
 

 

 

 

Predicting Lapse Rate in Life Insurance Using Machine Learning Algorithms 

 
Mahlodi Kgare 

 
61946966 

 
 
 

Submitted in accordance with the requirements for the degree 
 

MSc in Statistics 
 

in the 
 

Department of Statistics 
 

At the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Professor Bhekisipho Twala 
 

 



 

ii 

 

Declaration 

Name: Mahlodi Tears Kgare 

Student Number: 61946966 

Degree: MSc in Statistics 

 

Exact wording of the title of the dissertation as appearing on the electronic copy submitted 

for examination: Predicting Lapse Rate in Life Insurance Using Machine Learning 

Algorithms. 

I declare that the above dissertation is my own work and that all the sources that I have 

used or quoted have been indicated and acknowledged by means of complete 

references. 

I further declare that I submitted the dissertation to originality checking software and that 

it falls within the accepted requirements for originality. 

I further declare that I have not previously submitted this work, or part of it, for examination 

at Unisa for another qualification or at any other higher education institution. 

 

 Signature: _________________     Date: 07 September 2021 

 

 

 

 

 



 

iii 

 

Acknowledgements 

 

Firstly, I would like to thank my supervisor Professor Bhekisipho Twala for his willingness 

to help, guide and advice throughout my research. I appreciate all his valuable inputs. I 

would also like to thank my family for continued support. Lastly, I would like to thank the 

Lord for giving me the strength to complete this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

Abstract 

Policy lapse is a vital component in life insurance as it affects future pricing and impacts 

the solvency of the life insurer. Accurate prediction of lapse will help the insurers to 

implement personalised retention strategies based on the model’s outcome. The major 

contribution of the dissertation is the empirical comparison and benchmark of nine 

machine learning classifier models (i.e. Decision Tree, Gradient Boost, Random Forest, 

Support Vector Machine trained with linear kernel, Support Vector Machine trained with 

polynomial kernels, Neural Network trained with Levenberg-Marquardt, Neural Network 

trained with backpropagation) with traditional algorithms (i.e., Logistic Regression with 

forward variable selection and Logistic Regression with backward variable selection) for 

life insurance lapse predictions. The models’ accuracy was observed over two different 

insurer datasets with different distributions (Insurer 1 and Insurer 2) and different feature 

selection methodology namely, Principal Component Analysis (PCA) and Chi-squared. 

Accuracy, F-measure, sensitivity, specificity, and Receiver Operating Characteristics 

Curve (ROC) were used as performance measures. The results show the strong 

prediction ability of ensemble models (Gradient Boost and Random Forest) over single 

classifiers, and there is a strong indication that suitable parameter tuning and model 

boosting improve the model performance. The best overall classifier is Gradient Boosting 

with an accuracy of 92%, 76% and F-measure of 92%, 84% for Insurer 1 and Insurer 2 

datasets, respectively. The study recommends the use of ensemble models instead of 

single model classifiers as they have been proven to work better when predicting life 

insurance lapses. 

Keywords: Decision tree; generalised linear models, logistic regression; lapse; 
machine learning 
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CHAPTER ONE 

INTRODUCTION 

 

This chapter outlines the background of life insurance, lapses and machine learning (ML), 

the problem statement, aim and objectives of the study, the significance of the study, the 

general view of recent implementations within life insurance and the layout of the rest of 

the study. 

1.1 Background of Study 

Life insurance is a financial insurer that pays out a lump sum assured value to 

beneficiaries when a policyholder dies. It plays a significant role in families by providing 

financial assistance after the passing of a loved one. Life insurance is a vital component 

of the economy as it provides opportunities such as employment to marketing distributors, 

insurance brokers, and direct agents (Ogutu, 2012). 

In the insurance industry, a lapse is defined as the cancellation of a policy cover due to 

non-payment of a premium (Financial Sector Conduct Authority, 2015). A policy does not 

necessarily lapse every time a premium payment has been missed. The policyholder is 

given a grace period to settle the payment prior to the lapse. The life insurance company 

is liable to pay out the benefit to the client, in the case where a claim is within the grace 

period. 

Most life insurance companies in South Africa have a premium collection system that 

automatically debits the client’s bank account on a specified day to avoid lapses. 

However, clients can dispute or reverse the payments. An increase in the lapse rate at 

an early stage of the policy will result in the insurance company not being able to recover 

the initial expenses incurred to obtain the policy or hidden costs which include advertising, 

company infrastructure such as the call centre, and administration costs (Vasudev, Bajaj 
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& Alegre Escolano, 2016). This may result in premium increases for future policies which 

impact the policyholders negatively. 

Data has always been at the heart of the insurance industry but because the life insurance 

industry is highly regulated, it is difficult for insurers to adapt to new technologies. 

However, there has been an increase in the use of artificial intelligence, robotics, and ML 

in areas such as fraud detection, underwriting, and claims processing within the insurance 

industry. In this study, future lapse rates of life insurance companies are predicted using 

nine ML classification models, namely; Decision Tree (DT); Gradient Boost (GB); Random 

Forest (RF); Support Vector Machine models trained with linear kernel (SVM-Linear) and 

polynomial kernels (SVM-Polynomial), Neural Network (NN) models trained with 

Levenberg-Marquardt (NN-Levenberg) and backpropagation; and Logistic Regression 

(LR) models with variable selection through forward (LR-Forward) and backward (LR-

Backward) processes. The models will be compared to each other based on their level of 

prediction accuracy and their generalisation ability. Two different datasets will be used for 

testing and validating the models. 

1.2 Problem Statement 

Modelling lapses is important to manage and control future risks or uncertainties that may 

arise in the insurance business. An increase in the lapse rate directly affects the 

company’s book size, pricing, statutory reserve, market-consistent embedded value, and 

other risk management decisions. A high rate of lapses will have a significant impact on 

premiums. It can damage the reputation of a company which will result in lesser new 

entrants and more policyholders lapsing (Eling & Kochanski, 2012). A huge number of 

unexpectant lapses may result in possible liquidation and insolvency of the company 

(Barsotti, Milhaud & Salhi, 2016). It is important for life insurers to properly assess and 

model their exposure to lapse risks and understand cancellations behaviour as accurately 

as possible (Biagini, Huber, Jaspersen & Mazzon, 2021; Barsotti et al., 2016). 
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1.3 Significance of Study 

The outcome of the dissertation will help the life insurance industry to make efficient 

retention decisions based on the models’ outcomes, and minimise risks associated with 

losing customers. It will help life insurers to efficiently plan finances, minimise the 

prediction uncertainties and alert the insurers to early warnings of cancellations. In the 

case of accurate model predictions, customers will benefit from reduced premium rates 

and enjoy the benefits that come with retention strategies. The study will also contribute 

to the existing academic literature. 

1.4 Aims and Objectives 

This dissertation aims to illustrate the predictive power of different ML classification 

models when predicting life insurance lapses; to measure the models’ sensitivity and 

generalisation abilities using different life insurance datasets; to illustrate the impact of 

different feature selection methodology on the models and to highlight features that 

directly drive lapses using in-depth data analysis. 

The hypothesis of the dissertation is to test that ML algorithms give better predictions than 

traditional methods when predicting lapses (i.e.,LR) and to test and compare the 

prediction power of ensemble models and single classifiers. 

The below subsections (1.5-1.9) discuss some of the features that have been found to 

trigger lapses and what is happening generally within the insurance industry. 

1.5 Lapse Determinants 

There are several reasons for policy lapses (Outreville, 1990; Carson & Forster, 2000; 

Russell, Fier, Carson & Dumm, 2013). These include the policyholder having found a 

competitive rate with another insurer, the policyholder becoming unemployed and no 

longer able to afford to pay premiums, and the insured no longer being interested in the 

product (Outreville, 1990; Carson & Forster, 2000; Russell et al., 2013). Policy lapses 

may also be influenced by economic risk factors such as tax relief, financial markets, 
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interest rates, inflation, GDP, and dynamics such as contract features, a firm’s reputation, 

competition, and regulations (Barsotti et al., 2016). 

Botha ( 2017) indicates that there is an increase in life insurance policy take ups amongst 

low-income earners, and this is the group that seems to be most at risk of lapsing policies. 

This has been highlighted as being unique to the South African context (Botha, 2017). 

The study also shows that income, savings, and debt are significant predictors of lapses. 

Valdez, Vadiveloo and Dias (2014) claim that individuals who usually cancel their policies 

do so because they have had the opportunity to look elsewhere, whereas those that stay 

are usually at a higher risk of death. Individuals with health risks and uninsurable issues 

do not usually lapse their policies (Valdez et al., 2014; Xong & Kang, 2019). Policy 

cancellations also depend on the age of the policyholder (Mojekwu, 2011). In Nigeria 

specifically, young people seem to take up policies and terminate them very early 

because of the economic challenges in Nigeria (Mojekwu, 2011), whereas in South Africa, 

young people do not consider taking up life insurance at an early age (Marx, 2018). 

Eling and Kochanski (2012) indicate that most insurance studies focus on environmental 

variables that impact lapses and not necessarily policyholder characteristics as individual 

data is confidential and not easily accessible. 

1.6 Insurance Solvency 

In South Africa, Solvency Assessments Management (SAM) has been implemented as a 

tool to monitor and avoid the insolvency of insurers (Sibindi, 2014). The SAM can be 

described as a risk-based regulatory framework for South African insurers that measures 

the financial soundness of a company (Deloitte Touche Tohmatsu Limited, 2016). It is 

largely based on Solvency II which is Europe’s risk-based regulatory framework. Features 

of SAM are however specific to the South African market (Deloitte Touche Tohmatsu 

Limited, 2016). 

SAM is based on three pillars: Pillar 1 measures the quantitative financial soundness of 

an insurer and is based on a company’s balance sheet and capital requirements; pillar 2 
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aims to measure the qualitative soundness of the insurer and to establish a system of 

sound governance and risk management; and pillar 3 looks at the reporting and 

disclosures (Deloitte Touche Tohmatsu Limited, 2016; Jansen van Vuuren, Reyers & van 

Schalkwyk, 2017). 

As part of the SAM balance sheet, insurers need to calculate two capital values namely 

Solvency Capital Requirement (SCR) and Minimum Capital Requirement (MCR). The 

MCR is the minimum capital that an insurer has to protect policyholders and continue to 

operate whereas the SCR is the minimum value that an insurer has to hold to remain 

solvent (Deloitte Touche Tohmatsu Limited, 2016). Different risks are considered as part 

of the calculation of the SCR namely, market risks and underwriting risks. Underwriting 

risks can be divided into different risks (Michorius, 2011) namely: 

1. Lapse risk – this is the risk of loss associated with the rates of policy lapses, 

surrenders, terminations, and renewals. Lapse risk is a significant contributor to 

underwriting risks (EIOPA, 2011; Barsotti et al., 2016). 

2. Mortality risk – this is the risk of loss that is associated with mortality rates. An 

increase may result in an increase in insurance liability. 

3. Longevity risk – this risk is also associated with mortality rates where a severe 

decrease may result in increased insurance liability. 

4. Disability risk – the risk of loss that is associated with the rate of disabilities, 

sickness, and morbidity. 

5. Life expense risk – the risk of loss that results from the expenses that are 

associated with servicing insurance and reinsurance contracts. 

6. Life catastrophe risk – this is a risk of loss that is associated with catastrophic 

events that may occur; this risk may result in significant uncertainties in pricing 

(Michorius, 2011). 

7. Retrenchment risk –this is a risk of loss that is associated with adverse change in 

insurance liabilities, resulting from changes of retrenchment inception rates used 

in pricing.  
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A study conducted by KPMG (2019) illustrates that most insurance companies become 

insolvent mainly because of poor risk and decision management, and by the time the 

company is declared insolvent there is usually nothing that can be done to save them. 

Barsotti et al. (2016) indicate that regulators and risk managers must understand lapse 

dynamics so that they can identify the real risks embedded in the life insurance contracts 

and exposure to massive lapses, surrenders, and cancellations. 

1.7 International Financial Reporting Standards – Insurance Contracts 

The implementation of International Financial Reporting Standards (IFRS17) which is set 

to become effective in 2023 has been a headache for most insurers. The implementation 

affects more than 450 listed insurers that are using IFRS17 standards (Yeoh, 2017). 

These include life, non-life, and re-insurers. IFRS17 is a profit reporting tool that was 

implemented to give standard accounting reporting so it would be easy to compare 

business performances across the globe. The standards are set by the International 

Accounting Standards Board. 

IFRS17 was implemented with the aim of better alignment, consistency, and transparency 

in the insurance industry. It is not aimed at changing how insurers run their businesses 

but how they report on them. It replaces the currently used IFRS4, which was introduced 

in 2004 as an interim standard with the aim of solving some of the comparison issues that 

were created by IFRS4. 

The IFRS4 allows companies to use their own local accounting reporting to measure 

insurance contract issues (International Accounting Standard Board, 2017). The IFRS17 

focuses mostly on three ideas namely, that the future cash flow of an insurer should be 

calculated based on current assumptions rather than historic liability calculations; 

measurements must allow for risk adjustments; and insurers must report on all financial 

earnings and not just the finances that have been received through contractual service 

margins (PWC, 2017). 
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According to the PWC (2020) report, IFRS17 has the potential to harness the data, 

improve financial reporting, and improve decision making. However, the implementation 

will affect a lot of business areas such as finance, actuarial systems, product designs, 

remuneration policies, budgeting, and forecasting methodologies. 

1.8 Internet of Things and Cyber Risk in Insurance 

Internet of things (IoT) refers to the ability to connect devices, objects, and systems to 

other devices through the internet to leverage data collection. According to an article 

produced by Behm, Deetjen, Kaniyar, Methner and Münstermann (2019) from McKinsey 

& Company, IoT will change the world in the coming years and devices will be a huge 

part of that change. They also mention that 127 new devices are connecting to the internet 

every second (Behm et al., 2019). Network devices owned by people increased from 12.5 

billion in 2010 to 25 billion in 2015, and it is estimated to increase to 50 billion in 2025 

(Behm et al., 2019). IoT allows real-time data collection through several devices which 

could help insurers with real-time analysis that can improve accuracy in predictions, can 

reduce fraud, and can help facilitate processes like claims quickly. In life insurance 

specifically, some insurers have included wellness programmes to track blood pressure, 

daily steps, and other health routines through digital devices such as smartphones and 

wearable devices. With the huge amount of data being constantly updated and collected 

through IoT, insurance companies will be able to customise products for the insured and 

improve customer experience. Underwriting could provide real-time pricing and according 

to Morgan (2018), IoT can cut the cost of claims by 30% which can lead to decreased 

premiums. The huge concerns of IoT are regulations and data privacy. 

As much as data, software, hardware, and IoT are generally increasing, the hacking of 

devices is also increasing. Cyber security is information technology security that protects 

cyber environments (e.g., systems, networks, and data) of an organisation from 

unauthorised attacks (Seemma, Nandhini & Sowmiya, 2018). Cyber risk has been 

mentioned by Fintechfutures (2019) as one of the top seven challenges that are faced by 

insurance companies. Similarly, PWC (2020) has ranked cyber risk as a principal concern 

of insurers in South Africa and it was on the top five concerns globally. Cyber risk is, 
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however, more of a concern in the short-term insurance industry than in the long-term 

insurance industry. Recently (i.e., August 2020), Experian, which is a credit information 

agency in South Africa, was exposed to a data breach that affected approximately 24 

million South Africans and 793,749 business entities. Insurers collect a vast amount of 

personal data and therefore it is one of the prime targets for cyber criminals activities such 

as identity theft and financial gain through extortion (IAISConsultation, 2019). Cyber 

security incidents can damage the reputation of a business and cause disruption of the 

business which may result in a significant loss. 

1.9 Big Data Governance 

The insurance sector is driven by a large, increasing amount of granular and detailed 

data, both structured and unstructured, which traditional processing technologies cannot 

handle (Badr , Mohamed & Mohamed, 2018). Big data technologies have changed the 

way insurers collect, analyse, and manage data effectively (Boodhun & Jayabalan, 2018). 

Traditionally, insurers used to deal with structured data only for analysis and business 

decisions. Currently, it is important to consider unstructured datasets that can be collected 

through social media which could have an impact on an insurer’s brand, products, and 

customers’ perception of the insured (Badr et al., 2018). The current challenge of insurers 

is to identify the unstructured datasets that have the potential to give the greatest value 

(Badr et al., 2018). 

Big data is currently dominating areas such as fraud detection, pricing optimisation, 

customer experience and insight, automation, risk assessments, and marketing (Badr et 

al., 2018). According to Boodhun and Jayabalan (2018), life insurance companies are still 

reliant on standard actuarial formulas to predict mortality rates, premiums, and lapses. 

However, there have been developments in carrying out predictive modelling to improve 

business performance. As much as big data is an exciting revelation in the insurance 

industry, the great benefits come with risks. Regulation and governance of such platforms 

are very important to protect both the policyholder and insurer. The Organisation for 

Economic Co-operation and Development (OECD) and the Commission’s Independent 

High-Level Expert Group on Artificial Intelligence (HLAG AI) have published ethics 
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guidelines on areas of AI in insurance that should be monitored for trustworthy AI. Based 

on the guidelines, AI should be lawful (respecting all laws and regulations), ethical and 

robust, it must be able to contribute to a fair and just society, and all implementations 

must be traceable (OECD, 2020). The guidelines also illustrate requirements that big data 

and AI should meet for them to be certified as trustworthy (OECD, 2020): 

1. Human agency and oversight – AI systems must empower people and respect 

their human rights. 

2. Technical robustness and safety – AI systems must be secure, accurate, reliable, 

resilient, and reproducible to minimise unintentional harm. 

3. Privacy and data governance – adequate mechanisms and policies must be 

implemented to ensure data protection and privacy and prevent misuse of data. 

4. Transparency – the system must be always transparent, ensuring that users are 

aware when they are interacting with AI systems, and they should know all the 

capabilities and limitations of the system. 

5. Diversity, non-discrimination, and fairness – AI systems must be fair and be 

accessible to all. 

6. Societal and environmental well-being – AI systems must be environmentally 

friendly, and they should take into account their social and societal impact. 

7. Accountability – mechanisms should be put in place to ensure accountability of AI 

systems and their outcomes. A proper audit must be done on the data, algorithms, 

and processes. 

1.10 Overview of the Dissertation Structure 

The rest of the dissertation is structured as follows; Chapter Two reviews literature, 

highlighting the detailed theory of ML models and their applications in the life insurance 

industry. It also discusses the gaps in previous literature and how this dissertation fills 

those gaps. Chapter Three discusses the models’ setup and gives a detailed view of how 

the models were assessed. It also discusses and interprets the models’ results. Chapter 

Four concludes the dissertation with a summary, findings, limitations of the study and 

future work. 
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CHAPTER TWO 

 LITERATURE REVIEW 

 

This chapter discusses ML algorithms and critically reviews the methods that were 

considered for this study i.e., LR, support vector machine and NN. It also discusses their 

common applications within the life insurance industry, their successes, their general 

limitations, and limitations observed within life insurance. The chapter further discusses 

the common challenges that may arise when setting up a ML experiment based on 

literature. 

2.1 Methods 

Artificial Intelligence (AI) and ML have become part of everyday life and their applications 

are likely to increase in the near future. Machine learning (ML) is based on a hypothesis 

that machines should learn and improve through experience (Alzubi Nayyar & Kumar, 

2018; Lake, Ullman, Tenenbaum & Gershman, 2017). There are three types of learning, 

namely, supervised learning, unsupervised learning, and reinforcement learning (Burri, 

Burri, Bojja & Buruga, 2019). Supervised learning is a ML task that uses a training dataset 

to learn the mapping function from input to target (labelled responses) by looking at 

several input-output examples (Nasteski, 2017). Unsupervised learning is a ML task that 

only considers input data without a labelled target to make inferences (Nasteski, 2017). 

Supervised learning is the most used ML technique in the insurance industry (Burri et al., 

2019). 

Machine learning (ML) is a well-established concept in the life insurance industry. 

However, insurers use mostly Generalised Linear Models (GLMs) for lapse predictions. 

A GLM is defined as an algorithm that models the relationship between a dependable 

variable whose outcome will be predicted (target variable) and one or more explanatory 

variables (Goldburd, Khare, Tevet & Guller, 2016). It is a statistical technique introduced 

by Nelder and Wedderburn (1972). It was first applied in insurance rating by Cheek, 

McCullagh and Nelder (1990). Generalised Linear Models (GLMs) have been widely 
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applied since then in non-life insurance rates and have become a standard tool for ratings 

(Duan, Chang, Wang, Chen & Zhao, 2018). Examples of GLMs include linear regression, 

Analysis of Variance (ANOVA), Analysis of Covariance, LR, Poisson Regression, and 

multinomial response. Actuaries in the insurances sector prefer GLMs to model lapses 

because GLMs can capture many input variables, they can capture interactions between 

input variables, they can easily be translated to actuarial software such as prophet and 

EARNIX, and computational time is lesser than most ML algorithms (Ducuroir, Zians & 

Miller, 2016; Hendrych, 2019). 

2.1.1 Logistic regression 

Logistic Regression (LR) is a modelling technique that predicts the probability of a binary 

response based on one or more independent variables using a link function, meaning that 

there can only be two outcomes, 0 or 1; therefore, in this dissertation, lapse or non-lapse 

(Chakure, 2019). Predicting lapse rates is a classification problem. Classification models 

are predominantly used in data science, making them a principal component of ML (Soofi 

& Awan, 2017). The main aim of classification is to find the decision boundary that 

separates the data into distinct classes (Chakure, 2019). 

In GLMs, a link function links nonlinear relations of responses (0;1) to linear predictors 

that are unbounded (-∞, ∞). There are three commonly used link functions in LR; namely, 

Logit, Probit and Complementary log-log functions (Damisa, Bello, Ajadi, Agboola, Tasi’u 

& Musa, 2017; Prasetyo, Kuswanto, Iriawan & Ulama, 2019; Mauchant, Rice, Riley, 

Leber, Samarov & Forster, 2011). 

Logit function is the mathematical function that takes any form of a linear combination of 

predictor variables and converts it into two distinct classes (0,1). It uses the cumulative 

distribution function (CDF) of a standard logistic distribution to enforce probabilities to fall 

between 0 and 1 (Damisa et al., 2017; Prasetyo et al., 2019; Mauchant et al., 2011). 
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 It is described by equation 2.1 (Boateng & Abaye, 2019). 
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(2.1) 

 

where, 

•  𝑦, is the dichotomous outcome. 

• 𝜒1, … … , 𝜒𝑘, are the predictor variables such as sum insured, premium frequency, 

entry age, policy term, gender, and type of cover. 

• 𝛽0, 𝛽1, … … , 𝛽k, are the regression (model) coefficients, 𝛽0 is the intercept. 

• 𝑝 is the proportion of the data with lapse outcome, 1 − 𝑝 is the probability of non-

lapse. The ratio (i. e.  
𝒑

𝟏−𝒑
 ) is called the ratio of odds and the logit is therefore the 

logarithm of odds. It measures the strength of the relationship between the 

predictor and response variables (Young, Simon & Pardoe, 2014). 

 

The inverse of a logit function is a logistic function. It is often called a sigmoid function 

and resembles an s-shape (Bernstein, 2016). 

Probit link uses the inverse CDF of a standard normal distribution to enforce probabilities 

to fall between 0 and 1 (Damisa et al., 2017; Prasetyo et al., 2019; Mauchant et al., 2011).  
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It is described by equation 2.2 (Piegorsch, 1992). 

 

1Probit(y)=Φ ( )y− , 
 

(2.2) 

 

 

Complementary log-log (cloglog) uses a cumulative function distribution of the standard 

extreme value-distribution to convert real numbers to 0;1 (Mauchant et al., 2011). Cloglog 

is represented by equation 2.3 (Piegorsch, 1992). 

 

loglog( ) log{ log(1 )}c y p= − − , 

 

(2.3) 

Both logit and probit are symmetric, meaning that the link approaches 0 and 1 at the same 

pace whereas cloglog is asymmetric. Literature shows that logit and probit usually yield 

similar results because of their symmetric nature, whereas the cloglog function will give 

different results but similar substantive conclusions as both logit and probit functions (Gill, 

2001; Mauchant et al., 2011). Gill (2001) recommends using the logit function as it can 

handle outliers and the data with too much variability as compared to both probit and 

cloglog. 

Fitting the LR model requires that we estimate the values of unknown coefficients or 

parameters, 𝛽0, 𝛽1, … … , 𝛽k. Parameters reflect the association between independent and 

dependent variables (Park, 2013). Data points are usually fixed, and one might need to 

play around with parameters to maximise probabilities. Least Square Estimation is the 

commonly used method to estimate parameters in a linear model. Logistic Regression 

(LR) parameters are commonly estimated using Maximum Likelihood Estimator (Bewick, 

Cheek & Ball, 2005). 
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Given unknown parameters 𝛽0, 𝛽1, … … , 𝛽k, a likelihood function tells us the probability of 

observing or reproducing the original data, thus, how well parameters explain the data 

(Park, 2013). For observed data 𝜒1, … , 𝜒𝑛 and y1, … , y𝑛 , the likelihood function is 

described by equation 2.4 (Park, 2013). 

1

1

( / ) (1 ( / ))i i

n
Y Y

i

L p y x p y x
−

=

=  −
, 

 
 

(2.4) 

 Log of likelihood is represented by equation 2.5. 

1 1

log( ) log[ ( / )] n log[1 ( / )]
n n

i i
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= =

 
= =  + − − 

 
, 

 
 

(2.5) 

 

The maximised likelihood estimator is the maximum value of the parameter for which the 

probability of reproducing the observed data is maximised. 

Assessment of the overall significance of the fitted model can be determined by using the 

likelihood ratio test (LRT). The LRT tests the deviance of the likelihood under the full 

model, thus the model with all predictor variables and the likelihood of a null model, thus 

a model with intercepts only. The LRT is represented by equation 2.6 (Newsom, 2021). 
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(2.6) 

 

where 1L  is the likelihood of the full model and 0L is the likelihood of the null model. The 

estimated value of 2G  is approximately equal to the Chi-squared value with the degree 

of freedom (df) equal to the number of predictors in the model (Newsom, 2021). If 
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significant, that means the combination of predictors contributes significantly to the 

outcome. The LRT can also test the likelihood under the full model and the likelihood 

under the reduced model, where reduced means dropping some of the predictor 

variables. 

 

Alternatively, the Wald test statistic is used to assess the goodness of fit and to assess 

the contribution of each predictor in the fitted model. It is the ratio of a squared coefficient 

to the squared standard error of the coefficient. It can be represented by equation 2.7 

(Abbas & Mohammed, 2020). 

2
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j

j

j

W
SE 


= , 

 

(2.7) 

A major challenge when building a logistic model is selecting the variables to be included 

in the model. Some researchers collect as many variables as possible for their logistic 

model, however, it is easier to miss the link between the explanatory variables and the 

event occurrence if the model has too many variables. 

A model with too many features may result in increased multicollinearity, variables 

redundancy, overfitting of the model due to optimistic results on the training sets and not 

on testing and validation sets (Chowdhury & Turin, 2020). It is vital to ensure that all 

significant variables are used to train the model. 

There are three common variable selection methodologies (i.e., forward variable 

selection, backward variable selection, and stepwise variable selection). In forward 

variable selection, the model is started with no variables, then iteratively adds the 

significant ones individually until the set stopping criteria (p-values less than the 

threshold) or until all the significant variables are added (Austin & Tu, 2004); whereas, 

with the backward variable selection, selection starts with the full set of variables, then 

iteratively eliminate the insignificant ones until stopping criteria or until there are no more 

variables to be eliminated. Stepwise is a combination of both forward and backward 

selection (Austin & Tu, 2004). It allows selection procedures to move in both forward and 
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backward directions. The process allows dropped variables to re-enter the model and be 

re-evaluated (Chowdhury & Turin, 2020). 

Multicollinearity refers to a situation in which two or more explanatory variables are highly 

related to each other. In regressions, multicollinearity increases the standard errors of 

coefficients, making some independent variables to be less significant (Akinwande, Dikko, 

& Samson, 2015). A little bit of multicollinearity is usually not an issue (Akinwande et al., 

2015). 

The use of Variance Inflation Factor (VIF) is commonly used to assess the amount of 

multicollinearity that exists within the model. The VIF reflects how much the variance of 

an estimated regression coefficient increases when predictors are correlated. A VIF 

greater than five reflects problematic multicollinearity and should be dealt with to 

decrease the multicollinearity that exists within the model. The solution to deal with 

problematic multicollinearity is to remove highly correlated predictor variables (Akinwande 

et al., 2015). 

Some of the advantages of LR include their ability to provide good accuracy, they are 

quick to train, they are good at classifying unknown records, overfitting is usually minimal, 

they do not assume a linear relationship between independent and dependent variables, 

and they do not make assumptions about class distributions that are in the feature space 

(Schreiber-Gregory & Bader, 2018; Chakure, 2019). Some of the drawbacks include their 

sensitivity to outliers and the data must be large enough for a stable good performance. 

2.1.2 Support vector machines 

Support vector machine (SVM) was first introduced by Boser, Guyon and Vapnik (1992) 

at the fifth annual association for computing machinery workshop. The study of SVM has 

become a very popular area in ML. It is well known for its strong ability to classify the data 

(Rustam & Ariantari, 2018). The algorithm is widely used in mathematics, science, 

biology, finance, economics, and biotechnology. It can model complex problems such as 

text classification, hand-writing recognition, and complex numbers (Girma, 2009). It can 
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solve both linear and nonlinear issues. Support vector machines (SVMs) work by mapping 

data to a high dimension space, then finding the best hyperplane that separates the data 

into two categories (Rustam & Ariantari, 2018). Sometimes it may be found that the data 

is not linearly separable, and the machine must find the best separating line. 

On linearly separable data, SVM searches for the closest points in order to find the 

separating line; the closest points to the separating line are called support vectors 

(Berwick, 2003). In Figure 2.1, if the blue square points represent lapses, and the green 

cycle represents policies that have not lapsed, linearly separable data can easily be 

classified by drawing a straight line. 

 

Figure 2.1: Linearly Separable Data (Skilltohire, 2020) 

The boundary between the linearly separable support vector points is called a hyperplane 

and the distance between two categorised support vectors is called a margin. As shown 

in Figure 2.2, multiple straight lines (hyperplanes) can be fitted on the linearly separable 

data. The maximum margin hyperplane is a hyperplane that maximally separates two 

classes ( blue and greens); this can be regarded as the best hyperplane (Girma, 2009; 

Awad & Khanna, 2015; Rustam & Ariantari, 2018). 
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Figure 2.2: Optimal Hyperplane (Skilltohire, 2020) 

In the real world, data is usually randomly distributed and inseparable, meaning it cannot 

be separated by just fitting a straight line. In such cases, SVMs introduce kernel tricks to 

tackle the issue of linearly inseparable data. As illustrated in Figure 2.3, kernel tricks 

transform the original inseparable data (Figure 2.3 left) into a linearly separable one 

(Figure 2.3 right) by projecting it into a higher dimensional feature space then applying a 

linear classifier in that space. 

 

Figure 2.3: Linearly Inseparable Data; Kernel Trick (Wilimitis, 2018) 

The kernel function maps the transformed data by measuring the similarity of two vectors 

in any dimension space (Genton & Zhang, 2004). Kernel function takes the dot product 

of transformed vectors. In a case when the dot product is smaller, it can be concluded 

that there is no similarity in vectors. The main aim of kernels is to place the data in the 
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feature space, then apply linear algorithms in that feature space to identify the patterns 

(Genton & Zhang, 2004). A good kernel should enlarge the separation between the two 

classes (Williams, Li, Feng & Wu, 2005). Kernel functions can be represented by equation 

2.8 (Savas & Dovis, 2019). 

K(𝑥, 𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩, 

 

(2.8) 

where 𝑥 and 𝑦 are input vectors, 𝜙 is a transformation function, and <,> represents the 

dot product function. The linear kernel is the most used kernel function, especially in text 

classification problems as most of the text classification cases are linearly separable. It 

gives the best performance when there are many explanatory variables. It is very basic 

and faster as compared to other kernel functions. It is represented by equation 2.9 

(Brandusoiu & Toderean, 2013; Savas & Dovis, 2019). 

( ), T

i j i jK =x x x x , 

 

(2.9) 

The radial basis function kernel (RBF) is stationary and can be used when there is no 

prior knowledge of the data. It is represented by equation 2.10 (Brandusoiu & Toderean, 

2013; Savas & Dovis, 2019). 

( ) ( )2
, expK x y x y= − − , 

 

(2.10) 

where x and y are input vectors, 
2

x y−  is the squared distance, gamma measures the 

distance and the influence of two vectors/points on each other. The best gamma can be 

determined through cross-validations. Cases when two vectors are close together then 
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x y− will be smaller and therefore 
2

x y − will be larger for 0  , meaning, the closer 

the vectors, the larger the RBF. 

The polynomial kernel is a non-stationary kernel. It is well suited for a normalised or 

standardised training set. It can be represented by the below equation 2.11 (Brandusoiu 

& Toderean, 2013). 

( ) ( ),
d

TK x y x y r= − + , 

 

(2.11) 

where d represents the degree of the polynomial. The flexibility of classifiers depends on 

the degree of polynomials. The lowest degrees of polynomials are similar to linear 

kernels, whereas higher ones allow flexibility in decision boundaries as compared to linear 

kernels (Savas & Dovis, 2019). 

The kernel must satisfy Mercer’s theorem, that is, it must be positive semi-definite. 

Although sigmoid kernels are widely used, the sigmoid kernel matrix is however not 

positive semi-definite for some of the parameters (Lin & Lin, 2003). A sigmoid kernel is 

represented by equation 2.12 (Lin & Lin, 2003). 

( ) ( ), tanh T

i j i jK r= +x x x x ,  (2.12) 

where (  and r ) are parameters. For 0  ,  can be described as scaling parameters 

of the input samples and r  represents the shifting parameter that controls the threshold. 

SVM may perform worse than random if the parameters ( , r) are not chosen carefully. 

Sigmoid functions are usually outperformed by RBF (Lin & Lin, 2003). 

Hossain and Miah (2016) evaluated six kernel functions: namely, RBF-Gaussian, 

polynomial, linear, sigmoid, laplacian and ANOVA RBF. The models were evaluated 

using Area Under Curve (AUC) and F1 scores. Linear models outperformed other kernel 

functions in terms of the AUC. The study by Nanda, Seminar, Nandika and Maddu (2018) 
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showed the superiority of the polynomial kernel over linear, RBF and sigmoid, whereas 

RBF outperformed linear and 3rd-degree polynomial kernels in the study by Yekkehkhany, 

Safari, Homayouni and Hasanlou (2014). These show that the performance of the kernel 

function is highly dependent on parameter setups, optimisations and tuning. 

As with many ML algorithms, the robustness of SVMs depends on how well parameters 

are adjusted. In a linear kernel, there is only one important parameter to optimise which 

is C, in the RBF kernel and sigmoid kernel there are 2 parameters: C and gamma, while 

a polynomial kernel has 3 parameters: C, gamma and polynomial degree (Syarif, Prugel-

Bennett & Wills, 2016). 

Cost parameter (C) which is the regularisation parameter determines how much 

misclassification you would allow in the model. The performance of SVM is highly 

dependent on this parameter. Smaller C results in lower misclassification, that is, it 

behaves as a soft margin and larger C results in high misclassification, thus, it behaves 

as a hard margin. A hard margin hyperplane aims for a perfect classification, whereas, 

soft margin hyperplane will classify “most” of the data accurately while keeping the margin 

as wide as possible to avoid overfitting (Awad & Khanna, 2015). A small gamma value (

 ) reflects larger margins in the learned model, whereas large gamma reflects a small 

margin which may lead to overfitting (Suksut, Kaoungku, Kerdprasop & Kerdprasop, 

2017). 

Grid search is the commonly used method to optimise SVM parameters (Liu & Xu, 2013). 

The main idea behind the methodology is to find the optimal parameter based on the 

highest score criterion through an exhaustion search (Liu & Xu, 2013). Grid search 

creates a model for each combination of parameters. The models are evaluated through 

cross-validation. For grid search to work, you need to predefine the searching ranges (Liu 

& Xu, 2013). The methodology can however be time-consuming, especially, when 

classification accuracy is used as a measure of performance (Liu & Xu, 2013). 

Some of the advantages of SVMs include their ability to work well in high dimensional 

spaces, their risk of overfitting is minimal, they are effective when the marginal separation 
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between classes is clear, and with the right kernel functions, they can solve most of the 

complex problems. Disadvantages include their difficulty in choosing a kernel function 

and they tend to underperform when features of a data point are more than the data 

sample (Statinfer, 2019). 

2.1.3 Neural networks 

Neural Networks (NN) can be described as multi-layered, nonlinear regression models. 

Based on Nazari and Alidadi (2013), and Panchal and Panchal (2014), NNs are useful 

for tasks such as pattern recognition, classification, data mining, and medical diagnosis. 

They have been proven to be successful in sectors such as finance, medicine, 

engineering applications, geology, and physics (Pukała, 2016). 

A NN is a series of neurons or nodes that passes information from one neuron to the 

other. It comprises neurons, weights, bias, and the activation function. Neurons are 

grouped in different layers; namely, the input layer, the hidden layer, and the output layer. 

An input neuron receives information from the outside world in the form of patterns then 

passes the information to the hidden neurons (Alsaadi & Maad, 2019). The hidden 

neurons map internal patterns and pass the information to the output. Neurons are 

connected through edges and every edge has a weight value associated with it (Alsaadi 

& Maad, 2019). The weight measures the strength and influence of the input on the output 

neurons. The weights range from negative to positive where zero reflects that there is no 

influence of the input neuron on the output neuron. The goal is to update these weights 

to decrease the loss error. 

Figure 2.4 shows a high-level overview of a three-layered NN with 3 inputs, 8 hidden 

units, thus, 4 in the hidden layer 1 and 4 in the hidden layer 2, and an output layer 

(Hongsheng, 2021). 
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Figure 2.4: High Level Overview of a 3 Layered Neural Network (Hongsheng, 2021) 

Neural networks (NNs) can be represented by the formula below: 

1

1

n

i

i

Z a w b
=

= + , 

 

 

(2.13) 

where, 

• ia  represents the impute from 1 to n  

• w  represents the weight of parameters. 

• b  represents the bias: This is a special extra input to the neurons; it is always 1. It 

can be used as a threshold to determine if the activation function should move 

forward or backwards. 

The activation function calculates the weighted sum of inputs and add bias, then decides 

whether a neuron should be activated or not. It introduces nonlinearity into the neuron 

outputs by transforming the summation that is usually unbounded (-∞, ∞) to a value that 

is between 0 and 1 or -1 and 1 depending on the selected activation function (Feng & Lu, 

2019). Without the activation function, the output of a layer will basically be the linear 

function of the previous layer (Feng & Lu, 2019). 
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The commonly used activation functions are sigmoid function, Tangent hyperbolic 

function (Tanh) and Rectified linear activation function (ReLu). The sigmoid function in 

NNs is similar to the sigmoid function in LR. It is nonlinear, it transforms unbounded inputs 

into the range 0 and 1 and it resembles an s-shape (Feng & Lu, 2019). This activation 

function is mostly used in classification problems where the output is expected to be 

between the range of 0 and 1. The major drawbacks of the sigmoid function include 

vanishing gradient on gradient-based methods such as backpropagation. The issue 

means that the gradient weight on the network becomes exponentially smaller and 

approaches zero as they go through multiple layers, making it difficult for the model to 

update the weights (Hu, Zhang & Ge, 2021). The network will then learn slowly or refuse 

to learn further (Szandała, 2020). 

Sigmoid functions are non-zero centred, meaning, they always produce nonnegative 

values. A big change in the input value may result in a very small impact on the output 

value as it must conform to a small range (Datta, 2020). The sigmoid function is given by 

equation 2.14 (Feng & Lu, 2019). 
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(2.14) 

Tanh transforms unbounded real number output into the range of -1 and 1. Larger values 

will be closer to 1 and smaller values will be closer to -1. It is similar to the sigmoid function 

except that it is zero centred. It however suffers the issue of vanishing gradients as well. 

It is more preferred than sigmoid because the convergence is faster as the outputs are 

zero centred.  

 

 

 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
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Tanh function is given by equation 2.15 (Feng & Lu, 2019). 
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(2.15) 

ReLu is the widely used activation function since its invention (Feng & Lu, 2019; Hu et 

al., 2021). It often outperforms both sigmoid and tanh. As indicated in equation 2.16 (Feng 

& Lu, 2019), it squashes the negative values into zero, however, positive values outputs 

are unbounded. Squashing all negative values to zero creates a special case of vanishing 

gradients as many neurons become inactive and output the value 0 (Hu et al., 2021). It is 

computationally efficient and very quick to converge as opposed to tanh and sigmoid 

functions. 
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(2.16) 

Commonly used NNs are Feedforward Neural Network (FNN) and Recurring Neural 

Network (RNN) algorithms. A FNN is a class of NN where information moves in one 

direction (forward) from the input through hidden layers to the output. There is no 

connection between all the nodes that are on the same layer (Du & Swamy, 2014). 

An RNN is a class of NNs where information can move both forward and backward 

(recurrent) by introducing loops in the network. The connection provides the network with 

the visibility of both the initial information and current information, then builds an output 

based on the entire history (Rautio, 2019). 

Various algorithms are used in training NNs (Vahedi, 2012). The most common one is 

backpropagation. Backpropagation is a NN training and optimisation algorithm that aims 

to minimise the cost function by adjusting parameters (weight and bias), thus minimising 
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the distance between predicted and true value (McDonald, 2017). At the initial stage, 

weights are chosen randomly, and backpropagation will then compute the weights’ 

adjustments iteratively until the error is minimised (Stoyanova, 2017). 

Traditional NNs suffered generalisation abilities (Gunn, 1998). SVM algorithm was 

introduced to solve generalisation issues in traditional NNs and to serve as alternative 

training method for conventional NNs. SVM is based on the Structuctural Risk 

Minimisation (SRM) principle which outperforms the traditional Empirical Risk 

Minimisation (ERM) principle employed by conventional NNs (Gunn, 1998). The main 

difference of the two principle is that SRM aims to minimize the upper bound of 

generalisation error, whereas the ERM minimises the error in the training set (Gunn, 

1998). 

Some of the advantages NNs includes their parallel computing capabilities, they can 

handle missing data, they do not assume a normal distribution, and they can tolerate 

faults – meaning that the corruption of cells will not prevent it from continuing with the 

process (Mahanta, 2017; Mijwil, 2018). It is, however, known to be a black box 

methodology because it is difficult to interpret how the results were calculated (Zhang, 

Beck, Winkler, Huang, Sibanda & Goya, 2018). 

2.1.4 Decision trees 

Decision Trees (DT) build classification or regression models in the form of a tree 

structure and are mostly used as a regression or classification tool. The tree is referred 

to as a classification tree when it is used for classification problems and as a regression 

tree when performing a regression task (Rokach & Maimon, 2014). The algorithm breaks 

down the input dataset into subsets. Each subset is defined by a specific set of rules and 

measures. The tree can grow until it reaches specific criteria or rules (Pohjalainen, 2016). 

A good split of the tree is regarded as the pure one – meaning that one class must be 

predominant. Impurity measures can be defined as measures of how well the classes are 

separated. Decision trees (DT) use entropy as impurity measures and information gain 

for the selection of features that would provide the best split of the data. Information gain 
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is the difference in entropy before and after the split. Given a collection S of c outcomes, 

entropy can be defined by equation 2.17 (Yang et al., 2007). 

2 Entropy ( ) ( ) log ( )S p I p I= − , 

 

(2.17) 

where   ( )p I is the proportion of  S  that belongs to class  I .Information gain for set S  

given atribute A  can be represented by equation (2.8) (Yang et al., 2007). 
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(2.18) 

where, vS  is the subset of S  and attribute A  has value V . 

Accuracy can be affected if the tree is too complex. The complexity of the model will lead 

to overfitting (Breiman, Friedman, Olshen & Stone,1984). Therefore, any additional 

splitting of the tree that does not make any difference to the impurity is not useful. The 

complexity of the tree can be measured by the number of nodes, leaves, and attributes it 

consists of (Rokach & Maimon, 2014). 

The common tree stopping rules are (Patil, 2013): 

1. When the tree reaches its maximum depth. 

2. When all the training sets belong to the same class. 

3. When the cases in the terminal are lesser than the minimum cases in the parent 

node. 

2.1.4.1 Decision trees pruning methods 

Employing strict stopping criteria can result in under fitted models, whereas loosening the 

stopping criteria may result in an overfitted tree (Patil, 2013). Pruning can be defined as 
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the process whereby the tree is being reduced by removing sub-branches that provide 

little power to the generalisation accuracy (Badr et al., 2018). These processes help in 

reducing model over/underfitting. The criterion for pre-pruning is that when the error of 

the parent is lesser than the child then prune, else do not prune. Usually, the method is 

done in a bottom-up fashion. 

Some commonly used pruning methodologies include the reduced error pruning method 

which is the method that seeks to replace the internal nodes with the most frequent class 

with the aim of improving the accuracy (Rokach & Maimon, 2014). It will continuously 

check and evaluate if replacing the nodes makes any difference to the accuracy. The 

process will continue until further pruning will decrease the accuracy of the model 

(Rokach & Maimon, 2014). Critical value pruning is the most used pruning method. The 

method sets a threshold then prunes all the nodes that do not reach that critical value 

(Mingers, 1989). If the critical value is set to be large enough, the resulting tree will be 

smaller (Mingers, 1989). The minimum error-based pruning method looks at the single 

tree that yields a minimum error rate for independent datasets (Cai, 2006). The method 

consists of the below steps (Cai, 2006): 

1. Calculate the expected error rate for pruned subtree at each non-leaf node. The 

equation of calculating the expected error rate is as follows (Cai, 2006): 

1c
k

n n k
E

n k

− + −
=

+
, 

 

(2.19) 

where k  is the number of classes for observation, n  assumes that the greatest 

number of observations n𝑐 lie in class c  

2. Calculate the expected error rate if the node is not pruned taking into consideration 

the weight of a node. 

3. Do not prune the node if the expected error rate is higher. 
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2.1.4.2 Classification and regression trees 

Classification and regression trees (CART) work by constructing trees consisting of only 

two internal edges. The splitting is through towing criteria whereas the pruning is through 

the cost complex pruning method (Patil, 2013; Rokach & Maimon, 2014). The aim is to 

find splits that can minimise prediction squared errors (Rokach & Maimon, 2014). 

2.1.4.3 Iterative dichotomiser3 

Iterative Dichotomiser 3 (ID3) builds a DT in a top-down fashion based on specification 

properties. The method iterates through all unused attributes and calculates their entropy 

or information gain (Sakkaf, 2020). It then makes a node based on the attributes with the 

lowest entropy or highest information gain. Based on the values of the attributes, 

branches can be established. The methodology is recursive; the process will continue to 

create other nodes and branches until the tree classifies all the objects in the training set 

correctly. This technique was designed to deal with large induction tasks with training 

datasets containing many attributes (Troles, 2016). Based on a study by  Quinlan (1986) 

with only a few iterations, the method is capable of finding a perfect DT with up to 30 000 

objects and 50 attributes in the training set. The disadvantage of the model, however, is 

that the information gain can result in a multi-value bias when selecting attributes. Other 

drawbacks include the inability to handle missing data very well, the tree size may be 

difficult to control, and may require a lot of rules to be set (Wang et al., 2017). 

2.1.4.4 C4.5 

C4.5 methodology uses gain ratio instead of information gain to overcome the multi-value 

bias that may result from the ID3 methodology (Wang et al., 2017). The methodology is 

an extension of ID3 (Wang et al., 2017). It aims at dealing with issues that ID3 cannot 

address such as: 

• Overfitting – the methodology prunes the tree after it has been created by removing 

all the branches that do not have any impact on the overall accuracy and replacing 

them with leaf nodes. 
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• Handling missing values – the methodology allows missing values as imputes; the 

values will not be used to calculate both entropy and information gain. 

• Handling continuous attributes – the methodology creates a threshold that will split 

the data where anything less than the threshold will be on the left node and 

everything above the threshold will be on the right node. 

 2.1.4.5 Chi-squared automatic interaction detector 

Chi-squared automatic interaction detector (CHAID) assesses the predictor variable to 

find values that are least significantly different from the target attribute (Patil, 2013). 

CHAID methodology splits the target attribute into two or more categories; these 

categories are called the parent node. To split the parent nodes, the algorithm uses 

statistical tests. It performs some statistical tests to generate the P-value, F-Test, LRT, or 

Pearson Chi-squared test depending on the type of target attribute to measure the 

significant difference between inputs and the target attribute (Patil, 2013). The 

methodology will pair and test two values and if the p-values between the paired values 

are greater than a certain threshold, it merges the values and then searches for other 

pairs to be merged. The best splitting attribute will be selected in a way that each child 

node is composed of similar values. CHAID will create all possible cross-tabulations until 

there are no values that can be merged and no splitting can be performed (Patil, 2013; 

Rokach & Maimon, 2014). The methodology will stop when the below criteria are met 

(Patil, 2013; Rokach & Maimon, 2014): 

1) The tree has reached its maximum depth. 

2) The minimum number of cases as a parent has been reached. 

3) When the minimum number of cases as a child has been reached. 

Table 2.1 shows the possible splitting criteria and pruning strategy per DT mode (Singh, 

2014). 
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Table 2.1: Characteristics of DT Methods 

 

2.1.5 Ensemble models 

2.1.5.1 Random forest 

Previous studies have shown that ensemble learning models are better than single 

classifiers (Dietterich, 2000; Wan & Yang, 2013; Lessmann, Baesens, Seow & Thomas, 

2015). Ensemble models are algorithms that combine multiple ML algorithms (often called 

weak learners) into one predictive model that decreases the variance (bagging), bias 

(boosting), and improves the prediction accuracy (Kim, Min & Han, 2006). Bagging and 

boosting methodologies can be described as ensemble learning algorithms that aim to 

improve the accuracy and stability of ML algorithms such as DTs. The difference between 

the algorithms is that bagging uses bootstrap sampling (i.e., a randomly chosen sample 

with replacement) of the data to train a potential weak learner, whereas boosting uses the 

whole dataset to train each learner and gives greater weight to previous misclassified 

instances. Examples of bagging and boosting methodologies are RF and Adaboost. 

Random Forest (RF) was introduced by Breiman (2001) and uses bootstrap sampling to 

build different unpruned independent DTs. The trees are created by randomly splitting the 

node of each tree, then searching for the best feature amongst the subset of features. 

Each tree may likely be inaccurate, but a combination of several trees will improve the 

accuracy of the tree. Each tree will then cast a vote for the most popular class. The 

accuracy of RF is measured by the strength of each tree (Breiman, 2001). 

Some of the strength of RFs is their ability to handle large datasets with high 

dimensionality, they are robust to overfitting, they are not sensitive to outliers, features do 

 Model Splitting Criteria Pruning Strategy Missing values

ID3 Information Gain No pruning Do not handle missing values

CART Towing Criteria Cost-Complexity pruning Do not handle missing values

C4.5 Gain Ratio Error Based pruning Handle missing values

P-value

F-test

Pearson Chi-squared

CHAID No Pruning Handle missing values
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not necessarily need to be scaled, they can solve both classification and regression 

problems, they can handle missing data, and it is easy to set model parameters (Kho, 

2018). They can, however, take time to run and the algorithm can be biased towards 

categorical values. 

2.1.5.2 Gradient boosting 

Gradient boosting (GB) is a classification model that ensemble weak models, in most 

cases DTs. The method aims to boost and optimise both the classification and regression 

models. Unlike in the RF where the tree models are built independently and results are 

combined at the end, with GB the weak learners are added iteratively in sequential order 

and weights for the next model are trained based on the results of the previous model 

with the aim of reducing the errors resulting from the previous model. A new model will 

gradually decrease the loss function of the whole ensemble model. This is done through 

a gradient descent procedure. To control the iterative process that GB follows, regulation 

parameters must be considered and if this is not done well it can cause overfitting 

(Bentéjac, Csörgő & Martínez-Muñoz, 2019). 

The algorithms often outperform other ML models and there is no need to normalise and 

standardise features. However, they take time to run, boosting is sequential rather than 

parallel, and they are sensitive to outliers. 

2.1.6 Applications 

2.1.6.1 Underwriting 

Underwriting risk assessment is an important procedure done when accepting life 

insurance applicants. The process is mainly to assess the risk level of an applicant based 

on company guidelines and to determine the premium prices based on their risk (Biddle, 

Liu & Xu, 2018; Mashrur, Luo, Zaidi & Robles-Kelly, 2020). The traditional method has 

been to manually examine the applicant’s health, behavioural and financial profile to 

determine the applicant’s level of risk (Maier, Carlotto, Sanchez, Balogun & Merritt, 2019). 
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Maier et al. (2019) explored the use of ML algorithms in the underwriting space and 

reported greater operational efficiency and a significant decrease of 25% in the time taken 

to issue a policy. Hutagaol and Mauritsius (2020) found that the use of SVMs enhances 

the underwriting process, and reported that the use of ML speeds up client risk 

assessments. Biddle et al.'s (2018) study showed the use of ML algorithms in automating 

and optimising underwriting surveys and improving customer experience. 

2.1.6.2 Pricing optimisations 

Actuaries in the life insurance sector have always relied on data to calculate and optimise 

both the risk and personalised premium rates. It is anticipated that consumers compare 

prices throughout the market before they make decisions; this makes pricing optimisation 

a very important section in life insurance (Spedicato, Dutang & Petrini, 2018). Consumers 

usually look at a combination of product offerings, pricing, and adequate service that an 

insurer can provide (Abreu, 2019). According to Quotacy (2019), the main factors 

affecting prices are the type of insurance a client is buying, the applicants health status, 

and age. There are several studies such as those by Boodhun and Jayabalan (2018), 

Spedicato et al. (2018) and Henckaerts, Côté, Antonio and Verbelen (2020) that showed 

an improvement in pricing optimisation and risk analysis through the use of ML. 

Generalised Linear Models (GLMs) have commonly used algorithms in this area, 

however, studies such as the one performed by Henckaerts et al. (2020) showed good 

performance of the GB, regression trees, and RF over GLMs for price predictions. 

2.1.6.3 Customer lifetime value 

Customer lifetime value is an assessment of a customer’s future profitability. It is usually 

used to identify high-value customers for marketing initiatives (Sifa, Runge, Bauckhage 

& Klapper, 2018). Fang, Jiang and Song (2016) compared RF, linear regression, DTs, 

SVM, and generalised boosted model for the prediction of customer lifetime profitability. 

The study indicated that inputs such as customers region, gender, age, and insurance 

status were the most important determinants of customer profitability. 
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2.1.6.4 Cancellations 

As has been indicated, price, service, and product are what customers look for when they 

select an insurer of choice (Quotacy, 2019). Xong and Kang (2019) also reported that 

premium price is linked to the reasons why people leave an insurer. Price is what people 

consider when they buy life insurance, and it is also the reason that most leave an insurer. 

Apart from illustrating the use of ML algorithms in predicting lapses, Xong and Kang 

(2019) showed the importance of charging reasonable prices based on customers’ lapse 

risk levels. Xong and Kang (2019) used data from a Malaysian insurance company with 

800 entries to build and compare NNs, SVMs, LR, and K-nearest-neighbour algorithms 

for lapse prediction. The variables ranged from policy status variables (this is whether a 

policy is active or not), frequency of premium payments, policy term, age at policy entry, 

gender, sum assured, among others. The best model in training was SVMs whereas, in 

testing, the best model was NNs. 

2.1.7 Hybrid and ensemble models 

Recently, researchers seem to be building hybrid models intending to improve the 

accuracy and generalisation of the models (Miškovic, 2014; Hudaib, Harfoushi, Dannoun 

& Obiedat, 2015). A hybrid model is a combination of ML algorithms, soft computing, and 

optimisation methods (Ardabili, Mosavi & Várkonyi-Kóczy, 2020). It combines the strength 

of all the models for better performance (Miškovic, 2014; Ardabili et al., 2020). In most 

cases, hybrid models seem to perform better than individual models (Miškovic, 2014; 

Hudaib et al., 2015; Patil, 2018). 

The study by Hudaib et al. (2015) illustrated the superiority of hybrid models over single 

built ML algorithms. They compared hybrid models built from K-means clustering and 

Multilayer Perceptron Artificial Neural Networks (MLP-ANN), Self-Organising Maps 

(SOM) and MLP-ANN, Hierarchical Clustering and MLP-ANN, with a normal MLP-ANN 

to predict churn rates in a Jordanian telecommunications company. The data contained 

5,000 randomly selected customers with 11 attributes and 7.6% of the customers were 

churners. Models were built by initially clustering the data using K-means, SOM, and 
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hierarchical clustering. Two large datasets resulting from three clustering methodologies 

were combined as one input. The rest of the data (small clusters) was regarded as outliers 

and MLP-ANN was then developed using the resulting clustering datasets. Hybrid models 

created from clustering methodologies and MPL-ANN outperformed the performance of 

a normal MPL-ANN. 

Another advancement in ML is the development of ensemble methods. As discussed 

under Section 2.1.4, ensemble methods combine multiple ML methods, often called weak 

learners. There are two classes of algorithms usually associated with ensemble learning, 

namely bagging, and boosting. The methods are both aimed at improving the stability of 

ML. They have been proven to be better predictors than single classifiers and to have a 

good out of sample performance (Dietterich, 2000; Kim et al., 2006; Yang et al., 2007; 

Lessmann et al., 2015; Gavrishchaka, Yang, Miao & Senyukova, 2018). 

Vafeiadis, Diamantaras, Sarigiannidis and Chatzisavvas (2015) illustrated the model 

improvement that results from boosting single classifier models. Five classification ML 

algorithms, namely LR, SVM, DT, backpropagation NN, and Naïve Bayes were built using 

telecommunication open-source data. Support vector machine (SVM) and 

backpropagation network outperformed other models; both models had an initial accuracy 

of 94% and F-measure of 77%. AdaBoosting was further applied to SVMs, 

backpropagation NNs, and DTs to further improve the accuracy of the models. Logistic 

Regression and Naïve Bayes could not be boosted as they lacked free parameters that 

could be tuned. Boosting improved the accuracy of the models by between 1 and 4% on 

all the three models and F-measure of 4.5 to 15%. 

Another study by Loisel, Piette and Tsai (2019) compared a different boosting method 

(i.e. Extreme GB (XGBoost)) with single classifiers, namely SVM, LR, and regression tree 

(CART) for modelling lapse behaviours. Logistic Regression (LR) predicted 76% of the 

data correctly, CART predicted 77% correctly, SVM predicted 78% correctly, and 

XGBOOST 79% correctly. XGBoost outperformed LR, CART and SVM. Furthermore, the 

result showed that XGBoost was robust on the training sample. 
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Through modelling, Shao, Li and Liu (2007) proved that ensemble models are less 

susceptible to overfitting. They looked at three AdaBoost models namely Real AdaBoost, 

Gentle AdaBoost and Modest AdaBoost. The models were compared to SVMs based on 

their ability to predict customer churn in the credit debt customer database of an 

anonymous commercial bank in China. The database had about 20,000 entries but only 

1,524 entries with 27 predictor variables were selected for this experiment. Churners in 

this experiment were described as customers with low credit rates which is slightly 

different from the common definition of churners. Fifty percent of the observation was 

used for training the models and 50% for testing the models. From the experiment, it was 

observed that the AdaBoost is less susceptible to overfitting than most learning 

algorithms. 

Researches have indicated that noisy data can lead to poor prediction accuracy and noise 

in the model can affect the computational time, as it will take time for the model to learn 

the data (Gupta & Gupta, 2019). Ensemble methods seem to be better at handling noise 

in the data than most ML algorithms (Gupta & Gupta, 2019). 

2.1.8 Single classifiers comparisons 

From the literature it has been observed that ensemble methods often outperform single 

classifier ML methods, however, in a study conducted by Khan, Manoj, Singh and 

Blumenstock (2015) SVM outperformed RF. This shows that even though ensemble 

methods are generally good as opposed to single classifier methods, they may not always 

be the best options for modelling lapses. Even though there is no clear dominant single 

classifier ML algorithm, the results are usually not far off each other. This validates the 

point illustrated by Bolancé, Guillen and Padilla-Barreto (2016), that optimal prediction 

can be different based on the researcher’s aim and what they want to achieve. It also 

depends on the type of data, data transformations, model parameter tuning, and model 

optimisations that take place when building a model (Vafeiadis et al., 2015). For example, 

DTs outperformed NNs (Vahidy, 2012) when predicting churns, whereas in the study by 

Khan et al. (2010) and Goonetilleke and Caldera (2013) NNs outperformed DTs. 
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2.1.9 Model optimisations 

Models such as RF ensemble and support vector models require critical parameter tuning 

for better results (Syarif et al., 2016). Optimisation of parameters is very crucial in these 

models. The most commonly used methodology for optimising parameters of the models 

is a grid search, however, the method can be too slow on a larger dataset (Syarif et al., 

2016; Martínez, 2017). Rodan, Faris, Alsakran and Al-Kadi (2014) showed the power of 

optimising SVM parameters by using grid search with a customised evaluation metric. 

They predicted the churn rate in a Jordanian telecommunication company with a dataset 

of 5,000 observations and 11 variables. The model developed with optimised parameters 

was compared to a multilayer perceptron NN with backpropagation learning, K-nearest 

neighbour, Naïve Bayes, and C4.5 DT models. The optimised SVM outperformed other 

models by achieving an accuracy of 94.3%. 

As shown in Section 2.1.2.3, choosing a kernel function is one of the difficult tasks in an 

SVM model (Syarif et al., 2016). However, when a suitable kernel function is selected, 

the model can result in better prediction accuracy. 

Siemes (2016) showed the strength of an SVM trained with a polynomial kernel when 

predicting churn rates of the largest indemnity insurance company in the Netherlands. 

Four predictive models, namely DT, NN, high-performance SVM, and LR were developed 

and compared based on the predictive power. As part of pre-processing, customers with 

missing information were excluded from the datasets. The data was scaled down to 

867,598 policyholders, of which 11.35% were churners after data cleaning steps. Data 

were randomly eliminated from the dataset to prevent imbalances. Models were tested 

and validated using the following distribution of datasets: 50:50, 60:40, 70:30, 89:11 (non-

churners and churners respectively). Support vector machine (SVM) with polynomial 

kernel outperformed other models for all training and validation distribution experiments. 
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2.1.10 Machine learning challenges 

2.1.10.1 Imbalanced data 

Imbalanced data can be described as a classifications problem where observations in 

class distributions are not equal. The majority of ML algorithms require an equal 

representation of classes for them to perform well (Madasamy & Ramaswami, 2017). A 

slight skewness of the data can still give good predictions, however, a large gap can affect 

your prediction accuracy (Madasamy & Ramaswami, 2017). In the case of highly 

imbalanced data, the model often predicts the majority class effectively but overlooks the 

minority class (Krawczyk, 2016; Madasamy & Ramaswami, 2017). There are several 

solutions for dealing with imbalanced data at both the data and algorithm level (Kotsiantis, 

Kanellopoulos & Pintelas, 2006). Data level solutions focus on modifying the training 

datasets whereas algorithm solutions focus on modifying existing learners to reduce the 

bias towards the majority classes (Krawczyk, 2016). 

It has been highlighted that studying the data complexity of imbalanced data is important 

and can influence the choice of resampling methodologies (Luengo, Fernández, García 

& Herrera, 2011; Santos, Soares, Abreu, Araujo & Santos, 2018). Examples of sampling 

methods include random under-sampling methodology which aims to eliminate the 

majority class randomly. It can however eliminate the useful data that is useful for the 

induction process (Kotsiantis et al., 2006). Burez and van den Poel (2009) compared 

performances of random sampling, advanced under-sampling, GB, and weighted RF on 

an unbalanced dataset to predict churns. The result showed better performance of the 

under-sampling technique over other sampling methods. 

Another example is random over-sampling which randomly replicates the minority class. 

The method makes the same copies of the minority class which can cause overfitting 

(Chawla, Bower, Hall & Kegelmeyer, 2002; Kotsiantis et al., 2006). There are several 

methods used for over-sampling classification problems. The SMOTE (Synthetic Minority 

Over-sampling Technique) is the most commonly used one (Xie, Liang, Dong, Tan & 

Zhang, 2019). For each minority class, the algorithm calculated the K-nearest neighbour; 

the K-nearest neighbour are then selected to form synthetic examples. 
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Ensemble learning is the popular method for dealing with imbalanced data (Galar, 

Fernández, Barrenechea & Sola, 2012; Krawczyk, Woźniak & Schaefer, 2014; 

Błaszczyński & Stefanowski, 2015). Chen, Liaw and Breiman (1999) introduced two 

methods that are based on RF methodology to deal with the imbalanced data (i.e., 

weighted RF and balanced RF). Weighted RF gives more weight to the minority classes 

whereas balanced RF combines the downsampling of the majority class technique and 

ensemble learning idea. It alters the distribution of classes such that the classes are 

equal. Both methodologies improve the accuracy of predictions. 

2.1.10.2 Overfitting 

Overfitting is when a model performs well on training data and not so well on testing data; 

this is also known as poor generalisation (Ying, 2019). Overfitting can happen because 

of noise in the dataset, limited training sets, and complexity of classifiers (Ying, 2019), 

whereas underfitting can occur when the model is too simple and informed by a few 

features which make it difficult to learn the dataset. Overfitting can be prevented by 

performing cross-validation on the dataset – the algorithm uses the initial training set to 

generate multiple small sets then uses the splits to tune the model. As illustrated in Table 

2.2, in a standard K-fold cross-validation, the technique splits the data into k subsets; the 

first subset will be used for validation and the rest (K-1) will be used for training. The 

process can be repeated K times with each of the sets being used once as a test set 

(known as holdout fold). This means that each set will have an opportunity to be used as 

a training set once and K-1 times as a testing set (Santos et al., 2018; Waseem, 2020). 

Table 2.2: Cross-validation 

 

  

K=1 Train Train Train Train Validation

K=2 Train Train Train Validation Train

K=3 Train Train Validation Train Train

K=4 Train Validation Train Train Train

K=5 Validation Train Train Train Train
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Training with more data can also help prevent overfitting – a small sample of data is more 

prone to overfitting than a large dataset (Santos et al., 2018; Ying, 2019; Waseem, 2020). 

The accuracy of the model can stop increasing after a certain point. If the model continues 

to learn after that point has been reached, validation errors will decrease whereas the 

training errors increase which causes overfitting. The model can be stopped before 

reaching the point of overfitting (Ying, 2019; Waseem, 2020). 

The use of ensemble models can also help in overfitting prevention as they are unlikely 

to overfit. They combine several classifiers to improve prediction accuracy. The higher 

the number of ensemble models chosen, the higher the probability to overfit (Brown & 

Schmidt, 2009). The study conducted by Brown and Schmidt (2009) also showed that 

overfitting in ensemble techniques can happen, mostly when the data is small as opposed 

to large datasets. Pruning capabilities in ensemble models reduce the risk of overfitting. 

Some researchers have embedded cross-validation in their ensemble methods to 

overcome overfitting issues and improve their models’ performances (Brown & Schmidt, 

2009). 

 2.1.10.3 Missing data 

Training datasets with huge proportions of missing data can affect the model’s accuracy 

(Badr, 2019) as some ML methods cannot handle missing data very well (i.e., basic 

Iterative Dichotomiser3) (Moulana & Hussain, 2014). There are two common ways of 

dealing with missing values, that is to eliminate variables with missing data or impute the 

values (Vieira, Proença & Salgado, 2016). Imputation is the process of filling missing 

values with estimated or observed values, whereas deletion refers to deleting entries or 

variables with missing data. 

One commonly used deletion methodology is listwise deletion which deletes all entries 

where there are missing values (Norazian, 2013). This is suitable for cases where the 

data is missing completely at random (MCAR) and the data is large enough (Roy, 2019). 

When the data is small, you run a risk of losing valuable data thus impacting the statistical 

power and introducing biasness. Missing completely at random (MCAR) indicates that 
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there is no relationship between missing data and any observed values (Norazian, 2013). 

Mean or mode imputation methods can also be used when the data are MCAR. The 

method calculates the mean or mode of all non-missing values in a variable, then assigns 

that value to the missing values (Gelman, 2010). 

Missing at random (MAR) is when the missing data has a relationship with observed 

variables and not necessarily missing observations (Norazian, 2013). The possible 

imputation method for MAR is the multiple imputation method (Song & Shepperd, 2007). 

The multiple imputation method creates multiple predictions per missing value (Norazian, 

2013). The data is first replicated many times, then different numbers will randomly be 

predicted and imputed from all sets. All datasets will then be combined. If the character 

of the missing data does not meet characteristics of both MCAR and missing not at 

random (MNAR), then the data is MNAR; thus, the missing data is dependent on missing 

observations. 

 Table 2.3 summarises some of the applications of ML and their performances. 
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Table 2.3: Literature Summary 
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2.1.11 Critical review 

Modelling lapses can be a difficult task as they can be influenced by many parameters 

ranging from macro and microeconomic factors, products, client behaviour, among 

others. From the recent research reviewed there is evidence that ML classification 

algorithms such as NNs, SVMs, and DTs have been widely used and compared in 

industries such as telecommunication, banking, and some areas of insurance (Shao et 

al., 2007; Tsai & Lu, 2009; Hudaib et al., 2015; Vafeiadis et al., 2015; Geschiere, 2017; 

Sabbeh, 2018). The algorithms have proven to have predictive power as compared to 

traditional statistical methods in these industries. Although there are no clear dominant 

ML algorithms, ensemble methods seemed to be consistently outperforming many single 

ML classifiers. (Dietterich, 2000; Kim et al., 2006; Yang et al., 2007; Lessmann et al., 

2015; Gavrishchaka et al., 2018; Sabbeh, 2018; Loisel et al., 2019). 

Confusion matrix, AUC, and ROC curve have been the most used methods to evaluate 

the model's predictive accuracy (Bolancé et al., 2016; Siemes, 2016; Xong & Kang, 2019). 

Machine learning (ML) has proved to be able to handle big data very well, can easily find 

patterns within the data, can easily learn the data, and can be easily automated; however, 

the models can take time to run. 

It has been observed that life insurers generally prefer GLMs for lapse modelling 

prediction and the most used GLM is LR (Ducuroir et al., 2016; Hendrych, 2019). Logistic 

Regression (LR) is consistently used as a benchmark comparison to other ML algorithms 

(i.e., NNs, SVM, DTs) and it is consistently outperformed by those models (Vafeiadis et 

al., 2015; Aleandri, 2017; Sabbeh, 2018). 

There is no clear indication of what the most powerful ML algorithm is. Vafeiadis et al. 

(2015) and Bolancé et al. (2016) point out that optimal prediction may differ depending 

on datasets and how models are optimised. From the literature in Table 2.3, it can be 

observed that different models react differently on different datasets. Xong and Kang 

(2019) compared multiple ML algorithms on lapse predictions. Conclusions about model 

superiority were based on one insurer dataset. Similarly, Rodan et al. (2014), Tsai and 
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Lu (2009) and Shaaban, Helmy and Khedr (2012) compared multiple models and made 

conclusions based on one dataset. Aleandri (2017) and Goonetilleke and Caldera (2013) 

modelled dynamic behaviour and customer attrition in life insurance respectively, 

however, they compared less than two models over a single dataset. Based on this 

research gap identified, that is, comparing multiple ML algorithms over multiple datasets, 

this dissertation critically evaluated nine ML algorithms on two different datasets with 

different distributions. Parameters were tuned and optimised the same way on both 

datasets. Models were evaluated based on their ability to classify lapses correctly, and 

their ability to generalise well using different performance measures. The dissertation also 

tested if there was a clear dominating high performing model based on two datasets. 
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CHAPTER THREE 

METHODOLOGY AND RESULTS 

 

 3.1 Introduction 

This chapter illustrates the process of building models and presents their performances. 

It is divided into three parts, namely, the model’s setup, results, and the discussion of 

results. The model’s setup is divided into data pre-processing, feature selection method, 

training and validation processes, whereas the results sections interpret and discuss the 

model’s findings on the training and validation stages. 

3.2 Model’s Setup 

 3.2.1 Data 

3.2.1.1 Dataset 1 – Insurer 1 

Historical lapse data from an anonymous insurer was used in this study as inputs for the 

models. The data was obtained from Kaggle open-source repository (Moon,2019). The 

datasets initially consisted of six categorical and 26 numerical variables with a total of 

51,865 unique policyholders who are principal members. Inception dates for these 

policies were between January 2017 to August 2020. 

Four files were downloaded, namely historical payments, client’s data, policy data, and 

lapse information. Historical payments had five columns, namely, Policy ID which is the 

policy identifier, the amount paid which reflects premium payments, date paid which is 

the premium payment date, postdate and the premium due date. The client’s data 

contained the policy identifier, gender, birthdate, title, and addresses. Policy data had 

policy level information such as policy effective date, products, premium, sum assured, 

policy effective date, agent code, branch signed up code, etc. The final file contained the 

policy identification and lapse information. 
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The payment history file consisted of historical payments from 2017 to 2018. The 2019 

historical payment data was not provided, meaning that policyholders with effective dates 

from 2019 did not have payment history information. Tenure was calculated for all the 

policies without lapse status. The calculation was based on the date difference between 

the effective date and the last recorded effective date which was January 2020. For 

policies that had lapsed, tenure was calculated based on the lapsed date and effective 

date. All four datasets were then merged into one file. 

Historical payments datasets were longitudinal whereas the rest of the datasets were 

static per policyholder. The data was aggregated on a policy level in preparation for data 

analytics and modelling. Only data from 2017 to 2019 was considered for both training 

and validation of the models; 2020 data did not have both premium and lapse status 

information. Extra variables such as tenure, number of received payments, number of 

missed payments, and count of effective date were calculated from existing variables. 

The following were the data assumptions: 

1. Policies with multiple effective dates: It was assumed that these policies were 

cancelled before and are now reinstated. 

2. Count of effective date: This will indicate the number of cancellations per policy. 

3. The last policy effective date recorded was on the 8th of January 2020. For all 

policies without lapse status, tenure was calculated based on the date 

difference between their effective date and the last recorded effective date 

which is the 8th of January 2020. 

Table 3.1 shows the variable statistics ordered by the amount of missing data (highlighted 

in green). Nmiss is the number of missing values, N is the number of non-missing values. 

For numeric variables, minimum, maximum, mean, and standard deviation of the 

variables were calculated. The variable statistics summary already highlights some of the 

data challenges like a high number of missing values on some variables (highlighted in 

green) and outliers on the minimum birthdate (circled in red). This has been dealt with in 

Section 3.2.2. The company’s average customer was born in 1983, the number of 
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premium payments per customer ranges from 0 to 48. The average sum assured is 

135683. 1900 in the lapse year variable is a default value that reflects active policies. 

Table 3.1: Insurer 1 – Variable Statistics 

 

 3.2.1.2 Dataset 2: Insurer 2 

The second dataset was also extracted from Kaggle (2019). The main purpose of the 

data was to predict future premiums and lapse rates. The data consisted of 668,027 

policyholders which were incepted from 2011 November to 2019 August, thus eight years 

of data. The data consisted of 20 variables. The variables ranged from channels, policy 

types, payment mode, policy status, benefits, premium information, and policy inception 

details. On the policy status, there are five levels, namely lapse, surrender, in force, 

expired, and death. A target variable was formed from the policy status variable, one as 

a lapse and the rest of the categories were zero. The main aim of looking at the second 
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dataset is to test how the models will react on a completely different dataset with a 

different distribution. Table 3.2 indicates the variable statistics of the data. Similar to Table 

3.1, the statistics have been ordered by the percentage of missing data. Nmiss is the 

number of missing values, N is the number of non-missing values. For numeric variables, 

minimum, maximum, mean, and standard deviation of the variables were observed. 

Policy issue date ranges from 2011 November to 2019 August. Maximum policy entry 

age is 70 years. The average premium rate is 83. 

Table 3.2: Insurer 2 – Variable Statistics 

 

3.2.2 Data pre-processing 

Data pre-processing is one of the important processes in ML that transforms the raw data 

into a desirable input. In this study, the researcher did some basic descriptive statistics to 

understand the data layout. A data audit was performed to check for data inconstancies 

such as outliers, errors, incorrect date formats, and data duplication to ensure that the 
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data was clean and ready for modelling. SAS Enterprise Guide and SAS Enterprise Miner 

were used to clean and create models. 

3.2.2.1 Missing data imputation 

In Insurer 1’s dataset, all demographic and payment information had missing values. 

From the missing value pattern shown in Table 3.3, values were missing at random, thus 

missing data had a relationship with observed variables. The percentage of missing 

demographics (40%) was concerning. These variables were removed. 

Literature shows that a high number of missing values may affect statistical inference. It 

is not clear what percentage of missing values is acceptable. Vieira et al. (2016) said that 

rejecting a huge number of missing values (>50%) is not risk-free as it may lead to a loss 

of predictive power. Schafer (1999) says a missing rate of 5% or less is inconsequential. 

Bennet (2001) says 10% of missingness might lead to statistical bias. Raymond and 

Roberts (1987) recommended that a variable with more than 40% of missing values 

should be deleted. Madley-Dowd, Hughes, Tilling and Heron (2019) showed that 

imputation methods such as multiple imputations reduce bias even though the percentage 

of missing variables is large enough. Based on this literature, payment history with 39% 

missing values were imputed as they have been proven from literature to be a significant 

predictor of lapses (Eling & Kiesenbauer, 2011). 

. 

 

 

 

 

 

 



 

50 

 

 

Table 3.3: Insurer 1 – Missing Values Pattern 

 

As illustrated in Section 2.1.10.3, the literature shows that data imputation method 

decisions should be based on the patterns of the missing values. The multiple imputation 

method is a commonly used algorithm for data that is missing at random. Studies by 

Soares, Santos, Abreu, Araujo and Santos (2018) and Chambers (2000) showed that 

both predictive accuracy and feature distribution accuracy are important in the imputation 

selection method. Soares et al., (2018) also mentioned that imputation techniques must 

preserve the distribution of the original sets. 

In this thesis, the distribution based random imputation methodology available on SAS E-

Miner was used to impute the missing values. The method replaced the missing data 

based on the random percentile of the probability distribution of non-missing values. The 

methodology was selected since it does not change the data distribution that much, it did 

not change the range of the original data and it resulted in good accuracy. That is; it 

satisfies imputation criteria illustrated by Chambers (2000), that the procedure must 

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Freq 11271 25 17025 210 1 9 1 615 203 8 377 129 8 19744 43 318 70

Percent 22.52 0.1 34.01 0.4 0 0 0 1.2 0.4 0 0.8 0.3 0 39.44 0.1 0.6 0.1

NAD_ADDRESS1 X X X X X X X . . . . . . . . . .
NAD_ADDRESS2 X X X X X . . X X X . . . . . . .
NPH_TITLE X X X X . X X X X X X X X . . . .
NPH_BIRTHDATE X X X X X X X X X X X X X . . . .
NPH_SEX X X X X X X X X X X X X X . . . .
TOTAL_PAID_AMNT X X . . X X . X . . X . . X X . .
CNT_NON_PAYMENTS X X . . X X . X . . X . . X X . .
CNT_PAYMENTS X X . . X X . X . . X . . X X . .
NON_PAYMENT_RATIO X X . . X X . X . . X . . X X . .
LAST_EFFECTIVE_DATE X X X X X X X X X X X X X X X X X
CNT_NP2_EFFECTDATE X X X X X X X X X X X X X X X X X
CNT_PPR_PRODCD X X X X X X X X X X X X X X X X X
AVG_NPR_PREMIUM X X X X X X X X X X X X X X X X X
SUM_NPR_PREMIUM X X X X X X X X X X X X X X X X X
CNT_NPH_LASTNAME X X X X X X X X X X X X X X X X X
CNT_CLF_LIFECD X X X X X X X X X X X X X X X X X
AVG_NPR_SUMASSURED X X X X X X X X X X X X X X X X X
CNT_NLO_TYPE X X X X X X X X X X X X X X X X X
SUM_NLO_AMOUNT X X X X X X X X X X X X X X X X X

LAPSE X X X X X X X X X X X X X X X X X
LAPSE_YEAR X X X X X X X X X X X X X X X X X
AAG_AGCODE X X X X X X X X X X X X X X X X X
PCL_LOCATCODE X X X X X X X X X X X X X X X X X
CATEGORY X X X X X X X X X X X X X X X X X

TENURE X . X . X X X X X . X X . X . X .
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maximise the preservation of the original values (PAC- prediction accuracy) and it must 

maintain the distribution of original values (DAC-Distribution Accuracy). Table 3.4 shows 

that distribution seemed similar even after imputations. 

Skewness and kurtosis measure the shape of the distribution. Kurtosis measures the tail 

relative to the normal distribution. From Table 3.4, it can be observed that all payment 

variables (premiums, sum assured, paid amounts, and NLO amount) have high kurtosis, 

meaning that they are heavy-tailed, or they have outliers. The mean of 1919 on policy 

lapse year is the results of a default value (i.e., 1900) on all active policies.  

Table 3.4: Variable Stats Before and After Imputation 
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For Insurer 2’s dataset, all the entries which were missing both issue date and policy year 

were deleted from the dataset. Furthermore, observations with policy status categories 

such as surrender policy, expired, and death were removed. Policy status only composed 

of in force and lapse data, thus 30% (55,592) of the original dataset. 

3.2.2.2 Replacing outliers 

All outliers within the extreme upper (> 95% percentile) and lower tail (<5% percentile) of 

the distribution were replaced with 95% and 5% percentile, respectively. If the value was 

too high, it was still replaced with a high number (95% percentile). 

3.2.2.3 Categorical variables encoding 

Some of the ML libraries do not take categorical variables as input. In this study, all the 

categorical variables were converted to numerical variables using the one hot encoding 

methodology. The methodology works best with nominal categories, which are categories 

that cannot be easily ordered. As illustrated by Table 3.5, It creates dummy variables as 

extra features based on the distinct categories in a feature. The categorical variables 

need to be converted to integers first, then create binary features (i.e., 0, 1) from the 

integers. Integers are replaced based on their alphabetical order. Integers are assigned 

ranges from 0 to n-1, where n is the number of distinct classes. 

Table 3.5: Dummy Variables Imputation Example 

 

The issue with one hot encoding methodology is its ability to cause multicollinearity. Some 

of the dummy features might have to be removed. This was dealt with in the later stage 

of the thesis. For categories with more than 10 distinct variables, label encoding was used 

CATEGORY INTERGERS CATEGORY 

1750CEH

CATEGORY  

8DALFYO

CATEGORY 

GWW4FYB

CATEGORY 

LXSLG6M

CATEGORY 

M1ZXYVG

CATEGORY  

R821UZV

CATEGORY_1750CEH 0 1 0 0 0 0 0

CATEGORY_8DALFYO 1 0 1 0 0 0 0

CATEGORY_GWW4FYB
2 0 0 1 0 0 0

CATEGORY_LXSLG6M 3 0 0 0 1 0 0

CATEGORY_M1ZXYVG 4 0 0 0 0 1 0

CATEGORY_R821UZV 5 0 0 0 0 0 1

CATEGORY_8DALFYO 1 1 0 0 0 0 0
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to replace the categories, which means categories were only replaced with integers; extra 

dummy variables were not created as this could have resulted in computational issues 

because of the memory consumption. 

3.2.2.4 Feature scaling 

Feature scaling can be described as a technique that scales variables to the same range. 

This is an important process in data pre-processing because some high values within the 

feature may tend to dominate other features when fitting the model. The commonly used 

techniques for feature scaling are data normalisation and data standardisation. 

Standardisation transforms variable values in a way that it will have a mean of zero and 

a variance of one, whereas normalisation transforms the data to take up values between 

zero and one. All variables were standardised using equation 3.1 (Peshawa, Muhammad 

& Rezhna, 2014) 

 

( )ix u
Z

s

−
= , 

 

 

(3.1) 

Normalisation is represented by the below equation (Peshawa et al.,2014). 

min

max min

ix x
Z

x x

 −
=  

− 
 , 

 

 

(3.2) 

where Z is new normalised/standardised value, 𝑥𝑖 is the data point (𝑥1, 𝑥2 … 𝑥𝑛 ),  u is the 

sample mean,  s is the sample standard deviation,  𝑥𝑚𝑖𝑛 is the sample minimum and 𝑥𝑚𝑎𝑥 

is the sample maximum. 

Both normalisation and standardisation are sensitive to outliers. They also possess 

challenges on the testing(unseen) data if the values of the testing data fall outside the 
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range on trained data (Cao et al., 2016). However, literature shows that scaled models 

perform better than unscaled models (Cao et al., 2016) 

3.2.2.5 Imbalanced data 

The dataset of Insurer 1 had an issue of imbalanced data. Lapses were rare as many 

policyholders were staying on the books. There were 15% lapses and 85% non-lapses. 

Over-sampling minority cases to balance the data was considered and SMOTE 

methodology was used to oversample the minority class and balance the data. SMOTE 

synthesised new examples by looking at the minority classes at random then finding their 

K-nearest neighbourhood. 

Elreedy and Atiya (2019) mentioned that SMOTE perfoms well when the number of K is 

smaller. One neighbourhood (i.e., K=1) would produce best results, however, it will 

produce synthesised values that are highly correlated to the original values, resulting in 

a lesser impact on the classification model (Elreedy & Atiya, 2019). In this study, K was 

initially set to 11. SMOTE was further modified by adding a distance threshold. All 

neighbourhood above the threshold were eliminated. This setting resulted in varied value 

of nearest neighbourhood (K) for each point. A study by Pradipta, Wardoyo, Musdholifah 

and Sanjaya (2021) showed superiority of radius based SMOTE over the classic SMOTE. 

Mcinroy (2016) achieved good perfomance on a modified SMOTE over normal SMOTE 

by adding a distance threshold when calculating number of neighbours.  

SMOTE process was coded as below. 

1. Output minority cases, thus 15,9% of the total data. 

2. Run a PROC MODECLUS procedure on SAS Enterprise guide to create 11 

nearest neighbours around each standardised observation where target=1 (lapse). 

That is k=11. The process outputs the density estimates, nearest neighbourhoods 

and the distance between the observation and the nearest neighbour. 

3.  Set distance threshold then eliminate all neighbours that are above the threshold. 

4. Synthesise new random cases between the original samples and the nearest 

neighbour in step 3. 
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5. Union the original dataset (with both minority and majority cases) with the new 

synthesised output. 

3.2.3 Feature selection 

3.2.3.1 Chi-square 

Even though there were only 40 variables after creating dummies for Insurer 1, feature 

engineering methods were considered to select only features which were relevant in 

predicting the target. Models were compared when variables were selected with the Chi-

square test and PCA. The Chi-squared test analyses the relationship between variables 

and targets then ranks the variables based on their variable importance. In other words, 

it tests the level of dependency of a variable on a target. 

The Chi-square method on variable selection node on SAS Enterprise Miner was used 

on a training set. As illustrated on Figure 3.1, all the categorical variables with a Chi-

square value of P (Chi-square statistic > 3.84) <= 0.05 were kept. Twenty six variables 

were rejected by the Chi-square selection method. The remaining 14 variables were 

ranked based on their level of importance. It is better to have a model with lesser features 

than a model with many features that are not relevant to the target. Having lesser but 

relevant features may improve accuracy, computational time, and reduce the possibility 

of model overfitting. 

 

Figure 3.1: Variable Selection Summary 
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3.2.3.2 Principal component analysis 

Principal Component Analysis (PCA) methodology aims to reduce the dimensionality of 

a dataset by transforming the data to fewer variables while keeping most of the 

information. The method combines different variables to form new variables which are 

called principal components. The model often puts most of the information on the first 

principal component which then accounts for the most variation (Jaadi, 2020). The 

transformation process is done through calculations of eigenvectors and eigenvalues of 

covariance or correlation matrix. Eigenvalues of a covariance matrix were used in this 

dissertation. The number of principal components on this dissertation was set to 31. The 

same methods were followed for all the models in comparison. It was, however, difficult 

to interpret new variables formed as it was a combination of many variables to acquire a 

lot of information from them. For LR, the variables were further selected using the forward 

and backward variable selection method. 

3.2.4 Model training and validation 

The models were trained and validated with a data partition of 60% training set and 40% 

validation set. The aim was to train and validate on both imbalanced and balanced 

datasets. However, testing on imbalanced data resulted in 99% accuracy, which was 

misleading as the model predicted the majority class for almost all examples. This 

illustrated the point that measuring accuracy alone can be misleading in cases of 

imbalanced data. 

3.2.4.1 Logistic regression 

Logistic Regression (LR) models are trained with a comparison of forward and backward 

variable selection methods. Both methods are described in Section 2.1.1. As shown in  

Table 3.6, variables with a P-value that is greater than 0.05 were regarded as less 

significant. Logit link function was used as a mapping function. Convergence and 

parameters estimates were automatically optimised. 
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Table 3.6: Logistic Regression Setup 

  Criteria 

Model selection  Forward and backward 

Technique GLM 

Link Function  Logit 

Variable significance P= <0,05 

Goodness of Fit Akaike Information Criterion 

Performance Classification Matrix 

 

3.2.4.2 Support vector machine 

Support vector machines (SVMs) models with linear kernel function and polynomial kernel 

function were trained and compared. The penalty criteria (C) on both models were set to 

1. The polynomial degree on the polynomial kernel was set to 2. Grid search methodology 

could not be used to optimise parameters as it was not yet available on the software. 

However, penalty parameter C=1 and the polynomial degree of 2 gave good results. 

Table 3.7 summarises the criteria settings for SVM. 

Table 3.7: Support Vector Machine Setup 

  Polynomial  Linear 

DESCR VALUE   

Task Type C_CLAS C_CLAS 

Optimization Technique Interior Point Interior Point 

Scale YES YES 

Kernel Function Polynomial Linear 

Kernel Degree 2 N/A 

Penalty Method C C 

Penalty Parameter 1 1 

Tolerance (Max Iteration) 25 25 

Tolerance 0,000001 0,000001 

Execution Mode Single-Machine Single-Machine 

Number of Threads 4 4 
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3.2.4.3 Neural network 

A multilayer perceptron NN with backpropagation learning and a multi-layered perceptron 

with Levenberg-Marquardt learning were built. Both models had three hidden layers. The 

maximum allowed iteration rate of 1000 was set on both learning algorithms as the models 

were having challenges to converge. Random bias and initial weights were assigned. 

3.2.4.4 Decision tree 

The trees were built by specifying the split rules to maximise the split decision log-worth. 

Log-worth can be described as the statistic that is used to prune and grow the tree. It 

measures the best splitting rule that best classifies the target. The trees were 

automatically pruned, and entropy was used for evaluating splitting criteria. The maximum 

splitting rule was set to 10. The maximum depth splitting enabled the tree to be split up 

into 10 generations of root nodes. The original node (root node) is generation zero. 

Children of the original node are the first generation, children of the first generation are 

the second generation and so on. Due to the automatic pruning that was set, the model 

would have lesser generations. Since the study was dealing with a binary classifier, the 

maximum branch per node was set to 2. Leaf sizes were limited to a minimum of 10. Leaf 

size is basically the number of observations in each subset. 

3.2.4.5 Gradient boosting 

The model was set up to have almost the same splitting rules as was in the normal DT. 

Maximum depth was set to 10, meaning that each DT would have 10 generations of root 

nodes. The maximum branch was two as the study was dealing with a binary target. The 

reuse variable was set to 2 – this meant that a variable could be used twice for splitting if 

it yielded the best results. The leaf fraction was set to 0.01. This was the minimum fraction 

of training observation a new branch was allowed to have out of the total training 

observation in the data. Several fractions were tested and 0.01 gave the best results. 

3.2.4.6 Random forest 

An RF tree with a maximum of 100 individual trees was built on SAS E-Miner. The 

environment used PROC HPFOREST for building RFs (SAS, 2016). A RF is an ensemble 
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of several DTs. Similar to a normal tree and GB, for tuning parameters, a maximum depth 

splitting rule of 10 was set. Associations between variables and the target must be above 

a significant level on p=0.05 so that a node can be split. 

3.2.5 Performances measures 

All models were compared for their level of accuracy and their statistical power. Confusion 

matrix also known as classification matrix was used to critically evaluate the models. A 

confusion matrix is a metric that is used to evaluate classifier models and provide insights 

into the predictions. It is illustrated in Table 3.8 on the following page. With a confusion 

matrix, it is easier to see if the model is constantly mislabelling one of the classes as 

another.  

Table 3.8: Confusion Matrix 

   Predicted Classes 

Actual Classes Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Accuracy rate which is a measure of correct prediction from overall cases was calculated 

by the below formula from the classification matrix. 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
, 

 

(3.3) 

The higher the accuracy the better the model. However, this is not always the case 

especially when it comes to imbalanced data; as mentioned before, the results can be 
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misleading if interpreted in isolation. The following matrices were evaluated in conjunction 

with the accuracy rate. 

Precision or positive predicted value is the number of true positives divided by total 

positive predictions. Precision focuses on how many positives were correctly predicted 

from all positives. Low precision indicates a high number of false positives. 

Pr
TP

ecision
TP FP

=
+

, 

 

(3.4) 

Sensitivity or recall is the number of true positives divided by the actual number of all 

positives. Low recall indicates a high number of false negatives. 

 

Re
TP

call
TP FN

=
+

, 

 

(3.5) 

Specificity is the number of true negatives divided by the actual number of all negatives. 

A high number reflects the model was good at identifying true negatives. 

TN
Specificity

TN FP
=

+
, 

 

(3.6) 

 

Misclassification error (ME) is the value of all wrongly classified predictions from total 

observations. 

 

TN TP FN FP

FN FP
ME

+

+
=

+ +
, 

 

(3.7) 

F-measure or F1-score is the balance between precision and recall and can be described 

by the below formula. 
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Pr *Re
1_ 2*

Pr Re

ecision call
F Score

ecision call

 
=  

+ 
, 

 

(3.8) 

ROC measures the relationship between true-positive (i.e., sensitivity) and false-positive 

(1-specificity). True positives can be described as outcomes where models predict the 

positive actual class correctly; in our case, when the model predicted lapses correctly, 

whereas true negative was when the model predicted non-lapses correctly. The ROC 

visualises the probability of an outcome at different thresholds. 

A perfect classifier is towards the top left where the sensitivity rate is higher, and the false 

positive rate is less. The worst classifier is closer to the baseline. Anything in between 

reflects a better classifier. Coordinates (0, 1) represent a perfect model, meaning that all 

events are predicted correctly. The baseline shows points where the true positive rate 

equals the false positive rate, meaning that the rate of predicting lapses correctly and the 

rate of predicting non-lapses are the same. 

The AUC takes the value between zero and one where anything below 0.5 reflects a not 

so good model. 0.5 is similar to the baseline in ROC, which shows that the model does 

not have the discriminatory ability; 0.8 to 0.9 represent an excellent model; and anything 

between 0.5 and 0.8 shows a fairly good model (Mandrekar, 2010). 

3.3 Results 

3.3.1 Data analysis 

3.3.1.1 Insurer 1: Data exploration 

Figure 3.2 shows the demographic distribution of Insurer 1. There are more female 

policyholders (38%) than males (22%) and 40% of the gender variable was unclassified. 

Most policyholders are in the extreme ends of the age distribution; 26% are less than 25 

years and 23% are greater than 40 years. It was not so clear if the age captured was at 

the policy entry age or the age at the end of the reporting period (i.e., last recorded date). 
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Figure 3.2: Insurer 1 – Demographic Distribution 

 

Table 3.9 shows the distribution of lapses per year. Policyholders that lapsed in the same 

year their policies commenced were 3.1% (410), 3.3% (608), and 4.4% (848) in the year 

2017, 2018, and 2019, respectively. The number of policyholders that lapsed after a year 

of commencement was 14% for 2017, and 18% for 2018. The total number of lapsed 

policies were 15.9% whereas active policies were 84.1%. This clearly shows the issue of 

imbalanced data. 

Table 3.9: Insurer 1 – Lapses Per Year 

 

Table 3.10 presents the non-payment ratio for all lapsed policies. Only 9% of total lapsed 

policies seemed to have been consistent with their premium payments. 

 

Effective_Dates CNT_POLICIES Policies(%) 2017 2018 2019 Active Active Policy(%) Lapsed policies (%) 

2017 13274 26.5% 410 1953 926 9985 19.9% 6.6%

2018 17927 35.8% 0 608 3233 14086 28.1% 7.7%

2019 18856 37.7% 0 0 848 18008 36.0% 1.7%

Total 50057 100.0% 410 2561 5007 42079 84.1% 15.9%

Total (%) 0.8% 5.1% 10.0% 84.1%

LAPSE
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Table 3.10: Insurer 1 – Lapses by Non-payments 

 

3.3.1.2 Insurer 2: Data exploration 

Table 3.11 represents the distribution of lapse by age and gender for Insurer 2. Thirty-

four percent of the data is in force and 66% of the data had already lapsed. This is an 

unusual distribution of lapse and non-lapse. Lapse is usually a minority case. Of the 66% 

lapsed policies, 37% are males. The highest number of lapses (19%) are in the age group 

of 0-25 years. 

Table 3.11: Insurer 2 – Lapses Per Age Group and Gender 

 

3.3.1.3 Variable importance 

Figures 3.3 and 3.4 show the ranking of important variables when predicting lapses 

through the Chi-squared variable selection method for Insurer 1 and Insurer 2 

2017 2018 2019 Total Total (%)

0-20% 9 144 553 706 9%

21-40% 80 449 750 1279 16%

41-60% 296 1840 2496 4632 58%

61-80% 12 109 178 299 4%

>80% 13 19 18 50 1%

Missing 0 0 1012 1012 13%

Total 410 2561 5007 7978 1

Total(%) 5% 32% 63% 100%
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respectively. Tenure was the most significant predictor of lapses for Insurer 1. Similarly, 

tenure was the highest significant predictor of lapses for Insurer 2. Payment and premium 

information are some of the variables that drive lapses for both insurers. 

 

Figure 3.3: Insurer 1 – Variable Importance 

 

Figure 3.4: Insurer 1 – Variable Importance 
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3.3.2 Logistic regression 

Table 3.12 and Table 3.13 compares the performance of forward and backward variable 

selection in LR for Insurer 1 and Insurer 2 datasets respectively. Both forward and 

backward selection methods resulted in 22% misclassification on training and validation 

sets on Insurer 1. Similarly, for Insurer 2, both backward and forward model selection had 

the same misclassification rate of 26% and the same average squared error (ASE) of 

18%. ASE shows the average squared difference between the actual value and the 

predicted value. The lower the value, the better the model. 

Table 3.12: Insurer 1 – Fit Statistics: Logistic Regression 

 

Table 3.13: Insurer 2 – Fit Statistics: Logistic Regression 

 

3.3.3 Support vector machine 

Table 3.14 and Table 3.15 compares the performance of polynomial kernel and linear 

kernel when predicting lapses for Insurer 1 and Insurer 2 respectively. A second-degree 

SVM-polynomial kernel performed better than an SVM trained on linear kernel on both 

datasets. For Insurer 1, the misclassification rate was 2% higher on linear kernel (21%) 

than on the polynomial kernel (19%). 

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Logistic Regression-Forward Y 0.21612 0.21507 0.14708 0.1468

Logistic Regression-Backward 0.21688 0.21674 0.14705 0.14683

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Logistic Regression- Forward 0.25688 0.25198 0.18075 0.17826

Logistic Regression- Backward Y 0.25735 0.25155 0.18093 0.17846



 

66 

 

Table 3.14: Insurer 1 – Fit Statistics: Support Vector Machine 

 

Table 3.15: Insurer 2 – Fit Statistics: Support Vector Machine 

 

3.3.4 Neural network 

Table 3.16 and Table 3.17 compared the performance of backpropagation learning with 

Levenberg-Marquardt on a multilayer perceptron NN for Insurer 1 and Insurer 2 

respectively. For Insurer 1, the NN trained with Levenberg-Marquardt had a 

misclassification rate of 19% and the NN trained with backpropagation had a 

misclassification rate of 21%. The ASE was very minimal for both models (i.e., < 14%). 

Similarly, Levenberg-Marquardt learning outperformed backpropagation learning on the 

Insurer 2 dataset. Both NN learnings performed well, and the results were close enough. 

Table 3.16: Insurer 1 – Fit Statistics: Neural Networks 

 

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

SVM- Polynomial Kernel Y 0.25796 0.25345 0.19644 0.1953

SVm-Linear Kernel 0.27289 0.27144 0.19283 0.19147

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Neural Network- Levenberg Y 0.19634 0.19444 0.13248 0.13248

Neural network-Backprob 0.21662 0.21279 0.14451 0.14392

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

SVM- Polynomial Kernel Y 0.1923 0.17171 0.17523 0.17539

SVm-Linear Kernel 0.21937 0.2174 0.16715 0.16698
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Table 3.17: Insurer 2 – Fit Statistics: Neural Networks 

 

3.3.5 Trees models 

Table 3.18 and Table 3.19 compared the DT model which is a single classifier and 

ensemble models; namely, GB and RF for Insurer 1 and Insurer 2 respectively. For 

Insurer 1, the RF had a misclassification rate of 10% in training and 12% in validation. 

Gradient boost (GB) resulted in a good misclassification rate of 8% and 9% for training 

and validation sets, respectively. Normal DT resulted in misclassification of 13% for both 

training and validation sets. The ASE for all the models was very minimal (less than or 

equal to 10%) on both training and validation sets. For Insurer 2, all the tree models 

resulted in a misclassification rate of 24%. 

Table 3.18: Insurer 1 – Fit Statistics: Tree Models 

 

 

 

 

 

 

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Gradient Boosting Y 0.07949                    0.08772                 0.06026       0.06586                 

Random Forest 0.10335                    0.12412                 0.08313       0.09461                 

Decision Tree 0.12790                    0.13135                 0.09457       0.09826                 

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Neural Network- Levenberg Y 0.25030 0.24568 0.17640 0.17420

Neural network-Backprob 0.25818 0.25201 0.18335 0.18110
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Table 3.19: Insurer 2 – Fit Statistics: Tree Models 

 

3.3.6 Model comparisons 

According to Siemes (2016), there is no perfect performance measure. In this 

dissertation, models were evaluated on six performance measures, and the dominating 

best model across the measures was crowned the best modelling method when 

predicting lapses. Table 3.20 shows the perfomance results for the nine models that were 

built using two different insurance datasets. The colours in the table represent the best 

model (green) and worst model (yellow) per performance measure. 

All the tree-based methodologies (i.e., GB, RF, and normal DTs) showed the best results 

as they dominated across all performance measures. They outperformed other algorithms 

when the data was trained and validated using different feature selection methods; 

namely, PCA and Chi-squared and when the data was trained on different insurer 

datasets. Hassouna et al. (2015) and Sabbeh (2018) also presented similar results where 

the tree models outperformed other ML algorithms. Support vector machine (SVM) with 

a linear kernel showed the overall worst performance across all datasets. 

The GB method had the best overall performance with 91.6% accuracy on average 

(training and validation average), 92.3% precision, 90.8% sensitivity, 92.5 specificity, and 

91.6% F-measure; followed by RF with 88.6% average accuracy, 86.4% precision, 91.7% 

sensitivity, 85.5 specificity, and 89.0% F-measure for variables selected by Chi-square 

test on Insurer 1’s dataset. 

Random forest (RF) had the best performance of 86.0% average accuracy, 83.1% 

precision, 90.4% sensitivity,81.6% specificity, and 86.6% F-measure for variables 

selected through PCA on Insurer 1’s dataset. 

Selected Model

Train: 

Misclassification 

Rate

Validation: 

Misclassification 

Rate

Train: 

Average 

Squared 

Error

Validation: 

Average Squared 

Error

Gradient Boosting 0.24019                    0.24309                 0.16554       0.16931                 

Random Forest 0.23803                    0.24309                 0.16679       0.16987                 

Decision Tree Y 0.24020                    0.24119                 0.17130       0.17223                 
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Best precision was achieved by the GB method on all the datasets, i.e., 92.3% 84,2% 

and 75.5% on Insurer 1 Chi-squared, Insurer 1 PCA and Insurer 2 Chi-squared 

respectively. This implies that the model was able to predict actual lapses (true positives) 

correctly. This is what was more important in this dissertation, as insurers want to know 

who is likely to lapse so that they can implement adequate retention strategies. People 

who are unlikely to leave were not the target in this experiment. Support vector machine 

(SVM) with a linear kernel showed the worst precision compared to other models. 

Random forest (RF) showed the overall best sensitivity – this implies that a high number 

of actual lapses were correctly identified by the model. The best F-measure for Insurer 1 

was GB and RF for Insurer 2. 

All the models resulted in the worst specificity (36.5% on average) and very high 

sensitivity on the Insurer 2 dataset (94.9% on average), that is, the models were good at 

identifying policyholders that will lapse, but they do have limitations when identifying 

policyholders that will not lapse. This was on a 50% threshold across all the models. 

Table 3.20: Average Model Performance (Training and Validation) 

 

Random 

Forest

Gradient 

Boosting

Decision 

Tree

SVM 

Polynomial

SVM 

Linear 

LR-

Forward

LR 

Backward

NN 

Levenberg

NN Back-

Prob

Accuracy 88,6% 91,6% 87,0% 80,8% 78,2% 78,4% 78,3% 80,5% 78,5%
Misclassifica 11,4% 8,4% 13,0% 19,2% 21,8% 21,6% 21,7% 19,5% 21,5%
Precision 86,4% 92,3% 86,4% 77,1% 75,1% 75,7% 75,4% 79,3% 76,3%

Specificity 85,5% 92,5% 86,2% 74,0% 72,0% 73,2% 72,6% 78,4% 74,3%

Sensitivity 91,7% 90,8% 87,9% 87,6% 84,3% 83,7% 84,0% 82,5% 82,7%

F- measure 89,0% 91,6% 87,1% 82,0% 79,4% 79,5% 79,5% 80,9% 79,4%
Accuracy 86,0% 85,9% 82,9% 80,9% 79,3% 79,4% 79,4% 80,9% 79,7%
Misclassifica 14,0% 14,1% 17,1% 19,1% 20,7% 20,6% 20,6% 19,1% 20,3%
Precision 83,1% 84,2% 81,3% 77,6% 76,3% 77,0% 76,7% 79,8% 77,5%

Specificity 81,6% 83,4% 80,4% 75,0% 73,6% 74,9% 74,4% 79,0% 75,6%

Sensitivity 90,4% 88,4% 85,5% 86,7% 84,9% 84,0% 84,4% 82,8% 83,9%

F- measure 86,6% 86,2% 83,3% 81,9% 80,4% 80,4% 80,3% 81,3% 80,5%
Accuracy 75,9% 75,8% 75,8% 74,4% 72,8% 74,6% 74,6% 75,2% 74,5%
Misclassifica 24,1% 24,2% 24,2% 25,6% 27,2% 25,4% 25,4% 24,8% 25,5%

Precision 74,5% 75,5% 74,9% 73,1% 71,4% 74,1% 74,0% 74,8% 74,1%

Specificity 37,6% 42,5% 39,7% 32,5% 26,0% 37,5% 36,9% 39,9% 37,6%

Sensitivity 96,1% 93,4% 94,9% 96,5% 97,4% 94,0% 94,4% 93,8% 93,9%

F- measure 84,0% 83,5% 83,7% 83,2% 82,4% 82,9% 82,9% 83,2% 82,8%
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Table 3.21 shows accuracy per probability band for all nine models for Insurer 1. 

Probabilities were divided into 10 bands from the highest to the lowest. Performance was 

monitored at each band. Table 3.22 reflect the distribution of total policies at each 

probability band, i.e., in Table 3.22, GB predicted that 29.8% of total policies had a 0-10% 

chance of lapsing. As shown in Table 3.21, the model was 99% accurate at predicting 

policies in that 0-10% band. 

Decision tree (DT) and RF classify most of the proportion of the data on either the lowest 

probability band (0-10% band; 26.2% average of total policies) or the highest band (90-

100% band; 25% of total policies). The models had 99% and 98% prediction accuracy 

respectively on these bands. Most of the predictions on SVM lie between 30-70% chance 

of lapsing. Thus, it had moderate lapse probabilities for majority of the policies. 

Table 3.21: Accuracy Per Prediction Band 

 

Table 3.22: Policies Per Prediction Band 

 

As illustrated in Figure 3.5, Insurer 1 models performed well based on the ROC curve as 

all the curves are towards the top left corner. This reflects the discriminating ability of the 

Model 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% Overall Accuracy

Gradient Boosting 98,9% 90,8% 83,0% 72,8% 40,3% 55,5% 70,2% 82,5% 92,7% 99,6% 92,1%

Random Forest 100,0% 99,6% 95,0% 80,0% 40,3% 60,2% 72,0% 84,7% 92,9% 98,1% 89,7%

Decision Tree 98,6% 86,3% 74,5% 66,0% 44,7% 54,4% 64,4% 77,1% 83,6% 96,3% 87,2%

Svm- Polynomial Kernel 100,0% 100,0% 99,9% 99,4% 23,8% 54,4% 81,0% 95,0% 97,2% 92,0% 80,8%

Neural Network- Levenberg 99,4% 87,4% 74,2% 64,0% 43,6% 52,4% 65,4% 75,8% 86,4% 94,6% 80,4%

Logistic Regression-Forwards 97,0% 81,4% 67,5% 64,7% 40,1% 53,0% 62,7% 74,8% 85,2% 95,7% 78,4%

Neural Network- Back-Prob 98,2% 81,0% 69,7% 64,5% 41,5% 48,7% 63,4% 74,5% 87,0% 96,4% 78,3%

Logistic Regression-Backwards 97,3% 82,2% 69,2% 64,2% 39,4% 52,8% 63,1% 75,3% 85,2% 95,6% 78,3%

Svm-Linear Kernel 99,2% 99,7% 98,0% 90,6% 33,4% 50,2% 70,0% 84,2% 93,8% 98,0% 78,1%

Average Band  Accuracy 98,7% 89,8% 81,2% 74,0% 38,6% 53,5% 68,0% 80,4% 89,3% 96,3%

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% Total 

Decision Tree 25,0% 11,6% 4,0% 7,3% 1,1% 4,3% 1,0% 5,5% 14,2% 26,0% 100%

Gradient Boosting 29,8% 8,7% 5,1% 4,0% 3,2% 2,9% 3,1% 4,2% 6,8% 32,2% 100%

Logistic Regression-Backwards 20,4% 5,9% 5,3% 6,2% 6,7% 8,2% 10,7% 13,9% 13,0% 9,7% 100%

Logistic Regression-Forwards 20,6% 6,5% 5,5% 6,0% 6,3% 7,7% 10,2% 13,6% 14,1% 9,5% 100%

Neural Network- Back-Prob 20,2% 5,3% 5,8% 6,8% 8,0% 7,6% 8,9% 12,3% 17,1% 8,1% 100%

Neural Network- Levenberg 21,4% 1,4% 10,4% 8,3% 6,7% 6,3% 7,5% 10,9% 12,7% 14,4% 100%

Random Forest 23,7% 6,0% 6,5% 5,4% 5,0% 5,4% 6,9% 9,3% 14,9% 16,9% 100%

SVM- Polynomial Kernel 0,1% 1,2% 4,8% 11,1% 26,1% 15,4% 27,8% 11,8% 1,5% 0,1% 100%

SVM-Linear Kernel 0,3% 2,9% 7,3% 14,2% 19,3% 11,5% 17,2% 15,8% 8,8% 2,7% 100%

Total Policies Per Prediction Band
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models. Similarly, as illustrated in Figure 3.6, models performed well on the Insurer 2 

dataset. The models had better results on the Insurer 1 dataset than the Insurer 2 dataset. 

 

Figure 3.5: Insurer 1 – ROC Curve: Chi-square 

 

Figure 3.6: Insurer 2 – ROC Curve: Chi-square 

Table 3.23 shows the AUC for all models on all datasets. Insurer 1 had an AUC of +0.8 

for all models, which reflects a good-excellent model. Similarly, AUC for Insurer 2 shows 

a good performance (+0.7) 
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Table 3.23: Area Under Curve 

 

 

3.3.7 Results discussions 

Ćurak, Podrug and Poposki (2015) showed that the most influential factor of policy 

lapsation is the change in the financial status of the policyholder, income level and the 

duration of the policy. This study also found that tenure and premium payments are in the 

top three reasons for lapses in both insurers’ datasets, additionally; premium and sum 

assured information were also found to be the contributing factor for lapses. Only nine 

percent of the total lapses on Insurer 1 paid more than 80% of their policies, thus they 

have been consistent with their payments. Insurer 2 dataset also showed that younger 

policyholders (i.e., <25) lapses more than the older policyholders. Mojekwu( 2011) also 

showed that in Nigeria, young people take up policies and terminate them early. The 

reason young people are terminating their policies early is illustrated by Valdez et al. 

(2014), he showed that this may be because the younger policyholders might be still 

looking elsewhere. However, in this study, the data showed that the mid-age group are 

staying (>25 and <40). A quarter of total lapses (24%) are older policyholders. This was 

not expected as Valdez et al. (2014) showed that Individuals with health risks and 

uninsurable issues do not usually lapse their policies. Health risk and uninsurable is 

usually highly correlated to age. The results also showed that most policyholders will 

lapse within a year of getting a life insurance policy. 

Model description

Train Validation Train Validation Train Validation

Random Forest 0.96 0.95 0.95 0.92 0.78 0.77

Gradient Boosting 0.98 0.97 0.95 0.93 0.79 0.77

Decision Tree 0.94 0.94 0.91 0.89 0.76 0.75

Neural Network-Levenberg 0.89 0.89 0.90 0.90 0.75 0.76

SVM-Polynomial 0.90 0.90 0.90 0.90 0.73 0.74

Neural Network-Back probagation 0.87 0.88 0.88 0.88 0.74 0.74

Logistic Regression-Forwards 0.87 0.87 0.88 0.88 0.74 0.74

LogisticRegression- Backwars 0.87 0.87 0.88 0.88 0.74 0.74

SVM-Linear Kernel_PCA 0.87 0.87 0.88 0.88 0.72 0.73

Insurer1 Chi_Square Insurer1 PCA Insurer2-Chi Square
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In this study, the feature selection method, namely, Chi-square was compared with PCA 

based on their performance accuracy. The Chi-squared method outperformed PCA on 

tree models, namely, GB, DT and RF with a percentage difference of 5.8%, 4.1% and 

2.6% respectively. However, it was slightly outperformed by PCA on NNs, LR and SVM 

models by an average percentage difference of 0.8%. The Chi-squared method resulted 

in 14 forward significant variables using the P-value as the selection threshold, whereas 

PCA resulted in new variables where the interpretation was not as simple as the Chi-

squared. A study by Ravichandran (2016) also showed the superiority of Chi-square 

performance when compared to other dimensionality reduction methods like PCA, 

Information Gain, Gain Ratio, and Quantile Regression model. His study also resulted in 

lesser time taken and lesser selected variables than the other methodologies explored. 

Logistics models were trained using forward variable selection and backward selection 

methods. Similar to the results presented by Maxwell and Obinna (2018), there was not 

much difference between the backward and forward variable selection methods. Thus, 

both selection methods produced the same model on all datasets. 

This study also found that the polynomial kernel performs better than the linear kernel on 

SVMs. The percentage difference in accuracy was 2.6% and 1.6% on average for Insurer 

1 and Insurer 2 respectively. The average area under the curve for a polynomial kernel 

outperformed linear kernel for Insurer 1 (0.90 and 0.73) and Insurer 2 (0.88 and 0.72) 

respectively. These results contradict the findings illustrated by Hossain and Miah (2016), 

where linear outperformed polynomial kernel on both F-measure and AUC when 

predicting customer churns. 

From the literature, different researchers made different conclusions about the 

performances of kernels. Polynomial showed superiority over linear, RBF and sigmoid 

kernels in the study by Nanda et al. (2018). RBF outperformed linear and 3rd-degree 

polynomial kernels on the study by Yekkehkhany et al. (2014) and linear models 

outperformed RBF-Gaussian, polynomial, linear, sigmoid, laplacian and ANOVA RBF on 

a study by Hossain and Miah (2016). This clearly shows that the performance of kernels 

highly depends on parameter optimisations. 
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As expected, even though the models were built similarly, they performed differently on 

different datasets. This may have been caused by different reasons, ie., the distribution 

and variation of the data, the models’ architecture, parameter optimisations set up, 

different resulting features through variable selections methods, the models may have 

been more suitable on one dataset than the other. 

All the Insurer 2 models trained through Chi-squared variable selection model resulted in 

the worst average specificity (36.5%), whereas, on Insurer 1, the same models had good 

average specificity (78.9%) These further illustrate that models perform differently on 

different datasets. 

Gradient Boosting (GB) and RF consistently outperformed single classifiers. This finding 

reiterates that ensemble model generally performs better than the single classifiers 

(Dietterich, 2000; Kim et al., 2006; Yang et al., 2007; Lessmann et al., 2015; 

Gavrishchaka et al., 2018; Sabbeh, 2018; Loisel et al., 2019). 
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CHAPTER FOUR 

CONCLUSION  

 

4.1 Summary 

High lapse rates can damage an insurance company’s reputation and may lead to 

insolvency. The accurate prediction will help the insurer to implement customised 

retentions strategies and minimise the risk that comes with losing clients. This dissertation 

aimed to illustrate the predictive power of different classifier models, their robustness, 

flexibility, sensitivity, and generalisation ability when presented with a different dataset. 

The dissertation also aimed to illustrate the impact of different feature selection 

methodologies on the models and highlight features that directly drive lapses using in-

depth data analysis. 

4.2 Findings and Recommendations 

Nine ML algorithms were built, namely three tree models (i.e., a DT, GB, and RF); two 

SVM models (i.e., SVM trained with linear kernel and SVM trained with the polynomial 

kernel); two NNs (i.e., NN Levenberg-Marquardt, backpropagation NN); and two LR 

models with variable selection through forward and backward selection process. Models 

were built and compared based on two variable selection methodologies namely PCA 

and Chi-squared on two different insurer datasets. 

All the models performed well (i.e., +70% accuracy, precision, sensitivity, and F-measure) 

on both the training and validation sets. The models were robust, and they showed the 

ability to generalise well. The accuracy percentage difference between training and 

validation was less than 5% for all the models. This study has shown emperical evidence 

on application of ML models in lapse predictions. 

Although different models performed differently on different datasets, the ensemble model 

(i.e., GB) gave the overall best average performance of 91.6% accuracy, 92.3% precision, 
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90.8% sensitivity, 85.5% specificity, and 91.6% F-measure followed by RF with 86.0% 

accuracy, 83.1% precision, 90.4% sensitivity, 81.6% specificity, and 86.6% F-measure 

on Insurer 1’s dataset with variables selected through Chi-square. Similarly, the ensemble 

models (i.e., GB, RF) showed the best results for variables selected through PCA. The 

same picture was observed on Insurer 2’s dataset. SVM with a linear kernel consistently 

showed the overall worst performance across all datasets. 

The study also found that the tree models place most of the policies on extremely high or 

extremely low probability bands as opposed to other models. A quarter (25%) of all 

policyholders had a 90-100% chance of lapsing on average. Another quarter (26%) had 

a 0-10% chance of lapsing. The models were 99% and 98% accurate at predicting those 

lower (0-10%) and higher (90-100%) probability bands. We recommend that the insurer 

must have solid retentions strategies for the 26% of policyholders with the highest chance 

of lapsing as the tree models were 98% accurate on average at identifying them. 

The Chi-squared variable selection method improved accuracy on tree models by 4.2% 

on average. However, NNs, SVMs, and LRs produced similar models when trained on 

PCA and Chi-squared. 

Both forward and backward logistic models gave the same model, most of the literature 

showed similar results. Polynomial kernel consistently outperformed linear kernel on all 

the datasets, however, the percentage difference was very small. 

On both datasets, policy tenure was the most significant lapse predictor. Other important 

features included premium payments mode (i.e., annually, monthly, quarterly, and semi-

annually), sum assured, and payment information. This study shows emperical evidence 

that younger clients are at risk of lapsing their policies. Insurers should have good 

retentions strategies for younger clients. 

The findings showed that appropriate parameter tuning and model boosting improved the 

prediction of lapses in life insurance industry. These findings support the current idea of 

the importance of boosting ML algorithms, and it also illustrates the predictive power of 
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ensemble learning over single classifiers. This dissertation suggests that insurers base 

their model implementation on a trial and test of different ML algorithms rather than just 

one model. It also recommends the use of ensemble models over single classifiers when 

predicting lapses in life insurance. Insurers must be on the lookout of newer prediction 

and optimization techniques. 

4.3 Limitations and Future Work 

Due to time constraints, some topics were discovered in the study, but we could not dive 

into them fully, i.e., In this study, variable selection through forward and backward LR 

gave similar results. There is quite a lot of feature selection methodology available on R, 

Python, and other statistical packages that we would like to explore, i.e., Boruta, Least 

Absolute Shrinkage and Selection Operator and Recursive Feature Elimination. Also, this 

study compared single classifiers with ensemble models. We would like to incorporate 

hybrid models in the future. 

It is quite challenging to find secondary lapse data as the information is too private. Both 

datasets that were used had few dependent variables, and they were both not big enough. 

We would like to incorporate economic features as well the credit information of the 

policyholder in the data as they have been proven to be a significant predictor of lapses 

in the financial industry. 
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