

FACE RECOGNITION USING IMPROVED DEEP LEARNING

NEURAL NETWORK

by

Zukisa Emerson NANTE

Dissertation submitted in fulfillment of the requirements for the degree

Master of Engineering

at the

University of South Africa

Supervisor: Professor Zenghui Wang

 29 September 2022

i

Declaration

Name: Zukisa Emerson NANTE

Student number: 3722-95-8

Degree: Magister Technologiae (MTech): Electrical Engineering

The exact wording of the title of the dissertation as appearing on the electronic

copy submitted for examination:

Face Recognition Using Improved Deep Learning Neural Network

I affirm this dissertation to be unique and complied with the verifying tool and

that its submission fulfills the requirements.

__ _____ 29 September 2022_____

SIGNATURE DATE

ii

Acknowledgment

First and foremost, my profound gratitude goes to my supervisor, Professor

Zenghui Wang from the Department of Electrical Engineering at the University

of South Africa (UNISA), for his support, carriage, and exceptional

supervision. He always availed himself to read and give feedback on my

progress. The time he spent initiating Skype calls during the publication

process and his attention to detail has helped me to develop a critical eye to

improve my writing and work. His assistance and advice made it possible to

complete and submit this dissertation.

With gratitude of gratification, I acknowledge the researchers who have

managed to publish their work as a source of information and education.

Moreover, special gratitude to my family especially my loving partner, my

parents, and my son, for their support and for giving me strength when I

needed it most.

Lastly, gratitude to the Department of Electrical Engineering at the University

of South Africa for allowing me to pursue and complete my master’s degree.

iii

Dedication

A dissertation devoted to South African

Academics, especially My Mother, who

defined education as a source of food

against poverty and the only weapon to

fight hunger, division amongst human

beings due to the color of their skin, and

to encourage a diverse society.

iv

Abstract

In recent years the importance and need for computer vision systems

increased due to security demands, self-driving cars, cell phone logins,

forensic identification, banks, etc. In security, the idea is to distinguish

individuals correctly by utilizing facial recognition, iris recognition, or other

means suitable for identification. Cell phones use face recognition to unlock

the screen and authorization. Face recognition systems perform tremendously

well, however, they still face challenges of classification. Their major challenge

is the ability to identify or recognize individuals in an image or images. The

causes of this challenge could be lighting (illumination) conditions, the place

or environment where the image is taken and this can be associated with the

background environment of the image, posing, and facial gestures or

expressions. This study investigates a possible method to bring a solution. The

method proposes a combination of the Principal Component Analysis (PCA),

K-Means clustering, and Convolutional Neural Network (CNN) for a face

recognition system. Firstly, apply PCA to reduce dataset dimensions, enable

smaller network usage and training, remove redundancy, maintain quality, and

produce Eigenfaces. Secondly, apply PCA output to K-Means clustering to

select centres with better characteristics, and produce initial input data for

CNN. Lastly, take K-Means clustering output as the input of the CNN and train

the network. It is trained and evaluated using the ORL dataset. This dataset

comprises 400 different faces with 40 classes of 10 face images per class. The

performance of this technique was tested against (PCA), Support Vector

Machine (SVM), and K-Nearest Neighbour (KNN). This method’s accuracy

after 90 epochs achieved 99% F1-Score, 99% precision, and 99% recall in

463.934 seconds. It outperformed the PCA that obtained 97% F1-Score and

KNN with 84% F1-Score during the experiments. Therefore, this method

proved to be efficient in identifying faces in the images.

Keywords: Face Recognition (FR), Principal Component Analysis (PCA),

Deep Convolutional Neural Network (DCNN), Feature Extraction (FE).

v

LIST OF CONTENTS

Preliminaries

Declaration………………………………………………………………………….i

Acknowledgment.………………………………………………………………....ii

Dedication………………………………………………………………………….iii

Abstract….………….……………………………………………………………..iv

Table of contents.………………………………………………………….……..v

List of figures…………………………………………………………………….viii

List of tables. ….……………………………………………………….…………..x

List of acronyms…...……………………………………………………………..xi

1. Introduction…………………………………………………………………….1

1.1 Theoretical background……………………………………………………1

1.2 Motivation…………………………………………………………………...7

1.3 Research aim and objectives…………………………………………......9

1.4 Research design and methodology...……………………..……………10

1.5 Discussion…………………………………………………………………10

1.6 Dissertation outline……………………………………………………….11

2. Preliminaries and theoretical background………………………………13

2.1 Chapter overview…………………………………………………………13

2.2 Overview of CNN architecture…………………………………………...13

2.2.1 Early developments based on neuroscience……………………15

2.2.2 Input layer.………………………………………………………….17

2.2.3 Convolutional layers ………………………………………………17

vi

2.2.4 Pooling layers………………………………………………………18

2.2.5 Fully connected layers….…………..………………………….….18

2.2.6 Image processing using CNN….…………………………………19

2.2.6.1 Image categorization…....…..………..………...……………….19

2.2.6.2 Image brief description.…….……..…………………………….22

2.2.6.3 Image processing…………...………………………………...…22

2.2.7 Related Work………………..….………………………………….25

2.2.8 CNN advantages...…………..………………………….………...26

2.3 Principal Component Analysis…….…….……………………………...27

2.3.1 Feature Extraction (FE) using PCA….…………………………..28

2.4 K-Means Clustering………..……….…………………………………….30

2.4.1 Data clustering…………..….……………………………………30

2.4.2 Algorithm description…………………………………………….30

2.5 Conclusion…...……………………………………………………………31

3. Proposed Methodology.….………………………………………………...32

3.1 Chapter Overview………………………………………………………...32

3.2 CNN model selection using PCA and K-Means as a driving force….32

3.2.1 Introduction.………………………………………………………..32

3.2.2 Methodology……………………………………………………….32

3.2.3 Using SVM…………………………………………………………33

3.2.4 PCA For Data Compression and Classification………………..34

3.2.5 Classification using SVC…………………………………………38

3.2.6 Convolutional Neural Networks (CNN)…………………………38

3.3 Training and simulation of CNN…………………………………………41

3.4 Conclusion………………………………………………………………...44

4. Empirical Findings (Experimentation)…...………………………………45

4.1 Overview ……………………………..……………….…………………..45

4.2 Experimental Setup ………………………………………..…………….45

4.2.1 Development environment……………………………………….45

4.2.2 Data...………………………………………………………………45

4.2.3 Implementation ……………………………………………………46

vii

4.2.3.1 PCA Algorithm Steps………………………………………….46

4.2.3.2 K-Means Clustering Algorithm Steps………………………..46

4.2.3.3 CNN Algorithm Steps………………………………………….47

4.3 Conclusion …………………..……………………………………………51

5. Conclusions And Future Work……………..……………………………..52

5.1 Summary and Conclusions...…...……………………………………….52

5.1.1 Contribution………………………………………………………..52

5.2 Limitations. ………………………………………………………………..53

References ……………………………………………………………………….55

Appendix A: Python source code sample.………………………………….64

Appendix B: CNN Model Sequel Representation.………………………....74

Appendix C: Approved Ethical Clearance…………………………………..75

Appendix D: List of Publications……………………………………………..78

viii

List of figures

Figure 1.1: Face Recognition system …………………………………………....9

Figure 2.1: Artificial Neurons (Neural Pathway Diagram, 2016).…..………...14

Figure 2.2: CNN schematic architecture diagram (Phung and Rhee, 2019).
…..………………………...14

Figure 2.3: Neural Processing of Visual Information and V1 location ……….16

Figure 2.4: Subsampling the feature maps (Vahid Mirjalili & Sebastian
Raschka, 2017) …………………………………………………………………...18

Figure 2.5 (a): Sparse connections due to small kernel. Creating s, through
convolving 3 span input/output similarity functions, influenced by x,
(Goodfellow, Bengio, and Courville, 2016) …............………………….……...20

Figure 2.5 (b): Dense connections. Creating s by multiplying the matrix,
removing sparse connection, thus, every output is impacted by x3,
(Goodfellow, Bengio, and Courville, 2016) ……..……………………………...20

Figure 2.6: Sharing of parameters. Dark arrows specify the networks that
utilize a certain parameter in two distinct models. (a) Convolution shares the
same parameters across all spatial locations, the dark arrow shows a 3-
element kernel in CNN model. (b) Traditional matrix multiplication does not
share any parameters, single arrow showing the most important feature of the
weight matrix in FC replica ……………………………………………………….21

Figure 2.7: Different padding modes (Vahid Mirjalili & Sebastian Raschka,
2017) ……………………………………………………………………………….24

Figure 2.8: Padded matrix 𝑋5𝑥5 (Vahid Mirjalili & Sebastian Raschka, 2017)
………………………………………………………………………………………24

Figure 2.9: PCA studies the conversion line to be certain that the first principal
component specifies the direction of the ultimate current variance coordinates.
(left) x initial data patterns. There is a possibility that the obtained variance is
not parallel towards centre line orientation. (right)The converted x = xTW is
aligned along z1 axis. z2 reduced variance orientation ……..………………….29

Figure 3.1: ORL faces Dataset…………………………………………….…….34

Figure 3.2: 24 Eigenfaces with Highest Eigenvalues …………………………37

Figure 3.3: This study’s suggested convolutional neural network architecture.
(a) shows a complete architecture, (b) shows the layers in detail…..…………39

ix

Figure 3.4: PCA + K-Means Clustering + CNN flow diagram used in this
dissertation………………………………………………………………………...42

Figure 3.5: Cumulative explained variance…………………………………….43

Figure 3.6: Convolutional Neural Network training phase ……………………43

Figure 3.7: Convolutional Neural Network Classification Simulations ………44

Figure 4.1: Model Accuracy of 99% …………………………………………….48

Figure 4.2: Model Loss of 1% …………………………………………………...48

Figure 4.3: Filter of the second layer ……………………………………………50

Figure 4.4: First convolutional layer feature maps ……………………………50

x

List of tables

Table 4.1 Confusion Matrix ………………………………………………………49

Table 4.2: F1-Score of 99%.….………………………………………………….49

Table 4.3: F1-Score Performance Analysis for the Proposed Methodology

……………………………………………………………………………………...51

xi

List of acronyms

AD Anisotropic Diffusion

AFR Automated Facial Recognition

BPSO Binary Particle Swarm Optimization

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

Conv Convolution

FC Fully Connected

FDA Fisher Discriminant Analysis

FR Face Recognition

fSVD flustered Singular Value Decomposition

GDA Gaussian Discriminant Analysis

GF Gabor Filter

GPU Graphics Processing Unit

HOGs Histograms of Oriented Gradients

ICA Independent Component Analysis

IDLNN Improved Deep Learning Neural Network

KNN K-Nearest Neighbors

LBPs Local Binary Patterns

MLP Multilayer Perceptron

xii

NB Naive Bayes

NN Neural Network

P Pooling

PCA Principal Component Analysis

ReLU Rectified Linear Unit layer

RBF Radial Basis Function

RR Recognition Rate

SIFT Scale Invariant Feature Transform

SVC Support Vector Classification

SVD Singular Value Decomposition

SVM Support Vector Machines

1

CHAPTER 1

Introduction

1.1 Theoretical background

The face is an important part of the human body. Face images can be used in

distinguishing people from one another, assessing people’s feelings,

transmitting various kinds of information, communicating with other persons,

etc. The information obtained from face images contains abundant meanings,

such as race, gender, age, health, emotion, psychology/mentation, profession,

etc.

Woodrow W. Bledsoe (1960) created the earliest semi-automated FR

system. The system had to be able to find facial attributes namely, eyes, nose,

ears, and mouth from images. During the 1970s FR took a step forward

(Goldstein, Harmon, and Lesk, 1971) and utilized 21 indicators like hair color

and the upper and the lower edges of the opening of the mouth width to

computerize FR, however, quantification and positions were by hand

computed. In 1988 an initial semi-automated FR system was implemented and

immediately after, the same year, the Eigenface (Sirovich and Kirby, 1987)

technique was developed. This technique showed possibilities to minimize the

quantity of values required for the approximation of a suitably aligned and

normalized face image. During this time a lot of research was conducted and

(Turk and Pentland, 1991) discovered that the residual error resulting from the

Eigenfaces technique could be reused to detect faces from images and make

real-time face recognition possible. This discovery arose the limitations due to

environmental factors and again a lot of research was instigated. To date, this

technology still faces challenges of light, environment, pose, and expression.

FR unique physical characteristics can distinctively distinguish or

validate individuals by associating and scrutinizing the samples established on

one's facial outline. Usually, it is utilized in guarding systems, however, the

demand for other applications is high. To be exact, a lot of business and legal

institutions begin to realize their significance and capability to enforce the law.

2

Facial recognition is sometimes recognized as face recognition (Bowles N.,

The Guardian, Apr. 8, 2016). Several methods exist whereby FR applications

are implemented; however, their application is to compare chosen face

features from other faces in the database. It is defined as a Biometric Artificial

Intelligence application that uniquely identifies a person by analysing patterns

based on the person's facial textures and shape (Zavyalova V., 2018, Science

& Tech Nov 27, 2018).

Biometrics (Jain, Hong, and Pankanti, 2000) technically refers to unique

physical characteristics. Therefore, standards of measurements are

associated with personal features (Arya, Pratap, and Bhatia, 2015). It has

identifiers to distinguish the individuals. This concept is belonging to an earlier

time as 500 B.C. when fingerprints were used (“Babylonian business

transactions are recorded in clay tablets that include fingerprints.”).

 Stan and Anil (2011) define FR as an unconscious activity for individuals

as it happens automatically, fast, and regularly. Compared to fingerprints and

iris biometric modalities face recognition has more than a few advantages. In

addition, being natural and non-intrusive, a significant advantage is a face

capturing at a distance and covert manner. FR is becoming more important

due to speedy developments in appliances that take images such as

surveillance cameras, cameras in cellular phone phones, Web demands for

face images, and greater security. Kanade T. (1973) developed the first

automated face recognition system in his Ph.D. thesis work. But then it

became latent over the years till (Sirovich and Kirby, 1987) work on lower

dimensions of the ambient space on the face description, originated from

Karhunen–Loeve transform or PCA. The ground-breaking work of (Turk and

Pentland, 1991) revived the FR research after their ground-breaking on

Eigenface. The Fisherface method applied Linear Discriminant Analysis (LDA)

after a PCA step to accomplish higher precision. Gabor jets confined filters for

efficient characteristics of the face together with the AdaBoost learning built

on cascade classifier architecture at the actual time to detect a face. However,

under unconstrained environments, Automated Facial Recognition (AFR)

systems still face many challenges when face images are acquired.

3

 According to Shamshad Ansari (2020) FR represents the detection and

identification problem of how computers can gain a high level of understanding

to identify a face of an individual from a video or image. FR follows certain

steps to perform recognition and the first step is identifying and locating the

face’s whereabouts from the input image and this step falls under object

detection. After face identification, its attributes are created from numerous

key points. Typically, a face of a human being consists of 80 landmarks, but

FaceIT system can obtain better recognition accuracy just by utilizing 14 to 22

landmarks (nodal points). They are more intrigued by the profound area of the

face1. To establish identification these landmarks are compared to the

database faces.

The problem regarding FR systems is the inaccuracy and uncertainty in

identifying faces. These systems may emerge false results that may cause

individuals to be accused of offenses they know nothing about. In America, the

FBI system has failed to address the identification inaccuracy problem and

their incapability and that resulted at least 15% of the time (Zafeiriou et al.,

2014).

Research conducted by the FBI also found out that it misidentifies people of

color. Its disproportionality towards people of color was due to how it was

programmed. This also affects society as some could not find jobs due to

criminal activities they never committed.

Russian only current FindFace Security FR system and the one that

was developed by NtechLab claims 99% of accuracy during the 2018 World

Cup. But the question or concern on whether FR is a good way of identifying

criminals is still open. Also, systems designed by the tech giants like Microsoft

and Amazon are still contentious as they strive to identify individuals of various

people other than whites or just execute wrong results or mistakes. MIT’s

Media Lab tested different FR systems from different companies like Microsoft,

IBM, and China’s Megvii and found that up to 35% of darker-skinned women

had their gender misidentified by the systems (Baskar B, Anushree PS, Divya

1 FaceIt: https://patents.google.com/patent/US7634662B2/

4

Shree S & KV Mahendra Prashanth, 2015). Back in 2015, Google identified a

software engineer’s black friends in a photo as “gorillas,” and had to apologize

for the error. This information does not only highlight the error of programming

but also the issue of light as this system was only programmed to follow white

people only and to stop when other races were identified. Today the current

challenges facing the FR systems are lighting circumstances, environmental

settings, or space, pose (of the head), and expression. This also includes the

challenges of the hydration of the skin, aesthetic products such as facial lotion

and make-up, imaging sensor and camera, and the distance of the subject

from the camera (Abhishree et al., 2015).

Bhaskar et al. (2015) proposed a FR system based on Hybrid Gaborlet

and Fisher Analysis. It was suggested to overcome the problem of pose, light,

age, occlusion, and expressions where the results were exceptional using Dr.

Libor Spacek (800 face images of 40 classes with 20 views/class) and Caltech

(360 face images with 18 classes with 20 views/class) segmented databases.

The importance of a FR system is the accuracy that it can produce by

developing a set of features that increase system performance. This system

discourages the direct employment of pixel values as traits of face image

because of its huge dimension (Golbon-Haghighi et al., 2018). Therefore,

PCA, LDA or FDA and ICA techniques were suggested for dimensionality

reduction. However, these methods agonize from high computational overload

and therefore, the wavelet transform form of multi-resolution analysis

manipulates wavelet basis vectors so that it can decompose an image at

different scales and orientations. Wavelet transform can be discretely sampled

and one of the customaries is Daubechies. Gabor wavelet linear filter named

after Dennis Gabor is used for image edge detection (Shrivakshan G., 2012).

It is a good adaption ability for different spatial frequencies and orientations. It

fragments images into sub-bands and performs convolution to execute the

extraction of features. It is a Gaussian Kernel function, and its features improve

recognition performance compared to grayscale features. The proposed

method FDA extends two-class kernel Fisher methods by subjugating

multiclass pattern classification snag. Consequently, it provides unique

5

solutions that cannot be utilized using GDA. By deducing the matrix’s singular

values, a new image can be obtained from the original. Hence, fSVD is used

to develop illumination invariant image.

Due to the challenges of 2D dimension Abate et al., (2007) suggested

a method named 2D-3D FR. The idea behind this technique was to collectively

utilize various parameters of 2D and 3D graphic images and model FR based

respectively. These parameters were input volume, the number of targeted

chores, and recognition measure. This technique compared to other

techniques used in FR it provides a future perspective on enabling new

techniques for researchers. Therefore, Eigenfaces, and stereovision

techniques are applied to enhance 2D FR system performance with 3D

information known as the disparity of face. Also, matching a face from various

positions with scan-lined-based NN’s help. PCA utilised for the extraction of

features and recognition. 2D-3D FR accuracy enhanced; however, 3D FR

faces minimized the challenges of posture variants, obstruction, and various

lighting situations. This is because they resemble a real image, numerous

textures, and various frameworks which convolute in three dimensions. Image

acquisition technology was applied on 3D face database in comparison to

various situations. The proposition was to conduct a study on 3D FR based on

local features. Local descriptor division into curves, pointers, and surface were

employed. Feature extraction was regarded as one of the important modules

in FR. Therefore, different studies were conducted concerning various kinds of

face descriptors and attribute extractors for 3D. Bidirectional relighting was

done to help normalize between probe and gallery. Also, face expression and

occlusions challenges were considered, and correlation metrics were

introduced regarding any similarity scores and the idea of pose and

illumination normalized signatures for frequently applied confirmations. The

courage of utilizing 3D FR technology was to try and conquer 2D FR systems

downside. Various databases and different augmentation techniques were

used for testing purposes. An enhancement was also made with the help of

experienced sensors camera capturing for better 3D face image that can

generate 3D face models. Noticed advantage of the 3D FR system is that it so

6

not affected by light intensity. Wen et al. (2018) proposed improvement with

domain adaption and tried to evaluate FR by taking Labelled Faces in the Wild

(LFW) dataset as a benchmark and achieved 99% accuracy. Though the

performance is still not enough for real-world applications, and that is caused

by the problem data bias. To their knowledge, it is the first time that domain

adaption technique is applied in unconstraint FR problem with a million-scale

dataset. They incorporated face verification threshold into FaceNet triplet loss

function explicitly and achieved 99.33% on the LFW benchmark with only a

single CNN model and similar performance even without face alignment. This

technique combined with Viola methods shows room for improvement.

In the research conducted by Abhishree et al., (2015) the three stages

of pre-processing, feature extraction (FE), and Feature Selection (FS) were

examined for the entire process of FR system. They used a technique to

process the images by flipping an image from left-right (from original to pre-

processed images). This is called image pre-processing. This was

accomplished using 2D Wiener low pass filter for de-noising. While a 2D

Gaussian filter removes the noise it also blurs the image because of its limited

bandwidth.

AD based pre-processing and GF based feature extraction were the

techniques proposed to enhance FR system performance (Abhishree et al.,

2015). AD focuses on enhancing and smoothing facial image edges while GF

keeps aligned facial features at specific angles. AD improves the RR of the

system by inhibiting the noise the conventional filters have on blurring the

edges. 2D GF showed improvements in variance light, attitude, and

expression. Accompanying these two techniques is a BPSO based feature

selection algorithm to make sure that the space needed is utilized as required

for optimal feature subset. These techniques were proposed to improve the

challenges of pose, illumination, and expression in computer vision. Moreover,

to overcome the problems of image degradation by de-noising an image from

a stored database.

7

The image quality, head orientation, lighting conditions, partial

occlusion, and facial expressions play an important role during feature

extraction (Singh and Prasad, 2018). The extraction of meaningful features is

a very important task, especially in FR, thus, a feature-based system speeds

up the process more than a pixel-based system (Viola and Jones, 2004). FR

techniques use features like mouth, eyes, chin, nose, and geometrically

assess relationships amongst them. Zhao et al. (2020), proposed a FR system

using a deep neural network with PCA, jointly with Bayesian framework, and

achieved 98.52% performance from their own dataset, which is the CAS-PEAL

dataset. Ren et al. (2015), proposed a Region Proposal Network (RPN) that

reveals full-image conv features to the detection network.

Arya, Pratap, and Bhatia, (2015) have noted the challenges FR systems

still facing i.e., light, posture deviation, expression changes, and facial

disguises. According to their research, these are the results of systems based

on traditional methods on Visible Spectrum (VS). Therefore, to overcome

these limitations of identification and verification the Infrared Spectrum (IRS)

was proposed (Baskar B, Anushree PS, Divya Shree S & KV Mahendra

Prashanth 2015). Also, emphasized the use of Multi/ Hyperspectral Imagery

Data in FR as this system can minimize limitations from existing and

conventional FR systems. This system is the future of FR as it provides

valuable discriminants for individual appearance (Arya, Pratap, and Bhatia,

2015). However, this improvement still faces eyeglass and physiological

problem challenges. This technique’s accuracy has not been proven by any

method experimentally, and therefore, other techniques were proposed i.e.,

Persistent Physiological Features and Multi-Model Fusion (VS and IRS) on

developing robust Identity Descriptors (ID). The images captured by IRS have

shown a significant improvement in IR images as the environment does not

pose limitations of light or dark.

1.2 Motivation

The human brain can instantly and automatically recognize familiar and non-

familiar faces effortlessly, but the way processes signals from the eyes is still

8

not fully known, and this is an interesting problem. This raises some questions

on how to manipulate computers to interpret images as humans do, what

important attributes to consider, and by what means these attributes can be

processed. Face recognition systems can be found in security systems at the

airport, by the police, etc. For criminal identification and verification systems

and many more. This study only focuses on the general improvement of FR

systems utilizing CNNs regardless of a specific application. FR is a very

interesting biometric modality as it is the natural mode of identification amongst

humans and is very unobtrusive. As the name suggests the process of face

recognition happens when a face of a person is recognized. A FR system

comprises four stages:

1. Face Detection - detects the localization of the image, verify if a face or
faces exist(s) in an image and if it does it draws a bounding box on the
face, see Figure 1.1.

2. Face Alignment – normalization of a face to be exact and comparable
with the database format such as photometric and geometry.

3. Feature Extraction – carefully extracting usable face features to help
during the recognition assignment.

4. Face Recognition - compares these features from the faces in the
database, verifies if a match exists and if it does it recognizes that distinct
person by assigning a label trained on it.

Figure 1 depicts a face recognition system. Face detection and

recognition differ in the sense that in detection the interest is only to know if a

face exists from an image or static picture or video, but the recognition task is

a procedure of recognizing an already detected face or identifying who the

person is (Singh and Prasad, 2018). Nair and Hinton (2010) describe object

recognition as the way to keep or maintain the same input properties in the

output invariance. FR systems work by comparing selected facial features from

a given image with faces within a database. However, these systems still face

problems of illumination, pose variation, expression changes, and facial

disguises. Different lighting environments affect detection and recognition

accuracy. In recent years CNNs have demonstrated to perform well in FR and

they can accommodate a big dataset (Song et al., 2020), however, that may

9

increase the training time. This dissertation aims to develop a new lightweight

method to train faster and increase accuracy.

Figure 1.1: Face Recognition system.

1.3 Research aim and objectives

In this dissertation, the aim conveys the intention of achieving the desired

outcomes, however, the objectives mainly focus on defining resources to fulfil

the aim.

Aim: This study aims to improve (DNN) by investigating deep CNN on facial

recognition systems. To investigate theories on feature extraction, illumination,

and noise that affect the process of facial recognition in 2D FR systems. To

improve and add technical knowledge in the field of FR systems and enhance

accuracy and performance on identifying faces.

Objectives: The main objectives of this dissertation are to investigate the

fundamental concepts of face recognition using DCNN, establish and define

image classification concepts regarding face recognition, analyze the different

architectures of DCNN and the motivations behind it, propose a methodology

for FR that improves the efficiency and accuracy of DCNN results, and

10

evaluate obtained results from these methods in order to measure accuracy

and effectiveness in an attempt for improvement.

1.4 Research design and methodology

This dissertation adopts a positivism research philosophy, it adheres to factual

knowledge obtained through empirical observations (Collins H., 2010) in an

objective manner. Therefore, it is based on data collection, interpretation, and

depended on quantifiable observations. It involves already well-known

algorithms, however, these were never combined before in FR systems. It is

then followed by an experimental substation of the presented methods, which

are analyzed in detail. Experimental results and comparisons to other

techniques are obtained using traditional computer vision benchmarks.

1.5 Discussion

In this dissertation, to address the defined challenges mentioned above in

Section 1.1, an attempt to address the face feature extraction problem is

addressed, so that good features are preserved to obtain better results by

combining PCA, K-Means clustering, and the CNN architecture. The aim is to

analyze the existing methods, extract important features, observe the accuracy

of each, and combine the methods that promised to improve the performance

and accuracy. To deal with this problem, to reach a solution, the following FR

methods are discussed:

1. Neural Network – CNNs easily recognize normalized and aligned

faces and increase the efficiency of the model.

2. PCA – it linearly modifies the original inputs into new uncorrelated

features. This technique can help in dimensionality reduction;

however, it agonizes from high computational overload.

3. Geometric Based – this method analyzes local facial features and

their relationship. Can be constructed with tools like PCA and

Support Vector Machines (SVM).

4. K-Means Clustering – groups samples based on their feature

similarities. While this algorithm is exceptional at recognizing clusters

11

with a spherical space, it has a drawback, and that is it must be given

the number of clusters, k, a priori.

DCNNs have been chosen as they leverage local patch relations, local

connectivity, and translational equivariance that can help improve the model’s

accuracy and performance. They can work with inputs of variable sizes.

Sparse interactions are derived by letting the kernel smaller than the input.

This plays an important role in image processing. For instance, the picture

elements from an image as an input may entail a vast number of pixels,

however, tiny, significant characteristics namely edges in conjunction with

input/output similarity function to dominate only plenty of picture elements

(Goodfellow, Bengio, and Courville, 2016). In conclusion, this means, only

fewer parameters are stored to limit memory required and enhance model

architecture. Unlike in traditional neural networks, sharing parameters, the

same weights are utilized to various functions, and therefore, for different

patches of the input image. Thus, it learns a specific distinct list of elements

instead of studying whole separate distinct lists of elements.

1.6 Dissertation outline

The sections below cover or support the research objectives of this dissertation

mentioned in Section 1.3 and are organized thusly:

 Chapter 2: This chapter contends the fundamental concepts and

theoretical background of applying the deep convolutional neural

networks in face recognition. It starts with a general overview of CNNs,

then proceeds to the neuroscience early developments and elaborates

on the properties of convolutional neural networks (CNNs) related to or

taken from this literature. After it discusses image processing in detail

and explains the origins of an image. Further looks at the facial features

extraction, PCA motivations, and K-Means clustering theoretical

background. In conclusion, the motivation and related work of CNNs in

FR systems is reviewed.

12

Chapter 3: This chapter focuses on giving the background of the

suggested methodology of this dissertation. It starts by elaborating on

the methodology, then discusses SVM, and PCA data reduction

advantages towards this technique. It then goes further to discuss SVC

classification, subsequently, displays the CNN flowchart proposed and

its training phase. In conclusion, CNN classification and simulations are

reviewed.

Chapter 4: The chapter portrays the empirical results of the

methodology suggested in this study. It commences by stipulating the

system requirements pertaining to the training of this algorithm. Next,

discusses the data used to get the results, and finally discusses the

steps taken per algorithm to demonstrate the origins of the

concatenation idea.

 Chapter 5: In this chapter, represents the summary of this study. Next,

the conclusions, limitations, contributions, and future direction are

discussed.

13

CHAPTER 2

Preliminaries and theoretical background

2.1 Chapter overview

In this chapter, all three algorithms proposed in this dissertation are looked at

in detail. It starts by discussing an overview and theoretical details regarding

convolutional neural networks. Next, discusses the layers of CNN and finally

motivates the usage of CNNs in FR. Thereafter, it delves into the PCA

algorithm and discusses how it extracts features. Then, the K-Means

algorithm, and finally the chapter conclusion.

2.2 Overview of CNN architecture

CNN models were motivated by the fundamental working cortex of the human

brain (McCullock and Pitts, 1943) when recognizing objects, see Section 2.2.1.

Figure 2.1 depicts nerve cells that are connected to perform signal or wave

handling and transmission of mechanical and magnetic waves, and they are

called neurons. The CNN evolution originated around the 1990s after LeCun

et al. (1989) suggested a new different NN model classification for figures

written by hand from images. They are neural networks (NN) that are

composed of a mathematical operation called convolution, hence the name

CNN. Their ability to spontaneously learn features from unprocessed data

makes pre-processing easy in comparison to other image classification

algorithms mentioned in Section 1.1. They construct a feature arrangement by

merging minor details of the image like edges in the form of layers to form

recognizable features. They compute feature maps from the input data and in

this case from the face image, in which, every single essential part originates

from a neighboring patch of pixels. This local patch is called the local receptive

field (Vahid Mirjalili & Sebastian Raschka, 2017). Convolutional neural

networks result from neurons containing weights and biases. Their goal is to

14

go from the unprocessed input data in the first layer to the exact class in the

last layer. They differ from normal neural networks due to the type of layers

used in them and the way they treat the input data. They assume input data

as images and that allows them to extract properties particular to images

(Prateek J., 2017). Figure 2.2 illustrates the multilayer CNN architecture.

Figure 2.1: Artificial Neurons (Neural Pathway Diagram, 2016) 2

Figure 2.2: CNN schematic architecture diagram (Phung and Rhee, 2019).

2 Neural pathway: Neural pathway diagram - Visual cortex - Wikipedia

https://en.wikipedia.org/wiki/Visual_cortex#/media/File:Neural_pathway_diagram.svg

15

2.2.1 Early developments based on neuroscience

CNNs keep on demonstrating to be the great biologically inspired artificial

intelligence (AI) in deep learning for image processing. CNN concepts were

taken from neuroscience. For many years neurophysiologists (Hubel and

Wiesel, 1962) investigated the functionality of the mammalian visual system.

From their observations of the cat’s brain responses to images, they

discovered that the visual behaviour of the neurons reacted very intensely

towards certain lighting environments. Their work helped to formulate the deep

learning simplified focal point of view of brain function.

Consequently, the simplified view of the brain that is of interest is the primary

visual cortex (V1). V1, the brain’s initial part, is found within and across the

calcarine fissure in the occipital lobe. It substantially executes advanced visual

input processing. It creates images through the optical occurrence delivered

in the eye and stimulates the optic nerve. The optic nerve (retina) is a tissue

sensitive to light from an eye background. Thus, the optical nerve neurons

manage the image without changing its features or layout. Then it goes past

the optical nerve and lateral geniculate nucleus. To conclude, their role is

mainly to coordinate communication between the eye and V1.

 CNNs mimic some properties of the V1; because the V1 arrangement

is in the spatial map, CNNs make use of this trait on defining its features in

terms of 2D maps. V1 comprises a lot of simple cells. A simple cell is

characterized by a linear function of the image in a small, spatially localized

receptive field. Hence, CNNs detector units imitate simple cells properties in

their designs. V1 also encompasses numerous complex cells, and these

respond to similar features as the ones detectable in similar cells, however,

these cells are immutable to tiny changes of the feature location. The

inspiration behind pooling units of the CNNs originates from this property of

the complex cells. These second-class cells are likewise immutable to

alterations in illumination that are impossible to capture merely by pooling over

spatial locations. These immutable or never-changing cells encouraged cross-

channel pooling strategies of the CNNs like maxout units (Goodfellow, Bengio,

16

and Courville 2016, p. 354). Figure 2.3 depicts the neural processing of visual

information and V1 location in the brain.

 Figure 2.3: Neural Processing of Visual Information and V1 location3

The brain consists of multiple anatomical layers and moving deeper into the

brain, cells responding to some concept and that are immutable to a vast

number of input conversions are found and called grandmother cells. The idea

of the grandmother cells is that the neuron of a person activates when that

person sees his or her grandmother irrespective of the location view angle,

shot zoomed out image of the entire body, close-up face or either is illuminated

or in the shade. In the brain, they are in the area called the medial temporal

lobe (Quiroga et al., 2005). Their neurons are slightly typical in comparison

with current CNNs that do not mechanically generalize in distinguishing an

individual. An analogy to CNNs attributes of the final layer can be the brain

part namely, the inferotemporal cortex (IT).

3 Neural pathway diagram - Visual cortex - Wikipedia

https://en.wikipedia.org/wiki/Visual_cortex#/media/File:Neural_pathway_diagram.svg

17

2.2.2 Input layer

The input layer is the first layer of the CNN, and it takes the raw image data as

it is. It is important to note that this layer is the entry-level of the whole neural

network image processing, it signifies the pixel matrix of the image. Input

images are encoded into channels namely, three channels (C3) and one

channel (C1). C3 represents Red, Green, and Blue (RGB) colors and C1 black

and white colors. Therefore, the contained unprocessed image information

intensifies each channel color into a dimension vector of batch size width x

height x Cn.

2.2.3 Convolutional layers

The convolution layer calculates the convolutions between the neurons and

various patches. It is a feature extractor layer as it extracts the image features

from the previous layer. Thus, its output is a product of weights and a small

patch of the preceding layer. It takes the image input height, width, and

channels and convolves the image into a feature map. After this abstraction,

the image has input number, feature map height, feature map width, and

feature map channels and this is called an activation map. Neurons in

convolutional layers make sure that the processed data is unique and has its

receptive field. This means that neurons, only receive input from a restricted

area. In 2D input such as Xn1xn2 and the filter matrix Wm1xm2 where m1 <= n1

and m2 <=n2, then the matrix Y = X * W exists because of low-dimensional

conv of a signal as well as filter. Mathematically it is presented like below:

𝑦 = X ∗ W → Y[i, j] = ∑ .
+∞

k1=−∞

∑ X[i − 𝑘1, j − 𝑘2]W[𝑘1 , 𝑘2]

+∞

𝑘2=−∞

 (2.1)

This layer encompasses a Rectified Linear Unit layer (ReLU) to assign a zero

to a negative value. ReLU works by activating the output of the preceding

layer. The ReLU function is defined as f(x) = max(0, x), and it generalises well

to any function type by adding non-linearity to the network.

18

2.2.4 Pooling layers

Pooling layers immediately take the output of the convolution layer as their

input, sample, and modify it further using a pooling function. This replaces this

output at a particular location with a statistic summary of the nearby outputs.

Its vital role is to reduce the number of computations (downsample the output

of a convolution layer) and increase spatial invariance of the height and width

(Vahid Mirjalili and Sebastian Raschka, 2017). They are usually denoted by

Pn1xn2, and this subscript defines the pooling size of the neighborhood of pixels.

Using these layers help to keep only the important parts of the net and operate

on each feature map independently. Though they consist of max pooling and

min pooling, max pooling is frequently used. Max pooling (Zhou and

Chellappa, 1988, Cireşan et al., 2012) is used to downsample the 2D volume.

It works like a convolution kernel, together with a particular stride, taking out

max values rather than computing dot products. A stride of 1 would preserve

the volume size while a stride of 2 would divide the width and height dimension

by two (Habrman, 2016). Figure 2.4 depicts the pooling layer also known as a

sampling layer:

Figure 2.4: Subsampling the feature maps (Vahid Mirjalili & Sebastian

Raschka, 2017).

2.2.5 Fully connected layers

FC layers represent a multilayer perceptron by which each vector (initial data

signal) i brings together each production element j and filter wij . These layers

19

are at the end (last layer) of the CNN, and they calculate the output scores.

Thus, the resulting output is of size 1x1xL, where L represents the number of

classes in the training dataset. They produce the final feature map

classification task. FC layers only accept 1D data, meaning, conversion from

3D or 2D data is needed and this can be performed with the help of Python

flatten functions.

2.2.6 Image processing using CNN

2.2.6.1 Image Categorization

The image categorization process arranges data into a fixed number of

categories so that it can be used effectively and efficiently, therefore

categorizing images into one or more classes. Classifying images with deep

CNNs requires the use of TensorFlow. The CNN FC layers are fundamentally

related to several layer perceptron whereby each initial data i brings together

each production element j and filter wij. Multilayer neural networks in CNNs

construct a system of features by merging blobs and edges attributes in layers

formulating events and objects attributes.

CNNs aid to develop the systems by (1) Sparse interactions, (2)

equalizing a set of parameters, and (3) equivariant representations. sparse

weights are obtained by ensuring that the input similarity is lesser than the

output similarity. Thus, only one component within the activation plan is linked

against the lesser blotch picture elements. For example, an input image with

lots of picture elements, however, only a few eloquent features like edges

containing input/output similarities that inhabit a lesser detected pixels

quantity. Therefore, it reduces model memory requirements by storing fewer

parameters and improving its statistical efficiency. For instance, m inputs and

n outputs, require a multiplication matrix (m x n) parameters and practically

this would be O(m x n) runtime. Hence, limiting the number of connections in

each output to k, enables the sparsely connected approach to need only k x n

parameters and O(k x n) runtime. Figure 2.5 (a & b) illustrates sparse

20

connections, seen from below, single highlighted input element, x3, plus s,

highlighted for affected output units by this unit.

Figure 2.5 (a): Sparse connections due to small kernel. Creating s, by

convolving 3 span input/output similarity functions, influenced by x,

(Goodfellow, Bengio, and Courville, 2016).

Figure 2.5 (b): Dense connections. Creating s by multiplying the matrix,

removing sparse connection, thus, every output is impacted by x3,

(Goodfellow, Bengio, and Courville, 2016).

 Parameter sharing uses identical weights for various patches of the

input image. Unlike traditional neural networks, CNNs use tied weights,

meaning, the value of the weight applied to one input is tied to the value of a

weight applied somewhere else. Thus, instead of learning a distinct set of

parameters present in each location, it learns only one set. It has no influence

on the compilation time of moving from the input to the output O(m x n) and

reduces repository space needed to k numerical factors. It adds to the

translation invariance of the CNN architecture (Mouton, Myburgh, and Davel,

2021). Figure 2.6 depicts the difference in CNNs parameter sharing and

traditional nets (Goodfellow et al., 2016).

21

(a)

(b)

Figure 2.6: Sharing of parameters. Dark arrows specify the networks that

utilize a certain parameter in two distinct models. (a) Convolution shares the

same parameters across all spatial locations, the dark arrow shows a 3-

element kernel in the CNN model. (b) Traditional matrix multiplication does not

share any parameters, a single arrow shows the most important feature of the

weight matrix in the FC replica.

 Finally, equivariant representations, this is a specific form of parameter

sharing that causes the layer to have a property called equivariance to

translations. Equivariance means if there are changes in the input, these

changes also occur in the output in an identical manner. Let’s say for an

example that a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)) and

convolution is used, then if g is any function that transforms the input, meaning,

shifts it, then the conv function is equivariant to g. To illustrate this, let function

I give brightness to the image at integer coordinate. Secondly, let function g

map a single task of the image to one more task of the image, so, I´= g(I) is

22

the image unit of code defined with I´(x,y) = I(x – 1,y) to move each picture

element of I a single element to the right. Thus, whenever such conversion is

applied towards I, and followed by convolution, the results are identical as if

convolution is applied to I´ and the applied g transformation to the output.

When dealing with images, convolution generates a 2D map where a variety

of features are seen in the input. In CNNs, when processing images it is

convenient to detect edges in the first layer. This helps when processing

cropped images that ought to be designated in the centre of a person’s face.

Therefore, different features at different locations are extracted. Features

processed at the top of the face are eyebrows and at the bottom a chin.

2.2.6.2 Image brief description

From the beginning of this dissertation, images were not defined, and

therefore, it is better to give the fundamental knowledge before delving into the

whole process of image processing. Images are an important part of humans

on daily basis. Images help to identify, interpret, illustrate, represent,

memorize, educate, communicate, evaluate, navigate, survey, entertain, etc

(Awcock and Thomas, 1995). Humans do all this without conscious effort as it

comes naturally to them, but machines do not. For machines to perform all the

properties of the image mentioned above, an image needs to be processed

and this is called applied image processing, but this is discussed in the

following section.

2.2.6.3 Image processing

Applied image processing attempts to provide practical, reliable, and

affordable ways to let machines deal with images. Therefore, by contrast, the

term image processing has been associated with modifying images. Meaning,

correcting errors introduced in images during re-creation, or visual system

enhancement. Its main purpose is to process an input image and generate a

23

modified image output. For pattern classification, this helps take a feature

vector input and generate a class number output.

Image pre-processing is a vital step to make sure that raw data is of the

required form and shape, however, according to the study of Paul and Acharya

(2020) pre-processing is not required in CNNs. Pre-processing enhances

image data by suppressing unwanted or undesired distortions and increasing

relevance in image features for further processing. In this dissertation, the

sequence of face images is targeted to take out significant attributes such as

the contour of the eye sockets, nose, mouth, and chin. Features

transformation to gamut [0, 1] or a traditional regular allocation of a naught

average with unit variation (Vahid Mirjalili and Sebastian Raschka, 2017).

CNNs perform image analysis by segmenting the image and performing

object detection and recognition. In Section 2.2.3 (convolutional layers), eq.

(2.1), represents a 2D output vector 𝑦 computation with input vector 𝑥 and filter

or kernel 𝑤 where 𝑖 runs through all elements. Eq. (2.2) represents convolution

in one dimensional (1D), as it applies the same principles as in 2D:

𝑦 = 𝑥 ∗ 𝑤 → 𝑦[𝑖] = ∑ 𝑥[𝑖 − 𝑘]𝑤[𝑘]

+∞

𝑘=−∞

 (2.2)

The advantage of CCNs is to correctly compute the summation of the above

formula by assuming that 𝑥 and 𝑦 are filled with zeros, and this is called

padding. The common three modes of padding in CCNs are full mode, same

mode, and valid mode. Full mode is rarely used in CNN architectures due to

its increase in output dimensions. Same padding ensures output and input

dimensions match. In valid mode, there is no padding at all and that is a

disadvantage in comparison to the other padding modes. This decreases the

volume of the tensors substantially and may hold back the performance of the

model. However, practically, the occupying space dimensions utilizing the

same padding for convolution layers are preserved and its dimensions can be

decreased via P layers instead. The interest of this dissertation is the same

24

padding as the expectations are to retrieve the same features of the input and

classify them accordingly to get the same output. Figure 2.7 further illustrates

these modes:

Figure 2.7: Different padding modes (Vahid Mirjalili and Sebastian Raschka,

2017).

The output quantity can be defined by how many times filter 𝑤 shifts beside

input vector 𝑥. Eq. (2.3) shows this as follows:

𝑜 = [
n + 2p − m

s
] (2.3)

Padding in 2D is possible when both dimensions are extended independently.

Figure 2.8 gives a glance at this.

Figure 2.8: Padded matrix 𝑋5𝑥5 (Vahid Mirjalili & Sebastian Raschka, 2017).

2.2.7 Related Work

25

This dissertation focuses on FR in images and videos, a problem that has

received substantial attention in the recent past. The literature proposed many

methods and the distinction between these is shallow (do not use deep

learning) and deep (use deep learning). The first step of the shallow methods

is to extract the representation of the face image with the help of handcrafted

local image descriptors, i.e., Scale Invariant Feature Transform (SIFT), Local

Binary Patterns (LBPs), and Histograms of Oriented Gradients (HOGs) (Parkhi

et al., 2015). They used the Fisher Vector as a pooling mechanism to form

local descriptors into a general face descriptor (Parkhi et al., 2014).

 In this dissertation the focus is mainly on deep learning architectures for

FR, such methods use CNN feature extractor, a learnable function acquired

by combining several linear and non-linear operators. In the beginning, CNNs

specifically AlexNet (Krizhevsky et al., 2012a) and VGGNET (Krizhevsky et

al., 2012a) restricted the quantity of input images in the account of their

architecture design. They were composed of mainly two parts, the conv layer,

and FC layer. The convolution layer does not need a determined or limited

image size and can produce a feature map of any size (Qin et al., 2020).

Recent CNNs, namely, Inception (Szegedy et al, 2016), ResNet (He et al.,

2016), and DenseNet (Huang et al., 2017), stopped using the FC layer and

switch to Global Average Pooling layer (Lin et al., 2013). To their discovery, it

became clear that not only does the Global Average layer solve many

parameters problems in the FC layer but can accommodate any image size.

Though this advantage of increasing the size of images improves accuracy

(Zheng et al., 2016), it also has a disadvantage, and that is, the amount of

computation required becomes costly to obtain accuracy.

 Mishra et al. (2021) proposed a multiscale parallel deep CNN

(mpdCNN) feature fusion architecture for FR for real low-resolution images

taken from long distances with different resolutions, illumination, and pose.

They discovered that their architecture performed better in SCface challenging

database for both low-resolution (86% accuracy) and high-resolution (99%

accuracy) images. Due to these findings, they concluded that this method is

26

suitable for FR systems in real-world applications namely criminal

investigation procedures.

Zhang, et al. (2015) suggested a flexible FR CNN system, without

performance comparison. Basically, it extends CNN architecture by analysing

errors and the identification accuracy of the data trained. Therefore, it extends

the network globally up until it meets the average error and recognition rate

and it obtained 91.67% accuracy in face identification using the ORL face

database.

Due to the popularity of the ORL database in FR, Kamencay, et al.

(2017) also proposed a CNN that comprised of only two convolution layers,

FC, ReLU, and two pooling layers. It obtained 98.3% accuracy with 80% and

20% training and testing respectively. Research by S. Almabdy et al. (2019)

came up with another method to enhance the effectiveness of the FR system

by taking out the features learned for the image from the CNN (AlexNet type)

as well as RasNet-50 and after, a SVM classifier. In 2019, a CNN combination

of VGG16, ResNet50, and MobileFaceNet obtained promising results in

children’s database (Oo and Oo, 2019). It focused on classifiers and feature

extraction. A year later, Sharma et al. (2020) proposed a PCA face feature

extractor and blended it with multilayer perceptron (MLP), Naïve Bayes, and

SVM to training and testing ratio of 80:20 using ORL database.

2.2.8 CNN advantages

In Section 2.2.6.3 (image processing) segmentation was mentioned, however,

this is not a requirement for CNN architectures (Yamashita et al., 2018). CNNs

robustness eliminate the need for hand-crafted feature extraction and contains

loads of learnable parameters for estimation. The downfall of this, it is

computationally expensive and demands more system software

enhancements for processing, i.e., graphical processing unit (GPU) to model

the training.

27

2.3 Principal Component Analysis

PCA is an unsupervised linear method applied in many disciplines and mostly

in favour of feature extraction and dimensionality reduction. PCA can also be

used in empirical data analysis, signal de-nosing, and in the field of

bioinformatics for genome data and gene expression levels analysis (Vahid

Mirjalili & Sebastian Raschka, 2017). It has two criteria, learning

representation(s) of the lower dimensionality than the raw input, and learning

representation(s) with elements without a straight-line connection amongst

themselves (Goodfellow, Bengio and Courville, 2016). It learns linear

transformation of the data of two vectors that are perpendicular to each other

and casts input x to a z depiction. Figure 2.9 elucidates this graphically.

Figure 2.9: PCA studies the conversion line to be certain that the first principal

component specifies the direction of the ultimate current variance coordinates.

(left) x initial data patterns. There is a possibility that the obtained variance is

not parallel towards centreline orientation. (right)The converted x = xTW is

aligned along z1 axis. z2 reduced variance orientation.

 PCA decorrelates the raw data representation X, for example,

considering the matrix design X to be 𝑚 × 𝑛, and supposedly the data is

average naught, 𝔼[𝑥] = 𝟎. Otherwise, it centres the data by deducting the

mean from instances in the processing phase. Thus, X, is linked with the

impartial sample covariance matrix as can be seen in eq. (2.4).

28

Var[x] =
1

𝑚−1
𝑿𝑇𝑿 (2.4)

where, 𝑿𝑇𝑿 are the eigenvectors. From eq. (4.1) it derives a 𝒛 = 𝑾𝑇𝑥

representation, where Var[z] is diagonal. It also provides possibility to obtain

principal components via a Single Vector Decomposition (SVD), and to be

exact they are the right singular vectors (the eigenvectors) of X. To

demonstrate this, let W be the right vectors of the decomposition 𝑿 = 𝑼∑𝑾𝑻.

Therefore, from this, the original eigenvectors equation with W is derived as

shown in eq. (2.5).

𝑿𝑻𝑿 = (𝑼∑𝑾𝑻)𝑻 𝑼∑𝑾𝑻 = 𝑾∑𝟐 𝑾𝑻 (2.5)

Then, SVD can be applied to prove the existence of diagonality in PCA results

in Var[z], and thus, from SVD of X the variance of X can be represented with

eq. (4.1) and by substituting 𝑿𝑻𝑿, with the results obtained in eq. (2.4). Then,

eq. (2.6) is obtained,

Var[x] =
1

𝑚−1
 𝑾∑𝟐 𝑾𝑻 (2.6)

thus, since the 𝑼 matrix of SVD is orthogonal, the covariance of z is diagonal,

and eq. (2.7) represents this.

Var[z] =
1

𝑚−1
 ∑𝟐 (2.7)

So, the above analysis represents an important PCA property, which is, the

capability to transform data into representations of mutually uncorrelated

elements. When projecting the feature x to z, via a straight-line conversion W,

the output is diagonal to covariant of matrix ∑𝟐.

2.3.1 Feature Extraction (FE) using PCA

FE is used to convert or launch information onto a new characterized collection

of features. However, when used in the context of dimensionality reduction its

purpose is to compress data and highly maintain the relevant features.

29

Therefore, the predictive performance is enhanced by reducing curse

dimensionality. Bellman (1957) defines curse dimensionality as an exponential

in volume associated with adding extra dimensions to Euclidean space. This

essentially means an error increases with the increase in the number of

features. Here, PCA for FE and dimensionality reduction is used as it helps in

distinguishing the shapes of the input signal connected to facial attributes. Its

purpose is to locate the utmost divergence path in the high dimensionality input

signal and project it to a set of lesser vectors compared to the initial data.

Hence, PCA dimension reduction constructs the d x k-dimensional conversion

matrix W which permits mapping of test value x against a recent k-dimension

attribute vector space with less size compared to initial d-dimension attribute

space such that:

𝑥 = [x1, x2, … , xd], 𝑥 ∈ ℝ𝑑 (2.8)

𝑧 = [z1, z2, … , zk], 𝑥 ∈ ℝ𝑘 (2.9)

 Xiang et al. (2015) expresses PCA to be an ancient practice of extracting

attributes and presenting data in pattern recognition and computer vision.

Sharma and Patterh (2015) proposed a new FR system that utilized the

adaptive filter median filter for preprocessing to denoise the face images and

then PCA features to extract Eigenvectors. FE uses covariance matrix to

generate matrix and eigenvectors of the face and rebuild images using PCA,

(Zhou et al., 2013). Gumus et al. (2010) evaluated the efficiency of PCA in FR

and used the Eigenfaces technique for data reduction and feature extraction.

However, though PCA proves to work best in FR linear extraction, it becomes

insufficient regarding nonlinearities.

2.4 K-Means Clustering

30

2.4.1 Data clustering

Data clustering method groups together enormous sets of data into clusters of

smaller sets of similar data (Faraoun and Boukelif, 2007). Therefore, an

algorithm to utilize this technique investigates pure groups of data for

similarities and its centroid. It distinguishes the distance between a point and

the cluster centroids. This algorithm should preserve the qualities of producing

all potential subsets for a distance function (Kleinberg, 2002). Wang et al.

(2021) defines it as unsupervised learning that strives to group together similar

clusters.

2.4.2 Algorithm description

K-Means clustering is a representation learning algorithm that separates the

data to be trained into 𝑥 distinct clusters of instances near to one another It,

therefore, supplies a 𝑘-dimensions with a single high bit value ℎ indicating an

input 𝑥. For instance, say 𝑥 is from cluster 𝑖, so ℎ1 = 1, then other

representations of ℎ are nil. One-hot a sparse representation, meaning, a vast

number of its submissions are nil to all input entry. The advantage of k-means

is that it groups samples based on their feature similarities. While this

algorithm is exceptional at recognizing clusters with a spherical space, it has

a drawback, and that is to be given a quantity of clusters, 𝑘, a priori.

 This algorithm initializes 𝑘 various geometric centers { µ(𝟏), … , µ(𝒌)} of

various features, however, alternates amid two distinct strides in anticipation

of converging. From a single stride, every single training incident goes to group

𝑖, whilst 𝑖 represents the position of the closest geometric center µ(𝟏). Whilst

other stride µ(𝟏) geometric center or centroid is modernized to median training

values of 𝒙(𝒋) given to group 𝑖. Though this algorithm works well, it not well-

constituted, meaning, in practice, no basic principle can determine or ensure

the clustering performance. One of its characteristics namely, Euclidean, it can

be measured in the cluster geometric center to cluster representatives. That

clarifies the possibilities available to rebuild training data from the assignments

31

of the cluster, but the output does not tell what similarities are, and that is

where the one-hot representation comes in to give the ability to measure the

similarities. To conclude, the objective of this algorithm is to deduce the

objective function, and that is the error function. Eq. (2.10) mathematically

represents this:

J = ∑.

𝑘

𝑗=1

∑ ∥ 𝑥𝑖
𝑗 − 𝑐𝑗 ∥2 (2.10)

𝑛

𝑖=1

where ∥ 𝑥𝑖
𝑗 − 𝑐𝑗 ∥2 represents a gap amongst a feature position and the center

𝑐𝑗 of similar groups and signifies the gap of n feature position and

corresponding similar groups centers.

2.5 Conclusion

This chapter discussed deep learning and CNNs. The CNN architecture was

included, and its layers namely, convolutional, pooling, dropdown/softmax

layers were discussed. Image processing is explained by firstly elaborating

what an image is and why it is important. Differences in 1D and 2D

computations in CNN. Padding role in CNN image classification and

advantages of CNNs and some challenges pertaining this technique in

contrast along with other algorithms in FR systems. The motivation of CNNs

from the neuroscience perspective and outlined the fundamentals behind their

development. Following this, was the discussion of image classification using

CNNs. Finally, FR CNN related work, referenced advances on recent FR

systems to tackle the challenges of illumination, feature extraction, pose, etc,

aiming to identify methods that will be discussed or presented in the remaining

chapters of this study. K-Means clustering and CNNs for feature extraction

were reviewed. In chapter 3, the proposed method of this dissertation is

discussed in detail.

32

CHAPTER 3

Proposed Methodology

3.1 Chapter overview

In this chapter the new proposed methodology of face recognition called,

Improved Deep Learning Neural Network (IDLNN) is presented. It incorporates

the application of PCA, K-Means clustering and CNN algorithms. Firstly, it

begins by describing and formalising the methodology based on the three

selected algorithms. Secondly, it presents the steps taken to execute these

three algorithms.

3.2 CNN model selection using PCA and K-Means as a driving force

3.2.1 Introduction

In this section, PCA data compression and classification are discussed, SVM

algorithm to minimize misclassification, SVC classification, CNN architecture,

and results are explained. Therefore, basic concepts behind FR systems are

elaborated. First, these are discussed to obtain CNN architecture. Next, the

algorithm is introduced. The remainder of the work discusses future works.

3.2.2 Methodology

The proposed technique namely IDLNN comprises DCNN model which is

tested for FR as they allow extraction of wide range of features from images.

It utilizes PCA first for dimensionality reduction and pre-processing and k-

means clustering before it enters the DCNN. This is discussed in detail in the

following subsections, but let’s first discuss the problem and fundamental

concepts behind it.

The primary Problem Definition of a FR system is the ability to recognize

a person’s face from an image in a set of testing images from a dataset in the

database. Illumination, pose, and facial expression affect the process of

Feature Extraction and Selection. Hence, de-noising the image with a filter

33

helps preserve appropriate features namely edges to enhance accuracy

during training process. Thus, finding the best CNN architecture and

hyperparameters for image classification unleashed ways on how to

manipulate the raw data. CNN input data undergone two methods, (1)

application of PCA for data dimensionality reduction and classification to find

eigenvectors (reshaping face images to vectors), see Section 2.3; (2)

application of K-Means clustering to the PCA output. Whence, CNN takes the

output of the K-Means and use it to optimise the model. The optimisation of

the IDLNN method is determined by the manipulation of the architectural

parameters, such as, defined number of convolutional layers, convolutional

filters size per layer, FC layers filter size, number of classes, and the softmax

layer. Hyperparameters are held fixed during the training process, but the

learning parameters such as, optimiser, learning rate, batch size, weight

initialisation method were constantly manipulated to enhance the results.

It is crucial to fully understand the essential concepts behind FR to

effectively comprehend the proposed technique. Pre-processing was already

discussed in Section 2.2.6.3, Feature Extraction (FE) using PCA in Section

2.3.1 and Support Vector Machine (SVM) classification is considered for its

effectiveness in high dimensional spaces, and this is discussed in the following

Section, 3.2.3.

3.2.3 Using SVM

SVM perceptron algorithm is used to minimise misclassification errors.

However, we use it to maximise the image margins. Here, the margin

represents a gap pulling apart dimensions a bit lesser than their ambient

space, and trainable samples nearest against the bound’s conclusions.

Hyperplanes of bigger edges possess less chances of overfitting and

underfitting while those of tinier edges are prone to over or underfitting. The

basic equation behind the margin maximisation is given by eq. (3.1):

𝑤𝑇(𝑥𝑝𝑜𝑠 − 𝑥𝑛𝑒𝑔)

||𝑤||
 =

2

||𝑤||
 (3.1)

34

where w is the vector length, 𝑥𝑝𝑜𝑠 denotes a positive hyperplane and 𝑥𝑛𝑒𝑔 the

negative hyperplane. The left side of eq. (3.1) signifies the margin to maximize

which is the distance between the positive and negative hyperplanes. The

SVM function becomes the maximisation of this margin by maximizing the

righten side of the equation on constraints that the classification of samples is

correct in the dataset. The following subsections as mentioned at the

beginning of this section are to elaborate and illustrate the proposed

contributions of our proposed methodology.

3.2.4 PCA For Data Compression and Classification

Using PCA as an unsupervised dimensionality reduction, the feature extraction

algorithm is utilised to convert data to a novel attribute space with the goal of

maintaining most of the relevant information by using proper values and

vectors. Thus, this improves the required memory calculation of the training

algorithm and prognostic execution by decreasing the dimensionality curse.

To understand the training algorithm of Eigenfaces let’s consider a face of

𝐼(𝑥, 𝑦) to be a 2D 𝑁 × 𝑁 array. Figure. 3.1 displays the original face images

to demonstrate the calculation of Eigenfaces.

Figure 3.1: ORL faces Dataset.

35

These images are converted into vectors of size 𝑁2 so that an image of

64 × 64 turns into a vector of 4096 dimension or equivalent to a point in a 4096

space dimension. The main purpose here is to get vectors that at a higher level

consider the dissemination of face images in the entire image space. Since

these vectors are the eigenvectors of the variance-covariance matrix

equivalent to the original images and that they are face-like in appearance,

they are referred to as “Eigenfaces” (Eleyan and Demirel, 2005). Assuming the

training set of images to be 𝑥1, 𝑥2, 𝑥3…𝑥𝑚 the median computation of all these

face vectors is represented by

𝛹 =
1

𝑀
∑ 𝑥1

𝑀

𝑛=1

 (3.2)

and because each face c varies from the average face 𝛹 it can be subtracted

by

𝛹 = 𝑐 − 𝛹 (3.3)

By considering all face vectors a matrix size of 𝑁2 ∗ 𝑀, A = [𝑎1 𝑎2 𝑎3 … 𝑎𝑚

] can be obtain. This allows to find the variance-covariance matrix by

performing A by 𝐴𝑇 multiplication and because A has 𝑁2 ∗ 𝑀 dimensions, thus

𝐴𝑇 has 𝑀 ∗ 𝑁2 dimensions. Therefore, multiplying 𝑁2 ∗ 𝑁2 results in 𝑁2 of 𝑁2

range that is computationally not useful to calculate. Hence, computing

covariance matrix multiplying A by 𝐴𝑇 results in 𝑀 ∗ 𝑀 matrix with M

(presuming M << 𝑁2) eigenvectors of size M. This results to:

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐴𝑇𝐴 (3.4)

where A is formed by the different vectors, i.e., 𝐴 = [𝛷1, 𝛷2…𝛷𝑀]. The above

covariance (C) formula helps to calculate eigenvalues and eigenvectors. In

36

practice, the dimension of C is 𝑁 ∗ 𝑀. Considering the eigenvectors 𝑣𝑖 such

that

𝐴𝑇𝐴𝑣𝑖 = λ𝑖𝑐 (3.5)

Thus, remultiplying both sides of the above formula by A, it becomes

𝐴𝑇𝐴𝑣𝑖 = λ𝑖𝑐 (3.6)

where, it can be noted that 𝐴𝑣𝑖 are the eigenvectors and λ𝑖 equivalent to µ𝑖

that are the eigenvalues of 𝐶 = 𝐴𝐴𝑇 and µ𝑖 = 𝐴𝑣𝑖. Therefore, this analysis

concludes that 𝐶′ and 𝐶 eigenvalues are the same and the relation on their

eigenvectors is µ𝑖 = 𝐴𝑣𝑖. Therefore, constructing 𝑀 ∗ 𝑀 the M eigenvectors,

𝑣𝑖, of variance-covariance matrix provides M the biggest eigenvalues of 𝐶′.

Now taking the normalised training faces 𝑥𝑖 and characterize every single face

vector in a direct combination of the most exceptional K eigenvectors (where

K < M) results to

𝑋𝑖 − 𝛹 = ∑ 𝑤𝑗µ𝑗 (3.7)

𝐾

𝑗=1

where, µ𝑗 are called Eigenfaces. Figure 3.2 depicts eigenfaces. Given a new

face (Γ), preprocessing is performed to make sure the face is positioned in the

center of the image and that it has identical dimensions as the face being

trained. Therefore, it is transformed into its eigenface components by

subtracting the face from the average face 𝝭, as in

𝛷 = Γ − Ψ (3.8)

37

 Figure 3.2: 24 Eigenfaces with Highest Eigenvalues.

Thus, the normalised vector is projected onto eigenspace to acquire the direct

combination of eigenfaces simply by

𝛷 = ∑ 𝑤𝑗µ𝑗 (3.9)

𝐾

𝑗=1

From this projection, the vector of the coefficient generates weights to form a

feature vector,

𝛺𝑇 = [𝑤1 𝑤2 𝑤3 … 𝑤𝑚] (3.10)

This feature vector recounts the involvement of each eigenface in representing

the input image, treating the eigenfaces as a foundation set for face images.

Then, a pattern of basic recognition algorithm is used to find which value of

already defined face classes, if any, best defines the face. The class of a face

 Ωk is computed by assessing the region of the results of the eigenface

representation over a small number of face images of each individual.

Classification is achieved by subtracting the feature vector from the training

face image to get the minimum distance between the training and testing

vectors. This is basically the Euclidean Distance in the middle of an input face

38

image and faces classes. The aim here is to get the class k of the face that

minimizes the Euclidean Distance, as in:

𝜀𝑘 = min𝑘 ∥ (Ω − Ω𝑘) ∥ (3.11)

where Ω𝑘 is a vector describing the 𝑘𝑡ℎ face’s class. If 𝜀𝑘 is lower than the

forbearance level 𝑇𝑘, then it is recognised with k face from the training face

image, otherwise, the face is not matched with any faces in the training set.

Though this algorithm is computationally inexpensive it is sensitive to

illumination, and it requires frontal view of the face to work effectively.

3.2.5 Classification using SVC

Support Vector Classification (SVC) class can perform binary and multi-class

classification on a dataset. In this dissertation, it is preferred with Radial Basis

Function (RBF) kernel, thanks to its effectiveness in high dimensional spaces

(Hsu, Chang, and Lin, 2016). When training a Support Vector Machine (SVM)

with this kernel C and gamma ought to be thought of. The kernel C trades off

all misclassifications of training face images against maximisation of the

decision surface. The aim is to get a high C to ensure all training faces are

classified correctly. Chosen C = 1000 as this value showed a significant

improvement. However, gamma (𝛾) verifies how much influence a single

training face image has and the larger 𝛾 is, the closer other face images to be

affected. The value of this parameter was given as gamma=0.001 as it also

improved classification.

3.2.6 Convolutional Neural Networks (CNN)

In chapter two, Section 2.2, the properties, and motivations behind CNNs in

FR are explained. In this section, the CNN architecture used in this dissertation

39

is presented. Figure 3.3 illustrates the proposed multilayer CNN architecture

for this dissertation.

(a)

(b)

Figure 3.3: This study’s suggested convolutional neural network architecture.

(a) shows a complete architecture, (b) shows the layers in detail.

Figure 3.4 depicts the flowchart of the proposed method. Convolutional neural

networks consist of numerous layers as mentioned in Section 2.2 of chapter

two, namely, convolutional, Pooling (P), and Fully Connected (FC) layers.

Dense_1 OUTPUT
Size: 32768

INPUT
Size: 64 x 64 x 1

Con2D: 3 x 3 size,
64 filters

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D: 3 x 3 size,
32 filters

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D: 3 x 3 size,
32 filters

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D: 3 x 3 size,
16 filters

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Dropout:
rate = 0,2

40

Each layer transforms its volume of Rectified Linear Unit (ReLU) activations to

another layer through different functions. They are also comprised of a dropout

layer for overfitting (Srivastava et al., 2014). In this dissertation, three main

types of layers are incorporated, which are, Convolution (Conv) layer, Pooling

layer, and Fully Connected layer. The layers of this architecture are illustrated

below as follows:

• Input layer consists of raw image data with a dimension vector of

batch size 64 x 64 x 1. This means batch size x height x width x

grayscale images (1 channel images).

• Convolutional layer (Conv_1) entails a batch size x 64 x 64 x 64 with

a kernel of 3 x 3 and 64 output feature maps. This layer computes

the convolutions between the neurons and the various patches in the

input. Detailed in Section 2.2.2.

• Pooling layer (Pooling_1) with batch size x 32 x 32 x 64 with 64

representing output feature maps. This layer samples the previous

layer and results in reduced dimensions. This layer assists only in

keeping important elements and the Max pooling is used to keep

maximum value in each K x K window, see details in Section 2.2.3.

Max pooling presents some sort of local invariance, consequently, it

helps to produce vigorous features against noise in the input data.

Here, the same padding is used to get the same size output as the

same as that of the input, vector x. By doing so, it computes the

padding parameter, p, corresponding to the filter size to make sure

that the input size is the same as the output size as required (Vahid

Mirjalili and Sebastian Raschka, 2017).

• ReLU is an activation function that is applied to the matrix to make it

linear (Jarrett et al., 2009.). It is linear in the positive dimension but

zero in the negative dimension. Its linearity in the positive dimension

has an alluring attribute that inhibits non-saturation of gradients,

41

though one-half of the actual line its gradient is zero. It takes the

summed weighted input from the node and transform it into the

activation of the node or output for that input.

• Convolutional layer (Conv_2) with batchsize x 16 x 16 x 128 with

kernel of 3 x 3 and 128 output feature maps.

• Pooling layer (Pooling_2) with batchsize x 16 x 16 x 128 with 128

representing output feature maps.

• Fully Connected (FC_1) layer with batchsize x 32768.

• Dropout layer or output shape 16 x 16 x 128.

• Fully Connected (FC_2) and softmax layer compute the output

scores resulting in size of 1 x 1 x 40, where 40 defines the value of

classes in the training dataset. According to (Long, Shelhamer and

Darrell, 2015), this layer can be trained end-to-end, pixels-to-pixels

on semantic image segmentation (classification and localisation)

rather than only to predict the dense outputs.

3.3 Training and simulation of CNN

From the ORL database of 40 classes a CNN was implemented. First,

eigenfaces and feature prognosis vectors are computed for the faces in the

database, but this is detailed in Section 3.4.2.3.1. Figure 3.2, Section 3.2.4,

showcases Eigenfaces obtained during training. Figure 3.5 depicts the

cumulative explained variance ratio.

42

Figure 3.4: PCA + K-Means Clustering + CNN flow diagram used in this

dissertation.

43

Figure 3.5: Cumulative explained variance.

Then, cluster these feature projection vectors using k-means clustering and

feed them as inputs in the CNN. Figure 3.6 and 3.7 depicts the schematic

diagram of the proposed CNN training phase and classification simulations.

Figure 3.6: Convolutional Neural Network training phase.

When FR is considered for a new face image, the feature projection vector of

this new face is calculated from the eigenfaces, classified with SVC, clustered

using the KMeans algorithm to separate samples in n groups of equal variance

and choosing centroids that minimise a criterion known as inertia and then this

face image gets new face descriptors. These new face descriptors are then

supplied to convolutional neural networks and this network is modelled with

44

these descriptors, where the network outputs are compared. Decision-making

is based on the minimum and maximum outputs. At the highest output, this

new face is chosen to be the part of the class of a person with this highest

output.

Figure 3.7: Convolutional Neural Network Classification Simulations.

3.4 Conclusion

This chapter discussed the suggested method in detail commencing by the

usage of SVM and followed by SVC classification. Subsequently, discussed

data compression and classification in PCA. Finally, discussed the CNN

algorithm, training, and simulation, and illustrated these in Section 3.3, Figures

3.6 and 3.7. Chapter four, next, will be illustrating and discussing empirical

findings or experimental results of the proposed method in details.

45

CHAPTER 4

Empirical Findings (Experimentation)

4.1 Overview

The upcoming sections introduce the experimental setup and implementation

of this pilot study.

4.2 Experimental Setup

4.2.1 Development environment

All conducted simulations were done on Windows 10.1 with Intel® Core™ i7-

9750H 9th Generation at 2.60GHz, 32.0 GB memory, GPU 0 (Intel® UHD

Graphics 630), GPU 1 (NVDIA GeForce GTX 1650 with Max-Q Design), 2667

MHz RAM speed and A5.2 GB cashed. Software coding experiments were

executed in Python using Keras (Haghighat and Juanes, 2021) application

programming interface (API) with TensorFlow as a backend. PCA, K-Means

clustering, and CNN models were created with this high-level API computed in

the background with the help of TensorFlow. Python libraries and

dependencies such as NumPy, Pandas, and matplotlib to generate figures

were used. Jupyter Notebook interactive computational environment was

used.

4.2.2 Data

To examine the proposed algorithm, the ORL_faces dataset was used. This

dataset was first introduced between April 1992 and 1994 (Samaria and

Harter, 1994). It comprises 10 different face images per class for every 40

distinct persons. These images are in greyscale format and were captured in

different lighting conditions and occasions. Per class, one person is

represented with different facial expressions such as an open or close mouth,

with or without glasses, and with different head orientations (Abbas, Safi and

Rijab, 2017). These images are used for training and testing. Figure 3.1 in

46

Section 3.2.4 shows among the views some of these faces. The shape

(dimensions) of the images is 64 * 64 pixels, and each with a sample vector of

64 * 64 = 4096 dimensions.

 4.2.3 Implementation

4.2.3.1 PCA Algorithm Steps

As stated already from the beginning of this study in the abstract section, PCA

is the first algorithm implemented. The dataset is split already from this

algorithm to 20 % test size and 80% training and its results are observed. This

split was adjusted accordingly to assist on delivering high accuracy. PCA

algorithm extracts the following steps (Vahid Mirjalili & Sebastian Raschka,

2017): (1) data standardization, (2) covariance construction, getting

covariance matrix eigenvalues, and eigenvectors, (4) sort proper values in

reducing order sequence on positioning proper vectors. During standardizing

of data, the centroid is at the origin, all the variables consist of the same

variance, making all variables to get a naught average and the square root of

the variance. Parameters such as the number of components (n_components)

were assigned a value of 155, and random state (random_state) of 42 to

initialize the internal random number. Thereafter, SVC classification with RBF

kernel, penalty parameter C of 1000 to add penalty to each misclassified data,

and gamma parameter of 0.001 to monitor the gap that influences the single

point of training was utilized to enhance the accuracy (Liang et al., 2022).

Figure 3.5 Section 3.3 represents the cumulative explained variance obtained.

 4.2.3.2 K-Means Clustering Algorithm Steps

Again, this algorithm was announced at the beginning of this study at the

abstract section and explained in depth in Section 2.4. This algorithm takes

the output data from the PCA, in this case, eigenfaces, and assigned 40 face

classes and used hyperparameters such as, initialise (init) set to random,

47

number of clusters (n_clusters) set to 5, number of initialisations (n_init) set to

10, maximum iterations (max_iter) set to 300, and random_sate = 42. K-Means

algorithm consists of phases namely: (a) arbitrarily choose 𝑘 geometric centers

form sample points like the preliminary group centres, (b) designate every

sample of a closest geometric centre µ(𝑗), 𝑗𝜖{1, … , 𝑘}, (c) change a position of

the geometric centres towards the middle of the samples that were designated

to it, (d) recite steps 2 and 3 until the cluster tasks do not alter or number of

iterations is attained. Thereafter, fit this into the new dataFrame, and define

the lowest sum of Euclidean distance. This new dataFrame becomes the CNN

input data.

4.2.3.3 CNN Algorithm Steps

In Section 3.2.6, the model architecture with its layers is detailed but the

hyperparameters and parameters were left out for this section. Therefore, the

first step was to normalise the new dataFrame of images to prepare for CNN

training. The training data was fitted in the standard scaler and both the test

and train data were transformed and reshaped to 64 * 64 pixels and to channel

(𝐶𝑛) 1 for greyscale images. Subsequently, the classes of 40 face images were

converted to matrix of binary values using to categorical4 function provided by

Keras to represent different categories of the data. This function yields the

output binary values of 1 or 0. Training the model, certain parameters were

considered to enhance the accuracy such as, the crossentropy loss parameter

for computation between the labels and predictions, Adam optimisation

parameter of 0.0001 learning rate, batchsize of 256, verbose of 2 and

callbacks. Splitting the dataset to a test size of 20 % and 80 % training

improved the accuracy and this proposed methodology obtained 99% in 90

4 To categorical function is available from: Python Keras | keras.utils.to_categorical() -

GeeksforGeeks

https://www.geeksforgeeks.org/python-keras-keras-utils-to_categorical/
https://www.geeksforgeeks.org/python-keras-keras-utils-to_categorical/

48

epochs. Figures 4.1 and 4.2 display the graphical representations of the model

accuracy and loss after training. Table 4.1 depicts confusion matrix.

Figure 4.1: Model Accuracy of 99%.

Figure 4.2: Model Loss of 1%.

49

Table 4.1 Confusion Matrix

Predicted

Real

Numerical Form

Class_1 Class_2 Class_3 Class_4 Class_5 Class_6

Class_1 3 0 0 0 0 0

Class_2 0 1 0 0 0 0

Class_3 0 0 2 0 0 0

Class_4 0 0 0 2 0 0

Class_5 0 0 0 0 4 0

Class_6 0 0 0 0 0 4

Table 4.2 Shows classification report where the f1-score accuracy is 99%.

Table 4.2: F1-Score of 99%

Scoring

Metrics

Classification Report

Precision Recall F1-Score Support

Accuracy 0.99 80

Macro avg 0.99 1.00 0.99 80

Weighted avg 0.99 0.99 0.99 80

F1-score is a weighted average of the precision and recall whereby at its best

it reaches a value of 1 and at worst score a 0. Thus, our model’s accuracy at

its best is 0.99 which is close to 1.

Figure 4.3 depicts the first 6 filters out of 64 filters from layer 2 of this proposed

paradigm with 18 face images. Each filter with one row and each channel with

one column. Inhibitory weights are the dark squares and excitatory weights the

50

light squares. Excitatory inputs are often positively weighted and valued while

inhibitory inputs are negatively weighted and valued. Each neuron has a fixed

threshold for firing, and this can be achieved by an excitatory input.

Figure 4.3: Filter of the second layer.

To view the feature maps of the input face image, a visualisation is performed.

This visualisation entails input features that are identified and maintained from

the feature maps. Figure 4.4 depicts this in the first conv layer by showing

different face image sorts of various emphasized features. A few of these

highlights can be seen as a focus on lines, and background of the foreground.

Figure 4.4: First convolutional layer feature maps.

51

Table 4.3 represents the F1-Score results obtained in contrast to other face

algorithms such as PCA+SVC, SVM, Naive Bayes (NB), kNN and the

proposed CNN algorithm.

TABLE 4.3: F1-Score Performance Analysis for the Proposed Methodology

4.3 Conclusion

This chapter covered the basic implementation applied in this study. It started

by describing the system software setup. Next, defined the ORL dataset with

face images used to evaluate, test, and train the CNN model. Thereafter, it

explained the steps taken to process the original data using PCA algorithm.

Afterward, cited the steps taken using the K-Means clustering algorithm to

manipulate the data to be ready as a CCN input data. Finally, discussed the

CNN algorithm hyperparameters used to train the CNN model with the

simulations results presented graphically.

Test Results

Database Training

Images

%

Testing

Images

%

SVM NB KNN

F1-Score

Performance

%

PCA + SVC

F1-Score

Performance

%

CNN

F1-Score

Performance

%

ORL

 50 50 94 48 61 93 91.5

 60 40 94 63 74 94 94

 70 30 76 96 91

 80 20 96 82 84 97 99

52

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary and Conclusions

This study aimed to find alternatives to improve the FR systems by

investigating and exploring the fundamental concepts in the current literature,

to enhance the accuracy and training time of the CNNs. Chapter 2 provided

the theoretical background literature of the FR systems. In chapter 3 the

methodology used in this study was presented and discussed with the well-

known algorithms in the field of machine learning and face recognition such as

PCA, K-Means clustering and CNNs. In chapter 4 the implementation process

was explained, beginning with the development environment, to the dataset

used in this study, and finally portrayed all the steps taken into training and

testing the three identified algorithms of this study. Chapter 4 also presented

the results obtained during the training of the proposed CNN model.

In this study, a face recognition system, based on improved deep

learning neural network is proposed and implemented on Python programming

language. It is based on PCA preprocessing, k-means clustering followed by

convolutional neural networks (CNNs). The feature prognosis vectors acquired

from the PCA technique are utilized as input vectors in k-means clustering and

then normalised in preparation for the training and testing of the CNN

architecture. This method performed better than the PCA+SVC, SVM, KNN

and NB and obtained the best accuracy of 99% at 90 epochs. The results

suggests that CNN surpasses the abovementioned algorithms for the ORL

database and that there is a room for improvement.

5.1.1 Contribution

Though CNNs (LeCun et al.,1989) remain the specialised sort of neural

networks in manipulating data with identified grid-like topology and a group of

53

models motivated by the functionality of a visual cortex in the human brain

whilst recognising objects, today they still face challenges of illumination,

noise, and feature extraction. This dissertation aimed to contribute on

addressing the FR system challenges by improving deep CNN accuracy and

performance. This study will also be of value to current and future researchers

interested in FR using deep CNN. Also, to highlight the benefits of NN in FR

such as nonlinearity. Basically, a neuron is a nonlinear device, and its

nonlinearity is a highly important property (Haykin, 1994). To improve the

techniques of FR such as model-based and appearance-based by

investigating the methodologies of PCA and LDA to construct and create 3D

model of human face. PCA technique uses eigenfaces which are just merely

2D spectral facial images that are composed of grayscale features (Das,

2015). The deliberate contributions and initial assumptions from other work

are, a study to motivate CNNs image classification for FR and their issues,

more on the selection of parameters to train the model, combination of PCA,

K-Means clustering, and CNNs to maintain valuable features and further the

enhancement of CNNs training time, and finally, K-Means application to

recreate the PCA output data for CNNs as input data.

 5.2 Limitations and Future work

The size of the network was limited to reduce the training time, but also, due

to time span of this dissertation. Thus, if time was not the issue different

parameters would have been evaluated and tested in different network

configurations. The image dataset would have been increased to large

datasets such as Googles dataset. Instead of only using PCA and K-Means

clustering for preprocessing purposes other preprocessing possibilities would

have been investigated and applied in the first layer. Regardless of the

encouraging findings the hyperparameters can be tuned more to even obtain

better results, for example, convolutional layers, these can be manipulated by

changing the parameters to observe the output results.

54

For future work, it would be suggested that different databases are

tested using this approach and that a live face recognition system is used to

observe how accurate the classification of this model with different ethnicities

is. It is important to note that the algorithms applied in this dissertation can be

utilized to any image classification problem regardless of the dataset used.

PCA was chosen due to its capability to reduce data dimension allowing the

usage of smaller networks to reduce the training time. As for the CNN, other

forms or steps of preprocessing might be utilized to substitute the input layer.

Due to the time constraints concerning this dissertation, this led to limit

the size of the network and the number of times the training is run. Therefore,

for future work, the assessment of larger networks should be implemented and

so as more parameter tuning such as the learning rate. Moreover, time

evaluation highly depends on the system hardware to speed up the training

time. Training larger datasets enhances the accuracy of the network (Schroff,

Kalenichenko and Philbin, 2015). Finally, future work could consist of the

system development of practical applications such as identity verifications at

the airport or by the police.

55

REFERENCES

Cireşan, D., Meier, U., Masci, J. and Schmidhuber, J. (2012). Multi-

column deep neural network for traffic sign classification. Neural

Networks, 32, pp.333–338.

Prateek J.. (2017). Artificial Intelligence with Python. Second edition.

Packt Publishing Ltd. UK Birmingham.

Goldstein, A.J., Harmon, L.D. and Lesk, A.B. (1971). Identification of

human faces. Proceedings of the IEEE, 59(5), pp.748–760.

Jain, A., Hong, L. and Pankanti, S. (2000). Biometric

identification. Communications of the ACM, 43(2), pp.90–98.

 Bowles N.. (2016). I Think My Blackness Is Interfering: Does Facial

Recognition Show Racial Bias. The Guardian.

 Zavyalova, V. (2018). In your face: New facial recognition system

catches criminals in Russia. Science & Tech, Nov 27 2018. Available

at: https://www.rbth.com/science-and-tech/329587-facial-recognition-

system-catches-criminals. .

 Arya, S., Pratap, N. and Bhatia, K. (2015). Future of Face Recognition:

A Review. Procedia Computer Science, 58, pp.578–585.

 .

 Zafeiriou, S., Kotsia, I., and Pantic, M. (2014). Unconstrained Face

Recognition. Middlesex University London & Imperial College London,

no.2, pp. 22.

 Bhaskar, B., Anushree, P.S., Shree, S.D. and Prashanth, K.V.M.

(2015). Quantitative Analysis of Kernel Principal Components and

Kernel Fishers Based Face Recognition Algorithms Using Hybrid

Gaborlets. Procedia Computer Science, 58, pp.342–347.

56

 Abhishree, T., Latha, J., Manikantan, K. and Ramachandran, S. (2015).

Face Recognition using Gabor Filter Extraction with Anisotropic

Diffusion as a pre-processing technique. Procedia Computer Science,

no. 45, pp. 312-321.

 LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E.,

Hubbard, W.E., and Jackel, L.D. (1989). Handwritten Digit Recognition

with a Back-Propagation Network. Neural Information Processing

Systems (NIPS), pp. 396-404.

 Das, R. (2015). Biometric technology: authentication, biocryptography,

and cloud-based architecture. CRC Press, UK.

 Singh, S. and Prasad, S.V.A.V. (2018). Techniques and Challenges of

Face Recognition: A Critical Review. Procedia Computer Science, no.

143, pp.536–543.

 Haykin, S. (1994). Neural Networks: A Comprehensive Foundation.

Macmillan Publishing Company, New York.

Vahid Mirjalili and Sebastian Raschka, (2017). Python Machine

Learning, Packt Publishing Ltd, UK Birmingham, UK.

Stan Z. Li and Anil K. Jain, 2011, Handbook of Face Recognition,

Springer-Verlag, London Limited.

Shamshad Ansari (2020). Building computer vision applications using

artificial neural networks : with step-by-step examples in OpenCV and

TensorFlow with Python. Berkeley, California. Apress. Centreville, VA,

USA.

57

Shrivakshan, G. (2012). A Comparison of various Edge Detection

Techniques used in Image Processing. IJCSI International Journal of

Computer Science Issues, 9(1).

McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas

immanent in nervous activity. The Bulletin of Mathematical Biophysics,

5(4), pp.115–133. Doi: 10.1007/BF02478259.

Habrman, D. (2016). Face Recognition with Preprocessing and Neural

Networks.

Hubel, D.H. and Wiesel, T.N. (1962). Receptive fields, binocular

interaction and functional architecture in the cat’s visual cortex. The

Journal of Physiology, [online] 160(1), pp.106–154.

Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C. and Fried, I. (2005).

Invariant visual representation by single neurons in the human

brain. Nature, [online] 435(7045), pp.1102–1107.

Mouton, C., Myburgh, J.C., Davel, M.H. (2020). Stride and Translation

Invariance in CNNs. In: Gerber, A. (eds) Artificial Intelligence Research.

SACAIR 2021. Communications in Computer and Information Science,

vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-66151-

9_17.

Parkhi, O., Vedaldi, A. and Zisserman, A. (2015). ´Deep Face

Recognition`, Visual Geometry Group, University of Oxford.

Parkhi, O.M., Simonyan, K., Vedaldi, A. and Zisserman, A. (2014). A

Compact and Discriminative Face Track Descriptor. 2014 IEEE

Conference on Computer Vision and Pattern Recognition. pp. 1693-

1700.

Krizhevsky A., Sutskever I. and Hinton G.E., 2012, ́ Advances in Neural

Information Processing Systems`, pp. 1097-1105

58

Qin, J., Pan, W., Xiang, X., Tan, Y., & Hou, G. (2020). A biological

image classification method based on improved CNN. Ecol.

Informatics, 58, 101093.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016).

Rethinking the Inception Architecture for Computer Vision. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). pp.

2818-2826, doi: 10.1109/CVPR.2016.308.

He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2016). Deep Residual

Learning for Image Recognition. 2016 IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017).

Densely Connected Convolutional Networks. 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). pp. 2261-2269

Zheng L., Zhao Y.L., Wang S.J. and Tian Q., 2016, ´Good Practice in

CNN Feature Transfer`, pp. 1604.00133.

Mishra, N.K., Dutta, M. and Singh, S.K. (2021). Multiscale parallel deep

CNN (mpdCNN) architecture for the real low-resolution face recognition

for surveillance. Image and Vision Computing, 115, p.104290.

Zhang, Y., Zhao, D., Sun, J., Zou, G. and Li, W. (2015). Adaptive

Convolutional Neural Network and Its Application in Face

Recognition. Neural Processing Letters, 43(2), pp.389–399.

Kamencay, P., Benco, M., Mizdos, T. and Radil, R. (2017). A New

Method for Face Recognition Using Convolutional Neural

Network. Advances in Electrical and Electronic Engineering, 15(4), pp.

663–672.

59

Oo, S.L., and Oo, A.N. (2019). Child Face Recognition with Deep

Learning. 2019 International Conference on Advanced Information

Technologies (ICAIT), 155-160.

Sharma, S., Bhatt, M.V., and Sharma, P. (2020). Face Recognition

System Using Machine Learning Algorithm. 2020 5th International

Conference on Communication and Electronics Systems (ICCES), pp.

1162-1168.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT

Press, Cambridge, MA.

Eleyan, A., Demirel, H. (2005). Face Recognition System Based on

PCA and Feedforward Neural Networks. In: Cabestany, J., Prieto, A.,

Sandoval, F. (eds) Computational Intelligence and Bioinspired

Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_115.

Bellman, R. (1957) Dynamic Programming. Princeton University Press,

Princeton, NJ. - References - Scientific Research Publishing.

Xiang, X., Yang, J. and Chen, Q. (2015). Color face recognition by

PCA-like approach. Neurocomputing, 152, pp.231–235.

Sharma, R. and Patterh, M.S. (2015). A new pose invariant face

recognition system using PCA and ANFIS. Optik, 126(23), pp.3483–

3487.

Zhou, C., Wang, L., Zhang, Q. and Wei, X. (2013). Face recognition

based on PCA image reconstruction and LDA. Optik, vol. 124, pp.

5599-5603.

Gumus, E., Kiliç, N.Z., Sertbas, A., and Ucan, O.N. (2010). Evaluation

of face recognition techniques using PCA, wavelets and SVM. Expert

Syst. Appl., 37, 6404-6408.

60

Faraoun, K.M., and Boukelif, A. (2007). Neural Networks Learning

Improvement using the K-Means Clustering Algorithm to Detect

Network Intrusions. World Academy of Science, Engineering and

Technology, International Journal of Computer, Electrical, Automation,

Control and Information Engineering, 1, 3138-3145.

Wang, X., Wang, Z., Sheng, M., Li, Q. and Sheng, W. (2021). An

adaptive and opposite K-means operation based memetic algorithm for

data clustering. Neurocomputing, vol. 437, pp.131–142.

Awcock G. J. and Thomas R., (1995), Applied Image Processing,

Macmillan Press LTD, Houndmills, Basingstoke, Hampshire RG21 2XS

and London companies and representatives.

Kleinberg, J. (2002). An impossibility theorem for clustering. In Proc.

NIPS, (Vol. 2002 pp. 446–453).

Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K. (2018).

Convolutional neural networks: an overview and application in

radiology. Insights into Imaging, 9(4), pp.611–629.

Paul, S. and Acharya, S.K. (2020). A Comparative Study on Facial

Recognition Algorithms. SSRN Electronic Journal.

Kanade, T. (1973). Picture Processing System by Computer Complex

and Recognition of Human Faces. Department of Information Science,

Kyoto University.

Sirovich, L. and Kirby, M. (1987). Low-Dimensional Procedure for the

Characterization of Human Faces. Journal of the Optical Society of

America A, 4, 519-524.

Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition. Journal

of Cognitive Neuroscience, 3(1), pp.71–86.

61

Nair, V., & Hinton, G.E. (2010). Rectified Linear Units Improve

Restricted Boltzmann Machines. ICML.

Viola, P. and Jones, M.J. (2004). Robust Real-Time Face

Detection. International Journal of Computer Vision, 57(2), pp.137–

154.

Zhao, F., Li, J., Zhang, L., Li, Z. and Na, S.-G. (2020). Multi-view face

recognition using deep neural networks. Future Generation Computer

Systems, 111, pp.375–380.

Ren, S., He, K., Girshick, R. and Sun, J. (2015). Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks.

pp. 91-99.

Collins, H. (2010). Creative Research: The Theory and Practice of

Research for the Creative Industries. Singapore AVA Publications,

p.38.

Hsu, C.-W., Chang, C.-C. and Lin, C.-J. (2016). A Practical Guide to

Support Vector Classification. Department of Computer Science`,

National Taiwan University, Taipei 106, Taiwan, pp. 4-5.

Phung and Rhee (2019). A High-Accuracy Model Average Ensemble of

Convolutional Neural Networks for Classification of Cloud Image

Patches on Small Datasets. Applied Sciences, 9(21), p.4500. doi:

10.3390/app9214500.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,

R. and Bengio, Y. (2014). Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. Journal of Machine Learning Research,15

(56):1929-1958.

Jarrett, K, Kavukcuoglu, K, Ranzato, MA & LeCun, Y. (2009). What is

the best multi-stage architecture for object recognition? in 2009 IEEE

62

12th International Conference on Computer Vision, ICCV 2009.,

5459469, Proceedings of the IEEE International Conference on

Computer Vision, pp. 2146-2153, doi: 10.1109/ICCV.2009.5459469.

Long, J., Shelhamer, E. and Darrell, T. (2015). Fully Convolutional

Networks for Semantic Segmentation. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA,

7-12 June 2015, 3431-3440. doi: 10.1109/CVPR.2015.7298965.

Haghighat, E. and Juanes, R. (2021). SciANN: A Keras/TensorFlow

wrapper for scientific computations and physics-informed deep learning

using artificial neural networks. Computer Methods in Applied

Mechanics and Engineering, [online] 373, p.113552. arXiv preprint

arXiv: 2005.08803.

Abbas, E.I., Safi, M.E. and Rijab, K.S. (2017). Face recognition rate

using different classifier methods based on PCA. International

Conference on Current Research in Computer Science and Information

Technology (ICCIT), pp. 37-40, doi: 10.1109/CRCSIT.2017.7965559.

Samaria, F.S. and Harter, A.C. (1994). Parameterisation of a Stochastic

Model for Human Face Identification. Proceedings of the Proceedings

of 1994 IEEE Workshop on Applications of Computer Vision, Sarasota,

5-7 December 1994, 138-142.

Liang, Y., Hu, S., Guo, W. & Tang, H., 2022, Abrasive tool wear

prediction based on an improved hybrid difference grey wolf algorithm

for optimizing SVM, Measurement, vol. 187, p.110247.

Golbon-Haghighi, M., Saeidi-Manesh, H., Zhang, G., & Zhang, Y.

(2018). Pattern Synthesis for the Cylindrical Polarimetric Phased Array

Radar (CPPAR). Progress in Electromagnetics Research M, 66, 87-98.

63

Abate, A.F., Nappi, M., Riccio, D. and Sabatino, G. (2007). 2D and 3D

face recognition: A survey. Pattern Recognition Letters, 28(14),

pp.1885–1906.

Wen, G., Chen, H., Cai, D. and He, X. (2018). Improving face

recognition with domain adaptation. Neurocomputing, 287, pp.45–51.

Schroff, F., Kalenichenko, D. and Philbin, J. (2015). FaceNet: A unified

embedding for face recognition and clustering. 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 815-823.

Song, A.-P., Hu, Q., Ding, X.-H., Di, X.-Y. and Song, Z.-H. (2020).

Similar Face Recognition Using the IE-CNN Model. IEEE Access, 8,

pp.45244–45253. doi:10.1109/access.2020.2978938.

64

Appendix A: Python source code sample5

IMPORT LIBRARIES

import keras

import numpy as np

import pandas as pd

import tensorflow as tf

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

import matplotlib.image as mplib

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from keras.utils import np_utils

from sklearn.model_selection import train_test_split

from keras.utils.np_utils import to_categorical

from tensorflow.keras.layers import Input,InputLayer, Dense, Activation

, ZeroPadding2D, BatchNormalization, Flatten, Conv2D

from tensorflow.keras.layers import AveragePooling2D, MaxPooling2D, Dro

pout

from tensorflow.keras.models import Sequential,Model

from tensorflow.keras.callbacks import ModelCheckpoint,LearningRateSche

duler, EarlyStopping

from tensorflow.keras import backend as K

from sklearn.naive_bayes import GaussianNB

from sklearn import metrics

from sklearn.svm import SVC

from sklearn.metrics import classification_report, confusion_matrix

from time import time

DATASET

faces = pd.read_csv('./face_data.csv')

faces.shape

VIEW DATA

faces.head()

VIEW SEABORN

sns.pairplot(faces, vars =['1', '7', '3', '4', '4095', 'target'])

5

https://github.com/ZukisaNante/IMPROVED_DCNN_FACE_RECOGNITION/blob/main/SRC/PCA

%20%2B%20CNN%20FACE%20RECOGNITION_FINAL%20(3).ipynb

65

plt.tight_layout()

plt.show()

faces.hist(bins=1)

plt.show()

HELPER FUNCTIONS

def display_initial_faces(pixels):

 # SHOWING INITIAL IMAGES

 fig, axes = plt.subplots(6, 10, figsize=(11, 7),

 subplot_kw={'xticks':[], 'yticks':[]})

 for i, ax in enumerate(axes.flat):

 ax.imshow(np.array(pixels)[i].reshape(64, 64), cmap='gray')

 plt.show()

def show_eigenfaces(p_c_a):

 # SHOW EIGENFACES

 fig, axes = plt.subplots(3, 8, figsize=(9, 4),

 subplot_kw={'xticks':[], 'yticks':[]})

 for i, ax in enumerate(axes.flat):

 ax.imshow(p_c_a.components_[i].reshape(64, 64), cmap='gray')

 ax.set_title("PC " + str(i+1))

 plt.show()

X = faces.drop('target', axis = 1)

y = faces['target']

print (np.array(X).shape)

faces.corr()

display_initial_faces(X)

faces.describe()

Divide dataset

(X_train_data_set, X_test_data_set, Y_train_data_labels, Y_test_data_se

t) = train_test_split(X, y, test_size=0.2, random_state=42) #without

random state PCA is 97 %

Principal Component Analysis
p_c_a=PCA(n_components=155)

p_c_a_values= p_c_a.fit_transform(X_train_data_set)

var = p_c_a.explained_variance_ratio_

p_c_a.components_[0]

Determine sets compression

var1 = np.cumsum(np.round(var,decimals = 4)*100)

var1

66

plt.plot(np.cumsum(p_c_a.explained_variance_ratio_))

plt.axis("tight")

plt.xlabel('Component Quantity')

plt.ylabel('Cumulative explained variance')

Display eigenfaces only works with X_train in p_c_a instead of faces

show_eigenfaces(p_c_a)

Directing the trained data to PCA

print("Projecting the input data on the eigenfaces orthonormal basis")

Xtrain_pca = p_c_a.transform(X_train_data_set)

Classify initialization and fit training data

clf_init = SVC(kernel='rbf',C=1000,gamma=0.001)

clf_init = clf.init.fit(Xtrain_pca, Y_train_data_labels)

clf_init

Perform testing and get classification report (WITHOUT random_state=4

2 IT GETS 97% AND THIS WAS TO IMPROVE CNN ACCURACY)

print("Predicting people's names on the test set")

t0 = time()

Xtest_pca = p_c_a.transform(X_test_data_set)

y_pred = clf_init.predict(Xtest_pca)

print("done in %0.3fs" % (time() - t0))

print(classification_report(Y_test_data_set, y_pred))

Testing Different Algorithms

1: Apply Decision Tree

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

dt = tree.DecisionTreeClassifier(criterion="entropy")

dt.fit(X_train_data_set, Y_train_data_labels)

ypred = dt.predict(X_test_data_set)

2: Confusion Matrix

confusion_matrix(Y_test_data_set, ypred)

3: Classification Report

print(classification_report(Y_test_data_set, ypred))

4: Implementing K-Nearest Neighbors

from sklearn.neighbors import KNeighborsClassifier

Classify KNN

knn = KNeighborsClassifier(n_neighbors=5)

Fitting training data in KNN

67

knn.fit(X_train_data_set, Y_train_data_labels)

Predict

ypred = knn.predict(X_test_data_set)

ypred= pd.DataFrame(ypred)

print(classification_report(Y_test_data_set, ypred))

5: Apply Random Forest

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators = 300, criterion="entropy")

rf.fit(X_train_data_set, Y_train_data_labels)

y_pred_RF = rf.predict(X_test_data_set)

print(classification_report(Y_test_data_set, y_pred_RF))

6: Apply SVM

from sklearn.svm import LinearSVC

clf_init = LinearSVC(random_state=0, tol=1e-5)

clf_init.fit(X_train_data_set, Y_train_data_labels.ravel())

Response prediction for testing data

ypred = clf_init.predict(X_test_data_set)

ytest = Y_test_data_set.to_numpy()

print(classification_report(ytest, ypred))

Apply Naïve Bayes

nb = GaussianNB()

nb.fit(X_train_data_set, Y_train_data_labels)

y_pred_NB = nb.predict(X_test_data_set)

print(classification_report(Y_test_data_set, y_pred_NB))

K-Means Clustering
Define 40 classes of z using PCA values

z =pca_values[: 40]

Define new data space

new_df = pd.DataFrame(z, columns=["F"+str(i+1) for i in range(var1.shap

e[-1])])

new_df

from sklearn.cluster import KMeans

kmeans = KMeans(init="random", n_clusters=5, n_init=10, max_iter=300, r

andom_state=42)

kmeans.fit(new_df)

kmeans.labels_

The lowest Sum of Squared Error/Euclidean (SSE) value

print("SSE value: ", kmeans.inertia_)

Last location

print("\n Last geometric center

location: \n", kmeans.cluster_centers_[:1])

Merging Point

print("\n Iterations required to converge: ", kmeans.n_iter_)

68

Storing cluster assignments in 1D Numpy array

print("\n Predicted labels: \n", kmeans.labels_)

View the new reduced data

new_df.head()

faces = new_df

Defining labels and assigning the target

faces.rename(columns={'F1':'label'}, inplace=True) # inplace=true is to

 delete it permanetly and has been depricated

faces.rename(columns={'F155':'target'}, inplace=True)

View the new reduced data again with new labels

faces.head()

SEABORN

View searborn of the few columns of the new data

sns.pairplot(faces, vars =['label', 'F3', 'F7', 'F154', 'target'])

sns.pairplot(faces, vars =['label', 'F3', 'F7', 'F154', 'F8'], hue='lab

el', kind='reg') # demands more RAM, takes time in a CPU, better GPU

Starting Normalisation to Prepare for CNN

from sklearn.preprocessing import MinMaxScaler

standard_scaler = MinMaxScaler()

standard_scaler.fit(X_train_data_set)

Transform train and test data

X_train_data_set = standard_scaler.transform(X_train_data_set)

X_test_data_set = standard_scaler.transform(X_test_data_set)

X_train_data_set.shape, Y_train_data_labels.shape, X_test_data_set.shap

e

Define data shape

X_train_data_set = X_train_data_set.reshape((X_train_data_set.shape[0],

 64, 64, 1)).astype('float32') #22, 7, 1 tried and results to 100%

score, the way it trains data is not convincing

X_test_data_set = X_test_data_set.reshape((X_test_data_set.shape[0], 64

, 64, 1)).astype('float32')

print(X_train_data_set.shape)

Preparing data for CNN

Y_train_data_labels = to_categorical(Y_train_data_labels, 40)

Y_test_data_set = to_categorical(Y_test_data_set, 40)

Y_train_data_labels.shape, Y_test_data_set.shape

Assign classes test shape

num_classes = Y_test_data_set.shape[1]

69

View classes

num_classes

CNN

from tensorflow.python.keras import regularizers

Stop training when no more improvement in the validation loss for 3 c

onsecutive epochs

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=90

, min_delta=0, verbose=0, mode="auto", baseline=None,

 restore_best_weights=False,)

model = Sequential()

model.add(Conv2D(64, (3, 3), input_shape=(64, 64, 1), activation='relu'

, data_format="channels_last", kernel_initializer=tf.keras.initializers

.HeNormal(), padding="same"))

model.add(Conv2D(64, (3, 3), input_shape=(64, 64, 1), activation='relu'

, data_format="channels_last", kernel_initializer=tf.keras.initializers

.HeNormal(), padding="same"))

model.add(MaxPooling2D((2,2), strides=(2,2), padding='same'))

model.add(Conv2D(128, (3, 3), activation='relu', data_format="channels_

last", padding="same"))

model.add(Conv2D(128, (3, 3), activation='relu', data_format="channels_

last", padding="same"))

model.add(MaxPooling2D((2,2), strides=(2,2), padding='same'))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Print model summary

model.summary()

TRAINING

from keras.optimizers import Adam

View time taken to train the network

t0 = time()

70

model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001

), metrics=['accuracy'])

history = model.fit(X_train_data_set, Y_train_data_labels, validation_d

ata=(X_test_data_set, Y_test_data_set), epochs=90, batch_size=256, call

backs=[callback], verbose=2)

Last verification step

scores = model.evaluate(X_test_data_set, Y_test_data_set, verbose=0)

print("CNN Error: %.2f%%" % (100-scores[1]*100))

SHOW MODEL PERFORMANCE OVER EPOCHS

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Model Accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='lower right')

plt.savefig('Model_Accuracy.png')

plt.show()

Summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model Loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['train', 'test'], loc='upper right')

plt.savefig('Model_loss.png')

plt.show()

model.save('weights.model')

model.save_weights("model.h5")

model_json = model.to_json()

with open("model.json", "w") as json_file:

 json_file.write(model_json)

Y_test_data_set[1]

rounded_labels=np.argmax(Y_test_data_set, axis=1)

rounded_labels[1]

rounded_predictions = model.predict_classes(X_test_data_set, batch_size

=256, verbose=0)

rounded_predictions[1]

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(rounded_labels, rounded_predictions)

71

cm

X_test_data_set =np.argmax(X_test_data_set, axis=1)

X_test_data_set[1]

from sklearn.metrics import f1_score, precision_score, recall_score, co

nfusion_matrix

print(precision_score(rounded_labels, rounded_predictions , average="ma

cro"))

print(recall_score(rounded_labels, rounded_predictions , average="macro

"))

print(f1_score(rounded_labels, rounded_predictions , average="macro"))

MODEL CLASSIFICATION REPORT

print("done in %0.3fs" % (time() - t0))

print(classification_report(rounded_labels, rounded_predictions))

DISPLAY EPOCHS NOT MORE THAN 90

len(history.history['loss'])

Concatenated kernels summarized

for layer in model.layers:

 # conv check

 if 'conv' not in layer.name:

 continue

Getting 2D Weights

filters, biases = layer.get_weights()

print(layer.name, filters.shape)

Summary of 2D weights

from matplotlib import pyplot

Concatenated kernels summarized

for layer in model.layers:

 # Test

 if 'conv' not in layer.name:

 continue

 # Getting 2D kernel

 filters, biases = layer.get_weights()

 print(layer.name, filters.shape)

Get kernel

filters, biases = model.layers[1].get_weights()

72

Enable visualization

f_min, f_max = filters.min(), filters.max()

filters = (filters - f_min) / (f_max - f_min)

Showing a couple of low-level values in kernel matrix

n_filters, ix = 6, 1

for i in range(n_filters):

 # Identify concatenated kernels

 f = filters[:, :, :, i]

 # Display channels apart

 for j in range(3):

 # Specify subordinate kernel

 ax = pyplot.subplot(n_filters, 3, ix)

 ax.set_xticks([])

 ax.set_yticks([])

 # Display black and white channels

 pyplot.imshow(f[:, :, j], cmap='gray')

 ix += 1

Plot

pyplot.show()

Convolution size summary

from matplotlib import pyplot

Summarize attributes

for i in range(len(model.layers)):

 layer = model.layers[i]

 # Conv layer check

 if 'conv' not in layer.name:

 continue

 # Summarize

 print(i, layer.name, layer.output.shape)

Define model again

model = Model(inputs=model.inputs, outputs=model.layers[1].output)

Attributes of the second layer after input layer

feature_maps = model.predict(X_train_data_set)

Display four by four squares of the sixteen maps

square = 4

ix = 1

for _ in range(square):

 for _ in range(square):

 # Graphical presentation

 ax = pyplot.subplot(square, square, ix)

 ax.set_xticks([])

73

 ax.set_yticks([])

 # view black and white

 pyplot.imshow(feature_maps[0, :, :, ix-1], cmap='gray')

 ix += 1

Plot

pyplot.show()

Define again

ixs = [0]

outputs = [model.layers[i+1].output for i in ixs]

model = Model(inputs=model.inputs, outputs=outputs)

model.summary()

Iput layer

model.layers[0].output

Layer 1

model.layers[1].output

74

Appendix B: CNN Model Sequel Representation

CNN model utilized to all simulations – Plots utilizing Keras model

representation

75

Appendix C: Approved Ethical Clearance

76

77

78

Appendix D: List of Publications

Nante, Z., and Wang, Z. (2022). A new Face Recognition Using

Principal Component Analysis, K-Means Clustering, and Convolutional

Neural Network. International Conference on Artificial Intelligence

Trends and Pattern Recognition (ICAITPR), Hyderabad, India, 10-12th

March, 2022 (in press)

