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Abstract

In this study, a theoretical nonlinear mathematical model was revised to understand the inter-
action of HIV-related cancer cells dynamics with treatment. The work done is adopted from
the paper by Lou et al. This work develops a mathematical model that combines healthy CD4+
cells, cancer cells, HIV-infected T cells, and cancer HIV-infected cells. The well-posedness of
the model is established and discussed. The computation of reproduction numbers, equilibria,
and stabilities are analyzed. Numerical simulations are carried out to determine the parameters
that have a high impact on the spread of the disease and Matlab software was used for the
numerical simulations. The numerical simulations for the model with no treatment show that
the disease will persist. To curb this situation, we introduced the model that incorporated
treatment, that is, HAART coupled with Chemotherapy to control the rate of infected T-cells
with time. The results obtained are consistent with those obtained by Carvalho et al., Aogo et
al., and Kaondera et al.
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Chapter 1: Biological backgrounds of
HIV and cancer

1.1 Introduction

Human immunodeficiency virus (HIV) is described as a retrovirus that infects cells of the hu-
man resistant system (such as CD4+ T-cells and macrophages—key components of the cellular
immune system) and destroys their functions [59]. HIV infection has been identified as the lead-
ing cause of AIDS [59]. Acquired Immunodeficiency Syndrome (AIDS) was first acknowledged
to exist in 1981 and within the period 1981-2020, more than [55.9 − 110] million people have
been infected and [27.2−47.8] million died after contracting it [12, 59, 10]. The disease, known
as AIDS, begins when the virus seriously damages the immune system, causing certain types
of infections and other complications. For individuals infected with HIV, cancer remains a
critical burden [10]. Individuals with AIDS are more likely to develop different types of cancer,
including Kaposi’s sarcoma, high-grade pathological type, and non-Hodgkin’s lymphoma and,
invasive cervical cancer with B cells or unknown immunological phenotype [40]. Insights into
the underlying epidemiology and mechanisms of AIDS-related cancers may give us a better un-
derstanding of cancer immunity and viral oncogenesis [10, 37]. Numerous studies which focused
on either tumor growth modeling or HIV dynamics in the bio-mathematical literature appear
in [12]. In particular, the most common neoplasm that occurs in AIDS patients is Kaposi’s
sarcoma. It develops as a tumor on mucous membranes such as the skin and mouth, but it can
also develop in other parts of the body, such as the lymph nodes, lungs, and digestive system
[10].

1.2 Human immunodeficiency virus (HIV)

The human immunodeficiency virus (HIV1) has the major infectious nodes where classical cell-
free infection and direct cell-to-cell transfer occur [10, 25]. HIV infection of CD4 + T cells
causes their rapid decline, endangering the host’s immune system and resulting in the death
of infected patients due to infection or cancer[8, 44]. When HIV damages the immune system,
individuals who are also infected with certain viruses (eg. Kaposi Sarcoma Herpesvirus) are
more likely to develop Kaposi Sarcoma [7, 10]. Infected individuals show no symptoms, however,
have proceeded with viral replications for certain years until an expansion in viral infection and
the decrease of CD4+ T cells lead to AIDS and even death [32].

1.3 Cancer

The term cancer is used for diseases in which abnormal cells in the body begin to grow out of
control. Normal cells grow, divide and die in an orderly fashion. Cancer cells are thus different
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from normal cells in the way they grow. Cells become cancer cells because of damage to DNA.
Cancer cells can move to other parts of the body, where they begin to grow and form new
tissues that replace normal tissues [57]. This process is called metastasis and it happens when
the cancer cells enter the bloodstream or lymph vessels [57].
A tumor is an abnormal growth of body tissues. It can be cancerous or non-cancerous. Cancer
is known worldwide to be a disease that has a significant burden on HIV-infected individu-
als. HIV is the human immunodeficiency virus that causes AIDS disease. HIV is transmitted
from one human to another by blood and bodily secretions. The majority of cancers affecting
HIV-positive people are those established as AIDS-defining: Kaposi’s sarcoma, Non-Hodgkin
lymphoma, and Cervical cancer [30]. Today, over 60 million people worldwide have been in-
fected with HIV, and more than 80% of them live in developing countries [1]. Researchers found
no viral sequence in the DNA of the cancer cells and they included that HIV-1 particle can not
by itself engender tumor in an HIV patient [27].

There are different types of cancers. Below we define the major ones.

� Kaposi’s sarcoma (KS):
It’s a specific form of skin cancer. It grows in the tissue under the skin’s surface or the
mouth and nasal mucous membranes. Studies have unequivocally demonstrated signifi-
cant declines in the incidence of KS following the introduction of HAART (Highly Active
Antiretroviral Therapy) [37]. KS was the AIDS-defining disease that rate had increased
to about 47 people per 1 million people of afflicted individuals in the early 1990s, a fig-
ure that later fell in recent years to about 6 cases per 1 million people because of more
effective treatments for HIV/AIDS [57].

� Non-Hodgkin lymphoma (NHL) :
It’s a specific form of cancer of the lymph system. The lymphatic system is made up
of small tubes that branch out to different areas of the body. After Kaposi’s sarcoma,
NHL is the second most common cancer associated with HIV/AIDS. It can affect the
brain, the spine, and the lungs. High-grade B-cell lymphomas account for more than
80% of lymphomas in people with HIV/AIDS, while 10% to 15% of lymphomas in people
without HIV/AIDS are of the same type [37]. The risk of developing NHL is substantially
increased in HIV-infected individuals, with risks ranging from approximately 40 to 400
times that of the general population, depending on the specific study and the type of
NHL, though most studies report rates of 100 to 200 fold [37].

� Cervical cancer:
It grows in the lower part of a woman’s uterus, the cervix. Cervical Intraepithelial Neo-
plasia is a common complication in HIV-positive women (CIN). High-grade CIN affects
11% to 29% of HIV-positive women and may be linked to human papillomavirus (HPV)
infection [37]. Some less common types of cancers may develop as a result of HIV/AIDS.

1.3.1 Characteristics of cancer cells

Cancer cells can be differentiated from normal cells. Characteristics of cancers are as follows.

� They reproducing indefinitely.

� Cancer cells resist signals from other cells. [47]

� Cancer cells don’t stick together.

� Cancer cells do not differentiate and remain immature.
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� They can spread through blood vessels.

1.3.2 Symptoms

The following symptoms can appear in people with HIV/AIDS-related cancer:
Kaposi’s sarcoma:

� Wounds in the mouth or throat.

� Lymphedema (Swelling occurs when the lymphatic system is clogged).

� Unexpected chest, cough, stomach, or intestinal pains.

Non-Hodgkin lymphoma:

� Enlarged liver.

� Sweating and chills.

Cervical cancer:

� Between or during menstrual cycles, there might be bloody spots or light bleeding.

� Various forms of examinations result in bleeding.

1.3.3 Cancer treatments

Staging is a way of identifying cancer, such as its location, if it has spread or not and it is not
interfering with the functions of other organs in the body [57]. Identifying the level of stage
help to decide what kind of treatment is effective to be considered by the practitioner [57].
Cancer treatment is determined by the cancer type in each individual. The high risk of infec-
tions caused by HIV reduces white blood cell count and immune function, which implies that
cancer treatment in people with AIDS will be difficult [57]. There are four different types of
treatment regimes namely: chemotherapy, immunotherapy, radiotherapy, and surgery.

� Radiotherapy works as a type of energy that shrinks tumors or eliminates cancer cells.
Cancer cells are normally regarded to be sensitive to radiation and die when treated.
Tumor cells are destroyed by high-powered radiation rays which stop the tumors from
growing. Radiotherapy is often employed to destroy tumor tissue that cannot be removed
surgically or to attack cancer cells that may survive surgery [57]. The implementation of
3D-imaging, can precisely aid practitioners to see the tumor mass before radiation and
then target the radiation at a particular location [38].

� Chemotherapy is used to eliminate cancer and is given in the form of drugs. This type
of treatment can cause side effects like loss of hair follicle cells. Questions can arise that
need to be addressed regarding chemotherapy. How large or small should the dosage be?
How long should the duration of the treatment be? How periodic should be the dosage?
Drugs that operate on tumor cells can be classified into two types: those that target both
proliferating and nonproliferating (quiescent) cells in various sections of the tumor mass,
and those that only target dividing cells during particular phases of cell division [38].
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� Immunotherapy is a form of treatment that helps to strengthen the immune system so
that it can kill cancer cells [57]. It boosts, targets, or restores immune system function
using substances produced by the body or in a laboratory [57].
Surgery aims to eliminate as many tumor cells and surrounding normal tissue as possible.
Curative surgery is the primary treatment for primary tumors that have not metastasized
and requires the removal of tumors that are limited to a single region [57]. Unfortunately,
many cancers, such as extreme types of brain tumors, are inoperable due to their location
[38].

1.4 Co-infection between cancer and HIV

Co-infection is more than one disease co-existing within a single host [20]. Non-AIDS-
defining cancers (NADCs) are typically defined in contrast to the three AIDS-defining
cancers (ADCs) – Kaposi sarcoma, non-Hodgkin lymphoma (NHL), and cervical cancer
[7]. Factors that may contribute to the increased risk of NADC include HIV viremia,
coinfection with carcinogens, chronic immunosuppression, immune activation, and expo-
sure to high levels of carcinogens increase [9]. Although they fall into the same general
category, not all NADCs share the same pathogenesis and risk factors. The higher danger
of certain cancers among HIV-Infected individuals is the higher prevalence of common
cancer risk factors such as smoking, oncogenic virus coinfection, including human papil-
lomavirus (HPV) or hepatitis B or C [49]. Theories have been proposed to explain the
increased risk of NADC associated with these viruses,and this includes the high preva-
lence of co-infection with the virus in HIV-infected populations [9, 16, 49]. There are
models which have been developed to model cancer in HIV-infected individuals, see for
instance Straus and Kirschner [22, 53]. For example in the study by [10, 30, 40], a dy-
namical model of HIV-1 with AIDS-related cancer cells was investigated. The model has
three compartments of; cancer cells, healthy CD4+ T lymphocytes, and infected CD4+ T
lymphocytes. We re-look at this model in this project by including treatment, an aspect
that was not included in the work in [30].
The model that was investigated is a cell to cell distribution of HIV-1 in combination with
cancer cells in tissue cultures [30]. The immune system can distinguish between cancerous
and non-cancerous cells. It surveys them before carrying out the killing operation. CD4+
T lymphocytes are used to represent the immune system which binds with the cancer
cells and destroys them.

1.5 Research objectives

The primary goal of this research is to create mathematical models for co-infection that
examine the dynamics of cancer and cancer-infected cells within the host. The specific
objectives are:

– Re-develop and analyze the cancer model from Lou et al.[30].

– Extend the model by incorporating with treatment to analyze the effect on the co-
infection model.
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1.6 Outline of the Dissertation

– Chapter 1 depicts the biological background of HIV and cancer.

– Chapter 2 consists of the reviewed model by Lou et al. [30] to include the bound-
edness and positivity of the model. The stability equilibrium was analyzed and
numerical simulations were carried out to further understand the impact of param-
eters in the model.

– In Chapter 3 we reformulate the cancer model to include the co-infection of cancer
infected cells without treatment [30]. The basic reproduction number is used to
determine the system’s stability. To obtain a better understanding of the dynamics
of the cancer model, some numerical simulations are run.
The presence of treatment is considered, and the basic cancer model is expanded to
examine the dynamics of co-infection of cancer and cancer HIV-infected cells. The
intervention method in this model will be able to show the effect of HAART and
chemotherapy drugs on the dynamics of cancer-infected cells.

– In Chapter 4 discussion of the results will be outlined and concluding remarks are
made.

1.7 Conclusion of the chapter

The chapter summarises the different types of infections that as HIV infection, and cancer
infection and it also outlines the objectives of the research. In the next chapter, we are
reviewing the cancer model by Lou et al [30].
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Chapter 2: Mathematical analysis of a
reviewed cancer model

2.1 Introduction

In this chapter work done by Lou et al.,[30] is reviewed to give insight into cancer cells and
healthy cells interacting with infected cells. The model presented is a nonlinear deterministic
mathematical model proposed by [30]. In Duarte et al. [10], they still deal with the same sys-
tems as Lou et al., but their focus was to determine the dynamical behaviors of the system by
observing two biological meaningful parameters: r1 representing the proliferation rate of cancer
cells and k1 which represent the immune system’s killing rate of the cancer cells. The maximum
Lyapunov function was computed to identify the chaotic regimes [10]. In their conclusion, they
revealed that the greatest observable variable is given in the population of cancer cells. The
approach of constructing a chaotic attractor could be used to characterize the attractor govern-
ing coexistence among cancer cells, CD4+ T cells, and HIV-infected T-cells [10]. In our case,
we use a compartmental modeling approach. This study is pursued further by looking at the
well-posedness and equilibria of the model to allow us to analyze the interaction of the cells in
this three-component model without treatment. Let C(t), T (t) ,and I(t) be the concentration
of cancer cells, healthy T-cells ,and infected T-cells, respectively. Considering a T cell, moreover
called T lymphocyte, a sort of leukocyte (white blood cell) that’s a fundamental portion of the
resistant framework. T cells are one of two essential sorts of lymphocytes—B cells being the
moment type—that decide the specificity of resistant reaction to antigens (foreign substances)
within the body. In some works of literature Lou et al. and Duarte [30, 10] use healthy CD4+
T lymphocytes but in this study, we will use healthy CD4+ T-cells throughout the work.

2.2 Model formulation

The model reviewed considers cell-to-cell dynamics between the state variables in which there
is interaction between healthy CD4+ T-cells, T (t) with HIV-1 infected T-cells, I(t) and the
T (t) cells also attacking and killing the cancer cells, C(t). The following assumptions are made:

1. One cell causes cancer due to a gene mutation, and use the parameter r1 as the un-
controlled proliferation rate. The cancer cells grow logistically according to dT (t)

dt
=

r1T (t)
(

1− C(t)+T (t)+I(t)
M

)
, the total population is C(t)+T (t)+I(t) and M is the carrying

capacity.

2. The CD4+ lymphocyte represents the immune system in our model. The healthy CD4+

T-cells grow logistically as dT (t)
dt

= r2T (t)
(

1− C(t)+T (t)+I(t)
M

)
, where r2 represent the rate
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at which healthy CD4+ T-cells grow. Detecting harmful cells, k1 reflect the rate at which
cancer cells are killed by the immune system. In the process of killing cancer cells, there is
a loss of the immune system which is represented by p due to the fact that it kills cancer
cells, hence we have the term −pk1.

3. The healthy CD4+ T-cells become infected by direct contact with the HIV infected T-
cells, described by the mass action term k2T (t)I(t), where k2 is the infection rate that
accounts for HIV-1 reproduction’s overall effects. The rate at which infected cells die is
represented by µI . The constants, r1 and r2 are such that r1 > r2 [18].

Based on the biological assumptions stated above, the system of equations are given by:

dC(t)

dt
= C(t)

[
r1

(
1− C(t)+T (t)+I(t)

M

)
− k1T (t)

]
,

dT (t)

dt
= T (t)

[
r2

(
1− C(t)+T (t)+I(t)

M

)
− pk1C(t)− k2I(t)

]
,

dI(t)

dt
= I(t)

[
k2T (t)− µI

]
.

(2.1)

The initial conditions are assumed to be

C(0) ≥ 0, T (0) ≥ 0, I(0) ≥ 0. (2.2)

The schematic diagram depicting all the considered dynamical variables is shown:

T

I

C

k2

k1

µI

pk1

Figure 2.1: The model flow depicting the biological system for the model (2.1). Healthy T-cells
become infected by interacting with productively infected T-cells (I). Cancer cells (C) develop
due to gene mutation. Sharp arrows represent the production or activation of cancers cells or
infected T-cells. The dashed line represents the loss of healthy CD4+ T-cells due to killing the
cancer cells.
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Table 2.1: State variables and units

State Variable Description Units
C(t) concentration of cancer population (cells mL−1)[Estimated]
T (t) concentration of healthy CD4+ T-cells (cells mL−1) [Estimated]
I(t) concentration of infected T-cells (cells mL−1) [Estimated]
k1 rate of immune system killing cancer cells (ml/day) [30]
r1 maximal proliferation rate of cancer cells (ml/day) [30]
r2 intrinsic growth rate of healthy CD4+ T-cells (ml/day)[30]
r3 intrinsic growth rate of cancer infected T-cells (ml/day) [Estimated]
p rate of losing immune due to infection (ml/day)[30]
k2 rate of infection (/ml/day) [30]
µI death rate of infected T-cells (/day) [30]
M carrying capacity (/ml) [30]

2.3 Basic properties

The classical definition of well-posedness given by [17], states that a mathematical model of a
physical phenomenon is well-posed if it has the following properties:

i. A solution exists.

ii. The solution is unique.

iii. The solution’s behavior changes continuously with the initial conditions.

The above properties are also applicable to the model (2.1) with initial conditions (2.2) as
has been shown in other biological systems. So, we demonstrate that all state variables are
non-negative for the study to be epidemiologically valid and well-posed, ∀t ≥ 0.

2.3.1 The existence and uniqueness of solution

Theorem 1. Let Γ = {
(
C(t), T (t), I(t)

)
∈ R3

+} denote the region defined by model system
(2.1). Then, there exists a solution for model system (2.1) which is bounded in the region Γ.

Proof. In order to prove the above theorem, the concept we derive is in [11].

f1 = C(t)

[
r1

(
1− C(t)+T (t)+I(t)

M

)
− k1T (t)

]
,

f2 = T (t)

[
r2

(
1− C(t)+T (t)+I(t)

M

)
− pk1C(t)− k2I(t)

]
,

f3 = I(t)
[
k2T (t)− µI

]
.

(2.3)

It suffices to show that ∂f1
∂C(t)

, ∂f2
∂T (t)

, ∂f3
∂I(t)

are continuous. The partial derivatives below are con-
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sidered ∣∣∣∣ ∂f1

∂C(t)

∣∣∣∣ =

∣∣∣∣∣r1

(
1− 2C(t) + T (t) + I(t)

M

)
− k1T (t)

∣∣∣∣∣ <∞,∣∣∣∣ ∂f1

∂T (t)

∣∣∣∣ =

∣∣∣∣−r1C(t)

M
− k1C(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f1

∂I(t)

∣∣∣∣ =

∣∣∣∣−r1C(t)

M

∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂C(t)

∣∣∣∣ =

∣∣∣∣−r2T (t)

M
− pk1T (t)

∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂T (t)

∣∣∣∣ =

∣∣∣∣∣r2

(
1− C(t) + 2T (t) + I(t))

M

)
− pk1C(t)− k2I(t)

∣∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂I(t)

∣∣∣∣ =

∣∣∣∣−r2T (t)

M
− k2T (t)

∣∣∣∣ <∞,∣∣∣∣ ∂f3

∂C(t)

∣∣∣∣ = |0| <∞,∣∣∣∣ ∂f3

∂T (t)

∣∣∣∣ =
∣∣k2I(t)

∣∣ <∞,∣∣∣∣ ∂f3

∂I(t)

∣∣∣∣ =
∣∣k2T (t)− µI

∣∣ <∞.
All these partial derivates are continuous and bounded, hence there exists a unique solution of
equations (2.3) in the region Γ.

Theorem 2. Assume the parameters of model (2.1) are nonnegative constants. A nonnegative
solution of C(0), T (0) and I(0) for model (2.1) exists for all state variables with nonnegative
initial conditions C(0) ≥ 0, T (0) ≥ 0, I(0) ≥ 0, ∀t > 0.

Proof. From the system (2.1), we have

dC(t)

dt
= C(t)

[
r1

(
1− C(t)+T (t)+I(t)

M

)
− k1T (t)

]
≥ C(t)r1

(
1− C(t)

M

)
,

dT (t)

dt
= T (t)

[
r2

(
1− C(t)+T (t)+I(t)

M

)
− pk1C(t)− k2I(t)

]
≥ T (t)r2

(
1− T (t)

M

)
,

dI(t)

dt
= I(t)

[
k2T (t)− µI

]
≥ −µII(t).

(2.4)

The initial concentration of the state variables are assumed to be: C(0) = C0, T (0) = T0 and
I(0) = I0. They are assumed nonnegative so as to be biologically feasible.
Using the second equation of (2.4), and applying separation of variables yields

dT (t)

T (t)
(

1− T (t)
M

) ≥ r2dt. (2.5)

The left-hand side of the equation (2.5), is expressed in partial fractions and integrated which
leads to

1

M

[∫
dT (t)

T (t)
+

∫
dT (t)

M − T (t)

]
≥
∫
r2dt, (2.6)
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therefore
ln
∣∣T (t)

∣∣− ln ∣∣M − T (t)
∣∣ ≥ r2Mt+ c, (2.7)

multipying (2.7) with negative sign

ln
∣∣M − T (t)

∣∣− ln ∣∣T (t)
∣∣ ≥ −r2Mt− c, (2.8)

then ∣∣∣∣M − T (t)

T (t)

∣∣∣∣ ≥ e−ce−r2Mt. (2.9)

We define c1 = e−c, then the equation becomes

M − T (t)

T (t)
≥ c1e

−r2Mt (2.10)

Simplifying the equation (2.10) to obtain T (t), where A =
M − T0

T0

as t = 0 and T (0) = T0.

yields

T (t) ≥ M

1 + Ae−r2Mt
. (2.11)

If the same approach is used in equation one of the systems (2.4), then we obtain

C(t) ≥ M

1 +Be−r1Mt
, (2.12)

where B =
M − C0

C0

at t = 0 and C(0) = C0.

Furthermore, the third equation of the system (2.4) becomes

I(t) ≥ I(0)e−
∫
µIdt ≥ 0. (2.13)

This proves that T (t), C(t), and I(t) remain positive for ∀t > 0. This completes the proof.

Theorem 3. All solutions C(t), T (t), I(t) of model (2.1) are bounded.

Proof. We prove that the solutions of system (2.1) are uniformly bounded for t > 0, following
Lou and Zhao [33]. We already showed in Theorem 1 that C(t), T (t), I(t) remain positive for
∀t > 0. It then suffices to assume that T (0) = T0, C(0) = C0 and I(0) = I0, an assumption
already made above. It is known from Lou and Zhao [33], that the T-cell concentration stabilizes
at a level T0, where T0 is the positive root of F(T) = 0. Adopting this view, we then have
F (T ) = 0). Hence, this implies that the other equations of system (2.1) becomes zero at level
T (0) > 0, C0 = 0, I0 = 0, where T0 is the positive root, from equation 2 of system (2.1), we
have

T (t)

[
r2

(
1− T (t)

M

)]
= F (T ) = 0, (2.14)

F (T ) = r2MT (t)− r2T
2(t), (2.15)

thus
0 = MT0 − T 2

0 , (2.16)

where T0 = 0 or T0 = M . By summing equations T (t) and I(t) of system (2.1), we obtain

d
(
T (t) + I(t)

)
dt

≤ r2T0 − µI(t). (2.17)
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Hence

lim supt→∞(T (t) + I(t)) ≤ r2T0

µI
:= M1. (2.18)

It follows from the first equation of system (2.1) that

dC(t)

dt
≤ r1C(t)

(
1− C(t)

M

)
, (2.19)

then the

lim supt→∞(C(t)) ≤M := M2. (2.20)

All solutions of the system are bounded in the feasible region

Γ = {
(
C(t), T (t), I(t)

)
∈ R3

+ : 0 ≤ C(t) ≤M2, 0 < T (t) ≤ T0, 0 < T (t) + I(t) ≤M1}.
(2.21)

Thus Γ is positively inviariant with respect to system (2.1).

2.4 The disease-free equilibria and their stabilities

Linear stability is a concept that is used to study the behavior of solutions that are similar to
steady-state. A steady-state can be stable or unstable and thus can be determined by linear
stability analysis. The trivial equilibrium E0 = (0, 0, 0) exists but it is not biologically feasible,
because when we have a trivial state only then do individual cells are dead. Cancer in itself in
this model is not viable to exist hence mutations have to occur, e.g cancer equilibrium. A state
of no disease in the population is called the disease-free equilibrium (DFE) and is obtained by
setting the system (2.1) to zero thus

dC(t)

dt
=
dT (t)

dt
=
dI(t)

dt
= 0.

In the DFE point C(t) = I(t) = 0, hence we have

T (t)

(
1− T (t)

M

)
= 0,

T (t) = M, (2.22)

therefore the DFE labelled as E01 = (0,M, 0).

2.4.1 Computation of the basic reproduction number

To investigate the equilibrium’s stability, we must first introduce the basic reproduction number
R0. The R0 in a fully susceptible population, is described as the estimated number of secondary
infections caused by an index event [46]. The R0 involves the product of infection rate and the
duration of infection. The reproduction number acts as a predictor of disease outbreaks and
aids in the development of control strategies. The analytical expression of R0 indicates which
element of the system can be controlled to reduce the outbreak of the disease [55].

We employ the next-generation matrix approach which is used to derive the basic repro-
duction number [55]. To calculate the system’s next-generation matrix from the system (2.1),
we will have to figure out how many different ways new diseases can spread and how many
different ways individuals can switch between compartments. The infected variables are firstly
ordered by rewriting the vectors in the form,

11



dI(t)

dt
= I(t)

[
k2T (t)− µI

]
. (2.23)

We then obtain,

F =

 k2I(t)T (t)

0

 , (2.24)

and

V =


I(t)µI

−C(t)
(

1− C(t)+T (t)+I(t)
M

)
+ k1C(t)T (t)

 , (2.25)

where F represents the rate of appearance of new infection and V denotes the rate of transfer
of individuals. Differentiating F and V with respect to I(t) , then substituting the disease free
equilibrium E01 = (0,M, 0) into the states C(t), T (t), I(t), we obtain

F =

 k2M 0

0 0

 ,

and

V =

 µI 0

0 k1M

 ,

where

V −1 =


1

µI
0

0
1

k1M

 .

The next generation matrix for model (2.1) is given by FV −1. It follows the spectral radius of

matrix FV −1 is ρ(FV −1) =
k2M

µI
. The reproduction number R0 is given as, the spectral radius

of

ρ(FV −1) = R0 =
k2M

µI
. (2.26)

The R0 represents the number of healthy CD4+ T-cells generated as a result of one infected
cell. The goal for reducing the chance of cancer-related HIV outbreak is to reduce R0, the R0

can be managed by reducing the infected cell’s density. If R0 < 1 this means that k2M < µI .
Interpreting the result biologically for R0 < 1 means that the individual will not get infected by
HIV. Preventing individuals from getting infected with HIV leads to avoiding the infection of
cancer that is related to HIV. When R0 > 1 the outbreak will occur, which implies that there
are high chances of cancer that is related to HIV.
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2.4.2 The cancer cells and healthy CD4+ T-cells equilibrium

This equilibrium indicated by E02, is found by setting I(t) = 0, such that the system reduces
to

0 = r1

(
1− C(t)+T (t)

M

)
− k1T (t),

0 = r2

(
1− C(t)+T (t)

M

)
− pk1C(t).

(2.27)

Using the first equation in (2.27), we obtain C(t) =
r1M − r1T (t)−Mk1T (t)

r1

. Substituting

C(t) into the second equation of (2.27), we obtain

0 = r2M − r2

[
r1M − r1T (t)−Mk1T (t)

r1

]
− r2T (t)−Mpk1

[
r1M − r1T (t)−Mk1T (t)

r1

]
.

(2.28)
Rearranging the equation and making T (t) the subject of the formula and labeling it as T̄ , we
have

T̄ =
r1pM

r2 + p (r1 +Mk1)
. (2.29)

Substituting T̄ into the first equation of (2.27) and rearranging by making C(t) the subject of
the formula and labeling it as C̄ yeilds,

C̄ =
r2M

r2 + p (r1 +Mk1)
. (2.30)

The cancer cells and healthy T-cells equilibrium E02 =
(
C̄, T̄ , 0

)
.

2.4.3 The healthy CD4+ T-cells and infected T-cells equilibrium

This equilibrium indicated by E03 where C(t) = 0, then we have the equations

0 = T (t)

[
r2

(
1− T (t)

M

)
− k2I(t)

]
,

0 = I(t)
[
k2T (t)− µI

]
,

(2.31)

where
T ∗ =

µI
k2

. (2.32)

We substitute T ∗ in the first equation of (2.31), such that

0 = r2 −
r2µI
k2M

− r2I(t)

M
− k2I(t), (2.33)

then

I∗ =
r2 (k2M − µI)
k2 (r2 + k2M)

, (2.34)

therefore

I∗ =
r2µI (R0 − 1)

k2 (r2 + k2M)
. (2.35)

This equilibrium E03 = (0, T ∗, I∗) =

(
0,
µI
k2

,
r2µI (R0 − 1)

k2 (r2 + k2M)

)
exist when R0 > 1. R0 < 1 means

that there will be more healthy T-cells. If R0 > 1, there will be a decline in the healthy CD4+
T-cells and infected T-cells will increase and this leads to the endemic equilibrium. If R0 = 1,
then the equilibrium E02 = E03.
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2.4.4 Stability analysis of the disease-free equilibria

The Jacobian matrix of model system (2.1) is

JE =



r1(1− q1)− k1T (t) −r1C(t)

M
− k1C(t) −r1C(t)

M

−r2T (t)

M
− pk1T (t) r2 (1− q2)− pk1C(t)− k2I(t) −r2T (t)

M
− k2T (t)

0 k2I(t) k2T (t)− µI


,

where q1 =
2C(t) + T (t) + I(t)

M
and q2 =

C(t) + 2T (t) + I(t)

M
.

2.4.4.1 Stability analysis of the disease-free equilibrium points E0, E01, E02, E03

Theorem 4. The trivial equilibrium point E0 = (0, 0, 0) of the system 2.1 is always unstable.

Proof. The eigenvalues of the matrix JE at the trivial steady state E0 = (0, 0, 0) are r1, r2

and −µI . Two of the eigenvalues are positive and other one is negative. Therefore the trivial
equilibrium is unstable.

Theorem 5. The system’s state of disease-free equilibrium is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

Proof. The local stability of E01 is determined using the Jacobian matrix,

JE01 =

∣∣∣∣∣∣∣∣∣∣∣

r1 − k1M 0 0

−r2 − pk1M −r2 −r2 − k2M

0 0 k2M − µI

∣∣∣∣∣∣∣∣∣∣∣
.

The eigenvalues of JE01 are

λ1 = r1 − k1M,
λ2 = −r2,
λ3 = µI(R0 − 1).

The eigenvalues of JE01 are negative when R0 < 1, and r1 < k1M then equilibrium will be local
asymptotically stable otherwise when R0 > 1 is unstable. Hence, we have the theorem proved.

Remark: If R0 < 1 then E01 is locally stable. The individual will not be infected by HIV.
Since the immune system is strong to fight the infection, individuals will not develop cancer.
If R0 > 1 then E01 is unstable. The outbreak will occur. The healthy CD4+ T-cells will be
infected with HIV, though cancer that is related to HIV will not develop.
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2.4.4.2 The cancer cells and healthy CD4+ T-cells equilibrium

Theorem 6. The equilibrium point E02 is unstable if one of the eigenvalues is positive or else
it will be stable.

Proof. The cancer cells and healthy CD4+ T-cells equilibrium E02 = (C̄, T̄ , 0), the Jacobian
matrix of this equilibrium is

JE02 =



−φ11 −φ12 −φ13

−φ21 −φ22 −φ23

0 0 −φ33


,

where

φ11 = −r1

(
1− 2C̄ + T̄

M

)
+ k1T̄ , φ12 =

(
r1

M
+ k1

)
C̄, φ13 =

r1

M
C̄,

φ21 =

(
r2

M
+ pk1

)
T̄ , φ22 = −r2

(
1− C̄ + 2T̄

M

)
+ pk1C̄, φ23 =

(
r2

M
+ k2

)
T̄ ,

φ31 = 0, φ32 = 0, φ33 = −k2T̄ + µI , T̄ =
r1pM

r2 + p (r1 +Mk1)
, C̄ =

r2M

r2 + p (r1 +Mk1)
.

The characteristic equation of the Jacobian J associated with the equilibrium E02 is given by

ξ3 + φ̂3ξ
2 + φ̂2ξ + φ̂1 = 0, (2.36)

The eigenvalues of the characteristic equation 2.36 are

ξ1 =
1

2

[√
φ2

11 − 2φ11φ22 + 4φ12φ21 + φ2
22 − φ11 + φ22

]
,

ξ2 =
1

2

[√
φ2

11 − 2φ11φ22 + 4φ12φ21 + φ2
22 + φ11 + φ22

]
,

ξ3 = φ33.

The equilibrium point E02 is unstable, because the eigenvalue ξ3 will always be positive, hence
the rate of infection is very small.

2.4.4.3 The healthy CD4+ T-cells and infected T-cells equilibruim

Theorem 7. The equilibrium point E03 is unstable if one of the eigenvalues is positive or else
it will be stable.

Proof. To prove this statement where the healthy CD4+ T-cells and infected T-cells equilibrium
E03 = (0, T ∗, I∗), the Jacobian matrix of this equilibrium is,
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JE03 =



−φ11 0 0

−φ21 −φ22 −φ23

0 −φ32 −φ33


,

where

φ11 = −r1

(
1− 2T ∗ + I∗

M

)
+ k1T

∗, φ12 = 0, φ13 = 0,

φ21 =

(
r2

M
+ pk1

)
T ∗, φ22 = −r2

(
1− 2T ∗ + I∗

M

)
+ k2I

∗, φ23 =

(
r2

M
+ k2

)
T ∗,

φ31 = 0, φ32 = −k2I
∗, φ33 = −k2T

∗ + µI .

The characteristic equation of the Jacobian J associated with the equilibrium E03 given by

ξ3 + φ̂3ξ
2 + φ̂2ξ + φ̂1 = 0, (2.37)

The eigenvalues of the characteristic equation (2.37) are

ξ1 = −µI ,

ξ2 =
r2

(
k2

2M
2 + r2µI

)
k2M (k2M + r2)

,

ξ3 = −r1k
2
2M − (k1k2MµI + r1k2µI + r2k1µI)

k2 (k2M + r2)
.

Then the healthy CD4+ T-cells and infected T-cells equilibrium point E03 is unstable, hence
this eigenvalue ξ2 will always be positive.

2.5 The endemic equilibrium and its stability

2.5.1 Endemic equilibrium

The endemic equilibrium states E∗ = (C∗, T∗, I∗), then we have the following equations,

0 = C(t)

[
r1

(
1− C(t) + T (t) + I(t)

M

)
− k1T (t)

]
,

0 = T (t)

[
r2

(
1− C(t) + T (t) + I(t)

M

)
− pk1C(t)− k2I(t)

]
,

0 = I(t)
[
k2T (t)− µI

]
.

(2.38)

The steady state of C∗, T∗, I∗ are solved, thus

T∗ =
µI
k2

, (2.39)

and

C∗ =
r1k2M − k1MµI − r1µI − r1k2I(t)

r1k2

. (2.40)
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To find I(t), we substitute equation (2.40) into equation two of (2.38), then simplifying the
equation leads to

r1Mk2 (pk1 − k2) I(t) = Mk1pr1k2M − r2k1MµI −Mk1pk1MµI −Mk1pr1µI ,

I∗ =
M [k1pr1k2M − r2k1µI − k1pk1MµI − k1pr1µI ]

r1Mk2 (pk1 − k2)
,

=
k1

[
pr1k2M − (r2 + k1pM + pr1)µI

]
r1k2 (pk1 − k2)

,

=
r1pµI

(
k2M
µI
− 1
)
− µI (r2 + k2M)

r1k2 (pk1 − k2)
,

=

[
r1p(R0−1)
r2+Mk2

− 1
]

(r2 +Mk2)µI

r1k2 (pk1 − k2)
,

=
[R1 − 1] (r2 +Mk2)µI

r1k2 (pk1 − k2)
,

(2.41)

where R1 =
r1p (R0 − 1)

r2 +Mk2

. Substituting equation (2.41) into equation (2.40), simplifying the

equation then

C∗ = M − µI
k2

− k1MµI
k2r1

+
[k1pr1k2M − r2k1MµI − k1pk1MµI − k1pr1µI ]

r1k2 (k2 − pk1)
,

=
Mk2r1k2 − r1µIk2 − k1MµIk2 − r2µIk1

r1k2 (k2 − pk1)
,

=
Mr1k

2
2 − (r1k2 + k1Mk2 + r2k1)µI

r1k2 (k2 − pk1)
,

=
r1k2µI

(
k2M
µI
− 1
)
− k1µI (r2 + k2M)

r1k2 (k2 − pk1)
,

=

[
r1
k1

k2(R0−1)
r2+Mk2

− 1
]

(r2 +Mk2) k1µI

r1k2 (k2 − pk1)
,

=
[R2 − 1] (r2 +Mk2) k1µI

r1k2 (k2 − pk1)
,

(2.42)

where R2 =
r1

k1

k2 (R0 − 1)

r2 +Mk2

.

This equilibrium E∗ = (C∗, T∗, I∗) exist when R0 > 1. To study the existence of the equilibruim,
since R1, R2 > 1 which depends on R0 > 1 and the positive equilibruim E∗ exists.

2.5.2 Stability of endemic equilibrium

The linear stability of endemic equilibrium can be established by following the Descarte’s rule
of signs is used to find the roots of equations if and only if the conditions are satisfied.

Theorem 8. The equilibrium point E∗ is locally asymptotically stable, when R0 > 1.

Proof. To prove this statement where the endemic equilibrium E∗ = (C∗, T∗, I∗), the Jacobian
matrix of this equilibrium is
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JE∗ =


−φ11 −φ12 −φ13

−φ21 −φ22 −φ23

0 −φ32 −φ33

 ,

where

φ11 = −r1

(
1− 2C∗ + T∗ + I∗

M

)
+ k1T∗, φ12 =

(
r1

M
+ k1

)
C∗, φ13 =

(
r1

M

)
C∗,

φ21 =

(
r2

M
+ pk1

)
T∗, φ22 = −r2

(
1− C∗ + 2T∗ + I∗

M

)
+ pk1C∗ + k2I∗,

φ23 =

(
r2

M
+ k2

)
T∗,

φ31 = 0, φ32 = −k2I∗, φ33 = −k2T∗ + µI .

The characteristic polynomial of the Jacobian J associated with the equilibrium E∗ is given by

P (ξ) = φ̂0ξ
3 + φ̂1ξ

2 + φ̂2ξ + φ̂3, (2.43)

where the coefficient are equal to

φ̂0 = 1,

φ̂1 = − [φ11 + φ22 + φ33] ,

φ̂2 = φ11φ22 + φ11φ33 + φ22φ33 − [φ23φ32 + φ12φ21] ,

φ̂3 = φ11φ23φ32 + φ12φ21φ33 − [φ13φ21φ32 + φ11φ22φ33] .

We analyze the nature of the polynomial to show that the endemic equilibrium is positive only
when R0 > 1.

Lemma 1. The polynomial P (ξ) has exactly one positive real root.

Proof. We will first start by showing that the polynomial has at least one positive real root.
The polynomial P (ξ) is of the form

P (ξ) = φ̂0ξ
3 + φ̂1ξ

2 + φ̂2ξ + φ̂3, ξ ∈ R

To show that we have exactly one positive root, we will apply Descartes’s Rule of signs. The
theorem states that the number of positive real roots of a polynomial is equal to either the
number of times or less than that by some even number [60]. For example, if a polynomial has
coefficients that change sign three times, the number of positive real roots is either 3 or 1. We
consider another example, if another polynomial has coefficients that change sign four times,
the number of positive real roots is either 4, 2 or 0. In our case, if we examine the coefficients
of the polynomial P (ξ), we see that φ̂0 > 0, φ̂1 < 0 and the coefficients of φ̂2, φ̂3 maybe either
positive or negative depending on the value of the parameters.
We consider the cases:

� Case 1: If φ̂2 > 0, φ̂3 > 0, We will only have two sign changes.

� Case 2: If φ̂2 < 0, φ̂3 < 0, We will only have one sign change.
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� Case 3: If φ̂2 > 0, φ̂3 < 0, We will only have three sign changes, which implies that we
have one positive real root.

� Case 4: If φ̂2 < 0, φ̂3 > 0, We will only have two sign changes.

Therefore when case 3 is satisfied, the endemic equilibrium point E∗ of the model 2.1 is locally
asymptotically stable whenever R0 > 1.

Remark: Epidemiologically this means that if a few infected individuals are introduced into a
susceptible population, each infected individual will produce on average more than one infected
individual in the entire period of infectivity. This implies that when R0 > 1, the disease will
persist in the population.

2.6 Numerical Simulation

Investigating the behavior of the system (2.1), numerically using Matlab variable step Runge-
Kutta method of order four. The parameters that were used were taken from the study by Lou
et al [30, 33]. Table (2.2) shows the parameter values used in the simulations.

Table 2.2: Numerical values of parameters used in the simulations

Parameter and variables Values
C(0) initial cancer population 100 (cells mL−1)[Estimated]
T (0) initial healthy CD4+ T-cells 250(cells mL−1) [Estimated]
I(0) initial infected T-cells 100(cells mL−1) [Estimated]
k1 rate of immune system killing cancer cells 10−5 ∼ 10−3 (ml/day) [30]
r1 maximal proliferation rate of cancer cells 0.02 : 0.5 (ml/day) [30]
r2 intrinsic growth rate of healthy CD4+ T-cells 0.05 ∼ 0.5 (ml/day)[30]
p rate of losing immune due to infection 0.1 (ml/day)[30]
k2 rate of infection 0.00005 : 0.0005 (/ml/day) [30]
µI death rate of infected T-cells 0.3 (/day) [30]
M carrying capacity M=750 : 3000(/ml) [30]

The simulation results obtained, depicted in Figure (2.2), shown when R0 = 0.5. We note that
in Figure 2.2(a) the numerical results show that the number of healthy CD4+ T-cells increases.
Figure (2.2) (b)-(c) represents the population of cancer cells and infected cells decreasing.
Figure (2.2) (d)-(e) shows the interaction of cancer cells with healthy CD4+ T-cells and infected
cells with healthy CD4+ T-cells. In Figure (2.3) give approximate solutions of our model when
the reproduction satisfies R0 > 1. These figures show that more than two years of periodic
solutions are obtained from our simulation and the disease persists in the population. Existence
of periodic solutions with different periods that epidemics can occur repeatedly when R0 > 1.
The simulation results obtained, depicted in Figure (2.4), show different values of R0. We note
that in Figure (2.4)(a)-(e) the numerical results show that the number of healthy CD4+ T-cells
decrease as the rate of infection increase and cancer cells increases. Figure (2.5) (a), (b) and
(c) shows the varying of the cancer and healthy CD4+ T-cells growth, where the proliferation
rate is assumed to be r1 = 0.02 : 0.05 and the immune systems killing rate is k1 = 0.0001.
It shows that when the proliferation rate is low the is less increase in cancer cells and the
increase of healthy CD4+ T-cells, hence the killing rate of cancer cells by the healthy CD4+
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T-cells is strong. Figure (2.5) (d), (e) and (f) Proliferation rate from r1 = 0.2 : 0.5 where
k1 = 0.00001. In Figures (2.6),(a), (b) and (c) Varying the cancer cells and healthy CD4+
T-cells growth where the proliferation rate is r1 = 0.02 : 0.05 and the immune systems killing
rate is k1 = 0.00001. It shows that when the proliferation rate is low there is a sliding increase
in cancer cells and a reduction of healthy CD4+ T-cells, hence the killing rate of cancer cells
by the healthy CD4+ T-cells is strong. Figure (2.6) (d), (e), and (f) when the proliferation
rate is between r1 = 0.2 : 0.5 and k1 = 0.0001, It shows that when the proliferation rate is high
there is an increase in cancer cells and a reduction of healthy CD4+ T-cells, hence the killing
rate of cancer cells by the healthy CD4+ T-cells is weak.

(a) (b)

(c) (d)

(e)

Figure 2.2: Variation of the cancer model related with HIV when R0 = 0.5, where r1 = 0.03,
k2 = 0.00005 and M = 3000, no cancer cells.
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(a) (b)

(c)

Figure 2.3: Variation of the cancer model related with HIV when R0 = 2.5, where r1 = 0.03,
k2 = 0.0005 and M = 1500.
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(a) (b)

(c) (d)

(e)

Figure 2.4: Variation of the endemic state showing different values of the reproduction, R0 =
1.5, 2.5, 3.5, 4.5 where r1 = 0.5, k2 = 0.0005, M = 900,1500,2100,2700.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: In (a), (b) and (c) we vary the cancer and healthy T-cells where M = 1500,
r1 = 0.02 : 0.05 and k1 = 0.0001. Figure (2.5) (d), (e) and (f) r1 = 0.2 : 0.5 where k1 = 0.00001.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: In (a), (b) and (c) we vary the cancer cells and healthy CD4+ T-cells where
M = 1500, r1 = 0.02 : 0.05 and k1 = 0.00001. Figure (2.6) (d), (e) and (f) r1 = 0.2 : 0.5 where
k1 = 0.0001.
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2.7 Conclusion

In Chapter 2, the relationship between cancer cells, healthy CD4+ T-cells, and infected T-
cells was studied using a proposed model that included cancer cells, healthy CD4+ T-cells,
and infected T-cells. The disease-free and endemic equilibria were established, and stabilities
were investigated. The disease-free equilibrium was found to be locally asymptotically stable,
implying that the disease will inevitably vanish after some time. The model showed that the
endemic free equilibrium is locally asymptotically stable when R0 > 1, which implies that
the infection rate is high. Employing Descartes’s rule of signs to analyze the cancer cells and
healthy CD4+ T-cells; healthy CD4+ T-cells and infected T-cells; and endemic equilibrium, the
equilibria are stable by Descarte’s rule of signs, otherwise, they are not stable. In this Chapter,
the effects of certain parameters were investigated using numerical simulations. The variations
of experimenting by computations were simulated to investigate the influence of parameters
in the dynamical populations of cells. When R0 < 1, we note that the effect of the immune
system is strong, which implies that the proliferation rate of cancer growth is delayed and the
HIV infected cells are weak to invade the system. The impact of R0 > 1, shows the chaotic
behavior of the dynamical system through some oscillations. To control the infection rate by
blocking the replication of infected T-cells, the growth of cancer cells will be minimal. The
parameters were varied to compare how the dynamics of cancer would grow in the model as the
proliferation rate of cancer cells was investigated. In the simulations, it is observed that the
lesser the proliferation rate the stronger the immune system, then the higher the proliferation
rate the weaker the immune system, and the higher the cancer cells. In Chapter 3, the model
will be investigated with the inclusion of cancer-infected T-cells which occurs as R0 > 1.
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Chapter 3: Impact of treatment in an
HIV-Cancer co-infection model

3.1 Introduction

The theoretical study of cancer-related to HIV has a long history, a good summary can be
found in Lou, Ruggeri, and Tebaldi [22, 30, 33]. We attempt to add to the existing literature
by exploring the role of HIV cancer co-infection in the disease dynamics as well as addressing
the impact of the optimal control. Several mathematical models have been designed and used to
study the effect of both HIV and cancer related to HIV (e.g Kaposi Sarcoma) on the progression
of incorporating the chemotherapy and HAART [5, 23]. Therefore, an optimal control strategy
is mostly given by combining the cART (combine Antiretroviral Treatment) [20]. This chapter
aims to depict the theoretical assessment of the impact of treatment in an HIV cancer co-
infection model. The proposed model will be divided into two sections: The first section will
consider the model without treatment and the second part will be a model incorporated with
treatment.

3.2 Model formulation

The model that will be presented is an extension of the model by Lou et al [30]. Our model
from theirs is differentiated by assumptions. The distinguished proposed assumption is the
incorporation of the compartment with cancer HIV infected T-cells. Cancer cells are assumed
to be created by a gene mutation. A summary of the model is managed in this manner, where
there are four different cells: cancer cells, healthy CD4+ T-cells which represent the immune
system, HIV-infected T-cells, and cancer HIV-infected T-cells.

Let C(t) be the concentration of cancer cells, T (t) the concentration of healthy CD4+
T-cells, I(t) the concentration of HIV infected T-cells and CI(t) the concentration of cancer
infected T-cells with HIV which is assumed to be infectious at time t. Cancer cells are formed
through the abnormal growth of cells. The growth of cancer cells is given by

C(t)r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
which is the logistic growth function. The uncontrolled proliferation rate of the cancer cells is
represented by r1. The main objective is to identify at what rate will cancer cells grow. The
system’s carrying capacity is M . The immune system eliminates the cancer cells, where k1 is
the rate at which cancer cells are killed by the immune system. The rate of losing cancer cells
due to infection is represented by k3. The rate at which cancer cells with HIV-infected T-cells
die out is represented by k4. The rate of change of cancer cells is given by:
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dC(t)

dt
= C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
. (3.1)

The growth of healthy CD4+ T-cells is given by the term

T (t)r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
which is the logistic growth function for the healthy T-cells. The constant term r2, is the
intrinsic growth rate. The process of losing the immune system due to killing the cancer cells is
given by k1pT (t)C(t), where p is the rate of losing the immune system due to its killing of the
cancer cells. The healthy CD4+ T-cells get infected at a rate of k2, which is the infection rate
that accounts for the overall effects of HIV-1 reproduction. The rate of co-infection (cancer
infected T-cells) is represented by k5. The proportion rate of healthy CD4+ T-cells killing the
cancer infected T-cells is represent by β, then we have the term (1 − β)k5CI(t)T (t), where
0 < β < 1 [24]. The rate of change of healthy T-cells is given by:

dT (t)

dt
= T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

]
.

(3.2)
The infection process leads to the growth of infected cells and is modeled by the term k2T (t)I(t).
The death rate of the HIV-infected T-cells is µI . The rate of change of infected cells is given
by:

dI(t)

dt
= I(t)

[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t). (3.3)

The growth of cancer HIV-infected T-cells is given by the term

CI(t)r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
which is the logistic growth function of the cancer HIV-infected T-cells. In the process of cancer
and HIV-infected T-cells interaction, the cancer infected T-cells emerge, which is represented
by k3C(t)I(t) [57]. The constant term r3 is the growth rate. The rate of change of cancer
infected T-cells is given by:

dCI(t)

dt
= CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CIT (t). (3.4)

The above equations (3.1)-(3.4) result in the following system of equations:

dC(t)

dt
= C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
,

dT (t)

dt
= T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

]
,

dI(t)

dt
= I(t)

[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t),

dCI(t)

dt
= CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CIT (t).

(3.5)
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The initial conditions are assumed to be

C(0) ≥ 0, T (0) ≥ 0, I(0) ≥ 0, CI(0) ≥ 0. (3.6)

3.3 Theoretical results

3.3.1 Basic properties

So, we demonstrate that all state variables are non-negative in order for the study to be epi-
demiologically valid and well-posed, ∀t ≥ 0.

3.3.2 The existence and uniqueness of solution

Theorem 9. Let Γ = {
(
C(t), T (t), I(t), C(t)I

)
∈ R4

+} denote the region defined by model system
(3.5). Then, there exists a solution for model system (3.5) which is bounded in the region Γ.

Proof. In order to prove the above theorem, the concept we derive is in [11]. Let

f1 = C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
,

f2 = T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

]
,

f3 = I(t)
[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t),

f4 = CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CIT (t).

(3.7)

It suffices to show that
∂f1

∂C(t)
,
∂f2

∂T (t)
,
∂f3

∂I(t)
and

∂f4

∂CI(t)
are continuous. The partial deriva-
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tives below are considered∣∣∣∣ ∂f1

∂C(t)

∣∣∣∣ =

∣∣∣∣∣r1

(
1− 2C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

∣∣∣∣∣ <∞,∣∣∣∣ ∂f1

∂T (t)

∣∣∣∣ =

∣∣∣∣−r1C(t)

M
− k1C(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f1

∂I(t)

∣∣∣∣ =

∣∣∣∣−r1C(t)

M
− (k3 + k4)C(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f1

∂CI(t)

∣∣∣∣ =

∣∣∣∣−r1C(t)

M

∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂C(t)

∣∣∣∣ =

∣∣∣∣−r2T (t)

M
− pk1T (t)

∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂T (t)

∣∣∣∣ =

∣∣∣∣∣r2

(
1− C(t) + 2T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

∣∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂I(t)

∣∣∣∣ =

∣∣∣∣−r2T (t)

M
− k2T (t)

∣∣∣∣ <∞,∣∣∣∣ ∂f2

∂CI(t)

∣∣∣∣ =

∣∣∣∣−r1T (t)

M
− (1− β) k5T (t)

∣∣∣∣ <∞,∣∣∣∣ ∂f3

∂C(t)

∣∣∣∣ =
∣∣k4I(t)

∣∣ <∞,∣∣∣∣ ∂f3

∂T (t)

∣∣∣∣ =
∣∣k2I(t) + k5CI(t)

∣∣ <∞,∣∣∣∣ ∂f3

∂I(t)

∣∣∣∣ =
∣∣k2T (t) + k4C(t)− µI

∣∣ <∞,∣∣∣∣ ∂f3

∂CI(t)

∣∣∣∣ =
∣∣k5T (t)

∣∣ <∞,∣∣∣∣ ∂f4

∂C(t)

∣∣∣∣ =

∣∣∣∣−r3CI(t)

M
+ k3I(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f4

∂T (t)

∣∣∣∣ =

∣∣∣∣−r3CI(t)

M
− βk5CI(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f4

∂I(t)

∣∣∣∣ =

∣∣∣∣−r3CI(t)

M
+ k3C(t)

∣∣∣∣ <∞,∣∣∣∣ ∂f4

∂CI(t)

∣∣∣∣ =

∣∣∣∣∣r3

(
1− C(t) + T (t) + I(t) + 2CI(t)

M

)
− βk5T (t)

∣∣∣∣∣ <∞.
All these partial derivates are continuous and bounded, hence there exists a unique solution of
equations (3.7).

Theorem 10. Assume the parameters of model (3.5) are nonnegative constants. A nonnega-
tive solution of C(0), T (0), I(0) and CI(0) for model (2.1) exists for all state variables with
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nonnegative initial conditions C(0) ≥ 0, T (0) ≥ 0, I(0) ≥ 0,CI(0) ≥ 0 ∀t > 0.

Proof. From the system (3.5), we have

dC(t)

dt
= C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
≥ C(t)r1

(
1− C(t)

M

)
,

dT (t)

dt
= T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

]
≥ T (t)r2

(
1− T (t)

M

)
,

dI(t)

dt
= I(t)

[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t) ≥ −µII(t),

dCI(t)

dt
= CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CIT (t)

≥ CI(t)r1

(
1− CI(t)

M

)
.

(3.8)
The initial concentration of the state variables are assumed to be: C(0) = C0, T (0) = T0,
I(0) = I0 and CI(0) = CI0 . They are assumed nonnegative so as to be biologically feasible.
Using the second equation of (3.8), and applying separation of variables yields

dT (t)

T (t)

(
1− T (t)

M

) ≥ r2dt.
(3.9)

The left-hand side of the equation (3.9), is expressed in partial fractions and integrated which
leads to ∫

dT (t)

T (t)
+

∫
dT (t)

M − T (t)
≥
∫
r2dt, (3.10)

therefore
ln
∣∣T (t)

∣∣− ln ∣∣M − T (t)
∣∣ ≥ r2t+ c, (3.11)

multipying (3.11) with negative sign

ln
∣∣M − T (t)

∣∣− ln ∣∣T (t)
∣∣ ≥ −r2t− c, (3.12)

then ∣∣∣∣M − T (t)

T (t)

∣∣∣∣ ≥ e−ce−r2t. (3.13)

We define c1 = e−c, then the equation becomes

M − T (t)

T (t)
≥ c1e

−r2t (3.14)

Simplifying the equation (3.14) to obtain T (t), where A =
M − T0

T0

as t = 0 and T (0) = T0.

yields

T (t) ≥ M

1 + Ae−r2t
. (3.15)
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If the same approach is used in equation one of the systems (3.9), then we obtain

C(t) ≥ M

1 +Be−r1t
, (3.16)

where B =
M − C0

C0

at t = 0 and C(0) = C0.

Furthermore, the third equation of the system (3.9) becomes

I(t) ≥ I(0)e−
∫
µIdt ≥ 0. (3.17)

If the same approach is used in equation four of the system (3.9), then we obtain

CI(t) ≥
M

1 + Pe−r3t
, (3.18)

where P =
M − CI0
CI0

at t = 0 and CI(0) = CI0 .

This proves that T (t), C(t), I(t) and CI(t) remain positive for ∀t > 0. This completes the
proof.

Theorem 11. All solutions C(t), T (t), I(t), CI(t) of model (3.5) are bounded.

Proof. We prove that the solutions of system (3.5) are uniformly bounded for t > 0, following
Lou and Zhao [33]. We already showed in Theorem 1 that C(t), T (t), I(t) and CI(t) remain
positive for ∀t > 0. It then suffices to assume that T (0) = T0, C(0) = C0, I(0) = I0 and
CI(0) = CI0 , an assumption already made above. It is known from Lou and Zhao [33], that the
T-cell concentration stabilizes at a level T0, where T0 is the positive root of F(T) = 0. Adopting
this view, we then have F (T ) = 0. Hence, this implies that the other equations of system (3.5)
becomes zero at level T (0) > 0, C0 = 0, I0 = 0, CI(0) = 0, where T0 is the positive root, from
equation 2 of system (3.5), we have

T (t)

[
r2

(
1− T (t)

M

)]
= F (T ) = 0,

F (T ) = r2MT (t)− r2T
2(t), (3.19)

thus
0 = MT0 − T 2

0 , (3.20)

where T0 = 0 or T0 = M . By summing equations T (t) and I(t) of system (3.5), we obtain

d
(
T (t) + I(t)

)
dt

≤ r2T0 − µI(t). (3.21)

Hence

lim supt→∞(T (t) + I(t)) ≤ r2T0

µI
:= M1. (3.22)

It follows from the first equation of the model system (3.5) that

dC(t)

dt
≤ r1C(t)

(
1− C(t)

M

)
, (3.23)

then the

lim supt→∞(C(t)) ≤M := M2. (3.24)
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It follows from the fourth equation of model system (3.5) that

dCI(t)

dt
≤ r3CI(t)

(
1− CI(t)

M

)
, (3.25)

hence the
lim supt→∞(CI(t)) ≤M := M3. (3.26)

All solutions of the system are bounded in the feasible region

Γ = {
(
C(t), T (t), I(t), CI(t)

)
∈ R3

+ : 0 ≤ CI(t) ≤M3, 0 ≤ C(t) ≤M2,
0 < T (t) ≤ T0, 0 < T (t) + I(t) ≤M1}.

(3.27)

Thus Γ is positively invariant with respect to system (3.5).

3.3.3 The disease-free equilibria and their stabilities

Linear stability is used to study the action of solutions that are similar to steady state. Linear
stability analysis can determine if a steady state is stable or unstable.
Steady states are obtained by setting the right hand side of model (3.5) to zero, thus

dC(t)

dt
=
dT (t)

dt
=
dI(t)

dt
=
dCI(t)

dt
= 0.

The systems yields,

0 = C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
,

0 = T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1C(t)− k2I(t)− (1− β) k5CI(t)

]
,

0 = I(t)
[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t),

0 = CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CI(t)T (t).

(3.28)

3.3.4 Disease-free equilibrium

The term ”disease-free equilibrium” (DFE) refers to a population that is free of disease and is
obtained by setting system (3.5) to zero thus

dC(t)

dt
=
dT (t)

dt
=
dI(t)

dt
=
dCI(t)

dt
= 0.

In the DFE point C(t) = I(t) = CI(t) = 0, when substituting into system (3.5), then we have

T

(
1− T (t)

M

)
= 0,

T (t) = M, (3.29)

therefore the DFE labelled as E1 = (0,M, 0, 0).
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3.3.5 Computation of the basic reproduction number

To investigate the equilibrium’s stability, we must first introduce the basic reproduction number
R0. The R0 in a fully susceptible population, is described as the estimated number of secondary
infections caused by an index event [46]. The R0 involves the product of infection rate and the
duration of infection. The reproduction number acts as a predictor of disease outbreaks and
aids in the development of control strategies. The analytical expression of R0 indicates which
element of the system can be controlled to reduce the outbreak of the disease [55].
To calculate the next-generation matrix of the system (3.5), we will have to determine how
many different ways can new diseases spread and how many different ways individuals can
switch between compartments. The infected variables are firstly ordered by rewritting the
vectors in the form,

dI(t)

dt
= I(t)

[
k2T (t) + k4C(t)− µI

]
+ k5CI(t)T (t),

dCI(t)

dt
= CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ k3C(t)I(t)− βk5CIT (t).

(3.30)

We then obtain,

F =

 k2I(t)T (t) + k4C(t)I(t) + k5CI(t)T (t)

0

 , (3.31)

and

V =


I(t)µI

−CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
− k3C(t)I(t) + βk5CIT (t)

 , (3.32)

where F represents the rate of appearance of new infection and V denotes the rate of transfer
of individuals. Differentiating F and V with respect to I(t) and CI(t), then substituting the
disease free equilibrium E1 = (0,M, 0, 0) into the states C(t), T (t), I(t), CI(t), we obtain

F =

 k2M k5M

0 0

 ,

and

V =

 µI 0

0 βk5M

 ,

where

V −1 =


1

µI
0

0
1

βk5M

 .
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The next-generation matrix for model (3.5) is given by FV −1. It follows the spectral radius

of matrix FV −1 which is ρ(FV −1) =
k2M

µI
+

1

β
. The reproduction number RI is given as the

spectral radius of

ρ(FV −1) = RI =
k2M

µI
+

1

β
, (3.33)

where

RI = R0 +RCoInfection
0 ,

in simple form

RI = R0 +RCoInf
0 . (3.34)

The RI represents the number of healthy CD4+ T-cells generated as a result of one infected
T-cell. The goal for reducing the chance of cancer-related HIV outbreak is to reduce RI , the RI

can be managed by reducing the infected T-cells density. Interpreting the result biologically,
for RI < 1, it means that the individual will not get infected by HIV. Preventing individuals
from getting infected with HIV helps to avoid the infection of cancer that is related to HIV.
When RI > 1 the outbreak will occur, which implies that there are high chances of cancer that
is related to HIV.

3.3.6 The cancer cells and healthy CD4+ T-cells equilibrium

The cancer cells and healthy T-cells equilibrium E2, where I(t) = 0, the system reduces to

0 = r1

(
1− C(t) + T (t)

M

)
− k1T (t),

0 = r2

(
1− C(t) + T (t)

M

)
− pk1C(t).

(3.35)

Rearranging the first equation of (3.35) such that C(t) = r1M−r1T (t)−Mk1T (t)
r1

, we then substitute
C(t) into the second equation of (3.35), then

0 = r2M − r2

[
r1M − r1T (t)−Mk1T (t)

r1

]
− r2T (t)−Mpk1

[
r1M − r1T (t)−Mk1T (t)

r1

]
.

(3.36)
Rearranging the equation and making T (t) the subject and labeling it as T̄ , we have

T̄ =
r1pM

r2 + p (r1 +Mk1)
. (3.37)

Substituting T̄ into the second equation of (3.35) and rearranging by making C(t) the subject
of the formula and labeling it as C̄ yeilds,

C̄ =
r2M

r2 + p (r1 +Mk1)
. (3.38)

The cancer cells and healthy CD4+ T-cells equilibrium E2 =
(
C̄, T̄ , 0, 0

)
.
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3.3.7 The healthy CD4+ T-cells and infected T-cells equilibrium

The healthy T-cells and infected T-cells equilibrium states E3 where C(t) = 0 and CI(t) = 0,
then we have the following equations,

0 = T (t)

[
r2

(
1− T (t)+I(t)

M

)
− k2I(t)

]
,

0 = I(t)
[
k2T (t)− µI

]
,

(3.39)

where T (t) is written as T ∗ and I(t) as I∗

T ∗ =
µI
k2

. (3.40)

We substitute T ∗ in the first equation of (3.39),

0 = r2 −
r2µI
k2M

− r2I(t)

M
− k2I(t),

then

I∗ =
r2 (k2M − µI)
k2 (r2 + k2M)

,

therefore

I∗ =
r2µI (R0 − 1)

k2 (r2 + k2M)
. (3.41)

This equilibrium E3 = (0,
µI
k2

,
r2µI (R0 − 1)

k2 (r2 + k2M)
, 0) exist when R0 > 1. When R0 is increasing,

the number of CD4+ T-cells declines and the number of infected T-cells rises.

3.3.8 The cancer cells, healthy T-cells and infected T-cells equilib-
rium

The cancer cells, healthy CD4+ T-cells and infected T-cells equilibrium states E4 where CI(t) =
0, then we have the following equations,

0 = C(t)

[
r1

(
1− C(t)+T (t)+I(t)

M

)
− k1T (t)− (k3 + k4) I(t)

]
,

0 = T (t)

[
r2

(
1− C(t)+T (t)+I(t)+CI(t)

M

)
− pk1C(t)− k2I(t)

]
,

0 = I(t)
[
k2T (t) + k4C(t)− µI

]
.

(3.42)

4 Using mathematica to solve the unknowns C(t), T (t), I(t), then we have C∗∗, T ∗∗ and I∗∗ as
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C∗∗ =
µIk1

[
Mk2 + r2 − p

(
M (k3 + k4) + r1

)]
+ µI (1−R0)

(
k2r1 − r2 (k3 + k4)

)
k1k4

[
Mk2 + r2 − p

(
M (k3 + k4) + r1

)]
+ (k4 − k2)

(
k2r1 − r2 (k3 + k4)

) ,

T ∗∗ =
(µI −Mk4)

(
r2 (k3 + k4)− k2r1

)
k1k4

[
Mk2 + r2 − p

(
M (k3 + k4) + r1

)]
+ (k4 − k2)

(
k2r1 − r2 (k3 + k4)

) ,
I∗∗ =

k1 (µI −Mk4) (pr1 − r2)

k1k4

[
Mk2 + r2 − p

(
M (k3 + k4) + r1

)]
+ (k4 − k2)

(
k2r1 − r2 (k3 + k4)

) .
(3.43)

These cancer cells, healthy CD4+ T-cells and infected T-cells equilibrium, E4 = (C∗∗, T ∗∗, I∗∗, 0)
exist when,

Mk2 + r2 > p
(
M (k3 + k4) + r1

)
,

k2r1 > r2 (k3 + k4) ,
Mk2 + r2 > p

(
M (k3 + k4) + r1

)
,

k1k4

[
Mk2 + r2 − p

(
M (k3 + k4) + r1

)]
> (k4 − k2)

(
k2r1 − r2 (k3 + k4)

)
,

µI > Mk4,
pr1 > r2.

(3.44)

3.4 Stability analysis of the disease-free equilibria

The stability of each system equilibrium is discussed in this section (3.5). Let E(C̄, T̄ , Ī , C̄I) to
be any arbitrary equilibrium of (3.5). The system’s Jacobian matrix is given by

JE =



X −
(
r1

M
+ k1

)
C̄ −

(
r1

M
+ (k3 + k4)

)
C̄ −r1C̄

M

−
(
r2

M
+ pk1

)
T̄ Y −

(
r2

M
+ k2

)
T̄ −

(
r2

M
+ (1− β) k5

)
T̄

k4Ī k2Ī + k5C̄I k2T̄ + k4C̄ − µI k5T̄

−r3C̄I
M

+ k3Ī −r3C̄I
M

−r3C̄I
M

+ k3C̄ Z


,

where

X = r1

(
1− 2C̄ + T̄ + Ī + C̄I

M

)
− k1T̄ − (k3 + k4) Ī ,

Y = r2

(
1− C̄ + 2T̄ + Ī + C̄I

M

)
− pk1C̄ − k2Ī − (1− β) k5C̄I ,

Z = r3

(
1− C̄ + T̄ + Ī + 2C̄I

M

)
− βk5T̄ .
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3.4.1 Stability of disease-free equilibrium

Theorem 12. The equilibrium point E1 is stable if and only if R0 < 1.

Proof. The Jacobian matrix at E1 = (0,M, 0, 0) is given by

JE1 =


−k1M − λ1 0 0 0
−r2 − pk1M −r2 − λ2 −r2 − k2M −r2 − (1− β) k5M

0 0 k2M − µI − λ3 k5M
0 0 0 −βk5 − λ4

 .
The eigenvalues of JE1 are

λ1 = −k1M,
λ2 = −r2,
λ3 = µI(R0 − 1),
λ4 = −βk5.

The eigenvalues of JE1 are negative when R0 < 1, the equilibrium will be stable otherwise is
unstable.

Remark: For us to have a stable equilibrium in which only the healthy CD4+ T-cells are
present (no HIV and cancer). The rate at which cancer cells are generated must be less than
the rate at which cancer cells are cleared by the immune system.

3.4.2 The cancer cells and healthy CD4+ T-cells equilibrium

Theorem 13. The equilibrium point E2 is stable when applying case 1, which is a1 > 0, b1 >
0, a0 > 0, b0 > 0, otherwise it is unstable.

Proof. For the equilibrium solution E2 = (C̄, T̄ , 0, 0), the Jacobian matrix is

JE2 =


q11 −

(
r1

M
+ k1

)
C̄ −

(
r1
M

+ (k3 + k4)
)
C̄ −r1C̄

M

−
(
r2

M
+ pk1

)
T̄ q22 −

(
r2
M

+ k2

)
T̄ −

(
r2

M
+ (1− β) k5

)
T̄

0 0 q33 k5T̄
0 0 k3C̄ q44


,

where q11 = r1

(
1− 2C̄ + T̄

M

)
− k1T̄ ,q22 = r2

(
1− C̄ + 2T̄

M

)
− pk1C̄, q33 = k2T̄ + k4C̄ − µI

and q44 = r3

(
1− C̄ + T̄

M

)
− βk5T̄ . The eigenvalues will be given by the determinant below,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

(
1− 2C̄ + T̄

M

)
− k1T̄ − λ −

(
r1
M

+ k1

)
C̄ −

(
r1
M

+ (k3 + k4)
)
C̄ −r1C̄

M

−
(
r2
M

+ pk1

)
T̄ A1∗ −

(
r2
M

+ k2

)
T̄ −

(
r2

M
+ (1− β) k5

)
T̄

0 0 k2T̄ + k4C̄ − µI − λ k5T̄

0 0 k3C̄ r3

(
1− C̄+T̄

M

)
− βk5T̄ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Where A1∗ = r2

(
1− C̄ + 2T̄

M

)
− pk1C̄ − λ, then we have

r1

(
1− 2C̄ + T̄

M

)
− k1T̄ − λ


∣∣∣∣∣∣∣∣∣∣∣∣

A1∗ −
(
r2

M
+ k2

)
T̄ −

(
r2
M

+ (1− β) k5

)
T̄

0 k2T̄ + k4C̄ − µI − λ k5T̄

0 k3C̄ r3

(
1− C̄ + T̄

M

)
− βk5T̄ − λ

∣∣∣∣∣∣∣∣∣∣∣∣

−

[(
r2

M
+ pk1

)
T̄

]
∣∣∣∣∣∣∣∣∣∣∣∣

−
(
r1

M
+ k1

)
C̄ −

(
r1
M

+ (k3 + k4)
)
C̄ −r1C̄

M
0 k2T̄ + k4C̄ − µI − λ k5T̄

0 k3C̄ r3

(
1− C̄ + T̄

M

)
− βk5T̄ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The characteristic polynomial will be obtained from the equation below


r1

(
1− 2C̄ + T̄

M

)
− k1T̄ − λ

r2

(
1− C̄ + 2T̄

M

)
− pk1C̄ − λ

− ( r2

M
+ pk1

)(
r1

M
+ k1

)
T̄ C̄

(k2T̄ + k4C̄ − µI − λ
)r3

(
1− C̄ + T̄

M

)
− βk5T̄ − λ

− k3k5T̄ C̄

 = 0.

(3.45)
The following characteristic equations are given as:

λ2 + a1λ+ a0 = 0, (3.46)

or
λ2 + b1λ+ b0 = 0, (3.47)

where

a1 = −

r1

(
1− 2C̄ + T̄

M

)
− k1T̄ + r2

(
1− C̄ + 2T̄

M

)
− pk1C̄

 ,

a0 =

r1

(
1− 2C̄ + T̄

M

)
− k1T̄

r2

(
1− C̄ + 2T̄

M

)
− pk1C̄

− ( r2

M
+ pk1

)(
r1

M
+ k1

)
T̄ C̄,

b1 = −

k2T̄ + k4C̄ − µI + r3

(
1− C̄ + T̄

M

)
− βk5T̄

 ,

b0 =
[
k2T̄ + k4C̄ − µI

] r3

(
1− C̄ + T̄

M

)
− βk5T̄

− k3k5T̄ C̄.

(3.48)
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The trace and determinant are obtained from this equation, where a1 and b1 is the trace, a0

and b0 is the determinant. Then recalling equations (3.38) and (3.37), which is T̄ and C̄ we
substitute in the equations of (3.48). Mathematica software was employed to simplify all the
equations to the simplest form which will be given below

a1 =
pr2

1 +Mk1r2 + r1k1Mp2 + r2 − k1Mp (r1 + r2)

r2 + p (r1 +Mk1)
,

a0 =

Mk1

[
r1r2p

(
r2

1r2 + r1p+ 1
)

+ r2
2 (r1 + r2)−

(
3r1r2p (r1 + r2) + p

(
r2

1p
2 + r2

2

))]
[
r2 + p (r1 +Mk1)

]2 ,

b1 =
µIp (r1 +Mk1) + r2

(
µI [1−R0] + βMk5

)
−Mp (r1k4 + r3k1)

r2 + p (r1 +Mk1)
,

b0 =
r2Mk5

[
Mpk1 (βµI + r1Mpk4) + βr1pµI + r2β (1−R0)

]
−Mpk1

[
Mp

(
µIk1 + r1r2Mk5 (k3 + βk4)

)
+ r1pµI + r2 (1−R0)

]
[
r2 + p (r1 +Mk1)

]2 .

(3.49)
In this equilibrium point R0 < 1, assuming these cases apply
Case 1: If a1 > 0, b1 > 0, a0 > 0, b0 > 0 then all the eigenvalues are negative.
Case 2: If one of either the trace or determinant is positive then this emplies that one eigenvalue
will be positive.

3.4.3 The healthy CD4+ T-cells and infected T-cells equilibrium

Theorem 14. The equilibrium point E3 is unstable, when λ2 > 0 and exists if and only if
R0 > 1.

Proof. For the equilibrium solution E3 = (0,
µI
k2

,
r2µI (R0 − 1)

k2 (r2 + k2M)
, 0), the Jacobian matrix is

JE3 =



Q11 0 0 0

−
(
r2
M

+ pk1

)
T ∗ Q22 −

(
r2
M

+ k2

)
T ∗ −

(
r2
M

+ (1− β) k5

)
T ∗

k4I
∗ k2I

∗ k2T
∗ − µI k5T

∗

k3I
∗ 0 0 Q44


,

where Q11 = r1

(
1− T ∗+I∗

M

)
− k1T

∗ − (k3 + k4) I∗, Q22 = r2

(
1− 2T ∗+I∗

M

)
− k2I

∗, Q44 =

r3

(
1− T ∗+I∗

M

)
− βk5T

∗. The eigenvalues will be obtained from the determinant

a1

∣∣∣∣∣∣∣∣
r2

(
1− 2T ∗+Ī

M

)
− k2I

∗ − λ −
(
r2
M

+ k2

)
T ∗ −

(
r2
M

+ (1− β) k5

)
T ∗

k2I
∗ k2T

∗ − µI − λ k5T
∗

0 0 a2

∣∣∣∣∣∣∣∣ = 0,

where
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a1 = r1

(
1− T ∗ + I∗

M

)
− k1T

∗ − (k3 + k4) I∗ − λ, (3.50)

a2 = r3

(
1− T ∗ + I∗

M

)
− βk5T

∗ − λ. (3.51)

The determinant gives the following characteristic equation as:

a1a2

(r2

(
1− 2T ∗ + I∗

M

)
− k2I

∗ − λ

)
(k2T

∗ − µI − λ) +

(
r2

M
+ k2

)
T ∗k2I

∗

 = 0, (3.52)

which leads to the following equations, where a1 = 0 and a2 = 0 then

0 = r1

(
1− T ∗+I∗

M

)
− k1T

∗ − (k3 + k4) I∗ − λ1,

0 = r3

(
1− T ∗+I∗

M

)
− βk5T

∗ − λ2,

0 =

(
r2

(
1− 2T ∗+I∗

M

)
− k2I

∗ − λ3

)
(k2T

∗ − µI − λ3) +
(
r2
M

+ k2

)
T ∗k2I

∗.

(3.53)

The eigenvalue of equations in the system (3.53) are presented where the equations of T̄ and Ī
are recalled as (3.43) and (3.41) then this leads to

λ1 =

µI

[
k1 (Mk2 + r2)−

[
(R0 − 1)

(
r1k2 − r2 (k2 + k4)

)]]
k2 (Mk2 + r2)

,

λ2 = −βµIk5

k2

+
r2µI (R0 − 1)

r2 +Mk2

.

(3.54)

The following conditions follows:
Eigenvalue λ1 < 0, since k1 (Mk2 + r2) < (R0 − 1)

(
r1k2 − r2 (k2 + k4)

)
.

Eigenvalue λ2 > 0, since
r2µI (R0 − 1)

r2 +Mk2

>
βµIk5

k2

.

Finding the other eigenvalues leads to(
r2

(
1− 2T ∗ + I∗

M

)
− k2I

∗ − λ3

)
(k2T

∗ − µI − λ3) +

(
r2

M
+ k2

)
T ∗k2I

∗ = 0. (3.55)

Applying the product and simplifying the equation yields

λ2
3 +

[
µI + k2I

∗ − k2T
∗ − r2

(
1− 2T ∗ + I∗

M

)]
λ3 +

[
r2

(
1− 2T ∗ + I∗

M

)
− k2I

∗

]
[k2T

∗ − µI ]

+

(
r2

M
+ k2

)
k2T

∗I∗ = 0.

Let the equations be defined as

b0 = µI + k2I
∗ + r2

(
2T ∗+I∗

M

)
− (k2T

∗ + r2) ,

b1 =

[
r2

(
1− 2T ∗+I∗

M

)
− k2I

∗
]

[k2T
∗ − µI ] +

(
r2
M

+ k2

)
k2T

∗I∗,

(3.56)
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then

λ2
3 + b0λ3 + b1 = 0. (3.57)

Substituting T ∗ and I∗ into (3.56) and simplifying the equation leads to

b0 =
µIr2

Mk2

,

b1 =
µ2
Ir2

Mk2

(R0 − 1) .

(3.58)

The characteristic equation λ2 + b0λ+ b1 = 0 will always have negative eigenvalues.

Remarks: Since HIV’s infectiousness is too high to infect healthy CD4+ T-cells, the require-
ment for local stability can be interpreted to indicate that the person will be infected with HIV.
Another factor may be the immune system’s inability to combat the infection. However, the
immune system’s ability to destroy cancer cells if k1 is high, or the rate at which cancer cells
are generated if r1 is too small.

3.4.4 The cancer cells, healthy T-cells, and infected T-cells equilib-
rium

Theorem 15. The equilibrium point E4 is stable, if R0 > 1.

Proof. For the equilibrium E4 = (C∗∗, T ∗∗, I∗∗, 0), the Jacobian matrix of this equilibrium is

JE4 =



−A11 −A12 −A13 −A14

−A21 A22 −A23 −A24

A31 A32 A33 A34

A41 A42 A43 −A44


,

where

A11 = −r1

(
1− 2C∗∗ + T ∗∗ + I∗∗

M

)
+ k1T

∗∗ + (k3 + k4) I∗∗, A12 =

(
r1

M
+ k1

)
C∗∗,

A13 =

(
r1

M
+ (k3 + k4)

)
C∗∗, A14 =

r1C
∗∗

M
,

A21 =

(
r2

M
+ pk1

)
T ∗∗, A22 = r2

(
C∗∗ + 2T ∗∗ + I∗∗

M

)
+ pk1C

∗∗ + k2Ī − r2, A23 =

(
r2

M
+ k2

)
T ∗∗,

A24 =

(
r2

M
+ (1− β) k5

)
T ∗∗,

A31 = k4I
∗∗, A32 = k2I

∗∗, A33 = k2T
∗∗ + k4C

∗∗ − µI , A34 = k5T
∗∗,

A41 = k3I
∗∗, A42 = 0, A43 = k3C

∗∗, A44 = −r3

(
1− C∗∗ + T ∗∗ + I∗∗

M

)
+ βk5T

∗∗.
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The associated characteristic equation is given by

P (ξ) = Â0ξ
4 + Â1ξ

3 + Â2ξ
2 + Â3ξ + Â4, (3.59)

where

Â0 = 1,

Â1 = A11 + A12 + A14 − A13,

Â2 = A11A22 + A13A31 + A23A32 + A14A41 + A24A42 + A11A44 + A22A44 −
[A12A21 + A11A33 + A22A33 + A34A43 + A33A44] ,

Â3 = A13A22A31 + A11A23A32 + A12A21A33 + A14A22A41 + A13A34A41 + A11A24A42 + A23A34A42 +

A14A31A43 + A24A32A43 + A11A22A44 + A13A31A44 + A23A32A44 −

[
A12A23A31 + A13A21A32

+A11A22A33 + A12A24A41 + A14A33A41 + A14A21A42 + A24A33A42 + A11A34A43 + A22A34A43

+A12A21A44 + A11A33A44 + A22A33A44

]
,

Â4 = A14A23A32A41 + A12A24A33A41 + A13A22A34A41 + A13A24A31A42 + A14A21A33A42 +

A11A23A34A42 + A14A22A31A43 + A11A24A32A43 + A12A21A34A43 + A13A22A31A44 +

A11A23A32A44 + A12A21A33A44 −

[
A13A24A32A41 + A14A22A33A41 + A12A23A34A41 +

A14A23A31A42 + A11A24A33A42 + A13A21A34A42 + A12A24A31A43 + A14A21A32A43 +

A11A22A34A43 + A12A23A31A44 + A13A21A32A44 + A11A22A33A44

]
.

It can be seen that Â0 and Â3 are always positive since all the parameters are non-negative
and R0 > 1. Thus, the number of possible positive real roots the polynomial (3.59) can have

depends on the sign of Â1,Â2 and Â4. The signs of Â1, Â2 and Â4 are examined and then follow
the possibilities of their signs:

i. Â1 > 0, Â2 > 0, Â4 > 0;

ii. Â1 < 0, Â2 < 0, Â4 < 0;

iii. Â1 > 0, Â2 < 0, Â4 < 0;

iv. Â1 > 0, Â2 > 0, Â4 < 0;

v. Â1 < 0, Â2 > 0, Â4 < 0;

vi. Â1 < 0, Â2 < 0, Â4 > 0;

vii. Â1 > 0, Â2 < 0, Â4 < 0;
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viii. Â1 < 0, Â2 > 0, Â4 > 0.

Hence, by Descartes’ Rule of Signs equation (3.59) will have either a unique positive real root
or three positive roots when R0 > 1 or equation (3.59) will have either zero, two or four positive
roots when R0 > 1. Hence, the system may undergo backward bifurcation [14, 30].

3.5 The endemic equilibrium and its stability

3.5.1 Endemic equilibrium

The Co-infected endemic equilibrium E∗∗ = (C∗∗, T∗∗, I∗∗, C∗∗I), where N∗∗ = C∗∗ + T∗∗ + I∗∗ +
C∗∗I . Therefore the system (3.28) becomes

0 = r1

(
1− N∗∗

M

)
− k1T∗∗ − (k3 + k4) I∗∗,

0 = r2

(
1− N∗∗

M

)
− pk1C∗∗ − k2I∗∗ − (1− β) k5C∗∗I ,

0 = k2T∗∗I∗∗ + k4C∗∗I∗∗ − µII∗∗ + k5C∗∗IT∗∗,

0 = r3C∗∗I
(
1− N∗∗

M

)
+ k3C∗∗I∗∗ − βk5C∗∗IT∗∗.

(3.60)

Equation number three of (3.60) becomes,

T∗∗ =
(µI − k4C∗∗) I∗∗
k2I∗∗ + k5C∗∗I

, (3.61)

for T∗∗ to exist then µI > k4C∗∗. By rearranging equation number four of (3.60), we obtain

C∗∗I =
k3C∗∗I∗∗

βk5T∗∗ + r3N∗∗
M
− r3

, (3.62)

for C∗∗I to exist then βk5T∗∗ + r3N∗∗
M

> r3.

Substituting C∗∗I into equation number two of (3.60) and grouping in terms of C∗∗, then

0 = r2

(
1− N∗∗

M

)
− k2I∗∗

pk1 + (1−β)k3k5I∗∗

βk3T∗∗+
r3N∗∗
M

− r3

C∗∗,

C∗∗ =
r2

(
1− N∗∗

M

)
− k2I∗∗[

pk1

(
βk3T∗∗ + r3N∗∗

M
− r3

)
+ (1− β) k3k5I∗∗

] [
βk3T∗∗ + r3N∗∗

M
− r3

] .
Since r2

(
1− N∗∗

M

)
> k2I∗∗ and this implies that C∗∗ exist. Recalling equation (3.61) and
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substituting T∗∗ in equation one of (3.60), the equation becomes

0 = r1

(
1− N∗∗

M

)
− k1

(µI−k4C∗∗)I∗∗
k2I∗∗+k5C∗∗I

− (k3 + k4) I∗∗,

0 = r1M (k2I∗∗ + k5C∗∗I)− r1N∗∗ (k2I∗∗ + k5C∗∗I)− k1M (µII∗∗ − k4C∗∗)− (k3 + k4) (k2I∗∗ + k5C∗∗I)MI∗∗,

0 = k2M (k3 + k4) I∗∗2 +
(
k2k5M (k3 + k4)C∗∗I + r1k2N∗∗ + k1µIM − r1k2M

)
−
(
(r1k5M + k1k4MC∗∗)− r1k5N∗∗C∗∗I

)
.

(3.63)
Simplifying the equation further leads to

0 = b1I
2
∗∗ + b2I∗∗ − b3, (3.64)

where
b1 = k2M (k3 + k4) ,

b2 = k2k5M (k3 + k4)C∗∗I + r1k2N∗∗ + k1µIM − r1k2M,

b3 = r1k5N
∗C∗∗I − (r1k5M + k1k4MC∗∗) .

(3.65)

By the use of quadratic formula then,

I∗∗ =
−b2 ±

√
b2

2 + 4b1b3

2b1

. (3.66)

In this case we consider that,

I∗∗1 =
−b2 −

√
b2

2 + 4b1b3

2b1

, (3.67)

I∗∗2 =
−b2 +

√
b2

2 + 4b1b3

2b1

. (3.68)

Case 1: If b2 > 0, it follows that I∗∗1, I∗∗2 are both less than zero. There are no sign changes
and hence by Descarte’s rule of signs, all their roots are negative.
Case 2: If b2 < 0, it follows that I∗∗1 can be either positive or negative and I∗∗2 will be positive.
There are sign changes and hence by Descarte’s rule of signs, the roots I∗∗2 is positive, therefore
only the positive part will be considered

I∗∗2 =
−b2 +

√
b2

2 + 4b1b3

2b1

, b2 > 0. (3.69)

The Co-infected endemic equilibrium exists when T∗∗ > 0 , C∗∗ > 0, I∗∗ > 0 and C∗∗I > 0.
This equilibrium implies that cancer-infected T-cells invade the whole system. The healthy
CD4+ T-cells T ∗ still fight cancer-infected T-cells. If the rate of cancer infection increases,
the individual will develop cancer that is HIV-related. Since the killing ability of the immune
system is too weak.

3.5.2 Stability of endemic equilibrium

Theorem 16. The equilibrium point E∗∗ is locally stable if R0 > 1.
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Proof. For the equilibrium E∗∗ = (C∗∗, T∗∗, I∗∗, C∗∗I), the Jacobian matrix of this equilibrium
is

JE∗ =



−J11 −J12 −J13 −J14

−J21 J22 −J23 −J24

J31 J32 J33 J34

J41 −J42 J43 −J44


,

where

J11 = −r1

(
1− 2C∗∗ + T∗∗ + I∗∗ + C∗∗I

M

)
+ k1T∗∗ + (k3 + k4) I∗∗, J12 =

(
r1

M
+ k1

)
C∗∗,

J13 =

(
r1

M
+ (k3 + k4)

)
C∗∗, J14 =

r1C∗∗
M

,

J21 =

(
r2

M
+ pk1

)
T∗∗, J22 = −r2

(
1− C∗∗ + 2T∗∗ + I∗∗ + C∗∗I

M

)
+ pk1C∗∗ + k2I∗∗ + (1− β) k5C∗∗I ,

J24 =

(
r2

M
+ (1− β) k5

)
T∗∗,

J31 = k4Ī , J32 = k2I∗∗ + k5C∗∗I , J33 = k2T∗∗ + k4C∗∗ − µI , J34 = −r3C∗∗I
M

+ k5T∗∗,

J41 = −r3C∗∗I
M

+ k3I∗∗, J42 = −r3C∗∗I
M

,J43 = −r3C∗∗I
M

+ k3C∗∗,

J44 = −r3

(
1− C∗∗ + T∗∗ + I∗∗ + 2C∗∗I

M

)
+ βk5T∗∗.

The characteristic equation of the Jacobian J associated with the equilibrium E∗ is given by

ξ4 + Ĵ1ξ
3 + Ĵ2ξ

2 + Ĵ3ξ + Ĵ4 = 0, (3.70)

where

Ĵ1 = J11 + J12 + J14 − J13,

Ĵ2 = J11J22 + J13J31 + J23J32 + J14J41 + J11J44 + J22J44 −
[J12J21 + J11J33 + J22J33 + J24J42 + J34J43 + J33J44] ,

Ĵ3 = J13J22J31 + J11J23J32 + J12J21J33 + J14J22J41 + J13J34J41 + J14J31J43 + J24J32J43 + J11J22J44 +

J13J31J44 + J14J21J42 + J24J33J42 + J23J32J44 −

[
J12J23J31 + J13J21J32 + J11J22J33 + J12J24J41 +

J14J33J41 + J11J34J43 + J11J24J42 + J23J34J42 + J22J34J43 + J12J21J44 + J11J33J44 + J22J33J44

]
,

Ĵ4 = J14J23J32J41 + J12J24J33J41 + J13J22J34J41 + J14J23J31J42 + J11J24J33J42 + J13J21J34J42 +

J14J22J31J43 + J11J24J32J43 + J12J21J34J43 + J13J22J31J44 + J11J23J32J44 + J12J21J33J44 −[
J13J24J32J41 + J14J22J33J41 + J12J23J34J41 + J13J24J31J42 + J14J21J33J42 + J11J23J34J42 +

J12J24J31J43 + J14J21J32J43 + J11J22J34J43 + J12J23J31J44 + J13J21J32J44 + J11J22J33J44

]
.
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Due to the complexity involved in obtaining roots of ξ, the signs of the eigenvalues associated
with the Jacobian matrix at E∗, are equally difficult to obtain. It can be shown that Â0 and
Â4 are always positive since all the parameters are non-negative and R0 > 1. Thus, the num-
ber of possible positive real roots the polynomial (3.70) can have depends on the sign of Â1,Â2

and Â3. The signs of Â1, Â2 and Â3 are examined and then follow the possibilities of their signs:

i. Â1 > 0, Â2 > 0, Â3 > 0;

ii. Â1 < 0, Â2 < 0, Â3 < 0;

iii. Â1 > 0, Â2 < 0, Â3 < 0;

iv. Â1 > 0, Â2 > 0, Â3 < 0;

v. Â1 < 0, Â2 > 0, Â3 < 0;

vi. Â1 < 0, Â2 < 0, Â3 > 0;

vii. Â1 > 0, Â2 < 0, Â3 < 0;

viii. Â1 < 0, Â2 > 0, Â3 > 0.

Hence, by Descartes’ Rule of Signs equation (3.70) will have either a unique positive real root
or three positive roots when R0 > 1 or equation (3.70) will have either zero, two or four pos-
itive roots when R0 > 1. The phenomenon of backward bifurcation is characterized by the
stable endemic equilibrium when the associated reproduction number of the model is greater
than one. Hence, the system may undergo backward bifurcation [14, 30]. The presence of this
phenomenon in this model is not explored.

3.6 Numerical simulations

In the previous section, we presented the analytical methods proposed and demonstrated how
to apply them to a qualitative study of the system, yielding some results about the system’s
dynamics. In this section, simulations are carried out for the system (3.5). Table (3.1) shows
the parameter values used in the simulations.

In this section we first consider the system of equations (3.5). We analyze the system by
considering the effect of reproduction number RI in the development of cancer cells infected with
HIV. There are parameters which are fixed throughout our simulations, where k1 = 0.00001,
r1 = 0.3, r2 = 0.03, r3 = 0.05, r4 = 0.05, p = 0.1, µI = 0.3 are fixed parameters and these
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Table 3.1: Numerical values of parameters used in the simulations

Parameter and variables Values
C(0) initial cancer population 100 (cells mL−1)[Estimated]
T (0) initial healthy CD4+ T-cells 250(cells mL−1) [Estimated]
I(0) initial infected T-cells 100(cells mL−1) [Estimated]
CI(0) initial cancer infected cells 100 (cells mL−1)[Estimated]
k1 rate of immune system killing cancer cells 10−5 ∼ 10−3 (ml/day) [30]
r1 maximal proliferation rate of cancer cells 0.05 ∼ 0.5 (ml/day) [30]
r2 intrinsic growth rate of healthy CD4+ T-cells 0.05 ∼ 0.5 (ml/day)[30]
r3 intrinsic growth rate of cancer infected T-cells 0.05 [Estimated]
p rate of losing immune due to infection 0.1 (ml/day)[30]
β rate of healthy CD4+ T-cells killing cancer infected T-cells 0.297 ∼ 18 (ml/day) [33]
k2 rate of infection 5 ∗ 10−5 ∼ 5 ∗ 10−4 (/ml/day) [30]
k3 rate of cancer cells converting to cancer infected cells 0.0005 [Estimated]
k4 rate of cancer cells with infected T-cells dying out 0.0005 [Estimated]
k5 rate of co-infection 0.00005 [Estimated]
µI death rate of infected T-cells 0.3 (/day) [30]
M carrying capacity 1500(/ml) [30]

parameters M,k2, β are varied to satisfy the analytical results. The case where RI < 1 is
considered and Matlab (2017) will be used to perform the simulations.
In figure (3.1) we considered the case where RI = 0.5 and β = 4 the clearance rate of cancer
infected T-cells by healthy CD4+ T-cells (a) and (b) show the healthy T-cells and cancer cells
at the size of their carrying capacity fixed to M = 1500, where the rate of infection is a low
scale k2 = 0.00005. In figure (3.1) (c) and (d) when infection rate is very low, infected T-cells
decline to zero. Figure (3.1) (e) shows the interaction of the healthy T-cells and cancer cells
when the rate of the immune system is strong. Figure (3.1) (f) shows that cancer-infected
disease can’t persist and the healthy T-cells get strong and this is the case of the free disease
equilibrium. In figure (3.2) we considered the case where RI = 2.75 and β = 4, the clearance
rate of cancer infected T-cells by healthy CD4+ T-cells, and the value of k2 = 0.00005 increasing
the carrying capacity M = 15000. Figure (3.2) (a) and (b) converge to the steady state. Figure
(3.2) (c) shows there is an orbitally asmptotically stable periodic solution. In figure (3.3) we
considered the case where RI = 2.75, with cancer cells, cancer infected T-cells present, the
value of k2 = 0.00005, and β = 0.4. Figure (3.3) (a) and (c) shows decline of healthy T-cells
and infected T-cells. Figure (3.3) (b) Cancer cells increase as healthy CD4+ T-cells decline.
Figure (3.3) (d) The existence of the cancer infected T-cells. In figure (3.4) (a)-(c) The carrying
capacity is increased to 15000 and k2 = 0.0005, thus RI = 28.33 no cancer cells and cancer
infected T-cells, and β = 0.3. Figure (3.4) (a) and (b) shows the limit cycles of healthy CD4+
T-cells and infected T-cells. Figure (3.4) (c) show the orbitally asymptotically stable solution.
In figure (3.5) (a)-(d) The carrying capacity of healthy CD4+ T-cells and cancer cells and
cancer infected T-cells are increased to 20000 and k2 = 0.0005, thus RI = 36.7 and β = 0.3 the
clearance rate of cancer infected cells by healthy T-cells [33]. Figure (3.5) (a) and (c) shows
the decline of healthy CD4+ T-cells and infected T-cells. Figure (3.5) (b) and (d) shows the
co-infected endemic equilibrium exist as RI increases rapidly.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Variation of the HIV-cancer co-infection model where RI = 0.5, β = 4, M = 1500,
k2 = 0.00005.
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(a) (b)

(c)

Figure 3.2: Variation of the HIV-cancer co-infection model whereRI = 2.75, β = 4, k2 = 0.0005,
M = 1500, no cancer cells.
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(a) (b)

(c) (d)

Figure 3.3: Variation of the HIV-cancer co-infection model where M = 15000, RI = 2.75,
k2 = 0.0005, β = 4.
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(a) (b)

(c)

Figure 3.4: Variation of the HIV-cancer co-infection model where (3.4) (a)-(c) M = 15000 and
k2 = 0.0005, thus RI = 28.33, no cancer cells and cancer infected T-cells and β = 0.3
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(a) (b)

(c) (d)

Figure 3.5: Deterministic trajectories of the HIV-cancer co-infection model M = 20000, k2 =
0.0005, RI = 36.7 and β = 0.3.
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3.7 Conclusion for model without treatment

Here we studied a cancer model without treatment. When CI(t) = 0 then the system (3.5) is
reduced to a three system equation, which is related to the model in Lou et al [30], in their case
the system had five steady states. In our model CI(t) 6= 0 and there are five equilibria points
considered excluding the trivial one, if RI < 1 then the equilibria are stable. If RI > 1, the
endemic equilibrium is stable, this means that an infected T-cell introduced into a population of
healthy CD4+ T-cells will produce more than one new infected T-cell, and the cancer-infected
cells will survive because the immune system is unable to kill the infected T-cells. We noticed
that the cancer equilibrium becomes stable if the intrinsic growth rate of the healthy CD4+
T-cells is less than the rate at which cancer cells are cleared. In [30] it has been obtained that
when the uncontrolled proliferation rate of cancer cells is small, then cancer can’t persist and
only the HIV infected T-cells persist. Since the immune system breaks down in our model it is
observed that the cancer HIV infected T-cells can coexist at the same time as [30] predicted in
their paper. A study on the dynamic behavior of the system with treatment and its effect will
be obtained in the next chapter.
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3.8 Impact of HAART and chemotherapy drug on the

dynamics of cancer infected cells

The model described by the system (3.5) was studied without treatment. We will introduce
the treatment of HIV in combination with cancer treatment, the goal is to establish the effect
of HAART which is a combination of drugs that inhibit reverse transcriptase and protease [42].
Individuals with HIV who develop cancer should be treated also for cancer growth. We will
consider cancer treatment administered to patients with HIV related to cancer, more precisely
Kaposi Sarcoma which depends on the HAART [20, 34, 56]. Antiretroviral treatment (ART)
for HIV/AIDS is commonly used first, before all other treatment methods, to treat tumors
and reduce patient mortality [57]. Its disadvantage is that it can worsen the infection and the
Kaposi Sarcoma [57]. In our study, HAART will be given in combination with chemotherapy.
The following are the main treatment types:

� Protease inhibitors (PIs) are metabolized by enzymes in the liver and can affect the way
other drugs are processed in the body by speeding up or slowing it down [13]. PI’s
prevents HIV protease from separating polyprotein into functional units, which causes
non-infectious virus particles to be produced by infected T-cells [58].

� Reverse transcriptase inhibitors (RTI’s) HIV uses RTIs to convert its RNA to DNA, HIV
is prevented from replicating by blocking reverse transcriptase and reverse transcription
[13]. RTIs can block infection of target T-cells by infectious virus [58].

� Chemotherapy is a type of treatment that include a drug or combination of drugs to treat
cancer[57]. Chemotherapy has more effect on cancer cells, as it keeps them from growing,
dividing, and making more cells. These drugs are powerful and can be also destructive
or cause damage to healthy cells [57].

3.9 Model formulation with Treatment

Mentioned therapies are considered for the treatment of HIV and cancer, we will focus on both
the treatment. Our model formulation described in chapter 3, will include the therapy treat-
ment parameters. Considering the effects of exposing the cancer cells population to a specific
drug as in chemotherapy at a concentration C(t) represented by δ where 0 < δ < 1, then the
drug will eventually be equally toxic to proliferating cells. A killing cell term will be attached
to the term k1C(t)T (t) to represent the effect of the drug on the cancer growth [54]. Protease
inhibitors and reverse transcriptase inhibitors are applied to cells shortly after transfection and
before infection, respectively [13]. The parameters ηPI and ηRTI represent the efficacy of anti-
HIV treatment, which is usually a combination of drugs made by reverse transcriptase ηRTI
and protease inhibitors ηPI [42, 46].
The model with the HAART and chemotherapy is as follows
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dC(t)

dt
= C(t)

[
r1

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− k1δT (t)− (1− ηPI)δ (k3 + k4) I(t)

]
,

dT (t)

dt
= T (t)

[
r2

(
1− C(t) + T (t) + I(t) + CI(t)

M

)
− pk1δC(t)− (1− ηPI)k2I(t)− (1− β) δ (1− ηPI) k5CI(t)

]
,

dI(t)

dt
= (1− ηRTI)k2T (t)I(t) + (1− ηPI)δk4C(t)I(t)− µII(t) + (1− ηRTI)δk5T (t)CI(t),

dCI(t)

dt
= CI(t)

[
r3

(
1− C(t) + T (t) + I(t) + CI(t)

M

)]
+ (1− ηPI)δk3C(t)I(t)

−(1− ηPI)δβk5T (t)CI(t).

protease

(3.71)

3.9.1 Comparison of the effective and the basic reproduction num-
bers

3.10 Control Reproduction number

The control reproduction number Rc is employed to represent the system with control (treat-
ment of cancer and HIV-infected T-cells). The control program is considered which reduces
either the length of time that an infection lasts by chemotherapy or the HAART. The repetition
of computing the control reproduction number will be avoided, thus the chemotherapy and the
transcriptase inhibitors induced reproduction number Rc is given by

Rc = (1− ηRTI) δ
[
k2M
µI

+
1

β

]
, (3.72)

where
RI = R0 +Rcoinf

c (3.73)

The threshold quantity Rc in the presence of treatment, the average number of infected people
created by one infected person introduced into a naive population of cells as shown above. In
the absence of treatment of HIV we have control reproduction given by

Rcc = δ

[
k2M

µI
+

1

β

]
. (3.74)

In the absense of chemotherapy interaction where δ = 1 and only the HAART is involved the
control reproduction number becomes

Rch = (1− ηRTI)
[
k2M

µI
+

1

β

]
. (3.75)

In the absense of any interaction where δ = 1 and ηRTI = 0, the reproduction number emerges
as

RI =
k2M

µI
+

1

β
. (3.76)

Remarks: Noting from (3.72) that by using both the chemotherapy and the HAART treat-
ments control to reduce the value ofRc, and at the same time the effects of both the interventions
on Rc are not the addition of two independent effects, rather they multiply together to improve
overall effects of population-level independently.
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3.10.1 Comparison of the model with and without treatment at the
endemic level

3.10.2 Results with no chemotherapy drug

In this section, we carry out numerical simulation by Matlab ODE45 Solver which uses Runge
kutta schemes to investigate the dynamical behaviour of the system (3.71) in the presence of
controls using parameters:

ηPI = 0 : 0.8, ηRTI = 0 : 0.8, δ = 0.2 : 1. (3.77)

Unless stated otherwise, parameters are stated in Table (3.1).

3.10.2.1 Control of new infections by Reverse transcriptase inhibitors

In this strategy, we set ηPI = 0 with no variation, and ηRTI = 0.2 : 0.8 vary the parameter
related to the protection of healthy CD4+ T-cells from infection, Figure (3.6) shows that the
increase of the individual protection level, reduces the disease prevalence. This result implies
that this reduction is significant if the level of protection is kept high over a long period.
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(a)

(b) (c)

Figure 3.6: Simulation result showing the population dynamics of healthy CD4+ T-cells and
Infected T-cells in the presence of reverse transcriptase inhibitors where C(t) = CI(t) = 0.

3.10.2.2 Control of new infections by Protease inhibitors treatment

We set ηRTI = 0 with no variation, and ηPI = 0 : 0.8. The enrollment or detection of newly
infected cells into HAART treatment depends on the diagnosis of HIV. Figures (3.7) show that
increasing the number of infected T-cells treated has an important effect on lowering disease
prevalence. However, this decrease in prevalence doesn’t wipe out the infected cells and new
individuals of healthy CD4+ T-cells are not protected from new infection.
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(a)

(b)

Figure 3.7: Simulation results showing the population dynamics of healthy CD4+ T-cells and
infected T-cells in the presence of protease inhibitors where C(t) = CI(t) = 0.

3.10.2.3 Control of new infections and infectious with HAART treatment

The result in Figure (3.8) show that the combination of the two control strategies results into
positive impact in the control of HIV where Rch = 2.75 reduces to Rch = 0.55. The results
show that if the control measures are held at approximately between 70% and 90%, then it will
be easy to halt the replication or spread of the infection in the cells.
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(a)

(b)

Figure 3.8: Population dynamics of the system with no chemotherapy

3.10.3 Results with chemotherapy drug

3.10.3.1 Control of cancer combined with HAART treatment

We are investigating the effects of chemotherapy on the decay rate of cancer and the depletion
rate of cancer-infected T-cells. In this strategy, we set the ηPI = ηRTI = 0 : 8 and vary the
parameter related to control of cancer from proliferating. In Figure (3.9), hence one observes
that at M = 1500 a slight decrease or increase of population cells is observed from 50 days to
200 days due to the intervention. The effect of combining HIV therapy on cancer is explored.
Hence one type of drug ηRTI reduces only the replication of infected cells with HIV, though
another control strategy of drug ηPI reduces the rate of infected cells. In figure (3.9) the
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dynamics of cancer and cancer infected T-cells are studied where the HAART is kept constant
and the strategy is to vary the efficacy of the chemotherapy. It is seen that when the dosage
of δ is increased, the population of cancers cells decreases rapidly and cancer-infected T-cells
decrease slightly with time.

(a) (b)

(c) (d)

Figure 3.9: Chemotherapy treatment variation of cancer and cancer infected T-cells
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3.10.3.2 Control with Chemotherapeutic drug at 0.25 combined with HAART
treatment

Figure (3.10) shows that combining the two drugs lead to a significant decrease on the cancer
infected cells. Varying the efficacy of ηRTI shows that the rate of infected T-cells decrease and
healthy CD4+ T-cells increase, which implies the decrease in cancer cells rapidly and cancer
infected T-cells slightly. The same results as chemotherapeutic drug dosage is fixed at 0.25
show a significance in declining the cancer cells in [5]. In Figure (3.11) the carrying capacity
is increased M=1500:15000, and ηPI = 0, shows that with the variations of the HAART and
Chemotherapy treatment as the RTI is increased, we observe the decline of cancer cells, infected
T-cells and cancer infected T-cells with time. In our analyses it is observed that a dose of 90%
effective ηRTI drugs with as low as 10% effective ηPI drugs which reduce the proliferation rate
of cancer cells and same applies for 90% effective ηPI drugs which predicts the same result as
in [5].

(a) (b)

(c) (d)

Figure 3.10: Chemotherapy treatment fixed at 0.25, and varying the RTI.
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(a) (b)

(c) (d)

Figure 3.11: Chemotherapy treatment fixed at 0.25 and PI at 0.8, and varying the RTI.
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3.11 Conclusion

In this chapter, we suggested a model that takes into account the impact of HIV treatment
and chemotherapy on HIV-related cancer. The model developed in Chapter 3 was extended to
investigate the dynamics of the intervention.

We observed that in the absence of cancer cells, with the variation of the combined RTI and
PI drugs there is a reduction of the HIV cells load. The strategy employed where only the
replication of infected cells will be targeted showed again in the loss of infection as the efficacy
of the RTI approximated at 70% to 90% drives the system to a decline. The combination of
RTI and PI would be effective if the efficacy is approximated at 90% which presents the best
treatment option. Since HAART may be given alone to treat patients with cancer related
to HIV, we, therefore, investigated effective PI and the results showed a slight decline [57].
However, it is not possible to eradicate cancer even with the response of the immune and
treatment of HIV with the reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs)
drugs of a higher percentage.
The results of combining the HAART with chemotherapy in the presence of cancer infected cells
show a significant impact on understanding the obstacle in most cancer-infected cells relating
to complications. Increasing the treatment rate, the result will be more favorable to predict the
efficacy. Providing treatment to HIV individuals, regardless of their cancer status, can offer a
significant reduction in the overall number of full-blown cancer-related HIV.
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Chapter 4: Discussions and Conclusions

Reviewed a model by Lou et al. [30], in Chapter 2 the study was employed to gain insight into
understanding the interaction of the dynamical system of cancer cells, healthy CD4+ T-cells,
and HIV infected T-cells. Boundedness, Positivity, Existence, and Uniqueness were established.
The bifurcation appears which is the same as the one found by Lou et al in their work. The
bifurcation issue was not pursued as this work was not intended to look into that. Stability
analyses and numerical analyses were carried out. Thereafter, we extended a model formulated
in [30] to study the effect of treatment on the dynamics of cancer cells. We first considered a
model without treatment. The disease-free and endemic equilibrium levels were determined,
and the stability of each was investigated. The model predicts that cancer cells persist if the
intrinsic growth rate of healthy CD4+ T-cells is less than the rate at which cancer cells are
cleared. In this dynamic, the key role is played by the reproduction number R0. Considering the
results obtained in chapter 3, the system has five equilibrium points. The system was found to
be stable when R0 < 1, which is a locally stable equilibrium in the healthy CD4+ T-cells. The
equilibrium points with healthy CD4+ T-cells and infected T-cells are unstable when R0 > 1.
Due to mathematical complexity, it was not easy to express the endemic states in terms of the
model parameters, although by using Descarte’s rule of signs the equilibrium points were found
to be stable. When the proliferation rate is low there is less increase in cancer cells and an
increase in healthy CD4+ T-cells. This means that the killing rate of cancer cells by the healthy
CD4+ T-cells is strong. We found that for higher values of the force of infection, the system is
oscillatory around the endemic equilibrium since the oscillation is around the coexistence. In
other literature it is shown in their dynamical system of HIV models interacting with cancer,
that there is oscillation and chaotic fluctuations [8, 30].

In Chapter 3 we considered the model combined with HAART and chemotherapy. The treat-
ment as varied proved to show a significant and effective impact on the investigation of the
dynamical model in the presence of control measures. Our results suggest that cancer response
depends on the therapy that kills proliferating cancer cells, not the infection rate. The effect
of HIV therapy combined with chemotherapy optimizes the efficacy of treating cancer, HIV in-
fected T-cells, with no damage to the healthy CD4+ T-cells while reducing the cancer growth.
Showing that if treatment is offered regardless of either cancer status is known can offer an
effective reduction in the persistence of cancer infected T-cells [50]. The model predicts that,
for cancer-infected T-cells to persist in the presence of treatment, the treatment rate must be
less than the production of cancer-infected T-cells. To be stable the treatment rate must be
more than the production of cancer-infected T-cells. The results predict that for the low rate
of infection, cancer cells will persist even when there is treatment. It was found from numerical
simulations that the response of the immune system cannot eliminate the cancer cells at an
early stage.

Numerical simulations of the model also showed that by first considering the case where the
infection rate is low, the model predicts that for the low rate of treatment, cancer cells will
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increase repetitively. By increasing the treatment rate from 0.4 to 0.7 the cancer cells reduce
exponentially. In the case where R0 > 1, by starting the treatment from 0.3, dampened
oscillations appear. Cancer cells are cleared when the treatment rate is between 0.7 and 0.9.
By starting the treatment early enough, the cancer cells can be controlled. The results show
that early detection of cancer HIV infected T-cells when HAART treatment is taken can reduce
the infection which leads to less chance of cancer-related HIV progressing. The model in this
dissertation is extended from J. Lou with the coexistence of cancer and cancer HIV infected
T-cells, it is still a simple description of a complicated biological interaction of healthy CD4+ T-
cells. The model isn’t meant to be used as a predictor, but rather as a way to organize thoughts
about cancer, cancer-infected T-cells, and HIV infections so that more accurate models can be
created. Regardless of how long the HIV endemic has been suppressed the reason is to work
towards better models.

4.1 Future Work

In future work, we will propose a latent mathematical model that incorporates HIV viral load
compartment. A model for viral infection and spread that includes two modes: diffusion-limited
free virus transmission and direct viral particle movement from cell to cell.
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Appendix A

Statement of Theorem

Consider the system of equations below

x
′

1 = f1(t, x1, x2, ...., xn), x1(t0) = x10,

x
′

2 = f1(t, x1, x2, ...., xn), x2(t0) = x20,
...

x
′

n = f1(t, x1, x2, ...., xn), xn(t0) = xn0.

 (4.1)

In this case we can write the equation (4.1) in the form

X
′
= f(t,X), X(t0) = x0. (4.2)

Theorem 17. Suppose the region is denoted by Γ where

|t− t0| ≤ a,‖x− x0‖ ≤ b, x = (x1, x2, ....., xn), x0 = (x10, x20, ...., xn0). (4.3)

and suppose that f(t,X) satisfies the Lipschitz condition∥∥f(t, x1)− f(t, x2)
∥∥ ≤ K‖x1 − x2‖ . (4.4)

for all (t, x1), (t, x2) ∈ Γ, where K is a positive constant (Lipschitz Constant). Then, there is
a constant δ > 0 such that there exists a unique continuous vector solution X(t) of the system
(4.2) in the interval |t− t0| ≤ δ. It is crucial to note that the condition (4.4) is satisfied by the
requirement that ∂fi

∂xj
, i, j = 1, 2, ..., n be continuous and bounded in Γ [11].
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Appendix B

The value of R0 of system can be estimated by using the next generation matrix method. We
consider matrix G of order m which is composed of two matrices; matrix F (non-negative) and
matrix V −1 (non-singular) such that

F =

[
∂Fi(x0)

∂xj

]
where

1 ≤ i, j ≤ m.

Fi are the new infections, Vi are the transfers of infections from one compartment to another
while x0 is the drug free steady state. R0 for our model is obtained by computing the spectral
radius of G = FV 1.

72


