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Abstract

Lassa fever is an infectious and zoonotic disease with incidence ranging between a hundred

to three hundred thousand cases, with approximately five thousand deaths reported yearly

in West Africa. This disease has become endemic in the Lassa belt of Sub-Saharan Africa,

thus increasing the health burden in these regions including Nigeria. In this dissertation,

a deterministic mathematical model is presented to study the dynamics of Lassa fever in

Nigeria. The model describes the transmission between two interacting hosts, namely the

human and rodent populations. Using the cumulative number of cases reported by the

Nigerian Centre for Disease Control (NCDC) within the first week of January 2020 through

the eleventh week in 2021, we performed the model fitting and parameterization using the

nonlinear least square method. The reproduction number R0 which measures the potential

spread of Lassa fever in the population is used to investigate the local and global stability of

the system. The result shows that the model system is locally and globally asymptomatically

stable whenever R0 < 1, otherwise it is unstable. Furthermore, the endemic equilibrium

stability is investigated and the criteria for the existence of the phenomenon of bifurcation

is presented. We performed the sensitivity analysis of each reproduction number parameter

and solutions of the developed model are derived through an iterative numerical technique,

a six-stage fifth-order Runge-Kutta method. Numerical simulations of the total infected

human population (Eh + Ih) under different numerical values (controlled parameters) are

presented. The result from this study shows that combined controlled parameters made the

total infected human population decline faster and thus reduces Lassa fever’s burden on the

population.

Keywords: Stability analysis; Sensitivity analysis; Model fitting; Controlled parameter;

Reproduction number; Lassa fever
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Chapter 1

General Introduction

1.1 Background

Over the years, the human population has been impacted by the mortality rate of individuals.

In 2019, diseases were identified as one of the top ten causes of mortality which account for

fifty-five percent of the 55.4 million deaths worldwide [3]. Disease is defined by the World

Health Organization as ”any abnormal condition that impairs the function of an organism .”

In humans, diseases are described as any medical condition that causes a specific symptom,

such as pain, suffering, dysfunction, or even death. They are classified into infectious and

non-infectious diseases.

Infectious diseases are caused by microorganisms, such as viruses, bacteria, fungi, and par-

asites. They are also known as transmissible diseases which can be transferred via direct or

indirect transmission from one host to another. Non- infectious diseases are in-host diseases

that are often caused by gene mutation, and they cannot be transferred from one host to

another except in rare cases due to organ or tissue transplantation [4,5]. In this dissertation,

we focus mainly on the modeling of infectious diseases. They are one of the leading problems

facing humanity due to high mortality across the world [6,7]. Among many other infectious

diseases are malaria, measles, influenza, polio, human immunodeficiency virus (HIV), coron-

avirus disease (COVID), smallpox, chickenpox, Ebola virus disease (EVD), and Lassa fever

(which is the focus of this research). Infectious diseases account for more than a fifth of all

fatalities and a quarter of all illnesses globally, putting a heavy strain on impoverished coun-

tries [6]. Thus, it is important to study the epidemiology of these diseases to reduce their
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burden on the human population. One of the effective ways to investigate the transmission

dynamics of diseases is through the development of mathematical models.

A mathematical model is a description or representation of a system using mathematical con-

cepts such as variables, functions, parameters, or equations which establish the relationship

between variables. Mathematical models have become vital tools in studying the dynam-

ics of diseases in a given population, including infectious diseases. Mathematical models of

infectious disease transmission and dynamics improve human understanding of the factors

that cause disease transmission. These models are based on biological knowledge of the

infection’s history and human immunity to the sickness [8,9]. Thus, developing such models

will enhance the understanding of disease epidemiology (which is defined as the incidence,

dispersal, and control of disease) by relating the results and observed patterns of different

models.

1.1.1 Lassa Fever

Lassa fever is an infectious disease and a zoonotic viral illness which is also called Lassa

hemorrhagic fever. It is instigated by the Lassa virus, a single-stranded RNA virus from

the Arenaviridae family [10, 11]. The main host of this virus is the mastomys natalensis,

also recognized as a multimammate rat. It is known in Sub-Saharan African as one of the

most common rodent species [12–14]. Although Lassa fever (LF) was first documented in

the 1950s, but the viral particle responsible for its cause was first identified in 1969 in the

northern region of Nigeria. This disease was named after Lassa, a town in Borno state

Nigeria where it was first identified. However, it has become endemic and a health challenge

in Western African. As stated by the Centers for Disease Control and Prevention (CDC) and

World Health Organization (WHO), the yearly estimated incidence in West Africa ranges

from a hundred to three hundred thousand cases with nearly five thousand deaths [15–17].

The eastern and western regions of West Africa have been identified as the high-risk area

for Lassa fever with the regular widespread outbreak from the Lassa belt. The countries
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in the Lassa belt include Liberia, Guinea, Sierra Leone, and Nigeria [15, 18–20] (see Figure

1.2 for the Lassa fever distribution map). Many outbreaks have been reported from these

regions over the years, among these is the largest epidemic reported in Nigeria, the country

we take as a case study in this work. In 2018, Nigeria recorded an outbreak of Lassa fever

which swept through eighteen out of the thirty-six states of the country. Over 400 confirmed

cases were reported, and this was recorded as the largest outbreak [21]. However, following

this incidence, Lassa fever cases have been increasing with an upsurge in both confirmed

cases and deaths. Using the reported cases obtained through Nigeria Centre for Disease

Control (NCDC) database [1], we depict the trend of confirmed cases and deaths from 2018

to 2020 for Nigeria in Figure 1.1. Although the prevalence of this disease is associated with

an increase in the host reservoir, which is mainly driven by the ecological climate factor

rainfall, various factors such as insufficient health facilities, polluted environment, and poor

personal hygiene have contributed largely to the increase of cases yearly. Because rodents

move from their natural habitat to the human environment during the rainy season, a decline

in Lassa fever prevalence is dependent on human efforts to reduce the disease’s transmission

potential [12,22].

The Lassa virus is communicated to humans mostly through human contact with food or

other things contaminated by an infected rodent’s urine or feces [18], while secondary in-

fection from human-to-human and laboratory transmissions are likewise possible [19, 23].

Lassa fever has an incubation period between 6 and 21 days, hence, following this exposure

period, infected humans are expected to start showing symptoms of the disease. Although

approximately eighty percent of infected humans only experience minor symptoms such as

headaches, cough, muscle pain, throat irritation, weakness, and fever. However, in severe

cases, an infected human can develop more complications such as facial swelling, bleeding

from the nose, respiratory distress, and low blood pressure [11, 20, 24]. In a more critical

situation, this disease can lead to death within fourteen days after the first appearance of

the symptoms, due to neurological problems [11,24]. Due to the absence of a vaccine against

3
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Figure 1.1: Number of reported cases (a) Confirmed cases; (b) Confirmed death. Reported cases
are obtained from NCDC database [1], from 2018 to 2020.

Lassa fever, prevention against infection has an important role in controlling the transmission

of Lassa fever disease in a given population. Currently, since the eradication of mastomys

rodent population is unrealistic, the present ways of avoiding the spread of this infection

include the facilitation of good personal hygiene to avoid contact with infected rodents’ se-

cretions or excretions, and implementation of standard health facilities for effective testing,

diagnosing and treatment of patients [19]. In addition, ribavirin is an antiviral drug that

has been declared as an effective treatment for Lassa fever patients, if administered at the

premature period of the infection [16,18].

1.2 Structure of the Dissertation

To extensively provide a better grasp of Lassa fever transmission dynamics in Nigeria, the

results from this study are presented in this dissertation. This dissertation consists of four

chapters which include the general introduction, literature reviews, mathematical analysis

of the Lassa fever model, and conclusions.

In chapter 1, we present a general introduction of the epidemiology of the disease. We

specifically provide information about the biology of Lassa fever disease. Some of the exist-

ing literature on the modeling of Lassa fever are presented in Chapter 2. In addition, we

present the problem statement and research motivation, research aim and objectives, and
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Figure 1.2: The Lassa fever belt of Sub-Saharan Africa [2], showing the distribution map of
Lassa fever disease
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research questions in this chapter. In chapter 3, we present the model formulation and the

basic properties of the model such as positivity of solutions, and invariant regions. Further-

more, the existence and stability of the Lassa fever model are investigated in this chapter.

This includes local and global stability of the Lassa fever-free equilibrium, the existence,

and stability of the endemic equilibria, and the condition for the existence of the bifurcation

phenomenon. To make the model results meaningful, we carried out parameter estimation

and data fitting using reported cases from Nigeria Centre for Disease Control (NCDC). Also,

in this chapter, the sensitivity analysis of each reproduction number parameter was inves-

tigated, and the numerical simulations were presented to establish the theoretical findings

from the study. Lastly, the conclusion from this study is presented in the last chapter of this

dissertation. In addition, we discuss open questions as a future study in this chapter.
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Chapter 2

Literature Review

Over the years, modeling infectious diseases have been a tool for effective understanding of

the transmission dynamics of diseases. In this section, we present some basic knowledge of

the foundation of modeling infectious diseases, and existing literature on the modeling of

Lassa fever. Specifically, we discuss a few studies on the mathematical modeling of Lassa

fever in Nigeria.

2.1 Modeling of Infectious Diseases

Multiple epidemiological models have been constructed and examined by various researchers

in various domains to efficiently mimic the reported incidence and prevalence of numerous

diseases in the field of epidemiology [25]. Mathematical models are used to deduce epidemic

dynamics from current data, forecast the future, and most importantly, assess the imprecision

of these projections. It has aided researchers in their investigations into the influence of

control measures in the prevention and understanding of infectious disease dynamics.

The first proficient physician to use mathematical modeling in studying the spread of a

disease is called Daniel Bernoulli. He developed a mathematical model in 1766, to analyze

mortality due to smallpox in England. The study result showed that inoculation against the

virus would increase the life expectancy at birth by about three years [26, 27]. Following

Bernoulli, many physicians have developed the field of mathematical epidemiology. Lam-

bert and Laplace, for example, built on Bernoulli’s work in 1772 by extending his model to

include age-dependent components [27–29]. Though, as [27] points out, modeling of infec-
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tious disease was not fully developed until 1911, when Ross founded modern mathematical

epidemiology [30]. Ross used a set of differential equations and a mechanistic modeling ap-

proach to estimate the discrete-time dynamics of malaria transmission via mosquito-borne

pathogen transfer [31]. Following the work of Ross, several models have been formulated,

to represent the transmission of disease in a given population. McKendrick and Kermack,

whose paper ”A contribution to the Mathematical Theory of Epidemics,” published in 1927,

laid the groundwork for deterministic compartmental epidemic modeling [32–34]. Determin-

istic models are those in which the model’s parameters determine the values of the system’s

dependent variables [35]. The authors provide a simple deterministic compartmental model

that effectively explains the behavior of various recorded epidemics.

Over the decades, numerous researchers such as physicians, mathematicians, modelers, biolo-

gists, epidemiologists, and many others have contributed to the growing field of mathematical

epidemiology, by using a mathematical modeling approach. Mathematical models have been

used to study the impact of various control measures in eradicating the disease in the pop-

ulation, such as vector control, immunization, isolation, and treatments, to name a few.

Researchers have studied and answered several concerns about disease transmission patterns

using various approaches and methodologies. In [27], the authors discussed the three general

categories of mathematical models. This encompasses state-space models, statistical ap-

proaches for outbreak surveillance, and discovery of spatial patterns in real epidemics, and

machine learning which helps in forecasting the evolution of a current epidemic [27]. The

authors further classified the above categories of the mathematical model into sub-models,

which have been employed by many researchers in diverse investigations. Deterministic mod-

els, stochastic models, agent-based models, and complex networked models are all sub-models

of state-space models [27].

It is imperative to mention that the focus of this dissertation is on the application of a

deterministic model to characterize epidemic transmission patterns in human populations.

Many epidemiological investigations have employed deterministic models. These models are

8



developed to represent the dynamics or factors in the population under study. Example of

these models is an age-structured model where the population is assumed to be categorized

into age groups to effectively examine the effect of control efforts on the population’s most

affected groups [36–39]. In addition, deterministic models have been used in examining the

dynamics of co-infection of dissimilar diseases like tuberculosis - HIV, malaria-meningitis, to

name a few [40–44]. The next section focuses on a review of the literature for the mathe-

matical modeling of Lassa fever in a given population.

2.2 Modeling of Lassa Fever

Mathematical models have been used to understand the epidemiology of various infectious

diseases. For the past decades, different methods have been used by several researchers to

investigate the dynamics of Lassa fever disease and control procedures appropriate for its

mitigation in the population. In this section, I discuss some of the studies that have been

done on the modeling of Lassa fever.

The authors of the paper published in [22] developed a multiple-patch model to study the in-

fluence of socioeconomic status on the spread of LF. They conducted a sensitivity study and

illustrated the impact of model parameters on illness transmission and prevalence numeri-

cally. Their findings reveal that human socioeconomic level has a sufficiently great impact

on the spread of LF in the population. As a result, the study suggests that human socioe-

conomic statuses be considered in the quest to eradicate Lassa fever in areas where it still

exists.

Another study is that of Marien, presented in [16]. The study evaluates the effect of rodent

control in eradicating LF based on field data. The authors employ the use of a mathematical

model to simulate different control strategies which include annual density control, continu-

ous density control, and rodent vaccination in rural upper Guinea, to determine the period

for which these strategies should be done to eradicate the Lassa virus in rural areas. Ac-

9



cording to their field data analysis, a yearly control strategy is unlikely to reduce Lassa virus

spillover to humans due to quick rodent population recovery after rodenticides treatment.

Furthermore, the model suggests that continuous control or rodent vaccination is the best

strategy to eliminate LV.

To characterize the risk maps of LF in West Africa, a spatial analysis was carried out

in [45], using LF data from human cases and infected rodents between the period of 1965

to 2007. The authors employ extrinsic environmental variables such as rainfall, vegetation,

and temperature to understand their impact on the spread of LF. According to the study,

rainfall has a considerable impact in determining high-risk zones, while temperature has a

lesser effect. The risk maps also revealed that the region between Guinea and Cameroon is

the most dangerous.

The authors built a non-autonomous system of a nonlinear ordinary differential equation

in [24] to represent the dynamics of Lassa disease transmission and seasonal fluctuation in

rodent recruitment. In the study, the authors evaluate LF disease intervention strategies by

using the elasticity of the equilibria prevalence, to predict optimal intervention that is suitable

for eradicating the disease in the population. Numerical results demonstrate that early

ribavirin treatments, and a mix of intervention techniques such as effective environmental

hygiene, adequate isolation of affected persons, and rodent eradication, will help prevent

Lassa fever.

Among many studies that have incorporated the death compartment to study the dynamics

of Lassa fever is that of [46]. The author developed a mathematical model of LF infection

transmission dynamics with control over two separate hosts. The model assumes that a

death infectious human can infect the susceptible individual. The study’s findings imply

that the best strategy to reduce secondary transmission from human to human is to create

more LF diagnostic clinics and implement careful burial procedures.

A few researchers have investigated the transmission dynamics of Lassa fever in Nigeria, using
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a different mathematical modeling approach. Among them is the work presented in [18].

The authors employed a mechanistic modeling approach to study the large-scale Lassa fever

epidemics in Nigeria from the year 2016 to 2019. To understand the transmission dynamics

of Lassa fever epidemics in Nigeria, the model describes the interaction among rodent and

human populations by integrating isolation, quarantine, and hospitalization compartment.

Their results suggest that an increase in quarantine and isolation of infected people will

decrease the transmission of Lassa fever from human to human.

Another study of the dynamics of Lassa fever in Nigeria is that of Zhao presented in [12].

The authors studied the large-scale Lassa fever outbreak in different parts of Nigeria. They

investigated some epidemiological features of the epidemic by measuring the correlation

between the reproduction number of the disease and local rainfall, using the three-parameter

logistic, Richards growth model, Gompertz, and Weibull growth model. They further fit the

respective growth models to the surveillance data to evaluate the reproduction number with

the respective epidemic turning points. The results from this study show that rainfall has

an enormous influence on the transmission of Lassa fever in Nigeria.

In [47], the authors presented a deterministic mathematical model based on systems of

ODE to explore the transmission dynamics of Lassa disease in Nigeria. The population was

stratified into human and rodent populations and further parameterized by using cumulative

reported cases from Nigeria, between the period of 2018 to 2020. To lessen the burden of

Lassa fever in Nigeria, the population of rodents and the probability of transmission from

rodents to humans and rats must be kept to a minimal minimum, according to the findings

of this study.

2.3 Problem Statement and Research Motivation

Infectious disease has remained the top cause of sickness and mortality globally. This cause

more than a quarter of all ailment and a fifth of all mortalities, with higher burden in the
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developing countries [6]. Over the decades, Lassa fever has remained endemic in some Sub-

Saharan Africa regions [15,48]. The endemic nature of this disease requires the development

of more scientific research including the mathematical modeling of its transmission, in an

attempt to predict effective control suitable for eradication in the regions where Lassa fever

is endemic.

The size of Lassa fever epidemics is enormous and this places a great burden on the

health systems of Lassa fever belt countries. Over the years, many outbreaks have been

reported from these regions, among these is the largest epidemic reported in Nigeria, the

country we take as a case study in this study. In 2018, Nigeria recorded an outbreak of Lassa

fever which swept through eighteen out of the thirty-six states of the country, with over 400

confirmed cases reported [21]. However, following this incidence, Lassa fever cases have been

increasing with an upsurge in both confirmed cases and deaths. Consequently, in an attempt

to understand the epidemiology of Lassa fever in the population, this study will develop a

mathematical model to broaden existing knowledge towards the eradication of Lassa fever

in the populace. Following the above motivation, we present the aim and objectives of this

study below.

2.4 Research Aim and Objectives

The main aim of this research is to study the transmission dynamics of Lassa fever, by using

a six compartmental deterministic model that is represented by a set of ordinary differential

equations (ODE). Furthermore, we intend to parameterize the generated model using data

from Nigeria to imitate the dynamics of Lassa disease in Nigeria. The following goals were

sought to assist us in achieving the above-mentioned goal

(i) To examine the existence and stability of the steady-state solutions of the model (Lassa

fever-free equilibrium and endemic equilibrium point).

(ii) To investigate the criteria for which the Lassa fever model exhibit the phenomenon of

12



bifurcation.

(iii) To calculate the reproduction number R0 of the disease, and investigate the impact of

each parameter on reproduction number.

(iv) To parameterize the model and perform numerical simulations to predict control strate-

gies in mitigating the disease.

Research Questions

The aim and objectives outlined above are intended to answer the following questions:

(i) What are the conditions for controlling Lassa fever in Nigeria? More specifically, what

are the control strategies, and the best combination of control measures to eliminate

Lassa fever in Nigeria?
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Chapter 3

Mathematical Analysis of the Lassa Fever Model

3.1 Model formulation

To achieve the main aim of this study, we develop, analyze, parameterize and simulate an

epidemic model that describes the transmission dynamics of Lassa fever in Nigeria. Since

the transmission of LF requires interaction between two interacting populations [15], we

developed our model by dividing the host population into two groups: humans and rodents.

Furthermore, according to human disease status, the total human population at continuous-

time t denoted by Nh(t) is stratified into mutually exclusive compartments. Precisely, the

total human population Nh(t) is grouped into the sub-populations of individuals who are

susceptible Sh(t), exposed Eh(t), infectious Ih(t), and recovered Rh(t). Thus, the total

human population Nh(t) is given as

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t)

Similarly, the total rodent population at continuous-time t denoted by Nr(t) is divided into

two compartments, namely: susceptible rodents Sr(t) and infectious rodents Ir(t). Hence,

the total rodent population Nr(t) is given as

Nr(t) = Sr(t) + Ir(t)

The susceptible human population is generated through recruitment by birth or immigration

at a rate πh. In addition, since reinfection with Lassa virus is possible [14,49], we assume that
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the susceptible populace is additionally increased by immunity loss of recovered individuals

at a rate ξh. Since all living beings are subjected to death, all sub-populations are liable to

be reduced by the natural death (death not due to the disease), hence the susceptible human

population is depopulated by a natural death at the rate µh. Furthermore, this population is

reduced following infection with Lassa fever virus due to effective contact with an infectious

human or infectious rodent at the rate

λh =
βrhIr
Nh

+
βhIh
Nh

The parameter βrh represents the effective transmission probability from rodent-to-human,

which could be through direct contact with contaminated food by the urine or excretes of an

infectious rodent, while βh represents the effective transmission probability from human-to-

human through dust particles via the mucous membranes or skin breaks of human, or through

sharing of medical equipment with infectious individuals without adequate sterilization [16,

18]. Thus, the susceptible human population at any given time t is

dSh
dt

= πh + ξhRh − λhSh − µhSh

The exposed human population is derived from an infection occurring from the susceptible

population. This populace is reduced by natural death µh and the disease progression to

the infectious population at the rate σh. It is imperative to note that, exposed individuals

are infected with the Lassa fever virus but are not showing symptoms yet. Following the

disease incubation period which is between 6− 21 days [11,20], such individuals progress to

infectious population. This is the stage whereby they start showing symptoms of the disease.

Thus, the exposed human population at any time t is given as

dEh
dt

= λhSh − (σh + µh)Eh
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The infectious human compartment is populated as a result of the progression rate from the

exposed human population. The population is reduced by the recovery rate due to treatment

at rate τh, natural death µh, and disease-induced death (death caused by Lassa fever) at the

rate δh. The infectious human population is given as

dIh
dt

= σhEh − (τh + µh + δh)Ih

Following early treatment of individuals diagnosed of Lassa fever disease, such individuals

recover and progress to increase the recovered human population. However, since recovered

individuals can be re-infected of the disease [14,49], the recovered human populace is reduced

by loss of immunity at rate ξh and natural death at the rate µh. Hence, the recovered human

population is given as

dRh

dt
= τhIh − (µh + ξh)Rh

The susceptible rodents population is generated by the recruitment of rodent through birth at

a rate πr. This sub-population is reduced by natural death with the rate µr, and is further

decreased following infection with Lassa virus due to effective contact with an infectious

human or rodent at the rate

λr =
βhrIh
Nh

+
βrIr
Nr

The parameters βhr represents the effective transmission probability from human-to-rodent,

while βr represents the effective transmission probability from rodent-to-rodent. Thus, the

susceptible rodent population at any time t is given as

dSr
dt

= πr − λrSr − µrSr

The infectious rodent population is derived from infection occurring from the susceptible

rodent population, while depopulated by natural death of rodents at rate µr. Thus, the
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infectious rodent population is given as

dIr
dt

= λrSr − µrIr

Hence, based on the overall process explained above, we present below a six compartmental

deterministic systems of nonlinear ordinary differential equations, to study the transmission

dynamics of Lassa fever in Nigeria:

dSh
dt

= πh + ξhRh − λhSh − µhSh
dEh
dt

= λhSh − (σh + µh)Eh

dIh
dt

= σhEh − (τh + µh + δh)Ih

dRh

dt
= τhIh − (µh + ξh)Rh (3.1)

dSr
dt

= πr − λrSr − µrSr
dIr
dt

= λrSr − µrIr

The model variables and parameters are presented in Table 3.1 and the flow diagram is

depicted in Figure 3.1.
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Figure 3.1: Flow diagram of the Lassa fever model (3.1).

3.2 Basic properties of the model

The basic properties of the Lassa fever model presented will be examined in this section.

Since the mathematical model presented in the system of equations (3.1) describes the rate

of change of different compartments of human and rodent populations, it will be epidemio-

logically meaningful if all its state variables are non-negative for all time t. In other words,

the solutions of the model (3.1) with positive initial data will remain positive for all time

t > 0. It must be noted that, since the model presented describes the interaction between

human and rodent populations, all the parameters of the model are assumed non-negative.

Hence, we establish the following result.
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Variable Description

Sh Population of susceptible humans
Eh Population of exposed humans
Ih Population of infectious humans
Rh Population of recovered humans
Sr Population of susceptible rodents
Ir Population of infectious rodents

Parameter Description

πh Recruitment rate of humans through birth or immigration
ξh Immunity waning rate of humans
σh Disease progression rate from exposed to infectious human
τh Recovery rate of infectious humans
µh Natural death rate of humans
δh Disease induced death rate for humans
βh Transmission probability from human-to-human
βrh Transmission probability from rodent-to-human
βhr Transmission probability from human-to-rodent
βr Transmission probability from rodent-to-rodent
πr Recruitment rate of rodents through birth
µr Natural death rate of rodents

Table 3.1: Description of the variables and parameters of the Lassa fever model (3.1).

3.2.1 Positivity and boundedness of solutions

Lemma 1 Let the initial data for the Lassa fever model (3.1) be Sh(0) > 0, Eh(0) ≥

0, Ih(0) ≥ 0, Rh ≥ 0, Sr(0) > 0, Ir(0) ≥ 0. Then the solutions (Sh(t), Eh(t), Ih(t), Rh(t), Sr(t), Ir(t))

of the model with positive initial data, will remain positive for all time t > 0.

Proof 1 Let tf = sup{t > 0 : Sh(t) > 0, Eh(t) > 0, Ih(t) > 0, Rh(t) > 0, Sr(t) > 0, Ir(t) >

0,∈ (0, t]}. Hence, tf > 0. From the first equation of the model system (3.1), it follows that

dSh
dt

= πh + ξhRh − λhSh − µhSh ≥ πh − λhSh − µhSh (3.2)

Equation (3.2) can be represented as follows using the integrating factor method:
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d

dt

(
Sh(t)exp

[
µht+

∫ t

0

λh(ω)dω

])
≥ πhexp

[
µht+

∫ t

0

λh(ω)dω

]

Hence,

Sh(tf )exp

[
µhtf +

∫ tf

0

λh(ω)dω

]
− Sh(0) ≥

∫ tf

0

πh

(
exp

[
µhθ +

∫ θ

0

λh(ω)dω

])
dθ

so that,

Sh(tf ) ≥ Sh(0)exp

[
−µhtf −

∫ tf

0

λh(ω)dω

]
+ exp

[
−µhtf −

∫ tf

0

λh(ω)dω

]
×
∫ tf

0

πh

(
exp

[
µhθ +

∫ θ

0

λh(ω)dω

])
dθ > 0.

In the same way, the remaining state variables Eh(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0, Sr(t) > 0,

and Ir(t) ≥ 0 for all time t > 0. Hence, all the solutions of model (3.1) remain positive for

all non-negative initial conditions.

3.2.2 Invariant region

Here, we show the invariant regions for the given Lassa fever model (3.1). Consider the

biologically feasible region consisting of D = Dh ×Dr ∈ R4
+ ×R2

+ with

Dh =

{
(Sh, Eh, Ih, Rh) ∈ R4

+ : Nh ≤
πh
µh

}

and

Dr =

{
(Sr, Ir) ∈ R2

+ : Nr ≤
πr
µr

}
It can be shown that the set D is a positively invariant set of the model system (3.1). This

implies that all the solution trajectories initiated at any point of the non-negative region R6
+
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will enter the feasible region D and remain there for all time t. The result is summarized in

the following Lemma.

Lemma 2 The biological feasible region D = Dh ∪Dr ⊂ R4
+ ×R2

+ of the Lassa fever model

(3.1) is positively invariant with non-negative initial conditions in R6
+.

Proof 2 The summation of the human and rodent populations Nh and Nr of the Lassa fever

model (3.1) result to

dNh(t)

dt
= πh − µhNh(t)− δhIh(t)

dNr(t)

dt
= πr − µrNr(t)

Thus,

dNh(t)

dt
≤ πh − µhNh(t), and

dNr(t)

dt
= πr − µrNr(t) (3.3)

Solving the above yields Nh(t) ≤ Nh(0)e−µht + πh
µh

(1− e−µht) and Nr(t) = Nr(0)e−µrt +

πr
µr

(1− e−µrt). It follows that Nh(t)→ πh
µh

and Nr(t)→ πr
µr

as t→∞. In particular, Nh(t) ≤
πh
µh

if the total human population at the initial time Nh(0) ≤ πh
µh

. Similarly, Nr(t) ≤ πr
µr

if

the total rodent population at the initial time Nr(0) ≤ πr
µr

. Thus, the region D is positively

invariant.

Hence, it is suitable to study the transmission dynamics of Lassa fever using model (3.1)

in the biological feasible region D, for which the model is said to be epidemiologically and

mathematically well-posed [50,51].

3.3 Analysis of the model

In this section, we critically analyze model (3.1) by determining the existence of the steady-

state solutions. This includes the existence of the disease-free equilibrium (henceforth called
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Lassa fever-free equilibrium) and the endemic equilibrium. We further investigate the local

and global stability of the equilibria. Furthermore, we investigate the nature of bifurcation

the model exhibits.

3.3.1 Existence and stability of Lassa fever-free equilibrium

Lassa fever-free equilibrium points are the steady-state solution in the absence of Lassa

fever infection. Thus, the Lassa fever-free equilibrium point for model (3.1) implies that

Eh = Ih = Ir = 0. Hence, by solving the systems of equations simultaneously (3.1), the

Lassa fever-free equilibrium denoted by E0, is obtained as

E0 = (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
r , I
∗
r ) =

(
πh
µh
, 0, 0, 0,

πr
µr
, 0

)
(3.4)

To investigate the local stability of the Lassa fever-free equilibrium, we compute the basic

reproduction number R0 by using the next generation operator method on the model system

(3.1). Following the approach in [52,53], the jacobian matrices F and V , for the new infection

terms and the remaining transfer terms are given by

F =



0 βh βrh

0 0 0

0 βhrS
∗
r

S∗
h

βr


and V =



k1 0 0

−σh k2 0

0 0 µr


where k1 = σh + µh, and k2 = τh + µh + δh. The next generation matrix (NGM) with large
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domain KL is given below as

KL = FV −1 =



βhσh
k1k2

βh
k2

βrh
µr

0 0 0

βhrS
∗
rσh

S∗
hk1k2

βhrS
∗
r

S∗
hk2

βr
µr


(3.5)

It can be seen from the model that, among the three infected states, there are only two that

are states-at-infection. This can also be seen by looking at matrix F and observing that

the entire second row contains zeros. Hence, the NGM K for the small domain is therefore

two-dimensional. Thus, using the approach of [54] with an auxiliary matrix E, the NGM K

is obtained as

K = ETKLE = ETFV −1E =


βhσh
k1k2

βrh
µr

βhrS
∗
rσh

S∗
hk1k2

βr
µr

 =


Rh Rrh

Rhr Rr

 , where E =


1 0

0 0

0 1

(3.6)

Thus, the characteristic polynomial of the matrix K is obtained as

λ2 − (Rh +Rr)λ+ (RhRr −RhrRrh) = 0 (3.7)

where

Rh =
βhσh
k1k2

, Rr =
βr
µr
, Rhr =

βhrS
∗
rσh

S∗hk1k2

, Rrh =
βrh
µr
.

It follows that the basic reproduction number for the model (3.1), which is the spectral

23



radius of K given by R0 = ρ(K), is obtained as

R0 =
1

2

{
(Rh +Rr) +

√
(Rh +Rr)2 − 4(RhRr −RhrRrh)

}
(3.8)

Further simplification of (3.8) result to

R0 =
1

2

{
(Rh +Rr) +

√
(Rh −Rr)2 + 4R2

∆

}
(3.9)

where Rh, Rr, and R∆ =
√
RhrRrh are the reproduction numbers for human-to-human,

rodent-to-rodent transmission and vectorial transmission respectively.

The basic reproduction number is a threshold quantity that measures the spread potential

of disease in a given population. Epidemiologically, it measures the average number of sec-

ondary infections a single infected individual can generate in a population that is completely

susceptible. In other words, the threshold quantity R0 given in (3.9) measures the average

number of LF infections that a LF infected individual can generate in an entirely susceptible

population. It is imperative to mention that, the reproduction number for the model (3.1)

is a composition of the reproduction number of human-to-human transmission Rh, rodent-

to-rodent transmission Rr, and vectorial transmission Rhr,Rrh because the model includes

the biological possibilities of infection transfer between the two interacting host. Hence,

epidemiologically, Rh measure the average number of secondary infections a single infectious

human can produce during an infectious period. Similarly, Rr measure the average number

of secondary infections a single infectious rodent can generate during an infectious period.

Since βhr, and βrh are the transmission probabilities from human-to-rodent, and rodent-to-

human respectively, then Rhr measure the average number of secondary infections of rodents

a single infectious human can generate over its infectious period, while Rrh measure the av-

erage number of secondary infection of humans a single infectious rodent can generate during

the infection period. In general, an increase in any of the reproduction number can increase

the risk of LF occurrence in the human population, since the growth of any of the infectious
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hosts (either humans or rodents) can increase the spread of infection in the human populace

if adequate and effective control mechanism is not utilized by the population. Next, we shall

investigate the stability of the Lassa fever-free equilibrium E0.

Local stability of Lassa fever-free equilibrium

We analyze the local stability of Lassa fever-free equilibrium of the model system (3.1) by

using the basic reproduction number R0 in the following theorem as described in [50]. The

proof is provided in Appendix A.1.

Theorem 1 The Lassa fever-free equilibrium E0, of the model (3.1) is locally asymptotically

stable in the biological feasible region D if R0 < 1 and unstable if R0 > 1.

Global stability of Lassa fever-free equilibrium

Here, we further investigate the global stability of the Lassa fever-free equilibrium E0 of the

model system (3.1), by using the technique implemented in [55]. Firstly, we re-write the

Lassa fever model (3.1) in the form

dX

dt
= F (X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (3.10)

where X = (Sh, Rh, Sr) is the uninfected population, and Z = (Eh, Ih, Ir) is the infected

population with the component of (X,Z) ∈ R3. The Lassa fever-free equilibrium is obtained

as

E∗0 = (X∗, 0) =

(
πh
µh
, 0,

πr
µr

)
(3.11)

For the point E∗0 = (X∗, 0) to be globally asymptotically stable, the following conditions

must be satisfied
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(C1) : For dX
dt

= F (X, 0), X∗ is globally asymptotically stable (GAS),

(C2) : G(X,Z) = QZ − Ĝ(X,Z) with Ĝ(X,Z) ≥ 0 for (X,Z) ∈ D

where Q = BZG(X∗, 0) is an M-matrix (the off-diagonal elements of B are non-negative) and

D is the feasible region where the model makes biological sense. If the model system (3.1)

satisfies the conditions given above, then the following result holds. The proof is provided

in Appendix A.2.

Theorem 2 The fixed point E∗0 = (X∗, 0) is globally asymptotically stable (GAS) equilibrium

of model system (3.1), if R0 < 1 (locally asymptotically stable) and the conditions (C1) and

(C2) are satisfied.

The above result infers that, regardless of the initial sizes of the sub-populations of the

system, Lassa fever eradication is possible whenever the reproduction number is less than

unity. We illustrate this theorem numerically in Figure 3.9.

3.3.2 Existence of the endemic equilibria

Here, we investigate the existence and stability of the endemic equilibrium for the model

(3.1). Lassa fever endemic equilibrium points are the steady-state solution where there is

presence of Lassa fever infection in the population. We let E1 = (S∗∗h , E
∗∗
h , I

∗∗
h , R

∗∗
h , S

∗∗
r , I

∗∗
r )

represents the Lassa fever-present equilibrium. Setting the right-hand sides of the systems

of equations in (3.1) to zero and solving simultaneously in terms of the associated form of
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infection yields

S∗∗h =
πhk1k2k3

k1k2k3λ∗∗h + k1k2k3µh − λ∗∗h σhτhξh
, E∗∗h =

λ∗∗h πhk2k3

k1k2k3λ∗∗h + k1k2k3µh − λ∗∗h σhτhξh

I∗∗h =
λ∗∗h πhσhk3

k1k2k3λ∗∗h + k1k2k3µh − λ∗∗h σhτhξh
, R∗∗h =

λ∗∗h πhσhτh
k1k2k3λ∗∗h + k1k2k3µh − λ∗∗h σhτhξh

S∗∗r =
πr

λ∗∗r + µr
, I∗∗r =

λ∗∗r πr
µr(λ∗∗r + µr)

(3.12)

where the force of infection are given as

λ∗∗h =
βrhI

∗∗
r

N∗∗h
+
βhI

∗∗
h

N∗∗h
, and λ∗∗r =

βhrI
∗∗
h

N∗∗h
+
βrI

∗∗
r

N∗∗r
(3.13)

Substituting the expression (3.12) into the force of infection (3.13) at steady state result to

the following polynomial

λ∗∗h
{
a1(λ∗∗h )4 + a2(λ∗∗h )3 + a3(λ∗∗h )2 + a4λ

∗∗
h − a5

}
= 0 (3.14)

The coefficients ai, for i = 1..., 5 of the polynomial are given in Appendix A.3. Clearly,

λ∗∗h = 0 is a solution. The coefficient a1 is positive while the sign of a5 depends on the values

of respective reproduction number, such that if {Rh,Rr,Rhr,Rhr ∈ R0 > 1}, then a5 > 0

such that there is at least one sign change in the sequence of coefficients a1, ...a5. Thus, by

Descartes rule of signs, there exists at least one positive real root for (3.14) aside from the

root λ∗∗h = 0, whenever R0 > 1. Therefore, the following result is established.

Theorem 3 The model system (3.1) has at least one endemic equilibrium whenever R0 > 1.
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3.3.3 Bifurcation analysis

Following Theorem 1, it is imperative to re-state that, whenever the reproduction number of

the model (3.1) is greater than unityR0 > 1, the asymptotic local stability of the Lassa fever-

free equilibrium will undergo a trade-off with the asymptomatic local stability of the endemic

equilibrium. Hence, in this section, we will investigate the criteria for the trade-off between

the asymptomatic local stability of the Lassa fever-free equilibrium and asymptomatic local

stability of the endemic equilibrium, as the threshold quantity crosses unity. In other words,

we will show the conditions under which model (3.1) undergo supercritical or subcritical

(forward or backward) bifurcation. By employing the Center Manifold Theory of bifurcation

analysis described in [56], we write the Lassa fever model (3.1) in the vector form

dX

dt
= F (X) (3.15)

where X = (x1, x2, x3, x4, x5, x6)T and F = (f1, f2, f3, f4, f5, f6)T . We further modify the

variables be setting

Sh = x1, Eh = x2, Ih = x3, Rh = x4, Sr = x5, Ir = x6

such that the total human and rodent populations are respectively given as

Nh = x1 + x2 + x3 + x4, and Nr = x5 + x6
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Hence, following the above transformation, the transformed model (3.1) is given as

dx1

dt
= f1 = πh + ξhx4 − λhx1 − µhx1

dx2

dt
= f2 = λhx1 − (σh + µh)x2

dx3

dt
= f3 = σhx2 − (τh + µh + δh)x3

dx4

dt
= f4 = τhx3 − (µh + ξh)x4 (3.16)

dx5

dt
= f5 = πr − λrx5 − µrx5

dx6

dt
= f6 = λrx5 − µrx6

with the associated force of infection given as

λh =
βrhx6 + βhx3

x1 + x2 + x3 + x4

, λr =
βhrx3

x1 + x2 + x3 + x4

+
βrx6

x5 + x6

Suppose that β∗rh is chosen as the bifurcation parameter, solving (3.8) at R0 = 1, the

parameter βrh = β∗rh is obtained as

βrh := β∗rh =
πhµr {µrk1k2 − (βhσhµr + βrβhσh + βrk1k2)}

βhrπrσhµh
(3.17)

The Jacobian of system (3.16), evaluated at Lassa fever-free E40 = (x∗1, 0, 0, 0, x
∗
5, 0) with
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βrh = β∗rh denoted by J (E40 , β∗rh) is given by

J (E40 , β∗rh) =



−µh 0 −βh ξh 0 −β∗rh

0 −k1 βh 0 0 β∗rh

0 σh −k2 0 0 0

0 0 τh −k3 0 0

0 0 −x∗5βhr
x∗1

0 −µr −βr

0 0
x∗5βhr
x∗1

0 0 −µr + βr



(3.18)

The Jacobian matrix (3.18) has a right eigenvector (associated with the zero eigenvalues)

given by w = (w1, w2, w3, w4, w5, w6)T , where

w1 =

(
x∗1µr(1−Rr)(τhξh − βhk3)− x∗5βhr

x∗1µrµhk3(1−Rr)

)
w3; w2 =

w3k2

σh
; w3 = w3 > 0;

w4 =
w3τh
k3

; w5 = − w3x
∗
5

x∗1µr(1−Rr)
; w6 =

w3x
∗
5βhr

x∗1µr(1−Rr)

Similarly, the Jacobian matrix (3.18) has a left eigenvector (associated with the zero eigen-

values) given by v = (v1, v2, v3, v4, v5, v6)T , where

v1 = 0; v2 =
v3σh
k1

; v3 = v3 > 0; v4 = 0; v5 = 0; v6 =
v3β

∗
rhσh

k1µr(1−Rr)

Computation of bifurcation coefficient a and b

The direction of the bifurcation at R0 = 1 is determined by the signs of bifurcation coef-
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ficients a and b, obtained by computing the associated non-zero partial derivative of F (X)

(evaluated at the disease free equilibrium E40 ). Thus, the coefficient of a is given as

a =
6∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0)

=
2(m1 −m2)

x∗21 x
∗
5

(3.19)

where

m1 = x∗1x
∗
5 {m3(βhw3v1 + β∗rhv1w6) + βhrw3w5v6}+ βhrv5w3x

∗2
5 (w1 +m3) + βrx

∗2
1 v5w

2
6

m2 = x∗1x
∗
5 {m3(βhw3v2 + β∗rhv2w6) + βhrw3w5v5}+ βhrv6w3x

∗2
5 (w1 +m3) + βrx

∗2
1 v6w

2
6

m3 = w2 + w3 + w4

Similarly, the bifurcation coefficient b is obtained as follows

b =
6∑

k,i=1

vkwi
∂2fk

∂xi∂β∗rh
(0, 0)

= w6(v2 − v1) > 0 (3.20)

Since all the parameters of model (3.1) are non-negative and v1 = 0, it can be shown that

the inequality (3.20) holds if Rr < 1. It follows from Theorem 4.1 in [56] that the Lassa

fever model (3.1) will exhibit a subcritical (backward) bifurcation if the coefficient a given

by (3.19) is positive. This implies that m1 > m2 must be satisfied. Hence, the following

result will be established.

Theorem 4 The Lassa fever model (3.1) undergoes a subcritical (backward) bifurcation as

R0 crosses unity, whenever the coefficient a > 0 and b > 0.

Backward bifurcation (BB) occurs when a small positive unstable equilibrium appears while
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the disease-free equilibrium (DFE) and a larger positive equilibrium are locally asymptoti-

cally stable when the threshold quantity R0 is less than unity. In other words, BB occurs

when a stable DFE and a stable endemic equilibrium coexist under some given values for

which R0 is less than unity. The backward bifurcation phenomenon suggests that the epi-

demiological condition of having the reproduction number less than unity to eliminate a

disease although necessary is no longer enough for the effective control of the disease in the

population. Hence, the effective control of Lassa fever in the population is difficult, since

disease control when R0 < 1 is dependent on the initial sizes of the sub-populations. We

further explore the condition for which system (3.1) undergo supercritical bifurcation. It

must be noted that the Lassa fever model (3.1) will exhibit a forward bifurcation if the

coefficient a given by (3.19) is negative. This implies that m1 < m2 must be satisfied. Thus,

the following result will be established.

Theorem 5 The Lassa fever model (3.1) undergoes a supercritical (forward) bifurcation as

R0 crosses unity, whenever the coefficient a < 0 and b > 0.

A system exhibits a forward bifurcation when the disease-free equilibrium losses its stability

due to an introduction of a small positive asymptomatically stable equilibrium. Epidemio-

logically, the result above implies that a small inflow of individuals with Lassa fever infection

into an entirely susceptible population will lead to a continuance of Lassa fever in the pop-

ulace, whenever the reproduction number is less than unity. In other words, the exchange

of the local asymptotic stability of the equilibria depends on the initial number of Lassa

fever infectious individuals in the population. It must be noted that the transfer of the

local asymptotic stability of the equilibria is independent of the initial sizes of the sub-

populations. This can be proved by establishing the global asymptomatic stability of the

disease-free equilibrium (see section (3.3.1)).
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3.4 Parameter estimation and data fitting

Estimating parameter values is very vital for precise prediction in an epidemiological study.

To make the prediction of model results meaningful, it is more valuable to validate the

formulated model with real-life data. This can be achieved by fitting the proposed model

with the real data, to inform the population of the degree of precision and validation of the

model’s ability on predicting a realistic outcome. In this section, we parameterized model

(3.1) by using the Lassa fever reported cases from Nigeria. We used the data for a period

from the first week in January 2020 through the eleventh week in 2021, obtained through the

NCDC database [1]. The number of cumulative confirmed cases for this period is depicted

in Figure 3.2.

5 10 15 20 25 30 35 40 45 50 55 60 65
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Figure 3.2: Weekly reported number of confirmed Lassa fever cases in Nigeria from first week
January 2020 to eleventh week in 2021, obtained from NCDC database [1].

The blue box captioned the trend of the cumulative confirmed cases from the beginning of

the year 2021. It should be noted that the confirmed cases of Lassa fever are increasing as

the week progresses. Thus, it is important to provide adequate control strategies to curtail

the spread of Lassa fever in the population. We obtained our parameter values through two

different strategies. The Lassa fever model presented in this work contains twelve parameters
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and six of the parameters are estimated as following; the natural death rate of human µh is

a demographic parameter estimated by

µh =
1

µ0

where µ0 is the average life expectancy of humans. The average life expectancy of humans

in Nigeria as presented in [57] is 60.45 years. In addition, the total human population (Nh)

of Nigerians is recorded as 214, 028, 302 [57], hence since we assumed by the invariant region

that Nh = πh
µh

, we estimated the recruitment rate by Nh × µh. Similarly, the natural death

of rodent µr is estimated by µr = 1
µ0

, where µ0 = 1 year is the average life expectancy of

natal multimammate rat [11,19]. Furthermore, we assume the total population of rodents to

be Nr = 30, 000, so that the recruitment rate of rodents is obtained by Nr × µr. According

to [58], the incubation period of Lassa fever ranges between 6–21 days, thus we estimate the

disease progression rate from exposed human to infectious human σh as 0.5185 per week.

Lastly, using the reported death cases due to Lassa fever and reported confirmed cases

denoted as (D, I) respectively, the Lassa fever-induced death rate δh is obtained by

δh =

∑n
t=1Dt∑n
t=1 It

where t = 1, 2, . . . , n is the time measured in weeks and n = 64 is the total number of weeks

reported in the used data. All parameter value units are provided in per-week.

To obtain the remaining six parameter values, we fit the Lassa fever model (3.1) to the

obtained cumulative number of cases reported in [1]. The model fitting was implemented by

using the standard nonlinear least square method in MATLAB-R2017b. All the parameter

values estimated and fitted are tabulated in Table 3.2, while Figure 3.3 depicts the data fitting

of the observed cumulative confirmed cases. Using the parameter values, the reproduction

number given in (3.9) is estimated as R0 = 1.32. We further use the parameter values

to perform the sensitivity analysis and to simulate the different scenarios of Lassa fever
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dynamics in the population, to provide precise predictions or recommendations for health

care practitioners.

Parameter Description Value Source

πh Recruitment rate of humans through birth or immigration 68,088 Estimated
σh Disease progression rate from exposed to infectious human 0.5185 Estimated
µh Natural death rate of humans 0.0003 Estimated
δh Disease induced death rate for humans 0.1323 Estimated
ξh Immunity waning rate of humans 0.3278 Fitted
τh Recovery rate of infectious humans 0.0027 Fitted
βh Transmission probability from human-to-human 0.1250 Fitted
βrh Transmission probability from rodent-to-human 0.0509 Fitted
βhr Transmission probability from human-to-rodent 0.0137 Fitted
βr Transmission probability from rodent-to-rodent 0.0254 Fitted
πr Recruitment rate of rodents through birth 577 Estimated
µr Natural death rate of rodents 0.0192 Estimated

Table 3.2: Parameter values for the Lassa fever model (3.1)

0 10 20 30 40 50 60
0

500

1000

1500

Figure 3.3: Data fitting of the Lassa fever model (3.1) using cumulative confirmed cases data for
Nigeria, from first week January 2020 to eleventh week in 2021. Reported cases are obtained from
NCDC database [1].
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3.4.1 Sensitivity analysis

The goal of mathematical modeling of infectious diseases is to provide insight into the epi-

demiology of disease in the population. According to [59], it can be used to understand how

infectious agents such as viruses, or bacteria spread in a population. Hence, the model results

need to be able to provide insight into the dynamics of the disease. One of the techniques

in providing such valuable insight is sensitivity analysis (SA). In this section, we carried

out a SA to assess the relationship between the model parameters. This will inform us of

the impact of each parameter on the threshold quantity (reproduction number), and hence

enlighten the public health and policymakers to put priority on the intervention strategy

for preventing and controlling the spread of the disease. Using the approach in [60, 61], the

normalized forward sensitivity index ZR0
p on the reproduction number R0 for each of the

parameters p, is defined as

ZR0
p =

∂R0

∂p
× p

R0

(3.21)

Employing the formula given by (3.21), with the parameter values provided in Table (3.2),

the respective sensitivity indices values are presented in Table (3.3). We present a bar plot in

Figure 3.4 to further represent the numerical result of the sensitivity indices. It must be noted

that an increase in any positive index from SA will directly increase the threshold quantity of

the disease and vice versa, while an increase in the negative index will decrease the threshold

quantity and vice versa. From Table (3.3), increase in the spread of Lassa fever is associated

to an increase in the positive values of the parameters, µh, βr, βrh, βhr, βh, and πr. Notable

among the positive values are the transmission probabilities and the recruitment rate of

rodents. In addition, increase in the spread of Lassa fever is associated to the decrease in

the negative values of the parameters, πh, δh, τh, and µr. The natural death rate of rodents

is noted as the highest negative value of the sensitivity index. The results enlighten us

of the control strategies that are suitable in mitigating the spread of Lassa fever in the
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population. For example, the positive index +0.3333 of the transmission probability from

rodent-to-rodent βr implies that increase (or decrease) by 1% of the value of βr will cause a

corresponding increase (or decrease) in the reproduction number by 1%. Also, the negative

index −0.3333 of the natural death of rodents µr implies that an increase (or decrease) by

1% of the value of µr will cause a corresponding decrease (or increase) in the reproduction

number by 1%.

In summary, the Lassa fever sensitivity analysis carried out suggests that any control

strategies that reduce the transmission probabilities and the recruitment rate of rodents in

the population will effectively curtail the spread of Lassa fever in the populace. An example

of such a control mechanism is promoting good environmental and personal hygiene, which

can be encouraged through educational campaigns, to avoid contamination of human foods

by rodents. In addition, any control strategies that increase the death of rodents, such as

the use of rodent traps or pesticides for fumigating the environment, will help in reducing

the spread of Lassa fever.

Parameter Description Sensitivity Index Sign

πh Recruitment rate of humans through birth or immigration -0.0263 -ve
σh Disease progression rate from exposed to infectious human -0.0011 -ve
µh Natural death rate of humans +0.0261 +ve
δh Disease induced death rate for humans -0.0883 -ve
τh Recovery rate of infectious humans -0.0180 -ve
βh Transmission probability from human-to-human +0.0645 +ve
βrh Transmission probability from rodent-to-human +0.0263 +ve
βhr Transmission probability from human-to-rodent +0.0263 +ve
βr Transmission probability from rodent-to-rodent +0.3333 +ve
πr Recruitment rate of rodents through birth +0.0263 +ve
µr Natural death rate of rodents -0.3333 -ve

R0 Reproduction number 1.32

Table 3.3: Normalized sensitivity index of the reproduction number (3.9) parameters.
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Figure 3.4: Sensitivity indicies of the Lassa fever reproduction number R0 (3.8).

3.5 Numerical simulations and Discussion

To establish our theoretical findings, we present the numerical simulation results of the model

in this section. Following the result from the sensitivity analysis, we investigate the effect

of the most sensitive parameters on the reproduction number. In addition, we examine the

dynamical behavior of infected human and rodent populations under different scenarios to

predict the eradication of Lassa fever in Nigeria. It must be noted that, since Lassa fever

exposed humans can transmit the infection, we defined the total infected human population

as the sum of both exposed human and infectious human (Eh+Ih). We developed a program

code written and implemented on MATLAB ODE45 solvers, a six-stage fifth-order Runge-

Kutta method, to simulate the model system (3.1). All the parameter values used are

provided in Table (3.2), except otherwise stated. These values were obtained by fitting the

real data reported by NCDC to the model (3.1), as presented in Section 3.4. Since these real

data are reported cases specifically from Nigeria, the prediction of the numerical simulation

results will be suitable for the description of the transmission dynamics of LF in Nigeria.
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The selection of our initial conditions is based on the reported real data and the demographic

data of Nigeria. We assume the initial exposed human population as the first reported case

of Lassa fever given as Eh(0) = 98; the initial infectious human population is assumed to

be the first confirmed case of Lassa fever given as Ih(0) = 18; and the initial recovered

human population is assumed as Rh(0) = 0. Since the total human population of Nigeria

is reported as Nh(0) = 214, 028, 302, thus we estimate the initial susceptible population as

Sh(0) = Nh(0) − (Eh(0) + Ih(0) + Rh(0)). Since the reproduction number is the threshold

quantity that determines the control or spread of disease in the population (except for cases

where the bifurcation phenomenon occurs), we investigate the effect of some parameters

(based on the results from the sensitivity analysis), on the reproduction number R0 in Figure

3.5. The effect of the transmission probability from rodent-to-rodent βr on the reproduction

number is presented in Figure 3.5(a). It is obvious from the figure that an increase in the

transmission probability from rodent-to-rodent directly increases the reproduction number.

Similarly, as presented in Figure 3.5(c), an increase in the transmission probability from

human-to-human βh increases the reproduction number of the disease. These results are

expected since the transmission of the infection increases the spread of Lassa fever in a

population. Thus, an upsurge in the abundance of infected rodents or humans will result in an

increase in the spread of Lassa fever in the population where prevention or control measures

are not effective in use. Hence, an effort towards the reduction of disease transmission

probabilities such as βh and βr, will reduce the spread of Lassa fever in the population.

The effect of the natural death of rodents on the reproduction number is presented in Figure

3.5(b). An increase in the natural death of rodents reduces the reproduction number. How-

ever, it must be noted that after the fixed point µr = 0.01, the reproduction number remains

stable regardless of a further increase in the death of rodents. This dynamic invalidates

the expectation that continuous reduction of infected rodents should continually reduce the

reproduction number. However, since a decrease in the R0 is not dependent on only the

death of rodents, a combination of multiple control mechanisms can help to further reduce
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Figure 3.5: Reproduction numberR0 of Lassa fever model (3.1), with respect to model parameters.
Parameter values used are as given in Table 3.2.
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the R0 of the disease. A more interesting result is that of the effect of the recovery rate of

human τh on the reproduction number depicted in Figure 3.5(d). An increase in the recovery

rate of infected humans insignificantly decreases the R0. The recovery rate of a human is

as a function of increase in treatment of infected individuals, thus it is expected to see such

insignificant decrease in the reproduction number, as treatment without any control measure

that accounts for prevention of the disease will insignificantly or not reduce the burden of the

disease, especially in a scenario where there are possibilities for loss of immunity as presented

in our model.

Figure 3.5(e) and Figure 3.5(f) respectively depict the effect of transmission probability

from rodent-to-human, and human-to-rodent on the reproduction number. An increase in

the respective transmission probabilities increases the reproduction number. However, the

changes in the reproduction number estimate are very insignificant. Although this is not

expected because an increase in the transmission of infection is expected to increase the

disease burden in the population. Thus, we employ a 2-D contour plot to further illustrate

the dynamics of the reproduction number R0, by varying two parameters simultaneously in

Figure 3.6. In Figure 3.6(a), we demonstrate the dynamics of the reproduction number by

varying the recovery rate of human τh, with respect to the transmission probability from

human to human βh. The result shows that simultaneous decrease of the transmission

probability from human-to-human below 0.4 and continuous increase in the recovery rate

of infected humans will keep the R0 below unity. A similar result is presented in Figure

3.6(b). The figure depicts the effect of varying the recovery rate of humans with respect to

the transmission probability from rodent-to-rodent on the reproduction number. Keeping

βr below 0.1 and simultaneously increasing the recovery rate of humans will alleviate the

reproduction number below unity. Thus, it can be suggested that to stabilize the R0 below

unity, a control strategy that reduces the transmission of Lassa fever between humans βh, and

rodents βr, with control measure that enables an increase in recovery rate of infected humans

should be sufficient to curtail the disease. The outcome of the transmission probability from
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human-to-human βh with respect to the transmission probability from rodent-to-rodent βr

on the reproduction number is presented in Figure 3.6(c). An increase in any of the two

parameters leads to an increase in R0. For instance, increasing βr while we fix βh = 0 leads

to an increase in the reproduction number. Likewise, increasing βh while we fix βr = 0

leads to an increase in the reproduction number. To maintain the reproduction number of

Lassa fever below unity, the values of the transmission probability from human-to-human

and the transmission probability from rodent-to-rodent must be concurrently reduced below

(βh < 0.3, βr < 0.4). Hence, this result recommends that to decrease the reproduction

number of Lassa fever below unity, it is not enough to only reduce one of the transmission

probabilities, but any control strategies that facilitate the reduction in the transmission

probability from human-to-human together with the transmission probability from rodent-

to-rodent will help in reducing R0, thus leading to a reduction in the spread of Lassa fever in

the populace. Figure 3.6(d) depicts the effect of the transmission probability from human-

to-human βh with respect to the natural death of rodents on the R0. The result shows that

increase in βh increases R0, while an increase in the death of rodents has no impact on the

reproduction number. This correspond to the result from Figure 3.5(b) (see discussion on

Figure 3.5(b)).

As stated in Section 3.3.3, the BB phenomenon suggests that the epidemiological condition of

having the reproduction number less than unity to eliminate a disease although necessary is

no longer enough for the effective control of the disease in the population. Hence, even though

some parameters have no significant effect on the reproduction number as shown in Figure

3.5(b), Figure 3.5(d), Figure 3.5(e), and Figure 3.5(f), it is important to further investigate

the impact of parameters on the population, rather than on the reproduction number, since

the model considered here exhibit the possibilities of bifurcation phenomenon. It is important

to mention that in Figure 3.7, we simulate the effect of the most sensitive parameters (as

suggested from the SA result), on the total infected human population. We aim to use

the results from this simulation to predict and make recommendations for effective control
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Figure 3.6: 2-D Contour plot of theR0 of the model (3.1), (a) varying recovery rate of humans with
respect to transmission probability from human-to-human. (b) varying recovery rate of humans
with respect to transmission probability from rodent-to-rodent. (c) transmission probability from
rodent-to-rodent with respect to transmission probability from human-to-human. (d) natural death
of rodents with respect to transmission probability from rodent-to-rodent. The parameter values
used are as given in Table 3.2 except for δh = 0.2911 and µr = 0.3840, so that R0 = 0.43 < 1.
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Figure 3.7: Simulations of the Lassa fever model (3.1) showing the effects of controlled parameters
on the total infected human population (Eh+ Ih). The parameter values used are as given in Table
3.2 except for βh = 0.063, βr = 0.013, βhr = 0.007, βrh = 0.026, τh = 0.005, and µr = 0.038.
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measures that can facilitate the eradication of Lassa fever in Nigeria. To achieve this, we

regulate (henceforth referred to as “control”) the baseline parameter values by reducing the

transmission probabilities βh, βr, βhr and βrh by 50% such that, βh = 0.063, βr = 0.013, βhr =

0.007 and βrh = 0.026. In addition, we increase the recovery rate of human and natural

death of rodents by 50% such that, τh = 0.005, and µr = 0.038. Thus, we use the controlled

parameters to simulate the dynamics of Lassa fever on the total infected human population.

We depict the effect of each controlled parameter and the combination of different controlled

parameters on the total infected human population in Figure 3.7. Figure 3.7(a) illustrate

the effect of βr, (βr and µr) and (βr, µr, and βh), on the infected human population. The

result shows that using the three controlled parameters, the total infected human population

declined faster compared to the effect of a single or double controlled parameter. Thus,

simultaneous reduction of the transmission of Lassa fever from rodent-to-rodent βr, the

transmission of Lassa fever from human-to-human βh, and increase in the death of rodents

µr, will decrease the burden of LF in the population. A similar result are presented in Figure

3.7(b), Figure 3.7(c), Figure 3.7(d), Figure 3.7(e), and Figure 3.7(f). In general, the results

show that combined controlled parameters decrease the total infected human population

quicker than using a single controlled parameter.
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Figure 3.8: Simulation of the dynamic of Lassa fever model (3.1), using parameter values as given
in Table 3.2 such that R0 = 1.32 > 1 (No-controls) and parameter values as given in Table 3.2,
except for βh = 0.063, βr = 0.013, βhr = 0.007, βrh = 0.026, τh = 0.005, and µr = 0.038 such that
R0 = 0.45 < 1 (All-controls).

Following the result presented in Figure 3.7, we present a simulation for the dynamics of

the total infected human population under two different scenarios, in Figure 3.8. The first

scenario is with the baseline value of the parameters, characterized as “No-controls”, while

the second scenario is the combination of all controlled parameters based on the result from

Figure 3.7. Using the baseline parameter values, it is obvious that Lassa fever will persist in

the population due to an increase in the infected human individuals. This is expected from

the value of the reproduction number (R0 = 1.32 > 1) according to Theorem 1. On the

other hand, combining all controlled parameters, the result shows that the existence of Lassa

fever in the population extremely declined. The value of the reproduction number, using

the value of the controlled parameter is estimated as (R0 = 0.45 < 1). Epidemiologically,

the disease can be controlled in the population if the reproduction number of the disease is

below unity. Thus, Lassa fever can be eradicated in Nigeria if there is an increase in efforts

towards effective control measures that reduce the reproduction number of Lassa fever in
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Nigeria. Since the combination of all the controlled parameters reduces the burden of Lassa

fever in the population (such that R0 = 0.45 < 1), we recommend control strategies that

best describe the effect of these parameters. For example, βh, βr, βhr and βrh are transmis-

sion probabilities, thus any control strategy that will curtail the transmission of the disease

such as; an educational campaign to enlighten the population about personal hygiene and

also precaution by health practitioners taking care of infected patients; the use of a condom

to prevent secondary transmission from human-to-human, will help in reducing the trans-

mission of Lassa fever in Nigeria. In addition, for the controlled parameters µr and τh, any

control strategy that increases the death of rodents such as the use of pesticides, rodent

traps and early treatment of infected individuals will help in reducing the burden of Lassa

fever in Nigeria. To investigate the stability behavior of the total infected human and rodent

population, we use the different initial sizes of the population to depict the convergence of

solution trajectories in Figure 3.9. This validates the global stability result of Theorem 2.

Figure 3.9(a) and Figure 3.9(b) illustrate the convergence to the Lassa fever-free equilibrium

irrespective of the initial sizes of the infected human and rodent in the population, while

Figure 3.9(c) and Figure 3.9(d) illustrate the convergence to the Lassa fever endemic equilib-

rium regardless of the initial sizes of the infected human and rodent population. This result

implies that, regardless of any perturbation or change in the initial size of the population,

the infected human and rodent population equilibrium will remain the same.
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Figure 3.9: Convergence of solution trajectories for total infected humans and rodents. (a, b)
The parameter values as given in Table 3.2 except for βh = 0.063, and µr = 0.038 such that
R0 = 0.67 < 1. (c, d) The parameter values as given in Table 3.2 except for βr = 0.051, such that
R0 = 2.65 > 1.
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Chapter 4

Conclusions and Future Study

In this study, we developed, analyzed, and simulated a deterministic model to describe the

transmission dynamics of Lassa fever in Nigeria. Transmission of Lassa fever requires in-

teraction between two-interacting hosts (namely human and rodent population), thus we

sub-divided the human population into susceptible, exposed, infectious, and recovered hu-

mans, while the rodent population was subdivided into a susceptible and infectious rodents.

We showed that the model is mathematically and epidemiologically meaningful by inves-

tigating the invariant region, the positivity of solutions, and boundedness. The local and

global stability of the model was investigated using the reproduction number which was

obtained by using the next-generation matrix. The result shows that the Lassa fever-free

equilibrium E0 is locally and globally asymptotically stable if R0 < 1 and unstable otherwise.

Furthermore, the endemic state of Lassa fever E1 exists for R0 > 1.

To best describe the dynamics of LF in Nigeria, we parameterized the formulated model (3.1)

by using the cumulative reported cases data obtained from the NCDC database. Reported

cases used are from the first week of January 2020 through the eleventh week in 2021. Using

these parameters obtained, we carried out a sensitivity analysis of the model parameters

on the reproduction number to ascertain the impact of each parameter on the spread of

LF in Nigeria. Overall, the result shows that increase in the transmission of Lassa fever is

associated to an increase in the transmission probabilities (βh, βr, βhr, βrh) and increase in

the number of rodents πr in the population. In addition, an increase in the death of rodents

is associated with a decrease in the transmission of Lassa fever. Numerical simulations
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were carried out with parameterized data to describe the dynamics of LF in the population.

We explored the effect of controlled parameters on the total infected human population.

Results show that combined controlled parameters reduce the burden of Lassa fever faster

in the population. Based on the result of the controlled parameters, we recommend control

strategies that best describe the effects of these parameters. For example, βh, βr, βhr and

βrh are transmission probabilities, thus any control strategy that will limit the transmission

of the disease such as; an educational campaign to enlighten the population about personal

hygiene and also precaution by health practitioners taking care of infected patients; the use

of a condom to prevent secondary transmission from human-to-human, will help in reducing

the transmission of Lassa fever in Nigeria. In addition, for the controlled parameters µr and

τh, any control strategy that increases the death of rodents such as the use of pesticides,

rodent traps and early treatment of infected individuals will help in reducing the burden of

Lassa fever in Nigeria.

Conclusively, to mitigate the burden of Lassa fever in each region of Africa where it is

endemic, it will be beneficial to investigate the impact of using multiple control strategies in

eradicating the disease. In the future, we shall extend the model considered in this study by

including the optimal control problem, using Pontryagin’s maximum principle. Eliminating

any disease in a large and underdeveloped population can be difficult and costly; thus, we will

investigate the most cost-effective strategy appropriate to use among several combinations

of control measures using cost-effectiveness analysis.
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age structured mathematical model of varicella spread in Slovakia, in: Proceedings of
ALGORITMY, 2016, pp. 285–291.

[39] F. Forouzannia, A. B. Gumel, Mathematical analysis of an age-structured model for
malaria transmission dynamics, Mathematical biosciences 247 (2014) 80–94.

[40] S. Osman, O. D. Makinde, A mathematical model for coinfection of listeriosis and
anthrax diseases, International Journal of Mathematics and Mathematical Sciences 2018
(2018).

[41] H. C. Slater, M. Gambhir, P. E. Parham, E. Michael, Modelling co-infection with
malaria and lymphatic filariasis, PLoS computational biology 9 (6) (2013) e1003096.

[42] T. Awoke, S. Kassa, Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model
in the Presence of Behaviour Modification, Processes 6 (5) (2018) 48.

[43] J. M. Mutua, F.-B. Wang, N. K. Vaidya, Modeling malaria and typhoid fever co-infection
dynamics, Mathematical biosciences 264 (2015) 128–144.

[44] D. Aldila, M. R. Agustin, A Mathematical Model Of Dengue-Chikungunya Co-Infection
In A Closed Population, in: Journal of Physics: Conference Series, Vol. 974, IOP
Publishing, 2018, p. 012001.

[45] E. Fichet-Calvet, D. J. Rogers, Risk maps of lassa fever in west africa, PLoS Negl Trop
Dis 3 (3) (2009) e388.

[46] S. Dachollom, C. E. Madubueze, Mathematical model of the transmission dynamics of
lassa fever infection with controls, Math Model Appl 5 (2020) 65–86.

[47] M. M. Ojo, B. Gbadamosi, T. O. Benson, O. Adebimpe, A. Georgina, Modeling the
dynamics of lassa fever in nigeria, Journal of the Egyptian Mathematical Society 29 (1)
(2021) 1–19.

[48] M. M. Ibrahim, M. A. Kamran, M. M. Naeem Mannan, S. Kim, I. H. Jung, Impact of
awareness to control malaria disease: A mathematical modeling approach, Complexity
2020 (2020).

[49] Viral Hemorrhagic Fever Consortium, Diagnosis and symptoms of lassa, Available from:
https://vhfc.org/diseases/lassa/.

[50] V. Lakshmikantham, S. Leela, A. Martynyuk, Stability analysis of nonlinear systems,
Springer, 1989.

[51] M. Ojo, F. Akinpelu, Lyapunov functions and global properties of seir epidemic model,
International journal of Chemistry, Mathematics and Physics 1 (1) (2017).

[52] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the ba-
sic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations,
Journal of mathematical biology 28 (4) (1990) 365–382.

54



[53] B. Gbadamosi, M. M. Ojo, S. I. Oke, M. B. Matadi, Qualitative analysis of a dengue
fever model, Mathematical and Computational Applications 23 (3) (2018) 33.

[54] O. Diekmann, J. Heesterbeek, M. G. Roberts, The construction of next-generation
matrices for compartmental epidemic models, Journal of the Royal Society Interface
7 (47) (2010) 873–885.

[55] C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner, A.-A. Yakubu, Math-
ematical approaches for emerging and reemerging infectious diseases: models, methods,
and theory, Vol. 126, Springer Science & Business Media, 2002.

[56] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications,
Mathematical biosciences and engineering 1 (2) (2004) 361–404.

[57] Central Intelligence Agency, The world factbook, Available from:
https://www.cia.gov/the-world-factbook/countries/nigeria/.

[58] Nigeria Centre for Disease Control, Weekly epidemiological report, Available from:
https://ncdc.gov.ng/diseases/info/L.

[59] J. Panovska-Griffiths, Can mathematical modelling solve the current covid-19 crisis?
(2020).

[60] M. Ojo, B. Gbadamosi, A. Olukayode, O. Oluwaseun, Sensitivity Analysis of Dengue
Model with Saturated Incidence Rate, Open Access Library Journal 5 (03) (2018) 1.

[61] M. Ojo, F. Akinpelu, Sensitivity analysis of ebola virus model, Asian Research Journal
of Mathematics (2017) 1–10.

[62] J. Murray, Mathematical biology II: spatial models and biomedical applications, Vol. 3,
Springer-Verlag, 2001.

[63] A. D. Polyanin, A. V. Manzhirov, Handbook of mathematics for engineers and scientists,
CRC Press, 2006.

55



Appendix A

A.1 Proof of Theorem 1

Proof 3 To prove the Theorem 1, we obtain the Jacobian matrix by evaluating the model

(3.1) at Lassa fever-free equilibrium E0 as

J (E0) =



−µh 0 −βh ξh 0 −βrh

0 −k1 βh 0 0 βrh

0 σh −k2 0 0 0

0 0 τh −k3 0 0

0 0 −S∗
rβhr
S∗
h

0 −µr −βr

0 0 S∗
rβhr
S∗
h

0 0 −µr + βr



(A.1)

where: k1 = σh + µh, k2 = τh + µh + δh, and k3 = µh + ξh. From (A.1), it is sufficient to

show that all the eigenvalues of J (E0) are negative. We obtain the first three eigenvalues as,

−µr, −µh, and −k3. The remaining eigenvalues can be obtained from the sub-matrix J1(E0),

which is written as
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J1(E0) =



−k1 βh βrh

σh −k2 0

0 S∗
rβhr
S∗
h

−(µr − βr)


(A.2)

The remaining three eigenvalues with negative real parts can be obtained through the charac-

teristics polynomial of J1(E0), given as

ω1λ
3 + ω2λ

2 + ω3λ+ ω4 = 0 (A.3)

where

ω1 = 1

ω2 = (k1 + k2) + µr(1−Rr)

ω3 = µr(k1 + k2)(1−Rr) + k1k2(1−Rh)

ω4 = µrk1k2(1−Rr)(1−Rh)

{
1− RhrRrh

(1−Rh)(1−Rr)

}

It is obvious that the coefficient ω1 is positive, while ωi for i = 2, ..., 4 can be positive or

negative depending on the values of respective reproduction number Rh and Rr. For the

disease free equilibrium case, the condition Rh < 1 and Rr < 1 must be satisfied, so that the

coefficient ωi for i = 2, ..., 4 will be positive. In addition, for the coefficient ω4 to be positive,

the condition RhrRrh

(1−Rh)(1−Rr)
< 1 must be satisfied.

Now, applying the Routh-Hurwitz stability criterion for the third-order polynomial [62, 63],

equation (A.3) will have roots with negative real parts if and only if the coefficients ωi are

positive for i = 2, ..., 4 and ω2ω3 > ω4. Hence, the conditions of the Routh-Hurwitz criterion

established the local asymptomatic stability of the Lassa fever model given by (3.1) at the

disease-free equilibrium E0.
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A.2 Proof of Theorem 2

Proof 4 From the Lassa fever model (3.1), we can obtain F (X,Z), and G(X,Z) as

dX

dt
= F (X,Z) =



πh + ξhRh − λhSh − µhSh

τhIh − k3Rh

πr − λrSr − µrSr


,

dZ

dt
= G(X,Z) =



λhSh − k1Eh

σhEh − k2Ih

λrSr − µrIr


(A.4)

where k1 = (σh + µh), k2 = (τh + µh + δh), and k3 = (µh + ξh). From (A.4), we obtain the

reduced system below:

dX

dt

∣∣∣
Z=0

= F (X, 0) =



πh − µhSh

0

πr − µrSr


(A.5)

From equation (A.5), it is obvious that E∗0 =
(
πh
µh
, 0, πr

µr

)
is the GAS equilibrium point for

the reduced system (A.5). This is trivia by solving dSh

dt
= πh − µhSh to obtain Sh(t) =

πh
µh

+
(
Sh(0)− πh

µh

)
exp−µht, which implies that Sh → πh

µh
as t → ∞. Similarly, it can be

shown that Sr → πr
µr

as t → ∞. Hence, the convergence of solutions is global in the region
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D. Let,

Q = BZG(X∗, 0) =



−k1 βh βrh

σh −k2 0

0 S∗
rβhr
S∗
h

−(µr − βr)


(A.6)

Then, we verify the second condition (C2):

Ĝ(X,Z) =



Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)


=



(βhIh + βrhIr)
(

1− Sh

Nh

)

0

βhrIhS
∗
r

S∗
h

(
1− SrS∗

h

S∗
rNh

)
+ βrIr

(
1− Sr

Nr

)


(A.7)

Hence, since 0 ≤ Sh and 0 ≤ Sr, it is clear that Ĝ(X,Z) ≥ 0. Thus, the Lassa fever-free

with the fixed point E∗0 = (X∗, 0) is globally asymptotically stable when R0 < 1.
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A.3 Coefficients of polynomial (3.14)

a1 = βrµ
2
r {πh(k2k3 + k3σh + σhτh)}3

a2 = Jµr (JQµrφ3 + 3Jβrµrφ2 +Qφ1φ3)− J2βrµr(Qφ3 + 2φ5)

a3 = Jµr
(
Jµrφ3φ4 + 2Qφ2φ3µr + 3βrµrφ

2
2 + φ1φ3φ4

)
+Qφ3 (Jβrφ5 + µrφ1φ2) + Jβrφ

2
5

−{Jµr(Jβrφ3φ4 + 2Qβrφ2φ3 +Qφ3φ5 + 4βrφ2φ5) +Qφ1φ3(Qφ3 + φ5)}

a4 = µrφ2

(
2Jµrφ3φ4 +Qµrφ2φ3 + βrµrφ

2
2 + φ1φ3φ4

)
+ βrφ2φ5(Qφ3 + φ5) + Jβrφ3φ4φ5

−{µrφ2(2Jφ3φ4βr +Qβrφ2φ3 +Qφ3φ5 + 2βrφ2φ5) + φ3φ4(Jµrφ5 + 2Qφ1φ3 + φ1φ5)}

a5 = (1−Rh) +RhRr

(
1− 1

k1k2Rh

)
−RhrRrh

where: φ1 = βhrπhσhk3, φ2 = πhk1k2k3, φ3 = βrhπr, φ4 = µhk1k2k3, φ5 = µrβhπhσhk3,

J = πh(k2k3 + k3σh + σhτh) and Q = k1k2k3 − σhτhξh.
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