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Abstract 

In recent years the importance and need for computer vision systems 

increased due to security demands, self-driving cars, cell phone logins, 

forensic identification, banks, etc. In security, the idea is to distinguish 

individuals correctly by utilizing facial recognition, iris recognition, or other 

means suitable for identification. Cell phones use face recognition to unlock 

the screen and authorization. Face recognition systems perform tremendously 

well, however, they still face challenges of classification. Their major challenge 

is the ability to identify or recognize individuals in an image or images. The 

causes of this challenge could be lighting (illumination) conditions, the place 

or environment where the image is taken and this can be associated with the 

background environment of the image, posing, and facial gestures or 

expressions. This study investigates a possible method to bring a solution. The 

method proposes a combination of the Principal Component Analysis (PCA), 

K-Means clustering, and Convolutional Neural Network (CNN) for a face 

recognition system. Firstly, apply PCA to reduce dataset dimensions, enable 

smaller network usage and training, remove redundancy, maintain quality, and 

produce Eigenfaces. Secondly, apply PCA output to K-Means clustering to 

select centres with better characteristics, and produce initial input data for 

CNN. Lastly, take K-Means clustering output as the input of the CNN and train 

the network. It is trained and evaluated using the ORL dataset. This dataset 

comprises 400 different faces with 40 classes of 10 face images per class. The 

performance of this technique was tested against (PCA), Support Vector 

Machine (SVM), and K-Nearest Neighbour (KNN). This method’s accuracy 

after 90 epochs achieved 99% F1-Score, 99% precision, and 99% recall in 

463.934 seconds. It outperformed the PCA that obtained 97% F1-Score and 

KNN with 84% F1-Score during the experiments. Therefore, this method 

proved to be efficient in identifying faces in the images. 

 

Keywords: Face Recognition (FR), Principal Component Analysis (PCA), 

Deep Convolutional Neural Network (DCNN), Feature Extraction (FE). 
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CHAPTER 1 

Introduction  

1.1 Theoretical background 

The face is an important part of the human body. Face images can be used in 

distinguishing people from one another, assessing people’s feelings, 

transmitting various kinds of information, communicating with other persons, 

etc. The information obtained from face images contains abundant meanings, 

such as race, gender, age, health, emotion, psychology/mentation, profession, 

etc.  

Woodrow W. Bledsoe (1960) created the earliest semi-automated FR 

system. The system had to be able to find facial attributes namely, eyes, nose, 

ears, and mouth from images. During the 1970s FR took a step forward 

(Goldstein, Harmon, and Lesk, 1971) and utilized 21 indicators like hair color 

and the upper and the lower edges of the opening of the mouth width to 

computerize FR, however, quantification and positions were by hand 

computed. In 1988 an initial semi-automated FR system was implemented and 

immediately after, the same year, the Eigenface (Sirovich and Kirby, 1987) 

technique was developed. This technique showed possibilities to minimize the 

quantity of values required for the approximation of a suitably aligned and 

normalized face image. During this time a lot of research was conducted and 

(Turk and Pentland, 1991) discovered that the residual error resulting from the 

Eigenfaces technique could be reused to detect faces from images and make 

real-time face recognition possible. This discovery arose the limitations due to 

environmental factors and again a lot of research was instigated. To date, this 

technology still faces challenges of light, environment, pose, and expression. 

FR unique physical characteristics can distinctively distinguish or 

validate individuals by associating and scrutinizing the samples established on 

one's facial outline. Usually, it is utilized in guarding systems, however, the 

demand for other applications is high. To be exact, a lot of business and legal 

institutions begin to realize their significance and capability to enforce the law.  
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Facial recognition is sometimes recognized as face recognition (Bowles N., 

The Guardian, Apr. 8, 2016). Several methods exist whereby FR applications 

are implemented; however, their application is to compare chosen face 

features from other faces in the database. It is defined as a Biometric Artificial 

Intelligence application that uniquely identifies a person by analysing patterns 

based on the person's facial textures and shape (Zavyalova V., 2018, Science 

& Tech Nov 27, 2018).  

Biometrics (Jain, Hong, and Pankanti, 2000) technically refers to unique 

physical characteristics. Therefore, standards of measurements are 

associated with personal features (Arya, Pratap, and Bhatia, 2015). It has 

identifiers to distinguish the individuals. This concept is belonging to an earlier 

time as 500 B.C. when fingerprints were used (“Babylonian business 

transactions are recorded in clay tablets that include fingerprints.”). 

  Stan and Anil (2011) define FR as an unconscious activity for individuals 

as it happens automatically, fast, and regularly. Compared to fingerprints and 

iris biometric modalities face recognition has more than a few advantages. In 

addition, being natural and non-intrusive, a significant advantage is a face 

capturing at a distance and covert manner. FR is becoming more important 

due to speedy developments in appliances that take images such as 

surveillance cameras, cameras in cellular phone phones, Web demands for 

face images, and greater security. Kanade T. (1973) developed the first 

automated face recognition system in his Ph.D. thesis work. But then it 

became latent over the years till (Sirovich and Kirby, 1987) work on lower 

dimensions of the ambient space on the face description, originated from 

Karhunen–Loeve transform or PCA. The ground-breaking work of (Turk and 

Pentland, 1991) revived the FR research after their ground-breaking on 

Eigenface. The Fisherface method applied Linear Discriminant Analysis (LDA) 

after a PCA step to accomplish higher precision. Gabor jets confined filters for 

efficient characteristics of the face together with the AdaBoost learning built 

on cascade classifier architecture at the actual time to detect a face. However, 

under unconstrained environments, Automated Facial Recognition (AFR) 

systems still face many challenges when face images are acquired. 
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  According to Shamshad Ansari (2020) FR represents the detection and 

identification problem of how computers can gain a high level of understanding 

to identify a face of an individual from a video or image. FR follows certain 

steps to perform recognition and the first step is identifying and locating the 

face’s whereabouts from the input image and this step falls under object 

detection. After face identification, its attributes are created from numerous 

key points. Typically, a face of a human being consists of 80 landmarks, but 

FaceIT system can obtain better recognition accuracy just by utilizing 14 to 22 

landmarks (nodal points). They are more intrigued by the profound area of the 

face1. To establish identification these landmarks are compared to the 

database faces. 

The problem regarding FR systems is the inaccuracy and uncertainty in 

identifying faces. These systems may emerge false results that may cause 

individuals to be accused of offenses they know nothing about. In America, the 

FBI system has failed to address the identification inaccuracy problem and 

their incapability and that resulted at least 15% of the time (Zafeiriou et al., 

2014).  

Research conducted by the FBI also found out that it misidentifies people of 

color. Its disproportionality towards people of color was due to how it was 

programmed. This also affects society as some could not find jobs due to 

criminal activities they never committed. 

Russian only current FindFace Security FR system and the one that 

was developed by NtechLab claims 99% of accuracy during the 2018 World 

Cup. But the question or concern on whether FR is a good way of identifying 

criminals is still open. Also, systems designed by the tech giants like Microsoft 

and Amazon are still contentious as they strive to identify individuals of various 

people other than whites or just execute wrong results or mistakes. MIT’s 

Media Lab tested different FR systems from different companies like Microsoft, 

IBM, and China’s Megvii and found that up to 35% of darker-skinned women 

had their gender misidentified by the systems (Baskar B, Anushree PS, Divya 

 
1 FaceIt: https://patents.google.com/patent/US7634662B2/ 
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Shree S & KV Mahendra Prashanth, 2015). Back in 2015, Google identified a 

software engineer’s black friends in a photo as “gorillas,” and had to apologize 

for the error. This information does not only highlight the error of programming 

but also the issue of light as this system was only programmed to follow white 

people only and to stop when other races were identified. Today the current 

challenges facing the FR systems are lighting circumstances, environmental 

settings, or space, pose (of the head), and expression. This also includes the 

challenges of the hydration of the skin, aesthetic products such as facial lotion 

and make-up, imaging sensor and camera, and the distance of the subject 

from the camera (Abhishree et al., 2015).  

Bhaskar et al. (2015) proposed a FR system based on Hybrid Gaborlet 

and Fisher Analysis. It was suggested to overcome the problem of pose, light, 

age, occlusion, and expressions where the results were exceptional using Dr. 

Libor Spacek (800 face images of 40 classes with 20 views/class) and Caltech 

(360 face images with 18 classes with 20 views/class) segmented databases. 

The importance of a FR system is the accuracy that it can produce by 

developing a set of features that increase system performance. This system 

discourages the direct employment of pixel values as traits of face image 

because of its huge dimension (Golbon-Haghighi et al., 2018). Therefore, 

PCA, LDA or FDA and ICA techniques were suggested for dimensionality 

reduction. However, these methods agonize from high computational overload 

and therefore, the wavelet transform form of multi-resolution analysis 

manipulates wavelet basis vectors so that it can decompose an image at 

different scales and orientations. Wavelet transform can be discretely sampled 

and one of the customaries is Daubechies. Gabor wavelet linear filter named 

after Dennis Gabor is used for image edge detection (Shrivakshan G., 2012). 

It is a good adaption ability for different spatial frequencies and orientations. It 

fragments images into sub-bands and performs convolution to execute the 

extraction of features. It is a Gaussian Kernel function, and its features improve 

recognition performance compared to grayscale features. The proposed 

method FDA extends two-class kernel Fisher methods by subjugating 

multiclass pattern classification snag. Consequently, it provides unique 
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solutions that cannot be utilized using GDA. By deducing the matrix’s singular 

values, a new image can be obtained from the original. Hence, fSVD is used 

to develop illumination invariant image.  

Due to the challenges of 2D dimension Abate et al., (2007) suggested 

a method named 2D-3D FR. The idea behind this technique was to collectively 

utilize various parameters of 2D and 3D graphic images and model FR based 

respectively. These parameters were input volume, the number of targeted 

chores, and recognition measure. This technique compared to other 

techniques used in FR it provides a future perspective on enabling new 

techniques for researchers. Therefore, Eigenfaces, and stereovision 

techniques are applied to enhance 2D FR system performance with 3D 

information known as the disparity of face. Also, matching a face from various 

positions with scan-lined-based NN’s help. PCA utilised for the extraction of 

features and recognition. 2D-3D FR accuracy enhanced; however, 3D FR 

faces minimized the challenges of posture variants, obstruction, and various 

lighting situations. This is because they resemble a real image, numerous 

textures, and various frameworks which convolute in three dimensions. Image 

acquisition technology was applied on 3D face database in comparison to 

various situations. The proposition was to conduct a study on 3D FR based on 

local features. Local descriptor division into curves, pointers, and surface were 

employed. Feature extraction was regarded as one of the important modules 

in FR. Therefore, different studies were conducted concerning various kinds of 

face descriptors and attribute extractors for 3D. Bidirectional relighting was 

done to help normalize between probe and gallery. Also, face expression and 

occlusions challenges were considered, and correlation metrics were 

introduced regarding any similarity scores and the idea of pose and 

illumination normalized signatures for frequently applied confirmations. The 

courage of utilizing 3D FR technology was to try and conquer 2D FR systems 

downside. Various databases and different augmentation techniques were 

used for testing purposes. An enhancement was also made with the help of 

experienced sensors camera capturing for better 3D face image that can 

generate 3D face models. Noticed advantage of the 3D FR system is that it so 
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not affected by light intensity. Wen et al. (2018) proposed improvement with 

domain adaption and tried to evaluate FR by taking Labelled Faces in the Wild 

(LFW) dataset as a benchmark and achieved 99% accuracy. Though the 

performance is still not enough for real-world applications, and that is caused 

by the problem data bias. To their knowledge, it is the first time that domain 

adaption technique is applied in unconstraint FR problem with a million-scale 

dataset. They incorporated face verification threshold into FaceNet triplet loss 

function explicitly and achieved 99.33% on the LFW benchmark with only a 

single CNN model and similar performance even without face alignment. This 

technique combined with Viola methods shows room for improvement. 

In the research conducted by Abhishree et al., (2015) the three stages 

of pre-processing, feature extraction (FE), and Feature Selection (FS) were 

examined for the entire process of FR system. They used a technique to 

process the images by flipping an image from left-right (from original to pre-

processed images). This is called image pre-processing. This was 

accomplished using 2D Wiener low pass filter for de-noising. While a 2D 

Gaussian filter removes the noise it also blurs the image because of its limited 

bandwidth.  

AD based pre-processing and GF based feature extraction were the 

techniques proposed to enhance FR system performance (Abhishree et al., 

2015). AD focuses on enhancing and smoothing facial image edges while GF 

keeps aligned facial features at specific angles. AD improves the RR of the 

system by inhibiting the noise the conventional filters have on blurring the 

edges. 2D GF showed improvements in variance light, attitude, and 

expression. Accompanying these two techniques is a BPSO based feature 

selection algorithm to make sure that the space needed is utilized as required 

for optimal feature subset. These techniques were proposed to improve the 

challenges of pose, illumination, and expression in computer vision. Moreover, 

to overcome the problems of image degradation by de-noising an image from 

a stored database.  
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The image quality, head orientation, lighting conditions, partial 

occlusion, and facial expressions play an important role during feature 

extraction (Singh and Prasad, 2018). The extraction of meaningful features is 

a very important task, especially in FR, thus, a feature-based system speeds 

up the process more than a pixel-based system (Viola and Jones, 2004). FR 

techniques use features like mouth, eyes, chin, nose, and geometrically 

assess relationships amongst them. Zhao et al. (2020), proposed a FR system 

using a deep neural network with PCA, jointly with Bayesian framework, and 

achieved 98.52% performance from their own dataset, which is the CAS-PEAL 

dataset. Ren et al. (2015), proposed a Region Proposal Network (RPN) that 

reveals full-image conv features to the detection network.  

Arya, Pratap, and Bhatia, (2015) have noted the challenges FR systems 

still facing i.e., light, posture deviation, expression changes, and facial 

disguises. According to their research, these are the results of systems based 

on traditional methods on Visible Spectrum (VS). Therefore, to overcome 

these limitations of identification and verification the Infrared Spectrum (IRS) 

was proposed (Baskar B, Anushree PS, Divya Shree S & KV Mahendra 

Prashanth 2015). Also, emphasized the use of Multi/ Hyperspectral Imagery 

Data in FR as this system can minimize limitations from existing and 

conventional FR systems. This system is the future of FR as it provides 

valuable discriminants for individual appearance (Arya, Pratap, and Bhatia, 

2015). However, this improvement still faces eyeglass and physiological 

problem challenges. This technique’s accuracy has not been proven by any 

method experimentally, and therefore, other techniques were proposed i.e., 

Persistent Physiological Features and Multi-Model Fusion (VS and IRS) on 

developing robust Identity Descriptors (ID). The images captured by IRS have 

shown a significant improvement in IR images as the environment does not 

pose limitations of light or dark.  

 

1.2   Motivation  

The human brain can instantly and automatically recognize familiar and non-

familiar faces effortlessly, but the way processes signals from the eyes is still 
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not fully known, and this is an interesting problem. This raises some questions 

on how to manipulate computers to interpret images as humans do, what 

important attributes to consider, and by what means these attributes can be 

processed. Face recognition systems can be found in security systems at the 

airport, by the police, etc. For criminal identification and verification systems 

and many more. This study only focuses on the general improvement of FR 

systems utilizing CNNs regardless of a specific application. FR is a very 

interesting biometric modality as it is the natural mode of identification amongst 

humans and is very unobtrusive. As the name suggests the process of face 

recognition happens when a face of a person is recognized.  A FR system 

comprises four stages: 

1. Face Detection - detects the localization of the image, verify if a face or 
faces exist(s) in an image and if it does it draws a bounding box on the 
face, see Figure 1.1. 

2. Face Alignment – normalization of a face to be exact and comparable 
with the database format such as photometric and geometry. 

3. Feature Extraction – carefully extracting usable face features to help 
during the recognition assignment. 

4. Face Recognition - compares these features from the faces in the 
database, verifies if a match exists and if it does it recognizes that distinct 
person by assigning a label trained on it. 

 

Figure 1 depicts a face recognition system. Face detection and 

recognition differ in the sense that in detection the interest is only to know if a 

face exists from an image or static picture or video, but the recognition task is 

a procedure of recognizing an already detected face or identifying who the 

person is (Singh and Prasad, 2018). Nair and Hinton (2010) describe object 

recognition as the way to keep or maintain the same input properties in the 

output invariance. FR systems work by comparing selected facial features from 

a given image with faces within a database. However, these systems still face 

problems of illumination, pose variation, expression changes, and facial 

disguises. Different lighting environments affect detection and recognition 

accuracy. In recent years CNNs have demonstrated to perform well in FR  and 

they can accommodate a big dataset (Song et al., 2020), however, that may 
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increase the training time. This dissertation aims to develop a new lightweight 

method to train faster and increase accuracy. 

 

 

 

Figure 1.1: Face Recognition system. 

 

1.3  Research aim and objectives 

In this dissertation, the aim conveys the intention of achieving the desired 

outcomes, however, the objectives mainly focus on defining resources to fulfil 

the aim.   

Aim: This study aims to improve (DNN) by investigating deep CNN on facial 

recognition systems. To investigate theories on feature extraction, illumination, 

and noise that affect the process of facial recognition in 2D FR systems. To 

improve and add technical knowledge in the field of FR systems and enhance 

accuracy and performance on identifying faces. 

Objectives: The main objectives of this dissertation are to investigate the 

fundamental concepts of face recognition using DCNN, establish and define 

image classification concepts regarding face recognition, analyze the different 

architectures of DCNN and the motivations behind it, propose a methodology 

for FR that improves the efficiency and accuracy of DCNN results, and 
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evaluate obtained results from these methods in order to measure accuracy 

and effectiveness in an attempt for improvement. 

 

1.4 Research design and methodology 

This dissertation adopts a positivism research philosophy, it adheres to factual 

knowledge obtained through empirical observations (Collins H., 2010) in an 

objective manner. Therefore, it is based on data collection, interpretation, and 

depended on quantifiable observations. It involves already well-known 

algorithms, however, these were never combined before in FR systems. It is 

then followed by an experimental substation of the presented methods, which 

are analyzed in detail. Experimental results and comparisons to other 

techniques are obtained using traditional computer vision benchmarks. 

 

1.5 Discussion 

In this dissertation, to address the defined challenges mentioned above in 

Section 1.1, an attempt to address the face feature extraction problem is 

addressed, so that good features are preserved to obtain better results by 

combining PCA, K-Means clustering, and the CNN architecture. The aim is to 

analyze the existing methods, extract important features, observe the accuracy 

of each, and combine the methods that promised to improve the performance 

and accuracy. To deal with this problem, to reach a solution, the following FR 

methods are discussed: 

1. Neural Network – CNNs easily recognize normalized and aligned 

faces and increase the efficiency of the model.  

2. PCA – it linearly modifies the original inputs into new uncorrelated 

features. This technique can help in dimensionality reduction; 

however, it agonizes from high computational overload. 

3. Geometric Based – this method analyzes local facial features and 

their relationship. Can be constructed with tools like PCA and 

Support Vector Machines (SVM). 

4. K-Means Clustering – groups samples based on their feature 

similarities. While this algorithm is exceptional at recognizing clusters 
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with a spherical space, it has a drawback, and that is it must be given 

the number of clusters, k, a priori.  

 

DCNNs have been chosen as they leverage local patch relations, local 

connectivity, and translational equivariance that can help improve the model’s 

accuracy and performance. They can work with inputs of variable sizes. 

Sparse interactions are derived by letting the kernel smaller than the input. 

This plays an important role in image processing. For instance, the picture 

elements from an image as an input may entail a vast number of pixels, 

however, tiny, significant characteristics namely edges in conjunction with 

input/output similarity function to dominate only plenty of picture elements 

(Goodfellow, Bengio, and Courville, 2016). In conclusion, this means, only 

fewer parameters are stored to limit memory required and enhance model 

architecture. Unlike in traditional neural networks, sharing parameters, the 

same weights are utilized to various functions, and therefore, for different 

patches of the input image. Thus, it learns a specific distinct list of elements 

instead of studying whole separate distinct lists of elements. 

1.6 Dissertation outline 

The sections below cover or support the research objectives of this dissertation 

mentioned in Section 1.3 and are organized thusly: 

 Chapter 2: This chapter contends the fundamental concepts and 

theoretical background of applying the deep convolutional neural 

networks in face recognition. It starts with a general overview of CNNs, 

then proceeds to the neuroscience early developments and elaborates 

on the properties of convolutional neural networks (CNNs) related to or 

taken from this literature. After it discusses image processing in detail 

and explains the origins of an image. Further looks at the facial features 

extraction, PCA motivations, and K-Means clustering theoretical 

background. In conclusion, the motivation and related work of CNNs in 

FR systems is reviewed. 
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Chapter 3: This chapter focuses on giving the background of the 

suggested methodology of this dissertation. It starts by elaborating on 

the methodology, then discusses SVM, and PCA data reduction 

advantages towards this technique. It then goes further to discuss SVC 

classification, subsequently, displays the CNN flowchart proposed and 

its training phase. In conclusion, CNN classification and simulations are 

reviewed.   

Chapter 4: The chapter portrays the empirical results of the 

methodology suggested in this study. It commences by stipulating the 

system requirements pertaining to the training of this algorithm. Next, 

discusses the data used to get the results, and finally discusses the 

steps taken per algorithm to demonstrate the origins of the 

concatenation idea.   

 Chapter 5: In this chapter, represents the summary of this study. Next, 

the conclusions, limitations, contributions, and future direction are 

discussed. 
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CHAPTER 2 

 

Preliminaries and theoretical background 

 

2.1 Chapter overview 

 

In this chapter, all three algorithms proposed in this dissertation are looked at 

in detail. It starts by discussing an overview and theoretical details regarding 

convolutional neural networks. Next, discusses the layers of CNN and finally 

motivates the usage of CNNs in FR. Thereafter, it delves into the PCA 

algorithm and discusses how it extracts features. Then, the K-Means 

algorithm, and finally the chapter conclusion.  

  

2.2 Overview of CNN architecture 

 

CNN models were motivated by the fundamental working cortex of the human 

brain (McCullock and Pitts, 1943) when recognizing objects, see Section 2.2.1. 

Figure 2.1 depicts nerve cells that are connected to perform signal or wave 

handling and transmission of mechanical and magnetic waves, and they are 

called neurons. The CNN evolution originated around the 1990s after LeCun 

et al. (1989) suggested a new different NN model classification for figures 

written by hand from images. They are neural networks (NN) that are 

composed of a mathematical operation called convolution, hence the name 

CNN. Their ability to spontaneously learn features from unprocessed data 

makes pre-processing easy in comparison to other image classification 

algorithms mentioned in Section 1.1. They construct a feature arrangement by 

merging minor details of the image like edges in the form of layers to form 

recognizable features. They compute feature maps from the input data and in 

this case from the face image, in which, every single essential part originates 

from a neighboring patch of pixels. This local patch is called the local receptive 

field (Vahid Mirjalili & Sebastian Raschka, 2017). Convolutional neural 

networks result from neurons containing weights and biases. Their goal is to 
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go from the unprocessed input data in the first layer to the exact class in the 

last layer. They differ from normal neural networks due to the type of layers 

used in them and the way they treat the input data. They assume input data 

as images and that allows them to extract properties particular to images 

(Prateek J., 2017). Figure 2.2 illustrates the multilayer CNN architecture.  

 

 

Figure 2.1: Artificial Neurons (Neural Pathway Diagram, 2016) 2 

 

Figure 2.2: CNN schematic architecture diagram (Phung and Rhee, 2019). 

 

 

 

 
2 Neural pathway: Neural pathway diagram - Visual cortex - Wikipedia 

https://en.wikipedia.org/wiki/Visual_cortex#/media/File:Neural_pathway_diagram.svg
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2.2.1  Early developments based on neuroscience 

CNNs keep on demonstrating to be the great biologically inspired artificial 

intelligence (AI) in deep learning for image processing. CNN concepts were 

taken from neuroscience. For many years neurophysiologists (Hubel and 

Wiesel, 1962) investigated the functionality of the mammalian visual system. 

From their observations of the cat’s brain responses to images, they 

discovered that the visual behaviour of the neurons reacted very intensely 

towards certain lighting environments. Their work helped to formulate the deep 

learning simplified focal point of view of brain function. 

Consequently, the simplified view of the brain that is of interest is the primary 

visual cortex (V1).  V1, the brain’s initial part, is found within and across the 

calcarine fissure in the occipital lobe. It substantially executes advanced visual 

input processing. It creates images through the optical occurrence delivered 

in the eye and stimulates the optic nerve. The optic nerve (retina) is a tissue 

sensitive to light from an eye background. Thus, the optical nerve neurons 

manage the image without changing its features or layout. Then it goes past 

the optical nerve and lateral geniculate nucleus. To conclude, their role is 

mainly to coordinate communication between the eye and V1. 

  CNNs mimic some properties of the V1; because the V1 arrangement 

is in the spatial map, CNNs make use of this trait on defining its features in 

terms of 2D maps. V1 comprises a lot of simple cells. A simple cell is 

characterized by a linear function of the image in a small, spatially localized 

receptive field. Hence, CNNs detector units imitate simple cells properties in 

their designs. V1 also encompasses numerous complex cells, and these 

respond to similar features as the ones detectable in similar cells, however, 

these cells are immutable to tiny changes of the feature location. The 

inspiration behind pooling units of the CNNs originates from this property of 

the complex cells. These second-class cells are likewise immutable to 

alterations in illumination that are impossible to capture merely by pooling over 

spatial locations. These immutable or never-changing cells encouraged cross-

channel pooling strategies of the CNNs like maxout units (Goodfellow, Bengio, 
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and Courville 2016, p. 354). Figure 2.3 depicts the neural processing of visual 

information and V1 location in the brain. 

 

  Figure 2.3: Neural Processing of Visual Information and V1 location3 

The brain consists of multiple anatomical layers and moving deeper into the 

brain, cells responding to some concept and that are immutable to a vast 

number of input conversions are found and called grandmother cells. The idea 

of the grandmother cells is that the neuron of a person activates when that 

person sees his or her grandmother irrespective of the location view angle, 

shot zoomed out image of the entire body, close-up face or either is illuminated 

or in the shade. In the brain, they are in the area called the medial temporal 

lobe (Quiroga et al., 2005). Their neurons are slightly typical in comparison 

with current CNNs that do not mechanically generalize in distinguishing an 

individual. An analogy to CNNs attributes of the final layer can be the brain 

part namely, the inferotemporal cortex (IT).   

 

 

 
3 Neural pathway diagram - Visual cortex - Wikipedia 

https://en.wikipedia.org/wiki/Visual_cortex#/media/File:Neural_pathway_diagram.svg
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2.2.2 Input layer 

The input layer is the first layer of the CNN, and it takes the raw image data as 

it is. It is important to note that this layer is the entry-level of the whole neural 

network image processing, it signifies the pixel matrix of the image. Input 

images are encoded into channels namely, three channels (C3) and one 

channel (C1). C3 represents Red, Green, and Blue (RGB) colors and C1 black 

and white colors. Therefore, the contained unprocessed image information 

intensifies each channel color into a dimension vector of batch size width x 

height x Cn.  

 

2.2.3 Convolutional layers 

The convolution layer calculates the convolutions between the neurons and 

various patches. It is a feature extractor layer as it extracts the image features 

from the previous layer. Thus, its output is a product of weights and a small 

patch of the preceding layer. It takes the image input height, width, and 

channels and convolves the image into a feature map. After this abstraction, 

the image has input number, feature map height, feature map width, and 

feature map channels and this is called an activation map. Neurons in 

convolutional layers make sure that the processed data is unique and has its 

receptive field. This means that neurons, only receive input from a restricted 

area. In 2D input such as Xn1xn2 and the filter matrix Wm1xm2 where m1 <= n1 

and m2 <=n2, then the matrix Y = X * W exists because of low-dimensional 

conv of a signal as well as filter. Mathematically it is presented like below: 

𝑦 = X ∗ W → Y[i, j] = ∑ .
+∞

k1=−∞

∑ X[i − 𝑘1, j − 𝑘2]W[𝑘1 , 𝑘2]

+∞

𝑘2=−∞

                (2.1) 

    

This layer encompasses a Rectified Linear Unit layer (ReLU) to assign a zero 

to a negative value. ReLU works by activating the output of the preceding 

layer. The ReLU function is defined as f(x) = max(0, x), and it generalises well 

to any function type by adding non-linearity to the network. 
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2.2.4 Pooling layers 

Pooling layers immediately take the output of the convolution layer as their 

input, sample, and modify it further using a pooling function. This replaces this 

output at a particular location with a statistic summary of the nearby outputs. 

Its vital role is to reduce the number of computations (downsample the output 

of a convolution layer) and increase spatial invariance of the height and width 

(Vahid Mirjalili and Sebastian Raschka, 2017). They are usually denoted by 

Pn1xn2, and this subscript defines the pooling size of the neighborhood of pixels. 

Using these layers help to keep only the important parts of the net and operate 

on each feature map independently. Though they consist of max pooling and 

min pooling, max pooling is frequently used. Max pooling (Zhou and 

Chellappa, 1988, Cireşan et al., 2012) is used to downsample the 2D volume. 

It works like a convolution kernel, together with a particular stride, taking out 

max values rather than computing dot products. A stride of 1 would preserve 

the volume size while a stride of 2 would divide the width and height dimension 

by two (Habrman, 2016). Figure 2.4 depicts the pooling layer also known as a 

sampling layer: 

 

 

Figure 2.4: Subsampling the feature maps (Vahid Mirjalili & Sebastian 

Raschka, 2017). 

2.2.5 Fully connected layers 

FC layers represent a multilayer perceptron by which each vector (initial data 

signal) i brings together each production element j and filter wij . These layers 
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are at the end (last layer) of the CNN, and they calculate the output scores. 

Thus, the resulting output is of size 1x1xL, where L represents the number of 

classes in the training dataset. They produce the final feature map 

classification task. FC layers only accept 1D data, meaning, conversion from 

3D or 2D data is needed and this can be performed with the help of Python 

flatten functions. 

 

2.2.6 Image processing using CNN 

2.2.6.1 Image Categorization 

The image categorization process arranges data into a fixed number of 

categories so that it can be used effectively and efficiently, therefore 

categorizing images into one or more classes. Classifying images with deep 

CNNs requires the use of TensorFlow. The CNN FC layers are fundamentally 

related to several layer perceptron whereby each initial data i brings together 

each production element j and filter wij. Multilayer neural networks in CNNs 

construct a system of features by merging blobs and edges attributes in layers 

formulating events and objects attributes.  

CNNs aid to develop the systems by (1) Sparse interactions, (2) 

equalizing a set of parameters, and (3) equivariant representations. sparse 

weights are obtained by ensuring that the input similarity is lesser than the 

output similarity. Thus, only one component within the activation plan is linked 

against the lesser blotch picture elements. For example, an input image with 

lots of picture elements, however, only a few eloquent features like edges 

containing input/output similarities that inhabit a lesser detected pixels 

quantity. Therefore, it reduces model memory requirements by storing fewer 

parameters and improving its statistical efficiency.  For instance, m inputs and 

n outputs, require a multiplication matrix (m x n) parameters and practically 

this would be O(m x n) runtime. Hence, limiting the number of connections in 

each output to k, enables the sparsely connected approach to need only k x n 

parameters and O(k x n) runtime. Figure 2.5 (a & b) illustrates sparse 
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connections, seen from below, single highlighted input element, x3, plus s, 

highlighted for affected output units by this unit. 

 

Figure 2.5 (a): Sparse connections due to small kernel. Creating s, by 

convolving 3 span input/output similarity functions, influenced by x, 

(Goodfellow, Bengio, and Courville, 2016).  

 

Figure 2.5 (b): Dense connections. Creating s by multiplying the matrix, 

removing sparse connection, thus, every output is impacted by x3, 

(Goodfellow, Bengio, and Courville, 2016).  

  Parameter sharing uses identical weights for various patches of the 

input image. Unlike traditional neural networks, CNNs use tied weights, 

meaning, the value of the weight applied to one input is tied to the value of a 

weight applied somewhere else. Thus, instead of learning a distinct set of 

parameters present in each location, it learns only one set. It has no influence 

on the compilation time of moving from the input to the output O(m x n) and 

reduces repository space needed to k numerical factors. It adds to the 

translation invariance of the CNN architecture (Mouton, Myburgh, and Davel, 

2021). Figure 2.6 depicts the difference in CNNs parameter sharing and 

traditional nets (Goodfellow et al., 2016). 
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(a)  

 

(b)  

 

Figure 2.6: Sharing of parameters. Dark arrows specify the networks that 

utilize a certain parameter in two distinct models. (a) Convolution shares the 

same parameters across all spatial locations, the dark arrow shows a 3-

element kernel in the CNN model. (b) Traditional matrix multiplication does not 

share any parameters, a single arrow shows the most important feature of the 

weight matrix in the FC replica. 

  Finally, equivariant representations, this is a specific form of parameter 

sharing that causes the layer to have a property called equivariance to 

translations. Equivariance means if there are changes in the input, these 

changes also occur in the output in an identical manner. Let’s say for an 

example that a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)) and 

convolution is used, then if g is any function that transforms the input, meaning, 

shifts it, then the conv function is equivariant to g. To illustrate this, let function 

I give brightness to the image at integer coordinate. Secondly, let function g 

map a single task of the image to one more task of the image, so, I´= g(I) is 
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the image unit of code defined with I´(x,y) = I(x – 1,y) to move each picture 

element of I a single element to the right. Thus, whenever such conversion is 

applied towards I, and followed by convolution, the results are identical as if 

convolution is applied to I´ and the applied g transformation to the output. 

When dealing with images, convolution generates a 2D map where a variety 

of features are seen in the input. In CNNs, when processing images it is 

convenient to detect edges in the first layer. This helps when processing 

cropped images that ought to be designated in the centre of a person’s face. 

Therefore, different features at different locations are extracted. Features 

processed at the top of the face are eyebrows and at the bottom a chin. 

 

2.2.6.2   Image brief description 

From the beginning of this dissertation, images were not defined, and 

therefore, it is better to give the fundamental knowledge before delving into the 

whole process of image processing. Images are an important part of humans 

on daily basis. Images help to identify, interpret, illustrate, represent, 

memorize, educate, communicate, evaluate, navigate, survey, entertain, etc 

(Awcock and Thomas, 1995). Humans do all this without conscious effort as it 

comes naturally to them, but machines do not. For machines to perform all the 

properties of the image mentioned above, an image needs to be processed 

and this is called applied image processing, but this is discussed in the 

following section. 

 

2.2.6.3   Image processing 

Applied image processing attempts to provide practical, reliable, and 

affordable ways to let machines deal with images. Therefore, by contrast, the 

term image processing has been associated with modifying images. Meaning, 

correcting errors introduced in images during re-creation, or visual system 

enhancement. Its main purpose is to process an input image and generate a 
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modified image output. For pattern classification, this helps take a feature 

vector input and generate a class number output.  

Image pre-processing is a vital step to make sure that raw data is of the 

required form and shape, however, according to the study of Paul and Acharya 

(2020) pre-processing is not required in CNNs. Pre-processing enhances 

image data by suppressing unwanted or undesired distortions and increasing 

relevance in image features for further processing. In this dissertation, the 

sequence of face images is targeted to take out significant attributes such as 

the contour of the eye sockets, nose, mouth, and chin.  Features 

transformation to gamut [0, 1] or a traditional regular allocation of a naught 

average with unit variation (Vahid Mirjalili and Sebastian Raschka, 2017).  

CNNs perform image analysis by segmenting the image and performing 

object detection and recognition. In Section 2.2.3 (convolutional layers), eq. 

(2.1), represents a 2D output vector 𝑦 computation with input vector 𝑥 and filter 

or kernel 𝑤 where 𝑖 runs through all elements. Eq. (2.2) represents convolution 

in one dimensional (1D), as it applies the same principles as in 2D: 

𝑦 = 𝑥 ∗ 𝑤 → 𝑦[𝑖] = ∑ 𝑥[𝑖 − 𝑘]𝑤[𝑘]

+∞

𝑘=−∞

                                              (2.2) 

 

The advantage of CCNs is to correctly compute the summation of the above 

formula by assuming that 𝑥 and 𝑦 are filled with zeros, and this is called 

padding. The common three modes of padding in CCNs are full mode, same 

mode, and valid mode. Full mode is rarely used in CNN architectures due to 

its increase in output dimensions. Same padding ensures output and input 

dimensions match. In valid mode, there is no padding at all and that is a 

disadvantage in comparison to the other padding modes. This decreases the 

volume of the tensors substantially and may hold back the performance of the 

model. However, practically, the occupying space dimensions utilizing the 

same padding for convolution layers are preserved and its dimensions can be 

decreased via P layers instead. The interest of this dissertation is the same 
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padding as the expectations are to retrieve the same features of the input and 

classify them accordingly to get the same output. Figure 2.7 further illustrates 

these modes: 

 

Figure 2.7: Different padding modes (Vahid Mirjalili and Sebastian Raschka, 

2017). 

The output quantity can be defined by how many times filter 𝑤  shifts beside 

input vector 𝑥. Eq. (2.3) shows this as follows:  

𝑜 = [  
n + 2p − m

s
 ]                                                 (2.3) 

Padding in 2D is possible when both dimensions are extended independently. 

Figure 2.8 gives a glance at this. 

 

Figure 2.8: Padded matrix 𝑋5𝑥5 (Vahid Mirjalili & Sebastian Raschka, 2017). 

2.2.7 Related Work 
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This dissertation focuses on FR in images and videos, a problem that has 

received substantial attention in the recent past. The literature proposed many 

methods and the distinction between these is shallow (do not use deep 

learning) and deep (use deep learning). The first step of the shallow methods 

is to extract the representation of the face image with the help of handcrafted 

local image descriptors, i.e., Scale Invariant Feature Transform (SIFT), Local 

Binary Patterns (LBPs), and Histograms of Oriented Gradients (HOGs) (Parkhi 

et al., 2015). They used the Fisher Vector as a pooling mechanism to form 

local descriptors into a general face descriptor (Parkhi et al., 2014).  

  In this dissertation the focus is mainly on deep learning architectures for 

FR, such methods use CNN feature extractor, a learnable function acquired 

by combining several linear and non-linear operators. In the beginning, CNNs 

specifically AlexNet (Krizhevsky et al., 2012a) and VGGNET (Krizhevsky et 

al., 2012a) restricted the quantity of input images in the account of their 

architecture design. They were composed of mainly two parts, the conv layer, 

and FC layer. The convolution layer does not need a determined or limited 

image size and can produce a feature map of any size (Qin et al., 2020).  

Recent CNNs, namely, Inception (Szegedy et al, 2016), ResNet (He et al., 

2016), and DenseNet (Huang et al., 2017), stopped using the FC layer and 

switch to Global Average Pooling layer (Lin et al., 2013). To their discovery, it 

became clear that not only does the Global Average layer solve many 

parameters problems in the FC layer but can accommodate any image size. 

Though this advantage of increasing the size of images improves accuracy 

(Zheng et al., 2016), it also has a disadvantage, and that is, the amount of 

computation required becomes costly to obtain accuracy.   

  Mishra et al. (2021) proposed a multiscale parallel deep CNN 

(mpdCNN) feature fusion architecture for FR for real low-resolution images 

taken from long distances with different resolutions, illumination, and pose. 

They discovered that their architecture performed better in SCface challenging 

database for both low-resolution (86% accuracy) and high-resolution (99% 

accuracy) images. Due to these findings, they concluded that this method is 
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suitable for FR systems in real-world applications namely criminal 

investigation procedures.   

Zhang, et al. (2015) suggested a flexible FR CNN system, without 

performance comparison. Basically, it extends CNN architecture by analysing 

errors and the identification accuracy of the data trained. Therefore, it extends 

the network globally up until it meets the average error and recognition rate 

and it obtained 91.67% accuracy in face identification using the ORL face 

database. 

Due to the popularity of the ORL database in FR, Kamencay, et al. 

(2017) also proposed a CNN that comprised of only two convolution layers, 

FC, ReLU, and two pooling layers. It obtained 98.3% accuracy with 80% and 

20% training and testing respectively. Research by S. Almabdy et al. (2019) 

came up with another method to enhance the effectiveness of the FR system 

by taking out the features learned for the image from the CNN (AlexNet type) 

as well as RasNet-50 and after, a SVM classifier. In 2019, a CNN combination 

of VGG16, ResNet50, and MobileFaceNet obtained promising results in 

children’s database (Oo and Oo, 2019). It focused on classifiers and feature 

extraction. A year later, Sharma et al. (2020) proposed a PCA face feature 

extractor and blended it with multilayer perceptron (MLP), Naïve Bayes, and 

SVM to training and testing ratio of 80:20 using ORL database. 

 

2.2.8  CNN advantages 

In Section 2.2.6.3 (image processing) segmentation was mentioned, however, 

this is not a requirement for CNN architectures (Yamashita et al., 2018). CNNs 

robustness eliminate the need for hand-crafted feature extraction and contains 

loads of learnable parameters for estimation. The downfall of this, it is 

computationally expensive and demands more system software 

enhancements for processing, i.e., graphical processing unit (GPU) to model 

the training.  
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2.3 Principal Component Analysis 

PCA is an unsupervised linear method applied in many disciplines and mostly 

in favour of feature extraction and dimensionality reduction. PCA can also be 

used in empirical data analysis, signal de-nosing, and in the field of 

bioinformatics for genome data and gene expression levels analysis (Vahid 

Mirjalili & Sebastian Raschka, 2017). It has two criteria, learning 

representation(s) of the lower dimensionality than the raw input, and learning 

representation(s) with elements without a straight-line connection amongst 

themselves (Goodfellow, Bengio and Courville, 2016). It learns linear 

transformation of the data of two vectors that are perpendicular to each other 

and casts input x to a z depiction. Figure 2.9 elucidates this graphically. 

 

    

Figure 2.9: PCA studies the conversion line to be certain that the first principal 

component specifies the direction of the ultimate current variance coordinates. 

(left) x initial data patterns. There is a possibility that the obtained variance is 

not parallel towards centreline orientation. (right)The converted x = xTW is 

aligned along z1 axis. z2 reduced variance orientation. 

 

 PCA decorrelates the raw data representation X, for example, 

considering the matrix design X to be 𝑚 × 𝑛, and supposedly the data is 

average naught, 𝔼[𝑥] = 𝟎. Otherwise, it centres the data by deducting the 

mean from instances in the processing phase. Thus, X, is linked with the 

impartial sample covariance matrix as can be seen in eq. (2.4). 

 



 

28  

  

Var[x] =
1

𝑚−1
𝑿𝑇𝑿           (2.4) 

 

where, 𝑿𝑇𝑿 are the eigenvectors. From eq. (4.1) it derives a  𝒛 = 𝑾𝑇𝑥 

representation, where Var[z] is diagonal. It also provides possibility to obtain 

principal components via a Single Vector Decomposition (SVD), and to be 

exact they are the right singular vectors (the eigenvectors) of X. To 

demonstrate this, let W be the right vectors of the decomposition 𝑿 = 𝑼∑𝑾𝑻. 

Therefore, from this, the original eigenvectors equation with W is derived as 

shown in eq. (2.5).  

 

𝑿𝑻𝑿 = (𝑼∑𝑾𝑻)𝑻 𝑼∑𝑾𝑻   =  𝑾∑𝟐 𝑾𝑻    (2.5) 

 

Then, SVD can be applied to prove the existence of diagonality in PCA results 

in Var[z], and thus, from SVD of X the variance of X can be represented with 

eq. (4.1) and by substituting  𝑿𝑻𝑿, with the results obtained in eq. (2.4).  Then, 

eq. (2.6) is obtained,   

  

Var[x] =
1

𝑚−1
 𝑾∑𝟐 𝑾𝑻    (2.6) 

 

thus, since the 𝑼 matrix of SVD is orthogonal, the covariance of z is diagonal, 

and eq. (2.7) represents this. 

Var[z] =
1

𝑚−1
 ∑𝟐    (2.7) 

So, the above analysis represents an important PCA property, which is, the 

capability to transform data into representations of mutually uncorrelated 

elements. When projecting the feature x to z, via a straight-line conversion W, 

the output is diagonal to covariant of matrix ∑𝟐. 

 

2.3.1 Feature Extraction (FE) using PCA 

FE is used to convert or launch information onto a new characterized collection 

of features. However, when used in the context of dimensionality reduction its 

purpose is to compress data and highly maintain the relevant features. 
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Therefore, the predictive performance is enhanced by reducing curse 

dimensionality. Bellman (1957) defines curse dimensionality as an exponential 

in volume associated with adding extra dimensions to Euclidean space. This 

essentially means an error increases with the increase in the number of 

features.  Here, PCA for FE and dimensionality reduction is used as it helps in 

distinguishing the shapes of the input signal connected to facial attributes. Its 

purpose is to locate the utmost divergence path in the high dimensionality input 

signal and project it to a set of lesser vectors compared to the initial data. 

Hence, PCA dimension reduction constructs the d x k-dimensional conversion 

matrix W which permits mapping of test value x against a recent k-dimension 

attribute vector space with less size compared to initial d-dimension attribute 

space such that:  

 

𝑥 = [x1, x2, … , xd], 𝑥 ∈ ℝ𝑑    (2.8) 

 

𝑧 = [z1, z2, … , zk], 𝑥 ∈ ℝ𝑘     (2.9) 

 

 Xiang et al. (2015) expresses PCA to be an ancient practice of extracting 

attributes and presenting data in pattern recognition and computer vision. 

Sharma and Patterh (2015) proposed a new FR system that utilized the 

adaptive filter median filter for preprocessing to denoise the face images and 

then PCA features to extract Eigenvectors. FE uses covariance matrix to 

generate matrix and eigenvectors of the face and rebuild images using PCA, 

(Zhou et al., 2013). Gumus et al. (2010) evaluated the efficiency of PCA in FR 

and used the Eigenfaces technique for data reduction and feature extraction. 

However, though PCA proves to work best in FR linear extraction, it becomes 

insufficient regarding nonlinearities. 

 

 

2.4 K-Means Clustering 
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2.4.1 Data clustering 

Data clustering method groups together enormous sets of data into clusters of 

smaller sets of similar data (Faraoun and Boukelif, 2007). Therefore, an 

algorithm to utilize this technique investigates pure groups of data for 

similarities and its centroid. It distinguishes the distance between a point and 

the cluster centroids. This algorithm should preserve the qualities of producing 

all potential subsets for a distance function (Kleinberg, 2002). Wang et al. 

(2021) defines it as unsupervised learning that strives to group together similar 

clusters. 

 

2.4.2 Algorithm description 

K-Means clustering is a representation learning algorithm that separates the 

data to be trained into 𝑥 distinct clusters of instances near to one another It, 

therefore, supplies a 𝑘-dimensions with a single high bit value ℎ indicating an 

input 𝑥. For instance, say 𝑥 is from cluster 𝑖, so ℎ1 = 1, then other 

representations of ℎ are nil. One-hot a sparse representation, meaning, a vast 

number of its submissions are nil to all input entry. The advantage of k-means 

is that it groups samples based on their feature similarities. While this 

algorithm is exceptional at recognizing clusters with a spherical space, it has 

a drawback, and that is to be given a quantity of clusters, 𝑘, a priori.  

  This algorithm initializes 𝑘 various geometric centers { µ(𝟏), … , µ(𝒌)}  of 

various features, however, alternates amid two distinct strides in anticipation 

of converging. From a single stride, every single training incident goes to group 

𝑖, whilst 𝑖 represents the position of the closest geometric center µ(𝟏). Whilst 

other stride µ(𝟏) geometric center or centroid is modernized to median training 

values of 𝒙(𝒋) given to group 𝑖. Though this algorithm works well, it not well-

constituted, meaning, in practice, no basic principle can determine or ensure 

the clustering performance. One of its characteristics namely, Euclidean, it can 

be measured in the cluster geometric center to cluster representatives. That 

clarifies the possibilities available to rebuild training data from the assignments 
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of the cluster, but the output does not tell what similarities are, and that is 

where the one-hot representation comes in to give the ability to measure the 

similarities. To conclude, the objective of this algorithm is to deduce the 

objective function, and that is the error function. Eq. (2.10) mathematically 

represents this: 

J =  ∑.

𝑘

𝑗=1

∑ ∥ 𝑥𝑖
𝑗 − 𝑐𝑗 ∥2                                                            (2.10) 

𝑛

𝑖=1

   

 

where ∥ 𝑥𝑖
𝑗 − 𝑐𝑗 ∥2 represents a gap amongst a feature position and the center 

𝑐𝑗 of similar groups and signifies the gap of n feature position and 

corresponding similar groups centers.  

 

2.5 Conclusion 

This chapter discussed deep learning and CNNs. The CNN architecture was 

included, and its layers namely, convolutional, pooling, dropdown/softmax 

layers were discussed. Image processing is explained by firstly elaborating 

what an image is and why it is important. Differences in 1D and 2D 

computations in CNN. Padding role in CNN image classification and 

advantages of CNNs and some challenges pertaining this technique in 

contrast along with other algorithms in FR systems. The motivation of CNNs 

from the neuroscience perspective and outlined the fundamentals behind their 

development. Following this, was the discussion of image classification using 

CNNs. Finally, FR CNN related work, referenced advances on recent FR 

systems to tackle the challenges of illumination, feature extraction, pose, etc, 

aiming to identify methods that will be discussed or presented in the remaining 

chapters of this study. K-Means clustering and CNNs for feature extraction 

were reviewed. In chapter 3, the proposed method of this dissertation is 

discussed in detail. 
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CHAPTER 3 

Proposed Methodology  

3.1 Chapter overview 

In this chapter the new proposed methodology of face recognition called, 

Improved Deep Learning Neural Network (IDLNN) is presented. It incorporates 

the application of PCA, K-Means clustering and CNN algorithms. Firstly, it 

begins by describing and formalising the methodology based on the three 

selected algorithms. Secondly, it presents the steps taken to execute these 

three algorithms.    

 

3.2 CNN model selection using PCA and K-Means as a driving force 

 

3.2.1 Introduction 

In this section, PCA data compression and classification are discussed, SVM 

algorithm to minimize misclassification, SVC classification, CNN architecture, 

and results are explained. Therefore, basic concepts behind FR systems are 

elaborated. First, these are discussed to obtain CNN architecture. Next, the 

algorithm is introduced. The remainder of the work discusses future works.  

 

3.2.2  Methodology 

The proposed technique namely IDLNN comprises DCNN model which is 

tested for FR as they allow extraction of wide range of features from images. 

It utilizes PCA first for dimensionality reduction and pre-processing and k-

means clustering before it enters the DCNN. This is discussed in detail in the 

following subsections, but let’s first discuss the problem and fundamental 

concepts behind it. 

The primary Problem Definition of a FR system is the ability to recognize 

a person’s face from an image in a set of testing images from a dataset in the 

database. Illumination, pose, and facial expression affect the process of 

Feature Extraction and Selection. Hence, de-noising the image with a filter 
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helps preserve appropriate features namely edges to enhance accuracy 

during training process. Thus, finding the best CNN architecture and 

hyperparameters for image classification unleashed ways on how to 

manipulate the raw data. CNN input data undergone two methods, (1) 

application of PCA for data dimensionality reduction and classification to find 

eigenvectors (reshaping face images to vectors), see Section 2.3; (2) 

application of K-Means clustering to the PCA output. Whence, CNN takes the 

output of the K-Means and use it to optimise the model. The optimisation of 

the IDLNN method is determined by the manipulation of the architectural 

parameters, such as, defined number of convolutional layers, convolutional 

filters size per layer, FC layers filter size, number of classes, and the softmax 

layer. Hyperparameters are held fixed during the training process, but the 

learning parameters such as, optimiser, learning rate, batch size, weight 

initialisation method were constantly manipulated to enhance the results.  

It is crucial to fully understand the essential concepts behind FR to 

effectively comprehend the proposed technique. Pre-processing was already 

discussed in Section 2.2.6.3, Feature Extraction (FE) using PCA in Section 

2.3.1 and Support Vector Machine (SVM) classification is considered for its 

effectiveness in high dimensional spaces, and this is discussed in the following 

Section, 3.2.3. 

3.2.3  Using SVM 

SVM perceptron algorithm is used to minimise misclassification errors. 

However, we use it to maximise the image margins. Here, the margin 

represents a gap pulling apart dimensions a bit lesser than their ambient 

space, and trainable samples nearest against the bound’s conclusions. 

Hyperplanes of bigger edges possess less chances of overfitting and 

underfitting while those of tinier edges are prone to over or underfitting. The 

basic equation behind the margin maximisation is given by eq. (3.1): 

𝑤𝑇(𝑥𝑝𝑜𝑠 − 𝑥𝑛𝑒𝑔)

||𝑤||
 =  

2

||𝑤||
                                           (3.1) 
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where w is the vector length, 𝑥𝑝𝑜𝑠 denotes a positive hyperplane and 𝑥𝑛𝑒𝑔 the 

negative hyperplane. The left side of eq. (3.1) signifies the margin to maximize 

which is the distance between the positive and negative hyperplanes. The 

SVM function becomes the maximisation of this margin by maximizing the 

righten side of the equation on constraints that the classification of samples is 

correct in the dataset. The following subsections as mentioned at the 

beginning of this section are to elaborate and illustrate the proposed 

contributions of our proposed methodology. 

 

3.2.4 PCA For Data Compression and Classification 

Using PCA as an unsupervised dimensionality reduction, the feature extraction 

algorithm is utilised to convert data to a novel attribute space with the goal of 

maintaining most of the relevant information by using proper values and 

vectors. Thus, this improves the required memory calculation of the training 

algorithm and prognostic execution by decreasing the dimensionality curse. 

To understand the training algorithm of Eigenfaces let’s consider a face of 

𝐼(𝑥, 𝑦) to be a 2D 𝑁 ×  𝑁 array. Figure. 3.1 displays the original face images 

to demonstrate the calculation of Eigenfaces. 

 

Figure 3.1: ORL faces Dataset. 
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These images are converted into vectors of size 𝑁2 so that an image of 

64 × 64 turns into a vector of 4096 dimension or equivalent to a point in a 4096 

space dimension. The main purpose here is to get vectors that at a higher level 

consider the dissemination of face images in the entire image space. Since 

these vectors are the eigenvectors of the variance-covariance matrix 

equivalent to the original images and that they are face-like in appearance, 

they are referred to as “Eigenfaces” (Eleyan and Demirel, 2005). Assuming the 

training set of images to be 𝑥1, 𝑥2, 𝑥3…𝑥𝑚  the median computation of all these 

face vectors is represented by 

                               

𝛹 =  
1

𝑀
∑ 𝑥1

𝑀

𝑛=1

                                                  (3.2) 

     

and because each face c varies from the average face 𝛹 it can be subtracted 

by  

𝛹 = 𝑐 −  𝛹                                                        (3.3) 

 

By considering all face vectors a matrix size of 𝑁2 ∗ 𝑀, A = [ 𝑎1  𝑎2  𝑎3  …  𝑎𝑚 

] can be obtain. This allows to find the variance-covariance matrix by 

performing A by 𝐴𝑇 multiplication and because A has 𝑁2 ∗ 𝑀 dimensions, thus 

𝐴𝑇 has 𝑀 ∗ 𝑁2 dimensions. Therefore, multiplying  𝑁2 ∗ 𝑁2 results in 𝑁2 of  𝑁2 

range that is computationally not useful to calculate. Hence, computing 

covariance matrix multiplying A by 𝐴𝑇 results in  𝑀 ∗ 𝑀 matrix with M 

(presuming M << 𝑁2) eigenvectors of size M. This results to: 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐴𝑇𝐴                                               (3.4) 

 

where A is formed by the different vectors, i.e., 𝐴 = [𝛷1, 𝛷2…𝛷𝑀]. The above 

covariance (C) formula helps to calculate eigenvalues and eigenvectors. In 
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practice, the dimension of C is 𝑁 ∗ 𝑀. Considering the eigenvectors 𝑣𝑖 such 

that  

𝐴𝑇𝐴𝑣𝑖  = λ𝑖𝑐                                                          (3.5) 

 

Thus, remultiplying both sides of the above formula by A, it becomes  

𝐴𝑇𝐴𝑣𝑖  = λ𝑖𝑐                                                          (3.6) 

 

where, it can be noted that 𝐴𝑣𝑖 are the eigenvectors and λ𝑖 equivalent to µ𝑖 

that are the eigenvalues of 𝐶 = 𝐴𝐴𝑇 and µ𝑖 =  𝐴𝑣𝑖. Therefore, this analysis 

concludes that 𝐶′ and 𝐶 eigenvalues are the same and the relation on their 

eigenvectors is  µ𝑖  = 𝐴𝑣𝑖. Therefore, constructing 𝑀 ∗ 𝑀 the M eigenvectors, 

𝑣𝑖, of variance-covariance matrix provides M the biggest eigenvalues of 𝐶′. 

Now taking the normalised training faces 𝑥𝑖  and characterize every single face 

vector in a direct combination of the most exceptional K eigenvectors (where 

K < M) results to  

𝑋𝑖 − 𝛹 = ∑ 𝑤𝑗µ𝑗                                               (3.7)

𝐾

𝑗=1

 

 

where, µ𝑗 are called Eigenfaces. Figure 3.2 depicts eigenfaces. Given a new 

face (Γ), preprocessing is performed to make sure the face is positioned in the 

center of the image and that it has identical dimensions as the face being 

trained. Therefore, it is transformed into its eigenface components by 

subtracting the face from the average face 𝝭, as in  

𝛷 = Γ −  Ψ                                                       (3.8) 
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 Figure 3.2: 24 Eigenfaces with Highest Eigenvalues. 

Thus, the normalised vector is projected onto eigenspace to acquire the direct 

combination of eigenfaces simply by 

𝛷 = ∑ 𝑤𝑗µ𝑗                                                  (3.9)

𝐾

𝑗=1

 

 

From this projection, the vector of the coefficient generates weights to form a 

feature vector,  

𝛺𝑇 = [ 𝑤1  𝑤2 𝑤3   …  𝑤𝑚 ]                     (3.10) 

 

This feature vector recounts the involvement of each eigenface in representing 

the input image, treating the eigenfaces as a foundation set for face images. 

Then, a pattern of basic recognition algorithm is used to find which value of 

already defined face classes, if any, best defines the face. The class of a face 

 Ωk  is computed by assessing the region of the results of the eigenface 

representation over a small number of face images of each individual. 

Classification is achieved by subtracting the feature vector from the training 

face image to get the minimum distance between the training and testing 

vectors. This is basically the Euclidean Distance in the middle of an input face 
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image and faces classes. The aim here is to get the class k of the face that 

minimizes the Euclidean Distance, as in: 

𝜀𝑘  = min𝑘 ∥ (Ω −  Ω𝑘) ∥                                 (3.11) 

 

where Ω𝑘 is a vector describing the 𝑘𝑡ℎ face’s class. If 𝜀𝑘 is lower than the 

forbearance level 𝑇𝑘, then it is recognised with k face from the training face 

image, otherwise, the face is not matched with any faces in the training set. 

Though this algorithm is computationally inexpensive it is sensitive to 

illumination, and it requires frontal view of the face to work effectively.  

 

3.2.5 Classification using SVC 

Support Vector Classification (SVC) class can perform binary and multi-class 

classification on a dataset. In this dissertation, it is preferred with Radial Basis 

Function (RBF) kernel, thanks to its effectiveness in high dimensional spaces 

(Hsu, Chang, and Lin, 2016). When training a Support Vector Machine (SVM) 

with this kernel C and gamma ought to be thought of. The kernel C trades off 

all misclassifications of training face images against maximisation of the 

decision surface. The aim is to get a high C to ensure all training faces are 

classified correctly. Chosen C = 1000 as this value showed a significant 

improvement. However, gamma (𝛾) verifies how much influence a single 

training face image has and the larger 𝛾 is, the closer other face images to be 

affected. The value of this parameter was given as gamma=0.001 as it also 

improved classification.  

3.2.6 Convolutional Neural Networks (CNN) 

In chapter two, Section 2.2, the properties, and motivations behind CNNs in 

FR are explained. In this section, the CNN architecture used in this dissertation 
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is presented.  Figure 3.3 illustrates the proposed multilayer CNN architecture 

for this dissertation.  

 

(a) 

 

(b) 

Figure 3.3: This study’s suggested convolutional neural network architecture. 

(a) shows a complete architecture, (b) shows the layers in detail. 

Figure 3.4 depicts the flowchart of the proposed method. Convolutional neural 

networks consist of numerous layers as mentioned in Section 2.2 of chapter 

two, namely, convolutional, Pooling (P), and Fully Connected (FC) layers. 

Dense_1 OUTPUT
Size: 32768

INPUT
Size: 64 x 64 x 1

Con2D:  3 x 3 size, 
64 filters 

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D:  3 x 3 size, 
32 filters 

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D:  3 x 3 size, 
32 filters 

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Padding:
same

Con2D:  3 x 3 size, 
16 filters 

ReLU:
Max(0, hѳ(x))

MaxPooling:
2x2 size, 2x2 stride

Dropout:
rate = 0,2
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Each layer transforms its volume of Rectified Linear Unit (ReLU) activations to 

another layer through different functions. They are also comprised of a dropout 

layer for overfitting (Srivastava et al., 2014). In this dissertation, three main 

types of layers are incorporated, which are, Convolution (Conv) layer, Pooling 

layer, and Fully Connected layer. The layers of this architecture are illustrated 

below as follows: 

• Input layer consists of raw image data with a dimension vector of 

batch size 64 x 64 x 1. This means batch size x height x width x 

grayscale images (1 channel images). 

• Convolutional layer (Conv_1) entails a batch size x 64 x 64 x 64 with 

a kernel of 3 x 3 and 64 output feature maps. This layer computes 

the convolutions between the neurons and the various patches in the 

input. Detailed in Section 2.2.2. 

• Pooling layer (Pooling_1) with batch size x 32 x 32 x 64 with 64 

representing output feature maps. This layer samples the previous 

layer and results in reduced dimensions. This layer assists only in 

keeping important elements and the Max pooling is used to keep 

maximum value in each K x K window, see details in Section 2.2.3.  

Max pooling presents some sort of local invariance, consequently, it 

helps to produce vigorous features against noise in the input data. 

Here, the same padding is used to get the same size output as the 

same as that of the input, vector x. By doing so, it computes the 

padding parameter, p, corresponding to the filter size to make sure 

that the input size is the same as the output size as required (Vahid 

Mirjalili and Sebastian Raschka, 2017). 

• ReLU is an activation function that is applied to the matrix to make it 

linear (Jarrett et al., 2009.). It is linear in the positive dimension but 

zero in the negative dimension. Its linearity in the positive dimension 

has an alluring attribute that inhibits non-saturation of gradients, 
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though one-half of the actual line its gradient is zero. It takes the 

summed weighted input from the node and transform it into the 

activation of the node or output for that input. 

• Convolutional layer (Conv_2) with batchsize x 16 x 16 x 128 with 

kernel of 3 x 3 and 128 output feature maps. 

• Pooling layer (Pooling_2) with batchsize x 16 x 16 x 128 with 128 

representing output feature maps. 

• Fully Connected (FC_1) layer with batchsize x 32768. 

• Dropout layer or output shape 16 x 16 x 128. 

• Fully Connected (FC_2) and softmax layer compute the output 

scores resulting in size of 1 x 1 x 40, where 40 defines the value of 

classes in the training dataset. According to (Long, Shelhamer and 

Darrell, 2015), this layer can be trained end-to-end, pixels-to-pixels 

on semantic image segmentation (classification and localisation) 

rather than only to predict the dense outputs. 

 

3.3 Training and simulation of CNN 

From the ORL database of 40 classes a CNN was implemented. First, 

eigenfaces and feature prognosis vectors are computed for the faces in the 

database, but this is detailed in Section 3.4.2.3.1. Figure 3.2, Section 3.2.4, 

showcases Eigenfaces obtained during training. Figure 3.5 depicts the 

cumulative explained variance ratio. 
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Figure 3.4: PCA + K-Means Clustering + CNN flow diagram used in this 

dissertation. 
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Figure 3.5: Cumulative explained variance. 

Then, cluster these feature projection vectors using k-means clustering and 

feed them as inputs in the CNN. Figure 3.6 and 3.7 depicts the schematic 

diagram of the proposed CNN training phase and classification simulations. 

 

Figure 3.6: Convolutional Neural Network training phase. 

When FR is considered for a new face image, the feature projection vector of 

this new face is calculated from the eigenfaces, classified with SVC, clustered 

using the KMeans algorithm to separate samples in n groups of equal variance 

and choosing centroids that minimise a criterion known as inertia and then this 

face image gets new face descriptors. These new face descriptors are then 

supplied to convolutional neural networks and this network is modelled with 
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these descriptors, where the network outputs are compared. Decision-making 

is based on the minimum and maximum outputs. At the highest output, this 

new face is chosen to be the part of  the class of a person with this highest 

output. 

 

 

Figure 3.7: Convolutional Neural Network Classification Simulations. 

 

3.4 Conclusion 

This chapter discussed the suggested method in detail commencing by the 

usage of SVM and followed by SVC classification. Subsequently, discussed 

data compression and classification in PCA. Finally, discussed the CNN 

algorithm, training, and simulation, and illustrated these in Section 3.3, Figures 

3.6 and 3.7. Chapter four, next, will be illustrating and discussing empirical 

findings or experimental results of the proposed method in details.
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CHAPTER 4 

Empirical Findings (Experimentation) 

4.1  Overview 

The upcoming sections introduce the experimental setup and implementation 

of this pilot study.  

4.2  Experimental Setup 

4.2.1 Development environment  

All conducted simulations were done on Windows 10.1 with Intel® Core™ i7-

9750H 9th Generation at 2.60GHz, 32.0 GB memory, GPU 0 (Intel® UHD 

Graphics 630), GPU 1 (NVDIA GeForce GTX 1650 with Max-Q Design), 2667 

MHz RAM speed and A5.2 GB cashed. Software coding experiments were 

executed in Python using Keras (Haghighat and Juanes, 2021) application 

programming interface (API) with TensorFlow as a backend. PCA, K-Means 

clustering, and CNN models were created with this high-level API computed in 

the background with the help of TensorFlow.  Python libraries and 

dependencies such as NumPy, Pandas, and matplotlib to generate figures 

were used. Jupyter Notebook interactive computational environment was 

used.  

4.2.2 Data  

To examine the proposed algorithm, the ORL_faces dataset was used. This 

dataset was first introduced between April 1992 and 1994 (Samaria and 

Harter, 1994). It comprises 10 different face images per class for every 40 

distinct persons. These images are in greyscale format and were captured in 

different lighting conditions and occasions. Per class, one person is 

represented with different facial expressions such as an open or close mouth, 

with or without glasses, and with different head orientations (Abbas, Safi and 

Rijab, 2017). These images are used for training and testing.  Figure 3.1 in 
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Section 3.2.4 shows among the views some of these faces. The shape 

(dimensions) of the images is 64 * 64 pixels, and each with a sample vector of 

64 * 64 = 4096 dimensions.  

 4.2.3   Implementation 

4.2.3.1   PCA Algorithm Steps 

As stated already from the beginning of this study in the abstract section, PCA 

is the first algorithm implemented. The dataset is split already from this 

algorithm to 20 % test size and 80% training and its results are observed. This 

split was adjusted accordingly to assist on delivering high accuracy. PCA 

algorithm extracts the following steps (Vahid Mirjalili & Sebastian Raschka, 

2017): (1) data standardization, (2) covariance construction, getting 

covariance matrix eigenvalues, and eigenvectors, (4) sort proper values in 

reducing order sequence on positioning proper vectors. During standardizing 

of data, the centroid is at the origin, all the variables consist of the same 

variance, making all variables to get a naught average and the square root of 

the variance. Parameters such as the number of components (n_components) 

were assigned a value of 155, and random state (random_state) of 42 to 

initialize the internal random number. Thereafter, SVC classification with RBF 

kernel, penalty parameter C of 1000 to add penalty to each misclassified data, 

and gamma parameter of 0.001 to monitor the gap that influences the single 

point of training was utilized to enhance the accuracy (Liang et al., 2022). 

Figure 3.5 Section 3.3 represents the cumulative explained variance obtained. 

 

  4.2.3.2   K-Means Clustering Algorithm Steps 

Again, this algorithm was announced at the beginning of this study at the 

abstract section and explained in depth in Section 2.4. This algorithm takes 

the output data from the PCA, in this case, eigenfaces, and assigned 40 face 

classes and used hyperparameters such as, initialise (init) set to random, 
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number of clusters (n_clusters) set to 5, number of initialisations (n_init) set to 

10, maximum iterations (max_iter) set to 300, and random_sate = 42. K-Means 

algorithm consists of phases namely: (a) arbitrarily choose 𝑘 geometric centers 

form sample points like the preliminary group centres, (b) designate every 

sample of a closest geometric centre µ(𝑗),  𝑗𝜖{1, … , 𝑘}, (c) change a position of 

the geometric centres towards the middle of the samples that were designated 

to it, (d) recite steps 2 and 3 until the cluster tasks do not alter or number of 

iterations is attained. Thereafter, fit this into the new dataFrame, and define 

the lowest sum of Euclidean distance.  This new dataFrame becomes the CNN 

input data.  

 

4.2.3.3   CNN Algorithm Steps 

In Section 3.2.6, the model architecture with its layers is detailed but the 

hyperparameters and parameters were left out for this section. Therefore, the 

first step was to normalise the new dataFrame of images to prepare for CNN 

training. The training data was fitted in the standard scaler and both the test 

and train data were transformed and reshaped to 64 * 64 pixels and to channel 

(𝐶𝑛) 1 for greyscale images. Subsequently, the classes of 40 face images were 

converted to matrix of binary values using to categorical4 function provided by 

Keras to represent different categories of the data. This function yields the 

output binary values of 1 or 0. Training the model, certain parameters were 

considered to enhance the accuracy such as, the crossentropy loss parameter 

for computation between the labels and predictions, Adam optimisation 

parameter of 0.0001 learning rate, batchsize of 256, verbose of 2 and 

callbacks. Splitting the dataset to a test size of 20 % and 80 % training 

improved the accuracy and this proposed methodology obtained 99% in 90 

 
4 To categorical function is available from: Python Keras | keras.utils.to_categorical() - 

GeeksforGeeks 

https://www.geeksforgeeks.org/python-keras-keras-utils-to_categorical/
https://www.geeksforgeeks.org/python-keras-keras-utils-to_categorical/
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epochs. Figures 4.1 and 4.2 display the graphical representations of the model 

accuracy and loss after training. Table 4.1 depicts confusion matrix.  

 

Figure 4.1: Model Accuracy of 99%. 

 

Figure 4.2: Model Loss of 1%. 
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Table 4.1 Confusion Matrix 

Predicted 

Real 

Numerical Form 

Class_1 Class_2 Class_3 Class_4 Class_5 Class_6 

Class_1 3 0 0 0 0 0 

Class_2 0 1 0 0 0 0 

Class_3 0 0 2 0 0 0 

Class_4 0 0 0 2 0 0 

Class_5 0 0 0 0 4 0 

Class_6 0 0 0 0 0 4 

 

Table 4.2 Shows classification report where the f1-score accuracy is 99%.   

Table 4.2: F1-Score of 99% 

Scoring 

Metrics 

Classification Report 

Precision Recall F1-Score Support 

Accuracy   0.99 80 

Macro avg 0.99 1.00 0.99 80 

Weighted avg 0.99 0.99 0.99 80 

 

F1-score is a weighted average of the precision and recall whereby at its best 

it reaches a value of 1 and at worst score a 0. Thus, our model’s accuracy at 

its best is 0.99 which is close to 1. 

Figure 4.3 depicts the first 6 filters out of 64 filters from layer 2 of this proposed 

paradigm with 18 face images. Each filter with one row and each channel with 

one column. Inhibitory weights are the dark squares and excitatory weights the 
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light squares. Excitatory inputs are often positively weighted and valued while 

inhibitory inputs are negatively weighted and valued. Each neuron has a fixed 

threshold for firing, and this can be achieved by an excitatory input.  

 

Figure 4.3: Filter of the second layer. 

To view the feature maps of the input face image, a visualisation is performed. 

This visualisation entails input features that are identified and maintained from 

the feature maps. Figure 4.4 depicts this in the first conv layer by showing 

different face image sorts of various emphasized features. A few of these 

highlights can be seen as a focus on lines, and background of the foreground.  

 

Figure 4.4: First convolutional layer feature maps. 
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Table 4.3 represents the F1-Score results obtained in contrast to other face 

algorithms such as PCA+SVC, SVM, Naive Bayes (NB), kNN and the 

proposed CNN algorithm. 

TABLE 4.3:  F1-Score Performance Analysis for the Proposed Methodology 

 

4.3   Conclusion 

This chapter covered the basic implementation applied in this study. It started 

by describing the system software setup. Next, defined the ORL dataset with 

face images used to evaluate, test, and train the CNN model. Thereafter, it 

explained the steps taken to process the original data using PCA algorithm. 

Afterward, cited the steps taken using the K-Means clustering algorithm to 

manipulate the data to be ready as a CCN input data. Finally, discussed the 

CNN algorithm hyperparameters used to train the CNN model with the 

simulations results presented graphically.  

Test Results 

Database Training 

Images 

% 

Testing 

Images 

% 

SVM NB KNN 

F1-Score 

Performance 

% 

 

PCA + SVC  

F1-Score 

Performance  

% 

CNN   

F1-Score 

Performance  

% 

ORL        

 50 50 94 48 61 93 91.5 

 60 40 94 63 74 94 94 

 70 30   76 96 91 

 80 20 96 82 84 97 99 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1   Summary and Conclusions 

This study aimed to find alternatives to improve the FR systems by 

investigating and exploring the fundamental concepts in the current literature, 

to enhance the accuracy and training time of the CNNs. Chapter 2 provided 

the theoretical background literature of the FR systems. In chapter 3 the 

methodology used in this study was presented and discussed with the well-

known algorithms in the field of machine learning and face recognition such as 

PCA, K-Means clustering and CNNs. In chapter 4 the implementation process 

was explained, beginning with the development environment, to the dataset 

used in this study, and finally portrayed all the steps taken into training and 

testing the three identified algorithms of this study. Chapter 4 also presented 

the results obtained during the training of the proposed CNN model. 

In this study, a face recognition system, based on improved deep 

learning neural network is proposed and implemented on Python programming 

language. It is based on PCA preprocessing, k-means clustering followed by 

convolutional neural networks (CNNs). The feature prognosis vectors acquired 

from the PCA technique are utilized as input vectors in k-means clustering and 

then normalised in preparation for the training and testing of the CNN 

architecture. This method performed better than the PCA+SVC, SVM, KNN 

and NB and obtained the best accuracy of 99% at 90 epochs. The results 

suggests that CNN surpasses the abovementioned algorithms for the ORL 

database and that there is a room for improvement.  

 

5.1.1   Contribution 

Though CNNs (LeCun et al.,1989) remain the specialised sort of neural 

networks in manipulating data with identified grid-like topology and a group of 
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models motivated by the functionality of a visual cortex in the human brain 

whilst recognising objects, today they still face challenges of illumination, 

noise, and feature extraction. This dissertation aimed to contribute on 

addressing the FR system challenges by improving deep CNN accuracy and 

performance. This study will also be of value to current and future researchers 

interested in FR using deep CNN. Also, to highlight the benefits of NN in FR 

such as nonlinearity. Basically, a neuron is a nonlinear device, and its 

nonlinearity is a highly important property (Haykin, 1994). To improve the 

techniques of FR such as model-based and appearance-based by 

investigating the methodologies of PCA and LDA to construct and create 3D 

model of human face. PCA technique uses eigenfaces which are just merely 

2D spectral facial images that are composed of grayscale features (Das, 

2015). The deliberate contributions and initial assumptions from other work 

are, a study to motivate CNNs image classification for FR and their issues, 

more on the selection of parameters to train the model, combination of PCA, 

K-Means clustering, and CNNs to maintain valuable features and further the 

enhancement of CNNs training time, and finally, K-Means application to 

recreate the PCA output data for CNNs as input data.   

 

 5.2   Limitations and Future work 

The size of the network was limited to reduce the training time, but also, due 

to time span of this dissertation. Thus, if time was not the issue different 

parameters would have been evaluated and tested in different network 

configurations. The image dataset would have been increased to large 

datasets such as Googles dataset. Instead of only using PCA and K-Means 

clustering for preprocessing purposes other preprocessing possibilities would 

have been investigated and applied in the first layer. Regardless of the 

encouraging findings the hyperparameters can be tuned more to even obtain 

better results, for example, convolutional layers, these can be manipulated by 

changing the parameters to observe the output results.  
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For future work, it would be suggested that different databases are 

tested using this approach and that a live face recognition system is used to 

observe how accurate the classification of this model with different ethnicities 

is. It is important to note that the algorithms applied in this dissertation can be 

utilized to any image classification problem regardless of the dataset used. 

PCA was chosen due to its capability to reduce data dimension allowing the 

usage of smaller networks to reduce the training time. As for the CNN, other 

forms or steps of preprocessing might be utilized to substitute the input layer.  

Due to the time constraints concerning this dissertation, this led to limit 

the size of the network and the number of times the training is run. Therefore, 

for future work, the assessment of larger networks should be implemented and 

so as more parameter tuning such as the learning rate. Moreover, time 

evaluation highly depends on the system hardware to speed up the training 

time. Training larger datasets enhances the accuracy of the network (Schroff, 

Kalenichenko and Philbin, 2015). Finally, future work could consist of the 

system development of practical applications such as identity verifications at 

the airport or by the police. 
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Appendix A: Python source code sample5 

IMPORT LIBRARIES 

import keras 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

import seaborn as sns 

import matplotlib.pyplot as plt 

%matplotlib inline 

import matplotlib.image as mplib 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

from keras.utils import np_utils 

from sklearn.model_selection import train_test_split 

from keras.utils.np_utils import to_categorical 

from tensorflow.keras.layers import Input,InputLayer, Dense, Activation

, ZeroPadding2D, BatchNormalization, Flatten, Conv2D 

from tensorflow.keras.layers import AveragePooling2D, MaxPooling2D, Dro

pout 

from tensorflow.keras.models import Sequential,Model 

from tensorflow.keras.callbacks import ModelCheckpoint,LearningRateSche

duler, EarlyStopping 

from tensorflow.keras import backend as K 

from sklearn.naive_bayes import GaussianNB 

from sklearn import metrics 

 

from sklearn.svm import SVC 

from sklearn.metrics import classification_report, confusion_matrix 

from time import time 

 

# DATASET 

faces = pd.read_csv('./face_data.csv') 

faces.shape 

 

# VIEW DATA 

faces.head() 

 

# VIEW SEABORN 

sns.pairplot(faces, vars =['1', '7', '3', '4', '4095', 'target']) 

 
5 

https://github.com/ZukisaNante/IMPROVED_DCNN_FACE_RECOGNITION/blob/main/SRC/PCA

%20%2B%20CNN%20FACE%20RECOGNITION_FINAL%20(3).ipynb 
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plt.tight_layout() 

plt.show() 

# faces.hist(bins=1) 

# plt.show() 

 

# HELPER FUNCTIONS 

def display_initial_faces(pixels): 

    # SHOWING INITIAL IMAGES 

    fig, axes = plt.subplots(6, 10, figsize=(11, 7), 

                             subplot_kw={'xticks':[], 'yticks':[]}) 

    for i, ax in enumerate(axes.flat): 

        ax.imshow(np.array(pixels)[i].reshape(64, 64), cmap='gray') 

    plt.show() 

 

def show_eigenfaces(p_c_a): 

    # SHOW EIGENFACES 

    fig, axes = plt.subplots(3, 8, figsize=(9, 4), 

                             subplot_kw={'xticks':[], 'yticks':[]}) 

    for i, ax in enumerate(axes.flat): 

        ax.imshow(p_c_a.components_[i].reshape(64, 64), cmap='gray') 

        ax.set_title("PC " + str(i+1)) 

    plt.show() 

 

X = faces.drop('target', axis = 1) 

y = faces['target'] 

 

print (np.array(X).shape) 

 

 

faces.corr() 

display_initial_faces(X) 

faces.describe() 

# Divide dataset 

(X_train_data_set, X_test_data_set, Y_train_data_labels, Y_test_data_se

t ) = train_test_split(X, y, test_size=0.2, random_state=42) #without 

random state PCA is 97 % 

 

 

Principal Component Analysis 
p_c_a=PCA(n_components=155) 

p_c_a_values= p_c_a.fit_transform(X_train_data_set) 

var = p_c_a.explained_variance_ratio_ 

p_c_a.components_[0] 

# Determine sets compression 

var1 = np.cumsum(np.round(var,decimals = 4)*100) 

var1 
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plt.plot(np.cumsum(p_c_a.explained_variance_ratio_)) 

plt.axis("tight") 

plt.xlabel('Component Quantity') 

plt.ylabel('Cumulative explained variance') 

# Display eigenfaces only works with X_train in p_c_a instead of faces 

show_eigenfaces(p_c_a) 

 

# Directing the trained data to PCA 

print("Projecting the input data on the eigenfaces orthonormal basis") 

Xtrain_pca = p_c_a.transform(X_train_data_set) 

 

# Classify initialization and fit training data 

 

clf_init = SVC(kernel='rbf',C=1000,gamma=0.001) 

clf_init = clf.init.fit(Xtrain_pca, Y_train_data_labels) 

clf_init 

 

# Perform testing and get classification report (WITHOUT random_state=4

2 IT GETS 97% AND THIS WAS TO IMPROVE CNN ACCURACY) 

print("Predicting people's names on the test set") 

t0 = time() 

Xtest_pca = p_c_a.transform(X_test_data_set) 

y_pred = clf_init.predict(Xtest_pca) 

print("done in %0.3fs" % (time() - t0)) 

print(classification_report(Y_test_data_set, y_pred)) 

 

 

Testing Different Algorithms 
 
# 1: Apply Decision Tree 

from sklearn.tree import DecisionTreeClassifier 

from sklearn import tree 

dt = tree.DecisionTreeClassifier(criterion="entropy") 

dt.fit(X_train_data_set, Y_train_data_labels) 

ypred = dt.predict(X_test_data_set) 

 

# 2: Confusion Matrix 

confusion_matrix(Y_test_data_set, ypred) 

 

# 3: Classification Report  

print(classification_report(Y_test_data_set, ypred)) 

 

# 4: Implementing K-Nearest Neighbors  

from sklearn.neighbors import KNeighborsClassifier 

# Classify KNN 

knn = KNeighborsClassifier(n_neighbors=5) 

# Fitting training data in KNN 
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knn.fit(X_train_data_set, Y_train_data_labels ) 

# Predict 

ypred = knn.predict(X_test_data_set) 

ypred= pd.DataFrame(ypred) 

print(classification_report(Y_test_data_set, ypred)) 

 

# 5: Apply Random Forest 

from sklearn.ensemble import RandomForestClassifier  

rf = RandomForestClassifier(n_estimators = 300, criterion="entropy") 

rf.fit(X_train_data_set, Y_train_data_labels ) 

y_pred_RF = rf.predict(X_test_data_set) 

print(classification_report(Y_test_data_set, y_pred_RF)) 

 

# 6: Apply SVM  

from sklearn.svm import LinearSVC 

clf_init = LinearSVC(random_state=0, tol=1e-5) 

clf_init.fit(X_train_data_set, Y_train_data_labels.ravel()) 

# Response prediction for testing data  

ypred = clf_init.predict(X_test_data_set) 

ytest = Y_test_data_set.to_numpy() 

print(classification_report(ytest, ypred)) 

# Apply Naïve Bayes  

nb = GaussianNB() 

nb.fit(X_train_data_set, Y_train_data_labels ) 

y_pred_NB = nb.predict(X_test_data_set) 

print(classification_report(Y_test_data_set, y_pred_NB)) 

 

K-Means Clustering 
# Define 40 classes of z using PCA values 

z =pca_values[: 40] 

# Define new data space 

new_df = pd.DataFrame(z, columns=["F"+str(i+1) for i in range(var1.shap

e[-1])]) 

new_df 

from sklearn.cluster import KMeans 

kmeans = KMeans(init="random", n_clusters=5, n_init=10, max_iter=300, r

andom_state=42) 

kmeans.fit(new_df) 

kmeans.labels_ 

 

The lowest Sum of Squared Error/Euclidean (SSE) value 

print("SSE value: ", kmeans.inertia_) 

# Last location  

print("\n Last geometric center 

location: \n", kmeans.cluster_centers_[:1]) 

# Merging Point 

print("\n Iterations required to converge: ", kmeans.n_iter_) 
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# Storing cluster assignments in 1D Numpy array 

print("\n Predicted labels: \n", kmeans.labels_) 

# View the new reduced data 

new_df.head() 

 

faces = new_df 

# Defining labels and assigning the target 

faces.rename(columns={'F1':'label'}, inplace=True) # inplace=true is to

 delete it permanetly and has been depricated 

faces.rename(columns={'F155':'target'}, inplace=True) 

# View the new reduced data again with new labels 

faces.head() 

 

 

SEABORN 

# View searborn of the few columns of the new data 

sns.pairplot(faces, vars =['label', 'F3', 'F7', 'F154', 'target']) 

 

sns.pairplot(faces, vars =['label', 'F3', 'F7', 'F154', 'F8'], hue='lab

el', kind='reg') # demands more RAM, takes time in a CPU, better GPU 

 

 

 

Starting Normalisation to Prepare for CNN 

from sklearn.preprocessing import MinMaxScaler 

standard_scaler = MinMaxScaler() 

standard_scaler.fit(X_train_data_set) 

# Transform train and test data 

X_train_data_set = standard_scaler.transform(X_train_data_set) 

X_test_data_set = standard_scaler.transform(X_test_data_set) 

X_train_data_set.shape, Y_train_data_labels.shape, X_test_data_set.shap

e 

# Define data shape 

X_train_data_set = X_train_data_set.reshape((X_train_data_set.shape[0],

 64, 64, 1)).astype('float32') #22, 7, 1 tried and results to 100% 

score, the way it trains data is not convincing 

X_test_data_set = X_test_data_set.reshape((X_test_data_set.shape[0], 64

, 64, 1)).astype('float32') 

print(X_train_data_set.shape) 

# Preparing data for CNN 

Y_train_data_labels = to_categorical(Y_train_data_labels, 40) 

Y_test_data_set = to_categorical(Y_test_data_set, 40) 

Y_train_data_labels.shape, Y_test_data_set.shape 

# Assign classes test shape 

num_classes = Y_test_data_set.shape[1] 
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# View classes 

num_classes  

 

CNN 

from tensorflow.python.keras import regularizers 

# Stop training when no more improvement in the validation loss for 3 c

onsecutive epochs 

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=90

, min_delta=0, verbose=0, mode="auto", baseline=None, 

    restore_best_weights=False,) 

 

model = Sequential() 

 

model.add(Conv2D(64, (3, 3), input_shape=(64, 64, 1), activation='relu'

, data_format="channels_last", kernel_initializer=tf.keras.initializers

.HeNormal(), padding="same")) 

model.add(Conv2D(64, (3, 3), input_shape=(64, 64, 1), activation='relu'

, data_format="channels_last", kernel_initializer=tf.keras.initializers

.HeNormal(), padding="same")) 

model.add(MaxPooling2D((2,2), strides=(2,2), padding='same')) 

 

model.add(Conv2D(128, (3, 3), activation='relu', data_format="channels_

last", padding="same")) 

model.add(Conv2D(128, (3, 3), activation='relu', data_format="channels_

last", padding="same")) 

model.add(MaxPooling2D((2,2), strides=(2,2), padding='same')) 

 

model.add(Dropout(0.2)) 

 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dense(num_classes, activation='softmax')) 

# Print model summary 

model.summary() 

 

 

TRAINING 

from keras.optimizers import Adam 

# View time taken to train the network  

t0 = time() 
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model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001

), metrics=['accuracy']) 

history = model.fit(X_train_data_set, Y_train_data_labels, validation_d

ata=(X_test_data_set, Y_test_data_set), epochs=90, batch_size=256, call

backs=[callback], verbose=2) 

 

# Last verification step 

scores = model.evaluate(X_test_data_set, Y_test_data_set, verbose=0) 

print("CNN Error: %.2f%%" % (100-scores[1]*100)) 

 

 

# SHOW MODEL PERFORMANCE OVER EPOCHS 

plt.plot(history.history['accuracy']) 

plt.plot(history.history['val_accuracy']) 

plt.title('Model Accuracy') 

plt.ylabel('Accuracy') 

plt.xlabel('Epoch') 

plt.legend(['Train', 'Test'], loc='lower right') 

plt.savefig('Model_Accuracy.png') 

plt.show() 

# Summarize history for loss 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('Model Loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend(['train', 'test'], loc='upper right') 

plt.savefig('Model_loss.png') 

plt.show() 

 

model.save('weights.model') 

model.save_weights("model.h5") 

model_json = model.to_json() 

with open("model.json", "w") as json_file: 

    json_file.write(model_json) 

 

Y_test_data_set[1] 

 

rounded_labels=np.argmax(Y_test_data_set, axis=1) 

rounded_labels[1] 

 

rounded_predictions = model.predict_classes(X_test_data_set, batch_size

=256, verbose=0) 

rounded_predictions[1] 

 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(rounded_labels, rounded_predictions) 
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cm 

 

X_test_data_set =np.argmax(X_test_data_set, axis=1) 

# X_test_data_set[1] 

 

from sklearn.metrics import f1_score, precision_score, recall_score, co

nfusion_matrix 

 

print(precision_score(rounded_labels, rounded_predictions , average="ma

cro")) 

print(recall_score(rounded_labels, rounded_predictions , average="macro

")) 

print(f1_score(rounded_labels, rounded_predictions , average="macro")) 

 

 

MODEL CLASSIFICATION REPORT 

 

print("done in %0.3fs" % (time() - t0)) 

print(classification_report(rounded_labels, rounded_predictions)) 

 

DISPLAY EPOCHS NOT MORE THAN 90 

 

len(history.history['loss'])  

 

# Concatenated kernels summarized 

for layer in model.layers: 

    # conv check 

    if 'conv' not in layer.name: 

        continue 

 

# Getting 2D Weights  

filters, biases = layer.get_weights() 

print(layer.name, filters.shape) 

 

# Summary of 2D weights  

from matplotlib import pyplot 

# Concatenated kernels summarized 

for layer in model.layers: 

    # Test  

    if 'conv' not in layer.name: 

        continue 

    # Getting 2D kernel 

    filters, biases = layer.get_weights() 

    print(layer.name, filters.shape) 

 

# Get kernel 

filters, biases = model.layers[1].get_weights() 
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# Enable visualization  

f_min, f_max = filters.min(), filters.max() 

filters = (filters - f_min) / (f_max - f_min) 

 

# Showing a couple of low-level values in kernel matrix 

n_filters, ix = 6, 1 

for i in range(n_filters): 

    # Identify concatenated kernels 

    f = filters[:, :, :, i] 

    # Display channels apart 

    for j in range(3): 

        # Specify subordinate kernel 

        ax = pyplot.subplot(n_filters, 3, ix) 

        ax.set_xticks([]) 

        ax.set_yticks([]) 

        # Display black and white channels 

        pyplot.imshow(f[:, :, j], cmap='gray') 

        ix += 1 

# Plot 

pyplot.show() 

 

# Convolution size summary  

from matplotlib import pyplot 

# Summarize attributes 

for i in range(len(model.layers)): 

    layer = model.layers[i] 

    # Conv layer check  

    if 'conv' not in layer.name: 

        continue 

    # Summarize 

    print(i, layer.name, layer.output.shape) 

 

# Define model again  

model = Model(inputs=model.inputs, outputs=model.layers[1].output) 

 

# Attributes of the second layer after input layer 

feature_maps = model.predict(X_train_data_set) 

 

# Display four by four squares of the sixteen maps 

square = 4 

ix = 1 

for _ in range(square): 

    for _ in range(square): 

        # Graphical presentation  

        ax = pyplot.subplot(square, square, ix) 

        ax.set_xticks([]) 



 

73  

  

        ax.set_yticks([]) 

        # view black and white 

        pyplot.imshow(feature_maps[0, :, :, ix-1], cmap='gray') 

        ix += 1 

# Plot 

pyplot.show() 

 

# Define again 

ixs = [0] 

outputs = [model.layers[i+1].output for i in ixs] 

model = Model(inputs=model.inputs, outputs=outputs) 

model.summary() 

 

# Iput layer 

model.layers[0].output 

 

# Layer 1 

model.layers[1].output
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Appendix B: CNN Model Sequel Representation 

CNN model utilized to all simulations – Plots utilizing Keras model 

representation  
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Appendix C: Approved Ethical Clearance 
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