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Summary

Substantial progress has been made in the studies of loosely-bound nuclei, however there are

many issues about the properties of these nuclei that have not been resolved yet. For example

nuclear decay, nuclear reactions and nuclear structure remain open questions. Despite the large

amount of information on proton and neutron halo systems, there are structural similarities and

differences in these nuclei that are yet to be fully understood. The purpose of this study is to

theoretically investigate structural properties of the light halo nuclei 8B, 6He, 6Li,6Be,9Be and

9B. In this study, these nuclei are treated as three-body systems interacting through standard

potentials. The Faddeev equations for these potentials are solved using the hyperspherical

harmonic methods. The ground-state energy, root-mean square radius and wavefunctions were

calculated and the results obtained were compared with theoretical and experimental results

reported in literature.

Key words

Three-body systems, halo nuclei, Faddeev equations, hyperspherical harmonic method, two-

body potentials.
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Chapter 1

Introduction

There are various types of nuclei such as unstable and stable nuclei. Some unstable nuclei

have an excess of protons or neutrons. That is, nuclei that lie below or above the valley of

stability and are radioactive. Studies into unstable nuclei have led to discoveries of new

nuclear structures such as ‘nuclei skin’, when there is excess neutrons distributed on the

surface of a nucleus and ‘halo nuclei’, when neutrons are found far beyond the nuclear core

[1]. Stable nuclei are not radioactive, and are found on the band of stability and have low

energy states. Light nuclei generally have a mass number of less than 50 and are stable when

the amount of protons is equal to the amount of neutrons [2]. Heavy nuclei require more

neutrons in the nucleus to be more stable to overcome the increase in electrostatic repulsion.

A halo nucleus is defined as a nucleus that has a core, containing nucleons, where the last one

or two valence nucleons are very weakly bound [3]. In a halo nucleus, more than 50% of

probability density of the valence nucleons is found outside the range of the core potential

which accounts for their larger size and low separation energy. Halo nuclei have a very short

lifetime and generally have only one bound state. The valence nucleons have a low orbital

angularmomentum because higher angularmomentum would lead to a rise in the centrifugal

barrier. Two neutron halo nuclei, known as Borromean systems, have no two-body

subsystems bound states. They have narrow momentum distributions compared to stable

nuclei and are found on the edges of the neutron and proton dripline. The Coulomb force for

the proton halo nuclei means that the valence proton is located closer to the core than the

neutron halo nuclei, hence this makes the proton rich nuclei rarer and more difficult to

identify.
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Introduction

The discovery of halo nuclei has sparked interest in the understanding of such nuclei. Hence,

there are many studies of weakly bound nuclear systems that lie far from the band of stability

[4]. Studies of halo nuclei further contribute to the understanding of interactions in the

motion of nucleus with low density, asymmetric nuclei, weakly bound three body systems,

nucleosynthesis [5], two proton decay [6], Borromean systems [7] and to better examine

astrophysical data [8]. Despite the large amount of information on proton and neutron halo

systems, there are structural similarities and differences in these nuclei that are yet to be fully

understood. The purpose of this study is to theoretically investigate structural properties of

the light halo nuclei 8B, 6He, 6Li,6Be,9Be and 9B.

The Faddeev equations for a system three particles are a set of three coupled equations that

describe three possible interactions and exchanges in a three-particle system [9]. The Faddeev

equations are used to study three-body scattering with short-range interactions and require

the potential between interacting pairs of particles as inputs. Faddeev equations can be solved

by various methods. One method is done without angularmomentum decomposition [10].

This method applies to the Faddeev equations in momentum space. Also, this method is

useful because limited partial waves provides limited qualitative insight as in three bound

nucleon state calculations which require many different isospin, spin and orbital

angularmomentum combinations. The Faddeev equations have been used [11] in scattering

processes and bound state computations. The Faddeev equations are able to treat

interactions [12] that depend on the spin, isospin and angularmomentum. The coordinate

space Faddeev equations can be used for long range interaction like that of the Coulomb

potential which involves many partial waves.

The Faddeev equations have been applied in low energy multiple scattering [13] of three

nucleon systems using an approximation scheme that preserves the unitarity of bound and

scattering states of the system. To define the low energy of nucleon to nucleon interactions,

the approximation utilizes non-local separable potentials. Properties of three-nucleon systems

are studied with nucleon-nucleon tensor and short-range interactions which are represented by

phenomenological potentials. This method has also been applied to the neutron-deuteron

scattering problem and the triton binding energy problem which are treated exactly. The

three-body Faddeev equations have been used in the n-d scattering above the breakup

threshold problem [14]. In this method, the Faddeev equations are solved in configuration

space and is based on a finite basis set expansion of the Faddeev components. The Faddeev

2
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equations have also been applied to solve the boundary problem which describes the

scattering process and allows to obtain scattering parameters from the asymptotic

representation of the wavefunction.

The Faddeev equations are applied to solve for bound state energies [15], by using the

separable t-matrix approximations which are solvable using the inner structure quantum

numbers of the particles and including spin. They have been calculated for 9Be, 6Li, 12C

nuclei and the results calculated agree well with the experimental values. The t-matrix

approximations together with the Faddeev equations have been utilized to calculate the

scattering amplitudes for electron capture from neutral hydrogen by fast protons [16]. The

influence on the three-body capture amplitude originates from the on-energy shell two-body

t-matrix. It was observes that the capture amplitude was indistinguishable from Drisko’s

second Born-approximation computation, aside from an energy-dependent phase factor which

eventually approaches unity with adequately high incident energy.

The Faddeev equations are utilized [17] to determine the aggregate and differential cross

segments for the dissociative connection of an electron to H2, HD, and D2, atoms (e + AB →

A− + B). The adiabatic estimation (at electron energies over the edge for the separation of

the particle to the free atoms A + B) and the estimation of distinguishable potentials (at

electron energies beneath this limit) are estimations to tackle the Faddeev equations. Great

understanding is accomplished between theoretical estimations and experimental information

on dissociative connection.

The three potentials in the Schrödinger equation are replaced by permutation operators,

which are universal and easy to implement in three-body problems [18]. This can transform

the Faddeev amplitudes from their natural coordinate system into the other coordinate

systems. The Faddeev equations are well suited when the interacting particle has no

interaction with the spectator particle. In configuration space, the singularities can be

explained with the correct asymptotic behaviour of the wavefunction. When there are

identical particles, the equation can be replaced by one equation since the equations become

independent.

In the hyperspherical harmonic expansion method [19], each Faddeev amplitude is expanded

in a series of complete bases functions that depend on a set of collective variables involving

3
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the hyperradius and five angular variables. The hyperspherical harmonic angular functions

are eigenfunctions of the square of hyperangularmomentum operator. The study of 11Li and

6He three particles systems with two neutron halos use the Faddeev equations along with the

hyperspherical harmonic method.

There are various numerical methods to solve the three-body Schrödinger equation [11], with

the separated centre of mass motion. These include the finite element, finite difference and

variational methods. The techniques created in this field are founded on three-body equations

that give an accurate depiction of the of the quantum mechanical three-body frameworks [20].

The variational methods generate very accurate solutions with an increasing number of

variational parameters. However, direct solutions of the three-body Schrödinger equation are

preferred. The disadvantage of variational methods is that the variational wavefunction is

selected arbitrarily.

The hyperspherical harmonic method, [21], provides a good clear picture of the system in

configuration space wavefunction. The method is a useful tool for determining the solution of

the Schrödinger equations, the coordinate system is stated in terms of six coordinates after

the centre of mass is separated. These coordinates comprise of one hyperradial variable and

five hyperangular variables [11]. The wavefunction in these coordinates is expressed as a sum

of products of the hyperradial and hyperangular functions. The three-body centre of mass

Schrödinger equation uses the hyperspherical harmonic method by reducing it to a set of

coupled equations in a single variable [22].

There are several advantages for using the hyperspherical harmonic method [22]. The

properties of convergence of the expansions are known and all transformations of the three

particles can be described by the rotation group. With the exception for truncation of the

expansion basis, the hyperspherical harmonic method involves no approximation [23]. By

examining the rate of convergence while progressively expanding the expansion basis, one can

choose in principle the precision of the binding energy. In practice, there is a slow convergence

of the series of the hyperspherical harmonic method [11].

One disadvantage [11] of the hyperspherical harmonic method is that there is large degeneracy

in the hyperspherical basis, this is because of the rotation of the system and the three degrees

of freedom are not completely separated from the internal degrees of freedom. Having a large
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hyperangularmomentum quantum numbers increases the expansion basis which increases the

number of coupled equations and hence increases the difficulty in the numerical solutions [23].

The hyperspherical harmonic method is widely used in bound states in atomic, nuclear and

particle physics [21]. An application of the hyperspherical harmonic method has been used to

examine the properties of the 6
ΛΛHe hyper nucleus treated as a three-body systems [23]. This

method was also used to study the spectra of a variety of atomic and molecular systems [24].

This method was used to solve the Schrödinger equation for a variety of quantum mechanical

systems [25].

This dissertation is organized as follows. In Chapter 2, the Jacobi and hyperspherical

coordinate systems are explained and the notations are outlined. The quantum mechanical

equations used are also given. In Chapter 3, the results and analysis are compared with

theoretical and experimental studies in the literature. In Chapter 4 the significance of the

results obtained is discussed.

5



Chapter 2

Hyperspherical Formalism

There are various numerical methods to solve the three-body Schrödinger equation [11], with

the separated centre of mass motion. These include the finite element, finite difference and

variational methods. The techniques created in this field are founded on three-body equations

that give an accurate depiction of the of the quantum mechanical three-body frameworks [20].

The variational methods [11], generate very accurate solutions with an increasing number of

variational parameters. However, direct solutions of the three-body Schrödinger equation are

preferred. The disadvantage of variational methods is that the variational wavefunction is

selected arbitrarily.

2.1 Jacobi Coordinates

Consider a system of three particles each with position vector ~ri, ~rj and ~rk. The relative motion

of the particles is described by Jacobi coordinates shown in Figure 2.1 below [26]

Figure 2.1: Three sets of Jacobi vectors for a system of three particles.

6



Hyperspherical Formalism

The Jacobi vectors (~xi, ~yi) for the system can be defined as

~xi =
√
Ajk ~rjk

~yi =
√
A(jk)i ~r(jk)i.

(2.1)

The separation vector between interacting particles j and k, denoted by ~rjk, and the separation

vector between the centre-of-mass of the interacting pair and the third particle i, denoted by

~r(jk)i are defined by

~rjk = ~rj − ~rk

~r(jk)i = ~ri −
Aj ~rj + Ak ~rk
Aj + Ak

.
(2.2)

The corresponding reduced mass is defined as

Ajk =
Aj Ak
Aj + Ak

A(jk)i =
Ai(Aj + Ak)

Ai + Aj + Ak
,

(2.3)

where i, j, k ∈ (1, 2, 3) with Ai =
mi

m
, m is a unit mass and mi the mass of particle i.

2.2 Hyperspherical coordinates

The Jacobian coordinates are then transformed into hyperspherical coordinates defined as [21]

xi = ρ cosφi

yi = ρ sinφi

(2.4)

where ρ =
√
x2
i + y2

i =
3∑
i=1

Air
2
i is the hyperradial coordinate which is invariant under

translation, rotation and permutation of the particles. The hyperangle φi = arctan

(
xi
yi

)
together with the spherical polar angles (θxi , φxi) and (θyi , φyi) of ~xi and ~yi make up the five

angular coordinates and are denoted by

Ω→ {φi, θxi , φxi , θyi , φyi} (2.5)

which are dependent on the Jacobi partition.

2.3 Hyperspherical Harmonic Expansion Method

In the six hyperspherical variables (ρ,Ωi), the kinetic energy operator has the form [21]

− ~2

2µ

(
∂2

∂x2
+

∂2

∂y2

)
= − ~2

2µ

{
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− K̂

2 (Ωi)

ρ2

}
(2.6)

7
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where the interaction potential K̂2 (Ωi) is the square of hyperangularmomentum operator

specified as

K̂2 (Ωi) = − ∂2

∂φ2
i

− 4 cotφi +
∂

∂φi
+

1

cos2 φi
l̂2 (x̂i) +

1

sin2 φi
l̂2 (ŷi) (2.7)

where l̂2 (ŷi) and l̂2 (ŷi) are the squares of the ordinary orbital angular momenta associated with

~xi and ~yi vectors. The operator K̂2 (Ωi) satisfies the eigenvalue equation below

K̂2 (Ωi)YKαi
(Ωi) = K(K + 4)YKαi

(Ωi) (2.8)

where YKαi
(Ωi) are the normalized eigenfunctions, called hyperspherical harmonics, defined by

YKαi
(Ωi) = N

lxi lyi
K (cosφi)

lxi (cosφi)
lyi P

lyi+
1
2
,lxi+

1
2

ni (cos 2φi) (2.9)

where Pα,β
n are Jacobi polynomial with normalisation N

lxi lyi
K and Ki is the

hyperangularmomentum defined by

Ki = lxi + lyi + 2ni (ni = 0, 1, 2, ...). (2.10)

In 6-dimensional space on a unit hypersphere, the hyperspherical harmonics form a complete

set of orthogonal functions. The transformation which connects the three corresponding Jacobi

coordinates sets are defined by [21]

~xk = −cosϕki~xi + sinϕki~yi

~yk = −sinϕki~xi − cosϕki~yi
(2.11)

where ϕki = tan−1
{

(−1)P
√

AAj

AiAk

}
, and P being even if (i, j, k) is an even permutation and

odd if (i, j, k) is an odd permutation. Under kinetic rotation, the quantum numbers K, L, M

remain the same. The parity of the hyperspherical harmonics are also conserved [27].

The hyperspherical harmonics, YKαi
(Ωi) can be expanded in terms of YKαj

(Ωj) through a

unitary transformation defined by

YKαi
(Ωi) =

∑
αj

〈αj|αi〉KLYKαj
(Ωj) (2.12)

where K, L, M are conserved and there is rotational degeneracy with respect to quantum

number M for spin independent forces. As a result

〈αj|αi〉KL =
〈
lxj lyj

∣∣lxilyi〉KL (2.13)

Eq. (2.12) can be written as

YKαi
(Ωi) =

∑
lxj lyj

〈
lxj lyj

∣∣lxilyi〉KLYKαj
(Ωj) (2.14)

where the coefficients (2.13) are called the Raynal-Revai coefficients (RRC).

8
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2.4 Schrödinger Equation

The Schrödinger equation for a system of three particles in Jacobi coordinates is written as(
− ~2

2µ

(
∇2
xi

+∇2
yi

)
+ Vjk (~xi, ~yi) + Vki (~xi, ~yi) + Vij (~xi, ~yi)− E

)
Ψ (~xi, ~yi) = 0 (2.15)

where µ =
√

mimjmk

M
is the effective mass parameter.

Substituting equations (2.4) and (2.5) into equation (2.15), the Schrödinger equation is then

transformed into hyperspherical coordinates (ρ,Ωi) as(
− ~2

2µ

{
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− K̂

2 (Ωi)

ρ2

}
+ V (ρ,Ωi)− E

)
ψ (~xi, ~yi) = 0 (2.16)

The wavefunction Ψ (ρ,Ωi) expanded in complete sets of the hyperspherical harmonics is defined

as the hyperspherical harmonic expansion method and specified as

Ψ (ρ,Ωi) =
∑
kαi

Ukαi
(ρ)

ρ
5
2

Ykαi
(Ωi) (2.17)

Substitution of Eq. (2.17) into Eq. (2.6), the use of Eq. (2.8) and considering the

orthonormality of hyperspherical harmonics leads to a set of coupled single-variable

differential equations(
− ~2

2µ

(
d2

dρ2

)
− LK (LK + 1)

ρ2
− E

)
Ukαi

(ρ) +
∑
K′α′

i

〈Kαi|V (ρ,Ωi)|K ′α′i〉UK′α′
i
(ρ) = 0 (2.18)

depending only on ρ, where LK = K + 3
2

and

〈Kαi|V |K ′α′i〉 =

∫
Y∗Kαi

(Ωi)V (ρ,Ωi)YK′α′
i
(Ωi) dΩi (2.19)

For the central potential, a large portion of the five-dimensional integrals must be done

numerically that makes calculations difficult and imprecise. Be that as it may, the calculation

of the matrix (2.11) can be enormously simplified utilizing the unitary transformation (2.12).

2.5 Faddeev Equations

The total wavefuntion for a system of three particles in the Faddeev approach is defined by

three amplitudes Ψ(~xi, ~yi). The total three-body wavefunction in Jacobi coordinates is given

by Ψ = Ψ1 (~x1, ~y1) + Ψ2 (~x2, ~y2) + Ψ3 (~x3, ~y3). The Faddeev coupled equations are defined by

9



Hyperspherical Formalism

[26]

(T1 + V1 − E) Ψ1 = −V 1 (Ψ2 + Ψ3)

(T2 + V2 − E) Ψ2 = −V 1 (Ψ3 + Ψ1)

(T3 + V3 − E) Ψ3 = −V 3 (Ψ1 + Ψ2)

(2.20)

where Ti are the relative kinetic energy operators of each Jacobi partition and Vi the two

body interactions potential.

The Faddeev equation in Jacobi coordinates is defined as

Ψi (xi, yi) =
∑
sc

ψsc (xi, yi) (2.21)

where i = 1, 2, 3 and ψsc comprises of the spin, radial and angular of the two particles relative

to the core. Substituting the hyperspherical harmonic expansion, (2.17) and using the

hyperspherical coordinates, (2.4) and (2.5), in the Faddeev Equations, gives to a set of

coupled equations(
− ~2

2m

d2

dρ2 + ~2

(
Ki + 3

2

) (
Ki + 5

2

)
2mρ2

− E

)
X i
αiKi

(ρ) +
∑
jαjKj

V ij
αiKi,αjKj

(ρ)Xj
αjKj

(ρ) = 0 (2.22)

where V ij
αiKi,αjKj

(ρ) = 〈ϕ
lxj lyj
Kj

(θj) |V̂ij|ϕ
lxi lyi
Ki

(θi)〉 is the hyperangular of the two-body

interactions.
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Chapter 3

Results and Discussion

The computer code FaCE [26] was used, this is a tool that uses the three-body Faddeev

equations to calculate the ground state energy, rms radius and wavefunction for halo nuclei

three-body nuclei 8B, 6He, 6Li, 6Be, 9Be, 9B treated as three-body systems. These

measurements are compared with experimental and theoretical literature.

V (~r) = Vc(r) + ~L · ~S Vso(r) (3.1)

where Vc(r) is the central and Vso(r) is the spin-orbit part of the potential. ~L is the orbital

angularmomentum and ~S is the spin angularmomentum.

In some cases, the model the central part of the potential with the Wood-Saxon (ws) terms

given by equation 3.2 [26]

V i
ws(r) =

∑
k=1,4

pa(k, i)

[
1 + exp

(
r − pa(k + 1, i)

pa(k + 2, i)

)]−1

(3.2)

The also model the spin-orbit part of the potential with the Wood-Saxon terms given by

equation 3.3

V i
ws(r) =

∑
k=1,4

pso(k, i)

r pso(k + 2, i)

exp
(
r−pso(k+1,i)
pso(k+2,i)

)
[
1 + exp

(
r−pso(k+1,i)
pso(k+2,i)

)]2 (3.3)

In other cases, the model with the central and spin-orbit part of the potential with the Gaussian

(gau) terms given by equation 3.4

11
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V i
gau(r) =

∑
k=1,3,5

pa(k, i)exp

[
−
(

r

pa(k + 1, i)

)2
]

(3.4)

In equations 3.2, 3.3 and 3.4 pa and pso are fitting parameters. For a given system, these

parameters are adjusted using experimental data.

3.1 8B → α + 3He + p

The three-body 8B → α+ 3He + p system is of special importance due to its relevance in the

study of nucleosynthesis and the solar boron neutrino problem [5]. The three-body 8B system

is considered to have a proton halo and to be the first proton drip line nucleus. Below are the

potential input parameters for each interacting pair of the 8B → α + 3He + p system.

Table 3.1: Potentials input parameters for interacting pair 4He + 3He.

Coulomb potential [26]: 3.09

Central potential type: gau

s-wave 400 1.75 -122.2 2.1

p-wave 300 1.43 -141.6 2.1

f-wave -48.5 3.1

Spin-orbit potential type: gau

p-wave -2.3 2.1

f-wave -13.2 1.91

Table 3.2: Potentials input parameters for interacting pair 4He + p.

Coulomb potential [26]: 1.46

Central potential type: ws

s-wave 43 2 0.7

p-wave -43 2 0.7

d-wave -7 2 0.7

Spin-orbit potential type: ws

p-wave -40 1.5 0.35

d-wave -40 1.5 0.35

12
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Table 3.3: Potentials input parameters for interacting pair 3He + p.

Coulomb potential [26]: 1.46

Central potential type: ws

s-wave 350 1.43 0.7 -33 2 0.7

p-wave -35 2 0.7

d-wave 350 1.43 0.7 -33 2 0.7

f-wave -35 2 0.7

Spin-orbit potential type: ws

all-waves -19.6 1.5 0.35

Spin-spin potential type: ws

s-wave 200 1.43 0.7

p-wave -2.7 2 0.7

d-wave 200 1.43 0.7

f-wave -2.7 2 0.7

The calculated the ground state energy of the system by increasing maximum

hyperangularmomentum from Kmax = 0 to Kmax = 40. The mass, charge and radius for each

of the three interacting nuclei were adjusted and the total spin and parity were also adjusted

for each system. The convergence of the calculated 2+ ground state energy of the 8B nucleus

is shown in figure 3.1. It can be seen that in figure 3.1, the calculated energy converges to

1.798 MeV. The ground state energy obtained is close to the experimental value 1.725 MeV

reported in [28], with a variance of 4.06%. As shown in Table 3.4 the results in the literature

[5, 29, 30] are consistent.
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Figure 3.1: Variation of the ground state energy for 8B with increasing total

hyperangularmomentum.

Table 3.4: Values of the ground state energy (MeV) for 8B from experimental and

theoretical studies.

Experiment Theoretical

1.725 [28] 1.874 [5]

1.665 [29]

1.78 [30]

1.798 This work

The calculated the root mean square (rms) radius of the system by increasing the maximum

hyperangularmomentum from Kmax = 0 to Kmax = 40. The mass, charge and radius for each

of the three interacting nuclei were adjusted and the total spin and parity were also adjusted

for each system. The convergence of the calculated 2+ ground state rms radius of the 8B

nucleus is shown in figure 3.2. It can be seen that in figure 3.2, the calculated rms radius

converges to 2.397 fm. This result has a 1.36% variance from the experimental work [28] and

is in good agreement with previous studies [29, 31]. The rms radius of the valence proton is

1.75 times larger than the 7Be core, which further validates the speculation of a proton halo

in 8B [5].
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Figure 3.2: Variation of the ground state rms radius for 8B with increasing total

hyperangularmomentum.

Table 3.5: Values of the ground state rms radius (fm) for 8B from experimental and

theoretical studies.

Experiment Theoretical

2.43 [28] 2.38-2.39 [5]

2.45 [29] 2.397 This work

2.38 [31]

The wavefunction for the partial waves of the system were also determined. Figure 3.3 is the

wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure that the

wavefunction for the partial wave K = 0 contributes the most to the total wavefunction of the

system.
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Figure 3.3: Wavefunctions of the ground state for 8B for hyperangularmomentum

Kmax = 0, 2, 4.

3.2 6He → α + n + n

The three-body 6He → α + n + n system is a Borromean nucleus that, together with 11Li,

exhibits a halo structure with two loosely bound valence neutrons [32]. 6He is often used as a

benchmark system for three-body exotic loosely bound nuclei since the α - n interaction is

better understood. Below are the potential input parameters for each interacting pair for the

6He → α + n + n system.

Table 3.6: Potentials input parameters for interacting pair 4He + n.

Central potential type [26]: gau

s-wave 50 2.35

p-wave -47.32 2.35

d-wave -23 2.35

Spin-orbit potential type: gau

p-wave -11.71 2.35

d-wave -11.71 2.35
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Table 3.7: Potentials input parameters for interacting pair n + n.

Central potential type [26]: ws

s-wave -31 1.8

The calculated the ground state energy similarly to that in the previous section. The

convergence of the calculated 0+ ground state energy of the 6He nucleus is shown in figure 3.4.

It can be seen that in figure 3.4, the calculated energy converges to 0.862 MeV. The ground

state energy obtained is close to the experimental value 0.975 MeV reported in [33], with a

variance of 11.59%. As shown in table 3.8, the results are consistent with literature

[34, 35, 36].
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Figure 3.4: Variation of the ground state energy for 6He with increasing total

hyperangularmomentum.

Table 3.8: Values of the ground state energy (MeV) for 6He from experimental and

theoretical studies.

Experiment Theoretical

0.975 [33] 0.98 [36]

0.976 [34] 0.862 This work

0.973 [35]

The ground state rms radius was calculated as stated in the previous section. The

convergence of the calculated 0+ ground state rms radius of the 6He nucleus is shown in figure
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3.5. It can be seen that in figure 3.5, the calculated rms radius converges to 2.557 fm. The

ground state rms radius obtained is close to the experimental value 2.57 fm reported in [37],

with a variance of 0.51%. As shown in table 3.9, the results are consistent with literature

[36, 39, 40].
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Figure 3.5: Variation of the ground state rms radius for 6He with increasing total

hyperangularmomentum.

Table 3.9: Values of the ground state radius (fm) for 6He from experimental and theoretical

studies.

Experiment Theoretical

2.57 [37] 2.51 [36]

2.48 [38] 2.51 [39]

2.5 [40]

2.557 This work

Figure 3.6, is the wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure

that the wavefunction for the partial wave K = 0 contributes the most to the total

wavefunction of the system.
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Figure 3.6: Wavefunction of the ground state for 6He for hyperangularmomentum

Kmax = 0, 2, 4.

3.3 6Li → α + n + p

The application of the three-body 6Li → α + n + p system is of interest since deuteron

induced reactions are generally used to examine astrophysical data and nuclear structure [8].

The potential input parameters for the interacting pair 4He + n is shown in table 3.6 and the

potential input parameters for 4He + p is shown in table 3.2. The potential input parameters

for n + p is shown in table 3.10 below.

Table 3.10: Potentials input parameters for interacting pair n + p.

Central potential type [26]: ws

s-wave -31 1.8

The calculation of the ground state energy was performed as mentioned above. The

convergence of the calculated 1+ ground state energy of the 6Li nucleus is shown in figure 3.7.

It can be seen that in figure 3.7, the calculated energy converges to 3.307 MeV. The ground

state energy obtained is close to the experimental value 3.6989 MeV reported in [35], with a

variance of 10.60%. As shown in table 3.11, the results are consistent with literature

[41, 42, 43].
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Figure 3.7: Variation of the ground state energy for 6Li with increasing total

hyperangularmomentum.

Table 3.11: Values of the ground state energy (MeV) for 6Li from experimental and

theoretical studies.

Experiment Theoretical

3.6989 [35] 3.6 [41]

3.7 [42, 43]

3.307 This work

The ground state rms radius is calculated similarly to that in the previous section. The

convergence of the calculated 1+ ground state rms radius of the 6Li nucleus is shown in figure

3.8. It can be seen that in figure 3.8, the calculated rms radius converges to 2.694 fm. The

ground state rms radius obtained is close to the experimental value 2.54 fm reported in [42],

with a variance of 5.49%. As shown in table 3.12, the results are consistent with literature

[43, 44].
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Figure 3.8: Variation of the ground state rms radius for 6Li with increasing total

hyperangularmomentum.

Table 3.12: Values of the ground state radius (fm) for 6Li from experimental and theoretical

studies.

Experiment Theoretical

2.54 [42] 2.51 [44]

2.5 [43] 2.694 This work

Figure 3.9 is the wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure

that the wavefunction for the partial wave K = 0 contributes the most to the total

wavefunction of the system.
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Figure 3.9: Wavefunction of the ground state for 6Li for hyperangularmomentum

Kmax = 0, 2, 4.

3.4 6Be → α + p + p

The three-body 6Be → α + p + p is of special interest due to the fact that 6Be is the lightest

two-proton emitter and is crucial in the study of two proton decay [45]. The potential input

parameters for the interacting pair 4He + p is shown in table 3.2.

The ground state energy was calculated as stated in the previous section. The convergence of

the calculated 0+ ground state energy of the 6Be nucleus is shown in figure 3.10. It can be

seen that in figure 3.10, the calculated energy converges to 1.277 MeV. The ground state

energy obtained is close to the experimental value 1.371 MeV reported in [35], with a variance

of 8.79%. As shown in table 3.13, the results are consistent with literature [46, 47].
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Figure 3.10: Variation of the ground state energy for 6Be with increasing total

hyperangularmomentum.

Table 3.13: Values of the ground state energy (MeV) for 6Be from experimental and

theoretical studies.

Experiment Theoretical

1.371 [35] 3.7 [47]

1.37 [46] 1.277 This work

The calculation of the ground state rms radius was done as mentioned above. The

convergence of the calculated 0+ ground state rms radius of the 6Be nucleus is shown in figure

3.11. It can be seen that in figure 3.11, the calculated rms radius converges to 2.872 fm. The

ground state rms radius obtained is close to the experimental value 2.96 fm reported in [48],

with a variance of 5.49% as shown in table 3.14.
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Figure 3.11: Variation of the ground state rms radius for 6Be with increasing total

hyperangularmomentum.

Table 3.14: Values of the ground state radius (fm) for 6Be from experimental and

theoretical studies.

Experiment Theoretical

2.96 [48] 2.872 This work

Figure 3.12 is the wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure

that the wavefunction for the partial wave K = 0 contributes the most to the total

wavefunction of the system.
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Figure 3.12: Wavefunction of the ground state for 6Be for hyperangularmomentum

Kmax = 0, 2, 4.
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3.5 9Be → α + α + n

The three-body 9Be → α + α + n is considered to be the only bound ground state and all

excited states lie above the three-body threshold [7]. Hence 9Be is expected to have low-lying

state. Below are the potential input parameters for each interacting pair of the 9Be → α + α

+ n system.

Table 3.15: Potentials input parameters for interacting pair 4He + 4He.

Coulomb potential 1.35

Central potential type [49]: ws

s-wave 175

p-wave -0.63

d-wave 0.001

f-wave 30

g-wave -0.24

Table 3.16: Potentials input parameters for interacting pair n + n.

Central potential type [26]: ws

s-wave -31 1.8

The calculated the ground state energy similarly to that in the previous section. The

convergence of the calculated 3
2

−
ground state energy of the 9Be nucleus is shown in figure

3.13. It can be seen that in figure 3.13, the calculated energy converges to 1.443 MeV. The

ground state energy obtained is close to the experimental value 1.371 MeV reported in [35],

with a variance of 8.10%. As shown in table 3.17, the results are consistent with literature

[50, 51, 52].
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Figure 3.13: Variation of the ground state energy for 9Be with increasing total

hyperangularmomentum.

Table 3.17: Values of the ground state energy (MeV) for 9Be from experimental and

theoretical studies.

Experiment Theoretical

1.5736 [35] 1.572 [52]

1.57 [50, 51] 1.443 This work

The ground state rms radius was calculated as stated in the previous section. The

convergence of the calculated 3
2

−
ground state rms radius of the 9Be nucleus is shown in figure

3.14. It can be seen that in figure 3.14, the calculated rms radius converges to 2.71 fm. The

ground state rms radius obtained is close to the experimental value 2.518 fm reported in [46],

with a variance of 4.63%. As shown in table 3.18, the results are consistent with literature

[47, 48].
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Figure 3.14: Variation of the ground state rms radius for 9Be with increasing total

hyperangularmomentum.

Table 3.18: Values of the ground state radius (fm) for 9Be from experimental and

theoretical studies.

Experiment Theoretical

2.518 [46] 2.59 [48]

2.59 [47] 2.71 This work

Figure 3.15 is the wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure

that the wavefunction for the partial wave K = 0 contributes the most to the total

wavefunction of the system.
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Figure 3.15: Wavefunction of the ground state for 9Be for hyperangularmomentum

Kmax = 0, 2, 4.

3.6 9B → α + α + p

Like mirror nucleus 9Be, the three-body 9B → α + α + p system has low-lying levels and

considered to be a Borromean system [7]. The potential input parameters for interacting pairs

4He + 4He and 4He + p are shown in table 3.15 and table 3.2 respectively.

The calculation the ground state energy was done as mentioned above. The convergence of

the calculated 3
2

−
ground state energy of the 9B nucleus is shown in figure 3.16. It can be seen

that in figure 3.16, the calculated energy converges to 0.202 MeV. The ground state energy

obtained is in close proximity to the experimental value 0.28 MeV reported in [50], with a

variance of 27.9%. As shown in table 3.19, the results are consistent with literature [53, 54].
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Figure 3.16: Variation of the ground state energy for 9B with increasing total

hyperangularmomentum.

Table 3.19: Values of the ground state energy (MeV) for 9B from experimental and

theoretical studies.

Theoretical

0.28 [50]

0.277 [53, 54]

0.202 This work

The calculated the ground state rms radius similarly to that in the previous section. The

convergence of the calculated 3
2

−
ground state rms radius of the 9B nucleus is shown in figure

3.17. It can be seen that in figure 3.17, the calculated rms radius converges to 2.92 fm. The

ground state rms radius obtained is close to the experimental value 2.81 fm reported in [55],

with a variance of 3.56% as shown in table 3.20.
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Figure 3.17: Variation of the ground state rms radius for 9B with increasing total

hyperangularmomentum.

Table 3.20: Values of the ground state radius (fm) for 9B from experimental and theoretical

studies.

Theoretical

2.81 [55]

2.92 This work

Figure 3.18 is the wavefunctions for the partial waves K = 0, 2, 4. It is observed in the figure

that the wavefunction for the partial wave K = 0 contributes the most to the total

wavefunction of the system.
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Figure 3.18: Wavefunction of the ground state for 9B for hyperangularmomentum

Kmax = 0, 2, 4.
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Chapter 4

Concluding Remarks

The aim for this research is to investigate the nuclear structural properties of three-body

nuclei systems in particular the halo nuclei. The three-body systems 8B, 6He, 6Li, 6Be, 9Be

and 9B were identified to investigate the properties of a halo nuclei system and confirm if

these systems are indeed halo nuclei. In order to achieve this, the calculated ground state

energy, ground state root-mean-square radii and determined the wavefunctions for partial

waves K = 0, 2, 4 for each system. From these results, investigation on whether these systems

are indeed halo nuclei were performed. Further investigation the on different properties

between a proton and neutron halo nuclei were performed. Investigation on the different

properties between a two-neutron and a single-neutron halo system were also performed. The

results were compared with theoretical and experimental literature, the accuracy and

variances were recorded. To achieve these results, the trusted program called FaCE was used.

The purpose of this program is to attain bound state structural configurations for light exotic

nuclei three-body systems. The program was used to study the systems because halo nuclei

have a low binding energy, the systems are light nuclei and are three-body systems. The input

files were adjusted for each system as follows: the potential input parameters for each

two-body interacting pair were adjusted for each system. The mass, charge and radius for

each of the three interacting nuclei were adjusted and the total spin and parity were also

adjusted for each system.

The ground state energy was calculated by increasing the maximum angularmomentum from

Kmax = 0 to Kmax = 40. Convergence of the ground state energy was observed, and the

convergence energy was compared to experimental and theoretical literature. The variance

was noted and recorded. For the ground state root-mean-square, a similar process was
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followed, the convergence root-mean-square was obtained by increasing the maximum

angularmomentum Kmax = 0 to Kmax = 40 The convergent root-mean-square was then

compared with literature and the variance were captured. The wavefunction for the partial

waves K = 0, 2, 4 was also determined and the wavefunction for the partial wave that

contributed the most to the wavefunction was observed.

The results obtained were in good agreement with previous theoretical and experimental

work. It was found that the results obtained were slightly overestimated. The ground state

root-mean-square radius results were found to be more accurate than the ground-state energy

results. As stated by the creators of the FaCE program [26] , discrepancies in the results

could be because the program uses a predetermined Feshbach energy instead of recalculating

for each eigen energy and the diagonalization method used is efficient for the initial energy E0

being lower than the ground state energy, where there are no close degenerate eigenvalues

nearby.

The neutron halo three-body systems that were chosen to investigate where 6He, 6Li and 9Be.

The evidence that these systems were indeed neutron halo systems could indicate the

wavefunctions which exhibit a long tail which indicates that their density probability lies

outside the range of the core potential. The systems convergent root-mean-square radius are

large in size. The systems 6He and 9Be show low ground state energies whereas 6Li has a

significantly higher ground state energy than 6He and 9Be, since 6Li does not appear close to

the neutron dripline, but it does have a long tail like wavefunction and a relatively large

root-mean-square radius which would indicate that 6Li could be a neutron halo. The

wavefunctions for the partial waves K = 0 were most dominant and contributed the most to

the total wavefunction which further indicates that these systems are halo nuclei systems,

since halo nuclei have a very low angularmomentum. 6He is a special halo nuclei since it

exhibits two loosely bound valence neutrons. A comparison of 6He with the single-neutron

halo systems 6Li and 9Be show that the two-neutron halo has a lower ground state energy

than single-neutron halo system. The ground state root-mean-square radius of the

two-neutron halo system 6He is similar to the single-neutron halo system 6Li, which would

indicate that the size of a single-neutron halo is similar to that of a two-neutron halo nuclei.

The Coulomb and centrifugal barrier for proton halo nuclei means that the valence proton is

located closer to the core than the neutron halo nuclei. This makes proton halo nuclei rarer
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and more difficult to identify. The systems chosen to investigate proton halo three-body

systems are 8B, 6Be and 9B. The main evidence that these systems are proton halo nuclei is

given by the distribution of the wavefunction which have a long tail (not as predominant as

neutron halo nuclei). The systems wavefunction for the partial waves is dominant at K = 0.

The systems also have a relatively a low ground state energy and large ground state

root-mean-square radius which further validates that these systems are proton halo nuclei

systems. To compare the properties of neutron and proton halo nuclear systems, a

comparison between the 8B (proton halo) and the 9Be (neutron halo) was performed. Since

both systems are well considered halo nuclei by literature, have a single valence nucleon and

have a similar core structure. It can be seen from the results that 8B has a smaller

root-mean-square radius, larger ground state energy and shorter tail wavefuntion than 9Be.

This would further indicate the existence of the Coulomb barrier keeps the valence proton

closer to the core compared to the neutron halo nuclei. In conclusion, based on the results in

this literature, this dissertation can confirm the three-body nuclei systems investigated are

halo nuclei. The distinction between a proton halo and neutron halo is confirmed and the

distinctions between a two-neutron halo and one-neutron halo has also been confirmed.
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