ELUCIDATING THE DRIVING FACTORS OF EXTINCTION RISK OF GLOBAL CYCAD SPECIES

by

GREGOIRE KANTAKWA SADIKI

submitted in accordance with the requirements for

the degree of

MASTER OF SCIENCE

in the subject

ENVIRONMENTAL SCIENCES

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: DR KOWIYOU YESSOUFOU

APRIL 2021

TABLE OF CONTENTS

DEDICATION	vi
ACKNOWLEDGEMENTS	vii
ABSTRACT	ix
LIST OF ABBREVIATIONS	x
CHAPTER 1	1
INTRODUCTION AND RESEARCH BACKGROUND	1
1.1 Introduction	1
1.2 Global extinction crisis of cycads	4
1.3 Current conservation strategies on cycad species	7
1.4 Applications of Evolutionary Distinctiveness	9
1.5 Research problem	
1.6 Rationale for the study	12
1.7 Aim and Objective of the study	14
1.8 Formulation of hypothesis	
1.9 Dissertation outline	16
CHAPTER 2	17
LITERATURE REVIEW	17
2.1 Introduction	17
2.2 Cycads biogeography	
2.3 Cycad diversity and changes in taxonomy	21
2.3.1 Family Cycadaceae	21
2.3.2 Family Stangeriaceae	22
2.3.3 Family Zamiaceae	23
CHAPTER 3	
METHODOLOGY	
3.1 Data collection	
3.2 Research methods	29
3.2.1 Probable predictors of the IUCN threat status	
3.2.1 Probable predictors of the IUCN threat status3.3 Data analysis	

3.3.1.1 The use of Structural Equation Modeling (SEM) to explain threat status of c species	-
CHAPTER 4	32
RESULTS	32
4.1 Presentation of the results	32
CHAPTER 5	40
DISCUSSIONS	40
5.1 Positive relationships amongst variables	40
5.2 Negative relationships amongst variables	43
5.3 The priority of ED score ranking on cycads and their IUCN category	43
CHAPTER 6	47
CONCLUSION AND RECOMMENDATIONS	47
6.1 Conclusion	47
6.2 Recommendations	48
REFERENCES	49

LIST OF FIGURES

Figure 1 A theoretical phylogeny of three species A, B and C explaining how to	
calculate Evolutionary Distinctiveness (ED) scores1	0
Figure 2 A theorethical Meta-model illustrating the prediction of hypothesis1	5
Figure 3 Global distribution range map of the Cycad genera	20
Figure 4 Seed and pollen cones for all cycad genera 2	24
Figure 5 Meta-model illustrating the potential influence of predictors towards	
responses among variables (SEM) 3	61

LIST OF TABLES

Table I Predictor and response variables for extinction risk	. 33
Table II Individual R-squared of variables for the fitting SEM model	. 36

LIST OF APPENDIX

Appendix 1 A compiled world list of cycad taxa, their global distribution and	
the threat status (Threatened vs non-thrteatened)	78
Appendix 2 ED score of all cycad species. Species are listed in following the	
decreasing order of ED values	102
Appendix 3 Directed separation with Global goodness-of-fit	129

DECLARATION

I, Sadiki (61657573), hereby declare that this dissertation submitted at the University of South Africa is my own work and has not been submitted before at this or another institution for qualification.

GREGOIRE KANTAKWA SADIKI

April 2021

DEDICATION

This work is dedicated to the memories of:

My father Férdinand-Berthold Sadiki,

My uncles Stéphane and François Sadiki,

My brothers Férdinand Jr and Jérôme Sadiki,

My sister Martha Sadiki,

They all passed on very early without even see the achievement of this present study.

"Cycads are to the vegetable kingdom what Dinosaurs are to the animal, each representing the culmination in Mesozoic times of the ruling Dynasties in the life of their age." Lester Ward, 1900

ACKNOWLEDGEMENTS

Numerous people have directly or indirectly contributed through direction, encouragements or motivation to guarantee the success of my study, and they all deserve my gratitude.

I have to start by expressing my gratitude to Dr Kowiyou Yessoufou, who is the main supervisor of this study. I have been blessed to having him; his guidance and support towards the success and completion of my research have exceeded my expectations.

I really owe an enormous amount of thank to the personnal of the main library of the University of South Africa with their gentleness and friendless by making available books as well as some electronical articles I needed for my dissertation.

Special thanks go to my two brothers Coco Sadiki (a Dr in his own right) and Jacques Sadiki for believing in my capacities from the very beginning and ensuring that I become the Master degree holder in the Sadiki family tree.

Thanks to my unforgettable friends Dr Junior Bolukaoto, Dido Tumba and Christian Lueme for making me familiar with research environment by showing academic orientations that I could not reach by myself.

I would also like to give a special thank to Dr Alain Kamika; through him, I have met for the first time my supervisor.

My gratefulness goes to Mr. Prevost Paluku, Etienne Kiyiro, Tabin Mupenda, Dieu Wawina, Prudent Lingombi, Edouard Liwaka, Jean-Louis Mwandika, Etienne Melly, Oscar Salumu, Jacques Andia, André Bwandola, Bezo Zinde, Dr Jr Tshiamala, Dr Anaclet Omari, Maître Tresor Lotemba, Dr Patou Ayikwa and Dr Jeremy Mitonga for their words of encouragement. I do thank Ms. Isabelle Ngandi, Dr Evelyne Bafandu Sadiki, Desiré Musondivwa, Mrs Emilienne Yohali Sadiki, Junior Mafwila, Anthony Obendo, Patient Lofalata, Samuel Kandolo, Jeannot Lingela, Dr Serge Mpiana, Dr Marlin Mpiana, Dr Achille Mubiayi, Axel Ali, Christine Litifo, Dr Gracia Bolukaoto, Papy Tokombe, Yves Tokombe and Rachidi Mawete for their solid supports.

My colleagues at the University of South Africa, namely Gracia Kamika, Ir. Joseph Litua, Emmanuël Mbuyi, Irène Kobo-Muwampi, Christine Foma, Michel Kana, Dr Katumba, Pastor Bolingo, Alice ODU, Nadine Kisema, Marcel Mangu, Dr Daniel Ndombo and Dr Pascal Kiabula are hereby acknowledged for their inspiration and sincere companionship.

My mothers Christine Masunga and Honorine Nyota, as well as my uncles Elias Sadiki, Gaston Agigi and Demokos Mekodjo are hereby acknowledged.

I would also like to thank all my brothers and sisters in the Sadiki family tree. Let the achievement of this dissertation serve as proof of what we are able of realizing in our family.

Finally, I give all thanks to the Almighty God for the gift of life, strength and His abundant grace upon my life. To Him are all the magnificence, honour and worship.

God bless you all.

ABSTRACT

Biodiversity is rapidly declining worldwide because of the anthropogenic impacts on the environment regarding goods and services it delivers to humanity. Evidence suggests that we have entered the period of sixth mass extinction of human history. Being interested in distinguishing the pre-disposition of cycads to such risk of extinction, integration of structural equation modelling (SEM) on cycads was used. This plant belongs to a gymnosperm group, which exhibit the highest rate of extinction in the plant kingdom. This present study aimed to inform conservation decision-makers to be aware of the factors that drive the extinction risk of cycad species. The specific objective was to formulate and test a meta-model that explains the patterns of the extinction risks of cycads. However, several groups of threats to cycads were identified and the most prominent were those connected to human activities. Likewise, some variables that correlate with the extinction risks of cycad species were classified. Then, a cycad phylogeny was used to calculate ED values for each species so that high-ED species were those that merit specific attention. Nevertheless, *Microcycas calocoma* was the species having the highest ED score (98.762 MY). By using SEM, the results demonstrated a negative but significant relationship between ED and maximum height (β = -0.1226; SE= 0.0439; P = 0.0076). Moreover, the findings further demonstrated significant relationships between other variables and the positive ones were maximum altitude with generation time, range with maximum height and maximum altitude with number of threats. Therefore, maximum height with generation time has a significant but negative relationship. Thus, maximum height and generation time are variables considered as best predictors for extinction risk in cycad species, with a projecting power of 99% and 48% respectively. This work is best suited to inform conservation decisions regarding the rapid loss of cycads through human activities. Therefore, we recommend decision-makers to design a bigger picture for a conservation plan on cycad species (especially those having high-ED values), to prevent their extinction; implement the legislation and regulation of human-cycad connections.

Keywords: Anthropogenic activities, mass extinction, species loss, IUCN, evolutionary distinctiveness, structural equation modelling.

ix

LIST OF ABBREVIATIONS

AIC	Akaike information criterion
ANOVA	Analysis of variance
BIC	Bayesian information criterion
BMP	Biodiversity management plans
CBC	Community-based conservation
CITES	Convention on international trade in endangered species
cm	centimeter
CR	Critically endangered
DD	Data deficient
df	degree of freedom
DNA	Desoxyribonucleic acid
ED	Evolutionary distinctiveness
e.g.	Exampli gratia (For example)
EN	Endangered
et al.	and others
etc.	et cetera ('and the other things')
IUCN	International union for the conservation of nature
km	kilometer
km²	squared kilometer
LC	Least concern
МСМС	Monte Carlo Marcov Chain

National Environmental Management Biodiversity Act
meter
maturase K
Million years
Million years ago
Nuclear international transcribed spacer
Near threatened
not applicable
natural protected areas
Phylogenetic analysis using parsimony
Phytochrome P
Phylogenetic diversity
Spacer between the trnH and psbA genes
Subunit "a" of Ribulose 1,5-Biophosphate Carboxylase/Oxygenase
Species survival commission
Standard error
Structural equation modeling
Vulnerable
greater or equal to
less than or equal to
equal
Beta

CHAPTER 1 INTRODUCTION AND RESEARCH BACKGROUND

1.1 Introduction

Global biodiversity is rapidly declining because of the ongoing and increasing anthropogenic impacts on the environment (Wilting et al., 2017) and many sources indicate the loss of biodiversity at an exceptional rate (Millennium Ecosystem Assessment, 2005; Vamosi and Vamosi, 2008). The future of humanity depends on the goods and services from biodiversity such as food production, clean water, climate stability, medicinal plants, plant pollination, nutrient cycling, clean air, carbon sequestration, recreation and tourism, etc. (Millennium Ecosystem Assessment, 2005) provided by a well-functioning structure of biological diversity (Yessoufou and Davies, 2016). Unfortunately, this need might bring the loss of these ecosystem goods and services on a particular concern (Millennium Ecosystem Assessment, 2005). The risk of species extinction is linked in several ways to human population growth and activities including habitat destruction, invasive alien species and overexploitation (Harberl et al., 2007; Winter et al., 2009; Willis et al., 2010), as well as climate changes (Millennium Ecosystem Assessment, 2005). Dirzo and Raven (2003) asserted that the loss of biodiversity is the one irreversible global environmental aspect that can change the face of our earth today.

However, climate change, for instance, is predicted to be a main driver of extinction in the future of biodiversity, due to intervals in the ability of species to adjust their physiology and life histories (e.g. phenology, abundance, distribution and interaction, etc.) to match the new climate regime (Willis *et al.*, 2010; Cahill *et al.*, 2012). A study of the International Union for the Conservation of Nature (IUCN) projected that climate change could drive a quarter to one-half of world's land (animals and plants included) to loss by the end of this century (IUCN, 2010; Foden *et al.*, 2013; Miller and Spoolman, 2017). However, at the international policy target of a 2°C postindustrial rise, which experts now agree is no longer achievable, global extinction risks have increased from 2.8 to 5.2% at present (Fuss *et al.*, 2014). Nonetheless, if the earth warms to 3°C, the extinction risk will rise to 8.5% which means that climate change will threaten one in six species globally (16%) then it could distress

ecosystems and the services they provide to humans (Lawler *et al.*, 2009). A good example is coral reefs, which could be missing in the next century if global warming continues at the current tendency (Kannan and James, 2009). The signal of climate change-induced extinctions will become progressively more apparent if there is no action to limit future climate change (Urban, 2015).

In the period from 1950 to 2011, worldwide people increased from 2.5 billion to 7 billion (Visconti et al., 2015) and the expectation shows that human population will show an exponential growth to reach 9.8 billion by 2050 (United Nations, 2004). Indeed, current predictions put the possible number of people on the planet at 11 or 15 billion by 2100 (Gerland et al., 2014). Consequently, that growth will exert pressure on natural resources and will continue to drive extinctions within a short period (Baillie et al. 2004; Pullaiah et al., 2015). Potentially, it could decrease the provisioning of service deliveries (i.e. species and biodiversity particularly in the Tropics) (Vamosi & Vamosi, 2008; Archard et al., 2002; Wake and Vredenburg, 2008) at the time when demand is growing, as conflict between human development and wildlife still ongoing (Santini et al., 2016). The elevated rates will be in tropical biomes particularly, which are known for their unique life-form diversity (Vamosi and Vamosi, 2008). However, there is an expectation that the future rate of species extinction could be raised by at least a further order of greatness over the next few hundred years (Tafirei, 2016). Nevertheless, that extinction rate differs from one species to another, which makes a pattern referred to as non-random extinction (Yessoufou and Davies, 2016). Pullaiah et al. (2015) demonstrated that world could lose more than a million species of plants and animals during the next 20 to 30 years, principally because of environmental changes due to human activities. These activities continue to be the main risk to species diversity and long-term survival (Volis, 2016). Consequently, it is a matter of urgency to understand how the ongoing extinction crisis will affect the provisioning of critical ecosystem services (Yessoufou and Davies, 2016).

In their recent work, Miller and Spoolman (2017) demonstrated that the past five mass extinctions have been caused by abiotic factors like asteroid airstrikes and volcanic eruptions in natural climate shifts. For now, scientists agree that we are in the sixth mass extinction period of human history (Magurran and Dornelas, 2010;

Barnosky *et al.*, 2011; McLellan *et al.*, 2014). Humans (Anthropogenic period) are now causing this current sixth mass extinction through the co-option of resources, the spread of pathogens, the destruction of habitats, the introduction of non-native species and changing global climate (Barnosky, 2009; Vredenburg *et al.*, 2010). Pievani (2014) confirmed that we are not yet exactly in the middle of the sixth mass extinction, but then the rate is higher than caused by abiotic factors. Cafaro (2015) summarized three possible ways to think about the sixth mass extinction, such as i) the loss of important resources (as error), ii) interspecies genocide (as crime), and ii) the evidence that humanity is cancer on the biosphere (as inevitability). He then mentioned that this mass extinction of Earth's biodiversity is irresponsible and representing a serious mistake, that humanity will come to regret.

However, the recent rate of species loss might be 1,000 to 10,000 times greater than observed in the past extinction (Millennium Ecosystem Assessment, 2005; Pullaiah et al., 2015) and most species on Earth would be eliminated within 100 years at this current rate of loss (Miller and Spoolman, 2017). The IUCN in 2010 reported that amphibian species are the most at risk among vertebrates with an average of 41% to be threatened, and that estimation showed how much this species is facing an uncertain future. Nevertheless, 21% of fish are threatened with 20% of continental mammals, nearly 12% of the world's bird species and 10% of temperate regions' plants have already been lost (IUCN, 2010; Pullaiah et al., 2015). Also, at the islands of tropical Oceania, up to 1800 bird species were estimated to have become extinct in the ~2000 years since human colonization (Ceballos et al., 2015). Kannan and James (2009) mentioned that destruction of habitat has played an important role in extinctions, particularly those related to Tropical Forest. Some factors that contribute to biodiversity's habitat destruction are over-consumption, over-population, land-use change, deforestation, pollution (air pollution, water pollution, soil contamination) as well as climate change.

As over 70% of flowering plants assessed globally are at risk of extinction (IUCN, 2010), suggesting that this proportion is much higher than the one reported to vertebrates (22%) and the risk of extinction is more worrisome. Conversely, existing knowledge indicates that biological or ecological factors and evolutionary history predispose many taxonomic groups to the extinction risk (Davies *et al.* 2011; Yessoufou *et al.*, 2012). A better explanation is that traits history of existence like body size

predispose vertebrates to the risk of extinction (Cardillo, 2003; Yessoufou and Davies, 2016) but for plant species, extinction risk is linked to their existing history than their evolutionary (Vamosi and Wilson, 2008; Daru *et al.*, 2013). Besides, the evolutionary history of a species may be more important than its life history in the explanation of extinction risk (Yessoufou and Davies, 2016).

1.2 Global extinction crisis of cycads

Global biodiversity is rapidly declining because of the ongoing and increasing anthropogenic impacts on the environment (Wilting et al., 2017) and many sources indicate the loss of biodiversity at an exceptional rate (Millennium Ecosystem) Assessment, 2005; Vamosi and Vamosi, 2008). The future of humanity depends on the goods and services from biodiversity such as food production, clean water, climate stability, medicinal plants, plant pollination, nutrient cycling, clean air, carbon sequestration, recreation and tourism, etc. (Millennium Ecosystem Assessment, 2005) provided by a well-functioning structure of biological diversity (Yessoufou and Davies, 2016). Unfortunately, this need might bring the loss of these ecosystem goods and services on a particular concern (Millennium Ecosystem Assessment, 2005). The risk of species extinction is linked in several ways to human population growth and activities including habitat destruction, invasive alien species and overexploitation (Harberl et al., 2007; Winter et al., 2009; Willis et al., 2010), as well as climate changes (Millennium Ecosystem Assessment, 2005). Dirzo and Raven (2003) asserted that the loss of biodiversity is the one irreversible global environmental aspect that can change the face of our earth today.

However, climate change, for instance, is predicted to be a main driver of extinction in the future of biodiversity, due to intervals in the ability of species to adjust their physiology and life histories (e.g. phenology, abundance, distribution and interaction, etc.) to match the new climate regime (Willis *et al.*, 2010; Cahill *et al.*, 2012). A study of the International Conservation projected that climate change could drive a quarter to one-half of world's land (animals and plants included) to loss by the end of this century (IUCN, 2010; Foden *et al.*, 2013; Miller and Spoolman, 2017). However, at the international policy target of a 2°C post-industrial rise, which experts now agree is no longer achievable, global extinction risks have increased from 2.8 to 5.2% at

present (Fuss *et al.*, 2014). Nonetheless, if the earth warms to 3°C, the extinction risk will rise to 8.5% which means that climate change will threaten one in six species globally (16%) then it could distress ecosystems and the services they give to humans (Lawler *et al.*, 2009). A good example is coral reefs, which could be missing in the next century if global warming continues at the current tendency (Kannan and James, 2009). The signal of climate change-induced extinctions will become progressively more apparent if there is no action to limit future climate change (Urban, 2015).

In the period from 1950 to 2011, worldwide people increased from 2.5 billion to 7 billion (Visconti et al., 2015) and the expectation shows that human population will show an exponential growth to reach 9.8 billion by 2050 (United Nations, 2004). Indeed, current predictions put the possible number of people on the planet at 11 or 15 billion by 2100 (Gerland et al., 2014). Consequently, that growth will exert pressure on natural resources and will continue to drive extinctions within a short period (Baillie et al. 2004; Pullaiah et al., 2015). Potentially, it could decrease the provisioning of service deliveries (i.e. species and biodiversity particularly in the Tropics) (Vamosi & Vamosi, 2008; Archard et al., 2002; Wake and Vredenburg, 2008) at the time when demand is growing, as conflict between human development and wildlife still ongoing (Santini et al., 2016). The elevated rates will be in tropical biomes particularly, which are known for their unique life-form diversity (Vamosi and Vamosi, 2008). However, there is an expectation that the future rate of species extinction could be raised by at least a further order of greatness over the next few hundred years (Tafirei, 2016). Nevertheless, that extinction rate differs from one species to another, which makes a pattern referred to as non-random extinction (Yessoufou and Davies, 2016). Pullaiah et al. (2015) demonstrated that the world could lose more than a million species of plants and animals during the next 20 to 30 years, principally because of environmental changes due to human activities. These activities continue to be the main risk to species diversity and long-term survival (Volis, 2016). Consequently, it is a matter of urgency to understand how the ongoing extinction crisis will affect the provisioning of critical ecosystem services (Yessoufou and Davies, 2016).

In their recent work, Miller and Spoolman (2017) demonstrated that the past five mass extinctions have been caused by abiotic factors like asteroid airstrikes and volcanic eruptions in natural climate shifts. For now, scientists are now in agreement that we are in the sixth mass extinction period of human history (Magurran and Dornelas, 2010; Barnosky *et al.*, 2011; McLellan *et al.*, 2014). Humans (Anthropogenic period) are now causing this current sixth mass extinction through the co-option of resources, the spread of pathogens, the destruction of habitats, the introduction of non-native species and changing global climate (Barnosky, 2009; Vredenburg *et al.*, 2010). Pievani (2014) confirmed that we are not yet exactly in the middle of the sixth mass extinction, but then the rate is higher than caused by abiotic factors. Cafaro (2015) summarized three possible ways to think about the sixth mass extinction, such as i) the loss of important resources (as error), ii) interspecies genocide (as crime), and ii) the evidence that humanity is cancer on the biosphere (as inevitability). He then mentioned that this mass extinction of Earth's biodiversity is irresponsible and representing a serious mistake, that humanity will come to regret.

However, the recent rate of species loss might be 1,000 to 10,000 times greater than observed in the past extinction (Millennium Ecosystem Assessment, 2005; Pullaiah et al., 2015) and most species on Earth would be eliminated within 100 years at this current rate of loss (Miller and Spoolman, 2017). The International Union for the Conservation of Nature (IUCN) in 2010 reported that amphibian species are the most at risk among vertebrates with an average of 41% to be threatened, and that estimation showed how much this species is facing an uncertain future. Nevertheless, 21% of fish are threatened with 20% of continental mammals, nearly 12% of the world's bird species and 10 % of temperate regions' plants have already been lost (IUCN, 2010; Pullaiah et al., 2015). Also, at the islands of tropical Oceania, up to 1800 bird species were estimated to have become extinct in the ~2000 years since human colonization (Ceballos et al., 2015). Kannan and James (2009) mentioned that destruction of habitat has played an important role in extinctions, particularly those related to Tropical Forest. Some factors that contribute to biodiversity's habitat destruction are over-consumption, over-population, land-use change, deforestation, pollution (air pollution, water pollution, soil contamination) as well as climate change.

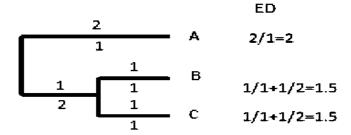
As over 70% of flowering plants assessed globally are at risk of extinction (IUCN, 2010), suggesting that this proportion is much higher than the one reported to vertebrates (22%) and the risk of extinction is more worrisome. Conversely, existing knowledge indicates that biological or ecological factors and evolutionary history predispose many taxonomic groups to the extinction risk (Davies *et al.* 2011; Yessoufou *et al.*, 2012). A better explanation is that traits history of existence like body size predispose vertebrates to the risk of extinction (Cardillo, 2003; Yessoufou and Davies, 2016) but for plant species, extinction risk is linked to their existing history than their evolutionary (Vamosi and Wilson, 2008; Daru *et al.*, 2013). Besides, the evolutionary history of a species may be more important than its life history in the explanation of extinction risk (Yessoufou and Davies, 2016).

1.3 Current conservation strategies on cycad species

To conserve biodiversity at global scale in the facade of the ongoing extinction crisis is one of the ideal remedies that would preserve the whole diversity and continue to provide ecosystem services to humanity (Millennium Ecosystem Assessment, 2005). However, those plans are conceptualized to take on public policy and concerns affecting societies, ecosystems, cultures, etc. at the global and national scale (Gascon *et al.*, 2007). Nonetheless, restricted-range for endemic species, one of the major approaches in IUCN threat categorization, are given priority on a global scale (Myers *et al.*, 2000; Olson *et al.*, 2001). So, this unique conservation on a global scale for endemic species correlates poorly with species richness and species threat levels (Orme *et al.*, 2005), and could lead us to miss the right goal (Isaac *et al.*, 2007). Indeed, the efforts of conservation planners are focused on species or habitats that need the most urgent attention (Isaac *et al.*, 2012), even if globally we do have enough resources.

Much literature has been written in the support of cycad conservation strategy at a global scale (Osborne, 1990; Donaldson, 2003; 2008; Daly *et al.*, 2006). However, with the numerous features compromising cycads over the past two decades, and the idea of cycad life history, it looks like future generations could not be able to watch these "living fossils" inside their natural habitat if efforts are not made now (Retief, 2013). Goël and Khuraijam (2015) have explained that most of the cycads

occur on the top of endangered plants, and their future does not look very bright. One of the activity plans established by the International Union for the Conservation of Nature (IUCN) Cycad Specialist Group (CSG) is to multiply cycads artificially and utilizing seeds collected from the wild, to help the restoration of wild populations (Donaldson, 2003). In many countries, the conservation portfolio includes natural protected areas (NPA), community-based conservation (CBC), and *ex situ* conservation (Luo *et al.*, 2014; Vovides *et al.*, 2010). Cycad species have the status of being threatened, so there is an urgent need to understand the rate at which populations are declining and to determine the factors that accelerate these declines (Mankga and Yessoufou, 2017).


The question of where and why to apply which conservation strategies remain very important. However, local communities in Mexico, for instance, have set up successful projects by selling only cycad seeds, but the effectiveness of this plan is upset by trying to discover sufficient marketing systems and developing reliable trading partners to guarantee that selling of the plants for the project is selfsustaining (Donaldson, 2003). Donaldson (2003) initiated the idea that the need for formulation and implementation adequate conservation strategies for threatened species that are represented by unique and small populations on a narrow geographic range. Nevertheless, the Convention on International Trade in Endangered Species (CITES) Appendix I lists species that are threatened with extinction and prohibited from entering international trade except for non-commercial purpose (e.g. for scientific research), while Appendix II includes species that may become threatened with extinction if the trade is not regulated and the last Appendix III lists species that require watching. Therefore, these Appendices are periodically reviewed (Pullaiah et al., 2015) and more studies are needed to be undertaken to improve global understanding of these developments (Marler and Marler, 2015).

The National Environmental Management Biodiversity Act (NEMBA) 2004, Section 57 (2) in its amendment made in May 2012 hoped to assist the achievement aims of Biodiversity Management Plans (BMP) through more stringent regulation of the cycad trade in South Africa (Retief, 2013). Removal and trade of any part of *Encephalartos* specimens in the wild, for example, that are listed as threatened or protected is banned in South Africa (DEAT, 2012). This means that any specimen of

this genus, which is listed as critically endangered or endangered, may not be traded within South Africa or exported outside the country for the next five years, especially those having a stem diameter from 7 to 15 cm or until conservation targets are reached (DEAT, 2012). In South Africa, the BMP aims to execute this strategy on *E. latifrons*, a critically endangered (CR) cycad with fewer than 60 individuals left in the wild (Da Silva *et al.*, 2012). The main aim is to make safe and restore existing populations (DEAT, 2010). Nevertheless, the BMP allows landowners or communities to trade with propagated seedlings from wild cycads on condition that they have the right permits and a certain percentage of seedlings are used for restoration purposes (DEAT, 2010).

1.4 Applications of Evolutionary Distinctiveness

Evolutionary Distinctiveness (ED) explains the phylogenetic relatedness of a species with others on a phylogeny. In Figure 1 below, there is an explanation of how to calculate ED. It gives ED score of species A given by the sum of the ED scores for each of the branches between A, and the root of the phylogeny. Species A is linked to the root by only one branch that is 2 million years (MY) long, consequently, ED score for A is 2/1 = 2MY. However, species B is connected to the root by two branches of 1 MY each; the first branch is a terminal branch that subtends only one species (which is B) while the second one subtends two species (B and C). Therefore, ED score for B is 1/1+1/2 = 1.5 MY. Species C has the same ED score with species B and the explanation is because they are sister species. Species that have very few relatives will have a high ED value (e.g. species A) compared to those with several relatives (e.g. species B or C). IUCN gives the categorization of threat level for species risk assessment such as Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN) and Critically Endangered (CR) (IUCN, 2010).

Figure 1: A theoretical phylogeny of three species A, B and C explaining how to calculate ED scores. Numbers above each branch indicate the length of the branch in million years before the present and numbers below show the number of descendent species (Tafirei, 2016).

1.5 Research problem

The ongoing six mass extinction events are characterized by the loss of two-thirds of biodiversity (Millennium Ecosystem Assessment, 2005). This loss raises a global concern, as humanity relies on the goods and services that biodiversity provides (e.g. foods, medicine, pollination, recreation, etc.). However, biodiversity on a global scale is increasingly under massive pressure, calling for renewed conservation efforts (Millennium Ecosystem Assessment, 2005). It is very difficult to conserve all species because existing measures for conserving biodiversity are facing global limitations (Lung *et al.*, 2014). Limited funds that might be allocated for conservation could be used in developing countries, for the simple reason that these areas are today seen as a home for the vast majority of biodiversity (Rolland *et al.*, 2014; Lung *et al.*, 2014). In South Africa, for instance, legislation on cycads is one of the strictest in the world (Donaldson, 2003), but poaching of cycads in an illegal manner is still common and high in number (IUCN, 2010; Cousins *et al.*, 2012; Okubamichael, 2016). Because of all these limitations, the priority is to save threatened species that require the most urgent attention.

However, in animal species, for instance, the extinction risk was related to the mass of their body and generation time as well as the geographic range. Consequently, species with these three above mentioned characteristics would be the most at risk (Bennett and Owens 1997; Russell *et al.*, 1998; Purvis *et al.*, 2000; Cardillo, 2003; Fisher and Owens, 2004; Cooper *et al.*, 2008; IUCN, 2010). For this present study, maximum diameter and maximum height represent the body size (see also Sodhi *et al.*, 2008). It is essential to understand better what pre-disposes biodiversity to the extinction risk, to report to conservation decision-makers and forecast the future risk of the historical extinction actions. Although a huge body of literature devoted to this question was released, especially concerning the evolutionary basis of species loss and their drivers but most of them have shown inequality. In addition, the hard works of commitment to disentangle these drivers and the patterns of extinction risk have been focused on vertebrates (i.e. mammals: Isaac *et al.*, 2007; updated by Davies and Yessoufou, 2013; Luiz *et al.*, 2016, birds: Jetz *et al.*, 2014, reptiles: Isaac *et al.*, 2012; Veron *et al.*, 2016 as well as fish: Adeoba *et al.*, 2019).

Furthermore, the comparatively few studies on extinction risk for plants have made priorities to angiosperms (Sodhi et al., 2008; Yessoufou et al., 2012; Leao et al., 2014; Daru et al., 2015; Daru and le Roux, 2016) with no comparable efforts devoted to gymnosperms, even though the latter are more at risk of extinction than angiosperms (e.g. ~70% of cycads are at risk of extinction: Yessoufou et al., 2017). As result, informations about vertebrates and angiosperms to be pre-disposed to extinction risk, also how their phylogenetic trees would be distressed by the damage of species are well known (Davies et al., 2011; Mooers et al., 2012; Davies and Yessoufou, 2013). This high risk of extinction for cycads is due to overexploitation, habitat destruction, species biology and ecology as well as climate (Mankga and Yessoufou, 2017). Cycad species could be lost in a near future if measures are not made now, simply because it has a very low dispersal ability, a very limited range of pollinator and a very restricted distribution range (IUCN, 2010). Many works showed that the result of this extinction is the risk of losing important evolutionary history from its tree of life (Davies and Yessoufou, 2014; Davies, 2015; Yessoufou and Davies, 2016), and this will finally contribute to the disruption of ecosystem functions and services and other biodiversity associated to cycads.

Therefore, regarding the inability to preserve all species simultaneously in an efficient manner, researchers can only prioritize and focus their efforts of

conservation on species that represent unique evolutionary history. However, to achieve this, there is an increasing evidence that focuses on ED, as a single diversity metric (Jetz *et al.*, 2014; Redding *et al.*, 2014, 2015) or in combination with threat using (Isaac *et al.*, 2012) would likely lead to safeguarding the most evolutionary in a particular lineage. As such, there is an urgent need to understand how best this plant group (cycads) and their evolutionary diversity can be safeguarded in the circumstance of the ongoing destruction crisis at the Tropics. To reach this global objective, a recent study demonstrated, again using vertebrates as a case study, with an integrative approach, which combines biogeography, evolutionary data and extinction risk information (Jetz *et al.*, 2014). This study is the one best suited to elucidate how conservation decisions can be designed efficiently to prevent biodiversity loss. Such an opportunity for an integrated analysis of the extinction risk for cycads is missing, precluding us from designing a bigger picture of globally conservation plan for cycads. The present project aims to fill this knowledge gap.

1.6 Rationale for the study

The rationale for this project is that cycads are the most threatened group of plants (IUCN, 2010; Yessoufou *et al.*, 2017), but we still have a poor knowledge of what pre-disposes these species to such a high risk of extinction. Also, how evolutionary and extinction risk data can be analyzed within a biogeographic framework to inform conservation decisions on a global and national scale. In general, the future of humanity relies strongly on the continued delivery of ecosystem services (food, medicinal plants, pollination, clean air, erosion control, etc.) by the environment (Millennium Ecosystem Assessment, 2005). Unfortunately, and perhaps unsurprisingly, human activities are driving the loss of service deliveries (i.e. species and biodiversity) at an unprecedented rate, particularly in the Tropics (Vamosi and Vamosi, 2008). Therefore, scientists are now convinced that we are in the sixth mass extinction period on human record (Barnosky *et al.*, 2011).

Indeed, direct or indirect anthropogenic forces mostly drive species extinction (e.g. unsustainable use of resources, invasion of alien species, climate change, etc.; Millennium Ecosystem Assessment, 2005). Species loss is shown to be the end-

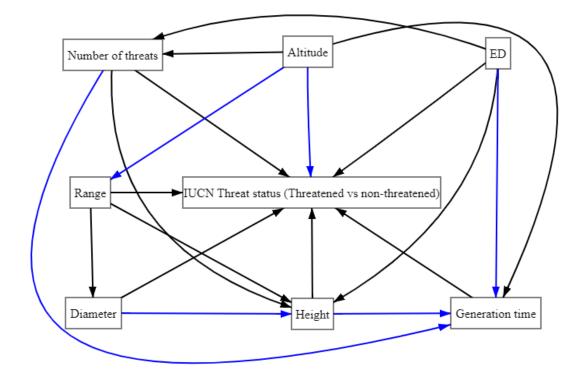
result of a long procedure of roughly three stages, which define the temporal and spatial dynamics of biodiversity. This end-result is as follows: i) species radiation and accumulation over time (temporal dynamic), ii) species dispersal to occupy ecologically suitable niches (a spatial dynamic that defines their biogeography) and perform environmental functions (including various ecosystem services), and iii) their extinction (Mankga and Yessoufou, 2017). These three stages are linked in such a way that, for example, the radiation history of plant species can pre-disposes them to extinction (Davies *et al.*, 2011). However, a better understanding of the dynamic and functioning process of biodiversity is necessary, to guide actions towards environmental management and conservation that ensures a sustainable delivery of ecosystem services, as targeted in the NEMBA (Act 10).

Thus, Structural Equation Modeling (SEM) for this study was used to give the significance of path analysis once trying to elucidate the patterns that are causing the cycad extinction crisis. However, studies that explicitly address SEM applications in ecology and environmental sciences are limited (Grace and Pugesek, 1997: 1998; Shipley, 2000). Some of them were focused on wetland management (La Peyre *et al.*, 2001), aquatic ecosystems (Malaeb *et al.*, 2000; Xiao-fu *et al.*, 2016), groundwater quality (Belkhiri & Narany, 2015), the relative effects of abiotic conditions (e.g. soil salinity, elevation, nutrient content), disturbances (e.g. herbivores) and biomass density on plant species richness (Grace and Pugesek, 1998). Consequently, no SEM model was ever used for cycad species, which is a gymnosperm plant. Recent work of Mankga and Yessoufou (2017) that is taken as a case study, used the phylogenetic relative method and the growing link mixed-effect model to determine and explain some factors that drive cycad diversity on a global scale, but no SEM model was even mentioned. This work is the first-ever to address and integrate the extinction risk of cycad species by using the SEM model.

1.7 Aim and Objective of the study

Given that cycads are the most threatened group of plants, the main aim of this study is to inform conservation decision-makers to be aware of the factors that drive the extinction risk of cycad species.

The specific objective is:


• **Objective**: To formulate and test a meta-model that explains the patterns of the extinction risk of cycads.

1.8 Formulation of hypothesis

The theoretical model (SEM: Figure 2 below) was designed by predicting how a variable (response) could either be positively (direct path) or negatively (indirect path) affected by another variable (predictor) and vice-versa. The theoretical model was built based on the following assumptions: we assume that ED would have a positive relationship with maximum height, IUCN threat status and number of threats, but a negative relationship with generation time. The expectation that species with high-ED level would be threatened means that they would be exposed to extinction risk (Yessoufou et al., 2017; Adeoba et al., 2019). Maximum altitude would have positive relationship with two other variables: number of threat (defined as the diversity of threats) and generation time; but negative correlation with two variables as well: geographic range (defined as surface area of geographic ranges in km²) and IUCN threat status. The expectation that species found in elevated altitude might have a chance to survive longer generation time, simply because these areas are, consider as 'safe haven for threatened species' (Fjeldsã and Lovett, 1997; Fjeldsã et al., 2012). Alternatively, species that are found in lower altitude might have a considerable number of threats because they would be easily spotted by illegal poaching (e.g. over-collection, deforestation, medicine usage, etc.; Voeks, 2004; de Albuquergue, 2006) and invasive species as well as exposed to other environmental extinction drivers (i.e. flood and drought; Mankga and Yessoufou, 2017). Number of threat would have a positive relationship with IUCN threat status and height, but negative correlation with generation time. Range (km²) would have positive relationships with IUCN threat status, maximum height and maximum diameter. The

expectation that species found in protected areas would be less threatened, because they are less in contact with illegal collectors (Gülez, 1992), and they might invest in height as well as diameter and would have chance to survive longer. Likewise, maximum diameter would have a negative relationship with maximum height and IUCN threat status, and the expectation that a species with vast diameter will not invest in height and will be the target for poaching especially for medicinal purposes (Voeks, 2004; de Albuquerque, 2006) and fire as well. Maximum height would have a positive relationship with IUCN threat status but negative with generation time. Finally, generation time would have a positive relationship with IUCN threat status.

Then, the theoretical meta-model (SEM: figure 2 below) was built to translate all these expectations for the hypothesis. Nonetherless, eight variables used for this study are well presented as well as their predictions (Figure 2).

Different paths (arrows) represent unidirectional relationships between variables (predictors towards responses) and are colour-coded: black arrows (direct path) denote the positive relationships between two variables and blue arrows (indirect path) denote the negative relationships between two variables. In conclusion, this

theoretical metal-model will be tested in the empirical study following the data analysis process.

1.9 Dissertation outline

The present dissertation is structured in six chapters, including an Introduction and a Conclusion. The Introduction (Chapter one) defines the general scope of the study (providing the background, research problem, rationale, aim and objectives). Chapter two is focused on the Literature review, while Chapter three provides the Methodology. Presentation and analysis of data are carried out in Chapter four, which gives the results of the study. Chapter five discusses the results of the thesis. The final Chapter six highlights the conclusion of the study by making some recommendations to identify the probable areas for researches to come.

CHAPTER 2 LITERATURE REVIEW

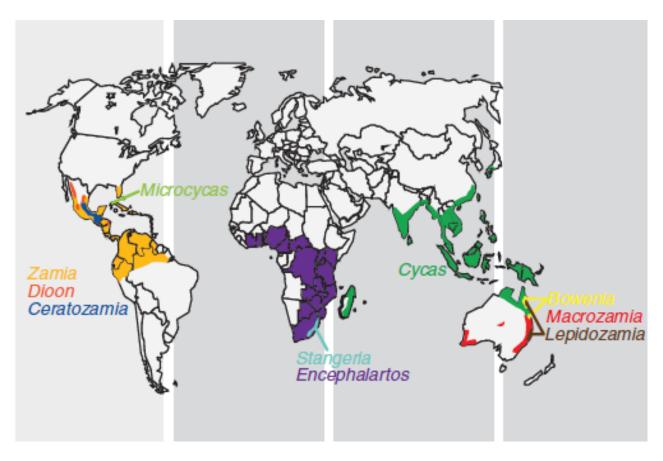
2.1 Introduction

Cycads are a group of plants known as gymnosperms (plants which bear naked seeds) of picky attention due to their evolutionary history (Nagalingum *et al.*, 2011; Yessoufou *et al.*, 2014; Condamine *et al.*, 2015). They belong to an ancient order of Cycadales (Giddy, 1974; Nostog and Nicholls, 1997) and a separate class Cycadophyta (Hill, 1999). The order Cycadales is considered as a very prehistoric group of plants going back about 300 Mya (million years ago) in the Palaeozoic era (Hendricks, 1987; Pot *et al.*, 2010; Donaldson *et al.*, 2003; Nagalingum *et al.*, 2011; Taylor *et al.*, 2012; Zonneveld and Lindström, 2016). In overall appearance, cycads, which are a small group of gymnosperms (non-flowering seed plants), resemble palms by their thick columnar and are long-living perennial evergreen plants (Taylor *et al.*, 2012). They also resemble large ferns and share morphological characteristics of angiosperms (Norstog and Nicholls, 1997; Brenner *et al.*, 2003; Hill *et al.*, 2004), but they differ significantly in reproduction and detailed structure (Salas-Leiva *et al.*, 2013).

They are distributed in the neo-tropics, with a high predisposition to tropical and subtropical regions where temperatures and humidity are high (Donaldson *et al.*, 2003; Da Silva *et al.*, 2011; Taylor *et al.*, 2012). Due to their ability to preserve ancestral characteristics like flagellated sperm, cycad species are the most ancient group amongst the contemporary spermatophytes still living today (Vessey *et al.*, 2004; Salas-Leiva *et al.*, 2013). Zheng *et al.* (2017) believed that they are the oldest and most ancient assemblages of worldwide living seed plants and they have been around since the time of the dinosaurs. Cycads are also indispensable to understand the origin and subsequent evolution of seed plants and are taxa that bridge the major evolutionary transition in plants (Zheng *et al.*, 2017). They approximately covered 20% of the world's flora during the Jurassic-Cretaceous period, when the Dinosaurs roamed the Earth, and for this clade, the proportion of the threatened species remains high (> 80%) (See also Donaldson, 2003; Taylor *et al.*, 2009; IUCN, 2010). Salas-Leiva *et al.* (2013) estimated that cycad species diversification had taken place in the Eocene and Oligocene periods. They had particularly been distributed

worldwide in the Mesozoic era (Hermsen *et al.*, 2009), but Nagalingum *et al* (2011) confirmed that the extant cycads deviate around 12 to 2 Mya. However, Mesozoic is an era characterized by an increased rate and diversity of fossil cycads (these plants proliferated during that period), broadly distributed throughout the comparatively uniform climate of the supercontinent Pangaea (Taylor *et al.*, 2009). Hermsen *et al.* (2009) believed in particular that the well-known historical record of cycads is in the Triassic epoch, not only because of the marked increase of cycad taxa definition in terms of number but also because some of the most well preserved and informative taxa are from this period.

Cycads have been recognized as gymnosperm plants since their first description by Linnaeus in his "*Species Plantarum*" in 1753 of seed-bearing plants, and are a distinct, phylogenetically isolated group (Doyle and Donoghue, 2012; Ran *et al.*, 2010). Nonetheless, previous studies have grouped them with Conifers, Gnetophytes and Ginkgo (Norstog and Nicholls, 1997). Thus, current studies based on molecular and morphological data indicate that cycads are monophyletic (Hill *et al.*, 2003; Rai *et al.*, 2003; Bogler and Francisco-Ortega, 2004; Vessey *et al.*, 2004; Chaw *et al.*, 2005; Zgurski *et al.*, 2008; Crisp and Cook, 2011; Nagalingum *et al.*, 2011; Condamine *et al.*, 2015). This means they demonstrate a single evolutionary origin (Donaldson *et al.*, 2003). They have rosettes of multiple leaves with pinules and a height of approximately from 0.2 to 20 metres (Donaldson *et al.*, 2003; Vessey *et al.*, 2004). They are dioecious (i.e. male and female cones are placed on separate plants), which is a characteristic of a true gymnosperm (Hill *et al.*, 2004; Taylor *et al.*, 2012; Salas-Leiva *et al.*, 2013). Their reproductive organs are produced in cones and are known as the most primitive living seeds (Chamberlain, 1925).


Cycad species are well equipped against environmental threats (fires and drought) with the ability to biosynthesize a variety of protective and secondary compounds such as glycosides and non-protein amino acids (Brenner *et al.* 2003; Okubamichael *et al.*, 2016). Donaldson *et al.* (2003) and Taylor *et al.* (2012) linked the survival to individual longevity in cycads and their ability to produce toxic substances, which deter herbivores. However, another probable explanation for the long-term survival of these taxa for many centuries is because they grow extremely slowly and are remarkably resistant to pathogens and predators (Giddy, 1974; Raimondo and Donaldson, 2003). The Southern African clades are estimated to survive through the

development of key innovations (e.g. underground stems) and their subterranean stem (Hill *et al.,* 2004) could have enabled them to adapt to high temperatures and the aridity of the transition of the Pliocene-Pleistocene era in that region (Yessoufou *et al.,* 2014).

Evidence suggests that naturalists and botanists of Europe discovered cycads in the 1700s-1800s and, since their discovery, these plants have been subject to the significant fascination of botanical and horticultural interest around the world. As a result, an enormous quantity of cycads has been collected from the wild to private property and botanical gardens (Pearson, 1905; Giddy, 1984; Donaldson, 2003). In addition, in the mid-1990s, there has been an increasing awareness in cycad ethnobotany in places like Central America (Bonta, 2010), India (Radha and Singh, 2008; Krishnamurthy *et al.*, 2013) and South Africa (Osborne *et al.*, 1994; Ravele and Makhado, 2009; Cousins *et al.*, 2012; Bamigboye *et al.*, 2017). A better understanding of this group of plants could then provide evolutionary insights into the trends of seed plants (Zheng *et al.*, 2004; Wang *et al.*, 2007). This could help in the determination of connections between their origins and present-day counterparts before losing them, as they are under a tremendous risk of extinction (Da Silva *et al.*, 2011).

2.2 Cycads biogeography

The living cycad is divided into three families, namely: Cycadaceae, Stangeriaceae and Zamiaceae (Chamberlain, 1925; Osborne *et al.*, 2012), with 11 genera such as *Bowenia, Ceratozamia, Chigua, Cycas, Dioon, Encephalartos, Lepidozamia, Macrozamia, Microcycas, Stangeria* and *Zamia* (Donaldson, 2003; Donaldson *et al.*, 2003; Osborne *et al.*, 2012; Condamine *et al.*, 2015; Yessoufou *et al.*, 2017). They are only limited to Tropical and Subtropical regions of Africa, Asia, Australia, Central and Southern America, with a few of them found in the oceanic islands (Nagalingum *et al.*, 2011; Osborne *et al.*, 2012; Taylor *et al.*, 2012; Salas-Leiva *et al.*, 2013).

Figure 3: Global distribution range map of the Cycad genera (Nagalingum et *al.,* 2011).

Generally, most cycad species occur in small populations in remote pristine vegetation (Donaldson, 2003; Osborne *et al.*, 2012; Taylor *et al.*, 2012) and they have a highly structured distribution of an isolation pattern in distance even at small geographic distances (Cibrian-Jaramillo *et al.*, 2010). However, the study of Donaldson *et al.* (2003) indicated that these small relict populations might have once been more widespread, even though Hamrick (2004) argued that small and restricted populations might not necessarily result in extinction. Yet, it could have an impact on general cycad diversity (Da Silva *et al.*, 2011), and it appeared to have pre-disposed them to a high risk of extinction (Salas-Leiva., 2013). Several genera existed in the past but do not have any of their current living, due to the great extinctions within the cycad group, that have contributed perhaps to the irregular distribution of extant cycads that we observe today (Donaldson *et al.*, 2003; Taylor *et al.*, 2012; Salas-Leiva., 2013).

2.3 Cycad diversity and changes in taxonomy

The "World List" of cycads has been changed at several times, owing to the elevated morphological resemblances amongst species, which result in the discoveries and a very long list of synonyms (Hill *et al.*, 2004; Osborne *et al.*, 2012), causing multiple readjustments in their taxonomy. Osborne and Hendricks (1985) published the first world list of cycads. Thereafter, various other lists were presented such as Stevenson and Osborne (1993a, b) and Stevenson *et al.* (1995). However, Stevenson *et al.*'s list provided a list of synonyms for each genus to have 352 species in total. All of these lists improved the understanding of these species and led to increase their numbers recognized at global scale.

2.3.1 Family Cycadaceae

Currently, the Cycadaceae has only one genus Cycas and their members are distributed in South China (where they originated from) and Indochina in the Miocene (Xiao and Möller, 2015). They then occur in Northern Australia and along the West African coast, Madagascar, India, Japan, and a great number of oceanic islands of the Pacific (Donaldson, 2003; Donaldson et al., 2003; Da Silva et al., 2011; Cousins and Witkowski, 2017). However, this family is viewed as an early offshoot from the rest of the cycads (Tafirei, 2016). Cycas has the widest distribution range with almost 110 species, from the Eastern Africa eastwards to the Pacific islands and from China and Southern Japan southwards to Australia (Hill, 2004; Figure 3). Its widespread dispersal is a result of long-distance transoceanic dispersal events (which made possible for the progress of a key improvement like spongy endocarp) (de Laubenfels and Adema, 1998; Xiao and Möller, 2015). Dioecious palm-like shrubs with aerial subterranean and cylindrical stems, as well as loosely arranged megasporophylls characterized this genus (Hill et al., 2004; Osborne et al., 2012). Nonetheless, they form a basal group (Vessey et al., 2004) and are commonly understorey shrubs, but can sometimes be quite large if soils are drained or if they occur in the savannah.

African continent hosts' only one species (emblematic *Cycas thouarsii*) amongst *Cycas* genera (Cousins and Witkowski, 2017) and remaining species occur in Australasia (Donaldson, 2003; Nagalingum *et al.*, 2011; Calonje *et al.*, 2016). Evidence suggests that this species firstly occurred exclusively on Madagascar then humans have brought into the African continent during the heyday of mercantile activities in the western Indian Ocean. Then after, it yields seeds that float in water and ocean currents could probably have carried these seeds to the African coast (Goode, 1989).

2.3.2 Family Stangeriaceae

The family Stangeriaceae seems to have originated in the very old supercontinent of Gondwana (Donaldson, 2003) and it is the cycad family having the smallest number of species (Hill *et al.*, 2004). Its fossil was also found in Lower Cretaceous stores (70–135 Mya) in Argentina (Artabe and Stevenson 1999; Donaldson *et al.*, 2003). This family comprises two genera, namely: *Bowenia* and *Stangeria* (Donaldson *et al.*, 2003; Osborne *et al.*, 2012; Taylor *et al.*, 2012; Condamine *et al.*, 2015). However, *Bowenia* is endemic to Australia with two species: *Bowenia serrulata* and *B. spectabilis* (Donaldson *et al.*, 2003). These two species are dioecious fern-like shrubs like every cycad species, with a naked subterranean stem capable of producing one or many shoots (Hill, 2004) with leaves bi-pinnate and leaflets which do not bear a mid-rib.

The genus *Stangeria* has only one species (*Stangeria eriopus*) that is endemic to South Africa (i.e. the Eastern Cape and KwaZulu-Natal Provinces) and Southern Mozambique (Jones, 1993; Jones, 2002; Whitelock, 2002; Donaldson, 2003; Donaldson *et al.*, 2003; Osborne *et al.*, 2012; Salas-Leiva *et al.*, 2013; Cousins and Witkowski, 2017). It is also dioecious and fern-like and most of their members occur mostly in the coastal grasslands and inland forests alongside the eastern coast of South Africa (Vessey *et al.*, 2004). The plants' body consists of a big tuberous root that is carrot-shaped, with a subterranean branched stem (Osborne *et al.*, 2012). The stem may sometimes branch into 10 to 12 heads and each head may produce a cone at the same time (Giddy, 1974). Male and female cones are silvery pubescent at first when becoming brownish upon maturity and look completely different. Female

cones are much bigger than male, but both have overlapping cone scales (Giddy, 1974). *Stangeria*, which has remained taxonomically stable (Donaldson *et al.* 2003; Hill *et al.*, 2007), is characterized by pinnate leaves and leaflets that have a mid-rib and lateral veins.

2.3.3 Family Zamiaceae

The Zamiaceae is the largest and the most widespread family of cycad, consisting of eight genera. Five of them are found in the Americas (e.g. *Ceratozamia, Chigua, Dioon, Microcycas* and *Zamia*), two in Australia (*Lepidozamia* and *Macrozamia*) and one in Africa (*Encephalartos*) (Jones, 1993; Whitelock, 2002; Donaldson, 2003; Nangalingum *et al.*, 2011; Salas-Leiva *et al.*, 2013). Zamiaceae is a more diverse family in terms of its geographical distribution, simply because it is not confined to one continent. This family is suggest to be present before the break-up of the super continent Pangaea (Donaldson, 2003). Africa is the only continent where all these three cycad families (Cycadaceae, Stangeriaceae and Zamiaceae) are found (Donaldson, 2003; Nagalingum *et al.*, 2011; Yessoufou *et al.*, 2017) and South Africa is the only country on the African continent to harbors 38 cycad taxa found naturally. That makes this country to stand out as one of the greatest global hotspots for cycad diversity (Donaldson, 2008).

The genus *Ceratozamia* consists of 27 species (Osborne *et al.,* 2012) and most species belonging to this genus are endemic to the mountainous areas of Mexico, Guatemala and Honduras (Haynes, 2011). Haynes (2011) argued that *Ceratozamia* is well known for its sporophylls with protuberant paired horns, as well as its pinnate compound leaves. Thus, these leaves are straight and spirally arranged. Leaflets lack a mid-rib, but have parallel side veins and are articulate at the base (Hill *et al.,* 2004).

Dioon is a genus found naturally to Mexico and Central America and comprises 14 documented species (Osborne *et al.*, 2012). Some of their habitats are tropical forests, pine oak forests, dry hillsides, canyons, and coastal dunes. Members consist of grey or blue-green pinnate leaves, with non-articulated leaflets lacking a mid-rib, and Megasporophylls are broadly flattened, upturned and overlapping. Therefore,

the unique feature of this genus that makes them different from any other cycads is the fact that *Dioon* has the presence of female cones, with two seeds attached to each sporophyll (Nostog and Nichols, 1997).

The genus *Encephalartos* comprises 65 species (Hill *et al.*, 2004; Osborne *et al.*, 2012; Yessoufou *et al.*, 2017) which inhabit humid tropical and subtropical regions of Africa (Vessey *et al.*, 2004; Osborne *et al.*, 2012) and members of this genus are unequally dispersed across African regions. For example, *Encephalartos barteri* is the only species that occurs in West Africa, while over 50% of the *Encephalartos* species are endemic to Southern Africa (The geographical region considered as the Centre of diversity for this genus) (Donaldson, 2003; Golding and Hurter, 2003; Yessoufou *et al.*, 2014). However, *Encephalartos* is distributed throughout 16 African countries from West to Central, as well as in East and Southern Africa. They similarly occur on the Indian Ocean Islands of Madagascar, Comoros, Seychelles and Zanzibar (Donaldson, 2003; Anderson *et al.*, 2007; Cousins *et al.*, 2012). In conclusion, South Africa is the only country on the continent, which harbors 37 *Encephalartos* species (Donaldson, 2008).

Nonetheless, there are no substantial changes noted in the genus *Encephalartos*, even though many changes were made to the cycad taxonomic group and this genus is considered as the better known of the cycad genera (Donaldson *et al.*, 2003). Members of *Encephalartos* have pinnate leaves and contain leaflets that lack a mid-rib as well as articulation (Hill *et al.*, 2004). The history of this genus started with the separation of its sister's taxa *Encephalartos* (Africa) and *Lepidozamia* (Australia) and could be correlated to the separation of Africa and Australia approximately 80 Mya (Hill *et al.*, 2003). They appear to have perhaps evolved from a similar ancestor in Gondwana (200-135 Mya), before Australia and Africa split (Bogler and Francisco-Ortega, 2004). In their group study, Hermsen *et al.* (2006), found by using least age mapping techniques, that *Encephalartos* appears to have split at approximately 33 Mya from the *Lepidozamia-Macrozamia* lineage and not later than the Eocene period.

The genus *Lepidozamia* consists of two species (*Lepidozamia hopei* and *L. peroffskyana*) (Osborne *et al.*, 2012) and both of them are endemic to eastern Australia. They are closely related to the large southern cycad genera *Macrozamia*

from Australia and *Encephalartos* from Africa (Donaldson *et al.* 2003; Hill *et al.*, 2004). The unique cuticular characteristic of *Lepidozamia* is the orientation of epidermal cells in the leaves of this genus, which is relative to the axis of the pinna that is unlike other genera (Hill *et al.*, 2004; Condamine *et al.*, 2015).

Macrozamia is a genus in Zamiaceae with 41 documented species (Osborne *et al.,* 2012). Hill *et al.* (2004) argued that over 80% of these species are found in Eastern Australia and the rest in the central and southwest areas of the continent and they are dioecious like all cycads. For other genera, leaves erupt all at once, unfortunately, for this genus; members are unique and produce their new leaves one at a time (Hill *et al.,* 2004). However, most of *Macrozamia* produce subterranean palm-like trunks up to 20 feet tall or more and have flat and thin leaflets that taper at the end (Chaw *et al.,* 2005).

Microcycas calocoma is the only one species described in the genus *Microcycas* and is endemic to Cuba (Donaldson *et al.* 2003; Hill *et al.*, 2004; Osborne *et al.*, 2012). Members are dioecious palm-like shrubs with tall aerial stems that bear numerous leaves, with their microsporophylls and megasporophylls being spiral (Hill *et al.*, 2004). *Microcycas* and *Zamia* are closely related (Bogler and Fransisco-Ortega, 2004).

The genus *Zamia* comes second to *Cycas* in term of distribution range and diversity (Taylor *et al.*, 2012) and consists of 75 described species (Osborne *et al.*, 2012; Yessoufou *et al.*, 2017). It is the only cycad genus of America, which can be found in both side of the Equator (Whitelock, 2002; Mooers *et al.*, 2012). *Zamia* is a genus endemic to Isthmus of Panama and this endemism is due to the highest cycad representation per unit land mass than any other region in the neo-tropics. This is the real reason that makes the Isthmus of Panama a cycad biodiversity hotspot (Taylor *et al.*, 2012), having 17 species where 12 of them are endemics to Panama. The Isthmus occurs in the tropics of the western hemisphere (Donaldson *et al.* 2003; Taylor *et al.*, 2012).

The figure below presents a photographic description of the diversity of cycad cones, as published in Calonje *et al.* (2011).

Figure 4: Seed and pollen cones for all cycad genera.

A) Bowenia serrulata seed cone B) Bowenia spectabilis pollen cone C) Ceratozamia decumbes seed cone D) Ceratozamia decumbes pollen cone E) Cycas couttsiana seed cone F) Cycas revoluta pollen cone G) Dioon angustifolum seed cone H) Dioon angustifolum pollen cone I) Encephalartos ferox seed cone J) Encephalartos ferox pollen cone K) Lepidozamia hopei seed cone L) Lepidozamia peroffskyana pollen cone M) Macrozamia lucida seed cone N) Macrozamia lucida pollen cone O)

Microcycas calocoma seed cone P) Microcycas calocoma pollen cone Q) Stangeria eriopus seed cone R) Stangeria eriopus pollen cone S) Zamia imperialis seed cone T) Zamia imperialis pollen cone.

Photos: All Michael Calonje except K: Larry Krauss and N: Irene Terry (Calonje *et al.*, 2011).

CHAPTER 3 METHODOLOGY

3.1 Data collection

Data used in this present study were collected and retrieved from the work of Yessoufou *et al.* (2017), on which a total list of 339 taxa of global cycads was made. They compiled these taxa by following methodical writing searches like Lindström (2009), Nagalingum *et al.* (2011) and Osborne *et al.* (2012). However, Osborne *et al.* (2012) summarized the existing knowledge of cycad species based on their morphology, ecology and taxonomic discrimination to distinguish 331 cycad species. Nonetheless, Nagalingum *et al.* (2011) used DNA data to assemble a comprehensive phylogeny of global cycads that contains 199 species. Yessoufou *et al.* (2017) assembled the list of these taxa (above mentioned), by combining Nagalingum *et al.*'s list (which used DNA-based phylogeny) with Osborne *et al.*'s list (used as the reference list). They (Yessoufou *et al.*, 2017) also compiled IUCN threat categories for all taxa (http://www.redlist.org/, August 2018; Osborne *et al.*, 2012): Data Deficient (DD: five taxa), Least Concern (LC: 47 taxa), Near Threatened (NT: 68 taxa), Vulnerable (VU: 78 taxa), Endangered (EN: 70 taxa) and Critically Endangered (CR: 67 taxa).

This present study complemented these data with some additional information on different threats to cycads available from various sources such as the IUCN database (<u>http://www.redlist.org/</u>, August 2018), as well as the current online World List of Cycads made by Calonje *et al.* (2017). This complement gave four additional species IUCN-considered as Extinct in the Wild (EW), which were not mentioned in Osborne *et al.*'s list. Therefore, all these 339 species of Yessoufou *et al.*'s list that is used as material for this present study are presented in Appendix I with their global distribution (location) as well as their threat status respectively.

3.2 Research methods

3.2.1 Probable predictors of the IUCN threat status

A list of recognized variables was assembled to fit the predictive models (i.e. SEM) of IUCN status for all global cycads. These variables included maximum altitude, maximum diameter, diversity of threats (also known as the threats number), geographic range (km²), ED, generation time and maximum height, as well as threat status (threatened vs. non-threatened; see also Mankga and Yessoufou, 2017). However, seven variables [maximum altitude, maximum diameter, diversity of threats, geographic range (km²), ED, generation time and maximum height] were considered as dependents variables to IUCN threat status which is the sole response variable in the model. Thereafter, the SEM model showed also how in some cases these predictors could look as response variables and vice-versa.

The diversity of threats (number of threat categories) was documented for every species. ED is a metric that approximates to the formative time of each species, such a species with a higher ED value is subtended on a phylogeny by a longer branch (Isaac *et al.*, 2007). In addition, ED values for each cycad species was collected from Yessoufou *et al.* (2017). Generation time (i.e. the average time between two consecutive generations in the lineages of a population) data were retrieved from the IUCN database (<u>http://www.redlist.org/</u>, August 2018; see Appendix 2). For the present study, geographic range data was compiled as a surface area of geographic ranges (in km²) and these pieces of information were recovered from IUCN (2010). To conclude, we documented maximum altitude, maximum diameter and maximum height for all cycads from IUCN (2010) as well. In general, eight variables were included in the predictive model (here SEM: see Data analysis section below for further explanation) and all their values are well presented in Appendix 2.

3.3 Data analysis

All analyses used for this work were carried out in R (R Core Team, 2015) in the library piecewiseSEM (Lefcheck, 2016), and the correlations amongst all variables were checked to stay away from repetition. The analysis on the SEM model was simply focused on the eight above-mentioned variables for analyzing data (see figure 5 below for a full explanation of SEM model).

3.3.1 Statistical analysis

3.3.1.1 The use of Structural Equation Modeling (SEM) to explain threat status of cycad species

SEM model implemented in the R library piecewiseSEM (Lefcheck, 2016) was used to study the patterns of extinction risk for global cycad species. SEM model in this study was built for statistical analysis to assess the relationships between all variables mentioned above. Nevertheless, SEM is a probabilistic model that can join numerous predictors and responses variables in a sole causal system (Lefcheck, 2016) and it was done on the meta-models built based on some assumptions predicted (Figure 2). However, SEM model is frequently represented by using path diagrams (multivariate procedure), where arrows designate the direction of relationships between observed variables. So, these relationships (i.e. positive: direct and negative: indirect) are taken in a progression of structured equations that match to the pathways in the model. It is also a method of expressing causal relations between variables via a set of equations (Grace *et al.*, 2012; 2015). In addition, SEM model requests a change in how ecological and evolutionary questions are well organized and tried with an emphasis on the current assessment of several causal hypotheses inside a solitary network (Lefcheck, 2016).

Lefcheck (2016) then illustrated two primary characteristics of SEM that help to isolate them from conventional modeling approaches. Firstly, paths stand for hypothesized causal relationships and this characteristic demonstrates that predictors (dependent variables: maximum altitude, maximum diameter, number of

30

threats, ED, generation time, geographic range and maximum height for this case) could cause the response (independent variable: IUCN threat status) and vice versa, or both may be a result of a third (unmeasured) variable. Secondly, these variables can both look as predictors and responses. SEM is useful to test and quantify the indirect impacts that would otherwise go unrecognized by any single model, and one variable to fill in as a response in one path or as a predictor in another (Grace et al., 2012). The test of directed separation was led in joining all P-values across the premise set in a test statistic, Fisher's C. Moreover, the implication of any given independent claim that is its *P*-value could be assessed and isolated. Thereafter, the global goodness-of-fit of the SEM in this study was assessed using a chi-square test to compare the assessed values to the observed covariance matrix (see also Grace, 2006). This method (the goodness-of-fit) tested the supposition that all variables are restrictively independent, and there were no missing relationships among variables that are not associated (Appendix 3; see Shipley, 2000). As demonstrated by Shipley (2013), the Fisher's C statistic was utilized to get an estimation of Akaike's information criterion (AIC) and its scores were computed to conduct goodness-of-fit tests for both the full and part models (SEM; Appendix 3).

CHAPTER 4 RESULTS

4.1 Presentation of the results

In this present study, SEM approach was employed to reach the objective. The main model built includes all eight variables by fitting the predictors and responses (see Figure 4 for the full model). However, seven variables (i.e. ED, maximum altitude, number of threats, range, maximum height, generation time and maximum diameter) are predictors to IUCN threat status, which is the only dependent variable (see Material and Method and Figure 5 below). The model reveals three different arrows with positive and negative prediction respectively.

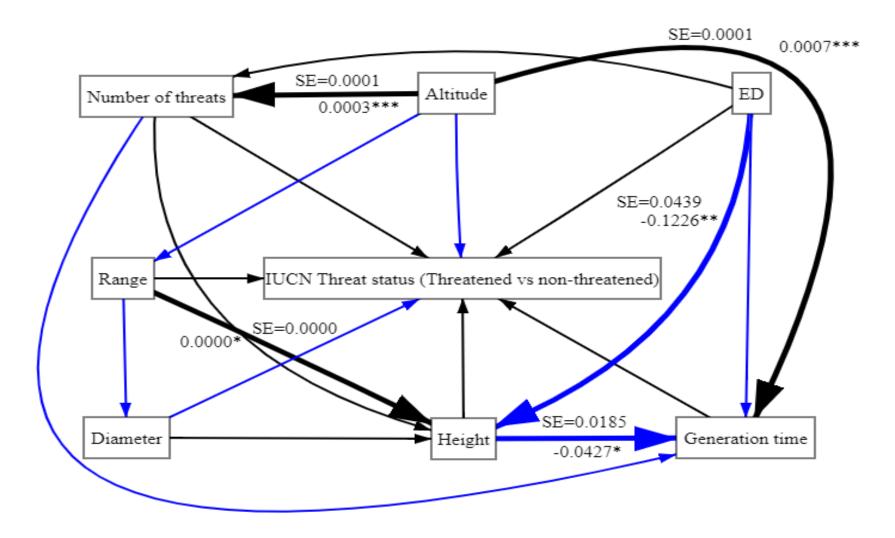


Figure 5: Meta-model illustrating the potential influence of predictors towards responses among variables (SEM).

Different paths (arrows) in this figure 5 above represent unidirectional relationships between variables (predictors towards responses). However, they are colour-coded: black arrows (direct path) denote the positive relationships between two variables; blue arrows (indirect path) denote the negative relationships between two variables, and thickness denotes that the relationship between two variables is significant. The width of arrows is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients (β) (see also Table 2 for all path coefficients as well as SE: Standard error of all variables). In figure 5, the report was only based on path coefficients (β) and SE for variables that are significant.

However, the SEM model (Figure 5) identified four variables in five predictions that significantly correlate with the extinction risk (thick paths). According to the model (results), these values show that cycad species tend to be more at risk of extinction. In fact, among these relationships, two correlate positively (i.e. range, which predicts maximum height and maximum altitude, which predicts two other variables such as number of threats and generation time). Besides, two other variables do correlate negatively (i.e. ED that have significant relationships with maximum height and maximum height also do predict generation time). Nonetheless, these variables, as well as their significant values, are as presented below. Maximum altitude towards number of threats (β = 0.0003; SE= 0.0001; $p \le 0.01$). Range (km²) towards height maximum (β = -0.1226; SE= 0.0439; $p \le 0.01$). Height maximum towards generation time (β = 0.0007; SE= 0.0001; $p \le 0.05$). Finally, altitude maximum towards generation time (β = 0.0007; SE= 0.0001; $p \le 0.01$).

Table I: Predictor and response variables for extinction risk.

Significant variables are indicated by stars (*) and the number of stars indicates the significant level.

Significant codes : 0, '***' 0.001, '**' 0.01, '*' 0.05.

Response	Predictor	Estimate	Std. Error	Df	Crit. Value	P. value	Std. Estimate
Number of threats	Maximum altitude	0.0003	0.0001	152	2.8512	0.0044	NA **
Number of threats	ED	0.0040	0.0045	152	0.8994	0.3684	NA
Range (Km²)	Maximum altitude	-23.9837	15.9542	33	-1.5033	0.1423	-0.0109
Maximum diameter	Range (Km²)	0.0000	0.0000	68	-0.1235	0.9020	-0.0139
Maximum height	Maximum diameter	-0.1222	0.3823	46	-0.3197	0.7507	-0.0239
Maximum height	Range (Km²)	0.0000	0.0000	46	2.0706	0.0440	0.1465 *

Maximum height	Number of threats	-0.6023	0.4869	46	-1.2370	0.2224	-0.1067
Maximum height	ED	-0.1226	0.0439	46	-2.7925	0.0076	-0.2576 **
Generation time	Maximum height	-0.0427	0.0185	109	-2.3057	0.0211	NA *
Generation time	ED	-0.0024	0.0055	109	-0.4371	0.6620	NA
Generation time	Maximum altitude	0.0007	0.0001	109	6.3254	0.0000	NA ***
Generation time	Number of threats	-0.0586	0.0570	109	-1.0283	0.3038	NA
Threat status	Number of threats	12.4026	84748.9242	18	0.0001	0.9999	0.0294
Threat status	Range (Km²)	0.0059	47.7173	18	0.0001	0.9999	16.3384
Threat status	Maximum	-389.8862	4060109.7464	18	-0.0001	0.9999	-1.0184

	diameter						
Threat status	Maximum height	46.9068	271180.4043	18	0.0002	0.9999	0.6271
Threat status	Generation time	0.5167	2397.7656	18	0.0002	0.9998	0.1218
Threat status	ED	0.6093	5374.3976	18	0.0001	0.9999	0.0171
Threat status	Maximum altitude	-0.1709	585.1662	18	-0.0003	0.9998	-0.2163

Moreover, at the IUCN category level, the findings that some variables are great predictors of different IUCN threat status in the Nagelkerke method. However, two variables (number of threats and maximum diameter) have the lower rate to fit the model with 9% and 0% respectively, while maximum height and geographic range are the good predictors of extinction risk with 99% and 48% each. Conversely, two variables (i.e. threats status and geographic range) were considered as perfect predictive of extinction risk with R-square of 100% each (Table 3 below).

Response	Method	R. Squared
Number of threats	Nagelkerke	0.09
Range (km²)	Nagelkerke	1.00
Maximum diameter	Nagelkerke	0.00
Maximum height	Nagelkerke	0.99
Generation time	Nagelkerke	0.48
Threat status	Nagelkerke	1.00

 Table III: Individual R-squared of variables for the fitting SEM model

The results in Table 3 for prediction of a model (R^2 s for segment models given in the response variables) show that the majority of cycad species are threatened. Specifically, based on the maximum height that exhibited the highest predictive power (99%) in SEM model. However, this analysis of SEM revealed a perfect global goodness-of-fit by explaining the threat level of cycad species (Fisher's C = 13.776, df = 16, P = 0.615; Appendix 3). In comparison with SEM model fitted with maximum likelihood (see also Grace, 2006), the model showed that Akaike's information criterion (AIC) has a lower value (73.776) than Bayesian information criterion (BIC) value

(111.519). Consequently, this result of smaller AIC value reveals that the model is considered as true because there are no significant variables shown in all these *P*-values (see Appendix 3). Nonetheless, this test of directed separation that includes global goodness-of-fit is confirmed to be a good fitting model simply because it needed the adequate capacity to discard the null (Lefcheck, 2016) (i.e. *P*-values for all paths are > 0.05; Appendix 3).

Lastly, the pre-disposition of cycads to the risk of extinction was investigated on some groups of threats [habitat loss (destruction), deforestation, medicinal usages, over-collection (poaching), fire, grazing, invasive alien plants, reproduction failure and flood/drought; see Mankga and Yessoufou, 2017]. Then for these variables, only four variables in five predictions were found to be significant in driving the extinction risk of cycad species.

CHAPTER 5 DISCUSSIONS

The result of this study by using the SEM model indicated that cycad species are facing a great threat at the global scale. The effectiveness of this method relies on how fast cycad species are facing the extinction risk and the patterns that are driving them to such risk. Likewise, it also showed how variables were either predictors or responses among them in different paths (arrows). However, below are the explanations of all relationships (positives or negatives) amongst different variables used in this present study.

5.1 Positive relationships amongst variables

The fitting meta-model on SEM for eight variables above mentioned (Figure 5, Table I) in the biological, ecological and evolutionary information of cycads was built to test the correlation among these variables and the extinction risk of cycads. However, the results using SEM analysis revealed a perfect fit of this meta-model in explaining the threat level of cycad species (Fisher's C = 13.776, df = 16, P = 0.615; Appendix 3). In this section, only positive relationships among variables are reported, with a specific accent made on variables that have significant relationships. Nevertheless, maximum altitude has a positive relationship with two other variables: number of threats and generation time as expected in the theory (improvement of the hypothesis), but after analysis these relationships became significants. The availability expectation that species found in elevated areas might have a chance to survive longer generation time, simply because they will be far away from human (poachers) and invasive plants as well as environmental impact such as floods. This result confirms the idea of Fjeldsã and Lovett (1997) and Fjeldsa et al. (2012) that higher altitudes (i.e. mountains) are seen to be considered as 'safe havens' for threatened species. Surprisingly, in their work, Yessoufou et al. (2012) got the opposite outcomes by discovering a greater richness of threatened taxa at elevated altitudes. The results show that geographic range (km²) has positive relationships with two other variables such as threat status and maximum

height (availability of theoretical model). However, this relationship with maximum height is mentioned to be significant. The expectation that species occurring in lower altitude might have a considerable number of threats because they might be threatened by human activities (over-collection, deforestation, medicine usage, invasive plants, fire, etc.) as well as flood and drought. This finding of cycad to be threatened by invasive (alien) plant species support the work of Donaldson (2003) that demonstrated how alien species, especially in the African continent, were driving the decline of cycad in the long term. Mankga and Yessoufou (2017) also reported in their work that invasive species are among the drivers of cycad at a global scale, the support of the result of this present work. The finding that cycad species, being at risk of extinction is not a surprise simply because they are facing a high number of threats. This supports the study of Yessoufou *et al.* (2017), confirming that ~70% of cycads species are threatened with a high risk of extinction.

Maximum height has positive relationships with threat status as well and this confirms the theoretical model. As expected that species with high height could invest more in length and become the first target by poachers because they will be easily perceived. As consequence, they would not have a chance to survive longer. Nonetheless, ED has a positive relationship with two other variables: number of threats and threat status (the support of theoretical model expectation). The expectation that species with high-ED level would be exposed to the risk of extinction. Many literatures do confirm this expectation of high-ED species to be exposed to a high risk of extinction as well. A good example was firstly made for animals, especially vertebrates (e.g. mammals: Isaac *et al.*, 2007; updated by Davies and Yessoufou, 2013; Luiz *et al.*, 2016, birds: Jetz *et al.*, 2014, reptiles: Isaac *et al.*, 2012; Veron *et al.*, 2016, and fish: Adeoba *et al.*, 2019), then for plants, especially cycads (Yessoufou *et al.*, 2017). This work of Yessoufou *et al.* (2017) was considered as the first-ever in relating the pattern of high-ED cycad species to be threatened.

5.2 Negative relationships amongst variables

The fitting meta-model on SEM (as mentioned above) revealed also negative relationships amongst variables. As explained above, the results on this SEM analysis revealed a perfect fit of this meta-model in explaining the threat level of cycad species (Fisher's C = 13.776, df = 16, P = 0.615; Appendix 3). However, contrary to the above section, the latter will only focused on variables that have negative relationships among them and of course in making a specific accent on significant variables.

For instance, the results revealed that ED has a negative but significant relationship with maximum height (not supporting the theoretical model) as the expectation that species with high-ED score would be at risk of extinction, means they will invest in length and would be exposed to risk. Likewise, the result of meta-model shows again that ED has a negative relationship with generation time. Maximum altitude has a negative relationship with geographic range (km²) and IUCN threat status (availability of theory). The expectation that species in elevated altitude might have a chance to not being threat and could survive longer generation time, simply because they would be far away from poachers and environmental impact (floods) as well as invasive plants. Nevertheless, as explained above, Yessoufou et al (2012) found the opposite findings. Subsequently, the negative relationship between altitude and extinction risk might likewise be the consequences in the relationship that was established for maximum diameter (Mankga and Yessoufou, 2017). The latter (maximum diameter) also has negative relationships with two other variables (i.e. maximum height and IUCN threat status) as expected. The expectation that a species with a huge diameter will not invest more in height and will be the target for poachers especially for medicinal purposes and would also be affected by fire.

Geographic range (km²) has negative relationships with maximum diameter, which not support the expectation of the theoretical model. It seems plausible that species found in lower altitude might have a considerable number of threats simply because they would be easily spotted by illegal poachers (over-collection, deforestation, medicine

42

usage, etc.) and also exposed to other environmental extinction drivers (i.e. flood, drought). Number of threat has a negative relationship with generation time. Maximum height has a negative but significant relationship with generation time. The expectation that species with high height would invest more in length and of course, would be perceived by poachers and become their first target.

5.3 The priority of ED score ranking on cycads and their IUCN category

Numerous studies that address the matter for prioritising high-ED species over every taxonomic group were completed to escape the loss of evolutionary diversity. Some of them were made for vertebrates (as above explained). For this study, Yessoufou et al., (2017) list was used as reference to present the ranking of each cycad species based on their ED scores, so that high-ED species are those that merit specific attention (Faith, 1992). In this ranking, *Microcycas calocoma* stands in the top species on the global ED list (98.762 MY: Appendix 2). Therefore, this species is required to be given priority in conservation programme organized by decision-makers and therefore merits a short exhibition to attract their attention. Nevertheless, this species is endemic to Cuba (See Appendix 1) and is IUCN-categorized as Critically Endangered (IUCN, 2010) where it faces anthropogenic pressures (i.e. overcollection, medicinal usage, agriculture, etc.) as well as reproductive failure due to pollinator extinction (Tafirei, 2016). Also, *M. calocoma* appears to be a monospecific genus which is on Appendix I of the CITES appendices and is found within protected areas (Vinales National Park and/or Mil Cumbres) as well as the National Botanical Garden of Cuba (IUCN, 2010). In addition, Chigua bernalii (CR: 92.778 MY), Stangera eriopus (VU: 86.066 MY), Zamia vazquezii (CR: 66.921 MY) as well as Cycas balansae (NT: 60.965 MY) are well represented in the top ED.

The top 50% ED species comprises 15 CR (30%), 10 EN (20%) and 12 VU (24%) and, in the top 100 ED species, there are 29 CR (29%), 20 EN (20%) and 21 VU (21%), which suggest that the top ED species are threatened species as well (Appendix 1). With regard to their taxonomy, the leading genera in top 50% ED are *Cycas* (12)

43

species) and *Zamia* (11 species), followed by *Ceratozamia* (eight species), *Encephalartos* (seven species) and *Macrozamia* (three species). Likewise, *Bowenia*, *Dioon* and *Lepidozamia* have each two species respectively in the top 50% ED, while *Chigua*, *Microcycas* and *Stangeria* have only one species each (Appendix 2). Once all (339) taxa are considered, there are 67 (CR), 70 (EN), 78 (VU), 68 (NT), 47 (LC), five (DD) and four (EW), signifying that 215 species are threatened and 115 are non-threatened, with five species having an unknown threat status (i.e. DD species: Yessoufou *et al.*, 2017) and four species being already extinct in the wild (see Appendix 1)

To end with, this present study on cycad species offers an occasion to discover how ED score is distributed through IUCN categories. However, the outcomes of this present work revealed that there is a relationship between ED scores and IUCN category of global cycad species. As such, this investigation based on ED scores, support the finding shown in Yessoufou *et al.* (2017), which boosts this general pattern (i.e. the loss of high-ED species would cause an unequal loss of evolutionary diversity). In contrary, the work of Adeoba *et al.* (2019) on African fish (Cyprinidae) revealed that there is no relationship between ED scores and IUCN categories as well as other preceding studies on various vertebrate ancestries (see Tonini *et al.*, 2016 for reptiles; Arregoitia *et al.*, 2013 or Warren *et al.*, 2008 for mammals and Jetz *et al.*, 2014 for birds). Findings of this work that cycad species are more evolutionarily distinct than vertebrates' species and support efforts to secure species in this clade (Yessoufou *et al.*, 2017). Therefore, the protection of high-ED species may prompt the preservation of particularly divergent genomes (Warren *et al.*, 2008).

5.4 The limit of regional protection actions for the top ED species

Zamia is a genus that is endemic in the New World, and 11 of its species are in the top 50% of ED score, whilst 27 species are in the top 100. The first is *Zamia vazquezii* (4th position on global ED score) and it occurs in Veracruz State (Mexico). The finding that this species is amongst the top three Americans and 4th on global ED (Appendix 2)

priority species necessitate a renewed pledge for stronger safeguarding measures from conservation decision-makers. Being a CR species, this cycad species is threatened by habitat loss (deforestation) and there are no more 50 mature plants. Besides, even though efforts are made to preserve this genus, a great deal still needs to be undertaken for those species with high ED scores (top 100), because they still outside protected areas. A good example is *Zamia monticola*, which is amongst the species that have shown a decline of over 80% during the past 60 years (IUCN, 2010), but are still found outside protected areas.

The genus *Ceratozamia*, the 22nd most species-rich in the ED species is, like *Zamia*, native to the New World, and their 27 extant species are endemic to Mexico, Guatemala, Honduras and Belize (all listed under CITES Appendix I; Whitelock, 2002). They have eight species in the top 50 ED and 14 of them occurs in the top 100 and strong procedures have been taken to preserve this genus from the loss (Chavez *et al.*, 1998).

The monophyletic species *Stangeria eriopus* stands the first on the African continent and 3rd on a global scale in both top 50 and 100 ED. It occurs in South Africa, especially in the provinces of Eastern Cape and KwaZulu-Natal (Osborne, 2003). The genus *Encephalartos* has seven species in the top 50 of ED score and 17 in the top 100. The first is *E. brevifoliolatus* (12th position on global ED score and 2nd in Africa) which just occurs on a single granite mountain in the Limpopo province of South Africa. This species is extinct in the wild because of the lack of protection measures to stop human activities such as intense poaching, over-collection, medicinal usages, etc. (IUCN, 2010, Bamigboye, 2017). Even if some of them are found in protected areas, there is still an increasing need to revisit their boundaries' networks to include species that require particular attention (Heller *et al.*, 2009).

Asian cycads have a considerable number at global top ED (12 species in top 50 and 24 species in top 100 respectively) and are least found in protected areas. The top in the group of Asian cycads is *Cycas balansae* (5th in global ranking ED; Appendix 2).

45

Either apart from *Cycas hainanensis* found in Tongguling National Nature Reserve in China, the rest in the top 100 ED species are not in protected areas or do not have any evaluated information concerning their protection status (IUCN, 2010).

Macrozamia genus, which is found in Australasia, showed only nine species in the top 100 ED. *Macrozamia cranei* is the first in ranking on the continent and ranks 10th globally in the top ED species. This species, however, has been destroyed during the clearing of forest for agriculture and grazing. Of these, *Macrozamia elegans* is protected in the Blue Mountains National Park (IUCN, 2010).

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Earth is experiencing the sixth mass extinction period characterized by an unprecedented loss of biodiversity (Millenium Ecosystem Assessment, 2005; Ricketts et al., 2005; Vamosi and Vamosi, 2008). Consequently, there is an urgent need for a continued commitment towards reducing the ongoing rapid loss of biodiversity on which humanity relies for medicine, food, pollination, recreation, etc. (Millenium Ecosystem Assessment, 2005). However, there is a biogeographic pattern in the loss of biodiversity such that most threatened species (cycads included) are found in tropical regions (Vamosi and Vamosi, 2008). The rising pattern in extinction risk shows that threatened species are clustered on a phylogeny (Purvis et al., 2000; Yeassoufou and Davies, 2016), and their loss would prune seriously the branch of the tree of life (Davies, 2015). This pattern has appeared for both angiosperm and vertebrates. For gymnosperm (here cycads), it has been demonstrated that the risk of extinction is not grouped on the cycad tree of life and the loss of top ED species would reduce more PD than expect. This suggests that a better understanding of the diversification forces of a given lineage is required if we are to provide well-informed decisions for conserving biodiversity. For this study, the pattern driving the extinction risk of this group of plants were investigated to inform conservation decisions. By doing so, this work elucidated that human activities are considered as the main drivers. A list of variables to fit the predictive model (here SEM) was also compiled as well as IUCN status for all cycads. Considering the inability to preserving all species worldwide simultaneously in an efficient manner, priority for the conservation efforts must be given to species that represent particular attention (e.g. species with high-ED values: Jetz et al., 2014; Redding et al., 2014; 2015).

6.2 Recommendations

The present study is the best suited to inform conservation decisions for the rapid loss of cycad species. So that the efforts to safeguard cycads based on IUCN threat categories would contribute to preserving high-ED species as well. In general, conservation actions, that put together *in situ* and *ex situ* conservation programs need to be increased to guarantee that high-ED cycads are protected all over the world. These high-ED cycad species might slide into extinction unnoticed - there is, therefore, a need for global ED campaign similar to the ongoing ED campaign done for Vertebrates (Jetz *et al.*, 2014; Redding *et al.*, 2010).

We recommend conservation decision-makers to draw a bigger picture for the global conservation plans for cycads, to prevent their extinction. Cycad legislation should then be introduced at both global and local level and implement the regulation of human-cycad interactions.

REFERENCES

- Adeoba, M. I., Tesfamichael, S. G. & Yessoufou, K. (2019): Preserving the tree of life of the fish family Cyprinidae in Africa in the face of the ongoing extinction crisis. *Genome*, 62: 170–182. dx.doi.org/10.1139/gen-2018-0023.
- Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T. & Malingreau, J. P. (2002): Determination of deforestation rates of the world's humid tropical forests. *Science*, 297: 999–1002.
- Anderson, J. M., Anderson, H. M. & Cleal, C. J. (2007): Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. *Strelitzia*, 20. *South African National Biodiversity Institute*, Pretoria.
- Artabe, A., Stevenson, D. W. (1999): Fossil Cycadales in Argentina. *Bot Rev.* 65: 219–238.
- Arhonditsis, G. B., Stow, C. A., Steinberg, L. J., Kenney, M. A., Lathrop, R. C., McBride, S. J. & Reckhow, K. H. (2006): Exploring ecological patterns with structural equation modeling and Bayesian analysis. *Ecological Modeling*, 192: 385-409.
- Baillie, J. E. M., Hilton-Taylor, C. & Stuart, S. N. (2004): A global species assessment. IUCN, Gland, Switzerland.
- Bamigboye, S. O., Tshisikhawe, P. M. & Taylor, P. J. (2016): Review of extinction risk in African cycads. *Phyton International Journal of Experimental Botany*, 85: 333–336.
- Bamigboye, S. O., Tshisikhawe, P. M. & Taylor, P. J. (2017): Detecting threats to *Encephalartos transvenosus* (Limpopo cycad) in Limpopo province, South

Africa through indigenous knowledge. *Indian Journal of Traditional Knowledge*, 16(2): 251–255.

- Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B. & Ferrer, E. A. (2011): Has the Earth's sixth mass extinction already arrived? *Nature*, 471 (7336): 51 57. DOI: 10.1038/Nature09678.
- Belkhiri, L. & Narany, T. S. (2015): Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. *Water Resour Manage* (29):2073–2089. DOI 10.1007/s11269-015-0929-7.
- Bennett, P. M. & Owens, I. P. F. (1997): Variation in extinction risk among birds: chance or evolutionary predisposition. Proceedings of Royal Society London. *Biology*, 264:401–408.
- Bielby, J., Cunningham, A. A. & Purvis, A. (2006): Taxonomic selectivity in Amphibians: Ignorance, geography or biology? *Animal Conservation*, 9:135–143.
- Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. (2014): Predicting the conservation status of data-deficient species. *Conserv. Biol.* 29:250–259.
- Bogler, D. J. & Fransisco-Ortega, J. (2004): Molecular systematic studies in cycads, evidence from *trnL* and ITS2 rDNA sequences. *The Botanical Review*, 70: 260-273.
- Bollen, K. A. (1989): Structural equations with latent variables. *John Wiley and Sons*, New York.

- Bonta, M. (2010): Human geography and ethnobotany of cycads in Xi'ui, Teenek, and Nahuatl communities of northeastern Mexico. Final Report. Cleveland.
- Bradshaw, C. J. A., Giam, X., Tan, H. T. W., Brook, B. W. & Sodhi, N. S. (2008): Threat or invasive status in legumes is related to opposite extremes of the same ecological and life history attributes. *Journal of Ecology*, 96:869–883.
- Brenner, E. D., Stevenson, D. W. & Twigg, R. W. (2003): Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. *Trends in PlantScience*, 8:446-452.
- Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F. & Farjon, A. (2015): Green Plants in Red: A baseline Global Assessment for the IUCN Sampled Red List Index for Plants, *Plos One*, 10, e0135152.
- Butchart, L. A., Stattersfield, A. J., Baillie, J., Bennun, L. A., Stuart, S. N., Akçakaya, H. R. & Mace, G. M. (2005): Red List Indices to measure progress towards the 2010 target and beyond. *Philosophical Transactions of the Royal Society B*, 360: 255–268.
- Cafaro, P. (2015): Three ways to think about the sixth mass extinction. *Biological Conservation*, 195: 387-393.
- Cardillo, M. (2003): Biological determinants of extinction risk: why are smaller species less vulnerable? *Animal Conservation*, 6: 63–69.
- Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Yeong Ryu, H., Sbeglia, G. C., Spagnolo, F., Waldron, J. B., Warsi, O. & Wiens, J. J. (2013): How does climate change cause extinction? *Proc R Soc B*, 280: 20121890.

- Calonje, M., Kay, J. & Griffith, M. P. (2011): Propagation of cycad collections from seed: Applied reproductive biology for conservation. *Sibbaldia*, 9: 77-96.
- Calonje, M., Stevenson, D.W. & Stanberg, L. (2017). The World List of Cycads, online edition. Available from: <u>http://www.cycadlist.org</u> (Accessed on 10 April 2018).
- Cardillo, M. (2003): Biological determinants of extinction risk: why are smaller species less vulnerable? *Animal Conservation*, 6: 63–69.
- Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. (2105): Accelerated modern human–induced species losses: Entering the sixth mass extinction. *Sci. Adv.* 1, e1400253.
- Cequinel, A., Capellesso, E.S., Marcilio-Silva, V., Cardoso, F.C.G. & Marques, M.C.M. (2018): Determinism in tree turnover during the succession of a tropical forest. Perspectives in Plant Ecology, *Evolution and Systematics*, 34: 120–128.
- Chamberlain, C. J. (1925): The origin of cycads. Science New Series, 61: 73-77.
- Chaw, S. L. & Gaston, K. J. (2005): Areas, cradles and museums: The latitudinal gradient in species richness. *Trends in Ecology and Evolution*, 15: 311-315.
- Chaw, S. M., Walters, T. W., Chang, C. C., Hu, S. H. & Chen, S. H. (2005): A phylogeny of cycads (Cycadales) inferred from chloroplast *matK* gene, *trnK*, and nuclear rDNA ITS region. *Molecular Phylogenetic and Evolution*, 37: 214-234.
- Christensen, R. H. B. (2013): Package "Ordinal": regression models for ordinal data. *Copenhagen, Denmark*. (Version 2012-09-11).

- Cibrian–Jaramillo, A., Daly, A. C., Brenner, E., Desalle, R. & Marler, T. E. (2010): When North and South do not mix genomic connectivity of a recently endangered oceanic cycad. *Cycas micronesica*, in Guam using EST-microsatellites. *Molecular Ecology*, 19(12): 2364-2379.
- CITES (2012): Text of the Convention. <u>http://www.cites.org/eng/disc/text.php#II</u>.
- CITES (2015): Appendices. <u>http://www.cites.org/eng/app/appendices.php</u>.
- Condamine, F. L., Rolland, J. & Morlon, H. (2013): Macro-evolutionary perspectives to environmental change. *Ecology Letters*, 16:72–85.
- Condamine, F. L., Nagalingum, N. S., Marshall, C. R. & Morlon, H. (2015): Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMCEvolutionary Biology*, 15:65.
- Cooper, N., Bielby, J., Thomas, H. G. & Purvis, A. (2008): Macroecology and extinction risk correlates of frogs. *Global Ecology and Biogeography*, 17:211– 221.
- Cousins, S. R., Williams, V. L. & Witkowski, E. T. F. (2012): Uncovering the cycad taxa (*Encephalartos* species) traded for traditional medicine in Johannesburg and Durban, South Africa. *South African Journal of Botany*, 78: 129-138.
- Cousins, S. R. & Witkowski, E.T. F. (2017): African Cycad Ecology, Ethnobotany and Conservation: A Synthesis. *Bot. Rev.* 1-43.
- Crepet, W. L. & Niklas, K. J. (2009): Darwin's second "abominable mystery": why are there so many angiosperm species? Am. *Journal of Botany*, 96: 366–381.

- Crisp, M. D. & Cook, L. G. (2011): Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. *New Phytol*, 192: 997–1009.
- Da Silva, J. M., Donaldson, J. S., Reeves, G. & Hedderson, T. A. (2012): Population genetics and conservation of critically small cycad populations: A case study of the Albany Cycad. *Encephalartos latifrons* (Lehmann). *Biological Journal of the Linnean Society*, 105: 293-308.
- Daly, B., Donaldson, J. S., Friedmann, Y., Hahndiek, Q., King, N., Newton, D. & Southwood, A. (2006): Albany cycad (*Encephalartos latifrons*) population and habitat viability assessment workshop report. *Conservation breeding Specialist group* (*SCC/IUCN*)/*CBSG Southern Africa*. Endangered Wildlife Trust, Johannesburg.
- Dantas, V. L. & Pausas, J. G. (2013): The lanky and the corky: fire-escape strategies in savanna woody species. *Journal of Ecology,* 101: 1265–1272.
- Daru, B. H., Yessoufou, K., Mankga, L. T. & Davies, T. J. (2013): A global trend towards the loss of evolutionary unique species in Mangrove ecosystem. *PLoSONE*, 8: e66686.
- Daru, B. H., Van der Bank, M. & Davies, T. J. (2015): Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa. *Diversity and Distribution*, 21: 769–780.
- Daru, B. H. & le Roux, P. C. (2016): Marine protected areas are insufficient to conserve global marine plant diversity. *Global Ecology and Biogeography*, 25: 324–334.

- Davies, T. J. & Cadotte, M. W. (2011): Quantifying biodiversity does it matter what we measure? In: Zachos, F. E., Habel, J. C (eds) Biodiversity hotspots. *Springer, Heidelberg*, 43–60.
- Davies, T. J., Smith, G. F., Bellstedt, D. U., Boatwright, J. S., Bytebier, B., Cowling, R. M., Forest, F., Harmon, L. J., Muasya, A. M., Schrire, B. D., Steenkamp, Y., van der Bank, M. & Savolainen, V. (2011): Extinction risk and diversification are linked in a plant biodiversity hostspot. *PLoS Biology*, 9: e1000620.
- Davies, T. J. & Yessoufou, K. (2013): Revisiting the impacts of non-random extinction onthetree-of-life. *Biology Letters*, 20130343.
- Davies, T. J. (2015): Losing history: how extinctions prune features from the treeof-life. *Philos. Trans. R Soc B,* 370. Doi: 10.1098/rstb.2014.0006.
- DEAT. (2010): General Notice 416: Draft biodiversity management plan for Encephalartos latifrons. National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004), Government Gazette, 552: 33456.
- DEAT (2012): General Notice 371: Prohibition of trade in certain *Encephalartos* (cycad) species. National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004), *Government Gazette*, 563: 35344.
- de Albuquerque, U.P. (2006): Re-examining hypotheses concerning the use and knowledge of medicinal plants: a study in the Caatinga vegetation of NE Brazil. *Journal of Ethnobiology and Ethnomedicine*, 2(1), 30.
- de Laubenfels, D. J. & Adema, F. (1998): A taxonomic revision of the genera *Cycas* and *Epicycas* gen. nov. (Cycadaceae). *Blumea*, 43: 351-400.

- Dirzo, R. & Raven, P. J. (2003): Global state of biodiversity and loss. Annu Rev Environ Resour, 28: 137–167.
- Donaldson, (2003): Cycads. Status Survey and Conservation Action Plan. IUCN/SSC. Cycad Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, ix + 86 pp.
- Donaldson, J. S., Hill, K. D. & Stevenson, D. W. (2003): Cycads of the world: an overview. In: Donaldson JS (eds) Cycads. Status survey and conservation action plan. IUCN/SSC. Cycad Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, pp 3-8.
- Donaldson, J. S. (2008): South African *Encephalartos* species. NDF workshop case studies: Case study 4: *Encephalartos*. Mexico.
- Doyle, J.A. & Donoghue, M.J. (2012): Fossils and seed plant phylogeny reanalyzed. *Brittonia*, 44: 89-106.
- Etherington, R., Jeffers, B., Grigg, L. & Paddock, A. (2018): Investigating the demographics and intrapopulation spatial patterns of the endangered *Cycas megacarpa* K.D. Hill in central Queensland, Australia. *Austral Ecology*, 43: 110– 116.
- Faith, D. P. (1992): Conservation evaluation and phylogenetic diversity. *Biological conservation*, 61: 1-10.
- Fisher, D. O. & Owens, I. P. F. (2004): The comparative method in conservation biology. *Trends Ecology Evolution*, 19:391–398.

- Fjeldsã, J., Bowie, R.C. & Rahbek, C. (2012): The role of mountain ranges in the diversification of birds. Annual Review of Ecology, *Evolution andSystematics*, 43:249–265.
- Fjeldsã, J. & Lovett, J. C. (1997): Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. *Biodiversity and Conservation*, 6:325–346.
- Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vie, J-C., Akçakaya, H. R., Angulo, A., DeVantier, L.M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., Hanlon, S. E. O., Garnett, S. T., Sekercioglu, C. H. & Mace, G. M. (2013): Identifying the World's most climate change vulnerable species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals.*PLoS ONE*, 8 (6): e65427. Doi: 10.1371 /journal.pone.0065427.
- Fragnière, Y., Bétrisey, S., Cardinaux, L., Stoffel, M. & Kozlowski, G. (2015): Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. *Journal of Biogeography*, 42: 809-820.
- Freville, H., McConway, K., Dodd, M. & Silvertown, J. (2007): Prediction of extinction in plants: interactions of extrinsic threats and life history traits. *Ecology*, 88:2662–2672.
- Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P. & Yamagata, Y. (2014): Betting on negative emissions. *Nature Clim. Change*, 4: 850–853.
- Gascon, C., Collins, J. P., Moore, R. D., Church, D. R., McKay, J. E. & Mendelson, J. R. III (eds) (2007). *Amphibian Conservation Action Plan.*

IUCN/SSC Amphibian Specialist Group. Gland, Switzerland and Cambridge, UK. 68pp.

- Gerland, P., Raftery, A. E., Seveikova, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K.& Wilmoth, J. (2014): World population stabilization unlikely this century. *Science*, 346(6206): 234-237.
- Giddy, C. (1974): Cycads of South Africa. *Purnell and Sons* (S.A.) (Pty) Ltd, Cape Town, South Africa.
- Giddy, C. (1984): Cycads of South Africa. Second edition. C. Struik (Pty) Ltd. Publishers, Cape Town.
- Goèl, A. K. & Khuraijam, J. S. (2015): Cycads: An Overview. In: Bahadur, B., Sahijram, M. V. R. L. & Krishnamurthy, K. V. (Eds): *Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement.Uttar Pradesh, India*, Springer, 1: 349-360. DOI 10.1007/978-81-322-2286-6_10.
- Golding, J. S. & Hurter, P. J. H. (2003): A Red List account of Africa's cycads and implications of considering life-history and threats. *Biodiversity and Conservation*, 12: 507-528.
- Goode, D. (1989): Cycads of Africa. Striuk Winchester.
- Grace, J. B. & Pugesek, B. H. (1997): A structural equation model of plant species richness and its application to a coastal wetland. *Am. Nat.* 149: 436 – 460.
- Grace, J. B. & Pugesek, B. H. (1998): On the use of path analysis and related procedures for the investigation of ecological problems. *Am. Nat.* 152: 151 159.

- Grace, J. B. (2006): Strucutral EquationModeling and Natural Systems. CambridgeUniversity Press, NewYork, NY.
- Grace, J.B., Michael Anderson, T., Smith, M.D., Seabloom, E., Andelman, S.J.&Meche, G. (2007): Does species diversity limit productivity in natural grassland communities? *Ecology Letters*, 10: 680–689.
- Grace, J.B., Schoolmaster, D. R. Jr., Guntenspergen, G. R., Little, A. M., Mitchell, B. R., Miller, K. M. & Schweiger, E. W. (2012): Guidelines for a graphtheoretic implementation of structural equation modeling. *Ecosphere*, 3(8), 73. <u>http://dx.doi.org/10.1890/ES12-00048.1</u>.
- Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. (2015): Structural equation modeling: building and evaluating causal models. *Ecological Statistics: From Principles to Applications* (eds) G. A. Fox, S. Negrete-Yanlelevich & V. J. Sosa, pp. 168–199. *Oxford University Press*, NewYork, NY.
- Grandcolas, P., Nattier, R., Legendre, F. &Pellens, R. (2011): Mappingextrinsic traits such as extinction risks or modelled bioclimatic niches on phylogenies: Does it make sense at all? *Cladistics*, 27: 181–185.
- Gülez, S., (1992): A method for evaluating areas for national park status. *Environmental Management*, 16(6): 811-818.
- Harberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W. & Fische-Kowalski, M. (2007): Quantifying and mapping the human appropriation of net primary production in Earth's ecosystem. *Proceeding of the National Academy of Sciences of the United States of America*, 104: 12942-12947.

- Harmic, J. L. (2004): Response of forest trees to global environment. *Forest Ecology and Management*, 197: 323-335.
- Haynes, J. L. (2011): The world list of cycads: A historical view. IUCN/ SSC Cycad Specialist Group, 37 pp. <<u>htpp://cycadsg.org/publications/Haynes-</u> <u>Historical-Review-of-World-List-of-Cycads-2011.pdf</u>>
- Hayward, P. & Kuwahara, S. (2012): Sosetsu heritage-cycads, sustenance and cultural landscapes in Amami Islands. *The Australasian-Pacific Journal of Regional Food Studies*, 2: 26-46.
- Hendricks, J. G. (1987): The Gondwanan Cycas. Encephalartos, 10: 24–25.
- Hermsen, E. J., Taylor, T. N., Taylor, E. L. & Stevenson, D. W. (2006): Cataphylls of the middle Triassic cycad *Antarcticycas schopfii* and the new insights into cycad evolution. *American Journal of Botany*, 93: 724-738.
- Hermsen, E. J., Taylor, E. L. &Taylor, T. N. (2009): Morphology and ecology of the *Antarcticycas* plant. *Review of Palaeobotany and Palynology*, 153:108–123.
- Hill, K.D., Chase, M. W., Stevenson, H. G. & Schutzman, B. (2003): The families and genera of cycads: A molecular phylogenetic analysis of Cycadophyta based on nuclear and plastid DNA sequences. *International Journal of Plant Sciences*, 164: 933-948.
- Hill, K. D., Dennis, W. S. & Osborne, R. (2004): The World List of Cycads. IUCN/SSC Cycad Specialist Group.
- Hill, K. D. (2004): Character evolution, species recognition and classification concepts in the Cycadaceae. In T. Walters, & R. Osborne (Eds.), Cycad

classification, concepts and recommendations (23–44). Wallingford: CABI Publishing.

- Hill, K. D., Stevenson, D. W. & Osborne, R. (2007): The world list of cycads. Proceedings of the seventh International Conference on Cycad Biology. *Memoirs* of New York Botanical Garden, 97: 454-483.
- Howard, S. D. & Bickford, D. P. (2014): Amphibians over the edge: silent extinction risk of data-deficient species. *Divers. Distrib*, 20:837–846.
- Iriondo, J. M., Albert, M. J. & Escudera, A. (2003): Structural equation modeling: an alternative for assessing causal relationships in threatened plant populations. *Biology Conservation*, 113: 367-377.
- Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. (2007): Mammals on the EDGE: Conservation priorities based on threat and phylogeny. *PLoS ONE*, 2: e296.
- Isaac, N. J. B., Redding, D. W., Meredith, H. M. & Safi, K. (2012): Phylogenetically Informed Priorities for Amphibian Conservation. *PLoS ONE*, 78: e43912.
- IUCN (2010a): IUCN Red List Categories and Criteria. Version 3.1. http://www.iucn.org/about/work/programmes/species/red_list/.
- Jetz, W., Rahbek, C. & Colwell, R. K. (2004): The coincidence of rarity and richness and the potential signature of history in centres of endemism. *Ecology Letters*, 7: 1180-1191.
- Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. (2012): The global diversity of birds in space and time. *Nature*, 491: 444–448.

- Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K. & Mooers, A. O. (2014). Global distribution and conservation of evolutionary distinctness in birds. *Current Biology*, 24: 919–930.
- Jones, D. L. (2002): Cycads of the World, ancient plants today is landscape.
 Second edition. *New Holland Publishers*, Australia.
- Jones, D. L. (1993): Cycads of the World: Ancient Plants in Today's Landscape.
 REED (William Heinemann). *Chatswood*, Australia.
- Kannan, R & James, D. A. (2009): Effects of climate change on global biodiversity: A review of key literature. *Tropical Ecology*, 50(1): 31-39.
- Kembel, S. V., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H. (2010): Picante: R tools for integrating phylogenies and ecology. *Bioinformatics*, 26: 1463-1464.
- Khuraijam, J. S. & Roy, R. K. (2016): Indian Cycas under severe threat. Current Science, 111: 1756-1758.
- Krishnamurthy, V., Mandle, L. Ticktin, T., Ganesan, R., Saneesh, C. S. & Varghese, A. (2013): Conservation status and effects of harvest on an endemic multi-purpose cycad, *Cycas circinalis* L., Western Ghats, India. *Tropical Ecology*, 54(3): 309–320.
- La Peyre, M. K., Mendelssohn, I. A., Templet, P. H. &Grace, J. B. (2001): Identifying determinants of nations' wetland management programs using structural equation modeling: an exploratory analysis. *Environ. Manage.* 27: 859-868.

- Lawler, J. J., Shafer, S. L., White, D., Kareiva, P., Maurer, E. P., Blaustein, A. R. & Bartlein, P. (2009): Projected climate-induced faunal change in the Western Hemisphere. *Ecology*, 90: 588–597.
- Leao, T. C. C., Fonseca, C. R., Peres, C. A. &Tabarelli, M. (2014): Predicting extinction risk of Brazilian Atlantic Forest Angiosperms. *Conservation Biology*, 28: 1349–1359.
- Lefcheck, J.S. (2016): PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. *Methods in Ecology and Evolution*, 7: 573–579.
- Lindström, A. J. (2009): Typification of some species names in *Zamia L*. (Zamiaceae), with an assessment of the status of *Chigua* D.W. Stev. *Taxon*, 58: 265–270.
- Luiz, O. J. Woods, R. M. Madin, E. M. P. & Madin, J. S. (2016): Predicting IUCN extinction risk categories for the world's data deficient groupers (Teleostei:Epinephelidae). *Conservation Letters*, 9: 342–350.
- Lung, T., Meller, L., van Teeffelen, A. J. A., Thuiller, W. & Cabeza, M. (2014): Biodiversity funds and conservation needs in the EU under climate change. *Conservation Letters.*
- Luo, W. H., Tang, W. X., Huang, S. X., Liang, H. L., & Zhao, B. (2014): Ex situ conservation of *Cycasdebaoensis*: A rare and endangered plant. *Journal of Zhejiang A & F University*, 31: 812–816.
- Mace, G. M., Gittleman, J. L. & Purvis.A. (2003): Preservingthe tree of life. Science, 300: 1707–1709.

- Malaeb, Z. A., Summers, J. K. & Pugesek, B. H. (2000): Using structural equation modeling to investigate relationships among ecological variables. *Environ. Ecol. Stat.* 7: 93-111.
- Magurran, A. & Dornelas, M. (2010): Introduction: biological diversity in a changing world. *Philos. Trans. R. Soc. B*, 365: 3593–3597.
- Mankga, L, T. & Yessoufou, K. (2017): Factors driving the global decline of cycad diversity. *AoB PLANTS*, 9: plx022.
- Marler, P. N. & Marler, T. E. (2015): An assessment of Red List data for the Cycadales. *Tropical Conservation Science*, 8(4): 1114-1125.
- McLellan, R., Iyengar, L., Jeffries, B.& Oerlemans, N. (Eds.), (2014): Living Planet Report 2014: Species and Spaces, People and Places. *World Wildlife Fund*, Washington, DC.
- Millennium Ecosystem Assessment (2005): Ecosystems and human well-being: synthesis. Island Press, Washington, DC, 137.
- Miller. T. G. & Spoolman, S. (2017): Environmental Science: Sustaining your World. *National Geographic Learning | Cengage Learning1 N.* State Street, Suite 900 Chicago, IL 60602. ISBN: 9781305637429.
- Mooers, A. Ø. Faith, D. P. & Maddison, W. P. (2008): Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. *PLoSONE*, 3: e3700.
- Mooers, A., Gascuel, O., Stadler, T., Li, H. &Steel, M. (2012): Branch lengths on birth-death trees and the expected loss of phylogenetic diversity. *Systematic Biology*, 61: 195–203.

- Mugasha, W. A., Bollandsa[°]s, O. M. &Eid, T. (2013): Relationshipsbetweendiameter and height of trees in natural tropical forest in Tanzania. Southern Forests, 75: 221–237.
- Myers, N., Mittermeirs, R. A., da Fonseca, G. A. B. & Kent, J. (2000): Biodiversity hotspots for conservation priorities. *Nature*, 403 (6772): 853-858.
- Nagalingum, N.S., Marshall, C.R., Quental, T. B., Rai, H. S., Little, D. P. & Matthews, S. (2011): Recent synchronous radiation of a living fossil. *Science* 334: 796–799.
- Niklas, K. J. (1997). The evolutionary biology of plants. Univ. of Chicago Press, Chicago, IL.
- Norstog, K. J. & Nicholls, T. J. (1997): The biology of the cycads. Ithaca, New York: CornellUniversity Press.
- Nylander, J. A. A. (2004): Modeltest v2. Program distributed by the author. Sweden: *Evolutionary Biology Centre*, Uppsala University.
- Okubamichael, D. Y., Jack, S. L., Bösenberg, J. D. Hoffman, M. T. & Donaldson, J. S. (2016): Repeat photography confirms alarming decline in South African cycads. *Biodiversity Conservation*, 25(11): 2153–2170.
- Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., Damico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnut, T. F., Rickets, T. H., Kura, Y., Lamoreux, J. F., Hedao, P. & Kassein, K. R. (2001): Terrestrial ecoregions of the worlds: A new map of life on Earth. *Bioscience*, 51: 933-938.

- Orme, C. D. L, Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T-S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J. & Owens, I. P. F. (2005): Global hotspots of species richness are not congruent with endemism or threat. *Nature*, 436: 1016–1019.
- Osborne, R. & Hendricks, J. (1985): A world list of cycads. *Encephalartos*, 3: 13-17.
- Osborne, R., Grove, A., Oh, P., Mabry, T. J., Ng, J. C. & Seawright, A. A (1994): The magical and medicinal usage of *Stangeria eriopus* in South Africa. *Journal of Ethnopharmacology*, 43: 67–72.
- Osborne, R., Calonje, M.A., Hill, K.D., Stanberg, L. & Stevenson, D. W. (2012): The world list of Cycads. *Memoirs of the New York Botanical Garden*, 106: 480– 510.
- Owen, N. (2014): Life on the edge. Significance, 11: 26-29.
- Pearson, H. H. W. (1905): Notes on South African cycads. *Transactions of the South African Philosophical Society*, 16: 341–354.
- Pellens, R. & Grandcolas, P. (2016): Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis. Switzerland: Springer International Publishing, AG.
- Pievani, T. (2014): The sixth mass extinction: Anthropocene and the human impact on Biodiversity. *Rend. Fis. Acc. Lincei*, 25: 85-93.
- Pot, C., McLoughlin, S. & Lindström, A. (2010): Late Paleozoic foliage from China displays affinities to Cycadales rather than to Bennettitales necessitating

reevaluation of the Paleozoic Pterophyllum species. *Acta Paleontologica*, 55: 157-168.

- Prantner, B. (2011): Visualization of imputed values using the R-package VIM. <u>http://cran.r-project.org/web/packages/VIMGUI/vignettes/VIM-Imputation.pdf</u>
- Pullaiah, T., Bahadur, B. & Krishnamurthy, K. V. (2015): Plant Biodiversity. In: Bahadur, B., Sahijram, M. V. R. L. & Krishnamurthy, K. V. (eds): *Plant Biology* and Biotechnology: *Plant Diversity, Organization, Function and Improvement.Uttar Pradesh, India*, Springer, 1: 177-195.
- Pulido, M. T., Vargas-Zenteno, M., Vite, A. & Vovides, A, P (2015): Range extension of the endangered Mexican cycad *Ceratozamia fuscoviridis* Moore (teosintle): implications for conservation. *Tropical Conservation Science*, 8(3): 778-795.
- Purvis, A. (2008): Phylogenetic approaches to the study of extinction. Annual Review of Ecology and Systematics, 39: 301–319.
- Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. (2000):Non-random extinction and the loss of evolutionary history. *Science*, 288: 328–330.
- Qian, H., Wiens, J.J., Zhang, J. & Zhang, Y. (2015): Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. *Ecography*, 38: 241–250.
- Radha, P. & Singh. R. (2008): Ethnobotany and conservation status of Indian Cycas species. Encephalartos, 93(1): 15–21.
- R Core Team. (2015): R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

- Rai, H. S., Osbrien, H. E., Reeves, P. A., Olmstead, R. G. & Graham, S. W. (2003): Inference of higher-order relationships in the cycads from a large chloroplast data set. *Molecular Phylogenetics and Evolution*, 29: 350-359.
- Raimondo, D. C. & Donaldson, J. S. (2003): Responses of cycads with different life histories to the impact of plant collecting: simulation models to determine important life history stages and population recovery times. *Biological Conservation*, 111: 345-358.
- Rambaut, A.& Drummond, A.J. (2007): TreeAnnotator (version 1.5.4).Retrieved from <u>http://beast.bio.ed.ac.uk</u>.
- Ran, J. H., Wang, P. P., Zhao, H. J. & Wang, X. Q. (2010): A test of seven candidate barcode regions from the plastome in *Picea* (Pinaceae). *Journal of Integrative Plant Biology*, 52: 1109-1126.
- Ravele, A. M. & Makhado, R. A. (2009): Exploitation of *Encephalartos transvenosus* outside and inside Mphaphuli cycads nature reserve, Limpopo Province. *South Africa. African Journal of Ecology*, 48: 105–110.
- Redding, D. W., DeWolff, C. V. & Mooers, A. O. (2010): Evolutionary distinctiveness, threat status, and ecological oddity in primates. *Conservation Biology*, 24: 1052-1058.
- Redding, D. W., Mooers, A. O., Şekercioğlu, Ç. H. & Collen, B. (2015). Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities. *Philosophical Transaction of the Royal Society B*, 370: 20140013.

- Retief, K. (2013): Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques. MSc dissertation, University of Cape Town, Rondebosch, Cape Town.
- Ricketts, T. M., Dinerrstein, E., Boucher, T., Brooks, T. M., Butchart, S. E. M., Hoffmann, M., Lamoreux, J. F., Morrison, J., Par, J. D., Rodrigues, A. S. L., Sechrest, W., Wallace, G. E., Berlin, K., Bielby, J., Burgess, N. D., Church, D. R., Cox, N., Knox, D., Loucks, C., Luck, G. W., Master, L. L., Moore, R., Naidoo, R., Riggely, R., Schatz, G. E., Shire, G., Strand, H., Wettengel, W. & Wikramanayake, E. (2005): Pinpointing and preventing imminent extinctions. *Proceedings of the National Academy of Sciences of the United States of America*, 102: 18497-18501.
- Rolland, J., Condamine, F. L., Jiquet, F. & Morlon, H. (2014): Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. *PLoS Biol*, 12: e1001775.
- Salas-Leiva, D. E., Meerow, A. W., Calonjie, M., Griffith, M. P., Francisco-Ortega, J., Nakamura, K., Stevenson, D. W., Lewis, C. E. & Namoff, S. (2013): Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree, inference methods. *Annals of Botany*, 112: 1263-1278.
- Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.C. (2011): The influence of late quaternary climate change velocity on species endemism. *Science*, 334: 660–664.
- Santini, L., Saura, S. & Rondinini, C. (2016): Connectivity of the global network of protected areas. *Diversity and Distributions*, 22: 199–211.

- Schachat, S.R., Mulcahy, D.G. & Mendelson, J.R III. (2016): Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads. *ConservationBiology*, 30: 72–81.
- Shipley, B. (2000): Cause and Correlation in Biology. A User's guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge, UK.
- Shipley, B. (2013): The AIC model selection method applied to path analytic modelscompared using directed-separation tests. *Ecology*, 94: 560–564.
- Sodhi, N. S., Koh, L. P., Peh, K. S-H, Tan, H.T.W., Chazdon, R. L., Corlett, R. T., Lee, T. M., Cowell, R. K., Brook, B. W., Sekercioglu, C. H. & Bradshaw, C. J. A. (2008): Correlates of extinction proneness in tropical angiosperms. *Diversity and Distribution*, 14: 1–10.
- Spitale, D., Petraglia, A. & Tomaselli, M. (2009): Structural equation modeling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. *Journal of Biogeography*, 36: 745–755.
- Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N., Joy, J. B., Smith, G. J., Dulvy, N. K. & Mooers, A. O. (2018): Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nature Ecology and Evolution*, 2: 288.
- Stevenson, D. W. & Osborne, R. (1993a): *The world list of cycads*. Pp. 354-364 in Stevenson, D.W. & Norstog, K. (eds), Proceedings of the Second International Conference on Cycad Biology, Palm and Cycad Societies of Australia Ltd, Milton, Queensland, Australia.

- Stevenson, D. W. & Osborne, R. (1993b): The world list of cycads. *Encephalartos*, 33: 19-25.
- Stevenson, D. W. and Hill, K. D. (1995): The world list of cycads. Proceedings of the third International Conference on Cycad Biology. *Cycad Society of South Africa*, Stellenbosch, South Africa.
- Tafirei, R. (2016): An integrative approach towards setting conservation priority for cycad species at a global scale. MSc dissertation. *Department of Environmental Management, Faculty of Sciences, University of Johannesburg.*
- Taylor, T. N., Taylor, E. L. & Krings, M. (2009): Paleobotany: The Biology and Evolution of Fossil Plants. 2nd edition. Burlington: *Academic Press*.
- Taylor, A. S., Haynes, J. Z., Stevenson, D. W., Holzman, G. & Mendieta, J. (2012): *Biogeographic insights in Central American cycad biology*. Rijeka: In Tech.
- Templ, M., Alfons, A., Kowarik, A. &Prantner, B. (2016): VIM: Visualization and Imputation of Missing Values. R package version 4.6.0. <u>https://CRAN.R-project.org/package=VIM</u>.
- Terry, I., Forster, P. I., Moore, C. J., Roemer, R. B. & Machin, P. J. (2008): Demographics, pollination syndrome and conservation status of *Macrozamia platyrhachis* (Zamiaceae), a geographically restricted Queensland cycad. *Australian Journal of Botany*, 56: 321–332.
- Thomas, G.H., Hartmann, K., Jetz, W., Joy, J.B., Mimoto, A. & Mooers, A.O. (2013): PASTIS: An R package to facilitate phylogenetic assembly with soft taxonomic inferences. *Methods in Ecology and Evolution*, 4: 1011–1017.

- Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. (2016): Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. *Biological Conservation*, 204: 23-31.
- United Nations (2004): World population prospects: The 2004 revision. Sex and age distributions of the world population. The United Nations Publication.
- Urban, M. C. (2015): Accelerating extinction risk from climate change. *Science* 348 (6234): 571-573.
- Vamosi, J. C. & Vamosi, S. M. (2008): Extinction risk escalates in the tropics. PLoS ONE, 3: e3886.
- Vamosi, J. C. & Wilson, J. R. U. (2008): Non-random extinction leads to elevated loss of angiosperm evolutionary history. *Ecology Letters*, 11: 1047–1053.
- Vessey, J. K., Pawloski, K. & Bergman, B. (2004): Root based Nitrogen fixing symbiosis: Legumes, actinorhizal plants, *Parasponiasp* and cycads. *Plant & Soil*, 274: 51-78.
- Veron, S., Penone, C., Clergeau, P., Costa, G. C., Oliveira, B. F., Sao-Pedro, V. A. & Pavoine, S. (2016): Integrating data-deficient species in analyses of evolutionary history loss. *Ecology and Evolution*, 6: 8502–8514.
- Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S, H. M., Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., Maiorano, L., Pressey, R. L., Arponen, A., Boitani, L., Reside, A. E., van Vuuren, D. P. & Rondinini, C. (2015): Projecting Global Biodiversity Indicators under Future Development Scenarios. *Conservation Letters*, 9(1): 5-13.

- Voeks, R.A., 2004. Disturbance pharmacopoeias: medicine and myth from the humid tropics. *Annals of the Association of American Geographers*, 94(4): 868-888.
- Volis, S. (2016): How to conserve threatened Chinese plant species with extremely small populations? *Plant Diversity*, 1: 53–62.
- Vorster, P. (2004): Chapter 6: Classification concepts in *Ecncephalartos* (Zamiaceae). In Walters, T. & Osborne, R. (eds). *Cycad Classification: Concepts and recommendations.* CABI Publishing, Walligford.
- Vovides, A. P., Pérez-Farrera M. A. & Iglesias, C. (2010): Cycad propagation by rural nurseries in Mexico as an alternative conservation strategy: 20 years on. *Kew Bulletin*, 65: 603-611.
- Vredenburg, V. T., Knapp, R. A., Tunstall, T. S. & Briggs, C. J. (2010): Dynamics of an emerging disease drive large-scale amphibian population extinctions. *PNAS Ecology*, 107(21): 9689-9694.
- Wake, D.B. &Vredenburg, V.T. (2008): Are we in the midst of the sixth mass extinction? A view from the world of amphibians. *Proceedings of the Natural Academy of Sciences of the United Statesof America*, 11: 466–11473.
- Waldron, A., Mooers, A. O., Miller, D. C., Nibbelink, N., Redding, D. W., Kuhn, T. S., Roberts, J. T. & Gittleman, J. L. (2013): Targeting global conservation funding to limit immediate biodiversity declines. *Proceedings of the National Academy of Sciences of the United States of America*, 110: 12144-12148.
- Wang, D., Wu, Y. W., Shih, A. C. C., Wu, C. S., Wang, Y. N. & Chaw, S. M. (2007): Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 Mya. *Molecular Biology and Evolution*, 24: 2040-2048.

- Warren, W. C., Hillier, L. W., Graves, J. A. M., Birney, E., onting, C. P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A. T & Yang, S. P. (2008): Genome analysis of the platypus reveals unique signatures of evolution. *Nature*, 453: 175-183.
- White, R.L. & Bennett, P.M. (2015): Elevational distribution and extinction risk in birds. *PLoS ONE*, 10: e0121849.
- Whitelock, L. M. (2002): *The Cycads.* Portland, OR: Timber Press. 374pp and 505 color plates. ISBN 0-88192-522-5.
- Whittaker, R. J., Araujo, M. B., Paul, J., Ladle, R. J., Watson, J. E. M. & Willis, K. J. (2005): Conservation Biogeography: assessment and prospect. *Diversity and Distributions*, 11: 2–3.
- Willis, C. G., Ruhfel, B. R., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. (2008): Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the Natural Academy of Science United States of America, 105: 17029–17033.
- Willis, C. G., Ruhfel, B. R., Primack, R. B., Miller-Rushing, A. J., Losos, J. B. & Davis, C. C. (2010): Favourable climate change response explains non-native species' success in Thoreau's Woods. *PLoS ONE*, 5: e8878.
- Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. (2017): Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. *Environ. Sci. Techn.*, 51: 3298–3306.
- Winter, M., Schweigera, O., Klotza, S., Nentwigc, W., Andriopoulosd, P., Arianoutsou, M., Basnou, C., Delipetrou, P., Didziulis, V., Hejda, M., Hulme, B. E., Lambdon, P. W., Perql, J., Pysek, P., Poy, D. B. & Kuhn, I. (2009): Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization

of the European flora. *Proceedings of the National Academy of Sciences of the United States of America*, 106: 21721-21725.

- Wright, S. J. (2005): Tropical forests in a changing environment. *Trends Ecol Evol,* 20: 553–560.
- Xiao, L-Q. & Möller, M. (2015): Nuclear Ribosomial ITS Functional Paralogs Resolve the Phylogenetic Relationships of a Late-Miocene Radiation Cycad Cycas (Cycadaceae), *Plos One*, 10: e0117971.
- Xiao-fu, X., Jian, S., Hong-tao., N., De-kui, Y. & Jian-hua., T. (2016): Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay. *China Ocean Eng.*, 30(5): 733 – 748.
- Yessoufou, K., Daru, B. H. & Davies, T. J. (2012): Phylogenetic patterns of extinction risk in the Eastern arc ecosystem an African biodiversity hotspot. *PLoSONE*, 7: e47082.
- Yessoufou, K., Bamigboye, S. O, Daru, B. H. & van der Bank, M. (2014): Evidence of constant diversification punctuated by a mass extinction in the African cycads. *Ecology and Evolution*, 4: 50–58.
- Yessoufou, K. & Davies, T.J. (2016): Re-considering the loss of evolutionary history: how does non-random extinction prune the tree of life? In: Pellens R, Grandcolas P, eds. *Biodiversity conservation and phylogenetic systematics*.14: 57–80.
- Yessoufou, K., Daru, B. H., Tafirei, R., Elansary, H. O. &Rampedi, I. (2017): Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution*, 7: 2735–2746.

- Zheng, Y., Liu, J., Feng, X. & Gong, X. (2017): The distribution, diversity, and conservation status of *Cycas* in China. *Ecol Evol*, 7: 3212–3224.
- Zonneveld & Lindström, (2016): Genome sizes for 71 species of Zamia (Cycadales: Zamiaceae) correspond with three different biogeographic regions. Nordic Journal of Botany, 000: 001–008.
- Zgurski, J. M., Rai, H. S., Bogler, D. J., Francisco-Ortega, J. & Graham, S. W. (2008): How well do we understand the overall backbone of cycad ohylogeny? New insights from a large, multigene plastid data set. *Molecular Phylogenetics and Evolution*, 47: 1232-1237.

APPENDIX

Appendix1: Acompiled world list of cycad taxa, their global distributionand the threat status (Threatened vs. non-threatened).

N°	Species	Location	Threat status
1.	Bowenia serrulata	Australia (Queensland)	Non- threatened
2.	Bowenia spectabilis	Australia (Queensland)	Non-threatened
3.	Ceratozamia alvarezii	Mexico (Chiapas)	Threatened
4.	Ceratozamia becerrae	Mexico (Chiapas, Tabasco)	Threatened
5.	Ceratozamia brevifrons	Mexico (Veracruz)	Threatened
6.	Ceratozamia chimalapensis	Mexico (Oaxaca)	Threatened
7.	Ceratozamia decumbens	Mexico (Veracruz)	Threatened
8.	Ceratozamia euryphyllidia	Mexico (Oaxaca, Veracruz)	Threatened
9.	Ceratozamia fuscoviridis	Mexico (Hidalgo, Veracruz)	Threatened
10.	Ceratozamia hildae	Mexico (Querétaro, San Luis Potosí)	Threatened

			Threatened
11.	Ceratozamia hondurensis	Mexico (Chiapas)	
12.	Ceratozamia huastercorum	Mexico (Veracruz)	Threatened
13.	Ceratozamia latifolia	Mexico (Hidalgo, Querétaro, San Luis Potosí, Veracruz)	Threatened
14.	Ceratozamia matudae	Guatemala (Huehuetenango, San Marcos), Mexico (Chiapas)	Threatened
15.	Ceratozamia mixeorum	Guatemala, Mexico (Chiapas)	Threatened
16.	Ceratozamia mexicana	Mexico (Puebla, Veracruz)	Threatened
17.	Ceratozamia microstrobila	Mexico (San Luis Potosí)	Threatened
18.	Ceratozamia miqueliana	Mexico (Chiapas, Tabasco, Veracruz)	Threatened
19.	Ceratozamia mirandae	Mexico (Chiapas)	Threatened
20.	Ceratozamia morettii	Mexico (Veracruz)	Threatened
21.	Ceratozamia norstogii	Mexico (Chiapas, Oaxaca)	Threatened
22.	Ceratozamia robusta	Belize (Cayo, Stann Creek, Toledo), Guatemala (Alta Verapaz, Petén, Quiché, Huehuetenango, Izabal), Mexico	Threatened

		(Chiapas, Oaxaca, Veracruz)	
23.	Ceratozamia sabatoi	Mexico (Hidalgo, Queretaro)	Threatened
24.	Ceratozamia santillanii	Mexico (Chiapas)	Threatened
25.	Ceratozamia vovidesii	Mexico (Chiapas)	Threatened
26.	Ceratozamia whitelockiana	Mexico (Oaxaca)	Threatened
27.	Ceratozamia zaragozae	Mexico (San Luis Potosí)	Threatened
28.	Ceratozamia zoquorum	Mexico (Chiapas)	Threatened
29.	Chigua bernalii	Colombia (Cordoba)	Threatened
90.	Cycas aculeate	Vietnam (Da Nang)	Threatened
31.	Cycas aenigma	Philippines (Palawan-cult.)	Threatened
32.	Cycas angulata	Australia (Northern Territory and Queensland)	Non-threatened
33.	Cycas anhemica	Australia (Northern Territory)	Non-threatened
34.	Cycas annaikalensis	India (Western Ghats)	Threatened
35.	Cycas apoa	Indonesia (Papua), Papua New Guinea (West Sepik, Morobe)	Non-threatened

36.	Cycas arenicola	Australia (Northern Territory)	Non-threatened
37.	Cycas armstrongii	Australia (Northern Territory)	Threatened
38.	Cycas badensis	Australia (Queensland)	Non-threatened
		China (Guangxi), Vietnam (Lang	
39.	Cycas balansae	Son, QuangNinh, Thai Nguyen, VinhPhuc)	Non-threatened
40.	Cycas basaltca	Australia (Western Australia)	Non-threatened
41.	Cycas beddomei	India (Andhra Pradesh)	Threatened
42.	Cycas bifida	China (Guangxi, Yunnan), Vietnam (Cao Bang, Lang Son, TuyenQuang)	Threatened
43.	Cycas bougainvilleana	Papua New Guinea (Bougainville, New Britain), Solomon Islands	Non-threatened
44.	Cycas brachycantha	Vietnam (Bac Kan)	Non-threatened
45.	Cycas brunnea	Australia (Northern Territory, Queensland)	Non-threatened
46.	Cycas cairnsiana	Australia (Queensland)	Threatened
47.	Cycas calcicola	Australia (Northern Territory)	Non-threatened
48.	Cycas campestris	Papua New Guinea (Central, Gulf)	Non-threatened
49.	Cycas canalis	Australia (Northern Territory)	Non-threatened
50.	Cycas candida	Australia (Northern Territory)	Threatened

- 4			Threatened
51.	Cycas cantafolia	Malaysia (Johor)	
52.	Cycas chamaoensis	Thailand (Chantaburi)	Threatened
53.	Cycas chamberlainii	Philippines (Luzon)	Threatened
54.	Cycas changjiangensis	China (Hainan)	Threatened
55.	Cycas chevalieri	Vietnam (Ha Tinh, Nghe An, QuangBinh, Quang Tri)	Non-threatened
56.	Cycas circinalis	India (Andra Pradesh, Karnataka, Kerala, Maharashtra Tamil Nadu)	Threatened
57.	Cycas clivicola	Malaysia (Kedah, Perak, Selangor), Thailand (Chumphon, Narathiwat, PhangNga, Phuket, Ranong, Trang)	Non-threatened
58.	Cycas collina	Vietnam (Son La)	Threatened
59.	Cycas condaoensis	Vietnam (Ba Ria-Vung Tau)	Threatened
60.	Cycas conferta	Australia (Northern Territory)	Non-threatened
61.	Cycas couttsiana	Australia (Queensland)	Non-threatened
62.	Cycas cupida	Australia (Queensland)	Threatened
63.	Cycas curranii	Philippines (Palawan)	Threatened

64.	Cycas debaoensis	China (Guangxi)	Threatened
65.	Cycas desolata	Australia (Queensland)	Threatened
66.	Cycas diannanensis	China (Yunnan), North Vietnam	Threatened
67.	Cycas dolichphylla	China (Yunnan), Vietnam (Bac Kan, Cao Bang, Ha Giang, Lai Chau, Lao Cai, NinhBinh, Son La, Thai Nguyen, ThanhHoa, TuyenQuang)	Non-threatened
68.	Cycas edentate	Indonesia (Bali, Bengkulu, Jawa Barat, Jawa Tengah, JawaTimur, Lampung, Riau, Sumatra Utara), Malaysia (Johore, Langkawi, Malacca, Pahang, Perak, Sabah, Sarawak, Terengganu), Myanmar, Philippines (Balabac, Basilan, Cebu, Masbate, Mindanao, Mindoro, Negros, Palawan, Panay, Polillo), Singapore (Changi), Thailand (Chumphon, Narathiwat, PhangNga, PhuKet, Satun, Trang, Trat), Vietnam (KienGiang)	Non-threatened
69.	Cycas elephantipes	Thailand (Chaiyaphum)	Threatened
70.	Cycas elongate	Vietnam (BinhDinh, KhanhHoa, NinhThuan, Phu Yen, Quang Ngai)	Threatened

		Indonesia (Sulawesi Selatan,	Threatened
71.	Cycas falcata	Sulawesi Tenggara)	
72.	Cycas ferruginea	China (Guangxi), Vietnam (Lang	Non-threatened
	, 5	Son, Thai Nguyen)	
			Threatened
73.	Cycas fugax	Vietnam (PhuTho)	
74.	Cycas guizhouensis	China (Guangxi, Guizhou,	Threatened
		Yunnan)	
			Threatened
75.	Cycas hainanensis	China (Hainan)	
70	0	Vietnam (Ha Nam, Ha Tay,	Threatened
76.	Cycas hoabinhensis	HoaBinh, NinhBinh)	
			Threatened
77.	Cycas hongheensis	China (Yunnan)	Threatened
			Threatened
78.	Cycas indica A.	India (Karnataka)	
79.	Cycas inermis	Vietnam (Da Nang, Dong Nai,	Threatened
75.	Cyoud morning	KhanhHoa, Quang Nam)	
			Threatened
80.	Cycas javana	Indonesia (Jawa Barat, Jawa Tengah, JawaTimur)	
		rengan, Jawarimur)	
<i></i>	2	Vietnam (Da Nang, Dong Nai,	Threatened
81.	Cycas kuesteriana	KhanhHoa, Quang Nam)	
			
82.	Cycas lacrimans	Philippines (Mindanao)	Threatened
	-		
83.	Cycas lane-poolei	Australia (WA)	Non-threatened

		Vietnam (Ba Ria-Vung Tau,	Threatened
84.	Cycas lindstromii	BinhThuan, KhanhHoa,	
		NinhThuan)	
		Indonesia (Sumatra), Malaysia,	
		Myanmar, Thailand (Chumphon,	
85.	Cycas litoralis	Narathiwat, Phang Thailand	Non-threatened
00.	Cybub Morano	(Chumphon, Narathiwat,	Non incatched
		PhangNga, Trat), Vietnam	
		(KienGiang)	
86.	Cycas maconochiei	Australia (Northern Territory)	Non-threatened
		Malaysia, Thailand (Chantaburi,	Threatened
87.	Cycas macrocarpa	Chumphon, Narathiwat,	Threatened
		Ranong)	
88.	Cycas media ensata	Australia (Queensland)	Non-threatened
89.	Cycas media media	Australia (Queensland)	Non-threatened
90.	Cycas megacarpa	Australia (Queensland)	Threatened
30.	Oyeas megacaipa		
01		(Laos), Vietnam (Dac Lak, Gia	Threatened
91.	Cycas micholitzii	Lai, Kon Tum)	
			Threatened
92.	Cycas micronesica	Micronesia (Mariana Islands)	
93.	Cycas miquellii	China, Japan (Ryukyu Islands)	Non-threatened
		Indonesia (Nusa Tenggara	
94.	Cycas montana	Timur)	Non-threatened
		China (Yunnan), Vietnam (Yen	Threatened
95.	Cycas multipinnata	Bai)	
			Threatened
96.	Cycas nathorstii	India (Tamil Nadu), N Sri Lanka	

97.	Cycas nitida	Philippines (Luzon)	Non-threatened
98.	Cycas nongnoochiae	Philippines (Luzon)	Threatened
99.	Cycas ophiolitica	Australia (Queensland)	Threatened
100.	Cycas orientis	Australia (Northern Territory)	Non-threatened
101.	Cycas pachypoda	Vietnam (BinhThuan, NinhThuan)	Threatened
102.	Cycas panzhihuaensis	Australia (Northern Territory)	Threatened
103.	Cycas papuana	Indonesia (Papua), Papua New Guinea (Western)	Non-threatened
104.	Cycas pectinata_A	Bangladesh, Bhutan, China (Yunnan), NE India, Laos, Myanmar, Nepal, Thailand (Chiang Mai, Kanchanaburi, Mae Hong Son, Phetchabun, Phrae, Sukhothai), Vietnam (Gia Lai, Kon Tum, Lam Dong, Quang Ngai)	Threatened
105.	Cycas pectinata_B	Bangladesh, Bhutan, China (Yunnan), NE India, Laos, Myanmar, Nepal, Thailand (Chiang Mai, Kanchanaburi, Mae Hong Son, Phetchabun, Phrae, Sukhothai), Vietnam (Gia Lai, Kon Tum, Lam Dong, Quang Ngai)	Threatened
106.	Cycas petraea	Thailand (Loei)	Non-threatened
107.	Cycas platyphylla	Australia (Queensland)	Threatened

108.	Cycas pranburiensis	Thailand (PrachuapKhiri Khan)	Threatened
109.	Cycas pruinosa	Australia (Northern Territory, WA)	Non-threatened
110.	Cycas revoluta	China, Japan (Ryukyu Islands)	Non-threatened
111.	Cycas riuminiana	Philippines (Luzon)	Threatened
112.	Cycas rumphii	Philippines (Luzon)	Non-threatened
113.	Cycas saxatilis	Philippines (Palawan)	Threatened
114.	Cycas schumanniana	Papua New Guinea (Eastern Highlands, Madang, Morobe)	Non-threatened
115.	Cycas scratchleyana	Indonesia (Papua, Maluku, West Papua), Papua New Guinea (Central, Gulf, Milne Bay, Western)	Non-threatened
116.	Cycas seemani	Australia (Torres Strait Islands), Fiji, New Caledonia, Tonga, Vanuatu	Threatened
117.	Cycas segmentifida	China (Guangxi, Guizhou, Yunnan), ?N Vietnam	Threatened
118.	Cycas semota	Australia (Queensland)	Non-threatened
119.	Cycas sexseminifera	China (Guangxi), Vietnam (Cao Bang, NinhBinh, ThanhHoa)	Threatened
120.	Cycas shanyaensis	China (Hainan Island)	Threatened

121.	Cycas siamensis	Cambodia, Laos, Myanmar, Thailand (Chachoengsao, Chaiyaphum, Chonburi, Kanchanaburi, Lampang, NakhonRatchasima, Phetchabun, Ratchaburi, SakonNakhon, Tak, UthaiThani, Uttaridit), Vietnam (Dac Lak, Gia Lai, Kon Tum, Nghe An, ThanhHoa)	Threatened
122.	Cycas silvestris	Australia (Queensland)	Threatened
123.	Cycas simplicipinna	Laos, Myanmar, Thailand (Chiang Mai, Loei, Mae Hong Song, Phrae), Vietnam (Quang Tri)	Non-threatened
124.	Cycas sphaerica	India (Andaman and Nicobar Islands), S Sri Lanka	Threatened
125.	Cycas sundaica	Indonesia (Nusa Tenggara Timur)	Non-threatened
126.	Cycas szechuanensis	China (Fujian, Guangdong)	Threatened
127.	Cycas taitungensis	China (Taiwan)	Threatened
128.	Cycas taiwaniana	China (Guangdong)	Threatened
129.	Cycas tanqingii	China (Yunnan), ?Vietnam (Lai Chau)	Non-threatened
130.	Cycas tansachana	Thailand (Saraburi)	Threatened

Cycas terryana	Australia (Queensland)	Threatened
Cycas thouarsii	Comoros, Kenya, Madagascar, Mozambique, Seychelles, Tanzania	Non-threatened
Cycas tropophylla	Vietnam (Hai Phong, QuangNinh)	Non-threatened
Cycas tuckeri	Australia (Queensland)	Threatened
Cycas vespertilio	Philippines (Cebu, Leyte, Luzon, Negros, Panay, Samar)	Non-threatened
Cycas wadei	Philippines (Culion)	Threatened
Cycas xipholepis	Australia (Queensland)	Non-threatened
Cycas yorkiana	Australia (Queensland)	Non-threatened
Cycas zambalensis	Philippines (Luzon)	Threatened
Cycas zeylanica	India (Andaman and Nicobar Islands), Sri Lanka	Threatened
Dioon angustifolium	Mexico (Nuevo León, Tamaulipas)	Threatened
Dioon argenteum	Mexico (Oaxaca)	Threatened
Dioon califanoi	Mexico (Oaxaca, Puebla)	Threatened
	Cycas thouarsii Cycas tropophylla Cycas tuckeri Cycas vespertilio Cycas vespertilio Cycas xipholepis Cycas yorkiana Cycas zeylanica Dioon angustifolium Dioon argenteum	Cycas thouarsiiComoros, Kenya, Madagascar, Mozambique, Seychelles, TanzaniaCycas tropophyllaVietnam (Hai Phong, QuangNinh)Cycas tropophyllaVietnam (Hai Phong, QuangNinh)Cycas tuckeriAustralia (Queensland)Cycas vespertilioPhilippines (Cebu, Leyte, Luzon, Negros, Panay, Samar)Cycas vespertilioPhilippines (Cebu, Leyte, Luzon, Negros, Panay, Samar)Cycas vespertilioPhilippines (Culion)Cycas xipholepisAustralia (Queensland)Cycas yorkianaAustralia (Queensland)Cycas zeylanicaIndia (Andaman and Nicobar Islands), Sri LankaDioon angustifoliumMexico (Nuevo León, Tamaulipas)Dioon argenteumMexico (Oaxaca)

144.	Dioon caputoi	Mexico (Oaxaca, Puebla)	Threatened
		Mexico (Hidalgo, Querétaro,	
145.	Dioon edule	San Luis Potosí, Tamaulipas, Veracruz)	Non-threatened
146.	Dioon holmgrenii	Mexico (Oaxaca)	Threatened
147.	Dioon mejiae	Honduras (Colón, Olancho, Yoro)	Non-threatened
148.	Dioon merolae	Mexico (Chiapas, Oaxaca)	Threatened
149.	Dioon purpusii	Mexico (Oaxaca)	Threatened
150.	Dioon rzedowskii	Mexico (Oaxaca)	Threatened
151.	Dioon sonorense	Mexico (Sinaloa, Sonora)	Threatened
152.	Dioon spinulosum	Mexico (Oaxaca, Veracruz)	Threatened
153.	Dioon stevensonii	Mexico (Guerrero, Michoacán)	Threatened
154.	Dioon tomasellii	Mexico (Durango, Jalisco, Nayarit)	Threatened
155.	Encephalartos aemulans	South Africa (KwaZulu-Natal)	Threatened
156.	Encephalartos altensteinii	South Africa (Eastern Cape)	Threatened

157.	Encephalartos angustifolia	South Africa (Eastern Cape)	Threatened
158.	Encephalartos aplanatus	Swaziland	Threatened
159.	Encephalartos arenarius	South Africa (Eastern Cape)	Threatened
160.	Encephalartos barteri	Benin (Bergu), Ghana, Nigeria (Plateau)	Non-threatened
161.	Encephalartos brevifoliolatus	South Africa (Limpopo)	EW
162.	Encephalartos bubalinus	Kenya (Narok), Tanzania (Arusha)	Threatened
163.	Encephalartos caffer	South Africa (Eastern Cape)	Threatened
164.	Encephalartos cerinus	South Africa (KwaZulu-Natal)	Threatened
165.	Encephalartos chimanimaniensis	Mozambique, Zimbabwe	Threatened
166.	Encephalartos concinnus	Zimbabwe (Mberemgwa, Runde)	Threatened
167.	Encephalartos cupidus	South Africa (Mpumalanga)	Non-threatened
168.	Encephalartos cycadifolius	South Africa (Eastern Cape)	Threatened
169.	Encephalartos delucanus	Tanzania (Mpanda)	Threatened

170.	Encephalartos dolomiticus	South Africa (Limpopo)	Threatened
171.	Encephalartos dyerianus	South Africa (Limpopo)	Threatened
172.	Encephalartos equatorialis	Uganda	Threatened
173.	Encephalartos eugenemaraisii	South Africa (Limpopo)	Non-threatened
174.	Encephalartos ferox	Mozambique, South Africa (KwaZulu-Natal)	non-threatened
175.	Encephalartos fridericiguilielmi	South Africa (Eastern Cape, KwaZulu-Natal)	Threatened
176.	Encephalartos ghellincki	South Africa (Eastern Cape, KwaZulu-Natal)	Threatened
177.	Encephalartos gratus	Malawi, Mozambique	Threatened
178.	Encephalartos heenanii	South Africa (Mpumalanga), Swaziland	Threatened
179.	Encephalartos hildebrandtii	Kenya (Kilifi, Lamu), Tanzania (Lushoto, Tanga, Zanzibar Island)	Non-threatened
180.	Encephalartos hirsutus	South Africa (Limpopo)	Threatened
181.	Encephalartos horridus	South Africa (Eastern Cape)	threatened
182.	Encephalartos humilis	South Africa (Mpumalanga)	threatened

183.	Encephalartos inopinus	South Africa (Limpopo)	threatened
184.	Encephalartos ituriensis	Democratic Republic of Congo (Orientale), Uganda	Non-threatened
185.	Encephalartos kisambo	Kenya (Taita-Taveta)	Threatened
		South Africa (Eastern Cape,	
186.	Encephalartos laevifolius	KwaZulu-Natal, Limpopo, Mpumalanga), Swaziland	Threatened
187.	Encephalartos lanatus	South Africa (Mpumalanga)	Non-threatened
188.	Encephalartos latifrons	South Africa (Eastern Cape)	Threatened
189.	Encephalartos laurentianus	Angola, Democratic Republic of Congo	Non-threatened
190.	Encephalartos lebomboensis	Mozambique, South Africa (KwaZulu-Natal), Swaziland	Threatened
190.	Encephalartos lehmannii	South Africa (Eastern Cape)	Non-threatened
192.	Encephalartos longifolius	South Africa (Eastern Cape)	Non-threatened
193.	Encephalartos mackenziei	Sudan	Non-threatened
194.	Encephalartos macrostrobilus	Uganda (Northern)	Threatened
195.	Encephalartos manikensis	Mozambique (Manica), Zimbabwe	Threatened
196.	Encephalartos marunguensis	Democratic Republic of Congo (Tanganyika)	Threatened
197.	Encephalartos middleburgensis	South Africa (Mpumalanga)	Threatened
198.	Encephalartos msinganus	South Africa (KwaZulu-Natal)	Threatened
199.	Encephalartos munchii	Mozambique (Manica)	Threatened
200.	Encephalartos natalensis	South Africa (KwaZulu-Natal)	Non-threatened
201.	Encephalartos ngoyanus	South Africa (KwaZulu-Natal),	Threatened

		Swaziland	
202.	Encephalartos nubimontanus	South Africa (Limpopo)	EW
203.	Encephalartos paucidentatis	South Africa (Mpumalanga), Swaziland	Threatened
204.	Encephalartos poggei	Democratic Republic of Congo (Lulua, Lomami, Lualaba)	Non-threatened
205.	Encephalartos princeps	South Africa (Eastern Cape)	Threatened
206.	Encephalartos pterogononus	Mozambique (Manica)	Threatened
207.	Encephalartos relictus	Swaziland	EW
208.	Encephalartos schaijesii	Democratic Republic of Congo (Lualaba)	Threatened
209.	Encephalartos schmitzii	Democratic Republic of Congo (Haut -Katanga), Zambia	Threatened
210.	Encephalartos sclavoi	Tanzania (Tanga)	Threatened
211.	Encephalartos senticosus	South Africa (KwaZulu-Natal), Swaziland	Threatened
212.	Encephalartos septentrionalis	Sudan, Uganda	Non-threatened
213.	Encephalartos tegulaneus	Kenya	Non-threatened
214.	Encephalartos transvenosus	South Africa (Limpopo)	Non-threatened
215.	Encephalartos trispinosus	South Africa (Eastern Cape)	Threatened
216.	Encephalartos turneri	Mozambique (Nampula)	Non-threatened
217.	Encephalartos umbeluziensis	Mozambique, Swaziland	Threatened
218.	Encephalartos villosus	South Africa (Eastern Cape, KwaZulu-Natal), Swaziland	Non-threatened
219.	Encephalartos whitelockii	Uganda	Threatened
220.	Encephalartos woodii	South Africa (KwaZulu-Natal)	EW
221.	Lepidozamia hopei	Australia (Queensland)	Non-threatened

		Australia (New South Wales,	
222.	Lepidozamia peroffskyana	Queensland)	Non-threatened
223.	Macrozamia cardiacensis	Australia (Queensland)	Threatened
224.	Macrozamia communis	Australia (New South Wales)	Non-threatened
225.	Macrozamia concinna	Australia (New South Wales)	Non-threatened
226.	Macrozamia conferta	Australia (Queensland)	Threatened
227.	Macrozamia cranei	Australia (Queensland)	Threatened
228.	Macrozamia crassifolia	Australia (Queensland)	Threatened
229.	Macrozamia diplomera	Australia (New South Wales)	Non-threatened
230.	Macrozamia douglasii	Australia (Queensland)	Non-threatened
231.	Macrozamia dyeri	Australia (Western Australia)	Non-threatened
232.	Macrozamia elegans	Australia (New South Wales)	Threatened
233.	Macrozamia fawcettii	Australia (New South Wales)	Non-threatened
234.	Macrozamia fearnsidei	Australia (Queensland)	Non-threatened
235.	Macrozamia flexuosa	Australia (New South Wales)	Threatened
236.	Macrozamia fraseri	Australia (Western Australia)	Non-threatened
237.	Macrozamia glaucophylla	Australia (New South Wales)	Non-threatened
238.	Macrozamia heteromera	Australia (New South Wales)	Non-threatened
239.	Macrozamia humilis	Australia (New South Wales)	Threatened
240.	Macrozamia johnsonii	Australia (New South Wales)	Non-threatened
241.	Macrozamia lomandroides	Australia (Queensland)	Threatened
242.	Macrozamia longispina	Australia (Queensland)	Non-threatened
243.	Macrozamia lucida	Australia (New South Wales, Queensland)	Non-threatened
244.	Macrozamia macdonnelli	Australia (Northern Territory)	Non-threatened

245.	Macrozamia machinii	Australia (Queensland)	Threatened
246.	Macrozamia macleayi	Australia (Queensland)	Non-threatened
247.	Macrozamia miquelii	Australia (Queensland)	Non-threatened
248.	Macrozamia montana	Australia (Northern Territory)	Non-threatened
249.	Macrozamia moorei	Australia (Queensland)	Non-threatened
250.	Macrozamia mountperriensis	Australia (Queensland)	Non-threatened
251.	Macrozamia occidua	Australia (Queensland)	Threatened
252.	Macrozamia parcifolia	Australia (Queensland)	Threatened
253.	Macrozamia pauliguilielmi	Australia (Queensland)	Threatened
254.	Macrozamia platyrhachis	Australia (Queensland)	Threatened
255.	Macrozamia plurinervia	Australia (North South Wales)	Threatened
256.	Macrozamia polymorpha	Australia (New South Wales)	Non-threatened
257.	Macrozamia reducta	Australia (New South Wales)	Non-threatened
258.	Macrozamia reidlei	Australia (Western Australia)	Non-threatened
259.	Macrozamia secunda	Australia (New South Wales)	Threatened
260.	Macrozamia serpentine	Australia (Queensland)	Non-threatened
261.	Macrozamia spiralis	Australia (New South Wales)	Threatened
262.	Macrozamia stenomera	Australia (New South Wales)	Non-threatened
263.	Macrozamia viridis	Australia (New South Wales)	Threatened
264.	Microcycas calocama	Cuba (Pinar del Río)	Threatened
265.	Stangeria eriopus	South Africa (Eastern Cape, KwaZulu-Natal)	Threatened
266.	Zamia acuminata	Costa Rica (San José), Nicaragua, Panama (Coclé, Panamá)	Threatened
267.	Zamia amazonum	Brazil (Amazonas), Colombia,	Non-threatened

		(Amazonas, Vaupés), Ecuador	
		(Morona-Santiago, Napo,	
		Sucumbíos), Peru (Loreto), S	
		Venezuela	
268.	Zamia amblyphyllidia	Cuba, Jamaica, Puerto Rico	Threatened
269.	Zamia amplifola	Colombia (Valle del Cauca)	Threatened
270.	Zamia boliviana	North Bolivia, Brazil	Non-threatened
271.	Zamia chigua	Colombia (Chocó, Valle del Cauca)	Non-threatened
272.	Zamia cremnophila	Mexico (Tabasco)	Threatened
273.	Zamia cunaria	Panama (Colón, Panamá, Kuna de Wargandi, Kuna Yala)	Threatened
274.	Zamia decumbens	Belize (Cayo, Stann Creek, Toledo)	Threatened
275.	Zamia disodon	Colombia (Antioquia)	Threatened
276.	Zamia dressleri	Panama (Colón, Kuna Yala)	Threatened
277.	Zamia elegantissima	Panama (Colón, Panama)	Threatened
278.	Zamia encephalartoides	Colombia (Santander)	Threatened
279.	Zamia fairchildiana	Costa Rica (Puntarenas, San José), Panama (Chiriquí)	Non-threatened
280.	Zamia fischeri	Mexico (Hidalgo, Querétaro, San Luis Potosí, Tamaulipas)	Threatened
281.	Zamia furfuracea_A	Mexico (Veracruz)	Threatened
282.	Zamia furfuracea_B	Mexico (Veracruz)	Threatened
283.	Zamia gentryi	Ecuador (Carchi, Esmeraldas)	Threatened
284.	Zamia gomeziana	Costa Rica (Limón)	Threatened
285.	Zamia hamannii	Panama (Bocas del Toro)	Threatened

		El Salvador (Sonsonate),	
286.	Zamia herrerae	Guatemala (Quetzaltenango Retalhuleu, Santa Rosa,	Threatened
200.		Suchitepéquez), Mexico	mediciled
		(Chiapas)	
287.	Zamia hymenophyllidia	Colombia (Amazonas), Peru	Threatened
		(Loreto)	
288.	Zamia imperialis	Panama (Coclé, Colón,	Threatened
200.	Zama impenans	Panamá, Veraguas)	Threatened
		Colombia (Antioquia, Boyacá,	
289.	Zamia incognita	Santander)	Threatened
290.	Zamia inermis	Mexico (Veracruz)	Threatened
			moutonou
		Bahamas, Cayman Islands,	
291.	Zamia integrifolia	Cuba, United States (Florida,	Non-threatened
		Georgia)	
292.	Zamia ipetiensis	Panama (Panamá, Kuna Yala)	Threatened
293.	Zamia katzeriana	Mexico (Chiapas, Tabasco,	Threatened
235.		Veracruz)	Threatened
204	Zensie Lielenii	Cuba (W Cuba, Isla de la	Threatened
294.	Zamia kickxii	Juventud)	Threatened
295.	Zamia lacandona	Mexico (Chiapas)	Threatened
		Mavias (Chianas Hidalas	
296.	Zamia lawsoniana	Mexico (Chiapas, Hidalgo, Oaxaca, Tabasco, Tamaulipas,	Non-threatened
230.		Veracruz)	
		Brazil (Pará), Colombia	
297.	Zamia lecointei	(Amazonas), Venezuela	Non-threatened
		(Amazonas)	
000	Zamia lindanii	Panama (Bocas del Toro,	Non-threatened
298.	Zamia lindenii	Chiriquí)	non-unealeneu
299.	Zamia lindleyi	Panama (Bocas del Toro,	Threatened
	-		

		Chiriquí)	
300.	Zamia loddigesii	Mexico (Chiapas, Hidalgo, Oaxaca, Tabasco, Tamaulipas, Veracruz)	Non-threatened
301.	Zamia lucayana	Bahamas (Abaco, Long Island)	Threatened
302.	Zamia macrochiera	Peru (Loreto)	Threatened
303.	Zamia manicata	Colombia (Antioquia, Chocó), Panama (Darién)	Non-threatened
304.	Zamia meermanii	Belize (Belize, Cayo)	Threatened
305.	Zamia melanorrhachis	Colombia (Antioquia, Córdoba, Santander)	Threatened
306.	Zamia montana	Colombia (Antioquia, Risaralda)	Threatened
307.	Zamia monticola	Guatemala (Alta Verapaz)	Threatened
308.	Zamia muricata	Colombia (La Guajira, Meta), Venezuela (Carabobo, Falcón, Guárico, Lara, Miranda, Yaracuy)	Non-threatened
309.	Zamia nesophila	Panama (Bocas del Toro)	Threatened
310.	Zamia neurophyllidia	Costa Rica, S Nicaragua, Panama (Bocas del Toro)	Threatened
311.	Zamia obliqua	Colombia (Antioquia, Chocó, Valle del Cauca), Costa Rica (Puntarenas), Panama (Darién, Panamá)	Non-threatened
312.	Zamia onan-reyesii	Honduras (Cortés)	Threatened
313.	Zamia oreillyi	Honduras (Atlántida)	Threatened
314.	Zamia paucijuga	Mexico (Colima, Guerrero, Jalisco, Michoacán, Nayarit, Oaxaca)	Non-threatened

		Belize (Toledo), Guatemala (Alta	
315.	Zamia picta	Verapaz, Izabal), Mexico	Threatened
010.	Zama picta	(Chiapas)	mediciled
		(Omapas)	
		Brazil (Acre), Peru (Amazonas,	
316.	Zamia poeppigiana	Huánuco, Loreto, Pasco, San	Non-threatened
		Martin, Ucayali)	
317.	Zamia portoricensis	W Puerto Rico	Threatened
517.		W T deno Trico	meatened
		Belize (Belize, Cayo, Orange	
		Walk, Stann Creek, Toledo),	
318.	Zamia prasina	Guatemala (Petén), Mexico	Threatened
		(Campeche, Chiapas, Tabasco,	
		Quintana Roo, Yucatán)	
		Costa Rica (Puntarenas),	
319.	Zamia pseudomonticola		Non-threatened
		Panama (Chiriquí)	
320.	Zamia pogudoporogitico	Panama (Bocas del Toro, Coclé,	Non-threatened
320.	Zamia pseudoparasitica	Colón, Veraguas)	Non-threatened
		Cuba, Dominican Republic,	
321.	Zamia pumila	Puerto Rico	Non-threatened
		Puelto Rico	
322.	Zamia purpurea	Mexico (Oaxaca, Veracruz)	Threatened
323.	Zamia pygmaea	Cuba (W Cuba, Isla de la	Threatened
		Juventud)	
324.	Zamia pyrophylla	Colombia (Chocó)	Threatened
225	Zamia vastvansi		Threatened
325.	Zamia restrepoi	Colombia (Córdoba)	Threatened
		Colombia (Amazonas, Chocó,	
000	7	Nariño, Valle del Cauca),	Non thus stop of
326.	Zamia roezlii	Ecuador (Esmeraldas,	Non-threatened
		Imbabura)	
207	Zomio pondera!!!		Non threater al
327.	Zamia sandovalii	Honduras (Atlántida)	Non-threatened
328.	Zamia skinneri	Panama (Bocas del Toro)	Threatened
220	Zamia apparturazzaia		Throatered
329.	Zamia soconuscensis	Mexico (Chiapas)	Threatened

330.	Zamia spartea	Mexico (Oaxaca)	Threatened
331.	Zamia standleyi	Guatemala (Izabal), Honduras (Atlántida, Colón, Cortés, Olancho, Santa Barbara, Yoro)	Threatened
332.	Zamia stricta	Cuba (Oriente)	Threatened
333.	Zamia tolimensis	Colombia (Tolima)	Threatened
334.	Zamia tuerckheimii	Guatemala (Alta Verapaz	Non-threatened
335.	Zamia ulei	W Brazil, Colombia (Amazonas, Guainía), Ecuador (Napo, Pastaza), Peru (Loreto, Madre de Dios)	Non-threatened
336.	Zamia urep	Peru (Huánuco)	Threatened
337.	Zamia variegate	Belize (Toledo), Guatemala (Alta Verapaz, Izabal), Mexico (Chiapas)	Threatened
338.	Zamia vazquezii	Mexico (Veracruz)	Threatened
339.	Zamia wallisii	Colombia (Antioquia)	Threatened

Appendix 2

ED score of all cycad species. Species are listed in following the decreasing order of ED values. Global endangerment was measured by following IUCN threat categories: Least concern (LC), near threatened (NT), Vulnerable (VU), Endangered (EN) and Critically endangered (CR). Geographic parameters are spatial distribution range and Maximum altitude. Number of threats (Diversity of threat), Threat status (Threatened vs. non-threatened), Maximum height, Maximum diameter as well as Generation time are all well represented including their values respectively.

Rankin	Species	Global	Number	ED	Range	Maximum	Maximu	Generatio	Maximum
g		Endangerme	of	score		altitude	m	n time (Y)	diameter
		nt	threats	(MY)	(km²)	(m above	height		(cm)
						the sea)	(m)		
1	Microcycas_calocoma	CR	3	98.761	NA	NA	10	100	0.6
				53					
2	Chigua_bernalii	CR	3	92.778	NA	150	1.4	NA	1.6
				71					
3	Stangeria_eriopus	VU	5	86.066	NA	750	NA	30	NA
				92					
4	Zamia_vazquezii	CR	1	66.921	NA	NA	0.3	30	0.1
				3					
5	Cycas_balansae	NT	2	60.965	NA	800	NA	40	0.2
				41					

6	Cycas_conferta	NT	2	60.361	NA	NA	7	40	0.13
				98					
7	Cycas_taiwaniana	EN	2	60.361	NA	1100	3.5	40	0.3
				98					
8	Dioon_caputoi	EN	2	60.028	NA	NA	1	500	0.25
				95					
9	Dioon_spinulosum	EN	2	58.813	NA	NA	16	500	0.4
				12					
10	Macrozamia_cranei	EN	1	54.657	NA	600	NA	60	0.25
				48					
11	Macrozamia_johnsonii	LC	1	54.657	222	NA	3	60	0.9
				48					
12	Encephalartos_brevifolio	EW	1	53.411	NA	700	2.5	70	0.3
	latus			36					
13	Encephalartos_ngoyanu	VU	2	53.411	NA	600	0.3	35	0.2
	S			36					
14	Zamia_herrerae	VU	1	52.423	NA	NA	NA	30	0.1
				18					
15	Encephalartos_gratus	VU	1	52.394	NA	900	2.5	70	0.6
				42					
16	Cycas_brachycantha	NT	0	51.246	NA	NA	1	40	0.12
				49					
17	Cycas_tropophylla	NT	0	51.246	400	NA	1	40	0.15
				49					
18	Bowenia_serrulata	LC	1	50.149	NA	150	NA	30	0.25
				95					

19	Bowenia_spectabilis	LC	1	50.149 95	NA	750	NA	30	10
20	Zamia_neurophyllidia	VU	1	48.386 25	NA	NA	2	30	0.12
21	Zamia_skinneri	EN	1	47.677 62	6250	NA	2.4	30	0.2
22	Ceratozamia_morettii	EN	1	47.263 77	10	NA	0.3	45	0.08
23	Encephalartos_cupidus	CR	4	47.189 81	290	1800	0.75	200	0.3
24	Encephalartos_dolomitic	CR	2	47.189 81	0.3	700	2	70	0.4
25	Encephalartos_inopinus	CR	2	46.266 47	NA	800	3	200	0.25
26	Macrozamia_humilis	VU	1	45.991 16	NA	600	NA	60	0.28
27	Cycas_macrocarpa	VU	1	45.825 49	NA	NA	12	40	NA
28	Encephalartos_turneri	LC	0	45.292 99	NA	1200	3	70	0.8
29	Zamia_macrochiera	CR	1	45.240 72	NA	NA	NA	30	0.2
30	Ceratozamia_zoquorum	CR	2	44.335 8	40	NA	0.31	45	0.1047
31	Lepidozamia_hopei	LC	0	43.350 02	NA	1000	17	100	0.5

32	Lepidozamia_peroffskya	LC	1	43.350	NA	1000	7	70	0.8
	na			02					
33	Cycas_ferruginea	NT	0	43.333	7215	NA	1.2	40	0.18
				55					
34	Cycas_pranburiensis	VU	1	43.333	NA	30	3	40	0.1
				55					
35	Ceratozamia_mixeorum	EN	2	42.824	25	NA	1.25	45	0.18
				03					
36	Cycas_szechuanensis	CR	2	42.397	NA	NA	2	40	0.25
				72					
37	Zamia_spartea	CR	1	41.822	1235	NA	NA	30	0.1
				45					
38	Ceratozamia_microstrob	VU	1	41.769	1000	NA	0.25	45	10
	ila			29					
39	Zamia_cunaria	VU	1	39.963	3140	NA	NA	NA	0.1
				09					
40	Ceratozamia_alvarezii	EN	2	39.545	16	NA	0.5	45	0.175
				9					
41	Ceratozamia_chimalape	CR	2	39.545	NA	NA	0.1	NA	0.331
	nsis			9					
42	Ceratozamia_fuscoviridi	CR	3	39.034	NA	NA	0.36	NA	0.22
	S			37					
43	Ceratozamia_huastecor	CR	0	39.034	NA	NA	NA	45	NA
	um			37					
44	Zamia_lacandona	EN	2	38.762	3400	NA	0.6	30	0.08
				77					

45	Zamia_loddigesii	NT	2	38.738	NA	NA	0.3	30	0.12
				82					
46	Zamia_urep	CR	1	38.738	30	NA	0.5	30	0.03
				82					
47	Cycas_fugax	CR	1	37.996	NA	200	NA	40	0.12
				66					
48	Cycas_inermis	VU	2	37.996	NA	NA	4	40	0.14
				66					
49	Zamia_variegata	EN	1	36.923	NA	NA	0.2	30	0.08
				15					
50	Cycas_micholitzii	VU	1	36.438	NA	600	NA	40	0.15
				68					
51	Cycas_segmentifida	VU	1	36.438	NA	900	0.5	40	0.23
				68					
52	Ceratozamia_hildae	EN	2	36.393	NA	NA	0.2	45	0.25
				92					
53	Encephalartos_eugene	EN	2	35.181	NA	100	4	70	0.45
	maraisii			08					
54	Encephalartos_concinnu	EN	2	34.962	58	1500	3	70	0.45
	S			3					
55	Encephalartos_middlebu	CR	4	34.962	NA	1400	7	70	0.45
	rgensis			3					
56	Zamia_hymenophyllidia	CR	1	34.880	NA	NA	NA	30	0.04
				73					
57	Zamia_pseudoparasitica	NT	2	34.880	NA	NA	1	30	0.15
				73					

58	Zamia_katzeriana	EN	0	34.873	NA	NA	NA	30	NA
				35					
59	Ceratozamia_mirandae	EN	3	34.770	NA	NA	NA	45	NA
				23					
60	Zamia_imperialis	CR	2	34.744	NA	NA	1.1	NA	0.22
				87					
61	Encephalartos_whitelock	CR	3	34.442	NA	1300	4	70	0.4
	ii			08					
62	Encephalartos_nubimont	EW	0	34.262	NA	1000	2.5	NA	0.4
	anus			29					
63	Encephalartos_lanatus	NT	2	34.205	NA	1500	2	70	0.3
				26					
64	Cycas_curranii	CR	2	34.032	NA	NA	3	40	NA
				9					
65	Cycas_hainanensis	EN	2	34.032	NA	1200	3.5	40	0.3
				9					
66	Cycas_indicaA.	DD	1	33.759	NA	NA	4	40	0.23
				55					
67	Ceratozamia_decumben	CR	2	33.735	NA	NA	0.2	NA	14
	S			52					
68	Ceratozamia_santillanii	CR	0	33.735	NA	NA	NA	45	NA
				52					
69	Zamia_furfuracea_A	EN	2	33.702	630	NA	NA	30	0.2
				54					
70	Zamia_lawsoniana	NT	2	33.702	NA	NA	NA	30	NA
				54					

71	Zamia_prasina	CR	1	33.455	NA	NA	0.3	30	0.1
				21					
72	Macrozamia_elegans	EN	2	33.387	112	150	NA	60	0.3
				26					
73	Macrozamia_machinii	VU	1	33.387	460	460	NA	60	0.3
				26					
74	Cycas_arnhemica	LC	1	32.746	NA	NA	2.5	40	0.2
				62					
75	Zamia_integrifolia	NT	2	32.548	NA	NA	1.3	30	0.06
				82					
76	Zamia_acuminata	VU	1	32.435	NA	NA	0.4	30	0.08
				04					
77	Macrozamia_fawcettii	NT	1	32.370	5500	550	NA	60	0.2
				6					
78	Macrozamia_conferta	VU	1	32.284	423	750	NA	60	0.3
				96					
79	Macrozamia_crassifolia	VU	0	32.284	160	420	NA	60	0.2
				96					
80	Zamia_monticola	CR	1	31.858	NA	NA	0.3	30	0.2
				47					
81	Cycas_couttsiana	NT	0	31.823	NA	700	7	40	0.2
				62					
82	Zamia_onan-reyesii	CR	2	31.721	NA	NA	NA	NA	NA
				65					
83	Zamia_tolimensis	CR	2	31.597	NA	NA	4	NA	0.3
				01					

84	Zamia_nesophila	CR	2	31.018	NA	NA	2.8	NA	0.24
				36					
85	Zamia_standleyi	VU	0	31.018	NA	NA	NA	30	0.12
				36					
86	Encephalartos_longifoliu	NT	1	30.937	NA	700	4	70	0.4
	S			1					
87	Encephalartos_woodii	EW	1	30.937	NA	NA	6	NA	0.6
				1					
88	Encephalartos_delucanu	EN	3	30.929	NA	1500	0.12	70	0.2
	s			73					
89	Encephalartos_poggei	LC	1	30.929	NA	1000	2	70	0.3
				73					
90	Cycas_semota	NT	1	30.743	NA	NA	5	40	NA
				11					
91	Ceratozamia_becerrae	EN	2	30.231	1000	NA	0.31	45	0.1047
				18					
92	Ceratozamia_zaragozae	CR	1	30.231	45	NA	NA	45	NA
				18					
93	Cycas_brunnea	NT	1	30.059	NA	NA	5	40	0.23
				26					
94	Cycas_panzhihuaensis	VU	3	30.059	14500	2000	3	40	0.2
				26					
95	Cycas_collina	VU	2	29.826	20000	900	NA	40	0.14
				84					
96	Cycas_simplicipinna	NT	1	29.826	NA	1300	NA	40	0.14
				84					

97	Macrozamia_fraseri	LC	0	29.775	NA	NA	3	60	0.7
				38					
98	Cycas_armstrongii	VU	2	29.421	NA	NA	6	40	0.11
				57					
99	Zamia_hamannii	CR	2	29.180	NA	NA	2.4	NA	0.2
				57					
100	Zamia_manicata	NT	1	29.180	NA	NA	NA	30	0.05
				57					
101	Cycas_elephantipes	EN	1	29.131	NA	NA	3	40	0.2
				9					
102	Cycas_pruinosa	LC	0	29.131	NA	NA	2.5	40	0.35
				9					
103	Cycas_changjiangensis	EN	2	29.036	NA	800	2.5	40	0.2
				81					
104	Cycas_javana	EN	1	28.436	NA	NA	4	40	0.2
				3					
105	Cycas_vespertilio	NT	1	28.436	NA	NA	3	40	NA
				3					
106	Encephalartos_equatori	CR	3	28.266	NA	1500	6	70	0.6
	alis			62					
107	Encephalartos_umbeluzi	EN	1	28.266	336	120	0.3	35	0.25
	ensis			62					
108	Zamia_angustifolia	VU	1	28.151	9000	NA	NA	30	NA
				89					
109	Zamia_decumbens	CR	2	28.151	NA	NA	80	NA	0.11
				89					

110	Cycas_hongheensis	CR	2	28.093	NA	600	3	40	0.15
				96					
111	Cycas_orientis	LC	1	28.093	NA	NA	7	40	0.14
				96					
112	Macrozamia_dyeri	LC	1	28.079	NA	NA	3	60	1.2
				62					
113	Zamia_dressleri	EN	1	28.070	2530	NA	NA	30	0.05
				89					
114	Zamia_wallisii	CR	3	28.070	NA	NA	NA	30	0.05
				89					
115	Zamia_lucayana	EN	1	27.684	13	NA	NA	30	NA
				97					
116	Zamia_tuerckheimii	NT	1	27.684	NA	NA	3	30	NA
				97					
117	Zamia_chigua	NT	0	27.525	NA	NA	2	30	0.15
118	Zamia_meermanii	EN	3	27.525	NA	NA	NA	NA	NA
119	Macrozamia_mountperri	LC	1	27.258	NA	400	NA	60	0.4
	ensis			41					
120	Encephalartos_ituriensis	NT	1	27.000	NA	1200	6	70	0.5
				78					
121	Encephalartos_marungu	VU	2	27.000	7500	1700	0.4	70	0.15
	ensis			78					
122	Zamia_boliviana	NT	0	26.801	NA	NA	NA	30	0.1
				84					
123	Ceratozamia_brevifrons	DD	2	26.689	NA	NA	0.28	45	0.19
				81					

124	Encephalartos_chimani	EN	1	26.605	NA	1100	1.8	70	0.45
	maniensis			07					
125	Zamia_inermis	CR	4	26.592	NA	NA	1.5	30	0.25
				68					
126	Macrozamia_douglasii	LC	0	26.547	NA	150	0.6	60	0.7
				39					
127	Macrozamia_lucida	LC	0	26.547	NA	600	NA	60	0.2
				39					
128	Zamia_ipetiensis	EN	1	26.522	50	NA	NA	30	0.1
				2					
129	Zamia_gentryi	CR	1	26.083	5	NA	1.5	30	0.15
				93					
130	Zamia_paucijuga	NT	0	26.083	NA	NA	NA	30	0.08
				93					
131	Cycas_condaoensis	VU	0	26.073	20	NA	2.5	40	0.17
				18					
132	Ceratozamia_vovidesii	VU	2	25.926	NA	1700	NA	45	NA
				63					
133	Zamia_picta	EN	1	25.883	NA	NA	NA	30	NA
134	Zamia_fischeri	EN	1	25.799	2770	NA	NA	30	0.08
				44					
135	Zamia_sandovalii	NT	0	25.799	NA	NA	NA	30	NA
				44					
136	Zamia_pumila	NT	0	25.783	NA	NA	NA	30	0.25
				35					
137	Cycas_nitida	NT	1	25.681	NA	NA	NA	NA	NA

				27					
138	Cycas_taitungensis	EN	2	25.681	65	900	0.06	40	0.3
				27					
139	Zamia_encephalartoides	VU	1	25.662	266	NA	2	30	0.25
				09					
140	Macrozamia_spiralis	EN	0	25.614	NA	NA	NA	60	0.2
				88					
141	Cycas_beddomei	EN	4	25.563	388	900	2	40	0.23
				25					
142	Cycas_circinalis	EN	4	25.563	NA	1000	7	40	0.27
				25					
143	Ceratozamia_kuesterian	CR	2	25.532	NA	NA	NA	45	NA
	а			9					
144	Ceratozamia_sabatoi	EN	2	25.532	NA	NA	0.5	45	0.175
				9					
145	Zamia_gomeziana	VU	2	25.366	NA	NA	NA	NA	NA
				9					
146	Zamia_pyrophylla	CR	1	25.366	NA	NA	NA	NA	0.1
				9					
147	Ceratozamia_matudae	EN	2	24.962	5000	NA	0.5	45	0.175
				45					
148	Cycas_candida	EN	1	24.931	55	NA	NA	40	NA
				8					
149	Encephalartos_pterogon	CR	2	24.901	35	1000	1.5	70	0.4
	onus			64					
150	Encephalartos_mackenz	NT	1	24.782	NA	2000	2.5	70	NA

	iei			82					
151	Macrozamia_glaucophyll	LC	0	24.768	NA	NA	NA	60	0.4
	а			62					
152	Macrozamia_secunda	VU	0	24.768	NA	NA	NA	60	0.15
				62					
153	Cycas_bougainvilleana	NT	0	24.697	NA	NA	5	40	NA
				41					
154	Dioon_califanoi	EN	3	24.654	126	NA	3	500	0.3
155	Macrozamia_diplomera	LC	0	24.606	NA	500	NA	60	0.4
				12					
156	Zamia_fairchildiana	NT	0	24.515	NA	NA	1	30	0.15
				22					
157	Cycas_hoabinhensis	EN	1	24.430	NA	150	0.6	40	0.08
				46					
158	Cycas_petraea	NT	0	24.430	60	NA	6	40	0.2
				46					
159	Encephalartos_humilis	VU	2	24.401	NA	NA	0.5	NA	0.18
				41					
160	Encephalartos_laevifoliu	CR	4	24.401	NA	1800	4	70	0.35
	s			41					
161	Zamia_pygmaea	CR	0	24.139	NA	NA	0.02	30	0.04
				65					
162	Zamia_ulei	NT	1	24.139	NA	NA	1	30	0.06
				65					
163	Zamia_montana	CR	2	23.944	NA	NA	1.5	30	0.2
				14					

164	Zamia_purpurea	CR	1	23.944	NA	NA	0.5	30	0.04
				14					
165	Encephalartos_arenariu	EN	2	23.340	140	1500	1	70	0.3
	s			09					
166	Encephalartos_pauciden	VU	2	23.340	424	1500	7	70	0.7
	tatis			09					
167	Cycas_revoluta	LC	2	23.293	NA	300	2	40	0.2
				6					
168	Cycas_terryana	VU	1	23.293	NA	NA	NA	40	NA
				6					
169	Macrozamia_longispina	NT	0	23.275	50	700	0.3	60	0.3
				57					
170	Encephalartos_hirsutus	CR	1	23.229	NA	1000	4	70	0.4
				16					
171	Encephalartos_transven	LC	2	23.229	NA	1500	13	70	0.5
	osus			16					
172	Zamia_lecointei	NT	0	22.976	NA	NA	NA	30	0.1
				57					
173	Ceratozamia_miqueliana	CR	2	22.913	NA	NA	0.31	45	0.1047
				72					
174	Dioon_mejiae	LC	2	22.896	NA	NA	1	500	0.25
				12					
175	Encephalartos_bubalinu	NT	1	22.757	NA	900	2	70	0.45
	S			49					
176	Encephalartos_princeps	VU	2	22.757	1870	800	5	70	0.4
				49					

177	Macrozamia_flexuosa	EN	2	22.746	NA	NA	NA	60	0.2
				08					
178	Macrozamia_stenomera	NT	2	22.746	NA	NA	NA	60	0.25
				08					
179	Cycas_montana	NT	3	22.601	NA	NA	1.5	NA	0.35
				74					
180	Dioon_merolae	VU	3	22.430	NA	NA	3	500	0.4
				78					
181	Dioon_sonorense	EN	3	22.430	NA	NA	NA	500	NA
				78					
182	Ceratozamia_norstogii	EN	1	22.393	1100	NA	0.5	45	0.175
				75					
183	Encephalartos_latifrons	CR	3	22.238	NA	600	3	100	NA
				55					
184	Zamia_pseudomonticola	NT	0	21.747	NA	NA	0.3	30	0.07
				3					
185	Cycas_seemanii	VU	1	21.698	NA	600	10	40	0.2
				39					
186	Cycas_chevalieri	NT	1	21.683	NA	NA	1.2	NA	0.18
				81					
187	Zamia_furfuracea_B	EN	1	21.531	631	NA	NA	30	0.2
				29					
188	Zamia_soconuscensis	VU	1	21.531	NA	NA	0.5	30	0.25
				29					
189	Zamia_lindenii	NT	2	21.504	NA	NA	4	30	0.3
				99					

190	Cycas_papuana	NT	1	21.478	NA	NA	2.8	40	NA
				98					
191	Cycas_elongata	EN	3	21.472	NA	200	5	40	0.2
				47					
192	Dioon_holmgrenii	EN	2	21.433	NA	NA	6	500	0.4
				85					
193	Dioon_purpusii	VU	0	21.433	NA	1500	5	500	0.4
				85					
194	fridericiguilielmi"	NT	2	21.405	NA	600	4	70	0.6
				59					
195	Encephalartos_natalensi	NT	2	21.405	NA	1200	6.5	70	0.4
	S			59					
196	Cycas_cairnsiana	VU	1	21.229	NA	500	5	40	0.16
				65					
197	Zamia_amplifolia	CR	1	21.189	NA	NA	2.5	30	NA
				36					
198	Zamia_muricata	NT	0	21.189	NA	NA	0.15	30	0.08
				36					
199	Cycas_miquellii	LC	2	21.028	NA	300	NA	NA	NA
				26					
200	Encephalartos_aplanatu	VU	2	21.021	NA	1400	NA	35	NA
	S			88					
201	Encephalartos_lehmanni	NT	3	21.015	NA	1000	3	200	0.45
	i			98					
202	Dioon_argenteum	VU	1	20.824	350	1600	3	500	0.32
				33					

203	Dioon_rzedowskii	EN	1	20.824	25	NA	5	500	0.4
				33					
204	Cycas_silvestris	VU	0	20.747	NA	NA	0.04	40	0.15
				71					
205	Ceratozamia_latifolia	EN	2	20.708	NA	NA	0.2	45	0.1
				81					
206	Ceratozamia_robusta	EN	3	20.708	NA	NA	2	45	0.3
				81					
207	Cycas_cupida	VU	2	20.616	60	NA	NA	40	NA
				17					
208	Cycas_tanqingii	NT	1	20.616	80	800	2	40	0.3
				17					
209	Dioon_edule	NT	2	20.616	NA	NA	3	700	0.3
				07					
210	Dioon_stevensonii	CR	0	20.616	NA	NA	NA	NA	NA
				07					
211	Cycas_annaikalensis	CR	1	20.236	NA	940	5	40	0.61
				21					
212	Cycas_lindstromii	EN	2	20.236	4280	30	NA	40	0.08
				21					
213	Cycas_zambalensis	CR	4	20.198	NA	NA	3	40	NA
				38					
214	Encephalartos_lebombo	EN	3	20.101	NA	1000	5	70	0.3
	ensis			79					
215	Encephalartos_senticos	VU	1	20.101	NA	800	4	70	0.3
	us			79					

216	Ceratozamia_euryphyllid	CR	1	20.080	NA	NA	0.31	45	0.1047
	ia			57					
217	Ceratozamia_mexicana	VU	3	20.080	NA	NA	1	45	0.2
				57					
218	Ceratozamia_hondurens	CR	5	19.852	NA	NA	NA	45	NA
	is			66					
219	Ceratozamia_whitelocki	EN	2	19.852	NA	NA	0.3	45	0.18
	ana			66					
220	Encephalartos_schmitzii	VU	3	19.822	NA	1400	0.3	500	0.2
				33					
221	Encephalartos_ferox	NT	2	19.814	NA	1400	2	70	0.3
				7					
222	Encephalartos_ghellincki	VU	2	19.814	NA	2400	3	70	0.4
				7					
223	Cycas_nongnoochiae	VU	2	19.797	NA	100	5	NA	0.15
				11					
224	Cycas_tuckeri	VU	2	19.797	15	NA	5	40	NA
				11					
225	Zamia_elegantissima	EN	1	19.609	100	NA	NA	30	NA
				63					
226	Zamia_obliqua	NT	0	19.609	NA	NA	5	30	0.12
				63					
227	Cycas_pachypoda	CR	2	19.210	NA	NA	1.5	40	0.17
				76					
228	Cycas_campestris	NT	2	19.201	20000	NA	2.5	40	0.2
				91					

229	Cycas_saxatilis	VU	1	19.201	NA	NA	4	40	NA
				91					
230	Encephalartos_aemulan	CR	2	19.123	295	600	3	70	0.35
	S			29					
231	Encephalartos_villosus	LC	2	19.123	NA	600	0.3	35	0.2
				29					
232	Zamia_poeppigiana	NT	0	19.073	NA	NA	3	30	0.3
				45					
233	Zamia_lindleyi	DD	1	19.073	NA	NA	3	30	0.3
				45					
234	Cycas_wadei	CR	3	19.065	NA	50	5	40	0.2
				55					
235	Cycas_dolichophylla	NT	0	18.874	NA	NA	1.5	40	0.3
				51					
236	Dioon_angustifolium	VU	0	18.872	NA	NA	NA	500	NA
				81					
237	Dioon_tomasellii	VU	2	18.872	NA	1850	1	500	NA
				81					
238	Zamia_amazonum	NT	0	18.789	NA	NA	2.5	30	0.08
239	Cycas_bifida	VU	2	18.720	NA	300	NA	40	NA
				94					
240	Cycas_thouarsii	LC	2	18.709	NA	200	4	40	0.1
				9					
241	Macrozamia_pauliguiliel	EN	2	18.557	NA	25	NA	60	0.2
	mi			99					
242	Macrozamia_polymorph	LC	0	18.557	NA	NA	NA	60	0.25

	а			99					
243	Cycas_megacarpa	VU	1	18.537 65	NA	300	6	40	0.14
244	Cycas_platyphylla	EN	1	18.537 65	NA	750	4	40	0.15
245	Cycas_multipinnata	EN	2	18.436 32	27040	1300	NA	40	0.25
246	Cycas_aculeata	VU	1	18.227	10	NA	NA	30	0.18
247	Cycas_canalis	LC	3	18.227	NA	NA	5	40	0.14
248	Encephalartos_heenanii	CR	4	17.772 68	300	1750	4	70	0.35
249	Encephalartos_msingan us	CR	3	17.772 68	10	1200	3	70	0.35
250	Cycas_badensis	NT	1	17.560 73	NA	NA	8	40	NA
251	Cycas_pectinata_B	VU	1	17.560 73	NA	1300	12	40	0.2
252	Cycas_media_media	LC	2	17.496 25	NA	860	6	40	0.18
253	Encephalartos_laurentia	NT	1	17.447 29	NA	550	15	70	1
254	Macrozamia_riedlei	LC	0	17.261 47	NA	NA	0.3	60	0.4
255	Cycas_cantafolia	CR	3	17.230 81	NA	NA	NA	NA	NA
256	Cycas_sphaerica	DD	1	17.230	NA	1000	5	40	0.27

				81					
257	Encephalartos_cerinus	CR	2	17.178	NA	900	0.3	35	0.25
				23					
258	Zamia_oreillyi	VU	0	17.155	NA	NA	NA	30	NA
				22					
259	Zamia_roezlii	NT	1	17.155	NA	NA	7	30	NA
				22					
260	Cycas_calcicola	LC	3	17.060	NA	155	5	40	0.22
				5					
261	Encephalartos_maniken	VU	1	16.902	NA	1400	1.5	70	0.3
	sis			28					
262	Encephalartos_hildebran	NT	3	16.630	NA	600	6	70	0.6
	dtii			9					
263	Zamia_portoricensis	EN	1	16.553	220	NA	NA	30	0.15
				32					
264	Zamia_stricta	VU	0	16.553	25	NA	NA	30	NA
				32					
265	Cycas_arenicola	NT	0	16.412	NA	NA	2.5	40	0.2
				64					
266	Cycas_desolata	VU	0	16.412	NA	550	7	40	0.25
				64					
267	Zamia_cremnophila	EN	0	16.380	53	NA	25	30	0.09
				93					
268	Zamia_melanorrhachis	EN	1	16.380	NA	NA	NA	30	0.08
				93					
269	Zamia_disodon	CR	1	16.345	NA	NA	NA	30	0.08

				63					
270	Zamia_restrepoi	CR	3	16.345	NA	150	NA	30	NA
				63					
271	Macrozamia_moorei	NT	1	16.166	NA	500	7	60	0.8
				84					
272	Cycas_maconochiei	LC	2	15.937	NA	40	7	40	0.15
				41					
273	Cycas_xipholepis	LC	0	15.937	NA	NA	6	40	0.15
				41					
274	Cycas_media_ensata	LC	2	15.785	NA	860	6	40	0.18
				73					
275	Cycas_yorkiana	NT	2	15.785	11530	NA	4	40	NA
				73					
276	Macrozamia_communis	LC	1	15.785	NA	300	1.5	60	0.9
				72					
277	Macrozamia_platyrhachi	VU	2	15.785	NA	NA	NA	60	0.6
	s			72					
278	Cycas_apoa	NT	1	15.771	NA	NA	2.5	40	NA
				97					
279	Macrozamia_plurinervia	EN	4	15.771	NA	NA	NA	60	0.3
				5					
280	Cycas_angulata	LC	0	15.770	NA	30	12	NA	0.25
				84					
281	Cycas_tansachana	CR	2	15.770	10	400	5	40	0.18
				84					
282	Encephalartos_barteri	VU	3	15.628	NA	2150	2.6	70	0.6

				78					
283	Macrozamia_heteromer	LC	1	15.272	NA	200	NA	60	0.9
	а			3					
284	Macrozamia_concinna	LC	1	15.183	NA	1100	NA	60	0.15
				01					
285	Macrozamia_occidua	VU	1	15.183	10	1000	NA	60	0.2
				01					
286	Macrozamia_cardiacensi	VU	0	15.181	14	640	0.4	60	0.4
	S			95					
287	Macrozamia_serpentine	NT	0	15.181	850	NA	NA	60	NA
				95					
288	Macrozamia_parcifolia	VU	3	15.170	NA	220	NA	60	0.2
				74					
289	Macrozamia_viridis	EN	2	15.170	1000	NA	NA	60	0.2
				74					
290	Macrozamia_macdonnel	LC	2	15.017	NA	NA	3	60	0.8
	li			19					
291	Cycas_basaltica	LC	1	14.905	NA	260	4	40	0.23
				85					
292	Cycas_ophiolitica	VU	3	14.905	NA	250	7	40	0.2
				85					
293	Cycas_chamaoensis	CR	0	14.789	NA	NA	10	40	0.28
				45					
294	Zamia_incognita	VU	2	14.741	NA	NA	NA	NA	NA
				09					
295	Zamia_amblyphyllidia	VU	2	14.688	NA	NA	NA	30	0.2

				17					
296	Zamia_kickxii	CR	0	14.688	NA	NA	NA	30	NA
				17					
297	Cycas_lane-poolei	LC	0	14.375	NA	370	8	40	0.15
				67					
298	Cycas_rumphii	NT	1	14.375	NA	200	10	40	0.2
				67					
299	Cycas_lacrimans	EN	0	14.358	NA	NA	2	NA	NA
300	Cycas_nathorstii	VU	2	14.358	NA	300	4.5	40	0.2
301	Cycas_riuminiana	EN	1	14.324	NA	800	NA	40	NA
				54					
302	Encephalartos_caffer	NT	2	14.302	NA	1000	0.4	35	0.25
				21					
303	Cycas_scratchleyana	NT	0	14.130	NA	900	7	40	0.2
				15					
304	Cycas_sexseminifera	VU	1	14.118	NA	NA	0.6	40	0.15
				38					
305	Cycas_sundaica	LC	3	14.118	NA	NA	0.05	40	0.35
				38					
306	Macrozamia_montana	LC	0	13.914	NA	NA	0.6	60	0.45
				3					
307	Macrozamia_reducta	LC	0	13.914	NA	NA	0.4	60	0.4
				3					
308	Encephalartos_horridus	EN	2	13.904	NA	400	0.3	200	0.3
				59					
309	Encephalartos_trispinos	VU	1	13.904	NA	600	1	NA	0.3

	us			59					
310	Encephalartos_macrostr	EN	2	13.780	50	1400	2.5	70	0.4
	obilus			9					
311	Encephalartos_septentri	NT	3	13.780	NA	2500	2.5	70	0.75
	onalis			9					
312	Cycas_pectinata_A	VU	1	13.660	NA	1300	12	40	0.2
				21					
313	Cycas_edentata	NT	1	13.486	1000	NA	10	40	0.2
				73					
314	Encephalartos_cycadifoli	LC	2	13.486	NA	1950	1.5	500	0.25
	us			24					
315	Encephalartos_munchii	CR	2	13.486	3	1100	1	70	0.35
				24					
316	Encephalartos_tegulane	LC	2	13.122	NA	2300	10	70	0.6
	us			63					
317	Macrozamia_fearnsidei	LC	1	13.068	NA	600	NA	60	0.35
				59					
318	Macrozamia_miquelii	LC	0	13.068	NA	500	NA	60	0.4
				59					
319	Cycas_schumanniana	NT	2	12.875	NA	1600	2	40	0.2
				6					
320	Cycas_aenigma	DD	2	12.875	NA	NA	4	40	NA
				6					
321	Encephalartos_altenstei	VU	3	12.852	450	200	7	70	0.35
	nii			07					
322	Encephalartos_dyerianu	CR	2	12.852	5	1000	4	70	0.6

	S			07					
323	Cycas_litoralis	NT	1	12.581	1000	NA	NA	40	NA
				77					
324	Encephalartos_relictus	EW	1	12.567	NA	600	NA	NA	NA
				42					
325	Encephalartos_schaijesii	VU	2	12.567	NA	1500	0.25	500	0.33
				42					
326	Macrozamia_lomandroid	EN	2	12.536	NA	NA	NA	60	0.17
	es			73					
327	Macrozamia_macleayi	LC	0	12.536	NA	500	0.4	60	0.4
				73					
328	Cycas_chamberlainii	EN	2	12.514	NA	800	NA	40	NA
				81					
329	Cycas_shanyaensis	VU	0	12.514	10	800	3.1	40	0.25
				81					
330	Encephalartos_kisambo	EN	3	11.672	NA	1800	4	70	0.6
				76					
331	Encephalartos_sclavoi	CR	5	11.672	NA	2100	1	70	0.35
				76					
332	Cycas_clivicola	LC	1	11.145	300000	60	8	40	0.16
				57					
333	Cycas_siamensis	VU	3	11.145	NA	300	1.5	40	0.2
				57					
334	Cycas_diannanensis	VU	0	11.026	NA	1800	0.03	40	0.35
				12					
335	Cycas_falcata	VU	0	11.026	1350	NA	5	40	0.3

				12					
336	Cycas_debaoensis	CR	3	10.806 62	NA	1300	NA	40	0.2
337	Cycas_guizhouensis	VU	3	10.806 62	NA	1300	1	40	0.15
338	Cycas_micronesica	EN	3	10.587 24	112500 00	NA	12	40	0.25
339	Cycas_zeylanica	VU	1	10.587 24	NA	50	3.1	40	0.2

Appendix 3

Directed separation with Global goodness-of-fit

AIC: 73.776

BIC: 111.519

Independent.claim	Estimate	Std.error	df	Crit.value	P.value
Diamete_ max ~ altitude_max +	0.0001	0.0000	32	1.3470	0.1874
Height_max ~ altitude_max +	-0.0007	0.0007	20	-0.9401	0.3584
Range_km2 ~ ED +	-1150.8607	932.7109	32	-1.2339	0.2262
Diamete_ max ~ ED +	0.0160	0.0129	67	1.2420	0.2186
Range_km2 ~ No_threats +	709.7113	9125.2011	31	0.0778	0.9385
Diamete_ max ~ No_threats +	-0.0004	0.0223	30	-0.0186	0.9852
Generation_time ~ range_km2 +	0.0000	0.0000	20	-0.7191	0.4721
Generation_time ~ Diamete_ max +	-0.3864	1.0150	19	-0.3807	0.7034

Fisher's C = 13.776 with *P*-value = 0.615 and on 16 degrees of freedom