HL − (ε+ ω3 + θ2 + σ1 + δ1 + µ)HE = 0,

dHI
dt

= ε2λHI + εHE − (ψγ + (1− ψ)φγ + (1− φ)ω4 + ψ1 + µ+ d1)HI = 0,

dHL
dt

= (1− ψ)φγHI + θ2HE − (θ1 + θ3 + ω5 + µ)HL = 0,

dT
dt

= ω1H + ω2A+ ω3HE + ω4(1− φ)HI + ω5HL + ω6AL + ω7AI − (ϕ+ µ)T = 0,

dAL
dt

= τAI + θ3HL − (ω6 + µ+ d2)AL = 0,

dAI
dt

= (σ1 + δ1)HE + ψ1HI + ωλTA− (ω7 + µ+ d3 + τ)AI = 0.

(5.21)

If we let λT∗ = β1[I∗+HI∗+AI∗]
N

and λH∗ = β2[H∗+HE∗+HL∗+HI∗+η(A∗+AL∗)]
N

, then we get:
S∗ = π

(λT∗+λH∗+µ)
, E∗ = λT∗S∗+γpI∗+σL∗

k+α+ε1λH∗+µ
, I∗ = k E∗

γ+ε2λH∗+d1+µ
, L∗ = (1−p)γI∗+αE∗

σ+λH∗+µ
,

H∗ = λH∗(S∗+L∗)
θλT∗+δ+ω1+µ

, A∗ = δH∗+ϕT∗
ω2+ωλT∗+µ+d2

,, HE∗ = ε1λH∗E∗+θλT∗H+ψγHI∗+θ1HL∗
ε+ω3+θ2+σ1+δ1+µ

,
HI∗ = ε2λH∗I∗+εHE∗

ψγ+(1−ψ)φγ+(1−φ)ω4+ψ1+µ+d1
, HL∗ = (1−ψ)φγHI∗+θ2HE∗

θ1+θ3+ω5+µ
,

T∗ = ω1H∗+ω2A∗+ω3HE∗+ω4(1−φ)HI∗+ω5HL∗+ω6AL∗+ω7AI∗
ϕ+µ

, AL∗ = τAI∗+θ3HL∗
ω6+µ+d2

,
AI∗ = (σ1+δ1)HE∗+ψ1HI∗+ωλT∗A∗

ω7+µ+d3+τ
.

Thus, the EEP of HIV-TB co-epidemics model is symbolized by:
E∗ = (S∗, E∗, I∗, L∗, H∗, HE∗, HL∗, HI∗, T∗, A∗, AL∗, AI∗).

Lemma 7 A unique endemic equilibrium point E∗ exist if R0 > 1 .

Proof:
If the disease is endemic in the community, then ∃ t∗ > 0 such that dE(t∗)

dt
> 0, dI(t

∗)
dt

> 0, dL(t∗)
dt

>

0, dH(t∗)
dt

> 0, dA(t∗)
dt

> 0, dHE(t∗)
dt

> 0, dHI(t∗)
dt

> 0, dHL(t∗)
dt

> 0, dT (t∗)
dt

> 0, dAL(t∗)
dt

> 0 and
dAI(t∗)
dt

> 0. Thus, keeping the state variables E, I, L,H,A,HE, HI , HL, T, AL and AI at t∗, the
system (5.1) becomes:
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dE
dt

= λTS + γpI + σL− (k + α + ε1λH + µ)E > 0,

dI
dt

= kE − (γ + ε2λH + d1 + µ)I > 0,

dL
dt

= (1− p)γI + αE − (σ + λH + µ)L > 0,

dH
dt

= λH(S + L)− (θλT + δ + ω1 + µ)H > 0,

dA
dt

= δH + ϕT − (ω2 + ωλT + µ+ d2)A > 0,

dHE
dt

= ε1λHE + θλTH + ψγHI + θ1HL − (ε+ ω3 + θ2 + σ1 + δ1 + µ)HE > 0,

dHI
dt

= ε2λHI + εHE − (ψγ + (1− ψ)φγ + (1− φ)ω4 + ψ1 + µ+ d1)HI > 0,

dHL
dt

= (1− ψ)φγHI + θ2HE − (θ1 + θ3 + ω5 + µ)HL > 0,

dT
dt

= ω1H + ω2A+ ω3HE + ω4(1− φ)HI + ω5HL + ω6AL + ω7AI − (ϕ+ µ)T > 0,

dAL
dt

= τAI + θ3HL − (ω6 + µ+ d2)AL > 0,

dAI
dt

= (σ1 + δ1)HE + ψ1HI + ωλTA− (ω7 + µ+ d3 + τ)AI > 0.

(5.22)

Now, from the first three equations of (5.22), we have
(k + α + ε1λH + µ)E < λTS + γpI + σL,

(γ + ε2λH + d1 + µ)I < kE,

(σ + λH + µ)L < (1− p)γI + αE.

(5.23)

From the fact that S
N
≤ 1. Thus (5.23) can gives:

(k + α + µ)E < β1I + γpI + σL,

(γ + d1 + µ)I < kE,

(σ + µ)L < (1− p)γI + αE.

(5.24)

Next, adding the first and the third equation of (5.24) simultaneously to eliminate the term L, we
get the following results.

((k + α + µ)(σ + µ)− ασ)E < ((β1 + γp)(σ + µ) + σ(1− p)γ)I,

(γ + d1 + µ)I < kE.
(5.25)

Thus, the system (5.25), gives the following result.
(k+α+ µ)(γ + d1 + µ)(σ+ µ)−ασ(γ + d1 + µ)− kσγ + kσpγ − kpγµ− kαγp < kβ1(σ+ µ).
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⇒ (k + α + µ)(γ + d1 + µ)(σ + µ) − ασ(γ + d1 + µ) − kσγ − kpγµ − kαγp < kβ1(σ + µ).

⇒ 1 < kβ1(σ+µ)
(k+α+µ)(γ+d1+µ)(σ+µ)−ασ(γ+d1+µ)−kσγ−kpγµ−kαγp = RT .

⇒ RT > 1.
This indicated that a unique EEP exists if R0 = max{RH , RT} > 1.

5.3.12 Bifurcation analysis

Now, we used centre manifold theory to analysis the nature of bifurcation at the point R0 = 1.

To apply this technique, the next shifts of variables are made.
Let S = x1, E = x2, I = x3, L = x4, H = x5, A = x6, HE = x7, HI = x8, HL = x9, T =

x10, AL = x11, and AI = x12.
Thus, the system (5.1) becomes:

dx1
dt

= π − (λH + λT + µ)x1,

dx2
dt

= λTx1 + γpx3 + σx4 − (k + α + ε1λH + µ)x2,

dx3
dt

= kx2 − (γ + ε2λH + d1 + µ)x3,

dx4
dt

= (1− p)γx3 + αx2 − (σ + λH + µ)x4,

dx5
dt

= λH(x1 + x4)− (θλT + δ + ω1 + µ)x5,

dx6
dt

= δx3 + ϕx10 − (ω2 + ωλT + µ+ d2)x6,

dx7
dt

= ε1λHx2 + θλTx5 + ψγx8 + θ1x9 − (ε+ ω3 + θ2 + σ1 + δ1 + µ)x7,

dx8
dt

= ε2λHx3 + εx7 − (ψγ + (1− ψ)φγ + (1− φ)ω4 + ψ1 + µ+ d1)x8,

dx9
dt

= (1− ψ)φγx8 + θ2x7 − (θ1 + θ3 + ω5 + µ)x9,

dx10
dt

= ω1x5 + ω2x6 + ω3x7 + ω4(1− φ)x8 + ω5x9 + ω6x11 + ω7x12 − (ϕ+ µ)x10,

dx11
dt

= τx12 + θ3x9 − (ω6 + µ+ d2)x11,

dx12
dt

= (σ1 + δ1)x7 + ψ1x8 + ωλTx6 − (ω7 + µ+ d3 + τ)x12,

(5.26)

where λT = β1[x3+x8+x12]
N

and λH = β2[x5+x7+x8+x9+η(x6+x11)]
N

.

The Jacobian matrix J of (5.26) at DFEP is already articulated.
J(π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

[
J1 J2

]
, with
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J1(ε0) =



−µ 0 −β1 0 −β2 −β2η

0 −(k + α+ µ) γp+ β1 σ 0 0

0 k −(γ + d1 + µ) 0 0 0

0 α (1− p)γ −(σ + µ) 0 0

0 0 0 0 β2 − (δ + ω1 + µ) β2η

0 0 0 0 δ −(d2 + ω2 + µ)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ω1 ω2

0 0 0 0 0 0

0 0 0 0 0 0



,

J2(ε0) =



−β2 −(β2 + β1) −β2 0 −β2η −β1

0 β1 0 0 0 β1

0 0 0 0 0 0

0 0 0 0 0 0

β2 β2 β2 0 ηβ2 0

0 0 0 ϕ 0 0

−M ψγ θ1 0 0 0

ε −P 0 0 0 0

θ2 (1− ψ)φγ −(θ1 + θ3 + ω5 + µ) 0 0 0

ω3 ω4(1− φ) ω5 −(ϕ+ µ) ω6 ω7

0 0 θ3 0 −(ω6 + d2 + µ) τ

(σ1 + δ1) ψ1 0 0 0 −(ω7 + d3 + τ + µ)



.

Hereafter, we calculate the right eigenvectors of J(ε0) symbolized by:
u = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12)T corresponding to zero eigenvalue as follows.
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[
J1(ε0) J2(ε0)

]



u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12



=



0

0

0

0

0

0

0

0

0

0

0

0



. (5.27)

Equation (5.27) becomes;

−µu1 − β1u3 − β2u5 − β2ηu6 − β2u7,

−(β2 + β1)u8 − β2u9 − β2ηu11 − β1u12 = 0,

−(k + α + µ)u2 + (γp+ β1)u3 + σu4 + β1u8 + β1u12 = 0,

ku2 − (γ + d1 + µ)u3 = 0,

αu2 + (1− p)γu3 − (σ + µ)u4 = 0,

(β2 − (δ + ω1 + µ))u5 + β2ηu6 + β2u7+

β2u8 + β2u9 + ηβ2u11 = 0,

δu5 − (d2 + ω2 + µ)u6 + ϕu10 = 0,

−Mu7 + ψγu8 + θ1u9 = 0,

εu7 − Pu8 = 0,

θ2u7 + (1− ψ)φγu8 − (θ1 + θ3 + ω5 + µ)u9 = 0,

ω1u5 + ω2u6 + ω3u7 + ω4(1− φ)u8 + ω5u9 − (ϕ+ µ)u10 + ω6u11 + ω7u12 = 0,

θ3u9 − (ω6 + d2 + µ)u11 + τu12 = 0,

(σ1 + δ1)u7 + ψ1u8 − (ω7 + d3 + τ + µ)u12 = 0.

(5.28)

Solving system (5.28) we get
u1 = −(β1u3+β2u5+β2ηu6+β2u7+(β2+β1)u8+β2u9+β2ηu11+β1u12

µ ).
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u2 = (γp+β1)u3+σu4+β1u8+β1u12
(k+α+µ) .

u3 = ku2
(γ+d1+µ) .

u4 = αu2+(1−p)γu3
(σ+µ) .

u5 = β2ηu6+β2u7+β2u8+β2u9+ηβ2u11
(δ+ω1+µ)−β2 .

u6 = δu5+ϕu10
(d2+ω2+µ) .

u7 = ψγu8+θ1u9
M .

u8 = εu7
P .

u9 = θ2u7+(1−ψ)φγu8
(θ1+θ3+ω5+µ) .

u10 = ω1u5+ω2u6+ω3u7+ω4(1−φ)u8+ω5u9+ω6u11+ω7u12
(ϕ+µ) .

u11 = θ3u9+τu12
(ω6+d2+µ) .

u12 = (σ1+δ1)u7+ψ1u8
(ω7+d3+τ+µ) .

Again, the left eigenvectors of J(ε0) symbolized by v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)T

is calculated likes below.
Y (π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

[
Y1 Y2

]
, with

Y1(ε0) =



−µ 0 0 0 0 0

0 −(k + α+ µ) k α 0 0

−β1 γp+ β1 −(γ + d1 + µ) (1− p)γ 0 0

0 σ 0 −(σ + µ) 0 0

−β2 0 0 0 β2 − (δ + ω1 + µ) δ

−β2η 0 0 0 β2η −(d2 + ω2 + µ)

−β2 0 0 0 β2 0

−(β2 + β1) β1 0 0 β2 0

−β2 0 0 0 β2 0

0 0 0 0 0 ϕ

−β2η 0 0 0 ηβ2 0

−β1 β1 0 0 0 0



,
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Y2(ε0) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ω1 0 0

0 0 0 ω2 0 0

−M ε θ2 ω3 0 (σ1 + δ1)

ψγ −P (1− ψ)φγ ω4(1− φ) 0 ψ1

θ1 0 −(θ1 + θ3 + ω5 + µ) ω5 θ3 0

0 0 0 −(ϕ+ µ) 0 0

0 0 0 ω6 −(ω6 + d2 + µ) 0

0 0 0 ω7 τ −(ω7 + d3 + τ + µ)



.

Thus

[
Y1(ε0) Y2(ε0)

]



v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12



=



0

0

0

0

0

0

0

0

0

0

0

0



. (5.29)

Equation (5.29) becomes;
−µv1 = 0⇒ v1 = 0, v2 = kv3+αv4

(k+α+µ) , v3 = γp+β1v2+(1−p)γv4
(γ+d1+µ) , v4 = σv2

σ+µ ,

v5 = δv6+ω1v10
(δ+ω1+µ)−β2 , v6 = β2ηv5+ω2v10

d2+ω2+µ , v7 = β2v5+εv8+θ2v9+ω3v10+(σ1+δ1)v12
M ,

v8 = β1v2+β2v5+ψγv7+(1−ψ)φγv9+ω4(1−φ)v10+ψ1v12
P , v9 = β2v5+θ1v7+ω5v10+θ3v11

θ1+θ3+ω5+µ ,

v10 = ϕv6
ϕ+µ , v11 = ηβ2v5+ω6v10

ω6+d2+µ , v12 = β1v2+ω7v10+τv11
ω7+d3+τ+µ .



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 131

Now, we need to calculate the bifurcation constants a and b using the formula:
a =

∑n
k,i,j=1 vkuiuj

∂2fk
∂xi∂xj

(ε0), and b =
∑n

k,i=1 vkui
∂2fk
∂xi∂βr

(ε0), for r = 1 or 2 in [CCS04], where
n is the number of compartments, and fi = dxi

dt
for i = 1, 2, 3, ..., 12 (5.26).

Hence, ∂2f2
∂x3∂x1

= ∂2f2
∂x8∂x1

= ∂2f2
∂x12∂x1

= β1
N ,

∂2f2
∂x5∂x2

= ∂2f2
∂x7∂x2

= ∂2f2
∂x8∂x2

= ∂2f2
∂x9∂x2

=

− ε1 β2N ,
∂2f2
∂x6∂x2

= ∂2f2
∂x11∂x2

= −ε1η β2N ,

∂2f3
∂x5∂x3

= ∂2f3
∂x7∂x3

= ∂2f3
∂x8∂x3

= ∂2f3
∂x9∂x3

= −ε2 β2N ,
∂2f3
∂x6∂x3

= ∂2f3
∂x11∂x3

= −ε2η β2N ,

∂2f4
∂x5∂x4

= ∂2f4
∂x7∂x4

= ∂2f4
∂x8∂x4

= ∂2f4
∂x9∂x4

= −β2
N ,

∂2f4
∂x6∂x4

= ∂2f4
∂x11∂x4

= −η β2N ,

∂2f5
∂x5∂x4

= ∂2f5
∂x7∂x4

= ∂2f5
∂x8∂x4

= ∂2f5
∂x9∂x4

= β2
N ,

∂2f5
∂x6∂x4

= ∂2f5
∂x11∂x4

= η β2N ,

∂2f5
∂x5∂x1

= ∂2f5
∂x7∂x1

= ∂2f5
∂x8∂x1

= ∂2f5
∂x9∂x1

= β2
N ,

∂2f5
∂x6∂x1

= ∂2f5
∂x11∂x1

= η β2N ,

∂2f5
∂x3∂x5

= ∂2f5
∂x8∂x5

= ∂2f5
∂x12∂x5

= −θβ1N ,

∂2f6
∂x3∂x6

= ∂2f6
∂x8∂x6

= ∂2f6
∂x12∂x6

= −ω2
β1
N ,

∂2f7
∂x5∂x2

= ∂2f7
∂x7∂x2

= ∂2f7
∂x8∂x2

= ∂2f7
∂x9∂x2

= εβ2N ,
∂2f7
∂x6∂x2

= ∂2f7
∂x11∂x2

= ηεβ2N ,

∂2f7
∂x3∂x5

= ∂2f7
∂x8∂x5

= ∂2f7
∂x12∂x5

= θβ1N ,

∂2f8
∂x5∂x2

= ∂2f8
∂x7∂x2

= ∂2f8
∂x8∂x2

= ∂2f8
∂x9∂x2

= ε2
β2
N ,

∂2f8
∂x6∂x2

= ∂2f8
∂x11∂x2

= ηε2
β2
N ,

∂2f12
∂x3∂x6

= ∂2f12
∂x8∂x6

= ∂2f12
∂x12∂x6

= ω β1
N .

Then a = v2u1u3
β1
N

+ v2u1u8
β1
N

+ v2u1u12
β1
N

+ v2u2u5
−ε1β2
N

+ v2u2u7
−ε1β2
N

+ v2u2u8
−ε1β2
N

+

v2u2u9
−ε1β2
N

+v2u2u6
−ηε1β2
N

+v2u2u11
−ηε1β2
N

+v3u3u5
−ε2β2
N

+v3u3u7
−ε2β2
N

+v3u3u8
−ε2β2
N

+v3u3u9
−ε2β2
N

+

v3u3u6
−ηε2β2
N

+v3u3u11
−ηε2β2
N

+v4u4u5
−β2
N

+v4u4u7
−β2
N

+v4u4u8
−β2
N

+v4u4u9
−β2
N

+v4u4u6
−ηβ2
N

+

v4u4u11
−ηβ2
N

+v5u4u5
β2
N

+v5u4u7
β2
N

+v5u4u8
β2
N

+v5u4u9
β2
N

+v5u4u6
ηβ2
N

+v5u4u11
ηβ2
N

+v5u1u5
β2
N

+

v5u1u7
β2
N

+v5u1u8
β2
N

+v5u1u9
β2
N

+v5u1u6
ηβ2
N

+v5u1u11
ηβ2
N

+v5u5u3
−θβ1
N

+v5u5u8
−θβ1
N

+v5u5u12
−θβ1
N

+

v6u6u3
−ω2β1
N

+v6u6u8
−ω2β1
N

+v6u6u12
−ω2β1
N

+v7u5u3
θβ1
N

+v7u5u8
θβ1
N

+v7u5u12
θβ1
N

+v12u6u3
ωβ1
N

+

v12u6u8
ωβ1
N

+ v12u6u12
ωβ1
N

+ v7u2u5
εβ2
N

+ v7u2u7
εβ2
N

+ v7u2u8
εβ2
N

+ v7u2u9
εβ2
N

+ v7u2u6
εηβ2
N

+

v7u2u11
εηβ2
N

+ v8u2u5
ε2β2
N

+ v8u2u7
ε2β2
N

+ v8u2u8
ε2β2
N

+ v8u2u9
ε2β2
N

+ v8u2u6
ε2ηβ2
N

+ v8u2u11
ε2ηβ2
N

.
We considered the case when RT > RH i.e., R0 = RT and R0 = 1. Choose β1 = β∗1 as the



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 132

bifurcation parameter.
Now, b =

∑n
k,i=1 vkui

∂2fk
∂xi∂β1

(ε0) = v2u3 + v2u8 + v2u12

= v2(u3 + u8 + u12) > 0.

Again, a = (v2u1− v6u6ω2− v12u6ω)(u3 + u8 + u12)β1
N

+ ∆β2
N

(u5 + u7 + u8 + u9 + η(u6 + u11)),
where ∆ = −v2u2 − v3u3ε2 − v4u4 − v5u5 + v5u1 + v5u4 + v7u5θ + v7u2ε + v8u2ε2. Since u1 is
negative and the sign of a is determined by the sign of ∆.
As a result, the model (5.1) displays forward or backward bifurcation at R0 = 1 in keeping with
the sign of ∆.

5.4 Model with optimal control

We used the following four (two preventive and two controlling) efforts.

1. The preventive effort of TB disease, u1(t), implies the effort of protecting susceptible indi-
viduals from becoming infectious. The mechanisms such as health educational campaigns
and early detection as well as isolation of infectious individuals are associated with u1(t).

2. The preventive effort of HIV/AIDS disease, u2(t), implies the effort of protecting contact-
ing susceptible from HIV/AIDS infected individuals. The mechanisms such as HIV/AIDS
educational campaign and early detection of HIV infected individuals are associated with
u2(t).

3. The case finding for TB disease (u3(t)). The effort, u3(t), illustrates the screening and then
treatment of high- risk latent TB. The risk that TB infection will progress to TB disease is
greatly reduced by treatment of latent TB. Since finite groups are at a high risk of growing
TB disease once infected. This effort is a key mechanism for a TB control strategy.

4. The treatment effort for HIV/AIDS disease (u4(t) ). This strategy, u4(t), refers to treating
HIV infected people with Antiretroviral Therapy (ART). This can decrease the individuals
infectiousness level by reducing their viral load and helping them to recapture their immunity
to obtain a better life. This treatment can also curtail HIV-TB co-infection rate.

Thus incorporating the above strategies in the model (5.1), we get the following optimal control
model of HIV-TB co-epidemics.



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 133



dS
dt

= π − ((1− u2)λH + (1− u1)λT + µ)S,

dE
dt

= (1− u1)λTS + γpI + σL− (k + α + ε1λH + µ)E,

dI
dt

= kE − (γ + ε2λH + d1 + µ)I,

dL
dt

= (1− p)γI + αE − (σ + λH + µ)L,

dH
dt

= (1− u2)λHS + λHL− (θλT + δ + ω1(1 + u4) + µ)H,

dA
dt

= δH + ϕT − (ω2(1 + u4) + ωλT + µ+ d2)A,

dHE
dt

= ε1λHE + θλTH + ψγHI + θ1HL − (ε+ ω3(1 + u4)+

θ2(1 + u3) + σ1 + δ1 + µ)HE,

dHI
dt

= ε2λHI + εHE − (ψγ + (1− ψ)γφ+ (1− φ)ω4(1 + u4)+

ψ1 + µ+ d1)HI ,

dHL
dt

= (1− ψ)φγHI + θ2(1 + u3)HE − (θ1 + θ3 + ω5(1 + u4) + µ)HL,

dT
dt

= ω1(1 + u4)H + ω2(1 + u4)A+ ω3(1 + u4)HE + ω4(1 + u4)(1− φ)HI+

ω5(1 + u4)HL + ω6(1 + u4)AL + ω7(1 + u4)AI − (ϕ+ µ)T,

dAL
dt

= (τ)AI + θ3HL − (ω6(1 + u4) + µ+ d2)AL,

dAI
dt

= (σ1 + δ1)HE + ψ1HI + ωλTA− (ω7(1 + u4) + µ+ d3 + τ)AI .

(5.30)

The optimal controls are defined in the set U = {ui(t) : 0 ≤ ui(t) ≤ 1, 0 ≤ t ≤ T}, where
i = 1, 2, 3, 4.
Let the objective function be expressed as [PRL+15, BLVDL14]:

J(t) =

∫ tf

0

[b1HE(t) + b2HI(t) + b3HL(t) + b4AL(t) + b5AI(t) +
1

2

4∑
i=1

ciu
2
i (t)]dt, (5.31)

where b1, b2, b3, b4, and b5 are the cost associated with a number of HE, HI , HL, AL, and AI com-
partments respectively, whereas ci, i = 1, 2, 3, 4 are the costs of executing the strategies from u1 up
to u4 respectively [Mar15]. We have taken a quadratic form for determining the cost of interven-
tion [MO11, OMT13].
Thus, we try to find the optimal controls u∗1, u

∗
2, u
∗
3, and u∗4 satisfying:

J(u∗1, u
∗
2, u
∗
3, u
∗
4) = min {J(u1, u2, u3, u4)|(u1, u2, u3, u4) ∈ U}, where U is the set expressed

above.

Theorem 25 (Existence of solutions). There exists an optimal control u∗1(t), u∗2(t), u∗3(t), u∗4(t) and
solutions (S, E, I , L, H , A, HE , HI , HL, AL, T,AI) such that the function J(ui(t)), i = 1, 2, 3, 4
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over U . For given these optimal solutions, there exist adjoint variables, λ1(t), ..., λ12(t), satisfying.

dλ1
dt = (1− u1)(λ1 − λ2)β1(I+HI+AI)

N + (1− u2)(λ1 − λ5)β2(H+HE+HI+HL+η(A+AL))
N ,

dλ2
dt = λ2(k + α+ µ)− λ3k − λ4α+ (λ2 − λ7)ε1(β2(H+HE+HI+HL+η(A+AL))

N ),

dλ3
dt = (1− u1)(λ1 − λ2)β1SN − λ2γp+ λ3(γ + ε2

β2(H+HE+HI+HL+η(A+AL))
N + d1 + µ)

−λ4(1− p)γ + θβ1H
N (λ5 − λ7) + ωβ1A

N (λ6 − λ12),

dλ4
dt = −λ2σ + λ4(σ + µ) + (λ4 − λ5)β2(H+HE+HI+HL+η(A+AL))

N ,

dλ5
dt = λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN − σλ6 − λ7θ(
β1(I+HI+AI)

N )− λ10ω1(1 + u4),

dλ6
dt = λ1(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7) + ε2

ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5)

+λ5(1− u2)ηβ2SN + λ6(d2 + µ) + (λ6 − λ10)ω2(1 + u4) + (λ6 − λ12)ω(β1(I+HI+AI)
N ),

dλ7
dt = −b1 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + λ7(ε+ µ) + (λ7 − λ9)θ2(1 + u3)+

(λ7 − λ10)ω3(1 + u4) + (λ7 − λ12)(σ1 + δ1),

dλ8
dt = −b2 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + λ6
ωβ1A
N + (λ8 − λ7)ψγ + λ8(1− ψ)γφ+

ψ1(λ8 − λ12) + (λ8 − λ10)ω4(1 + u4)(1− φ),

dλ9
dt = −b3 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + (λ9 − λ7)θ1 + (λ9 − λ11)θ3 + (λ9 − λ10)ω5(1 + u4) + λ9µ,

dλ10
dt = −λ6ϕ+ λ10(ϕ+ µ),

dλ11
dt = −b4 + λ1(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7) + ε2

ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5)

+λ5(1− u2)ηβ2SN + (λ11 − λ10)ω6(1 + u4) + λ11(d2 + µ),

dλ12
dt = −b5 + (λ1 − λ2)(1− u1)ηβ1SN + (λ1 − λ5)(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7)+

ε2
ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5) + (λ5 − λ7) θβ1ηHN + λ6)ωβ1ηAN + (λ12 − λ10)ω7(1 + u4)

+(λ12 − λ11)(τ) + λ12(d3 + µ),

(5.32)

with the transversality conditions λi(tf ) = 0, i = 1, 2, 3, ..., 12. Moreover, we get the control set

(u∗1(t), u∗2(t), u∗3(t), u∗4(t)) characterized by:

u∗1(t) = max{0,min(1, u∗1)}, u∗2(t) = max{0,min(1, u∗2)},
u∗3(t) = max{0,min(1, u∗3)}, u∗4(t) = max{0,min(1, u∗4)}; where

u∗1 = β1S(λ2−λ1)(I+HI+AI)
c1N

, u∗2 = β2S(λ5−λ1)(H+HE+HI+HL+η(A+AI)
c2N

,

u∗3 = (λ7−λ9)θ2HE
c3

, and

u∗4 = (λ5−λ10)ω1H+(λ6−λ10)ω2A+(λ7−λ10)ω3HE+(λ8−λ10)ω4(1−φ)HI+(λ9−λ10)ω5HL+(λ11−λ10)ω6AL+(λ12−λ10)ω7AI
c4

.

Proof:
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Look the following three conditions are verified thanks to Fleming and Rishel’s theorem.

1. The set of solutions of (5.30) and the associated control variables in U is non-empty.

2. The system of (5.30) is a linear combination of control functions with coefficients are state
functions or functions depending of time.

3. The integrand L in (5.31) becomes L(x, u, t) = b1HE(t) + b2HI(t) + b3HL(t) + b4AL(t) +

b5AI(t)+ 1
2

∑4
i=1 ciu

2
i (t) is convex on U and it also fulfills L(x, u, t) ≥ δ1 | (u1, u2, u3, u4) |β

−δ2, where δ1 > 0 and β > 1 .

Firstly to proof 1, we mentioned to [CL55, GCF+08]. In fact if the solutions of (5.30)–(5.31) are
bounded and Lipschitz, then they are unique.
Thus N(t) also bounded above by π

µ
and below by N0 6= 0. Here, each compartment in N(t) is

bounded. In that case the state variables are bounded and continuous. Hence, this displays that
there is the boundedness of the partial derivatives with respect to the state variables with in the
system [Cod12].
This accomplishes that proof 1 holds.
Secondly, 2 is confirmed by simply looking the state equations which are linear combinations of
the controls ui, for i = 1, 2, 3, 4.
Lastly to verify condition 3, we refer to [BP12,Ped06] any constant, linear and quadratic functions
are convex. Hence, L(x, u, t) is convex on U . Hereafter, to prove the boundedness on L, as shown
below.
c3u

2
3 ≤ c3, since u3 ∈ [0, 1].

⇒ 1
2c3u

2
3 ≤ c3

2 ⇒
1
2c3u

2
3 − c3

2 ≤ 0.
Then L(x, u, t) = b1HE(t)+b2HI(t)+b3HL(t)+b4AL(t)+b5AI(t)+

1
2

∑4
i=1 ciu

2
i (t) ≥

1
2

∑4
i=1 ciu

2
i − c3

2 ,
⇒ L(x, u, t) ≥ min(c12 ,

c2
2 ,

c3
2 ,

c4
2 )(u2

1 + u2
2 + u2

3 + u2
4)− c3

2 ,
⇒ L(x, u, t) ≥ min(c12 ,

c2
2 ,

c3
2 ,

c4
2 ) || (u1, u2, u3, u4) ||2 −c3

2 .
Therefore, L(x, u, t) ≥ δ1 || (u1, u2, u3, u4) ||β −δ2, where δ1 = min(c12 ,

c2
2 ,

c3
2 ,

c4
2 ),

δ2 = c4
2 and β = 2.

By using PMP [PM86], we found a Hamiltonian (H) stated as:
H(S,E, I, L,H,A,HE, HI , HL, AL, T, AI , u, t) = L(x, u, t) + λ1

dS
dt + λ2

dE
dt +

λ3
dI
dt +λ4

dL
dt +λ5

dH
dt +λ6

dA
dt +λ7

dHE

dt +λ8
dHI

dt +λ9
dHL

dt +λ10
dT
dt +λ11

dAL
dt +λ12

dAI
dt ,

where λi, i = 1, 2, ..., 12 are the co-state variables.
We refereed [FR82] to show the existence of optimal control pairs.
In addition to this, we applied the next procedure to show the system (5.32) and optimal control
functions .
The Hamiltonian function H is described by:
H = b1HE(t) + b2HI(t) + b3HL(t) + b4AL(t) + b5AI(t) + 1

2
(c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4) + λ1[π−
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((1−u2)λH +(1−u1)λT +µ)S]+λ2[(1−u1)λTS+γpI+σL− (k+α+ ε1λH +µ)E]+λ3[kE−
(γ+ ε2λH + d1 +µ)I] +λ4[(1− p)γI +αE− (σ+λH +µ)L] +λ5[(1−u2)λHS+λHL− (θλT +

δ + ω1(1 + u4) + µ)H] + λ6[δH + ϕT − (ω2(1 + u4) + ωλT + µ+ d2)A] + λ7[ε1λHE + θλTH +

ψγHI + θ1HL− (ε+ω3(1 +u4) + θ2(1 +u3) +σ1 + δ1 +µ)HE] +λ8[ε2λHI + εHE − (ψγ+ (1−
ψ)γφ + (1− φ)ω4(1 + u4) + ψ1 + µ + d1)HI ] + λ9[(1− ψ)φγHI + θ2(1 + u3)HE − (θ1 + θ3 +

ω5(1 + u4) +µ)HL] +λ10[ω1(1 + u4)H +ω2(1 + u4)A+ω3(1 + u4)HE +ω4(1 + u4)(1−φ)HI +

ω5(1 + u4)HL +ω6(1 + u4)AL +ω7(1 + u4)AI − (ϕ+µ)T ] + λ11[(τ)AI + θ3HL− (ω6(1 + u4) +

µ+ d2)AL] + λ12[(σ1 + δ1)HE + ψ1HI + ωλTA− (ω7(1 + u4) + µ+ d3 + τ + u4)AI ].
Hereafter, the second condition of the PMP sates that, ∃ adjoint variables λi, i = 1, 2, ..., 12 which
fulfill the next equalities.

dλ1
dt = −dH

dS , dλ2
dt = −dH

dE ,
dλ3
dt = −dH

dI ,
dλ4
dt = −dH

dL ,
dλ5
dt = − dH

dH , dλ6
dt = −dH

dA , dλ7
dt = − dH

dHE
, dλ8

dt = − dH
dHI

,
dλ9
dt = − dH

dHL
, dλ10

dt = −dH
dT ,

dλ11
dt = − dH

dAL
, dλ12

dt = − dH
dAI

.
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We obtained the result of these derivations like below:

dλ1
dt = (1− u1)(λ1 − λ2)β1(I+HI+AI)

N + (1− u2)(λ1 − λ5)β2(H+HE+HI+HL+η(A+AL))
N ,

dλ2
dt = λ2(k + α+ µ)− λ3k − λ4α+ (λ2 − λ7)ε1(β2(H+HE+HI+HL+η(A+AL))

N ),

dλ3
dt = (1− u1)(λ1 − λ2)β1SN − λ2γp+ λ3(γ + ε2

β2(H+HE+HI+HL+η(A+AL))
N + d1 + µ)

−λ4(1− p)γ + θβ1H
N (λ5 − λ7) + ωβ1A

N (λ6 − λ12),

dλ4
dt = −λ2σ + λ4(σ + µ) + (λ4 − λ5)β2(H+HE+HI+HL+η(A+AL))

N ,

dλ5
dt = λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN − σλ6 − λ7θ(
β1(I+HI+AI)

N )− λ10ω1(1 + u4),

dλ6
dt = λ1(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7) + ε2

ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5)

+λ5(1− u2)ηβ2SN + λ6(d2 + µ) + (λ6 − λ10)ω2(1 + u4) + (λ6 − λ12)ω(β1(I+HI+AI)
N ),

dλ7
dt = −b1 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + λ7(ε+ µ) + (λ7 − λ9)θ2(1 + u3)+

(λ7 − λ10)ω3(1 + u4) + (λ7 − λ12)(σ1 + δ1),

dλ8
dt = −b2 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + λ6
ωβ1A
N + (λ8 − λ7)ψγ + λ8(1− ψ)γφ+

ψ1(λ8 − λ12) + (λ8 − λ10)ω4(1 + u4)(1− φ),

dλ9
dt = −b3 + λ1(1− u2)β2SN + ε1

β2E
N (λ2 − λ7) + ε2

β2I
N (λ3 − λ8) + β2L

N (λ4 − λ5)

+λ5(1− u2)β2SN + (λ9 − λ7)θ1 + (λ9 − λ11)θ3 + (λ9 − λ10)ω5(1 + u4) + λ9µ,

dλ10
dt = −λ6ϕ+ λ10(ϕ+ µ),

dλ11
dt = −b4 + λ1(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7) + ε2

ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5)

+λ5(1− u2)ηβ2SN + (λ11 − λ10)ω6(1 + u4) + λ11(d2 + µ),

dλ12
dt = −b5 + (λ1 − λ2)(1− u1)ηβ1SN + (λ1 − λ5)(1− u2)ηβ2SN + ε1

ηβ2E
N (λ2 − λ7)+

ε2
ηβ2I
N (λ3 − λ8) + ηβ2L

N (λ4 − λ5) + (λ5 − λ7) θβ1ηHN + λ6)ωβ1ηAN + (λ12 − λ10)ω7(1 + u4)

+(λ12 − λ11)(τ) + λ12(d3 + µ),

(5.33)

with the final conditions λi(tf ) = 0, i = 1, 2, 3, ..., 12.
By optimality conditions we get:

dH
du1
|u1=u∗1= 0, dH

du2
|u2=u∗2= 0,

dH
du3
|u3=u∗3= 0, dH

du4
|u4=u∗4= 0.

So, u∗1 = β1S(λ2−λ1)(I+HI+AI)
c1N

, u∗2 = β2S(λ5−λ1)(H+HE+HI+HL+η(A+AI))
c2N

,

u∗3 = (λ7−λ9)θ2HE

c3
and
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u∗4 = (λ5−λ10)ω1H+(λ6−λ10)ω2A+(λ7−λ10)ω3HE+(λ8−λ10)ω4(1−φ)HI+(λ9−λ10)ω5HL

c4
+

(λ11−λ10)ω6AL+(λ12−λ10)ω7AI
c4

.
These results can be expressed in U likes below.

u1(t) =


0, if u∗1 ≤ 0

u∗1, if 0 < u∗1 < 1

1, if u∗1 ≥ 1

, u2(t) =


0, if u∗2 ≤ 0

u∗2, if 0 < u∗2 < 1

1, if u∗2 ≥ 1

,

u3(t) =


0, if u∗3 ≤ 0

u∗3, if 0 < u∗3 < 1

1, if u∗3 ≥ 1

, u4(t) =


0, if u∗4 ≤ 0

u∗4, if 0 < u∗4 < 1

1, if u∗2 ≥ 1

.

5.5 Numerical simulations

Till now, the TB-HIV co-infection model with or without optimal control is analysed analytically.
Here, we will discuss the numerical results to confirm our analytical findings. It also gives a clear
image about the involvement of control functions on the disease transmission dynamics. We shall
propose two or more intervention strategies at a time to minimize both the disease and the cost
burden.
Hence, we will execute this section based on the initial value of each compartment and values of
parameters. The populations in classes E = 1.19 × 106, I = 3.73 × 105, and L = 2.18 × 107,
collected from National TB and Leprosy strategic plan in Ethiopia [vvv22]. Again, we estimated
H =890 311, A= 305 770, HE = 213 451, HI = 250 853, HL = 290 008, T = 1 253 420, AL =

207 457, AI = 120 598 collected from Federal health ministry of Ethiopia, WHO annual report,
and CDC.
The susceptible people is obtained by S = N − (E+ I +L+H+A+HE +HI +HL +AL +AI)

where N=102 468 037, then S = 75 573 169. The recruitment people enter to class S is calculated
by π = b×N , where the birth rate b =30.97 /1 000 . Hence, the value π =3 173 435.1 .
Some of the parameters in model (5.1) are estimated via similar technique with in Chapter 3. We
presented the value of the parameters in Table [5.2] as well as we fixed the time duration of our
study as tf = 10 years.
In addition, we assessed the value of the coefficient parameters (b1 = 0.65, b2 = 0.55, b3 =

0.28, b4 = 1, and b5 = 1.72) depend on the way of constants found in [MLV16]. Furthermore,
we assumed that the value of weight constants based on the importance level of one intervention
over the other. These are c1 = 104, c2 = 104, c3 = 2× 104, and c4 = 2× 104. Some data may also
taken as just for numerical purpose. Nevertheless, obtaining sufficient data about the vital elements
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Parameters Values References Parameters Values References
π 3.1734× 106 Calculated β2 0.18 [AGM21]
β1 0.00151 [cgt21b] φ 0.701 Assumed
µ 0.0058 Estimated σ 0.0013 [KMW19]
θ 0.3 Estimated γ 0.546 [KMW19]
ε1 0.004 [vvv22] ε2 0.001 Calculated
ε 0.5 Calculated d2 0.016 Estimated
p 0.168 [cgt21b] δ 0.62 Estimated
d1 0.0003 [vvv22] d3 0.002 [Yoh21]
α 0.153 Calculated k 0.023 Estimated
ω 1.17 [ST15] σ1 0.015 Estimated
δ1 0.03 Estimated θ1 0.0026 Assumed
ψ 0.336 Assumed θ2 0.153 Estimated
ψ1 0.88 [Mer20] ϕ 0.08 Assumed
τ 0.6 Estimated θ3 0.1 Estimated
η 1.05 [KO11] ω4, ω7 0.4 Estimated
ω3 0.302 Estimated ωi, i = 1, 2, 5, 6 0.2 Estimated

Table 5.2: Symbols and values of parameters.

of the TB-HIV/AIDS co-infection model is one big challenge of this study.
We used MATLAB software to validate the analytical results. Here, we discussed the features
of state trajectories with or without control. The control profiles of each strategy are also plot-
ted. We propose four strategies based on the suggested intervention approaches. They designed as
combination of two or more strategies at a time. However, only one intervention at a time is not
effective [AGM21]. Thus, we have seen these strategies can highly minimize TB-HIV co-infection
disease in our country Ethiopia and the elaborations are continuing in the next part.

5.5.1 Preventive effort of TB disease and treatment of HIV/AIDS disease

We used prevention of TB disease combined with HIV/AIDS treatment as an alternative interven-
tion strategy (i.e.ui 6= 0, for i = 1, 4 ,whereas u2 = 0, and u3 = 0 ). The plot (A-E) of Figure
(5.2–5.4) illustrates the impact of this optimal approach on HIV/AIDS-TB co-infected individuals.
This strategy can be used to decreases the number of low risk latent TB individuals co-infected by
HIV with pre-AIDS and AIDS symptoms dramatically rather than without control.
As shown in the Figure (5.2)- A and B, If no optimal control is applied, the co-infected individ-
uals in HL and AL classes increased at the beginning of the year and reached at a peak value at
3.2999× 105 and 3.1217× 105 respectively. Hereafter, the disease burden decreased significantly.
However, in case of optimal control the prevention effort has an impact on individuals under HL

class, because it reduces the high risk latent individuals. In addition, the more co-infected people
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are moved to the treated class due to HIV treatment.
In Figure (5.3)-C, when no optimal control is used the co-infectious people decreased in HI class
due to the influence of constant treatment ratew4 for HIV and successful TB treatment rate of 1−ψ.
Conversely, in Figure (5.3)-D, the co-infectious people increased at the beginning of the years and
reached at a peak value 1.5322× 104. Hereafter, the disease burden decreased significantly. This is
because more TB infected people co-infected with HIV completed their TB treatment at a constant
rate τ and with constant HIV treatment rate w7 . However, the time-based optimal approach seems
negligible in the HI compartment but later one can observe its impact. This combination strategy
has a high effect on the co-infected people by active TB and HIV with AIDS symptoms. This
shows, the prevention effort can minimize the susceptible individuals become TB infected. Conse-
quently, individuals will decrease from high-risk latent stage progress to active stage. Additionally,
the more co-infectious people are joined to treated class due to HIV treatment.
In Figure (5.4)-E, when no optimal control is used the co-infected people decreased in HE class
due to the influence of constant treatment rate w3 for HIV and treatment rate of high risk latent TB
θ2. Nevertheless, when optimal control is used the disease burden decreased rather than without
control. The impact of this strategy is visible around five years but seems negligible after a while.
Therefore, this strategy can minimize/eradicate the HIV-TB co-infection disease burden in our
country, Ethiopia.

5.5.2 Preventive effort of HIV/AIDS disease and case finding TB

We used prevention of HIV/AIDS disease combined with case finding effort of TB as optimal
intervention (i.e.ui 6= 0, for i = 2, 3 , whereas u1 = 0, and u4 = 0). The plot (A-E) of Figure
(5.5–5.7) illustrates the impact of this optimal approach on HIV/AIDS-TB co-infected individuals.
As shown in the Figure (5.5)- A and B, if no time-based control is used, the co-infected individual
in HL and AL increased at the beginning of the year. The disease burden decreased dramatically
after a while. Nevertheless, in case of optimal control, the co-infected individuals in these two
sub-classes are not decreased more as compared from the first strategy. Since, there are more
HIV-infected people who have recovered from TB but remain low-risk latent due to case-finding
effort. Hence, the co-infected populations in the HL class are increased and reached a peak value
3.6876 × 105. Conversely, the optimal strategy seems negligible for the first around 1 year in AL
class but it shows a significant influence far ahead.
In Figure (5.6)-C, the impact of optimal control strategy seems negligible in theHI class but it has a
visible impact to some extent. While, in Figure (5.6)-D, the co-infected people in AI compartment
are raised for the first few months and reached a high value 1.5322 × 105. Afterwards, the co-
infected individuals in AI class decreased radically.



CHAPTER 5. A CO-INFECTION MODEL OF HIV AND TB DISEASES 141

In Figure (5.7)-E, the co-infected people inHE class are decreased when optimal control is used. In
this compartment, the influence of this strategy is better than the first approach. Since, the number
of HIV people co-infected with TB at a high-risk latent stage are decreased more because of case-
finding effort.
Hence, this strategy can minimize/eradicate the HIV-TB co-infection disease burden.

5.5.3 Case finding for TB disease and HIV treatment

We used case finding for TB disease combined with HIV/AIDS treatment as elective optimal con-
trol (i.e.ui 6= 0, for i = 3, 4, whereas u1 = 0, and u2 = 0). The plot (A-E) of Figure (5.8 –5.10)
illustrates the impact of this optimal approach on HIV/AIDS-TB co-infected individuals. Each plot
shows that the model with and without optimal control plays a great role to minimize the disease
burden.
In the Figure (5.8)- A, the numerical results displayed that this strategy is better than the second
strategy due to HIV treatment effort. The disease burden seems raised at the first of a few months,
but decreased intensely later. The optimal strategy is more effective approach on the co-infected
class AI as shown in the Figure (5.8)- B. The graphical result shows the combination optimal ap-
proach can reduce the disease load effectively.
In Figure (5.9)-C, one can observe that this combination optimal control has enhanced the impact
on the co-infected class HI rather than the second strategy. The same effect is shown in the sub-
population AI (5.9)-D. For the reason that, the more co-infected people are moved to the treated
class as a result of HIV treatment effort.
In Figure (5.10)-E, the number of co-infected people in HE class are reduced when optimal control
is used. In this class, the effect of this strategy is also better than the first approach.
Thus, the optimal control of case finding effort of TB and HIV/AIDS treatment has great impact to
reduce the disease burden.

5.5.4 Using all the intervention efforts

We used all intervention efforts optimally as an alternative mechanism ( i.e.ui 6= 0, for i = 1, 2, 3, 4

). The plot (A-E) of Figure (5.11) –(5.13) displays the effect of this approach on HIV/AIDS TB
co-infected people. All graphical results show that the model with and without optimal control
plays a great role to minimize the disease burden. The effect of this mechanism on co-infected
individuals seems like to the third strategy, but the visible differences appear on the cost needed for
implementation. This will be discussed in the cost-effectiveness section.
The control profiles that generate this simulation result are as shown in the Figure (5.13) (F). Figure
(F) displays that, the pink color of the trajectory u1 is concealed by the cyan color of the trajectory
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u2. The control plots u1 and u2 display the maximum efforts required for the entire duration.
The control plot u3 shows that high case-finding for TB is needed for the first around 1 year and
extremely reduced later. The control plot u4 shows high treatment of HIV is required for around
7.8 year and reduced after a while. Finally, all controls are dropped to zero due to the proposed
strategies being expected to be over at the end of the time forecast.

Figure 5.2: Infected individuals in HL and AL class when applying combined efforts of prevention
of TB and treatment of HIV/AIDS optimally.

5.6 Cost-effectiveness analysis

Here, we presented the cost-effectiveness rank of one implemented strategy over the other. We
achieved this by (Baba and Makinde, 2014); they had declared that
Incremental Cost-Effectiveness Ratio (ICER)= Difference in costs between strategies

Difference in health effects between strategies .
We get the total number of infected averted which is the difference between the total infected
without and with control. We applied this technique by ranked increasing order of effectiveness
with respect to infected averted. Besides, the total cost is also mentioned in Table [5.3].
We compare the strategy of B and C by computing the ICER:

ICER(B) = 6.0870×106

9.661×105 = 6.3 and ICER (C)= 8.6911×106−6.0870×106

1.0603×106−9.661×105 =
27.64.
The comparison displayed that ICER(C) > ICER(B), which shows that strategy C is strongly
dominated and does not consume limited resource.
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Figure 5.3: Infected individuals in HI and AI class when applying combined efforts of prevention
of TB and treatment of HIV/AIDS optimally.

Figure 5.4: Infected individuals in HE class when applying combined efforts of prevention of TB
and treatment of HIV/AIDS optimally.

Hence, we should remove strategy C from the set of choices.
Next, we compare strategy B and D.
Already we calculated ICER(B) = 6.3 ICER(D) = 1.7715×107−6.0870×106

1.0613×106−9.661×105 =
122.14.
The comparison showed that strategy D is more costly and less effectiveness than strategy B. Hence,
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Figure 5.5: Infected individuals in HL and AL class when applying combined efforts of prevention
of HIV/AIDS and case finding TB optimally.

Figure 5.6: Infected individuals in HI and AI class when applying combined efforts of prevention
of HIV/AIDS and case finding TB optimally.

we should remove strategy D from the set of alternatives.
Finally, we compare strategy B and A.
Now, ICER(A) = 1.2038×107−6.0870×106

1.0616×106−9.661×105 = 62.314.
This implies that, we should remove strategy A from alternative approaches.
Therefore, strategy B is the most cost-effective strategy rather than the rest choices.
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Figure 5.7: Infected individuals in HE class when applying combined efforts of prevention of
HIV/AIDS and case finding TB optimally.

Figure 5.8: Infected individuals inHL andAL class when applying combined efforts of case finding
TB and HIV treatment optimally.

Plans Description Total infected averted Total cost (USD)
B Preventive of HIV & case finding TB 9.661× 105 6.0870× 106

C Case finding TB & HIV treatment 1.0603× 106 8.6911× 106

D All interventions 1.0613× 106 1.7715× 107

A Preventive of TB & HIV treatment 1.0616× 106 1.2038× 107

Table 5.3: Total infected averted (increasing order) and total cost.
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Figure 5.9: Infected individuals in HI and AI class when applying combined efforts of case finding
TB and HIV treatment optimally.

Figure 5.10: Infected individuals in HE class when applying combined efforts of case finding TB
and HIV treatment optimally.
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Figure 5.11: Infected individuals in HL and AL class when applying all strategies optimally.

Figure 5.12: Infected individuals in HI and AI class when applying all strategies optimally.
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Figure 5.13: Infected individuals in HE class when applying all strategies optimally and control
profiles.



Chapter 6

Conclusions, future work and
recommendations

6.1 Conclusions

Mathematical models play a vital role in exploring infectious diseases. They are founded on cer-
tain plausible assumptions. In the absence of sufficient epidemiological data, models are required
to produce some evidence for future disease situations and possibility of interventions. Epidemic
models are very crucial to study contagious diseases because the statistical analysis with repeated
trials is infeasible in outbreak settings and randomized controlled trials of diseases are logically
challenging.
In this study, new mathematical models have been developed in order to explore the transmission
dynamics of HIV/AIDS, tuberculosis and their co-dynamics in Ethiopia. Tuberculosis (TB) and
HIV/AIDS are still serious diseases in Ethiopia. Their co-evolution is also a danger which is highly
expanded in the country. If one is infected by co-epidemics, one infection accelerates the rate of
infection of the other and vice versa. This burden is a cause in Ethiopia which means having health
and economic challenges. Thus, we expect that a lot of new research findings would be incorpo-
rated into the body of knowledge. This study addressed mathematical models and its exploration
for each disease dynamics. In each model optimal control theory is well explored. This theory helps
to find an optimal control for these infectious diseases over a given period of time. The proposed
models with or without optimal control are analyzed analytically and numerically. Additionally,
the cost-benefit analysis is incorporated to ensure the optimal resource utilization. The models and
its analysis are summarized in the following way.
In chapter 3, we described and proposed a deterministic HIV/AIDS model, which considers undiag-
nosed infectious people (who transfer the disease fast and easily) as one big challenge in Ethiopia.
On the basis of the SIA model, our formulated model is also founded on aware and unaware sus-
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ceptible individuals. In Ethiopia, the two classes (undiagnosed infected and unaware susceptible
people) have great contributions to disease transmission. The function of recruitment campaign
f(M from unaware susceptible to aware susceptible and the function g(M) from aware to un-
aware are incorporated in the model. We discussed numerous qualitative properties of the model
such as positivity of the solution, feasible region, stability of equilibrium points, and possibility of
bifurcation. The DFE point is locally asymptotically stable when the control reproduction num-
ber (Re < 1) and unstable when Re > 1, whereas the endemic equilibrium point is stable when
Re > 1 and does not exist otherwise. The model has a bifurcation at Re = 1. The type of bi-
furcation is forward which is confirmed by the sign of a and b formulated by Castillo-Chaveze
and Song [CCS04]. The occurrence of this type of bifurcation justifies that the two equilibrium
points does not co-exist. This shows there is an exchange of stability at Re = 1. In this model,
the sensitivity analysis of the control reproduction number has been carried out. As a result, Re is
most sensitive to the parameters β1, a1, a2, ε, η1, and η2. Hence, increasing these parameters would
raise the value Re, consequently, the expansion of disease transmission. However, increasing the
parameters ρ, k, γ, σ, d, and µ would reduce the value of Re when keeping others constant. This
shows us HIV treatment rate, screening rate, proportion rate to infectious stage, and death rate have
an inversely proportional relationship with Re. In addition, the model is extended to an optimal
control model via incorporated control variables such as preventive, screening, and treatment. The
adjoint variables and the optimality controls are derived from Hamiltonian, which is a combination
of optimal control problem and integrand parts of cost function. The numerical results are investi-
gated by considering two intervention strategies at a time and finally applying all the three control
variables using classical forward Runge-Kutta method of order four (FRK4-method) using MAT-
LAB software. This showed that combinations of optimal control strategies greatly helps to reduce
the number of unaware susceptible, undiagnosed infectious, diagnosed infectious, and diagnosed
infectious with AIDS symptoms. Moreover, these strategies can also reduce the cost burden. Using
the ICER metric, we assessed which combination of approaches is the most cost effective in the
fight against HIV/AIDS. We observed that the combination of preventive and screening strategies
at a time is the best cost effective strategy.
In chapter 4, we formulated a new tuberculosis (TB) model from [WCJ11] considering drug re-
sistance TB transmission dynamics. The model is analyzed analytically and the model properties
like positivity of the solution, stability nature of equilibria points, and probability of bifurcation are
discussed. The model has two control reproduction numbers R1 and R2. The value R1 is when
only drug sensitive TB infectious people are responsible for the disease transmission and R2 is
when only drug resistant TB infectious individuals are responsible for the disease transmission.
The two equilibra (DFE and EE) points are calculated. The nature of stability of equlibra points is
determined by the condition of the reproduction index R0 = max{R1, R2}. The DFE point is both
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locally and globally asymptotically stable if R0 < 1 and unstable if R0 > 1, whereas the EE point
is both locally and globally asymptotically stable if R0 > 1. A bifurcation occurred in the model
at R0 = 1. The type of bifurcation is forward due to the value of a < 0 and b > 0 [CCS04]. The
sensitivity analysis of the model suggest that, an increase in β1, β2, a1, a2, θ and φ has the greatest
effect on rising the value of R1 or R2. However, an increase in ε, γ, ρ, δ, σ, d1, d2, and µ has the
greatest effect on reducing the value of R1 or R2. Hence, an increment in the parameter which has
negative sensitivity indices would result reduce the reproduction index R0 = max{R1, R2}. Based
on the sensitivity result, the model is developed further in to a new model with optimal control. The
model incorporated control variables such as prevention, case finding, and case holding for both
drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB). The existence of an optimal control
solution is presented using [FR12] and the necessary condition for an optimal pair is determined
by the PMP [PM86]. To validate the analytical results, the model with and without optimal control
is investigated numerically. In the numerical simulation, we used MATLAB software similar to
the HIV/AIDS model. The numerical analysis shows that the four proposed strategies (prevention
and case finding, prevention and case holding, case holding and case finding, and all three strate-
gies) at a time reduce the disease burden. Throughout the simulation, coupling of optimal control
schemes significantly helps to minimize the number of high risk latent (E1), high risk latent (E2),
drug sensitive TB (I), and drug resistance TB ( ID) people. Likewise, the cost function is high at the
beginning of the year and continues constantly for years subject to the suggested approach. This
function is decreased left before dropping to zero. Furthermore, the cost-effectiveness analysis is
carried out. The analysis suggest that, the combination of case-finding and case-holding strategies
at a time is the best cost-effective mechanism.
In chapter 5, we developed the new TB-HIV co-infection model by coupling HIV/AIDS (suscepti-
ble, HIV infection with and without AIDS symptoms, and treating individuals from HIV infection)
with the TB model [WCJ11]. The model is expressed by a system of first order differential equa-
tions by 12 state variables. We discussed the points such as positivity of the solution, stability of
equilibria points, and bifurcation analysis. We calculated the control reproduction numbers RH for
the HIV sub-model and RT for the TB sub-model. The reproduction index R0 of the co-dynamics
model is addressed by R0 = max{RH , RT}. The number R0 determined the stability region of
DFE and EE points of the HIV-TB co-infection model. At the threshold value (R0 = 1), the bi-
furcation can be forward or backward governed by the sign value of a [CCS04]. Furthermore,
the model is extended to a new TB-HIV co-epidemics model by taking into account time-based
controlling efforts such as TB disease prevention (u1), HIV disease prevention (u2), TB disease
case-finding (u3), and HIV/AIDS treatment (u4). The technique used to analyze this optimal model
is also similar to the preceding models discussed so far. We proposed four coupling strategies in
the co-infection model and analyzed numerically. The result suggest that all strategies can reduce



CHAPTER 6. CONCLUSIONS, FUTURE WORK AND RECOMMENDATIONS 152

the co-infected individuals within HE , HI , HL, AL, AI classes. Likewise, these interventions can
also decrease the cost burden. Additionally, using the ICER metric, the best proposed method is
identified. As a result, combining HIV/AIDS prevention efforts with TB case finding at a time is
the most cost-effective strategy to curtail the co-dynamics disease.
Generally, in this study, the concept of optimal control theory plays a vital role to identify the best
optimal measure to control the disease burden. All the results found in each model have signifi-
cant public health lessons. As a result, they can predict the outcomes of tuberculosis, HIV/AIDS,
and their co-evolution. Moreover, the study will help to fight against HIV/AIDS, TB, and their
co-infection by policy-makers, NGOs, and other concerned organizations.

6.2 Future work

As HIV/AIDS, TB and their co-dynamics are continuously living; then several extraordinary stud-
ies will be claimed. Based on the models’ result in the thesis and the limitations appeared, we
propose the following few areas for further research.

♠ Expanding each model via considering immigrants, thus assessing their role on each disease
dynamics.

♠ The vertical transmission of HIV could be studied based on the HIV/AIDS formulated model
in the thesis.

♠ Integrating the vaccination cohort could be explored for the TB disease model.

♠ All developed models in our study are not exhaustive. COVID-19 disease dynamics could be
investigated due to the fact that it can emerge with all diseases discussed in the thesis.

6.3 Recommendations

Nowadays, controlling the transmission of a communicable disease is challenging. This actual
problem needs multidimensional study. Investigating epidemic diseases from a mathematical point
of view can address remarkable notions about the disease situation and public health policies. In
this study, the diseases TB, HIV/AIDS and their co-epidemics are well explored. Controlling these
diseases is challenging in a country with limited resource like Ethiopia. This thesis recommends
to government policy makers or stakeholders to increase the implementation of prevention efforts
like health educational campaigns, screening or diagnosis tests, and follow-up the patients to com-
plete their treatment. Likewise, an integrative intervention strategy is suggested for TB- HIV co-
infection. Early screening is a best suggestion for everyone that shows symptoms timely qualm
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towards such diseases.
Ever since identifying and forecasting the best cost-effective intervention strategy is the primary
goal of policy makers and healthy sector administrators. Interdisciplinary research between healthy
experts and mathematicians is highly recommended. A professional healthy worker can provide a
framework for complex phenomena. It is very important for a mathematical modeler to construct a
model and confirm its validity.
As a big challenge of our study, we suggest that all infectious diseases data should be collected
and well-organized in most health institutions such as regional health bureau, federal ministry of
health, and further WHO. The well-organized data can solve the researchers’ difficulties as well as
the health ministry to manage the disease in time. Despite all its limitations, the models provided
valuable information and insights for choosing the proper intervention with available costs.
Finally, the thesis recommends that more emphasis should be given to mathematical modelling of
infectious diseases.
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