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Abstract 

Maize (zea mays) is the staple food of Southern Africa and most of the African regions.  This staple food has 

been threatened by a lot of diseases in terms of its yield and existence. Within this domain, it is important for 

researchers to develop technologies that will ensure its average yield by classifying or predicting such diseases 

at an early stage. The prediction, and to some degree classifying, of such diseases, with much reference to 

Southern Africa staple food (Maize), will result in a reduction of hunger and increased affordability among 

families. Reference is made to the three diseases which are Common Rust (CR), Grey Leaf Spot (GLS) and 

Northern Corn Leaf Blight (NCLB) (this study will mainly focus on these). With increasing drought conditions 

prevailing across Southern Africa and by extension across Africa, it is very vital that necessary mitigation 

measures are put in place to prevent additional loss of crop yield through diseases. This study introduces the 

development of Deep Learning (DL) Convolutional Neural Networks (CNNs) (note that in this thesis deep 

learning or convolution neural network or the combination of both will be used interchangeably to mean one 

thing) in order to classify the disease types and predict the severity of such diseases.  The study focuses 

primarily on the CNNs, which are one of the tools that can be used for classifying images of various maize 

leaf diseases and in the severity prediction of Common Rust (CR) and Northern Corn Leaf Blight (NCLB). In 

essence the objectives of this study are:  

i. To create and test a CNN model that can classify various types of maize leaf diseases.   

ii. To set up and test a CNN model that can predict the severities of a maize leaf disease known 

as the maize CR. The model is to be a hybrid model because fuzzy logic rules are intended to 

be used with a CNN model. 

iii. To build and test a CNN model that can predict the severities of a maize leaf disease known as 

the NCLB by analysing lesion colour and sporulation patterns. 

This study follows a quantitative study of designing and developing CNN algorithms that will classify and 

predict the severities of maize leaf diseases. For instance, in Chapter 3 of this study, the CNN model for 

classifying various types of maize leaf diseases was set up on a Java Neuroph GUI (general user interface) 

framework. The CNN in this chapter achieved an average validation accuracy of 92.85% and accuracies of 

87% to 99. 9% on separate class tests. In Chapter 4, the CNN model for the prediction of CR severities was 

based on fuzzy rules and thresholding methods. It achieved a validation accuracy of 95.63% and an accuracy 

89% when tested on separate images of CR to make severity predictions among 4 classes of CR with various 

stages of the disease’ severities. Finally, in Chapter 5, the CNN that was set up to predict the severities of 

NCLB achieved 100% of validation accuracy in classification of the two NCLB severity stages. The model 

also passed the robustness test that was set up to test its ability of classifying the two NCLB stages as both 

stages were trained on images that had a cigar-shaped like lesions. The three objectives of this study are met 

in three separate chapters based on published journal papers. Finally, the research objectives were evaluated 
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against the results obtained in these three separate chapters to summarize key research contributions made in 

this work.   
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CHAPTER 1: Introduction 

1.1 Background  

Plant diseases usually result in a reduced crop yield and that in essence affects the economies of many 

countries.  For instance, in the works of Sankaran et al. (2010) it is highlighted that soybean rust, which is a 

fungal disease had caused a substantial economic loss, of which by just removing 20% of the infection would 

have benefitted the farmers a total of USD 11 million profit.  There are so many ways of detecting and 

preventing plant leaf diseases in order to avert disastrous results like the one put forward by Sankaran et al. 

(2010). The most common of these are the chemical-based methods. However, there are limitations in terms 

of applying such chemical-based methods.  The chemical-based methods, though conducive, are tedious and 

laborious in nature to solving the problem of detecting various plant diseases in commercial fields. As a matter 

of fact, such measures will require laboratory procedures which may be time consuming and costly.  By and 

large, there are several diseases associated with maize (corn) but the most prevalent ones are the common rust 

(CR), northern corn Leaf Blight (NCLB) and gray leaf spot (GLS).  These three diseases affect Zea mays 

(maize) crop yield in different ways and will be discussed in this thesis separately.  

1.1.1 Northern Corn Leaf Blight (NCLB) Symptoms and Epidemiology  

Northern corn leaf blight (NCLB) is a fungal disease of maize or corn (note that in thesis corn or maize will 

be used interchangeably) and is caused by a fungus called Exserohilum turcicum (Jackson-Ziems 2016).  The 

fungus is active and grows well in cold to moderate temperatures and high relative humidity. Studies indicate 

that NCLB is present in most of South Africa's maize-producing areas. The disease is also sporadically 

common in other moist maize-producing regions of the world. Yield loss due to this disease can be significant, 

up to 30-50% in susceptible hybrids when the disease develops early in the season, prior to the appearance of 

tasselling (Jackson-Ziems 2016). However, when the severity of the disease is minor or its development is 

delayed until well after siltation, the effects on yield are usually minimal. 

 

Figure 1. 1: (a) Northern corn leaf blight lesions are usually larger, tan to grey, and cigar-shaped and (b) The fungus causing northern corn leaf 

blight can produce large amounts of spores on the surface of lesions, giving them a dark or dusty appearance. 
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NCLB can be identified by relatively large grey or greenish elliptic or cigar form lesions that can develop on 

leaves, shells, or leaf sheaths (Figure 1.1). Lesions can range from 2.5 centimetres to over 17.5 centimetres in 

length and are oriented parallel to the foliar veins. Some maize hybrids may or may not result in dark-edged 

lesions. These are not limited by leaf veins in order to infect the plant. As the lesions mature, their colour can 

change to tan and the production of fungal spores can become visible in the middle of the lesions, resulting in 

a darker, dustier appearance. Because the lesions of the NCLB may appear similar to those of Goss’s bacterial 

wilt and blight, an accurate diagnosis to effectively manage and minimize losses caused by the disease is 

necessary. The disease usually develops in the form of some scattered lesions in the lower canopy, which 

eventually develops lesions in the upper canopy, if the favourable conditions persist. One or more lesions may 

form on a leaf (Figure 1.2) and increase in size, frequently causing coalitions (union) and blights on larger 

areas or entire leaves. Symptoms may differ in self-pollinated maize seed varieties or in some resistant hybrids. 

For instance, lesions may appear smaller, yellow and/or spore-free in resistant hybrids (Jackson-Ziems 2016). 

The fungus that causes NCLB winters in infected leaves, sheaths and cockles from previous years. Spores 

produced on the residue or on diseased plants in the field can be transferred to new leaves higher on the plants 

or blown by the wind over long distances to neighbouring fields. Spores require 6-18 hours of water at the leaf 

surface for the germination and to some extent infect the leaf. The disease occurs more frequently during 

periods of high relative humidity and mild temperatures, which promote the production and germination of 

fungal spores. The growth of lesions takes 7 to 12 days after infection, depending on the hybrid susceptibility. 

The development of this disease may be unnoticed or unrecognised for one to two weeks when supported by 

favourable weather conditions. When this happens, lesions develop and may not be noticed until later in the 

latent phase. The severity of the disease (which is part of our study) increases as the lesions extend and grow, 

reducing the photosynthetic area, which reduces the filling (the period between anthesis and physiological 

maturity) and grain yield (Jackson-Ziems 2016).   

 

Figure 1. 2: Multiple northern corn leaf blight lesions can develop on leaves and expand and become larger, eventually blighting entire leaves 

(Jackson-Ziems 2016).  
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1.1.2 Common Rust Symptoms and Epidemiology 

Although some rust blisters may still be found in corn fields throughout the growing season, symptoms usually 

do not appear until after tasselling. These are distinguishable from other diseases by the development of 

darkish and reddish-brown pustules (urodynia) scattering over both the lower and upper surfaces of the maize 

leaves (Fig. 1.3) (Campus,2012). The pustules appear oval to elongated, and are usually small, less than 0.6 

centimeters long, and are encircled by the epidermal layer of the leaf. If infections occur, when the leaves are 

still in the whorl, the pustules can develop in bands on the surface as the leaf expands in size (Dilliard, 1990). 

 

Figure 1. 3: Common rust of corn (https://ohioline.osu.edu/factsheet/plpath-cer-02) 

In contrast to most other corn leaf diseases, this rust fungus does not wait out the winter season (overwintering) 

in plant residues. More often than not, spores are dispersed during the growing season where this fungus 

survives on corn or wood sorrel, the alternative host. Young leaves are generally more sensitive to infections 

than older leaves. The development and spread of rust are favoured by extended periods of cool temperatures 

ranging from 15° to 23° and high relative humidity (Dilliard, 1990). As a result, pustules develop on 

susceptible maize hybrids within 7 days of infection. Occasionally, chlorosis and death of leaves, and leaf 

sheaths occur with severe infections. The uredospore produced during the season are spread by the wind, 

spreading the pathogen to new leaves, plants and fields. As the maize plant matures, the pustules become 

brownish and blackish because of the development of darker pigmented teloids that replace urodynia and 

produce teliospores (Campus,2012).  

1.1.3 Gray Leaf Spot Symptoms and Epidemiology 

GLS of maize is caused by the fungus Cercospora zeae-maydis. The disease is now recognised as one of the 

most maize yield limiting diseases in the world and certainly in the KwaZulu-Natal province, South Africa 

(Ward and Nowell, 1994). Not only is it a threat to corn production in commercial agriculture, but it also 

reduces maize yields on small farms. It was first identified in KwaZulu-Natal in 1989/90 and has since spread 

to neighbouring provinces and most maize-producing African countries (Ward and Nowell, 1994). Initial 

symptoms usually appear on the lower leaves of the maize plant. The immature lesions first appear as small 

tan spots about 1 to 3 mm in size and are irregular in shape. Tanning spots typically have yellow or chlorotic 

https://ohioline.osu.edu/factsheet/plpath-cer-02
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borders and are easier to observe when the leaf is held towards the light (see Figure 1.4 (a)). Mature lesions 

are distinguished from other symptoms of the pathogen and are clearly rectangular in shape (5 to 70 mm long 

and 2 to 4 mm wide) and run parallel with leaf veins (Figure 1.4 (b)). 

 

Figure 1. 4: Diseased maize leaf with grey leaf spot (Ward, 1999). 

The GLS is highly dependent on favourable weather conditions. It requires frequent and prolonged periods of 

high humidity and warm temperatures (20℃ to 30℃) to complete spore germination and the infection process. 

Spores (also known as conidia) are produced from infested residues of previous maize crops in spring under 

conditions of high humidity and these are windblown to infect the newly planted maize crop. The lower leaves 

are usually the site of primary infection. 

1.1.4  Overview of Machine Learning Techniques 

Machine learning (ML) is a form of data processing that automates the development of analytical models. It 

is a branch of artificial intelligence focused on the premise that computers can learn from data, recognize 

patterns, and make decisions with little to no human input. Generally, there is a significant amount of literature 

of ML algorithms which can be classified according to the approach used in the learning process. The four 

major learning classes are supervised, unsupervised, semi-supervised and reinforcement learning (Aurélien, 

2017). Supervised learning happens when ML algorithms get training data matched with the desired output. 

At this stage, the ML algorithm learns from the training data, and use the features learned to make predictions 

on unknown data. Unsupervised ML algorithms are not equipped with training data sets. In the case of 

unsupervised learning, real-world data is fed to algorithms and must learn from this data on its own. When 

classified as semi-supervised learning, ML algorithms work with a training dataset containing missing 

information, and still must learn from it. Lastly, the ML algorithms might have a reinforcement learning 

approach which occurs when the algorithms learn based on external feedback given either by a thinking entity, 

or the environment. An example of the ML algorithm using reinforcement learning could be the ML algorithm 

that plays games against a human opponent. Deep learning (DL) is a subfield of machine learning in the 
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artificial intelligence context that employs neural networks (NN) layers to learn from the training data. Figure 

1.5 illustrates the concept of ML and DL. 

 

Figure 1. 5: Classification and illustration of ML and DL concepts. 

There are three important types of NN as listed below: 

i. Artificial Neural Network (ANN): A typical ANN is dealt with in section 1.1.4.1 

ii.  Convolutional Neural Network (CNN): This employs ANN with convolution and pooling layers. The 

type of data these can handle are images. An example of a typical CNN is dealt with in section 1.1.4.2. 

iii. Recurrent neural Network (RNN): These have a recurrent connection to the hidden state. They handle 

time series data, text data and audio data. An example of a typical RNN is dealt with in section 1.1.4.3. 

1.1.4.1 Artificial Neural Networks 

A single layer feed forward artificial neural network (ANN) is shown in Figure 1.6 

 

Figure 1. 6: A single layer feed forward NN. 

The word deep learning becomes significant when the hidden layers are added in the ANN shown in Figure 

1.6. This implies that DL NN models have more than one hidden layer. An example of a DL ANN is shown 

in Figure 1.7. 
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Figure 1. 7: A NN with more than one hidden layer is called DL ANN. 

1.1.4.2 Recurrent Neural Networks 

The most famous type of recurrent neural network (RNN) is the Jordan network. The Jordan network is a sort 

of repetitive (recurrent) neural system whereby the activation values of the output units are continually fed 

into the input layer through an arrangement of extra input units called the state units. There is a constant 

amount of state units as there are output units in the network. A set weight of 1 is available in associations 

between outputs and state units. This means that learning occurs only in the associations between the inputs 

and the hidden units as well as the hidden and output units. Figure 1.8 shows the RNN type called the Jordan 

network.  

 

Figure 1. 8: The Jordan network is shown with output activation values that are fed back to the input layer, to a set of extra neurons called the 

state units (Krose,1993). 
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1.1.4.3 Self-Organising Neural Networks  

These kinds of neural networks learn without the supervision of an external teacher. The unsupervised weight-

adapting algorithms are usually based on some form of global competition between the neurons. These 

networks use competitive learning to learn. A particular kind of self-organising network (SOM) is known as 

Kohonen network. It consists of a feed forward structure that has a single computational layer arranged in 

columns and rows. Every neuron is full connected to all the source nodes in the input layer. Figure 1.9 shows 

a typical self-organising Kohonen network.  

 

 

Figure 1. 9: A typical Kohonen network 

The self-organisation process is governed by four major components named as follows: 

i. Initialization: Small random values are used to initialize all the connection weights. 

ii. Competition: A neuron with the smallest value of the discriminant function is the one that is declared 

the winner. 

iii. A neuron that wins determines the spatial location of a topological neighbourhood of excited neurons, 

and therefore providing the basis for cooperation among neighbouring neurons. 

iv. Adaptation: The excited neurons decrease their single values of the discriminant function related to 

the input pattern through recommended adjustment of the associated connection weights, in a way that 

makes the response of the winning neuron to the subsequent application of a similar input pattern 

enhanced. 

1.1.4.4 Machine Learning and Convolutional Neural Networks Applied in Plant Disease Classification.  

A CNN is a type of artificial neural network used in image recognition and processing which is specially 

designed for processing pixels. A CNN utilizes a system much like a multi-layer perceptron that has been 

designed to reduce processing requirements. The layers of a CNN are made up of an input layer, an output 

layer and a hidden layer that includes several convolutional layers, bundled layers, fully connected layers, and 

normalization layers. The removal of limitations and increase in efficiency for image processing results in a 

system that is far more effective, simpler to train for image processing. A standard architecture of a CNN is 

https://searchenterpriseai.techtarget.com/definition/neural-network
https://searchenterpriseai.techtarget.com/definition/image-recognition
https://whatis.techtarget.com/definition/perceptron
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shown in Figure 1.10. It consists of layers that serve different purposes in extracting the features of the input 

image. The standard CNN architecture shown in Figure 1.10 is a basis of many state-of-the-art CNN 

architectures that are available in the literature. Among a few, these include widely used CNN models such as 

the VGG-16 and Google net. An input image can be either a colour image or grey image. These input images 

are tensors of shape (image height, image width, image channels). Colour images have three image channels 

of red, green and blue normally expressed as RGB channel. 

 

 

 

 

Figure 1. 10: A standard CNN architecture. 

 

The pixels for each of these channels can be varied from 0 to 255 to express the channel intensities. Grey 

images have only one channel that its pixels can be varied from 0 to 255. Grey to light-grey intensities can be 

achieved when the intensity settings approach 255, whereas darker intensities are achieved towards 0 intensity 

settings. The purpose of convolution is to extract features from an input image by sliding a filter along the 

windows of the image. Pooling merges semantically similar features into one, by preserving task-related 

information while removing redundant information. In a broader sense, the function of pooling is to 

continually reduce the image dimensionality while preserving important features, and hence reducing the 

number of parameters and computations in the network. This shortens the training time and controls overfitting. 

Fully connected dense layers learn the different features of the images and have special activation functions. 

Table 1.1 summarizes the layers of a standard CNN architecture.  
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Table 1. 1: A tabulated summary of a standard CNN Architecture and description of each layer. 

CNN layers by order Description of each layer 

Layer 1 Input Reception Input layers are where the raw input data of the image are loaded for processing in the network. The raw 

input data of the images could be in the format RGB (W x H x 3) or Greyscale (W x H). 

Layer 2 First Convolutional 

layer and number of 

filters. 

The convolutional layers are considered the core building blocks of CNNs. These convolutional layers 

transform the input data by using a patch of locally connecting neurons from the previous layer. The 

convolutional layer computes a dot product between the region of the neurons in the input layer, and the 

weights to which they are locally connected in the output layer. This will result to an output layer with the 

same, and smaller spatial dimensions. Filters perform the dot matrix with the input to get the activation 

maps. This is achieved through the process called convolution. 

Layer 3 ReLU activation 

function 

The ReLU layer applies an activation function that is element wise over the input data thresholding for 

example, max (0, x) at zero, that gives the same dimension output as the input to the layer. However, 

applying the ReLU function over input volume will only change the pixel values, but not the spatial 

dimensions of the input data in the output. ReLU layers do not possess parameters nor additional 

hyperparameters. 

Layer 4 Pooling Pooling layers are often placed between successive convolutional layers. The aim is to follow convolutional 

layers with pooling layers such that the spatial size (width and height) of the data representation is 

progressively reduced. Pooling layers reduce the data representation progressively throughout the network 

and that helps control overfitting. The pooling layer independently operates on every input’s depth slice. 

More Convolutional layers and Pooling layers may be added depending on the required feature extraction effort.  

Layer 5 Dense layers and 

activation functions 

Dense layers compute class scores that will be used as output of the network. These are fully connected 

layers that perform transformations on the input data volume that are a function of the activations such as 

sigmoid, ReLU or Tanh in the input volume and the parameters (weights and biases of the neurons). 

Some researchers were able to update the standard CNN architecture to the state-of-the-art CNN models. The 

state-of-the art CNN models proved to be having improved accuracies and were adopted by many industries 

for application in the business areas. The state-of-the-art CNNs became popular by virtue of the fact that they 

are reusable for classification applications they were not initially developed for. A select few of popular state-

of-the-art CNN models are reviewed in Table 1.2 with the corresponding studies they were published in.  

 

Table 1. 2: A tabulated summary of state-of-the-art CNN models 

State-of-the-art CNN models Study 

VGG16 (Simonyan and Zisserman., 2014) 

VGG19 (Simonyan and Zisserman., 2014) 

Inception. (Szegedy et al., 2015) 

Alex Net. ( Krizhevsky et al., 2012) 

MobileNet (Howard et al., 2017) 

ResNet50 (He et al., 2016) 

Indeed, using artificial intelligence, with inclination to CNNs, modern robots with high tech computer vision 

would carry out an equivalent of such a job at a fraction of the cost and time.  The CNNs proposed in this 

study are especially recommended for use in poor countries where there is a substantial lack of expertise and 

infrastructure to get timely information. Also, the chemical methods are tedious as they are microscopic and 

always require special equipment for necessary tests to be performed. ML and DL hold much promise to 
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address this problem and this study is devoted to test their performance in this regard. In this study, ML is 

simply explained as the ability of computers to learn without exactly making them learn through the hard 

coding. Popular ML categories are supervised learning and non-supervised learning. Supervised learning is 

the machine learning category of surmising a function from the labelled training data. In supervised learning, 

each example is a pair consisting of an input object (typically a vector) and the desired output value (also 

called the supervisory signal) (Caruana and Niculescu-Mizil, 2006). A supervised learning algorithm 

examines the training data and produces a prediction function, which can be utilized for mapping new 

examples. An ideal situation will take into account the algorithm to accurately decide the class labels for 

unseen occasions. This requires the learning algorithm, to sum up from the training data to unseen 

circumstances in a “sensible” manner. Unsupervised learning is that form of learning that endeavours to locate 

a concealed structure in the unlabelled data. Since the examples given to the learning algorithm are unlabelled, 

there is no error to assess a potential solution. For instance, and in line with this statement, Sladojevic et 

al.(2016) used deep learning to develop a model that was able to recognize 13 different types of plant leaf 

diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. Zheng et al. 

(2018) collected the canopy hyperspectral data of healthy wheat, that was wheat in the incubation period, and 

wheat in the diseased period in order to investigate a method to identify the variation in the two diseases. After 

data pre-processing, they built, three support vector machine (SVM) models for disease identification and six 

support vector regression (SVR) models for disease index (DI) inversion. The results showed that the SVM 

model based on wavelet packet decomposition coefficients with the overall identification accuracy of the 

training set was equal to 99.67% and that of the testing set equal to 82.00% was better than the other two 

models. Algorithms for extraction of colour and texture features were developed, which were in turn used to 

train support vector machine (SVM) and artificial neural network (ANN) classifiers (Pujari et al., 2016). Pujari 

et al.(2016) presented in their work, a reduced feature set based approach for the recognition and classification 

of images of plant diseases. Ahmadi et al. (2017) used artificial neural network (ANN) analytical technique 

for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and 

second derivative Spectroradiometer datasets. Ahmadi et al. (2017) used machine learning for plant stress 

severity rating in soya beans. Naik et al. (2017) investigated 10 different classification approaches, with the 

best classifier being a hierarchical classifier with a mean per-class accuracy of ~96%. Other researchers such 

as, Chaudhary et al. (2016) presented an improved-RFC (Random Forest Classifier) approach for multi-class 

disease classification problem. In their approach, they used a combination of Random Forest machine learning 

algorithm, an attribute evaluator method and an instance filter method. The performance results confirmed 

that their proposed improved-RFC approach performed better than the Random Forest algorithm with the 

increase in disease classification accuracy up to 97.80% for multi-class groundnut disease dataset. The 

evolution of Artificial Neural Networks (ANNs) has found use in many applications in various areas of 

agriculture. For instance, a deep learning (DL) Convolutional Neural Network(CNN) architecture was applied 
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in the analysis of water pollution for agricultural irrigation resources(Chen et al., 2020). Among these 

applications, there is a rapidly growing literature on use of DL for plant disease detection, which indicates that 

DL is a promising tool for the detection of plant diseases. Experiments on use of DL for classification of maize 

leaf disease from healthy leaves were carried out by Sibiya and Sumbwanyambe (2019a). Further studies on 

use of DL were performed by Sibiya and Sumbwanyambe (2021) to predict the severities of a maize leaf 

disease called the Common Rust. Seemingly, the use of CNNs for plant disease detection and severity by 

Sibiya and Sumbwanyambe (2019a, 2021) focused on maize leaves. There is no enough evidence in the 

literature for the use of DL to detect plant stem and root diseases, however, there is a large body of evidence 

for the detection of fruit diseases (Nikhitha et al., 2019; Nasiri et al., 2019). 

1.2 Computer Vision System Pipeline 

Visual ability with computers was inspired by the human vision system (Elgendy, 2020). A vision pipeline 

consists of two components for both human and computer vision systems. These components are called the 

sensing device and an interpreting device.  

Sensing device-human vision system: An eye is a sensing device in case of a human vision system and is 

responsible for capturing images of the environment.  

Sensing device-computer vision system: A camera is a good example in this regard. However, other 

examples of sensing devices for computer vision may be applicable depending on the AI for computer vision 

concerned. For instance, a camera, radar, X-ray, CT scan, Lidar, or a combination of devices may be used to 

provide the full scene of an environment to fulfill the task at hand. A combination of these may be found in 

autonomous vehicles, commonly known as driverless cars. 

Interpreting device-human vision system: Brain is the interpreting device responsible for understanding the 

image content. 

Interpreting device-computer vision system: CNNs use stages to learn about the contents in the image. 

These stages, when combined form the computer vision system. The four stages that form the computer vision 

system are explained in logical order as follows: 

i. Input image: This is achieved by means of sensing devices depending on the task at hand. 

ii. Image processing: In the case of CNNs, image processing can be achieved by performing various 

image processing techniques such as rotate, blur, edge enhancements and many others. These image 

processing techniques are performed to improve CNN’s performance while avoiding overfitting. 

iii. Extraction of features: CNNs employ convolutions to extract features. Pooling is used to improve 

feature extraction. The convolutions and pooling may be available at several stages throughout the 

CNN network depending on the extent to which features must be extracted. 
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iv. A ML/CNN model used to interpret images: The choice of the model used for making interpretations 

needs to be considered. For instance, a user defined CNN model is likely to underperform when 

compared to any of state-of-the-art models such as VGG-16 and Inception to mention a few. 

Figures 1.11 and 1.12 illustrate the comparison of the human vision system with computer vision system, 

respectively. 

 

Figure 1. 11: The human vision system using an eye and brain to sense and interpret an image (Elgendy, 2020). 

 

Figure 1. 12: The components of a computer vision system used as a sensing device and an interpreting device (Elgendy, 2020).   

Figure 1.13 illustrates the summarized steps of the interpretation device in computer vision systems. 

 

Figure 1. 13: Steps followed by the interpretation device of computer vision systems to make perceptions of the environment. 

Step 3 in Figure 1.13 shows the feature extraction process. CNNs use an automated method for feature 

extraction called convolution. Traditional methods of feature extraction are histogram of oriented gradients 

(HOGS), Haar cascades, the scale invariant feature transform (SIFT), and speed up robust feature (SURF). 
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These traditional methods of feature extraction are hand crafted and passed to classifiers such as support vector 

machines and adaboost. 

1.3 Deep Learning for Object Detection and Semantic Segmentation 

1.3.1 Object Detection 

Object detection is a subject of computer vision whereby the algorithm used is capable of localizing and 

identifying the object. Depending on the number of objects to be identified in an image, object detection model 

is capable of detecting several objects in an image as long as it was trained to detect them. For instance, it can 

be seen in Figure 1.14 that a coca soda is only detected as the model was trained to only detect coca sodas. 

Also, Figure 1.15 illustrates a multi-detection of objects of the same class regardless of the number of times 

they appear in the image. Bounding boxes are used to localize and identify the objects that are supposed to be 

detected by a model. 

 

 

Figure 1. 14: Object detection is trained in detecting soda cans only, and so ignores other cans. 

 

Figure 1. 15: Multiple instances of the same object are detected by the same 

model trained to detect one object instance. 

Figure 1.16 illustrates a multi-detection of different class objects, when the model was trained to also detect 

the other two objects along with coca soda.  
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Figure 1. 16: The object detection model was retrained to detect all three objects.  

Object detection models are categorized into two types. The first type is the one that recognizes the regions of 

the object to detect the object. Examples of the latter mentioned model are R-CCNs and Faster R-CNNs. The 

second category uses anchor boxes that are spread all over the image while taking regression with respect to 

the ground truth bounding box of the object. Loss function is used to determine the box to be used as a 

bounding box of the object to be detected. Known models of the latter mentioned type of object detection are 

SSD and YOLO. 

1.3.2 Semantic Segmentation  

Semantic segmentation is no different from object detection explained in section 1.3.1, except that it uses 

pixels to localize and identify objects in an image. Figure 1.17 shows a pixel wise classifier using semantic 

segmentation. 

 

Figure 1. 17: The semantic segmentation network is viewed as a pixel-wise classifier. 

The network architecture of semantic segmentation is shown in Figure 1.18. It has an RGB input image (for 

example, 640 x 480 x 3) and its output is a tensor with similar dimensions except that the last dimension is the 

number of object categories (for example, 640 x 480 x 4 for a 4-object category). For visualization purposes, 

the output is mapped into RGB by assigning a colour to each category. 
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Figure 1. 18: Network architecture of semantic segmentation. 

1.4 Problem Statement 

Maize diseases such as the NCLB have mostly affected the KwaZulu-Natal areas, threatened this industry, 

and resulted in a reduced maize yield. The chemical-based methods and other manual laboratory techniques, 

though conducive, are tedious and laborious in nature to solving the problem of detecting various plant leaf 

diseases in commercial fields as modern robots with high tech computer vision would, more especially in poor 

countries where there is a substantial lack of experts and infrastructure to get timely information. CNNs hold 

much promise to address this problem and this study is devoted to test their performance in this regard.   

1.5 General Aim and Objectives    

The general aim of this study is to introduce CNN approaches into classifying various types of maize leaf 

diseases (GLS, CR and NCLB), and to predict the severities of CR and NCLB thereof. Therefore, the three 

specific objectives of this study are listed below: 

i. To create and test a CNN model that can classify various types of maize leaf diseases.  

ii. To set up and test a CNN model that can predict the severities of a maize leaf disease known as the 

maize CR. The model is to be a hybrid model because fuzzy logic rules are intended to be used with a 

CNN model. 

iii. To build and test a CNN model that can predict the severities of a maize leaf disease known as the 

NCLB by analysing lesion colour and sporulation patterns. 
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The second and third objectives would lead to working models that would be used to classify and predict the 

severity of maize leaf diseases. 

1.6 Research Methodology 

In this study, a design and experimental procedure were followed in order to achieve the objectives set out in 

section 1.5. Primarily, this methodology followed that of the design science research (DSR) which is arranged 

in the following manner: 

i. Data acquisition: Mining of image data sets involved getting access to the PlantVillage repository. 

Other images for CR and NCLB were collected by means of a camera. 

ii. Data cleaning and pre-processing: The images were sorted and arranged according to their training 

classes and validation classes. This step was applied to all CNNs that were set up in this study. 

iii. Model training and building: The CNNs were trained at different epoch values on different 

architectures that were built using the Pyhton-Keras library. The custom CNN architecture was set up 

for a model that was meant to classify various types of maize leaf diseases. The VGG-16 state-of-the-

art network was used for setting up a model that predicted the severities of a maize CR disease. Once 

again, the custom CNN was set up to predict the NCLB severities. 

iv. Testing data and model testing: All the CNNs in this study were validated using the validation data 

sets that were used to observe the models’ performances during the training process. This was meant 

for observing the possible occurrences of overfitting and underfitting in CNNs while they were training. 

To test the CNNs for robustness, separate class tests were performed to check the testing accuracies. 

Figures 1.19-1.1.20 show the DSR methodology that will be followed in this study. 

 

Figure 1. 19: DSR methodology followed in this study. 
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Figure 1. 20: Expanded DSR methodology followed in this study 

The methodological approach used in each of the chapters that form this thesis follows the DSR methodology 

explained in Figures 1.19-1.20. As this is a thesis per publication, there is no separate methodological chapter 

because the methodologies used are explained in each chapter of the published literature.  

1.7 Delimitation 

This research work did not consider the following: 

i. Classification or severity prediction of images with maize stem diseases. 

ii. Classification or severity prediction of images with maize kernel diseases. 

1.8 Contributions to knowledge 

i. Facilitated principles of a CNN model in order to develop a network for the classification of maize 

leaf diseases. 

ii. Development of a Hybrid model using FL rules and a CNN in order to classify and predict maize CR 

disease. 

iii. A novel approach to developing the training data sets for CNNs based on NCLB lesion colour and 

sporulation and an introduction of a CNN approach for predicting the severities of the NCLB disease. 

1.9 Thesis structure 

This thesis is organized into 6 Chapters. The main research results are presented in different Chapters (3 to 5) 

that were published as standalone papers but addresses the overall aim of this work. 

Chapter 1 presents the study background, underlines the research problem, state overall aim and objectives, 

and the general methodology employed in this study.  

Chapter 2 reviews the DL and ML for plant disease detection. This Chapter reviews the works on the DL and 

ML for plant disease detection and chemical based methods. 
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Chapter 3 details the set-up of a customized CNN on a Java Neuroph framework to classify various types of 

maize leaf diseases. The emphasis will be on CNN model training, and testing.  

Chapter 4 introduces a novel approach of developing training data sets for severity prediction of maize CR 

by a hybrid model (Fuzzy logic and CNN). The focus will be on how Fuzzy decision rules were used with a 

CNN to achieve a model capable of making such predictions.  

Chapter 5 presents an approach to achieving a CNN that classifies NCLB by learning severity patterns based 

on NCLB lesion colour and sporulation. 

Chapter 6 evaluates the objectives by comparing them against the results obtained in Chapters 3 to 5, 

concludes the work of this thesis, and suggests future studies.  
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CHAPTER 2: Literature Review  

2.1 Introduction 

As agriculture struggles to sustain the ever-growing global population, plant diseases cause significant 

production and economic losses. Savary et al. (2012) highlighted in their study that, in overall, yield losses 

due to plant pathogens were responsible for losses of approximately 20% to 40% of global agricultural 

productivity. In essence, this has a major impact on a farmer's income, food security, and the economy of a 

country. Prevention and control of plant diseases are therefore essential, more especially in poor countries 

where there is a substantial lack of experts nearby and infrastructure to get timely information. For instance, 

in the works of Sankaran et al. (2010) it is highlighted that soybean rust, which is a fungal disease had caused 

a substantial economic loss of which by just removing 20% of the infection would have benefitted the farmers 

a 11-million-dollar profit. Therefore, finding a fast, safe, automatic, less expensive, and accurate method to 

detect plant diseases is of great importance. There is evidence in the literature that ML and DL techniques 

have been applied to plant disease detection. In this chapter, we will present a review of such techniques. This 

study focuses on the use of CNNs, a DL approach to present various methods of maize leaf disease detection 

and severity prediction. Since DL is a subfield of ML, various algorithms of ML that are available in the 

literature for the detection of plant leaf diseases are also reviewed. The review approach used tabulates the 

studies, associated with DL or ML models, and related performance metrics. Before we look at the related 

works of ML and DL for plant leaf diseases detection, we first explain the ML and DL mathematical concepts. 

ML is the ability of computers to learn without exactly learning trough hard coding. In a broader sense, ML 

is categorized into supervised learning and unsupervised learning. In supervised learning, the ML model is 

presented with the data to learn its features and later must be able to make predictions when a separate set of 

data is presented to the algorithm to make predictions. The model must avoid overfitting the data it is learning 

or its features otherwise it will perform poorly when making predictions on the test data sets. Underfitting is 

when the model cannot make sense out of the simple test data presented to it. The second category of ML is 

called unsupervised learning. In this case, the model learns from the data presented to it without any training 

data used to train it such that it can be able to make predictions. The unsupervised models group the 

information they find to be of the same category by forming clusters. However, since supervised ML is the 

most widely used technique of ML than unsupervised learning, this study mostly reviews the mathematical 

concepts of supervised ML algorithms. Figure 2.1 summarises the concept of supervised learning while the 

concept of unsupervised learning is summarized in Figure 2.2. 
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Figure 2. 1: The concept of supervised learning 

 

Figure 2. 2:The concept of unsupervised learning (https://subscription.packtpub.com/book/big-data-and-business-

intelligence/9781788397872/2/ch02lvl1sec33/unsupervised-learning) 

Figure 2.3 summarises the ML techniques and the algorithms associated with each technique. Basically Figure 

2.3 is the ML platform for algorithm selection. For instance, everyone who would opt to use SVM in their ML 

projects would surely be working on supervised learning classification problems. Choosing the right ML 

algorithm can be overwhelming as most of the times, a “trial and error” approach is used. At times, algorithm 

selection depends on the size and type of the data, and the insights the data is meant to reveal. 

https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781788397872/2/ch02lvl1sec33/unsupervised-learning
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781788397872/2/ch02lvl1sec33/unsupervised-learning
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Figure 2. 3: ML algorithm selection platform (https://www.programmersought.com/article/47434005192/). 

There are several ML algorithms in the literature as shown in Figure 2.3, but to meet the general objective of 

this study, we need to review the DNN’s theoretical background and the mathematical concepts in detail. To 

do that, we first review the mathematical concepts behind ML’s linear regression since that form the basis of 

DNNs. It can be seen in Figure 2.3 that linear regression is a supervised ML algorithm. The regression 

algorithm makes a hypothesis by drawing a line of best fit through the data it is supposed to learn. Equation 

(2.1) shows the hypothesis and the learning parameters that are supposed to be properly adjusted to get the 

line of best fit. 

ℎ(𝑥) =  𝜃0 + 𝜃1𝑥 

                                                                                                                                                                      (2.1) 

where                            

           𝜃 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑜 𝑏𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 

𝑥 = 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

In cases of more than one input variable, the hypothesis is presented as shown in equations (2.2), (2.3). 

ℎ(𝑥) =  𝜃0 +  𝜃1𝑥1 +  𝜃2𝑥2 +  … … … . . + 𝜃𝑖𝑥𝑖 

                                                                                                                                                                     (2.2) 

∴ ℎ(𝑥) =  ∑ 𝜃𝑖𝑥𝑖

𝑛

𝑖=1

 

                                                                                                                                                                      (2.3)  

https://www.programmersought.com/article/47434005192/
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The aim of the ML regression in this case is to reduce an error which is known as a loss function. This is done 

by making sure that the algorithm maps the input variables 𝑥𝑖 to the output target variable 𝑦, such that the 

difference between the hypothesis ℎ(𝑥) and the predicted output target variable 𝑦̂ is minimal. A loss function 

of a single input variable is presented in equation (2.4). 

𝐽(𝜃) = (ℎ(𝑥𝑖) − 𝑦̂) 

                                                                                                                                                                     (2.4) 

However, a loss function of the multi - input variable is presented in equation (2.5). 

𝐽(𝜃) =
1

2
 ∑(ℎ(𝑥𝑖) − 𝑦̂)2

𝑛

𝑖=1

 

                                                                                                                                                                     (2.5) 

To get the minimal error/loss function, 𝜃 must be chosen such ℎ(𝑥) ≈ 𝑦. To update 𝜃, an algorithm called 

gradient descent is usually used. The gradient descent is categorized into batch gradient descent and stochastic 

gradient descent. The difference between these two categories of gradient descent is that, in batch gradient 

descent, the algorithm goes through all training samples and calculate cumulative error before updating 𝜃. The 

stochastic gradient descent finds the error of each training sample and updates it before going to the next one. 

Equation (2.6) represents the batch gradient descent while equation (2.7) represents the stochastic gradient. In 

both equations, 𝛼 is the learning rate at which both algorithms update the 𝜃. 

𝜃 =  𝜃 − 𝛼
𝜕

𝜕𝜃
. 𝐽(𝜃) 

                                                                                                                                                                     (2.6) 

whereas, 

𝜃𝐽 =  𝜃𝐽 − 𝛼(ℎ(𝑥𝑖) − 𝑦̂ ) 

                                                                                                                                                                     (2.7) 

DL is a subfield of ML and its existence was inspired by the brain neurons connected by means of synapses. 

The idea of DL being similar to the brain neurons is still a controversial issue among many DL researchers. 

However, whatever the case might be, DL learning has many promising applications that have been tested by 

many researchers. Figure 2.4 shows the DL architecture of full connected NNs.  
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Figure 2. 4:Fully connected NN with two hidden layers and one output neuron. 

The neurons are also known as the nodes. Each node of the NN learns the information using the concept of 

the linear regression explained in equations (2.1) to (2.7). The training samples are fed through the input layer 

and forward propagated towards the output. The predicted output will be compared against the target output 

and the error will be back propagated if it is huge, updating 𝜃  of each node in the NN until ℎ(𝑥) ≈

𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑦̂. Back propagation is the concept of the batch and stochastic gradient descents that has just been 

explained. The learning by the nodes in a DNN such as the one shown in Figure 2.4 happens through the 

activation functions that each node possesses. Among many, the widely used non-linear activation functions 

in most DNNs are sigmoid and ReLU activation functions. However, Table 2.1 summarizes all the common 

non-linear activation functions available in the literature. 

Table 2. 1: Definition of common non-linear activation functions. 

𝑹𝒆𝑳𝑼 
𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙 (𝟎, 𝒙)  

                                                            (2.8)                                                 

𝑺𝒐𝒇𝒕𝒑𝒍𝒖𝒔 
𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥)  

                                       (2.9) 

𝑬𝒍𝒖 𝐸𝑙𝑢(𝑥, 𝑎) =  {
𝑥                  𝑖𝑓 𝑥 ≥ 0

𝑎(𝑒𝑥 − 1)            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
   

𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 0 𝑎𝑛𝑑 𝑖𝑠 𝑎 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

                                                          (2.10)                        

 

 

𝑺𝒆𝒍𝒖 

 

𝑆𝑒𝑙𝑢(𝑥)  =  𝑘 ×  𝑒𝑙𝑢(𝑥, 𝑎) 

𝑤ℎ𝑒𝑟𝑒 𝑘 

=  1.0507009873554804934193349852946 𝑎𝑛𝑑 

𝑎 =  1.6732632423543772848170429916717 

 

 

 

      

                                                                             (2.11) 
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𝑺𝒊𝒈𝒎𝒐𝒊𝒅 

 
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  

1

1 + 𝑒𝑥
                                                

                                              (2.12) 

𝑻𝒂𝒏𝒉 𝑇𝑎𝑛ℎ(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥  
 

 

                                              (2.13) 

The generalised delta rule for the learning of a DNN such as the one shown in Figure 2.4 is described as: 

The activation is a differentiable function of the total input, given by 

𝑦𝑘
𝑝 = 𝐹(𝑆𝑘

𝑝) 

                                                                                                                                                                    (2.14) 

in which 

𝑠𝑘
𝑝 =  ∑ 𝑤𝑗𝑘𝑦𝑘

𝑝 + 𝜃𝑘
𝑗

 

                                                                                                                                                                    (2.15) 

In order to get the correct generalization of the delta rule, we need to set  

∆𝑝𝑤𝑗𝑘 =  − 𝛾
𝜕𝐸𝑝

𝜕𝑤𝑗𝑘
 

                                                                                                                                                                    (2.16) 

In this case, 𝐸𝑝 is the error defined as the total quadratic error for pattern  𝑝 at the output units: 

𝐸𝑝 =  
1

2
∑(𝑑𝑜

𝑝

𝑁0

𝑜=1

−  𝑦𝑜
𝑝)2 

                                                                                                                                                                    (2.17) 

Where 𝑑𝑜
𝑝
 is the desired output for unit 0 when pattern 𝑝 is seen to be clamped in this sense. 

 𝐸 =  ∑ 𝐸𝑝
𝑝  is set further to be a summed squared error. Thus, we can write 

𝜕𝐸𝑝

𝑤𝑗𝑘
=  

𝜕𝐸𝑝

𝜕𝑆𝑘
𝑝

𝜕𝑆𝑘
𝑝

𝜕𝐸𝑝
 

                                                                                                                                                                    (2.18)   

By means of equation (2.18) we can see that the second factor is   

𝜕𝑆𝑘
𝑝

𝜕𝐸𝑝
=  𝑦𝑗

𝑝
 

                                                                                                                                                                   (2.19) 
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If we define                                              𝛿𝑘
𝑝 =  

𝜕𝐸𝑝

𝜕𝑆𝑘
𝑝 

                                                                                                                                                                    (2.20)  

we will get an update rule which is equivalent to the delta rule, that results in a gradient descent on the error 

surface if weight changes are made according to: 

 ∆𝑝𝑤𝑗𝑘 =  𝛾𝛿𝑘
𝑝𝑦𝑗

𝑝
 

                                                                                                                                                                   (2.21) 

We then figure out 𝛿𝑘
𝑝
. To compute the 𝛿𝑘

𝑝
 , the chain rule is applied in order to write this partial derivative as 

the product of the two factors, one factor reflecting the change in error as a function of the output of the unit 

and one reflecting the change in the output as a function of changes in the input. Thus, we have 

𝛿𝑘
𝑝 =  

𝜕𝐸𝑝

𝜕𝑆𝑘
𝑝 =  

𝜕𝐸𝑝

𝜕𝑦𝑘
𝑝 

𝜕𝑦𝑘
𝑝

𝜕𝑆𝑘
𝑝 

                                                                                                                                                                    (2.22) 

If we compute the second factor by equation (2.14) we see that 

𝜕𝑦𝑘
𝑝

𝜕𝑆𝑘
𝑝 = 𝐹(𝑆𝑘

𝑝) 

                                                                                                                                                                    (2.23) 

To compute the first factor of the equation (2.21), we consider two cases. First, assume that unit k   is an 

output unit k = o of the network. In this case, it follows from the definition of  𝐸𝑝 that  

𝜕𝐸𝑝

𝜕𝑦𝑜
𝑝 =  −(𝑑𝑜

𝑝 − 𝑦𝑜
𝑝) 

                                                                                                                                                                    (2.24) 

Substituting this and equation (2.23) in equation (2.21), we get 

𝛿𝑜
𝑝

= (𝑑𝑜
𝑝

−  𝑦𝑜
𝑝

)𝐹𝑜
,(𝑆𝑜

𝑝
) 

                                                                                                                                                                    (2.25) 

For any output unit o. Also, if k is not an output unit, but a hidden unit k = h, we do not know in depth the 

contribution of the unit to the output error of the network. The measure of the error can be written as a function 

of the net inputs from hidden to an output layer   

𝐸𝑝 =  𝐸𝑝(𝑠1
𝑝, 𝑠2

𝑝 … . . , 𝑠𝑗
𝑝, … . )  and we use the chain rule to write 

𝜕𝐸𝑝

𝑦ℎ
𝑝 =  ∑

𝜕𝐸𝑝

𝜕𝑆𝑜
𝑝

𝜕𝑆𝑜
𝑝

𝜕𝑆ℎ
𝑝

𝑁𝑜

𝑜=1

=  ∑
𝜕𝐸𝑝

𝜕𝑆𝑜
𝑝  

𝜕

𝜕𝑦ℎ
𝑝

𝑁𝑜

𝑜=1

∑ 𝑤𝑘𝑜𝑦𝑗
𝑝

𝑁𝑜

𝑗=1

=  ∑
𝜕𝐸𝑝

𝜕𝑆𝑜
𝑝  

𝑁𝑜

𝑗=1

𝑤ℎ𝑜 =  ∑ 𝛿𝑜
𝑝𝑤ℎ𝑜

𝑁𝑜

𝑗=1

 

                                                                                                                                                                    (2.26) 

Substituting this in equation (2.21) yields       
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𝛿ℎ
𝑝 = 𝐹(𝑆ℎ

𝑝) ∑ 𝛿𝑜
𝑝𝑤ℎ𝑜

𝑁𝑜

𝑗=1
       

                                                                                                                                                                    (2.27) 

Equations (2.25) and (2.27) make up a recursive procedure for computing all the 𝛿s for all units in the network, 

which are then sent to compute the weight changes according to equation (2.21). This procedure explains the 

generalised delta rule for a feed-forward network of non-linear nodes. The backward propagation of the DNN 

in Figure 2.4 is explained by the equation (2.6), whereby the error is back propagated to the network with the 

intention of updating the weight parameters of  𝜃. The activation functions to be used by these no-linear nodes 

may be chosen from the list of non-linear activation functions listed in Table 2.1. A different architecture of 

NN called CNN is used when the images are dealt with. Figure 2.5 shows a typical CNN. 

 

Figure 2. 5: A typical CNN architecture. 

The CNN, as seen in Figure 2.5, has a layer called full-connected layer of which its operation is the one 

computed by equations (2.6), and (2.14) to (2.27). The Input layer is meant for the reception of the input image 

which is later received by convolution layer 1. The purpose of the convolution layers is to extract features 

from the image by performing the dot matrix between the image and the filters. Figure 2.6 shows the dot 

matrix operation between a 5x5 input image and a 3x3 filter/kernel. The resulting output is called the feature 

map. 

 

Figure 2. 6: The convolution operation showing how one element of the feature is computed. 
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In the resultant feature map after convolution, the value of a feature map item is greyed out. The resulting 

feature map can be seen to be smaller than the original entry image. This is due to the fact that convolution is 

only performed on valid elements. The filter/kernel cannot cross the boundaries of the image. Next, the feature 

map is received by the pooling layer. The concept of pooling is demonstrated in Figure 2.7 by using a pool 

size of 4 (pooling is done in every 4 cells of the feature map). The first pooling method is Average pooling 

and the second one is Maximum pooling, otherwise known as Max Pooling. The most widely used methods 

of pooling is the Max Pooling. It operates by using the pooling size on the feature points to result in one map 

point. The pooling size used in Figure 2.7 is 2x2 feature map. 

 

Figure 2. 7: The concept of Maximum Pooling. 

The convolutions and pooling in CNNs may be repeated depending to an extent to which the features must be 

extracted. The pooling of a 4x4 feature map results in a 2x2 feature map that is flattened and fed to the fully 

connected layer that makes the classifications as shown in Figure 2.5. The mathematical concepts used in the 

fully connected layer are computed by equations (2.6), and (2.14) to (2.27).  

2.2 Underfitting and overfitting in ML and DL models 

Underfitting model: This happens when a fitted line by a ML or DL model does not approximate the data 

well and make it have better approximation of the data. 

Overfitting model: This happens when we say a model has a low error rate for the training data, but it does 

not generalize well to the overall data in which we are interested. 

Appropriate model: The appropriate model does not overfit nor underfit, it just generalizes well to training 

data. Figure 2.8 shows the behaviour of each of the above-mentioned models. 

 

Figure 2. 8: Overfitting and Underfitting in ML and DL (Patterson and Gibson, 2017) 
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2.3 Optimization 

The problem of overfitting and underfitting in any model can be corrected by tuning the parameters of the 

model. There are different types of parameters that can be tuned in ML and DL models. Hyper-parameters are 

the settings that must be provided to the ML and DL models. In the case of the CNNs that were dealt with in 

this study, these included the following; 

Hyper-parameters related to network structure:  

i. The order of the convolutional, pooling, and dropout layers 

ii. The type of activation function 

iii. The number of hidden neurons 

iv. The structure of pooling and convolutional layers 

Hyper-parameters related to training algorithms:  

i. Learning rate.  

ii. Momentum. 

iii. Number of epochs and batch size. 

Other techniques of ML and DL optimization are regularization methods used for this study were as follows; 

Batch normalization: Normally, we would apply a generic form of Normalization scaling to our image data 

values between 0-255 with values between 0 to 1 (this is done by dividing it by 255). The purpose is to reduce 

the influence of larger data points. 

Before the training of any neural network, the weights are firstly randomized. If one of the weights becomes 

extremely large, its corresponding neuron’s output will be very large cascading throughout the neural network 

causing instability causing instability. Batch Normalization normalizes the output from the activation 

functions of a selected layer (Ioffe and Szegedy, 2015). It then normalizes the output by multiplying it by a 

parameter and then adding another parameter to this result. The result is that all the activations leaving a batch 

normalization layer will have approximately zero mean. The weights now do not become imbalanced with 

extreme values since normalization is now included in the gradient process.  

Drop out: The goal of drop out is to prevent overfitting. Dropout refers to dropping neurons (both hidden and 

visible) in a neural network with the aim of reducing overfitting. In training certain parts of the neural network 

are ignored during some forward and backward propagations. Dropout is an approach to regularizing neural 

networks which helps reducing interdependent learning amongst the neurons. Thus, the neural network learns 

more robust or meaningful features. In Dropout, we set a parameter ‘P’ that sets the probability of which 

neurons are kept or (1-P) for those that are dropped. Dropout almost doubles the time to converge in training 

(Heaton, 2013). 
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Dataset Augmentation: Data Augmentation is one of the easiest ways used to improve the models dealt with 

in this study. It was simply taking input image data sets, and made, slight variations to them in order to improve 

the amount of training data. This allowed the building of more robust models that did not over fit. 

2.4 Metrics for evaluating machine learning classification algorithms 

In ML and DL problems, it is always important to evaluate the performances of the chosen supervised 

classification models using performance key indicators (PKIs). These PKIs are explained in terms of a 

confusion matrix shown in Figure 2.9. 

 

Figure 2. 9: A confusion matrix used to explain ML and DL KPIs 

It is seen in Figure 2.9 that the confusion matrix consists of 4 outcome classes that may be predicted by the 

chosen classification ML or DL algorithms. True Positives are outcomes whereby the predictions made by the 

model correctly predict the positive classes. An example is when the model predicts that a patient has cancer 

and really a patient has cancer. Similarly, True Negatives are outcomes whereby the predictions made by the 

model correctly predict that a patient has no cancer and really a patient has no cancer. False Positives are 

outcomes whereby the model incorrectly predicts the positive classes, and False Negatives are outcomes where 

the model incorrectly predicts the negative classes. The resulting predictions of a confusion matrix may be 

used to derive the performance metrics presented in equations (2.28) to (2.31). 

Accuracy: Accuracy in classification problems is the number of correct predictions made by the model 

divided by the total number of predictions. Accuracy is useful when the target classes are well balanced. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
∗ 100 

                                                                                                                                                                    (2.28) 

Recall: This is the ability of the model to find all the relevant cases within a data set. The precise definition 

of recall is the number of true positives divided by the number of true positives plus false negatives.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

                                                                                                                                                                    (2.29) 
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Precision: This is the ability of the classification model to identify only the relevant data points. Precision is 

defined as the number of true positives divided by the number of true positives plus false positives.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

                                                                                                                                                                    (2.30) 

F1-Score: In cases where we want to find an optimal blend of precision and recall, we can combine the two 

metrics using what is called the F1 Score. All in all, the F1 Score is the harmonic mean of precision and recall 

taking both metrics into account. 

 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

                                                                                                                                                                    (2.31) 

2.5 Metrics for evaluating ML and DL regression algorithms 

In this section, metrics for evaluating regression algorithms are examined.  Several methods do exits of which 

some of them are outlined below: 

Use of Mean Absolute Error (MAE): One of the ways of evaluating the performance of regression models 

is by computing the mean absolute error (MAE). We define the MAE as 

𝑀𝐴𝐸 =  
∑|𝑦 − 𝑦̂|

𝑁
 

                                                                                                                                                                    (2.32) 

Where 𝑦 is the actual, and 𝑦̂ is the predicted value then |𝑦 − 𝑦̂| is the absolute value of the difference between 

the predicted value and the actual value. N is the number of sample points. 

Use of Root Mean Square Error (RMSE): Another evaluation metric for regression is the RMSE. It is 

calculated in the manner very similar to MAE, just that instead of taking the absolute value to get rid of the 

sign on the individual errors, the error is squared (This is because the square of a negative number is positive). 

 

𝑅𝑀𝑆𝐸 = √
∑(𝑦 − 𝑦̂)2

𝑁
 

                                                                                                                                                                    (2.33) 

Next, we review the studies that utilized chemical-based methods of plant disease detection (Stem and leaves). 

2.6 Chemical laboratory-based methods for plant disease detection 

Agriculture is one of South Africa’s economic pillars. In particular, maize is the stable food to over a million 

South Africans. It is for this reason that chemical and manual laboratory-based methods have been developed 
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to enhance the production of maize. Several methods have been developed and the methods included, but were 

not limited to polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization 

(FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) gas chromatography-mass 

spectrometry (GC-MS) (Fang and Ramasamy, 2015). Table 2.2 summarizes the common chemical-based 

methods of plant disease detection in the literature.  

Table 2. 2: A summary of chemical-based methods for plant leaf disease detection. 

Chemical based method used Study  

Evaluation of antioxidants in stems and leaves of spinach. (Singh et al., 2016) 

Detection of plant diseases using nanopore sequencing platform. (Chalupowicz et al., 2019) 

Chemical control of plant diseases. (Waard et al., 1993) 

Polymerase chain reaction (PCR) (Minsavage et al., 1994) 

Polymerase chain reaction (PCR) (Haelterman et al., 2014) 

Polymerase chain reaction (PCR) (Saponari et al., 2008) 

2.7 Theoretical alternatives 

Plant leaf disease-detecting systems are used to detect the types of plant leaf diseases to avoid agricultural 

losses. Distinctively, diverse modelling approaches such as Convolutional Neural Networks (CNN) and 

Support Vector Machines (SVM) have been used for plant leaf disease detection in several articles. 

Interestingly, there have been known shortcomings with some of the modelling approaches such as longer 

training times. Underpinned by such shortcomings researchers have considered other alternatives and probably 

in this study context, better methods of detecting plant leaf diseases. Strands of the literature show that various 

researchers and academics have used different algorithms, with some measure of success, for disease detection 

in plant leaves. A few articles that were reviewed in this study, dealt with different algorithms of DL that were 

used to model the detection of plant leaf diseases. Also, different values of accuracies for various DL 

architectures have been recorded in the literature. Could it be the use of different DL architectures that cause 

these discrepancies? With such a question in mind, it is the aim of this section to do a systematic review of 

the DL architectures that were used for the detection of plant leaf diseases in the literature. Amongst a few 

plant diseases that exist in different plants, this study restricts this review to the detection of plant leaf diseases 

using DL. This section shows how a systematic review of journal articles, conference proceedings and book 

chapters that was conducted to arrive at our performed to meet the objectives. In this section, we overlay the 

literature to draw up the conclusions on the DL for plant disease detection.  

2.7.1 Study retrieval and selection 

One of the steps to conduct a systematic review is study retrieval and selection (Denson and Seltzer, 2011). 

The reading process focused on finding the software framework for the deep learning model used to detect 

and classify plant leaf diseases. Given the software frameworks, the total percentage of the classification 
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accuracy for each study was considered to compare the performances of different software frameworks. The 

abstract and introduction reading approach for each paper was followed.  

2.7.2 Exclusion criteria explained 

To strengthen the validity of the review, we applied certain exclusion criteria to all the studies collected in 

order to meet with the main objective of this study. These criteria are presented next. 

Exclusion criteria 1: All the studies had to be published journal articles, conference proceedings and book 

chapters, otherwise were excluded. 

Exclusion criteria 2: Abstracts were not regarded as part of the review if they did not provide enough 

information. 

Exclusion criteria 3: All the studies whereby the authors did not have access to, were not considered for review.  

Exclusion criteria 4: All the studies were to be in English. The studies in any foreign language were excluded. 

Exclusion criteria 5: Duplicate copies of studies were not included in this review. This means that all studies 

had to be unique. 

Exclusion criteria 6: The studies that did not use DL and ML for the detection of plant leaf diseases were 

excluded. This means that all the studies that used DL and ML for the detection of stem or root diseases were 

excluded. Only studies that used deep learning models for the detection of leaf diseases were included in this 

review. The later mentioned exclusion criteria resulted in reviewing of the studies that involved both ML and 

DL for plant leaf diseases as summarized in Figure 2.10. 

 

 

Figure 2. 10. The overall percentages of DL and ML algorithms that were used for plant leaf disease detection in this review. 

Some of the studies considered for the thesis study include work by authors such as Sladojevic. For example, 

researchers like Sladojevic and others, have modelled plant leaf disease detection systems using different 

machine learning algorithms with exceptionally accurate results. (2016), Mohanty et al. (2016) and Amara et 

al. (2017). In the literature, most studies, with the objective of estimating the severity of foliar diseases, use 
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manual laboratory procedures. Manual lab procedures require skilled plant pathologists. A study led by Fang 

and Ramasamy (2015) examined direct methods for manual laboratory detection of foliar diseases. Sannakki 

et al. (2011) were the first to estimate the severity of leaf diseases using computerized vision. In their study, 

they used image processing and fuzzy logic to assess the severity of leaf diseases. They used the K-means 

clustering method to segment leaves from diseased plants. By some fuzzy logical inference, Sannakki et al. 

(2011) were able to estimate the severity of leaf diseases detected by grading them using MATLAB. Wang et 

al. (2017) addressed an issue of estimation of the severity of plant diseases using deep learning. Their study 

used a process that was completely automatic because it avoided labour-intensive engineering functions and 

threshold-based segmentation. They used the Plant Village image dataset to estimate the severity of fine-

grained diseases, like apple rot. In their study, they used a range of deep convolutional neural networks and 

the most effective model being the VGG16 model with 90.4% accuracy on the holding test set. Sun et al. 

(2015) examined the results of the tomato disease severity comparison using image segmentation and visual 

estimates using a scale of categories for genetic testing of resistance. As part of their investigation, image 

processing and analysis were performed using image analysis software called ASSESS V2.2. They used the 

tint, saturation intensity, colour space and filter middle in the colour panel. Another study compared, visual 

estimates with image analysis measurements, was conducted by Jarroudi et al. (2015) to determine the severity 

of Septoria Late Blight in Winter wheat. In their study, they used a program called ASSESS V2.0 to process 

digital images. They chose a classic sign and a tint, saturation and intensity colour space to differentiate the 

rest of the leaf from the blue background. To develop and test their method for analyzing digital images using 

the Scion Image or NIH public domain software and quantified leaf colour. In their work, they provided step-

by-step instructions to use the Scion software in order to measure the percentages of green and red in the 

sheets. Those were the colours of particular importance for the assessment of plant health. Wijekoon et al. 

(2008) used the method proposed by Murakami (2005) to quantify fungal infection of plant leaves by 

analyzing digital images. Barbedo (2014) studied an automatic method to detect and measure leaf disease 

symptoms using digital image processing. The Barbedo method (2014) was designed to be fully automatic, 

eliminating the possibility of human error by reducing the time required to measure the severity of the illness. 

In this method, RGB images have been converted to L*a*b format. The L*a*b format was chosen because 

channel A revealed different types of symptoms. The channel was used from the RGB to L*a*b conversion 

point until the algorithm was completed. All pixels in channel A outside of the masks were then converted to 

zero. Patil and Bodhe (2011) proposed segmenting diseased sugarcane lesions by means of rectangular 

segmentation methods. In their study, they compared the segmented area to the leaf area. The aim of their 

approach was to eliminate the use of pesticides, so that they were only applied according to the total calculated 

severity of the disease. Other methods of image segmentation using the KNN (K-Nearest Neighbours) 

segmentation were used by researchers like Pallottino et al. (2018). In their work, Pallottino et al. (2018) used 

the KNN algorithm for the implementation of the old tractor tillage process that recognized plant weeds using 
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a camera adapted for data acquisition. Owomugisha and Mwebaze's proposed method used a linear SVC 

classifier to classify leaf diseases, according to levels (Owomugisha and Mwebaze, 2017). The levels were 

classified as Healthy class, Level 2 severity, level 3 severity, and level 4 severity. Bock et al. (2009) used 

ASSESS V1.0 for its advantage of being able to perform a colour threshold in the image of the diseased area. 

In their work, they used the raters to estimate the severities of foliar citrus canker symptoms at a predetermined 

range of the percentage of infections. In this study, the development of the CNNs and their training and testing 

is detailed in Chapters 3 to 5 that address the objectives of this study.  Reviewing subsequent and more recent 

literature there is evidence that DL and ML have a promising application in the detection of plant leaf diseases. 

Table 2.3 summarizes additional studies with some of the later reviewed DL and ML approaches for plant leaf 

disease detection available in the literature.  

 

Table 2. 3: Tabulated review of deep learning and machine learning approaches for plant leaf disease detection 

DL methods for plant leaf disease detection 

Focus on the affected area of 

the plant species 

Research aims DL model and performance metrics Study 

Soybean leaves. To identify soybean leaf diseases 

and stresses. 

CNN. Accuracy of 94.13% was achieved. (Ghosal et al., 2018) 

Cotton leaves To identify the diseased leaf spot of 

cotton. 

Cross Information Gain Deep Forward Neural Network 

(CIGDFNN). Accuracy of 95% was achieved. 

(Revathi and 

Hemalatha, 2013) 

Plant leaves in general. To collect and classify leaves of 

infected crops, according to the 

disease. 

CNN. Accuracy of 98.59% was achieved. (Dhaka and Shakya, 

2018) 

Palm tree leaves. To discriminate and classify fungal 

infections in oil palm trees at an 

early stage using raw, first, and 

second derivative spectra-

radiometer datasets. 

ANNs. Accuracy of 83% at 540nm; Accuracy of 100% 

at 550nm. 

(Ahmadi et al., 2017) 

Plant leaves of different crops. Detecting and classifying plant leaf 

diseases. 

CNN. Accuracy of Caffe net was 93.35%; 

Accuracy of Alex net was 85.53%; 

Accuracy of Google net was 99.34%. 

(Mohanty et al., 2016) 

Banana leaves. Automating the process of 

classifying banana leaf diseases. 

CNN. The following accuracies were achieved 

depending on the image data split. 

20%training; 80%testing (Colour) =98.61%. 

40%training; 60%testing (Colour) =98.61%. 

50%training; 50%testing (Colour) =99.72%. 

60%training; 40%testing (Colour) =96.76%. 

80%training; 20%testing (Colour) =92.88%. 

20%training; 80%testing (Gray) =94.44%. 

40%training; 60%testing (Gray) =97.57%. 

50%training; 50%testing (Gray) =85.28%. 

60%training; 40%testing (Gray) =92.82%. 

80%training; 20%testing (Gray) =85.94%. 

(Amara et al.,2017) 
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Wheat, avocado, rice, and cotton 

leaves. 

To understand the performance of 

different Neural networks in 

classification of plant leaf diseases. 

Single-Layer Perceptron (SLP), Multilayer Perceptron 

(MLP), Radial-Basis Function (RBF), Kohonen’s Self-

Organising Map (SOM), Probabilistic Neural Network 

(PNN) and CNN. 

 

The following classification accuracies were achieved: 

MLP, SOM =99%; RBF, MLP =98%; NN-SOM =97%; 

PNN= 95%; CNN= 99.3%; CNN=96.3%. 

(Golhani et al., 2018) 

 

 

 

 

 

Areca nuts (same procedure as leaf 

classification).  

To apply neural networks and image 

processing techniques for detecting 

and classifying the quality of Areca 

nuts. 

ANN. A classification accuracy of 90.9% was achieved. (Huang, 2012) 

 

 

 

Plant leaves in general. To detect and classify 

the plant leaf diseases using image 

processing and neural network 

technique. 

CNN. A classification accuracy of 90.9% was achieved. (Brahimi et al., 2018) 

Cassava leaves. To identify and classify three types 

of cassava leaf diseases. 

CNN. A classification accuracy of 93% was achieved. (Ramcharan et al., 

2017) 

Grapevine, Apple, Peach and Pear 

leaves. 

To develop plant disease recognition 

model, based on leaf image 

classification. 

CNN. A classification accuracy of 96.3% was achieved. (Sladojevic et al., 

2016) 

Various plant leaf diseases. To classify plant leaf diseases. ANN.A classification accuracy of 87.48% was 

achieved. 

(Pujari et al., 2016) 

Maize leaves. To classify various diseases of maize 

leaves. 

CNN. An average accuracy of 92.85% and accuracies of 

87-99. 9% on separate class tests 

(Sibiya and 

Sumbwanyambe, 

2019a) 

Maize leaves. To predict the severities of maize 

Common Rust by classifying the 

tested images into stages of severity. 

CNN. It achieved a validation accuracy of 95.63% and 

accuracy 89% when tested on separate images of CR to 

make severity predictions among 4 classes of CR with 

various stages of the disease’ severities 

(Sibiya and 

Sumbwanyambe, 

2021) 

Various leaf diseases To improve the Accuracy of Plant 

Leaf Disease Classification 

Improved CNNs. 98% accuracy for both testing and 

validation sets 

(Nerkar and Talbar, 

2020) 

Various plant leaves with diseases 

such as black rot, bacterial plaque, 

and rust. 

To introduce a mathematical model 

of plant leaf disease detection and 

recognition based on deep learning, 

which improves accuracy, 

generality, and training efficiency 

CNN-Resnet 101. It is shown by the results that the 

accuracy of the method was 83.57%, which was better 

than the traditional method. 

(Guo et al., 2020) 

Various plant leaves. To investigate the impact of the 

dataset in plant leaf disease 

detection. 

CNN. Classification accuracies were varied depending 

on the size of the training, number of classes, plant 

species, and whether the backgrounds were removed or 

not. Depending on these parameters, the accuracies 

ranged from the minimum of 50% to 100% 

(Barbedo, 2018) 

Various plant leaves. To classify plant leaf diseases based 

on their lesions and spots 

CNN. Classification accuracies were varied depending 

on the size of the training, number of classes, plant 

species, and whether the backgrounds were removed or 

not. Depending on these parameters, the accuracies 

ranged from the minimum of 31% to 100% 

(Barbedo, 2019) 
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ML methods for plant leaf disease detection 

Research aims Focus on the affected area of 

plant species 

ML model and performance metrics Study 

To capture the symptoms of 

Cotton Leaf Spot images and 

categorize the diseases using 

support vector machine. 

Cotton leaves. Support Vector Machines (SVM). 

SVM accuracy for wavelength transform was 97%. 

SVM accuracy for Texture feature extraction-GLCM 

was 97.2% 

(Patil and Zambre, 

2014) 

To investigate the potential of 

using hyperspectral imaging for 

detecting different diseases on 

tomato leaves. 

Tomato leaves. Extreme Learning Machine (ELM) model. 

The following classification accuracies were achieved 

by the ELM. 

Healthy = 100% 

Early Blight = 100% 

Late Blight = 100% 

(Xie et al., 2015) 

 

To identify and assess the two 

diseases, the canopy hyperspectral 

data of healthy wheat, wheat in 

incubation period, and wheat in 

diseased period. 

 

 

Wheat leaves. 

 

SVMs. The model’s training accuracy was on separate 

test data was 82%. 

 

 

(Wang et al., 2015) 

To use hyperspectral imaging in 

the determination of coffee rust. 

Coffee leaves. SVM, Decision Trees (DTs), and K-Nearest Neighbors 

(K-NNs). The following accuracies were achieved to 

correctly classify the healthy class. 

SVM accuracy was 94.70%; K-NNs accuracy was 93%; 

DTs accuracy was 90.30%. 

(Castro et al., 2018) 

To detect plant leaf diseases and 

their severities. 

Cassava leaves. Linear Support Vector Machines (LSVM), KNNs and 

Extra trees. The following accuracies were achieved to 

correctly the diseased leaf areas: 

LSVM accuracy was 80% on colour, and 99.98% on 

colour with ORB feature extraction; KNNs accuracy 

was 44.68% on colour, and 100% on colour with ORB 

feature extraction; Extra trees accuracy was 48.94% on 

colour, and 99.88% on colour with ORB feature 

extraction; 

(Owomugisha and 

Mwebaze, 2017) 

To classify the leaf brown spot and 

the leaf blast diseases of rice plant 

based on the morphological 

changes of the plants caused by the 

diseases. 

Rice leaves. Bayesian networks and SVM. Bayes classifier achieved 

an accuracy of 79.5%; SVM achieved a classification 

accuracy   of 68.1%. 

(Phadikar et al., 2012) 

To classify different plant diseases. Ground nut leaves. Improved Random Forest classifier. 

It was confirmed by the performance results that the 

proposed improved-RFC approach performed better 

than the Random Forest algorithm with an improved 

classification accuracy of up to 97.80% for a multi-class 

groundnut disease dataset. 

(Chaudhary et al., 

2016) 

To detect stress severity. Soybean leaves. Classification trees. In this study, 10 different 

classification approaches, with the best hierarchical 

classifier with a mean per-class accuracy of 

approximately 96%. 

(Naik et al., 2017) 
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2.8 Fuzzy logic and Thresholding theoretical concepts 

Part of this study focuses on hybridizing the CNN, thresholding and Fuzzy Logic (FL) decision rules into a 

hybrid system for predicting the severity of CR maize disease. A hybrid system is the one that combines at 

least two intelligent technologies. The primary point of the idea of hybridization is to defeat the shortcoming 

in one system while applying it and drawing out the quality of another strategy to discover an answer by 

joining them. Fuzzy logic and artificial neural networks have been used in many engineering applications and 

sequels of articles were published in these areas of artificial intelligence. Next, a review of FL and thresholding 

techniques is performed. 

2.8.1 The Concept of Fuzzy Logic 

Fuzzy logic is an approach to computing based on "degrees of truth" rather than traditional "true or false" (1 

or 0) Boolean logic on which the modern computer is based (Zadeh, 2015). Fuzzy logic control is an 

intelligence that computers can use to achieve control objectives without modelling the system using complex 

math formulas. In fuzzy logic control, a series of “if” and/or “else” statements are used to achieve control 

goals. Figure 2.11 illustrates a fuzzy logic system. 

 

Figure 2. 11: Architecture fuzzy logic system 

The literature highlights that there are many papers in which fuzzy image processing systems have been 

designed. For instance, Schröder et al. (2014) modelled imaging deflagration detection methods with a fuzzy 

classification. The results identified the fire, according to its normal flicker rate. Some, like Celik et al. (2007) 

developed fuzzy logic, an improved generic colour model to classify fire pixels. The performance of the model 

was tested on two large sets of images; one set contained fire while the other set contained no fire but had 

regions similar to fire colour. One was holding the fire, while the other was not holding the fire, but had zones 

like the colour of the fire. The model achieved a correct fire detection rate of 99.00% with a false alert rate of 

9.50% (Celik et al., 2007). The fuzzy logic of AI provides a high degree of reasoning flexibility. It is basically 



_______________38_________________Year 2021                                   

 

a method of reasoning that resembles human reasoning. This approach resembles the way humans make 

decisions, and it includes all the intermediary possibilities between "YES" and "NO". In that sense, fuzzy 

logical reasoning provides acceptable reasoning and helps to deal with uncertainty in engineering. The fuzzy 

logical architecture contains all the rules and requirements offered by human experts to control the decision-

making system. In a study by Behera et al. (2018), it is mentioned that fuzzy logic was invented by Lotfi 

Zadeh. It is Lofti Zadeh, who observed that humans have a different range of possibilities between “YES” and 

“NO”, which is what made their logical thinking differ from that of the computers as they make binary 

decisions. It is for these reasons why Behera et al. (2018) were able to use multi class support vector machines 

(SVM) with K-means clustering for the classification of plant. In their work, they integrated a fuzzy logic to 

calculate the severity of orange disease, and their hybrid model reached an accuracy of 90%. Using fuzzy 

logic, others like Sannakki et al. (2012) proposed an image processing approach for automatically classifying 

the spread of disease on plant leaves. Rastogi, Arora, and Sharma used MATLAB to conduct segmentation 

and classification based on K-averages, percent infection calculation, and disease classification using the fuzzy 

logic toolkit (Rastogi et al., 2015). 

2.8.1.1 Fuzzification of Crisp Inputs 

Fuzzification is the way toward changing a genuine scalar value into a fuzzy value. This is accomplished with 

the distinctive sorts of fuzzifiers (membership functions). To explain the concept of FL, this study focuses on 

temperature cooling system that is controlled by fuzzy inference rules as an example. Fuzzy linguistic 

variables are utilized to present qualities traversing a specific range. Fuzzification can be utilized with fuzzy 

linguistic variables as shown in the following example: 

Example 1 

Temp: {Freezing, Cool, Warm, Hot} 

Question: What is the temperature? 

Answer: It is warm. 

Question: How warm is it? 

Figure 2.12 shows the membership function of the input temperature for a FL system.   

 

Figure 2. 12: Membership functions of the input temperature 

Imagine if a question was to be asked by referring to the fuzzified input of Figure 2.12. What is the degree of 

coolness at 36 F°? 
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Answer: It is 70% Freezing and 30% Cool. 

Therefore, the degree of membership  𝜇 (𝑥) plays an important value in finding the fuzzified value at a 

particular value of the temperature. The illustrations in Figure 2.13 attempts to answer the latter asked question. 

 

Figure 2. 13: Membership functions of the input temperature at a known temperature of 36 F°. 

From the interpretation of the membership functions of Figure 2.13, the temperature value can be determined 

by  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  
𝜇𝐶𝑜𝑜𝑙(𝑥)

𝐶𝑜𝑜𝑙
+  

𝜇𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔(𝑥)

𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔
 

                                                                                                                                                                      (2.34)       

To answer the latterly question  

Temperature =  
μCool(x)

Cool
+  

μFreezing(x)

Freezing
=  

0.3

36
+  

0.7

36
= 0.0277 (℉) 

Membership functions have the following general properties (Davim, 2012): 

Core: 𝑥 |  𝜇𝐴̃(𝑥) = 1 

Support: 𝑥 | 𝜇𝐴̃(𝑥) ≥ 0 

Boundary: 𝑥 | 0 <  𝜇𝐴̃(𝑥) < 1 

Figure 2.14 illustrates the general properties of membership functions in a graphical presentation. 

 

Figure 2. 14: A graphical presentation of general properties for fuzzy set membership functions. 
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2.8.1.2 Rule-Based Fuzzy Inferencing 

This is the stage of the fuzzy logic control system that constitutes rule-based decisions. For example, a rule to 

switch the heater (output) ON when very low temperatures (input) are reached would be designed as follows: 

If the temperature cools and freezing, then the heater ON 

A series of “if” (antecedent) and “then” (consequent) statements could be used in order to write fuzzy rules 

for the fuzzy decision-making unit. The decision-making unit is also known as a fuzzy inference unit. 

2.8.1.3 Defuzzification 

The output of the inference procedure is a fuzzy set, determining a probability conveyance of the (control) 

action. In the online control, a non-fuzzy (crisp) control action is generally required. Thus, one must defuzzify 

the fuzzy control action (output) induced from the fuzzy thinking calculation, specifically:  

𝑧𝑜 = 𝑑𝑒𝑓𝑓𝑢𝑧𝑖𝑓𝑖𝑒𝑟(𝐶) 

                                                                                                                                                                    (2.35) 

where 𝑧𝑜 is the crisp action and deffuzifier is the defuzzification operator. A defuzzification is a process to 

select a representative element of the fuzzy output C inferred from the fuzzy control algorithm.                              

Definition: 

Let A be the fuzzy set given by 𝐴 = {( 𝑥𝑘, 𝜇𝐴(𝑥𝑘)), 𝑘 = 1,2, … . . 𝑛} 

where 𝑥𝑘 ∈ 𝑅. Then the 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑑𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑟 𝛿 is given by  

𝛿 =
∑ 𝑥𝑘𝜇𝐴(𝑥𝑘)𝑛

𝑘=1

∑ 𝜇𝐴(𝑥𝑘)𝑛
𝑘=1

 

                                                                                                                                                                    (2.36) 

It might be seen that the centroid defuzzifier can be utilized just when X⊆ R, the set of real numbers. This 

deffuzifier is the weighted average of the given qualities, weighted by the particular membership values. 

2.8.2 The Fundamentals of Thresholding 

Histogram thresholding: One of the famous techniques for monochrome image segmentation is histogram 

thresholding. For instance, suppose the intensity histogram shown in Figure 2.15 corresponds to an image f (x, 

y), consisted of light object on the dark background. The objects from the background could be extracted by 

selecting a threshold T that separates histogram. Any point (x, y) for which f (x, y) ≥ T (e.g., T=124) is called 

an object pointer; other than that, the point is called the background point. This implies, the thresholded image 

is defined as 

𝑔(𝑥, 𝑦) =  {
1 𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑇

0 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇
 

                                                                                                                                                                    (2.37) 

Pixels labelled 0 correspond to the background while those labelled 1 correspond to objects. 
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Figure 2. 15: (a) Aorta and blood vessels shown by an MR angiaography image; (b) Intensity histogram of the image in (a);(c) The thresholded 

binary image with a threshold value T1=124, pixels labelled 1 (in white) corresponding to objects;(d) A binary image thresholded with a 

threshold value T2 =90 (Zhou et al., 2010b). 

Global thresholding: This type thresholds either global or local (Zhou et al., 2010b). There are quite a few 

approaches to implementing optimal thresholding. The general methodology follows the consideration of 

pixels, foreground, and background, as belonging to two classes or clusters. The aim is to pick a threshold in 

a manner that each pixel on each side of the threshold is closer in value to the mean of the pixels on that side 

of the threshold than the mean of the pixels on the other side of the pixels (Zhou et al., 2010b). Since the 

algorithms automatically proceed without the intervention of the user, they are said to be unsupervised. A 

method proposed by Otsu (1979) is a good example of such a technique, in which the optimal threshold is 

chosen as the one that maximises
𝛿𝐵

2

𝛿𝑇
2 , with 𝛿𝑇

2 the total variance. Since the Otsu is unsupervised and offers 

optimal thresholding, it was chosen in a study presented in chapter 4 of this thesis. Figure 2.16 compares the 

Otsu and conventional methods of thresholding.  

 

Figure 2. 16: (a) A blood vessel image; (b) histogram’s intensity of image in (a); (c) The resulting thresholded image when optimal Otsu was 

used with a threshold value of T1=135; (d) The resulting thresholded image when the conventional method was used with a threshold value 

T2=172 (Zhou et al., 2010b). 

Adaptive local thresholding: A satisfactory segmentation result is obtained when the background is uniform. 

In the literature there are many background corrections, but they may not result in an image that is suitable for 

thresholding (Zhou et al., 2010b). It is possible that the transition between the background and object diffuses, 

making an optimal threshold level difficult to find. Also, a trivial change in the threshold level may have great 

impact in later analyses. To circumvent the problem of varying background, adaptive local thresholding can 

be used, or as refinement to coarse global thresholding (Gonzalez and Woods, 2002; Zhou et al., 2010a). 
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When using adaptive local thresholding, each pixel is deemed to have a nxn neighbourhood around it from 

which a threshold value is calculated and the pixel set to black or white, according to whether it is above or 

below this threshold, 𝑇𝐿. Also, the size of the neighbourhood, n, will have to be large enough to cover enough 

background and foreground pixels, such that the effect of noise is minimal. In fact, this size of the 

neighbourhood, n, does not have to be too large that uneven illumination becomes noticeable within the 

neighbourhood (Zhou et al., 2010b). Figure 2.17 illustrates an example of an adaptive local thresholding 

versus the Otsu thresholding on an image that consists of a variable background.  

  

 

Figure 2. 17: (a) Original microscopic image of C. aligns, note it has an uneven background illumination; (b) Image intensity histogram (a); (c) 

Segmentation of image (a) using the Otsu threshold, where the threshold value is 117 and fails to locate all objects from the surrounding 

background; (d) Segmentation of image (a) using adaptive local thresholding (Zhou et al., 2010b). 

The main disadvantage of histogram-based methods is that they do not take into account the shape information, 

and the result can be difficult to conceive, particularly in cases of low signal-to-noise ratios (Zhou et al., 

2010b).  Additionally, peak noise or contamination from other points can be categorized into the spot, resulting 

in errors in the estimated intensity values. 

Multiple thresholding: The purpose of a single threshold is to segment the image into only two regions which 

are the background and foreground. However, more commonly, the objective is to segment the image into 

multiple regions by use of multiple thresholds (Zhou et al., 2010b). The technique of multiple thresholding 

considers that an image consists of the various regions that correspond to the grey level ranges. As shown in 

Figure 2.18, it is seen that the histogram of an image can be separated by means of peaks (modes) that 

correspond to the various regions. A thresholding value that is used to separate the objects is the one 
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corresponding to valley between two adjacent peaks. The selection of an appropriate threshold value 

determines the success of thresholding.   

 

Figure 2. 18: (a) A grey level image of some randomly placed match sticks; (b) Intensity histogram of image in (a);(c) Multiple thresholded 

image with corresponding threshold values of T1= 45 and T2= 134 (Zhou et al., 2010b). 

There is evidence in the literature that a plethora of studies employed the Otsu threshold method for many 

different applications. For instance, Sibiya and Sumbwanyambe (2019b) used the Otsu method in their study 

for severity detection of maize leaf diseases along with FL techniques. In their extended study, Sibiya and 

Sumbwanyambe (2021) also used the Otsu method and FL as a means of image segmentation for the 

preparation of image data that were used for training a CNN model to predict the maize CR severity. Various 

approaches have been proposed in using Otsu method for thresholding. For instance, it was proven in a study 

by Fang et al. (2009) that Otsu algorithm can calculate the high threshold value, which is significant to the 

Canny algorithm, and then this threshold value can be used in the Canny algorithm to detect the object’s edge. 

Recent investigations in a study by Yang et al. (2020) have provided evidence of improved Otsu threshold 

segmentation algorithm. 

2.9 Summary 

This literature review has revealed evidence in the use of both ML and DL for plant leaf disease detection. 

Figure 2.10 illustrates the overall percentage of DL and ML algorithms that were used for plant leaf disease 

detection in this review. The mathematical concepts dealt with for ML and DL prove that DL is a subfield of 

ML. For instance, the regression algorithm of ML is also used by the nodes in the ANNs. Also, the DL uses 

the same gradient descent methods to update its weights like ML regression algorithm. There are a lot of ML 

algorithms in the literature. These involve algorithms such as Decision Trees, Support Vector Machines and 

Forest Trees to mention a few. It can be seen in Figure 2.10 that some of these ML and DL algorithms were 

used in the studies related to the approaches proposed in this study. The choice of the ML or DL algorithm to 

use can be determined by several factors. For instance, some ML and DL algorithms can handle different types 

of data. Some can handle images or numerical data while others can handle both. The CNN approaches 

proposed in this study can only handle images. The type of images used in CNNs can either be grey scale 
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images or RGB colour images, but this study focuses only on colour RGB images due to the nature of the 

image features being studied. The concept of computer vision was explained by comparing a human eye and 

a camera, and how features are extracted by CNN models. A fuzzy logic technique that forms part of Chapter 

4 has been reviewed and an example has been used to explain the fuzzy logic concept in detail. In this chapter, 

the Otsu threshold method is explained along with other methods of thresholding since Chapter 4 also involves 

the use of the Otsu threshold method to develop the CNN Hybrid system for maize CR disease severity 

prediction.  
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CHAPTER 3: Convolutional Neural Network for the Classification of 

Maize Leaf Disease 

The following chapter is based published work by: 

Sibiya, M. and Sumbwanyambe, M., 2019a. A computational procedure for the recognition and classification 

of maize leaf diseases out of healthy leaves using convolutional neural networks. Agri Engineering, 1 (1), pp. 

119-131. 

Website: https://www.mdpi.com/2624-7402/1/1/9 

Status: Published 

Abstract 

Leaf diseases can affect plant leaves to a certain extent, because plants can collapse and die completely. These 

diseases may significantly reduce the market supply of vegetables and fruit and result in a weak agricultural 

economy. A variety of laboratory methods to detect foliar diseases have been used in the literature. These 

methods take time and cannot be used in large fields for the detection of foliar diseases. This study concentrates 

on the principles of the convolutional neuronal network (CNN) in order to model a network of image 

recognition and classification of these diseases. Neuroph was used to train a CNN network, which recognized 

and classified images of corn leaf diseases which have been collected using a smart camera. A new method of 

CNN training and methodology has been employed to accelerate the rapid and easy implementation of the 

system in practice. The developed model recognized three different types of diseases of corn leaves from 

healthy leaves. Diseases of maize known as Northern Corn Leaf Blight (Exserohilum), Common Rust 

(Puccinia sorghi) and Grey Leaf Spot (Cercospora) were selected for this study. The reason for that is because, 

the latter mentioned corn leaf diseases have hit most parts of the Southern Africa as the literature reveals. 

3.1 Introduction and Related Works 

Grey Leafspot (GL) is caused by a fungus called Cercospora zeae-maydis. Today, it is considered one of the 

diseases that limit maize yield the most in the world. The GL has caused a significant threat to corn production 

in many parts of the eastern United States and, more recently, large areas of the United States (Ward et al., 

1999). Its symptoms are usually seen on lower leaves (Ward et al., 1999). The GLS maturation stages of corn 

are shown in Figures 3.1 and 3.2. 

https://www.mdpi.com/2624-7402/1/1/9
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Figure 3. 1: Immature GLS lesions on corn leaves appear as small brown blotches, often with chlorotic borders. 

 

Figure 3. 2: The mature GLS lesions on the corn leaves are grey to tan and distinctly rectangular in shape. 

Common rust (CR), otherwise caused by the pathogen Puccinia sorghi, is favored by cool temperatures (16-

23°C) and high relative humidity (100%) (Campus 2012). Functional foliar zone and photosynthesis are 

reduced by disease damage. Spotting occurs on the upper and lower surface of leaves (Dilliard 1990). Figures 

3.3 and 3.4 show early CR lesions and further disease development, respectively. 

 

Figure 3. 3: Early lesions begin with spotting of leaves that develop into small tanning spots (CR disease). 

 

Figure 3. 4: Further development of the disease with spots of serrated appearance, transforming into long brick red to cinnamon brown pustules 

(CR disease). 

Cornfield leaf blight is a disease caused by a fungus called Exserohilum turcicum. The development of NCLB 

is influenced by cold to moderate temperatures and high relative humidity. Symptoms are identified by 

relatively large grey cigar-shaped lesions that can develop on leaves (Jackson 2008). The stage changes in 

NCLB due to fungal concentration are shown in Figures 3.5 and 3.6. 
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Figure 3. 5: Typically large, cigar-shaped, beige to grey lesions of NCLB. 

 

Figure 3. 6: The fungus can cause NCLB to produce large quantities of spores on the surface of the lesions, resulting in a dark appearance. 

In the literature, several machine learning algorithms have been used for identifying and detecting plant leaf 

diseases. With Open CV-dependent feature extraction strategies, the results of the created model reached 

somewhere within the range of 91% and 98% accuracy and 93% on average for isolated class tests (Sladojevic 

et al., 2016). Using deep learning methods, a public dataset of 54306 images of ill and healthy sheets was 

collected under controlled conditions and utilized for the training of a deep convolutional neural network in 

order to classify 14 crop species and 26 diseases. The feasibility of this approach was demonstrated by a 

trained model that achieved 99.35% precision on a set of pending tests (Mohanty et al., 2016). A study was 

conducted to apply the artificial neural network (ANN) analysis technique to distinguish and classify fungal 

infections in oil palms (Ahmadi et al., 2017). The datasets of the raw, first- and second-derivative spectral 

radiometers were used very early. They were obtained from 1.16 spectral signatures of leaf samples at four 

disease levels (T1: healthy, T2: slightly infected, T3: moderately infected, and T4: seriously infected) (Ahmadi 

et al., 2017). A web-based tool was proposed that helped farmers in the identification of fruit diseases by 

uploading fruit images to the system. The system used well-trained datasets of pomegranate fruit. The images 

to be analyzed were given by the user to undergo several processing steps in order to detect the severity of the 

illnesses by comparing them with the images of the dataset formed. Experimental results of the proposed 

approach demonstrated 82% of accuracy in determining pomegranate disease (Bhange and Hingoliwala, 2015). 

Very little is known about the implementation of CNN for plant disease recognition built on a framework that 

utilises graphical user interface (GUI) to train the network by use of raw images with feature extractions 

embedded in the program’s library. The main objective of this study was to design a system that would 

recognise and classify the maize leaf diseases out of healthy leaves by means of facilitated CNN. The 

development and novelty of the proposed model lay in its simplicity; background images and healthy leaves 

were in accordance with other classes, empowering the model to distinguish between diseased leaves and 

sound ones or from the environment by utilizing deep CNN. The use of machine learning algorithms for 
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detecting leaf diseases is prevalent in the literature. It was found that machine learning models for predicting 

these plant leaf diseases differed in precision. A variety of techniques are currently used to recognize plant 

leaf diseases through the application of computer vision. One of them is disease detection by colour feature 

extraction from images. CNNs are known to be more effective in classifying and identifying images by 

extracting colour elements. For such reasons, Sladojevic et al. (2016) conducted CNN's in-depth training on 

recognition and classification of plant diseases. The results of the tests on the created model achieved an 

accuracy of 91% and 98%, for separate class tests, 96.3% on average. Using an open dataset of 54,306 images 

of diseased and healthy plant leaves collected under controlled conditions, Mohanty et al. (2016) trained a 

deep CNN to distinguish 14 crop species and 26 diseases. The trained model obtained an accuracy of 99.35% 

over a set of pending tests, demonstrating the plausibility of this approach. A study in comparison of support 

vector machine (SVM) and ANN, was performed by D.Pujari et al.(2016). Algorithms for colour extraction 

and texture characteristics have been developed and therefore used to form SVM and ANN classifiers. The 

study provided an approach based on a reduced set of characteristics for the recognition and classification of 

plant disease images. The results showed that the SVM classifier was progressively reasonable in identifying 

and classifying plant diseases. A SVM classifier was 92.17% compared to a ANN classifier with an accuracy 

of 87.4%. Recently, wheat disease detection using leaf images and data processing techniques has been widely 

used to help farmers monitor large acres. Researchers like Dixit and Ema have used SVM to recognize and 

classify wheat diseases. In their study, they elaborated on the key issues and challenges related to wheat leaf 

detection through the SVM (Dixit and Nema, 2018). The objective of this study is to model a facilitated CNN 

based on the graphical user interface for the recognition and classification of corn leaf diseases. In this study, 

the use of image recognition in the Neuroph Studio framework made it possible to design CNN with feature 

extraction functions embedded in the program library. The overall system’s accuracy showed a progressive 

99.9% for the classification of NCLB (Exserohilum), 91% of GLS (Cercospora), 87% of the CR (Puccinia 

sorghi), and 93.5% of healthy leaves using a maize data set of 100 images for each disease class, and 100 

images for healthy class. 

3.2 Materials and methods 

3.2.1 The Concept of CNN 

The regular NN (neural network) is not equipped to deal with images. If a regular NN were to be used with 

the images, then each pixel of the image would have to be connected to its neuron resulting in a network which 

would be computationally expensive. CNN processes images in different ways, while pursuing the overall 

idea of regular NN. Figure 3.7 illustrates an architecture for CNN. 
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Figure 3. 1: The architecture of Convolutional neural network. 

Convolution and pooling (feature retrieval): Convolution layers have a set of usable filters that are a matrix 

(width (W), height (H) and depth (D)). The input image is considered as a matrix and the filter is imagined 

sliding through the input image matrix to get the convoluted image which is the filtered image of the actual 

input image. If a filter is applied to the incoming image, the result will be a lower output matrix than the 

original image. Padding plays a major role if we are to get the same output size as the input size. Pooling is 

another important concept of CNN. Pooling is a form of non-linear descending sampling function which, in 

the case of CNNs, is applied to convoluted images. Among several non-linear functions that can perform 

pooling, maximum pooling is the most frequent. Classification: The input images are organized by a fully 

connected layer right after the convolution and max pooling layers. The neurons of a fully connected layer 

have connections to all the activations of the previous layer, as seen in the normal neuronal network. Figure 

3.7 illustrates the diseases of corn plants that have been identified and categorized by a fully connected layer 

of the proposed CNN. 

3.2.2 Materials 

The Neuroph framework includes the Java neural network library and the built-in neural networks, and the 

Java IDE based on the NetBeans – Neuroph Studio platform. This is an integrated environment for creating 

and deploying neuronal networks for Java programs. Neuroph supports common neural network architectures, 

and it is very flexible so it can be easily expanded to meet specific needs. Figure 3.8 shows the basic structure 

for frame packages. 

 

Figure 3. 2: The typical framework of the Neuroph platform. 
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3.2.3 Methodology 

A CNN was developed on the Windows PC platform. The framework of the Neuroph Studio was used to 

construct a CNN with 50 hidden layers for the recognition and classification of diseases of corn leaves on 

healthy leaves. The network was formed using 100 colour images of each disease and healthy leaves with 

resolution parameters configured like 10x20x3 (width-to-height channels). Using the image resolution 

parameters mentioned above, the CNN was modelled to have 600 inputs across the neural array classifier input 

layer. Out of 100 images available for each class to be recognized, 70% were used for training and 30% for 

testing the CNN. Backpropagation was used as the learning algorithm for forming the CNN network. A 

mathematical model of the proposed CNN was implemented as shown below: The order made by the CNN 

was a tensor of order 3 as its input. Input images that were used for testing of possible disease conditions were 

images with H rows, W columns and 3 channels (RGB colour channels). A summary of the proposed CNN 

model is shown in equation (3.1). 

𝑥1 → 𝒘𝟏 →  𝑥2 → ⋯ →  𝑥𝐿−1 → 𝒘𝑳−𝟏 →  𝑥𝐿 →  𝒘𝑳 →  

                                                                                                                                                          (3.1) 

Equation (3.1) illustrates how the proposed CNN model operates layer by layer. The input 𝑥1 was an image 

of a maize leaf disease or a sound disease with tensors of order 3. The 𝑥1 was the input to the first layer’s 

input collectively known as tensor W1. The output of the first layer was 𝑥2 which also acted as an input to the 

second layer processing. The processing proceeded until all layers in the CNN had been finished, which gave 

an output of 𝑥𝐿. An extra layer, however, was added for the propagation of errors back to learning parameter 

values in the CNN. The last layer was a loss layer. As an equation (3.2) illustrates, a single loss function is 

used. 

𝑧 =  
1

2
∥ 𝑡 − 𝑥𝐿 ∥2 

                                                                                                                                                                      (3.2) 

In equation (3.2), 𝑡 denotes the corresponding target value for the input 𝑥𝐿 . The loss function formula in 

equation (3.2) was used to measure the discrepancy between CNN prediction 𝑥𝐿  and 𝑡. Alternatively, the 

output prediction of the CNN was given as shown in equation (3.3). 

𝑎𝑟𝑔𝑖𝑚𝑎𝑥 𝑥𝑖
𝐿 

                                                                                                                                                                      (3.3) 

The loss layer was not needed in the prediction, but was useful in learning of CNN parameters using a set of 

diseased and healthy maize leaf data sets as training sets. The proposed CNN model used stochastic gradient 

descending (SGD) to learn the model's parameters. Rather than generating a prediction, we compared the 

prediction with the t target corresponding to the input. Loss Z was then a supervisory signal, guiding the way 

the model parameters should be updated. The manner in which SGD changed the parameters is presented in 

equation (3.4). 
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𝑤𝑖  ← 𝑤𝑖 − 𝜂
𝜕𝑧

𝑑𝑤𝑖
 

                                                                                                                                                                      (3.4) 

where 𝜂 represents the learning rate. The learning rate was chosen to be 0.01. Equation (3.5) has a superscript 

“time” index (e.g., training epochs/iterations). 

(𝑤𝑖)𝑡+1 =  (𝑤𝑖)𝑡 − 𝜂
𝜕𝑧

𝜕(𝑤𝑖)𝑡
 

                                                                                                                                                                      (3.5) 

The activation functionality used in the convolution layer was the corrected linear unit (ReLU). The ReLU 

can be considered as a truncation performed separately for each element of the input. ReLU is shown as 

equation (3.6). 

 

𝑗𝑖,𝑗,𝑑 = max  {0, 𝑥𝑖,𝑗,𝑑
𝑙 } 

                                                                                                                                                                      (3.6) 

The l-th layer, had inputs that formed an order 3 tensor 𝑥𝑙 with 𝑥𝑙 ∈ 𝑅𝐻𝑙 𝑥 𝑊𝑙 𝑥 𝐷𝑙
. Thus, for this reason we 

needed a triplet index set (𝑖𝑙 , 𝑗𝑙, 𝑑𝑙) to locate any specific element in 𝑥𝑙. According to equation (3.6), it is 

evident that in equation (3.7), 

𝜕𝑦𝑖,𝑗,𝑑

𝜕𝑦𝑖,𝑗,𝑑
𝑙 = ⟦𝑥𝑖,𝑗,𝑑

𝑖 > 0⟧ 

                                                                                                                                                                      (3.7) 

where ⟦ . ⟧ was the indicator function, being 1 if its argument was true, and 0 otherwise. Hence, we had 

[
𝜕𝑧

𝜕𝑥𝑙
]

𝑖,𝑗,𝑑
=  {

[
𝑑𝑧

𝑑𝑦
]

𝑖,𝑗,𝑑

  𝑖𝑓 𝑥𝑖,𝑗,𝑑 
𝑙 > 0

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                                                                                                                                      (3.8) 

𝑦 is an alias of 𝑥𝑙+1. An alias means that one variable can be remodelled into another shape. Specifically, the 

max function (0, x) cannot be differentiated to x = 0. Focusing on the convolution layer, the standardized 

kernel was used to collect input images of diseased and healthy corn leaves. The convolution procedure is 

explained in equation (3.9). 

(𝑥, 𝑦) =  ∑ ∑ ℎ(𝑚, 𝑛)𝑓(𝑥 − 𝑚, 𝑦 − 𝑚)

𝑁
2

𝑛=−
𝑁
2

𝑀
2

𝑚=−
𝑀
2

 

                                                                                                                                                                      (3.9) 

ℎ (𝑚, 𝑛) is a filtering mask of size 𝑀𝑥𝑁. Each element of this filter mask represents the weights used in the 

linear blend. It was at this point that the ReLU activation function was used with the convoluted input images 
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of diseased and healthy corn leaves to provide non-linearity. The filter that was used for the convolution of 

the input images in this study is illustrated by equation (3.10). 

𝐾𝑒𝑟𝑛𝑒𝑙𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  |
|

−1 − 1 − 1 − 1 − 1
−1 − 1 − 1 − 1 − 1
−1 − 1 24 − 1 − 1
−1 − 1 − 1 − 1 − 1
−1 − 1 − 1 − 1 − 1

|
| 

                                                                                                                                                                    (3.10) 

As described above in this study, pooling was used to sample the convoluted non-linear image to form an 

input signal entered into a fully connected classifier. 

3.2.4 Data Collection and Testing of the CNN 

The images to be analysed for possible existence of the maize diseases were captured using a Google Pixel 3 

smart phone camera in a maize field and saved in a file located on Google Drive. To analyze the data collected 

in the field of maize, the Neuroph CNN was used on the computer station. Figure 3.9 illustrates a fully 

connected CNN classifier.  

 

Figure 3. 9: The neural array classifier after convolution and maximum pooling has been completed in the Neuroph library. 

Figure 3.10 shows how the Google Drive file was accessed to select one of the field images that was analyzed 

for the possible existence of corn leaf diseases. The output window of the result shows that the CR had a 

strong probability of 0.8 followed by the NCLB with a probability of 0.5. By continually accessing a file 

downloaded from Google Drive containing the field data, the field images collected were all analyzed for the 

possible existence of the diseases. 
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Figure 3. 10: Image recognition and classification test in the context of the Neuroph. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 3.11-3.14 present some of the test images of the corn test dataset that were analyzed using the proposed 

CNN model. 

3.3 Results 

Figure 3.15 shows the CNN training iterations performed to minimize the error from 0.275 to a reduced error 

of 0.001. As shown in Figure 3.15, an approximate total of 150 iterations was carried out to reduce the error 

to 0.01. 

 

Figure 3. 3: GLS (Cercospora). 

 

Figure 3. 4: CR (Puccinia sorghi). 

 

Figure 3. 5: Healthy. 

 

Figure 3. 6: NCLB (Exserohilum). 
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Figure 3. 15: Graph of total network errors during and after training the CNN network on a Neuroph frame. 

Figure 3.16 illustrates the weight assignment for each of the 50 hidden layers that were used to build the CNN 

for the recognition and classification of maize diseases out of healthy leaves. 

 

Figure 3. 16: Weight allocation for each of CNN's 50 hidden layers. 

Table 3.1 provides results for separate class tests. The CNN was very precise in recognizing and classifying 

the NCLB (Exserohilum) with an exceptional accuracy of 99.9%. Some of the test images showed the 

properties of GLS (Cercospora) and CR (Puccinia sorghi). This is one reason why CNN underperformed 

when it comes to classifying the two diseases. 

Table 3. 1: Accuracy of CNN results in classifying and recognizing diseases of healthy corn leaves and leaves. 

Type of Maize Disease Total Percentage of Training Images Total Percentage of Testing Images CNN Classifier Accuracy 

NCLB. 70% 30% 99.9% 

GLS. 70% 30% 91% 

CR. 70% 30% 87% 

Healthy. 70% 30% 93.5% 

The CNN’s overall accuracy was determined by equation (3.11). 



_______________55_________________Year 2021                                   

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
 𝑥 100, 

                                                                                                                                                                    (3.11) 

The overall accuracy for the CNN classifier was 92.85%. Test results for the proposed CNN model were in 

the range of 87% and 99.9% of tests of distinct classes and 92.85% on average. Table 3.2 shows the results of 

the convoluted input images as well as the results of the histograms of the input images via the proposed CNN. 

Table 3. 2: Array of convoluted results and histogram results of some of the test images selected via CNN. 

Input Image Convolution Result Histogram Result 

   

   

   

   

3.4 Discussion and Conclusion 

These results further strengthened our hypothesis that the CNN could recognize and classify corn leaf diseases 

with an overall accuracy of 92.85%. The CNN was trained using about 150 iterations to reach a minimum 

error of 0.01. This proved that the model was rapid in learning training data. In separate class tests, the model 

obtained accuracies of 99.9% for NCLB, 91% for GLS, 87% for CR and 93.5% of healthy corn leaves. This 
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was achieved by using a batch of 100 images for each disease-class and 100 healthy images to train the CNN. 

Various images of each lot were used to conclude the feasibility of the research and the results obtained with 

respect to accuracy. This study focused on three maize disease types that were caused by biotic stresses. 

However, the proposed CNN would also be used to recognize the diseases that could be the cause of the abiotic 

stresses if it were to be trained with the data collected from the abiotic stressed plants. Future research is 

proposed to determine the performance of the CNN, which would be formed by biotic stress data and then 

tested against abiotic stress data. In the literature, there are numerous machine learning studies that explain 

the detection of plant leaf diseases. However, so far, none have investigated the detection of corn diseases in 

large open corn fields. Using deep CNN built in the Neuroph studio and a Google Pixel 3 smart phone we 

managed to conduct a study to detect the three types of maize diseases that occurred in the large open maize 

fields. The corn field was divided into 10x10 square meter section areas and the data was collected using a 

Google Pixel 3 smartphone of each section area. The database used for storing the collected data was Google 

Drive. During the training and testing of CNN, the data were extracted from Google Drive and used for training 

or testing CNN. The proposed method eliminates the use computation methods and cameras for data 

acquisition. The proposed method is more accurate than other methods that utilize data acquisition 

computational methods as the data was collected by the user from any angle of the leaves. Another advantage 

is that our proposed CNN was built in a GUI platform. This will enable people who are not familiar with high 

level programming languages, such as Python, MATLAB and C to mention a few, to build a CNN from scratch. 

In this study, we have reviewed related works in the literature for the plant leaf disease classification 

algorithms of machine learning. The Neuroph Studio framework was used as an IDE to build a more facilitated 

deep CNN whereby the convolution and pooling feature extractions were embedded in the Neuroph library. 

The proposed CNN was formed and tested using the data sets on the Plant Village website. The overall 

accuracy of 92.85% of CNN has shown its feasibility. The CNN was also tested using the data collected for 

maize and the results were compared with the results obtained when using the test data. It is recommended 

that the researchers who wish to use the proposed CNN in this study use the resolution settings of 10 × 20 × 

3 (height × width × RGB). Future research is proposed to determine the performance of CNN when training 

and testing is performed with grayscale images. 
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CHAPTER 4: Fuzzy Logic Rules for severity estimation of maize disease 

based on Thresholding 

The following chapter is based on works published based by:  

Sibiya, M. and Sumbwanyambe, M., 2021. Automatic Fuzzy Logic-Based Maize Common Rust Disease 

Severity Predictions with Thresholding and Deep Learning. Pathogens, 10 (2), p. 131. 

Link: https://www.mdpi.com/search?authors=malusi+sibiya&journal=pathogens 

Status: Published 

Sibiya, M. and Sumbwanyambe, M., 2019b. An algorithm for severity estimation of plant leaf diseases by the 

use of colour threshold image segmentation and fuzzy logic inference: a proposed algorithm to update a “leaf 

doctor” application. Agri Engineering, 1 (2), pp. 205-219. 

Website: https://www.mdpi.com/2624-7402/1/2/15 

Status: Published 

Abstract 

Many applications of plant pathology have been strengthened by the advancement of computer-based artificial 

intelligence (AI). For example, many experts and researchers had used pre-trained convolutional neural 

networks (CNN) such as VGG-16, Inception and Google Net for the detection of plant diseases. The trend for 

using AI for the detection of plant diseases has grown to such an extent that some researchers have been able 

to use AI to also detect their severity. The goal of this study is to introduce a new methodology that is reliable 

in detecting the severity of common corn rust infection using a CNN deep learning model. To do so, images 

of diseased corn leaves (common rust disease) were segmented to extract the percentage of diseased leaf 

surface. These calculated percentages were used to develop fuzzy decision rules for allocating Common Rust 

images based on their severity classes. The four severity classes were then used to prepare a VGG-16 network 

to automatically categorize common rust test images by their severity classes. Trained with images developed 

by using the approach proposed in this study, the VGG-16 network's validation accuracy was 95.63% and a 

testing accuracy of 89%. These accuracies were achieved when the VGG-16 was tested on images of the 

Common Rust disease, classifying them into four classes of Common Rust severity named as the Early stage, 

Middle stage, Late Stage and Healthy stage. 

4.1 Introduction and Related Works 

Researchers who have used CNN models to characterize the severity of leaf disease have so far used training 

datasets organized in classes that rely on human observations to make decisions. Not only is this method 

biased, but it is unreliable because some human decisions may be inaccurate due to possibilities such as visual 

https://www.mdpi.com/search?authors=malusi+sibiya&journal=pathogens
https://www.mdpi.com/2624-7402/1/2/15
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impairment. In a study by Wang et al. (2017) for example, VGG-16 was used to classify the severity in apple 

diseases. In this study, Wang et al. (2017) depended on a botanist's decision on the severity stages of diseased 

apple leaves. The following discretionary powers were taken by the botanist to make decisions regarding 

severity classes: the healthy-stage leaves are free of spots; the early-stage leaves have small circular spots with 

diameters less than 5 mm; the middle-stage leaves have more than three spots with at least one frog-eye spot 

enlarging to irregular or lobed shape; the end-stage leaves are so heavily infected that they will drop from the 

tree.  Through these decisions made by their botanist, they developed the training datasets used to train the 

VGG-16 network with 90.4% test accuracy. The proposed approach was not generic in that the methods used 

to attribute images of diseased plants to their severity classes were only available for apple leaf diseases. In 

addition, the assignments according to severity were based on a human eye, so in this study, a new approach 

to using the decisions of computer fuzzy rules is introduced. These fuzzy rules were used to assign Common 

Rust corn images to their classes according to severity classes to train the VGG-16 network.  The method 

proposed in this study is based on the image threshold for common rust-affected corn leaves. The percentages 

of the diseased leaf area were used to develop fuzzy decision rules that allowed the training images to be 

attributed to their severity classes. After the development of severity classes, the VGG-16 network was trained 

and refined to classify common rust images of corn. The image training data were categorized into four 

common rust severity classes: early stage, intermediate stage, late stage, and healthy stage. With this approach 

in hand, the RGB images of Common Rust were first converted into a grey scale using Otsu threshold 

segmentation. The Otsu method segmented the images into two classes of dark intensity (Background) pixels 

and bright intensity (Fore ground) pixels that could be used. The Agricultural Research Council (ARC), South 

Africa, was the principal source of information on Common Rust Disease (CR) that we intended to use in this 

study. Common corn rust results from a fungus called Puccinia sorghi. The CR is favoured by cool, wet 

weather conditions of about 59 to 72°F. On numerous occasions, it targets coastal regions in Durban, South 

Africa. Advances in technology and the emergence of artificial intelligence (AI) have made it possible for 

scientists and researchers to detect plant diseases using CNNs. CNN is an automated learning algorithm which 

is known for its application in computer vision applications. For instance, Zhang et al. (2018) developed a 

model for abnormally identifying the breast using a nine-layer convolutional neural network. However, in the 

context of this study, work on deep learning for the detection of plant diseases after the images have been 

reviewed. A Faster R-CNN architecture was updated by modifying the parameters of a CNN model. This 

Faster R-CNN architecture has been developed to automatically detect leaf spot disease (Cercospora beticola 

Sacc) in sugar beet, as proposed by (Ozguven and Adem, 2019). Their proposed model was formed and tested 

with 155 images to detect the severity in sugar beet. The total accuracy of the prediction was observed to be 

95.48%. Cruz et al. (2017) developed a vision-based system to detect symptoms of leaf burn on leaves of Olea 

europaea infected with Xylella fastidiosa. (2017). In this work, the algorithm found low-level characteristics 

from raw data to automatically detect veins and colours that lead to symptomatic leaves. A foliar burn was 
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found with a true positive rate of 98.60 1.47%. The model was developed with a convolutional neural network 

that was trained in the stochastic gradient descent method (Cruz et al., 2017). The literature shows that the 

deep learning models that were used to detect plant diseases had different performance accuracies that were 

determined by the methods of setting and regulating the model parameters. Chen et al. (2020). used the pre-

trained networks with an image network, a famous dataset that labelled images ready to be used as training 

data. Their approach has improved performance over other leading-edge techniques and achieved at least 

91.83% validation accuracy when trained on the public dataset. With a complex background in the included 

images, the proposed approach achieved a normal 92.00% accuracy for the rice seedling image class (Chen et 

al.  (2019) used deep learning to identify potato tuber disease. The baseline architecture selected for this issue 

was a CNN developed by the Visual Geometry Group (VGG) (Ozguven and Adem, 2019). In their model, 

several new dropout layers were added to the VGG architecture to deal with problems of overfitting, especially 

due to the relatively small data set. A VGG array with 224x224 image resolution was used in the study. The 

CNN comprised eight learnable layers, the first five of which were convolutional, followed by three fully 

connected layers and ending with a soft max layer (Oppenheim et al., 2019). Training CNNs usually requires 

large amounts of labelled data are usually required to train CNNs such that they perform better in making 

classifications (Oppenheim et al., 2019). Therefore, two methods were used for data augmentation: mirroring 

creates additional examples by randomly flipping the images used in training; cropping was also used, 

cropping the image randomly to different sizes, while keeping the cropped image’s minimum size to 190 × 

190, helped to achieve data diversity (Oppenheim et al., 2019). Arsenovic et al. (2019) conducted a study 

around solving the current limitations on the use of deep learning for the detection and classification of plant 

diseases. In their work, they used two approaches to address the question of d augmentation. The first one was 

the augmentation by means of traditional methods, and the second one, the art style Generative Adversarial 

Networks (GANs) (Arsenovic et al., 2019). A summary of the deep learning in classifying plant diseases 

without considering their severity is presented in Table 4.1. 
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Table 4. 1: A summary of deep learning models used in plant disease classification. 

Deep Learning Architecture/Image Database Study Summary 

Google Net 
Twelve plant species were used, each with a different number of samples and diseases 

under changing circumstances (Barbedo 2018). 

U-Net 

After using U-Net to acquire images of the segmented leaves, the next step was to identify 

the types of plant diseases. Based on (Huang et al., 2019), it was an ideal image 

classification task (Huang et al., 2019). 

 

Network (DCNN) 

Using hyperspectral imaging of inoculated and simulated strain images, DCNN 3D had a 

classification accuracy of 95.73%. The infected class F1 score of 0.87 was achieved 

(Nagasubramanian et al., 2019). 

ImageNet 
(Brahemi et al., 2017) used the ImageNet 1000 Class database with a predetermined model 

for classifying nine types of tomato disease. 

Dense Net 
A Light Deep Neural Array (DNN) approach which can operate on Internet of Things (IoT) 

devices with limited resources has been proposed (Ale et al., 2019). 

9-Layer Deep CNN 

The deep CNN model was built using an open data set comprising 39 different classes of 

plant leaves and background images. Six types of data augmentation methods were used: 

image flipping, gamma correction, noise injection, principal component analysis (PCA) 

colour augmentation, rotation, and scaling. The proposed model achieved a classifying 

precision of 96.46% (Geetharamani and Pandian 2019). 

Deep Siamese convolutional network 

The Deep Siamese Complex Network has been developed to address the issue of small 

image databases. Greater than 90% accuracy was achieved in detecting Esca disease, black 

rot and chlorosis on grape leaves (Goncharov et al., 2018). 

CNN API written in Python 

The model has been designed to detect and recognize several plant varieties, especially 

apples, corn, grapes, potatoes, sugarcane and tomatoes. The developed model obtained a 

96.5% accuracy rate, and the system was able to register up to 100% accuracy in detecting 

and recognizing the plant variety and type of disease from which the plant has been infected 

(Militante et al., 2019). 

Alex Net and Google Net 

Using a public data set of 54306 images of infected and healthy plant leaves collected under 

controlled conditions, A deep convolution neural network was formed to identify 14 crop 

species and 26 diseases (or their absence). The trained model achieved an accuracy of 

99.35% on a held-out test set, demonstrating the feasibility of this approach (Mohanty et 

al., 2016). 

Alex Net, VGG16, and VGG19 

The experiments were carried out using data, including actual pictures of the disease and 

parasites from Turkey. Accuracy, sensitivity, specificity and F1 scores have all been 

calculated for performance evaluation (TÜRKOĞLU and Hanbay, 2019). 

Alex Net, Alex Net OWTBn, Google Net,  

Over feta and VGG 

Convolutional neural network models have been created in classification of plant diseases 

using basic foliar images of healthy and infected plants, using deep learning methods. The 

models were prepared with an open database of 87848 images containing 25 single plants 

in a group of 58 individual classes of mixtures of [plants, diseases], including healthy 

plants. Some model architectures have been formed, with the best performance achieving 

a 99.53% success rate in the identification of the corresponding [plant, disease] 

combination (or healthy plant) (Ferentinos, 2018). 

CNN model similar to standard Le Net 

 architecture 

Apple leaf images, covering various diseases, along with healthy samples, from the 

PlantVillage dataset were used to validate the results. Image filtering, image compression 

and image generation techniques were used to acquire a wide range of training images and 
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fine-tune the system. The developed model achieved high precision scores in all classes, 

with a clear accuracy of 98.54% across the dataset, sampled and generated from 2,561 

labelled images (Baranwal et al., 2019). 

Alex Net and VGG-16 

In this study, images of tomato leaves (6 illnesses and a healthy class) were obtained from 

the PlantVillage dataset and were supplied as inputs for two architectures based on deep 

learning, namely, Alex Net and VGG16 net. The classification accuracy achieved using 

Alex Net and VGG16 net was 97.49% and 97.23%, respectively, for 13,262 images 

(Rangarajan et al., 2018). 

VGG 16, Inception V4, Res Net 

with 50, 101 and 152 layers and  

Dense Nets with 121 layers 

In this paper, a strategic comparison of the Deep Learning architecture was carried out.  

The evaluated architectures consisted of VGG 16, Inception V4, Res Net with 50, 101 and 

152 layers and Dense Nets with 121 layers. The data used in the experiment were 38 

different classes, including pictures of diseased and healthy leaves of 14 plants from 

PlantVillage. Fast and accurate models for the identification of plant diseases were desired, 

so that accurate measurements can be implemented quickly. In the experiment, Dense Nets 

tended to constantly improve in precision with the growing number of epochs without signs 

of overfitting. In addition, Dense Nets needed a significantly smaller number of parameters 

and a reasonable computational time to achieve peak performance. It was 99.75% accurate 

to beat the rest of the architectures (Too et al., 2019). 

Google Net 

The work looked at the use of individual lesions and spots for the task, rather than thinking 

about the whole leaf. Each region had its own qualities; thus, the inconsistency of the data 

was extended without the need for additional images. This has also led to the identification 

of several diseases on the same leaf. However, proper segmentation of symptoms still had 

to be done manually, preventing complete automation. The accuracy obtained from this 

approach was, on average, 12% higher than that obtained from the original images. In 

addition, no culture was less than 75% accurate, although 10 diseases were considered. 

Even though the data base did not cover the full range of practical possibilities, these 

findings indicate that, if sufficient data were available, the deep learning technique is 

effective in detecting and recognizing plant diseases (Barbedo, 2019). 

Table 4.1 summarizes the classification of plant diseases without regard to their severity. Table 4.2 

summarizes the work that was used for the prediction of plant disease severity.  
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Table 4. 2: A summary of methods for plant disease severity detection. 

Methods Used for Plant Disease Severity Prediction Study Summary 

Using deep learning to automatically to automatically  

predict plant disease severity. 

Various deep learning methods were developed by Wang, Sun and Wang, 

including a VGG-16 that was used to detect the plant severity in four steps. The 

VGG-16 outpermed the other models with a validation accuracy of 90.4% 

(Wang et al., 2017).  

Image processing to measure the symptoms of foliar disease. 

 A simple threshold method was performed to segment the leaf area and the 

lesion region area by using the triangle threshold method. The quotient of lesion 

area and leaf area were used to categorize the diseases with testing accuracy of 

98.60% (Patil and Bodhe, 2011).  

Use of digital image processing to measure 

 leaf disease symptoms. 

Image processing and measurements were used by  to detect severities of plant 

leaf diseases. Using his method, he received an accuracy of 96% to detect the 

severities of the plant leaf diseases he dealt with. However, his method also has 

a disadvantage of limiting users who are not scientists or familiar with image 

processing (Barbedo,2014). 

  Plant disease incidence and  

severity measurements by use of machine learning. 

Machine learning algorithms were employed by Owomugisha and Mwebaze. 

These were algorithms such as the nearest supporting vector machines and k 

neighbors for detecting plant disease incidents and severity measurements. 

Traditional machine learning algorithms that required the extraction of hand-

made functions were used in this work. The handcrafted feature extraction 

algorithms they used for colour extraction in the images were SURF, SIFT, 

OBR and HOG (Owomugisha and Mwebaze, 2017).  

Segmenting the affected zone.  

In this work, two cascaded classifiers were used. The first classifier segmented 

the leaf from the background using local statistical features. Thereafter, using 

hue and luminance from the Hue-Saturation-Value colour space, another 

classifier was trained to detect disease and its stage of severity (Parikh et al, 

2016).  

Image segmentation and colour detection.  

Different new boundaries, to be specific disease severity index (DSI), infection-

per region (IPR), and disease-level parameter (DLP) for measuring the disease 

severity level and level-classification were formulated and derived 

(Shrivastava et al., 2015). 

Fuzzy logic of AI provides a platform for valuable reasoning. In simple terms, fuzzy logic is essentially a 

method of reasoning in a humane manner. No different from how humans make decisions, fuzzy logic implies 

all the intermediary possibilities between "YES" and "NO". Fuzzy logic reasoning provides an acceptable 

reasoning which can help address uncertainty in engineering. Conclusively, the fuzzy logic architecture 

consists of all the if-then rules and conditions that human experts use to control the decision-making system. 

In a study by Behera et al. (2018), it is reported that fuzzy logic was invented by Lotfi Zadeh. Lofti observed 

that, in contrast to computers, humans have a different spectrum of possibilities between "YES" and "NO". 

Because of that, Behera et al. (2018). have been able to use multi-class vector support machines (SVM) with 

clusters of K means for disease classification with 90% accuracy, and a fuzzy logic for determining the severity 

of orange disease. Other researchers such as Sannakki et al. (2011) proposed an image-based approach to 

automatically classify disease spread on plant leaves using fuzzy logic. Rastogi, Arora, and Sharma used 
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Matlab to perform K-means based segmentation and classification, percentage infection calculation, and 

disease grading using the fuzzy logic toolbox (Rastogi et al., 2015). The threshold grouping method called the 

Otsu method, is based on selecting a threshold value to split the image into two classes in a manner which 

minimizes the variance within each class. Selecting a threshold value changes the difference between the two 

parts of the distribution, whereas distributions cannot be changed for obvious reasons. The key is to choose a 

threshold that minimizes the cumulative variance. The weighted total of variances for each class defines the 

variance in the class: 

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 (𝑇) = 𝑛𝐵(𝑇)𝜎𝐵

2(𝑇) +  𝑛𝐹(𝑇)𝜎𝐹
2(𝑇) 

                                                                                                                                                                      (4.1) 

where: 

𝑛𝐵(𝑇) =  ∑ 𝑝(𝑖)

𝑇−1

𝑖=0

 

                                                                                                                                                                      (4.2) 

𝑛𝐹(𝑇) =  ∑ 𝑝(𝑖)

𝑁−1

𝑖=𝑇

 

                                                                                                                                                                      (4.3) 

𝜎𝐵
2(𝑇) = Background pixel variance 

                                                                                                                                                                      (4.4) 

𝜎𝐹
2(𝑇) = Foreground ground pixels 

                                                                                                                                                                      (4.5)                                                                                                                                                                        

The equations above require a very expensive calculation of the variance within the class for each class, and 

for each possible threshold value, which needs to be avoided. To reduce the computational cost, the class 

variance calculation which is a cheaper step can be defined as the variance within the class subtracted from 

the total. 

𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛
2 (𝑇) =  𝜎2 − 𝜎𝑊𝑖𝑡ℎ𝑖𝑛

2 (𝑇) = 𝑛𝐵(𝑇)[𝜇𝐵(𝑇) − 𝜇]2 +  𝑛𝑜(𝑇)[𝜇𝑜(𝑇) − 𝜇]2 

                                                                                                                                                                      (4.6) 

where 𝜎2 is the combined variance and 𝜇 is the combined mean. Class variance is the weighted variance for 

cluster averages around the overall average. By substituting 𝜇 = 𝑛𝐵(𝑇)𝜇𝐵(𝑇) + 𝑛𝑜(𝑇)𝜇𝑜(𝑇)  and simplifying 

the result, we get 

𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛
2 (𝑇) = 𝑛𝐵(𝑇)𝑛𝑜(𝑇)[𝜇𝐵(𝑇) − 𝜇𝑜(𝑇)]2 

                                                                                                                                                                      (4.7) 

Thus, for each potential threshold, the algorithm separates the pixels into two clusters, as a function of the 

value (Otsu, 1979).  
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4.2 Materials and methods 

Other researchers in the literature, for example, Weizheng et al. (2008), Chaudhary et al. (2012) and Zhou et 

al. (2019). Symptoms of plant diseases may include a detectable change in the colour, form or function of the 

plant in response to the pathogen Isleib (2012). This colour change causes the green pigment to be lost from 

the leaves. This proposed approach was conducted using the Otsu threshold segmentation method that was 

used to extract the percentages of infection from the infected leaf region (background pixels). These infection 

percentages were then used to derive fuzzy decision rules for attributing common rust images to their severity 

classes. The 4 severity classes that were developed were then used to train a VGG-16 network to automatically 

classify the test images of the Common Rust. This allowed the VGG-16 network to predict the severity of 

common corn rust among 3 classes, called Early-Stage, Middle-Stage and Late-Stage. The fourth stage, known 

as the healthy stage, was aimed at predicting healthy corn leaves. This is why the VGG-16 has been designed 

to be a 4-category classifier. The materials that were used in this study are tabulated in Table 4.3. Image 

Analyzer is basic, yet incredibly effective, free software for high-level analysis, editing and image 

optimization. As a free tool, Image Analyzer may be found at https://image-analyzer.en.softonic.com/. The 

PlantVillage data set has grown in popularity and has been used extensively by many machine learning 

researchers. The data used in this study are available at https://github.com/spMohanty/PlantVillage-Dataset. 

 

Table 4. 3: A table summarising the materials used in the study. 

Hardware Software Data set 

ASUS TUF Laptop with 

NVIDIA GeForce GTX 1650 4GB 

Graphics. 

Image Analyzer, an open-source image processing 

tool. 

 

A standard PlantVillage maize data 

set. 

 

Samsung A-30 16 Mega Pixels rear 

camera 

               Jupyter notebook IDE  

                Python-Keras library  

 Python-Tensor flow library  

 Anaconda Package  

To carry out the Otsu threshold on the images, we used an open-source program called "Image Analyzer". 

Otsu thresholding assumes that there are two classes of pixels in the image which need separating, thus an 

Otsu global value of 127 was used under all conditions. Figure 4.1 sets out the procedure for the proposed 

approach.   

https://image-analyzer.en.softonic.com/
https://github.com/spMohanty/PlantVillage-Dataset
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Figure 4. 1: The procedure of the proposed approach. 

The procedure for the proposed approach is described in Figure 4.1 and shown in Figures 4.2 and 4.3 using a 

maize common rust disease assigned to the Late Stage as an example. 

 

Figure 4. 2: Procedure outlined in Figure 4.1. 

 

Figure 4. 3: Procedure described in Figure 4.1, cont'd. 

Figures 4.2 and 4.3 provide a visual representation of the procedure explained in Figure 4.1 in four steps. Step 

5 is explained using a formula under equation (4.8). The advantage of using colour image segmentation is that 

it is based on the colour features of the image pixels, assuming that homogeneous colours in the image 

correspond to separate clusters and hence meaningful objects in the image (Khattab et al., 2014). However, 

for reasons of simplicity, in this study, we introduce the proposed approach, first converting the images into 

two-dimensional space before segmentation. Common rust images were segmented into grayscale using the 

Otsu method to a threshold value of 127 and percentages of infection in diseased leaf areas were calculated. 
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The latter was accomplished using equation (4.8). Then, once segmentation was complete, the dark intensities 

or background pixels displayed the areas of diseased leaves in the images. The non-diseased leaf areas, 

supposedly green, were presented by the light intensities or foreground pixels. The images used in this 

approach had a pixel size of 256x256. Furthermore, the images used for this approach should have a spatial 

dimension of 256 pixels in either the x-dimension or the y-dimension. Figure 4.2 shows how the spatial 

dimension of 256 pixels is covered by the image in the x-dimension. At least the background of the pictures 

should be black. 

%𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝐿𝑒𝑎𝑓 𝐴𝑟𝑒𝑎 =  
𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡

(𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡)  + (𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡) 
 × 100 

                                                                                                                                                                      (4.8)                                                                                                                                                               

Based on the fuzzy decision rules that will be explained below, an image of common rust disease is illustrated 

in Figures 4.2 and 4.3 would belong to a Late Stage because a percentage of 65.8% was calculated by means 

of equation (4.8) as follows: 

%𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝐿𝑒𝑎𝑓 𝐴𝑟𝑒𝑎 =
43175

43175 + 2232
 × 100 

        = 65.8% 

Finally, step 6 involves deriving fuzzy decision rules for the attribution of common corn rust images to their 

severity classes. With the help of a specialist in plant pathology, fuzzy decision rules were established. These 

rules were established for the compilation of training datasets that were classified as Early Stage, Middle Stage 

and Late Stage. The technique employed to derive these rules of fuzzy logic was based on the experience of 

the plant pathologist. These techniques involved conventional methods of detecting the severity of plant 

diseases, such as observing the rate at which rust is dispersed over the leaf. The rules of fuzzy logic may vary 

depending on the plant species and the type of disease involved. With regard to the "Healthy Stage", the 

training data were compiled using healthy images within the PlantVillage dataset. The compilation of the 

training datasets was carried out using the fuzzy decision rules described below. 

Design Rules for Healthy Prediction: 

Rule 1: As for the “Healthy Stage”, the training data were compiled by use of healthy images in the 

PlantVillage dataset. 

Design Rules for Common Rust Disease Severity Prediction: 

Fuzzy decision Rule 1: If %Diseased Leaf Area ≥50%, then, the image belongs to Late-stage training data 

set. 

Fuzzy decision Rule 2: If 45% ≤ %Diseased Leaf Area < 50%, then, the image belongs to Middle stage 

training data set. 

Fuzzy decision Rule 3: If %Diseased Leaf Area <45%, then, the image belongs to Early-stage training data 

set. 



_______________67_________________Year 2021                                   

 

Figure 4.4 illustrates how common corn rust images are assigned to their severity classes using fuzzy decision 

rules. The same process was repeated for all common rust images until sufficient datasets were compiled to 

train the VGG-16 network. There were three severity classes for common corn rust and one in good health. 

The fourth healthy class was developed based on the PlantVillage data set using healthy corn images. 

 

Figure 4. 4: Attributing common corn rust images to their severity classes using fuzzy decision rules. 

Figure 4.5 shows a sample of healthy corn foliar images from the PlantVillage datasets that were used to train 

in the fourth class. 

 

Figure 4. 5: An image sample of healthy corn that was used for training in the Healthy class. 

By performing the fuzzy decision rules above to assign common rust images to their severity classes and 

forming a healthy class with healthy images of the Plant Village data set, eventually four classes of training 

data were achieved to train a VGG-16 for the prediction of maize Common Rust. Figure 4.6 shows the 

arrangement of the data sets that was followed to be able to train the VGG-16.  
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Figure 4. 2: The final arrangement of the training, validation, and test data sets for the prediction of the maize common rust disease severities by 

a fine-tuned VGG-16 network. 

With different image backgrounds, the Plant Village data set we used was taken under nearly similar daylight 

conditions. Additional image data sets were gathered from camera Galaxy A-30 under normal daytime 

conditions. The images were taken during the summer in moderate weather in South Africa. The first series 

of images was taken between 5:00 and 6:00 a.m. in the rising sun. The second set of data was captured around 

noon, while the last was taken during sunset around 6:00 pm to 7:00 pm. During the tests, equal images were 

used for different brightness conditions. 

4.2.1 Development of a Deep Learning Model by Fine-Tuning a VGG-16 Network and Theoretical 

Background 

Proposed by Simonyan and Zisserman of the Visual Geometry Group Lab of Oxford University in 2014, 2014), 

the VGG-16 network won the first and second prizes in the ImageNet Large Scale Visual Recognition contest 

for object localization and image classification categories, respectively. There were 200 classes under the 

object location category and 1,000 classes under the image classification category. The architecture for VGG-

16 is depicted in Figure 4.7. 
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Figure 4. 3: The VGG-16 architecture. 

Figure 4.7 indicates that the VGG-16 system has an input tensor of (224,224,3). This model processes the 

input image and produces a vector of 1000 predicted values (probability) as shown in equation (4.9).  

 

𝑦̂ =  [

𝑦̂0

𝑦̂1

.
𝑦̂999

] 

                                                                                                                                                                        (4.9) 

The classification probability for a relevant class is determined by a Softmax function as illustrated in equation 

(4.10). Equation (4.10) shows the probability of prediction for the jth class from a sampling vector X and the 

weighting vector W with a Softmax function. 

𝑃(𝑦 = 𝑗|𝑋) =  
𝑒

𝑋𝑊𝑗
𝑇

∑ 𝑒
𝑋𝑊𝑘

𝑇
𝐾
𝑘=1

 

                                                                                                                                                                      (4.10) 

4.2.2 Fine-tuning and Training a VGG-16 Network for Maize Leaf Disease Severity Prediction 

There are four scenarios in which a pre-trained model can be fine-tuned. These scenarios are summarized in 

the following manner: 

Scenario 1: The target datasets are small and very similar to the source datasets. 

Scenario 2: The target datasets are broad and very similar to the source datasets.  

Scenario 3: The target data set is small and very different than the source data set. 

Scenario 4: The target dataset is vast and quite different from the source dataset. 
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The guidelines for the appropriate fine-tuning level to use in each of the scenarios are summarized in Table 

4.4. 

Table 4. 3: Summary for the fine-tuning of pretrained models. 

Scenario 
Size of the 

Target Data 

Similarity of the New and 

Original Data Sets 
The Approach Used 

  

1 Small Similar 
The built-in network is used as a function 

extractor. 

 

 

 

 

2 Large Similar Fine-tuning is done throughout the network.   

3 Small Very different 
Fine tuning is performed based on earlier 

network activations. 

  

4 Large Very different 
The tuning is done across the entire 

network. 

  

The VGG-16 system developed for this study followed the procedure described in Table 4.4 in Scenario 3. 

This was accomplished by freezing all layers of a VGG-16 network, with the exception of the four upper 

layers. The resulting state-of-the-art model is summarized in Table 4.5. 

Table 4. 4: Model summary for a fine-tuned VGG-16 network to predict maize common rust disease severities. 

Layer Name Type Number of Filters Number of Parameters 

Input Input layer - 0 

Block 1_Conv2D_1 Convolutional 64 1792 

Block 1_Conv2D_2 Convolutional 64 36,928 

Block 1_MaxPooling2D Max Pooling - 0 

Block 2_Conv2D_1 Convolutional 128 73,856 

Block 2_Conv2D_2 Convolutional 128 147,584 

Block 2_MaxPooling2D Max Pooling - 0 

Block 3_Conv2D_1 Convolutional 256 295,168 

Block 3_Conv2D_2 Convolutional 256 590,080 

Block 3_Conv2D_3 Convolutional 256 590,080 

Block 3_MaxPooling2D Max Pooling - 0 

Block 4_Conv2D_1 Convolutional 512 1,180,160 

Block 4_Conv2D_2 Convolutional 512 2,359,808 

Block 4_Conv2D_3 Convolutional 512 2,359,808 

Block 4_MaxPooling2D Max Pooling - 0 

Block 5_Conv2D_1 Convolutional 512 2,359,808 

Block 5_Conv2D_2 Convolutional 512 2,359,808 

Block 5_Conv2D_3 Convolutional 512 2,359,808 

Block 5_MaxPooling2D Max Pooling - 0 

Flatten Layer - 0 

Dense (32 nodes) Layer - 802,848 

Dropout (0.2) Layer - 0 

Dense_1 (4 nodes) Layer - 132 

A total of 15,517,668 parameters was contained by the model. Out of these model parameters, 802,980 were 

trainable, whereas 14,714,688 were not. As Table 4.5 illustrates, the fully connected layer consisted of a 32-
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node dense layer and a ReLU activation function. In the first layer, 20% of the dropout was used. The 

"Softmax" activation function was used in the output layer of the fully connected layer. Each class was trained 

with 400 images and validated with 50 images. This made the model to be trained with 1600 images and 200 

images for validation. Since a batch size of 32 was used, it means that the model took 1600/32 steps to train. 

The same applied to the validation steps as 200/32 validation steps were taken. The optimizer used was 

“Adam”, it enabled the model to result in an outstanding validation accuracy of 95.63 %. At this point, the 

validation loss was 0.2. These performance metric results were achieved with a learning rate of 0.0001. 

4.3 Results 

Table 4.6 summarizes the data sets, adjusted hyperparameters and performance parameters that define our 

VGG-16 network for Corn Rust severity prediction. 

Table 4. 5: Summary of model hyper parameter tuning and performance metrics. 

Number of training images 1600 

Number of validation images 200 

Total images of the collected data set 100 

Chosen batch size during training 32 

Chosen optimizer and the learning rate 
Adam 

(Lr = 0.0001) 

Applied dropout in the fully connected layers 20% of nodes in the first Dense layer of FC. 

Training Accuracy obtained by the model 99.21% 

Validation Accuracy obtained by the model 95.63% 

Test Accuracy obtained by the model 89% 

Number of training epochs. 15 

Recorded training loss after 15 epochs 0.02 

Validation loss during training. 0.2 

Figures 4.8 and 4.9 show the graphs of the training parameters with respect to the validation parameters. Figure 

4.8 shows the loss measurement plots, and Figure 4.9 shows the precision measurement plots. The primary 

cause of poor predictive performance in machine learning is either overfitting or underfitting of data (Elgendy, 

2020). Underfitting means that the model is too simple and does not match the training data (Elgendy, 2020). 

Overfilling implies that the model is entirely complex, until it remembers the training data and does not 

generalize based on test/validation data it has never seen before (Elgendy, 2020). Consequently, Figures 4.8 

and 4.9 indicate that the proposed model did not underfit nor overfit the training data. This is so because the 

two plots show that they are well generalised from the validation data. The model also achieved a high-test 

accuracy of 89% when tested on 100 images, with 25 images per class. It can also be seen in Figure 4.8 that 

the validation loss converges to 0.2 without oscillations. which was and reported that a learning rate of 0.0001 

that we put into the Adam optimizer was ideal. 
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Figure 4. 4: Training loss against validation loss plots. 

 

Figure 4. 5: Training accuracy against validation accuracy plots. 

The test data sets were a set of camera images that were also allocated to their severity classes using the 

approach proposed in this study. A total of 100 images was used in the test experiments. Of the 100 images to 

be tested, each class included 25 images. Figure 4.10 shows the number of classifications that the VGG-16 

managed to complete in each class.  

 

Figure 4. 6: The number of correctly classified images in each class of the VGG-16 network. 
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Equation (4.11) shows how the testing accuracy of 89% was achieved by the VGG-16 network.  

Testing Accuray =  
Number of correct classifications in each class

Total number of testing images
 ×  100 

                                                                                                                                                                    (4.11) 

Using the information provided in Figure 4.10, the accuracy of the model testing was determined as follows: 

𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
23 + 21 + 22 + 23

100
 ×  100 = 89% 

4.4 Discussion and Conclusion 

A new approach has been developed to assign images of common maize rust to their severity classes, guided 

by unclear decision rules and CNN approaches. The rules for the Fuzzy decision were developed using 

percentages of infected foliar zones. Before completing all the steps mentioned later, we first converted the 

colour images from a 3-dimensional array into a 2-dimensional array. RGB is a three-dimensional table which 

has three channels of colours Red, Green and Blue. Each of these channels is made up of 8-bit pixels that 

determine the colour intensity in different parts of the image. For instance, a green colour is a result of setting 

the intensities of the pixels in the same dimensional space to 255G + 0B + 0R. The approach proposed in this 

study uses segmentation, which is actually time-consuming when conducted in the 3-dimesional space. The 

best way to achieve our objectives was to convert the colour images of a three-dimensional space into a two-

dimensional space. Figure 4.11 shows the differences between two colour spaces that the image may take. We 

then segmented the greyscale images and calculated the percentages of diseased leaf areas in the maize 

common rust images. This allowed us to create fuzzy logic decision rules according to the guidelines of an 

experienced plant pathologist. For example, he mentioned that a dark common rust, which covers over 50% 

of the leaf area, is considered an advanced disease (Late stage). These fuzzy logic rules were then used to 

build a training dataset that was used to train the VGG-16 network. The image data severity classes of common 

corn rust developed in this way were used to train the fined-tuned VGG-16 which obtained a validation 

accuracy of 95.63% and a test accuracy of 89%. 

 

Figure 4. 7: A comparison of 2-dimensional array images with 3-dimensional array images. 
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The approach that was proposed by Wang et al. (2017) for predicting the severity of leaf disease using DL 

was biased to some extent. This is because the methods they used to attribute the common rust images were 

fully based on decisions that were made by human eye observations. The proposed approach is therefore 

unbiased as it uses the decisions of the computer-based fuzzy decision rules to attribute the common rust 

images to their severity classes for common corn rust disease. The work published by Sibiya and 

Sumbwanyambe (2019b) resulted in the development of training datasets using fuzzy logic and a threshold. 

As far as we know, this is the first report on the approach to predict the severity of common maize rust. Broadly 

translated, our findings indicate the proposed approach resulted in a model that had higher validation and 

testing accuracies in the prediction of maize common rust disease severity. Further investigation is advisable 

in order to validate various findings, which can be derived from the methods used in this study provided other 

types of diseases of corn leaves are considered.  
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CHAPTER 5: Use of Convolutional Neural Networks for severity 

prediction of Northern Corn Leaf Blight based on lesion colour and 

sporulation 

This chapter is based on a paper submitted by: 

Sibiya, M. and Sumbwanyambe, M., 2021. Northern Corn Leaf Blight Severity Predictions based on Colour 

and Sporulation of the Lesions by using Convolutional Neural Networks: A Maize Leaf Diseases Odyssey, 

Agri Engineering 2021 

Link: https://www.mdpi.com/journal/agriengineering 

Status: Submitted 

Abstract 

This study aims to introduce a new method of predicting the severities of the Northern Corn Leaf Blight 

(NCLB) by classifying images of this disease into two categories of “Early Stage” and “Late Stage” using 

Convolutional Neural Networks (CNN) approach. In the “Early Stage”, lesions of the NCLB initially appear 

smaller, more yellow, and/or not produce spores. In the “Late Stage”, lesions eventually turn tan coloured and 

may contain dark areas of fungal sporulation. In this study, a CNN model trained on image data sets with later 

mentioned lesion features of both stages was used to make predictions and achieved a high validation accuracy 

of 100% for experiment 1(model performance test), and 99% equivalent to 100% for experiment 2 (model 

robustness test). This is a promising tool for plant pathology researchers interested in understanding the 

severities of the NCLB samples collected. This may also be a great tool for computer vision of Agri-tech 

robots intended to collect information about the NCLB disease occurring in large maize fields. 

 

5.1 Introduction and Related Works 

This work is an extension of published works as explained in the discussion section. The severity of the 

Northern Corn Leaf Blight (NCLB) increases as the lesions expand and grow larger, resulting in a reduced 

photosynthetic surface area, which reduces grain filling and yield (University of Minnesota, 2021; Jackson-

Ziems, 2016). The development of the disease at the beginning of the season has a greater potential for impact 

on yield due to the longer period and the greater leaf area affected, which reduces photosynthesis and 

subsequently the production of carbohydrates. The NCLB is caused by the fungus Exserohilum turcicum. Its 

development is encouraged by cool to moderate temperatures and high relative humidity. NCLB can be 

identified by relatively large cigar-shaped grey or greenish elliptic lesions that can develop on leaves, shells 

or sheath (Jackson-Ziems, 2016). NCLB lesions can range from 1 inch to over 6 inches long and are oriented 

parallel to the foliar veins. After 7 to12 days of infection, the lesions develop and the fungus responsible for 

the NCLB can produce large amounts of spores (sporulation) on the surface of the lesions, causing them to 

https://www.mdpi.com/journal/agriengineering
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look dark or dusty. As the lesions mature, their colour may change to tan and the production of fungal spores 

may become visible in the middle of the lesions, leading to a darker, dustier appearance (see Figure 5.1). This 

manifests the late stage of the disease. However, at the early stages of this disease, lesions may appear smaller, 

more yellow, and/or not produce spores (Jackson-Ziems, 2016). Figure 5.2 shows the NCLB lesions at its 

early stage. Hybrids that are resistant to NCLB may have the same lesion features as those of NCLB at the 

early stage (Jackson-Ziems, 2016). The aim of this study is to introduce a novel method of predicting the 

severities of the NCLB by classifying the images of this disease into two classes of “Early-Stage” and “Late-

Stage” using Convolutional Neural Networks (CNN).  

 

Figure 5. 1: Field images of the NCLB in the Late Stage: (a) Large amounts of spores on the surface of lesions, with a dark or dusty appearance 

because of the fungus causing the NCLB; (b) As the lesions mature, their colour change to tan and the production of fungal spores has become 

visible in the middle of the lesions. 

 

 

Figure 5. 2: Field image of the NCLB on the Early Stage with 

small lesions, more yellow, and/or not produce spores. 

5.1.1 Management of Northern Corn Leaf Blight and applications of Deep Learning for the detection of 

leaf diseases. 

The NCLB due to Exserohilum turcicum is a destructive disease of maize. In the literature, there is strong 

evidence that many researchers developed different strategies for managing the NCLB. For instance, in a study 

by Ding et al. (2015), the host resistance management strategy was used to minimize the detrimental effects 
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of NCLB on maize productivity. In their study, they evaluated a diverse maize population that comprised of 

999 inbred lines across various environments for resistance to NCLB. The genomic regions associated with 

NCLB resistance in maize were identified by using a genome-wide association analysis that was conducted 

using 56,110 single-nucleotide polymorphism markers. The alleles (gene) significantly associated with NCLB 

resistance were identified by Single-marker, haplotype-based associations, and Anderson-Darling tests (Ding 

et al., 2015). Other researchers controlled the NCLB by planting hybrids with good NCLB disease ratings 

(Pataky, 1985; Abera et al., 2016; Technow et al., 2013). Hybrid resistance can assist reduce disease severity 

by restricting the number or measure of NCLB lesions that develop, extending the incubation period (number 

of days between infection and lesion advancement) (University of Minnesota, 2021). In the literature, there is 

evidence of small to large scale studies that were conducted to manage NCLB disease by using NCLB resistant 

hybrids (Pataky, 1985; Abera et al., 2016; Technow et al., 2013). Other researchers such as Carpane et al. 

(2020), used fungicides to slow the disease spread and reduced the overall severity of the Northern CLB. This 

study also contributes toward the management of the NCLB as it is aimed at introducing a novel method of 

predicting NCLB severities by using the colour and sporulation of the lesions on images that were used to 

train a CNN model. This is a promising tool for plant pathology researchers interested in understanding the 

severities of the NCLB samples collected. This may also be a great tool for computer vision of Agri-tech 

robots intended to collect information about the NCLB disease occurring in large maize fields. As shown in 

Table 5.1, there is a large body of literature on the use of DL for the detection of plant leaf diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



_______________78_________________Year 2021                                   

 

Table 5. 1: Tabulated summary of the studies that investigated the use of DL for plant leaf disease detection and the related DL models used. 

Deep Learning Architecture Reference 

Google Net (Barbedo, 2018). 

U-Net 

(Huang et al., 2019). 

 

 

 
 

3D Deep Convolutional Neural Network (DCNN) 
(Nagasubramanian et 

al., 2019). 

ImageNet 
(Brahimi et al., 

2017). 

Dense Net (Ale et al., 2019). 

9-Layer Deep CNN 
(Geetharamani and 

Pandian, 2019) 

Deep Siamese convolutional network 
(Goncharov et al., 

2018). 

CNN API written in Python 

(Militante et al., 

2019). 

 

Alex Net and Google Net 
(Mohanty et al., 

2016) 

Alex Net, VGG16, and VGG19 
(TÜRKOĞLU and 

Hanbay, 2019). 

Alex Net, Alex Net OWTBn, Google Net,  

Over feta and VGG 
(Ferentinos, 2018). 

CNN model resembling the standard Le Net architecture 

 

(Baranwal et al., 

2019). 

 

Alex Net and VGG-16 

(Rangarajan et al., 

2018). 

VGG 16, Inception V4, Res Net  

with 50, 101 and 152 layers and Dense Nets  

with 121 layers 

(Too et al., 2019). 

Google Net 
(Barbedo, 2019) 
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5.2 Materials and methods 

5.2.1 Data Collection and Pre-processing 

The NCLB images were collected from 5 different maize fields located in the outskirts of Bloemfontein, South 

Africa. The maize crops from which the images had been collected by means of a camera were marked with 

tags as shown in Figure 5.3.  

 

Figure 5. 3: The tags were used to mark the maize crops from  

                   which the NCLB images were taken. 

In total, 3500 images were collected from the 5 maize fields. The collected images were a mix of images with 

features of both the NCLB Early and Late stages. Using the information in the literature about NCLB severity 

features (Jackson-Ziems, 2016), the images were classified into two classes of “NCLB Early-Stage Class” and 

“NCLB Late-Stage Class”. The literature on the identification of NCLB Early and Late stages was verified 

with the professionals from Plant Pathology Department at the University of Free State, South Africa. Out of 

the collected 3500 images, 1600 images were used for training the CNN model with each class trained on 800 

images. Figure 5.4 shows the arrangement of the training and validation data sets for the CNN model intended 

to make predictions of the NCLB severities. Both the training and validation data sets were made of two 

classes. As it was mentioned earlier that each class of the training datasets contained 800 images, a different 

case applied to the validation data sets where each class contained 180 images.  

 

Figure 5. 4: Arrangement of the training and validation data sets for the CNN model intended to make severity predictions of the NCLB. 
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5.2.2 Materials 

A list of materials that were used in this study is summarized in Table 5.2. 

Table 5. 2: A tabulated summary of the materials that were used in the study. 

Hardware Software Dataset 

ASUS TUF Laptop with NVIDIA GeForce GTX 1650 4GB Graphics. Anaconda package. Custom image data set for NCLB disease. 

   

Samsung A-30 16 Mega Pixels rear camera. Jupyter notebook IDE.  

   

             Python-Keras library.  

    

 Python-Tensorflow library.  

Hardware: ASUS TUF Laptop with NVIDIA GeForce GTX 1650 4GB Graphics was used as the training of 

a CNN with images may be time consuming if done with a PC or may even time out without completing the 

training process. The Samsung A-30 16 Mega Pixels rear camera was used for taking the NCLB images that 

were used in this study from 5 different maize fields. 

Software: An Anaconda package which is recommended by most data-scientists were downloaded and 

installed into the GPU machine. The advantage of this package is that it comes with most useful libraries such 

as Matplotlib for plots and viewing of images. Other important libraries that come with this package are 

NumPy, Scikit-learn and Seaborn to mention a few. Tensorflow and Keras are Python libraries that work in 

coordination with each other and were used for computation of the CNN. The Jupyter notebook IDE 

(Integrated Development Environment) was used to its advantage of the code management and ability to make 

the plots within the IDE. 

Datasets: The collected NCLB data sets were used for training in the CNN model that is proposed in this 

study for the prediction of the NCLB severities. 

5.2.3 CNN Model Architecture  

Figure 5.5 shows the deep CNN for that was used in this study for the prediction of the NCLB severities. Stage 

1 that accepts the input images is linked to stage 2 that has the 2 classes of the predicted NCLB severities. In 

this model several regularization methods such as the batch normalization and drop out were used in different 

layers of the network to overcome overfitting. Also, overfitting was overcome using callbacks such as the 

early stopping, checkpoint and reduction of the learning rate. To put the model architecture on test, two 

experiments were conducted. The first experiment was meant for testing the model performance on a set image 

data set while the second experiment was for testing the model’s robustness. 
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Figure 5. 5: CNN model architecture for predicting the NCLB severities. 

5.2.4 Experiment 1: Model Performance 

This experiment was conducted by training the CNN model architecture shown in Figure 5.5 with 1600 images 

of NCLB. Since the model was developed to make its predictions between two classes, each class was trained 

with 800 images. The validation/testing data sets contained 360 NCLB images with 180 images belonging to 

each of the two classes. To test the model’s performance, 4 key performance indicators (KPIs) were monitored. 

These were Accuracy, Precision, Recall and F1-Score. The resulting performances for this model are reported 

in the results section, however, it can be seen in the confusion matrix report in Figure 5.7 that the model 

achieved 100 % of accuracy. A summary of the model’s important parameters for this experiment are tabulated 

in Table 5.3. 
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Table 5. 3: Parameter settings for model training and validation 

Training Epochs 10 

Training images NCLB Early Stage-Class 800 

Training images NCLB Late Stage-Class 800 

Validating/Testing images NCLB Early Stage-Class 180 

Validating/Testing images NCLB Late Stage-Class 180 

Learning rate (Lr) 0.001 

5.2.5 Experiment 2: Model Robustness test 

Because the NCLB disease is recognised by the cigar like shaped lesions regardless of their severity stages, 

we decided to test the robustness of the model. This was achieved by taking two images that were supposed 

to be in the NCLB Late-Stage Class and used them to substitute the other two images in the NCLB Early-

Stage class. Then the NCLB Late-Stage Class was balanced with other two correct images. This means, the 

NCLB Late-Stage class contained 180 correct images while NCLB Early-Stage Class contained 178 correct 

images and two images that supposedly belonged to the NCLB Late-Stage Class. The model was deemed to 

be robust because it misclassified the two wrong images that were put in the NCLB Early-Stage. This can be 

observed by taking a closer look at the confusion matrix report in the results section. Also, it can be seen in 

the results section, that the model did not misclassify the images when the correct images were used for 

validation in their correct classes. The fact that the model misclassified the two images resulting in 99% of 

accuracy means that the model achieved 100% of accuracy in the robustness test because the misclassification 

was expected to happen to see the model’s ability to understand the features of the images that it was trained 

on. 
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5.3 Results 

Before the experiment results are unpacked in detail, the model’s key performance indicators are explained. 

As mentioned before, the model’s key performance indicators that were monitored in this study are Accuracy, 

Precision, F1-Score and Recall. To understand these key performance indicators, the confusion matrix in 

Figure 5.6 is used to explain each of them. 

 

Figure 5. 6: The general confusion matrix used to understand model performance key indicators. 

Accuracy: Accuracy in classification problems is the number of correct predictions made by the model 

divided by the total number of predictions. Equation (5.1) shows the formula for calculating the accuracy 

based on the confusion matrix in Figure 5.6. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
∗ 100 

                                                                                                                                                                        (5.1) 

Accuracy is useful when the target classes are well balanced, so, in this this study the balanced data sets were 

used, hence it was important to also focus on the accuracy.  

Recall: This is the ability of the model to find all the relevant cases within a data set. The precise definition 

of recall is the number of true positives divided by the number of true positives plus false negatives. Equation 

(5.2) shows the formula for calculating the recall based on the confusion matrix in Figure 5.6. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

                                                                                                                                                                      (5.2) 

Precision: This is the ability of the classification model to identify only the relevant data points. Precision is 

defined as the number of true positives divided by the number of true positives plus false positives. Equation 

(5.3) shows the formula for calculating the precision based on the confusion matrix in Figure 5.6. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

                                                                                                                                                                      (5.3) 
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F1-Score: In cases where we want to find an optimal blend of precision and recall, we can combine the two 

metrics using what is called the F1 Score. All in all, the F1 Score is the harmonic mean of precision and recall 

taking both metrics into account as shown in equation (5.4). 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

                                                                                                                                                                      (5.4) 

5.3.1 Experiment 1: Model Performance results 

Figure 5.7 shows the comparison plots of a model described in experiment 1. The plots show that the validation 

accuracies are higher when compared with training accuracies. This is a good sign that the model was 

generalizing well to make the predictions and it did not overfit the training data. An overfitting model would 

result to higher training accuracies and lower validation accuracies that would tend to drift away from the 

training accuracies. 

 

Figure 5. 7: Comparison plots of validation and testing accuracies of a model described in experiment 1. 

Figure 5.8 shows the confusion matrix of the model predictions and the generated classification report of the 

performance metrics.  
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Figure 5. 8: Confusion matrix and metrics classification report of the model described in experiment 1. 

Taking a closer look at the classification report results in Figure 5.8, it can be seen that the model did not 

misclassify the NCLB classes. Using the formulas in equations (5.1) to (5.4), the metrics generated in the 

classification report are calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
180

(180 + 0 + 0 + 0)
=  1.0 

                                                                                                                                                                      (5.5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
180

(180 + 0)
= 1.0 

                                                                                                                                                                                                                              (5.6)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
180

(180 + 0)
= 1.0 

                                                                                                                                                                       (5.7) 

𝐹1 =  2 ∗
1.0 ∗ 1.0

(1.0 + 1.0)
= 1.0 

                                                                                                                                                                        (5.8) 

5.3.2 Experiment 2: Model Robustness test results 

As explained in the methodology section, the purpose of this experiment was to test the model’s robustness. 

This was achieved by putting two images of NCLB in the class they did not belong to while ensuring the 

balanced class of 180 images. If the model was robust, it was expected to misclassify the two images and give 

an accuracy of 99 % in the model’s realistic classification point of view. However, this model’s 99% 
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classification accuracy was equivalent to 100 % of accuracy in the model’s robustness test point of view. 

Figure 5.9 shows the comparison of the training and validation accuracies in the model’s realistic performance 

point of view. So, with the model being able to misclassify the two NCLB images it was deemed to be robust 

in prediction of the NCLB severities. 

 

Figure 5. 9: Comparison of the training and validation accuracies in the model’s realistic performance point of view. 

The model’s ability to misclassify the two images deemed the model to robust in making the NCLB severity 

predictions. Since in this experiment the purpose was to test the model’s robustness, the performance metric 

that is closely looked is the Accuracy. Accuracy of 99% was expected from a robust model. However, this 

accuracy measure was not seen as a drop in the model’s performance in accuracy because one of the NCLB 

classes was validated with 178 correct images and 2 images that did not belong to that class but supposedly 

belonged to the second class. When the model was validated under these validation data set conditions, it 

“misclassified” the two images. In the latter sentence, the word “misclassified” is written in quotes because 

the model did not really misclassify these two images, but it assigned them to the class to which they were 

supposed to belong based on their image features. In this sense, the model’s 99% of accuracy is 100% of 

accuracy at the model’s robustness test point of view. So, the robustness accuracy test in this regard is 

calculated as shown in equation (5.9). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝑡𝑒𝑠𝑡) =  
178

(178 + 0 + 2 + 0)
=  0.99 ≡ 1.0 

                                                                                                                                                                      (5.9) 
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Figure 5. 10: Confusion matrix and metrics classification report of the model described in experiment 2. 

5.4 Discussion and Conclusion 

Most studies on the plant leaf disease classification used CNNs to classify plant leaf diseases of different plant 

species or same plant species of different disease types (Ferentinos, 2018; Baranwal et al., 2019; Rangarajan 

et al., 2018; Too et al., 2017; Barbedo, 2019). In this study, CNN was used to classify foliar disease severities 

of the same plant species and same disease type. Here, we studied the maize, and the disease type was the 

NCLB. This novel approach of predicting the severities of the NCLB using a CNN was inspired by the fact 

that NCLB affects the KwaZulu-Natal regions, South Africa, affecting the country’s seasonal maize yield 

(Craven, 2020). The aim of this study is to introduce a novel method that can be used by plant pathology 

researchers who would want to predict the NCLB severities hence replacing tedious laboratory methods. Also, 

the CNN model proposed here for NCLB severity predictions is a promising tool for computer vision of Agri-

tech robots intended to collect information about the NCLB disease occurring in large maize fields. The 

developed deep learning model is inspired by state-of-the-art VGG-16 model as its structure resembles the 

VGG-16 network (Simonyan and Zisserman., 2014). The model was compensated for overfitting by using 

regularization methods such as batch normalization, early stopping, learning rate decay and drop out. As a 

result of these regularization methods, the model achieved high classification accuracy of 100% and passed 

the robustness test explained in experiment 2. This work is an extension of our previously published works on 

a research project of maize leaf diseases (Sibiya and Sumbwanyambe, 2019a; Sibiya and Sumbwanyambe, 

2021). Initially the aim was to classify maize leaf diseases using a GUI framework (Sibiya and 

Sumbwanyambe, 2019a). In this work, the CNN was able to classify various maize leaf diseases and achieved 
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appreciable validation accuracy of 92.85% (Sibiya and Sumbwanyambe, 2019). In our previous works we 

used CNN, Fuzzy decision rules, and thresholding to predict the severity of maize Common Rust (Sibiya and 

Sumbwanyambe, 2019). Out of the maize leaf disease that were classified, we then selected the Common Rust 

and Northern Corn Leaf Blight to be the disease that their severities had to be predicted as they mostly affect 

the maize yield of Southern Africa. The prediction of maize Common Rust was introduced in a published 

study where CNN was used with fuzzy decision rules and thresholding to make the predictions of this disease 

(Sibiya and Sumbwanyambe, 2019). In this study, the novel approach to predicting the severities of the 

Northern Corn Leaf is introduced as part of a continuing research on maize leaf diseases. We conclude that 

the CNN model can be used to make severity predictions of the NCLB disease. The training data sets for the 

severity classes were compiled as guided by the image features of each class (Jackson-Ziems, 2016). The 

image features that were used to assign each NCLB image to their appropriate training and validation class 

were confirmed by the professional pathologist at the University of Free State, South Africa. The model 

proposed in this study is a promising tool for Plant Pathology researchers interested in understanding the 

severities of the NCLB samples collected. This may also be a great tool for computer vision of Agri-tech 

robots intended to collect information about the NCLB disease occurring in large maize fields. 
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CHAPTER 6: Evaluation of Objectives and Conclusion 

In general, this chapter provides the framework of the entire thesis, tying up the key results in order to reflect 

on the overall contribution of CNNs on classification and severity prediction of maize leaf diseases. This 

chapter begins by evaluating research objectives and summarize key research contributions made in this work. 

It then presents further research recommendations and provides concluding remarks. 

6.1 Evaluating objectives and Key Research Contribution   

The aim of the research was to introduce Deep Learning CNN approaches for the classification and severity 

prediction of maize leaf diseases. The remarkable results that emerged from the study were of the CNN models 

that were developed for classifying various maize leaf diseases and severity prediction of maize leaf diseases. 

The research results are critically evaluated by revisiting each study objective. The key areas where this study 

made an original contribution are highlighted by also revisiting each study objective. 

Objective 1: To create and test a CNN model that can classify various types of maize 

leaf diseases 

The study offered valuable insights into the development of a CNN model to classify various types of maize 

leaf diseases using a GUI platform. The CNN model was developed to make predictions of three different 

maize leaf diseases. 

Contributions: 

1. Facilitated principles of a CNN model in order to develop a network for the classification of maize 

leaf diseases. 

Objective 2: To set up and test a CNN model that can predict the severities of a maize 

leaf disease known as the maize CR 

The study demonstrated a novel approach of using CNN to predict the severities of maize CR disease. The 

CNN model was trained on images of maize CR disease with different severities of the disease in order to 

make severity predictions. The testing of the model was done using separate testing data sets. 

Contributions: 

1. Development of a Hybrid model using FL rules and a CNN in order to classify and predict maize CR 

disease. 
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Objective 3: To build and test a CNN model that can predict the severities of a maize 

leaf disease known as the NCLB by analysing lesion colour and sporulation patterns 

The study demonstrated a novel approach of using CNN to predict the severities of NCLB disease. The CNN 

model was trained on images of the NCLB disease with different severities of the disease in order to make 

severity predictions. The model was tested on separate testing data sets. 

Contributions:  

1. A novel approach to developing the training data sets for CNNs based on NCLB lesion colour and 

sporulation. 

2. Introduction of a CNN approach for predicting the severities of the NCLB disease. 

6.2 Recommendations and Suggestions for Future Research 

Based on the findings of this thesis, further studies, which take the following recommendations into account, 

will need to be undertaken. 

1. The results of this study are only limited to CNN algorithms, therefore ML algorithms that only work 

on numerical data were never tested for similar approaches introduced in this study. Therefore, it would 

be interesting if plant pathologists would intervene and propose suggestions on the availability of 

numerical data for plant leaf diseases. 

2. It is recommended that research be conducted on how agricultural vehicles and robots may be equipped 

with the CNN models proposed in this study.  

6.3 Concluding Remarks 

The results presented in this thesis clearly demonstrate that CNNs are a promising tool not only for the 

classification of various maize leaf diseases, but for various plant species leaf diseases at large (Sibiya and 

Sumbwanyambe, 2019a). Initially, it was thought that severity prediction of plant leaf diseases using CNNs 

was impossible until this study proved it possible by using Fuzzy decision rules and thresholding to manipulate 

training data sets (Sibiya and Sumbwanyambe, 2021). The idea of using Fuzzy logic and thresholding to 

develop CR training data sets for severity prediction with a CNN was inspired by the works of (Sibiya and 

Sumbwanyambe, 2019b). It is also demonstrated in this study that the image data sets of plant leaf lesions and 

sporulation could be manipulated to develop training datasets for a CNN model capable of making disease 

severity prediction of that plant species.   
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