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Abstract

Studies or experiments involving three or more factors, each having both fixed and random

levels, usually require the use of linear mixed models on treatments arranged in completely

randomised design (CRD), randomised complete block design (RCBD), or any other design.

These scenarios require analysts to be more accurate when measuring some of the effects of

factors. When independent factors have a dichotomous composition in factor levels (either

fixed or random effects) two issues that need careful attention immediately emerge: (i) the

assumed linear mixed model under the partitioning approach will involve a design matrix that

is either a full-rank or less-than-full-rank form, (ii) the approach leaves the partitioned data

subsets vulnerable to outlier contamination, which might subsequently compromise the level of

accuracy and precision of the selected partitioned models. Traditional statistical approaches

have to be reoriented in order to extract all the variations in the data sufficiently. This study

builds upon the partitioning approach by Njuho and Milliken (2005, 2009), and extends the

concept to the case of contaminated linear mixed model estimation (Koller and Stahel, 2011),

and the issue of characterising treatment effect variation (Dixon, 2016; Ding et al., 2019) in

various experimental designs that involve three or more factors, each having both fixed and

random levels. The robustlmm package, available in the Comprehensive R Archive (CRAN),

was used to robustly fit linear mixed models when considerably little outlier contamination

exists in the data set. To circumvent the tedious process of creating partitions of experimental

data based on targeted factor levels (data scrapping), a SAS code was proposed for generating

partitioned and combined analyses. The partitioning approach effectively offered alternative

ways of getting more accurate estimation and analysis of fixed effects and variance components

in the case of a non-full-rank design matrix scenario by considering the partitioned and com-

bined analysis of experimental data based on the targeted factor level combinations and the

desired inference scope. The study confirmed that the partitioning approach is compatible with

the use of robust estimation methods, which resulted in improved precision in the model esti-

mates. In addition, the partitioning approach was considered for multi-stratum experimental

designs where randomisation at different levels is necessary to achieve better model precision at

different levels of the experiment such as the split-split-plot treatment structure, where all the

three factors, each with both fixed and random levels, are laid in an RCBD. The essence of the

vii



approach was in manipulating the appropriate factor combinations in order to allow for narrow,

intermediate and broad inferential space on the levels of each of the factors as well as their as-

sociated interactions. Furthermore, the approach proved to be useful beyond the fundamental

consideration of homogeneous and uncorrelated error variance in the estimation process of lin-

ear mixed models. In essence, the study provides solutions for regaining the information that

could be lost in various experimental designs if traditional analysis approaches are not improved.

Key Terms:

Linear mixed models; inference space; contaminated linear models; split-split-plot design; com-

pletely randomised design; randomised complete block design; repeated measures design; co-

variance structure; Kronecker product; robust estimation
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Many agronomic and industrial experimentation involve two types of factors, i.e., treatment

factors which are intentionally selected to address research questions, and other factors that

do not directly relate to the main objectives of the experiment but have extraneous variations

which impact the effects of the treatments (Jayalath and Ng, 2018; Stroup et al., 2018). These

experiments often involve factorial designs where two kinds of factor levels combine to influence

the experimental results (Oliveira et al., 2019). In any experimental design in which analysis

of variance (ANOVA) is applied, fixed factors and random factors are technically defined in a

different statistical manner (Janssen, 2012). According to Milliken and Johnson (2009), a factor

is classified as fixed when all of its levels constitute the entire population of possible levels. On

the other hand, when the levels of a factor are a random sample from a large population of

possible levels, the factor is considered a random factor (Jayalath and Ng, 2018). In planned

experiments involving fixed and/or random factors, the analysis of variance procedure plays a

crucial role in the testing of significance of treatment effects. If the two types of factors are

simultaneously used in an experiment, care must be taken to decide when to consider a factor

effect as fixed or random (Yang, 2010).

When constructing a statistical model, the most crucial step begins by clearly defining effects

as either fixed or random. Harrison et al. (2018) supported the idea that classification of

independent factors as fixed or random effects is critical in model construction. The concept

is also essential for studying the estimators’ statistical properties and deciding which inference
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to take. However, the decision to designate an effect as either fixed or random is not an easy

task (Yang, 2010). This decision is informed by how the factor levels are to be selected for the

experiment. One criterion for distinguishing random and fixed effects used in modern linear

model theory is to classify an effect as random if the effect levels are a subset of a population

of effects; otherwise, the effect is fixed (Littell, et al., 2010). Fixed effects are generally defined

as fields whose factor levels represent a set of all possible levels of primary interest such that

the inference is applied only to the entire set of levels in the study. Subsequently, a statistical

model whose factors of primary interest in the treatment structure are assumed to be fixed is

known as a fixed-effects model. A fixed-effects model exists when the entire set of treatment

levels in the study are treated as known constants (Littell et al., 2006), and are the only ones to

which inference is to be made. In this case, the main objective of fitting a fixed-effects model is

to estimate treatment means and establish if treatment differences exist (Stroup et al., 2018).

A random-effects model exists when the treatment levels in the study are a small subset of a

more extensive set of all possible treatment levels. The inferences about treatment means from

a random-effects model are generalisable to all possible treatment levels. However, considering

a factor with too few levels as random suffers the risk of obtaining a highly unreliable estimate

of its variance and covariance parameters due to insufficient information to produce the precise

estimates (Yang, 2010). Stroup and Mulitze (1991) further argued that if a factor has more than

ten levels, it should be considered random, otherwise the most common approach is to consider

the factor as fixed. The primary focus of a random-effects model, in addition to estimating

variance components among random factor levels, is to estimate and to deduce some inference

not only about specific levels in the model, but also the whole set of possible levels from which

the sample was drawn. Random effects are useful for explaining excess variability in the target.

Therefore, effects are defined as fixed if the main interest is in the effects themselves, or random

if the interest extends to the entire population.

Subsequently, a mixed model combines both random and fixed effects in a single model. The

technique of using both fixed and random effects simultaneously in a single analysis is what

defines mixed modelling (Winter, 2013; Pusponegoro et al., 2017; Seltman, 2018). Linear mixed
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models have the essential property of accommodating both fixed and random effects in a single

model in order to estimate the treatment means and covariances of the data. To that effect,

the extent to which a linear mixed model accurately predicts and fits the data depends on

the appropriate classification of fixed and random effects in the model (Pan and Shang, 2018).

Experimental research frequently deals with linear models in which the researcher is concerned

with making comparisons among specific factors, or in some cases, extending the conclusions

beyond the set of specific factors included in the study, thereby introducing the concept of

random factors. One of the significant strengths of linear mixed models in statistical analysis is

that they reduce statistical inference bias, which generally prevails when inappropriate models

are used. According to Runcie and Crawford (2019), the inclusion of random effect terms in

mixed models accounts for specific correlations among observations. However, fitting this mixed

model requires estimating the importance of each random effect. There is a need to determine

the sources of variation in a system rather than simply making specific comparisons in most

cases. The flexibility of a mixed effects model is heplful for analysing data with more than one

source of random variability as well as defining the covariance structure.

The development of Linear Mixed Models (LMMs) or Mixed Linear Models (MLMs) has its

origin in animal breeding (Henderson, 1984), where hybrid factor analysis cases were solved in

nested and crossed data structures. The extension of the concept to other disciplines involving

industrial experiments (McLean et al., 1991), longitudinal data (Molenberghs and Verbeke,

2000), plants, machinery and human subjects (Tan and Nott, 2014; Searle and Gruber, 2017)

followed later with time. In the past decades, researchers have been struggling with how to

analyse experimental data that contain mixed factors when the classical analysis of variance

does not apply. Currently, significant contributions to how experimental designs are built

and analysed when the factors involved are either fixed, random or mixed exist in literature

(Harville, 1978; Ferreira et al., 2017). The strength of the linear mixed modelling approach in

such designs lies in their flexibility and ability to cater for a combined analysis of both fixed and

random effects. Some improvements in statistical software such as the R and SAS has made

data analyses using linear mixed models much easier and more flexible (Littell et al., 2006)

especially for non-independent, hierarchical, longitudinal, or correlated data. These types of
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data are crucial for decision-making purposes, among other things.

Matuschek et al. (2017) noted that linear mixed models (LMMs) have been, for the past decade,

widely used in place of mixed model analyses of variance (ANOVAs) for statistical inferences in

factorial designs. The application of LMMs has brought a number of advantages over ANOVAs.

Some advantages, for example, include better preservation of statistical power (Baayen et al.,

2008) and replacing separate ANOVAs, which eliminates ambiguities of interpretation when

effects are significant in only one of the default ANOVAs. However, setting up a linear mixed

model is different from running an ANOVA model. Harrison et al. (2018) argued that certain

types of data, such as in ecology, often have complex structures that require sophisticated lin-

ear mixed models and interpretation. Selection of a random structure that supports the data

is needed to minimise type I error rate. Matuschek et al. (2017) strongly agreed that model

selection is a highly active research field, which has considerably significant implications on

type I error rate and significance tests in statistics.

Although linear mixed models are a powerful tool, their complexity cannot be underestimated

(Harrison et al., 2018). The application of linear mixed models (LMMs) in various disciplines

which involve experimental or treatment designs, has received considerable attention in litera-

ture. However, it has been discovered that, in some experiments, factors under consideration

might be sharing both fixed and random levels (Njuho and Milliken, 2005). As a result, analysis

of variance in such linear mixed models requires consideration of both fixed and random inter-

cepts as well as their slopes to guard against anti-conservative conclusions. When appropriately

considered, random-effect structure is important because it provides a basis for an appropriate

test of fixed effects, and a valuable source of information on the processes underlying the ef-

fect. While some researchers have made remarkable contributions to this kind of modelling, for

example, one-factor and two-factor linear mixed models with factors that consist of a mixture

of fixed and random levels (Njuho and Milliken, 2005, 2009), the need to explore beyond these

less complicated models has become a desirable aspect.

The current Fourth Industrial Revolution, characterised by complex technological advancement,
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has propelled industries to transform their production and management systems and adopt new

technological innovations. As new technologies are introduced where indigenous technologies

have been in existence, or intervention strategies engaged to boost efficiency, experimental de-

signs involving mixed treatment effects emerge. For example, an on-farm trial in agricultural

experimentation might involve the comparison of effects of irrigation methods, types of fertiliser

and paste control methods. With technological advancement and climatic changes constantly

affecting the farming industry, each of these farming strategies is characterised by new inven-

tions or improvements that are proposed for improved efficiency and production. Farmers are

often found in a situation where they need to compare the class of new technologies against

the several traditional ones that have been in existence before. Such cases are common in

precision farming. This enables the farmer to decide whether they need to replace, upgrade,

or maintain the old farming methods or combine some of the strategies with the newly in-

vented ones. The approach requires one to conceptualise the factors involved as sharing both

fixed (new strategies) and random (traditional strategies). In the production industry, where

different indigenous equipment is in place, the adoption of new machinery might be necessary

to improve production. In this case, the newly introduced technology or machinery is consid-

ered a fixed treatment level, while the existing indigenous equipment constitutes the random

treatment levels. This study focuses on mixed modelling, a technique for combining fixed and

random factors into one analysis, with a particular focus on modelling three or more factors,

each consisting of both fixed and random levels.

1.2 Background

Analysis of variance is a widely used statistical technique built to conduct tests of significance of

treatment effects for planned experiments. The concept of analysis of variance was introduced

by Sir Ronald A. Fisher in the 1920’s, when he was working on the estimation and analysis

of correlations and error variances among and between relatives in agricultural experimental

designs. The concept was developed further by Crump (1946) with an aim to incorporate ran-

dom effects, and their variance component estimates in different varietal experiments. These

variances can be presented as linear combinations of mean squares, contributing to the total

variance estimate involved (Satterthwaite, 1946). Building from Arnold Fisher’s work, an Amer-
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ican statistician and a pioneer in animal breeding, Henderson (1953), introduced the best linear

unbiased estimator (BLUE) of fixed effects and the best linear unbiased predictions (BLUP)

for random effects (Robinson, 1991).

The study by Kackar and Harville (1984) portrays that standard errors associated with the

estimation of fixed and random effects, in conjunction with the use of analysis of variance, are

the basis of other approximations in mixed models. From the first industrial era (1951 to late

1970’s) to the modern era, characterised by competitiveness and globalisation, ANOVA has

been a key component in quality improvement procedures, research projects and other different

types of study ranging from designed experiments, sample surveys, or observational studies. It

has been a vital analysis tool for partitioning variability in experimental data into systematic

fixed factors and/or random factors in statistical modelling.

An effort to express the response variable as the sum of the population parameters of the pre-

dictor variables is the basis of the formation of a linear model. Littell et al. (2006) define a

statistical model as a function that connects the response variable to the predictor variables

under an assumed probability distribution that characterises the random variation affecting the

response variable. A statistical model is characterised by either fixed effects, random effects

or both. Fitting linear mixed models to experimental data requires improved modelling tech-

niques to specify factor effects (Smith and Edwards, 2017), which is important for estimation

of treatment means, variance components, and drawing of inference.

There are a number of precautions that need to be considered when using mixed models to

analyse experimental data. One such important aspect of mixed model analysis that, one has to

be familiar with is the choice of inference space (McLean et al., 1991; Yang, 2010). The scope of

inference depends on how random effects are selected into a predictable function, which leads to

three types of inference space: narrow, intermediate and broad inference scope. (Yang, 2010).

Inference space is classified as "narrow" if inference is applied to certain specific random effects

levels. In contrast, inference applied to the entire set of random effects, including random

interaction effects, is classified as "broad" (McLean et al., 1991). A class of inference scope is
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called "intermediate" when inference is narrow to specific random effects and broad to others.

The accuracy of prediction and inference is determined by the selection of fixed and random

effects in linear mixed models. Through manipulating the random effects involved in a mixed

model, the researcher is flexible in deciding on the space to draw an inference. Inappropriate

specification of the intended inference space results in biased parameter estimates, standard

errors and predictions.

The technique of combining random and fixed effects into one analysis as a means to bypass

some of the problems suffered by the classical analysis of variance (ANOVA) can be traced

back to the 1980s. Literature shows that mixed models are becoming a prevalent feature in

studies involving longitudinal data in medicine, public health, psychology, biology and other

fields (Gad and EL-Zayat, 2018). Boisgontier and Cheval (2016) share the same sentiment that

mixed models provide a better framework for using analysis of variances in current scientific

studies. In order to apply mixed modelling in experimental research, there is a need to establish

whether one is dealing with a design that contains factors that are entirely defined as either

random, fixed, or mixed effects.

Recently, Njuho and Milliken (2005) presented a one-way treatment model structure where a

factor is conceptualised as having both fixed and random effect levels. An example was given

in a farming setup, where new farming strategies, such as newly developed technologies, are

to be considered in determining the production efficiency. The concept was considered for a

balanced one-way treatment structure (factor A, say), with treatments arranged in a completely

randomised design. The proposed linear mixed model for this scenario is given by

yij = µ+ τi + ϵij, i=1,...,a j=1,...,n, (1.1)

where τ1, τ2, ..., τf (f<a) represent the fixed-effect levels and τf+1, τf+2, ..., τa (a=f+r) denote

the random-effect levels of factor A, µ is the overall mean, and yij is the jth observation receiv-

ing the ith treatment, assuming that τf+i ∼ i.i.d N(0, σ2
a), ϵij ∼ i.i.d N(0, σ2

ϵ ) and τf+i and ϵij

are pairwise independent, i=1,2,...,a, j=1,2,...,n.
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In their study, Njuho and Milliken (2009) demontrated the application of mixed model analyses

procedures used in on-farm trials and experiments which usually involve factors that have

hybrid (fixed and random) effects. The concept was extended to a two-way treatment structure

scenario where each factor (say A and B) is made up of fixed and random levels. Analogous

to (1.1), the two-way linear mixed model involving factors A and B is expressed in its general

form:

yijk = µ+ αi + βj + (αβ)ij + ϵijk, i=1,2,...,a j=1,2,...,b k = 1,2,..., n. (1.2)

where α1, α2, ..., αf (f < a) denote the fixed-effect levels of factor A and αf+1, αf+2, ..., αa

(a = fa + ra) are the random-effect levels of factor A. Also β1, β2, ..., βf (f < b) represent

the fixed-effect levels of factor B and βf+1, βf+2, ..., βb (b = fb + rb) are the random-effect

levels of factor B. µ is the overall mean, and yijk is the kth observation receiving the ith treat-

ment of factor A and the jth treatment of factor B. We assume that αf+i ∼ i.i.d N(0, σ2
a);

βf+j ∼ i.i.d N(0, σ2
b ); ϵijk ∼ i.i.d N(0, σ2

ϵ ) and αf+i, βf+j and ϵijk are pairwise independent, i

= 1,2,...,fa + 1, fa + 2,...,a, j = 1,2,...,fb + 1, fb + 2,...,b, k=1,2,...,n.

According to Njuho and Milliken (2009), on-farm trials and experiments often involve factors

consisting of both fixed and random levels. Therefore, modelling these scenarios requires sev-

eral approaches for estimating the fixed effects and variance components.

1.3 Justification

Experimental research common in literature involves factors that are regarded as either fully

fixed or fully random with respect to their levels. According to Harrison et al. (2018), the

ability to correctly specify model predictors as fixed or random effects is key to the modelling

process. However, distinguishing between a fixed and random effect may be a challenging

task. The way fixed and random effects are conceptualised in contemporary factorial designs

has recently shifted (Njuho and Milliken, 2009). In the agricultural and production indus-

tries, the need to develop new strategies, methods and technologies to upgrade or substitute

the indigenous ones in order to increase productivity and efficiency has inspired researchers to
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revisit how treatment factors are structured. The extension of the concept of hybrid factors

(factors made up of a combination of fixed and random levels) is a phenomenon that has to

be studied in depth. This kind of modelling allows for other factor interactions that could

have been ignored in the linear model, yet they contribute to the most desired variation in

treatment effects. The construction of this model results in the estimation of various effects,

testing of homogeneity of variances and hypotheses of interest (Njuho and Milliken, 2005, 2009).

Based on this conceptual framework, this study aims to:

• expand the existing knowledge and techniques in the analysis of linear mixed models

(LMMs) as applied in agriculture, industry and other research fields where new strategies,

methods and technologies are tested and compared against the existing ones.

• promote the use of linear mixed models in complex scenarios involving factors that are

made up of both fixed and random levels.

• serve as a stepping stone and a bridging gap to further research and similar applications

of the analysis of variance techniques in linear models.

1.4 Research Problem

The structure and analysis of linear mixed models with factors that have both fixed and random

levels are not straightforward concepts and, as such, can never be underestimated, especially

in the realm of linear mixed model analysis. The complexity of mixed effects analysis of this

nature has triggered the motivation to bridge the gap by further investigating the ways of ac-

commodating and analysing linear mixed models with three or more factors, each consisting of

both fixed and random levels.

1.5 Objectives

This research aims at unearthing the conceptualisation and procedural aspects involved when

analysing linear mixed models which involve three or more factors, each having both fixed and

random factor levels. This will be achieved by addressing the following objectives:
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(i) construct models for various experimental designs involving three or more factors, each

having both fixed and random levels,

(ii) estimate various fixed effects and provide an estimation of variance components from

different experimental designs,

(iii) estimate approximate standard errors from the variance components of the estimable

functions,

(iv) construct linear mixed models under the influence of considerably low outlier contamina-

tion, and assess its effects on model parameter estimates,

(v) construct linear mixed models, and test appropriate hypotheses in cases where the con-

stant covariance structure of homoscedastic error terms is not appropriate,

(vi) generate simulation samples to establish consistency of the constructed models.

1.6 Layout of the Thesis

Chapter 1 Introduction: This chapter introduced the background, motivation and justifi-

cation of the research problem. A brief overview of the important concepts and aspects that

underpin the development of the new analytical concept was discussed. The bridging gaps in

relation to the existing body of knowledge were identified and briefly discussed.

Chapter 2 Literature review: The chapter will present a review of well-known documented

concepts about linear mixed models. A brief explanation of the theory of linear mixed models,

their assumptions, estimation and approximation of degrees of freedom for standard errors,

testing of hypotheses and their application in research and analysis of experimental designs is

presented.

Chapter 3 Partitioning of factors in linear mixed models: An outline of the method-

ology and techniques used to construct a general linear mixed model is given. The main focus

will be on developing linear mixed models with factors that consist of both fixed and random

factor levels. The work done by Njuho and Milliken (2005, 2009) will be extended to linear
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mixed models with three or more factors in different treatment designs such as the completely

randomised design (CRD), randomised complete block design (RCBD) and split-split-plot de-

sign (SPD). This includes defining the research designs, methodologies and testing of model

assumptions, hypotheses testing, estimation of model parameters and variance components.

Chapter 4 Linear mixed models for contaminated data: Alternative approaches to as-

sessing and detecting outlier contamination in linear mixed models are compared to the classical

approach when relatively little contamination is permitted in the data. The application will

be considered in experimental designs with treatment structures arranged in CRD and RCBD.

Simulation samples are generated to validate the use of the proposed methods.

Chapter 5 Linear mixed models in split-split-plot design: We present the results of

the article (Chaka and Njuho, 2021) published in the International Journal of Agricultural and

Statistical Sciences. Statistical approaches to model construction, testing model assumptions

and statistical analysis procedures for factorial experiments arranged in split-split-plot design

under the condition that factors have fixed and random levels are discussed.

Chapter 6 The partitioning approach in repeated-measures design: We present the

results of the article (Chaka and Njuho, 2022) published in the Stats Journal. The new ap-

proach is extended to linear mixed models in factorial experiments where the elements of the

error vector are unequal and correlated. We consider a repeated measures design with mul-

tiple between-subjects factors where each of these factors has both fixed and random levels.

We present the theories and methodologies that relate to the construction of linear mixed

models, variance components and testing hypotheses, when the default covariance structure of

homoscedastic error terms is inappropriate.

Chapter 7 Extention to multiple factors: In this chapter, the partitioning approach is

extended to a general linear mixed model constructed from balanced or unbalanced data. Sim-

ple algorithms for constructing covariance matrices and sums of squares are suggested. The
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associated concepts of estimable functions, estimability, and variance-covariance structures are

discussed.

Chapter 8 Conclusion, recommendations and future works: The chapter will present

the conclusions derived from the research, specifying the major findings; the limitations of the

study; and the suggested research gaps for future study that the current research could not

fully explore.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A review based on published articles about the theory and application of linear models, con-

struction of linear mixed models (LMMs), estimation of fixed and random effects, inference

space, estimation of standard errors, and hypothesis testing is presented. In addition, a brief

review of the application of LMMs in research is included.

2.2 Developments in Linear Mixed Model (LMMs)

The concept of linear models develops from a basic linear regression model, whose regression

coefficients (also called factors) are either fixed (fixed-effects model) or random (random-effects

model) or a mixture of the two (mixed-effects model). The nature of factors involved in the

model determines the editions of the basic linear regression model. These editions include,

among many others, analysis of variance (ANOVA), analysis of covariance (ANCOVA), and

linear mixed models (LMMs). Scientific research usually involves the construction of an ap-

propriate statistical model that adequately characterises particular relationships or phenomena

(Smith and Edwards, 2017).

Linear mixed models are perhaps the most popular class of models for statistical analysis, which

includes analysis of variance (ANOVA) models of a broad spectrum of areas, such as multilevel,

clustered data, repeated measures, and longitudinal data (Agostinelli and Yohai, 2016; Kuran

and Özkale, 2020). These models are applicable to data that satisfy the normality assump-

tion, making it possible to use of maximum likelihood (ML) principle in parameter estimation

13



(Agostinelli and Yohai, 2016). In other words, the distribution of both random effects and the

within-subject measurement error is commonly assumed to be normal (Aghamohammadi and

Meshkani, 2017). Due to its restrictive nature, the normality assumption usually succumbs to

a lack of robustness against departures from the normal distribution. Confirming the normality

assumption is not an easy task for random effects; hence its suitability becomes questionable

(Ghidey et al., 2004). Thus, more flexible and robust approaches which replace the normality

assumption in linear mixed models have been proposed (Pinheiro et al., 2001; Lachos et al.,

2012; Aghamohammadi and Meshkani, 2017). Furthermore, linear mixed models have a tra-

ditional assumption that fixed-effects variables are observed with neglible error; otherwise, the

ordinary maximum likelihood estimators would become inconsistent (Yavarizadeh et al., 2020).

The use of the method of moments (Cui et al., 2004), among other alternative approaches for

estimation of fixed and random effects parameters, has been suggested (Zhong et al., 2002; Zare

et al., 2012) for cases where the assumption is not satisfied.

Linear models are commonly used tools in the analysis of various experimental and scientific

research in agriculture (Yang, 2010). With the advantage of increased computing power, more

advanced versions of the linear models, such as generalised linear models (GLMs), mixed models

and the Bayesian linear models, have taken centre stage in statistical research. Linear models

are categorised into three classes: fixed, random and mixed effects models. Workable definitions

of these types of linear models were given by Milliken and Johnson (2009).

2.2.1 Fixed-effects Linear Model (FELM)

Searle and Gruber (2017) define fixed effects as the treatments of an experiment upon which

the primary focus is, and no others. In the single-factor model, a factor is characterised by

either fixed or random effects. A general fixed-effect linear model (FELM) in an experiment

without replications is given by:

yij = µ+ αi + ϵij, (2.1)

where yij is the jth response observation in the ith level of the fixed explanatory factor, αi is
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the average effects of the fixed factor involved, µ is the overall mean, and ϵij is the random

error term. The fixed-effects linear model (2.1) is a standard linear regression models if the

factor levels αi’s are regarded as fixed observations of the predictor variable. Factor effects are

called fixed-effects when the αi’s remain the same in each replication of the experiment. The

general assumptions of model (2.1) are that the ∑all i αi = 0 since the mean is µ over all the

treatments, and the residuals (ϵij) are a random sample from a normally distributed population

of errors with mean 0 and variance σ2. Under the fixed-effects analysis model, the main aim of

the experiment is to estimate and compare the treatment means differences if they exist.

2.2.2 Random-effects Linear Model (RELM)

On the other hand, a random-effects model is analogous to (2.1), except that the treatment

levels (αi) are a random sample drawn from a larger population of treatments. In this case,

the treatment effect is a random variable where for any given random sample of treatment

levels, ∑αi = ∑(Ȳi − µ) ̸= 0, while the population of these treatment effects (αi) has mean

0 and variance σ2
α. The main objective of this model is to determine and test the presence of

the additional variance component (rσ2
τ for r replicates), and to estimate its magnitude. The

conclusions can be extended to any scope of interpretation of random effects incorporated into

the predictable function (i.e., the inference space), predetermined by the researcher (McLean

et al., 1991).

2.3 Linear Mixed Model Framework

The mixed model methodology can be traced back to the 1940s. A comprehensive illustration of

the mixed model methodology was developed by Henderson (1984), which included the mixed

model equations, their properties and procedures to estimate the fixed effects as well as the

random effects. Basically, a linear mixed model or simply linear mixed model is an extension

of a linear regression model generated from a continuous response variable being influenced

by one or more factors considered as the predictor variables. A linear mixed model is capa-

ble of accounting for both the between-and within-subject variabilities (Aghamohammadi and

Meshkani, 2017). The inclusion of random effects in linear models is a means to consider the
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within-subject correlation as well as the variability of the response among the different sub-

jects (Martinez and Holian, 2014). Mixed model methodology was first introduced in animal

breeding (Henderson, 1984), and then extended to other disciplines (Searle and Gruber, 2017).

Several authors, notably Harville (1977, 1978), Robinson (1991), and McLean et al. (1991)

contributed to building up and explaining the mixed model procedure further. This approach

can be applied in a variety of experimental designs, such as the split-plot designs, location

experiments, and many more (Stroup and Kachman, 1994).

As proposed by Anderson and McLean (2019), the linear mixed model is written in general

form as

yijkh = µ+ Fi + Fj +Rk + (FF )ij + (FR)ik + (FR)jk + (FFR)ijk + ϵijkh, (2.2)

where i = 1, 2, ..., a and j = 1, 2, ..., b are fixed factor levels of factor A and B, respectively;

k = 1, 2, ..., c are random factor levels of factor C; k = 1, 2, ..., nijk replicates (all nijk = n for

balanced data). The assumptions that have dominated in literature on the model parameters

are that: ∑
Fi = ∑

FRik = 0 over all i; ∑Fj = ∑
FRjk = 0 over all j; Rk ∼ N(0, σ2

R);

FRik ∼ N(0, σ2
F R); FRjk ∼ N(0, σ2

F R); FFRijk ∼ N(0, σ2
F F R); and ϵijkh ∼ N(0, σ2

ϵ ) with all

random effects being pairwise independent. There have been varying opinions concerning the

model assumptions employed in the analysis of mixed models. Wilk and Kempthorne (1955)

strongly emphasised that whenever the analysis of variance is to be utilised in the interpreta-

tion of experimental data, its meaning and justification should transcend the set of arbitrary

assumptions employed.

According to Smith and Edwards (2017), the general linear mixed model for a single response

data is thus expressed in matrix form as

y = Xβ + Zu + ϵ, (2.3)

where y: n × 1 is the response vector (data) of observations; X:n×p is a known fixed-effects

design matrix which links β to y; β : p × 1 is a vector of unknown fixed-effects parameters to

be estimated; Z: n×q is a known incidence matrix of random-effects parameters; u : q × 1 is a
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vector of unobservable random-effects parameters; ϵ is a vector of independent and identically

distributed Gaussian random errors. The term Xβ is the fixed component of the mixed model,

while Zu is the random component of the model.

We assume that E(u) = 0, E(ϵ) = 0, u and ϵ are uncorrelated, i.e Cov(u, ϵ) = 0. It is

also further assumed that V ar(u) = σ2G and V ar(ϵ) = σ2R, where σ2 is an unknown positive

scalar while G (the variance-covariance matrix of the random effects in u) and R (the variance-

covariance matrix of the random error terms in ϵ) are known nonsingular matrices. We have,

E

[
u
ϵ

]
=
[

0
0

]

and

V ar

[
u
ϵ

]
=
[

G 0
0 R

]
σ2,

where G and R are known positive definite matrices which depend on some vector of dispersion

parameters θ, and σ2 is a positive constant (Robinson, 1991). The elements of matrix X are

usually known, but the elements of G, R may be functions of an m×1 vector θ = (θ1, ..., θm)′ of

unknown parameters. The parameter space for β and θ is taken to be {β, θ : β ∈ Ep, θ ∈ Ω},

where Ω is some given subset of Euclidean space Em (Harville, 1977). With, the rank(X)

denoted by p*, where X : n × p∗ is a matrix whose any p* columns are linearly independent,

an unbiased estimator of σ2 as proposed by Harville (1976) is given by:

σ̂2 = (y − Xβ̂)′(R + ZGZ′)−1(y − Xβ̂)/(n− p∗)

= y′R−1(y − Xβ̂ − Zû)/(n− p∗).

For the given mixed model whose structure of Z, G and R is specified, the variance of y is given

by V = V ar(y) = ZGZ′ + R. Depending on the specified structure of Z, G and R, different

models of variance-covariance of the data emerge. The structure of the covariance matrices G

and R depends on the assumptions made on them, which define the subsequent model for the

variance-covariance of the data. For instance, one can specify Z as a matrix of dummy vari-

ables, whereas G is a diagonal matrix of variance components. As indicated by Laird and Ware

(1982), a simple case is that the model (2.3) can be simplified to a "conditional-independence
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model" when R= σ2I since the responses, y, are conditional on β and u.

2.3.1 Heterogeneity Linear Mixed Models

LMMs are developed on the fundamental normality and homogeneous error variance assump-

tions of the random effects among all the subjects (Martinez and Holian, 2014). The presence

of heterogeneity causes variance components to have a bias on the estimation of the whole

linear mixed model, including the fixed effects (Du and Wang, 2020). Several approaches to

relax the strong normality and/or variance homogeneity assumption documented in literature

include the extension of the classical LMM by allowing sampling of random effects from a fi-

nite mixture of normal distributions with a common covariance matrix (Martinez and Holian,

2014), parametric bootstrap approach (Xu et al., 2015), computational approach test (CAT)

for one-way analysis of variance (Mutlu et al. 2017), replacing the traditional least squares

(LS) estimators with the modified maximum likelihood (MML) estimators in the test statistics

(Güven et al., 2019), and nonparametric analysis of variance methods (Luepsen, 2018), among

others.

2.3.2 Estimation of Fixed and Random Effects Parameters

A powerful technique for estimating random effects (also known as predictors) in mixed mod-

els, known by Harville as the Best Linear Unbiased Prediction (BLUP), exists. According to

Robinson (1991), the BLUP estimates are known as the "best" from the fact that they have

minimum mean squared error within the class of linear unbiased estimators; "linear" in the sense

that the estimates of the realised random variables, u, are linear functions of the response data,

y; "unbiased" because the average value of the estimate is equal to the average value of the

quantity being estimated; and the estimates are called "predictors" to differentiate them from

the fixed effects estimators.
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The model (2.3) has expected value of y estimated as

E(y) = E(Xβ + Zu + ϵ)

= Xβ̂

and variance of y estimated by

V ar(y) = V ar(Xβ + Zu + ϵ)

= V ar(Zu + ϵ)

= ZGZT + R

= V

Assuming that (XT V−1X) is nonsingular, (XT V−1X)−1 exists, and that β̂ is estimable, the

maximum likelihood estimate of β, (β̂), is a solution to the equation

XT V−1Xβ̂ = XT V−1y

XT (ZGZT + R)−1Xβ̂ = XT (ZGZT + R)−1y

β̂ = [XT (ZGZT + R)−1X]−1XT (ZGZT + R)−1y

Therefore, the MLE of β is given by

β̂ = (XT V−1X)−1XT V−1y. (2.4)

One of the main objectives of mixed model methodology is to estimate the fixed unknown

parameters β̂ and predict the random variables u in (2.3). When matrices G and R are

known, then the best linear unbiased estimator (BLUE) β̂ and the best linear unbiased predictor

(BLUP) are obtained from (2.3). The estimates of random effects (BLUP) in this model are

derived from the fixed effects estimator (BLUE) by expressing û in the form (Henderson, 1953):

û = CT (y − Xβ̂), (2.5)

where û : q × 1 is a vector corresponding to unobservable random effects, and C is an N × q

matrix. Using the fact that V = ZGZT + R, and covariance between Cov(y,u) = ZG, then

VC = ZG;

C = V−1ZG.
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Thus, the estimator û in (2.5) becomes

û = GZT V−1(y − Xβ̂). (2.6)

Assuming u as fixed in (2.3), an easier alternative approach for obtaining the estimates β̂ and

û, exists (see Appendix A).

In practice, the matrix V is usually very large and non-diagonal, making it difficult to obtain

its inverse V−1. Henderson’s (1953) approach is computationally simpler due to the fact that

neither matrix V nor its inverse V−1 is needed. The only required pieces of information are

matrix R (usually identity) and matrix G (often diagonal). Subsequently, matrix V is either

diagonal or has a large diagonal sub-matrix.

The estimates β̂ and û are known as the mixed model solutions for the fixed and random

effects, respectively. The BLUE of fixed effects (β̂) is unbiased since its expectation is β. The

BLUP of random effects (û), also known as shrinkage estimator (Harville, 1977), has the same

property, with an additional tendency of shrinking the fixed-effects estimates of u towards zero

(McLean et al., 1991). Through matrix operations, (2.4) and (2.6) have been proven to be the

same as ( see 8.1 in Appendix A); hence we express the BLUE and BLUP as,[
β̂
û

]
=
[

(X′V −1X)−1X′V −1y
GZ′V −1(y − Xβ̂)

]
. (2.7)

As shown by Henderson (1975), provided matrix X is of full rank, p, the BLUP estimates in

equation (2.7) have an error variance-covariance matrix given by:

V ar

[
β̂ − β
û − u

]
=
[

XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

]−1

σ2. (2.8)

As the G−1 tends to a zero matrix, β̂ and û from the mixed model equations give the same

result as the one from the generalised least squares solutions when the random components u

are considered as fixed effects (Robinson, 1991). Provided matrices G and R are nonsingular,

the BLUE and BLUP solutions of equation (2.7) can be easily estimated for problems with

both small and large numbers of observations using computer software. There are cases where

G and R are known diagonal matrices, or a combination of G and R being block-diagonals
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which are easily invertible (McLean et al., 1991).

In practice, G and R are not always known. Harville (1976) and Dempster et al. (1981)

proposed the empirical Bayes formulation of the mixed model as an alternative approach to

derive the fixed effects β and random effects u. The approach involves obtaining the estimates,

Ĝ and R̂, and use them in equation (2.9) to obtain empirical BLUE (EBLUE) of β and

empirical BLUP (EBLUP) of u. Thus, the estimation of covariance parameters is usually done

before the BLUE and BLUP estimates, β and u, respectively. Various methods of estimating

the covariance parameters exist (Keele et al., 1991), but the restricted maximum likelihood

(REML) is the most preferred. Henderson (1984) suggested some procedures which can be

used when these variance-covariance matrices are unknown. Most statistical software have

provision for estimating the matrices G and R using the method of moments or, more precisely,

the restricted maximum likelihood (REML) (Stroup and Kachman, 1994). In the case where

G and R matrices are singular, and with the assumption of u and ϵ described earlier on, a

generalised inverse (g-inverse) matrix denoted by C below can be used in (8.1) (Harville, 1976;

Henderson, 1984).

C =
[

XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

]−

(2.9)

McLean et al. (1991) developed an approach to handle mixed linear models based on Gold-

berger’s (1962), Henderson’s (1953, 1984) and Harville’s (1976) approaches in various exper-

imental designs, error structures, balanced and unbalanced data. One of the limitations of

the least squares method when estimating the BLUE is that the inverse of V ar(y) is usually

non-diagonal. The problem can be averted by computing the g-inverse (2.9) and applying the

mixed model procedures (McLean et al., 1991). Laird and Ware (1982) concurred that, from

the marginal likelihood of y after integrating out β and u, the introduction of a flat prior to the

location parameters, β, and the estimate θ yields the restricted maximum likelihood (REML)

estimates of θ. Hence, the estimated means of the posterior distribution are known as the

empirical Bayes estimates of β and u. McLean et al. (1991) demonstrated that, with appro-

priate estimates of variance components, the model (2.3) is a useful tool for either balanced or
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unbalanced data when expressed in the form

y = (X Z)(B U)′ + ϵ, (2.10)

where the order of X:n×p and Z:n×q are determined by the number of effects in the (B U)

vector, B: p×1 is a vector of unknown parameters for the fixed effects to be estimated, U:q×1

is a vector of unobservable random effects, and ϵ : n× 1 is a vector of errors.

2.3.3 Estimation of Variance Components

In experimental designs, the idea of understanding variability and experimental error is of

paramount importance. Identifying and understanding the different sources of experimen-

tal errors is equally important. These errors can be peculiar to the environment, personal

circumstances, or as a result of measurement tool applied (Robinson, 1987). The idea of es-

timating error variation from different sources has been known in different expressions for a

long time. For example, Fisher (1925) termed it "components of variation", some authors call

it "error components", while other authors refer to it as "component of variance". The esti-

mation of the variance components for random effects has been widely documented (Harville,

1977). With known variances and covariances of random effects, or at least their estimates,

mixed model analysis of fixed effects is achievable (Yang, 2010). The total variance-covariance

matrix, V = ZGZ′ + R, consists of a variance-covariance matrix component for the random

effects u where var(u) = G, and the variance-covariance matrix for the random residuals ϵ

with var(ϵ) = R.

Numerous methods of obtaining estimates of variance components exist. According to Laird

and Ware (1982), most of the approaches to the estimation of variance components in literature

are in the context of analysis of variance (ANOVA). In the 1920s, Sir R.A. Fisher developed a

basic procedure for estimating the error variance by equating the mean square for error (MSE)

to its expected value, E(MSE). Thus we have,

E(MSE) = σ2
e , (2.11)
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which subsequently gives, σ̂2
e = MSE. Fisher’s traditional analysis of variance (ANOVA)

procedure was initially designed for fixed effects models, for which F-statistics (named by

Snedecor in honour of Fisher) are used to test the factor effects (Searle and Gruber, 2017).

The approach was fashioned to identify a single source of variation, the error variance, which

amounts to the total error variation (Robinson, 1987). Some important features about the

ANOVA procedure are that:

• the estimators for the variance components are unbiased regardless of whether the data

are normally distributed;

• estimates of variance components require that the data set be balanced, i.e. having equal

cell sizes, or unbalanced, provided the data is classified by only one factor.

The foundational approach for estimating variance components is usually by equating observed

mean squares statistics to the expressions which describe their expected values (Satterthwaite,

1946). In the analysis of variance, estimates of variance components parameters are found by

solving a linear function of the random effects connecting the mean squares in the ANOVA

table to their expected values (Harville, 1977). The average value of any other mean square is

a linear function of the mean squares within subclasses (σ2
ϵ ) and the other variances (Crump,

1946). The ANOVA-based estimates of variance components require that cell sizes be well

balanced, which is often not the case in field studies. ANOVA method provides an integrative

approach to variance effect parameter estimation. However, the ordinary ANOVA estimates of

variance components are generally biased and can be negative, even though, by their definition,

variances must be greater or equal to zero.

Henderson (1953) extended the technique to cater for unbalanced data. These approaches are

popularly known as Henderson’s methods I, II and III. The methods are basically alternative

ways of using the traditional ANOVA approach. The difference in the methods is found on the

quadratics that are analogous to the sum of squares used in the linearly independent quadratic

forms of observations. Other modifications to the traditional ANOVA have been suggested

to cater for unbalanced data (Henderson, 1953; Searle and Gruber, 2017) and find unbiased

estimates of variance components. Robust approaches, such as the maximum likelihood (ML)
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and restricted maximum likelihood (REML) estimators (Hartley and Rao, 1967; Dempster et

al., 1977), which do not demand balancedness in the data were introduced. When data are bal-

anced, these estimators produce the same estimates of variance components as those obtained

from solving appropriate linear functions of mean squares in ANOVA.

The traditional analysis of variance procedure, sometimes known as the conventional least

squares approach, was extended to cater for variance components models (random effects and/or

mixed effects models), which involve random variables and more than one variance. It is

the total sum of these variances, resulting in the variance of the response variable, that is

called variance components. The purpose of finding estimates of variance components in mixed

models is to estimate the contribution of each random effect to the variance of the dependent

variable and determine where to concentrate in order to reduce the variance. Robinson (1987)

highlighted that variance component techniques are useful for three reasons:

• they provide information about the experimental material and variances used in optimi-

sation, programme selection and system evaluation,

• analysis of individual experiments for effectiveness,

• combined information can be extracted from several different experiments or trials.

Alternatives to the traditional ANOVA estimation of variance components include the minimum

norm quadratic unbiased estimation (MINQUE; La Motte, 1971; Rao, 1971) which depends on

some pre-assigned values through extensive algebra to estimate variance components, and the

Minimum Variance Quadratic Unbiased Estimators (MIVQUE; La Motte, 1971; Rao, 1971),

which assumes no assumption about the form of distribution of the response variable, are rel-

atively suitable for unbalanced data when normality is not assumed. If normality is assumed,

MINQUE solution bears the same properties as the MIVQUE solution. The maximum like-

lihood (ML) method (Hartley and Rao, 1967), which is based on maximising the likelihood

function to yield ML estimators of fixed effects and variance components, and the restricted

maximum likelihood (REML) method (Patterson and Thompson, 1971), which provides statis-

tics for the variance components based on maximising only the part of the likelihood which is

invariant to the location (fixed effects) parameter are preferred alternatives over the ANOVA
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approach. The other most widely used estimates of variance components listed by Keele et al.

(1991) include the symmetric differences squared (SDS; Grimes and Harvey, 1980); weighted

SDS (Christian, 1980; Keele and Harvey, 1989); pseudo expectation approach (PE; Schaeffer,

1986); tilde-hat approach (TH; van Raden and Jung, 1988).

Maximum likelihood (ML) approach for estimating variance components was first suggested by

Crump (1946), and further refined by Hartley and Rao (1967). Although the ML approach is

technically tedious, it is conceptually simple since it does not require assumptions concerning

the structure or balance of data. The beauty of the ML approach is that the estimates of vari-

ance components are easily obtained together with the approximate standard errors. One of

the major drawbacks of the ML approach is that all fixed effects are assumed to be known with-

out error, resulting in biased estimates of variance components. According to Patterson and

Thompson (1971, 1975) and Harville (1977), ML estimators are generally biased downwards,

a problem that can be solved by making use of residual maximum likelihood (REML), which

Patterson and Thompson (1971) formally described as a Maximum-likelihood (ML) method

that accounts for the loss of degrees of freedom due to fitting fixed effects. Hence, RELM is

referred to as a restricted version of ML due to its ability to eliminate bias as it maximises

only the portion of likelihood that does not depend on the fixed effects. This makes REML

the preferred method for analysing large data sets with complex structures. Both the ML and

REML methods aim to find the set of parameters which maximises the likelihood of the data

for a given model. In the case of a completely balanced design, the traditional ANOVA and

REML yield the same estimates of variance components.

Most computer statistical packages provide these estimates of variance with ease. For example,

the PROC MIXED statement in SAS provides six options of estimators of G and R through

the METHOD option. The first three methods of moments (MOM) estimators, which are cal-

culated based on Type I, II and III sums of squares, are designated in PROC GLM as TYPE 1,

TYPE 2 and TYPE 3, respectively. In addition, the fourth methods-of-moments estimator is

known as the minimum variance quadratic unbiased (MIVQUE) estimator (Rao, 1971; Swallow

and Searle, 1978), which is used when data is unbalanced. Provided the random effects and
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errors are uncorrelated, MOM estimators are unbiased, and can be easily derived by equating

the observed mean squares to their expected values. The other two are maximum-likelihood

estimators, the restricted maximum likelihood (REML) (Patterson and Thompson, 1971) and

maximum likelihood (ML) estimators (Hartley and Rao, 1967), which are obtained by max-

imising the likelihood function over the parameter space. Due to the availability of computing

facilities, maximum-likelihood (ML) methods are widely used, despite the fact that methodol-

ogy is mathematically complex (Ferreira et al., 2017).

The major advantages of the MOM estimators over the likelihood-based estimators are that the

former are computationally less demanding and can be obtained with no distributional assump-

tions, whereas the normality assumption is required for the latter. However, research shows

that the REML procedure is generally preferred, particularly with unbalanced data (Searle

and Gruber, 2017). Provided the solution to the MOM estimates are positive and pairwise

correlations range from -1 to +1, all the likelihood-based estimators and the MOM estimators

are identical for balanced data sets (Yang, 2010).

2.4 Kronecker Products in Linear Mixed Models

Kronecker products of identity matrices and matrices with all elements equal to 1 have a wide

application in most linear models where sums of squares and covariance matrices are needed for

the analysis of variance. Design matrices in linear models and mixed linear models are usually

expressed using several submatrices consisting of Kronecker products, which are subsequently

used in expressing sums of squares as matrix quadratic form. Some algebraic and compu-

tational algorithms for constructing these Kronecker products of matrices exist in literature.

These include cases such as the one-way and two-way balanced analysis of variance (ANOVA)

model (Saw, 1992), the balanced and unbalanced two-way (ANOVA) model (Rogers, 1984), the

k-factor classification model (Takemura, 1983; Sunwoo, 1996), and the mixed model (Moser and

Sawyer, 1998). We provide the formal definition of Kronecker product and its application in

some of the experimental designs.
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The right Kronecker (direct or tensor) product of matrix A : m × n and matrix B : p × q,

denoted by A ⊗ B : mp× qn, where ⊗ denotes the Kronecker matrix product, is defined by an

mp× qn block matrix

A ⊗ B = [aijB]

=


a11B · · · a1nB
a21B · · · a2nB

... . . . ...
am1B · · · amnB

 ,

where each submatrix is a result of scalar multiplication of an element of A with the matrix B.

The Kronecker product, named after the German mathematician Leopold Kronecker (1827-

1891), has several properties related to vector operators, matrix products, determinants, trace,

rank, and polynomial matrix products (Graybill, 1983; Rogers, 1984; Zhang and Ding, 2013).

Important theorems and proofs of Kronecker products are provided in these and many other

sources.

Linear mixed models conform with the linear matrix equation theory where the Kronecker

product plays an essential role (Zhang and Ding, 2013). The linear model (2.10) compressed

in matrix form becomes

y = Xβ + ϵ, (2.12)

where y = (y′
1...y′

N)′, the coefficient matrix β = (µ,α′
i,β

′
j,γ

′
k, ..., (αβγ ′

ijk))′ and the error ma-

trix ϵ = (ϵ′
1...ϵ

′
N)′. The incidence matrix X = (X′

1...X′
N)′, where the incidence matrix, Xi,

corresponding to either the main effects (A, B or C) or interaction effects (AB, AC, BC, or

ABC) in the model, can be partitioned into several submatrices, which consist of Kronecker

products of matrices of 1’s and identity matrices (Sunwoo, 1996).

For example, Sunwoo (1996) considered a general k-factor classification balanced model with r

replications per cell, having ni levels for each factor i. Expanding model (2.12) and expressing

it in matrix form:

y = 1Nµ+ X1β1 + X2β2 + ...+ Xmβm + ϵ, (2.13)
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where µ is the overall mean, N is the total number of observations, βj (j = 1, 2, ...,m) is either

a main effect or interaction effect. The incidence matrix Xj in a k-factor classification model

is made up of Kronecker products of (k + 1) matrices Qi (i = 1, 2, ..., k) which are either Ini

(ni × ni identity matrix) or 1ni
(a vector with all ni components equal to 1), provided the

model (2.13) is balanced. That is, Xj = Q1 ⊗ ...⊗ Qk ⊗ 1r, where Qi = Ini
if the index i corre-

sponds to the ith factor in the model, or Qi = 1ni
if not. The last submatrix, 1r (a vector with

all r components equal to 1), represents the replications per cell in the case of a balanced model.

Assume the three-factor linear model (2.13) has a levels of factor A, b levels of factor B, and c

levels of factor C, with full interaction. The linear model can be expressed in matrix form as

(Sunwoo, 1996)

y = 1Nµ+ X1β1 + X2β2 + X3β3 + X4β4 + X5β5 + X6β6 + X7β7 + ϵ, (2.14)

where µ is the overall mean, N is the total number of observations, βm (m = 1, 2, ..., 7) is

either a main effect or interaction effect. The matrix Xm (m = 1, 2, 3) is an incidence matrix

corresponding to the main effects (A, B or C), respectively, and matrix Xm (i = 4, ..., 7) is an

incidence matrix corresponding to the interaction effects AB, AC, BC, or ABC, respectively.

Each incidence matrix Xm is made up of Kronecker products of (3+1) matrices Qi (i = 1, 2, 3)

which are either Ini
or 1ni

. If we assume the model is balanced, with r replications per cell,

then, the Kronecker products of the intercept, main and interaction effect incidence submatrices

will be given by

1N = 1a ⊗ 1b ⊗ 1c ⊗ 1r = JN ,

X1 = Ia ⊗ 1b ⊗ 1c ⊗ 1r = Da(Jr),

X2 = 1a ⊗ Ib ⊗ 1c ⊗ 1r = Db(Jr),

X3 = 1a ⊗ 1b ⊗ Ic ⊗ 1r = Dc(Jr),

X4 = Ia ⊗ Ib ⊗ 1c ⊗ 1r = Dab(Jr),

X5 = Ia ⊗ 1b ⊗ Ic ⊗ 1r = Dac(Jr),

X6 = 1a ⊗ Ib ⊗ Ic ⊗ 1r = Dbc(Jr),

X7 = Ia ⊗ Ib ⊗ Ic ⊗ 1r = Dabc(Jr), (2.15)
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where Da(Jr) is a diagonal matrix of a column vectors of ones, each of length r (i.e. Jr

is a vector of r ones), and X4 to X7 the Kronecker products for the interaction effect A ×

B;A × C;B × C; and A × B × C, respectively. Combining the incidence submatrices for

a 3-factor linear mixed model with full interaction results in a single incidence matrix X =

(1N X1 X2 X3 X4 X5 X6 X7).

In the case of an unbalanced dataset, which could be either by chance or by design, the incidence

submatrices (Xm) in (2.5) will have strings of ones of unequal length (Hocking, 1985). The

Kronecker product notation demonstrated in (2.15) is suitable only for balanced data, and

hence cannot be applied to cases of study with unequal observations per cell or treatment

combination. However, as noted by Hocking (1985), the notation for diagonal matrices can be

used for unbalanced data cases. Hence, the incidence submatrices of a three-factor unbalanced

model linear mixed model take the form

1N = JN ,

X1 = Da(Jni
),

X2 = Db(Jnj
),

X3 = Dc(Jnh
),

X4 = Dab(Jnij
),

X5 = Dac(Jnih
),

X6 = Dbc(Jnjh
),

X7 = Dabc(Jnijh
), (2.16)

where Jnijk
is an nijk × 1 vector of ones (i = 1, ..., a; j = 1, ..., b;h = 1, ..., c), Dabc(Jnijh

) is

diagonal matrix of order N = abc with strings of ones of unequal length.

Therefore, with appropriately defined diagonal submatrices for balanced data (2.15) and un-

balanced data (2.16), the incidence matrix X for a k-factor linear model is generally expressed

as

X = (JN X1 X2 ... Xk Xk+1... Xk+s), (2.17)
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where Xk+1, ...,Xk+s are coefficient matrices for the interaction effects.

2.4.1 Kronecker Products for the Covariance Structure in LMM

Linear mixed model analysis includes covariance structures and quadratic forms, also known

as sum of squares, which are easily constructed using Kronecker products. Moser and Sawyer

(1998) presented some general algorithms for constructing covariance matrices and sums of

squares in Kronecker form in complete or incomplete balanced linear mixed models under both

the infinite and finite model assumptions. We build on the algorithms proposed by Moser and

Sawyer (1998) to construct a covariance matrix for a three-factor balanced, infinite linear mixed

model using Kronecker products

Consider a three-factor experiment with a levels of fixed factor A, b levels of fixed factor B, c

levels of random factor C, and r replicates in each treatment combination of the three factors.

The linear mixed model for the experiment is

y = Xβ + Zu + ϵ, (2.18)

where y: N×1 is the response vector with mean vector Xβ̂; known fixed-effects incidence matrix

X:N×ab; known random-effects incidence matrix Z: N×q; β: ab×1 and u: q×1 are unknown

vectors fixed and random effects, respectively; ϵ is a vector of random errors. The covariance

structure of model (2.18) is V = ∑∑∑ = ZGZ′ + R, where G = Cov(u) and R = Cov(ϵ). The

incidence matrix X = (1N X1 X2 X3), where

1N = 1a ⊗ 1b ⊗ 1c ⊗ 1r = JN ,

X1 = Ia ⊗ 1b ⊗ 1c ⊗ 1r = Da(Jr),

X2 = 1a ⊗ Ib ⊗ 1c ⊗ 1r = Db(Jr),

X3 = Ia ⊗ Ib ⊗ 1c ⊗ 1r = Dab(Jr),

(2.19)

and β = [θ0, α1, ..., αa, β1, ..., βb, (αβ)11, ..., (αβ)ab]′. The incidence matrix Z = (Z1 Z2 Z3 Z4),
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where

Z1 = 1a ⊗ 1b ⊗ Ic ⊗ 1r = Dc(Jr),

Z2 = Ia ⊗ 1b ⊗ Ic ⊗ 1r = Dac(Jr),

Z3 = 1a ⊗ Ib ⊗ Ic ⊗ 1r = Dbc(Jr),

Z4 = Ia ⊗ Ib ⊗ Ic ⊗ 1r = Dabc(Jr), (2.20)

and u = [γ1, ..., γc, (αγ)11, ..., (αγ)ac, (βγ)11, ..., (βγ)bc, (αβγ)111, ..., (αβγ)abc]′.

We use the fact that 1n1′
n = Jn in conjunction with the simple structures of G and R expressed

as, respectively

G =


σ2

CIc 0 0 0
0 σ2

ACIa ⊗ Ic 0 0
0 0 σ2

BCIb ⊗ Ic 0
0 0 0 σ2

ABCIa ⊗ Ib ⊗ Ic

 (2.21)

and

R =


σ2

R(ABC) · · · 0
... . . . ...
0 · · · σ2

R(ABC)

 . (2.22)

Thus, combining Z, G and R in (2.20) - (2.22), and using the definition of the covariance

matrix V, we obtain

V =ZGZ′ + R

=(1a ⊗ 1b ⊗ Ic ⊗ 1r)(σ2
CIc)(1a ⊗ 1b ⊗ Ic ⊗ 1r)′

+ (Ia ⊗ 1b ⊗ Ic ⊗ 1r)(σ2
ACIa ⊗ Ib)(Ia ⊗ 1b ⊗ Ic ⊗ 1r)′

+ (1a ⊗ Ib ⊗ Ic ⊗ 1r)(σ2
BCIb ⊗ Ic)(1a ⊗ Ib ⊗ Ic ⊗ 1r)′

+ (Ia ⊗ Ib ⊗ Ic ⊗ 1r)(σ2
ABCIa ⊗ Ib ⊗ Ic)(Ia ⊗ Ib ⊗ Ic ⊗ 1r)′

+ (σ2
R(ABC))(Ia ⊗ Ib ⊗ Ic ⊗ Ir)

=σ2
CJa ⊗ Jb ⊗ Ic ⊗ Jr + σ2

ACIa ⊗ Jb ⊗ Ic ⊗ Jr

+ σ2
BCJa ⊗ Ib ⊗ Ic ⊗ Jr + σ2

ABCIa ⊗ Ib ⊗ Ic ⊗ Jr

+ σ2
R(ABC)Ia ⊗ Ib ⊗ Ic ⊗ Ir. (2.23)

An algorithm for the covariance structure, V = ∑∑∑ = ZGZ′ + R, is derived without the use of

matrices G, R and Z as follows (Moser and Sawyer, 1998):
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Step 1: Create rows of random main and interaction effects.

Step 2: Create column headings of factor letters and subscript letters on the variance.

Step 3: If the letter in the column heading is part of the variance subscript letter-combination,

write Id.

Step 4: Place Jd elsewhere.

Table 2.1 summarises the algorithm steps 1 - 4, for constructing the covariance matrix ∑∑∑ of a

three-factor linear mixed model.

Table 2.1: Covariance Matrix Layout
Factor A B C R

Subscript d a b c r
σ2

C Ja⊗ Jb⊗ Ic⊗ Jr +
σ2

AC Ia⊗ Jb⊗ Ic⊗ Jr +
σ2

BC Ja⊗ Ib⊗ Ic⊗ Jr +
σ2

ABC Ia⊗ Ib⊗ Ic⊗ Jr +
σ2

R(ABC) Ia⊗ Ib⊗ Ic⊗ Ir

Summing up the row elements in the covariance matrix table gives the same covariance matrix

result obtained in (2.21). The algorithm is applicable to an infinite model, where all random ef-

fects are assumed to be independent (Moser and Sawyer, 1998). However, for an infinite model

case, the random effects maintain the same sampling distribution, but the random effects that

are a result of the interaction of fixed and random factors will have to be subjected to additional

restrictions that lead to a correlated error structure. Using our 3-factor finite model example,

the imposed restrictions are, ∑b
j = 1(BC)jk = 0 for each k = 1, ..., c, such that E(BC) = 0 and

V ar(BC) = σ2
BC [(Ib − b−1Jb ⊗ Ic)], for the random vector of the interaction of fixed factor B

and random factor C. The covariance matrix for a finite model would be constructed following

the same order of steps in the infinite model but with an additional step (3b) applied before

step 4. The finite model covariance matrix procedure is updated as follows:

Step 1: Create rows of random main and interaction effects.

Step 2: Create column headings of factor letters and subscript letters on the variance.

Step 3a: If the letter in the column heading is not part of the variance subscript letter-

combination, write Jd in the Kronecker product.
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Step 3b: If a non-nested fixed factor letter in the column heading is found on the variance

subscript letter-combination, write (Id − d−1Jd) in the covariance matrix.

Step 4: Place Id elsewhere.

Depending on the assumed scope of inference for the interaction effects, the choice of model

(finite or infinite) must be appropriately considered. An infinite mode is appropriate when

broad inference space is assumed, whereas a finite model is considered for the narrow inference

space.

2.4.2 Kronecker Products for the Sum of Squares in LMM

The same algorithm for the covariance structure of a balanced linear mixed model is applied

when constructing sums of squares. We extend the sum of squares algorithm proposed by Moser

and Sawyer (1998) using our three-factor linear mixed model described in the previous section.

Let Y′MgY, be the sum of squares in the model where Mg (g = 1, ..., h) is the matrix associated

with the sum of squares of the overall mean (µ), factors (A, B, and C), full interactions, and the

nested factor R(ABC), respectively. The respective sums of squares are constructed through

the following steps (Moser and Sawyer, 1998).

Step S1: Create the first row heading for the letters of the overall mean, factors and interac-

tions in the model, and the second row heading of the associated matrices (Mg).

Step S2: Create two column-headings, one for the factor letters and the second for the number

of levels (d) of the factor.

Step S3a: If the first row-heading letter does not match the column-heading letter, write d−1Jd

in the Kronecker product.

Step S3b: If the first row-heading letter of a non-nested factor matches the column-heading

letter , write (Id − d−1Jd) in the Kronecker product.

Step S4: Place Id elsewhere.

Table 2.2 summarises the algorithm steps S1 - S4, for constructing the sums of squares matrices

Y′MgY of a three-factor linear mixed model.
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Table 2.2: Sum of Squares Matrix Layout
Factor A B C R

Level d = a b c r
µ M1 = a−1Ja ⊗ b−1Jb ⊗ c−1Jc ⊗ r−1Jr

A M2 = (Ia − a−1Ja) ⊗ b−1Jb ⊗ c−1Jc ⊗ r−1Jr

B M3 = a−1Ja ⊗ (Ib − b−1Jb) ⊗ c−1Jc ⊗ r−1Jr

C M4 = a−1Ja ⊗ b−1Jb ⊗ (Ic − c−1Jc) ⊗ r−1Jr

AB M5 = (Ia − a−1Ja) ⊗ (Ib − b−1Jb) ⊗ c−1Jc ⊗ r−1Jr

AC M6 = (Ia − a−1Ja) ⊗ b−1Jb ⊗ (Ic − c−1Jc) ⊗ r−1Jr

BC M7 = a−1Ja ⊗ (Ib − b−1Jb) ⊗ (Ic − c−1Jc) ⊗ r−1Jr

ABC M8 = (Ia − a−1Ja) ⊗ (Ib − b−1Jb) ⊗ (Ic − c−1Jc) ⊗ r−1Jr

R(ABC) M9 = Ia ⊗ Ib ⊗ Ic ⊗ (Ir − r−1Jr)

In the example used, it is assumed that only the term R(ABC) has nested factor letters A,

B and C. The Kronecker product in each row of Table 2.2 gives the sum of squares of the

corresponding factor or interaction thereof. For an example, the sum of squares matrices for

the main factor B and the interaction of factors A and B are given by

Y′M3Y = Y′[a−1Ja ⊗ (Ib − b−1Jb) ⊗ c−1Jc ⊗ r−1Jr]Y,

Y′M5Y = Y′[(Ia − a−1Ja) ⊗ (Ib − b−1Jb) ⊗ c−1Jc ⊗ r−1Jr]Y,

respectively. Further details and alternatives of the matrix quadratic forms for the one way

and two-way balanced ANOVA models sum of squares were discussed (Hocking, 1985; Rogers,

1984; Saw, 1992; Sunwoo, 1996). As highlighted by Saw (1992), the sums of squares matrix

quadratic forms for unbalanced ANOVA cases may be derived by making use of direct sums.

2.5 Significance Tests for Fixed Effects

The hypotheses of interest in LMMs are two-fold: (1) for fixed effects, H0 : Fi = 0 and (2)

for random effects, H0 : σ2
R > 0 or σ2

F R > 0, where estimates and magnitudes of σ2
R and/or

σ2
F R are to be established (McLean et al., 1991). Given the general linear mixed model defined

in (2.3), the most common classic tests of significance of fixed effects include the Wald test,

and the Likelihood ratio test. Luke (2017) argued that the two methods are somewhat anti-

conservative, especially for smaller sample sizes. The null and alternative hypotheses for fixed

effects significance tests are: H0 : βi = 0, against the alternative H1 : βi ̸= 0.
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2.5.1 The Wald Test

Wald test, also called the Z -test, is a classic significance test for fixed effects in general mixed

models. Luke (2017) named it the t-as-z approach since its p-values are estimated by using the

z-distribution. This is because, as degrees of freedom increase, the t-distribution approximates

the z-distribution, and at infinite degrees of freedom, the two are identical. Hence, the Wald

t-values taken to be z-distributed are used to generate p-values. Lack of clear guidelines to

justify and evaluate the t-as-z approach makes the technique unreliable (Luke, 2017). The test

is developed on the assumption that the Wald statistic,

Z = (β̂i − βi)√
V ar(β̂i)

, (2.24)

and can be approximated by a standard normal distribution. Therefore, with a known matrix

K, the null and alternative hypotheses for the Wald test are: H0 : Kβ = 0, against the

alternative H1 : Kβ ̸= 0. The Wald test statistic is therefore expressed as,

Q = (β̂ − β)′K′[K(X′V−1X)−1K′]−1K(β̂ − β), (2.25)

can be approximated by Chi-Square (χ2) distribution with rank(K) degrees of freedom. In

order to take care of the estimate of variance components (V = V ar(y) = ZGZ′ + R), Littell

et al. (2006) suggested an approximation of the Wald test statistic by F distribution with

rank(K) numerator degrees of freedom as follows,

F = (β̂ − β)′K′[K(X′V−1X)−1K′]−1K(β̂ − β)
rank(K) , (2.26)

and the denominator degrees of freedom can be estimated from the data using approaches, such

as the Satterthwaite (1946) approximation. Other methods for approximating degrees of free-

dom and obtaining p-values include the Kenward-Roger (Kenward and Roger, 1997), applied

to restricted maximum likelihood (REML) models, and the Satterthwaite (1941) approxima-

tions, applied to both maximum likelihood (ML) models and restricted maximum likelihood

(REML) models. These two methods are used to approximate the denominator degrees of

freedom for the F statistics in (2.15), or the t statistics (Luke, 2017). The other method for

evaluating significance while producing acceptable type I error rates, even for smaller samples,

is the parametric bootstrapping (Halekoh and Højsgaard, 2014).
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2.5.2 The Likelihood Ratio Test (LRT)

Likelihood ratio tests (LRTs) can also be used to test fixed effects in linear mixed models. The

tests are used to determine a better model fit between two competing models (Luke, 2017).

Maximum likelihood estimation results in a -2log likelihood value, which summarises the fit

of the observed to the expected values used to compare different models. The assumption of

this test is that the two models compared (one without and the other with the fixed effect)

must be nested. Specifically, LRTs are used to determine whether the inclusion of a particular

parameter or random effect improves the model fit, holding all other model parameters constant.

If elimination of the parameter or random effect reduces the log-likelihood, then the parameter

or random effect is statistically significant. The likelihood ratio test statistic is given by,

2log
(
L1

L0

)
= 2[log(L1) − log(L0)], (2.27)

where L0 is the likelihood for the nested null model (without the analysed fixed effect) and

L1 is the likelihood for the general model (with the analysed fixed factor), i.e. the condition

log(L1) > log(L0) must be satisfied to keep the LRT statistic positive. The test statistic for a

LRT (i.e. twice the difference in log-likelihoods) is assumed to follow a chi-square distribution,

with degrees of freedom equal to the number of additional parameters in the more complex

model (e.g., df = 1 if testing a single random effect).

In support of Pinheiro and Bates (2000), Luke (2017) agrees that LRTs can be used even when

the model has a complex random effects structure that includes random slopes by comparing

the log-likelihoods of models with and without the random effect component. However, LTRs

are anti-conservative, meaning that the p-values obtained from the tests are normally lower

than the true p-values. Hence, the LRT may not always be appropriate for evaluating the sig-

nificance of fixed effects when the two competing models have different fixed-effects structures.

Luke (2017) argued that when evaluating significance, especially in smaller samples, the use of

other methods, such as the parametric bootstrapping, Kenward-Roger and Satterthwaite ap-

proximations for deriving the p-values and using the REML when fitting the models, produce

acceptable Type 1 error rates.
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2.6 Significance Tests for Random Effects Variance

The conceptual idea in a fixed effect model is to estimate the effect of each of the specific treat-

ment levels of that variable, and test whether these treatment effects significantly contribute

to the estimation of the response variable. The null hypothesis, H0 : β1 = β2 = ... = βk = 0,

opines that the fixed effects have no contribution in determining the amount of response vari-

able, which can be tested using the traditional F-test or p-values. Alternatively, we can test

whether fixed effects are all equal, H0 : β1 = β2 = ... = βk, against treatment effects not all

equal, H1 : β1 ̸= βi for at least one i. If the interest is on each of the fixed effects in the

experiment, then the test for parameter contribution to the response is appropriate. On the

other hand, if the interest is on random effects, the test of whether the variance components are

significantly greater than zero is appropriate. Although there is no need to compare random

effects in the random effects model, the interest lies in investigating the variation of treatment

effects and estimating the values of these variance components. If random effects vary, then they

cannot be all zero. In linear mixed models, the interest is not restricted to making inferences

about the fixed and random effects only but also the variance components. This is achieved

by testing homogeneity across units using the null hypothesis: H0 : σ2
R = 0, against H1 : σ2

R > 0.

For example, a study is conducted aiming to understand the effect of a drug on two different

breeds of dogs, but more or less chose the dogs at random. Ideally, comparing the treatment

effects of the drug in the dogs treated is of no important use since the dogs are a random

sample in the breed, not those specific dogs. However, it is statistically important to include

the breed effect in the model, to account for the possible variations in these breeds. Therefore,

such random effects are not tested; they are estimated for report purposes. Testing is rarely of

interest in this case because the role of the random effects is to act as the basis to estimate the

variance components of interest and align the model with its assumptions.

As indicated earlier on, hypothesis testing for random effects (or mixed effects) can be done

using the likelihood ratio test (LRT) based on the null hypothesis, H0 : σ2
R > 0 or σ2

F R >

0. Significance testing of random effects in mixed effects models involves the construction
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of error terms that contain all the sources of random variation of interest. Satterthwaite’s

(1946) method of denominator synthesis, which basically decomposes sums of squares to linear

combinations of all sources of random variation that serve as appropriate error terms, can be

used for testing the significance of the respective effect of interest. When ANOVA methods

are used for estimation, standard ANOVA techniques for testing the significance of effects by

taking ratios of mean squares can be employed.

2.7 Inference Space

The way fixed and random effects are defined is directly attached to the manner in which they

were gathered and the environment from which they came (McCulloch et al., 2008). This par-

allel definition of effects forms the basis for defining inference space in mixed models. McLean

et al. (1991) introduced the concept of an inference space to clearly define fixed and random

effects. As alluded to by McCulloch et al. (2008), effects are considered random if inferences

are generalisable to all the possible effects from which random sample was drawn, whereas fixed

effects exist when inferences are confined only to the effects in the model. This definition of

fixed and random effects implies that one is at liberty to consider all effects as random but tak-

ing into consideration the appropriate inference space. However, as Gelman (2005) cautioned,

there are consequences for treating all effects as random effects. Thus, proper selection and

specification of the effects as fixed or random are vital for the accuracy of both prediction and

inference in linear mixed models.

Three types of inferential scope are defined based on how random effects are chosen into the

predictable function (K′β + M′u). Firstly, inference scope is referred to as "narrow" if the

inference is specific to levels of random effects (McLean et al., 1991) or when every effect is

regarded as fixed (Yang, 2010). This implies that, if a selection is to be repeated in the future,

the same levels of random effects are to be used to estimate those fixed effects, and the main

and interaction random effects remain unchanged (Yang, 2010). Secondly, inference space is

known as "broad" if the inference is made to the whole population of random effects (McLean

et al., 1991), including the random interaction effects (Yang, 2010). An illustration of broad in-

ference scope in an agricultural experiment would typically involve cultivators as fixed, whereas
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operators are considered random. Since human efficiency and mental and physical status are

not constant, operators’ performance is bound to vary. The objective of the experiment is to

assess the performance of the cultivator over operator conditions, which clearly leads to a broad

inference space scenario.

The third case is "intermediate" inference space, which results when inference is narrow to some

random effects but broad to others (McLean et al., 1991). According to Yang (2010), inter-

mediate inference scope in multi-factor experiments is further subdivided into two, depending

on whether one wants to consider random main effects as narrow and random interactions as

broad, or vice versa. The idea gets more complicated as the number of factors in the experi-

ments increases.

An important aspect of mixed model analysis is the choice of inference space and the expected

consequences thereof. As highlighted by McLean et al. (1991), researchers have to be familiar

with the inference space implicit in the predictable function they use in order to avoid the

use of inappropriate standard errors of the estimator. A study by Yang (2010) also confirmed

that standard error increases as the scope of inference broadens. The dilemma becomes more

complicated when unbalanced data is involved. Hence, the need to make a proper choice of

inferential scope to avoid incorrect estimates of standard errors and predictions. The researcher

is able to select the desired inference space by manipulating the estimable function. A study

by Blouin and Riopelle (2005) demonstrated that different classes of inference spaces can be

accommodated in various designs of experiments and data structures. More case studies with

inference spaces applied in t-test with unequal variances, randomised complete block design

experiments, split-plot experiments (Yang, 2010), completely randomised design, unbalanced

data, multivariate-type experiments (McLean et al., 1991) exist.

2.8 Estimation of Standard Errors

Every statistical method applied to research data is associated with some degree of uncertainty

that cannot be avoided. Therefore, researchers need to brace themselves for embracing uncer-

tainty as part of research dynamics (Gelman, 2016). For example, reporting a point estimate
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in research is not complete if the estimate is not supported by its standard error (Wasserstein

et al., 2019). The major strength of mixed linear models lies in the estimation of fixed effects

(point estimates) and prediction of random effects relative to the intended inference scope.

The reliability of these point estimates and predictions depends on the way measures of stan-

dard errors, associated prediction intervals and degrees of freedom are calculated (McLean and

Sanders, 1988).

Generally, estimable functions in mixed linear models with known variance components pro-

duce realistic measures of standard errors. However, in practice, variance components are not

always readily available or known a priori, but have to be estimated from the data before

standard errors can be estimated (Goldberger, 1962; Kackar and Harville, 1984). The variance

component estimate is then used as an estimate of variability to compute standard error (SE),

an important indicator of precision of the point estimate (McLean et al., 1991). One of the

most prominent variance estimation procedures for determining approximate standard errors

in linear mixed models is the restricted maximum likelihood (REML). The estimated variance

components are then used as if they were known variances (McLean and Sanders, 1988; McLean

et al., 1991). The approach can be applied to any mixed model problem, including but not

limited to balanced and unbalanced designs. Depending on the researcher’s preference and ex-

perimental design, various procedures for approximating the associated degrees of freedom for

these estimates include the Satterthwaite’s (1946) and Kenward and Roger’s (1997) approaches,

among others, exist.

For example, a confidence interval of a sample mean can be determined (at a predetermine

α level of significance) using its standard error. Other than checking precision or uncertainty

around the estimate of the mean, the confidence interval for the estimate can also be used to

form a test statistic for testing hypotheses H0 : µ = 0 against H1 : µ ̸= 0, where µ is the

population mean. The standard error of a treatment mean in a linear mixed model proposed

by McLean et al. (1991) can be computed from the corresponding estimate of variance (σ̂2)

given by:

σ̂2 =
( 1
n

)
(EMS), (2.28)
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where EMS is the error mean square; n is the sample size.

To estimate the variance of the difference between two treatment means in a mixed model

procedure, the following variance formula can be used (McLean et al., 1991):

σ̂2 =
( 2
rn

)
(EMSF R), (2.29)

where r is the random factor levels, EMSF R is the interaction mean square, and n is the sample

size.

There are numerous approaches to estimate standard errors or variance components. The basic

approaches for estimating standard errors of estimated variance components do require assump-

tions about the distributions of the score effects. Due to different assumptions that have to

be satisfied for a particular statistical approach to work on any given data, there is no single

best approach to use. Different data structures define the reasons for preference of one method

over another. For example, when the analysis of variance approach is used in linear models,

and there is enough evidence that the data violate normality or homogeneity of variance as-

sumption, the bootstrap or jackknife re-sampling methods approaches may be preferred for

estimation of standard errors. In whatever circumstance or approach, the purpose of statistical

analysis must be considered, i.e., quantifying the variability in data by providing the point

estimates of parameters that are supported by their precision.

There have been many differences and confusions in the procedures for calculating expected

mean squares, which are directly linked to the calculation of standard errors for different types

of mixed models. The differences emanate from the assumption that interactions of fixed and

random effects sum to zero over the fixed effect level (McLean et al., 1991) when estimating

the expected mean squares. Some authors (Hocking, 1985; Searle and Gruber, 2017) advocate

for the relaxation of this assumption, while many consider it valid.

In a split-split-plot treatment structure, for example, expected mean squares can be used to

compute estimates of variance components and standard errors for means and comparisons of
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the means (Littell et al., 2006). Table 2.1 displays some of these computational methods for

constructing standard errors for the main and interaction effects with a-levels of whole plot

(wp) factor having, b-levels of split-plot (sp) factor, c-levels of split-split-plot (ssp) factor and

r replicates per cell.

Table 2.3: Standard Errors for Split-Split-Plot Treatment Structure
Means Standard Error t-test Statistic
Whole-plot mean

(
E(wp)

rbc

) 1
2

ta

Split-plot mean
(

E(sp)
rac

) 1
2

tb

Split-plot mean for the
(

E(sp)
rc

) 1
2

tb
same whole-plot

Split-plot mean for
[ (b−1)E(sp)+E(wp)

rbc

] 1
2

tb
different whole-plots
Split-split-plot mean

(
E(ssp)

rab

) 1
2

tc

Split-split-plot mean for
(

E(ssp)
rb

) 1
2

tc
the same whole-plot
Split-split-plot mean for

(
E(ssp)

ra

) 1
2

tc
the same split-plot
Split-split-plot mean for the

(
E(ssp)

r

) 1
2

tc
same whole-plot and split-plot

Split-plot mean for same
[ (c−1)E(ssp)+E(sp)

rac

] 1
2

tbc

or different split-split-plot

Split-plot mean for same
[ (c−1)E(ssp)+E(sp)

rc

] 1
2

tbc

whole-plot and same or
different split-split-plot

Whole-plot mean for same
[ (c−1)E(ssp)+E(wp)

rbc

] 1
2

tac

or different split-split-plot

Whole-plot mean for same
[

b(c−1)E(ssp)+(b−1)E(sp)+E(wp)
rbc

] 1
2

tabc

or different split-plot
and split-split-plot

tbc = (c−1)E(ssp)(tc)+E(sp)(tb)
(c−1)E(ssp)+E(sp)

; tac = (c−1)E(ssp)(tc)+E(sp)(ta)
(c−1)E(ssp)+E(wp)

;

tabc = b(c−1)E(ssp)(tc)+(b−1)E(sp)(tb)+E(wp)(ta)
b(c−1)E(ssp)+(b−1)E(sp)+E(wp)

Uncertainty is a natural component of all research data. Wasserstein et al. (2019) argued

that when a point estimate is qualified with a measure of its uncertainty, an acceptance of

uncertainty becomes more meaningful. Fitting linear mixed models has been made easier in

several statistical computing software, such as SAS, R and SPSS, which provide parameters
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estimates, estimates of variance components and their associated standard errors and or interval

estimate.

2.9 Application of LMMs in Other Research Fields

The use of linear mixed models has taken the central stage in various research fields. Research

in most of these fields requires a comprehensive mastery of the linear mixed model framework

as a crucial tool for both designing and analysis purposes. Linear mixed models have been

routinely used to model scenarios involving both fixed and random effects. These factors are

usually defined as either fully fixed or random in nature. There are circumstances where the

convenience of conceptualizing factors as having both fixed and random levels is necessary. This

section highlights some of these research areas where the proposed concept can be useful.

In most cases, linear mixed models of ANOVA type have been applied to estimation and testing

procedures involving both a selected few or fixed number of fixed effects out of possibly many

fixed effects. Usually, only those fixed factors that are believed to have a significant contribu-

tion to the response variable are considered in model construction. There are situations when

the number of fixed effects is large (high-dimensional case), and the number of fixed effects

diverges as the sample size goes to infinity (Chen et al., 2015). Linear mixed models of high-

dimensional data would require a modification to the traditional linear mixed model tests to

accommodate the problem with a sparse model structure. Chen et al. (2015) proposed tests

that are post-selection-based with an orthogonality-based selection of the smoothly clipped ab-

solute deviation penalty (SCAD) type applied when selecting significant fixed effects into the

working model. Most classical approaches to testing fixed effects linear mixed models (Kenward

and Roger, 1997; Wang and Dai, 2014) are robust in small datasets, but they tend to break

down when the number of covariates increases (Bradic et al., 2020). These high-dimensional en-

vironments naturally create possible complex interactions and unexpected heterogeneity which

procedural restrictions in common approaches may not be able to encompass. (Bradic et al.,

2020) developed a family of moment matching tests that use penalised estimators to deal with

misspecification and/or misestimation of random effects in high-dimensional linear models.
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Linear mixed models have also been a powerful tool for analysing correlated and longitudinal

data. Studies involving skew-normal, longitudinal (Ye and Wang, 2015; Laird and Ware, 1982)

and panel data are common in fields such as demography, biomedicine, economics and finance,

etc. The normality assumption is too restrictive in most linear mixed models’ practical appli-

cations (Wu et al., 2017). For this reason, in studies involving longitudinal or correlated data,

the application of linear mixed models requires some relaxation of the normality assumption

in order to make reasonable inferences on the unknown parameters. More flexible approaches

are needed to handle the analysis of data from these scenarios. Recently, Wu et al. (2017)

proposed the ANOVA-type F-tests for testing hypothesis on fixed effects of interest as well as

the significance of random effects in linear mixed effect models with skew-normal errors and

distribution-free random errors.

When a study is designed so that certain data points are expected to be, on average, more

similar to each other than other data points, the issue of non-independence in data emerges

especially in within-subject or within-item designs (Brauer and Curtin, 2018). For example,

when multiple data points are collected from each subject or unit (longitudinal research), when

clustered subjects can influence one another within individual clusters, or when subjects are

exposed to the same set of items. Such cases are common in psychology studies (Barr et al.,

2013; Westfall et al., 2015), where the same subjects are exposed to the same set of treatments,

stimuli or targets, etc. In such cases, the predictors vary within the subjects. Brauer and

Curtin (2018) provided a guiding framework for analysing data with one or more sources of

non-independence, either involving categorical within-unit predictors or continuous within-unit

predictors using linear mixed models. They cautioned researchers and practitioners on the

importance of including all possible sources of error (appropriate type of random effects) when

estimating linear mixed effects models involving non-independent data to minimise the type I

error rate.

In certain studies where linear mixed models include covariates, random effects may become

confounding in fixed effects, causing unexpected substantial changes in fixed effect estimates

relative to the same model without random effects (Schnell and Bose, 2019). In such cases, the
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fixed effects and the random effects compete with each other to capture the variation in the

data. How random effects impact the fitted values of a linear mixed model is better understood

by reparameterising the random effect component into a canonical form with independent and

identically distributed random effects, a process (Schnell and Bose, 2019) referred to as spectral

decomposition of a linear mixed model. Spectral reparameterisation of random effects provides

a simpler way to formulate the model and understand and assess the model fits. According to

Schnell and Bose (2019), certain trends and features inherent in the data can be visualised and

weighted through spectral decomposition. It is a useful mechanism to interpret and possibly

plan to avoid confounding fixed effects by random effects.

Central to linear mixed model inference is the estimation of fixed effects and variance compo-

nents. The least squares method is the most popular method for estimating model parameters.

Some of the most common methods used for estimation of variance components in LMMs in-

clude the maximum likelihood (ML), restricted maximum likelihood (REML) (Harville, 1977),

analysis of variance (ANOVA) (Henderson, 1953), and Bayesian methods (Agresti, 2015). How-

ever, these methods work effectively well in orthogonal linear mixed models (when the normal-

ity assumption is assumed) and balanced data. When normality assumption is not considered,

nonorthogonal mixed models are involved, and inference becomes a challenge (Ferreira et al.,

2020). To this effect, Ferreira et al. (2020) proposed a general least squares estimation method

for estimating variance components and estimable vectors in nonorthogonal and orthogonal

linear mixed models, without assuming normality or any other prior distribution.

Luke (2017) confirmed that the use of linear mixed effects models (LMMs) is becoming increas-

ingly common in many real-world applications ranging from clustered, nested, longitudinal,

genome-wide association and spatial data analysis. Thereby providing results with acceptable

type I error rates. One area that is populated by LMMs is psycholinguistics studies. A study

by Hohenstein et al. (2017) used LMMs in psycholinguistics to analyse eye-movement control.

The research applied linear mixed models (LMMs) to model fixation duration that takes into

account the predetermined order of their occurrence in the behavioural stream.
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Another study by Liu et al. (2016) involves the Genome-Wide Association Studies (GWAS)

exploring how to control genetic-phenotypic relationships using Mixed Linear Models (MLMs).

Liu et al. (2016) made use of direct statistical tests in Genome-Wide Association Studies

(GWAS) as a strategy to eliminate false positives by fitting both population structure and

each individual’s total genetic effect as covariates in a Mixed Linear Model (MLM) to make

adjustments for testing markers. In support of this, Runcie and Crawford (2019) confirmed

that linear mixed effect models are powerful tools used to account for population structure

in genome-wide association studies (GWAS) and estimate the genetic architecture of complex

traits.

Vargas et al. (2015) provided experiments involving three-way linear mixed effects models

with interaction in agronomy and breeding research. There are many types of LMMs that are

appropriate for different types of data. However, Bates et al. (2015), argued that, for models

with several fixed factors (such as experimental manipulations) and several random factors (like

subjects and items), the question of how to choose the appropriate random-effects structure

becomes substantially more complex. Schielzeth and Forstmeier (2009) cautioned that both

random intercepts and random slopes need to be considered in LMMs to guard against anti-

conservative conclusions, like accepting an experimental effect more frequently as significant

than warranted by the data.

2.10 Conclusion

The mixed model methodology can be applied in various of experimental designs, including

completely randomised design (CRD), randomised complete block design (RCBD) and split-

plot design. In each design, various hypotheses can be tested by making use of appropriate

linear combinations of mean squares from both fixed and random effects. However, researchers

should pay particular attention to the inference space they intend to use. A review of the

theory of linear models, mixed model framework, estimation of standard errors, hypothesis

testing procedures, estimating degrees of freedom, and determining intended inference scope

have been reviewed. Recent literature on the application of linear mixed models in scientific

research has been highlighted. Chapter 3 focuses on the principles around the partitioning

46



approach to linear mixed models, emphasising on the procedure of partitioning factors based

on their levels before model construction.
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CHAPTER 3

PARTITIONING OF FACTORS IN
LINEAR MIXED MODELS

This chapter introduces the concept of partitioning of factors of a linear mixed model based on

targeted factor levels, intended inference space and the researcher’s objectives. Consideration

is given to the design of experiment, appropriate tretment structure, formulation of a three-way

linear mixed model, hypothesis testing, analysis of variance and associated degrees of freedom.

3.1 Introduction

An outline of the process of partitioning factors, construction of appropriate linear mixed mod-

els and the analysis experimental data with two or more factors is the main focus of this chapter.

A general theoretical framework covering fundamental principles of linear mixed models, test-

ing of model assumptions underlying the linear mixed models (LMMs), testing of hypotheses,

and testing of fixed and random effects is presented. Based on the work done by Njuho and

Milliken (2005, 2009), the main focus is on developing linear mixed models with three or more

factors, each consisting of both fixed and random factor levels, and installing these models in

different treatment designs such as completely randomised design (CRD), randomised complete

block design (RCBD), Latin Square design (LSD) and Split-plot design (SPD).

3.2 Choice of an Appropriate Linear Mixed Model

The previous sections provided some background information and the developments in linear

models. The methodology is applicable in various scenarios depending on the type of study
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and research objectives to be achieved. The scenario where three or more factors share both

fixed and random levels is one of the complex setting that needs caution when linear mixed

models are applied.

Design of statistical experiments was first introduced by Sir Ronald A. Fisher in the 1920’s, as

a correctional tool to some flaws in the way the experimental data was analysed (Montgomery,

2013). Statistical design of experiments is a planning process to obtain valid and authentic

conclusions from the experiments. Hence, experimental design entails laying out a detailed

plan that defines the objectives of the experiment, choice of design, variables involved, analysis

procedure, control for extraneous noise around the experimental information and statistical

analysis approach. Bate and Chatfield (2016) cautioned that failing to identify the appropriate

experimental design and its structure correctly can lead to incorrect model selection and mis-

leading inferences. When a complex experimental design has been chosen, the construction of

an appropriate statistical model for analysis is not a straightforward exercise (Bate and Chat-

field, 2016).

Littell et al. (2006) defined a statistical model for a given data as a mathematical description

of how the data can be conceivably produced. In this description of a statistical model, at

least two features emerge: (1) a function describing the relationship between the response and

all the explanatory variables, and (2) the assumed distribution of the error terms to charac-

terise the random variation in the observed response. These tow features represent the simplest

way of describing how the experimental data can be produced using a linear statistical model.

Depending on the assumed probability distribution of the error terms or, in particular, the

response variable, the form of the general function turns out to be linear or nonlinear. When

the distribution of the response variable is normal, ANOVA and linear regression models are

examples. An extension beyond linear statistical models arises when the distribution of the

response variable is non-normal, leading to a class of models known as the generalised linear

models.

LMMs have application in a broad spectrum of areas, including agriculture, biology and
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medicine. However, as Pan and Shang (2018) noted, selecting an appropriate structure of

a linear mixed model is not easy especially in when modelling multi-factor experimental data.

On the other hand, the choosing appropriate fixed and random effects is essential for accurate

inference and prediction of both the means and covariances in linear mixed models. The devel-

opment of computing facilities provides various methods for yielding parameter estimates for

a statistical model of interest. Maximum-likelihood (ML) and Restricted Maximum-likelihood

(REML) methods are standard examples among the various techniques widely used.

The choice of a model is informed by the type of experiment, the objective(s) to be achieved, and

the type of data collected. The way experimental data is collected, with proper preparation for

the purpose of meeting the specified objective(s), is termed experimental design. Experimental

design is therefore defined by the experimental units used, the types of variables involved and

the structure of treatment(s) applied to experimental units. The analysis of variance (ANOVA)

approach is one of the most popular techniques used to test the treatment effects through com-

paring the treatment means (fixed effects) or estimating the variance components (random

effects).

Montgomery (2013) highlighted that design of experiments is an important tool that scientists

often use during the product design, development and improvement processes. With the current

Fourth Industrial Revolution taking space in industries, the need for experimental designs

in developing products that match environmental factors and other sources of variability is

increasing. This much-needed development and progression in sciences are achieved through

performing experiments. Experimental designs often involve linear mixed models problems or

other complex model structures, which can be analysed easily by means of investigating the

difference among treatment effects or predicting the variability to get informed conclusions.

3.3 Linear Models (LMs)

The basic linear regression model forms the basis for the partitioning approach (to be discussed

later) in linear mixed models and builds up into various scenarios and experimental designs.

For convenience purposes, we revisit the linear regression model before extending the concept
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to complex scenarios involving factors with hybrid levels. LMs encompass regression analysis,

analysis of variance (ANOVA) and analysis of covariance (ANCOVA). A general linear model

(LM) approach makes use of a random sample of treatment observations drawn a given pop-

ulation, after a treatment has been administered to each individual in the sample. The data

obtained is then analysed using the analysis of variance (ANOVA) approach that produces an

F-test or a p-value at a predetermined level of significance (α).

3.3.1 Formulation of a Linear Model

A general linear model is expressed as

Y = Xβ + ϵ, (3.1)

where Yn×1: is an n-dimensional vector of the dependent random variable corresponding to

the response variables Xn×p: where Xn×p= (1 X1 X2 ... Xp−1) is a known matrix of ex-

planatory variables with p ≤ n, βp×1 = (β0, β1..., βk)′ is a parameter vector whose elements

correspond to each Xi variable, i = 1, ..., p− 1, and ϵn×1 = (ϵ1, ..., ϵn)′ is vector of error terms.

The matrix X is also known as the design or an incidence matrix, depending on the type of

linear model in question, whereas the corresponding elements βk’s are the regression coefficients.

Case I (Regression Model):

The variables forming the columns of the design matrix X = (1 X1 X2 ... Xp−1) are contin-

uous predictor variables in a regression model.

Case II (ANOVA Model):

The variables forming the columns of the design or an incidence matrix X = (1 X1 X2 ...

Xp−1) are discrete and often coded as 0 and 1. These codes correspond to the levels of factors

in the analysis.

This study will focus on Case II (ANOVA models), where both fixed and random factors are

involved in a single model. We build on a two-way mixed model that was reviewed in the
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previous chapter, and extend the LMM with three or more factors.

3.3.2 Three-way Fixed-effects Model

A three-way fixed-effects model is considered, with a single response variable, Y, predicted

by three categorical factors: A and B and C, whose levels are fixed and exhaustive. The

factor levels are determined specifically by the researcher. One of the primary objectives of the

experiment is to determine if these specific factor levels differ in terms of their contribution to

the variation in the response variable. Considering the case of unbalanced data, the three-way

fixed-effects model with interactions is expressed as

yijkh = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵijkh, (3.2)

where yijkh is the response of the hth replicate on the ith level of factor A, jth level of factor B,

and kth level of factor C, for i = 1, 2, ..., a; and j = 1, 2, ..., b; k = 1, 2, ..., c; and h = 1, 2, ..., nijk

(all nijk = n when data is balanced). The term µ is the overall mean; αi, βj, and γk are the main

effects of the ith, jth and kth levels of factors A, B and C, respectively. The terms (αβ)ij, (αγ)ik,

(βγ)jk and (αβγ)ijk, are the interaction effects in the model. We assumed that ϵijkh ∼ i.i.d.

N(0;σ2
e), which implies that E(yijkh) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk,

whereas Var(yijkh) = σ2
e .

The null hypotheses associated with a three-way fixed-effects model include:

H0(A) :αi = αi∗ = 0, for i ̸= i∗,

H0(B) :βj = βj∗ = 0, for j ̸= j∗,

H0(C) :γk = γk∗ = 0, for k ̸= k∗,

H0(AB) :(αβ)ij = (αβ)i∗j = (αβ)ij∗ = (αβ)i∗j∗ = 0,

H0(AC) :(αγ)ik = (αγ)i∗k = (αγ)ik∗ = (αγ)i∗k∗ = 0,

H0(BC) :(βγ)jk = (βγ)j∗k = (βγ)jk∗ = (βγ)j∗k∗ = 0,

H0(ABC) :(αβγ)ijk = (αβγ)i∗jk = (αβγ)ij∗k = (αβγ)ij∗k = (αβγ)i∗j∗k∗ = 0.

(3.3)

Hypotheses H0(A) - H0(B) opine the non-existence of main effects of factors A, B and C, respec-

tively, while H0(AB) - H0(ABC) suggest the non-existence of the interaction effects in the model.
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The test statistic for the three null hypotheses in (3.3) follow the F-distribution.

3.3.3 Three-way Random-Effects Model

A random-effects model is defined when one or more random factors, whose levels were sampled

from a pool of many possible levels for analysis purposes, influence the response variable. In this

case, the primary objective is to draw inferences about the variations in the response variable

over the whole collection of factor levels. Analogous to the fixed-effects model, the three-way

random-effects model is expressed as

yijkh = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵijkh, (3.4)

where yijkh is the response of the hth replicate on the ith level of a random factor A, jth level

of a random factor B, and kth level of a random factor C, for i = 1, 2, ..., a; and j = 1, 2, ..., b;

k = 1, 2, ..., c; and h = 1, 2, ..., nijk (all nijk = n when data is balanced). The term µ is

the overall mean; αi, βj, and γk are the main effects of the ith, jth and kth levels of the

random factors A, B and C, respectively. The terms (αβ)ij, (αγ)ik, (βγ)jk and (αβγ)ijk, are

random interaction effects in the model. It is assumed that αi ∼ i.i.d. N(0;σ2
α), βj ∼ i.i.d.

N(0;σ2
β), γk ∼ i.i.d. N(0;σ2

γ), (αβ)ij ∼ i.i.d. N(0;σ2
αβ), (αγ)ik ∼ i.i.d. N(0;σ2

αγ), (βγ)jk ∼

i.i.d. N(0;σ2
βγ), (αβγ)ijk ∼ i.i.d. N(0;σ2

αβγ), and ϵijkh ∼ i.i.d. N(0;σ2
e), which implies that

E(yijk) = µ, V ar(yijkh) = σ2
e and covariance of the error term with every random effect is zero.

Furthermore, Cov(αi, αi∗) = 0 for i ̸= i∗, j ̸= j∗, k ̸= k∗.

3.4 Linear Mixed Models

Linear mixed model methodology has brought statistics to an advanced level. Most often, these

models are used to model a broad spectrum of fields, including complex clustered data (data

that can be viewed as a sample of samples), repeated measurements, or hierarchical model,

longitudinal data (also called panel data, tracked on the same sample at different points in

time). Fixed and random effects are allowed to interact and give a better explanation of the

differences in the response variable.
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3.4.1 Three-way mixed Model

We now consider a unbalanced three-way mixed model, with factors A and B taken as fixed

while factor C is deemed as random. The mixed model is similarly expressed as

yijkh = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵijkh, (3.5)

where µ is the overall mean, αi, βj, and (αβ)ij are fixed variables while γk, (αγ)ik, (βγ)jk,

(αβγ)ijk are random variables, for i = 1, 2, ..., a; and j = 1, 2, ..., b; k = 1, 2, ..., c; and h =

1, 2, ..., nijk (all nijk = n when data is balanced). It is assumed that γk ∼ i.i.d. N(0;σ2
γ),

(αγ)ik ∼ i.i.d. N(0;σ2
αγ), (βγ)jk ∼ i.i.d. N(0;σ2

βγ), (αβγ)ijk ∼ i.i.d. N(0;σ2
αβγ), and ϵijkh ∼

i.i.d. N(0;σ2
e), are mutually independent variables, with E(yijk) = µ + αi + βj + (αβ)ij and

V ar(yijk) = σ2
ϵ .

3.4.2 Hypothesis Testing on a Three-way mixed model

Assuming factors A and B are fixed, while factor C is random, the hypotheses of interest on

the model (3.5) are given by:

HA
0 : αi = 0 tested by F = MSA

MSAC

,

HB
0 : βj = 0 tested by F = MSB

MSBC

,

HC
0 : σ2

C = 0 no valid F − test,

HAB
0 : (αβ)ij = 0 tested by F = MSAB

MSABC

,

HAC
0 : σ2

AC = 0 tested by F = MSAC

MSABC

,

HBC
0 : σ2

BC = 0 tested by F = MSBC

MSABC

,

HABC
0 : σ2

ABC = 0 tested by F = MSABC

MSE

.

(3.6)

Provided a valid F-test exists, the main effects of fixed factors A and B in hypotheses (3.6) are

tested by the interaction of the fixed factor involved with the random factor, while the main

effects the random factor C does not have an exact F-test. The interaction effects of any two

factors are tested by the full interaction, whereas the full interaction effect is tested by the

error. It is interesting to note that for all sources of variability in a fixed-effects model (when

all factors are deemed fixed), valid F-tests for fixed-effects models exist and are tested by the
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error (i.e., using MSE in the denominator of F). However, for some random-effects and mixed

models, this is not always the case. There are situations where no exact F-tests are readily

available for random and mixed effects, in which cases, the approximate F-tests are a good

alternative (Kuehl, 2000). However, some computer programs, such as R and SAS, do return

these F-tests. For instance, if we assume factors A and B are random, while taking factor

C as fixed in (3.5), we will have no valid F-test for testing the main effect of fixed factor C,

HC
0 : γk = 0.

When the data is unbalanced, the analysis of variance in the hypotheses (3.6) is achieved

through equating the mean sum of squares to their expected values. Considering a three-way

mixed linear model with factors A and B assumed fixed and factor C assumed random, we

define the uncorrected sum of squares found in the model unbalanced model as:

TA =
a∑

i=1

y2
i...

ni..

, TB =
b∑

j=1

y2
.j..

n.j.

, TC =
c∑

k=1

y2
..k.

n..k

,

TAB =
a∑

i=1

b∑
j=1

y2
ij..

nij.

, TAC =
a∑

i=1

c∑
k=1

y2
i.k.

ni.k

, TBC =
b∑

j=1

c∑
k=1

y2
.jk.

n.jk

,

TABC =
a∑

i=1

b∑
j=1

c∑
k=1

y2
ijk.

nijk

, Tµ = y2
....

n....

, Tϵ =
a∑

i=1

b∑
j=1

c∑
k=1

nijk∑
h=1

y2
ijkh.

(3.7)

By correcting for the mean in (3.7), the sum of squares in the unbalanced linear mixed model,
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(3.5) are calculated as follows.

SSA =TA − Tµ =
a∑

i=1

y2
i...

ni..

− y2
....

n....

, (3.8)

SSB =TB − Tµ =
b∑

j=1

y2
.j..

n.j.

− y2
....

n....

, (3.9)

SSC =TC − Tµ =
c∑

k=1

y2
..k.

n..k

− y2
....

n....

, (3.10)

SSAB =TAB − TA − TB + Tµ

=
a∑

i=1

b∑
j=1

y2
ij..

nij.

−
a∑

i=1

y2
i...

ni..

−
b∑

j=1

y2
.j..

n.j.

+ y2
....

n....

, (3.11)

SSAC =TAC − TA − TC + Tµ

=
a∑

i=1

c∑
k=1

y2
i.k.

ni.k

−
a∑

i=1

y2
i...

ni..

−
c∑

k=1

y2
..k.

n..k

+ y2
....

n....

, (3.12)

SSBC =TBC − TB − TC + Tµ

=
b∑

j=1

c∑
k=1

y2
.jk.

n.jk

−
b∑

j=1

y2
.j..

n.j.

−
c∑

k=1

y2
..k.

n..k

+ y2
....

n....

, (3.13)

SSABC =TABC − TA − TB − TC + Tµ

=
a∑

i=1

b∑
j=1

c∑
k=1

y2
ijk.

nijk

−
a∑

i=1

y2
i...

ni..

−
b∑

j=1

y2
.j..

n.j.

−
c∑

k=1

y2
..k.

n..k

+ y2
....

n....

, (3.14)

SSE =Tϵ − TABC

=
a∑

i=1

b∑
j=1

c∑
k=1

nijk∑
h=1

y2
ijkh −

a∑
i=1

b∑
j=1

c∑
k=1

y2
ijk.

nijk

. (3.15)

It is worthy to note that unbalanced data produces different types of sums of squares. Some

existing statistical packages, such as R and SAS, provide a number of approaches for computing

the sum of squares and testing hypotheses (Shaw and Mitchell-Olds, 1993). In the SAS system,

these sum of squares are designated as type I (relevant for balanced data), type II (for factorial

designs without interaction), type III (relevant for unbalanced data), and type IV (relevant

for factorial designs with missing cells) sums of squares. We illustrate the definition of these

sums of squares using a three-way factorial design with full interaction. Type I (sequential)

sum of squares measures the amount of additional variation explained by the model when a

term is added to the model (i.e. SS(A|1), SS(B|1, A), SS(C|1, A,B), or SS(AB|1, A,B,C).

Type II sum of squares measures the amount of variation contributed by a term to the model

when all other terms are included except terms that contain the effect being tested (i.e.

SS(A|1, B, C,BC) or SS(BC|1, A,B,C,AB,AC)). Type III (partial) sum of squares mea-

sures the amount of variation contributed by a term to the model when all other terms are

56



included (i.e. SS(B|1, A, C,AB,AC,BC,ABC), or SS(AB|1, A,B,C,AC,BC,ABC)). When

the data is balanced, type I, II and III sums of squares produce the same result. However,

the types of sums of squares are unequal for unbalanced data. When the data are unbalanced

and have no missing cells, type III sum of squares is recommended by many statistical authors.

Milliken and Johnson (2009) cautioned about the use of type III tests when there are missing

cells in the data as this produces invalid results due to a lack of essential information about

the missing cell means.

For random and linear mixed models, variance components would be estimated by equating

the observed sums of squares to their expected values, which are of the quadratic forms derived

using the brute force method (Searle and Gruber, 2017). This involves substituting the equation

(3.5) into the mean squares and using the appropriate assumptions of the model to evaluate the

expectations. For a random model example, using the definition of SSA from (3.8), we derive

E(SSA) = E(TA) − E(Tµ) by substituting model (3.5) into TA and Tµ of (3.7), and then take

expectations. E(TA) is derived in (3.16) - (3.17) as follows.

yi... =
b∑

j=1

c∑
k=1

nijk∑
h=1

yijkh = ni..µ+ ni..αi +
b∑

j=1
nij.βj +

c∑
k=1

ni.kγk

+
b∑

j=1

c∑
k=1

nij.(αβ)ij +
b∑

j=1

c∑
k=1

ni.k(αγ)ik +
b∑

j=1

c∑
k=1

nijk(βγ)jk

+
b∑

j=1

c∑
k=1

nijk(αβγ)ijk + ϵi... (3.16)

Upon squaring, dividing by ni.. and simplifying (3.16) before taking expectation, we have the

E(TA) =
a∑

i=1
E

(
y2

i...

ni..

)

= Nµ2 +Nσ2
α +

a∑
i=1

∑b
j=1 n

2
ij.

ni..
σ2

β +
a∑

i=1

∑c
k=1 n

2
i.k

ni..
σ2

γ

+
a∑

i=1

∑b
j=1

∑c
k=1 n

2
ij.

ni..
σ2

αβ +
a∑

i=1

∑b
j=1

∑c
k=1 n

2
i.k

ni..
σ2

αγ +
a∑

i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
σ2

βγ

+
a∑

i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
σ2

αβγ + aσ2
ϵ . (3.17)
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Similarly, E(Tµ) is derived following the steps below:

y.... =
a∑

i=1

b∑
j=1

c∑
k=1

nijk∑
h=1

yijkh

= Nµ+
a∑

i=1
ni..αi +

b∑
j=1

n.j.βj +
c∑

k=1
n..kγk

+
a∑

i=1

b∑
j=1

nij.(αβ)ij +
a∑

i=1

c∑
k=1

ni.k(αγ)ik +
b∑

j=1

c∑
k=1

n.jk(βγ)jk

+
a∑

i=1

b∑
j=1

c∑
k=1

nijk(αβγ)ijk + ϵ.... (3.18)

E(Tµ) = E

(
y2

....

N

)

= Nµ2 +
∑a

i=1 n
2
i..

N
σ2

α +
∑b

j=1 n
2
.j.

N
σ2

β

+
∑c

k=1 n
2
..k

N
σ2

γ +
∑a

i=1
∑b

j=1 n
2
ij.

N
σ2

αβ +
∑a

i=1
∑c

k=1 n
2
i.k

N
σ2

αγ

+
∑b

j=1
∑c

k=1 n
2
.jk

N
σ2

βγ +
∑a

i=1
∑b

j=1
∑c

k=1 n
2
ijk

N
σ2

αβγ + σ2
ϵ (3.19)

Hence, using (3.17) and (3.19), the expected value of E(SSA) is

E(SSA) = E(TA) − E(Tµ)

=
(
N −

∑a
i=1 n

2
i..

N

)
σ2

α +
(

a∑
i=1

∑b
j=1 n

2
ij.

ni..
−
∑b

j=1 n
2
.j.

N

)
σ2

β

+
(

a∑
i=1

∑c
k=1 n

2
i.k

ni..
−
∑c

k=1 n
2
..k

N

)
σ2

γ +
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
ij.

ni..
−
∑a

i=1
∑b

j=1 n
2
ij.

N

)
σ2

αβ

+
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
i.k

ni..
−
∑a

i=1
∑c

k=1 n
2
i.k

N

)
σ2

αγ

+
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
−
∑b

j=1
∑c

k=1 n
2
.jk

N

)
σ2

βγ

+
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
−
∑a

i=1
∑b

j=1
∑c

k=1 n
2
ijk

N

)
σ2

αβγ + (a− 1)σ2
ϵ (3.20)

The rest of the expected sum of squares are derived in the same way. As noted by Searle and

Gruber (2017), E(SSA) contains a non-zero coefficient for every variance component, including

the ones without factor A influence, which is not the case when data is balanced.

Suppose we consider a mixed model case, with factors A and B considered as fixed, while

factor C is considered random. Since random factors have zero means and covariances, taking
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expectations of TA and TB, as in (3.17), will render some of the terms involving the random

effect γ to zero. The expectation of fixed effects will not be zero; for example, E(niα
2
i ) = niα

2
i

and E(niβ
2
j ) = njβ

2
i . As a result, E(TA) in (3.17) and E(Tµ) in (3.19) will be modified to,

respectively,

E(TA) =
a∑

i=1
E

(
y2

i...

ni..

)

= Nµ2 +
a∑

i=1
ni..α

2
i + 2µ

a∑
i=1

ni..αi +
a∑

i=1

∑b
j=1 n

2
ij.β

2
j

ni..
+ 2µ

a∑
i=1

b∑
j=1

nij.βj

+ 2µ
a∑

i=1

b∑
j=1

c∑
k=1

nij.(αβ)ij +
a∑

i=1

∑c
k=1 n

2
i.k

ni..
σ2

γ +
a∑

i=1

∑b
j=1

∑c
k=1 n

2
i.k

ni..
σ2

αγ

+
a∑

i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
σ2

βγ +
a∑

i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
σ2

αβγ + aσ2
ϵ (3.21)

E(Tµ) = E

(
y2

....

N

)

= Nµ2 + (∑a
i=1 ni..αi)2

N
+ 2µ

a∑
i=1

ni..αi +

(∑b
j=1 nij.βj

)2

N
+ 2µ

a∑
i=1

b∑
j=1

nij.βj

+ 2µ
a∑

i=1

b∑
j=1

c∑
k=1

nij.(αβ)ij +
∑c

k=1 n
2
..k

N
σ2

γ +
∑a

i=1
∑c

k=1 n
2
i.k

N
σ2

αγ

+
∑b

j=1
∑c

k=1 n
2
.jk

N
σ2

βγ +
∑a

i=1
∑b

j=1
∑c

k=1 n
2
ijk

N
σ2

αβγ + σ2
ϵ (3.22)

Thus, the expected value of SSA is

E(SSA) = E(TA) − E(Tµ)

= Q1 +
(

a∑
i=1

∑c
k=1 n

2
i.k

ni..
−
∑c

k=1 n
2
..k

N

)
σ2

γ +
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
i.k

ni..
−
∑a

i=1
∑c

k=1 n
2
i.k

N

)
σ2

αγ

+
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
−
∑b

j=1
∑c

k=1 n
2
.jk

N

)
σ2

βγ

+
(

a∑
i=1

∑b
j=1

∑c
k=1 n

2
ijk

ni..
−
∑a

i=1
∑b

j=1
∑c

k=1 n
2
ijk

N

)
σ2

αβγ + (a− 1)σ2
ϵ (3.23)

where

Q1 =
a∑

i=1
ni..α

2
i − (∑a

i=1 ni..αi)2

N
+

a∑
i=1

∑b
j=1 n

2
ij.β

2
j

ni..
−

(∑b
j=1 nij.βj

)2

N
. (3.24)

The other fixed factors are dealt with following the same process as in (3.21) - (3.24). However,

the expected values of the sum of square terms in mixed models, in this case, E(SSA−SSC) will
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always include functions of fixed effects that are difficult to manipulate using linear combina-

tions of terms. The two approaches that Searle and Gruber (2017) suggested for this challenge

are: (1) reduce the model to purely random by ignoring and eliminating fixed effects; and (2)

consider fixed effects as random, and treat the model as entirely random) usually result in

biased variance components. Eze and Nwankwo (2016) proposed an alternative approach to

circumvent this problem by adjusting the denominators in the F-test for the main effects when

the factors are mixed.

Table 3.1 summarises the degrees of freedom, sum of squares and F-ratios for the analysis

of variance in an unbalanced three-way linear mixed model (3.5) with fixed factors A and B,

random factor C, where ∑a
i=1

∑b
j=1

∑c
k=1 nijk = N .

Table 3.1: ANOVA Table for Unbalanced Three-way Mixed Model
Source df Sum of Squares F
Fixed A a-1 SSA

MSA

MSABC

Fixed B b-1 SSB
MSB

MSABC

Random C c-1 SSC
MSC

MSE

A*B (a-1)(b-1) SSAB
MSA∗B

MSE

A*C (a-1)(c-1) SSAC
MSA∗C

MSE

B*C (b-1)(c-1) SSBC
MSB∗C

MSE

A*B*C (a-1)(b-1)(c-1) SSABC
MSA∗B∗C

MSE

Error abc(N-1) SSE
Total abcN-1 SST

When balanced data is considered, with all nijk = n, the coefficients of variance components

in (3.19) and other expected sum of squares summarised in ANOVA Table 3.1 reduce to the

balanced kindred displayed in ANOVA Table 3.2.

The ANOVA Table 3.2 is compatible with the mixed model procedure suggested by McLean

et al. (1991) and also recommended by SAS, to include the interactions between fixed and

random factors in estimating the expected mean square errors (EMS) for random effects and

analysis of unbalanced data. Based on the expected mean squares, the appropriate F-tests can

be performed on the fixed, random and interaction effects.
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Table 3.2: Three-way Mixed ANOVA

Source df Expected Mean Squares
A a− 1 σ2

ϵ + nσ2
αβγ + b ∗ nσ2

αγ + c ∗ nσ2
αβ + b ∗ c ∗ n∑ α2

i

a−1

B b− 1 σ2
ϵ + nσ2

αβγ + a ∗ nσ2
βγ + c ∗ nσ2

αβ + a ∗ c ∗ n∑ β2
j

b−1

C c− 1 σ2
ϵ + nσ2

αβγ + a ∗ nσ2
βγ + b ∗ nσ2

αγ + a ∗ b ∗ nσ2
γ

A*B (a− 1)(b− 1) σ2
ϵ + nσ2

αβγ + c ∗ n
∑∑

(αβ)2
ij

(a−1)(b−1)

A*C (a− 1)(c− 1) σ2
ϵ + nσ2

αβγ + b ∗ nσ2
αγ

B*C (b− 1)(c− 1) σ2
ϵ + nσ2

αβγ + a ∗ nσ2
βγ

A*B*C (a− 1)(b− 1)(c− 1) σ2
ϵ + nσ2

αβγ

Error (FFR) a ∗ b ∗ c(n− 1) σ2
ϵ

3.5 Treatment Structure

In experimental design, a treatment structure is defined as a format in which the effects of

various treatments, or combinations of treatments or factors under investigation are arranged

(Milliken and Johnson, 2009). In a treatment analysis, the experiment deliberately imposes a

treatment on a group of experimental units (objects or subjects) to observe the response. In

other words, treatment is something that a researcher administers to experimental units. These

types of experiments are generally referred to as factorial arrangement treatment structures.

For example, assume an experiment involving factors A and B, with a and b levels, respectively,

such that each replicate contains all ab treatment combinations. Arranging these factors in a

treatment structure results in a crossed-factors scenario.

3.5.1 Two-way Treatment Structure

Suppose we have fa fixed levels of factor A and fb fixed levels of factor B. Let ra be random

levels of factor A and rb be random levels of factor B. In general, if there are n replicates in

the experiment, the two-way treatment structure model, as suggested by Njuho and Milliken
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(2009), is in the form

yijk = µ+ αi + βj + (αβ)ij + ϵijk , i=1, 2, ...,a ; j=1, 2, ...,b ; k = 1, 2, ..., n. (3.25)

where α1, α2, ..., αf (fa < a) are real-valued constants corresponding to the fixed effect levels

of factor A and αf+1, αf+2, ..., αa (a = fa + ra) are random effect levels of factor A. Also, β1,

β2, ..., βf (fb < b) are real-valued constants corresponding to the fixed effect levels of factor B

and βf+1, βf+2, ..., βb (b = fb + rb) are random effect levels of factor B. µ is the overall mean,

and yijk is the kth observation receiving the ith treatment of factor A and the jth treatment of

factor B. We assume that αf+i ∼ i.i.d N(0, σ2
α), βf+j ∼ i.i.d. N(0, σ2

β), ϵijk ∼ i.i.d. N(0, σ2
ϵ )

and αf+i, βf+j and ϵijk are pairwise independent, i = 1, 2, ..., fa+1, fa+2, ..., a, j = 1, 2, ...,

fb+1, fb+2, ..., b, k=1, 2, ..., n.

From equation (3.25), the fixed and random levels of factors A and B are used to create

partitioned samples in the dataset. Partitioning the model (3.25) in line with the treatment

combinations gives us the following four models as shown in Table 3.3.

Table 3.3: Two-way Treatment Structure Models
Factor B

Fixed Random
Factor A Fixed FF FR

Random RF RR

The models obtained from this treatment structure are fixed-fixed (FF), fixed-random (FR),

random-fixed (RF) and random-random (RR) effects. Such models consist of treatment combi-

nations of both fixed and random levels. Two of the four models are given as examples below.

The Fixed-Fixed (FF) Model is given by,

yF Fijk
= µ+ αi + βj + (αβ)ij + ϵF Fijk

, (3.26)

where µ = µF F is the overall mean of the fixed effects; α1, α2, ..., αfa and β1, β2, ..., βfb are

real-valued constants corresponding to the fixed effect levels of factors A and B, respectively;

(αβ)11, (αβ)12, ..., (αβ)fafb are the A × B interaction effects amongst the fixed levels of the
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two factors; and the error term ϵF Fijk
∼ N(0, σ2

ϵF F
).

Fixed-Random (FR) Model is expressed as,

yF Rijk
= ϕi + bF Rj

+ cF Rij
+ ϵF Rijk

. (3.27)

In the Fixed-Random (FR) model, ϕi (i = 1, 2, ..., fa) denotes the mean of the ith fixed effect

level of factor A averaged over the random effect levels of factor B;

bF Rj
∼ N(0, σ2

bF R
) for j = fb + 1, fb + 2, ..., fb + rb = b, denotes the random effect levels of

factor B; cF Rij
represents the interaction between the fixed effect levels of A and the random

effect levels of B, where cF Rij
∼ N(0, σ2

cF R
), and ϵF Rijk

∼ N(0, σ2
ϵF R

).

The Random-Fixed (RF) Model is expressed as,

yRFijk
= aRFi

+ ωj + cRFij
+ ϵRFijk

. (3.28)

In the Random-Fixed (RF) effects model, aRFi
∼ N(0, σ2

aRF
) for i = fa +1, fa +2, ..., fa +ra = a

denotes the random effect levels of factor A; the mean of the jth fixed effect level of factor B

averaged over the random effect levels of factor A is denoted by ωj (j = 1, 2, ..., fb); cRFij

represents the interaction between the random effect levels of A and the fixed effect levels of

B, where cRFij
∼ N(0, σ2

cRF
); and ϵRFijk

∼ N(0, σ2
ϵRF

).

Similarly, the Random-Random (RR) Model is given by,

yRRijk
= µRR + aRRi

+ bRRj
+ cRRij

+ ϵRRijk
. (3.29)

In the Random-Random (RR) model for the factors A and B, µRR is the overall mean of the

random effects, aRRi
for i = fa+1, fa+2, ..., fa+ra = a, denotes the effects of the random levels

of factor A where aRRi
∼ N(0, σ2

aRR
), bRRj

∼ N(0, σ2
bRR

) for j = fb + 1, fb + 2, ..., fb + rb = b,

denotes the random effect levels of factor B; cRRij
represents the interaction between the random

effect levels of A and the random effect levels of B, and cRRij
∼ N(0, σ2

cRR
), and ϵRRijk

∼ N(0,

σ2
ϵRR

).
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3.5.2 Three-way Treatment Structure

Analogous to the two-way treatment structure, a three-way treatment structure is built, cul-

minating into eight partitioned models as summarised in Table 3.4.

Table 3.4: Three-way Treatment Structure Models
Factors A*B

Fixed-Fixed Fixed-Random Random-Fixed Random-Random
Factor C Fixed FFF FRF RFF RRF

Random FFR FRR RFR RRR

The number of models at this stage of the three-way treatment structure is 23. Intuitively, we

can build the n-way treatment structures and use the same approach to build and interpret the

respective partitioned models.

The Fixed-Fixed-Fixed (FFF) model for the factors A, B and C is constructed as

yF F Fijkh
= µF F F + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵF F Fijkh

, (3.30)

where µF F F is the overall mean of the fixed effects; α1, α2, ..., αfa, β1, β2, ..., βfb and γ1, γ2,

..., γfc are unknown parameters corresponding to the fixed-effect levels of factors A, B and C,

respectively; (αβ)11, (αβ)12, ..., (αβ)fafb denote the interaction effects among the fixed levels

of factors A and B; (αγ)11, (αγ)12, ..., (αγ)fafc denote the interaction effects among the fixed

levels of factor A and C; (βγ)11, (βγ)12, ..., (βγ)fbfc denote the interaction effects among the

fixed levels of factor B and C; (αβγ)111, (αβγ)112, ..., (αβγ)fafbfc denote the interaction effects

among the fixed levels of factors A, B and C; and ϵF F Fijkh
∼ i.i.d N(0, σ2

ϵF F F
) is the error term.

The Random-Random-Random (RRR) model for the factors A, B and C, is similarly

constructed. Let a, b and c be levels of factors A, B and C, respectively. Also let m be (αβ),

p be (αγ), q be (βγ) and g be (αβγ) interpreted as interactions effects.

yRRRijkh
= µRRR +aRRRi

+bRRRj
+cRRRk

+mRRRij
+pRRRik

+qRRRjk
+gRRRijk

+ϵRRRijkh
, (3.31)

where where µRRR is the overall mean of the random effects of the three factors; aRRRi
(i = fa+1,

fa + 2, ..., fa + ra = a) denotes the effects of the random levels of factor A with aRRRi
∼ N(0,
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σ2
aRRR

); bRRRj
(j = fb + 1, fb + 2, ..., fb + rb = b) denotes the random effect levels of factor B

with bRRRj
∼ N(0, σ2

bRRR
); cRRRk

(k = fc + 1, fc + 2, ..., fc + rc = c) represents the random

effect levels of factor C with cRRRk
∼ N(0, σ2

cRRR
); mRRRij

(i = fa + 1, fa + 2,..., fa + ra = a;

j = fb + 1, fb + 2, ..., fb + rb = b) represents the interaction effects of random levels of factor A

and factor B, with mRRRij
∼ N(0, σ2

mRRR
); pRRRik

(i = fa +1, fa +2, ..., fa +ra = a; k = fc +1,

fc + 2, ..., fc + rc = c) represents the interaction effects of random levels of factor A and factor

C, with pRRRik
∼ N(0, σ2

pRRR
); qRRRjk

(j = fb + 1, fb + 2, ..., fb + rb = b; k = fc + 1, fc + 2,

..., fc + rc = c), represents the interaction effects of random levels of factor B and factor C,

with qRRRjk
∼ N(0, σ2

qRRR
); gRRRijk

(i = fa + 1, fa + 2, ..., fa + ra = a; j = fb + 1, fb + 2, ...,

fb + rb = b; k = fc + 1, fc + 2, ..., fc + rc = c) represents the interaction effects of random lev-

els of factor A, B and C, with qRRRijk
∼ N(0, σ2

qRRR
); and ϵRRRijk

∼ N(0, σ2
ϵRRR

) is the error term.

The Fixed-Fixed-Random (FFR) model and its components is constructed and interpreted

as follows,

yF F Rijkh
= ϕij + cF F Rk

+mF F Rij
+ pF F Rik

+ qF F Rjk
+ gF F Rijk

+ ϵF F Rijkh
, (3.32)

where ϕij (i = 1, 2, ..., fa; j = 1, 2, ..., fb) denotes the mean of the ith fixed-effect levels of factor

A and the jth fixed-effect levels of factor B averaged over the random-effect levels of factor C

; cF F Rk
k = fc + 1, fc + 2, ..., fc + rc = c represents the random effect levels of factor C, with

cF F Rk
∼ N(0, σ2

cF F R
); mF F Rij

(i = 1, 2, ..., fa; j = 1, 2, ..., fb) represents the interaction effects

of fixed levels of factor A, fixed levels of factor B, with mF F Rij
∼ N(0, σ2

mF F R
); pF F Rik

(i = 1, 2,

..., fa; k = fc + 1, fc + 2, ..., fc + rc = c) represents the interaction effects of the fixed levels

of factor A and random levels of factor B, with pF F Rik
∼ N(0, σ2

pF F R
); qF F Rjk

(j = 1, 2, ..., fb;

k = fc + 1, fc + 2, ..., fc + rc = c) represents the interaction effects of fixed levels of factor

B and random levels of factor C, with qF F Rjk
∼ N(0, σ2

qF F R
); gF F Rijk

(i = fa + 1, fa + 2, ...,

fa + ra = a; j = fb + 1, fb + 2,..., fb + rb = b; k = fc + 1, fc + 2, ..., fc + rc = c) represents

the interaction effects of fixed levels of factor A, fixed levels of factor B and random levels of

factor C, with gF F Rijk
∼ N(0, σ2

gF F R
); and ϵF F Rijk

∼ N(0, σ2
ϵF F R

) is the error term.

The other five models of the three-way treatment structure are similarly constructed and listed
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below:

yF RFijkh
= ϕik + bF RFj

+mF RFij
+ pF RFik

+ qF RFjk
+ gF RFijk

+ ϵF RFijkh
; (3.33)

yRF Fijkh
= ϕjk + aRF Fi

+mRF Fij
+ pRF Fik

+ qRF Fjk
+ gRF Fijk

+ ϵRF Fijkh
; (3.34)

yRRFijkh
= aRRFi

+ bRRFj
+ µk +mRRFij

+ pRRFik
+ qRRFjk

+ gRRFijk
+ ϵRRFijkh

; (3.35)

yF RRijkh
= µi + bF RRj

+ cF RRk
+mF RRFij

+ pF RRik
+ qF RRjk

+ gF RRijk
+ ϵF RRijkh

; (3.36)

yRF Rijkh
= aRF Ri

+ µj + cRF Rk
+mRF RFij

+ pRF Rik
+ qRF Rjk

+ gRF Rijk
+ ϵRF Rijkh

. (3.37)

The interpretation of these models and their interactions effects is analogous to the Fixed-Fixed

(FF) model or the two-way treatment structure models previously given.

3.5.3 Analysis of Variance for Three-way Structure Models

For each of the models (3.30) - (3.37), the analysis of variance (ANOVA) approach will be used

to assess the variation in the response variable. Table 3.5 displays the ANOVA model for the

Fixed-Fixed-Random (FFR) model for balanced data.

Table 3.5: Fixed-Fixed-Random (FFR) ANOVA

Source df Expected Mean Squares
A fa − 1 σ2

ϵ + nσ2
αβγ + fb ∗ nσ2

αγ + rc ∗ nσ2
αβ + fb ∗ rc ∗ n∑ α2

i

fa−1

B fb − 1 σ2
ϵ + nσ2

αβγ + fa ∗ nσ2
βγ + rc ∗ nσ2

αβ + fa ∗ rc ∗ n∑ β2
j

fb−1

C rc − 1 σ2
ϵ + nσ2

αβγ + fa ∗ nσ2
βγ + fb ∗ nσ2

αγ + fa ∗ fb ∗ nσ2
γ

A*B (fa − 1)(fb − 1) σ2
ϵ + nσ2

αβγ + rc ∗ n
∑∑

(αβ)2
ij

(fa−1)(fb−1)

A*C (fa − 1)(rc − 1) σ2
ϵ + nσ2

αβγ + fb ∗ nσ2
αγ

B*C (fb − 1)(rc − 1) σ2
ϵ + nσ2

αβγ + fa ∗ nσ2
βγ

A*B*C (fa − 1)(fb − 1)(rc − 1) σ2
ϵ + nσ2

αβγ

Error (FFR) fa ∗ fb ∗ rc(n− 1) σ2
ϵ

In this ANOVA table, fa and fb are fixed levels of factors A and B, respectively, while rc denotes

the random levels of factor C, and n replications per cell. In the case of unbalanced data, the

expected mean squares in Table 3.5 are derived from the reduction sum of squares, (R(β)), for
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each corresponding source of variation (Searle and Gruber, 2017). The approach is applied to

the rest of the models and thus, can be extended to n-way treatment structure.

3.5.4 Variables for Combined Model

The variables and combinations of effect levels used to build a combined model that has three

factors, A, B and C, each having both fixed and random levels. Table 3.6 summarises the

variable and partitioned model information required when formulating a combined model.

Table 3.6: Variables in a Combined Model
Effect levels

Fixed parts of Random parts of
factors A, B & C factors A, B & C

Type of model FA FB FC RA RB RC
FFF ✓ ✓ ✓ × × ×
FRF ✓ × ✓ × ✓ ×
RFF × ✓ ✓ ✓ × ×
FRF × × ✓ ✓ ✓ ×
FFR ✓ ✓ × × × ✓
FRR ✓ × × × ✓ ✓
RFR × ✓ × ✓ × ✓
RRR × × × ✓ ✓ ✓

✓ denotes the presence of the effect;
× denotes the absence of the effect;

F denotes a fixed effect, and
R denotes a random effect.

In all the eight (8) possible partitioned models constructed, the notation FA denotes the

fixed effect levels of factor A, whereas RA denotes the random effect levels of factor A. The

same interpretation is used for the rest of the factors. A combined model is achieved by

syncretising the appropriate pieces of information (degrees of freedom and sum of squares)

from the partitioned models as shown in Table 3.6. When constructing the combined model in

a three-way treatment structure, the sources of variation, degrees of freedom, and the models

supplying the information are as given in Table 3.7.
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Table 3.7: Information for the Combined Model ANOVA

Source df Models supplying
information

FA (Model) 4(fa − 1) FFF, FRF, FFR and FRR
FB (Model) 4(fb − 1) FFF, RFF, FFR and RFR
FC (Model) 4(fc − 1) FFF, FRF, RFF and RRF
FA*FB*FC (fa − 1)(fb − 1)(fc − 1) FFF
RA (Model) 4(ra − 1) RFF, RRF, RFR and RRR
RB (Model) 4(ra − 1) FRF, RRF, FRR and RRR
RC (Model) 4(ra − 1) FFR, FRR, RFR and RRR
RA*RB*RC (Model) (ra − 1)(rb − 1)(rc − 1) RRR
Error fa ∗ fb ∗ fc + fa ∗ fc ∗ rb + fb ∗ fc ∗ ra+ FFF, FRF, RFF, RRF,

fc ∗ ra ∗ rb + fa ∗ fb ∗ rc + fa ∗ rb ∗ rc+ FFR, FRR, RFR and RRR
fb ∗ ra ∗ rc + ra ∗ rb ∗ rc

Similarly, all the three-way structure models can be built and interpreted. This study will

attempt to install the partitioning approach in similar experimental designs, such as the com-

pletely randomised design (CRD), randomised complete block design (RCBD), and split-split-

plot (SSP) design.

Considering the samples Y1i, Y2i, ..., Yki, to be samples used for the combined model above

collected from a normal population with unknown mean µ1, µ2, ..., µk, respectively. The

widely used method for testing H0 : µ1 = µ2 = ... = µk is the analysis of variance (ANOVA)

under the normality, equality of the variances and independence assumptions. The classical F

test statistic of the ANOVA is expressed as a ratio of the between-group and within-group sums

of squares of the reduced model under H0 and the full model. Assuming equal group variances,

the F test statistic is written as

F =
SStreats

k−1
SSE
N−k

, (3.38)

where SStreats, SSE are the between-group and within-group sum of squares, and k is the

number of groups. Under H0, F follows an F-distribution with k − 1 and N − k degrees of

freedom.
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3.6 Degrees of Freedom Approximation

In statistical experiments involving the analysis of variance, it is important to calculate the

degrees of freedom associated with the estimation of uncertainty and hence the F statistic.

Degrees of freedom is defined as the pieces of information in a set of data that are free to vary

without violating constraints when estimating statistical parameter. Basically, the experimen-

tal error degrees of freedom are calculated by subtracting the number of relations from the

number of observations (N − k), whereas the total degrees of freedom for the sample mean are

given by the number of observations less one (N − 1).

3.6.1 The Satterthwaite Approximation

The total degrees of freedom is not always a simple sum of the independently calculated degrees

of freedom (Satterthwaite, 1946). There are many ways to account for sample variances by

calculating equivalent degrees of freedom. Three basic approaches are listed below.

• The pooled standard error approach: Assuming that the population standard deviations

for the groups are the same, simply pooling the sample standard deviations gives the

largest degrees of freedom, i.e. df = n1 + n2 − 2. If the sample standard deviations

substantially differ, the hypotheses test for testing that the standard deviations are the

same is not robust, so this method should not be done in practice. This will give the

smallest margin of error, and the smallest p-value of the three methods for estimating the

degrees of freedom.

• The conservative estimate takes the smallest degrees of freedom, i.e. min (n1 − 1;n2 − 1).

This simple method will give the largest margin of error or the largest p-value of the three

methods for estimating the p-value.

• The Satterthwaite (1946) approximation is a formula used to estimate an effective degrees

of freedom from linear combinations of mean squares in order to test certain hypotheses

where only estimates of the variance are known. A convenient way is to find additive

combinations of mean squares by synthesising both the numerator and denominator mean
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squares, resulting in the Satterthwaite (1946) formula given by,

df = (∑n
i=1 S

2
i )2

∑n
i=1

(S2
i )2

ni−1

, (3.39)

where S2
i and ni are the sample variances and sample sizes, respectively.

It can be shown that the Satterthwaite approximation for the degrees of freedom lies between

the conservative and pooling estimates. Alternatively, estimates of the components of variance

and hence estimation of MS may require subtraction of mean squares; however, as Satterth-

waite warned, caution must be exercised when his formula is used.

3.6.2 The Welch Approximation

It is well-known that the F-test ANOVA is robust to the normality but sensitive to violation of

other assumptions (Lee and Ahn, 2003), especially the equality of variance. The Behrens-Fisher

problem is one example when two normal populations with unequal variances is considered, and

the studentised difference of the two sample means no longer follows a t-distribution. Numerous

different methods have been proposed and compared for solving the Behrens-Fisher problem.

One prominent example is the Welch (1947) approximation of the T-test statistic by means of

a student t-distribution with a random number of degrees of freedom given by,

DF =

(
S2

1
n1

+ S2
2

n2

)2

(
S2

1
n1

)2

n1−1 +

(
S2

2
n2

)2

n2−1

, (3.40)

where S2
1 , S2

2 are the sample variances, and n1 and n2 are the respective sample sizes. The

Welch approximation is basically identical to the Satterthwaite approximation. Other tests and

comparisons involving more than two means with unequal variances also exist (Bartlett, 1937;

Levene, 1960; Brown and Forsythe, 1974; Xu et al., 2015; Gokpinar and Gokpinar, 2017).

3.6.3 The Welch-Satterthwaite Approximation

When more than two sample variances are compared, it is generally necessary to estimate the

variance by a linear combination of mean squares. For example, when testing the null hypothesis
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H0 : σ2
i = 0, for i = 1, 2, ..., k, a linear function of the mean squares MS = ∑k

i=1 αiMSi, where

the αi’s are known constants, can be computed. If MS is approximately distributed as σ2χ2
v

v
,

with an F-test approximated by MSi/MS, then the Satterthwaite formula can be used to

estimate the degrees of freedom as

d̂f = (MS)2∑k
i=1

αiMSi

vi

. (3.41)

Welch-Satterthwaite is an approximation to the effective degrees of freedom by using the sam-

ples’ uncertainties (e.g. standard deviation) and degrees of freedoms, as described in Welch

(1947) and Satterthwaite (1946). The effective or equivalent degrees of freedom, also known

as the pooled degrees of freedom, is a combination of the multiple variances (pooled variance)

and their respective degrees of freedom vi corresponding to the linear combination, ∑n
i=1 αiS

2
i

(i = 1, ..., n). The Welch-Satterthwaite approximation (Satterthwaite, 1946; Welch, 1947) for

effective degrees of freedom is given by,

d̂f = (∑n
i=1 αiS

2
i )2

∑n
i=1

(αiS2
i )2

vi

, (3.42)

where the weights αi are defined as αi = 1
vi+1 .

3.6.4 The Kenward-Roger Approximation

Linear mixed model parameters are typically estimated using ML or REML estimates (Patter-

son and Thompson, 1971; Harville, 1977). Hypothesis testing procedures such as the likelihood

ratio test and Wald test are the most widely used methods for drawing inferences on fixed ef-

fects of the model. However, the procedures tend to underestimate the variance component of

the fixed effect parameter in the mixed model (Zucker et al., 2000) when small samples are in-

volved. The hypothesis, H0 : L′β = 0, is tested by a Wald test statistic, which is approximated

as an F-distribution with rank(L) numerator degrees of freedom. To account for the variability

due to estimation of the variance components in small samples, Kenward and Roger (1997)

proposed a scaled Wald statistic, which involves an approximate covariance matrix, ensuring

that the modified statistic is asymptotically distributed as an F-distribution for which they pro-

vided a method for estimating the denominator degrees of freedom. However, the denominator

degrees of freedom can be estimated by the Satterthwaite approximation or any other suitable
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method. Ignoring the small sample precision when estimating variance components may result

in biased confidence intervals. Although its small-sample performance can break down in some

circumstances, the Kenward-Roger’s (1997) approximation has proven effective for controlling

the type I error rate in a variety of contexts.

Both the Satterthwaite (1946) and Kenward-Roger (Kenward and Roger, 1997) approaches are

used to estimate denominator degrees of freedom for F-statistics or degrees of freedom for t

statistics (Luke, 2017). The Satterthwaite approximation, the default for SAS PROC MIXED

(Stroup et al., 2018), can be applied to ML or REML models, while the Kenward-Roger ap-

proximation is used on REML models only. A simulation study conducted by Luke (2017)

shows that both the Satterthwaite and the Kenward-Roger approximation produced highly

comparable type I error rates, and were not noticeably anti-conservative and robust for smaller

sample sizes. Various statistical software packages are available to provide these approxima-

tions. Kuznetsova et al. (2017) have developed the lmerTest package in R, which implements

the Satterthwaite’s method, and the pbkrtest package, which generates the Kenward-Roger

approximation for approximating degrees of freedom for the t− and F-tests in the construction

of type I-III ANOVA tables.

3.7 Model Fit Through Simulation

Simulation is rarely used by researchers, yet it is powerful tool for assessing model fit (Harrison

et al., 2018). Simulations samples for this research were generated in R and SAS statistical

software. Full details about the simulation codes are provided in Appendices B and C. A suf-

ficiently large number of iterations (10 000, say) can be generated using a set of parameter

estimates from the original model and compared to the observed real data used. A good model

fit should not show significant deviations (poor model fit) from the observed real data after a

considerably large number of iterations. Simulation samples for this study were generated to

test both internal and external validity of the approach in each design.
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3.8 Conclusion

The fundamental principles and processes of constructing a three-way linear mixed model for

the sake of conducting either individual or combined analysis have been presented. The im-

portance of choosing an appropriate research design for analysis of treatment effects cannot be

underestimated. The partitioning of factor levels offers a more efficient room for evaluation of

treatment effects in different treatment structures. The next Chapter 4 presents the application

of the partitioning approach in linear mixed models in the presence of outlier contamination.
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CHAPTER 4

LINEAR MIXED MODELS FOR
CONTAMINATED DATA

This chapter presents the application of the partitioning approach when analysing contaminated

data using linear mixed models. The main focus will be on model construction, hypothesis

testing and inference scope when treatments are arranged in completely randomised design

(CRD) and randomised complete block design (RCBD).

4.1 Introduction

Real-life data with multiple levels of random variation are often contaminated by outliers or any

other contamination in those levels (Koller, 2016). In this chapter, the term "contamination" in

experimental data is taken to refer to the presence of outliers in the data. Exploratory studies

in various disciplines such as agriculture, biomedical sciences, and physical science, involve fac-

torial designs where combinations of the levels of the factors are investigated (Oliveira et al.,

2019). Linear mixed models are a widely used analysis tool for assessing the impact of input

factors and their associated interactions on the response variable (Harrar et al., 2019). The

traditional F-test plays a crucial role in the testing of these relationships in linear model analy-

sis (Harrar et al., 2019). However, the use of linear mixed models to characterise experimental

data requires improved modelling techniques for the specification of both fixed and random

effects (Smith and Edwards, 2017).

Practitioners conducting exploratory agricultural and industrial studies often encounter sce-

narios involving factorial arrangements, which require increased precision and information on

74



testing the main and interaction effects of the factors under investigation (Ott and Longnecker

2016). Model construction, estimation and drawing of inference about the parameters of in-

terest call for proper characterisation of the treatment structure involving different factors. A

factor is classified as fixed when the levels of that factor are pre-selected. As such, statistical

inference is limited to those specific levels. In contrast, when the levels of a factor are a random

sample from a large population of possible levels, statistical inference is desired on the popula-

tion of levels, and the factor is considered random (Jayalath and Ng, 2018).

According to Robinson (1991), complicated and controversial issues about fixed and random

models can be well understood through understanding procedures for estimating random ef-

fects. Many computer algorithms have been developed to construct experimental designs that

are D-optimum for the fixed parameters of a statistical model (Loeza-Serrano and Donev,

2014). Understanding and characterising treatment effect variation in randomised experiments

has become essential for going beyond the "black box" of the average treatment effect (Ding et

al., 2019). Correct identification of experimental design and its structure in research prevents

the selection of incorrect models and the drawing of misleading inferences (Bate and Chatfield,

2016). In a balanced data case, the analysis of variance (ANOVA) approach is preferred in

testing for significance of the treatment means (in case of fixed effects) and in estimating the

variance components (for random effects) involved by making use of the linear combination of

the mean squares (Crump, 1946; Satterthwaite, 1946; Fisher, 1925).

Improved modelling techniques (Ott and Longnecker, 2016; Smith and Edwards, 2017; Ding et

al., 2019) and proper characterisation of the treatment structures, which clearly specify both

fixed and random effects (McLean et al., 1991; Robinson, 1991; Jayalath and Ng, 2018; Chaka

and Njuho, 2021), are crucial steps to ensure the selection of correct models and inferences (Bate

and Chatfield, 2016). However, the precision of estimated linear models is mostly affected by

the presence of outliers and other forms of contamination in experimental data (Park and

Leeds, 2016; Wang et al., 2020). The presence of outliers influences usually impacts the classic

estimates of the fitted model (Koller, 2016). Researchers often face some challenges on how in

identifying the best linear mixed model for making valid inferences (Kuran and Özkale, 2021).
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4.2 Methodology

A three-way treatment structure with full interaction of factor levels, which are assumed to be

either fixed or random in nature, is considered. We demonstrate the model construction and

analysis procedures to follow in a completely randomised design when little contamination has

been detected in the data.

4.2.1 Model Construction

In a completely randomised design (CRD), the treatment factors might have t = 1, 2, ..., tf fixed

treatment levels and tf + 1, tf + 2,..., tr random levels where t = tf + tr are influencing on the

variable of interest. Our approach provides a provision to install these types of factors into the

experimental design and investigate the treatment effects based on the treatment combinations

formed. A three-way treatment structure where each consists of both fixed and random levels

is assumed, with at least one replication per treatment combination has a model give by,

yijkl = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵijkl, (4.1)

where yijkl is the response variable, i = 1, 2, ..., a; j = 1, 2,..., b; k = 1, 2, ..., c; l = 1, 2, ..., n;

µ is the overall mean; αi is the ith treatment effect of factor A; βj is the jth treatment effect of

factor B; γk is the kth treatment effect of factor C; (αβ)ij is the interaction effect of factor A

and factor B; (αγ)ik is the interaction effect of factor A and factor C; (βγ)jk is the interaction

effect of factor B and factor C; (αβγ)ijk is the interaction effect of factor A, factor B and factor

C; ϵijkl’s are assumed independent and uncorrelated random error terms, ϵijkl ∼ N(0;σ2
ϵ ).

4.2.2 Partitioning of Factor Levels

We consider a three-way treatment structure in a completely randomised design (CRD) with

with full interaction of factors A (with a effect levels), B (with b effect levels), and C (with c

effect levels). Suppose, for the same factors, we let fa be fixed levels and ra be random levels of

factor A (a = fa + ra); fb be fixed levels and rb be random levels of factor B (b = fb + rb); fc be

fixed levels, and rc be random levels of factor C (c = fc + rc). The newly introduced strategies

are considered as fixed levels of each factor, and the old existing strategies as random levels

selected from the population of strategies which could not be considered in total. Assuming n

replicates per treatment, a three-way linear model has the form (4.1), where µ is the overall
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mean; αi (i = 1, 2, ..., fa, fa + 1, fa + 2, ..., (fa + ra) = a) is the ith treatment effect of factor

A; βj (j = 1, 2, ..., fb, fb + 1, fb + 2, ..., (fb + rb) = b) is the jth treatment effect of factor B;

γk (k = 1, 2, ..., fc, fc + 1, fc + 2, ..., (fc + rc) = c) is the kth treatment effect of factor C;

(αβ)ij is the interaction effect between factor A and factor B; (αγ)ik is the interaction effect

of factor A and factor C; (βγ)jk is the interaction effect of factor B and factor C; (αβγ)ijk is

the interaction effect of factor A, factor B and factor C; ϵijkl’s are assumed independent and

uncorrelated random error terms, ϵijkl ∼ N(0;σ2
ϵ ).

We construct a partyitioned three-way linear mixed model from (4.1) by partitioning the lev-

els of factors A, B and C as (1) fixed-fixed-fixed (FFF), (2) fixed-fixed-random (FFR), (3)

fixed-random-fixed (FRF), (4) fixed-random-random (FRR), (5) random-fixed-fixed (RFF),

(6) random-fixed-random (RFR), (7) random-random-fixed (RRF) and (8) random-random-

random (RRR). For ease of computation, we code the eight models as displayed in Table 4.1.

Table 4.1: Three-way Treatment Structure with Model Codes (1) - (8)
Factors A*B

Fixed-Fixed Fixed-Random Random-Fixed Random-Random
Factor C Fixed FFF(1) FRF(3) RFF(5) RRF(7)

Random FFR(2) FRR(4) RFR(6) RRR(8)

The model codes (1) - (8) in Table 4.1 are for easy reference and conveneience.

4.2.3 Model Construction

We construct a three-way treatment structure model by partitioning the levels of factors A, B

and C as given in Table 4.1. Assuming nijk replicates per treatment (nijk = n for the balanced

case), each of the partitioned three-way linear model has the form,

ypijkl
= µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵpijkl

, (4.2)

where the subscript p in ypijkl denotes the partition (p = 1, 2, ..., 8) as coded in Table 4.1, and

all other parameters are as defined in (4.1).
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Of the eight partitioned models, we select two to demonstrate the model construction process.

The Fixed-Fixed-Fixed (FFF) effects model for the factors A, B and C, is expressed as

y1ijkl
= µ1 + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵ1ijkl

, (4.3)

where the subscript 1 in y1ijkl
denotes the FFF model; µ1 is the overall mean of the fixed

effects, α1, α2, ..., αfa ; β1, β2, ..., βfb
and γ1, γ2, ..., γfc are real-valued constants corresponding to

the fixed effect levels of factors A, B and C, respectively; (αβ)11, (αβ)12, ..., (αβ)fafb
are the

A × B interaction effects; (αγ)11, (αγ)12, ..., (αγ)fafc are the A × Cinteraction effects; (βγ)11,

(βγ)12, ..., (βγ)fbfc represent the B × C interaction effects; (αβγ)111, (αβγ)112, ..., (αβγ)fafbfc

are the A×B × Cinteraction effects, and ϵ1ijkl
∼ i.i.d.N(0, ϵ2

1ϵ
).

The Fixed-Random-Fixed (FRF) model is similarly constructed from fixed levels of factors A

and C, and random levels of factor B. For simplicity, let a, b and c be levels of factors A, B and

C, respectively, m be the interaction effects of levels of factors A and B, denoted by (αβ), p be

the interaction effects of levels of factors A and C, denoted by (αγ), q be the interaction effects

of levels of factors B and C, denoted by (βγ), and g be the interaction effects of factors A, B

and C levels denoted by (αβγ). The Fixed-Random-Fixed (FRF) model is expressed as,

y3ijkl
= ϕi.k + b3j

+m3ij
+ p3ik

+ q3jk
+ g3ijk

+ ϵ3ijkl
, (4.4)

where the subscript 3 in y3ijkl
denotes the FRF model as per the partitions of Table 4.1; ϕi.k

denotes the mean of the fixed-effect levels of factor A and the fixed-effect levels of factor C

averaged over the random-effect of factor B, b3j
represents the random-effect levels of factor

B with b3j
∼ i.i.d.N(0, σ2

b3); m3ij
represents the random interaction effects of factor A and

factor B, with m3ij
∼ i.i.d.N(0, σ2

m3); p3ik
represents the fixed interaction effects of factor A

and factor C; q3jk
represents the random interaction effects of factor B and factor C, with

q3jk
∼ i.i.d.N(0, σ2

q3); g2ijk
represents the random interaction effects of factors A, B and C with

g3ijk
∼ i.i.d.N(0, σ2

g3); and ϵ3ijkl
is the random error term, ϵ3ijkl

∼ i.i.d.N(0, σ2
ϵ3).

We formulate a partitioned models and combined model from the partitions shown in Table 3.6

and 3.7 by integrating the variables involved in each of the eight models.
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4.2.4 Model Assumptions

In experimental research involving analysis of variance (ANOVA) as a technique for comparing

different treatment means, a set of assumptions which include the usual normality and ho-

mogeneity of variance, must be checked before analysis of data (Kotchaporn and Araveeporn,

2018). These assumptions can be checked for each partitioned model using any of the appro-

priate normality tests (e.g., Q-Q plots or Shapiro Wilk’s test) or homogeneity of variance tests

(e.g., Levene’s test or Bartlett’s test). Consider the fixed and random levels of each factor as

defined in (4.2). The combined model assumes equality of variance for the error terms and

random effects across the partitions, while the same is assumed for groups defined by each

variable in each partitioned model.

4.2.4.1 Homogeneity of Variance Assumption

In mixed model hypothesis testing, it is crucial to assess the significance of all or a subset of the

random effects included before the analysis of the means is attempted (Hui et al., 2019; Milliken

and Johnson, 2009). We consider the equality of variance tests for the variance components

first before the treatment effects tests for the fixed part of the combined model. The intention

is to establish the rationale for applying the tests that rely on homogeneity of variance as-

sumption, as well as to establish homogeneous variance of the dependent variable exists across

multiple groups (Mara and Cribbie, 2018). When more than one hypothesis is simultaneously

tested, the probability of committing false statistical inferences would increase considerably.

Proper adjustments for multiple comparisons for specific types of tests or situations, such as

Bonferroni, Sidak, Dunnett, Holm and others, are required (Thiese et al., 2016). Generally,

there is no uniform agreement on when to adjust or what type of adjustment is best, since all

these adjustments operate in the same way to lower the likelihood of committing a type I error

(Thiese et al., 2016). Testing the assumptions made for the eight models in Table 4.1 requires

the Bonferroni’s simultaneous test, since it allows for simultaneous comparisons (Westfall and

SAS Institute, 1999) using α
8 level of significance. The hypotheses of interest are:

H1. HA0 : σ2
ϵ1 = σ2

ϵ2 = σ2
ϵ3 = σ2

ϵ4 = σ2
ϵ5 = σ2

ϵ6 = σ2
ϵ7 = σ2

ϵ8 , against

HA1: At least two are different.
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H2. HB0: σ2
a3 = σ2

a4 = σ2
a7 = σ2

a8 , against HB1: At least two are different.

H3. HC0: σ2
b2 = σ2

b4 = σ2
b6 = σ2

b8 , against HC1: At least two are different.

H4. HD0: σ2
c5 = σ2

c6 = σ2
c7 = σ2

c8 , against HD1: At least two are different.

H5. HE0: σ2
m1 = σ2

m2 = σ2
m3 = σ2

m4 = σ2
m5 = σ2

m6 = σ2
m7 = σ2

m8 , against HE1: At least two are

different.

H6. HF 0: σ2
p1 = σ2

p2 = σ2
p3 = σ2

p4 = σ2
p5 = σ2

p6 = σ2
p7 = σ2

p8 , against HF 1: At least two are

different.

H7. HG0: σ2
q1 = σ2

q2 = σ2
q3 = σ2

q4 = σ2
q5 = σ2

q6 = σ2
q7 = σ2

q8 , against HG1: At least two are

different.

H8. HK0: σ2
g1 = σ2

g2 = σ2
g3 = σ2

g4 = σ2
g5 = σ2

g6 = σ2
g7 = σ2

g8 , against HK1: At least two are

different.

Provided the sample size (ni) is the same for each treatment, the hypotheses H1 - H8 can be

tested for homogeneity of variance using Bartlett’s (1937) test, whose test statistic is given by

T = 1
C

[
v.loge(σ̂2) −

m∑
i=1

vi.loge(σ̂2
i )
]
, (4.5)

where C = 1 + 1
3(m−1)(

∑m
i=1

1
vi

− 1
v
); m is the number of treatments under consideration (m = 8

in this case); vi represents the degrees of freedom associated with each variance component i,

v = ∑
vi, and σ̂2

i is the estimate of variance component, σ̂2 = ∑m
i=1 vi( σ̂2

i

v
). We reject the null

hypothesis when Bartlett’s test statistic T > χ2
α
m

(m− 1). However, Bartlett test is sensitive to

departure from normality. When one is not certain that the normality assumption is violated in
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the data set, or the data is nearly normal, the Levene’s test or other heteroscedastic alternative

testing approaches to the ANOVA F-test (Levene 1960; Parra-Frutos 2013) are recommended.

Depending on whether one is using the mean, median or treamed mean, the Levene’s test for

equal variances across k samples is given by

TL = N − k

k − 1

∑n
i=1 ni(Zi. − Z..)2∑k

i=1
∑nj

j=1(Zij − Z.i.)
, (4.6)

where Zij is either the mean, trimmed mean or median of the subgroup. Most statistical

software populate the p-value of the Levene’s test, which is used to reject or retain the null

hypothesis of homogeneity of variance. Modifications of the levene’s and O’Brien’s tests for ho-

mogeneity of variance based on median and trimmed mean were exist (Kotchaporn and Autcha,

2018).

Some heteroscedastic alternative testing approaches to the ANOVA F-test (Levene, 1960; Parra-

Frutos, 2013) are recommended. Kotchaporn and Araveeporn (2018) proposed some median

and trimmed mean to modify the Levene’s and O’Brien’s tests for testing homogeneity of vari-

ance. Sevaral parametric test procedures exist when testing hypotheses of equal variances under

various experimental conditions.

In case ni ̸= ni′ , i.e. when treatment sample sizes are different, various traditional difference-

based tests exist that test for equality of variances (Hartley, 1950; Levene, 1960; Brown and

Forsythe, 1974). Building from the F-max test (Hartley, 1950), several researchers have devel-

oped equivalence-based tests along with several modifications for homogeneity of variances to

address the fundamental problems of traditional difference-based tests (Wellek, 2010; Gokpinar

and Gokpinar, 2017; Frey, 2010; Mara and Cribbie, 2018). Equivalence-based tests seek to

establish if a pre-specified equivalence interval contains the difference of the variances or not

(Mara and Cribbie, 2018).

Considering the partitioned models (1) - (8) as defined in Table 4.1, the homogeneity of vari-

ance assumption of interest in the combined model might be: σ2
ϵ1 = σ2

ϵ2 = ... = σ2
ϵ8 , while the
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variances across the groups are considered for the main and interaction effects. For example,

using the variable combinations illustrated in Table 4.1, equality of variance for random factor

A considers σ2
A = σ2

a3 = σ2
a4 = σ2

a7 = σ2
a8 .

The F-max test statistic (Hartley, 1950; Frey, 2010) for m samples is given by,

Fmax = Max(σ̂2
i )

Min(σ̂2
i ) , (4.7)

where H0 is rejected when Fmax > Fvmax,vmin
( α

m
). Milliken and Johnson (2009) provided an

appropriate alternative approache to use in case the null hypothesis is either rejected or not.

Different types of homogeneity of variance tests exist, such as the difference-based equality

of variance tests when the sample sizes for each treatment are equal (Bartlett, 1937; Hartley,

1950; Levene, 1960; Brown and Forsythe, 1974) and their modifications (equivalence-based

tests) built from the F-max test (Hartley, 1950) when treatment sample sizes are different and

unequal (Frey, 2010; Wellek, 2010; Gokpinar and Gokpinar, 2017; Mara and Cribbie, 2018).

4.2.4.2 Outlier Contamination

It is generally assumed that experimental data modelled by linear mixed models are normally

distributed without outliers (Park and Leeds, 2016), which is highly uncommon in most real-

life data structures. In practice, it is difficult to pinpoint the source of contamination in linear

mixed models due to the complex nature of the data sets. However, such influence might

significantly impact the accuracy of classic estimates (Koller, 2016). Therefore, we use an R

package (robustlmm) to investigate, detect and flag outliers before generating robust estimates

for the linear mixed model in the presence of little contamination in the data set (Koller, 2016).

The package functions and syntax are almost similar to the R package lme4 that implements

classic linear mixed model estimation. However, robustlmm has an advantage over lme4 in that

it is capable of robustly fitting linear mixed models in the presence of mild outlier contamination.

4.2.5 Estimation of the Robust Linear Mixed Model

In order to estimate the fixed and random effects in a classic linear mixed model, we express

model (4.2) for each of the p partitions as a general linear mixed model defined in matrix form

as given in (2.3), or more conveniently, (2.10). The estimation process of a robust linear mixed
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model is similar to the traditional approach of estimating a classic linear mixed model.

Consider the matrix X where diag(X) = Xi, (i = 1, 2, ..., 7), are the design matrices of full

rank associated with each of the first seven models in Table 4.1, and the random intercepts

for the fixed effects of the FFR, FRF, FRR, RFF, RFR and RRF models. Denoting the

random intercepts for the fixed effects for these models, respectively, by ψ2, ϕ3, ϑ4, δ5, η6 and

ω7, respectively, we express the vector of fixed effects components in the combined model is

expressed as,

θ̂ =



µ̂1

ψ̂2

ϕ̂3

ϑ̂4

δ̂5
η̂6
ω̂7


=



(X′
1X1)−1X′

1y1
(X′

2X2)−1X′
2y2

(X′
3X3)−1X′

3y3
(X′

4X4)−1X′
4y4

(X′
5X5)−1X′

5y5
(X′

6X6)−1X′
6y6

(X′
7X7)−1X′

7y7


. (4.8)

When dealing with real-life data, as is the usual case with unbalanced data, the matrix X

in (2.10) does not necessarily have full column rank, and (X′X)−1 does not exist (Searle and

Gruber, 2017). Hence, the normal equations cannot be uniquely solved to β̂. The generalised

inverse of X′X can be used to estimate the possible solutions to the mixed model (Njuho and

Milliken, 2009; Chaka and Njuho, 2021).

This section presents the estimation procedure for a robust linear mixed model. There are

various approaches (packages) available on the Comprehensive R Archive (CRAN) that can

be used for the robust estimation of linear mixed models when the assumptions of a classic

linear model are not fully satisfied (Koller, 2016). Most of these approaches are limited to

grouping structures and correlation of random effects. Following the approach by (Koller,

2016), we consider the classic linear mixed model (2.10), whose regular random effects have

been transformed into spherical random effects such that the covariance matrix equals a scaled

identity matrix. The transformed linear mixed model becomes

yp = (X Z)[β Ub(θ)b∗]′ + Uϵϵ
∗, (4.9)

where yp is an N × 1 vector of observations in the pth partition; X : N × p and Z : N × q

are known incidence matrices associated with the fixed effects vector β, and spherical random
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effects vector b∗, respectively. The spherical random effects are related to the classic random

effects through a transformation b = Ub(θ)b∗, where Ub(θ) is a lower triangular matrix pa-

rameterised by the vector θ. Under this model (4.9), the distribution of the observations y

is given by y ∼ N(Xβ, σ2Vy(θ), where Vy(θ) = ZVb(θ)ZT + Ve. Let Ub(θ) be the lower

triangular Cholesky factor of Vb(θ), such that Vb(θ) = Ub(θ)Ub(θ)T and Ve = UeUT
e . The

spherical random effects (b∗) are related to the classic random effects through a transformation

b = Ub(θ)b∗. The matrix Ue is a diagonal matrix of known weights. This model assumes that

the spherical random effects and error terms are independently distributed as b∗ ∼ N(0, σ2Iq)

and ϵ∗ ∼ N(0, σ2Iq), respectively.

Additional assumptions for this model are that (Koller, 2016):

• the model parameters are estimable,

• the covariance matrix of the random effects, ∑∑∑b(θ) = Ub(θ)Ub(θ)′, is block-diagonal,

with each block of size 2 × 2 or greater and unstructured, and

• the residual error covariance matrix is diagonal with only one unknown scaling parameter.

The robust estimation process under model (4.9) is achieved by deriving scoring equations

through exchanging the residuals and the predicted spherical random effects with bounded

functions (Koller, 2013). When the covariance parameters θ and the scale σ are known, the

estimation of fixed and random effects can be done using the iteratively reweighted least squares.

Otherwise, the parameters have to be estimated from the data first and the restricted maximum

likelihood (REML) is used to robustify the estimating equations (Koller, 2013). The approach

produces various estimates of the robust linear mixed model by controlling the parameters in

the bounded functions. For example, tuning parameters of the Huber function (a possible choice

of a bounded function) to larger values in the robust estimating equation produces estimates

comparable to the REML estimates.

4.2.6 Methods of Inference

Considering the model’s fixed and random effects, we analyse and compare the model fit infor-

mation for both the classic and robust linear mixed models fitted using different sets of tuning
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parameters. Particular attention is given to the effect of contamination on the fit, estimated

parameters and their standard errors, as well as variance components in the partitioned models

of each scenario.

4.2.6.1 Hypothesis Testing for Fixed Effects

We are interested in testing the main and the interaction effects of the three-factor linear model.

Hypotheses HA - HC test the homogeneity of variance; main and interaction effects of fixed

factors; and the effect of random effects, respectively, using the appropriate partition covariance

matrix ∑∑∑b = V ar(yp).

HA. H0 :σ2
ϵ = σ2

ϵ1 = σ2
ϵ2 = ... = σ2

ϵ8 , against

H1 : σ2
ϵp

= σ2
ϵp∗ for p ̸= p∗.

HB. H0 :βF = 0 against

H1 :βF ̸= 0 (where βF is a vector of fixed effects).

HC. H0 :σ2
τp

= 0 against

H1 :σ2
τp
> 0 (where τ = a, b, c or the interaction of these).

4.2.6.2 Expected Mean Squares and Variance Components

The estimation of treatment means and the associated F-tests for treatment effects, and vari-

ance components depend on the type of hypotheses being tested, targeted inference space, and

the replication allowed in the experiment. Following the illustration given in Table 3.11, the

analysis of variance and expected mean squares for each partitioned model are obtained based

on appropriate sums of squares.

Analysis of variance for an experimental design with unequal cell frequencies is considered

differently. In the case of unbalanced data, the reduction sum of squares, R(µ, α, β, γ), and

their expectations, E[R(µ, α, β, γ)], are used to estimate the variance components (Searle and

Gruber, 2017). The restricted maximum likelihood estimation procedure, which produces stable

estimates irrespective of the unbalanced nature of the data, is preferred (Hartley and Rao, 1967;

Dempster et al., 1977). Information from each of the individual models is syncretised based on

the targeted model and factor levels. Table 4.2 provides information on how a combined model
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analysis is achieved, using the degrees of freedom associated with each source of variation and

individual models supplying information for each appropriate hypotheses test.

Table 4.2: The Format of a Combined Model
Source of Degrees of Models supplying
variation freedom information

FA (F.. Model) ∑
i=1,2,5,6(fai

− 1) FFF, FRF, FFR and FRR
FB (.F. Model) ∑

i=1,3,5,7(fbi
− 1) FFF, RFF, FFR and RFR

FC (..F Model) ∑4
i=1(fci

− 1) FFF, FRF, RFF and RRF
FA*FB (∑i=1,2,5,6(fai

− 1))(∑i=1,3,5,7(fbi
− 1)) FFF, and FFR

(FF. Model)
FA*FC (∑i=1,2,5,6(fai

− 1))(∑4
i=1(fci

− 1)) FFF and FRF
(F.F Model)

FB*FC (∑i=1,3,5,7(fbi
− 1))(∑4

i=1(fci
− 1)) FFF and RFF

(.FF Model)
FA*FB*FC (∑i=1,2,5,6(fai

− 1))(∑i=1,3,5,7(fbi
− 1)). FFF

(FFF Model) (∑4
i=1(fci

− 1))
RA (R.. Model) ∑

i=3,4,7,8(rai
− 1) RRR, RFR, RRF and RFF

RB (.R. Model) ∑
j=2,4,6,8(rbi

− 1) RRR, FRR, RRF and FRF
RC (..R Model) ∑8

i=5(rci
− 1) RRR, RFR, FRR and FFR

RA*RB (∑i=3,4,7,8(rai
− 1))(∑i=2,4,6,8(rbi

− 1)) RRR and RRF
(RR. Model)

RA*RC (∑i=3,4,7,8(rai
− 1))(∑8

i=5(rci
− 1)) RRR and RFR

(R.R Model)
RB*RC (∑i=2,4,6,8(rbi

− 1))(∑8
i=5(rci

− 1)) RRR and FRR
(.RR Model)
RA*RB*RC (∑i=3,4,7,8(rai

− 1))(∑i=2,4,6,8(rbi
− 1)). RRR

(RRR Model) (∑8
i=5(rci

− 1))
Error abc(n− 1) FFF, FRF, FFR, FRR,

RFF, RFR, RRF and RRR

For example, the combined FA model is made up of the fixed main effect of factor A, whose

pieces of information are obtained from the individual models FFF, FRF, FFR and FRR.

Syncretising the four sum of squares from these models provides the degrees of freedom for

the FA part in the combined model. Similarly, summing up the degrees of freedom for the

four models with fixed effects produces the combined model’s degrees of freedom. The same

approach is applied to derive the random error term of the combined model, which is calculated

by summing up the error terms of all the eight models.
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We demonstrate, by means of a numeric example, the application of the partitioning approach

using traditional analysis of variance methods, which takes care of the nature of independent

factors and the design of experiment.

4.3 Numerical Example 1: Completely Randomised De-
sign (CRD)

An investigation of farmers’ experiences from 1997 to 1999 was conducted in Vihiga and Siaya

District, Western Kenya. The aim of the study was to estimate the wealth score based on the

assets of a farm. A total of 1495 farmers provided their experiences of strategies to improve

fallows and rock phosphate during the period. Some of the soil management strategies meant

to improve fallows and rock phosphate, which were applied, included fallowing in short rain, use

of natural fallow, and application of chemical fertiliser. For demonstration of the partitioning

approach, we manipulate the original data set by combining some of the observed variables and

summarise them into three main factors, categorised as follows:

• farm category (farmcat): with levels, A ( ≤ 0.5 acres), B (0.5 - 1.0 acres), C (1.1 - 1.5

acres), D (1.6 - 2.0 acres), E (2.0 - 3.0 acres), F (> 3.0 acres),

• soil management approach (soilmgt): categorised as 1 (no fallow, no fertiliser); 2 (no

fallow, add fertiliser); 3 (one-year fallow, no fertiliser); 4 (one-year fallow, add fertilizer);

5 (two-year fallow, no fertiliser); 6 (two-year fallow, add fertiliser); 7 (three-year fallow,

no fertiliser); 8 (three-year fallow, add fertiliser); 9 (three-year fallow, with or without

fertiliser),

• cattle management (loccow): categorised as 0 (none), 1 (one cow), 2 (two cows), 3 (three

cows), 4 (four cows), 5 (five and more cows).

4.3.1 The CRD Classic Model Results

Consider farm size (farmcat) as the first factor with three fixed levels (A, B and F) and three

random levels C, D and E selected from a population of possible farm sizes; soil management

practice (soilmgt) as the second factor with three fixed levels (6, 8 and 9) and six random

levels (1-5 and 7) selected from numerous possible soil management approaches; and cattle

87



management (loccow) as the third factor with two fixed levels (4 and 5) and four random

levels (0-3). We apply the partitioning approach on the analysis of farmers’ experiences and

wealth scores based on the assets accumulated on the farm. A three-way completely randomised

design (CRD) is proposed for the experiment. Table 4.3 summarises the mean squares, degrees

of freedom, and variance components (in parentheses) for the partitioned models FFF, FRF,

FFR, FRR, RFF, RRF, RFR and RRR.

Table 4.3: The Analysis of Variance for CRD Partitioned Models
Model Source of DF Mean
Type variation Square
FFF FA 2 153.747

FB 2 6.480
FC 1 3.800

FA*FB 4 9.096
FA*FC 2 32.741
FB*FC 2 21.410

FA*FB*FC 4 11.899
ERROR 442 1.354

FFR FA 2 75.906
FB 2 7.096
RC 3 31.334

FA*FB 4 7.884
FA*RC 6 11.740
FB*RC 6 5.352

FA*FB*RC 12 7.212
ERROR 853 1.372

FRF FA 2 93.338
RB 5 23.020
FC 1 13.814

FA*RB 10 9.771
FA*FC 2 6.342
RB*FC 5 7.595

FA*RB*FC 10 11.860
ERROR 584 1.284

FRR FA 2 16.567
RB 5 35.449
RC 3 29.776

FA*RB 10 10.367
FA*RC 6 5.145
RB*RC 15 11.049

FA*RB*RC 30 9.854
ERROR 1921 1.171

Model Source of DF Mean
Type variation Square
RFF RA 2 3.054

FB 2 0.488
FC 1 16.067

RA*FB 4 19.634
RA*FC 2 7.273
FB*FC 2 1.960

RA*FB*FC 4 14.519
ERROR 436 1.815

RFR RA 2 13.212
FB 2 49.284
RC 3 35.149

RA*FB 4 8.783
RA*RC 6 12.143
FB*RC 6 20.625

RA*FB*RC 12 14.101
ERROR 843 1.326

RRF RA 2 0.269
RB 5 26.735
FC 1 3.309

RA*RB 10 28.829
RA*FC 2 10.272
RB*FC 5 16.940

RA*RB*FC 10 26.965
ERROR 870 1.281

RRR RA 2 15.935
RB 5 135.525
RC 3 72.449

RA*RB 10 10.700
RA*RC 6 13.108
RB*RC 15 10.416

RA*RB*RC 30 8.464
ERROR 1708 1.225

We are interested in testing the main and interaction effects of the fixed part of each of the par-

titioned models first, using the variance-covariance matrix, σ2
m = V ar(Ym), for m = 1, 2, ..., 8,
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and µijk, the expected mean response of treatment combination of factors A (farmcat), B

(soilmgt) and C (loccow). The fixed effects model (1) (FFF), with i = 1, 2, ..., fa; j =

1, 2, ..., fb; and k = 1, 2, ..., fc fixed levels, respectively, had significant main and interaction

effects (p − value < 0.05) except for the third factor (loccow) main effect which was not

(p− value = 0.095).

In each of the partitioned mixed effects models (2)-(8), the interaction effects of the three factors

(A*B*C) were significant (p− value < 0.05). Factor A (farmcat) significantly contributed to

the wealth scores in models FFR (2) and FFR (3) (p− value < 0.032 and 0.005, respectively),

whereas factor B (soilmgt) was significant (p− value = 0.003) in the random model RRR (8).

4.3.2 Results for the Combined CRD Classic Model

The combined model treatment structure is achieved by syncretising the sum of squares from

and degrees of freedom obtained from the individual models (1) to (8). Similarly, the random

error term for the combined model is derived from the sum of error terms of all the eight models.

Table 4.4 provides the analysis of variance F- tests for the main and interaction effects in the

combined model factors. Consider the fixed factor levels as new farm categories (FA), new soil

management approaches (FB) and new categories of cattle management practices (FC), whilst

the old factor levels are a sample from a population of existing levels that are similarly denoted

by RA, RB and RC.
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Table 4.4: Combined CRD Model ANOVA Table Based on Type 3 Sum of Squares
Source of Degrees of Sum of Mean F
variation freedom Squares Square

farmcat (FA) 8 3349.744 418.718 38.670
soilmgt (FB) 14 886.872 63.348 5.850
loccow (FC) 4 147.96 36.99 3.416
(FA× FB) 112 1897.28 16.94 1.564
(FA× FC) 32 1250.656 39.083 3.609
(FB × FC) 56 1308.72 23.37 2.158

(FA× FB × FC) 448 5330.752 11.899 1.099
farmcat (RA) 8 259.76 32.47 2.999
soilmgt (RB) 20 4414.58 220.729 20.385
loccow (RC) 12 2024.496 168.708 15.581
(RA×RB) 160 6324.64 39.529 3.651
(RA×RC) 96 2424.096 25.251 2.332
(RB ×RC) 240 5051.76 21.049 1.944

(RA×RB ×RC) 1920 16250.88 8.464 0.782
Error 7927 85833.556 10.828
Total 11057 136755.752

Almimi et al. (2009) suggested some approaches to calculating model accuracy metrics in

factorial experiments, such as the coefficient of determination (R2) measure, and the adjusted

coefficient of determination (R2-adjusted) measure equation. Table 4.5 provides the combined

model analysis information needed to calculate the model adequacy metrics.

Table 4.5: Combined CRD Model Adequacy
Source of Degrees of Sum of Mean F
variation freedom Squares Square
Model 762 29340.564 1106.185 71.924
Residual 10295 158337.384 15.380
Pure error 7927 136755.752 10.828
Lack of fit 2368 21581.632 20.363
Total 11057 187677.948

The F-ratio in Table 4.5 is obtained by dividing the mean square of the combined model

(1106.185) by its residual mean square (15.380). Subsequently, the overall model accuracy

metrics were obtained as R2 = 15.6% and R2 −adj = 9.4%. We conclude that both the R2 and

R2-adjusted coefficients of determinations signify a poor model fit despite the fact that most

of the main and interaction effects of the factors in the model significantly contributed to the

variation in wealth scores.

90



4.4 Simulation Results for the CRD Classic Model

In order to establish both internal and external validity as well as the appropriateness of the

partitioning approach and methods, simulation samples were used, and the simulation results

compared for consistence with those from the original data set. Based on the model parameters

and random effects of each partitioned model, 10 000 samples were simulated, and an analysis of

variance was performed. A detailed analysis of variance for the FFF, RFR, and RRR partitioned

models is presented. The analysis of variance for the other partitioned models is summarised

at the end of this section.

4.4.1 The FFF Model Simulation Results

The factor of interest was wealth of a farm, explained by farmcat, a factor with three fixed

levels (A, B and F); soilmgt factor with three fixed levels (6, 8 and 9) and loccow factor with

two fixed levels (4 and 5). Table 4.6 summarises the estimated model parameters, standard

errors, and significance p-values of the fixed-fixed-fixed (FFF) model fitted based on 10 000

simulated samples.

Table 4.6: The ANOVA Table for Simulated FFF Model in CRD
Coeficient Estimate Standard Error t value Pr(>|t|)
(Intercept) 2.33748 0.22079 10.587 <2e-16
farmcatB -0.10626 0.31225 -0.340 0.7338
farmcatF 0.68474 0.31225 2.193 0.0288
soilmgt8 -0.37854 0.31225 -1.212 0.2260
soilmgt9 -0.39535 0.30923 -1.278 0.2017
loccow5 -0.43621 0.31225 -1.397 0.1631

farmcatB:soilmgt8 0.22195 0.44159 0.503 0.6155
farmcatF:soilmgt8 0.25886 0.43748 0.592 0.5544
farmcatB:soilmgt9 -0.06467 0.43946 -0.147 0.8831
farmcatF:soilmgt9 0.14482 0.43732 0.331 0.7407
farmcatB:loccow5 -0.36328 0.44159 -0.823 0.4111
farmcatF:loccow5 0.06890 0.43748 0.157 0.8749
soilmgt8:loccow5 0.44757 0.44159 1.014 0.3114
soilmgt9:loccow5 -0.06945 0.43946 -0.158 0.8745

farmcatB:soilmgt8:loccow5 0.10571 0.62160 0.170 0.8650
farmcatF:soilmgt8:loccow5 -0.52312 0.61717 -0.848 0.3971
farmcatB:soilmgt9:loccow5 0.49389 0.62299 0.793 0.4283
farmcatF:soilmgt9:loccow5 -0.41438 0.61706 -0.672 0.5022

The FFF model had a residual standard error of 1.104. Only the farm category F had a signif-

icant difference with the reference category A (p-value = 0.0288) at 5% significance level. This
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is supported by very low model fit measures, Multiple R-squared 0.165 (17%) and the Adjusted

R-squared 0.1328 (13%).

We picked the farm category factor for analysis since it significantly contributed to the mean

wealth of a farm. The distribution of differences in the mean wealth between farm categories

B and F against the reference farm category A are displayed in Figure 4.1.

Figure 4.1: Mean Wealth Distribution in Farm Categories in the FFF Model

The peaks of the distribution of the coefficient of both farm categories B and F are roughly

around the true values of -0.04252 and 0.76604, respectively. However, even though the coeffi-

cient of farmcat F is slightly overestimated, the slight discrepancy is not uncommon. There is

a considerable range in the estimated farmcat coefficients across the 10 000 simulations, with

farmcat B in the range (-1.25 , 1.25) and farmcat F in the range (-0.5 , 2.0).

Similarly, the distributions of the coefficient of soilmgt 8 and 9 differences in Figure 4.2. are

roughly around the true values of -0.10692 and -0.3782, respectively. Even though there is

a slight underestimation in soilmgt 8 coefficient and a slight overestimation in soilmgt 9, the

accuracy is within acceptable terms.

Figure 4.2: Mean Wealth Distribution in Soil Management Methods in the FFF Model

Similarly, the distribution of standard deviations across the simulation samples is displayed in

Figure 4.3.
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Figure 4.3: Distribution of Wealth Standard Deviation in the FFF Model

The distribution of the estimated variation is roughly centred on the true value of 1.104, with

an estimated range of (1.0 , 1.30). The estimated variation (1.1042 = 1.219) compares well with

the variation (1.354) in the original FFF data set in Table 4.3. This shows that, on average,

the model performs very well in estimating the standard deviation. This is further supported

by the proportion of models that correctly rejected the null hypothesis (H0: farmcat F effect =

0), given that we know the null hypothesis is not true, which was approximately 0.6334 (63%).

A statistical power of 63% is reasonably fair.

4.4.2 The RFR Model Simulation Results

The RFR model involves a random factor farmcat, with three random levels (C, D and E); a

fixed soilmgt factor, with three fixed levels (6, 8 and 9) and a random loccow factor, with four

random levels (0, 1, 2 and 3). Table 4.7 summarises the variance contributed by the random

effects as well as the estimated model parameters, standard errors, and significance p-values of

the random-fixed-random (RFR) model fitted based on 10 000 simulated samples.
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Table 4.7: The ANOVA Table for Simulated RFR Model in CRD
Random effects:
Groups Name Variance Std. Dev.
farmcat:soilmgt:loccow (Intercept) 0.00000 0.000
soilmgt:loccow (Intercept) 0.00000 0.000
farmcat:loccow (Intercept) 0.00000 0.000
farmcat:soilmgt (Intercept) 0.00000 0.000
loccow (Intercept) 0.06654 0.258
farmcat (Intercept) 0.00000 0.000
Residual 1.21473 1.102
Fixed effects:
Coefficients Estimate Std. Error df t value Pr(>|t|)
(Intercept) 3.34810 0.14421 3.99481 23.217 2.06e-05
soilmgt8 -0.51794 0.09061 873.00752 -5.716 1.49e-08
soilmgt9 -0.82895 0.09162 873.02376 -9.048 < 2e-16

The RFR model had a residual error variance of 1.21473. The soilmgt category differences

with the reference category had a significant effect (p-value < 0.0001) on the response variable.

On the other hand, only the loccow random factor had a noticeable variance contribution in

isolation (variance = 0.06654), whereas the rest of the main and interaction effects yielded zero

variance.

The distribution of differences in mean wealth between soil management strategies 8 and 9

against the reference category (soilmgt 6 ) are displayed in Figure 4.4.

Figure 4.4: Mean Wealth Distribution of Soil Management in the RFR Model

The peak of the distributions of the coefficient of both soil management practices 8 and 9

are right around their true values (-0.5947 and -0.7932, respectively). The estimated soilmgt

8 coefficient ranges from -1.0 to -0.2, whereas the coefficient of soilmgt 9 falls in the range

(-1.2 , -0.4) across the 10 000 simulations. The statistical power, or proportion of models that

correctly rejected the null hypothesis (H0: soilmgt 8 effect = soilmgt 8 effect = 0), given that

we know the null hypothesis is not true, was 0.9964 and 1, respectively. The distributions and
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high statistical power suggest that the model estimated the fixed effects coefficients very well.

The distribution of standard deviations across the simulation samples, displayed in Figure

4.5, shows that the standard deviation was underestimated about 54.4% of the times, with an

estimated range of 1.05 to 1.25. The estimated variation (1.21473) compares well with the error

variance (1.326) in the original RFR analysis in Table 4.2. The model performs fairly well in

estimating the error variance.

Figure 4.5: Distribution of Wealth Standard Deviation in RFR model

The distributions of the variances of the random factor farmcat on different sample sizes could

not be displayed due to the fact that there was very little variation (0.01915) in the farm

categories.

The variances of the random factor farmcat on different sample sizes (n = 5, 20, 30), where n

represents the number of levels of the explanatory factor, is displayed in Figure 4.6.

Figure 4.6: Distribution of Variances of Farm Categories in the RFR model

Although the variances obtained were very small, the three sample sizes of the farmcat factor

levels showed a small difference between the median variance and the true variance. The es-
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timated variance is close to the true variance, with a range of 0.000 to 0.0532 across the samples.

A further examination of the distributions of the variances of the random factor loccow on

different sample sizes (n = 5, 20, 30), where n represents the number of levels of the explanatory

factor, is displayed in Figure 4.7.

Figure 4.7: Distribution of Variances of Cattle Management Practices in the FRR Model

The three sample sizes of the loccow factor levels showed a considerably better variation than

the farmsize variances, with the median variance almost equal to the true variance especially

when n = 20. The range of variance was from 0.000 to 0.555 across the samples.

4.4.3 The RRR Model Simulation Results

The RRF model involves three random factors, farmcat with three random levels (C, D and

E); soilmgt factor, with six random levels (1 - 5 and 7), and loccow factor, with four random

levels levels (0 - 3). Table 4.8 summarises the variance contributed by the random effects of

the random-random-random (RRR) model fitted based on 10 000 simulated samples.
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Table 4.8: The ANOVA Table for the Simulated RRR Model in CRD
Random effects:
Groups Name Variance Std. Dev.
farmcat:soilmgt:loccow (Intercept) 1.184e-09 3.441e-05
soilmgt:loccow (Intercept) 1.231e-02 1.110e-01
farmcat:soilmgt (Intercept) 3.228e-03 5.682e-02
farmcat:loccow (Intercept) 0.000e+00 0.000e+00
soilmgt (Intercept) 5.777e-02 2.404e-01
loccow (Intercept) 2.746e-01 5.240e-01
farmcat (Intercept) 2.263e-10 1.504e-05
Residual 1.273e+00 1.128e+00
Fixed effects:
Coefficients Estimate Std. Error df t-value Pr(>|t|)
(Intercept) 2.8785 0.2823 3.8439 10.2 0.000637

The RRR model had a residual error variance of 1.273. The distribution of standard deviations

across the simulation samples, displayed in Figure 4.8, shows that the standard deviation was

slightly underestimated about 54.2% of the times, with an estimated range of 1.02 to 1.17. The

estimated variation (1.273) compares well with the error variance (1.225) in the original RRR

analysis in Table 4.3. The model performs very well in estimating the error variance.

Figure 4.8: Distribution of Wealth Standard Deviation in the RRR Model

The distributions of the variances of the random factor farmcat on different sample sizes could

not be displayed due to the fact that there was very little variation (<0.0001) in the farm

categories. The distributions of the variances of the random factor soilmgt on different sample

size (n = 5, 20, 30), where n represents the number of levels of the explanatory factor is displayed

in Figure 4.9.
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Figure 4.9: Distribution of Variances of Soil Management Practices in the RRR model

The three sample sizes of the soilmgt factor levels showed a considerably large variation ranging

from 0.01 to 1.88 across the samples. The median variance gets approximately equal to the

true variance when n = 20.

Figure 4.10: Distribution of Variances of loccow Levels in RRR Model

Although the variances obtained were very small, the three sample sizes of the loccow factor

levels showed a small difference between the median variance and the true variance. The best

approximation of the loccow true variance is when n = 30, with a range of 0.000 to 0.692 across

the samples.

4.4.4 Summary of CRD Simulation Results

Based on 10000 samples, the simulation analysis results for the CRD linear mixed models in

partitions (2) - (8) are summarised in Table 4.9.

Table 4.9: Summary of Simulation Sample Results for the CRD Models
Model Random Variance Significant Statistical

Effects Fixed Effects Power
FFR loccow 0.0186 farmcatB 1.0000

residual 1.241 farmcatF 0.9995
soilmgt 0.9352

FRF soilmgt 0.1398 farmcat 1.0000
residual 1.3695 loccow 0.9295

FRR loccow 0.00918 farmcatF 0.9998
residual 1.2025

RFF farmcat 0.0192 None
residual 1.759

RRF farmcat 0.0000 None
soilmgt 0.0311
residual 1.279
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Table 4.8 shows very little effect of farm categories (farmcat) and cattle management prac-

tices (loccow) on wealth variation across the simulation samples. In contrast, a fairly higher

wealth variation due to random categories of soil management practices (soilmgt) was detected.

Furthermore, the proportion of models that correctly rejected the farmcat differences null hy-

pothesis and loccow fixed-effects null hypothesis, given that we know the null hypothesis is

not true, was just over 90% (statistical power > 0.9). Generally, the analysis results from the

simulation samples are comparable to those of the original data. Thus, the simulated CRD

partitioned models performed well in estimating the model parameters.

4.5 Numerical Example 2: Randomised Complete Block
Design (RCBD)

From the experiment in Example 1, it is suspected that the ethnicity of the village where the

farm is located influences the variation in the wealth score of a farm due to differences among

the farmers. Although not a factor of primary interest, we consider ethnicity (ethnic), with

four levels randomly selected from a population of numerous ethnic groups in Kenya, as a

random blocking factor that explains the variation in the responses. We maintain the other

factors as before, factor A (farmcat) with three fixed levels (A, B and F) and three random

levels (C, D and E) selected from a population of possible farm sizes; factor B (soilmgt)

with three fixed levels (6, 8 and 9) and six random levels (1-5 and 7) selected from numerous

possible soil management approaches; factor C (loccow) with two fixed levels (4 and 5) and four

random levels (0-3). A three-way randomised complete block design (RCBD) is proposed for

the experiment. We apply the new approach to analyse the effect of the nuisance factor (ethnic)

and the three explanatory factors on the wealth scores of farms. The partitioning in Table 4.1

for the models FFF, FRF, FFR, FRR, RFF, RRF, RFR and RRR were maintained, with an

additional blocking factor (ethnic) included in the analysis. Table 4.10 shows the analysis of

variance for FFF, FRF, FFR, FRR, RFF, RRF, RFR and RRR models.

The restricted maximum likelihood estimation (REML) approach was used to estimate the

variance components for the unbalanced mixed models FRF, FFR, FRR, RFF, RRF, RFR and

RRR models as coded in Table 4.1. From the RCBD models, there was a noticeable variation

due to (ethnic) blocks in the FFR (σ2
blocks = 0.0022) and RRR (σ2

blocks = 0.0025). However, in
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Table 4.10: The Analysis of Variance for Sub-models in RCBD
Model Source of DF Mean
Type variation Square
FFF ethnic 3 1.426

FA 2 153.523
FB 2 6.527
FC 1 3.809

FA*FB 4 9.091
FA*FC 2 32.767
FB*FC 2 21.288

FA*FB*FC 4 47.581
ERROR 439 594.292

FFR ethnic 3 1.860
FA 2 76.119
FB 2 6.95
RC 3 31.565

FA*FB 4 7.834
FA*RC 6 11.830
RB*RC 6 5.326

FA*FB*RC 12 7.251
ERROR 850 1.371

FRF ethnic 3 0.775
FA 2 93.267
RB 5 22.947
FC 1 14.109

FA*RB 10 9.768
FA*FC 2 6.431
RB*FC 5 7.671

FA*RB*FC 10 11.796
ERROR 851 1.286

FRR ethnic 3 0.020
FA 2 95.671
RB 5 35.448
RC 3 29.790

FA*RB 10 10.373
FA*RC 6 5.139
RB*RC 15 11.047

FA*RB*RC 30 9.856
ERROR 1918 1.173

Model Source of DF Mean
Type variation Square
RFF ethnic 3 0.050

RA 2 3.058
FB 2 0.489
FC 1 16.081

RA*FB 4 19.650
RA*FC 2 7.261
FB*FC 2 1.956

RA*FB*FC 4 14.491
ERROR 433 1.828

RFR ethnic 3 1.391
RA 2 13.261
FB 2 49.606
RC 3 35.146

RA*FB 4 8.753
RA*RC 6 12.161
FB*RC 6 20.542

RA*FB*RC 12 14.103
ERROR 840 1.326

RRF ethnic 3 1.407
RA 2 0.290
RB 5 26.649
FC 1 3.325

RA*RB 10 28.855
RA*FC 2 10.248
RB*FC 5 16.961

RA*RB*FC 10 26.950
ERROR 867 1.281

RRR ethnic 3 2.325
RA 2 15.578
RB 5 135.381
RC 3 72.860

RA*RB 10 10.591
RA*RC 6 12.928
RB*RC 15 10.341

RA*RB*RC 30 8.524
ERROR 1705 1.223

all the partitioned models, the variation due to ethnicity was not significant (p−value > 0.05).

This resulted in a minor reduction in the experimental errors due to ethnic blocks. Hence,

the blocking factor (ethnic) had an insignificant contribution to the variation in wealth score,

therefore it can be dropped from the analysis. Furthermore, factor A (farmsize), with three

fixed levels, had a significant effect (p− value < 0.0001).
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4.6 Simulation Sample Results for the RCBD Model

We present the simulation sample analysis results for the mixed model (FFR) in RCBD, and

compile a summary of simulation results analysis for the rest of the partitioned models.

4.6.1 The FFR Model Simulation Results

We considered two fixed factors, farmcat with three fixed levels (A, B and F) and soilmgt

factor with three fixed levels (6, 8 and 9), and one random factor, loccow with four random levels

(0, 1, 2 and 3), randomly assigned to participants in ethnicity (ethnic) blocks, with four levels.

Table 4.11 summarises the variation contributed by the random effects as well as the estimated

model parameters, standard errors, and significance p-values of the fixed-fixed-random (FFR)

model fitted based on 10 000 samples.

Table 4.11: The ANOVA Table for Simulated FFR Model in CRD
Random effects:
Groups Name Variance Std. Dev.
farmcat:soilmgt:loccow (Intercept) 0.0483 0.2197
soilmgt:loccow (Intercept) 0.0318 0.1782
farmcat:loccow (Intercept) 0.00000 0.0000
block (Intercept) 0.0134 0.1158
loccow (Intercept) 0.1543 0.3928
Residual 1.289 1.135
Fixed effects:
Coefficients Estimate Std. Error df t-value Pr(>|t|)
(Intercept) 1.866960 0.273550 8.133928 6.825 0.000124
farmcatB 0.797313 0.223470 17.437356 3.568 0.002291
farmcatF 1.545278 0.226202 18.275184 6.831 1.98e-06
soilmgt8 0.213974 0.257115 18.176746 0.832 0.416091
soilmgt9 0.144171 0.257128 18.180638 0.561 0.581847
farmcatB:soilmgt8 -0.001440 0.315528 17.317329 -0.005 0.996411
farmcatF:soilmgt8 -0.005998 0.319049 18.090877 -0.019 0.985206
farmcatB:soilmgt9 0.153971 0.315709 17.361770 0.488 0.631864
farmcatF:soilmgt9 0.082372 0.319498 18.186580 0.258 0.799442

The FFR model had a residual error variance of 1.289, which is comparable to the classic

model estimate. The fixed factor farmcat had significant category differences (p-value < 0.001)

at a 5% significance level with respect to the reference category, and non-significant interac-

tions with other factors. The model could capture considerably few random effects from the
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loccow (variance of 0.1543), block (variance 0.0134) factors and a residual error variance of 1.289.

We consider the distribution of farm categories in contribution to the mean wealth of a farm

across the samples. The distribution of the differences in mean wealth between farm category

B and F against the reference category farm category A are displayed in Figure 4.11.

Figure 4.11: Distribution of Mean Wealth Between Farms

The peaks of the distribution of both farm categories B and F are slightly shifted to the left

of the true values of 0.95 and 1.5678, respectively. This is an indication that the coefficients

of farm categories are slightly underestimated in the model, but the slight discrepancy is not

a cause for alarm. The estimated farmcat B coefficient ranges from 0.4 to 1.6, whereas the

coefficient of farmcat F falls in the range (1.0, 2.2) across the 10 000 simulations.

The distribution of standard deviations across the simulation samples is displayed in Figure

4.12. The distribution of the estimated variation is roughly centred on the true standard

deviation (1.135), with an estimated range of (0.0 , 1.30).

Figure 4.12: Distribution of Wealth Standard Deviation in the FFR Model
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The distribution shows that the variance is slightly overestimated 52.2% of the times. Although

the estimated variation (1.289) is slightly less than the variation (1.375) in the original FFR

data set in Table 4.2, the two compare well. The model performs very well in estimating the

standard deviation. This is further supported by the high proportion (statistical power = 1.0

and 0.9995) of models that correctly rejected the null hypothesis (H0: farmcat effect = 0),

given that we know the null hypothesis is not true.

4.6.2 Summary of RCBD Simulation Results

Based on 10000 samples, the simulation analysis results for the RCBD linear mixed models

in partitions (2) - (8) are summarised in Table 4.12. There is almost no significant effect of

block and random farm categories in wealth variation across the simulation samples. How-

ever, a moderate wealth variation due to soil management practices (soilmgt) and the cattle

management practices (loccow) was detected in the random effects (RRR) model.

Table 4.12: Summary of Simulation Sample Results for RCBD Models
Model Random Variance Significant Statistical

Effects Fixed Effects Power
FFF block 0.0000 farmcatF 0.6406

residual 1.241
FRF block 0.0000 farmcatF 0.9343

soilmgt 0.0838
residual 1.2840

FRR block 0.0000 farmcatF 0.9999
soilmgt 0.0287
loccow 0.0085
residual 1.1540

RFF block 0.0000 None
farmcat 0.0000
residual 1.9760

RFR block 0.0000 soilmgt8 0.9965
farmcat 0.0190 soilmgt9 1.0000
loccow 0.0000
residual 1.4464

RRF block 0.0000 None
farmcat 0.0023
soilmgt 0.0044
residual 1.2981

RRR block 0.0002
farmcat 0.0000
soilmgt 0.2860
loccow 0.1940
residual 1.2050
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Furthermore, the proportion of models that correctly rejected the farm category differences

null hypothesis and soil management practices fixed-effects null hypothesis, given that we know

the null hypothesis is not true, was just over 64% (statistical power range 0.64 - 0.999 ) and

99% (statistical power > 0.99), respectively. Generally, the analysis results from the simulation

samples are comparable to those of the original data. Thus, the simulated partitioned models

performed well in estimating the model parameters.

4.7 Linear mixed Model Results for Contaminated Data

Using Example 1 data set, we apply the new approach on the analysis of farmers’ experiences

and wealth scores based on the assets accumulated on the farms. Consider the first factor

(farmcat) to have three fixed levels (A, B and F) and three random levels (C, D and E)

selected from a population of possible farm sizes; the second factor (soilmgt) to have three

fixed levels (6, 8 and 9) and six random levels (1-5 and 7) selected from numerous possible soil

management approaches; and the third factor (loccow) to have two fixed levels (4 and 5) and

four random levels (0-3). An unbalanced three-way completely randomised design (CRD) is

proposed for the experiment. First, we use the R package (robustlmm) to assess and detect

outlier contamination in the random effects of each of the partitioned models 2 - 8 of Table

3.9. We then fit a robust linear mixed model using the robustlmm package when outliers have

been detected and confirmed to have little influence on the response variable.

4.7.1 Contamination Analysis for Random Effects

For easy reference and detailed contamination analysis, model FRR (4) was selected. Figure

4.13 displays the residual analysis plots and the normal Q-Q plot for the predicted random

effects of model (4).

The dark-coloured plots indicate the observations with low robustness weights and hence pos-

sible outliersobservations with low robustness weights and hence possible outliers. The Q-Q

plot shows very minimal deviation from normality since the plots are fairly following the di-

agonal line. The deviating feature in Figure 4.13 pronounces the variance-mean relationship.

Interested readers could possibly consider applying simple data transformations (e.g., square
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Figure 4.13: Residual Analysis Plots Showing (a) Fitted Values vs. Residuals, (b) Normal Q-Q
vs. Residuals, (c) Normal Q-Q vs. Random Effects for FRR (4) Model Robust Fit

root or logarithm) to stabilise the variance. However, for the purpose of illustrating the robust

linear mixed model methodology, we skip other alternatives and proceed to conduct the con-

tamination analysis and fitting the robust linear mixed model.

A summary of the contamination analysis of model (4) is given in Table 4.13. A detailed

comparison of the estimated coefficients (with the corresponding standard deviation given in

parentheses) and variance components from the classic (clm) and robust (rlm1 and rlm2) fits

for the FRR (4) model. The contamination analysis results confirm the presence of outliers

and little contamination in the data set. The analysis detected a total of 417 out of 1576

residuals (i.e., approximately 26%) and a total of 8 out of 128 estimated random effects (i.e.,

approximately 6%) as possible outliers. The minimum robust weights for residuals and random

effects were around 0.3, while the maximum weight was 0.99 for both robust models rlm1 and

rlm2.
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Table 4.13: Contamination Analysis for the FRR Model
Model Fit Robust Weights

clm rlm1 rlm2 ≈ 1 Rem
FFR(4) Coefficient: Residuals:

intercept 2.0095 1.9476 1.9463 1576 417
(0.237) (0.237) (0.215)

FarmcatB 0.0723 0.0723 0.0718
(0.192) (0.192) (0.191)

Farmcat 0.7293 0.7293 0.7306 Random effects:
(0.192) (0.192) (0.191) 128 8

Variance Component:
Farmcat:Soilmgt 0.0110 0.0000 0.0000
Farmcat:Loccow 0.0000 0.0000 0.0000
Soilmgt:Loccow 0.0223 0.0000 0.0000

Farmcat:Soilmgt:Loccow 0.3192 0.3551 0.3515
Soilmgt 0707 0.1119 0.0898
Loccow 0.0396 0.0698 0.0467
Residual 1.1710 1.1793 1.1594

The robust estimates of the variance of random effects and the random errors were slightly

inflated in the rlm2 (higher efficiency) model, which proves that robust model rlm2 performed

better than rlm1 (lower efficiency) in this model. The same results are confirmed by the residual

analysis plots in Figure 4.13.

4.7.2 Robust Linear Mixed Model Results

With the little contamination due to the presence of detected outliers, we fitted two robust

linear mixed models (rlm1 and rlm2) using different tuning parameters of the smoothed Huber

function. Table 4.14 gives the options for other possible tuning constants for the smoothed

Huber Ψ-function (Koller and Stahel, 2011), where parameters k and parameter s determine

the interval (+/ − k) and the smoothness of the bend of the ψ-function, respectively. The

term "efficiency" is the percentage measure of the efficiency of the regression estimator. For

high robustness and low efficiency, rho-functions (smoothed Huber) that were used for fitting

random effects, and residuals in robust fit rlm1 were set at default parameters (k = 1.345,

s = 10) and Proposal II (k = 1.345, s = 10), respectively. On the other hand, the rho-function

parameters for the robust model rlm2 were tuned as k = 1.345, s = 10, and Proposal II

(k = 2.28, s = 10), in order to achieve increased efficiency.
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Table 4.14: Tuning Parameters for Scale Estimates for the Huber Ψ-Function
Efficiency k for µ̂ k for σ̂ k for σ̂, Prop. II

0.80 0.53 0.50 1.49
0.85 0.73 0.71 1.69
0.90 0.98 1.08 1.94
0.95 1.345 1.66 2.28

The rest of the contamination analysis for the other partitioned models was summarised in

Table 4.15. A similar pattern is seen in most of the partitioned models; that is, the robust

method slightly inflates the estimates of the variance components as expected (Koller, 2016).

Higher efficiency robust fit rlm2 produced better estimates of variance components closer to

the classic fit in models 2, 3, 6 and 8, while the lower efficiency robust fit rlm1 performed better

for models 4, 5, and 7. On average, around 6% contamination (ratio of robust weight far from

1 to robust weights close to 1) was detected in the estimated random effects, and around 26%

in the residual errors. The robust fits with lower efficiency were fairly comparable to those with

higher efficiency even though different results in different partitions were realised.

4.7.3 Contaminated Simulation Sample Results

Simulation samples of size 10000 were generated using the robust fit estimated parameters and

standard deviation to validate robust methods on partitioned linear mixed models 1 - 8. The

simulation results for the robust fits indicate that the simulated robust estimates of coefficients

and variance components were comparable with both the classic and robust estimates. For

example, the simulated robust estimates of error variances: σ̂2
ϵ1 = 1.219; σ̂2

ϵ2 = 1.417; σ̂2
ϵ3 =

1.190; σ̂2
ϵ4 = 1.145; σ̂2

ϵ5 = 1.682; σ̂2
ϵ6 = 1.080; σ̂2

ϵ7 = 1.335; and σ̂2
ϵ8 = 1.329, were consistent with

the robust estimates counterparts. Similar results for hypotheses tests HA - HC were realised in

most of the partitions. This indicates that the robust methods used returned consistent results

in the simulation samples.

4.8 Conclusion

The partitioning approach allows for improved precision in both particularised and combined

analysis of the experimental data for the targeted inference space (Chaka and Njuho, 2021).

However, the method is not immune to the influence of contamination from sources such as

outliers. Contamination analysis on random effects in each partitioned data set was a neces-
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Table 4.15: Summary of Contamination Analysis for Models
Model Fit Robust Weights

clm rlm1 rlm2 ≈ 1 Rem
FFR(2) Coefficient: Residuals:

intercept 1.7417 1.7359 1.7363 695 194
Variance Component: Random effects:

Loccow 0.0856 0.0834 0.0744 60 4
Residual 1.3726 1.3314 1.3493

FRF(3) Coefficient: Residuals:
intercept 2.3164 2.4460 2.4195 711 179

Variance Component: Random effects:
Soilmgt 0.0844 0.0000 0.0304 66 6
Residual 1.2840 1.1950 1.2417

RFF(5) Coefficient: Residuals:
intercept 2.9327 2.9678 2.9692 355 99

Variance Component: Random effects:
Farmcat 0.0000 0.0000 0.0000 34 2
Residual 1.8153 1.8153 1.7903

RFR(6) Coefficient: Residuals:
intercept 3.2070 3.0850 3.0782 687 192

Variance Component: Random effects:
Farmcat 0.0026 0.0000 0.0000 72 4
Loccow 0.0683 0.0649 0.0000
Residual 1.3260 1.0439 1.2291

RRF(7) Coefficient: Residuals:
intercept 2.8080 2.8080 2.8080 718 188

Variance Component: Random effects:
Farmcat 0.0000 0.0000 0.0000 73 8
Soilmgt 0.0321 0.0000 0.0000
Residual 1.2810 1.2840 1.2867

RRR(8) Coefficient: Residuals:
intercept 2.5480 2.5350 2.5220 1420 360

Variance Component: Random effects:
Farmcat 0.0010 0.0000 0.0000 128 11
Soilmgt 0.4128 0.5976 0.4817
Loccow 0.1307 0.2403 0.1742
Residual 1.2249 1.2476 1.2249

sary process that successfully identified prevalent outliers and their expected impact on the

analysis. Table 4.15 confirms that the robust method flagged a considerably small number of

observations as outliers in each partition, whose influence was ultimately neutralised by the

robust estimation process. As expected in each robust fit, the slightly inflated estimates of

random effects and random error variance confirm that the robust estimates were better than

the classic estimates (Koller, 2016). Furthermore, the standard deviation of the estimates and

the variance components from the simulation samples confirm that the simulated estimates
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match the counterparts from both the classic and robust methods. The partitioned analysis,

coupled with robust estimation procedures, has proven to be an essential approach to control

for the influence of outlier contamination in experimental data. Therefore, the robust methods

worked consistently well to warrant both internal and external validity. Chapter 5 deals with

the application of the partitioning approach in multi-stratum experimental designs, such as

split-split-plot experiments, that require multiple randomisation processes to generate different

levels of precision.
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CHAPTER 5

LINEAR MIXED MODELS IN
SPLIT-SPLIT-PLOT DESIGN

This chapter presents the results from a publication by Chaka and Njuho (2021), appearing in

the International Journal of Agricultural and Statistical Sciences, Volume 17, Issue Number 2,

2021.

5.1 Introduction

Linear mixed models find application as statistical tools for analysing factorial structure data.

These models have become more attractive due to their essential property of being able to ac-

commodate both fixed and random effects (Pan and Shang, 2018). Application of linear mixed

models on studies that involve multi-step processes requires care when selecting and specifying

factors. The construction of an adequate statistical model that explains particular relationships

amongst the variables involved is of interest to research scientists (Smith and Edwards, 2017).

Failure to select an appropriate structure of a linear mixed model for a complex process can

greatly impact the treatment effects and error estimates of the model.

Split-plot designs have taken the centre stage in optimal designs for response surface experi-

ments which usually involve complex multi-step processes that focus on determining the predic-

tive capability of the design (Jones and Goos, 2012a). When designing experiments for complex

multi-step processes, researchers need the skills to combine process and a mixture factors, and

specify a model in order to obtain an optimal design to with an optimality criterion (Raminez

et al., 2010). The methods for constructing multi-stratum response-surface designs, of which
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split-plot and split-split-plot designs structures are special cases, include the D-optimality cri-

terion, which aims to minimise the variance of the factor effect estimates in an omnibus sense

(Jones and Goos, 2012b; Trinca and Gilmour, 2017); the I-optimality criterion, which minimises

the average variance of prediction over the region of experimentation (Goos et al. 2020); the

new Bayesian compound D-optimal design criterion, which pays attention to both the variance

components and the fixed treatment effects (Mylona et al., 2020), among others. In cases where

prediction aspects of the system are of interest, the I-optimal split-plot design is recommended

over the D-optimality criterion for generating response surface designs since it has low predic-

tion variance in much of the design space and also gives reasonably precise parameter estimates

(Njoroge et al., 2017; Jones and Goos, 2012b; Nguyen and Pham, 2015).

Constructing a linear mixed model for a split-split plot structure in RCBD considers intra-block

analysis for the fixed effects and inter-block analysis for the random effects (Dixon, 2016). Fit-

ting block effects as fixed and proceeding to estimate treatment effects eliminates block effects,

leading to intra-block analysis. In many situations, blocks contain influential effects on treat-

ment combinations, which may be essential for estimating treatment effects. In order to gain

more efficient results, inter-block information lost through intra-block analysis can be recovered

through fitting blocks as a random effect. Recovery of the inter-block information and combin-

ing the same with the intra-block information provide precise information (Shah, 1970; Möhring

et al., 2015). The amount of inter-block information to be recovered depends on the blocking

factor’s contribution to the variation in experimental units, as explained by the reduction in

experimental error. In other words, if the block effects are significant, then the amount of

information which may be recovered from the inter-block analysis will be small, and vice-versa.

Depending on the precision of variance estimates, recovery of inter-block information may be

worthwhile (Möhring et al., 2015), but the challenge is in deciding when to pursue the recovery.

The choice of modelling blocks as fixed or random effects has some implications analysis of

results (Dixon, 2016). The combination of inter- and intra-block information produces the

generalised least squares estimator, and the corresponding analysis is called mixed model anal-

ysis (Shah, 1970). When using the SAS PROC MIXED procedure, the least squares means
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for treatments correspond to the combined intra- and inter-block estimates of the treatment

effects. Other studies involving factors that are mostly quantitative in nature, require the use

of optimal split-plot designs and response-surface models (Nguyen and Pham, 2015; Jones and

Goos, 2012a; Macharia and Goos, 2010). Complications in interpretation and analysis from

such designs can be experienced (Piepho and Edmondson, 2018).

Most agricultural and industrial experiments involve multi-stratum experimental designs. Split-

plot designs are the most widely used experimental designs for studies which apply restricted

randomisation on some hard-to-vary factors when practical limitations and issues related to

time and cost prevail (Trinca and Gilmour, 2017). The conventional approach considers a fac-

tor as either fixed or random in a distinct form. Classification of factors used in an experiment

into either fixed or random takes place at the onset of the experiment. As dictated by the

selected experimental design, the application of the levels of these factors to the experimental

units follow a randomisation procedure, which leads to different levels of precision. After that,

the estimation process and hypotheses testing consider model assumptions and attainable pre-

cision. Some situations arise when either a hard-to-change factor or an easy-to-change factor

consists of both fixed and random levels in a basic split-plot design. An example is when new

strategies or improvements are introduced to be tested against the numerous existing tech-

niques. In this case, the researcher needs to conceptualise a situation where each of the factors

has some levels that are fixed (new strategies) and others that are random (old and existing

strategies). The combination of these factors at all possible levels results in a split-plot or split-

split-plot design arranged in CRD or RCBD. Under these conditions, we extend the concept by

Njuho and Milliken (2005, 2009) to three factors and formulate a linear mixed model consider-

ing the model construction, estimation, hypotheses testing and inferential space processes.

5.2 Methodology

An experimental design with a basic split-plot structure exists when, due to conditions that

complicate the complete randomisation of treatment combinations, the levels of some hard-

to-set treatment factors are kept the same for the runs within the same whole-plot, while the
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easy-to-change treatment factor levels are subsequently varied on a run-to-run basis. The nested

blocking structure in a split-plot design is such that subplots are nested within the whole-plots,

which may also be nested within blocks for a blocked split-plot design. Extension of splitting

each plot to accommodate additional factors gives rise to split-split-plot design, among others.

5.2.1 Model Construction

We consider a replicated factorial experiment in a split-split-plot design with random blocks, one

whole-plot factor A, subplot factor B and sub-subplot factor C, where each of the experimental

factors consists of both fixed and random levels. Let a, b and c be levels of factors A, B and C,

respectively, where the whole-plot factor A has fa fixed levels and ra random levels (a = fa+ra);

the subplot factor B has fb fixed levels and rb random levels (b = fb +rb); the sub-subplot factor

C has fc fixed levels and rc random levels (c = fc + rc); with r replicates per treatment.

5.2.1.1 The General Linear Mixed Model

We consider a conventional linear model where the factors are not classified into either fixed or

random for a split-split-plot treatment arrangement with a whole-plot factor laid in an RCBD,

where each treatment combination is replicated r times. Define the conventional linear mixed

model for the split-split-plot treatment structure in an RCBD as

yijkl = µ+ πl + αi + ϵ
(1)
il + βj + (αβ)ij + ϵ

(2)
ijl + γk + (αγ)ik + (βγ)jk + (αβγ)ijk + ϵ

(3)
ijkl, (5.1)

where yijkl (i = 1, 2, ..., a; j = 1, 2, ..., b; k = 1, 2, ..., c; l = 1, 2, ..., r) is the experimental

unit in the ith whole-plot receiving the main-plot factor A, jth subplot factor B and kth sub-

subplot factor C in the lth block; ϵ(1)
il is the whole-plot error associated with the factor A,

ϵ
(1)
il ∼ N(0, σ2

απ); ϵ(2)
ijl is the subplot error associated with the factor B, ϵ(2)

ijl ∼ N(0, σ2
απ); αi the

whole-plot effects; βj is the subplot effects; γk is the split-split-plot effects; πl is the effect of

the lth block; (αβ)ij, (αγ)ik, (βγ)jk, and (αβγ)ijk are the interaction effects of the three factors

A,B and C; and ϵ
(3)
ijkl is the split-split-plot random error term, ϵ(3)

ijkl ∼ N(0, σ2
ϵ ).

5.2.1.2 Proposed Linear Mixed Model

Suppose we have information on the factors allowing for the fixed and random levels for each

factor to be known. Model (5.1) can be partitioned based on the combinations of the levels of

factors A, B and C resulting in eight sub-models which are coded as in Table 4.1. With i, j
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and k as defined in (5.1), we express each of the partitioned models (1-8) in matrix and vector

form as

yp = Xpβ + ϵp, (5.2)

where, yp : N × 1 (p = 1, ..., 8) is the response vector of the pth partitioned model, Xp =

(1 X1 X2... Xm) is the design matrix of known coefficients of the fixed and/or random effects

parts of the model, β = [µ, πl, αi, βj, γk, (αβ)ij, (αγ)ik, (βγ)jk, (αβγ)ijk)] is a vector of co-

efficients corresponding to block effects, factors A, B, C and their respective interaction effects,

ϵp = (ϵ(1)
il , ϵ

(2)
ijl , ϵ

(3)
ijkl) is a vector of whole-plot, split-plot and experimental error terms in the

pth partition.

We illustrate the partitioning approach using the random-fixed-random (RFR) partitioned

model, which is from the partition with ra random levels of whole plot factor A, fb fixed levels

of subplot factor B and rc random levels of sub-subplot factor C. The random-fixed-random

(RFR) split-split-plot mixed model for the factors A, B and C is expressed as

y6ijkl
= µ6 + π6l

+ α6i
+ ϵ

(1)
6il

+ β6j
+ (αβ)6ij

+ ϵ
(2)
6ijl

+ γ6k
+ (αγ)6ik

+ (βγ)6jk
+ (αβγ)6ijk

+ ϵ
(3)
6ijkl

,

(5.3)

where the subscript 6 in the model denotes the 6th partition as defined in Table 4.1, and all

other components are as defined in (5.1). The model assumptions and estimation techniques

have been discussed in detail in Section 3.8.4. The partitioning approach conforms with Hen-

derson’s (1953) procedure of estimating variance components for random effects in (5.3).

Henderson’s (1953) approach requires expressing the general linear mixed (5.3) in matrix form

as

y6 = X6β + ϵ6, (5.4)

where β is partitioned as β′ = (µ,β′
1,β

′
2, ...,β

′
m, ) is a vector of all the effects in the model, be

they fixed, random or mixed. We assume E(ϵ) = 0, V ar(ϵ) = σ2
ϵ I. Similarly, the incidence

matrix X6 conforms with the partitions of β and is partitioned as X6 = (1 X61 X62 ... X6m).

The reduction in the sum of squares due to fitting the linear model (5.4) is given by Searle and
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Gruber (2017),

R(β) = β̂′X′
6y6 = y′

6X6(X′
6X6)−1X′

6y6, (5.5)

provided (X′
6X6) has full rank, the absence of which the generalised inverse (X′

6X6)− is used.

The reduction in sum of squares is considered in light of the expected value of the quadratic

form y′Qy. According to Henderson’s (1953) methods I and II, the expectation of a random

sampling from model (5.4) is given by

E(y′
6Qy6) = E(y′

6)QE(y6) + tr {QV ar(y6)} , (5.6)

where Q = X6(X′
6X6)−, the notation "tr" symbolises the trace operation, and V ar(y6) is the

variance covariance matrix of y6. A case when the model in (5.6) has β as a vector of fixed

effects, with E(y6) = X6β and V ar(y6) = σ2
ϵ IN6 , yields equation (5.8) as,

E(y′
6Qy6) = (β′X′

6)Q(X6β) + ϵ2
ϵ6tr(Q). (5.7)

Letting Q = X6(X′
6X6)−X′

6 in (5.7) reduces the quadratic form to,

R(β) = β′X′
6X6β + ϵ2

ϵ6tr
{
X6(X′

6X6)−X′
6

}
= β′X′

6X6β + ϵ2
ϵ6r(X6) (5.8)

When (5.4) is a mixed model, we have β partitioned as β′ = (β′
1,β

′
2, ...,β

′
k), and the incidence

matrix X6 conforms with the partitions of β and is partitioned as X6 = (X61 X62 ... X6k
). Let

β1 (including the overall mean µ) be the fixed effects of the model, we have E(y6) = X61β1; and

V ar(y) = X62V ar(β2)X′
62 +X63V ar(β3)X′

63 +...+X6k
V ar(βk)X′

6k
+σ2

ϵ I, where V ar(β3) = σ2
ϵ I,

for i = 2, 3, ..., k. The quadratic form for the mixed model (5.7) becomes

E(y′
6Qy6) = (β′

1X′
61)Q(X61β1) +

k∑
i=2

σ2
i tr(QXiX′

i) + ϵ2
ϵ6tr(Q). (5.9)

However, when all effects in (5.6) are random, except for the overall mean, µ, we substitute β1

by a scalar µ and X61 by a vector of 1’s in (5.9) to get the quadratic form,

E(y′
6Qy6) = (µ21′1)Q(1′1) +

k∑
i=2

σ2
i tr(QXiX′

i) + ϵ2
ϵ6tr(Q), (5.10)

where µ is a scalar and 1 is a vector of 1’s.
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These results can be used to find the expectations of any quadratic form y′Qy of the model

y that involves the partitioning of a vector of all the effects, β, into sub-vectors of main an

interaction terms, be they fixed (5.8), random (5.10) or mixed (5.9). Henderson’s (1953) meth-

ods I, II and III as well as Searle and Gruber’s (2017) method IV apply these results to derive

expected mean squares and their subsequent expectations that are used to decide the denom-

inators for testing each component in linear models. As echoed by Searle and Gruber (2017),

the most preferred method for linear mixed models is Henderson’s (1953) method III, which

involves computing mean squares by conventional least squares analysis of non-orthogonal data,

equating the mean squares to their expectations and solve for the unknown variances.

Following Searle and Gruber’s (2017) approach, we estimate the variance components of a

linear mixed model in a split-split plot design, which is based on Henderson’s (1953) method III,

since it is convenient for calculating generalised inverses of large matrices. Moreso, Henderson’s

method III yields variance components not affected by fixed effects. First, we modify equation

(5.6) for the quadratic form to cater for E(β) of any nature.

E(y′
6Qy6) = E(β′)X′

6QX6E(β) + tr
{
Q[X6V ar(β)X′

6 + σ2
ϵ I]
}

= tr[X′
6QX6E(ββ′)] + σ2

ϵ tr(Q). (5.11)

Hence the reduction in the sum of squares due to fitting the full model (5.4), irrespective of

whether β is fixed, random or mixed, is given by

R(β1,β2, ...,βk) = β̂′X′
6y6 = y′

6X6(X′
6X6)−X′

6y6. (5.12)

Taking the differences of the reductions in the sum of squares due to fitting appropriate sub-

models from the full model, reduction yields unbiased variance components of the full model.

For example, with the reduction due to fitting the full model in (5.5), the reduction due to

fitting a reduced model R(β1|β1,β2, ...,βk), is supplied by

E(β1|β1,β2, ...,βk) = E[R(β1,β2, ...,βk) −R(β2, ...,βk)]

= tr
{
X′

61 [I − X∗(X′
∗X∗)−X′

∗]X61E(β1β
′
1)
}

+ σ2
ϵ [r(X) − r(X∗)]

= tr
{
X′

61X61 − X′
61X∗(X′

∗X∗)−X′
∗X61σ

2
β1I
}

+ σ2
ϵ [r(X) − r(X∗)] (5.13)
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where X = (X61 , X62 , ...,X6k
) and X∗ = ( X62 , ...,X6k

) are partitioned in the fashion of

β′ = (β′
1,β

′
2, ...,β

′
k).

5.2.2 Model Adequacy

The adequacy of a linear model in split-split-plot experimental design has three experimental

errors which can be used to diagnose its fitness. Common measures of adequacy of fit for split-

plot models in literature include the coefficient of determination (R2), adjusted coefficient of

determination (R2-adjusted), prediction error sum of squares (PRESS), R2-prediction statistics

(Almimi et al., 2009) and other graphical approaches.

Following the approach proposed by Almimi et al. (2009) on a split-plot model, we extend the

procedure for calculating R2 and R2-adjusted for the split-split-plot model as follows:

• Identify the significant and negligible WP, SP and SSP effects from the ANOVA table.

• Extract the sum of squares for the significant effects and negligible effects, and then

separate these sums of squares into three sections: one for the WP, one for the SP and

the other for the SSP effects.

• Create a new ANOVA table with three detached sections for the WP, SP and SSP sub-

divisions.

• Calculate and include, in each subdivision, the model sum of squares (i.e., add all the

significant sum of squares), the residual sum of squares (i.e., negligible sum of squares or

lack of fit plus pure error), and the total sum of squares (i.e., model sum of squares plus

residual sum of squares).

• From the WP subdivision, divide the model sum of squares by the total sum of squares

to obtain R2 for the WP sub-model,

R2
W P = SSmodel(WP )

SStotal(WP ) . (5.14)

• Repeating the same process above for the SP section, i.e., dividing the model sum of

117



squares by the total sum of squares to obtain R2 for the SP sub-model,

R2
SP = SSmodel(SP )

SStotal(SP ) . (5.15)

• The SSP sub-division gives R2 is given by,

R2
SSP = SSmodel(SSP )

SStotal(SSP ) . (5.16)

• The R2-adjusted for each sub-division is calculated by dividing the residual sum of squares

and the total sum of squares by their degrees of freedom before subtracting the quotient

from 1.

R2 − adj = 1 − (SSresidual ÷ df(residual)
SStotal ÷ df(total) . (5.17)

• Analogously, the adequacy of fit for the combined split-split-plot model is similarly de-

termined by considering R2 and R2-adjusted from the combined analysis of variance.

5.3 Numerical Example

An experiment reported by Gomez and Gomez (1984) was conducted to investigate the effect

on grain yield (tonnes per hectare) of three rice varieties (V1, V2 and V3) randomly grown un-

der three management practices (minimum M1, optimum M2 and intensive M3) and randomly

treated with five Nitrogen Levels (N1 0 kg N/ha, N2 50 kg N/ha, N3 80 kg N/ha, N4 110 kg

N/ha and N5 140 kg N/ha), in a split-split-plot design, with three replications. The variable

Nitrogen was assigned to the main-plots (factor A) since it is hard to vary fertilizer levels in

a confined space, management practice (Management) was taken as a subplot factor B, while

rice variety (V ariety) was considered as a sub-subplot factor C.

Suppose, for illustration purposes, an additional factor level for rice variety (V4) and a man-

agement practice (extreme M4) are suggested while the five nitrogen levels remain the same.

The grain yield data for these additional factor levels were simulated from the original data

statistics. We then consider the whole-plot factor (Nitrogen) to have new levels, N3 and N5

(considered as fixed), tested against the old levels, N1, N2 and N4 (considered as random),

the sub-plot factor (Management) to have fixed levels (M3 and M4) tested against old and
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random levels (M1 and M2), while the sub-sub-plot factor (V ariety) has new levels (V2 and

V4) also tested against the old and existing levels (V1 and V3). Figure 5.1 displays a single

plot for the whole-plot factor (Nitrogen) of the proposed 5 × 4 × 4 split-split-plot design with

three replications arranged in completely randomised design (CRD).

Figure 5.1: Split-Split-Plot Design in CRD

Using the partitioning approach, we construct each of the eight partitioned split-split-plot mod-

els defined as (5.3), with similar codes (1-8) given in Table 4.1.

5.3.1 Checking Model Assumptions

A normality check on partitioned and combined data was conducted using the Shapiro-Wilk nor-

mality test. Partitions 1-3, 5-8, and the original (combined) data had non-significant Shapiro-

Wilk test statistic (p−value > 0.05), implying that the samples were from normal distributions.

Only model 4 (FRR model) had a significant Shapiro-Wilk test p-value (0.03251) less than al-

pha (0.05), signifying a violation of the normality assumption in this sample.

Homogeneity of variance test in the combined model data (WP, SP and SSP subdivisions) as

well as in the partitioned models was done using Bartlett’s homogeneity of variance test for

data assumed normal (models 1-3, 5-8 and combined), while Levene’s test was used for the

non-normal data sample from model 4. Results from Bartlett’s test showed that models 2,

3, and the combined one had non-constant error variances (p − value < 0.05), whereas the

rest of the data samples satisfied the homogeneity of variance assumption (p − value > 0.05).

Furthermore, Levene’s test established that model 4, combined model WP, SP and SSP samples
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satisfied the homogeneity of variance assumption as well (p− value > 0.05). Figure 5.2 shows

the normal probability plots of the WP, SP and the SSP residuals, respectively, confirming the

normality assumption as indicated by the plots closely following the diagonal line in each of

the Q-Q plot.

Figure 5.2: Normal Probability Plots of the WP, SP and SSP Residuals

The independence of the WP, SP and the SSP residuals is guaranteed by the three-stage ran-

domisation process in a split-split plot design.

Figure 5.3 displays the possible outliers plotted in the WP, SP and SSP, respectively. There

were no outstanding outliers extreme enough to warrant exclusion from the three sample as all

extreme values were within the range of other data points.

Figure 5.3: Outliers for the Combined WP, SP and SSP Models

All possible outliers were retained to maintain the required sample sizes.

5.3.2 Model Estimation

The linear model for the split-split-plot design with fixed WP, SP and SSP factors α, β, and γ

respectively, and variances of ϵ(1)
il = σ2

W P , ϵ(2)
ijl = σ2

SP and ϵ(3)
ijkl = σ2

SSP , is given in (5.1). Each of
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the partitioned models 1-4 of Table 4.1, expressed in general linear form (5.2), is conveniently

expanded and expressed in vector form as

y = µ1 + X1

 π1
π2
π3

+ X2

[
α1
α2

]
+ X3

 β1
β2
π3

+ X4

[
γ1
γ2

]
+ X5


αβ11
αβ12
αβ21
αβ22

+ X6


αγ11
αγ12
αγ21
αγ22



+X7


βγ11
βγ12
βγ21
βγ22

+ X8



αβγ111
αβγ112
αβγ121
αβγ122
αβγ211
αβγ212
αβγ221
αβγ222


+ ϵ, (5.18)

whereas models 5-8 will have an additional X2 random level and the interactions thereof. We

demonstrate the derivations of expected values for the fixed-fixed-random (FFR) model from

the given numerical example. The model (5.18) becomes

yF F R = XF F Rβ + ϵ, (5.19)

where yF F R : 24×1 is a vector variable, XF F R : 24×30 = (1 X1 X2 ... X8) and β : 30×1 =

(µ, β′
1, β

′
2, ..., β

′
8)′. The normal equations for the yF F R model are given by

(X′
F F RXF F R)β = X′

F F RyF F R. (5.20)

Using equation (5.12), we illustrate Henderson’s (1953) method III to derive the reduction

in sum of squares and their expectations of the model yF F R. With r(XF F R) = 11 and the

generalised inverse (X′
F F RX)−

F F R determined accordingly, the uncorrected reduction in sum of

squares for the full model yF F R are as follows.

Whole-plot effect:

R(β1, ..., βk) = β̂′X′
F F RyF F R = y′

F F R(X′
F F RXF F R)−X′

F F RyF F R = 1380.593

R(β1) = y′
1X1(X′

1X1)−X′
1y1 = 1305.684

R(β2) = y′
2X2(X′

2X2)−X′
2y2 = 1302.014

R(β1, β2) = y′
∗X∗(X′

∗X∗)−X′
∗y∗ = 1307.419, where X∗ = (X1,X2) and y∗ = (y1,y2)
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SSEW P = y′
F F RyF F R −R(β1, β2) = 1394.768 − 1307.419 = 87.349

Split-plot effect:

R(β3) = y′
3X3(X′

3X3)−X′
3y3 = 1405.139

R(β5) = y′
5X5(X′

5X5)−X′
5y5 = 1309.581

R(β1, β2, β3, β5) = y′
⊙X⊙(X′

⊙X⊙)−X′
⊙y⊙ = 1313.420,

where X⊙ = (X1, X2, X3, X5) and y⊙ = (y1,y2,y3,y5)

SSESP = y′
F F RyF F R −R(β1, β2, β3, β5) = 1394.768 − 1313.420 = 81.348

Split-split-plot effect:

R(β4) = y′
4X4(X′

4X4)−X′
4y4 = 1364.702

R(β6) = y′
6X6(X′

6X6)−X′
6y6 = 1347.494

R(β7) = y′
7X7(X′

7X7)−X′
7y7 = 1372.260

R(β8) = y′
8X8(X′

8X8)−X′
8y8 = 1374.008

SSE = y′
F F RyF F R −R(β) = 1394.768 − 1380.593 = 14.175

σ̂ϵF F R
= MSE = 14.175 ÷ 8 = 1.7719

We make use of equation (5.13) to derive the expectations of the reduction in sum of squares

calculated for the random effects in the yF F R model.

E(β1|β) = tr
{
X′

1X1 − X′
1X∗(X′

∗X∗)−X′
∗X1σ

2
β1I
}

+ σ2
ϵ [r(X) − r(X∗)] = 15σ2

β1 + 2σ2
ϵ

E(β4|β) = E(β7|β) = 0

E(β6|β) = 1.1667σ2
β6 + σ2

ϵ

E(β8|β) = 2.8σ2
β8 + σ2

ϵ
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5.4 Results and Discussion

Table 5.1 summarises the procedure for analysis of variance of the partitions in a combined

model. The table displays the partitioned models involved in the processes of calculating the

sum of squares and degrees of freedom for both main and interaction effects of fixed and the

random models (1 - 8).

Table 5.1: Degrees of Freedom and Sub-models for the Combined Model
Source of variation Degrees of freedom Sub-models

involved
Replication 8(l − 1) 1 - 8

Nitrogen (A): (FA) ∑4
i=1(fai

− 1) 1 - 4
(RA) ∑8

i=5(rai
− 1) 5 - 8

Whole-plot E(a) (l − 1)[∑4
i=1(fai

− 1) +∑8
i=5(rai

− 1)] 1 - 8
Management (B): (FB) ∑

i=1,2,5,6(fbi
− 1) 1,2,5 and 6

(RB) ∑
i=3,4,7,8(rbi

− 1) 3,4,7 and 8
A × B: (FA× FB) (∑4

i=1(fai
− 1))(∑i=1,2,5,6(fbi

− 1)) 1 and 2
(RA×RB) (∑8

i=5(rai
− 1))(∑i=3,4,7,8(rbi

− 1)) 7 and 8
Sub-plot E(b) (l − 1)[fa ∗∑i=1,2,5,6(fbi

− 1) 1 - 8
+ra ∗∑i=3,4,7,8(rbi

− 1)]
Variety (C): (FC) ∑

i=1,3,5,7(fci
− 1) 1,3,5 and 7

(RC) ∑
i=2,4,6,8(rci

− 1) 2,4,6 and 8
A × C: (FA× FC) (∑4

i=1(fai
− 1))(∑i=1,3,5,7(fci

− 1)) 1 and 3
(RA×RC) (∑8

i=5(rai
− 1))(∑i=2,4,6,8(rci

− 1)) 6 and 8
B × C: (FB × FC) (∑i=1,2,5,6(fbi

− 1))(∑i=1,3,5,7(fci
− 1)) 1 and 3

(RB ×RC) (∑i=3,4,7,8(rbi
− 1))(∑i=2,4,6,8(rci

− 1)) 6 and 8
A × B × C: (FA× FB × FC) (∑4

i=1(fai
− 1))(∑i=1,2,5,6(fbi

− 1)) 1
(∑i=1,3,5,7(fci

− 1))
(RA×RB ×RC) (∑8

i=5(rai
− 1))(∑i=3,4,7,8(rbi

− 1)) 8
(∑i=2,4,6,8(rci

− 1))
Sub-sub-plot E(C) (l − 1)[fa ∗ fb

∑
i=1,3,5,7(fci

− 1) 1 - 8
+ra ∗ rb

∑
i=2,4,6,8(rci

− 1)]
Total N-1

Depending on the targeted main factor or interaction effect as indicated by the source of

variation column in Table 5.1, the degrees of freedom and sums of squares are obtained from

the partitioned sub-models given in the last column. We make use of the partition FRF, fit

the partitioned linear mixed model, and and present a summary of the analysis of variance in

Table 5.2. original FRF model results

Of the new farming strategies considered, the Nitrogen categories were contributing signifi-

cantly to the grain yield (p-value = 0.0107) at a 5% level of significance. In addition, noticeable
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Table 5.2: The ANOVA Table for Simulated FRF Model in RCBD
Random effects:
Groups Name Variance Std. Dev.
Nitrogen:Management:rep (Intercept) 0.00000 0.0000
Variety:Nitrogen:Management (Intercept) 0.00000 0.0000
Nitrogen:rep (Intercept) 0.00000 0.0000
Variety:Management (Intercept) 0.01769 0.1330
Management:Nitrogen (Intercept) 0.00000 0.0000
rep (Intercept) 0.11680 0.3418
Management (Intercept) 0.00000 0.0000
Residual 1.7150 0.4141
Fixed effects:
Coefficients Estimate Std. Error df t-value Pr(>|t|)
(Intercept) 6.23983 0.27633 4.37599 22.581 0.0000107
Nitrogen5 0.69017 0.23910 16.00004 2.887 0.0107
Variety4 0.52850 0.27359 4.99601 1.932 0.1113
Nitrogen5:Variety4 0.01933 0.33813 16.00004 0.057 0.9551

variance components were detected for the V ariety : Management interaction and the plot

(rep) effect. Therefore, the combination of new and old farming strategies had little impact

on boosting the grain yield in this case since there is no significant interaction of these factors

displayed.

The analysis of variance for the main and interaction effects of the combined model is displayed

in Table 5.3. The newly invented farming strategies are the fixed levels of the WP, SP and SSP

factors, symbolised by FA (Nitrogen amounts), FB (management practices) and FC (varieties

of rice), respectively, whilst the old strategies selected from a population of existing strategies

are similarly denoted by RA, RB and RC.

Based on the ANOVA Table 5.3 results displayed, the main effects of the new management

practices (FB), old rice varieties (RC), interaction of old fertiliser amounts old rice varieties

(RA × RC) and interaction of old management practices old rice varieties (RB × RC), con-

tributed significantly to the rice yield at 5% level of significance. In addition, the interaction

of the three old farming methods (RA×RB ×RC) had a significant effect at 10% alpha level.

Hence the hypotheses H2 - H4 were addressed by these ANOVA F-tests. The overall combined

model estimates of the WP, SP, and SSP error variance were σ2
W P = 18.2976, σ2

W P = 10.1585
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Table 5.3: Combined Model ANOVA Table Based on Reductions in Sum of Squares
Source of Degrees of Sum of Mean F
variation freedom Squares Square
Rep 16 21.8666 1.3667 0.0747
Nitrogen (FA) 4 2.9512 0.7378 0.0403
(RA) 8 40.5146 5.0643 0.2768
Whole plot E(a) 24 439.1420 18.2976
Management (FB) 4 110.1580 27.5395 2.7110∗∗

(RB) 4 10.0790 2.5198 0.2480
(FA× FB) 16 13.4360 0.8398 0.0827
(RA×RB) 16 36.3010 2.2688 0.2233
Subplot E(b) 40 406.339 10.1585
Variety (FC) 4 2.6960 0.6740 0.6595
(RC) 4 293.0339 73.2585 71.6885∗∗

(FA× FC) 16 6.4609 0.4038 0.3951
(RA×RC) 16 177.7800 11.1113 10.8732∗∗

(FB × FC) 16 6.7342 0.4209 0.4119
(RB ×RC) 16 146.4580 9.1536 8.9574∗∗

(FA× FB × FC) 64 9.2128 0.1440 0.1409
(RA×RB ×RC) 64 82.871 1.2949 1.2671∗

Sub-subplot E(c) 80 81.7504 1.0219
Total 412 1887.7846

"∗∗" Significant at 0.05 "∗" Significant at 0.1

and σ2
ϵ = 1.0219, respectively. The associated mean and covariance estimates were:

µ̂ =



7.3655
7.3655
6.8540
6.8423
6.4895
6.8347
5.9290
5.8058


;σ2

ϵ =
∑∑∑

=


∑

1 · · · 0
... . . . ...
0 · · · ∑

8

 .

Table 5.4 displays the analysis of variance for the combined model corrected for the mean. The

contribution of all factors in the model to the yield is depicted from the significant F-ratio.

Table 5.4: Corrected Model ANOVA Table
Source of Degrees of Sum of Mean F
variation freedom Squares Square
Model 152 515.0279 3.3883 4.4956∗∗

Error 80 60.2968 0.7537
Total 232 575.3247

"**" Significant at 0.05

The estimates of error variance from the partitioned models 1-8 used to test hypotheses H1,

calculated using the Henderson (1953) approach, were recorded as follows:
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σ2
W P 1=8.2490; σ2

W P 2=43.6745; σ2
W P 3=2.5190; σ2

W P 4=45.775; σ2
W P 5=9.5145; σ2

W P 6=28.7378;

σ2
W P 7=1.8803; σ2

W P 8=19.5443;

σ2
SP 1=2.6573; σ2

SP 2=20.3370; σ2
SP 3=1.1933; σ2

SP 4=21.9528; σ2
SP 5=5.4001; σ2

SP 6=18.4515;

σ2
SP 7=1.1000; σ2

SP 8=12.0113;

σ2
ϵ1=0.3694; σ2

ϵ2=1.7719; σ2
ϵ3=0.2710; σ2

ϵ4=0.8155; σ2
ϵ5=2.3100; σ2

ϵ6=1.1838; σ2
ϵ7=0.3974;

σ2
ϵ8=0.7695.

We use equations (5.14) - (5.16) to calculate the coefficient of determination (R2) measures and

equation (5.17) for the adjusted coefficient of determination (R2-adjusted) measures based on

the combined model analysis. Table 5.5 summarises the ANOVA for the whole-plot, subplot

and split-split-plot sub-divisions.

Table 5.5: Combined Model Subdivisions for Model Accuracy
ANOVA for the Whole-plot Subdivision

Source of Degrees of Sum of Mean F
variation freedom Squares Square
Model 0 0 0 0
Residual 52 105.847 2.0355
Pure error 24 40.5146 1.6881
Lack of fit 28 65.3324 2.3333
Total 52 105.847

ANOVA for the Subplot Subdivision
Source of Degrees of Sum of Mean F
variation freedom Squares Square
Model 4 110.1580 27.5395 4.4899∗∗

Residual 76 466.1550 6.1336
Pure error 40 406.3390 10.1585
Lack of fit 36 59.8160 1.6616
Total 80 576.3130

ANOVA for the Split-split-plot Subdivision
Source of Degrees of Sum of Mean F
variation freedom Squares Square
Model 100 700.1429 7.0015 11.7950∗∗

Residual 180 106.8543 0.5936
Pure error 80 81.7504 1.0219
Lack of fit 100 25.1039 0.2510
Total 280 806.9972

"**" Significant at 0.05
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The statistics obtained were:

R2(WP ) = 0.00; R2(SP ) = 0.1911; R2(SSP ) = 0.8676.

R2 − adj(WP ) = 0.00; R2 − adj(SP ) = 0.1486; R2 − adj(SSP ) = 0.7940.

One can safely conclude that the adjusted coefficients of determinations for the WP (0%), SP

(15%) signify, on average, a poor model fit despite the high model fit for the SSP (79%) sub-

division.

Based on the partitions given in Table 4.1, we consider FFF model (1) as fixed model, and

models (2-8) as random models. Thus, inference space is considered only for the random models

(2-8). We select the FFR model (2) to illustrate inference space and calculate of standard

errors. REML estimated variance components for random variables replication, variety, variety

× nitrogen, variety × management, variety × nitrogen × management, and error are 0.2158,

5.1025, 0.07946, 0, 0, 0, 0, and 0.9776, respectively.

Table 5.6 displays the predictable functions for the mean and differences, with the associated

scope of inference (narrow, broad and intermediate) from the FFR model (2). Each estimable

function derives information for the estimate from the fixed effects, while the uncertainty derives

from the combined contribution of all of the random effects (Stroup, 2016). Function F1 and F3

estimate the marginal mean yield of new Nitrogen level (N3) averaged over a broad spectrum

of rice varieties (broad inference space), while function F2 estimates the mean yield Nitrogen

level (N5) averaged over rice varieties V1 and V3 (i.e. narrow inference space). F4 estimates

the difference between the whole plot factor levels N3 and N5 for narrow inference space.
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Table 5.6: Predictable Functions (K′β + M′u) for the FFR Model
Predictable function

Ŷα1 Ŷα2 Ŷα1 Ŷα1 Ŷβ1 Ŷβ2 Ŷβ2 Ŷβ1 Ŷγ1 Ŷγ2 Ŷγ1

-Ŷα2 -Ŷβ2 -Ŷγ2

Function F1 F2 F3 F4 F5 F6 F7 F8 R9 R10 Rd11

Scope* B N I N N I B B N B N
Effect
µ 1 (2 (2 (0 (2 (2 (2 (0 1 (2 0
π1 0 1 1 0 1 1 0 0 1 0 0
π2 0 1 1 0 1 1 0 0 1 0 0
π3 0 1 1 0 1 1 0 0 1 0 0
α1 1 0 2 2 0 0 0 0 0 0 1
α2 0 2 0 -2 0 0 0 0 1 0 -1
β1 0 0 0 0 2 2 0 2 0 0 1
β2 0 0 0 0 0 0 2 -2 1 0 -1
γ1 0 1 1 0 1 1 0 0 0 2 1
γ2 0 1 1 0 1 1 0 0 1 0 -1
αβ11 0 0 0 0 0 0 0 0 0 0 1
αβ12 0 0 0 0 0 0 0 0 0 0 0
αβ21 0 0 0 0 0 0 0 0 0 0 0
αβ22 0 0 0 0 0 0 0 0 1 0 -1
αγ11 0 0 0 1 0 0 0 0 0 0 1
αγ12 0 0 0 1 0 0 0 0 0 0 0
αγ21 0 1 0 -1 0 0 0 0 0 0 0
αγ22 0 1 0 -1 0 0 0 0 1 0 -1
βγ11 0 0 0 0 1 0 0 0 0 0 1
βγ12 0 0 0 0 1 0 0 0 0 0 0
βγ21 0 0 0 0 0 0 0 0 0 0 0
βγ22 0 0 0 0 0 0 0 0 1 0 -1
αβγ111 0 0 0 0 0 0 0 0 0 0 1
αβγ112 0 0 0 0 0 0 0 0 0 0 0
αβγ121 0 0 0 0 0 0 0 0 0 0 0
αβγ122 0 0 0 0 0 0 0 0 0 0 0
αβγ211 0 0 0 0 0 0 0 0 0 0 0
αβγ212 0 0 0 0 0 0 0 0 0 0 0
αβγ221 0 0 0 0 0 0 0 0 0 0 0
αβγ222 0 0)/2 0)/2 0)/2 0)/2 0)/2 0)/2 0)/2 1 0)/2 -1
Estimate 7.362 7.369 7.362 -0.006 7.925 7.925 6.807 1.118 8.429 5.787 -2.070
S.E 1.657 0.315 0.373 0.429 0.345 0.345 1.651 0.404 0.071 0.438 0.697
p-value 0.123 < .001 0.015 0.988 < .001 < .001 0.136 0.014 0.003 0.009 0.009

"*" Inference space: N - narrow, B - broad, I - intermediate

SAS PROC MIXED procedure generated estimates of the standard errors by substituting the

REML estimates of the variance components associated with the random variables in the pre-

dictable function. Interestingly, the predictable function involving narrow inference space of

nitrogen level N5 and intermediate inference space difference between the nitrogen levels are
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significant (p − value < 0.0001 and p − value = 0.015, respectively), leading rejection of null

hypotheses: H0 : K′β = 0 where K′=[1 0 0 0 1 0 ... 0] and H0 : K′β = 0 where K′=[0 0 0 0 -1

-1 0 ... 0], at 0.05 alpha level of significance in the respective inference spaces.

Similarly, functions F5 through to F8 estimate the marginal mean yield of new Management

strategies (M3 and M4) averaged over the two old Variety levels (V1 and V3) in the three infer-

ence spaces (narrow, intermediate and broad). The results show a significant contribution by the

subplot variable in all inference spaces with the exception of broad inference (p−value = 0.136).

There is a significant difference between the two management practices (M3 and M4) for the

broad inference space, as shown by a significant estimate in function F8.

The last three columns of Table 5.6 display the estimates and standard errors of predictable

functions, R9 and Rd11 , which estimate the marginal mean of the old and random Variety

levels (V1 and V3), averaged over the new Management strategies and Nitrogen levels. The

variety levels are contributing significantly to the rice yield (p − value = 0.003 and 0.0085,

respectively) when considered in both narrow and broad inference scope, thus confirming the

hypothesis: H0 : σ2
γk
> 0 at 0.05 alpha level of significance in both cases. The difference be-

tween the two varieties is significant (p − value = 0.009) for the narrow inference space, with

standard error of 0.6973 for the difference estimate.

Agricultural experiments often involve large populations of crop levels, whose main effects are

independent of their interactions with these varieties. The same applies to the main effects of

management strategies, when different managerial skills independently impact different types

of crops. These scenarios require inference for fixed effect marginal means to be applied to

the whole population of random effects and their respective random interactions. Thus, broad

inference space is of primary, if not exclusive, interest in the vast majority of practical applica-

tions (Littell et al., 2006), and has to be incorporated in statistical experiments. As expected,

the results in Table 5.5 clearly confirm that the standard errors increase with inference space.
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5.5 Simulation Results for the Split-split-plot Model

We present the simulation sample analysis results for the mixed model (FRF) in a split-split-

plot structure arranged in an RCBD, and compile a summary of the simulation analysis for the

rest of the partitioned models.

5.5.1 Simulation Results for the FRF Model

We considered two fixed factors: Nitrogen, with two fixed levels (N3, and N5), and V ariety,

with two fixed levels (V2 and V4); and one random factor, Management, with two random

levels (M1 and M2). The treatments were randomly assigned to three blocks or plots (rep).

Table 5.7 summarises the variation contributed by the random effects as well as the estimated

model parameters, standard errors, and significance p-values of the FRF model fitted based on

10 000 samples.

Table 5.7: The ANOVA Table for Simulated FRF Model in RCBD
Random effects:
Groups Name Variance Std. Dev.
Nitrogen:Management:rep (Intercept) 0.00000 0.0000
Variety:Nitrogen:Management (Intercept) 0.00000 0.0001
Nitrogen:rep (Intercept) 0.00944 0.09716
Variety:Management (Intercept) 0.00000 0.0000
Management:Nitrogen (Intercept) 0.004891 0.06993
rep (Intercept) 0.0382 0.1176
Management (Intercept) 0.00000 0.0000
Residual 0.09635 0.3104
Fixed effects:
Coefficients Estimate Std. Error df t-value Pr(>|t|)
(Intercept) 6.23983 0.27633 4.37599 22.581 0.0000107 ***
Nitrogen5 0.69017 0.23910 16.00004 2.887 0.0107 *
Variety4 0.52850 0.27359 4.99601 1.932 0.1113
Nitrogen5:Variety4 0.01933 0.33813 16.00004 0.057 0.9551

Significance codes: 0; ′ ∗ ∗∗′ 0.001; ′ ∗ ∗′ 0.01; ′∗′ 0.05

The simulated FRF model had a residual error variance of 0.09635, which is comparable to

the original model estimate (0.17150). The fixed factor Nitrogen5 had significant category

differences (p-value = 0.0107) at a 5% significance level with respect to the reference category

(Nitrogen3), and non-significant interactions effect in both the simulated and original data.

The model could capture considerably little random effects from the blocks (rep variance of

0.01382), Management : Nitrogen (variance 0.004891), andNitrogen : rep variance of 0.00944.
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We consider the distribution of the differences in grain yield due to the effect of nitrogen cate-

gories across the samples. The distribution of the differences in grain yield between Nitrogen5

against the reference category Nitrogen3 is displayed in Figure 5.4.

Figure 5.4: Distribution of Grain Yield Between Nitrogen Categories

The peak of the distribution is around the true estimate value of 0.69017. This is an indication

that the coefficient of Nitrogen5 category is well estimated in the model. The peak of the

distribution is around the true estimate value of 0.52850. The same applies to the V ariety4

coefficient estimate, whose distribution is displayed in Figure 5.5.

Figure 5.5: Distribution of Grain Yield Between Variety Categories
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The distribution of standard deviations across the simulation samples is displayed in Figure

5.6. The distribution of the estimated variation is slightly underestimated 65.5% of the times,

when compared to the true standard deviation (0.4141).

Figure 5.6: Distribution of Grain Yield Standard Deviation in the FRF Model

As shown in Table 5.7, there was insignificant amount of variation (<0.000001) in the grain yield

due to Management factor categories that warrants a graphical display for the distribution.

Although the estimated variation (0.09635) is slightly less than the true variation (0.17150)

in the original FRF data set, the two estimates compare moderately well. The FRF model

performs fairly well in estimating the standard deviation. This is further supported by a

moderate proportion (statistical power = 0.529) of models that correctly rejected the null

hypothesis (H0: Nitrogen5 effect = 0), given that we know the null hypothesis is not true.

5.5.2 Summary of Split-split-plot Simulation Results

Based on 10000 samples, the simulation analysis results for the rest of the partitioned split-

split-plot linear mixed models (1-2 and 4- 8) are summarised in Tables 5.8 and 5.9. With

the exception of the partition model FRF, which displays a significant effects of new Nitrogen

categories, Tables 5.8 and 5.9 show that none of the new (fixed) farming methods had significant

effects of on the grain yield variation across the simulation samples. However, some noticeable

amounts of variation due to the random levels of Nitrogen and Management were detected in

the RFR, RRF and RRR models. Based on the simulation sample results, only nitrogen levels

and management practices were significantly contributing to the grain yield.

A variance estimate of zero in Table 5.8 indicates non-significant contribution by the random
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Table 5.8: Simulation Results for the Split-split-plot Models
Model Random Variance Significant Statistical

Effects Fixed Effects Power
FFF Nitrogen: Management:rep 0.21372 None

Nitrogen:rep 0.01512
rep 0.07398
residual 0.21406

FFR Nitrogen: Management:rep 0.1381 None
Variety:Nitrogen:Management 0.0000
Nitrogen:rep 0.0000
Variety:Management 0.2967
Variety:Nitrogen 0.0000
rep 0.0000
Variety 0.1260
residual 0.7649

FRR Nitrogen: Management:rep 0.04625 None
Variety:Nitrogen:Management 0.0000
Nitrogen:rep 0.1891
Variety:Management 0.1180
Variety:Nitrogen 0.07098
Management:Nitrogen 0.0000
rep 0.0000
Variety 3.271
Management 3.237
residual 0.1703

RFF Nitrogen: Management:rep 0.0000 None
Variety:Nitrogen:Management 0.0000
Nitrogen:rep 0.0000
Nitrogen:Variety 0.0000
Nitrogen:Management 0.0000
rep 0.0000
Nitrogen 0.0000
residual 1.637

effect in the model, indicating zero variation.
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Table 5.9: Simulation Results for the Split-split-plot Models
Model Random Variance Significant Statistical

Effects Fixed Effects Power
RFR Nitrogen: Management:rep 0.02118 None

Variety:Nitrogen:Management 0.0000
Nitrogen:rep 0.0000
Nitrogen:Variety 0.0000
Nitrogen:Management 0.0000
Variety:Management 0.0000
rep 0.0000
Nitrogen 0.71217
Variety 0.40286
residual 0.34051

RRF Nitrogen: Management:rep 0.03589 None
Variety:Nitrogen:Management 0.0006
Nitrogen:rep 0.0000
Nitrogen:Variety 0.0000
Nitrogen:Management 0.0000
Variety:Management 0.0000
rep 0.3319
Nitrogen 0.6397
Management 0.0000
residual 0.1231

RRR Nitrogen: Management:rep 0.0000 None
Variety:Nitrogen:Management 0.0000
Nitrogen:rep 0.0000
Nitrogen:Variety 0.03028
Nitrogen:Management 0.0000
Variety:Management 0.0000
rep 0.0000
Nitrogen 0.4467
Variety 2.661
Management 0.3792
residual 0.4034

Similarly, a variance estimate of zero in Tables 5.9 indicates non-significant contribution by the

random effect in the model, indicating zero variation.

This confirms the results displayed in Table 5.2, where the two factors, Nitrogen andManagement,

had significant interaction effects on the grain yield. Thus, the simulated partitioned models

performed fairly well in estimating the variance components and the model estimates.

134



5.6 Conclusion

Conceptualising split-split-plot factors as sharing both fixed and random levels, representing

new and old strategies, for the purpose of evaluating the difference in effectiveness in the meth-

ods leads to a linear mixed model scenario. Implicit to mixed model analysis is the scope of

inference (broad, narrow or intermediate inference space), which is often ignored or wrongly

interpreted by many statistical data analysts. Targeting wrong inference space leads to biased

point estimates, interval estimates, and ultimately misleading hypothesis test conclusions for

the entire population represented by the random factors. Depending on the context and objec-

tives of the experiment, predictable functions can be manipulated to cater for population-wide

or broad inference scope on the treatment effects (Littell et al., 2006). We have demonstrated

the application of the new analysis approach on an agricultural experiment in split-split-plot

design when factors consisting of both fixed and random levels are involved. The usefulness

of the approach can be explore in other related and complex designs. Chapter 6 presents the

application of the partitioning approach in repeated measures design.
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CHAPTER 6

PARTITIONING APPROACH IN
REPEATED-MEASURES DESIGN

This chapter presents results from a publication by Chaka and Njuho (2022), appearing in the

Stats Journal, Volume 5, Issue Number 2, 2022.

6.1 Introduction

Repeated-measures designs consists of between-subjects and within-subject factors that influ-

ence a response variable whose observations are recorded over time. When each of the predictors

is conceptualised as having both fixed and random levels, and the structure of the variance-

covariance matrix of the error terms is not the identity, it might be convenient to partition the

observed data set based on the factor levels of interest. The partitioning gives room for indi-

vidual analysis of subsets of the observed data that assume the same covariance structure. We

consider this setting as the partitioning approach on repeated-measures design under a linear

mixed model, with factors sharing both fixed and random components of the model.

Design and analysis of experiments which involve factors each consisting of both fixed and ran-

dom levels require the application of linear mixed models. Linear mixed models have gained

popularity in analysing Gaussian data due to their essential property of being able to handle

both fixed and random effects simultaneously. The assumed linear mixed model design matrix

takes either a full-rank or less than full-rank form. In addition, linear mixed models linear

mixed models are convenient for modelling not only the means of the data but also the co-

variances (Pan and Shang, 2018). The fundamental consideration in the estimation process

136



of linear models is the special case where the elements of the error vector are assumed equal

and uncorrelated. However, in other fields such as psychology and medicine, longitudinal or

correlated outcomes are common. Correlated data have properties that do not usually conform

to the generality of a mixed model (Muller et al., 2007). The complexity in data structures of

such experiments calls for consideration in model selection and parameter estimation process.

Approaches such as partitioning of fixed and random effects, which allow for analysis of facto-

rial and correlated data, are necessary to explore (Chaka and Njuho, 2021).

Repeated measures studies are defined when multiple responses or measurements are observed

on a set of independent sampling units on longitudinal (across time), spatial (across location),

or multivariate (on different scales) setting. Missing observations are commonly to encounter in

longitudinal outcome studies, leading to balanced and unbalanced measurements which require

appropriate statistical methodologies. Repeated measures data are often dependent. Linear

mixed models are one of the most convenient statistical approaches that can account for this

dependency. However, setting them up for data analysis requires some care, especially in choos-

ing the most appropriate covariance structure to keep the type I error down (Matuschek et al.,

2017). Estimation of parameters assuming linear mixed model might consider different assump-

tions on the structure of the variance-covariance matrix, other than the special case. Unlike

the independent data scenario with the traditional homogenous variance structure, numerous

candidate covariance structures for correlated data are available in statistical software packages

such as SAS through the PROC MIXED procedure. The residual maximum likelihood (REML)

(Patterson and Thompson, 1971) is one of the most famous methods for estimating the covari-

ance parameters associated with linear mixed models among other alternatives (Dempster et

al., 1977).

6.2 Materials and Methods

We consider a repeated measures design with multiple between-subjects factors where each

of these factors has both fixed and random levels. We illustrate the partitioning approach

using a three-factor linear mixed model data fitted to a longitudinal data. The partitioning

approach enriches in exploring the fixed and random levels of the same factor and the subsequent
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interaction of levels of factors of interest. We get to assess the differences between levels of the

same factor and understand the variation within the same factor. We present the construction

and analysis of a three-factor linear mixed model for repeated-measures designs when the

between-subjects factors consist of both fixed and random levels, and the structure of the

variance-covariance matrix of the error terms is not the identity, σ2
ϵ I. The fixed levels allow for

comparison of specific levels within the factor, whereas the random levels allow for assessment

of variation within the same factor. In addition, we introduce heterogeneity of error terms,

selection of the most appropriate covariance structure and assessment of the changes that

occur in the estimation and when drawing the inferences.

6.2.1 An Illustrative Data Structure

We motivate the approach using data collected from a study that investigates the impact of

combining carbon tetrachloride (CCI4) with four levels (0, 1.0, 2.5 and 5.0 mM), and chloroform

(CHCI3) with four levels (0, 5 10 and 25 mM) on toxicity of cells on in vitro toxicity of isolated

hepatocyte suspensions (Gennings, Chinchilli and Carter, 1989). Four flasks were assigned to

each of the 16 treatments. Cell toxicity was measured by the amount of lactic dehydrogenase

(LHD) enzyme percentage leakage from each of the 64 flasks after 0.01, 0.25, 0.5, 1, 2, and 3

hours after applying the treatment. For illustration purposes, we consider the between-subjects

factor CCI4 levels 2.5 and 5.0 as fixed and new, while levels 0 and 1.0 as the existing random

levels. Similarly, we consider the between-subjects factor CHCI3 levels 10 and 25 as fixed and

new while the levels 0 and 5 as the random old levels. Of interest in the analysis is the percentage

leakage observed on times 1, 2 and 3. We demonstrate the model construction procedure under

certain assumptions in a completely randomized design (CRD) and a repeated-measures design

(RMD).

6.2.2 Construction of a Linear mixed Model in CRD

Consider a three-way treatment structure in a balanced completely randomized design (CRD)

with full interaction of factors A, B, and C, each consisting of f fixed and r random levels.

Assume we have fA, fB and fC fixed levels, and rA, rB and rC random levels of factor A,

respectively. We partition the dataset based on the combinations of factor levels and construct

a partitioned model in each partition. For example, the FRF partitioned model is built from
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the fA, rB and fC levels. Similarly, other possible partitions are FFF, FFR, RFF, RRF, RFR,

FRR and RRR. We illustrate the model construction using the FRF linear mixed model in

CRD, having at least one replication per treatment combination, and expressed as

yF RF ijkl
= µF RF + ϕAi

+ ϕBj
+ ϕCk

+ π1 + ...+ πt + ϵF RF ijkl
, (6.1)

where yF RF ijkl
is the lth observation in the (ijk)th treatment cell of the FRF partition, l =

1, ..., rh are the replicates (where all rh = r for balanced data); µF RF is the overall mean,

ϕAi
, ϕBj

, ϕCk
are the main effects of the three factors; π1, ..., πt are the interaction effects; ϕAi

(i = 1, 2, ..., fA, fA + 1, fA + 2, ..., a (a = fA + rA)), ϕBj
(j = rB + 1, rB + 2, ..., b (b = fB + rB)),

and ϕCk
(k = 1, 2, ..., fC , fC + 1, fC + 2, ..., c (c = fC + rC)), are an unknown parameter cor-

responding to fixed factor A, random factor B and fixed factor C, respectively. Defining the

random main effect as ϕR and the random interaction effect as πR in (6.1), the random effects

and the random error term ϵF RF ijkl
, are commonly assumed to have a zero mean and variance,

i.e., ϕR ∼ N(0, σ2
ϕR

), πR ∼ N(0, σ2
πR

), and ϵF RF ijkl
∼ N(0, σ2

ϵF RF
).

For a balanced data scenario, with r replications per cell, say, the general linear mixed model

equation (6.1) is normally expressed in matrix form as

yF RF = XF RFβ + ZF RF u + ϵF RF , (6.2)

where yF RF : N × 1 is a vector of response observations in the FRF partition; matrix XF RF :

N × p is a known incidence matrix associated with the vector of p fixed-effects β : p × 1 in

the model; matrix ZF RF : N × q is a known incidence matrix associated with the vector of q

random-effects u : q×1 in the model; and ϵF RF : N ×1 is a vector of random errors. The usual

assumption under this model is that the random effects u ∼ N(0,G), and the random residuals

ϵF RF ∼ N(0,R), where R = σ2IN , and G is a diagonal matrix of variance components (i.e.,

different variances, and all zero covariances):

G =


σ2

1Ir 0 0 · · · 0
0 σ2

2Ir 0 · · · 0
... ... . . . · · · ...
0 0 0 · · · σ2

1It

 and R =


σ2

ϵ 0 0 · · · 0
0 σ2

ϵ 0 · · · 0
... ... . . . · · · ...
0 0 0 · · · σ2

ϵ

.

The total variance-covariance is the structured matrix V = ZGZ′ + R, a structure that guar-

antees independence and homogeneity of residual errors. This implies that the variance of y is
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modelled through Z, G and R. The simple total variance-covariance, V, has a block-diagonal

structure given by the matrix

V =


σ2

1Ir + σ2
ϵ 0 0 · · · 0

0 σ2
2Ir + σ2

ϵ 0 · · · 0
... ... . . . · · · ...
0 0 0 · · · σ2

1It + σ2
ϵ

.

6.2.3 Linear Mixed Model in RMD

Traditionally, between-subjects and within-subject factors in repeated measures experiments

are designated as either fully fixed effects or random effects. Depending on the objectives of

the experiment, some factors in linear mixed models might exist with both fixed and random

levels (Njuho and Milliken 2005, 2009; Chaka and Njuho, 2021). The same scenario is common

with a repeated-measures experiment where either the between-subjects factor or the repeated

measures consists of both fixed and random levels. For instance, for improved results, a re-

searcher might decide to consider additional levels of a between-subjects factor, in addition to

the old and existing levels. In that case, the improved analysis would need to consider the new

factor levels as fixed levels while the old and existing levels are considered as random. The

approach creates an opportunity to compare and evaluate the effectiveness of new factor levels

(fixed) against the existing ones (random), and/or compile a combined analysis of both. In

addition, the random levels allow for assessment of variation between and within the factor

levels in the entire population.

6.2.3.1 Construction of a Linear mixed Model in RMD

We consider a repeated measures experiment with n experimental units (EU) that are randomly

assigned to each of the a levels of the between-subjects factor A, b levels of the between-subjects

factor B, and then t observations taken across time on each experimental unit. The three-factor

repeated measures ANOVA model (RM-ANOVA) with two between-subjects factors and one

within-subject factor is expressed as

yijkl = µ+ αi + βj + (αβ)ij + γk(ij) + τl + (ατ)il + (βτ)jl + (αβτ)ijl + ϵijkl, (6.3)

where yijkl is the lth measurement (l = 1, 2, ..., t) of the kth experimental unit (k = 1, 2, ..., n)

in the ith level (i = 1, 2, ..., a) of factor A and the jth level (j = 1, 2, ..., b) of factor B; µ is the
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overall population mean; αi is the effect of the ith level of factor A; βj is the effect of the jthlevel

of factor B; (αβ)ij is the interaction effect of the ithlevel of factor A and the jth level of factor

B; γk(ij) is the effect of the kth experimental unit in the ith level of factor A and the jth level of

factor B; τl is the effect of the lth period; (ατ)il, (βτ)jl, and (αβτ)ijl are the interaction effects

of the levels of factors A and B with the lth period; ϵijkl are the random error terms which are

assumed to be independent and distributed as ϵijkl ∼ N(0, σ2). Depending on the purpose of

inference, the three factor effects αi, βj and τl may be considered as fixed or random effect.

The primary objective of a repeated-measures analysis of variance is to compare the factor and

period effects with respect to differences in the response, as well as to understand the factor by

period interaction effects.

6.2.3.2 Partitioning the Factors

For illustration purposes, we consider a three-factor repeated measures experiment with n

experimental units (EU) that are randomly assigned to each of the a levels of the between-

subjects factor A (with fa fixed levels and ra random levels, a = fa + ra, say), the between-

subjects factor B (with fb fixed levels and rb be random levels, b = fb + rb, say), and the

within-subjects factor C with t measurements (all considered to be fixed in this case) taken

on each of the experimental units (EU). Partitioning the between-subjects factors A and B,

and the fixed levels of the within-subject factor C gives us the fixed-fixed-fixed (FFF), fixed-

random-fixed (FRF), random-fixed-fixed (RFF), and random-random-fixed (RRF) subsets. The

repeated measures linear mixed model from each of the four partitions will have the form,

ypijkl
= µp + αi + βj + (αβ)ij + γk(ij) + τl + (ατ)il + (βτ)jl + (αβτ)ijl + ϵpijkl

, (6.4)

where the subscript p in ypijkl
and ϵpijkl

denotes the partition (p = 1, 2, ..., 4); ypijkl
is the

lth measurement (l = 1, 2, ..., t) of the kth experimental unit (k = 1, 2, ..., n) in the ith level

(i = 1, 2, ..., a) of factor A and the jth level (j = 1, 2, ..., b) of factor B in the pth partition.

Depending on whether the effects are fixed or random, the model parameters are as defined in

(6.3).
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6.2.4 Model Assumptions

In experimental research that involves analysis of variance (ANOVA) as a technique for com-

paring different treatment means, a set of assumptions which include the usual normality and

homogeneity of variance must be checked before analysis of data (Kotchaporn and Araveeporn,

2018). These traditional normality tests such as the Q-Q plots or Shapiro Wilk’s test, and

outlier detection approaches (e.g., box plots) are appropriate for diagnosing violation of as-

sumptions.

6.2.4.1 Sphericity (Circularity) Assumption

Sphericity, or homogeneity of variances over time, is one of the most important assumptions in

repeated-measures analysis (Sullivan, 2008). Similar to homogeneity of variances in a between-

subjects analysis of variance (ANOVA), sphericity or circularity holds in ANOVA for repeated

measures designs when the variances of the differences among all possible pairs of related

groups (within-subject factor levels) means are equal (Armstrong, 2017), i.e., when a fixed

variability exists amongst the repeated measurements. The assumption is usually unrealistic in

repeated-measures designs where observations are correlated since a random factor that causes

a measurement in one subject to be a bit high (or low) should have an effect on the next mea-

surement in the same subject.

Univariate tests for within-subjects effect apply when sphericity holds, otherwise some possible

alternatives such as the multivariate test (which does not assume sphericity), the Greenhouse-

Geisser (Geisser and Greenhouse, 1958) correction or the Huynh-Feldt (Huynh and Feldt, 1976)

correction would be appropriate since they provide a corrected degrees of freedom for the

treatment and error terms, thus enabling a more accurate adjusted p-value. Failure to address

the problem of sphericity when conducting analysis of variance often leads to inflated F-ratios

and type I errors. In addition, the conclusions drawn from post-hoc tests for group mean

differences will be biased and inaccurate (Armstrong, 2017). The tests for sphericity are offered

in most statistical computing packages (SAS, R, SPSS, etc).
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6.2.4.2 Compound Symmetry Assumption

An overly restrictive assumption but closely related to sphericity is the compound symmetry as-

sumption, which states that the variance and correlation of the difference scores from the same

subject must be constant. The assumption implies that there is a constant correlation between

observations regardless of the time between the observations, which is not always realistic in

many repeated measures applications (Ott and Longnecker, 2016). Compound symmetry im-

plies sphericity, but not vice-versa.

The compound symmetry is simplified in the Huynh-Feldt (Huynh and Feldt, 1976) condition

which states that the variances of the differences between any pair of observations on the same

experimental unit are equal. Univariate tests for within-subjects effect apply when compound

symmetry holds. This condition is tested in many software packages by the Mauchly’s test

(Mauchly, 1940) for compound symmetry. If the compound symmetry (and hence sphericity)

holds, then a split-plot analysis will be a more accurate approximation to the repeated measures

experiment since it provides relatively more accurate p-values for testing treatment effects (Ott

and Longnecker, 2016). Therefore, it follows that if sphericity is violated, then compound

symmetry may not hold as well. However, the Mulchly’s test for sphericity has been criticised for

its over sensitivity and tendency to reject compound symmetry (UCLA: Statistical Consulting

Group, n.d.).

6.2.5 Estimation Techniques

We generalise the linear mixed model (6.2) to describe data from partitioned repeated mea-

surements, wherein the fixed-effects component, Xpβ, consists of the design matrix Xp and

the fixed-effects coefficients β are as defined in the general linear model; the random-effects

component, Zpu, contains the block-diagonal random-effects design matrix Zp with the design

matrices for the individual subjects (Zi), u is a vector of random coefficients (the between-

subjects variance-covariance components), and ϵp denotes the within-subjects error vector (the

within-subjects variance-covariance components). The random effects and the residuals follow

the distribution u ∼ N(0,G) and ϵp ∼ N(0,R), respectively, where G is a block-diagonal

covariance matrix of the random effects and R is a diagonal covariance matrix with partitions
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corresponding to each subject (within-subjects errors) in the analysis. The covariance matrix

for the repeated measures data is composed of matrices Zp, G and R, which is a block-diagonal

Σ = V ar(y) = ZpGZ′
p + R. The non-singular components G and R are usually estimated by

two principal likelihood methods for estimating variance components (Moskowitz et al., 2002),

i.e., the maximum likelihood (ML) method, and the restricted maximum likelihood (REML).

These procedures are available in various mixed model statistical software such as the SAS

PROC MIXED procedure) and R, with the REML estimates generally preferred unless the

data sets are quite large (Moskowitz et al., 2002).

Assuming that both the random effects and the error terms are normally distributed, the

likelihood function for the repeated measures mixed model is given by (Hocking, 1985):

l = log
[
L(yp)

]
= −N

2 log(2π) − 1
2 log|Σp| − 1

2(yp − Xpβ)′(Σ−1
p )(yp − Xpβ)

= C − 1
2 log|Σp| − 1

2(yp − Xpβ)′(Σ−1
p )(yp − Xpβ), (6.5)

where yp and V = Σp are as defined in (6.2). Similarly, a modification of the ML procedure

through factorisation of the likelihood function was proposed as alternative method of estimat-

ing covariance parameters is the restricted maximum likelihood function (Harville, 1977):

lre = log
[
L(yp)

]
= −N

2 log(2π) − 1
2 log|Σp| − 1

2(yp − Xpβ)′(Σ−1
p )(yp − Xpβ)

= C − 1
2 log|X

′
pΣ

−1
p Xp| − 1

2(yp − Xpβ̂)′(Σ−1
p )(yp − Xpβ̂), (6.6)

where the available covariance matrix V is used to estimate the fixed effects parameters,

β̂ = (X′
pΣ

−1
p Xp)−1X′

pΣ
−1
p yp.

The main challenge in repeated measures analysis of variance is to determine the adequate cor-

relation structure, since the constant variance assumption for the distribution of the error terms

is likely not reasonable for the distribution of error terms within subjects. There are various

possible choices of covariance structure for repeated measures within each subject depending

on the chosen parameterisation for G and R. The choices are usually guided by the limitation

of the software and the insight of the researcher. The commonest covariance structures include

variance components, compound symmetry (common covariance plus diagonal), unstructured
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(general covariance), and autoregressive (SAS Institute Inc., 2017). With the PROC MIXED

statement in SAS, one can specify any repeated measurements covariance structure for G by

using the RANDOM statement, and specify the form of R by the REPEATED statement, in

conjunction with the TY PE option (Milliken and Johnson, 2002). Excluding the REPEATED

statement specifies the classical R which is assumed to be equal to be σ2
ϵ IN .

There are numerous ways of identifying the most appropriate covariance structure amongst

a set candidate structures (SAS Institute Inc., 2017). The most recommended approach is

to select the structure that gives the smallest Akaike’s Information Criterion (AIC), (Akaike,

1974), a statistic that is defined by the model and the maximum likelihood estimates of the

parameters from specifying the variance-covariance as

AIC = (−2)L(β̂, Σ̂) + 2(k), (6.7)

where k is effective number of independently adjusted parameters in the covariance matrix , and

L(β̂, Σ̂) = log(ML) is the value of the likelihood function evaluated at (β̂, Σ̂). A better model

is the one with the smallest AIC value. Different forms of the R can be compared for adequacy

using the likelihood ratio test statistic (Milliken and Johnson, 2002). The hypotheses involve

are, H0 : R1 is as adequate as R2 against H1 : R1 is not as adequate as R2, where R1 is a

special case of R2. Suppose R1 and R2 have k1 and k2 parameters, respectively, with (k1 < k2).

The test statistic is Q = (−2)[L(β̂1, Σ̂1) − L(β̂1, Σ̂1)] which is distributed as χ2(k2 − k1). We

reject H0 when Q ≥ χ2
α
2
(k2 − k1).

6.2.6 Methods of Inference

We present the algorithm for obtaining expected mean squares using the ANOVA approach,

for the FRF model.

6.2.6.1 Algorithm for Deriving Expected Mean Squares

The following steps are used to derive the expected mean squares of the effects in the model:

(a) Based on the model involved, construct a two-way table with column headings corre-

sponding to the source of variation, effect labels, each of the subscripts included in the

model, and row headings corresponding to each source of variation in the ANOVA table.
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(b) Above each subscript, write the associated number of factor levels, and insert on top

either an "F" if the factor levels are fixed, or an "R" if the factor levels are random.

(c) Create an extra column on the extreme right for the variance components corresponding

to the source of variation, and insert the appropriate random variance component (σ2
. ) or

fixed variance component (θ.) for each source of variation.

(d) Compare the column subscript and the factor effect in each row and write the number

of levels corresponding to that subscript if the column subscript is not included in the

factor effect label. Otherwise leave blank.

(e) For rows that have an effect which contains bracketed subscripts, write a "1" under the

column if the subscript is included in the bracket.

(f) For each row that has a fixed variance component (θ.), put a zero in the cell headed by

an "F" when the subscript is included in the effect label.

(g) Enter a "1" in all remaining blank cells.

(h) To get the expected mean squares for each effect, identify all the variance components

associated with that effect label. Cover the column(s) headed by the effect subscript(s)

in that effect, and obtain the coefficient of each of the identified components from the

product of the entries in the column(s) headed by the uncovered subscript(s). Include

the variance component σ2
ϵ with the coefficient of 1 in the list.

Table 6.1 summarises the variance components obtained for a three-factor repeated measures

design, with two between-subjects factors (A and B) on one within-subject factor (C) using

Algorithm 6.2.6.1. We use the model (6.4) to build an FRF model, which assumes factors A

and C as fixed, factor B as random, and experimental units (EU) as random.
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Table 6.1: Variance Components for a Three-factor Repeated Measures Model
F R F R
a b t n

Source Effect i j l k Components
A αi 0 b t n θα

B βj a 1 t n σ2
β

AB (αβ)ij 1 1 t n σ2
αβ

EU γk(ij) 1 1 t 1 σ2
γ(αβ)

P τl a b 0 n θτ

PA (ατ)il 0 b 0 n θατ

PB (βτ)jl a 1 1 n σ2
βτ

PAB (αβτ)ijl 1 1 1 n σ2
αβτ

Error ϵl(ijk) 1 1 1 1 σ2
ϵ

For example, E(MSA), with effect αi, is composed by the variance components θα, σ2
αβ, σ2

γ(αβ),

θατ , σ2
αβτ and σ2

ϵ as follows,

E(MSA) = σ2
ϵ + tσ2

γ(αβ) + tnσ2
αβ + nσ2

αβτ + btnθα.

Table 6.2 displays the ANOVA layout and the expected mean squares for a three-factor repeated

measures design when one of the factors is a within-subject factor. The FRF model is considered

for illustration, with experimental units assumed to be random.

Table 6.2: Expected Mean Squares for a Three-factor Repeated Measures Design
Source Sum of Degrees of E[MS]

Squares Freedom
A SSA a− 1 σ2

ϵ + tσ2
γ(αβ) + tnσ2

αβ + nσ2
αβτ + btnθα

B SSB b− 1 σ2
ϵ + nσ2

αβτ + anσ2
βτ + tσ2

γ(αβ) + tnσ2
αβ

+atnσ2
β

A×B SS(A×B) (a− 1)(b− 1) σ2
ϵ + tσ2

γ(αβ) + nσ2
αβτ + tnσ2

αβ

Unit(A×B) SSU(A×B) ab(n− 1) σ2
ϵ + tσ2

γ(αβ)
Period SSP t− 1 σ2

ϵ + nσ2
γ(αβ) + anσ2

αβτ + abnθτ

Period× A SSP × A (a− 1)(t− 1) σ2
ϵ + nσ2

αβτ + bnθατ

Period×B SSP ×B (b− 1)(t− 1) σ2
ϵ + nσ2

αβτ + anθατ

Period× A×B SSP × A×B (a− 1)(b− 1)(t− 1) σ2
ϵ + nσ2

αβτ

Residual SSE ab(t− 1)(n− 1) σ2
ϵ

Total SST abtn− 1
θα = 1

(a−1)
∑a

i=1 α
2
i ; θατ = 1

(a−1)(t−1)
∑a

i=1
∑t

l=1(ατ)2
il; θτ = 1

(t−1)
∑t

l=1 τ
2
l

6.2.6.2 Hypothesis Testing for Fixed Effects

We are interested in testing the main and the interaction effects of the between-subjects factor

and the within-subjects factor in both the partitioned and the combined repeated measures
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linear mixed model. In addition to checking model assumptions, the following hypotheses are

of interest for each partitioned model:

H1: Between-subjects main and interaction effects (e.g., H0 : αi = 0)

H2: Within-subjects main and interaction effects (e.g., H0 : τi = 0)

The test statistic for H1 is given by F = MSA
(MSU(A×B) ∼ F(a−1,ab(n−1))(α), while the test statistic

for H2 is given by F = MSP
MSE

∼ F(t−1,ab(t−1)(n−1))(α). The interaction effects among the between-

subjects and the interaction effects among within-subjects are tested by the MSU(A×B) and

the MSE on the denominator, respectively.

6.2.6.3 Hypothesis Testing for Random Effects

Variance components are estimated by equating mean square to expected mean squares derived

in Table 2. Where there are no valid F-tests, approximate F-tests are constructed for the sources

of variability in random effects (Kuehl, 2000). For random factor B, the hypothesis of interest

might be,

H3. Random effects (e.g., H0 : σ2
β = 0, against H1 : σ2

β > 0).

Computer software programs such as R and SAS can be used to generate these statistical tests

with p-values at predetermined level of significance.

6.2.6.4 Combined Analysis

The individual partitioned models provide the pieces of information which is needed for an

integrated analysis. The combined model, is built from combining the degrees of freedom and

sum of squares associated with each source of variation for each appropriate hypotheses test.

For example, the combined effect of the within-subjects factor C (Period) in the FC model is

obtained from the partitions where the factor Period is fixed, i.e., the pieces of information is

supplied by the partitioned models FFF, FRF, RFF and RRF . Similarly, the other main and

interaction effects for the combined model are obtained by summing up the associated degrees

of freedom and sums of squares. Alternatively, the combined analyis can be implemented in th

SAS mixed model package, PROC GLIMMIX using proper coding for the fixed and random

factor levels (Piepho et al., 2006) to generate comparisons among the means of the partitioned

subsets of data.
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6.3 Results

The three-factor repeated-measures experiment aimed at investigating the impact of combin-

ing carbon tetrachloride (CCI4), with four levels (0, 1.0, 2.5 and 5.0 mM), and chloroform

(CHCI3), with four levels (0, 5 10 and 25 mM), on the percentage leakage observed over Time

(observations considered at times 1, 2 and 3). Table 6.3 shows the multivariate data (wide

format) layout for a three-factor repeated measures experiment.

Table 6.3: Data layout for a Three-factor Repeated-measures Experiment
Time Period

CCI4 CHCI3 Flask 1 2 · · · t
1 1 1 y1111 y1112 · · · y111t

... ... ... ... ...
n y11n1 y1n2 · · · y11nt

2 1 y1211 y1212 · · · y121t
... ... ... ... ...
n y12n1 y12n2 · · · y12nt

... ... ... ... ... ...
b 1 y1b11 y1b12 · · · y1b1t

... ... ... ... ...
n y1bn1 y1bn2 · · · y1bnt

2 1 1 y2111 y2112 · · · y211t
... ... ... ... ...
n y21n1 y2n2 · · · y21nt

2 1 y2211 y2212 · · · y221t
... ... ... ... ...
n y22n1 y22n2 · · · y22nt

... ... ... ... ... ...
b 1 y2b11 y2b12 · · · y2b1t

... ... ... ... ...
n y2bn1 y2bn2 · · · y2bnt

... ... ... ... ... ... ...
a 1 1 ya111 ya112 · · · ya11t

... ... ... ... ...
n ya1n1 yan2 · · · ya1nt

2 1 ya211 ya212 · · · ya21t
... ... ... ... ...
n ya2n1 ya2n2 · · · ya2nt

... ... ... ... ... ...
b 1 yab11 yab12 · · · yab1t
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6.3.1 Checking Model Assumptions

In order to test the suitability of using repeated measures design on the experiment, the nor-

mality, outliers and sphericity assumptions were tested for each partitioned data subset. Q-Q

plots were used to simultaneously check the normality and outlier assumptions. Figure 6.1

shows the normal Q-Q plots for the four data subsets.

Figure 6.1: Q-Q Plots for (a) FFF (b) FRF (c) RFF (d) RRF Data Sets

The FFF, FRF, RFF and RRF data sets did not show any serious deviations from normality.

Furthermore, the Q-Q plots do not show any influential point (outlier) that warrants exclusion

since all plots were not very far from the diagonal.

The SAS reports on Mauchly’s W test was used to test the sphericity assumption in each

partitioned data subset. The PROC MIXED procedure in SAS was used to fit two models:

one that specifies an unrestricted covariance structure, and the other with a less conservative

Huynh-Feldt (H-F) adjustment in the Type option. Based on the hypothesis,

H0 : Sphericity assumption is satisfied,
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where the difference between the −2log-likelihoods of the two compared models follows a Chi-

square distribution with degrees of freedom equal to the difference in the number of parameters

in them, the test results were as follows:

FFF: χ2
35(0.05) = 55.76, D = 1722.6, significant;

FRF: χ2
38(0.05) = 55.76, D = 184.54, significant;

RFF: χ2
37(0.05) = 55.76, D = 288.8, significant;

RRF: χ2
36(0.05) = 55.76, D = 384.1, significant.

The Mauchly’s test statistics for the partitioned data FFF, FRF, RFF and RRF were significant

at 5% level of significance, which implies that the sphericity assumption was not satisfied in

these data subsets.

6.3.2 Analysis of Results

We use the restricted maximum likelihood estimation (REML) approach to estimate these vari-

ance components. Table 6.4 contains the estimated AIC from each of the covariance structures

as well as the number of covariance parameters estimated with a non-zero value.

Table 6.4: Akaike’s Information Criteria (AIC) for the Partitioned Models
Model FFF Model FRF

Covariance Number of AIC Covariance Number of AIC
Structure Parameters AIC Structure Parameters AIC
CS 2 -282.6 CS 4 -361.3
AR(1) 2 -443.1 AR(1) 3 -492.4
ARH(1) 10 -525.6 ARH(1) 13 -506.3
CSH 10 -356.7

Model RFF Model RRF
Covariance Number of AIC Covariance Number of AIC
Structure Parameters AIC Structure Parameters AIC
CS 4 -450.1 CS 4 -665.8
AR(1) 4 -522.4 AR(1) 4 -782.4
ARH(1) 13 -509.3 ARH(1) 13 -785.3

The covariance structure ARH(1) had minimum AIC values in models FFF, FRF, and RRF,

while covariance structure AR(1) had a smallest AIC value in model RFF. Therefore, based on

AIC, the covariance structure ARH(1) was chosen as the most adequate covariance structure

for the partitioned models. The PROC MIXED procedure is traditionally robust and flexible
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to handle cases where the sphericity assumption is not satisfied.

Table 6.5 gives a summary of the F-tests, for the main and interaction effects of the between-

subjects and the within-subjects factors. The F-tests for the portioned model RFF were ob-

tained from the split-plot analysis of repeated measures since the sphericity condition was valid

in the experiment. The CHCI3 factor had significant effect on leakage percentage (p− value <

0.001) over time. Time effect was significant in the FFF partition.

Table 6.5: Akaike’s Information Criteria (AIC) for the Partitioned Models
Model Effect Numerator Denominator F P-value

Degrees of Degrees of
Freedom Freedom

FFF CCI4 1 12 0.24 0.6363
CHCI3 1 12 17.33 0.0013
CCI4*CHCI3 2 12 1.35 0.2678
Time 2 24 95.99 <0.0001
Time*CCI4 2 24 2.66 0.0908
Time*CHCI3 2 24 20.91 <0.0001
Time*CCI4*CHCI3 2 24 1.26 0.3023

FRF CCI4 1 1 0.5 0.6079
Time 2 2 2.17 0.3156
Time*CCI4 2 2 2.83 0.2610

RFF CHCI3 1 1 7.07 0.2290
Time 2 2 5.42 0.1557
Time*CHCI3 2 2 3.26 0.2348

RRF Time 2 2 1.01 0.4978

Considering the fixed-effects (FFF) repeated measures study, the factor CHCI3 has a signifi-

cant effect on the response (p− value < 0.001). Hence, we conclude that chloroform (CHCI3)

had a significant impact on the amount of lactic dehydrogenase (LHD) enzyme percentage

leakage (toxicity of cells) over time, whereas neither carbon tetrachloride (CCI4) in isolation

nor the interaction thereof had non-significant influence. Furthermore, the Time factor played

an important role in determining the amount of leakage as well. However, the interaction of

old (random) and new (fixed) levels of the between-subjects factor levels had non-significant

effects except in RFF when CHCI3 fixed levels were involved.

Table 6.6 gives a summary of the estimated covariance parameters in each of the partitioned
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model. There was a zero variance for the random levels of chloroform (CHCI3), and very small

estimates in other factors, which resulted in very low estimates of covariance parameters in the

models.

Table 6.6: Covariance Parameter Estimates of the Partitioned Models
Model Covariance Estimate Standard Error Proportion of

Parameter Variation
Accounted for

FRF CHCI3 0 0 0
CCI4*CHCI3 0.04249 0.04470 22.5
Time*CHCI3 0 0 0
Time*CCI4*CHCI3 0.000621 0.000759 0.3

RFF CCI4 0.000607 0.003056 0.05
CCI4*CHCI3 0 0 0
Time*CCI4 0.000149 0.000809 0.02
Time*CCI4*CHCI3 0.000806 0.000984 0.08

RRF CCI4 0.0011 0.00401 2.6
CHCI3 0.00306 0.00677 7.1
CCI4*CHCI3 0.00232 0.00396 5.4
Time*CCI4 0.000002 0.00002 0.0
Time*CHCI3 0.000065 0.000096 0.1
Time*CCI4*CHCI3 0.000013 0.000025 0.0

The CHCI3, CCI4 random levels and their interaction had a noticeable contribution to the

proportion of variation in the amount of lactic dehydrogenase (LHD) enzyme percentage leak-

age in RRF partitions. Generally, the variable Time had very little interaction effect with the

between-subjects factors FRF in determining the proportion of variation toxicity of cells.

Due to some limitations in most statistical packages such as the R CRAN lme4 package for

linear mixed models, which currently does not have options of other covariance structures to

cater for correlated error variances, generating a combined analysis may not a straightforward

exercise. However, the mixed model methodology (SAS PROC MIXED procedure) has options

for other covariance structures which accommodate correlated error variances even though it

does not provide for the computation of sums of squares or F-statistics from the ratio of mean

squares. We scrapped the targeted data subset based on the effects of interest before analysing

using the PROC MIXED procedure (if sphericity is violated) or the split-plot approximation if

sphericity holds. Analogous to the partitioned analyses, comparison of model fit via the AIC

approach was conducted. For convenience purposes, let the factors CCI4, CHCI3 and Time
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be labelled as factor A, B and C, respectively. The PROC MIXED procedure was used to fit

the repeated measures linear mixed models for the intended narrow inference space (McLean

et al., 1991; Chaka and Njuho, 2021). Table 6.7 shows the results for the combined analysis

generated using PROC GLIMMIX procedure (see Annexture D for the SAS code).

Table 6.7: Fixed Effects F-Tests for the Combined Models
Type III Tests of Fixed Effects in Combined Models

Model AIC [CS] Effect Num DF Den DF F Pr > F
FA -127.6 [ARH(1)] A 1 24 3.36 0.0794

B 3 24 5.81 0.0039
A*B 3 24 9.10 0.0003
C 2 48 12.33 0.0001
A*C 2 48 2.52 0.0908
B*C 6 48 2.33 0.0468
A*B*C 6 48 0.76 0.6027

FB -127.6 [AR(1)] A 3 24 0.53 0.6631
B 1 24 16.3 0.0005
A*B 3 24 0.22 0.8801
C 2 48 24.82 <0.0001
A*C 6 48 1.09 0.3795
B*C 2 48 7.82 0.0012
A*B*C 6 48 0.50 0.8064

FA× FB -69.1 [AR(1)] A 1 12 0.14 0.7106
B 1 12 10.63 0.0068
A*B 1 12 0.83 0.3807
C 2 24 19.75 <0.0001
A*C 2 24 0.58 0.5667
B*C 2 24 4.65 0.0196
A*B*C 2 24 0.26 0.7725

Of the possible candidate covariance structures (CS, CSH, AR(1) and ARH(1)), structure

ARH(1) was selected as the most appropriate covariance structure for the combined fixed-effects

models FA, while AR(1) was appropriate for FB and FA×FB. The factors B (CHCI3) and

C (Time) had significant effects (p−value < 0.05) in the combined models. The broad inference

scope results for the combined models (assuming random factor A or B effects) were similarly

analysed.

6.4 Discussion

Based on the illustrative example results, the approach managed to isolate the effects of new

and old factor levels over time. The combined analysis confirmed the results of the partitioned
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analysis on the percentage leakage in cells. The partitioning approach conforms to the model

construction and the analysis procedures in repeated-measures design. It can be used as a

planning tool where factor combination and time are of interest in designing of experiments

which involve repeated measures. In such experiments, blindly adopting the assumption of

homogeneous of error terms without exploring on possible candidate covariance structures may

compromises the ability of an experiment to detect sufficient variation in response variable.

In addition, approach enhances the accuracy of inferences by providing partitioned analysis of

heterogeneous variances and covariance structures, which sometimes are not identical in the

data subsets.

Given the increased complexity of research data in the various research fields, the application

of linear mixed model methodology has to be in line with the data covariance structures for

accurate results to be achieved. One of the approaches that has proved to be a reliable tool for

managing big data complexity issues is the partitioning approach (Njuho and Milliken, 2005,

2009; Chaka and Njuho, 2021) when the traditional homogeneous error variance structure is

assumed. The current study extends the new approach to a three-factor treatment structure in

repeated-measures design where linear mixed models are applicable. In essence, the approach

can be extended to cater for the repeated measures experiments where any number of between-

subjects and within-subjects factors are involved. In most cases, repeated measures experiments

do not assume equal and uncorrelated error vectors since regularly timed measurements taken

on the same subject over time are usually correlated (Moskowitz et al., 2002).

For the fixed-effects partitions, the linear mixed models for a repeated-measures design are fit

by PROC GLM procedure, and combined analysis of these would be obtained by syncretising

the sum of squares and degrees of freedom from the fit models. However, obtaining a combined

analysis using the SAS PROC MIXED procedure is impossible using the sum of squares ap-

proach since the PROC MIXED procedure uses a likelihood-based estimation scheme instead

of least squares method. A comparable alternative for the reduction sum of squares for the fit

model in PROC MIXED is to consider the amount of information retained by the fit model

when compared to the null model, i.e. the difference in AIC information (AICmodel −AICnull).
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A more convenient and easier approach of generating combined analyis for comparisons among

the means of the partitioned subsets of data is achievable using the SAS PROC GLIMMIX

procedure and proper coding for the fixed and random factor levels (Piepho et al., 2006).

6.5 Conclusion

The main purpose of this chapter was to demonstrate how the partitioning approach can be

implemented on a three-factor linear mixed model for correlated data when some of the factors

involved have both fixed and random levels. The partitioning approach was useful in model

construction and hypothesis testing in repeated-measures data when heterogeneous error struc-

ture is assumed. Approaches to generating combined analyses were discussed. Although the

MLE method used in SAS PRO MIXED does not estimate sums of squares, data scrapping

based on the targeted factor levels and the SAS PROC GLIMMIX with proper coding for

the fixed and random factor levels, proved to be useful alternatives to obtain the combined

analyses. The partitioning approach can be adopted as an essential tool for comparison of new

inventions against the existing strategies and equipment. The partitioning approach enriches

in exploring the fixed and random levels of the same factor and the subsequent interaction of

levels of factors of interest. We get to assess the differences between levels of the same factor

and understand the variation within the same factor. In addition, the modelling allows for

assessment of various covariance structures.
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CHAPTER 7

EXTENTION TO MULTIPLE
FACTORS

7.1 Introduction

The analysis of factors with both fixed and random levels has been illustrated and explained

using two-way and three-way mixed linear models. We present the extension of the concept to

a general p-factor linear mixed model with interaction in completely randomised design (CRD)

and other experimental designs. We demonstrate how a p-factor linear mixed model is con-

structed under such conditions, and extend the analysis approach to other complex situations.

7.1.1 Construction of a P -factor Linear Mixed Model in CRD

Analogous to the three-way linear mixed model scenario in the previous chapters, suppose we

have p factors, each with a combination of f fixed and r random levels, whose main and interac-

tion effects are considered to predict a single response variable. Assume we have fA, fB, ..., fP

fixed levels and rA, rB, ..., rP random levels of factor 1 through factor P , respectively. The

proposed concept suggests that, the p-way linear mixed model is constructed as

yijk...hn = µ+ φAi + φBj + ...+ φP h + π1 + ...+ πt + ϵijk...hn, (7.1)

where µ is the overall mean, φAi, φBj, ..., φP h are the main effects of p factors; π1, ..., πt are the

interaction effects; and n = 1, ..., rs are the replicates (where all rs = r for balanced data).

Suppose that φAi (i = 1, 2, ..., fA, fA + 1, fA + 2, ..., a(a = fA + rA)) an unknown parameter

corresponding to factor A, with fA fixed and rA random levels, the same explanation is true

for the P th main factor. Defining the random main effect as φR and the random interaction
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effect as πR in (7.1), the random effects and the usual random error term ϵijk...hn, are assumed

to have a zero mean and variance, i.e. φR ∼ N(0, σ2
φR

), πR ∼ N(0, σ2
πR

), and ϵijk...hn ∼ N(0, σ2
ϵ ).

7.1.2 Partitioning a P -factor Linear Mixed Model in CRD

Intuitively, we can build the p-way treatment structures by partitioning (7.1) using the defini-

tions of fixed and random effect levels, i.e. a = fA + rA levels of factor A through p = fP + rP

levels of factor P . The number of models for the p-way treatment structure can be generalised

as 2p. We use the same approach to build and interpret the respective partitioned models.

We demonstrate the partitioning approach using a p-way fixed, random and mixed partitioned

model.

The Fixed Partitioned model (FF...F ) model for the factors A,B, ..., P is expressed as

yF F...Fijk...hn
= µF F...F + φAi + φBj + ...+ φP h + π1 + ...+ πt + ϵF F...Fijk...hn

, (7.2)

where i = 1, 2, ..., fA; j = 1, 2, ..., fB through p = 1, 2, ..., fP ; are the fixed levels of the p main

factors, respectively, and πF1 , ..., πFt are the fixed interaction effects in the model. We consider

the p-factor classification in (7.2) to be a balanced model with r replications per cell, having

fp fixed levels for each pth factor. Model (7.2) is expressed in matrix form as

yF F...F = 1NµF F...F + X1β1 + X2β2 + ...+ Xmβm + ϵF F...F , (7.3)

where µF F...F is the overall mean, N is the total number of observations, βm is a vector of either

the main effect or interaction effects, and ϵF F...F ∼ N(0, σ2
F F...F IN). The incidence matrix Xm

in a p-factor classification model is made up of Kronecker products of (p + 1) matrices, Qp,

which are either Inp (np × np) identity matrix or 1np (a vector with all np components equal

to 1), provided the model (7.3) is balanced. That is, Xm = Q1 ⊗ Q2 ⊗ ... ⊗ Qp ⊗ 1r, where

Qp = Inp if the index p corresponds to the pth factor in the model, or Qp = 1np if not. The last

submatrix, 1r (a vector with all r components equal to 1), represents the replications per cell in

the case of a balanced model. For a balanced model, with r replications per cell, the Kronecker
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products of the intercept, main and interaction effect incidence submatrices are given by:

1N = 1f1 ⊗ 1f2 ⊗ ...⊗ 1fp ⊗ 1r = JN ,

X2 = If1 ⊗ 1f2 ⊗ ...⊗ 1fp ⊗ 1r = Df1(Jr),
...

X12 = If1 ⊗ If2 ⊗ 1f3 ⊗ ...⊗ 1fp ⊗ 1r = Df1f2(Jr),
...

X123...p = If1 ⊗ If2 ⊗ If3 ⊗ ...⊗ Ifp ⊗ 1r = Df1f2f3...fp(Jr),

where Df1(Jr) is a diagonal matrix of f1 column vectors of ones, each of length r (i.e. Jr is

a vector of r ones), and X123...p is the Kronecker product for the interaction effects of factors

A,B,C, ..., P . Combining the incidence submatrices for an p-factor linear mixed model with

full interaction gives a single incidence matrix X = (1N X1 X2 X3 ... X12 X13 ... X123...p).

In the case of an unbalanced data set with unequal observations per cell or treatment combina-

tion, the intercept, main and interaction effect incidence submatrices of an p-factor unbalanced

linear mixed model would be expressed as (Hocking, 1985):

1N = JN ,

X2 = Df1(Jni
),

...

X12 = Df1f2(Jninj
),

...

X123...p = Df1f2f3...fp(Jninjnk...ph
),

where Df1(Jr) is a diagonal matrix of f1 column vectors of ones, each of length ni, Df1f2f3...fp(Jninjnk...ph
)

is a diagonal matrix of order f1.f2.f3....fp column vectors with strings of ones of unequal lengths

ni, nj, nk, ..., ph, respectively, with Jninjnk....ph
being a vector of ni.nj.nk....ph ones.
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Similarly, the p-way random-effects model is expressed as

yRR...Rijk...hn
= µRR...R + φRAi + φRBj + ...+ φRP h + πR1 + ...+ πRt + ϵRR...Rijk...hn

, (7.4)

where i = fA + 1, fA + 2, ..., a; j = fB + 1, fB + 2, ..., b through j = fP + 1, fP + 2, ..., p; are

the random levels of the p main factors respectively, and φR1, ..., φRt are the random interac-

tion effects in the model. Depending on specified fixed and random levels of each factor, the

partitioned p-way mixed model with one random factor and (p− 1) fixed factors yF F...F Rijk...hn

is similarly expressed as

yF F...F Rijk...hn
=µF F...F R + φFAi + φFBj + ...+ φF(P −1)m+

φRP h + πF 1 + ...+ πF t + πR1 + ...+ πRs + ϵF F...Rijk...hn
, (7.5)

where φFAi, ..., φF(P −1)m are effects of fixed factors and φRP h is the effect of a random factor.

Similarly, the interaction effects πF 1, ..., πF t are the fixed interaction effects while πR1, ..., πRs

are the random interaction effects in the model, with φRP h ∼ N(0, σ2
φRP h

), πR. ∼ N(0, σ2
πR.

),

and ϵF F...Rijk...hn
∼ N(0, σ2

ϵF F...R
).

Thus, with the appropriate definition of diagonal submatrices for balanced or unbalanced linear

mixed model, the incidence matrix X for a p-factor linear mixed model is generally expressed as

X = (1N X1 X2 X3 ... X12 X13 ... X123...p), where matrices with multi-digit subscripts are

incidence matrices for the interaction effects.

7.2 Covariance Structure of a P -factor Linear Mixed Model

Following the three-way structure and the guideline proposed by Moser and Sawyer (1998),

we construct a covariance matrix for a p-factor balanced, infinite linear mixed model using

Kronecker products. We use model yF F...F Rijk...hn
as defined in (7.5) to derive the covariance

structure. Consider a p-factor experiment modelled by (7.5), with fA fixed levels of factor A,

fB fixed levels of factor B, through f(P −1) fixed levels of the (P − 1)th factor, rP random levels

of the P th factor, and r replicates in each treatment combination of the p factors. Expressing

(7.5) as linear mixed model in matrix form gives

yF F...F R = XF F...F Rβ + ZF F...F Ru + ϵF F...R, (7.6)
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where yF F...F R : N × 1 is a vector of response observations with mean vector XF F...F Rβ̂; known

fixed-effects incidence matrix XF F...F R : N × (fA.fB....f(P −1)); known random-effects incidence

matrix ZF F...F R : N × rP ; β : (fA.fB....f(P −1)) × 1 and u : rP × 1 are unknown vectors fixed

and random effects, respectively; ϵF F...R is a vector of random errors. The covariance structure

of (7.6) is V = ZF F...F RGZ′
F F...F R + R, where G = Cov(u) and R = Cov(ϵF F...R). Defining Jr

and JN as vectors of r ones and N ones, respectively, the incidence matrix becomes

X = (1N XA XB XC ... X(N−1) XAB ... XABC...(P −1)), where:

1N = 1fA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ 1r = JN ,

X2 = IfA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ 1r = DfA
(Jr),

...

XAB = IfA
⊗ IfB

⊗ 1fC
⊗ ...⊗ 1f(P −1) ⊗ 1r = DfAfB

(Jr),
...

XABC...(P −1) = IfA
⊗ IfB

⊗ IfC
⊗ ...⊗ If(P −1) ⊗ 1r = DfAfBfC ...f(P −1)(Jr),

and the vector of fixed effects β = [µ, φFAi, φFBj, ..., φF(P −1)m, π(fAfB)ij, ..., π(fAfB ...f(P −1)ij...(p−1) ]′

for i = 1, 2, ..., fA; j = 1, 2, ..., fB. The incidence matrix ZF F...F R = (ZP ZAP ZBP ... ZABC...(P −1)P ),

where

ZP = 1fA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1fr = JN ,

ZAP = IfA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1fr = DfARP

(Jr),
...

ZABP = IfA
⊗ IfB

⊗ 1fC
⊗ ...⊗ 1f(P −1) ⊗ IRP

⊗ 1fr = DfAfBRP
(Jr),

...

ZABC...(P −1)P = IfA
⊗ IfB

⊗ IfC
⊗ ...⊗ If(P −1) ⊗ IRP

⊗ 1fr = DfAfBfC ...f(P −1)RP
(Jr),

where IRP
is the identity matrix corresponding to the vector of random effects,

u = [φRP
, π(FARP )ih, ..., π(FAFB ...F(P −1)RP )ij...mh]′.
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Let 1m1′
m = J M , and the simple structures of G and R in (7.6) are expressed respectively as

G =


σ2

P IP · · · 0
... . . . ...
0 · · · σ2

(ABC...P )IfA
⊗ IfB

...⊗ If(P −1) ⊗ IRP

 ,
and

R =


σ2

R(ABC...P )
· · · 0

... . . . ...
0 · · · σ2

R(ABC...P )

 .
Using the definitions of ZF F...F R, G and R in the covariance matrix V, we obtain

V = ZF F...F RGZ′
F F...F R + R

= (1fA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)(σ2

P IP )(1fA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)′

+ (IfA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)(σ2

AP IfA
⊗ IRP

)(IfA
⊗ 1fB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)′

+ (1fA
⊗ IfB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)(σ2

BP IfB
⊗ IRP

)(1fA
⊗ IfB

⊗ ...⊗ 1f(P −1) ⊗ IRP
⊗ 1r)′

+ ...+ (IfA
⊗ IfB

⊗ ...⊗ If(P −1) ⊗ IRP
⊗ 1r)(σ2

(ABC...P )IfA
⊗ IfB

...⊗ If(P −1) ⊗ IRP
)

(IfA
⊗ IfB

⊗ ...⊗ If(P −1) ⊗ IRP
⊗ 1r)′

+ (σ2
R(ABC...P )

)(IfA
⊗ IfB

⊗ ...⊗ If(P −1) ⊗ IRP
⊗ 1r)

= σ2
P J fA

⊗ J fB
⊗ ...⊗ J f(P −1) ⊗ IRP

⊗ J r + σ2
AP IfA

⊗ J fB
⊗ ...⊗ J f(P −1) ⊗ IRP

⊗ J r

+ σ2
BP J fA

⊗ IfB
⊗ ...⊗ J f(P −1) ⊗ IRP

⊗ J r + ...

+ σ2
(ABC...P )IfA

⊗ IfB
⊗ ...⊗ If(P −1) ⊗ IRP

⊗ J r

+ (σ2
R(ABC...P )

)(IfA
⊗ IfB

⊗ ...⊗ If(P −1) ⊗ IRP
⊗ 1r) (7.7)

An algorithm for the covariance structure, V = ZF F...F RGZ′
F F...F R + R, for a p-factor linear

mixed model, is similarly summarised as (Moser and Sawyer, 1998):

Step 1: Create rows of random main and interaction effects.

Step 2: Create column headings of factor letters and subscript letters on the variance.

Step 3: If the letter in the column heading is part of the variance subscript letter-combination,

write Id.

Step 4: Otherwise, write J d elsewhere.
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Table 7.1 summarises the four steps of the algorithm of constructing the covariance matrix,

V = Σ, for the model (7.7). We assume that the pth factor is random with p levels , while the

rest of the factors are fixed with levels a, b, c, d, ...(p− 1), respectively.

Table 7.1: Constructing Covariance Matrices
Factor A B C · · · P R

Subscript d a b c · · · p r
σ2

P J a⊗ J b⊗ J c⊗ · · · Ip⊗ J r⊗ +
σ2

AP Ia⊗ J b⊗ J c⊗ · · · Ip⊗ J r⊗ +
σ2

P J a⊗ Ib⊗ J c⊗ · · · Ip⊗ J r⊗ +
... ... ...

σ2
(ABC...P ) Ia⊗ Ib⊗ Ic⊗ · · · Ip⊗ J r⊗ +

σ2
R(ABC...P )

Ia⊗ Ib⊗ Ic⊗ · · · Ip⊗ Ir⊗ +

The sum of row elements in Table 7.1 gives the same covariance matrix result as in (7.7). The

algorithm for covariance matrix is extended to build an algorithm for determining sums of

squares that researchers would use when conducting the analysis of variance tests. Let Y′MxY

be the sum of squares associated with the overall mean and factors A,B, ..., P in the p-factor

linear mixed model with full interactions. Analogous to the covariance matrix algorithm (Moser

and Sawyer, 1998), we derive the algorithm for determining matrices (Mx) associated with sums

of squares (Y′MxY) in a p-factor linear mixed model as follows:

Step S1: Create the first row heading for the letters of the overall mean, factors and interac-

tions in the model, and the second row heading of the associated matrices (Mx).

Step S2: Create two column headings, one for the factor letters and the second for the number

of levels (d) of the factor.

Step S3a: If the first-row heading letter does not match the column heading letter, write d−1Jd

in the Kronecker product.

Step S3b: If the first-row heading letter of a non-nested factor matches the column heading

letter, write Id − d−1Jd in the Kronecker product.

Step S4: Place Id elsewhere.

Table 7.2 summarises the algorithm steps S1-S4 for constructing matrices associated with the
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sum of squares Y′MxY from a p-factor linear mixed model.

Table 7.2: Constructing Matrices Associated with the Sum of Squares
Factor A B · · · P R

Level d a b · · · p r
µ Mµ = a−1J a⊗ b−1J b⊗ · · · n−1J p⊗ r−1J r

A MA = (Ia − a−1J a)⊗ b−1J b⊗ · · · p−1J p⊗ r−1J r

B MB = a−1J a⊗ (Ib − b−1J b)⊗ · · · p−1J p⊗ r−1J r

... ...
P MP = a−1J a⊗ b−1J b⊗ · · · (Ip − p−1J p)⊗ r−1J r

AB MAB = (Ia − a−1J a)⊗ (Ib − b−1J b)⊗ · · · p−1J p⊗ r−1J r

AB...P MAB...P = (Ia − a−1J a)⊗ (Ib − b−1J b)⊗ · · · (Ip − p−1J p)⊗ r−1J r

ϵ Mϵ = Ia⊗ Ib⊗ · · · Ip⊗ (Ir − r−1J r)

To construct the sum of squares Y′MxY of the corresponding factor of factor interactions,

read across Table 7.2. For example, the sum of squares matrices for the main factor A and the

random error are given by, respectively:

Y′MxY = (Ia − a−1J a) ⊗ b−1J b ⊗ · · · ⊗ p−1J p ⊗ r−1J r, and

Mϵ = Ia ⊗ Ib ⊗ · · · ⊗ Ip ⊗ (Ir − r−1J r).

7.3 Generalised Inverse

The estimation of parameters for the linear mixed model equation,

y = Xβ + ϵ, (7.8)

poses a lot of challenges, especially when the model involved is over-parameterised and has

no unique solution for the parameter estimates (Saeed et al., 2014). The popularly used least

squares method tries to minimise the sum of squares of the residuals, (Y − Xβ̂)′(Y − Xβ̂),

which leads to the corresponding normal equation. The theory of linear models involves a great

deal of finding solutions to a set of equations called the least squares equations or the normal

equations given by

X′Xβ̂ = X′y,

where β̂ is the least squares estimator of β to satisfy the equations. When the square matrix

X′X is of full rank (and hence non-singular), the inverse (X′X)−1 exists, and the least squares
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estimator, β̂, is unique. The solution to the normal equations is therefore given by

β̂ = (X′X)−1(X′Y)

Computing the inverse of X′X is generally not an easy task (Milliken and Johnson, 2009),

especially when large matrices are involved. However, with the advancement in technology

and statistical software, large matrices can be inverted without much effort. For example,

the Comprehensive R Archive Network (CRAN), a free software environment for statistical

computing and graphics, provides the inv() function in matlib package for computing inverses

of square matrices. Alternatively, by recognising a certain pattern or structure in the matrix

X′X, one can easily exploit the pattern to compute its inverse (Graybill, 1983; Milliken and

Johnson, 2009). One of the most useful theorems on patterned matrices popularly used by

statisticians is the inverse of a diagonal matrix D, where entries dii ̸= 0, which is D−1 = [d−1
ii ].

Among the patterned matrices that are frequently encountered in experimental design is a

matrix with the following structure (Greenberg and Sarhan, 1959; Graybill, 1983):

C =



α1 α21′ α31′ · · · αt1′

α21 β2I + γ2J β3I + γ3J · · · βtI + γtJ
α31 β3I + γ3J δ3I + θ3J · · · δtI + θtJ

... ... ... . . .
αt1 βtI + γtJ δtI + θtJ · · · ϵtI + ωtJ

 .

where αi, βi, ..., ωi are scalars or constants, I is a k × k identity matrix, J is a k × k matrix

whose elements are all unity, and 1 is a k× 1 column vector whose elements are all unity. The

inverse matrix C−1, whose structure is the same as C with constants α∗
i , β

∗
i , ..., ω

∗
i , is found by

solving for the constants in the equation CC−1 = I∗, where

I∗ =



1 0 0 · · · 0
0 I 0 · · · 0
0 0 I · · · 0
... . . . ...
0 0 0 · · · I

 .

For more theorems on computing inverses and determinants of diagonal matrices, diagonal ma-

trix of type 2, variance-covariance matrices, and other special patterned matrices, see Graybill

(1983).
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The maximum number of linearly independent rows or columns of the design matrix X : m×n,

with m ≥ n, gives the rank of X, and hence the rank of X′X in the normal equations. Ideally,

rank(X) ≤ n. If rank(X) = n, we say X is full-rank, and the normal equations have a unique

solution for β̂. However, if rank(X) < n, then X is rank-deficient, X′X is singular, and the

normal equations have infinitely many solutions. As is common with various experimental

data in applied statistics and other fields, the matrix X′X may not necessarily be full rank.

When the matrix X is rank-deficient, X′X−1 does not exist. Thus the estimation procedure

uses a generalised inverse or pseudo-inverse X′X− in the normal equation, which satisfies the

estimator, β̂, is unique. The solution to the normal equations is therefore given by

X′X(X′X)−X′X = X′X.

Depending on the type of restrictions used on the parameters, various possible solutions exist

to the same normal equations. The solution to the normal equation solution is therefore given

by

β0 = (X′X)−X′Y = GX′Y,

which is one of the infinitely many solution vectors corresponding to the generalised inverse

used. The matrix X is rank-deficient; hence X′X is not invertible, and the normal equations

have no unique solution. Therefore, it cannot be over-emphasised that β0 is always referred to

as a solution amongst infinitely many, and not as an estimator (Searle and Gruber, 2017).

7.3.1 Over-parameterised Model

The singular model scenario usually results from the fact that the model has more parameters

than can be uniquely estimated from the data collected (Milliken and Johnson, 2009). Hence

the effects model of this nature is known as an over-specified or over-parameterised model.

There are several approaches used to solve the corresponding normal equations of over-specified

effects models, which yield infinitely many least squares solutions. One of the commonly used

approaches is the use of generalised inverses (Graybill, 1983). As defined in (Garybill, 1983:106),

for each m × n matrix X, there is a matrix X−, called the generalised inverse (or simply, g-

inverse) of X, satisfying the condition:

• XX− is symmetric,
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• X−X is symmetric,

• XX−X = X,

• X−XX− = X−.

A useful algorithm for computing a generalised inverse based on knowing or first finding the

rank of the matrix exists (Searle and Gruber, 2017). The algorithm for obtaining a reflexive

generalised inverse of X works as follows:

• In a matrix X of rank r, find any non-singular minor of order r. Call it M.

• Invert M and transpose the inverse to obtain (M−1)′.

• In X, replace each element of M with the corresponding element of (M−1)′.

• Replace all other elements of X with zero.

• Transpose the resulting matrix.

Different generalised inverses of X are obtained from different choices of the minor of rank r.

Other types of generalised inverses use different algorithms. An example is the Moore-Penrose

inverse, which is obtained using the singular value decomposition.

Several other theorems about the g-inverses, including some patterned matrices, have been

suggested in literature. One useful theorem that applies to any m × n matrix X of either full

row rank or full column rank has been documented (Graybill, 1983):

• If X is an m× n matrix of rank m, then X− = X′(XX′)−1 and XX− = I.

• If X is an m× n matrix of rank n, then X− = (X′X)−1X′ and X−X = I.

• If X is an m× n matrix of whatever rank, then X− = X′(XX′)− = (X′X)−X′.

7.3.2 Re-parameterised Model

Other approaches to solving the corresponding normal equations involve placing restrictions on

the parameters in the model, which eventually produce generalised inverse solutions as well.

Examples include (Milliken and Johnson, 2009; Saeed et al., 2014):
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• the sum-to-zero restrictions: which require the sums of certain parameters to be set to

zero; solve for some of the parameters in terms of others with the restrictions being taken

into account, and then substitute the expressions back into the model.

• the set-to-zero restrictions: which require that one of the parameters (first, second, last or

any other parameter) in each treatment level be set to zero and reduce the design matrix

X before solving the normal equations.

The result of incorporating these restrictions is a re-parameterised model, where the set-to-zero

restrictions, deleting the columns corresponding parameters set to zero, produce a much simpler

model than the sum-to-zero restrictions. The whole concept of over-parameterised model and

non-unique least squares solutions revolves around the issue of estimability.

7.4 Estimable Functions

Different approaches to imposing restrictions usually produce parameters or functions of the

parameters that have different estimates for the re-parameterised models. If it happens that the

parameters or functions of parameters of these approaches have the same estimates, then we

have what is called estimable functions of the parameters. Milliken and Johnson (2009) define

a parameter βi or function of the parameters f(β) as estimable if and only if the estimate of the

parameter or function of parameters is invariant with respect to the choice of a least squares

solution. The definition suggests that the value of the estimate of the parameter or function

of parameters remains the same regardless of which solution to the normal equations is used.

The implication is that an estimate of an estimable function of the parameters produces the

same value, leading to the same decisions about estimable functions of the parameters, even if

different least squares solutions were used (Milliken and Johnson, 2009). Due to this invariance

property, estimable functions become the primary focus of interest in estimating the parameters

of a linear model (Searle and Gruber, 2017).

7.4.1 Estimable Functions of Full-rank Case

Consider the linear model (7.8) expressed in matrix form, where X has full column rank. The

linear estimable functions K′β are defined as linear combinations of the parameter vector β

where K′ is a q× p matrix of full-row rank (i.e., all of the rows of K′ are linearly independent).
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Each of the rows of K′β is in the form k′β, where k′ is a 1 × p row vector of constants. Ideally,

the linear function k′β is defined as estimable if and only if it is identically equal to some

linear function of the expected value of the vector of observation (Searle and Gruber, 2017).

Technically, k′β is estimable if some vector t′, whose value is not as important as its existence,

is such that t′E(y) = k′β. This implies that each row xi of the design matrix X is a vector of

constants necessary for any linear combination x′
iβ to be an estimable function.

7.4.2 Estimable functions of Non-full-rank Case

When matrix X is rank-deficient, the inverse (X′X)−1 does not exist, and the normal equations

have no unique solution. In that case, the generalised inverse (X′X)− is used in the estimation

procedure of the normal equation, the same way (X′X)−1 would be used had it existed.

7.4.3 Some Properties of Estimable Functions

Following the definition of an estimable function, we derive the properties (Searle and Gruber,

2017):

• the expected value of any observation is estimable,

• linear combinations of estimable functions are estimable,

• when k′β is estimable, k′β0 is invariant to whatever solution of the normal equation is

used for β0,

• the least squares estimators β̂ are the best linear unbiased estimator for a full-rank model,

while the estimable linear combinations of solutions to the normal equation are the best

linear unbiased estimators for the less than full-rank model,

• for some vector t′, we have k′β = t′E(y) = t′E(Xβ) = t′Xβ, which reduces to k′ = t′X

since estimability does not depend on the value of β.

Since different least squares solutions provide different estimates, these estimators should never

be considered valid estimates of the treatment effects since they are all biased (Saeed et al.,

2014). We use estimable functions to overcome this challenge since they have parameter esti-

mates that do not depend on the choice of least squares solution used. The implication is that,

only functions of the parameters that are estimable are best linear unbiased estimates (BLUE)
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which should be considered when making inferences from linear models because they have the

smallest variances (Searle and Gruber, 2017). Otherwise, no estimate should be provided for a

parameter or function of the parameters that is not estimable (Milliken and Johnson, 2009).

7.4.4 Distributional Properties of Estimable Functions

The distribution properties of a generalised inverse are crucial for deriving of test statistics

used for testing hypotheses involving estimable functions. Unlike the β̂ estimator of a full-rank

model, which is distributed as N(β, (X′X)−1σ2
ϵ ), the definition of β0 solution shows that it is

a function of a matrix of observations, y, with the expected value given by

E(β0) = GX′E(Y) = GX′Xβ = Hβ,

where H = GX′X, which shows that β0 is not an estimator of β but of Hβ. Similarly, the

variance of β0 is given by

V ar(β0) = GX′V ar(Y)XG′ = GX′XG′σ2
ϵ ,

Hence, β0 ∼ N(GX′Xβ,GX′XG′σ2
ϵ ). Clearly, the variance of β0 depends on the choice of

g-inverse used. For example, the V ar(β0) = Gσ2
ϵ when the reflexive inverse G is chosen, or

V ar(β0) = Gmpσ
2
ϵ when a Moore-Penrose inverse Gmp is the used to solve the normal equation.

7.4.5 Estimability

We can determine whether k′β is estimable or not by checking if it satisfies the equation

k′H = k′ where H = GX′X as before. The proof of this condition follows from the fact that,

if k′β is estimable, there exists some vector t′ such that k′ = t′X. Hence,

k′H = t′XH = t′XGX′X = t′X = k′.

Conversely, if k′H = k′, then

k′ = k′H = k′GX′X = k′t′X = t′X,

for t′ = GX′ so that k′β is estimable. Thus, we conclude that if k′β does not satisfy the

equation k′H = k′, then it is not estimable.
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The theory of linear models is centred on the different kinds of hypotheses that might be of

interest to researchers in various fields of application. Some of the hypotheses that are of

interest in most research applications include:

• Hypothesis about the linear model parameters (H0 : βi = b0), with a special case when

b0 = 0,

• Some linear combination of β elements assumed to be equal to a constant value (H0 :

k′β = c),

• Reduced model hypothesis, (H0 : βq = 0), where βq is a subset of βi’s.

All the above hypotheses and other linear combinations are special cases of the general hypoth-

esis H0 : K′β = m, where β : p × 1, is the vector of parameters of the model; K′ : s × p is

any matrix of linear estimable functions of the parameter vector, β, such that K′ is of full-row

rank, that is, r(K′) = s ; and m : s× 1 is a vector of specified constants. Each row k′ : 1 × p of

K′ is basically a row vector of constants, and k′
iβ is a linear combination of βi’s. This suggests

that K′β is a set of estimable functions.

Keeping in mind the invariance property of the estimable functions, i.e., k′
iβ yield identical

results regardless of the solution vector used; we would be interested in testing the hypotheses

H0 : k′
iβ = m versus H1 : k′

iβ ̸= m, where ki is an estimable vector, and β̂ is any least squares

solution vector (from set-to-zero or sum-to-zero restrictions). The linear combination k′
iβ is

distributed as N [k′
iβ,k′

i(X′X)−ki]. A set of these estimable functions tested simultaneously

will lead to the following hypotheses:

H0 : K′β = m versus H1 : K′β ̸= m,

where K is a matrix of estimable constants (built by combining the estimable vectors in ques-

tion), and β̂ is any least squares solution vector. The estimability of K′β is confirmed by any

one of the following ways (Searle and Gruber, 2017) otherwise, K′β is not estimable if none of

these conditions are met:

• if K′ satisfies K′ = K′X;

• if a matrix T′ exists that satisfies K′ = T′X;
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• if matrix C′ exists such that K′ = C′U, where U is a column orthogonal matrix in the

singular value decomposition of X′X and/or

• if K′ satisfies either K′ = UC′ = K′ or K′VV′ = 0, where V is the normalised eigenvector

of 0 for X′X.

The concept of estimable functions is also fundamental to inference in the linear mixed models

of the general form

y = Xβ + Zu + ϵ, (7.9)

where y is the vector of observations, X is a matrix of known constants associated with the

vector of fixed effects, β, matrix Z is of known constants associated with the vector of random

effects, u, and ϵ is a vector of random errors. Traditionally, it is assumed that the random

effects and errors of the general linear mixed model have a joint distribution given by[
u
ϵ

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
,

whose non-singular components G and R are usually estimated by the restricted maximum

likelihood (REML) or the method of moments in various mixed model statistical software.

There are numerous methods of estimating these variance components, which ultimately lead

to the β solution (BLUE) and the u solution (BLUP). Fundamental to linear mixed model

inference is the concept of estimable functions, K′β, such that the estimability criteria explained

above are satisfied, or the predictable functions, K′β+M′u, such that K′β is estimable (Stroup

and Kachman, 1994).

7.4.6 Hypothesis Testing of Estimable Functions

In order to test hypotheses about linear functions of the parameters (or estimable functions) of

a linear model, appropriate test statistics need to be developed. The principle of conditional

error and the likelihood ratio statistic are the most commonly used approaches used in this

regard. Consider the general hypothesis

H0 : K′β = m versus H1 : K′β ̸= m,
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where the matrix K′β of estimable functions of β and K′ is of full-row rank, i.e., r(K′) = s.

The appropriate test statistic for H0 is given by

Fcal =
Q
s

σ̂2 , (7.10)

where Q = (K′β − m)′[K′(X′X)−1K](K′β − m) is the sum of squares due to deviations from

the null hypothesis, s = r(K′) is the rank of K′, and σ̂2 is the estimate of the population

variance based on the least squares solution for β which is given by

σ2 = 1
N − r(X)(y − Xβ̂)′(y − Xβ̂) = SSE

N − r(X) .

Equivalently, when X′X is singular, that is, when X is not of full rank, and y ∼ N(Xβ, σ2I),

the test statistic about the estimable functions K′β is developed in terms of a re-parameterised

model using the generalised inverse (X′X)−. The test statistic is therefore given by

F ∗
cal =

Q∗

s

σ̂2∗ , (7.11)

where Q∗ = (K′β0 − m)′[K′(X′X)−1K](K′β0 − m) is the sum of squares due to deviations

from the null hypothesis. In either case, we consider the assumption that the error vector

ϵ = (y − Xβ) are i.i.d N(0, σ2I), which implies that the test statistic has an F-distribution

with degrees of freedom s = r(K′) and N − r(X), i.e., F ∗
cal ∼ Fs,N−r(X)(α). The estimate of the

population variance σ̂2 is based on the solution β0, which is given by

σ2∗ = 1
N − r(X)(y − Xβ̂0)′(y − Xβ̂0) = SSE

N − r(X) .

7.4.7 Testability of Estimable Functions

The theory for testing the general linear hypothesis H0 : K′β = m versus H1 : K′β ̸= m

when the design matrix X is of full rank is constrained on the condition that K′ has full-row

rank. Under H0 : K′β = m the F- statistic defined in (7.10) provides the required test. The

theory can be extended to cases where the design matrix X is non-full-rank. However, some

hypotheses are testable in such cases, while others are not. The condition under which a linear

hypothesis H0 : K′β = m is testable is that K′β should be made up of estimable functions

as defined in the previous sections. Analogous to the full-rank case, the F-test statistic for

the linear hypothesis H0 : K′β = m for the non-full-rank case would be expected to have a
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component (K′β0 − m). Ideally, K′β0 is expected to be invariant to any choice of the general

solution β0 to the normal equation. As a result, the invariance condition can only be met when

K′β consists of estimable functions; otherwise the linear hypothesis H0 : K′β = m will not be

testable.

In formal terms, a linear hypothesis H0 : K′β = m is testable if each linear combination k′
iβ

(i = 1, 2, ...,m) of K′β is estimable. From the fundamental definition of an estimable function,

this implies that k′
i = t′

iX for some t′
i. Hence, we have K′

i = T′
iX for some matrix T of order

s×N , where s = r(K′). In addition, K′ should always be of full-row rank since the hypothesis

H0 : K′β = m is considered only in terms of its linearly independent components (Searle and

Gruber, 2017).

The general implication of estimability of K′β is the existence of the error sum of squares based

on the null hypothesis, Q∗ = (K′β0 − m)′[K′GK]−1(K′β0 − m), where G = (X′X)− is the

generalised inverse used, which in particular implies the existence of [K′GK]−1. However, the

condition for testability is not solely focused on the estimability of K′β because the error sum

of squares, Q∗, can be calculated even when K′β is not estimable, provided [K′(X′X)−K]−1

exists. It is therefore important to check if K′β is estimable before proceeding to calculate

either Q∗ or the test statistic F ∗
cal. In summary, the concepts of estimability and testability

only apply to a non-full-rank model and not a full-rank model. The reason is that, for a full-

rank model, all linear functions are testable, and all linear hypotheses are testable (Searle and

Gruber, 2017).

7.5 Variance of Error Terms in Linear Models

Most standard analytical models which use the analysis of variance (ANOVA) technique usu-

ally require a restrictive assumption that all pairs of effects have homogeneous variance and

covariance, which in many circumstances is not always realistic (Hu and Spilke, 2011). We first

consider the general linear model, also known as the Gauss-Markov model,

y = Xβ + ϵ. (7.12)
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The error vector is defined as ϵ̂ = (y − Xβ). The normal equations corresponding to this

equation are derived using least squares under the traditional assumptions that E(ϵ) = 0

(assumption I), and that the elements of the error vector are all equal and uncorrelated (i.e.

Cov(ei, ej) = 0 for all i ̸= j), then V ar(ϵ) = V = σ2I (assumption II). Thus, the normal

equations of this model,

X′Xβ = X′y,

have a unique solution when matrix X is full-rank, that is, X′X is non-singular or has infinitely

many solutions if matrix X is rank-deficient and X′X is not invertible. The traditional ap-

proach in statistical analysis involving either full-rank or non-full-rank linear models considers

a special case where the error terms are assumed to have V ar(ϵ) = V = σ2I. If the errors

are assumed to be independently distributed with the first four moments equal to the first four

moments of a normal distribution, then σ̂2 is the best quadratic unbiased estimate of σ2. If

the errors are also normally distributed, then σ̂2 is the best unbiased estimator of σ2, and the

sampling distribution of (n − r) σ̂2

σ2 is a central chi-square distribution with n − r degrees of

freedom (Milliken and Johnson, 2009).

However, the assumption of equal and uncorrelated error terms may not be true in many cases,

such as repeated measures design where experimental units are the same or clustered data

scenarios where experimental units are drawn from the same neighbourhood. The presence

of unequal variances across these observations in different neighbourhoods or the presence of

covariance among the observations of the response variable is the basis for generalising ordi-

nary least squares. The homoscedasticity assumption used on the Gauss-Markov model may

not be satisfied in such cases. Instead, it is appropriate to assume that E(y) = Xβ and

Cov(y) = Cov(ϵ) = σ2V (Assumption III), where V is a known symmetric positive definite

matrix.

From assumption III, matrix V is a symmetric positive definite matrix, which implies that there

exists an invertible matrix H such that V = HH′. We pre-multiply the OLS Gauss-Markov

175



model by H−1 and express the model as

y∗ = X∗β + ϵ∗, (7.13)

where y∗ = H−1y, X∗ = H−1X, and ϵ∗ = H−1ϵ. The general linear model under assumptions

I and III is referred to as Aitken’s model (Aitken, 1935) or the generalised least squares (GLS)

model where E(ϵ) = 0, and V ar(ϵ) = V = σ2I, thus satisfying all assumptions of Gauss-

Markov model. The corresponding normal equations

X∗′X∗β = X∗′y∗

have a solution (commonly known as Aitken’s estimator)

β̂GLS = (X∗′XX)gX∗′y∗

= [(H−1X)′(H−1X)]g(H−1X)′(H−1y)

= [X′(H−1)′(H−1X)]gX′(H−1)′H−1y

= [X′V−1X]gX′V−1y. (7.14)

Hence, β̂GLS is a generalised least squared (GLS) estimator of βGLS. Similarly, the generalised

estimator of y is given by

yGLS = Xβ̂GLS

= X[X′V−1X]gX′V−1y

= LGLSy,

where LGLS = X[X′V−1X]gX′V−1. When X is of full-rank, [X′V−1X]−1 exists and thus the

estimator, β̂GLS, is an unbiased estimator,

β̂GLS = [X′V−1X]−1X′V−1y,

and so is ŷGLS since

E(yGLS) = X[X′V−1X]−1X′V−1E(y) = Xβ.

A crucial step in developing statistical models that adequately make use of data information

is specifying the appropriate covariance structure (Guo and Tang, 2021), which describes the
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nature of the correlation among data points within a given category. For example, studies

involving clustered, repeated measurement or correlated data analysis cannot assume indepen-

dence in residual errors among all observations. This is particularly essential to ensure accurate

parameter estimates, the overall model fit, and standard errors, which tend to be sensitive to

the model covariance structure.

7.5.1 Covariance Structures in Linear Models

One of the major strengths of linear models that gives them leverage over other analytical

models is that they do not have any restrictions on random effects and residual errors, thereby

allowing them to assume various structures of variance-covariance matrices, which mirror the

characteristics of random effects and residual errors (Hu and Spilke, 2011). For example, in

studies involving longitudinal or non-longitudinal clustered data, various covariance structures

exist for various types of assumptions about the associations between responses from the same

cluster. The basic variance-covariance matrix of responses, which is generally assumed to be

the same for all clusters, is defined by an n× n symmetric matrix

V =


σ2

11 σ1σ2 · · · σ1σn

σ2σ1 σ2
22 · · · σ2σn

... ... . . . ...
σnσ1 σnσ2 · · · σ2

nn

 .

where the diagonal elements σ2
ii are variances, off-diagonal elements σiσj are covariances, and

n is the number of observations per cluster.

The common patterns of variance-covariance matrix appropriate for different scenarios have

been summarised (Barnett et al., 2010) as:

• an independent covariance, which is appropriate when the variance is homogeneous but

none of the corresponding effects are correlated (σ2
ii = σ2 and σiσj = 0 for all i ̸= j);

• an unstructured covariance, which is an appropriate choice when variance and covariance

are not homogeneous (σ2
ii ̸= σ2

i∗i∗ and σiσj = σi∗σj∗ for i ̸= i∗, j ̸= j∗);

• an exchangeable covariance, which is appropriate when the responses from the same

cluster are equally correlated (σ2
ii = σ2 and σiσj = σ2ρ for all i and j) or
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• an autoregressive covariance, which is an appropriate choice when the correlation between

responses decreases with increasing time or distance.

Other forms may emerge as modifications or improvements to the basic four patterns above.

An example is when heterogeneous variance (unequal diagonal elements) and homogeneous

covariance (equal off-diagonal elements) are assumed. Hu and Spilke (2011) recorded several

other forms of variance-covariance structures that allow heterogeneity of variances.

7.5.2 Covariance Structure in Linear Mixed Models

Data from experiments and studies that involve treatment structures with fixed and random

effects are usually described using mixed models with more than one variance-covariance pa-

rameter. There are numerous types of mixed models, ranging from randomised complete or

incomplete blocks models, split-plot models, repeated measures type models, and other hierar-

chical models. Analysis in mixed models basically focuses on the fixed effects, random effects

and residual parts of the model. The distribution of the response variable is based on some

assumptions considered on the random and residual effects, which are ingredients for the mod-

elling covariance structure of the random effects in the model.

We consider the general linear mixed model defined in (7.9), whose treatment structure con-

sists of fixed effects and random effects. The classical mixed model is essential for modelling

the response measurements in any type of grouped data, be it correlated or repeated measures

within subjects in randomised block and split-plot designs. For a classical linear mixed model

(7.9), which can also be expressed as (7.12), where the variance-covariance matrix consists of a

component for the random effects u ∼ MVN(0,G), and the component for the random resid-

uals ϵ ∼ MVN(0,R). The response y is also multivariate normal with mean Xβ and total

variance-covariance V = ZGZ′ + R, which implies that the variance of y is modelled through

Z, G and R, where G represents the covariance structure on the random effect terms and R

represents the covariance structure of the residuals.

Henderson (1975) provided solutions to the mixed model (7.12), part of which is the most crucial

parameter estimate, β̂ = (X′V−1X)−1X′V−1y. With known parameters of V, the estimated
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BLUE (best linear unbiased estimator) and BLUP (best linear unbiased predictor) are obtained,

respectively (Milliken and Johnson, 1984). However, in most cases, the parameters of V are

unknown and have to be estimated. In simple linear models, it is commonly assumed that

R = σ2I, where I is an n × n identity matrix, a structure that guarantees independence and

homogeneity of residual errors; and that G is a diagonal matrix of variance components (i.e.,

each different variances, and all zero covariances). This structure of the variance-covariance

matrix is a special case of the general mixed model, which can be extended to heterogeneous

error models which allow various arbitrary parameterised covariance structures in G or R or

both. Some of the common parameterised covariance structures for both G and R in the

general normal-theory linear mixed model framework include the diagonal, time series AR(1),

unstructured, and compound symmetry. The following sections briefly explain some of these

covariance structures in different treatment designs.

7.5.2.1 Covariance Structure of a P -factor Linear Mixed Model in CRD

Consider a p-way treatment structure in a completely randomised design (CRD), where only

factors A and B are fixed, and the rest of the (p − 2) factors are random. The linear mixed

model, in this case, is given by

yijk...ph = µ+ αi + βj + γk + ...+ ωp + gij + ...+ gijk...p + ϵijk...ph, (7.15)

where µ denotes the mean response; αi, βj, and γk denote the effects of the ith level of fixed

factor A, the jth level of factor B and the kth level of fixed factor C, respectively; terms in

g denotes the interaction effects between the factors in the model; and ϵijk...ph denotes the

residual effect. We assume that the random effects gij ∼ i.i.d N(0, σ2
g) and residual parts

ϵijk...ph ∼ i.i.d N(0, σ2
ϵ ).

For repeated measures design, we express the model (7.15) in a general linear mixed model in

matrix notation as

y = Xβ + Zu1 + Zu2 + ...+ Zut + ϵ, (7.16)

where y is anN×1 vector of observations, Xβ is the fixed-effects part of the model, Zu1,Zu2, ...,Zut,

and ϵ are the random effects and the residual parts of the model, respectively, where ut ∼
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N(0, σ2
t Int) and ϵ ∼ N(0, σ2

ϵ IN) are independent random variables. The simple covariance

structure of the random effects and of the residual parts of the model would be based on the

classical assumptions that u ∼ N(0,G) and ϵ ∼ N(0,R), respectively, where

G =


σ2

1In1 0 · · · 0
0 σ2

2In2 · · · 0
... ... . . . ...
0 0 · · · σ2

nInn

 .

and

R =


σ2

ϵ 0 · · · 0
0 σ2

ϵ · · · 0
... ... . . . ...
0 0 · · · σ2

ϵ

 ,
or equivalently, the total variance-covariance, V = ZGZ′ + R, given by the block-diagonal

matrix

V =


σ2

1In1 + σ2
ϵ In1 0 · · · 0

0 σ2
2In2 + σ2

ϵ In2 · · · 0
... ... . . . ...
0 0 · · · σ2

nInn + σ2
ϵ Inn

 .

7.5.2.2 Other Covariance Structures in Mixed Model Analysis

The mixed model is a vital and flexible tool, especially in the analysis experiments with repeated

measures data, due to its ability to embed the structure and relationships among the errors.

The traditional and rigid approach of only considering a very simple structure of dependence

among errors ϵ ∼ N(0, σ2
ϵ IN) may not be an attractive pattern in some studies with diverse

relationships among errors. Examples of common possible candidates of covariance structures

for parameterising in mixed models, which are defined by the structure of matrix R, include

the following:

• Variance Components (VC) Covariance Structure: also known as Independent

or Simple Covariance Structure. This structure has equal or constant variances on the

main diagonal and zero covariance (independent residuals) on the off-diagonals. This

is the classic covariance structure for the standard fixed-effects ANOVA model but not

appropriate for repeated measures. Thus, the VC covariance matrix is given by

V =


σ2

ϵ 0 · · · 0
0 σ2

ϵ · · · 0
... ... . . . ...
0 0 · · · σ2

ϵ

 .
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This is a parameterised covariance structure, with only one parameter, σ2
ϵ . However, for

variables that are completely independent of each other and measured on different scales,

the ideal VC covariance matrix will assume the pattern

V =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
... ... . . . ...
0 0 · · · σ2

N

 .

• First-Order Autoregressive AR(1) Covariance Structure: is appropriate when a

correlation between any two adjacent observations is assumed. This is typical for a

classic repeated measures model or time series analysis centred on the idea that the

current observation depends on its previous value (i.e., a first-order autoregressive model).

Assume that the correlation between any two adjacent is ρ for −1 ≤ ρ ≤ 1, and the

correlation between any two observations separated by n − 1 other observations be ρn.

Then, the AR(1) covariance matrix is expressed as

V = σ2



1 ρ ρ2 · · · ρk−1

ρ 1 ρ · · · ρk−2

ρ2 ρ 1 · · · ...
... ... ... . . . ρ

ρk−1 ρk−2 · · · ρ 1

 ,

where k is the number of repeated measurements per experimental subject or unit. The

covariance structure has two parameters, σ2 and ρ. An important feature of this type

of covariance structure is that, as the distance between two observations increases, their

correlation decreases while the variances remain constant in the main diagonal.

• Heterogeneous First-order Autoregressive ARH(1) Covariance Structure: which

allows the variances to differ in the main diagonal, thereby attracting more parameters.

The variance-covariance matrix of ARH(1) is expressed as

V =



σ2
1 σ1σ2ρ σ1σ3ρ

2 · · · σ1σkρ
k−1

σ2σ1ρ σ2
2 σ2σ3ρ · · · σ2σkρ

k−2

σ3σ1ρ
2 σ3σ2ρ σ2

3 · · · ...
... ... ... . . . σk−2σkρ

σkσ1ρ
k−1 σkσ2ρ

k−2 · · · σkσk−2ρ σ2
k

 ,

with k+1 covariance parameters and heterogeneous variances in the main diagonal, where

k is the number of repeated measurements per experimental subject or unit.
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• Heterogeneous Compound Symmetry (CSH) Covariance Structure: a covari-

ance structure which does not require variances to be homogeneous, as does the compound

symmetry (CS) structure. The CSH variance-covariance structure is expressed as

V =



σ2
1 σ1σ2ρ σ1σ3ρ · · · σ1σkρ

σ2σ1ρ σ2
2 σ2σ3ρ · · · σ2σkρ

σ3σ1ρ σ3σ2ρ σ2
3 · · · ...

... ... ... . . . σk−2σkρ
σkσ1ρ σkσ2ρ · · · σkσk−2ρ σ2

k

 ,

with k+1 covariance parameters and heterogeneous variances in the main diagonal, where

k is the number of repeated measurements per experimental subject or unit. The differ-

ence between CS and CSH covariance structures is analogous to the difference between

the AR(1) and ARH(1) covariance structures.

• Unstructured (UN) Covariance Structure: refers to the covariance structure which

places no condition on the covariance structure but allows both the variance and co-

variance terms to be heterogeneous. The UN variance-covariance structure is expressed

as

V =



σ2
1 σ12 σ13 · · · σ1k

σ21 σ2
2 σ23 · · · σ2k

σ31 σ32 σ2
3 · · · σ3k

... ... ... . . . ...
σk1 σk2 σk3 · · · σ2

k

 ,

The UN covariance structure requires fitting k(k+1)
2 variance-covariance parameters.

• Toeplitz (TOEP) Covariance Structure: is analogous to the AR(1), although the two

do not necessarily have the same pattern. In the Toeplitz covariance structure, we have

equal correlations and covariances within each off-diagonal band, and different correlations

and covariances among bands; i.e., correlations of the first two adjacent measurements are

homogeneous, the measurements two apart have the same correlation different from the

first, measurements three apart have the same correlation different from the first two, etc.

This pattern technically makes the AR(1) a special case of the Toeplitz. The Toeplitz

variance-covariance structure is expressed as

V =



σ2 σ1 σ2 · · · σk

σ1 σ2 σ1 · · · σk−1
σ2 σ1 σ2 · · · σk−2
... ... ... . . . ...
σk σk−1 · · · σ1 σ2

 ,
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with k covariance parameters and homogeneous variances in the main diagonal, where k

is the number of repeated measurements per experimental subject or unit.

• Heterogeneous Toeplitz (TOEPH) Covariance Structure: is the covariance struc-

ture that has unequal variances in the main diagonal of the matrix, resulting in additional

parameters to be estimated, one for every measurement. The TOEPH variance-covariance

structure is expressed as

V =



σ2
1 σ1 σ2 · · · σk

σ1 σ2
2 σ1 · · · σk−1

σ2 σ1 σ2
3 · · · σk−2

... ... ... . . . ...
σk σk−1 · · · σ1 σ2

k

 ,

with 2k − 1 covariance parameters and heterogeneous variances in the main diagonal, where k

is the number of repeated measurements per experimental subject or unit.

7.5.2.3 Covariance Structure in Repeated-measures Type Model

The term "repeated measures design" usually refers to a completely randomised design with

multiple, or repeated, measurements taken on the same experimental subject or unit, which is

observed sequentially over time (Littell et al., 2006). Measurements from a repeated measures

study are often correlated, especially for two measurements taken closer together than those

taken further apart. Therefore, it is crucial to identify an appropriate covariance structure of

the errors when analysing data from a repeated measures design (Littell et al., 2000). The most

important issue in repeated measures analysis of covariance is to determine an appropriate pa-

rameterisation for R before estimating the resulting parameters.

Analogous to the split-plot design, where whole plots have a completely randomised design

with a repeated measures structure to the subplots, the repeated measures variance-covariance

structure is obtained assuming compound symmetry. The covariance matrix within a subject

of a repeated measures model with compound symmetry expressed as,

V = σ2



1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ

ρ ρ 1 · · · ...
... ... ... . . . ρ
ρ ρ · · · ρ 1

 ,
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However, it is not always the case that the simple compound symmetry assumption holds

when modelling the covariance structure in the split-plot and repeated measures data. In the

event that the compound symmetry assumption is not satisfied, other approaches in the mixed

model, that do not require such structure must be explored. The development of mixed models

software such as lme4 package in R (Bates et al., 2014) and SAS PROCMIXED procedure

(Littell et al., 2006) has seen an increase the use of mixed models.

7.5.3 Selecting an Appropriate Covariance Structure

The mixed model (7.9) is generally used to analyse mixed experimental data in various contexts

when u and ϵ are assumed to have N(0,G) and N(0,R), respectively. When using the SAS

PROCMIXED procedure, the two variance-covariance components (G and R) are specified

by the RANDOM and REPEATED statements, respectively. The ”TY PE = ” option used

in conjunction with the REPEATED statement in the SAS PROCMIXED system gives

options to select the desired covariance structure for repeated measures. There are various

ways of identifying the appropriate covariance structure amongst a set of candidate structures

(SAS Institute Inc., 1999). However, the most famous approach is to select the structure that

gives the smallest Akaike’s Information Criterion (AIC) (Akaike, 1974). AIC is a statistic that

is defined by the model and the maximum likelihood estimates of the parameters from the

specified variance-covariance as

AIC = (−2)L(β̂V̂) + 2(p), (7.17)

where p is an effective number of independently adjusted parameters in the covariance matrix ,

and L(β̂V̂) = log(ML) is the value of the likelihood function evaluated at (β̂V̂). A better model

is the one with the smallest AIC value. Different forms of the matrix R can be compared for

adequacy using the likelihood ratio test statistic (Milliken and Johnson, 1984). The hypotheses

involved are H0 : R1 is as adequate as R2 against H1 : R1 is not as adequate as R2, where R1 is

a special case of R2. Suppose R1 and R2 have p1 and p2 parameters, respectively, with p1 < p2.

The test statistic is Q = (−2)L[(β̂1V̂1) − L(β̂2V̂2)], which is distributed as χ2(p2 − p1). We

reject H0 when Q ≥ χ2
α
2
(p2 − p1).
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7.6 Conclusion

When applying the new approach of partitioning experimental data based on the factor levels

and the desired inference space, we may encounter different relationships among errors in each

of the partitioned data subsets, which subsequently implies certain structures of the variance-

covariance matrices. The classic approach linear mixed model analysis approach is traditionally

centred around the assumption that the error terms are pairwise uncorrelated with zero means

and variance σ2, a necessary assumption for point estimation, which leads to the normal dis-

tribution assumption, ϵ ∼ N(0, σ2
ϵ IN), for the purposes of hypothesis testing and confidence

interval estimation. However, it is critical to choose an appropriate covariance structure that

best suits the particular relationships among errors in the data observations. Therefore, it

is always important to understand the covariance structure of the dataset first before blindly

assuming the classical structure. This can be achieved by fitting a possible covariance struc-

ture, starting with the unstructured, and examining the pattern to have a brief idea about its

suitability before trying other possible candidate structures. Proper hypothesis tests for select-

ing the most appropriate covariance structure were discussed by Milliken and Johnson (1984).

Ideally, an adequate covariance structure is the one with the least number of parameters, which

eventually provides a larger number of degrees of freedom for the tests and estimates. The

mixed model approach, in particular the SAS PROCMIXED procedure, has the ability to

accommodate different kinds of variance-covariance structures as well and take care of missing

data and unequal time spacing.
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CHAPTER 8

CONCLUSIONS,
RECOMMENDATIONS AND

FUTURE WORKS

8.1 Introduction

The recent advancements in technology has brought the need to evaluate the newly invented

methods and contrast them against the old and existing ones to evaluate their worthiness. The

evaluation and comparison processes are conveniently handled in the mixed model methodology

framework. The proposed linear mixed model would regard the new methods as fixed, while

the old and existing methods are considered random. Implicit to the mixed model analysis is

the scope of inference (broad, narrow or intermediate inference space), which forms an integral

part of statistical data analysis. Targeting the wrong inference space leads to biased point esti-

mates, interval estimates, and ultimately misleading hypothesis test conclusions for the entire

population represented by the random factors. Depending on the context and objectives of the

experiment, predictable functions can be manipulated to cater for population-wide or broad

inference scope on the treatment effects (Littell et al. 2006). In addition, the partitioning

approach allows for the alternative variance-covariance structures other than the homogeneous

error variance structure, which is a default assumption in traditional linear mixed model ap-

proaches.
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8.2 Conclusion

Situations where new strategies or interventions are needed either to complement or replace

the old and existing methods are increasing in agricultural, industrial and engineering fields.

The studies in such cases are conveniently handled when these factors are conceptualised as

each having both fixed (new) and random (old) levels. The use of the traditional notion of

factors as fully fixed or random may not yield sufficient analysis results that capture all the

variations present in the research data. The current study proposes an analysis approach that

allows for a specific comparison of certain fixed levels and assessment of variability (random

levels) within the same factor. Depending on the number of factors, factor levels and the se-

lected design of the experiment, this arrangement poses some complexities in determining the

possible partitions of the data, model construction, parameter-estimation and variance estima-

tion processes, hypothesis testing, combined analysis, and controlling for experimental error.

These processes are tackled in different ways depending on the selected design of the experiment.

The approach was extended to complex cases where three factors, each having both fixed and

random levels, are arranged in a completely randomised design (CRD). These scenarios are

commonly encountered by agricultural and industrial analysts, who might be interested in

measuring some of the factors with a higher precision than the others. Appropriate classifica-

tion and partitioning of factors based on the targeted factor levels results in partitioned linear

mixed models, whose design matrices are either full-rank or less-than-full-rank form. Attempts

to apply this approach leaves the partitioned data subsets vulnerable to outlier contamination,

which might subsequently compromise the level of accuracy and precision of the selected par-

titioned models. This study proposes the use of robust estimation methods that require the

use of linear mixed models with considerably little outlier contamination. The conclusion was

that the fusion of the partitioning approach and the use of robust estimation methods led to

improved precision in the model estimates.

In multi-stratum experimental designs, where factors are randomised at each level in order to

assess the model precision at different levels of the experiment, a need to conceptualise each fac-
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tor as having both fixed and random levels might be necessary. An example is a split-split-plot

treatment structure, where all the three factors would be laid in a randomised complete block

design (RCBD). The current study demonstrated how the partitioning approach could be used

to construct a linear mixed model, estimate the model parameters, test hypotheses and assess

the model adequacy in this scenario. The particularised analysis proposed by the new approach

provides room for researchers to manipulate the appropriate factor combinations in order to

allow for narrow, intermediate and broad inferential space on the levels of each of the factors

as well as their associated interactions. The study established that researchers need to consider

the choice of inference space as it directly impacts the magnitude of standard errors of estimates.

The fundamental consideration in the estimation process of linear models is the special case in

which elements of the error vector are assumed equal and uncorrelated, which is not always ap-

propriate for real-life data. The proposed analysis approach could accommodate heteroscedastic

error terms in repeated measures data when factors were conceptualised as having both fixed

and random levels. In such cases, the estimation of partitioned linear mixed model parameters

considers assumptions other than the identity case on the structure of the variance-covariance

matrix of the error vector. Accessing the options for other covariance structures that are ap-

propriate for correlated error variances and computing the sums of squares and F-ratios via

the usual maximum likelihood method was a hurdle since most of the available statistical soft-

ware do not have such options. The current study proposes that partitioned analyses can be

obtained, which will then be syncretised to a combined analysis.

An extension of the proposed analysis approach to a general linear mixed model with p-factors

is possible, which disintegrates to 2p partitioned models. The current study proposed some

useful procedures for constructing covariance matrices, sums of squares and variance compo-

nents which are needed when fitting a linear mixed model from either balanced or unbalanced

data involving factors that consist of both fixed and random levels. The approach is rec-

ommended for complex real-life factorial experiments which require consideration of different

inference spaces and various covariance structures when constructing partitioned linear mixed

models when factors involved consist of both fixed and random levels. Of importance is the
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need to select the most appropriate covariance structure before estimating model parameters

and drawing inferences. We believe that the partitioning approach can be extended to other

experimental designs and data analyses that conform to the principles of linear mixed model

methodology.

8.3 Recommendations

Based on the illustrations discussed in different experimental designs and structures, we, there-

fore, recommend that researchers:

• apply the partitioned analysis approach in modelling experiments with large datasets

where factors need to be conceptualised as having both fixed and random levels,

• consider and explore alternative error covariance structures, especially where the tradi-

tional equal error variance is not practically reasonable,

• use the SAS PROC MIXED and PROC GLIMMIX procedures, which provide various

options for the covariance structure for the partitioned and combined analysis of linear

mixed models through the likelihood-based estimation scheme,

• use the partitioning approach coupled with appropriate robust estimation methods when

experimental data is subject to minimal outlier contamination.

8.4 Limitations and Weaknesses of the Study

In this study, we considered only the general linear model methodology for quantifying the

effects of predictor variables on a single response variable when data is normally distributed.

Most classical statistical analysis techniques for univariate data analysis usually rely on nor-

mally distributed data. Some cases exist, when non-normal (binary, multinomial or count

response) data is involved. Faced with such cases, researchers often resort to robust estimation

techniques and other statistical approaches that shoehorn their data into classical statistical

frameworks to satisfy the general linear model assumptions. However, it is not always guaran-

teed that the use of these approaches will achieve normality.
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Secondly, the current study was limited to the scenario when the associations between the re-

sponse and the predictors are assumed to remain constant at different levels. Although some

efforts were made to use other estimation methods other than the ordinary least squares (OLS)

method in Chapter 6 to address the issue of heterogeneous error variance-covariance matrices,

the interest remained in measuring the differences in outcome variables between populations at

the mean. Often, researchers may be interested in group differences across the distribution of a

given response variable rather than only at the mean, leading to quantile regression methods.

The third limitation is that we considered experiments with a considerably fewer number of

factors for illustration purposes. There are high-dimensional environments which naturally cre-

ate possible complex interactions and unexpected heterogeneity (Chen et al., 2015). Inferences

in such scenarios often pose challenges that common approaches may not be able to handle.

Lastly, the study focused on repeated-measures designs under a limited scope of variance-

covariance structures that fall into a category of diagonal covariance structures. There is room

to explore the application of the partitioning approach to other designs of experiments that

incorporate more complex and non-diagonal covariance structures.

8.5 Future Areas of Research

We close with a list of possible research areas we intend to explore in the future. As indicated

earlier, the partitioned approach is appropriate for investigating and comparing the new meth-

ods and strategies against the old and existing ones in various research settings. Therefore, we

propose the extension of the proposed analysis approach to the following research areas:

• Linear mixed models have been used routinely to model scenarios involving both fixed

and random effects. All the scenarios we considered in our study involve the general linear

model methodology, which assumes that the associations between the response and the

predictors remain constant at different levels (common regression slope assumption). The

possibility of using the partitioned analysis approach to experiments involving non-linear

mixed models needs to be explored. This may include, but not limited to, generalised lin-

ear models (GLMs) and quantile regression, which allow for different associations between
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the response and the predictors.

• Central to linear mixed model inference is the estimation of fixed effects and variance

components (Ferreira et al., 2020). The least squares method is the most popular method

used for estimating model parameters. The commonly used methods for the estimation

of variance components in linear mixed models, such as the maximum likelihood (ML),

restricted maximum likelihood (REML) (Harville, 1977), and Bayesian methods (Box and

Tiao, 1992; Agresti, 2015), work effectively well in orthogonal linear mixed models (when

the normality assumption is assumed) and balanced data. However, when the normality

assumption is not considered, nonorthogonal mixed models are involved, and inference

becomes challenging. We, therefore, pose an open problem of exploring the possibility of

applying the partitioning approach to orthogonal linear mixed models.

• There are situations when the number of fixed effects in a study is large (high-dimensional

case), and the number of fixed effects diverges as the sample size goes to infinity (Chen

et al., 2015). High-dimensional data often require the existing linear mixed model tests

to be modified in order to handle the problem with a sparse model structure. Most

classical approaches used to test fixed effects linear mixed models (Kenward and Roger,

1997; Wang and Dai, 2014) are robust in small datasets, but they tend to break down in

high-dimensional data (Bradic et al., 2020). We pose an open problem for future research

that can be investigated using the partitioning approach.

• We pose an open research problem on the application of the partitioning approach to

other designs of experiments that incorporate more complex and non-diagonal covariance

structures.
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APPENDICES

Appendix A: Alternative Approach for Estimating β̂ and û

An easier alternative approach for obtaining the estimates β̂ and û involves assuming u as fixed

in (2.3) and apply the least squares method to solve for β and u.

y = Xβ + Zu + ϵ

ŷ = Xβ + Zu

ϵ′ϵ = (y − ŷ)T (y − ŷ)

ϵ′ϵ = (y − Xβ − Zu)T (y − Xβ − Zu)

= yT y − yT Xβ − yT Zu − (Xβ)T y + (Xβ)T (Xβ)

+ (Xβ)T Zu − (Zu)T y + (Zu)T Xβ + (Zu)T (Zu)
∂

∂β
(ϵ′ϵ) = −2yT X + 2XT Xβ + 2XT Zu = 0

=⇒ XT Xβ + XT Zu = XT y

∂

∂u
(ϵ′ϵ) = −2yT Z + 2(Xβ)T Z + 2ZT Zu = 0

=⇒ ZT Xβ + ZT Zu = ZT y

Adding G−1 to the lower sub-matrix of coefficients results in the following simultaneous equa-

tions (Henderson, 1953):[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

] [
β∗

u∗

]
=
[

XT R−1y
ZT R−1y

]
(8.1)

We need to show that the BLUE (β̂) and BLUP (û) in (2.4) and (2.6) are equal to β∗ and u∗

in (8.1), respectively. To prove that β̂ = β̂∗ in (2.4) and (8.1), we solve for u∗ in the second

equation of (8.1) and substitute it into the first one.

ZT R−1Xβ∗ + (ZT R−1Z + G−1)u∗ = ZT R−1y

(ZT R−1Z + G−1)u∗ = ZT R−1y − ZT R−1Xβ∗

=⇒ u∗ = (ZT R−1Z + G−1)−1ZT R−1(y − Xβ∗)
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XT R−1Xβ∗ + XT R−1Zu∗ = XT R−1y

=⇒ XT R−1Xβ∗ + XT R−1Z(ZT R−1Z + G−1)−1ZT R−1(y − Xβ∗) = XT R−1y

=⇒ XT R−1Xβ∗ − XT R−1Z(ZT R−1Z + G−1)−1ZT R−1Xβ∗

= XT R−1y − XT R−1Z(ZT R−1Z + G−1)−1ZT R−1y

=⇒ [XT R−1X − XT R−1Z(ZT R−1Z + G−1)−1ZT R−1]Xβ∗

= [XT R−1 − XT R−1Z(ZT R−1Z + G−1)−1ZT R−1]y

=⇒ XT [R−1X − R−1Z(ZT R−1Z + G−1)−1ZT R−1]Xβ∗

= XT [R−1 − R−1Z(ZT R−1Z + G−1)−1ZT R−1]y

=⇒ XT QXβ∗ = XT Qy

where Q = R−1 − R−1Z(ZT R−1Z + G−1)−1ZT R−1. If we let Q = V−1, then β̂ = β̂∗.

We need to complete the proof by showing that VQ = I.

VQ = (ZGZT + R)[R−1 − R−1Z(ZT R−1Z + G−1)−1ZT R−1]

= ZGZT R−1 − ZGZT R−1Z(ZT R−1Z + G−1)−1ZT R−1 + I − Z(ZT R−1Z + G−1)−1ZT R−1

= I + ZGZT R−1 − Z(ZT R−1Z + G−1)−1ZT R−1(ZGZT R−1 + I)

= I + ZGZT R−1 − ZG(ZT R−1Z + G−1)−1(ZT R−1Z + G−1)ZT R−1

= I + ZGZT R−1 − ZGZT R−1

= I

Similarly, to prove that û = u∗ in (2.6) and (8.1), we introduce I = VV−1, where V =
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ZGZT + R, and GZ−1GZ = I in the expression of u∗.

u∗ = (ZT R−1Z + G−1)−1ZT R−1(y − Xβ∗)

= (ZT R−1Z + G−1)−1ZT R−1VV−1(y − Xβ∗)

= (ZT R−1Z + G−1)−1ZT R−1(ZGZT + R)V−1(y − Xβ∗)

= (ZT R−1Z + G−1)−1(ZT R−1ZGZT + ZT )V−1(y − Xβ∗)

= (ZT R−1Z + G−1)−1(ZT R−1Z + G−1)GZT V−1(y − Xβ∗)

= GZT V−1(y − Xβ∗)

= û
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Appendix B: R Simulation Code for an FRF Model in CRD

library(purrr)

library(broom)

library(broom.mixed)

library(dplyr)

library(ggplot2)

library(lmerTest)

library(tidyverse)

library(haven)

wealthFRR <- read_sav("FRR.sav")

head(wealthFRR)

wealthFRR$soilmgt <- as.factor(wealthFRR$soilmgt)

wealthFRR$loccow <- as.factor(wealthFRR$loccow)

wealthFRR$farmsize <- as.factor(wealthFRR$farmsize)

model4FRR<-lmer(wealth ∼ farmsize+(1|soilmgt)+(1|loccow)+(1|farmsize:soilmgt)+

(1|farmsize:loccow)+(1|soilmgt:loccow)+(1|farmsize:soilmgt:loccow),

data=wealthFRR, REML = TRUE)

summary(model4FRR)

farmsize<-wealthFRR$farmsize

soilmgt<-wealthFRR$soilmgt

loccow<-wealthFRR$loccow

set.seed(874)

nfarmsize=3

nsoilmgt=6

nloccow=4

e0=2.00946

e11=0.02723

e12=0.71104

sdsoil=0.2659
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sdloc=0.1989

sd=1.082

(soilmgteff=rnorm(nsoilmgt, 0, sdsoil))

( w = rep(soilmgteff, times=c(207,77,121,72, 74,69)) )

( x = rep(soilmgteff, times=c(88,76,76,74,75,75)) )

( y = rep(soilmgteff, times=c(93,79,75,73,68,78)) )

( z = rep(soilmgteff, times=c(75,76,72,72,76,72)) )

( epssoil = c(w,x,y,z))

(loccoweff=rnorm(nloccow, 0, sdloc))

( epsloc = rep(loccoweff, c(620,464,466,443)) )

(epsilon4=rnorm(n = 1993, mean = 0, sd = 1.082))

( simresp4FRR = e0 + e11*(farmsize == "B")+ e12*(farmsize == "F")+epssoil+ epsloc+epsilon4)

dat4=data.frame(farmsize,soilmgt,loccow,simresp4FRR)

dat4

testmod4=lmer(simresp4FRR ∼ farmsize+(1|soilmgt)+(1|loccow)+(1|farmsize:soilmgt)+

(1|farmsize:loccow)+(1|soilmgt:loccow)+(1|farmsize:soilmgt:loccow),

data=dat4, REML = TRUE)

summary(testmod4)

wealthfun4 = function(nfarmsize=3,nsoilmgt=6,nloccow=4, e0=2.00946,e11=0.02723,e12=0.71104,

sdsoil=0.2659,sdloc=0.1989,

sd=1.082) {

soilmgteff=rnorm(nsoilmgt, 0, sdsoil)

w = rep(soilmgteff, times=c(207,77,121,72,74,69))

x = rep(soilmgteff, times=c(88,76,76,74,75,75))

y = rep(soilmgteff, times=c(93,79,75,73,68,78))

z = rep(soilmgteff, times=c(75,76,72,72,76,72))

epssoil = c(w,x,y,z)

loccoweff=rnorm(nloccow, 0, sdloc)

epsloc = rep(loccoweff, c(620,464,466,443))
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epsilon4=rnorm(n = 1993, mean = 0, sd = 1.082)

simresp4FRR = e0 + e11*(farmsize == "B")+ e12*(farmsize == "F")+epssoil+ epsloc+epsilon4

dat4=data.frame(farmsize,soilmgt,loccow,simresp4FRR)

testmod4=lmer(simresp4FRR∼farmsize+(1|soilmgt)+(1|loccow)+(1|farmsize:soilmgt)+

(1|farmsize:loccow)+(1|soilmgt:loccow)+(1|farmsize:soilmgt:loccow),

data=dat4, REML = TRUE)

testmod4

}

set.seed(874)

wealthfun4()

sims = replicate(10000, wealthfun4(), simplify = FALSE )

sims[[10000]]

library(broom.mixed)

tidy(testmod4)

summary(testmod4)

sims % > %

map_df(tidy) % > %

filter(term=="farmsizeB" ) % > %

ggplot( aes(x = estimate) ) +

geom_density(fill = "green", alpha = .5) +

geom_vline( xintercept =-0.006558)

sims % > %

map_df(tidy) % > %

filter(term=="farmsizeF" ) % > %

ggplot( aes(x = estimate) ) +

geom_density(fill = "green", alpha = .5) +

geom_vline( xintercept = 0.731674)

sims % > %
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map_dbl( summary(.x)$sigma) % > %

data.frame(sigma = .) % > %

ggplot( aes(x = sigma) ) +

geom_density(fill = "blue", alpha = .5) +

geom_vline(xintercept = 1.09660)

sims % > %

map_dbl(∼summary(.x)$sigma) % > %

. < 1.09660 % > %

mean()

sims % > %

map_df(tidy) % > %

filter(term == "farmsizeF") % > %

pull(p.value) % > %

. < 0.05 % > %

mean()

sims % > %

map_df(tidy) % > %

filter(term == "farmsizeB") % > %

pull(p.value) % > %

. < 0.05 % > %

mean()

suppressPackageStartupMessages(library(dplyr) )

library(ggplot2)

soilmgt_sims = c(5, 20, 30) % > %

set_names() % > %

map(∼replicate(1000, wealthfun4(nsoilmgt= 6) ) )

soilmgt_vars = soilmgt_sims % > %

modify_depth(2, ∼tidy(.x, effects = "ran_pars", scales = "vcov") ) % > %

map_dfr(bind_rows, .id = "soilmgt_num") %>%
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filter(group == "soilmgt")

head(soilmgt_vars)

ggplot(soilmgt_vars, aes(x = estimate) ) +

geom_density(fill = "blue", alpha = .25) +

facet_wrap(∼soilmgt_num) +

geom_vline(xintercept = 0.01507)

soilmgt_vars = mutate(soilmgt_vars, soilmgt_num = forcats::fct_inorder(soilmgt_num) )

add_prefix = function(string) {

paste("Number soilmgt:", string, sep = " ")

}

groupmed = soilmgt_vars % > %

group_by(soilmgt_num) % > %

summarise(mvar = median(estimate) )

ggplot(soilmgt_vars, aes(x = estimate) ) +

geom_density(fill = "blue", alpha = .25) +

facet_wrap(∼soilmgt_num, labeller = as_labeller(add_prefix) ) +

geom_vline(aes(xintercept = 0.01507, linetype = "True variance"), size = .5 ) +

geom_vline(data = groupmed, aes(xintercept = mvar, linetype = "Median variance"), size =

.5) +

theme_bw(base_size = 14) +

scale_linetype_manual(name = "", values = c(2, 1) ) +

theme(legend.position = "bottom",

legend.key.width = unit(.1, "cm") ) +

labs(x = "Estimated Variance", y = NULL)

soilmgt_vars % > %

group_by(soilmgt_num) % > %

summarise_at("estimate",

list(min = min, mean = mean, med = median, max = max) )
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loccow_sims = c(5, 20, 30) % > %

set_names() % > %

map(∼replicate(1000, wealthfun4(nloccow= 4) ) )

loccow_vars = loccow_sims % > %

modify_depth(2, ∼tidy(.x, effects = "ran_pars", scales = "vcov") ) % > %

map_dfr(bind_rows, .id = "loccow_num") % > %

filter(group == "loccow")

head(loccow_vars)

ggplot(loccow_vars, aes(x = estimate) ) +

geom_density(fill = "blue", alpha = .25) +

facet_wrap(∼loccow_num) +

geom_vline(xintercept = 0.00918)

loccow_vars = mutate(loccow_vars, loccow_num = forcats::fct_inorder(loccow_num) )

add_prefix = function(string) {

paste("Number loccow:", string, sep = " ")

}

groupmed = loccow_vars % > %

group_by(loccow_num) % > %

summarise(mvar = median(estimate) )

ggplot(loccow_vars, aes(x = estimate) ) +

geom_density(fill = "blue", alpha = .25) +

facet_wrap(∼loccow_num, labeller = as_labeller(add_prefix) ) +

geom_vline(aes(xintercept = 0.00918, linetype = "True variance"), size = .5 ) +

geom_vline(data = groupmed, aes(xintercept = mvar, linetype = "Median variance"),

size = .5) +

theme_bw(base_size = 14) +

scale_linetype_manual(name = "", values = c(2, 1) ) +

theme(legend.position = "bottom",

legend.key.width = unit(.1, "cm") ) +

217



labs(x = "Estimated Variance", y = NULL)

loccow_vars % > %

group_by(loccow_num) % > %

summarise_at("estimate",

list(min = min, mean = mean, med = median, max = max) )
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Appendix C: SAS Code for Split-split Plot FFR model

FILENAME REFFILE ’/folders/myfolders/PhDThesis/Grain− Y ield.sim2FFR.sav’;

PROC IMPORT DATAFILE=REFFILE

DBMS=SAV

OUT=WORK.Grain− Y ield.sim2FFR;

RUN;

proc MIXED data=Grain− Y ield.sim2FFR;

class Replication Nitrogen Management Variety;

model Yield= Nitrogen Management Management*Nitrogen;

random Replication Variety Variety*Nitrogen Variety*Management Nitrogen*Management*Variety

Replication*Nitrogen Replication*Nitrogen*Management;

lsmeans Nitrogen Management Management*Nitrogen;

estimate ’BLUE - Nitrogen N3 "broad"’ intercept 1 Nitrogen 1 0;

estimate ’BLUE - Nitrogen N5 "broad"’ intercept 1 Nitrogen 0 1;

estimate ’BLUE - Nitrogen diff "broad"’ Nitrogen 1 -1;

estimate ’Nitrogen N3 BLUP "narrow"’ intercept 2 Nitrogen 2 0 | Replication 1 1 1 Variety 1

1 Nitrogen*Variety 1 1 0 0 /divisor=2;

estimate ’Nitrogen N5 BLUP "narrow"’ intercept 2 Nitrogen 0 2 | Replication 1 1 1 Variety 1

1 Nitrogen*Variety 0 0 1 1 /divisor=2;

estimate ’BLUE - Nitrogen diff "narrow"’ Nitrogen 2 -2 | Nitrogen*Variety 1 1 -1 -1 /divisor=2;

estimate ’Nitrogen N3 BLUP "interm"’ intercept 2 Nitrogen 2 0 | Replication 1 1 1 Variety 1 1

/divisor=2;

estimate ’Nitrogen N5 BLUP "interm"’ intercept 2 Nitrogen 0 2 | Replication 1 1 1 Variety 1 1

/divisor=2;

estimate ’BLUE - Nitrogen diff "interm"’ Nitrogen 2 -2 /divisor=2;

219



estimate ’BLUE - Management M3 "broad"’ intercept 2 Management 2 0 /divisor=2;

estimate ’BLUE - Management M4 "broad"’ intercept 2 Management 0 2 /divisor=2;

estimate ’BLUE - Management diff "broad"’ Management 2 -2 /divisor=2;

estimate ’BLUP - Management M3 "interm"’ intercept 2 Management 2 0 | Replication 1 1 1

Variety 1 1 /divisor=2;

estimate ’BLUP - Management M4 "interm"’ intercept 2 Management 2 0 | Replication 1 1 1

Variety 1 1 /divisor=2;

estimate ’BLUP - Management diff "interm"’ Management 2 -2 /divisor=2;

estimate ’BLUE - Management M3 "narrow"’ intercept 2 Management 2 0 | Replication 1 1 1

Variety 1 1 Management*Variety 1 1 0 0 /divisor=2;

estimate ’BLUE - Management M4 "narrow"’ intercept 2 Management 0 2 | Replication 1 1 1

Variety 1 1 Management*Variety 0 0 1 1 /divisor=2;

estimate ’BLUE - Management diff "narrow"’ Management 2 -2 | Management*Variety 1 1 -1

-1 /divisor=2;

estimate ’BLUP - Variety V1 "broad"’ intercept 2 | Variety 2 0 /divisor=2;

estimate ’BLUP - Variety V3 "broad"’ intercept 2 | Variety 0 2 /divisor=2;

estimate ’BLUP - Variety diff "broad"’ intercept 0 | Variety 2 -2 /divisor=2;

estimate ’BLUP - Variety V1 "narrow"’ intercept 1 Nitrogen 1 0 Management 1 0

Nitrogen*Management 1 0 0 0 | Replication 1 1 1 Variety 1 0 Nitrogen*Variety 1 0 0 0 Man-

agement*Variety 1 0 0 0 Nitrogen*Management*Variety 1 0 0 0 0 0 0 0;

estimate ’BLUP - Variety V3 "narrow"’ intercept 1 Nitrogen 0 1 Management 0 1

Nitrogen*Management 0 0 0 1 | Replication 1 1 1 Variety 0 1 Nitrogen*Variety 0 0 0 1 Man-

agement*Variety 0 0 0 1

Nitrogen*Management*Variety 0 0 0 0 0 0 0 1;

estimate ’BLUP-Variety diff "narrow"’ Nitrogen 1 -1 Management 1 -1
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Nitrogen*Management 1 0 0 -1| Variety 1 -1 Nitrogen*Variety 1 0 0 -1

Management*Variety 1 0 0 -1 Nitrogen*Management*Variety 1 0 0 0 0 0 0 -1;

run;
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Appendix D: SAS Code for Repeated-Measures

/* Data Scrapping and Fitting FFR Model in Proc Mixed */

FILENAME REFFILE ’/home/u35581214/LDH Leakage Data.sav’;

PROC IMPORT DATAFILE=REFFILE

DBMS=SAV

OUT=LDH;

run;

/* View Repeated Measures Data in Multivariate Form */

Proc print data=LDH;

run;

/* Set Repeated Measures Data to Univariate form */

Data LDH-mult(keep=CCI4 CHCI3 Flask Time4 Time5 Time6)

LDH-univ(keep=CCI4 CHCI3 Flask Time Leakage);

set LDH;

output LDH-mult;

Leakage=Time4;Time=1; output LDH-univ;

Leakage=Time5;Time=2; output LDH-univ;

Leakage=Time6;Time=3; output LDH-univ;

run;

/* View Data in Univariate and Multivariate Form */

Proc print data=LDH-univ;

run;

Proc print data = LDH-mult;

run;

/* Subset or partition FRF from LHD univariate original Data */
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Data FRF;

set LDH-univ ;

if (CCI4 =2.5 AND CHCI3 =0) then output ;

if (CCI4 =2.5 AND CHCI3 =0) then output ;

if (CCI4 =2.5 AND CHCI3 =0) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =5 AND CHCI3 =0) then output ;

if (CCI4 =5 AND CHCI3 =0) then output ;

if (CCI4 =5 AND CHCI3 =0) then output ;

if (CCI4 =5 AND CHCI3 =5) then output ;

if (CCI4 =5 AND CHCI3 =5) then output ;

if (CCI4 =5 AND CHCI3 =5) then output ;

run;

Proc print data=FRF;

run;

/* Plot differences in Leakages contributed by predictors*/

proc means noprint data=FRF nway;

var Leakage;

class CCI4 CHCI3 Flask Time;

output out=avgFRF mean=avgLeakage;

run;

proc print data=avgFRF;

run;

/* new data set called avg created*/

/* Plot differences in Leakage by predictor CHCI3 and Time */

Proc gplot data=avgFRF;

plot avgLeakage*Time=CHCI3 / haxis=0 to 8 by 1 hminor=0 vminor=0;
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symbol1 v=star c=blue i=join l=1;

symbol2 v=plus c=red i=join l=2;

title "Percentage leakage per time per CHCI3";

run; Quit;

/* Partitioning FRF multivariate data for covariance analysis */

Data FRF-mult;

set LDH-mult ;

if (CCI4 =2.5 AND CHCI3 =0 ) then output ;

if (CCI4 =2.5 AND CHCI3 =0) then output ;

if (CCI4 =2.5 AND CHCI3 =0) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =2.5 AND CHCI3 =5) then output ;

if (CCI4 =5 AND CHCI3 =0 ) then output ;

if (CCI4 =5 AND CHCI3 =0 ) then output ;

if (CCI4 =5 AND CHCI3 =0 ) then output ;

if (CCI4 =5 AND CHCI3 =5 ) then output ;

if (CCI4 =5 AND CHCI3 =5 ) then output ;

if (CCI4 =5 AND CHCI3 =5 ) then output ;

run;

Proc print data=FRF-mult;

run;

/* Sphericity test H0: Sphericity holds */

proc glm data=FRF-mult;

class CCI4 CHCI3 ;

model Time4 Time5 Time6 =CCI4 CHCI3/ nouni;

repeated Time 3/ printe;

run;
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/* Normality Q-Q plots */

ods graphics on;

proc mixed data=FRF plots=influenceestplot;

class CCI4 CHCI3 Time Flask ;

model Leakage=CCI4 Time CCI4*Time / residual;

random CHCI3 CCI4*CHCI3 CHCI3*Time CCI4*CHCI3*Time;

repeated / subject=Flask(CCI4*CHCI3) type=cs r;

run;

ods graphics off;

/* Checking Covariance Structure */

proc corr data=FRF-mult cov;

var Time4 Time5 Time6;

run;

/* Fitting the model using Proc MIXED Procedure */

proc mixed data=FRF method=reml cl ic covtest;

class CCI4 CHCI3 Time Flask ;

model Leakage=CCI4 Time CCI4*Time /s;

random CHCI3 CCI4*CHCI3 CHCI3*Time CCI4*CHCI3*Time ;

repeated / subject=Flask(CCI4*CHCI3) type=cs r;

run;

proc mixed data=FRF method=reml cl ic covtest;

class CCI4 CHCI3 Time Flask ;

model Leakage=CCI4 Time CCI4*Time ;

random CHCI3 CCI4*CHCI3 CHCI3*Time CCI4*CHCI3*Time /s;

repeated / subject=Flask(CCI4*CHCI3) type=arh(1) r;
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lsmeans CCI4 / pdiff cl adjust=tukey;

run;

proc mixed data=FRF method=reml cl ic covtest;

class CCI4 CHCI3 Time Flask ;

model Leakage=CCI4 Time CCI4*Time ;

random CHCI3 CCI4*CHCI3 CHCI3*Time CCI4*CHCI3*Time /s;

repeated / subject=Flask(CCI4*CHCI3) type=ar(1) r;

lsmeans CCI4 / pdiff cl adjust=tukey;

run;

/* Repeated Measures in Split-plot Design for RFF Model */

Proc mixed data=RFF covtest;

class CCI4 CHCI3 Flask Time;

model Leakage = CHCI3 Time Time*CHCI3 /ddfm=satterthwaite;

random Flask CCI4 CHCI3*CCI4 Time*CCI4 Time*CHCI3*CCI4 Flask(CCI4 CHCI3);

title ’Split-plot Design: RFF’;

run;

/* Scrapping Data for the Combined Model FB */

Data FB-univ;

set LDH-univ ;

if (CHCI3 =10) then output ;

if (CHCI3 =25) then output ;

run;

/* Scrapping Data for the FA x FB Combined Model */

Data FAFB-univ;

set LDH-univ ;

if (CCI4=2.5 and CHCI3 =10) then output ;
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if (CCI4=2.5 and CHCI3 =25) then output ;

if (CCI4=5 and CHCI3 =10) then output ;

if (CCI4=5 and CHCI3 =25) then output ;

run;

Proc print data=FB-univ;

run;

/* Fitting the combined model FB (for narrow inferential scope) */

proc mixed data=FB-univ method=reml cl ic covtest;

class CCI4 CHCI3 Time Flask ;

model Leakage= CCI4 CHCI3 CCI4*CHCI3 Time CCI4*Time CHCI3*Time CCI4*CHCI3*Time

/s;

repeated / subject=Flask(CCI4*CHCI3) type=arh(1) r;

run;

/* Fitting the combined model FB (for broad inferential scope) */

proc mixed data=FB-univ method=reml cl ic covtest;

class CCI4 CHCI3 Time Flask ;

model Leakage= CHCI3 Time CHCI3*Time /s;

random CCI4 CCI4*CHCI3 CCI4*Time CCI4*CHCI3*Time;

repeated / subject=Flask(CCI4*CHCI3) type=ar(1) r;

run;

/***************************************************************************/
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/** GLIMMIX Syntax for Combined Model (FA) **/

data comb;

set LDH-univ;

if CCI4 in (2.5 , 5) then group=’fixed’; else group=’random’;

run;

proc print data=comb;

run;

data combined;

set comb;

if group=’fixed’ then dummy=’1’;else dummy=’0’;

run;

proc print data=combined;

run;

proc glimmix data=combined;

class CCI4 CHCI3 Flask Time group dummy;

model Leakage=group group*CCI4 /ddfm=satterthwaite;

random CHCI3*Time*dummy;

random _residual_/group=group;

random Time /subject=Flask type=arh(1) ;

lsmeans group group*CCI4/pdiff cl alpha=0.025 /* adjustment for 2 tests, at alpha=0.05*/;

run;

/****************************************************************************/
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/** GLIMMIX Syntax for Combined Model (FAxFB) **/

data combAB;

set LDH-univ;

if (CCI4 in (2.5, 5.0) and CHCI3 in (10, 25)) then group=’fixed’;else group=’random’;

run;

proc print data=combAB;

run;

data combinedAB;

set combAB;

if group=’fixed’ then dummy=’1’;else dummy=’0’;

run;

proc print data=combinedAB;

run;

proc glimmix data=combinedAB;

class CCI4 CHCI3 Flask Time group dummy;

model Leakage=group group*CCI4 group*CHCI3 /ddfm=satterthwaite;

random Time*dummy;

random _residual_/group=group;

random Time /subject=Flask type=ar(1) ;

lsmeans group group*CCI4 group*CHCI3/pdiff cl alpha=0.0125 /*adjustment for 4 tests, at

alpha=0.05*/;

run;

/****************************************************************************/
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