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Abstract

Nowadays human activities produce massive amounts of data everyday. It is estimated that 2.5

quintillions bytes of data are produced daily. The ability to analyse and interpret such data, usually

referred to as ‘big data’, is a precondition to succeed in the 4th Industrial Revolution (4IR). Statistical

data modelling has been a de facto data analysis paradigm for many decades, but it is slowly being

overshadowed by machine learning algorithms in the industry and in research funding. In this research,

the two modelling paradigms were compared with the aim of establishing which one is better in terms of

rational, accuracy and model parsimony. Unlike many studies on this subject which mainly concentrate

on comparing accuracy, this research did not look at accuracy as the only metric of comparison.

Both modelling paradigms were applied in prediction (continuous value prediction), classification

(categorical class label prediction) and clustering problems in three separate case studies. In the

prediction case study, a Realised GARCH (RealGARCH) model was compared to an artificial neural

network (ANN) algorithm. In the classification case study, a linear discriminant analysis (LDA)

model was compared to a support vector machine (SVM) algorithm. Lastly, a Gaussian mixture

model (GMM) was compared to a K-means algorithm. For prediction and classification, the data was

divided into training and testing sets, the training sets were used to fit the models and the testing

sets were used to measure prediction and classification accuracy. For clustering, model validation was

based on bootstrapping, visualisation and distant measures.

The ANN model outperformed the generalised autoregressive conditional heteroscedasticity (GARCH)

variant RealGARCH model in the two accuracy measurements, root mean square error (RMSE)

and mean absolute error (MAE), while RealGARCH gave more insights into the data. SVM had

marginally better classification accuracy in both the two-class and the three-class scenarios but had

poorer F-Measure for the minority classes in the three-class scenario. The statistical models were more

interpretable compared to their machine learning counterparts in both case studies. Both clustering

models performed poorly in partitioning the data in the third case study, but K-means did better

than the GMM model. Understanding the domain problem was found to be essential to data analysis

regardless of the modelling paradigm.
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Chapter 1

Introduction

This chapter introduces key developments which justify venturing into this research. Section 1.1 is

the background to the research. It touches on big data developments as well as earlier debates about

the role of statisticians in such big data environment. Sections 1.2, 1.3, and 1.4 deal with motivation,

purpose and objectives of the research respectively. Section 1.6, discusses the limitations of the study,

which set boundaries on the scope of the research. The last section of the chapter is the research

layout.

1.1 Background of the study

It is becoming increasingly difficult to imagine any aspect of human life that is not driven by data.

Nowadays, massive amounts of data are generated through activities of daily living (ADLs) such as

personal social media profiles, shopping, banking transactions, medical records and many more. Marr

(2018) estimates that 2.5 Quintilian bytes (2.5×1018) of data is generated everyday. Internet Of Things

(IoT) which is one of the key components of 4IR1 promises to produce even larger data volumes. Wielki

(2016) describes IoT’s architecture as having various sensors for gathering data and transmitting it

through various channels and gateways, and ultimately through to some sort of a processing system

like an analytics cloud. The sensors are smart devices which are utilised in ADLs and will render

individual’s life interconnected. The interconnection is from fridges to wrist watches to televisions and

other domestic devices, all connected to give life to the concept of a “smart home”. Bouchard and

Giroux (2015) tackle the challenge of big data from smart homes, they estimate billions of data to

come from smart homes through the ADLs. They cite research on emotion recognition which is made

possible by video cameras capturing individual’s ADLs at home. One of the possible benefits of such

an initiative is a potential of being able to monitor a person with a disease like Alzheimer’s through

gestures in a smart home. Wielki (2016) extends this interconnectedness beyond a smart home, he

generalises it to smart products that could also help organisations in optimizing operations through

automated monitoring. The monitoring could include monitoring of employees in such organisations.

He also mentions augmented reality being used for the purposes of employee training. Whichever

aspect of human life one looks at, the ADLs will be big data generating activities of the 4IR.

Ordinarily, this should be an exciting time for statisticians like it was for the software engineers back

in the 1990s (Davenport and Patil, 2021). Unfortunately evidence shows a lack of such enthusiasm

1Industry 4.0 is another variation of the term.
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about the profession but rather the focus is on subjects which use tools created by statisticians.

Davenport and Patil (2021) devoted time to highlighting data scientist as being the sexiest job of

the century, in the same breadth stating that one needs statistics to do “data science”. Hand (2000)

observed how statisticians glaze in awe at meetings and conferences organised by people other than

themselves, discussing data analysis under different guises like neural networks, data mining and so

on. Such meetings turn to pull away research funding which would have been awarded to statisticians.

In the early 60s already, Tukey (1962) urged and encouraged statisticians to look at how other fields

analysed data. He advocated for novelty on the way statistics was done. This research focussed on

statistical data modelling and machine learning techniques, comparing the two paradigms with the

aim of creating a tool-box for a statistician in the contemporary data analysis environment.

1.2 Motivation/Justification

Machine Learning is one of the key buzz words in the 4IR jargon, from techies, business strategists to

big corporate executives. The meaning vary depending on which group one is engaging with. In this

research, machine learning referred to algorithmic models that are used in data analysis. The usage of

the term ‘data analysis’ in this text is consistent with the definition given by Tukey (1962), where data

analysis is described as being more than just inference, but to also include procedures and techniques

of gathering and analysing the data that led to such inference. Machine learning algorithms tackle

the same problems that statistical modelling has been tackling for decades; prediction, classification,

clustering etc. These have been standard activities for statisticians all over the world, so what is

the buzz about? Why would the advent of such algorithms threaten funding to statistical research?

Donoho (2017) relates a story of how the University of Michigan ploughed $100 million in data science

programs with no participation of the statistics department although the curricula of such programs

are strikingly similar to the statistics curriculum. The poor perception that statisticians have attracted

in the recent past comes through in Lin and Li (2021). In distinguishing between statisticians and

data scientists, one of the points they make is that statisticians are focused on modelling while data

scientists are focused on results. Such view paints statisticians as less efficient and data scientist

as results driven. This clearly is a misconception, and a serious indictment of the profession. Such

sentiment clearly discounts the successes and advancements of Tukey and his colleagues at Bell Labs

(Kettenring, 2012). Their contribution was across the board at the labs while they were making

advances in statistical computing. These advances led to the development of S-language which is

a predecessor to R, a popular language even in data science (machine learning). Tukey (1962) had

expressed concerns about the appeal and attractiveness of statistics to bright students coming out of

universities who would otherwise be drawn to other subjects like mathematics, physics and lucrative

jobs at wall street, such list can now also include data science (which employs machine learning

algorithms). In fact, Davenport and Patil (2021) compare the popularity of data scientist to that of

“quants” in the 80s and 90s.

The motivation behind this study was not only due to the apparent threat faced by statistics as a

subject but was also motivated by the fact that Tukey (1962) encouraged statisticians to look at how

other fields analyse data without having their own theory distorted.
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1.3 Purpose

The purpose of the study was to compare statistical data modelling with machine learning algorithms,

the robustness of each was explored both theoretically and empirically. Statistical modelling

is both inference and data modelling, Hand (2000) described the former as trying to address

whether a structure exists in the mechanism which led to the data so that random chance can

be distinguished from reality and described the latter as the overall representation of such data.

Breiman (2001) distinguished between two cultures; stochastic data modelling culture and machine

learning algorithmic culture. He seemed to have nailed his colours to the mast of machine learning

algorithmic culture. On the contrary to Breiman, this research was not a toe to toe contest between

the two cultures but sought to discover when and where does each approach have merit over the other.

1.4 Objectives

The main objective of the study was to compare machine learning algorithms with statistical data

modelling.

There were three main problems which formed the basis of comparison:

� Prediction problem ; GARCH modelling versus artificial neural network.

� Classification problem; LDA versus SVM.

� Clustering problem; GMM modelling versus K-means’

For brevity, in this research the prediction problem refers to the problem of predicting a continuous

value given predictor variables while the classification problem refers to the problem of predicting

categorical class labels given some predictor variables. This is because from a technical point of view

these are both prediction problems.

The GARCH volatility modelling is discussed in a broader sense of the word but the empirical imple-

mentation for comparison is a RealGARCH model.

1.5 Statement of the problem

Machine Learning algorithms purport to solve problems that statistics (statistical data modelling)

have been solving and deem as standard activities for a long time. Megahan (2016) tries to illustrate

the confusion that this overlap has brought among both statisticians and the so called data scientists
2.

For an example, take a regression prediction problem. In Machine Learning, regression model para-

meter estimation is done via an algorithm, the popular one being called gradient descent, while in

statistical modelling this is usually done via ordinary least squares (OLS), with matrix algebra when

it comes to multivariate setting.

Given selected models for comparison from both schools of thought, the research problem is to estab-

lish:

2Data science being the broader area encompassing machine learning algorithms and statistics in most cases.
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� Empirically, to what an extent can a distinction be drawn between problems requiring statistical

data modelling and those requiring machine learning algorithms.

� Robustness of theory underpinning the techniques.

� User friendlies and simplicity of the techniques (model parsimony).

1.6 Limitations of the research

Nongxa (2017) spoke of data analytics work flow life cycle which consists of data management and

data analytics. Each of these two is broken in separate distinguishable steps; data management and

analytics. The analytics phase consists of:

1. Data modelling and analysis.

2. Interpretation.

3. Decision-making

The focus of this research was mainly on data modelling and analysis phase of this life cycle. The

assumption was that data gathering and cleaning activities are standardized on both sides and the

analysis dataset is the same on both sides. Limiting the scope to data modelling and analysis was by

no means implying that the other activities are of less importance but it was because these are subject

to particular environmental set ups and cultures. For example, each organization/institution might

have its own way of doing data annotation dictated by production software/hardware configuration

and history. Once the baseline data has been established (through various means), the data modelling

and analysis should be consistent.

The research did not present exhaustive study of either machine learning and statistical modelling

disciplines holistically, but the models and algorithms selected for the case studies were explored with

as much detail as possible. Machine learning has clearly contributed immensely to areas of computer

science and artificial intelligence like in speech recognition in cellphones and other areas, those aspects

were not studied in this research.

1.7 Layout of the research

This chapter served as an introduction to the whole research, it outlined the background, motivation,

purpose, objectives as well as limitations of the research. Chapter 2 presents literature review of the

research problem, the literature review is both theoretical and empirical in nature. Chapter 3 presents

the research methodology and the case studies, each case study is a self-contained empirical study

which compares the two modelling paradigms on a specific data modelling problem. Chapter 4 is the

conclusion and recommendations of the whole research based on the results and conclusions of the

individual case studies.
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Chapter 2

Literature Review

The literature review in this research comprises of two main sections. Section 2.1 explores the theoret-

ical debates about the practice of statistical modelling over the years, from Tukey (1962) to Breiman

(2001) and others. Section 2.2 looks at empirical literature where statistical modelling techniques are

compared to their machine learning counterparts.

2.1 The Two Schools of Thought

Chambers (1993) distinguished between two forms of statistics, greater statistics and lesser statist-

ics. Lesser statistics in his view is the one that is confined in statistics departments in academia.

It is isolated and has more of a mathematical orientation, a forte of those in universities’ statistics

departments. He saw this formality as a limitation in the practice of statistics. On the other hand,

the greater statistics he described is wide ranging in methodology, collaborative and mostly with

practitioners located outside statistics departments. This greater statistics includes preparing data,

analysing the data (by models or other summaries) and presenting such data. He contended that the

yearning to give statistics its own theoretical base has had the consequences of limiting its impact in

society.

Breiman (2001) summed up data analysis in two cultures, namely, stochastic data modelling and al-

gorithmic modelling. He claimed that statistical community had been exclusively committed to the

former which had led to ‘irrelevant theory, questionable conclusions’ and had impeded them from

working on stimulating contemporary problems. On the other hand, algorithmic modelling fast devel-

opment in his time was due to the areas outside statistics, and had been applied to big and demanding

data sets as a better substitute to data models. He challenged statisticians to desist from only using

data models and begin to embrace the various new available tools in data driven problem solving.

He argued that statisticians had not been able to enter some of the profitable new commercial and

scientific fields due to incompatibility of data models in such fields.

Hand (2000), on the other hand, criticized statistics for putting too much emphasis on modelling and

inference compared to description and exploration. While Breiman (2001) seemed to advocate for

a wholesale acceptance of alternative techniques (algorithms), Hand (2000) was cautious and noted

that these techniques meted out by these outside professionals may have a poor theoretical base even

though they do the trick in commercial environments.

Mallows (2006) expressed how Breiman opposed ‘overmathematization’ of statistics, a point he re-
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portedly stressed in the 2002 report which was titled Statistics: Challenges and Opportunities for the

21st Century. This report is supposed to have endorsed that the fundamental activity of statistics

should be inward focussed into the subject itself rather than on other fields of application. Breiman

felt that its recommendations were taking statistics back to the yesteryears of Hotelling1 and others.

Mallows (2006) recounted the contribution of Sir Ronald Aylmer Fisher 2 between 1922 and 1925,

how he gave statistics a theoretical basis which led to its development as a mathematical subject.

This theory gave statistics a mathematical character ready for doctoral studies in many topics with

many theorems. This led to a decline in applications oriented studies, as the interest of the talented

academics shifted towards mathematical oriented theory which had more publications in journals such

as Annals of Mathematical Statistics. He cited Tukey at the Madison Conference of 1967 as having

argued that “statisticians should aspire to be first rate scientists, rather than second-rate mathem-

aticians”. Tukey argued against statistics being taught as a sub field of mathematics, this was in direct

contrast to some of his predecessors like Hotelling who successfully motivated for it to be connected

to mathematics departments.

Breiman (2001) expressed discomfort about aspects of statistical data modelling like goodness of fit

and normality assumptions. According to him data modelling culture assumes a priori stochastic

data model and relies on goodness of fit and residual analysis to validate the model. Machine learning

algorithmic culture, on the other hand, assumes the model is difficult and unidentifiable, instead it tries

to find an algorithm that operates on the input variable to predict the response, and only considers

predictive accuracy for model validation. He challenged both the usage of goodness of fit and residual

analysis saying that goodness of fit procedures have little power when the direction of the alternative

is not specifically defined, and that the residual analysis lacks power as dimensions become more than

a few. He believed the persistence on data models has left statistician stuck with discriminant analysis

and logistic regression for classification and multiple linear regression for prediction. According to this

view, although a few really trust the assumption of a multivariate normal distribution when faced

with multivariate data, this assumption still takes up a large part of lower graduate texts. In fact,

he questioned any assumption of a prior parametric distribution in complex data. He estimates that

98% of statisticians fall into data modelling culture.

The criticism of statistical significance is highlighted in Johnson (1999). He reports about the American

Psychological Association considering banning the use hypothesis testing at one stage, although the

view was widely held, but it was rejected because it would have seemed like censorship. He also

mentions that speakers at the 1998 annual conference of The Wildlife Society were all of the view that

hypothesis testing was overused, misused and inappropriate. Breiman (2001) emphasised that point

saying if all you have is a hammer, every problem looks like a nail. Wilk3 was a contemporary of Tukey

and his colleague at AT&T Bell Laboratories. He later became the president of the company and a

Chief Statistician of Canada. Mallows (2006) quotes Wilk to having once remarked, “Significance

tests are things to do while your are thinking about what you really want to do”.

The Occum’s Razor principle gives ‘precedence to simplicity’ (Duignan, 2018), the simpler the better.

Breiman (2001) viewed algorithmic models as mysterious and complex but more accurate and data

models as interpretable and simple but less accurate which introduces an Occum’s Razor principle di-

1Horold Hotelling is known to have played a big role in giving statistics mathemathical character
2https://www.britannica.com/biography/Ronald-Aylmer-Fisher
3https://en.wikipedia.org/wiki/Martin_Wilk
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lemma. He makes an example of how linear regression is interpretable compared to the neural network

but is deemed less accurate. He did not see dimensionality as a curse, contrary to popular practice

of variable deletion to reduce dimensionality; he argued one loses valuable prediction information by

reducing dimensionality. According to Nongxa (2017) the curse of dimensionality in the context of

traditional statistics occurs when the number of observations is lower than the number of attributes

(or dimensions) which is deemed to result in false correlations between the attributes, such data forms

short and fat matrices.

Cox (2001) argued that typical statistical model fitting often has to also respond to subject mat-

ter questions and causality rather than just predictive accuracy which is the main feature in the

algorithmic modelling.

Efron (2001) pointed out that the concept of ‘unbiasedness’ using amongst others maximum likelihood

estimation (MLE) in statistical theory has led statistics to be a central analysis procedure in many

areas but came with a burden of requirements like ‘good experimental design’ which are not required

at all in algorithmic modelling. He argued that the apparent success of the algorithm modelling could

be centred on some form of biased estimation with little theory to support it. He raised the following

points:

� New Methods always look better than the old ones.

He made an example of logistic regression versus neural networks. Logistic regression might seem

dull and often not much effort is applied in optimizing it due to excitement about the newly

discovered neural network. But artificial neural networks suffer the same fate when compared

to more recent SVM and so on.

� Complicated methods are harder to criticize than the simpler ones. One cannot

confidently analyse a black box model like SVM as confidently as they would a data model like

logistic regression. This limitation in analysis makes it difficult to also criticise. He further argued

it is uniqueness of statistical modelling that any new methodology comes with its inferential basis

completely clarified.

� Prediction by itself is only occasionally sufficient. As Cox (2001) argued, causality is

often the main driver in many statistical modelling problems. For example, if a government

wants to devise a response strategy to cancer, knowing how many people will get cancer at a

point in time might help with planning treatment programs and facilities. But, knowing also

the causes like smoking, diet and others might help with programs to combat the disease. As

the adage goes, “Prevention is better than cure.”

Huber (2006) remarked about the following definition of statistics:

“Statistics is the discipline concerned with the study of variability, with the study of uncertainty and

with the study of decision making in the face of uncertainty.”

He took an issue with this definition of statistics saying that it removes ‘practice of data analysis’,

likening it to removing ‘experimental physics’ from the definition of physics. He agreed with Breiman

(2001) that such definition is retrogression instead of progression into the future. He claimed the

unwillingness of statisticians to do ‘dirty stuff’ has allowed other fields like computer sciences to re-

brand tools invented by statisticians, market them under different posher guises like ‘data mining’.

He reckoned statistics community should take a blame for not emphasizing enough on concepts like
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Simpson’s paradox in statistics education. He contended that the danger intrinsic in the black box

models, like ANN, does not really lie in overfitting as popularly believed in the statistics community,

but in the interpretation of such black box models.

Remarking on the discussion by Mallows (2006) of whether statisticians should be occupied by the-

ory (overmathematization) or application. Buja (2006) asserts that there should not be a conflict

between applied areas in statistics and theorists just like in physics, experimentalists and theorists

may occasionally tease each other but both contribute to physics being the most successful of sciences.

Contrary to the view expressed by Mallows (2006), Buja (2006) embraces the definition of statistics

which points to the study of “methodology divorced from application”. His view is that statisticians

are “tool makers, not carpenters”, of course it does not hurt the tool maker to know how the car-

penter uses the tool, but the abstraction from the subject matter allows the tool to be re-purposed

in a different context even in future problems not yet defined. He cites an example of a classification

problem. Classification model can be used to predict presence of cancer from the genes, and the same

principles can be used to predict bankruptcy from credit record. He goes further to contest that it

is not uncommon to develop theory (tools) which might not be seen in application, citing Bayesian

modelling as having been theoretical for a long time until the power of computers allowed for its

applications.

Efron (2006) remarked about statisticians self criticism. He acknowledged that the context in which

Tukey (1962) wrote about statistics was that of a tired subject, which made Tukey’s call to return

to applications timely and exciting. In the same breath, he viewed statistics as having made strides

in this area in the first 40 years after Tukey’s paper, having been assisted by the advent of powerful

computer processing. He welcomed the self-criticism by Tukey (and Breiman in the latter years)

as a healthy practice but cautioned against being overzealous in self-criticism and thus mimicking a

character in Sullivan and Gilbert (1885); “. . . who praises with enthusiastic tone, every century but

this, and every country but his own.”.

Chambers (1993) warned statisticians against being aloof, encouraging them to explore difficult sources

of data which may lead to methods not available in traditional topics, and said if they don’t act someone

else will, and society will lose on mental qualities provided by statisticians.

2.2 Empirical Literature

2.2.1 GARCH and ANN Prior Comparative Studies

Artificial neural networks(ANNs) have been applied with success in many areas and are gaining trac-

tion in both econometrics and quantitative finance. On the other hand, since GARCH modelling was

formulated by an economist, it is native to econometric and financial applications. This section touches

on some of the prior research involving both ANN and GARCH models in predictive modelling.

A comparative study of four machine learning algorithms; multilayer perceptron (MLP), long short

term memory (LSTM), convolutional neural networks (CNN), and uncertainty-aware attention (UA)

was carried out by Gao et al. (2020). The UA had recurrent neural networks (RNN) as its basic

structure. They applied these machine learning algorithms on historical prices of S&P500, CSI300

and Nikkei225 indices. The algorithms are all variants of ANN, for example, LSTM is a form of

RNN and UA is a combination of different RNNs. LSTM enjoys success in image processing and
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text classification, CNN has successes in pattern recognition. The aim of the study was to compare

price prediction accuracy of the four algorithms. MAE, mean absolute percentage error (MAPE)

and correlation coefficient (R) were used as measures of prediction accuracy. UA was found to have

outperformed the other algorithms with MLP being the lowest ranked in performance. A similar study

was undertaken by Wu and Duan (2017) where different ANNs were compared in prediction of stock

index price trend. Backpropagation (BP) neural network was compared to Elman neural network

(ENN) in prediction of CSI300 price trend. BP neural network is an ANN trained by backpropagation

and it is generally referred to as multilayer perceptron. ENN is a form of RNN and in the study

momentum gradient descent was used for backpropagation instead of standard gradient descent. As

measures of performance; mean square error (MSE), confirmation coefficient and the number of epochs

needed by each algorithm to converge were used. A higher number of epochs indicate a slower learning

rate. They found BP neural network to have outperformed ENN on the error measured by MSE, but

the algorithms were on par with one another on confirmation coefficient. The ENN had a higher

number of epochs which indicated it had a lower learning rate.

Charef and Ayachi (2016) used GARCH models and ANN algorithms in predicting the exchange

rates of Tunisian dinar (TND). The exchange rates under the study were USD/TND, EUR/TND and

JPY/TND. They found the ANN algorithms to be more robust compared to the GARCHmodels. They

further recommended a more hybrid model of GARCH and ANN to improve on prediction accuracy.

Hossain and Nasser (2011) studied a finite mixture of ARMA and GARCH (ARMA-GARCH) model,

a BP neural network algorithm and a SVM. They had two objectives; firstly, to predict stock market

index and exchange rate returns and secondly, to predict the direction of both the returns as well as the

exchange rates. Direction refers to the indication of the price movement up or down without specifying

the magnitude of the movement. The indices were S&P500 and Nikkei225, the exchange rates were

GBP/USD and USD/JPY. The problem was modelled as a regression problem, using a variation

of SVM called support vector regression (SVR) algorithm. The study focused on two categories

of performance measures, deviation and direction. Deviation was measured using MSE, normalised

mean square error (NMSE) and MAE. Direction was measured using directional symmetry (DS) and

weighted directional symmetry (WDS). The SVR outperformed both BP and ARMA-GARCH in the

deviation criteria. The ARMA-GARCH did better than the two algorithms in the direction criteria.

The overall performance was checked by combining both direction and deviation metrics. BP was

found to have performed better than the other two techniques. All the algorithms were observed

to have performed better in the prediction of the exchange rates than in the prediction of the stock

market indices.

Hossain et al. (2009) did a comparative study of three different modelling techniques; GARCH, ANN

and SVM on four different market indices. The indices were Japan’s NIKKEI 225, Hong Kong’s Hang

Seng (HS), UK FTSE 1004 and Germany’s DAX. They had a mixed bag of results with GARCH

outperforming ANN on NIKKEI, Hang Seng and FTSE. ANN was the best in DAX while SVM was

the best in all the other three markets. Laily et al. (2018) compared Elman Recurrent Neural Network

(ERNN) to GARCH models using Bank Rakyat Indonesia (BRI) stock. They found that GARCH

outperformed the ERNN. Yim (2002) studied the prediction performance ANN, ARMA-GARCH and

a structural model on IBOVESPA stock index of the Sao Poalo Stock Exchange and found that both

ANN and ARMA-GARCH outperformed the STS with the ANN outperforming ARMA-GARCH.

4Financial Times Stock Exchange index which measures top 100 companies listed on London Stock Exchange (https:
//en.wikipedia.org/wiki/FTSE_100_Index).
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The study went further by using ARMA-GARCH volatility outputs as inputs into an ANN model.

This hybrid model improved the results of the ANN and outperformed all the other models in the in

the study. A new semi-parametric GARCH-model inspired by developments in ANNs is constructed

in Donaldson and Kamstra (1997). The model adds semi-parametric non-linear terms to the GJR-

GARCH5 model to improve on the non-linear effects not captured in the GARCH model. The model

was applied to various market indices and compared to the traditional GARCH, Exponential GARCH

(EGARCH) and GJR-GARCH. The semi-parametric GARCH model was found to have outperformed

the three traditional models.

Another hybrid approach is the one carried out in Zhong and Enke (2019), where ANNs are used

together with principal component analysis (PCA). The study focussed on predicting the daily return

direction of an exchange traded fund (ETF) called SPDR S&P 500 ETF. The data had 60 features and

PCA was used to transform the data into 31 principal components. The daily return direction is either

up or down, the problem was modelled as a classification problem. ANNs with varying number of

hidden layers were applied to both untransformed data with 60 features and transformed data with 31

principal components. The hidden layers were varied between 10 and 1000 hidden layers. ANN with

more 10 hidden layers is considered to be a deep neural network (DNN). MSE, confusion classification

matrix and several statistical significance tests were used for results validation. The best classification

performance was found to be that of the ANN with 10 hidden layers on the transformed data of 31

principal components. DNN with 20 hidden layers was the second best, just like in the 10 hidden

layers case, it had the best performance on the transformed data with 31 principal components.

2.2.2 LDA and SVM Prior Comparative Studies

Obi (2017) used a variety of datasets in exploring situations which are best suited for each of the two

classifiers. He had overlapping datasets, datasets with outliers, and non-linearly separable datasets.

The datasets were also transformed into high dimensions to monitor the effects on the classifiers.

The first noted difference was in the distance measures the two classifiers are based on. LDA is

based on Mahalanobis distance while SVM is based on Euclidean distance. The study highlighted

that the two distance measures imply that the class mean separation in LDA is a decision boundary

passing through the midpoint between the two class means, while SVM depends on a separating

hyperplane passing midway through the support vectors. He pointed out that SVM classification

is impacted by data points (support vectors) nearest to the hyperplane and therefore less sensitive

to outliers while LDA is susceptible to outliers. But, he also added that if the outliers are on the

correct side of the separating hyperplane, LDA may still be preferred over SVM. He concluded that

the outliers affected the performances of both classifiers to a varying extent, the impact is a bit

more on LDA. On high dimensional data (p > n), where p is the number of predictor variables and

n is the number of observations, the study recommended SVM over LDA. This is because (p > n)

introduces multicollinearity which thwarts the performance of LDA. On class overlaps, the study found

that because LDA is invariant under all non-singular linear transformation, it has an advantage over

SVM in cases where dataset transformation leads to class overlaps. But, in cases where datasets are

linearly separable after transformation, both classifiers were found to be equally effective. LDA was

also preferred in cases where datasets have known parameters, different class means and common

covariance matrices. In case of linearly inseparable low dimensional data, transforming the data into

5Glosten, Jagannathan and Runkle’s Sign-GARCH which is also meant to take into account asymmetry of returns
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high dimensional data and applying SVM (with kernel function) for classification was recommended.

Santos et al. (2014) compared LDA, SVM and logistic regression (LR) in sex determination based on

craniometric6 data. Their goal was to discuss the variations that relate to the statistical handling of

such data. They used craniometric samples from four regions; France, Portugal, USA and Thailand.

The Portuguese sample had the largest volume and was used as a training set for the experiment. The

other three samples were used as testing sets. The data had sixteen craniometric predictor variables.

Variable selection was performed using Bayesian information criterion (BIC) for LR, retaining variables

which minimised the BIC. For LDA, variables whose coefficients had minor impact on the score function

were removed. For SVM, recursive feature elimination (RFE) which ranks variables according to

decreasing discriminant power was performed. The SVM-RFE leaves the decision to the user as

to which variables to discard. Seven predictor variables were used for all the regions in the first

case and fourteen variables for the three regions which excluded USA for the second case. The two

cases consisted of various scenarios like different posterior probability thresholds, and balanced and

unbalanced ratios of male and females in the data. The classification accuracy percentage as well as

the percentage of indeterminate cases were measured. They found LR consistently outperformed LDA

and SVM with highest classification accuracies as well as lowest indeterminate percentages. The other

two techniques interchangeably outperformed each other in different scenarios.

Lesniak et al. (2012) evaluated SVM, neural networks (NNet), k-nearest neighbor (k-NN), random

forests (RF) and LDA. The aim of the research was to compare these different techniques in reducing

the false positive (FP) phenomenon in computer aided detection (CADe) of breast masses in mammo-

graphy. They found LDA to have been the best model in terms of model parsimony (least complex)

because all of the parameters could be estimated from the data. SVM and the other models required

other parameters which could only be estimated via time consuming configurations outside the data.

The overall finding of the study was that SVM had the best CADe based malignant detection rate

with the lowest FP rates.

Shao et al. (2015) compared LDA, k-nearest neighor (KNN) and SVM amongst several models. The

aim of the research was the characterisation of sesame and soybean oils into classes; hot-pressed,

cold-pressed, and refined. They found KNN outperformed all the other models, closely followed by

LDA. They also found that SVM performance fluctuated heavily depending on the choice of a kernel.

A radial kernel gave 25% accuracy while a linear kernel gave 95.1% (To put these numbers into

perspective, KNN gave 96.3% accuracy while LDA gave 96.2%).

Madhanagopal et al. (2012) pitted classification accuracy of LDA against that of SVM, by analysing

their performances on the Indian Nifty index. In that study, different kernels were applied for the

SVM. SVM showed superior classification accuracy which ranged from 97.32% to 100% while LDA

exhibited accuracy ranges of between 87.29% to 93.75%.

Stapor (2016) evaluated SVM and the discriminant analysis variant, heteroscedastic discriminant ana-

lysis (HDA), on German credit scoring data. HDA takes into account heteroscedasticity of the within

class variance and is known to perform better than vanilla LDA in situations where homoscedasticity

assumption is not satisfiable. Their observation was that the SVM model with non-linear kernel did

not give significant improvement over discriminant analysis, although the nonlinear kernel made the

6Craniometry is measurement of the cranium (the main part of the skull), usually the human cranium (https:
//en.wikipedia.org/wiki/Craniometry).
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learning process to be more complex by requiring a separate validation procedure. They concluded

that SVM models performed slightly better than discriminant analysis.

Suhandy and Yulia (2018) compared LDA and SVM in classification of Luwak coffee. The aim of

the study was to separate real Luwak coffee from counterfeit Luwak coffee which would then help in

combating Luwak coffee adulteration. They used an ultraviolet-visible spectroscopy (UV-Vis) spec-

trometer to extract spectral data from aqueous samples of Luwak coffee and counterfeit Luwak coffee.

Spectral data is measured in wavelengths of radiation, the wavelengths ranged from of 200 nm to 400

nm. Seven wavelengths were used as predictor variables. They found both LDA and SVM achieved

100% classification accuracy for the coffee samples. In conclusion, they preferred LDA over SVM due

to it being simpler and less computationally expensive.

Vinay et al. (2015) combined LDA and SVM in a face recognition experiment. They used Cambridge

ORL face database which contains 400 grey scale images of 40 people. Each person had ten images

with varying facial expressions and details; like smiles, closing eyes, wearing glasses etc. The dataset

had 150 features. In their proposed model, LDA was used as a feature reduction technique and SVM

as a classification algorithm. The number of features were reduced from 150 to 90 features. Training

sample sizes of four, five and six were repeatedly randomly selected from each person, each time the

remaining images served as testing sets. The recognition rate is a number of recognised images over

the total number of images in the testing set. This rate served as a metric for measure of success. The

recognition rate of the proposed model was compared to the rates of other LDA based models which

were previously applied on the database. The proposed model was found to have outperformed the

other models. A similar face recognition experiment was carried out by Mazanec et al. (2008). They

compared LDA, PCA and SVM on FERET database using csuFaceIdEval and libsvm software

libraries. They also found that a combination of SVM and LDA outperformed individual LDA, PCA,

and SVM.

Nikitidis et al. (2014) proposed an algorithm which jointly performs dimensionality reduction and

classification (simultaneously). The algorithm made use of LDA for dimensionality reduction on SVM

support vectors. They applied the algorithm on three problems; facial expression recognition using the

CohnKanade database, face recognition using the XM2VTS database and object recognition using the

ETH80 image dataset. All these were formulated as joint optimisation problems. They compared the

performance of the proposed algorithm to the performance of SVM with no dimensionality reduction

and to the cases where dimensionality reduction is performed. Dimensionality reduction was performed

as a preprocessing step using LDA, PCA, Subclass Discriminant Analysis (SDA), Locality Preserving

Projections (LPP) and Orthogonal Locality Preserving Projections (OLPP). They measured the clas-

sification accuracy as a measure of performance. The proposed joint algorithm outperformed other

procedures in the three case studies. The SVM with LDA preprocessing performed better than SVM

with no dimensionality reduction.

2.2.3 K-means and GMM Prior Comparative Studies

Magnetic resonance imaging (MRI) is used for brain examination without invasive operation on the

brain itself. This is done through brain scans which produce various images for analysis. Baid

et al. (2016) used Fuzzy C-means, K-means and GMM in the MRI image segmentation analysis.

In the experiment, they had the actual images and synthetic images. The synthetic images were

produced using TumorSim software. The images contained information about presence and absence
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of tumours at varying degrees. They used various coefficients as model evaluation; Dice coefficient,

Jaccard coefficient, sensitivity and specificity. They found Fuzzy C-means to have outperformed both

K-means and GMM, with K-means outperforming GMM.

Wang et al. (2018) did a comparison of K-means and EM algorithm on a GMM clustering in high

speed machining (HSM). HSM is used in manufacturing aircraft components and turbine blades to

name a few. The aim of the experiment was to observe which one of the two techniques would partition

breakages and collisions at different states of machine-tool; machine-tool at rest, machine-tool moving

at a constant speed and machine-tool at varying speed. These were subsequently the three clusters

used as input in the K-means. There was pre-labelling of the data in the experiment, and a criteria

was chosen in the form of thresholds as to which cluster an observation should be assigned to, and

error measurements were taken in case of deviations. The experiment was more of a classification

problem than a pure clustering experiment. The EM was found to have outperformed K-means. This

was attributed to the clusters not being spherical as expected by the K-means algorithm. K-harmonic

means (KHM) is another variant of the K-means algorithm. It uses harmonic mean vector as a cluster

centre unlike in the ordinary K-means where the mean vector comprises of ordinary averages.

Zhang et al. (1999) did a performance comparison of KHM, K-means and EM. Both K-means and EM

algorithms are known to be sensitive to initialisation with EM affected to a lesser extent. The exper-

iment involved observing performance in terms of the number of iterations until convergence for each

algorithm. The experiment was repeated a few times with cluster centres varied at each initialisation

step, from good initialisation to worst possible initialisation. The KHM algorithm converged in all

cases with fewer iterations, followed by the EM algorithm. The KHM algorithm was therefore found

to be insensitive to initialisation of the centres while both K-means and EM algorithm were affected

by initialisation but EM algorithm not as badly affected like the K-means clustering. The K-means

initialisation problem is an area of special interest in the machine learning community.

Peña et al. (1999) focussed on four different initialisation methods for K-means. The methods were

Random, Forgy approach (FA), Macqueen approach (MA) and Kaufman approach (KA). In the Ran-

dom method, the data is initially divided into K clusters at random. FA method randomly chooses

K data points as centroids, and for the rest of the data, each data point is assigned to the nearest

centroid. MA is similar to FA, the difference is that in FA assignment is carried out in batch while in

FA the assignments are incremental. In KA the data points are successively chosen until K centroids

are found. The first centroid is chosen as the most central data point in the data. For the rest of

the centroids, data points which have a high probability of being surrounded by many data points

are chosen as centroids. The research looked at initialisation as well as the time to convergence. The

Random and KA methods were found to have partitioned the data more effectively than the other

methods, but KA was also quicker to converge than the Random method. Therefore, KA was found to

be the best initialisation method for K-means compared to the other three methods. The initialisation

problem also gets a special attention in model based clustering.

Meilă and Heckerman (2001) focussed on initialisation while comparing three clustering techniques;

EM, classification expectation-maximisation (CEM) and agglomerative clustering (AC). EM and CEM

are model based while AC is heuristic. They used the Random approach (not the same as one used in

K-means above), the Marginal approach and the AC itself as an initialisation method. The Random

approach initialises parameters of the model independent of the data. The parameters were sampled

from an ‘uninformative’ distribution, uniform (Dirichlet) distribution was used in this case. The
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Marginal approach is a noisy-marginal of Thiesson et al. (1999), it is a data dependent approach

which first determines a maximum likelihood configuration by assuming there is only one class. For AC

initialisation, agglomerative clustering was performed on a random sample of the data and sufficient

statistics were extracted from the resulting clusters. The model parameters were then set to be

maximum a-posteriori (MAP) on the extracted statistics with a uniform prior distribution. The three

initialisation methods were applied on the three clustering techniques using two datasets. One dataset

was handwritten digits from US Postal Service Office for Advance Technology and the other one was

a synthetic dataset using MSNBC news service stories data. The EM outperformed the other two

clustering techniques for all the initialisation methods. The best results came from the Marginal

approach which efficiently partitioned the datasets and consistently converged with fewer iterations.

Magidson and Vermunt (2002) compared latent class (LC) analysis to K-means. LC analysis is a

finite mixture model (FMM) where the within class variables are assumed to have diagonal covariance

matrices and therefore linearly uncorrelated. In the study, random samples were drawn from two

populations of bivariate normal distribution. The bivariate normal parameters were specified as follows

: µ1 = (3, 4), µ2 = (7, 1), σ1 = σ2 = (2, 1) and ρ1 = ρ2 = 0. The sample sizes were N1 = 200 and

N2 = 100. LDA was applied for binary classification and it achieved 199
200 accuracy for the first

population and 97
100 accuracy for the second population. The LDA results were used as benchmark to

measure the performance of the two clustering techniques. The LC matched the performance of LDA

by having 1.3% misclassification rate while K-means had 5% misclassification rate. The LC model

therefore outperformed K-means model.
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Chapter 3

Case Studies Analysis

This chapter covers the three case studies which formed the basis of comparison for statistical modelling

and machine learning in this research. Section 3.1 describes the research methodology, and Sections

3.2, 3.3 and 3.4 are the actual case studies.

3.1 Research Methodology

The research comprised of three case studies; the first case study is a prediction problem, the second

case study is a classification problem and the third case is a clustering problem. In all of the three

case studies, the problem was approached using both a statistical data modelling solution and machine

learning solution. In the prediction and classification problems, the hold-out validation method was

used. The data was divided into training and test sets (hold-out sample). The training set was used to

fit the model and the test set was used to validate the model’s prediction accuracy. This was possible

because in these two problems the data is labelled with true values up front. The validation involved

comparing the true value to the predicted value. On the other hand, in clustering the data was not

labelled, the objective was to discover the labels. Nonparametric bootstrap, distance measures and

visualisation were used to validate the models. The following sections go into details of each of the

case studies.

3.2 GARCH versus Artificial Neural Networks Case Study

3.2.1 Introduction

This part of the research dealt with predictive modelling by exploring volatility prediction using ANN

and GARCH models. GARCH models have been used in econometrics for volatility modelling since

the early 1980s. GARCH models are statistical models applied in economic and financial data. In

the context of this research, the main differentiating factor between machine learning and statistical

data modelling was the model adequacy checks in the form of significance testing, a practice unique

to statistical data modelling. The two modelling paradigms are often applied to solve the same

problems, for example, both do fit a linear regression model for prediction. The main validation of

such a regression model in machine learning is prediction accuracy. In statistical modelling on the

other hand, prediction accuracy is only entertained after model adequacy has been established. Such

model adequacy is established through significance testing. Statistical modelling has faced criticism
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of being over elaborate on mathematics which results in its inability to solve practical contemporary

data problems which are currently solved by machine learning algorithms. The main objective of this

case study was to compare the popular machine learning technique ANN with a GARCH model in

predicting volatility of South African financial markets indices.

3.2.2 Volatility Modelling Theoretical Framework

3.2.2.1 Characteristics of Volatility

Brailsford et al. (1993) attributes the increased scrutiny on volatility to, amongst other things, the

stock market crash of 1987 and institutional changes. Volatility forecasting also plays a major role

in activities such as portfolio selection, value at risk calculations in risk management and asset pri-

cing especially option pricing. Tsay (2010) defines volatility in the context of option trading as the

conditional standard deviation of the underlying asset return. Volatility is now itself a financial in-

strument tradeable in the form of various indices like the Chicago Board of Exchange Volatility Index

(CBOE VIX), South African Volatility Index (SAVI) from the Johannesburg Stock Exchange (JSE)

and various other exchanges all over the world. Figlewski (1997) touched on how volatility is perceived

differently by different segments of society. To ordinary people, high volatility is something that needs

to be avoided at all costs because it indicates a deficiency in the market, while to the market parti-

cipants it is something that needs to be understood, managed and precisely forecast in order to get

protection or take advantage of the market opportunities.

A major feature of volatility is that it is unobservable and therefore it can only be estimated. A lot of

research is focussed on the accuracy of such estimation. In predictive modelling, one way of evaluating

model accuracy is comparing the observed values to the model’s predicted values. But, since volatility

is unobservable, such comparison cannot be carried out directly, a form of volatility proxy is often used.

Volatility of asset returns instead of the observed asset prices are often analysed. This is because the

returns are easier to manage because they are scale-free and have desirable statistical features (Tsay,

2010). One of those features is that asset returns with zero autocorrelation constitute a white noise

and this is a requirement for other forms of capital asset pricing model (CAPM)1. Such CAPMs would

require testing for absence of autocorrelation to ensure efficient market hypothesis (EMH)2 is obeyed

(Tsay, 2010). An asset return at time t, rt, is given by

rt = ln
Pt

Pt−1
(a log return). (3.1)

where Pt is an asset price at time t. Andersen and Bollerslev (1998) argue that although volatility is

unobservable, if a model for σ2 is properly stated, then a squared return is an unbiased estimator of

the latent volatility factor but they quickly add that squared returns yield noisy measurements due to

idiosyncratic error. This error leads to large observation of variation with respect to σ2 which makes

the fraction of variation due to volatility quite low. They suggest the use of high frequency (usually

between 5-min to 10-min returns) volatility proxies to lessen the noise and further suggest that these

high frequency proxies perform better when compared to daily frequency measurements. The high

1CAPM describes the relationship between systematic risk and expected return for assets, particularly stocks
2EMH is a hypothesis in financial economics that states that asset prices fully reflect all available information
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frequency returns enable a more accurate calculation of the realised volatility of rt which is given as

RVt =

n∑
i=1

r2t,i. (3.2)

Tsay (2010) states that RV forms an independent and identically distributed (iid) sequence with finite

variance. And, the log return ln(Rt) follows a Gaussian autoregressive (AR) integrated moving average

(MA) model, specifically an ARIMA(0,1,q) model which can be used to make predictions. Forsberg

and Bollerslev (2002) presents a slightly different flavour of RVt where the equation is adjusted for

linearly interpolated mid-points of the bid-ask prices

RVt =

288∑
i=1

r2(288)(t+ (i/288)), (3.3)

n = 288 because of the frequency interval of 5 min in a day. It can be tempting to use even smaller

interval which would increase the value of n for better accuracy but Tsay (2010) warns against that,

stating that the smaller intervals are sensitive to market micro-structure like bid-ask bounce which

normally lead to biased volatility estimates. Optimal interval is an area of ongoing research. Andersen

and Bollerslev (1998) brought to attention a problem with the use of realised volatility forecast, which

is that realised volatility is not in line with rational financial decision making which is motivated by

expected future volatility rather than realised returns. Implied volatilities 3 are available in the market

in various volatility indices of stock exchanges and are also often used as volatility proxies.

Apart from the lack of observability, Tsay (2010) discusses other features of volatility which are ob-

servable through examining asset returns, namely, leverage effect, volatility clustering and stationarity.

Leverage effect refers to the fact that volatility treats big price increases differently to big price drops.

Volatility cluster refers to the fact that volatility can be low for some periods and high for other

periods. Stationarity refers to the characteristic that volatility does not diverge to the infinity but

rather varies within some fixed range. Due to CAPM and EMH, stationarity gets a special attention

in volatility modelling. Tsay (2010) distinguishes between two forms of stationarity, namely, strict sta-

tionarity and weak stationarity. Strict stationarity prescribes that the joint distribution of (rt1 · · · rtk)
be identical to that of (rt1+t · · · rtk+t), for all t with k a positive integer, while weak stationarity only

requires that the mean and variance of rt and rt−l be time invariant for an arbitrary integer l. Strict

stationarity is difficult to achieve in practical applications, the weaker form is usually assumed.

3.2.2.2 Volatility Model (RealGARCH Model)

The GARCH model belongs to the class of conditional heteroscedastic models. These autoregressive

heteroscedastic models are best suited when the return series shows time-varying volatility and volat-

ility clustering. The precursor to GARCH is autoregressive conditional heteroscedasticity (ARCH)

and was formulated by Engle (1982). Before an ARCH model can be entertained, a residuals model

is required to determine the presence of ARCH Effect, often an autoregressive model like an ARMA

model is fitted. An ARMA(p,q) model is given as

3Implied volatility is calculated by taking the market price of the option, entering it into the Black Scholes formula,
and back-solving for the value of the volatility
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rt = ϕ0 +

p∑
i=1

ϕirt−i + at −
q∑

i=1

θiat−i (3.4)

at is called the shock or innovation of rt, ϕi are parameters of the AR(p) component, θi are parameters

for the MA(q) component. Equation (3.4) is called conditional mean equation, and sometimes the

mean equation is just a constant. Testing for ARCH effect is a two step process. First, the {at} series

is tested for the absence of serial correlation, if the absence of serial correlation is established, then

the {a2t } series is tested for the ARCH effect. The ARCH effect is tested using either Ljung−Box test

or Lagrange multiplier test.

An ARCH(m) model is represented as

at = σtϵt, σ2 = α0 + α1a
2
t−1 + · · ·+ αma2t−m (3.5)

where {ϵt} is a sequence of independently and identically distributed (iid) random variables with mean

zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. PACF is used to determine the ARCH order m of

the ARCH model. The ARCH model is criticised for requiring many parameters in order to sufficiently

describe volatility, meaning it requires a large value of order m.

Tsay (2010) notes the following other weaknesses of the ARCH model:

1. The model assumes that positive and negative shocks have the same effects on volatility because

it depends on the square of the previous shocks. In practice, it is well known that the price of a

financial asset responds differently to positive and negative shocks.

2. The ARCH model is rather restrictive. For instance, α2 of an ARCH(1) model must be in the

interval [0, 1
13 ]if the series has a finite fourth moment. The constraint becomes complicated for

higher order ARCH models. In practice, it limits the ability of ARCH models with Gaussian

innovations to capture excess kurtosis.

3. The ARCH model does not provide any new insight for understanding the source of variations

of a financial time series. It merely provides a mechanical way to describe the behaviour of the

conditional variance. It gives no indication about what causes such behaviour to occur.

4. ARCH models are likely to over-predict the volatility because they respond slowly to large

isolated shocks to the return series (p.119).

On point 1) above, Franses and Dijk (1996) add that stock market breakdowns happen quicker than

stock market booms, put simpler, ‘bad’ news increase volatility more than ‘good’ news. Also, Don-

aldson and Kamstra (1997) in their study of S&P 500, NIKKEI and FTSE found the asymmetry

parameter to be significantly positive and thereby remarked that the negative return innovations do

indeed lead to more volatility than positive return innovations.

In 1986 Bollerslev proposed an extension of the ARCH model, the Generalized ARCH model (Tsay,

2010). A Generalized ARCH(GARCH) model is defined as follows: Let at = rt − µt, at follows a

GARCH(m,s) if

at = σtϵt, σ2 = α0 +
m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j (3.6)
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where ϵt is a sequence of independently and identically distributed random variables with mean 0

and variance 1, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(m,s)

i=1 (αi + βi) < 1 (Tsay, 2010). Unfortunately

GARCH is still a symmetric model, and therefore that does not resolve some of the weaknesses of the

ARCH model such as the leverage effect (asymmetry). On top of that, according to Arnerić et al.

(2014), standard GARCH(1,1) model shows high persistence in conditional variance (which means the

variance never diminishes). This leads to the model suffering from a significant upward bias in the

persistence parameters. Several variations to the GARCH model have been proposed like EGARCH

and Threshold GARCH (TGARCH) to handle leverage effects (asymmetry), Integrated GARCH (IG-

ARCH) to handle unit root in {rt} series and GARCH in the mean (GARCH-M) to handle the case

where the security return depends on its volatility. Models like Multiplicative ARCH, Piecewise-

Nonlinear ARCH, Flexible Fourier Forms, Hamilton-style regime switching models and others have

been studied, while some of these show slight improvement to the standard GARCH, none of these sur-

passes standard GARCH all the time and in a big way (Donaldson and Kamstra, 1997). The question

of complexity versus simplicity in volatility forecasting often comes to the fore, with Brailsford et al.

(1993) citing studies where simpler exponential moving averages outperform more complex GARCH

models and others where the opposite is true.

A recent variation of the GARCH model is the RealGARCH formulated by Hansen et al. (2012). Real

GARCH attempts to capture dynamic properties of returns and realized measure (Realised Volatility).

RealGARCH connects observed realised volatility measure to the latent volatility via measurement

equation. It also incorporates asymmetric reaction to shocks and therefore addresses leverage effect

problem (Ghalanos, 2019). Ghalanos (2019) presents a slightly different but equivalent notation of

RealGARCH to the original notation presented by Hansen et al. (2012). The former’s notation is

consistent with the notation by Tsay (2010) used throughout this research

at = µt + σtϵt, ϵt ∼ iid(0, 1)

log σ2 = α0 +

q∑
i=1

αilog xt−i +

q∑
i=1

βiσ
2
t−i

log xt = ξ + δlog σ2 + τ(ϵt) + ut, ut ∼ N (0, λ) (3.7)

where log xt is the realized measure and Equation 3.7 is called the measurement equation. RealG-

ARCH is rendered asymmetric to shocks via τ(ϵt) which is based on Hermite polynomials and has the

quadratic form

τ(ϵt) = τ1ϵt + τ2(ϵ
2
t − 1). (3.8)

This function is called leverage effect function because it captures the dependence between the returns

and future volatility by inducing an EGARCH type structure in the GARCH equation (Hansen et al.,

2012). The RealGARCH model is inspired by the availability of high frequency data, and the realised

measure proxy in the model is the RVt which was explored in the previous section.

There are many more variations to the GARCH model than the ones cited in the preceding paragraph.

Hansen et al. (2003) compares 55 different volatility models with 54 being some form of a GARCH vari-

ant, 14 unique GARCH variants. In assessing whether any other GARCH model beat GARCH(1,1),

Hansen and Lunde (2005) compares 330 GARCH models using 16 different variants. Each of these

variants try to address a particular problem (or problems) of the GARCH (or other GARCH variant)

model and is built around the idea of GARCH effects. Therefore understanding basic ideas around
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ARCH gives one coverage of many volatility modelling problems because the knowledge is portable

between the variants. Another aspect that gives GARCH modelling advantage over other volatility

modelling techniques is that there is vast literature covering it, an advantage that is aknowledged in

both Bauwens et al. (2006) and Asai et al. (2006). This vast literature also alludes to high level of

peer review of the theory and applications of GARCH models. GARCH models usually form basis

of comparison for many newer volatility models, like in Asai et al. (2006) the multivariate stochastic

volatility were generally benchmarked against multivariate GARCH in terms of parsimonious model

specification, model diagnostics and other aspects. Ghouse et al. (2019) compared autoregressive

distributed lag (ARDL) to GARCH in equity markets. They found that ARDL and GARCH had

the same power in identifying relationships in the time series data. But, ARDL failed to capture

ARCH effect in the daily and weekly data. They also found that ARDL was as good as GARCH in

monthly data, concluding that it can be used as an alternative to GARCH in low frequency data. In

this research GARCH (RealGARCH in particular) modelling was chosen as an alternative volatility

modelling technique to ANN based on its maturity, vast literature and as well as model parsimony.

3.2.2.3 Artificial Neural Networks

The inspiration behind artificial neural networks (ANNs) is the human brain. In ANNs, regression

modelling is performed by imitating the brain’s computation process. ANNs are nonlinear and assume

no underlying distribution and this is deemed as an advantage over their parametric counterparts

(Brooks, 1998). At a basic level, an ANN can consist of a single node of input with a single output,

but it is usually multiple layers of multiple nodes filtering information into an ultimate layer of output.

In keeping up with the brain terminology, the nodes are commonly referred to as neurons, the neurons

are joined together by synaptic weights. A synaptic weight indicates the amount of influence each

neuron has on the other. An ANN architecture dictates how the information traverse between the

layers of neurons in the network, with the two main categories of architecture being MLP also known

as Feed-Forward Neural Network and RNN. In a MLP, information is forwarded from the input layer

via one or more hidden layers to the output layer, neurons between layers are connected by weights

and one or more activation functions (Arnerić et al., 2014). Figure 3.1 shows an example of a 2-3-1

MLP architecture4. RNN has a similar structure to MLP except that it has feedback connection

between layers, enabling reverting from one layer to the preceding layer. There is a raging debate and

research in the machine learning community about which architecture should be preferred in which

situations, but MLP is currently the most widely used. Studies indicate that if one has adequate

number of nodes in the first hidden layer, subsequent layers are normally not that much of a necessity

to achieve satisfactory results (Donaldson and Kamstra, 1997). However, Demuth et al. (2014) had a

different view and assert that multilayer networks are more powerful than single layer networks. They

cite an example that a two-layer sigmoid network with sigmoid first layer and a linear second layer can

be trained to approximate most functions easily, a trait they claim single layer networks do not possess.

4Courtesy of http://www.texample.net
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Figure 3.1: 2-3-1 MLP architecture

Tsay (2010) shows a mathematical representation of the 2-3-1 ANN illustrated in Figure 3.1. The j th

node (neuron) in the hidden layer is given by

hj = fj

α0j +
∑
i→j

wijxi

 (3.9)

where xi is the value of the ith input node, wij are weights, α0j is called a bias and fj(.) is an activation

function usually logistic function of the form

fj(zj) =
ezj

1 + ezj
. (3.10)

For the chosen 2-3-1 architecture the equation looks like the following

hj =
eα0j+w1jx1+w2jx2

1 + eα0j+w1jx1+w2jx2
, j = 1, 2, 3. (3.11)

For the output layer where we assume the linear activation function fo(.), the output node is given as

o = fo

α0o +
∑
j→o

wjohj

 (3.12)

fo(.) is either linear or Heaviside function5 and simplifies to

o = α0o +
k∑

j=1

wjohj , (3.13)

where k is the number of nodes in the hidden layer. The output layer for the chosen 2-3-1 architecture

becomes

o = α0o + w1oh1 + w2oh2 + w3oh3. (3.14)

Associated with an ANN is a learning rule which is a process of transforming the weights and biases

of the network, this procedure is referred to as training the network (Demuth et al., 2014). There

are three kinds of training algorithms, supervised learning, reinforcement learning and unsupervised

learning. In supervised learning, the learning rule is provided with both inputs and targets (desired

outputs), the weights and biases are adjusted until the error between the network outputs and targets

is minimal. Hastie et al. (2001) analogises supervised learning to a “student” learning with a “teacher”,

5Heaviside function, is a function such that fo(z) = 1 if z > 0 and fo(z) = 0 otherwise. It’s named after Oliver
Heaviside.
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where a student provides responses ŷi for each xi in a sample and the teacher provides the correct

answer or error associated with the student’s response. The reinforcement learning is less common,

but it is similar to supervised learning except that instead of targets, the learning rule is provided

with scores, the scores are a measure of the network performance given the inputs. In unsupervised

learning, the learning rule is adjusted according to only inputs, it is given no outputs, it performs

a form of clustering (Demuth et al., 2014). Backpropagation is an algorithm most widely used in

training ANNs, Mazur (2015) goes through a step by step example of training a feed-forward ANN

via backpropagation. Backpropagation is basically an estimated steepest descent that minimises the

squared error (Demuth et al., 2014). It works backwards from the output layer modifying biases and

weights iteratively using a gradient rule. The modification of biases and weights is done in order to

minimize a fitting criteria like least squares (Tsay, 2010). The fitting criteria can be as follows:

S2 =
T∑
t=1

(rt − ot)
2 . (3.15)

Backprogration does not come without drawbacks. One of them is that since it is a minimization

problem, there might be several local minima and the algorithm might be stuck in one of the local

minima interpreting it as the actual global minimum. Bi et al. (2005) study this problem and suggest

a modification of the error function by adding an extra term. They state that adding such a term

to the error function helps to harmonize the adjustment weights in the hidden layer with those in

the output layer. Another possible drawback of backpropagation is overfitting, Kayri (2016) proposed

integrating Bayesian Regulation algorithm to backpropagation to minimize overfitting. Riedmiller

(1994) proposed a variation of the backpropagation called resilient backpropagation. The idea behind

the resilient backpropagation is to get rid of the ‘undesirable’ influence of the partial derivative in

the weight step, by taking into consideration only the sign of the derivative instead of the magnitude.

Resilient backpropagation also carries a promise of avoiding the stagnation around the local optima.

After comparing resilient backpropagation to regular backpropagation, Prasad et al. (2013) reached a

conclusion that resilient backpropagation does seem a better choice than the ordinary backpropagation.

3.2.3 Data Preprocessing

FTSE/JSE All Share Historical Data (ALSI) was sourced from the website https://za.investing.

com/indices/ftse-jse-all-share-historical-data. The data comprises of 2517 observations,

which are daily closing prices between 25-01-2009 and 22-03-2019. Weekends are excluded in the

observations, so it is a 5-day week time series. The ALSI price series was converted to the log return

series using the log return case of Equation (3.1).

Due to unavailability of high frequency price data for ALSI, equations (3.2) and (3.3) could not be

used directly for volatility proxy. In low frequency data set up standard deviation is often used as a

fairly good volatility estimate as stated in Daly (2008) and Daly (2011). A 5-day moving standard

deviation was used in this research as a measure of realised volatility (volatility proxy), calculated as

RVt = σt =

√√√√ 5∑
t=1

(rt − r̄)2

4
(3.16)

where rt is an asset return on day t, and r̄ the returns mean of the corresponding 5 days. The first
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estimate starts on day 5, for the first five days. The second estimate starts on day 6 and applies

Equation 3.16 on the five days between day 2 and day 6, and so on. This gives n− 4 volatility proxies

for n times series data points.

Hill and McCullough (2019) reviewed three popular R libraries for GARCHmodelling; tseries, fGarch

and rugarch. They mainly compared the ability to control the optimisation procedures of the libraries

and as well as assessed their performances against accepted GARCH benchmarks. They found serious

technical issues on fGarch and poor documentation. They found tseries library does not estimate

a model with a mean and has one type of standard error as well as only one optimiser. Out of

the three, only rugarch made mention of the accuracy of the GARCH estimates it produces. And

also, only rugarch offers a user guide (vignette) on top of the documentation. In conclusion, they

chose rugarch because it has various optimisers, it has two distinct standard errors, it is tunable and

matches the benchmark. Although rugarch was not found to be top in the popularity contest in Hill

and McCullough (2019), it is gaining traction in this regard as it is being used in various courses like

in the Amazon AWS Rstudio course 6. The library was chosen over the others in this research for

the reasons outlined in Hill and McCullough (2019), and also because it offers the implementation of

the Realized GARCH model as described in equation (3.7). The rugarch’s realGARCH() function

takes in the returns series {rt} as well as volatility proxy {RVt} as inputs. The computed standard

deviations and returns were used as inputs into the package and a RealGARCH model was fitted.

Google’s Keras Tensorflow python API seems to be a dominant machine learning and deep learning

tool and rapidly growing in popularity7 in the machine learning community, but it has challenging

software and hardware requirements in terms of CPUs and GPUs8 for setting up workstations. The R

implementation of keras is also challenging in terms of setting up and portability between workstations

due to quite heavy package dependencies, although it has high prediction accuracy. It was not used

in this research due to complexity in the initial setting up as well as memory requirements. The

neuralnet R package on the other hand is lightweight and simpler and easily portable between

workstations because it is just a package and does not have too many dependencies, and it is also

not demanding in terms of memory requirements. The major limitation of the neuralnet package is

that it only supports one hidden layer. This was not considered a hindrance in this research because

one hidden layer is often adequate for autoregressive analysis of this kind. The package has resilient

backpropagation implementation by default, but other options are also available.

MAE and RMSE were used for evaluating prediction accuracy of the models. The following equations

define the two measures:

MAE =

∑n
i=1 |yi − ŷi|

n
, (3.17)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(3.18)

where yi is the realised volatility measure (RVt) and ŷi is the realised measure estimate from the model.

6https://rstudio-pubs-static.s3.amazonaws.com/534670_78d421a4edc94d27a69d49a1c966c9ff.html
7https://www.forbes.com/sites/janakirammsv/2020/11/27/tensorflow-turns-5five-reasons-why-it-is-the-most-

popular-ml-framework/?sh=1b40ce967e67
8https://www.tensorflow.org/guide/gpu
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RMSE penalises big differences between actual and predicted values (big errors) because it squares

the differences before taking a square root while MAE is just an average of absolute differences. A

low value is preferred in both evaluation metrics. Wang and Lu (2018) study the two metrics in detail

with focus on the impact of rounding bias.

The data was split into 70% for model fitting (training) and 30% hold-out sample for testing. The

performance metrics were measured on the hold-out sample.

3.2.4 Data Analysis and Results

3.2.4.1 Realised GARCH Model

3.2.4.1.1 Data Exploration

In this section the statistical properties that make returns series to be more suitable than

price series in volatility modelling were explored. Figure 3.3 shows the normal Q-Q plots of both

series, and Table 3.1 is the summary statistics. In theory, stock prices are usually modelled as

lognormal distribution and the log returns as normal distribution. Both formal normality tests and

graphical inspection of normality via the Q-Q plots were carried out.

The Q-Q plot for the log returns showed a slightly symmetric distribution with heavy tails while prices

showed a negatively skewed distribution 9. This graphical observation is corroborated by the skewness

values of the log returns and those of prices in Table 3.1, which are 0.07801 and -0.3292 respectively.

The closer the value of skewness to zero, the more symmetric is the distribution. Normal distribution

has a skewness of zero. Another relevant descriptive statistic to normality checks is kurtosis10. The

log returns exhibited leptokurtosis (heavy tails), which is an excess kurtosis greater than zero11. The

leptokurtic log returns were consistent with the analysis by Andersen et al. (2003). This signified the

existence of outliers in the log returns, which in turn indicated the log returns were susceptible to

extreme values on either sides, very low returns or very high returns. The prices on the other hand

were platykurtic (excess kurtosis less than zero) which is signified by flat tails with less likelihood of

extreme values.

Quantitative normality tests were carried out in the form of Shapiro-Wilk, Anderson-Darling and

Jarque-Bera tests. The tests results are shown in Table 3.1. The null hypothesis for the Shapiro-Wilk

test is that the data comes from a normal distribution. The null hypothesis for the Anderson-Darling

test is that the data comes from a specified distribution (Heckert et al., 2002). In the ad.test() function

of the nortest R library that specified distribution is a normal distribution. The Jarque-Bera test is

based jointly on skewness and kurtosis. Its null hypothesis is that skewness is zero and kurtosis is 3

(Yap and Sim, 2011), which are features of a normal distribution. All the p-values were less than 0.05,

which meant that all the null hypotheses were rejected at 0.05 level of significance. Both log returns

and ALSI prices datasets were not normally distributed although log returns were more symmetric

when viewed through skewness but had heavy tails as seen in kurtosis (and on Q-Q plot) which could

have caused a deviation from normal distribution.

9Skewness is defined as a third central moment which measures the symmetry to the mean (Tsay, 2010).
10Kurtosis is defined as a fourth central moment which measures tail behaviour (Tsay, 2010).
11R is using the formula kurtosis =

∑N
i=1(Yi−Yi)

4/N

s4
− 3 which makes normal distribution kurtosis to be zero instead

of three.
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Another fact worth mentioning from the summary statistics is that the log return series had one less

observation than the price series. This is because a log return is a return between any two successive

days, so there was a 1-day lag in the log return series.

Table 3.1: Summary Statistics

ALSI Prices Log Returns Summary Statistics

no. of observations 2517
NAs 0

Minimum 61684.77
Maximum 18120.69
1. Quartile 32138.54
3. Quartile 52437.84

Mean 42964.33
Median 47045.44

Sum 108141200
SE Mean 225.7951

LCL Mean 42521.57
UCL Mean 43407.09

Variance 128325300
Stdev 11328.07

Skewness -0.32915
Kurtosis -1.2915
statistic 0.9169
p-value 2.2e-16
statistic 86.915
p-value 2.2e-16
statistic 220.06
p-value 2.2e-16

no. of observations 2516 Sample size
NAs 0 Number of missing values

Minimum -5.601475
Maximum 3.693919
1. Quartile -0.636298 25th percentile
3. Quartile 0.509134 75th percentile

Mean -0.043421 Sample Mean
Median -0.071776 Sample Median

Sum -109.247866 Sum of the percentage simple returns
SE Mean 0.02013 Standard error of the sample mean

LCL Mean -0.082894 Lower bound of 95% conf. interval for mean
UCL Mean -0.003949 Upper bound of 95% conf. interval for mean

Variance 1.019504 Sample variance
Stdev 1.009705 Sample standard error

Skewness 0.078007 Sample skewness
Kurtosis 1.503384 Sample excess kurtosis
statistic 0.98403 Shapiro Wilk
p-value 3.276e-16 Shapiro Wilk
statistic 9.5954 Anderson-Darling
p-value 2.2e-16 Anderson-Darling
statistic 240.63 Jarque-Bera
p-value 2.2e-16 Jarque-Bera
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Figure 3.2: All Share Index Prices and Log Returns

Tsay (2010) described stationarity as the foundation of time series analysis. As previously mentioned,

EMH is assumed in finance. Under the assumption, there should be no serial correlation12 in the time

series. Stationarity tests show whether a series is stationary or non-stationary. Prior to fitting the

data to a GARCH model such tests were performed, this was necessary to ensure that the series was

constant in the mean and variance and not dependent on time, and therefore obeyed EMH. If the

time series is not stationary, some other remedy like differencing can be taken before fitting the data

to the model. The pre-fitting data transformation like differencing also determine which flavour of a

GARCH model would eventually be fitted.

Again, in justifying the usage of log returns over prices, analysis of both was done. Figure 3.2 shows

12Serial correlation is the relationship between a variable and a lagged version of itself over various time intervals
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Figure 3.3: Normal Q-Q of ALSI Prices and Log Returns

the time plots of ALSI prices and log returns respectively. By inspection, it can be seen that the prices

plot shows a changing upward trend and the log returns plot seems to be oscillating about a constant

mean. The log returns on the other hand show a stationery series.

One way to formally examine stationarity is to look at the autocorrelation function (ACF) of the time

series. Correlation coefficient, ρl, between rt and rl is defined as

ρl =
Cov(rt, rl)√

V ar(rt)V ar(rl)
=

Cov(rt, rl)

V ar(rt)
. (3.19)

For a weakly stationary series V ar(rt) = V ar(rl), ρ0 = 1,ρl = ρ−l and 1 ≤ ρl ≤ 1. If r̄ is a sample

mean defined as r̄ =
∑T

t=l rt/T then the lag − l sample autocorrelation is given by

ρ̂l =

∑T
t=2(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
(3.20)

(Tsay, 2010). An autocorrelation ρl = 0 indicates lack of serial correlation.

Figure 3.4 shows autocorrelation functions of the two series, ALSI prices and the corresponding log

returns. As can been observed in Figure 3.4a, the price series autocorrelation was decaying slowly and

was remarkably above the significant range (dotted lines), this was indicative of a non-stationery series.

On the other hand the log returns series was mostly within significance range, this was indicative of

a stationery series.

Stationarity was concluded by conducting a quantitative unit root test called Augmented Dickey-Fuller

Unit Root Test. This test checks for the presence of a unit root which is a stochastic trend in a time

series that indicates an unpredictable systematic pattern. The null hypothesis states that there is a

unit root and the alternative is that the series is stationary. The test was carried using the adfTest()

function of the fUnitRoots package. Three tests were conducted for each time series as reflected in

Table 3.2. The price series lag order was determined using ur.df2() of the erer package. The function

uses Akaike information criterion (AIC) to select the optimal number of lags, and for the price series

the number of optimal lags was 2. For the log return series, the number of lag order was determined
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Figure 3.4: Autocorrelation Function for ALSI Prices and Log Returns

based on the PACF in Figure 3.5, the lag order was 19. The ur.df2() function gave 1 as the optimal

number of lags for the return series, but using 1 did not change the results. The null hypothesis could

not be rejected for the price series but it was rejected for the return series at 0.05 level of significance.

In summary, the price series has a unit root, drift and time trend while for the return series there is

no evidence of a unit root, drift or time trend.

Table 3.2: Augmented Dickey-Fuller Unit Root Tests

Lag Order ADF-statistic p-value

ALSI Prices (no intercept & no trend) 2 1.3726 0.9568
ALSI Prices (intercept & no trend) 2 -1.8284 0.3773
ALSI Prices (intercept & trend) 2 -3.0822 0.1202

Log Returns (no intercept & no trend) 19 -12.5085 0.01
Log Returns (intercept & no trend) 19 -12.8266 0.01
Log Returns (intercept & trend) 19 -12.997 0.01

Part of the assumption of the EMH is that stock returns are unpredictable and therefore should have

no serial correlations Tsay (2010). So, in concluding the data analysis was a much more stronger test

which tests for the presence of serial correlation, the test is called Ljung-Box test (named after Greta

M. Ljung and George E. P. Box). The null and alternative hypotheses are stated as follows:

H0 : ρ1 = . . . = ρm = 0

Ha : ρi ̸= 0

for some i ∈ {1 . . .m}. Table A.1 shows the results of the Ljung-Box tests, the p-value of the price

series is less that 0.05%, which means the null hypothesis is rejected at 95% level of confidence, and

the p-value for the log return series is greater 0.05 and therefore the null hypothesis could not be

rejected. This leads to the conclusion that the log return series has no significant autocorrelations and
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therefore obeys the EMH.

The analysis in the preceding paragraph has shown that log returns had the desirable properties like

stationarity and absence of autocorrelations which made them more suitable for GARCH modelling

compared to stock prices.

Table 3.3: ARCH Effect test

ARCH Effect Test type Residuals DF X-squared p-value

Box-Ljung test {a2t } 19 851.51 2.2e-16
ARCH LM test {at} 19 260.46 2.2e-16
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Figure 3.5: Log Returns PACF

3.2.4.1.2 Model Fitting

Since the log returns showed no serial correlations as shown in the preceding Ljung-Box

test, the next step was to ascertain the suitability of a GARCH model. The GARCH model building

followed the steps as set out in Tsay (2013):

� Mean equation specification. The PACF of the log returns in Figure 3.5 shows a significant

spike at lag 2 which is an indication of a possible AR(2) process. And, the ACF of the log returns

in Figure 3.4b shows a significant spike at lag 2 as well, which signifies a possibility of an MA(2)

process. This visual assertion was also confirmed by the auto.arima() function of the forecast

package, as the name suggests, the function automatically detects ARIMA model parameters

from data. The chosen mean equation was an ARMA(2,2) model and it is shown in Table A.2.

� Testing for ARCH effects. The squared residual series a2 of the ARMA(2,2) model were

tested for serial correlation using Ljung-Box test. The null hypothesis of zero correlation is

rejected at 0.05 level of significance as shown in Table 3.3. The second test was the Lagrange

multiplier test for ARCH effects (ARCH LM test). The function ArchTest() of the FinTS13

13(Tsay, 2013)
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package implements the ARCH LM test. Again the results are shown in Table 3.3, the null

hypothesis of no ARCH effects is rejected at 0.05 level of significance. Both tests confirmed the

presence of ARCH effects in the log returns.

� GARCH model specification. The preceding two steps paved a way for modeling volatility

using a GARCH. The RealGARCH was the variant chosen given the realised volatility proxy

introduced in Section 3.2.3, and on the basis that RealGARCH takes both the returns as well

as the volatility measure (proxy) as discussed in Section 3.2.2.1.

� Model validity check. Four ARMA-RealGARCH with ARMA(2,2) mean equations were

evaluated as shown in Table 3.4. The order of RealGARCH was restricted to a maximum of (2,2),

this was to keep it in lower orders as generally is the practice as alluded to by Tsay (2013). The

best model fit of the four as indicated by AIC and BIC was ARMA(2,2)-RealGARCH(1,1). But,

this was not the best performing model as measured by MAE and RMSE, the best performing

model amongst the ones with ARMA(2,2) mean equation was ARMA(2,2)-RealGARCH(2,2).

Further model checks outside the ARMA(2,2) mean equation group were carried, and it was

found out that ARMA(2,1)-RealGARCH(2,1) was a better model by both model fit (AIC, BIC)

and prediction accuracy (MAE,RMSE). The mean equation ARMA(2,1) is shown in Table A.2,

and it shows a higher AIC than ARMA(2,2) which signifies inferior model fit. It was also tested

for ARCH effects and the ARCH effects were confirmed by both Ljung Box test and Langrange

multiplier tests.

The fitted models were evaluated further using the rugarch package diagnostics which are shown

in tables A.3 and A.4 of Appendix A.3.1. In the tables the rows with statistically non-significant

variables are crossed out with lines. The two tables represent ARMA(2,2)-RealGARCH(1,1)

and ARMA(2,1)-RealGARCH(2,1) which were the best fitted models according to the AIC’s

of the RealGARCH model group in Table 3.4. The outputs show the Ljung-Box tests on the

standardised residuals of each of the RealGARCH models. The null hypothesis of no serial

correlation is rejected in both models, the standardised residuals are therefore serially correl-

ated. The Ljung-Box test on the squared residuals evaluates for adequately fitted ARMA mean

equation. Table A.3 shows that the model ARMA(2,2)-RealGARCH(1,1) is adequately fitted

up to lag 5 while Table A.4 shows inadequacy of the ARMA mean equation for the ARMA(2,1)-

RealGARCH(2,1) model. This result is supported by the visual inspection of the PACF and

ACF as well as by the auto.arma() function which suggested ARMA(2,2) as the superior mean

model equation. Both models showed persistent ARCH effects according to the ARCH LM test

results with ARMA(2,2)-RealGARCH(1,1) having ARCH effects only at lag 8 and ARMA(2,1)-

RealGARCH(2,1) having ARCH effects at both lag 6 and lag 8.

The Sign Bias Test is used to test leverage effects, with the null hypothesis that there is

no leverage effects. Again, all the RealGARCH models showed presence of leverage effects

with ARMA(2,2)-RealGARCH(1,1) showing leverage effects only on the joint statistic. These

leverage effects results were surprising because RealGARCH has a ’leverage effect function’

which is suppose to give it EGARCH-like properties. The presence of leverage effects suggested

an alternative GARCH variant may be required. EGARCH and TGARCH are designed to

capture leverage effects. EGARCH was chosen as an alternative model to explore. The model

ARMA(2,2)-EGARCH(1,1) was fitted to the data, the resulting model statistics are shown in

Table A.5. This model had the best AIC, -6.5427. There was no evidence of serial correlation in
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its standardised residuals, the ARMA(2,2) mean equation was adequate, and the ARCH process

was adequate. The model also adequately captured the leverage effects according to the sign

bias test. Theoretically, this is the best model for the log returns data but unfortunately it

predicts latent volatility as opposed to realised volatility, it therefore could not serve as a basis

for comparison to a nonparametric artificial neural network which is trained by realised volatility

(that would not be comparing the proverbial apples to apples).

The ARMA(2,2)-RealGARCH(1,1) model had a better ARCH process, the ARCH effects were

persistent only at higher lags. The leverage effects were generally captured by the model, only

the joint statistic of the sign bias test showed leverage effects. No further transformation on the

log returns data gave improvement on the RealGARCH model fitting, therefore, ARMA(2,2)-

RealGARCH(1,1) was chosen as the basis of comparison.

Table 3.4: GARCH Models Comparison

(2,2:1,1) (2,2:2,1) (2,2:1,2) (2,2:2,2) (2,1:2,1)

ARMA-realGARCH

MAE 0.1558108 0.1522862 0.1563295 0.151006 0.1498012
RMSE 0.2320173 0.2284904 0.2314191 0.2265984 0.2258623
AIC -6.5304 -6.5297 -6.5296 -6.5287 -6.5312
BIC -6.5003 -6.4973 -6.4971 -6.4939 -6.5010

ARMA-eGARCH

MAE N/A
RMSE N/A
AIC -6.5422
BIC -6.5149

3.2.4.2 Artificial Neural Network

3.2.4.2.1 Model Fitting

The neuralnet() function requires a linear model formula which shows the dependent and

predictor variables. The volatility data was therefore transformed to conform to the autoregression

equation, AR(2), of the form

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + at, (3.21)

where yt is a realised volatility measure (RVt) at time t, at is a white noise series with mean zero and

variance σ2, ϕ’s are autoregressive coefficients. The parameter p in AR(p) is lag order of the autore-

gression equation and it was determined using Figure 3.4b, where there is significant autocorrelation

on lag 2. This preprocessing step shows that the package is instructed to regress volatility value today

as dependent to the volatility values of the previous two days (autoregression).

The package allows for the altering of the number of neurons in the hidden layer. Neurons between

3 and 10 in the hidden layer were fitted to the data and performance matrix taken to determine

the optimal number of neurons, performance matrix is shown in Appendix A.4.1. The best prediction

accuracy was found at six hidden layer neurons, and neuralnet only allows only one hidden layer. That

meant that the optimal model was 2-6-1 MLP, the input layer with two input nodes as represented in

Equation (3.15). Figure 3.6 shows the neuralnet ’s graphical representation of the fitted model, with

corresponding synaptic weights and the number of backpropagation iterations (Steps). Appendix

A.4.1.1 shows the model output of the fitted ANN model.
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Figure 3.6: ANN Layers with Weights

3.2.4.3 Results

Figure 3.7 shows plots of the actual values against the predicted values for the ANN and the

ARMA(2,2)-RealGARCH(1,1) model. The red colour represents the actual values. The blue colour

represents the predicted values which are graphically superimposed on the actual values. A domin-

ance of red colour on the graphs indicates dispersion between actual and predicted values. Figure

3.7a appear to have more red color than figure 3.7b which indicates the ANN model fared better in

tracking the true values.

Table 3.5: Prediction Accuracy Results

RMSE MAE

ANN 0.2161168 0.14651724
ARMA(2,2)-RealGARCH(1,1) 0.2320173 0.1558108
ARMA(2,1)-RealGARCH(2,1) 0.2258623 0.1498012

Table 3.5 shows the numerical results of the comparison. The ANN model outperformed the Real-

GARCH models in both RMSE and MAE. The differences are quite small when the ANN model

is compared to ARMA(2,1)-RealGARCH(2,1) but this model is much more inadequate in all of the

selected model validity measurements. In keeping up with the statistical modelling culture, a model

with a more superior prediction accuracy was sacrificed for the one with a higher level of adequacy.

As Davison and Hinkley (1997) summarised it, “The explicit recognition of uncertainty is central
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Figure 3.7: Results Plots

to the statistical sciences”. Bzdok et al. (2018) contrasts this notion of uncertainty by stating that

machine learning focuses on finding patterns in unwieldy data using general-purpose algorithms. So,

quantifying uncertainty is critical part of statistical modelling but not necessarily the case in machine

learning.

Appendix A.5 contains the R code listing for the analysis in this case study.

3.2.5 Discussion and Conclusion

3.2.5.1 Discussion

The ANN model performed better than all the RealGARCH models evaluated in this case study. The

result is consistent with the studies that were reviewed in Section 2.2.1 which show machine learning

as having an edge over GARCH in prediction accuracy. But, GARCH has maturity and strong

theoretical base in volatility modelling. In this research, there was more discovered about the data in

the GARCH models than in the ANN model. For example, discovering the leverage effects gives an

analyst extra information about the data and such information can provide guidance on what action

should be taken. The action is not always about choosing a better prediction model, it could also be

about correcting the data from source depending on the purpose of the data. So, significance tests

also help with detecting data anomalies. It is difficult to imagine some of the volatility properties like

stationarity, leverage effect and volatility clustering being unearthed outside the realm of inferential

statistical modelling in one form or another. In this case study, even if the RealGARCH models had

outperformed the ANN model, a statistical data modeller would probably be preoccupied about the

persistence of the GARCH effects and the leverage effects in fitted models. Such preoccupation could

lead to improvements in the data modelling or improve the process that generates the data (in cases

where it is not from a stock exchange).

Section 3.2.3 touched on the challenges of obtaining 5-minute frequency intra-day data which would

have been ideal for modelling realised volatility as it was mentioned in the discussion of volatility

characteristics. The difficulties in obtaining high frequency intra-day data were also raised by Andersen

and Bollerslev (1998), they questioned whether the volatility forecast precision that comes with such

data is worth the trouble. This difficulty in obtaining the ALSI high frequency data led to a use of
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a probably less robust volatility proxy, which probably led to the less than ideal prediction accuracy

by the RealGARCH models. RealGARCH models are data hungry models. In Section 1.1 a picture

of enormous amounts of data that gets generated daily is drawn, although that is a fact, but data

sparsity is still a reality. In many situations the data that is available is not the data that is required

for a specified modelling problem. It helps to have a tool that will scrape through the data to find

patterns regardless of data size and form, and the ANN model was that tool in this case study. And,

this is the general attraction of the machine learning algorithms.

Interpretability is a subjective matter and largely depends on the audience. Figure 3.6 shows the fitted

ANN model’s 2-6-1 architecture with corresponding weights and Appendix A.4.1.1 shows the model’s

summary in Table A.7. The tables in Appendix A.3.1 show the fitted GARCH models (RealGARCH

and EGARCH). The RealGARCH models shows a lot more information compared to the ANN model.

The significant variables can be clearly identifiable, and other diagnostic metrics for goodness of fit

are also shown. The summary output can be mapped back to Equation (3.7) after removing the

insignificant variables. The ANN models summary on the other hand shows a series of matrices,

lists containing other lists. Granted, this could be a frailty of the package neuralnet which makes

interpretability poor. A few more R packages were explored during the data modelling and neuralnet

was found to be relatively more parsimonious with minimum hardware requirements. And, it was seen

to be more interpretable compared to others. Barring the variation in implementation across different

packages, a GARCH model is quite more interpretable compared to an ANN model.

3.2.5.2 Conclusion

This case study confirmed the edge of machine learning in predictive modelling, in the same breath

it confirmed the edge of statistical data modelling in uncovering causation. In many instances these

are two sides of the same coin. People might be happy to have a model that will accurately predict

where they are likely to get robbed, but they might also want to know the cause of spikes in robberies.

Option traders would love to have a model that accurately predicts volatility for their option pricing,

but risk managers would most likely want to know the cause of spikes and slumps in volatility. In

fitting the RealGARCH, knowing that the cause of the poor model fit was the leverage effect informed

the decision to try a different GARCH variant in EGARCH. It is clear from the empirical literature

reviewed and the analysis in this case study that neither of the two paradigms is all-encompassing.

The context and objective of the analysis should inform the choice of the modelling regime. There is a

promise that comes from the hybrid models which are actively being researched, as seen in Donaldson

and Kamstra (1997) and Yim (2002). If these hybrid models prove to have consistency and robustness,

the dilemma of having to choose between prediction accuracy of the machine learning algorithms and

causal inference of the statistical data models would be settled.

3.3 LDA versus SVM Case Study

3.3.1 Introduction

Classification is another form of predictive modelling. It is also an example of supervised learning

where the model is given the true values on the training set (in sample) and expected to predict the

true values in the validation set (out of sample). It differs from the prediction problem studied in

the GARCH and ANN case study in that the response variable is qualitative (categorical) while in
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the prediction problem the response variable was quantitative. The categorical responses are usually

referred to as classes and can vary from two (binary response) to many classes. There are many

applications of classification models; calculating probability of default in credit scoring, spam email

detection, diagnosis of presence or absence of a particular disease and many more. In statistics the

two most popular classification techniques are logistic regression and LDA. LDA is known to perform

better than logistic regression in cases where the number of classes are more than two (Hastie et al.,

2013). For that reason, LDA was used as a data model based classification technique since a multi-class

classification problem was also studied. There are other variants of LDA which attempt to address

some of its known shortcomings like HDA which seeks to address the assumption of equal within-class

covariance and quadratic discriminant analysis (QDA) that seeks to address non linear separation of

data. These variants show the ongoing research in statistical modelling in contrast to the claim by

Breiman (2001) that statistics is stuck with logistic regression and discriminant analysis. LDA itself

is not only used for classification but it has also been applied in dimension reduction problems. In

machine learning, ANNs are also used in classification problems and Lesniak et al. (2012) compares

SVM to ANN in a classification problem. In fact, SVMs are widely seen as a form of ANNs but without

the challenges of backpropagation and gradient descent which were mentioned in the GARCH/ANN

case study. There are many other classification algorithms in machine learning14. The goal of this case

study was to compare machine learning and statistical data modelling in classification using SVMs

and LDA. The following subsections delve into the theory and the mechanics of SVMs and LDA.

3.3.2 Classification Theoretical Framework

3.3.2.1 Linear Discriminant Analysis (LDA)

One way of doing classification given a categorical dependent variable Y and independent predictor

variable X1 · · ·Xp(predictor variables are also called features), is to model it directly by finding

P (Y = k|X = x). This simply calculates the probability of getting a particular category (k) or simply

kth class of Y given particular feature x. Logistic regression achieves this by using a logistic function

p(y) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
(3.22)

where p is the number of predictors (Hastie et al., 2013). Discriminant analysis flips this logic by

approaching the probability from the opposite end, that is, P (X = x|Y = y).

To illustrate the differences between the two approaches Ng (2018) makes an example of classification

problem between elephants and dogs, dogs being one class and elephants being another class category.

In this case a logistic regression model would find a straight line boundary based on animal features,

and given a new animal, it will then check on which side of the boundary does it fall to make the

appropriate classification. In discriminant analysis, a dog model is built based on features that makes

up a dog, and an elephant model is built based on elephant features in the training set. When a new

animal is introduced, it is first compared to both models separately and determination is made as to

which model does the new animal has the most resemblance, then it is classified to the category of

the model it resembles the most.

This probability P (X = x|Y = y) is not calculated directly and Bayes’ theorem is utilized. If fk(X) ≡
14Machine Learning practitioners do not really discriminate against statistical models, so logistic regression and LDA

are usually listed in ML syllabus
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P (X = x|Y = y) is a density function of X for kth category observation, Bayes’ theorem states that

P (Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

. (3.23)

In the equation above πk is called a prior probability and is estimated from the training set as a

proportion of observations that belong to the kth class. P (Y = k|X = x) or just pk(X) is called

a posterior probability, which is the probability that the observation belong to the kth class given

the predictor value (Hastie et al., 2013). Unlike πk, fk(x) is difficult to estimate from data but any

probability density can be assumed. In this study we assume normal density which is represented by

the following formula

fk(x) =
1√
2πσk

e
− 1

2σ2
k

(x−µk)
2

, X ∼ N
(
µ, σ2

)
(3.24)

and for p = 1 (uni-variate) and assuming variance is the same for the k classes, the posterior probability

in equation (3.23) becomes

[H]pk(x) =
πk

1√
2πσ

e−
1

2σ2 (x−µk)
2

∑K
l=1 πl

1√
2πσ

e−
1

2σ2 (x−µl)
2 . (3.25)

The classification rule is to assign an observation to a kth class for which pk(x) is the largest. Various

studies has shown that the classifier in equation (3.25) is equivalent to

δk(x) = x.
µk

σ2
−

µ2
k

2σ2
+ log(πk). (3.26)

Again an observation is assigned to a kth class for which δk(x) is the largest (Hastie et al., 2013). The

inputs µk and σ can be estimated from the training set as follows

µ̂ =
1

nk

∑
i:yi=k

xi (3.27)

σ̂2 =
1

n−K

K∑
K=1

∑
i:yi=k

(xi − µ̂k)
2. (3.28)

The estimates yield

δ̂k(x) = x.
µ̂k

σ̂2
−

µ̂2
k

2σ̂2
+ log(πk). (3.29)

This is a linear discriminant function (DF) of x which makes this classifier to be called linear dis-

criminant analysis (LDA) but in other literature it is called Gaussian discriminant analysis because

of the normal density assumption (Ng, 2018).

In the case when p > 1 (multivariate), the following equations are analogous to equations (3.24) and

(3.26)

f(x) =
1

(2π)
p
2 |Σ|

1
2

e(−
1
2
(x−µ)TΣ−1(x−µ)) (3.30)

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1
k + log πk (3.31)

where X is a p−dimensional random variable and Σ is a p×p covariance matrix of X. The covariance

matrix poses particular challenges as p → ∞, say p = 100, 000, then Σ is a 100, 000× 100, 000 which

can cause computation performance issues.
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Figure 3.8: The maximal margin hypeplane.
Courtesy of https://elbauldelprogramador.com/en/creating-trees-dependency-graphs-svms-in-tikz/

LDA has been successfully applied in areas such as credit evaluation, bankruptcy prediction, marketing

and many more. But LDA has also been criticised for having poor performance when the equal within

class covariance assumption has been violated (Stapor, 2016). This led to the development of the

HDA.

3.3.2.2 Support Vector Machines

The definition of a hyperplane in p dimensions is given by the following equation

β0 + β1X1 + β2X2 + ...+ βpXp = 0. (3.32)

This in fact results in a p−1-dimensional hyperplane. So in two dimensions the equation is β0+β1·x = 0

which is a straight line (see Figure 3.8), in three dimensions it is a flat plane. When this equation does

not hold, that is, this linear combination does not equal zero, that means X lies on either side of the

hyperplane. If β0+β1X1+β2X2+...+βpXp > 0, X lies on one side and if β0+β1X1+β2X2+...+βpXp <

0, X lies on the other side. So the hyperplane divides the p−dimensional space into two halves (Hastie

et al., 2013).

This is equivalent to having two classes Yi = 1 and yi = −1 with the following property

β0 + β1xi1 + β2xi2 + β3xi3 + ...+ βpxip > 0 if yi = 1 (3.33)

and

β0 + β1xi1 + β2xi2 + β3xi3 + ...+ βpxip < 0 if yi = −1. (3.34)

So, for a particular observation x∗ with f(x∗) = β0 + β1x
∗
1 + β2x

∗
2 + β3x

∗
3 + ... + βpx

∗
p, x

∗ will be

classified to class −1 if f(x∗) < 0 and will be classified to class 1 if f(x∗) ≥ 0 (Hastie et al., 2013).

There can be infinitely many hyperplanes that separate the training data into distinct groups with

no overlaps. A hyperplane that is the furthest from the training observations is chosen as an optimal

hyperplane and it is called maximal margin hyperplane. A margin is a smallest perpendicular distance

from the hyperplane to each of the training observations, a hyperplane with the largest margin is the
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maximal margin hyperplane. An observation is then classified according to which side of the maximal

margin hyperplane it lies, this is called maximal margin classifier (Hastie et al., 2013). Figure 3.8

illustrates the maximal margin hyperplane for the case p = 2.

In Figure 3.8, there are three observations that are of equal distance from the maximal margin hy-

perplane, if these observations were to move, the maximal margin hyperplane would change but a

move on any other observations would not have such effect unless such move is such that the margin

is changed. The three observations are called support vectors (2−dimensional vectors in this case).

The maximal margin hyperplane is a solution to the following maximization problem

maximize
β0,β1,β2,...,βp

M

subject to

p∑
j=1

β2
j = 1,

yi (β0 + β1xi1 + β2xi2 + β3xi3 + ...+ βpxip) ≥ M ∀ i = 1, 2, ...n.

(3.35)

M represents the margin in the maximization problem, the objective is to find values β0, β1, β2, ..., βp

that maximize M .

Maximal margin classifier depends on the existence of a maximal margin hyperplane which neatly

separates the groups. But this is not always possible, in many cases such hyperplane which achieves

such neat separations does not exist because of the overlaps in the observations. Another classifier

called support vector classifier (also called soft margin classier) relaxes the requirements of the max-

imal margin classifier by allowing observation mix up to some extent, which means, some observations

from yi = −1 appear in yi = 1 and vice versa(Hastie et al., 2013). By allowing a possibility of mis-

classification, this soft margin introduces some robustness because it is not sensitive to movements of

one support vector observation (which makes maximal margin susceptible to overffitng the training

data). The maximization problem is also adjusted to make room for misclassification

maximize
β0,β1,β2,...,βp

M

subject to

p∑
j=1

β2
j = 1,

yi (β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥ M(1− ϵi),

ϵi ≥ 0,

n∑
i=1

ϵi ≤ C.

(3.36)

The objective is as before, maximize M , and M is still the margin. The new variables ϵ0, ϵ2, ..., ϵn are

referred to as slack variable and allow particular observations to be misclassified. If ϵi = 0, the ith

is correctly classified, and if ϵi > 0, the observation is on the wrong side of the margin and finally if

ϵi > 1, the observation is on the wrong side of the hyperplane. C measures the level of tolerance of

the misclassification, it bounds the ϵi’s. If C = 0 it means there is no tolerance of misclassification

and therefore the classifier becomes the maximal margin classifier (Hastie et al., 2013).

Sometimes non linear boundary is required for a classification problem. Expanding feature space,

like taking combinations of features X1X2, X1X3....Xp−1Xp or taking the features with their squares

X1X
2
1 , X2X

2
2 .....XpX

2
p . These feature space expansions might improve on the linear boundary classifier
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but they increase features exponentially and can be cumbersome and computationally expensive. A

support vector machine is an extension of support vector classifier which solves the linear boundary

problems by making use for kernels. Central to the idea of kernels is the idea of a dot product which

is mathematically defined as ⟨a, b⟩ =
∑r

i=1 aibi. The linear support vector classifier is given as

f(x) = β0 +
n∑

i=1

αi⟨x, xi⟩. (3.37)

A linear kernel function K can be given as

K(xi, xi′) = ⟨xi, xi′⟩ =
n∑

i=1

xijxi′j (3.38)

this gives the support vector classifier with linear decision boundary. The kernel function can be

changed slightly to the following

K(xi, xi′) =

(
1 +

n∑
i=1

xijxi′j

)d

. (3.39)

This is called a polynomial kernel of degree d, when used together with support vector classifier, the

resulting classifier is called suport vector machine.

Studies have indicated that support vector machines have significant ability of dealing with high

dimensional data because their classification error performance has no direct dependency on input

data’s dimensionality (Lesniak et al., 2012).

3.3.3 Data Preprocessing

The dataset is a whole sale customer dataset from UCI machine learning repository. The dataset

contains 440 entries with 8 attributes. The first two columns of the data are categorical columns,

Channel and Region. There were two channels; Horeca and Retail and three regions; Oporto, Lisbon

and Other Region. The original data represented the categorical data using codes, 1=“Retail” and 2

= “Horeca”, and regions were 1 = “Lisbon”, 2 = “Oporto” and 3 = “Other Region”. Table 3.6 shows

the first 6 rows of the data which is only a portion of the 440 data points.

Table 3.6: First 6 rows showing categorial codes

Channel Region Fresh Milk Grocery Frozen Detergents Paper Delicassen

1 2 3 12669 9656 7561 214 2674 1338
2 2 3 7057 9810 9568 1762 3293 1776
3 2 3 6353 8808 7684 2405 3516 7844
4 1 3 13265 1196 4221 6404 507 1788
5 2 3 22615 5410 7198 3915 1777 5185
6 2 3 9413 8259 5126 666 1795 1451

Two class predictions were carried out, first being the two-class problem with channel being the de-

pendent variable, and the rest of the variables including region being the independent variables. The

second class prediction problem had the region as the dependent variable and therefore channel form-

ing part of the independent variables. In a nutshell, there were two classification problems; a two-class

38



classification problem and multi-class classification problem. This was done in case one approach is

more suited to multi-class classification and the other to two-class classification problems. The hold-

out validation method was employed, where the data was randomly split with 80% of the data used

to train the models and the remaining 20% (hold-out sample) used to test classification accuracy. The

data for continuous variables were normalized using R’s scale() function. Having categorical variables

in the form of region and channel as independent variables meant that dummy variables needed to

be created. Normally if the number of class levels is k, only k − 1 dummy variables are required.

For the two-class problem (Channel), three region dummy variables were created; “RegionLisbon”,

“RegionOporto”, and “RegionOtherRegion”. The “RegionOtherRegion” variable was dropped since

if it is known that the region is neither “RegionLisbon” nor “RegionOporto”, then “RegionOther-

Region” is implied. If a record had “Oporto” as a region value, dummy variable “RegionOporto”

would have a 1 and the dummy variable “RegionLisbon” would have a 0 and 0 would be implied for

“RegionOtherRegion”. The same logic applies to a record with “Lisbon” region value. The three-class

problem had two dummy variables for channel; “ChannelHoreca” and “ChannelRetail”. The dummy

variable “ChannelHoreca” was dropped in this case since knowing that the channel is not “horeca”

implies that it is “retail”. Either of the dummy variable could have been dropped without altering

the analysis results. Tables 3.7 and 3.8 show the results of the data transformation (this is only top

6 rows of 440).

Table 3.7: First 6 rows - Region Dummy Variables with Transformed Data - Two-class Problem

x.RegionLisbon x.RegionOporto x.Fresh x.Milk x.Grocery x.Frozen x.Detergents Paper x.Delicassen y

0 0 0.02 0.52 -0.04 -0.60 -0.06 -0.04 Retail
0 0 -0.41 0.54 0.16 -0.25 0.07 0.20 Retail
0 0 -0.47 0.40 -0.03 -0.11 0.11 3.53 Retail
0 0 0.06 -0.61 -0.38 0.78 -0.48 0.20 Horeca
0 0 0.78 -0.05 -0.08 0.23 -0.23 2.07 Retail
0 0 -0.23 0.33 -0.29 -0.50 -0.23 0.02 Retail

Table 3.8: First 6 rows - Channel Dummy Variables with Transformed Data - Multi-class Problem

x.ChannelRetail x.Fresh x.Milk x.Grocery x.Frozen x.Detergents Paper x.Delicassen y

1 0.02 0.52 -0.04 -0.60 -0.06 -0.04 Other Region
1 -0.41 0.54 0.16 -0.25 0.07 0.20 Other Region
1 -0.47 0.40 -0.03 -0.11 0.11 3.53 Other Region
0 0.06 -0.61 -0.38 0.78 -0.48 0.20 Other Region
1 0.78 -0.05 -0.08 0.23 -0.23 2.07 Other Region
1 -0.23 0.33 -0.29 -0.50 -0.23 0.02 Other Region

The data imbalance problem15 is an area of active research. In its strict definition, it arises when

observations ratio of a majority class to a minority class is in the regions of 100:1, 1 000:1, and 10

000:1. Such over-representation of a majority class results in classification models failing to accurately

predict the minority class. The models turn to be bias towards the majority class (He and Garcia,

2009). As stated in Agrawal et al. (2015), in real world classification problems the minority class is

usually the class of interest. For example in predicting the presence or absence of a cancer, the focus is

mainly on accurately predicting the presence although the overwhelming majority of cases are probably

cases of absence. In situations where it is feasible, more data can be gathered which sometimes fixes

the imbalance in the data16. In cases where that is not feasible, the correction of the imbalance in

15Also known as class imbalance problem and commonly referred to as “imbalanced data problem”.
16https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
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the data is usually through two random sampling techniques; oversampling and undersampling. In

oversampling, the minority class is randomly augmented by synthetic observations which are sampled

from existing observations. In undersampling, observations are randomly removed from the majority

class to balance the data. He and Garcia (2009) and Agrawal et al. (2015) cite the drawbacks of the

two balancing techniques; oversampling may results in overfitting because observations are replicated

while undersampling may lead to a loss of essential information. He and Garcia (2009) go further to

discuss the “state of the art” techniques which address these drawbacks. Figure 3.9 shows the class

distribution of both the two-class (Channel) and the three-class (Region) problems.
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Figure 3.9: Class Distribution

The classes are unbalanced in both cases but the imbalances are nowhere near the ratios that define the

data imbalance problem, although in the three-class problem the imbalance looks quite sizeable. The R

package scutr17 was used for transforming the data into balanced data where necessary. The package

uses SMOTE and cluster-based undersampling technique (SCUT) which combines oversampling and

undersampling. Synthetic minority oversampling technique (SMOTE) is the oversampling part of the

technique.

3.3.4 Data Analysis and Results

3.3.4.1 Two-Class Classification

3.3.4.1.1 Analysis

Figure B.2 in appendix B.1.2 shows pairwise scatter plots of the predictor variables for two-

class classification problem. The figure shows a marked linear relationship between Grocery and

Paper-Detergents, Grocery and Milk, as well as Milk and Paper-Detergents. The marked relationship

is evident in the correlation matrix of Table 3.9. The correlation coefficients between the pairs

Grocery and Paper-Detergents was 92%,Grocery and Milk was 74% and Milk and Paper-Detergents

was 66%. Evidently, these pairs would have been good candidates for dimension reduction if a

17https://cran.r-project.org/web/packages/scutr/index.html
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technique like PCA was performed, but there was no dimension reduction exercise undertaken in this

research since the data was no where near high-dimensional.

Table 3.9: Correlation Matrix for the Two Classes

x.RegionLisbon x.RegionOporto x.Fresh x.Milk x.Grocery x.Frozen x.Detergents Paper x.Delicassen

x.RegionLisbon 1.00 -0.16 -0.03 -0.02 -0.03 -0.01 -0.02 -0.03
x.RegionOporto -0.16 1.00 -0.06 -0.03 0.05 0.07 0.06 -0.04

x.Fresh -0.03 -0.06 1.00 0.10 -0.01 0.35 -0.10 0.24
x.Milk -0.02 -0.03 0.10 1.00 0.73 0.12 0.66 0.41

x.Grocery -0.03 0.05 -0.01 0.73 1.00 -0.04 0.92 0.21
x.Frozen -0.01 0.07 0.35 0.12 -0.04 1.00 -0.13 0.39

x.Detergents Paper -0.02 0.06 -0.10 0.66 0.92 -0.13 1.00 0.07
x.Delicassen -0.03 -0.04 0.24 0.41 0.21 0.39 0.07 1.00

LDA assumptions for homogeneity of variance-covariance matrices and normality were tested. The

results of Box M-test for homogeneity of covariance matrices is shown in Table 3.10. Based on the

p-value < 0.05, the null hypothesis that the observed covariance matrices for the dependent variables

are equal across groups was rejected. Because Box M-test is very sensitive and picks up the slightest

deviations, another test which is less stringent called Levene’s test was also performed and the output

is shown in Table 3.11. The Levene’s test is a univariate test for equality of variances between the

groups for each variable. The equality of variances was also rejected for all the variables at 0.05 level of

significance. This meant that the data did not satisfy the variance-covariance homogeneity assumption

required for the LDA.

Table 3.10: Box M Test for Channel

DF X-squared p-value

Channel 42 1016.5 2.2e-16

Table 3.11: Levene’s Test for Homogeneity of Variance - Channel

Milk Fresh Grocery Frozen Detergents Paper Delicassen

F-value 27.386 6.9219 63.231 16.023 111.93 0.243
Pr(> F ) 2.59e-07 0.008815 1.579e-14 7.348e-05 2.2e-16 0.6223

The Shapiro-Wilk test for normality was carried out for each class and each variable and the summary

of the results is shown in Table 3.12. At 0.05 level of significance the null hypothesis that the inde-

pendent variables are normally distributed within each group is rejected as all the p-values are less

than 0.05. Figure B.1 shows a Q-Q plot of the Horeca group and it can be seen that the points are

generally deviating away from the straight line which is indicative of absence of normal distribution.

The Q-Q plot for the Retail group was similar. It could be concluded then that the data did not

satisfy the LDA assumptions.

The partimat() function from R’s klaR package gives a quick lda classification between any two

variables accompanied by classification errors as shown in figure B.2 of appendix B.1.2.

3.3.4.1.2 Model Fitting

The LDA model for the two classes was fitted on the training set using lda() function from

R’s MASS package and results are shown in in Table B.2 of appendix B.1.4.1. The results also show
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Table 3.12: Shapiro-Wilk normality test - Channel

Milk Fresh Grocery Frozen Detergents Paper Delicassen

Horeca

W 0.78416 0.58498 0.78283 0.55875 0.64586 0.2889
p-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16

Retail

W 0.84045 0.66795 0.73141 0.74405 0.75578 0.68838
p-value 4.081e-11 2.2e-16 8.272e-15 1.924e-14 4.329e-14 5.695e-16

the group prior probabilities of 0.677 for “Horeca” and 0.323 for “Retail”. The model output also

shows group means as well as the DF ( in the form of linear discriminant coefficients). Figure 3.10

shows the plots of the DF, illustrating how well the function separates the two groups. Although the

two plots overlap a bit but it is clear that the function does separate the groups quite well (with

“Retail” group right skewed and “Horeca” left skewed). For quantitative model validation, the

discriminating power of a DF can be tested for significance using Wilk’s lambda. Eigenvalues also

give a good indication of such discriminating power. Schlegel (2016) illustrated how to calculate

these statistics using R-programming. But, SPSS statistics software package outputs these and other

statistics with minimal to no programming. So, SPSS was preferred over R for the significance

testing of the DF and Figure B.3 shows an extract of the SPSS output. Bhaumik (2020) described

Wilk’s lambda as assessing discrimination power of the independent variables. When the statistic is

significant, the null hypotheses of “No group separability” is rejected and the conclusion is that the

DF is significant. The Wilk’s lambda statistic in Figure B.3 is significant (p − value < 0.01), this is

in line with the visual representation in Figure 3.10 18.

In Bhaumik (2020), an eigenvalue is defined as the ratio of the between to within group sum of squares,

and a higher eigenvalue indicates a strong discriminating power of the DF. The two group problem

has only one eigenvalue (since one DF), and it is a relatively high ratio (0.792) which again signifies

a high discriminating power of the DF.

SVM was also fitted on the training set using R’s e107119 package, the model parameters can be

found in Table B.4 of appendix B.1.5.1 . The package has a tune() function which helps in choosing

the best model given a list of possible cost values as a well a list of gamma values. The tune() function

also takes in the kernel type as an argument, in this research a linear kernel was chosen. The resulting

SVM model had 76 support vectors and a cost of 1. Cost is “cost of constraints violations” and

indicates the level of tolerance of error. A low cost value results in wider margin (Figure 3.8) and

tolerates more misclassifications. A high cost value results in narrower margins and has less tolerance

for misclassification.

3.3.4.1.3 Results

The hold-out sample was input into the LDA model and a confusion matrix for validating the

classification accuracy was constructed, Table 3.13 shows the confusion matrix. The table shows a total

of 59 “Horeca” entries were in the test data, 57 of them correctly predicted to be “Horeca” while 2 were

misclassified as “Retail”. A total of 28 “Retail” entries in the test data, 11 of them were misclassified

as being “Horeca” while 17 were correctly classified. This gave 57+17
57+11+2+17 = 0.85058 ⇒ 85.051%

18Note is this despite R and SPSS discriminant coefficients being different, the difference could be due to standardisation
and scaling.

19(Meyer et al., 2021)
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Figure 3.10: Discrimination Plots for the Two Group

prediction accuracy.

Table 3.13: Two-Class LDA confusion matrix

Actual

Horeca Retail

predicted Horeca 57 11
Retail 2 17

The hold-out sample was again input into the SVM model and another confusion matrix was drawn.

Table 3.14 shows the confusion matrix. Following the same logic explained in the LDA case above,

the classification accuracy of the SVM was 88.506%.

Table 3.14: Two-Class SVM confusion matrix

Actual

Horeca Retail

predicted Horeca 54 5
Retail 5 23

The LDA model predicted “Horeca” (majority class) 78.161% 20 of the time, this may indicate a

bias to some extent towards the majority class since the majority class had a prior probability of

only 0.677. The SVM model on the other hand predicted “Horeca” 67.816% of the time which was

20( 57+11
57+11+2+17

)
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consistent with the prior probability. It should be noted that the LDA model did not fail to predict the

minority class, the issue is that its prediction generally seems ‘disproportionately’ favourable to the

majority class. This apparent bias requires other tools of performance measurement other than overall

prediction accuracy, as mentioned in (He and Garcia, 2009), accuracy is sensitive to changes in the

data and is not suitable for unbalanced data. He and Garcia (2009) discuss other measures of model

performance, among them; precision, recall, and F-Measure. This research was confined to the three

measures mentioned here (including accuracy), this is because they are intuitive and sufficient for the

purposes of the aimed performance comparisons. The mathematical definitions of the three measures

are shown in Appendix B.1.3. Positive and negative observations here follow the same convention that

is followed in He and Garcia (2009), where positive is the minority class and negative is the majority

class. Precision measures the ratio of the accurately predicted positive observations to the total

number of predicted positive observations. It indicates the number of observations that are labelled

correctly out of all the positive labelled observations. Recall measures the ratio of accurately predicted

positive observations to the total number of the actual positive observations. Predicting almost all

observations as positive results into an almost perfect recall value (almost no False Negative (FN)’s),

and predicting almost all cases as negative results into an almost perfect precision precision value

(almost no False Positive (FP)’s). F-Measure is a weighted mean of the two measures, it penalises

extreme values and it reaches maximum value when both measures are a 100% each, and it is 0

when either of them is 0. So a higher F-Measure value is preferred. The functions precision(),

recall(), and F-meas() from the R package caret were used to calculate the three measures. They all

require that the actual and predicted datasets be specified, as well as the positive class label. Taking

“Retail”(minority class) as a positive class, the LDA model had a precision, recall, and an F-Measure

of 89.4737%, 60.7143% and 72.3404% respectively. The SVM model had 82.1429% for each of the

three measures. Therefore, the SVM model was a better model for the minority class as measured by

F-Measure and it had better overall accuracy.

Further model performance checks were carried on the balanced data. The balancing was done on the

training dataset using SCUT() function from the scutr package. The function takes in the dataset

to be balanced as well as a clustering function which can be either K-means, hierarchical or any

user defined clustering methodology. The test dataset was left unchanged (unbalanced), this is to

ensure that the models are tested on real data. The function works out the number of observations in

balanced dataset as follows; if m is the number of observations in the unbalanced dataset and n is the

number of classes, then m/n is the number of observations per class in the resulting dataset. Table

3.15 shows the class distribution before and after balancing.

Table 3.15: Balanced Data Class Distribution

Horeca Retail

Training Unbalanced Dataset 239 114
Training Balanced Dataset 176 176

Test Dataset 59 28

Table B.3 and Figure B.4 show the results of the LDA model fitting from R and SPSS respectively.

The prior probability for each class is 0.5 which signifies a balanced dataset (the prior probabilities on

lda() function defaults to class proportions). Again the null hypothesis of “No group separability” is

rejected which indicates that the classes are still separable. Table 3.16 shows the resulting confusion

matrix.
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Table 3.16: Two-Class LDA confusion matrix - Balanced Data

Actual

Retail Horeca

predicted Retail 27 25
Horeca 1 34

The LDA model had a precicion of 51.9231%, a recall of 96.4286%, as well as an F-Measure of

67.5000%. The LDA balanced data model did not perform favourably compared to the unbalanced

data model according to the F-Measure. The model’s overall accuracy of 70.110% was lower compared

to that of the model on the unbalanced dataset.

Table 3.17: Two-Class SVM confusion matrix - Balanced Data

Actual

Retail Horeca

predicted Retail 27 15
Horeca 1 44

An SVM model was also fitted to the balanced data for comparison, Table B.5 shows the model

output and Table 3.17 its confusion matrix. The values for precision, recall, and F-Measure were

64.2857%, 96.4286%, and 77.1429%, respectively. Again the F-Measure value was no better than in

the corresponding unbalanced data model. This meant neither of the two techniques benefited from

data balancing. The SVM model again outperformed the LDA when compared by both F-Measure

and accuracy.

It is worth noting that the balancing techniques applied do not produce the same balanced data

points on every execution, each execution might have a unique dataset which can result in different

performance metrics, this is because random sampling is applied in SCUT. But, the results in tables

3.17 and 3.16 were the most prominent between the different executions.

Since the original data was not normally distributed within the groups as shown through the sig-

nificance tests, and the problem is a binary classification problem, a logistic regression model was

also fitted to the data. The model output is shown in Table B.6 of Appendix B.1.6. The confusion

matrix of the logistic regression model is shown in Table 3.18. The model achieved the same level of

classification accuracy as the SVM model and therefore outperformed the LDA model.

Table 3.18: Two-Class Logistic Regression confusion matrix

Actual

Horeca Retail

predicted Horeca 55 6
Retail 4 22

3.3.4.2 Three-Class Classification

3.3.4.2.1 Analysis

Table 3.19 shows the correlation matrix of the three-class data, and the pairwise scatter

plot is shown in figure B.6 of appendix B.2.2. The correlation coefficients of the continuous variables
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remained unchanged as expected. The dummy variables, “ChannelHoreca” and “ChannelRetail”,

showed perfect negative correlation as expected again since when one has a value 1 the other must

have a value 0 and vice versa.

Table 3.19: Correlation Matrix for the Thee-Class classification

x.ChannelRetail x.Fresh x.Milk x.Grocery x.Frozen x.Detergents Paper x.Delicassen

x.ChannelRetail 1.00 -0.17 0.46 0.61 -0.20 0.64 0.06
x.Fresh -0.17 1.00 0.10 -0.01 0.35 -0.10 0.24
x.Milk 0.46 0.10 1.00 0.73 0.12 0.66 0.41

x.Grocery 0.61 -0.01 0.73 1.00 -0.04 0.92 0.21
x.Frozen -0.20 0.35 0.12 -0.04 1.00 -0.13 0.39

x.Detergents Paper 0.64 -0.10 0.66 0.92 -0.13 1.00 0.07
x.Delicassen 0.06 0.24 0.41 0.21 0.39 0.07 1.00

LDA assumptions were also tested for this multi-class scenario. The Box-M test showed rejection of

the null hypothesis of homogeneity of covariance matrices as shown in Table 3.20. The less stringent

Levene’s test showed that the null hypothesis of equal variances among the groups for the independent

variables cannot be rejected as all the p-values were greater than 0.05. The output of the p-values for

the Levene’s test are in Table 3.21. The normality assumption was rejected for each group in all the

independent variables as shown in Table 3.22. Figure B.5 shows the graphical evidence of the lack of

normality (other “region” plots were similar).

Table 3.20: Box M Test for Region

DF X-squared p-value

Region 21 374.91 2.2e-16

Table 3.21: Levene’s Test for Homogeneity of Variance - Region

Milk Fresh Grocery Frozen Detergents Paper Delicassen

F-value 0.1363 1.4408 0.103 1.1706 0.863 0.9968
Pr(> F ) 0.8726 0.2379 0.9021 0.3112 0.4226 0.3699

3.3.4.2.2 Model Fitting

Just like in the two-class classification problem, a randomly selected training set (80% of

the data) was used to fit the model using the lda() function. This is consistent with the hold-out

validation method. Table B.9 shows the details of the resulting model. In the three group problem

there are two DF’s, LD1 and LD2. The proportion of trace in the table indicates that LD1 accounts

for 83.44% of the discrimination, and the rest is accounted for by LD2. The “Other Region” group

has prior probability of 0.7054 with “Lisbon” and “Oporto” having 0.1898 and 0.1048 respectively.

Figures 3.11a and 3.11b show the visual representation of the strength of discrimination. The

histograms on Figure 3.11a seem to be centred about the same point, no clear pattern of separation

between the groups. Figure 3.11b is a plot of LD2 against LD1, again the points are scattered about

the same area with no visible pattern of separation. SPPS output of the three group model in Figure

B.7 confirms the R visual representation of the discrimination, the DF’s are not significant (p-values

of 0.183 and 0.111). Therefore, the null hypothesis of the Wilk’s lambda test “No group separability”

cannot be rejected. However, Manly and Navarro-Alberto (2016) warned that the tests of significance
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Table 3.22: Shapiro-Wilk normality test - Region

Milk Fresh Grocery Frozen Detergents Paper Delicassen

Other Region

W 0.7753 0.59282 0.66529 0.61061 0.60805 0.34567
p-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16

Lisbon

W 0.78718 0.79487 0.73995 0.7776 0.64912 0.78988
p-value 3.428e-09 5.516e-09 2.293e-10 1.923e-09 2.836e-12 4.044e-09

Oporto

W 0.9086 0.733 0.63459 0.38114 0.57874 0.80593
p-value 0.00137 6.705e-08 1.426e-09 8.362e-13 2.158e-10 2.161e-06

of DF’s should not be relied upon in deciding how many DF’s should be kept to represent the actual

group differences. The reason as they put it is that the jth DF in the population may not be the

jth DF in the sample, owing to sample errors. They suggest that alternative ways of validating the

nature of group differences should be explored. The eigenvalues in the figure indicate that DF 1 has

a relatively stronger discrimination power (larger eigenvalue) compared to DF 2, which is in line with

what was shown in R’s proportion of trace output.
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3.3.4.2.3 Results

The hold-out sample was used to test the prediction accuracy of the fitted LDA model and

a confusion matrix was constructed to validate the model’s predictive strength. The confusion matrix

of the LDA in Table 3.23 shows that the LDA model predicted 0 entries for “Lisbon” when in fact the

actual is 10 occurrences, predicted 2 occurrences for “Orporto” when in fact there was 10 occurrences,
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and lastly predicted 65 occurrences for “OtherRegion” when in fact there was 67 occurrences. This

translated to 74.713% classification accuracy.

Table 3.23: Three-Class LDA confusion matrix

Actual

Lisbon Oporto Other Region

Lisbon 0 0 0
predicted Oporto 0 0 2

Other Region 10 10 65

Similarly, the hold-out sample was used to test prediction accuracy of the SVM model. The confusion

matrix for the SVMmodel is shown in Table 3.24. It shows misclassifications of “Lisbon” and “Oporto”

but unlike the LDA model all occurrences of “OtherRegion” were correctly classified. This translated

to 77.012% classification accuracy.

Table 3.24: Three-Class SVM confusion matrix

actual

Lisbon Oporto Other Region

Lisbon 0 0 0
predicted Oporto 0 0 0

Other Region 10 10 67

A closer look at the confusion matrices reveals that none of the minority classes (“Lisbon” and

“Oporto”) were accurately predicted by both models, the LDA model inaccurately predicted 2 entries

for “Oporto”. The SVM model predicted “Other Region” class 100% of the time while LDA predicted

it 98%21 of the time. It can reasonably be concluded that both models suffered from the data im-

balance problem, this is because the majority class was disproportionately favoured and the models

failed to predict the minority classes. This led to each of the minority classes having a 0 for precision,

recall, as well as for F-Measure. This clearly was an anomaly in the prediction models despite them

having relatively high overall prediction accuracies, this is called accuracy paradox (Uddin, 2019).

The SCUT() function was again used to balance the data. Table 3.25 shows the class distribution for

the resulting balanced dataset.

Table 3.25: Balanced Data Class Distribution - Region

Lisbon Oporto Other Region

Training Unbalanced Dataset 62 38 253
Training Balanced Dataset 118 118 118
Testing Training Dataset 15 9 63

Table B.10 and Figure B.8 show the fitted LDA model. The prior probability for each of the three

classes is 0.3333. The null hypothesis of “No group separability” is rejected, this means the classes

are this time separable. The ml test() function from the mltest R package was used to compute

the model performance metrics because it can handle multi-class classification which is not the case

with the functions in caret which are meant for binary classification (caret was used in the two-class

problem). Table 3.26 is the confusion matrix for the LDA model while Table 3.27 is its performance

measures, the latter table shows performance measures when each of the classes is considered as a

21 10+10+65
10+10+67
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positive class. Evidently, there is a vast improvement in the minority classes prediction by LDA as

measured by precision, recall, and F-Measure. In a nutshell, the LDA model predicted accurately 6

out of the possible 9 for “Oporto” and 10 out of the possible 15 for “Lisbon”. This is a high recall rate

compared to the previous LDA model. The harmonising effect of the F-Measure can be seen when

the majority class (“Other Region”) is taken as a positive class. It has a precision of 91.6667% but

an F-Measure of only 29.3333%, this is owed to the low recall of 17.4603%.

Table 3.26: Three-Class LDA confusion matrix - Balanced Data

Actual

Oporto Lisbon Other Region

Oporto 6 5 19
predicted Lisbon 2 10 23

Other Region 1 0 11

Table 3.27: Three-Class LDA Performance measures - Balanced Data

Oporto Lisbon Other Region

recall 66.6667% 66.6667% 17.4603%

precision 20.0000% 22.2222% 91.6667%

F-Measure 30.7692% 33.3333% 29.3333%

accuracy 31.0345%

Similarly, the results for the SVM model are shown in Table 3.28 and Table 3.29. Its performance

metrics show quite lower numbers on the minority classes compared to the ones achieved by the LDA

model, although it has a higher accuracy.

Table 3.28: Three-Class SVM confusion matrix - Balanced Data

actual

Oporto Lisbon Other Region

Oporto 3 6 23
predicted Lisbo 2 4 17

Other Region 4 5 23

Although LDA outperformed SVM on the balanced data when measured by F-Measure but the results

are generally not flattering, the performance measurements are quite low for both techniques.

Other variants of discriminant analysis were also checked against the three-class scenario on unbalanced

data as shown in Table B.11 of Appendix B.2.5. QDA achieved the same accuracy as LDA, multiple

discriminant analysis (MDA) had 73.6% accuracy with HDA having the lowest accuracy of 70.1%.

The HDA was not really expected to improve the three-class scenario as the equality of variance could

not be rejected by Levene’s test in Table 3.21.

3.3.4.2.4 Comparing prediction accuracy when normality assumptions are satisfied -

Iris Dataset

The Iris dataset was first used in Fisher (1936), and is widely used in the statistics and

machine learning training programs. The data is a multi-class with dependent variable, Species, hav-

ing three groups “setosa”, “versicolor”, and “virginica”. The data does satisfy normality assumption
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Table 3.29: Three-Class SVM Performance measures - Balanced Data

Oporto Lisbon Other Region

recall 33.3333% 26.6667% 36.5079%

precision 9.3750% 17.3913% 71.8750%

F-Measure 14.6342% 21.0526% 48.4211%

accuracy 34.4800%

as shown in Figure B.9 and Table B.13. The interest in the data was to see how would LDA compare

to SVM in a case where normality assumptions are satisfied. The homogeneity of covariance matrices

was still not satisfied according to the Box M-test and only two variables satisfied the group variance

equality assumption test in Table B.13.

Table B.15 in Appendix B.2.6.2 shows the LDA fitted model on Iris dataset. Table 3.30 is the confusion

matrix which indicates 98% classification accuracy. The classification accuracy of the SVM model on

the Iris dataset is shown in Table 3.31 and is 96.667%.

The LDA model performed better than the SVM default model.

SVM allows for the tuning of the model parameters such as the kernel, gamma and cost value. After

tuning the model by changing the cost from 0.1 to 100, the tuned SVM model achieved 100% clas-

sification accuracy. However, this was not always reproducible as at times the fitting seemed to go

on non-stop which is usually an indication that the algorithm fails to converge. This could be due to

physical memory limitations.

The code listing for the analysis in this case study is in Appendix B.3.1.

Table 3.30: Three-Class LDA confusion matrix - Iris Dataset

Actual

setosa versicolor virginica

setosa 50 0 0
predicted versicolor 0 48 1

virginica 0 2 49

Table 3.31: Three-Class SVM confusion matrix - Iris Dataset

Actual

setosa versicolor virginica

setosa 49 0 0
predicted versicolor 0 49 3

virginica 1 1 47

3.3.5 Discussion and Conclusion

3.3.5.1 Discussion

The Wilk’s lambda test examines the null hypothesis of “No group separability”. On the unbalanced

data, the null hypothesis was rejected in the two group classification but could not be rejected in

the three group classification for both DF’s . This was an indication that the DF’s were not doing

a good job in separating the three groups. But, Manly and Navarro-Alberto (2016) warn against
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over reliance on such statistical significance tests citing their frailties, so both DF’s were kept in the

model. Moreover, a rework of the thee-class LDA model would have been required if the two DF’s were

to be dropped since they were the only DF’s in the model. The next step was testing for prediction

accuracy on the hold-out sample, the results showed that the SVMmodel outperformed the LDA model

in the two-class scenario and the LDA model was again outperformed in the three-class scenario. The

LDA performance on the customer data was expected to be suboptimal given that the accompanying

assumptions were not satisfied. The three-class problem had a lower prediction accuracy in both

LDA and SVM compared to the two-class problem. This is an interesting fact because two-class LDA

model’s DF was significant and the two DF’s of the three-class scenario were not. This suggests that

Wilk’s lambda did give an accurate indication of poor separability in the three-class problem. This

is a valuable information whether one is using LDA or SVM for class prediction. It also suggests

that the two techniques can be used to work hand in hand. The LDA can be used to gauge the

level of separability using the Wilk’s lambda test, and the SVM can be used for its superior class

prediction accuracy. As was discussed in Section 2.2.2, Vinay et al. (2015) did use the two techniques

in combination with LDA being used for dimension reduction and SVM for classification.

Balancing the data did not benefit the two-class problem for both modelling techniques, in fact, the

models fitted on balanced data fared poorly compared to the original models. This showed that class

balancing may not always be the solution to the ‘perceived’ biases when data is unbalanced. The

accuracy measurements on the initial three-class modelling hid a crucial anomaly about the fitted

models, namely, the data imbalance problem. There was not a single accurately predicted minority

class observation although the imbalance on the proportions did not match the definition of the data

imbalance problem. Synthetic data balancing was warranted for the three-class problem due to the

lack of feasibility of gathering more data. The LDA performed better on the minority classes according

to F-Measure but was poorer on overall accuracy. Such results are open to debate and interpretation.

The acceptable measure would be guided by the objectives of the classification problem. As mentioned

before, if the objectives are for detection of presence or absence of a particular disease (e.g. cancer), the

overall accuracy is no use if it comes at the expense of mislabelling the presence cases as absence cases.

In marketing, one likely needs a model that is as accurate as possible, although it is not a life-and-death

issue, but it wastes large amounts of money and effort to market products to wrong groups. Regardless

of which performance metric was under consideration, the metrics showed poor performance (all be

below 35%) by both models on the balanced three-class problem. This was probably an indication of

more underlying issues which required further interventions. But, the analysis and the results were

sufficient for the basis of comparison of the two modelling techniques.

The two-class analysis on unbalanced data was extended to include logistic regression to ascertain

whether the results were due to normality assumptions. The problem was binary classification and

the data not normally distributed, conditions in which logistic regression usually triumphs over LDA.

So, had the logistic regression model performed poorer than the LDA model that would have suggested

some other underlying cause of the performance of LDA against SVM. The logistic regression accuracy

was at par with SVM and therefore also outperformed the LDA model. The multi-class analysis was

extended to the Iris dataset which satisfies some of the LDA assumptions. The LDA outperformed

SVM on the initial (default) configuration which showed there was a benefit in using LDA when the

assumptions are met. Further tuning and changing on model parameters of the SVM saw the SVM

outperforming LDA although these introduced instability in the SVM model.

51



Interpretability of the models was judged based on the model summary outputs from the respective

packages used, appendices B.1.5.1 and B.2.3.1 are outputs of the two and three classes SVM models

respectively, while appendices B.1.4.1 and B.2.4.1 are outputs for the LDA models. The LDA model

outputs give more insights into the data in terms of discriminant coefficients, and groups prior probab-

ilities and group means. This information can be easily mapped to equations (3.29) or (3.31) in order

to find a posterior probability of any arbitrary new observation with same features as the original

data. The outputs of the SVM models show the number of support vectors, SVM type and kernel

type used. It is difficult to interpret the SVM model compared to the LDA model based on the model

information output.

The results are consistent with the surveyed studies in Section 2.2.2 where SVM performance was

slightly better or below that of LDA depending on the kernels used in the SVM. There was a room

to explore the various kernels for the SVM in this research, as it was the case in some of the previous

studies surveyed. The linear kernel gave better results than the polynomial kernel, the equations for

the two kernels were shown in equations (3.38) and (3.39) . Varying the kernels can lead to heavy

fluctuations in performance, and can add extra complexity which sometimes may not necessarily

provide better performance as was also evident in Shao et al. (2015).

3.3.5.2 Conclusion

The SVM model outperformed the LDA model in both the two-class and three-class scenarios when

measured by accuracy. But, it fared poorly when measured by F-Measure on the minority classes for

the three-class problem. The case study again highlighted the necessity and usefulness of statistical

significance testing. The gain in performance of LDA when used in the data which obeyed normal-

ity assumptions was apparent, the opposite was also apparent when the assumptions were violated.

Through significance testing other questions about the data could be answered like homogeneity of

variance-covariance matrices which play a major role in volatility modelling. Cox (2001) also ac-

curately states that statisticians often have to respond to issues of causality and not just predictive

accuracy. This point was made even more clearer by the accuracy paradox which was caused by the

data imbalance problem on the three-class problem. There are a lot of causal questions that can be

answered through various statistical significance tests. It was clear again that significance testing is

not something that someone does while thinking what to do next as claimed by Mallows (2006), but

an essential part of data modelling. Another takeaway from the case study was that a data analyst

should not retrofit data to a modelling technique but choose the best technique based on the data

characteristics. It was clear that LDA performs better when its assumptions hold but SVM (even

logistic regression) should be applied when such assumptions are violated in classification problems.

3.4 K-Means versus Gaussian Mixture Models Case Study

3.4.1 Introduction

Cluster analysis is a form of unsupervised learning, again following the analogy in Hastie et al. (2001),

it is learning without a teacher. It tries to discover groups of homogeneous data points in the data,

but unlike in classification, the true group memberships have no prior labels, hence it is said to

be unsupervised. The principle is that the data points in the same group should be as similar as

possible while data points from different groups should be as a different as possible(Grün, 2018).
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Clustering mainly deals with structure detection in a data set, whether it be for data summarisation

and simplification or for discovering latent heterogeneous groups to reveal patterns and behaviour.

Since its nature is exploratory, the problem to be solved is usually not well defined. Grün (2018)

mentioned uncovering of interesting and useful patterns in the data as the objective but acknowledges

the difficulty of defining what is interesting and what is useful. The author further suggest that a

true cluster only depends on the context, and that given a data set there is no distinct clustering

solution but different aims would arrive at different clusters, therefore, a clustering solution should

be accompanied by clear statement of the aims. The domain experts are usually roped in defining

clustering requirements but as mentioned in Grün (2018), these experts are normally unable to make

meaningful contribution beforehand, only when some clustering has been performed.

Grün (2018) discussed clustering in terms of two broad categories, heuristic clustering and model

based clustering. Her study looked at various heuristic clustering methods as they relate to Gaussian

mixture models. The goal of this case study was to compare K-means clustering algorithm to GMM in

uncovering clusters of unlabelled retail data. The following subsections go into details of the theoretical

definitions of the models as well as experiment design.

3.4.2 Clustering Theoretical Framework

3.4.2.1 GMM Clustering

Mixture model cluster analysis is one of many forms of model based approach to cluster analysis. A

probability distribution is assumed to be the process that generated the data in each of the partitions

(clusters) of the observed data. The objective then is to separate data into clusters by estimating their

model parameters. The data as a whole is assumed to have been drawn from a model of a mixture of

k distributions with each distribution representing a cluster (Franzén, 2008).

In Lui (2010) a mixture model is defined as follows:

g(x) =

k∑
j=1

πjfj(x) (3.40)

where 0 ≤ πj ≤ 1,
∑k

j=1 πj = 1, j = 1, ..., k, k > 1. The g(.) is called a mixture density func-

tion, X is said to have a mixture distribution where π1, ...., πk are mixing coefficients or weights and

f1(x), ..., fk(x) are component densities of the mixture. If fi(.) is parametric with parameters θj not

known, then the model becomes

g(x|Ψ) =
K∑
j=1

πjfj(x|θj) (3.41)

where (Ψ) is a distinct collection of all parameters occurring in the mixture (Lui, 2010). The main

objective of the mixture model clustering is to estimate (Ψ).

In a GMM the data is assumed to be multi-modal and generated from a mixture of normal distribu-

tions. EM algorithm is a form of maximum likelihood estimation which is used when a closed form

solution cannot be found using the normal MLE. Do and Batzoglou (2008) go into a step by step

illustration of the EM with a numerical example using coin tosses, while Hastie et al. (2001) offer

comprehensive theoretical underpinnings of the GMM and EM. The following notes are an extract

from Bishop (2013) and provide a somewhat concise rational for the EM algorithm in a multivariate
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setting. The appendices (C.1.1), (C.1.2) and (C.1.3) are extracts from the notes of Bonakdarpour

(2016), and compliment Bishop (2013) but in a univariate setting.

The Gaussian mixture distribution for K mixture components can be written as

p(x) =
K∑
k=1

πkN(x|µk,Σk). (3.42)

The marginal distribution of z is expressed as

p(zk = 1) = πk. (3.43)

Let the vector z be a K-dimensional binary random variable having one-hot encoding (1-of-K) such

that if one element Zk has a value of 1, all the other elements have value of 0. That translates to

zk ∈ {0, 1} and
∑

k zk = 1. The variable z is not observed, and therefore it is called a latent variable.

Because of the one-hot encoding of z, its distribution can be written as

p(z) =
K∏
k=1

πzk
k , (3.44)

and the conditional distribution of x given specific value of z

p(z|zk = 1) = N(x|µk,Σk), (3.45)

and x given z

p(x|z) =
K∏
k=1

N(x|µk,Σk)
zk . (3.46)

Using equations (3.44) and (3.46) the marginal distribution of x is obtained by summing the joint

distribution over all possible states of z

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkN(x|µk,Σk). (3.47)

The representation of the marginal distribution of x as p(x) ensures that for every xn there is a

corresponding latent variable zn, for x1, . . . ,xN .

Another important expression in the formulation of the EM algorithm is of γ(zk) which represents

p(zk = 1|x) and it is derived by using Baye’s theorem,

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

(3.48)

=
πkN(x|µk,Σk)∑K
j=1 πjN(x|µj ,Σj)

(3.49)

πk is viewed as the prior probability of zk = 1, and the quantity γ(zk) as the posterior probability

when x is observed (Bishop, 2013).
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For a Gaussian mixture, the observations x1, . . . ,xN can be represented with an N × D matrix X

with the nth row being xTn with the corresponding N × K matrix Z having rows zTn . Assuming the

observations are independently drawn from the distribution, likelihood function is expressed as

ln p(X|π,µ,Σ) =
N∑

n=1

ln{
K∑
k=1

πkN(xn|µk,Σk)} (3.50)

(Bishop, 2013). Apart from the summation inside the log problem in equation (3.50), Bishop (2013)

discusses further other problems associated with the likelihood estimation in Gaussian mixture, such

as singularity (or singular covariance matrix) and identifiability. Appendices (C.1.1) and (C.1.2) show

maximum likelihood estimation in uni-variate setting, with the former being the closed form single

Gaussian and the latter being Gaussian mixture model likelihood estimation. Appendix (C.1.2) sheds

a bit more light on how equation (3.50) comes about.

In appendix (C.1.3) univariate likelihood estimates µ̂k, σ̂2 and π̂k are derived for a GMM, the deriva-

tions are analogous for the estimation of the multivariate counterparts in equation (3.50). Setting the

derivative of ln p(X|π,µ,Σ) with respect to µk equal to 0, the estimate works out as

µk =
1

Nk

N∑
n=1

γ(znk)xn (3.51)

with

Nk =

N∑
n=1

γ(znk), (3.52)

and Nk represents the number points allocated to the kth mixture component. Again setting the

derivative of ln p(X|π,µ,Σ) with respect to Σk equal to 0,

Σk =
1

Nk
γ(znk)(xn − µk)(xn − µk)

T , (3.53)

and finally, πk works out to

πk =
Nk

N
. (3.54)

The equations (3.53),(3.51) and (3.54) are not closed form expressions as they still depend on γ(znk)

which in turn depends on unknown variables. But it is clearer now if γ(znk) is known, the parameters

can be estimated and in turn if the parameters are known γ(znk) can be derived. EM algorithm uses

these variables in the following iterative steps:

1. Make initial guesses of µk, Σk and πk , compute the log-likelihood using these guess parameters.

2. Expectation-Step: Compute the posterior probabilities γ(znk) by equation (3.49) using the

values of µk,Σk and πk obtained in step 1.

3. Maximization-Step: Having γ(znk), estimate µk, Σk and πk using equations (3.53),(3.51) and

(3.54).

4. Compute the log-likelihood using these new parameters. Repeat steps 2 and 3 until convergence,

viz, until the change in the log-likelihood estimates is negligible.

Maximisation step is a soft assignment (soft clustering) of each observation to each mixture component
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according to the mixture component’s weight (probabilistic assignment). Each observation has a

probability of belonging to each mixture component, with one having higher probability than the

others. This notion is an important distinction between the model based clustering and heuristic

clustering and it comes through in next section on K-means. As mentioned earlier, the above is a

somewhat simplified rational for EM. Both Bonakdarpour (2016) and Hastie et al. (2001) went further

into more mathematically rigorous rational showing why the algorithm converges. They delve a bit

deeper into matrix algebra. Bishop (2013) also discussed the weaknesses and alternatives to the EM

algorithm.

3.4.2.2 K-means Clustering

In K-means clustering there is a known number of required clusters, K. The clusters are distinct and

non-overlapping. Each observation belongs to exactly one cluster. The main objective is that the

within cluster variation is as small as possible. This within cluster variation is usually measured as

a squared Euclidean distance (Hastie et al., 2013). The idea is that the within cluster data point

distances should be small compared to data point distances outside the cluster (Bishop, 2013). To

put it formally, assume a data set x1, . . . ,xN with N observations of a p−dimensional variable X. A

centroid, µk, is a p−dimensional vector where k = 1, . . . ,K correspond to the kth cluster, also referred

to as a cluster centre. The main objective of K-means is to minimise the distance between each data

point and its closest cluster centre. The variable rnk ∈ {0, 1} is used for cluster assignments, with

k = 1, . . . ,K, and rnk = 1 if xn is assigned to cluster k, and rnj = 0 for j ̸= k. The Euclidean distance

is given as

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2. (3.55)

J is referred to as dissimilarity measure and the objective is to minimise J . Such optimisation problem

is not solved directly since there are many ways in which n observations can be split into K subgroups,

Kn ways to be precise (Hastie et al., 2013). There are various K-means algorithms, the most common

being the one that uses the Euclidean squared distance as described above, and it is called Hartigan-

Wong algorithm (Kassambara, 2017). K-means algorithm’s tries to find values for rnk and µk such

that the Euclidean distance in (3.55) is minimised.

This is achieved by iteratively keeping rnk fixed, and solve for µk and vice versa. This is repeated

until there is no change in the value or some threshold number of iterations is reached.

Assigning rnk a value of 1 for any value of k that gives the minimium value of ||xn −µk||2, or simply

allocating the nth data point to the closest centroid can be expressed as

rnk =

{
1 if k = argminj ||xn − µj ||2

0 otherwise.
(3.56)

Fixing rnk and minimising for µk by setting the derivative of J equal to zero,

2

N∑
n=1

rnk(x− µk) = 0 (3.57)
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and therefore µk works out as

µk =

∑
n rnkxn∑
n rnk

, (3.58)

where
∑

n rnk is the number of points assigned to cluster k and µk is the mean of all data points xn

assigned to cluster k. The iteration steps are described as follows

3.4.2.2.1 The K-means algorithm Summary of the iteration steps as presented in Kassambara

(2017):

1. Choose the number of clusters k.

2. Randomly choose k objects (data points) from the data set to serve as cluster centers (centroids).

3. Cluster assignment step: Assign each of the remaining objects to the closest centroid, closest

according to the Euclidean distance between the object the centroid as in equation (3.56).

4. Centroid update step: Compute the new cluster centroids for each cluster,i.e, calculate p-

vector means of the data points in a cluster as in equation (3.58).

5. Repeat steps (3) and (4) until convergence, that is, until the centroids stop changing.

3.4.2.3 Similarities between EM and K-means algorithms

K-means’ cluster assignment step resembles EM’s expectation step while K-means’ centroid update

step resembles EM’s maximisation step. These differ in that K-means algorithm does hard assignments,

namely rnk ∈ {0, 1}, while EM makes soft assignments based on posterior probabilities. In fact, it is

shown by both Bishop (2013) and Hastie et al. (2001) that K-means is a particular limit of EM for

Gaussian mixtures. This is achieved by setting Σk = σ2I where σ2 is a constant variance and I an

identity matrix. That implies that the variance is constant throughout all the mixture components

and thus need not be estimated. It turns out, based on tail of behaviour of Gaussian distribution,

if σ2 → 0, the posterior probabilities γ(znk) in equation (3.49), turn to rnk (γ(znk) → rnk) which

results in a hard assignment in the EM algorithm as it is in the K-means algorithm. Based on the fact

K-means assume constant variability, equal weights as well as spherical clusters, Grün (2018) makes

an argument that the general perception that heuristic clustering impose less assumptions than the

model based counterparts is actually inaccurate.

3.4.3 Data Preprocessing

The Online Retail Data Set is available on UCI Machine Learning repository website. The dataset

is a transactional data for transactions which took place between 1st December 2010 and 9th December

2011 for an online retail business based in the United Kingdom. The dataset contains 541909 rows with

8 columns (number of attributes), and spans retail sales in 39 countries. The data was broken into

customer segments using a popular marketing technique called RFM analysis, the acronym stands

for Recency, Frequency and Monetary. Recency refers to how recent has a customer visited the

store, Frequency is how frequent has the customer visited the store, and Monetary refers how much

monetary value has the customer brought to the store. The process of breaking data into segments

is called segmentation analysis. Its main objective in this case was to pinpoint high and low value
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customers for targeted marketing. It can be noted that although there is a striking similarity between

segmentation analysis and clustering, there is a subtle difference. Segmentation analysis deals with

predefined group boundaries, for an example, a grouping may be according to a customer attribute

like age; young adult, middle age and older adult. The separation may be objective, informed by

historical behaviour or subjective, based on perceived behaviour. In cluster analysis on the other

hand, the boundaries are not know in advance, the aim of the analysis is to discover the boundaries

using an objective criteria like a data model or an algorithmic model. In the segmentation analysis

by customer age example, the marketing strategy would miscategorise the so called “old souls”, which

refers to individuals who behave like beyond their age. Also, some individuals who experience the

so called “mid-life crisis” are known to sometimes have buying patterns which are beneath their age.

Ideally, an objective clustering model should be able to pick up such exceptions. Of course, the example

is a bit trivialised in order to drive the point home. Segmentation analysis is bit more advanced and

objective than illustrated here.

Coffey (2016) presented an RFM analysis of the Online Retail Data Set using R. For this preprocessing

step that analysis served as a guideline. The analysis was restricted to one year worth of data and

only United Kingdom purchases were considered for analysis. Observations with missing values on

key attributes like customer IDs and invoice numbers were removed. This further reduced the data

under consideration to 3863 observations. Recency was calculated as the number of days that elapsed

since the last purchase by a customer as indicated by “InvoiceDate”. The reference date for recency

calculation was 9th December 2011. Frequency was calculated as the number of purchases by a

customer as indicated by the number of invoices in that year for that customer. Lastly, the monetary

value was measured as the total money spent by a customer in that year. A zero on the monetary value

indicates that the item was sold and later returned to the store by the customer. Log transformation

was applied as the variables were positively skewed. Since some of the monetary value had zero values,

0.1 was added to each value to avoid log of zero. Lastly, the three variables were standardised as z-

scores using R’s scale() function. The format of the original data is shown in Table 3.32. Numerous

R utility functions were used for the transformation which resulted in the format shown in Table

3.33. The z-score variables recency.z, frequency.z and monetary.z were used in all the subsequent

analysis.

Table 3.32: Top 6 data entries of original data

InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID Country

536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 12/1/2010 8:26 2.55 17850 United Kingdom
536365 71053 WHITE METAL LANTERN 6 12/1/2010 8:26 3.39 17850 United Kingdom
536365 84406B CREAM CUPID HEARTS COAT HANGER 8 12/1/2010 8:26 2.75 17850 United Kingdom
536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 12/1/2010 8:26 3.39 17850 United Kingdom
536365 84029E RED WOOLLY HOTTIE WHITE HEART 6 12/1/2010 8:26 3.39 17850 United Kingdom
536365 22752 SET 7 BABUSHKA NESTING BOXES 2 12/1/2010 8:26 7.65 17850 United Kingdom

Table 3.33: Top 5 data entries transformed variables

CustomerID recency frequency monetary recency.log frequency.log monetary.log recency.z frequency.z monetary.z

12346 326 1 0 5.786897381 0 -2.302585093 1.476973681 -1.041919353 -6.433370109
12747 3 10 3837.45 1.098612289 2.302585093 8.252589421 -1.950577446 1.5373188 1.306143017
12748 1 196 27214.9 0 5.278114659 10.21152357 -2.753760212 4.870354962 2.742518754
12749 4 5 3868.2 1.386294361 1.609437912 8.260570413 -1.740256403 0.76089075 1.311995028
12820 4 4 942.34 1.386294361 1.386294361 6.848472257 -1.740256403 0.510936747 0.27658323
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3.4.4 Data Analysis And Results

3.4.4.1 Analysis

The dataset features are plotted in Figure 3.12. Coffey (2016) alludes to the pareto principle which

states that “80% of results comes from 20% of causes”. In this dataset it worked out as 80% of

sales came from the top 29% of customers. The monetary value and frequency were chosen as a

key measurement, with the requirement being to track high-value/high-frequency and low-value/low-

frequency customers. Figure 3.12 shows the plots of these variables, Figure 3.12a shows the data in

the original scale which is hardly interpretable as the data seems condensed together in one area with

outliers (top 20%) and Figure 3.12b shows the log transformed variables which give some clarity. It is

clearer in Figure 3.12b that the high-value/high-frequency customers have lower recency, which means

they have been to the store on more recent days preceding 9th December 2011.
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Figure 3.12: Features Plots

3.4.4.2 Determining The Number Of Clusters

Determining the number of clusters is not an exact science. As stated in Everitt et al. (2011), some

procedures are often subjective and largely informed by user’s prior expectations. Everitt et al. (2011)

discusses several approaches to choosing the number of clusters one of which is the silhouette plot.

The silhouette coefficient ranges from -1 to +1. The value compares the separation of an object from

its cluster against the heterogeneity of the cluster (Everitt et al., 2011). It basically measures how

close is an object in a cluster to objects in the adjacent cluster. In other words, silhouette coefficient

measures how similar an observation is to its assigned cluster compared to other clusters. A value

close to +1 signifies that the object is “well-classified”. Likewise, a value close to -1 signifies that the

object is “miss-classified”. A value of zero shows a lack of clarity of whether the object is correct in the

assigned cluster or should have been assigned to an adjacent cluster. This means the highest possible

silhouette coefficient is preferred in choosing the number of clusters. Figure 3.13a shows the silhouette

average values against possible number of clusters. The values were plotted using ClusterR package.

The highest silhouette average corresponded to two clusters, but according to Fraley and Raftery

(1998), the number of clusters should be higher than the dimensions (three dimensions in this case) to

avoid having a non-singular variance-covariance matrix. The minimum needed here was four clusters.

The non-singular variance-covariance matrix requirement is important in the model based clustering

setting, EM algorithm even fails if the covariance matrix is singular (Fraley and Raftery, 1998). On

top of that technical reason for deviating from the two clusters as suggested by the silhouette plot,
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a more intuitive reason is that having only two clusters is not a meaningful subgrouping of the given

data. The next highest silhouette average corresponded to seven clusters with a silhouette average of

0.37. The silhouette average values were below 0.5 and Everitt et al. (2011) suggest that reasonable

classification values should be above 0.5. A value below 0.2 would have meant a substantial lack of

structure in the clusters.

The cluster number determination above is distance based and is more suitable for a heuristic clustering

method like K-means than the model based GMM clustering. For model based clustering, BIC is

employed. BIC is used to choose the number of components in a mixture as well as the underlying

densities of the components (Fraley and Raftery, 1998). Fraley and Raftery (1998) cover further

technical details of BIC. In a nutshell, BIC is an estimate function of a posterior probability of a

model being the true model, under Bayesian conditions, a lower BIC means a model is more likely

to be a true model. Other texts, like Fraley and Raftery (1998) and mclust22 R package invert the

sign for the BIC which means a larger BIC is preferred in such cases. The inversion of the sign is for

cosmetic reasons like a better interpretability of the plots. The ClusterR package was used to plot

the BIC values against possible number of clusters. The lowest BIC corresponded to seven clusters as

shown in Figure 3.13b.
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Figure 3.13: Plots for determining no. of clusters

NbClust package has 39 different indices for determining the number of clusters, the indices include

the silhouette average. The package runs through all of the indices and produce an output of proposed

number of clusters as suggested by the various indices. A decision is taken according to how many

clusters do the majority of indices propose. The majority of indices proposed seven clusters for the

data in this case study. The output is shown in Table C.1 of Appendix C.1.4. The package also outputs

the graphical determination of Hubert index and D index and their second differences, plotted against

possible number of clusters. The significant peak in the second differences plot signifies an optimal

number of clusters. The second differences plot had significant peaks on seven clusters as shown in

Figure C.1 of Appendix C.1.4.

22(Scrucca, 2021)
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3.4.4.3 Model Fitting

The function Mclust() from the mclust R package was used to fit the GMM. The function takes

the preprocessed data and an optional number of clusters as arguments (it works out the number of

clusters if not provided). The input for the number of clusters was seven as was worked out in the

previous section. The function uses the EM algorithm, and produces a wide range of mixture models

based on volume, shape and orientation. It chooses a mixture model that maximises the BIC as the

optimal model. The sign is inverted hence the maximisation of the BIC is preferred. The resulting

seven components mixture is variable, equal and variable (VEV). This means the clusters have an

ellipsoidal distribution with different volume, same shape and different orientation. The resulting

GMM model output is shown in Appendix C.1.5. Everitt et al. (2011) explains in detail the rational

behind the various model names available in mclust package.

Table 3.34: K-means Clusters

Cluster Monetary Frequecy Recency No. of Observations

1 223.47 1 233 846
2 838.70 3 10 538
3 0.00 1 110 20
4 773.44 3 86 816
5 2140.07 6 30 605
6 266.35 1 39 700
7 4706.14 13 5 338

Table 3.35: GMM-EM Clusters

Cluster Monetary Frequecy Recency No. of Observations

1 201.16 1 250 613
2 1353.56 7 22 566
3 2101.98 4 42 142
4 1375.71 5 24 637
5 1730.65 4 26 418
6 303.16 1 53 719
7 523.11 2 60 705

The kmeans() function from R core was used to fit K-means and the resulting model output is shown

in Table C.5 of Appendix C.2. The function takes the number of centroids K, which was seven as

worked out in the last section, and the preprocessed data as arguments. The clusters are shown in

Table 3.34 and Table 3.35. The numerical values in Table 3.34 and Table 3.35 are medians in the

original scale rather the means. This is because the data exhibits outliers and skewness and therefore

a median is a better measure of central tendency.

3.4.4.4 Results

This section presents the comparison in the form of cluster stability using bootstrapping, compactness

using distance measures and cluster visualisation. The focus is on cluster validity as opposed to

accuracy metrics because cluster analysis deals with unlabelled data and is exploratory in nature.

This is in contrast to the previous two case studies where the goal was prediction accuracy and

the data was labelled. The hold out sample in those two use cases enabled for quantification and

comparison of performance metrics but that is not possible with unlabelled data.
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3.4.4.4.1 Model validation using nonparametric bootstrapping

Statistical significance testing for model validation in cluster analysis is a disputable notion.

It is strongly argued in Institute (2017) that significance tests for testing cluster differences are not

valid. This is because the aim of clustering methods is to make the distances between the clusters

as large as possible (maximum separation) and this violates the usual assumptions of the statistical

significance tests. However, there are ongoing R projects trying to make significance testing possible

in cluster analysis. These are in the form of packages like sigclust, mixR and poLCA to mention

a few. Huang et al. (2015) is a vignette for sigclust, sigclust tests for statistical significance of

Gaussian mixtures but is limited to only two mixtures (two clusters). Xu (2016) is a vignette for the

CancerSubtypes package, the package contains a function sigclustTest() which is built on top of

sigclust package. The function extends the number of clusters but it requires an extra parameter

which is a vector of codes (some form of genetic coding) which would not be possible for the customer

data (financial data). The package mixR23 works for single variable data and the package poLCA24

is meant for latent class analysis on categorical observations. All of the above cluster statistical

significance testing packages were not explored in this research because their assumptions could not

be met by the customer data used for this case study.

Nonparametric bootstrapping is one of the alternative forms of cluster validation that can be con-

sidered given the challenges of statistical significance testing mentioned in the preceding paragraph.

Nonparametric here means the distribution is unknown and where it is known, the distribution para-

meters are not specified. Hinkley (1988) describes the ethos of bootstrapping as the simulation of

applicable statistical procedure with least model assumptions. One of the main goals of cluster val-

idation is establishing the presence of cluster stability, or lack thereof. In essence, a cluster should

not vanish if the data is slightly altered, otherwise such cluster would be considered unstable (Hennig,

2007). The basic idea behind nonparametric bootstrapping is that multiple samples are drawn from

observed data (resampling). The sample sizes of the bootstrap samples are the same as the size of the

observed data (original sample). The data points (observations) from the data are usually drawn with

replacement, which means that some observations can be repeated in each of the bootstrap samples.

This makes it possible to draw many samples from the data (replications).

Scrucca et al. (2016) go into detail of bootstrap CI’s implemented in the package mclust. In this

implementation, each sample is drawn and partitioned such that the partitions resemble the clusters

(Gaussian mixtures) of the original sample. Then various statistics are estimated from the bootstrap

clusters, the estimates are the same as the ones taken from the original clusters ( ˆMLE’s). CI’s of the

various estimates are constructed from the bootstrap distribution. If the CI’s contain the corresponding

ˆMLE, then it can be concluded that the corresponding clusters valid and not spurious. There are two

functions in mclust which are used in bootstrapping problems, namely mclustBootstrapLRT() and

MclustBootstrap(). The function mclustBootstrapLRT() is used to determine the optimal number of

Gaussian mixtures, it achieves that by resampling and computing likelihood ratio test25. It takes in

the data and the model name (the model name was ‘VEV’ in this case). The null hypothesis in such

test is H0 : G = G0, against the alternative H1 : G = G0 + 1, where G0 is the number of mixtures.

The function performs the test sequentially starting from G0 = 1, incrementing by one until the p-

23(Yu, 2021)
24(Linzer, 2014)
25Section 8.2.3.3 on Heckert et al. (2002) provides more details of likelihood ratio test (LRT).
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value is not statistically significant. If the p-value is not significant when G0 = 1, that means the

data is homogeneous and there is no scope for GMM (but it does not rule out other forms of cluster

analysis). Table C.3 shows the results of the mclustBootstrapLRT(), the table shows 7 as the number

of optimal clusters, this is equal to the number of clusters that were computed in Section 3.4.4.2.

The function MclustBootstrap() is used for bootstrap inference and it implements the computation of

bootstrap CI’s. It takes the actual fitted model object, the number of replications and resampling type

(with options being; nonparametric bootstrap, parametric bootstrap, weighted likelihood bootstrap,

and jacknife). Table C.4 shows the results of the nonparametric bootstrap CI’s computation. The

function computes intervals for the means, variance and mixing proportions. The table only shows the

results of the means and mixing proportions at 95% level of confidence. The estimates of the means

and mixing proportions (MLE’s) in Table C.2 fall inside the corresponding CI’s in Table C.4. This is

an indication of valid clusters for the GMM. Figures C.3 illustrates the bootstrap CI’s for the mixing

proportions in the form of histograms. The dotted lines are the corresponding ˆMLE’s, it can be seen

that all the dotted lines are inside the histograms.

The cluster validation for the k-means was also performed using nonparametric bootstrapping. The

function clusterboot() from fpc26 package performs bootstrapping on Jaccard coefficient. This coeffi-

cient measures the degree of similarity between two sets (clusters in this case study). The coefficient

ranges from 0 to 1 (or 0% - 100%), and the higher its value the higher is the degree of similarity.

Basically, the Jaccard coefficients of the original clusters to the most similar clusters on the bootstrap

resamples are calculated and averaged, the averages (means) then represent the degree of similarity.

Clusters with higher degree of similarity are deemed to be more stable. Hennig (2007) goes into more

technical details of Jaccard coefficient bootstrapping. Table C.6 shows the resulting means of Jaccard

coefficient. The lowest mean value is 0.8658098 on cluster 4, which indicates a high degree of stability

in all the clusters. The table also shows other statistics. The value of ’dissolved cluster’ shows how

many times the clusters from bootstrapping were dissolved, a low value is preferred. A cluster is

dissolved if the mean Jaccard coefficient from bootstrap samples is less than or equal to 1
2 (Hennig,

2007). Again cluster 4 is the only cluster that had corresponding clusters dissolved, even though this

happened only twice. This dissolution corresponds to cluster 4 having the lowest Jaccard bootstrap

mean. But, overall the bootstrapping results indicate valid and stable clusters for the K-means.

A direct comparison of model stability between the two clustering techniques is not possible since

GMM is model based and K-means is heuristic. And, the validation used different bootstrapping

paradigms with bootstrap CI’s being used for GMM and Jaccard coefficient bootstrapping being used

for K-means. Bootstrapping helped establish that the clusters in the data were not due chance but

statistically sound clusters.

3.4.4.4.2 Cluster distance measures

The cluster.stats() function from fpc package computes some of the well known cluster val-

idation indices like Dunn Index (DI) and the silhouette coefficient. The function takes a minimum of

two arguments, the pre-processed data and the clustering matrix.

Dunn’s index tests for compactness of the clusters, compact clusters is when the variance between

cluster members is small, and the distance between the cluster means is adequately large. A higher

26(Hennig, 2020)
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Table 3.36: Cluster Distance Measures

K-means (7) GMM-EM(7)

Av silhouette index 0.3202 0.0733
Dunn’s Index 1.1120 0.2302
Within SS 2314.8220 5712.7730

value of Dunn’s index shows better clustering. A higher value of the silhouette index shows that the

observation is well matched to its cluster compared to other clusters. Another metric noted from the

output of cluster.stats() function is the within cluster sum of squares which also tests compactness

of the clusters, a lower value indicates compact clusters. Table 3.36 shows the validation metrics for

the two models, K-means outperformed GMM in all three metrics. Section 2.2.3 reflected on a study

by Baid et al. (2016) where K-means, GMM and Fuzzy C-means were compared. Fuzzy C-means

have similarities to both GMM and K-means. Similar to K-means in that they are both heuristic and

follow almost similar training algorithm, and similar to GMM in that they both do soft clustering.

The case study was extended by fitting the fuzzy C-mean model to the data. The results are shown in

Appendix C.3.1. It had a silhouette average of 0.2980, a Dunn’s index of 1.1475 and a within sum of

squares value of 2666.221. This meant that the fuzzy C-mean model outperformed the GMM but fell

below the performance of K-means. This is in contrast to the findings of Baid et al. (2016) in which

fuzzy C-means outperformed the two models.

3.4.4.4.3 Visualisation

Visualisation is another useful tool in cluster validation. Figures 3.14 and 3.15 show the

visual representation of the clusters for both K-means and GMM. There does not seem to be clear

partitions in both visual representations. This goes along with what was seen in the silhouette

plot in Figure 3.13a. The plot values were all below 0.5 which indicated a lack of distinct clusters.

Figure 3.14 shows that K-means did a better job separating hig-value/high-frequency in cluster 7,

and low-value/low-frequency in cluster 3. There is a lot of overlapping between the other remaining

clusters 1,2 and 4. Table 3.34 also shows that K-means correctly partitioned the zero valued monetary

group as a separate cluster, which is a group that would have bought and returned items. Such a

cluster gives an important signal on the data. The marketing team could dig further into the items

to find out whether there was a pattern on the returns. For example, if the returns were on the same

item or brand, that could indicate compromised quality or defects. The GMM model missed this

signal on the data. Figure C.2 of Appendix C.1.5 shows the rest of the pairwise cluster classification

plots from mclust package.

The code listing for the cluster analysis in this case study is in Appendix C.4.

3.4.5 Discussion and Conclusion

3.4.5.1 Discussion

Nonparametric bootstrapping gave confidence that partitioning the data using the two clustering

techniques considered in this case study gives valid and stable clusters. Although that was an essential

technical question to answer, it did not give further information in terms of cluster ‘performance’.

Distance measures were looked to gauge if any performance metrics could be extracted from the
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Figure 3.14: K-means clusters
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Figure 3.15: GMM-EM clusters

clustering solutions.

There is a lack of consensus on whether it is correct to use silhouette coefficient in validating a Gaussian

mixture which is not a centroid based algorithm, and even generally, whether it is correct to use any

distance based measurement in validating a soft clustering model like GMM. For a likelihood model
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like GMM, a good performance metric would have been a BIC, but K-means is a heuristic algorithm

with no likelihood function, so a BIC would not have been an ideal indicator 27. There are other

techniques where clustering solutions are better compared, like synthesisation and simulation carried

out in Baid et al. (2016) and pre-labelling of data as performed in Bi et al. (2005). These techniques

do give better comparison metrics but also do change the problem to a classification problem, and the

classification problem was dealt with in the classification case study.

The data visualisation of the clusters seems to have captured the essence of performance differences

adequately. It would have been a tough task to convince a domain expert (or business executive) had

the performance metrics given a different story. K-means algorithm was a somewhat better clustering

solution for the given problem compared to GMM. As it was noted, both models performed relatively

poorly in creating distinct partitions(clusters), and this could be due to numerous reasons. One could

be that the data was not suitable for the clustering problem, that is, there was no way that the data

could be separated into more distinct partitions that was already achieved. But establishing such

fact with certainty requires quite deeper and intimate knowledge of the process that produced the

data. Also, probably having more knowledge of the domain of application, marketing in this case,

would have resulted in a better fine tuned pre-processing step in preparing the data for the clustering

problem. Usually, domain knowledge experts are roped in and participate in an iterative process in

order to produce the best possible clustering solution as mentioned in Grün (2018).

The choice of a clustering model can also be questionable given the lacklustre performance of the

two clustering models. The bootstrapping model validation gave a level of comfort that the data

was separable given the cluster stability achieved for both models. But, there are still many more

clustering techniques that were not tried in the study. For instance, there are numerous variants of

K-means, each trying to improve a certain aspect of the algorithm. Baid et al. (2016) explored fuzzy

C-means and Zhang et al. (1999) looked at the performance of KHM as discussed earlier. A fuzzy

C-means model was also fitted to the data in this case study and did not improve on the performance

of K-means but outperformed GMM. K-means algorithm was used in this research because it is a de

facto heuristic clustering technique in the machine learning world and it is relatively easy to follow

its theoretical basis. And, there are many other clustering techniques which are founded on K-means.

K-means also has a wide range and well tested software tools and packages compared to its variants

which still have to mature in that respect. The algorithm has enjoyed success in a wide range of

applications, Coates and Ng (2012) go through some ingredients and tricks to get the best out of K-

means with a focus on image processing. Similar arguments could be made for the GMM, other model

based techniques could have been explored but the mathematics in the GMM is quite tractable and

not too demanding on computation resources and generally performs well. It was stated earlier that

clustering is unsupervised learning and is exploratory in nature and usually has no accuracy metrics.

But the collaboration with domain experts should give clarity to cluster analysis goals which should

lead to better model choice for meaningful clusters.

3.4.5.2 Conclusion

The K-means model performed relatively better than the GMM model although both models did not

do a good job in creating distinct partitions. Better in this context is confined to the definition of

the problem, which was to partition frequency and monetary value with the aim of discovering high-

27Although there are some who calculate BIC for K-means.
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value/high-frequency customers as well as low-value/low-frequency customers and everything else in

between. K-means managed to uncover an interesting and useful pattern in the data by creating

a cluster consisting of only zero monetary value customers which are customers that bought and

returned items. Clustering is exploratory in nature therefore the initial clustering solution is usually

not necessarily the final solution. The preceding section mentioned the role that domain experts

play in an iterative process to refine the clustering solution. In instances where it becomes clear

that the clusters would be spherical in nature with no overlaps, and having a constant variance, a

K-means algorithms could be fitted. If the nature of the clusters are likely to have overlaps with

varying variance between clusters and oblong shapes, a GMM model could be fitted. There are other

clustering strategies that could be employed other than the two mentioned in this research. The big

takeaway from this part of the research was that there is no one size fits all model when it comes data

analysis. Different environments produce different kinds of problems which require different kinds of

solutions.
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Chapter 4

Conclusion and Recommendations

The aim of the study was to empirically compare statistical data modelling and machine learning in

terms of rationale, model parsimony as well as predictive accuracy. Each of the three case studies

focused on different data analysis problems in the form of prediction, classification and clustering.

Prediction comparison was performed using a GARCH model for statistical data modelling, and an

ANN model was used for machine learning. For classification an LDA model was compared to an

SVM model, and for clustering a GMM model was compared to a K-means model. It was noted that

classification is also a form of predictive modelling, but the term prediction was exclusively reserved

for the prediction of a continuous quantitative value.

Machine learning algorithms generally performed marginally better than statistical data models in the

case studies but were more difficult to interpret. The findings in this research can be summarised by

the following three bullet points:

• There is so much that rides on statistical significance testing.

• There are some statistical analysis techniques which are required for even machine learning

algorithms.

• Understanding the domain problem is essential in choosing an appropriate model.

To proceed with volatility modelling in the prediction case study, a few assumptions needed to be

tested to ensure EMH was obeyed. The tests included stationarity and serial correlation, and these

were statistical significance tests. Testing for EMH was a prerequisite whether the model in question

was a machine learning algorithm or a statistical data model. This points to a central role that

significance testing plays in econometrics. This is in contrast to the remarks of Marton Wilk in

Mallows (2006). Clearly, significance testing is not something that is done to pass time when it comes

to EMH. Wilk’s lambda test of no group separability was performed in the classification case study.

For the two-class problem, the null hypothesis was rejected which meant there was evidence of group

separability. This group separability showed in both the LDA and the SVM models as the correct

classification percentages were relatively higher in the confusion matrix. When the null hypothesis

was accepted in the three-class problem, the classification percentages dropped for both models. This

indicated that before applying even a machine learning algorithm like SVM, there is something to gain

in executing such a significance test. Yes, significance testing may have been misused in some corners

as alluded to by Johnson (1999). This is to be expected as many disciplines outside statistics have
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long embraced statistical methods for their data analysis and research initiatives. This is indicative

of the success that statistics as a subject has enjoyed over the years. It is a tool used in the arts,

natural sciences and social sciences and in many walks of life. In this respect, statistics is a victim

of its own success. It is up to the statisticians to clarify these misconceptions by making the subject

more accessible, and take it out of the university departments. Almost every second blog on the

internet is dedicated to some form of machine learning algorithm, such visibility gives machine learning

disproportionate voice amongst captains of industries and to the man on the street. To compete in

that space, there should be a concerted effort to disseminate statistical thinking to society. If someone

searches for “regression analysis” in the internet, the information that should come up should be

the ordinary least squares regression instead of a gradient descent regression or some other machine

learning regression. Statisticians should be at the forefront of statistical thinking in all spheres of life

instead of relying on people who are not trained in statistics explaining things that only statisticians

can know. Postgraduate students could be encouraged in this regard, by having the quality of their

internet presence examined as part of their formal study and not only focus on journal articles. This

can also be a requirement for academic advancements such a professorships and so on. As Chambers

(1993) warned, if the statisticians remain aloof, society will lose on the mental qualities that they

provide. Unfortunately the loss will not only be to society but statistics itself will lose on the race for

relevance and also as Hand (2000) noted, lose on much needed research funding.

In a tweet1, François Collet, an AI researcher and author wrote :“Neural networks are a sad misnomer.

They are neither neural nor even networks. They are chains of differentiable, parametrized geomet-

ric functions, trained in gradient descent (with gradients obtained via chain rule). A small set of

highschool-level ideas put together”. Of course this was a tongue in cheek comment which somewhat

had a lot of truth in it. The idea here is that most machine learning algorithms are a series of simple

mathematical ideas that are well marketed, and they are generally effective and if used responsibly,

they can benefit society. Statistical significance testing is not state of the art statistical idea either.

But, it was shown in both the prediction and classification problems in this research that such an

elementary statistical concept plays a big role in data modelling. How many analysts are currently

missing out on such elementary and yet powerful statistical ideas in the data analysis arena? If these

algorithms are simple mathematical ideas, then statisticians should step in to induce statistical ideas

into the mix. Some of the prior studies explored in Section 2.2.1 like Donaldson and Kamstra (1997)

and Yim (2002) show that there is an active research taking place around hybrid models, which make

use of both statistical data models and machine learning algorithms. Statisticians should form part of

such initiatives to give guidance and statistical way of thinking. Another effective way of disseminating

statistical thinking is through rapid developments in statistical computing. Computing is central to

4IR. In the development of S programming language2, John Chambers is quoted to having said the

objective was, “to turn ideas into software, quickly and faithfully”. That was back in 1976, that quote

could not be more relevant now in this race for relevance in the face of 4IR. Statisticians need to take

advantage of the popularity of R programming language3 by peer reviewing packages and even better

developing new packages. R programming was used for all the problems in this research.

The clustering solutions for both models needed further refining, a step that is usually performed with

the input from domain experts (Grün, 2018). Almost all statistical problems in practice require input

1https://twitter.com/fchollet/status/951906139632840704
2https://en.wikipedia.org/wiki/S_(programming_language)
3https://en.wikipedia.org/wiki/R_(programming_language)
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from those with domain knowledge, but since clustering is exploratory in nature, the domain knowledge

becomes crucial for a clustering solution. For an example to progress with the clustering problem in

this research, FRM analysis as illustrated by Coffey (2016) was required. In another domain, or had

the problem been phrased differently in the same domain (marketing), probably a different pre-analysis

step to shape the same data would have been required. It was also shown in the volatility prediction

problem that in order to proceed with any modelling EMH needed to be satisfied. This is why there

are many fields of application within statistics like biostatistics, econometrics, statistical physics and

many others. These sub-fields or specialisations have contributed a great deal to the development of

statistics as a subject. Sir R. A. Fisher mentioned in this research as one of the main drivers behind

giving statistics a mathematical character was also a geneticist. His contribution to statistics came

while working as a geneticist, introduced analysis of variance (ANOVA) in the design and analysis

of experiments and had immense contribution in the development of maximum likelihood estimation.

While domain specialization within statistics is a good thing, another view is that the subject should

be abstracted from application, like in the tool-maker and carpenter analogy in Mallows (2006). It

is an individual’s decision to make in deciding whether to go a domain specialisation route or the

route of abstraction from the domain so that they can apply statistical knowledge to a wide range of

subjects. But, the bottom line is, thorough understanding of the domain problem at hand is necessary

for modelling whether one is doing statistical data modelling or machine learning.

Just like Bzdok et al. (2018) concluded, the boundary line between statistical modelling and machine

learning is becoming blurred with overlaps between these disciplines increasing by day. In this research

bootstrapping was applied in both K-means and GMM. In fact, GMM itself is implemented through

an algorithm (EM) even though it is a mixture of parametric models. This makes it difficult to draw

a clear line of distinction between the two disciplines. Probably the following considerations might

serve as guidelines in deciding which one to use in data analysis:

• If the quantitative measure of uncertainty is critical for the analysis, a statistical model would

likely be a better choice.

• If the data generating process is well known and can be related to existing (biological) knowledge

(Bzdok et al., 2018), a statistical model would probably be a better choice.

• If prediction accuracy is the ultimate goal, a machine learning algorithm will likely be a better

choice.

• If the data is wide and short (more columns than rows)(Nongxa, 2017), a machine learning

algorithm would likely be a better choice .

• If the data is from uncontrolled experimental design with complicated linear interactions (Bzdok

et al., 2018), a machine learning algorithm would likely be a better choice .

Of course there are probably many more other considerations that might help in arriving at a correct

decision. Prediction accuracy and quantification of uncertainty are not necessarily mutually exclusive,

in many situations these would be both critical. Such situation would probably be served with hybrid

models.

In this research the hold-out method was used for cross validation in the prediction and classification

(supervised learning) use cases. Although the splitting of the data was randomised, this method is a

bit limiting because the testing was done on one sample and this may introduce a bias. Bootstrapping
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was employed in cluster validation, but bootstrapping can also be employed in cross validation of

performance in the prediction problems. In such validation, the hold-out sample is bootstrapped

resulting in many more samples upon to test model adequacy. Tsamardinos et al. (2018) present their

own flavour called Bootstrap Bias Corrected Cross Validation. Future work should focus on bootstrap

cross validation in evaluating performance in this kind of comparative research.

Davison and Hinkley (1997) describe bootstrapping as harnessing the computer to obtain reliable

standard errors, CI’s and other measures. And, it was noted in this research that a more popular

and “superior” Keras framework for neural networks was dropped in favour of a lightweight and

probably “inferior” package due to memory and other infrastructure requirements. So, the underlying

infrastructure whether one is bootstrapping or running an algorithm plays a role. Future studies could

also focus on quantifying how much of a role does the underlying infrastructure play in optimising

such computationally intensive strategies.
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Appendix A

Prediction Case Study Appendices

A.1 Analysis Results

Table A.1: Ljung Box Test

Lag Order X-squared p-value

ALSI Prices 13 32028 2.2e-16
Log Returns 13 18.461 0.1408
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A.2 Mean equation models

Table A.2: ARMA models of the log return series

ARIMA(2,0,2) with non-zero mean

Coefficients:

ar1 ar2 ma1 ma2 mean
0.2033 0.5857 -0.2125 -0.6423 4e-04

s.e. 0.3141 0.2922 0.3044 0.2901 1e-04

sigma2 ≈ 0.0001011 log likelihood=7993.12
AIC=-15974.25 AICc=-15974.21 BIC=-15939.27

ARIMA(2,0,1) with non-zero mean

Coefficients:

ar1 ar2 ma1 mean
0.8892 -0.0295 -0.9019 4e-04

s.e. 0.0598 0.0220 0.0568 1e-04

sigma2 ≈ 0.0001013 log likelihood=7988.63
AIC=-15973.77 AICc=-15973.75 BIC=-15944.63
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A.3 GARCH Model Fitting

A.3.1 Fitted RealGARCH Models
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Table A.3: ARMA(2,2)-RealGARCH(1,1)

Conditional Variance Dynamics

GARCH Model : RealGARCH(2,1)
Mean Model : ARFIMA(1,0,1)
Distribution : norm

Optimal Parameters

Estimate Std. Error t value p-value

mu -0.000356 0.000348 -1.0249e+00 0.30540
mu -0.000343 0.000374 -0.916430 0.35944
ar1 0.089206 0.658303 0.135509 0.89221
ar2 0.639833 0.557354 1. 147983 0.25098
ma1 0.053388 0.661829 0. 080667 0.93571
ma2 -0.538225 0. -1.146050 0.25178
omega -9.000000 0.180421 -49.883288 0.00000
alpha1 0.825307 0.021646 38.126790 0.00000
beta1 0.004935 0.019534 0.252631 0.80055
eta11 -0.004545 0.005916 -0.768278 0.44232
eta21 0.098825 0.003769 26.223372 0.00000
delta 1.023950 0.025928 39.492349 0.00000
lambda 0.223681 0.003246 68.902819 0.00000
xi 9.225523 0.242812 37.994462 0.00000

LogLikelihood : 8228.213

Information Criteria

Akaike -6.5304
Bayes -6.5003
Shibata -6.5304
Hannan-Quinn -6.5194

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lag[1] 17.38 3.056e-05
Lag[2*(p+q)+(p+q)-1][8] 59.12 0.000e+00
Lag[4*(p+q)+(p+q)-1][14] 65.41 0.000e+00

Weighted Ljung-Box Test on Standardized Squared Residuals
statistic p-value

Lag[1] 0.0688 0.793098
Lag[2*(p+q)+(p+q)-1][5] 1.6678 0.698634
Lag[4*(p+q)+(p+q)-1][9] 14.7697 0.004065

Weighted ARCH LM Tests

Statistic Shape Scale P-Value
ARCH Lag[3] 0.9286 0.500 2.000 0.33523
ARCH Lag[5] 2.5355 1.440 1.667 0.36460
ARCH Lag[8] 12.4681 2.315 1.543 0.00479

Sign Bias Test

t-value p-value
Sign Bias 0.2245 0.8223623
Negative Sign Bias 1.9131 0.0558529
Positive Sign Bias 1.7303 0.0837031
Joint Effect 17.3865 0.0005885
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Table A.4: ARMA(2,1)-RealGARCH(2,1)

Conditional Variance Dynamics

GARCH Model : RealGARCH(2,1)
Mean Model : ARFIMA(2,0,1)
Distribution : norm

Optimal Parameters

Estimate Std. Error t value p-value

mu -0.000324 0.000365 -0.88693 0.375117
ar1 0.783942 0.051570 15.20145 0.000000
ar2 0.035152 0.022402 1.56913 0.116619
ma1 -0.661830 0.047314 -13.98808 0.000000
omega -9.000000 2.923095 -3.07893 0.002077
alpha1 0.826682 0.022172 37.28482 0.000000
alpha2 0.000000 0.280192 0.00000 1.000000
beta1 0.004633 0.323516 0.01432 0.988575
eta11 -0.004047 0.005910 -0.68473 0.493513
eta21 0.098955 0.003769 26.25830 0.000000
delta 1.022756 0.026588 38.46701 0.000000
lambda 0.223307 0.003241 68.89355 0.000000
xi 9.211925 0.249117 36.97830 0.000000

LogLikelihood : 8229.218

Information Criteria

Akaike -6.5312
Bayes -6.5010
Shibata -6.5312
Hannan-Quinn -
6.5202

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lag[1] 10.51 0.001189
Lag[2*(p+q)+(p+q)-1][8] 59.51 0.000000
Lag[4*(p+q)+(p+q)-1][14] 66.05 0.000000

Weighted Ljung-Box Test on Standardized Squared Residuals
statistic p-value

Lag[1] 0.01574 9.002e-01
Lag[2*(p+q)+(p+q)-1][8] 9.95862 3.551e-02
Lag[4*(p+q)+(p+q)-1][14] 33.12502 1.290e-06

Weighted ARCH LM Tests

statistic Shape Scale p-value
ARCH Lag[4] 0.6777 0.500 2.000 4.104e-01
ARCH Lag[6] 8.3063 1.461 1.711 1.981e-02
ARCH Lag[8] 21.1899 2.368 1.583 4.869e-05

Sign Bias Test

t-value p-value
Sign Bias 0.263 0.792582
Negative Sign Bias 1.703 0.088706
Positive Sign Bias 1.716 0.086295
Joint Effect 15.745 0.001279
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Table A.5: ARMA(2,2)-eGARCH(2,2)

Conditional Variance Dynamics

GARCH Model : eGARCH(2,2)
Mean Model : ARFIMA(2,0,2)
Distribution : norm

Optimal Parameters

Estimate Std. Error t value p-value

mu 0.000193 0.000180 1.07232 0.283574
ar1 -0.096020 0.039756 -2.41521 0.015726
ar2 0.119362 0.078732 1.51605 0.129507
ma1 0.113163 0.039798 2.84342 0.004463
ma2 -0.184576 0.078276 -2.35802 0.018373
omega -0.233986 0.012600 -18.57000 0.000000
alpha1 -0.245109 0.026466 -9.26113 0.000000
alpha2 0.099027 0.027319 3.62483 0.000289
beta1 0.596626 0.000163 3664.48882 0.000000
beta2 0.378245 0.001725 219.30596 0.000000
gamma1 0.012897 0.039418 0.32719 0.743527
gamma2 0.144076 0.039519 3.64571 0.000267

LogLikelihood : 8242.709

Information Criteria

Akaike -6.5427
Bayes -6.5149
Shibata -6.5427
Hannan-Quinn -6.5326

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lag[1] 0.00859 0.9262
Lag[2*(p+q)+(p+q)-1][8] 2.31959 1.0000
Lag[4*(p+q)+(p+q)-1][14] 6.19328 0.9624

Weighted Ljung-Box Test on Standardized Squared Residuals
statistic p-value

Lag[1] 0.09706 0.7554
Lag[2*(p+q)+(p+q)-1][8] 7.50949 0.2604
Lag[4*(p+q)+(p+q)-1][14] 13.26248 0.1784

Weighted ARCH LM Tests

statistic Shape Scale p-value
ARCH Lag[4] 0.6638 0.500 2.000 0.41521
ARCH Lag[6] 4.9378 1.473 1.746 0.12502
ARCH Lag[8] 10.7427 2.402 1.619 0.01834

Sign Bias Test

t-value p-value
Sign Bias 0.8023 0.4224
Negative Sign Bias 1.0068 0.3141
Positive Sign Bias 0.1961 0.8445
Joint Effect 1.1102 0.7746
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A.4 ANN model Fitting

A.4.1 No of hidden layer neurons vs Performance

Table A.6: No of hidden layer neurons vs Performance

Hidden layer neurons 3 4 5 6 7 8 9 10

MAE 0.14504355 0.14660644 0.1451221 0.14651724 0.14463381 0.14534083 0.14467150 0.14377992
MSE 0.04811708 0.04769322 0.0475964 0.04670646 0.04688395 0.04833844 0.04694797 0.04782738

A.4.1.1 ANN Fitted Model Output

Table A.7: Ouput Of ANN fitted model from neuralnet R package

Length Class Mode

call 5 -none- call
response 1758 -none- numeric
covariate 3516 -none- numeric
model.list 2 -none- list
err.fct 1 -none- function
act.fct 1 -none- function
linear.output 1 -none- logical
data 3 data.frame list
exclude 0 -none- NULL
net.result 1 -none- list
weights 1 -none- list
generalized.weights 1 -none- list
startweights 1 -none- list
result.matrix 28 -none- numeric
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A.5 GARCH and ANN Code Listings

A.5.1 GARCH Code Listing

library(rugarch)

library(xts)

library(forecast)

library(fUnitRoots)

library(FinTS)

library(fBasics)

library(nortest)

library(tsoutliers)

data <-read.csv(file="stock_prices3.csv", header=TRUE, sep=",")

manual_vol = read.csv(file="manual_vol3.csv", header=TRUE, sep=",")

date = as.Date(data$index)

xts_prices = xts(data$value,as.Date(data$index))

jse_data = xts(data$value,date)

returns = na.omit(diff(log(jse_data), 1))

vol = rollapplyr(returns, 5, sd, fill = NA)*100

#xts_vol = xts(manual_vol$value,as.Date(manual_vol$index))

basicStats(xts_prices)

basicStats(returns)

adfTest(coredata(xts_prices))

adfTest(coredata(returns))

#Shapiro-Wilk Normality Test

shapiro.test(coredata(returns))

shapiro.test(coredata(xts_prices))

#Anderson-Darling test for Normality

ad.test(coredata(returns))

ad.test(coredata(xts_prices))

#Jarque-Bera Test for Normality

jarque.bera.test(xts_prices)

jarque.bera.test(returns)

Box.test(returns, type="Ljung-Box", lag = 13)

Box.test(xts_prices, type="Ljung-Box", lag = 13)

xts_vol = xts(coredata(vol),as.Date(index(vol)))

value = coredata(xts_vol)

index = index(xts_vol)

xts_vol = xts(value,as.Date(index))

N = nrow(xts_vol)

n = round(N *0.7, digits = 0)

train_vol = xts_vol[1:n, ]

test_vol = xts_vol[(n+1):N, ]

#length(test)

N = nrow(returns)

n = round(N *0.7, digits = 0)

train_returns = returns[1:n, ]

test_returns = returns[(n+1):N, ]

xts_vol[is.na(xts_vol)] <- 1.895584

test_data = coredata(test)

87



auto.arima(returns)

model=ugarchspec (

mean.model = list(armaOrder = c(2,2), include.mean = TRUE), variance.model = list(model =

↪→ ’realGARCH’, garchOrder = c(2,1))

)

count = 0

MAE_ = 0

RMSE_ = 0

for(i in 1:10){

N = nrow(xts_vol)

n = round(N *0.7, digits = 0)

train = xts_vol[1:n, ]

test = xts_vol[(n+1):N, ]

#length(test)

test_data = coredata(test)

# par(mfrow=c(1,2))

plot(as.vector(t(as.matrix(test_data))), col = ’red’, type=’l’, main = "realGARCH:␣Actual␣

↪→ vs␣predicted:␣testing␣set", ylab = "Y,Yp")

lines(as.vector(t(as.matrix(modelroll@forecast$density$RVolForecast))), type = ’l’, col = ’

↪→ blue’)

legend("topright", c("Predicted", "Actual"), col = c("blue","red"), lty = c(1,1), lwd = c(1

↪→ ,1))

modelroll <- ugarchroll (

spec=model, data=returns, n.ahead = 1, forecast.length = 755, n.start = NULL, refit.every

↪→ = 50, refit.window = c("recursive"),

window.size = NULL, solver = "hybrid", fit.control = list(scale=1), solver.control = list

↪→ (), calculate.VaR = FALSE, VaR.alpha = c(0.01,0.05),

cluster = NULL, keep.coef = TRUE,realizedVol = xts_vol

)

MAE_ <- MAE_ + mean(abs(test_vol-modelroll@forecast$density$RVolForecast))

RMSE_ <- RMSE_ + sqrt(mean((test_vol - modelroll@forecast$density$RVolForecast)^2))

out <- paste0(MAE_,",",RMSE_,",", i, ".") # Some output

print(out)

}

MAE = MAE_/10

RMSE = RMSE_ /10

A <- matrix(c(MAE,RMSE),nrow=2,ncol = 1,byrow = TRUE)

dimnames(A) <- list( c("MAE", "RMSE"), c("realGARCH"))

A
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A.5.2 ANN R Code Listing

library(tidyquant) # Loads tidyverse, tidquant, financial pkgs, xts/zoo

library(roll)

require(zoo)

library(neuralnet)

rm(list=ls())

require(rnn)

set.seed(10)

data <-read.csv(file="stock_prices3.csv", header=TRUE, sep=",")

#used for only extracting datetimes after rollarpply()

manual_vol = read.csv(file="manual_vol3.csv", header=TRUE, sep=",")

dates = as.Date(data$index,format = "%Y-%m-%d")

value = data$value

merged = cbind.data.frame(dates,value)

xts_data = xts(merged$value,merged$dates)

r = na.omit(diff(log(xts_data), 1))

# 5 day rolling standard deviation

vol = rollapplyr(r, 5, sd, fill = NA)*100

xts_vol = xts(vol,as.Date(manual_vol$index))

xts_vol = na.omit(xts_vol)

vol2 <-volatility(xts_data,n=5, calc = "close", N = 252,mean0=TRUE)

av_vol = mean(coredata(vol2[10:N]))

vol2 = na.fill(vol2,fill = av_vol)

vol_values <- coredata(vol2)

dates <- index(vol2)

N=length(xts_vol[,1])

n = round(N *0.7, digits = 0)

xts_vol_actual = xts_vol[(n+1):N, ]

Series = xts_vol

plot(xts_vol)

#Lagged dataset

lag_transform <- function(x, k= 1,j=2){

lagged = c(rep(NA, k), x[1:(length(x)-k)])

lagged2 = c(rep(NA, j), x[1:(length(x)-j)])

DF = as.data.frame(cbind(lagged2,lagged, x))

colnames(DF) <- c(paste0(’x-’,j), paste0(’x-’, k), ’x’)

DF[is.na(DF)] <- 0

return(DF)

}

supervised = lag_transform(xts_vol, 1)

supervised[supervised==0] <- av_vol

supervised<-supervised[complete.cases(supervised),]

## split into train and test sets

supervised = as.data.frame(supervised)

type(supervised)

N = nrow(supervised)

N = nrow(Series)

n = round(N *0.7, digits = 0)

train = supervised[1:n, ]
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test = supervised[(n+1):N, ]

train<-train[complete.cases(train),]

test<-test[complete.cases(test),]

write.table(test, "test_complete.txt", sep=",")

length(train)

length(test)

scale_data = function(train, test, feature_range = c(0, 1)) {

x = train

fr_min = feature_range[1]

fr_max = feature_range[2]

std_train = ((x - min(x) ) / (max(x) - min(x) ))

std_test = ((test - min(x) ) / (max(x) - min(x) ))

scaled_train = std_train *(fr_max -fr_min) + fr_min

scaled_test = std_test *(fr_max -fr_min) + fr_min

return( list(scaled_train = as.vector(scaled_train), scaled_test = as.vector(scaled_test)

↪→ ,scaler= c(min =min(x), max = max(x))) )

}

Scaled = scale_data(train, test, c(-1, 1))

train_data <- Scaled$scaled_train

names_x_train <- names(train_data)[(names(train_data) %in% c("x-1","x"))]

train_x_variables <- train_data[, names_x_train]

names_y_train <- names(train_data)[(names(train_data) %in% c("x-2"))]

train_y_variables <- train_data[, names_y_train]

y_train = train_y_variables

x_train=train_x_variables

write.table(y_train, "xy_train.txt", sep=",")

write.table(x_train, "xx_train.txt", sep=",")

test_data <- Scaled$scaled_test

names_x_test <- names(test_data)[(names(test_data) %in% c("x-1","x"))]

test_x_variables <- test_data[, names_x_train]

names_y_test <- names(test_data)[(names(test_data) %in% c("x-2"))]

test_y_variables <- test_data[, names_y_test]

y_test = test_y_variables

x_test = test_x_variables

length(y_test)

invert_scaling = function(scaled, scaler, feature_range = c(0, 1)){

min = scaler[1]

max = scaler[2]

t = length(scaled)

mins = feature_range[1]

maxs = feature_range[2]

inverted_dfs = numeric(t)

for( i in 1:t){

X = (scaled[i]- mins)/(maxs - mins)

rawValues = X *(max - min) + min

inverted_dfs[i] <- rawValues

}

return(inverted_dfs)
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}

# Reshape the input to 3-dim

dim(x_train) <- c(length(x_train), 1, 1)

# specify required arguments

X_shape2 = dim(x_train)[2]

X_shape3 = dim(x_train)[3]

batch_size = 1 # must be a common factor of both the train and test samples

units = 1 # can adjust this, in model tuninig phase

dim(y_train)

dim(x_train)

dim(y_train) <- c(length(y_train), 1, 1)

dframe = cbind.data.frame(y_train,x_train)

x_test = as.data.frame(x_test)

write.table(dframe, "NN_dframe.txt", sep=",")

names(dframe)[names(dframe) == "1"] <- "x1"

names(dframe)[names(dframe) == "2"] <- "x2"

NN = neuralnet(y_train ~ x1+x2 , dframe, hidden = 6 , linear.output = T )

plot(NN)

gwplot(NN)

length(x_test)

scaler = Scaled$scaler

predict_testNN = compute(NN, x_test)

plot(as.vector(t(as.matrix(y_test))), col = ’red’, type=’l’, main = "Neural␣Net:␣Actual␣vs␣

↪→ predicted:␣testing␣set", ylab = "Y,Yp")

lines(as.vector(t(as.matrix(predict_testNN$net.result))), type = ’l’, col = ’blue’)

legend("topright", c("Predicted", "Real"), col = c("blue","red"), lty = c(1,1), lwd = c(1,1)

↪→ )

#x_test[1]

predict_testNN$net.result[1]

L = length(predict_testNN$net.result)

predictions = numeric(L)

for(i in 1:L){

X = predict_testNN$net.result[i]

dim(X) = c(1,1,1)

yhat = X

yhat = invert_scaling(yhat, scaler, c(-1, 1))

predictions[i] <- yhat

}

L = length(y_test)

actual_values = numeric(L)

for(i in 1:L){

X = y_test[i]

dim(X) = c(1,1,1)

yhat = X

yhat = invert_scaling(yhat, scaler, c(-1, 1))

actual_values[i] <- yhat

}

MAE.NN<-mean(abs(xts_vol_actual - predictions))

RMSE.NN <- sqrt(mean( (xts_vol_actual- predictions)^2))
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A <- matrix(c(MAE.NN,RMSE.NN),nrow=2,ncol = 1,byrow = TRUE)

dimnames(A) <- list( c("MAE", "MSE"), c("Neural␣Network"))

A

par(mfrow=c(1,2))

# Plot predicted vs actual. Testing set only.

plot(as.vector(t(as.matrix(xts_vol_actual))), col = ’red’, type=’l’, main = "NN␣Actual␣vs␣

↪→ predicted:␣testing␣set", ylab = "Y,Yp")

lines(as.vector(t(as.matrix(predictions))), type = ’l’, col = ’blue’)

legend("topright", c("Predicted", "Actual"), col = c("blue","red"), lty = c(1,1), lwd = c(1,

↪→ 1))
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Appendix B

Classification Case Study Appendices

B.1 Two-Classes Classification

B.1.1 QQ Plot for Normality Assumption chekcs -Channel
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Figure B.1: QQ Plots Normal Check - Channel-Horeca
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B.1.2 LDA Pairwise Plots Two Classes
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Figure B.2: LDA Pairwise Plots - Channel
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B.1.3 F-Measure Calculation - Two Classes

Table B.1: Two-Class confusion matrix

Actual

Positive Class Negative Class

predicted Positive Class True Positive (TP) FP
Negative Class FN True Negative (TN)

Precision =
TP

TP + FP
(B.1)

Recall =
TP

TP+ FN
(B.2)

F-Measure =
(1 + β)2 × Precision× Recall

β2 × Recall+ Precision
, ( usually β = 1). (B.3)
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B.1.4 LDA Fitted Model - Two Classes

B.1.4.1 Unbalanced Data

Table B.2: LDA model : Two Classes

Prior probabilities of groups

Horeca Retail
0.6770538 0.3229462

Optimal Parameters

RegionLisbon RegionOporto Fresh Milk Grocery Frozen Detergents Paper Delicassen

Horeca 0.2133891 0.09623431 0.1263303 -0.3335389 -0.4237690 0.1423064 -0.4375262 -0.08894369
Retail 0.1403509 0.12280702 -0.2648503 0.6992614 0.8884281 -0.2983442 0.9172698 0.18646967

Coefficients of linear discriminants

LD1
RegionLisbon -0.36825516
RegionOporto 0.09834757
Fresh -0.26159407
Milk 0.22051382
Grocery 0.36398008
Frozen -0.28076916
Detergents Paper 0.69631048
Delicassen 0.14703554

Confusion Matrix

truth

Horeca Retail
predict Horeca 57 11

Retail 2 17

Classification Accuracy 85.0575%

Figure B.3: SPSS Significance Output
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B.1.4.2 Balanced Data

Table B.3: LDA model : Two Classes

Prior probabilities of groups

Horeca Retail
0.5 0.5

Optimal Parameters

RegionLisbon RegionOporto Fresh Milk Grocery Frozen Detergents Paper Delicassen

Horeca 0.09123295 0.1316801 -0.2127816 0.6478214 0.8727041 -0.2722088 0.9337072 0.02552776
Retail 0.02840909 0.2159091 2.5627823 1.9351193 0.4403386 4.5962050 -0.2760471 4.30064598

Coefficients of linear discriminants

LD1
RegionLisbon 0.27164456
RegionOporto -0.24187559
Fresh 0.38625587
Milk -0.22872166
Grocery -0.55457519
Frozen 0.25607799
Detergents Paper 0.06904033
Delicassen 0.12189443

Confusion Matrix

truth

Horeca Retail
predict Horeca 44 12

Retail 2 32

Classification Accuracy 86.36364%

Figure B.4: SPSS Significance Output Two Groups - Balanced Data
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B.1.5 SVM Fitted Model - Two Classes

B.1.5.1 Unbalanced Data

Table B.4: SVM model : Two Classes

SVM-Type C-classification
SVM-Kernel linear
cost 1
gamma 1
Number of Support Vectors 76

Confusion Matrix

truth

Horeca Retail
predict Horeca 57 11

Retail 2 17

Classification Accuracy 85.0575%

B.1.5.2 Balanced Data

Table B.5: SVM model : Two Classes

SVM-Type C-classification
SVM-Kernel linear
cost 1
gamma 1
Number of Support Vectors 208

Confusion Matrix

truth

Horeca Retail
predict Horeca 44 9

Retail 0 35

Classification Accuracy 89.77273%
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B.1.6 Logistic Regression Fitted Model - Two Classes

Table B.6: Logistic Regression On Customer - Channel

Coefficients

(Intercept) x.RegionLisbon x.RegionOporto x.Fresh x.Milk x.Grocery x.Frozen x.Detergents Paper x.Delicassen

-0.26270 -1.58911 0.21536 -0.03791 1.09172 0.98655 -1.48200 4.50174 -0.06565

Degrees of Freedom (Total) 352
Residual 344
Null Deviance 444.1
Residual Deviance 140.6
AIC 158.6

Confusion Matrix

truth

Horeca Retail
predict Horeca 55 6

Retail 4 22

Classification Accuracy 88.5058%
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B.2 Multi-Class Classification

B.2.1 QQ Plot for Normality Assumption chekcs -Region
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Figure B.5: QQ Plots Normal Check - Region-Oporto
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B.2.2 Scatter Plots - Three Classes
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Figure B.6: Pairwise Scatter Plots - Region
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B.2.3 SVM Fitted Model and Results - Three Classes

B.2.3.1 Unbalanced Data

Table B.7: SVM model : Three Classes

SVM-Type C-classification
SVM-Kernel linear
cost 0.1
gamma 1
Number of Support Vectors 272

Confusion Matrix

truth

Lisbon Oporto Other Region
predict Lisbon 0 0 0

Oporto 0 0 0
Other Region 10 10 67

Classification Accuracy 77.0115%

B.2.3.2 Balanced Data

Table B.8: SVM model : Three Classes - Balanced Data

SVM-Type C-classification
SVM-Kernel linear
cost 0.1
gamma 1
Number of Support Vectors 281

Confusion Matrix

truth

Lisbon Oporto Other Region
predict Lisbon 24 15 3

Oporto 3 12 1
Other Region 2 2 25

Classification Accuracy 70.11494%

102



B.2.4 LDA Fitted Model and Results - Three Classes

B.2.4.1 Unbalanced Data

Table B.9: LDA model : Three Classes

Prior probabilities of groups

Lisbon Oporto Other Region
0.1898017 0.1048159 0.7053824

Group means

ChannelRetail Fresh Milk Grocery Frozen Detergents Paper Delicassen

Lisbon 0.2388060 -0.05379723 -0.01524373 -0.052904436 -0.02149026 -0.067429761 -0.01531713
Oporto 0.3783784 -0.21133870 -0.14770483 0.154498000 0.36383501 0.175349964 -0.13196877
Other Region 0.3373494 0.04587930 0.02604984 -0.008722204 -0.04828132 -0.007912268 0.02373130

Coefficients of linear discriminants

LD1 LD2
ChannelRetail -0.3726638 -2.520312316
Fresh 0.4196827 -0.583305870
Milk 0.8995023 0.232552739
Grocery -0.4602017 0.753856344
Frozen -0.8894969 -0.024462167
Detergents Paper -0.4111027 -0.406639843
Delicassen 0.1523283 -0.006113117

Proportion of trace

LD1 LD2
0.8344 0.1656

Confusion Matrix

truth

Lisbon Oporto Other Region
predict Lisbon 0 0 0

Oporto 0 0 2
Other Region 10 10 65

Classification Accuracy 74.7126%
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Figure B.7: SPSS Significance Output for the three groups
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B.2.4.2 Balanced Data

Table B.10: LDA model : Three Classes

Prior probabilities of groups

Lisbon Oporto Other Region
0.1898017 0.1048159 0.7053824

Group means

ChannelRetail Fresh Milk Grocery Frozen Detergents Paper Delicassen

Lisbon 0.2427660 -0.05380345 -0.04845701 -0.0684995 -0.002396647 -0.07090886 -0.06473997
Oporto 0.4348894 -0.21994460 -0.03799474 0.1983732 0.034471140 0.25942821 -0.17456673
Other Region 0.4576271 0.5423729 1.14716986 2.76412498 1.9039890 1.334710842 1.38287658

Coefficients of linear discriminants

LD1 LD2
ChannelRetail 0.10921496 -1.187434742
Fresh 0.31953979 -0.005880814
Milk 0.19234359 0.408461590
Grocery 0.32721060 0.150904852
Frozen -0.32851322 -0.572730419
Detergents Paper -0.07527566 -0.292854795
Delicassen 0.24785495 0.051421068

Proportion of trace

LD1 LD2
0.9511 0.0489

Confusion Matrix

truth

Lisbon Oporto Other Region
predict Lisbon 24 15 3

Oporto 5 14 1
Other Region 0 0 25

Classification Accuracy 72.41379%
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Figure B.8: SPSS Significance Output for the three groups - Balanced Data
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B.2.5 Other Discriminant Analysis Models - Three Classes

Table B.11: Other Discriminant Analysis Models Results

QDA MDA HDA

Classification Accuracy 74.7126% 73.5632% 70.1150%
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B.2.6 Multi-Class Classification Using Iris Dataset

B.2.6.1 LDA Assumptions Tests

Table B.12: Box M Test for Iris-Species

DF X-squared p-value

Iris-Species 20 140.94 2.2e-16

Table B.13: Levene’s Test for Homogeneity of Variance - Iris-Species

Sepal.Length Sepal.Width Petal.Length Petal.Width

F-value 6.3527 0.5902 19.48 19.48
Pr(> F ) 0.002259 0.5555 3.129e-08 3.129e-08
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Figure B.9: QQ Plots Normal Check - Species-Virginica
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Table B.14: Shapiro-Wilk normality test - Species

Sepal.Length Sepal.Width Petal.Length Petal.Width

Setosa

W 0.9777 0.97172 0.95498 0.79976
p-value 0.4595 0.2715 0.05481 8.659e-07

Versicolor

W 0.97784 0.97413 0.966 0.94763
p-value 0.4647 0.338 0.1585 0.02728

Virginica

W 0.97118 0.96739 0.96219 0.95977
p-value 0.2583 0.1809 0.1098 0.08695
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B.2.6.2 Fitted Models - Iris Data

Table B.15: LDA Multi-Class Model - Iris Data

Prior probabilities of groups

setosa versicolor virginica
0.3333333 0.3333333 0.3333333

Group means

x.Sepal.Length x.Sepal.Width x.Petal.Length x.Petal.Width

setosa -0.9989259 0.9122085 -1.2997229 -1.2401798
versicolor 0.1285026 -0.5927640 0.2765068 0.1761694
virginica 0.9189148 -0.1261768 1.0043441 1.0941735

Coefficients of linear discriminants

LD1 LD2
x.Sepal.Length 0.6841420 0.01988153
x.Sepal.Width 0.6708982 0.94636612
x.Petal.Length -3.9074192 -1.65427384
x.Petal.Width -2.1430429 2.16494837

Proportion of trace

LD1 LD2
0.8344 0.1656

Confusion Matrix

truth

setosa versicolor virginica
predict setosa 50 0 0

versicolor 0 48 1
virginica 10 2 49

Classification Accuracy 98.00%
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Table B.16: SVM Multi-Class Model - Iris Data

SVM-Type C-classification
SVM-Kernel linear
cost 0.1
gamma 1
Number of Support Vectors 123

Confusion Matrix

truth

setosa versicolor virginica
predict setosa 49 0 0

versicolor 0 49 3
virginica 0 0 47

Classification Accuracy 96.6667%

Table B.17: Tuned SVM Multi-Class Model - Iris Data

SVM-Type C-classification
SVM-Kernel linear
cost 100
gamma 1
Number of Support Vectors 55

Confusion Matrix

truth

setosa versicolor virginica
predict setosa 50 0 0

versicolor 0 50 0
virginica 0 0 50

Classification Accuracy 100%
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B.3 LDA and SVM Code Listing

B.3.1 Unbalanced Data

set.seed(10)

# Attach Packages

library(tidyverse) # data manipulation and visualization

library(kernlab) # SVM methodology

library(e1071) # SVM methodology

library(ISLR) # contains example data set "Khan"

library(RColorBrewer) # customized coloring of plots

library(caret)

library(dummies)

library(corrplot)

########################################################################

#TWO CLASSES - PRE-PROCESSING

########################################################################

data_orig <-read.csv(file="Wholesale_customers_data.csv", header=TRUE, sep=",")

head(data_orig)

print(xtable(head(data_orig), type = "latex"), file = "filenameHead0.tex")

data <-read.csv(file="Wholesale_customers_data_Dummy.csv", header=TRUE, sep=",")

training.samplesCustormer <- data$Channel %>%

createDataPartition(p = 0.8, list = FALSE)

train.dataCustomer <- data[training.samplesCustormer, ]

test.dataCustomer <- data[-training.samplesCustormer, ]

train.data = train.dataCustomer[-1]

train.channel_label = as.factor(train.dataCustomer$Channel)

test.data = test.dataCustomer[-1]

test.channel_label = as.factor(test.dataCustomer$Channel)

preproc.param <- train.data %>%

preProcess(method = c("center", "scale"))

# Transform the data using the estimated parameters

train.transformedCustomer <- preproc.param %>% predict(train.data)

test.transformedCustomer <- preproc.param %>% predict(test.data)

train.dataframe = data.frame(x=train.transformedCustomer,y=train.channel_label)

test.dataframe = data.frame(x=test.transformedCustomer,y=test.channel_label)

all_data_channel = rbind(train.dataframe,test.dataframe)

#names(all_data_channel)

pairs(all_data_channel[c("x.Region","x.Fresh","x.Milk","x.Grocery","x.Frozen","x.Detergents_

↪→ Paper","x.Delicassen")], main="Pairwise␣Scatter␣Plots␣-␣Channel", pch=22,

bg=c("red", "yellow")[unclass(all_data_channel$y)])

train.transformedCustomer.dummy_full = dummy.data.frame(train.transformedCustomer,drop =

↪→ FALSE)

train.transformedCustomer.dummy = train.transformedCustomer.dummy_full[-3]

test.transformedCustomer.dummy_full = dummy.data.frame(test.transformedCustomer)

test.transformedCustomer.dummy = test.transformedCustomer.dummy_full[-3]

train.dataframe = data.frame(x=train.transformedCustomer.dummy,y=train.channel_label)

test.dataframe = data.frame(x=test.transformedCustomer.dummy,y=test.channel_label)

########################################################################

#TWO CLASSES - SUPPORT VECTOR MACHINE

########################################################################
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tune.out <- tune(svm, y~., data = train.dataframe, kernel = "radial",

ranges = list(cost = c(0.1,1,10,100,1000),

gamma = c(0.5,1,2,3,4)))

(bestmod <- tune.out$best.model)

ypred <- predict(bestmod, test.dataframe)

(misclass <- table(predict = ypred, truth = test.dataframe$y))

mean(ypred==test.dataframe$y)

svmfit <- svm(y~., data = train.dataframe, kernel = "linear", gamma = 1, cost = 1)

svmfit

ypred <- predict(svmfit, test.dataframe)

(misclass <- table(predict = ypred, truth = test.dataframe$y))

#print(xtable(misclass, type = "latex"), file = "filenameSVM1.tex")

mean(ypred==test.dataframe$y)

##########################################################################################

#MANOVA

##########################################################################################

customer.manova <- lm(as.matrix(train.dataframe[, 1:8])~y,

train.dataframe)

summary(customer.manova)

summary(manova(customer.manova), test = "Wilks")

library(candisc)

library(library(DescTools))

customer.can <- candisc(customer.manova)

customer.can

plot(customer.can)

DescTools::plot(customer.can)

##########################################################################################

#TWO CLASSES - DICRIMINANT ANALYSIS

#########################################################################################

library(MASS)

# Fit the model

model <- lda(y~., data = train.dataframe)

model

predictions <- model %>% predict(test.dataframe)

(misclass <- table(predict = predictions$class, truth = test.dataframe$y))

print(xtable(misclass, type = "latex"), file = "filenameLda1.tex")

mean(predictions$class==test.dataframe$y)

summary(manova(y~., data = train.dataframe),test="Wilks")

library(MASS)

y<-as.factor(train.dataframe$y)

model <- hda(train.dataframe[-9],y)

predicted.classes <- model %>% predict(test.dataframe)

# Model accuracy

mean(predicted.classes == test.dataframe$y)

plot(model)

plot(model, dimen=1, type="both")

library(klaR)

all_data<-rbind(train.dataframe,test.dataframe)

partimat(y~.,data=train.dataframe,method="lda")

partimat(y~.,data=train.dataframe,method="lda",plot.matrix = TRUE, imageplot = FALSE)
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print(xtable(head(all_data), type = "latex"), file = "filenameHead2.tex")

M <-cor(all_data[-9])

library(xtable)

as.table(round(M,2))

print(xtable(as.table(round(M,2)), type = "latex"), file = "filename2.tex")

library(Hmisc)

mydata.rcorr = rcorr(as.matrix(all_data[-9]))

mydata.rcorr

predictions <- model %>% predict(test.dataframe)

names(predictions)

mean(predictions$class == test.dataframe$y)

# Predicted classes

head(predictions$class, 6)

# Predicted probabilities of class memebership.

head(predictions$posterior, 6)

# Linear discriminants

head(predictions$x, 3)

###################################################################

#THREE CLASSES - PRE-PROCESSING

###################################################################

train.region_label = as.factor(train.dataCustomer$Region)

test.region_label = as.factor(test.dataCustomer$Region)

train.data = train.dataCustomer[-2]

test.data = test.dataCustomer[-2]

train.data$Channel = train.dataCustomer$Channel

test.data$Channel = test.dataCustomer$Channel

preproc.param <- train.data %>%

preProcess(method = c("center", "scale"))

# Transform the data using the estimated parameters

train.transformedCustomer <- preproc.param %>% predict(train.data)

test.transformedCustomer <- preproc.param %>% predict(test.data)

train.transformedCustomer.dummy.region_full = dummy.data.frame(train.transformedCustomer)

train.transformedCustomer.dummy.region = train.transformedCustomer.dummy.region_full[-1]

test.transformedCustomer.dummy.region_full = dummy.data.frame(test.transformedCustomer)

test.transformedCustomer.dummy.region = test.transformedCustomer.dummy.region_full[-1]

train.dataframe.region = data.frame(x=train.transformedCustomer,y=train.region_label)

test.dataframe.region = data.frame(x=test.transformedCustomer,y=test.region_label)

all_data_region = rbind(train.dataframe.region,test.dataframe.region)

pairs(all_data_region[c("x.Channel","x.Fresh","x.Milk","x.Grocery","x.Frozen","x.Detergents_

↪→ Paper","x.Delicassen")], main="Pairwise␣Scatter␣Plots␣-␣Region", pch=22,

bg=c("blue", "yellow","red")[unclass(all_data_region$y)])

train.region_dataframe = data.frame(x=train.transformedCustomer.dummy.region,y=train.region_

↪→ label)

test.region_dataframe = data.frame(x=test.transformedCustomer.dummy.region,y=test.region_

↪→ label)

##########################################################################

#THREE CLASSES - SUPPORT VECTOR MACHINE

##########################################################################

tune.out <- tune(svm, y~., data = train.region_dataframe, kernel = "radial",

ranges = list(cost = c(0.1,1,10,100,1000),
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gamma = c(0.5,1,2,3,4)))

(bestmod <- tune.out$best.model)

svmfit <- svm(y~., data = train.region_dataframe, kernel = "radial", gamma = 1, cost = 0.1)

ypred <- predict(svmfit, test.region_dataframe)

(misclass <- table(predict = ypred, truth = test.region_dataframe$y))

mean(ypred==test.region_dataframe$y)

plot(bestmod,test.region_dataframe)

############################################################################

#THREE CLASSES - DISCRIMINANT ANALYSIS TWO CLASSES

############################################################################

# Fit the model

model <- lda(y~., data = train.region_dataframe)

model

predictions <- model %>% predict(test.region_dataframe)

(misclass <- table(predict = predictions$class, truth = test.region_dataframe$y))

print(xtable(misclass, type = "latex"), file = "filenameLda2.tex")

mean(predictions$class==test.region_dataframe$y)

plot(model)

plot(model, dimen=1, type="both")

library(klaR)

all_data<-rbind(train.region_dataframe,test.region_dataframe)

print(xtable(head(all_data), type = "latex"), file = "filenameHead3.tex")

partimat(y~.,data=all_data,method="lda")

partimat(y~.,data=all_data,method="lda",plot.matrix = TRUE, imageplot = FALSE)

M <-cor(all_data[-9])

# Scatterplot for 3 Group Problem

pairs(all_data[c("x.Channel","x.Fresh","x.Milk","x.Grocery","x.Frozen","x.Detergents_Paper",

↪→ "x.Delicassen")], main="Pairwise␣Scatter␣Plots", pch=22,

bg=c("red", "yellow", "blue")[unclass(train.region_dataframe$y)])

train.region_dataframe$x.Delicassen

predictions <- model %>% predict(test.region_dataframe)

names(predictions)

predictions$class

# Predicted classes

head(predictions$class, 6)

# Predicted probabilities of class memebership.

head(predictions$posterior, 6)

# Linear discriminants

head(predictions$x, 3)

lda.data <- cbind(train.region_dataframe, predict(model$x)

ggplot(lda.data, aes(LD1, LD2)) +

geom_point(aes(color = y))

# Fit the model

model <- qda(y~., data = train.region_dataframe)

model

# Make predictions

predictions <- model %>% predict(test.region_dataframe$y)

# Model accuracy

mean(predictions$class == test.region_dataframe$y)

library(mda)

115



model <- mda(y~., data = train.region_dataframe)

model

# Make predictions

predicted.classes <- model %>% predict(test.region_dataframe)

# Model accuracy

mean(predicted.classes == test.region_dataframe$y)

library(hda)

model <- hda(train.region_dataframe[-8],as.factor(train.region_dataframe$y),crule = TRUE)

prediction = predict(model,test.region_dataframe[-8],task="c")

mean(prediction$prediction == test.region_dataframe$y)

B.3.2 Balanced Data

#BalancedDataChannel.R

library(dummies)

library(scutr)

data(bullseye)

library(tidyverse) # data manipulation and visualization

library(kernlab) # SVM methodology

library(e1071) # SVM methodology

library(ISLR) # contains example data set "Khan"

library(RColorBrewer) # customized coloring of plots

library(caret)

library(corrplot)

library(MASS)

library(MLmetrics)

library(mltest)

ldaAccuracy = 0

svmConMatrix<-NULL

svmConMatrix<-NULL

ypred_class<-NULL

predictions_class<-NULL

test_balanced_data_region_class<-NULL

mltest_results<-NULL

mltest_results_svm <-NULL

while(ldaAccuracy<0.3){

rm(list=ls())

data <-read.csv(file="Wholesale_customers_data_Dummy.csv", header=TRUE, sep=",")

Region = as.factor(data$Region)

data_1 <- data[-2]

preproc.param <- data_1 %>%

preProcess(method = c("center", "scale"))

data_1.transformedCustomer <- preproc.param %>% predict(data_1)

dummied_data <- dummy.data.frame(data_1.transformedCustomer,drop = FALSE)

data_final =cbind(Region,dummied_data)

balanced_customer_data_region_partioning <- data_final$Region %>%

createDataPartition(p = 0.8, list = FALSE)

train_balanced_data_region <- data_final[balanced_customer_data_region_partioning,]

test_balanced_data_region <- data_final[-balanced_customer_data_region_partioning,]

test_balanced_data_region[, 1:1] <- sapply(test_balanced_data_region[, 1:1], as.factor)

116



test_balanced_data_region[, 1:1] <- sapply(test_balanced_data_region[, 1:1], as.factor)

balanced_customer_data_region <- SCUT(train_balanced_data_region, "Region", undersample =

↪→ undersample_hclust,

usamp_opts = list(dist_calc="manhattan"))

tune.out <- tune(svm, Region~., data = balanced_customer_data_region, kernel = "radial",

ranges = list(cost = c(0.1,1,10,100,1000),

gamma = c(0.5,1,2,3,4)))

svmfit <- svm(Region~., data = balanced_customer_data_region, kernel = "radial", gamma = 1,

↪→ cost = 0.1)

ypred <- predict(svmfit, test_balanced_data_region)

ypred_class <- factor(ypred,levels = c("Oporto","Lisbon","Other␣Region"))

test_balanced_data_region_class <- factor(test_balanced_data_region$Region,levels=c("Oporto"

↪→ ,"Lisbon","Other␣Region"))

svmConMatrix <- confusionMatrix(data=ypred_class,reference=test_balanced_data_region_class,

↪→ positive = "Oporto")

mltest_results_svm <-ml_test(ypred_class, test_balanced_data_region_class, output.as.table =

↪→ FALSE)

model <- lda(Region~., data = balanced_customer_data_region)

model

predictions <- model %>% predict(test_balanced_data_region)

predictions_class <- factor(predictions$class,levels = c("Oporto","Lisbon","Other␣Region"))

test_balanced_data_region_class <- factor(test_balanced_data_region$Region,levels=c("Oporto"

↪→ ,"Lisbon","Other␣Region"))

ldaConMatrix <- confusionMatrix(data=predictions_class,reference=test_balanced_data_region_

↪→ class,positive = "Oporto")

mltest_results <-ml_test(predictions_class, test_balanced_data_region_class, output.as.table

↪→ = FALSE)

ldaAccuracy <-as.numeric(mltest_results$accuracy)

out <- paste0("ldaAccuracy", ldaAccuracy, ".") # Some output

print(out)

}

svmConMatrix

svmConMatrix

#SVM

precision(data=ypred_class,reference = test_balanced_data_region_class,relevant = "Oporto")

recall(data=ypred_class,reference = test_balanced_data_region_class,relevant = "Oporto")

F1_Score(test_balanced_data_region_class,ypred_class,positive = "Oporto")

#LDA

precision(data=predictions_class,reference = test_balanced_data_region_class,relevant = "

↪→ Oporto")

recall(data=predictions_class,reference = test_balanced_data_region_class,relevant = "Oporto

↪→ ")

F1_Score(test_balanced_data_region_class,predictions_class,positive = "Oporto")

B.3.3 Balanced Data

library(dummies)

library(scutr)

data(bullseye)

library(tidyverse) # data manipulation and visualization
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library(kernlab) # SVM methodology

library(e1071) # SVM methodology

library(ISLR) # contains example data set "Khan"

library(RColorBrewer) # customized coloring of plots

library(caret)

library(corrplot)

library(MASS)

rm(list=ls())

data <-read.csv(file="Wholesale_customers_data_Dummy.csv", header=TRUE, sep=",")

Channel = as.factor(data$Channel)

data_2 <- data[-1]

preproc.param <- data_2%>%

preProcess(method = c("center", "scale"))

data_2.transformedCustomer <- preproc.param %>% predict(data_2)

dummied_data <- dummy.data.frame(data_2.transformedCustomer,drop = FALSE)

data_final_channel =cbind(Channel,dummied_data)

balanced_customer_data_channel_partioning <- data_final_channel$Channel %>%

createDataPartition(p = 0.8, list = FALSE)

train_balanced_data_channel <- data_final_channel[balanced_customer_data_channel_partioning

↪→ ,]

test_balanced_data_channel <- data_final_channel[-balanced_customer_data_channel_partioning

↪→ ,]

train_balanced_data_channel[, 1:1] <- sapply(train_balanced_data_channel[, 1:1], as.factor)

test_balanced_data_channel[, 1:1] <- sapply(test_balanced_data_channel[, 1:1], as.factor)

training_balanced_customer_data_channel <- SCUT(train_balanced_data_channel, "Channel",

↪→ undersample = undersample_hclust,

usamp_opts = list(dist_calc="manhattan"))

training_balanced_customer_data_channel[,1:1] <- sapply(training_balanced_customer_data_

↪→ channel[, 1:1], as.factor)

tune.out <- tune(svm, Channel~., data = training_balanced_customer_data_channel, kernel = "

↪→ radial",

ranges = list(cost = c(0.1,1,10,100,1000),

gamma = c(0.5,1,2,3,4)))

svmfit <- svm(Channel~., data = training_balanced_customer_data_channel, kernel = "radial",

↪→ gamma = 1, cost = 0.1)

ypred <- predict(svmfit, test_balanced_data_channel)

ypred_class <- factor(ypred,levels = c("Retail","Horeca"))

test_balanced_data_channel_class <- factor(test_balanced_data_channel$Channel,levels=c("

↪→ Retail","Horeca"))

confusionMatrix(data=ypred_class,reference=test_balanced_data_channel_class,positive = "

↪→ Retail")

model <- lda(Channel~., data = training_balanced_customer_data_channel)

model

predictions <- model %>% predict(test_balanced_data_channel)

predictions_class <- factor(predictions$class,levels = c("Retail","Horeca"))

test_balanced_data_channel_class <- factor(test_balanced_data_channel$Channel,levels = c("

↪→ Retail","Horeca"))

confusionMatrix(data=predictions_class,reference = test_balanced_data_channel_class,positive

↪→ = "Retail")
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table(train_balanced_data_channel$Channel)

table(training_balanced_customer_data_channel$Channel)

table(test_balanced_data_channel$Channel)

#SVM

precision(data=ypred_class,reference = test_balanced_data_channel_class,relevant = "Retail")

recall(data=ypred_class,reference = test_balanced_data_channel_class,relevant = "Retail")

F1_Score(test_balanced_data_channel_class,ypred_class,positive = "Retail")

#LDA

precision(data=predictions_class,reference = test_balanced_data_channel_class,relevant = "

↪→ Retail")

recall(data=predictions_class,reference = test_balanced_data_channel_class,relevant = "

↪→ Retail")

F1_Score(test_balanced_data_channel_class,predictions_class,positive = "Retail")
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Appendix C

Clustering Case Study Appendices

C.1 Gaussian Mixture Clustering

C.1.1 Maximum Likelihood Estimation for a Gaussian Distribution

If X1, . . . , Xn are independent observations from a Gaussian distribution with an unknown µ and

known σ2, the maximum likelihood estimate of µ is found by setting the derivative of the log-likelihood

with respect to µ, l(µ), equal to zero and solving for µ.

L(µ) =

n∏
j=1

1√
2πσ2

exp−(xj − µ)2

2σ2

l(µ) =

n∑
j−1

[log(
1√
2πσ2

)− (xj − µ)2

2σ2
]

d

dµ
l(µ) =

n∑
j−1

xj − µ

σ2

n∑
j−1

xj − µ

σ2
= 0

⇒ µMLE =
1

n

n∑
j=1

xj

C.1.2 Maximum Likelihood Estimation for a Gaussian Mixture

The following likelihood estimation is an extract from the notes of Bonakdarpour (2016).

If X1, . . . , Xn comes from one of the K mixture components, there is a label Zj ∈ {1, . . . ,K} which

shows which component Xj comes from. In most cases Zj is not observable, in such cases it is called

a latent variable. From the law of total probability we have,

P (Xj = x) =
K∑
k=1

P (Xj = x|Zj = k)P (Zj = k) =
K∑
k=1

P (Xj = x|Zj = k)πk, (C.1)

where πk are mixture proportions (weights) representing the probability that Xj belongs to the kth
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mixture component. The probability density function of the mixture model then becomes,

fx(x) =
K∑
k=1

πkfx|Zk
(x|Zk). (C.2)

In the GMM the kth component is N(µk, σk) with the proportion πk. Assuming independent samples

X1, . . . , Xn from this mixture and weights π = (π1, . . . , πK), the likelihood function becomes, with

θ = {µ1, . . . , µK , σ1, . . . , σK , π1, . . . , πK}, the likelihood function is given as,

L(θ|Xi, . . . , Xn) =
n∏

j=1

K∑
k=1

πkN(xj ;µk, σ
2
k). (C.3)

And log-likelihood,

l(θ) =

n∑
i=1

log(

K∑
k=1

πkN(xj ;µk, σ
2
k)) (C.4)

The summation inside the log-likelihood renders the likelihood estimate to have no closed form solution,

unlike in appendix C.1.1 above.

C.1.3 The mechanics of Expectation Maximization Algorithm

The summation problem in equation (C.4) lands us to the use of the EM algorithm. Bonakdarpour

(2016) simplifies equation (C.4) further by differentiating with respect to µk and setting the derivative

equals to zero,
n∑

j=1

1∑K
k=1 πkN(xj ;µk, πk)

πkN(xj ;µk, πk)
xj − µk

σ2
k

= 0 (C.5)

As can be seen in equation (C.5), there is not direct solution to µk unlike in appendix C.1.1. If the

latent variable Zj was known, that is, if the prevailing mixture component was known, estimating

MLEs would have been similar to the solution in appendix C.1.1.

Next, the posterior distribution of Zj given the observations is examined,

P (Zj = k|Xj) =
P (Xj |Zj = k)P (Zj = k)

P (Xj)
=

πkN(µk, σ
2
k)∑K

k=1N(µk, σ
2
k)

= γZj (k) (C.6)

.

Substituting back in equation (C.4) simplifies to,

γZj (k)
xj − µk

σ2
k

= 0 (C.7)

The log-likelihood in equation (C.7) but γZj (k) still depends on µk but in order to make the solution

more tractable we imagine we have all the information required about γZj (k). That enables the

derivation of the value of µk,

µ̂k =

∑n
j=1 γZj (k)xj∑n
j=1 γZj (k)

=
1

Nk

n∑
j=1

γZj (k)xj (C.8)
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Nk =
∑n

j=1 γZj (k) and Nk is seen as the number points allocated to the kth mixture component, and

µ̂k an average of the data with weights γZj (k). The estimates of σ̂2 and π̂k are derived in a similar

fashion,

σ̂2 =
1

Nk

n∑
j=1

γZj (k)(xj − µk)
2 (C.9)

π̂k =
Nk

n
(C.10)

because the estimate equations about still depend on the unknown γZj (k), they still not closed-form.

C.1.4 Number of Cluster using NBClust R package

“The Hubert index is a graphical method of determining the number of clusters. In the plot of Hubert

index, we seek a significant knee that corresponds to a significant increase of the value of the measure

i.e the significant peak in Hubert index second differences plot.

The D index is a graphical method of determining the number of clusters. In the plot of D index, we

seek a significant knee (the significant peak in Dindex second differences plot) that corresponds to a

significant increase of the value of the measure” (Charrad et al., 2014).

(a) NbClust Dindex Plot (b) NbClust Hubert Plot

Figure C.1: NbClust Plots for Determining No. of Clusters

Table C.1: NbClust Package Output for optimal No. of Clusters

Number of Cluster using NBClust R package based on majority of indices

No. of indices 0 1 2 3 4 7 9 10
Clusters 2 1 8 2 1 10 1 1

According to the majority rule, the best number of clusters is 7
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C.1.5 Summary of Results GMM-EM

Table C.2: Fitted Mixutre Model

Mclust VEV ellipsoidal, equalshape model with 7 components

log-likelihood n df BIC ICL
-9412.116 3863 57 -19295.01 -20000.83

Clustering table

Cluster 1 2 3 4 5 6 7
Cluster size 777 864 193 331 693 750 255

Mixing probabilities

Cluster 1 2 3 4 5 6 7
Probability 0.20005368 0.22249670 0.06302376 0.08588798 0.17129908 0.19352086 0.06371793

Means

Cluster 1 2 3 4 5 6 7
recency.z -0.4992681 -0.5710891 -0.1197149 1.227124 0.1736734 0.07985965 1.3165984
frequency.z 0.7021322 1.0849905 0.3350786 -1.041919 -0.2654913 -1.04191935 -1.0419194
monetary.z 0.7782564 0.5637699 -0.1480648 -1.177456 -0.1648601 -0.58499772 -0.4585748

Figure C.2: GMM Cluster Classification Plot Using Mclust
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C.1.6 Model Validation - Nonparametric Bootstrap

Table C.3: Bootstrap LRT

Bootstrap sequential LRT for the number of mixture components

Model VEV
Replications 999

LRTS bootstrap p-value

1 vs 2 2154.2930 0.001
2 vs 3 2201.3051 0.001
3 vs 4 917.0034 0.001
4 vs 5 1372.7310 0.001
5 vs 6 874.7586 0.001
6 vs 7 811.1973 0.001
7 vs 8 -644.1151 0.865
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Table C.4: Bootstrap Confidence Intervals

Resampling confidence intervals

Model VEV
Num. of mixture components 7
Replications 999
Type nonparametric bootstrap
Confidence level 0.95

Mixing probabilities

{1} {2} {3} {4} {5} {6} {7}
2.5% 0.1754440 0.1612893 0.04856662 0.07257213 0.1592925 0.1747912 0.05151983
97.5% 0.2330226 0.2490901 0.12586741 0.10308833 0.1844758 0.2059157 0.08184972

Means

{1}
recency.z frequency.z monetary.z

2.5% -0.6436942 0.6026737 0.6607849
97.5% -0.3700357 0.8796493 0.9047186

{2}
recency.z frequency.z monetary.z

2.5% -0.7278719 0.8676812 0.3638801
97.5% -0.4568941 1.3679799 0.7382950

{3}
recency.z frequency.z monetary.z

2.5% -0.299747390 0.2196332 -0.4391577
97.5% -0.004762327 0.8826979 0.2497110

{4}
recency.z frequency.z monetary.z

2.5% 1.150471 -1.041919 -1.248109
97.5% 1.276839 -1.041919 -1.095493

{5}
recency.z frequency.z monetary.z

2.5% 0.08049883 -0.2654913 -0.2137088
97.5% 0.26541084 -0.2654913 -0.1208137

{6}
recency.z frequency.z monetary.z

2.5% 0.01998159 -1.041919 -0.6331720
97.5% 0.14188578 -1.041919 -0.5367345

{7}
recency.z frequency.z monetary.z

2.5% 1.245015 -1.041919 -0.5531835
97.5% 1.358370 -1.041919 -0.3924755
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Figure C.3: Mixing Proportions Bootstrap CI’s
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C.2 K-means Clustering

Table C.5: Fitted K-means Model

K-means Clustering

clusters recency.z requency.z monetary.z

1 -0.1512098 -0.86970244 -0.6993589
2 0.5514715 -0.92545515 -6.1748337
3 -0.2364563 1.00832024 0.8993242
4 0.5203006 0.01961307 0.1540284
5 -1.1861888 0.24841920 0.1665349
6 1.1633664 -0.93706785 -0.8054396
7 -1.5761249 1.95376531 1.5830640

Clustering table

Cluster 1 2 3 4 5 6 7
Cluster size 700 20 605 816 538 846 338

Within cluster sum of squares by cluster

clusters 1 2 3 4 5 6 7
withinss 386.7962 33.2139 332.5557 426.6187 394.8918 334.3922 406.3537

between SS/total SS 80.0%

Table C.6: K-means Jaccard Bootstrap Results

Cluster stability assessment

Number of resampling runs 100

Number of clusters found in data 7

Cluster 1 2 3 4 5 6 7
Clusterwise Jaccard bootstrap mean

0.9865171 0.9692296 0.9308999 0.8658098 0.9164822 0.8750385 0.9305640

dissolved clusters
0 0 0 2 0 0 0

recovered clusters
100 100 100 84 98 88 98
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C.3 Fuzzy C-means Clustering

C.3.1 Fuzzy C-means Model

Table C.7: Fuzzy C-mean Model

Fuzzy c-means clustering with 7 cluster centers

Cluster centers

cluster 1 2 3 4 5 6 7
recency.z -0.02727329 -1.47890719 -0.51277986 1.19804973 0.04048628 -1.19009914 0.68580826
frequency.z 0.77262795 2.00253122 -0.08052568 -0.99523917 -0.96238606 0.86428551 -0.12651525
monetary.z 0.72917134 1.58973735 -0.10540659 -0.85675029 -0.73020454 0.69296295 -0.01245123

Clustering table

Cluster 1 2 3 4 5 6 7
Cluster size 565 300 550 756 613 434 645

Membership probabilities (top 6)

1 2 3 4 5 6 7
1 0.11522487 0.079530040 0.14582433 0.21012379 0.18936857 0.10647193 0.15345646
2 0.06753919 0.600421024 0.04669823 0.01484405 0.02171453 0.22156852 0.02721445
3 0.14009794 0.354408794 0.10524371 0.06290867 0.07351817 0.17457166 0.08925105
4 0.10727686 0.208188889 0.08315885 0.02138948 0.03406345 0.50424448 0.04167799
5 0.09990678 0.079766381 0.16003650 0.02629630 0.05042431 0.53330621 0.05026352
6 0.02435295 0.008986579 0.04145553 0.70515465 0.12898202 0.01665349 0.07441478

Av silhouette index 0.2980478
Dunn’s Index 1.147474
Within SS 2666.221
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C.3.2 Fuzzy C-means Cluster Structure
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Figure C.4: Fuzzy C-means Cluster Structure
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C.4 GMM and K-means Code Listing

library(XLConnect)

library(mclust)

library(factoextra)

library(kmeansstep)

library(fpc)

data <-read.csv(file="Online␣Retail.csv", header=TRUE, sep=",")

length(unique(data$CustomerID))

sum(is.na(data$CustomerID))

data <- subset(data, !is.na(data$CustomerID))

range(as.Date(data$InvoiceDate,format = "%m/%d/%Y"))

data <- subset(data, as.Date(data$InvoiceDate,format = "%m/%d/%Y") >= as.Date("12/09/2010",

↪→ format = "%m/%d/%Y"))

range(as.Date(data$InvoiceDate,format = "%m/%d/%Y"))

table(data$Country)

data <- subset(data, Country == "United␣Kingdom")

length(unique(data$InvoiceNo))

length(unique(data$CustomerID))

# Identify returns

data$item.return <- grepl("C", data$InvoiceNo, fixed=TRUE)

data$purchase.invoice <- ifelse(data$item.return=="TRUE", 0, 1)

#################################

# Create customer-level dataset #

#################################

customers <- as.data.frame(unique(data$CustomerID))

names(customers) <- "CustomerID"

###########

# Recency #

###########

data$recency <- as.Date("12/10/2011",format="%m/%d/%Y") - as.Date(data$InvoiceDate,format="%

↪→ m/%d/%Y")

# remove returns so only consider the data of most recent *purchase*

temp <- subset(data, purchase.invoice == 1)

# Obtain # of days since most recent purchase

recency <- aggregate(recency ~ CustomerID, data=temp, FUN=min, na.rm=TRUE)

remove(temp)

# Add recency to customer data

customers <- merge(customers, recency, by="CustomerID", all=TRUE, sort=TRUE)

remove(recency)

customers$recency <- as.numeric(customers$recency)

#############

# Frequency #

#############

customer.invoices <- subset(data, select = c("CustomerID","InvoiceNo", "purchase.invoice"))

customer.invoices <- customer.invoices[!duplicated(customer.invoices), ]

customer.invoices <- customer.invoices[order(customer.invoices$CustomerID),]

row.names(customer.invoices) <- NULL

# Number of invoices/year (purchases only)
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annual.invoices <- aggregate(purchase.invoice ~ CustomerID, data=customer.invoices, FUN=sum,

↪→ na.rm=TRUE)

names(annual.invoices)[names(annual.invoices)=="purchase.invoice"] <- "frequency"

# Add # of invoices to customers data

customers <- merge(customers, annual.invoices, by="CustomerID", all=TRUE, sort=TRUE)

remove(customer.invoices, annual.invoices)

range(customers$frequency)

table(customers$frequency)

# Remove customers who have not made any purchases in the past year

customers <- subset(customers, frequency > 0)

###############################

# Monetary Value of Customers #

###############################

# Total spent on each item on an invoice

data$Amount <- data$Quantity * data$UnitPrice

# Aggregated total sales to customer

annual.sales <- aggregate(Amount ~ CustomerID, data=data, FUN=sum, na.rm=TRUE)

names(annual.sales)[names(annual.sales)=="Amount"] <- "monetary"

# Add monetary value to customers dataset

customers <- merge(customers, annual.sales, by="CustomerID", all.x=TRUE, sort=TRUE)

remove(annual.sales)

# Identify customers with negative monetary value numbers, as they were presumably returning

↪→ purchases from the preceding year

hist(customers$monetary)

customers$monetary <- ifelse(customers$monetary < 0, 0, customers$monetary) # reset negative

↪→ numbers to zero

hist(customers$monetary)

customers <- customers[order(-customers$monetary),]

# Apply Pareto Principle (80/20 Rule)

pareto.cutoff <- 0.8 * sum(customers$monetary)

customers$pareto <- ifelse(cumsum(customers$monetary) <= pareto.cutoff, "Top␣20%", "Bottom␣8

↪→ 0%")

customers$pareto <- factor(customers$pareto, levels=c("Top␣20%", "Bottom␣80%"), ordered=TRUE

↪→ )

levels(customers$pareto)

round(prop.table(table(customers$pareto)), 2)

remove(pareto.cutoff)

customers <- customers[order(customers$CustomerID),]

# Log-transform positively-skewed variables

customers$recency.log <- log(customers$recency)

customers$frequency.log <- log(customers$frequency)

customers$monetary.log <- customers$monetary + 0.1 # can’t take log(0), so add a small value

↪→ to remove zeros

customers$monetary.log <- log(customers$monetary.log)

# Z-scores

customers$recency.z <- scale(customers$recency.log, center=TRUE, scale=TRUE)

customers$frequency.z <- scale(customers$frequency.log, center=TRUE, scale=TRUE)

customers$monetary.z <- scale(customers$monetary.log, center=TRUE, scale=TRUE)

library(ggplot2)

library(scales)
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# Original scale

scatter.1 <- ggplot(customers, aes(x = frequency, y = monetary))

scatter.1 <- scatter.1 + geom_point(aes(colour = recency, shape = pareto))

scatter.1 <- scatter.1 + scale_shape_manual(name = "80/20␣Designation", values=c(17, 16))

scatter.1 <- scatter.1 + scale_colour_gradient(name="Recency\n(Days␣since␣Last␣Purchase))")

scatter.1 <- scatter.1 + scale_y_continuous(label=dollar)

scatter.1 <- scatter.1 + xlab("Frequency␣(Number␣of␣Purchases)")

scatter.1 <- scatter.1 + ylab("Monetary␣Value␣of␣Customer␣(Annual␣Sales)")

scatter.1

# Log-transformed

scatter.2 <- ggplot(customers, aes(x = frequency.log, y = monetary.log))

scatter.2 <- scatter.2 + geom_point(aes(colour = recency.log, shape = pareto))

scatter.2 <- scatter.2 + scale_shape_manual(name = "80/20␣Designation", values=c(17, 16))

scatter.2 <- scatter.2 + scale_colour_gradient(name="Log-transformed␣Recency")

scatter.2 <- scatter.2 + xlab("Log-transformed␣Frequency")

scatter.2 <- scatter.2 + ylab("Log-transformed␣Monetary␣Value␣of␣Customer")

scatter.2

# How many customers are represented by the two data points in the lower left-hand corner of

↪→ the plot? 18

delete <- subset(customers, monetary.log < 0)

no.value.custs <- unique(delete$CustomerID)

delete2 <- subset(data, CustomerID %in% no.value.custs)

delete2 <- delete2[order(delete2$CustomerID, delete2$InvoiceDate),]

remove(delete, delete2, no.value.custs)

# Scaled variables

scatter.3 <- ggplot(customers, aes(x = frequency.z, y = monetary.z))

scatter.3 <- scatter.3 + geom_point(aes(colour = recency.z, shape = pareto))

scatter.3 <- scatter.3 + scale_shape_manual(name = "80/20␣Designation", values=c(17, 16))

scatter.3 <- scatter.3 + scale_colour_gradient(name="Z-scored␣Recency")

scatter.3 <- scatter.3 + xlab("Z-scored␣Frequency")

scatter.3 <- scatter.3 + ylab("Z-scored␣Monetary␣Value␣of␣Customer")

scatter.3

remove(scatter.1, scatter.2, scatter.3)

preprocessed <- customers[,9:11]

j <- 10 # specify the maximum number of clusters you want to try out

models <- data.frame(k=integer(),

tot.withinss=numeric(),

betweenss=numeric(),

totss=numeric(),

rsquared=numeric())

k <-7

print(k)

# Run kmeans

# nstart = number of initial configurations; the best one is used

# iter will return the iteration used for the final model

output <- kmeans(preprocessed, centers = k, nstart = 20)

# Add cluster membership to customers dataset

var.name <- paste("cluster", k, sep="_")

customers[,(var.name)] <- output$cluster

customers[,(var.name)] <- factor(customers[,(var.name)], levels = c(1:k))
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# Graph clusters

cluster_graph <- ggplot(customers, aes(x = frequency.log, y = monetary.log))

cluster_graph <- cluster_graph + geom_point(aes(colour = customers[,(var.name)]))

colors <- c(’red’,’orange’,’green3’,’black’,’blue’,’yellow’,’violet’)

cluster_graph <- cluster_graph + scale_colour_manual(name = "Cluster␣Group", values=colors

↪→ )

cluster_graph <- cluster_graph + xlab("Log-transformed␣Frequency")

cluster_graph <- cluster_graph + ylab("Log-transformed␣Monetary␣Value␣of␣Customer")

title <- paste("k-means␣Solution␣with", k, sep="␣")

title <- paste(title, "Clusters", sep="␣")

cluster_graph <- cluster_graph + ggtitle(title)

print(cluster_graph)

# Cluster centers in original metrics

library(plyr)

print(title)

cluster_centers <- ddply(customers, .(customers[,(var.name)]), summarize,

monetary=round(median(monetary),2),# use median b/c this is the raw

↪→ , heavily-skewed data

frequency=round(median(frequency),1),

recency=round(median(recency), 0))

names(cluster_centers)[names(cluster_centers)=="customers[,␣(var.name)]"] <- "Cluster"

print(cluster_centers)

cat("\n")

cat("\n")

# Collect model information

models[k,("k")] <- k

models[k,("tot.withinss")] <- output$tot.withinss # the sum of all within sum of squares

models[k,("betweenss")] <- output$betweenss

models[k,("totss")] <- output$totss # betweenss + tot.withinss

models[k,("rsquared")] <- round(output$betweenss/output$totss, 3) # percentage of variance

↪→ explained by cluster membership

assign("models", models, envir = .GlobalEnv)

remove(cluster_graph, cluster_centers, title, colors)

remove(k)

library(ggplot2)

library(scales)

# Graph variance explained by number of clusters

r2_graph <- ggplot(models, aes(x = k, y = rsquared))

r2_graph <- r2_graph + geom_point() + geom_line()

r2_graph <- r2_graph + scale_y_continuous(labels = scales::percent)

r2_graph <- r2_graph + scale_x_continuous(breaks = 1:j)

r2_graph <- r2_graph + xlab("k␣(Number␣of␣Clusters)")

r2_graph <- r2_graph + ylab("Variance␣Explained")

r2_graph

# Graph within sums of squares by number of clusters

# Look for a "bend" in the graph, as with a scree plot

ss_graph <- ggplot(models, aes(x = k, y = tot.withinss))

ss_graph <- ss_graph + geom_point() + geom_line()

ss_graph <- ss_graph + scale_x_continuous(breaks = 1:j)
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ss_graph <- ss_graph + scale_y_continuous(labels = scales::comma)

ss_graph <- ss_graph + xlab("k␣(Number␣of␣Clusters)")

ss_graph <- ss_graph + ylab("Total␣Within␣SS")

ss_graph

remove(j, r2_graph, ss_graph)

#########################################################

# Using NbClust metrics to determine number of clusters #

#########################################################

library(NbClust)

set.seed(1)

nc <- NbClust(preprocessed, min.nc=2, max.nc=10, method="centroid")

table(nc$Best.n[1,])

nc$All.index # estimates for each number of clusters on 26 different metrics of model fit

barplot(table(nc$Best.n[1,]),

xlab="Number␣of␣Clusters", ylab="Number␣of␣Criteria",

main="Number␣of␣Clusters␣Chosen␣by␣Criteria")

head(preprocessed)

mclustBIC2 = mclustBIC(preprocessed)

fit <- Mclust(preprocessed,G=7)

#GMM Bootstrapping

boot1 <- MclustBootstrap(fit, nboot = 999, type = "bs")

summary(boot1, what = "ci")

LRT = mclustBootstrapLRT(preprocessed, modelName = "VEV")

par(mfrow = c(2, 4))

plot(LRT , G = 1)

plot(LRT , G = 2)

plot(LRT , G = 3)

plot(LRT , G = 4)

plot(LRT , G = 5)

plot(LRT , G = 6)

plot(LRT , G = 7)

plot(LRT , G = 8)

plot(LRT , G = 9)

#Kmeans bootstrap

kmeansBoot <- clusterboot(preprocessed,clustermethod = kmeansCBI,runs = 100,iter.max=100,

↪→ krange = 7,seed=9898)

k = fit$G

#plot(fit) # plot resul

summary(fit) # display the best model

var.name <- paste("cluster", k, sep="_")

customers[,(var.name)] <- fit$classification

customers[,(var.name)] <- factor(customers[,(var.name)], levels = c(1:k))

# Graph clusters

cluster_graph <- ggplot(customers, aes(x = frequency.log, y = monetary.log))

cluster_graph <- cluster_graph + geom_point(aes(colour = customers[,(var.name)]))

colors <- c(’red’,’orange’,’green3’,’black’,’blue’,’yellow’,’violet’)

cluster_graph <- cluster_graph + scale_colour_manual(name = "Cluster␣Group", values=colors)

cluster_graph <- cluster_graph + xlab("Log-transformed␣Frequency")

cluster_graph <- cluster_graph + ylab("Log-transformed␣Monetary␣Value␣of␣Customer")

title <- paste("GMM-EM␣Solution␣with", k, sep="␣")
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title <- paste(title, "Clusters", sep="␣")

cluster_graph <- cluster_graph + ggtitle(title)

print(cluster_graph)

fit$uncertainty

# Cluster centers in original metrics

library(plyr)

print(title)

cluster_centers <- ddply(customers, .(customers[,(var.name)]), summarize,

monetary=round(median(monetary),2),# use median b/c this is the raw,

↪→ heavily-skewed data

frequency=round(median(frequency),1),

recency=round(median(recency), 0))

names(cluster_centers)[names(cluster_centers)=="customers[,␣(var.name)]"] <- "Cluster"

#print(cluster_centers)

cat("\n")

cat("\n")

# BIC values used for choosing the number of clusters

fviz_mclust(fit, "BIC", palette = "jco")

# Classification: plot showing the clustering

fviz_mclust(fit, "classification", geom = "point",

pointsize = 1.5, palette = "jco")

# Classification uncertainty

fviz_mclust(fit, "uncertainty", palette = "jco")

library(fpc)

km_stats <- cluster.stats(dist(preprocessed), output$cluster)

md_stats <- cluster.stats(dist(preprocessed), fit$classification)

c(km_stats,md_stats)

remove(preprocessed)

res.nbclust <- NbClust(preprocessed,

min.nc = 2, max.nc = 7,

method = "kmeans")

factoextra::fviz_nbclust(res.nbclust) + theme_minimal() + ggtitle("NbClust’s␣optimal␣number␣

↪→ of␣clusters")

library(ClusterR)

opt_gmm = Optimal_Clusters_GMM(preprocessed, 10, criterion = "BIC", plot_data = FALSE)

opt_gmm = Optimal_Clusters_GMM(preprocessed, max_clusters = 10, criterion = "BIC",

dist_mode = "maha_dist", seed_mode = "random_subset",

km_iter = 10, em_iter = 10, var_floor = 1e-10,

plot_data = T)

gmm = GMM(preprocessed, 2, dist_mode = "maha_dist", seed_mode = "random_subset", km_iter = 1

↪→ 0,

em_iter = 10, verbose = T)

opt = Optimal_Clusters_KMeans(preprocessed, max_clusters = 10, plot_clusters = T,
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verbose = F, criterion = ’silhouette’, fK_threshold = 0.85)

library(e1071)

cm <- cmeans(df, 7)

output <- cmeans(preprocessed, centers = k)

# Add cluster membership to customers dataset

var.name <- paste("cluster", k, sep="_")

customers[,(var.name)] <- output$cluster

customers[,(var.name)] <- factor(customers[,(var.name)], levels = c(1:k))

# Graph clusters

cluster_graph <- ggplot(customers, aes(x = frequency.log, y = monetary.log))

cluster_graph <- cluster_graph + geom_point(aes(colour = customers[,(var.name)]))

colors <- c(’red’,’orange’,’green3’,’black’,’blue’,’yellow’,’violet’)

cluster_graph <- cluster_graph + scale_colour_manual(name = "Cluster␣Group", values=colors)

cluster_graph <- cluster_graph + xlab("Log-transformed␣Frequency")

cluster_graph <- cluster_graph + ylab("Log-transformed␣Monetary␣Value␣of␣Customer")

title <- paste("fuzzy␣c-means␣Solution␣with", k, sep="␣")

title <- paste(title, "Clusters", sep="␣")

cluster_graph <- cluster_graph + ggtitle(title)

print(cluster_graph)

# Cluster centers in original metrics

library(plyr)

print(title)

cluster_centers <- ddply(customers, .(customers[,(var.name)]), summarize,

monetary=round(median(monetary),2),# use median b/c this is the raw,

↪→ heavily-skewed data

frequency=round(median(frequency),1),

recency=round(median(recency), 0))

names(cluster_centers)[names(cluster_centers)=="customers[,␣(var.name)]"] <- "Cluster"

print(cluster_centers)

cat("\n")

cat("\n")

library(fpc)

cm_stats <- cluster.stats(dist(preprocessed), output$cluster)
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