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In times of great difficulty, it is our wisdom to keep our spirits calm, quiet, and sedate,

for then we are in the best frame both to do our own work, and to consider the work of

God... - John Wesley (1703 - 1791)



Abstract

We investigate quotient-fine nearness frames, showing that they are reflective in the cate-

gory of strong nearness frames, and that, in those with spatial completion, any near subset

is contained in a near grill. We construct two categories, each of which is shown to be

equivalent to that of quotient-fine nearness frames. We also consider some subcategories of

the category of nearness frames, which are co-hereditary and closed under coproducts. We

give due attention to relations between these subcategories. We introduce totally strong

nearness frames, whose category we show to be closed under completions. We investigate

N-homomorphisms and remote points in the context of totally bounded uniform frames,

showing the role played by these uniform N-homomorphisms in the transfer of remote

points, and their relationship with C∗-quotient maps. A further study on grills enables

us to establish, among other things, that grills are precisely unions of prime filters. We

conclude the thesis by showing that the lattice of all nearnesses on a regular frame is a

pseudo-frame, by which we mean a poset pretty much like a frame except for the possible

absence of the bottom element.
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Chapter 1

Introduction and preliminaries

1.1 A history of nearness in classical and pointfree

topology

The concept of nearness in spaces was first introduced by H. Herrlich [31] in 1974 as

an axiomatization of the concept of nearness between arbitrary collections of sets. Such

a development can be envisaged from the fact that one can obtain topological spaces

via axiomatizing the concept of nearness between a point x and a set A - namely, the

requirement that “x belongs to the closure of A”. By further axiomatizing the concept of

nearness between two sets one obtains proximity spaces. Also, what are dubbed contiguity

spaces arise from an axiomatization of nearness between finite collections of sets. Hence,

in that sense, nearness spaces evolved naturally. For a study guide to nearness spaces we

recommend [48].

Uniform spaces (which are a special type of nearness spaces) were first introduced by

means of entourages by A. Weil [55] in 1937. The approach by means of covers was

introduced by J.W. Tukey [52] in 1940, and well marketed especially in 1964 by J.R.

Isbell, who in [37] states that if entourages and uniform covers are each used where

“most convenient” in the study of uniform spaces “the result is that Tukey’s system of

uniform covers is used nine-tenths of the time”. Quasi-uniform spaces (which, colloquially,

are uniform spaces that lack symmetry) were first defined in terms of entourages by L.
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Nachbin [46] in 1948. A cover-like approach for quasi-uniform spaces was given by T.

Gantner and R. Steinlage [29] in 1972.

The study of topological properties from a lattice-theoretic viewpoint was initiated

by H. Wallman [53] in 1938. The term frame was introduced by C.H. Dowker in 1966

and brought to the fore in the article [21] co-authored with D. Papert. The dual notion

locale was introduced by J.R. Isbell in 1972 in the ground-breaking paper Atomless Parts

Of Spaces [38]. In the words of B. Banaschewski [6], Isbell was able to put “the precise

relationship between frames and spaces into categorical perspective”. Locales have some-

times been regarded as generalized topological spaces, and the terms pointless thinking

and pointfree topology have been used in relation to the categories Loc (of locales) and

Frm (of frames) respectively. Indeed there are those (like B. Banaschewski [6]) who main-

tain that Frm is the context in which the actual constructions of topological concepts

are done, whereas others (like P.T. Johnstone [41]) maintain that frame theory is lattice

theory applied to topology and locale theory is topology itself. For an expository reference

to frames/locales we recommend [39].

The concept of nearness frame was first announced to a group of mathematicians by B.

Banaschewski (based on joint work with A. Pultr) in 1990 in a series of lectures delivered

at the University of Cape Town. These lectures culminated with the 1996 article [16].

1.2 Synopsis of the thesis

Why study nearness frames (or nearness spaces), since it has been shown (see [16, Lemma

1]) that every regular frame admits a nearness? Well, regularity is indeed a much older

and well understood concept. However, nearness was not introduced for the purposes of

studying regularity. An analogy can be drawn from uniform spaces having been introduced

as a generalization of metric spaces and as a topological study of completeness, only to

find that topological spaces arising from uniform spaces are the completely regular ones.

One could then hardly say what is the use as complete regularity is a well understood

property. The study of nearness frames has more to do with tackling properties of covers

of certain frames, which turn out to be the regular ones, than it is about the underlying
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frames.

As the title suggests, this thesis is indeed a contribution to the theory of nearness

frames, through a study of over nine specific types of nearness frames, and numerous

properties pertaining to elements of the underlying frames and morphisms between the

nearness frames, giving due attention to relations between some of the categories con-

cerned. Chapter 1 is essentially an introduction to frames and the structure of a nearness

on a frame. Here we present the relevant definitions pertaining to frames, nearness frames

and uniform frames, and outline the requisite background for the ensuing chapters. Some

of the definitions are highlighted at certain instances in the body of the thesis for purposes

of quick reference, and ensuring smooth-flowing arguments. As for standard references to

the categorical notions used in the thesis, we recommend [42], [34] or the more recent [1]

with an updated version made available online by the authors at http://katmat.math.uni-

bremen.de/acc.

In Chapter 2 we introduce quotient-fine nearness frames as those which are quotients

of fine ones. We characterize them as precisely those nearness frames whose completions

are fine. We show that the subcategory they form is reflective in the category of strong

nearness frames. We also consider briefly quotient-fine nearness frames with spatial com-

pletions; and show that in each such nearness frame, any near subset is contained in a

near grill. We end the chapter by constructing two categories (Ext and Compl) each of

which we show to be equivalent to the category of quotient-fine nearness frames.

In Chapter 3 we consider some subcategories of nearness frames which are co-hereditary

and closed under coproducts (or countable coproducts in one instance) and characterize

quotient-fine nearness frames among these. We introduce totally strong nearness frames,

whose category we show is closed under completions.

In Chapter 4 we investigate, in the context of nearness frames, the notions of N-

homomorphisms and remote points introduced in [27]. Our typical nearness frames in

the chapter are the totally bounded uniform frames. We show how the uniform N-

homomorphisms are related to C∗-quotient maps, and the role they play in the transfer

of remote points.

Chapter 5 consists of a miscellany of unrelated results, commencing with a study on
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grills, initiated in Chapter 2 and establish, among other things, that grills are precisely

unions of prime filters. We conclude the chapter by showing that the lattice of all near-

nesses on a (regular) frame is a pseudo-frame, by which we mean a poset pretty much like

a frame except for the possible absence of the bottom element.

1.3 Frames

In this section we review definitions pertaining to frames which we will need in the sequel.

A frame L is a complete lattice satisfying the infinite distributive law: for any a ∈ L and

any S ⊆ L,

a ∧
∨

S =
∨
{a ∧ s | s ∈ S} .

Thus, one envisages a frame L as having the lattice structure (L,∧,
∨

, 0, 1), where 0 is

the bottom element, and 1 is the top element. A frame homomorphism (or frame map)

between frames L and M is a map h : L −→ M which preserves finite meets and arbitrary

joins. In that case h(0) = 0 and h(1) = 1. We write Frm for the category of frames and

frame homomorphisms. By a subframe P of a frame L, we mean P ⊆ L where P is itself

a frame under the same operations (∧ and
∨

) as in L, with 0, 1 ∈ P .

In our discussions that follow L will always be a frame unless otherwise stated.

A typical example of a frame is a topology OX on a set X. If f : X −→ Y is a contin-

uous map between topological spaces, then f−1 : OY −→ OX is a frame homomorphism.

Clearly, this establishes a contravariant functorial relationship between the category Top

of topological spaces and continuous maps and the category Frm as illustrated below:

Top O // Frm

X

f
��

OX

Y OY

f−1=Of

OO

Corresponding to any frame homomorphism h : L −→ M is a map h∗ : M −→ L,

known as the right adjoint of h, which is not necessarily a frame homomorphism, but
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preserves arbitrary meets, and is defined by

h∗(y) =
∨
{x ∈ L | h(x) ≤ y} .

The following property holds for every x ∈ L and every y ∈ M :

h(x) ≤ y ⇐⇒ x ≤ h∗(y).

A frame homomorphism h : L −→ M is dense if for every a ∈ L, h(a) = 0 implies

a = 0. This holds if and only if h∗(0) = 0. A frame homomorphism h : L −→ M is onto

if and only if hh∗ = idM .

The dual of Frm is the category Loc of locales and locale maps, an act of turning the

arrows around and with far-reaching consequences. For an enlightening discussion on this

note see [41].

We say that a subset S ⊆ L generates L if for every element x ∈ L,

x =
∨
{s ∈ S | s ≤ x}.

We will occasionally be making use of pseudocomplements in our discussion, and here

we give some definitions.

(1) Let a ∈ L. The element
∨
{x ∈ L | a ∧ x = 0} ∈ L is called the pseudocomplement

of a and is denoted by a∗. We note that a ∧ a∗ = 0. However a ∨ a∗ = 1 does not

hold in general.

(2) In the case where a ∨ a∗ = 1, we say a is complemented.

(3) a ∈ L is called dense if a∗ = 0.

(4) For every a ∈ L, a ≤ a∗∗ always holds. If a = a∗∗, then a is called a regular element.

A frame is zero-dimensional if every element is the join of complemented elements

below it. If all the elements of a frame are regular, then the frame is called Boolean.

We call D ⊆ L a downset if x ∈ D and y ≤ x implies y ∈ D, and we call U ⊆ L an

upset if u ∈ U and u ≤ v implies v ∈ U . For any a ∈ L, we write

↓a = {x ∈ L | x ≤ a}, which is a downset,
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and

↑a = {y ∈ L | a ≤ y}, which is an upset.

We note that ↓a is a frame whose bottom is 0 ∈ L and top is a. Similarly, ↑a has 1 ∈ L

as its top and a as its bottom.

We call J ⊆ L an ideal if it satisfies:

i1. 0 ∈ J.

i2. b ∈ J and a ≤ b implies a ∈ J. (i.e. J is a downset).

i3. a, b ∈ J implies a ∨ b ∈ J.

A subset F ⊆ L is called a filter if it satisfies the properties:

f1. 0 6∈ F and 1 ∈ F.

f2. a ∈ F and a ≤ b implies b ∈ F. (i.e. F is an upset).

f3. a, b ∈ F implies a ∧ b ∈ F.

F ⊆ L is called a prime filter if it is a filter and satisfies:

a ∨ b ∈ F implies a ∈ F or b ∈ F.

A filter U ⊆ L is called an ultrafilter if for any filter F ⊆ L, whenever U ⊆ F , then

U = F .

In the following lemma we collect some results concerning filters, where item (iii) is a

characterization of ultrafilters shown in [26].

Lemma 1.3.1 In a given frame L we have the following:

(i) Every ultrafilter is a prime filter.

(ii) Every ultrafilter contains all dense elements in L.

(iii) A filter F ⊆ L is an ultrafilter iff for each a ∈ L, either a ∈ F or a∗ ∈ F .
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An extension of a frame L is a dense onto homomorphism h : M −→ L. By abuse of

language, we say an extension h : M −→ L of L has a property Ω of frames if the frame

M has the property Ω.

A result often used in frame theory is that every frame homomorphism h : L −→ M

has a dense-onto factorization

L

h

;;
ϕ // ↑h∗(0)

h̄ // M ,

where ϕ is the onto homomorphism x 7→ x ∨ h∗(0) and h̄ the dense homomorphism

mapping as h.

The notion of regularity in frames plays a major role in the theory of nearness frames.

First, recall the well inside or rather below relation ≺ on a frame L defined by: y ≺ x iff

there is z ∈ L (called a separating element) such that y ∧ z = 0 and x ∨ z = 1. We say a

frame L is regular if every x ∈ L is expressible as

x =
∨
{y ∈ L | y ≺ x} .

Next, we have the notion of complete regularity, which is defined by means of scales in

a frame. By a scale in a frame L we mean a countable (rational-number) indexed subset

{cq | q ∈ Q ∩ [0, 1]} = (cq)

of L such that whenever p < q, then cp ≺ cq. We define the completely below relation ≺≺

on L by: a≺≺ b if there is a scale (cq) such that a ≤ c0 and c1 ≤ b. We say L is completely

regular if every x ∈ L is expressible as

x =
∨
{y ∈ L | y≺≺x} .

Remark 1.3.2 Following the practice in [5] and [49], in place of (cq), we resort to the

labeling (cnk), where n = 0, 1, . . . and k = 0, 1, . . . , 2n, especially in cases where we need

to invoke the axiom of Countable Dependent Choice (CDC). So a≺≺ b in a frame L in

case there exists a family (cnk) of elements of L such that

c00 = a, c01 = b, cnk = cn+1 2k, cnk ≺ cnk+1
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for all n = 0, 1, . . . and k = 0, 1, . . . , 2n. One says that (cnk) is an interpolating sequence

(relative to the relation ≺) between a and b.

A frame L is normal if for any elements a, b ∈ L, if a ∨ b = 1, then there are elements

c, d ∈ L such that c ∧ d = 0 and a ∨ c = 1 = b ∨ d.

By a cover A of a frame L we mean a subset of L such that
∨

A = 1. We write Cov(L)

for the set of all covers of the frame L. The frame L is compact if for any A ∈ Cov(L),

there is a finite F ⊆ A in Cov(L).

By a compactification of L we mean a dense onto frame homomorphism h : M −→ L

with M being a compact regular frame and L completely regular. It is customary to denote

a compactification by γL −→ L, taking γ to be the compactification homomorphism. The

Stone-Čech compactification of L is normally denoted by βL −→ L (or simply βL).

A cover C in a frame L is said to be locally finite if there exists D ∈ Cov(L) such that

for every y ∈ D, the set

{x ∈ C | x ∧ y 6= 0}

is finite. One says that the cover D finitizes the cover C [51]. L is said to be paracompact

if every cover A ∈ Cov(L) has a locally finite refinement. It should be noted here that

compactness implies paracompactness.

1.4 Nearness frames

Regarding nearness frames, Banaschewski [6] writes:

In classical topology, the concepts of uniformity and nearness are entities as-

signed to a specified set. In the context of frames the specified object (namely

a frame) is already a “topology”, and consequently nearnesses and uniformities

become additional structures on a frame.

In this section we lay out the necessary terminology for these structured frames.

For covers A and B in a frame L we say A refines B and write A ≤ B if for every

a ∈ A, there exists b ∈ B such that a ≤ b. We write FCov(L) for the collection of all

covers of L refined by some finite cover.
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The star of x ∈ L with respect to a cover A of L is the element

Ax =
∨
{a ∈ A | a ∧ x 6= 0} .

Further, we write AB = {Ax | x ∈ B} and A ∧B = {a ∧ b | a ∈ A, b ∈ B} each of which

is a cover of L if A and B are both covers. We say A star-refines B, written A ≤∗ B, if

AA ≤ B.

Given a collection µ ⊆ Cov(L), we say x ∈ L is µ-strongly below y ∈ L, written x Cµ y

(or simply x C y) if there is a cover A ∈ µ such that Ax ≤ y.

We may now state the definition of nearness frames.

Definition 1.4.1 A nonempty collection µ ⊆ Cov(L) is called a nearness on L if the

following hold:

n1. Whenever A ∈ µ refines B ∈ Cov(L), then B ∈ µ.

n2. Whenever A, B ∈ µ, then A ∧B ∈ µ.

n3. Every x ∈ L can be expressed as

x =
∨
{y ∈ L | y Cµ x} .

This property is referred to as the admissibility property.

In the case where µ is a nearness on L, we refer to Cµ as the uniformly below relation

on L, oftentimes dropping the index and simply writing C when the nearness on L is

understood. The pair (L, µ) is called a nearness frame, and members of µ are called

uniform covers.

A map h : (L, µ) −→ (M, η) between nearness frames is called a uniform frame ho-

momorphism if it is a frame homomorphism and for every A ∈ µ, h[A] ∈ η. We write

NFrm for the resulting category of nearness frames and uniform frame homomorphisms.

Throughout the thesis, whenever we define a subcategory of NFrm it is understood that

the morphisms of the subcategory are the uniform frame homomorphisms.

A nearness µ on a frame L is said to be generated by ν ⊆ µ if for every A ∈ µ there

exists B ∈ ν such that B ≤ A.
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Let (L, µ) be a nearness frame. We say the nearness µ on L is induced by an extension

h : M −→ L if

µ = h[Cov(M)] = {h[C] | C ∈ Cov(M)}.

Now, if (X, ξ) is a nearness space with x ∈ X and A, B ⊆ X, we recall that x Cξ A iff

{X−{x}, A} ∈ ξ iff x ∈ intξ(A), and that BCξ A iff {X−B, A} ∈ ξ (see, for example, [32]

and [48]). We say that (X, ξ) is framed if whenever x Cξ A in (X, ξ), there exists B ⊆ X

such that x Cξ B Cξ A. We further take note of the observation in [36] that a nearness

space (X, ξ) is framed iff the family µ of open uniform covers in (X, ξ) is a nearness on

the associated frame OX of open subsets of X.

Definition 1.4.2 A nearness is called a uniformity if every uniform cover has a uniform

star refinement.

The pair (L,U) is a uniform frame if U is a uniformity on L. By definition, the notion of

nearness is weaker than that of uniformity. We write UniFrm for the category of uniform

frames and uniform frame homomorphisms.

We shall frequently use the following properties of the relation C.

(1) If x C y, a ≤ x and y ≤ b, then a C b.

(2) If x C y and a C b, then x ∧ a C y ∧ b and x ∨ a C y ∨ b.

(3) If µ is a uniformity, then x C y implies x C z C y for some z ∈ L.

Concerning the transfer of nearnesses and uniformities via frame homomorphisms, the

following result appears in [6].

Lemma 1.4.3 If (L, µ) is a nearness (or uniform) frame and h : L −→ M an onto frame

homomorphism, then the set

η = {h[A] | A ∈ µ} = h[µ]

is a nearness (or uniformity) on the frame M.

The following results appear in [4]:
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Lemma 1.4.4 (i) Every frame has a nearness iff it is regular.

(ii) If L is a compact regular frame, then Cov(L) is the unique nearness on L, and, in

fact, Cov(L) is a uniformity on L.

As a consequence of the above lemma, all frames in this thesis are taken to be regular.

In contrast to Lemma 1.4.4(i), regarding which frames admit uniformities, we have the

following lemma with two results which appear in [49] and [51], respectively.

Lemma 1.4.5 (i) A frame has a uniformity iff it is completely regular.

(ii) If L is a regular frame, then Cov(L) is a uniformity iff the frame L is paracompact.

A nearness frame (L, µ) is said to be fine if µ = Cov(L). Fine nearness frames have

their classical counterparts in topological nearness spaces.

Let (L, µ) be a nearness frame and C ∈ µ. We observe that the set

Č = {z ∈ L | z C y for some y ∈ C}

is a cover of L (not necessarily a uniform cover). Whenever Č ∈ µ for any C ∈ µ, we say

that (L, µ) is a strong nearness frame. Strong nearness frames, which have their classical

counterparts in regular nearness spaces, play an important role in this thesis.

We write StrNFrm for the category of strong nearness frames and uniform frame

homomorphisms. It should be immediately clear that any uniform frame is a strong

nearness frame; for whenever B ≤∗ C in a uniformity U , we have B ≤ Č since Bx ≤ y

implies x C y. Therefore Č ∈ U , so that U is strong.

The following definitions standardize the terminology we will be using concerning uni-

form frame homomorphisms throughout this thesis. Let (L, µ) and (M, η) be nearness

frames and h : L −→ M a uniform frame map. Then:

(i) h is a surjection if it is onto and η = {h[A] | A ∈ µ}.

(ii) We shall often refer to surjections as quotient maps. In this case we refer to the

nearness frame (M, η) as a quotient of (L, µ).
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(iii) We say that h is a strict surjection if it is a dense surjection and the image of η

under the right adjoint h∗ : M −→ L, h∗[η] = {h∗[C] | C ∈ η}, generates the

nearness µ.

In the above definitions we have adopted the terminology in [6]. We note that there

is a slight variation in the manner in which the terms surjection and quotient map are

defined in [4].

The following results appear in [6]:

Lemma 1.4.6 (i) If (L, µ) is a strong nearness frame, then any dense surjection h :

(L, µ) −→ (M, η) is strict.

(ii) A quotient of a strong nearness frame is strong.

(iii) If h : (L, µ) −→ (M, η) is a dense surjection, then (L, µ) is strong iff (M, η) is

strong.

(iv) There are nearness frames (L, µ) where a dense surjection h : L −→ M is not

necessarily strict.

Let h : (L, µ) −→ (M, η) be a uniform frame homomorphism. We will also need the

following results which appear in [6].

Lemma 1.4.7 (i) If a C b in L, then h(a) C h(b) in M .

(ii) If h is a dense surjection, then a C b in L implies h∗h(a) ≤ b.

(iii) If h is a strict surjection, then x C y in M iff h∗(x) C h∗(y) in L.

(iv) If h is a strict surjection, then for any a ∈ L and any x ∈ M, we have a C h∗(x) in

L iff h(a) C x in M .

A nearness frame (L, µ) is said to be complete if every strict surjection h : (M, η) −→

(L, µ) is an isomorphism. A completion of (L, µ) is a strict surjection h : (K, ν) −→ (L, µ),

where (K, ν) is a complete nearness frame. A uniform frame homomorphism h : K −→ L

is called a weak completion if it is a dense surjection with (K, ν) being complete.

The following results appear in [6].
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Lemma 1.4.8 (i) Every fine nearness frame is complete.

(ii) Every compact nearness frame is complete.

(iii) Every nearness frame has a unique completion.

(iv) The completion of a strong nearness frame is strong.

Given a nearness frame (L, µ), we denote its completion by (CL,Cµ), often referring to

the strict surjection γL : CL −→ L as the completion map. According to the construction

given in [6], CL is the frame generated by the downsets ↓ a for a ∈ L. The completion

map γ
L

: CL −→ L, is defined by

γ
L
(D) =

∨
D,

for each D ∈ CL, and is universal in the sense that for any strict surjection h : M −→ L,

there exists a strict surjection g : CL −→ M such that hg = γ
L
. The right adjoint

(γ
L
)∗ : L −→ CL

has the property that for every a ∈ L,

(γ
L
)∗(a) = ↓ a =

∨
{(γ

L
)∗(x) | x Cµ a}

Using the abbreviation r
L

for the right adjoint, the nearness Cµ is the one generated by

the collection

{r
L
[A] | A ∈ µ}.

Let (L, µ) be a nearness frame. Write a CC b, to be read “a is uniformly completely

below b”, if there is an interpolating sequence (cnk) in L between a and b, where

c00 = a, c01 = b, cnk = cn+1 2k, and cnk C cn k+1

for all n = 0, 1, . . . and k = 0, 1, . . . , 2n.

We say a nearness frame (L, µ) is interpolative or has the interpolation property if,

for every a, b ∈ L, a C b implies a C c C b for some c ∈ L. An almost uniform nearness
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frame is one which is strong and interpolative. Clearly, uniform frames are almost uniform

nearness frames.

A nearness frame (L, µ) is totally bounded if every A ∈ µ is refined by some finite

B ∈ µ. In the following lemma we gather some results from [25] about totally bounded

nearness frames.

Lemma 1.4.9 (i) A nearness frame is totally bounded iff every uniform cover has a

finite uniform subcover.

(ii) A totally bounded nearness frame is strong iff it is uniform.

(iii) Every nearness frame (L, µ) has a totally bounded coreflection given by (L, µT ),

where

µT = {A ∈ µ | B ≤ A for some finite B ∈ µ}.

Let (L, µ) be a nearness frame and (L, µT ) its totally bounded coreflection. For any

a, b ∈ L, we write a CT b if there exists C ∈ µT such that Ca ≤ b. The following lemma

contains results which appear in [25], and will come in handy in some instances in our

discussion.

Lemma 1.4.10 Let (L, µ) be a nearness frame, and a, b ∈ L. Then

(i) a CT b iff a C b.

(ii) If (L, µT ) is strong, then a C b iff a CC b.

Concerning binary coproducts of nearness frames, let (L, µ) and (M, η) be nearness

frames. Then their coproduct is the nearness frame

(L⊕M, µ⊕ η),

where L⊕M is the coproduct in Frm, generated by members of the form a⊕b as specified

in [24]. Let A ∈ µ and B ∈ η, and form the set

A⊕B = {a⊕ b | a ∈ A, b ∈ B},
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which is a cover of L⊕M. Then

µ⊕ η = {C ∈ Cov(L⊕M) | A⊕B ≤ C, for some A ∈ µ and B ∈ η}.

For further explanations see [24], and for coproducts of arbitrary families of nearness

frames see [50]. We write (⊕iLi,⊕iµi) for the coproduct of a family {(Li, µi)}i∈I of

nearness frames. For each i ∈ I,

ι
i
: Li −→ ⊕iLi

is the coproduct injection. The frame ⊕iLi is generated by elements of the form

⊕iai =
∧
i

ι
i
(ai) ,

where the ai ∈ Li are such that only finitely many of them are not equal to 1. Each

A ∈ ⊕iµi is refined by a cover of the form ⊕iAi, where the Ai ∈ µi are such that only

finitely many of them are nontrivial (i.e. 6= {1}). The results in the following lemma

appear in [50].

Lemma 1.4.11 The elements ⊕iai have the following properties:

(i) ⊕iai = 0 iff ai = 0 for some i ∈ I.

(ii) 0 6= ⊕iai ≤ ⊕ibi iff for all i ∈ I, ai ≤ bi.

(iii) 0 6= ⊕iai C⊕ibi in (⊕iLi,⊕iµi) iff for all i ∈ I, 0 6= ai C bi in (Li, µi).

Let (L, µ) be a nearness frame. Then a subset A ⊆ L is said to be near (introduced in

[22]) if for any C ∈ µ, there is x ∈ C such that for every a ∈ A, x ∧ a 6= 0. The following

characterization of near subsets appears in [22].

Lemma 1.4.12 Let (L, µ) be a nearness frame. Then A ⊆ L is a near subset if and only

if the set

A∗ = {a∗ | a ∈ A} 6∈ µ.

Given a nearness frame (L, µ), a nonempty subset A ⊆ L is called a cluster if it is a

near subset, and whenever A ⊆ B ⊆ L with B near, then A = B. Thus, a cluster is a

maximal near subset of L.
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Chapter 2

Quotient-fine nearness frames

In this chapter we introduce quotient-fine nearness frames as quotients of fine nearness

frames. We characterize them as nearness frames whose completions are fine. We show

that the subcategory of quotient-fine nearness frames resides reflectively in that of strong

nearness frames. We consider briefly quotient-fine nearness frames with spatial comple-

tions, showing that in each such nearness frame, any near subset is contained in a near

grill. We end the chapter by constructing two categories, namely Ext and Compl, each

of which we show to be equivalent to that of quotient-fine nearness frames.

2.1 The reflectiveness of QfNFrm in StrNFrm

In this section we define quotient-fine nearness frames, showing that their subcategory is

reflective in StrNFrm. We characterize quotient-fine nearness frames which are separable,

and those which are uniformly paracompact. We also consider those which have spatial

completions. We end the section by introducing f-fine nearness frames, and providing a

way of constructing certain types of quotient-fine nearness frames which are f-fine.

First, we recall that (L, µ) is a fine nearness frame if µ = Cov(L). We write FiNFrm for

the category of fine nearness frames. We immediately observe that FiNFrm is reflective

in NFrm, with

(L, µ)
idL // (L, Cov(L))

being the reflection arrow for any nearness frame (L, µ). To see this, note that for any
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uniform frame homomorphism h : (L, µ) −→ (M, Cov(M)), the following diagram com-

mutes:

(L, µ)
idL //

h ''NNNNNNNNNNN
(L, Cov(L))

h̄ = hvvmmmmmmmmmmmm

(M, Cov(M))

Clearly h̄ = h is uniform and is the unique map making the triangle commutative.

The following result is indicated as trivial in [4], but nevertheless, we present a proof

for it.

Proposition 2.1.1 The category FiNFrm resides in StrNFrm.

Proof: Let (L, Cov(L)) be a fine nearness frame and let A ∈ Cov(L). We need to show

that the set

Ǎ = {x ∈ L | x C a, for some a ∈ A}

belongs to Cov(L). Now a ≺ b iff a C b since the nearness on L is Cov(L). Given a ∈ A,

let

Ca = {x ∈ L | x ≺ a} = {x ∈ L | x C a}.

Note that a =
∨

Ca, and Ca ⊆ Ǎ. So we have

1 =
∨

A =
∨
a∈A

Ca ≤
∨

Ǎ.

This means Ǎ ∈ Cov(L) as required. �

The argument used in establishing the observation that fine nearness frames are reflec-

tive in the category of nearness frames, can be applied in establishing the following result

by simply replacing (L, µ) in the stated diagram with a strong nearness frame.

Corollary 2.1.2 FiNFrm resides reflectively in StrNFrm.

Definition 2.1.3 A nearness frame (L, µ) is called quotient-fine (the term subfine is used

in [25]) if there is a fine nearness frame (M, Cov(M)) and an onto frame homomorphism

h : M −→ L such that µ = {h[C] | C ∈ Cov(M)}. Thus, a nearness frame is quotient-fine

if it is the quotient of a fine nearness frame.
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In this chapter we shall frequently use the abbreviation q-fine in place of quotient-fine.

Remark 2.1.4 Clearly every fine nearness frame is q-fine with the strongness property on

fine nearness frames being transferred to the q-fine ones via the surjections. However, not

every q-fine nearness frame is fine. To see this, take any noncompact completely regular

frame and endow it with the nearness it inherits from its Stone-Čech compactification.

We denote the category of q-fine nearness frames by QfNFrm. The following result

characterizes when a q-fine nearness frame is fine.

Proposition 2.1.5 Let (L, µ) be a q-fine nearness frame via the uniform frame ho-

momorphism h : M −→ L. Then (L, µ) is fine iff whenever A ∈ Cov(L), we have

h∗[A] ∈ Cov(M).

Proof: (⇒) Let A ∈ Cov(L). Then A = h[C], for some C ∈ Cov(M). For any c ∈ C,

we have c ≤ h∗h(c) = h∗[h(c)], by definition of the right adjoint h∗. This implies that

C ≤ h∗[h[C]] = h∗[A]. Consequently h∗[A] ∈ Cov(M).

(⇐) Given the condition, let A ∈ Cov(L). Then h∗[A] ∈ Cov(M). Since h is onto, we

have h[h∗[A]] = A. Hence A ∈ µ, so that (L, µ) is fine. �

It has now become clear that QfNFrm ⊆ StrNFrm. We will show that QfNFrm

resides reflectively in StrNFrm. To facilitate our demonstration, we state and prove the

following result which shows that in Definition 2.1.3, the map h may be taken to be dense;

in which case the fine nearness frame (M, Cov(M)) will be a completion of (L, µ).

Lemma 2.1.6 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine.

(2) There is a dense onto homomorphism h : M −→ L such that µ = h[Cov(M)].

(3) The completion of (L, µ) is fine.

Proof: (1) ⇒ (2): By (1) there is an onto homomorphism g : K −→ L such that

µ = g[Cov(K)]. Consider the dense-onto factorization
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K
ϕ−→↑g∗(0)

ḡ−→ L

where ϕ is the map x 7→ x∨ g∗(0) and ḡ maps as g. Since g is onto, ḡ is also onto, so that

it is dense onto. Any cover of ↑ g∗(0) is a cover of K; so ḡ[Cov(↑ g∗(0))] ⊆ g[Cov(K)].

On the other hand, let C ∈ Cov(K). Then the set D = {g∗(0) ∨ c | c ∈ C} is a cover of

↑ g∗(0) such that g[C] = ḡ[D]. This shows that g[Cov(K)] ⊆ ḡ[Cov(↑ g∗(0))], and hence

equality. Thus, µ = ḡ[Cov(↑g∗(0))].

(2) ⇒ (3): Since M with its fine nearness is complete, it suffices to show that h is a

strict surjection. Note that h is a surjection, and therefore h∗[U ] is a uniform cover of

M for each uniform cover U of L. Now let C be a uniform cover of M . Then h[Č] is a

uniform cover of L, and so, in light of denseness of h, h∗h[Č] ≤ C. Thus, h is a strict

surjection, and hence M is the completion of L.

(3) ⇒ (1): This is so because the map γL : CL −→ L is a surjection. �

Remark 2.1.7 (1) From Lemma 2.1.6, we deduce that a q-fine nearness frame is fine

iff it is complete.

(2) The following example is worth noting. In [6, Section 5.1] it is shown that the

completion of a nearness frame is compact iff the nearness frame is totally bounded

and uniform. Thus, in view of Lemma 1.4.9(ii), every totally bounded strong nearness

frame is q-fine.

Proposition 2.1.8 QfNFrm resides reflectively in StrNFrm.

Proof: Let (L, µ) be a strong nearness frame. We need to construct a q-fine reflection

(QL,Qµ) for (L, µ). Let γ
L

: CL −→ L be the completion of (L, µ). Equip the frame CL

with the fine nearness Cov(CL).

Put

QL = L and Qµ = {γ
L
[D] | D ∈ Cov(CL)}.

First, we show that (QL,Qµ) is a q-fine nearness frame. But this should be immediate,

since (CL, Cov(CL)) is fine, and γ
L

: CL −→ QL is dense, onto with Qµ = γ
L
[Cov(CL)].
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Next, we show that (QL,Qµ) is indeed a reflection of (L, µ), with

idL : (L, µ) −→ (QL,Qµ)

as the reflection arrow. For any uniform frame homomorphism h : (L, µ) −→ (K, η),

where (K, η) is a q-fine nearness frame, we need a unique uniform frame homomorphism

h̄ : (QL,Qµ) −→ (K, η)

such that the diagram

(L, µ)
idL //

h $$IIIIIIIII
(QL,Qµ)

h̄yyrrrrrrrrrr

(K, η)

commutes. First, to see that idL is a uniform map, let A ∈ µ. Now (γ
L
)∗[A] ∈ Cµ, since

γ
L

is a strict map, and note that Cµ ⊆ Cov(CL). Therefore

idL[A] = A = γ
L
(γ

L
)∗[A] ∈ γ

L
[Cov(CL)] = Qµ.

Second, put h̄ = h. This makes h̄ a frame homomorphism. To see that h̄ is uniform,

consider the completion γ
K

: (CK, Cη) −→ (K, η) of (K, η). Since (L, µ) and (K, η) are

strong nearness frames, we have the following commutative diagram (see [6]):

(CL,Cµ)

γ
L

��

Ch // (CK,Cη)

γ
K

��
(L, µ)

h
// (K, η)

i.e. hγ
L

= γ
K
(Ch). Therefore, for any uniform cover γ

L
[D] of QL, where D ∈ Cov(CL),

we have

h̄[γ
L
[D]] = h̄γ

L
[D] = hγ

L
[D] = γ

K
(Ch)[D] ∈ η.

Lastly, it is trivial that h̄(idL) = h and that h̄ is unique. �
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We thus have a functor

StrNFrm
Q // QfNFrm

(L, µ)

h
��

(QL,Qµ)

Qh
��

(M, η) (QM,Qη)

where Qh(x) = h(x). The only instance when the strongness of (L, µ) was used in the proof

to Proposition 2.1.8 was when we lifted h to completions. Thus the category StrNFrm

can be replaced by the larger category NFrm` of nearness frames and liftable uniform

homomorphisms.

The following result is clear from the construction above.

Corollary 2.1.9 If (L, µ) is a complete nearness frame, then its q-fine reflection is

(L, Cov(L)).

Let C denote the completion functor on StrNFrm. In the next result we show that

the functors C and Q commute on StrNFrm.

Corollary 2.1.10 For any strong nearness frame (L, µ), QC(L, µ) = CQ(L, µ).

Proof: By construction, and in the light of the preceding corollary, we have

QC(L, µ) = Q(CL,Cµ) = (CL, Cov(CL)).

On the other hand, note that the map

(CL, Cov(CL)) −→ (L, γ
L
[Cov(CL)]),

mapping as γ
L
, is a strict surjection; a consequence of which is that (CL, Cov(CL)) is the

completion of (L, γ
L
[Cov(CL)]) = Q(L, µ). Therefore

CQ(L, µ) = C(QL,Qµ) = (CL, Cov(CL)) = Q(CL,Cµ) = QC(L, µ)

as claimed. �

21



Quotient-fine nearness frames, as we have defined them, can be thought of as frame

analogues of what Bentley and Herrlich [18] call subtopological nearness spaces, if one

restricts to what are called regular nearness spaces. Indeed a regular nearness space is

subtopological if and only if its completion is topological - a result in line with one of the

characterizations in Lemma 2.1.6.

Although there are similarities between the two, there are also differences. One such

difference regards subtopological coreflections of uniform spaces and q-fine reflections of

uniform frames. Whereas the subtopological coreflection of a uniform space need not be

uniform [18, Example 10], the q-fine reflection of a uniform frame is always uniform as we

show below. Recall from [6] and [14] that a completely regular frame L is paracompact iff

it admits a complete uniformity iff Cov(L) is a uniformity. In consequence we have

Corollary 2.1.11 The q-fine reflection of a uniform frame is also a uniform frame.

Proof: Let (L, µ) be a uniform frame, and (CL,Cµ) its completion, which is also a

uniform frame [6]. Since the frame CL is paracompact, Cov(CL) is a uniformity. Now

the q-fine reflection of (L, µ) is

Q(L, µ) = (QL,Qµ) = (L, γ
L
[Cov(CL)]).

The nearness γ
L
[Cov(CL)] is a uniformity since the completion arrow γ

L
is onto [6]. Hence

(QL,Qµ) is a uniform frame. �

We recall that a nearness frame (L, µ) is locally fine if for any cover A ∈ µ and a family

of covers {Ba | a ∈ A} ⊆ µ, we have that

{a ∧ b | a ∈ A and b ∈ Ba} ∈ µ.

We adopt the notation A∧ (Ba)A
for the latter cover. We write LfNFrm for the category

of locally fine nearness frames.

Proposition 2.1.12 (i) Every fine nearness frame is locally fine.

(ii) Every q-fine nearness frame is locally fine.
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Proof: (i) Given a fine nearness frame (L, Cov(L)), let A be a cover and {Ba | a ∈ A}

be a family of covers. Then∨
[A ∧ (Ba)A

] =
∨

A ∧
∨
a∈A

∨
Ba = 1 ∧ 1 = 1.

So therefore A ∧ (Ba)A
∈ Cov(L).

(ii) Let (L, ν) be a q-fine nearness frame. Then exists a dense onto uniform frame

homomorphism h : (M, Cov(M)) −→ (L, ν) with ν = h[Cov(M)]. Let A ∈ ν and {Ba |

a ∈ A} a family of uniform covers of L. Now we have U, Da ∈ Cov(M) such that A = h[U ]

and Ba = h[Da] for each a ∈ A.

Then

A ∧ (Ba)A
= h[U ] ∧ (h[Da])A

= h[U ∧ (Da)A
] ∈ ν.

Hence (L, ν) is locally fine. �

We have now established the categorical inclusions:

FiNFrm ⊆ QfNFrm ⊆ LfNFrm.

Zenk [57] shows that a nearness frame is locally fine iff it is q-fine, bearing in mind that his

nearness frames are interpolative. Dube [23] has shown that locally fine nearness frames

are reflective in the category of nearness frames.

Recall that a frame L is said to be Lindelöf if every cover of L has a countable subcover.

A nearness frame (L, µ) is separable [45] if every uniform cover is refined by a countable

uniform cover. Keeping in mind that the completion of a q-fine nearness frame is fine we

obtain the following result.

Proposition 2.1.13 A q-fine nearness frame (L, µ) is separable iff the underlying frame

CL of its (fine) completion is Lindelöf.

Proof: (⇐) Suppose CL is Lindelöf. Let A ∈ µ, and let γ
L

: CL −→ L be the completion

arrow. Now there exists C ∈ Cov(CL) such that γ
L
[C] = A, since γ

L
is a surjection. Also,

since CL is Lindelöf, there exists a countable D ∈ Cov(CL) such that D ⊆ C. Then γ
L
[D]

is a countable uniform cover of L which refines γ
L
[C] = A. Hence (L, µ) is separable.

23



(⇒) Let (L, µ) be separable and C ∈ Cov(CL). Since γ
L

is strict, there exists A ∈ µ

such that (γ
L
)∗[A] ≤ C. By the separable property, there exists a countable B ∈ µ such

that B ≤ A. So (γ
L
)∗[B] ∈ Cov(CL) is countable and (γ

L
)∗[B] ≤ C. For each b ∈ B, take

cb ∈ C such that (γ
L
)∗(b) ≤ cb. Then C̄ = {cb | b ∈ B} ⊆ C is a countable subcover. �

Using the above result and in the light of [45, Proposition 4.1.1] we deduce the following

corollary.

Corollary 2.1.14 A q-fine nearness frame is separable iff its completion is separable.

In a frame L,

(i) a subset A ⊆ L is said to finitize a subset B ⊆ L [23] if for each a ∈ A the set

Ba = {b ∈ B | a ∧ b 6= 0} is finite.

(ii) a subset S ⊆ L is called locally finite [14] if there is a cover C ∈ Cov(L) that finitizes

it. Such a cover C is referred to as a witness for S in [14].

By restricting to uniform covers in the above definitions, we have the following defini-

tions as they appear in [23]:

(a) Let (L, µ) be a nearness frame. Then a subset S ⊆ L is said to be uniformly locally

finite if there is a uniform cover C ∈ µ finitizing it.

(b) A nearness frame is uniformly paracompact if every uniform cover is refined by a

uniformly locally finite uniform cover.

Remark 2.1.15 In [23] it is observed that a fine nearness frame (L, Cov(L)) is uniformly

paracompact iff the underlying (regular) frame L is paracompact.

Proposition 2.1.16 A q-fine nearness frame (L, µ) is uniformly paracompact iff the un-

derlying frame CL of its completion is paracompact.
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Proof: (⇐) Let γ
L

: CL −→ L be the completion arrow, with CL being a paracompact

frame. We need to show that (L, µ) is uniformly paracompact. Let A ∈ µ. Then γ
L
[C] = A

for some C ∈ Cov(CL). So there is a locally finite D ∈ Cov(CL) such that D ≤ C. Note

that this implies γ
L
[D] ≤ γ

L
[C] = A. We show that γ

L
[D] is a uniformly locally finite

refinement of A.

Let E ∈ Cov(CL) be a cover which finitizes D. So for each x ∈ E, the set

Dx = {d ∈ D | x ∧ d 6= 0}

is finite. Then γ
L
[E] ∈ µ finitizes γ

L
[D] since for each γ

L
(x) ∈ γ

L
[E], we have

{γ
L
(d) | d ∈ D, γ

L
(x) ∧ γ

L
(d) = γ

L
(x ∧ d) 6= 0} ⊆ {γ

L
(d) | d ∈ D, x ∧ d 6= 0} = γ

L
[Dx]

which is finite.

(⇒) Suppose (L, µ) is uniformly paracompact. Let C ∈ Cov(CL). Then since γ
L

is

strict, there is A ∈ µ such that γ∗[A] ≤ C. Let B ≤ A be a uniformly locally finite

refinement. Then γ∗[B] ≤ C and we show that γ∗[B] is locally finite. In a similar

argument as above, if F ∈ µ finitizes B, one easily realizes that γ∗[F ] finitizes γ∗[B], and

the proof ends. �

Combining Remark 2.1.15 and Proposition 2.1.16, we establish the following result.

Corollary 2.1.17 A q-fine nearness frame is uniformly paracompact iff its completion is

uniformly paracompact.

In [45] Naidoo shows that the functor which takes a nearness frame to its separable

coreflection preserves surjections. We have not succeeded in determining whether the

q-fine reflection functor

StrNFrm
Q // QfNFrm

preserves surjections. However, given a surjection h : (L, µ) −→ (M, η) between strong

nearness frames, we have the following condition on the lifted homomorphism

Ch : CL −→ CM
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which is equivalent to

Qh : QL −→ QM

being a surjection.

We note that an onto uniform frame homomorphism h : (L, µ) −→ (M, ν) is a surjec-

tion iff for any C ∈ ν, there is A ∈ µ such that h[A] ≤ C.

Proposition 2.1.18 Let h : (L, µ) −→ (M, η) be a surjection between strong nearness

frames. Then Qh : QL −→ QM is a surjection iff every cover of CM is refined by the

image under Ch of some cover of CL.

Proof: (⇒) Suppose Qh is a surjection. Let C ∈ Cov(CM). Since γ
M

[Č] ∈ η and Qη =

γ
M

[Cov(CM)], γ
M

[Č] ∈ Qη. However, since Qh is a surjection and Qµ = γ
L
[Cov(CL)],

there is D ∈ Cov(CL) such that (Qh)[γ
L
[D]] ≤ γ

M
[Č]. Bear in mind that the following

squares commute:

CL
Ch //

γ
L

��

CM

γ
M

��
L

h
//

idL
��

M

idM
��

QL
Qh

// QM

So

hγ
L
[D] ≤ γ

M
[Č] (†)

Since γ
M

(Ch) = hγ
L
, we have from (†) that

γ
M

[(Ch)[D]] ≤ γ
M

[Č],

which, in turn, implies that

(Ch)[D] ≤ (γ
M

)∗γM
[Č] ≤ C.

(⇐) Conversely, suppose the given condition holds. First, Qh is onto, since it maps

as h which is onto. Second, let A be a uniform cover of QM. Then A = γ
M

[U ] for some

U ∈ Cov(CM). By the hypothesis, we have (Ch)∗[U ] ∈ Cov(CL) so that γ
L
[(Ch)∗[U ]] is

a uniform cover of QL. But

(Qh)[γ
L
[(Ch)∗[U ]]] = hγ

L
[(Ch)∗[U ]] = γ

M
(Ch)[(Ch)∗[U ]] ≤ γ

M
[U ] = A.
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Hence Qh is a surjection. �

By a point or prime element p ∈ L we mean an element of L with the following

properties: (i) p 6= 1 and (ii) x ∧ y ≤ p in L implies x ≤ p or y ≤ p. We say the frame L

is spatial or has enough points if every member of L is a meet of points above it. [Thus

for every x ∈ L we have x =
∧
{p ∈ L | p is a point and x ≤ p}].

Now recall that an element m ∈ L is maximal if m 6= 1 and m ≤ t 6= 1 implies m = t.

We gather some known facts about points and spatiality in the following lemma (see, for

example, [39]).

Lemma 2.1.19 (i) Every compact regular frame is spatial.

(ii) If L is regular, then p ∈ L is a point iff p is a maximal element.

(iii) If L is spatial, then for any x ∈ L, if x 6= 1, then there is a point p ∈ L such that

x ≤ p.

We observed in Remark 2.1.7(1) the (rather obvious) result that a quotient-fine near-

ness frame is fine if and only if it is complete. In the case of nearness frames with spatial

completion we will show that a condition (called Cauchy completeness) which is generally

weaker than completeness is equivalent to fineness. A filter F of a nearness frame (L, µ)

is called a regular Cauchy filter if for any A ∈ µ, A ∩ F 6= ∅ and for each x ∈ F, there

is y ∈ F such that y C x. A nearness frame (L, µ) is Cauchy complete if every regular

Cauchy filter meets every cover of L. Completeness implies Cauchy completeness, but the

converse does not hold.

It shown in [36] that a strong nearness frame is Cauchy complete if and only if every

Cauchy filter converges.

A neat characterization of Cauchy completeness in terms of homomorphisms, and which

we note here as a lemma, is given in [6].

Lemma 2.1.20 A nearness frame (L, µ) is Cauchy complete iff any homomorphism CL −→

2 factors through γ
L

: CL −→ 2, where 2 denotes the two-element frame.
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We now give a characterization of q-fine nearness frames with spatial completions.

Proposition 2.1.21 A q-fine nearness frame with a spatial completion is fine iff it is

Cauchy complete.

Proof: (⇒) If (L, µ) is fine, then it is complete and therefore Cauchy complete.

(⇐) Conversely, let (L, µ) be a Cauchy complete q-fine nearness frame with a spatial

completion. Suppose on the contrary that L is not fine. Then L is not complete. Thus

γ
L

: CL −→ L is not codense, that is, there is a 6= 1 in CL such that γ
L
(a) = 1.

By spatiality, let p be a point of CL such that a ≤ p. Next, let ξ : CL −→ 2 be the

homomorphism determined by p; namely

ξ(x) = 0 iff x ≤ p.

By Cauchy completeness, there is a homomorphism g : L −→ 2 such that gγ
L

= ξ. This

leads to a contradiction, since ξ(a) = 0 and gγ
L
(a) = g(1) = 1. Therefore L is fine. �

Recall that a nearness frame (L, µ) is said to be finitely fine if every cover of L that is

refined by a finite cover is uniform. Note that this means µ = FCov(L). We introduce a

weaker condition in the following definition.

Definition 2.1.22 A nearness frame (L, µ) is f-fine if µ ⊇ FCov(L).

Clearly, every finitely fine nearness frame is f-fine but not vice versa, since any non-

compact fine nearness frame is f-fine but fails to be finitely fine. We aim to provide a way

of constructing certain types of q-fine nearness frames which are f-fine. Let X be a set of

prime filters of a regular frame L. Define a collection NX of covers of L by

NX = {C ∈ Cov(L) | C ∩ F 6= ∅ for each F ∈ X}.

Proposition 2.1.23 NX is a nearness on the regular frame L.

Proof: First, let C, D ∈ NX. Then for F ∈ X, take c ∈ C ∩ F and d ∈ D ∩ F. Then

c ∧ d ∈ (C ∧D) ∩ F. (Note that c ∧ d ∈ F since F is a filter). Therefore C ∧D ∈ NX.
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Second, let C ∈ NX, and suppose D is a cover of L such that C ≤ D. Then for F ∈ X,

let c ∈ C ∩ F. Then there is d ∈ D such that c ≤ d, and since F is an upset, d ∈ F.

Therefore D∩F 6= ∅, so that D ∈ NX. So far we have shown that NX is a filter under the

refinement order in Cov(L).

Third, we show the admissibility property indirectly. Let A ∈ FCov(L). Then A is

refined by a finite subcover B = {b1, b2, . . . , bn}. For any prime filter F ∈ X, we have∨
B = 1 ∈ F ; and so F contains at least one of the b′ks in B since F is prime. This means

F ∩ B 6= ∅, so that F ∩ A 6= ∅. Therefore A ∈ NX. Consequently FCov(L) ⊆ NX. Hence

NX inherits the admissibility property from FCov(L). �

Now a filter F ⊆ L is completely prime if for any S ⊆ L,
∨

S ∈ F implies S ∩ F 6= ∅.

Proposition 2.1.24 Let L be a regular frame and NX as defined above. Then:

(i) If X and Y are sets of prime filters, then X ⊆ Y implies NX ⊇ NY.

(ii) If Y contains only completely prime filters, then NX = NX∪Y.

Proof: (i) Given X ⊆ Y, let C ∈ NY. Then C ∩ F 6= ∅ for each F ∈ Y, which includes

all the F ’s in X. Therefore C ∈ NX.

(ii) Suppose the filters in Y are only completely prime ones. Now since X ⊆ X∪Y, we

have NX ⊇ NX∪Y from (i). As for the other inclusion, any cover C of L has a nonempty

intersection with each completely prime filter F, since
∨

C = 1 ∈ F. In particular NX ⊆

NX∪Y, completing the proof. �

Now let us recall how the strict extension of a (regular) frame L determined by a set

of filters is constructed (see [10]). Given a set X of filters of L and a subset A of L, let

XA = {F ∈ X | A ∩ F 6= ∅}.

View the powerset P(X) as a Boolean frame, and let τXL be the subframe of L ×P(X)

given by

τXL =
{(∨

A, XA

)
| A ⊆ L

}
,
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and τ : τXL −→ L be the dense onto homomorphism defined by

τ
(∨

A, XA

)
=
∨

A.

Then τ : τXL −→ L is the strict extension of L determined by X. Now a filter F ⊆ L is

regular if for each a ∈ F, there exists b ∈ F such that b ≺ a.

The following lemma appears in [11, Proposition 9].

Lemma 2.1.25 If X consists of prime filters, then τXL is regular iff each filter in X is

regular.

Proposition 2.1.26 Let X be a set of regular prime filters of L, and endow L with the

nearness NX. Then L is q-fine and f-fine.

Proof: We have already seen that FCov(L) ⊆ NX; and so L is f-fine. Next, we show that

L is q-fine. Let τ : τX −→ L be the strict extension determined by X. We will show that

L’s nearness NX = τ [Cov(τXL)], and the proof ends since τXL is a regular frame and τ is

an onto uniform frame homomorphism.

Let C be a cover of τXL. So there is a family {Aλ | λ ∈ Λ} of subsets of L such that

C =
{(∨

Aλ, XAλ

)
| λ ∈ Λ

}
;

so that

τ [C] =
{∨

Aλ | λ ∈ Λ
}

.

Since C is a cover of τXL, we have that⋃
λ∈Λ

XAλ
= X.

Let F ∈ X. Then there exists κ ∈ Λ such that F ∈ XAκ . Thus, Aκ ∩ F 6= ∅, and hence∨
Aκ ∈ F since F is an upset. This shows that τ [C] meets every filter in X so that

τ [C] ∈ NX, and hence τ [Cov(τXL)] ⊆ NX. Next, let C ∈ NX. For any c ∈ C, abbreviate

X{c} as Xc. Define a subset C of τXL by

C = {(c, Xc) | c ∈ C} .
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We claim that C ∈ Cov(τXL). Since
∨

C = 1, we need only show that
⋃
{Xc | c ∈ C} ⊇ X.

Let F ∈ X. Since C ∈ NX, C∩F 6= ∅. This shows that F ∈ Xa for some a ∈ C, establishing

the claim. So C ∈ Cov(τXL). But

τ [C] = {τ(c, Xc) | c ∈ C} = C;

so C ∈ τ [Cov(τXL)], showing that NX ⊆ τ [Cov(τXL)], and hence equality holds. Therefore

L is q-fine. �

It is worth remarking that if (L, µ) is a nearness frame with a spatial completion, then

the underlying frame of the completion of L is isomorphic to the frame τXL, where X

is the set of non-convergent regular Cauchy filters of L. The reason is a combination of

Lemmas 3 and 4 in [10]. We close this section by showing that all finitely fine nearness

frames can be constructed in exactly the same way.

Proposition 2.1.27 A nearness frame (L, µ) is finitely fine iff its nearness µ = NX,

where X is the set of all prime filters of L.

Proof: It clearly suffices to show that if X is the set of all prime filters of L, then

NX = FCov(L). The inclusion ⊇ holds trivially. For the reverse inclusion, suppose, on

the contrary that C ∈ NX \ FCov(L). Then the set J = {
∨

S | S is a finite subset of C}

is a proper ideal of L containing C. By the dual version of Stone’s Separation Lemma (see

the Glossary or [30, Theorem 15]), there is a prime filter F disjoint from J. So C ∩F = ∅

contradicting the fact that C ∈ NX. Hence the desired result holds. �

2.2 The role played by grills

In regular nearness spaces there is a characterization of subtopological ones that says a

nearness space (X, µ) is subtopological if and only if every near collection of subsets is

contained in a near grill (see [18]). A close scrutiny of the validating arguments shows

that what makes the characterization valid is that, talking frame-theoretically, the frame

B(X) of subsets of X is Boolean, and furthermore, the near collections are allowed to
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contain any type of subset and not just the open ones. We have not been able to obtain

a satisfactory analogue of the cited topological theorem. Nevertheless, we have some

noteworthy results. In this short section our aim is to show that if a nearness frame is

q-fine and its completion has enough points, then every near subset is contained in a near

grill. First, we recall some definitions.

In a frame L, a nonempty G ⊆ L is called a grill if it satisfies:

g1. 0 6∈ G.

g2. a ∈ G and a ≤ b implies b ∈ G. (i.e. G is an upset).

g3. a ∨ b ∈ G implies a ∈ G or b ∈ G.

An element a ∈ L is called an atom if a 6= 0 and y ≤ a implies y = 0 or y = a. L is

said to be atomic if for every x ∈ L,

x =
∨
{a ∈ L | a is an atom and a ≤ x}.

We note that in a Boolean frame an element is a point iff its complement is an atom

[39]. We also note that if the completion of a nearness frame (or a q-fine nearness frame

for that matter) has enough points, it does not follow that the nearness frame has enough

points. This is illustrated by the following example.

Example 2.2.1 Let L be a Boolean frame with no atoms. Then L has no points. Con-

sider the Stone-Čech compactification σ : βL −→ L of L, and endow L with the nearness

σ[Cov(βL)]. Then L is a q-fine nearness frame and its completion has enough points.

Proposition 2.2.2 Let (L, µ) be a q-fine nearness frame with a spatial completion. Then

any near subset of L is contained in a near grill.

Proof: Let h : M −→ L be a completion with M spatial. Since h is a surjection,

µ = h[Cov(M)]. Let A ⊆ L be near. Our aim is to construct a near grill G ⊇ A. Making

use of Lemma 1.4.12, we begin by claiming that∨
{h∗(a∗) | a ∈ A} =

∨
h∗[A

∗] 6= 1.
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If not, then h∗[A
∗] ∈ Cov(M), and hence hh∗[A

∗] = A∗ ∈ µ, which contradicts the cited

lemma.

Next, since M has enough points, there is a point p ∈ M such that∨
{h∗(a∗) | a ∈ A} ≤ p.

We put

G = {x ∈ L | h∗(x∗) ≤ p}.

Clearly, A ⊆ G. We show that G is near. Suppose G is not near. Then there is a cover

U of M such that h[U ] = G∗. This then implies that U ≤ h∗[G
∗], and hence

1 =
∨

U ≤
∨
{h∗(x∗) | x ∈ G} ≤ p

which of course is false.

Finally, we show that G is a grill. First, since h∗(0
∗) = h∗(1) = 1, we have 0 6∈ G.

Second, let a ∈ G with a ≤ b. Then h∗(b
∗) ≤ h∗(a

∗) ≤ p, so that b ∈ G, and therefore G

is an upset. Third, suppose u ∨ v ∈ G. Then

h∗(u
∗) ∧ h∗(v

∗) = h∗(u
∗ ∧ v∗) = h∗((u ∨ v)∗) ≤ p,

which implies h∗(u
∗) ≤ p or h∗(v

∗) ≤ p since p is a point. Thus u ∈ G or v ∈ G, and the

proof ends. �

For any frame L, the collection of JL of all ideals of L is a frame [39]. The join map

h : JL −→ L, which takes each ideal to its join in L, is a frame homomorphism. The

following result appears in [6].

Lemma 2.2.3 For any finitely fine Boolean nearness frame (L, µ), the join map h :

JL −→ L is a completion.

In view of Proposition 2.2.2, we obtain the following.

Corollary 2.2.4 Any near subset of a finitely fine Boolean nearness frame is contained

in a maximal near grill.
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Proof: Let (L, µ) be a Boolean finitely fine nearness frame. Then, being compact, the

completion of L is fine; and so L is a q-fine nearness frame with a spatial completion.

Therefore, by Proposition 2.2.2, every near subset is contained in a near grill. It remains

to show maximality.

Keeping the above notation, let A, p and G be as in the proof of Proposition 2.2.2,

and h : JL −→ L the join map. We show that G is maximal. Let H be a near grill with

G ⊆ H, and take a ∈ H. Suppose on the contrary a 6∈ G. Then h∗(a
∗) 6≤ p, and since h is

dense,

h∗(a
∗) ∧ h∗(a

∗∗) = h∗(0) = 0 ≤ p.

So h∗(a
∗∗) ≤ p since p is a point.

This implies a∗ ∈ G ⊆ H, so that both a and a∗ are in H. But now {a, a∗} is a uniform

cover each of whose members does not meet at least one member of H, which contradicts

the fact that H is near. Hence the desired result holds. �

2.3 The categories Ext and Compl

In this section we define the categories Ext and Compl and show their equivalence to

QfNFrm. For convenience of notation, in this section, we may simply refer to a typical

nearness frame by L instead of the usual pair (L, µ).

The category Ext is defined as follows:

(a) The objects are dense onto frame homomorphisms h : M −→ L, which we shall, at

times, write as (h,M,L).

(b) A morphism (α, β) : (h1, M1, L1) −→ (h2, M2, L2) between two objects is a pair of

frame homomorphisms α : M1 −→ M2 and β : L1 −→ L2 such that the diagram

M1
α //

h1

��

M2

h2

��
L1 β

// L2

commutes.
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(c) If (α, β) : (h1, M1, L1) −→ (h2, M2, L2) and (γ, δ) : (h2, M2, L2) −→ (h3, M3, L3) are

morphisms, the composite (γ, δ) ◦ (α, β) is the morphism

(γ, δ) ◦ (α, β) = (γ ◦ α, δ ◦ β) : (h1, M1, L1) −→ (h3, M3, L3).

In order to define the category Compl, we take a cue from spaces (see [18]). First

we need some background concerning drawing up a frame version of the restriction of a

function f : X −→ Y to a function f|A : A −→ B, where f [A] ⊆ B. This is provided by

[47, Proposition 7.1.2] in the following way.

For any frame homomorphism g : N −→ K, we have

Fix(g∗g) = {x ∈ N | g∗g(x) = x} = g∗[K];

so that g∗[K] is a frame. Thus if g is onto, then the map g∗[K] −→ K, mapping as

g, is an isomorphism whose inverse is the map K −→ g∗[K] given by a 7→ g∗(a). Let

h : L −→ M be a frame homomorphism, and suppose α : L −→ A and β : M −→ B are

onto homomorphisms. Suppose, further that h∗[β∗[B]] ⊆ α∗[A]. By the result cited from

[47], there is a (necessarily unique) frame homomorphism h′ : α∗[A] −→ β∗[B] whose right

adjoint is h∗|β∗[B], the restriction of h∗ to β∗[B]. Define ȟ : A −→ B to be the composite

A
α∗ // α∗[A] h′ // β∗[B]

β // B ,

where α∗ and β in the composition are actually appropriate restrictions of the same-named

homomorphisms. Note that ȟ makes the diagram

L
h //

α

��

M

β

��
A

ȟ

// B

commute. This is seen by taking right adjoints, keeping in mind that, in the composition

that makes up ȟ, α∗α = idA:

(ȟα)∗ = (βh′α∗α)∗ = (βh′)∗ = h′∗β∗ = h∗β∗ = (βh)∗ ,

implying that ȟα = βh.
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In analogy with “liftable” homomorphisms between nearness frames, that is, those

which can be lifted to completions, we introduce “droppable” homomorphisms.

Let L and M be nearness frames. A homomorphism h : CL −→ CM is said to be

droppable if

h∗[(γM)∗[M ]] ⊆ (γL)∗[L],

where γL : CL −→ L and γM : CM −→ M are the completion arrows. The homomor-

phism ȟ : L −→ M defined above will then be called the drop of h.

Remark 2.3.1 If a homomorphism g : CM −→ CL is droppable with drop h, then h is

liftable, and, by the denseness of γL, the lift of h is g. Thus, dropping and lifting takes us

back where we started. The following lemma shows that the other way round also holds.

Lemma 2.3.2 Suppose h : M −→ L is liftable to completions with lift g. Then g is

droppable and its drop is h.

Proof: Consider the commutative diagram

(†) CM
g //

γ
M

��

CL

γ
L

��
M

h
// L

In this case γ
L
g = hγ

M
, and hence

(γ
L
g)∗ = (hγ

M
)∗ = (γ

M
)∗h∗.

Since h∗[L] ⊆ M, it follows that

(γ
L
g)∗[L] = (γ

M
)∗h∗[L] ⊆ (γ

M
)∗[M ] ,

showing that g is droppable.

Next, the drop of g is the composition

M
(γ

M
)∗// (γ

M
)∗[M ]

g′ // (γ
L
)∗[L]

γ
L // L ,
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whose right adjoint we will show to coincide with that of h. Keep in mind that if x ∈

(γ
L
)∗[L], then g′∗(x) = g∗(x). For any a ∈ L,

(γ
L
g′(γ

M
)∗)∗ (a) = γ

M
(g′∗ ((γ

L
)∗(a))) = γ

M
(g∗ ((γ

L
)∗(a))) .

On the other hand, from commutativity of the diagram (†), we have γ
L
g = hγ

M
, so that

for each a ∈ L,

g∗(γL
)∗(a) = (γ

M
)∗h∗(a) ,

and hence

γ
M

(g∗((γL
)∗(a))) = h∗(a) ,

since γ
M

is onto. Thus h and the drop of g have identical right adjoints, and are therefore

the same homomorphism. �

Corollary 2.3.3 A homomorphism g : CM −→ CL is droppable iff there is a homomor-

phism h : M −→ L that makes the diagram

CM
g //

γ
L

��

CL

γ
L

��
M

h
// L

commute. Furthermore, if the homomorphism h exists, then it is the drop of g.

Proof: We observed above that the drop of g makes the diagram commute, so the forward

implication holds. Conversely, if h makes the diagram commute, then it is liftable with

lift g. So, by the lemma, g is droppable and h is the drop of g. �

Corollary 2.3.4 If g : CM −→ CL is a droppable uniform homomorphism, then its drop

is also uniform.

Proof: Denote the drop of g by ǧ, and let µ and η be the respective nearnesses on L and

M, so that Cµ and Cη are the respective nearnesses on the completions. Given A ∈ η,

we have (γ
M

)∗[A] ∈ Cη, which implies g(γ
M

)∗[A] ∈ Cµ, and hence γ
L
g(γ

M
)∗[A] ∈ µ. But

37



γ
L
g = ǧγ

M
implies γ

L
g(γ

M
)∗ = ǧ, since γ

M
is onto. Thus, ǧ sends uniform covers to

uniform covers. �

We are now able to define the category Compl:

(a) Objects are pairs (CL,L) consisting of a quotient-fine nearness frame and its com-

pletion.

(b) A morphism f : (CM,M) −→ (CL,L) between objects is a droppable uniform

homomorphism f : CM −→ CL.

(c) If f : (CM,M) −→ (CL,L) and g : (CL,L) −→ (CK, K) are morphisms in Compl,

then the composition g ◦ f : CM −→ CK is a droppable uniform homomorphism.

We then define the composite g ◦ f : (CM,M) −→ (CK, K) in Compl to be the

droppable g ◦ f.

Corollary 2.3.3 makes it immediate that composition in Compl is well defined. Next,

we introduce four functors, with accompanying diagrams showing the mappings for clarity:

(E) QfNFrm E // Ext sends a q-fine nearness frame L to CL
γ

L // L , and a uniform

homomorphism h : L −→ M between q-fine nearness frames to the pair of arrows

(Ch, h), where Ch is the lift of h to completions. Thus,

QfNFrm E // Ext

L

h
��

CL
γ

L //

Ch
��

L

h
��

M

� //

CM γ
M

// M

(F) Ext
F // QfNFrm sends an object (h,M,L) of Ext to the q-fine nearness frame

(L, h[Cov(M)]), and a morphism (α, β) : (h,M,L) −→ (g,N,K) to the uniform
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homomorphism β : (L, h[Cov(M)]) −→ (K, g[Cov(N)]). Thus,

Ext
F // QfNFrm

(h,M,L)

(α,β)

��

(L, h[Cov(M)])

β

��
(g,N,K)

� //

(K, g[Cov(N)])

(G) Compl G // Ext sends an object (CL,L) of Compl to CL
γ

L // L , and a mor-

phism g : (CM,M) −→ (CL,L) to the pair (g, ǧ), where ǧ is the drop of g. Thus,

Compl G // Ext

(CM,M)

g

��

CM
γ

M //

g

��

M

ǧ

��
(CL,L)

� //

CL γ
L

// L

(H) Ext
H // Compl sends an object (h,M,L) of Ext to (CL,L), where L is endowed

with the nearness NL = h[Cov(M)]. Its action on morphisms needs some elabora-

tion. Recall that a completion of a nearness frame is unique only up to isomorphism.

What this means is that if h : M −→ L is a completion of L, then there is a unique

isomorphism ϕ
L

M
: CL −→ M such that the triangle

CL
γ

L //

ϕ
L

M
!!DD

DD
DD

DD
L

M
h

>>}}}}}}}}

commutes. Thus, given a morphism (α, β) : (h,M,L) −→ (g,N,K) of Ext, we

have a commutative square

CL
u //

γ
L

��

CK

γ
K

��
L

β
// K

where u is the droppable uniform homomorphism with its drop ǔ = β and u =

(ϕ
K

N
)−1αϕ

L

M
. The action of H on (α, β) is then defined by H(α, β) = (ϕ

K

N
)−1αϕ

L

M
.
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The diagrams below present a clearer picture:

Ext
H // Compl

CLϕ
L

M

yy
γ

Lzzuuu
uuu

uuu
u

H(α,β)

��

M
h //

α

��

L

β
��

M
h //

α

��

L

β

��
N g

// K

� //

N g
// K

CK

γ
K

ddIIIIIIIII
ϕ

K

N

ee

Note that H(α, β) is indeed uniform, since α is uniform because M and N are viewed

as fine nearness frames.

We now establish the categorical equivalences as promised at the beginning of this

section.

Proposition 2.3.5 The pair (E, F) is an equivalence of categories. Thus, Ext and QfNFrm

are equivalent.

Proof: We shall construct a pair of natural isomorphisms

ξ : 1QfNFrm −→ F ◦ E and ζ : 1Ext −→ E ◦ F ,

and the proof ends. Now for any object L and any morphism h : L −→ M of QfNFrm,

we have

(F ◦ E)(L) = F(CL,L) = L and (F ◦ E)(h) = F(Ch, h) = h.

For each object L of QfNFrm, let ξL be the identity homomorphism idL. We claim that

(ξL)L∈QfNFrm defines a natural transformation

ξ : 1QfNFrm −→ F ◦ E.

Let h : L −→ M be a morphism of QfNFrm. In view of the above calculations, the

square

L
idL //

h
��

L

h
��

M
idM

// M
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clearly, commutes. Furthermore, ξL is an isomorphism for each object L of QfNFrm.

Next, for any object (h,M,L) and any morphism (α, β) : (h,M,L) −→ (g,N,K) of

Ext, we have

(E ◦ F)(h,M,L) = E(L, h[Cov(M)]) = (γ
L
, CL, L)

and

(E ◦ F)(α, β) = E(β) = (Cβ, β).

Recall the notation in the definition of the functor H above. For any object (h,M,L) of

Ext, let ζ(h,M,L) - which we abbreviate as ζh - be the morphism

((ϕ
L

M
)−1, idL) : (h,M,L) −→ (γ

L
, CL, L)

of Ext, which, in fact, is an Ext-isomorphism. We claim that (ζh)h∈Ext defines a natural

transformation

ζ : 1Ext −→ E ◦ F.

To prove the claim, let (α, β) : (h,M,L) −→ (g,N,K) be a morphism of Ext. We must

show that the diagram

(h,M,L)
ζh //

(α,β)

��

(γ
L
, CL, L)

(Cβ,β)
��

(g,N,K)
ζg

// (γ
K
, CK,K)

commutes. This means we must show that(
(ϕ

K

N
)−1 ◦ α, idK ◦ β

)
=
(
Cβ ◦ (ϕ

L

M
)−1, β ◦ idL

)
,

that is

(ϕ
K

N
)−1 ◦ α = Cβ ◦ (ϕ

L

M
)−1 and idK ◦ β = β ◦ idL.

The latter is immediate. The former follows from the commutativity of the diagram

CLϕL
M

zz
γ

L||zz
zz

zz
zz

Cβ

��

M
h //

α

��

L

β
��

N g
// K

CK

γ
K

bbDDDDDDDD
ϕK

N

dd

41



since ϕL
M

and ϕK
N

are isomorphisms. �

Remark 2.3.6 If we had wanted only to know that the categories QfNFrm and Ext

are equivalent without exhibiting the attendant natural transformations, we could have

done so by showing that the functor F is full, faithful and isomorphism-dense, where

“isomorphism-dense” means each object of the codomain is isomorphic to the image of

some object of the domain. The proof would have gone as follows:

(a) F is full : Let h : M −→ L and g : N −→ K be objects of Ext. We abbreviate these

objects as h and g. We must show that the map

Fh,g : HomExt(h, g) −→ HomQfNFrm(L, K)

is onto. So let f : L −→ K be a uniform homomorphism. View M and N as

fine nearness frames and recall that the nearness on L, NL = h[Cov(M)] and

similarly for K. Since L and K are strong, and h : M −→ K and g : N −→ K

are (isomorphic to) completions of L and K respectively, the homomorphism f is

liftable to a uniform homomorphism f̄ : M −→ N. As a consequence, (f̄ , f) is an

element of HomExt(h, g) mapped to f by Fh,g.

(b) F is faithful : We show that Fh,g is one-to-one. Let (α, β) and (ι, κ) be arrows

in HomExt(h, g) such that Fh,g(α, β) = Fh,g(ι, κ). Then we have the commutative

diagrams

M
h //

α

��

L

β

��

and M
h //

ι

��

L

κ

��
N g

// K N g
// K

with β = κ. Then gα = βh = κh = gι, whence α = ι since g is monic as it is dense.

Therefore (α, β) = (ι, κ).

(c) F is isomorphism-dense. Let L be a q-fine nearness frame. Then γ
L

: CL −→ L is

an element of Ext so that F(γ
L

: CL −→ L) = L and the proof ends.

The functor F is not an isomorphism. If it were, then its object-function would be

bijective by [34, Proposition 14.3]. But clearly its object-function is not bijective. For
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instance, given any regular frame L, let j : L ⊕ 2 −→ L be an isomorphism a ⊕ 1 7→ a.

Then F(L
idL // L) = F(L⊕ 2

j // L) .

Proposition 2.3.7 The pair (G, H) is an equivalence of categories. Thus, Compl and

Ext are equivalent.

Proof: We shall construct a pair of natural isomorphisms

ϑ : 1Ext −→ G ◦ H and % : 1Compl −→ H ◦ G.

Now for any object (h,M,L) of Ext, we have

(G ◦ H)(h,M,L) = G(CL,L) = (γ
L
, CL, L),

and for any morphism (α, β) : (h,M,L) −→ (g,N,K) of Ext, we have

(G ◦ H)(α, β) = G
(
(ϕK

N
)−1αϕL

M
: CL −→ CK

)
=
(
(ϕK

N
)−1αϕL

M
, β
)
.

As in the previous proof (see Proposition 2.3.5), for any object (h,M,L) of Ext, we let

ϑ(h,M,L) - which again we abbreviate as ϑh - be the Ext-isomorphism given by

(
(ϕL

M
)−1, idL

)
: (h,M,L) −→ (γ

L
, CL, L).

Let (α, β) : (h,M,L) −→ (g,N,K) be a morphism of Ext. The diagram

(h,M,L)
ϑh //

(α,β)

��

(γ
L
, CL, L)

((ϕK
N

)−1αϕL
M

, β)

��
(g,N,K)

ϑg

// (γ
K
, CK,K)

commutes because

(
(ϕK

N
)−1αϕL

M
, β
)
◦
(
(ϕL

M
)−1, idL

)
=
(
(ϕK

N
)−1α, idKβ

)
=
(
(ϕK

N
)−1, idK

)
◦ (α, β).

Consequently, ϑ is a natural isomorphism.

Next, for any object (CL,L) of Compl, we have

(H ◦ G)(CL,L) = H(γ
L
, CL, L) = (CL,L),
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and for any morphism f : (CM,M) −→ (CL,L) of Compl, we have

(H ◦ G)(f) = H(f, f̌) = (ϕM
CM

)−1fϕL
CL

= id−1
CM · f · idCL = f.

Given an object (CL,L) of Compl, let %(CL,L) be the morphism

%(CL,L) : (CL,L) −→ (CL,L)

defined by the uniform isomorphism idCL : CL −→ CL. Then %(CL,L) is an isomorphism

in Compl. We show that this defines a natural transformation as desired. Let f :

(CM,M) −→ (CL,L) be a morphism in Compl. Then the diagram

(CM,M)
%(CM,M) //

f

��

(H ◦ G)(CM,M)

(H◦G)(f)
��

(CL,L) %(CL,L)

// (H ◦ G)(CL,L)

commutes, since it reduces to the diagram

(CM,M)
idCM //

f

��

(CM,M)

f

��
(CL,L)

idCL

// (CL,L)

which is clearly commutative. This concludes the proof. �

Because the relation “is equivalent to” is an equivalence relation on the conglomerate

of all categories [34, Proposition 14.9], we have that:

Corollary 2.3.8 Any two of the categories Compl, Ext and QfNFrm are equivalent.
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Chapter 3

Some subcategories closed under

coproducts

In this chapter we consider certain subcategories of NFrm which we show to be closed

under the formation of quotients, completions and coproducts. To be more precise, in

one instance we show the subcategory to be closed under countable coproducts. We also

characterize quotient-fine nearness frames that reside inside these subcategories. The

characterizations are of the form we describe below.

For some of the subcategories A considered here, we show that the following are equiv-

alent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and is in A.

(2) The completion of (L, µ) is fine and is in A.

(3) The nearness on L is induced by an extension with a certain property.

We shall say that A is co-hereditary in NFrm if it is closed under quotients, and

coproductive in NFrm if it is closed under formation of coproducts.

We conclude the chapter with the introduction of a subcategory of StrNFrm which

contains both the uniformly prenormal and the almost uniform nearness frames; and is

closed under the formation of completions.
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3.1 Zero-dimensionality in structured frames

In [44] McKee defines a nearness space (X, ξ) to be zero-dimensional if every uniform

cover U is refined by a uniform cover V such that {V, X \ V } is a uniform cover for

each V ∈ V . A further observation given in [44] is that zero-dimensional nearness spaces

are regular. Consequently, employing the terminology of S.S. Hong and Y.K. Kim [36],

zero-dimensional nearness spaces are framed. Now given a framed nearness space (X, ξ),

for any open subset V of X, {V, X \ V } is a uniform cover of X if and only if {V, V ∗}

is a uniform cover of the nearness frame OX. This, in turn, is true if and only if V is

uniformly below itself in the nearness frame OX. We therefore formulate the following

definition.

Definition 3.1.1 A nearness frame (L, µ) is uniformly zero-dimensional if for any cover

A ∈ µ, there is a cover B ∈ µ refining A and with the property that for each b ∈ B, bC b.

We write ZdNFrm for the category of uniformly zero-dimensional nearness frames.

Now if V ∈ OX, with X being a topological space, then V ∗ = int(X − V ) is the

pseudocomplement of V in OX. So a framed nearness space (X, ξ) is zero-dimensional iff

the associated nearness frame (OX, µ) is uniformly zero-dimensional. We use the term

“uniformly zero-dimensional” in order to distinguish between this new concept and the

usual zero-dimensionality of frames defined by stipulating that every element be a join of

complemented elements.

Proposition 3.1.2 If a nearness frame (L, µ) is uniformly zero-dimensional, then its

underlying frame L is zero-dimensional.

Proof: Let a ∈ L\{0}. Now a =
∨
{x ∈ L | xCa} by the admissibility property of µ. We

need to show that a can be expressed as a join of complemented elements below it in L.

Suppose x C a. This implies that {x∗, a} ∈ µ. Since (L, µ) is uniformly zero-dimensional,

there is B ∈ µ refining {x∗, a} and having the property that {b, b∗} ∈ µ for every b ∈ B.

Now we have that x ≤ Bx =
∨
{y ∈ B | y ∧ x 6= 0}. Also y ∧ x 6= 0 implies y � x∗, so

that y ≤ a, since B refines {x∗, a}. Consequently

a =
∨
{x ∈ L | x C a} ≤

∨
{y ∈ B | y ∧ x 6= 0} ≤ a.
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Since each element of B is complemented, it follows that a is expressible as a join of

complemented elements below it, so that L is zero-dimensional. �

The reverse implication in the above proposition holds if we require that the nearness

frame be fine as shown in the result below.

Proposition 3.1.3 A fine nearness frame (L, µ) is uniformly zero-dimensional iff the

underlying frame L is zero-dimensional.

Proof: The implication ⇒ follows from the above proposition. As for the converse,

suppose L is a zero-dimensional frame, and let A ∈ µ. Then for each a ∈ A, put

Ba = {x ∈ L | x ≤ a and x is complemented}.

Then, since (L, µ) is fine, for every x ∈ Ba, {x, x∗} is a uniform cover, and, since L

is zero-dimensional,
∨

Ba = a. Consequently the set B =
⋃

a∈A Ba is a uniform cover

refining A, with each of its elements uniformly below itself. Thus, (L, µ) is uniformly

zero-dimensional. �

Definition 3.1.4 Let (L, µ) be a nearness frame. We say B ∈ µ strongly refines A ∈ µ

and write B C A if for each b ∈ B, there exists a ∈ A such that b C a. Note that B C A

implies B ≤ A, since b C a implies b ≤ a.

Before showing the containment ZdNFrm ⊆ StrNFrm, we will need the following

characterization of strong nearness frames.

Lemma 3.1.5 (L, µ) is a strong nearness frame if and only if for each A ∈ µ, there exists

B ∈ µ such that B C A.

Proof: (⇒) Suppose (L, µ) is strong. Then, by definition, given A ∈ µ, we have that the

cover

Ǎ = {b ∈ L | ∃ a ∈ A, b C a}
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belongs to µ. Then clearly, Ǎ C A.

(⇐) Conversely, suppose the given condition holds. Let C ∈ µ. Then by the given

condition, let B be a uniform cover strongly refining C. If b ∈ B, then there exists c ∈ C

such that b C c, which implies b ≤ c. Consequently, B refines Č. Hence Č ∈ µ, so that

(L, µ) is strong. �

Proposition 3.1.6 Every uniformly zero-dimensional nearness frame is strong.

Proof: Suppose (L, µ) is uniformly zero-dimensional. Let A ∈ µ. By the hypothesis,

there exists B ∈ µ such that B ≤ A, with b C b for every b ∈ B. To complete the proof,

we show that B strongly refines A. But this is clear, since for each b ∈ B, there exists

a ∈ A such that b C b ≤ a, so that b C a. Consequently, B C A. �

Proposition 3.1.7 ZdNFrm is co-hereditary and coproductive in NFrm.

Proof: First, we show that ZdNFrm is co-hereditary. Let (L, µ) and (M, η) be nearness

frames, where (L, µ) is uniformly zero-dimensional, and let h : L −→ M be an onto

homomorphism such that η = h[µ]. To see that (M, η) is uniformly zero-dimensional, let

A ∈ η and B ∈ µ be such that A = h[B]. Since (L, µ) is uniformly zero-dimensional, there

exists C ∈ µ refining B, with the property that for every c ∈ C, c C c. In this case h[C]

is a uniform cover of M refining h[B], and h(c) C h(c) for every c ∈ C. Hence (M, η) is

uniformly zero-dimensional.

Second, we show that ZdNFrm is closed under formation of coproducts. Let {(Li, µi)}i∈I

be a family of uniformly zero-dimensional nearness frames. Let (⊕iLi,⊕iµi) be the co-

product of the said family, and A ∈ ⊕iµi. Pick Bi ∈ µi, where finitely many of the Bi’s

are nontrivial, such that ⊕iBi ≤ A. Let Bi1 , . . . , Bim be the nontrivial uniform covers.

For each k ∈ {1, . . . ,m}, let Cik be a uniform cover of Lik refining Bik such that each

element of Cik is uniformly below itself. For each i 6∈ {i1, . . . , im}, let Ci = {1}. Then

⊕iCi ∈ ⊕iµi. Observe that ⊕iCi ≤ ⊕iBi.

Next, let ⊕ici ∈ ⊕iCi. Since cik C cik for all k = 1, . . . ,m and 1 C 1, we conclude, by

Lemma 1.4.11(iii), that ⊕ici C⊕ici. Hence (⊕iLi,⊕iµi) is uniformly zero-dimensional. �
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Lemma 3.1.8 If a strong nearness frame has a dense quotient which is uniformly zero-

dimensional, then the nearness frame itself is uniformly zero-dimensional.

Proof: Let h : (L, µ) −→ (M, η) be a dense surjection with (L, µ) strong and (M, η)

uniformly zero-dimensional. Then, by Lemma 1.4.6(i), h is a strict surjection. Let A ∈ µ.

Pick a uniform cover C of M such that h∗[C] ≤ A. Since (M, η) is uniformly zero-

dimensional, there exists a uniform cover D of M which refines C and each of whose

elements is uniformly below itself. Then h∗[D] is a uniform cover of L refining A. By

Lemma 1.4.7(iii), every element of h∗[D] is uniformly below itself. Therefore (L, µ) is

uniformly zero-dimensional. �

As a consequence of ZdNFrm being co-hereditary and Lemma 3.1.8 we have the

following result.

Corollary 3.1.9 A nearness frame is uniformly zero-dimensional iff its completion is

uniformly zero-dimensional.

The next result, which is in the format mentioned in the introduction to this chapter,

is a frame version of the main result of [44], and is easily deducible from the above results.

Proposition 3.1.10 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and uniformly zero-dimensional.

(2) The completion of (L, µ) is both fine and uniformly zero-dimensional.

(3) The nearness on L is induced by a zero-dimensional extension.

Proof: (1)⇒(2): Let (L, µ) be quotient-fine and uniformly zero-dimensional. Then, by

the above corollary, its completion is uniformly zero-dimensional. The completion is fine,

by Lemma 2.1.6.

(2)⇒(3): Suppose the completion (CL,Cµ) satisfies condition (2). Then Cµ =

Cov(CL). By Proposition 3.1.3, the frame CL is zero-dimensional. Now the comple-

tion map γ
L

: CL −→ L is dense onto, and since (L, µ) is quotient-fine,

µ = γ
L
[Cµ] = γ

L
[Cov(CL)].
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Hence (3) holds.

(3)⇒(1): Let h : M −→ L be a dense onto frame homomorphism such that the frame

M is zero-dimensional, and µ = h[Cov(M)]. Then (L, µ) is quotient-fine since it is a

dense quotient of a fine nearness frame. By Proposition 3.1.3, (M, Cov(M)) is uniformly

zero-dimensional. Hence, by Proposition 3.1.7, (L, µ) is uniformly zero-dimensional. �

We now want to contrast uniform zero-dimensionality with the frame-theoretic version

of what Herrlich [33] calls zero-dimensionality of nearness spaces defined by requiring that

every uniform cover be refined by a uniform partition. We therefore formulate the follow-

ing definition. Recall that a partition of a frame L is a cover P by complemented elements

such that a ∧ b = 0 for all distinct a, b ∈ P. Note that in fact the word “complemented”

can be omitted in the definition of a partition because if P is a cover of L and a∧b = 0 for

all distinct a, b ∈ P , then each element of P is complemented. Indeed, given any a ∈ P ,

a ∧
∨

(P \ {a}) =
∨
{a ∧ x | x ∈ P, x 6= a} = 0 and a ∨

∨
(P \ {a}) = 1.

Definition 3.1.11 A nearness frame is H-zero-dimensional if every uniform cover is re-

fined by a uniform partition. We write HZdNFrm for the category of H-zero-dimensional

nearness frames.

Clearly, any partition star-refines itself. Thus, any H-zero-dimensional nearness frame

is actually a uniform frame. This definition is not new. It is precisely the definition

of what are called transitive uniform frames in [7]. Because we want to emphasize the

inherent zero-dimensionality in these nearness frames, we shall use the adjective in the

definition rather than the one in [7].

Proposition 3.1.12 If a nearness frame (L, µ) is H-zero-dimensional, then it is uni-

formly zero-dimensional.

Proof: Suppose (L, µ) is H-zero-dimensional. Let A ∈ µ and P a uniform partition

refining A. Let x ∈ P . We infer that P refines {x, x∗}, since whenever a 6= x in P

we have a ∧ x = 0, so that a ≤ x∗. Hence {x, x∗} ∈ µ so that (L, µ) is uniformly

zero-dimensional. �
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The converse of the above result is false; that is, a uniformly zero-dimensional near-

ness frame need not be H-zero-dimensional. The following example substantiates this

contention.

Example 3.1.13 As mentioned in [7, page 40], the frame L = OX, where X is the

Gleason cover of the Tychonoff plank, is regular and extremally disconnected but not

normal. Thus, L is zero-dimensional since, for any a ∈ L, x ≺ a implies x∗∗ ≤ a, so that

a =
∨
{x ∈ L | x ≺ a} =

∨
{x∗∗ | x ≺ a},

showing that a is a join of complemented elements. Therefore, in view of Proposition

3.1.3, (L, Cov(L)) is a uniformly zero-dimensional nearness frame. On the other hand

though, (L, Cov(L)) is not H-zero-dimensional, for if it were, then it would be a uniform

frame, and hence L would be paracompact, and therefore normal.

The above example shows that the two notions of uniform zero-dimensionality do not

coincide; the latter being strictly stronger in general. There are instances where they

agree. To show that we shall require the following lemma from [7].

Lemma 3.1.14 In any frame L, any locally finite (and therefore any finite) cover by

complemented elements is refined by a partion.

As observed in the proof of [7, Proposition 2.3], if A is a finite cover by complemented

elements and P is a partition refining A, then the set {x̃ | x ∈ P}, where, for each x ∈ P ,

x̃ =
∨
{y ∈ P | A∩ ↓x = A∩ ↓y}

is a finite partition refining A.

Proposition 3.1.15 A finitely fine nearness frame is uniformly zero-dimensional iff it

is H-zero-dimensional.

Proof: In light of Proposition 3.1.12, we need only prove the left-to-right implication.

So, let L be a uniformly zero-dimensional nearness frame. Let A be a finite uniform cover.

By hypothesis, there is a uniform cover B which refines A and is such that b C b for each
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b ∈ B. Since L is finitely fine, B has a finite subset B′ which is a uniform cover. Each

element of B′ is complemented, so by Lemma 3.1.14 and the discussion following it, there

is a finite partition P which refines B′, and hence A. Since L is finitely fine and P is finite,

P is a uniform partition refining A. Since finite uniform covers generate the nearness of

L, it follows that every uniform cover of L is refined by a uniform partition. Therefore L

is H-zero-dimensional. �

In order for us to characterize quotient-fine H-zero-dimensional nearness frames in the

manner described at the beginning of the chapter, we shall need the following preliminary

results.

Lemma 3.1.16 A quotient of an H-zero-dimensional nearness frame is H-zero-dimensional.

Proof: Let (L, µ) be a nearness frame and h : L −→ M a quotient map. Suppose A is

a uniform cover of M . Then, since h is a surjection, pick B ∈ µ such that A = h[B].

Since (L, µ) is H-zero-dimensional, there is a uniform partition P of L such that P refines

A. Therefore h[P ] is a uniform partition of M refining A. Consequently, (M, h[µ]) is

H-zero-dimensional. �

Lemma 3.1.17 Let h : (L, µ) −→ (M, η) be a strict surjection. Then (L, µ) is H-

zero-dimensional iff (M, η) is H-zero-dimensional. Hence, a nearness frame is H-zero-

dimensional iff its completion has the same feature.

Proof: The one implication follows from Lemma 3.1.16 Conversely, let A be a uniform

cover of L. Then h∗[B] refines A for some uniform cover B of M . By hypothesis, there

is a uniform partition P of M which refines B. Since h is a strict surjection, h∗[P ] is

a cover of L. Let x and y be distinct elements of h∗[P ]. Choose a, b ∈ P such that

x = h∗(a), y = h∗(b). Then a and b are distinct, and therefore, in view of h being dense,

x ∧ y = h∗(a) ∧ h∗(b) = h∗(a ∧ b) = h∗(0) = 0.

Thus, h∗[P ] is a uniform partition of L refining A. �
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To obtain a characterization of quotient-fine H-zero-dimensional nearness frames, we

first recall from [7, Proposition 2.6] that

a completely regular frame is paracompact and strongly zero-dimensional iff

every cover is refined by a partition.

Proposition 3.1.18 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and H-zero-dimensional.

(2) The completion of (L, µ) is fine and H-zero-dimensional.

(3) The nearness on L is induced by a paracompact and strongly zero-dimensional ex-

tension.

Proof: (1)⇒(2): Suppose (L, µ) is quotient-fine and H-zero-dimensional. Then its com-

pletion is H-zero-dimensional, by Lemma 3.1.17, and fine, by Lemma 2.1.6.

(2)⇒(3): Suppose condition (2) holds. Let (CL,Cµ) be the completion. Then Cµ =

Cov(CL), and, since the completion is H-zero-dimensional, every cover of the frame CL

is refined by a partition. So by the result in [7] stated above, CL is paracompact and

strongly zero-dimensional. Since the completion map γ
L

: CL −→ L is dense onto, and

µ = γ
L
[Cµ], we deduce that (3) holds.

(3)⇒(1): Let h : M −→ L be a dense onto frame homomorphism, where M is a para-

compact, strongly zero-dimensional frame and µ = h[Cov(M)]. Then (L, µ) is quotient-

fine, and by the cited result in [7], (M, Cov(M)) is H-zero-dimensional. Consequently, by

Lemma 3.1.16, (L, µ) is H-zero-dimensional. �

Proposition 3.1.19 HZdNFrm is co-hereditary and coproductive in NFrm.

Proof: The co-hereditary property is Lemma 3.1.16. To show coproductivity, let {(Li, µi)}i∈I

be a family of H-zero-dimensional nearness frames. Let ⊕iAi be a basic uniform cover of

⊕iLi with Ai1 , . . . , Aim being the only nontrivial uniform covers. For each k ∈ {1, . . . ,m},

let Pik be a uniform partition of Lik which refines Aik . For i 6∈ {i1, . . . , im} let Pi = {1}.

Then ⊕iPi ∈ ⊕iµi and ⊕iPi ≤ ⊕iAi.
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It remains to show that ⊕iPi is a partition of ⊕iLi. Let ⊕ipi and ⊕iqi be distinct

elements of ⊕iPi. Since pj = 1 = qj for j 6∈ {1, . . . ,m} there exists l ∈ {1, . . . ,m} such

that pil 6= qil . So pil and qil are distinct elements of the partition Pil , and this implies

pil ∧ qil = 0. Therefore ⊕ipi ∧ ⊕iqi = ⊕i(pi ∧ qi) = 0. Thus, ⊕iPi is a partition, and the

proof ends. �

3.2 Čech-complete nearness frames

In this section, following the discussion of Bentley and Hunsaker [20] on Čech-complete

nearness spaces, we introduce Čech-complete and strongly Čech-complete frames, leading

us to explore the properties of constrained and controlled nearness frames. We end the

section by introducing uniformly Čech-complete and uniformly strongly Čech-complete

nearness frames, showing their relationship with the constrained and controlled ones.

Let L be a frame, F ⊆ L a filter, and N ⊆ Cov(L). Then we say:

(a) F clusters if for every cover A ∈ Cov(L), there exists a ∈ A such that for every

x ∈ F, a ∧ x 6= 0.

(b) F is N -Cauchy if for every C ∈ N , F ∩ C 6= ∅. (In other words, F meets every

cover in N ).

(c) F converges if F meets every cover of L. (Thus, every convergent filter is N -

Cauchy).

(d) N is complete if every N -Cauchy filter converges.

(e) N is weakly complete if every N -Cauchy filter clusters.

Definition 3.2.1 (i) A frame L is Čech-complete if there is a countable collection

N ⊆ Cov(L) which is weakly complete. L is strongly Čech-complete if it has a

countable complete collection of covers.

(ii) A nearness frame (L, µ) is said to be constrained if there is a countable collection

N ⊆ µ such that every N -Cauchy filter is a near subset. In this case we say N

54



constrains L. We write ConNFrm for the resulting subcategory of constrained

nearness frames.

In order to establish our first result in this section, we shall need to observe the fol-

lowing:

Lemma 3.2.2 In a fine nearness frame (L, Cov(L)), a filter F ⊆ L is near iff it clusters.

Proof: (⇒) Let F ⊆ L be a near filter, and let A ∈ Cov(L). Then, by definition, there

exists x ∈ A such that for every y ∈ F, x ∧ y 6= 0. This implies that F clusters.

(⇐) Conversely, if F ⊆ L clusters, then, clearly, F is a near subset, since the nearness

here is the whole of Cov(L). �

Proposition 3.2.3 A frame L is Čech-complete iff (L, Cov(L)) is a constrained nearness

frame.

Proof: (⇒) Suppose L is Čech-complete. We show that (L, Cov(L)) is constrained. By

hypothesis, let N ⊆ Cov(L) be a weakly complete countable collection, and let F ⊆ L

be an N -Cauchy filter. Then F clusters, since N is weakly complete. So, by the above

lemma, F is near, and hence, (L, Cov(L)) is constrained.

(⇐) Conversely, let M⊆ Cov(L) be a countable collection constraining L. Then every

M-Cauchy filter F ⊆ L is near, and, by the above lemma, F clusters. This implies M is

weakly complete, so that L is Čech-complete. �

Proposition 3.2.4 Suppose h : (M, η) −→ (L, µ) is a dense surjection between nearness

frames. Then (M, η) is constrained iff (L, µ) is constrained.

Proof: (⇐) Suppose N constrains L. Then we claim that

M = {h∗[A] | A ∈ N}

constrains M. Let G be any M-Cauchy filter, and put F = h[G]. Then, since h is dense,

F is a filter in L which is N -Cauchy. So F is near. Let U ∈ η. Then h[U ] ∈ µ, and so
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there is u ∈ U such that h(u) ∧ x 6= 0 for every x ∈ F. This implies u ∧ y 6= 0 for every

y ∈ G. Hence G is near.

(⇒) Conversely, suppose K constrains M. For each U ∈ K, let AU ∈ µ be such that

h∗[AU ] refines U. Put

H = {AU | U ∈ K}.

We claim that H constrains L. To see this, let F be an H-Cauchy filter in L. Put

G = {z ∈ M | z ≥ h∗(x) for some x ∈ F}.

Then G is a K-Cauchy filter in M, and is therefore near. If A ∈ µ, then there is a ∈ A

such that h∗(a) ∧ z 6= 0 for every z ∈ G, since h∗(A) ∈ η. Then for any x ∈ F, a ∧ x 6= 0

since h is dense. Hence F is near. �

Since the completion map γ
L

: CL −→ L is a dense surjection, we deduce from the

above proposition the following result.

Corollary 3.2.5 A nearness frame is constrained iff its completion is constrained.

We have the following characterization for constrained quotient-fine nearness frames.

Proposition 3.2.6 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and constrained.

(2) The completion of (L, µ) is both fine and constrained.

(3) The nearness on L is induced by a Čech-complete extension.

Proof: (1)⇒(2): Let (L, µ) be quotient-fine and constrained. Then, by the above corol-

lary, the completion (CL,Cµ) is constrained. The completion is fine, by Lemma 2.1.6.

(2)⇒(3): Suppose the completion (CL,Cµ) is fine and constrained. Then Cµ =

Cov(CL), and, by Proposition 3.2.3, the frame CL is Čech-complete. Since the completion

map γ
L

: CL −→ L is dense onto and µ = γ
L
[Cµ], we deduce (3) holds.
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(3)⇒(1): Let h : M −→ L be a dense onto frame homomorphism, where M is a

Čech-complete frame and µ = h[Cov(M)]. Then (L, µ) is quotient-fine, and, by Propo-

sition 3.2.3, (M, Cov(M)) is constrained. Consequently, by Proposition 3.2.4, (L, µ) is

constrained. �

In the following example we shall need to observe the following:

Lemma 3.2.7 (i) Every strongly Čech-complete frame is Čech-complete.

(ii) If L is compact regular, then it is Čech-complete.

Proof: (i) Clear from the definitions.

(ii) Given L is compact regular, let A ∈ Cov(L) and take N = {A}. Since L is

compact regular, every filter F ⊆ L clusters (see [35, Corollary 1.5]). In particular if F is

an N -Cauchy filter, then it clusters, so that N is weakly complete, and consequently, L

is Čech-complete. �

Example 3.2.8 We wish to note that the underlying frame of a constrained nearness

frame may fail to be Čech-complete. To see this, consider the set Q of rationals with its

usual topology L = OQ. So L is not a Čech-complete frame. Let h : βL −→ L be the

Stone-Čech compactification of L, and equip L with the nearness

µ = {h[A] | A ∈ Cov(βL)}.

Now, since βL is compact and regular, it is also Čech-complete, and therefore constrained

(being a fine nearness frame). In addition, h : βL −→ L is the completion of (L, µ). So

(L, µ) is constrained, even though L fails to be Čech-complete.

In the next set of results we aim to show that constrainedness is preserved under

countable coproducts. We make use of ultrafilters to achieve that. First, we note the

following result.

Lemma 3.2.9 If h : L −→ M is a dense frame homomorphism, and U ⊆ M an ultrafil-

ter, then h−1[U ] ⊆ L is an ultrafilter of L.
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Proof: Let a ∈ L. Then, since h is dense, it preserves pseudocomplements (that is h(a∗) =

h(a)∗). This implies, by Lemma 1.3.1(iii), either h(a) ∈ U or h(a∗) ∈ U. Consequently

a ∈ h−1[U ] or a∗ ∈ h−1[U ], and therefore h−1[U ] is an ultrafilter. �

Let (L, µ) be a nearness frame. We say a filter F ⊆ L is Cauchy if F ∩C 6= ∅ for each

C ∈ µ. We observe that Cauchy filters are near subsets. To see this, if F ⊆ L is Cauchy

and U ∈ µ, then there exists x ∈ F ∩ U. Since F is a filter, x ∧ y 6= 0 for each y ∈ F, so

that F is near.

To show that the coproduct of countably many constrained nearness frames is con-

strained, we shall need to observe the following:

Lemma 3.2.10 An ultrafilter U in a nearness frame (L, µ) is a near subset iff it is

Cauchy.

Proof: If U is Cauchy, then clearly, it is near (see [22]). Conversely, suppose U is near,

and let C ∈ µ. Take c ∈ C such that c ∧ x 6= 0 for each x ∈ U . Since U is an ultrafilter,

this implies c ∈ U . �

Our argument for the following result is modeled along that of [20, Proposition 9].

Proposition 3.2.11 ConNFrm is countably coproductive in NFrm.

Proof: Let {(Ln, µn)}n∈N be a countable family of constrained nearness frames. We show

that the coproduct (⊕nLn,⊕nµn) is also constrained. For each n ∈ N, let Nn ⊆ µn be a

countable collection constraining Ln. Define a countable collection N of uniform covers

of ⊕nLn by

N = {⊕nCn | for some k ∈ N, n ≤ k implies Cn ∈ Nn, and Cn = {1} otherwise} .

We show that N constrains ⊕nLn. Let F ⊆ ⊕nLn be an N -Cauchy filter in ⊕nLn. We

shall show that F is near, and the proof ends. Let G be an ultrafilter containing F. Then

G is also N -Cauchy. Let

(ιn : Ln −→ ⊕nLn)n
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be the coproduct injections. Since the ιn are dense, we have that, for each n ∈ N,

ι−1
n [G] = {a ∈ Ln | ιn(a) ∈ G}

is an ultrafilter in Ln. We show that, for each n ∈ N, ι−1
n [G] is an Nn-Cauchy filter. Fix

n ∈ N. For each m ≤ n pick any cover Cm ∈ Nm, and for m > n, let Cm = {1}. Then

⊕mCm ∈ N . Since G is N -Cauchy, it meets ⊕mCm. Pick an element

⊕mcm ∈ G ∩ (⊕mCm).

Since ιn(cn) = ⊕mbm, where bn = cn and bm = 1 for m 6= n, we have that

⊕mcm ≤ ιn(cn).

So ιn(cn) ∈ G, since G is an upset. This implies cn ∈ ι−1
n [G], and therefore ι−1

n [G] meets

Cn. Since Cn was arbitrarily chosen, we conclude that ι−1
n [G] is near.

Next, we show that G is near. Let A be a uniform cover of ⊕nLn. Find ⊕nAn ≤ A,

where An1 ∈ µn1 , . . . , Ank
∈ µnk

is a finite subsequence of the An’s and An = {1} for

n 6∈ {n1, . . . , nk}. Since the ι−1
n [G] are near ultrafilters, they are Cauchy and hence, there

exists xn ∈ An, for every n, such that xn ∈ ι−1
n [G]. This implies ιn(xn) ∈ G. Since G is a

filter, it follows that ∧
n

ιn(xn) = ⊕nxn ∈ G,

where the meet is in fact a finite meet (since only finitely many of the xn’s are nontrivial).

Since ⊕nAn ≤ A, there exists a ∈ A such that ⊕nxn ≤ a. Since G is a filter and ⊕nxn ∈ G,

it follows that a ∈ G. Thus, a ∈ A ∩ G. Therefore G is near, and we conclude that F is

also near. �

Definition 3.2.12 A nearness frame (L, µ) is said to be controlled if there is a countable

collection N ⊆ µ such that every N -Cauchy filter is Cauchy. In this case we say N

controls L. We write CntrNFrm for the resulting category of controlled nearness frames.

Remark 3.2.13 Since Cauchy filters are near, as observed earlier, controlled nearness

frames are constrained. Thus, CntrNFrm ⊆ ConNFrm.
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To note an easy example of controlled nearness frames, we recall that a nearness frame

(L, µ) is said to be of countable type if the nearness µ is generated by a countable collection

of covers of L. So every nearness frame of countable type is controlled by a countable

base for the nearness.

Proposition 3.2.14 A frame L is strongly Čech-complete iff (L, Cov(L)) is a controlled,

fine nearness frame.

Proof: (⇒) Given L is strongly Čech-complete, let N ⊆ Cov(L) be a countable complete

collection, and F ⊆ L an N -Cauchy filter. Then F converges. This implies that F∩C 6= ∅

for every C ∈ Cov(L), so that F is a Cauchy filter. Hence N controls L.

(⇐) Conversely, suppose (L, Cov(L)) is controlled. Let M ⊆ Cov(L) be a countable

collection controlling L, and let F ⊆ L be an M-Cauchy filter. Then for every A ∈

Cov(L), F ∩ A 6= ∅, since M controls L. But this means F converges. Hence M is

complete, so that L is strongly Čech-complete. �

Proposition 3.2.15 If h : (M, η) −→ (L, µ) is a surjection of nearness frames, then

(M, η) is controlled iff (L, µ) is controlled.

Proof: (⇒) Suppose A ⊆ η controls M. We show that

B = {h[A] | A ∈ A}

controls L. Let F be a B-Cauchy filter in L. Then the set

G = {z ∈ M | z ≥ h∗(x) for some x ∈ F}

is an A-Cauchy filter, and hence is Cauchy. Let U ∈ µ and pick a V ∈ η such that h[V ]

refines U. Choose v ∈ V ∩G and x ∈ F such that h∗(x) ≤ v. Also choose u ∈ U such that

h(v) ≤ u. Then x = hh∗(x) ≤ h(v) ≤ u, and it follows that u ∈ F ∩ U. So F is Cauchy.

(⇐) Conversely, suppose N ⊆ µ controls L. Put

M = {h∗[C] | C ∈ N},
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and let G be an M-Cauchy filter of M. Then F = h[G] is an N -Cauchy filter of L. By

an argument similar to the above, we see that G is a Cauchy filter. �

In the above proof, we did not require that h be strict. Only the onto property of h was

required. It then follows that the category CntrNFrm is co-hereditary. We also deduce

from the above proposition that CntrNFrm is closed under completions as stated in the

following corollary.

Corollary 3.2.16 A nearness frame is controlled iff its completion is controlled.

Proposition 3.2.17 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and controlled.

(2) The completion of (L, µ) is both fine and controlled.

(3) The nearness on L is induced by a strongly Čech-complete extension.

Proof: (1)⇒(2): Suppose (L, µ) is quotient-fine and controlled. By the corollary above,

the completion (CL,Cµ) is controlled, and, by Lemma 2.1.6, the completion is fine.

(2)⇒(3): Suppose (CL,Cµ) is fine and controlled. Then, by Proposition 3.2.14, CL

is a strongly Čech-complete frame. Since Cµ = Cov(CL) and the completion map γ
L

is

dense onto with µ = γ
L
[Cµ], we deduce that (3) holds.

(3)⇒(1). Suppose h : M −→ L is dense onto with µ = h[Cov(M)] and M being a

strongly Čech-complete frame. Then, by Proposition 3.2.14, (M, Cov(M)) is controlled.

(L, µ) is quotient-fine since h is a quotient map, and, by Proposition 3.2.15, (L, µ) is

controlled. �

Definition 3.2.18 A nearness frame (L, µ) is called uniformly Čech-complete if there

exists a countable collection N ⊆ µ which is weakly complete. We write UCCNFrm for

the resulting category.
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Remark 3.2.19 Consequently, from the definitions, if (L, µ) is a uniformly Čech-complete

nearness frame, then the underlying frame L is Čech-complete. Notice that if (L, µ) is a

fine nearness frame, then the converse holds.

Proposition 3.2.20 Every uniformly Čech-complete nearness frame is constrained. Thus,

UCCNFrm ⊆ ConNFrm.

Proof: Given (L, µ) is uniformly Čech-complete, let N ⊆ µ be a countable weakly

complete collection, and let F ⊆ L be an N -Cauchy filter. Take C ∈ µ. Then, since F

clusters, there exists x ∈ C such that for all for all y ∈ F, x ∧ y 6= 0. This implies F is

near. Hence N constrains L. �

Definition 3.2.21 A nearness frame (L, µ) is called uniformly strongly Čech-complete if

there exists a countable collection N ⊆ µ which is complete. We write UsCCNFrm for

the resulting category.

We observe that every uniformly strongly Čech-complete nearness frame is necessarily

uniformly Čech-complete, and its underlying frame is strongly Čech-complete. Since every

filter F ⊆ L which converges is clearly a Cauchy filter, the following result is immediate.

Proposition 3.2.22 Every uniformly strongly Čech-complete nearness frame is controlled.

We, therefore, have established the following containments among the subcategories

discussed in this section:

UsCCNFrm ⊆ UCCNFrm ⊆ ConNFrm

and

UsCCNFrm ⊆ CntrNFrm ⊆ ConNFrm.
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3.3 Almost uniform nearness frames

Our attempts at establishing whether or not the category of strong nearness frames is

coreflective in the category of nearness frames were not successful. We have however

established that almost uniform frames are coreflective in the category of interpolative

nearness frames - a result presented shortly. But first we establish that StrNFrm is

closed under coproducts.

Proposition 3.3.1 The category StrNFrm is coproductive in NFrm.

Proof: Let {(Li, µi)}i∈I be a family of strong nearness frames. We show that the co-

product (⊕iLi,⊕iµi) is also a strong nearness frame. Let A ∈ ⊕iµi. Then A is refined by

a uniform cover of the form ⊕iAi, where only finitely many of the Ai are nontrivial, say

Ai1 , . . . , Aim . We construct a strong refinement of⊕iAi as follows: for each i ∈ {i1, . . . , im},

let Bi be a uniform cover of Li strongly refining Ai. For all the other i’s, take Bi = {1}.

Then, as a consequence of Lemma 1.4.11(iii), ⊕iBi is a uniform cover of ⊕iLi strongly

refining ⊕iAi, and hence A, so that (⊕iLi,⊕iµi) is strong. �

Write IntNFrm for the category of interpolative nearness frames and AuNFrm for

the category of almost uniform nearness frames.

Proposition 3.3.2 The category AuNFrm is coproductive in NFrm.

Proof: Let (Li, µi)i∈I be a family of almost uniform frames. We show that the coproduct

(⊕iLi,⊕iµi) is almost uniform. Now each of the Li’s is strong, so the coproduct ⊕iLi is

strong, by the above proposition. We need only show that this coproduct is interpolative.

Suppose ⊕iai C⊕ibi in ⊕iLi. If ⊕iai = 0, then we have 0C0C⊕ibi. Suppose 0 6= ⊕iai.

Then, by Lemma 1.4.11(iii), 0 6= ai C bi for all i ∈ I. For every i, find ci ∈ Li such that

ai C ci C bi, since the Li are interpolative. Then, by the cited lemma, ⊕iai C⊕ici C⊕ibi.

Hence ⊕iLi is interpolative. �

We observe that the above result and the proof of it, actually establishes that AuNFrm

is coproductive in IntNFrm.
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Before we state the next result, it is necessary to note that if a C b in any nearness

frame (L, µ), then b∗Ca∗. This is so, since aCb implies {a∗, b} ∈ µ, so that {a∗, b}b∗ = a∗.

Lemma 3.3.3 Let (L, µ) be an interpolative nearness frame, and put

µ̃ = {A ∈ µ | B Cµ A for some B ∈ µ}.

Then µ̃ is an almost uniform nearness on L.

Proof: First, given A, B ∈ µ̃ we have C, D ∈ µ such that C Cµ A and D Cµ B. This

implies C ∧D Cµ A∧B, so that A∧B ∈ µ̃. If A ≤ C ∈ Cov(L) with A ∈ µ̃, then C ∈ µ,

since µ is a nearness and A ∈ µ. So C ∈ µ̃, since B Cµ A ≤ C implies B Cµ C. Hence µ̃

is a filter relative to refinement ordering.

Second, we show that µ̃ is interpolative. To do that, we first establish that, for any

a, b ∈ L,

(‡) a Cµ b implies a Cµ̃ b.

Since µ is interpolative, we can pick c, d ∈ L such that a Cµ c Cµ d Cµ b. Then {c∗, d}

and {a∗, b} are both in µ, and {c∗, d} Cµ {a∗, b} because c∗ Cµ a∗ and d Cµ b. It follows

therefore that {a∗, b} ∈ µ̃; a consequence of which is that a Cµ̃ b.

Now suppose x Cµ̃ y. Then x Cµ y since µ̃ ⊆ µ. Take z ∈ L such that x Cµ z Cµ y.

Therefore, by (‡), x Cµ̃ z Cµ̃ y. Hence µ̃ is interpolative.

Third, we show that µ̃ has the strong property. Let A ∈ µ̃. Then there exists B ∈ µ

such that B Cµ A, since (L, µ) is strong. For each b ∈ B, take ab ∈ A and cb ∈ L such that

b Cµ cb Cµ ab. Form the set C = {cb | b ∈ B}, and note that B Cµ C, so that C ∈ µ̃. Also

C Cµ A. It follows then from (‡) that C Cµ̃ A. Consequently, µ̃ has the strong property.

Lastly, admissibility follows from (‡) since, as µ is a nearness, for any a ∈ L,

a =
∨
{x ∈ L | x Cµ a} ≤

∨
{x ∈ L | x Cµ̃ a} ≤ a. �

Proposition 3.3.4 AuNFrm is a coreflective subcategory of IntNFrm. In particular,

if (L, µ) is an interpolative nearness frame, then (L, µ̃) is its almost uniform coreflection

with the identity map idL being the coreflection arrow.
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Proof: Let h : (M, η) −→ (L, µ) be a uniform frame homomorphism with (M, η) almost

uniform. We need to produce a unique uniform homomorphism h̄ : (M, η) −→ (L, µ̃) such

that the triangle

(L, µ̃)
idL // (L, µ)

(M, η)
h̄

ddIIIIIIIII h

::uuuuuuuuu

commutes. We define h̄ by h̄(x) = h(x). Then h̄ is a frame homomorphism. To see that

it is uniform, let D ∈ η. Since h is a uniform homomorphism, h[D] ∈ µ. Since η is strong,

Ď ∈ η and h[Ď] Cµ h[D]. Consequently, h[D] ∈ µ̃. But h̄[D] = h[D]; so h̄ is uniform.

Clearly, h̄ makes the triangle above commute, and since idL in monic, the uniqueness of

h̄ follows. �

Remark 3.3.5 In the language of Zenk [57], the above proposition proves that strong

nearness frames (as he defines them) form a coreflective subcategory of the category of

admissible nearness frames.

Now let

IntNFrm
A // AuNFrm

be the functor resulting from the almost uniform coreflection established above, and

NFrm
T // NFrm

the coreflection functor which sends a nearness frame (L, µ) to its totally bounded core-

flection (L, µT ). We aim to show that if (L, µ) is a nearness frame for which T(L, µ)

is strong, then AT(L, µ) = TA(L, µ). In order that this makes sense, (L, µ) and T(L, µ)

must be interpolative so that A(L, µ) and A(T(L, µ)) are defined. But, by Lemma 1.4.10,

if T(L, µ) is strong, then both (L, µ) and T(L, µ) are interpolative. In fact, by Lemma

1.4.9(ii), T(L, µ) is uniform.

Proposition 3.3.6 Let (L, µ) be a nearness frame such that T(L, µ) is strong. Then

AT(L, µ) = TA(L, µ).
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Proof: Since T(L, µ) is almost uniform,

AT(L, µ) = T(L, µ) = (L, µT ).

On the other hand

T(A(L, µ)) = (L, (µ̃)T ),

and so we need to show that µT = (µ̃)T . Clearly (µ̃)T ⊆ µT . Now let A ∈ µT , and B ∈ µ

finite such that B ≤ A. Then B ∈ µT . But µT is strong, so there exists C ∈ µT such that

C Cµ B ≤ A.

This shows that A and B are in µ̃, and hence A is refined by some finite cover in µ̃, and

so A ∈ (µ̃)T . Thus µT ⊆ (µ̃)T , and hence equality. �

We give an example to show that A and T do not commute on IntNFrm. Notice that

if (L, µ) is interpolative, then T(L, µ) is interpolative, since C
T

coincides with Cµ, by

Lemma 1.4.10(i).

Example 3.3.7 Let L be a non-normal, completely regular frame where ≺ coincides with

≺≺ . View (L, Cov(L)) as a fine nearness frame. Then (L, Cov(L)) is almost uniform and

A(L, Cov(L)) = (L, Cov(L)). Since L is not normal, it has a finite cover which does

not have a finite star-refinement (see [51]). By Lemma 1.4.9(ii), it follows that L has

a finite uniform cover which does not have a finite uniform strong refinement. Thus,

T(L, Cov(L)) = T(A(L, Cov(L))) is not strong. But A(T(L, Cov(L))) is strong, so AT 6=

TA.

3.4 Normality

In this section we consider a hierarchy of four subcategories

UnNFrm ⊆ UpnNFrm ⊆ CStrNFrm ⊆ StrNFrm

of NFrm, each with the property that the underlying frame of a nearness frame in it is

completely regular. The first was briefly studied by Dube [22] in his PhD thesis, the next

two were defined in [25] under appellations different from those we shall give them.
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We propose to change the names of the first three subcategories above to be in line

with our general nomenclature. Given a nearness frame (L, µ) and a cover A of L, we set

Acs = {x ∈ L | x CC a for some a ∈ A}.

Definition 3.4.1 We say a nearness frame is:

(1) uniformly normal if it is strong and the totally bounded coreflection of its completion

is also strong.

(2) uniformly prenormal if it is strong and its totally bounded coreflection is also strong.

(3) completely strong if for every uniform cover A, Acs is also a uniform cover.

The resulting subcategories are, respectively, denoted by UnNFrm, UpnNFrm, and

CStrNFrm.

We will need the following result in some of our arguments in the sequel. The proof

for item (ii) is modeled along that of [49, Lemma 1.5].

Lemma 3.4.2 In a nearness frame (L, µ),

(i) a CC b implies a C b.

(ii) a C b implies a CC b, given that (L, µ) is interpolative.

Let (L, µ) be a nearness frame and A, B ∈ µ. We say B completely refines A and

write B CC A if for any b ∈ B, there exists a ∈ A such that b CC a. The following

characterization of completely strong nearness frames appears in [25].

Lemma 3.4.3 A nearness frame is completely strong if and only if every uniform cover

is completely refined by a uniform cover.

We observe from Lemma 3.4.2(i) that, given uniform covers A and B in a nearness

frame (L, µ), if B CC A, then B C A. Consequently completely strong nearness frames

are strong. Thus, CStrNFrm ⊆ StrNFrm. The containments

UnNFrm ⊆ UpnNFrm ⊆ CStrNFrm
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are established in [22].

Completely strong nearness frames are called “uniformly completely regular” in [25],

but we introduced them here in the said nomenclature due to their relationship with

strong nearness frames by drawing analogies from completely regular frames and their

relationship with the regular ones.

Remark 3.4.4 (1) What we have called uniformly prenormal nearness frames are called

“uniformly normal” in [25]. The drawback of this is that, unlike in the case of Proposition

3.1.10, we cannot characterize a quotient-fine “uniformly normal” nearness frame (as

defined in [25]) similarly by inserting “normal extension” where we have “zero-dimensional

extension”; however with “uniformly normal” as defined here, we can.

(2) The term “prenormal” is borrowed from [17] where it is used (without the modi-

fier “uniformly”) to define nearness spaces which are regular and whose totally bounded

reflections (or “contigual reflections” as Bentley terms them) are also regular. Thus, a

prenormal nearness space X (which is therefore framed) is prenormal if and only if OX

is a uniformly prenormal nearness frame.

We recite the following results from [22] and [25] for future use.

Lemma 3.4.5 The following statements hold for nearness frames.

(1) A complete nearness frame is uniformly normal iff it is uniformly prenormal.

(2) Every uniform frame is uniformly normal.

(3) If (L, µ) is a nearness frame, then (L, µT ) is strong iff for every finite A ∈ µ, there

exists a finite B ∈ µ such that B Cµ A.

Since every completely regular frame admits a uniformity, a uniform frame whose

underlying frame is not normal is an example of a uniformly normal nearness frame

whose underlying frame is not normal. In the case of fine nearness frames, we have

that the nearness frame is uniformly normal (or uniformly prenormal) if and only if its

underlying frame is normal. In the proof of this we use the following characterization of

normal regular frames proved in [51].
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Lemma 3.4.6 The following are equivalent for a regular frame L:

(1) L is normal.

(2) Every finite cover of L has a finite star-refinement.

(3) Every finite cover of L has a star-refinement.

Proposition 3.4.7 A fine nearness frame is uniformly prenormal iff its underlying frame

is normal.

Proof: (⇒) Consider a fine nearness frame (L, Cov(L)), and assume it is uniformly

prenormal. Then (L, (Cov(L))T ) is strong, and hence uniform, by Lemma 1.4.9(ii). Let

A be a finite cover of L. Then A is a finite uniform cover of (L, Cov(L)), and therefore

has a star-refinement. Therefore L is normal, by Lemma 3.4.6.

(⇐) Let L be a normal frame. We must show that (L, Cov(L)) is uniformly normal.

Since it is strong, we must show that (L, (Cov(L))T ) is strong. Let A be a finite uniform

cover of (L, Cov(L)). By Lemma 3.4.6, there is a finite cover B of L which star-refines

A. Thus, B is a finite uniform cover of (L, Cov(L)) which strongly refines A. Therefore

(L, (Cov(L))T ) is strong. �

Corollary 3.4.8 A fine nearness frame is uniformly normal iff its underlying frame is

normal.

Proof: This follows from the foregoing proposition, the fact that a fine nearness frame is

complete, and Lemma 3.4.5(1). �

We now establish preliminary results that will culminate with our goal of characterizing

uniformly normal quotient-fine nearness frames in the manner described at the beginning

of the chapter. We start with the following observation.

Lemma 3.4.9 Suppose g : (N, µ) −→ (K, ν) is a surjection. Then g : (N, µT ) −→

(K, νT ) is also a surjection.
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Proof: Clearly, g : (N, µT ) −→ (K, νT ) is uniform because it takes finite µ-covers to

finite ν-covers, and finite uniform covers generate the nearnesses in both the domain and

codomain. Let A be a finite uniform cover of K. Since g is a surjection, there exists

B ∈ µ such that g[B] ≤ A. For each a ∈ A, let ba be the element of N given by

ba =
∨
{x ∈ B | g(x) ≤ a}.

Define the set B′ ⊆ N by

B′ = {ba | a ∈ A}.

Then B′ is a uniform cover of N since it is refined by B. Thus, B′ is a uniform cover of

(N, µT ). Furthermore, g[B′] ≤ A. Therefore every finite uniform cover of K is refined by

the image of some finite uniform cover of N . This proves that g is a surjection. �

Next, we show that uniform normality is inherited by completions.

Lemma 3.4.10 The completion of a uniformly normal nearness frame is uniformly nor-

mal.

Proof: If (L, µ) is uniformly normal, then it is strong and hence so is (CL,Cµ). By

definition of uniform normality, (CL, (Cµ)T ) is strong. Thus, (CL,Cµ) is uniformly

prenormal, and hence uniformly normal by Lemma 3.4.5(1). �

In [6] it is shown, via closed quotients, that the completion functor which takes a strong

nearness frame to its completion preserves surjections. We shall need this result, but we

give a more direct proof of it here.

Lemma 3.4.11 Any surjection (L, µ) h // (M, ν) between strong nearness frames lifts

to a surjection (CL,Cµ) Ch // (CM,Cν) between the completions.

Proof: Commutativity of the diagram below

CL

γ
L

��

Ch // CM

γ
M

��
L

h
// M
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already holds since the nearness frames are strong [6]. So we have hγ
L

= γ
M

(Ch). Let

A ∈ Cν. Then, since (CM,Cν) is strong, there exists A′ ∈ Cν such that A′ C A. Since h

is a surjection, there exists B ∈ µ such that h[B] ≤ γ
M

[A′]. Also, since γ
L

is a surjection,

there exists D ∈ Cµ such that γ
L
[D] ≤ B. Then

γ
M

(Ch)[D] = hγ
L
[D] ≤ h[B] ≤ γ

M
[A′].

Since A′ C A and γ
M

is a dense surjection, together with Lemma 1.4.7(ii), we conclude

that

(Ch)[D] ≤ (γ
M

)∗γM
[A′] ≤ A.

Consequently, Ch is a surjection. �

Lemma 3.4.12 UnNFrm is co-hereditary.

Proof: Let h : (L, µ) −→ (M, η) be a surjection with (L, µ) uniformly normal. Since

(L, µ) is strong, we have that (M, η) is also strong by Lemma 1.4.6(ii). So, by Lemma

3.4.11, the lift of h, namely Ch : CL −→ CM , is a surjection. By Lemma 3.4.9,

(CM, (Cη)T ) is a quotient of the strong nearness frame (CL, (Cµ)T ), and is therefore

itself strong. Therefore (M, η) is uniformly normal. �

We finally arrive at the main goal, namely:

Proposition 3.4.13 The following are equivalent for a nearness frame (L, µ):

(1) (L, µ) is quotient-fine and uniformly normal.

(2) The completion of (L, µ) is fine and uniformly normal.

(3) The nearness on L is induced by a normal extension.

Proof: (1)⇒(2): Let (L, µ) be quotient-fine and uniformly normal. Then, by Lemma

3.4.10, its completion is uniformly normal. This completion is fine, by Lemma 2.1.6.

(2)⇒(3): Suppose (CL,Cµ) is fine and uniformly normal. Let γL : CL −→ L be the

completion map. Then

µ = γL[Cµ] = γL[Cov(CL)].
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Since CL is normal, by Corollary 3.4.8, and γL is a dense onto map, we deduce (3).

(3)⇒(1): Let h : (M, Cov(M)) −→ (L, µ) be a dense onto homomorphism such

that µ = h[Cov(M)], with M being a normal frame. Then (L, µ) is quotient-fine since

(M, Cov(M)) is fine, and (M, Cov(M)) is uniformly normal, by Corollary 3.4.8. Hence

(L, µ) is uniformly normal, by Lemma 3.4.12. �

3.5 Cozero nearness frames

Bentley, Herrlich and Ori [19] have defined a zero space in terms of zero sets of uniformly

continuous functions. This can be translated to a definition in terms of co-zero sets. In

this section we define a co-zero nearness frame and study its properties.

Let L be a frame. Recall (from [8] or [9]) that an element a ∈ L is called a cozero

element if it is a join of countably many members of L that are completely below it; i.e.

a =
∨
{an ∈ L | an ≺≺ a, n = 1, 2, . . .}.

The collection Coz(L) of all cozero elements of L is a sub-σ-frame of L (i.e, a sublattice

closed under countable joins and satisfying the frame distributivity law for countable

joins), and it is completely regular in the sense that every c ∈ Coz(L) is a countable join

of members of Coz(L) completely below it (see [8]).

Likewise we adopt the above terminology for nearness frames in the following definition.

Definition 3.5.1 Let (L, µ) be a nearness frame. Then a ∈ L is a uniformly cozero

element if

a =
∨
{an ∈ L | an CC a, n = 1, 2, . . .}.

We write Cozµ(L) for the collection of all uniformly cozero elements of L.

Since x CC y implies x ≺≺ y, we note that Cozµ(L) ⊆ Coz(L). Note that 0, 1 ∈

Cozµ(L), since 0 CC 0 and 1 CC 1. The following result is modeled along that given in

[8, Corollary 1].
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Lemma 3.5.2 In a nearness frame (L, µ), if a CC b, then there is c ∈ Cozµ(L) such that

a CC c CC b.

Proof: Given a CC b, let (cq) be a scale between a and b. We take

c =
∨{

cqn
| q

2n
<

1

2

}
.

Then c is the desired uniformly cozero element. �

Remark 3.5.3 We observe that since a CC b iff a C b in an almost uniform nearness

frame (L, µ), we have from the above lemma that C interpolates via uniformly cozero

elements in an almost uniform nearness frame.

Let (L, µ) be a nearness frame, and a ∈ Cozµ(L). Then

a =
∨
{an ∈ L | an CC a, n = 1, 2, . . .}.

For each an CC a, let cn ∈ Cozµ(L) be such that an CC cn CC a. Then

a =
∨
{cn | cn CC a, n = 1, 2, . . .}.

Thus, every uniformly cozero element is a countable join of uniformly cozero elements

uniformly completely below it. Suppose {uk | k = 1, 2, . . .} is a countable family of

uniformly cozero elements. Then it is evident, from Definition 3.5.1, that the join a =∨
uk is a countable join of elements uniformly completely below it. Thus Cozµ(L) is

closed under countable joins. Also, Cozµ(L) is closed under binary meets, since this is

a consequence of the fact that if a, b ∈ Cozµ(L), then xn CC a and ym CC b imply that

xn ∧ ym CC a ∧ b. We have therefore shown that:

Proposition 3.5.4 Cozµ(L) is a sub-σ-frame of L.

Definition 3.5.5 Let (L, µ) be a nearness frame. Then any B ∈ µ such that B ⊆

Cozµ(L) is called a uniformly cozero cover. We say (L, µ) is a cozero nearness frame if

every uniform cover is refined by a uniformly cozero cover, and write CozNFrm for the

resulting category of cozero nearness frames.
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Given a nearness frame (L, µ) and a cover A of L, we set

Acoz = {c ∈ Cozµ(L) | c ≤ a for some a ∈ A}.

First, we note that Acs ≤ Acoz; for if x ∈ Acs, then x CC a for some a ∈ A. So, by

Lemma 3.5.2, there exists c ∈ Cozµ(L) such that x CC c CC a. Thus, x ≤ c ≤ a and

c ∈ Acoz. Second, we observe that (L, µ) is a cozero nearness frame if and only if for

every A ∈ µ, Acoz ∈ µ.

Proposition 3.5.6 If (L, µ) is a cozero nearness frame, then the underlying frame L is

completely regular.

Proof: Let a ∈ L. By admissibility, we have

a =
∨
{x ∈ L | x C a}.

For x C a, take A ∈ µ such that Ax ≤ a. Since (L, µ) is a cozero nearness frame, Acoz ∈ µ

with Acoz ≤ A, so

Acozx ≤ Ax ≤ a.

Now Acozx is a join of uniformly cozero elements, and therefore a join of cozero elements.

Thus, a is a join of cozero elements, and therefore L is completely regular by [8, Proposition

1]. �

In the next result we establish that CStrNFrm ⊆ CozNFrm.

Proposition 3.5.7 A completely strong nearness frame is a cozero nearness frame. A

fine cozero nearness frame is completely strong.

Proof: Suppose (L, µ) is completely strong, and let A ∈ µ. Then there exists B ∈ µ such

that for each b ∈ B, there is ab ∈ A with b CC ab. By Lemma 3.5.2, for each b ∈ B, let

cb ∈ Cozµ(L) be such that b CC cb CC ab. Form the set C = {cb | b ∈ B}. Then C ∈ µ

since B refines C, and C ⊆ Cozµ(L). Furthermore, C refines A; therefore (L, µ) is a cozero

nearness frame.
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Now let (L, µ) be a fine cozero nearness frame. Then C coincides with ≺, and hence

CC coincides with ≺≺ ; a consequence of which is that Cozµ(L) = Coz(L). Now let A

be a uniform cover of L. Since L is completely regular, by Proposition 3.5.6, the set

B = {c ∈ Coz(L) | c≺≺ a for some a ∈ A}

is a cover of L, and therefore a uniform cover of L which completely refines A. So (L, µ)

is completely strong. �

As a corollary, since UnNFrm ⊆ UpnNFrm ⊆ CStrNFrm ⊆ CozNFrm, we re-

cover the following results from [25].

Corollary 3.5.8 If a nearness frame is uniformly normal or uniformly prenormal or

completely strong, then its underlying frame is completely regular.

Proposition 3.5.9 A totally bounded nearness frame is completely strong iff it is a

strong, cozero nearness frame.

Proof: (⇒) Every completely strong nearness frame is strong, as observed in the previous

section, and is a cozero nearness frame, by Proposition 3.5.7.

(⇐) Every totally bounded, strong nearness frame is uniform, by Lemma 1.4.9(ii), and

every uniform frame is uniformly normal, by Lemma 3.4.5(2); and therefore completely

strong, by the containments stated just before Corollary 3.5.8. �

We now have the following hierarchy

UniFrm ⊆ UnNFrm ⊆ UpnNFrm ⊆ CStrNFrm ⊆ CozNFrm ∩ StrNFrm.

Since every totally bounded strong nearness frame is uniform, if we let TbNFrm be the

subcategory of NFrm consisting of all totally bounded nearness frames, we have that

TbNFrm ∩UniFrm = TbNFrm ∩UnNFrm

= TbNFrm ∩UpnNFrm
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= TbNFrm ∩CStrNFrm

= TbNFrm ∩ StrNFrm

= TbNFrm ∩CozNFrm ∩ StrNFrm.

Proposition 3.5.10 Let L be a regular frame such that (L, (Cov(L))T ) is a cozero near-

ness frame. Then L is a normal frame.

Proof: Let a ∨ b = 1 in L. Since {a, b} ∈ (Cov(L))T and (L, (Cov(L))T ) is a cozero

nearness frame, there exists a uniform cover B ⊆ CozT (L) (i.e. B consists of uniformly

cozero elements relative to (L, (Cov(L))T )) such that B ≤ {a, b}. Since (L, (Cov(L))T ) is

totally bounded, there exists a finite cover B′ ⊆ B such that B′ ≤ {a, b}. Since

B′ ⊆ CozT (L) ⊆ Coz(L),

and letting

z =
∨
{x ∈ B′ | x ≤ a} and w =

∨
{x ∈ B′ | x ≤ b},

we have that z, w ∈ Coz(L), z ≤ a, w ≤ b and z ∨ w = 1. This proves that L is normal,

by [3, Corollary 8.3.2]. �

Since a uniform frame homomorphism preserves C, it clearly preserves CC . Conse-

quently, if h : (L, µ) −→ (M, η) is a uniform frame homomorphism and a is a uniformly

cozero element of L, then h(a) is a uniformly cozero element of M . This leads to the

following result.

Proposition 3.5.11 If h : (L, µ) −→ (M, η) is a quotient map and (L, µ) is a cozero

nearness frame, then so is (M, η).

Proof: Let A be a uniform cover of M . Find a uniform cover B of L such that h[B]

refines A. Let C be a uniform cover of L consisting of uniformly cozero elements such that

C refines A. Then h[C] is a uniform cover of M consisting of uniformly cozero elements

(by the observation above) which refines A. �

Since the completion map is a quotient map, we deduce that if the completion of a

nearness frame is cozero, then so is the nearness frame.
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Lemma 3.5.12 Let (L1, µ1), . . . , (Lk, µk) be a finite collection of nearness frames. Sup-

pose ai is a uniformly cozero element of Li for i = 1, . . . , k. Then a1 ⊕ · · · ⊕ ak is a

uniformly cozero element of L1 ⊕ · · · ⊕ Lk.

Proof: For each i, let ιi : Li −→ L1⊕ · · · ⊕Lk be the coproduct inclusion. Then, in light

of ιi being a uniform homomorphism, ιi(ai) is a uniformly cozero element, as observed

above. But

a1 ⊕ · · · ⊕ ak = ι1(a1) ∧ · · · ∧ ιk(ak) ;

therefore a1 ⊕ · · · ⊕ ak is a uniformly cozero element as it is a meet of finitely many

uniformly cozero elements. �

Since in a coproduct (⊕iLi,⊕iµi) of an arbitrary family of nearness frames, we have

that a typical member ⊕iai only has finitely many of the ai’s nontrivial (i.e. ai 6= 1 for

finitely many i’s), we deduce the following result:

Corollary 3.5.13 If (⊕iLi,⊕iµi) is a coproduct of nearness frames and aik ∈ Lik are

uniformly cozero elements for k = 1, . . . , n, then ⊕iai, where ai = 1 for i 6∈ {i1, . . . , in},

is a uniformly cozero element.

Consequently, we establish that

Proposition 3.5.14 CozNFrm is coproductive in NFrm.

Proof: Let (Li, µi)i∈I be a family of cozero nearness frames. To see that the coproduct

(⊕iLi,⊕iµi) is a also a cozero nearness frame, let A ∈ µ. We need a uniformly cozero

cover B ∈ ⊕iµi refining A. Let ⊕iAi ∈ ⊕iµi be such that ⊕iAi ≤ A with finitely many of

the Ai’s nontrivial, say Ai1 , Ai2 , . . . , Ain . For each i ∈ {i1, i2, . . . , in}, let Bi be a uniformly

cozero cover in Li refining Ai. For i 6∈ {i1, i2, . . . , in} take Bi = {1}. Then put B = ⊕iBi.

Then B refines A, and by the preceding corollary, B ⊆ Cozµ(L). Hence the desired result

holds. �
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3.6 Smooth nearness frames

Smooth nearness frames were introduced in [12] as an ad-hoc means to studying comple-

tion in nearness frames. In this section we investigate some properties of these nearness

frames, culminating in showing that the smooth property is not changed under comple-

tions.

Call a nearness frame (L, µ) smooth if for each uniform cover C, the set

Cs = {x ∈ L | x∗∗ ≤ y for some y ∈ C}

is also a uniform cover. Write SmNFrm for the full subcategory of NFrm defined by

smooth nearness frames.

Remark 3.6.1 Note here that since x C y implies x∗∗ ≤ y, we have Č ⊆ Cs, so that, as

observed in [12],

Every strong nearness frame is smooth. However, a smooth nearness frame need not

be strong.

Thus, StrNFrm $ SmNFrm.

It is clear that quotient-fine (and, hence, fine) nearness frames are smooth, and that

most of the subcategories considered in this chapter lie in SmNFrm.

Let (L, µ) be a nearness frame. If A is a uniform cover, then the set

A∗∗ = {x∗∗ ∈ L | x ∈ A}

is also a uniform cover (since A refines A∗∗).

The following characterization of smooth nearness frames follows naturally.

Lemma 3.6.2 A nearness frame (L, µ) is smooth iff for each A ∈ µ, there exists B ∈ µ

such that B∗∗ refines A.

Proof: (⇒) Suppose (L, µ) is smooth. Let A ∈ µ. Then

As = {x ∈ L | x∗∗ ≤ a, some a ∈ A} ∈ µ.

78



Since (L, µ) is smooth, by the hypothesis, (As)∗∗ is a uniform cover (as observed above)

of the desired kind refining A.

(⇐) Conversely, assume that the condition holds. For A ∈ µ, let B∗∗ refine A for some

B ∈ µ. Then B ⊆ As, so that B ≤ As. Consequently, As ∈ µ, so that (L, µ) is smooth. �

Example 3.6.3 It is worth noting here that the cover A∗∗, as introduced above, is not

necessarily the same as the set

Ar = {x ∈ A | x = x∗∗}

of all regular elements in A. As an example, let (L, µ) be a nearness frame where L is a

compact non-Boolean frame. (Trivially, every nearness on a Boolean frame is smooth).

Let A be a uniform cover of L consisting only of regular elements and let x ∈ L be a non-

regular element such that x∗∗ 6∈ A. Put B = A ∪ {x}. Then B ∈ µ and B∗∗ = A ∪ {x∗∗},

but

Br = {y ∈ B | y = y∗∗} = A.

In order to show that SmNFrm is coproductive, we shall need the following lemma.

Lemma 3.6.4 Let ⊕iLi be the coproduct of a family {Li}i∈I of frames. Then for each

element ⊕iai ∈ L,

(⊕iai)
∗∗ = ⊕i(a

∗∗
i ).

Proof: Let ιi : Li −→ ⊕iLi be the ith coproduct injection. We first show that

(†) (⊕iai)
∗ =

∨
i

ιi(a
∗
i ).

By definition, for each index k, and for any x ∈ Lk, ιk(x) = ⊕ibi, where bk = x and bi = 1

for i 6= k. Now if ⊕ici is any element of ⊕iLi such that

(⊕iai) ∧ (⊕ici) = 0,

then

⊕i(ai ∧ ci) = 0,
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so that ak ∧ ck = 0 for some index k. This implies ck ≤ a∗k. Consequently

⊕ici ≤ ιk(a
∗
k) ≤

∨
i

ιi(a
∗
i ).

Since the elements ⊕ixi generate the frame ⊕iLi, it follows that if any element of ⊕iLi

does not meet ⊕iai, then it is below
∨

i ιi(a
∗
i ). Therefore

(⊕iai)
∗ ≤

∨
i

ιi(a
∗
i ).

But, by applying the infinite distributive law,

(⊕iai) ∧

(∨
i

ιi(a
∗
i )

)
= 0.

Therefore
∨

i ιi(a
∗
i ) is the largest element of ⊕iLi disjoint from ⊕iai. Thus, (†) holds.

Second, we apply (†) and the fact that for each index k,

(ιk(x))∗ = ιk(x
∗),

to obtain

(⊕iai)
∗∗ =

(∨
i

ιi(a
∗
i )

)∗

=
∧
i

(ιi(a
∗
i ))

∗ =
∧
i

ιi(a
∗∗
i ) = ⊕i(a

∗∗
i ),

establishing the desired result. �

Proposition 3.6.5 SmNFrm is coproductive in NFrm.

Proof: Let {(Li, µi)}i∈I be a family of smooth nearness frames. We show that their

coproduct (⊕iLi,⊕iµi) is also smooth. To see that, let A ∈ µ, and let ⊕iAi ∈ µ be a

refinement of A. Let Ai1 , . . . , Aim be the nontrivial covers among the covers Ai’s.

We construct a uniform cover of the form B∗∗ refining A as follows: For each i ∈

{i1, . . . , im}, let B∗∗
i ∈ µi refine Ai. We let B∗∗

i = {1} for the other i’s. Then, making use

of the above lemma,

B∗∗ = (⊕iBi)
∗∗ = ⊕iB

∗∗
i

refines ⊕iAi which refines A. Hence the desired result follows. �
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In [12] it is shown that any dense surjection h : (L, µ) // (M, η) with (L, µ) smooth

is in fact a strict surjection, and consequently any weak completion h : (L, µ) // (M, η) ,

where (L, µ) is smooth, becomes a completion. Here we show the following result.

Proposition 3.6.6 If h : (L, µ) −→ (M, η) is a dense surjection, then (L, µ) is smooth

iff (M, η) is smooth.

Proof: (⇒) Suppose (L, µ) is smooth. Let C ∈ η. To show that (M, η) is smooth, we need

D ∈ η such that D∗∗ ≤ C. Since h∗[C] ∈ µ, there exists B ∈ µ such that B∗∗ ≤ h∗[C],

since (L, µ) is smooth. Since h preserves pseudocomplements, being a dense onto map,

we have h[B∗∗] = h[B]∗∗. Thus, h[B] is a uniform cover of M such that h[B]∗∗ refines C,

and therefore (M, η) is smooth.

(⇐) Suppose (M, η) is smooth. Let A be a uniform cover of L. Since h is a strict

surjection, there is a uniform cover B of M such that h∗[B] ≤ A. Since (M, η) is smooth,

by the hypothesis, B∗∗ is a uniform cover of M . Therefore h∗[B
∗∗] is a uniform cover of L

since h is a strict surjection. Since h is a dense onto homomorphism, h∗ commutes with

pseudocomplementation; so that

h∗(b
∗∗) = h∗(b)

∗∗

for each b ∈ B, and hence h∗[B
∗∗] = h∗[B]∗∗. But now h∗[B]∗∗ refines A∗∗; therefore A∗∗

is also a uniform cover, and hence (L, µ) is smooth. �

The following corollary is evident from the above result, since the completion map is

a strict surjection.

Corollary 3.6.7 A nearness frame is smooth iff its completion is smooth.

3.7 Totally strong nearness frames

By imposing a stronger refinement ordering on uniform covers, in particular, one which

uses scales in the manner in which the completely below relation is defined, we introduce,
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in this section, a type of nearness frames called the totally strong ones and establish that

their category, namely TStrNFrm, is closed under completions, and that the inclusions

UpnNFrm ⊆ TStrNFrm ⊆ StrNFrm and AuNFrm ⊆ TStrNFrm hold.

Definition 3.7.1 Let (L, µ) be a nearness frame, and A, B ∈ µ. Write A CCs B if there

is an interpolating sequence of uniform covers (Cnk) between A and B, where

C00 = A, C01 = B, Cnk = Cn+1 2k, and Cnk C Cn k+1

for all n = 0, 1, . . . and k = 0, 1, . . . , 2n. In this case we say A scale refines B. We call a

nearness frame totally strong if every uniform cover is scale refined by a uniform cover.

Clearly, if A CCs B, then A C B. Consequently, every totally strong nearness frame is

strong. We write TStrNFrm for the category of totally strong nearness frames.

In order to show that every almost uniform nearness frame is totally strong, we need the

following result which shows that interpolation in the underlying frame L is transferred

to its nearness µ.

Lemma 3.7.2 Suppose (L, µ) is an interpolative nearness frame, and suppose A, B ∈ µ

with A C B. Then there exists C ∈ µ such that A C C C B.

Proof: Let A, B ∈ µ be such that A C B. Then for each a ∈ A, there exists ba ∈ B such

that a C ba. Since (L, µ) is interpolative, there exists ca ∈ L such that a C ca C ba. Form

the set

C = {ca ∈ L | a ∈ A}.

Then C is a uniform cover, since A refines it. Furthermore A C C C B by the way C is

constructed. �

Proposition 3.7.3 If (L, µ) is almost uniform, then it is totally strong.

Proof: Let B ∈ µ. Since (L, µ) is strong, there exists A ∈ µ such that A C B. By

Lemma 3.7.2, C interpolates in µ, since (L, µ) is interpolative. Therefore A CCs B, since,

by CDC, a scale of uniform covers witnessing this can be constructed in the same manner

as done in [49, Lemma 1.5]. �
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As an observation from the above two results, it should be evident that if (L, µ) is a

strong nearness frame with the property that whenever A C B in µ, there exists C ∈ µ

such that ACCCB, then (L, µ) is totally strong. In our next set of results we aim to show

that the category TStrNFrm is closed under completions. Our proof will be facilitated

by noting the following: if h : (L, µ) → (M, η) is a uniform frame homomorphism and A

scale refines B in L, then h[A] scale refines h[B] in M , for if (Cnk) is a scale of uniform

covers of L witnessing A CCs B, then clearly (h[Cnk]) is a scale of uniform covers of M

witnessing h[A] CCs h[B]. On the other hand, if h is a strict surjection and U scale refines

V in M , then h∗[U ] scale refines h∗[V ] in L, for if (Wnk) is a scale of uniform covers of M

witnessing U CCs V , then, by the strictness of h, (h∗[Wnk]) is a scale of uniform covers

of L witnessing h∗[U ] CCs h∗[V ].

Lemma 3.7.4 Let h : (L, µ) −→ (M, η) be a strict surjection. Then (L, µ) is totally

strong iff (M, η) is totally strong.

Proof: (⇒) Suppose (L, µ) is totally strong and let U be a uniform cover of M . Then, by

strictness, h∗[U ] is a uniform cover of L. Since (L, µ) is totally strong, there is a uniform

cover A of L that scale refines h∗[U ]. By what we have observed above, h[A] is a uniform

cover of M scale refining h[h∗[U ]] = U . Therefore (M, η) is totally strong.

(⇐) Conversely, suppose (M, η) is totally strong and let A be a uniform cover of L.

By strictness there is a uniform cover U of M such that h∗[U ] ≤ A. Since (M, η) is totally

strong, there is a uniform cover V of M which scale refines U . Then h∗[V ] is a uniform

cover of L scale refining h∗[U ], and hence scale refining A. Therefore (L, µ) is totally

strong. �

Since completion maps are strict surjections, we deduce the following result.

Corollary 3.7.5 A nearness frame is totally strong if and only if its completion is totally

strong.

Next, we establish that UpnNFrm ⊆ TStrNFrm.

Proposition 3.7.6 Every uniformly prenormal nearness frame is totally strong.
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Proof: Let (L, µ) be uniformly prenormal, and A ∈ µ. Since (L, µ) is strong, let B ∈ µ

be such that B CA. Then B CT A, by Lemma 1.4.10(i). The totally bounded coreflection

(L, µT ) is strong, and so is uniform, by Lemma 1.4.9(ii), and therefore CT interpolates. So

we can use the interpolation to obtain an interpolating sequence (Cnk) of uniform covers

between B and A (see for example the argument used in proving Proposition 3.7.3). Hence

(L, µ) is totally strong. �
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Chapter 4

N-homomorphisms and remote

points

In this chapter we investigate - in the context of nearness frames - the notions of N -

homomorphism and remote points introduced for frames in [27] . Throughout this chapter

we shall be working with totally bounded uniform frames, unless otherwise specified. Our

notation for a typical such frame is (L,U), where U is the uniformity on the frame L.

However, in this chapter, we shall relax that requirement, denoting a totally bounded

uniform frame by its underlying frame. If we have not named a uniformity in question

when talking about a totally bounded uniform frame L, we shall, at times, write UL for

the uniformity.

4.1 N-homomorphisms

The term “N-homomorphism” is adapted in [27] for frames from the classical “N-map”

introduced in [56]. In this section we adopt the same terminology for nearness frames,

calling the said maps “uniform N-homomorphisms” and discuss their relationship with

the C∗-quotient maps introduced in [3].

Let (L, µ) be a nearness frame and (CL,Cµ) its completion. We shall denote the top

and bottom of CL by > = L and ⊥ = {0}, respectively. An ideal J ⊆ L is called regular

if for each x ∈ J, there exists y ∈ J such that x C y. The class RL of all regular ideals in
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L is a subframe of the frame IL of all ideals (see [6], [13]). The building blocks of RL, as

given in [13], are worth noting here:

(a) ⊥ = {0} and > = L are both regular ideals.

(b) For any regular ideals I and J, we have that I ∧ J = I ∩ J and

I ∨ J = {a ∨ b | a ∈ I, b ∈ J}

are regular ideals.

(c) Any directed union of regular ideals is a regular ideal. Thus, directed joins in RL

are unions.

The following results appear in [4]:

Lemma 4.1.1 (i) A nearness frame is totally bounded and uniform iff its completion

is compact.

(ii) If L is a totally bounded uniform frame, then the join map∨
: RL −→ L

is a completion map, which is also a compactification of the frame L.

The following result is stated in [13].

Lemma 4.1.2 Suppose L is a totally bounded uniform frame. Then

(i) For each a ∈ L, the set

Oa = {x ∈ L | x C a}

is a regular ideal.

(ii) The map r : L −→ RL given by r(a) = Oa is the right adjoint of the join map∨
: RL −→ L.
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We note the following diagram, where the arrow L
h // M lifts to the completions

RL
h̄ // RM for totally bounded, uniform frames L and M . γ

L
and γ

M
are the respec-

tive join maps.

RL
h̄ //

γ
L

��

RM

γ
M

��
L

r
L

II

h
// M

r
M

UU

The following set of results, which implicitly appear in [13] but the proofs are not explicitly

given, establish how h̄ maps; in particular that, for each I ∈ RL,

h̄(I) = {x ∈ M | x ≤ h(s) for some s ∈ I}.

Lemma 4.1.3 For any I ∈ RL, the set

Ī = {x ∈ M | x ≤ h(s) for some s ∈ I}

is a regular ideal in RM.

Proof: First, note that since 0 ∈ I and 0 = h(0), we have 0 ∈ Ī . Second, let x ∈ Ī and

y ≤ x. Then clearly y ∈ Ī , since x ≤ h(s) for some s ∈ I implies y ≤ h(s). So Ī is a

downset. Third, let x, y ∈ Ī , and let s, t ∈ I be such that x ≤ h(s) and y ≤ h(t). Then

x ∨ y ≤ h(s) ∨ h(t) = h(s ∨ t) and s ∨ t ∈ I. This implies that x ∨ y ∈ Ī . We have now

shown that Ī is an ideal.

Lastly, to see that Ī is regular, let x ∈ Ī and s ∈ I such that x ≤ h(s). Since I is

regular, there exists t ∈ I such that s C t, and by interpolation in L, we have u ∈ L such

that sCuCt. So we have x ≤ h(s)Ch(u)Ch(t), which implies that xCh(u) and h(u) ∈ Ī .

Hence Ī is regular. �

In order to show that the map h̄ is a frame homomorphism we will need the following

result from frame theory.

Lemma 4.1.4 If A and B are frames and g : A −→ B is a map with the properties:

(a) g(0) = 0 and g(1) = 1.

(b) g(a1 ∨ a2) = g(a1) ∨ g(a2).
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(c) g(a1 ∧ a2) = g(a1) ∧ g(a2).

(d) g
(∨

λ∈Λ aλ

)
=
∨

λ∈Λ g(aλ) for any updirected collection (aλ)λ∈Λ ⊆ A,

then g is a frame homomorphism.

Proposition 4.1.5 The map h̄ : RL −→ RM defined by:

h̄(I) = {x ∈ M | x ≤ h(s) for some s ∈ I}

for each I ∈ RL, is a frame homomorphism.

Proof: We show that h̄, as now given, satisfies the properties in the above lemma. We

keep in mind that the map h : L −→ M is a (uniform) frame homomorphism.

(a) Now

h̄(⊥) = h̄({0}) = {x ∈ M | x ≤ h(s) for some s ∈ {0}}

= {x ∈ M | x ≤ h(0) = 0}

= {0} = ⊥,

and

h̄(>) = h̄(L) = {x ∈ M | x ≤ h(s) for some s ∈ L}

= {x ∈ M | x ≤ h(1) = 1}

= M = >.

(b) We show that h̄(I ∨ J) = h̄(I) ∨ h̄(J). Let x ∨ y ∈ h̄(I) ∨ h̄(J). Then x ∨ y ≤

h(s) ∨ h(t) = h(s ∨ t) for some s ∈ I, t ∈ J. Since s ∨ t ∈ I ∨ J, we deduce that

x ∨ y ∈ h̄(I ∨ J), showing the one inclusion. As for the other inclusion, let z ∈ h̄(I ∨ J).

Then z ≤ h(p ∨ q) = h(p) ∨ h(q) for some p ∨ q ∈ I ∨ J. Since I and J are regular ideals,

there exist a ∈ I and b ∈ J such that p C a and q C b. This implies h(p) C h(a) and

h(q)Ch(b), so that h(p) ∈ h̄(I) and h(q) ∈ h̄(J). Therefore z ≤ h(p)∨h(q) ∈ h̄(I)∨ h̄(J),

and hence z ∈ h̄(I) ∨ h̄(J).

(c) We show that h̄(I ∧ J) = h̄(I) ∧ h̄(J). Now ∧ in RL and RM is intersection. So

the result follows immediately since

z ∈ h̄(I ∧ J) ⇔ z ≤ h(s) for some s ∈ I ∩ J ⇔ z ≤ h(s)
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for s ∈ I and s ∈ J ⇔ z ∈ h̄(I) ∧ h̄(J).

(d) We show that

h̄(
∨
λ∈Λ

Iλ) =
∨
λ∈Λ

h̄(Iλ)

for an updirected family (Iλ)λ∈Λ in RL. Now in RL the join of an updirected family of

regular ideals is simply their union, and, by (b), the family (h̄(Iλ))λ∈Λ is also updirected.

Let z ∈ h̄(
∨

λ Iλ). Then z ≤ h(s) for some s ∈
⋃

λ Iλ, which implies s ∈ Iκ for some

κ ∈ Λ. In that case z ∈ h̄(Iκ), and consequently z ∈
⋃

λ h̄(Iλ). On the other hand, if

w ∈
⋃

λ h̄(Iλ), then w ∈ h̄(Iι) for some ι ∈ Λ. This implies w ≤ h(t) for some t ∈ Iι; and

since t ∈
⋃

λ Iλ, we conclude that w ∈ h̄(
⋃

λ Iλ). Thus, h̄ is indeed a frame homomorphism.

�

Proposition 4.1.6 The map h̄ : RL −→ RM now established is uniform.

Proof: The uniformity on RM, U(RM), is generated by the collection

{(γ
M

)∗[A] | A ∈ UM} = {r
M

[A] | A ∈ UM}.

Let C ∈ U(RL). We show that h̄[C] is a uniform cover by showing that it is refined

by r
M

[A] for some A ∈ UM. Let C ∈ UL be such that r
L
[C] ≤ C. Since h̄ is a frame

homomorphism, it is order-preserving, so that

h̄[r
L
[C]] ≤ h̄[C].

Let

Č = {x ∈ L | x C c for some c ∈ C}.

Then Č ∈ UL and Č C C since L is strong. This implies h[Č] ∈ UM since h is a uniform

homomorphism. We end the proof by showing that

r
M

[h[Č]] ≤ h̄[C].

Let y ∈ r
M

h(x), where x ∈ Č. Then, by definition of r
M

, y C h(x), with x C c for

some c ∈ C. Since h(x) C h(c), we have y C h(c). This implies y ∈ h̄(r
L
(c)), so that

r
M

h(x) ⊆ h̄r
L
(c). Hence

r
M

[h[Č]] ≤ h̄[r
L
[C]] ≤ h̄[C] ,
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and this ends the proof. �

Proposition 4.1.7 The diagram

RL
h̄ //

γ
L

��

RM

γ
M

��
L

h
// M

commutes, where h̄ is as above.

Proof: Given I ∈ RL, we establish that hγ
L
(I) = γ

M
h̄(I). Now

hγ
L
(I) = h(

∨
I) =

∨
h[I]

and

γ
M

h̄(I) =
∨
{x ∈ M | x ≤ h(s) for some s ∈ I} ≤

∨
h[I] = h(

∨
I).

On the other hand, for any u ∈ I, we have h(u) ∈ h̄(I) since h(u) ≤ h(u). Thus,∨
h[I] ≤

∨
h̄(I), establishing the desired result. �

We follow a similar approach as in [27] in drafting the following definition.

Definition 4.1.8 A uniform frame homomorphism h : L −→ M is a uniform N-

homomorphism if for any a ∈ L and any u ∈ M, whenever u C h(a) in M there exists

x ∈ L such that x C a in L and u ≤ h(x).

We have the following characterization for uniform N-homomorphisms.

Proposition 4.1.9 A uniform frame homomorphism h : L −→ M is a uniform N-

homomorphism iff for all a ∈ L, h̄r
L
(a) = r

M
h(a).

Proof: (⇒) Suppose h is a uniform N-homomorphism. Let a ∈ L. We show that h̄r
L
(a) =

r
M

h(a). The inclusion h̄r
L
(a) ⊆ r

M
h(a) always holds; for if x ∈ h̄r

L
(a), then x ≤ h(s)

for some s C a in L. This implies x C h(a), so that x ∈ r
M

h(a). On the other hand,
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suppose y ∈ r
M

h(a) so that y C h(a). Then, by the hypothesis, there is b C a in L such

that y ≤ h(b). This implies y ∈ h̄r
L
(a), giving the other inclusion.

(⇐) Conversely, suppose the equality h̄r
L

= r
M

h holds. Let a ∈ L and u ∈ M be

such that u C h(a). Then u ∈ r
M

h(a) = h̄r
L
(a). So u ≤ h(s), for some s ∈ r

L
(a); that is

u ≤ h(s), for some s C a. Hence h is a uniform N-homomorphism. �

Proposition 4.1.10 Let h : L −→ M be a uniform N-homomorphism. Then h is a

surjection iff h̄ is a surjection.

Proof: The implication (⇒) always holds by [6, Corollary 6.1], where h need not be

a uniform N-homomorphism. (Refer to Lemma 3.4.11, where we provide an alternative

proof to the cited result).

(⇐) Suppose h̄ is a surjection. First, we show that h is onto. Now γ
M

h̄ = hγ
L

always holds for completions, and implies h̄∗rM
= r

L
h∗, on taking right adjoints. Also

h̄r
L

= r
M

h, since h is a uniform N-homomorphism. Let b ∈ M . We show that hh∗(b) = b.

Since r
M

(b) ∈ RM and h̄ is onto, there exists I ∈ RL such that r
M

(b) = h̄(I). This

implies

h̄∗h̄(I) = h̄∗rM
(b) = r

L
h∗(b).

Again, this implies

h̄(I) = h̄h̄∗h̄(I) = h̄r
L
h∗(b) = r

M
hh∗(b).

Therefore r
M

(b) = r
M

hh∗(b); so that γ
M

r
M

(b) = γ
M

r
M

hh∗(b). Consequently, since γ
M

is

onto (so that γ
M

r
M

= idM), b = hh∗(b). Thus h is onto.

Second, we show that uniform covers of M are refined by images under h of uniform

covers of L. Let A be a uniform cover of M . Since h̄ is a surjection, there exists a uniform

cover C of L such that h̄r
L
[C] ≤ r

M
[A]. This implies r

M
h[C] ≤ r

M
[A], since h̄r

L
= r

M
h

(h being a uniform N-homomorphism). So γ
M

r
M

h[C] ≤ γ
M

r
M

[A]. Therefore h[C] ≤ A,

since γ
M

r
M

= idM . Thus, h is a surjection. �

In [3], the concept of a C∗-quotient map is introduced, which captures the spatial

notion of a C∗-embedded subspace. One of the characterizations of C∗-quotient maps
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established in [3, Theorem 7.1.1] is that a quotient map h : L −→ M is a C∗-quotient

map iff whenever a≺≺ b in M , there exist u≺≺ v in L such that a ≤ h(u) and h(v) ≤ b.

Adapting this characterization to uniform frames, we formulate the following definition

Definition 4.1.11 A surjection h : L −→ M is called a uniform C∗-quotient map if

whenever u C v in M then there are elements a C b in L such that u ≤ h(a) and h(b) ≤ v.

Lemma 4.1.12 An onto uniform N-homomorphism h : L −→ M is a uniform C∗-

quotient map.

Proof: Let u C v in M. Since h is onto, take a, b ∈ L such that u = h(a) and v = h(b).

So u C h(b) in M, and since h is a uniform N-homomorphism, there is x ∈ L such that

x C b in L and u ≤ h(x). This implies u ≤ h(x) C h(b) = v. Consequently h is a uniform

C∗-quotient map. �

Proposition 4.1.13 If h : L −→ M is a dense surjection such that ϕ :↑(hγ
L
)∗(0) −→ M

is a completion of M , then h is a uniform C∗-quotient map.

Proof: Suppose the conditions of the hypothesis hold. Since γ
L

: RL −→ L is dense, the

composite map hγL is dense. So ↑ (hγ
L
)∗(0) = RL, so that the hypothesis actually says

the composite map hγ
L

: RL −→ M is a completion of M. To show that h is a uniform

C∗-quotient map, let u C v in M . We must find a C b in L such that u ≤ h(a) C h(b) ≤ v.

Since hγ
L

: RL −→ M is a dense surjection, we have

(hγ
L
)∗(u) C (hγ

L
)∗(v) in RL.

That is,

(γ
L
)∗h∗(u) C (γ

L
)∗h∗(v) in RL,

and therefore

γ
L

((γ
L
)∗h∗(u)) C γ

L
((γ

L
)∗h∗(v)) in L

since γ
L

is a uniform homomorphism. Thus, h∗(u) C h∗(v) in L since γ
L
(γ

L
)∗ = idRL.

Therefore taking a = h∗(u) and b = h∗(v) establishes the result since hh∗ = idL. �
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4.2 Remote points

In this section we discuss remote points. First we take a brief survey of some results we

will need, keeping the same notation as used in the preceding section.

Lemma 4.2.1 Given a totally bounded uniform frame L, we have the following properties

for any a, b ∈ L and I, J ∈ RL:

(a)
∨

r(a) = a.

(b) J =
⋃
{r(a) | a ∈ J}.

(c) a C b implies r(a) ≺ r(b).

(d) r(a∗) = r(a)∗.

(e) J∗ = r((
∨

J)∗).

(f) I ≺ J implies
∨

I ∈ J.

(g) r(a) ≺ J implies a ∈ J.

Proof: (a), (b) and (c) appear in [6] and [13].

(d) This is true since r is the right adjoint of a dense onto frame homomorphism
∨

(see [2]).

(e) Here we show that r((
∨

J)∗) is the pseudocomplement of J. First, let

x ∈ J ∧ r((
∨

J)∗) = J ∩ r((
∨

J∗).

Then x ∈ J and x ∈ r((
∨

J)∗). So xC(
∨

J)∗. Since x ≤
∨

J, we have x ≤ (
∨

J)∧(
∨

J)∗ =

0. Therefore x = 0. This means J ∧ r((
∨

J)∗) = ⊥ = {0}.

Second, suppose K ∈ RL is such that J ∧ K = J ∩ K = {0}. Let x ∈ K. Since

K is regular, we can pick y ∈ K such that x C y. Then for any t ∈ J, t ∧ y = 0, and

so y ∧
∨

J =
∨

t∈J(y ∧ t) = 0. This means y ≤ (
∨

J)∗, so that x C (
∨

J)∗. Therefore

x ∈ r((
∨

J)∗), so that K ⊆ r((
∨

J)∗). Thus, the desired result r((
∨

J)∗) = J∗ follows.
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(f) Suppose I ≺ J , and let K ∈ RL be such that I ∩K = {0} and K ∨ J = L. Let

x ∈ K and y ∈ J be such that x ∨ y = 1. Now we have

0 =
∨
{0} =

∨
(I ∧K) =

∨
I ∧

∨
K.

This implies that
∨

I ∧ x = 0; so that
∨

I ≤ y ∈ J. Consequently
∨

I ∈ J.

(g) This is a particular case of (f) since, by (a), a =
∨

r(a) ∈ J. �

Proposition 4.2.2 If J ∈ RL contains a dense element, then J = >.

Proof: Suppose a ∈ J is dense (i.e. a∗ = 0). Let b ∈ J be such that a C b. Then {a∗, b}

is a uniform cover of L, and this forces b = 1, since a∗ = 0. Therefore 1 ∈ J, and since J

is a downset we have J = L = >. �

To define remote points we will need the notion of nowhere dense quotients, which we

define shortly.

Definition 4.2.3 A quotient map h : L −→ M is said to be nowhere dense if x 6= 0 in L

implies there is y ≤ x in L such that y 6= 0 and h(y) = 0.

The following handy characterizations of nowhere dense quotients appear in [27].

Lemma 4.2.4 (i) A closed quotient ϕ : L −→↑a is nowhere dense if and only if a is

dense.

(ii) A quotient h : L −→ M is nowhere dense iff h∗(0) ∈ L is a dense element.

Definition 4.2.5 A point P ∈ RL is said to be remote if for each nowhere dense quotient

h : L −→ M, P ∨ r(h∗(0)) = >.

Our next result brings a connection between remote points and ultrafilters.
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Proposition 4.2.6 Let P ∈ RL be a point. Then if the set

F = {a ∈ L | r(a) ∨ P = >}

is an ultrafilter in L, then P is a remote point.

Proof: Let h : L −→ M be a nowhere dense quotient. Then h∗(0) is a dense element,

by Lemma 4.2.4(ii), and therefore belongs to the ultrafilter F. Hence by the property of

membership to F, P is a remote point. �

The following result characterizes remote points in RL.

Proposition 4.2.7 P ∈ RL is a remote point iff for each dense a ∈ L, P ∨ r(a) = >.

Proof: (⇒) Let P be a remote point and a ∈ L a dense element. Then by Lemma

4.2.4(i), the closed quotient L
ϕ // ↑a is nowhere dense. So we have ϕ∗(0↑a) = ϕ∗(a) = a.

Therefore, since P is remote, we have > = P ∨ r(ϕ∗(a)) = P ∨ r(a).

(⇐) Conversely, suppose the condition holds. Let h : L −→ M be a nowhere dense

quotient. Then h∗(0) is dense, and so by the hypothesis, P ∨ r(h∗(0)) = >, implying that

P is remote. �

The following result characterizes remote points for a totally bounded uniform frame

L where the right adjoint

r : L −→ RL

preserves disjoint binary joins; namely r(a ∨ b) = r(a) ∨ r(b) whenever a ∧ b = 0 in L.

The proof of the following lemma coincides with that of [27, Proposition 3.3].

Lemma 4.2.8 Let L be a totally bounded uniform frame, where the right adjoint preserves

disjoint binary joins as indicated above, and let I be a point of RL. Then the following

are equivalent:

(1) I is a remote point.

(2) I ∨ r(a) = >, whenever a ∈ L is dense.
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(3) r(a) ≤ I implies a ∈ I, for any a ∈ L.

(4) r(a∗) ≤ I implies r(a) ∨ I = >, for any a ∈ L.

(5) J∗ ≤ I implies r(
∨

J) ∨ I = > for any J ∈ RL.

(6) The set F = {a ∈ L | r(a) ∨ I = >} is an ultrafilter in L.

Our next three results focus on the transfer of remote points. In particular, given a

quotient map h : L −→ M , where L and M are such that the respective right adjoints rL

and rM preserve disjoint binary joins, and a point I of RM , we find conditions on h such

that if h̄∗(I) is a remote point of RL, then I is a remote point of RM , and vice versa.

One of the conditions involves what are called assertive homomorphisms in [27].

Definition 4.2.9 A uniform frame homomorphism h : L −→ M is called uniformly

assertive if whenever a C b in M , then h∗(a) C h∗(b) in L.

Clearly, by Lemma 1.4.7(iii), any dense surjection is uniformly assertive, since it is

strict, by Lemma 1.4.6(i) (bearing in mind that our nearness frames in this chapter have

the strong property).

Proposition 4.2.10 Let h : L −→ M be a surjection and I a point of RM such that

h̄∗(I) is a remote point of RL. Then any one of the following conditions implies that I is

a remote point:

(a) h is a uniform N-homomorphism.

(b) h is uniformly assertive.

(c) h is dense.

Proof: (a) Suppose h is a uniform N-homomorphism. We use condition (3) in Lemma

4.2.8 to show that I is a remote point. Let a ∈ M be such that rM(a) ≤ I. Then

h̄∗rM(a) ≤ h̄∗(I). Now γM h̄ = hγL, since h lifts to h̄; so that h̄∗rM = rLh∗. This implies

that rL(h∗(a)) ≤ h̄∗(I). Since h̄∗(I) is a remote point, we have that h∗(a) ∈ h̄∗(I), by
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condition (3) in Lemma 4.2.8. This implies h∗(a) C s, for some s ∈ h̄∗(I), so that we can

write rL(h∗(a)) C h̄∗(I). Consequently,

(†) h̄rLh∗(a) C h̄h̄∗(I) ≤ I.

Since h is a uniform N-homomorphism, we have that h̄rL = rMh, so that, from (†), we

have rMhh∗(a) C I, which implies rM(a) C I, since h is onto. Thus, a ∈ I, so that, by

Lemma 4.2.8, I is a remote point.

(b) Suppose h is uniformly assertive. Once again, we begin with an element a ∈ M

for which rM(a) ≤ I. We aim to show that a ∈ I. We note (†) still holds, here, since it

does not require h to be a uniform N-homomorphism. We show that rM(a) ≤ h̄rLh∗(a).

Let x ∈ rM(a). Then x C a. Then, since h is uniformly assertive, h∗(x) C h∗(a), so that

h∗(x) ∈ rL(h∗(a)). But x = hh∗(x), since h is onto. In particular, x ≤ h(h∗(x)), so that

x ∈ h̄(rLh∗(a)). Consequently, from (†), we have rM(a) C I, so that a ∈ I. Thus, I is

remote, by Lemma 4.2.8.

(c) If h is dense, then it is uniformly assertive, by the remark stated just before the

statement of this proposition. Consequently, condition (c) becomes condition (b), and

the desired result follows. �

Proposition 4.2.11 If h : L −→ M is a uniformly assertive uniform N-homomorphism,

and I a remote point of RM , then h̄∗(I) is a remote point of RL.

Proof: Let a ∈ L be such that rL(a) ≤ h̄∗(I). We aim to show that a ∈ h̄∗(I). Now we

have

h̄rL(a) ≤ h̄h̄∗(I) ≤ I,

so that h̄rL(a) ≤ I. Since h is a uniform N-homomorphism, rM(h(a)) ≤ I. This implies

h(a) ∈ I, since I is a remote point. Choose s ∈ I such that h(a) C s. Then, a ≤

h∗h(a) C h∗(s), since h is uniformly assertive. So a ∈ rL(h∗(s)).

Let y ∈ h̄(rLh∗(s)). Then y ≤ h(t) for some tCh∗(s). Thus, y ≤ h(t) ≤ s so that y ∈ I.

This shows that h̄(rLh∗(s)) ≤ I, and hence rLh∗(s) ⊆ h̄∗(I). Consequently a ∈ h̄∗(I),

and the result follows. �
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In general, if h : L −→ M is an onto homomorphism and p a point of L, then it does

not follow that h(p) is a point of M . If however h(p) 6= 1, then it is a point. For, if

h(p) ≤ z 6= 1, then p ≤ h∗(z) 6= 1, so that, by maximality of p, p = h∗(z), and hence

h(p) = hh∗(z) = z.

Proposition 4.2.12 If h : L −→ M is an onto uniform N-homomorphism, and I a

remote point of RL such that h̄(I) 6= >, then h̄(I) is a remote point of RM .

Proof: Let x ∈ M be such that rM(x) ≤ h̄(I). We need to show that x ∈ h̄(I). First,

we claim that rLh∗(x) ≤ I. If not, then, since I is a point, rLh∗(x) ∨ I = >, so that

h̄rLh∗(x)∨h̄(I) = >. Since h is a uniform N-homomorphism, we have rMhh∗(x)∨h̄(I) = >

which implies rM(x) ∨ h̄(I) = >, which is false. Second, since I is a remote point and

rLh∗(x) ≤ I, we have that h∗(x) ∈ I. Pick y ∈ I such that h∗(x) C y. Since x = hh∗(x)

and h∗(x) ∈ rL(y) ⊆ I, it follows that

x ∈ h̄(rL(y)) ⊆ h̄(I),

as required. �
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Chapter 5

Odds and Ends

This chapter consists of two sections which are not related, but nevertheless offer a mis-

cellany of results as a contribution towards the theory of nearness frames.

In Chapter 2 we mentioned grills briefly. In this chapter we revisit them and establish,

among other things, that grills are precisely unions of prime filters. We also show that,

similar to the spatial case, there are instances where preservation of near subsets by the

right adjoint characterizes uniform frame homomorphisms.

We conclude the chapter by showing that the lattice of all nearnesses on a frame is

a pseudo-frame, by which we mean a partially ordered set defined exactly like a frame

except that it need not have a bottom.

5.1 Grills and clusters

Grills and clusters play an important role in the theory of nearness spaces (see for ex-

ample [32] and [48]). We have already made reference to grills in our discussion focussed

on quotient-fine nearness frames in Chapter 2. This section is devoted to investigating

these concepts in the wider context of the theory of nearness frames. In particular, our

discussion centers on establishing the interconnections between the notions grill, cluster

and near subset. Grills are known to be dual to filters. Recall from Chapters 1 and 2

that, in a nearness frame (L, µ), a near subset A ⊆ L has the property that every uniform

cover of L has an element which meets every element of A, a cluster is a maximal near
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subset, and a grill G ⊆ L is an upset such that 0 6∈ G and if a ∨ b ∈ G, then a ∈ G or

b ∈ G.

In the theory of nearness spaces, uniformly continuous maps can be characterized by

near subsets namely: a function f : X −→ Y between nearness spaces is uniformly

continuous iff for every near subcollection A ⊆ PX, the collection {f [A] | A ∈ A} is near

in Y. Here we show that the property of being a near subset characterizes uniform frame

homomorphisms only in certain instances as specified by the following result.

Proposition 5.1.1 If (M, ν) is a strong nearness frame, (L, µ) an arbitrary nearness

frame, and h : M −→ L a dense onto frame homomorphism, then h is uniform iff h∗

preserves near subsets.

Proof: (⇒) Suppose the hypothesis holds, with h being a uniform frame homomorphism.

Let A be a near subset of L. We show that h∗[A] is a near subset of M. If C ∈ ν, then

h[C] ∈ µ. So there exists c ∈ C such that h(c) ∧ a 6= 0 for each a ∈ A, since A is near.

This implies c ∧ h∗(a) 6= 0 since h is onto. [To see this, suppose c ∧ h∗(a) = 0. Then

0 = h(c ∧ h∗(a)) = h(c) ∧ hh∗(a) = h(c) ∧ a giving a contradiction]. Therefore h∗[A] is

near.

(⇐) Conversely, suppose h∗ preserves near subsets. We show that h is uniform. Let

C ∈ ν, and suppose on the contrary h[C] 6∈ µ. Since (M, ν) is strong, we have that

Č = {x ∈ M | ∃c ∈ C, x C c} ∈ ν.

Now for any x ∈ Č, x∗∗ ≤ c for some c ∈ C (see Remark 3.6.1). Thus, in line with our

supposition, h[Č∗∗] 6∈ µ. Since h is dense onto, h[Č∗∗] = h[Č∗]∗ 6∈ µ and hence h[Č∗] is

near by Lemma 1.4.12. So, by the hypothesis h∗h[Č∗] is near. Since Č ∈ ν, we can find

x ∈ Č which meets with every element of h∗h[Č∗]. But h∗(h(x)∗) is an element of h∗h[Č∗]

and

h(x ∧ h∗(h(x)∗)) = h(x ∧ h∗h(x∗)) = h(x) ∧ h(x∗) = 0,

which implies x ∧ h∗(h(x)∗) = 0 by denseness. So we have a contradiction. Hence the

desired result holds. �
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Proposition 5.1.2 Every cluster is a grill.

Proof: Let (L, µ) be a nearness frame and C ⊆ L a cluster. Now, since C is near, we

have 0 6∈ C. Suppose a ∈ C or b ∈ C. Then C∪{a∨b} is near, and consequently a∨b ∈ C,

since C is a maximal near subset.

On the other hand, suppose a∨ b ∈ C with a 6∈ C and b 6∈ C. Then since C is a cluster,

C ∪{a} and C ∪{b} are not near and so D = C∗∪{a∗} ∈ µ and E = C∗∪{b∗} ∈ µ (from

Lemma 1.4.12). But D ∧ E ≤ C∗ ∪ {a∗ ∧ b∗) since a∗ ∧ b∗ = (a ∨ b)∗ ∈ C∗. So C∗ ∈ µ,

implying that C is not near. This is a contradiction. Hence the result holds. �

Next, we show that every near subset is contained in some grill. We will need the

following characterization of grills.

Lemma 5.1.3 The following are equivalent for a given nonempty subset G of a frame L:

(1) G is a grill.

(2) L \G is an ideal.

(3) G =
⋃
{F ⊆ G | F is a prime filter}.

Proof: (1)⇒(2): Suppose G is a grill. Then L \ G is nonempty since 0 ∈ L \ G. Let

a ≤ b ∈ L \G. Then b 6∈ G and, since G is an upset, a 6∈ G. So a ∈ L \G. Next, suppose

a, b ∈ L \ G. Since G is a grill, we cannot have a ∨ b ∈ G (otherwise a ∈ G or b ∈ G).

Therefore a ∨ b ∈ L \G, and consequently, L \G is an ideal.

(2)⇒(3): Suppose that L \G is an ideal. If

x ∈
⋃
{F ⊆ G | F is a prime filter},

then trivially, x ∈ G, giving the inclusion ⊇. As for the other inclusion, suppose y ∈ G. By

the hypothesis, L\G is a downset. So G is an upset, implying that ↑y ⊆ G. Therefore ↑y

is a filter disjoint from the ideal L\G. By invoking the dual version of Stone’s Separation

Lemma (a statement of which is in the Glossary, or see [30, Theorem 15]), there is a prime

filter F containing ↑y and disjoint from L \G. Hence y ∈ F ⊆ G, so that the inclusion ⊆

holds. Hence (3) holds.
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(3)⇒(1): Suppose the equality in (3) holds. Then G is an upset which does not contain

0, since each F in the union has these properties. Suppose a ∨ b ∈ G. Then a ∨ b ∈ F for

some prime filter F ⊆ G. By the definition of prime filters, a ∈ F or b ∈ F so that a ∈ G

or b ∈ G. �

Proposition 5.1.4 In any nearness frame (L, µ), every near subset is contained in a

grill.

Proof: Let A be a near subset of L, and pick any C ∈ µ. Choose c ∈ C such that

c ∧ a 6= 0 for all a ∈ A. This implies a 6≤ c∗ for each a ∈ A. [Note that if a ≤ c∗, then

c∧ a ≤ c∧ c∗ = 0, so that c∧ a = 0 which gives a contradiction]. So we have A ⊆ L\ ↓c∗.

Now ↓c∗ is an ideal, so that L\ ↓c∗ is a grill by the above lemma. �

Let (L, µ) be a nearness frame and A ⊆ L. We use the notation

sec A = {x ∈ L | x ∧ a 6= 0, ∀a ∈ A \ {0}}.

We say A is semi-Cauchy in case sec A is near.

A nearness frame (L, µ) is said to be separated if whenever a subset A ⊆ L is both

near and semi-Cauchy, then the set {s ∈ L | A ∪ {s} is near} is near. It is shown in [22]

that strong nearness frames are separated. Our next result identifies separated nearness

frames among the arbitrary ones.

Proposition 5.1.5 If (L, µ) is a nearness frame in which every near subset is contained

in a unique cluster, then (L, µ) is separated.

Proof: Given the hypothesis, let A ⊆ L be near and semi-Cauchy, and let C be the

unique cluster with A ⊆ C. Put S = {s ∈ L | A ∪ {s} is near}. For each s ∈ S, let Cs be

the unique cluster such that A∪ {s} ⊆ Cs. Then A ⊆ Cs for each s ∈ S. So S ⊆ C. Since

C is near, we have that S is near, and therefore (L, µ) is separated. �
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Remark 5.1.6 We note that if (L, µ) is a nearness frame, A ⊆ L is near and

C = {c ∈ L | A ∪ {c} is near}

is near, then C is the unique cluster containing A. To see this let B ⊇ A be near. Then

for each b ∈ B, we have A ∪ {b} ⊆ B and so A ∪ {b} is near. In that case b ∈ C, so that

B ⊆ C.

Recall that a Boolean nearness frame is one where the underlying frame L is Boolean.

Proposition 5.1.7 If (L, µ) is a Boolean separated nearness frame, then every near grill

in L is contained in a unique cluster.

Proof: Let G ⊆ L be a near grill. We first show that G is semi-Cauchy, and then use the

above remark to draw our conclusion. So we begin by showing that sec G is near.

Suppose on the contrary that sec G is not near. Then the set {a∗ | a ∈ sec G} ∈ µ,

and so there exists b ∈ sec G such that b∗ ∧ x 6= 0 for each x ∈ G, since G is near. But

for each x ∈ G, we have x = (x ∧ b) ∨ (x ∧ b∗), since L is Boolean. Since G is a grill, we

should have x∧ b ∈ G or x∧ b∗ ∈ G. But we cannot have x∧ b ∈ G since b∗ ∧ (x∧ b) = 0.

So x ∧ b∗ ∈ G; which contradicts the fact that b ∈ sec G, as b ∧ (x ∧ b∗) = 0. Therefore

sec G is near, so that G is semi-Cauchy.

Since (L, µ) is separated, the set C = {c ∈ L | G∪{c} is near} is near. So, by Remark

5.1.6, C is the unique cluster containing G. �

Our next result shows that clusters are preserved by dense surjections. We shall need

the following result appearing in [22].

Lemma 5.1.8 A surjection h : (M, ν) → (L, µ) is dense iff for every near subset A of

M, h[A] is a near subset of L.

Proposition 5.1.9 Let h : (M, ν) −→ (L, µ) be a dense surjection. If C ⊆ M is a

cluster, then h[C] is a cluster in L.
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Proof: Suppose C ⊆ M is a cluster. Since C is near, we have, by Lemma 5.1.8, that h[C]

is near. Now suppose h[C] ⊆ D for some D ⊆ L which is near. We show that D ⊆ h[C],

which will show that h[C] is a maximal near subset. Let d ∈ D, and choose b ∈ M such

that h(b) = d. Let A ∈ ν. Then h[A] ∈ µ. Since D is near, there exists a ∈ A such that

h(a) ∧ x 6= 0 for each x ∈ D. In particular, 0 6= h(a) ∧ h(b) = h(a ∧ b), which implies

a ∧ b 6= 0. Consider any element c ∈ C. Since h[C] ⊆ D, h(a) ∧ h(c) 6= 0, which implies

a∧ c 6= 0. Thus, a meets every element of C ∪{b}, which implies that C ∪{b} is near, and

therefore b ∈ C as C is a maximal near subset. Thus, d = h(b) ∈ h[C]. Hence h[C] = D,

as required. �

If denseness is dropped in the above proposition, then h[C] can fail to be a cluster

mainly because h[C] need not be near when C is near, as shown by the following example.

Example 5.1.10 Let 4 = {0, a, a∗, 1} be the Boolean algebra of four elements and 2 the

two-element chain. Regard these frames as fine nearness frames. Let h : 4 −→ 2 be the

frame homomorphism given by

0 7→ 0, a 7→ 0, a∗ 7→ 1, 1 7→ 1.

Then h is a nondense surjection. The set C = {a, 1} is a cluster in 4 for which h[C] is

not near, and therefore not a cluster.

5.2 The lattice of nearnesses on a frame

Let us recall that a partially ordered set H is said to be a preframe if every directed subset

of H has a join, every finite subset of H has a meet, and binary meets distribute over

all directed joins. Here we define a partially ordered set P to be a pseudo-frame in case

every nonempty subset of P has a join, every finite subset of P has a meet (and hence P

has the top element) and binary meets are distributive over joins. Thus, a pseudo-frame

is exactly like a frame except for the possible absence of the bottom element. Clearly,

every pseudo-frame is a preframe.

The following example, kindly communicated to us by one of the examiners of the

thesis, shows that a pseudo-frame need not be a frame.
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Example 5.2.1 Consider the set of integers with their usual order, with a new top added.

This set satisfies the condition that all non-empty subsets have joins, but it does not have

a bottom element.

We shall show that the lattice NL of all nearnesses on a frame L is a pseudo-frame.

We note that in [57], Zenk defines a “nearness” on a frame L to be merely a filter of covers

without imposing the admissibility condition. When (the stronger version of) admissibility

is imposed, he talks of an admissible nearness. In [57, Lemma 8] he shows that, under

subset inclusion, the poset of “nearnesses” is a frame. Our proof bears absolutely no

resemblance to that of Zenk’s.

Lemma 5.2.2 Let L be a regular frame, and N a nonempty collection of covers of L.

Form the collection

N̂ = {A ⊆ L | A is the meet of finitely many covers in N}.

Then N̂ is closed under ∧ (finite meets).

Proof: Let A, B ∈ N̂ . Write A = A1 ∧ · · · ∧ An and B = B1 ∧ · · · ∧ Bm, where all the

Ak’s and Bk’s are members of N . Then

A ∧B = (A1 ∧ · · · ∧ An) ∧ (B1 ∧ · · · ∧Bm)

is clearly a meet of finitely many members of N . Therefore A ∧B ∈ N̂ . �

Lemma 5.2.3 Let L, N and N̂ be as in the above lemma. Then the set

¯̂N = {C ∈ Cov(L) | A ≤ C for some A ∈ N̂}

is a pre-nearness on L.

Proof: First, let A ∈ ¯̂N and C ∈ Cov(L) such that A ≤ C. Then we have B ∈ N̂

such that B ≤ A. In that case B ≤ C; so that C ∈ ¯̂N . Second, let A, B ∈ ¯̂N and

C, D ∈ N̂ such that C ≤ A and D ≤ B. This implies C ∧D ∈ N̂ by Lemma 5.2.2, and

C ∧D ≤ A ∧B. Therefore A ∧B ∈ ¯̂N , and so the result holds. �

It is clear from the definitions given above that N ⊆ N̂ ⊆ ¯̂N .
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Lemma 5.2.4 Let (µα)α∈Λ be a nonempty family of nearnesses on a frame L. Then

µ =
∨
α

µα =

(⋃
α

µα

)¯̂

is the join of the family (µα) in the poset NL of all nearnesses on L ordered by inclusion.

Proof: µ is a pre-nearness on L, by Lemma 5.2.3, and since µα ⊆
⋃

α µα ⊆ µ for every α,

and since each µα is admissible, we conclude that µ is admissible; so that µ is a nearness.

Next, suppose µα ⊆ ν for every α, where ν is a nearness on L. Then
⋃

α µα ⊆ ν, and

consequently µ ⊆ ν. Thus, µ is the join of the family (µα). �

The preceding lemma shows that every nonempty subset of NL has a join; the conse-

quence of which is that every nonempty subset of NL has a meet. Note though that the

lemma does not explicitly indicate how binary meets are computed in NL. They are set

intersections as we show next.

Lemma 5.2.5 If µ and η are nearnesses on a frame L, then the intersection µ ∩ η is a

nearness on L.

Proof: The filter properties of µ∩ η are quite clear: A, B ∈ µ∩ η implies A∧B ∈ µ and

A∧B ∈ η. Therefore A∧B ∈ µ∩ η. Also, if A ∈ µ∩ η and A ≤ C ∈ Cov(L), then C ∈ µ

and C ∈ η; so that C ∈ µ ∩ η.

To show admissibility, denote by C the uniformly below relation relative to µ∩ η. Let

a ∈ L. Then

a =
∨
{x ∈ L | x Cµ a} and a =

∨
{y ∈ L | y Cη a}.

Therefore, by the frame distributive law,

a =
∨
{x ∧ y | x Cµ a and y Cη a}.

Now if x Cµ a and y Cη a, then

{x∗, a} ∈ µ and {y∗, a} ∈ η.
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Since x∗ ≤ (x∧ y)∗ and y∗ ≤ (x∧ y)∗, we have that {(x∧ y)∗, a} ∈ µ∩ η as it is refined by

a cover in µ and also by a cover in η. Thus, x ∧ y is an element of L such that x ∧ y C a.

This shows that

a =
∨
{x ∧ y | x Cµ a and y Cη a} ≤

∨
{z ∈ L | z C a} ≤ a,

and hence µ ∩ η is admissible. �

We now state our main result in this section.

Proposition 5.2.6 The lattice NL of all nearnesses on a frame is a pseudo-frame.

Proof: Let µ ∈ NL and {νi | i ∈ I} ⊆ NL. The required distributivity, namely∨
(µ ∧ νi) ≤ µ ∧

∨
νi, always holds. So we must show that µ ∧

∨
νi ≤

∨
(µ ∧ νi). Let

A ∈ µ∧
∨

νi. Since ∧ is intersection in NL, A ∈ µ and A ∈
∨

νi. By Lemma 5.2.3, there

are finitely many indices i1, . . . , im and covers Ai1 ∈ νi1 , . . . Aim ∈ νim such that

(†) Ai1 ∧ · · · ∧ Aim ≤ A.

For each k ∈ {1, . . . ,m}, A ∪ Aik ∈ µ ∩ νik since the cover A ∪ Aik is refined both by A

(which is in µ) and by Aik (which is in νik). Consequently,

(A ∪ Ai1) ∧ · · · ∧ (A ∪ Aim) ∈ (µ ∩ νi1) ∨ · · · ∨ (µ ∩ νim) ≤
∨

(µ ∧ νi).

We claim that (A ∪ Ai1) ∧ · · · ∧ (A ∪ Aim) refines A. To show this, let x ∈ (A ∪ Ai1) ∧

· · · ∧ (A ∪ Aim). Then

x = x1 ∧ · · · ∧ xm

for some elements x1 ∈ A ∪ Ai1 , . . . , xm ∈ A ∪ Aim . If x` ∈ A for some ` ∈ {1, . . . ,m},

then x ≤ x` ∈ A. If, on the other hand, xk ∈ Aik for each k ∈ Aik , then

x ∈ Ai1 ∧ · · · ∧ Aim ,

and hence, from (†), x ≤ a for some a ∈ A. This shows that every element of (A∪Ai1)∧

· · · ∧ (A ∪ Aim) is below some element of A. Therefore A ∈
∨

(µ ∧ νi); which shows that

µ ∧
∨

νi ≤
∨

(µ ∧ νi), and hence equality. �
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Clearly, the top element of NL is Cov(L). It is not clear how the bottom, in the

instances where it exists, can be explicitly described. Note though that if L is compact,

then NL is a one-element frame, and hence 0NL = Cov(L). The converse actually also

holds. That is, ifNL is a one-element frame, then L is compact. For, Cov(L) = (Cov(L))T

implies every cover has a finite subcover.
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