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Abstract

We propose a mathematical model for the transmission dynamics of enterovirus. We prove

that if the basic reproduction number R0 ≤ 1, a suitable Lyapunov function is used to

establish the global stability of the disease free equilibrium, in which case the infection will

die out over time. Our analysis further establish the global stability of the endemic equilibrium

based on the approach of Volterra-Lyapunov matrices if R0 > 1. Our findings show that

when R0 > 1, the endemic equilibrium is globally asymptotically stable. In this case, the

enterovirus will invade the population. It is shown that by reducing direct transmission rate

by 80%, the basic reproduction number can be reduced below one and thus controlling the

infection. Using optimal control with hygiene and sanitation campaigns as control measures,

it is shown that the disease can be controlled within a shorter period of time as compared to

minimizing the direct contact rate by 80%. Numerical simulations are provided to illustrate

the results.

Key terms: Mathematical modelling, Enterovirus, basic reproduction number, Next gen-

eration matrix method, Lyapunov functions, Volterra-Lyapunov matrices, optimal control,

Pontrayagin’s Maximum principle.



Chapter 1

Introduction

Enteroviruses are single-stranded positive ribonucleic acid (RNA) viruses associated with

several human diseases all over the world, including hand-foot-and-mouth disease (HFMD),

respiratory infections, etc. [26]. Many serotypes have been discovered in the past, for in-

stance, EV-D68 made its first appearance in 1962 and was identified as a respiratory pathogen

when it caused an outbreak in many countries including Japan, the Philippines, Netherlands

and North America [9]. EV71 was first discovered in 1969 and has been identified as a cause

of outbreaks of HFMD in Asia-pacific region [12]. Patients usually show mild symptoms

such as sore throat, runny nose, sneezing, fever, coughing, nausea and vomiting, diarrhea,

trouble breathing, sores in the mouth, and on the palms of the hands and soles of the feet.

However, some infected people, especially infants and people with compromised immune

system may have serious illness. Complications from enteroviral infection are not common,

but if they occur, can cause serious problems such as severe illness in the lungs, inflam-

mation of membrane around the brain and spinal cord (meningitis), inflammation of the

liver (hepatitis), and more. Enterovirus enters the human body through the gastrointestinal

tract and thrives there. Later on, it spreads to other organs such as the skin and nervous

system [4, 21, 34]. The virus can be transmitted directly from human to human through

effective human contacts. It can also be transmitted indirectly from environment to human
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through viral shedding from gastrointestinal or upper respiratory tract, by faecal-oral or res-

piratory mode, respectively [12, 21]. The average incubation period of enterovirus is 7 days

and the contagious period starts about 3 days after the infection and lasts for about 10 days

after symptoms developed [12, 30]. Infected individuals can shed virus without showing any

symptoms of infection, and this makes the control more challenging. Currently, there is no

antiviral medication to cure enteroviral infection, however, other drugs and antibiotics can

be taken to relieve the pain of sores in the mouth, in addition to having bed rest. Preventive

measures include but not limited to avoiding contact with infected persons, regular washing

of hands with sanitizer and cleaning surfaces regularly with disinfectants.

In the past, some mathematical models have been developed to get insight and find control

strategies that can be used to manage an outbreak of enterovirus and its variants. For

example, Cao and Hongwu [14] studied the transmission dynamics of a hand-foot-mouth

disease (HFMD) model in a population of children below 10 years of age with two infectious

stages and optimal control with two control measures. Nandi Roy [32] also presented a

model of HFMD, with the aim of analytically evaluating the effectiveness of quarantine as

a control strategy, with reinfection of recovered population. Aihara et al [15], experimental-

mathematical analyses were conducted to estimate the burst size and the basic reproductive

number of a novel enterovirus 71 (EV71). In order to better inform vaccination policy, Taka-

hashi et al. [35] used mathematical models to evaluate the effect of prospective vaccination

against enterovirus (EV-A71) responsible for HFMD in China. Furthermore, a Susceptible-

Infected-Recovered (SIR) model was adopted by S. Hu et al [24] to study the transmissibility

and interactions of 3 enterovirus pathogens. Using data from Changsha city in China, they

estimated three basic reproduction numbers for the viruses. Other related mathematical

models include the Optimal control analysis of hepatitis B virus with treatment and vaccina-

tion presented by Alrabaiah et al [3]. Alqarni et al [2] presented the mathematical modelling

of Novel corona virus and control, and Bera et al [18] presented mathematical analysis of

the global dynamics of HTLV-I infection. Also closely related to our study is the impact



13

of media awareness and optimal control strategy on the prevalence of tuberculosis by Das

et al [7], and the stability analysis of a mathematical for Glioma-Immune interaction under

optimal therapy presented by Khajanchi et al [17].

In this dissertation, we intent to extend many models of enterovirus by incorporating indi-

rect transmission of infection from the environment and the consideration of optimal control

strategy. The rest of the dissertation is organized as follows: Chapter 2 focuses on prelimi-

naries, which include the terminology, theories and laws used in the dissertation. In Chapter

3, we present the formulation for basic mathematical model for transmission dynamics of

enterovirus, its mathematical analysis. The numerical simulations that confirm the results

of the analysis are presented in Chapter 4. In Chapter 5 , we extend the basic model to

incorporate optimal control, its analysis and numerics, with hygiene and sanitation as control

measures. Finally, in Chapter 6, we present the concluding remarks.



Chapter 2

Preliminaries

This chapter covers the terminology and some laws or theorems used in this dissertation.

2.1 Definitions

Definition 2.1.1. Incubation period is the time between infection or contact with

the agent and the onset of symptoms of infection [28].

Definition 2.1.2. Contagious period is the time during which an infectious agent

can be spread [28].

Definition 2.1.3. Latent period is the time between exposure and the onset of con-

tagious period [28].

Definition 2.1.4. A compact set S ⊂ IRn is a set that is closed and bounded [37].

Definition 2.1.5. Lyapunov function is a non-negative function that decreases in

time along the orbits of a dynamical system. It is useful in studying the stability of the

equilibrium points [19].

Definition 2.1.6. - A symmetric matrix is one for which A = AT .

- A symmetric positive (negative) definite matrix is a symmetric matrix for
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which all the eigenvalues are positive (negative).

- We write matrix A > 0(< 0) if A is symmetric positive (negative).

Definition 2.1.7. We say that a non-singular n×n matrix A is Volterra-Lyapunov

stable if there exists a positive diagonal n×n matrix M such that MA+ATMT < 0. [23]

Definition 2.1.8. A convex set is a set of elements from a vector space such that all

the points on the straight line between any two points of the set are also contained in the

set. That is, for any x, y ∈ A it follows that tx+ (1− t)y ∈ A for any t ∈ [0, 1] [5].

2.2 Laws, principles, theorems/lemmas and equa-

tions

Definition 2.2.1. Mass action law states that when substances A and B react with

each other, the reaction rate is proportional to the concentration of A, denoted by [A],

and the concentration of B, [B].

reaction rate = c[A][B],

where c is a constant of reaction [38].

Definition 2.2.2. Michaelis-Menten equation arises from enzymatic reaction, it

states that the initial velocity of reaction is given by

V0 = Vmax

(
[S]

κ+ [S]

)
,

where Vmax is the maximum velocity of the reaction, [S] is the concentration of sub-

strate S and κ is the Michaeli-Menten constant. The constant κ measures the kinetics

of enzyme reaction, it is equivalent to the concentration of the substrate at which the

reaction takes place at half of its maximum rate [27]. In the context of infectious dis-
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ease modelling, Vmax = βeS, where βe is the rate of indirect transmission rate and S is

the class of susceptible individuals. The substrate concentration is B which represents

the concentration of virus in the environment. V0 = dS
dt

is the rate at which susceptible

individuals are exposed to virus from the environment.

Theorem 2.2.3 (LaSalle’s Invariance Principle). Suppose there is a neighbourhood D

of O and continuously differentiable (time-independent) positive definite function V :

D → IR whose orbital derivative V̇ is negative semi-definite. Let I be the union of all

complete orbits contained in {x ∈ D|V̇ (x) = 0}. Then there is a neighbourhood U of O

such that for every x0 ∈ U , ω(x0) ⊆ I [20].

Theorem 2.2.4 (Pontryagin’s Principle). Necessary conditions that (x∗, u∗) be an

optimal solution for the optimal control problem are the existence of a non-zero k-

dimensional vector λ and an n-dimensional vector function P (t) such that for t ∈ [t0, t1]:

˙P (t) = −P (t)f(t, x∗, u∗),

and

P (t)f(t, x, u) = H(t, x, u) = max
u∈U
{H(t, x, u)}.

Theorem 2.2.5 (Next generation matrix method). [33] In compartmental mod-

els for infectious disease transmission, individuals are categorized into several compart-

ments: some are called disease compartments if the individuals therein are infected,

while others are called non-disease compartments. Suppose that there are n > 0 disease

compartments and m > 0 non-disease compartments. Then a general compartmental

disease transmission model can be written as

X ′ = F(x, y)− V(x, y), y′ = g(x, y),

with g = (g1, ..., gm)T . Here ′ denotes differentiation with respect to time; x = (x1, ..., xn)T ∈
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IRn and y = (y1, ..., ym)T ∈ IRm represent the populations in disease compartments and

non-disease compartments, respectively; F = (F1, ..., Fn)T and V = (V1, ..., Vn)T , where

Fi represents the rate of new infections in the ith disease compartment; and Vi represents

the transition terms, for example, death and recovery in the ith disease compartment.

Assume that Fi(0, y) = 0, Vi(0, y) = 0, Fi(x, y) ≥ 0, Vi(x, y) ≤ 0 whenever xi = 0, and∑n
1=1 Vi(x, y) ≥ 0 for all x, y ≥ 0, i = 1, ..., n. Also assume that the disease-free system

y′ = g(0, y) has a unique equilibrium y = y0 > 0 that is locally asymptotically stable

within the disease-free space. Define two n× n matrices

F =

[
∂Fi

∂xj
(0, y0)

]
, V =

[
∂Vi
∂xj

(0, y0)

]
.

Assume that F ≥ 0 and V −1 ≥ 0, which are biologically reasonable. Then the next-

generation matrix is K = FV −1, and the basic reproduction number R0 can be defined

as the spectral radius of K that is,

R0 = ρ(FV −1).

Lemma 2.2.6. Let D =

d11 d22

d33 d44

 be a 2 × 2 matrix. Then D is Volterra-Lyapunov

stable if and only if d11 < 0, d22 < 0 and det(D) > 0. [23]



Chapter 3

Mathematical Modelling and

analysis of the model

3.1 Mathematical modelling

In this section, we construct a mathematical model consisting of four human compartments

and concentration of enterovirus in the environment to form a system of five ordinary differ-

ential equations in describing the dynamics of enterovirus infection. The human population

at any time t, consists of four mutually-exclusive compartments namely the susceptible S(t),

exposed E(t), infected I(t), and recovered R(t), so that the total population N(t) is given

by

N(t) = S(t) + E(t) + I(t) +R(t). (3.1.1)

We consider a constant population and assume that death and birth rates denoted by µ are

equal. The transmission dynamics of enterovirus infection are illustrated by the flow diagram

in Figure 3.1. The concentration of enterovirus in the environment at time t, is denoted

B(t). The susceptible sub-population is generated by influx from newly born babies at the

rate of µ, which is also the death rate of all human sub-populations. Susceptible population

acquire enterovirus in two ways, through effective contacts with human to human at the
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rate of βh, or through environment to human transmission at the rate of βe. The human to

human transmission obeys the mass action law, thus the total number of susceptible indi-

viduals who get the infection or exposed is βh
SI
N

. The environment to human transmission

obeys Michaelis-Menten formulation. Thus, the total number of susceptible individuals who

join the exposed class after exposure is βe
BS
κ+B

, where κ is the Michaelis-Menten constant,

representing the concentration of enterovirus at which the rate of infection is half the maxi-

mum rate of infection. The maximum rate of infection is attained when the concentration of

enterovirus has reached its saturation level. Hence, the dynamics of this compartment is de-

scribed by equation 3.1.2. Susceptible humans give rise to exposed individuals. The exposed

population is decreased by becoming infectious at the rate γ and natural death at rate µ,

so that the dynamics is given by equation 3.1.3. Infectious individuals class is decreased by

shedding virus to environment at the rate ε, and natural death at the rate µ. Therefore, the

equation describing I is given by equation 3.1.4. Finally for human population, the infectious

individuals get recovered and die naturally at the rates α and µ respectively. The equation

describing the dynamics of recovered humans is thus given by equation 3.1.6. On the other

hand, the population of enterovirus in the environment is formed by infectious individuals

shedding the virus at the rate ε. Concentration of the virus is decreased if the environment

is sanitized, and the virus loses virulence at the rate δ. Dynamics of the virus in the en-

vironment is therefore given by equation 3.1.5. We therefore have the following flow diagram.
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S E I R

B

µS

µN

δB

µE µI µR
βeB

εI

αIγE
(
βe

B
κ+B

+ βh
I
N

)
S

Figure 3.1: Transmission of enterovirus

From the mathematical description of the transmission dynamics, we obtain the following

dynamical system.

dS

dt
= µN − µS −

(
βe

B

κ+B
+ βh

I

N

)
S, (3.1.2)

dE

dt
=

(
βe

B

κ+B
+ βh

I

N

)
S − (µ+ γ)E, (3.1.3)

dI

dt
= γE − (µ+ α)I, (3.1.4)

dB

dt
= εI − δB, (3.1.5)

dR

dt
= αI − µR, (3.1.6)

with non-negative initial conditions

(S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, B(0) ≥ 0, R(0) ≥ 0) = (S0, E0, I0, B0, R0). (3.1.7)

We define the domain of model (3.1.2) - (3.1.6), the compact invariant set

τ =

{
(S,E, I, B,R) ∈ IR5

+|S + E + I + R = N, B ≤ Nε

δ

}
. (3.1.8)
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3.2 Well-posedness of the system

In this section, we show that the model has a unique, non-negative solution that is bounded,

and thus can be used to handle real life outbreaks. Let X(t) = (S(t), E(t), I(t), B(t), R(t))

and f : X → S ′ such that f = (f1, f2, f3, f4, f5), where

f1(X) = µN − µS −
(
βe

B
κ+B

+ βh
I
N

)
S,

f2(X) =
(
βe

B
κ+B

+ βh
I
N

)
S − (µ+ γ)E,

f3(X) = γE − (µ+ α)I,

f4(X) = εI − δB,

f5(x) = αI − µR.
So, equations (3.1.2) -(3.1.6) can be written as

X ′ = f(X(t)); X(0) = (S0, E0, I0, B0, R0). (3.2.1)

Theorem 3.2.1. If f(X(t)) is as given in (3.2.1), and the initial condition X(0) =

N = S + E + I + R > 0, is non-negative, then system (3.1.2)-(3.1.6) has a unique

solution that is non-negative and bounded.

Proof. We notice that fis are continuous functions and ∂fi
∂Xj

, 1 ≤ i, j ≤ 5 exist and are

continuous functions as well, so f(X(t)) is locally Lipschitz continuous. X(0) = N = S+

E+I+R > 0, thus at least one compartment is non-empty. Hence, there exists a unique

solution X(t) of the system, defined in some time interval containing t = 0 [25]. Let t0 be

the smallest t such that S(t0) = 0 or E(t0) = 0 or I(t0) = 0 or B(t0) = 0. By continuity

of S(t), E(t), I(t) and B(t), ∃ t∗ > t0 such that if S(t0) = 0, then from (3.1.2) we get

that dS
dt

= µN ≥ 0, ∀t ∈ [t0, t
∗]. This means that S is an increasing function on the

interval [t0, t
∗], which in turn means that S(t) ≥ 0 ∀t ∈ [t0, t

∗]. Similarly, if E(t0) = 0,

then from (3.1.3) we get that dE
dt

=
(
βe

B
κ+B

+ βh
I
N

)
S ≥ 0 =⇒ E(t) ≥ 0 ∀t ∈ [t0, t

∗].

If I(t0) = 0, then from (3.1.4), dI
dt

= γE ≥ 0 =⇒ I(t) ≥ 0 ∀t ∈ [t0, t
∗]. If B(t0) = 0,

then from (3.1.5), dB
dt

= εI ≥ 0 =⇒ B(t) ≥ 0 ∀t ∈ [t0, t
∗].If R(t0) = 0, then from

(3.1.6), dR
dt

= αI ≥ 0 =⇒ R(t) ≥ 0 ∀t ∈ [t0, t
∗]. Thus, the solution to the system is
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non-negative [25]. To establish that the unique solution exist globally, it is sufficient to

show that the dissipativity condition of theorem 2.3.6 of [1] is satisfied.

f(X) ·X = (f1, f2, f3, f4, f5) · (S,E, I, B,R)

= Sf1 + Ef2 + If3 +Bf4 +Rf5

= µNS − µS2 −
(
βe

B

κ+B
+ βh

I

N

)
S2

+

(
βe

B

κ+B
+ βh

I

N

)
SE − (µ+ γ)E2

+ γEI − (µ+ α)I2 + εIB − δB2 + αIR− µR2

≤ µN2 − µS2 +

(
βe
Nε

κδ
+ βh

)
(N2 − S2)− (µ+ γ)E2

+ γN2 − (µ+ α)I2 +
ε2N2

δ
− δB2 + αN2 − µR

≤ µN2 + µS2 +

(
βe
Nε

κδ
+ βh

)
(N2 − S2) + (µ+ γ)E2

+ γN2 + (µ+ α)I2 +
N2ε2

δ
+ δB2 + αN2 + µR2

≤
(
µ+ γ + α +

ε2

δ
+ βh + βe

Nε

κδ

)
N2

+

(
µ+ γ + α + δ + βh + βe

Nε

κδ

)
(S2 + E2 + I2 +B2 +R2)

≤ h|X|2 + q,

where h =
(
µ+ γ + α + δ + βh + βe

Nε
κδ

)
and q =

(
µ+ γ + α + ε2

δ
+ βh + βe

Nε
κδ

)
N2.

Hence there exists a unique solution X(t) of the system defined for all t ≥ 0 [25].

Finally, S ≤ N, E ≤ N, I ≤ N and B ≤ εN
δ
∀t ≥ 0, where εN

δ
is the satura-

tion level for the concentration of enterovirus in the environment, thus the solution is

bounded [25]. �
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3.3 Equilibrium points

Since R can be determined once S, E and I are known, equation (3.1.6) is left out in the

following analysis. At equilibrium point, all the variables (classes) do not change with time,

that is, dS
dt

= dE
dt

= dI
dt

= dB
dt

= 0. From (3.1.5), we get

I =
δ

ε
B. (3.3.1)

From (3.1.4) and using (3.3.1), we have

E =
(µ+ α)δ

εγ
B. (3.3.2)

Substituting (3.3.1) and (3.3.2) into (3.1.3) and factorizing we get

(
βe

1

κ+B
+ βh

δ

Nε

)
S − (µ+ γ)(µ+ α)δ

εγ
= 0, (3.3.3)

B = 0. (3.3.4)

The case where B = 0 and the condition S+E+I+R = N give us the Disease-free equilib-

rium (DFE) X0 = (N, 0, 0, 0, 0) ∈ τ =
{

(S,E, I, B,R) ∈ IR5
+|S + E + I + R = N, B ≤ Nε

δ

}
[25]. For (3.3.3), see detailed calculation in Lemma 3.4.3.

3.4 Stability analysis

In this section we study the stability of the DFE and the endemic equilibrium, using the basic

reproduction number as a threshold parameter.

3.4.1 The basic reproduction number

We compute the basic reproduction number using the Next Generation Matrix method de-

scribed in [39]. We consider only the disease compartments E, I, and B and let x =
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(E, I, B)T . We set F = (FE,FI ,FB)T and V = (VE,VI ,VB)T , where Fj, j = E, I,B,

is the rate of appearance of new infection in compartment j. Vj = V −j − V +
j , where V −j is

the rate of transfer out of compartment j and V +
j is the rate of transfer into compartment

j. So we have

F =


(
βe

B
κ+B

+ βh
I
N

)
S

0

0

 , (3.4.1)

V =


(µ+ γ)E

(µ+ α)I − γE

δB − εI

 . (3.4.2)

Assuming that X0 is the DFE for the model, we have

F =

[
∂Fi

∂xj
(X0)

]
=


0 βh βe

N
κ

0 0 0

0 0 0

 , (3.4.3)

V =

[
∂Vi
∂xj

(X0)

]
=


µ+ γ 0 0

−γ µ+ α 0

0 −ε δ

 . (3.4.4)

Taking the inverse of V gives

V −1 =


1

µ+γ
0 0

γ
(µ+γ)(µ+α)

1
µ+α

0

γε
(µ+γ)(µ+α)δ

ε
(µ+α)δ

1
δ

 .
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We therefore have

FV −1 =


βhγ

(µ+γ)(µ+α)
+ βeγεN

(µ+γ)(µ+α)κδ
βh

(µ+α)
+ βeεN

(µ+α)κδ
βeεN
κδ

0 0 0

0 0 0

 .

The basic reproduction number R0 is equal to the spectral radius of FV −1, thus

R0 =
γ(βhκδ + βeNε)

(µ+ γ)(µ+ α)κδ

=
γ

γ + µ

[
βh

µ+ α
+

βeNε

(µ+ α)κδ

]
. (3.4.5)

The basic reproduction number is the expected number of secondary cases produced by a

single infection in a completely susceptible population. The first term represents the basic

reproduction number of human-to-human infection and the second term is the reproduction

number for environment-to-human infection. γ
γ+µ

is the probability of surviving the exposed

period [25].

3.4.2 Stability of DFE

Theorem 3.4.1. Given that X0 = (N, 0, 0, 0, 0) is a DFE for the model, then X0 is

locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. See prove of Theorem 2 in [39]. �

Theorem 3.4.2. If R0 ≤ 1, the DFE of system (3.1.2)-(3.1.5) is globally asymptotically

stable in τ = {(S,E, I, B,R) ∈ IR5
+|S ≥ 0,E ≥ 0, I ≥ 0,B ≥ 0,R ≥ 0, S + E + I + R =

N and B ≤ εN
δ
}. If R0 > 1, the DEF is unstable.

Proof. We use the matrix theoretic method described in [33]. In general, the dynamics
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of the disease compartments for the model can be written as

dx

dt
= F(x, y)− V(x, y),

where x = (E, I,B)T , y = S, and F and V are given by (3.4.1) and (3.4.2) respectively.

We rewrite the dynamics of x (infected compartments) as

dx

dt
= (F − V )x− f(x, y), (3.4.6)

where F and V are given by (3.4.3) and (3.4.4) respectively, and

f(x, y) = (F − V )x−F(x, y) + V(x, y) =


βhI

(
1− S

N

)
+ βeB

(
N
κ
− S

κ+B

)
0

0

 .

Multiplying matrices V −1 and F gives

V −1F =


0 βh

µ+γ
βeN

(µ+γ)κ

0 βhγ
(µ+γ)(µ+α)

βeNγ
(µ+γ)(µ+α)κ

0 βhγε
(µ+γ)(µ+α)δ

βeNγε
(µ+γ)(µ+α)κδ

 .

We notice that f(x, y) ≥ 0 in τ ⊂ IR5
+,F ≥ 0, and V −1 ≥ 0. But V −1F is reducible,

so we cannot use the conclusion from Theorem 2.2 of [33]. Instead, we use Theorem

2.1 of [33] to construct the Lyapunov function for this model. Let wT = (w1, w2, w3) be

the left eigenvector of V −1F corresponding to ρ(FV −1) = ρ(V −1F ) = R0. We therefore

have

(w1, w2, w3)V
−1F = R0(w1, w2, w3).
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Solving the above equation, we get: w1 · 0 + w2 · 0 + w3 · 0 = R0w1 =⇒ w1 = 0

w2
βhγ

(µ+ γ)(µ+ α)
+ w3

βhγε

(µ+ γ)(µ+ α)δ
= R0w2, (3.4.7)

w2
βeNγ

(µ+ γ)(µ+ α)κ
+ w3

βeNεγ

(µ+ γ)(µ+ α)κδ
= R0w3. (3.4.8)

Substituting the value of R0 in (3.4.7) and (3.4.8), both equations simplify to

w3 =
Nβe
βhκ

w2.

So we have the general solution as w1 = 0, w2 = p and w3 = Nβe
βhκ

p , where p is a

parameter. If we let p = 1, then (w1, w2, w3) = (0, 1, Nβe
βhκ

). The function Q is given by

Q = wTV −1x =
γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ
E +

βhκδ +Nεβe
(µ+ α)δβhκ

I +
Nβe
δβhκ

.

Differentiating along solutions of the system gives

Q′ =(R0 − 1)wTx− wTV −1f(x, y)

=(R0 − 1)

(
I +

Nβe
βhκ

B

)
− γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
.

(3.4.9)

Since S ≤ N and κ ≤ κ+B imply that 1− S
N
≥ 0 and N

κ
− S

κ+B
≥ 0, we have

− γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
≤ 0.

If R0 < 1, then Q′ ≤ 0 in τ . Therefore Q is the Lyapunov function for the system [25].

We use LaSalle’s invariance principle [20] to prove global stability of DFE, and we
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proceed as follows. Q′ = 0 implies that

γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
= (R0−1)

(
I +

Nβe
βhκ

B

)
.

Since R0 < 1, we have

γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
≤ 0.

Since γ[βhκδ+Nεβe]
(µ+γ)(µ+α)δβhκ

> 0, we have

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
,≤ 0 (3.4.10)

=⇒ βhI

(
1− S

N

)
≤ NβeB

(
S

κ+B
− N

κ

)
.

Since S
κ+B
− N

κ
≤ 0, we have

βhI

(
1− S

N

)
≤ 0.

Since βhI ≥ 0 , we have
(
1− S

N

)
≤ 0 =⇒ N ≤ S.

This result together with the condition that S ≤ N , imply that S = N , which in turn

implies that E = I = R = 0 since S + E + I + R = N . Going back to (3.4.10),

exchanging the roles of the first and second term, the same argument can be made to

show that B = 0. Therefore {(N, 0, 0, 0, 0)} is the only invariant set in τ which satisfies

Q′ = 0 when R0 < 1. Thus, by LaSalle’s invariance principle, the DFE is globally

asymptotically stable in τ when R0 < 1 [25].

When R0 = 1, the first term of (3.4.9) is zero and Q′ ≤ 0 in τ . Q′ = 0 implies that

γ[βhκδ +Nεβe]

(µ+ γ)(µ+ α)δβhκ

[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
= 0,

=⇒
[
βhI

(
1− S

N

)
+NβeB

(
N

κ
− S

κ+B

)]
= 0, (3.4.11)
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=⇒ βhI

(
1− S

N

)
= NβeB

(
S

κ+B
− N

κ

)
.

Since 0 ≤ S ≤ N and 0 < κ ≤ κ+B imply that S
κ+B
− N

κ
≤ 0, we have

βhI

(
1− S

N

)
≤ 0.

Since βhI ≥ 0 , we have
(
1− S

N

)
≤ 0 =⇒ N ≤ S.

This result together with the condition that S ≤ N , imply that S = N , which in turn

implies that E = I = R = 0 since S + E + I + R = N . Therefore {(N, 0, 0, 0, 0)} is

the only invariant set in τ which satisfies Q′ = 0 when R0 = 1. Thus, by LaSalle’s

invariance principle, the DFE is globally asymptotically stable in τ when R0 = 1 [25].

We now show that when R0 > 1, Q′ > 0 in a neighbourhood of X0, making X0 unstable.

For R0 > 1, the first term of equation (3.4.9) is positive, and the second term is zero

when S = N and B = 0, thus Q′ > 0. By continuity Q′ remains positive in a small

neighbourhood of X0 [25]. �

Global asymptotic stability of DFE rules-out the existence of backward bifurcation when

R0 ≤ 1. Using uniform persistence result from [11] and an argument in the proof of

proposition 3.3 of [22], it can be shown that when R0 > 1 instability of X0 implies that the

system is uniformly persistent. Uniform persistence and positive invariance of the compact

set τ imply the existence of at least one positive equilibrium.

3.4.3 Global stability of the endemic Equilibrium

Lemma 3.4.3. When R0 > 1, there exists a unique endemic equilibrium X∗ given by

B∗ = −b+
√
b2−4ac
2a

, where a = (βeNε+ βhκδ)βhδ,

b = (βeNε+βhκδ)
2−µNε [βhκδ(R0 − 1)− βeNε], and c = −µNεκ(βeNε+βhκδ)(R0−1).

When R0 ≤ 1, there is no endemic equilibrium.

Proof. Substituting (3.3.1) and (3.3.2) into (3.1.2) we get
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0 = µN − µS −
(
βe

B

κ+B
+ βh

δB

Nε

)
S. (3.4.12)

From (3.3.3), and (3.4.5)

S =
N(βeNε+ βhκδ)(κ+B)

R0(βeNε+ βh(κ+B)δ)κ
. (3.4.13)

Substituting (3.4.13) into (3.4.12) and simplifying, we get

0 = aB2 + bB + c,

where

a = (βeNε+ βhκδ)βhδ (3.4.13′)

b = (βeNε+ βhκδ)
2 − µNε [βhκδ(R0 − 1)− βeNε] , (3.4.13′′,)

c = −µNεκ(βeNε+ βhκδ)(R0 − 1). (3.4.13′′′)

We therefore have at most two endemic equilibria given by

B∗1 =
−b+

√
b2 − 4ac

2a
and B∗2 =

−b−
√
b2 − 4ac

2a
.

We consider the following cases:

1. When R0 > 1;

a > 0, c < 0, and b > 0 if (βeNε+ βhκδ)
2 + µNε(βhκδ+ βeNε) > NεβhκδµR0. In

which case b2 − 4ac > b2. If (βeNε+ βhκδ)
2 + µNε(βhκδ + βeNε) < NεβhκδµR0,

then b < 0 and b2−4ac > b2. If (βeNε+βhκδ)
2+µNε(βhκδ+βeNε) = NεβhκδµR0,

then b = 0 and b2 − 4ac = −4ac > 0.

2. When R0 = 1;
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a > 0, c = 0 and b > 0, thus b2 − 4ac = b2.

3. When R0 < 1;

a > 0, c > 0, and b > 0, thus we have b2 − 4ac < 0.

Table 3.1 below summarizes the analysis of the solutions of the above quadratic equation

in relation to R0.

R0 c 4ac b b2 − 4ac −b+
√
b2 − 4ac −b−

√
b2 − 4ac Comment

> 1 < 0 < 0 = 0 −4ac > 0 > 0 < 0 1 EE
< 0 > b2 > 0 < 0 1 EE
> 0 > b2 > 0 < 0 1 EE

= 1 = 0 = 0 > 0 = b2 = 0 < 0 no EE
< 1 > 0 ∈ (0, b2) > 0 ∈ (0, b2) < 0 < 0 no EE

∈ (b2,∞) > 0 < 0 complex complex no EE

Table 3.1: Analysis of solutions of the quadratic equation

Thus when R0 < 1, there is no endemic equilibrium, and when R0 > 1, we have a

unique endemic equilibrium obtained when

B∗ = B∗1 =
−b+

√
b2 − 4ac

2a
.

[25] �

Theorem 3.4.4. If R0 > 1, the unique endemic equilibrium is globally asymptotically

stable in τ .

Proof. We use an approach based on Volterra-Lyapunov stable matrices as described

in [23]. We define the Lyapunov function as follows;

L = m1(S − S∗)2 +m2(E − E∗)2 +m3(I − I∗)2 +m4(B −B∗)2,

where m1,m2,m3 and m4 are positive constants. Differentiating L along the trajectories
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of our system gives

L′ = 2m1(S − S∗)
[
µN − µS −

(
βe

B

κ+B
+ βh

I

N

)
S

]
+ 2m2(E − E∗)

[(
βe

B

κ+B
+ βh

I

N

)
S − (µ+ γ)E

]
+ 2m3(I − I∗) [γE − (µ+ α)I] + 2m4(B −B∗) [εI − δB] .

At the endemic equilibrium, S ′ = E ′ = I ′ = B′ = 0. Also βh
S∗I
N
− βh

S∗I
N

= 0 and

βe
BS∗

κ+B
− βe BS

∗

κ+B
= 0. Substituting in the appropriate brackets and factoring gives

L′ = −2m1(S − S∗)2
[
µ+ βe

B

κ+B
+ βh

I

N

]
− 2m1(S − S∗)(I − I∗)βh

S∗

N

− 2m1(S − S∗)(B −B∗)βe
S∗κ

(κ+B)(κ+B∗)

+ 2m2(E − E∗)(S − S∗)
[
βe

B

κ+B
+ βh

I

N

]
− 2m2(E − E∗)2(µ+ γ)

+ 2m2(E − E∗)(I − I∗)βh
S∗

N

+ 2m2(E − E∗)(B −B∗)βe
S∗κ

(κ+B)(κ+B∗)

+ 2m3(I − I∗)(E − E∗)γ

− 2m3(I − I∗)2(µ+ α)

+ 2m4(B −B∗)(I − I∗)ε

− 2m4(B −B∗)2δ

= Y (MA+ ATMT )Y T .
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Where Y = (S − S∗, E − E∗, I − I∗, B −B∗), M = diag(m1,m2,m3,m4) and

A =



−µ− βe B
κ+B
− βh IN 0 −βh S

∗

N
−βe S∗κ

(κ+B)(κ+B∗)

βe
B

κ+B
+ βh

I
N

−(µ+ γ) βh
S∗

N
βe

S∗κ
(κ+B)(κ+B∗)

0 γ −(µ+ α) 0

0 0 ε −δ


(3.4.14)

det(A) = det(−A) = (µ+ βe
B

κ+B
+ βh

I
N

)(µ+ γ)(µ+ α)δ − µγ(δβh
S∗

N
+ εβe

S∗κ
(κ+B)(κ+B∗)

)

Let T1 = βe
B

κ+B
+ βh

I
N

and T2 = δβh
S∗

N
+ εβe

S∗κ
(κ+B)(κ+B∗)

. Then

det(A) = δ(µ+ α)(µ+ γ)(µ+ T1)− µγT2.

From (3.1.3), (3.1.4) and (3.1.5), we notice that at the endemic equilibrium (S∗, E∗, I∗, B∗)

we have

βe
B∗S∗

κ+B∗
+ βh

I∗S∗

N
− (µ+ γ)E∗ = 0 (3.4.15)

γE∗ − (µ+ α)I∗ = 0 =⇒ E∗ =(µ+ α)
I∗

γ
(3.4.16)

εI∗ − δB∗ = 0 =⇒ B∗ =
εI∗

δ
(3.4.17)

Substituting (3.4.16) and (3.4.17) into (3.4.15) gives

γ

(
δβh

S∗

N
+ εβe

S∗

κ+B∗

)
= δ(µ+ α)(µ+ γ). (3.4.18)

Since B ≥ 0 and B = 0 gives us the DFE X0. For any X 6= X0, we have B > 0, and

κ
κ+B

< 1. From (3.4.18) we get that

(µ+ γ)(µ+ α)δ <γ

(
δβh

S∗

N
+ εβe

S∗κ

(κ+B)(κ+B∗)

)
=⇒ det(A) >T1δ(µ+ α)(µ+ γ) ≥ 0
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(−A)−1 =
1

det(A)



T6 −γT2 (µ+ γ)T2 −(µ+ γ)T3

δ(µ+ α)T1 δ(µ+ α)(µ+ T1) µT2 −µT3

γδT1 γδ(µ+ T1) δ(µ+ γ)(µ+ T1) T4

γεT1 γε(µ+ T1) ε(µ+ γ)(µ+ T1) −T5


,

where

T3 = (µ+ α)βe
S∗κ

(κ+B)(κ+B∗)
,

T4 = γµβe
S∗κ

(κ+B)(κ+B∗)
,

T5 = γµβh
S∗

N
− (µ+ α)(µ+ γ)(µ+ T1),

T6 = δ(µ+ γ)(µ+ α)− γT2.

For any n × n matrix B, let B̃ denote (n − 1) × (n − 1) matrix obtained from B by

removing the last row and column of B.

Let U = ˜(−A)−1 and E = U−1 = (̃−A). Then

U =
1

det(A)


δ(µ+ γ)(µ+ α)− γT2 −γT2 (µ+ γ)T2

δT1(µ+ α) δ(µ+ T1)(µ+ α) µT2

δγT1 δγ(µ+ T1) δ(µ+ γ)(µ+ T1)

 ,

and

E =


µ+ T1 0 βh

S∗

N

−T1 µ+ γ −βh S
∗

N

0 −γ µ+ α

 .
To establish the global stability of the endemic equilibrium, we show that matrix A

defined in (3.4.14) is Volterra-Lyapunov stable through the following steps;

step 1 Use lemma 2.4 of [23] to conclude that there exists a 2×2 matrix D = diag(m1,m2)
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such that D̃(−̃U) + (D̃(−̃U))T < 0, which will then imply that D̃Ũ + (D̃Ũ)T > 0.

Show that D̃Ẽ + (D̃Ẽ)T > 0 as well.

step 2 Then use Lemma 2.8 of [23] and the results of step 1 to conclude that there exists

a 3×3 matrix M̃ = D = diag(m1,m2,m3) such that M̃U+(M̃U)T = M̃ ˜(−A)−1 +

(M̃ ˜(−A)−1)T > 0. Show that M̃(U−1)+(M̃(U−1))T = M̃E+(M̃E)T = M̃ (̃−A)+

(M̃ (̃−A))T > 0 as well.

step 3 Then use Lemma 2.8 of [23] and the results of step 2 to conclude that there exists

a 4 × 4 matrix M = diag(m1,m2,m3,m4) such that M(−A) + (M(−A))T > 0.

Which will then imply that MA+(MA)T < 0, and thus proving that A is Volterra-

Lyapunov stable.

Now,

−̃U = 1
det(A)

γT2 − δ(µ+ α)(µ+ γ) γT2

−δT1(µ+ α) −δ(µ+ α)(µ+ T1)

 .
Notice that (−̃U)11 < 0, (−̃U)22 < 0 and det(−̃U) => 0.

By Lemma 2.4 of [23], −̃U is Volterra-Lyapunov stable. This mean that there exists a

2× 2 positive diagonal matrix D̃ = diag(m1,m2) such that

D̃(−̃U) + (D̃(−̃U))T < 0,

=⇒ D̃Ũ + (D̃Ũ)T > 0.

Specifically

Q = D̃Ũ + (D̃Ũ)T =

2m1 [δ(µ+ α)(µ+ γ)− γT2] m2δT1(µ+ α)−m1γT2

m2δT1(µ+ α)−m1γT2 2m2δ(µ+ α)(µ+ T1)

 ,
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and

det(A) det(Q) = δ2(µ+ α)2
[
4m1m2(µ+ γ)(µ+ T1)− (m2T1)

2
]

(3.4.19)

− 2m1m2δ(µ+ α)(µ+ T1)γT2

− 2m1m2δ(µ+ α)µγT2 − (m1γT2)
2.

Since Q > 0, det (Q) > 0. On the other hand,

P = D̃(Ẽ) + (D̃(Ẽ))T =

2m1(µ+ T1) −m2T1

−m2T1 2m2(µ+ γ)

 .
Notice that all the diagonal entries of P are positive, and

det(P ) = 4m1m2(µ+ T1)(µ+ γ)− (m2T1)
2.

From (3.4.19), we notice that

det(A) det(Q) = δ2(µ+ α)2 det(P )

− 2m1m2δ(µ+ α)(µ+ T1)γT2

− 2m1m2δ(µ+ α)µγT2 − (m1γT2)
2,

=⇒ det(P ) > 0 since det(A) det(Q) > 0.

Thus P = D̃(Ẽ) + (D̃(Ẽ))T > 0 as well [25]. Moreover, ˜(−A)−1 = U33 = δ(µ +

γ)(µ + T1) > 0. Therefore by lemma 2.8 of [23], there exists a 3 × 3 matrix M̃ = D =

diag(m1,m2,m3) such that M̃U + (M̃U)T = M̃ ˜(−A)−1 + (M̃ ˜(−A)−1)T > 0. Specifically

H =M̃ ˜(−A)−1 + (M̃ ˜(−A)−1)T

=
1

det(A)

[
2m1[δ(µ+α)(µ+γ)−γT2] m2δT1(µ+α)−m1γT2 m3γδT1−m1T2(µ+γ)
m2δT1(µ+α)−m1γT2 2m2δ(µ+α)(µ+T1) m2µT2+m3γδ(µ+T1)
m3γδT1−m1T2(µ+γ) m2µT2+m3γδ(µ+T1) 2m3δ(µ+γ)(µ+T1)

]
,
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and

det(A) det(H) =δ2 det(A)
[
2m1(µ+ T1)

[
4m2m3(µ+ α)(µ+ γ)− (m3γ)2

]
−4m1m2m3γβh

S∗

N
(µ+ T1) + 2m1m2m3γT1βh

S∗

N

−2m1µ

(
m2βh

S∗

N

)2

− 2m3(m2T1)
2(µ+ α) ]

−2m2(µ+ γ)

(
m1βh

S∗

N

)2
]

(3.4.20)

− 2m1µm
2
2

[
2δεβh

S∗

N
βe

κS∗

(κ+B)(κ+B∗)
+

(
εβe

κS∗

(κ+B)(κ+B∗)

)2
]

− 2m2(µ+ γ)m2
1

[
2δεβh

S∗

N
βe

κS∗

(κ+B)(κ+B∗)
+

(
εβe

κS∗

(κ+B)(κ+B∗)

)2
]

− 2m1m2m3T1γεβe
κS∗

(κ+B)(κ+B∗)
δ det(A)

− 4m1m2m3µγεβe
κS∗

(κ+B)(κ+B∗)
δ det(A).

On the other hand

R =M̃ (̃−A) + (M̃ (̃−A))T

=


2m1(µ+ T1) −m2T1 m1βh

S∗

N

−m2T1 2m2(µ+ γ) −
(
m3γ +m2βh

S∗

N

)
m1βh

S∗

N
−
(
m3γ +m2βh

S∗

N

)
2m3(µ+ α)

 ,

and

det(R) = 2m1(µ+ T1)
[
4m2m3(µ+ α)(µ+ γ)− (m3γ)2

]
− 4m1m2m3γβh

S∗

N
(µ+ T1) + 2m1m2m3γT1βh

S∗

N

− 2m1µ

(
m2βh

S∗

N

)2

− 2m3(m2T1)
2(µ+ α)

− 2m2(µ+ γ)

(
m1βh

S∗

N

)2

.
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Note that all the diagonal entries of R are positive. We also notice from (3.4.20) that

det(A) det(H) = δ2 det(A) det(R)

− 2m1µm
2
2

[
2δεβh

S∗

N
βe

κS∗

(κ+B)(κ+B∗)
+

(
εβe

κS∗

(κ+B)(κ+B∗)

)2
]

− 2m2(µ+ γ)m2
1

[
2δεβh

S∗

N
βe

κS∗

(κ+B)(κ+B∗)
+

(
εβe

κS∗

(κ+B)(κ+B∗)

)2
]

− 2m1m2m3T1γεβe
κS∗

(κ+B)(κ+B∗)
δ det(A)

− 4m1m2m3µγεβe
κS∗

(κ+B)(κ+B∗)
δ det(A).

=⇒ det(R) > 0 since det(A) > 0 and det(H) > 0.

Thus M̃ (̃−A) + (M̃ (̃−A))T > 0 as well [25]. Moreover, (−A)44 = δ > 0. Then lemma

2.8 of [23] guarantees that there exists a positive diagonal

M = diag(m1,m2,m3,m4) such that M(−A) + (M(−A))T > 0

Which directly implies that matrix A is Volterra-Lyapunov stable.

Since we have assumed that matrix M is a constant matrix, we can then conclude that

when R0 > 1, the endemic equilibrium of the system is globally asymptotically stable

in τ [25]. �

In the next chapter, we will present the numerical simulations to demonstrate the findings

of our mathematical analysis.



Chapter 4

Numerical Simulations

4.1 Sensitivity analysis of parameters

To ascertain the contribution of each parameter in the endemicity of enterovirus, in this

section, we carry sensitivity analysis of parameters in basic reproduction number R0 using

the baseline values as shown in Table 4.1. The main novelty of this study is the incorporation

of the environment contamination in the contribution to the enterovirus transmission.

4.1.1 Estimation of parameter values

We consider a constant population of 1000 individuals. We estimate the human life ex-

pectancy in our population of study to be 55 years. Since humans become infectious after

3 days of exposure, the rate at which they become infectious γ = 1
3
. The incubation period

is 7 days and the infectiousness lasts for 10 days after the first symptoms developed. So,

the recovery rate α = 1
(7−3)+10

= 1
14

. Some baseline parameter values given in Table 4.1

are obtained from [6,31]. Direct transmission rate is estimated based on the relevant values

from [6] as βh = 0.3605. Our simulations are consistent with numerical simulations of other

infectious diseases in the literature, showing the number of new infections rising in the first

phase and reaching a peak, then in the second phase cases decline as individuals start to
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recover.

Parameter Description Baseline value Value range per day
and references

µ human birth or death rate 55
365

= 0.1507 0.10 to 0.20
βe Ingestion rate environment to human 1× 10−6 1.2× 10−6 to 1.5× 10−6 [6]
κ Michaelis-Menten constant 542× 10−6 540× 10−6 to 546× 10−6 [6]
βh Contact rate human to human 0.3605 0.229 to 0.492 [6]
α Recovery rate of infectious 0.0714 0.0667 to 0.0770 [30]
γ Progression rate of exposed to infectious 0.333 0.25 to 0.5 [30]
ε Shedding rate of infectious to environment 22.443 19 to 33 [31]
δ Decay rate of enterovirus 698.077 600 to 700 [31]

Table 4.1: Table of baseline parameter values and sources [25]

4.1.2 Elasticity indices

The elasticity index for parameter, say p is given by p∂R0

R0∂p
. It measures ratio of the relative

change in R0 to the relative change in p [13]. The parameter whose elasticity index has the

largest magnitude in absolute terms, affects R0 the most and hence affects the transmission

dynamics of enterovirus as shown in Theorem 3.4.2 and Theorem 3.4.4. Table 4.2 below

shows the elasticity indices of parameters calculated using baseline values given in Table 4.1,

with human population N = 1000. The indices are arranged in descending order in terms

of magnitude. We notice that the direct infection rate (βh) has the largest magnitude, and

thus affects the disease dynamics the most, followed by other parameters.

Parameter Formula
(
p∂R0

R0∂p

)
Elasticity index

βh
βhκδ

βhκδ+Nβeε
0.9838

α −α
µ+α

-0.6503

βe
Nβeε

βhκδ+Nβeε
0.6220

κ - Nβeε
βhκδ+Nβeε

-0.6220

ε Nβeε
βhκδ+Nβeε

0.6220

δ - Nβeε
βhκδ+Nβeε

-0.6220

µ −µ
(

1
µ+α

+ 1
µ+γ

)
-0.4531

γ µ
µ+γ

0.1034

Table 4.2: Table elasticity indices of parameters in R0 [25].
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4.1.3 Numerical simulations for model analysis

In this part, we present the numerical simulations to illustrate the results of our model analysis

obtained in the previous sections. The system of equations (3.1.2)-(3.1.6) is numerically

solved using baseline values given in Table 4.1. With these parameter values, the basic

reproduction number is obtained to be R0 ≈ 3.43 > 1. In Figures 4.1 and 4.2 , one can

observe that the trajectories approach the unique endemic equilibrium (S∗, E∗, I∗, B∗, R∗) ≈

(340, 70, 210, 5, 380). Furthermore, in order to illustrate the global stability for the DFE, we

reduced the value of βh to 0.0721, to obtained the basic reproduction number R0 = 0.484 <

1. As can be seen from Figures 4.3 and 4.4, the trajectories of the solution approach the

DFE, depicting stability of DFE.
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Figure 4.1: The number
of humans in each com-
partment using parameter
values in Table 3.1 with
S0 = 500, E0 = 400, I0 =
100, B0 = 0.5, N = 1000,
resulting in approxi-
mated equilibrium val-
ues S∗ = 315, E∗ =
60, I∗ = 195, R∗ = 430 and
R0 = 3.43 [25].

Figure 4.2: Virus concentra-
tion in compartment B us-
ing parameter values in Ta-
ble 3.1 with S0 = 500, I0 =
100, E0 = 400, B0 =
0.5, N = 1000 and R0 =
3.43. The approximated
equilibrium value is B∗ =
6.3 [25].

Figure 4.3: The number
of humans in each com-
partment using parameter
values in Table 3.1 with
S0 = 500, I0 = 150, E0 =
350, B0 = 1.5, N = 1000
and R0 = 0.484. The ap-
proximated equilibrium val-
ues are S∗ = 1000, E∗ =
0, I∗ = 0, R∗ = 0 [25].

Figure 4.4: Virus concentra-
tion in compartment B us-
ing parameter values in Ta-
ble 3.1 with S0 = 500, I0 =
150, E0 = 350, B0 =
1.5, N = 1000 and R0 =
0.484. The approximated
equilibrium value is B∗ = 0
[25].



Chapter 5

Optimal control applied to

enterovirus model

We extend the basic model (3.1.2) -(3.1.6) to include the effects of hygiene and sanitation.

Enterovirus illness are mostly mild and resolve on their own over time. According to the

Center of Disease Control and Prevention, there in no specific treatment for enterovirus

infection. People with mild symptoms like muscle ache and fever may take over-the-counter

medication to fight the symptoms.

5.1 Introduction of controls

From Table 4.2, the rate of direct transmission βh has the highest elasticity index, followed

by the recovery rate α and then the rate of indirect transmission rate βe. We thus consider

personal hygiene as one of the control measures, which will reduce the direct transmission

rate βh. Since there is currently no specific treatment for enteroviral infection, there is no

control measure that can help us to effectively increase the recovery rate α. We also consider

sanitation as a control measure, it removes virus from the environment and thus reducing

the indirect transmission rate βe.
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• Hygiene

Let h ∈ [0, 1] be a time dependent and Lebesgue measurable control that represents

efforts of personal hygiene that reduce the risk of infection transmission between infec-

tious and susceptible individuals. Efforts of personal hygiene include washing body and

frequent washing of hands especially after using the toilet, turning away from other

people and covering mouth or nose when coughing or sneezing. The set of admissible

hygiene controls is

H = {h(t) : [0, T ]→ [0, 1] and h is Lebesgue measurable}.

• Sanitation

Let q ∈ [0, 1] be a time dependent and Lebesgue measurable control that represents

sanitation efforts that cause virus on sanitized environment to lose virulence. Efforts of

sanitation include proper sewage disposal, sterilization of surfaces and drinking water.

The admissible set of sanitation controls is

Q = {q(t) : [0, T ]→ [0, 1] and q is Lebesgue measurable}.

For simplicity, we denote the control u = (q, h) and the set of admissible controls U = Q×H.

5.2 The extended mathematical model

The portion of susceptible individuals who practice personal hygiene is hβh
SI
N

and qB repre-

sents the concentration of virus lost due to sanitation. The extended model is thus presented

as follows;

dS

dt
= µN − µS − βe

BS

κ+B
− (1− h)βh

SI

N
, (5.2.1)

dE

dt
= βe

BS

κ+B
+ (1− h)βh

SI

N
− (µ+ γ)E, (5.2.2)
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dI

dt
= γE − (µ+ α)I, (5.2.3)

dB

dt
= εI − (δ + q)B, (5.2.4)

dR

dt
= αI − µR. (5.2.5)

With initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, B(0) = B0, R(0) = R0. (5.2.6)

A successful intervention is one that minimizes the number of new cases and the cost of

implementing the controls. Possible costs of implementing hygiene and sanitation as control

measures include expenses for fuel or electricity used for boiling drinking water, consumption

of water, soap and sanitizers. The control u = (q, h) is considered optimal if it minimizes

the objective function defined as

J =

∫ T

0

(
A1

[
βe

BS

κ+B
+ (1− h)βh

SI

N

]
+ A2q

2 + A3h
2

)
dt, (5.2.7)

where A1 is unit cost of new infection per person, and A2 = A3 is unit cost of implementing

the controls per time unit. A1, A2 and A3 are balancing coefficients which transform the

integrand into cost per time unit. The terms A1

[
βe

BS
κ+B

+ (1− h)βh
SI
N

]
represent the cost

of new cases. Obviously, when individuals get sick, they are not as productive as they usually

are under normal conditions, we interpret this as the cost of the infection. The remaining

terms represent the cost of implementing the control measures. The quadratic terms indicate

non-linearity of the costs. We state the optimal control problem as follows:

min
u∈U

J(u), (5.2.8)

subject to equations (5.2.1)-(5.2.5) and initial conditions (5.2.6).
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5.3 Existence of optimal control

Theorem 5.3.1. There exists an optimal control u∗ and the corresponding solution

(S∗, E∗, I∗, B∗, R∗) to the initial value problem given by (5.2.1)-(5.2.6) that minimizes

the objective function given by (5.2.7) on U .

Proof. The initial value problem (5.2.1)-(5.2.6) can be written as

X ′ = f(t,X, u),

with X(0) = X0.

We establish the existence of optimal control using the result of Theorem 4.1 of [10].

For this, we check that the following conditions are met.

1. There exist C1 and C2 such that

(a) |f(t,X, u)| ≤ C1(1 +X) and

(b) |f(t,X1, u)− f(t,X2, u)| ≤ C2|X1 −X2|,

for all t ≥ 0, X1, X2 ∈
{

(S,E, I, B,R) ∈ IR5
+|S + E + I + R = N, B ≤ Nε

δ

}
and u ∈ U, where U = {u = (q, h) : 0 ≤ q, h ≤ 1}

2. The set of controls and corresponding state variables is non-empty.

3. The control set U is convex and closed, f(t,X, u) = α1(t,X) + β1(t,X)u and L is

convex on U , where L = A1

[
βe

BS
κ+B

+ (1− h(t))βh
SI
N

]
+ A2q(t)

2 + A3h(t)2 is the

integrand in (5.2.7).

4. There exist C3 > 0, C4 > 1 and C5 ≥ 0 such that

L(t,X, u) ≥ C3|u|C4 − C5.

Since f is C1, conditions 1(a) and 1(b) are implied by suitable bounds on partial deriva-

tives of f and on f(t, 0, 0). Since f is continuous and bounded on a finite time interval,
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Theorem 9.2.1 of [8] guarantees the existence of at least one local solution. The set

U = {(q, h) : q ∈ [0, 1] and h ∈ [0, 1]} is closed.

By definition, the set Q = {q : q ∈ [0, 1] is Lebesgue measurable} is convex if

q1, q2 ∈ Q and γ1 ∈ [0, 1] imply that [(1− γ1)q1 + γ1q2] ∈ Q

(1− γ1)q1 + γ1q2 ≥ 0 since γ1, q1, q2 ∈ [0, 1],

and

(1− γ1)q1 + γ1q2 ≤ (1− γ1) + γ1 since q1, q2 ≤ 1

= 1.

Thus, (1−γ1)q1+γ1q2 lies in Q meaning that Q is convex. In the same way, H is convex.

Since the Cartesian of convex sets is convex [16], U = Q×H is a convex set [25].

The function f is linear in each control variable q and h, thus it can be written as

f(t,X, u) = α1(t,X) + β1(t,X)u. L is convex on U since it is quadratic in u and the

constants A3 and A5 are positive. For the last condition,

L = A1

[
βe

BS

κ+B
+ (1− h)βh

SI

N

]
+ A2q

2 + A3h
2

≥ A2q
2 + A3h

2 + A1

[
βe

BS

κ+B
+ (1− h)βh

SI

N

]
since q ≥ 0, h ≥ 0. (5.3.1)

Note that

A1

[
βe

BS

κ+B
+ (1− h(t))βh

SI

N

]
≤ A1

[
βe

BS

κ+B
+ βh

SI

N

]
since q ≤ 1 and h ≤ 1.

≤ A1

[
βe
BS

κ
+ βh

SI

N

]
since

B

κ+B
≤ B

κ
.

≤ A1

[
βe
εN2

κδ
+ βhN

]
since S, I ≤ N and B ≤ εN

δ
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Since both sides of the inequality are non-negative, we have

A1

[
βe

BS

κ+B
+ (1− h(t))βh

SI

N

]
≥ −A1

[
βe
εN2

κδ
+ βhN

]
.

Substituting this result into (5.3.1) gives

L ≥ A2q(t)
2 + A3h(t)2 − A1

[
βe
εN2

κδ
+ βhN

]
≥ C3|u|C4 − C5

where C3 = min{A2, A3}, C4 = 2 and C5 = A1

(
βe

εN2

κδ
+ βhN

)
[25] �

5.4 Characterization of the controls

We use Pontryagin’s principle stated in Theorem 5.1 of [10] to find the best possible control

for the system. We define the Hamiltonian H as follows;

H(X, u, p) = p · f(t,X, u) + L(t,X, u)

= p1f1 + p2f2 + p3f3 + p4f4 + p5f5 + L

= p1

[
µN − µS − βe

BS

κ+B
− (1− h)βh

SI

N

]
+ p2

[
βe

BS

κ+B
+ (1− h)βh

SI

N
− (µ+ γ)E

]
+ p3 [γE − (µ+ α)I] + p4[εI − (δ + q)B] + p5[αI − µR]

+ A1

[
βe

BS

κ+B
+ (1− h)βh

SI

N

]
+ A2q

2 + A3h
2,

where p = (p1, p2, p3, p4, p5) and p1, p2, p3, p4, p5 are adjoint variables for the state variable

S,E, I, B and R.

Theorem 5.4.1. Given an optimal solution (X∗, u∗) of the control problem (5.2.8),
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there exist p1, p2, p3, p4 and p5, a solution set to the adjoint system

ṗ1 = −∂H
∂S

=

[
βe

B

κ+B
+ (1− h)βh

I

N

]
(p1 − p2 − A1) + µp1,

ṗ2 = −∂H
∂E

= p2(µ+ γ)− γp3,

ṗ3 = −∂H
∂I

= (1− h)βh
S

N
(p1 − p2 − A1) + p3(µ+ α)− p4ε− p5α,

ṗ4 = −∂H
∂B

= βe
κS

(κ+B)2
(p1 − p2 − A1) + p4(δ + q),

ṗ5 = −∂H
∂R

= µp5,

with transversality condition

p1(T ) = 0, p2(T ) = 0, p3(T ) = 0, p4(T ) = 0, p5(T ) = 0

such that u∗ = min
u∈U

H(X, p, u), t ∈ [0, T ]. Furthermore, the controls can be char-

acterized as

q∗ = min

(
1,max

(
0,
p4B

2A2

))
and

h∗ = min

(
1,max

(
0,

1

2A3

[
βh
SI

N
(p2 + A1 − p1)

]))
.

Proof. The optimal control is derived from the optimality condition
∂H

∂u

∣∣∣∣
u∗

= 0.

∂H

∂q

∣∣∣∣
q∗

= −p4B + 2A2q
∗ = 0. (5.4.1)

=⇒ q∗ =
p4B

2A2

and

∂H

∂h

∣∣∣∣
h∗

= p1βh
SI

N
+ p2βh

SI

N
− A1βh

SI

N
+ 2A3h

∗ = 0 (5.4.2)
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=⇒ h∗ =
1

2A3

[
βh
SI

N
(p2 + A1 − p1)

]
.

Considering the properties of the control space, we have

q∗ =


0, if p4B

2A2
≤ 0,

p4B
2A2

, if 0 < p4B
2A2

< 1,

1, if p4B
2A2
≥ 1.

Therefore q∗ can be characterized as [25]

q∗ = min

(
1,max

(
0,
p4B

2A2

))
.

Similarly, h∗ can be characterized as

h∗ = min

(
1,max

(
0,

1

2A3

[
βh
SI

N
(p2 + A1 − p1)

]))
.

In addition, we note from (5.4.1) and (5.4.2) respectively that

∂2H

∂q2

∣∣∣∣
q∗

= 2A2 > 0 and

∂2H

∂h2

∣∣∣∣
h∗

= 2A3 > 0, since A2 and A3 are positive constants introduced in (5.2.7),

indicating that u∗ = (q∗, h∗) minimizes the Hamiltonian function H(X, p, u) [25]. �

5.5 Numerical simulations for optimal control

The optimal control problem in (5.2.8) was solved numerically using parameter values in

Table 4.1. In the following figures, we compare numerical solutions with optimal control and

without any intervention. We compare virus concentration and the number of humans in
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each compartment in the presence and absence of control measures q ∈ [0, 1] and h ∈ [0, 1],

with S0 = 500, E0 = 400, I0 = 100, B0 = 0.5, N = 1000.

Figure 5.1: Population dy-
namics in the presence of
control and absence of con-
trol with the direct trans-
mission rate βh reduced by
80% [25].

Figure 5.2: Virus concentra-
tion in the presence of con-
trol and absence of control
with the direct transmission
rate βh reduced by 80% [25].

Figure 5.3: Daily cost of
new infections and of imple-
menting hygiene and sanita-
tion measures [25].

Figure 5.4: Numerical simu-
lation of hygiene efforts us-
ing parameter values in Ta-
ble 4.1 [25].
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Figure 5.5: Numerical sim-
ulation of sanitation efforts
using parameter values in
Table 4.1 [25]

In Figures 5.1 and 5.2, numerical simulations are conducted to compare results in the presence

and absence of the combined controls. The solid lines represent the case where the infection is

eradicated by decreasing the value of βh by 80% in the absence of control. In the presence of

control measures, the peaks of trajectories for susceptibles and recovered humans are higher

(indicating more people) compared to the ones with no control measures. In the Exposed

Infected cases, however, the trajectories are lower (indicating less people) with controls

compared to when there are none. Similarly, with controls, the peak for concentration

of enterovirus is lower, compared to when there is none as can be seen from Figure 5.2.

Moreover, in all the two populations, the trajectories with controls converge faster then the

ones without control measures. Figures 5.5 and 5.4 confirm that direct transmission rate

affects disease dynamics the most. For the first 75 days, hygiene measures, which reduce

direct transmission rate, shoot to the maximum value, while sanitation measures do not even

get close to a quarter of the maximum value of the control [25].

From day 1 to day 75, the increase of daily cost is about 133% as shown in Figure 5.3. After

approximately 13 to 14 days, the virus concentration reaches its maximum level and the

number of infectious individuals is at its peak. During this period, the sanitation efforts are

kept at a steady level of 0.00025 and hygiene efforts are maximized. After day 14, the virus

concentration as well as the number of infectious individuals begin to decline. This result is
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in line with the one obtained in Nandi et al [29]. After about 75 days, the virus concentration

is zero, there is a decline in the efforts of hygiene and as a result, the increase in daily costs

reduces from 133% to about 50%. After about 150 days, the disease is eradicated and at

this point, the daily cost is 110 units [25].



Chapter 6

Concluding remarks

In line with global organizations in curving the spread of infectious diseases in human pop-

ulations, in this article, we extend the standard SEIR model by adding a compartment for

the concentration of enterovirus in the environment. This coincide with the campaign for

sanitizing, disinfecting and cleaning of surfaces that are frequently touched. Furthermore,

the model is extended to consider the effects of hygiene in the susceptible population and

disinfection of virus in the environment. Subsequently, we study the optimal control strategy

on the extended model to determine the minimum cost of applying the control strategies.

For the basic model, we proved the well-posedness properties which include existence, positiv-

ity and boundedness of solution in a defined domain. Further, we carry out stability analysis

on the equilibria, disease free and endemic, both of which are globally asymptotically stable

when the basic reproduction number R0 ≤ 1 and R0 ≥ 1, respectively. The implication of

these results is enterovirus can be eradicated if R0 ≤ 1, or established in the population if

R0 ≥ 1. Sensitivity analysis is conducted to determine elasticity indices of parameters that

contribute most for endemicity of the virus. As shown in Table 4.2, the direct infection rate

affects the transmission dynamics of the infection the most, followed by recovery rate [25].

We notice that decreasing the direct transmission rate to 0.0721 brings the value of the

basic reproduction number to 0.484 ≤ 1 [25], thus putting the infection under control. We
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conclude that one of the many approaches that can be used to control the infection is to

decrease the direct transmission rate by about 80% [25].

For the extended model, we established the existence of optimal control that minimizes

the number of new cases of enterovirus with minimal cost of implementing the controls

(sanitation and hygiene). The results are further presented numerically as shown in Figures

5.1 - 5.3. Amongst other advantages, the control measures shorten the time scale for the

infection. For example, while it takes about 113 days for virus to be eliminated from the

environment in the absence of control, it only takes 53 days in the presence of controls.

In general, our work extended many models of enterovirus [15,24,32, 35, 36] with novelty of

incorporating indirect transmission of infection from the environment and the consideration

of optimal control strategy. For further work on this topic, mathematical modeling of more

that one serotype, where reinfection is possible, may be considered.



Bibliography

[1] Achamyelesh Amare Aligaz and Justin Manango W. Munganga. Mathematical Mod-

elling of the Transmission Dynamics of Contagious Bovine Pleuropneumonia with Vac-

cination and Antibiotic Treatment. Journal of Applied Mathematics, 2019(June), 2019.

[2] Marei Saeed Alqarni, Ali Saleh Alshomrani, Metib Alghamdi, Taseer Muhammad, and

Muhammad Altaf Khan. Mathematical modeling for novel coronavirus ( COVID-19 )

and control. Numer Methods Partial Differential Eq, 2020:1–17, 2020.

[3] Hussam Alrabaiah, Mohammad A Safi, Mahmoud H Darassi, Bashir Al-hdaibat, Saif

Ullah, Muhammad Altaf, Syed Azhar, and Ali Shah. Optimal control analysis of hepatitis

B virus with treatment and vaccination. Results in Physics, 19(November):103599,

2020.

[4] Tamara V Amvrosieva, Natallia V Paklonskaya, Aliaksei A Biazruchka, Olga N Kazinetz,

Zoya F Bohush, and Elena G Fisenko. Enteroviral Infection Outbreak In The Republic

Of Belarus: Principal Characteristics And Phylogenetic Analysis Of Etiological Agents.

Central European Journal of Public Health, 14(2):67–73, 2006.

[5] Vincenzo Capasso. Mathematical structures of epidemic systems. Springer, Berlin,

Heidelberg, 1993.

[6] Sudarat Chadsuthi and Surapa Wichapeng. The Modelling of Hand, Foot, and Mouth

Disease in Contaminated Environments in Bangkok, Thailand. Computational and

Mathematical Methods in Medicine, 2018, 2018.

[7] D.K Das, Subhas Khajanchi, and T.K Kar. The impact of the media awareness and



BIBLIOGRAPHY 57

optimal strategy on the prevalence of tuberculosis. Applied Mathematics and Compu-

tations, 2020.

[8] Nonlinear Equations. local Existence and Uniqueness Theory of Nonlinear Equations. In

Differential Equations: Classical to Controlled, chapter 9, pages 180–189. Mathematics

in Science and Engineering, 1982.

[9] Alireza Eshaghi, Venkata R Duvvuri, Sandra Isabel, Philip Banh, Aimin Li, Adriana

Peci, Samir N Patel, and Jonathan B Gubbay. Global Distribution and Evolutionary

History of Enterovirus D68 , with Emphasis on the 2014 Outbreak in Ontario, Canada.

Frontiers in Microbiology, 8(257):1–11, 2017.

[10] Wendell H. Fleming and Raymond W. Rishel. Deterministic and Stochastic Optimal

Control. Applications of Mathematics, 1975.

[11] H . L. Freedman, Shigui Ruan, and T. Moxun. Uniform Persistence and Flows Near

a Closed Positively Invariant Set. Journal of Dynamics and Differential Equations,

6(4):583–600, 1994.

[12] Tsuyoshi Hamaguchi and Hironori Fujisawa. Acute Encephalitis Caused by Transmission

of Intrafamilial Enterovirus 71 in Adult. Emerging Infectious Diseases, 14(5):5–7, 2008.

[13] Adamu Shitu Hassan and Justin Manango W. Munganga. Mathematical Global Dy-

namics and Control Strategies on Echinococcus multilocularis Infection. Computational

and Mathematical Methods in Medicine, 2019:1—-17, 2019.

[14] Tan Hongwu and Cao Hui. The Dynamics and Optimal Control of a Hand-Foot-Mouth

Disease Model. Computational and Mathematical Methods in Medicine, 2018, 2018.

[15] Experimental-mathematical Investigation, Mitsuko Fukuhara, Shingo Iwami, Kei Sato,

Yorihiro Nishimura, Hiroyuki Shimizu, and Kazuyuki Aihara. Quantification of the Dy-

namics of Enterovirus 71 Infection by Experimental-Mathematical Investigation. Journal

of Virology, 1095(19), 2013.

[16] A.D Ioffe and V.M Tihomirov. Elements of convex analysis. In Theory of external

problems, pages 161–190. Studies in Mathematics and its applications, 1979.



58 BIBLIOGRAPHY

[17] Subhas Khajanchi. Stability Analysis of a Mathematical Model for Glioma-Immune

Interaction under Optimal Therapy. International Journal of Nonlinear Sciences and

Numerical Simulation, 20(3–4):269—-285, 2020.

[18] Subhas Khajanchi, Sovan Bera, and Tapan Kumar. ScienceDirect Mathematical analysis

of the global dynamics of a HTLV-I infection model , considering the role of cytotoxic

T-lymphocytes. Mathematics and Computers in Simulation, 180:354–378, 2021.

[19] A Korobeinikov and New Zealand. Mathematics A Lyapunov Function for Leslie-Gower

Predator-Prey Models. Applied Mathematics Letters 14, 14(2001):697—-699, 2001.

[20] J.P. Lasalle. The stability of dynamical systems. SIAM, 21(3):418—-420, 1979.

[21] Nicolas Leveque and Andreoletti Laurent. A Novel Mode of Transmission for Human

Enterovirus Infection Is Swimming in Contaminated Seawater: Implications in Public

Health and in Epidemiological Surveillance. Clinical Infectious Diseases, 47:624–626,

2008.

[22] Michael Y Li, John R Graef, and Liancheng Wang. Global dynamics of a SEIR model

with varying total population size. Mathematical Biosciences, 160(1999):191–213,

1999.

[23] Shu Liao and Jin Wang. Global stability analysis of epidemiological models based on

Volterra-Lyapunov stable matrices. Chaos, Solitons and Fractals, 45(7):966–977, jul

2012.

[24] Kaiwei Luo, Jia Rui, Shixiong Hu, Qingqing Hu, Dong Yang, Shan Xiao, Zeyu Zhao, Yao

Wang, Xingchun Liu, Lili Pan, Ran An, Dongbei Guo, Yanhua Su, Benhua Zhao, Lidong

Gao, and Tianmu Chen. Interaction analysis on transmissibility of main pathogens of

hand, foot, and mouth disease. Medicine, 99(11):1—-9, 2020.

[25] Malebese Mabotsa, Justin Manango W Munganga, and Adamu Shitu Hassan. Math-

ematical modelling and optimal control of the transmission dynamics of Enterovirus .

Physica Scripta, 97(3):034002, 2022.

[26] Peter C Mcminn. An overview of the evolution of enterovirus 71 and its clinical and



BIBLIOGRAPHY 59

public health significance. FEMS Microbiology Reviews, 26, 2002.

[27] Ira Mellman and Tom Misteli. Computational cell biology. Computational cell biology

Ira, 161(3):463–464, 2003.

[28] Sharmistha Mishra, David N Fisman, and Marie-claude Boily. The ABC of terms used in

mathematical models of infectious diseases. J Epidemiol Community Health, 65:87–94,

2011.

[29] Sumit Nandi, Subhas Khajanchi, and Amar Nath Chatterjee. Insight of Viral Infection

of Jatropha Curcas Plant ( Future Fuel ): A control based mathematical study. Acta

Analysis Functionalis Applicator, 13(4), 2011.

[30] Louis H Nel and Wanda Markotter. New and imerging waterborne infectious diseases.

Water and health, I, 2016.

[31] James R Prudent, Tetsuo Uno, and Peter G Schultz. Expanding the Scope of RNA

Catalysis. Science, 264(June):1924—-1927, 1994.

[32] Nandita Roy. Mathematical Modeling of Hand-Foot-Mouth Disease : Quarantine as a

Control Measure. IJASETR, 1(2):34–44, 2012.

[33] Zhisheng Shuai and P. Van Den Driessche. Global stability of infectious disease models

using lyapunov functions. SIAM Journal on Applied Mathematics, 73(4):1513–1532,

2013.

[34] Limei Sun, Hualiang Lin, Jinyan Lin, and Jianfeng He. Evaluating the transmission

routes of hand, foot, and mouth disease in Guangdong, China. American Journal of

Infection Control, 44(2):e13—-e14, 2016.

[35] Saki Takahashi, Qiaohong Liao, Thomas P Van Boeckel, Weijia Xing, Junling Sun, Vic-

tor Y Hsiao, C Jessica E Metcalf, Zhaorui Chang, Fengfeng Liu, Jing Zhang, Joseph T

Wu, Benjamin J Cowling, Gabriel M Leung, Jeremy J Farrar, and H Rogier Van. Hand

, Foot , and Mouth Disease in China : Modeling Epidemic Dynamics of Enterovirus

Serotypes and Implications for Vaccination. PLoS Medicine, 13(2):1–29, 2016.



60 BIBLIOGRAPHY

[36] Hongwu Tan and Hui Cao. The Dynamics and Optimal Control of a Hand-Foot-Mouth

Disease Model. Computational and Mathematical Methods in Medicine, 2018, 2018.

[37] William F Trench and William F Trench. Introduction to Real Analysis. Faculty Authored

and Edited Books & CDs. 7, 2013.

[38] Daniel A. Vallero. Environmental Biochemodynamic Processes. Environmental Biotech-

nology, pages 99–165, jan 2010.

[39] Pauline van den Driessche and James Watmough. Reproduction numbers and sub-

threshold endemic equilibria for compartmental models of disease transmission. Math-

ematical Biosciences, 180:29–48, 2002.


	Declarations
	Acknowledgments
	Introduction
	Preliminaries
	Definitions
	Laws, principles, theorems/lemmas and equations

	Mathematical Modelling and analysis of the model
	Mathematical modelling
	Well-posedness of the system
	Equilibrium points
	Stability analysis
	The basic reproduction number
	Stability of DFE
	Global stability of the endemic Equilibrium


	Numerical Simulations
	Sensitivity analysis of parameters
	Estimation of parameter values
	Elasticity indices
	Numerical simulations for model analysis


	Optimal control applied to enterovirus model
	Introduction of controls
	The extended mathematical model
	Existence of optimal control
	Characterization of the controls
	Numerical simulations for optimal control

	Concluding remarks

