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Abstract 

The underperforming agricultural sector in Sub-Saharan Africa (SSA) has left African countries with 

insufficient food production in the face of challenges related to climate change, diseases and 

increasing population growth. The agricultural sector is the main source of food, generates income, 

employs a large portion of the population, and produces raw materials for agribusinesses. The 

improvement of agricultural food production contributes to food security, poverty alleviation, the 

development of trade, and a country's economy. The challenges facing the SSA countries include 

ineffective farming system, loss of soil fertility, limited access to land, climate change, water scarcity, 

outdated production technology that needs to change, restricted market access due to poor 

infrastructure, and high transaction costs among others. To address these challenges, the combination 

of multiple nutrients was proposed to increase grain yield of crop simply because of the contribution 

of each nutrient rather than the use of a single fertiliser.  

 Research conducted in SSA with the aim of improving food production miss the opportunity to share 

the findings across the various sectors. This points out the lack of appropriate statistical techniques to 

address the challenges. We can understand better the real situation on food production by developing 

a comprehensive scientific and statistical approach that can gather all published single information to 

a unified finding. The process of collecting and combining research outputs require the use of meta-

analysis (MA) to provide precise estimates on various parameters associated with food production. 

Various factors can be considered in making significant contribution to agricultural food production 

such as fertiliser, access to market, energy use, trade, etc. To establish the diverse set of relationships 

that can be developed among the factors, structural equation model (SEM) statistical technique is 

used.  In some conditions, this procedure can be more restrictive and inflexible since the approach 

requires the specification of latent variables in the mix of a huge diversity of sets of variables. In the 
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body of this work, we propose a more suitable, flexible and accurate approach in determining the 

number of linear regressions based on the observed data in a clear and precise manner through factor 

analysis and principal component analysis (PCA). In addition, to test the large number of variables or 

factors of the parameters obtained in SEM, we propose to synthesise all this information by integrating 

MA into SEM. The incorporation of MA into SEM allows us to account simultaneously all effects of 

factors of the food production in a single model. In MA, the effect sizes are assumed independent 

from each study and univariate MA is used. A single study could involve multiple tests of the same 

hypothesis, resulting in reporting multiple outcomes (MOs). In such situation, the researcher 

developed MOs approach to determine the multiple linear regression model that tested and analysed 

the relations between the factors of interests in the food production.  

The results of MA were expressed in terms of fixed- and random-effects. The fixed-effects models 

were more appropriate simply because of the presence of homogenous effects in the studies. The 

random effect models helped to control unobserved heterogeneity when the between-studies variance 

was large. It was more productive to apply the combined inorganic fertilizer by the raisin yield grain 

of maize. The findings of SEM provide efficient results in the evaluation of the relations among 

variables and for testing a statistical theoretical model. The findings from the integration approach of 

MA into SEM permitted to combine parameter estimates within a single model. Researchers in 

agricultural and related field can use these techniques positively.  

We hope that many researchers can benefit from the methodological approach to estimate and draw 

inference in addressing the food production situation. The outcomes of this work contribute to science 

by providing scientifically comprehensive statistical approaches to evaluate and synthesise the more 

suitable results. The benefit can be extended to the development of suitable food production.    
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1CHAPTER 1  

GENERAL ORIENTATIONS 

1.1 INTRODUCTION  

The agricultural food production 

Agriculture plays a vital role in a country's economy through its share in the gross domestic product 

(GDP), which is the monetary value of all finished products of goods and services made within a 

country. Several studies have revealed that agriculture is the engine of growth in most developing 

countries, running from agricultural growth to economy-wide growth (Chauvin et al., 2012). It 

provides the primary source of food, generates income, employs many the population, and produces 

raw materials for the agribusiness. The improvement of agricultural food production contributes to 

food security, poverty alleviation, and developing a country's trade and economy. Developing these 

entities is a major challenge facing sub-Saharan African (SSA) countries. The challenges include an 

ineffective farming system, loss of soil fertility, climate change, water scarcity and limited market 

access. According to Demment et al. (2003), increased contribution by agricultural factors has 

collectively improved people's lives, productivity, social well-being, and the national economy. As 

one of the poorest regions in the world, the SSA has failed over a long period to register significant 

growth, resulting in high levels of poverty (Chauvin et al., 2012). This failure is because agricultural 

development is characterised by low productivity with insignificant application of science and 

technology.  

According to the United Nations (UN) (UN, 2009), three crises that are currently engulfing Africa 

and impact development relate to the finance and economy, food security, climate change and 

energy. These crises occurred when African countries were achieving remarkable population 
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growth. The underperforming agricultural sector leads to insufficient food to feed the high 

population in the SSA countries (Mwichabe, 2013). Agricultural products such as fertiliser, 

irrigation systems, crop management, and new technology are needed to grow food production. The 

African farmers still have issues with market participation due to the standard of food safety, poor 

infrastructure, and high transaction costs (Holloway et al., 2000; Shiferaw et al., 2011). A large 

portion of the increase in world population by 2050 is expected to come from SSA. In a way, the 

management of this growth with limited resources could be considered a risk for African countries' 

development (Gashu et al., 2019).  

In consideration of the challenges mentioned above in SSA agriculture, researchers need to take 

their role seriously. Such roles entail investigating how to increase food production significantly for 

a wide-range food crops and animal feed. Improved food production could trigger the development 

of SSA countries. 

Agricultural land availability 

Access to land and utilisation correlates with food production and agricultural growth in general. 

The small-scale farmers form the largest group of producers of food for home consumption in SSA. 

The issue of land in SSA intertwines with cultural, political and environmental factors to the 

detriment of food production. The variation in land access among farmers, especially smallholder 

farmers, threatens their viability. The use of new agricultural technology, which leads to 

commercialisation of the agriculture, has affected land utilisation (Jayne et al., 2010).  

The high cost of farm inputs, continuous population growth and ever-decreasing farm size due to 

sub-division affects agricultural production. The crop yield in SSA had been dropping compared to 

the amount needed to satisfy the demand of the growing population (Josephson et al., 2014; Gashu 

et al., 2019). The migration from the rural to the urban areas in search of a better life can be attributed 
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to the land issue. The move is an adaptive reaction due to land availability and production. This 

involves income diversification from non-farming activities. The rural population in SSA has been 

unable to leave poverty behind simply because they cannot transform their basic economic activities, 

which is agriculture (Chauvin et al., 2012).  

Climate change effects on agricultural production 

Climate change has seriously affected agricultural productivity globally. These changes have 

affected weather conditions and have caused drought, increased variation of diseases and pests, all 

associated with agricultural production. The increase in temperature impacts the irrigated agriculture 

directly by losing the revenue and drying the land that reduces agriculture productivity 

(Kurukulasuriya, 2006). Irrigation requires a massive capital investment that the majority of SSA 

countries cannot provide. Increased temperature due to climate change affects the rate of 

precipitation and evaporation, leading to water scarcity, and subsequently, food production 

decreases. Interventions such as farming system adjustment to prevent food production losses 

become necessary. The changes in climatic condition create costs that overwhelm the resources of 

the poor farmers (Howden et al., 2007). The climate change in SSA has created the necessity of 

having a mechanism that can help farmers deal with these possible risks.  

Water scarcity is an important factor in food production. The availability of quality water has directly 

influenced agricultural activities such as crop, livestock and fishing, etc. The scarcity of water exerts 

significant pressure on smallholder farming activities (Namara et al., 2010). Water shortage impacts 

food production due to agricultural activity that uses a proportion of freshwater (Wallace et al., 

2002). Farming by irrigation systems needs to be promoted to overcome the effects of climate 

change. The approach is better than rainfall, but it necessitates high capital investment from small 

and challenged African farmers.  
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Infrastructure effect on agricultural food production 

Infrastructure development remains a concern as transportation facilities have considerable 

limitations. People living in rural areas have limited access both to the regional cities and the 

international market destination. The improved infrastructure in SSA will boost productivity by an 

increase of about 40% of African firms in general (Ondiege et al., 2013). The transport infrastructure 

correlates with an increase in agricultural productivity. The farmers need their products to reach the 

market on time. The SSA countries strive to attain the status of developed countries in terms of high-

speed railways, modern highways, improved maritime transport and the aviation industry. Agenda 

2063 outlines the political commitments towards achieving these goals (Gashu et al., 2019). 

Need for an innovative approach to agricultural food production 

The agricultural food production in SSA requires technological change that includes innovative 

research on production, distribution and marketing of value-added products. The attention of many 

researchers in agricultural and related fields is needed to articulate the challenges facing the SSA 

countries. The success of revolutionising agricultural food production lies in adapting theoretical 

and practical (or empirical) approaches to innovative research. New technologies affect markets and 

prices, and for the farmers to adopt them, extra incentives need to be factored in (Chavas et al., 

2020). The improvement of agricultural practices and the reduction of the impact of climate change 

require that farmers implement a combination of technologies which include making decisions to 

adopt new specific practices (Branca et al., 2020). The government needs considerable dedication 

to understand various aspects of technological change. It is essentially the function of the state and 

planning departments to make decisions (Lawson et al., 2020). All stakeholders, civil society, the 

private sector, and others must take responsibility jointly with the government when making 

country-level policy decisions (Ikram et al., 2020). In the framework of the current crisis, the role 
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and contribution of agriculture cannot be fully utilised to apply resources efficiently for-profit 

maximisation because of the current shortcomings of agriculture due to the imbalances created by 

the agricultural policies (Loizou et al., 2019). The following are some areas in agricultural food 

production where technological innovation is required:  

1) Using tools such as mechanical improvement: tractors, biological advances with new seed 

varieties, fertilisers, and new farm management practice.  

2) Finding ways of improving irrigation to the extent that it has to save water. 

3) Impacting the market by improving existing agricultural approaches’ performance and 

products' value-add. 

4) Achieving multiple effects such as the saving of labour, better usage of energy and capital. 

5) A desire to increase the yield by increasing the amount of water used and capital invested.  

Firms with access to capital, technology, and financing have increased food by using new products 

or herbicide mixtures (Caceres et al., 2020). Farmers are now adopting technologies, including 

organic matter levels, that have sufficiently improved their fertiliser, enabling them to sell enough 

livestock and crops (Pretty et al., 2003).  

Many types of innovation are needed to articulate the challenges in agricultural food production. 

Each of the innovation categories associated with technological change affects the economy. 

Technological development brings economic growth by causing an increase in communication and 

providing easy and fast access to new markets; therefore, it makes a positive impact on the economy 

by paving ways to produce a new chapter of goods and capital accumulation (Caliskan, 2015).   

Methodology approach to agricultural food production challenges 

In this study, we investigated the perception that the adoption of new technology and related 

agricultural products increases food production results in SSA. The approach focuses on the 

scientific and published studies in the SSA. The factors that are considered as contributing to 

agricultural food production include such as fertilisers (nitrogen and phosphate), access to market, 
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energy use and trade (import and export). These factors are assumed to bring change in the 

development of agricultural process activities and therefore articulate the challenges facing the SSA 

countries. 

Over the years, many documented reviews have addressed the positive impact of the adoption of 

fertilizer for the growing in crop yield and improvement in soil health (Akinnifesi et al, 2009). These 

studies have discussed potential intervention to increase food production in SSA whereas 

technologies depend on the resources available to each country (Tovihoudji et al., 2019; Pasley et 

al., 2019). “This research conducted in SSA fall into the form of standalone categories, “silos”, 

depending on the funder with the aim to improve the food production for subsistence farmers” (Kim 

et al., 2016; Muluh et al., 2019).  The funds for these research groups come from national research 

institutions, donors from different countries, non-governmental organisations (NGOs), etc. We 

develop a mechanism that combines the research outputs generated by different research groups, by 

having precise estimates on various parameters in food production, thus, providing a clear 

understanding of the challenges facing the SSA countries.  The process of collecting research outputs 

and combining them requires the use of the meta-analysis (MA) technique. In applying the 

technique, we review various studies and identify the appropriate common effects to estimate the 

parameters. In combining these effects, we will provide a common estimate that is stable and 

informative. Based on stable estimates generated through our approach, the policymakers can 

formulate interventions on agricultural food production in SSA countries. The livelihood of the 

small-scale farmers in SSA will be improved once the challenges in agricultural production are 

addressed.  

Many studies have addressed the negative impact of factors such as poor soil fertility, water scarcity, 

limited resources and so on that have caused in the low crop of food production and several 
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recommendations have been proposed. If these challenges continue to persist, this is because of lack 

of appropriate and effective statistical techniques to address the real problem facing the SSA 

countries. There is a need to develop a comprehensive statistical approach that scientifically can 

gather all independent research findings to a unified model to address effectively these challenges 

facing SSA. In this study, MA is presented to gather the results from scientific published studies and 

unify this information into a single model. To establish a set of relationships that can be developed 

among diverse factors involved in agricultural food production, a structural equation modelling 

(SEM) is proposed based on a more suitable, flexible, and accurate approach using factor analysis 

through principal component analysis (PCA). To test the causal models and establish the combined 

parameters estimates, we propose to combine MA and SEM within a single model simply because 

the two techniques use the correlations (or covariance) matrices as inputs.  

Food production is a combination of factors such as genotype (varieties), environment (location) 

and their interactions simply because a genotype can react differently from one location to the next. 

Understanding the cause for the increase of food production, whether this can be attributed to the 

quality of a genotype, location, or some combination of factors, leads to determining the 

performance of a genotype across locations using stability statistics. We construct an adaptive model 

that identifies the genotypes with outstanding performance across different locations and indicate 

how to validate the model and test the stability parameter estimates in an experiment. 

MA enables us to synthesise data and summarise the results of individual studies by showing the 

effect that exists from one study to the next. The MA results help increase the power of individual 

studies by synthesising data and identifying the sources of diversity across studies of several natures. 

Three models can be formulated in MA: 
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• The fixed model: To remove omitted variables bias that can occur by measuring changes 

within group across time. That is, the approach does not estimate the effects of variables 

whose values do not change across time.  

• The random effects model: allow to make inferences on the population data based on the 

assumption of the normal distribution. That is, it assumes that the individual specific effects 

are uncorrelated with the independent variables.  

• The mixed effects model: To estimate the model parameters between and within the subject 

variability simply because in the analysis, the observations within a subject may be 

correlated. 

In this work, constructed models are expressed in terms of mixed models, fixed and random effects 

models. In the structural equation model, we test the relations between variables in a model by 

examining the statistical significance. Meta-analysis and structural equation modelling are the 

common multivariate techniques widely used in medical and social sciences (Yukiko, 2019).  

Hence, we aim to borrow the approach of these various techniques to use them to combine various 

results produced independently in agricultural studies within the SSA. This is because the 

development process of food production has a multivariate structure that involves more than one 

correlation per study by applying an MA procedure. The integration of MA into SEM requires 

combining correlations from N independent studies by using fixed and random effects to test the 

homogeneity of correlation that can fit a structural equation model. The new approach uses all the 

data sets using factor analysis through the PCA to generate the important components; the variables 

with the highest sample variances are among the retained components taken simply because each 

variable receives its weight in the analysis by using standardised variables. The components created 

enable the researcher to estimate the parameters in the models because it is expected that the 
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estimated parameters from the models hold good loadings for the models that fit the data well. The 

generalised least square model (GLS) is used to generate significant results. The process of 

combining results permits us to combine parameter estimates within a single model, and researchers 

in the agricultural field can use these techniques positively. A simulation study is used to test the 

effectiveness of the improved model over a dataset of SEM approach. The results indicate that the 

proposed approach is preferred.  

Meta-analysis differs from both primary and secondary analysis. Primary analysis refers to the 

analysis of the data to provide solutions to the study's research questions. In contrast, secondary 

analysis refers to re-analysis of the data, and most often, secondary analysis answers the research 

questions in a different way (Card, 2012). In this work, SEM tests the relationships between 

variables in a model by examining the statistical significance. SEM tests all defined relationships 

between the variables simultaneously because it is a powerful tool capable of solving complex 

problems involving diverse factors. SEM is a tool that provides efficient results in the evaluation of 

the relations among variables and in testing theoretical models. In this study, we develop an adaptive 

approach that is unrestrictive since the current SEM specifies latent variables involved in the analysis 

and creates theoretical relations between variables. We present a more reliable approach that 

provides a guideline on evaluating the suitability of a given SEM. Research in the agriculture sector 

uses all possible variables that might be identified for a set of data. Using factor analysis through 

the PCA, researchers can use the most significant variables in the model simply because the high 

dimensions are transformed into lower dimensional data.  

The formulation of the combined approach tests the hypotheses about the parameters involved in 

the model in terms of fixed effects or random effects. These models test for homogeneity or 

heterogeneity to produce significant results and after that, tests whether the model fits the data well. 
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The next question is whether the combined approach can be more flexible and suitable. This 

approach can be established by using the factor analysis to determine the hypothetical relations 

between variables. The benefits of the combined approach are to obtain all effects within a single 

model. It is anticipated that the integration approach could generate significant results when using 

the generalised least square procedure. 

In this study, we use factor analysis through the PCA upon which the highly correlated variables are 

the best-selected variables for the underlying causal relationship. This technique is suitable simply 

because it uses the reduced set of data so that the variables are significant. We hope that this work 

can stimulate more research development in the agricultural field and many other areas. It will 

improve the quality of the data required to improve food production in the agricultural field in SSA. 

Many countries and researchers are expected to benefit from this information by knowing the 

methodological approach to estimate and draw an inference in addressing the food production 

situation. The outcomes of this work have to contribute to science by providing evidence of the 

techniques that are comprehensive to evaluate and synthesise the more suitable results. The benefit 

is extended to the development of suitable food production. Examples in the agricultural field are 

used to show the practical use of each approach. In the process, all these statistical methodologies 

from different approaches are introduced into the agriculture field.  

1.2 PROBLEM STATEMENT 

The challenges facing the SSA countries originate from multiple factors such as the farming system, 

the loss of soil fertility, climate change, the energy crisis, water scarcity, an unbalance in accessing 

land and a poor infrastructure to access markets. These factors created insufficient food security, a 

high level of poverty and hunger, decreased trade, and negatively impacted the country's economy. 

Much research conducted in SSA falls into silos. It emerged that a food crisis is overwhelming 
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African countries while African countries are attaining a significant population growth. There is a 

need for rapid intervention to increase agricultural food production, thereby improving the lives of 

people, the social wellbeing, and the growth of the country's economy. To better understand the 

reality and gravity of the problem in agricultural research food production, we need to develop a 

mechanism that combines the research outputs generated by different research groups. The question 

is how to combine the research outputs generated by different research groups across SSA to have 

precise estimates of various parameters in the food production system. The multivariate techniques 

such as meta-analysis (MA), structural equation modelling (SEM) and the combined approach of 

the two techniques with data availability enabled us to address the challenges facing the SSA 

countries.   

1.3 OBJECTIVES OF THE STUDY 

The core objectives of this research work are to: 

(1) develop an improved statistical model that is flexible and suitable in estimating parameters 

and drawing inferences in food production. 

(2) test structural relations by examining how the data fits a theoretical model.   

(3) synthesise information to establish the actual situation of food production using meta-analysis 

and structural equation modelling.   

(4) provide a methodological approach with mathematical integration of MA into SEM with the 

help of guidelines by indicating how to test the hypotheses of homogeneity against 

heterogeneity. 

(5) estimate the stability of genotypes and indicate those that are stable across other components; 

and  
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(6) test the integration of the mixed-effects model into MA with multiple outcomes within a 

single model.  

In the next chapter, we develop the MA statistical technique, and an example is used as an 

application of the proposed approach.  

1.4 ORGANISATION OF THE THESIS 

This thesis is organised as follows: 

Seven chapters are presented, including the introduction as Chapter 1. The meta-analysis technique 

is presented in Chapter 2. Chapter 3 discusses the SEM techniques. In Chapter 4, an approach is 

developed that allows the integration of MA into SEM. Chapter 5 discusses the estimating 

parameters of stability measures on the performance of the yield model. The integration of the 

mixed-effects model into MA with multiple outcomes within a single model is given in Chapter 6, 

while Chapter 7 provides the concluding discussion, recommendations, and future work.  
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2CHAPTER 2  

META-ANALYSIS 

2.1 INTRODUCTION 

MA is an overarching collection of analysis results from individual studies with the aim of 

integrating the findings (Glass, 1976). The MA began to appear as a leading part of research in the 

late 70s. Since then, it has become a common way for synthesising evidence and summarising the 

results of individual studies (Chalmers et al., 1997). Smith and Glass (1977) used MA in social 

sciences to investigate whether psychotherapy was beneficial for patients. Many research studies 

have been done, for example, in medicine, by examining the effect of aspirin after a myocardial 

infraction (Brockwell et al., 2001). In social marketing campaigns, the MA technique has been used 

to validate data for behaviour intention and estimate mean effect sizes for each variable across all 

campaigns. Path analysis has been used to measure relationships among variables, including across 

different models (Green et al., 2019). It has also been used in medical sciences to systematically 

assess the association of circulating inflammation markers with the future risk of hypertension (Musi 

et al., 2011). This approach has made a significant contribution to plant ecology. It allowed a review 

of the evidence for various ecological hypotheses and theories and provided an estimation of the 

effects of major environmental drivers (climate change, habitat fragmentation, invasive species, and 

air pollution) as well as research gap identification (Koricheva et al., 2014).  

The MA approach was applied in interventions for loneliness reduction by quantifying the effects 

of each strategy and examining the potential role of variables of interests (Jayedth et al., 2018). 

Rajabi et al. (2019) used the MA technique to quantify the association between tobacco, opioid use, 

and opioid use disorders where tobacco smoking was a major risk factor. Recently, MA has been 

applied in various human studies. As an example, it was found that there were inconsistent 
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associations between the length ratio of the second finger to the fourth finger, which is a proxy for 

prenatal androgen load and substance or computer use in adolescents and adults (Siegmann et al., 

2019). In medicine, Muhie (2019) has found a positive effect on human’s health, leading to a 

reduction in mortality and the disease burden, therefore improving the quality of life. Hence, MA 

plays a key role in food production in a new area of applied research studies. We intend to borrow 

this technique to combine various results produced in an independent agricultural study within the 

SSA.  

Agricultural research plays a very important role in addressing the challenges that affect the lives of 

people. Food production in its development process involves many factors such as type of crop, 

fertiliser, kinds of manure, trade, labour, water etc. There is a need for gathering all this information 

to estimate and get significant treatment effects (Mavridis et al., 2011). Since we intend to make 

decisions about the strength of the estimated parameters, we propose synthesising all the results 

from different studies into a single model approach. The effect sizes are the correlations. The steps 

in the MA approach are as follows:    

1 indicate the research interest.  

2 provide a number of critical inclusion criteria with indications of the method for searching in 

the literature by using the keywords of searching the past studies.   

3 test whether or not the treatment effect is statistically significant.  

4 test for heterogeneity of the effect on the outcome between the included studies; and 

5 formulate and test the fixed-effects and random-effects models.  

The fixed effects model helps us draw conclusions on the included studies in the MA. The random-

effects model enables us to simplify the results further than the included studies. Section 2.2 presents 

the basic characteristics of MA. The contributions to the field of agricultural science are given 
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through the methodology by using the standardised mean difference (SMD) as given in Section 2.3. 

Section 2.4 is the multivariate meta-analysis for several outcomes. The data analysis is given in 

Section 2.5. Conclusion and recommendations are given in Section 2.6.  

The method of MA summarises the results of independent studies into a single estimate. Since the 

inputs of MA are the effect sizes (ESs), we need to determine the effect that exists from one study 

to the next. For instance, when the ESs are constant from one study to the next, then the fixed effects 

model is used to identify the common effect, but when the ESs vary from one study to the next, then 

the random-effects model is used to identify the reason for the variation.   

Since we have to describe the relationships between two factors to address the challenges in the 

SSA, fixed and random effects estimates are reported in terms of linear equations. A standard linear 

regression has only fixed effects while mixed models are an extension of simple linear models to 

allow and to include both fixed and random effects. For instance, past studies could be sampled from 

within authors. In case of generalisation of ordinary linear regression, the generalisation linear model 

is used. 

2.2 METHODOLOGY OF META-ANALYSIS 

2.2.1 Introduction 

The current approach of meta-analysis is more restrictive. For instance, when the number of past 

studies is too small, and therefore the method does not effectively reveal the error associated with 

the parameter estimation, it becomes difficult to identify the sources of heterogeneity between 

studies (Turner et al., 2013). We present a more consistent and understandable approach that uses 

systematic review under the set of inclusion/exclusion criteria to calculate the effect sizes (ESs). 

This approach enables us to measure each study as an independent estimate of the primary accurate 

ESs. Effect sizes enable the researcher to quantify the difference between the two groups. It 
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represents a quantitative measure that facilitates the comparison of any two groups to understand 

how the two groups differ from each other. There are many ways to calculate the ESs; for instance, 

Cohen proposed that a calculated value “d” equal to 0.2 indicates the small effect size, a calculated 

value “d” = 0.5 represents a medium effect size, and “d” = 0.8 is considered as a large effect size. 

That is, if “d” = 0.2, we conclude that the two groups don’t differ by 0.2 standard deviations or more. 

This means the difference between the two groups is trivial. This principle remains valid even if the 

statistical test can be significant. In practice, the effect size is calculated by taking the mean of the 

treatment group minus the mean of the control group, and the difference is divided by the standard 

deviation of one of the groups. Most researchers in the literature use the standard deviation of the 

control group. The hypotheses for testing the effect sizes are: The null hypothesis H0: The variables 

of concern (of interests) remain the same, and the alternative hypothesis H1: The variables of concern 

differ from each other.  

2.2.2 Meta-Analysis in Calculating Effect Sizes 

The following guidelines provide a summary that will enable the researcher to understand the 

calculations of the ESs as presented in Section 2.3.1. The different steps involved are as follows:  

Step 1: Screen the data for suitability testing.  

Step2: Calculate the descriptive statistics from the data.  

Step 3: Calculate the ESs using the SMD from each study. 

Step 4: Calculate the weighted mean and the test statistic of the ESs.  

Step 5: Calculate the standard error and the confidence interval; and  

Step 6: Calculate and test the fixed and random-effects model. 
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The procedure enables us to use data from scientific and published articles that provide a good 

understanding of the effects of food production in the use of the combined of fertilisers compared 

to the use of unfertilized (control) farming system through MA. We investigate the adoption of the 

new technology approach and related tools under the conditions of the rainfall that are theoretically 

likely to increase food production in the SSA.  In the next section, we consider more than one factor 

of independent variables that influence the variability of the dependent variables. The conclusion 

drawn in the form of multivariate approach is more accurate and realistic because these conclusions 

are nearer to the real-life situation. The multivariate analysis is based in analysing more than one 

statistical outcome variable at a time for large datasets.  

2.3 MULTIVARIATE-ANALYSIS FOR MULTIPLE OUTCOMES 

2.3.1 Multivariate Meta-Analysis for Fixed-Effects Model 

The meta-analysis technique enables the researcher to combine quantitative evidence from the past 

and related studies. This approach provides the results for the research question. In some situations, 

the variables of interests may be correlated to more than one variable, or some studies may not 

provide direct evidence about some particular outcomes. As a result, such variables or studies are 

often rejected from the MA. Because research studies incur high costs and are time-consuming, 

rejecting variables in this way can be viewed as a research waste. Multivariate meta-analysis 

outcome can analyse multiple outcomes simultaneously by allowing more studies to contribute 

towards each outcome. That is, the approach is likely to provide the summary results that are not 

created for each piece of evidence; instead, these outcomes depend on correlated results from other 

evidence. Applying this approach leads to a gain of information that includes both indirect evidence 

and those outcomes of some relevant studies that may not be available. The outcomes are the overall 

results simply because of the borrowing of strength in the statistical analysis. Suppose that there are 

p studies and each study have p outcomes denoted by 
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𝐘 = (𝒚1, 𝒚2, … , 𝒚𝑝 )
′
  a  𝑝 × 𝑝 matrix, where 𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝 )

′
,  (i = 1…,p).  

The variance-covariance matrix of X is denoted by V where   

𝑽 =

(

 

𝑣𝑎𝑟(𝑥𝑖1) 𝑐𝑜𝑣(𝑥2𝑖, 𝑥𝑖2) …
𝑐𝑜𝑣(𝑥𝑖1, 𝑥1𝑖) 𝑣𝑎𝑟(𝑥𝑖2) ⋯

⋮
𝑐𝑜𝑣(𝑥𝑖1, 𝑥1𝑝)

⋮
⋯

⋮
⋯

𝑐𝑜𝑣(𝑥𝑖𝑝, 𝑥𝑝1)

𝑐𝑜𝑣(𝑥𝑖𝑝, 𝑥𝑝2)

⋮
𝑣𝑎𝑟(𝑥𝑖𝑝) )

 . 

The fixed-model effects for the 𝑖𝑡ℎ study is  

 Y= 𝐗𝛃 + 𝐞,                                                                                                                                   (2.1) 

where 𝐘 = (

𝒚1
𝒚2
⋮
𝒚𝑝

) , 𝐗 = (

x11
x21

x12
x22

⋯ x1p
⋯ x2p

⋮
xp1

⋮
xp2

⋮
⋯

⋮
𝑥pp

) , 𝛃 = (

𝛽0
𝛽1
⋮
𝛽𝑝

) , 𝐞 = (

𝑒1
𝑒2
⋮
𝑒𝑝

),   

 

 𝒚𝑖  represents the 𝑝 × 1  vector of the observed ESs (correlation from the sample), 𝑿 

represents a 𝑝 × 𝑝   matrix of the explanatory variables, which is an identity matrix 

and 𝒆𝑖~𝑁(𝟎, 𝜎𝑖
2𝐼) 𝑖 = 1,2, … , 𝑝. The distribution of 𝒚𝑖 in the fixed effects has an MVN 

distribution with the mean 𝝁  and the matrix of variance-covariance 𝑽.  

𝐸(𝒚𝑖)  = 𝐸(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝 )
′
= (𝜇1, 𝜇2, … , 𝜇𝑝  )

′
= 𝝁 is a vector of means for each outcome 

i = 1, 2... p. 𝑉(𝒙𝑖) is the variance-covariance matrix. The distribution is equal to 

 

(

𝒚1
𝒚2
⋮
𝒚𝑝

)~𝑀𝑉𝑁

(

 
 
(

𝜇1
𝜇2
⋮
𝜇𝑝

) ,

(

 

𝑉𝑎𝑟(𝑥𝑖1) ⋯ ⋯ 𝐶𝑜𝑣(𝑥1𝑝 , 𝑥𝑝1)

𝐶𝑜𝑣(𝑥𝑖1 , 𝑥1𝑖) 𝑉𝑎𝑟(𝑥𝑖2) ⋯ 𝐶𝑜𝑣(𝑥𝑖𝑝 , 𝑥𝑝2)

⋮
𝐶𝑜𝑣(𝑥𝑖1 , 𝑥1𝑝)

⋮
⋯

⋮ ⋮
⋯ 𝑉𝑎𝑟(𝑥𝑖𝑝) )

 

)

 
 
           (2.2) 

 The above distribution is multivariate with a mean vector and the variance-covariance matrix with 

𝒆 ~MVN (𝟎, 𝑽), where V is assumed to be an identity matrix.  
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The univariate statistical model can be extended to a multivariate model to have multiple outcome 

variables. This is like the analysis of variance that can be extended to multivariate analysis. The 

problem of multivariate analysis is the choice between the fixed effects and the random-effects 

model. The approach requires:  

(1) the null hypothesis H0: The random-effects model is preferred.  

(2) The alternative H1: The fixed effects model is preferred.  

(3) If the p-value of the test is greater than the level of significance (0.05), we fail to reject the null 

hypothesis H0. That is, the model is consistent and efficient.  

(4) If the p-value of the test is less than the level of significance (0.05), we reject the null hypothesis 

H0. That is, the fixed-effects model is preferred.  

2.3.2 Multivariate Meta-Analysis for Random-Effects Model 

The multivariate random effect model is like the multivariate fixed effect model as described in 

Section 2.4.1, from which the model is extended with a factor 𝝂𝟐, representing some studies that can 

come from a larger population which causes a random effect. This factor 𝝂𝟐 is a multivariate normal 

distribution with the mean equal to 𝟎 and the between-study covariance matrix as shown below. 

𝝂𝟐~MVN 

(

 
 
(

0
0
⋮
0

) ,

(

 

𝜈1
2 𝜈1𝜈2 … 𝜈1𝜈𝑝

𝜈2𝜐1 𝜈2
2 … 𝜈2𝜈𝑝

⋮
𝜈𝑝𝜈1

⋮
𝜈𝑝𝜈2

⋮
…

⋮
𝜈𝑝
2 )

  

)

 
 

                                                                                   (2.3) 

The implication of the random effects model is to consider the studies not to be independent; 

therefore, the researcher can generalise the results to other population. The multivariate random 

effect model for a meta-analysis is given in Equation 2.4. 

𝒀 = 𝐗𝛃 + 𝐔𝐙 + 𝐞,                                                                                                                                                  (2.4) 
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where 

𝐘 = (

𝒚1
𝒚2
⋮
𝒚𝑝

) , 𝐗 =  (

x11
x21

x12
x22

⋯ x1p
⋯ 𝑥2p

⋮ ⋮ ⋮
xp1 xp2 𝑥pp

) , 𝛃 = (

𝛽1
𝛽2
⋮
𝛽𝑝

) , 𝐞 = (

𝒆1
𝒆2
⋮
𝒆𝑝

),        

     𝐔 =  (

𝑢11
0

0
𝑢22

⋯ 0
⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 … 𝑢𝑝𝑝

) , 𝐙 = (

𝑧1
𝑧2
⋮
𝑧𝑝

)                                                     (2.5)                                                                                                  

The distribution of the multivariate is the combination of Equation (2.2) and (2.3) as follows  

(

 
 

𝒚1
𝒚2
⋮
⋮
𝒚𝑝)

 
 

 ~𝑴𝑽𝑵(𝝁, 𝑽),                                                                                                                            (2.6)                                                                                                                                                                                                                                           

 where 𝝁 = (

𝜇1
𝜇2
⋮
𝜇𝑝

), 

𝑽 =

(

 
 

𝑉𝑎𝑟(𝑥𝑖1) + 𝜈1
2 𝐶𝑜𝑣(𝑥2𝑖 , 𝑥𝑖2) + 𝜈1𝜐2 ⋯ 𝐶𝑜𝑣(𝑥𝑝𝑖 , 𝑥𝑝1) + 𝜈1𝜐𝑝

𝐶𝑜𝑣(𝑥𝑖1 , 𝑥2𝑖) + 𝜈2𝜐1 𝑉𝑎𝑟(𝑥𝑖2) + 𝜈2
2 ⋯ 𝐶𝑜𝑣(𝑥𝑖𝑝 , 𝑥𝑝2) + 𝜈2𝜐𝑝

⋮
𝐶𝑜𝑣(𝑥𝑖1 , 𝑥1𝑝) + 𝜈𝑝𝜐1

⋮
𝐶𝑜𝑣(𝑥𝑖2 , 𝑥2𝑝) + 𝜈𝑝𝜐2

⋮ ⋮
⋯ 𝑉𝑎𝑟(𝑥𝑖𝑝) + 𝜈𝑝

2
)

 
 
, 

     

 

where 𝒆  is distributed with mean vector 0 and variance-covariance matrix V, thus having 

𝐗, defined the same way as in fixed-effect sizes, and 𝜷 is a random population mean vector of the 

effect sizes under the random-effects model.  𝒁𝑼 is the study-specific effect in the 𝑖𝑡ℎ study with 

𝒁𝑖  being a selection of a matrix of zeros and ones. 𝑼𝑖~N(𝟎, 𝝂𝟐) is the study-specific random 

effects in the 𝑖𝑡ℎstudy, with 𝝂2 being a 𝑝 × 𝑝 no negative definite matrix (Becker et al., 1994; 
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Raudenbush et al., 2002; Cheung, 2013). Under the fixed effects model, we assume that the effect 

size for all past studies is identical. That is, the effect size varies between studies because of the 

sampling error. Under the random effects model, we estimate the mean of the distribution of the 

effects and the covariance structures. In applying the random effects, no assumption is made, such 

as common effects size, simply because the random effects model aims to generalise the effect 

sizes to other populations. That is, we consider some of the dispersion in the observed effects to 

reflect the real differences in the effect size across the studies. In the following section, we present 

the approach that estimates the parameter for the fixed and random effects model.  

2.3.3 Estimating Parameters in the Multivariate Meta-Analysis Model  

The formulas to estimate parameters such as the vector 𝝁, the matrix 𝝂𝟐 and the test 

statistic are given as 𝝂 = 
𝑄𝑐𝑎𝑙−(𝑘−1)

∑𝑤−(
∑𝑤2

∑𝑤
)

 
(2.7) 

where k is the number of effect sizes, 𝑄𝑐𝑎𝑙 represents the test statistic of the effect size and 𝑤 is the 

optimal weight.  

In MA, we are testing whether a set of a single study is heterogeneous or not. To apply this test 

requires a measure of heterogeneity called Cochran’s 𝑄test (West et al., 2010). This test tells us 

about the presence against the absence of heterogeneity. In this study, the performance of the 𝑄 test 

is used to determine the weighted sum of squared differences between individual study effects and 

the pooled effect across studies. The 𝑄 calculated test statistic is 

𝑄 = ∑𝑤𝑖 × 𝐸𝑆𝑖
2 + 

[(∑𝑤𝑖×𝐸𝑆𝑖)]
2

∑𝑤𝑖
 (2.8) 

where 𝑤𝑖 is the weight of each study and 𝐸𝑆𝑖 is the effect size (correlation) for each study. 
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The estimate of the ESs is calculated based on the inverse variance weight. Hedges indicated that 

the optimal weight for the fixed effects model in MA is 𝑤 = 
1

𝑆𝐸2
  ,where 

𝑆𝐸 = √
𝑆1
2

𝑛1
+
𝑆2
2

𝑛2
 (2.9) 

is the standard error of a direct index of effect size precision, 𝑆1 and 𝑆2 are the standard deviations 

of the samples and 𝑛1 and 𝑛2 are the sample sizes.  

2.4 DATA ANALYSIS 

2.4.1 Introduction 

To understand how to estimate the parameters in the fixed or random-effects model, we have to 

proceed with data analysis. In this section, the data analysis will enable us to gain more information 

from the data to derive knowledge that can help us make decisions, for instance, on the choice of 

the model to be used in estimating the parameters. In applying the proposed approach, systematic 

review and MA explored the response yield of maize production in soil that went through 

experiments for the use of the combine fertilizers compared to control (unfertilised use) in SSA. 

Many documented reviews have addressed the positive impact of the adoption of fertiliser for the 

growing in crop yield and improvement in soil health (Akinnifesi et al, 2009). These studies have 

discussed potential intervention to increase food production in SSA. In most countries of SSA, 

poverty contributes to the reduced of fertilizer adoption by farmers while fertilizer products enhance 

crop productivity of farmers. In this section, we review the published literature and performed MA 

to examine the benefits of the use of the combined of all diversities of fertilizers compared to control 

in growing yield maize response under rainfall status.   
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This work reviews scientifically all significant published literature reporting on fertilizers 

applications and unfertilized soil reserves within a sample of the response yield maize production. 

Maize was a high valued crop and farmers use several technologies for soil fertility preservation to 

increase grain yield. These technologies depend on the resources available to each country 

(Tovihoudji et al., 2019; Pasley et al., 2019). This crop accounts for 50% of the calories consumed 

in most African countries thus, it is cultivated under widely varying rainfall and edaphic conditions 

(Sileshi et al., 2008). Most region in SSA are among the leading maize producing areas (Okebelema, 

2016). Maize is predominantly grown under rainfed conditions with limited resources resulting in 

the low yield due to little inherent soil fertility with high cost of mineral fertilizer (Van der Velde et 

al., 2013; Ouedraogo et al., 2019). Poor fertility in SSA is caused by the degrading nature of soils, 

poor farming techniques and very poor fertility inputs. Fertilizer use is recommended as a way of 

resolving the poor soil fertility problem in the SSA (Abunyewa et al., 2007; Okebalama, 2016). 

Results indicated a positive trend in maize crop response to fertilizer. 

Considering the benefits of manures for soil health, combining fertilizer with all kind of inorganic 

fertilizer would be approved to increase the sustainability of the food production. The combined use 

of manure and inorganic fertilizer is an approach that seek to reduce cost of external inputs, increase 

food production and create safeguard environment for future generation (Abunyawa et al., 2007, 

2002). Vicedo-Cabrera et al. 2019 reported that MA based on linear models was used to present a 

general framework for projections of climate change on health. In medicine, MA with generalized 

linear models have been used to show that the serum-neutralizing antibody titter can be associated 

with the protection against SHIV challenges (Pegu et al., 2019).  

Material and Methods 

The review was conducted with indication to MA based on Cochrane collaboration. MA approach 
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requires to precise both the population of studies of interest and the criteria of eligibility of the 

studies to be included when the data is extracted, the next step is to determine what comparisons 

will be made (Sileshi et al., 2008). The criteria used for inclusion for the studies are 

• published in the journal or peer-reviewed proceeding. 

• originated from SSA resulting from an electronic library database.  

• reported maize yield coming from the application with or without fertilizer. 

• Excluded all published articles not dealing with maize or fertiliser and unfertilised (control) 

where not both reported.  

• Reported the annual average rainfall.  

Outcomes of Interest  

The principal focus is to identify the maize yield response to the use of fertiliser compared to control 

applications in SSA. Preferred and defined keywords were only in English such as application of 

fertiliser, mineral fertiliser, nitrogen fertilisers, phosphorus fertilisers, calcium, magnesium, 

manures, compost, potassium are the most critical organic and inorganic fertilisers. These are 

followed by refining terms: Africa, central Africa, East Africa, Western Africa, Southern Africa, 

Northern Africa and SSA. All these were used as dominant factors to establish the impact on the 

maize yield response. Afterward, the rainfall outcome was regarded as a contributor factor for 

growing the crop. The literature research was performed by examining the Scopus network, google 

scholar search engine to collect scientific journal articles, thesis and conference proceedings 

concerning the use of fertilizer compared to unfertilized (control) application. The search of this 

work was limited to the period from 2007 to 2019 as given in Figure 2.1.  
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Figure 2.1: Study flowchart demonstrating the identification and inclusion process for the 

quantitative synthesis  

A total of 326 past studies were screened for potential inclusion according to the titles, abstract but 

8 articles were eligible for quantitative analysis in SSA based on the criteria as presented in Table 

1. A selected study provided the author(s), the year, the country, the unfertilized data, and yield 

response data compared to fertilizer data with yield response data respectively for the maize-based 

crop. Identical data reported in a few studies were included only once. To better understand the real 

situation, systematic review is used prior to MA to combine all past studies into a common estimate 

parameter.  

Table 2.1: Data collected from past published studies: Averages 

 Author Year Country Cont. Fert. Yield.C Yield.F Rain. 

1 Tovihoudji et al, 2019 Benin  3000 300 200 5611 1114 

2 Kisinyo et al. 2015 Kenya 770 1550 4000 37500 1600 

3 Sime et at 2014 Ethiopia 260 260 416 551 815 
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Table 2.1 (Continued) 

 Author Year Country Cont. Fert. Yield.C Yield.F Rain. 

4 Kamanga et al. 2014 Malawi 2200 3000 150 407 492 

5 Mashingaidze et al. 2017 Zimbabwe 7700 3900 3245 4254 730 

6 Pasley et al.  2019 Zimbabwe 230 130 720 474 100 

7 Opala et al. 2007 Kenya 1010 8000 4500 8500 1800 

8 Abunyewa et al.  2007 Ghana 451 108 13800 23024 1025 

Cont.= Control (in tℎ𝑎−1) Fert.= Fertiliser (in tℎ𝑎−1) Yield.C = Yield.Control (tℎ𝑎−1) Yield.F= 

Yield.Fertiliser (tℎ𝑎−1) Rain= Rainfall 

 

In the next section, the MA approach was used by summarising the data selected from the major 

factors. The visualization of the data was checked, the data cleaning, the checking of outliers and 

then the transformed data were used in the analysis.  

Visualization of the data 

To examine the data without making assumption, exploratory data analysis was used as shown in 

Chapter 9: Appendix, section A.1. This approach enables the researcher to understand the patterns 

within the data. This helps as well to detect outliers and find interesting relations among the 

variables. The results indicate that the variables did not follow the normal distribution based on the 

graphs and boxplot. The test for normality of the variables reveals that all the variables were 

normally distributed except the variable “Rainfall”.   

2.4.2 Statistical Model in Meta-Analysis 

Studies vary in size, and therefore larger studies must hold more weight in the analysis than smaller 

studies. The estimate of the effect sizes is calculated based on the inverse variance weight. Hedges 
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and Vevea (1994) indicated that the optimal weight for the fixed effects model in MA is 𝑤 = 
1

𝑆𝐸2
 , 

where 𝑆𝐸 is the standard error of a direct index of effect size.  

Table 2.2 indicates the weighted mean, standard error of the effect sizes, the Z-test for the mean of 

the effect sizes and the 95% confidence interval computed as shown below:  

The weighted mean effect, 𝐸𝑆̅̅̅̅  = 
∑𝑤×𝐸𝑆

∑𝑤
                                                                   (2.10)                                                                                                                                                                                                          

The standard error of the mean effect sizes, 𝑆𝐸𝐸𝑆̅̅̅̅  = √
1

∑𝑤
                                        (2.11) 

The Z-test statistic is, Z= 
𝐸𝑆̅̅̅̅

𝑆𝐸
                                                                                      (2.12)                                                                     

The confidence interval by the 95% confidence interval is 𝐸𝑆̅̅̅̅  ± 𝑍𝛼
2
 𝑆𝐸𝐸𝑆̅̅̅̅                (2.13) 

 

Table 2.2: Effect sizes calculated based on the standardised mean difference, standard error, test 

statistic and 95% confidence interval (in quantities of production) 

Variables 

Effect 

Sizes 

  Standard 

error 

Weighted mean 

𝐸𝑆̅̅̅̅  

Test statistics 

Z 

95% confidence 

interval 

Control -0.245   892.08 -0.01081 -1.210E-01 (-357.32; 367.299) 

Fertiliser -0.07   975.14 -0.00299 -2.651E-06 (-357.313; 357.3078) 

Yield-control 0.582   1618.2 0.00761 4.8237E-07 (- 357.30; 367.3182) 

Yield-fertiliser 0.999   4729.2 0.00157 3.3171E-07 (-367.309; 367.312) 

Rainfall 0.636   197.1 0.57491 0.002917 (-366.736; 367.8853) 

 

The findings presented in Table 2.2 indicate that at 95% confidence interval, the results are all 

statistically significant by giving a plausible value for the parameter of interest. The yield-fertiliser 

is large being the ideal as we are more likely to capture the true value of the parameter.   
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Fixed and random-effects model 

The fixed and random effects model has different purposes in making inferences. The fixed effects 

model is about the effect of parameters in the studies. We use the random-effects model if we want 

to make inferences about the effect of parameters in a population of the studies from a random 

sample of the studies. From each approach model, we have to evaluate the performance of the null 

hypothesis, testing that combine of fertiliser application does not perform better than the control 

application to increase yield maize food production. The results will enable the researcher to make 

inferences from each model.  

2.4.2.1 The fixed-effects model 

In the fixed-effects model, we assume that the variability between the ESs is due to sampling error 

under the null hypothesis that the distribution of the ESs is homogeneous. In other words, all the 

ESs are estimating the same population mean. If the null hypothesis is rejected, then we can fit a 

random effect model. Table 2.3. gives the fixed effects model and the test statistic Q for the variables 

of interest. 

Table 2.3: The fixed effects size test 

Variables 𝑄𝑐𝑎𝑙 Test statistic p-value 
Control 7.54271E-08 0.0001 

Fertiliser 5.15302E-09 0.0001 

Yield-Control 1.29355E-07 0.0001 

Yield-Fertiliser 4.46231E-08 0.0001 

Rainfall 1.04116E-05 0.0001 

 

Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than the 0.05, we reject the null hypothesis at 5% level of significance 

in favour of the alternative hypothesis that the combined of fertiliser does perform better than the 

control application in increasing of maize response food production.   
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2.4.2.2 The random-effects model 

In a random effect model, when the total calculated Q is significant, that means the surplus 

variability across effect sizes comes from the random variations across studies that we cannot 

identify or measure the source of. In the random-effects model, we assume that the variability 

between effect sizes is due to sampling error and variability in the population (Wilson, 1999). We 

weighted each study by the inverse of the sampling variance plus a constant that represents the 

variability across the population effects.  

The inverse of the sampling variance is 𝑤 = 
1

𝑆𝐸2+ 𝜈
 (2.14) 

where 𝜈 is the random effects variance component. The value of the random-effects variance is 

calculated as indicated below, and Table 2.4 gives the calculations for the random effects model.  

𝜈 = 
𝑄𝑐𝑎𝑙−(𝑘−1)

∑𝑤−(
∑𝑤2

∑𝑤
)
    (2.15) 

where k is the number of ESs used in the study. 

Table 2.4: The weighted approach in the random-effects model 

Component Control Fertiliser 

Yield-

control 

Yield-

Fertiliser Rainfall 

The random effects 

variance component 𝜈 -783162.4 2.165E-07 2.855E-08 3.914E-10 0.0001297 

Weight on random effects 

model w 7.911E-05 1.051E-06 3.818E-07 4.471E-08 2.573E-05 

 

In Table 2.5, we present the weighted mean, standard error, test statistic and the 95% confidence 

interval for the random-effects model (in quantities of production).  
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Table 2.5: The random effects size test 

Variables 

 Standard 

error 

Weighted mean 

𝐸𝑆̅̅̅̅  

Test statistics 

Z 

95% confidence 

interval 

Control  96.97787 -0.18229 -0.00188 (-190.259; 189.894) 

Fertiliser  96.97787 -0.00069 -7.1E-06 (-190.077; 190.0759) 

Yield-Control  96.97787 -0.00069 -7.1E-06 (-190.077; 190.0759) 

Yield-Fertiliser  96.97787 0.00042 4.33E-06 (-190.076; 190.077) 

Rainfall  96.97787 0.153955 0.001588 (-189.923; 190.2306) 

 

Effect sizes for types of both combine fertiliser and control applications are considered statistically 

significant because the 95% confidence interval limits of the average ESs did include 0; therefore, 

we fail to reject the null hypothesis. Thus, the variability across the ESs does not exceed what could 

be expected based on the sampling error.   

The meta-analysis technique has enabled the researcher to synthesise information. In applying the 

approach, a suitable statistical summary of the results was provided upon which we gain clear 

information in drawing inferences in the agricultural research field on the maize food production in 

the SSA.  

Forest plots 

Forest plots graphically display the information from the individual studies like shown through the 

vertical axis upon which each country represents a scientific publish article as given in Table 2.1. 

The results as shown in Figure 1 represent the odds ratios, and the 95% confidence intervals 

represent an overall pooled estimate.  
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Figure 2.2: Forest plot 

 

There was a difference in response in ratio between experiment under the combined fertilisers 

compared to the control experiment. That is, variability in response yield with the combined 

fertilisers were increased. 
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3CHAPTER 3  

STRUCTURAL EQUATION MODEL 

3.1 INTRODUCTION 

The SEMs are powerful tools that can be used to solve complex problems involving diverse factors. 

In particular, these tools can provide efficient results in evaluating the relations among variables and 

testing theoretical models. The SEM(s) and path analysis are introduced in agricultural science as 

powerful tools to solve complex problems. Worldwide, agricultural studies play a significant role in 

human beings' lives, particularly in SSA, where countries are characterised by many hungry people 

(Mwichabe, (2013)). SEM was used to examine the pathways from adverse childhood experiences 

to physical health, directly or indirectly, through many variables within a framework (Nurius et al., 

2019). Lee et al. (2011) and Nitzl (2016)) used SEMs and partial least squares (PLS) techniques in 

accounting. More recently, Hair et al. (2017) used a series of ordinary least squares regressions to 

estimate partial model structures of composite-based SEM models. Henseler (2017) developed a 

variance-based SEM. Goodboy et al. (2017) presented a statistical and practical concern with 

published research featuring SEM.  

In this study, we develop an adaptive approach that is unrestrictive as the current SEMs are involved 

in the analysis and create the theoretical relations between variables. There is a huge diversity in a 

set of relationships that could be developed among the variables. The variability of a set of 

relationships points to inconsistent conclusions about the level at which a model is truly equivalent 

to the observed data. We present a more reliable approach that provides a guideline on evaluating 

the suitability of a given SEM. We demonstrate how to include many factors by using factor analysis 

through the PCA, leading to a reduced number of variables. In Section 3.2.6, we will show how 

useful the application of the covariance is to estimate the parameters in the linear regression models.  
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The structural equation model comprises:   

(1) a set of linear equations identifying or detailing the causal relationship between the variables 

in the model, and  

(2) several supporting assumptions. Similarly, to linear equations, SEM establishes a direct 

relationship between any cause and any effect that is generally specified by the coefficients 

connecting or associating two variables in the equation. As a result, the coefficient is the 

variation in effect generated by a one-unit variation in the level of the cause holding the other 

causes constant. Generally, the value of the coefficient is unknown. 

We have noticed a great need for the development and improvement of new analytical methods in 

agricultural science. The SEM and path analysis are presented by developing appropriate structural 

equations and path diagrams. The linear relationship in a system of equation models can be presented 

in different ways, but in this study, these equations are offered as given in Equations 3.1a to 3.1c.  

Section 3.3 presents the basic characteristics of SEMs and path analysis. Section 3.4 highlights the 

methodology. In Section 3.5, through the estimation of parameters, we develop a model of 

observable facts of an interesting SEM. The developed model is tested by means of the variance-

covariance technique based on factor analysis in the SEM. Their contributions to the field of 

agricultural science are illustrated through a practical example given in Section 3.6. In Section 3.7, 

a conclusion and useful recommendations are given, and Section 3.8 presents a simulation study for 

testing the proposed model to determine if this model will perform better than the existing model.  

3.2 OBJECTIVES 

The study aims to: 

1) develop an improved approach of SEM that is more flexible and unrestrictive by using factor 

analysis through PCA in the application of variables. 
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2) demonstrate and test the new model by the covariance technique when the maximum 

likelihood is used to estimate the parameters in the model. 

     3) introduce the SEM in the agricultural field by solving complex problems as new applied 

research. 

   4) demonstrate through a practical example the systematic application of the new technique by 

showing its contributions to the studies in the agricultural field.  

3.3 CHARACTERISTICS OF THE STRUCTURAL EQUATION MODEL  

The concept of causality has always been an alarming issue in various scientific fields, like in social 

sciences. Similarly, SEMs come across the causality hypothesis that is normally tested in non-

empirical study models. Wright (1921) was the first to suggest SEM in a complete approach with 

regression analysis as a foundation to test the relationship between observed and implicit variables 

(Raykov & Marcoulides, 2000). In addition, SEM can perform multiple regression tests with two or 

more indirect or hidden variables subject to a few display variables associated with error terms. In 

general, SEM remains wholly subjected to the theoretical suggestion that the SEM will demonstrate 

whether the previously defined connection pattern could be supported or not by the collected data. 

In other words, we use SEM in the prediction of unknown parameters on a linear structure of 

equations. The variables in a set of SEMs are directly and indirectly observed. In SEM, we assume 

the existence of a causality (or interconnection) structure between the directly observed variables 

and the indirectly measured variables.  

Technically, SEMs hold one or more linear regressions that explain how endogenous structures are 

determined upon exogenous structure. That means, in SEM the focus is in terms of measurement of 

variables that define just how theoretical (indirect) structures depend on observed variables when 
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assuming a causality relationship between indirect variables. Path analysis (PA) and confirmatory 

factor analysis (CFA) are special types of SEM. PA examines how independent variables are 

statistically related to a dependent variable. Moreover, PA can allow causal interpretation of 

statistical dependencies, and most importantly, PA allows for the examination of how the data fits a 

theoretical model. PA enables us to draw a path diagram based on the theory and conduct one or 

more regression analyses (see Figures 3.1 and 3.2).  

The estimation process in SEM involves different techniques, which include maximum likelihood, 

commonly used by software programs. It assumes either multivariate normality or generalised least 

square of robust estimators. Linear structural relation modelling (LISREL) is used, which is a 

powerful and flexible approach to analyse complex data. In applying SEM, we can assess 

hypothesised relations between variables that are consistent with the observed relations between the 

variables. The researcher starts by conceiving how a set of variables are related to another. In some 

instances, a model that is assumed may not fit the observed data. In such a condition, we can use 

LISREL, since it provides researchers with special quantitative estimates of the hypothesised model 

that can fit the observed data. Many researchers have used the approach, for instance Oiu et al. 

(2020), in E-learning assessment for tourism education, in which LISREL enabled them to assess 

intercultural tourism perception. Gumus et al. (2020) applied LISREL to investigate sportsmanship 

behaviour of in university students. J𝑜̈reskog et al. (1982) described new developments in SEM in 

using LISREL. The research in this work for the application of SEM uses J𝑜̈reskog’s LISREL 

notations as presented by Bentler et al. (1980) and defined as follows: 

𝜼 = 𝚩  𝜼 + 𝚪  𝝃  + 𝝇 (3.1a) 

𝐘 = 𝚲(𝒚) 𝜼  + 𝜺   (3.1b) 
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𝐗 = 𝚲(𝒙) 𝝃 + 𝜹 (3.1c) 

where, 𝜼  represents the random vector latent dependent variables, 𝚩  indicates the weights 

(parameter matrices) for predicting dependent variables from each other, 𝚪  represents weights 

(parameter matrices) for predicting dependent variable from independent variables, 𝚩 and 𝚪 are 

coefficient matrices for linear relations of all variables involved in SEM), 𝝃 denotes the random 

vector latent independent variables, 𝒀 indicates the vector of the observed indicator for a latent 

dependent variable, and 𝑿 denotes the vector of the observed indicator for a latent independent 

variable.  𝚲(𝒙) and 𝚲(𝒚) are parameter matrices, and 𝜺, 𝝇 and 𝜹 are random vectors. 

Path diagrams present the models graphically, enabling researchers to visualize the research's 

conceptual models and show statistical results. Moreover, path diagrams present functional 

relationships among multiple regression models that are a special case of structural equation model. 

From the output given by the path diagram, when the p-value is greater than a 5% level of 

significance, we conclude that the theoretical model is not a good one for the data. To illustrate this 

process, we use an example. Consider four dependent and four independent latent variables upon 

which we want to establish the system of equations of the observed vectors (𝒀 and 𝑿) and theoretical 

model (𝜼) using (3.1a), (3.1b) and (3.1c) as shown in Figure 3.1.  
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Figure 3.1: Path diagram 

 

Figure 3.1 presents a path diagram provide the relationships between the exogenous and endogenous 

variables.    

Usually, path analysis provides a diversity of a set of relationships that can be developed among the 

variables. However, some of these variables are similar. Therefore, there is a need for a more 

advanced technique (or method) that allows us to reduce a huge number of variables into a small 

number. Factor analysis (FA) serves this purpose. FA is a multivariate statistical method for reducing 

large numbers of variables to fewer underlying dimensions. This method involves the grouping of 

similar variables into dimensions. This process is used to identify latent variables or constructs. Most 
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often, factors are rotated after extraction. FA has several different rotation methods, and some of 

them ensure that the factors are orthogonal (i.e. uncorrelated), which eliminates multi-collinearity 

problems in regression analysis. There are many techniques for FA, with principal component 

analysis being the most frequently used, followed by the exploratory factor analysis (EFA). PCA is 

used if the components can be derived or/and summarised. It has been used by many researchers in 

medical science, education, social science, and many other related fields (Bolt et al., 2018; Wang & 

Staver 2001). However, EFA is used if the variables have unmeasured variables. It is not as popular 

as PCA. In this study, we integrate FA into SEM to provide an optimal and cost-effective model that 

explains the key factors in the food production system better. 

3.4 METHODOLOGY 

3.4.1 The current approach of the structural equation model  

The traditional approach of SEM is more restrictive since it specifies the latent variables that are 

involved in the analysis and creates the theoretical relations between the variables. There is a huge 

diversity in a set of relationships that could be developed among the variables. The variability of a 

set of relationships points to inconsistent conclusions about the level at which a model is truly 

equivalent to the observed data. Therefore, a variety of the options of the path diagram is utilised. 

We present a more reliable approach that provides a guideline on how to evaluate the suitability of 

a given SEM. Researchers in the agricultural sector uses all possible variables that might be 

identified for a set of data, but by using factor analysis through the PCA, researchers can use the 

most important variables in the model. SEM has been commonly applied in many fields after it has 

been introduced in the agriculture field.   

3.4.2 The Proposed Structural Equation Models using Factor Analysis  

We outline the necessary steps to take in producing SEM using factor analysis after obtaining 

provisional factors via PCA as follows:  
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1) Screen the data for suitability through testing.  

2) Apply PCA on the correlation matrix to obtain provisional factors when the test in Step 

(1) is statistically significant. Using the Factor analysis (FA), calculate the communalities 

accounting for the pre-set proportion of total variation. 

3) Determine the number of principal components to retain and rotate to obtain 

orthogonality.  

4) Interpret the new variables (FAs) based on the factor loading for each variable. 

5) Consider rotating the factors to attain orthogonality. Thus, the final factors are 

orthogonal. 

6) Determine the component score coefficient matrix for the possible models.  

7) The process assists with the selection of original variables for an easy interpretation of 

the components. The new variables (𝑭𝑖) are unknown while the original variables are 

observed. This can be referred to as the unobserved and observed variables in the current 

approach (3.1b and 3.1c).   

8) After the selection of the variables has been done, the path diagrams that represent the 

model graphically can be completed. This enables the researcher to visualise the 

conceptual model behind the research question by showing the statistical results. Path 

diagrams represent functional relationships among the multiple regression models.  

9) The correlations between the latent (unobserved) variables and latent (observed) 

variables in the current approach are equivalent to factor loading in PCA with the new 

approach. 

10) Parameter estimates in SEM are calculated by the maximum likelihood method. 

The linear combination of the original variables can be constructed in general as in Equation 3.2. 
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𝐹𝑖 = 𝑎𝑖1𝑋1 + 𝑎𝑖2𝑋2 + ..... + 𝑎𝑖𝑚𝑋𝑚                                                                                              (3.2) 

where 𝐹𝑖 (i = 1, 2, ..., m) represent the new variables called factors which give a linear combination 

of the original variables (𝑋1,𝑋2, ..., 𝑋𝑛) with m < n. Let 𝑎1,𝑎2, ....., 𝑎𝑚 be the weights associated 

with the original variables. They represent the correlation between the components and the original 

variables. The set of equations obtained through the PCA can then be formulated as  

𝐹1 = 𝑎11𝑋1 + 𝑎12𝑋2 + ... + 𝑎1𝑚𝑋𝑚 (3.2a) 

𝐹2 = 𝑎21𝑋1 + 𝑎22𝑋2 + ... + 𝑎2𝑚𝑋𝑚 (3.2b) 

𝐹𝑚 = 𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 + ... + 𝑎𝑚𝑚𝑋𝑚 (3.2c) 

𝑉𝑎𝑟(𝐹𝑖) = ∑ ∑ 𝑎𝑖𝑘 
𝑛
𝑙=1

𝑚
𝑘=1 𝑎𝑖𝑙𝜎𝑘𝑙 = 𝑎′𝑖Σ𝑎𝑖                                                                                    (3.3) 

  

3.5 ESTIMATION OF PARAMETERS 

3.5.1 Introduction 

 

Estimation of parameters in SEM is obtained by the maximum likelihood method. It 

provides estimates for the linear equations that reduce the deviation between the 

observed and the proposed model. We incorporate the selected factors into a few SEMs 

and then test for the different inter-associations among the latest variables. The 

correlations between the latent (unobserved) variables and latent (observed) variables 

were equivalent to factor loading in PCA. The general SEM as given in Equation 3.1a 

is equivalent to the Equation 3.2 summarised as   

 

 𝜼 = 𝜷𝜼 + 𝚺𝝃 + 𝝋,                                                                                                          (3.4)   

where 
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𝜼 = (

𝜂1
𝜂2
𝜂3
𝜂4

),  𝜷 = (

0
0

𝛽12
0

𝛽13 𝛽14
𝛽23 𝛽24

0 0 0 𝛽34
0 0 0   0

),  𝜮 = 𝜞 = (

𝛿11
𝛿21

𝛿12
𝛿22

𝛿13 𝛿14
𝛿23 𝛿24

𝛿31 𝛿32 𝛿33 𝛿34
𝛿41 𝛿42 𝛿43 𝛿44

) , 𝝃 = (

𝜉1
𝜉2
𝜉3
𝜉4

)  and   

𝝋 = (

𝜑1
𝜑2
𝜑3
𝜑4

).                                                                                                                                    (3.5) 

These structures of random vectors and parameter matrices are used in the data analysis. 

3.5.2 Constructive Relations Based on Endogenous and Exogenous Variables 

3.5.2.1 Constructive relations based on the endogenous variables 

In using the SEM technique, we want to demonstrate the use of the proposed LISREL procedure 

that can be able to analyse a complex of data. The LISREL approach requires defining the 

hypothesised model that includes a system of equations of the observed relations model X and Y 

representing the exogenous and endogenous variables given in the Equations (3.1a) to (3.1c). In this 

section, we present the estimation of parameter process through LISREL. For illustration purposes, 

suppose we are given four endogenous variables and four exogenous variables. Considering the 

endogenous variables, we would like to construct the equations from the four dependent latent 

variables model Y, using the concept of Equation 3.1b. The endogenous Y comprises 

(𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚), the parameter matrix Λ𝑦  represented by (λ11, λ21, λ31, … , λ𝑚1)  , the random 

vector latent dependent variable 𝜼  = ( η1, η2, η3, … , η𝑚)  and the random error 𝜺 =

(𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑚) as shown below   

     𝑦1 = λ11η1 + 𝜀1 

  y2 = λ21η1 + 𝜀2 

            y3 = λ31η1 + 𝜀3 

……………… 

           y𝑚 = λ𝑚1η1 + 𝜀𝑚 

           y𝑖 = λ𝑖1η1 + 𝜀𝑖. 
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In matrix notation,  

(

y1
y2
⋮
𝑦𝑚

) = (

λ11
λ21
⋮
λ𝑚1

)η1 +(

𝜀1
𝜀2
⋮
𝜀𝑚

). 

 

The model is then  

Y = 𝝀(𝑦) η1  +  𝜺.                                                                                        

 

and 

 

 𝑦𝑚+1 = λ(𝑚+1)2η2 + 𝜀𝑚+1 

  y𝑚+1 = λ(𝑚+2)2η2 + 𝜀𝑚+2 

  .....……………… 

   y𝑠 = λ𝑠2η2 + 𝜀𝑠 

    y𝑖 = λ𝑖2η2 + 𝜀𝑖. 
 

(3.6) 

Using the matrix notation, 

(

y𝑚+1
𝑦𝑚+2
⋮
y𝑠

) = 

(

 

λ(𝑚+1)2
λ(𝑚+2)2
⋮
λ𝑠2 )

 η2 +(

𝜀𝑚+1
𝜀𝑚+2
⋮
𝜀𝑠

). 

The model is Y = 𝝀(𝑦) η2  +  𝜺                                                                                            (3.7)                                                                            

and 

 y𝑠+1 = λ(𝑠+1)3η3 + 𝜀𝑠+1 

 𝑦𝑠+2 = λ(𝑠+2)3η3 + 𝜀𝑠+2 

  ………………...... 

    y𝑡 = λ3η3 + 𝜀𝑡 
    y𝑖 = λ𝑖3η3 + 𝜀𝑖 
 

 

Using the matrix notation, 

(

𝑦1
𝑦2
⋮
𝑦𝑚

) = (

λ11
λ21
⋮
λ𝑚1

)η1 +(

𝜀1
𝜀2
⋮
𝜀𝑚

). 

The model becomes  

𝒀  = 𝝀(𝑦) η3  +  𝜺                                                                                                       (3.8a)                                                                     

 

and 
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 𝑦𝑡+1 = λ(𝑡+1)4η4 + 𝜀𝑡+1 

 𝑦𝑡+2 = λ(𝑡+2)4η4 + 𝜀𝑡+2 

………………......... 

   y𝑛 = λ𝑛4η4 + 𝜀𝑛 

    y𝑖 = λ𝑖4η4 + 𝜀𝑖.   
 

Using the matrix notation, 

(

𝑦𝑡+1
y𝑡+2
⋮
y𝑛

) = 

(

 

λ(𝑡+1)4
λ(𝑡+2)4
⋮
λ𝑛4 )

 η1 +(

𝜀𝑡+1
𝜀𝑡+2
⋮
𝜀𝑛

). 

The model is 

 Y= 𝝀(𝑦) η4  +  𝜺.  (3.8b) 

 

The combined equations of the four dependent latent variables altogether in matrix notation is  

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑦1
𝑦2
⋮
𝑦𝑚
𝑦𝑚+1
𝑦𝑚+2
⋮
𝑦𝑠
𝑦𝑠+1
𝑦𝑠+2
⋮
𝑦𝑡
𝑦𝑡+1
𝑦𝑡+2
⋮
𝑦𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 

=  

(

 
 
 
 
 
 
 
 
 
 
 
 
 

λ11
λ21
⋮
λ𝑚1
0
0
0
0
0
0

0
0
0
0

λ𝑚+1
λ𝑚+2
⋮
λ𝑠
0
0

0
0
0
0
0
0
0
0
λ𝑠+1
λ𝑠+2

0
0
0
0
0
0
0
0
0
0

0   0 ⋮ 0

0
0
0
0
0

   

0
0
0
0
0

λ𝑡
0
0
0
0

0
λ𝑡+1
λ𝑡+2
⋮
λ𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 

  (

η1 
η2 
η3 
η4 

)  +  

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜀1
𝜀2
⋮
𝜀𝑚1
𝜀𝑚+1
𝜀𝑚+2
⋮
𝜀𝑠
𝜀𝑠+1
𝜀𝑠+2
⋮
𝜀𝑡
𝜀𝑡+1
𝜀𝑡+2
⋮
𝜀𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

In a general display, the latent dependent model is 

 Y = 𝝀(𝑦) 𝜼  +  𝜺 

(3.9) 
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Using the LISREL approach, we can construct a model through the endogenous Y that is observed, 

the parameter matrix 𝝀(𝑦) that will be estimated by the maximum likelihood and the random vector 

latent dependent variable 𝜼 that is unobserved. The final model will be expressed in terms of 𝜼. 

3.5.2.2 Constructive relations based on the exogenous variables  

Similarly, to the application of LISREL in Section 3.5.2.1, considering the exogenous variables we 

would like to construct the equations from the four dependent latent variables as per model X using 

the concept of Equation 3.1c. The exogenous X comprises (𝑥, 𝑥2, 𝑥3, … , 𝑥𝑚 ), the parameter matrix 

𝚲𝒙  represented by ( λ11, λ21, λ31, … , λ𝑚1)  , the random vector latent dependent variable 𝜼  = 

(η1, η2, η3, … , η𝑚) and the random error 𝜹 = (𝛿1, 𝛿2, 𝛿3, … , 𝛿𝑚) as shown below  

           𝑥1   =   λ11ξ1 + 𝛿1 

  x2   =   λ21𝜉1 + 𝛿2 

            x 3  =   λ31𝜉1 + 𝛿3 

……………… 

           x𝑚 = λ𝑚1𝜉1 + 𝛿𝑚 

           x𝑖  = λ𝑖1𝜉1 + 𝛿𝑖 

In matrix notation  

(

x1
𝑥2
⋮
𝑥𝑚

) = (

λ11
λ21
⋮
λ𝑚1

)𝜉1 +(

𝛿1
𝛿2
⋮
𝛿𝑚

) 

 

The model is 𝚾  = 𝝀(𝑥) 𝜉1  +  𝜹                                                                                      

 

          x𝑚+1 = λ(𝑚+1)2  𝜉2 + 𝛿𝑚+1 

      x𝑚+1 = λ(𝑚+2)2  𝜉2 + 𝛿𝑚+2 

  ………………………… 

   x𝑠 = λ𝑠2𝜉2 + 𝛿𝑠 

                 x𝑖 = λ𝑖2𝜉2 + 𝛿𝑖 

(3.10a) 

Using the matrix notation 
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(

x𝑚+1
x𝑚+2
⋮
x𝑠

) = 

(

 
 

λ(𝑚+1)2
λ(𝑚+2)2
⋮
λ𝑠2 )

 
 
𝜉2 +(

𝛿𝑚+1
𝛿𝑚+2
⋮
𝛿𝑠

) 

 

The model is 𝚾  = 𝝀(𝑥) 𝜉2  + 𝜹                                                                                          (3.10b)                                                                                                                                            

 

        x𝑠+1 = λ(𝑠+1)3𝜉3 + 𝛿𝑠+1 

    x𝑠+2 = λ(𝑠+2)3𝜉3 + 𝛿𝑠+2 

 ……………… 

              x𝑡    = λ3𝜉3 + 𝛿𝑡 
 x𝑖   = λ𝑖3𝜉3 + 𝛿𝑖 

 

 

Using the matrix notation 

(

x1
x2
⋮
𝑥𝑚

) = (

λ11
λ21
⋮
λ𝑚1

)𝜉3 +(

𝛿1
𝛿2
⋮
𝛿𝑚

) 

 

The model is 𝚾  = 𝝀(𝑥) 𝜉3  + 𝜹                                                                                           (3.10c)                                                          

 

            𝑥𝑡+1 = λ(𝑡+1)4𝜉4 + 𝛿𝑡+1 

         x𝑡+2 = λ(𝑡+2)4𝜉4 + 𝛿𝑡+2 

………………….. 

            x𝑛 = λ𝑛4𝜉4 + 𝛿𝑛 

            x𝑖 = λ𝑖4𝜉4 + 𝛿𝑛 

 

 

Using the matrix notation 

(

x𝑡+1
x𝑡+2
⋮
𝑥𝑛

) = 

(

 

λ(𝑡+1)4
λ(𝑡+2)4
⋮
λ𝑛4 )

 𝜉4 +(

𝛿𝑡+1
𝛿𝑡+2
⋮
𝛿𝑛

). 

The model is 𝚾  = 𝝀(𝑥) 𝜉4  +  𝜹 (3.10d) 

The combination of the four independent latent variables altogether is 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 

x1
x2
⋮
x𝑚
𝑥𝑚+1
𝑥𝑚+2
⋮
x𝑠
𝑥𝑠+1
𝑥𝑠+2
⋮
𝑥𝑡
𝑥𝑡+1
𝑥𝑡+2
⋮
𝑥𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 

=  

(

 
 
 
 
 
 
 
 
 
 
 
 
 

λ11
λ21
⋮
λ𝑚1
0
0
0
0
0
0

0
0
0
0

λ𝑚+1
λ𝑚+2
⋮
λ𝑠
0
0

0
0
0
0
0
0
0
0
λ𝑠+1
λ𝑠+2

0
0
0
0
0
0
0
0
0
0

0   0 ⋮ 0

0
0
0
0
0

   

0
0
0
0
0

λ𝑡
0
0
0
0

0
λ𝑡+1
λ𝑡+2
⋮
λ𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 

  (

𝜉1 
𝜉2 
𝜉3 
𝜉4 

)  +  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛿1
𝛿2
⋮
𝛿𝑚1
𝛿𝑚+1
𝛿𝑚+2
⋮
𝛿𝑠
𝛿𝑠+1
𝛿𝑠+2
⋮
𝛿𝑡
𝛿𝑡+1
𝛿𝑡+2
⋮
𝛿𝑛 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In a general display, the independent latent model is 𝚾  = 𝝀(𝑥) 𝝃  +  𝜹. (3.11) 

The LISREL approach enables the researcher to construct a model through the exogenous X that is 

observed, the parameter matrix 𝝀(𝑥), that will be estimated by using the maximum likelihood and 

the random vector latent dependent variable 𝝃  that is unobserved. The final model will be expressed 

in terms of 𝝃 . 

Linear structural relation based on the LISREL approach is a powerful and flexible approach to 

analyse complex data. This technique assesses hypothesised relations between variables that are 

consistent with the observed relations between the variables. The researcher starts by conceiving 

how a set of variables are related to another. If that model assumes a specific latent variable that 

does not fit the observed data, then LISREL can provide the researcher with specific quantitative 

estimates of the hypothesised model that would fit the observed data.  

Based on the theoretical LISREL approach Equation 3.4 is  

𝜼 = 𝜝  𝜼 + 𝚪  𝝃  + 𝝋.                                                                                                   

The Equation (3.4) is equivalent to 
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 (

𝜂1
𝜂2
𝜂3
𝜂4

) =  (

0
0

𝛽12
0

𝛽13 𝛽14
𝛽23 𝛽24

0 0 0 𝛽34
0 0 0 0

)  (

𝜂1
𝜂2
𝜂3
𝜂4

)  +  (

𝛿11
𝛿21

𝛿12
𝛿22

𝛿13 𝛿14
𝛿23 𝛿24

𝛿31 𝛿32 𝛿33 𝛿34
𝛿41 𝛿42 𝛿43 𝛿44

)   (

𝜉1
𝜉2
𝜉3
𝜉4

)    +   (

𝜑1
𝜑2
𝜑3
𝜑4

)      

which can also be written as 

(

𝜂1
𝜂2
𝜂3
𝜂4

) = (

𝛽12 𝜂2  + 𝛽13𝜂3  + 𝛽14 𝜂4 
𝛽23 𝜂3  + 𝛽24𝜂4

𝛽34 𝜂4 
0

) + (

𝛿11  𝜉1
𝛿21 𝜉1

𝛿12𝜉2 
𝛿22𝜉2 

𝛿13𝜉3 𝛿14 𝜉4
𝛿23𝜉3 𝛿24 𝜉4

𝛿31𝜉1 𝛿32𝜉2 𝛿33𝜉3 𝛿34𝜉4
𝛿41𝜉1 𝛿42𝜉2 𝛿43𝜉3 𝛿44𝜉4

)   +   (

𝜑1
𝜑2
𝜑3
𝜑4

).  

The above equations can be simplified as follows: 

𝜂1= 𝛽12 𝜂2  + 𝛽13𝜂3  + 𝛽14 𝜂4 + 𝛿11  𝜉1 + 𝛿12  𝜉2 + 𝛿13  𝜉3 + 𝛿14  𝜉4+ 𝜑1      (3.12a) 

𝜂2  = 𝛽23 𝜂3  + 𝛽24𝜂4  + 𝛿21  𝜉1 + 𝛿22  𝜉2 + 𝛿23  𝜉3 + 𝛿24  𝜉4+ 𝜑2 (3.12b) 

𝜂3 = 𝛽34 𝜂4   + 𝛿31  𝜉1 + 𝛿32  𝜉2 + 𝛿33  𝜉3 + 𝛿44  𝜉4 + 𝜑3 (3.12c) 

𝜂4 = 𝛿41  𝜉1 + 𝛿42  𝜉2 + 𝛿43  𝜉3 + 𝛿44  𝜉4 + 𝜑4. (3.12d) 

Using SEM through the LISREL approach, we can construct a model through the endogenous Y and 

exogenous X that are observed variables, the parameter matrices 𝝀(𝑦) and 𝝀(𝑥) are estimated by the 

maximum likelihood, and the random vector latent dependent variables 𝜼 and 𝝃 are the unobserved 

variables. The general model is expressed in terms of 𝜼 by using the Equation 3.1a. To illustrate the 

use of SEM through the LISREL approach, an example in agricultural research food production is 

used upon which we demonstrate the proposed approach.  

3.6 DATA ANALYSIS 

3.6.1 Introduction  

To illustrate the modelling process in Section 3.5, real-life data from the Food and Agriculture 

Organisation (FAO, 2021) from 45 African countries has been used. The data components were 

crops (in tons), livestock (number of heads), and contributors such as fertiliser (in tons), trade (in 

dollars), labour (in number of people), land (in hectares) and water (in litters). Table 3.1 presents 
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the structure of the data from 33 countries between 2012 and 2018 with the LISREL notations 

according to J𝑜̈reskog (2000). 

Table 3.1: Crop components classified into three vital factors (crop, livestock and contributors) 

with various factor levels denoted by LISREL 

 

In this section, we aim to estimate parameters using SEM through LISREL approach. This technique 

requires formulating the hypothesised model that can fit the observed data, and therefore this 

Components Description of 

variables 

LISREL notations 

Crop (in tons) Banana  𝑌1 

Beans  𝑌2 

Cassava  𝑌3 

Rice  𝑌4 

Groundnut  𝑌5 

Maize  𝑌6 

Sugar cane  𝑌7 

Vegetables  𝑌8 

Cereals  𝑌9 
Fruits  𝑌10 

Livestock (in numbers of heads) Cattle and Buffaloes  𝑌11 

Pigs  𝑌12 

Poultry  𝑌13 

Sheep and Goats  𝑌14 

Contributors  Fertiliser (Factor 1) (in tons) Nitrogen  𝑋1 

Phosphate  𝑋2 

Trade 

(Factor 2) (in Dollars) 

Export values  𝑋3 
Import values  𝑋4 

Labour  

(Factor 3) (in numbers of people) 

Rural  𝑋5 
Urban  𝑋6 

Land 

(Factor4) (hectares) 

Arable  𝑋7 
Permanent  𝑋8 

Water (in Littre) 

(Factor 5)  

 

Rainfall  𝑋9 
Irrigated land  𝑋10 

Energy used (in Kilowatts) 

(Factor 6) 

Electricity  𝑋11 

Diesel  𝑋12 

Transport  𝑋13 
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approach will enable the researcher to determine the relationships between the variables. In the 

literature, the relationships are specified by the researcher, leading to inconsistent results in some 

situations. Using the proposed approach of SEM through LISREL, we define the observed variables 

represented by the dependent variable denoted by Y and the independent variable denoted by X. To 

determine X and Y in the complexity of variables and data, PCA is used to determine the directly 

observed variables to decide about the number of factors to be retained in the model. The PCA 

approach is strongly related to factor analysis, indicating the correlations or associations between 

the variables, and determining the small number of latent variables. For an illustration of this 

technique, countries in SSA were grouped into crop production, livestock and contributing factor 

dimensions from which inferences will be drawn to obtain stable estimated parameters for the 

solutions to the problem facing African countries. We used the PCA approach to determine direct 

and indirect variables based on the 26 variables. The exogenous variable X comprises 12 factors 

denoted by X1 to X12, and the endogenous variable Y is represented by 14 factors denoted by Y1 to 

Y14 as provided in Table 3.1.  

In applying the PCA, the correlation matrix was used to determine the variables that were the most 

strongly correlated with each component, but one variable was eliminated because no correlation 

was found. The screening of variables reduced the number of highly correlated variables from 25 to 

10 new independent variables, as indicated in Table 3.2. The retained variables account for much of 

the total variation in the variable of interest, which is explained by each component, as this cannot 

be performed in multiple regressions. The results of PCA determined the levels at which the 

variables were measured. The variables with the highest sample variances were among the few 

components taken as each variable received its weight in the analysis. To receive equal weight in 

the analysis, we have then standardised variables before carrying out the PCA (performing PCA on 
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a correlated matrix). Table 3.2 shows the number of components and the eigenvalues (initial and 

rotation eigenvalues).  

Table 3.2: Screening of different variables through PCA based on the total variance explained 

Component 

Initial Eigenvalues Rotation Sums of Squared loadings 

Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

1 4.746 18.985 18.985 3.077 12.310 12.310 

2 3.254 13.017 32.002 2.950 11.799 24.109 

3 2.742 10.969 42.971 2.930 11.720 35.829 

4 2.435 9.741 52.712 2.681 10.725 46.554 

5 1.885 7.542 60.254 2.123 8.492 55.046 

6 1.545 6.181 66.435 2.052 8.207 63.253 

7 1511 6.044 72.479 1.706 6.825 70.078 

8 1.402 5.606 78.085 1.532 6.127 76.205 

9 1.154 4.615 82.700 1.415 5.661 81.866 

10 1.028 4.111 86.811 1.236 4.945 86.811 

11 0.804 3.217 90.028    

Extraction Method: Principal Component Analysis 

From Table 3.2, the rule proposed by Kaiser (1960) about a common practice criterion for the 

number of factors to rotate having eigenvalues greater than one, as shown in Column 2 of the Table 

3.2, was used. It is given that there are as many factors as there are eigenvalues greater than one, 

resulting in the formula for internal consistency reliability. An eigenvalue less than one implies that 

the scores on the component can have negative reliability. About 87% of the total variation is 
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accounted for by 10 out of 25 original variables. Thus, we rotate the ten principal components using 

FA to attain orthogonality. 

3.6.2 Illustrative Example on Agricultural Data Analysis Using SEMs 

In SSA countries, agriculture is one of the most dominant activities providing jobs for the 

population. Productivity in this part of the world remains low because of many challenges that go 

beyond weather, pests and lack of fertiliser. For instance, in the Northern part of the African 

continent, less than thirty per cent of the land is irrigated, and Africa is far behind in the use of more 

advanced agricultural technology. We have used food production to display the values of this 

modelling method.  

The factor components are represented by component 1 to 10, as given in Table 3.3. The bold values 

are the highest correlations between the original variables and the components in the array.  

Table 3.3: The rotated component matrix 

Original variables 

Factor components 

1 2 3 4 5 6 7 8 9 10 

Bananas .100 -.045 .049 -.099 -.009 -.191 -.105 .802 -.038 -.039 

Beans -.050 -.029 .057 -.076 .114 .139 .075 .821 -.001 .073 

Cassava -.017 .040 .872 -.072 .089 .012 -.019 .114 -.044 .053 

Rice -.072 -.024 .090 .000 -.038 -.117 -.005 .050 -.031 .886 

Groundnut .033 .960 .208 -.041 -.009 -.017 .002 -.095 -.050 -.031 

Maize .074 .990 -.064 .034 .005 -.004 -.034 .003 -.027 .004 

Sugar cane .804 .083 .013 .421 .093 -.050 .203 .061 -.017 .062 

Vegetables .023 .993 .068 -.037 .001 -.005 -.032 .004 -.030 .013 

Cereals .382 .116 .843 .095 .008 -.088 -.022 .068 .081 .146 

Fruit .041 .059 .933 -.114 .023 -.056 .007 -.069 -.024 -.060 

Export .707 .016 .124 .254 .029 -.054 -.088 .243 .216 -.124 

Import .659 .071 .558 .255 .059 -.077 -.010 .126 .005 -.111 

Irrigated .775 .030 .200 .109 .144 -.102 -.065 -.169 -.078 -.051 
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Table 3.3 (Continued) 

Original Variables 

Factor Components 

1 2 3 4 5 6 7 8 9 10 

Rainfall -.131 -.073 -.009 -.020 .274 .070 .868 -.045 .026 .191 

Nitrogen -.111 -.019 -.044 -.049 .024 .919 -.008 .062 -.105 -.076 

Phosphate -.011 -.012 -.055 -.017 .174 .922 -.010 -.098 .069 -.027 

Rural .031 .019 .092 .010 .961 .070 .088 .112 -.054 -.040 

Urban .221 -.018 .029 .112 .934 .142 -.025 .002 .029 -.010 

 Electricity .335 -.044 -.047 .860 -.007 .090 -.149 -.067 .058 -.025 

Diesel .409 -.060 -.012 .855 -.015 -.010 .032 -.053 -.049 .000 

Transport -.016 .029 -.023 .895 .130 -.144 .037 -.106 .044 -.006 

Cattle- Buffaloes .120 .000 -.023 -.026 -.158 -.082 .907 .009 .031 -.189 

Pigs .120 -.042 -.077 .026 -.173 .076 -.028 -.080 .889 .115 

Poultry .128 .102 -.111 -.033 -.304 .222 -.154 -.073 -.726 .361 

Sheep - goats -.565 -.064 .348 .162 -.034 -.367 .013 .125 .006 -.396 

 

The dominant variables explaining each of the ten factors accounting for 87% of the total variation 

are outlined below: 

Factor 1 --- Sugar cane, Import, Irrigated crops and Sheep/Goat 

Factor 2 --- Groundnut, Maize, and Vegetables 

Factor 3 --- Cassava, Cereals and Fruits  

Factor 4 --- Electricity, Diesel and Transport 

Factor 5 --- Rural and Urban 

Factor 6 --- Nitrogen and Phosphate 

Factor 7 --- Rainfall and Cattle - Buffalos  

Factor 8 --- Bananas and Beans 

Factor 9 --- Pigs and Poultry 

Factor 10 --- Rice. 

The test for normality of the variables in each of the observed indicators for endogenous and 

exogenous variables is validated as shown in Tables 3.4 and 3.5   
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Table 3.4: Test for normality for the endogenous variables 

Observation Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Chi-squared 88.942 263.882 113.417 18.676 8.068 6.940 

Degrees of 

freedom 

10 3 6 1 1 1 

p-value 0.0001 0.0001 0.0001 0.0001 0.005 0.008 

 

Table 3.5: Test for normality for the exogenous variables 

Observation Factor 1 Factor 2 Factor 3 

Chi-squared 105.636 69.642 48.157 

Degrees of freedom 3 1 1 

p-value 0.0001 0.0001 0.0001 

 

The variables were normally distributed since the p-value is less than 0.05 (level of significance), 

therefore, the maximum likelihood estimation can be used. The general linear SEM is given in 

Equations 3.1a, 3.1b and 3.1c. The latent endogenous and exogenous models are the most highly 

correlated of the factor loads in which the measurement model is obtained by the maximum 

likelihood. The model fit resulted from the goodness-of-fit statistical tests that explain the 

discrepancy between latent and unobserved variables. In this practice, the model fits the data well, 

as this indicates that no important paths have been omitted from the model.  

After estimating the endogenous and exogenous latent measurement model separately, a joint model 

that includes the total latent model can now be estimated (Figure 3.2). Since latent variables are 

observed, the measurement is obtained indirectly through the latent endogenous and exogenous 
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variables. The latent unobserved variables are represented as ellipses, and the latent observed 

variables are represented as rectangles. Because we cannot measure or estimate the unknown factors 

or parameters perfectly; the measurement is subjected to an error. Therefore, the error terms are 

associated with each of the latent observed variables as they form part of the overall model. The 

error terms are also represented as ellipses (Figure 3.2).  

Based on the type of regression and relationship indicated in the diagram, the SEMs result from a 

potentially complex interplay between many observed and unobserved variables, including error 

terms. Using the variables in the data and corresponding identifier notations, we illustrate the inter-

relationship using the path diagram. The path diagram represents the model in line with the overall 

outcome of this study. The maximum likelihood estimates were obtained using Equation 3.2, and 

the results in Table 3.3. 
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Figure 3.2: Conceptual path diagram for the structural model 

 

Table 3.6 presents the endogenous variables under different models based on the factor loadings 

obtained from rotated provisional factors. The model equations, measurement model parameters and 

associated score components, in addition to the goodness-of-fit test statistics are also included. 

 

Table 3.6: The endogenous descriptions model 

 

Model 
Factor 

load 
Correlation MEq MModel 

Component 

score 

coefficient 

Goodn 

1 

Sugar 

Export 

Import 
Irrigation 

Sheep & 

goats 

0.804 

0.707 

0.659 

0.775 

0.565 

𝑌1 = Λ𝑦 

𝜂1  + 𝜀 

(

 
 

 𝑦7
 𝑦14
 𝑥3
 𝑥4
 𝑥10)

 
 

 = 

(

 
 
 

λ71
𝑦

λ14,1
𝑦

λ31
𝑦

λ41
𝑦

λ10,1
𝑦
)

 
 
 
 𝜂1  

+ 

(

 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5)

 
 

 

(

 
 

 𝑦7
 𝑥3
 𝑥4
 𝑥10
 𝑦14)

 
 

 = 

(

 
 

0
0.649
0.445
0
0 )

 
 
 𝜂1  

+ 

(

 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5)

 
 

 

𝜒2 = 

8.018 

𝑑𝑓 = 4 

p-value= 

0.005 

2 

Ground 

Maize 

Vegies 

 

0.960 

0.990 

0.993 

 

𝑌2 = Λ𝑦 

𝜂2  + 𝜀 

(
 𝑦5
 𝑦6
 𝑦8
)  = 

(

λ52
𝑦

λ62
𝑦

λ82
𝑦

)  𝜂2  

+ (

𝜀1
𝜀2
𝜀3

) 

 

(
 𝑦5
 𝑦6
 𝑦8
)  = 

(
0.055
0.936
0.013

)  𝜂2  

+ (

𝜀1
𝜀2
𝜀3

) 

 

𝜒2 = 

0.637 

𝑑𝑓 = 2 

p-value= 

0.0001 
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Table 3.6 (Continued) 

Model 
Factor 

Load 
Correlation MEq MMode 

Component 

score 

coefficient 

Goodn 

3 

Cassava 

Cereals 

Fruits 

0.872 

0.843 

0.933 

 

𝑌3 = Λ𝑦 

𝜂3  + 𝜀 

(
 𝑦3
 𝑦9
 𝑦10

)  = 

(

λ33
𝑦

λ93
𝑦

λ10,3
𝑦
)  𝜂3  

+ (

𝜀1
𝜀2
𝜀3

) 

(
 𝑦3
 𝑦9
 𝑦10

)  = 

(
0.152
0.186
0.688

)  𝜂3  

+ (

𝜀1
𝜀2
𝜀3

) 

𝜒2  = 

15.49 

𝑑𝑓 = 2 

p-value 

= 

0.0001 

4 
Rainfall 

Cattle 

0.868 

0.907 

𝑌4 = Λ𝑦 

𝜂4  + 𝜀 

(
 𝑋9
 𝑦11

)  = 

(
λ94

𝑦

λ11,4
𝑦)  𝜂4  

+ (
𝜀1
𝜀2
) 

(
 𝑋9
 𝑦11

)  = 

(0.560
0.560

)  𝜂4  

+ (
𝜀1
𝜀2
) 

𝜒2 = 

16.68 

𝑑𝑓 = 1 

p-value 

= 

0.0001 

5 
Banana 

Beans 

0.802 

0.821 

𝑌5 = Λ𝑦 

𝜂5  + 𝜀 

(
 𝑦1
 𝑦2
)  = 

(
λ15

𝑦

λ25
𝑦)  𝜂5  

+ (
𝜀1
𝜀2
) 

(
 𝑦1
 𝑦2
)  = 

(
0.594
0.594

)  𝜂5  

+ (
𝜀1
𝜀2
) 

𝜒2  = 

8.068 

𝑑𝑓= 1 

p-value 

= 0.005 

 

6 

Pigs 

Poultry 

0.889 

-0.776 

𝑌6 = Λ𝑦 

𝜂6  + 𝜀 

(
 𝑦12
 𝑦13

)  = 

(
λ12,6

𝑦

λ13,6
𝑦)  𝜂6  

+ (
𝜀1
𝜀2
) 

 

 

(
 𝑦12
 𝑦13

)  = 

(
0.600
− 0.600

)  𝜂6 𝜂6  

+ (
𝜀1
𝜀2
) 

 

𝜒2 = 

6.940 

𝑑𝑓 = 1 

p-value 

= 0.008 

 

MEq = Model equation MModel = Measurement model, Vegies = Vegetables, Ground = 

Groundnut, Goodn = Goodness-of-fit. 

In applying SEM through LISREL, we present the relationships obtained in terms of endogenous 

variables given in Table 3.6 and in terms of exogenous variables, as shown in Table 3.7. Table 3.6 
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summarises all the information, such as the six endogenous models presented in Column 1, while 

the selected endogenous variables are in Column 2. Column 3 gives the correlations of the variables 

with the component factors denoted by 𝜂𝑖 (i = 1, 2, …, 6). In Column 4, the six models are presented, 

the matrix notation of each model is given in Column 5. The estimated parameter for each model is 

shown in Column 6 and in Column 7, the goodness-of-fit test for each model. Similarly, Table 3.7 

summarises all the information concerning the three exogenous models in the same order as in the 

endogenous model except that in Column 3, the correlations are expressed in terms of component 

factor 𝜉𝑗 (j = 1, 2, 3).  

Table 3.7: The exogenous descriptions model 

 Factor 

load 

Correlation M.Eq.  MModel Component 

score 

coefficient 

Goodness-of-fit test 

 

1 

Electricity 

Diesel 

Transport 

0.860 

0.855 

0.895 

𝑋1 = Λ𝑥 

𝜉1  + 𝛿 

(
 𝑋11
 𝑋12
 𝑋13

)  = 

(

λ33
𝑥

λ93
𝑦

λ10,3
𝑥
)𝜉1  

+ (
 𝛿 1
 𝛿 2
 𝛿 3

) 

(
 𝑋11
 𝑋12
 𝑋13

)  = 

(
0.376
0.582
0.057

) 𝜉1  

+ (
 𝛿 1
 𝛿 2
 𝛿 3

) 

Chi-squared = 15.49 

𝑑𝑓 = 2 

p-value = 0.0001 

 

2 

Rural 

Urban 

 

0.961 

0.934 

𝑋2 = Λ𝑥 

𝜉2  + 𝛿 

(
 𝑋5
 𝑋6
)  = 

(
λ52

𝑥

λ62
𝑥) 𝜉2  

+ (
 𝛿 1
 𝛿 2
) 

(
 𝑋5
 𝑋6
)  = 

(0.513
0.513

) 𝜉2  

+ (
 𝛿 1
 𝛿 2
) 

Chi-squared = 69.64 

𝑑𝑓 = 1 

p-value = 0.0001 
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Table 3.7 (Continued) 

 
Factor 

Load 
Correlation M.Eq. MModel 

Component 

score 

coefficient 

Goodness-of-fit test 

 

3 

Nitrogen 

Phosphate 

0.919 

0.922 

𝑋3 = Λ𝑥 

𝜉3  + 𝛿 

(
𝑋1
 𝑋2
)  = 

(
λ1,3

𝑥

λ2,3
𝑥) 𝜉3  

+ (
𝛿 1
 𝛿 3
) 

(
𝑋1
 𝑋2
)  = 

(0.524
0.057

) 𝜉3  

+ (
𝛿 1
 𝛿 3
) 

Chi-squared = 48.16 

𝑑𝑓 = 1 

p-value = 0.0001 

MModel – Measurement model, M.Eq. = Model Equation  

For instance, in this exogenous model, three principal components were the main factors responsible 

for improving food production in SSA. These components are obtained through the analysis of the 

data when using the PCA approach. The three components causing the changes derived from the 

data were energy (𝜉1), labour (𝜉2), and fertiliser (𝜉3), as indicated in the path diagram (Figure 3.2). 

These variables are called “exogenous variables” in this context. This is because they were governed 

by external factors in relation to the food products. In addition, these variables appear to be random. 

In another illustration, the exogenous variables may be fixed by the researcher (Sobel, 1986). On 

the other hand, we had six effects that were derived from the data; these variables were: 𝜂1 , “Sugar 

cane and sheep - goat”; 𝜂2, “Groundnut, maize and vegetable”; 𝜂3, “Cassava, cereals and fruit”; 𝜂4,, 

“cattle - buffaloes”; 𝜂5, “bananas and beans”; and 𝜂6, “pigs and poultry”. These variables are called 

“endogenous variables” given that their impact depends stochastically on the operational systems 

relating to food, required to solve the problem of hunger in SSA. The arrows between these variables 

indicate that one variable was a cause of the other variable and 𝜺𝑖(𝑖 =  1, 2, …, 6), and 

𝜹𝑖 (𝑖 = 1, 2, and 3) are random variables that are assumed to have a multivariate normal distribution. 
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This means the expectation of the vector 𝜺 or 𝜹 is equal to zero. For instance, the matrix variance-

covariance of 𝜺 or 𝜹 was assumed to be zero and the 𝐶𝑜𝑣 ( 𝜀1, 𝜀2 ) = 𝐶𝑜𝑣 ( 𝜀2, 𝜀3 ) = ... = 𝐶𝑜𝑣 ( 

𝜀𝑖, 𝜀𝑗 ) = 0, where 𝑖 = 1, 2, ..., n and  j = 1, 2, ..., m.  

The path diagram showed that the absence of curved arrows between the variables in 𝜺  or 𝜹 

indicated that the covariance matrix is equal to zero as assumed above.  

This results from the power of the exploratory properties of factor analysis, showing a strong 

indication against orthogonality in the solutions in this complexity of data. Therefore, the six-

measurement model in matrix notation for the exogenous model are equivalent to Path diagram 2 

represented by Equation 3.1b, given by 

(

 
 
 
 
 
 
 
 
 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7
𝑦8
𝑦9
𝑦10
𝑦11
𝑦12
𝑦13
𝑦14)

 
 
 
 
 
 
 
 
 
 

 = 

(

 
 
 
 
 
 
 
 
0.000 0.000 0.000 0.000 0.594 0.000
0.000 0.000 0.000 0.000 0.594 0.000
0.445 0.000 0.152 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.055 0.000 0.000 0.000 0.000
0.000 0.936 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.013 0.000 0.000 0.000 0.000
0.000 0.000 0.186 0.000 0.000 0.000
0.000 0.000 0.688 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.600
0.000 0.000 0.000 0.000 0.000 −0.60
0.649 0.000 0.000 0.000 0.000 0.000)

 
 
 
 
 
 
 
 

(

  
 

 𝜂1
 𝜂2
 𝜂3
 𝜂4
 𝜂5
 𝜂6)

  
 

  + 

(

 
 
 
 
 
 
 
 
 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6
𝜀7
𝜀8
𝜀9
𝜀10
𝜀11
𝜀12
𝜀13
𝜀14)

 
 
 
 
 
 
 
 
 
 

 (3.3) 

In the same way, the exogenous measurement model represented by Equation 3.1c is given by 
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(

 
 
 
 
 
 
 
 
 
 
 

𝑋1
𝑋2
𝑋3
𝑋4
𝑋5
𝑋6
𝑋7
𝑋8
𝑋9
𝑋10
𝑋11
𝑋12
𝑋13)

 
 
 
 
 
 
 
 
 
 
 

   =    

(

 
 
 
 
 
 
 
 
 
 

0.376
0
0
0
0
0
0
0
0
0
0

0.582
0
0
0

0.513
0.513
0
0
0
0
0

0.057
0
0
0
0
0
0
0
0
0

0.524
0 0 0
0 0 0.057)

 
 
 
 
 
 
 
 
 
 

   (
𝜉1
𝜉2
𝜉3

)  +    

(

 
 
 
 
 
 
 
 
 
 
 

𝛿 1
𝛿 2
𝛿 3
𝛿 4
𝛿 5
𝛿 6
𝛿 7
𝛿 8
𝛿 9
𝛿 10
𝛿 11
𝛿 12
𝛿 13)

 
 
 
 
 
 
 
 
 
 
 

                   (3.4) 

The SEM given by Jöreskog’s (2000) formulas is given by Equation 3.2, as shown in Table 3.8. 

 

Table 3.8: The parameters estimates and measurement model matrices:  

𝜝 = 

(

  
 

0
0
0
0

0.527
0
0
0

0.098 0.008 0.094 −0.025
−0.196 0.265 −0.102 0.066
  0             0.217  0.548 −0.634
 0               0       −0.454  0.207

0 0   0               0         0             0.244 
0 0   0              0        0            0 )

  
 

 
𝜼 = 

(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 

 

 

𝜞 =  

(

  
 

 0.707
−0.087
0.384
0

 0.673
−0.036
−0.141
0

0.193  0 0 0
0.761  0 0 0
−0.567 0 0 0
          0   0 0 0

0 0           0 0 0 0
0 0           0 0 0 0

 

)

  
 
  𝝋 = 

(

  
 

𝜑1
𝜑2
𝜑3
𝜑4
𝜑5
𝜑6)

  
 

 𝝃 = 

(

 
 
 

𝜉1
𝜉2
𝜉3
𝜉4
𝜉5
𝜉6)

 
 
 

  

 

The structural model estimated with the class of the linear model as given in Equation 3.2 is 

equivalent to 
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(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 
 =  

(

  
 

0
0
0
0

0.527
0
0
0

 
0.098 0.008 0.094 −0.025
−0.196 0.265 −0.102 0.066
  0             0.217  0.548 −0.634
 0               0       −0.454  0.207

0 0   0               0         0             0.244 
0 0  0               0        0            0 )

  
 
  

(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 

  + 

                                       

(

  
 

0.707
−0.087
0.384
0

0.673
−0.036
−0.141
0

0.193 0 0 0
0.761 0 0  0

 

−0.567 0 0 0   
          0   0 0 0  

0 0           0  0 0 0  
0 0          0  0 0 0 )

  
 

(

 
 
 

𝜉1
𝜉2
𝜉3
𝜉4
𝜉5
𝜉6)

 
 
 

  +  

(

  
 

𝜑1
𝜑2
𝜑3
𝜑4
𝜑5
𝜑6)

  
 
. 

 

Having the latent scores for 𝜂1,𝜂2, 𝜂3, 𝜂4, 𝜂5 and 𝜂6, and 𝜉1, 𝜉2 and 𝜉3, we can use the information 

from the model to compare the productivity level for all the identified components. Based on this 

information, Figure 3.2 shows that the primary crop production level was simultaneously controlled 

by the support of livestock (using manure) and the contributing factors. The SEMs obtained 

extracted more information about the food production than using a single linear model for instance, 

maize. In so doing, with latent scores, we were able to estimate a single linear equation by using 

ordinary least squared (OLS) estimation through 𝜂1  as an endogenous variable. This procedure 

generates the equation 𝜂1 = - 0.0479𝜉1 – 0.0182 𝜉2 + 0.404 𝜉3. As an illustration of the model, this 

suggested that 𝜂1  was a linear function of 𝜉1 , 𝜉2 and 𝜉3 and as a result, the component units can be 

ranked either based on 𝜂1  or - 0.0479 𝜉1 – 0.0182 𝜉2 + 0.404 𝜉3. 

As indicated earlier, the approach adopted by the SEM was based on the variance-covariate matrix 

between the variables in the data and the initial path diagrams that hypothesise the causal 

relationships among the variables. These path diagrams were later translated into a diverse set of 

linear equations describing the relationships that define a certain pattern when using the variance-

covariance matrix.  
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The results were remarkably natural, as the correlations between latent (unobserved) variables and 

observed variables were found highly correlated (all above 0.80) and in a positive direction except 

Y (poultry) that was negatively strong (- 0.73) and Y representing sheep and goats (− 0.57) that was 

an acceptable relationship. By contrast, the relationship between the latent (unknown) variables was 

positively weak but statistically significant.   

Given these patterns, it indicates both a direct and indirect effect between exogenous and 

endogenous variables. The six endogenous variables derived from the diverse type of crop and kind 

of livestock mutually affect the three direct exogenous cause-factors: energy, labour, and fertilizer, 

as this is likely to confirm the supporting structure. Conversely, the energy used, labour and fertiliser 

factor types were likely to be correct with a high degree of confidence. These factors were key 

strategies to create a more abundant crop and rear healthy livestock.  

3.7 CONCLUSION AND RECOMMENDATIONS 

Latent variables were identified based on the effects of observable variables. Therefore, in applying 

SEM to food production data, the results have shown that the livestock’s products and the crop 

varieties had a set of relationships when using the latent variable as a set of predictors. The results 

also indicated that factors such as energy, labour and fertiliser have contributed positively to the 

development of food production in SSA; therefore, application of new technology is likely to 

increase food production. 

3.8 SIMULATION STUDY FOR TESTING STRUCTURAL EQUATION MODEL 

3.8.1 Introduction 

In the previous sections of this chapter, the SEM approach provides efficient results in evaluating 

the relations among variables and testing theoretical models. These variables can be directly or 

indirectly observed, and SEM enables the researcher to specify the set of causal relationship between 
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variables in the model. In some conditions, the variability of a set of relationships points to 

inconsistent conclusions about the level at which a model is indeed equivalent to the observed data. 

In this thesis, we present an approach to evaluate the suitability of a given SEM by employing factor 

analysis through the PCA to select the variables upon which the relationships can be established. In 

literature, the estimation of the parameters when using SEM assumes of multivariate normality or 

generalised least square of robust estimators. In this study, the researcher presents the use of LISREL 

from J𝑜̈reson. In applying this approach, we can assess hypothesised relations between variables 

that are consistent with the observed relations among the variables.  In the literature, researchers can 

start by conceiving how a set of variables is related to one another. The researcher defines a 

hypothesised model that is assumed to fit the data. A good model fits the data well, and therefore 

the results can then be interpreted. In some conditions, a model that is assumed to fit a specific latent 

variable may not fit the observed data; therefore, LISREL can be used. This is because LISREL 

provides the researcher with special quantitative estimates of the hypothesised model that fits the 

observed data. To demonstrate the mechanism of using LISREL, we intend to compare the results 

obtained from SEM through the LISREL approach to be confident of the technique used. The use 

of SEM has some restrictions since it specifies the latent variables involved in the analysis. There is 

a large, diverse set of relationships that can be developed among variables. There is a sub-set of the 

variability of relationships that can point to inconsistent conclusions about the level upon which a 

model is indeed equivalent to the observed data. This inconsistency may arise in applying factor 

analysis to test the component factor patterns of the loadings that reflect the performance of the 

relations between the original variables and the corresponding simulated component factors. In the 

next section, a simulation is examined to investigate whether there is consistency between the 

loadings of the rotated components and the simulated rotated components. If the simulation approach 
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presents similar components to the loadings obtained from the SEM technique, then the proposed 

SEM approach can be used with confidence in particular research. The approach that will be used 

in the simulation analysis will have a form of multivariate normal distribution with the mean vector 

𝝁 and the covariance matrix 𝚺. 

3.8.2 Concept of Simulation 

Simulation is a technique that conducts tests on the computer by associating random sampling from 

a probability distribution. Any measurement resulting from a sampling approach includes some level 

of sampling error. Using simulation, we can examine the performance of the test statistics and the 

interval estimation procedure when the observed parameters are known. The technique of simulation 

requires running enough tests for the uncertain variables in the model by collecting results from the 

given outcomes to produce the summary statistics, for instance, point estimates, standard errors and 

covariance with charts and graphs. In applying simulation, we can understand the solution obtained 

for a better picture of the decisions made. To test the performance of the improved approach in the 

SEM, we are now proceeding to use simulation to calculate the loading through the factor analysis. 

These quantities will determine the consistency of the pattern of the model, and whether they remain 

the same or not.  

The approach described in Table 3.10 has a form of an MVN distribution with the mean vector 

 𝝁 = (𝑦̅1, 𝑦̅2, . . 𝑦̅25 )
𝑡 and covariance matrix 𝚺  as given below 

𝚺 = (

𝑆11 𝑆12 ⋯ 𝑆1𝑛
𝑆21 𝑆22 ⋯ 𝑆2𝑛
⋮
𝑆𝑛1

⋮
𝑆𝑛2

⋮ ⋮
⋯ 𝑆𝑛𝑛

).  

The multivariate normal distribution can be noted, such as Model Y ~MVN (𝝁;  𝚺 ).  
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In this study, simulation is used to test the effectiveness of the improved model proposed in Section 

3.4.2. The application of this approach is used over an extensive range of data for the food production 

process through factor analysis techniques, simply because factor analysis helps us reduce a large 

number of variables by improving the understanding of the relationships among the variables in a 

single study. We present factor analysis to test the component factor patterns of the loadings that 

reflect the performance of the correlations between the original variables and the corresponding 

component factors. The operation of the simulation is illustrated by an example of a multivariate 

normal distribution with the parameters of a vector mean 𝒚̅  (25 × 1 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟)and the 

covariance matrix ∑ (25 × 25 𝑚𝑎𝑡𝑟𝑖𝑥). The approach is processed through a simulation of ten 

independent samples from the sample size of thirty-three.  

The following section will use the example given in Section 3.2.6 to examine the consistency 

between the loadings of the rotated components as per Table 3.10 and the simulated rotated 

components as shown in Table 3.9. This example has generated two parameters (𝒚̅ and ∑) that have 

been used in the 𝑀𝑉𝑁 distribution with a sample size of thirty-three using 20000 iterations to 

generate the factor that has been analysed. Therefore, sixteen independent samples are generated in 

the 𝑀𝑉𝑁 distribution, but the size of this experiment has become very demanding to compute the 

rotated components, as this requires far more computer capacity than what is available on the 

computer. In such a situation, to reduce the memory requirement, an assessment of the run of the 

loadings are made based on “Factor 1” of the simulation specification factors. However, the first 

factor resulting from the 20000 iterations, Factor 1, by the improved method and Factor 1 by 

simulation of the sixteen independent samples, are provided in Table 3.9. The total proportion of 

variance accounted for is given in Table 3.9. These substantial proportions of variance are of 
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particular interest simply because they indicate the degree to which the relative performance of the 

two approaches varied with Factor 1 by using the R software.  

Table 3.9: The rotated component of Factor 1 using simulation compared to the true Factor 1 

No True 

value 

Simulation of factor components 

 S1 S2 S3 … S8 S9 … S16 AS 

1 0.100 0.019 -0.110 0.350 … -0.222 -0.220 … -0.218 0.058 

2 -.050 -0.003 -0.220 0.085 … -0.038 -0.036 … -0.304 -0.019 

3 -.017 -0.158 -0.028 0.118 … 0.207 -0.206 … -0.204 0.258 

4 -.072 0.397 -0.267 0.156 … -0.102 -0.100 … -0.100 -008 

5 0.033 -0.216 -0.010 -0.017 … -0.405 -0.402 … -0.400 0.276 

6 0.074 -0.207 0.047 -0.056 ... -0.344 -0.342 … -0.341 0.250 

7 0.804 0.906 0.882 0.749 … 0.765 0.761 … 0.760 0.598 

8 0.023 -0.294 -0.062 -0.064 … -0.426 -0.424 … -0.422 0.240 

9 0.382 0.555 0.289 0.728 … 0.021 0.020 … 0.019 0.532 

10 0.041 0.070 -0.054 0.324 … -0.214 -0.213 … -0.210 0.284 

11 0.707 0.684 0.618 0.690 … 0.520 0.519 … 0.518 0.517 

12 0.659 0.818 0.648 0.903 … 0.630 0.629 … 0.628 0.649 

13 0.775 0.759 0.583 0.723 … 0.478 0.476 … 0.474 0.510 

14 -.131 -0.122 0.238 -0.184 … 0.141 0.140 … 0.138 -0.084 

15 -.111 -0.153 -0.120 -0.381 … -0.390 -0.389 … -0.388 -0.142 

16 -.011 -0.121 -0.100 -0.057 … -0.274 0.272 … -0.270 -0.076 

17 0.031 0.204 0.197 0.277 … 0.113 0.112 … 0.110 0.118 

18 0.221 0.340 0.318 0.475 … 0.473 0.472 … 0.470 0.224 

19 0.335 0.761 0.884 0.637 … 0.994 0.991 … 0.990 0.445 

20 0.409 0.764 0.949 0.682 … 0.953 0.952 … 0.950 0.493 

21 -.016 0.730 0.723 0.479 … 0.904 0.902 … 0.900 0.314 

22 0.120 0.078 0.366 -0.094 … 0.028 0.026 … 0.024 0.038 

23 0.120 0.052 -0.083 0.459 … 0.379 0.377 … 0.376 0.024 

24 0.128 -0.147 0.149 -0.581 … -0.052 -0.050 … -0.051 -0.020 

25 -.565 -0.053 -0.145 -0.014 … -0.269 -0.268 … -0.267 -0.104 

S1 = Sample 1, S2 = Sample 2, S3 = Sample 3, S16 = Sample 16, AS = Average of samples 
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Table 3.9 displays the high loadings per component factor, representing the form of the factor 

pattern for consistency. A correlation of the true value above 0.5 is regarded as important; 

therefore, we indicated them in bold for easy visibility.  

Table 3.10: The proportion variance 

True 

value 

Simulation in factor analysis 

S1 S2 S3 … S8 S9 … S15 S16 

0.190 0.206 0.190 0.213 … 0.225 0.224 … 0.220 0.204 

S1 = Sample 1, S2 = Sample 2, S8 = Sample 8, S9 = Sample 9, S16 = Sample 16 

The form of the factor pattern for consistency is specified in terms of high loadings per component 

factor in Table 3.9.  In this study, a correlation of the true value above 0.5 is regarded as important, 

therefore for easy visibility we have put all the values above 0.5 in bold. The findings reveal an 

accurate consistency of the high and low loadings. That is, the simulation procedure fits the pattern 

directly to the true factor components. The 25th variable is a poorer fit that has no similar patterns to 

the true loadings of Factor 1. This might be caused by an unexpected error in the calculation or from 

the dataset.  

3.8.3 Mean Squared Error 

Statistical procedures are usually associated with some type of errors that might arise during data 

collection or by the time of the calculation of the results. To quantify these errors requires applying 

the method of mean squared error (MSE). This technique will enable us to measure the performance 

of an estimator simply because it provides precision, bias, and accuracy during the statistical 

assessment. MSE needs an estimator, which is a function of a given data. Suppose 𝜔̂ represents the 

estimator, the MSE will then measure the average of the squares of the errors, that is, the average 

squared difference between the observed and the predicted values. 
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𝑀𝑆𝐸(𝜑̂) = 𝐸((𝜔̂ − 𝜔)2) alternatively, 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑥𝑖 − 𝑥̂𝑖)

2. 

where 𝑛 represents the number of the data, 𝑥𝑖 represents the observed values and 𝑥̂𝑖 the predicted 

values. 𝑀𝑆𝐸 is a value that provides information about the goodness of fit of the model that is used, 

it reveals how close a model such as a regression line is to a set of points. In addition, 𝑀𝑆𝐸 enables 

us to compare two or more statistical models. The smaller the value of 𝑀𝑆𝐸, the better the fit, simply 

because it minimises the variance, and a larger value of 𝑀𝑆𝐸 indicates that the data values are 

scattered largely around the mean value. For instance, when 𝑀𝑆𝐸  is zero, it means that there is a 

perfect precision found between the estimator 𝜔̂ and the parameter 𝜔. The simulation will help us 

to calculate 𝑀𝑆𝐸 and to construct the confidence intervals when the observed data are given. Using 

simulation, we can examine the performance of the test statistic and the interval estimation 

procedure when the observed parameters are known.  

Table 3.11: Mean squared values 

No MSE values for simulation components: factor 1 for the eight generated 

samples 

Average 

sample 

1 2 3 … 8 9 … 16 

1 0.003 0.002 0.003 … 0.005 0.002 … 0.001 0.000 

2 0.000 0.001 0.001 … 0.003 0.000 … 0.000 0.000 

3 0.000 0.000 0.001 … 0.001 0.000 … 0.001 0.003 

4 0.010 0.002 0.002 … 0.000 0.000 … 0.000 0.000 

5 0.003 0.000 0.000 … 0.008 0.004 … 0.002 0.003 

6 0.003 0.000 0.001 … 0.008 0.006 … 0.004 0.001 

7 0.000 0.000 0.000 … 0.000 0.001 … 0.000 0.000 

8 0.004 0.000 0.000 … 0.009 0.002 … 0.000 0.002 

9 0.001 0.000 0.005 … 0.006 0.000 … 0.000 0.001 

10 0.000 0.000 0.003 … 0.016 0.004 … 0.001 0.002 

11 0.000 0.000 0.000 … 0.002 0.000 … 0.000 0.002 

12 0.001 0.002 0.003 … 0.000 0.000 … 0.000 0.000 
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Table 3.11 (Continued) 

No  MSE values for simulation components: factor 1 for the eight generated 

samples 

Average 

Sample 

1 2 3 … 8 9 … 16 

13 0.000 0.006 0.000 … 0.004 0.002 … 0.000 0.003 

14 0.000 0.000 0.000 … 0.003 0.000 … 0.000 0.000 

15 0.000 0.000 0.003 … 0.003 0.000 … 0.000 0.000 

16 0.001 0.001 0.000 … 0.003 0.001 … 0.000 0.000 

17 0.001 0.000 0.003 … 0.000 0.000 … 0.000 0.000 

18 0.001 0.013 0.003 … 0.003 0.002 … 0.000 0.000 

19 0.008 0.013 0.004 … 0.009 0.004 … 0.002 0.000 

20 0.005 0.024 0.003 … 0.013 0.011 … 0.010 0.000 

21 0.024 0.003 0.011 … 0.000 0.000 … 0.000 0.005 

22 0.000 0.002 0.002 … 0.000 0.000 … 0.000 0.000 

23 0.000 0.008 0.005 … 0.000 0.000 … 0.000 0.000 

24 0.003 0.000 0.022 … 0.001 0.001 … 0.001 0.000 

25 0.011 0.008 0.013 … 0.004 0.001 … 0.001 0.009 

  

The findings of Table 3.11 range from 0.00 to 0.05, indicating that the model fits the data well. In 

other words, there is a perfect precision simply because the data values are all closely around the 

mean value.  

3.8.4 Discussion 

This study tested the improved SEM approach using factor analysis through the PCA with the 

simulation factor analysis under the same conditions of a dataset for a multivariate normal 

distribution. The two approaches were able to generate the same pattern of loadings accurately. 

Overall, this was true for sixteen independent samples even though one value (sheep and goats) 

differed. The sample size, the number of variables used, and the loadings range did not significantly 

impact the accuracy factor pattern. The simulation approach performed similarly to the loadings; 

therefore, the proposed improved approach presents a suitable and reliable methodology. Thus, the 
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proposed approach can be used with confidence in agricultural and related fields of research. The 

simulation R program is given in the appendix at the end of the thesis.  

Although the proposed model can improve better than the traditional approach, we note this can only 

be valid in the following conditions: 

1. The model can perform better under the assumption that the parameter estimates calculated 

are normally distributed and the sample size is 25 or more.  

2. When the parameter estimates are either not normally distributed or when the sample size is 

small, this model will not perform well unless other robust methods be used.  

3.  When the sample size has increased from 8 to 16, the findings revealed an accurate 

consistency of the high and low loadings. That is, the simulation procedure fits the pattern 

directly to the true factor components.  
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4CHAPTER 4 

INTEGRATING META-ANALYSIS INTO STRUCTURAL EQUATION 

MODELLING 

4.1 INTRODUCTION  

MA and SEM are the two statistical techniques most used in medical sciences (Sutton et al., 2000), 

psychology (Cooper, 2010) and education (Hedges & Olkin, 1985), more than in the agricultural 

field. Its benefit is that we can combine estimated parameters that strengthen each other in a single 

model. Many research studies have produced important contributions by combining the two 

techniques in an application, such as in the world values survey, by testing a theory on how job 

control predicts job satisfaction at the cultural level (Cheung, 2013). We construct a systematic 

approach that provides guidelines on how a MA model can be integrated into structural equation 

modelling. In Section 4.3, we present a methodological approach of MA. The methodology of SEM 

is described in Section 4.4. In Section 4.5, we show how to integrate MA into SEM since the new 

approach offers additional research opportunities in terms of methodological development in both 

MA and SEM techniques. MA synthesises the research findings, while SEM is a multivariate 

technique that tests hypothetical models. In Section 4.6, the advantages and disadvantages of the 

combined approach are described. An illustrative example is presented in Section 4.7, and the 

conclusion is given in Section 4.8.  

Traditionally, MA and SEM are two different techniques by nature, based on their assumptions, 

models, respective methodological approaches, and how one summarises the results. In statistical 

theory, the two techniques are multivariate techniques that use correlations or covariance matrices 

as inputs. The productivity in the results obtained from MA in many domains had motivated 

researchers to use MA and SEM in testing causal models (Becker & Scram, 1994; Viswesvaran & 
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Ones, 1995; Cheung & Chan, 2005). Many research studies have produced important contributions 

by combining MA and SEM, for instance in analysing longitudinal data (Ployhart & Ward, 2011). 

Other examples include the application of polynomial regression (Shanock et al., 2010) and in the 

state of the World Values Survey that tested a theory on how job control can predict job satisfaction 

at the cultural level (Cheung, 2013). We intend to introduce this technique in the agricultural 

research field as it is applied in other disciples.  

The food production process is a combination of activities developed separately, but the final activity 

adds together all the separate partial processes. The methodology to address such cases in the 

agricultural sector has not yet been sufficiently developed as it is done across various disciplines. 

This study proposes to synthesise correlation matrices in an adaptable methodology that allows for 

the incorporation of MA into SEM enables us to combine the data from past independent studies by 

drawing the overall conclusions while SEM examines and tests the relationships all together in the 

model. The data in MA are the effect sizes. Integrating MA into SEM aims to present a 

methodological approach that involves testing an extensive data set of the parameters in SEM. 

Guidelines will enable researchers to combine correlations from independent studies by using fixed 

and random effects to test homogeneity of correlation to fit a SEM. In this study, we show how to 

test the hypothesis against the model’s parameters. An agricultural research example is used to 

illustrate the procedure. The variables are standardised to have a common scale across the studies. 

In the next section, we briefly present the methodology concepts of MA, SEM, and the integration 

of MA into SEM. The illustrated example in the agricultural field is given in Section 4.7.  

4.2 OBJECTIVES 

The principal objectives are as follows 
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1 To introduce MA and SEM into the agricultural field as a new area accessible to applied 

research. 

2 To synthesise all studies that use MA and to model for the suitability of the SEM into a single 

combined model; and  

3. To provide a methodological approach with mathematical integration of MA into SEM by 

providing guidelines on how to test the hypotheses of homogeneity against heterogeneity.  

4.3 METHODOLOGY OF META-ANALYSIS 

Using MA, we integrate the findings from past independent studies. The input in MA is called effect 

size statistics that can be the standardised in respect of the mean difference (denoted as SMD), the 

correlation coefficient or the odds ratio. The methodology in MA is identical as given in Section 

2.3.  

Through the results obtained in the statistical test, we draw meaningful inferences, but the challenge 

is when the sample of past studies is too small, it becomes difficult to make conclusions about the 

population, as Jak (2015) reported that we need at least two studies to be included in MA that 

summarise the research question quantitatively. In addition, Landis (2013) indicated that the more 

studies collected, the bigger the total sample size, usually, the more confidence we have in our 

estimate of the actual correlation between the variables of interest.  

Individual studies can be combined in either the fixed-effects or random-effects model. The fixed-

effects model is represented by the equation 𝜼 =𝑿𝝃 + 𝜹, and the assumption is that the population 

of effect sizes remains the same for all studies. That is, the effects are homogeneous across studies. 

In the random-effects models, which are represented by the equation 𝜼 =  𝑿𝝃 + 𝑼 + 𝜹 , the 

assumption is that the population of effect sizes vary from one study to the next. The difference 
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between the two models is in calculating the standard errors associated with the combined effect 

sizes.    

4.4 METHODOLOGY OF STRUCTURAL EQUATION MODELLING 

Structural equation modelling estimates structural relations between latent variables generated from 

observed variables such as structural relations that are identified through a system of simultaneous 

linear equations (Olmos et al., 2018). This technique establishes the relationships between many 

variables, and therefore it requires constructing the model(s) of interest before the analysis of the 

data (Hoyle, 2012). Jöreskog (1973) coined the phrase LISREL to describe the technique. Hence, 

SEM is expressed based on a theory that must be tested to determine whether the model constructed 

can be rejected or not. A good model fits the data well, and the results obtained can then be 

interpreted. The inputs in SEM are the covariance or correlation matrices. The methodology used in 

SEM is as given in Section 3.4.  

4.5 INTEGRATING META-ANALYSIS INTO STRUCTURAL EQUATION 

MODELLING  

4.5.1 Materials and Methods from the Current Approach 

The current approach uses the same steps as given in Section 2.1. Some of the challenges from the 

current approach are in terms of synthesising past studies that are not suitable due to the eligibility 

criteria in the selection of the inclusion of the studies. Jak and Cheung (2018) reported that if the 

number of studies became too small, the reliability of the results inevitably became a problem.  

We need to improve the approach by developing new objectives because individual works may 

provide unbiased, perfect, and reliable results. Synthesising criteria of processes by combining past 

studies is not suitable and flexible because SEM is a multivariate technique that fits, and tests 

hypothesised models. The steps for the current approach are: 
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Step 1: Apply a clear sense of the hypothesis of interest by anticipating the relationship between MA 

and SEM (Viswesvaran & Ones, 1995).  

Step 2: Include all studies with existing results related and any associated interest.  

Step 3: Synthesise correlation matrices. 

Step 4: Fit SEM. 

Step 5: Apply MA on a series of correlation matrices to create a pooled correlation matrix.  

Step 6: Analyse the pooled correlation matrix obtained in Step 3 into SEM.  

Step 7: Make use of available software that performs the integration of MA into SEM, such as 

MASEM (Viswesvaran and Ones, 1995; Colquitt et al., 2000) or TTSEM (Cheung & Chan, 

2005; Cheung, 2009).  

4.5.2 Materials and Methods from the Improved Approach 

The inputs of MA are the effect sizes that can be the standard error, sample size, covariance or 

correlations. In this study, we propose to get all possible effect sizes collected from the past studies. 

The methodology of the newer approach facilitates the integration of the MA into SEM by proposing 

a suitable way of testing complex theories involving multiple variables that cannot be measured. 

The steps are as follows:  

Step 1: Set clear eligible criteria that enable a complete literature search in locating all relevant past 

studies.  

Set 2: Calculate the effect sizes from the past studies. 

Step 3: Use factor analysis on the data to identify the most important variables for the integration. 

PCA enable us to reduce the number of dimensions without much loss of information.  
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Step 4: Calculate the variance-covariance matrix from the standardised data because using PCA on 

the standardised data is equivalent to PCA using the correlation matrix.  

Step 5: Rotate components with the reduced factors that have the high loading on the factor; in so 

doing, the interpretation of the factors becomes simple.    

Step 6: Conduct a test of homogeneity effects of the correlation matrices.  

Step 6.1: If the test is not statistically significant, then we proceed by combining the 

correlations matrices to form a pooled correlation matrix.  

Step 6.2: If the test is statistically significant, then we use the random-effects model to 

explain the variations across the studies. 

Step 7: Determine the average of the correlation if Step 6.1 has been performed by employing the 

pooled correlations to fit the SEMs. The diagonals of the linear model indicate that the 

correlation matrix is one. The benefit of integrating MA into SEM is to account 

simultaneously for all effects of factors in a single model.  

4.5.3 Test for Structural Equation Modelling: Fitting SEM  

Suppose two factors are used in the process of integrating MA into SEM. Factor A comprises five 

indicators for agricultural food production products such as “the number of heads of animals”, “the 

quantity of crops used in kg/ha”; “soil texture”, “fertiliser-use measured in kg/ha”, and “the impact 

of agroforestry adoption of the livelihood of farmers”. Factor B represents the five regions in the 

SSA that are classified based on their ecological zones. The five regions are “Eastern Africa”, 

“Middle Africa”, “Northern Africa”, “Southern Africa” and “Western Africa as given in Table 4.1. 

In this study, factors A and B enable us to integrate MA into SEM. The SEM approach is used based 

on the guideline of the methodology provided in the previous sections. In applying the approach, we 

employ all the data sets using the factor analysis through the PCA. This process enables us to use 
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the most important variables in which the path diagram displays the suitable linear relations between 

exogenous and endogenous variables. The results provide a set of relations of four exogenous factor 

models (𝜉1, 𝜉2 , 𝜉3, 𝜉4 ) such that: Eight indicators (𝑋2, 𝑋4, 𝑋5, 𝑋7 , 𝑋8, 𝑋10,  𝑋11, 𝑋15) are related to 

Factor 1, five indicators (𝑋1 , 𝑋3 , 𝑋9 ,  𝑋12 ,  𝑋14 ) are linked to Factor 2, 0ne indicator 𝑋6  are 

associated with Factor 3 and one indicator 𝑋13 is connected to Factor 4. From the factor B side of 

models there is one factor 𝜂1upon which the indicators 𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5 are linked to Factor 1, as 

shown in Figure 4.1   

Figure 4.1: Path Diagram, Structural Equation Model  

𝑋1: Goat, 𝑋2: Sheep, 𝑋3: Pig, 𝑋4: Maize, 𝑋5: Groundnut, 𝑋6: Pea, 𝑋7: Sand, 𝑋8: Loan, 𝑋9: Clay, 𝑋10: Nitrogen, 𝑋11: 

Phosphorus, 𝑋12: Potassium, 𝑋13: Increase.Income, 𝑋14: Increase.Savings, 𝑋15: Increase.Agro, 𝑌1: represents Eastern 

Africa, 𝑌2: Middle Africa, 𝑌3: Northern Africa, 𝑌4: Southern Africa and 𝑌5: Western Africa.  

The fifteen observed variables (𝑋1, 𝑋2, ..., 𝑋15) are given in squares, and their values regressed on 

the exogenous variables. The values of the five categorical regions (𝑌1, 𝑌2, ..., 𝑌5) are regressed on 
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the endogenous variable 𝜂1. In a latent factor model, (𝜉1, 𝜉2, 𝜉3 and 𝜉4) are linked to the latent 

indicator factor (𝜂1, 𝜂2 , and 𝜂3) and by the estimated parameters denoted by (𝛽12, 𝛽21, 𝛽31,𝛽32, 

and 𝛽41). In addition, the latent factors are connected to the original variables. The distribution of 

latent factors is explained in terms of the expected value and the covariance of the residual of 𝛿.   

Suppose we define a series of correlations denoted η𝑘 for k = 1, 2, 3... N. For each independent study 

𝜂𝑘 , the covariance matrix 𝑽  is known, with  𝑛 × 𝑛 being a matrix with non-zero off-diagonal 

elements, so that the observations remain correlated. The regression model to estimate the 

parameters is 

𝜼 = 𝑿𝝃 + 𝜹                                                                                                              (4.1) 

assuming that 𝐸(𝜹) = 0 and the covariance 𝑉(𝜹) = 𝜎2𝑰. 

𝑿 is an 𝑛 × 𝑛 matrix of explanatory variables, which is an identity matrix,  𝜼 is a vector of the 

observed effect sizes (correlations from the sample), 𝝃  is a vector of the specific effect sizes 

(correlations from the population), and 𝜹 is a vector of sampling error with 𝜹𝒊  ~𝑁(𝟎, 𝑽𝒊).  𝜼 is 

distributed with a multivariate normal distribution with a mean equal to 𝝃 and the covariance equal 

to 𝑽. Alternatively, we can write 𝜼 ~MVN (𝝃, 𝑽). 𝝃 and 𝑽 need to be estimated. In this study, the 

estimation of the weighted correlation is done through the approach of the generalised least squares 

(GLS) test to determine the summary of the correlation matrix  𝝃̂ , with variance denoted by  

Var (𝝃̂ ). The least square’s function is 

(𝜼 − 𝑿𝝃)𝑇 𝑽−1(𝜼 − 𝑿𝝃)                                                                                                      (4.2) 

The partial derivative with respect to 𝝃 is (𝑿𝑻𝑽−𝟏𝑿)𝝃 = 𝑿𝑻𝑽−𝟏𝜼 and the estimator 𝝃̂ is  
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𝝃̂ = (𝑿𝑻𝑽−𝟏𝑿)−1𝑿𝑻𝑽−𝟏𝜼 ,          

    

(4.3) 

where 𝐸(𝝃̂) = 𝐸((𝑿𝑻𝑽−𝟏𝑿)−1𝑿𝑻𝑽−𝟏𝜼) = 𝝃                                                                                    (4.4) 

𝑉𝑎𝑟(𝝃̂) = 𝐸((𝑿𝑻𝑽−𝟏𝑿)−1𝑿𝑻𝑽−𝟏𝜼) = 𝜎2(𝑿𝑻𝑽−𝟏𝑿)−1. (4.5) 

The covariance V is equal to (𝑿𝑻𝑽−𝟏𝑿)−1, 

where 𝑽 = (

𝑆11 0 0 … 0
0 𝑆22 0 … 0
⋮
0

⋮
0

⋮
0

⋮
…

⋮
𝑆𝑛𝑛

),         𝜼 = (

𝜂11
𝜂21
⋮
𝜂𝑛1

),       and      

 𝑿 = (

1 0 0 0 0
0 1 0 0 0
⋮
0

⋮
0

⋮
0

⋮
…

⋮
1

),  

The off-diagonal terms 𝑽𝒊𝒋 are the conditional sampling covariance matrix of effect sizes, therefore, 

𝑽 = 𝐷𝑖𝑎𝑔(𝑆11, 𝑆22, ..., 𝑆𝑛𝑛). 

4.5.4 Test for Fixed Effects Model 

Suppose that from the past studies we obtain the correlations 𝜂1, 𝜂2, … , 𝜂𝑛 and the sample variances 

𝑆1, 𝑆2 , … ,  𝑆𝑛  that form the elements of 𝑽 . When the past studies are independent under the 

generalised least squares (GLS) approach, then 𝑽 = diag (𝑆11, 𝑆22  … ,  𝑆𝑛𝑛). The test statistic 𝑄 for 

homogeneity of all effects sizes across all the studies is  

𝑄 = (𝜼̂ − 𝑿𝑻𝝃̂)𝑽−𝟏 (𝜼̂ − 𝑿𝑻𝝃̂)                                                                                                      (4.6) 

where 𝑄 follows a Chi-squared distribution with (𝑛 − 1) degrees of freedom.  

The hypotheses to test for heterogeneity are 

𝐻0 : Homogeneity effect is identified versus 𝐻1: Heterogeneity effect is identified. 
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If the null hypothesis is rejected, then we proceed with the random effects. We will begin by 

recalculating the summary of the effects and the variance, including between studies. The model for 

the fixed effects is given in Equation 4.1:  𝜼 = 𝑿𝝃 + 𝜹                                                                                                                                

where 𝐸(𝜹) = 0 and 𝑉𝑎𝑟(𝜹) = 𝜎𝑛
2I. 

The estimated variance is given by  

𝐸(𝑄) = (𝑛 − 1) + 𝜎𝑛
2[𝑡𝑟 (𝑽−1) − 𝑡𝑟(𝑽−𝟏𝑿(𝑿𝑇𝑽−1𝑿)−1 × 𝑿𝑇𝑽−1)] 

𝑄 = (𝑛 − 1) + 𝜎𝑛
2[𝑡𝑟 (𝑽−𝟏) − 𝑡𝑟(𝑽−𝟏𝑿(𝑿𝑇𝑽−𝟏𝑿)−𝟏 × 𝑿𝑇𝑽−1)] 

𝑄 - (𝑛 − 1) = 𝜎𝑛
2[𝑡𝑟 (𝑽−1) − 𝑡𝑟(𝑽−1𝑿(𝑿𝑇𝑽−𝟏𝑿)−1 × 𝑿𝑇𝑽−1)] 

𝜎𝑛
2 = 

(𝑄 − (𝑛−1))

𝑡𝑟 (𝑽−1)−𝑡𝑟(𝑽−1𝑿(𝑿𝑻𝑽−1𝑿)−1× 𝑿𝑻𝑽−1)
                                                                      (4.7) 

4.5.5 Test for Random Effects Model 

The random-effects model to test the heterogeneity between the studies is similar to the 

fixed-effects model given in Equation 4.1, with the same assumptions but together with 

an explained portion 𝑼 of the random effects. Therefore, the model for random effects is 

defined by 

 

 

 

𝜼 = 𝑿𝝃 + 𝑼 + 𝜹. (4.8) 

Similarly, for the random-effects model, we need to recalculate the estimated parameter 𝝃, the 

expected value 𝝃 and the variance of 𝝃 in the random effects under the model of Equation 4.8, where 

the covariance of the random effects of the unexplained 𝑼 is Cov (𝑼𝒊𝒋) = 𝐷 (Laird & Ware, 1982; 

Jennrich & Schluchter, 1986). Suppose that 𝑼 + 𝜹 = 𝝉,  then the random model of Equation 4.8 can 

be written as 𝜼 = 𝑿𝝃 + 𝝉, where Cov (𝝉) = Cov (U+ 𝜹) = 𝐷 + 𝜎𝑛
2𝑰 .  Similarly, the test statistic 𝑄 
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for heterogeneity can be shown by replacing 𝑽 from the fixed effects model with 𝐷 + 𝜎𝑛
2I, as given 

in Equation 4.9. The test statistic 𝑄 becomes  

𝑄 = (𝜼̂ − 𝑿𝑻𝝃̂)(𝑺 + 𝜎𝑛
2𝐈 )−1(𝜼̂ − 𝑿𝑇𝝃̂) (4.9) 

The partial derivative with respect to  𝝃  is (𝑿𝑇(𝑺 + 𝜎𝑛
2I )−1𝑿)𝝃  = 𝑿(𝑺 + 𝜎𝑛

2𝐈 )−1𝜼  and the 

estimator 𝝃̂ is  

𝜉=(𝑿𝑇(𝑺 + 𝜎𝑛
2𝐈 )−1𝑿)−1𝑿𝑇(𝑺 + 𝜎𝑛

2𝐈 )−1𝜼 (4.10) 

where 𝐸(𝝃̂)=𝐸((𝑿𝑇(𝑺 + 𝜎𝑛
2𝐈 )−1𝑿)−1𝑿𝑻(𝑺 + 𝜎𝑛

2I )−1𝜼) = 𝜉                                                    (4.11) 

𝑉𝑎𝑟(𝝃̂)=𝐸((𝑿𝑻(𝑺 + 𝜎𝑛
2I)−1𝑿)−1𝑿𝑇(𝑺 + 𝜎𝑛

2I )−1𝜼)= 𝜎2(𝑿𝑇(𝑺 + 𝜎𝑛
2𝐈 )−1𝑿)−1                                    (4.12) 

𝐸(𝑄)  = (𝑛 − 1)  +𝜎𝑛
2[𝑡𝑟 ((𝑺 + 𝜎𝑛

2𝐈 )−1) − 𝑡𝑟((𝑺 + 𝜎𝑛
2𝐈 )−1𝑿(𝑿𝑇(𝑺 + 𝜎𝑛

2𝐈 )−1𝑿)−1 × 𝑿𝑇(𝑺 +

𝜎𝑛
2𝐈 )−1)] 

𝑄  = (𝑛 − 1)  + 𝜎𝑛
2[𝑡𝑟 ((𝑺 + 𝜎𝑛

2𝐈 )−1) − 𝑡𝑟((𝑺 + 𝜎𝑛
2𝐈 )−1𝑿(𝑿𝑇(𝑺 + 𝜎𝑛

2𝐈 )−1𝑿)−1 × 𝑿𝑇(𝑺 +

𝜎𝑛
2𝐈 )−1)] 

𝑄 - (𝑛 − 1)  = 𝜎𝑛
2[𝑡𝑟 ((𝑺 + 𝜎𝑛

2𝐈 )−1) − 𝑡𝑟((𝑺 + 𝜎𝑛
2𝐈 )−1𝑿(𝑿𝑇(𝑺 + 𝜎𝑛

2𝐈 )−1𝑿)−1 × 𝑿𝑇(𝑺 +

𝜎𝑛
2𝐈 )−1)] 

𝜎𝑛
2= 

(𝑄 − (𝑛−1))

𝑡𝑟 ((𝑺+𝜎𝑛2𝐈 )−1)−𝑡𝑟((𝑺+𝜎𝑛2𝐈 )−1𝑿(𝑿𝑇(𝑺+𝜎𝑛2𝐈 )−1𝑿)−1× 𝑿𝑇(𝑺+𝜎𝑛2𝐈 )−1)
 (4.13) 

These estimates are likely to improve the results. If the heterogeneity is detected, the next step is to 

quantify the dimension of heterogeneity. 

The size of heterogeneity: If the heterogeneity of the correlation coefficients is identified and 

significant, then the size of the heterogeneity is calculated by 𝐼2  as proposed by Higgins and 

Thompson (2002), as demonstrated below 

𝐼2 = 
𝑈2

𝑈2+𝜗
  = 

𝑄−(𝑘−1)

𝑄
    (4.14) 
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where 𝑄 is the overall heterogeneity calculated based on Equations 4.6 and 4.9 for the fixed and 

random effect-models respectively. If 𝑄 is less than (k – 1), that means 𝐼2 = 0. When the calculated 

𝐼2 values are approximately equal to 0.25, 0.50 and 0.75; then this is equivalent to a low, medium, 

and high level of heterogeneity (Higgins et al., 2003). These numbers help the researcher to evaluate 

the level of heterogeneity. A higher value indicates that heterogeneity hold therefore, the random-

effects models can be used, and the researcher can further perform the meta-regression model. The 

meta-regression approach explores potential heterogeneity, resulting in the changes that might occur 

in practice over time and evaluate the effect of the variables of interests. A lower number indicates 

less heterogeneity, therefore, more consistency across the included studies.  

4.6 ADVANTAGES AND DISADVANTAGES OF THE COMBINED MODEL  

In this section, we present some of the advantages and disadvantages of using the combined model.  

4.6.1 The Advantages of the Combined Model 

The major benefits are especially: 

• Single models can help us predict, but in case these models are consistently unable to predict 

the risk accurately or when the models do not fit the data well. In such a condition, the 

combined model is used to improve the overall precision of the prediction.  

• In selecting the model, suppose that there is uncertainty on the choice of the model to use. 

Under such a condition, a combined approach might be the desired approach to use, among 

others. For instance, in botanical epidemiology, there is usually significant uncertainty in the 

selected models for the analysis (Shah et al., 2014 and Xu et al., 2014).  

• When no single model is strongly supported by the data, it becomes difficult to choose one 

model over another. The combined model provides a means to address the research question. 

Parameter estimates obtained by the combined model are more robust than the single model 



 
 

83 
 

simply because the combined approach reduces both the model selection bias and the model 

selection uncertainty (Yang, 2003; Yuan & Yang; 2005; Hansen, 2007).  

• The combined model increases the predictive power, especially for cases that have a sizeable 

residual discrepancy; therefore, the number of predictor variables in the models will be small.  

• In a real-life situation, the researcher might not have enough information about the variables 

of interest. In such a condition, the single model might be inappropriate to estimate the 

parameter or make predictions. Instead, the combined model will perform better than the 

single models. For instance, agricultural research is concerned with techniques that can 

describe the observed data to test hypotheses and predict future situations. In other words, if 

the observed data fails significantly to support any single model, the combined model can be 

used to estimate model parameters and make a prediction. For example, in agriculture, most 

of the research problems involve many variables, and some might be correlated. Therefore, 

the data collected under such conditions require multiple approaches simply because a way 

to build a best single model with correct number of variables is usually problematic.  

4.6.2 The Disadvantages of the Combined Model  

The major disadvantages among others are especially: 

• In real life, we usually use the models of which we have clear knowledge, but when we 

combine them, sometimes the combined model will have less reusability since the researcher 

might have too much unclear knowledge about the combined model, more than the 

application of the single model.  

• Statistical techniques might be improperly used by researchers. That is, the single models 

are inappropriately used in the analysis; therefore, using the combined approach would be a 

risk as taking decisions based on incorrect results might cause significant mistakes.  
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• Subconsciously, the combined model can allow one technique to influence or distort the other 

model simply because the information may not be well evaluated, or it may be the case of 

the wrong choice of a model. Hence, the combined model must be used with precaution. 

4.7 DATA ANALYSIS 

The hypotheses that test how to integrate MA into SEM are now presented. The approach uses factor 

analysis through the PCA to create essential variables for a valid correlation matrix. The loadings 

allow us to test the null hypothesis of equality of factors under the fixed- and random-effects model. 

The data were extracted from each eligible article based on the inclusion criteria in the SSA 

countries. Published reports on “the crops production measured in kg/ha”, “life heads of animal in 

stock”, “fertilizer use measured in kg/ha”, “soil texture in Kg N ℎ𝑎−1" and “the number of farmers 

with positive impact on livelihood” from 2005 to 2017 as identified by factor A with five indicators. 

Factor B uses a set of data selected in African countries such as Malawi, Zambia, Zimbabwe, 

Tanzania, Mozambique, and Kenya as given in Table 4.1. 

 

Table 4.1: Data set (average production) 

Factor A Factor B: Regions 

Average 

Prod 

Nimpaye 

et al. 2011 

Cordon-Obra 

et al. 2009 

Ayama et al 

2015 

Tadese and 

Megerssa 2010 

Lelisa et al. 

2016 

Live 

animal 

Number 

of heads 

(in 

stock) 

Goat 264 456 227 234 204 

 Sow et al. 

2013 

Ndetchi et al. 

2017 

Kebele et al. 

2016 

Sim Shaw et al. 

2016 

Amina et al. 

2001 Sheep 1009 192 222 122 250 

 Nakayima 

et al 2012 

Karshina et 

al. 2016 

Von 

Wissmann et 

al 2011 

Karshina et al. 

2016 

Anene et al 

2011 Pig 248 600 312 712 300 

Total 1521 1248 761 1068 754 
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Table 4.1 (Continued) 

Crop (in 

kg /ha) 

Kg/ha Malawi 

(gliricidia) 

Tanzania 

(gliricidia) 

Zambia 

(gliricidia) 

Zimbabwe 

(sesbania) 

Zambia 

(sesbania) Maize 3900 2300 2800 3000 3200 

 Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 Groundnut 204 224 198 322 340 

 Ndula at el. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 Pea 220 297 184 100 444 

Total 4324 2821 3182 3422 3984 

Soil (in 

Kg N  

ℎ𝑎−1 ) 

Kg N  

ℎ𝑎−1 
Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 

Ndula et al. 

2002 Sand 98 127 99 143 168 

Loan 45 77 152 151 184 

Clay 71 85 112 46 169 

Total 214 289 363 340 521 

Fertilize

r (in 

Kg/ha) 

Kg/ha Muheza 

(Tanzania) 

Nsekera 

(Zambia) 

Kagoro 

(Zambia) 

Kalunga  

(Zambia) 

Mukoka 

(Malawi) Nitrogen 34 66 72 67 74 

 Meheza 

(Tanzania) 

Nsekera 

(Zambia) 

Makoka 

(Malawi) 

Msekera 

(Zambia) 

Kalunga 

(Zambia) Phosphorus 20 44 52 46 43 

 Muheza 

(Tanzania) 

Muheza 

(Tanzania) 

Msekora 

(Zambia) 

Makuka 

 (Malawi) 

Kalunga 

(Zambia) Potassium 22 46 31 43 25 

Total 76 156 155 156 142 

Live of 

farmers 

      

Number Malawi Zambia Mozambique Kenya Zimbabwe 

Increase 

Income 

58 68 53 84 65 

Increase 

Savings 

87 94 71 82 59 

Increase in 

Agroforestr

y 

55 87 65 77 86 

Total 200 243 189 243 210 

Live = Livehood 

MA employs the findings from Table 4.1 by combining the results as given in Table 4.2.                 

Table 4.2 provides the correlation matrices having the same dimensions across the studies.  
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Table 4.2: The correlation matrices 

Study 

1 

  1.Goat 2.Sheep 3.Pig 4.East 5.Middle 6.North 7.South 8.West 

1  -0.089        

2  0.424 -0.602 1      

3  0.981 0.874 0.287 1     

4  0.968 0.142 0.223 0.998 1    

5  0.993 -0.077 0.337 0.987 0.975 1   

6  0.989 0.006 0.295 0.997 0.991 0.961 1  

7  0.990 -0.128 0.976 0.961 0.998 0.990 1  

8  0.990 -0.128 0.976 0.961 0.998 0.990 0.997 1 

2   1.Crop 2.Groundnut 3.Pea 4.East 5.Midd 6.North 7.South 8.West 

1  1        

2  0.023 1       

3  -0.025 0.291 1      

4  -0.452 0.444 0.188 1     

5  -0.395 -0.482 0.177 0.998 1    

6  -0.587 -0.412 0.181 0.987 0.975 1   

7  -0.518 -0.434 0.188 0.997 0.991 0.996 1  

8  -0.632 -0.406 0.185 0.976 0.961 0.998 0.990 1 

3 1  1.Nitro 2.Phos 3.Pota 4.East 5.Midd 6.North 7.South 8.West 

1  1        

2  0.949 1       

3  0.419 0.558 1      

4  -0.205 -0.179 0.461 1     

5  -0.269 -0.239 0.414 0.998 1    

6  -0.056 -0.021 0.555 0.987 0.975 1   

7  -0.138 -0.108 0.502 0.997 0.991 0.996 1  

8  -0.001 0.038 0.577 0.976 0.961 0.998 0.990 1 
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Table 4.2 (Continued) 

4 1  1.Sand 2.Loan 3.Clay 4.East 5.Midd 6.North 7.South 8.West 

 1  1        

 2  0.633 1       

 3  0.440 0.547 1      

 4  -0.189 -0.688 -0.221 1     

 5  -0.235 -0.734 -0.237 0.998 1    

 6  -0.144 -0.583 -0.187 0.987 0.975 1   

 7  -0.171 -0.641 -0.701 0.997 0.991 0.996 1  

 8  -0.132 -0.540 -0.163 0.976 0.961 0.998 0.990 1 

5 1  Inco 2.Savin 3.Agro 4.East 5.Midd 6.North 7.South 8.West 

1  1        

2  0.219 1       

3  0.515 -0.152 1      

4  -0.030 0.743 0.280 1     

5  -0.068 0.758 0.219 0.998 1    

6  0.000 0.699 0.372 0.987 0.975 1   

7  -0.022 0.722 0.322 0.997 0.991 0.998 1  

8  -0.003 0.673 0.399 0.976 0.961 0.998 0.990 1 

East = Eastern Midd. = Middle, Nort = Northern West = Western Inco: Income, Savin: Saving. Agro: 

Agroforestry Motor gas, Mac. = Macaroni, Elect. = Electricity, Power. = Power of irrigation. 

 

In MA, the selection of the model can be fixed- or random effects. We use the Chi-squared test to 

select the model, and the results in Table 4.6 show that homogeneity holds; therefore, the fixed 

effects model is applicable. If the fixed effects model is used, the integration of MA into SEM 

requires the correlations matrices to be averaged to obtain the pooled correlation matrix. It is with 

the pooled correlation matrix that the process of integration of MA into SEM begins. The parameters 

in the model need to be estimated and tested for significance. 
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The fixed- and random-effects models account for homogeneity or heterogeneity through the 

analysis of correlations. We assume that all studies included contribute equally to the population of 

effect sizes simply because all the studies have the same effects. Since individual tests were not 

significant, we must average all corresponding correlations to form a pooled estimate to be used in 

the SEM, as given below in Table 4.3.  

Table 4.3: The pooled correlation matrix 

 1.Goat 2 Sheep 3. Pig 4.East 

Eastern 

5. Middle 6.North 

thNorthe

n 

7.South 

Southern 

8.West 

Western 1 1        

2 0.347 1       

3 0.365 0.129 1      

4 0.004 -0.155 0.199 1     

5 0.017 -0.079 0.159 0.998 1    

6 0.041 -0.091 0.252 0.987 0.975 1   

7 0.028 -0.073 0.460 0.996 0.992 0.986 1  

8 0.044 -0.073 0.269 0.973 0.968 0.990 0.990 1 

 

The hypothesis of homogeneity of the correlation matrices is rejected if at least one of the correlation 

coefficients is heterogeneous across studies. Similarly, the variance of the correlations matrices is 

given below. 

The variance for correlations matrices is given in Table 4.4. 
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Table 4.4:Variance for correlation matrices 

 

1.Goat 2.Sheep 3.Pig 4.East. 5.Mid. 6.North. 7.South. 8. West 

1 1 

       
2 0.189 1 

      
3 0.038 0.250 1 

     
4 0.317 0.308 0.065 1 

    
5 0.300 0.322 0.057 0.001 1 

   
6 0.337 0.243 0.078 0.001 0.001 1 

  
7 0.323 0.273 0.103 0.001 0.001 0.001 1 

 
8 0.347 0.225 0.078 0.001 0.001 0.001 0.001 1 

East. = Eastern Africa, Midd. = Middle Africa, North=. Northern Africa, South= Southern Africa 

West = Western Africa 

The values of the variance for the correlation matrix are small, indicating that the correlations in the 

dataset are closer to the correlation mean; therefore, the studies used in the analysis contribute 

equally to the population of the effect sizes simply because the studies have the same effects across 

studies.  

The pooled correlation matrix provides the true values with no errors that the researcher uses to 

integrate MA into SEM. In applying the approach, the researcher can test the causal models 

(Viswesvaran & Ones 1995; Shadish, 1996).  

Fitting SEM. The new approach uses all the data sets using the factor analysis to generate the 

important components through the PCA. The variables with the highest sample variances were 
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among the four components taken as each variable received its weight in the analysis by using the 

standardised variables as given in Table 4.5.      

Table 4.5: Screening of different variables through PCA based on the total variance explained 

Comp. Initial Eigenvalues Rotation Sums of Squared 

loading 

Total % of 

variance 

Cum. % Total % of 

variance 

Cum. % 

1 6.753 43.819 43.819 4.955 33.036 33.036 

2 4.604 30.692 74.511 3.541 23.608 56.644 

3 2.089 13.928 88.439 3.319 22.127 78.771 

4 1.734 11.561 100.000 3.184 21.229 100.00 

5 4.85E-16 3.28E-15     

Comp. = Component, Extraction method: Principal Component Analysis, Cum. - Cumulative 

From Table 4.5, 100% of the total variation is accounted for four out of 15 original variables. We 

rotate the four principal components using factor analysis to attain orthogonality, as shown in 

Table 4.6.  

Table 4.6: The rotated components matrix 

Component 

 1 2 3 4 

Goat 0.035 0.714 -0.492 0.498 

Sheep -0.952 -0.134 0.153 0.230 

Pig 0.574 0.764 0.294 0.448 

Maize -0.701 -0.454 0.547 0.053 

Groundnut 0.677 -0.322 0.622 0.225 

Pea 0.220 -0.606 -0.334 0.688 

Nitrogen 0.924 -0.166 -0.255 -0.231 

Phosphorus 0.833 0.0.37 -0.310 -0.457 

Potassium 0.579 0.813 -0.062 -0.016 

Increase.Inco 0.559 0.455 0.677 0.148 

Increase.Savi -0.355 0.908 -0.040 0.217 

Increase.Agr 0.879 0.062 -0.108 0.460 

Sand 0.765 -0.309 0.361 0.433 
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Table 4.6 (Continued) 

Component 

 1 2 3 4 

Loan 0.752 -0.534 0.136 -0.361 

Clay 0.301 -0.843 -0.393 0.211 

Increase.Inco= Increase.Income, Increase.Savi= Increase.Savings, Increase.Agr = 

Increase.Agroforestry 

 

The results indicate that there are four-exogenous factor models in which eight indicators (𝑋2, 𝑋4, 

𝑋5, 𝑋7, 𝑋8, 𝑋10, 𝑋11, 𝑋15  ) are connected to Factor 1, Five (𝑋1, 𝑋3, 𝑋9, 𝑋12, 𝑋14)  are linked to 

Factor 2, one indicators 𝑋13 is related to Factor 3 and one indicator 𝑋6 is associated with Factor 4, 

as displayed by the path diagram in Figure 4.2. 

 

Figure 4.2: Path diagram for the structural equation model 

 

The methodological approach of SEM explores the conditions of an agricultural theory in the 

complexity of a set of associations among variables that enable agricultural researchers to pursue a 
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new understanding of hypothetical models. The path model in Figure 4.2 illustrates different models 

based on the correlations or the factor loadings obtained from rotated provisional factors.  

The model specification: The confirmatory factor analysis enables us to determine the measurement 

model based on the factors that are measured by the indicators (observed variables). The path 

diagram described two effects:  

(1) Effect of factor A in terms of four latent variables that have been evaluated with fifteen 

variables.  

(2) Effect of factor B in term of one latent variable that has been evaluated with five variables.  

The latent variables in factor A and in factor B have a direct effect on each other as shown in Figure 

4.2. The parameters to be estimated are the regression coefficients, the variances, and 

covariance/correlations of the independent variables in the model (Bentler, 2007). We can specify 

the relationships of the measurement model in a set of equations as provided below 

𝜂1 = 𝛽31𝜉3 + 𝛿3      𝜂2 = 𝛽12𝜉1 + 𝛿1       𝜂2 = 𝛽22𝜉2 + 𝛿2              𝜂2 = 𝛾12𝜂1 + 𝜀2                   (4.15) 

𝛿𝑖 (𝑖 = 1, 2, 3) is an error, that is, the unique factor affecting 𝜂𝑖 and 𝛽𝑖𝑗 is the estimated parameter 

of the factors. The regression models based on the path diagram SEM without the intercept are given 

below 

𝜂1 = 0.98𝜉3      𝜂1 = 0.72𝜉1        𝜂3 = 0.56𝜉3       𝜂3 = −0.91𝜂2                      (4.16) 

Since the heterogeneity is absent across studies, we did not apply the random effects model in this 

study. The test for the regression models was presented using the ANOVA as shown in Table 4.7.   
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Table 4.7: The ANOVA tables for testing the models 

 Sum 

Squares 

Degrees 

of 

freedom 

Mean 

squares 
F p-value 

Model 1 Regression 3.858 1 3.858 81.312 0.003 

Residual 0.142 3 0.047   

Total 4.000 4    

Model 2 Regression 0.072 1 0.072 0.055 0.830 

Residual 3.928 3 1.309   

Total 4.000 4    

Model 3 Regression 0.002 1 0.002 0.002 0.970 

Residual 3.998 3 1.333   

Total 4.000 4    

Model 4 Regression 0,674 1 0.674 0.607 0.493 

Residual 3.328 3 1.109  

Total 4.000 4  

 

The results show that the models do not fit the data, excluding Model 1, and therefore the estimated 

parameters cannot be interpreted. Table 4.8 summarises the un-standardised and standardised 

parameter estimates of the path models, t-value, and their p-values.  

Table 4.8: Unstandardised and standardised parameter estimates of the model, t-value and their p-

values.  

Model Parameter Un-standardised 

Estimate 
Coefficient 

of Standard 

Error 

 

Standardized 

estimate 

t-value p-value 

1 𝛽31 0.982 0.109 0.982 9.017 0.003 

2 𝛽12 -0.134 0.572 -0.134 -0.235 0.830 

3 𝛽22 0.024 0.577 0.024 0.041 0.970 

4 𝛾12 0.410 0.526 0.410 0.779 0.493 

 

The parameter estimates from the models do not have good loadings on the specific factor except 

Model 1, that has a strong negative loading. Because the p-value > 0.05, all the parameters in the 
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model fail to differ significantly from zero; thus, we cannot interpret these parameters although the 

models fit the data well. The standardised 𝛽12  means that one standard deviation increases in 

positive relationships is related to -0.134 standard deviations that increase in Factor 1 in the 

endogenous variable when we control the effect of the other four endogenous variables.   

𝛽31, for example, indicates the regression coefficient of the variable “3” on the variable “1”.  

The regression models calculated based on the ANOVA approach without the intercept are given 

below 

𝜂1 = 0.982𝜉1      𝜂2 = −0. 134𝜉1        𝜂3 = 0.024𝜉2     𝜂3 = 0.410𝜂2                       (4.17) 

In this study, we work on the direct effects of the factors only and not with their interactions. The 

model fit of the integration of MA into SEM is given in Equation 4.1. 

The size of heterogeneity: We want to quantify the dimension of the heterogeneity of the coefficient 

of correlation using Equation 14, given that  𝑄 = 20 and k = 15 as indicated below 

𝐼2 = 
𝑈2

𝑈2+𝜗
  = 

𝑄−(𝑘−1)

𝑄
 = 
20−(15−1)

20
 = 0.30 

The above finding indicates that the heterogeneity is at a low level across the studies. Multiple tests 

used for heterogeneity assessment indicate the same results; namely, that heterogeneity is negligible.  

4.8 CONCLUSION 

The new approach tests the hypotheses about the parameters involved in the models. The agricultural 

food production is used to illustrate the approach. The fixed-effects model is more appropriate since 

the test of homogeneity produces significant results; therefore, we suggest collecting more studies 

in the MA for feasibility tests of the random-effects model. The model obtained through the fixed 

effects fits the data well. The newer approach is more flexible and suitable for using the factor 
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analysis through the PCA to determine the hypothetical relations between the variables. The 

integration of MA into SEM using the GLS procedure generates significant results. The analysis did 

not consider the multivariate nature since the tests depend on the regression coefficients and not the 

coefficients of correlation, simply because the heterogeneity is absent across the studies. The 

estimated parameters are not significant; as a result, no interpretation is made of the estimated 

parameters.  

In the previous chapters, adoption of the new technology is likely to increase the results in food 

production in SSA. The use of agricultural products makes a positive impact in the development of 

economic growth, thereby they are keys to articulate the challenges in the agricultural food 

production in SSA. In the next chapter, we will investigate the impact of genotype (varieties) against 

location (environment). This is because food production depends on the combination of factors such 

as genotype, environment, or their interactions simply because a type of genotype reacts differently 

from one location to the next. Understanding the cause for the increase of food production, whether 

this can be attributed to the quality of genotype, location, or some combination of factors, leads to 

determining the performance of a genotype across locations with the use of stability statistics. 
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5CHAPTER 5  

STATISTICAL MODEL TO ESTIMATE PARAMETERS OF GENOTYPE ACROSS 

LOCATION 

5.1 INTRODUCTION 

Food production consists primarily of crops and meats in SSA. There are many constraining factors 

for food production, including drought, weeds, pests and diseases, potassium and nitrogen 

deficiency, soil erosion, soil acidity, flooding, salinity, and many others. Plant breeding has made 

huge contributions to increase food production (Borlaug, 1983; Passioura, 2005). Plant breeding had 

increased crop yields and improved the nutritional values of numerous crops, including corn, 

soybeans, and different kinds of wheat (Hefferon, 2015). The increase of food production, for 

instance crops, depends on the achievement of today’s plant breeding technology. Yield from food 

production as observed in data is mostly a combination of the factors of genotype, location, and the 

interactions between 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ×  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 , since genotypes can react in a different way to 

different environments. There is a need to estimate stability and parameters in food production. The 

concept of stability has been applied in different instances, such as reducing the influence of the 

main environmental effects on the pattern analysis of plant breeding (Fox et al., 1982). This concept 

of stability has been used to estimate parameters in family selection with adaptability and genotype 

stability. Freiria et al. (2018) had applied it in the adaptability and stability in breeding lines of the 

food-type of soybeans. The analysis of variance (ANOVA) is used to demonstrate the combination 

of genotype and locations. The study originated by Makongwana (2016) was conducted in two 

consecutive summer seasons, namely, 2013 and 2014, in Kwazulu-Natal. Many factors are involved 

in the plant breeding process to increase crop yields based on experimental trials. We present an 

adaptive model to identify the genotypes with excellent performance across different locations. We 
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perform the validation of the model and test the stability of the parameter estimates through an 

experiment.  

This study considers several scenario options to construct many factors simultaneously in a single 

model that contributes to the yield in food production. The approach enables us to estimate 

parameters, validate the model and introduce stability measures. The focus is mainly on the main 

and interaction effects of genotype and the cropping systems model. Plant breeding produces the 

best crop under various conditions and can increase crop yields for crops such as corn, soybeans, 

and wheat (Hefferon, 2015). The results of food production as reflected in terms of data is a 

combination of the factors of genotype, location, and the interactions with genotypes simply because 

genotypes can react differently from one location to the next. We aimed to compare the results of 

different varieties in different environments. This approach would enable us to decide about a variety 

that is achieving the highest yield simply because we need to know the cause for the increase, 

whether this could be attributed to the quality of the genotype, location, or some combination of 

factors. The ANOVA is used to demonstrate the combination of genotype and locations. Table 5.1 

presents the structure of  𝑛 genotypes associated with 𝑚 locations denoted by a  𝑛 × 𝑚 matrix. The 

discussion is addressed in the unique single model of yield, the ANOVA model.     

5.2 OBJECTIVES 

The following objectives are proposed:  

1) Understanding the important features of genotype, locations, cropping systems and their 

interactions through a constructed model over an experiment for testing hypotheses.  

2) Obtaining accurate yield estimates using the ANOVA in developing a model that fits the 

data.  
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3) Developing an approach of selecting a genotype that can increase the main and 

interaction effects. 

4) Providing an easy interpretable measure of yield stability.  

In this study, a methodological approach is formulated for assessing adaptability and stability 

measures of the main components and their interactions in a generic model. 

5.3 MODEL BUILDING 

5.3.1 Introduction 

 The goal is to obtain combined estimated parameters using factors such as location and genotype 

(variety of crops). The model is based on a scenario that assesses the genotype, location, and 

interaction effects under a particular type of randomisation. Suppose we have independent random 

samples of size 𝑛 from genotype. The 𝑗𝑡ℎ value from the genotype 𝑖𝑡ℎ is denoted by 𝑦𝑖𝑗𝑘, that is:  

Genotype 1: 

𝑦111, 𝑦121, 𝑦131 , ... , 𝑦1𝑚1                                                                                                   (5.1)      

𝑦112, 𝑦122, 𝑦132 , ... , 𝑦1𝑚2                                                   

.....................................                  

𝑦11𝑟, 𝑦12𝑟, 𝑦13𝑟 , ... , 𝑦1𝑚𝑟                                                                           

  

Genotype 2: 

𝑦211, 𝑦221, 𝑦231 , ... , 𝑦2𝑚1                                                                                                    (5.2)         

𝑦212, 𝑦222, 𝑦232 , ... , 𝑦2𝑚2                                                                                          

........................................ 

𝑦21𝑟, 𝑦22𝑟, 𝑦23𝑟 , ... , 𝑦2𝑚𝑟                    

  

Genotype 3: 

𝑦311, 𝑦321, 𝑦331 , ... , 𝑦3𝑚1                                                                                                    (5.3) 
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𝑦312, 𝑦322, 𝑦332 , ... , 𝑦3𝑚2                                                                                           

𝑦313, 𝑦323, 𝑦333 , ... , 𝑦3𝑚3   

𝑦31𝑟, 𝑦32𝑟, 𝑦33𝑟 , ... , 𝑦3𝑚𝑟  

 

Genotype 𝑛 

𝑦𝑛11, 𝑦𝑛21, 𝑦𝑛31 , ... , 𝑦𝑛𝑚1                                                                                               (5.4) 

𝑦𝑛12, 𝑦𝑛22, 𝑦𝑛32 , ... , 𝑦𝑛𝑚2                                                                                          

𝑦𝑛13, 𝑦𝑛23, 𝑦𝑛33 , ... , 𝑦𝑛𝑛3                      

........................................ 

𝑦𝑛1𝑟, 𝑦𝑛2𝑟, 𝑦𝑛3𝑟 , ... , 𝑦𝑛𝑛𝑟                                 

We can summarise this information in an ANOVA table as shown in Table 5.1.   

Table 5.1: Yields replicated from a genotype in a location 

 Location levels Genotype 

Totals 

Genotype 

Means 

True 

genotype 

Effects Genotypes 1 2 3 .... 𝑚 

1 𝑦111 𝑦121 𝑦131 .... 𝑦1𝑚1 𝑦1.. 𝑦̅1. 𝐺1 

𝑦112 𝑦122 𝑦132 .... 𝑦1𝑚2 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑦11𝑟 𝑦12𝑟 𝑦13𝑟 ... 𝑦1𝑚𝑟 

2 𝑦211 𝑦221 𝑦231 .... 𝑦2𝑚1 𝑦2.. 𝑦̅2. 𝐺2 

𝑦212 𝑦222 𝑦232 .... 𝑦2𝑚2 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑦21𝑟 𝑦22𝑟 𝑦23𝑟 .... 𝑦2𝑚𝑟 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑛 𝑦𝑛11 𝑦𝑛21 𝑦𝑛31 .... 𝑦𝑛𝑚1 𝑦𝑛.. 𝑦̅𝑛. 𝐺𝑛 

𝑦𝑛12 𝑦𝑛22 𝑦𝑛32 ... 𝑦𝑛𝑚2 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑦𝑛1𝑟 𝑦𝑛2𝑟 𝑦𝑛3𝑟 .... 𝑦𝑛𝑚𝑟 
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Table 5.1 (Continued) 

 Location levels Genotype 

Totals 

Genotype 

Means 

True 

genotype 

Effects Genotypes 1 2 3 .... 𝑚 

Location 𝑦.1. 𝑦.2. 𝑦.3. .... 𝑦.𝑚. 𝑦...   

Location 𝑦̅.1. 𝑦̅.2. 𝑦̅.3. .... 𝑦̅.𝑚. 𝑦̅... 𝑦̅...  

True 𝜇1 𝜇2 𝜇2 .... 𝜇2    

 

The constructed model for the yield from food production for a randomised model involving the 

location design is  

𝑦𝑖𝑗𝑘 =  𝜇  +  𝐺𝑖 + 𝐿𝑗   +  𝜀𝑖𝑗𝑘.                                                                                           (5.5)  

The genotype is denoted by 𝐺𝑖  (𝑖 = 1, 2, ..., n), the location is denoted by 𝐿𝑗 (𝑗 = 1, 2, ..., 𝑚 ) and 

replication is represented by (𝑘= 1, 2, ..., 𝑟 ).   

In the equation above, 𝑦𝑖𝑗𝑘 is the yield (variety of crop) of the  𝑘𝑡ℎ replication of the 𝑖𝑡ℎ genotype 

in the 𝑗𝑡ℎ location.  

𝜇 is the overall average of all locations, and it is given by 𝜇 =  ∑ 𝜇𝑘
𝑟
𝑘=1 , 

𝐺𝑖 represents the fixed effect of the 𝑖𝑡ℎ genotype,  

𝐿𝑗 represents the fixed effect of the 𝑗𝑡ℎ location and 

𝜀𝑖𝑗𝑘 is the error term associated with 𝑦𝑖𝑗𝑘. 

Similarly, the model that involves the main effects and the interaction factor is   

𝑦1𝑗𝑘 = 𝜇1 + 𝐺1 + 𝐿1 +  (𝐺 × 𝐿)11 + 𝜀1𝑗𝑘                                                                               (5.6)  
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𝑦2𝑗𝑘 = 𝜇2 + 𝐺2 + 𝐿2 +  (𝐺 × 𝐿)22 + 𝜀2𝑗𝑘 

𝑦3𝑗𝑘 = 𝜇3 + 𝐺3 + 𝐿3 +   (𝐺 × 𝐿)33 + 𝜀3𝑗𝑘 

𝑦𝑛𝑗𝑘 = 𝜇𝑛 + 𝐺𝑛 + 𝐿𝑚 +   (𝐺 × 𝐿)𝑛𝑚 + 𝜀𝑛𝑗𝑘 

The generic model can be written as 

𝑦𝑖𝑗𝑘 = 𝜇  +  𝐺𝑖 + 𝐿𝑗+ (𝐺 × 𝐿)𝑖𝑗 + 𝜀𝑖𝑗𝑘                                                                            (5.7)  

where 𝑖= 1, 2, 3, ..., n; 𝑗 = 1, 2, 3, ..., m and 𝑘 = 1, 2, 3, ...,  𝑟 and (𝐺 × 𝐿)𝑖𝑗 represents the interaction 

between the 𝑖𝑡ℎ genotype and the 𝑗𝑡ℎ location. The following assumptions are applied:   

1. The random variables 𝑦𝑖𝑗𝑘 are all-independent and are all normally distributed with a 

mean 𝜇𝑖 and the common variance 𝜎2.  

2. The variance of each location is identical. 

3. The core factors (genotype 𝐺𝑖  and the location 𝐿𝑗) are normally independent. That is, the 

genotype and location effects are uncorrelated denoted, as such, as  𝐺𝑖 ~
𝑖𝑖𝑑𝑁(0, 𝜎𝐺

2) and 

𝐿𝑗~
𝑖𝑖𝑑𝑁(0, 𝜎𝐿

2).  

4. 𝜀𝑖𝑗𝑘  ~𝑖𝑖𝑑𝑁(0, 𝜎𝜀
2), where 𝑁 denotes a normal distribution and 𝑖𝑖𝑑 means independent 

and identically distributed.  

∑ 𝐺𝑖
𝑛
𝑖=1  = ∑ 𝐿𝑗

𝑚
𝑗=1   = ∑ (𝐺 × 𝐿)𝑖𝑗

𝑛
𝑖=1   =  ∑ (𝐺 × 𝐿)𝑖𝑗

𝑚
𝑗=1  =   0                                        (5.8)                                

The core factors such as genotype and location can be considered as fixed-effect, random-effect, or 

subject to joint regression analysis or the Finlay-Wilkinson model (Yates & Cochran 1938; Finlay 

& Wilkinson, 1963). 
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5.3.2 Testing the Effectiveness of the Factors: Location and Genotypes 

We consider a two-way analysis of variance, a method that simultaneously examines the effect of 

two factors on the dependent variable together with the effects of their interactions. There are three 

tests to perform as given below 

1. Testing the genotype effects. The hypotheses are  

𝐻0 : 𝐺𝑖  = 0 for each level of genotype, with 𝑖 =1, 2, ...,  𝑛. In other words, no level of genotype 

factor has an effect.   

𝐻1 : 𝐺𝑖 ≠ 0 for at least one value of 𝑖, with 𝑖 = 1, 2, ..., 𝑛 . In other words, at least one level of 

genotype has an effect.  

2. Testing the location effects. The hypotheses are 

𝐻0 : 𝐿𝑗   = 0 for each level of location, with 𝑗 = 1, 2, ..., m. In other words, no level of location factor 

has an effect.   

𝐻1 : 𝐿𝑗  ≠ 0 for at least one value of j, with j = 1, 2, ..., m. In other words, at least one level of location 

has an effect.  

3. Testing for interaction effects between levels of the factors genotype and location. The 

hypotheses are 

𝐻0 : (𝐺 × 𝐿)𝑖𝑗  = 0 for each combination of 𝑖  and 𝑗. In other word, there are no interaction effects.  

𝐻1 :  (𝐺 × 𝐿)𝑖𝑗  ≠ 0 for at least one combination of 𝑖 and 𝑗. In other word, at least one level of 

genotype has an effect.  

5.3.3 Validation, Consistency and Stability of Estimate 

The success of plant breeding is about having high production stability, but the fundamental reason 

for the differences between genotypes is the implication of the interaction of the terms 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ×
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𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛. In other words, the high production stability depends on the performance of genotypes in 

the specific environmental conditions where the varieties must grow. We can define or explain some 

of the interaction effects through the environmental factors, for instance, the number of diseases or 

pests, rainfall, dry season, soil fertility, etc. (Ferreira et al., 2006). The interaction 𝐺 × 𝐿 is the main 

concept that is addressed in this study.  

The second challenge to overcome to ensure the success of plant breeding is having high 

productivity stability through new genotypes that are grown in several locations under diverse 

climate and soil fertility scenarios, including different seasons of the year (Becker and Leon, 1988). 

In other words, accommodating changes in environmental conditions due to location and seasons is 

a major factor in the achievement of the desired performance and high productivity. Hence, the 

experiments designed in this study and the associated special randomised complete block design 

(RCBD) techniques to model the estimated genotype means in the 𝑗𝑡ℎ  environment have been 

created. The regression model is as given in Equation 5.5. 

We aimed to identify the genotype performance that will remain stable irrespective of the 

environmental conditions that might have changed. This constant analysis is valid only when the 

interaction factor (𝐺 × 𝐿) is present (Hussein et al. 2000). Becker and Leon (1988) indicated that 

the two most important cases in practice for the concept of stability were: 

a) The genotype that maintains its performance independently of the variations in the ecological 

conditions. This concept is static, and this kind of stability is called biological stability.  

b) The expected approach is that the genotype varies its performance when the environment 

changes. The concept describes a dynamic approach, and this kind of stability is agronomic 

stability.  
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The stability of a genotype is measured by the sample variance, which calculates the variability of 

yields across locations. Plant breeders have used these approaches mainly for assessing stability; 

they are equally applicable in the context of agronomic experiments (Piepho 1998). Plant breeders 

are interested in classifying the varieties accessible in terms of changes in the yields due to changes 

in the location.   

5.4 CONSTRUCTED MODEL THROUGH CROPPING SYSTEM 

To understand the contribution of each factor that can occur in food production, we must document 

the constituents of each factor. In this section, the increase of crops depends on the way the sowing 

and harvesting systems are managed. In other words, this is the cropping system that can be 

expressed by the seasonal period (summer and winter) in the way that crop cultivated through 

cropping system is described as the combination of management practices and plant genotype to 

produce the desired crops. The construction of the second model involves two core factors such as 

the system and location. From the breeder’s point of view, location and year by location 

combinations are random effects since the breeder’s objective is to generate seed for a bigger area. 

By contrast, the farmer’s perspective considers location effects as fixed, whereas variations from 

year to year are unpredictable.   

The constructed model involves two core factors, such as the cropping system and location, in a 

two-way table as shown in Table 5.1. The model in terms of system, location and year is given by 

𝑦𝑟𝑠 =  𝜇  +  𝑌𝑟 + 𝐿𝑠   +  𝛿𝑟𝑠                                                                                           (5.9)  

The model with interaction is  

𝑦𝑟𝑠 =  𝜇  +  𝑌𝑟 + 𝐿𝑠 + (𝑌 × 𝐿)𝑟𝑠  +  𝛿𝑟𝑠                                                                        (5.10)  
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The year is denoted by  𝑌𝑟 (𝑟 = 1, 2, ..., 𝑛  ) and the location is denoted by 𝐿𝑠 (𝑠 = 1, 2, ..., 𝑚), where 

𝑦𝑟𝑠 is the yield of a system of 𝑡ℎ𝑒 𝑟𝑡ℎ year in the 𝑠𝑡ℎ location, 

where 𝜇 is a general mean, 

𝑌𝑟 represents the random effect of the 𝑟𝑡ℎ year,  

𝐿𝑠 represents the random effect of the 𝑠𝑡ℎ location, and 

𝛿𝑟𝑠 is the error term associated with 𝑦𝑟𝑠. 

Assumptions: 

i) We assume that the effects of 𝜇, 𝑌𝑟, 𝐿𝑠 and 𝛿𝑟𝑠 differ among systems. 

ii) The terms  𝑌𝑟 , 𝐿𝑠  and 𝛿𝑟𝑠  are random with independent variances  𝜎𝑟
2 , 𝜎𝑠

2  and 𝜎𝛿
2 

respectively.  

Therefore, the variance of Equation 5.9 is  

            𝑉𝑎𝑟(𝑌𝑟𝑠)  = 𝑉𝑎𝑟(𝜇 + 𝑌𝑟 + 𝐿𝑠 + 𝛿𝑟𝑠) 

                           = 𝑉𝑎𝑟(𝜇) + 𝑉𝑎𝑟(𝑌𝑟) + 𝑉𝑎𝑟(𝐿𝑠)  +  𝑉𝑎𝑟(𝛿𝑟𝑠) 

        𝑉𝑎𝑟(𝑌𝑟𝑠)  = 𝜎𝑌
2 + 𝜎𝐿

2 + 𝜎𝛿
2                                                                                (5.11)  

In the assessment of the planting systems, the terms years and locations are considered random since 

year effects are unpredictable. 

The variance of an observation in a random year at a given location S is  

𝑉𝑎𝑟(𝑌𝑟𝑠/𝑆)  = 𝜎2(𝑟/𝑠) = 𝜎𝑌
2 + 𝜎𝛿

2; representing the stability measures for the variability factors. 

1) The effects 𝑌𝑟, 𝐿𝑠 and 𝛿𝑟𝑠 of a pair of systems are correlated (Piepho et al., 1998). In 

other words, the effect  𝑌𝑟 of one system is correlated with the other system 𝐿𝑠. Similarly, 
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the effects 𝐿𝑠 is correlated with another system, the effects 𝛿𝑟𝑠 are also correlated and so 

on.  

2) The variances of interaction effects associated with systems differ among systems. 

(Piepho, 1994).  

The stability of yield is an important characteristic to be considered when judging the value of a 

cropping system relative to others (Piepho et al., 1998). Plant breeders and geneticists have mainly 

applied the methods for assessing yield stability in experiments; therefore, these techniques can be 

applied by agronomists in the context of experiments, which calculate different cropping systems in 

several locations (Piepho, 1998).  

5.5 CONSTRUCTING A GENERIC MODEL  

This section aims to combine all the approaches from the core factors to form a generic modelling 

framework. It is expected that the combined model will be suitable for stability analysis simply 

because of sharing strength among the variables. The variance can quantify the variation of yields 

from location to location. Similarly, the mean is considered a fixed effect and the variance as a 

random effect. The two parameters (mean and variance) describe the response pattern of the generic 

model.  

We define the generic model by different conditions such as genotype, locations, crop-year cycles 

and management practices that are measured independently or in combination with the 

environmental conditions. The components of interactions are as follows:  

1. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝐺 × 𝐿) 

2. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑌𝑒𝑎𝑟(𝐺 × 𝑌) 

3. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠 (𝐺 × 𝑀𝑃) 

4. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑌𝑒𝑎𝑟(𝐺 × 𝐿 × 𝑌) 

5. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠(𝐺 × 𝐿 ×𝑀𝑃) 

6. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑌𝑒𝑎𝑟 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠(𝐺 × 𝑌 ×𝑀𝑃) 
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7. 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑌𝑒𝑎𝑟 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠(𝐺 × 𝐿 × 𝑌 × 𝑀𝑃) 

The model is helpful by identifying the stable genotype and its adapted components. The model can 

be written as shown below  

𝑦𝑖𝑗𝑠𝑡  =  𝜇  +  𝐺𝑖  + 𝐿𝑗  +𝑌𝑠 + 𝑀𝑃𝑡 +  (𝐺 × 𝐿)𝑖𝑗  +  (𝐺 × 𝑌)𝑖𝑠 + (𝐿 × 𝑌)𝑙𝑠 + (𝐺 ×

𝑀𝑃)𝑖𝑡 + (𝐿 × 𝑀𝑃)𝑙𝑡 +  (𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠 +  (𝐺 × 𝐿 × 𝑀𝑃)𝑖𝑗𝑡 + (𝐺 × 𝑌 ×𝑀𝑃)𝑖𝑠𝑡 +

 (𝐿 × 𝑌 ×𝑀𝑃)𝑗𝑠𝑡 + (𝐺 × 𝐿 × 𝑌 × 𝑀𝑃)𝑖𝑗𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡                                                            (5.12) 

 

where 𝑦𝑖𝑗𝑠𝑡  is the yield value of the effect of the 𝑖𝑡ℎ level of genotype (𝐺), 𝑎𝑡 𝑡ℎ𝑒 𝑗𝑡ℎ level of the 

location (𝐿), 𝑡ℎ𝑒 𝑠𝑡ℎlevel of the crop-year (Y) and 𝑡ℎ𝑒 𝑡𝑡ℎ level of the management practice. On this 

representation 𝜇  is a grand mean, 𝐺𝑖 is the effect of the 𝑖𝑡ℎ genotype, 𝐿𝑗 is the 𝑗𝑡ℎ effect location, 𝑌𝑠 

is the effect of 𝑡ℎ𝑒 𝑠𝑡ℎ level of the crop-year and (𝑀𝑃)𝑡 is the effect of 𝑡𝑡ℎ management practice. 

In addition, (𝐺 × 𝐿)𝑖𝑗  is the interaction effect between the 𝑖𝑡ℎ  genotype and 𝑗𝑡ℎ  location, 

 (𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡  is the interaction effect between the 𝑖𝑡ℎ  genotype, 𝑡ℎ𝑒 𝑗𝑡ℎ  of location and 

𝑡ℎ𝑒 𝑡𝑡ℎ  management practice, (𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠  is the interaction effect between the 𝑖𝑡ℎ  genotype, 

𝑗𝑡ℎof location and 𝑠𝑡ℎ of the crop-year, (𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑟𝑠𝑡 is the interaction effect between 

the 𝑖𝑡ℎgenotype, 𝑗𝑡ℎof location, 𝑠𝑡ℎ of crop-year and 𝑡𝑡ℎ management practice and 𝜀𝑖𝑗𝑟𝑠𝑡 is the error 

term. 

5.6 METHODS OF ESTIMATING STABILITY IN THE GENERIC MODEL: MAIN 

AND INTERACTIONS EFFECTS   

The concept of high stability is associated with high mean performance simply because a stable 

genotype has a high mean performance (Yan & Tinker, 2006). Estimating the stability of the 

genotype is very important in the interpretation of the results to indicate a stable genotype across all 

the components involved. There is a need to describe the stability of the genotype against any main 

factor effect such as location (𝐿), crop-year (𝑌) or management practices (𝑀𝑃) so that we can 



 
 

108 
 

maintain relative performance across a range of environments. The main effect in the model of 

Equation 5.12 is assumed to be a fixed or random effect.  

5.6.1 Estimating Stability when the Main Effects are Fixed 

The objective is to estimate and test the hypotheses about the main and interaction effects, for 

example, for 𝐺𝑖, 𝐺𝐿 and (𝐺 × 𝐿)𝑖𝑗. In this case, we assume that all the term-factors in Equation 5.12 

have a fixed effect since the stability is measured by the mean and the variance. The variance 

estimates of yield 𝑌𝑖𝑗𝑠𝑡 is given by the variance of 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝑉𝑎𝑟(𝜇  +  𝐺𝑖  +  𝐿𝑗  + 𝑌𝑠 + (𝑀𝑃)𝑡 + (𝐺 × 𝐿)𝑖𝑗 + (𝐺 × 𝑌)𝑖𝑠 + (𝐺 × (𝑀𝑃))𝑖𝑡

+ (𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠 +  (𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡 +  (𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡 

+ (𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡) 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝑉𝑎𝑟(𝜀𝑖𝑗𝑠𝑡) = 𝜎2                                                                                    (5.13)  

This could indicate that the genotype cannot have the results changed by changes in the location 

( 𝐿), year (𝑌), and management practices (𝑀𝑃) under the hypothesis 

𝐻0 : 𝜎2 = 0 Vs  𝐻0 : 𝜎2 ≠ 0, in which 𝐻0 is not rejected.  

5.6.2 Estimating Stability when the Main Effects are Random 

The objective is to estimate and test the hypotheses about the variances of the main effects and their 

interaction effects. For example, for 𝜎2𝐺, 𝜎2𝐿 and 𝜎2𝐺×𝐿. 

This is the dynamic concept measured, including the interactions as it is most recommended 

(Ferreira et al., 2006). The variance estimates of yield 𝑌𝑖𝑗𝑠𝑡 is given by the variance of 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑟𝑠𝑡 ) =  𝑉𝑎𝑟(𝜇  +  𝐺𝑖  +  𝐿𝑗 + 𝑌𝑠 + 𝑀𝑃𝑡 + (𝐺 × 𝐿)𝑖𝑗  +  (𝐺 × 𝑌)𝑖𝑠 + (𝐺 × (𝑀𝑃))𝑖𝑡 +

(𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠 +  (𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡 + (𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡 + (𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡) 
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𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) =  𝑉𝑎𝑟(𝐺𝑖)+ 𝑉𝑎𝑟(𝐿𝑗)  + 𝑉𝑎𝑟(𝑌𝑠)  + 𝑉𝑎𝑟((𝑀𝑃)𝑡)  + 𝑉𝑎𝑟(𝐺 × 𝐿)𝑖𝑗  + 𝑉𝑎𝑟(𝐺 × 𝑌)𝑖𝑠  + 

𝑉𝑎𝑟(𝐺 × (𝑀𝑃))𝑖𝑡  + 𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠  + 𝑉𝑎𝑟(𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡  + 𝑉𝑎𝑟(𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡  +  + 

𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑠𝑡 + 𝑉𝑎𝑟(𝜀𝑖𝑗𝑠𝑡) 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝜎2𝐺  + 𝜎2𝐿  + 𝜎2𝑅   + 𝜎2𝑀𝑃  +  𝜎2𝐺𝐿   + 𝜎2𝐺(𝑀𝑃)  + 𝜎2𝐺𝐿𝑌  + 𝜎2𝐺𝐿(𝑀𝑃)  + 

𝜎2𝐺𝑌(𝑀𝑃) +  𝜎2𝐺𝐿𝑌(𝑀𝑃) + 𝜎2 

(5.14) 

This could mean that the genotype can have the results changed with the change in Location (𝐿), 

year (𝑌), and management practices (MP). It implies that 𝐻0 : 𝜎2 = 0 is rejected.  

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝜎2𝑖𝑗𝑠                                                                                                          (5.15)   

The variance 𝜎2𝑖𝑗𝑠 is the stability measure under the assumption that the variations among main 

effects and their interactions are equally important.  

5.6.3 Estimating Stability when the Main Effects are Fixed or Random 

Estimating stability when the genotype is fixed, and other main effects are random   

This covers the case when the genotype is fixed, and other main effects (location, year, and 

management practices) are random. This means that we are interested in a particular set of genotypes 

that is grown in a randomly set location selected purposefully by an investigator for a specific year 

and special management practices. If the experience is repeated, the location and other factors are 

most likely to differ each time.  

The variance estimates of yield 𝑌𝑖𝑗𝑠𝑡 is given by the variance of 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) =  𝑉𝑎𝑟(𝜇  + 𝐺𝑖  +  𝐿𝑗 + 𝑀𝑃𝑡 + (𝐺 × 𝐿)𝑖𝑗 + (𝐺 × 𝑌)𝑖𝑠 + (𝐺 ×𝑀𝑃)𝑖𝑡 + (𝐺 × 𝐿 ×

𝑌)𝑖𝑗𝑠 +  (𝐺 × 𝐿 ×𝑀𝑃)𝑖𝑗𝑡 +  (𝐺 × 𝑌 ×𝑀𝑃)𝑖𝑠𝑡 + (𝐺 × 𝐿 × 𝑌 × 𝑀𝑃)𝑖𝑗𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡) 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝑉𝑎𝑟(𝐺𝑖)+ 𝑉𝑎𝑟(𝐿𝑗)  + 𝑉𝑎𝑟(𝑌𝑠) + 𝑉𝑎𝑟((𝑀𝑃)𝑡) + 𝑉𝑎𝑟(𝐺 × 𝐿)𝑖𝑗   + 𝑉𝑎𝑟(𝐺 × 𝑌)𝑖𝑠  + 

𝑉𝑎𝑟(𝐺 × (𝑀𝑃))𝑖𝑡  + 𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠  + 𝑉𝑎𝑟(𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡  + 𝑉𝑎𝑟(𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡  +   

𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑟𝑠𝑡 + 𝑉𝑎𝑟(𝜀𝑖𝑗𝑠𝑡) 
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𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) =  𝜎2𝐿 + 𝜎2𝑅 + 𝜎2𝑀𝑃  + 𝜎2                                                                       (5.16)  

This means testing the null hypothesis 𝐻0 : 𝜎2𝐿 = 0; 𝐻0 : 𝜎2𝑅 = 0; 𝐻0 : 𝜎2𝑀𝑃 = 0. This is because 

the genotype indicates variation responding according to the changing of the locations (or 

environment). There are significant effects from the population variances for the fixed effects. The 

distribution is independent and identically normally distributed with the mean zero and the variance 

𝜎2. A chi-squared test is used to test if the variance of a population is equal to a specified value. 

Snedecor and Cochran (1983) is used for the test. This test will enable us to detect the differences 

in variance of a quantitative trait between independent factors of genotype, location and management 

practice. For simplicity, we consider the specified value equal to zero. To increase the yield of food 

production and sustain it requires the combined analysis of variance to be significant (p-value < 

0.05). In other words, the combination of genotype (G), location (L), Year (Y), and management 

practice (MP), and their interactions must be significant. The analysis of variance is used in this 

approach while 𝐺, 𝐿, 𝑌, and 𝑀𝑃 are the main effects therefore, the fixed effects hold.  

The variance estimates of yield 𝑌𝑖𝑗𝑠𝑡 is given by the variance of 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) = 𝑉𝑎𝑟(𝜇  +  𝐺𝑖  +  𝐿𝑗  + 𝑌𝑠 + (𝑀𝑃)𝑡 + (𝐺 × 𝐿)𝑖𝑗 + (𝐺 × 𝑌)𝑖𝑠 + (𝐺 × (𝑀𝑃))𝑖𝑡

+ (𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠 +  (𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡  +  (𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡 

+ (𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑟𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡) 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑠𝑡 ) =  𝑉𝑎𝑟(𝐺𝑖)+ 𝑉𝑎𝑟(𝐿𝑗)  + 𝑉𝑎𝑟(𝑌𝑠) + 𝑉𝑎𝑟((𝑀𝑃)𝑡)  + 𝑉𝑎𝑟(𝐺 × 𝐿)𝑖𝑗   + 𝑉𝑎𝑟(𝐺 × 𝑌)𝑖𝑠  + 

𝑉𝑎𝑟(𝐺 × (𝑀𝑃))𝑖𝑡  + 𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠  + 𝑉𝑎𝑟(𝐺 × 𝐿 × (𝑀𝑃))𝑖𝑗𝑡  +  𝑉𝑎𝑟(𝐺 × 𝑌 × (𝑀𝑃))𝑖𝑠𝑡  +   

𝑉𝑎𝑟(𝐺 × 𝐿 × 𝑌 × (𝑀𝑃))𝑖𝑗𝑟𝑠𝑡 + 𝑉𝑎𝑟(𝜀𝑖𝑗𝑠𝑡) 

𝑉𝑎𝑟(𝑌𝑖𝑗𝑟𝑠𝑡 ) =  𝜎2𝐺 + 𝜎2                                                                                             (5.17)  

This means that we are testing the null hypothesis 𝐻0 : 𝜎2𝐺  = 0.  
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An example is used to determine the performance of the genotype across locations using the stability 

approach to understand the cause for the increase of food production under the genotype, location, 

or their interaction effects. 

5.7 DATA ANALYSIS 

5.7.1 Site Selection and Description 

The study was conducted in two consecutive summer seasons, as shown in Table 5.2. This table 

presents the locations selected based on their heterogeneity in terms of attitude, longitude, year and 

average rainfall. The experiments were established in six locations: Bethal, Carolina, Cedara, 

Potchefstroom, Winterton and Mooi River during the same seasons. 

Table 5.2:Geographical positions and information of where the experiments were  

conducted 

Location Code Province Latitude Longitude Year AR 
(mm) 

Bethal 𝐿1 Mpumalang

a 
26.45790𝑆 29.46670𝐸 2 710 

Carolina 𝐿2 Mpumalang

a 
26.07310𝑆 30.10700𝐸 2 614 

Cedara 𝐿3 Kwazulu 

Natal 
29.54780𝑆 30.26670𝐸 2 900 

Potchefstroom 𝐿4 Northwest 26.71450𝑆 27.09700𝐸 2 615 

Winterton 𝐿5 Kwazulu 

Natal 
28.81660𝑆 29.52960𝐸 2 789 

Mooi River 𝐿6 Kwazulu 

Natal 
29.21060𝑆 30.00300𝐸 2 900 

AR = Average annual rainfall 

5.7.2 Treatment and Experimental Design  

Thirty-eight genotypes were used for the study in which 29 were experimental hybrids (G1 to G29) 

and nine were commercial check hybrid (G30 to G38), as reflected in an ANOVA in Table 5.3. In 

the next section, the data for each location is analysed separately and then combined across locations 

for the maize main yield with two replications. To determine other measures such as the 

interactions: 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝐺 × 𝐿), 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑦𝑒𝑎𝑟 (𝐺 × 𝑌),  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ×

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑦𝑒𝑎𝑟 (𝐺 × 𝐿 × 𝑌) . A combined ANOVA is used in which location and year are 

considered random factors while genotype is considered a fixed factor. The equation used for the 

model is as follows: 
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𝑦𝑖𝑗𝑠 =  𝜇  +  𝐺𝑖 + 𝐿𝑗 +𝑌𝑠 + (𝐺 × 𝐿)𝑖𝑗  +  (𝐺 × 𝑌)𝑖𝑠 +  (𝐺 × 𝐿 × 𝑌)𝑖𝑗𝑠 + 𝜀𝑖𝑗𝑠        (5.18)                    

 

5.8 PERFORMANCE OF GENOTYPES ACROSS INDIVIDUAL LOCATIONS  

To determine the performance of a genotype across all locations, we construct an ANOVA table 

between genotypes for each specific yield to determine the genotypes that have the highest 

significant mean across all locations. The p-value, least significant difference (LSD) or coefficient 

variation (CV) are used for testing hypotheses but in this study, the CV is used to test the 

performance of genotypes.  

Table 5.3: Genotype and location factors: grain yield of maize evaluated across six locations in 

KZN in 2013 and 2014. 

Genotype Location Gen- T GenM 𝐶𝑉𝑖  %  

Code N

O 

Betha Carol Cedar Pot-ch Wint Moo 

03C47 𝐺1 8.35 8.69 8.351 8.351 8.351 8.01 50.105 8.351 2.60 

11C34 𝐺2 7.31 9.14 7.158 7.840 7.822 7.67 46.932 7.822 8.96 

11C32 𝐺3 8.79 8.49 7.349 10.22 10.19 7.70 52.739 8.790 13.8 

11C29 𝐺4 7.70 8.18 6.619 8.177 10.21 8.18 49.063 8.177 14.3 

02C31 𝐺5 8.12 8.57 7.688 8.091 8.116 8.12 48.696 8.116 3.44 

11C63 𝐺6 8.26 8.26 6.756 8.258 10.03 7.99 49.548 8.258 12.7 

11C25 𝐺7 7.47 8.42 6.455 7.436 7.436 7.44 44.615 7.436 8.34 

13C70 𝐺8 7.46 8.45 8.449 8.449 9.77 8.12 50.694 8.449 8.92 

13C70 𝐺9 7.23 8.06 6.497 7.609 10.42 7.96 47.78 7.963 16.7 

13C70 𝐺10 8.58 7.91 7.671 8.583 10.17 8.58 51.498 8.583 10.2 

13C70 𝐺11 8.46 8.91 7.466 8.050 9.87 7.98 50.736 8.456 10.0 

13C70 𝐺12 7.42 8.39 8.385 8.385 9.98 7.76 50.311 8.385 10.5 

13C71 𝐺13 7.98 7.52 6.502 7.98 9.92 7.98 47.88 7.98 13.9 

13C71 𝐺14 7.69 7.21 8.249 8.249 9.84 8.09 49.331 8.222 10.8 

13C71 𝐺15 7.456 8.344 8.344 7.847 10.11 7.96 50.064 8.344 11.1 

11C17 𝐺16 7.429 7.860 6.780 8.208 10.05 8.07 48.392 8.065 13.7 

11C15 𝐺17 10.5 10.5 10.46 10.46 10.46 10.5 62.76 10.46 0.00 

11C15 𝐺18 6.40 6.40 6.705 8.638 10.26 6.40 44.803 7.467 21.7 

11C22 𝐺19 8.12 7.12 8.118 8.908 8.118 8.32 48.709 8.118 7.09 

11C13 𝐺20 7.78 7.78 7.775 7.775 7.775 7.78 46.65 7.775 0.00 

11C15 𝐺21 7.77 7.31 8.128 8.128 9.68 7.76 48.768 8.128 10.1 

11C22 𝐺22 7.69 7.69 7.686 7.686 7.686 7.69 46.116 7.686 0.00 

11C14 𝐺23 7.78 8.06 7.921 7.921 7.921 7.92 47.526 7.921 1.12 

11C22 𝐺24 7.422 7.125 7.433 7.433 7.433 7.75 44.597 7.433 2.66 
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Table 5.3 (Continued) 

Genotype Location Gen- T GenM 𝐶𝑉𝑖  %  

Code N

O 

Betha Carol Cedar Pot-ch Wint Moo 

10HDT

X 
𝐺25 7.874 8.386 8.386 8.898 8.386 8.39 50.316 8.386 3.86 

14XH1

46 
𝐺26 7.865 7.865 7.865 7.542 7.865 8.19 47.19 7.865 2.60 

14XH1

49 
𝐺27 7.885 7.885 6.944 8.406 7.885 8.30 47.309 7.885 6.55 

14XH0

82 
𝐺28 7.245 7.100 6.520 7.534 7.100 7.10 42.599 7.100 4.65 

PAN6

Q445B 
𝐺29 8.496 8.446 8.518 11.72

3 

11.46 8.01 56.654 9.442 17.8 

PAN66

11 
𝐺30 8.233 9.182 8.788 8.705 9.64 8.17 52.727 8.788 6.57 

DKC78

-

45BRG

E 

𝐺31 8.207 8.116 8.463 7.819 9.71 8.46 50.778 8.463 7.76 

DKC80

-4 
𝐺32 8.599 8.907 6.971 9.596 10.46 8.91 53.44 8.907 13.0 

PAN53 𝐺33 7.558 7.601 7.676 7.568 7.601 7.60 45.605 7.601 0.54 

PAN67 𝐺34 7.308 7.174 7.040 7.174 7.174 7.17 43.044 7.174 1.18 

SC633 𝐺35 7.776 7.776 7.776 7.776 7.776 7.78 46.656 7.776 0.00 

SC506 𝐺36 8.01 8.158 7.002 8.761 8.01 8.11 48.053 8.001 7.09 

SC301 𝐺37 6.871 6.871 6.871 6.871 6.871 6.87 41.226 6.871 0.00 

SC403 𝐺38 7.250 7.497 7.862 7.862 7.862 8.84 47.173 7.862 6.88 

Location 

Total 

298.2 305.296 289.6

3 

314.9

2 

339.418 303. 1851.0

8 

  

Location 

mean 

7.849 8.034 7.622 8.287 8.932 7.99 8.071 8.119  

Betha = Bethal, Carol = Carolina. Cedar = Cedara, Pot-ch = Pot-chefstroom, Wint = Winterton, Moo 

= MooiRiver, Gen-T = Genotype Total, GenM = Genotype mean 

 

The performance of genotypes across individual locations is reflected in an ANOVA table for 

genotypes for maize yield across all locations, revealing the genotype with the highest significant 

mean across all locations. The lower the value of the coefficient of variation, the more precise the 

estimate. For example, the genotype such as 𝐺17 , 𝐺20, 𝐺22, 𝐺35, and 𝐺37 followed by 𝐺23, 𝐺33 and 

𝐺34. 

There is a need for providing new genotypes that will indicate the performance in the specific 

environmental conditions based on the stability statistics measures to understand and improve the 

yield production and livelihoods.  
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5.9 STABILITY ANALYSIS   

The purpose of this section is to investigate the four-stability statistic approaches and to define the 

comparison measures of their relationships concerning the reaction of the genotypes against 

locations. A genotype is stable if its variation among locations is small or if the residual mean square 

from a regression on a location index is small (Lin et al., 1985). This type of stability is biological 

stability that breeders use in expectation of a high level of yield in selecting a location under 

experiment. We have selected four stability statistic measures, among others, that we will apply to 

compare the relationship measures based on the performance of each genotype across locations to 

provide the genotypes that increase yield production most.  

Environmental conditions such as climate, soil conditions and diseases have increased the concerns 

of the plant breeders (Makongwana, 2016). These factors emphasise the benefit and importance of 

stability statistic measures. This section examines and uses the stability statistic measures to 

calculate the stability statistics of the genotypes. A two-way model is used as shown in Table 5.6. 

The four approaches used for stability statistics are: 

1 The coefficient of variability 𝐶𝑉𝑖 presented by Francis et al. (1978). This can be denoted as  

𝐶𝑉𝑖 = 
𝑆𝑖

𝑌̅𝑖.
× 100.  

where  𝑌𝑖𝑗 is the yield of the 𝑖𝑡ℎ genotype in the 𝑗𝑡ℎ location and 𝑌𝑖.̅ is the genotype means. 

A small 𝐶𝑉𝑖  % (less than 20%) is good (Lin et al., 1985).  

2 To calculate the stability measure for genotype  𝑖 , we consider the mean of the variance 

component for the interaction 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝐺 × 𝐿), denoted by 𝜃𝑖, as presented 

by Plaisted and Peterson (1959). 

𝑆𝑖
2  = ∑

(𝑌𝑖𝑗−𝑌𝑖.̅̅ ̅)
2

𝑚−1

𝑚
𝑗=1                                                                                                   (5.19) 

 



 
 

115 
 

𝜃𝑖 = 
𝑚

2(𝑛−1)(𝑚−1)
 ∑ (𝑌𝑖𝑗 − 𝑌𝑖.̅ − 𝑌.𝑗̅̅ ̅ + 𝑌..̅)

2𝑚
𝑗=1 +

𝑆𝑆(𝐺×𝐿)

2(𝑛−1)(𝑚−1)
  

𝑆𝑆(𝐺 × 𝐿) =∑ ∑ (𝑌𝑖𝑗 − 𝑌𝑖.̅ − 𝑌.𝑗̅̅ ̅ + 𝑌..̅)
2𝑚

𝑗=1
𝑛
𝑖=1  

 

3 A lower value for the 𝜃𝑖  % estimate of the genotype shows more stability. The genotype with 

the smallest mean variance component contributor for the total interaction is the most stable.  

Wricke (1962) proposed the “ecovalency” parameter 𝑊𝑖
2  that calculates the interaction 

of 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝐺 × 𝐿). The parameter is used to measure for a genotype 𝑖. It is 

given by  

𝑊𝑖
2 = ∑ (𝑌𝑖𝑗 − 𝑌𝑖.̅ − 𝑌.𝑗̅̅ ̅ + 𝑌..̅)

2𝑚
𝑗=1  

where 𝑌.𝑗̅̅ ̅ the location means, 𝑌𝑖.̅  is the genotype means and 𝑌..̅  is the grand mean in the 

ANOVA as reflected in Table 5.4. If the value of 𝑊𝑖 = 0, then the genotype is stable and if 

𝑊𝑖 is greater than zero, the genotype is unstable and therefore Wricke called this parameter 

“ecovalency”. A genotype with the smallest ecovalence 𝑊𝑖
2 is thought to be the most stable.  

4 A stability statistic to measure the residuals in a two-way classification was proposed by 

Shukla (1972). The stability statistic is a fixed estimate measure of the variance for the 

genotype across locations, as given below. 

𝜎𝑖
2 =  

𝑛

(𝑛−2)(𝑚−1)
 ∑ (𝑌𝑖𝑗 − 𝑌𝑖.̅ − 𝑌.𝑗̅̅ ̅ + 𝑌..̅)

2𝑚
𝑗=1 −

𝑆𝑆(𝐺×𝐿)

(𝑛−1)(𝑛−2)(𝑚−1)
 

The null hypothesis is 𝐻0 : 𝜎𝑖
2 = 0. A genotype is stable if the sample estimate is zero. That is, the 

genotype will not have the results changed with the changes in the location, therefore 𝐻0 is not 

rejected.  
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Table 5.4: Genotypes mean and ecovalency estimates for 38 common maize varieties 

Genotype GenM  𝑦𝑖..̅̅ ̅ 
 

S.es 𝑊2
𝑖 𝐶𝑉𝑖  % 𝜃𝑖 𝜎𝑖

2 SE 

Code Number 

03C475 𝐺1 8.351 0.073 2.60 0.029 0.324 0.089 

11C3417 𝐺2 7.822 0.263 8.96 0.169 1.890 0.286 

11C3201 𝐺3 8.790 0.000 13.82 1.028 11.468 0.496 

11C2974 𝐺4 8.177 0.225 14.25 0.871 9.712 0.476 

02C3156 𝐺5 8.116 0.000 3.44 0.003 0.032 0.114 

11C6363 𝐺6 8.258 0.000 12.66 0.566 6.310 0.427 

11C2557 𝐺7 7.436 0.000 8.34 0.070 0.780 0.253 

13C7060 𝐺8 8.449 0.984 8.92 0.152 1.698 0.303 

13C7065 𝐺9 7.963 0.538 16.71 1.485 16.553 0.543 

13C7071 𝐺10 8.583 0.000 10.16 0.274 3.056 0.356 

13C7082 𝐺11 8.456 0.000 10.01 0.242 2.702 0.345 

13C7083 𝐺12 8.385 0.931 10.49 0.283 3.161 0.359 

13C7109 𝐺13 7.980 0.000 13.91 0.718 8.009 0.453 

13C7110 𝐺14 8.222 0.279 10.79 0.293 3.266 0.362 

13C7122 𝐺15 8.344 0.789 11.11 0.350 3.900 0.379 

11C1774 𝐺16 8.065 0.405 13.65 0.694 7.743 0.449 

11C1579 𝐺17 10.46 0.000 0.00 0.000 0.000 0.000 

11C1566 𝐺18 7.467 1.139 21.73 3.281 36.581 0.663 

11C2245 𝐺19 8.118 0.000 7.09 0.052 0.579 0.235 

11C1350 𝐺20 7.775 0.000 0.00 0.000 0.000 0.000 

11C1511 𝐺21 8.128 0.131 10.07 0.212 2.362 0.334 

11C2242 𝐺22 7.686 0.000 0.00 0.000 0.000 0.000 

11C1483 𝐺23 7.921 0.020 1.12 0.000 0.000 0.036 

11C2243 𝐺24 7.433 0.000 2.66 0.001 0.008 0.081 

10HDTX11 𝐺25 8.386 0.262 3.86 0.005 0.058 0.132 

14XH146 𝐺26 7.865 0.000 2.60 0.001 0.009 0.083 

14XH149 𝐺27 7.885 0.000 6.55 0.034 0.374 0.211 

14XH082 𝐺28 7.100 0.021 4.65 0.006 0.063 0.135 

PAN6Q445 𝐺29 9.442 0.896 17.76 3.742 41.726 0.685 

PAN6611 𝐺30 8.788 0.308 6.57 0.046 0.518 0.229 

DKC78-4 𝐺31 8.463 0.066 7.76 0.088 0.980 0.268 

DKC80-40 𝐺32 8.907 0.095 13.03 0.857 0.857 0.474 

PAN53 𝐺33 7.601 0.002 0.54 0.000 0.000 0.017 

PAN67 𝐺34 7.174 0.018 1.18 0.000 0.000 0.035 

SC633 𝐺35 7.776 0.000 0.00 0.000 0.000 0.000 

SC506 𝐺36 8.001 0.000 7.09 0.049 0.548 0.232 

SC301 𝐺37 6.871 0.000 0.00 0.000 0.000 0.000 

SC403 𝐺38 7.862 0.375 6.88 0.040 0.452 0.221 

GenM = Genotype mean, S.es = Sample estimator, SE = Standard error 
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There is consistency between the four methods in the arrangement of the best genotypes  𝐺17, 𝐺20. 

𝐺22,  𝐺23, 𝐺24, 𝐺33, 𝐺34, 𝐺35 and 𝐺37  for both adaptability and stability statistic measures simply 

because they provide the best average gain of maize yield, and they maintain their performance 

independently of the variation of the location. 

The next section examines thirty-eight hybrids (experimental and commercial check) genotypes 

grown in six locations over two years. The analysis of variance is used to evaluate the significance 

of the main and interaction effects as shown in Table 5.5.  

5.10 PERFORMANCE OF THE COMBINED COMPONENTS THROUGH A GENERIC 

MODEL  

 

Multiple components are now used simultaneously, such as the main components of genotypes and 

locations that we combine through a two-way ANOVA to evaluate the main effect genotype (G), 

location (L), and interactions. The calculated F test statistics and p-value are used to determine the 

significant results.  

Table 5.5: Summarised analysis of variance among thirty-eight maize genotypes  

in six locations 

Source df SS MS F p-value 

Genotype 37 93121.85 2516.8068 140.2472 0.0001 

Location 5 2093.8152 418.7630 23.3353 0.0001 

𝐺 × 𝐿 185 20277.87 109.6101 6.1079 0.0001 

Error 227 4073.636 17.9455   

 

A model fit describes the relationship between a response variable and one or more predictor(s). In 

this study, we investigate the relationship between the genotype (G), the location (L) and the 
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interaction effects (𝐺 × 𝐿) from the period of 2013 to 2014. Using the ANOVA test, the models 

were statistically significant. In other words, the levels of genotypes were associated with different 

performance based on the location. The same approach indicated that the levels of locations were 

related to differences in performance. These results indicate overall strong differences that are 

statistically highly significant between the main and the interaction effect because there is a diversity 

within hybrids, allowing an opportunity to accurately select a suitable hybrid for the different 

locations. We also explore the R-squared (𝑅2) statistic to further test the regression model separately 

for the main effects. The results show that the 𝑅2 = 0.21 and 0.17 for genotype and location model, 

respectively. This finding indicates a large difference between the observed and the model predicted 

since the points appeared randomly scattered on the plot.     

5.11 CONCLUSION  

Many challenges still exist in determining the performance of genotypes across locations. Several 

methods and models exist that prove the relationship between multiple methods or models, but each 

one has its limitations that need to be addressed. The stability statistics approach can be used to 

evaluate the performance of genotypes, but we still need further clarification on how to describe the 

location response of some patterns of the genotypes that might be required. The solution is to obtain 

an approach that can offer a possible improvement of the techniques used to evaluate stability with 

the understanding of the causes around interaction; thus, that approach will have the potential to be 

successful. We propose identifying the best-adapted, responsive, and stable genotypes because this 

worthwhile task is done up to the final phases of the plant breeding.  
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6CHAPTER 6  

THE USE OF LINEAR MIXED-EFFECTS MODEL IN META-ANALYSIS WITH 

MULTIPLE OUTCOMES 

 

6.1 INTRODUCTION  

Meta-analysis (MA) has become a common way of synthesising evidence and summarising the 

results of individual studies (Chalmers et al., 1997). Multivariate statistical techniques help in 

solving complex problems to find the relationships between several variables simultaneously. MA 

is a technique that allows the joint synthesis of multiple correlated outcomes. One of MA's benefits 

is to transform the findings obtained from different studies into a joint measure of standardised effect 

sizes (ESs) as inputs of MA before combining the results. With the ESs, we can initiate comparing 

and synthesising the results across similar studies (Lipsey & Wilson, 2001).  

The meta-analysis approach assumes the ESs are independent from one study to the other, but in 

reality, a single study could involve multiple tests of the same hypothesis, resulting in reporting 

multiple outcomes (MOs). So, in such a situation, what could be considered independent if a decision 

had to be made regarding a single study that reports MOs? The independency assumption of the ESs 

holds when independent studies are considered. However, this may not be the case when ESs are 

from studies involving many variables measured within the same subjects (Moeyaert et al., 2018). 

The research of this kind requires MOs with MA rather than the univariate MA. Research done in 

the agricultural field uses univariate MA in synthesising ESs simply because ESs are assumed to be 

independent. However, applied research that produces more than one outcome within a study, 

resulting in multiple ESs, is common in the agricultural field. Jackson et al. (2011) reported the 

potential of the multivariate MA and promised to describe the areas of application that multivariate 
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MA has found, the methods available, the difficulties with the approach. Riley (2009) examined the 

role within a study of the correlation in multivariate MA, which might have the effect of it being 

ignored. White (2009) developed a multivariate MA random effects approach that combines 

estimates of several related parameters over several studies since the parameters referred to MOs.  

Houwelingen et al. (2002) discussed methods that analyse univariate and bivariate treatment effects 

and meta-regression methods. In medicine, Malcolm (2019) published an empirical comparison of 

the use of univariate and multivariate meta-analysis in Cochrane Pregnancy and Childbirth Reviews 

with multiple binary outcomes. The applicability of meta-analysis for studying multiple ecosystem 

outcomes in rangelands was explored by Gravuer (2018). Many studies that have been done in the 

agricultural field use separate univariate MA in synthesising ESs. However, research work that 

produces more than one outcome within a study, resulting in multiple ESs, are popular in the 

agricultural field. Gilbels et al. (2005) used meta-analysis with MOs to investigate the influence of 

assessment on the effects of problem-based learning. In addition, Virués-Ortega (2010) used the 

approach in clinical trials to measure the comprehensive applied behaviour analytic intervention for 

young children with autism. Davis et al. in (2003) also performed MA with MOs for randomised 

efficacy trials computing second-generation antipsychotics and first-generation antipsychotics to 

reduce efficacy due to the use of a high-dose comparator. More recently, Doyle et al. (2019) used 

multivariate meta-analysis in trials of pharmacological, psychotherapeutic, and exercise care 

interventions for depressive symptoms in patients with coronary artery disease.  

Identify systematic patterns in a MA, we propose four basic categories of study characteristics for 

classification and apply them in the agricultural field. The four categories of study characteristics, 

discussed below, are: environmental research, model specification, estimation methods and data 

reuse.  
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(1) Environmental research: This comprises the type of factors in the food production that 

could indicate the type of food production, looking at labour productivity and crops, with a 

strong linkage to human health, affecting the livelihoods of many inhabitants in SSA. This 

involves the name of authors, the year of publication of the studies, the categories of food 

such as food for human health, animal health, food security, food aid and the country or 

region of the experiment.  

(2) Model specification: This contains variables in the food production model that have been 

stretched to embrace fertiliser, the type of cropping system, and farmer selection.  

(3) Estimation: This is the effect of estimation methods on parameter estimates on the type of 

food production that needs to be investigated. Estimation procedures include statistical 

techniques such as ordinary least squares estimation (OLS), maximum likelihood (ML) 

procedures and others (nonlinear programming, numerical solution techniques) that might 

be used in the studies. 

(4) Effects included in the reuse of data: The reuse of data reduces the reliability of a partial 

repeated measure design, as suggested by Pedhazur and Kerlinger (1982).  

We present multiple linear regression analysis that uses correlations among the study characteristic 

variables that determine the mathematical expression by estimating the variables of interests. This 

will allow us to establish the fundamental relationships between each category of study characteristic 

and the factors involved. We use the multiple linear regression method to test and analyse the 

relations between the variables of interests. Agriculture plays a vital role in economic development 

in many developing countries, especially in the Sub-Saharan African (SSA) countries (Ogundari & 

Awokuse, 2016). An increase in agricultural productivity is the concern of many researchers, non-

government organisations (NGOs), donors etc., to initiate greater food production output, which 
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could result in lower food prices and greater food availability in SSA (Fuglie 2013; Awokuse et al., 

2015). Food, and by extension nutrient intakes, has been found to have a strong empirical linkage 

with human health and labour productivity (Aromolaran, 2004) because food insecurity is highly 

correlated with the risk of infectious diseases and malnutrition (WHO, 2015). The World Bank 

(2007) reveals that the failure to realise the potential of SSA in agriculture has significantly 

compromised agriculture’s role in reducing poverty and achieving food security. This chapter 

proposes a meta-analysis approach using MOs in the study where we use the multiple linear 

regression (MLR) to analyse MOs jointly within a single model. Multiple outcomes in MA have 

been applied in different fields, for instance, in education. We use an illustrative example to 

demonstrate the model characteristics with the categories of study in the SSA as shown in Table 6.1.  

6.2 THE COMBINED APPROACH WITH MULTIPLE OUTCOMES  

Multiple outcomes are integrated into the food production process simply because multiple 

outcomes will influence a range of responses depending on the number of variables within the 

subject. Factors such as fertiliser and crops are specifically involved in multiple outcomes. Reporting 

more than one outcome in factors such as crop and fertiliser in their experimental process is more 

appropriate simply because a single measure may not be enough to describe the effect of the 

treatment (or process). Food production involves a complex set of factors (known and unknown) 

that we are jointly synthesising in a single model with MOs measured at each of the factors. A joint 

model provides an overall test that is more powerful, realistic and useful than the separate reports of 

an individual model. The constructed approach is useful due to collecting several outcomes in the 

study that allow different analytical relations for analysis. This situation fits perfectly in the 

multivariate methods framework. The advantages of the combined approach are: 

(1) The ability to convert the information collected from a variety of conditions into a potential 

distillation of important variables of the data. 
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(2) It allows an easy weighting of the variables since the outcomes are of a different nature and 

measured on different scales such as crop, fertiliser and trade.  

(3) Most importantly, it allows testing for the overall treatment effect since a separate analysis 

does not offer such an estimate without further work and for each outcome, this creates the 

question of correcting the p-values for multiple comparisons (Bland & Altman, 1995; Pinto 

et al., 2009).  

(4) It allows analysis of each outcome, generating unbiased estimates for treatments. 

Analysing the outcomes separately do not require that the outcomes be measured on the same scale 

because the outcomes were not observed together (Pinto, et al., 2009). The data collected were the 

effect sizes (correlations) with no missing data observed.  

We present a combined model that has the characteristics of a multivariate method to  

1 analyse all the outcomes together by using the correlations as effect sizes.  

2 allow combinations of different types of outcomes. 

3 use real data as an example to demonstrate the effectiveness of the approach by showing the 

results in separate models compared to the combined approach.  

6.3 CONSTRUCTING MULTIPLE LINEAR REGRESSION MODELS USING META-

ANALYSIS  

 

Food production carries multiple factors due to more than one feature that occur to help to account 

for variability among the experimental units. We use a scenario to construct the combined multiple 

regression model that determines the simplest relationship between the factors involved in the 

model. Thereafter, we then compare the treatments or populations using the MLR models. We 

assume that the model with correlated outcomes of factors of interest follows a multivariate normal 
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distribution. The scenarios are based on the four characteristics-based study discussed earlier. The 

four scenarios can be described as follows: 

Scenario 1 presents the multivariate structure of the data that analyses internal factors with MOs. 

In this section, we assume that there is a joint association between the outcomes and the 

covariates. Let us assume that 𝑚 studies from the past and 𝑛 factors that produced MOs are 

selected. Each study provides the correlations measures denoted by Ω𝑖𝑗  (𝑖 =1, 2, …, 𝑚 and 𝑗 = 1, 

2, …, 𝑛) associated with the total correlation of the internal factors to food production treatment 

effect denoted by X𝑖𝑗 . The association between past studies and the internal factors can be defined 

by the following mathematical model:  

𝑿 = 𝜴𝜷 + 𝜺,                                                                                                                                 (6.1) 

with 

𝐗 =

(

 
 

𝑋𝑖1
𝑋𝑖2
𝑋𝑖3
⋮
𝑋𝑖𝑛)

 
 
, 𝛀 =

(

 
 

1 Ω11 Ω12 … Ω1𝑛
1 Ω21 Ω22 … Ω2𝑛
1 Ω31 Ω32 … Ω3𝑛
  ⋮
  1

  ⋮
Ω𝑚1

⋮
Ω𝑚2

⋮
…

⋮
Ω𝑚𝑛)

 
 
, 𝛃 =

(

 
 

𝛽00
𝛽𝑖1
𝛽𝑖2
⋮
𝛽𝑖𝑛)

 
 
 , 𝛆 =

(

 
 

𝜀𝑖1
𝜀𝑖2
𝜀𝑖3
⋮
𝜀𝑖𝑛)

 
 
,  

 

where Ω𝑖𝑗 denotes the value of 𝑖𝑡ℎ study on the 𝑗𝑡ℎ internal factor experimental unit,  𝛽𝑖𝑗 denotes the 

slope of 𝑖𝑡ℎstudy in the direction of the 𝑗𝑡ℎ the internal factor for treatment, and we assume that 𝜀𝑖𝑗 

are iid N(0, 𝜎𝜀𝑖𝑗
2 ).  

Scenario 2 is based on the multivariate structure of the data that analyses external factors with MOs. 

Similarly, we assume 𝑚  past studies and 𝑛  factors that provide MOs. Each study offers the 

correlation measures denoted by 𝛾𝑖𝑗  (𝑖 = 1, 2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑛) associated with the total 

correlation of the external factors for food production treatment effect denoted by Y𝑖𝑗 . The following 

mathematical model can define the association between the past studies and the external factors:  



 
 

125 
 

𝒀 = 𝜸𝜶 + 𝝃,                                                                                                                                  (6.2) 

with 

𝒀 =

(

 
 

𝑌𝑖1
𝑌𝑖2
𝑌𝑖3
⋮
𝑌𝑖𝑛)

 
 
 , 𝜸 =

(

 
 

1 𝛾11 𝛾12 … 𝛾1𝑛
1 𝛾21 𝛾22 … 𝛾2𝑛
1 𝛾31 𝛾32 … 𝛾3𝑛

    ⋮
  1

⋮
𝛾𝑚1

⋮
𝛾𝑚2

⋮
…

⋮
𝛾𝑚𝑛)

 
 
 , 𝜶 =

(

 
 

𝛼00
𝛼𝑖1
𝛼𝑖2
⋮
𝛼𝑖𝑛)

 
 
 , 𝝃 =

(

 
 

𝜉𝑖1
𝜉𝑖2
𝜉𝑖3
⋮
𝜉𝑖𝑛)

 
 
,  

 

where γ𝑖𝑗 denotes the value of 𝑖𝑡ℎ study on the 𝑗𝑡ℎ external factor experimental unit,  𝛼𝑖𝑗 denotes the 

slope of 𝑖𝑡ℎstudy in the direction of the 𝑗𝑡ℎ external factor for treatment, and we assume that 𝜉𝑖𝑗 are 

iid N(0, 𝜎𝜉𝑖𝑗
2 ).  

Scenario 3: presents the multivariate structure of the data that considers the statistical techniques 

used to estimate the parameters in the factors with MOs. Similarly, we assume that there is a joint 

association between the outcomes and the covariates. Let us assume that 𝑚 studies from the past 

and 𝑛  factors that produced MOs are selected. Each study provides the measures denoted by 

𝑈𝑖𝑗  (𝑖 =1, 2, …, m and 𝒋 = 1, 2, …, 𝑛) associated with the total of the estimated parameters on the 

factors of the food production treatment effect denoted by Z𝑖𝑗 . The following mathematical model 

can define the association between the total of the estimated parameters in past studies and the 

statistical methods used in the factors:  

𝒁 = 𝑼𝜹 + 𝝇,                                                                                                                                 (6.3) 

with 

𝒁 =

(

 
 

𝑍𝑖1
𝑍𝑖2
𝑍𝑖3
⋮
𝑍𝑖𝑛)

 
 
, 𝑼 =

(

 
 

1 U11 U12 … U1𝑛
1 𝑈21 U22 … U2𝑛
1 𝑈31 U32 … U3𝑛
  ⋮
  1

  ⋮
𝑈𝑚1

⋮
𝑈𝑚2

⋮
…

⋮
U𝑚𝑛)

 
 
, 𝜹 =

(

 
 

𝛿00
𝛿𝑖1
𝛿𝑖2
⋮
𝛿𝑖𝑛)

 
 
 , 𝝇 =

(

 
 

𝜍𝑖1
𝜍𝑖2
𝜍𝑖3
⋮
𝜍𝑖𝑛)

 
 
,  
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where U𝑖𝑗  denotes the value of 𝑖𝑡ℎ  study on the 𝑗𝑡ℎ  statistical techniques used on the factor 

experimental unit,  𝛿𝑖𝑗 denotes the slope of 𝑖𝑡ℎstudy in the direction of the 𝑗𝑡ℎ statistical technique 

on the factor for treatment, and we assume that 𝜍𝑖𝑗 are iid N(0, 𝜎𝜍𝑖𝑗
2 ). 

Scenario 4: Similarly, the total effects of the reuse of data (𝑅𝑖𝑗) associated with the measure of the 

reuse data on the factors can be expressed as  

𝑹 = 𝑪𝜽 + 𝛇,                                                                                                                                 (6.4) 

with 

 𝑹 =

(

 
 

𝑅𝑖1
𝑅𝑖2
𝑅𝑖3
⋮
𝑅𝑖𝑛)

 
 
, 𝑪 =

(

 
 

1 C11 C12 … C1𝑛
1 C21 C22 … C2𝑛
1 C31 C32 … C3𝑛
  ⋮
  1

  ⋮
C𝑚1

⋮
C𝑚2

⋮
…

⋮
C𝑚𝑛)

 
 
, 𝜽 =

(

 
 

𝜃00
𝜃𝑖1
𝜃𝑖2
⋮
𝜃𝑖𝑛)

 
 
 , 𝜻 =

(

 
 

𝜁𝑖1
𝜁𝑖2
𝜁𝑖3
⋮
𝜁𝑖𝑛)

 
 
  

 

where C𝑖𝑗 denotes the value of 𝑖𝑡ℎ study on the 𝑗𝑡ℎ reuse of data on the factor experimental unit,  𝜃𝑖𝑗 

denotes the slope of 𝑖𝑡ℎstudy in the direction of the 𝑗𝑡ℎ reuse of data on the factor for treatment and 

we assume that 𝜁𝑖𝑗 are iid N(0, 𝜎𝜁𝑖𝑗
2 ).  

The combined multivariate model 𝑭 = 𝑿 + 𝒀 + 𝒁 + 𝑹 is a joint model of Equation 6.1 to 6.4 given 

by 

𝑭 =  𝜴𝜷 +  𝜸𝜶 + 𝑼𝜹 + 𝑪𝜽 + 𝝉                                                                                                       (6.5) 

The matrix is 
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(

 
 

𝐹𝑖1
𝐹𝑖2
𝐹𝑖3
⋮
𝐹𝑖𝑛)

 
 

=

(

 
 

1
1
1

Ω11
Ω21
Ω31

Ω12 Ω13 ⋯ Ω1𝑛 ⋯ 𝐶11 𝐶12 𝐶13 ⋯ 𝐶1𝑛
Ω22 Ω23 ⋯ Ω2𝑛 ⋯ 𝐶21 𝐶22 𝐶23 ⋯ 𝐶2𝑛
Ω32 Ω33 ⋯ Ω3𝑛 ⋯ 𝐶31 𝐶32 𝐶33 ⋯ 𝐶3𝑛

⋮ ⋮ ⋮    ⋮     ⋮       ⋮   ⋮     ⋮       ⋮     ⋮               ⋮
1 Ω𝑚1 Ω𝑚2 Ω𝑚3 ⋯ Ω𝑚𝑛 ⋯ 𝐶𝑚1 𝐶𝑚2 𝐶𝑚3 ⋯ 𝐶𝑚𝑛)

 
 

(

 
 
 
 
 
 
 
 

𝛽00
𝛽𝑖1
𝛽𝑖2
⋮
𝛽𝑖𝑛
⋮
 θ00
 θ𝑖1
 θ𝑖2
⋮
 θ𝑖𝑛)

 
 
 
 
 
 
 
 

 + 

(

 
 

𝜏𝑖1
𝜏𝑖2
𝜏𝑖3
⋮
𝜏𝑖𝑛)

 
 

                                                                                                                                        (6.6) 

 

This is like 𝒀 = 𝑿𝜷 +  𝜺 , where 𝒀 is the data vector, 𝑿 is the design matrix, 𝜷 is the vector of 

parameters, and 𝜺 is the vector errors.  

The GLS regression model is used in the fixed and random effects model since the approach provides 

the benefit of analysing multiple outcomes by combining them into a single model. In addition, the 

approach can explain the heterogeneity of the results among the factors better. If the heterogeneity 

does not hold, then the fixed model provides the estimated coefficients, the standard errors, and the 

p-values. Therefore, the findings obtained from the fixed effects model will not be used to make 

inferences to avoid misleading conclusions (Berkey et al., 1998).  

The hypotheses are 𝐻0 : Homogeneity effect is detected versus 𝐻1: Heterogeneity effect is detected.  

Reject 𝐻0 if the Chi-square test 𝑄 is greater than the critical value at the degrees of freedom 𝑑𝑓 = 

(k-1) or p-value < 0.05. Equation 6.5 represents the fixed effects model, and similarly, the random-

effects model is  

𝑭  = 𝜴𝜷 + 𝜸𝜶 + 𝑼𝜹 + 𝑪𝜽 + 𝝊 + 𝝉                                                                                              (6.7)                                                                                                  
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Based on Equation 6.5 and 6.7, the covariance of the random effects error is denoted by  

Cov (𝜐𝑖𝑗) = value D and the covariance of the random sampling error denoted by Cov (𝜏𝑖𝑗) =𝑆𝑖𝑗 , 

𝐸(𝜏𝑖𝑗) = 𝐸(𝜐𝑖𝑗) =  0  

The distribution 𝜏𝑖𝑗~MVN (0;𝑺𝑖𝑗)                                                                                            (6.8) 

Because the vector 𝑭 is a collection of random vectors, 𝑭𝑖1, 𝑭𝑖2, … , 𝑭𝑖𝑛 are assumed independent 

and normally distributed, then 𝑭𝑖𝑗 (𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛) is MVN distributed; therefore 

the distributions for 𝑭𝒊𝒋 for the fixed-effects and random-effects are given, such as the distribution 

𝑭𝑖𝑗~MVN (𝛀ij𝛃 + 𝛄ij𝛂 + 𝐔ij𝛅 + 𝐂ij𝛉 ; 𝑺𝑖𝑗) for the fixed-effects and the distribution 𝑭𝑖𝑗~MVN 

(𝛀ij𝛃 + 𝜸𝑖𝑗𝜶 + 𝐔ij𝛅 + 𝑪𝑖𝑗𝜽; 𝐷 + 𝑺𝑖𝑗) for the random-effects model. In the fixed-effects model, 

we assume that the off-diagonal elements of each 𝑺𝑖𝑗 are zero simply because the observations 𝑖 and 

𝑗 are independent therefore, the matrix variance-covariance is 

𝑺𝑖𝑗= 

(

 
 

𝑆11 0 0 ⋯ 0
0 𝑆22 0 ⋯ 0
⋮
0
0

0
⋮
0

⋱
0
0

⋮
⋱
…

⋮
0
𝑆𝑚𝑛)

 
 

 

 

(6.9) 

 

  

6.4 ESTIMATION OF PARAMETERS IN THE COMBINED MODEL  

The estimation of parameters is performed through least square regression to minimise the sum of 

squared residuals. We are comparing each independent variable to the dependent variable, and more 

especially because the variables are measured with different scales. The technique requires 

standardising the coefficients in the regression model using the Z-scores. The normal scaling entails 

subtracting the sample mean and dividing by the standard deviation from Equation 6.3 as follows 

𝐅ij =  
Fij−F̅

SF𝑖𝑗
, Ωij  =  

Ωij−Ω̅𝑖𝑗

SΩij
, 𝜸ij =  

γij−γ̅𝑖𝑗

Sγij
, 𝐔ij =  

Uij−U̅𝑖𝑗

Ssij
 and 𝐂ij  =  

Cij−C̅𝑖𝑗

Scij
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where 𝑆𝑭𝒊𝒋, SΩij ,Sγ𝑖𝑗, SS𝑖𝑗and SCijrepresent the estimated sample standard deviation of the dependent 

variable and the independent variables in the model. Using the standardised formulas in Equation 

6.5, the model becomes 

𝐹𝑖𝑗−𝐹

𝜎𝐹
  =   

𝜏𝑖𝑗−𝜏̅

𝜎𝜏
 + 𝛽𝑖1

Ω𝑖1−Ω̅

𝜎Ω𝑖1
+  𝛽𝑖2

Ω𝑖2−Ω̅

𝜎Ω𝑖2
 +… .+ Ω𝑖𝑛

Ω,𝑛𝑖−Ω̅

𝜎Ω𝑖𝑛
+  𝛼𝑖2

𝛾𝑖𝑗−𝛾̅

𝜎𝛾𝑖2
 

+…+ 𝛾𝑖𝑛
𝑦𝑖𝑛−𝛾̅

𝜎𝛾𝑖𝑛
 + 𝛿1𝑖

𝑈𝑖1−𝑈̅

𝜎𝑈𝑖1
 + ... + 𝛿𝑖𝑛

𝑈𝑖𝑛−𝑈̅

𝜎𝑈𝑖𝑛
  +  𝜃𝑖1

𝐶𝑖1−𝐶̅

𝜎𝐶𝑖1
  +...+  𝜃𝑖𝑛

𝐶𝑖𝑛−𝐶̅

𝜎𝐶𝑖𝑛
 

(6.10) 

Equation 6.10 can be written as 

𝑭∗𝑖𝑗   =  𝜏∗+ 𝛽𝑖1 𝛀
∗ 
𝑖1 +...+ 𝛽𝑖𝑛 𝛀∗ 𝑖𝑛 + 𝛼𝑖1 𝜸∗

𝑖1
 +...+ 𝛼𝑖𝑛 𝜸∗

𝑖𝑛
+ 𝛿𝑖1 𝑼

∗
𝑖1 +... + 𝛿𝑖𝑛 

𝑼∗𝑖𝑛 + 𝜃𝑖1 𝑪∗𝑖1 +⋯+  𝜃𝑖𝑛 𝑪∗𝑖𝑛  +𝝉∗𝑖𝑛 

(6.11) 

where 𝑭∗𝑖𝑗  ,𝛀∗ 𝑖𝑗 , 𝜸∗ 
𝑖𝑗

, 𝑼∗ 𝑖𝑗  and 𝑪∗𝑖𝑗  are the standardised food production for the dependent 

variable and the independent variables respectively. In addition, 𝛽𝑖𝑗, 𝛼𝑖𝑗,  𝛿𝑖𝑗 and 𝜃𝑖𝑗 represent the 

parameters to estimate and 𝝉∗𝑖𝑗 represent the error term. Using the least-squares method to minimise 

the sum of squared residuals equal to the form ∑ 𝑒2𝑖
𝑛
𝑖=1  = ∑ (𝑦𝑖 − 𝜇

∗ − ∑ 𝛽𝑖𝑗
𝑛
𝑖=1 𝑋𝑖𝑗)

2𝑛
𝑖=1 and taking 

the derivative with respect to the model parameters 𝛽𝑖1  ,𝛽𝑖2 ,  𝛽𝑖3 ,... and 𝛽𝑖𝑛  set to zero, the 

expression becomes 𝑛 𝜇∗+ 𝛽̂𝑖1∑ 𝑋∗𝑖1
𝑛
𝑖=1  + 𝛽̂𝑖2∑ 𝑋∗𝑖2

𝑛
𝑖=1  + ... +  𝛽̂𝑖𝑛∑ 𝑋∗𝑖𝑛

𝑛
𝑖=1  = ∑ 𝑦∗

𝑖
𝑛
𝑖=1  

For each factor, the simpler form, using vector and matrix notations, is  
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𝒀∗ = 

(

  
 

𝑦∗
1

𝑦∗
2

𝑦∗
3

⋮
𝑦∗
𝑚)

  
 
,      𝑿∗= 

(

 
 

1
1
1
⋮

𝑋∗11
𝑋∗21
𝑋∗31
⋮

𝑋∗12 𝑋∗13 … 𝑋∗1𝑛
𝑋∗22 𝑋∗23 … 𝑋∗2𝑛
𝑋∗32 𝑋∗33 … 𝑋∗3𝑛
⋮          ⋮        …    ⋮

1 𝑋∗𝑚1 𝑋∗𝑚2  𝑋∗𝑚3    …   𝑋∗𝑚𝑛)

 
 

 ,     𝜷∗= 

(

 
 

𝜇∗

𝛽𝑖1
𝛽𝑖2
⋮
𝛽𝑚𝑛)

 
 
,      

𝜺∗= 

(

 
 

𝜀∗1
𝜀∗2
𝜀∗3
⋮
𝜀∗𝑚)

 
 

, 

(6.12) 

The linear regression model is denoted as 𝒀∗ = 𝑿∗ 𝜷∗ + 𝜺∗and the least-squares parameter estimates 

𝜷∗ are the vectors that minimise: 

∑ 𝑒2𝑖
𝑛
𝑖=1  = 𝜀∗′𝜀∗ = (𝑦 − 𝑋∗ 𝛽∗)′(𝑦 − 𝑋∗ 𝛽∗) (6.13) 

After determining the derivative of Equation 6.13 with respect to mixed effects 𝛽∗, the vector of the 

parameters is  

𝜷∗̂=(𝑿∗′𝑿∗)−1𝑿∗′𝒀∗ (6.14) 

The ordinary least squares (OLS) technique is used to estimate the parameters for the fixed and 

random effects models for multiple outcomes. We aim to determine in the analysis which factor in 

each model describes the mean effects of the dependent variable and test each model's fit. The null 

hypothesis is that all the estimated parameters are equal. 

6.5 DATA ANALYSIS 

6.5.1 Introduction 

Each study of food production reported the results about the environmental research for crops and 

the type of specification for fertiliser with three outcomes that have been measured on each of eight 

African countries. Meta-analysis in agriculture performs a single synthesis for the results of each 

outcome. In this study, we present a simultaneous analysis that uses the correlations as the effect 

sizes, and the MLR model is employed to estimate parameters. The data are averages from the 
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published articles and the effect sizes are the correlations from each selected country for each factor 

respectively. Three outcomes are assessed from the environmental research category (maize, 

vegetables and fruit) and two from the model specification category (potassium and urea) in the 

classification of the study as indicated in Table 6.1.  

Table 6.1: The correlation data for the effect sizes and in bracket are the standard error for the 

correlations 

Country Classification of the study 

Environmental Research Model Specification 

Maize Vegies Fruits FoodProd Potas Urea Prod 

Burk. F 0.8013 

(0.4088) 

0.2773 

(0.1415) 

0.0970 

(0.0495) 

0.9471 

(0.4832) 

0.4276 

(0.2182) 

0.3915 

(0.1997) 

0.5638 

(0.288) 

Camer 0.8019 

(0.4091) 

0.2811 

(0.1434) 

0.9530 

(0.4862) 

0.9528 

(0.4861) 

0.2091 

(0.1067) 

0.2874 

(0.1466) 

0.5022 

(0.256) 

Cote Iv 0.8117 

(0.4141) 

0.4802 

(0.2450) 

0.1084 

(0.0553) 

0.9527 

(0.4861) 

0.2091 

(0.1067) 

0.2874 

(0.1466) 

0.5022 

(0.256) 

Gabon 0.8547 

(0.4361) 

0.4730 

(0.2413) 

0.1321 

(0.0674) 

0.9570 

(0.4883) 

0.4297 

(0.2192) 

0.5351 

(0.2730) 

0.6660 

(0.339) 

Ghana 0.8821 

(0.4501) 

0.3619 

(0.1846) 

0.8840 

(0.4510) 

0.9520 

(0.4857) 

0.3464 

(0.1767) 

0.5344 

(0.2727) 

0.4255 

(0.425) 

Kenya 0.8996 

(0.4590) 

0.2198 

(0.1121) 

0.9086 

(0.1636) 

0.9556 

(0.4876) 

0.4768 

(0.2433) 

0.4245 

(0.2166) 

0.5661 

(0.289) 

Sou. Afr 0.8984 

(0.4584) 

0.1829 

(0.0933) 

0.9144 

(0.4665) 

0.9858 

(0.5030) 

0.4994 

(0.2548) 

0.4871 

(0.2485) 

0.4015 

(0.205) 

Senegal 0.1190 

(0.0807) 

0.4372 

(0.2231) 

0.8032 

(0.4098) 

0.9634 

(0.4915) 

0.7071 

(0.3608) 

0.7071 

(0.3608) 

0.7071 

(0.361) 

Burk. F.; Burkina Faso; Camer: Cameroon; Cote Iv.: Ivory Coast; Sou. Afr: South Africa. 

FoodProd: food production 
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The data are the effect sizes called correlations. In Table 6.2, we present the single and the combined 

approach for testing the estimated parameter. The multivariate test provides the overall treatment, 

while individual tests raise the issue of adjusting the p-values for multiple comparisons (Pinto et al., 

2009; Bland et al., 1995). Equation 6.1 and 6.2 are used in the model for estimation. The ANOVA 

tests the hypothesis that the factor model is adequate for the data, as shown below. 

Table 6.2: Model estimation using the ANOVA procedure  

 Model Sources Sum of 

Square 

Df Mean 

Squares 

F p-value 

Separate 

Model 

Environmental 

Research 

Regression 

Residual 

Total 

5.598 

1.402 

7.000 

3 

4 

1.666 

0.351 

5.322 0.070 

Model 

Specification 

Regression 

Residual 

Total 

3.095 

3.905 

7.000 

2 

5 

1.548 

0.781 

1.981 0.232 

Combine 

Model 

Multivariate 

Model 

Regression 

Residual 

Total 

0.163 

0.040 

0.202 

5 

2 

7 

0.033 

0.020 

1.642 0.420 

 

Since the p-value is greater than the 0.05 level of significance, it implies that the model and the data 

are statistically equivalent. We will calculate the fixed and the random effects from each model as 

given in Table 6.3 for the single and combined approach. 
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Table 6.3: Effect sizes for calculations of fixed and random effects 

Environmental research Model specification 

Study ES SE W 𝑊 ×𝐸𝑆 ES SE W 𝑊 × 𝐸𝑆 

1 -0.119 -0.014 5110.12 -606.57 0.428 0.07566 174.688 74.766 

2 0.9881 0.1165 73.7447 72.8671 -1.8914 -0.3344 8.9451 -16.91 

3 -2.416 -0.285 12.3350 -29.801 1.3057 0.2308 18.7700 24.507 

4 3.0154 0.3554 7.9185 23.8774 1.3955 0.2467 16.432 22.930 

5 2.5839 0.3045 10.7840 27.8649 -1.0334 -0.1825 30.0230 -30.99 

6 -2.722 -0.321 9.7154 -26.448 0.3454 0.0611 268.229 92.646 

7 2.1254 0.2505 15.9386 33.8760 0.1137 0.0201 2475.31 281.44 

8 -0.525 -0.062 261.424 -137.20 -0.1773 -0.0313 1017.96 -180.4 

Total   5501.98 641.53   4010.36 267.89 

ES: Effect sizes     SE: Standard Error      W: weights for Meta-analysis   

The tests to estimate the model for the fixed and random effects regression models are as indicated 

below. 

6.5.2 Fixed Effects for Single Model 

The following test examines the homogeneity of the ESs. If the homogeneity holds according to the 

testing, then all the ESs are estimating the same population, meaning that the fixed effects model is 

applicable. 

Table 6.4: Fixed effects calculations for single model 

Model SE.Mean M.ES 𝐸𝑆̅̅̅̅  Z-test 95 % CI of ES Q 

 

P-value 

Environmental 

Research 

 

 0.014 

 

     0.12 

 

 0.0668 

 

(0.09;  0.14) 

 

 501.1977 

 

0.0001 

Model 

Specification 

 

 0.0158 

 

 

  0.067 

 

 4.2278 

 

(0.051; 0.083) 

 

 238.1045 

 

0.0024 

SE: Standard error, SE.Mean = SE of the mean of the effect sizes, CI of ES = Confidence interval 

of effect sizes,  𝑄: The calculated test statistic value for heterogeneity. 

 

The results are significant (p-value < 0.05), which implies that not all ESs estimate the same 

population. This means that the distribution is heterogeneous; therefore, the single mean of the ESs 

is not suitable to describe the distribution. That means the studies are estimating different 
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populations and mean of ESs. The Q test statistic is greater than the critical value (14.10); thus, these 

results confirmed the previous test. The Q-test statistics are distributed as per the Chi-squared with 

the degrees of freedom (df = 7), representing the number of ESs minus 1. The findings indicate that 

all the models are significant. That is, the variability across the ESs does exceed what could be 

expected based on the sampling error. 

6.5.3 Random Effects Model for Single Model 

The random-effects model is used under the assumption that the variability between effects sizes is 

due to the sampling error.  

Table 6.5: Fixed effects calculations for single model 

Environmental research Model specification 

Study ES W 𝑊 × 𝐸𝑆 𝑊2 ES W 𝑊 × 𝐸𝑆 𝑊2 

1 -0.119 5110. -606.57 2611332 0.428 174.688 74.7664 30515 

2 0.988 73.74 72.8671 5438.277 -1.8914 8.9451 -16.919 80.014 

3 -2.416 12.33 -29801 152.1519 1.3057 18.7700 24.5079 352.31 

4 3.015 7.918 23.8774 62.7026 1.3955 16.432 22.9309 270.01 

5 2.583 10.78 27.8649 116.2953 -1.0334 30.0230 -30.996 901.38 

6 -2.722 9.715 -26.448 94.3889 0.3454 268.229 92.6462 71946. 

7 2.125 15.93 33.8760 254.0401 0.1137 2475.31 281.442 612714 

8 -0.525 261.4 -137.20 68342.31 -0.1773 1017.96 -180.49 103625 

Total   641.53 2618778   267.894 726746 

ES: Effect sizes; SE: Standard Error; W: weights for Meta-analysis   

The following tests examine the heterogeneity of the ESs. If the heterogeneity is shown to hold by 

testing the null hypothesis, then all the ES estimates vary from one population mean to the next; 
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therefore, the random-effects model is applicable. The weight for each study is 𝑊𝑖  = 
1

𝑆𝐸𝑖
2+ ∆̂𝜃 

  

where ∆̂𝜃= 
𝑄𝑖−(𝑘−1)

∑𝑊−(
∑𝑊2

∑𝑊
)
 , the random effects variance component. The calculated value of ∆̂𝜃  and 

𝑊𝑖 are as follows:  

For environmental research: ∆̂𝜃= 0.6658 and 𝑊𝑖 = 1.5015. 

For specification model: the weight for each study is 𝑊𝑖 = 
1

𝑆𝐸𝑖
2+∆̂𝜃

 where ∆̂𝜃, the random effects 

variance component is ∆̂𝜃  = 0.1051 and 𝑊𝑖 = 9.4922  

 

Table 6.6: Random effects calculations for single model:  

 

Model 

SE.Mean M.ES 𝐸𝑆̅̅̅̅  Z-test 95 % CI of ES P-value 

ER 𝑆𝐸𝐸𝑆̅̅̅̅  = 0.8161 𝐸𝑆̅̅̅̅  = 0.1166 0.1429 

 

(-1.483; 1.716) 0.9999 

MS 𝑆𝐸𝐸𝑆̅̅̅̅  = 0.1053 𝐸𝑆 ̅̅ ̅̅ = 0.0668           0.6344 

 

(-0.139; 0.273) 0.9888 

SE: Standard error, SE.Mean = SE of the mean of effect sizes, M.ES = Mean effect sizes, CI of ES 

= Confidence interval of effect sizes, 𝑄: The calculated test statistic value for heterogeneity, ER – 

Environmental Research, MS = Model Specification 

 

We fail to reject the null hypothesis because there is a presence of homogeneity effects, therefore 

the variability across the effects sizes is not going beyond what could be expected based on the 

sampling error.  

6.5.4 Fixed and Random Effects Model with Combined Multiple Outcomes 

The combined approach in MA is used through the fixed and the random-effects models by 

combining information across studies to test the heterogeneity effects before calculating the 

parameters that represent the effects of particular interest. The aim is to describe the relations 
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between the environmental research and model specification level. Analysing heterogeneity through 

a combined model when using fixed- and random-effects is shown in Table 6.7. 

Table 6.7: Fixed and random effects for the combined model 

Study ES SE W 𝑊 × 𝐸𝑆 

1 0.3093 0.0210 2257.844 698.3511 

2 -0.9033 -0.0615 264.7218 -239.123 

3 -1.1103 -0.0756 175.2157 -194.542 

4 4.4109 0.3001 11.10195 48.9696 

5 1.5515 0.1056 89.7326 139.2201 

6 -2.3769 -0.1617 38.2324 -90.8747 

7 2.2391 0.1524 43.0831 96.4673 

8 -0.7021 -0.0478 438.1833 -307.648 

Total   3318.115 150.8198 

ES: Effect sizes; SE: Standard error; W: weights for meta-analysis 

The test for homogeneity and heterogeneity of the ESs is given in Table 6.8. If the homogeneity 

holds as shown by testing, that means that all the ESs estimate the same population mean, 

therefore the fixed effects model is applicable. 

Table 6.8: Fixed and random effects calculations for the combined model                            

Model SE.Mean M.ES ES̅̅ ̅ Z-test 95 % CI of ES 

Fixed effects 𝑆𝐸𝐸𝑆̅̅̅̅  = 0.0174 𝐸𝑆̅̅̅̅  = 0.0003 0.0172 (-0.0334; 0.0344) 

Random effects 𝑆𝐸𝐸𝑆̅̅̅̅ = 1.0073 𝐸𝑆̅̅̅̅   = 0.0455 0.0452 (-1.9288; 2.0198) 

SE: Standard error, SE.M = SE of the mean, M.ES = Mean effect sizes, 𝑄: The calculated test 

statistic value for heterogeneity 
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In the random-effects model, the weight for each study is 𝑊𝑖  =
1

𝑆𝐸𝑖
2+ ∆̂𝜃

 and the random effects 

variance component ∆̂𝜃 = 1.0143. The fixed and random effects model in the combined approach 

fails to reject the null hypothesis of homogeneity of effects since the true effect size is the same in 

all the studies.  

The comparison between the single and the combined models using the OLS procedure is 

estimated as given in Table 6.9.    

Table 6.9: Comparison between the single approach and combined approach 

 Single model Combined model 

Study Outcome Coeff SE p-v t Coeff SE p-v t 

ER Maize -0.44 0.262 0.173 -1.66 -0.395 0.088 0.525 -0.763 

Vegies -0.94 0.281 0.029 -3.35 -0.852 0.091 0.253 -1.588 

Fruits 0.050 0.262 0.859 0.19 -0.024 0.087 0.967 -0.046 

MS 

 

Potas 0.621 0.634 0.372 0.980 0.033 0.139 0.971 0.040 

Urea 0.051 0.634 0.939 0.080 0.351 0.144 0.718 0.415 

Model fit ER: Single model 

 𝑅2= 0.800  

p-value= 0.070 

SE: 0.5921 

F: 5.322  

Residual variance: 0.5715 

 

MS: Single model 

 𝑅2= 0.442  

P-value= 0.232 

SE : 0.884 

F : 1.981 

Residual variance: 0.7140 

 

Combined model: 

𝑅2= 0.804 

p-value= 0.420 

SE: 0.141       

F: 1.642 

Residual variance: 0.2862 

 

ER: Environmental research; MS: Model specification; SE: Standard error; Coeff: Coefficient, pv = 

p-value 



 
 

138 
 

 

The coefficient of determination estimates the goodness-of-fit 𝑅2 values for all the models as the 

results indicated that the models fit the data well. That is, the regression equations exhibit the 

associations among the observed values well. We suggest using the combined multiple outcomes 

model instead of the single univariate models because the combined model is more economical due 

to its multivariate property of borrowing the strength of the correlations between variables of 

interests. The smaller residual variance (0.2862) obtained from the combined model is better than 

the results of the single outcome models. The single model is Y = -0.44 maize – 0.94 vegies + 0.05 

fruits + 0.621 potassium + 0.051 urea and the combined model is Y = -0.395 maize – 0.852 vegies 

– 0.024 fruits + 0.033 potassium + 0.351 urea. The F-values tests, equal to 5.322, 1.981 and 1.642 

respectively, and all the p-values are larger; therefore, no differences between the population means 

were found. These results are consistent with the above tests indicating significant linear correlation 

between the dependent variables and the independent variables. Because all our regression models 

parameters were insignificant, we noted to refrain from interpreting the parameters, but we suggest 

increasing the number of variables in the models for suitable regression models.  
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7CHAPTER 7  

DISCUSSION 

7.1 INTRODUCTION   

The soil cultivation practices, water scarcity and climate change have led the SSA countries to a loss 

of soil fertility simply because these factors negatively influence the results of agricultural food 

production; therefore, they have harmfully affected the lives of people due to the political instability 

and natural disasters in the SSA. Farmers who have adopted technologies had sufficiently improved 

their productivity by raising their economic growth and enhancing the conditions of the people. The 

development of these entities is likely to increase food security and to alleviate poverty, therefore 

advancing the trade and the economy of the country. The results indicate a positive significant 

relationship between the adoption of new technology practices and the increase of food production, 

thus, improving lives and the social wellbeing of the people. In applying MA and SEM approaches, 

the results indicated that the use of hybrid seed, fertiliser, irrigation, and new equipment were some 

of the agricultural products in the modern process of food production. By adopting this approach, 

farmers are likely to change their agricultural food production activities and therefore address the 

challenges facing the SSA countries.  

This study develops a procedure of combining the research outputs produced by different research 

collections to establish accurate parameter estimates using various statistical techniques to address 

the challenges facing agricultural research food production in SSA countries. These techniques are: 

1  Meta-analysis (MA).  

2 Structural equation modelling (SEM) under the conditions of factor analysis and principal 

component analysis (PCA). 

3 An approach that combines MA and SEM. 
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4 An approach that determines the performance of the genotype across locations by testing the 

stability statistics; and 

5 The use of multiple linear regression to analyse various studies involving multiple outcomes 

within a single model.   

This work demonstrates how the above techniques were used to address the research questions based 

on the evaluation of suitable and stable parameter estimates on the practicability of existing 

techniques. These techniques were able to estimate the parameters based on the fixed, random, and 

mixed-effects model accurately. The models were more reliable than the existing approaches simply 

because the usual models are more restrictive under some conditions. To apply the present approach, 

the researcher has provided guidelines for each technique to calculate the suitability of the parameter 

estimates as presented below 

Meta-analysis is a statistical technique that enables the researcher to improve the definition and 

analysis of the data from the past studies, therefore, getting a better estimate of the effect sizes. The 

application of MA requires underlining the sample size of the past studies, the standard errors and 

applying the eligibility criteria for selecting studies for obtaining the effect sizes that are inputs in 

the analysis. The choice of these elements has been inconsistent in some instances and has therefore 

greatly affected the estimation parameters and could identify the sources of heterogeneity between 

studies difficult. The present approach is more consistent and understandable because of the use of 

original data to generate the effect sizes that are the correlation coefficients used in a multivariate 

meta-analysis. Since the correlations are obtained from independent studies and conducted by 

multiple researchers, the measures of the variables of interest are likely to be different. Therefore, 

the new approach has standardised the correlations before pooling them together to form a pooled 

correlation matrix using the multivariate meta-analysis procedure. We have used the pooled 
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correlation matrix to test various mixed theoretical models. The illustrative example had shown how 

multivariate meta-analysis could be applied in agricultural studies and related fields simply because 

the model was reliable with the specific data.  

This technique increases the statistical power since it has improved the estimates of the effect sizes 

and resolved any uncertainty of the summary statistics collected. In addition, the proposed approach 

provides an educational methodology for obtaining reliable effect sizes to the researcher, thus, 

giving both consistent effect sizes from one study to the next and providing a better understanding 

of the entire process, for example, in the process of food production for subsistence farming. It is 

expected that the use of MA by integrating the findings from multiple studies will assist subsistence 

agriculture, for example, to obtain the best assessment of the food production in dealing with 

multiple results from past studies. The summarised description of the improved adaptive techniques 

approach enabled us to draw important conclusions and extend the univariate model to a multivariate 

MA concept.  

The second substantive result is in SEM, where the traditional approach is more restrictive in how 

inter-correlations are defined among the factors. The proposed structure is more suitable, flexible, 

and accurate in determining the number of linear regressions that explain the effects of the 

endogenous structure upon the exogenous structure. The theoretical structure is now clearly and 

precisely defined based on the observed data with the help of the guidelines because a factor analysis 

procedure was used through the PCA. This principle mainly involved examining the factor loadings 

with the highest loadings (values above 0.5 or equal). It can be stated with confidence that the 

researcher would not be constrained when the guidelines are followed. In addition, using all the 

variables under factor analysis for the analysis and rotating the correlation matrix specifies the 

highest component together with the nature of the exogenous and endogenous components. On the 
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other hand, the traditional approach uses huge diversity in a set of relationships that points to 

inconsistent conclusions when the model should be truly equivalent to the observed data.  

Using SEM in estimating the parameters, the current approach in SEM involves various techniques 

to estimate parameters in the model; for instance, the maximum likelihood is usually determined 

using computer programs. This approach requires assumptions of either multivariate normality or 

generalised least squares for robust estimates. In this study, we propose the use of SEM by applying 

Jöreson’s approach in linear structural relations (LISREL) notation as presented by Bentler and 

Weeks (1980), by establishing the observed inter-relationship among the variables of interest. We 

introduce the concept of meta-analysis using the covariance matrix procedure to provide the 

parameter estimates for linear equation models. The technique yields more advantages in reducing 

the deviation between the observed and the proposed model. The selected inter-relationship between 

the variables of interest was obtained by using factor analysis through the principal component 

analysis in a more reliable and concise approach. These models are then tested for goodness-of-fit 

statistical tests to explain the discrepancy between latent and unobserved variables. The illustrative 

example indicated that the model fits the data well. This signifies the power of the approach implying 

that no important paths (or inter-relationship) among the variables have been omitted from the 

model. We further extended the confirmation of the improved approach with a simulation study. 

Simulation enables us to examine the performance of the test’s statistics and the interval estimation 

of the observed parameters. The tests statistics include points estimates, standard errors, covariance 

with charts and graphs. In applying simulation, we can understand the solution obtained for a better 

picture of the decisions made. In this work, we test the performance of the improved approach in the 

SEM. These findings provided perfect evidence that the proposed approach can be recommended 
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for analysis to estimate parameters because of its clear and good statistical properties. The proposed 

model can deal with a larger and more complex situation.  

The third practical result is the integration approach of MA into SEM. The two techniques are 

different multivariate statistical techniques based on their assumptions, models, and respective 

methodology approaches. Since the two techniques use correlations or covariance matrices as inputs, 

we can integrate the MA into SEM. Meta-analysis enables the combination of data from past 

independent studies by drawing the overall conclusions. SEM examines and tests all the 

relationships together in the model. We have proposed a suitable way of testing complex theories 

involving multiple variables that cannot be measured. The guidelines show how to: 

(1)  calculate the effect sizes through the standardised data.  

(2) conduct the test of homogeneity or the heterogeneity of the effects.  

(3) form the pooled correlation matrix to fit the SEM.  

Researchers can combine correlations from independent studies and test the homogeneity or the 

heterogeneity of the correlations to fit a structural equation model. The traditional approach worked 

with the small samples due to the eligibility criteria in selecting the inclusion of the studies. This 

produces biases in the weighting of the studies, and therefore, the samples are not well represented. 

In particular, the reliability of the results inevitably became a problem. Instead, the proposed 

approach covers all possible dimensions by using the effect sizes (correlations). This technique 

calculates the variance-covariance matrix from the standardised data using the PCA on the 

standardised data that is equivalent to the PCA on the use of the correlation matrix. The benefit of 

this technique is in integrating MA into SEM by using all the effects of the factors simultaneously 

in the single model. The confirmatory factor analysis had enabled us to determine the measurement 

of the model with precision based on the factors measured by the observed variables. The 
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agricultural food production was used to illustrate the approach. The findings indicate that the set of 

correlations were closer to the population correlation. The provided guidelines present step-by-step 

instructions to the user who wants to apply the technique. Formulas are offered for consistent 

correlation matrices of the combined effect sizes.  

The study’s fifth substantive conclusion concerns the findings identifying the performance of stable 

genotypes unaffected by environmental conditions. This approach offers a potential improvement 

of the methods applied to evaluate the stability with a better understanding and classification of the 

responsive locations.  

The sixth conclusion concerns integrating the mixed-effects model into MA with multiple outcomes 

within a single model. The proposed approach with a multivariate structure model of MA is more 

comprehensive than in the univariate model. The advantages of the proposed model go beyond just 

explaining the observed heterogeneity of the results. The data used in MA are the correlations, and 

the results show that:  

1) When the test for homogeneity holds, both the conventional and the proposed approaches 

are unbiased because the underlying effects are equal. That is, the effects measured by 

individual studies are sufficiently comparable to certify their combinations.  

2) Irrespective of the approach used, the number of studies employed in the analysis plays 

an important role in the precision and accuracy of the estimated parameters each time 

heterogeneity was present.  

3) The findings indicate how the newer approach works on simulation data simply because 

the means of the parameter estimates were unbiased for homogeneity or had a small degree 

of heterogeneity. The test statistic for the parameter estimates was equitably estimated. The 
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simulation study confirms the consistent pattern of the proposed model by offering similar 

results that have indicated no serious issues.  

7.2 CONCLUSION, LIMITATION AND CHALLENGES 

Agriculture is a primary sector that contributes to the welfare of SSA by providing employment, 

livelihood, and raw materials. Any changes in the agricultural food production directly or indirectly 

affect the country's economy based on its significant share in many sectors of the country. Hence, 

rapid development and transformation in agricultural research on food production and related fields 

is urgently needed. This worth of these resolutions requires the government to understand the role 

of agriculture and its important relationships to a country's economy growth. The nature of the 

relationships between the variables involved in agricultural food production influence each other 

affecting the growth of the agriculture sector. This explains the causal relationship that exists 

between the modern agriculture and the increase in food production.  

Growing social services and the infrastructure are recommended since these factors are expected to 

raise the living standard of Africans, given that more commitments are provided by the government 

and stakeholders in agriculture. The move of the agricultural food production in SSA to the industrial 

development of agricultural food production is likely to increase the productivity of the agriculture 

products in the SSA. African countries must promote competitiveness among the markets across 

different food production processes simply because agricultural products have to be standardised to 

meet the market obligation. African government and independent producer organisation must take 

collective actions to address the issue such as agricultural prices, infrastructure for investment, the 

security measures to access the land, the protection of the natural resource, and the promotion of 

substantial farming for small scale farmers. The contribution of these entities and the use of new 
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technology are deemed to increase the productivity in agricultural food production and, as a result, 

address the challenges facing the SSA.   

Agricultural research on food production in SSA should be prioritised in the development agenda as 

government adopts new strategies to attract more foreign investments into its industrial 

development. The achievement of such a plan requires a review of policies by the government and 

its policymakers.  This study introduced various improved approaches over the conventional 

techniques. The illustrative example of each technique presents a methodological approach that will 

help researchers in applying the methods. Readers with the necessary knowledge of multivariate 

statistics can use these techniques in their respective studies because the examples providing 

straightforward applications can address more complex topics. Statistical formulas and the step-by-

step guidelines had made it possible to test the theoretical models. The use of univariate to 

multivariate meta-analysis holds great potential for addressing the study's research questions in a 

single model. The traditional approaches had some limitations that raised concerns about the need 

for improvement. Meta-analysis helped us to test and establish parameter estimates by synthesising 

findings from past studies.  

Traditionally, structural equation modelling had two stages, namely the measurement and the 

structural process. The structural stage defines the causal relations between the variables, and the 

measurement stage determines the latent variables to be used in the model. These stages must be 

well-defined by the researcher. That is, the researcher determines which variable is related to which 

latent variable. In some instances, such situations are unpredictable, and therefore, more uncertainty 

can be developed, thereby causing an unreliable conclusion.  

The proposed approaches are multivariate with a methodology for conducting meta-analysis 

structural equation modelling and mixed linear model with multiple outcomes. These techniques 



 
 

147 
 

were developed to overcome the limitations of the univariate or single model when estimating 

parameters and drawing inferences. The results of the techniques have provided both meaningful 

information and a better understanding of the agricultural and related fields for subsistence farming 

in SSA. The improved approaches have now been introduced in the agricultural field. This field is 

a new area accessible to applied research. The techniques used are multivariate statistical techniques 

for making decisions, but they also have their own strengths and limitations. The best method should 

be the one addressing the purpose of the research. Despite good confirmation of these approaches, 

requirements for improvement and important gaps remain. Closing the current gaps in food 

production yield represent the greatest challenges and uncertainties facing SSA. The outcome of this 

study contributes to science in terms of the methodological approach of each technique and support 

through guidelines to estimate parameters and draw the inferences. This addresses the gaps that were 

identified between the existing methods and the developed approaches. In addition, this work 

contributes to the development of suitable food production.  

Single and combined models were used based on the fixed and random effects models in the MA. 

We present an approach that analyses multiple individuals’ models simultaneously into a single 

model. The analysis begins by standardising the effect sizes (correlations) followed by performing 

the multiple linear regression meta-analysis procedure to estimate parameters of interest both for 

single and combined multivariate models. Both fixed- and random-effects were computed, as the 

two approaches were necessary. We have found that combined multivariate MA presented more 

potential ability above MA in the single approach. The combined approach made a valid contribution 

to MA technique due to its power to describe the relationships between the estimates of effects since 

these estimates provided better statistical properties. That is, the combined model is based on the 

borrowing of strength compared to the single model. The utilisation of the combined correlation 
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model had allowed the appropriate calculations of a combined confidence interval around the pooled 

results of environmental research and model specification categories. It also allowed for joint 

prediction values for the actual environmental research and model specification rather than a single 

study setting. The more we increase the correlation by combining the results from the single model, 

the more we obtain additional precise estimates.  

The most significant benefit of the combined approach is obtaining data for all effects within a single 

model approach and getting hold of the parameter estimates simultaneously in a single analysis 

rather than doing a separate analysis. This work explored the feasibility of linking all the 

classification studies discovered in a single combined model. We have disclosed the practicability 

and value of further research by using all the classifications of study and test the effect in the fixed 

and random effects models for multiple linear regression meta-analysis. This kind of methodological 

approach is rarely used in agricultural practice.  

The limitations and challenges of the techniques 

 In MA, this technique combines and summarises past studies. The methodology of summarising 

large amount of information requires that a single number represent such information. This process 

might ignore the fact, for instance, that the treatment effects vary from one study to the next. We 

also suggest that more efforts should be made during the identification of the relevant studies 

because the results in MA depend only on the studies included. In SEM, this technique allows the 

researcher to establish a relationship between variables, including a complexity process case that 

can offer multiple parameters. These parameters must correspond to various hypotheses that are 

evaluated simultaneously. Under some conditions, the model identification does not allow the 

estimation of more model parameters simply because the testing of the hypothesis requires that there 

are fewer parameters to be estimated than there are individual observed correlations/covariance.    
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7.3 FUTURE WORK  

1) Every univariate MA application can finally be amenable to a multivariate approach 

because the multivariate approach is likely to make a genuine contribution to MA except 

if the single effect is considered sufficient.  

2) In the improved model in the SEM, using factor analysis through the PCA, the simulation 

study tested one factor among the ten components created with the PCA. Using a simulation 

study, we have succeeded to generate sixteen independent samples from Factor 1 due to the 

large size of the covariance matrix that was processed on the computer. Future studies should 

develop a way to incorporate all these factors and test for both the highest loadings and the 

proportion of variance.  

3) From all the constructed models in the current study, we did not consider the missing 

values in the development of the models. Future studies should consider developing the 

model in case of missing data, both in the effect sizes and in the model, because the presence 

of missing values may bring some statistical challenges for the proposed models.  

4) Research on agricultural food production with adoption to technology needs to be 

introduced speedily to the level of industrialisation in the agricultural sector to cater for the 

growth of the population in the SSA therefore, this requires new sources of funding to boost 

farmers to become more successful.   
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8  APPENDIX 

 

A.1. VISUALIZATION OF THE DATA 

Chapter 2: Data 

Summaries statistics 

 Mean Sdt dev Median Skewness Kurtosis 95% Confidence 

Interval 

Control 1965.0 2524.8 890 2.054 4.453 (-145.8; 4075.8) 

Fertilizer 2156.0 2767.5 925 1.574 2.322 (-157,7; 4469.7) 

Yield.cont 3378.9 4579.0 1982 2032 4.580 (-447.6; 7205.3) 

Yield.fert 10040.1 13376.1 4932 1.591 1.779 (-1142.8; 21222) 

Rainfall 959.5 557.5 920 0.119 -0.412 (493.4; 1425.6) 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Control .272 8 .082 .734 8 .005 

Fertilizer .249 8 .156 .792 8 .024 

Yield.control .278 8 .068 .736 8 .006 

Yield.fertilizer .296 8 .038 .770 8 .013 

Rainfall .141 8 .200* .977 8 .948 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Maize .440 8 .000 .563 8 .000 

Fruits .317 8 .018 .723 8 .004 

Vegies .137 8 .200* .972 8 .913 

*. This is a lower bound of the true significance. 
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Chapter 6: Data 
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A.2. R SOFTWARE 

 

Using the R software, the Input for simulation is the normal distribution that has a mean µ and 

sigma matrix ∑ as described below 

mean<-

c(3.00E+06,3.00E+08,1.00E+07,4.00E+07,1.00E+07,4.00E+07,3.00E+06,5.00E+06,1.00E+07,3.00E+06,6.00E

+08,7.00E+08,1.00E+05,1.14E+03,7.74E+00,3.28E+00,1.15E+04,7.24E+03,4.00E+06,1.00E+08, 
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1.00E+08,2.00E+06,9.00E+05,6.00E+06,2.00E+06) 

sigma<-matrix(c(1,0.416,0.171,0.044,-0.081,-0.04,0.059,-0.02,0.081,0.045,0.156,0.189,0.004,-0.129,-

0.12,-0.188,0.045,0,-0.093,-0.065,-0.128,-0.035,-0.087,-0.089,0.092, 

0.416,1,0.11,-0.001,-0.099,-0.046,-0.02,-0.029,0.113,0.043,0.079,0.013,-

0.103,0.074,0.119,0.007,0.273,0.069,-0.119,-0.126,-0.153,0.014,-0.004,0.029,0.046, 

0.171,0.11,1,0.043,0.204,-0.013,-0.014,0.108,0.668,0.762,0.076,0.48,0.031,0.027,-0.073,-

0.073,0.179,0.122,-0.057,-0.048,-0.139,-0.064,-0.095,-0.033,0.174, 

0.044,-0.001,0.043,1,-0.027,-0.025,0.011,-0.008,0.181,-0.02,-0.048,-0.023,-0.047,0.095,-0.07,-0.085,-

0.091,-0.079,-0.117,-0.064,-0.006,-0.121,-0.054,0.185,-0.099, 

-0.081,-0.099,0.204,-0.027,1,0.927,0.067,0.963,0.274,0.269,0.007,0.201,0.123,-0.095,-0.047,-

0.027,0.031,-0.021,-0.059, -0.077,-0.002,0.029,-0.087,0.113,-0.016, 

-0.04,-0.046,-0.013,-0.025,0.927,1,0.162,0.984,0.093,-0.009,0.082,0.091,0.079,-0.102,-0.02,-

0.013,0.01,0.006,0.006,-0.001,0.055,-0.034,-0.059,0.134,-0.109, 

0.059,-0.02,-0.014,0.011,0.067,0.162,1,0.082,0.387,-0.025,0.674,0.654,0.65,0.106,-0.147,-

0.037,0.12,0.304,0.562,0.65,0.369,0.205,0.067,0.063,-0.302, 

-0.02,-0.029,0.108,-0.008,0.963,0.984,0.082,1,0.177,0.132,0.028,0.105,0.06,-0.094,-0.022,-0.025,0.02,-

0.015,-0.065,-0.069,-0.021,-0.037,-0.075,0.12,-0.066, 

0.081,0.113,0.668,0.181,0.274,0.093,0.387,0.177,1,0.794,0.443,0.717,0.464,-0.08,-0.165,-

0.154,0.092,0.12,0.128,0.218,0.078,-0.014,0.046,-0.059,0.087, 
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0.045,0.043,0.762,-0.02,0.269,-0.009,-0.025,0.132,0.794,1,0.05,0.459,0.29,-0.001,-0.122,-

0.091,0.118,0.021, -0.107,-0.07,-0.083,-0.003,-0.066,-0.079,0.267, 

0.156,0.079,0.076,-0.048,0.007,0.082,0.674,0.028,0.443,0.05,1,0.658,0.462,-0.181,-0.068,-

0.081,0.035,0.217,0.377,0.431,0.22,-0.002,0.104,-0.221,-0.155, 

0.189,0.013,0.48,-0.023,0.201,0.091,0.654,0.105,0.717,0.459,0.658,1,0.603,-0.137,-0.143,-

0.094,0.119,0.246,0.389,0.431,0.213,0.077,-0.038,-0.114,-0.039, 

0.004,-0.103,0.031,-0.047,0.123,0.079,0.65,0.06,0.464,0.29,0.462,0.603,1,-0.14,-0.155,-

0.032,0.195,0.239,0.312,0.382,0.216,0.019,0.053,0.093,-0.221, 

-0.129,0.074,0.027,0.095,-0.095,-0.102,0.106,-0.094,-0.08,-0.001,-0.181,-0.137,-

0.14,1,0.053,0.096,0.298,0.201,-0.186,-0.06,0.063,0.596,-0.014,-0.143,-0.045, 

-0.12,0.119,-0.073,-0.07,-0.047,-0.02,-0.147,-0.022,-0.165,-0.122,-0.068,-0.143,-

0.155,0.053,1,0.823,0.082, 0.113,-0.062,-0.122,-0.156,-0.085,-0.103,0.172,-0.181, 

-0.188,0.007,-0.073,-0.085,-0.027,-0.013,-0.037,-0.025,-0.154,-0.091,-0.081,-0.094,-

0.032,0.096,0.823,1,0.193,0.284,0.06,-0.053,-0.092,-0.092,0.082,0.072,-0.302, 

0.045,0.273,0.179,-

0.091,0.031,0.01,0.12,0.02,0.092,0.118,0.035,0.119,0.195,0.298,0.082,0.193,1,0.898,0.005,0.013,0.118,-

0.044,-0.19,-0.247,-0.03, 

0,0.069,0.122,-0.079,-0.021,0.006,0.304,-

0.015,0.12,0.021,0.217,0.246,0.239,0.201,0.113,0.284,0.898,1,0.194,0.193,0.158,-0.139,-0.099,-0.249,-

0.186, 
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-0.093,-0.119,-0.057,-0.117,-0.059,0.006,0.562,-0.065,0.128,-0.107,0.377,0.389,0.312,-0.186,-

0.062,0.06,0.005,0.194,1,0.917,0.675,-0.098,0.16,0.026,-0.178, 

-0.065,-0.126,-0.048,-0.064,-0.077,-0.001,0.65,-0.069,0.218,-0.07,0.431,0.431,0.382,-0.06,-0.122,-

0.053,0.013,0.193,0.917,1,0.688,0.086,0.051,0.057,-0.159, 

-0.128,-0.153,-0.139,-0.006,-0.002,0.005,0.369,-0.021,0.078,-0.083,0.22,0.213,0.216,0.063,-0.156,-

0.092,0.118,0.158,0.675,0.688,1,-0.016,0.056,-0.104,0.19, 

-0.035,0.014,-0.064,-0.121,0.029,-0.034,0.205,-0.037,-0.014,-0.003,-0.002,0.077,0.019,0.596,-0.085,-

0.092,-0.044,-0.139,-0.098,0.086,-0.016,1,0.009,-0.203,0.029, 

-0.087,-0.004,-0.095,-0.054,-0.087,-0.059,0.067,-0.075,0.046,-0.066,0.104,-0.038,0.053,-0.014,-

0.103,0.082,-0.19,-0.099,0.16,0.051,0.056,0.009,1,-0.388,-0.187, 

-0.089,0.029,-0.033,0.185,0.113,0.134,0.063,0.12,-0.059,-0.079,-0.221,-0.114,0.093,-0.143,0.172,0.072,-

0.247,-0.249,0.026,0.057,-0.104,-0.203,-0.388,1,-0.378, 

0.092,0.046,0.174,-0.099,-0.016,-0.109,-0.302,-0.066,0.087,0.267,-0.155,-0.039,-0.221,-0.045,-0.181,-

0.302,-0.03,-0.186,-0.178,-0.159,0.19,0.029,-0.187,-0.378,1),25,25) 

The program is 

for(i in 1:1){ 

data<-mvrnorm(n=33,mean,sigma); 

#out<-princomp(data,cor=TRUE, scores=FALSE); 

#out2<-summary(out); 

outf<-factanal(data,factors=1,rotation="varimax"); 
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#outp<-prcomp(data,retx=TRUE,center=TRUE,scale=TRUE,rank=10); 

#mp<-as.matrix(out) 

#mptot<-mptot+mp; 

#mptot2<-mptot2+mp*mp; 

mf8<-as.matrix(loadings(outf)); 

#Sample10<-mf8; 

#mf8tot<-mf8tot+mf8; 

#mf8tot2<-mf8tot2+mf8*mf8; 

} 

#mf8aver<-mf8tot/10000; 
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