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ABSTRACT 

This quantitative study reports on the impact of using GeoGebra software to teach 

Grade 11 geometry through van Hieles’ levels theory, merged with some elements of 

the Technological Pedagogical Content Knowledge framework. Control (n=30) and 

experimental (n=30) groups were purposefully sampled from two secondary schools 

in Motheo District of Free State, South Africa. The experimental and control groups 

were taught using GeoGebra software and traditional teacher-centered instruction, 

respectively. The two groups wrote pre and post-tests on all six van Hieles’ levels. 

Both groups significantly improved in the post-tests at each van Hieles’ level. However, 

the experimental group’s true difference in population means (-39.57; -32.90) 

outweighed that of the control group (-15.65; -10.15). 

 

The study recommends teaching geometry to learners based on their cognitive 

abilities instead of their age groups. In addition, the effective use of smartphones in 

geometry lessons is recommended. Finally, geometry lessons should be planned. 

 

Key terms 

GeoGebra software; geometry; technology integration; van Hieles’ levels; van Hieles’ 

phases; cognitive levels; technological knowledge; pedagogical knowledge; content 

knowledge; smartphones. 
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ACRONYMS 

CAPS: Curriculum and Assessment Policy Statements, South Africa 

DoBE: Department of Basic Education, South Africa. 

FET: Further Education and Training phase, South African. 

FSDoE: Free State Department of Education, South Africa. 
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ICT: Information and Communications Technology 

MoE: Ministry of Education, Ghana. 

NSC: National Senior Certificate, South Africa. 

PDA: Personal Digital Assistant 

TPACK/TPCK: Technological Pedagogical Content Knowledge 

VHL: van Hieles’ levels 

VHP: van Hieles’ phases 

VHLT: van Hiles’ level theory 

PrV of PrT represents Pre-visualization of pre-test 

PrV of PoT: Pre-visualization of post-test 

V of PrT: Visualization of pre-test 

V of PoT: Visualization of post-test 

A of PrT: Analysis of pre-test 

A of PoT: Analysis of post-test 

Ab of PrT: Abstraction of pre-test 

Ab of PoT: Abstraction of post-test 

D of PrT: Deduction of pre-test 

D of PoT: Deduction of post-test 

Rg of PrT: Rigor of pre-test 

Rg of PoT: Rigor of post-test 

VHL1-6 of PrT: combined Van Hieles’ levels 1 to 6 of pre-test 

VHL1-6 of PoT: combined Van Hieles’ levels 1 to 6 of post-test. 
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CHAPTER ONE: INTRODUCTORY ORIENTATION 

1.1 Overview of the Study 

This is a quantitative study that comprises five incremental chapters. This chapter sets 

the stage for the entire study by providing an overview, introduction to the study, 

background, rationale, purpose, and significance of the study. In addition, the research 

aims and objectives are highlighted together with the limitations and delimitations of 

the study. The chapter further provides a summary of the reviewed literature, 

methodology, validity and reliability of tests, the analysis procedure, as well as the 

ethical considerations. It ends with brief explanations of the key terms used in this 

research. 

1.2 Introduction 

According to Rideout, Foehr and Roberts (2010:2-4), in a day, 8-18year old children 

spend over 7
1

2
 hours watching television, playing video games, surfing the web, and 

listening to music. This implies that the new generation pays more attention to 

technology-delivered programs. They, therefore, tend to spend most of their time on 

their mobile phones, laptops, social media, software, etc. This raises the question of 

whether those technological tools have any place in today's world of teaching and 

learning mathematics. Should teachers continue teaching learners whose interest in 

technology grows by the day using the same traditional teaching strategies? These 

are some of the very intriguing questions that are faced by today’s dynamic educators. 

Dynamic teachers do not stick to one teaching approach for all topics but prefer to 

analyze mathematical content before choosing the method or environment that would 

suit the topic. However, John Dewey, the educationist, once said, ''if we teach today's 

students as we taught yesterday's, we rob them of tomorrow'' (Pilgrim, Bledsoe & 

Reily, 2012:16). It is worth mentioning that sticking to the traditional talk-and-chalk 

method would mean an endorsement of the same absolutists’ beliefs that seem to 

undermine the intellectual capabilities of individuals or groups of learners, who have a 

genuine will and passion to explore the world of mathematics through technology. 

Absolutists are of the philosophical view that learning takes place by reading well-

known books with no consideration for the ability of the learner to construct their 

concepts through the help of, for instance, technology. In addition, absolutists believe 

in the teacher being the main provider of information to the learner. Absolutism is a 
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learning philosophy that encourages the behaviorists’ approach to teaching and 

learning, where the teacher is at the center of the learning process as opposed to the 

learner. Perhaps it is time for teachers to stop bombarding learners with information 

and give them the necessary tools to construct their geometric concepts, and this is 

where technology integration comes in handy. 

Ironically, the previous centuries might have considered the traditional teaching 

approach relevant during their time, while information was accessed via newspapers, 

books, libraries, etc. But today, one only needs to pick their personal digital assistant 

(PDA) or a mobile phone to access millions of articles and publications which prior to 

technology exposure, was not so easy to retrieve. Nowadays, most learners use social 

networks and many other technological tools to enrich their own learning. Interestingly, 

our learners seem fully aware of the gap between the teaching methods used for 

learning in the classroom and the reality out there. From personal experience, there 

are situations where learners, on the blind side of the teacher, would be busily 

browsing the content the teacher is presenting from their phones during the teaching 

process. For instance, the teacher might be revising Grade 12 past examination 

questions through talk-and-chalk, but the learner might be using free educational 

software like HeyMath to check and provide answers to the teacher. Arguably, there 

seems to be some great mismatch between the teaching approaches used by 

educators and the level of technological background high school learners possess. 

Perhaps, learners secretly use technology during or after lessons to draw teachers’ 

attention to the notion that they probably need educators to bring the lesson to their 

technological level. It could also be an indication of the reality regarding how students 

of today learn with technology. Whichever the case may be, this great mismatch 

arising out of teachers’ continuous use of the traditional transmission approach in 

teaching technologically inclined learners requires urgent redress. Unfortunately, a 

number of our classrooms have shown little sign of change to match the modern trend. 

Some educators stick to the theories of learning such as behaviorism, cognitivism, and 

constructivism which they acquired years ago, to teach today’s learners. Although no 

single learning approach could be considered best, perhaps considering the modern 

trends in teaching is commendable. The modern trends include the daily exposure of 

learners to cell phones, laptops, etc., where learners probably prefer watching videos 

of lesson presentations as against the transmission approach encouraged by 
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proponents of behaviorism. In a related example, a learner might be struggling to use 

established formulae to calculate the general or missing terms of number patterns. 

Meanwhile, that learner plays many games on their phones that use diagrams to form 

patterns. This is where teachers could take advantage of to maximize the learning 

outcome by dwelling on learners’ desire to use technology. However, with the 

abundance of literature to support technology inclusion, one still wonders why most 

educators are hesitant to link related educational technology into their lessons. There 

may be genuine concerns as to why there is limited adoption of technology integration 

in schools. Some researchers (Agyei, 2013; Akcay, 2017) lament the lack of 

resources, training of educators on the effective integration of technology, among 

others. Irrespective of the constraints out there, learners still deserve to be taught in a 

manner that maximizes their inherent potential, and what better way to do this than 

through technology integration. 

In addition, Xu, David, and Kim (2018:91) contend that the world is quickly shifting 

from the 3rd industrial revolution where information technology was mainly used to 

boost production, to the 4th revolution where production, management, governance, 

and almost all aspects of human lives are managed through connected technology in 

a digital world. This implies that educators and the schooling system have a 

responsibility as an agent of change. Schools should be able to produce learners that 

are capable of meeting the demands of the constantly evolving society. However, by 

engaging our learners through the integration of relevant educational tools and 

software, mathematics teachers would all be helping to make the 4th industrial 

revolution (4IR) a reality and, in turn, make the world a better place. Perhaps the time 

has come for South Africa to advance the prospects that come with the 4IR, which 

encompasses technology integration, such as the ability of educational technology to 

motivate learners to explore geometry on their own. Probably, the 4IR is a call for 

mathematics educators to find a better alternative to the traditional teaching approach 

when it comes to teaching geometry. The alternative, from the available literature and 

prevailing state in which the country finds itself, seems to point to integrating 

technology into the teaching process, to help learners achieve more in terms of their 

understanding and application of geometric concepts. 
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1.3 Background of the Study 

The South African education system has gone through a lot of reforms pre-and post-

independence. The reforms brought about the Outcomes-Based Education (OBE), the 

National Curriculum Statements (NCS) of 2007, and currently, the Curriculum and 

Assessment Policy Statements (CAPS) effective 2012. These reforms were 

necessitated by the growing demands of society. However, in the aforementioned, 

Euclidean geometry became an optional Paper 3 component in the high school system 

from 2007 until the 2012 reforms (DoE, 2003, 2011). Perhaps, the relevance and the 

practicality of geometry to our everyday lives were more than enough to grant its 

inclusion into the CAPS. It was the implementation of CAPS that brought back the 

topic to be compulsory for all high school mathematics learners in the country. This 

could be attributed to the desire of the country to empower its future leaders with 

critical thinking skills needed for solving problems that require spatial reasoning skills 

which Euclidean geometry seeks to do, as implied under the principles and aims of 

CAPS (DoBE, 2011:4). The inclusion of the topic also hopes to make learners ready 

for the challenges in the job market as employers usually require the innovative 

services of employees which Euclidean geometry readily offers through its riders. 

Perhaps, the compulsory nature of Euclidean geometry would help correct the 

educational imbalances of the past by providing equal opportunities for further 

education to all students. 

According to CAPS, the Grade 11 Euclidean geometry deals with circle theorems, 

proofs, and their applications (DoBE, 2011:34; Phillips, Bason & Botha, 2013:207-

246). In addition, the topic allows for the acceptance of related axioms from previous 

grades. One such axiom is that a radius is perpendicular to the tangent at the point of 

contact, which is useful in solving many geometry problems. Those geometry 

problems include situations where one needs to prove the tangent-chord theorem or 

its application. Moreover, geometry currently contributes to 33.3% of the entire Paper 

2 questions of both Grades 11 and 12 final examinations (DoBE, 2011:55). This 

implies that Euclidean geometry constitutes more than the required pass percentage 

of mathematics nationwide and that a learner could pass Paper 2 with Euclidean 

geometry alone since the pass mark for the paper is set at 30%. 
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However, geometry is perceived to be difficult even at the international level (Agyei, 

2013). According to researchers (Abdullah & Zakaria, 2013a; Haviger & Vojkůvková, 

2014; Mthethwa, 2015), geometry scares some educators and learners. However, 

recent diagnostic reports (DoBE, 2015:162-164; 2017b:151; 2018b:143-144) indicate 

that learners have improved in solving routine problems in Euclidean geometry. The 

challenge is that learners still struggle in interpreting complex geometry problems such 

as riders. According to the findings, that challenge may be due in part to how subject 

educators approach the topic in their everyday interactions with students, particularly 

in the early grades (DoBE, 2017b:171). To corroborate the findings from the diagnostic 

reports, researchers (Manganyana et al., 2020; Ogundile et al., 2019) assert that it is 

not only learners who dislike geometry but some teachers do too. The researchers 

claim teachers who mostly fear geometry are those who were deprived same during 

their schooling and tertiary years. Learners’ geometry performance in rural schools 

seems worse (Bayaga et al., 2019:33). However, the 2015 diagnostic report showed 

that learners achieved 34% on geometry questions that required application, and 38% 

on those that involved analysis (DoBE, 2015).  From the above discussion, it seems 

that Euclidean geometry in South African high schools has not been producing enough 

critical thinkers, as intended by the curriculum planners. For example, learners have 

consistently been scoring better on low-cognitive geometry questions  but not in the 

higher order questions (DoBE, 2015; 2017b; 2018b: 2019b). Geometry is mostly 

associated with the development of learners’ cognition required for problem-solving 

(Bayaga et al., 2019). However, those problem-soving skills required in the job market 

seem limited in South Africa (Jonck, 2014). Therefore, learners scoring lower marks 

in geometry during examinations implies that their level of preparedness and their 

opportunities in securing jobs is low.  Available literature (Bhagat & Chang, 2015; 

Faruk Tutkun & Ozturk, 2013; Gweshe, 2014; Jelatu et al., 2018; Khalil et al., 2019; 

Kutluca, 2013; Manganyana et al., 2020; Mthethwa, 2015) supports the use of 

GeoGebra and other technological tools as a corrective measure. What seems limited 

is the use of GeoGebra software to enhance learners’ cognitive abilities in rural 

settings. However, if the outcome of this study in rural schools proves successful, then 

educators may be empowered to adopt GeoGebra as a technology integration tool to 

help improve learners’ academic performance. 
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Furthermore, Euclidean geometry could be taught in a manner that harnesses 

learners’ real-life experiences (Clements & Battista, 1992; Masilo, 2018). Learners 

experience geometry in many forms daily as they play with football, kites, cylindrical 

cups in their homes, rectangular and square boxes, etc. This means that whenever 

teachers select geometry problems such as proving riders, the contents need to be 

realistic and taken from those experiences that are directly connected to learners’ 

socio-cultural setting of which technology is a vital part. A learner's socio-cultural 

setting embodies the surroundings, way of life, physical amenities, and others that 

help mold their total development. Fortunately, the socio-cultural environment of 

today’s learners is surrounded by technology; they opt for video games instead of their 

traditional ones, some prefer using interactive software on their phones to solve basic 

arithmetic problems as against using manual computations. However, access to these 

technological devices would depend on the economic status of learners’ families and 

the level of internet connectivity in the particular locality, which mostly favors the urban 

areas. These revelations imply that today’s classroom instruction, especially around 

the villages and townships, should be structured around learners’ active environment 

that challenges them to freely visualize and logically analyze given geometry 

problems. 

Due to financial and logistical constraints, it might prove difficult for the South African 

Department of Education to fix, at once, all challenges on the provision of technological 

devices to schools. Although not all classrooms are equipped with technological tools, 

individual schools could start the technology integration drive by investing in teacher 

development, and the needed technological devices. That notwithstanding, no single 

teaching approach could be considered superior over the other. However, many 

researchers (Biccard & Wessels, 2015; Osmanoglu & Dincer, 2018) agree that the 

traditional ways of teaching do little to develop learners’ understanding and 

construction of their own concepts. The traditional teaching approach is the 

transmission system that considers learners as mere recipients of information from the 

presumably all-knowing teacher. Unfortunately, a teacher who lacks knowledge in a 

certain aspect of a topic implies that the whole class could be heading for failure if this 

traditional teacher-centered method is used. On the contrary, technology has been 

and is still an important tool for the cognitive development of learners (Yakymchuk & 

Kazachenok, 2018). Cognitive development refers to the ability of the learner to 
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process whatever information that they receive by reorganizing, explaining, or making 

changes to them. The use of the abacus, for instance, helps learners to master 

numeracy, and the same can be said of using calculators, mobile phones, or the 

internet to explore, learn, or adapt different mathematical concepts. Consequently, 

educators may change their traditional teaching approach to include technology if they 

do not want to continue putting the future of mathematics at risk. 

Moreover, despite the lower-income status of most African countries, efforts are being 

made to embrace the use of technological tools in the teaching and learning of 

mathematics, precisely, geometry. Ghana, for instance, has through reforms in 2008, 

2015, and 2019, made information and communications technology a compulsory 

subject for all basic and high school students and recommends its integration within 

“learner-centered classrooms in teacher-centered schools” (MoE, 2018:2). Having a 

learner-centered classroom implies developing all classroom activities around the 

learner. In that classroom, it is learners who lead group and individual discussions on 

projects, investigations, experiments, etc. The teacher would be there to provide 

supervision without necessarily thinking for the learners. On the contrary, teacher-

centered schools are characterized by educators being responsible for the total 

welfare of the learner to ensure that learners enjoy learning. This includes making 

improvisations for situations where teaching and learning materials are lacking.  

However, since technological devices like phones or computers cannot be improvised 

to yield the same result as the actual technological devices, efforts need to be made 

to ensure their availability for learning. Regrettably, this is where most African 

countries are not doing well as a result of their economic conditions or political will. 

There seem to be insufficient technological devices in almost all African schools. The 

African countries are unable to provide enough resources such as laptops and 

licensed educational software and develop many teachers for effective technology 

integration (MoE, 2015, 2018, 2019). However, researchers  (Mereku & Mereku, 2015) 

concord that the challenge of insufficient technological resources is not so different in 

Mauritius, Nigeria, Senegal, and many other African countries. These countries share 

the same problem as they all have deficits in infrastructure and technological tools. 

The challenges with technology provision in African schools pose a serious threat to 

technology integration for the continent. 
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In South African high schools, there are subjects such as computer applications 

technology (CAT), and information technology (IT). However, those subjects are 

optional, and as such do not necessarily serve as technology integration in teaching 

and learning of other subjects. Technology integration deals with making use of 

available educational technology to improve teaching and learning. Although 

technology education, as a subject, is not compulsory in all high schools in the country, 

the South African Department of Education (DoE) has put in place measures to ensure 

that some schools are equipped with the required technological resources ranging 

from laptops, whiteboards, projectors, etc., to the internet connection in schools. 

Moreover, the provision of these technological gadgets to schools does not only assist 

mathematics educators in their quest to integrate technology, but it also helps the 

school as a whole for their day-to-day administrative work. Ramorola (2010) complains 

that despite most South African schools having some technological tools, their 

integration into teaching and learning is not encouraging. Perhaps, the failure of 

teachers to integrate the available technology could be related to teacher belief 

systems or lack of teacher development, or both. For example, a teacher may not 

integrate technology in teaching due to the belief that learners only get assessed 

through the use of pen and paper. On the contrary, a learner who can acquire and 

understand the basics in the various theorems through the help of technology is in a 

better position to apply the same in examinations and different aspects of real life. 

In an attempt to encourage technology integration, the Free State Department of 

Education (FSDoE) has been supplying Hey-Math laptops and software to schools 

and updating them yearly. Those measures have been in place since the inception of 

CAPS with the sole aim of helping mathematics educators integrate technology into 

their daily teaching. This initiative is an attempt to make mathematics more interesting 

for both learners and educators. However, researchers (Schleicher, 2012:44; Drijvers, 

2013:15) warn education practitioners of not to get carried away by technology. They 

argue that technology alone is not enough. In other words, technological tools should 

not be considered as some magic wands because it takes the skill and careful planning 

of a teacher to make a technology-integrated lesson useful. This implies that 

technology per se is not capable of replacing poor teaching practices. For instance, 

an educator’s failure to build a lesson from the known to the unknown may not yield 

the intended objectives, and that cannot be blamed on the technology used. This is 
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where educators need to be reminded that teaching is an art and that one needs to 

conduct a situational analysis, and plan all activities well, and in advance, to be able 

to reach the lesson’s set objectives. Furthermore, to integrate a particular educational 

tool or software into geometry lessons, educators may consider the relevance of the 

said technology to the topic as well as the benefits the learner would derive from the 

lesson. For example, using GeoGebra Graphing Calculator to present geometry would 

be less useful as compared to using GeoGebra Geometry since the latter has more 

tools to help navigate through geometric concepts. This is an indication that one 

cannot just decide to integrate technology without a plan. Likewise, it would be 

worthless to adopt technology integration just for the fun of it without structuring the 

lesson. Rather, each result from a technology-enhanced lesson should be immediately 

linked with learners’ daily pen-pencil-paperwork as well as their already established 

mathematical concepts. Otherwise, learners would be more interested in the fun part 

of the technology at the expense of learning geometry. 

Researchers (Akcay, 2017; Polly, 2014) have emphasized the importance of 

technology in our teaching. A lot of them have written about this in and outside South 

Africa. Many studies stress the improvement and positive effect that technology has 

in the teaching of mathematics. Some make use of GeoGebra software to address 

challenges in different aspects of geometry such as reflections, congruency, 3D 

geometry, etc., (Mosese, 2017; Mushipe, 2016; Shadaan & Leong, 2013). Others have 

also looked at the effects of GeoGebra software in teaching circle geometry in South 

African schools (Chimuka, 2017; Gweshe, 2014). For instance, Gweshe (2014:24) 

used the socio-constructivist approach to assess the effect of computer-assisted 

instruction in geometry. However, that approach did not clearly provide progressive 

levels to track learners’ development in geometry as compared to Van Hieles’ levels. 

Manganyana et al (2020:100) recommended the use of GeoGebra in “deep rural 

schools”. However, their study only focused on the properties of quadrilaterals. 

Similarly, Bayaga et al (2019:38) used “one week” to provide treatment for both the 

control and experimental groups in their study in a “high poverty rural” school. Although 

the results showed significant improvement, a longer time frame would have helped 

considering the diverse nature of grade 11 circle geometry. Numerous studies on 

geometry and technology integration exist. Perhaps what is limited are studies on the 

use of GeoGebra and Van Hieles’ levels in teaching circle geometry to Grade 11 
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learners in a rural setting, where such studies capture all the grade 11 circle theorems. 

This study, therefore, intended to measure the impact of technology integration in 

teaching Grade 11 Euclidean geometry based on Van Hieles’ model in two of the rural 

secondary schools in South Africa.  

1.4 Significance / Rationale of the Study 

This study intends to inform education practitioners of the need to make use of 

educational technology in our schools to improve learners’ performance in 

mathematics. It hopes to empower educators to improve practice through the use of 

interactive modern technologies such as educational software installed on mobile 

phones and laptops that relate to the environment of learners. The study aimed to 

make learners more actively involved in the instructional process as teachers make 

use of GeoGebra software in presenting Euclidean geometry. The study further hoped 

that policymakers would use the outcomes of the study to address the teaching and 

learning challenges faced in our schools. 

1.5 Literature Review 

In this chapter, I only present a brief on a few issues on the literature reviewed in this 

study. A full account of the literature review is given in Chapter 2. 

Literature was reviewed under the theoretical framework and in context. In context, 

the literature review analyzes the various studies conducted using GeoGebra and 

other educational software in and outside South Africa. Numerous studies have used 

GeoGebra software to assess its impact in teaching geometry and many other aspects 

of mathematics. Firstly, this study begins with a review of the true nature of geometry 

education in the country. It became evident that the spiral approach is mostly used in 

teaching high school mathematics of which geometry is included. Consequently, most 

of the Grade 11 concepts are deeply rooted in the axioms and theories learnt during 

the General Education and Training (GET) phase. For instance, a Grade 11 learner 

could best understand the fact that a perpendicular bisector from the center of a circle 

bisects the chord, only if that learner is abreast with visualization of all the parts of a 

circle, not forgetting the concept of congruency learnt in Grades 7 to 10. According to 

the Department of Basic Education (2018b:150), educators should put more emphasis 

on the basic work because “The fact that learners are naming angles incorrectly at 

Grade 12 level indicates that this issue has not been dealt with effectively in earlier 
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grades”. Probably, mathematics educators could capitalize on learners’ prior 

geometric knowledge and develop the new geometry content around such knowledge. 

This and many more are what this review found very disturbing and needed urgent 

redress, probably, with the help of GeoGebra integrated lessons. Furthermore, there 

was enough literature on different available educational software. However, 

GeoGebra software seems to be the most widely used of them all. Perhaps, it is due 

to its open-source nature or its friendly user interface in different versions or both. 

Literature supports the use of GeoGebra in teaching in the sense that most of the 

studies showed significant improvement in different aspects of mathematics. An 

example is a study by Mwingirwa and Miheso-O’Connor (2016) which highlights the 

benefits of using GeoGebra in schools. However, the researchers, just like Chimuka 

(2017), strongly encourage effective teacher training prior to the use of such 

educational software. Among the challenges in using educational software, the review 

pointed out insufficient technological tools in our schools, low levels of teacher 

development, the beliefs held by some teachers regarding teaching methods, amongst 

others. Many other researchers (Drijvers, 2013; Drijvers et al., 2015; Jelatu et al., 

2018; Seloraji & Eu, 2017; Shadaan & Leong, 2013) have emphasized the usefulness 

of making technology a part of the mathematics teaching process. Interestingly, the 

researchers caution against any attempt to replace our rich teaching methods with 

technology as this has the potential of ruining the creativity that comes along with 

teaching. In this technology-driven world, perhaps what educators need is a carefully 

planned lesson that utilizes van Hieles’ levels and also takes into account all the 

pedagogical content knowledge in a technological environment to maximize the 

learning output. 

1.6 Theoretical Framework 

The theoretical framework entails a critical overview of the Technological Pedagogical 

Content Knowledge (TPACK) model, constructivism, and the five levels and phases 

of geometric thoughts as outlined in the model of van Hieles’. Furthermore, the review 

assessed the suitability of each of the aforementioned models for this study together 

with a critique of the possible weaknesses in the models. 

Firstly, the van Hieles’ model is one of the popular theories in mathematics education 

that provides direction to teachers on the effective teaching of geometry. This model 
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was developed by husband and wife, Dina van Hiele-Geldof and Pierre van Hiele, as 

part of their doctoral dissertation at Utrecht University, Netherlands. Their model has 

five distinct levels and five phases for teaching geometry. The levels comprise 

visualization, analysis, abstraction, formal deductions, and rigor. However, these 

levels are not mutually exclusive as Level 2 requires the application of Level 1 

knowledge for one to excel, and so on. Moreover, each of the five levels requires the 

learner to progress through five phases viz. information, guided orientation, 

explanation, free orientation, and integration. Secondly, the Technological 

Pedagogical Content Knowledge (TPACK) framework which was designed by 

Khoehler and Mishra was reviewed (Khoehler & Mishra, 2005). Finally, the 

epistemology of constructivism, which was seen to be much related to van Hieles’ 

model, especially, as it was manifested during van Hieles’ free orientation phase was 

discussed. All aspects of the aforementioned frameworks and theories have been 

discussed in detail under Chapter 2 of this study.   

1.7 Statement of the Problem 

Most 21st-century learners have access to modern technology devices like cell phones, 

laptops and others. They also get excited and enjoy working with such devices. 

Moreover, various methods have been used to teach geometry including those that 

strengthened visualization and deduction from proofs. However, learners’ 

performance in geometry in South African high schools does not look encouraging 

(Chimuka, 2017). Since 2015, the pass percentages per question in the National 

Senior Certificate examination in Euclidean geometry range from 28% to 61% (DoBE, 

2015, 2017, 2019a, 2020b). Seemingly, learners struggle to interpret given diagrams 

because of their weak understanding of the basics of geometry. With the desire to 

improve the performance of learners in Euclidean geometry, educators would need to 

take advantage of learners’ technology advancement and modify their approach to 

teaching to meet the current societal trends. This study therefore aims to investigate 

the impact of technology integration in teaching Grade 11 Euclidean geometry based 

on Van Hieles’ model. 

1.8 Aim of the study 

The study aims to determine the impact of GeoGebra as a technology integration tool 

in teaching Grade 11 Euclidean geometry based on Van Hieles’ model. 
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1.9     Objectives 

The objectives of this study were to: 

➢ Identify the challenges that learners experience in understanding circle 

geometry. 

➢ Determine how the use of GeoGebra software through each van Hieles’ level 

in the classroom affects learner achievement in the teaching and learning of 

Euclidean geometry among Grade 11 students. 

1.10  Main Research Question 

The main research question is:  

What is the impact of technology integration in teaching Grade 11 Euclidean geometry 

based on Van Hieles’ model?  

1.11 Research Questions 

The following questions will seek to find answers to the main research question: 

1) What challenges do Grade 11 learners experience in understanding circle 

geometry? 

2) How does the use of GeoGebra software through each van Hieles’ level in the 

classroom affect learner achievement in the teaching and learning of Euclidean 

geometry among Grade 11 learners?  

1.12 Research Hypothesis 

The study was also guided by the following four (4) null and four (4) alternative 

hypotheses, in that order, where 𝐻0 ~ Null Hypothesis and 𝐻1 ~ Alternative 

Hypothesis. The findings from the study were used to determine whether to accept 

or reject these hypotheses. 

i. H0: There is no significant main effect of the control and experimental groups on 

the geometry performances of Grade 11 learners.  

H1: There is significant main effect of the control and experimental groups on the 

geometry performances of Grade 11 learners.  

ii. H0: There is no significant main effect of pre- and post-tests on Grade 11 learners’ 

geometry performance. 
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H1: There is significant main effect of pre- and post-tests on Grade 11 learners’ 

geometry performance. 

iii. H0: There is no significant interaction between the control/experimental groups and 

their pre- and post-tests. 

H1: There is significant interaction between the control/experimental groups and 

their pre- and post-tests. 

iv. H0: Using GeoGebra software in classroom does not improve Grade 11 learners’ 

academic achievement across each van Hieles’ level in the teaching and learning 

of Euclidean geometry. 

H1: Using GeoGebra software in classroom improves Grade 11 learners’ academic 

achievement across each van Hieles’ level in the teaching and learning of 

Euclidean geometry. 

1.13 Methodology  

In this study, I only present a summary of the methodology used in this study. Full 

discussions on methodology are covered in Chapter 3. 

This study followed a quasi-experimental design situated in a positivist paradigm. The 

design adopts the control group interrupted time-series format which is known for its 

ability to withstand maturation, history and pre-testing (McMillan & Schumacher, 

2014:303). The research used quantitative methods by taking the population from 

approximately 600 Grade 11 mathematics learners enrolled in Circuit 7 of Motheo 

District in Free State, South Africa. Out of that population, a sample of 30 participants 

each, were taken from two secondary schools in the Free State province, making a 

total of 60 subjects for the control and experimental groups. In addition, a purposive 

sampling technique was used since this design needed an already existing classroom 

with technological resources. The data collection instruments were self-designed three 

pre- and another three post-tests based on the van Hieles’ theory. The data were 

analyzed using descriptive and inferential statistics. 

1.14 Validity and Reliability 

According to McMillan and Schumacher (2014:189), test validity is a measure of the 

appropriateness of inferences based on the scores from the test. In other words, a test 

of higher validity should be capable of measuring what it intends to measure. However, 

the outcome from a particular test may be valid only for that test but invalid for others, 
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an indication that validity is case-specific. Consequently, factors such as the purpose, 

population, and the environment used for data collection were carefully considered to 

ensure content validity. Moreover, researchers (Ayre & Scally, 2014; Lawshe, 1975) 

seem to agree that a test item has content validity if over 50% of experts consider it 

relevant to the study. However, Ayre and Scally (2014) suggested a minimum number 

of experts needed to agree on an item, for it to be considered as either essential or 

critical. Therefore, this study adopted expert opinion and the Content Validity Ratio 

(CVR) of Lawshe in determining test content validity. To achieve reliability, a pilot study 

was conducted on 15 Grade 11 learners from a different secondary school situated in 

the same locality where the main study was done. Thereafter, the results of those tests 

were subjected to Pearson product-moment (r) reliability testing for equivalence and 

internal consistency. Finally, steps were taken to manage other aspects of reliability 

including stability. All processes that were followed to ensure the reliability and validity 

of the test items can be found in Chapter 3. 

1.15 Data Analysis 

The scores from the tests written by the control and experimental groups were coded 

and analyzed using descriptive and inferential statistical procedures. This analysis was 

augmented with the International Business Machines Corporation’s Statistical Product 

and Service Solutions (IBM-SPSS), formerly known as Statistical Package for the 

Social Sciences (SPSS). This software package was chosen due to its friendly user 

interface and its broad statistical features such as descriptive, bivariate, predictive, 

geo spatial analysis, among others. In conclusion, this analysis provides the 

mathematics educator with evidence that supports the need to include technology in 

the teaching of geometry in South Africa. 

1.16 Ethical Considerations 

This study commenced after the issuance of an ethical clearance from the ethics 

committee of UNISA. In addition, permission was sought from the Free State 

Department of Education (FSDoE), as well as the circuit manager of the schools where 

the research was conducted. Moreover, permission was requested from the principals 

of two schools in Free State to use one each of their Grade 11 classes, during after-

school hours for a maximum of an hour, for this study. The two schools were further 

requested by the researcher to grant access to the list of the participants who were 
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Grade 11 learners, from their school’s database for progression purposes only. Assent 

and consent forms that ensure the protection of learners’ privacy, anonymity, the 

confidentiality of data, etc., were issued out to learners and their parents/guardians 

that sought their voluntary completion and participation. Each permission letter or 

assent/consent form addressed the issue of coronavirus (Covid-19), and the measures 

put in place to avoid exposing learners to the virus. 

1.17 Scope and Limitations 

Although the study was done for over two years, conducting data collection in only six 

weeks limited the outcomes due to the short time, especially, since the control group 

interrupted time design is more suitable for longer periods. Moreover, the sample size 

of 60 learners for the two groups was still not adequate for generalizations. A larger 

sample size would be preferable, but time constraints and resources did not allow it. 

More so, using an already established class of learners makes it difficult to control 

threats such as attrition, statistical regression, selection, instrumentation, among 

others (McMillan & Schumacher, 2014:303). There were threats regarding exposure 

of participants to Covid-19, which restricted the researcher from using a larger class 

size or encouraging group work. In terms of the scope, the researcher restricted this 

study to the visualizations, analysis, deductions, and rigor of circle geometry. This did 

not provide room for more formal proofs and problem-solving in geometry as a whole. 

Furthermore, the fact that classes were mostly held on weekends led to participants 

sometimes forgetting learnt concepts as compared to having the study continuously 

on weekdays. Finally, using tests for data collection is mainly suitable for subjects who 

can only read and write, implying that any wrong interpretation of the test items would 

result in unreliable outcomes.  

1.18 Definition of key terms 

The following key terms, concepts and variables relate to this study: 

Technology integration: In this dissertation, the term refers to making use of 

educational software, mobile phones, laptops, and projectors to facilitate teaching and 

learning without necessarily replacing the mathematics teacher. It is not about learning 

ICT as a course in schools. 
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Constructivism: The mathematical philosophy that knowledge does not exist 

somewhere waiting to be discovered, but to be acquired by constructing them through 

the various resources available to learners in their surroundings through intuition, 

creativity, observations, experiments, and our five senses. 

Constructivist teaching approach: The method of teaching where the learner’s 

interest is placed above that of the teacher as the latter serves as a facilitator to enable 

learners to construct their own mathematical concepts individually or with their peers. 

The zone of proximal development (ZPD): 

A term in Vygotsky’s socio-cultural theory, a constructivist approach, depicting the gap 

between what each learner is capable of doing without any assistance, and what they 

can do through the help of their more capable peers or facilitators through structured 

and unstructured activities.  

The traditional teaching method 

This is the talk-and-chalk, transmission, teacher-centered, behaviorist, or absolutist 

way of teaching where knowledge is mainly transferred from the teacher to the learner, 

where the latter is usually considered as a tabula rasa (a clean slate with no innate 

ideas). 

Group A: The experimental group that received the intervention in the form of using 

GeoGebra software to solve problems. 

Group B: The control group that wrote only the tests after being taught through the 

traditional approach. 

X: The intervention received by Group A (using GeoGebra software to explore circle 

geometry problems). 

O1: A pre-test used for data collection which centers on the visualization and analysis 

levels of van-Hieles’ model. 

O2: This is the second pre-test which assesses learners on Levels 3 and 4, which are 

abstraction and deduction respectively, of van-Hieles’ model. 

O3: The final pre-test which focuses on van-Hieles’ rigor level of geometric thoughts. 

O4: This is the first post-test, similar to O1, which assesses van Hieles’ Levels 1 and 2. 
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O5: The second pre-test, just like O2, dedicated to Levels 3 and 4 of van Hieles’ model. 

O6: This is the final post-test, structured just like O3, to assess rigor. 

1.19 Chapter Orientation 

This chapter sought to present a general orientation as to what the entire study is 

about. Efforts were made to explain the background to the main research problem. 

Furthermore, the researcher outlined the aims, objectives, and hypotheses in addition 

to research ethics, limitations, and delimitations of the study. A summary of the 

literature review, methodology, as well as key terms related to technology integration, 

have been explained. 

Next is Chapter 2, which presents a detailed review of all relevant literature that is 

related to this study. The summaries and critiques of previous studies are presented 

as well as their significance to the current study. The review focused on studies done 

using different educational software to improve teaching pedagogy, the nature of 

geometry education in South Africa, and the measures to adopt for successful 

technology integration. The theoretical framework discusses van Hieles’ theory on 

geometric reasoning, constructivism, and the TPACK model. 

Further, Chapter 3 is dedicated to the methodology for the study. This chapter 

presents a positivist research orientation. It exposes the reader to a quantitative study 

that uses non-probability sampling techniques to select the sample in a quasi-

experimental design. It also gives a vivid account of the entire procedure used for 

collecting data. Moreover, issues relating to ethics have been addressed together with 

the measures to ensure the validity and reliability of the study.  

In Chapter 4, the researcher organizes and analyzes the collected data and presents 

the findings. Both descriptive and inferential statistical procedures were adopted for 

the data analysis through the use of the SPSS software. In addition, the presented 

findings have been interpreted in this chapter.  

Finally, Chapter 5 is dedicated to making conclusions about the study. A summary of 

the findings, recommendations, and suggestions for further research are outlined here. 
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CHAPTER TWO:  LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

2.1 Introduction 

This chapter presents relevant literature related to the integration of educational 

technology in the teaching and learning of geometry. The related studies are 

discussed under two main categories: the context, and the theoretical framework that 

underpins this study. The chapter begins with the presentation of the theoretical 

framework. This is followed by a discussion of the nature of geometry in South African 

General Education and Training (GET), and Further Education and Training (FET) 

phases. In addition, the findings from different studies, challenges in teaching and 

learning of geometry, available educational software, features of GeoGebra software, 

and learners’ performance with GeoGebra are presented. Other aspects that are 

discussed include the significance of educational technology, and the challenges and 

control measures for using educational technology when teaching Grade 11 Euclidean 

geometry. The chapter concludes with a summary of where this study fits into the 

related literature on the impact of teaching with technology. 

2.2 Theoretical Framework 

Researchers (Jojo, 2017; Ernest, 1991) opine that teaching geometry in a way that 

actively engages the learner in a social environment, to make the most of the learning 

situation, is a more effective approach than the traditional behaviorist paradigm. 

Woollard (2010) explains the behaviorist paradigm as a teaching and learning 

approach where learners react to stimulus or information from the teacher which 

motivates the learner to form a new learning behavior. In behaviorism, learners are 

considered as blank slates, and so, learners rely mostly on the teacher as their main 

source of knowledge, with little to no active engagement from the learner. However, 

some theorists  (Piaget, 1967; Ernest, 1991; Dubinsky, 2014; 1984; van Hieles, 1986; 

Smaldino, Heinich, Molenda & Russel, 2008; Koehler & Mishra, 2005b; Rosenberg & 

Koehler, 2015) have been used in researching best practices to use in the teaching 

and learning of geometry. Those theories include Piaget’s cognitive development 

theory, social constructivism, van Hieles’ level theory (VHLT) of geometric reasoning, 

and Smaldino et al.’s (2008) Technological Pedagogical Content Knowledge (TPACK) 

model. The others include Actions, Processes, Objects, Schemas (APOS) theory by 

Dubinsky (1984; 2014) and finally, the Analyse Learners; State Objectives; Select 
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Methods, Media, and Materials; Utilize Media and Materials; Require Learner 

Participation; Evaluate and Revise (ASSURE) model. In summary, Piaget’s cognitive 

development theory provides four stages of development, from sensorimotor to formal 

operational stage, which could help the teaching of geometry in South African schools 

based on the learner’s cognitive level. However, Piagets’ theory could not be used for 

this study because it is more general in application with emphasis on the age of 

learners, but no specific focus on geometry or technology integration, which is contrary 

to what this study aims to investigate. Similarly, Ernerst’s (1991) social constructivism 

does not apply to this study although the theory has its own affordances. For instance, 

social constructivists promote the active peer-to-peer interaction between learners 

during lessons as a means of ensuring meaningful learning. However, the 

constructivists’ theory seems to have no specific guidelines for integrating technology 

into the learning of geometry. Similarly, the APOS model, which was developed from 

Piagets’ work, is equally not suitable for this study compared to van Hieles’ model. 

That is because APOS does not necessarily focus on geometry or technology 

integration unlike VHLT or TPACK respectively. On the contrary, the ASSURE model, 

just like TPACK, seems to lay out some specific steps to follow in the technology 

integration process. However, the ASSURE model does not take into consideration 

the various forms of knowledge, as in TPACK, that the geometry learner or the teacher 

should possess prior to, and during the learning process.  

Consequently, this study adopted van Hiele’s level theory (VHLT) of geometric 

reasoning, after analyzing the kinds of knowledge in the TPACK model, which were 

then compared with the nature of mathematics taxonomy used in South African 

schools. The South African Mathematics taxonomy is a set of cognitive levels that 

each outlines the formal tasks, tests or examinations should cover. For instance, a 

geometry test should have 20% of Knowledge (recall of basic geometric facts), 35% 

of Routine procedures such as proofs of well-known theorems, 30% of Complex 

procedures such real-world problems, and 15% Problem-solving that deals with high 

order reasoning. All the identified frameworks for this study (VHLT and TPACK) are in 

line with the epistemology of constructivism where learners are given the needed 

support to construct their own concepts. However, the VHLT and TPACK model were 

selected for several reasons. For instance, the van Hieles’ theory provides incremental 

levels for developing learners’ geometric understanding, which is supplemented by 
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five transitional phases for teaching and learning. Alternatively, the TPACK model 

provides an in-depth understanding of the various potentials or knowledge possessed 

by the teacher and learner before and during the learning process. A blend of the van 

Hieles’ and TPACK is expected to make the learning process more intriguing. A 

detailed presentation of the two theories is given in the next sections. 

2.2.1 Van Hieles’ five levels of geometric reasoning 

In separate doctoral dissertations at the University of Utrecht in 1957, Pierre Marie van 

Hiele and his wife Dina van Hiele-Geldof developed what has become the van Hieles’ 

Levels Theory (VHLT) on geometric reasoning. According to Usiskin (1982), the VHLT 

became popular when the husband took it upon himself to throw more light on the 

couple’s project after the death of Dina, the wife. Subsequently, the publication of 

VHLT by Freudenthal in 1973, who was a mentor to the husband and wife, helped 

enhance the popularity of the model. The work done by Freudenthal (1973), Pyshkalo 

the Soviet (1968), Wirszup (1976), among others, ensured that the VHLT spread 

across the globe. 

The VHLT has two stages comprising five levels and five phases. According to van 

Hieles’ (1986), the five levels of geometric thought processes are visualization, 

analysis, abstraction/informal deduction, deduction, and rigor as shown in Figure 1.1. 

Each preceding level seems to overlap into the next level making the levels not 

mutually exclusive but dependent on each other. 

 

FIGURE 2.1: THE VAN HIELE’S LEVELS (VHL) OF GEOMETRIC THOUGHTS  (Adapted from Rezky & Wijaya, 2018) 
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Besides the five levels, there exist five van Hieles’ phases (VHP) of development 

through which a learner progresses from one level to the next. Those phases, from 

one to five, in that order are inquiry/information, directed/guided orientation, 

explanation/explicitation, free orientation, and integration. A detailed presentation of 

the levels and phases has been presented below. 

However, it is worth mentioning that the five van Hieles’ levels (VHL) originally begin 

with level 0, which Usiskin (1982) called Level 1, and it continues that way until Level 

5 (originally Level 4). 

Level 0 (VHL0): Visualization  

According to van Hieles (1957), visualization, also known as recognition, is the first 

and basic level that each learner must acquire when developing their geometric 

concepts. In simple terms, to visualize means to create a mental picture of an object 

or a situation. Similarly, van Hieles’ visualization level (VHL0) deals with the 

identification of polygons, parts of a circle, or any geometric shape by their unique 

appearances or by their look-alike/prototype, without necessarily understanding all the 

characteristics of the particular shape. For instance, Table 2.1 displays the likelihood 

that learners would compare some shapes such as a circle to the sun or full moon, a 

shape which most Grade 11 learners should be familiar with. In effect, visualizing is 

the skill of relating known shapes to geometric figures. Likewise, learners could be 

made to easily recognize a semi-circle as the half-moon, the cube as a dice, or parallel 

lines as railway lines all due to their resemblance.  

However, inasmuch as Pegg (1995: 90) agrees to seeing or recognizing geometric 

figures through their prototypes, the researcher identified other aspects of VHL0 as 

part of the visualization process. According to the researcher, instead of identifying 

say, a square, by its properties, learners would rather look at other aspects like the 

flatness, points, or corners in identifying the shape. At other times, learners may use 

only one feature, for instance, equal sides, to quickly remember an equilateral triangle. 

The implication is that at VHL0, learners mostly rely on perception to identify shapes 

and teachers should use more real objects to nurture learners’ ability to visualize. 
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TABLE 2.13: VISUALIZING GEOMETRIC SHAPES 

PROTOTYPE GEOMETRIC SHAPE NAME OF GEOMETRIC 

SHAPE 

 

            Sun               Full-moon 
 

 

 

Circle 

 

  

Half-moon 

 

 

 

Semi-circle 

                    

Dice 

 

 

   Cube 

                     

Warning 

Triangle 

           
 
Set-square 

 

 

    

   Triangle 

 

However, it is worth noting that not all geometric shapes or their prototypes could be 

physically obtained and shown to learners during a lesson. Sometimes the educator 

would have to improvise a particular geometric shape, such as the sun, to depict a 

circle.  

Unfortunately, there seems to be a challenge amongst Grade 11 learners when it 

comes to identifying the various parts of a circle. As a result, learners struggle to grasp 

the various circle theorems. However, recognizing geometric shapes could be 

enhanced by displaying images of their look-alikes via technological tools like phones 

and laptops. Hopefully, such a display of shapes using technology could probably 

deepen and create long-lasting mental images about the various geometric shapes 

including parts of the circle. That display could also pave the way for any future 
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analysis or deductions of axioms or theorems based on established properties of the 

geometric shapes.  

In conclusion, effective visualization requires the ability to not only identify shapes, but 

to classify them as well. The learner needs to develop the skill to see that triangles are 

different from quadrilaterals by their unique physical looks.  

Level 1 (VHL1): Analysis, the aspect of geometry  

Analysis involves breaking into parts the various features of a shape for a better 

understanding of geometric concepts. It is at this stage that the properties of a shape 

are used to distinguish it from other shapes, as opposed to using their prototypes.  

 

FIGURE 2.2: A RHOMBUS DIFFERS FROM A SQUARE 

In Figure 2.2, the Grade 11 geometry learner should be able to use the various 

properties of the two shapes to distinguish them. Although the two shapes have a lot 

of similarities, for instance, opposite sides are parallel and equal in the square as well 

as rhombus, however, a square has four right angles that a rhombus does not have. 

In addition, the diagonals of a square are equal, and they bisect each other. On the 

contrary, the diagonals of the rhombus have different lengths although the diagonals 

bisect each other just like the square. Perhaps, it is these basic and unique 

characteristics about the various plane figures that made van Hiele-Geldof (1957) 

classify this level (VHL1) as “the aspect of geometry”. Moreover, those properties of 

geometric shapes are so essential that they influence learners’ ability or otherwise to 

deal with high-order geometric proofs. The identification of shapes by their properties 

could help avoid the situation where a learner confuses a chord with a diameter, a kite 

with a rhombus, or a trapezium with a parallelogram. In other words, the more a learner 

understands the basic features of geometric shapes, the better the learner can apply 

them in advanced geometry problems.  
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However, with abundant evidence (DoBE, 2011-2019b) pointing to the way Grade 11 

and 12 learners struggle with riders in geometry, one could only interpret it to be due 

to the failure by educators to pay much attention to the features of VHL0 and 1 (Masilo, 

2018b; Rezky & Wijaya, 2018). Perhaps, mathematics educators could use technology 

integration to assist learners to master the particular features of geometric shapes. 

For example, GeoGebra software allows learners to measure angles and line 

segments or create their own geometric shapes (Tay & Mensah-Wonkyi, 2018:4). As 

a result, learners could construct the diagonals or any other part of a square and 

measure to see if the lengths or angles are equal or not and compare their measures 

with that of other shapes. In that way, learners would understand more and own their 

self-developed concepts as they use GeoGebra to analyze the features of various 

geometric shapes under VHL1. 

Level 2 (VHL2): Abstraction/Order, the essence of geometry 

This level is about logic, order, and relationships among geometric shapes (Rezky & 

Wijaya, 2018). At this level, the learner of geometry makes simple and informal 

deductions without any mathematical system to link one shape or theorem to the other 

(Masilo, 2018). This means that learners do not understand the mathematical proofs 

attached to learners’ deductions. For example, diagram X in Figure 2.3 depicts the 

theorem which states that “the angle at the center of a circle, subtended by an arc or 

chord is double the angle at the circumference formed by the same arc or chord”. To 

explain further, if arc AB subtends 1300 angle at the center as shown in diagram X, 

half of that 1300 should form at the circumference since it is the same arc AB that 

formed both angles.  

However, diagram Y in Figure 2.3 shows diameter AD formed by moving point B in 

diagram X to point D. That move from B to D leads to the formation of 1800 at center 

O, implying that the angle, K, at the circumference must be 900. But the theorem for 

diagram Y says that “angles in a semi-circle are supplementary” (DoE, 2011). A close 

observation of the two diagrams would reveal that both theorems are the same since 

they all revolve around the theorem for diagram X. Moreover, circle theorems such as 

“angles in the same segment are equal”, “equal chords subtend equal angles at the 

circumference of the same circle”, etc., could all be traced to the theorem of “angle at 

center is double the angle at circumference”. 
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FIGURE 2.3: ANGLE AT CENTRE IS DOUBLE THE ANGLE AT CIRCUMFERENCE 

According to van Hiele-Geldof (1957), VHL2 is “the essence of geometry” in the sense 

that VHL2 moves the learner’s reasoning from just identifying properties of shapes, to 

establishing direct relations between the shapes. This abstraction level further draws 

learners’ attention to the importance of order in geometry. Similarly, ordering could 

help establish that the square, rhombus, and rectangle are all special forms of a 

parallelogram. This is because a parallelogram is a plane figure with opposite sides 

parallel and equal, and all the aforementioned shapes share those properties. 

Level 3 (VHL3): Deduction, an insight into the theory of geometry 

Dina van Hiele-Geldof (1957) considers this deduction level as the one that provides 

learners with adequate “insight into the theory of geometry”. Perhaps, that insight is 

gained from the numerous formal proofs, making postulates, and the derivation of 

theorems in this level. For example, the tangent-chord (tan-chord) theorem says:  

“An angle formed between a tangent and a chord, at the point of contact, equals the 

angle formed by the same chord at the circumference of the circle”.  

To prove this tangent-chord theorem, the learner would have to make many 

deductions similar to the ones outlined in the four steps below: 

Step 1: Construction  

Diagram Y in Figure 2.4 is one of the constructions that could be used to prove the 

tan-chord theorem. Although the construction in diagram Y might look routine to some 

learners in Grade 11, the details in it span through VHL0-2. For instance, to be able to 

construct diagram Y means the learner can visually identify and differentiate all the 
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parts of the circle from VHL0 to 1. Moreover, the learner should be conversant with 

the properties of the individual parts of the circle as well as the relationship existing 

between some of the parts, which fall under VHL1-2. Examples of such relationships 

include: a radius is perpendicular to a tangent; the angles that are opposite the equal 

sides of an isosceles triangle are equal, etc. Once again, the use of technology 

integration could assist learners to have a better view of the various connections 

between circle parts in their constructions. The technology, such as GeoGebra, could 

help improve learners' understanding of concepts as learners themselves predict their 

outcomes and test their assumptions with accurate measurements from the software. 

 

FIGURE 2.4: PROVING THE TANGENT-CHORD THEOREM THROUGH DEDUCTIONS 

Step 2: Justifying the value of angle O1   

This is where the actual deductions begin. From Figure 2.4, the Grade 11 learner is 

expected to use the properties of the isosceles triangle in ∆𝐶𝑂𝐵,  to deduce the 

following: 

 𝐼𝑛 ∆𝐶𝑂𝐵,  

𝐶̂1 = 𝐷̂2 = 𝑥   … … . .     𝑎𝑛𝑔𝑙𝑒𝑠 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑒𝑞𝑢𝑎𝑙 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 ∆ 

                          ∴ 𝑂̂1 = 180° − 2𝑥   … … . .     𝑎𝑛𝑔𝑙𝑒 𝑠𝑢𝑚 𝑜𝑓 ∆ 

Step 3: Relating 𝑂̂1 to 𝐷̂ 

At this stage, the learner should be remembering the connections learnt from VHL2 to 

link the two angles. Since 𝑂̂1  is an angle at the center and 𝐷̂  is the angle at the 
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circumference of the same circle, then half of 𝑂̂1 is equal to𝐷̂. That means, 𝐷̂ = 90° −

𝑥. Those are very useful deductions that help learners to build their level of interest in 

geometry. Those deductions could also help learners to have durable memory of each 

learnt geometric concept, like the fact that the angle at the center is double the angle 

at the circumference of a circle, the radius is perpendicular to tangent, or the tangent-

chord theorem, and apply them in the next VHL. 

Step 4: Relating 𝐵̂2 to the radius and tangent 

By inference and from the learners’ construction of diagram Y above,  

𝐵̂1 + 𝐵̂2 = 90°  … …      𝑟𝑎𝑑𝑖𝑢𝑠 ⊥ 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 

    But 𝐵̂2 = 𝑥 

    ∴ 𝐵̂1 = 90° − 𝑥 

    ∴ 𝐵̂1 = 𝐷̂ 

In conclusion, the above steps attempt to demonstrate the various deductions that the 

Grade 11 learner could make to prove given geometric theorems or problems. 

However, the learner at VHL3 is expected to be able to derive and prove each of the 

main geometric theorems from learners’ own constructions. Sometimes, this level 

(VHL3) demands making proofs through a combination of other theorems. Unlike 

VHL2, the learners at VHL3 understand the proofs that they make as learners connect, 

in a more logical manner, all related axioms and other theorems to derive new 

theorems. From the aforementioned, it probably seems logical to say that the 

deductions in this level prepare learners for more “insight” (van Hiele-Geldof, 1957) 

into the learning of Grade 11 circle geometry. 

Level 4 (VHL4): Rigor, the scientific insight into geometry 

It could be said that VHL4 is an advanced VHL3. This is because learners gather all 

the necessary insight into the theories in geometry from VHL3 and turn them into 

“scientific insight into geometry” at VHL4 (van Hiele-Geldof, 1957). By scientific insight, 

it denotes making proofs that could withstand the test of time. It also means that the 

geometric proofs should use all available and well-established geometric theories, 

axioms, postulates, etc., to arrive at valid conclusions. In addition, the nature of those 

VHL4 problems is so open-ended that different learners could use different 
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approaches, which are all geometrically acceptable, to arrive at the same conclusion. 

Furthermore, VHL4 tests learners’ understanding of various systems in mathematics 

through direct or indirect arguments, contra-positive proofs, and sometimes, by non-

Euclid means. This is where learners may be required to think deeper as they debate, 

and come to a consensus on the best option to solve given geometry problems. 

However, the Curriculum and Assessment Policy Statements (CAPS) of the South 

African education system refers to such VHL4 questions as riders. Those riders mainly 

focus on the application of all learnt concepts and theorems of geometry from both 

General Education and Training (GET) and Further Education and Training (FET) 

phases.  

Unfortunately, most diagnostic reports (DoBE, 2015, 2017, 2019a, 2020a, 2020b) 

complain year by year of consistent low performance of Grade 12 learners on riders 

during their National Senior Certificate (NSC) examinations. Interestingly, most of the 

geometry questions in NSC examinations come from Grade 11 circle geometry. 

Perhaps if Grade 11 learners were given the necessary attention by schools, and 

carefully taken through all van Hieles’ levels, learners’ performance would be better 

than it is currently. Furthermore, although literature shows the positive impact of using 

GeoGebra, the outcome of this study, if successful, could guide educators as to how 

best to use the visuals and the tools for measurements in GeoGebra to maximize 

learners’ performance in geometry.  

Besides the five van Hieles’ levels, Usiskin (1982) laments the inability of some 

learners to fit all Van Hieles’ levels, hence, the creation of a forced Van Hieles’ level 

(p.44) to address that shortfall. In creating that forced VHL, the researcher first had to 

remove VHL5 because the specific behaviors listed under VHL were too “vague” 

(p.23). For instance, VHL5 talks about “logical thinking itself” as a “subject matter” 

(p.22). However, it is not clear whether that logic refers to axioms or the normal 

symbolic deductions teachers use in class. As a result, the researcher posited that 

VHL5 is “hardly attainable” in secondary schools because it may not be testable (p.23), 

hence, its removal. That removal of VHL5 paved the way for the researcher to 

reorganize the van Hieles’ levels which resulted in the forced VHL. Usiskin realized 

that “not every geometry question” (p.29-30) can be classified under the VHL. For 

instance, questions that involved using a theorem to solve problems of numerical 

nature were considered by the researcher to be outside the VHL since those questions 
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do not satisfy the listed characteristics of VHL. Moreover, although VHL assumes that 

a learner can do proofs under level 4, Usiskin argues that there may still be learners 

who can memorize and write simple proofs with no understanding of the theorem itself 

(not yet attained VHL4). Such a learner could not be necessarily placed under a 

particular VHL but in a forced no fit VHL. Those reasons probably accounted for the 

creation of the six “Modified van Hiele levels” which included the forced no fit VHL, by 

Usiskin. However, Usiskin (1982:44) maintained that classifying a learner under a no-

fit category does not mean that the van Hieles’ theory is flawed, rather, it only shows 

a learner who demonstrates random geometric capabilities.  

On the contrary, Usiskin (1982:45) asserts that increasing the number of tests items 

or improving the test quality and classifying them appropriately to minimize the number 

of errors could ensure that all the learners fit all the van Hieles’ levels. For that reason, 

this study opted to increase test items and improve test item classification instead of 

creating a no-fit VHL. However, this study agrees with the work of Clements and 

Battista (1992) who believe that the van Hieles’ levels should begin with a Pre-

visualization level before Visualization. The expected behaviors under Pre-

visualization have been captured under Section 2.2.5 of this study. Consequently, this 

study adopted 6 instead of 5 van Hieles’ levels where the first level is Pre-visualization, 

as explained in Table 2.2.  

Furthermore, Usiskin (1982) highlights the need for educators to give as many as 20 

or 50 lessons to move a learner from level 1 to 2 or level 2 to 3 respectively. Following 

the notion that constant practice puts one close to perfection, educators could probably 

give more tasks that address various aspects of geometry to help enrich learners’ 

understanding of geometric concepts. This implies that to teach Euclidean geometry 

successfully requires more practice which goes beyond just literally progressing 

among some levels. 

2.2.2 Features of van Hieles’ level theory 

There are five unique properties of van Hieles’ levels. Firstly, and according to Usiskin 

(1982), the van Hieles’ levels follow a “fixed sequence” such that, each learner ought 

to successfully understand all concepts in VHL1 before progressing to the next level. 

For example, a learner who struggles to differentiate the properties of different 

quadrilaterals, or of the parts of a circle would have difficulties drawing connections 
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among the parts of the same circle or the quadrilaterals. Therefore, each learner ought 

to gain the basics in geometry such as the visuals or properties of shapes, to enable 

a better understanding of more challenging Euclid problems. In other words, the 

geometry learner needs to fully understand level n-1 (previous VHL) before starting 

level n (current VHL). In addition, researchers (Abdullah & Zakaria, 2013b; Chimuka, 

2017; Jojo, 2017; Masilo, 2018) assert that advancing from one VHL to the next is 

mostly influenced, not by the learner’s age, but by the quality of instructional materials, 

methodology, and learning environment within which the lesson takes place. That 

assertion places a quick reminder to geometry teachers: effective preparation before 

a geometry lesson cannot be underestimated when success and learner 

understanding are the objectives. 

However, the opposite of moving from level n-1 to level n is possible because 

according to Usiskin, (1982), a learner at a higher van Hieles’ level displays 

“adjacency”. This second property “adjacency”, according to Pierre van Hiele (1958-

59), implies that the learner at a higher VHL has already achieved considerable 

success at the lower levels. Therefore, the learner is capable of turning the skills 

initially considered “intrinsic” at lower VHL to “extrinsic” ones at higher levels. Intrinsic 

skills could be explained as those skills that are applicable within a particular geometric 

concept or van Hieles’ level whilst extrinsic skills are applied outside a particular 

concept or level. For instance, within van Hieles’ Abstraction level, learners should 

have connecting or ordering skills (intrinsic) to be able to identify different ways of 

using the same theorem, say, the angle at the center is twice the angle at the 

circumference, in diverse ways to generate converse theorems. However, those 

connecting, and ordering abilities tend to serve “extrinsic” purposes in the next van 

Hieles’ level (Deductions). That is because a learner who is presented with a 

geometric problem that requires deductions would be able to break the problem down 

into parts for analysis if the learner understands the connections between different 

geometric theorems from the previous VHL. 

Thirdly, the researcher identified some “distinctions” in terms of learners’ use of 

language and the associated mathematical symbols at different levels. For instance, 

learners at the visualization level would rely on real objects to identify or classify 

shapes. However, a VHL 4 learner would use mathematical notations for angles, 

triangles, etc., to make valid proofs.  



32 
 

Moreover, the next property “separation”, according to Usiskin (1982:15), says that if 

two people operate at two different VHL, they fail to understand one another. To 

exemplify, a mathematics educator may be using established axioms and theorems to 

prove riders in the classroom. Should some learners in the class have no idea what 

each circle theorem says or cannot even tell the relationship between radius and 

diameter, the teacher’s proof would result in futility as the learners cannot comprehend 

the arguments being made regarding the particular geometric proof. 

Finally, there is the “attainment” property. This property carefully outlines the various 

phases that the geometry learner has to pass through to move from lower to higher 

VHL. Those phases apply to each van Hieles’ level, and each of those five phases has 

been explained below. To conclude, Usiskin (1982) explains that the nature of van 

Hieles’ level theory (VHLT) demonstrates “elegance, comprehensiveness, and wide 

applicability”.  

The elegance in VHLT is manifested in how simple the theory is. For example, there 

are five phases within each VHL, and that learners ought to complete VHL1 to allow 

their progression to the next VHL, showing elegance in the form and structure of the 

model. In terms of geometry, VHLT could be described as comprehensive because 

the theory could be used to teach geometry irrespective of a learner’s grade. In 

addition, VHLT provides clarity on learners’ challenges in geometry as well as 

providing comprehensive levels and phases to use to address those geometric 

challenges. According to Usiskin (1982), Pierre van Hiele believes in the applicability 

of VHLT to all mathematical topics including functions, although most researchers 

prefer geometry to the other topics. Those assertions by Pierre seem to confirm how 

comprehensive the VHLT is. Moreover, researchers (Masilo, 2018; Rezky & Wijaya, 

2018) assert that VHLT is known to be adopted by most mathematics researchers 

across the globe. That assertion shows the wide applicability of VHLT. Perhaps the 

theory’s wide usage is due to its elegant and comprehensive nature.  

2.2.3  Van Hieles’ five phases within the levels 

According to researchers (Rezky & Wijaya, 2018: Usiskin, 1982), there are five van 

Hieles’ phases (VHP) of “attainment” that are attached to each VHL. These phases 

are inquiry/information, directed/guided orientation, explanation/explicitation, free 

orientation, and integration. 
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VHP 1: Inquiry / information 

Some researchers (Abdullah & Zakaria, 2013b; Dockendorff & Solar, 2018; Masilo, 

2018) believe that effective learning of geometry begins with information sharing 

between the teacher and learners. However, to share information, according to Hoffer 

(1981), implies the teacher asking thought-provoking questions to elicit responses that 

are geared towards the activation of learners’ prior knowledge. For example, at VHL4, 

a teacher may introduce the proof of the theorem, “angle at center is twice the angle 

at circumference” by asking learners the following instruction and questions which I 

suggest below:  

1. Mention any part of the circle that is also a straight line. 

2. What is the sum of all the angles in any triangle? 

3. What is the relationship between a diameter and a radius? 

4. Describe the isosceles triangle with particular reference to its angles. 

5. Is there any relationship between the exterior angle of a triangle and its interior 

angles? If so, what is it? 

Although those self-developed questions above might not be the best thought-

provoking questions, those questions could enhance the geometric habits of mind 

(Bülbül, 2021; Cuoco et al., 1996) required to prove and apply the indicated circle 

theorem. In effect, the questions posed during van Hieles’ inquiry phase (VHP1) have 

two objectives: the first is to ascertain the level of existing knowledge possessed by 

learners, and secondly, to prepare learners’ minds by giving them a clear path as to 

what learners should expect in the lesson. Similarly, most of the questions posed 

above seek to draw learners’ attention to the relationships among geometric shapes 

or parts of a shape that they learnt in VHL3 (Bülbül, 2021). Those relationships, which 

were previously intrinsic at VHL3, would then serve as prior knowledge to help both 

the learner and teacher delve into the geometry topic for the day (Yi et al., 2020). To 

corroborate the work of Hoffer (1981) on the five van Hieles’ phases, Crowley (1987), 

explains that this inquiry phase aims to establish some rapport between the teacher 

and the learner regarding learners’ geometry experience, the direction the study would 

take, including the kind of learning tools, materials, and pedagogy to use.  

VHP 2: Directed/guided Orientation 
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Having finished preparing the learner’s thoughts at the inquiry phase, it should be 

expected that the learner’s anxiety on the chosen geometry topic would rise, and that 

is when the teacher comes in with the direction. According to Masilo (2018), the guided 

orientation phase could be described as an exploratory or discovery exercise for 

learners. Perhaps, it is called exploratory due to how educators actively engage 

individual learners to search for geometric knowledge through the use of drawing and 

measuring tools, educational software, or by learners’ own constructions. Once again, 

the educator’s main role is to facilitate learning by giving more room for learners to 

create and form their own geometric ideas. The educator may use well-prepared 

learning materials such as geo-board, cut-outs, etc., that could provide support for 

learners to develop more geometry concepts. Moreover, the teacher could guide 

learners through technology integration, to learn the functions of the various tools in 

GeoGebra, and use the tools to construct circles, zoom in and out, draw and measure 

line segments and angles, etc.  

VHP 3: Explanation 

According to (Masilo, 2018; Siyepu, 2005; Crowley, 1987) this phase (VHP 3) is for 

explication. Explication involves the analysis and development of ideas or principles 

for gaining more knowledge. On the contrary, Jojo (2017) refers to VHP 3 as the 

explicitation phase. However, explicitation originates from the word explicit, which 

means to make a clear and detailed statement that leaves no doubt among those 

listening. Moreover, both explication and explicitation seem to have knowledge 

acquisition in common. Therefore, this study adopts Usiskin (1982)’s term, 

explanation, for VHP 3 since the term encapsulates both explication and explicitation. 

Furthermore, a detailed explanation of concepts during lesson presentation ensures a 

better understanding and provide direction in the development of knowledge in 

geometry.  

However, the explanations given during knowledge development could not always be 

coming from the bosom of the teacher. Learners at this phase (VHP3) should be able 

to exchange geometric thoughts with their peers too. Moreover, learners could teach 

or learn from their group members, and that is similar to what Vigotsky (1978) 

describes in his Zone of Proximal Development (ZPD) as learning from “more capable 

peers”. Perhaps, learners feel free to share ideas with their peers due to the same 
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level of language/linguistics used, or due to peers finding the simplest way or method 

to explain their acquired concepts to other learners.  

Furthermore, researchers (Ernest, 1991; Jojo, 2017) believe that learners learn better 

from each other through active engagements like group work, leading to the 

acquisition of relevant skills applicable to geometry. In addition, Masilo (2018) is of the 

view that it is during VHP 3 that learners begin to cement their self-identified 

relationships about geometric shapes to form axioms. The learners probably develop 

those geometric connections faster through active interactions in a well-organized 

environment. Furthermore, the researcher asserts that those axioms are mostly 

developed as learners express themselves by giving explanations of identified 

patterns or structures in given geometric shapes. For example, learners can explain 

why the rhombus, square, and rectangle are all parallelograms, or why a diameter’s 

length is double that of a radius. However, mathematics educators should keep 

facilitating to ensure that learners’-built concepts could stand the test of time. In 

addition, the learners should be encouraged to use correct mathematical notations as 

and when concepts are being developed. Those skills gained from directed orientation 

are so important for the next van Hieles’ phase of learning. 

VHP 4: Free Orientation 

At this phase, learners are challenged to make use of their own established geometric 

relationships, postulates, axioms, or theorems to solve open-ended geometry 

questions (Clements & Battista, 1992). Perhaps the idea of the open-endedness is for 

learners to come up with as many solutions as possible so that the class could enrich 

their critical thinking skills as they debate on the different approaches used and agree 

or disagree on those concepts.  

However, the free orientation phase requires some amount of time for learners to apply 

their knowledge. To achieve this, teachers could probably actualize Jojo (2017)’s 

approach of “disrupting the learning environment”. The researcher encourages 

educators to modify the mathematics learning environment by “reorganizing the 

mathematical possibilities in a geometric task” (Jojo, 2017:258) to suit the skills and 

needs of particular learners. That means individuals or groups of learners should be 

supported with techniques, tools, and materials specific to their geometry problem. 

Those relevant tools and materials may include a display of charts and diagrams 
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connecting different circle theorems, educational software, geoboard, etc. Perhaps, a 

geometry-friendly environment would motivate learners to think independently or 

make them persist amidst challenging and complex activities during the free 

orientation phase. 

VHP 5: Integration 

Finally, the integration phase (VHP 5) involves making a synthesis to form a general 

overview of learnt concepts. It is VHP 5 that serves as the bridge between successive 

van Hieles’ levels. However, this phase does not produce new concepts. Rather, 

learners conduct reviews to connect all previously identified geometric connections 

and theorems (Masilo, 2018:70). For instance, learners may summarize all properties 

of angles that are formed at the center of a circle by an arc or chord and make a 

general remark about them, supported by valid reasons. However, such reviews tend 

to add to or even replace learners’ existing knowledge about geometric shapes. For 

instance, a learner might previously be familiar with congruent triangles. However, 

after investigating congruent triangles inside a circle, the learner then realizes that a 

perpendicular line from a chord that passes through the center of a circle bisects that 

chord. Finally, after the completion of the integration process, the learner then 

becomes ready to enter a fresh van Hieles’ level, leading to a repeat of the same cycle 

of phases within each level. 

2.2.4 Critiques of van Hieles’ Level Theory 

Van Hiele’s model has been criticized by some researchers. Although the model 

encourages hierarchical transition among levels, De Villiers (1987) believes that this 

is not always necessary for formal deductions. This is because some talented learners 

may skip levels as evident in, for instance, the use of Structure of the Observed 

Learning Outcome (SOLO) model (Pegg, 2002). By implication, just using levels may 

not lead to the complete understanding of the desired geometrical concepts. Rather, 

educators may consider learners’ needs as well as the goals and context of the lesson 

and allow some flexibility among the levels whiles maintaining effective integration of 

relevant concepts. 

In concurrence, some researchers (Masilo, 2018; Abdullah & Zakaria, 2013; Clements 

& Battista, 1992) posit that the original van Hieles’ visualization level (VHL 0) lacks the 

exposure of learners to the real-world geometric experiences. Perhaps, that was the 
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motivation for the splitting of VHL0 to produce pre-visualization and visualization 

levels. Moreover, the researchers assert that some learners perceive geometry as 

abstract concepts that have no direct relation to their real-life experiences. That 

perception makes it difficult for learners to remember and own geometric concepts. 

From personal experience, some Grade 11 learners cannot mention more than two of 

the various parts of a circle. Others too fail to differentiate the names of the basic 

triangles. Perhaps, learners have these problems due to little or no exposure to 

visuals. To address the challenge with visualization, Clements and Battista (1992) 

reworked the original van Hieles’ levels to include a Pre-visualization level which 

precedes the visualization level. This Pre-visualization level has been explained under 

Section 2.2.5.  

Despite the criticisms of van Hiele’s theory, available literature shows that some 

researchers (Masilo, 2018; de Villiers, 2004; Abdullah & Zakaria, 2013), still trust that 

the VHLT is relevant and gives more direction as far as the teaching and learning of 

geometry is concerned, hence, the choice of van Hieles’s model for this study. 

2.2.5  Comparing Van Hieles’ Levels (VHL), Bloom’s Taxonomy (BT), and South 

African Mathematics Taxonomy (SAMT) 

As a means of addressing the loopholes criticized by some researchers on van Hieles’ 

level theory, this study postulates that the pre-visualization level is critical for cognition 

in geometry. As a result, Table 2.2 has been developed by the researcher to actualize 

this new van Hieles’ level so that there will be six instead of the five original levels. 

However, there seems to be a direct connection between the van Hieles’ levels (VHL), 

Bloom’s taxonomy, and the mathematics taxonomy currently being used in South 

African secondary schools. Table 2.2 has been dedicated to the various links existing 

between the three taxonomies. 

Originally, there are six Bloom taxonomy levels. These are Knowledge/Remember (1), 

Understand (2), Application/Apply (3), Analysis/Analyze (4), Synthesis/Synthesize (5), 

and Evaluation (6). However, in this study, the researcher opted to swap the last two 

levels of Bloom’s taxonomy. The swapping became necessary so that Bloom’s 

Evaluation and Synthesis could match the action verbs that apply to van Hieles’ 

Deduction and Rigor levels, respectively.  
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TABLE 14.2: COMPARING THREE TAXONOMIES FOR LEARNING GEOMETRY  

(ADAPTED FROM: MASILO, 2018; CLEMENT AND BATTISTA, 1992; ABDULLAH AND ZAKARIA, 2013; VAN HIELES’, 1986) 

L
e

v
e

l Van Hieles’ 

Level 

Bloom’s 

Taxonomy 

SA Math 

Taxonomy 

Geometric Reasoning 

 

1 

Pre- 

Visualization 

(Pre-V) 

Knowledge/ 

Remember 

Knowledge • To relate real-world experiences to geometry. 

• Learners rely on concrete models, real artefacts, 

pictures, electronic and computer resources to learn 

about geometry. 

• To use learners’ five senses and perception to identify 

shapes. 

• To duplicate, repeat, state, define, memorize basic 

facts and recall ideas about geometric shapes from 

long-term memory. 

 

2 

Visualization 

(V) 

Knowledge 

and 

understanding 

Knowledge • Identifying geometric shapes without relying on their 

properties. 

• Learning and using appropriate geometric 

terms/linguistics. 

• To describe, recognize, locate, select, report, classify, 

translate, and explain basic geometric concepts  

 

3 

Analysis (A) Understand 

and apply 

Routine 

Procedures 

• To distinguish and classify given shapes using their 

properties. 

• To sketch, interpret, implement, solve, operate, and 

make use of geometric concepts in new situations. 

 

4 

Abstraction/ 

Order/ 

informal 

deductions 

(Abs) 

Analyze  Complex 

Procedures 

• To compare, connect, contrast, differentiate, test, 

examine, and draw a network of relationships among 

geometric shapes. 

• To break geometric ideas into parts and connect 

them. 

 

5 

Deductions 

(D) 

Evaluate Complex 

Procedures 

• To judge, appraise, defend, weigh, value, critique, 

support, and justify a decision with logic. 

• To use axiomatic systems to establish/prove 

geometric theories. 

• To distinguish geometric statements from their 

converses using the connection between postulates, 

terms, definitions, axioms, and other theorems. 

6 Rigor (Rg) Synthesize and 

create. 

Problem-

solving 

• To operate in different mathematical systems 

including axiomatic and non-Euclidean systems. 

• To plan, invent, assemble, summarize, review, 

design, construct, conjecture, formulate, and 

investigate. 

• To hypothesize, make sets of rules, and produce 

original/new concepts. 
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Similarly, the mathematics taxonomy of South Africa has four levels, viz. Knowledge 

(1), Routine Procedures (2), Complex Procedures (3), and Application (4) (DoE, 2011). 

However, this study finds it useful to put both VHL 1 and 2 in the same group as South 

Africa’s Knowledge level, since the two taxonomies focus on the basics of geometry 

at this stage. Likewise, VHL 3 and 4 have been paired with Routine Procedures 

because the geometry tasks at this level usually require a few steps to finish.  

Moreover, all three frameworks assess basic knowledge at the new VHL 1 and VHL2. 

However, VHL 2 adds the use of correct terminology in geometry. In addition, some 

aspects of the taxonomies have been noted to overlap with others. This overlap was 

influenced by the nature of van Hieles’ levels where some concepts operate implicitly 

and later become explicit at the next VHL. 

2.2.6 The Technological Pedagogical Content Knowledge (TPACK/TPCK) 

Model  

Shulman (1986, 1987) developed a model called Pedagogical Content Knowledge 

(PCK) to address the critical knowledge requirements for teaching and learning 

different school subjects. However, in this 21st century, learning has evolved to include 

technology usage in many ways, which the PCK alone could no longer address. 

Consequently, Koehler and Mishra (2005, 2009) introduced the Technological 

Pedagogical Content Knowledge (TPCK/TPACK) after the researchers criticized the 

PCK model. Some of the criticisms were that the model (PCK) is only useful for “time-

starved teachers” (Koehler & Mishra, 2009:398) who have little or no knowledge of the 

affordances and demerits of modern educational technology. However, the 

researchers admit that both PCK and TPACK show the disparity between a person’s 

cognition and actions, as well as the subject matter and its accompanying 

methodology. Perhaps that disparity is what motivated the framers of TPACK to use 

the “learning by design” approach, which is a discovery learning approach, to enhance 

the teaching and learning process. However, TPACK features different forms of 

knowledge. The unique features of the TPACK model have been explained below, and 

are also shown in Figures 2.5 and 2.6. 

Content Knowledge (C/CK): This is the knowledge about the specific subject matter 

that educators need to teach their learners. For instance, every mathematics learner 

in Grade 11 in South Africa should be taught exponents, quadratic patterns, functions, 
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Euclidean geometry, and measurement, among others. However, due to the spiral 

nature of the mathematics curriculum in the country, just knowing the topics is not 

enough. This is because all grades in the Further Education and Training (FET) study, 

for example, Euclidean geometry, except that the specific contents differ from one 

grade to the next. By implication, this means the mathematics educator should be very 

familiar with the specific aspects of Euclidean geometry such as angle properties on 

parallel lines, midpoint theorem, etc. Geometry in Grade 11, for example, covers the 

discovery, proof, and application of circle theorems whilst that of Grade 12 deals with 

proportionality and similarity theorems. Perhaps, knowledge of such contents would 

guide the mathematics educator to choose or design more effective teaching 

pedagogies. 

Pedagogical Knowledge (P/PK): Selecting the right teaching approach, managing 

the classroom effectively, or finding out which assessment strategies suit a chosen 

content are usually challenging for some educators. However, having effective P/PK 

requires teachers to find answers to questions like these: What method of teaching 

would be appropriate for the content and the learners? Should that teaching method 

involve the use of technology, drill, brainstorming, lecture, or a mix of methods?  

 

FIGURE 2.5: THE ORIGINAL TPCK FRAMEWORK (SOURCE: KOEHLER AND MISHRA, 2005) 

Sometimes, it is important to know what specific teaching practices, procedures, or 

processes are to be adopted in teaching a particular mathematics topic. It could be 
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that a particular geometry lesson requires group or individual work, a project, or some 

investigation. Other equally important aspects of PK are the aims and objectives of the 

lesson. It is necessary to ensure that the aims and objectives are in agreement with 

the anticipated outcomes, which then influences the kinds of assessment to be used. 

Hopefully, the answers to the above questions would strengthen the PK of the 

mathematics teacher. This is because when the mathematics teachers become 

pedagogically adept, they can use “cognitive, social and developmental learning 

theories” (Harris, Mishra & Koehler, 2009:397) to design lessons that acknowledge the 

unique needs of each learner. 

Technological Knowledge (T/TK): As educators prepare for the 4th industrial 

revolution (4IR), the level of teachers’ knowledge regarding basic and advanced 

teaching tools should be updated regularly (Xu et al., 2018). Similarly, teaching 

Euclidean geometry requires teachers to abreast themselves with the effective use of 

relevant technological gadgets and software. It means educators should be 

conversant with how to draw, drag and paste, copy, save, insert, zoom, etc., using 

GeoGebra software, for example. It also means that teachers need development on 

the affordances and weaknesses that come with identified technological tools to 

maximize learning (Joshi, 2016).  

 

FIGURE 2.6: THE UPDATED TPACK MODEL (SOURCE: MISHRA, 2019) 
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However, Harris, Koehler and Mishra (2009:395) warn against having “technocentric” 

development in teaching. This refers to putting more effort into learning how the 

GeoGebra software, for example, operates before considering the exact needs, 

strengths and weaknesses of the learners involved. On the contrary, the researchers 

recommend the reverse situation where learners’ needs come first. For instance, 

avoiding technocentrism when teaching circle geometry may involve making some 

considerations such as the following: Grade 11 learners should be developed to 

acquire deductive skills that would enable them to draw circles, make assumptions, 

inscribe triangles, measure parts of the lines and angles to verify their assumptions, 

and make proofs. Thereafter, the teacher tries to find out if the selected technological 

tool is capable of addressing learners’ particular learning needs. 

Moreover, the researchers (Koehler & Mishra, 2005; Mishra, 2019) posit that any 

meaningful integration of technology into teaching should find a way of connecting the 

elements CK, TK, and PK. Both Figures 2.5 and 2.6 seem to connect the various forms 

of knowledge that come together to form the TPACK framework. However, the 

updated model (Figure 2.6) throws more light on the relevance of contextual factors in 

teaching and learning in general, which could be applied in geometry too. The aspect 

of contextual factors in TPACK has been further explained in the later part of this 

section. Epistemologically, the success of using TPACK revolves around the careful 

interaction between CK, TK, and PK. However, that interaction between the various 

components of TPACK immediately leads to another set of knowledge, which is the 

next point of discussion. 

Technological Content Knowledge (TCK): The relationship between technological 

knowledge (TK) and content knowledge (CK) results in the formation of TCK. This is 

the stage where educators analyze how technology impacts content and vice-versa 

(Justine, 2017). Unlike the traditional approach where a teacher prepares a geometry 

lesson separately, TCK would rather consider situations where a mobile phone, 

GeoGebra, whiteboard, projector, or any technological device or software could be 

used to maximize the learning output. For example, an educationist may ask, how 

could learners benefit from the proof of the tangent-chord theorem if learners could 

use GeoGebra on their phones to do the construction? Or do the displays and 

visualization of geometric shapes using software improve learners’ cognition in 

geometry in any way? If the answer to any of the above questions is yes, then 
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educators should be encouraged to harness the potential that comes with technology, 

and integrate the same in a carefully planned, intentionally developed lesson, and an 

active and constructive learning environment.  

Pedagogical Content Knowledge (PCK): When the pros and cons of mathematics 

content and the related pedagogy are merged, the result is PCK (Koehler & Mishra, 

2005a). PCK begins with having an understanding of the mathematics curriculum and 

making a good selection of a topic like Euclidean geometry, together with all related 

sub-topics that the mathematics learner should know. Thereafter, the identified content 

should be matched with suitable teaching strategies, assessment techniques, etc. 

However, managing the learning environment (Mishra, 2019) through class discipline, 

availability of learning aids, setting clear objectives for groups and individuals may help 

to achieve the teacher’s outlined objectives in the lesson.  

Moreover, the PCK framework fails to acknowledge the role played by technology. 

Although it could be argued that technology may be considered as part of the teaching 

pedagogy, the emphasis on its usage under PCK is almost non-existent. Perhaps, this 

is what motivated the development of TPACK to address that gap by giving technology 

its rightful place in this 21st century. 

Technological Pedagogical Knowledge (TPK): Is it possible for teaching and 

learning to change because of the introduction of a new technological tool? If so, what 

sort of knowledge should the mathematics educator have to be able to use the right 

technologies with appropriate technology? To answer both questions, the teacher 

should be equipped with developments that enable the teacher to distinguish 

educational technological tools by their strengths and weaknesses (Joshi, 2016). 

Hopefully, constant exposure of educators to technology and pedagogy would drive 

mathematics teachers to change from a traditional teaching approach to be more 

creative and flexible during their teaching. Flexibility is mentioned here because the 

technology itself evolves by the minute. Therefore, both learners and teachers should 

be ready to embrace new techniques and challenges during technology integration 

(Mhlanga, 2018). However, that does not mean a deviation from the learning objective. 

It is the pedagogy that gets upgraded because of technology but not by lowering the 

standards and expectations in geometry. The standard to be maintained includes 

reasoning with relationships, analyzing, synthesizing, and evaluating concepts based 
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on sound logic. Besides, researchers (Bülbül, 2021; Couco, Goldenberg & Mark, 1996; 

Sakirudeen & Sanni, 2017) agree that each geometry learner is expected to develop 

creative, reflective and critical reasoning abilities as part of the habits of mind: 

standards that cannot be underestimated or lowered in the 4th industrial revolution. 

Perhaps TPK would help teachers to develop lessons that challenge learners to be 

inventors, pattern sniffers, or make conjectures and models.  

Contextual Knowledge (XK): The particular context within which learning takes place 

may have some influence on how a learner understands the lesson. It could be that a 

mathematics teacher plans to integrate technology into the learning process, but the 

school authorities do not allow learners to bring electronic gadgets to school, or the 

parents do not want their children to use such devices. At other times, the classroom 

environment itself could pose a threat to technology integration due to the poor lighting 

system or non-functioning electrical sockets. Whichever the context may be, its impact 

on teaching and learning is inevitable. For instance, a school whose learners are 

allowed regular access to technology usage may find technology integration lessons 

less challenging than another school with limited or no access to the internet or 

technological tools. 

According to researchers (Kol, 2019; Rosenberg & Koehler, 2015), contextual factors 

are so many, but they are the “least understood” aspects of the TPACK framework. 

That misunderstanding makes some educators downplay the role that contexts play 

in teaching. As a result, some educators fail to analyze the very contexts within which 

they find themselves before preparing or delivering their lessons. However, Rosenberg 

and Koehler (2015) assert that the effectiveness of learning activities depends largely 

on how teachers can reorganize the classroom to suit the particular context of the 

school and the needs of the learners. Furthermore, the researchers believe that 

contexts emanate from the interaction between the teacher’s characteristics, 

motivation and beliefs, the learner’s characteristics, and the TPACK of both the learner 

and teacher. Figure 2.7 details the connections between the various contexts in 

teaching and learning. Originally, the researchers (Porras-Hernandez and Salinas-

Amescua, 2013) were the ones who classified contextual factors into “micro, meso, 

and macro”.  
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FIGURE 2.7: CONTEXTUAL FACTORS UNDER TPACK (SOURCE: ROSENBERG AND KOEHLER, 2015) 

The “micro” level entails the classroom contexts such as the display of learning aids, 

or the general arrangement of the environment to be used for teaching and learning. 

Other examples include situations where there is insufficient furniture in the classroom 

or the unavailability of computers and software needed for technology integration 

lessons. 

However, if the school lacks support staff who are supposed to ensure that copies of 

documents are made, or who are responsible for the regular maintenance of school 

computers, then there exist “meso” contextual factors. “Meso” factors could also refer 

to school management decisions that directly or indirectly affect the integration of 

technology in mathematics. According to Mishra (2019:77), it is not enough to have 

knowledge of the Technology, Pedagogy, or Content. Rather, a good understanding 

of the contextual knowledge plays a key role to a successful geometry lesson. For 

example, a school may set up a protocol to be followed should a particular teacher 

want to use the computer laboratory for learning. Such protocols sometimes tend to 

discourage the integration of technology if different teachers decide to use the 

computer laboratory at the same time. Therefore, Mishra (2019) would prefer teachers 

who understand, and are able to manage the context within their schools.  
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With regards to “macro” factors, they are the external factors that are outside the direct 

control of the school or the teacher (Rosenberg & Koehler, 2015). For example, a 

disagreement in the community or during a parents' meeting regarding how a particular 

school policy is implemented could affect teaching and learning. Moreover, the 

decisions that are made regarding curriculum development at provincial or national 

levels could be described as “macro” contextual factors (Rosenberg & Koehler, 

2015:189). If there is a lack of support or direction from policymakers regarding 

technology integration, the teacher could only do little in pushing the technology 

integration agenda.  

That notwithstanding, this study acknowledges the presence of contextual factors 

during the implementation of van Hieles’ levels. The next section has been dedicated 

to those contexts that connect TPACK to van Hieles’ model. 

2.2.7 Decolonizing VHLT and TPACK: The V-T model 

From the above literature, there seems to be a direct connection between van Hieles’ 

level theory (VHLT) and the Technological Pedagogical Content Knowledge (TPACK) 

framework. That connection could be decolonized to suit the teaching and learning 

context of South African Grade 11 geometry, with respect to technology integration.  

 

FIGURE 2.8: THE V-T MODEL 
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The researcher was hopeful that van Hieles’ model could be merged with the TPACK 

framework to achieve the desired outcomes of this study. As a result, I developed the 

V-T model in Figure 2.8 to help address the possible shortfalls in both VHLT and 

TPACK models. In the V-T model, the V comes from van-Hieles’ theory whilst the T 

represents the TPACK framework. Those shortfalls have been discussed below. 

Firstly, the TPACK model on its own only analyzes the forms of knowledge that apply 

to specific learning areas. Although the developers of TPACK used “learning by 

design” (Koehler & Mishra, 2005a) to actively engage students when teaching 

identified topics, perhaps the van Hieles’ theory would be more appropriate for 

teaching geometry in the context of this study. That is due to the ability of van Hieles’ 

model to provide levels of progression through five distinct phases. However, van 

Hieles’ levels also do not necessarily factor in technology integration. Therefore, this 

V-T model tries to merge technology from TPACK, with the tried and tested VHLT to 

help make learners gain more from teachers’ presentations. In addition, the V-T model 

adopts six van-Hieles’ levels and five van Hieles’ phases. The change in levels from 

five to six is to address the loopholes that were discussed under Sections 2.2.4 and 

2.2.5. 

Secondly, the typical South African mathematics classroom seems to have a lot of 

contextual factors that sometimes militate against the effective teaching and learning 

of geometry. Such factors may include the unavailability of or insufficient textbooks for 

all learners, unexpected interruptions during lessons due to meetings or workshops, 

lack of geometric charts in the classroom, among others. Those contextual factors 

may fall under micro, meso, or macro, as explained by Rosenberg & Koehler (2015). 

However, this study is of the view that contextual factors exist at every single van 

Hieles’ level, which if not well managed, those factors could derail any success 

achieved in Euclidean geometry. Therefore, each contextual factor should be well 

analyzed and addressed as educators move from one VHL to the other.  

Finally, the V-T model fully encourages the use of all five van Hieles’ phases before 

progressing to a higher level. However, for effective technology integration, probably 

what is required is for educators to go through all the available and applicable 

knowledge forms, as in TPACK, before moving to a new van Hieles’ level. Hopefully, 

applying TPACK in-between van Hieles’ levels will provide educators with the required 
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information about the learners, the context, and the concepts learnt or to be learned, 

or the most useful methodology and assessment techniques, etc. With such 

information, the teacher may be well prepared to anticipate any possible challenges in 

the next van Hieles’ level and prepare adequately for that. 

In conclusion, the V-T model is specifically intended to address the teaching and 

learning challenges faced when teaching Euclidean geometry in South African high 

schools. Hopefully, the outcome from this study would determine the effectiveness or 

otherwise of the V-T model. 

2.3 Review in context: 

2.3.1  The nature of geometry in South African GET - FET phases 

South Africa adopts the spiral approach to curriculum development for most topics in 

Mathematics education and geometry is one of such. The spiral approach ensures 

that learning takes place progressively from the less difficult to the advanced ones. It 

also ensures that each subsequent topic relies on previously learnt content in a 

gradual, logical, and comprehensive manner. This approach is somehow motivated by 

constructivism where learners’ previous knowledge and learning environment play a 

crucial role in determining any new content to teach.  

For instance, learners are taught the proportionality theorem in Grade 12 (DoE, 2011) 

but it takes a good understanding of the midpoint theorem from Grade 10 to be able 

to make meaning from the Grade 12 content. Likewise, the properties of quadrilaterals 

learnt in Grades 7-9 are applied in Grade 11 when dealing with cyclic quadrilaterals. 

This makes it imperative to look at successful geometry teaching as a whole although 

this study focuses on Grade 11 geometry. This study considers geometry teaching to 

be successful if the teacher’s facilitation can motivate the learner to actively construct 

and own every single geometric concept and apply them in solving real-life problems. 

However, the level of the learners' understanding of geometry at the General 

Education and Training (GET) phase seems to affect their further application of 

geometry in high schools. In Table 2.3, I present the progression of geometry across 

the GET-FET learning phases in relation to the Grade 11 Euclidean geometry as 

prescribed in the CAPS document. 
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TABLE 2.15: PROGRESSION OF EUCLIDEAN GEOMETRY FROM SENIOR PHASE UNTIL GRADE 11 

MAIN CONCEPTS IN GRADE 11 (FET) 

CIRCLE GEOMETRY 

ROOT CONCEPTS FROM SENIOR PHASE & 

GRADE10  

GROUP 1: Tangents to circles 

• Radius is perpendicular to tangent  

 

 

• Tan-chord theorem 

 

• 2 tangents from same point outside circle are 

equal in length 

 

 

• Drawing and naming parts of a circle from 

grade 7 

• Measuring 900, 1800 in grade 7, and bisection 

of angles in grade 8 

• Construction of angles from grades 8-9 

• Properties of isosceles triangles from grade 8  

• Investigating sum of angles on straight lines; 

and angles inside a triangle in grades 8-10 

GROUP 2: Circle-center and chords 

• Angle at center is twice angle at the 

circumference 

• Line perpendicular to chord, from center, 

bisects the chord 

• Angles in the same segment are equal 

• Equal chords subtend equal angles in the 

same circle 

 

• Drawing circles; measuring angles from 

grade 8 

• Constructing perpendiculars and bisecting 

angles from grade 7 

 

• Measuring angles; drawing and naming parts 

of a circle in grade 8 

 

GROUP 3: Cyclic quadrilaterals 

• Opposite angles of cyclic quadrilaterals are 

supplementary 

• Exterior angle of cyclic quad equals the 

interior opposite angle 

 

• The 4 vertices of angles in same segment 

help form a cyclic quad. 

 

• Properties of quadrilaterals in grade 8 - 10 

• Relationship between angles on a straight 

line; exterior angle of triangles from grade 7-

10 

 

• Investigating diagonals and angles formed 

inside quadrilaterals from grade 8-10. 

 

Although Table 2.3 gives the progression of contents in circle geometry, the FET 

geometry covers content of mathematics topics. Other contents of geometry in FET 

include using conditions for congruency and similarity to make proofs, the midpoint 

and proportionality theorems, angle properties on parallel lines, among others. In 

Grade 11, the aforementioned contents are mostly applied when solving circle 

geometry problems. For instance, to prove that a perpendicular from a chord to the 

center of a circle will bisect that chord, congruency has to be fully applied. Similarly, 
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proving that the angle at the center is twice the angle at the circumference relies on 

the relationship between the exterior angle of a triangle and its interior opposite angles. 

However, the inability of learners to understand the basic geometry concepts or even 

identify the parts of a circle could be traced to many factors. One of such factors, 

according to the 2019 diagnostic report of DoBE (p.200), could be the passive nature 

in which some educators teach geometry by not covering “the basic work” in “earlier 

grades thoroughly”. As a result, learners seem to have problems with visualizing 

geometric shapes, and that makes it difficult for them to perform better under higher 

van Hieles’ levels. Perhaps what learners need are real geometric objects, or 

computer-aided instructions to help them visually identify and classify shapes and their 

properties.  

Most education departments like the Free State, Gauteng, Western Cape, etc., have 

initiated many developmental programs to encourage teachers to embrace technology 

integration in their lessons. The Free State department of education, for example, has 

been collaborating with the University of Free State to develop teachers in short 

learning programs (SLP) on how to teach online with the technology of which I enrolled 

as a student.  However, educators could not solely rely on computers or software 

without considering all the pedagogical aspects of teaching. The pedagogy including 

methods, learning environment, assessment techniques, etc., are all critical and need 

to be intertwined and connected if learners are to master and create their own 

geometry concepts. For example, the choice of software should influence the learning 

approach to adopt, which in turn determines the applicable assessment strategy. In 

support of the effective use of technology to address learners’ understanding of basic 

geometric concepts, the following quote from Mandell, Sorge and Russell (2002:43) 

could be useful: 

“Can teachers teach successfully without using computers? 

Yes, but it is getting more difficult to avoid them altogether. Can 

lessons be enhanced with the integration of technology? Most 

definitely. Will computers ever replace teachers? No. It's been 

said that any teacher who could be replaced by a computer 

should be.” 
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It is not and has never been the objective of technology integration to substitute 

teachers with software or any electronic devices. However, the nature of the FET 

geometry content demands lots of visualizations, analysis, and sound deductions that 

help to arrive at valid conclusions in given problems. All those deductions and 

applications in geometry may be possible if learners were taught geometry through 

visuals and assessed after each van Hieles’ level of geometric reasoning right from 

the GET phase. Failure to teach for understanding through each VHL may leave 

learners confusing the various concepts in geometry at a later stage. Nonetheless, if 

teachers in the GET phase fail to expose learners to all the correct and basic concepts 

in geometry, FET teachers tend to struggle fixing learners’ errors. However, the 

challenge of learners not being able to understand and apply their GET geometry at 

the FET could be addressed with technology (Hamilton, 2015). According to 

researchers (Mudaly & Uddin, 2016; Mudaly & Budaloo, 2016), through the use of 

visuals and the interactive nature of GeoGebra, for example, educators could facilitate 

learners to explore the geometric shapes, their properties and classifications, etc. In 

addition, learners may learn through the software to develop durable concepts 

because they did the drawings, measurements, constructions, and proofs all by 

themselves. In that case, learners tend to own the concepts, and that would boost their 

morale and also increase their ability to apply the same in different geometry problems.  

2.3.2 Some principles and guidelines for teaching with technology 

a. Technology should be a slave to pedagogy 

Irrespective of the technological device used for teaching a mathematics lesson, it is 

the teacher who plans and facilitates the lesson. According to Ross (2018:1), 

technology on its own cannot teach learners geometry. This implies that the selection 

of a particular technology, the teaching method to use, the arrangement of the learning 

environment, the learning context, and the kinds of assessment to use should all be 

well connected. More importantly, researchers (Mudaly & Fletcher, 2019; 

Nisiyatussani et al., 2018; Sutiarso et al., 2018) believe that technology integration 

should rely on available and appropriate pedagogy to survive in the learning space. 

For example, a teacher conducts situational analysis by identifying learners’ needs, 

chooses a content in geometry and selects which learning materials and methods to 

use. If the chosen content demands a visual aspect, the teacher may go for real 
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objects, drawings, charts, etc. to demonstrate the lesson (Mudaly & Naidoo, 2015). 

However, if those real objects are difficult to find, the teacher may use a computer or 

educational software to design those objects and show them to learners. The 

affordances in GeoGebra software go beyond merely showing pictures of geometric 

shapes. GeoGebra allows learners to interact with lines, angles, measuring tools, etc., 

and use those tools to create other shapes. It is evident from the above explanations 

that the selection of a technological teaching tool should not be the main objective of 

the learning process. Rather, it should be the pedagogy that influences technology 

integration. 

b. Teach and learn geometry actively 

The euphoria that accompanies the use of technological devices sometimes makes 

teachers forget to follow certain pedagogical principles during the teaching process. 

For technology integration to improve the learner’s performance, the learning has to 

be active. Active learning implies that the learners do things physically or mentally 

without just sitting down and listening or watching. In a book on audio-visual teaching 

methods, Dale (1969:109) presented the “Cone of Experience” from the most basic to 

the abstract level. The researcher asserts that learners easily recall 90% of the things 

they do physically. However, when learners only say and write things in the class, they 

remember only 70% of them. Perhaps that is because just saying and writing things 

are behavioral activities that do not involve much cognitive effort as compared to doing 

things physically or thinking about geometric concepts. The researcher continues to 

say that learners remember 50% of what they see or hear, 20% of what they only hear, 

and just 10% of their readings. That assertion implies that educators ought to actively 

engage learners when teaching geometry, even if technology is being used. It also 

means that every van Hieles’ level or phase should be demonstrated actively in the 

classroom. In addition, the visualizations and all other VHL could only be facilitated by 

the educator whilst the drawing of the shapes, identifying of the properties, 

constructing, and applying the geometric concepts, etc., should be left to the learners 

to do.  Perhaps, active technology integration lessons could help learners to see the 

results of their activities as their own. Assuming ownership of learners’ own work could 

motivate them to do more (Woolfolk, 2014), thereby making the learning process a 

self-rewarding activity.  
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However, learning geometry actively may be put into two groups: behavioral and 

cognitive activities. The former refers to allowing a learner to physically take part in the 

class activities through the answering of questions, writing solutions on the board or 

in workbooks, marking their peer’s work, among others. The latter on the other hand 

involves situations where learners have to think about ideas, concepts, methods, etc., 

which are relevant to the given geometric problem. For instance, a learner may be 

asked to explain how a square differs from a rhombus. In other instances, a learner 

may be asked to predict the size of an angle before calculating, and later confirming 

or discarding the initial predictions.  

Moreover, educators could engage learners in some activities during technology 

integration, to build their cognition. Such activities may include “Post-It-Parade” where 

learners write their ideas, for instance, properties about given geometric shapes, and 

learners write all and post all the related properties on the board. Post-It-Parade may 

be useful during the analysis level of van Hieles’ model where learners distinguish and 

classify shapes according to their properties. Furthermore, learners could individually 

think about given proof-problems, form groups to think about how to make the proofs 

and share their outcome with the larger class in a “Think-Pair-Share” activity. In 

addition, learners may use the write a “1-Minute Paper” at the end of each VHL to 

allow reflection on all concepts learnt a particular level before progressing to the next 

level. 

c. Intentional Learning of Geometry 

To teach or learn geometry intentionally, according to Stott (2020), means teachers 

have to make up their minds on the planned geometry contents to be taught, before 

and during the lesson. The plan may include the time and the specific technological 

tools to be used in the lesson. By implication, intentional learning involves situations 

where the entire geometry lesson is being directed by specific learning outcomes. 

Such outcomes may include teaching learners to prove why the angle between a 

tangent and a chord of a circle equals the angle in the alternate segment, by the end 

of a one-hour lesson.  

However, intentional learning of circle geometry may begin with goal setting by the 

educator to delimit the lesson (Ross, 2018). Setting goals and objectives could help 

the mathematics teacher and the learner to understand why the topic is important, 
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what learners will achieve after the lesson, what to do in order to achieve the goals, or 

whether there is a more effective way to learn the content. Secondly, the lesson has 

to be structured to indicate when the lesson will be introduced, and at what time each 

activity will take place. Moreover, using VHL provides a structure through which 

geometry lessons could be delivered. VHL is structured to provide gradual progression 

from one level to the other, after the completion of all five phases in each VHL 

(Abdullah & Zakaria, 2013b). Thirdly, intentional learning has to provide learners with 

time to review their work by pausing and going over their assumptions, calculations, 

or proofs (Kostiainen et al., 2018; Skuballa et al., 2018). Moreover, learners have to 

be able to apply their learnt concepts, reflect, or teach others in their class to help 

learners perfect their developed geometric ideas. 

d. Teach and learn geometry meaningfully   

According to some researchers (de Sousa, Formiga, Oliveira, Costa & Soares, 2015), 

learning becomes meaningful when the lesson focuses on sense-making, and the 

learner assumes authorship of each of their own knowledge. A technology-integrated 

geometry lesson that makes sense is the one that is designed to build and link new 

concepts with learners’ prior learning experiences (Frankel & Mountford, 2021; 

Kostiainen et al., 2018; Skuballa et al., 2018). Such a lesson challenges learners to 

explain learnt concepts in their own words and apply them in related geometric riders. 

In addition, meaningful lessons are structured such that different aspects of the lesson 

connect. To elaborate more on sense-making, Wolfolk (2014:270) presents three lines 

similar to the following: 

1. TNUQRVBZPKJLGISCDVBTVNHUCKMRETXYAZKGP 

2. TANGENT SEGMENT RADIUS CHORD CIRCLE PERPENDICULAR 

3. RADIUS IS PERPENDICULAR TO TANGENT OF CIRCLE 

From the first three lines above, perhaps Line 3 is the easiest to remember for some 

reasons. The reason could be that Line 3 seems more organized and the words 

connect leading to sense-making and retention. In addition, the third line seems more 

meaningful because the previous knowledge about each word that is stored in the 

long-term memory is activated in the mind. However, the many words in Line 2 could 
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only be interpreted separately because they do not link to each other as compared to 

Line 3. As for Line 1, there seems to be no meaning at all.  

Similarly, geometry lessons could be developed for sense-making by carefully 

connecting the related concepts in a structured manner, as in line 3 above. It may not 

make academic sense to teach learners how to apply the tangent-chord theorem to 

solve riders when the learner is not even familiar with a tangent, or any other part of 

the circle. Interestingly, the van Hieles’ levels provide that framework for learning 

geometry on a step-by-step basis (Rezky & Wijaya, 2018). In VHL, learning begins 

with pre-visualization, then visualization, etc., which helps build a reservoir of the 

knowledge base for any future development of geometric concepts. For example, 

learners may be taught to visualize the radius, tangent, circle, etc., before being 

introduced to the relationship between a radius and a tangent. Unfortunately, teachers 

sometimes present lessons with little consideration for what learners already know. To 

make matters worse, some educators teach geometry passively to learners with little 

to no contribution from the learner. On the contrary, meaningful learning requires the 

active involvement of the learner at all stages of the learning process (Frankel & 

Mountford, 2021; Skuballa et al., 2018). That implies making the learner the initiator 

of ideas, methods, techniques, etc., at every VHL. Perhaps it is only when the learner 

is totally involved in the knowledge construction process at all VHL that the learner 

would accept responsibility for each concept developed.  

2.3.3 How learners learn geometry 

According to Woolfolk (2014:247), each person learns new information, retains or 

forgets that information, through three main processes: sensory memory, working 

memory, and long-term memory. Any new concepts that learners learn start from the 

sensory memory. For instance, the instructions from the teacher, the geometric 

shapes that learners see, the names of the shapes they hear, the properties of those 

geometric shapes, etc., all pass through the sensory memory for a maximum of three 

seconds (Woolfolk, 2014:248). However, the human brain cannot store every single 

piece of information in it. Some data may be thrown away or kept in the mind due to 

its relevance to the learner. Moreover, how teachers guide learners to perceive new 

geometric concepts and pay particular attention to their meanings, usually determines 

if that new concept is useful to the learner for later usage, and whether such 
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information should be stored in the brain or not. According to Woolfolk (2014:250), all 

relevant learning concepts from the sensory memory that received enough attention 

from the learner are then encoded and sent to the working memory for further 

processing. 

Similarly, van Hieles’ pre-visualization (VHL1) and visualization (VHL2) stages seem 

to serve a key role in ensuring that learners use their five senses effectively to 

understand basic geometric ideas. VHL 1 and 2 provide learners with the opportunity 

to feel, touch, see, or draw geometric shapes which in turn helps learners to increase 

their perception of the shapes. However, due to the high volume of information that 

learners perceive through their sensory memory, selective attention may be required 

to help learners move from one VHL to the next. Selective attention implies managing 

the data that enters the sensory register such that certain geometry concepts may be 

recognized more than others, depending on the given context. For instance, in a 

diagram where the given circle includes tangents, the learner’s attention should be 

directed towards the tangent-chord theorem, the radius is perpendicular to tangent, 

etc., instead of, for instance, the angles in the same segment. However, more 

emphasis should be placed on the learner’s prior knowledge since that knowledge 

stimulates the giving of more attention to the new and related geometry concepts. 

Furthermore, some researchers (Ingram, 2014; Webb & Graziano, 2016)  assert that 

a person only pays attention to one cognitive activity at a particular time.  By 

implication, that means teachers should minimize the level of distractions during a 

geometry lesson. Minimizing distractions may include removing irrelevant content, 

learning material, or images from the learning environment, and focusing on the very 

important and related aspects of the topic. In effect, the short duration of data in the 

sensory memory implies that the teaching and learning process should be well 

planned by doing, for instance, visualization at a time, and analysis or deductions at 

other times. Perhaps, it is only when learners can recognize as many as possible 

Euclidean geometry concepts that the teacher may then introduce multitasking 

activities such as deductions or rigor. Besides, deductions and rigor are multitasking 

activities because they fall under higher-order cognitive levels which demand the use 

of different prior concepts learnt from the preceding VHL. 
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However, Woolfolk (2014:250) refers to the working memory as the “workbench”. That, 

according to the researcher, is because it is in the working memory that the learner 

processes the encoded data from the sensory memory and combines that data with 

the stored information from long-term memory. That newly processed data is then 

converted into useful information to be stored and reused in solving geometric 

problems, or for understanding a teacher’s presentation. However, Woolfolk (2014: 

252) explains that all the sounds, words and verbal information are processed in the 

phonological loop whiles images and spatial data go through the visuospatial 

sketchpad. In other words, there are two main channels in the working memory: 

images and words/texts. In a technology-integrated lesson, the presence of the two 

channels implies the need to make good use of each medium because each channel 

accepts different loads of work that cannot be swapped. For instance, if no images or 

diagrams are used during the lesson, no number of words or texts can fill that space 

in the visuospatial sketchpad, and vice-versa. According to Stott (2020), that unused 

space becomes wasted. However, texts and images could be balanced to avoid 

overloading learners with only one form of data which ends up demotivating them. 

Moreover, DoBE (2021:207) recommends that to help learners easily recognize and 

differentiate geometric theorems, teachers should associate statements of geometric 

theorems with their specific drawn diagrams.   

Furthermore, one of the outcomes expected from the geometry learner is to develop 

critical thinking skills that prepare learners for the ever-evolving job market (DoBE, 

2011). What is not certain is whether merely following van Hieles’ levels may yield the 

expected outcome in a technology-integrated lesson. Educators may have to follow 

some presentation principles within the van Hieles’ levels and phases. Stott (2020) 

discussed such principles to include the pre-training principle where learners are taken 

through the key items related to the lesson. For instance, each learner should be 

abreast with the concept of a tangent, radius, chord, etc., as well as their relationships 

before learning the circle theorems. The second is the signaling principle. According 

to Mayer (2014), signaling involves highlighting important parts of the lesson through 

the use of different colors. The signaling principle is very important in geometry 

teaching because one rider may integrate different theorems at the same time. It then 

becomes the learner’s responsibility to carefully link all related theorems, preferably 

with colors, to enhance easy recognition. The next principle is coherence. A coherent 
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presentation does not include irrelevant materials, items, or content in the lesson. 

Coherent lessons direct the learner’s attention to the key parts of the lesson in an 

organized manner. The geometry lesson could avoid ambiguity by making the lesson 

more coherent, leaving the learner nor room for doubts about the topic, while at the 

same time giving more room for critical thinking. The final presentation principle is 

segmentation. Instead of drawing or trying to explain one whole diagram that involves 

different theorems, educators may cut the diagram into smaller manageable 

segments. The segmentation principle by Mayer (2014) may be very useful during the 

deduction or rigor level in van Hieles’ theory since those levels mostly combine 

different circle theorems. Hopefully, the different segments could help learners to 

connect, synthesize and apply the various theorems, making geometry questions less 

difficult for the learner. In addition to the above, sometimes learners pay more attention 

to particular concepts when teachers vary their tone of voice, the pace of delivering 

the lesson, the verbal and facial expressions used, or even by varying the volume of 

the voice. Perhaps, when educators follow the discussed theory of multimedia learning 

and also include the presentation principles in VHL, learners may increase their level 

of creativity in geometry through critical thinking. Consequently, learners may retain 

lots of vital geometry concepts in their long-term memory for easy recall when needed. 

2.3.4 Challenges in the teaching and learning of Euclidean geometry 

Serow and Inglis  (2010:10) argue that teaching circle geometry is “often regarded as 

time-consuming” and learners usually struggle to comprehend and apply geometry’s 

underlying concepts. However, learners in Grade 11 require more time to comprehend 

the basic concepts of geometry and thereby apply them in solving riders. On the 

contrary, recent diagnostic reports (DoBE, 2018b; 2017b) indicate that the time given 

to learners is woefully inadequate, hence, their inability to correctly apply their 

geometric thoughts. From personal experience in teaching, it is true that time is mostly 

insufficient for teaching geometry. Perhaps it is not just a matter of insufficient time 

needed to finish Grade 11 geometry. In my view, the issue of time could be linked to 

the backlog of work that a learner was expected to cover before reaching Grade 11, 

which unfortunately was not done at the GET phase (See Table 2.3). For instance, the 

Grade 11 learner should not be struggling to identify congruency among shapes, angle 

properties on parallel lines, among others, since those contents are done throughout 

the senior phase of the South African education system (DoBE, 2012; DoE, 2011). 
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Perhaps, GET educators are also unable to finish most geometric contents due to 

time, or they teach the learners in the traditional approach. Whichever the reason 

might be, the Grade 11 educator should be able to fully prepare the learner on circle 

geometry (DoE, 2011) before the learner reaches Grade 12 to continue with 

proportionality and similarity theorems.  

Sometimes, to be able to make up for the insufficient time, some educators resort to 

extra classes to complete the geometry schedule. However, per the CAPS document, 

the Grade 11 learner is assumed to be able to identify and distinguish different 

geometric shapes by their properties (DoE, 2011). In addition, Grade 11 learners are 

usually expected to operate at the abstraction level of VHL. Unfortunately, because 

educators sometimes want to finish with the work schedule to avoid having any 

problems with their supervisors, some teachers are unable to give more attention to 

individual learner needs regarding Euclidean geometry. Moreover, the other 

unfortunate reality, from my personal experience, is that the mathematics work 

schedule for schools is mostly designed such that teaching and learning takes place 

even when learners are scheduled to be writing examinations. Therefore, if teachers 

are unable to adjust their time to include extra teaching hours, learners may write their 

tests or exams without knowing much about the topic. 

Another challenge, according to Sadiki (2016:18), is that Euclidean geometry in South 

African schools is taught at a higher van Hieles’ level than what learners can attain. 

This study concords to that assertion. However, the seemingly higher level of the FET 

geometry could be the result of learners not being exposed to the required primary 

geometry concepts from the GET phase (DoBE, 2015b). Moreover, such learners with 

little background knowledge may find it extremely difficult to absorb or apply higher-

order geometry concepts. When that happens, the teacher also becomes 

automatically affected such that s/he cannot proceed to teach the content as laid out 

in the CAPS document but to go back to cover the basics which learners lack. Should 

a teacher fail to realize the gap between learners’ knowledge in geometry basics, and 

proceeds to strictly teach per the CAPS document, learning may not take place, which 

could then lead to the conclusion that geometry content is at a higher van Hieles’ level 

than what learners are expected to be taught.  
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Furthermore, some researchers (Siyepu, 2005) argue that the geometry contents in 

the South African GET-FET system are neither sequential nor hierarchical. This study 

agrees with the researchers because although the spiral curriculum is in use, there 

seems to be no clear link between the circle geometry that learners already know from 

GET and what is to be learnt in Grade 11. For instance, although CAPS introduces 

learners to visualizing a circle from Grade 4 to 6, learners are only introduced to the 

parts of a circle, for the first time, in Grade 7 (DoBE, 2012; DoE, 2011). In Grade 7, 

learners learn to describe and name parts of a circle under the geometry of 2-

dimensional shapes, and then use a pair of compasses to construct the circle. 

Thereafter, almost nothing is learnt about the circle until learners reach Grade 11. The 

break in continuity of circle geometry seems to pose challenges in Grade 11 since 

most learners remember almost nothing about the terminologies used to describe 

parts of the circle. According to Alex and Mammen (2012), it is the terminologies in 

every single field that uniquely distinguishes that field from the rest. Similarly, students 

of circle geometry should at least be conversant with terms like angles, subtend, 

radius, arc, diameter, etc. Unfortunately, most Grade 11 teachers who want learners 

to fully understand circle theorems usually have to reteach those basic concepts, 

which the CAPS assumes that learners already know from GET (DoE, 2011). On the 

other hand, if a particular teacher goes ahead to teach those circle theorems without 

touching the terminologies, the result may not be desirable because learners may 

confuse the parts of the circle and as a result confuse the entire given question. 

Perhaps, CAPS should be realigned such that learners could continually make use of 

basic axioms and postulates that are directly related to the circle right from GET to 

FET so that learners could apply the same in the Grade 11 geometry of circles. 

Furthermore, most of the learners fail to recognize the basic properties of triangles, 

quadrilaterals, parallel lines, etc. As a result, learners are unable to connect such 

shapes and their unique or shared properties to the circle theorems properly (Machisi, 

2021; Tachie, 2020). For instance, a Grade 11 learner who might want to prove why 

a given quadrilateral is cyclic, would have to rely on how angles are formed at the 

center of circles or how to even identify and measure such angles, or what it means 

to classify a shape as a quadrilateral. However, those classifications of 2D shapes are 

not directly covered in the Grade 11 geometry, but in GET up to Grade 10 (DoBE, 

2012; DoE, 2011). Moreover, the structure of the Grade 11 geometry assumes that 
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learners already know the aforementioned concepts and so, CAPS does not give more 

room for visualizing or analyzing the various properties of the parts of the circle or 

other the properties of other related plane figures. It would take a resourceful teacher 

to bring together all such related concepts (Bora & Ahmed, 2018), but from different 

sources, to make a learner fully understand a particular concept or theorem. If that 

fails to happen, the learners lose in terms of understanding leading to more confusion 

of the theorems. 

According to DoBE (2011:4-5), the mathematics curriculum is aimed at developing 

“active and critical thinking” learners who are capable of serving the needs of the job 

market. Therefore, any attempt to teach Euclidean geometry in Grade 11 without 

addressing the accompanying challenges could amount to lowering the standards in 

teaching the topic. To keep the standard high in geometry requires learners to think 

outside the box to unravel, for example, which different concepts and principles to 

apply in solving given problems/riders (Bora & Ahmed, 2018). Perhaps that is why 

geometry is perceived to be challenging. 

To address the above challenges, all stakeholders of educations would have to assist 

in resolving the identified challenges to produce learners who have the required 

capabilities to face the spatial and critical thinking needs of the job market. 

2.3.5 Available educational technology software 

Abacus is one of the oldest technological tools in mathematics education used for 

computations. However, technology keeps evolving. In 1972, hand-held calculators 

were introduced (Waits & Demana, 2000). Later, microcomputers, graphing 

calculators, televisions, the internet, interactive whiteboard, instructional software, etc. 

were developed (Akcay, 2017). Irrespective of the type of software, Heddens and 

Speer (2006) explain that educational software may serve one or more of the following 

functions: exploratory; simulation; games; drill and practice; tutorials; and problem-

solving. Some of the available instructional software and web-based tools include 

GeoGebra, IXL, Khan Academy website, Mathplayground, Mathbits, Math Buffalo 

State, Touchmathematics, etc. (Akcay, 2017:163-170).  

In parallel, attempts have been made by researchers to classify the various 

educational software. Karadag and Aktumen (2013) explain that Computer Algebra 

Systems (CAS) is one category of software that combines the capabilities of advanced 
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calculators, Mathematica, Maple, etc., to make mathematics more engaging to 

learners. However, using CAS requires learners to be well equipped with the basic 

mathematical concepts and thoughts, else, learners would not benefit from their usage 

since merely using procedural knowledge to arrive at solutions is usually not enough 

in mathematics.  

Another group of software is the Dynamic Geometry Software (DGS). Examples of 

DGS include Cabri and Geometer’s SketchPad. DGS provides the platform for 

learners to use specific details to make, test and generalize conjectures that arise out 

of their interaction with the software. These software are user-friendly by providing 

users with functions such as lines, circles, points, etc., that users can manipulate to 

identify numerous patterns embedded in geometric shapes.  

However, Karadag and Aktumen (2013) introduced a new term Dynamic and 

Interactive Mathematics Learning Environment (DIMLE) due to the limitations 

associated with DGS. The researchers aimed to expand DGS to include other 

packages whose features are more interactive and suitable for different learning 

situations. The expanded list of DIMLE includes software such as the Thinker Plots 

Geometer’s SketchPad, Cabri, Fathom, Geocadabra, Desmos and GeoGebra 

(Karadag & Aktumen, 2013:ii; Martinovic & Karadag, 2011:208). According to the 

researchers, the key features of DIMLE are their ability to provide dynamic and 

interactive learning environments for teaching. By dynamism, it means learning will no 

longer be the same old-fixed-transmission style where learners only receive 

information from the knowledgeable teacher. Rather, each learner becomes exposed 

to new technologies and styles of teaching, giving learners the chance to try things out 

on their own. As learners explore and have insight into geometry, they become 

confident and capable of making interesting constructions that a teacher might not 

have taken note of (Martinovic et al., 2014). In addition, DIMLE is interactive because 

that software provides immediate feedback to learners as they make use of the 

features of that software through simulations. 

According to Karadag and Aktumen (2013:ii), the final class of software is the 

Intelligent Tutoring Systems (ITS) which make models of educators through robotics 

and artificial intelligence. Perhaps the ITS could help champion the 4th industrial 
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revolution by making use of the best methodological practices in developing those 

interactive learning devices for teaching and learning. 

Nonetheless, Polly (2014) reveals that although technology integration in teaching 

mathematics has increased, most educators still prefer to use projectors and 

document cameras. This could be attributed to the fact that those gadgets are not so 

difficult to operate as compared to using educational software like Desmos or 

GeoGebra which requires the user to learn how each tool works. More preference for 

projectors and cameras could also be attributed to low teacher development in terms 

of correct selection of technological tools. Perhaps those teachers who have not been 

developed on the correct usage and merits of different educational tools would not 

want to risk it. Such teachers may not opt for software or programs they are unfamiliar 

with but would rather stick to the easy ones. 

To sum all up, all those software and tools above confirm one thing: gone are the days 

when we used to say the pen is mightier than the sword, to wit, educated persons 

could use their knowledge to solve problems that warriors of the stone-age/pre-

colonial era could not probably fix. But of late, the ideas which were previously penned 

down are now being typed onto computers on daily basis. Others get stored on 

websites and accessed through smartphones, laptops, etc., for the consumption of the 

general public. It is that above-mentioned educational software and many others that 

educators can take advantage of to ensure that learners understand and appreciate 

the value of each concept they learn in Euclidean geometry. 

2.3.6 The GeoGebra software  

A study by Akcay (2017:170) shows that at the secondary school level, most educators 

like using GeoGebra software out of the available educational technology software. 

GeoGebra is an open-source educational software that can be freely downloaded and 

is easy to use, which could probably be the reason why it is the favorite of most 

educators. The software comes in different versions which are useful for handling 

geometry, functions, etc. Its friendly user interface makes it more appealing and 

interactive, and that influenced its selection for this study.  

Furthermore, GeoGebra, like any other Dynamic and Interactive Mathematics 

Learning Environment (DIMLE), provides learners the opportunity to learn through 

visualizations and simulations. Karadag and McDougall (2011)  assert that learners 
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enjoy visualizing more than any other form of methodology. In reality, visual learning 

does not only interest school learners. All adults including teachers like it too. 

Naturally, learners easily pick useful lessons from their direct contact with artefacts, 

images, or software programs and make better interpretations than when being told 

by someone else. Similarly, today’s learners view and interact with almost all features 

of their cellphones, laptops, etc., regularly (Rideout, Foehr & Roberts, 2010). Learners 

do play their games, surf the web, and many more by the minute, to the extent that 

some cannot even live without their technological tools for a day, to say the least. As 

learners interact with their technological tools, they respond to questions, edit, text, 

and update or create new things on their own. Therefore, it might look strange to some 

learners to continue receiving mathematical instruction through symbols that they 

cannot easily picture or visualize. Probably, learners would appreciate our algebraic 

and geometric symbols after they have been well versed in visuals (Mudaly & Budaloo, 

2016). Hopefully, the different versions of GeoGebra may assist learners to continue 

with their regular explorations, but this time, in the learning of Euclidean geometry. 

 

FIGURE 2.9: FEATURES OF GEOGEBRA GEOMETRY SOFTWARE 



65 
 

GeoGebra software comes in different forms. There are GeoGebra Graphing 

Calculator, GeoGebra Geometry, GeoGebra 3D Calculator, GeoGebra Scientific 

Calculator, and GeoGebra Classic. Figure 2.1 displays the user interface of GeoGebra 

Geometry. On the top left corner of the app, there are the main menu, algebra, and 

the tools tabs. Under the tools box, there are basic tools used to move drawn objects, 

those for drawing line and line segments, as well as those for creating circles and 

different polygons. Besides the basic tools, there are other tools for specific functions. 

Those functions include Edit, Construct, Measure, Lines, Circles, Polygons, 

Transform, and Media. 

The Construct tool, for instance, allows the user to bisect lines and angles, draw 

tangents, perpendicular and parallel lines, and locate the midpoint of any two points, 

segment, circle, or conic shape. Similarly, one may use the Measure tool to do 

simulations by determining the sizes of drawn angles, length of line segments, areas, 

or to preconfigure values for specific angles and draw them. When learners visualize 

the various tools and start exploring them one after the other, they tend to master the 

usage of each tool thereby making it easy to engage other learners, to draw and 

discuss the properties of their drawn shapes (Mudaly & Budaloo, 2016; Velichová, 

2011). In addition, the Edit tool gives users the chance to add any new ideas or remove 

unwanted parts, whilst the Transform tool enables users to reflect an object, rotate, 

translate, or dilate from a point. 

However, the approach to this study was not to learn how to use GeoGebra, but to 

maximize the potential the software has in developing the learners’ geometric abilities. 

For that reason, this study only used a particular GeoGebra tool or tab as and when it 

was considered essential for the topic of the day. 

2.3.7 Significance of technology in education 

Jojo (2017: 258-259) recommends a classroom environment that challenges learners 

to “explore, explain, extend and evaluate” given tasks that are easy for learners to 

make sense of. She challenges educators to adopt learner-centered pedagogy for 

geometry lessons. Moreover, researchers (Bakir, 2016; George & Sanders, 2017; 

Mudaly et al., 2015) agree on the importance of using educational technology to 

improve learners’ understanding of different mathematical concepts. They believe 

technology helps learners to understand, observe, construct, and develop mental 
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images about given problems, which enhances knowledge development in a learner-

centered classroom where pre-visualization, visualization, analysis, deductions, and 

rigor as outlined in van Hiele’s model could be implemented. Furthermore, learning 

with technology may help develop learners’ self-confidence in handling geometry 

problems, leading to an increase in retention of memory. That assertion is 

corroborated by Hamilton (2015: 5) that in a technology integration lesson, “one 

student’s discovery of a tool, solution or a factoid”, even in a noisy classroom, can 

easily become a very useful knowledge for the entire class in minutes. That is because 

learners talk a lot when using technological tools in class.  Learners may be seen 

arguing through peer interactions as they try to make use of, for example, the tools 

used to draw or measure angles in the GeoGebra software. According to researchers 

(George & Sanders, 2017; Nel, 2017), as learners share ideas with the guidance of a 

teacher, they tend to learn faster as compared to always receiving direct instructions 

from teachers, and this makes learning more interesting, meaningful, and constructive 

. 

2.3.8 GeoGebra and learners’ performance in geometry 

Various studies in and outside South Africa have emphasized the impact that 

educational technology makes on learners’ academic achievements. The GeoGebra 

software has been identified as one of the tools that engage learners to learn in 

dynamic ways as opposed to the static nature used in traditional teaching. The use of 

the software also enhances learners’ ability to observe and make visual 

representations of geometric shapes, and more importantly, helps learners to explore 

geometry with little assistance from their educators. 

In a recent study, Jelatu, Sariyasa and Ardana (2018) analyzed learners' 

understanding of geometry concepts using a GeoGebra-Aided REACT strategy in 

Indonesia. The REACT is a pseudo name for Relating, Experiencing, Applying, 

Cooperating, and Transferring, which was developed by the Center for Occupational 

Research and Development in the United States of America (Crawford, 2001). In that 

study, sixty Grade 8 learners were used in a quasi-experimental design.  They used a 

spatial ability test, prior to the intervention, to put learners in the experimental group 

into low and high ability sub-groups. They then conducted a test of 5 questions on the 

experimental group. The control group was taught with the conventional expository 
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teaching approach and, they did not write any pre-test except the same 5-questions 

test.  After using the two-way ANOVA to analyze their outcomes, they reported that 

the use of GeoGebra-REACT strategy helped learners with the high spatial ability to 

be more creative whiles the low ability group became very active in class. The control 

group, however, showed no major output in the written test. This emphasizes the role 

that educational software plays in teaching and learning. Although the researchers did 

not work on Euclidean geometry, the outcome of their study is motivating enough to 

warrant the use of GeoGebra software in teaching mathematics.   

Another experimental study was conducted by Seloraji and Eu (2017) in Malaysia 

where data were collected from year 1 learners aged 5-6 years. The purpose was to 

determine how GeoGebra software impacts learners' achievement in the learning of 

geometrical reflections. There were 24 participants of different nationalities comprising 

12 boys and girls appease who were randomly sampled and put into control and 

experimental groups. Each group was made up of three ability sub-groups of 

extension, core and support groups. A pre-test was written by both groups. However, 

the intervention was given to the experimental group through the use of GeoGebra on 

computers to reflect the shapes of buildings. It was followed by the writing of the post-

test by both groups. The researchers used the paired sample t-test to analyze the 

given tests which showed significant improvement from the pre-test to the post-test of 

the experimental group. The ANOVA also showed differences in terms of gender and 

ability groupings. However, the outcome revealed that girls perform better than the 

boys in geometrical reflections using GeoGebra, with the girls recording a mean score 

of 86.00 as against 68.33 from the boys. Although their study was not on Grade 11 

learners, the positive outcome in terms of the control group’s performance could serve 

as a reference for this study. Interestingly, the exposure to GeoGebra still produced 

good results despite the different nationalities of the participants. This means the 

software may work well to help get the desired results irrespective of the geographical 

background or the kind of learners we have in the classroom. 

In another related study, Shadaan and Leon (2013) studied how GeoGebra impacts 

the teaching of circle geometry through a quasi-experimental study using year 9 

students. The researchers administered pre and post-test to the experimental (n=28) 

and control (n=25) groups. The pre-test showed no significant difference but there was 

a significant difference in the post-test. The mean difference between the two groups 
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was 4.22, a t-value of 3.989, and a p-value of .000 at p< .05. The questionnaire used 

also gave “positive feedback” on the use of GeoGebra software. Most participants 

praised their ability to visualize concepts, think critically, and make logical conclusions 

after using the software through effective peer-to-peer and teacher interaction under 

the theoretical framework of Vygotsky’s zone of proximal development (Vygotsky, 

1978). That is another confirmation at the international level, of how GeoGebra 

software impacts the teaching of geometry. The researchers ensured that their study 

was designed to make learners do more of what is expected under van Hieles’ model. 

For example, the study encouraged the use of logic to solve problems many problems, 

which is one of the targets of the current study.   

The above studies (Jelatu et al., 2018; Seloraji & Eu, 2017; Shadaan & Leon, 2013) 

are very relevant to this research because they all used quantitative approaches in 

determining how educational software (GeoGebra) influences the learning of different 

aspects of geometry. The research by Shadaan and Leon (2013) which focused on 

circle geometry, however, failed to indicate exactly what challenges most of these 

learners face and how to address them. Moreover, some African researchers 

(Mwingirwa & Miheso-O’Connor, 2016) support the use of GeoGebra for teaching and 

learning, adding that the software’s effective usage should commence with effective 

training of the teachers involved. Besides, teacher development is very key in software 

integration as each software has its own features which the user must be familiar with 

before using them in class. Hopefully, effective teacher development on the use of 

educational software will help avoid any embarrassment in class as learners of today 

are very observant of every action of their teachers. This is because most learners 

prefer to do what teachers do instead of what they hear from teachers. That means if 

a teacher provides the wrong direction in terms of software usage, learners will more 

like adopt the same wrong approach in solving given geometry problems.  

In South Africa, a lot of researchers have made some interesting observations 

regarding the integration of technology into the teaching and learning of Mathematics. 

Ford and Botha (2010:4) assert that South Africa’s problem with technology integration 

is more of a negative perception as some school administrators oppose the use of 

mobile phones during lessons. Once again, it could be that those school administrators 

have little development on the affordances that come with integrating smart devices 

into the learning process. The reality, however, is that the same learners use the 
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phones without teachers noticing. According to Mhlanga (2018), it is pointless for 

institutions to continue to ban smartphones in class without considering the 

affordances. Instead, schools could adopt, promote, and at the same time regulate 

smartphone usage with the aim of improving learners’ academic performance. 

Chimuka (2017) compared the effects of using GeoGebra software in teaching circle 

geometry to the traditional teacher-centered approach using Van Hiele’s theory in 

Limpopo, South Africa. There were 22 and 25 in the experimental and control groups, 

respectively.  It emerged from the study, after the post-test that there was a significant 

difference among the achievement of the experimental group. However, a detailed 

comparison under van Hiele’s levels showed no significant difference from Van Hiele’s 

levels 3 to 5 but Levels 1 and 2 had statistically significant differences. Nonetheless, 

there were sufficient data to confirm that the use of GeoGebra software makes 

learners more motivated to tackle circle geometry problems. This shows that some 

learners can still do better without the use of GeoGebra or any other educational 

software and so teachers need not rely solely on educational technology. Rather, 

educational technology may be used as supporting tools when teaching. The 

revelations from Chimuka’s study also pose a challenge to educators on the kind of 

preparation teachers make prior to the integration of educational technology. Since 

some learners are still able to perform better with or without educational technology 

(Ross, 2018), educators may have to plan well in advance to cater for the needs of 

each learner in the class before deciding on whether to use a particular technology or 

not. In conclusion, teachers’ role as curriculum implementers and facilitators during 

geometry lessons should never be underestimated since the level of facilitation 

somehow affects learners’ outputs directly or indirectly. This study therefore sought to 

analyze the role played by the integration of GeoGebra software into Euclidean 

geometry instruction by taking into consideration the various challenges of learners in 

Euclidean geometry, whilst measuring the effect those challenges have on the 

mathematics learners in the typical South African high school classroom. 

2.3.9  Challenges and control measures when using educational technology 

Every intervention comes with its own challenges, and technology integration is no 

exception. The challenges associated with technology integration range from 

insufficient resources, poor teacher development, etc., to the beliefs held by 
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stakeholders of education. The discussion commences with some identified 

challenges, followed by literature that will guide the effective use of technology in 

schools. 

a. Insufficient resources 

Insufficient resources usually pose threats to any programme and classroom 

technology integration cannot be an exception. Mthethwa et al (2020:1) lament the 

limited use of technology in rural classrooms due to the problem with accessibility, 

affordability and unstable internet connection. Fortunately for South Africa, the 

problem of resources is being taken care of as days go by. Data available from the 

websites (http://www.digitalclassroom.co.za/digitalclassroom/free-state) of the various 

provinces in the country indicate that each province has some district teacher 

development centers. Most of those centers were developed in conjunction with 

Vodacom South Africa and equipped with technological devices for training educators 

and transmitting learning resources to schools. In addition, Ramorola (2018:8) asserts 

that about 50.9% of schools in South Africa have access to computers. That 

percentage seems too small considering the population of the country. However, 

efforts are being made by the various educational provinces to provide laptops to 

schools and educators. For example, the Free State province has over the years been 

supplying Hey-Math schools with two laptops per school. Gauteng’s efforts at 

encouraging technology integration was faced with many challenges including 

infrastructural deficits (Ford & Botha, 2010:2). However, with the growing number of 

learners and teachers in the education system, providing schools with fewer laptops 

could not close the technological gap. Perhaps, if each learner has access to one 

computer during a technology integration lesson, the facilitator will spend less time 

giving instructions over and over. However, that is mostly not the case as teachers are 

sometimes required to let learners share computers, or reschedule the lesson to 

accommodate all learners, but in separate sessions. Moreover, with the already limited 

time for teaching mathematics, regrouping learners because of insufficient resources 

may not only cause time-wasting, but also to loss of focus and the lesson may not 

become meaningful to the learner. 

The issue of insufficient technological resources confirms the problem of technology 

integration in the country as the available resources are not enough for or directed 

http://www.digitalclassroom.co.za/digitalclassroom/free-state
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towards the core objective of schooling which is teaching and learning (). It then serves 

as a wake-up call to both the government and education professionals to make the 

most out of technology.  

b. Lack of / ineffective teacher development  

The challenges associated with technology integration cannot be blamed solely on the 

lack of resources. Interestingly, Ramorola (2018) argues that although most South 

African schools have access to computers, only 22.6% of those computers are used 

for teaching and learning. That assertion raises some teething questions that demand 

urgent answers. For instance, why are the schools not using the given technological 

tools for the intended purposes? Could it be that the schools lack the technical 

capabilities to operate the devices, or the pedagogical beliefs of the teachers do not 

allow the effective integration of technology? Well, maybe the DoE itself is not 

providing an adequate supervisory role to ensure that the technological devices given 

to schools are used for the intended purpose and maintained regularly. Perhaps the 

latter is the problem because most schools have dysfunctional IT centers with just a 

few computers in average working condition (Ford & Botha, 2010). My current school 

and many other schools in the country are examples in this case. Unfortunately, that 

is what happens when you assign technological tools to schools without providing 

regular development for the teachers involved (Tachie, 2020:299). This study is of the 

view that if teachers are well resourced with technological tools and software, and well 

developed such that they understand how to make the most of educational technology 

in teaching, there would be minimal room for failure in geometry. This is because there 

are numerous technological resources over the internet, or in the form of software that 

teachers, if well developed, could take advantage of to improve the learning of 

Euclidean geometry. 

Unfortunately, seldom do educators get invited for technology integration workshops. 

When DoE invites educators, most of the workshops are content-based (De Silva, 

2015; Tshuma, 2018).  Sometimes, even planned workshops get cancelled at the last 

hour due to financial and logistical constraints. If individual schools were to organize 

their own inset on technology integration, maybe the level of development would have 

gone higher. However, the challenges faced in most schools are not so different from 
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that of DoE or the entire country, as some schools do not have enough human capital 

to take charge of or lead technology-related workshops, seminars, or even lessons. 

According to researchers (Ashirbayev et al., 2018; Kriek, 2011), effective teacher 

development also has to do with knowing which software or technological tool to use 

for a particular lesson. This is where comprehensive teacher development comes in 

(Gilakjani, 2013). For instance, it would be out of place to attempt to teach functions 

with GeoGebra Geometry when GeoGebra Graphing Calculator is available and vice-

versa. Usually, deciding which software to use and designing tasks to suit them, go 

hand-in-hand, and it takes a well-developed teacher to achieve both. Furthermore, 

teacher development could enhance teachers’ planning of mathematical tasks such 

that each chosen task suits the selected technological tool. 

In parallel, Martinovic, McDougall and Karadag (2012:5) argue that well-developed 

teachers can use different illustrations and comparisons to engage and sustain 

learners’ attention in class. This implies that educators must be conversant with the 

technical and pedagogical aspects of a selected educational tool or software. On the 

technical aspect, the GeoGebra Geometry software, for instance, has functions such 

as basic tools, edit, construct, measure, polygons, transform, media, etc. Each 

function contains specific tools that could be used for identified tasks. When educators 

master the use of each tool, and plans lessons accordingly, learners would be in a 

better position to understand and extend their understanding to solve more geometry 

problems. It also implies that teacher education programs in tertiary institutions need 

to start looking at merging technology integration with teaching methodology content 

so that teachers get used to technology integration before they enter the workspace. 

c. Teacher beliefs and negative perception amongst stakeholders 

Some parents and even education officials are of the view that using mobile phones 

or electronic devices in class makes learners lose focus (Dias & Brito, 2021), and for 

that reason, learners should not be allowed to access these devices whilst in class. 

No matter the belief of stakeholders on this matter, the reality is in direct contrast. 

Mudaly (2013) contends that learners rather enjoy lessons that make use of visuals 

such as GeoGebra “especially if those images create some cognitive conflict with their 

existing knowledge.” This is so because a conflicting visual would drive the learner to 

find out more, to know the why, when, and how these new images are formed. For 



73 
 

that reason, technology integration cannot be relegated because of the perception of 

poor learner concentration, especially when this problem of concentration could be 

controlled with effective teacher development. 

According to NCTM (1991), mathematics educators perform four major roles. These 

are goal and task setting, providing stimulus during discussions, providing an active 

and interactive learning environment, and making effective analyses of learners’ 

progress in given tasks to provide informed remedial. However, all those roles are 

largely influenced by the nature of belief systems held by each educator (Mthethwa et 

al., 2020; Mthethwa, 2015). Unfortunately, one of the biggest hindrances to technology 

integration comes from none other than educators.  Some believe that some 

mathematical concepts are true because the textbook or the teacher says so. Other 

educators, on the other hand, strongly believe that axioms, theories, and other 

geometry concepts are true and relevant because they have tested or applied them in 

real life, and they can attest to that. As one of the teachers who love to investigate 

most geometry concepts, it sometimes becomes clear to me that most of the topics in 

the popular textbooks are not so exhaustive. As a result, it requires extra effort from 

teachers to fill in the missing geometry content by sourcing for more information from 

the internet, other books, or by making more proofs on their own.  

However, when a learner or even a teacher can prove for themselves certain geometry 

concepts or theorems, they do not only gain self-confidence, it gives some relief, 

ownership, and form of authority to validate the said ideas which in turn urges them to 

do more (Nurjanah et al., 2020). On the contrary, if some teachers merely follow what 

the textbooks say without exploring more on the particular concept, the level of 

knowledge tends to be narrow and that poses serious risks to learners’ conceptual 

developments. On the other hand, although proofs are nice when done with pen and 

paper, integrating such proofs with technology could however serve as a boost to help 

learners visualize and throw more light on each geometry concept. Moreover, the fact 

that learners are mostly excited about technology usage could be a plus for teachers. 

Perhaps, educators could capitalize on learners’ preference for technological devices 

to guide and direct learners’ quest for new knowledge to geometric proofs. 

Finally, irrespective of a teacher’s belief systems, Cuoco, Goldenberg and Mark (2010; 

1996) identified some habits of mind that mathematics teachers and learners ought to 
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possess. These include being visualizers, the ability to make conjectures, pattern 

sniffers, experimenters, thinking big and talking less, etc. However, using educational 

software could help achieve those habits in many ways. The interactive nature of 

GeoGebra, for instance, helps learners develop the urge to find out more about 

geometric shapes. The software has simulation properties that teachers could use to 

let learners develop the attitude to guess possible solutions and conduct an 

experiment to confirm or reject their predictions. By predicting and testing learners’ 

own assumptions with GeoGebra, the learners develop a love for shapes which makes 

the work of teachers less difficult, as learners themselves become more capable of 

extrapolating their knowledge onto other geometric shapes. 

d. Measures for successful technology integration  

Ross (2018:3) asserts that avoiding excessive use of technology is very important. 

Rather, educators could creatively weave the geometry content around the individual 

features of the particular technological tool being used. For example, learners are 

expected to know how to use the “move” tool in GeoGebra Geometry to drag, enlarge 

or minimize drawn objects just the same way as using the “line segment” tool to draw 

specific lengths of lines. By learning the use of each tab or tool in GeoGebra to draw 

shapes, learners would see technology as a scaffold instead of a solution to all their 

geometry problems. That is because the learners only use the software to convey their 

ideas and test them in geometry but not the other way round. Moreover, Mayer (2014) 

would prefer educators using a set of principles to formulate a well-laid-out plan to 

guide the successful use of educational software in teaching and learning geometry. 

For starters, that plan may only focus on the basic features in the particular software 

such that learners could explore the rest of the software’s features on their own. 

However, during a technology integration lesson, it is not the technology that yields 

the results but the teacher’s skill in choosing the content, methodology and suitable 

assessment techniques (Mayer, 2014; Ross, 2018). Researchers (Drijvers, 2013; 

Mandell, Sorge & Russell, 2002) argue that one of the most important tasks in 

technology integration is the ability to select, implement, and integrate suitable 

software. Moreover, the teacher already uses tools like the calculator, chalk, duster, 

projector, etc. on regular basis. There is no way a lesson involving a calculator would 

be successful if the teacher himself is not very conversant with all or at least the basic 
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functions on the calculator. Likewise, the GeoGebra or any relevant educational 

software cannot produce results on their own unless teachers add their skills to their 

usage (Ross, 2018). In addition, a teacher may decide to let learners work individually 

or in groups depending on the objectives of the lesson. However, the teacher’s role as 

a facilitator would drive learners to gather and interpret information on their own, which 

is perhaps the most important asset teachers can ever give to learners. All those 

facilitator’s roles underscore the relevance of the educator’s level of development as 

far as technological tools are concerned.  

However, it takes a well-structured lesson plan to be able to ensure success in the 

technology integration class. The ASSURE model is one of the instructional strategies 

developed by Heinich, Molenda, Russell and Smaldino in 2002 (Mandell et al., 2002). 

It begins with Analyzing Learners (A) to find out about their needs, strength, and 

weaknesses to match them with appropriate objectives, content, and materials. This 

is followed by Stating Objectives (S) to specify what each learner would be capable of 

doing after the instruction. The third and fourth steps are Selecting Software and 

Materials (S) and Utilizing Software and Materials (U), respectively. During the 

utilization stage, the teacher needs to adopt a step-by-step approach since this is the 

main part of the lesson. A review of the chosen materials would sometimes be 

necessary and the same applies to the mode of delivery or presentation of the lesson. 

However, for someone who would like to adopt Van Hiele’s model, this would be the 

time to follow the levels one after the other. The next stage is to Require Learner 

Participation (R). It is at this stage that learners are expected to practice what they 

have learnt. This could be done in the form of structured activities or worksheets whiles 

the teacher continues to serve as the facilitator. The final stage has to do with 

Evaluating and Revising (E) the entire instructional process. Factors to consider may 

include whether the laid down objectives were achieved, the usefulness of the 

instructional materials and software, and to make reflections on the lesson. 

Furthermore, Ramorola (2010:165) proposes that the lesson plan for technology 

integration needs to have an introduction, development, consolidation, expanded 

opportunities, and reflection. Similarly, Tatar, Aldemir, and Niess (2018) highlight a 

four-step guide from the TPACK framework for the planning of technology integration 

lessons. The first step is the Examination of Technology Concepts and Documents. It 

may involve choosing the topic and setting up the related objectives for the lesson. In 



76 
 

Step 2, the teacher Determines Learners’ Knowledge and Skills such as the previous 

and current background knowledge and technological skills of learners. The teacher 

then decides on the approach to use in delivering the new knowledge. Then comes 

the identification of the necessary resources needed to realize the laid down 

objectives. Step 3 is all about selecting which Technology Product to Apply to 

Learning. That also entails outlining what content the product will have, specifying the 

software, enumerating all skills expected to be used in relation to the anticipated tasks, 

and making learners use the product. The final step is the Knowledge and Selection 

of Intructional Strategies, Assessment method and Evaluation Criteria. This stage 

allows teachers to carefully analyze the worth of the technological tool, content, 

methods used. However, the discussion reveals that these lesson plans do not differ 

much from the normal lesson plans used for traditional instruction. The difference lies 

in the kind of tools used to support the learning process. 

 Moreover, irrespective of the software or technological tools adopted for the lesson, 

rules and regulations need to be specified before the study. This would help to avoid 

learners breaking computers or browsing through irrelevant websites during the 

lesson. However, those dos and don’ts would become more effective if learners 

themselves set the rules. 

2.4 Where this study fits in the literature 

After reviewing the literature for this study, there seems to be enough evidence to 

support the impact that technology usage brings to the learning of Euclidean geometry 

in South African schools (Bayaga et al., 2019; Bhagat & Chang, 2015; Manganyana 

et al., 2020; Mthethwa et al., 2020; Mthethwa, 2015; Mudaly & Uddin, 2016). The 

literature points to the fact that using appropriate educational technology such as 

GeoGebra for geometry lessons encourages learners to be critical observers, thinkers, 

and conjecturers (Bülbül, 2021; Cuoco et al., 1996). However, a word of caution was 

manifested throughout the entire literature warning educators to avoid becoming over-

reliant on technology (Ross, 2018; Schleicher, 2012). Rather, educators could enrich 

their lessons with technology through well-thought-out pedagogy. However, 

researchers (Koh, 2017; Mayer, 2014) posit that any chosen pedagogy should be the 

type that engages learners to actively use technology in a meaningful geometry 

lesson. In addition, the geometry lesson becomes meaningful when learners’ prior 
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knowledge and real-life experiences are well integrated into the current lesson (Koh, 

2017; Schleicher, 2012), and when learners have a friendly environment to create and 

share their geometry ideas.  

However, although this study was undertaken in a rural setting, the researcher hoped 

that a careful selection of appropriate pedagogy could ensure effective technology 

integration. That means the teaching methodology, assessment strategies, the 

learning environment, the context, etc., should influence the kind of technology to be 

adopted and not the other way round (Ross, 2018). Consequently, this study hoped to 

ensure meaningful and active technology integration  as suggested by Koh (2017) 

through the use of van Hieles’ levels theory, TPACK, and GeoGebra software. 

Furthermore, available literature (Ford & Botha, 2010; Kutluca, 2013) encourages the 

consideration of learners’ needs, the learning context, available and appropriate 

assessment techniques, etc., before settling on, for example, GeoGebra software or 

van Hieles’ model. However, the GeoGebra software seems to provide easy access 

to learners since it is free to download and use (Kutluca, 2013). The software also 

provides interaction and simulation that draw learners’ interest and curiosity in 

geometry higher as learners navigate through the various geometry concepts using 

the many features of GeoGebra (Bayaga et al., 2019). As a complement, van Hieles’ 

theory (VHLT) provides a theoretical basis for teaching Euclidean geometry in a logical 

and meaningful manner. The literature (Masilo, 2018; Rezky & Wijaya, 2018; Yi et al., 

2020) has shown that VHLT combines levels with phases which, in turn allows careful 

progression of learners from stage to stage. However, instead of the five levels and 

phases in the original VHLT, this study uses six levels and five phases. What seems 

limited are studies that combine VHLT and TPACK frameworks through the use of 

GeoGebra, for effective technology integration. Also limited are geometry studies 

conducted in rural settings. In addition, only a limited number of studies  consider the 

entire grade 11 geometry as a whole (Bayaga et al., 2019; Chimuka, 2017; Mudaly & 

Uddin, 2016; Ogbonnaya & Alfred, 2014; Ramorola, 2010). Whilst some studies 

consider a few aspects of geometry, for instance, quadrilaterals only, other studies are 

more general (Kutluca, 2013; Masilo, 2018). This study hoped to address the identified 

loopholes by having a comprehensive look at the technology integration of grade 11 

circle geometry in a rural environment through GeoGebra, van Hieles’ levels (VHLT), 

and the Technological Pedagogical Content Knowledge (TPACK) frameworks. With 
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regards to the VHLT, this study hoped to adopt the change in levels from five to six 

which emanates from the splitting the original visualization level such that there are 

pre-visualization and visualization levels separately (Clements & Battista, 1992; 

Masilo, 2018). However, this study acknowledges the knowledge and contexts that 

surround the learning process after reviewing the TPACK model (Rosenberg & 

Koehler, 2015). Therefore, the researcher hoped to analyze the various TPACK 

knowledge types in the con+text of this study before applying the VHLT to integrate 

GeoGebra into the learning of Euclidean geometry. Hopefully, the merging of TPACK 

and VHLT to integrate GeoGebra software in the teaching process would improve the 

required pedagogy by mathematics teachers to enhance learners’ performance. 

2.5  Chapter Summary 

The literature has thrown more light on the need for educators to modify their 

methodology regarding geometry teaching. The review has shown that geometry is 

more visual than theoretical. Therefore, learners should be exposed to technological 

tools that may help learners visualize or create mental pictures of each geometry 

concept so that, any analysis of the properties of shapes could be backed up by 

meaningful interpretations from those visuals. Moreover, by using van Hieles’ model 

to integrate GeoGebra into the learning of Euclidean geometry, the learners could 

make the most of the learning process by constructing as many as possible geometric 

concepts in a more enjoyable and meaningful manner. Hopefully, technology 

integration would improve learners’ academic performance, and minimize the negative 

perception that some stakeholders have with regards to technology integration. 

Perhaps effective technology integration could encourage the DoE and the 

government to renew their commitment to providing more technological resources to 

schools so that schools could ready the learners for the numerous prospects of the 4th 

industrial revolution. 
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CHAPTER THREE: DESIGN AND METHODOLOGY 

3.1 Introduction 

This chapter begins with a presentation of the aim, objectives, and research questions 

that guided this study. Furthermore, the hypothesis, paradigm, design, research 

procedure, and research methods used in the study are discussed. The methodology 

section covers the population and sampling techniques, instrumentation, and a 

detailed process of data collection for the experimental and control groups. Next, I 

present the data analysis, validity, reliability, ethical issues, and the scope and 

limitations of the study. The chapter concludes by summarising the entire procedure 

used to design, collect, and analyze data for this study. 

3.2 Aim 

This study aimed to determine the impact that the integration of technology has on the 

teaching of Grade 11 Euclidean geometry in Motheo District of South Africa, based on 

van Hieles’ level theory. 

3.3 Objectives 

The following three research objectives guided the entire study. The study sought to: 

a. Identify the challenges that learners in Motheo District of Free State experience 

in understanding circle geometry in Grade 11. 

b. Determine how the use of GeoGebra software through each van Hieles’ level 

in the classroom affects learner achievement in the teaching and learning of 

Euclidean geometry among Grade 11 students. 

3.4 Main Research Question 

The main research question was: 

What is the impact of technology integration in teaching Grade 11 Euclidean geometry 

on Mathematics learners based on Van Hieles’ model?  

3.5 Research Questions 

These questions were used to provide answers to the main research question: 

i. What challenges do Grade 11 learners experience in circle geometry? 
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ii. How does the use of GeoGebra software through each van Hieles’ level 

in the classroom affect learner achievement in the teaching and learning 

of Euclidean geometry among Grade 11 learners? 

To be able to answer Question (b), six underlying issues were considered and 

analyzed with reference to each of the van Hieles’ levels (VHL). Those concerns 

included ways in which: 

(i) The use of GeoGebra software in teaching Grade 11 geometry impacts 

learners’ performance under van Hieles’ Pre-visualization (VHL1) level. 

(ii) The use of GeoGebra software affects Grade 11 learners’ 

achievement, under the Visualization stage (VHL2) of van Hiele’s 

model of geometric thinking. 

(iii) The use of GeoGebra software affects Grade 11 learners’ achievement 

under the Analysis stage (VHL3) of van Hieles’ model. 

(iv) The use of GeoGebra software affects Grade 11 learners’ achievement 

under the Abstraction/ordering stage (VHL4) of van Hieles’ levels. 

(v) The use of GeoGebra software impacts Grade 11 learners’ 

achievement during the formal Deductions stage (VHL5) of van Hieles’ 

model. 

(vi) The use of GeoGebra software affects Grade 11 learners’ achievement 

under the Rigor level (VHL6) of van Hieles’ level theory of geometric 

reasoning. 

3.6 Hypothesis 

The study adopted four null and four alternative hypotheses. The findings from the 

study were used to determine whether to accept or reject these hypotheses. 

i. H0: There is no significant main effect of the control and experimental groups on 

the geometry performances of Grade 11 learners.  

H1: There is significant main effect of the control and experimental groups on the 

geometry performances of Grade 11 learners.  

ii. H0: There is no significant main effect of pre- and post-tests on Grade 11 learners’ 

geometry performance. 
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H1: There is significant main effect of pre- and post-tests on Grade 11 learners’ 

geometry performance. 

iii. H0: There is no significant interaction between the control/experimental groups and 

their pre- and post-tests. 

H1: There is significant interaction between the control/experimental groups and 

their pre- and post-tests. 

iv. H0: Using GeoGebra software in classroom does not improve Grade 11 learners’ 

academic achievement across each van Hieles’ level in the teaching and learning 

of Euclidean geometry. 

H1: Using GeoGebra software in classroom improves Grade 11 learners’ academic 

achievement across each van Hieles’ level in the teaching and learning of 

Euclidean geometry. 

In the next section, I introduce the research paradigm through which this study was 

conducted. 

3.7 Research Paradigm 

This study was situated in the positivist paradigm. According to researchers 

(Makombe, 2017; Shah & Al-Bargi, 2013), positivism mostly embraces real reality as 

the ontology through objective epistemology under quantitative approaches. In other 

words, positivist research should begin with the identification of the reality of existing 

knowledge (ontology) to lead the knowledge acquisition process through objectivity 

(epistemology) during the collection, analysis, and interpretation of quantitative data. 

Similarly, this study considered technology integration as relevant to the teaching and 

learning process of Mathematics. As a result, the impact of effective technology usage 

was considered as the ontology of this research in the sense that, almost every aspect 

of our human lives relies on some form of technological advancement. For instance, 

from checking daily temperatures at the hospitals to commuting to and from work with 

automobiles, or recording learners’ academic profiles on South African School 

Administration and Management Systems (SA-SAMS), or using a particular 

educational software to enhance learning, are all somehow linked to technology usage 

or its integration. However, there seem to be some questions regarding technology 

usage. For example, what constitutes effective technology integration? Is it even 

necessary to include technological tools during classroom instruction? Is technology 
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integration worth the time and resources when some teachers can or have been 

teaching for years without technology? Those were some of the questions that guided 

the ontological views of this study. Consequently, this study aimed at identifying the 

impact which technology plays when used to teach Euclidean geometry at Grade 11 

in South African schools.  

Moreover, ontology seems to work best when connected to appropriate and related 

epistemology. Perhaps the reason is that ontological views alone may not necessarily 

yield an outcome that is proven, tested and supported by research or scientific data. 

Therefore, this study set out specific objectives to help gather numerical data, which 

guided the epistemological process. Objectivity was the epistemological stance of this 

study instead of assuming subjective views used in other paradigms such as the 

interpretive or constructivist paradigms.  

Furthermore, adopting objectivity based on the discussed ontology demanded that the 

research methodology used in this study be quantitative. That is because this study 

required data from both experimental and control groups to be collected and analyzed 

to help accept or reject the identified hypotheses of the study.  

The next section of this study explains in detail, the adopted research design. 

3.8 Quasi-experimental: Control group interrupted time series design 

The design for this study is quasi-experimental that is situated in a positivist paradigm. 

Specifically, the researcher adopted the control group interrupted time series design. 

According to McMillan and Schumacher (2014:300), time-series designs are 

appropriate when the study intends to “repeatedly” measure the performance of 

subjects before and after an intervention as opposed to other designs where single 

pre- and post-tests are used. However, there are two kinds: the single group and the 

control group interrupted time series designs (p. 300-302). The single group time-

series design only uses one group with many pre-observations, an intervention, and 

post-observations. Subsequently, the control group time-series design was used in 

this study, and that design is similar to the single group design barring the addition of 

a control group to help strengthen the threat posed by history due to the repetition of 

tests. To give more strength to the design, the researcher used parallel forms of the 

pre- and post-tests such that the respondents did not have to write the same test twice. 

A diagram of the research design is displayed in Figure 3.1. 
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Moreover, this design was selected for several reasons. For example, McMillan and 

Schumacher (2014:300) explain that time series design is mostly suitable for situations 

where the dependent variable could be timeously observed in a “continuous, naturally 

occurring” environment as the researcher administers one or more unique 

interventions during those observations. Similarly, the van Hieles’ levels (VHL) being 

used in this study required the sequential development of geometric concepts from 

level to level. Therefore, using the time-series design in this study allowed the 

researcher to make objective observations regarding Grade 11 learners’ academic 

performance (the dependent variable) as the geometry learner progresses along the 

VHL through technology integration (the independent variable). In addition, the 

inclusion of a control group to the time series design, as explained earlier, is known to 

help minimize the threats of history and instrumentation (McMillan & Schumacher, 

2014:302), which have been further explained under reliability and validity in 

subsequent sections. In the next section, I present the research procedure. 

3.9 Research procedure 

Figure 3.1 provides a summary of the entire research design process used in this 

study. In that design, and through purposive sampling, an already existing Grade 11 

mathematics class from one school was sampled to represent the control group.  

Similarly, another existing class from a nearby school was also purposefully selected 

to form the experimental group for the study. Thereafter, there were three pre-tests 

O1, O3, and O5, as well as three post-tests O2, O4, and O6, which were written by both 

groups. However, there were three interventions in-between the pre- and post-tests of 

the experimental group.  The control group, on the other hand, received no intervention 

except being taught by the  researcher through the traditional teaching approach. 

In addition, Pre-test 1 and Post-test 1 were designed to assess van Hieles’ Pre-

visualization, Visualization, and Analysis levels (VHL1-3) whilst Pre-test 2 and post-

test 2 were dedicated to Abstraction and Deduction levels (VHL4-5). The final pre- and 

post-test 3 focused on Rigor (VHL6). The construction of the test items has been 

detailed in the next section. 
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FIGURE 3.2: THE CONTROL GROUP INTERRUPTED TIME-SERIES DESIGN 

 

Furthermore, the three interventions for the experimental group had one thing in 

common: technology integration. Prior to the testing and interventions, the researcher 

assisted each learner in the experimental group to download and install GeoGebra, a 

free software, on learners’ mobile phones. In addition, the researcher installed the 

same software on the computers in the information technology (IT) laboratory of the 

experimental group, for use by the experimental group during the intervention phase.  

However, each intervention was unique. For instance, Intervention 1 was administered 

immediately the respondents submitted their Pre-test 1. That Pre-test 1 focused on 

Pre-visualization, Visualization, and Analysis of van Hieles’ levels. Therefore, the first 

intervention was structured such that the researcher could use GeoGebra software to 

correct all learners’ mistakes in Pre-test 1 before they write post-test 1. Prior to the 

correction of learners’ errors in Pre-test 1, the researcher used the GeoGebra software 

to highlight the key concepts associated with each of the first three van Hieles’ levels. 
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Some of those key concepts include the ability to physically and visually identify 

geometric shapes and their prototypes, sort and classify shapes according to their 

unique properties.  

Similarly, Intervention 2 targeted the skills learners were expected to possess as they 

solve geometric questions under van Hieles’ Abstraction (VHL4) and Deduction 

(VHL5) levels. This intervention used GeoGebra software to highlight the 

interconnections between some geometric concepts and theorems, to help provide the 

required foundation for learners to do good deductions on given geometric problems. 

However, Intervention 2, just like Intervention 1, was done by the researcher after 

learners had finished writing their Pre-test 2, waiting to write the Post-test 2.  

Finally, Intervention 3 was purposefully structured to assist learners on the various 

possible ways of solving geometric riders or real-world geometric problems. The 

emphasis, however, was the need for learners to be calm when faced with questions 

under Rigor (VHL6). Questions under VHL 6 are sometimes so advanced that learners 

have to rely on the various forms of knowledge acquired from VHL 1-5 without 

introducing any new concepts (Masilo, 2018:73), to carefully break the given problem 

into manageable parts before re-assembling the various solutions to the problem. 

Moreover, all the interventions were administered at regular intervals, always at the 

same time in-between a pre-test and the corresponding post-test, to ensure fairness 

and consistency in the data collection process.  

To control contextual factors emanating from the use of two different schools, the 

researcher sought the assistance of the Principal and the Mathematics teacher of each 

school to assist with supervision. Their supervisory role included ensuring that the 

allocated classrooms were well organised and conducive for learning. The computers 

from both schools were checked in advance to ensure that they were in working 

condition. Moreover, the assigned times for teaching, learning, and the writing of the 

tests were the same in both schools. However, it was the days for instruction that were 

rotated. For example, if school A learners are taught today, school B is taught the next 

day at same times by the same researcher. 

3.10  Methodology 

I begin this section with the procedure used for selecting the population and the sample 

for this study. 
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3.10.1 Population and sampling techniques 

According to McMillan and Schumacher (2014:143) it is important for researchers to 

clearly define their target population/universe and their sampling frame or survey 

population. For this study, the target population was Grade 11 Mathematics learners 

of Motheo District in Free State, South Africa. To understand the level of performance 

of the target population, I collected data from some teachers in Circuits 6 and 7 of 

Motheo District regarding their Grade 11 learners’ mathematics performance in 

schools for the period 2018 to 2020. Table 3.1 shows the data from some schools in 

the said district. 

TABLE 3.1: GRADE 11 MATHEMATICS PERFORMANCE OF SOME SCHOOLS IN MOTHEO DISTRICT. 

 Circuit 2018 November 

Exam Pass % 

2019 November 

Exam Pass % 

2020 November 

Exam Pass % 

School A 6 53  70 75 

School B 6 52 71 95 

School C 6 56 34 66 

School D 7 67 81 51 

School E 7 70 53 61 

School F 7 47 33 45 

 

The data from Table 3.1 seems to portray some level of inconsistencies in the 

performances, coupled with below-average performances in some of the schools. 

Perhaps Euclidean geometry contributed to the low performance of those schools 

since geometry weighs a large percentage of 33.3% (50/150 marks) of Mathematics 

Paper 2 (DoBE, 2011:10), and 16.7% (50/300) of both Paper 1 and 2 put together 

(DoBE, 2017b, 2018b). This implies that an improvement in learners’ geometry 

understanding would directly affect their performance in examinations.  

Predictably, the pattern does not look any different when analyzing the Grade 12 

performance of the same schools from 2017 to 2020. Comparing Tables 3.1 and 3.2, 

School A in 2018 achieved a 53% mathematics pass rate in Grade 11. However, since 

the same group of learners wrote the final National Senior Certificate examination the 

following year, the performance of 58.3% in 2019 does not seem surprising 

considering the group’s previous performance (DoBE, 2019b:189). That 5.3% 

increase in performance could be an indication of hard work in Grade 12 although that 
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hard work could not make much difference. It is the belief of Department of Education 

(DoBE, 2021:207) that addressing the fundamentals of geometry in earlier grades 

(including Grade 11) such as drawing and classifying geometric shapes or proving 

circle theorems could project higher pass percentages in future examinations at the 

Grade 12 level and beyond. 

TABLE 3.2: NSC GRADE 12 MATHEMATICS PERFORMANCE OF SOME CIRCUIT 6 AND 7 SCHOOLS IN MOTHEO DISTRICT  

SOURCE: DOBE (2018A-2020A). NSC SCHOOL SUBJECT REPORT. 

 Circuit 

Number 

NSC 2018 

PASS % 

NSC 2019 

PASS % 

NSC 2020 

PASS % 

School A 6 59.5 58.3 52 

School B 6 66.7 68.4 93.3 

School C 6 96.2 96.2 97.5 

School D 7 100 68.9 74.2 

School E 7 84.3 64.6 45.6 

School F 7 40 52.2 41.2 

 

Interestingly, the Grade 11 performance of schools in Circuit 6 and 7 for the same 

period 2018-2020 seems to permeate through the Grade 12 performance of the 

district, and to the national level. Table 3.3 indicates how Motheo District fared 

compared to the provincial and national mathematics pass percentages. Once again, 

the data in Table 3.3 concurs with that of the two previous tables above, all pointing to 

the need to reinforce learning of the basic concepts in geometry as repeatedly 

captured in the various school subject reports used in Table 3.3. 

TABLE 3.3: COMPARING MOTHEO DISTRICT’S GRADE 12 MATHEMATICS PERFORMANCE  

RETRIEVED FROM: NSC SCHOOL SUBJECT REPORT (2017A; 2018A; 2019A; 2020A) 

Year 2017 2018 2019 2020 

National NSC Math Pass % 51.9 58 54.6 

 

53.8 

Free State NSC Math Pass % 70.6 74.3 68.5 66.3 

Motheo District NSC Math Pass % 69.5 78.7 71.2 67.9 

 

In addition, the National Diagnostic Reports (2017b-2020b) keep lamenting the poor 

performance of learners in Euclidean geometry; a performance that is similar to that 

of the learners in schools of Motheo District. Consequently, the researcher hoped to 

find a way of addressing those concerns related to geometry that are contained in 
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those diagnostic reports, which are also pertinent in Motheo District. Hence, the use 

of Motheo District as this study’s target population. 

However, the researcher sourced the study’s survey population or sampling frame 

from approximately 600 Grade 11 mathematics learners in Circuits 6 and 7 of Motheo 

District. Moreover, that sampling frame was targeted due to the varied nature of the 

mathematics pass percentages of the various schools in the Circuits over the past 

years. In addition, it was noted that there was a lack of consistency in the performance 

of learners in most of the identified schools as shown in Tables 3.1 and 3.2 of which 

geometry is a contributing factor (DoBE, 2011, 2017b, 2018b). Furthermore, the critical 

role played by geometry in Further Education and Training (FET) cannot be 

overemphasized. For example, all of the circle geometry content in schools are taught 

at grade 11 and revised in Grade 12. That makes the Grade 11 geometry a very critical 

component when analyzing Grade 12 learners’ performance. Therefore, this study 

considered the mathematics performance of schools in Circuits 6 and 7, and 

accordingly used those schools as the survey population to whom the outcome of this 

study would be applied, and for onward generalization of the results to Grade 11 

learners in Motheo District of the Free State province. Next, I present the sampling 

procedure. 

The sample size for this study was 60 in total representing 10% of the sampling frame. 

Those 60 participants were made up of 30 learners per group representing the control 

and experimental groups. Each of the groups was an already existing Grade 11 class. 

Besides the selection of the two groups, Creswell (2012: 319) seems to agree that a 

study, such as this one, being quasi-experimental requires pre-determined classes so 

that the study does not cause much interference in the normal academic programme 

of the host schools. 

However, the researcher used the purposive sampling technique in choosing the 

sample for this study. According to McMillan and Schumacher (2014:152), using 

purposive sampling in quantitative studies demands that the researcher selects 

subjects who satisfy the required “characteristics” of the study in order to form a 

representative sample. With regards to the characteristics of the participants, this 

study chose participants who were all Grade 11 Mathematics learners from Circuit 6 

and 7 of Motheo district in Free State. However, the participants in the experimental 
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and control groups were 30 each, making a total of 60. Considering the sampling frame 

of 600 learners, that 60 participants represent 10% which lies within the recommended 

range of 8% to 12%, according to McMillan and Schumacher (2014: 155). 

Furthermore, the researchers (p.156) recommend a minimum of 15 participants per 

group for comparison and experimental designs. However, this study’s 30 subjects per 

group are double the suggested benchmark of 15 using the rule of thumb, thereby 

increasing the probability of getting statistically significant results. Moreover, all the 

subjects in the experimental group came from a school that had a well-functioning 

information technology laboratory since the group required technology integration as 

their intervention. On the contrary, participants from the control group, also 30 in 

number, did not have to work in any computer laboratory since they received no 

intervention except being taught by the traditional approach by the researcher.  

Interestingly, the control group’s average academic performance from their Grade 10 

end-of-year reports, was not so different from that of the experimental group. Data 

from participants’ end-of-year (Grade 10) academic reports showed that the average 

percentage of the control group was 45.3% whilst that of the experimental group was 

43.6%, showing only a small margin of 1.7%.  

Considering the characteristics of the participants explained in the previous sections, 

Grade 11 learners from schools C and D in Table 3.1 were purposefully selected by 

the researcher as the experimental and control groups, respectively. The inclusion of 

other schools in Tables 3.1 and 3.2 sought to provide a general view of the 

performance of schools in the identified education circuits. However, the said learners 

in those two schools (C and D) showed some comparable levels of consistency in their 

academic performance. Moreover, learners from the control group were from Circuit 7 

whilst that of the experimental group were chosen from Circuit 6 of the same 

community, so as to ensure a balance in the selection, and a fair generalization of the 

findings of the study.  

3.10.2 Instrumentation: Designing of Pre- and Post-tests 

This study made use of pen-and-pencil tests (McMillan & Schumacher, 2014:204). 

Tests were preferred to other instruments such as interviews because this study is 

quantitative, and the researcher aimed at assessing learners’ cognitive abilities under 

each of the six van Hieles’ levels, which is more suitable for tests. In total, the pre-
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tests were three in number. However, Pre-test 1 (PrT1) and Post-test 1 (PoT1) were 

not the same questions, but they had a similar structure in terms of the cognitive level 

for the test items. The choice of similar test items for pre- and post-tests was done 

because according to McMillan and Schumacher (2014:197), such parallel test items 

enhance test equivalence.  

In addition, PrT1 and PoT1 assessed participants on van Hieles’ Pre-visualization 

(VHL1), Visualization (VHL2), and Analysis (VHL3). However, the test items in VHL1 

were 6 whilst that of VHL2 had 16 items. That number of test items for VHL1, although 

only 6, were developed to allow learners to have a feel of some real geometric objects 

or their prototypes before progressing to VHL2. As for VHL3, there were 20 test items, 

making a total of 40 test items for 40 marks in both PrT1 and PoT1 combined. Some 

of the questions were multiple choice whilst others were the short-answer type. 

Moreover, the researcher gave each participant an hour to answer the 40-mark tests. 

That means each learner spent a maximum of 1.5 minutes on each 1-mark question. 

However, that 1.5 minutes is a little higher than the 1.2 minutes spent on a 1-mark 

question at the national level in all Mathematics tests and examinations. The time 

increase from 1.2 to 1.5 minutes was to afford learners more opportunity to analyze 

the given problems and apply the basic geometry concepts in solving those questions. 

Similarly, the researcher designed Pre-test 2 (PrT2) and Post-test 2 (PoT2) to assess 

the performance of learners under van Hieles’ Abstraction (VHL 4) and Deductions 

(VHL 5) levels. The test items under VHL 4 tested the ability of learners to informally 

deduce the interconnection between different geometric theorems. In addition, the test 

items only assessed the same cognitive levels under VHL 4 and 5 respectively, but 

the questions were not the same. However, VHL 4 sought to provide learners with an 

insight into established geometric theories through the use of formal deductions to 

make conjectures and proofs. Moreover, PrT2 and PoT2 had a maximum of 40 marks 

each although there were only 9 in all. Each question required learners to provide 

written and valid statements and reasons as answers. Likewise, PrT1 and PoT1, the 

researcher allocated sixty minutes for PrT2 and PoT2. 

Furthermore, the participants wrote their final Pre-test 3 (PrT3) and Post-test 3 (PoT3) 

which focused only on van Hieles’ rigor level (VHL 6). Those tests were also similar in 

terms of cognition, but the questions differed for the same reasons as the previous 
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tests discussed above. However, those tests (PrT3 and PoT3) assessed learners’ 

cognitive abilities when it comes to using scientific means to make insight into 

geometric systems. In other words, the given questions under van Hieles’ rigor level 

were structured to challenge learners to use all available theorems, axioms, etc., to 

break the given open-ended geometry questions down, prove them in parts, and 

assemble the various conclusions afterwards. However, each test under VHL6 

consisted of two questions with a total of 15 marks. Due to the high cognitive level of 

the tests under VHL6, the respondents were given 30 minutes to answer the 15 marks 

questions. 

3.10.3 The Data Collection Process 

Right after ensuring the validity and reliability of the research instruments, the 

researcher began collecting the data from the two groups as discussed below. 

3.10.3(a) Experimental Group 

This group was selected from Circuit 6 during the sampling process with a total of 30 

participants. The researcher, with the assistance of the Grade 11 mathematics teacher 

of the host school, conducted Pre-test 1 of 40 marks. Thereafter, marking of the scripts 

was done by selected mathematics teachers from the same community as the host 

school. That was followed by a feedback session that included the provision of the 

designed intervention for this group. After the free installation of GeoGebra software 

onto learners’ phones and the school’s computers, each learner was assigned a 

computer to use during the intervention. The researcher led the class through the pre-

visualization stage (VHL1) by showing different electronic models of geometric 

shapes. Learners were guided to draw as many as possible of such geometric shapes 

using GeoGebra software.  

Subsequently, the researcher drilled learners on van Hieles’ visualization level (VHL2) 

as learners were tasked to assign names to various geometric shapes, draw those 

shapes, or identify their prototypes. In addition, learners were introduced to the 

properties of the various geometric shapes through the use of GeoGebra. That was 

done by making learners draw and measure, for example, the lengths of each side of 

a square to confirm in the sides are equal or not. Moreover, the researcher urged 

learners to form small groups behind the computers, to debate and predict the various 

properties of their own drawn shapes before measuring with the simulation tools in the 
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GeoGebra software. All those processes were geared towards fixing learners’ 

mistakes that they made during PrT1. This intervention lapsed over two sessions 

where each session lasted for an hour.  

Immediately after Intervention 1, the learners wrote PoT1 during the following session. 

Thereafter, a similar cycle ensued where the experimental group was exposed to 

PrT2, followed by Intervention 2, and then PoT2. However, unlike the first intervention, 

Intervention 2 targeted making the participants develop the ability to establish 

relationships among theorems and also make formal deductions. For that reason, the 

researcher used standard past exam papers on geometry, for learners to reproduce 

those shapes using GeoGebra software, and try to synthesize or make deductions 

using the measuring tools in the software. However, most of the work under 

Intervention 2 was done by the learners themselves whilst the researcher only took a 

facilitator’s role. There were many instances where learners actively argued and 

debated each other in their attempts to find a viable solution to the given geometry 

problems. This intervention also lasted for two sessions of 1 hour each before learners 

proceeded to write PoT2. 

Finally, the respondents were given PrT3 to write for 30 minutes. Thereafter, the 

researcher regrouped the learners to make use of the GeoGebra software to find or 

test solutions to the answers they provided in PrT3. Surprisingly, most learners came 

up with unique ideas regarding how to prove the given problems in different ways. 

Thereafter, the researcher administered the final test, PoT3. Moreover, feedback on 

all the tests was provided to the participants prior to the commencement of the 

subsequent sessions. 

3.10.3(b) Control Group 

This group received no intervention. However, the group wrote all the pre- and post-

tests in the same manner as their counterparts in the experimental group. To explain 

further, the control group wrote PrT1 at the same time as the experimental group 

through the supervision of the principal and the Grade 11 mathematics teacher of that 

host school. The researcher limited the role of the host schools’ mathematics teachers 

and their principals to that of supervisors only, to ensure that their collaboration 

(Elabdali, 2021; Laal & Ghodsi, 2012) did not directly influence the outcome of the 

study. It was only the researcher who led all the teaching and learning processes in 
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both the control and experimental groups. However, the researcher only provided 

feedback sessions to address learners’ mistakes through the traditional talk-and-chalk 

teaching approach. Thereafter, the learners wrote PoT1. However, the same process 

used in the first test was used in writing PrT2, followed by a feedback session, and 

then PoT2. That same approach was also used when learners had to write PrT3 and 

PoT3. However, both groups were given the same time frame to write, complete and 

submit all the tests. 

3.11 Data Analysis 

The analysis for this study was done through descriptive and inferential statistical 

procedures. The scores of the various groupings, for example, control and 

experimental groups, or each van Hieles’ level were analyzed using the mean and 

standard deviation of the groups, as well as the mixed factorial analysis of variance 

(2-way mixed ANOVA) to compare the significance and performance of the subjects 

in the identified groups. The level of interaction between learners’ tests and the groups 

was further analyzed using a paired samples t-Test at each van Hieles’ level. 

According to MacMillan and Schumacher (2014:327), the 2-way mixed ANOVA is 

useful for situations where there is a minimum of two independent groupings to be 

analyzed. Similarly, this study made use of control and experimental groups who each 

wrote tests that covered six different van Hieles’ levels. Therefore, the many van 

Hieles’ levels and the two main groups (control and experimental) made the choice of 

ANOVA more relevant and suitable for this study. 

The researcher started the data analysis process by compartmentalizing and coding 

the tests. For example, the various scores of respondents were classified and captured 

under the six van Hieles’ levels. In addition, the coding used included Pre-visualization 

of Pre-test 1 (PrV PrT1), Visualization of Pre-test 1 (V PrT1), Analysis of Pre-test 1 (A 

PrT1), Abstraction of Pre-test 1 (Ab PrT1), Deductions of Pre-test 1 (D PrT1), and 

Rigor of Pre-test 1 (R PrT1). Moreover, the researcher used the same approach of 

coding for Pre- and Post-test 2 and 3. Furthermore, a similar set of codes were 

adopted for the post-tests, starting from Pre-visualization of Post-test 1 (PrV PoT1), 

up until Rigor of Post-test 3 (R PoT1). However, the total for each van Hieles’ level 

(VHL) was computed and analyzed for significance against the stated hypotheses of 

this study. In all, the total scores for each of the pre- and post-tests were coded, 
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captured and analyzed descriptively and inferentially, and presented in the form of 

tables and graphs. 

Finally, all the recorded scores from the tests were captured into the International 

Business Machines Corporation’s Statistical Product and Service Solutions (IBM-

SPSS). SPSS software was chosen because it is designed to provide users with 

descriptive, bivariate, and geo-spatial, among others, analysis tools that have been 

incorporated into a friendly user interface. 

3.12 Validity 

McMillan and Schumacher (2014:189) opine that when the score from a particular test 

can provide the study with a measure of appropriate inferences, that test could be 

deemed to have content validity. However, the validity of instruments may depend on 

the particular instrument or the corresponding research design. For instance, the test 

results from this study may only be valid for this study but not for others. Therefore, 

the researcher did not only look at whether the “test is able to measure what it is 

supposed to measure”, rather, the study took into account the context of this study 

which covers the purpose, population, and the environment used for data collection to 

ensure content validity.  

In addition, this study focused on geometry, technology, and performance of Grade 11 

learners in Motheo District of South Africa. The researcher posits that a valid 

instrument for this study ought to factor in the methodology and how mathematics tests 

and examinations are conducted in South Africa. For example, the Curriculum and 

Assessment Policy Statements prescribes that all mathematics tasks should have 

20% knowledge (K), 35% routine procedures (R), 30% complex procedures, and 15% 

problem-solving. Similarly, the tests used for this study were structured to contain all 

those cognitive levels which sometimes overlap compared to the van Hieles’ levels 

(VHLs), as shown in Table 2.2 of Chapter 2. That overlapping became more evident 

due to the restructuring of the original 5 VHLs to form 6 VHLs for this study. Regarding 

methodology, the traditional teaching method seems to be the most commonly used 

approach in the classroom despite the technological advancements in education. 

Therefore, the researcher structured the test items to allow the control group to 

continue receiving traditional instruction whilst the experimental group took to the use 

of GeoGebra software. However, all the tests were written under normal examination 
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conditions to match the reality on the ground in terms of mathematics testing in 

schools, but with technology integration, as a means of ensuring that the tests could 

assess Grade 11 learners’ geometric abilities irrespective of the technology 

integration. Despite the measures put in place to ensure test validity, the researcher 

adopted further research techniques to affirm the validity of instruments, as explained 

below. 

Researchers (Ayre & Scally, 2014; Lawshe, 1975) assert that a test item has content 

validity if over 50% of experts consider it relevant to the study. This study used expert 

opinion to ensure that the test items were valid. Those experts were 5 in total, and 

they involved 3 Subject Education Specialists (SES) for Mathematics in Free State 

Province, together with 2 experienced mathematics educators selected from the 

schools where the control and experimental groups were hosted. However, Ayre and 

Scally (2014) further note that for a study like this one that used 5 experts, all 5 experts 

had to agree on each test item for that item to be considered essential to the study. 

The number of experts who must agree on each test item was calculated as follows: 

The original formula by Lawshe (1975) was 𝐶𝑉𝑅 =
𝑛𝑒−

𝑁

2
𝑁

2

 where 𝐶𝑉𝑅 represents the 

content validity ratio is; 𝑛𝑒  is the number of essential test items identified by the 

experts; N is the number of experts on the panel. In addition, the CVR values range 

from -1 to 1 where -1 is “perfect disagreement” and 1 represents “perfect agreement.” 

Moreover, it is only when the CVR is above 0 (50%) that the item is considered 

essential as experts have the option to choose from “essential, useful but not essential, 

and not necessary” (Ayre & Scally, 2014). 

However, in an attempt to verify if Lawshe’s (1975) calculations were valid, Ayre and 

Scally (2014) used the normal approximation to the binomial to calculate CVR as 

shown below: 

𝐶𝑉𝑅 =
𝑧√𝑁+1

𝑁
, where z represents the normal approximation to the binomial; N is the 

total number of experts on the panel.  

This study therefore used the CVR formula produced by Ayre and Scally (2014) to 

arrive at selecting the 5 panel of mathematics experts and having all 5 agree on each 

item to be considered essential to study. Interestingly, all the 5 experts were asked by 
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the researcher to indicate whether the test item was essential/relevant or not 

essential/irrelevant following the aims and objectives of this study, the cognitive levels 

used in the South African mathematics curriculum, and the 6 van Hieles’ levels. 

However, all the experts agreed that the test items were essential, leading to a CVR 

of 1 for each test item. The only criticisms from some of the panels were the wording 

of a few questions. The researcher immediately paraphrased those statements and 

resubmitted them to those experts for review, which the panel accepted as relevant 

before the researcher used those tests for data collection. 

3.13 Reliability 

As part of measures to ensure that the data collected for this study was reliable, the 

researcher conducted a pilot study on 15 Grade 11 mathematics learners from a 

nearby school that is situated in the same community as the control and experimental 

groups. The same research instrument used in collecting data for this study was used 

for the pilot study. However, the researcher controlled the threat of pre-testing by 

ensuring that the intervention received by participants did not necessarily influence 

participants’ performance in the post-tests. That threat of pre-testing was controlled by 

creating ‘parallel forms’ of the pre- and post-tests, instead of using the same 

instrument twice (MacMillan & Schumacher, 2014:197). 

TABLE 3.16: TEST OF RELIABILITY USING PEARSON PRODUCT-MOMENT 

      VHL 1 VHL 2 VHL 3 VHL 4 VVHL 5 VVHL 6  

n     15 15 15 15 15 15  

df (residual)     13 13 13 13 13 13  

Pearson’s r     .87 .81 .90 .84 .77 .83  

Alpha (a)      .001 .001 .001 .001 .001 .001  

Significance (p-value)    .000 .000 .000 .000 .001 .000  

 

However, the researcher analyzed the outcome of the pilot study through the use of 

Pearson product-moment (r) to test for equivalence between the pre- and post-tests 

(MacMillan & Schumacher, 2014:182). However, since this study used van Hieles’ 

level theory (VHL), the r and its level of significance were determined for each pair of 

pre- and post-test at the various VHL as shown in Table 3.4. 
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Moreover, the results from those computations in Table 3.4 revealed a positive and 

strong relationship between participants’ pre- and post-test across all van Hieles’ 

levels. For instance, at VHL 3, this pilot study reported r(13)=.90 at p= .000 where p< 

.001. That result, together with the rest of the data from Table 3.3, indicates a strong 

and positive relationship between the pre-test and post-test scores at each VHL except 

VHL5 where a=p, but still significant at p=.05.  In effect, the data provide evidence of 

equivalence and stability in the research instrument used for this study. A summary of 

the scores from the pilot study for each VHL is attached under Appendix 1. 

3.14 Ethical Considerations 

Some specific measures were put in place by the researcher to ensure that all ethical 

procedures were followed to the later. Those measures have been elaborated below. 

3.14.1 Permissions 

The researcher sought permission from the University of South Africa by applying for 

ethical clearance from the Ethics Review Committee of the College of Education. My 

approval has reference number 2020/06/10/56098324/14/AM. That clearance paved 

the way for the commencement of the study. In addition, since the study was being 

done in Free State, the researcher applied for and received approval from the Free 

State Department of Education to allow the use of 60 learners (30 each) from two 

secondary schools and three subject advisors for the data collection process. 

Furthermore, parents and guardians of respondents were sent consent forms for their 

approval to allow learners to partake in the study. Finally, each permission letter 

outlined the particular measures put in place to prevent the spread of coronavirus 

(Covid-19) during the data collection process. 

3.14.2 Consent and Assent 

Parents received and signed consent and assent forms to permit their children to 

partake in this study. However, those forms specified the intent of this study, the 

possible risks involved, as well as benefits learners and teachers could derive from 

the outcome of the study. Voluntarily, parents gave their consent for the study. 

However, the consent and assent forms made provisions to ensure the safety and 

privacy of all respondents, which have been explained below. 
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3.14.3 Privacy, Confidentiality and Safety 

The researcher assured participants of their safety, which was achieved by ensuring 

that the studies took place immediately after the normal weekday classes, with active 

supervision from both the principal and the mathematics teachers in the host schools. 

In addition, learners’ scores from the tests were locked in a safe cabinet for five years 

before disposing them off. Moreover, the researcher coded the scores of learners for 

all the tests to avoid tracing the scores to the learners who wrote that test. 

Furthermore, no learner was required to write their names on the tests. Rather, the 

researcher assigned unique codes to each learner, which made learners’ responses 

more anonymous. 

3.15 Scope and Limitations  

Although this study spanned over 2 years, the actual data collection was done in about 

a month. The scope of this study covered only Grade 11 learners in Motheo District of 

Free State, South Africa. Specifically, the learners were sampled from only two 

schools in Circuits 6 and 7 of the said District due to some constraints which have 

been detailed here. For instance, that short period for collecting data was influenced 

by the onset of Covid-19, making it difficult to have regular access to respondents. 

That affected the time series design of the study which mostly requires lots of time.  

In addition, this study used a total sample size of 60 learners, a number that could 

have been increased if not for the time constraints and the Covid-19 restrictions. 

Another limitation of the study was the use of 2 already existing Grade 11classes for 

the study. Although the existing classes are mostly suitable for quasi-experimental 

studies, there seems to be the possibility of a bias in selected classes especially if 

there are many existing classes of the same Grade 11 learners in the same school, 

where only 1 class gets selected for either the control or experimental group. 

According to McMillan and Schumacher (2014:305), the use of pre-existing classes 

makes it difficult to control threats such as attrition, statistical regression, selection, 

instrumentation, among others. However, the efforts made by the researcher to control 

those threats have been explained under the validity and reliability sections of this 

study. 
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3.16 Chapter Summary 

This chapter highlighted the quasi-experimental design, the procedure and 

methodology used for the entire study. There was a detailed explanation of the 

procedure for selecting the 60 respondents as well as how the research instruments 

were developed by the researcher. The chapter further explained the possible threats 

that could undermine the validity and reliability of the data collected, and the measures 

put in place by the researcher to control such threats. In addition, this chapter detailed 

the intervention that was given to the experimental group, as well as how ethical issues 

were managed by the researcher. Although the outcome of the study would be 

explained in the next chapter, the processes that were used for data collection and 

analysis have all been explained in this chapter.  
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CHAPTER FOUR: DATA ANALYSIS AND DISCUSSION OF FINDINGS 

4.1 Introduction 

This chapter presents the analysis and discussion of the findings of the entire study. I 

commence with the factors of analysis. 

4.1.1 Factors of analysis 

In this section, the factors of analysis of the data are presented. The analysis was 

done using the International Business Machines Corporation’s Statistical Product and 

Service Solutions (IBM-SPSS) software. As explained in the previous chapter, a 2-

way mixed ANOVA was employed in this study to compare the performance of the 

subjects within and between groups. The between-groups comparisons (1st factor of 

analysis) were done between the experimental (E) and control (C) groups as shown 

in Table 4.1.  

TABLE 4.1: WITHIN- AND BETWEEN-GROUPS FACTORS OF ANALYSIS 

  Within-subjects Factors 
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In Table 4.1, PrV of PrT represents Pre-visualization of pre-test; PrV of PoT: Pre-

visualization of post-test; V of PrT: Visualization of pre-test; V of PoT: Visualization of 

post-test; A of PrT: Analysis of pre-test: A of PoT: Analysis of post-test; Ab of PrT: 

Abstraction of pre-test: Ab of PoT: Abstraction of post-test; D of PrT: Deduction of 

pre-test: D of PoT: Deduction of post-test; Rg of PrT: Rigor of pre-test: Rg of PoT: 

Rigor of post-test; VHL1-6 of PrT: Van Hieles’ Levels 1 to 6 of pre-test; VHL1-6 of 

PoT: Van Hieles’ Levels 1 to 6 of post-test. In all, a label of 1 is pre-test whilst 2 

represents post-test. 
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However, since each group wrote tests on two occasions (pre- and post-tests), the 

groups’ performance over time was the within-subjects variable (2nd factor of analysis). 

The mean test scores of each group were assigned to the empty cells in Table 4.1 and 

analyzed accordingly. The final stage of the analysis considered the overall 

performance (interaction) of the groups in the tests for all van Hieles’ levels (VHL1-6). 

Those between- and within-group factors of analysis were used throughout the 

analysis of scores in this section of the study. Finally, that analysis led to the 

acceptance or rejection of the hypotheses, which consequently helped to answer the 

research questions of this study.  

4.1.2 Testing assumptions: Normality, independence, and homogeneity 

According to (Lane, 2016:114), analyzing data in a study like this should consider 

having independent “observations, normality within groups, and homogeneity of 

variances.” For the entire study, the observations in the between-group variable were 

independent since a respondent could only be in one group at a time. In addition, the 

normality of scores within groups was explored and it was found that the majority of 

scores at all van Hieles’ levels were normally distributed. Evidence from the Shapiro-

Wilk normality test (See Appendix 2) revealed that 13 out of the 28 values were not 

normally distributed (p<.05) (Ahad et al., 2011; Hanusz et al., 2016). However, the fact 

that the overall sample size remained 60 for each van Hieles’ level also assumed the 

normality to be less prominent in this study.  

Regarding the assumption of homogeneity, Gastwirth, Gel, and Miao (2009:1) assert 

that Levene’s (1960) test is very useful when analyzing the “homogeneity of 

variances”. Levene’s test could have been ignored for the entire study since the 

sample size was bigger (N=60). However, to verify if the error variance of the learners’ 

geometry scores in the tests was the same across the two groups (within-groups), 

Levene’s test for equality of variances was adopted. For example, Table 4.2 shows 

non-significant p-values (p>.05) to signify the non-violation of Levene’s (1960) test 

under van Hieles’ level 1. 
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TABLE 4.2: LEVENE’S TEST OF EQUALITY OF ERROR VARIANCES UNDER VHL1 

 

Interestingly, all other van Hieles’ levels in this study, except VHL6, recorded non-

significant values (see Appendix 3). The higher non-significant differences further 

imply that the majority of scores in the control and experimental groups had a similar 

dispersion throughout the study.  

Based on the above, it was decided that the assumptions were adequately met to 

proceed with the analysis process. I began the analysis with van Hieles’ pre-

visualization level. 

4.2 Analysis under van Hieles’ Pre-visualization (PrV) level (VHL1) 

This section tested the study’s hypotheses by analyzing the performance between the 

control and experimental groups, the total scores from the pre- and post-tests, and the 

interaction among variables. 

4.2.1 Between Subjects Effects under van Hieles’ Pre-visualization level 

The analysis in this section focused on testing the following null hypothesis: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

The ANOVA results in Table 4.3 show that there is a significant main effect of the 

groups (F (1, 58) =29.00, p=.000, np
2=.33) on their geometry performance. The 

direction of the difference is illustrated in Table 4.4, where the control (C) group’s 

average performance for both pre and post-test was 3.42 compared to the 4.33 

average score of the experimental (E) groups. The difference in the mean scores of 

the two groups is 0.91, which is significant in this study at p=.000. 
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TABLE 4.3: TEST OF BETWEEN-SUBJECTS EFFECTS UNDER VHL1 

 

 

TABLE 4.4: DESCRIPTIVE STATISTICS OF TESTS FOR VAN HIELES’ PRE-VISUALIZATION (VHL1) 

 Group        Mean (𝑥̅)        SD (𝜎)         N 

Total of Pre-visualization for Pre-test C 3.30 .998          30 

E 3.27 1.081     30 

Total 3.28 1.027     60 

Total of Pre-visualization for Post-test C 3.53 .776     30 

E 5.40 .621     30 

Total 4.47 1.171     60 

 

The reported significant main effect could then be attributed to the impact of 

technology integration at van Hieles’ Pre-visualization level (VHL1). Therefore, this 

study rejects null hypothesis (i) and reports that there is a significant main effect 

between the group performances of Grade 11 learners who are taught using 

GeoGebra software and those taught without it under van Hieles’ Level 1.  

Comparatively, this finding concurs with the position by Mandell, Sorge and Russell 

(2002:43) who believe that although educators are capable of presenting their lessons 

using the traditional behaviorists approach, “lessons can be enhanced with the 

integration of technology”. However, the reported main effect size of 33%, although 

large (np
2>.14), shows that learners still have challenges at the pre-visualization stage 

(VHL1). To confirm the existence of learners’ challenges in geometry, the scores of 

learners in both control and experimental groups were analyzed further. There were 

19.7% of the 60 learners who scored a maximum of 2 marks out of 6; 37% scored 

exactly 3 marks; 45.3% scored from 4 to 6 marks. Having Grade 11 learners who 

scored less than 50% in the basics of geometry (pre-visualization), portrays the gravity 

of the challenges learners face in geometry in South African schools. Those learners 

in Groups C and E struggled in the pre-test to identify geometric shapes by their 

names, the number of edges, parts of a circle, etc. Perhaps that is why the Department 
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of Basic education constantly emphasizes the need to actively teach learners those 

basic geometry concepts (DoBE, 2019:200). However, the same two groups 

performed extremely better after the post-test where all the learners scored 50% and 

above, except only 2 out of the 60 learners who scored below 3 marks under pre-

visualization. Once again, that performance highlights the impact technology plays in 

geometry if the lessons are well structured to allow learners to enjoy visualizing as 

many shapes as possible as asserted by Karadag and McDougall (2011). However, 

the findings support assertions by researchers (Mandell, Sorge and Russell, 2002; 43) 

that technology cannot and should not replace teachers. This is because the control 

groups also showed significant improvement although that group received no 

intervention except the traditional teaching approach. 

4.2.2 Within-subjects Effects of Van Hieles’ Pre-Visualization Level 

This section tests research hypothesis (ii) which states that:  

There is no significant main effect of pre- and post-tests on Grade 11 learners’ 

geometry performance. 

TABLE 4.17: TEST OF WITHIN-SUBJECTS EFFECTS AT VHL1 

 

In Table 4.5, there was a significant main effect of a large effect size of the pre- and 

post-tests on the Grade 11 learners’ performance (F (1, 58) = 60.28, p=.000, np
2=.51) 

(np
2=.510) (Crawford et al., 2014; Lane, 2016). To corroborate that significant effect, 

Table 4.4 captures the combined pre-test (VHL1) average of 3.28 as against the post-

tests’ 4.47. Comparatively, those averages provide an improvement of 1.19 mean 

points from the pre to post-test. As a result, this study rejects null hypothesis (ii) by 
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stating that, there was a significant main effect of the pre- and post-tests on Grade 11 

learners’ geometry performance.  

4.2.3 Interaction among variables 

Null hypothesis (iii) of this study states:  

There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

To verify if the null hypothesis (iii) holds for this study under VHL1, the researcher 

used Table 4.5 to analyze the interaction between the pre-post tests and the two 

groups (C and E) (Lane, 2016). Data from Table 4.5 show significant interaction 

between the pre-post scores of learners under VHL1 and the groups (F (1, 58) =38.85, 

p=.000, np
2=.40). The data also show a large effect size, where 40.1% of the variance 

in the dependent variable was accounted for by the independent variable (Richardson, 

2011: 142). In Table 4.4, the control (C) and experimental (E) groups’ average 

performance in the post-test were 3.53 and 5.40, with standard deviations .776 and 

.621, respectively. The difference in the mean scores of the two groups is 1.87, which 

is significant in this study at p=.000. The study rejects null hypothesis (iii) and states 

that there was a significant interaction between the control/experimental groups and 

their pre- and post-tests.  

According to Alex and Mammen (2018), building and understanding the terminologies 

in every field cannot be overemphasized. For example, VHL1 builds learners’ 

appreciation of geometry through exposure to real objects and their associated 

terminologies. Hopefully, the rejection of that null hypothesis (iii) and the subsequent 

indication of improved performance under VHL1 by the experimental group would help 

Grade 11 learners to build enough geometric vocabulary needed for higher van Hieles’ 

levels. 

4.2.4 Graphical representation of main effects and interaction 

Loftus (1978) asserts that main effects that result from probabilities are mostly 

interpretable just as crossover interactions. This study has reported a significant 

interaction (F (1, 58) =38.85, p=.000, np
2=.40) of time and groups. In addition, the 

graphs in Figure 4.1 also cross over each other. That significance and the crossover 

confirm the existence of significant interaction between the variables as previously 
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FIGURE 4.1: ESTIMATED MARGINAL MEANS OF TESTS UNDER VAN HIELES’ PRE-VISUALIZATION 

discussed in this study. Besides, the two graphs in Figure 4.1 are far from being 

parallel, a further indication of an interaction (Lane, 2016; Petty et al., 1996). 

The graphical representation of the marginal means in Figure 4.1 affirms the data 

provided in Table 4.4. In Figure 4.1, the numbers 1 and 2 represent respectively, the 

pre- and post-tests of van Hieles’ Pre-visualization level. Although the two groups (C 

and E) performed similarly in the pre-test, the post-test shows a significant difference 

in the mean scores of the two groups as explained earlier in this section. That 

difference was measured using a paired sample t-Test. 
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All the discussed tables above and Figure 4.1 provide the ANOVA data that highlights 

the significant interactions and main effects which exist between and within the 

variables. This study therefore accepts research hypothesis (iv) under VHL1 because 

the available data shows that Grade 11 learners who were taught geometry using 

GeoGebra software performed significantly higher than their counterparts who 

received no such intervention. The improvement in performance under VHL1 concurs 

with findings by researchers (Masilo, 2018; Abdullah & Zakaria, 2013; Clements & 

Battista, 1992) who consider the pre-visualization level critical to the teaching and 

learning of geometry.  
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Next, I present the ANOVA outcomes for van Hieles’ Visualization level (VHL2) of this 

study. 

4.3 Analysis under van Hieles’ Visualization (V) level (VHL2) 

Having reported significant main effects and interaction in Section 4.2, this section 

(4.3) hoped to find out if a similar or different outcome would emerge. The between-

group factors were considered first. 

4.3.1 Between Subjects Effects under van Hieles’ Visualization level (VHL2) 

This section tested the following null hypothesis under VHL2: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.18: TESTS OF BETWEEN-SUBJECTS EFFECTS UNDER VHL2 

 

 

TABLE 4.19: DESCRIPTIVE STATISTICS FOR VAN HIELES’ VISUALIZATION (VHL2) 

 Group        Mean (𝑥̅)     SD (𝜎)         N 

Total of Visualization (VHL2) for Pre-test C 7.20 1.919          30 

E 7.37 2.236     30 

Total 7.28 2.067     60 

Total of Visualization (VHL2) for Post-test C 7.80 1.901     30 

E 11.27 1.874     30 

Total 9.53 2.561     60 

 

According to Table 4.6, there was a significant main effect of the groups, with large 

effect size, on the Grade 11 learners' scores in Euclidean geometry (F (1, 58) =20.12, 

p=.000, np
2=.26) (Norouzian & Plonsky, 2018:267). Table 4.7, however, details the 

pattern of the average scores and spread of data such that Group C’s overall average 

was 7.50. On the other hand, Group E achieved a combined mean of 9.32, making the 
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difference between the two group means 1.32. The experimental group’s overall 

performance in this section was far different and better than that of the control group. 

This study therefore rejects null hypothesis (i) under van Hieles’ visualization level. 

By rejecting the null hypothesis, this study agreed with the stance of researchers (Jojo, 

2017: 258-259; White 2012; Dogan 2010) who believe in the significant role played by 

technology integration in the classroom, especially when the geometry lesson is 

structured to challenge learners to actively explore geometry on their own. 

4.3.2 Within-subjects Effects of Van Hieles’ Visualization Level 

In this section, the analysis focused on investigating if there was no significant main 

effect of pre- and post-tests on Grade 11 learners’ geometry performance. 

 

Table 4.8 reports a significant main effect of the pre-post tests on performance (F (1, 

58) = 50.64, p=.000, np
2=.47). That significant effect was accompanied by a large 

effect size where 46.6% of the Grade 11 learners’ scores were accounted for by the 

independent variable (Richardson, 2011). In addition, Table 4.7 gives the direction of 

the scores by reporting a difference in means of 2.25 between the overall pre- and 

post-tests. That difference showed a performance improvement which resulted from 

the difference in total means of 7.28 and 9.53 for the pre- and post-test respectively. 

Consequently, this study rejects null hypothesis (ii) and concludes that, for VHL2, there 

was a significant main effect of the tests on Grade 11 learners’ geometry performance. 

To produce significant within-pre- and a post-test main effect for both control and 

experimental groups in this study could be a good start to correct the negative 

perceptions held by some school administrators.  Ford and Botha (2010:4) assert that 

TABLE 4.20: TEST OF WITHIN-SUBJECTS EFFECTS AT VHL2 
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some schools still disallow the use of technological devices due to the possibility of 

causing disruptions in class. Interestingly, the literature shows that irrespective of the 

technology to be used, schools should consider “when is technology most effective” 

(Ross, 2018:2) and whether that technology is “underpinned by theories and 

pedagogical principles” (Ford & Botha, 2010:5), than focusing on the disruptions they 

may cause. Interestingly, findings from this study support both researchers on the 

notion that although technology cannot replace educators, but they can replace many 

“low-level instructional duties” (Ross, 2018:2).  To be precise, this study has shown 

that the benefits of technology integration could be harnessed through van Hieles’ 

model as teachers facilitate geometry lessons in South African schools.  

4.3.3 Interaction under VHL2 

The third null hypothesis of the study states that:  

(iii) There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

Table 4.9 provides evidence that shows the existence of significant interaction 

between the pre-post and the groups, with a large effect size (F (1, 58) =27.23, p=.000, 

np
2=.32). However, the effect size is not as large as it was at the pre-visualization level 

(VHL1) which recorded np
2=.40. Moreover, the descriptive statistics (see Table 4.8) for 

VHL2 revealed an improved performance for Group E in the post-test (Mean=11.27, 

SD=1.874) compared to Group C (Mean=7.80, SD=1.901). A similar pattern was 

observed during the pre-test with Groups C and E having means of 7.20 and 7.37 as 

against standard deviations of 1.919 and 2.236, respectively. 

Graphically (see Figure 4.2), the two groups performed similarly at the pre-test level 

with a mean difference of .17. However, a paired samples t-test showed that the 

experimental group performed significantly better in the post-test (mean=11.27, 

SD=1.87) than they did in the pre-test (mean=7.37, SD=2.24); t(29)=-9.13, p=.000). 

At the 95% confidence interval, the interval for the experimental group’s true difference 

in population means was (-4.77: -3.03). 
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On the contrary, although Group C recorded a significant mean difference in the post-

test (mean=7.80, SD=1.90) as against (mean=7.20, SD=1.92) in the pre-test, the 

experimental group performed better after the intervention, as shown on the graph. As 

a result of the above discussion, this study rejects null hypothesis (iii) under VHL2 at 

p=.000. That means there was a significant interaction with a large effect size (np
2=.32) 

between the groups and their test scores. 

Based on the presented data, this study accepts research hypothesis (iv) under VHL2 

because the available data show that Grade 11 learners who were taught geometry 

using GeoGebra software performed significantly higher than their counterparts who 

received no such intervention. However, that acceptance of the hypothesis aligns with 

the study by Chimuka (2017) who also reported significant differences in learners’ 

performance under VHL1 and 2. Moreover, the test items under VHL2 addressed 

contents such as identifying various circle theorems, properties of quadrilaterals, 

differentiating triangles, among others. Therefore, for this study to report significant 

interaction after the intervention, with large effect size, also affirms the impact 

GeoGebra makes in correcting Grade 11 learners’ errors in Euclidean geometry. The 

next discussion analyses the ANOVA outcomes for van Hieles’ Analysis level (VHL3). 

 4.4 Analysing van Hieles’ Analysis level (VHL3) 

Since all three assumptions were met, the analysis under VHL3 proceeded as follows: 

4.4.1 Between Subjects Effects under van Hieles’ Analysis level (VHL3) 

This section tested null hypothesis (i) under VHL3: 

7,20 7,37
7,80

11,27

0,00

2,00

4,00

6,00

8,00

10,00

12,00

C E

Figure 4.2:  Average performance of groups at Visualisation level (VHL2)
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(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.21: TESTS OF BETWEEN-SUBJECTS EFFECTS UNDER VHL3 

 

This study reports a significant main effect of the groups on the Grade 11 learners' 

scores in Euclidean geometry (F (1, 58) =90.60, p=.000, np
2=.61). In addition, the 

effect size was large such that 61% of the learners’ scores were accounted for by the 

groups in this study.  

TABLE 4.22: DESCRIPTIVE STATISTICS FOR VAN HIELES’ ANALYSIS LEVEL (VHL3) 

 Group        Mean (𝑥̅)     SD (𝜎)         N 

Total of Analysis (VHL3) for Pre-test C 8.53 2.013          30 

E 9.93 1.596     30 

Total 9.23 1.934     60 

Total of Analysis (VHL3) for Post-test C 10.77 2.046     30 

E 16.57 2.750     30 

Total 13.67 3.785     60 

 

Moreover, Table 4.10 explains the direction of the scores where the combined average 

of Group C was 9.65 compared to 13.25 achieved by Group E. The mean difference 

between the two groups was 3.6, which contributed to the reported large effect size. 

Based on the above analysis, the null hypothesis (i) is rejected for van Hieles’ Analysis 

level of this study. For this study to report such a significant main effect underscores 

the need to develop educators to be able to effectively use appropriate technological 

tools such as GeoGebra, to improve learners’ geometry scores under van Hieles’ 

Abstraction level. Hopefully, an increase in technology  integration lessons in schools 

would address shortfalls in geometry basics under VHL 3 that make  learners make 

assumptions without valid reasons during tests and exams (DoBE, 2019a, 2020a, 

2021).  
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4.4.2 Within-subjects Effects under Van Hieles’ Analysis Level 

 

Table 4.11 helped to determine if there was any significant main effect of pre- and 

post-tests on the geometry scores of the participants. Data from Table 4.11 indicates 

the existence of a significant main effect of the pre-post tests on performance (F (1, 

58) = 120.77, p=.000, np
2=.68). The effect size was large (np

2>.14) (Richardson, 2011). 

To understand the direction of the reported effect, Table 4.10 records the total mean 

scores of the pre- and post-tests as 9.23 and 13.67, respectively. That shows an 

increase of 4.44 mean points. As a result, this study has shown sufficient evidence to 

reject the null hypothesis (ii) under VHL3. The study therefore concludes that there 

was a significant main effect of the tests on Grade 11 learners’ geometry performance 

under van Hieles’ Analysis level (VHL3). 

4.4.3 Interaction under van Hieles’ Analysis level 

Null hypothesis (iii) reads:  

(iii) There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

Once again, there was evidence that showed significant interaction with large effect 

size between the pre-post and the groups (F (1, 58) =29.74, p=.000, np
2=.34) (see 

Table 4.11).  

Table 4.11: Tests of Within-Subjects Effects under Van Hieles’ Analysis Level 

Measure: Test 

Source 
Type III Sum 
of Squares df 

Mean 
Square F     Sig. 

Partial 
Eta 

Squared 

Pre_post Sphericity Assumed 589.633 1 589.633 120.772 0.000 0.676 

Greenhouse-Geisser 589.633 1.000 589.633 120.772 0.000 0.676 

Huynh-Feldt 589.633 1.000 589.633 120.772 0.000 0.676 

Lower-bound 589.633 1.000 589.633 120.772 0.000 0.676 

Pre_post * 
Group 

Sphericity Assumed 145.200 1 145.200 29.741 0.000 0.339 

Greenhouse-Geisser 145.200 1.000 145.200 29.741 0.000 0.339 

Huynh-Feldt 145.200 1.000 145.200 29.741 0.000 0.339 

Lower-bound 145.200 1.000 145.200 29.741 0.000 0.339 

Error 
(Pre_post) 

Sphericity Assumed 283.167 58 4.882 
   

Greenhouse-Geisser 283.167 58.000 4.882 
   

Huynh-Feldt 283.167 58.000 4.882 
   

Lower-bound 283.167 58.000 4.882       
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In addition, data from Table 4.10, as well as a paired samples t-Test, showed that the 

experimental group significantly increased their performance from the pre-test 

(Mean=9.93, SD=1.60) to the post-test (Mean=16.57, SD=2.75); t(29)= -11.98, 

p=.000). Similarly, the control group also performed significantly better from their pre-

test (Mean=8.53, SD=2.01) to post-test (Mean=10.77, SD=2.05); t (29) = -3.81, 

p=.001. However, the graph in Figure 4.3 shows that the mean of Group E is better 

than that of Group C. moreover, the true difference of population the population means 

for Group E at the 95% confidence interval was better (-7.766; -5.500) than that of 

Group C (-3.433; -1.034). The study therefore rejects null hypothesis (iii) under van 

Hieles’ Analysis level at p=000. On the contrary, the available evidence presented 

supports this study in accepting alternate hypothesis (iv) by stating that, the use of 

GeoGebra software in the classroom improves Grade 11 learners’ academic 

achievement under van Hieles’ Level 3. 

A similar significant improvement was reported by Sadiki (2016:51) in the experimental 

Group A, although the researcher failed to specify exactly which van Hieles’ level was 

being analyzed. As a reminder, it is under van Hieles’ Analysis level that learners 

appreciate “the aspect of geometry” (van Hiele-Geldof, 1957). In other words, the 

Grade 11 learner begins to use all prior knowledge from the pre-visualization and 

visualization levels, to distinguish between two or more geometric shapes based on 

their properties. Therefore, reporting significant interaction under VHL3 shows how 

well technology integration influences learners’ ability to use a figure’s characteristics 
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to see for example, that a right-angled triangle differs from an equilateral triangle just 

the same ways as a rectangle differs from a square.  

Notwithstanding the reported significant main effect between the groups, there were 

many errors detected in the learners’ work from both control and experimental groups. 

For example, only 45% (27 out of 60) of learners were able to correctly indicate that 

the diagonals of a parallelogram intersect at right angles in the pre-test. However, 

there was an improvement such that 63.3% (38 out of 60) got the same property 

correct in the post-test. Similarly, the intervention assisted 78.3% (47 out of 60) of the 

learners to recall during the post-test that only one pair of sides of a trapezium are 

parallel, compared to the 41.7% (25 out of 60) who got that property right during the 

pre-test. However, the level of improvement between the overall scores of Groups E 

and C were not significant enough as reported earlier in this study. However, those 

findings confirm Masilo’s (2018:122) conclusions that learners in the experimental 

group perform better under van Hieles’ Analysis level by showing increased ability to 

analyze geometric shapes from the shapes’ properties. Moreover, by combining 

technology integration with van Hieles’ Analysis level, this study has further shown 

that learners could perform better in geometry when an appropriate teaching 

methodology is adopted.  

In conclusion, this section of the study has shown the existence of significant main 

effects for both within- and between-groups. The results also showed a significant 

interaction between the pre-post and group leading to the rejection of all three null 

hypotheses in favor of the alternate hypothesis of the study. In the end, the 

experimental group performed significantly better than their cohorts in the control 

group under van Hieles’ Analysis level. 

Abstraction, which is classified under van Hieles’ Level 4, is the next subject of 

analysis. 

4.5 Analysis of van Hieles’ Abstraction level (VHL4) 

This part of the analysis dealt with testing three null and alternate hypotheses based 

on the factors of analysis. The geometric contents covered were the ability of learners 

to detect one geometric theorem in different ways, and to connect and apply those 

theorems to solve given circle problems. The between subjects’ factor was considered 

first. 
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4.5.1 Between Subjects Effects under van Hieles’ Abstraction level (VHL4) 

Null hypothesis (i) under VHL4 states: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.12: TESTS OF BETWEEN-SUBJECTS EFFECTS UNDER VHL4 

 

 

TABLE 233: DESCRIPTIVE STATISTICS FOR VAN HIELES’ ABSTRACTION LEVEL (VHL4) 

 Group        Mean (𝑥̅)     SD (𝜎)         N 

Total of Abstraction (VHL4) for Pre-test C 7.30 4.75          30 

E 6.73 4.09     30 

Total 7.02 4.40     60 

Total of Abstraction (VHL4) for Post-test C 11.67 2.95     30 

E 15.13 2.80     30 

Total 13.40 3.35     60 

 

Evidence from Table 4.12 showed that there was no significant main effect of the 

groups on the Grade 11 learners’ performance (F (1, 58) =3.07, p=.085, np
2=.05). In 

addition, the total average of Group C was 9.49 as against the 10.93 total average 

achieved by Group E (see Table 4.13). The control and experimental groups recorded 

a difference in means of 1.44 which was non-significant in this study. Therefore, this 

study considers the above data evident enough to accept the null hypothesis (i) under 

van Hieles’ Abstraction level.  

The reported non-significant effect in this study breaks the cycle of continuous 

progression from one van Hieles’ level to the next as expected in van Hieles’ theory 

(VHLT) (Crowley, 1978:4).  However, those findings only affected the between-group 

factor. The analysis of the pre- and post-tests presents the exact opposite of the 

outcome in this section. I, present the within-subject effects under VHL 4. 
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4.5.2 Within-subjects Effects under Van Hieles’ Abstraction Level 

TABLE 4.14: TESTS OF WITHIN-SUBJECTS EFFECTS UNDER VAN HIELES’ ABSTRACTION LEVEL 

Measure: Test 

Source 
Type III Sum 
of Squares df 

Mean 
Square F    Sig. 

Partial Eta 
Squared 

Pre_post Sphericity Assumed 1222.408 1 1222.408 166.009 0.000 0.741 

Greenhouse-Geisser 1222.408 1.000 1222.408 166.009 0.000 0.741 

Huynh-Feldt 1222.408 1.000 1222.408 166.009 0.000 0.741 

Lower-bound 1222.408 1.000 1222.408 166.009 0.000 0.741 

Pre_post * 
Group 

Sphericity Assumed 122.008 1 122.008 16.569 0.000 0.222 

Greenhouse-Geisser 122.008 1.000 122.008 16.569 0.000 0.222 

Huynh-Feldt 122.008 1.000 122.008 16.569 0.000 0.222 

Lower-bound 122.008 1.000 122.008 16.569 0.000 0.222 

Error 
(Pre_post) 

Sphericity Assumed 427.083 58 7.364 
   

Greenhouse-Geisser 427.083 58.000 7.364 
   

Huynh-Feldt 427.083 58.000 7.364 
   

Lower-bound 283.167 58.000 4.882       

   

Unlike the between-subject effects, the study reports a significant main effect of the 

pre-post on Grade 11 learners’ performance in geometry under the Abstraction level 

(F (1, 58) = 166.01, p=.000, np
2=.74) (see Table 4.14). Furthermore, the tests 

accounted for large effect size (74.1%) of the geometry scores (Richardson, 2011). To 

corroborate that significant large effect, Table 4.13 shows a higher post-test’s total 

average of 13.40 which is almost double that of the pre-test (Mean=7.02). Based on 

the available data presented, this study rejects null hypothesis (ii) under VHL 4.   

Crowley (1987:4) explains that although the levels in VHLT are “sequential”, the 

“advancement” from one level to the next has more to do with the nature of the topic 

and the methodology adopted, rather than the learner’s age. Hence, this study reports 

that the nature of the organization of the circle theorems with the GeoGebra software 

adequately facilitated learners’ ability to link circle theorems and to make informal 

deductions.  

To corroborate the reported findings, 63.3% of the pre-test (Question 3 of Pre-test 2) 

scores correctly linked and applied the angle at center theorem with the angles formed 

in a semi-circle by a diameter. As an improvement, 88.3% (53 out of 60) of the post-

test scores (Question 3 of Post-test2) were able to correctly relate the same angle at 

center theorem with the angle in a semi-circle. I now present the interaction. 

4.5.3 Interaction under van Hieles’ Abstraction level 

Null hypothesis (iii) reads:  
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(iii) There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

There was evidence (see Table 4.14) that showed a significant interaction of the pre-

post and group with a large effect size (F (1, 58) =16.57, p=.000, np
2=.22). However, 

the effect size was not as large as the previously discussed van Hieles’ levels above 

since this section only accounted for 22.2% of the geometry scores. 

Moreover, a paired samples t-Test indicated a significant increase in the performance 

of the experimental group in the post-test (Mean=15.13., SD=2.80) compared to the 

same group’s performance during the pre-test (Mean=6.73, SD=4.09); t(29)= -13.04, 

p=.000). The control group also achieved significant improvement in the post-test 

(Mean=11.67, SD=2.95) as compared to their pre-test scores (Mean=7.30, SD=4.75); 

t(29)= -5.80, p=.000). However, by comparing the averages of Groups E (n=30) and 

C (n=30) on the graph below (Figure 4.4), there is a higher mean mark in favor of 

Group E. The level of improvement reported in this study coincides with the findings 

of Masilo (2018), who reported that the deduction skills possessed by most learners 

in the “comparison group” were low. On the contrary, the researcher identified a huge 

number of learners who initially had “low informal deduction skills” moving to “average, 

advanced, and proficient” (p.126) abstraction skills. 

 

Furthermore, the paired samples t-Test, at the 95% confidence interval, reported the 

true difference of the population means for Group E (-9.72; -7.08) compared to that of 

Group C (-5.91; -2.83). As a result of the presented evidence, the study rejects null 

hypothesis (iii) in favor of alternate hypothesis (iv) under van Hieles’ Analysis level at 

p=000. 
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The study has shown that technology integration, in the form of using GeoGebra, 

significantly improves Grade 11 learners’ performance in Euclidean geometry under 

van Hieles’ Level 4. The next analysis looks at van Hieles’ Deduction level. 

4.6 Analysis of van Hieles’ Deduction level (VHL5) 

Van Hieles’ Level 5 in this study, exposed learners to formal deductions and proof in 

Euclidean geometry. As a result, this section of the study was dedicated to the analysis 

of the between-groups factors, within-subjects, and interaction of the pre-post and 

groups. That analysis of data served as evidence for the acceptance or rejection of 

the study’s hypotheses. 

4.6.1 Between Subjects Effects under van Hieles’ Deduction level 

The analysis in this section was guided by the following null hypothesis: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.15: TESTS OF BETWEEN-SUBJECTS EFFECTS UNDER VAN HIELES’ DEDUCTION LEVEL 

 

 

TABLE 4.16: DESCRIPTIVE STATISTICS FOR VAN HIELES’ DEDUCTION LEVEL (VHL5) 

 Group        Mean (𝑥̅)     SD (𝜎)         N 

Total of Deductions (VHL5) for Pre-test C 4.80 2.295          30 

E 4.83 2.119     30 

Total 4.82 2.190     60 

Total of Deductions (VHL5) for Post-test C 7.57 2.459     30 

E 13.67 2.940     30 

Total 10.62 4.084     60 

 

From Table 4.15, there was a significant main effect of the groups with a large effect 

size on the Grade 11 learners scores under VHL 5 (F (1, 58) =33.18, p=.000, np
2=.36). 

In addition, Table 4.16 reveals the direction of the scores where in total, the control 
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group achieved an average of 6.18 whereas the experimental group obtained a mean 

of 9.25. Therefore, the study rejects null hypothesis (i) at p=.000. However, the effect 

size between the control and experimental groups, under VHL5 (36.4%), was higher 

than that of the abstraction level (5%). The outcome of this study is a direct opposite 

of Chimuka’s (2017) findings who recorded a non-significant difference between the 

mean score of the control and experimental group’s performances in geometry. 

However, the average mark of the experimental group was higher than that of the 

control group in that study (p. 65). 

4.6.2 Within-subjects Effects under Van Hieles’ Deduction Level 

TABLE 4.17: TESTS OF WITHIN-SUBJECTS EFFECTS UNDER VAN HIELES’ DEDUCTION LEVEL 

Measure: Test 

Source 
Type III Sum 
of Squares df 

Mean 
Square F    Sig. 

Partial Eta 
Squared 

Pre_post Sphericity Assumed 1009.200 1 1009.200 271.282 0.000 0.824 

Greenhouse-Geisser 1009.200 1.000 1009.200 271.282 0.000 0.824 

Huynh-Feldt 1009.200 1.000 1009.200 271.282 0.000 0.824 

Lower-bound 1009.200 1.000 1009.200 271.282 0.000 0.824 

Pre_post * 
Group 

Sphericity Assumed 276.033 1 276.033 74.200 0.000 0.561 

Greenhouse-Geisser 276.033 1.000 276.033 74.200 0.000 0.561 

Huynh-Feldt 276.033 1.000 276.033 74.200 0.000 0.561 

Lower-bound 276.033 1.000 276.033 74.200 0.000 0.561 

Error (Pre_post) Sphericity Assumed 215.767 58 3.720 
   

Greenhouse-Geisser 215.767 58.000 3.720 
   

Huynh-Feldt 215.767 58.000 3.720 
   

Lower-bound 215.767 58.000 3.720       

   

Table 4.17 provides data to show a significant main effect with a large effect size of 

the pre-post on Grade 11 learners’ geometry scores (F (1, 58) = 271.28, p=.000, 

np
2=.56). In addition, Table 4.16 records a higher post-test total mean score of 10.62 

compared to the 4.82 mean obtained during the pre-test. Consequently, this study 

rejects null hypothesis (ii) under van Hieles’ Deductions level at p=.000.  

4.6.3 Interaction under van Hieles’ Deduction level (VHL5) 

The following null hypothesis was tested under VHL 5:  

(iii) There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

Under van Hieles’ Deduction level, this study reports a significant interaction of the 

pre-post and group (F (1, 58) =16.57, p=.000, np
2=.22) (see Table 4.17). The effect 
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size was also large (np
2>.14). The direction of the effect is demonstrated in both Table 

4.16 and Figure 4.5 where the experimental group scored higher than the control 

group in both pre- and post-tests. In addition, a paired samples t-Test confirmed that 

there was a significant increase in the performances of both groups. For example, the 

post-test performance of Group E was better (Mean=13.67., SD=2.94) compared to 

the same group’s performance in the pre-test (Mean=4.83, SD=2.12); t (29) = -18.89, 

p=.000). On the other hand, Group C performed significantly better in the post-test 

(Mean=7.57, SD=2.46) as compared to their pre-test scores (Mean=4.80, SD=2.30); t 

(29) = -5.25, p=.000).  

  

Initially, at the pre-test level, the two groups performed almost the same with a mean 

difference of .03. However, the post-test results showed the contrary. Although the two 

groups performed significantly better in the post-test, Group E’s mean score after the 

intervention far outweighs the mean of Group C in the post-test (see Figure 4.5). Based 

on those findings, this study rejects the null hypothesis (iii). The study concludes that 

under VHL5, the use of GeoGebra software improves learners’ performance in the 

learning of Grade 11 geometry.  

According to researchers (Chua et al., 2017; Machisi, 2021), when learners are being 

taught using VHLT, the lesson should provide room for individual search for 

information through trials and explorations. The researchers believe that learners 

develop creative and critical thinking skills when learners think for themselves. In 

support, Jojo (2017) urges teachers to present geometry lessons actively and in 

geometry-friendly environments, unlike what she observed where 12 out of 13 lessons 
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presented by some teachers had passive learners. However, the significant outcome 

of this study promotes not only van Hieles’ theory or technology integration, but also 

promotes the views of the active and critical thinking researchers above. This is 

because formal deductions (VHL5) expose learners to independent thinking with 

minimal supervision from teachers, just as was done in this study during the 

intervention. Therefore, the outcome from this VHL5 of the study served as a 

foundation filled with creativity through formal deductions, to prepare learners for the 

next level of rigor. 

4.7 Analysing van Hieles’ Rigor level (VHL6) 

The rigor level is the last and the highest cognitive level in van Hieles’ theory. 

According to Crowley (1987:3), the rigor level exposes learners to numerous 

“axiomatic and non-Euclidean systems”. However, since the high school geometry 

does not cover “non-Euclidean systems” (DoE, 2011), the study limited itself to 

Euclidean geometry only. This part of the study analyzed how the various factors of 

analysis (see Section 4.1.1) turned out at VHL6. 

4.7.1 Between Subjects Effects under van Hieles’ Rigor level  

The tested null hypothesis in this section was: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.18: TESTS OF BETWEEN-SUBJECTS EFFECTS UNDER VAN HIELES’ RIGOR LEVEL 

 

 

Data from Table 4.18 show a significant main effect of groups with large effect size on 

Grade 11 learners’ geometry performance (F (1, 58) =14.04, p=.000, np
2=.20). The 

groups accounted for 19.5% of the geometry scores in the study. Comparatively, this 

effect size, although large (np
2>.14), was still lower than the effect size of most of the 

other van Hieles’ levels discussed above.  



122 
 

TABLE 4.19: DESCRIPTIVE STATISTICS FOR VAN HIELES’ RIGOR LEVEL (VHL6) 

 Group        Mean (𝑥̅)     SD (𝜎)         N 

Total of Rigor (VHL6) for Pre-test C 2.40 1.754          30 

E 3.60 2.111     30 

Total 3.00 2.017     60 

Total of Rigor (VHL6) for Post-test C 5.10 1.788     30 

E 9.93 3.352     30 

Total 7.52 3.610     60 

 

However, the direction of the scores was captured in Table 4.19. The evidence 

showed that the combined mean from both pre- and post-test of Group E was higher 

(𝑥̅ = 6.77) than that of group C(𝑥̅ = 3.75). The difference between the two averages 

was 3.02. The presented data provide the basis to reject the null hypothesis (i) under 

van Hieles’ Rigor level of this study at the 95% confidence interval.  

4.7.2 Within-subjects Effects under Van Hieles’ Rigor Level 

This section tested the following null hypothesis: 

(ii) There is no significant main effect of pre- and post-tests on 

Grade 11 learners’     geometry performance. 

According to data from Table 4.20, there was a significant main effect of the pre-post 

tests on performance (F (1, 58) = 120.62, p=.000, np
2=.68). On the effect size, the 

tests under VHL 6 accounted for 67.9% of learners’ performance in geometry.  

 

Table 4.20: Tests of Within-Subjects Effects under Van Hieles’ Rigor Level 

Measure: Test 

Source 
Type III Sum 
of Squares df 

Mean 
Square F 

    
Sig. 

Partial 
Eta 

Squared 

Pre_post Sphericity Assumed 612.008 1 612.008 122.620 0.000 0.679 

Greenhouse-Geisser 612.008 1.000 612.008 122.620 0.000 0.679 

Huynh-Feldt 612.008 1.000 612.008 122.620 0.000 0.679 

Lower-bound 612.008 1.000 612.008 122.620 0.000 0.679 

Pre_post * 
Group 

Sphericity Assumed 99.008 1 99.008 19.837 0.000 0.255 

Greenhouse-Geisser 99.008 1.000 99.008 19.837 0.000 0.255 

Huynh-Feldt 99.008 1.000 99.008 19.837 0.000 0.255 

Lower-bound 99.008 1.000 99.008 19.837 0.000 0.255 

Error (Pre_post) Sphericity Assumed 289.483 58 4.991    

Greenhouse-Geisser 289.483 58.000 4.991    

Huynh-Feldt 289.483 58.000 4.991    

Lower-bound 289.483 58.000 4.991       
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In addition, the reported total mean score from Table 4.19 for the pre- and post-tests 

were 3.00 and 7.52, respectively. That shows a mean difference of 4.52 in favor of the 

post-test. The evidence presented was used to reject the null hypothesis (ii) under 

VHL3. 

4.7.3 Interaction under van Hieles’ Rigor level 

The level of interaction was tested using the following null hypothesis:  

(iii) There is no significant interaction between the control/experimental 

groups and their pre- and post-tests. 

Based on data in Table 4.20, the study reports the existence of significant interaction 

with large effect size between the pre-post and groups (F (1, 58) =19.84, p=.000, 

np
2=.26). Moreover, using paired samples t-Test (2-tailed) revealed a significant 

improvement in the performance of Group E in the post-test (Mean=9.93, SD=3.35) 

compared to the pre-test of the same group (Mean=3.60, SD=2.11); t(29)= -8.96, 

p=.000). A similar significant improvement was recorded by Group C also in the post-

test (Mean=5.10, SD=1.79) as against their pre-test score (Mean=2.40, SD=1.75); t 

(29) = -6.63, p=.000). However, Group E performed better with a comparatively higher 

mean score as displayed in Figure 4.6. 

 

Furthermore, the recorded true difference of the population means for Group E at the 

95% confidence interval was better (-7.779; -4.888) than Group C’s (-3.533; -1.867). 
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Figure 4.6: Average performance of groups at Rigor level (VHL 6)
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Based on available data, this study, , rejects null hypothesis (iii) under van Hieles’ 

Analysis level at p=000. The study rather accepts alternate hypothesis (iv) by stating 

that, the use of GeoGebra software improves Grade 11 learners’ academic 

performance under van Hieles’ Level 6. Similarly, Masilo (2018:131) recorded “double” 

the performance of the experimental group in the post-test compared to the group’s 

pre-test scores. However, the control group dropped in performance when comparing 

their pre- to the post-test. The difference, however, is that this study used GeoGebra 

to facilitate the teaching through van Hieles’ Rigor level. Therefore, the recorded 

significant improvement could be attributed to the technology used through VHLT. 

Finally, the next analysis combines all six van Hieles’ levels to assess the impact of 

technology integration in teaching Grade 11 geometry.  

4.8 Analysing all van Hieles’ levels (VHL 1 – 6) 

Most of the individual van Hieles’ levels discussed above have reported similar main 

effects and interactions. Will the study continue to report similar or different outcomes 

when all learners’ scores from the six van Hieles’ levels are combined? This section 

of the analysis was dedicated to answering that question. The discussion began with 

the between-group analysis. 

4.8.1 Between Subjects Effects of all van Hieles’ levels  

The following null hypothesis was tested in this section of the study: 

(i) There is no significant main effect of the control and experimental 

groups on the geometry performances of Grade 11 learners who are 

taught with or without GeoGebra software. 

TABLE 4.21: TESTS OF BETWEEN-SUBJECTS EFFECTS OF ALL VAN HIELES’ LEVELS 

 

 

The combined statistic from all 6 van Hieles’ levels, as illustrated in Table 4.21, shows 

a significant main effect of groups on Grade 11 learners’ geometry performance (F (1, 

58) =58.30, p=.000, np
2=.50). The groups accounted for a little over half (50.1%) of 
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Grade 11 learners’ scores in Euclidean geometry. According to Richardson, (2011), 

an effect size of this nature (np
2>.14) could be classified as large. Consequently, the 

evidence calls for the rejection of null hypothesis (i) for all combined van Hieles’ levels 

in this study.  

TABLE 4.224: DESCRIPTIVE STATISTICS OF ALL VAN HIELES’ LEVELS 

 Group        Mean (𝑥̅)  SD (𝜎)         N 

Overall total of all van Hieles’ levels for Pre-test C 33.53 7.587          30 

E 35.73 8.200     30 

Total 34.63 7.910     60 

Overall total of all van Hieles’ levels for Post-test C 46.43 5.649     30 

E 71.97 10.397     30 

Total 59.20 15.316     60 

 

Moreover, Table 4.22 shows that the control group’s combined mean (𝑥̅ = 20.57) from 

pre- and post-tests was lower than that of the experimental group(𝑥̅ = 26.90).  That 

means the experimental group outperformed the control group by a mean of 6.33. 

Subsequently, this study rejects null hypothesis (i) under van Hieles’ levels 1 to 6 

combined. Clearly, this study has emphasized the impact made by integrating 

GeoGebra software into van Hieles’ theory as a learning process. That impact has 

been evidenced one way or the other in many research findings (Abdullah & Zakaria, 

2013a; Chua et al., 2017; Haviger & Vojkůvková, 2014; Machisi, 2021; Ogbonnaya & 

Alfred, 2014; Sadiki, 2016). This study adds to the existing knowledge on effective 

technology usage, with a particular merger with van Hieles’ level theory.  

4.8.2 Within-subjects Effects under Van Hieles’ Levels 1 to 6 

Null hypothesis (ii) was tested in this section of the study: 

(ii) There is no significant main effect of pre- and post-tests on 

Grade 11 learners’ geometry performance. 

As indicated in Table 4.23, this study reports a significant main effect of the pre- and 

post-tests on Grade 11 learners’ geometry performance (F (1, 58) = 541.01, p=.000, 

np
2=.90). The effect size was very large such that the tests accounted for 90.3% of the 

geometry scores, leaving a small room for possible errors from the research 

instruments. 
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TABLE 25: TESTS OF WITHIN-SUBJECTS EFFECTS FOR OVERALL TOTAL OF ALL VAN HIELES’ LEVELS 

 

In addition, the total average of the pre-test was 34.63.  However, the overall total of 

the post-test differed from the pre-test by an increase in mean of 24.57 to produce 

59.20. That significance and the large effect size led to the rejection of null hypothesis 

(ii) for the entire study.  

4.8.3 Interaction for Overall Total of all van Hieles’ levels 

To test the interaction for the entire study, the following null and alternate hypotheses 

were adopted:  

(iii) There is no significant interaction between the 

control/experimental groups and their pre- and post-tests. 

(iv) Using GeoGebra software in classroom improves Grade 11 

learners’ academic achievement across each van Hieles’ level in the 

teaching and learning of Euclidean geometry. 

Available evidence (see Table 4.23) shows that between the pre-post and groups, 

there was a significant interaction (F (1, 58) =122.01, p=.000, np
2=.68). However, the 

interaction was not only significant, but it also had a large effect size (np
2>.14). 

Moreover, a paired samples t-Test confirmed that significant interaction. The t-Test 

showed that the experimental group’s performance was better after the intervention 

(𝑥̅=71.97, SD=10.4) than their scores in the pre-test (𝑥̅=35.73, SD=8.20); t (29) = -

22.23, p=.000). On the other hand, the control group also showed significant 

improvement in the post-test (𝑥̅=46.43, SD=5.65) compared to the same group’s pre-

test (𝑥̅=33.53, SD=7.59); t(29)= -9.60, p=.000). The distinction, however, is that Group 

Measure: Test 

Source 
Type III Sum 
of Squares df 

Mean 
Square F 

    
Sig. 

Partial Eta 
Squared 

Pre_post Sphericity Assumed 18105.633 1 18105.633 541.014 0.000 0.903 

Greenhouse-Geisser 18105.633 1.000 18105.633 541.014 0.000 0.903 

Huynh-Feldt 18105.633 1.000 18105.633 541.014 0.000 0.903 

Lower-bound 18105.633 1.000 18105.633 541.014 0.000 0.903 

Pre_post * 
Group 

Sphericity Assumed 4083.333 1 4083.333 122.014 0.000 0.678 

Greenhouse-Geisser 4083.333 1.000 4083.333 122.014 0.000 0.678 

Huynh-Feldt 4083.333 1.000 4083.333 122.014 0.000 0.678 

Lower-bound 4083.333 1.000 4083.333 122.014 0.000 0.678 

Error 
(Pre_post) 

Sphericity Assumed 1941.033 58 33.466    

Greenhouse-Geisser 1941.033 58.000 33.466    

Huynh-Feldt 1941.033 58.000 33.466    

Lower-bound 1941.033 58.000 33.466       
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E performed better with a higher mean score of 71.97 as against the 46.43 achieved 

by the control group (see Figure 4.7). 

 

 

Meanwhile, at the 95% confidence interval, the true difference of population means for 

Group E (-39.57; -32.90) was better than that of Group C (-15.65; -10.15). Based on 

all the presented evidence, the null hypothesis (iii) is rejected for the entire study at 

the 95% confidence interval. Furthermore, the evidence points to an improvement in 

Grade 11 learners’ performance after using the GeoGebra software to solve geometry 

problems (see Figure 4.7). As a result, this study accepts an alternate hypothesis (iv). 
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Notwithstanding the fact that the experimental group reported significant main effects 

and interactions in the study, learners who were excluded from the intervention (Group 

C) also recorded significant main effects and interactions in most of the van Hieles’ 

levels (see Figure 4.8). That means technology integration alone could not be the only 

factor that accounted for the improved learners’ performance; traditional instruction 

and contextual factors are still relevant to the teaching process. Perhaps, that is why 

the TPACK framework emphasizes familiarizing oneself with contextual, 

technological, and pedagogical knowledge (Mishra, 2019) during the planning of 

lessons such as a geometry lesson. Moreover, the reported improvements by Group 

E from one van Hieles’ level to another in this study could not have come up by chance. 

The presented data showed that learners gradually acquired knowledge from pre-

visualization through to the rigor level, through careful planning of the geometry lesson 

at each van Hieles’ level and phase. Once again, although technology integration has 

shown significant improvement across all van Hieles’ levels, evidence from this study 

strongly agrees with Mandell, Sorge and Russell (2002: 43) on the assertion that 

technology cannot replace teachers and that “any teacher who could be replaced by 

a computer should be” replaced. 
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In conclusion, the only exception in terms of performance in the study was the 

Abstraction level (VHL4) which reported no significant main effect of the groups on the 

Grade 11 learners’ performance. However, that same VHL4 showed significant 

between-tests main effects as well as significant interaction of the tests and groups. 

Moreover, since most of the van Hieles’ levels, including the overall performance, 

showed significant main effects and interactions with large effect sizes, this study 

concludes by agreeing with researchers (Yakymchuk & Kazachenok, 2018; 

Schleicher, 2012; Drijvers, 2013; Masilo, 2018) that the effective use of educational 

software such as GeoGebra in teaching Euclidean geometry through van Hieles’ 

model, improves Grade 11 learners’ performance significantly. 
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CHAPTER FIVE: SUMMARY, RECOMMENDATIONS AND CONCLUSION 

5.1 Introduction 

In this chapter, a summary of all previous chapters has been presented. That summary 

covers the aim, how each research question and hypothesis was addressed, the 

literature review and the methodology used. The chapter further accounts for the 

implication, limitations, and possible recommendations of this study.  

5.2 Summary of the study 

5.2.1 Aim, objectives, and research questions 

This study focused on exploring the effects that the use of GeoGebra software through 

van Hieles’ level theory has in the teaching and learning of Grade 11 Euclidean 

geometry in Motheo District of the Free State. 

The objectives of the study were to: 

i. Determine ways in which the use of GeoGebra software through each van 

Hieles’ level in the classroom, affects Grade 11 learners’ achievement in the 

teaching and learning of Euclidean geometry. 

ii. Identify the challenges that learners experience in understanding circle 

geometry. 

The above objectives led to the formulation of the following research questions: 

i. What challenges do Grade 11 learners experience in understanding circle 

geometry? 

ii. How does the use of GeoGebra software through each van Hieles’ level in the 

classroom affect learner achievement in the teaching and learning of Euclidean 

geometry among Grade 11 learners?  

However, the study tested eight hypotheses (see Section 3.6).  

5.2.2 Summary of how research questions were addressed 

This section summarizes how the three research questions were answered based on 

the findings from the study. 
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5.2.2 (a) Research question 1: Challenges in teaching Grade 11 geometry 

To identify the challenges that Grade 11 learners face in geometry, the pre- and post-

tests were analyzed. The results of those tests confirmed the view held by the 

Department of Basic Education that learners lack the understanding of the basic 

geometric concepts (DoBE, 2019 b). This study showed an improvement in the post-

tests at van Hieles’ level 1 (VHL1) such that there was a significant interaction with a 

large effect size (F (1, 58) =38.85, p=.000, np
2=.40). However, learners’ marks were 

not so encouraging in the pre-tests. For example, the analysis revealed that at the Pre-

visualization level, prior to the intervention, only 19.7% of the 60 learners scored a 

maximum of 2 marks out of 6; 37% scored exactly 3 marks; 45.3% scored from 4 to 6 

marks. Those percentages are very low considering how important the basic 

geometric concepts are in the entire Grade 11 Euclidean geometry (DoBE, 2015, 

2019a, 2020a, 2021; DoE, 2011). Those below-average scores simply mean that 

learners still have difficulties with recognizing basic geometric shapes in their 

surroundings. In such situations, progressing from one van Hieles’ level to the next 

becomes a challenge (Masilo, 2018:40).  

TABLE 5.1: COMBINED PRE-TEST SCORES OF SUBJECTS IN BOTH GROUPS 

Van Hieles’ Level Total Marks Average Standard Deviation N 

Pre-visualization 6 3.28 1.027     60 

Visualization 14 7.28 2.067     60 

Analysis 20 9.23 1.934     60 

Abstraction 20 7.02 4.40     60 

Deduction  20 4.82 2.190     60 

Rigor 15 3.00 2.017     60 

Combined VHL1 - 6 95 34.63 7.910     60 

 

In addition, this study assessed learners on how to identify basic circle theorems and 

two-dimensional shapes based on how the shapes looked like, under the Visualization 

level. Just like the Pre-visualization level, the Visualization level also recorded 

significant interaction of the pre-post and the groups with large effect size (F (1, 58) 

=27.23, p=.000, np
2=.32). However, the combined pre-test scores of all learners 

(control and experimental groups) showed that from the possible 14 marks, the 

recorded mean mark was 7.28 with a standard deviation of 2.07. that means 
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approximately half of the learners had difficulty with visualizing geometric shapes (see 

Table 5.1). To be precise, only 45% (27 out of 60) of learners were able to correctly 

indicate that the diagonals of a parallelogram intersect at right angles in the pre-test 

at the Analysis level.  The same could be said about the Abstraction level.  

The average performance of the learners started dropping right after the Analysis level 

(see Table 5.1). For instance, the average for the Deduction level was only 4.82 whilst 

that of Rigor level was 3.00. That means some learners could not apply their 

knowledge from the lower van Hieles’ levels at the Deductions and Rigor levels. As a 

recall from Chapter 4, only 63.3% of learners were able to correctly apply their 

abstraction skills to relate the angle at center theorem to the angles in a semi-circle. 

The remaining 36.7% could not connect those 2 circle theorems. Therefore, it came 

as little surprise when those same learners did not perform well at VHL 5 and 6 since 

those levels depend on learners' understanding of concepts from VHL 1-4. The 

inability of learners to apply their cognition from lower VHL in solving higher cognitive 

problems confirmed one of the unique characteristics of van Hieles’ levels: key 

concepts developed from preceding levels become fundamental concepts in 

succeeding levels. In other words, if learners did not develop enough knowledge at 

the preceding level, they cannot apply the same at higher van Hieles’ levels. 

Next, I summarize how technology integration impacted geometry teaching in this 

study. 

5.2.2 (b) Research question 2: Impact of GeoGebra software on teaching 

geometry 

The impact of using technology to teach Grade 11 geometry through van Hieles’ model 

was categorized into 6 parts, based on the six van Hieles’ levels adopted for the study. 

In each case, the findings considered the main effects between groups, within-subjects 

main effects, and the interaction of the groups and the tests. In addition, a paired 

samples t-Test was used to analyze the interaction among variables. 

 Impact of technology integration under Pre-visualization level 

The study reported significant between-subject main effects of the groups (F (1, 58) 

=29.00, p=.000, np
2=.33) with a large effect size on learners’ geometry performance. 

The control group’s average performance for both pre and post-test was 3.42 
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compared to the 4.33 average score of the experimental group. Similarly, there was a 

significant within-subjects main effect of large effect size on the Grade 11 learners’ 

performance (F (1, 58) = 60.28, p=.000, np
2=.51). A combined pre-test mean score of 

3.28 was recorded against the 4.47 mean recorded in the post-test. Those averages 

provided an improvement of 1.19 mean points from the pre- to the post-test.  

On the interaction of the variables, this study reported significant interaction of large 

effect size between the pre-post scores of learners under VHL1 and the groups (F (1, 

58) =38.85, p=.000, np
2=.40). The control and experimental groups’ average 

performance in the post-test were 3.53 and 5.40, with standard deviations .776 and 

.621 respectively. A significant difference in the mean scores of 1.87 was recorded 

between the two groups. Under van Hieles’ Pre-visualization level, this study rejected 

null hypothesis (iii) in favor of the alternate hypothesis. 

Impact of technology integration under Visualization level 

The study showed a significant between-group main effect with large effect size, on 

the Grade 11 learners' scores in Euclidean geometry (F (1, 58) =20.12, p=.000, 

np
2=.26). The combined mean of Group C was 7.50 compared to that of Group E’s 

9.32, making the difference between the two group means 1.32. There also was a 

reported significant within-subjects main effect of the pre-post tests on performance 

(F (1, 58) = 50.64, p=.000, np
2=.47). The ratio of the averages of the pre-test to the 

post-test was 7.28;9.53, showing a difference in means of 2.25. In addition, there was 

a significant interaction between the pre-post and the groups, with a large effect size 

(F (1, 58) =27.23, p=.000, np
2=.32).  

Furthermore, a paired samples t-test showed that the experimental group performed 

significantly better in the post-test (mean=11.27, SD=1.87) than they did in the pre-

test (mean=7.37, SD=2.24); t(29)=-9.13, p=.000) where the true difference in 

population means was (-4.77: -3.03). The control group also recorded a significant 

mean difference in the post-test (mean=7.80, SD=1.90) as against (mean=7.20, 

SD=1.92) in the pre-test. However, the data showed that the experimental group 

performed better after the intervention since their mean score was higher. The study 

therefore accepted research hypothesis (iv) under VHL2 by stating that Grade 11 

learners who were taught geometry using GeoGebra software performed significantly 

higher than those in the control group. 
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Impact of technology integration under Analysis level 

Under van Hieles’ level 3, this study reported a significant main effect of the groups on 

the Grade 11 learners' scores in Euclidean geometry (F (1, 58) =90.60, p=.000, 

np
2=.61). The effect size was large (61%) such that the combined average score of the 

control group was 9.65 compared to the 13.25 average achieved by the experimental 

group. The mean difference between the two groups was 3.6. There was also a 

significant within-subjects main effect with a large effect size of the pre-post tests on 

performance (F (1, 58) = 120.77, p=.000, np
2=.68). The direction of the scores was 

such that the total mean scores of the pre- and post-tests were 9.23 and 13.67 

respectively. That shows an increase of 4.44 mean points. With regards to interaction, 

the study recorded significant interaction with a large effect size between the pre-post 

and the groups (F (1, 58) =29.74, p=.000, np
2=.34). From a paired samples t-Test, the 

experimental group performed significantly better by increasing their performance in 

the pre-test (Mean=9.93, SD=1.60) to the post-test (Mean=16.57, SD=2.75); t(29)= -

11.98, p=.000. Similarly, the control group also performed significantly better from their 

pre-test (Mean=8.53, SD=2.01) to post-test (Mean=10.77, SD=2.05); t (29) = -3.81, 

p=.001). The reported significant interaction led to the rejection of null hypothesis (iii) 

in favor of the alternate hypothesis. The study therefore concluded that the use of 

GeoGebra software in the classroom improves Grade 11 learners’ academic 

achievement under van Hieles’ Level 3. 

Impact of technology integration under Abstraction level 

This aspect of the research question was addressed by starting with the between-

group effects. Under the Abstraction level, this study reported a non-significant main 

effect of the groups on the Grade 11 learners’ performance (F (1, 58) =3.07, p=.085, 

np
2=.05). However, there was a significant between-subjects main effect with a large 

effect size under van Hieles’ Abstraction level (F (1, 58) = 166.01, p=.000, np
2=.74). In 

addition, there was a significant interaction of the pre-post and group with a large effect 

size (F (1, 58) =16.57, p=.000, np
2=.22). To further understand the direction of the 

scores, the data were subjected to the paired samples t-Test. The t-Test showed 

significant improvement in the post-test scores of the experimental group 

(Mean=15.13., SD=2.80) compared to the same group’s performance during the pre-

test (Mean=6.73, SD=4.09); t(29)= -13.04, p=.000. Although the control group also 
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recorded significant improvement in the post-test (Mean=11.67, SD=2.95) as 

compared to their pre-test scores (Mean=7.30, SD=4.75); t(29)= -5.80, p=.000), the 

difference in means favored the experimental group. The presented evidence led to 

the conclusion that technology integration, in the form of using GeoGebra software, 

significantly improves Grade 11 learners’ performance in Euclidean geometry under 

van Hieles’ Abstraction level. For that reason, the null hypothesis (iii) was rejected. 

Impact of technology integration under Deduction level 

This part of the study recorded a significant between-group main effect of large effect 

size on the Grade 11 learners’ performance (F (1, 58) =33.18, p=.000, np
2=.36). In 

addition, there was a significant main effect with a large effect size of the pre-post tests 

on Grade 11 learners’ geometry scores (F (1, 58) = 271.28, p=.000, np
2=.56). That 

effect size was large such that, a higher combined mean score of 10.62 was recorded 

in the post-test compared to the initial 4.82 in the pre-test. This study further showed 

a significant interaction of the pre-post and group (F (1, 58) =16.57, p=.000, np
2=.22). 

That interaction had a large effect size (np
2=.22). However, the use of a paired-

samples t-Test confirmed that there was a significant increase in the performances of 

both groups, where the post-test of the experimental group improved (Mean=13.67., 

SD=2.94) over the same group’s performance in the pre-test (Mean=4.83, SD=2.12); 

t (29) = -18.89, p=.000). Similarly, the post-test of the control group (Mean=7.57, 

SD=2.46) was significantly better as compared to their pre-test scores (Mean=4.80, 

SD=2.30); t (29) = -5.25, p=.000). In the post-test, group difference in means favors 

the experimental group. As a result, the study concluded that the use of GeoGebra 

software improves learners’ performance in the learning of Grade 11 geometry. 

Impact of technology integration under Rigor level 

At the highest van Hieles’ level in this study, there was a significant between-groups 

main effect with large effect size on Grade 11 learners’ geometry performance (F (1, 

58) =14.04, p=.000, np
2=.20). There was also a reported significant main effect of the 

pre-post tests on performance (F (1, 58) = 120.62, p=.000, np
2=.68). The within-subject 

effect had a large effect size by accounting for 68% of the scores. With regards to 

interaction, evidence showed a significant interaction with a large effect size between 

the pre-post and groups (F (1, 58) =19.84, p=.000, np
2=.26). The outputs from a paired 

samples t-Test (2-tailed) showed significant improvement in the experimental group’s 
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performance in the post-test (Mean=9.93, SD=3.35) compared to the pre-test of the 

same group (Mean=3.60, SD=2.11); t(29)= -8.96, p=.000). The control group also had 

significant increase in their post-test scores (Mean=5.10, SD=1.79) compared to the 

pre-test performance (Mean=2.40, SD=1.75); t (29) = -6.63, p=.000). However, the 

true difference in population means showed that the experimental group (-7.779; -

4.888) performed comparatively better than their counterparts in the control group (-

3.533; -1.867). The data available led to the rejection of null hypothesis (iii) at p=000. 

Therefore, the use of GeoGebra software improves Grade 11 learners’ academic 

performance under van Hieles’ Level 6. 

In the next discussion, the overall impact of integrating technology into the learning of 

geometry is presented. 

 The overall Impact of technology integration in this study 

Aside the individual levels analysis already presented in this chapter, a combination 

of all the scores of learners indicated a significant between-group main effect of large 

effect size on Grade 11 learners’ geometry performance (F (1, 58) =58.30, p=.000, 

np
2=.50). The data accounted for approximately half (50.1%) of the Grade 11 learners’ 

scores in geometry. The pre- and post-tests reported significant within-subjects main 

effect on Grade 11 learners’ geometry performance (F (1, 58) = 541.01, p=.000, 

np
2=.90) with a very large effect size.  

Furthermore, there was significant interaction (F (1, 58) =122.01, p=.000, np
2=.68) of 

the pre-post and the groups, with a large effect size. Further analysis of the data from 

the t-Test showed that the control group improved significantly in the post-test 

( 𝑥̅=46.43, SD=5.65) compared to their pre-test ( 𝑥̅=33.53, SD=7.59); t(29)= -9.60, 

p=.000).  

However, the experimental group outperformed the control group with a higher mean 

difference. The former recorded better results after the intervention ( 𝑥̅ =71.97, 

SD=10.4) as against (𝑥̅=35.73, SD=8.20); t (29) = -22.23, p=.000) in the pre-test. 

Moreover, the true difference in population means for Group E (-39.57; -32.90) was 

better than that of Group C (-15.65; -10.15). Based on all the analyzed data, this study 

concludes that GeoGebra software, as a technology integration tool, helps improve 

Grade 11 learners’ geometry performance significantly. 
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5.2.3 Addressing Grade 11 learners’ geometry challenges 

In addressing the challenges faced by Grade 11 learners in Euclidean geometry, the 

study considered the effects of the measures put in place by the researcher during the 

intervention. Since the intervention focused on Group E, I present how the 

experimental group fared in the study. 

Firstly, learners in the experimental group were made to work actively, individually, 

and with their peers where necessary at each van Hieles’ level. Secondly, the 

researcher acted as a facilitator in most instances. However, a great deal of the work 

focused on the ownership of the basic geometric concepts by learners. To achieve 

that, learners’ prior and real-life experiences with geometric shapes were relied upon 

in the introductory phases of each lesson. The assumption was that, if learners acquire 

and own enough geometric ideas, they would be able to apply the same at higher van 

Hieles’ levels. In addition, there were situations where learners had to brainstorm over 

the given question in small groups after visualizing that geometry problem. The 

researcher only assisted learners where there were challenges.  

Thirdly, learners were guided by the researcher to fully complete each van Hieles’ 

phase in the learning process to enable learners’ progression to the next level. 

Learners were given the opportunity and the environment to freely debate, and 

challenge other learners’ solutions based on reasonable geometric statements and 

terminologies. Occasionally, the facilitator would project a group’s work onto the 

screen for the entire class to comment on it.  

Lastly, each lesson was planned with great emphasis on active participation, to ensure 

that both the educator and the learners stayed focused throughout the learning 

process. The lesson plans factored in the contextual factors affecting the smooth 

delivery of each lesson by analyzing the Technological and Pedagogical Content 

Knowledge (TPACK) of learners and the educator. Those forms of knowledge only 

influenced the delivery of the lessons at each van Hieles’ phase and level by serving 

as a point of reference. The main structure of each lesson was entirely based on van 

Hieles’ levels. 

The adopted strategies seemed to produce desired results as shown in Section 5.2.4 

(b) of this study. It emerged from the findings that all van Hieles’ levels recorded 

significant interaction between learners’ pre- and post-tests and the groups. The study 
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further showed after the intervention at VHL3 that 63.3% (38 out of 60) of the learners 

could correctly indicate that a parallelogram’s diagonals intersect at right angles 

compared to the 45% who could do the same task during the pre-tests. Similarly, 

78.3% (47 out of 60) of the learners correctly recalled during the post-test that only 

one pair of sides of a trapezium are parallel, compared to the 41.7% (25 out of 60) 

who got that property right during the pre-test. After the post-test in VHL 4, there was 

an improvement such that 88.3% (53 out of 60) of the learners correctly applied the 

relationship between the angle at center theorem and the angles formed in a semi-

circle by a diameter (Question 3 of Post-test 2). That was an improvement because 

only 63.3% of the pre-test (Question 3 of Pre-test 2) was correctly answered by 

learners. 

5.3 Implications of the study 

The findings from this study present some implications for research methodology as 

well as effective teaching and learning of Euclidean geometry in High Schools. The 

implications have been segmented into theory, teaching and learning, and research 

methods. I commence with the theoretical implications. 

5.3.1 Implications for theory 

The use of van Hieles’ level theory (VHLT) and the associated significant 

improvements in this study go to support the relevance of teaching geometry 

according to learners’ cognitive levels instead of their age. For example, all the six van 

Hieles’ levels used in this study were sequenced such that a learner must complete 

the expected cognitive activities attached to one level before progressing to the next. 

More so, the inclusion of the extra level, Pre-visualization (VHL1), allowed learners to 

familiarize themselves with real objects from their environment to pave way for the 

visualization and other higher cognitive levels. That VHL 1 also provided the 

researcher with a rich source of prior knowledge from which to build and develop 

learners’ geometric reasoning for long-term knowledge retention.  

In addition, van Hieles’ theory and the Technological Pedagogical Content Knowledge 

(TPACK) frameworks seem to work well when the two theories are effectively 

structured. Under each van Hieles’ level, this study structured its lessons by first 

assessing the kinds of knowledge that learners possess or lack, prior to the start of 

each van Hieles level. The significant results obtained at all van Hieles’ levels imply 
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that VHLT and TPACK could be maximized for effective teaching of geometry, and to 

prepare learners for the prospects of the 4th industrial revolution where technology 

dictates the pace of almost everything. 

5.3.2 Implications for teaching and learning 

As a teacher of the 21st century, this study has shown that teaching with technology 

improves learners’ cognition in geometry more than it does with the traditional rote 

learning approach. The user-friendly interface of GeoGebra software used in this study 

offered the platform for learners to construct many geometric shapes thereby 

increasing learners’ ability to visualize those shapes and interpret their own works. 

However, that does not in any way suggest the relegation of the traditional teaching 

approach. On the contrary, there were significant improvements in almost all the van 

Hieles’ levels in the control group, except that the experimental group performed 

better. Moreover, since Euclidean geometry is considered challenging for some 

learners, the traditional approach could come in handy to assist struggling learners. 

The levels in van Hieles’ theory suggest that learners should be taught based on their 

cognitive abilities. For instance, how do you teach the relationship between two or 

more theorems to a learner who operates at van Hieles’ visualization or even Analysis 

level? The geometric basics should precede the higher cognitive skills as stipulated in 

the characteristics of van Hieles’ theory (Usiskin, 1982; Masilo, 2018). In other words, 

teachers should teach geometry from the known to the unknown, and from the basics 

to the more challenging content. In addition, learners vary in terms of TPACK and van 

Hieles’ levels. Therefore, each learner’s abilities should be fully developed by the 

teacher when progressing through the five phases of VHLT. This is the stage where 

learners’ prior knowledge becomes relevant in the learning process. When teachers 

identify each learner’s prior skills in geometry, the teacher becomes empowered to 

accurately prepare lessons that suit individual learners, or groups of learners with the 

same abilities.  

Moreover, the study highlighted the importance of using cell phones in schools. For 

example, besides installing GeoGebra on the school computer of the experimental 

group, learners who had smartphones were assisted to install the same software too. 

What transpired was that learners became motivated to use their phones to do as 

many geometric constructions as possible. That motivation turned into self-regulated 
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learning and the teacher’s work became less of a source of knowledge to more of a 

facilitator. The facilitator occasionally projects learners’ work on their phones onto the 

screen as a means of monitoring learners’ usage of those phones. In addition, the 

researcher engaged with the entire class to set up basic rules for the use of the phones 

during the geometry lessons. Unfortunately, most high schools do not allow the use of 

smartphones in schools (Masilo, 2018:194). However, this study has shown that by 

regulating its usage in class, smartphones can help learners achieve more with the 

learning of geometry. 

One final implication for teaching was the issue of time in teaching geometry. The 

researcher observed that more time is needed by educators to effectively teach 

geometry to learners. That could be due to the fact that most learners lack the basic 

geometric concepts in high schools. Therefore, it serves no good purpose if Grade 11 

teachers were to start a new geometry topic by merely assuming that learners have 

already learnt certain concepts in their lower grades. Rather, educators may adopt 

baseline tests to ensure that they are familiar with what learners know before 

introducing new geometry content. However, that requires some amount of time which 

teachers do not usually have. Perhaps with careful planning, educators would be able 

to fit in all the critical components of the topic and teach learners at designated times. 

5.3.3 Implications for research methodology 

Having situated this study in the positivist paradigm, it became imperative that 

quantitative data be collected for the study. This is because positivism aligns with 

objectivity. Therefore, a quasi-experimental design was actualized in the study. In 

addition, the quantitative data collected using the pre- and post-tests ensured objective 

discourse in the study. Moreover, the objective stance also led to the acceptance or 

rejection of the null and alternate hypotheses of the study. Furthermore, the use of 

mixed factorial analysis (2-way mixed ANOVA) was relevant as it allowed a 

comparison of learners’ performance between groups, within groups, and the 

interaction between the groups and the tests. By implication, the paired samples t-Test 

used in the study was required to help clarify the interaction among the variables 

through a comparison of means. In effect, collecting quantitative data in this and future 

studies is useful in assessing learners’ performance in geometry since that 

methodology provides numerical data that could be easily verified. 
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5.4 Scope and Limitations 

The study only sampled learners from Circuits 6 and 7 of Motheo District in Free State. 

Therefore, the findings cannot be generalized to cover all Grade 11 learners in the 

country. This is because the contextual factors in those two circuits may vary from 

what persists in other parts of South Africa. Consequently, the findings only apply to 

learners in the Motheo District. Similarly, since only Grade 11 Euclidean geometry was 

used in this study, the conclusions only apply to geometry in high schools. However, 

this study posits that the intervention could be adapted to suit similar topics like 

analytical geometry, trigonometry, or even functions. Moreover, the use of pre-existing 

classes affected the internal validity of the study because it was difficult for the 

researcher to claim complete oversight and control during the writing of the tests.  

Although quantitative data was collected, a mixed-method approach would have 

provided more clarity as to why learners are, for example, having a particular challenge 

in geometry. The design therefore deprived the study of understanding learnings 

feelings about Euclidean geometry.  

In addition, the study was limited in terms of time. The literature revealed that 

Euclidean geometry should be taught in detail by addressing all related basic 

concepts. However, the limited time used for the intervention could not allow the 

researcher to address all the geometry contents that learners missed in their GET 

phase. To worsen the situation, the covid-19 restrictions at the time of the intervention 

did not motivate learners to attend classes regularly, thereby impacting the outcome 

of the study. This is because most learners feared being infected with the virus since 

the pandemic was still new with no scientifically proven medication at the time of this 

study’s data collection. Therefore, although all the learners wrote the test, the 

absenteeism during the intervention phase affected the internal reliability of the results.  

5.5 Conclusion 

Based on the findings of this study, GeoGebra software integrated into the learning of 

geometry significantly improved learners' scores across all van Hieles’ levels. The 

traditional approach also proved useful as the control group showed some 

improvement in their scores too. However, at all levels, the experimental group 

performed significantly better than the control group. For example, scores from the 

tests showed that a learner who scored 25 during the pre-test, scored 60 in the post-
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test. There were many such instances where the experimental group learners 

increased their marks significantly in the post-test. The combined scores from all six 

van Hieles’ levels also showed significant interaction (F (1, 58) =122.01, p=.000, 

np
2=.68) of the groups and the pre-post such that the experimental group’s true 

difference in population means (-39.57; -32.90) was outweighed that of the control 

group (-15.65; -10.15). The results therefore indicate that the intervention worked, and 

that GeoGebra software improves learners’ overall geometry achievement across the 

van Hieles’ levels.  

5.6 Recommendations 

Findings from the study showed that learners’ performance at the Deductions and 

Rigor declined compared to the previous van Hieles’ levels (VHL). However, that was 

attributed to the inability of learners to acquire enough basic skills at the lower cognitive 

levels (VHL 1-4). This study therefore recommends that teachers teach from the 

basics in geometry. For example, a good exposure of learning to real geometric 

shapes during Pre-visualization serves as a good foundation for Visualization. 

Similarly, learners who become equipped with visualization skills are more capable of 

applying identifying shapes by their properties at the Analysis level, and so on. 

Moreover, analyzing learners' technological or pedagogical content knowledge places 

the teacher in a better position to plan lessons to effectively address learners’ 

geometric needs. Therefore, this study recommends a merge of van Hieles levels 

theory with the TPACK framework for effective teaching and learning of Grade 11 

Euclidean geometry. 

For further research, this study recommends that researchers allocate more time to 

geometry contents at all van Hieles’ levels in their interventions, more especially VHL 

1 to 4 because those are basic levels. This is to ensure that subjects have understood 

and can apply concepts that fall under van Hieles’ levels 1 to 4 before attempting levels 

5 and 6 questions. The study also recommends to curriculum developers to research 

into different ways of assessing how technology integration and the combination of 

van Hieles’ theory with other frameworks like TPACK, could improve geometry 

learning in schools. Finally, a mixed-method approach to future studies of this nature 

is recommended. This could add some qualitative data that explains the reasons or 

circumstances surrounding the obtained results of the study. 
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APPENDIX A: RELIABILITY TEST WITH PEARSON’S PRODUCT MOMENT 
P

A
R

TI
C

IP
A

N
T 

N
U

M
B

ER
 

VAN HIELES’ 
LEVEL 1   
(6 marks) 

VAN HIELES’ 
LEVEL 2 
(14 marks) 

VAN HIELES’ 
LEVEL 3 
(20 marks) 

VAN HIELES’ 
LEVEL 4 
(20 marks) 

VAN HIELES’ 
LEVEL 5 
(20 marks) 

VAN HIELES’ 
LEVEL 6 
(15 marks) 

Pre-
Test 
Score 

Post-
Test 
Score 

Pre-
Test 
Score 

Post-
Test 
Score 

Pre-
Test 
Score 

Post-
Test 
Score 

Pre-
Test 
Score 

Post-
Test 
Score 

Pre-
Test 
Score 

Post-
Test 
Score 

Pre-
Test 
Score 

Post-
Test 
Score 

1 3 3 7 5 12 14 6 8 5 7 1 1 

2 2 2 8 9 8 8 9 8 5 6 2 0 

3 4 4 11 12 13 12 4 5 7 7 2 4 

4 4 3 8 9 15 14 12 13 5 3 3 2 

5 4 4 10 9 11 12 9 10 8 8 5 6 

6 1 1 9 9 9 8 7 7 4 3 3 4 

7 3 3 9 10 7 8 10 8 8 7 5 6 

8 4 3 6 6 5 6 7 8 3 4 4 4 

9 3 3 9 9 9 9 10 11 8 7 7 6 

10 4 5 9 7 10 11 12 12 9 8 9 8 

11 2 2 7 8 7 7 7 8 6 7 4 3 

12 3 3 7 7 12 14 10 8 9 8 5 3 

13 4 5 10 11 11 9 9 10 9 9 5 6 

14 2 2 7 8 9 10 8 9 5 7 2 3 

15 3 3 9 10 8 9 9 10 8 6 4 3 

r .87 .81 .90 .84 .77 .83 
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APPENDIX B: TESTS OF NORMALITY 

Tests of Normality 

 
Groupnu

m 

Kolmogorov-Smirnova Shapiro-Wilk 

 
Statistic df Sig. Statistic df Sig. 

TOTALA_PoT1 Total of 

Analysis for Post-Test 1 

C .155 30 .065 .961 30 .321 

E .171 30 .026 .782 30 .000 

TOTALA_PrT1 Total of 

Analysis for Pre-Test 1 

C .229 30 .000 .901 30 .009 

E .187 30 .009 .883 30 .003 

TOTALAb_PoT2 Total of 

Abstraction for Post-Test 2 

C .153 30 .072 .944 30 .115 

E .155 30 .064 .923 30 .033 

TOTALAb_PrT2 Total of 

Abstraction for Pre-Test 2 

C .101 30 .200* .961 30 .328 

E .178 30 .016 .927 30 .042 

TOTALD_PoT2 Total of 

Deductions for Post-Test 2 

C .130 30 .200* .967 30 .464 

E .122 30 .200* .972 30 .584 

TOTALD_PrT2 Total of 

Deductions for Pre-Test 2 

C .168 30 .030 .948 30 .154 

E .120 30 .200* .961 30 .332 

TOTALPoT13 Overall Total 

for Post-Test 1 to 3 

C .103 30 .200* .982 30 .875 

E .173 30 .022 .960 30 .310 

TOTALPrT13 Overall Total 

for Pre-Test 1 to 3 

C .105 30 .200* .961 30 .325 

E .220 30 .001 .886 30 .004 

TOTALPrV_PoT1 Total of 

Pre-Visualization for Post-

Test 1 

C .254 30 .000 .859 30 .001 

E .300 30 .000 .749 30 .000 

TOTALPrV_PrT1 Total of 

Pre-Visualization for Pre-

Test 1 

C .294 30 .000 .831 30 .000 

E .203 30 .003 .912 30 .016 

TOTALR_PoT3 Total of 

Rigor for Post-Test 3 

C .144 30 .112 .958 30 .268 

E .225 30 .000 .888 30 .004 

TOTALR_PrT3 Total of Rigor 

for Pre-Test 3 

C .166 30 .034 .921 30 .028 

E .158 30 .054 .940 30 .092 

TOTALV_PoT1 Total of 

Visualization for Post-Test 1 

C .191 30 .007 .931 30 .052 

E .210 30 .002 .890 30 .005 

TOTALV_PrT1 Total of 

Visualization for Pre-Test 1 

C .128 30 .200* .973 30 .636 

E .196 30 .005 .950 30 .166 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 

 



159 
 

APPENDIX C: LEVENE’S TEST OF HOMOGENEITY OF VARIANCES 

VHL1: Pre-visualization 

 

VHL 2: Visualization 

 

VHL 3: Analysis 

 

VHL 4: Abstraction 
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VHL 5: Deductions 

 

 

VHL 6: Rigor 
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APPENDIX D: PRE-TEST 1 (Pre-Visualization, Visualization, and Analysis) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 

Euclidean geometry based on Van Hieles’ model. 

Duration:  60 minutes  Date: …..../…..../2020   Marks:  40 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

Instructions:  

Read the following 
instructions carefully before 
answering the questions. 

1. This question paper 
consists of 40 
questions. 

2. Answer ALL questions.  

3.          Write your answers in 
the spaces provided 
on this question 
paper or by 
underlining the 
correct answer 
 where 
applicable. 

4. Clearly show ALL 
calculations, 
diagrams, etc., which 
you have used in 
determining your 
answers. 

5. Answers only will NOT 
necessarily be 
awarded full marks. 

8. Diagrams are NOT 
drawn to scale. 

9. Write legibly and 
present your work 
neatly. 

10.  Do all your rough work on this paper. 

 

VHL Q. 

NO. 

MAX 

MARK 

LEARNER

MARK 

VHL Q. 

NO. 

MAX 

MARK 

LEARNER 

MARK 

 

1. 

Pre-V 

1 1   

 

 

3. 

A 

18 1  

2 1  19 1  

3 1  20 1  

4 1  21 1  

5 1  24 1  

6 1  25 1  

 

 

 

2. 

V 

7 1  26 1  

8 1  28 1  

9 1  29 1  

10 1  30 1  

11 1  31 1  

12 1  32 1  

13 1  33 1  

14 1  34 1  

15 1  35 1  

16 1  36 1  

17 1  37 1  

22 1  38 1  

23 1  39 1  

27 1  40 1  

 TOTAL 

MARKS 

40  

 % 100  
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In the following table, pictures of some real objects have been shown. Write the geometric names 

that match those pictures in questions 1 to 3.  

             

QUESTION PROTOTYPE NAME OF GEOMETRIC SHAPE 

1  

Sun 

 

 

                                             (1) Pre-V 

2                   

Dice 

 

 

                                             (1) Pre-V 

3 

Warning triangle  

 

    

                                                                     
                                             (1) Pre-V 

  

 

In the next diagram, O is the center of each circle. Write the names of each missing part of the circles 

from questions 4 to 6. 

 

iii. Letter a:  ………………………………….      (1)Pre-V 

iv. Letter b: ……………………………              (1) Pre-V 

v. Letter d: ……………………………..            (1) Pre-V

  

 

 

 

Use the triangles below to answer questions 7 and 8: 

7. Write down the name of triangle 

ABC:.…………………………………       (1)V 

 

8. What type of triangle is DEF ?  

……………………………………..………   (1)V 
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Consider the triangle below and use it to answer questions 9 and 10: 

9.       Which of the following statements is true? 

a.   𝐽𝐾 ⊥ 𝐺𝐻        b.   𝐹𝐺 ∥ 𝐽𝐾         c.   
𝐺𝐹

2
= 2𝐾𝐽        d. If 𝐽𝐾 =

3𝑥, 𝑡ℎ𝑒𝑛 𝐹𝐺 = 9𝑥                                                                                             (1)V 

 

10.     Which theorem is the diagram referring to? 

a.   tan-chord theorem       

b.     angle at center is double angle at circumference      

c.    mid-point theorem        

       d.    perpendicular from center bisects chord [1]V 

 

Use the following triangle to answer questions 11 and 12: 

 

11.    Which of the following statements is NOT true? 

a.    𝐷𝐸 =
1

2
𝐵𝐶            b.   𝐷̂1 = 𝐵̂           c.    𝐵𝐷 = 𝐷𝐴            

 d.    𝐵𝐶 =
1

2
𝐷𝐸                  (1)V 

                                          

12. Why is 𝐸̂1 = 𝐶̂ ?  

a.   corresponding angles are equal                 

b.    converse mid-point theorem 

d.    perpendicular from center bisects chord         

               e.   alternate angles are equal                     [1]V 

 

From questions 13 to 16, choose TRUE (T)  or FALSE (F)  for the given statement:  

13.    The angle formed between a radius and a tangent equals 900.   T  /  F ?                                     (1) V 

14.    Co-interior angles are equal.    T  /  F ?                                                                       (1) V 

15.    The opposite angles of a cyclic quadrilateral are supplementary.  T  /  F ?                                  (1) V  

16.    A line from circle center which is perpendicular to a chord is parallel to the chord.  T / F ?    (1)V 

 

17.    A is the center of the circle below. B, C, D, F, E are points 

on the circumference.    

Underline the correct answer. 

Which of the following is not a cyclic quadrilateral?  

 a. ECDF   b. BDFE 

 c. FGBE   d. DCBF  (1)V  
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18.      Determine the value of 𝐴𝐵̂𝐸 from the options provided.  

 

 

  a.   710       

 b.   78.50      

 c.    52.20         

 d.    81.50                              (1)A 

 

19.    Which of the following is the size of angle C ? 

 

 

a.    810         b.   640     

 c.   51.70  d.    47.30                       (1)A 

 

 

Use the diagram below to answer questions 20 to 24. 

In the diagram below, 𝐶𝑅 ∥ 𝐴𝑂, 𝐶𝐴 ∥ 𝐷𝐹  𝑎𝑛𝑑   𝑂𝐹 ∥ 𝑄𝑃.  Answer the questions that follow: 

20.   How many quadrilaterals can be found in 

this shape? 

a.   2     b.  8          

c.   7             d.   3        (1)A 

 

21.     Which of the following is/are not 

parallelograms? 

a.   CQPA              b.  OQPF            

 c.  DFAC            d.  ORPF             (1)A 

 

22.    Which name would be appropriate for DFPR? 

a. parallelogram   b. square   c.  trapezium     

d. rectangle       (1)V  

 

23.     How many parallelograms are there?  

 a.   1     b.  6              c.   2              d.   3                       (1) V 
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24. If angle DFA= 300, determine the size of angle C. 

a.   300     b.  600             c.   1500              d.   150                      (1) A 

 

Observe the two triangles below and complete the statements with an appropriate triangle. 

        

   

25. ∆𝐴𝐵𝐶 ≡  ∆ …                              (1) A

                 

26. ∆ …        ≡  ∆𝐿𝑃𝑇                 (1)A 

 

  

27.   Which reasoning has been used in question 26 ?  

a.   SAS            b.  AAA              c.   SAA            d.   SSS                                        (1) V 

 

 

 

In the diagram that follows, 𝑄𝑅 ∥ 𝑈𝑇   and GF is a transversal. Use the diagram to complete the 

missing statements and/or reasons in the table below: 

 

        

            

 

  

QUESTION STATEMENT REASON MARK 

28. 𝐵̂1 =  𝐶̂4 … (1)A 

29.               … = 𝐶̂1 Alt  < 𝑠   are  = (1)A 

30. 𝐵̂3 =   180° − 𝐶̂1 … (1)A 
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           Complete the following table for the properties of the quadrilaterals given.  

            If the property APPLIES to the shape, tick with ✓.  

            If the property DOES NOT APPLY to the shape, tick with X.  

            Fill ONLY the 10 spaces indicated with question numbers 31 to 40. 

PROPERTY

→ 

 

2D SHAPE   

↓ 

Only 1 pair 

of sides ∥  

2 pairs of 

adjacent 

sides  = 

Opposite 

sides are 

⋕ 

Angle sum 

= 3600 

Diagonals 

intersect 

at ⊥ 

Diagonals 

bisect each 

other 

Each 

angle =  

900 

Parallelogra

m 

X X 31. ✓ 32. ✓ X 

Rhombus  X ✓ 33. ✓ ✓ ✓ 34. 

Rectangle X X ✓ ✓ 35. ✓ 36. 

Kite X 37. X ✓ ✓ 38. X 

Trapezium  39. X 40. ✓ X X X 

            1 mark each  (A) 

       TOTAL: 40 
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APPENDIX E: POST-TEST 1 (Pre-Visualization, Visualization, and Analysis) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 

Euclidean geometry based on Van Hieles’ model. 

Duration:  60 minutes  Date: …..../…..../2020   Marks:  40 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

Instructions:  

Read the following 
instructions carefully before 
answering the questions. 

1. This question paper 
consists of 40 
questions. 

2. Answer ALL questions.  

3.          Write your answers in 
the spaces provided 
on this question 
paper or by 
underlining the 
correct answer 
 where 
applicable. 

4. Clearly show ALL 
calculations, 
diagrams, etc., which 
you have used in 
determining your 
answers. 

5. Answers only will NOT 
necessarily be 
awarded full marks. 

8. Diagrams are NOT 
drawn to scale. 

9. Write legibly and 
present your work 
neatly. 

10.  Do all your rough work on this paper. 

 

VHL Q. 

NO. 

MAX 

MARK 

LEARNER

MARK 

VHL Q. 

NO. 

MAX 

MARK 

LEARNER 

MARK 

 

1. 

Pre-V 

1 1   

 

 

3. 

A 

8 1  

2 1  9 1  

3 1  10 1  

4 1  15 1  

5 1  16 1  

6 1  17 1  

 

 

 

2. 

V 

7 1  18 1  

11 1  19 1  

12 1  20 1  

13 1  23 1  

14 1  29 1  

21 1  31 1  

22 1  33 1  

24 1  34 1  

25 1  35 1  

26 1  36 1  

27 1  37 1  

28 1  38 1  

30 1  39 1  

32 1  40 1  

 TOTAL 

MARKS 

40  

 % 100  
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In the following table, pictures of some real objects have been shown. Write the geometric names 

that match those pictures in questions 1 to 3. 

  

             

QUESTION PROTOTYPE NAME OF GEOMETRIC SHAPE 

1  

Full moon 

 

 

                                             (1) Pre-V 

2  

Half-moon 

 

 

 

                                             (1) Pre-V 

3 

           
         Set-square 

 

    

                                                                     
                                             (1) Pre-V 

 

Use the following diagram to answer questions 4 and 5 

The diagram below is a cut-out of a circle. A is the center of the circle with B and C as points on the 

circumference.  

 What would be the names of the following part? 

 

 

 

4. part  𝑥 :…………………………………………………………(1) Pre-V 

 

 

5. part  𝑦 :…………………………………………………………(1) Pre-V 

 

 

 

Consider the following shapes and answer the next question: 

 
6.    Which of the above shapes is/are triangle(s)? …………………………………………………………………(1) Pre-V 
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Use the following diagram to answer questions  7 to  10: 

In the diagram below, W is the center of a certain circle (hidden). A, B, C and D are points on the 

circumference of that circle. DCE is a straight line such that  𝐶̂1 = 84.5° 

 
7.   Which of the following would be the correct value for  𝐴̂ ? 

a.    15.50       b.   95.50   c.    900   d.    84.50                                  (1)V 

  

8.   Which of these reasons apply to the answer in question 7? 

a.    Exterior angle of cyclic quadrilateral equals interior opposite angle                  

b.   Tan-chord theorem 

c.    Opposite angles of cyclic quadrilateral add up to 1800         

d.    Angles in same segment are equal                  (1)A 

9.    If it is further given that  𝐵̂ = 35°, what would be the value of 𝐷̂ ? 

a.    1450       b.   550   c.    84.50   d.    1000                                   (1)A 

 

10.   Select the reason for the answer in question 9 above. 

b.     Equal chords subtend equal angles            

b.     Exterior angle of cyclic quadrilateral equals interior opposite angle  

c.     Opposite angles of cyclic quadrilateral are supplementary     

d.     Angles in same segment are equal          (1)A 

 

From questions 11 to 14, choose TRUE (T)  or  FALSE (F)  for the each statement: 

11.       A line from circle ecenter which is perpendicular to a chord bisects the chord. T / F ?                       

(1)V  

12.      The angle between a tangent and a chord equals 900.   T  /  F ?                                                 (1) V 

13.      Co-interior angles are supplementary.    T  /  F ?                                                  (1) V 

14.       The opposite angles of a cyclic quadrilateral are supplementary. T  /  F ?                    (1) V  

 

Use the following diagram to answer questions 15 and 16: 
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In the diagram, XY=YZ and the obtuse angle Z=1100.  

     

15.    Determine the value of  𝑋̂. 

a.    1100       b.   400   c.    700   d.    990                            (1)A 

 

16.   What is the value of angle Y? 

a.    550       b.   400   c.    700   d.    990                      (1)A 

 

 

17.   The following diagram shows a two-joined triangles with BE=ED. If it is further given that E1=E2 , 

which reason could best be used to show that  ∆𝐷𝐸𝐹 ≡ ∆𝐵𝐸𝐹 ? 

 

a.    SAA         b.   RHS    

 c.    AAA             d. SSA                               (1)A 

 

 

Use the following diagram to answer questions 18 and 19. 

 

𝑇𝑆 ∥ 𝑄𝑅 and SV is a transversal in the diagram on the 

left.  TU joins SV such that  𝑇𝑈 = 𝑈𝑆. 

 

 

 

18.   Given that 𝑈̂1 = 850, calculate the size of  𝑇̂. 

a.    42.50              b.   400           c.    70.50         d.    990          (1)A 

 

19.    Which of these 2 reasons could be used, one after the other, to show that 𝑉̂2 = 𝑇̂ ? 

a.      vertically opposite angles are equal; alternate angles are equal 

b.     angles opposite equal sides of triangle are equal; co-interior angles are supplementary 

c.      alternate angles are equal; angles opposite equal sides of triangle are equal 

d.     tan-chord theorem; corresponding angles are equal.      (1)A 

 

20.    A certain triangle KTL, has the following properties:  𝐾̂ = 𝑥,        𝑇̂ = 4𝑥   𝑎𝑛𝑑    𝐿̂ = 70. What 

would be the name of that triangle? 

a.    Equilateral              b.   Isosceles           c.    Right-angled            d.    Scalene                         (1)A 
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Use the next diagram to answer questions 21 and 22 

   

Given:  

𝐶𝑄 ∥ 𝐴𝑃, 𝐶𝐴 ∥ 𝐷𝐹  𝑎𝑛𝑑   𝑇𝐹 ∥ 𝑄𝑃 

   Answer the questions that follow: 

21.    Which name would be appropriate for 

DQPF ? 

a. parallelogram        

b. square           

c.  trapezium         

        d. rectangle                            (1)V 

 

22.    How many parallelograms are there?  

 a.   1                 b.  6                 c.   2              d.   3                              (1) V 

Use the diagram below to answer questions 23 and 24:      

        

 

Circle center O is drawn such that WZ = SM and  𝑅̂ = 470. 

 

 

 

 

 

23.     Determine the size of  𝑀̂2 

a.    940       b.   530    c.    470    d.    350                             (1)A 

 

 

24.   Which reason applies to the statement from question 23 ? 

a.     angles opposite equal sides of triangle are equal      

b.    angle at center is double angle at circumference 

c.      angles in a semi-circle are supplementary    

d.     equal chords subtend equal angles        (1)V 
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Use the diagram below to answer questions 25 to 28: 

 

The diagram alongside has KBJ as a tangent to 

the circle at B. The points T, H, G and B lie on 

the circumference. A is the center. 

 

 

 

 

25.    Using the tan-chord theorem, which of the following angles is equal to  𝐻̂2 ? 

a.   𝐻̂1              b.   𝐵̂1                 c.   𝑇̂2          d.    𝐵̂3  (1)V 

 

26.     What is the size of  𝐺𝐻̂𝑇   ? 

 a.    900                     b.   600                       c.    850         d.    450          (1)V 

 

 

 

27.    Which of the following reasons applies to question 26 ? 

a.   tan-chord theorem      

 b.  angles in same segment     

c.   angles in semi-circle         

d.   radius ⊥ tangent                                  (1) V 

 

28.     Give a reason why  𝐺 = 𝐵̂2. 

a.   tan-chord theorem      

 b.  angles in same segment     

c.   angles in semi-circle         

d.   radius ⊥ tangent                                  (1) V 

 

Use the diagram below to answer questions 29 to 33: 
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h 

 

In the diagram, FM and EM are tangents to circle 

center C. Answer the questions that follow: 

 

 

 

 

 

29.   Determine the length of FM if EM=5units. 

a.    5units          b.   10units          c.    15units         d.   2.5units      (1)A 

 

 

30.    Which of the following reasons applies to the answer in question 29 ? 

a.   tan-chord theorem         b.  angles in same segment       

c.   angles in semi-circle           d.   radius ⊥ tangent                         (1) V 

 

31.    What is the size of angle MEC ? 

a.    740       b.   520    c.    900     d.    600                           (1)A 

 

32.    What reason is true for the answer in question 31 ? 

a.   radius ⊥ tangent             b.   tan-chord theorem            

c.  angles in same segment           d. angles in semi-circle                         (1) V 

 

33.    If   𝐹𝐸 = 𝐸𝑀, what would be the name of triangle  𝐹𝐸𝑀 ? 

a.    Equilateral              b.   Isosceles           c.    Right-angled            d.    Scalene                          (1)A 

 

 

         Complete the following table for the properties of the quadrilaterals given.  

          Fill ONLY the 7 spaces indicated with questions 34 to 40. 

          If the property APPLIES to the shape, tick with ✓.  

          If the property DOES NOT APPLY to the shape, tick with X.  
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PROPERTY→ 

 

2D SHAPE   

↓ 

Diagonals 

bisect each 

other 

Opposite 

sides are ⋕ 

2 pairs of 

adjacent 

sides  = 

Only 1 pair 

of sides are ∥  

Each angle 

=  900 

Diagonals 

intersect 

at ⊥ 

Parallelogra

m 

34. 35. X 36. X 37. 

Trapezium  38. X X 39. X 40. 

         1 mark each (A)  

     TOTAL: 40 
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APPENDIX F: PRE-TEST 2 (Abstraction, and Deductions) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 Euclidean geometry 

based on Van Hieles’ model. 

Duration:  60 minutes    Date: …..../…..../2020          Marks:  40 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

 

Instructions:  

Read the following instructions carefully before 
answering the questions. 

1. This question paper consists of 9 questions. 

2. Answer ALL questions.  

3.          Write your answers in the tables provided 
on this question paper by giving clear 
statements and reasons. 

4. Clearly show ALL calculations, diagrams, 
etc., which you have used in determining 
your answers. 

5. Answers only will NOT necessarily be 
awarded full marks. 

8. Diagrams are NOT drawn to scale. 

9. Write legibly and present your work neatly. 

10.  Do all your rough work on this paper. 

 

 

 

 

 

 

 

 

 

 

VHL 

QUES. 

NO. 

MAX 

MARKS 

MARKS 

LEARNER’S 

MARKS 

4. 

Ab 

1 3  

2 4  

3 4  

4 4  

5 5  

5. 

D 

6 5  

7 5  

8 5  

9 5  

TOTAL MARKS 40  

MARKS ( %) 100  
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1.    C is the center of the circle below. If  𝐸̂ = 280, calculate with reasons, the size of 𝐶̂1. 

STATEMENT REASON 

  

  

  

 (3) Ab 

            

2.  In the given circle, O is the center. HB and GT are diameters. KJ is a tangent and  𝐵̂2 = 400 . 

Determine, with reasons, the value of 𝐻̂. 

STATEMENT REASON 

  

  

  

  

  

 [4]Ab 
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vi. In the diagram, JL is a diameter of the circle. O is the center and 𝑀𝐽𝐾 = 1460. Calculate the 

size of  𝑀̂1. 

 

STATEMENT REASON 

  

  

  

  

 (4) Ab 

 

 

4.    The diagram below is a semi-circle cut from a circle with center O.   𝐶𝐷 ∥ 𝐸𝐹 and  𝐹̂ = 600.  

Determine 𝐷̂1 

STATEMENT REASON 

  

  

  

  

 [4]Ab  
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5.     Drawn below is circle center U with radius 13cm and 𝐴𝐷̂𝑈 = 900. If AC=16cm, calculate the 

length of 𝐵𝐷. Let  𝐷𝑈 = 𝑥. 

STATEMENT REASON 

  

  

  

  

  

 [5] Ab 

  

vii. Consider the diagram below. Prove that line UV is a tangent to a circle that passes through 

points S, U and T.  

 

STATEMENT REASON 

  

  

  

  

  

  

 (5) D 
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viii. O is the center of the following circle. KJ and LM intersect at N and 𝐾𝐿 ∥ 𝑀𝐽.  If 𝑀̂ = 𝑥, show 

that 𝐾𝑁 = 𝐿𝑁. 

 

 

 

 

 

 

ix. KJL is a tangent to circle center I.  Prove the theorem which states that  𝐽1 = 𝑁̂. 

 

 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

  

  

 (5) D 

STATEMENT REASON 

  

  

  

  

  

  

  

 (5) D 
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x. In the diagram, XWY is a triangle. WZ is a straight line such that angle XYZ=180-2x. UK is 

another straight line that passes through point X.  Show, with reasons, that  𝑈𝐾 ∥ 𝑊𝑍. Hence, 

determine the size of  𝑌̂1. 

 

 

 

 

 

 

 

 

          TOTAL: 40 

 

 

 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

  

  

  

 (5) D 
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APPENDIX G: POST-TEST 2 (Abstraction, and Deductions) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 Euclidean geometry 

based on Van Hiele’s model. 

Duration:  60 minutes   Date: …..../…..../2020      Marks:  40 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

 

Instructions:  

Read the following instructions carefully before 
answering the questions. 

1. This question paper consists of 9 questions. 

2. Answer ALL questions.  

3.          Write your answers in the tables provided 
on this question     paper by giving clear 
statements and reasons. 

4. Clearly show ALL calculations, diagrams, 
etc., which you have used in determining 
your answers. 

5. Answers only will NOT necessarily be 
awarded full marks. 

8. Diagrams are NOT necessarily drawn  to 
scale. 

9. Write legibly and present your work 
 neatly. 

10.  Do all your rough work on this paper. 

 

 

 

 

 

 

 

 

VHL QUES. 

NO. 

MAX 

MARKS 

MARKS 

LEARNER’S 

MARKS 

4. 

Ab 

1 4  

2 3  

3 5  

4 4  

5 4  

5. 

D 

6 5  

7 5  

8 5  

9 5  

TOTAL MARKS 40  

MARKS ( %) 100  
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1. SUP and KZN are tangents to circle center W. If 𝑈̂𝑌 = 370 𝑎𝑛𝑑 𝐾𝑍̂𝑈 = 580 , calculate the 

value of 𝐿̂. 

 

 

 

 

 

 

 

2.  In the given diagram, A and O are the centers of the smaller and bigger circles respectively. FB is a 

common chord and  𝐷̂ = 880. Determine the size of angle E. 

 

  

  

  

  

            

STATEMENT REASON 

  

  

  

  

  

 (4) Ab 

STATEMENT REASON 

  

  

  

  

  

  

  

  

  

  

  

 [3]Ab 
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3. Drawn below is circle center A. CD is the diameter and AD=DB. Determine the value of angle C. 

 

 

 

 

 

 

 

 

xi. The diagram below is a circle with center C.  Determine 𝐶̂1. 

 

 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

  

  

  

 [5]Ab 

STATEMENT REASON 

  

  

  

  

 (4) Ab 



184 
 

xii. Drawn below is semi-circle cut from circle center P. N, R and O are points on the 

circumference. Show that the points 𝑁, 𝑃, 𝑅 𝑎𝑛𝑑 𝑄 are concyclic (lie on the circumference of 

a circle). 

 

 

 

 

 

 

 

 

xiii. Consider the 2 concentric (same center) circles drawn below. 𝑂𝐶 = 100𝑚𝑚   𝑎𝑛𝑑  𝑂𝐸 =

170𝑚𝑚.  If   𝐶𝐷 = 120𝑚𝑚,  determine the length of  𝐵𝐸. 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

  

  

 (4) Ab 

STATEMENT REASON 

  

  

  

  

  

  

  

  

  

  

 (5) D 
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xiv. O is the center of the following circle. KJ and LM intersect at N and 𝐾𝐿 ∥ 𝑀𝐽.  If 𝑀̂ = 𝑥, show 

that 𝐾𝑁 = 𝐿𝑁. 

 

 

 

 

 

 

 

xv. Consider circle center K below.  Prove that the angle at the center is double the angle at the 

circumference. 

 

 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

 (5) D 

STATEMENT REASON 

  

  

  

  

  

  

 (5) D 
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xvi. In the diagram, XWY is a triangle. WZ is a straight line such that angle XYZ=180-2x. UK is 

another straight line that passes through point X.  Show, with reasons, that  𝑈𝐾 ∥ 𝑊𝑍. Hence, 

determine the size of  𝑌̂1. 

 

 

 

 

 

 

 

 

 

      TOTAL: 40 

 

 

 

 

 

 

 

 

STATEMENT REASON 

  

  

  

  

  

  

  

 (5) D 
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APPENDIX H: PRE-TEST 3 (Rigor) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 Euclidean 

geometry based on Van Hieles’ model. 

Duration:  30 minutes   Date: …..../…..../2020           Marks:  15 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

 

Instructions:  

Read the following instructions carefully before 
answering the questions. 

1. This question paper consists of 2 
questions. 

2. Answer ALL questions.  

3.         Write your answers in the 
spaces/tables provided on this 
question paper by giving clear 
statements and reasons. 

4. Clearly show ALL calculations, 
diagrams, etc., which you have used in 
determining your answers. 

5. Answers only will NOT necessarily be awarded full marks.  

8. Diagrams are NOT drawn to scale. 

9. Write legibly and present your work neatly. 

10.  Do all your rough work on this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

VHL 

QUES. 

NO. 

MAX 

MARK

S 

MARK

S 

LEARNE

R’S 

MARKS 6. 

Rigor 

(Rg) 

1 8  

2 7  

TOTAL MARKS 15  

MARKS ( %) 100  
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1.     MD is the diameter of circle center O. If 𝑀𝑇 ∥ 𝑃𝑂, prove that 𝑂̂2 = 𝑃̂1. 

 
STATEMENT REASON 
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2.    Circle center A is drawn below with tangents HCF and GBF. Point E lies on chord DB 

such that 𝐸𝐹 ∥ 𝐷𝐶. Let 𝐶̂4 = 𝑥. Show that a new circle, center T, will pass through the points 
E, B, F and C. 
 

 

       TOTAL: 15 
 

STATEMENT REASON 
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APPENDIX I: POST-TEST 3 (Rigor) 

TITLE OF STUDY:   The impact of technology integration in teaching Grade 11 Euclidean geometry 

based on Van Hieles’ model. 

Duration:  30 minutes   Date: …..../…..../2020             Marks:  15 

Name of your school: __________________________________________ 

Tick with X :   Female    Male  

 

Instructions:  

Read the following instructions carefully before 
answering the questions. 

1. This question paper consists of 2 questions. 

2. Answer ALL questions.  

3.          Write your answers in the tables provided 
on this question   paper by giving clear 
statements and reasons. 

4. Clearly show ALL calculations, diagrams, 
etc., which you have used in determining 
your answers. 

5. Answers only will NOT necessarily be 
awarded full marks.  

8. Diagrams are NOT drawn to scale. 

9. Write legibly and present your work neatly. 

10.  Do all your rough work on this paper. 

 

 

 

 

 

 

 

 

 

VHL 

QUES. 

NO. 

MAX 

MARKS 

MARKS 

LEARNER’S 

MARKS 

 

6. Rigor 

1 7  

2 8  

TOTAL MARKS 15  

MARKS ( %) 100  
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1.     In the diagram, P, S, and Q are points on the circumference of circle centre O. Similarly, O, T and 

Q lie on circle ercenter R.  PQ and OQ are the diameter of the bigger and smaller circles respectively. 

Prove that  𝑂𝑇2 =
1

4
𝑃𝑆2. 

  

STATEMENT REASON 
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2.     P, Q, and M are points on the circumference of the given circle. QR and RM are tangents such 

that 𝑄𝑅 ∥ 𝑃𝑀.  Show that  𝑄̂2 = 𝑅̂.  (Let 𝑄̂3 = 𝑥) 

 

         TOTAL: 15 

STATEMENT REASON 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 [8]Rg 



193 
 

APPENDIX J: UNISA ETHICAL CLEARANCE 
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APPENDIX K: FREE STATE DEPARTMENT OF EDUCATION’S APPROVAL 
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APPENDIX L: CONSENT FORM TO PARENTS 

 
Title of research: The impact of technology integration in teaching Grade 11 Euclidean geometry 
based on Van Hieles’ model. 

Dear Parent, 

Your child is invited to participate in a study titled “The impact of technology integration in 

teaching Grade 11 Euclidean geometry based on Van Hiele’s model”. I am undertaking this 

study as part of my masters’ research at the University of South Africa. The purpose of the 

study is to explore the impact of using GeoGebra software in the teaching and learning of 

Grade 11 circle geometry. The possible benefits of the study are the improvement of the 

existing knowledge on the impact that the use of educational software has on the teaching of 

Euclidean geometry. It will also give educators more options in their daily selection of 

teaching methods. Moreover, your child will be exposed to the various ways of handling 

geometry problems through technology, thereby helping increase their level of interest in the 

topic and improve their academic performance. I am asking permission to include your child 

in this study because he/she is in Grade 11, which the study hopes to focus on to improve 

their learning approaches. I expect to have a total of 60 children participating in the study 

including your child.  

A total of 30 learners from Senakangwedi Secondary shall form the experimental group, who 

will be taught using GeoGebra software at Senakangwedi Secondary School, and the other 30 

learners from Setjabasemaketse Secondary will be taught using the traditional teaching 

method at Senakangwedi Secondary School. The academic reports of the learners for the year 

2019 would be needed to help in determining learners’ progression.  

Weekdays, after school, will be used for the research with each session taking a maximum 1 

hour per day, from 15:20 to 16:20. Classes for the control group shall be Mondays and 

Wednesdays at Setjabasemaketse, and that of the experimental group shall be done on 

Tuesdays and Thursdays at Senakangwedi, from Monday 24 August 2020 to 25 September 

2020. 

If you allow your child to participate, I shall request him/her to voluntarily write 3 pre-tests 

and 3 post-tests. The tests will focus on Grade 11 geometry only.  Each test will take a 

maximum of 60 minutes to complete. Participants’ scores from the test will be immediately 

communicated to them right after marking to help them correct their mistakes. The tests 
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will take place on weekdays, after school, at Senakangwedi and Setjabasemaketse for the 

experimental and control groups respectively. 

Any information that is obtained in connection with this study and can be identified with your 

child will remain confidential and will only be disclosed with your permission. His/her 

responses will not be linked to his/her name or your name or the school’s name in any written 

or verbal report based on this study. Such a report will be used for research purposes only. 

To avoid exposing learners to COVID-19, arrangements shall be made with principals to 

ensure strict adherence to all the safety protocols outlined by the Department of Health and 

the government. This includes daily screening of learners and teachers, sanitizing, wearing 

masks, and ensuring social distancing. The researcher shall cooperate with the schools and 

communicate any possible health risks to the principals and parents/guardians immediately 

for the necessary action. Neither your child nor you will receive any type of payment for 

participating in this study. The principal and the Grade 11 mathematics teacher of the school 

shall assist in supervision during the study. 

Your child’s participation in this study is voluntary. Your child may decline to participate or to 

withdraw from participation at any time. Withdrawal or refusal to participate will not affect 

him/her in any way. Similarly, you can agree to allow your child to be in the study now and 

change your mind later without any penalty. However, if you do not want your child to 

participate, an alternative activity will be available which is to continue receiving similar 

instruction during the normal classroom activities, which does not form part of this research. 

In addition to your permission, your child may agree to participate in the study and you, and 

your child will also be asked to sign the consent/assent form which accompanies this letter. If 

your child does not wish to participate in the study, he or she will not be included and there 

will be no penalty. The information gathered from the study and your child’s participation in 

the study will be stored securely in locked cabinets and the researcher’s password protected 

computer for five years after the study. Thereafter, records will be erased.  

If you have questions about this study, please ask me or my study supervisor, Prof Z.M.M Jojo, 

Department of Mathematics Education, College of Education, University of South Africa. My 

contact number is 0745717174 and my e-mail is adjeibediako@gmail.com. The e-mail of my 

supervisor is jojozmm@unisa.ac.za.  Permission for the study has already been given by the 
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Ethics Committee of the College of Education, UNISA, the Principals of Senakangwedi and 

Setjabasemaketse Secondary Schools, and the Free State Department of Education.  

You are making a decision about allowing your child to participate in this study. Your signature 

below indicates that you have read the information provided above and have decided to allow 

him or her to participate in the study. You may keep a copy of this letter.  

Name of child:  

Sincerely, 

_______________________                      ___________________                  ____________ 

Parent/guardian’s name (print)               Parent/guardian’s signature                      Date  

 

BEDIAKO, A.                                   ________________________                ____________ 

Researcher’s name (print)  Researcher’s signature   Date 
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APPENDIX M: ASSENT/CONSENT FORM TO PARTICIPANTS 

 
Title of research: The impact of technology integration in teaching Grade 11 Euclidean geometry 
based on Van Hieles’ model. 

 

Date: 05 July 2020 

Dear Learner,           

I am doing a study on “The impact of technology integration in teaching Grade 11 Euclidean 

geometry based on Van     Hiele’s model” as part of my studies at the University of South Africa. Your 

principal and the Free State Department of Education have given me permission to do this study in 

your school. I would like to invite you to be a very special part of my study. I am doing this study so 

that I can find ways that your teachers can use to improve the teaching of Euclidean geometry. This 

may help you and many other learners of your age in different schools.  

This letter is to explain to you what I would like you to do. There may be some words you do not know 

in this letter. You may ask me or any other adult to explain any of these words that you do not know 

or understand. You may take a copy of this letter home to think about my invitation and talk to your 

parents/guardian about this before you decide if you want to be in this study. 

This study will require that you attend weekday classes, after school, from Monday 24 August 2020 

to 25 September 2020, at your school. Each session will take a maximum of an hour per day, from 

15:20 to 16:20. A total of 30 learners from Senakangwedi Secondary shall form the experimental 

group, who will be taught by the researcher using GeoGebra software at Senakangwedi Secondary 

School, and the other 30 learners from Setjabasemaketse Combined School will be taught by the same 

researcher using the traditional teaching method at Setjabasemaketse Combined School. Classes for 

the control group shall be held on Mondays and Wednesdays at Setjabasemaketse, and that of the 

experimental group shall be done on Tuesdays and Thursdays at Senakangwedi, from Monday 24 

August 2020 to 25 September 2020. 

During the classes, you will be asked to voluntarily write 3 pre-tests and 3 post-tests on circle 

theorems, proofs, and applications in geometry. Each test will constitute a maximum of 40 marks to 

be written in 60 minutes. You may decide to write or not write the tests. Your academic reports will 

be assessed to only determine your progression status in Grade 11. Your information will be kept 

confidential. 

I will write a report on the study, but I will not use your name in the report or say anything that will 

let other people know who you are. Participation is voluntary and you do not have to be part of this 
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study if you don’t want to take part. If you choose to be in the study, you may stop taking part at any 

time without penalty. You may tell me if you do not wish to answer any of my questions. No one will 

blame or criticise you. When I am finished with my study, I shall return to your school to give a short 

talk about some of the helpful and interesting things I found out in my study. I shall invite you to come 

and listen to my talk. 

The benefits of this study include adding to the existing knowledge on the impact that the use of 

educational software has on the teaching of Euclidean geometry. It will also give educators more 

options in their daily selection of teaching methods. Moreover, you as a learner will be exposed to the 

various ways of handling geometry problems through technology, thereby helping increase your level 

of understanding and interest in the topic. 

There is that risk of anyone contracting COVID-19. However, measures have been devised to avoid 

exposing you to the coronavirus. There shall be arrangements with your principal to ensure strict 

adherence to all the safety protocols outlined by the Department of Health and the government during 

the study. This includes daily screening of learners and teachers, sanitizing, wearing masks, and 

ensuring social distancing at all times. The researcher shall cooperate with the schools and 

communicate any possible health risks to the principals and parents/guardians immediately for the 

necessary action. Your principal and the Grade 11 mathematics teacher shall assist in supervision 

during the study. 

You will not be reimbursed or receive any incentives for your participation in the research.  

If you decide to be part of my study, you will be asked to sign the form on the next page. If you have 

any other questions about this study, you can talk to me or you can have your parent or another adult 

call me on the phone number below. Please, do not sign the return slip for consent/assent until you 

have all your questions answered and understand what I would like you to do. Ask your questions first 

and ensure that someone answers those questions. If you have understood the information given, 

proceed to the return slip below. 

Researcher: BEDIAKO, A                 Phone number: ………………………… 

Researcher’s Signature: ………………………………….    
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APPENDIX N: RETURN SLIP FOR CONSENT/ASSENT 
 

I, ………………………………………………………………………………………………………………(Participant’s Surname, 

Initials), confirm that the person asking my consent to take part in this research has told me about the 

nature, procedure, potential benefits and anticipated inconvenience of participation.  

• I have read (or had explained to me) and understood the study as explained in the information 

sheet.   

• I have had sufficient opportunity to ask questions and am prepared to participate in the study.  

• I understand that my participation is voluntary and that I am free to withdraw at any time 

without penalty. 

• I understand the existence of COVID-19 and the measures put in place by the researcher to 

mitigate the spread of the virus.  

• I shall subject myself to daily screening, wearing of mask, observe social distancing and follow 

all other safety measures as outlined by the government and the Department of Health. 

• I am aware that the findings of this study will be processed into a research report, journal 

publications and/or conference proceedings, but that my participation will be kept 

confidential unless otherwise specified.  

• I agree to write the pre and post-tests, and allow the recording and analysis of my scores for 

research purposes only. 

• I have received a signed copy of the informed consent/assent agreement. 

 

Participant’s Name & Surname (please print) :    ____________________________________ 

 

Participant’s Signature :                                                      Date : ____/______/2020 
 

 

Researcher’s Name & Surname:        ADJEI BEDIAKO 

 

Researcher’s signature:                                                     Date: ____/______/2020 
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APPENDIX O: EDITORIAL CERTIFICATE 

 

 

 


