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ABSTRACT 
Seed quality management is considered the key to boosting agricultural production, 

which may be quickly done using seed improvement technologies. Comprehensive 

seed priming techniques is one of the tools that enhance fast germination and improve 

plant yields. On the other hand, access to heavy metals from acid mine drainage water 

can cause germination to be delayed and impair its pace and uniformity, resulting in 

poor crop production. Plants’ diverse biochemical processes such as enzyme and 

antioxidant production, protein mobilization, and photosynthesis may be disturbed. 

Herein, sowing common bean, maize, wheat, and okra treated with substantial acid 

mine drainage water at different concentrations (0 %, 25 %, 50 %, 75 %, 100 %) at 25 

°C and 35 °C was carried out to assess the effects of gibberellic acid and B. subtilis 

BD234 on seed germination and seedling growth, for better seedling establishment. 

Seeds that had not been primed were also exposed to various levels of AMD and used 

as controls. The results indicated that seed germination parameters (Final germination 

percentage; germination speed; emergence rate index, vigour index) were reduced 

with higher acid mine drainage (AMD) concentrations (75 % and 100 %) compared 

with low AMD concentrations (0 %, 25 % and 50 %) for common bean, maize, wheat, 

and okra. In contrast, the germination indices were improved by applying gibberellic 

acid and B. subtilis, while increase in AMD concentrations had adverse effects on root 

and shoot length. The results also showed that temperature influenced all crops' 

germination speed and percentage. Overall, the results suggest that gibberellic acid 

and B. subtilis BD234 priming agents can be a practical approach to improve seed 

germination and seedling growth in bean, maize, wheat, and okra under acid mine 

water drainage contaminated environments.   
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CHAPTER 1   
  

BACKGROUND OF THE STUDY  
    

1.1 Descriptive project title   
Determining the enhancement of gibberellic acid (GA3) and B. subtilis BD234 on the 

germination response of common bean (Phaseolus vulgaris L.), maize (Zea mays L.), 

wheat (Triticum aestivum L.) and okra (Abelmoschus esculentus L.) exposed to 

different acid mine water concentrations and temperature regimes.   

 
1.2 Introduction and problem statement  
Germination is the first crucial phase in every plant life cycle, in which the plant’s 

seedlings, root system, and adaptability to the environment are regulated (Donohue et 

al., 2010; Yakoubi et al., 2019). Seed germinations compromise the plant's 

morphological, physiological, and biochemical developments entirely by initiating the 

imbibition phase and radicle appearance from the seed's coat (Bewley et al., 2012). 

Hence the germination process is critical for the plant's survival, longevity, and the 

persistence of plant populations (Donohue et al., 2010; Willis et al., 2014). 

Furthermore, vigorous seed germination is significant in crop production increasing 

crop yields (Zhang, 2021). However, plants face multiple environmental stresses 

throughout their lifespan that reduce their growth and negatively affect crop 

productivity (Srivastava et al., 2021). Abiotic factors such as soil quality, extreme 

salinity, acidity, drought, and pollution often disrupt the germination process, causing 

substantial redundancy (Srivastava et al., 2021).   

Exacerbating anthropogenic activities had played a significant role in destroying 

agricultural soil, so industries post-impacts like uncontrollable acid mine water are 

putting agriculture water use under strain. Sulfur-bearing materials, for example, are 

the most prevalent ions in the groundwater of South Africa and the East African Rift, 

contaminating rivers and streams (Abiye et al., 2019; Mengistu et al., 2019). The acid 

mine water affects the nutrient supply for crops and disrupts the hormonal balance, 

weakening the seed germination and emergence in plants (Rambabu et al., 2020); 
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therefore, the quality and quantity of plant yield development is also affected (Singh et 

al., 2010).  

Mercury (Hg), zinc (Zn), and iron (Fe) lead (Pb) in acid mine water decreases the 

species diversity of both plants and microorganisms. According to Jaishankar (2014), 

the cells of the plants degenerate by inducing the formation of hydroxyl free radicals. 

The excess of heavy metals in the environment is a dangerous threat even to the 

health of human beings (Liu et al., 2013; Abiye et al., 2018; Guo et al., 2020). In 

addition to acid mine water, due to climate change, land degradation and 

desertification are also likely to affect agricultural productivity, compromising food 

production in Africa (Hummel, 2016).  

Recently, the habitable environment has been experiencing an increase in global 

temperature and fluctuations in precipitation, a physical impact of the changing climate 

(Mersha and Leta, 2019). The water shortage has been associated with drought and 

degradation by several kinds of pollution, and the mining sector has already polluted 

the water into incompatible for use (Du Plessis, 2019). Suppose the impact of the 

changing climate leading to drought keeps on escalating. The agricultural sector may 

have no other option than to use contaminated water such as acid mine water for crop 

irrigation. According to United Nations-Water Research (2018), water deficit negatively 

impacts crop yield, and the agricultural sector may experience a loss of revenue. When 

the crop is under environmental stress, the production and quality are also affected 

(Kajla et al., 2015). Hence most farmers use chemical fertilizers and pesticides for 

growing crops and managing diseases to reach the goal of the required crop 

production.    

The use of fertilizers can increase the production and quality of crops. However, 

African countries are not resourceful in producing fertilizers (African Fertilizer 

Financing Mechanism, 2018).  Hence the use of chemical fertilizers is not economically 

friendly to African farmers, and the adverse effects of chemical fertilizers on the plant 

environment and ecosystem cannot be ignored. According to Drobek et al. (2019), 

chemical fertilizers are the leading cause of eutrophication, a worldwide main toxic 

waste challenge (Howarth et al., 2002). However, plant hormones and microbes as 

seed pre-treatment for pest and disease resistance are environmentally friendly and 

beneficial to agroecology agriculture (Finkel et al., 2017, Mitra et al., 2020).  
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The beneficial impacts of plant seeds pre-treatment are reflected in the outcome of the 

germination process under standard culture conditions and an appropriate means for 

the plant to successfully overcome the action of stressors (Delian et al., 2017). Bacillus 

subtilis (B. subtilis) is a gram-positive bacterium commercially marketed as a 

biopesticide and biofertilizer (Guo et al., 2014). The primary function of B. subtilis is to 

suppress the soil-borne diseases that inhibit pathogens’ growth through antibiotic 

production (Dong et al., 2020; Romano et al., 2020). B. subtilis stabilizes the 

pathogens and promotes plant growth by secreting growth hormones such as IAA and 

GA3, fixed with increased nutrient availability (Chowdappa, 2013).   

GA3 is among the phytohormones that are positive stimuli of plant development by 

increasing the plant’s length and the number of cells (Oral et al., 2019). It is commonly 

used as a growth regulator for effective physiological dormancy-breaking and 

increasing germination efficiency and photosynthetic activity (Rout et al., 2017; Oral et 

al., 2019). Also, It promotes seed germination by activating hydrolases in the seed and 

stimulating hydrolysis from starch to glucose (Richards et al., 2001; Shekafandeh et 

al., 2017). Furthermore, Willis et al., (2014) stated that gibberellins could significantly 

improve seed germination in many species. Primarily over the activation of embryo 

growth, mobilization of reserves, and weakening of the endosperm layer (Baskin and 

Baskin, 2014). B. subtilis and GA3 are efficient natural biocontrol agents; thus, they 

can stimulate the germination on significant crops such as maize, wheat, common 

bean, and okra to boost productivity, minimizing the profit losses that could be initiated 

by acid mine water.  

Plant hormones and rhizobacteria, have seed priming components that induce the 

seed germination process under stressful conditions. For example, Safari et al. (2018) 

reported the effects of seed priming with ABA and salicylic acid on seed germination 

and seedling growth of sesame under saline conditions. In addition, the study by De 

Lima et al. (2019) showed the effects of B. subtilis on maize and common bean 

performance under water deficit conditions. However, no study has been reported to 

investigate the stimulation of germination using B. subtilis and GA3 as pre-treatment 

germination stimulants on significant crops such as common bean maize, okra, and 

wheat exposed to acid mine water.    
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The present study studied the growth-regulating effect of GA3 and B. subtilis on 

common bean, maize, wheat, and okra seeds, exposed to varied AMD concentrations. 

To better understand the results, non-primed and primed seeds of common bean, 

maize, wheat, and okra were used to measure germination and seedling growth in 

relation to physiological changes after seed priming at different temperatures.  

 
1.3 Aim   
To determine the effects of GA3 and B. subtilis doses on the germination of common 

bean (P. vulgaris), maize (Z. mays), wheat (T. aestivum) and okra (A. esculentus) 

exposed to various acid mine water concentrations at different temperature regimes.  

 
1.4 Objectives    

• To determine the stimulated germination growth response of common 

bean, maize, wheat and okra treated with GA3 and B. subtilis, exposed 

to various concentrations of acid mine water at 25 °C and 35 °C.    

• To evaluate the effects of different acid mine water concentrations on 

seed germination of common bean, maize, wheat and okra primed by B. 

subtilis and GA3 at different temperature regimes.   

• To determine the interactive effects of acid mine water concentrations, 

B. subtilis, GA3, and temperature between the treated seeds.    

 
1.5 Outline of the study   
The dissertation is divided into six chapters and presented in that order. The project's 

background, problem statement, justification for the study, aim, and objectives are all 

introduced in the first chapter. The literature review on common bean maize, wheat 

and okra forms part of chapter 2; the chapter also consists of the in-depth literature 

about acid mine drainage water, GA3 and B. subtilis. The third chapter is comprised of 

detailed materials and methods followed in the study. The findings of a study on the 

effects of seed priming with GA3 and B. subtilis BD234 on seed germination and early 

seedling growth exposed to acid mine drainage water was divided into two chapters, 

the cereal crops (maize and wheat) results and discussions from chapter 4 whereas 
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the legumes (bean and okra) were presented on chapter 5. Then, Chapter 6 present 

the general discussion and conclusion with recommendations of the study.  
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CHAPTER 2 
LITERATURE REVIEW  

  

2.1 Common bean (Phaseolus vulgaris L.)   
The common bean is a legume plant belonging to the Fabaceae family (Integrated 

Taxonomic Information System, 2014). The crop originates from Latin America and is 

widely distributed from Northern Mexico to North-Western Argentina 

(HernándezLópez, 2013). Common bean is also known as navy, pinto, red kidney, or 

French beans (Yang et al., 2018), and is one of the world’s most valuable food sources, 

especially in developing countries, in terms of food energy and nutrients 

(Namugwanya et al., 2014; McClean et al., 2017). Sub-Saharan Africa has the world's 

largest per capita pulse consumption of common bean, and the most considerable 

proportion are people living in abject poverty (Larochelle et al., 2015; Pan African Bean 

Research Alliance (PABRA), 2019). As a result, the common bean is a critical crop for 

food security and a cost-effective way to improve the diets of low-income households 

in Sub-Saharan Africa (Fetahu et al., 2013). The kilojoules generated by common bean 

are precisely the same as the energy food offered by red meats; thus, they are 

nicknamed "poor man's meat" (Mendes et al., 2018).   

Common bean is an annual and self-pollinated crop with some progression of 

outcrossing to increase genetic diversity (Ferreira et al., 2000; Bareke et al., 2018). 

The crop consists of lateral and adventitious roots, stem up to 3 m long which can be 

sharp or cylindrical (Ferreira et al., 2000). Fruits are presented in a linear pod up to 20 

cm long, straight or curved with a prominent beak (DALRRD, 2010). Common bean 

flowers are arranged in pairs or single along the rachis, with attractive white to purple 

colour (Fourie, 2014; Kim et al., 2014; Bareke et al., 2018). After pollination, each 

flower produces one open pod around 1-1.5 cm broad and up to 20 cm long and 

contains 4 to 12 seeds in each pod (Wortmann, 2006). The grain legumes are kidney-

shaped, ellipsoid, or oblong and can reach 1.5 cm long (DALRRD, 2010).  

The germination period of the common bean is approximately 7-10 days depending 

on growing conditions (Raveneau et al., 2011; Gerhardt, 2017). The first growth stage 

starts when the bean seed absorbs water through micropyle (Ali and Elozeiri, 2017), 

a small stoma located on the seed coat (Fig 2.1a). The seeds continue to expand until 
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the seed coat ultimately breaks, allowing the radicle to emerge (Fig 2.1b and c). The 

radicle is the plant's embryonic root, which emerges and grows into the soil. The root 

cap, which is the tip of the radicle, protects the root as it pushes its way through the 

soil (Ali and Elozeiri, 2017). The root system begins to form once the radicle emerges, 

and the bean plant has a fibrous root system, which means it has numerous branches 

(Fig 2.1d and e). Finally, the epicotyl forms between the cotyledons during this growth 

period, and the first seed leaves activate adult leaves (Fig 2.1f). Green bean seeds 

are dicotyledons because they produce two seed leaves within the cotyledons. The 

cotyledons are established above the earth during this green bean germination 

process, also known as hypogeal germination (Gerhardt, 2017). The plant will continue 

to develop for roughly six weeks after the first leaves appear. About that time, the plant 

will enter the reproductive stage and begin with the flowering process (Amstutz, 2015).  

  

     

Figure 2.1: A schematic representation of the germination process of a common bean 

seed. Each alphabet (a-f) represents the germination process until completion. 
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Common bean distribution and cultivation in Africa is widespread, yielding about 80 % 

on the continent. (FAO, 2017). The annual global production of common bean is 

estimated to be around 12 million tons (Nkhata et al., 2020). Around 2.5 million tons 

are produced annually in the East and Southern African regions (Petry et al., 2015). In 

Sub-Saharan Africa, farmers cultivate 7.7 million hectares of common bean 

(Larochelle et al., 2015; FAO, 2019). Approximately 40 % of Africa's production is sold 

for around 450 million dollars in the United States (Alemu et al., 2017).  

In the Republic of South Africa (SA), the average common bean production recorded 

over the previous 5 production seasons was 59 5000 tons, while the local consumption 

demand is 137 712 tons, representing the deficit of 78 212 tons of the common bean 

production (Grain SA, 2018). Approximately 4 378 tons on average of common bean 

is exported per annum, mainly to neighbouring countries such as Zimbabwe, Angola, 

Mozambique, and Swaziland (FAO, 2019). South Africa imports about 79 000 tons of 

common bean per annum, which is extremely low compared to the amounts that have 

been imported previously. According to DALRRD (2018), the annual crop report on 

common bean imports by South Africa has been declining between the years 2012 and 

2017, with significant trade originating from Asia. Furthermore, from 2008 the annual 

common bean imports statistics showed that Asia is responsible for 75 % of common 

bean, while China alone accounts for about 98 % imported by South Africa and other 

regions throughout Africa. Americas and Europe contributed only 25 % towards the 

total common bean imported by South Africa. According to DALRRD (2018), 1200 

farmers produce an average of 65 000 tons of common bean per annum. The area 

under common bean cultivation in South Africa is declining, negatively impacting the 

production volumes of the crop (Table 2.1). Land planted for common beans in the 

country fluctuated between 40 and 64 hectares between 2008 and 2017 (Table 2.1).  
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Table 2.1: Total cultivated production statistics of common bean in South Africa from 2008-

2018.  
Production Year  Area Planted (1000 ha)  Total Production (1000 tons)  

2008/09  44  74  

2009/10  44  57  

2010/11  42  46  

2011/12  40  52  

2012/13  44  66  

2013/14  56  90  

2014/15  64  88  

2015/16  34  39  

2016/17  46  71  
2017/18  45  75  

 Source: DALRRD Statistics and Economic Analysis, (2018). 

Common bean strategically addresses malnutrition and food insecurity challenges in 

Africa, ranking among the top five foods with the highest micronutrient to price 

concentration ratio (Katungi et al., 2009; Drewnowski, 2010). This crop also provides 

an income source for millions of smallholder farmers in Africa, who market about 40 

% of their production to domestic and export markets (Larochelle et al., 2015). 

Therefore, the common bean is one of the essential efficient vegetable crops in the 

socioeconomic farming systems of Africa (Monda et al., 2003; Fetahu et al., 2013).  

 

2.2 Maize (Zea mays L.)  
Maize belongs to the tribe of Maydae, from the Poaceae family, and is considered to 

originate from Mexico and Central America (Hossain et al., 2016). The genus Zea 

comprises four species, of which Zea mays is economically cultivated. According to 

Grassini et al. (2013), maize is a dominant crop throughout Africa and Latin America, 

usually recognized in most English-speaking nations as ‘corn’ which denotes the ‘local 

staple’ (Sinyolo et al., 2016; Matlou et al., 2017). Maize processing and consumption 

differ widely from country to country, with maize flour and meal being two of the most 
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common products. Furthermore, 63 % of maize is used for livestock feed worldwide 

(Shiferaw et al., 2011), for ethanol fuel, in alcoholic beverages, and a significant source 

of oil, starch, and biofuel (Prasanna et al., 2020). Maize can also be used in 

combinations with other ingredients, such as corn-soy blend, for new-borns and food-

aid feeding (Ranum et al., 2014).   

Maize is a thick-stemmed annual tall grass with intersecting sheaths and extensive 

leaves perpendicular to each side of an axis (Kumar et al., 2012). The single stem 

develops typically up to 4 cm in thickness, reaching 4 m in height (Paliwal, 2000; 

Dowswell et al., 2019). The root system of the maize crop is formed of varying numbers 

of roots; the seminal roots, the nodal roots coming from below the stem, and the brace 

roots (Kumar et al., 2017; Gao and Lynch, 2016). The maize grain is botanically a 

caryopsis, meaning that a dried fruit bearing a single seed in which the ovary wall is 

linked to the inner tissues of the seed coat (Farnham et al., 2003; Kumar et al., 2012).  

Germination of a maize seed starts with the appearance of the radical shoots, which 

is maize's initial growth phase (Fig 2.2b), whilst the radicle root emerges near the end 

of the maize's tip. The seminal lateral roots emerge and initially stretch towards the 

dent end of the maize seed (Fig 2.2c). As the germination process continues, the 

growth of the coleoptile becomes visible (Fig 2.2d), which protects four or five leaves 

folded up inside each other to establish a plumule known as the embryonic shoot of 

the plant (Kumar et al., 2012). The growth of the seminal root slightly declines, and 

nodal roots are initiated at the crown (Fig 2.2e), and finally, the formation of the leaves 

rapidly develops and grows through the coleoptile tip (Fig 2.2f).  
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Figure 2.2: A schematic representation of the germination process of a maize seed. 

Each alphabet (a-f) represents the germination process until completion. 

 

Maize is a primarily warm-weather crop grown in a wide range of climatic conditions 

and can successfully be grown in areas receiving an annual rainfall of 600 mm (Birch 

et al., 2008). The crop is mainly grown using the traditional tillage approach of 

ploughing (Zhou et al., 2019). The production system in South Africa is dominated by 

small-scale farmers and emerging commercial farmers (Iortyom et al., 2018). 

Currently, 79 % of the world's maize is produced in the United States, Brazil, Mexico, 

Argentina, India, France, Indonesia, RSA, and Italy (FAO, 2019). Alberts et al. (2019) 

reported that countries in sub-Saharan Africa required 76 % of maize output in 

previous years whilst South Asia needed 70 % of yield production. Furthermore, based 

on the International Food Policy Research Institute (IFPRI) estimate, maize demand 

was predicted to surpass wheat and rice in 2020.   

Approximately 60 % of maize produced in South Africa is white, and 40 % is yellow 

(DALRRD, 2011). Yellow maize is utilized for animal feed, while white maize is 

generally consumed by humans (DALRRD, 2018). Maize is produced throughout 
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South Africa, with Free State, Mpumalanga and Northwest provinces being the leading 

producers in the country, accounting for around 83 % of total production. Commercial 

agriculture contributes roughly 98 % of maize in RSA, while the remaining 2 % is 

generated by emerging farming (DALRRD, 2018). The maize harvest in 2020 was 35 

% larger than the 2019 crop production (Figure 2.3).   

 

 
Figure 2.3: Total South African maize production levels for the past 10 years (2010 to 

2020). Source: CEC, (2020).  

The commercial maize area planted for 2019/20 was predicted to be influenced 

favourably by relatively high local corn price level (South Africa’s Crop Estimates 

Committee, 2020). Around 2.6 million hectares of corn were planted by commercial 

farmers in 2019/20 (Table 2.2), 13 % greater than the area planted in 2018/19 (South 

Africa’s Crop Estimates Committee, 2020). Local maize prices traded at reasonably 

high prices until the following year’s harvest season, providing commercial producers 

with great initiative to plant more maize fields (CEC, 2020).   
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Table 2.2: Area planted, yield and production statistics of South Africa’s white and 

yellow maize produced by commercial and subsistence farmers for 2018/19 (actual) 

and 2019/20 (estimate).  

  

Maize   

Area   

1000 ha  

Yield  Total production 
t/ha  

1000 t  

Area 1000 
ha  

Yield  Total Production  
t/ha  

1000 t  

 2018/19   2019/20  

Commercial  
White   1.300   3.6   4.700   1.500   4.5   6.70  

Yellow  1.000   5.3   5.300   1.100   5.5   
6.10  

Subsistence  
White  200   1.5   300   200   1.5   300   
Yellow  100   2.0   200   100   2.0   200   

Total   2.600   4.0   10.50  2.900   4.6   13.300  

 Source: Crop Estimates Committee, (2020). 

 

Maize is a highly substantial and intensively farmed grain crop, a vital portion of the diet 

for rural and urban communities in RSA (Agriculture Research Council, 2016; Matlou et 

al., 2017). The crops’ production provides a staple food and a source of income for many 

developing countries (Ngoune and Mutengwa, 2020). Meanwhile, its products supplied 30 

% of America's food, 38 % of Africa's, and 6.5 % of Asia's (Prasanna et al., 2020). Thus, 

maize crop production is crucial for food security and economic development, accounting 

for almost 30 % of the revenue of impoverished farmers (Beyene and Getu, 2020 

 

2.3 Wheat (Triticum aestivum L.)  

Wheat is believed to have originated in the eastern part of the world, in the areas now 

occupied by Syria, Turkey, Afghanistan, Iraq and Iran. Grains of domesticated wheat was 

found in the archaeological remains in Ali Koshi in Iranian Khusistan, dating back to 6 500 

BC; and Anatolia in Turkey (National Research Council, 2006). A very likely place of origin 

is the area known in early historical times as the Fertile Crescent, a region with rich soils 

in the upper reaches of the Tigris-Euphrates drainage basin (Hemdane et al., 2016). 

Cultivation of wheat spread from its origin to India, Pakistan, and China in the east, 

Mediterranean countries in the west and other countries in the north (Hemdane et al., 

2016).  
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Wheat plants grow for about 3 to 10 mm in length, 3 to 5 mm straight, with cylindrical, 

jointed, and smooth stems (Cossani and Reynolds, 2012). The plants consist of both the 

root and shoot systems. They have long, slender leaves and hollow stems in most varieties 

(Setter and Carlton, 2000). The grain consists of a germ, embryo and endosperm and the 

typical wheat kernel is 3 to 10 mm in length and 3 to 5 mm in diameter (Kumar et al., 2017). 

Germination of wheat begins after a short period of dormancy in the seeds (Kumar et al., 

2017) because the crop has been associated with low dormancy levels that are easily 

broken down. Depending on the cultivar, dormancy can last anywhere from 3 to 7 months 

after the seed coat has been removed (Dane, 2020). When the seed begins to absorb 

moisture, the first phase begins (Fig 2.3a and b). At a relative humidity of around 97.7 %, 

a wheat seed must reach a moisture content of around 35 to 45 % of its dry weight to begin 

germination (Jagdish, 2020). The embryo grows visibly; the radical emerges, followed by 

other primary roots (Fig 2.3c). The coleoptile appears to protect the emergence of the first 

leaf (Fig 2.3d). The coleoptile then emerges to the surface, and the first genuine leaf 

pushes through the tip (Figure 2.3e). The seedling development occurs with the seed 

embryo consisting of 2 to 3 leaf primordia, and almost half of the leaf primordia are already 

initiated (Figure 2.3e-f). Plant growth begins, and the young plant is referred to as a 

seedling.   

 

https://www.britannica.com/science/leaf-plant-anatomy
https://www.britannica.com/science/leaf-plant-anatomy
https://www.britannica.com/science/leaf-plant-anatomy
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Figure 2.4: A schematic representation of the germination process of a wheat seed. 

Each alphabet (a-f) represents the germination process until completion. 

 

Wheat is cultivated over a wide range of soil and successfully grows over large land 

portions (Poole, 2012; Schlatter et al., 2020). Annual rainfall of 254 mm is generally 

required for the growing stage; however, it can be grown in a wide variety of climates. 

The crop grows best in cool regions with temperatures between 10 and 24 °C (Poole, 

2012), under deep, fertile, well-drained ventilated soil at a pH between 5.5 and 7.5 

(Kumar et al., 2017). Wheat is an extensively important staple cereal crop that provides 

a substantial portion of energy to approximately 4 billion people globally (Shiferaw et 

al., 2013; Hemdane et al., 2016; Hernandez-Ochoa et al., 2018).  

For the past 8000 years, wheat has been the primary staple food of major civilizations 

of Europe, North Africa, and West Asia, cultivated in 220 million hectares of land, 

representing 30 % of the world’s total cereal production area (Cossani and Reynolds, 

2012). In Africa, Egypt is the world’s largest wheat producer, producing 9 million tons 

per annum (pa), followed by Algeria, with 4 million tonnes pa, which is almost half of 
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Egypt’s wheat production (Tadesse et al., 2019). Sub-Saharan African countries are 

also known to import about 17 billion tons of wheat annually.  

After maize, wheat is the second most important grain crop produced in South African 

agriculture (DALRRD, 2015; FAO, 2020). The national wheat yield has decreased by 

approximately 740 000 tons between 2002 and 2012 (Dube et al., 2019), leaving a 

significant gap of approximately 1 million tonnes annually, which had to be imported 

(Dube et al., 2019). For the past two decades, South Africa’s wheat area has 

deteriorated at around 500,000 hectares, about a million hectares in the 20-year 

timeline statistics (Figure 2.4).   

 

 
Figure 2.5: Statistical trend of wheat area planted production and consumption in 

South Africa from 1996 – 2020. Source: USDA Foreign Agriculture Service Report 

(2020).  

 

Due to extreme drought events, wheat production decreased to 1.5 million tons in 

2019, resulting in an almost 50 % loss of production. According to the Southern African 

Grain Laboratory (SAGL, 2020), Western Cape produced 650 000 tons of wheat in 

2020, contributing 42.3 % of the total crop, compared to the 47.7 % of the previous 

season. The Free State’s wheat production of 326 000 tons declined by 15 % year on 

year is still considered the second-highest provincial production figure (SAGL, 2020). 

The irrigation areas of the Northern Cape, the third-largest wheat-producing area at 

262 500 tons, was 11 % less than the 2018/2019 season. Additionally, the wheat 

residue produced in Limpopo was 120 000 tons, representing a decrease of 6 % 
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compared to the 2018/19 season, while North West production decreased by 7 % 

(SAGL, 2020). The production upturn harvested in July 2020 resulted from favourable 

weather conditions and an above-average planted area (FAO, 2020). Overall, the 

2020 wheat cereal output was forecasted at 18.6 million tons, nearly 30 % higher than 

the five-year average and the second-largest output on record (FAO, 2020).  

According to Nhemachena et al. (2017), there is a wheat production crisis in RSA, as 

the production fails to meet the demand. The country currently produces 1.8 million 

tons of wheat grain annually and must meet over 40 % of the domestic demand 

through imports. Nalley et al. (2018) reported that to prevent the future food security 

crisis over potential wheat shortages, a strategic goal for agriculture is to at least 

double wheat production by 2030. Over the years, South Africa’s primary wheat 

breeding goals have been to improve pest resistance, grain yield, and grain quality. 

However, more research still has to be done to combat multiple environmental stress 

in wheat. Much progress has been made regarding grain quality improvement, aiming 

to increase crop production to sidestep the shortage of wheat and loss of employment 

in the cereal industry (Mondal et al., 2016).  

 

2.4 Okra (Abelmoschus esculentus L.)  

Okra (Abelmoschus esculentus L.) is a vegetable crop belonging to the Malvaceae 

family, native to Africa and extensively disseminated in tropical and subtropical 

worldwide (Gido et al., 2016; Muli et al., 2020; Kang et al., 2020). It is a pharmaceutical 

and nutritious plant that is known by a variety of regional names across the world, 

including lady's finger in England, gumbo in the United States, guino-gombo in 

Spanish, guibeiro in Portuguese, and bhindi in India (Benchasri, 2012; Islam, 2019; 

Daliu et al., 2020). The crop is widely considered a vegetable in Africa because its 

pods, seeds, leaves, shoots, and the outer cover of the flowers are all consumed as 

cooked greens (Khan et al., 2017; Ojiako et al., 2018). Okra fruits are also consumed 

while still immature to be edible (Radovich, 2018). The green fruits can be consumed 

in salads, soups, and stews, fresh or dried and fried or boiled (Ndunguru and Rajabu, 

2004; Khan et al., 2019). Matured okra seeds can be dried and used to make 

vegetable curds or roasted and powdered to serve as a coffee preservative or 

replacement (Moekchantuk et al., 2004).  
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Okra plants are tall shrubby annual crops with scratchy hairs, cultivated during warm 

seasons, typically reaching 2 m in height. However, some African varieties may grow 

up to 5 m tall, with a base stem of 10 cm in diameter (Nimona, 2019). The leaves are 

polymorphous, with the bottom being roundish-angled and the upper being palmately 

3-5-lobed; and leafstalks of up to 15 cm long (Moosavi et al., 2018). The flowers are 

large, axillary, golden, and have red centres (Islam, 2019). The flowers also have 

seeds and mucilage and a gently spherical capsule with six chambers and a fibrous 

texture (Ahiakpa et al., 2014).  

The seed of an okra plant is tiny, round, smooth in texture, and green to dark green 

(Fig 2.6a). The seed generally germinates from day 2 to day 12 (Jagdish, 2019), 

whereby the visibility of the radical is evidence that the germination process is taking 

place (Fig 2.6b). Therefore, the coleoptile continues growing into roots, and small 

green leaves become noticeable (Fig 2.6c and d). More green leaves appear with a 

more vital stem and roots (Fig 2e and f). Okra then starts producing flowers from week 

12 or 16 weeks (Rockets gardens, 2019).   

  
Figure 2.6: A schematic representation of the germination process of an okra seed. 

Each alphabet (a-f) represents the germination process until completion. 
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A warm-season annual crop such as okra grows well in a wide range of soils and 

climates, can withstand a wide range of rainfall, and is suited to the lowland wet tropics 

(National Research Council, 2006). Germination requires a minimum soil temperature 

of 16 °C, with an average temperature of 20-30 °C ideal for growth, flowering, and pod 

development (Akande et al., 2010; El-Kader et al., 2010). Although okra cultivars 

respond swiftly to persistently high temperatures, they thrive in well-drained, rich soils 

with sufficient organic matter and a surplus of essential components (Moosavi et al., 

2018). In addition, okra seeds favour well-drained soils and can survive a pH range 

from 5.5 to 8 (El-Kader et al., 2010; Jain et al., 2012).  

According to Gemede et al. (2015), okra is a multifunctional crop due to its numerous 

pods applications, fresh leaves, buds, flowers, stems, and seeds. As a result, it is 

regarded as a high-value crop since it contains nutrients essential to human health 

(Asare et al., 2016; Kang et al., 2020). Previous studies have revealed various health 

benefits of okra, including anti-adhesive, antioxidant, anti-hyperglycemic, 

immunomodulatory, and anti-fatigue qualities (Hu et al., 2014; Xia et al., 2015; Chen 

et al., 2016; Zhu et al., 2020). In medicine, for example, okra has been utilised as a 

transfusion replacement or vascular resistance expansion (Kumar al et., 2009). A 

study in China reported using ethanol extracts from okra leaves in neutralizing 

oxidative stress, relieving renal tubular-interstitial disorders, minimizing proteinuria, 

and improving kidney function (Kumar et al., 2010). Furthermore, the antioxidant found 

in okra aids in the proper functioning of the digestive tract by promoting healthy 

mucous membranes (Georgiadisa et al., 2011).  

A recent study emphasises the possible application of okra antidiabetic characteristics 

and nutraceutical future (Durazzo et al., 2019). The okra plant has scientifically 

established that positive health qualities can be utilised to prevent and even cure 

various pathologic diseases (Santini et al., 2017; Santini and Novellino; 2018); and 

progressive metabolic diseases such as diabetes mellitus (Daliu et al., 2020). 

Furthermore, the future use of okra extracts in food or food supplements might propose 

the development of a sustainable and new nutraceutical food that takes advantage of 

the health benefits of okra (Santini et al., 2013). The excessive natural random coil 

polysaccharide (mucilage) in okra comprises galactose, rhamnose, and galacturonic 

acid (Zaharuddin et al., 2014; Zhang et al., 2018). The usage of mucilage benefits 
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synthetic polymers due to the reduced procurement cost and biodegradability (Araújo 

et al., 2020). It is also utilized in the food and pharmaceutical sectors as a thickening, 

emulsion stabiliser, suspending agent, and binder (Archana et al., 2013; Raj et al., 

2020).  

Okra has excellent potential as an industrial/commercial crop. Regardless, okra is only 

recognised as a garden crop in rural RSA, and its production market is very restricted. 

In contrast, the crop is seldom produced in some parts of RSA due to poor yielding 

indigenous landraces and insufficient agronomic management methods (Agricultural 

Research Council, 2014). The worldwide production statistics of okra in 2013 was 

expected to be 8.947 million tons in total, grown on an area of 1.126 million hectares 

(Babalola et al., 2020), predominantly high production coming from Asia and Africa. 

According to 2021 statistics predicted by Atlasbig, India remains the leading okra 

producing country standing on 6,126,000 tons of production yearly, followed by 

Nigeria, making it the largest okra producer in Africa, producing 2,033,129 tons 

annually. In addition, African countries such as Sudan produced 304,712 tons, Mali: 

241,033 tons, Cote d' Ivoire: 112,966 tons, and Ghana produced 66,360 tons of okra 

annually (Atlasbig, 2021). To this day, these countries grow okra primarily for human 

consumption.   

Oka might be a traditional crop with little agronomic operational needs but has 

essential qualities such as proteins, carbohydrates, and vitamins that play a 

substantial role in developing countries’ food security (Sathish and Eswar, 2013; 

Agricultural Research Council, 2014; Sami et al., 2019). In a study conducted by 

Nurmas et al. (2021), the authors reported its importance as protective food for 

maintaining health and preventing illness. Although okra is underutilised, it can 

contribute to the world's rapidly growing population with food, nutrition, and welfare 

(Gerrano, 2018). It also contributes significantly to revenue generation and poverty 

alleviation (Gerrano, 2018).   

 

2.5 Factors affecting the production of common bean, maize, wheat and okra  
Although the cultivation and utilization of common bean, maize, wheat and okra in RSA 

have been successful for decades, their products have been hindered by 

environmental stresses such as the mine residues. Mining is an important commodity 
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in SA; however, its residues are harmful to the environment. Residues from the mine 

tailings dam, such as acid mine drainage (AMD) water, are among those that release 

heavy metals onto the environment, contaminating soil and water. AMD results from 

the exposure of sulfide minerals to oxygen, water, and microorganisms (Rodríguez-

Galán et al., 2019). AMD occurs when ‘'fool’s gold’’ (FeS2) or iron pyrite found in mined 

rock oxidizes. When pyrite (FeS2) is exposed to oxygen and water, it becomes 

oxidized, resulting in hydrogen ion release-acidity, sulfate ions, and soluble metal 

cations, creating a very high run-off in sulphates (McCarthy, 2010). Pyrite (FeS2) is 

responsible for starting acid generation and metals dissolution in coal and complex 

rock sites. This oxidation process occurs in uninterrupted rocks but at a slow rate, and 

the water can shield the acid generated (Akcil and Koldas, 2006; Fig 2.7).   

  
Figure 2.7: AMD generation and related contamination pathways. Source: Naidu et 

al., 2019. 

Mining activities hasten the formation of AMD, producing severe environmental 

consequences on soil and water (Ríos et al., 2008; Colvin and Burns; 2011; Kefeni et 

al., 2017). AMD may alter soil pH, diminish soil organic carbon, and influence the soil 

microbial population, all of which can harm nutrient intake and plant development (Fig 

2.8; Quadros et al., 2016). Furthermore, due to its low pH, it enhances the solubility 

and toxicity of different metals such as cadmium (Cd), copper (Cu), lead (Pb), and 

nickel (Ni) which compete with critical soil nutrients (Dong et al., 2018).   
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Figure 2.8: Example of the AMD released from an old metalliferous mine (A) and an 

old colliery mine (B), South Africa. Source: Akcil and Koldas, 2006.  

High quantities of heavy metals present in AMD are hazardous and cause plant seed 

germination to be delayed (Wang et al., 2011; Sethy and Ghosh 2013). It lowers the 

soil pH, which causes a lack of critical nutrients to plants (Dean et al., 2019). Therefore, 

the breakdown of organic matter decreases due to insufficient microbial activity 

(Simate and Ndlovu, 2014). According to Rodríguez-Galán et al. (2019), when the pH 

of the soil is low, nitrogen (N), phosphorus (P) and potassium (K) are restrained in the 

soil, and the calcium and magnesium content is limited; therefore, seeds fail to 

germinate due to a lack of required nutrients for survival. Furthermore, heavy metal 

enrichment in organisms via the food chain might threaten people and ecosystems in 

the long run (Zhang et al., 2015; Lei et al., 2016). Consuming heavy metal 

contaminated crops can drastically reduce iron stores in the body and other 

malnutrition-related deficits (Iyengar and Nair, 2000).   

 

2.6 Priming seeds for crop production  

Seeds play a major role in cultivating and producing crops of economic importance. 

Hence, priming seeds with plant growth-promoting bacteria and phytohormones are 

important for crop production, especially in RSA, where mining activities contaminate 

the environment. Plant growth-promoting bacteria such as B. subtilis and GA3 are 

among priming agents that have been reported to aid in combating environmental 

stress and enhancing seed germination in plants (Hu et al., 2019; Jabborova et al., 

2020; Wang et al., 2020).   

A   B   



23  
  

2.6.1 Bacillus subtilis on seed germination   

Seed germination is dependent on the embryo's viability and the breaking of dormancy 

induced by environmental conditions (Cabra Cendales et al., 2017). The inoculation of 

B. subtilis has been an essential seed stimulus in controlled and field tests to combat 

the influence of unfavourable environmental conditions (de Andrade et al., 2020). 

Beneficial microorganisms colonize the plant rhizosphere and induce stress tolerance 

by producing exopolysaccharides, plant hormones, 1-aminocyclopropane-

1carboxylate deaminase, organic substances, osmotic adjustment accumulation, 

phytonutrients, increased or decreased stress expression levels, and morphological 

changes in the roots (Vurukonda et al., 2016).  

Luna-Martnez et al. (2013) showed that inoculating tomato seeds with Bacillus strains 

boosted germination percentages by 5 % to 6 %. Similarly, Lazzaretti and Melo (2005) 

also reported the effect of inoculating beans with B. subtilis as a potential strategy for 

boosting root nodulation and promoting bean plant growth. Thus, the germination and 

growth of different plants can be enhanced by priming with B. subtilis. In addition, the 

production of plant hormones such as salicylic acid (SA), gibberellins (GA), cytokinins 

(CKs) and IAA secreted by B. subtilis in response to unfavourable conditions can 

stimulate seed germination and enhance plant growth (Table 2.3; Singh et al., 2008; 

Chowdappa et al., 2013; Pereira et al. 2020).   
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Table 2.3: Plant growth stimulators secreted by B. subtilis to enhance seed germination 

and plant growth.    
Source  Crop  Treated Respond  References  
N2-fixation   

  

Maize  Increased seed germination, root 
and shoot system  

Szilagyi-Zecchin et al., 
(2014)  

P-solubilization  Cucumber   

  

Increased germination rate and 
the total accumulation of P 
uptake.  

Garcia-Lopez  and  
Delgado (2016)  

 IAA, GA   

  

Tomato  Enhanced seed germination, 
seedling growth, vigour index 
and leaf area increase the level 
of plant hormones.  

Chowdappa  et 
 al. (2013)  

CKs   

  

Lettuce  Increased plant shoots and root 
weight.  

Arkhipova et al. (2005)  

IAA, CKs, GAs,  
ABA   

Soybean  Enhance the growth and 
increase proline contents  

Xu et al. (2014)  

  
 

2.6.2 Plant hormones on seed germination  

Plant hormones belong to the class of plant growth regulators that are natural or 

synthetic and can regulate plant development (Sajjad et al., 2017). They contain 

molecules produced in low concentrations but can control various cellular activities in 

plants (Voß et al., 2014). The molecules work as chemical messengers to interconnect 

cellular activities in plants (Voß et al., 2014). Plant growth, reproduction, and survival 

mechanisms are regulated by cross-communication and signal-transduction pathways 

controlled by plant these hormones (Verhage et al., 2010; De Vleesschauwer et al., 

2013 Kazan, 2015). Significantly, plant hormones play essential roles in seed 

germination and resistance against biotic and abiotic stress. (Colebrook et al., 2014; 

Xu et al., 2016; Bücker-Neto et al., 2017).  

Although plant response to stresses depends on various factors, phytohormones are 

considered the most critical endogenous substances for modulating physiological and 

molecular responses, a crucial requirement for the plant's survival (Fahad et al., 2015). 

Various plant hormones, including cytokinins, abscisic acid and gibberellins, among 

others, have shown positive plant-protective functions by playing an influential role 

during several plant physiological processes and developmental stages, including 
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seed dormancy, stomatal opening, embryo morphogenesis, and synthesis of storage 

proteins and lipids (Table 2.4). Therefore, phytohormones have proven to enhance 

plants' growth and yield under diverse environmental conditions.   

 

Table 2.4: Plant hormones and their functions on the development and growth of the 

plant.  

  
Brassinosteroids  (BRs) Control of division; growth by elongation; 

differentiation of the vascular system; inhibiting root 
growth; fertility; increase the growth rate  

Hussain et al., 2020; Nolan et 
al., 2020.  

Cytokinin  Control of cell division; bud development; 
development of the leaf blade; senescence 
retardation; promote shoot initiation; increase the 
growth rate; control of stomata apparatus function; 
growth inhibition; seed dormancy; inhibits shoot 
growth; induces storage protein synthesis in the 
seed.  

Masood et al., 2012; 
Nishiyama et al., 2011.  
Kieber et al., 2018.   

Abscisic acid  Control of stomata apparatus function; growth 
inhibition; seed dormancy; inhibits shoot growth; 
induces storage protein synthesis in the seed.  

Nishiyama et al., 2011; 
Alazem, 2017; Chen et al., 
2020.   

Auxin  Induction of elongation growth and stem growth; 
stimulates cell division; differentiation of phloem 
elements; apical dominance; tropisms; initiation of 
root formation.  

Piotrowska-Niczyporuk et al., 
2014; Camacho-Cristóbal et 
al., 2015;   

Ethylene  Senescence induction; initiation of defensive 
responses; decrease elongation; leaf and fruit 
abscission.  

M cmanus, 2012; Chang et 
al., 2013; Yang et al., 2019; 
Binder et al., 2020.  

Gibberellins  Stem elongation; initiation of seed germination; cell 
division and elongation; enzyme production during 
germination.  

Gupta  and  Chakrabarty,  
2013; Dilip et al., 2017   

 
  

2.6.2.1 Gibberellic acid (GA3)  

Plants respond to exogenous application of phytohormones, and among the plant 

hormones, GA3 is a vital growth hormone in plants (Rafique et al., 2021). GA3 is the 

most used growth regulator for dormancy-breaking, increasing germination efficiency 

within a brief treatment period (Kwon, 2020). GA3 have been reported to be the most 

vigorous to weaken the inhibitory effects of salinity and drought for germination to 

occur through increasing nutrient uptake, dry weight, and seedlings growth (Tsegay & 

Andargie, 2018; Sabagh et al., 2021). Literature has also shown that the growth of 

Function in Plants   References   Hormones 
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wheat, rice, cotton has been significantly enhanced in the presence of GA3 under 

stressful conditions such as salinity (Iqbal & Ashraf, 2012, Colebrook et al., 2014; Chen 

et al., 2020).    

Gibberellins play essential roles in many plants growth and development processes, 

including seed germination, stem elongation, leaf expansion, flower and fruit 

development, and floral transition (Baliyan et al., 2021). They can significantly improve 

seed germination by activating embryo growth, mobilizing reserves, and weakening 

the endosperm layer (Pallaoro et al., 2016). For example, Sinha and Kumar (2021) 

reported the effects of GA3 as a growth modulator that was proficient in breaking 

dormancy and improving germination percentage. In addition, GA3 can promote seed 

germination by activating hydrolases in the seed, stimulating starch's hydrolysis to 

glucose (Richards et al., 2001). For instance, the α-amylase secretion produced by 

the GA3 induced the formation of plant embryos in the endosperm and increased the 

germination rate in a study by Kwon et al. (2020).   

Despite various other physio-biochemical processes, GA3 has also been shown to 

improve photosynthetic activity, plant development, and plants' source-sink 

relationship (Kaya et al., 2020). In a previous study, GA3 has been reported to be 

effective in mitigating different stresses such as cadmium contamination (Masood et 

al., 2016), salt stress (Ghodrat and Rousta, 2012; Chauhan et al., 2019), and chilling 

stress (Hu et al., 2018). Furthermore, GA3 supports the development of plant 

adaptation and resistance to various biotic and abiotic stresses and protects the plant 

against the toxicity of heavy metals (Maggio et al., 2010).  



27  
  

CHAPTER 3 

GENERAL MATERIALS AND METHODS  

  

3.1 Seed material   
Seeds of common bean (Lazy housewife), maize (Zama star), and okra (Clemson 

Spineless) produced by Starke Ayres (Johannesburg, RSA); and wheat (Morocco), an 

international check were selected for the experiment. The seeds were carefully hand-

picked from the packet to avoid malformed seeds throughout the experiment, and 

surface sterilized by repeated dipping in 3.5 % commercial Sodium hypochlorite 

solution (NaClO) and 70 % ethanol. Seeds were rinsed thoroughly three times with 

double-distilled water to eliminate treated chemical residues prior to the start of the 

experiment. The seed was imbibed for 24hrs in distilled water to break dormancy. The 

research was carried out in a laboratory setting at the University of South Africa 

(UNISA, Florida Science Campus). Each crop germination trial was tested at a 

different period: maize (04 April 2021), wheat (15 April 2021), okra (02 April 2021).and 

common bean (24 May 2021). 

 
3.2 Physicochemical parameters of acid mine water samples   
Acid mine water used in the experiment was collected from the Sibanye Gold Mine 

Randfontein, located 34 kilometres west of Johannesburg in the Gauteng Province of 

South Africa. Physico-chemical properties of the water, namely: pH, temperature, 

electrical conductivity, total dissolved solute, nitrate and dissolved oxygen, were 

measured on-site using the H19828 multi-parameter ion-specific meter (Hanna 

Instruments (Pty) Ltd, Bedfordview, South Africa). Further analysis of the water was 

done in the laboratory and the results are presented in Table 1. The measured 

parameters were pH: 4.2, Electrical conductivity: 3351.33 μS/m, Total dissolved 

solute: 4874.00 mg/L, Nitrate: 3.17 mg/L, which were all were beyond the permitted 

limit set by the RSA and the World Health Organization (WHO). Meanwhile, dissolved 

oxygen: 20.09 of the sampled AMD water was within the limit. Levels of heavy metals 

such as sulphate oxide, Cadmium, Copper, Nickel, and Zinc were also beyond the 
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limits established by the South African National Standards for irrigation, as well as the 

WHO water quality recommendations data for agricultural use (Table 1).  

 

Table 3.1: Summary of the mean physicochemical parameters of sampled acid mine 

drainage water, tap water heavy metal content of the water samples.   

Physicochemical 
parameters  

Sampled acid 
mine drainage 
water   

Tap water  South African 
Standard   

WHO Standard 

pH  4.2  8.4  5.0-9.7  6.5-8.5  
Temperature (˚C)  29  21.24  -  -  
EC (μS/m)  3351.33  68.98  250  300  
TDS (mg/L)  4874.00  145.35  -  80  
NO3 (mg/L) 3.17  7.54  -  -  
DO  20.09  8.54  95  150  
Metals     Levels of heavy metals (mg/L)   

SO4  18515.33  244.55  -  -  
Cd (mg/L)  0.18  0.01  0.01-0.05  0.01  
Cr (mg/L)  5.87  0.05  0.10-1.0  0.05  
Cu (mg/L)  0.95  0.12  0.1-1.0  0.005  
Ni (mg/L)  10.42  0.04  0.20-2.0  0.02  
Zn (mg/L)  55.47  0.92  1.0-5.0  5.00  

*EC- electrical conductivity, TDS- total dissolved solute, NO3 -  Nitrate,  DO- Dissolved oxygen  
  

3.3 Preparation of B. subtilis and inoculation method  
B. subtilis BD234 was acquired from the Agricultural Research Council - Plant 

Protection Research Institute at Roodeplaat. The B. subtilis strain BD234 previously 

cultivated on Luria-Bertani (LB) liquid medium was sub-cultured aseptically in the 

microbiological safety cabinet, grown overnight on LB medium at 37 °C. The culture 

was harvested by centrifugation and a 1x108 CFU/mL solution of bacteria was 

prepared in distilled water.  

  

3.4 Preparation of Gibberellic Acid Solution (GA3)   
Bio-Reagent with ≥90 % gibberellin A3 basis (total gibberellins) was prepared afresh 

before the soaking phase. The powder of GA3 (0.069 g) was dissolved in 1000 ml of 
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double distilled water to prepare the 0.2 mM of GA3 pre-treatment solution. The pre-

treatment solution was stored in a cool environment and shaken well before use. 

 
3.5 Seed priming  
A priming technique by Safari et al. (2018) was used in this study, whereby seeds were 

soaked inside the germination stimulants (GA3 and B. subtilis). Based on the 

preliminary trials, 0.2 mM GA3 and B. subtilis solutions were used for priming, and 

different AMD solutions were used for irrigating seeds. The seeds were primed by 

soaking with 0.2 mM GA3 and B. subtilis BD234 solution for 6 hours at room 

temperature. Seeds were then treated with 0 %, 25 %, 50 %, 75 %, and 100 % AMD 

concentrations. Seeds were left to dry between sterilized filter papers. Control seeds 

(non-primed) were soaked in water for 6 hours, dried and then sown on moistened 

cotton wool plated in petri dishes. All the experiments were replicated three times.  

 
3.6 Experimental Design   
A complete randomized design (CRD) was used to determine the effects of seed 

priming with GA3 and B. subtilis BD234 on germination indices of the common bean, 

maize, wheat and okra exposed to AMD water stress at different temperature regimes. 

The experiment was in a factorial design with three factors: AMD water at different 

concentrations, GA3 and B. subtilis priming agents with 2 levels (non-primed and 

primed seeds), and different temperature regimes (25 °C and 35 °C).  Petri dishes 

(90x15 mm) were sterilized with 70 % ethanol for 5 minutes, washed with distilled 

water, and labelled for various treatments.  Forty-five Petri dishes per temperature 

regime were prepared for each crop, including replicates. Sterilised cotton wool was 

then placed in each petri dish, and 5ml distilled water was inoculated to moisten the 

cotton wool, which served as the standard growth media. Twenty seeds of each crop 

were sown in each petri dish and treated with different concentrations of AMD solution 

(0 %, 25 %, 50 %, 75 %, and 100 %) instantly after sowing. Seeds were incubated in 

a controlled environment at 25 °C and 35 °C, respectively, in a Nüve growth chamber 

test cabinet (Model: TK120, Turkey). Seed germination parameters were recorded 

every day for 10 days. A seed was germinated when the radicle emerged by about 2 

mm in length (Ahmad et al., 2012). Regardless of the possible cumulative effect of 
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AMD water, each petri dish was supplied with equal volumes (10 ml) of the different 

AMD concentrations (0 %, 25 %, 50 %, 75 %, and 100 %) per day for both primed and 

nonprimed experiment. Samples were monitored daily after the initiation of the 

experiment at a constant temperature for any unusual growth seedling until the 

maximum seed germination period. Physiological parameters such as seed 

germination percentage and mean germination time were calculated. All seedlings' 

shoot and root length were measured using a transparent ruler.   

 

3.7 Measurements of germination indices   

3.7.1 Calculations of germination parameters  
Germination percentage (GP), which measures a seed population's vitality, was 

determined using the formula described by Czabator's index (1962), whilst 

germination speed (GS), which measures the time course of seed germination, was 

calculated as described by Damalas et al. (2019). The emergence rate index (ERI), 

defined as the time taken by the seeds to emerge into a seedling, was calculated using 

a formula described by Fakorede and Agbana (1983).   

The parameters were calculated as follows:   
 
The parameters were calculated as follows:  

(i) 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝐹𝐹𝑔𝑔𝐹𝐹 𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝐹𝐹𝑔𝑔𝐹𝐹𝑔𝑔𝑔𝑔 (%) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑠𝑠 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 𝑔𝑔𝑛𝑛 𝑇𝑇 𝑛𝑛𝑛𝑛𝑟𝑟𝑇𝑇𝑔𝑔𝑟𝑟𝑇𝑇𝑇𝑇𝑛𝑛

𝑥𝑥 100      

 

(ii) 𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝐹𝐹𝑔𝑔𝐹𝐹 𝑠𝑠𝑝𝑝𝑔𝑔𝑔𝑔𝑠𝑠 = ∑𝑛𝑛𝑇𝑇
∑𝑛𝑛 

                                                                           

 

 also called rate of Maguire, where n = number of normal germinated seeds at a time  

 

(iii) 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐹𝐹𝑝𝑝𝑔𝑔 𝑔𝑔𝐹𝐹𝑔𝑔𝑔𝑔 𝐹𝐹𝐹𝐹𝑠𝑠𝑔𝑔𝑥𝑥 = 𝐺𝐺1
1

+ 𝐺𝐺2
2

+ ⋯𝐺𝐺𝑔𝑔
𝑔𝑔
           

 

: G1 is the germination percentage on day 1, G2 is the germination parentage on day  

2, until infinity.  
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3.7.2 Growth response analysis of germination  
Germination trials were retained and monitored in the growth chamber for three days 

to obtain data on seedling growth. Normal seedlings were selected randomly in each 

treatment from each replicate whereby the shoot length was measured from the base 

of the primary leaf to the base of the hypocotyls, and the root length was measured 

from the tip of the primary root to the base of the hypocotyls as described by Amarnath 

et al. (2015). Vigour index was calculated using a formula by Abdul-Baki and Anderson  

(1973) to assess whether GA3 and B. subtilis induce a sustained vigour response on 

common bean, maize, wheat and okra and seedlings under AMD.  The formula for vigour 

index is as follows:  

 iv.   𝑉𝑉𝐹𝐹𝑔𝑔𝑔𝑔𝑉𝑉𝑔𝑔 𝐼𝐼𝐹𝐹𝑠𝑠𝑔𝑔𝑥𝑥 = 𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝐹𝐹𝑔𝑔𝐹𝐹(%) 𝑥𝑥 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔 𝐹𝐹𝑔𝑔𝐹𝐹𝑔𝑔𝑔𝑔ℎ(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑠𝑠ℎ𝑔𝑔𝑔𝑔𝑔𝑔 )                                

  

3.8 Data Analysis  
Analysis of variance (ANOVA) was performed using STATISTICA software version 10 

(StatSoft Inc., Tulsa, OK, USA). The Duncan's Multiple Range Test (DMRT) was used 

to differentiate and compare the mean values for statistical significance levels 

(p<0.05). 
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CHAPTER 4 
  

EFFECTS OF GIBBERELLIC ACID AND BACILLUS SUBTILIS ON SEED  
GERMINATION OF MAIZE AND WHEAT EXPOSED TO ACID MINE DRAINAGE 

WATER AND DIFFERENT TEMPERATURE REGIMES 
 

Crop exposure to heavy metals from acid mine drainage (AMD) water can hinder 

germination resulting in poor uniformity, poor stand establishment and eventually poor crop 

production. Herein, the effects of seed priming with gibberellic acid (GA3) and Bacillus 

subtilis on maize and wheat seed exposed to AMD water at different temperatures were 

examined. A completely randomized design experiment was conducted to compare 

germination indices between primed and non-primed seeds. The results showed that seed 

germination parameters (final germination percentage; germination speed; emergence 

rate index and vigour index) were reduced with higher AMD concentrations (50%-100%) 

compared with the lower AMD concentrations (0%-25%) for both maize and wheat. In 

contrast, the germination indices (final germination percentage; germination speed; 

emergence rate index, vigour index) were improved by applying GA3 and B. subtilis, while 

increases in AMD concentration, had negative effects on root and shoot length. The results 

also showed that temperature influences germination speed and percentage of both crops. 

Overall, the results suggest that GA3 and B. subtilis priming agents can be a practical 

approach to improve seed germination and seedling growth in maize and wheat in AMD 

water contaminated environments.  

 

4.1 Introduction   
Acid mine drainage (AMD) caused by mining is a significant contamination of crops in 

areas close to the mines.  Some of its effects include impairment of germination which 

directly results in reduced stand establishment and poor crop production (Daraz et al., 

2021). Although there are various chemical treatments to restore AMD water, none of 

them are entirely effective (Gouda et al., 2018). Some farming communities 

experience seepage of AMD water from mines and therefore crops become disposed 

to this abominable hazard. Moreover, water scarcity, forces many farmers in 

underdeveloped nations to utilize wastewater such as AMD water (Rehman et al., 
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2020). The significant features of AMD water are low pH, excessive salinity, high 

quantities of heavy metals, and sulphate, all of which are toxic to plants (Kefeni et al., 

2017). The drainage water's acidity and quantity of hazardous heavy metals surpass 

water supply regulations, rendering it unsuitable for human consumption (Nevhulaudzi 

et al., 2020) and agricultural purposes such as crop irrigation (Carlson et al., 2002).  

In plants, excessive exposure to heavy metals disrupts metabolism by upsetting 

oxidation reduction processes (Rehman et al., 2020). The toxicity of heavy metals in 

soil poses a threat to the long-term sustainability of human health. Frequently, the root 

absorption systems of the cereal crop cultivars can accumulate and transfer more than 

40 % of heavy metals throughout the plant (Retamal-Salgado et al., 2017). Among 

other crops, maize (Zea mays) and wheat (Triticum aestivum) cultivation are key 

sources of revenue in agriculture’s economy (Godfray et al., 2010), which are affected 

by AMD contamination, especially in RSA. Hence, there is a need to develop methods 

for providing enough crop production while protecting natural resources and the 

environment (Brilli et al., 2019). The alternative method would be more appropriate 

when it is straightforward, cost-effective, and simple for farmers to implement without 

having issues while also successfully demonstrating tolerance towards environmental 

stress (Jisha et al., 2013). The use of phytohormones and plant growth-promoting 

rhizobacteria (PGPR) in seed priming could be a comprehensive solution.  

Priming seed has emerged as a potential method for conventional stress 

management, allowing the plant to limit pathogenic and pesticide damage without 

using chemicals (Boukari et al., 2019). Imbibing seeds in various solutions for a 

specific amount of time under controlled conditions, then drying them back to their 

average moisture content, prevents radicles from forming prior to seed planting (Pawar 

and Laware, 2018). During seed imbibition, partial germination occurs, triggering 

numerous physiological and biochemical processes such as cell repair and protein 

synthesis in seeds, which is stopped before plumule and radical development (Sarkar 

et al., 2018; Singh et al., 2020). This helps to guarantee that seeds germinate and 

ensure no delay in breaking the seeds dormancy (Conrath et al., 2015; Mauch-Mani 

et al., 2017).  
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Standard models utilized in this research include seeds hormonal priming (treating 

seeds with plant growth hormones) and bio-priming (treatment of seeds with biological 

-stimulants). Because of their proven advantages on stressed crops, GA3 and B. 

subtilis were chosen for this study. Taken together a systemic stress factor inducer, 

such as GA3 is well-known in plant-hormones studies (Werle et al., 2020), whereas B. 

subtilis strains have remarkable plant growth-promoting properties (Ruzzi et al., 2015) 

and their use as crop inoculants is well-established (Chandra et al., 2018; Bulgari et 

al., 2019).  

Previous research has primarily examined the positive benefits of seed priming under 

abiotic stress, such as drought (Khan et al., 2020), salt (Zhu et al., 2019), low osmatic 

(Ghosh et al., 2019), fire (Rimpika et al., 2017). So far, no study has investigated the 

effects of seed priming on maize and wheat seed germination under AMD water. Thus, 

the overall aim of this study was to assess the effects of GA3 and B. subtilis BD234 on 

seed germination of maize and wheat under different levels of AMD conditions at 

different temperatures. A theoretical framework was essential for understanding maize 

and wheat resistance development mechanisms under AMD concentrations and the 

impact of GA3 and B. subtilis BD234.   

 
4.2 Results  
4.2.1 Evaluation of maize and wheat seeds post priming treatment  
Non-primed (controls) and primed seeds of maize and wheat were sown and watered 

with different concentrations of AMD solutions to assess the response in laboratory 

settings. The findings of the analysis were obtained by measuring various germination 

parameters. Analysis of variance (ANOVA; Table 4.1) showed that treatments of 

maize and wheat respectively, with both the stimulants GA3 and B. subtilis BD234 

under acid mine conditions, at different temperatures, were significant at p<0.05 for all 

the measured parameters. Temperature, stimulants, and AMD concentrations 

substantially affected all maize and wheat seed indices (final germination percentage, 

germination speed, emergence rate index, shoot and root length and vigour index 

(Table 4.1). Furthermore, the effects of interactions between experimental factors on 

these variables were significant. Table 4.1 further reveals that the effects of 
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temperature on various wheat germination indices were not statistically significant at 

p<0.05. 
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Table 4.1: Output of the factorial ANOVA analysis of the effect of temperature, stimulants, and acid mine drainage on germination 
indices of maize and wheat seed.  

Sources of variation 
Maize   

T  1  13225.3*  1170.53  13.53*  460.74  715.45*  102.60  111.77*  66.76  185.47*  63.59  370216*  12.08  
S  2  1585.8*  140.35  1.12*  38.44  209.21*  30.00  11.63*  6.95  11.56*  3.97  286637*  9.35  
AMD con.  4  1687.3*  149.33  1.41*  48.28  163.55*  23.45  28.45*  17.00  42.27*  14.49  1380019*  45.02  
T x S  2  806.8*  71.40  0.29*  10.08  174.26*  24.99  6.19*  3.70  19.80*  6.79  492115*  16.05  
T X AMD conc.  4  61.9*  5.48  0.17*  5.92  14.71ns  2.11  6.71*  4.01  5.26ns  1.80  75792ns  2.47  
S X AMD conc.  8  124.2*  11.00  0.14*  5.06  18.62*  2.67  7.86*  4.70  7.40*  2.54  171232*  5.59  
Temp x S X AMD  8  187.0*  16.55  0.10*  3.72  25.17*  3.61  4.53*  2.71  10.96*  3.76  122085*  3.98  
Error   60  11.3   0.02   6.97   1.67   2.91   30656   

Wheat   
T  1  100.3 ns  2.188  0.0819 ns  2.13  8.40 ns  2.55  229.76*  154.57  22.201*  35.982  727201*  57.22  
S  2  460.3*  10.04  0.3757*  9.80  24.39*  7.41  4.52ns  3.04  13.450*  21.799  351741*  27.67  
AMD concentrations  4  918.5*  20.03  0.6942*  18.11  28.63*  8.70  13.49*  9.07  7.066*  11.453  377183*  29.68  
T x S  2  1048.6*  22.87  0.8560*  22.33  55.26*  16.79  5.48*  3.69  0.030 ns  0.049  119965*  9.44  
T X AMD  4  80.1ns  1.74  0.0484ns  1.26  2.10 ns  0.63  8.67*  5.83  5.210*  8.444  128702*  10.12  
S X AMD   8  102.6*  2.23  0.0793ns  2.06  4.25 ns  1.29  2.07 ns  1.39  1.756*  2.847  47233*  3.71  
Temp x S X AMD  8  163.9*  3.57  0.1270*  3.31  5.32 ns  1.61  3.92*  2.64  0.803 ns  1.302  26685*  2.10  
Error   60  45.8    0.0383    3.29   1.48    0.617   12708   

 Mean values significantly different at ∗ p<0.05 and ns = not significant 

 
 
  

    
df   FGP   F - stats   GS   F - stats   ERI   F - stats   SH   F - stats   RTL   F - stats     VI   F - stats   
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4.2.2 Effects of Gibberellic acid (GA3) on maize and wheat seeds exposed to 
acid mine water at different temperature regimes  
  

4.2.2.1 Final germination percentage (FGP)   
Increasing acid mine water concentrations in the germination media decreased the 

germination percentage of maize and wheat (Figure 4.1a, b and Figure 4.2a, b). Maize 

and wheat FGPs were generally higher at 25 °C than 35 °C under various AMD 

concentrations and GA3 priming (Figure 4.1a and Figure 4.2a). The FGP process was 

delayed under AMD concentrations, where the reduction was significantly more 

pronounced in the non-primed controls than in the GA3 primed seeds of maize and 

wheat (Figure 4.1a, b and Figure 4.2a, b). Furthermore, reduction of FGP was more 

evident at the highest concentrations of AMD (75 % and 100 %). The results showed 

that the FGP of maize seeds primed with GA3 was significantly increased by 20 % 

under 100 % AMD than the control at 25 °C (Figure 4.1a). However, along with 

increasing AMD concentrations, germination of the primed maize stayed essentially 

constant or slightly altered.  Meanwhile, at 35 °C, the FGP of GA3 primed maize seeds 

gradually increased by 77.6 % under 25 % AMD concentrations (Figure 4.1b). At the 

concentration of 25 % AMD, no significant difference was observed in FGP of wheat 

primed seeds and control (Figure 4.2a). GA3 primed wheat seeds exposed to 50 % 

AMD concentration at 25 °C showed a higher germination percentage of up to 90 % 

(Figure 4.2a). The same trend was observed at 35 °C with an improved FGP of 83.33 

% and 80 % under 0 % and 50 % (Figure 4.2b).
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Maize  

 

Figure 4.1: Interaction of non-primed (control) and primed (GA3) maize seeds on final 

germination percentage (FGP), germination speed (GS), emergence rate index (ERI) 

and vigour index (VI) exposed to different acid mine concentrations at two temperature 

regimes. Bars with a different letter(s) show significant differences (p< 0.05) between 

the samples based on Duncan's Multiple Range Test (DMRT).
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Wheat  

 
 

Figure 4.2: Interaction of non-primed (control) and primed (GA3) wheat seeds on final 

germination percentage (FGP), germination speed (GS), emergence rate index (ERI) and 

vigour index (VI) exposed to different acid mine concentrations at two temperature regimes. 

Bars with a different letter(s) show significant differences (p< 0.05) between the samples 

based on Duncan's Multiple Range Test (DMRT)
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4.2.2.2 Germination speed (GS)   

The germination speed of the non-primed controls and the GA3 primed maize (Figure 

4.1c, d) and wheat (Figure 4.2c, d) seeds were assessed to measure the maximum 

number of seeds germinated per day at different temperature regimes. Non-primed 

controls and GA3 primed maize germinated faster at 25 °C (Figure 4.1c) than the 

seeds treated at 35 °C (Figure 4.1d). Conversely, at both 25 °C and 35 °C, GA3 

primed maize seeds under 0-100 % AMD concentrations germinated slower than the 

nonprimed controls maize seeds (Figure 4.1c, d). The germination speed of wheat 

results recorded at 35 °C showed similar trends as those recorded on the maize crop 

experiments. However, at 25 °C, the germination rate of wheat primed seeds showed 

an interesting trend. The highest germination speed was observed on wheat seeds 

primed with GA3 under 50 % AMD concentrations at 25 °C by 2.57 % (Figure 4.2c). 

Furthermore, the germination speed of primed wheat seeds was improved by 0.95 

under 100 % AMD (Figure 4.1c).  

 
4.2.2.3 Emergence rate index (ERI)  
Gibberellic acid priming of maize and wheat seeds had effects on the ERI under 

different AMD concentrations and temperature regimes (Figure 4.1e, f and Figure 4.2 

e, f). The ERI of both maize and wheat germinated seeds was higher at 25 °C, 

compared to 35 °C (Figure 4.1e, f and Figure 4.2e, f). However, there was no 

significant difference between the control and the GA3 primed seeds on the ERI of 

maize under 0 % at 25 °C (Figure 4.1e). The highest ERI of 29.99 % on maize was 

enhanced by GA3 under 25 % at 25 °C (Figure 4.1e). Furthermore, there was a gradual 

increase in the ERI of maize seeds primed with GA3 under 100 % by 7.27 % compared 

to control at 25 °C (Figure 4.1e). Even though the GA3 improved the ERI of the maize 

at 35 °C, as the AMD concentrations increased, lower ERI was observed on non-

primed controls and primed seeds (Figure 4.1f). The study also revealed that GA3 

significantly improved the ERI of maize by 9.86 % and 7.64 %, respectively, compared 

to the non-primed controls when seeds were treated with 0 % and 25 % AMD 

concentrations at 35 °C (Figure 4.1f).   

On the other hand, the effects of priming wheat seeds with GA3 at 25 °C showed a 

higher ERI (Figure 4.2e). The results showed a significant increase of the ERI from 
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20.50 %, 20.48 %, 17.08 %, 16.77 % and 13.50 % on samples treated under 0 % - 

100 % At 35 °C, the high ERI was observed on wheat seeds primed with 25 % of GA3, 

compared to other AMD concentrations (Figure 4.2f). Overall, the results suggest that 

an increase in AMD concentration from 0-100 % decreased the ERI on both the control 

and primed wheat seeds.   

 
4.2.2.4 Vigour index (VI)  
VI results of this study showed the viability and ability of the maize and wheat seeds 

to emerge and survive under AMD contamination. Reductions in seedling 

performance were seen on all tested seedling performance traits (Figure 4.1g, h & 

Figure 4.2g, h). Results showed that the VI of maize and wheat was significantly 

affected by GA3, AMD concentration and temperature (Figure 4.1g, h & Figure 4.2g, 

h). The VI of maize and wheat significantly declined by increasing AMD 

concentrations. Priming with GA3 on maize seeds under 25 % AMD concentration 

significantly decreased the VI compared to non-primed control at 25 °C (Figure 4.1g). 

Respectively, under 0 % and 25 % AMD concentrations, the results showed no 

statistical difference between the primed and non-primed controls of wheat seeds at 

35 °C (Figure 4.1g). Although certain changes between AMD concentrations were not 

significant, this study demonstrates that GA3 might significantly maintain seed viability 

even in moderately severe AMD concentrations.    

 
4.2.2.5 Seedling growth  
In terms of seedling growth, a significant increase in shoot and root length of maize 

and wheat on primed seeds was observed. However, the exposure of germinated 

seeds to higher AMD concentration caused stress and decreased shoot and root 

length on non-primed controls of both crops. The GA3 primed shoot and root lengths 

of maize exposed to 100 % AMD concentration at 25 °C was 1.83 cm and 3.17 cm, 

which were longer than the non-primed controls (Table 4.2). Meanwhile, at 35 °C, the 

shoot length was 3.30 cm over the respective controls (Table 4.2). The root length of 

GA3 primed seeds on maize at 35 °C showed a slight decrease from 50 % to 100 % 

(Table 4.2). The results of shoot and root lengths of wheat resemble the maize's 

measured parameters. The shoot length of the wheat at 25 °C and 35 °C under 100 
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% AMD concentrations was 1.43 cm and 1.19 cm, respectively, which was higher 

than the nonprimed controls (Table 4.2). The root length of wheat was also slightly 

increased by GA3 priming under 100 % AMD concentrations compared to the control, 

which was 2.17 cm and 3.03 cm at 25 °C and 35 °C respectively, (Table 4.2).  
 
Table 4.2: Mean comparison of 10-day seedling growth parameters of maize and 
wheat seeds primed with GA3 and non-primed (control) exposed to varying AMD 
concentrations and temperatures. 

  

AMD  
( %)  

  

conc.  Shoot length (cm)  Root length (cm)  

Maize   Wheat  Maize   Wheat   

Control    GA3  Control    GA3  Control    GA3  Control    GA3  

     25 °C      

0 %   5.60±0.82 b  6.53±0.83 a  5.60±0.82 b  6.53±0.83 a  5.50±1.32 b  5.70±0.61 a  3.93±0.67 b  4.07±0.55 a  

25 %   4.10±0.75 c  2.57±0.81 h  4.10±0.75 c  2.57±0.81 h  4.73±1.22 c  3.47±1.55 h  3.43±0.90 d  3.50±0.70 c  

50 %   3.13±1.90 e  3.73±1.30 d  3.13±1.90 e  3.73±1.30 d  4.47±1.05 d  3.63±1.46 g  2.33±0.96 g  3.27±0.47 e  

75 %   2.60±1.11 g  3.10±1.05 f  2.60±1.11 g  3.10±1.05 f  3.80±1.06 e  3.77±1.61 f  2.13±0.57 i  2.87±0.71 f  
100 %   1.30±0.36 j  1.83±0.65 i   1.30±0.36 j  

1.43±0.65 i   

35 °C  

3.07±0.42 j  3.17±0.65 i  2.07±0.38 j  2.17±0.31 h  

0 %   5.83±2.71 d  12.80±3.68 a  2.47±0.30 e  2.70±0.26 a  6.67±0.15 d  12.80±1.31a  4.17±0.59 f   4.53±0.21 d  

25 %   5.80±1.13 e  6.83±0.65 b  2.12±1.01 f  2.63±0.67 b  6.70±0.44 c  8.47±1.16 b  4.70±0.46 b  4.87±0.67 a  

50 %   4.63±1.16 f  4.20±0.60 g  2.03±0.44 g  2.57±0.47 c  5.20±2.43 e  4.67±0.32 f  4.50±0.26 e  4.70±0.84 b  

75 %   3.30±1.25 h  2.97±0.78 i  2.00±1.78 h  2.53±0.49 d  4.50±2.20 g  3.27±0.61 j  2.97±0.72 h  4.60±0.85 c  

100 %   2.97±1.33 i  6.27±3.17 c  1.17±0.15 j  1.19±0.36 i  4.40±0.10 h  4.37±2.73 i  2.37±0.25 i  3.03±1.72 g  
Means with the same letters in each column have no significant difference at p< 0.05 (M±SD).   
  

4.2.3 Effects of B. subtilis BD234 on maize and wheat seeds exposed to acid 
mine water at different temperature regimes  
  

4.2.3.1 Final germination percentage (FGP)   
The effect of B. subtilis BD234 priming on germination percentage of maize and wheat 

under five levels of AMD at 25 °C and 35 °C were presented in Figure 4.3a, b and 

Figure 4.4a, b. The FGP of maize at 25 °C showed no significant differences between 
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the primed and non-primed treatments exposed to 0 % - 50 % AMD concentrations. 

Under 75 % and 100 % AMD, the B. subtilis BD234 primed seeds increased 9 % and 

13.66 %, respectively, compared to the non-primed controls at 25 °C (Figure 4.3a). 

Even though the FGP at 35 °C was lower than at 25 °C, B. subtilis significantly 

improved the FGP at 35 °C temperature from 0 % to 100 % (Figure 4.3b).   

Due to B. subtilis BD234 seeds priming, the FGP of wheat varied widely. Wheat seeds 

primed with B. subtilis BD234 under 100 % at 25 °C gradually increased to 76.66 % 

compared to 45 % FGP on non-primed control (Figure 4.4a). Moreover, at 35 °C, the 

FGP under 0 % was 88.33 %, which increased by 16.67 % compared to the non-

primed control, while under 100 %, B. subtilis BD234 slightly increased the FGP of 

wheat by 8.33 % compared to the non-primed control (Figure 4.4b).  
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Maize  

 

Figure 4.3: Interaction of non-primed (control) and primed (B. subtilis BD234) maize seeds 

on final germination percentage (FGP), germination speed (GS), emergence rate index (ERI) 

and vigour index (VI) exposed to different acid mine concentrations at two temperature 

regimes. Bars with a different letter(s) show significant differences (p< 0.05) between the 

samples based on Duncan's Multiple Range Test (DMRT).
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Wheat 

 
Figure 4.4: Interaction of non-primed (control) and primed (B. subtilis BD234) wheat seeds 

on final germination percentage (FGP), germination speed (GS), emergence rate index 

(ERI) and vigour index (VI) exposed to different acid mine concentrations at two temperature 

regimes. Bars with a different letter(s) show significant differences (p< 0.05) between the 

samples based on Duncan's Multiple Range Test (DMRT).  
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4.2.3.2 Germination speed (GS)  
A slight increase in GS of 0.12 % and 0.8 % on maize seeds primed with B. subtilis 

BD234 under 0 % and 50 % at 25 °C was observed (Figure 4.3c). Intriguingly, the GS 

of maize primed with B. subtilis BD234 at 35 °C showed a similar trend to that of the 

seeds primed with GA3 (Figure 4.3d). The positive effects of B. subtilis BD234 were 

more evident on wheat seeds. This is because, under 75 % and 100 % AMD, B. 

subtilis BD234 significantly increased germination speed by 2.86 % and 2.62 %, 

respectively, compared to the control at 25 °C (Figure 4.3c). The germination speed 

of wheat under 0 % and 25 % slowly decreased by 0.5 % and 0.26 % at 35 °C on 

seeds primed with B. subtilis BD234 (Figure 4.4d). The results also showed that B. 

subtilis BD234 gradually increased the GS of wheat seeds under high AMD 

concentrations at a high temperature (Figure 4.4d).  

 
4.2.3.3 Emergence rate index (ERI)  
Emergence rate index results on primed maize seeds showed an increase under 75 

% and 100 % AMD concentrations at 25 °C by 3.32 % and 0.23 %, compared to non-

primed controls (Figure 4.3e). Furthermore, there were no significant differences 

between the nonprimed control and B. subtilis BD234 primed maize seeds under 25 

% and 100 % AMD concentrations (Figure 4.3e).  Interestingly, at 35 °C, there was a 

significant decrease of ERI on control as AMD concentration increases, while priming 

with B. subtilis BD234 dramatically increased the ERI (Figure 4.3f). On the other hand, 

Wheat ERI was greatly improved, and higher ERI was observed at 0 % - 100 % AMD 

concentrations compared to the non-primed controls at both 25 °C and 35 °C (Figure 

4.4e, f). However, priming with B. subtilis BD234 under 25 % AMD concentration 

showed to be a more favourable condition with a higher ERI of 19.6 % at 25 °C (Figure 

4.4e). Meanwhile, at 35 °C, the higher ERI 18.79 % on wheat was recorded under 50 

% AMD concentration (Figure 4.4f).  

 
4.2.3.4 Vigour index (VI)  
The lowest value of seedling VI was shown in non-primed controls and B. subtilis 

BD234 primed seeds exposed to 100 % AMD concentration on maize (Figure 4.3g, 

h) and wheat (Figure 4.4g, h) treatments. At 25 °C, B. subtilis BD234 did not enhance 
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the VI of maize throughout all the AMD concentrations. Furthermore, no significant 

difference was observed between the non-primed and primed seeds under 100 % 

AMD concentrations (Figure 4.3g). Priming wheat seeds with B. subtilis BD234 

significantly increased VI on all AMD concentrations at both temperatures compared 

to the non-primed control (Figure 4.4g, h). The VI highest value of 1173.5 was 

recorded in wheat at 25 °C, exposed to 25 % AMD concentration (Figure 4.4g). 

Furthermore, at 35 °C, the lowest VI from primed maize seeds was recorded under 

50 % AMD (Figure 4.3h).    

 
4.2.3.5 Seedling growth   

Based on the data presented in Table 4.3, an increase in AMD concentrations 

resulted in a significant reduction in shoot length on maize at 25 °C. Under 75 % and 

100 % AMD concentrations, the shoot of maize decreased by 0.89 cm and 0.87 cm 

respectively on B. subtilis BD234 primed seedlings compared to the non-primed 

controls. The reduction in seedling growth traits of maize was observed when the 

AMD concentrations increase, and the B. subtilis BD234 could not reverse the effect 

when the stress became severe (75 % and above). Surprisingly, the root length of the 

maize at 25 °C and 35 °C significantly increased on all primed and non-primed control 

exposed to 0 %-100 % AMD concentrations.  

B. subtilis BD234 priming on wheat seeds showed interesting results at 25 °C, 

whereby the shoot and root length were improved respectively under all AMD 

concentrations. Interestingly, the drastic improvement was highly shown at 25 % of 

AMD concentration, increasing by 2.47 cm and 2.57 cm in shoot and root length. The 

improvement of shoot and root length of wheat seedlings were also observed at 35 

°C under 100 % and were found to be increased to 4.90 cm and 2.43 cm, respectively. 

Nonetheless, priming with B. subtilis BD234 had a major stimulatory effect on all 

physiological traits over non-primed controls up to a certain AMD level (75 %).  
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Table 4.3: Mean comparison of 10-day seedling growth parameters of maize and 
wheat seeds primed with B. subtilis BD234 with non-primed (control) exposed to 
varying AMD concentrations and temperatures.    

  
AMD conc. (%)  

  

Shoot length (cm)  Root length (cm)  

Maize  wheat  Maize  Wheat  

Control  B.  subtilis  
BD234  

Control  B.  subtilis  
BD234  

Control  B.  subtilis  
BD234  

Control  B.  subtilis  
BD234  

     
25 °C      

0 %  5.50±1.32a  3.43±1.05 e  5.63±1.24d  5.77±3.05 c  5.60±0.82d  6.47±0.35 b  3.93±0.67c  5.37±1.11 b  

25 %  4.73±1.22b  2.10±0.90 i  5.90±1.61 b   8.37±0.74 a  4.10±0.75 f  6.87±0.67 a  3.43±0.90 f  6.00±0.61 a  

50 %  4.47±1.05c  3.00±1.13f g  4.87±2.15 g  5.43±0.71 e  3.13±1.90 g  5.57±1.70 e  2.33±0.96 h  3.73±0.49 e  

75 %  3.80±1.06d  2.93±0.42 h  4.20±2.23 h  5.03±1.99 f  2.60±1.11 h  5.30±0.80 f  2.13±0.57 i  3.83±1.40 d  
100 %  3.07±0.42 f  2.20±0.61 i  3.03±1.37 j  3.30±0.82 i 

 

35 °C  

1.30±0.36 i  6.30±0.80 c  2.07±0.38 j  2.57±1.33 g  

0 %  6.67±0.15d  6.80±0.10 b  8.10±0.30 d 8.37±0.25 c  5.83±2.71 d  5.90±3.42 c  4.17±0.59 e  4.43±0.32 d  

25 %  6.70±0.44 c  6.96±1.01 a  9.03±1.01 a  8.87±1.18 b 5.80±1.13 e  8.73±1.17 a  4.70±0.46 b 5.63±0.85 a  

50 %  5.20±2.43 g  5.63±1.89 e  7.00±0.44 e   6.43±1.85 f  4.63±1.16 f  6.13±2.67 b  4.50±0.26 c  4.50±0.36 c  

75 %  4.50±2.20 g  5.07±2.45 f  5.47±1.78 g  5.17±0.35h 3.03±1.25 i  3.23±2.76 h  2.97±0.72 g  3.27±1.27 f  

100 %  4.40±0.10 i  4.41±0.56 h 4.17±0.15 j 4.90±0.72 i  2.97±1.33 j  3.47±2.42 g  2.37±0.25 i  2.43±0.23 h  
Means with the same letters in each column have no significant difference at p< 0.05 (M±SD)   

  

4.3 Discussion  
Priming agents are one of the most important methods to protect and improve seed 

and plant growth under contaminated environments. The adjustment occurs when 

agents such as GA3 and B. subtilis BD234 inhibit pollutants to impact or induce seed 

germination and seedling growth (Tammam et al., 2021; Umar et al., 2021). Although 

priming agents have improved seed and plant growth, their success is not well 

documented, especially in crops of economic importance. This chapter aimed at 

determining the effects of seed priming on maize and wheat seed germination indices 

exposed to acid mine drainage water at different temperatures.   

The germination rate of both maize and wheat seeds was substantially reduced when 

seeds were exposed to increasing AMD concentrations. However, the effect of AMD 
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on seed germination was mitigated when the seeds were primed with 0.2 mM GA3 

(Figure 4.1a, c and Figure 4.2a, c). Compared to primed seeds, decreased germination 

process and seedling growth quality were observed on non-primed seeds. 

Temperature also played an important role during the germination and growth stages 

of the seeds. These results coincided with the results of wheat (Ulfat et al., 2017), rice 

(Chunthaburee et al., 2014), and corn (Pallaoro et al., 2016) grown under 

contaminated environments. Seed priming with GA3 has been shown to stimulate plant 

development and yield in a range of crops. Similarly, favourable priming effects with 

GA3 were observed on maize and wheat's germination and seedling growth 

parameters (Figure 4.1 and Figure 4.2; Table 4.2).   

Gibberellins modulate various physiological and developmental processes in plants 

(Khandaker et al., 2018; Banerjee and Roychoudhury, 2020). Aside from that, GA3 can 

also boost the hydrolytic enzymes involved in converting starch into sugar (Tripathi et 

al., 2018). Ardebili et al. (2019) showed that seed deterioration lowered germination 

index and germination percentage compared to non-deteriorated seeds, whereas GA3 

priming enhanced germination index and germination percentage deteriorated seeds. 

Similar findings were observed in this study on maize and wheat primed with GA3 

postexposure to different AMD concentrations. The priming agent GA3 enhanced the 

seeds to overcome contamination and increased the root and shoot length. Moreover, 

this enhancement could also be related to the absorbed GA3 activating specific genes 

for amylase mRNA transcription. Amylase accelerates starch breakdown in the 

cotyledons and makes accessible monosaccharides to the newly sprouting embryo 

(Tsegay and Andargie, 2018).   

The GA3 hormone can also activate several additional genes required to produce 

important enzymes in the germination process. Enzymes like proteases and, in some 

situations, lipases play essential roles in the embryo's early growth and development 

(Nawaz et al., 2013). Any increase in these enzymes activity could lead to early, strong 

germination and quality crop establishment (Tripathi et al., 2018). According to Taiz et 

al. (2015), acid phosphatase and ribonucleic acid (RNA) synthesis may rise 

significantly in embryonic axes and cotyledons of the primed seeds compared to 

nonprimed seeds. Furthermore, GA3 signalling pathways can increase seed 

germination by releasing seed dormancy and counteracting the function of abscisic 
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acid (ABA), which inhibits embryo development during stressful situations by 

weakening endosperm and expanding embryo cells (Miransari and Smith, 2014).  

On the other hand, B. subtilis BD234 strain was also used to prime maize and wheat 

seeds to enhance seed germination. FGP, GS, ERI, SG, and VI were significantly 

enhanced by B. subtilis BD234 compared to non-primed controls post-exposure to 

different AMD concentrations (Figure 4.3, Figure 4.4, and Table 4.3). The emergence 

of early seedling parameters of maize and wheat also revealed that B. subtilis BD234 

could stimulate seedling and early plant growth. In support of this research, 

Lastochkina et al. (2017; 2020) reported the effects of B. subtilis 10-4 in boosting plant 

growth and biomass under saline and Fusarium culmorum contaminated 

environments.   

When maize and wheat seeds were exposed to AMD stress, B. subtilis BD234 primed 

seeds had greater root biomass, which might partially explain the observed higher 

conductance than the non-primed controls. The current findings were consistent with 

those of Khatri et al. (2020), who indicated that B. subtilis priming increased seed 

germination percentage in two wheat cultivars exposed to Cd-contaminated soil. 

Moreover, Ferreira et al. (2018) reported similar findings whereby B. subtilis priming 

promoted maize growth under salinity stress. Our findings are also in line with a study 

on the potential of Bacillus species to boost maize plant output and tolerance to the 

environment (Junges et al., 2013; Nevhulaudzi et al., 2020).   

An increase in total growth biomass under stress conditions is the most reported plant 

response mediated by B. subtilis inoculation in various crops (Kasim et al., 2013). The 

current study revealed the potential of B. subtilis BD234 in alleviating AMD stress in 

the seedling growth of maize and wheat (Table 4.3). These observations agree with 

previous reports on the potential of endophytic bacteria in improving plant productivity 

and enhancing drought tolerance (Mei and Flinn, 2010).  
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CHAPTER 5  
  

EFFECTS OF GIBBERELLIC ACID AND BACILLUS SUBTILIS ON SEED 
GERMINATION OF COMMON BEAN AND OKRA EXPOSED TO ACID MINE 

DRAINAGE WATER AND DIFFERENT TEMPERATURE REGIMES  
 

Abstract 

South Africa's water supplies are compromised by present and historical mining 

practices, such as abandoned and closed mines. As a result, Acid mine drainage 

(AMD) is one of the country's most controversial environmental issues, with 

unsustainable polluting effects on the water for agriculture. The extent to which it is 

possible to supplement the agronomic quality of bean and okra production with 

pesticides and fertilisers without negatively impacting agricultural land is lacking. 

Consequently, the main objective of this study was to explore the potential of GA3 and 

B. subtilis application and their mechanisms for enhancing bean and okra seed 

germination under varied AMD concentrations at 25°C and 35°C. An experiment with 

a completely random design was done to compare the germination variables of primed 

and control seedlings. Results indicated that seed germination variables (final 

germination percentage, germination speed, emergence rate index, and vigour index) 

were modified. The results demonstrated that seed germination can be influenced by 

temperature throughout seed development. Germination parameters for common 

bean and okra were lowered when AMD concentrations were 100 % than when AMD 

concentrations were 0 % to 75 %. A higher concentration of AMD had detrimental 

effects on seedling growth while GA3 and B. subtilis had positive effects on all the 

other germination indicators (final germination percentage; germination speed; 

emergent rate index; vigour index). Overall, the findings show that priming agents 

derived from GA3 and B. subtilis could be useful in assisting bean and okra seeds to  
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5.1 Introduction   

Agriculture in Sub-Saharan Africa generates most economic revenue and acts as a 

foundation for smallholder farmers, generating household income and food (Vidigal et 

al., 2019). The study of crops subjected to acid mine drainage conditions, such as 

common bean and okra, will be a critical tool for adaptability to environmental pollution. 

Thus, there are tremendous scientific efforts to strengthen agricultural output under 

multiple environmental challenges to deal with increasing global food demands 

(Alshaal et al., 2017; Elhawat et al., 2018). Acid mine water is one key water stress 

that triggers plant metabolic and growth abnormalities, severely affecting productivity 

(Shirinbayan et al., 2019). Furthermore, plant development and productivity are 

impaired dramatically, providing major hurdles to achieving food security.  

Throughout this perspective, the use of inoculants such as seed priming needs to be 

rigorously reviewed. Seed priming is a pre-sowing procedure effectively utilized to 

promote seed germination (Lechowska et al., 2019); and it includes soaking seeds 

prior to sowing, adding to the hydroponic solution, irrigating, or spraying with plant 

inoculant solutions (Hasanuzzaman et al., 2019). Those strategies have been shown 

to protect diverse plant species against unfavourable conditions by activating a wide 

range of activities involved in stress tolerance mechanisms (Horvath et al., 2007; Jisha 

et al., 2013). An alternate strategy is necessary to increase plant production high in 

micronutrients, protein, fibre and antioxidants to promote food and nutrition security 

(Schreinemachers et al., 2017).   

Many crops such as common bean and okra are water-stressed because they are 

grown under AMD contaminated environments (Siddique and Kumar, 2018). Common 

bean is one of the world's most widely grown crop species, and its high protein content 

makes it an essential human diet (Barbosa and Gonzaga, 2012). Like some other 

legumes, the common bean can fix atmospheric nitrogen through a symbiotic 

interaction with bacteria in the root nodules (Machiani et al., 2019). In addition, okra is 

an alternative vegetable crop that provides high protein, carbs, minerals, vitamins and 

antioxidants (Petropoulos et al., 2018). Apart from gastronomic uses, okra has been 

linked to various health benefits, including preventing severe diseases like cancer 

(Adetuyi and Osagie, 2011, Arlai et al., 2012, Ghori et al., 2014). With changing 
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lifestyles and dietary preferences, producing demand-driven crops is a potential choice 

for farmers' economic upliftment because they will provide guaranteed markets and 

reasonable export prices (Sarkar et al., 2019).  

Understanding how acid mine drainage water impacts seed germination and average 

crop yields is crucial. There is, however, very little published research on the effects 

of GA3 and B. subtilis as a seed priming on common bean and okra when exposed to 

varied acid mine drainage concentrations and temperatures.  In light of the importance 

of common bean and okra seed quality and the influence of seed priming, the objective 

of this chapter was to evaluate the seed germination and seedling emergence of 

common bean and okra primed with GA3 and B. subtilis under different AMD 

concentrations. 

 

5.2 Results  

5.2.1 Evaluation of common bean and okra seeds post priming treatment  

Germination parameters of primed and non-primed common bean and okra seeds 

were assessed using ANOVA (Table 5.1). The results showed that AMD 

concentrations and priming with germination stimulants significantly affected the final 

germination percentage and seedling growth of common bean and okra (Table 5.1). 

Interaction of crop type, AMD concentration, stimulants treatment, and temperature 

also significantly affected seedling growth (p< 0.05). 
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Table 5.1: Output of the factorial ANOVA analysis of the effect of temperature, stimulants, and acid mine drainage on germination 
indices of maize and wheat seed.  

 
Sources of  df  FGP  F-stats  GS  F- ERI  F- SH  F- RTL  F-stats   VI  F-stats variation  stats  stats 
 stats  

 
Common bean  

T  1  12.35 ns  1170.53  0.01 ns  460.74  0.49 ns  102.60  124.40*  66.76  269.71*  63.59  2714618*  12.08  
S  2  312.59 ns  140.35  0.14 ns  38.44  12.62 ns  30.00  131.14*  6.95  147.39*  3.97  2691826*  9.35  
AMD con.  4  998.77*  149.33  0.46*  48.28  37.36*  23.45  195.59*  17.00  44.28*  14.49  2720867*  45.02  
T x S  2  542.72*  71.40  0.25*  10.08  16.84 ns  24.99  152.70*  3.70  16.60*  6.79  1298815*  16.05  
T X AMD conc.  4  45.68 ns  5.48  0.02 ns  5.92  1.89 ns  2.11  48.47*  4.01  32.95*  1.80  523891*  2.47  
S X AMD conc.  8  98.40 ns  11.00  0.05 ns  5.06  3.47 ns  2.67  13.39*  4.70  10.23*  2.54  123701*  5.59  
Temp x S X AMD  8  196.42 ns  16.55  0.09 ns  3.72  8.43 ns  3.61  22.36*  2.71  18.17*  3.76  220703*  3.98  
Error   60  161.98   0.02   0.07   1.67   6.58   30656   

Okra  
T  1  17.63 ns  2.188  0.01 ns  2.13  21.85*  2.55  0.32 ns  154.57  21.85*  35.982  165009*  57.22  
S  2  678.21*  10.04  0.34*  9.80  0.38 ns  7.41  7.34*  3.04  0.38 ns  21.799  52310*  27.67  
AMD conc.  4  319.16*  20.03  0.18*  18.11  0.68*  8.70  0.69*  9.07  0.68*  11.453  35052*  29.68  
T x S  2  94.39 ns  22.87  0.19*  22.33  1.45*  16.79  10.16*  3.69  1.45*  0.049  24220*  9.44  
T X AMD  4  126.51*  1.74  0.03 ns  1.26  1.30*  0.63  1.44*  5.83  1.30*  8.444  29054*  10.12  
S X AMD   8  159.64*  2.23  0.13*  2.06  0.50*  1.29  0.53*  1.39  0.50*  2.847  19537*  3.71  
Temp x S X AMD  8  50.90 ns  3.57  0.03 ns  3.31  0.32 ns  1.61  0.49*  2.64  0.32 ns  1.302  7706 ns    2.10  
Error   60  17.63 ns   0.0383    0.05   1.48    0.17   12708   

Mean values significantly different at ∗ p<0.05 and ns = not significant 

  



55  
  

5.2.1 Effects of GA3 on common bean and okra seeds exposed to acid mine 
water at different temperature regimes  

5.2.1.1 Final germination percentage (FGP)   

The FGP of common bean and okra results are presented in Figure 5.1a, b and Figure 

5.2a, b. Concerning seed germination percentage, priming seed with GA3 under 

different AMD concentrations at different temperatures showed significant treatment 

differences. Increasing AMD concentrations in the germination media decreased FGP 

in both common bean and okra seeds. FGP reduction was highly observed under 100 

% AMD concentration on non-primed control treatments of both common bean and 

okra compared to primed treatments. A higher germination percentage was observed 

at 25 °C in the common bean exposed to 25 % AMD concentration. This was 

significantly higher than non-primed control by 26.67 % (Figure 5.1a). Meanwhile, 

there was no significant difference between GA3 primed and non-primed common 

bean seeds under 0 % AMD at 35 °C (Figure 5.1b). Contrastingly, GA3 primed okra 

seeds were significantly enhanced on all the AMD concentrations at 25 °C compared 

to nonprimed seeds (Figure 5.2a). Similar trends were observed in treatments exposed 

to 0 %, 50 %, 75 % and 100 % under 35 °C, except for the treatment under 25 % AMD 

concentrations, whereby there was no statistical difference between the primed and 

non-primed (Figure 5.2b).  
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 Common bean   

 
Figure 5.1: Interaction of non-primed (control) and primed (GA3) common bean seeds on 

final germination percentage (FGP), germination speed (GS), emergence rate index (ERI) 

and vigour index (VI) exposed to different acid mine concentrations at two temperature 

regimes. Bars with a different letter(s) show significant differences (p< 0.05) between the 

samples based on Duncan's Multiple Range Test (DMRT). 
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Okra 

 
Figure 5.2: Interaction of non-primed (control) and primed (GA3) okra seeds on final 

germination percentage (FGP), germination speed (GS), emergence rate index (ERI) and 

vigour index (VI) exposed to different acid mine concentrations at two temperature regimes. 

Bars with a different letter(s) show significant differences (p< 0.05) between the samples 

based on Duncan's Multiple Range Test (DMRT).  



58  
  

5.2.1.2 Germination speed (GS)   

Results on common bean (Figure 5.1c, d) and okra (Figure 5.2c, d) GS parameters 

indicated significant differences at different AMD concentrations and temperatures. 

The progressive decrease in seed germination rate was observed at 0 % to 100 % 

AMD concentrations on non-primed control seeds of common bean and okra (Figure 

5.1c, d and Figure 5.2c, d). A slight increase in germination rate was observed in the 

primed treatments on all the AMD concentrations. The treated common bean seeds at 

35 °C only increased the GP under 0 %, 25 % and 75 % by 1.80 %, 1.33 % and 1.38 

%. At the same time, a slight decrease in germination rate of  

0.47 % under 50 % AMD and 0.1 % under 100 % AMD was observed (Figure 5.1d).   

In okra, seeds showed a significant increase in germination rate at 25 °C compared to 

non-primed seeds. GS increased in seeds treated with GA3 exposed to all the AMD 

concentrations to 2.71 %, 2.61 %, 2.43 %, 2.62 % and 2.57 % compared to the 

nonprimed which were 2.52 %, 2.52 %, 2.28 %, 2.09 % and 2.05 % (Figure 5.2c). Okra 

seeds treated with GA3 at 35 °C geminated faster than the non-primed under 50 %, 75 

%, and 100 % AMD concentrations. At the same time, there was no significant 

difference between the primed and non-primed seeds exposed to 25 % AMD 

concentration (Figure 5.2d).  

 

5.2.1.3 Emergence rate index (ERI)  

In terms of ERI, GA3 primed common bean seeds showed an ERI maximum of 15.29 

% and 15.03 % under 0 % and 50 % AMD concentration at 25 °C (Figure 5.1e). Under 

100 % AMD concentration, the primed common bean seeds increased the ERI by 3.15 

% at 25 °C (Figure 5.1e). However, ERI decreased by 0.89 % at 35 °C was observed 

(Figure 5.1f).  In okra, a significant increase in ERI was observed in GA3 primed seeds 

exposed to 25 %, 50 %, 75 % and 100 % AMD concentrations at 25 °C, yet the ERI 

on non-primed control was higher than the GA3 primed seed by 3.37 % under 0 % 

AMD concentration (Figure 5.2e). Additionally, a decline in ERI was observed on 

primed seeds of okra exposed to 0 % and 25 % at 35 °C. However, the results showed 

a significant increase in ERI at 50 %, 75 % and 100 % AMD concentrations in the GA3 
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primed seeds, with 50 % and 100 % being the highest recorded ERI increase 

compared to the non-primed (Figures 5.2f).   

 

5.2.1.4 Vigour index (VI)  

The results showed that the VI was higher at 25 °C compared to 35 °C on common 

bean (Figure 5.1g, h). VI of common bean ranged between 1162.22 -1722.44 at 25 °C 

(Figure 5.1g). The highest VI was recorded on seeds exposed to 50 % AMD 

concentration at 25 °C (1722.44) (Figure 5.1g). However, the VI declined significantly 

by 160.22 at 35 °C on GA3 primed seeds compared to the non-primed under 50 % 

AMD concentration (Figure 5.1h).  Similarly, GA3 okra primed seeds increased vigour 

index at 25 °C and 35 °C exposed to all the AMD concentrations compared to the non-

primed control (Fig. 5.1g, h). Nonetheless, 50 % and 100 % AMD seeds showed the 

highest VI at 35 °C.  

 

5.2.1.5 Seedling growth (SG)  

The shoot and root length data of GA3 primed and non-primed common bean and okra 

seeds is presented in Table 5.2. The results showed a significantly increased shoot 

and root length in GA3 primed common bean and okra seeds compared to the 

nonprimed control on both temperatures (Table 5.2). There was a drastic increase in 

shoot and root length of common bean seeds exposed to all AMD concentrations 

compared to control at 25 °C. Common bean's highest recorded shoot and root length 

was 11.43 and 15.35 cm exposed to 25 % AMD at 25 °C. At 35 °C, the highest shoot 

and root length was observed in seeds exposed to 0 % AMD (Table 5.1). On okra, 

there was a significant increase in shoot length exposed to 0 %, 25 %, 50 % and 100 

% AMD; and root length exposed to 0 %, 50 %, 75 % and 100 % AMD at 25 °C (Table 

5.1). Furthermore, an increase in root and shoot length was also observed in okra 

exposed to all AMD concentration, except for shoot length at 35 °C with a slight 

decrease.   
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Table 5.2: Mean comparison of 10-day seedling growth parameters of okra and 
common bean seeds primed with GA3 with non-primed (control) exposed to varying 
AMD concentrations and temperatures.    

  

AMD conc. (%)  

  

Shoot length (cm)   Root length (cm)   
Common bean   Okra   Common bean   Okra  

Control    GA3  Control    GA3  Control    GA3  Control    GA3  

    25 °C      

0 %  5.63±0.71 f  8.20±0.40 d 2.03±0.10 e 2.50±0.15 a  12.07±0.59 e  13.26±0.93 d  3.43±0.21 e   2.83±0.25 j  

25 %  5.90±0.92 e  11.43±0.59 a  2.13±0.20 c  2.23±0.26 b  4.70±0.84 g  15.36±0.90 a  3.90±0.56 a   3.40±0.30 f  

50 %  4.20±0.28 g  10.20±0.37 b  2.03±0.20 f  2.07±0.23 d  4.70±0.89 g  13.43±0.66 c  3.50±0.20 c       3.63±0.21 b  

75 %  3.03±0.78 i  10.73±0.92 c  1.67±0.15 g 1.63±0.15 h  3.30±0.43 h  13.46±0.63 b  3.23±0.15 g       3.47±0.25 d  
100 %  3.87±0.33 h  8.17±0.38 e  1.27±0.15 j  1.50±0.31 i  

35 °C 

2.73±0.56 i  11.93±0.43 f  3.13±0.10 i       3.23±0.87 h  

0 %  2.47±0.89 d  10.03±0.17 a  2.43±0.21 d  3.50±0.15a   14.73±0.55 b  15.57±0.73 a  4.43±0.21 d      4.60±0.10 c  

25 %  2.03±0.81 g  5.97±0.58 b  2.37±0.15 e  3.17±0.15 b  5.50±0.44 g  11.47±0.11 c  3.10±0.52 f  5.10±0.36 a  

50 %  2.00±0.49 h  3.23±0.25 c  2.33±0.44 f  2.43±0.21 d  6.80±0.67 e  7.87±0.55 d  2.13±0.57 h      4.63±0.57 b  

75 %  2.10±0.28 e  1.53±0.02 i  2.30±0.10 g  2.53±0.25 c  3.40±0.11 h  5.73±0.08 f  1.90±0.13 i       3.00±0.72 g  

100 %  1.17±0.43 j  2.07±0.08 f  2.17±0.10 i  2.27±0.10 h  3.33±0.58 i  3.40±0.11 h  1.83±0.15 j  3.97±0.55 e  

*Means with the same letters in each column have no significance difference at p< 0.05 (M±SD).   
  

5.2.2 Effects of B. subtilis BD234 on common bean and okra seeds exposed to 
acid mine water at different temperature regimes  
  

5.2.2.1 Final germination percentage (FGP)  

The application of B. subtilis on common bean and okra improved the FGP compared 

to the control under different AMD concentrations at both temperatures (Figure 5.3a, 

b and Figure 5.4a, b). The highest germination percentage on common bean was 

observed under 25 % AMD concentration at 25 °C (Figure 5.3a). Similar results were 

recognized on okra seeds primed with B. subtilis at 25 °C, under 0 % and 25 % AMD 

concentrations compared to non-primed seeds (Figure 5.4a). At 35 °C under 0 % AMD, 

non-primed common bean seeds had higher FGP than seeds primed with B. subtilis 

(Figure 5.3b). Okra seeds were also greatly improved by priming with B. subtilis under  
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100 % AMD with final germination of 90 % compared to 65 % on non-primed (Figure 
5.4b).   

Common bean  

 
Figure 5.3: Interaction of non-primed (control) and primed (B. subtilis BD234) common 

bean seeds on final germination percentage (FGP), germination speed (GS), 

emergence rate index (ERI) and vigour index (VI) exposed to different acid mine 

concentrations at two temperature regimes. Bars with a different letter(s) show 
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significant differences (p< 0.05) between the samples based on Duncan's Multiple 

Range Test (DMRT). 
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Okra 

 
Figure 5.4: Interaction of non-primed (control) and primed (B. subtilis BD234) okra 

seeds on final germination percentage (FGP), germination speed (GS), emergence 

rate index (ERI) and vigour index (VI) exposed to different acid mine concentrations at 

two temperature regimes. Bars with a different letter(s) show significant differences 

(p< 0.05) between the samples based on Duncan's Multiple Range Test (DMRT).  
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5.2.2.2 Germination speed (GS)  

The results of B. subtilis application showed significant variations in GS under AMD 

concentrations on treated common bean and okra seeds at 25 °C (Figure 5.3c and 

Figure 5.4c). The lower GS of common bean was observed at 35 °C ranging from 1.57 

to 1.12 % (primed) and 1.52 to 1.14 (non-primed) compared to the 25 °C germination 

speed, which ranged from 1.80 % - 2.48 % (primed) and 1.9 % -1.14 % (non-primed). 

Yet B. subtilis improved the germination speed of common bean under all the AMD 

concentrations compared to the non-primed (Figure 5.3c, d). Similar results were 

recorded on okra seeds at 35 °C, which showed significantly lower values than 25 °C 

(Figure 5.4d). Okra primed seeds exposed to low AMD concentration germinated 

faster than others at both temperatures. (Figure 5.4c, d), while there was no significant 

germination difference between primed and non-primed seeds exposed to 25 % of 

AMD at both temperatures at 35 °C (Figure 5.4d).  

 

5.2.2.3 Emergence rate index (ERI)  

Common bean seeds primed with B. subtilis improved ERI from 25 % to 100 % AMD 

compared to the non-primed at 25 °C (Figure 5.3e). The highest ERI of 16.11 % was 

recorded under 25 % compared to the non-primed at 10.88 % (Figure 5.3e). 

Furthermore, no significant difference was observed at 0 % AMD at both 25 and 35 

°C, (Figure 5.3e, f). The results further showed that under 100 % at 35 °C, the non-

primed common bean seeds slightly showed an increase of 1.89 % ERI, higher than 

the seeds primed with B. subtilis BD234 (Figure 5.3f). In contrast, the ERI of okra was 

higher at 25 and 35 °C exposed to 0 % AMD in non-primed control seeds compared 

to the primed seeds (Figure 5.4e, f), while there were no significant differences 

between the nonprimed and primed seeds at 25 % and 50 %, at 25 °C respectively 

(Figure 5.4e). Furthermore, there was a decline in okra ERI under 0 % and 25 % AMD 

concentrations by 3.91 % and 3.67 %, at 35 °C, respectively (Figure 5.4f). The highest 

ERI of 63.68 % was recorded under 75 % AMD concentration on okra seeds treated 

with B. subtilis compared to the non-primed of 42.53 % at 35 °C (Figure 5.4f).   
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5.2.2.4 Vigour index (VI)  

Seeds exposed to 0 %; 25 %; 50 %; 75 %, and 100 % respectively and primed with B. 

subtilis significantly improved the VI by 370.67; 722.89; 1053.76; 1493.33 and 276.89 

compared to the non-primed at 25 °C (Figure 5.3g). Similar trends were observed at 

35 °C, whereby B. subtilis increased VI under all the studied AMD concentrations 

compared to the non-primed (Figure 5.3h). Okra VI under 25 % and 100 % decreased 

by 58.5 and 41.16 at 25 °C (Figure 5.4g). At 35 °C, the B. subtilis improved the VI of 

the okra under 0 %, 50 %, 75 % and 100 % compared to the non-primed (Figure 5.4h).     

 

5.2.3.5 Seedling growth (SG)  

Priming seeds using B. subtilis significantly enhanced the root length up to 7.93 cm on 

common bean and 3.93 cm on okra under 100 % AMD at 25 °C (Table 5.3). Similar 

trends were observed under 35 °C with a slight increase of 0.9 cm on common bean 

and 2.9 cm on okra under 100 % AMD compared to the non-primed, respectively. The 

shoot and root length were enhanced on all AMD concentrations at both temperatures, 

where the higher the AMD, the lower the shoot length recorded on both crops (Table 

5.3). At 25 °C, the lowest shoot length was recorded under 100 % AMD of common 

bean, which was 6.30 cm on B. subtilis BD234 primed seed and 3.03 cm on non-

primed seeds, and at 35 °C, it was 2.90 cm on primed seeds and 1.17 cm on non-

primed. Meanwhile, on okra, the lower shoot length (1.83 cm) was recorded under 100 

% AMD concentrations on primed seed.  
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Table 5.3: Mean comparison of 10-day seedling growth parameters of okra and 
common bean seeds primed with B. subtilis BD234 with non-primed (control) exposed 
to varying AMD concentrations and temperatures.      

  

AMD conc. (%)  

  

Shoot length (cm)  Root length (cm)  

Common bean  Okra   Common bean  Okra   

Control    B.  subtilis  
BD234  

Control    B. subtilis  
BD234  

Control    B.  subtilis    
BD234  

Control    B. subtilis  
BD234  

    25 °C      

0 %  5.63±0.71 g  8.10±1.27 d  2.03±0.10 e  2.13±0.22 d  12.07±1.59 d  15.37±1.29 b  3.43±0.21 e  3.43±0.43 e  

25 %  5.90±0.92 f  8.37±0.42 c  2.23±0.20 b  2.10±0.29 d  4.70±0.89 e  7.80±0.75 d  3.38±0.56 f  3.47±0.06 c  

50 %  4.20±0.28 h  10.10±0.72 b  2.27±0.20 c  2.23±0.46 a  4.70±0.89 e  13.20±0.90 c  3.30±0.20 f  3.40±0.36 d  

75 %  3.83±0.78 i  12.70±1.30 a  1.67±0.15 g  2.23±0.15 a  3.30±0.43 f  17.03±1.12 a  3.23±0.15 g  3.67±0.23 b  
100 %  3.03±0.33 i  6.30±0.47 e  1.27±0.15 h  1.73±0.15 f 

35 °C  

2.73±0.56 g  7.93±0.94 d  3.13±0.35 h  3.93±0.15 a  

0 %  2.10±0.17 g 7.03±0.34 a 2.43±0.34 f 3.60±0.21 a 14.73±1.55 b  16.47±1.32 a  4.43±0.21 f  5.10±0.21 a  

25 %  2.03±0.58 h 5.53±0.98 b 2.37±0.15 g 3.07±0.12 d 5.50±0.44 e  10.07±1.20 b  3.10±0.52 g  7.16±0.26 b  

50 %  2.00±0.25 i 4.77±0.27 c 2.33±0.44 h 3.47±0.15 b 6.80±1.67 d  7.17±0.40 c  2.13±0.57 h  6.40±0.34 c  

75 %  2.47±1.02 f 3.17±0.84 d 2.30±0.10 i 2.80±036 e 3.40±0.11 h  5.40±0.55 f  1.90±0.13 i  4.85±0.65 d  

100 %  1.17±0.88 j 2.90±0.41 e 2.17±0.10 j 3.00±0.15 c 3.33±0.58 i  4.13±1.13 g  1.83±0.15 j  4.73±0.23 e  

*Means with the same letters in each column have no significant difference at p< 0.05 (M±SD).   

  

5.3 Discussion  
This chapter established the response effects of seed priming on the germination 

indices of common bean and okra exposed to acid mine drainage water at different 

temperature regimes. Seeds of common bean and okra germinated even in the 

presence of high concentrations of AMD, with significant differences among the five 

concentrations on non-primed and primed seeds. The germination was enhanced by 

priming with GA3 and B. subtilis BD234, respectively. Our results partially correlate 

with Saderi and Zarinkamar (2012) study, who reported that high concentrations affect 

germination while low concentrations show no significant effect.  

Based on the reports in the literature, previous studies have shown that the excess of 

GA3 in plants induces better and quicker germination (Pawar and Laware, 2018; 

Guijarro-Real et al., 2020; Singh et al., 2020; Sappalani et al., 2021). For example, the 
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efficacy of GA3 in enhancing germination and seedling elongation was also 

demonstrated in chickpea (Mazid, 2014), castor bean (Jiao et al., 2019) and mung 

bean (Navya et al., 2021). This study reported that GA3 had positive effects on the 

seeds and can regulate plant growth and the development of common bean and okra 

plants. Massoud et al. (2018) concluded that GA3 had shown promising effect in 

breaking seed dormancy with accelerated seed germination and seedling growth.  

  

The present study showed that increased AMD concentrations decreased seed 

germination, and AMD stress-induced conquest of seed germination was alleviated by 

GA3 (Figure 5.1a, b and Figure 5.2a, b). A study by Dilip et al. (2017) reported that 

GA3 could enhance seed germination and the growth of legume seeds under stressful 

environments, which supports our study on common bean and okra. Chauhan et al. 

(2019) also reported a similar increase in germination percentage of oat cultivars in 

response to GA3 treatment under salinity stress. Priming with a suitable concentration 

of GA3 played an essential role in inducing tolerance to AMD stress in this study.   

 

The role of GA3 application in alleviating the adverse effects of stress, including heavy 

metals, was also suggested by Gangwar and Singh (2011) and Gangwar et al. (2011). 

Such effects include the decrease in the level of ROS and the increase in seed 

germination rate, growth and nitrogen metabolism. The data provided in this study 

proved that the supplementation of GA3 enhanced germination parameters of the 

common bean and okra seeds exposed to various AMD concentrations. These 

findings are in line with the literature that reported the involvement of GA3 in increasing 

plant tolerance against environmental stress (Chauhan et al., 2018; Thongsri et al., 

2021), to promote plant growth and development, as well as to alleviate growth 

inhibition under adverse environmental conditions (Rady et al., 2019; Abbasi et al., 

2019).   

Furthermore, an increase in shoot and root length was observed on common bean and 

okra primed seeds during germination (Table 5.2). The findings agree with Noor et al. 

(2017), who found that priming with GA3 enhanced seedling elongation and dry weight 

accumulation on French beans. The favourable effects of GA3 on seedling growth of 

common bean and okra may be due to increased auxin levels in the roots, which 
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stimulate more nutrient uptake and root cell elongation, and that increase seedling 

growth, according to Massoud et al. (2018).   

B. subtilis on the other hand, has gotten much attention because of its catabolic 

plasticity and capacity to colonize roots and its ability to create a variety of enzymes 

and metabolites that can help plants thrive under biotic and abiotic stress 

(GagnéBourque et al. 2016). The germination percentage of primed common bean 

and okra seeds was higher under medium AMD concentrations (25 % and 50 %). 

Furthermore, common bean and okra germination process was more favourable at 25 

°C temperature. Hence, a considerable increase in germination percentage in B. 

subtilis primed common bean, and okra seed was seen in this study (Figure 5.1 and 

Figure 5.2), which suggested the possible direct influence of B. subtilis on seed 

germination. The current results correlated with Walia et al. (2014), who observed an 

increase in germination and dramatically improved plant height and root length of 

tomato seeds in soil inoculated with B. subtilis strain CKT1. The present study also 

revealed that B. subtilis BD234 decreased the AMD concentrations on common bean 

and okra seeds. This is consistent with Abd_Allah et al. (2018), who showed that 

inoculation with B. subtilis ameliorated the NaCl-induced adverse effects on plant 

growth of chickpea. Overall, B. subtilis has shown its beneficial effects in enhancing 

germination and seedling growth on common bean and okra seeds, suggesting its 

potential in plant production and seed establishment.   
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CHAPTER 6  
GENERAL DISCUSSION AND RECOMMENDATIONS  

  

AMD contamination is a global environmental issue that significantly impacts plant 

growth and production and seed management. However, priming agents such as GA3 

and B. subtilis could be a novel strategy to improve AMD-contaminated plants. 

Previous studies have reported the beneficial effects of GA3 and B. subtilis in 

enhancing and protecting plants from different environmental stresses (Walia et al., 

2014; Abd_Allah et al., 2018; Chauhan et al., 2018; Abbasi et al., 2019; Rady et al., 

2019; Thongsri et al., 2021). However, little or no studies have been reported in 

common bean, maize, wheat and okra exposed to AMD contamination.    

In this study, GA3 and B. subtilis priming agents were utilized because they have been 

reported to enhance seed germination and protect against stressful environments. 

This study showed that seed priming could help mitigate the adverse effects of AMD 

water contamination on germination characteristics and seedling growth of common 

bean, maize, wheat and okra. The use of chemical priming agents has also been 

reported to be effective (Ashraf et al., 2018). However, they have harmful effects on 

the environment. These results have proven that plant growth-promoting bacteria and 

phytohormones are important in plant protection against environmental contaminants 

and seed establishment.  

The study further assessed GP, GS, ERI, VI and SG of primed and non-primed 

common bean, maize, wheat, and okra seeds post-exposure to AMD concentrations. 

GP is used to assess germination speed and uniformity. The higher the value, the 

stronger the germination potential, which is one of the critical indicators of seed quality. 

Post priming with GA3 and B. subtilis BD234, the GP of common bean, maize, wheat, 

and okra treated seeds improved compared with the non-primed controls, with the 

primed seeds performing significantly better. However, the enhancement is more 

visible on seeds primed with lower AMD concentrations than higher concentrations. 

These results agree with other studies with different contaminants on different hosts 

(Bose et al., 2018; Tsegay et al., 2018; Rhaman et al., 202; Youssef et al., 2021).   

Additionally, germination speed and percentage were measured to analyse the seed 

quality. The non-primed and primed seeds exhibited species-specific responses to 
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various AMD concentrations and temperatures, although with minor variances. Seed 

priming with GA3 and B. subtilis BD234 considerably increased the germination and 

seedling growth of these crops. The results also demonstrated that seeds might 

experience metabolic arrest at unfavourable temperatures, emphasising the 

importance of required specific climate conditions during seed germination. Up to 100 

% AMD concentration, priming relieved the inhibitory effect of AMD stress on seedling 

growth of the examined crops.   

At the highest levels of AMD, the inhibition of germination percentage, the delay in the 

germination speed, emergence rate index and the loss in all other seedling 

performances were greatly exacerbated. GA3 and B. subtilis BD234 pre-treatment 

increased the overall final germination, germination speed, emergence rate index, 

seedling length, and vigour index of common bean, maize, wheat and okra. As a result, 

this study demonstrated the usefulness of seed priming strategies in AMD 

contaminated environments to alleviate the adverse effects of acid mine drainage 

water.   

This study validates the use of priming agents such as GA3 and B. subtilis BD234 to 

enhance seed germination and protecting plants against environmental contaminants. 

However, to understand the role of these stimulants in plant response to AMD water 

contamination, the cell contents of some oxidative stress indicators and the antioxidant 

enzyme activities in germinating seeds need to be determined. Further research is 

required to investigate the effects of seed priming with GA3 and B. subtilis BD234 in 

cell division during the seed germination on seeds exposed to AMD contamination.  
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