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Summary

In this work we analyse fusion cross-section (σF ) in different projectile target systems.

Collision systems can result in different reactions such as elastic/ inelastic scattering, fu-

sion and fission reactions to name a few. In this paper, we will be doing a systematic study

of light projectile collision, medium projectile collisions and heavy projectile collisions. To

this end we should be able to relate fusion cross-section to the size of the projectile. Fu-

sion analysis has played a major role in synthesis of super heavy elements and simulations

of supersonic reactions. To understand the fusion analysis, we first take into account the

state of no internal excitations of the collision partners (spherical collision). In this case,

the target orientation and the radial distance between colliding nuclei are the factors of

which σF is dependent on. We analyse how the target orientation affects the Coulomb

potential which significantly gives us the effect on fusion.

Secondly, we look at the case of deformed target nucleus. The target deformations consid-

ered in this paper include rotational deformation, vibrational deformations and neutron

transfer reactions. The full-coupled channel program (CCFULL) is used to couple the

rotational excitations to the radial part. With this program, we are able to analyse how

each deformation parameter affects fusion cross-section. We can also make sense of fusion

at energies below and around the Coulomb barrier. The barrier distribution calculations

gives us a great insight of how each deformation parameter lowers the barrier and at which

energy regions. For vibrational coupling calculations, the cross-section can be compared

to that of rotational coupling and spherical collisions in order to see which parameters

enhance fusion the most and at which energies. In the case of neutron transfer reac-

tions, we analyse how the Q-value relates to fusion enhancement. For each system where

neutron transfer was considered, we look at the possibility and comparison of +1neu-

tron,+2neutrons and +3neutrons transfer channels. We further look into details how the

fusion barrier distribution data relates to the cross-sections.

For quantitative analysis in this work, the systems investigated were:

�
6,7Li projectiles with 28Si,64 Zn,152 Sm,198 Pt & 209Bi targets

�
40Ca projectile with 62,64Ni,96 Zr,194 Pt & 238U targets
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Chapter 1

INTRODUCTION

The study of nuclear reactions, such as elastic scattering, fusion, breakup, among others,

have gained extensive attention over the past few decades (see for example Refs.[5, 6,

9, 10, 11, 15, 23, 32, 37, 38, 42, 56] for some of the recent review on these subjects).

Although the study of fusion reactions can be traced over a century back, a full under-

standing of reaction dynamics that lead to fusion enhancement or suppression is far from

being settled. One of the reasons is the many number of degrees of freedom involved

during nuclear reactions.

Nuclei are not inert entities, that is their internal structure would play a important role

in the fusion process. This is due to the possible rotational and /or vibrational states

of the nuclei caused by their intrinsic motion. Historically the crucial role of the nuclear

internal structure came to light when the simple theoretical one-dimensional potential

model failed to describe fusion cross section experimental data for incident energies above

the Coulomb barrier (see for example Ref. [15]). For incident energies well above the

Coulomb barrier, this model provides a better fit of the experimental data,for a wide

range of fusion reactions. In this model, the interacting particles are assumed to be inert,

i.e., without internal structure, such that their relative motion is only described by the

relative coordinate between their centre-of-mass. Therefore, the failure of this model to

describe the data emphasizes its flaw at these energies (for incident energies below and

around the Coulomb barrier). On the other hand, its successful description of the data

above the Coulomb barrier emphasizes the irrelevance of the nuclear internal structure in
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this energy region. This shows clearly that fusion dynamics below and above the Coulomb

barrier are fundamentally different. One of these differences is due to a stronger Coulomb

repulsion below the Coulomb barrier, such that for fusion to occur, the fusing particles

must tunnel through the barrier. It follows that any reaction mechanism that lowers the

Coulomb barrier, will definitely serve to enhance the fusion cross section.

It is well known that nuclear internal degrees of freedom, such as nuclear excitations,

deformations, among others, play a important role in the analysis of the experimental

data below the Coulomb barrier, as exemplified by Ref.[1, 2, 8, 15, 25, 26, 28, 29, 39, 63].

Therefore, a successful modelling of fusion reactions below the barrier, needs to consider

not only the relative centre-of-mass motion of the interacting particles, but also their

internal motions and deformations. The internal states are eigenfunctions of the internal

Hamiltonian, and hence are obtained by diagonalizing the Hamiltonian through a solution

of the corresponding Schrödinger equation. The projectile and target internal states form

a complete basis on which the projectile-target wave function is expanded.

On the practical side, the substitution of this expansion into the system Schrödinger equa-

tion, yields a set of coupled differential equations. The number of such coupled equations

to be solved can quickly grow to outperform nowadays computer capacities, depending

on the number of internal states that need to be included. For numerical purpose, these

equations are truncated to a finite number through different theoretical assumptions, to

ensure their numerical tractability.

Neutron transfer channels as well as nuclear deformation parameters such as quadrupole

β2 and hexadecapole β4 parameters, play an important role in the enhancement of fusion

at energies below the Coulomb barrier. These parameters define the intrinsic coordinates

of the nucleus and they have been reported to significantly affect fusion cross sections [21,

24, 27, 42, 55, 57, 60, 63, 67, 70, 71, 75, 76]. For instance in Ref.[27, 55, 62], it was found

that the β2 deformation parameter enhances the fusion cross section at lower incident

energies, in fusion reactions involving 40,48Ca projectiles. The effects of β2 deformation

was combined with the hexadecapole β4 deformation to clarify the importance of the
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latter on fusion cross section. By analysing fusion barrier distributions of the 28Si +92 Zr

reaction [63], the authors concluded that the fusion process is sensitive to β4 deformation

parameter.

It has been shown that a positive Q-value and multi-neutron transfer influence the trans-

fer channel and enhance fusion cross section at near and below-barrier energies as shown

in Refs.[19, 20, 21, 42, 65, 66, 67, 70, 71, 69, 77]. Nuclei with excess neutrons would be

expected to induce higher fusion probabilities due to neutron transfer. However, in some

cases, the neutron excess itself does not lead to fusion enhancement [67]. This result

deserves further investigation, in order to better elucidate under which circumstances this

occurs other than a negative Q-value. This would also serve to address the following

question. How does the neutron transfer depend on the structure of target nuclei?

In this dissertation, we perform a systematic study of fusion cross sections in reactions

involving light and heavy nuclei. The main objectives are: (i) to investigate the interplay

of the quadrupole β2 and hexadecapole β4 target deformation parameters. Here we aim

to study in more detail how the effect of these parameters changes with the projectile and

target masses; (ii) to investigate the role multi-neutron transfer channels. To this end,

we will separately analyse one-neutron, two-neutron and three-neutron transfer channels.

The results are mostly focused on the rotational coupling calculations and will feature

some cases where vibrational coupling is considered.
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Chapter 2

Coupled channels formalism for

fusion reactions

2.1 Coupled Channels equations

When two nuclei interact, many phenomena can take place. For examples, nuclear elastic

and inelastic scattering, fission reaction and fusion. In other instances after interaction,

the two nuclei can emerge in the exit channel unchanged, in which case the entrance

channel is the same as the exit one. This is what happens in the elastic scattering.

Another possibility is that after interaction, the two nuclei may excite, and exchange

particles. In this work, we are particularly interested in fusion reactions, where the

interacting nuclei fuse to form one compound nucleus. For the sake of simplicity, we only

present a theoretical description of the case when only the target nucleus is excited. The

relative motion of the two interacting nuclei is described by the Schrödinger equation of

the form

[H(r, ξ)− E]ψMJ (r, ξ) = 0, (2.1)

where E, is the total energy (the projectile incident energy), and ψMJ (r, ξ), the wave func-

tion. (Here J is the total angular momentum given by J = `+ I, where, ` is the angular

orbital momentum . I is the target spin and M is the z-projection of J).

ξ represents the target intrinsic coordinates and r is the radial coordinates for the rela-

tive motion of fusing nuclei. The total Hamiltonian H(r, ξ) shows the coupling between

4



projectile-target relative motion and the internal structure of the nuclei and is defined as

H(r, ξ) = − h̄
2

2µ
∇2 + V (r) +H0(ξ) + Vcp(r, ξ), (2.2)

where µ = mpmt/(mp + mt) is the projectile-target reduced mass, with mp and mt the

projectile and target atomic masses, respectively. ∇2 is the usual nabla operator. V (r) is

the interacting potential consisting of both Coulomb and nuclear components. Vcp(r, ξ)

is the coupling potential that couples different states of the excited nucleus. H0(ξ) is the

internal Hamiltonian whose eigenstates φαImI
(ξ) are the internal states that satisfy the

Schrödinger equation

H0(ξ)φαImI
(ξ) = εαIφαImI

(ξ), (2.3)

where εαI are excitation energies, with α a set of relevant quantum numbers that describe

an internal state, mI , the z-projection the spin I. Once the internal states are constructed,

the wave function in Eq.(2.1) is obtained as follows:

ψMJ (r, ξ) =
∑
`,I

uJ`I(r)

r

∑
m`,mI

〈`m`ImI |JM〉Y m`
` (r̂)φαImI

(ξ), (2.4)

where uJ`I(r), is the radial part of the wave function, 〈`m`ImI |JM〉 are the Clebsh-Gordon

coefficients [59] , Y m`
` (r̂), the usual spherical harmonics associated with the coordinate r,

with m` the z-projection of `, and r̂ is the solid angle in the direction of r.

The substitution of expansion (2.4) into the Schrödinger equation (2.1) yields the following

set of coupled differential equations[
− h̄

2

2µ

d2

dr2
+
`(`+ 1)h̄2

2µr2
+ V (r)− E + εαI

]
uJγ (r) =

∑
γ 6=γ′

V J
γγ′(r)u

J
γ′(r), (2.5)

where Vγγ′(r), are the coupling matrix elements, that couple different internal states

through the coupling potential Vcp, with γ ≡ (α, `, I) a set of relevant quantum numbers,

describing a channel, and it is given by

V J
γγ′(r) = 〈Yγ(r̂, ξ)|Vcp(r, ξ)|Yγ′(r, ξ)〉, (2.6)

where the channel wave function Yγ(r̂, ξ), is defined as

Yγ(r, ξ) =
∑
m`,mI

〈`m`ImI |JM〉Y m`
` (r̂)φαImI

(ξ)〉. (2.7)
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To evaluate the coupling matrix elements, we start with the expansion of the coupling

potential i.e

Vcp(r, ξ) =
∞∑
λ=0

fλ(r)Y
m`
` (r̂) · Tλ(ξ) (2.8)

where fλ(r) are potential form factors, and Tλ(ξ) are the spherical tensors constructed

from the intrinsic coordinates. Using the Wigner-Eckart theorem [2, 58] and substituting

Eq.(2.7), into Eq.(2.6), the coupling matrix elements reduce to

V J
γγ′(r) =

∑
λ

(−)I−I
′+`′+Jfλ(r)〈`||Y m`

` ||`′〉〈αI||Tλ||α′I ′〉

×
√

(2`+ 1)(2I + 1)

 I ′ `′ J

` I λ

 , (2.9)

where { ...} are Racah coefficients [58], 〈..||..〉, are reduced matrices, with

〈`||Y`||`′〉 =

√
(2`+ 1)(2λ+ 1)(2`′ + 1)

4π

 ` λ `′

0 0 0

 , (2.10)

where (...), are 3j coefficients. When the target nucleus is deformed, the radius R0 is

transformed to R0 → R0 + Ô, where R0 represents the spherical part. The Ô is the

coupling Hamiltonian operator for rotational and vibrational couplings given by

Ôrot = β2RTY2(θ) + β4RTY4(θ) (2.11)

Ôvib =
βλ√
4π
RT

(
a†λ0 + aλ0

)
, (2.12)

respectively. θ is the orientation angle and βλ are deformation parameters of multi polarity

λ. a†λo and aλ0 are phonon creators and annihilators respectively. Therefore, for the

rotational couplings, the nuclear matrix elements of the operator Ôrot between states

〈γ| = 〈I0| and |γ′〉 = |I ′0〉 are given by

Ôrot(γ, γ
′) = 〈I0|Orot|I ′0〉

= RT [β2〈I0|Y2|I ′0〉+ β4〈I0|Y4|I ′0〉]

=

√
5(2I + 1)(2I ′ + 1)

4π
β2RT

 I 2 I ′

0 0 0


2

+

√
5(2I + 1)(2I ′ + 1)

4π
β4RT

 I 4 I ′

0 0 0


2

(2.13)
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On the other hand the nuclear matrix elements for the vibrational coupling between the

γ and γ′-phonon states 〈γ| and |γ′〉, are given by

Ôvib(γ, γ
′) =

βλ√
4π
RT

(√
γ′δγ,γ′−1 +

√
γδγ,γ′+1

)
. (2.14)

For the Coulomb interaction, the rotational and vibrational operators are given by

Ôrot = ZPZT e
2

[
3R2

T

7r3
β2Y2(θ) +

3R4
T

11r5
β4Y4(θ)

]
(2.15)

Ôvib =
βλ√
4π

3

2λ+ 3

Rλ
T

rλ+1
ZPZT e

2 (2.16)

and the corresponding matrix elements are defined as

Ôrot(γ, γ
′) =

3ZPZT e
2

7

R2
T

r3
β2

√
5(2I + 1)(2I ′ + 1)

4π

 I 2 I ′

0 0 0


2

+
3ZPZT e

2

11

R2
T

r5
β4

√
9(2I + 1)(2I ′ + 1)

4π

 I 4 I ′

0 0 0


2

, (2.17)

and

Ôvib(γ, γ′) =
βλ√
4π
ZPZT e

2 3

2λ+ 3

Rλ
T

rλ+1

(√
γ′δγ,γ′−1 +

√
γδγ,γ′+1

)
. (2.18)

The nuclear and Coulomb coupling matrix elements can be obtained from the operator

Ô. The nuclear coupling matrix elements are given by

V
(N)
γγ′ (r, Ô) = 〈γ|VN(r, Ô)|γ′〉 − VN(r)δγγ′ , (2.19)

where the nuclear coupling potential VN(r, Ô) is given by

VN(r, Ô) =
−V0

1 + exp[(r −R0 − Ô)/a]
(2.20)

with V0 and a given posteriori by Eqs. (2.26) and (2.27) respectively. The vibration of

the target nucleus deforms the potential interactions between the colliding nuclei. The

nuclear interaction is assumed to be a function of the separation distance between the

projectile and target surfaces, and it is given by

V (N)(r, α`µ) = VN(r)−RT
dVN(r)

dr

∑
`µ

α`µY
m`
` (r̂), (2.21)

where α`µ is the surface coordinates of the vibrating target nucleus. The Coulomb poten-

tial between spherical projectile and the vibrating target is given by

VC(r) =
∫
dr′ZTZP e

2

|r − r′|ρT (r′), (2.22)

where ρT is the charge density of the target nucleus.
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In Ref [55], the incoming wave boundary conditions (IWBC) are used to solve the cou-

pled equations. According to IWBC, the incoming waves are recorded at r = rabs, the

absorption radius and the outgoing waves are at r →∞ for all channels except the entry

channel. The following equations show the boundary conditions for when r ≤ rabs and

for r →∞ where the conditions are defined by the radial part uJγ (r)

uJγ (r) ∼
√√√√ kγ
kγ′(r)

T Jγγ′ exp
(
−i
∫ r

rabs

kγ(r
′)dr′

)
, r ≤ rabs

→ H
(−)
`γ (kγr)δγγ′ −

√√√√ kγ
kγ′
SJγγ′H(+)

`γ (kγr), r →∞ (2.23)

where H
(−)
`γ (kγr) and H

(+)
`γ (kγr) are the incoming and outgoing Coulomb Hankel functions

respectively. γ describes the set of quantum numbers at the entry channel and γ′ the exit

channel. rabs is the absorption radius and T Jγγ′ are the transmission coefficients. Sγγ′ is

the scattering S matrix[15]. kγ(r) is the local wave number for channel γ and it is given

by

kγ(r) =

√√√√2µ

h̄2

(
E − εγ −

`γ(`γ + 1)h̄2

2µr2
− VN(r)− VC(r)− Vγγ′(r)

)
(2.24)

where VC(r) = ZTZP e
2

r
is the Coulomb potential and VN(r) is the bare nuclear potential

defined by the Wood-Saxon model as

VN(r) =
−V0

1 + exp[(r −R0)/a]
, (2.25)

with R0 = RP +RT , for Rx = r0A
(1/3)
x fm(x = P, T ). V0 the potential depth given by

V0 = 16πηµ× a, (2.26)

where µ is the projectile-target reduced mass. η is defined as

η = 0.95
[
1− 1.81

(
NP − ZP
AP

)(
NT − ZT
AT

)]
MeV/fm2

and a is the surface diffuseness parameter given by

a =

 1

1.17
[
1 + 0.53

(
A
−1/3
P + A

−1/3
T

)]
 fm. (2.27)

At r = rmax, the obtained wave function of the γ′ channel Xγγ′(r) is given by

Xγγ′(r) = Aγγ′H
(−)
`γ (kγrmax) +Bγγ′H

(+)
`γ (kγrmax), (2.28)

8



where the coefficients Aγγ′ and Bγγ′ are obtained by matching the ratio of wave function

at rmax−h and rmax +h.The coupled channel equation is then given by linear combination

of Xγγ′(r) as

Ψγ′(r) =
∑
γ

Tγγ′Xγγ′(r). (2.29)

At r = rmax Eq.(2.29) becomes

Ψγ′(rmax) =
∑
γ

Tγ(Aγγ′H(−)
`γ (kγrmax) +Bγγ′H

(+)
`γ (kγrmax)), (2.30)

The inclusive penetrability of the Coulomb potential barrier for r ≤ rabs is given by

PJ(E) =
∑
γ

kγ(rabs)

k0

|T Jγ |2 (2.31)

and the cross-section of fusion can be calculated as

σF (E) =
π

k2

∑
J

(2J + 1)PJ(E), (2.32)

where k2 = 2µEcm

h̄2
, µ is the reduced mass and Ecm is the incident energy.
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Chapter 3

Fusion cross sections of 6,7Li-induced

reactions

In this chapter we study fusion cross sections of different reactions induced by 6,7Li pro-

jectiles, for target masses ranging from light to heavy. Such reactions are widely investi-

gated in the literature from both theoretical and experimental aspects (see for example

Refs.[30, 31, 33, 34, 35, 36, 38, 40, 41, 42] and references therein). We start with the

simple case of spherical nuclei (which is a one-dimensional potential model), where the

convergence of the fusion cross sections for radial coordinates is analysed considering var-

ious target masses. The case where the targets are deformed will be also considered in

order to analyse the effect of such deformation on the fusion cross section.

3.1 Case of spherical projectile and target nuclei

We first consider spherical colliding nuclei, meaning that no deformations nor internal

structures of the interacting partners are taken into account. The radial coordinate be-

tween the centre of mass of the interacting particles is the only variable. We start with

the description of the interacting potentials.

3.1.1 Description of fusion potentials

As mentioned before, the projectile-target fusion potential V (r) is a sum of a nuclear term

[VN(r)] and [VC(r)] a Coulomb term, [V (r) = VN(r) + VC(r)]. In order to numerically

10



solve Equation (2.5), the parameters of this potential are needed as inputs. In this work,

we consider a Woods-Saxon shape for the nuclear part, whose parameters , i.e, the depth

V0, radius r0, and diffuseness a0 are summarized in Table 3.1. The nuclear radius R0, is

given by R0 = r0(A
1/3
P +A

1/3
T ), where AP and AT are projectile and target mass numbers,

respectively. As indicated elsewhere, this potential is real due to the adopted incoming

wave boundary condition. The references where these parameters were taken from are

also indicated in this table.Apart from being induced by light loosely-bound projectiles,

the choice of these reactions is also motivated by the availability of experimental data.

Table 3.1: Parameters V0, r0, and a0 of the Wood-Saxon potential, for the different

reactions considered. The reduced radii r0 are converted to absolute ones as The nuclear

radius is given by R0 = r0(A
1/3
P + A

1/3
T ).

6Li 7Li

Nucleus V0(MeV) r0(fm) a0 (fm) Ref V0(MeV) r0(fm) a0 (fm) Ref

28Si 36.64 1.163 0.583 [41] 38.27 1.164 0.589 [36]

64Zn 45.81 1.174 0.614 [35] 42.79 1.170 0.606 [35]

152Sm 46.08 1.175 0.614 [31] 45.81 1.174 0.614 [30]

198Pt 47.37 1.176 0.618 [40] 45.81 1.174 0.614 [34]

209Bi 47.63 1.177 0.619 [38] 47.49 1.177 0.626 [33]

The different potentials, VN(r), VC(r) and V (r) are plotted in Fig. 3.1. As one would

expect, we notice in this figure that the nuclear potential being short-ranged, quickly

vanishes at r ≥ R0. In this case, the total potential has only its Coulomb component

in the asymptotic region [V (r) → VC(r)]. We also observe that the combination of

the attractive nature of the nuclear potential and the repulsive nature of the Coulomb

potential create a pocket in the total potential, which represents the minimum of the

function V(r), where this potential is most attractive. This attraction is responsible for

the fusion reaction. In other words, two interacting systems can sit in this pocket for

a long time, thus resulting in a fusion of both to form a compound system. The fusion

process stops if this pocket disappears. This occurs for higher angular momenta when the

sum of the Coulomb and centrifugal potentials override the attractive effect of the nuclear

potential. .
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Figure 3.1: Plots of nuclear, VN(r), Coulomb VC(r), and total potentials V (r), as functions

of the radial distance (r), for different interacting systems.

A strong look at Fig.3.1 shows that the function V (r) drops to its minimum, rises again to

reach a relative maximum around R0, before it drops once. The maximum value to which

it rises represents the Coulomb barrier height (VB), and the value of r which corresponds

to VB, represents the barrier radius (RB).

VB and RB are very important parameters in fusion reactions. In fact, based on this

barrier, fusion reactions are classified in three types, depending on the incident energy E,

below the barrier fusion (E < VB), around the barrier fusion (E = VB), and above the

barrier fusion (E > VB). Fusion dynamics below and above the Coulomb barrier are quite

different. Although simpler theoretical approach fairly describe well the experimental data

for incident energy above the Coulomb barrier, this has been shown not to be the case

for energies below this barrier.

3.1.2 Convergence of fusion cross sections

In order to display the importance of the Coulomb barrier radius RB in fusion reactions,

we start by analysing the convergence of fusion cross sections as functions of the centre-of-

mass incident energy with respect to the cut-off value of the radial numerical integration
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parameter rmax. The results obtained for 6,7Li projectiles are given in Fig.3.2. The value

of the Coulomb barrier radius is indicated in each panel of these figures. As indicated in

the previous chapter, the numerical calculations were carried out with the computer code

CCFULL [45].

An inspection of each panel in these figures shows a rapid convergence of the fusion cross

sections beyond RB, for all reactions, since the contribution of rmax > RB is practically

negligible and this is independent of the target mass. These figures clearly show how the

fusion cross section diminishes as interacting particles move away from each other towards

the peripheral region. A numerical advantage of this analysis is that there is no benefit

from an integration well beyond RB ( rmax � RB). Also, it is clear that values of rmax

slightly lower than RB are not optimum to guarantee the convergence of the results. On

the other hand, these figures indicate that values of r much larger than RB are not needed

to guarantee converged results.
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Figure 3.2: Convergence of the fusion cross sections as functions of the center-of-mass

incident energy(Ec.m), with respect to the numerical integration rmax, for 6,7Li projectiles

14



3.1.3 Comparison with the experimental data

In this section, we discuss the comparison of our theoretical fusion cross sections with the

experimental data. Notice that a good convergence of the fusion cross sections obtained

in Fig.3.2, does not necessarily imply that the calculations will provide a good description

the experimental data. This comparison is displayed in Fig.3.3. The experimental data

were obtained from Refs.[30, 31, 33, 34, 35, 36, 38, 40, 41], which are also repeated in the

caption for each figure. Looking at these figures, we notice an excellent agreement between

our theoretical calculations and the experimental data, regardless of the target mass.

However, we notice a discrepancy for 152Sm [panels (c) and (c’)] where the calculations

tend to overestimate the data. We recall that in these calculations, no target or projectile

excitations were taken into account. It is therefore interesting to find that a simple one-

dimensional potential model fits well the experimental data even at incident energies

below the Coulomb barrier.
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Figure 3.3: Comparison of the theoretical calculations with experimental data for 6Li

projectile. The data were obtained from [41], for 28Si, [35], for 64Zn, [31], for 152Sm, [40],

for 198Pt and [38], for 209Bi target nuclei. The data were obtained from [36], for 28Si, [35],

for 64Zn, [30], for 152Sm, [34], for 198Pt and [33], for 209Bi target nuclei.

3.2 Case of a deformed target

Given an excellent agreement between the theoretical calculations and the experimental

data in Fig.3.3, one would wonder whether any deformation of the interacting partners

would have any effects on the fusion cross sections. The targets considered in these figures
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are known to be deformed, hence one would expect some effect, particularly for incident

energies below the Coulomb barrier. In this work we only consider quadrupole (β2) and

hexadecapole (β4) deformations, since higher-order deformations have not been found to

account for any significant effect on fusion cross sections [12]. The different deformation

parameters, β2 and β4, obtained from Ref.[3], are summarized in Table 3.2.

Table 3.2: Potential deformation parameters of target nuclei under investigation obtained

from Ref.[3].

28Si 64Zn 152Sm 198Pt 209Bi

β2 -0.363 0.185 0.237 -0.115 -0.011

β4 0.187 -0.024 0.097 -0.018 0.00

ε2 -0.37 0.17 0.22 -0.11 -0.01

ε4 -0.12 0.03 -0.06 0.02 0.00

We notice in this table that both 28Si and 64Zn have one negative and one positive de-

formation parameter, both parameters are positive for 152Sm, they are both negative for

198Pt, and β40 = 0 for 209Bi. In order to analyse the effect of these parameters on the

fusion cross section, we will consider the case where each parameter is considered sepa-

rately, and the case where they are both included in the calculations at the same time.

However, before we consider the fusion cross section, we start with the potential V (r).
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Figure 3.4: Plots of deformed total potential for different interacting systems. ”Sph”

represent a spherical target, i.e, when no deformations are included, ”T Def” stands for

target deformation, when both β2 and β4 are included simultaneously.

The effect of a target deformation is clearly noticed in Fig.3.4. We observe that a negative

deformation parameter reduces the Coulomb barrier, whereas a positive one increases the

Coulomb barrier. It is also obvious that the larger parameter corresponds to the most

significant effect. Notice that lowering the Coulomb barrier results in an increase of

the fusion cross section. In this case, one would then expect the negative deformation

parameter to enhance the fusion cross section, while a positive one would produce a

suppression of the fusion cross section. However, since we calculated potential only for

θ = π, it is not guaranteed that the fusion cross section will exhibit exactly the same

pattern since it is calculated at different angles and not only only at θ = π.

In Fig.3.5, the fusion cross sections calculated separately for β2 and β4, and when both

parameters are included simultaneously are shown. The spherical case (i.e., when β20 =

β40 = 0) is also shown as in Fig.3.3. Observing this figure, we notice that the fusion

cross sections calculated for both parameters separately are the same. However, when

both parameters are combined, they suppress the fusion cross section for 28Si [panels (a)

and (a’)] and for 152Sm [panels (c) and (c’)] targets. They rather enhance the fusion cross
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sections for 64Zn target at incident energies around and below the Coulomb barrier [panels

(b) and (b’)], whereas they have a negligible effect for 198Pt target [panels (d) and (d’)].

Another interesting observation is that now the experimental data are well fitted by the

theoretical calculations in panels (c) and (c’), contrary to panels (c) and (c’) of Fig.3.5.

It follows that to better describe the experimental data for 152Sm target, one needs to

consider its deformation.

In conclusion, in this chapter we have considered fusion reactions of light loosely-bound

projectiles on different target masses. A simple one-dimensional potential model provides

a better fit of the experimental data, except for 152Sm target where this target needs to

be deformed in order to better fit the data. A study of the convergence of the fusion cross

section in terms of the maximum radial numerical integration parameter rmax, shows a

rapid convergence of the calculations for values of rmax around the Coulomb barrier radius,

indicating that larger values than the barrier radius are irrelevant in the calculations.

In order to get more insight into these results, in the next chapter, we consider fusion

reactions induced by 40Ca projectile.
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Figure 3.5: Fusion cross sections of 6,7Li projectiles on different target masses. For 6Li

projectile, experimental data were taken from [41] (28Si), [35] (64Zn), 152Sm[31], 198Pt[40]

and 209Bi[38]. For 7Li projectile, they were taken from 28Si [36], 64Zn[35], 152Sm[30],

198Pt[34] and 209Bi[33].
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Chapter 4

Fusion cross sections of 40Ca-induced

reactions

In this chapter we discuss fusion cross sections induced by 40Ca the projectile. As target

nuclei, we consider 62Ni,64Ni, 96Zr, 194Pt, and 238U. The interaction of this projectile with

the last target can be regarded as leading to a formation of superheavy elements, that

is 40
20Ca + 238

92 U → 112X
278. As in the previous chapter where light projectiles 6,7Li were

considered, we adopt the same approach, and start with the simple case of one-dimension

potential model, where the interacting partners are considered to be inert, meaning that

no projectile and target excitations are considered (Section 4.1). We will when analyse

the effect of the target quadrupole β2 and hexadecapole β4 deformations on the fusion

cross sections (Section 4.2). Analyzing the effects of these two parameters in the previous

chapter, we found that for the 152Sm target where both β2 and β4 are positive, their

effect was observed to suppress the fusion cross section, mainly at energies below and

around the Coulomb barrier. On the other hand, for 28Si and 64Zn, where one of these

parameters is negative, we found that their effect is to enhance the fusion cross section in

the same incident energy range. In this chapter, we will also investigate the effect of these

parameters on fusion cross section in 40Ca-induced reactions [18, 20, 21, 22, 24]. In Section

4.4, we will consider the effect of neutron transfer channels on the fusion cross section.

Again, the choice of these reactions are informed by the availability of the experimental

data.
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4.1 Case of spherical projectile and target nuclei

As the nucleus-nucleus potential is the main input in our calculations, for each target,

we summarize the parameters V0, r0 and a0 of the nuclear potential in Table 4.1. The

references where these parameters were obtained are also indicated in this table.

Table 4.1: Parameters V0, r0, and a0 of the 40Ca-target nuclear potentials. The absolute

radii are obtained from the reduced one (r0) as R0 = r0(A1/3
p + A

1/3
t ).

Target V0(MeV) r0(fm) a0(fm) Ref

62Ni 68.283 1.176 0.663 [18]

64Ni 68.699 1.176 0.664 [20]

96Zr 73.979 1.177 0.673 [21]

194Pt 82.897 1.180 0.686 [22]

238U 85.402 1.181 0.689 [24]

4.1.1 Convergence analysis

The different fusion cross sections calculated within the one-dimensional potential model

are shown in Fig.4.2. The value of the Coulomb barrier radius is indicated in each panel.

Inspecting this figure, we notice that the fusion cross sections convergence rapidly for

rmax ≥ RB, similar those in Fig.3.2, for light projectiles (6,7Li)-induced reactions. For

example, one can quickly deduce that for 62Ni target, the convergence is obtained for

rmax = RB +0.085RB, for rmax = RB +0.114RB (96Zr target) and for rmax = RB +0.177RB

(238U). Again, it follows that higher values of rmax well beyond RB are not necessary

in order to achieve the convergence of fusion cross sections even in 40Ca-induced fusion

reactions.

The convergence of the fusion cross section means that for the maximum value of rrmax

where the convergence is obtained, the Coulomb and centrifugal barriers have already

canceled the effect of the nuclear potential. In other words, there is no more Coulomb

pocket that is responsible for fusion. In order to verify this, we first define the angular
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momentum (`) from a classical point of view as

` = kr ⇒ `max = krmax, (4.1)

where k =
√

2µEc.m./h̄
2 has been defined as the wavenumber. In this case, the centrifugal

barrier corresponding to `max is given by

Vcent(r) =
`max(`max + 1)

2µr2
. (4.2)

The values of rmax, k, and `max are given in Table 4.2. Obviously in this table, we notice

that these parameters increase with the target mass. In Fig.4.1, we plot the potential

V (r) = VN(r)+VC(r)+Vcent(r), for different values of the orbital angular momentum (`),

only for 64Zn and 238U. Indeed, one sees in this figure that the Coulomb pocket, which

is responsible for the fusion process has already disappeared for ` = 100, even for 238U

target, which implies a negligible contribution to the fusion cross section beyond `max, as

demostrated in Fig.4.2.

Table 4.2: Values of the maximum integration parameter (rmax), wavenumber (k), and

maximum angular momentum (`max), obtained from Eq.(4.1), for the different targets

considered. The wave-number was calculated at Ec.m. = VB.

Target 62Ni 64Ni 96Zr 194Pt 238U

rmax 11.0 11.0 12.0 14.0 14.0

k 9.61 9.89 12.02 17.36 19.1

`max 106 109 144 208 229

ℓ= 100
ℓ= 50
ℓ= 20
ℓ= 10
ℓ= 0

r(fm)

V
(M

eV
)

40Ca+64 Zn

16141210864

300

250

200

150

100

50

ℓ= 100
ℓ= 50
ℓ= 20
ℓ= 10
ℓ= 0

r(fm)

V
(M

eV
)

238U

181614121086

300

280

260

240

220

200

Figure 4.1: Effect of angular momentum ` on the Coulomb pocket.
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Figure 4.2: rmax convergence for heavy-heavy fusion reaction.

4.1.2 Comparison with experimental data

In the previous chapter, we have seen that the target deformations are not that needed if

one is interested in fitting the experimental data for fusion reactions induced by light 6,7Li

projectiles, except in the case of 6,7Li+152Sm reactions, where both β2 and β4 deformations

parameters are crucial in fitting the data. In the case of 40Ca, we do not expect the simple

one-dimensional potential model to fit the data, considering the large mass of this nucleus

compared to that of 6,7Li nuclei. To show the limitation of this model in this case, we

compare, in Fig.4.3, our results with the experimental data. The data were obtained

from [18] (62Ni) , [20] (64Ni) ,[21] (96Zr) ,[22] (194Pt) , and [24] (238U). Observing this

figure, it follows as expected, that the theoretical calculations are in agreement or tend

to agree with the data at incident energies above the Coulomb barrier. It is well known

that in this incident energy region, the internal structures of the interacting systems play

a minor role in the fusion process. This is due to small effects of the Coulomb barrier,

owing to a weak Coulomb repulsion, resulting in a large amount of flux tunnelling through

the barrier to account for the fusion cross section. However, below the Coulomb barrier,

where the Coulomb repulsive is stronger, a sharp disagreement is observed, where the

theoretical calculations largely underestimate the experimental data, and this appears
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Figure 4.3: Comparison of the fusion experimental data with the one-dimensional poten-

tial model, in reactions induced by 40Ca projectile. The experimental data taken from

Ref.[18] for 62Ni, [20] for 64Ni, [21] for 96Zr, [22] for 194Pt and [24] for 238U.

to deepen as the target mass increases. This substantial suppression of the fusion cross

section is therefore attributed to a strong Coulomb repulsion and large Coulomb barrier

compared to the incident energy, which significantly reduces the flux that tunnels through

the barrier. This means that reaction mechanisms or channels that can contribute to lower

the Coulomb barrier in order to enhance the fusion cross sections are needed to describe

the experimental data. In the next section, we discuss different reaction mechanisms that

would enhance the fusion cross section at energies below the Coulomb barrier, starting

with the deformation of the target.

4.2 Deformation of the target nucleus

In this section, we analyse the effect the of the target deformation on the fusion cross

section. In Fig.3.5, we have seen that the target deformation parameters β2 and β4, can

either suppress or enhance the fusion cross section. As before, we start with the analysis

of the effect of these parameters on the interacting potential. The deformation parameters

for each target were taken from Ref.[3], and are summarised in Table.4.3. According to
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[3], for 40Ca isotope β2=β4=0.0

Table 4.3: Deformation parameters and associated energies for 62,64Ni,96 Zr,194 Pt and 238U

obtained from Ref [3].

62Ni 64Ni 96Zr 194Pt 238U

β2 0.107 -0.094 0.240 0.130 0.236

β4 -0.020 -0.008 0.011 -0.055 0.098

ε2 0.10 -0.09 0.22 -0.11 0.22

ε4 0.02 0.01 0.01 0.02 -0.06

Fig.4.4 shows the deformed potential V (r), for each target. In this figure, the label

”Sph” represents the case of spherical target, i.e., where β2 = β4 = 0. β2, represent the

case where only β2 parameter is included in the calculations, β4 shows data where only

β4 parameter is included and label ”T Def” represents the case where both β2 and β4

parameters are included in the calculation. A closer look at this figure reveals that the

effect of β2 is to increase the Coulomb barrier height except for 64Ni target, where it

has a negative value. It is clear from this figure that a negative value of the deformation

parameter lowers the Coulomb barrier height. A further observation of this figure shows

an important effect when both parameters are combined in the calculations, particularly

for heavy targets. We notice that the inclusion of both parameters favours the effect of

the parameter with a higher numerical value.i.e, for the reaction including 40Ca +194 Pt

(panel d), β2 =0.13 and β4=-0.055 therefore ”T-Def” will take the effect of the positive

β2. We need to mention that we only considered the case where θ=π.

26



T Def
β40
β20

Sph

r(fm)

V
(M

eV
)

(a)

40Ca+62 Ni

201816141210864

80
75
70
65
60
55
50
45

T Def
β40
β20

Sph

r(fm)

V
(M

eV
)

(b)

40Ca+64 Ni

201816141210864

80
75
70
65
60
55
50
45
40

T Def
β40
β20

Sph

r(fm)

V
(M

eV
)

(c)

40Ca+96 Zr

201816141210864

120

110

100

90

80

70

T Def
β40
β20

Sph

r(fm)

V
(M

eV
)

(d)

40Ca+194 Pt

201816141210864

200

190

180

170

160

150

140

T Def
β40
β20

Sph

r(fm)

V
(M

eV
)

(e)

40Ca+238 U

181614121086

250
240
230
220
210
200
190
180

Figure 4.4: Deformed total potential for heavy-heavy collision systems.’Sph’ corresponds

to spherical target where no deformations are included. The label ’T Def’ is the deformed

target where both β2 and β4 have been included and the labels β2 and β4 corresponds to

calculations where only β2/β4 deformations are included.

Having analyzed the effect of the deformation parameters on the Coulomb barrier height,

let us now investigate how they affect the fusion cross sections. To this end, we plot in

Fig.4.5, the fusion cross sections corresponding to separate β2 and β4 parameters, as well

as when they are combined. The results of Fig.4.3 are repeated for a better comparison.

Inspecting this figure, we notice that for Nickel targets [panels (a) and (b)], the target

deformations have practical no effect on the fusion cross section as all different curves

are hardly distinguishable. However, a clear enhancement of the fusion cross section due

to these parameters is observed in panels (c), (d) and (e). It is further observed that

the effect of β2 is approximately similar to that of both parameters combined, whereas

the effect of β4 alone can be regarded as negligible since it is similar to the spherical

case. However, one notice that while the target deformations effect play an important

role, they still do not provide a better description of the experimental data at incident

energies below the Coulomb barrier. It is therefore clear that other reaction mechanisms

are needed besides these deformations in this incident energy region.

27



V0=95.0
T Def

β40
β20

Sph
Exp

Ec.m (MeV)

σ F
(m

b)

(a) 40Ca+62 Ni

110100908070

104

103

102

101

100

V0=95.0
T Def

β40
β20

Sph
Exp

Ec.m (MeV)

σ F
(m

b)

(b) 40Ca+64 Ni

9590858075706560

104

103

102

101

100

10−1

10−2

V0=126.0
T Def

β40

β20

Sph
Exp

Ec.m (MeV)

σ F
(m

b)

(c) 40Ca+96 Zr

11010510095908580

104

103

102

101

100

10−1

10−2

10−3

10−4

V0=113.0
T Def

β40
β20

Sph
Exp

Ec.m (MeV)

σ F
(m

b)
(d) 40Ca+194 Pt

200190180170160150

104

103

102

101

100

10−1

10−2

V0=120.0
T Def

β40
β20

Sph
Exp

Ec.m (MeV)

σ F
(m

b)

(e) 40Ca+238 U

240220200180

104

103

102

101

100

10−1

10−2

Figure 4.5: Fusion cross sections in reactions induced by 40Ca projectile, obtained when

target deformations are included in the calculations.The experimental data taken Ref.[18]

for 62Ni, [20] for 64Ni, [21] for 96Zr, [22] for 194Pt and [24] for 238U.

Notice that the potential parameters in Table.4.1, used to calculate the fusion cross sec-

tions are independent of the incident energy, meaning that they are the same below and

above the Coulomb barrier. An energy dependent Woods-Saxon potential (EDWSP),

where the potential parameters are dependent on the incident energy has been shown to

better describe the fusion experimental data along with the target excitations (see for

example Refs.[20, 55, 42]). In order to test whether this approach could improve the

agreement between our calculations and the experimental data, we adjusted the depth

V0, while other parameters R0 and a0 remained unchanged. Looking at this figure, it

is remarkable to how this procedure agrees perfectly with the experimental data, even

for heavy target nuclei. In panels (a) and (b), we observe that the value of V0 that fits

the data is independent of the target mass for isotopes of the same nucleus. It could be

interesting to consider more isotopes in this regard. From panels (c)-(e), it follows that

the value of V0 is not proportional to the target mass. For 96Zr , V0 = 126 MeV, 194Pt it is

V0 = 113 MeV and 120 MeV for 238U target. Therefore, it could be equally interesting to

investigate what makes V0 increase or decreases in this case. This procedure of adjusting

V0 was also adopted in Ref.[53], for nuclear astrophysical reactions. It follows that the
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depth of the Woods-Saxon potential plays an crucial role at incident energies below the

Coulomb barrier.

4.3 Effects of vibration

Another channel to consider in the nuclear intrinsic state is the vibrational band. Figure.4.6

displays the vibrational effects on fusion in comparison to the rotational effects shown in

figure.4.5. The deformation parameters for vibrational coupling are listed in Table.4.4.

Vibrational coupling enhances fusion in Nickel and Platinum targets. This may be due to

the group characteristics of the nuclei or the higher values of their vibrational parameters.

For 96Zr and 238U, the vibrational modes of the targets hinders fusion when compared to

the rotational effects. We notice that the 2 systems have their deformation parameters

h̄ω or βλ at a value less than 0.1. Therefore, we can link the fusion hindrance in the target

vibrational band to the values of h̄ω and βλ. In the next section we analyse effects of the

nucleon transfer channel.

Table 4.4: Deformation parameters used in vibrational coupling for 62,64Ni,96 Zr,194 Pt and

238U targets.

62Ni 64Ni 96Zr 194Pt 238U

h̄ω 1.1729 1.3458 1.7505 0.3285 0.0449

Ref [18] [20] [21] [22] [24]
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Figure 4.6: Effects of target vibration on fusion compared to rotational deformation and

inert data.

4.4 Multi-neutron transfer effects

In the previous sections, we have discussed in detail the effect of target excitations on the

fusion cross section. In this section, we focus our attention on the multi-neutron transfer

effect. As we have already indicated in the introduction, this effect this been proven to

be important on fusion cross section, and mainly depends on the Q-value of the reaction.

We follow Refs.[42], and define the transfer channel as

Ftr = Ft
dVN
dr

, (4.3)

where Ft is a coupling strength which is adjusted to fit the experimental data and dVN/dr

is the first derivative of the nuclear potential. In this work, Ft has been set to a constant

value of 0.5 as in Ref. [42]. In Table 4.5 we summarize the Q-values for +1n, +2n and

+3n neutron transfers, for each reaction. We notice in this table that the Q-value is

negative for +1n and +3n transfers for 40Ca+62Ni reaction, and also for +1n transfer for

40Ca +64 Ni. Elsewhere, the Q-value is positive. Fig.4.7, shows the fusion cross sections

for +1n, +2n and +3n neutron transfer channels. Observing this figure, it resorts that

at sub-barrier energies, the fusion cross sections are almost similar for all three transfer

channels. For energies around the Coulomb barrier, we notice that the negative Q-value
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Table 4.5: Q-values (MeV) for neutron transfer in various heavy ion systems of 40Ca

projectiles.

system +1n +2n +3n Ref

40Ca +62 Ni -2.23 1.43 -2.03 [18]

40Ca +64 Ni -1.30 3.35 0.69 [20]

40Ca +96 Zr 0.51 5.53 5.24 [21]

40Ca +194 Pt 0.01 5.23 4.50 [22]

40Ca +238 U 2.21 8.56 9.95 [24]

enhances the fusion cross section, and provides a better fit of the experimental data [see

panels (a) and (b)], where +1n and +3n curves are hardly distinguishable. It is clear

from panels (a) and (b) and the positive Q-value suppresses the fusion cross section. This

suppression increases with the increase of the Q-value. This trend is maintained in panels

(c), (d) and (e), where one also notices that the lower Q-value enhances the fusion cross

section and provides a better fit of the data at energies around and above the Coulomb

barrier. We further observe in panel (e) that all transfer channels underestimate the fu-

sion cross section at sub-barier energies.

In conclusion, multi-neutron transfer channels exhibit an important effect on the fusion

cross section for energies around and above the Coulomb barrier. As far as the results

in Fig.4.7 are concerned, the multi-neutron transfer channel does not appear to account

for an meaningful effect at sub-barrier energies. A negative Q-value enhances the fusion

cross section, whereas a positive on suppresses it.
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Figure 4.7: Effects of +1n, +2n and +3n transfer channels on fusion cross sections. The

experimental data for 62Ni,64 Ni,96 Zr,194 Pt and 238U are obtained from Refs.[18, 20, 21,

22, 24] respectively.

4.5 Fusion barrier distribution

In order to further investigate the target excitations and multi-neutron transfer channel ef-

fects on the fusion cross section, we consider the barrier distribution. It is well-known that

one of the important features of the coupling channels, is to split the nominal Coulomb

barrier of the interacting partners into multiple barriers with various degrees of penetra-

bility associated with each barrier. For more details on this subject, one can consider

Refs.[13, 16, 43, 64, 68, 72, 73, 74, 77, 78, 79, 80]. Following Ref.[43], we define the fusion

barrier distribution as follows

D(E) =
1

πR2

d2(Eσ)

dE2
, (4.4)

where R is the barrier radius, E, the incident energy and σ, the fusion cross section. In this

section, we consider not only the effect of multi-neutron transfer channels on the fusion

barrier distributions but also the effect of target excitations. We have seen in the previous

section that multi-neutron transfer channels mainly affect the fusion cross section around

the Coulomb barrier. We then expect the fusion barrier distribution to clear reflect the

effect of multi-neutron transfer channels. In Fig.4.8, we start with the effect of the target
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deformations (β2 and β4). Again, we consider the case of spherical target, represented by

the curve ”Sph”. Starting with Nickel targets (which are lighter), we observe that the

62Ni exhibits a broader distribution compared to 64Ni target. We also observe that the

inclusion of β2 deformation appears to slightly shift the barrier distribution peak towards

lower energies. This is more clear in panel (a). Considering 96Zr target [panel (c)], we

notice that although the barrier distributions corresponding to the spherical and β4 cases

still represents one peak around 98 MeV, the inclusion of β2 displays a completely different

picture. We first notice a complete suppression of the distribution peak around 98 MeV,

with two peaks around 95 MeV and 100 MeV. The same trend is maintained in panel (d)

for 194Pt target. The only difference is that now curves corresponding to β2 and ”T Def”

where the β2 and β4 are combined simultaneously are now different. It is interesting to

observe that even though β4 alone does not have any meaningful effect (since it is similar

to the spherical case), its combination with β2 results in an enhancement of the peak

around 170 MeV, and its suppression around 176 MeV. For the heavier target (238U), the

effect of target deformation on the fusion barrier distribution is even more pronounced.

Again β4 alone does not affect the barrier distribution. We notice that combining both

β2 and β4 produces an oscillatory barrier distribution.

The Common trend in these results is that in the case of spherical targets and when only

β4 deformation is included, the fusion barrier distribution contains only one peak. For the

light targets (62Zn and 64Zn), these peaks are located exactly at energies corresponding to

the nominal Coulomb barrier height (which is shown in each panel by a down-pointing ar-

row). However, in panels (c)-to (e), we observe that this peak is located past the nominal

Coulomb barrier height, particularly as the target mass increases. The fact that peak of

the spherical target is located beyond the nominal Coulomb barrier height as the target

mass increases, is an interesting observation. As the barrier height increases, the fusion

cross section is suppressed in particular at sub-barrier incident energies. As we have seen

in Fig.4.3 for example, the one-dimensional potential model (which corresponds to the

case of spherical target) underestimates the experimental data, and this becomes dramatic

as the target mass increases. We can then relate this to the shift in the Coulomb barrier

height toward larger values in Fig.4.8. Now, when β2 deformation is included, we observe
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Figure 4.8: Effect of target β2 and β4 deformations on the fusion barrier distributions for

40Ca-induced reactions. Label ”Sph” represents the data for spherical collision where the

deformation parameters are set to zero. ”T Def” represents the data where both β2 and

β4 parameters are considered.

in Fig.4.8 (c)-4.8(e) that the nominal barrier has been split into multiple barriers, with

some of the barriers being located before the nominal Coulomb barrier height, and others

beyond. The appearance of peaks below the nominal Coulomb barrier height attests to

the fact that the deformation or excitations of target nucleus reduces the Coulomb barrier

height through couplings to these states. Reducing the Coulomb barrier height produces

the enhancement of the fusion cross section. This is exactly what we observe for example

in Fig.4.5. To further emphasise this, we consider the 238U target [panel (e)], where we

notice that the peak corresponding to the combination of β2 and β4 ”T Def” is further

shifted to a lower incident energy compared to the case where only β2 is included. Now,

considering Fig.4.5, we can see that at incident energies below and around the Coulomb

barrier, indeed the fusion cross section corresponding to ”T Def” is lightly larger than

that corresponding to β2 alone. How about the barrier distribution peaks that are located

beyond the nominal Coulomb barrier height? Since they correspond to barrier heights

that are larger than the nominal one, they cannot be associated with the enhancement

of the fusion cross section. They are rather expected to suppress the fusion cross section.

This is actually what transpires in Fig.4.5 For example, from a careful look at Fig.4.5(e),
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Figure 4.9: Comparison of fusion barrier distribution data for V0 given in Table.4.1 and

V0 given in Fig.4.5 that agrees with the experimental data.

it follows that the fusion cross section is suppressed owing to the deformation of the target

at incident energies above the Coulomb barrier.

As we have shown in Fig.4.5, at incident energies below and around the Coulomb barrier,

the experimental data are excellently fitted with a larger value of the depth V0 of the

potential. Here we propose to verify how increasing the value of V0 affects the barrier

distributions. Based on our discussion above, since in this case the fusion cross section is

enhanced, we expect the peak of the barrier distribution to further shift to lower energies.

In Fig.4.9, we compare the fusion barrier distributions obtain with the V0 values given

Table 4.1 with the ones obtained using the larger V0 values given in the different panels of

Fig.4.5. Indeed, we notice that for the larger value of V0, the peak of the barrier distribu-

tion is shifted to lower energies, which amounts to the reduction of the Coulomb barrier

height. We interestingly note that the second peaks on the right in panels (c)-(e) are

completely washed away. One the other hand, the results obtained for the larger values

of V0 are more similar to those obtained in the case of spherical nuclei, but with peaks at

lower energies.

A further discussion of these results, we show in Table 4.6, we record the positions of the
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Table 4.6: Fusion barrier distribution peak positions displayed in Fig.4.9. VB is the

nominal barrier shown by the downwards arrow in Fig.4.8. V L
TD and V H

TD are peak positions

in Fig.4.9 for low and high V0 respectively

VB V L
TD V H

TD ∆V L
B ∆V H

B

62Ni 72.19 72 71 |0.19| |1.19|
64Ni 71.76 72 70 |0.24| |1.76|
96Zr 96.54 96 92 |0.54| |4.54|
194Pt 169.53 172 167 |2.47| |2.53|
238U 193.51 191 186 |2.51| |7.51|

different peaks in Fig.4.9. These positions represent the barrier heights after the nominal

barrier height has been split into different barriers, as a result of the coupling effect. In

this table, VB represents represents the nominal barrier height, that is obtained using

equation (4.5)

VB = VN(RB) +
ZPZT e

2

RB

(4.5)

V L
TD and V H

TD correspond to positions of the peaks in Fig.4.8. In this table, we only con-

sider the peaks which correspond to lower values than VB. ∆VB = VB − V x
TD (x ≡ L,H)

represents the value reduced from the nominal Coulomb barrier height.

To conclude this section, we also analyse the effect of the multi-neutron transfer on the

barrier distributions. We have seen in Fig.4.7 that multi-neutron transfer channels do

suppress the fusion cross section above the Coulomb barrier, compared to the +1n chan-

nel. The effect of multi-neutron transfer channels on the fusion barrier distributions is

displayed in Fig.4.10, where we notice that neutron transfer channels produce different

peaks in the fusion barrier distributions.
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Figure 4.10: Effect of +1n,+2n and +3n transfer channel on fusion barrier distributions

for 40Ca-induced reactions. Label ”Sph” represents the data for spherical collision where

there is no target excitations.
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Chapter 5

Conclusions

In this work we undertook a systematic study in understanding the rotational and vi-

brational effects on nuclear fusion reactions. To this end, we considered collisions of the

following, (a) light projectile on light ,medium and heavy targets (6,7Li induced reactions).

(b) medium projectile on medium and heavy targets (40Ca induced reactions). For a case

of spherical collision, where there are no target internal excitations, fusion is mostly in-

fluenced by the height of the coulomb barrier and barrier penetration. The size of the

potential well also influences fusion in spherical collisions. In our systematic approach,

it was found that the potential well deepens with an increasing target mass, therefore

a light-light collision reaction will have low fusion probabilities compared to light-heavy

reaction. σF is also dependant on the radial positioning (rmax) of the colliding partners.

When rmax is below the barrier position RB, fusion is at it’s lowest. σF is enhanced the

most when rmax → RB. However, σF converges towards the same value when rmax �
RB. This theory has proven to be effective in all reactions under investigation from light

to heavy collisions.

In the case of deformed target collisions, it was expected that the rotational quadrupole

β20 and hexadecapole β40 deformation parameters should influence fusion. However, it is

the sign of the deformation parameter that enhances or lower fusion. A positive parameter

will enhance fusion even if the effects are small an negligible. By looking at total potential

for heavy-heavy collision, we notice that every deformation parameter has an effect on the

barrier height as well as the potential-well. It is well expected that a lowered Coulomb
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barrier will enhance fusion given the incident energy is above barrier energy. However

this is not the case when comparing Fig.4.4 to Fig.4.5. This is due to fusion enhanced by

barrier penetrability at energies below and around the Coulomb barrier. This phenomena

explains how increasing the potential depth V0 enhances fusion at lower energies for both

spherical and deformed collision reaction.

By analysing the fusion barrier distribution data, it was shown each positive parameter

lowers the barrier and hence enhances fusion. The value of deformation parameters also

plays a major role in a sense that when both parameters are included, the CCFULL code

makes an average of the two deformation parameters and the output results will be similar

to the results of the deformation parameter with a higher value. Therefore, rotational

effects on fusion are dependent on the sign of the deformation parameter. When vibra-

tional coupling is included, an increase in fusion enhancement was observed. However, it

seems that σF is increased in comparison to rotational coupling when the collision part-

ners are from a certain periodic group. Reaction including 96Zr and 238U yielded less σF

for vibrational coupling compared to rotational coupling. This observation proves that

the nuclear vibrations modify tunnelling probability and enhances below-barrier fusion

excitation functions.

For the neutron transfer calculations, it is clear that for heavy collision systems the

transfer channel is influenced by the Q-value of the system. For 40Ca induced reactions

we were able to deduce a trend that a lower Q-value enhances the most fusion regardless

of the number of neutrons transferred during the reaction. However, this was not the

case in 58,64Ni reactions. The unusual trend found in Nickel reactions might be due to

the similarity of the projectile-target nuclear masses and nuclear structures. In essence,

none of the collision partners is overpowered by the other and as such the transfer channel

does not only depend on the Q-value of the reaction but also on the target orientation

θ. The authors of [44] concluded on the subject that transfer of few nucleons agrees

with the experimental data whereas a large number of neutron transfer shows a shift

towards neutron stripping which doesn’t agree with the experimental data. As part of

the recommendations, it was suggested that a systematic approach into the matter should
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provide a more clear conclusion on how the nucleon transfer channel influences fusion.

However in this research, such a systematic approach was considered and the results show

that for +1n transfer,σF is induced the most in comparison with multi-neutron transfer

channels.
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