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Abstract 

The study of MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs) and gene 

interactions may be expected to provide new technologies to serve as valuable biomarkers for 

personalized treatments of diseases and to aid in the prognosis of certain conditions. These 

molecules act at the genome level by regulating or suppressing their protein expression 

functions.  

The primary challenge in the study of these non-coding molecules involves the necessity of 

finding labeled data indicating positive and negative interactions when predicting interactions 

using machine-learning or deep-learning techniques. However, usually we end up with a 

scenario of unbalanced data or unstable scenarios for using these models. An additional 

problem involves the extraction of features derived from the binding of these non-coding 

RNAs and genes. This binding process usually occurs fully or partially in animal genetics, 

which leads to considerable complexity in studying the process. Therefore, the main objective 

of the present work is to demonstrate that it is possible to use features extracted for miRNAs 

sequences in the development of diseases such as breast cancer, breast neoplasms, or if there 

is any influence with immune genes related to the SARS-COV-2. 

We performed experiments focusing on the erb-b2 receptor tyrosine kinase 2 (ERBB2) gene 

involved in breast cancer. For this purpose, we gathered miRNA-mRNA information from 

the binding between these two genetic molecules. In this part of our research, we applied a 

One-Class SVM and an Isolation Forest to discriminate between weak interactions, outliers 

given by the one-class model, and strong interactions that could occur between miRNA and 

mRNA (messenger RNA). 

Additionally, this study aimed to differentiate between breast cancer cases and breast 

neoplasm conditions. In this section we used the information encoded in lncRNAs. The 

additional feature used in this part was the frequency of k-mers, i.e., small portions of 

nucleotides, along with the data from the energy released in miRNA folding. The models 

used to discriminate between these diseases were One-Class SVM, SVM, and Random 

Forest. 

In the final part of the present work, we described a subset of probable miRNA binding with 

SARS-COV-2 RNA, focusing on those miRNAs with a relationship with genes involved in 
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the immunological system of the human body. The models used as classifiers were One-Class 

SVM, SVM, and Random Forest.  

The results obtained in the present study are comparable to those found in the current 

literature and demonstrate the feasibility of using one-class models combined with features 

from the coupling of non-coding genes or mRNAs and their relationships with forms of 

breast cancer and viral infections. This work is expected to establish a basis for future 

avenues of research to apply one-class machine-learning models with feature extraction based 

on genomic sequences to the study of the relationship between non-coding RNAs and various 

diseases. 

KEYWORDS: mRNAs, lncRNAs, k-mers, sequence features, Breast Neoplasms, Breast 

cancer, SARS-CoV-2, One-class models, Supervised Learning, Unsupervised learning  
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CHAPTER 1 
Introduction 

1.1 Background 

miRNAs are small non-coding RNAs that are not involved in the process of protein 

production. However, they can bind to specific genes and regulate or repress them (Loh et al., 

2019). When this regulation occurs, the genes begin to change their protein production, 

leading to the appearance or control of certain diseases within the human body (López-

Camarillo and Marchat, 2013; Condorelli et al., 2014). These miRNA molecules are 

evolutionarily conserved, and their lengths are no longer than 19 to 25 nucleotides (Loh et al., 

2019; Han, 2004). When miRNAs bind to genes, they can have perfect complementarity, for 

example, in plants (Schwab et al., 2005), and full or partial complementarity as it occurs in 

humans (Condorelli et al., 2014). It is well known that miRNAs can repress or inhibit the 

molecular proteins produced by affected genes, which could lead to various diseases 

(Ardekani and Naeini, 2010; Bartel. 2004; Shen et al., 2014). The interactions of miRNAs 

and other forms of non-coding RNAs in the prognosis of certain diseases are undeniable, 

particularly in breast cancer diagnosis scenarios (Loh et al., 2019). 

Throughout the course of breast cancer, miRNAs serve as oncogenes or tumor suppressors, 

which has been an active research topic in recent years. Studies have classified breast cancer 

types or predicted patients' prognoses in specific clinical cases (López-Camarillo and 

Marchat, 2013). These molecules can interact with specific genes by increasing or decreasing 

gene regulation (Negrini and Calin, 2008), thereby silencing them, inhibiting translation, or 

even degrading them (Bartel, 2004; Loh et al., 2019; López-Camarillo and Marchat, 2013; 

Negrini and Calin, 2008). Additionally, miRNAs can aid in the formation of oncogenes or 

tumor suppressor genes in breast cancer scenarios (Loh et al., 2019; Negrini and Calin, 2008). 

One-class SVM models are commonly used to detect novel or anomalous data, returning a 

value of +1 if the data are enclosed within a region and -1 if they are in the region's outbound 

(Schölkopf et al., 2001). As an SVM, such models generate a dimensional map using kernels 

to separate the data from a particular origin by a maximum margin, as demonstrated by 

Schölkopf et al. (2001). Samples that fall within this enclosed region are assigned to a 

positive (+1) class, whereas outsiders are assigned to a negative (-1) class. Hence, such 

models exploit the accuracy of SVMs using data involving only one training class. In 
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contrast, supervised learning models require two classes to perform predictive classification 

tasks. An inconvenience that arises with two class models, for example, for classification 

tasks, is that, on some occasions, the samples that belong to one class are insufficient, or we 

have only samples from one (positive) class. Moreover, acquiring samples from the second 

(negative) class is challenging or cannot be achieved directly (Sedaghat et al., 2018; Irigoien 

et al., 2014). Another attractive differentia of the one-class SVM is that it does not require a 

negative class to train the model. Nevertheless, on some occasions, a subset of negative 

samples is chosen to test the model's performance, a step that is not mandatory (Eude and 

Chang, 2018). Additionally, the use of a single class obviates the need to obtain labeled data; 

however, while tweaking hyperparameters or validating the output of such models, extra 

caution should be taken. Certain samples may be chosen to represent a synthetic negative 

class as a quality control measure for this model.  

Similarly, other types of non-coding RNAs, such as long-coding RNAs (Wapinski and 

Chang, 2011) have also been objects of study as being present in certain diseases. In breast 

cancer, lncRNAs have a role in metastasis by altering the chromosomal landscape. Other 

examples include the lncRNA HOTAIR, which binds to HOXD genes (Harries, 2012; 

Wapinski and Chang, 2011), acting as a tumor suppressor in the Gas5 molecule (Wapinski 

and Chang, 2011), or by regulating the expression of the lncRNA known as LSINCT5 

(Harries, 2012). MiRNAs can operate as oncongenes or tumor suppressors in breast cancer 

and its metastatic form. For example, it has been reported that the miRNA-331 interacts with 

the  ERBB2 o HER2 gene (Loh et al. 2019; McAnena et al.,2019) and that miR-124a and 

miR-26b interacts with SerpinB2 (Loh et al. 2019). 

Feature extraction should be performed on data prior to processing using machine-learning 

modes, which is relevant to non-coding RNA studies. Considering the use of sequence 

feature analysis such as the k-mer frequency, Wen et al. (2019) applied this procedure to a 

convolutional neural network; the term k-mer refers to the length of sequence nucleotides. 

For example, 1-mer implies only a single nucleotide, whereas 2-mer would have two 

nucleotide combinations. The researchers employed this technique to identify lncRNA-

mRNA correlations in mice, chickens and humans. Interestingly, they discovered that 

increasing the k-mer number over three had a minor effect on accuracy. 

miRNAs bind not only to mRNA or genes in humans or other species, but also to external or 

endogenous RNA such as that of viruses. Thus, the miRNAs may also act as if they were 
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interacting with an endogenous host gene or mRNA by repressing or regulating their primary 

functions. Additionally, in these cases, the miRNAs may even disable viral reproduction to 

regulate the spread of the virus on a host species. This binding occurs because miRNAs 

cannot discriminate between viral mRNA and that of the host organism (Nersisyan et al., 

2020). However, further studies have concluded that there is no evidence that mRNA viruses 

can also produce miRNAs (Yousefi et al., 2020). Nonetheless, evidence has indeed ben 

adduced that miRNAs could interfere with the functions of the SARS-CoV-2 virus. This 

outcome could lead to a promising field of research, given the current pandemic. 

1.2 Problem statement and research questions 

MicroRNAs (miRNAs) bind to different genes, up-regulating, down-regulating, or 

suppressing their protein expression. This type of regulation may result in the occurrence of 

certain diseases such as various forms of cancer (Chen H. et al., 2018; Loh et al., 2019; 

Penyige et al., 2019; Prosenjit et al., 2018; Rehman et al., 2019). However, the study of the 

interactions of miRNAs or other non-coding RNAs with specific genes, is complex. This 

phenomenon occurs because multiple miRNAs may interact with a given gene, implies a 

considerable uncertainty in predicting which miRNAs will bind to which genes (Prosenjit et 

al., 2018), (Yan et al., 2007). Moreover, binding of miRNAs and genes in humans does not 

follow a strict complementarity as it does in plants. Consequently, direct observation of 

miRNAs and gene matching is not possible (Witkos et al., 2007) in contrast to the matching 

known to occur in plants (Schwab et al., 2005). This remains as a major challenge in the 

field. 

Various studies have been conducted on predicting or classifying interactions between 

diverse miRNAs and genes. In recent years, it has become possible to perform in-silico 

computational experiments to supplement or replace of in-vitro experiments in genetic 

laboratories, also known as wet-lab facilities. Statistics, machine learning, and deep-learning 

techniques have become widely popular in the field of genetics. Therefore, researchers have 

realized that using machine-learning or deep-learning techniques could unveil interesting 

connections between miRNAs and genes, predict their interactions, or classify miRNAs 

according to observable characteristics. However, some inherent difficulties remain with the 

use of most existing supervised machine and deep-learning methods. For instance, in 

classification and prediction tasks, it is generally necessary to include at least two classes to 

construct a model to differentiate between different outcomes. However, obtaining properly 
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labeled datasets is often impossible. In genetic experiments, the procurement of differentiable 

classes may be considered unfeasible owing to the cost and time involved in wet-lab 

experiments.  

Nevertheless, obtaining such labeled data is often complex. For example, a sample from one 

class might be too scarce which is a common situation in miRNA and gene interactions (Tran 

et al., 2008; Sedaghat et al., 2018; Yousef et al., 2008; Yousef et al., 2010). Datasets may be 

imbalanced, with an insufficient number of samples from one class, which tends to lead to 

some classes being under-sampled or over-sampled. However, the use of synthetically 

created samples to address this issue can also cause bias in the results of the model. 

In summary, two main problems exist in the study of miRNA and gene interactions, the first 

of which is related to the difficulty of finding samples from a single validated class. Second, 

unbalanced dataset may be largely useless for training models based on supervised learning. 

Therefore, we believe that one-class techniques or anomaly detection techniques are required 

in the field of in-silico experiments, which has been dormant for some time. These techniques 

obviate the abovementioned necessity of two or more balanced classes affecting supervised 

models, and hence are suitable in genetics where one class's presence is scarce. 

Consequently, these models could enable the discovery of interactions between non-coding 

RNAs, genes, and even messenger RNAs (mRNAs) in the presence of only one class 

(Sedaghat et al., 2018; Irigoien et al., 2014). 

Regarding the feature extraction needed for the application of machine-learning models, in 

contrast to deep-learning models, one trend involves the use of features obtained based on the 

genomic expression of miRNA-gene binding (Pham et al., 2019). Another trend relates to the 

extraction of features derived from the study of the nucleotides in genomic sequences. This 

approach cannot be directly applied owing to the lack of a perfect match as in plant miRNAs. 

However, it might hypothetically be possible to extract features from the analysis of 

nucleotides present in non-coding RNAs features' binding that could serve as inputs for a 

one-class model. Furthermore, the construction of a set of relevant attributes would involve 

the study of pairing sites, accessibility, or evolutionary conservation data is of uttermost 

importance. 

Another part of our research is directed to miRNA-gene binding and other types of non-

coding RNAs, such as long coding RNAs (lncRNAs). After a review of the pertinent 

literature, this research discovered that there are currently no studies evaluating the prediction 
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of lncRNA-miRNA and their association to disease. Some studies, however, have examined 

these associations separately, e.g., associations between lncRNA and-miRNA (Wen et al., 

2019), between lncRNA and diseases (Guo et al., 2019), or between miRNAs and diseases 

(Fu and Peng, 2017), to name a few. Therefore, it might be hypothesized that the integrated 

study of lncRNA and miRNA together could be used to discover relationships with the 

development of specific diseases based on the different investigations found in the literature 

regarding miRNAs and disease associations. 

The SARS-COV-2 pandemic has led to diverse research efforts to unveil the mechanisms of 

human response exposure to this viral strand. Previous studies on miRNAs along these lines 

have explicated the interaction of miRNAs with viral mRNAs based on experimental data 

Different studies on the relationship between miRNAs and the SARS viral genome have been 

proposed, for example, in the work of Pierce et al. (2020) and Ahmadi & Moradi (2020), 

among many others. However, we could not find any works in the relevant literature that 

used one-class models for these viral scenarios, which seemed natural because the single-

class seems evidently to obtain in this context, as a list of the available miRNAs that could 

bind to the SARS viral mRNA. Therefore, apart from using a one-class model, it would be 

helpful to use features based on the genomic sequence of both miRNAs and mRNAs from the 

viral strand. In this scenario, the prediction of miRNA binding to viral mRNA is considered 

anomalous. We believe that this study can use the information from genomic alignment, 

minimum free energy released in a binding process, and information on the k-mers of the 

sequences. Additionally, our research considers whether the existing literature may validate 

our results by analyzing whether some diseases could be related to the miRNAs found. 

Having thus noted the problem definition considered herein, we note four main research 

questions addressed by the present thesis. 

R1. How can features based on sequence binding provide consistent results if used in 

machine-learning models? 

R2. How is it possible to discriminate between cases of benign and malignant cancer 

scenarios using features extracted from lncRNA and miRNAs, considering particularly those 

related to breast cancer and breast neoplasm diseases? 

R3. How is it possible to find miRNA binding with viral genome RNA strands such as that of 

SARS-COV-2 using features based on sequence analysis, k-mers, and one-class SVMs? 
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1.3 Research Objectives 

To approach the research questions stated, we consider herein the following objectives. 

RO1. Extract useful features based on the nucleotide sequence binding between miRNAs and 

genes, focusing on the ERBB2 gene involved in the development of breast cancer. 

RO2. Determine the feasibility of using the extracted features with one-class unsupervised 

models and compare the results with the existing literature. 

RO3. Validate cases of breast cancer and breast neoplasm using the features and models 

defined in previous research objectives. 

RO4. Determine probable miRNA binding with SARS-CoV-2 using a one-class SVM and 

attributes extracted from the sequence binding between miRNAs, genes involved in the 

immune systems and the viral mRNA genome. 

In the present study, research question R1 is mapped with the objectives RO1 and RO2; 

research question R2 is mapped with objective RO3, while question RO3 is mapped with 

objective RO4. 

1.4 Overview of the research methodology 

Various datasets for obtaining the miRNAs, lncRNAs, diseases, and SARS viral genomes 

were used for the current project, which are explained in detail in the following chapters. Of 

note, all data was obtained from public datasets, the author of the current thesis performed no 

wet-lab experiments. Rather, all experiments were performed using computational means or 

in-silico. The data available are free to use, and references to these original data are naturally 

provided. 

This study used supervised and unsupervised machine-learning methods in relation to the 

methods used in our experiments. We examined both supervised methods, including an SVM 

and a random forest classifier, and unsupervised methods including isolation forest and one-

class SVM. As the theme of the present work was to demonstrate the benefits of using well-

known machine-learning methods with feature engineering from nucleotide sequences, in 

contrast to deep-learning methods of high computational complexity, we wanted to prove that 

the findings of our models are reasonably close to those reported in the literature. 
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The abovementioned methods required a set of features as inputs to the learning models. We 

focused on the use of features extracted from the alignment between genetic molecules. We 

used Python and BioPython to perform sequence manipulation on these matters, e.g., 

alignment of genetic sequences or extraction of k-mers, to mention a few of the procedures 

we employed. Additionally, we used the Vienna package with a Windows Python plugin for 

our experiments to obtain energy values related to the binding of genetic sequences. 

To answer the research questions thus established, we performed the following tasks. 

R1. How can the use of features based on sequence binding with machine-learning models 

provide consistent results? 

T1: We performed experiments using sequence features extracted from mirWalk and 

miRTargetLink to select a list of miRNAs that are related to certain diseases. This database 

served to measure the quality of these molecular interactions. These features were used as 

inputs for a one-class SVM and an isolation forest model.  

R2. How to discriminate between benign and malignant cancer scenarios using features 

extracted from lncRNAs and miRNAs, considering as a particular case those related to breast 

cancer and breast neoplasm diseases? 

T2: For this task, we selected samples of lncRNAs and miRNAs that were associated with 

breast cancer and breast neoplasm scenarios. We extracted features related to k-mers, 

sequence alignment between miRNAs and lncRNAs, and folding energy values. These 

features served as inputs for a one-class SVM model. The obtained results were validated 

using SVM and random forest models. The results show the possibility of discriminating 

between benign and malignant breast tissue samples using the features mentioned above and 

of validating them with unsupervised and supervised models. 

R3: How to find miRNA bindings with viral genome RNA strands such as that of SARS-

COV-2 using features based on sequence analysis, k-mers, and one-class SVMs? 

T3: In this scenario, we extracted features from the genomic sequence of SARS-CoV-2 and 

miRNAs present in the human body. With the features obtained, we fed a one-class SVM 

model, and obtained several novel or distinct miRNAs with a preference to bind to the 

untranslated region of the SARS genome (5'UTR region). The literature validated the 

miRNAs that were obtained. Additionally, aim to determine whether there is a relationship 
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with miRNAs that interact with immune systems, and whether they could be prone to bind to 

the mRNA of the SARS-CoV-2 coronavirus. 

1.5 Research contribution 

As discussed in Section 1.1, many studies have used deep learning and miRNA expression 

profiles to predict miRNA-gene binding. Deep-learning models do not require a preceding 

feature engineering step because they strive to find patterns in the data that serve as input. 

However, training such models involves considerable computationally complexity and 

associated time requirements. In contrast, methods such as those of machine-learning models 

do require feature engineering or extraction techniques. Additionally, there are many 

machine-learning and deep-learning methods available in the literature. In practice, many 

known problems might be resolved by focusing on a limited number of models. For example, 

Fernandez-Delgado (2014) and Hand (2006) mentioned that there is no need to increase the 

complexity of such models, as this does not reflect an increase in their accuracy. Such 

conclusions have been receiving results in a variety of responses in the field of data science. 

Unfortunately, no further studies have corroborated these findings in comparisons between 

machine learning and more complex models, such as those used in deep learning. Clearly 

deep-learning models are of considerable benefit in various applications in data science. 

However, we believe that the use of conventional machine-learning methods involving 

feature engineering or extraction processes remains a fruitful avenue of research for some 

bioinformatics tasks, e.g., that of the prediction of binding sites of miRNA in genes or 

relationships between other non-coding RNAs such as lncRNAs. 

We also hypothesize that the use of sequence binding features was relatively neglected in the 

study of non-coding RNA in favor or gene expression models. One probable drawback of 

using sequence features is that non-coding RNA binding in human genes does not necessarily 

have perfect matching or complementarity. However, we believe that using features such as 

sequence alignments, k-mers, and the energy released in a binding procedure could be of 

benefit for predicting non-coding RNAs to genes or finding relationships between them and 

diseases. 

Since the advent and increase in computational power, many tasks in genetics and biology 

have been largely automated. However, the results of bioinformatics or computational 

experiments, known as in-silico experiments, always requires wet-lab validation. Such 

experiments are not straightforward and demand considerable time and effort; — this 
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overhead increases with the use of supervised machine-learning or deep-learning models. At 

least two classes are required for supervised learning, and there should not be so much 

divergence in quantities among them, i.e., the datasets should be balanced. The presence of 

imbalanced datasets requires techniques to create artificial data, which induces some bias into 

the results. One could argue that it would be advisable to generate data from two or more 

classes in wet-lab. However, this also involves the abovementioned problems. Considerable 

overhead in terms of effort and time would be required to perform such experiments. 

Therefore, we hypothesize that it would be fruitful to focus on the use of unsupervised 

learning using well-established, effective models such as SVM. Therefore, we decided to 

work with a one-class SVM. This model has the advantage of SVMs in terms of the quality of 

the results, while avoiding various difficulties noted above. Therefore, we concluded that 

such models would be suitable to test the prediction of non-coding RNAs interactions or 

relationships with diseases, and the experimental results validated this supposition. 

In conclusion, the research contribution of the current work would be: 

i. This research work will allow researchers to glimpse a perspective in using sequence 

features extracted from genetic sequences when the binding of non-coding RNAs and 

genes occurs instead of using genomic expression. It is essential to mention that 

using features from genetic sequences has been rarely used in the bioinformatics 

field.   

ii. This study gives importance to the use of simple machine learning methods, 

specifically to one-class unsupervised techniques such as One-class SVM, which 

could perform remarkably well with unbalanced data, do not need to use extensive 

computational resources as it could occur with Deep learning models, and that has 

been dormant in the Bioinformatics field for quite a while. 

iii. This research proposes an architecture that could extract information from sequence 

features, which could be used as input to one-class or two-classes machine learning 

models to classify or predict the relationship between non-coding RNAs and 

diseases. 

Additionally, this research focuses on providing a practical research contribution as described 

by Ngwenyama (2014). 



  © University of South Africa 

10 

 

1.6 Thesis Structure 

The present thesis is divided into the following chapters, and we provide a short description 

of each constituent part. 

Chapter 1: Introduction 

We begin by describing the background of the problem to be solved and stating the necessary 

research questions and objectives to be completed in the present thesis. 

Chapter 2: Literature Review 

In this chapter, we outline some relevant concepts regarding genetics, bioinformatics, and 

unsupervised one-class models. 

Chapter 3: Research Methodology 

In this part, we describe the methodology followed and the datasets used. A detailed 

description of the methods and data followed for our different research outcomes is given in 

chapters 4 to 6. 

Chapter 4: 

This section aimed to establish a relationship between these non-coding RNAs and breast 

cancer by using sequence features extracted from the binding of miRNAs and the ERBB2 

genes. For our research purposes, we established a comparison of one-class models as 

Isolation Forest and One-Class SVM. 

Chapter 5: 

In this chapter we applied sequence features for validating non-coding RNAs, miRNAs and 

lncRNAs, in discriminating between breast cancer and breast neoplasm situations. 

Chapter 6: 

In this section, we used sequence features and one-class SVM to predict miRNAs' binding to 

the mRNA SARS-CoV2 mRNA. Additionally, we compared our one-class model with 

supervised models to show that the one-class model is more suitable for imbalanced datasets. 

Chapter 7: Conclusions and future work 
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We end the work with a section on our Conclusions and a description of the research 

contribution, providing set of references reviewed and the necessary appendices. 

1.7 Summary 

In this chapter, we have presented a broad view of the involvement of miRNAs in certain 

diseases and how unsupervised models could serve as a valuable technique to predict 

bindings between miRNAs and genes or to validate their interaction. This study has identified 

several challenges involved in the research of non-coding RNA interactions with diseases. 

One is related to the scarcity of validated samples, which would enable the direct application 

of supervised models. The second involves the feature manipulation that should be performed 

in using the nucleotide-binding characteristics between miRNAs and genes or mRNAs in 

contraposition with the expression of miRNAs. The latter is derived from the natural 

imperfect matching in the miRNAs of animals, in contrast to those found in plants. 
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CHAPTER 2  
Literature Review 

2.1 Introduction 

In this chapter, we introduce some basic concepts of genetics and bioinformatics. We further 

describe one-class unsupervised models, their characteristics, and differences from two-class 

models. Additionally, in the following chapters, we review several articles that describe the 

use of these one-class models to predict interactions between non-coding RNAs' and genes, 

viral RNA, and various diseases.   

2.2 Basics of Genetics and Bioinformatics 

This section describes some basic concepts on RNA, the definition of non-coding RNAs, and 

the description of a pair of relevant molecules in this classification, known as microRNAs 

(miRNAs) and long non-coding RNAs (lncRNAs). We also mention some bioinformatics 

algorithms designed to support in-silico computational experimentations, as an alternative to 

laboratory or wet-lab experiments. Of note, most of the material in Section 2.2 is based on the 

work of Hartl (2020), except where otherwise is indicated. 

2.2.1 Central Dogma 

The biological importance of the process of creation of proteins by genes in the human body 

is undeniable. This process, when altered, can lead to diverse diseases. However, even though 

the fabrication of proteins is controlled by information encoded within DNA, this control 

procedure is not direct and follows the Central Dogma rule. The Central Dogma refers to the 

fact that genetic information encoded in the DNA is not translated directly to proteins, but 

requires an intermediate molecule known as RNA (ribonucleic acid) to perform a 

transcription process. The RNA contains information encoded in nucleotides, which are 

conventionally denoted by four characters A, C, U, G (DNA has the same structure, except 

that the nucleotide U corresponds to a T base), and this simple semantic mapping suggests the 

basis for the field of computational genomics. A particular type of RNA known as messenger 

RNA (mRNA) transports DNA information to be used as a template to initiate the translation 

process. After the translation process takes place, a polypeptide chain of proteins is created, 

comprising three nucleotide base blocks known as codons. Of note, the DNA double helix 

contains two portions known as 3' to 5' and vice versa; RNA starts at the 3' portion when it 
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copies information from the DNA. This process of replicating DNA and subsequent 

transcription and translation into proteins by the mRNA and other RNA molecules involved 

seems like a straightforward procedure. However, in plants and animals, the silencing of 

protein production by some genes occurs due to the appearance of some unique RNAs called 

double-stranded RNA (dsRNA) in a process called RNA interference (RNAi). These types of 

RNA are called small interfering RNA (siRNA), and their function was long unknown, and 

they were even considered junk DNA. 

2.2.2 Basic sequence algorithms in Bioinformatics 

This study focuses on the extraction of features from the different peculiarities occurring in 

bindings between non-coding RNA and genes. Notably, this binding relates to the full or 

partial complementarity between these two genetic molecules' nucleotides when they match 

or bind together. For the purposes of this research, it is convenient to describe in more detail 

how a pairwise alignment between these molecules occurs, the energy released when this 

procedure takes place, and, finally, the concept of k-mers, a grouping of a certain number of 

nucleotide bases. 

a) Sequence Alignment Algorithms 

The similarities between a pair of genetic strands composed by different nucleotides or base 

pairs may be relevant to such investigations. One method used to determine this similarity is 

to compare both sequences with a scoring function. These functions consider a positive score 

for a match and a negative score for gaps that could be allowed to match pairs of nucleotides 

from both strands (Needleman, 1970). Usually, a couple of strands are put formulated into an 

array structure for computational processing. In such arrays, as an alternative to the use of 

indices, nucleotides can be recorded in each row and column index. For example, in Fig. 2.1, 

we show the pairing of two small DNA sequences. 
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Figure 2.1 Global alignment between a pair of sequences (based on Needleman, 1970). 

In Fig. 2.1, it can be noted that when a perfect match is obtained between a pair of 

nucleotides, such as A-A or C-C, a diagonal line is formed between them. The occurrence of 

gaps between a pair of sequences allows probable matchings when the alignment surpasses 

these gaps. For example, a pair of sequences, one being ACT and the other ACGT, we may 

obtain the following match. 

AC-T 

ACGT 

This alignment is represented by a vertical line in our graph because nucleotide G matches a 

gap represented by a dash. A similar situation can occur when a gap is present in the opposite 

sequence. Notably, each gap has a penalizing score which could be used to penalize large 

portions of gaps. Scoring in nucleotides could have a value of +1, indicating a match, or a 

value of -2 when a mismatch or gap occurs. However, in aligning a pair of protein strands 

composed by joining amino acids containing three nucleotides or codons, special matching 

matrices are used, such as the BLOSSUM 62 matrix. Finally, the alignment score is 
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calculated by backtracking the path of matches and mismatches and using dynamic 

programming (Pevsner, 2015). 

b) Binding and Minimum Free Energy 

RNA presents different organizations related to their internal composition. The easiest way to 

visualize an RNA strand of nucleotides is simply as a sequentially arranged string of 

nucleotide, e.g., 

5’AAUUGCGGGAAA...UUCA3’ 

This formation is known as the primary structure. However, an RNA strand can be 

represented in a secondary and tertiary formation, as depicted in Fig. 2.2. 

 

Figure 2.2 Secondary structure from the miRNA hsa-miR-1-5p (a) and the tertiary structure 

of the mammalian signal recognition particle (image a) generated with RNAFold Web Server 

and image (b) generated with RNA Composer). 

In Fig. 2.2 (a), we can observe the formation of a hairpin loop in the lower part of the strand 

and a complementary matching between nucleotide bases in the middle. Many methods have 

been developed to predict secondary structures based on the principle of thermodynamics. 

These thermodynamic principles state that these molecules are more stable when they present 

lower energy, which is related to the concept of minimum free energy (MFE). For example, 

Fig. 2.3 shows a secondary structure with some matchings and mismatchings. The energy of 
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the total model was calculated based on the energy of the adjacent or neighboring 

nucleotides. 

 

Figure 2.3 Prediction of the total free energy from an RNA sequence (based on Sloma et al. 

2020). 

As one can see in Fig. 2.3, those sites with matching have a negative value, while those that 

present a gap or have a loop present a positive score. This concept reinforces the idea that 

when the total summation of the numbers shown is more negative, the molecule is more 

stable (Sloma et al. 2020). This principle of energy-stability also applies when two molecules 

bind together when they are involved in the dimerization process. 

c) K-mers 

A k-mer is defined as a short substring of a predefined length; k simply denotes the number of 

nucleotides. For example, if we consider the following DNA string, 

AAACCTGGACCTT 

a 2-mer will be the joining of a pair of nucleotides that gives 

AA, AA, AC, CC, CT 

In this example, this study also considers another term called the sliding window, which 

refers to a process of traversing the DNA sequence by considering a single nucleotide at a 

time with a given quantity. The number of probable k-mers in a sequence is given by the 

formula 4𝑘, where k represents the number of mers considered. For example, a value of k=2 

implies 16 different combinations considering our four nucleotide bases; k=3 implies 64 



  © University of South Africa 

17 

 

different combinations, and so on. The use of k-mers has various applications in 

bioinformatics, such as in the reconstruction of sequences given these terms. However, one 

exciting application involves finding shared k-mers between a couple of genomes or 

nucleotide strands; this sharing could serve to find synteny blocks defined by similar genes in 

the same order in different genomes. This k-mer analysis can also be analyzed in 

complementary parts of different genomes (Compeau and Pevzner, 2015). It is useful to 

recall here that a complementary strand occurs when A binds to T, and C binds to G. 

2.2.3 Non-coding RNAs: miRNAs and lncRNAs 

Of note, a secondary structure called a stem-loop or hairpin loop is associated with the 

appearance of dsRNA. A stem-loop occurs when an mRNA folds, but it ends with some 

nucleotides become or remain unpaired, resulting in observable loop structures (Scitable, 

2014). This stem-loop structure usually contains mismatches that rise to miRNA molecules, 

which were first found in Caenorhabditis elegans nematode in the transcription process of a 

locus (position) lin-4 of these species (Lee, 1993). 

miRNAs are produced in the cytoplasm, and they use an enzyme that cleaves dsRNA in small 

single-stranded pieces and is called dicer. These chunks of 25 nucleotides are then aggregated 

into an RNA-induced silencing complex (RISC). The two strands generated by the dicer 

serve as a guiding RNA targeting the RNA by complementary base-pair. A complementary 

base-pair occurs as a matching between nucleotides in the pattern A-T, C-G; however, in 

RNA, the T base is replaced by a U base. The RISC complex components differ among 

species, but this difference occurs more frequently in a component called argonaute. 

Interestingly, following the formation of the RISC complex, the two molecules that appear, 

namely siRNA and miRNA, act differently. siRNA usually shows perfect or almost perfect 

complementarity with the target RNA; however, this is unlikely to occur with the miRNA. 

This is because the guide and target RNA originate from different parts of the genome. This 

characteristic allows multiple miRNAs to target multiple genes (Prosenjit et al., 2007). The 

RISC complex then attaches to the RNA, and in this process, it can destabilize the mRNA 

and inhibit mRNA translation. This effect on translation can result in the regulation of genes 

across different species. They are directly related to the cell formation process, which could 

directly influence diseases such as tumoral formations. 

Another group of molecules also influence gene expression, which are called long non-

coding RNAs (lncRNAs). These molecules are approximately 200 nucleotides long and are 
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RNA molecules that do not translate into proteins. The particular characteristic of these 

RNAs is that they originate near protein-coding genes; therefore, they could include 5' and 3' 

non-coding regions or even exons and introns. Some of these lncRNAs are degraded, but they 

can also affect gene regulation because of their abundance. In conclusion, molecules derived 

from RNA, such as miRNAs and lncRNAs, influence the normal functioning of a gene, and 

this intervention could lead to the development of different diseases. 

2.2.4 miRNAs and lncRNAs in disease scenarios 

In this section, we focus on describing the involvement of miRNAs and lncRNAs in certain 

diseases. For the purposes of this research, this study focuses on breast cancer scenarios and 

the SARS-CoV2 coronavirus. 

miRNAs can be involved in the occurrence of certain diseases, such as cancer. Chen et al. 

(2018) demonstrated that mir-25-3p was upregulated in cases of triple-negative breast cancer 

(TNBC), which is a form of breast cancer that presents in younger patients, and is associated 

with a less encouraging prognosis due to high metastasis rates (Gupta et al., 2019). In Loh et 

al. (2019), the author described a set of miRNAs named OncomiRs that suppress the 

expression of genes involved in tumor suppression in breast cancer scenarios, leading to 

breast tumorigenesis. Therefore, the importance of the study of miRNAs aids in the diagnosis 

of cancer scenarios, as they can be used as potential biomarkers and the prognosis of different 

types of cancer (Prosenjit et al., 2007). 

We have described cancer scenarios; tumors also occur which may not necessarily be 

malignant, which are known as neoplasm. For example, according to Coleman (2020), 

specific differences exist between neoplasms and cancers. This author defines a neoplasm as 

irregular growth that can occur in any tissue. However, Kinzler and Vogelstein (2002) 

differentiate it from cancer, stating that cancer is like an abnormal growth but is prone to 

affect surrounding tissues. It is valuable to note that there could also be benign and malignant 

tumors or neoplasms, and the latter are classified as cancer types (Coleman,2020). 

LncRNAs are a category of non-coding RNAs that also appear in breast cancer scenarios, for 

example, in the formation of metastasis in breast tissue by modifying the chromosome 

landscape. Another example will be the lncRNA HOTAIR that influences HOXD genes 

(Harries (2012)) in the case of tumor suppression, for instance, as it occurs in the presence of 

the Gas5 lncRNA (Wapinski and Chang, 2011) or in the expression that occurs in LSINCT5 
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(Harries, 2012). miRNAs also participate in breast cancer and metastasis scenarios, acting as 

tumors or oncogenes, as noted above. 

It has been demonstrated that miRNAs can also bind to other forms of mRNAs, such as 

viruses (Lamkiewicz et al., 2018; Trobaugh and Klimstra, 2017; Nersisyan et al., 2020), in 

which case the mRNA is from an endogenous RNA. Their function in viruses is the same as 

those found in humans and in plants in that they regulate the translation of proteins or even 

influence viral reproduction. The possibility of compatibility of human miRNA with viral 

RNA is relatively simple, owing principally to the fact that the miRNA cannot differentiate 

between species in this process (Nersisyan et al., 2020). Even though this scenario can occur, 

there is still no firm evidence that the mRNA from viruses could also produce miRNAs that 

could affect the host organism (Yousefi et al., 2020). Nevertheless, because of the current 

pandemic, there is great interest in identifying human miRNAs that bind to the SARS-CoV-2 

virus. The studies of these interventions help determine whether miRNAs could interfere with 

the viral RNA functions, for example, by stopping their replication into the human body or 

using them as potential biomarkers (Jafarinejad-Farsangi et al., 2020). 

2.3 One-Class models 

2.3.1 Isolation Forest 

The isolation forest is an anomaly detection technique proposed by Liu et al. (2008) based on 

the ensemble method known as random forest. It operates by dividing a subspace into regions 

on the hypothesis that outliers could be enclosed in regions that do not require splitting a 

decision tree into many partitions. The leaf's distance, in which the outlier is present, to the 

root serves as an outlier score (Aggarwal, 2017). 

2.3.2 One-class SVM 

The one-class SVM model was designed to perform, novelty detection with only one training 

class, as proposed by Schölkopf et al. (2001). It returns a value of +1 if the data are enclosed 

within a region, and -1 otherwise. This model generates a mapping using kernels to separate 

the data from the origin by a maximum margin (Schölkopf et al., 2001). In contrast, classic 

SVM models require at least two classes that could be separated by a decision boundary. By 

design, the data is not labeled, but it can be marked as positive or negative to support the 

application of metrics to assess the quality of our model. 
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The notion of kernels, as in SVM, is also applied to a one-class SVM to transform a set of 

data points to another dimension by using the kernel function. The decision boundary in this 

model is based on 

�̅�. Φ(�̅�) − 𝑏 = 0   (1) 

In Eq. 1 Φ(�̅�) corresponds to the transformation of �̅� into a higher-dimensional space, and b 

is a bias variable. We aim to formulate this as an optimization problem in which the value of 

�̅�. Φ(�̅�) − 𝑏 is positive for holding as many of the examples that belong to the N training 

set, because we believe that most of the samples will be enclosed in the positive class. 

Therefore, if we have the contrary case in which �̅�. Φ(�̅�) − 𝑏 is negative, we can apply a 

slack penalty of 𝑚𝑎𝑥{𝑏 − �̅�. Φ(�̅�). 0}. In this case, we are rewarding that the origin is 

farther away from the separating hyperplane. Considering the further necessity of a 

regularization term 
1

2
‖�̅�‖2 leads to the following objective function, given as Eq. 2. 

𝑀𝑖𝑛 𝐽 =
1

2
‖�̅�‖2 +

𝐶

𝑁
∑ 𝑚𝑎𝑥{𝑏 − �̅�. Φ(�̅�), 0} − 𝑏𝑁

𝑖=1     (2) 

2.4 Related studies 

The importance of the study of non-coding RNAs and their relation with diseases has been an 

active focus of study over the years. However, the undertaking of experiments made in-vitro 

has been replaced for their computational counterparts (Zheng et al., 2019). These 

computational experiments are diverse, ranging from the prediction of mRNA hairpin 

structures (Tran et al., 2008) to the prediction of diverse diseases such as leukemia or other 

forms of cancers like the ones mentioned in various studies (Spinosa and de Carvalho, 2004 

or Rehman et al., 2019, Loh et al., 2019; McAnena et al., 2019). In this field of genetics 

mixed with computing or Bioinformatics, the use of Machine Learning models has received 

particular importance. For example, Sedaghat et al. (2018) used supervised and unsupervised 

techniques for predicting miRNA and mRNA biding. However one problem, that occurs with 

most supervised techniques is that they need the presence of two or more classes; a situation 

that could lead to the appearance of imbalanced datasets due to the difficulty or scarcity to 

find samples from one of the opposite classes (Sedaghat et al., 2018; Irigoien et al., 2014). 

Even though this problem with the data could occur, unsupervised techniques or models that 

use only one class to discriminate their components into what we could call opposite classes 

have found their niche for dealing with this problem of imbalanced data (Yousef et al. 2008; 

2010). The data extracted and used as features for these ML models are mostly related to 
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gene expression between miRNAs and genes; however, some studies have considered the 

extraction of information from the binding of genetic sequences analyzing a specific number 

of nucleotides bound known as k-mers. Some early studies showed the possibility of studying 

this k-mer complementarity between these genetic components, for example, in plants. This 

particular characteristic was due to their binding of these genetic sequences presenting a good 

complementarity (Zhang et al., 2020); or using these features with CNN like Wen et al. 

(2019). 

Concerning the study of miRNA and their interaction with diseases, such as some forms of 

cancer, it is worthy of mentioning that these are not the only non-coding RNA considered. 

For instance, other forms like lncRNAs can also be studied. For example, Guo et al. (2019) 

applied kernel profile techniques with autoencoders and a random forest to predict the 

relationship between lncRNAs and colorectal cancer. The relationship between lncRNA and 

mRNA and their association with different species like humans, mice, and chickens using k-

mers frequency analysis with CNN model was also considered Wen et al. (2019). 

The study of miRNA and other forms of RNA interactions, like those found in viral forms, 

has also been an exciting part of research in later years. Some authors like Lamkiewicz, 2018; 

Trobaugh, 2017; Nersisyan et al., 2020 demonstrated that the human miRNA could also bind 

to viral RNA. This exciting feature is due that miRNA is not able to differentiate between the 

host mRNA or viral mRNA (Nersisyan et al., 2020). These studies could be rather interesting 

because some researchers like Jafarinejad-Farsangi et al. 2020 mentioned that miRNAs could 

be used as biomarkers for several diseases, bringing novel genetic treatments for diverse 

diseases. 

2.5 Summary 

This chapter has reviewed some basic biology germane to the following chapters. We have 

also described some characteristics of the one-class methods used. Additionally, we gave a 

brief review of the bioinformatics algorithms utilized for extracting features from our datasets 

to be used in our supervised two classes and one-class models. 
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CHAPTER 3  
Research Methodology 

3.1 Introduction 

This chapter describes the general methodology adopted in Chapters 4 to 6. For details of the 

exact methodology followed for each deliverable of the current thesis, the reader is suggested 

to visit the chapters mentioned above. Various non-coding databases were used to extract 

features based on their nucleotide characteristics with a focus on miRNAs and lncRNAs. 

Additionally, this study also extracted information related to genes involved in 

immunological processes in the human body and genes present in diseases such as breast 

cancer, neoplasms, and viral diseases such as the SARS-CoV-2. 

3.2 Methodology 

Our experimental research procedure is illustrated in Figure 3.1: 

 

Figure 3.1 Proposed methodology 

In general, we extracted information on the non-coding RNAs, lncRNAs, and miRNAs 

related to their sequence and ID name or alias. We also obtained information on genes 

associated with the entire course of breast cancer, viral forms of mRNA, and genes involved 

in the human body's immune processes. With these two types of information, this study 

predicted or validated the possibility of binding between non-coding RNAs and these genes. 

This information served as input for our machine-learning models. These machine-learning 

models need to pre-process the information that serves as their input, a process known as 

feature engineering. Regarding this process, we used bioinformatics algorithms to extract 
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information occurring when there is a binding or coupling between these non-coding RNAs 

and the genes considered in the experiments. These algorithms are focused, generally, on 

obtaining sequence alignments between miRNAs, lncRNAs, and genes, and the MFE 

occurring in the formation of the secondary structure of RNAs binding of these molecules. 

Considering the feature extraction used for each of the models presented in Chapters 4 and 6, 

the procedure we made was to extract the features from each dataset containing information 

about the miRNAs and then match this information to the genes related to these miRNAs. 

The same procedure was applied to match diseases and genes or miRNAs involved. The 

attributes selected were numerical primarily, so there was no need to apply transformations 

from categorical data, such as the use of one-hot-encoding or similar techniques. However, 

we applied the min-max regularization technique to ensure that our numeric data was within a 

specific range between 0 and 1. Additionally, when we needed a two-class model, and for 

labeling purposes, we chose those non-coding interactions with genes or mRNA that have a 

strong interaction backed up by experimental or literature support. For the opposite class 

were those that have predicted interactions or were non-supported by the literature ones. The 

specific details for extracting these features are described in Chapters 4 to 6. 

This study used a one-class SVM and isolation forest to detect the existence of outliers in our 

data, which is also known as novelty detection of interesting bindings between non-coding 

RNAs and genes. These binds are important because they allowed us to hypothesize their 

relationship in the outcome or prognosis of breast cancer, breast neoplasms, or binding to the 

SARS-CoV-2 RNA gene. We aimed at using machine learning supervised learning models 

such as SVM and random forest. Also. we applied the grid search algorithm for tuning the 

hyperparameters of the different models and used cross-validation or modification of this 

algorithm to obtain the necessary metrics to evaluate our models. Accuracy and F1-score 

metrics were employed, along with a schema of scoring based on weights to compensate for 

the possibility of data imbalance. 

3.3 Software tools and Databases used 

The databases used are described in Chapters four to six in detail. We used the software tools 

Python, BioPython, and the Vienna package to extract RNA energy values from their binding 

and secondary structure. 

3.3.1 Brief description of the databases used 



  © University of South Africa 

24 

 

a) MirWalk 

It is a database that uses the Watson-Crick complementarity between genetic sequences to 

find probable binding between miRNAs and a specific gene (Dweep et al., 2011; 2013)  

b) miRTargetLink 

It provides a star-type graph showing a list of miRNAs and their relationship with specific 

genes. Their results are validated by experimental means or prediction techniques (Hamberg 

et al., 2016). 

c) lncRNASNP2 

This dataset contains information about lncRNA relationships with diseases. The information 

found in this dataset is backed up by experiments and publications (Miao et al., 2018). 

d) NCBI FASTA sequences 

For gathering information about the SARS-CoV-2 Genome (Severe acute respiratory 

syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome, 2020), we have used the 

data available at NCBI with accession number obtained from GenBank. 

e) miRbase 

This dataset contains information about miRNAs found in different species, but we had 

concentrated our interest in human miRNA (Kozomara, 2014). 

f) InnateDB 

We needed to obtain a list of genes involved in immune processes in the human body, and 

this data was gathered from the InnateDB (Breuer et al., 2013). 

3.3.2 Brief description of the software used 

a) BioPython 

Biopython is a set of libraries that can be used under Python to manipulate genomic 

sequences, allow sequence alignment via different algorithms, and interact with other genetic 

databases (Cock et al., 2009). It is valuable to mention that many of the processes we have 

made in the present study using this package could have been done from scratch. 

Additionally, we chose Python because of its easiness to manipulate string sequences, 
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considering that genetic sequences could be seen as a string formed of nucleotides; other 

tools like R might also be used. 

b) Vienna package 

The Vienna package (Hofacker, 2003) is a set of libraries programmed in C that helps predict 

RNA molecule's secondary structure. Even though this package is oriented to C, it could be 

easily imported to work with Python. From this package, we were interested in the use of two 

libraries called RNAfold and RNAcofold functions. The RNAfold function yields the MFE 

associated with the formation of a secondary structure by RNA. The RNAcofold also 

calculates this energy when dimerization occurs; this process appears when two genetic 

molecules bind together but with a greater degree of binding affinity. 

3.4 Summary 

This brief chapter provides valuable information on our general methodology and tools used 

in developing current research described in the following chapters. To avoid redundancy, 

detailed information considering the databases used and the different modifications applied to 

the data or model are described with sufficient detail in Chapters 4-6. 
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CHAPTER 4  
One-class models for validation of 

miRNAs and the ERBB2 gene 
interaction by using sequence features 

4.1 Introduction 

In past years, researchers discovered the capability of predicting miRNAs and gene 

interactions by grouping miRNAs that promote or decrease gene expression (Yousef et al., 

2010). These computer models require less time and resources than their in vitro counterparts 

(Zheng et al., 2019)., but the well-known no-free-lunch theorem also applies here. In order to 

train a model for classification, certain methods, such as supervised learning, require labeled 

data to distinguish if a sample belongs to a particular class. Several authors have pointed out 

this problematic situation in the analysis of miRNA and mRNA interactions (Tran et al., 

2008; (Sedaghat et al., 2018; Yousef et al., 2008; 2010). Similarly, contexts involving a 

limited set of interaction samples or the presence of some weak or unrepresentative 

interactions could result in heavily unbalanced data. 

The challenge of predicting miRNA hairpins from mRNA hairpin topologies was described 

by Tran et al. (2008). MiRNA hairpins with lengths ranging from 21 to 25 nucleotides can 

theoretically be made from RNA hairpins with sizes of 60 to 90 nucleotides. In this particular 

instance, the difficulty is that the available dataset of miRNA hairpins was somewhat small. 

For this reason, using a two-class classifier was not possible, whereas the use of one-class 

model was. In summary, there were two major issues: first, obtaining labeled data was 

complex due to a lack of validated or weak miRNA-mRNA interactions datasets. Second, 

such datasets may be imbalanced. In either case, some limiting factors are evident in the 

straightforward application of supervised classifier models. 

One-class classification or novelty detection refers to the development of computer models 

designed to find evidence of the presence of a given class in a single set of data. In the study 

of Spinosa and de Carvalho (2004) they pointed out the utility of using this type of anomaly 

detection in bioinformatics. Specifically, the authors used a one-class SVM for recognizing 

ALL-B leukemia samples in a dataset that included specimens from different types of the 

disease, including ALL-T and AML. The dataset they selected contained only a small number 
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of records, ranging from 17 to 27 or 30 registers per leukemia class; however, it had many 

attributes, with roughly 7000 features in all. The accuracy for each dataset differed because 

the authors employed diverse hyperparameter tuning for their different models. According to 

their findings, the AML type attained an accuracy of roughly 85% for the ordinary class, and 

60% for the class containing the majority of outliers. 

Yousef et al. (2008; 2010) used different models based on one-class algorithms to predict the 

existence of miRNAs by using the secondary structure or sequence information as 

features from these molecules. The authors advocated for the adoption of a one-class model 

since obtaining negative data based on the positive miRNA class is typically a complex and 

biased operation. To validate their proposal, they predicted a set of miRNAs linked to the 

Epstein-Barr virus. They found sensitivity values of 72% and specificity values of 99% when 

employing secondary structure characteristics in human data in conjunction with a one-class 

SVM. However, the study does not explicitly mention hyperparameter tuning. 

Rehman et al. (2019) used machine-learning classifiers to validate miRNAs associated in 

breast cancer. The dataset utilized in this work was obtained from the National Cancer 

Institute's Genomic Data Commons Data Portal (Jensen et al., 2017), which comprised 

samples from 1207 individuals with 1881 miRNA attributes. The samples included 1103 

tumoral samples, 104 healthy samples and seven metastatic samples. This study showed an 

imbalance between the number of patient records and features, with the former being 

underrepresented. For this reason, the authors advocated using feature selection techniques 

such information gain, chi-squared, or least absolute shrinkage and selection operator 

(LASSO) to choose the most relevant miRNAs for use as features in SVMs and random 

forest classifiers (Rehman et al., 2019). 

Two significant approaches have been pursued in the study of miRNA and mRNA 

interactions, one relating the study of the characteristics of the part of the sequences involved 

in the binding, such as accessibility, evolutionary conservation data or pairing sites. A second 

strategy takes into account the negative association between miRNA and mRNA expression 

levels (Pham et al., 2019). In this part of our research, we adopted a sequence-based 

technique. 

Concerning the use of validation of miRNAs and mRNAs in cancer scenarios by using 

features obtained from the sequence interactions reactions, we found no research work 

focusing on this scenario using unsupervised models, other than the studies of Yousef et al. 
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(2008; 2010). We note that whereas Sedaghat et al. (2018) suggested a combination of 

supervised and unsupervised strategies for miRNA target prediction, the findings obtained 

favored SVM-supervised binary classifiers. We believe that unsupervised techniques could 

discover interesting reactions between miRNAs and cancer genes, which might be 

inadvertently missed using supervised techniques. Additionally, a drawback in the study of 

genes and miRNA interactions involves the complexity of obtaining samples from the 

positive (or negative) category in the right amount (Sedaghat et al., 2018; Irigoien et al., 

2014), even with the possibility of resulting in an imbalanced dataset categorization situation, 

these scenarios complicate the deployment of supervised models with two or more classes. 

Regarding our one-class model categorization, we used two well-known techniques: isolation 

forest and one-class SVM. Concerning the sequence features of miRNA and gene interactions 

found in these relationships, we used the data from mirWalk, as opposed to Tran et al. (2008), 

Sedaghat et al. (2018), Yousef et al. (2008), and Yousef et al. (2010) that used gene 

expression measurements, which may result in unbalanced data. MirWalk was discovered to 

be based on data derived from the sequence-based mechanism that occurs during miRNA 

interactions. However, the dataset must be processed to obtain a subset of the negative or 

opposite classes. This manipulation will allow us to use metrics such as precision or 

specificity to validate our models. We decided to test our approach by considering the 

interactions between a gene of interest and miRNAs that present weak or do not have 

literature support evidence for obtaining the opposite class needed. The chosen miRNAs 

interact with the ERBB2 gene, whose expression can contribute to breast cancer, and are 

validated utilizing miRNA-gene interaction instruments like mirTargetLink (Hamberg et al., 

2016). 

4.2 Background 

4.2.1 miRNA and mRNA interaction 

Multiple miRNAs have been observed for diverse mRNA targets and vice versa (Loh et al., 

2019). The biogenesis process of miRNAs starts with the formation of a molecule known as 

pri-miRNA, which, by the action of the nuclear RNASE III Drosha, it cleaves the primiRNA 

to form a hairpin-shape-based pre-miRNA (Han, 2004), also known as a precursor miRNA 

(Loh et al., 2019). This pre-miRNA is transported to the cytoplasm and is affected by the 

Dicer and TRBP complex to form a mature miRNA duplex. This miRNA duplex is placed on 

an Argonaute (AGO) protein with an RISC, which unwinds the miRNA duplex into two 
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miRNA strands, one named mature miRNA and the other as a passenger strand (Loh et al., 

2019). The process of binding of the mature miRNA and mRNA can affect the translation of 

mRNA or induce its degradation (Loh et al., 2019; Sarshad et al., 2018). 

4.2.2 miRNAs in Breast Cancer 

The role of miRNAs in breast cancer scenarios is undeniable, being present in the appearance 

of tumoral masses or even helping to predict the prognosis in some scenarios (López-

Camarillo and Marchat, 2013). By interacting with specific genes, miRNAs can increase or 

decrease their gene regulation (Negrini and Calin, 2008) or even degrade them (Bartel, 2004; 

Loh et al., 2019; López-Camarillo and Marchat, 2013; Negrini and Calin, 2008). This 

abnormal situation could result in the formation of oncogenes or tumor suppressor genes in 

diseases such as breast cancer (Loh et al., 2019; Negrini and Calin, 2008). An oncogene is a 

mutated gene that could be involved in abnormal cell growth that could lead to cancer 

prognosis, while a tumor suppressor gene restrains a specific protein that acts inversely as an 

oncogene, which is why they are called antioncogenes (NCI, 2020). In breast cancer, 

miRNAs can act as oncogenic miRNAs (oncomiRNAs), which are usually upregulated in 

these scenarios by suppressing tumor suppressor genes. While tumor suppressor miRNAs 

(tsmiRs) act as inhibitors of oncogenes being downregulated, they could lead to a breast 

malignancy scenario (Loh et al., 2019). For example, miRNA-331 interacts with ERBB2 or 

HER2 gene by promoting the metastasis in breast cancer patients (Loh et al., 2019; McAnena 

et al., 2019), miR-124a and miR-26b interact with SerpinB2 (Loh et al., 2019) which, 

according to the data mining from literature online resource knowns as Diseases (Pletscher-

Frankild et al., 2015), this gene is involved in breast cancer scenarios as an anti-metastasis 

agent. 

In this part of our research, we focus on a subset of miRNAs that interact with HER/ERBB2 

genes. These genes are among the molecular subtypes of breast cancer, accounting for 

approximately 15% to 20% of all active cases (Sareyeldin et al., 2019). The importance of 

this subtype is its notable aggressiveness. Additionally, the miRNAs could act as a promising 

biomarker in focused gene therapy, especially in HER2-positive breast cancers (Sareyeldin et 

al., 2019). HER2 interacts with the ERBB2 gene, as the latter is the target of trastuzumab 

medical treatment (Patel et al., 2020) in HER2-positive breast cancer cases. 

4.2.3 Databases related to miRNA, mRNA, and disease interactions 
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a) MirWalk 

According to (Dweep et al., 2011; 2013), the mirWalk algorithm as a predictor uses the 

Watson-Crick complementarity to find probable binding sites between miRNAs and a target 

gene. This search starts from a heptameter (seven nucleotides) from positions marked as 1 or 

2, a section known as seed value in the miRNA, and extends the search until a mismatch is 

found. The binding sites found are marked with start and end indicators, along with the 

region in which it occurs. The region or promoter region could be the 5'-UTR, the 3'-UTR, or 

the CDS or coding sequence region. MirWalk (MirWalk, 2020) uses TarPMir (Ding et al., 

2016) as a prediction tool by using a random forest model to determine the probable binding 

sites. Some of the features used by mirWalk are briefly described in Table 1 and can be found 

in the article by (Ding et al., 2016). 

b) miRTargetLink 

miRTargetLink (Hamberg et al., 2016) is an online tool that allows the retrieval of a list of 

miRNAs with a relationship with a specified gene. Their output consists of a star-type graph 

that provides information about strong, weak, or predicted interactions. Strong interactions 

are those that have validated experimental results using, for example, the luciferase assay. 

Those with weakly validated results used microarray analysis techniques, and the predicted 

interactions were retrieved by querying databases such as miRanda. For our research, we 

selected a subset of strong and weak interactions given by miRTargetLink (Hamberg et al., 

2016), as shown in Figure 4.1. These data will become the input for the one-class SVM 

classifier to detect novelties or outliers in a training set (strongly validated interactions) and a 

test set (weakly validated interactions). 
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Figure 4.1 miRNA validated strong interactions with the ERBB2 gene obtained by 

performing a search query in miRTargetLink (Hamberg et al., 2016) 

4.3 Methodology 

Our methodology consists of two main parts. First, we extracted the miRNA-mRNA 

sequence binding characteristics of mirWalk (mirWalk, 2020). In the second step, we 

gathered a set of miRNAs that interacted with the ERBB2 gene, a list obtained from 

miRTargetLink (Hamberg et al., 2016). From these samples, we extracted some of them to 

form part of a minor validation subset that would work as a negative class. This negative 

class contains weak or no interactions, as validated in the literature. Hereafter, a more refined 

description of the steps is as follows: 

a) Select a tuple of genes and miRNAs that, by being the gene expression upregulated or 

downregulated by an miRNA's interaction, could result in a probable cancerous state. For our 

proof of concept, we chose the ERBB2 gene.  

b) The list of gene-miRNA interactions is divided into strong and weak interactions. We will 

obtain this information from databases such as mirWalk (2020) and validate them via a 

literature review.  

c) We divided our dataset into two subsets, one containing strong and validated interactions 

between the ERBB2 gene and miRNA, and the other containing weak interactions or those 

not validated by the literature. Afterward, we will use the necessary metrics for validating 

these interactions, such as sensitivity and specificity.  
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d) To determine the presence of outliers in our dataset, we used an isolation forest model. 

These outliers would represent components with weak interactions. The procedure (c) and the 

application of the isolation forest model enabled us to acquire the metrics necessary to 

evaluate this initial model.  

e) We applied a one-class SVM classifier on the two datasets acquired in step c) to verify for 

the occurrence of outliers. These outliers were interpreted as weak interactions between the 

gene and miRNAs. We will compare the results produced from both models, one-class SVM 

and isolation forest, utilizing a confusion matrix and obtaining their respective metrics such 

as accuracy, sensitivity, specificity, and F1-score.  

Of note both one-class models are fitted to the training and test datasets from step c). We 

hypothesize that the first dataset, which contains strong interactions, should have few 

outliers, but the second dataset, which includes weak interactions, should contain more than 

half of the outliers. We corroborate our findings by examining a confusion matrix with its 

accuracy, recall, precision, and F1-score metrics and by analyzing some of the outliers 

identified throughout a review of the actual literature (Gutiérrez-Cárdenas and Wang, 2021a). 

4.3.1 Extraction of data categorization of samples 

For our experimental procedures, we used data downloaded from the mirWalk (2020) 

webpage. The mirWalk dataset contains miRNA and gene interactions predicted and 

validated by wet-lab experiments. The data records are in CSV format, and it gives us a set of 

attributes that we describe in Table 4.1, and is based on the articles of Stitch et al. (2018) and 

Dweep et al. (2011, 2013, 2014): 

Table 4.1 Features present in mirWalk (mirWalk, 2020) for miRNA and gene interactions. 

Attribute Name Description 

mirnaid Contains the id number of a selected miRNA. 

refseqid Identification number that points to the NCBI reference 

sequence database. 

genesymbol Human gene symbol. 

start Start binding position. It considers heptamer sequences 
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(seven nucleotides or longer) using the Watson-Crick 

complementarity. 

end End binding position. 

bindingp Indicates the binding probability. Higher values should be 

considered as the best ones. This p-value is obtained from 

the application of the random forest model by TarPmirR 

(Ding et al., 2016). 

energy Usually, energy should be considered the MFE related to the 

free energy that arises in the processes of formation of the 

secondary structure of RNA molecules (Einert and Netz, 

2011; Kertesz et al., 2007). However, according to Dweep et 

al., (2013), other algorithms for measuring the free energy 

have been considered, but they are not mentioned in the 

work. 

seed Corresponds to the position of region 1 or 2 in which a 

heptamer is found. It has a value of 1 or 0 depending on if 

there was a pairing between nucleotides 2 or 7 of the 

miRNA (Ding et al., 2016). 

accessibility Energy measure that quantifies how much an mRNA 

sequence is open to pairing with a miRNA (Kertesz et al., 

2007). 

au Denotes the Adenylate/Uridylate rich elements (ARES), 

which are found in the untranslated region of the mRNAs 

responsible for coding proto-oncogenes and cytokines, 

among other factors (Chyi-Ying and Ann-Bin, 1995). 

Importantly, mammalian miRNAs pair to the 3' of the UTR 

and that the functional sites are embedded or flanked in AU 

high enriched sites Grimson et al. (2007). Contains the 

transcript of 30 nucleotides (NT) in the upstream and 

downstream within the prediction site (mirWalk, 2020). 
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phylopstem This feature refers to the stem-loop or hairpin loop (Ding et 

al., 2016). The hairpin stem presents preserved or conserved 

regions that are found in paired sites (Mohammed et al., 

2013). 

phylopflank This flanking conservation is the average phylop obtained in 

both 40 nt upstream and downstream in the binding site. It 

seems that is calculated by the Phast software 

(http://compgen.cshl.edu/phast/) and it looks for preserved 

or syntenic sites (Ohler, 2004; Grimson et al., 2007). 

me This feature measures the probability of pairing along 

different positions of miRNA. Its name derives from match 

(m) and else (e) (Ding et al., 2016). 

number_of_pairings Number of paired positions in the 3' end (Ding et al., 2016). 

binding_region_length Longitude where the binding of the miRNA and mRNA 

occurs. 

longest_consecutive_pairings By TarPMir convention, provides the longest consecutive 

pairs allowing only two mismatches at the end of the 5' 

region (Ding et al., 2016). 

position The position of the longest consecutive pairs (Ding et al., 

2016). The values could be CDS (Coding sequence), 3 UTR 

(Untranslated region) or 5 UTR. 

validated Contains all valid interactions in mirTarBase (Huang, H; et 

al., 2019). 

TargetScan Provides information if the miRNA and mRNA interaction 

is available in the TargetScan database (Agarwal, 2015).  

miRDB Provides information if the miRNA and mRNA interaction 

is available in the mirDB database (Chen and Wang, 2020). 
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As shown in Table 4.1, mirWalk provides various useful features regarding validated and 

predicted miRNA and gene interactions. Most of these features were extracted from the 

TarPmirR software (Ding et al., 2016), but we also found additional bibliographic material 

for describing each feature more accurately. 

For the gene to be the subject of our study, we chose ERBB2. In terms of miRNAs 

interacting with ERBB2, we retrieved a list of miRNAs with weak or strong evidence for 

interaction and predicted them from miRTargetLink Human (Hamberg et al., 2016). We 

focused only on interactions that present strong and weak support for our proof of concept. In 

certain situations, we could not locate miRNA and gene interactions due to the absence of the 

gene name ERBB2 in the file. In this situation, we used the GeneCards database to look up 

the ERBB2 gene's aliases (Stelzer et al., 2016). Table 4.2 shows the complete list of miRNAs 

and their evidence support type (according to Hamberg et al. (2016)), gene name or alias, and 

literature reference pointing to their association with the gene of interest. 

Table 4.2 miRNA-ERBB2 interactions according to miRTargetLink (Hamberg et al., 2016). 

miRNA Gene Evidence miRNA Gene Evidence 

hsa-miR-125a-

5p 

ERBB2 Strong (Vo et 

al., 2019), 

(Ninio-Many 

et al., 2020) 

hsa-miR-124-

3p 

ERBB

2 

Weak(Wang et 

al., 2016) 

hsa-miR-

125b-5p 

ERBB2 Strong 

(Ferracin et al., 

2013) 

hsa-miR-326 ERBB

2 

NA(Ghaemi et al., 

2019) 

hsa-miR-134-

5p 

ERBB2 Strong(Pan et 

al., 2017) 

hsa-miR-4326 ERBB

2 

Weak (Martinez-

Gutierrez et al., 

2020) 

hsa-miR-193a-

5p 

ERBB2 Strong(Xie et 

al., 2017) 

hsa-miR-670-

3p 

ERBB

2 

NA 

hsa-miR-

199b-5p 

NEU1 Strong(Fang et 

al., 2013) 

hsa-miR-6739-

3p 

ERBB

2 

Weak 
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hsa-miR-205-

5p 

ERBB2 Strong(De 

Cola et al., 

2015) 

   

hsa-miR-25-

3p 

ERBB2 Strong(Chen 

H. et al., 2018) 

   

hsa-miR-

323b-5p 

ERBB2 Strong(Sugita 

et al., 2019) 

   

hsa-miR-331-

3p 

NEU1 Strong(Zhao et 

al., 2016) 

   

hsa-miR-375-

3p 

ERBB2 Strong(Shen et 

al., 2014) 

   

hsa-miR-375-

5p 

ERBB2 Strong(Shen et 

al., 2014) 

   

hsa-miR-498-

3p 

ERBB2 Strong(Matam

ala et al., 

2016) 

   

hsa-miR-498-

5p 

ERBB2 Strong(Matam

ala et al., 

2016) 

   

hsa-miR-541-

3p 

ERBB2 Strong(Sareyel

din et al., 

2019) 

   

hsa-miR-552-

3p 

ERBB2 Strong(Penyig

e et al., 2019) 

   

 

We analyzed the presence of outliers in our dataset by using a boxplot diagram, and we used 

an isolation forest model and a one-class SVM to corroborate the presence of these outliers. 

These miRNA and gene interactions with weak evidence would be deemed our subset of 
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fabricated data, which is similar in concept to producing elements to create a second class for 

validation purposes in this type of one-class model. 

Considering the features shown in Table 4.1, we chose to focus on quantitative characteristics 

and to eliminate those that were irrelevant. The features not selected included the following: 

mirnaid, genesymbol refseqid, seed (because they were all set to 1), position, validated, 

TargetScan, and miRDB. We performed our experimental procedure by using all the 

remaining features as mentioned in the work of Yousef et al. (2008, 2010). For 

standardization purposes, we utilized a standard scaler that is comparable to z-score 

normalization with zero degrees of freedom. 

4.3.2 One-class model application and hyperparameter tuning 

First, we used the isolation forest model to check for outliers. The hyperparameter tuning 

metric was the weighted F1-score. The list of tested hyperparameters is given below. 

Table 4.3 List of values that has been tested as the hyperparameters of the isolation forest 

model. 

Hyperparameter Values 

Number of trees List from 10 to 100 trees in intervals of 20 elements 

Number of 

features 

List that ranges from selecting the 10% of features until all of them. 

Number of 

samples 

Only available when bootstrap is set to True, we set it up to one third of 

the available samples 

Bootstrap True or False 

Contamination 30% of outliers approximately 

 

After testing the above hyperparameters, we ended up with the following best results: number 

of trees equal to 20, number of features selected 70%, number of samples 30, use of bootstrap 

set to True, and the contamination level in 30%; we knew this was close to the number of 

miRNA-ERBB2 interactions with weak support verified from the literature. 
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In the same way, we tuned the hyperparameters for our one-class SVM model by using the 

grid search algorithm with a cross-validation of ten folds. The values for testing the best 

combinations are listed in Table 4.4. 

Table 4.4 List of hyperparameters used for the One Class SVM. 

Hyperparameter Probable values 

Kernel Polynomial, Radial Basis Function, Sigmoid 

𝝂 A list with values from 0 to 1 divided in 99 parts 

𝜸 A list with values: 1e-1, 1e-2, 1e-3, 1e-4,1e1,1e2,1e3 

degrees A list with values from 1 to 6 

 

Prior to employing the grid search algorithm, we made two further adjustments. To begin, we 

labeled our training and testing sets' outputs to fit our model. As a result, we assigned a value 

of +1 to samples with a confirmed strong miRNA-gene interaction and a value of -1 to 

samples with a verified weak interaction. This decision is somewhat debatable because we 

dealt with an unsupervised model, but it is a technique used to validate a one-class model's 

results. Without losing generality, this experiment considered only one class, which 

corresponds to miRNA interactions with the ERBB2 gene, some with strong and others with 

weak evidentiary support, but all the samples belonging to one class. The second 

modification we made was to choose an adequate metric for the scoring function of the grid 

search algorithm. We were unable to use accuracy or precision in this situation due to the 

unsupervised nature of the model, so we selected a model based on the F1-score related to 

recall and precision metrics and a weighted average of the results obtained from each cross-

validation output. We utilized the F1-score (Aggarwal, 2017) as the scoring function for our 

grid search method because it is well-suited when there is the presence of imbalanced data for 

binary classification. Specifically, we calculated the weighted average of the F1-score, which 

will help us in the case of imbalanced data by assigning more weight to the class with more 

elements. After applying the Grid Search algorithm we found that the best hyperparameters 

were to choose an RBF kernel with a Ν value of 0.17163 and a γ value of 0.1. Of note, in the 

second round of grid search evaluation, we decided to drop the polynomial kernel with their 

respective degrees of hyperparameters because this model only performed with good results 
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in the test set, but when tested in the training set, the average accuracy metrics was 

approximately 60%. We hypothesize that this is because an RBF kernel outperforms a 

polynomial kernel in these situations. A summary of the selected hyperparameters is 

presented in Table 4.5. 

Table 4.5 Selected Hyperparameters for the Isolation forest and One Class SVM. 

Hyperparameter Isolation Forest One Class SVM 

Number of estimators 20 Not applicable 

Number of attributes 70 % Not applicable 

Number of samples 30 Not applicable 

Bootstrap True Not applicable 

Contamination factor True Not applicable 

Kernel Not applicable RBF 

𝝂 Not applicable 0.171630 

𝜸 Not applicable 0.10 

 

Finally, we separated our dataset into two parts: a training set of 123 miRNA-gene 

interactions and a testing set of 37 interactions, considering that we would apply the whole 

dataset to the one-class SVM model. However, we wanted to test our data separately to see 

how it performed with a subset containing only strongly support interactions (training set), 

and then fit this model to weakly supported interactions (test set). For this purposes, first, we 

applied the one-class SVM to the dataset that contained only the training set to learn to detect 

anomalous data therein, and then subsequently trained our model with a subset of the normal 

(strong interactions) dataset, approximately 70% of the samples of all the data, and then fitted 

this model to the test set. This procedure allowed us to obtain a confusion matrix for 

validation purposes and to calculate the accuracy of our model. 

4.4 Results  

4.4.1 Exploratory analysis 
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Before applying our one-class SVM model, we decided to visualize the selected features 

available from mirWalk to detect the presence of outliers in our data via a boxplot diagram 

(see Figure 4.2). 

 



  © University of South Africa 

41 

 

 

Figure 4.2 Boxplot (a) and correlation plot (b) of a subset of the features selected from the 

miRNA and ERBB2 gene interactions. 

Figure 4.2(a) shows the presence of outliers in a subset of the features of strong and weak 

evidence support. These outliers can be found in the samples that present weak support, for 

example, accessibility, au, phylopflank, and me. We also found outliers in those samples that 

present strong support in miRNA and gene interaction, and we observed them in the au, 

phylopstem, and me, to cite a few. These results are depicted in the correlation plot in Figure 

4.2 (b). The descriptions of these features are presented in Table 1. 

4.4.2 Comparison of isolation forest vs one-class SVM 
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We applied our one-class model to the dataset. First, we tested the isolation forest with the 

hyperparameters selected and described in Table 4.5, and then we proceeded to test the one-

class SVM and performed a comparison between both models by considering the confusion 

matrices obtained from both models (see Tables 4.6 and 4.7). Additionally, we performed a 

comparison test using metrics such as accuracy, sensitivity, specificity, and F1-score. 

Table 4.6 Confusion matrix of the Isolation Forest modified version. 

 True Positive True Negative 

Predicted Positive 87 18 

Predicted Negative 36 19 

 

Table 4.7 Confusion matrix of the One Class SVM modified version. 

 True Positive True Negative 

Predicted Positive 99 5 

Predicted Negative 24 32 

 

For the interpretation of the confusion matrix in Tables 4.6 and 4.7, we determined that the 

true positives are those miRNAs that we found belong to the class of miRNAs that interact 

precisely with the ERBB2 gene, remembering that we are dealing with an unsupervised 

classification. In contrast, the True Negatives reflect those miRNAs with no strong evidence 

of their miRNA and ERBB2 interactions. The metrics used for assessing both models 

included accuracy, a sensitivity (true positive rate or recall) of 80.49%, specificity (true 

negative rate), and F1-score (see Table 4.8). We believe that using accuracy as the primary 

parameter for comparing these models is misleading, as the percentage of true positives and 

false negatives should be considered in medical systems for obvious reasons. Furthermore, in 

this research, the F1-score, which is the harmonic mean between precision and recall (NCI, 

2020), is a metric that is appropriate in cases when we can have the presence of an 

imbalanced dataset. By comparing our two one-class models, we found that the one-class 

SVM ruled the Isolation Forest in terms of sensitivity and specificity, which are essential 
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measures for considering whether a person could have a medical condition and, in this case, a 

breast cancer. 

Table 4.8 Isolation Forest with One Class SVM metrics. 

Model Accuracy Sensitivity Specificity F1-Score 

Isolation 

Forest 

66.251% 70.730% 51.352% 76.320% 

One-class 

SVM 

81.882% 80.490% 86.491% 87.220% 

 

4.5 Discussion 

In this part of our research, we used a one-class SVM to find miRNA and ERBB2 gene 

interactions when there is the presence of only a sole set of data to extract these relationships, 

and when it is unfeasible to find another subset that could serve as a second class as input for 

supervised classifiers. Our method obtained a subset of genes that, by being treated as 

outliers, allowed us to determine which miRNA interactions have an insignificant 

relationship with an oncogene, for example, in breast cancer scenarios. We were unable to 

uncover literature evidence of applying one-class classifiers to examine miRNA and gene 

interactions using features of the miRNA-gene sequences for breast cancer scenarios until the 

time of authoring the current research. Nevertheless, there exist some proposals, as in the 

research work of Tran et al. (2008) and Yousef et al. (2008), where a one-class classifier was 

used to predict miRNA hairpins or miRNA prediction using sequence characteristics. An 

interesting aspect of these studies is that they used sequence features, which is an approach 

that we have also considered in this part of our research, in contrast to gene expression data. 

The metrics used for validating our results were precision, recall, and F1-measure with a 

previous hyperparameter selection of the kernel to be used and the 𝜈 parameter (Tran et al., 

2008). While the one-class models are designed to detect anomalies in unbalanced datasets, 

we discovered that the authors also transformed a portion of the training data to test data 

when applying this model. Finally, this technique is useful for applying metrics such as 

precision or the F1-score (Tran et al., 2008). A comparable approach was used in the present 

proposal, which was to use as testing data those samples extracted from the majority of 
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miRNA interactions and labeling some samples, which had weak verified breast cancer 

correlations considered the literature. These samples were tagged as negative ones. 

Regarding the use of one-class SVMs, some authors such as Yousef et al. (2008; 2010) 

pointed out the importance of these methods when we are in the presence of data where a) we 

can have only access to the set of positive data and b) the generation of negative samples has 

the potential to produce skewed results, and there is currently no straightforward mechanism 

for obtaining this data. Yousef et al. (2008) found that the one-class models had higher 

sensitivity and lower specificity than their two-class models. When the authors attempted to 

identify miRNAs in the Epstein-Barr virus, the sensitivity metrics for the various one-class 

models were roughly 82 %, with no information regarding the specificity metric. However, 

our one-class SVM model, presented in the current research, obtained a sensitivity of 80.49% 

and specificity of 86.49%, giving more stable results. 

We demonstrated that it is possible to achieve relatively good accuracy and F1-scores by 

obtaining values of 81.88% and 87.22% in our current research. These findings may pave the 

way for further research into miRNA-ERBB or other oncogene interactions in breast cancer. 

We discovered around 19.51% of the outliers after applying the one-class SVM to the 

training data. Nevertheless, despite the strong evidence, we decided to investigate the current 

literature. For example, we observed that hsa-miR-25-3p interacts with the ERBB2 gene in 

nine distinct ways, although only one has been identified as a false negative. At this point, it 

is valuable to consider that a miRNA can attach to distinct sections of the mRNA or have 

varied values for features like free energy, flanking conservation, or stem-loop, which may 

have influenced their final categorization. The establishment of a voting system, similar to 

that utilized in a KNN model, might aid in classifying a miRNA as an outlier. A similar issue 

arose with hsa-miR-125a-5p, where one of the ten interactions in our sample was similarly 

flagged as a false negative. 

Concerning the performance of isolation forest against one-class SVMs, one could claim that 

the isolation forest low performance is due to how tree-based models classifies its data. As it 

is known, random forest classifiers tend to partition space into rectangular sectors, whereas 

SVM models can employ several types of kernels to create smooth separating areas. The 

situation in which an SVM model performs better than RF in genomic data has been 

mentioned in Statnikov and Aliferis (2007), The researchers compared SVM and RF with 18 

diagnostic and prognostic datasets in this study. In these comparisons, SVM outperformed RF 
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in 13 datasets showing statistically significant differences in performance in 7 of them using a 

permutation test. A permutation test is a statistical model to show that the results of a 

classifier are not the results of mere chance and consider a null distribution in which the 

premise is stated as if the features and the labels in a classification system are independent 

(Ojala and Garriga, 2009). The authors manifest that SVM is efficient in cases where there 

are many variables or features, and it can be suitable for complex classification functions. It 

is worthy of mentioning that this assumption does not necessarily imply that other methods, 

such as RF, should not be used in genomic data. We hypothesize that this could explain why 

models based on SVM, like One-class SVM, which also uses separating hyperplanes and 

kernel function, could outperform other models based on decision trees such as Isolation 

Forest. 

As a concluding remark, the significance of this discovery is to stimulate more research and 

the use of unsupervised learning techniques in conjunction with datasets such as mirWalk 

(2020) to discover novel miRNA and mRNA interactions, in contrast to the use of supervised 

techniques that require labeled data that is not feasible when the data belong to only one 

class, making the distinction a hard one. 

4.6 Summary 

We have demonstrated that using a single classifier model to validate miRNAs and gene 

interactions is feasible based on the genetic sequence features between these binding 

molecules. This unsupervised technique is employed when we have scarce data, and it is 

impossible to find labeled data. In addition, the use of a one-class model requires a special 

type of treatment in the tuning of hyperparameters and modified metrics to test the accuracy 

of the results. We used the extracted features obtained from miRNA and mRNA sequence 

binding to validate the interactions between miRNAs and the regulation of the ERBB2 

mRNA gene present in cancer scenarios. The results obtained are reasonably comparable to 

those of other studies that use a subset of the sequence feature binding processes (Irigoien et 

al., 2014; Rehman et al., 2019); our results showed 82.49% sensitivity and 86.49% 

specificity. Regarding future research, it would be interesting to face efforts in using 

unsupervised techniques for finding novel relationships between miRNAs and genes, because 

in this case, one can work only with one unique class and that there is no need for class 

differentiation by labeling as supervised models. 
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CHAPTER 5 
Differentiation of Breast Cancer and 
Breast Neoplasm scenarios based on 

Machine Learning and nucleotide 
sequence features from lncRNAs-

miRNAs-diseases associations 

5.1 Introduction 

Non-coding RNAs, including as lncRNAs and miRNAs, have an inevitable role in various 

disorders, including the genesis of neoplasms and cancer. However, the scarcity of validated 

datasets and their imbalances make their direct study difficult. Furthermore, few studies have 

combined machine-learning algorithms with genomic sequence information acquired from 

miRNAs and long noncoding RNAs, compared to other approaches such as deep-learning 

techniques paired with genomic expression as features. 

Some authors, such as Fu et al. (2017), have described the application of deep-learning 

algorithms to miRNA and illness connections. They based their research on the assumption 

that a group of miRNAs with similar functions would be linked to similar diseases. The 

researchers used disease semantic similarities and miRNA profile kernel similarities. In the 

end, these features were integrated as inputs for a stacked autoencoder model. Guo et al. 

(2019) employed an analogous method to predict lncRNAs in glioma or colorectal cancer 

scenarios, employing semantic similarity and kernel profile techniques with clinical data and 

autoencoders combined with a random forest. Other methods were suggested by Huang, Y. et 

al. (2019), who employed raw data without feature manipulation, as well as a network 

topology containing interactions between miRNA and lncRNA with a graph convolution 

autoencoder.   

Wen et al. (2019) employed a convolutional neural network (CNN) model and as a sequence 

feature they chose a k-mer frequency analysis. They employed the aforementioned 

methodologies to identify lncRNA-mRNA interactions in a variety of taxa, including 

humans, mice, and chickens. The authors demonstrated that using values of k-mers greater 

than three had no effect on the models. We hypothesize that in these cases, a lengthier string 
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of k-mers is unlikely to be discovered in a genomic sequence due to their uniqueness, 

lowering their frequency of appearance. 

Apart from studies that independently validated these connections, we found no current 

studies in the existing literature that examined the prediction of lncRNA-miRNA and their 

association with illnesses. Additionally, the analysis of lncRNAs and their association with 

diseases is a topic that may shed light on how these non-coding RNAs (ncRNAs) impact 

certain disease scenarios. This understanding may aid in the development of novel genetic 

treatments geared toward the personalized treatment of particular illnesses by utilizing these 

miRNAs and disease associations (Wen et al., 2019). 

The purpose of this study was to associate ncRNA molecules, lncRNAs, and miRNAs with 

two closely related diseases: breast cancer and breast neoplasms. Based on the understanding 

that, while breast tissue can be affected by both diseases, the presence of a neoplasm does not 

always indicate the development of breast cancer. We combined supervised and unsupervised 

machine learning approaches with feature extraction from non-coding RNA sequences 

collected from public repositories to develop our models. 

5.2 Materials and methods 

5.1.1 Datasets 

For our experiments in this section, we decided to work with two diseases: breast neoplasms 

and breast cancer. In both cases, we will consider the lncRNAs and the miRNAs that interact 

with each other and that have a relationship with this disease. The set of steps that we 

followed in our experiments are given below. 

Step 1. We obtained a list of lncRNAs related to breast cancer and breast neoplasm cases 

available at the lncRNASNP2 site (Miao et al., 2018); the file name was 

lncRNA_associated_disease_experiment.txt. The data found in this link contain information 

on lncRNA relationships with diseases backed up by experiments and publications. These 

data contain the diseases, PubMed ID, and the corresponding lncRNA-related genes. An 

example is provided below (Gutiérrez-Cárdenas and Wang, 2021b). 

Disease   Pubmed  lncRNA 

Atherosclerosis  23861667  NONHSAT130416.2 
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Glioma   24833086  NONHSAT090275.2 

Lung adenocarcinoma  24721325  NONHSAT015484.2 

The lncRNA identification number, NONHSAT015484.2, for example, is based on the 

NonCode database's nomenclature (Zhao et al., 2016). From this list of diseases, we selected 

those lncRNA IDs related to Breast Cancer scenarios. The information from this dataset 

would serve as an initial input to be considered for the training dataset. 

We gathered data on predicted lncRNAs associated with this disease to obtain a test dataset 

concerning breast neoplasm data. We chose this condition because, according to the reviewed 

literature, not all breast neoplasms progress to breast cancer. The list obtained was from the 

lncRNASNP2 database (Miao et al., 2018), referred to as lncRNA-associated diseases 

predicted by TAM (Lu et al., 2010). TAM is a software program that employs miRNA 

categories, including family categorization, disease association, or functionality, to annotate 

miRNAs and disease relationships. TAM uses a hypergeometric test to select which miRNAs 

are overexpressed or under-expressed (Rivas et al., 2007). 

Step 2. The preceding stage gathered data on a set of records containing validated lncRNAs 

that have a relationship with breast cancer and those related to Breast Neoplasm predicted by 

experimental methods. Furthermore, we compiled a collection of miRNAs associated with 

these disorders. The lncRNASNP2 dataset (Miao et al., 2018) contains a list of miRNAs and 

their illness associations. The authors managed to predict interactions of each lncRNA with 

miRNAs in this dataset by confirming the data from miRBase and verifying their findings 

using TargetScan, miRanda, and Pita. Lastly, they employed enrichment analysis (Miao et al., 

2018), a technique that Zu et al. (2013) evaluated. 

To provide more details about the miRNAs gathered, we obtained a couple of miRNA 

datasets from the lncRNASNP2 (Miao et al., 2018) sites. The miRNAs collected were 

considered if their association with the lncRNAs was conserved (file name 

mirnas_lncrnas_conserved) or if the interaction was predicted (file name 

mirnas_lncrnas_validated). Notably, the differences in the quantity of conserved data, defined 

as interactions between miRNAs and lncRNAs that have not changed over time or are 

supported by experimental methods, were negligible in comparison to the latter. Diverse 

studies like the ones of Rehman et al. (2019) and Zhan et al. (2020), have emphasized the 
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absence of empirically verified miRNA-lncRNA connections or miRNA-disease 

relationships. 

To recap, we chose as the training dataset the one that contained only breast cancer registers, 

the file that contained the lncRNAs alias related with breast cancer scenarios, from step 1. 

Then, we added up the miRNAs associated with lncRNAs, but chose those that their 

relationship was conserved (Step 2). We followed a similar procedure with the breast 

neoplasm data. In this scenario, we created a list of validated miRNAs and lncRNAs and 

mapped them to lncRNASNP2 (Miao et al., 2018). Finally, we created a class comprised of 

454 breast cancer registers and a second class comprised of 9525 breast neoplasm cases. As 

previously stated, there were fewer validated breast cancer scenarios than projected breast 

neoplasm data. 

Step 3. We retrieved the lncRNA and miRNA genomic sequences from the previous steps' 

data in this stage. Afterward, we extracted features from this genetic data and used them as 

input for our machine-learning algorithms. In FASTA format, the miRNA sequences were 

obtained from miRBase's mature miRNA sequences (Kozomara and Griffiths-Jones, 2014). 

To collect the lncRNA genomic sequences, we web-scraped the NonCode website (Zhao et 

al., 2016). We used the BeautifulSoup library and the BioPyhon package to manipulate the 

sequence for feature extraction. Additional details about the selected features are covered in 

the next section. Finally, in order to work with our machine-learning models, we partitioned 

our data into training and testing sets. 

5.1.2 Methodology and experiments 

Figure 5.1 illustrates the schema of the steps of the experimental procedure performed after 

obtaining the data for breast cancer and breast neoplasms. We considered the IDs, lncRNA 

sequences, and miRNA sequences in each dataset. The following features were extracted: 

From the lncRNA and miRNA sequences, we obtained the frequency of 2-mers present in 

these associations; the energy of miRNA folding secondary structure was also used, and the 

energy obtained from the co-folding of the miRNA with the lncRNA section from the best 

sequence alignment between both sequences. Additionally, we extracted a feature consisting 

of 5-mer fragments of the miRNA sequence with a one-nucleotide sliding window. 

Afterwards, we joined each 5-mer subsection and joined them to form a strand aligned with 

the lncRNA. We used the score from this alignment as an additional feature. It was necessary 

to normalize the values of all features. 
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Figure 5.1 Architecture of the proposed model. 

We collected 453 records for the training set, which contained data on breast cancer, and 413 

records for the test set containing breast neoplasms data. Notably, the test data was obtained 

from the complete dataset of the breast neoplasm class using a random sample without 

replacement and roughly corresponded to 4.5 percent of a total of nearly 9300 records. We 

used the training and testing sets for our supervised models, SVM, and random forest, and 

validated our results via five-fold cross-validation for the SVM model. We devised a similar 

technique for the random forest model, but without using cross-validation. Cross-validation 

was not applied because the random forest model uses bootstrapping and selects a subset of 

features and data at random. Therefore, we decided to iterate ten times over the entire test 

dataset for the random forest case, and in each repetition roughly 4.5% was selected to test 

our model. Finally, we averaged the obtained results for this model; and compared their 

respective metrics after testing both models to determine which supervised model was the 

best. 

The data amount between the training set (breast cancer) and the testing set (breast 

neoplasms) was highly uneven. For this purpose, we opted for a one-class SVM, a method 

that is prone to work with only one class. In this model, we combined data from breast cancer 

and breast neoplasms. Therefore, we considered the breast cancer data as the negative class 

since their quantity was limited compared with the breast neoplasm records. The weighted 

scoring function schema proposed by Pang et al. (2005, p. 292) was used for the selection of 

hyperparameters and the testing of this model. It is worth mentioning that we tuned the 
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hyperparameters of these models by using GridSearch Cross-Validation and OOB (out of the 

bag error) for the number of estimators in the random forest model. 

5.1.1.1 Features extracted 

In this study, we worked with those features that are obtained from the binding among 

miRNAs and lncRNAs molecules; this contrasts with techniques that use gene expression 

technique data and, because of that, will require in-vitro experiments. From these data, we 

obtained a new set of attributes based on the k-mers data that occurs in the process of binding 

between these sequences molecules along with the energy released during this process. 

Consequently, these features could be generated in-silico so that there would not be a need 

for gene expression data and in-vitro experiments, as mentioned before. For our machine-

learning models, we extracted features based on two large subsets. One is related to the 

energy released when binding occurs, and the other is related to the frequency of k-mers 

between miRNAs and lncRNAs. For the energy features, we used the Vienna package 

(Hofacker, 2003), which included the RNAfold and RNAcofold functions The MFE that 

arises in forming the secondary structure of RNA is returned by the RNAfold function. We 

also evaluated the amount of energy released when dimerization happens between a pair of 

RNA sequences, in this case, the lncRNA and the miRNA sequences. To measure the energy 

that is produced in this dimerization process, we used the Vienna package's RNAcofold 

function. Readers interested in learning more about these functionalities are encouraged to 

visit the Vienna webpage at https://www.tbi.univie.ac.at/RNA/tutorial/. 

We were unable to apply the function RNAcofold directly to the lncRNAs due to the 

differences in size between lncRNAs and miRNAs. The reason is that the length of the 

miRNA is approximately a third of the length of the lncRNA. As a result, we used a sliding 

window of 3-mers to extract lncRNA subsequences. The Needleman-Wunsch algorithm was 

used to align these chunks with the miRNA sequence, and the lncRNA portion with the best 

alignment score was chosen to compute the dimer energy fold; for this task, we used the 

RNAcofold tool. To manipulate the miRNA sequence to match the alignments in the 

lncRNASNP2 database (Miao et al., 2018), we used the BioPython package. This 

manipulation consisted of flipping the miRNA sequence to get the lncRNA and miRNA co-

folding sequence. 

Considering the features related to the frequency of k-mers, we calculated the average 

frequency of 2-mers for the miRNA and lncRNA sequences. Concerning the last feature, we 
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extracted the miRNA 5-mer sequences and used the Needleman-Wunsch algorithm to align 

them with the lncRNA. All quantitative results from the features were normalized using a 

standard scaler function. Furthermore, to avoid duplicate records between the breast cancer 

and breast neoplasm datasets, we coded a script that deleted records that were duplicated 

many times. 

5.1.1.2 Machine Learning models 

To validate the presence of outliers in our dataset, we employed a one-class SVM model. To 

do this, we combined breast cancer records, which will serve as our outlier subgroup, with 

Breast Neoplasm data, which worked as our majority class. The benefit of this one-class 

model is that it achieves the accuracy of a two-class SVM-based technique while using only 

one training class. Additionally, we do not require labeled data because we are working with 

a single class; nonetheless, greater attention should be exercised while tuning 

hyperparameters or evaluating the output of such models. Therefore, it is recommended that 

certain samples should be chosen to represent a negative or opposite class to assess the 

correctness of our model. 

We collected roughly 453 records classified as breast cancer and 9170 records categorized as 

breast neoplasms. As previously stated, we hypothesize that when breast cancer data are 

combined with breast neoplasm records, the minority class, breast cancer records, might be 

deemed as a set of outliers. We combined these two datasets, breast cancer and breast 

neoplasms, into one. Afterward, we separated our data into training and test datasets using 

the 80/20 golden ratio. The training subset contained around 7698 records, which were 

categorized according to whether they were breast cancer or breast neoplasms. Due to the fact 

that a one-class SVM needs only one class to work with, we employed these 7698 records for 

this model. Additionally, we determined that 371 records (train outliers) corresponded to 

breast cancer samples and 7327 (normal train samples) belonged to breast neoplasm samples 

after using the previously indicated labeling. We used the one-class SVM model for the first 

time to investigate whether the model could discriminate between cancer and neoplasms. 

In terms of hyperparameter adjusting, we acquired 371 records for the breast cancer samples, 

yielding an outlier proportion of about 5%, which will be used as the v parameter in our one-

class SVM. GridSearch was used to adjust the hyperparameters for each evaluated kernel 

(linear, polynomial, and RBF) with cross-validation of five-folds and an average-weighted 

average for the scoring function. When datasets are unbalanced, this type of scoring function 
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is used. In a second attempt to validate the accuracy of our model, we used our one-class 

model once more. However, in this scenario, we employed the entire set of breast neoplasm 

subsets as the training set and the breast cancer subset as the testing set, concluding by 

verifying the model's accuracy. 

Although one-class SVM models are more suitable to work with a single dataset, it is prudent 

to test it with a subset of the entire set. This subset of testing data could be used for accuracy, 

sensitivity, and specificity metrics. To accomplish this, we decided to use the majority class, 

which contains 9170 records from the Breast Neoplasm dataset, as the training set, and the 

testing class, which includes 453 records from breast cancer samples. Breast cancer data 

would be deemed outliers due to their rarity compared to the majority of records. 

After identifying the occurrence of outliers using the one-class SVM, we tuned the supervised 

machine-learning models' hyperparameters. We used fivefold cross-validation and a weighted 

scoring function for the SVM model. Further, we used 4.5 percent of neoplasm class samples 

without replacement as test data, and this percentage did not significantly show an imbalance 

from the number of breast cancer class samples. We validated our findings through repeated 

tests using different subsets. Considering the random forest model, we applied a similar 

process, but because this model relies on bootstrapping, we skipped cross-validation. Rather 

than that, we executed the model within a loop that iterated ten times and chose the same 

sample percentage as previously stated. Therefore, for each test of the supervised models, the 

number of repetitions was increased. We repeated this procedure ten times in the first run and 

then averaged the results for the supervised model under test, repeating the process with 20, 

30, or 40 iterations. We noticed that each iteration produced similar results when we 

compared the results obtained. 

5.3 Results 

5.3.1 Descriptive statistics results 

Because various features obtained in our dataset, it was impossible to visualize the results 

accurately, so we decided to apply a dimensionality reduction technique. Thus, we applied 

PCA to visualize the data corresponding to breast neoplasm and breast cancer scenarios 

considering their respective features. In our analysis, we discovered that two major 

components explained 25% of the data collected, with values of 0.14828369 0.10792987]. A 

plot of the data is presented in Figure 5.2. 
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Figure 5.2 Two-component plot of the Breast Cancer and Breast Neoplasm dataset. 

We generated a boxplot of the normalized features extracted from both datasets to rule out 

outliers. By examining the plot in Figure 5.3, we can see that certain dimers (groups of two 

nucleotides), such as the UCm (m from miRNA) and the AGl (l from lncRNA), presented a 

high degree of outliers. 
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Figure 5.3 Normalized 2-mer frequencies, secondary structure energy, cofold, and 5-mer 

matching score boxplot. 

Additionally, as shown in Figure 5.4, we plotted their respective probability density function 

(PDF) for each of the normalized features derived from the breast cancer and breast neoplasm 

datasets. We noticed certain values on this graph that overlapped, such as ACm or GUm, 

indicating that the densities of these pair of 2-mers were nearly equal. However, we 

discovered instances where the PDFs from breast cancer samples were overexpressed 

compared to those from breast neoplasms. We observed this trend in the 2-mers of CUm,  

CUl, UUm and UGm, , but only in the UCm 2-mer did the breast neoplasm PDF have a high 

value compared to the breast cancer samples. 
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Figure 5.4 PDF of the distinct features found from the Breast Cancer and Breast Neoplasm 

datasets. 

5.3.2 One-class SVM 

The outcomes of the hyperparameter tuning of the one-class SVM model were: nu-value 

of 0.0506 with an RBF kernel and a value of gamma of 1e-05. We trained our prototype with 
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the AGm, ACl, and GUl features and plotted our findings using only the AGm and ACl 

features for visualization purposes. We chose these features because their pdf plots 

demonstrated meaningful differentiation, as illustrated in Figure 5.4. Figures 5.5(a) and 5.5(b) 

depict the plot results for the training and test sets, respectively. It is worth noting that we 

employed a one-class SVM again for validation procedures, but this time with all 9170 

records from the breast neoplasm dataset as the training set and 453 records from the breast 

cancer dataset as the test set. 

After selecting 20% of the data for testing purposes, as mentioned in Section 4.1.2.2, we 

achieved the following results: for the accuracy metric, we acquired a 95.44 %; for 

sensitivity, we obtained a 93.19 %; and for specificity, we obtained a value of 97.97 %. 

These results suggest that it was feasible to distinguish between breast cancer cases and 

breast neoplasm scenarios using the features derived from our dataset. 

(a) 

(b) 
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Figure 5.5 (a) One-class SVM training and 5.5 (b) testing results. 

5.3.3 Supervised models 

We implemented two supervised models, SVM and random forest, to determine if the 

acquired features could be used to predict breast cancer and breast neoplasm scenarios. 

Following hyperparameter optimization, we obtained the ideal parameters for the SVM, 

which were RBF as the kernel, a penalization factor of 100, and a Gamma value of 0.01. 

The accuracy score was calculated using four-fold cross-validation using a weighted function, 

and the results are as follows: Training Accuracy was 89.232 % with a standard deviation of 

0.0105, while Testing Accuracy was 88.797 % with a standard deviation of 0.0204. 

The following hyperparameters were chosen for our Random Forest model: Gini as the 

splitting criterion, for the maximum depth, a value of eight was selected; the square root of 

the number of instances for the maximum number of features, and a 25 for the number of 

trees. 

The same criteria were used to evaluate the SVM model. In this case, we ran the dataset ten 

times and averaged the findings; the result was an accuracy of 99.65 percent with a standard 

deviation of 0.0038. 

As a result, we can conclude that the random forest model with the provided characteristics is 

the most appropriate model for discriminating between breast cancer and breast neoplasm 

scenarios. 

5.4 Discussion 

A search of the relevant literature revealed no studies that indicated the interaction between 

lncRNA and miRNAs or their association with diseases. Although some publications, such as 

the ones cited in the Introduction part, treat these associations as separate units. 

We used the k-mers information, the secondary structure RNA energy, co-folding RNA 

energy, and the alignment produced by comparing a 5-mer miRNA sequence to a lncRNA 

sequence as extracted features. Our machine-learning algorithms exploited these features to 

distinguish between breast cancer and other neoplasm samples. A one-class SVM was also 

utilized to check for the presence of novel samples or outliers that corresponded to the class 

of breast cancer data. Using this model with a subset of joined samples of breast neoplasms 

and cancer, we got a 95.44 percent accuracy rate. Our SVM model attained an accuracy rate 
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of 88.79 percent with a standard deviation of 0.020. However, we found that our random 

forest classifier had the best performance, with an accuracy rate of 99.650 percent and a 

standard deviation of 0.0038. To be clear, we tested our two-class models using 4.5 percent 

of distinct samples using a combination of breast cancer and breast neoplasm scenarios, but 

without replacement. At least ten repetitions of this test were carried out for validation 

purposes. 

Yan et al. (2020) used a CNN to assess sequence data from lncRNA and miRNA interactions, 

as well as 4-mers with composition transition distribution and graph characteristics. The 

dataset was partitioned into positive and negative samples based on lncRNA-miRNA 

relations extracted from the lncRNASNP2 database (Miao et al., 2018). Positive samples 

chosen a priori revealed an interaction, whereas negative samples did not. Their deep-

learning model achieved an accuracy rate of 93.81 %, a sensitivity of 91.58 %, and a 

specificity of 79.10 %. Our single-class SVM model acquired 95.44 % accuracy, 93.19 % 

sensitivity, and 97.97 % specificity. Nevertheless, it could be argued that the latter is an 

unsupervised model; however, we found the metrics mentioned above by utilizingo a mixed 

subset of the data as a test set for validation purposes. 

Other researchers, such as Guo et al. (2019), proposed employing an autoencoder neural 

network in conjunction with a rotation forest to combine profile kernel similarities and 

Gaussian profile interactions between lncRNAs and diseases for prediction purposes. 

Colorectal cancer, glioma, and prostate cancer prediction interactions had an AUC value of 

94.74 percent in this study. While further research is needed to compare our predictions with 

other deep learning or machine learning models, we showed that the results obtained from 

our models are comparable to those reported in the literature. 

Additionally, we believe that, while deep-learning algorithms might extract relevant attributes 

from biological data, there is still an area of research devoted to the application of machine-

learning techniques to biological data via feature engineering. 

5.5 Summary 

In this chapter, we collected sequence characteristics from lncRNA-miRNA and 

disease relationships from breast neoplasm and breast cancer scenarios and used a one-class 

SVM to predict these associations. We also compared the adequacy of the features extracted 

by applying SVM and Random Forest as supervised models. Furthermore, we demonstrated 
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that it is possible to distinguish between breast neoplasm and breast cancer classes despite the 

fact that their information may overlap due to their shared classification of abnormal tissue 

growth in breast samples. Our models produce results that are equivalent to those published 

in the literature. The current study demonstrates the feasibility of applying feature selection to 

non-coding sequences, which might be used to study new relationships of non-coding RNA 

to various diseases.  
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CHAPTER 6  
Prediction of binding miRNAs involved 
with immune genes to the SARS-CoV-2 
by using sequence features extraction 

and One-class SVM 

6.1 Introduction 

miRNAs belong to a group of non-coding RNAs that bind to RNA or specific genes. Usually, 

they bind to the RNA of different species, and some studies have demonstrated that they can 

also bind to viral RNA (Lamkiewicz, 2018; Trobaugh, 2017; Nersisyan et al., 2020). Under 

these conditions, miRNAs can bind to the mRNA of a viral genome and repress their 

transcription or even disable a virus's reproductive capacity. According to Nersisyan et al. 

(2020), miRNAs can bind to viral RNA because they cannot differentiate from the host 

mRNA. This relationship could be involved in the different viral RNA processes and could 

even regulate the spread of the disease within a person's organism. However, according to 

Yousefi et al. (2020), there is still no evidence that mRNA from viruses could produce 

miRNAs, but there is evidence that miRNAs could interfere with the SARS-CoV-2 virus their 

functions related to replication, translation, or interference with the host expression. 

With the SARS-CoV-2 pandemic that we are facing, the study of miRNAs and how groups of 

miRNAs could interact with this viral disease has earned its place in the research world. For 

example, they can be used as potential biomarkers for detecting the disease or in genetic 

treatments (Jafarinejad-Farsangi et al. 2020). We hypothesized that specific miRNAs' affinity 

to viral RNA could indicate an underlying condition in a patient that could ameliorate or 

aggravate its prognosis. Therefore, in this part of our current research work, we will use a 

one-class SVM model to predict the binding of miRNAs to SARS-CoV-2 mRNA; and we 

will be using a one-class SVM model for these purposes. 

One-class SVM was developed by Schölkopf et al. (2001) and has its origins in the theory of 

hyperplane separation between classes, in the same way that it is applied in a two-class SVM 

model. We selected this model based on the justification that we have a set of miRNAs that 

we believe could bind to the SARS-CoV-2 RNA genome, but we have only one class 
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corresponding to the whole set of miRNA sequences. In the current literature, many studies 

have reported mixed results regarding miRNAs that could potentially bind to the mRNA of 

this virus, but some of them are based on predictions, and may require in-vitro validation. 

Even in certain studies, the list of miRNAs that could potentially bind to SARS-CoV-2 

mRNA is extensive (Pierce et al., 2020; Saçar and Adan, 2020), covering many miRNA 

samples present in datasets such as miRBase (Kozomara, 2014). For that reason, we wanted 

to analyze if there is a subset of miRNAs that could potentially bind to the SARS-CoV-2 

genome but are considered (after applying a one-class model) outliers anomalous bindings. 

We focused our research on the sequence and thermodynamic features of the binding 

between miRNA and viral RNA. However, we found that making a simple analysis of perfect 

complementarity between miRNAs and RNAs would not be fruitful. This is because animal 

miRNA binding does not necessarily present perfect Watson-Crick complementarity, as in 

the case (Schwab et al., 2005). Therefore, we extracted features related to the frequency of k-

mers present in miRNAs and the MFE obtained from the binding of miRNAs and viral 

mRNA. 

One possible issue for predicting miRNA and RNA viral binding is that it is not 

straightforward to find two separate or differentiated classes. Therefore, we can be in a 

situation where one class is extremely short in quantity compared to the other. Additionally, 

we could not find a study that used one-class models for these viral scenarios, which seems 

ideal for unbalanced class scenarios or when we have only samples from one class. We 

hypothesized that by using the whole set of miRNAs as the positive class and extracting some 

features based on their sequence properties primarily related to the frequency of k-mers, 

sequence alignment, and MFE from the sequence matching, we can find a subset of specific 

and interesting miRNA binding, based on the results from our one-class SVM model. 

Furthermore, it is important to determine whether these types of outliers or anomalous 

binding of miRNAs to the SARS-CoV-2 mRNA sequence are related to other diseases. They 

may be involved in some scenarios in which a co-morbidity can occur, such as obesity, lungs, 

or heart conditions, or appear in related diseases such as influenza or other diseases related to 

the respiratory system. In this part of our current research, we also consider the hypothesis 

that if these miRNAs are involved in immune gene regulation, they could also be prone to 

bind to the SARS-CoV-2 mRNA. For this reason, and using the features generated from 

miRNAs and the SARS-CoV-2 sequence binding, we will extract those miRNAs with a 

relationship with genes involved in the immune response from the human body. Furthermore, 
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we tested two supervised models, SVM and random forest, and compared their accuracy with 

a one-class model. 

6.2 Materials and methods 

6.2.1 Methodology 

In this study, we aimed to predict the probable binding of miRNAs to the SARS-COV-2 virus 

and the 5' UTR region. For this purpose, we extracted a list of miRNAs that contain 

information related to their ID and genomic sequences. The miRNAs from this list were 

paired with the viral region described. Afterward, we applied a one-class SVM model to 

check for the presence of novel miRNAs or outliers that could occur in this binding.  

When outliers were verified, we obtained a list of genes present in the immunology processes 

of the human body. Then, we extracted a new list containing miRNAs that are prone to bind 

to these miRNAs. This obtained list would be our positive class, while those not related form 

our negative class. We hypothesize that when there is a viral infection, miRNAs are prone to 

bind to these immune genes, and therefore, it would be relevant to predict whether there is an 

affinity for binding to the SARS-CoV-2 gene. We will use an SVM and RF as supervised 

models and a one-class model to verify our hypothesis. The schema of the proposed 

methodology is shown in Figure 6.1. 

 

Figure 6.1 Schemata of the methodology followed. 

6.2.2 Datasets 

a) SARS-COV-2 Genome 
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Concerning the SARS-CoV-2 Genome, we have downloaded its FASTA sequence from 

NCBI with accession number GenBank: MN908947.3. In Fig. 2, we can observe the parts of 

this viral sequence, but for our current research, we will work only with the 5'UTR. 

According to Mukhopadhyay and Mussa (2020), this untranslated region contains a high 

number of conserved regions of approximately 90 nucleotides. The FASTA sequence for the 

5'UTR region consists of nucleotides 1 to 265. A figure showing the different sections of the 

SARS-COV-2 genome is depicted in Figure 2. 

 

Figure 6.2 Section of the complete genome from the Coronavirus 2 isolate Wuhan-Hu-1 

(Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome, 

2020) 

b) miRNAs 

We downloaded a list of miRNAs from miRBase (Kozomara, 2014). The data contain 

information about different types of miRNAs from diverse species, but we have only focused 

on human miRNAs. We will clean up the data by deleting those entries in which we do not 

find a genomic sequence from this list of downloaded miRNAs. Regarding the software used, 

we have worked with BioPython to read the FASTA files and extract the information related 

to the miRNA such as id, mirTarBase id, Species, Target Gene, type of evidence support, and 

the miRNA sequence. We will use only the miRNA id for reference and labeling purposes, 

along with the nucleotide sequence of each miRNA from all the mentioned attributes. 

c) Immunology genes 
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We extracted a list of genes present in our organism's immune process by retrieving the 

InnateDB (Breuer et al., 2013). This dataset contains information on 4815 genes involved in 

immune processes. 

6.2.3 Features extracted 

Once we obtained both datasets, we extracted the features that will work as an input for our 

one-class SVM model. From the set of miRNA sequences, we extracted the frequency of 3-

mers from their genomic sequences. We decided to choose this grouping because a 3-mer 

results in the formation of a protein codon. This method of extracting features from k-mer 

information was also performed by Zhang et al. (2020) with plants, and we tested our model 

with 2-mers and 3-mers; given the latter one a list of more refined miRNAs. This number of 

3-mers was also selected as the upper threshold selected for this feature. Furthermore, other 

authors, such as Wen et al. (2019), demonstrated that upper values such as 4-mers or 5-mers 

gave results with negligible differences between both types of k-mers.  

Using the genomic sequence of the 5 'UTR of the SARS-COV-2 virus, we obtained the 

energy generated from a matching between the miRNA sequence and this genomic region. 

For this purpose, we used the Vienna package (Hofacker 2003) with their RNAduplex 

function, which serves to calculate the hybridization of two sequences, and it is also used to 

obtain potential binding between mRNA and RNA. The BioPython package was used for 

sequence analysis and manipulation. Additionally, we performed pairwise sequence 

alignment between the 5'UTR and the miRNA sequence. To achieve this procedure, we first 

transcribed the miRNA sequence and then complemented it, because we wanted to obtain a 

score based on the matching between nucleotides and not a Watson-Crick base pairing. 

Considering the immunological genes extracted from the Immport database, we did not 

perform any additional manipulations. 

6.2.4 One-class SVM for detection of outliers 

We decided to use a one-class SVM to find anomalies or outliers in miRNA and viral RNA 

sequence binding with the idea that these anomalies could represent interesting interactions 

between these two genomic molecules. The hyperparameter tuning was validated 

experimentally by setting different values for 𝜈 and gamma. By tuning our hyperparameters, 

we chose a value of 𝜈 =0.05 and a value of gamma=1e-05. For this part of our research, we 

used a total of 2548 miRNAs. 
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6.2.5 Application of Supervised models 

After determining the presence of outliers in our miRNA-viral binding dataset, we predicted 

whether there could be an interaction between those miRNAs with an affinity to bind to 

genes involved in immunological processes; from here, we extracted two classes from our 

whole dataset. One class would be those miRNAs that bind to these immune genes, positive 

class, and those that do not have a validated interaction with these genes will form our 

negative class.  

Because SVM is a supervised model that needs two classes, we divided our 2548 records of 

miRNAs into a group of miRNAs that interact with immune genes. This subset forms a 

positive class. In contrast, those that did not present this interaction were labeled as our 

negative class. We applied hyperparameter tuning using GridSearch with cross-validation of 

ten folds and a weighted scoring schema. 

We applied a random forest model with the same subsets of positive and negative classes to 

compare our SVM results. Before testing our model, we applied GridSearch with a weighted 

score to obtain the best hyperparameters of our model in the same way as the SVM model. 

With the data found, we tested our model's accuracy level and verified our results. 

6.2.6 One-class SVM comparison with supervised models 

For this model's application, we needed to select the best hyperparameters to be used with our 

one-class model. For this purpose, we used a five-fold grid search CV. After these parameters 

are found, we tested the model, but for validation purposes, we used a fraction of the negative 

samples, composed of those miRNAs that bind to the mRNA virus; however, they do not 

have a relationship with genes involved in immune processes. To validate our results, we ran 

our model ten times, similar to a cross-validation procedure, and chose different random 

samples from the negative class. Then, we applied a set of metrics to measure our results. 

This model was compared with the supervised models. 

6.3 Results 

6.3.1 One-class SVM Results for outlier detection 

When we applied our one-class model for outlier detection, we found that from the 2548 

miRNAs, we obtained with 88 miRNAs that could be classified as anomalies or outliers in 
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our dataset. As shown in Figure 6.3, the outliers, negative miRNAs, detected by our one-class 

model. 

 

Figure 6.3 miRNAs that are outliers obtained from the One-Class SVM. 

We validated the miRNA obtained from step 2.3, and the existing literature validated these 

results; these outcomes can be observed in Table 6.1. 

Table 6.1 miRNAs predicted by the One-Class SVM and their supported literature references. 

miRNA Reference 

hsa-miR-1182, hsa-miR-1248, hsa-miR-1253, hsa-miR-1261, hsa-miR-

1278, hsa-miR-1282, hsa-miR-1323, hsa-miR-136-5p, hsa-miR-1908-

5p, hsa-miR-2054, hsa-miR-298, hsa-miR-302f, hsa-miR-3182, hsa-

miR-340-3p, hsa-miR-4267, hsa-miR-4291, hsa-miR-4311, hsa-miR-

4435, hsa-miR-4487, hsa-miR-4493, hsa-miR-6126 

(Vastrad et al., 

2020) 

hsa-miR-582-5p 

(Vastrad et al., 

2020; Ahmadi and 

Moradi; 2020) 

hsa-miR-98-5p [Vastrad et al., 

2020; Abdullah-Al-
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Kamran, 2020; 

Chow and Salmena, 

2020; Pradhan et al., 

2020) 

hsa-miR-206 (*), hsa-miR-454-3p, hsa-miR-4775 

(Yousefi et al., 

2020; Chow and 

Salmena, 2020) 

hsa-let-7b-3p 

(Fulzele et al., 2020; 

Maghsoudnia et al., 

2020) 

hsa-let-7e-3p 

(Jafarinejad-

Farsangi et al., 2020 

) 

hsa-miR-130a-3p (*), hsa-miR-484 

(Yousefi et al., 

2020; 

Mukhopadhyay and 

Mussa, 2020) 

hsa-miR-4793-3p, hsa-miR-6790-5p, hsa-miR-873-3p (Sardar et al., 2020) 

hsa-miR-214-5p, hsa-miR-7111-5p (*), hsa-miR-7705, hsa-miR-7848-

3p 

[Abdullah-Al-

Kamran, 2020,27*] 

hsa-miR-203b-3p, hsa-miR-362-3p (*), hsa-miR-5701 

(Chow and 

Salmena, 2020, 

Mukhopadhyay and 

Mussa, 2020) 

hsa-miR-4276 
(Gasparello et al., 

2020) 

hsa-miR-330-3p, hsa-miR-543 
(Mukhopadhyay 

and Mussa, 2020) 
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hsa-miR-570-3p 
(Pradhan et al., 

2020) 

hsa-miR-1307-5p, hsa-miR-575 (Pierce et al., 2020) 

hsa-miR-583 
(Ahmadi and 

Moradi; 2020) 

hsa-miR-6873-5p 
(Van Campen et al., 

2020) 

hsa-miR-450a-5p 
(Gasparello et al., 

2020) 

hsa-miR-15a-3p 
(Tribolet et al., 

2020) 

hsa-miR-181a-3p 
(Wang and Tatakis, 

2020] 

hsa-miR-192-3p 
(Alshabi et al., 

2020) 

hsa-miR-216a-3p (Fujii, 2020) 

hsa-miR-3184-3p (Santos et al., 2020) 

hsa-miR-33b-3p 
(Guo, H. et al., 

2019) 

hsa-miR-3614-3p, hsa-miR-3972, hsa-miR-412-3p, hsa-miR-4299, 

hsa-miR-4503, hsa-miR-4509, hsa-miR-450b-5p, hsa-miR-4645-3p, 

hsa-miR-4801, hsa-miR-6740-3p, hsa-miR-6879-3p, hsa-miR-8069 

(Fulzele et al., 

2020) 

hsa-miR-877-5p 
(Morales et al., 

2020) 

hsa-miR-6809-5p 
(Saçar and Adan, 

2020) 
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hsa-miR-1249-5p, hsa-miR-3146, hsa-miR-3616-3p, hsa-miR-3621, 

hsa-miR-4265, hsa-miR-4479, hsa-miR-4508, hsa-miR-4536-3p, hsa-

miR-4538, hsa-miR-4768-3p, hsa-miR-4787-5p, hsa-miR-4798-5p, 

hsa-miR-4800-5p, hsa-miR-5092, hsa-miR-5705, hsa-miR-598-5p, 

hsa-miR-6125, hsa-miR-670-5p, hsa-miR-6834-5p 

NA 

 

6.3.2 Results of supervised models, SVM and RF 

a) SVM 

For this part, we divided our entire subset into two classes and then applied a GridSearch 

with a weighted score to obtain the best parameters to be used with this supervised model. By 

intersecting the data acquired from the Immport database, we identified a list of 818 miRNAs 

that interacted with genes involved in the immunological process and 1730 miRNAs that 

were not involved. It is worth mentioning that the proportion between the positive and 

negative genes is unbalanced, and for that reason, we will only choose a subset of the 

negative class, at random, for our experimentation purposes. The size of this subset was 

approximately 10% that of the negative samples. Therefore, we will end up with 818 records 

for the positive class and 173 samples from the negative class. This proportion is roughly 

21% of the positive class. The parameters selected, with a ten-fold grid search cross-

validation, were: kernel=rbf, C=0.01, and gamma=10-5. We found a training accuracy of 

82.54%, standard deviation of 0.0008, test accuracy of 82.54%, and standard deviation of 

0.003. Even though these results seemed promising, we found a misclassification for the true 

negative class and type-II error, and we validated these results by obtaining an ROC curve 

from our results. The results of the ROC curve are shown in Figure 6.4. 
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Figure 6.4 ROC curve obtained from the SVM model. 

Our SVM model results showed that, although we tried to balance the positive and negative 

classes by extracting a subset of the latter, our classifier had trouble discriminating samples 

from the negative class. These samples corresponded to those miRNAs prone to bind to the 

viral mRNA, but they did not have validated interactions with genes that participate in 

immunological processes. 

b) Random Forest 

After dividing our data into positive and negative samples and applying the grid search 

algorithm for hyperparameter tuning, we selected the best hyperparameters that could be 

suitable for our model. We found that these hyperparameters were splitting criteria=entropy, 

maximum depth of the trees=12, number of maximum features was set to default, and the 

number of trees or estimators was equal to 10. With these hyperparameters, we obtained an 

accuracy of approximately 82.88% in the test set, which is the same as before; however, we 

found a type-II error with no values for the true negative classes again. From these results, 

which usually occurred in imbalanced scenarios, we decided to use a one-class model to see 

how this model behaves with our data. 

6.3.3 One-class SVM comparison with supervised models 
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From the application of a grid search algorithm, we found that the best hyperparameters were 

kernel=rbf, 𝜈 =0.01, and gamma= 0.03449. With these data, we execute our model ten times 

with different subsets of samples from the negative class, and, in the end, we averaged the 

results of the metrics selected. The values that we found were more stable and promising than 

those obtained using the supervised models. We obtained an average accuracy of 90% with a 

standard deviation of 0.02, sensitivity values of 96.18% with a standard deviation of 0.01, 

and a specificity of 76.39% with a standard deviation of 0.1. As we can observe, the one-class 

SVM yielded more stable results than the supervised models we tested. 

The purpose of this part of our research was to identify miRNAs that interact with immune 

genes that could bind to SARS-CoV-2. Based on the results obtained, we hypothesize that the 

miRNAs present in the body's immune response could bind to this viral strand, and therefore 

their future study to know more about how our body responds, via their immune system, to 

this infection is of utmost importance. 

6.4 Discussion 

When we used our one-class SVM model to find miRNAs classified as novelties or 

anomalies, we compared them with the existing literature, and we found some interesting 

results. For instance, we found that, according to Maghsoudnia et al., 2020, miRNA let-7b 

was found to target specific respiratory chain genes, and it has been used in drug targeting in 

apoptotic cells. We hypothesized that drug therapies against SARS disease could be made 

due to the similarity of respiratory disease scenarios. Gasparello et al., 2021 found that hsa-

miR-450a-5p potentially binds to the IL-8 gene, which is involved in what is known as 

cytokine storm, and this relationship is one of the predictors of patient survival at the time of 

hospitalization. Another case is how miRNA hsa-miR-192-3p binds to NR1H4 and is 

responsible for SARS-CoV-2 progression (Ahmadi and Moradi, 2020). Among other 

interesting findings, miRNA hsa-miR-6809-5p, according to Ahmadi and Moradi (2020), 

binds to the S-region or spike gene from the SARS-CoV-2 genome; however, we found that it 

could also bind to the 5’UTR region. 

Even though the genome from the SARS-CoV-2 virus differs from that found in influenza 

cases, we found that some miRNAs are also present in influenza cases, but that they are prone 

to bind to the 5 UTR region from the SARS-CoV-2 mRNA sequence. We found that this 

binding occurs with hsa-miR-6873-5p (Abdullah-Al-Kamran et al., 2020) and hsa-miR-4276 

(Chow and Salmena, 2020). Other types of miRNAs also appear in some diseases that could 
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result in a co-morbidity in SARS-CoV-2 virus scenarios, such as hsa-miR-7111-5p, which 

binds the HOXC8 gene up-regulating it, and it is present in obesity scenarios (Chow and 

Salmena, 2020). 

Other interesting results, but with no direct relation with the SARS-CoV-2 given by the 

current literature (values of NA in Table 1), were those miRNAs obtained as outliers from 

our one-class model, but they are related to the symptomatology or the organs attacked by 

this disease. For example, hsa-mir-3146 is present in rhinosinusitis and hsa-mir-4508 in some 

unspecific heart diseases (Fulzele et al., 2020). Other interesting results were about miRNAs 

hsa-miR-4787-5p and hsa-miR-4800-5p. According to Maghsoudnia et al. (20209, the 

expression of hsa-miR-4787-5p is used as a biomarker and could be involved in acute aortic 

dissection cases, which is a highly morbid disease; specifically, this miRNA is upregulated in 

these cases. Individuals with an individual predisposition to develop this disease are elderly 

males with a history of hypertension, being one of the factors present in patients with a severe 

prognosis from SARS-CoV-2. Another miRNA, hsa-miR-4800-5p, also appears in vascular 

diseases such as the previous one and, more specifically, to Kawasaki disease (Sardar et al., 

2020). Based on this evidence, we hypothesize that these binding miRNAs, treated as outliers 

from our one-class SVM, deserve special attention because their presence and affinity to the 

SARS-COo-2 virus could mean that these miRNAs are present in persons with some 

pathologies. 

With regard to the application of two-class supervised models, we found that the results were 

a little misleading. This is because, even though we had an acceptable level of accuracy of 

approximately 82% for both models, we concluded that there were no true negative samples 

classified correctly when we verified our confusion matrices. We arrived at the conclusion 

that we were dealing with a pseudo-imbalanced class. We coined this term of pseudo-

imbalanced class because even the partition of our data in positive and negative classes with 

the golden rule of 70/30 for training (positive) and test (negative) classes, the models were 

difficult to classify the negative classes correctly. This situation did not occur when we 

applied our one-class SVM model, which showed more stable results discussed in the Results 

section of the present article. 

It is worth mentioning that, at the moment of conducting the present research, we were 

unable to find literature regarding the use of one-class models for the study of interactions 

between miRNAs, immune genes, and SARS-CoV-2. Furthermore, we believe that the study 
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of miRNAs that bind to these viral strands, which are involved in the regulation of the 

immune system, could fill up a research gap in attempts to understand how our immune 

system reacts in the presence of this viral infection. 

6.5 Summary 

The interaction between host miRNAs and SARS-CoV-2 mRNA could provide a potential 

field of research to find new therapeutics that could alleviate the current pandemic situation 

we are currently involved. Using a one-class SVM model to a set of human miRNAs, we 

were able to find a subset of these miRNAs prone to bind to the 5'UTR region of the SARS-

CoV-2 mRNA genome. The results validated from the literature also gave us some results in 

which the miRNAs found were related to other forms of diseases, such as obesity and lung 

damage. Additionally, we were able to find promising results in the study of miRNAs 

involved with genes that participate in the immunological response of the body. These 

miRNAs could bind to the SARS-CoV-2 viral mRNA, establishing some new avenues for 

future research in this field considering that these miRNAs are present in the immunological 

response of the human body and serve to counterattack this type of viral infection. 
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CHAPTER 7  
Conclusions and Future Work 

7.1 Summary of the study 

In general, we have aimed with this research work to explore the possibility of using One-

class models with features extracted from the genetic sequences of non-coding RNAs and 

genes. In addition to predicting their probable couple or binding between these molecules, we 

used them to validate their participation in certain diseases, such as breast cancer, breast 

neoplasm scenarios, and probable influence of SARS-CoV-2 RNA.  

a) Chapter 4 explored the possibility of using one-class models to validate the interactions 

between miRNAs and the ERBB2 gene, responsible for the prognosis of breast cancer 

scenarios. The extracted features were derived from the genomic sequences of these 

molecules. The results obtained were comparable to those found in the literature reviewed, 

with a sensitivity of 80.49% and specificity of 86.49% for the one-class SVM model. 

b) Chapter 5 sought to differentiate between breast cancer and breast neoplasm scenarios by 

studying the interaction between miRNAs and lncRNAs and their relationship with these 

diseases. The extracted features were related to sequence features, considering alignments 

between sequences and k-mers. The obtained results obtained accuracy results of 95.44% for 

the one-class model, 88.79% for the SVM, and 99.65% for the random forest model. As in 

the previous model, the results obtained were comparable to those found in the current 

literature. The novelty of this study is that no studies have examined the interactions between 

these molecules and breast cancer or neoplasms at the moment of the present research. 

c) Chapter 6 describes our application of a one-class SVM model to predict probable 

interactions between miRNAs that relate to genes involved in the immune system and to 

verify, via machine-learning models, if there could exist a probable binding between these 

miRNAs and the SARS-COV-2 RNA. The results obtained were 90.90%, 96.18%, and 

76.39% for accuracy, sensitivity, and specificity, respectively. The novelty of this chapter is 

that there are no studies, at present, that investigate the interaction of miRNAs involved with 

genes that take part in the immune system and that they could probably bind to the SARS-

CoV-2 RNA sequence. 
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7.2 Conclusions 

In the present study, we demonstrated the feasibility of the use of One-class models, in 

contraposition with two class supervised techniques, joined with features extracted from the 

binding of genetic sequences of non-coding RNAs and genes that could induce breast cancer 

scenarios or immune genes that could be prone to bind to the SARS-COV-2 viral strand. 

The results obtained via the application of one-class SVM models serve for those scenarios in 

which the application of a two-class supervised model is not possible because of the scarcity 

of the data. Additionally, the use of features obtained from the genetic sequence that arise in 

the process of binding between non-coding RNAs and genes is a promising path in the 

research of the interactions of these two genetic molecules and their relationships with 

diseases, such as some form of cancers or virally caused infections. 

7.3 Future work 

We believe that using computationally expensive models such as those used in machine 

learning and focusing on one-class models to outperform the difficulties of differentiating 

classes in bioinformatics scenarios is a promising approach. Additionally, these studies 

should be accompanied by probable methods for extracting useful features based on the 

genetic sequences of these molecules. These studies could also be expanded to study other 

forms of non-coding RNAs. Furthermore, it is of utmost importance to study the relationship 

of these miRNAs in the influence of viral forms, such as SARS variants or other diseases, 

that could serve in the near future as biomarkers or to predict the future prognosis of patients 

with potential diseases. Even though we aimed to use one-class ML models in this study, 

which have a scarce presence in the current literature, it would be advisable to compare them 

with DL models such as recurrent neural networks or convolutional models. However, and 

according to Ockham´s razor principle, which points out the simplicity in the construction of 

models (Audi, 2015), we believe there is still a promising field of research in classic Machine 

Learning models, for example, by using XGBoost or a simple logistic regression, which 

performs adequately well in the presence of imbalanced data (Shahri, et al., 2021) or even 

outperforms some DL models (Shwartz-Ziv and Armon, 2021). 
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Appendix B – Principal functions from source code from Chapter 4 
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Appendix C – Principal functions from source code from Chapter 5 
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Appendix D – Principal functions from source code from Chapter 6 

 

 

 



  © University of South Africa 

102 

 

 

 



  © University of South Africa 

103 

 

 

 

 



  © University of South Africa 

104 

 

 

 

 

 


