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Abstract 
Energy-poor households in Africa’s burgeoning urban informal settlements are especially likely to suffer from 
heatwaves because of thermally inefficient dwellings and lack of affordable cooling options. This study utilised 
a controlled experiment to assess the effectiveness of passive cooling through specially formulated paints (cool 
coatings) in standard informal structures. The test structures were built to simulate typical shack dwellings in 
South Africa’s urban informal settlements. Results showed that the mean daily maximum temperatures of the 
coated structure were up to 4.3 °C lower than those in the uncoated structure. The same cooling trend was 
observed for the minimum daily temperatures, which were lower by an average of 2.2 °C. Besides, the annual 
frequency of maximum temperature exceedances beyond the critical heat stroke value of 40 °C dropped from 
19% for the uncoated structure to 1% for the coated structure. These temperature differences were found to 
be statistically and subjectively significant, implying that cool coatings may be effective in promoting thermal 
comfort and climate resilience in poor urban communities. It is recommended that governmental authorities 
and relevant role players invest in the production and assisted application of cool coatings in urban informal 
settlements. The interventions promise hope of reduced energy burden on poor households and could be imple-
mented in parallel with ongoing efforts focused on the design and implementation of low-cost, durable and 
thermally comfortable houses for indigent communities. Ultimately, the endeavours could be a potential policy 
change to assist in expanding poor households’ access to alternative and green energy resources.  
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Highlights 
• Energy-poor shack dwellers are frequently exposed to elevated summertime heat. 
• Passive cooling technologies are perhaps one economically viable option. 
• Experimental shacks coated with cool coatings showed lower indoor heat.  
• Cool coatings intervention can greatly improve survivability of shack dwellings. 
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1. Introduction 

Global warming is highlighted as a key challenge in 
the Anthropocene and is associated with higher 
temperatures and frequent extreme heat events 
(Intergovernmental Panel on Climate Change, 
2014). Exposure to extreme heat is a serious public 
health concern and one of the major contributors to 
weather-related mortality (Riley et al., 2018; Gar-
land et al., 2015). Studies indicated that most heat-
wave deaths occur at home (Madrigano et al., 2015; 
Alam et al., 2016) with urban populations being 
more at risk because of compounded effect of the 
well-documented urban heat island phenomenon 
(Habeeb et al., 2015).  

Developing countries in Africa, Asia and Latin 
America face the most significant health effects of 
global warming (World Health Organization 
(WHO), 2018). In these countries, the most 
impoverished populations are most at risk for 
adverse health outcomes related to extreme heat 
events caused by living in thermally inefficient 
houses that lack air conditioning (Habeeb et al., 
2015). It is estimated that one billion people cur-
rently live in informal settlements, mostly in Global 
South cities, with a projection that about three bil-
lion people will be in such settlements by 2030 
(United Nations (UN)-Habitat, 2018). As such, the 
vulnerability of the population is huge and growing. 

In much of the Global South, urbanisation has 
long outstripped local governments’ capacities, as 
evidenced by the high numbers of people living in 
the informal settlements and service backlogs (Sat-
terthwaite, 2011). Sustainable solutions for these 
cities should factor in their unique contexts and not 
just rely on Global North simulations (Muringathu-
parambila et al., 2017). This is especially so in the 
urban energy planning of emerging, densely settled 
African municipalities such as in Gauteng province, 
South Africa (Madlener & Sunak, 2011). Under-
standing this unique set of developmental require-
ments is key to the attainment of United Nations 
Sustainable Development Goal (SDG) 7 that aims for 
universal access to sustainable and modern energy 
for all and SDG 11 for inclusive, safe, resilient and 
sustainable human settlements (United Nations, 
2019).  

Studies have shown that fuel poverty in summer 
is potentially greater than in other seasons, even in 
temperate climates (Simoes et al., 2016; Thomson 
et al., 2019). Cooling needs were neglected in most 
energy access programmes across the world, with 
many energisation projects tailored to meet cook-
ing, heating and lighting services (Thomson et al., 
2019). However, lack of essential indoor cooling is 
increasingly viewed as a key dimension of energy 
injustice that energy planning should consider and 
solve (Mastrucci et al., 2019).  

Energy poverty alleviation and climate change 
mitigation are largely interlinked challenges, yet 
they remain disconnected in research and practice 
(Urge-Vorsatz & Herrero, 2012). This study took a 
concurrent view of both challenges by highlighting 
the health and safety implications of exposure to ex-
treme heat and the disproportionate risk borne by 
energy-poor households. In addition, the study 
tested a passive means of cooling low-income infor-
mal houses (shacks) through cool coating technol-
ogy, i.e., highly reflective paints.  

Populations of South Africa’s shack dwellings, 
estimated at two million households in 2016, are on 
the rise (StatsSA, 2018). Informality is perceived to 
persist in the foreseeable future (Turok & Borel-Sal-
adin, 2016). As providing formal thermally comfort-
able housing for entire populations is a long-term 
aspiration, passive cooling of the current stock of 
informal structures would render them more habit-
able and possibly provide a cost-effective mecha-
nism to alleviate some of the worst public health ef-
fects of extreme indoor temperatures.  

Illnesses attributed to prolonged exposure to 
high temperatures include heat cramps, heat syn-
cope, heat exhaustion, heat stroke, and death (Har-
mon, 2010). Of these, heat exhaustion is the most 
common, and the symptoms include intense thirst, 
heavy sweating, weakness, paleness, discomfort, 
anxiety, dizziness, fatigue, fainting, nausea or vom-
iting, and headache (Lugo-Amador et al., 2004). If 
untreated, these symptoms may progress to a heat 
stroke, which is a life-threatening health condition 
requiring neurocritical care (Hifumi et al., 2018). 
Heat stroke is clinically defined as a core body tem-
perature ≥40 °C, accompanied by hot, dry skin and 
central nervous system abnormalities such as delir-
ium, convulsions, or coma (Luber & McGeehin, 
2008). Those at the highest risk of heat stress in-
clude the elderly and young children (Kovats & 
Hajat, 2008).  

Heat stress mortality is likely to increase if 
global warming continues at the same trajectory. 
Analysis done in India indicated that an increase of 
about 0.5 °C between 1960 and 2009 corresponded 
to an approximate 150% increase in the probability 
of heat-related mortality (Mazdiyasni et al., 2017). 
Projections indicated that African continent will 
equally experience high increases in heat vulnera-
bility because of increasing maximum apparent 
temperatures amidst widespread poverty and ine-
quality (Garland et al., 2015; Wright et al., 2019). 
Contrary to assertions that humans would adapt to 
any possible warming, evidence indicates that heat 
stress imposes a robust upper limit to such adapta-
tion, especially if peak heat stress exceeds 35 °C for 
long periods (Sherwood & Huber, 2010). Although 
several factors may cause heat-related illnesses, an 



30    Journal of Energy in Southern Africa • Vol 31 No 1 • February 2020 

elevated environmental heat burden presents the 
most substantial risk (Ishimine, 2018). 

Apart from direct health impacts, elevated am-
bient temperatures have been linked to a resur-
gence of residual malaria infections in parts of the 
Global South (Durnez et al., 2013). These infections 
occur as people in endemic areas sleep outdoors be-
cause their houses are too warm at night (Monroe 
et al., 2015). The use of cool coatings in such situa-
tions may allow people to get indoors by night, 
thereby reducing exposure to malaria vectors.  

In addition, heatwaves were associated with 
high levels of trauma, chronic stress, anxiety, de-
pressive disorder, suicide and neuropsychiatric 
syndromes (Doherty & Clayton, 2011). Further, a 
relationship between heat and direct violence was 
reported, with increased global temperatures asso-
ciated with increasing rates of assault, rape and 
robbery (Ranson, 2014). A South African study re-
ported higher levels of interpersonal violence dur-
ing periods of high temperatures and estimated that 
the current number of homicides in the country 
may increase by about 5% with 1°C rise in temper-
ature (Chersich et al., 2019). Furthermore, the asso-
ciations between heat and violence seem notably 
stronger in disadvantaged communities (Mares & 
Moffett, 2016). It is argued that the provision of 
cooling mechanisms, such as cool coatings, may be 
a practical way of reducing the ‘felt effects’ of ex-
treme heat and the associated aggressive behav-
iours in vulnerable communities (Chersich et al., 
2019; Diamond, 2017).  

Cool coatings are specially formulated paints 
with high solar reflectance and infrared emittance 
(Akbari & Mathews, 2012). They are used for pas-
sive cooling in buildings and work by reflecting a 
portion of the incident light energy into space. The 
use of cool materials and green surfaces decreases 
solar gain of buildings and may also assist with 
moderation of the urban heat island effect (Mirzaei, 
2016). Passive cooling eliminates or reduces the 
need for electric power-driven air conditioning, giv-
ing a range of financial and environmental benefits 
(Revel et al., 2014). Beyond energy savings and eco-
nomic benefits in formal buildings, the coatings 
could provide thermal comfort to shack dwellers 
and occupants of low-cost non-air-conditioned 
buildings (Pisello, 2017).  

Studies done in hot and arid climate settings in-
dicate that passive cooling technologies may reduce 
the total energy consumption of a formal residential 
building by more than 20% (Talieb, 2014; Algarni, 
2018). Moreover, the maximum annual winter heat-
ing load penalty incurred by the cool roof is approx-
imately 3% of the annual cooling load reduction, 
thus a negligible detriment (Algarni, 2018). The 
ability for cool coatings to reduce cooling energy 

loads may be an appropriate electric demand man-
agement strategy in places like South Africa, where 
load shedding is frequently applied. The use of cool 
coatings for energy management and the promo-
tion of human comfort in buildings is a recognised 
and legislated requirement in some countries and 
city jurisdictions (Levinson et al., 2005; California 
Energy Commission, 2006). This is because of their 
demonstrated potential to enhance climate resili-
ence and urban habitability (Gilbert et al., 2016).  

Comparisons between different green cooling 
technologies and roof colours show that white-
coated roofs are three times more effective at cool-
ing than vegetated roofs (Sproul et al., 2014). Fur-
thermore, cool roofing materials demonstrate ex-
cellent weather resistance and may, therefore, en-
hance roof durability (Yanli et al., 2017). However, 
cooling degradation might happen over the lifecycle 
because of weathering and aging, hence the need for 
greater efforts in the development of cool materials 
that withstand the test of time (Tsoka et al., 2018). 

Since the primary objective of cool coatings is to 
increase the cooling, more highly reflective materi-
als are desirable and continue to be developed (Ro-
man et al., 2016). However, the new generation of 
‘smart’ cool materials must also promote winter-
time comfort especially in thermally inefficient low-
cost houses and informal settlements. Advances in 
nanotechnology have assisted in this regard, with 
the conception of highly reflective and thermally re-
versible thermochromic paints (Karlessi et al., 
2009; Castaldo & Pisello, (2019). These paints are 
designed to have a high reflectivity during the hot 
summer months and a high absorption rate in cold 
winter months, thereby helping to maintain a com-
fortable indoor ambience across seasons. Another 
mitigation technique in this domain is phase-
change materials (PCM), which possesses high la-
tent heat capacity and can be used as energy storage 
media and cooling in building envelopes (Chou et 
al., 2013; Kong et al., 2014). The PCM membranes 
absorb solar and infrared radiations and release a 
portion of the accrued thermal energy through con-
vective and radiative processes into the atmos-
phere (Roman et al., 2016). Retro-reflective materi-
als that reflect light back along the incident direc-
tion may achieve better overall cooling results than 
plain highly reflective materials (Yuan et al., 2015).  

Although cool coatings seem to be beneficial for 
heat management in formal buildings (Miller et al., 
2015), there is an evidence deficit of their efficacy 
in informal dwellings. It is this gap that motivated 
the present study, where comparative experimental 
work was carried out on indoor temperatures of 
two structurally identical informal structures, one 
cool-coated and the other untreated. The test struc-
tures were constructed to simulate typical shack 
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 Figure 1: Image of an informal settlement in Cape Town, South Africa (Milne, 2017). 

dwellings in the informal settlements that mani-
fested around the larger cities of South Africa over 
the past three decades (Figure 1).  

2. Methodology 

2.1 Experimental site  
The experimental site was in Lenasia, Region G of 
the City of Johannesburg, Gauteng, South Africa 
(Latitude -26.35° and Longitude 27.85°; Google lo-
cation: https://goo.gl/maps/onqK21n5tWC1BYky8); 
approximately 25 km south of the central business 
district (Figure 2). The site has an altitude of 1 604 
m above sea level. The local climate is classified as 
warm and temperate, with cool winters and warm 
summers. The temperature occasionally drops to -3 
°C in winter and infrequently rises to above 40 °C in 
spring, summer and autumn. Annual precipitation 
is 700 mm, most of which occurs in summer and au-
tumn (Climate-data, 2018). 

2.1 Equipment setup and data collection 
Test structures 
A controlled experiment was set up to assess the ef-
ficacy of cool coatings in timber frame and galva-
nised iron sheet dwellings (Figure 3). Each struc-
ture measured 2.7 m (length), 2.2 m (front height) 
2.0 m (rear height) and 2.0 m (width). The roof and 
outer walls of one of the structures were coated 
with cool coatings, leaving the other structure un-
coated as the control. The structures had concrete 
floors but no ceilings or wall insulation. Both struc-
tures had one door and a curtained window facing 
north-east. The structures were naturally venti-
lated by air circulation through the small gaps be-
tween the roof and wall. The material used to con-
struct the test structures, and the dimensions and 
orientation, were selected to mimic conditions in 
target community sites.  

Figure 2: Location of study site in Lenasia, 

Johannesburg South, Gauteng, South Africa 

(Municipalities of South Africa, 2020). 

Cool coatings material and coating procedure 
The cool-coating material used in this study was 
white, with the following manufacturer-supplied 
performance limits: solar reflectance – 0.84, infra-
red emittance – 0.9, and solar reflectance index – 
106 (Cool Roof Rating Council, 2014). About 6.6 li-
tres of the product were used to coat the roof and 
external walls of the test structure at a cost of ZAR 
400. The coating was done in this manner:  

• new galvanised iron sheets were cleaned 
and treated with two coats of water-based 
primer;  

• two hours were allowed for drying; and 

https://goo.gl/maps/onqK21n5tWC1BYky8
https://goo.gl/maps/onqK21n5tWC1BYky8
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Figure 3: Experimental structures: a) uncoated (control) and b) coated. 

Figure 4: Temperature sensor.  

Figure 5: a) Cloud Hub™ data logger, b) Battery back-up. 

• the primed surface was painted with the 
first cool coating and left to dry overnight 
before the application of the second and fi-
nal coat. 

Temperature measurement equipment 
The equipment Included three wireless tempera-
ture sensors, a Cloud Hub data logger, and battery 
backup. The equipment was supplied by Qwik-
Switch™, a wireless automation and control solu-
tions provider based in Cape Town. The equipment 
was purchased site-ready in mid-October 2016 and 
installed soon after. The battery-powered external 
temperature sensor consisted of a measurement 
probe attached to thermometer housing by a 2 m 
wire (Figure 4). Sensor measurement range was 

-20–90 °C, designed to relay the temperature data 
to the data logger from about 30 m through walls 
and floors or a 100 m line-of-sight. Indoor temper-
atures of each test structure were continuously 
tracked with the temperature sensor suspended 
500 mm at the centre of the room. A third sensor 
was set outside to measure ambient shade temper-
atures of the experimental site. 

The Cloud Hub data logger (Figure 5) collected 
information from the temperature sensors, then 
formatted and transferred it to a web database. It 
typically used 30 MB data per month, which was 
supplied through a data-enabled sim card. The 
Cloud Hub stayed connected to a power source, 
which was backed-up with a 12 V battery. Live read-
ings of the logged data were accessed on the web 
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dashboard that also contained recorded data in the 
form of graphs and PDF reports.  

2.3 Data collection procedures 
Once in place, the three temperature sensors were 
set and added to the Global System for Mobile com-
munications (GSM) Cloud Hub™ data logger 
through the web dashboard. Averaged readings 
were recorded every five minutes. The doors and 
windows of both structures were shut continuously 
except on rare occasions for checking the instru-
ments or conducting a demonstration. Measure-
ments were recorded from 16 November 2016 to 
15 January 2018, a total of 408 days, excluding a pe-
riod of 18 days from 21 October to 7 November 
2017, for which no data were available.  

2.4 Analytical methods 
The analysis procedure was a side-by-side compar-
ison of indoor temperatures of the coated and un-
coated structures. Temperature data were rec-
orded in MS Excel sheets, sorted and exported to 
IBM SPSS Version 25 for analysis. Parameters of in-
terest were the mean values, standard deviations 
and cooling effect. The summary-independent sam-

ples t-test at 95% confidence level was used to com-
pare the statistical significance of mean tempera-
ture differences between the control and coated 
structures. The analysis covered the entire data set 
of 408 days, equivalent to 96% data recovery. Com-
parisons were then made for exceedances of the 
heat stroke critical value of ≥40 °C. 

3. Results  

The maximum daily temperatures for the coated 
and control structures are plotted in Figure 6. The 
mean daily maximum temperature inside the test 
(coated) structure was 30.2 °C, while that of the 
control structure (uncoated) was 34.5 °C, a cooling 
difference of 4.3 °C. The highest cooling effect in a 
day was 10 °C. The same cooling trend was 
observed for the minimum daily temperatures, 
which were lower in the coated structure by an av-
erage of 2.2 °C. 

Disaggregation of the data into the four tradi-
tional southern hemisphere seasons shows that the 
highest maximum and minimum mean tempera-
tures were observed in summer. However, the 
largest cooling effects were observed in autumn 
(Table 1).  

Figure 6: Daily maximum temperatures for coated and uncoated structures. 
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Table 1. Temperature data for uncoated and coated structures by season. 

Experimental structures 

Mean seasonal max and min daily temperatures (˚C) 

Summer (November-
February)  

Autumn (March-
May)  

Winter (June-Au-
gust) 

Spring (September-
October) 

Max  Min  Max  Min  Max  Min  Max  Min  

Uncoated structure (US) 36.9 17.6 33.9 13.0 29.5 7.6 36.5 12.9 

Coated structure (CS) 33.3 15.5 29.1 10.0 25.0 4.7 32.2 10.5 

∆ Temp (US-CS) cooling  
effect 

3.6 2.1 4.8 3.0 4.5 2.9 4.3 2.4 

Max. US = 36.9 ˚C, Max. CS = 33.3 ˚C; Min. US = 7.6 ˚C, Min. CS = 4.7 ˚C. 

Table 2. Daily maximum temperatures and relative frequencies for test structures and ambient air. 

Daily max tempera-
tures (°C) 

Frequency (n = 408 days) 

Control (Uncoated) Coated Ambient 

Days % Days % Days % 

10.0–14.5 0 0.0 1 0.2 3 0.7 

15.0–19.5 4 1.0 8 2.0 20 4.9 

20.0–24.5 14 3.4 55 13.5 104 25.5 

25.0–29.5 68 16.7 124 30.4 102 25.0 

30.0–34.5 110 27.0 128 31.4 134 32.8 

35.0–39.5 136 33.3 86 21.1 44 10.8 

40.0–44.5 73 17.9 6 1.5 1 0.2 

45.0–50 3 0.7 0 0.0 0 0.0 

It was tested whether the mean difference of the 
daily maximum and minimum temperatures of the 
test structures were significantly different. In this 
regard, the maximum daily temperature of the un-
coated structure – mean (M) = 34.5, standard devi-
ation (SD) = 5.52, number of days (n) = 408 – was 
hypothesised to be greater than the maximum daily 
temperature of the coated structure (M = 30.2, SD = 
5.20, n = 408). This difference was found to be sta-
tistically significant: t (814) = 11.45, p = 0.00 (2-
tailed). Equally, the mean minimum daily tempera-
tures of the control structure (M = 13.7, SD = 4.63, n 
= 408) were significantly different from the mean 
minimum daily temperatures of the coated struc-
ture (M = 11.2, SD = 5.14, n = 408), t (814) = 7.3, p = 
0.00). The results show that cool coatings were ef-
fective in reducing the indoor air temperatures of 
the coated structure.  

Further analysis indicated that the maximum 
daily temperature in the control (uncoated) struc-
ture equalled or exceeded the critical heat stroke 
threshold of 40 °C (Hifumi et al., 2018) about 19% 
of the time (76 days) compared with 1.5% (6 days) 
for the coated structure (Table 2 and Figure 7). This 

implies that the risk of heat stroke was 12 times 
greater in the uncoated structure than the coated 
one. Furthermore, the maximum daily tempera-
tures of the control structure exceeded the peak 
heat stress threshold of 35 °C (Sherwood & Huber, 
2010) about 50% of the time (203 days), compared 
with 18% (75 days) for the coated structure. By com-
parison, the maximum daily ambient temperature 
of the experimental site breeched the heat stress 
and heat stroke thresholds only 8% and 0.2% of the 
time, respectively. These results highlight the higher 
risk of exposure to heat illnesses indoors compared 
with outdoors and the inherent potential for cool 
coatings to ameliorate extreme heat exposures. 

The diurnal temperature profiles for the two 
test structures are similar and largely influenced by 
the prevailing meteorological conditions (Figures 8 
and 9). In both cases the temperatures are lowest in 
the early mornings, then rising sharply as the sun 
comes up and peaking around mid-afternoon. The 
steepest temperature rise is noticeable in winter 
days (Figure 9), especially in the control structure.  
In both summer and winter, the coated structure 
maintained comparatively cooler temperatures.  
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Figure 7: Cumulative annual frequencies of daily temperature exceedances above specified values. 

Figure 8. Diurnal temperature profile for selected summer month, February 2017. 

Figure 9: Diurnal temperatures profile for selected winter month, June 2017. 
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4. Discussion  

Increases in environmental heat are recognised as 
contributors to adverse health outcomes including 
psychological disorders, social distress, and fatali-
ties, especially in energy-impoverished environ-
ments (Doherty & Clayton, 2011; Mares & Moffett, 
2016). This study assessed the effectiveness of cool 
coatings as a possible technological response that 
may serve to mitigate the risks for negative health 
outcomes arising from extreme heat events in un-
der-resourced settings. The results indicated that 
cool coatings are effective in maintaining signifi-
cantly lower indoor temperatures. These findings 
are corroborated by similar empirical studies that 
focused on cool-coating applications to formal 
structures (Baniassadi et al., 2018). As such, the use 
of these coatings may be a solution to prevent or 
significantly reduce life-threatening impacts of ex-
treme heat events in poor and energy-impover-
ished urban communities.  

The study recognises that elevated indoor tem-
peratures in informal houses may emanate from 
several factors, such as the types of building mate-
rials used, building orientation, confined spatial 
conditions and poor air circulation. Therefore, the 
use of cool coatings in low-income housing should 
be considered alongside interventions on safe, 
structurally appropriate and affordable housing for 
low-income households. Beyond individual houses, 
studies indicate that the use of the coatings in 
school classrooms promotes a better learning at-
mosphere and education outcomes, especially for 
vulnerable child populations that are dependent on 
natural ventilation and cooling (Sarbu & Pacurar, 
2015).  

A fundamental limitation of the cool coatings is 
the possible winter discomfort that may arise from 
cooler indoor temperatures. This shortcoming 
could be mitigated with inexpensive countermeas-
ures such as wall and ceiling insulation using 
cheaper available material, or possibly further de-
sign alterations to minimise the cooling effect of the 
coating below a specific ambient temperature 
range. This approach would be informed by recent 
advances in the production of thermally responsive 
materials that could automatically adapt to outdoor 
meteorological conditions of winter, summer and 
transitional seasons (Wang et al., 2019). Neverthe-
less, the current results have broad applicability in 
most areas of the African continent that are urban-
ising at a fast rate in a resource-constrained age 
(Swilling, 2015; Venables, 2018).  

In the absence of protection offered by such in-
terventions, health losses and social conflicts ema-
nating from the exposure to elevated indoor heat 
will remain a challenge and may escalate (Chersich 
et al., 2019) alongside rising informality (Socio-Eco-
nomic Rights Institute of South Africa, 2018) and 

higher seasonal temperatures (Lakhraj-Govender & 
Grab, 2019). A case in point is Region G of the City 
of Johannesburg, the location of the current study, 
where unprecedented numbers of people have 
moved onto vacant land and erected thousands of 
metal shack dwellings, similar to the situation con-
fronting most South African urban centres (Sime-
lane, 2019). The challenges of dwelling in these 
basic structures are compounded by lack of access 
to formal energy carriers especially in environ-
ments that have limited green and shady spaces. 
There are further indications of a surge over time in 
protest violence and inter-personal and gender-
based violence especially in marginalised spaces of 
urban life (Lau & Seedat, 2017; De Juan & Wegner, 
2019). Although a complex set of factors are re-
sponsible for such interpersonal and social discord, 
interventions to promote thermal comfort despite 
the prevailing energy and structural impoverish-
ments, may buffer against individual psychological 
stress and assist in the promotion of individual and 
community wellbeing and peace.  

5. Conclusions  

The results provide a proof of application effective-
ness and offers interventionists and researchers 
working in partnership with housing authorities an 
empirical foundation to consider or advocate for 
the use of cool coatings for passive cooling. The in-
tervention is easy to install and scale-up with un-
skilled labour. Besides reducing the direct threats of 
elevated heat, the intervention can assist in mitigat-
ing against heat-induced stress in under-resourced 
communities and in the prevention of related health 
and longer-term social concerns. It is recommended 
that governmental authorities and relevant role 
players invest in the production and assisted appli-
cation of cool coatings in urban informal settle-
ments. The interventions could be implemented in 
parallel with ongoing efforts focused on the design 
and implementation of low-cost, durable and ther-
mally comfortable houses for poor communities. 
Public action should equally focus on imparting ed-
ucation on passive means of promoting thermal 
comfort in poor communities regardless of seasonal 
variations. These endeavours should ideally be 
supported through public-private and civil partner-
ships to accelerate delivery and spread potential 
economic gains. Ultimately, this could be a potential 
policy change to assist in expanding poor house-
holds’ access to alternative and green energy re-
sources.  
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