
IN-HOST MODEL FOR THE CO-INFECTION DYNAMICS OF

HIGH-RISK HUMAN PAPILLOMAVIRUS (HPV) AND HIV IN

THE PRESENCE OF IMMUNE RESPONSE

by

ZVIITEYI CHAZUKA

submitted in accordance with the requirements

for the degree

DOCTOR OF PHILOSOPHY OF SCIENCE

in the subject of

APPLIED MATHEMATICS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: DR G.M. MOREMEDI

CO-SUPERVISOR: PROF E.RAPOO

26 SEPTEMBER 2021



Abstract

HIV/AIDS continues to be a huge global burden having claimed million lives worldwide. It

targets the immune system and defence mechanisms against infections such as the human pa-

pillomavirus(HPV). HPV can be classified as low-risk or high-risk, with high-risk types (16

and 18) mainly being responsible for cancers, such as cervical cancer in women. HPV is a

very common sexually transmitted infection that is given less attention, with many men and

women living and spreading infection through unsafe sexual practices. In this thesis we present

a mathematical model for the transmission dynamics of HPV in-host in the presence of immune

response represented by Cytotoxic T-Lymphocytes cells (CTL). The model presented considers

the effects of latent HPV infections and the model dynamics are effectively analysed. The model

presents two important reproduction numbers, that is the basic reproduction number R0 and

the CTL reproduction number RK . The simulation dynamics of the HPV model are presented.

We extend the model to include vaccination and it is established that, while immune response

plays an important role in eradicating infection, it is not sufficient in totally eradicating HPV.

The immune evasion dynamics of HPV are also analysed and conclusions drawn. Finally we

also model the effects of HIV on the dynamics of HPV through the co-infection model. It is

established that HIV through, immune-suppression, does make it easy for HPV to progress

within the body. Simulations presented indicate the benefits of early initiation of antiretroviral

therapy (cART/HAART) in the reduction of HPV prevalence. It is envisaged that the results

presented in this thesis will motivate the widespread vaccination of women, girls and also boys,

especially in developing countries where the HIV transmission rate is high. The study also aims

to promote the uptake of HPV screening by women and girls and the practice of safe sexual

practices to reduce infection.

Key terms: Human papillomavirus, Immune response, Mathematical model, Ordinary dif-

ferential equations, Cytotoxic T-Lymphocytes, Reproduction number, Immune-suppression,

Vaccination, Infection, High-risk, Low-risk.
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Chapter 1

Introduction

Throughout the world cervical cancer, a disease that is mainly induced by the human papillo-

mavirus (HPV) emerges as one of the top cancers that affect women. In 2018 cervical cancer

was ranked as the fourth most common cancer prevalent among women after breast cancer(first

with 2.1 million cases), colon cancer(second with 800 000 cases) and lung cancer (third with

700000 cases) [6]. HPV is one of the most common sexually transmitted viruses globally that

is not given much attention with many men and women living and spreading infection daily

through unsafe sexual practices. It is a unique circular double-strand deoxyribonucleic acid

(DNA) virus [13], that normally enters the cell through the nucleus. Upon entrance, the virus

unites its DNA with that of the cell, therefore, creating what is known as a hybrid cell [17].

When this happens, the functionality of the infected cell is seriously altered and it fails to

respond well to signals. Sexual intercourse can cause abrasion and this may enable HPV entry

into the epithelial cells within the stratified squamous epithelium. Normally epithelial cells are

latently infected with HPV for a minimum of 60 days, depending on the severity of the HPV

strain [90]. HPV can be classified as high-risk or low-risk. High-risk HPV types are those that

can cause cancers such as cervical cancer, cancer of the vagina and vulva, penile cancer among

other cancers. Low-risk HPV types are those that cause warts such as genital warts which

normally are benign and not cancerous. High-risk HPV types normally have a certain period

of latency where the cells are infected and yet do not produce virus while the low-risk types

are either cleared by the immune system quickly or evolve into warts.

The human immune response system is made up of the innate immune system and the adap-

tive immune system. The innate immune system is defined as the general immune system of

the body whose function mainly is to provide the body with the first line of defence against
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infection [41]. The innate immune system is fast and is not specific as it responds in the same

manner to all germs/ pathogens and foreign substances that harm the body. On the other

hand, the adaptive immune system specifically targets the germs that causes a particular in-

fection. This type of immune system is said to be specific and has the ability to ‘recall” the

type of germ/ pathogen it encounters[41]. However, such an immune system is slow to act

because the identification mechanism of the pathogen causing the infection may not be easy

and straightforward [41]. The interesting thing about the adaptive immune system is that, once

it identifies a particular virus and gets rid of it, the next time that the body is attacked by

the same virus, detection is easier (memory property) and therefore the response to pathogen

is faster. Infections such as HPV however normally make it hard for the adaptive immune

response system to identify them or recall their presence. This will be discussed in detail later

in chapter 2.

A successful immune response will normally clear off most HPV infections [93, 34]. This is

because, the moment that HPV infection enters the epithelial cells through abrasion, an active

immune system will be alerted into action by the presence of HPV antigens, thereby prompting

the recruitment and activation of the Cytotoxic T Lymphocytes (CTLs) or Natural killer T

cells that combat the HPV infection. When the immune response is triggered, antibodies are

released to neutralise and fight HPV within the tissues before the infection spreads. However,

clearance of HPV does not guarantee that an individual will have permanent immunity. It

only allows the individual to move from an infected to a susceptible. A delay in the immune

response can cause persistence or a spread of infection to other healthy class cells. Re-infection

of the cells can be either through continuous abrasion of the epithelium, through an infected

partner, or through increasing the number of sexual partners an individual interacts with [38].

Although the persistence of HPV within the cells is pivotal in the development of cancer lesions,

in the long run, there is strong evidence that immune suppression as a result of HIV also has a

significant contribution [31]. Figure 1.1 is the world map indicating the distribution of HPV.
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Figure 1.1: Distribution of HPV in the world Source: https://www.fightcancer.org/policy-

resources/global-impact-cervical-cancer.

It can be seen that HPV is widely dominant in Africa and this could be attributed to poor

health care systems and lack of proper screening methods. There is need for an increase in

awareness and vaccine roll-out to reduce the burden of HPV in Africa. A reduction in the cost

of acquiring the HPV vaccine would significantly reduce the burden of HPV in Africa and the

developing world.

1.1 Classification of HPV types and intervention

There are more than 100 HPV types that are known in literature and out of these types,

HPV-16 and HPV-18 are considered to contribute to about 70% of cervical cancer cases or

precancerous lesions in women [13]. The other types mainly affect the skin (cutaneous), the

lining of the mouth, throat, respiratory tract and anogenital epithelium (mucosal)[12] and may

also be responsible for the occurrence of genital warts, head and neck cancers and respiratory

tract infections. The various HPV types can be classified as low-risk-HPV types: 6, 11, 42,

43, and 44 or high-risk types: 16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 70

[12], just to name a few. HPV genotypes are classified under the genus alpha type which is a

group of all HPV types that contribute to sexually transmitted infections and cervical lesions or
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carcinogens [71]. In this study, we are mainly interested in two high-risk types, i.e HPV-16 and

HPV-18, which fall under the (alpha − 9) and (alpha − 7) species cervical carcinogens group

[71]. HPV-16 has been found through research to be mainly responsible for cervical cancer

lesions with 50% of cancer lesions while the other 20% is assumed to be caused by HPV-18

[84]. Currently, three vaccines are administered worldwide for the prevention of HPV infection;

Cervarix, Gardasil and Gardasil-9. Cervarix is a bivalent vaccine that prevents infection against

high-risk types, HPV-16 and HPV-18, while Gardasil is a quadrivalent vaccine that prevents

infection caused by both high-risk and low-risk types i.e HPV-16, HPV-18, HPV-6 and HPV-11

[90] and Gardasil-9 is a nonavalent vaccine that protects against nine types of HPV which are

HPV types, 6,11,16,18,31,33,45,52,58. Unfortunately, at the present moment, Gardasil-9 is only

available in the United States of America because HPV vaccines are very expensive and the

more strains it prevents against infection the more expensive it is. In Africa, there are a few

countries that have successfully administered the vaccine to young girls and women between

the ages of 13-26 years. However, governments are being encouraged to promote the vaccine

uptake by women and girls as much as possible so as to reduce probable cervical cancer cases

in Africa.

The human immune-deficiency virus (HIV) is a retrovirus that is classified under the lentivirus

genus retroviridae group. It mainly targets the CD4+-cells [32, 91]. Immune suppression as a

result of HIV infection increases the risk of HPV infection and increases the prevalence of HPV

in both men and women [29]. HIV reduces the CD4+ T-cells levels and delays immune response

to other infections. It alters the natural history of HPV infection, which then results in the

rapid progression of HPV infection to cervical cancer lesions. Therefore clearance of HPV in an

immune-compromised system becomes very difficult and individuals become highly susceptible

to HPV-related cancers [32]. There is a need to model mathematically the co-infection dynam-

ics of HIV/HPV, in the presence of immune response and intervention in order to ascertain

how best at cellular and molecular level HPV infection can be combated in HIV-positive women

and girls. Mathematical immunology makes it easier to understand the dynamics of infections

within cells and from the results, we can relate it at population level. It follows that from

modelling at population model we can find intervention methods and measures that work in

reducing infection within a community. Mathematical modelling also helps to assess the com-

munity benefits of various intervention methods such as HPV vaccination and cancer screening

in the reduction of co-infection in women living with HIV. In this particular study, the aim is

to model the effects of interventions such as Combined Antiretroviral Therapy (cART)/Highly
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Active Antiretroviral Therapy (HAART) and the HPV vaccine (quadrivalent). We will derive

concepts from other mathematical models for HPV such as the work done by [90, 99, 79, 64]

just to name a few. The study will make use of data parameters sourced from the literature on

HPV and HIV.

1.2 The virology of the Human Papillomavirus (HPV)

The human papillomavirus belongs to a heterogeneous group or class of papillomaviruses. It is a

non enveloped deoxyribonucleic acid (DNA) virus that is normally classified as either cutaneous

(related to the skin) for instance HPV-6, HPV-11 HPV-42, HPV-43, HPV44, or mucosal (re-

lated to the mucosal membrane) for instance HPV types: 16, 18, H31, 33, 35, 39, 45, 51, 52, 56,

58, 59, 68, based on the particular tissue that they affect. HPV is known to be epitheliotropic

(has an affinity or is linked to the epithelium), is about (45 − 55) nanometer in diameter and

can easily induce cell proliferation. There are more than 100 types of papillomaviruses that are

known to affect humans. Half of these are known to infect the genital mucosa, making HPV a

common sexually transmitted infection. Out of these, the high-risk types HPV-16 and HPV-18

are known to be one of the major causes of cervical cancer around the world. HPV spreads

with the assistance of certain early proteins (E1 to E7) and late proteins (L1 and L2). The

terms “early” and “late” simply indicate that the proteins are expressed “early” in infection or

“late” in infection, respectively. The early proteins (E1 to E7) are expressed on the onset of

HPV infection. The E proteins play a role in viral DNA replication, regulation of viral gene

transcription, facilitation of viral assembly and release, inducing cell proliferation, inducing

DNA synthesis and blocking or preventing cell differentiation [19]. Such early proteins are also

responsible for inducing or inhibiting programmed cell death also known as apoptosis. On the

other hand, the late proteins (L1 and L2) are responsible for viral amplification, assembly and

release on the surface of the cell. Of these two proteins, the L1 protein is known as the major

structural protein for HPV responsible for viral amplification while the L2 protein is the minor

capsid protein responsible for the viral assembly and release.

The skin is made up of five layers that provide barriers to infection. The five layers are namely

the cornified layer, granular layer, spinous layer, basal layer and the basement membrane. A

detailed explanation of these layers is given in Figure 1.2 adapted from the work by Passmore

et al. [73]. It is a diagram detailing how HPV enters through abrasion of the skin, the dynamics

of HPV within epithelial cells and the effects of the different types of proteins mentioned above.
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Normally sexual intercourse can cause some abrasion to occur in the genital mucosa and this

Figure 1.2: Schematic of HPV replication in-host, permission granted and figure adapted from

the work by Passmore et al. [73].

will make it easy for infections such as HPV to enter through the skin. Figure 1.2 presents the

infiltration of HPV in cells within the epithelium as a result of abrasion. The epithelium is

made up of five layers and these include the cornified layer -which is the main protective barrier

that is made up of about 30 layers of polyhedral corneocytes, the granular layer -which is a

lipid layer barrier formed as a result of keratinocytes losing their nuclei, this barrier provides

secondary protection after the cornified barrier, the spinous layer -which is a barrier made up

of Langerhans cells and immune active cells that fight infection, the basal layer -which is a

layer that is attached to the basement membrane and is made up of proliferating and non-

proliferating keratinocytes. HPV normally targets the basal layer as indicated by Figure 1.2,

panel A. HPV enters the epithelium through abrasion or tear during sexual intercourse. After

this, viral replication occurs within the basal layer and early gene expression occurs, releasing

the E-proteins namely (E1, E2, E6, E7) while late gene expression will normally occur within

the spinous layer to release the L-proteins (L1 and L2). The assembly and release of the HPV

virions only occurs within the cornified layer as indicated. Figure 1.2, panel B presents how

HPV enters the basal layer and the types of receptors it uses i.e (alpha6 and beta4) and the
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transport dynamics of HPV DNA to the nucleus of the cell. Figure 1.2, panel C shows the

immune evasion mechanisms of HPV. Through the expression of the early proteins, E6 and E7,

there is increased production of the TGF-β (the transforming growth factor-beta),which is a

cytokine responsible for inhibiting macrophages and CD4+ T-cell responses to HPV infection

[73]. Figure 1.2 also shows the differences between a healthy epithelium and an HPV infected

epithelium (left side of panel A(healthy epithelium) versus the right side of panel A (infected

epithelium) ).

1.3 Mathematical modelling of HIV/HPV co-infection

dynamics

Mathematical epidemiology using non-linear ordinary differential equations emanated way back

in 1927 when Kermark- Mckendrick developed the first SIR model for the cholera epidemic and

since then various models have been developed by researchers using the same approach [45].

Mathematical modelling provides a good framework for understanding the dynamics of cancer

and enables biological hypotheses to be tested and conclusions to be drawn through defining

oncology in mathematical terms [33]. It helps researchers to understand factors that govern the

outbreaks of infectious diseases or cause cancers. It also helps to identify the susceptible indi-

viduals in a population and come up with solutions or intervention programs to fight epidemics

or pandemics. Modelling can help predict the future trends of an epidemic and therefore help

relevant health authorities to prioritize the areas that need immediate health care.

Mathematically, several studies on HPV alone have been performed. Most of the models for-

mulated centred mainly upon the role and effectiveness of HPV vaccines in the reduction and

eradication of cervical cancer lesions among women [25, 27, 79, 90]. Igor et al. looked at an

adaptive Markov chain Monte Carlo simulation model for HPV and from the model, they were

able to develop a model for HPV 6/11 based on a Bayesian framework. The study used the

posterior predictive inference method to demonstrate the impact of vaccination on the dynam-

ics of HPV [49]. Ryser et al. carried out an in-host study on HPV clearance and investigated

the role of stochasticity [80]. The results of this particular study indicated that incorporating

stochasticity plays an important role in the elimination of HPV-infected cells. Smith? et al.

developed an in-host HPV model that looked at the transmission dynamics of high-risk (HPV

16/18) and low-risk HPV (6/11) infection at the cellular level. Their model examined the long-
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term outcome of the HPV vaccine and the possibility of co-infection within the cells. They

also established that in the absence of vaccination there is a probable chance that low-risk and

high-risk HPV types may coexist within an individual. However, using a vaccine that targets

both low-risk and high-risk types such as a quadrivalent HPV vaccine can be beneficial in the

reduction of the coexistence of HPV viral types [90]. The research by Smith? et al. encour-

aged the adoption of the quadrivalent HPV vaccine Gardasil that prevents the occurrence of

low-risk and high-risk types in major parts of the developing world. The United States has how-

ever gone on to adopt the use of the nonavalent vaccine Gardasil-9 that targets 9 types of HPV.

In 2014 Noor Asir et al. developed a model for the development of cancer cells as a result

of HPV infection. The results of this study indicated that there are behaviours that the model

could exhibit based on the reproduction number, the proliferation rate of precancerous cells

and mature rate of precancerous cells to cancerous cells. The simulation results indicated that

there were two scenarios to consider that is either the solution of the model would converge to

a stable equilibrium where the precancerous cells are under-long term control or the precan-

cerous cells could grow without limit and this promotes malignancy [8]. However, their work

did not take into consideration many other aspects that surround the creation of infected cells

such as the role of immune response dynamics in the reduction of persistence of HPV. In terms

of modelling HPV at population level, several interesting researches have been done. Among

these, we have the work by Elbasha Elamin who formulated a two-sex HPV model that anal-

ysed the global stability dynamics of HPV in the presence of vaccination using the Lyapunov

function approach [26]. The model looked at the interaction between males and females and the

spread of HPV among heterosexual individuals. It also considered the role of HPV vaccination

and the effects of breakthrough infections on the dynamics of HPV. The results of the study

established that the disease-free and endemic equilibrium is only globally asymptotically stable

provided that R0 < 1 and R0 > 1 respectively [26], where R0 is the reproduction number for

the model. However, the results did not present any numerical simulations to back up the

theoretical work done. Prior interesting works on HPV to follow up Elbasha Elamin include

[27, 25]. In 2012, Ribassin-Majed et al. published a paper that modelled the transmission

of HPV in the presence of vaccination. The authors analysed the dynamics of low-risk HPV

types 6/11 which are mainly responsible for genital warts in the presence of a quadrivalent

vaccine on French individuals. Results from the study indicated that non-oncogenic types of

HPV such as HPV 6/11 could be eradicated provided that vaccine coverage was above 12%

[78]. But, the work did not look at other infections that are caused by HPV 6/11 such as the
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Recurrent Respiratory Papillomatosis (RRP) that normally affect young children and babies

at birth. In another paper, Gurmu et al. presented work on a population model and optimal

control of HPV with backward bifurcation [37]. In this particular work, the authors developed

a deterministic model for HPV governed by ordinary differential equations. The bifurcation

analysis of the model established that a backward bifurcation occurs when R0 < 1 hence, HPV

infection can invade the population. The results of the analysis of the model showed that to

effectively eradicate HPV within the community there is a need for the use of a combination of

HPV screening and vaccination strategies. Their study also recommended that governments in

developing countries should promote more education campaigns and programs on HPV. These

will promote voluntary screening of HPV to reduce HPV infection through behaviour change

[37]. Other most recent studies of note on the mathematical modelling of HPV include that of

[111, 70, 2]

HIV/HPV co-infection is a complicated or complex nature of interaction as one infection in-

creases the progression of the other and vice versa [47, 21]. These infections easily co-exist

because they both favour an immune-compromised body. HPV normally targets HIV-positive

individuals with a CD4+ T-cell count that is below 200 which is normally labelled as AIDS.

HIV-negative women have a 4-10 times chance of clearing HPV naturally as compared to HIV-

positive women [87]. Several clinical trials that analysed the co-infection dynamics of HIV/HPV

have been carried out and most of the results point out the fact that without interventions such

as vaccination and cART/HAART it is difficult for the ailing immune system to clear HPV

infection and thus reduce the incidences of cervical cancer [87, 30, 48, 1, 58, 51]. Furthermore,

studies have also revealed that due to similar modes of transmission via sexual interaction,

HPV may also increase the risk of HIV infection in both men and women. The reason for this

is that there is an increase in the inflammatory response that increases the recruitment of more

susceptible cells that are at risk of HIV infection [24]. Lissouba et al. in their meta-analysis

study established that individuals with any particular low-risk or high-risk type of HPV at

any time within their lifetime have nearly twice the chance of getting infected with HIV as

compared to those without any HPV strain [53]. There are preventative measures in place for

reducing HIV/HPV infection and these include reducing the number of sexual partners, use of

condoms(90− 99% chance of success), early start and adherence to cART/HAART (for those

who are HIV-positive and know their status) and uptake of the HPV vaccine (preferably for

those who have never engaged in sexual interaction before). From these measures, reduction

of sexual partners and the use of condoms are more of behavioural change issues that have
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slim chances of adherence. On the other hand cART/HAART uptake is highly recommended

for all HIV-positive individuals in order to increase their CD4+ T-cell count thus there is a

need for higher adherence. Currently, there is no conclusive data that supports the effects of

HPV vaccination on the reduction of HIV/HPV co-infection, though clinical trials conducted

have shown that the HPV vaccines are a safe prevention strategy for individuals with a viral

load that is less than 200 cells/µL [46]. The mathematical modelling of the co-infection dy-

namics of HIV and high-risk HPV is an area that has not been done though biologically it

has been proved that co-infection exists. Researches have mainly been devoted to studying the

dynamics of HPV [59, 65, 89, 108, 29] just to name a few. In 2006, a meta-analysis study of

HPV genotypes among HIV-infected women was done for 5 500 women and it was found that

HIV-infected women had a high prevalence of HPV infection (36.3%) among those without any

cervical cytological abnormalities[18]. These researches focused on studying the behaviour of

HPV at both population and in-host(cellular level). They implored basic statistical analysis

due to the nature of the research.

Most mathematical modellers have however prioritised the study of other types of co-infections

such as co-infection of HIV-1 and TB [86, 11], HIV and hepatitis C co-infection [81] just to

mention a few but none of them analysed the co-infection of HPV and HIV especially among

women in Africa where the HIV prevalence is high and the implementations of HPV control

measures are poor. It is in this regard that we would like to embark on the mathematical anal-

ysis of an HPV/HIV co-infection model that incorporates the effects of immune response and

interventions such as vaccination and cART/HAART. In our present model, we are interested

mainly in two important cases that is the dynamics of HPV in an immune-competent individ-

ual and the dynamics of HPV in an immune-compromised individual (HIV-infected individual).

We will maintain in our work the terminology “HPV/HIV”.

1.4 Research objectives

The main objective of this research is to develop an in-host mathematical model for the co-

infection dynamics of high-risk HPV and HIV in the presence of latent HPV infections, immune

response and intervention in the form of vaccination and cART/HAART. The specific objectives

are:

1. To develop and analyse the basic in-host HPV model with immune response only;
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2. Determine the equilibrium points and reproduction numbers for the basic model;

3. Carry out a bifurcation analysis for the model and establish local and global stabilities

of the equilibrium points;

4. To extend the basic HPV model by incorporating vaccination as intervention;

5. To formulate the HPV/HIV co-infection model and analyse its dynamics in the presence

of immune response;

6. Analyse through numerical simulations the dynamics of the HPV/HIV co-infection model

with immune response, vaccination and treatment;

1.5 Significance of research

The human papillomavirus (HPV) is the main cause of cervical cancer in women worldwide. The

susceptibility of the host to HPV is governed by several factors of which immune suppression

as a result of HIV infection is chief among them. This necessitates the need to study the

viral dynamics of HPV in the presence of an immune suppression caused by HIV. In this

particular research, we will develop in-host mathematical models for HPV that incorporate

latent infections, immune response and intervention through vaccination and antiretroviral

therapy. This research is intended for a wider audience and it is hoped that several research

articles will emerge from it. We hope from the results of this research to find ways to help

women and girls fight HPV in a world that is HIV prevalent.

1.6 Methodology

We formulate an in-host HPV mathematical model with immune response and intervention in

the form of vaccination. The mathematical methods that will be used in this research are:

• The next generation matrix approach to compute the reproduction number for the model

[98]. The reproduction number, R0, is a critical threshold that measures the number of

secondary infections that arise as a result of one infectious case.

• Bifurcation analysis will be carried out using the method by Castillo Chavez [15]. A

bifurcation is defined as a change in the dynamical behaviour of a system due to changes

in parameters or initial conditions. Bifurcations can be either forward (supercritical
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bifurcation) or backward (sub-critical bifurcation). In this thesis, we use the Center

Manifold Theory illustrated in [15] to establish the existence of a bifurcation for all the

models formulated.

• Global stability analysis of the models will be done using the Lyapunov function stability

methods. In particular, we will adopt Lyapunov functions from the works by [88, 3].

• Sensitivity analysis for the models developed will be done by computing the elasticity

indices of R0 and also using PRCC methods outlined in [35] and the Tornado plots

plotted with R-studio.

• Numerical simulations will be done using the fourth-order Runge Kutta methods embed-

ded in Matlab using an ode45 solver.

1.7 Structure of the thesis

The thesis is arranged as follows: Chapter 2 presents the basics of in-host modelling, the

differentiation of between-host modelling from in-host modelling, a brief explanation on the in-

host modelling of viruses and finally a review of the work presented by [99] from whom we derive

our mathematical model. The review presented carries out analysis of the model that Verma

et al. did not carry out and this helps to map the modelling work in this thesis. In Chapter 3,

the basic HPV model incorporating latency and the immune response is developed. The model

is rigorously analysed and also numerical simulations are presented. Chapter 4 presents the

co-infection model with which mathematical analysis is presented. Numerical simulations are

carried out and discussed effectively to produce conclusions and recommendations in Chapter

5. In the same chapter we also present future work on HPV in-host modelling.

12



Chapter 2

Literature review

2.1 Between-host models for HPV

Mathematical modelling of infectious diseases plays a very important role in providing solutions

to the fight against infection spread and persistence. Many mathematical biology research ar-

ticles have clearly shown how modelling is an important tool in solving epidemiological issues

that affect society. The modelling of HPV has been done both between-host (population level)

and in-host (cellular level). Between-host models such as that of Gurmu et al. [37] presented

the dynamics of HPV within a homogeneously mixing population. The study presented a

mathematical model that was made up of the susceptible, the vaccinated, asymptomatic cases,

infected cases, recovered cases and cancer cases. The reproduction number was found, local

and global stability analysis were performed. Bifurcation analysis carried out proved that there

existed a backward bifurcation for the model. The model was also extended to incorporate op-

timal control and the results showed that to eradicate HPV there was a need for a combination

of prevention methods such as vaccination, cancer screening methods and treatment methods.

Elbasha et al. [27] formulated a model that assessed the epidemiological impact of admin-

istering vaccination strategies. The model compared the cost-effectiveness of vaccinating girls

and women only over that of vaccinating both sexes. The results from the model indicated that

while vaccinating girls and women only was cost-effective, including boys and men into the

vaccination program proved to be more effective as it further reduces the incidences of genital

warts, cervical cancer neoplasia and in the long run cervical cancer in women by 97%, 91% and

91%, respectively [27]. Elbasha again in 2008 [26] presented the global stability of a two-sex

vaccination model. The compartmental model used was a basic SIR model and the effective
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reproduction number was computed. It was concluded from the model that, when the effective

reproduction number is greater than unity, there exists a locally unstable disease-free equilib-

rium and a globally stable endemic equilibrium and in the long run HPV can be eradicated

within the population.

Another interesting population modelling research on HPV is that of Majed et al. [78] where

they presented an SIS sex model for the transmission dynamics of HPV in the presence of

vaccination. This model just like the work by Elbasha et al., established that as long as the

vaccinated reproduction number is less than unity, the disease-free equilibrium point is locally

stable and therefore HPV can be eradicated [78]. All these models presented yielded interesting

results that have made the complex nature of the HPV dynamics better understood. None of

these models considered the possibility of latent HPV infections, which is an issue we take note

of in our present in-host study.

2.2 In-host modelling

Mathematical models of in-host dynamics of infections such as HPV make it easy to understand

the interactions necessary for viruses to spread within cells. Over the years, various in-host

models have been presented through research articles, exploring the dynamics of some infections.

Most of the pathogens or viruses that affect the body daily are intracellular and they normally

affect susceptible target cells. In HPV, the pathogen or virus is the human papillomavirus,

and it normally targets susceptible epithelial cells that are in the genital area (genital mucosa)

or that are in the oral cavity area (oral mucosa). Upon entering and infecting an epithelial

cell, HPV can exit the cell through a process called lysis. Lysis entails the destruction of the

infected cells (cell death). Not all viruses cause infected cells to undergo lysis, some undergo

what is known as budding (for example the HIV virus). In budding, the virus grows out of

the entire infected cell, so portions of the cell are attached to the virus in the process. The

in-host modelling of viruses such as HIV was first proposed by Perelson et al. in their work in

1993 [74]. The basic model presented considered susceptible target cells T (t) interacting with

infected HIV cells I(t) and the HIV-free virus V (t). The proposed basic model that has now
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been extensively expanded to suit many other infections was given by

T ′(t) = Λ− κT (t)V (t)− dT (t),

I ′(t) = κT (t)V (t)− δI(t),

V ′(t) = pI(t)− cV (t),

(2.1)

where Λ is the recruitment of healthy target cells, κ is the transmission rate, d is death rate of

the susceptible target cells due to natural causes, δ is the virus induced death of infected cells,

p is the production rate of infected cells and c is the natural clearance rate of the virus. The

model(2.1) has a disease-free equilibrium given by

E0 =

(
Λ

µ
, 0, 0

)
,

an endemic equilibrium given by

E1 =

(
δc

κp
,
Λκp− dδc

κδc
,
c[Λκp− dδc]

κpδc

)
,

and a basic reproduction number

R0 =
pΛκ

dcδ
.

In addition to this, stability analysis of the proposed model was done for the cases R0 < 1

and R0 > 1. Many other extensions to this basic model for infections such as cholera, malaria,

HIV, HPV are further proposed in the literature by [10, 8, 75, 102, 90, 99, 63, 67, 68] just to

name a few. These researches have presented rigorous mathematical analyses that establish

the local and global stability of the disease-free and endemic equilibrium points. They have

also presented the effects of increasing or decreasing the reproduction number R0, which is

defined as the number of secondary infections produced by one infectious cell in the lifetime

of the infection, through applying certain interventions. The extensions to the basic model

(2.1) include the inclusion of latently infected cells, immune response: in the form of Cytotoxic

T-cells (CTLs) and antibodies (B-cells). Such in-host models have also been used to explain

the effects of interventions such as vaccination [99, 64] and cART/HAART treatment [106, 94].

Concerning the mathematical modelling of HPV, there a few in-host models as compared

to between-host models presented in literature. Smith? et al. presented an in-host mathe-

matical model that outlined the link between low-risk HPV and high-risk HPV types. The

model considered the impact of vaccination, competition between HPV low-risk and high-risk
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types within cells and the co-infection of high-risk and low-risk types on the HPV transmission

dynamics. Results from the model showed that, if there is no vaccination, both the low-risk

and high-risk viral types co-exist while with vaccination effective eradication is possible [90].

However, Smith? et al. did not explore the effect of immune responses in the presence of

vaccination which is an important aspect in the dynamics of HPV within the body [90].

Hunt in his thesis presented a mathematical model for HPV in the presence of immune re-

sponse without vaccination [40]. In this particular work, Hunt developed four models: a basic

HPV model with immune response, an extended model with immune response, a memory model

that incorporated immune response and delay and an HPV multi-strain model. In the basic

HPV model, Hunt established that using the reproduction number one can determine the con-

dition for eradication or persistence of infection. In the memory model, Hunt considered the

possibility of developing memory cells after infection and the effect of such memory cells on

the reproduction number, R0. The results indicated that, in the presence of memory cells, as

long as the effective reproduction number Re < 1, HPV infection will eventually be cleared. It

would be interesting to establish how memory cells can be activated naturally in all individuals

or how they can be boosted. In the immune response delay model, Hunt presented a model

that tried to address the effects of a delay in immune response on the onset of infection. The

model included a time delay from the start of the infection till the immune response could

detect HPV, but there was a flaw in the method because detection of HPV by the immune re-

sponse is purely a random process [80] and probably a stochastic model would have been more

appropriate. The results from the model established that there was a certain critical threshold

that when reached meant that the immune response would be activated and viral clearance

would drive the system to the disease-free equilibrium. The multi-strain model considered two

competing types of HPV and the effect of cross-reactivity of similar types. It also investigated

the possibility of competition of resources within cells that are co-infected by multi strains.

Results from the study established that such a type of competition is not likely to occur within

cells.

Another interesting research to note is that of Murall et al. [64] from which we build our

work. In this particular work, they created an in-host model for HPV that specifically studied

the dynamics of high-risk types in the presence of immune response and vaccination. The model

formulated analysed two important aspects with regards to cell dynamics, which is oncogene

expression and cell proliferation. In terms of high-risk HPV types, there are two main types of
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oncogenes, E6 and E7, where the “E” stands for early genes that are expressed in the onset

of HPV infection [9]. These particular oncogenes normally suppress two important tumour cell

suppressor proteins “p53 and pRb” where the former (p53) stands for (53 kilodalton protein)

named due to its molecular weight and the latter (pRb) is a retinoblastoma protein responsi-

ble for the prevention of excess cell growth of cancer cells. Oncogenes will normally initiate

virus replication because they are responsible for stimulating cell cycle re-entry in the middle

epithelial layers and hence facilitate genome amplification [64]. These oncogenes E6 and E7,

when expressed, will block the action of the innate immune system which consequently delays

the activation of the adaptive immune response against HPV infection, and therefore, promote

persistence of infection. The higher the rate of oncogene expression as a result of HPV infec-

tion, the faster the conversion of infected HPV cells into self-proliferating or self-replicating

cells. Results from the work by Murall et al. concluded that removing the ability of HPV

to delay effector cell invasion consequently caused R0 > 1 for cell types with higher onco-

gene expression. The results also indicated that vaccine-imposed immunity could create higher

oncogene expression which in turn has serious consequences on the host [64]. Furthermore,

the model showed that high antibody response is an effective way of reducing the number of

infected cells and consequently reduce the free HPV virions produced. They concluded that

it may be important to consider if reducing HPV is better done using HPV vaccines that can

increase oncogene expression and eventually cause a viral load increase or maybe to use other

preventative medical health care mechanisms for the highly virulent types.

The final model under our consideration is that by Verma et al. who modified the model by

Murall et al. to include the effects of immune suppression. The model presented a mechanistic

model for the in-host dynamics of HPV in the presence of HIV within the oral mucosa. The

model took into consideration cART/HAART as an intervention method. It also considered

the effects of impaired HPV-specific effector cell responses due to the effects of HIV immune

suppression. The model was further used to analyse the probable course of HPV in the presence

of HIV though in this study they did not look at the effect of vaccination against HPV as a

treatment option, an aspect we wish to take up in our study. The model identified the mecha-

nisms by which HIV alters HPV infection within the oral mucosa. The results indicated that in

the presence of cART/HAART, HPV infections can in the long run reduce due to the constant

replenishment of CD4+ T cells and the protective immunity provided by cART/HAART. The

discussion of aforementioned models discussed varies in terms of the purpose of research and

model formulations. It can be seen that over the years there has been an improvement in the
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in-host modelling dynamics of HPV with more meaningful conclusive results being obtained

and published. However, all the above models did not take into consideration the effect of latent

HPV infections which, if not taken into consideration, can become persistent HPV infections.

This prompts us to develop a model that encompasses latent HPV infections, immune response

and vaccination. We also extend the model created to assess the effect of immune suppression

as a result of HIV.

It is important to note that “in-host” and “ within-host” modelling are terms that mean the

same thing in the modelling of infectious diseases. For the sake of consistency, we will use the

term “in-host” throughout this research.

2.3 The role of immune response in HPV dynamics

High-risk human papillomaviruses 16, 18, 31, 45, are major contributory causes of cervical can-

cer in women worldwide and about 80% of women are infected by HPV through sexual activities

within their lifetime [82]. Due to infection and re-infection, some develop persistent HPV infec-

tions that lead to cancer lesions, while some can clear the HPV infection naturally provided it

is detected by the immune system. A fully functional human body is well organized with great

defences against infection and re-infection. It has the skin as the immediate defence mechanism

since it has a tough layer of cells called (keratinocytes) that are constantly producing keratin.

The skin is equipped with glands that secrete substances such as fatty acids and enzymes that

break down bacteria. It is important to always keep the skin intact to avoid possible attacks by

viruses. However, during sexual intercourse, viruses such as HPV take advantage of abrasion

of the epidermal lining of the genital or oral mucosa [99] to enter into the body. A mucous

membrane is a lining that covers the surface of internal organs such as the inside of the mouth

(oral mucosa) [99], the inside of the nose (nasal or respiratory mucosa), the vagina and urethral

(genital mucosa) just to name a few. If an infection is detected within the body, the immune

system is prompted into action and fights the infection before it spreads throughout the body

but this depends on how good the immune response of the body is to infection.

Most HPV cases in women are cleared naturally by the immune system within a year pro-

vided there is detection. A certain amount of the virus will lie dormant or latent until either it

is cleared by the immune system or it develops into persistent HPV infection. HPV normally

targets the squamous epithelial cells which are typically not immune cells but have immune
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functions such epithelial tight junctions that limit the entry of HPV. The immune response

plays an important role in clearing most infections that constantly affect us daily. It is the

body’s defence system that is prompted into action the moment a “foreign agent” is detected

[92]. The immune system is classified as “innate” or adaptive, where the innate immune system

is defined as the immediate line of defence that is prompted into action when abnormal cell

growth or death is detected. It is made up of cytokines, phagocytes and soluble proteins that

provide chemical signals of abnormalities within cells. The main function of the innate immune

response is to trigger the adaptive immune response through creating inflammatory responses

[92]. These inflammatory responses are only triggered by the damage of tissues as a result of

infection and normally manifest in the form of signs of fever, swellings and redness of the skin

among many other signs.

The innate immune response is the defence system that is made up of all the defence cells

which include natural killer T-cells (effector lymphocytes of the innate immune system that are

responsible for the control of tumours and infections [100]), keratinocytes cells (cells that make

up the epidermis), Langerhans cells (cells that are found in the basal and super basal layer of

the epidermis and are responsible for antigen/toxin presentation on the epidermal surface for

detection by the immune system [16]), dendritic cells (cells found in the skin and are respon-

sible for antigen presentation and act as messengers between the innate and adaptive immune

response [14]), just to mention a few [92]. These cells create a link between the innate immune

response system and the adaptive immune response, therefore, prompting T and B cells that

attack viruses such as HPV [4]. Interestingly, viruses such as HPV are however very “clever”

in concealing their presence within cells as they devise many ways of avoiding detection by the

immune system thus creating an anti-inflammatory micro environment[4]. The simplest way

HPV may evade the immune system is by infecting and replicating within the keratinocytes.

The obvious reason for this being that keratinocytes have a short life span of approximately 30

days. Thus, invading such cells, the HPV virus avoids abnormal cell death that can be detected

by the immune system. By hiding within the keratonicytes HPV succeeds in ensuring that there

is no production of HPV virions, no abnormal cell death, no inflammation and consequently

no detection. Abnormal cell death is crucial as it triggers inflammatory responses that prompt

the adaptive immune response into action and this makes the survival of the virus within the

body very difficult.

Invading the keratinocytes, however, is not the only way of evading the immune system used
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by HPV, it can also happen through the E6 and E7 proteins [39]. The E6 protein is known as

the major transformer protein for most papillomaviruses. It can change from one conformation

to another and therefore automatically change its function. Due to this, the E6 protein subse-

quently interferes with the function of the p53 protein, which is a cellular tumour suppressor

protein, and this promotes the growth of tumour cells [39]. The p53 protein is also responsible

for temporarily blocking cell replication provided that there is a need for DNA repair within

the body till the repair process is complete [47]. If there is HPV infection, the E6 and E7

proteins are responsible for inhibiting the action of the p53 protein and therefore cell replica-

tion becomes uncontrolled, promoting the occurrence of tumour cells. The effect of the E6 and

E7 promoting rapid cell proliferation of infected cells is what we are considering in this model,

based on the work by Verma et al [99].

HPV will evade the immune system through many other evasion mechanisms such as varying

the expressions of cytokines (substances that are secreted by cells and therefore induce inflam-

matory responses) and chemo-attractants (substances that attract mobile cells). It can also

promote the alteration of antigen presentation that facilitates the activation of T-cells. T-cells

are lymphocytes or types of white blood cells that are responsible for cell-mediated immunity.

These particular cells have a T-cell receptor on the cell surface that differentiates them from

other cells such as B-cells and natural killer cells. So based on this little narration it is evident

that persistent HPV infection is only deemed “successful” if the unique circular double-strand

DNA virus manages, at all costs, to evade detection by the immune system. This leads to

interesting mathematical modelling research of a little ’‘clever virus” in the presence of immune

response which is the scope of this research.

2.4 A review of an HIV/HPV in-host co-infection model

The work under review presents an HIV/HPV co-infection model governed by ordinary differ-

ential which shows the effect of HIV/AIDS (tat protein), HPV oncogene expression and immune

response on the dynamics of the spread of HPV within an HIV immune-compromised system.

The mathematical models presented establish if there are any differences in terms of results

obtained from solving the deterministic models formulated. For the sake of simplicity, the

co-infection model is split into two sub-models that are analysed to establish the equilibrium

points, the reproduction number, local and global stability. From the results of the sub-models,

it is established that the co-infection model is locally and globally stable. The work by Verma
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et al. [99] is reviewed as it is of interest to our HPV research. The model by Verma et al.

is made up of two-sub models (HIV model and an HPV model) and is based on the work by

Murall et al. [64]. This particular co-infection model was not analysed by the authors for the

stability of equilibria, reproduction number and global stability analysis. To incorporate some

of its aspects in our model we carry out a preliminary analysis on the model’s equilibrium

points. The results obtained will help us in the formulation of an HPV in-host model for this

research.

2.4.1 Model formulation of HIV/HPV co-infection model.

The HIV/HPV co-infection model by Verma et al. made use of a simple basic HIV sub-model

with treatment. It is assumed that: Healthy target cells, Th(t), are produced at a rate, s,

and are assumed to die naturally at a rate, d. The transmission rate of HIV as a result of the

interaction of the healthy target cells and the HIV virus Vh(t), occurs at a rate, β. Infected

target cells, Ih(t), are cleared at rate, δ while N1 is the burst size produced by the infected

target cells and the HIV virions are cleared naturally at rate, c1. In the presence of combined

Anti-Retroviral Therapy (cART), the HIV model is modified to include the presence of the

reverse transcriptase and protease inhibitor functions. The reverse transcriptase inhibitor, εRT ,

which is responsible for blocking the conversion of HIV RNA to HIV DNA while the protease

inhibitor,εPI , is responsible for blocking new HIV virions from becoming mature HIV virions.

This leads to the HIV sub-model given by the following differential equations

T ′h(t) = s− dTh − (1− εRT )βThVh,

I ′h(t) = (1− εRT )βThVh − δIh,

V ′h(t) = (1− εPI)N1δIh − c1Vh.

(2.2)

Throughout the thesis the notation Th(t) = Th, Ih(t) = Ih and Vh(t) = Vh will be used to

describe HIV cell classes.

The HPV sub model has the infected target cells Y1(t) where the rate of transmission of HPV

virions, W (t), through interaction with the healthy target cells is given by ψ. The cells die

naturally at rate, µ, and are cleared at a CTL killing rate, a, and the HPV specific CTLs

are represented by E(t). The expansion rate of effector cells specific to HPV with carrying

capacity, K is assumed to be, ω. Due to oncogene expression that occurs at a rate, ε, Y1(t) cells
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are converted into transit amplifying cells Y2(t) that are self-proliferating. These cells grow

at a rate rε proportional to their densities, where r is the transit amplifying rate. Both Y1(t)

and Y2(t) produce HPV virions W (t) at a rate, k, and these virions are cleared at a rate c2

due to antibody action. The model also assumes that N2 − Y1 represents the concentration of

uninfected cells within the basal layer with an epithelial concentration of φ. This leads to the

HPV sub model given by the following differential equations

Y ′1(t) =
ψW (N2 − Y1)

φ+N2 − Y1

− Y1(ε+ µ+ aE),

Y ′2(t) = εY1 + Y2(rε− µ− aE),

W ′(t) = µk(Y1 + Y2)− c2W,

E ′(t) = ωY2E

(
E

K̄

)
.

(2.3)

To maintain consistency throughout the thesis, we make the following changes to the HPV

model presented; class W (t) is renamed class V (t), class E(t) is renamed class K(t), this is

because the letters E,W have been used for different purposes throughout the thesis. The co-

infection model under study is a complete model that incorporates the effect of trans-activator

of transcription (tat) protein. HIV tat protein is a regulatory protein that enhances viral tran-

scription. In relation to HIV/HPV dynamics, tat protein is secreted from the intra-epithelial

immune cells. It disrupts the epithelial tight junctions that seal adjacent epithelial cells and

restrict the easy flow of viruses such as HPV [5, 97, 99]. In the co-infection model, the total

available epithelial cells are increased as a result of tat protein from the regular N2 to N2(1+pV )

where p is the effect of tat protein secreted by an HIV virion, V . This leads to the co-infection
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model governed by the following differential equations

T ′h(t) = s− dTh − (1− εRT )βThVh,

I ′h(t) = (1− εRT )βThVh − δIh,

V ′h(t) = (1− εPI)N1δIh − c1Vh,

Y ′1(t) =
ψW (N2(1 + pVh)− Y1)

φ+N2(1 + pVh)− Y1

− Y1(ε+ µ+ aE),

Y ′2(t) = εY1 + Y2(rε− µ− aE),

W ′(t) = µk(Y1 + Y2)− c2W,

E ′(t) = ωY2E(1− E

K̄
),

(2.4)

with initial conditions Th(0) = Th0, Ih(0) = Ih0, Vh(0) = Vh0, Y1(0) = Y10, Y2(0) =

Y20 ,W (0) = W0, and E(0) = E0. System (2.4) is biologically feasible within the region

Ω = {(Th, Ih, Vh, Y1, Y2,W,E) ∈ R7+ : N(t) ≤ s

d
}.

Model (2.4) represents cellular dynamics of human cells and viruses, and therefore we prove

that for all time t, the solutions (Th, Ih, Vh, Y1, Y2,W,E) of system (2.4) with positive initial

data are positive and bounded in Ω.

2.5 Positivity and boundedness of solutions

In the proof of positivity of solutions, we show that all solutions for model (2.4) remain positive

for all time, t. Accordingly, we state and prove the following theorem below;

Theorem 1. Let all parameters of system (2.4) be non-negative constants. A non-negative

solution given by, Th(t), Ih(t), Vh(t), Y1(t), Y2(t),W (t), E(t) for system (2.4) exists for all the

state variables with initial conditions given by Th0 > 0, Ih0 ≥ 0, Vh0 ≥ 0, Y10 ≥ 0, Y20 ≥ 0,W0 ≥

0, E0 ≥ 0 ∀ t ≥ 0.
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Proof. To prove the above theorem we use the method outlined in [66]. Using the first equation

to model system (2.4) we have

T ′h(t) = s− dTh − (1− εRT )βThVh,

> −(d+ (1− εRT )βVh)Th. (2.5)

Using separation of variables to solve the above differential equation, we obtain

dT

Th
> −(d+ (1− εRT )βVh)Th, (2.6)

which by integration yields

T (t) = Ae−
∫ t
0 (d+(1−εRT )βVh(s))ds, (2.7)

where A is a constant of integration. Taking initial conditions: at t = 0, Th(0) = Th0, such that

it can be seen that A = T0 and therefore it follows that

Th(t) > Th0e
−

∫ t
0 (d+(1−εRT )βVh(s))ds, (2.8)

which means that Th(t) > 0,∀ t > 0. The solution for Th(t) is strictly positive for all t ∈ [0, t∗).

Similarly, it also follows that

Ih(t) > Ih(0)e−
∫ t
0 δIh(s)ds,

Vh(t) > Vh(0)e−
∫ t
0 c1Vh(s)ds,

Y1(t) > Y1(0)e−
∫ t
0 (ε+µ+aE(s))ds,

Y ′2(t) > Y2(0)e−
∫ t
0 (aE(s)+µ−rε)ds,

W (t) > W (0)e−
∫ t
0 c2W (s)ds,

E(t) > E(0)e−
∫ t
0
E(s)2ωY2(s)

K̄
ds

(2.9)

and this shows that Th(t) > 0, Ih(t) > 0, Vh(t) > 0 Y1(t) > 0, Y2(t) > 0, W (t) > 0, E(t) >

0, ∀ t ∈ [0, t). This completes the positivity proof.

Theorem 2. A solution to system (2.4) with initial conditions, Th0 > 0, Ih0 ≥ 0, Vh0 ≥ 0, Y10 ≥

0, Y20 ≥ 0,W0 ≥ 0, ∀ t ≥ 0, exists and is unique in R7
+, ∀ t ≥ 0.
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Existence of solutions in mathematical biology helps in ascertaining if a solution to the de-

veloped model exists and is unique. The existence of such a solution enables us to go ahead

and find approximate solutions to the model and forecast the dynamics of infection spread. To

prove existence, we state the following theorem by Derrick and Grossman [23]

Theorem 3. Let Ω denote a region given by

|t− t0| ≤ a, ‖ x− x0 ‖≤ 1, x = (x1, x2, ..., xn), x0 = (x10, x20, ...xn0) (2.10)

and suppose that f(x, t) satisfies a Lipschitz condition given by

‖ f(t, x1)− f(t, x2) ‖≤M ‖ x1 − x2 ‖, (2.11)

each time pairs (t, x1) and (t, x2) belong in Ω where M is a positive constant. Then, there exists

a constant, C ≥ 0, such that a unique continuous vector solution of x(t) for model (2.4) within

the interval of (t− t0) ≤ C exists. The condition is satisfied by the requirement that the partial

derivatives
∂fi
∂xj

for i, j = 1, 2, 3, .... are continuous and bounded in Ω.

A Lipschitz condition is defined to prove theorem (3) as follows

Definition 1. Let E be an open subset of Rn. Then, a function f : E −→ Rn is said to satisfy

a Lipschitz condition on E if there is a positive constant k1 such that ∀x, y ∈ E,

| f(x)− f(y) |≤ k1 | x− y | .

Therefore f is said to be locally Lipschitz on E for each point x0 ∈ E if there is an ε− neigh-

bourhood of x0, ηε(x0) and a positive constant k0 > 0 such that ∀(x, y) ∈ ε−neighbourhood

x0,

| f(x)− f(y) |≤ k0 | x− y | .

By an ε−neighbourhood of x0 and ηε(x0) we imply that an open ball of positive radius exists i.e.

ηε(x0) = {x ∈ Rn| | x− x0 |< ε}.

We define what is meant by locally Lipschtz and prove the following lemma as in the work by

[76].

Lemma 1. Let E be an open subset of Rnand let f : E → Rn. Then if f ∈ C1(E), f is locally

Lipschitz on E.
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Proof. Provided that E is an open subset of Rn and given that x0 ∈ E, then it follows that

∃ ε > 0 such that ηε(x0 ⊂ E). Let k1 = max
|x−x0|≤ ε2

‖ Df(x) ‖ be the maximum of the continuous

function Df(x) on a compact set given by | x− x0 |≤
ε

2
and η ε

2
(x0) be the ε

2
− neighbourhood

of x0. For x, y ∈ η ε
2
(x0), we set u = x− y such that x+ su ∈ η ε

2
(x0) for 0 < s < 1 since η ε

2
(x0)

is a convex set (this is a set such that for any two points within η ε
2
(x0) the line joining the two

points will always lie within the set η ε
2
(x0). We define the function

F : [0, 1]→ Rn

by F (s) = f(x+ su) and by differentiating F (s), yields

F ′(s) = u×D(x+ su), (2.12)

which can be expressed as

F ′(s) = u×Df(x+ su). (2.13)

Hence

f(y)− f(x) = F (1)− F (0) (2.14)

which implies that ∫ 1

0

F ′(s)ds =

∫ 1

0

u×Df(x+ su)ds (2.15)

and

| f(y)− f(x) | ≤
∫ 1

0

| u×Df(x+ su) | ds,

≤
∫ 1

0

‖ Df(x+ su) ‖| u | ds,

≤ k1 | u |= k1 | y − x | . (2.16)

This ends the proof of Lemma 1 and leads to the proof for existence of unique solutions for

model system (2.4).

Proof. Let model model system (2.4) be expressed as follows

f1 = s− dTh − (1− εRT )βThVh,

f2 = (1− εRT )βTh(t)Vh − δI,

f3 = (1− εPI)N1δIh − c1Vh,
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f4 =
ψW (N2(1 + pVh)− Y1)

φ+N2(1 + pVh)− Y1

− Y1(ε+ µ+ aE),

f5 = εY1 + Y2(rε− µ− aE),

f6 = µk(Y1 + Y2)− c2W,

f7 = ωY2E(1− E

K̄
). (2.17)

Finding the partial derivatives, we obtain

| ∂f1

∂Th
|= d <∞, | ∂f1

∂Ih
|= 0 <∞, | ∂f1

∂Vh
|= 0 <∞, | ∂f1

∂Y1

|= 0 <∞,

| ∂f1

∂Y2

|= 0 <∞, | ∂f1

∂W
|= 0 <∞, | ∂f1

∂E
|= 0 <∞, | ∂f2

∂Th
|= 0 <∞,

| ∂f2

∂Ih
|= δ <∞, | ∂f2

∂Vh
|= 0 <∞, | ∂f2

∂Y1

|= 0 <∞, | ∂f2

∂Y2

|= 0 <∞,

| ∂f2

∂W
|= 0 <∞, | ∂f2

∂E
|= 0 <∞, | ∂f3

∂Th
|= 0 <∞, | ∂f3

∂Ih
|= 0 <∞,

| ∂f3

∂Vh
|= c1 <∞, |

∂f3

∂Y1

|= 0 <∞, | ∂f3

∂Y2

|= 0 <∞, | ∂f3

∂W
|= 0 <∞,

| ∂f3

∂E
|= 0 <∞, | ∂f4

∂Th
|= 0 <∞, | ∂f4

∂Vh
|= 0 <∞, | ∂f4

∂Y1

|= 0 <∞,

| ∂f4

∂Y2

|= 0 <∞, | ∂f4

∂W
|= 0 <∞, | ∂f4

∂E
|= a <∞, | ∂f5

∂Th
|= 0 <∞,

| ∂f5

∂Ih
|= 0 <∞, | ∂f5

∂Vh
|= 0 <∞, | ∂f5

∂Y1

|= ε <∞, | ∂f5

∂Y2

|=| rε− µ |<∞,

| ∂f5

∂W
|= 0 <∞, | ∂f5

∂E
|= a <∞, | ∂f6

∂Th
|= 0 <∞, | ∂f6

∂Ih
|= 0 <∞,

| ∂f6

∂Vh
|= 0 <∞, | ∂f6

∂Y1

|= kµ <∞, | ∂f6

∂Y2

|= kµ <∞, | ∂f6

∂W
|= c2 <∞,

| ∂f6

∂E
|= 0 <∞, | ∂f7

∂Th
|= 0 <∞, | ∂f7

∂Ih
|= 0 <∞, | ∂f7

∂Vh
|= 0 <∞,

| ∂f7

∂Y1

|= 0 <∞, | ∂f7

∂Y2

|= 0 <∞, | ∂f7

∂E
|= 0 <∞.

(2.18)

It can be seen that all the partial derivatives exist and are continuous. Therefore, by Lemma

1, there exists a unique solution for model (2.4) within the region Ω.
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2.6 Analysis of the sub-model for HIV

The HIV sub-model is given by

T ′h(t) = s− dTh − (1− εRT )βThVh,

I ′h(t) = (1− εRT )βThVh − δIh,

V ′h(t) = (1− εPI)N1δIh − c1Vh,

(2.19)

with Th(0) = Th0 ≥ 0, Ih(0) = Ih0 ≥ 0, Vh(0) = Vh0 ≥ 0 as initial conditions and the total

population of cells, N(t) = Th(t) + Ih(t), excluding the virus, is such that

Ω1 = {(Th, Ih, Vh) ∈ R3+ : N(t) ≤ s

d
}.

2.6.1 Equilibrium analysis and reproduction number R0H

The disease-free equilibrium for the sub-model is given by E0 =
(s
d
, 0, 0

)
. The basic reproduc-

tion number, R0H , is computed using the next generation method approach by [98] as follows

Fm =

 (1− εRT )βThVh

0

 , (2.20)

and

Vm =

 δIh

c1Vh − (1− εPI)N1δIh

 , (2.21)

and then the Fm and Vm matrices are given by

F =

 0
βs(1− εRT )

d

0 0

 , (2.22)

and

V =

 δ 0

−(1− εPI)N1δ c1

 , (2.23)

such that the spectral radius ρ(FV−1) is given by

ρ(FV−1)) = R0H =
βsN1(1− εRT )(1− εPI)

c1d
. (2.24)

It is important to note thatR0H is strictly positive provided that (1−εRT ) > 0 and (1−εPI) > 0.

This reproduction number is also known as the effective reproduction number for the HIV

treatment model.

28



Theorem 4. The disease-free equilibrium for the HIV sub-model is locally asymptotically stable

when R0H < 1 and unstable when R0H > 1.

Proof. To prove local stability of the disease-free-equilibrium using the Jacobian method, we

adopt the method outlined in [77] as follows

J(E0) =


−d 0 −βs(1− εRT )

d

0 −δ βs(1− εRT )

d

0 N1(1− εPI)δ −c1

 , (2.25)

and the sub matrix of the Jacobian corresponding to the infectious classes is given by

J(ε01) =

 −δ βs(1− εRT )

d

N1(1− εPI)δ −c1

 . (2.26)

The determinant of J(ε01) is given by

Det(J(ε01)) = δc1 −
βsN1δ(1− εRT )(1− εPI)

d
,

= δc1

[
1− βsN1(1− εRT )(1− εPI)

c1d

]
,

= δ [1−R0H ] .

(2.27)

It can be seen that tr(J(ε01)) = −δ − c1 < 0 and when R0H < 1, Det(J(ε01)) > 0 and when

R0H > 1, Det(J(ε01)) < 0 hence the eigenvalues of J(ε01) have negative real parts implying

that E0 is locally asymptotically stable when R0H < 1.

2.6.2 Global stability of the disease-free equilibrium

The disease-free equilibrium, E0, is locally stable provided that R0H < 1 . It is important to

establish global stability of the disease-free equilibrium . Shuai et al. [88] presented two global

stability methods for compartmental models using a Lyapunov function approach. The first

method presented was the matrix-theoretic method for proving global stability of the disease-

free equilibrium. The second method presented is the graph-theoretic method for proving global

stability of the endemic equilibrium. In this research, we outline and use the matrix-theoretic

method to prove global stability of the disease-free equilibrium. The method entails the use of

the F and V matrices obtained from the computation of the reproduction number through the

next generation matrix approach by Van den Driessche and Watmough [98]. Let

x′ = F(x, y)− V(x, y), (2.28)
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where, F(x, y) = (F1,F2,F3.....Fn)T and V(x, y) = (V1,V2,V3.....Vn)T , are the rate of appear-

ance of new infections and the transition terms respectively. Let

y′ = g(x, y), (2.29)

where

x = (x1, x2, x3, .....xn)T ∈ Rn,

g = (g1, g2, g3, .....gm)T ∈ Rm,

y = (y1, y2, y3, ....ym)T ∈ Rm, (2.30)

are the different populations for the infected and healthy compartments. In order to perform

the matrix-theoretic method first set

f(x, y) = (F − V)x−F(x, y) + V(x, y) (2.31)

From equation (2.28) it follows that equation (2.31) becomes

f(x, y) = (F − V)x− x′ (2.32)

and therefore

x′ = (F − V)x− f(x, y) (2.33)

and we assume that f(0, y) = 0. Let uT ≤ 0 be the left eigenvector for the non-negative matrix

V−1F that relates to the eigenvalue ρ(FV−1) = R0H = ρ(V−1F). The Perron eigenvector for

model (2.28) is given by the following theorem;

Theorem 5. Let F ,V and f(x, y) be defined. If f(x, y) ≥ 0 in Ω ∈ Rm+n
+ , F ≥ 0, V−1 ≥ 0

and R0H ≤ 1 then the Lyapunov function L = uTV−1x can be used for the disease model (2.28)

on Ω, where x represents the infectious components of the model.

Proof. Let

L = uTV−1x, (2.34)

and so by differentiation L along solutions of model (2.28) yields

L′|(2.28) = uTV−1x′ = uT
[
V−1(F − V)x− f(x, y)

]
= uTV−1(F − V)x− uTV−1f(x, y)

= (R0H − 1)uTx− uTV−1f(x, y).

(2.35)
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If R0H ≤ 1, then it follows that L′ ≤ 0 in Ω and hence L is an appropriate Lyapunov function

for model (2.28).

The set Ω in theorem 5 is chosen as a compact subset of Rm+n
+ such that (0, y0) ∈ Ω and Ω

is positively invariant with respect to model (2.28). The Lyapunov function constructed in

theorem 5 can be used to prove the global stability of the disease-free equilibrium, uniform

persistence and it can also be used to establish existence of the endemic equilibrium [88].

Theorem 6. Let F ,V and f(x, y) be defined and let Ω ⊂ Rm+n
+ be compact such that (0, y0) ∈

Ω and Ω is positively invariant with respect to model (2.28). Suppose that f(x, y) ≥ 0 and

f(x, y0) = 0 in Ω, F ≥ 0,V−1 ≥ 0 and V−1F is irreducible. Assume that the disease-free

represented by system y′ = g(0, y) has a unique equilibrium given by y = y0 > 0, that is it is

globally asymptotically stable in Rm
+ provided that the following conditions hold;

1. R0H < 1, the disease-free equilibrium is globally asymptotically stable,

2. R0H > 1, the disease-free equilibrium is unstable such that model system (2.28) is uni-

formly persistent and there exists at least one endemic equilibrium.

From the above theorem 6 we define an the following terms;

Definition 2. Permutation matrix [52].A permutation matrix is a binary matrix that has

exactly one entry that is equal to one in each row and column and is zero everywhere else.

Such a matrix represents a permutation of n elements which when used to multiply a matrix A

produces a permutation in the rows or columns of A.

Definition 3. Reducible matrix [52].A matrix is said to be reducible if, for some permuta-

tion,P, it follows that

PAP T =

 A0 0

A1 A2

 (2.36)

where A0, A1, A2 are square matrices. Based on these definitions, we state without proof, the

Perron-Frobenius theorem as follows

Theorem 7. The Perron-Frobenius Theorem [52]. Let A ≥ 0 be an n × n real matrix

then the following results hold;

1. The spectral radius of A given by ρ(A) is an eigenvalue of matrix A with respect to a

non-negative eigenvector.
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2. If matrix A is irreducible , then ρ(A) is a simple eigenvalue and the associated eigenvector

is positive.

We adopt the method by [88] to prove global stability of HIV model (2.2) and state the following

theorem;

Theorem 8. The disease-free equilibrium,E0, is globally stable provided that R0H < 1.

Proof. The method of a Lyapunov function for an in-host model by [103] is used and so recall

that for the HIV sub-model, R0H =
βsN1(1− εRT )(1− εPI)

c1d
. It can clearly be shown that the

F and V−1 are non-negative and theorem 7 states that the non-negative matrix V−1F should

have a non-negative left eigenvalue u corresponding to R0H = ρ(V−1F) = ρ(FV−1), meaning

that uTρ(V−1F) = uTR0H . Let X = (I, V )T , represent the infected and virus classes for the

HIV sub-model. From the computation of R0H we obtain,

F =


0

βs(1− εRT )

d

0 0

 , V =


δ 0

−(1− εPI)N1δ c1

 . (2.37)

Using F and V we check if V−1F is reducible or irreducible as follows

V−1 =


1

δ
0

(1− εPI)N1

c1

1

c1

 , V−1F =


0

βs(1− εRT )

δd

0
βN1s(1− εRT )(1− εPI)

c1d

 . (2.38)

It can be seen that matrix V−1F is reducible since the second column is the only non-zero

column and thus theorem 6 fails and hence uTx 6= 0. To prove the global stability however we

construct a Lyapunov function of the form

L = uTV−1x =
(1− εPI)N1

c1

I +
1

c1

V,

=
R0Hd

βs(1− εRT )
I +

R0Hd

βsN1(1− εRT )(1− εPI)
V =

R0Hd

βs(1− εRT )

[
I +

1

N1(1− εPI)
V

]

(2.39)

where uT = (0, 1)T . It follows from theorem 5 that

L′ = uTV−1x′ = (R0H − 1)uTx− uTV −1f(x, T ), (2.40)
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where f(x, T ) = (1− εRT )βV (T0 − T ). It follows that

L′ = (R0H − 1)V − R0Hd

s
V [T0 − T ] ≤ 0, (2.41)

provided that R0H < 1 and L′ = 0 implies that T0 = T or V = 0. The invariant set on which

L′ = 0, contains only one point
(s
d
, 0, 0

)
and by applying LaSalle’s invariant principle [50]

it can be concluded that the disease-free equilibrium is globally asymptotically stable when

R0H < 1. This concludes the proof.

2.6.3 The endemic equilibrium for the HIV sub-model

The endemic equilibrium for (2.19) is given by

T e =
c1

N1β(1− εRT )(1− εPI)
,

Ie =
s

δ

[
1− 1

R0H

]
,

V e = s(1− εPI)N1

[
1− 1

R0H

]
(2.42)

2.7 Analysis of the HPV sub-model

The HPV model is given by

Y ′1(t) =
ψW (N2 − Y1)

φ+N2 − Y1

− Y1(ε+ µ+ aE),

Y ′2(t) = εY1 + Y2(rε− µ− aE),

W ′(t) = µk(Y1 + Y2)− c2W,

E ′(t) = ωY2E(1− E

K̄
),

(2.43)

with Y1(0) = y10 ≥ 0, Y2(0) = y20 ≥ 0, W (0) = W0 ≥ 0, E(0) = E0 ≥ 0, as initial conditions

and the total population of cells N2(t) = Y1(t) + Y2(t) such that

Ω2 = {(Y1, Y2,W,E) ∈ R4+.
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2.7.1 Equilibrium points and stability analysis

The disease-free equilibrium point for (2.43) is given by Q = (0, 0, 0, K̄). The reproduction

number is calculated using the next generation matrix approach [98] as follows

Fv =



ψW (N2 − Y1)

φ+N2 − Y1

0

0

0


, (2.44)

and

Vv =


Y1(ε+ µ+ aE)

Y2(µ+ aE − rε)− εY1

c2W − µk(Y1 + Y2)

−ωY2E(1− E

K̄
)

 , (2.45)

and the F and V matrices are given by

F =


0 0

N2ψ

N2 + φ

0 0 0

0 0 0

 , (2.46)

and

V =


(ε+ µ+ aK̄) 0 0

−ε (µ+ aK̄ − rε) 0

−µk −µk c2

 . (2.47)

The system reduces to a 3-D system because the immune response class, E has a zero row and

column when the equilibrium point is substituted and therefore has no effect on the reproduction

number calculation. Inclusion of this class will result in a determinant of zero or a singular

matrix. Based on this the spectral radius ρ(FV−1) is given by

ρ(FV−1) = R1 =
N2ψµk(µ+ ε+ aK̄ − rε)

c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)(N2 + φ)
, (2.48)

It can be seen thatR1 is positive provided that µ > rε and this becomes the biologically feasible

region for R1.

Theorem 9. The disease-free equilibrium for the HPV model is locally asymptotically stable

when R1 < 1 and unstable when R1 > 1.
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Proof. The Jacobian sub matrix of the infectious classes of (2.4) is given by

J(Q) = F − V =


−(ε+ µ+ aK̄) 0

N2ψ

N2 + φ

ε (rε− µ− aK̄) 0

µk µk −c2

 , (2.49)

and the determinant is given by

Det(J(Q)) = −(ε+ µ+ aK̄)
[
c2(µ+ aK̄ − rε)

]
+

N2ψ

N2 + φ

[
εµk + µk(µ+ aK̄ − rε)

]
,

= −c2(µ+ aE − rε)(ε+ µ+ aK̄) +
N2ψµk

N2 + φ

[
ε+ µ+ aK̄ − rε

]
,

= c2(rε− µ− aK̄)(ε+ µ+ aK̄) [1−R1] .

(2.50)

It can be seen that tr(J(Q)) = −ε− 2µ− 2aK̄ − c2 + rε < 0 and when R1 < 1, Det(J(Q)) > 0

and when R1 > 1, Det(J(Q)) < 0. Therefore, the eigenvalues of J(Q) have negative real parts

which imply that the disease-free equilibrium is locally asymptotically stable when R1 < 1 and

unstable when R1 > 1.

2.7.2 Global stability analysis of the disease-free equilibrium, Q

Theorem 10. The disease-free equilibrium is globally stable provided that R1 < 1 around Q.

Proof. We recall that

R1 =
N2ψµk(µ+ ε+ aK̄ − rε)

c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)(N2 + φ)

and let X = (Y1, Y2,W,E)T . From the computation of R1 using the next generation matrix

approach we have

F =


0 0

N2ψ

N2 + φ

0 0 0

0 0 0

 ,V =


(ε+ µ+ aK̄) 0 0

−ε (µ+ aK̄ − rε) 0

−µk −µk c2

 (2.51)

and so we check if V −1F is irreducible as follows;
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V−1 =



1

(ε+ µ+ aK̄)
0 0

ε

(ε+ µ+ aK̄)(µ+ aK̄ − rε)
1

(µ+ aK̄ − rε)
0

µk(ε+ µ+ aK̄ − rε)
c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)

µk

c2(µ+ aK̄ − rε)
1

c2


. (2.52)

It follows that

V−1F =



0 0
N2ψ

(N2 + φ)(ε+ µ+ aK̄)

0 0
N2ψε

(N2 + φ)(ε+ µ+ aK̄)(µ+ aK̄ − rε)

0 0
N2ψµkε

c2(N2 + φ)(ε+ µ+ aK̄)(µ+ aK̄ − rε)


. (2.53)

It can be seen that V−1F is reducible because the third column is the only non-zero column

and hence theorem 6 fails. So we construct a Lyapunov function of the form

W = uTV−1X,

=
µk(ε+ µ+ aK̄ − rε)

c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)
Y1 +

µk

c2(µ+ aK̄ − rε)
Y2 +

1

c2

W,

=
R1(N2 + φ)

N2ψ
Y1 +

R1(N2 + φ)(ε+ µ+ aK̄)

N2ψ(µ+ ε+ aK̄ − rε)
Y2 +

R1(N2 + φ)(ε+ µ+ aK)(µ+ aK̄ − rε)
N2ψµk(µ+ ε+ aK̄ − rε)

W

=
R1(N2 + φ)

N2ψ

[
Y1 +

(ε+ µ+ aK̄)

(µ+ ε+ aK̄ − rε)
Y2 +

(ε+ µ+ aK̄)(µ+ aK̄ − rε)
µk(µ+ ε+ aK̄ − rε)

W

]
, (2.54)

where uT = (0, 0, 1)T is the left eigenvector for the matrix V −1F. From theorem 5 we obtain

W ′ = uTV−1X ′ = (R1 − 1)uTX − uTV −1f(X,S) (2.55)

where S = N2 − Y1, these are the susceptible epithelial cells and at disease-free equilibrium

S = S0. Hence f(X,S) =
ψW (S0 − S)

(φ+ S0 − S)
such that
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W ′ = (R1 − 1)uTX − uTV −1

[
ψW (S0 − S)

(φ+ S0 − S)

]
,

= (R1 − 1)W − R1(N2 + φ)

N2ψ

[
ψW (S0 − S)

(φ+ S0 − S)

]
,

= W

[
(R1 − 1)− R1(N2 + φ)

N2

[
(S0 − S)

(φ+ S0 − S)

]]
≤ 0,

(2.56)

provided that R1 < 1. It also follows that W ′ = 0, implies that W = 0 or S0 = S. Therefore

there exists an invariant set where W = 0 and S0 = S which is the disease-free equilibrium Q

and by LaSalle’s invariance principle [50] the disease-free equilibrium is globally asymptotically

stable in Ω2. This concludes the proof.

2.7.3 Endemic equilibrium analysis

The HPV sub-model presents two endemic equilibrium points which are the CTL-inactive

endemic and the CTL-active endemic. The CTL-inactive endemic is the equilibrium point

where E = 0 and is presented in terms of Y ∗2 as follows

Y ∗1 =
µ− rε
ε

Y ∗2 , W ∗ =
µk(µ+ ε− rε)

c2

Y ∗2 , Y
∗

2 = Y ∗2 , E∗ = 0. (2.57)

The CTL-activated endemic equilibrium point is for the case E 6= 0 and is expressed Y ∗1 and

the reproduction number R1 as follows;

W ∗ = Y ∗1

[
µk(ε+ µ+ aK̄ − rε)
c2(µ+ aK̄ − rε)

(
1

R1

)
+

1

N2

]
− Y ∗21 (ε+ µ+ aK̄)

ψN2

,

Y ∗2 = Y ∗1

[
(ε+ µ+ aK̄ − rε)

(µ+ aK̄ − rε)

(
1

R1

)
+

c2Y
∗

1

ψN2µk

]
+
c2Y

∗
1

N2µk
− 1,

E∗ = K̄, Y ∗1 = Y ∗1

(2.58)

The endemic equilibrium points for an in-host HPV model are rather complex in nature. The

stability of the above endemic equilibrium points can be performed through the creation of

suitable Lyapunov functions or numerical simulations.
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2.8 Analysis of the Co-infection model

The co-infection model is given by

T ′h(t) = s− dTh − (1− εRT )βThVh,

I ′h(t) = (1− εRT )βThVh − δIh,

V ′h(t) = (1− εPI)N1δIh − c1Vh,

Y ′1(t) =
ψW (N2(1 + pVh)− Y1)

φ+N2(1 + pVh)− Y1

− Y1(ε+ µ+ aE),

Y ′2(t) = εY1 + Y2(rε− µ− aE),

W ′(t) = µk(Y1 + Y2)− c2W,

E ′(t) = ωY2E

[
1− E

K̄

]
.

(2.59)

2.8.1 Equilibrium points and stability analysis.

The disease-free equilibrium for the co-infection model is given by

Q0 =
(s
d
, 0, 0, 0, 0, 0, K̄

)
.

The reproduction number, R0, is computed using the next generation matrix approach by [98].

To come up with the relevant matrices we only consider the infected and viral production classes

that is Ih, Vh, Y1, Y2,W and therefore the matrices are found as follows

F =



(1− εRT )βThVh

0

ψW (N2(1 + pVh)− Y1)

φ+N2(1 + pVh)− Y1

0

0


, (2.60)
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and

V =



δIh

c1Vh − (1− εPI)N1δIh

Y1(ε+ µ+ aE)

Y2(µ+ aE − rε)− εY1

c2W − µk(Y1 + Y2)


. (2.61)

The F and V matrices are given by

F =



0
βs(1− εRT )

d
0 0 0

0 0 0 0 0

0 0 0 0
N2ψ

(N2 + φ)

0 0 0 0 0

0 0 0 0 0


, (2.62)

and

V =



δ 0 0 0 0

−N1δ(1− εPI) c1 0 0 0

0 0 (ε+ µ+ aK̄) 0 0

0 0 −ε (µ+ aK̄ − rε) 0

0 0 −µk −µk c2


. (2.63)

The dominant eigenvalues for FV−1 are

R0H =
βsN1(1− εRT )(1− εPI)

c1d
and

R1 =
N2ψµk(µ+ ε+ aK̄ − rε)

c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)(N2 + φ)
,

(2.64)

such that the reproduction number,R0, is given by

R0 = max{R0H ,R1}.

Provided that the conditions set on the HIV and HPV sub-models are met, R0 is strictly

positive. This leads to the following theorem on local stability of (2.59).

Theorem 11. The disease-free equilibrium for the HIV/HPV model (2.59) is locally asymptot-

ically stable when R0 < 1 and unstable when R0 > 1.
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Proof. We find the Jacobian of the infectious classes evaluated at the disease-free equilibrium

J (Q0) given as

J (Q0) =



−δ βs(1− εRT )

d
0 0 0

N1δ(1− εPI) −c1 0 0 0

0 0 −(ε+ µ+ aK̄) 0
N2ψ

(N2 + φ)

0 0 ε −(µ+ aK̄ − rε) 0

0 0 µk µk −c2


.

(2.65)

The determinant of the Jacobian matrix, J (Q0), is given by;

|J (Q0)| = −
[
c2(ε+ µ+ aK̄)(µ+ aK̄ − rε)− N2ψµk(ε+ µ+ aK̄ − rε)

N2 + φ

]

×
[
βsN1δ(1− εRT )(1− εPI)− δc1d

d

]

= δc1c2(ε+ µ+ aK̄)(rε− µ− aE)(1−R1)(1−R0). (2.66)

It can be seen that

Tr(J (Q0)) = −δ − c1 − (ε+ µ+ aE)− (µ+ aE − rε)− c2,

which implies that the system is locally asymptotically stable since whenR0 < 1, Det(J (Q0)) >

0 and when R0 > 1, Det(J (Q0)) < 0 and the system is unstable.

2.9 Conclusion on the chapter

The work presented is on the viral dynamics of HPV by Verma et al. [99, 64]. The authors

of the work did not present any preliminary analysis that showed that the model built was

biologically feasible, locally and globally stable. We presented global stability analysis using

the Lyapunov approach by Shuai et al. [88] and this consequently will assist us in our analysis

for the basic model with latency presented in chapter 3. This chapter built up the base of

our new work on HPV as it presented the HPV dynamics. The work presented is tallied with

the simulation work done by the authors. It will assist in building up a model that shall be

presented in chapter 3. There are some possible modifications that we hope to incorporate in
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our new model. Our new model will consider the immune evasion property of HPV and how

it affects the overall dynamics of HPV. In the next chapter, we present the basic deterministic

in-host model for HPV in the presence of immune response and latency. The model presented

will be thoroughly analysed to assess the effects of immune response.
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Chapter 3

The basic in-host mathematical model

for HPV with immune response

3.1 Introduction

This chapter presents the basic mathematical model for HPV based on the work done by Verma

et al. [99, 64]. The model incorporates latency and immune responses. Theoretical results for

the global and local stability dynamics of the model are established. Numerical simulations

indicate that the disease-free and endemic equilibrium points are globally asymptotically stable,

provided certain conditions are met.

3.2 Model formulation

In the model formulation, the model considers susceptible basal layer cells of the epithelium

within the genital mucosa which are constantly at risk of HPV infection during sexual inter-

course as a result of abrasion. The mathematical model is made up of susceptible target cells

denoted by Ts(t) which represent healthy cells that are at risk of getting infected upon abrasion

of the epithelium. These cells are assumed to die naturally at rate, µ. When HPV enters or

infects a healthy target cell, Ts(t), it merges its DNA with that of the cell such that the cell is

altered and no longer operates as a normal cell. Infection of the healthy target cells is assumed

to occur at a rate given by
βV

γ + Ts
, (3.1)

and where β is the transmission rate of HPV, V (t) is the free HPV virions, Ts(t) is the total

number of uninfected epithelial cells that are susceptible to infection and γ is the concentra-
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tion of the epithelial cells where the infection is considered half-maximal [99, 64]. The model

incorporates latently infected cells. Viral latency represents the presence of viral DNA within

the body in the absence of infection [55]. Infections such as HPV can lie dormant within the

skin or epithelial cells [62]. We assume that latently infected cells, L(t), are target cells within

the basal layer that lie dormant or do not show any cytological changes for a certain period

before they either clear HPV infection or become infectious target cells. We define “clearance”

of HPV infection from latently infected cells to be the spontaneous loosing of viral DNA during

cell division as suggested by Ryser et al. [80], or the cells can expel the viral DNA , which can

be assumed to be some form of innate immunity. In this model we assume “clearance” of HPV

infection occurs at rate, φ, and cells cleared of infection do not die but go back to the susceptible

class, Ts(t). Normally, changes in immune response status (usually immune suppression) can

cause latently infected cells to be reactivated, persistent infections, or to mature into infected

cells [55]. The inclusion of latently infected cells takes into account the undetectable HPV

infection that, in the long run, can develop into persistent HPV, if not cleared. In a review

paper, Gravitt et al. states that new HPV infection is not necessarily a result of sexual activi-

ties or sexual partner acquisition, but can also be as a result of the recurrent latent infections

[36]. Therefore, incorporating latency into the HPV model is important in understanding the

dynamics of HPV progression within a community. We assume that natural death of latently

infected cells also occurs at rate, µ. Infectious target cells for the model are denoted by I1(t).

The model assumes that, after a certain period, the latently infected cells can subsequently

mature into infectious target cells at rate ψ, and therefore progress to the I1(t) class. Natural

death of the I1(t) cells occurs at rate µ. Throughout the model, clearance of HPV infection

as a result of immune response is assumed to occur at rate, θ, within all infected cell classes

I1(t) and I2(t). Due to oncogene expression at rate, ε ∈ [0, 1], I1(t) cells are converted into

transit amplifying cells, I2(t), that trigger immune response due to unusual cell activity [99, 64].

These cells are assumed to self-proliferate at rate, rε, where r is the transit amplifying cells

recruitment rate [99, 64] withrε ≤ µ and 0 ≤ r ≤ 1. I2(t) cells are cleared naturally at rate, µ,

and release free virions due to bursting. Free virion production within the model is assumed to

occur at rate, N2µ(I1 + I2) where N2 is the burst size that is due to virus particles produced

by the I1(t) and I2(t) cells in a lifetime. Free virions are assumed to die naturally at a rate, δ.

Immune response in the form of cytotoxic target cells (CTLs), K(t), is assumed to be initiated

by a rapid and unusual growth of I2(t) cells indicating an abnormality within the system. The

reason why only the I2(t) class is considered in the generation of immune response is because,

HPV is an intra-epithelial infection and therefore, such infection is not passed on to the blood
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stream. HPV will also at all costs evade detection by the immune system and therefore, the

only signal that can be detected is that of unusual cell growth or death, which is through the

proliferation of I2(t) cells as explained by [63]. The other reason is that of CTL-response be-

ing only activated through the detection of the oncogene protein E6, which is only activated

through the presence of I2(t) cells [63]. The immune response cells dock on to I1(t) cells or I2(t)

cells and kill the infected cell. The model assumes that the proliferation rate of CTLs occurs

at a rate, σ, [99, 64] and that immune response cells die naturally at a rate, ν. This leads to

the following flow diagram for the basic HPV model with latency and immune response: The

Figure 3.1: Flow diagram for the in-host dynamics of HPV in the presence of latency and

immune response.

model flow diagram leads to the following model equations:

T ′s = Λ + φL−
(

βV

(γ + Ts)
+ µ

)
Ts,

L′ =
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L,

I ′1 = ψL− (ε+ µ+ θK)I1,

I ′2 = εI1 + rεI2 − (µ+ θK)I2,

V ′ = N2µ(I1 + I2)− δV,

K ′ = σI2K − νK,

(3.2)

with initial conditions given by Ts(0) = Ts0, L(0) = L0, I1(0) = I10, I2(0) = I20, V (0) = V0 and

K(0) = K0. A summary of parameters, classes and descriptions used in the model are presented

in Table (3.1).
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Table 3.1: Table of parameters

Parameter Description

Ts(t) Susceptible target epithelial cells that have been uncovered by abrasion during sexual

intercourse.

L(t) Latently infected cells that have been exposed to infection but are not yet producing

the virus.

I1(t) Infected cells that are virus producing.

I2(t) Infected cells that are self-proliferating as a result of oncogene expression.

V (t) Virus particles that infect the susceptible target epithelial cells.

K(t) Immune response cells triggered by I2(t).

β HPV infection transmission rate [99].

φ Natural clearance of HPV within the latently infected cells as a result of natural

healing of cells.

δ Virion death rate.

µ Natural cell death rate for Ts(t), L(t), I1(t), I2(t) cells [64].

N2 HPV burst size [99].

θ HPV clearance rate as a result of immune response action [90, 63]. Such cells are

docked by the immune cells and undergo cell death.

γ Epithelial cell concentration for infection half maximal [64].

ψ Mature rate of latently infected cells into infectious cells I1(t) that produce virus

[40].

σ CTL expansion rate in the presence of HPV viral proteins [64, 40]

ν CTL natural death rate.

ε Oncogene expression rate [64].

r Transit amplifying cells recruitment rate [64].

3.3 Mathematical analysis of the basic model

3.3.1 Positivity and boundedness of solutions

Model system (3.2) describes the dynamics of high-risk HPV in human cells within the gential

mucosa and it is important to prove that all the state variables, Ts(t), L(t), I1(t), I2(t), V (t), K(t)

are non-negative for all time t > 0. A mathematical model is said to be well posed provided

that it has a unique solution for every point or initial condition for the model system. Model
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system (3.2) should be well posed in order for it to be mathematically accepted and biologically

feasible. This leads to the following important theorem and its proof;

Theorem 12. Let the initial conditions of (3.2) satisfy Ts0 > 0, L0 > 0, I10 > 0, I20 > 0, V0 >

0, K0 > 0. The solutions of model (3.2), Ts(t), L(t), I1(t), I2(t), V (t), K(t), are bounded and

remain positive ∀t ∈ [0, t0] provided that the unique solutions for system (3.2) exist on an

interval [0, t0] for some t0 > 0.

Proof. The method by [107] is adopted and we first prove that Ts(t) is positive for t ≥ 0,

otherwise there exists a positive t0 such that Ts(t) > 0 for t ∈ [0, t0) and Ts(t0) = 0. Using the

first equation of model (3.2), given by

T ′s = Λ + φL−
(

βV

(γ + Ts)
+ µ

)
Ts, (3.3)

it is noted that Ts(t) is strictly positive ∀ t ∈ [0, t0). Assuming that on the contrary let t0 > 0,

be the first time that Ts(t0) = 0 and T ′s(t0) ≤ 0 then from equation (1) of model (3.2) we obtain

Ts(t0) = Λ + φL > 0, which is a contradiction. So, we conclude that Ts(t) > 0, ∀ t ∈ [0, t0).

Based on this, we also have the following

L′|L=0 =
βV Ts

(γ + Ts)
≥ 0,

I ′1|I1=0 = ψL ≥ 0,

I ′2|I2=0 = εI1 ≥ 0,

V ′|V=0 = N2µ(I1 + I2) ≥ 0,

K ′|K=0 = 0.

(3.4)

It can clearly be seen that L(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, V (t) ≥ 0, K(t) ≥ 0, ∀ t ∈ [0, t0) which

means that any solution within, Ts(t), L(t), I1(t), I2(t), V (t), K(t) of model (3.2) is positive for

all t ≥ 0.

Furthermore we prove that the system is dissipative, that is all solutions are uniformly bounded

in a proper subset of Ω ⊂ R6
+. To do this, we state the following lemma;

Lemma 2. Let Ts(t) > 0, L(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, V (t) ≥ 0, K(t) ≥ 0. Then, there

exists a TsM(t), LM(t), I1M(t), I2M(t), VM(t), KM(t) such that for Ts(t), L(t), I1(t), I2(t), V (t),
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K(t), lim sup
t→∞

(Ts(t)) ≤ TsM , lim sup
t→∞

(L(t)) ≤ LM , lim sup
t→∞

(I1(t)) ≤ I1M , lim sup
t→∞

(I2(t)) ≤ I2M ,

lim sup
t→∞

(V (t)) ≤ VM , lim sup
t→∞

(K(t)) ≤ KM ,∀t ∈ [0, t0].

Recall that the presence of HPV viral infection decreases the number of healthy Ts cells such

that initially at t = 0, we expect that the number of healthy target cells should be close to the

total cell population. Therefore if the system is disease-free, it means that all other equations

of system (3.2) reduce to zero except for

T ′s = Λ + φL−
(

βV

(γ + Ts)
+ µ

)
Ts, (3.5)

which reduces to

T ′s ≤ Λ− µTs, (3.6)

when evaluated at disease-free equilibrium . From equation (3.6), we can find an expression for

T ′s(t) as follows

T ′s + µTs ≤ Λ, (3.7)

which can easily be solved using the integrating factor approach to obtain

Ts(t) ≤
Λ

µ
+ Ae−µt, (3.8)

where A is a constant of integration. By inputting the initial conditions Ts(0) = Ts0, we obtain

the following result

Ts(t) =
Λ

µ
+

(
Ts0 −

Λ

µ

)
e−µt. (3.9)

Taking limits on equation (3.9), yields

lim sup
t→∞

Ts(t) ≤ lim sup
t→∞

[
Λ

µ
+ (Ts0 −

Λ

µ
)e−µt

]

≤ Λ

µ
.

(3.10)

This means that the population of cells will grow towards
Λ

µ
. To show that all other cells of

(3.2) are also bounded, we recall that all constants for the system are positive and it follows

that

T ′s(t) + L(t) + I ′1(t) + I ′2(t) = Λ− µ(Ts + L+ I1 + I2) + rεI2 − θK(I1 + I2), (3.11)

and this can be rewritten as

T ′s(t) + L′(t) + I ′1(t) + I ′2(t) ≤ Λ− µ(Ts + L+ I1 + I2), (3.12)
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which when solved using the integrating factor approach yields∫
eµtd(Ts + L+ I1 + I2) ≤

∫
Λeµtdt, (3.13)

which is equal to

(Ts + L+ I1 + I2) ≤ Λ

µ
+ C0e

−µt, (3.14)

where C0 is a constant of integration. Taking lim sup on both sides of equation (3.14) yields

lim sup
t→∞

(Ts + L+ I1 + I2) ≤ lim sup
t→∞

Λ

µ
+ C0e

−µt =
Λ

µ
. (3.15)

Let TsM(t) = LM(t) = I1M(t) = I2M(t) =
Λ

min{µ}
such that it can be established that

(Ts + L+ I1 + I2) is bounded and so is Ts(t), L(t), I1(t), I2(t), since

Ts(t), L(t), I1(t), I2(t) ≤ (Ts + L+ I1 + I2)(t). (3.16)

So, Ts(t) ≤ TsM , L(t) ≤ LM , I1(t) ≤ I1M and I2(t) ≤ I2M , ∀t ∈ [0, t0]. Now considering the

virus population, we recall that

dV

dt
= N2µ(I1 + I2)− δV.

But (I1 + I2) ≤ Ts and this implies that (I1 + I2) ≤ Λ

µ
. Hence, it can be seen that

dV

dt
≤ N2Λ− δV,

which leads to the following solution using the integrating factor approach

eδt
dV

dt
≤ eδtN2Λ,

and this can be simplified as

V (t) ≤ N2Λ

δ
+ C1e

−δt,

where C1 is a constant of integration. Therefore using the initial conditions V (0) = V0, we have

V (t) ≤ N2Λ

δ
+ (V0 −

N2Λ

δ
)e−δt.

Taking lim sup limits both sides of the above equation yields

lim sup
t→∞

V (t) ≤ lim sup
t→∞

[
N2Λ

δ
+ (V0 −

N2Λ

δ
)e−δt

]
=
N2Λ

δ

and we choose VM =
N2Λ

δ
such that V (t) ≤ VM . Since I1 and I2 are bounded, it suffices that

V (t) is also bounded for all t ∈ [0, t0]. Therefore, all feasible solutions to model system (3.2)

are positively bounded by

Ω = {Ts(t), L(t), I1(t), I2(t), V (t), K(t) ∈ R6
+ | Ts ≤

Λ

µ
}.

The region is considered of biological interest and is positively invariant and attracting. This

concludes the proof.
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3.3.2 Existence and Uniqueness of solutions

As an initial step, it is important to show that a solution to the initial value problem presented

within the basic HPV model does exist and the solution is unique. We adopt the approach by

[76] and use it to explain the existence and uniqueness theorem. The theorem is given as;

Theorem 13. Let t0 > 0 and from model system (3.2) if the initial conditions are such that

Ts(0) > 0, L(0) > 0, I1(0) > 0, I2(0) > 0, V (0) > 0, K(0) > 0 then ∀t ∈ Rn,

Ts(t), L(t), I1(t), I2(t), V (t), K(t) will exist in R6
+.

Proof. To prove existence and uniqueness, we adopt the method for an in-host model outlined

in [107]. We can show that f : R6
+ → R6

+ where the model system (3.2) can be represented as

follows;

x = [Ts, L, I1, I2, V,K]T (3.17)

and

f(x) = [T ′s, L
′, I ′1, I

′
2, V

′, K ′]
T

(3.18)

and from the definition of a locally Lipschitz function stated in Lemma 1 in chapter 2 it can

be seen that f is locally Lipschitz in its x argument. So we can directly deduce this from the

Jacobian matrix given by

∇f =



βV Ts − (Ts + γ)βV

(Ts + γ)2
− µ φ 0 0 − βTs

(Ts + γ)
0

βV (γ + Ts)− βV Ts
(T + γ)2

−(µ+ ψ + ψ) 0 0
βTs

(Ts + γ)
0

0 ψ −(ε+ µ+ θK) 0 0 −θI1

0 0 ε rε− (µ+ θK) 0 −θI2

0 0 N2µ N2µ −δ 0

0 0 0 σK 0 σI2 − ν



.

(3.19)

The Jacobian is bounded for every x ∈ R6
+. Hence, f has a continuous bounded derivative on

any compact subset of R6
+ and is therefore Lipschitz in x. Based on the existence and uniqueness

theorem by [76], there exists a unique, positive and bounded solution to the differential equation

system (3.2) on the interval [0, t0] for some t0 > 0. This concludes the proof.
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3.4 Equilibrium points and the reproduction number R0

To fully understand the behaviour of a basic model system we compute the equilibrium points

and the basic reproduction number. The reproduction number is defined as the number of

secondary infections produced by each infectious cell during its lifetime. In this work, we

present two reproduction numbers of interest i.e. (the basic reproduction number and the

CTL-reproduction number). The model system (3.2) also presents or exhibits three equilibrium

points of interest that is the disease-free, the CTL-inactive endemic equilibrium and the CTL-

active endemic equilibrium. The stability analysis of the model based on these three equilibrium

points is established to show the stability of the entire system and explore the dynamics of the

model.To establish disease-free equilibrium point, we solve model system (3.2) as follows

0 = Λ + φL−
(

βV

(γ + Ts)
+ µ

)
Ts,

0 =
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L,

0 = ψL− (ε+ µ+ θK)I1,

0 = εI1 + rεI2 − (µ+ θK)I2,

0 = N2µ(I1 + I2)− δV,

0 = σI2K − νK.

(3.20)

Considering that all infectious compartments {L, I1, I2, V } are all equal to zero, it follows that

(3.20) yields a disease-free equilibrium given by

E0 =

(
Λ

µ
, 0, 0, 0, 0, 0

)
. (3.21)

3.4.1 Calculation of the basic reproduction number, R0.

The basic reproduction number R0, is defined as the number of secondary cases produced by

a single infectious cell during its entire infectious period. We are interested in knowing mathe-

matically if HPV in the long run will invade the whole epithelial cell population and probably

if there will be persistence. R0 is computed using the next generation matrix approach by
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Van den Driessche and Watmough [98]. The method requires that we sort out the compart-

ments of model system (3.2) such that the first compartments correspond to the infectious

classes of the model followed by the uninfected compartments, where x = (x1, x2, ......n) pro-

vided xi ≥ 0, i = 1, 2, .......n are all the individuals in the model while x = (x1, x2, ......m)

are infected individuals within the compartments. We also define XDFE to be the set of all

disease-free states where

XDFE = {x ≥ 0|xi = 0, i = 1, 2, ...........m}

. Let Fi(x) be the rate of appearance of new infections within the infected compartments i and

Vi(x) be the difference between the transfer rate of individuals out of compartment i through

all other means and the transfer of individuals into compartment i through all other means

where Fi(x), Vi(x) ∈ C2. We proceed to define matrices

F =

[
∂Fi(x0)

∂xj

]
,

V =

[
∂Vi(x0)

∂xj

]
, (3.22)

for i ≥ 1, j ≤ m [98]. We take note that F is strictly a non-negative matrix and V is a

non-singular matrix and the reproduction number is given by

R0 = ρ(FV−1), (3.23)

where ρ is the spectral radius or the dominant eigenvalue for the matrix FV−1. We construct

the F and V matrices for system (3.2) and of particular note is that the two matrices are made

up of the infectious classes only that is L(t), I1(t), I2(t), V (t) and exclude the susceptible and

immune response classes, Ts(t) and K(t). Therefore we have the following matrices evaluated

at the disease-free equilibrium point;

F =



0 0 0
Λβ

(Λ + γµ)

0 0 0 0

0 0 0 0

0 0 0 0


,V =



(µ+ ψ + φ) 0 0 0

−ψ (ε+ µ) 0 0

0 −ε µ− rε 0

0 −N2µ −N2µ δ


(3.24)
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and

V−1 =



1

(µ+ ψ + φ)
0 0 0

ψ

(µ+ φ+ ψ)(ε+ µ)

1

(ε+ µ)
0 0

ψε

(µ+ φ+ ψ)(ε+ µ)(µ− rε)
ε

(µ− rε)(ε+ µ)

1

µ− rε
0

N2µψ(µ+ ε− rε)
δ(µ+ φ+ ψ)(ε+ µ)(µ− rε)

N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

N2µ

δ(µ− rε)
1

δ



(3.25)

such that the spectral radius ρ(FV −1) is given by

R0 =
βΛψN2µ(µ+ ε− rε)

δ(γµ+ Λ)(ψ + φ+ µ)(µ− rε)(ε+ µ)
(3.26)

with µ− rε > 0, 0 < r < 1 and 0 < ε < 1. The assumption being that as oncogene expression,

ε, increases (µ− rε) decreases and when oncogene expression, ε, decreases (µ− rε) approaches

µ. Hence, the reproduction number is positive as required. Interpretation of R0 is as follows:

N2µ represents the number of virus particles produced by an infectious cell,
1

δ
is the average

life of HPV,
ψ

(φ+ µ+ ψ)
is the proportion of latently infected cells that mature into actively

infected cells I1,
ε

(µ+ ε)(µ− rε)
is the proportion of I1 cells that are converted to I2 cells due

to oncogene expression and
1

µ+ ε
is the proportion of I2 cells that self proliferate. From the

reproduction number, R0 we want to establish when R0 < 1, then the disease-free equilibrium

will be locally asymptotically stable. This means that HPV cannot invade the population of

cells and if R0 > 1, the disease-free equilibrium is unstable and total invasion of cells by HPV

is possible. R0 < 1, the desired threshold, implies that an infectious cell will produce less than

one infectious cell such that HPV infection will not spread among cells.

Theorem 14. The disease-free equilibrium for model (3.2) is locally asymptotically stable pro-

vided that R0 < 1 and unstable when R0 > 1.

Proof. To prove the local stability of the disease-free equilibrium of (3.2), we find the Jacobian

for the system and evaluate it at the disease-free equilibrium. The Jacobian for the system
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evaluated at the disease-free equilibrium is given by

J(E0) =



−µ φ 0 0 − Λβ

(Λ + γµ)
0

0 −(µ+ ψ + φ) 0 0
Λβ

(Λ + γµ)
0

0 ψ −(ε+ µ) 0 0 0

0 0 ε −(µ− rε) 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν


, (3.27)

We need to show that the eigenvalues produced by the Jacobian (3.27), all have negative real

parts. We split and rearrange the Jacobian matrix (3.27) as shown in matrix (3.28) where the

first row represents the susceptible cells and the second row represents the immune response

cells while the bottom (right block) represents the infectious classes (L, I1, I2, V ) as shown;

J(E0) =



−µ φ 0 0 − Λβ

(Λ + γµ)
0

0 −ν 0 0 0 0

0 0 −(ψ + φ+ µ) 0 0
Λβ

(Λ + γµ)

0 0 ψ −(µ+ ε) 0 0

0 0 0 ε −(µ− rε) 0

0 0 0 N2µ N2µ −δ


. (3.28)

By finding the eigenvalues of the first sub-matrix, we establish that the eigenvalues are λ = −µ

and λ = −ν. The eigenvalues of the next sub-matrix for the infected class produce a fourth

degree polynomial equation given by

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, (3.29)

where λ is the eigenvalue and

a1 = 3µ+ ψ + φ+ ε(1− r) + δ > 0,

a2 = δ(3µ+ ε(1− r) + ψ + φ) + (µ+ ψ + φ)(2µ+ ε(1− r)) + (ε+ µ)(µ− rε) > 0,

a3 = δ(µ+ ψ + φ)(2µ+ ε(1− r)) + (ε+ µ)(µ− rε)(δ + µ+ ψ + φ) > 0,

a4 = δ(µ+ ε)(µ+ ψ + φ)(µ− rε) [1−R0] > 0. (3.30)

The polynomial (3.29) requires further mathematical probing. It is important to know if all the

eigenvalues for the polynomial equation P (λ) have negative real parts (implying stability of the
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disease-free equilibrium) or positive real parts (implying that the disease-free equilibrium might

not be stable). To do this, we state the Routh Hurwitz Criterion for a fourth-order polynomial

as follows

Theorem 15. Given that a polynomial

P (x) = xn + a1x
n−1 + a2x

n−2 + a3x
n−3 + .........+ an−1x+ an

where ai for (i = 1, 2, 3, ......, n) are real constants and we define the nth Hurwitz matrix Hn as

Hn =



a1 1 0 0 ..... 0

a3 a2 a1 1 ..... 0

a5 a4 a3 a2 ..... 0

. . . . ..... 0

. . . . ..... 0

. . . . ..... 0

0 0 0 0 ..... an


(3.31)

where ai = 0 if j > n. All the roots of the polynomial P (x) have negative real parts if and only

if the determinants of all the Hurwitz matrices are positive: det(Hj) > 0, j = 1, 2, 3, ....., n

[107].

Using theorem 15 we state without proof the following lemma for criterion for polynomials of

fourth degree.

Lemma 3. The eigenvalues of the fourth degree polynomial P (λ) = λ4 +a1λ
3 +a2λ

2 +a3λ+a4

have negative real parts provided that a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2 > a3 and

a3(a1a2 − a3)− a2
1a4 > 0 where a0, a1, a2, a3, a4 are given by equation (3.30).

Proof. To show that the Routh Hurwitz condition is satisfied, let:

α = (3µ+ ψ + φ+ ε(1− r) + δ), α1 = (µ+ ψ + φ), α2 = (2µ+ ε(1− r))

and α3 = (ε+ µ)(µ− rε) Hence,

a1a2 − a3 = α + δ2δα2 + α3α2 + αα1α2 > 0,

a3(a1a2 − a3) = δ3αα1α2 + δ2α3(α1 + α2 + αα1 + α) + δα3α2(α2α1 + α3α2)

+ δα1α(αα3 + α1α
2
2) + α1α2α3(α3 + αα1) (3.32)
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and

a2
1a4 = (1−R0)

[
δ3α3α1 + 2δ2αα1α3 + δα3α1α

2
]
, (3.33)

such that

a3(a1a2 − a3)− a2
1a4 = δ3α2(α3 + αα1) + δ2α3(α1 + αα2) + δα2α3(α2α1 + α3 + αα1)

+ δα2
1αα

2
2 + α1α2α3(α3 + αα1) +R0α1α3

[
δα2 + δ3 + 2δ2α

]
> 0.

(3.34)

The Routh Hurwitz condition is satisfied and this implies that the quartic polynomial has roots

with negative real parts. Thus, the disease-free equilibrium is locally asymptotically stable when

R0 < 1 and unstable otherwise. This completes the proof.

3.4.2 Global stability analysis of the disease-free equilibrium

The disease-free equilibrium, E0, is locally stable provided that R0 < 1. We adopt the work

done by Wang et al. [103] and Shuai and Van den Driesscheet al. [88] to prove the global

stability of model system (3.2).

Theorem 16. The disease-free equilibrium, E0, for system (3.2) is globally stable provided that

R0 < 1.

Proof. We prove global stability of model system (3.2) through following the work by Shuai

and Van den Driessche [88]. Recall that from our model

R0 =
βΛψN2µ(µ+ ε− rε)

δ(γµ+ Λ)(ψ + µ+ φ)(µ− rε)(ε+ µ)
. (3.35)

The Perron-Frobenius theorem states that every non-negative matrix can be obtained as a

limit of positive matrices. Therefore, there exists an eigenvector with non-negative parts and

the corresponding eigenvalue is non-negative and will be greater or equal in its absolute value

to all other eigenvalues of the matrix [60]. In simpler terms the theorem simply states that

since we have the non-negative matrix V−1F , it should have a non-negative left eigenvalue u

corresponding to

R0 = ρ(V−1F) = ρ(FV−1),

which implies that

uTρ(V−1F) = uTR0.
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Recall that

F =



0 0 0
βTs0

(γ + Ts0)

0 0 0 0

0 0 0 0

0 0 0 0


,V =



(µ+ ψ + φ) 0 0 0

−ψ (ε+ µ) 0 0

0 −ε µ− rε 0

0 −N2µ −N2µ δ


, (3.36)

where Ts0 =
Λ

µ
and

V−1 =



1

(µ+ ψ + φ)
0 0 0

ψ

(µ+ ψ + φ)(ε+ µ)

1

(ε+ µ)
0 0

ψε

(ε+ µ)(µ+ ψ + φ)(µ− rε)
ε

(ε+ µ)(µ− rε)
1

µ− rε
0

N2µψ(µ+ ε− rε)
δ(ψ + φ+ µ)(µ− rε)(ε+ µ)

N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

N2µ

δ(µ− rε)
1

δ



, (3.37)

so that

V−1F =



0 0 0
βTs0

(γ + Ts0)(µ+ ψ + φ)

0 0 0
βψTs0

(γ + Ts0)(µ+ ψ + φ)(ε+ µ)

0 0 0
βψεTs0

(γ + Ts0)(µ+ ψ + φ)(ε+ µ)(µ− rε)

0 0 0
βN2µψ(µ+ ε− rε)Ts0

δ(γ + Ts0)(µ+ ψ + φ)(ε+ µ)(µ− rε)



. (3.38)

It can be seen that V−1F is reducible since the last column is the only no-zero column and

therefore theorem 6 stated in chapter 2 fails. Therefore we construct a Lyapunov function of

the form

Z = uTV−1X , (3.39)
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where uT = (0, 0, 0, 1) and X = (L, I1, I2, V )T . Therefore equation (3.39) becomes

Z =
[

0 0 0 1
]



1

(µ+ ψ + φ)
0 0 0

ψ

(µ+ ψ + φ)(ε+ µ)

1

(ε+ µ)
0 0

ψε

(ε+ µ)(µ+ ψ + φ)(µ− rε)
ε

(ε+ µ)(µ− rε)
1

µ− rε
0

N2µψ(µ+ ε− rε)
δ(ψ + φ+ µ)(µ− rε)(ε+ µ)

N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

N2µ

δ(µ− rε)
1

δ





L

I1

I2

V


.

(3.40)

Equation (3.40) leads to

Z =
N2µψ(µ+ ε− rε)

δ(ψ + φ+ µ)(µ− rε)(ε+ µ)
L+

N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

I1 +
N2µ

δ(µ− rε)
I2 +

1

δ
V,

=
R0(γµ+ Λ)

βΛ

[
L+

(µ+ ψ + φ)

ψ
I1 +

(µ+ ψ + φ)(ε+ µ)

ψ(µ+ ε− rε)
I2 +

(µ+ ψ + φ)(ε+ µ)(µ− rε)
N2µψ(µ+ ε− rε)

V

]
.

(3.41)

Using theorem 5 stated in chapter 2, we obtain the derivative of Z as

Z ′ = uTV−1(F − V)X − uTV−1f(x, Ts) (3.42)

where

uTV−1 =
[

0 0 0 1
]



1

(µ+ ψ + φ)
0 0 0

ψ

(µ+ ψ + φ)(ε+ µ)

1

(ε+ µ)
0 0

ψε

(ε+ µ)(µ+ ψ + φ)(µ− rε)
ε

(ε+ µ)(µ− rε)
1

µ− rε
0

N2µψ(µ+ ε− rε)
δ(ψ + φ+ µ)(µ− rε)(ε+ µ)

N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

N2µ

δ(µ− rε)
1

δ



,

(3.43)

which gives

uTV−1 =

(
N2µψ(µ+ ε− rε)

δ(ψ + φ+ µ)(µ− rε)(ε+ µ)
,
N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

,
N2µ

δ(µ− rε)
,
1

δ

)
(3.44)
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and

(F − V)X =



−(µ+ ψ + φ) 0 0
βTs0

(γ + Ts0)

ψ −(ε+ µ) 0 0

0 ε −(µ− rε) 0

0 N2µ N2µ −δ





L

I1

I2

V


, (3.45)

which gives

(F−V)X =

[
βTs0

(γ + Ts0)
V − (µ+ φ+ ψ)L, ψL− (ε+ µ)I1, εI1 − (µ− rε)I2, N2µ(I1 + I2)− δV

]T
,

(3.46)

therefore with little manipulation we obtain

uTV−1(F − V)X = (R0 − 1)V, (3.47)

we also have

f(x, Ts) = (F − V)X − F (x, Ts) + V (x, Ts).

and so

f(x, Ts) =



βV Ts0
(γ + Ts0)

− (µ+ ψ + φ)L

ψL− (ε+ µ)I1

εI1 + rεI2 − µI2

N2µ(I1 + I2)− δV


−



βTs
(γ + Ts)

0

0

0


+



(µ+ ψ + φ)L

(ε+ µ+ θK)I1 − ψL

(µ+ θK)I2 − εI1 − rεI2 − µI2

δV −N2µ(I1 + I2)


.

(3.48)

which yields

f(x, Ts) =



βV Ts0
(γ + Ts0)

− βV Ts
(γ + Ts)

θKI1

θKI2

0


(3.49)

such that

uTV−1f(x, Ts) =
R0(γ + Ts0)

Ts0

[
Ts0

γ + Ts0
− Ts
γ + Ts

]
V+
R0(γ + Ts0)(µ+ ψ + φ)θK

βψTs0

[
I1 +

µ+ ε

µ+ ε− rε
I2

]
.

(3.50)
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Therefore

Z ′ = (R0 − 1)V − R0(γ + Ts0)

Ts0

[(
Ts0

γ + Ts0
− Ts
γ + Ts

)
V +

B

βψ

(
I1 +

µ+ ε

µ+ ε− rε
I2

)]
(3.51)

where B = (µ + ψ + φ)θK. Provided that R0 ≤ 1, then it follows that Z ′ ≤ 0 and it can also

be seen that Z ′ = 0 is satisfied when V = I1 = I2 = K = 0 and Ts0 = Ts. Therefore it can

be established that the only largest compact invariant set in (Ts, L, I1, I2, V,K) ∈ R6
+ : Z ′ = 0

is the singleton {E0}. Based on LaSalle’s invariance principle [50], it suffices to state that the

singleton {E0} is globally asymptotically stable in Ω when R0 < 1 and this concludes the

proof.

3.4.3 The endemic equilibrium

As stated earlier, model system (3.2) has two endemic equilibrium points namely the CTL-

inactive endemic equilibrium, Ee1 and the CTL-active endemic equilibrium, Ee2 . The CTL-

inactive endemic equilibrium point is given by

Ee1 = {T es , Le, Ie1 , Ie2 , V e, Ke}

where

T es =
Λγ

µ[R0γµ+ Λ(R0 − 1)]
> 0,

Le =
Λ(R0 − 1)(γµ+ Λ)

(µ+ ψ)[R0γµ+ Λ(R0 − 1)]
> 0,

Ie1 =
Λψ(R0 − 1)(γµ+ Λ)

(µ+ ψ)(ε+ µ)[R0γµ+ Λ(R0 − 1)]
> 0,

Ie2 =
Λψε(R0 − 1)(γµ+ Λ)

(µ+ ψ)(µ− rε)(ε+ µ)[R0γµ+ Λ(R0 − 1)]
> 0,

V e =
R0(R0 − 1)(µ+ ψ + φ)(Λ + γµ)2

(µ+ ψ)[R0γµ+ Λ(R0 − 1)]
> 0,

Ke = 0.

(3.52)

The CTL activated endemic equilibrium is given by

Ee2 = {T ees , Lee, Iee1 , I
ee
2 , V

ee, Kee}
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where

T ees =
Λσεψ − να1(α2 + θKee)(α3 + θKee)

σεψµ
,

Lee =
ν(α2 + θKee)(α3 + θKee)

σεψ
,

Iee1 =
ν(α3 + θKee)

σε
,

Iee2 =
ν

σ
,

V ee =
N2νµ(α4 + θKee)

δσε
,

K = Kee,

(3.53)

where α1 = (µ + ψ), α2 = (µ + ε), α3 = (µ− rε), α4 = (µ + ε− rε) and α5 = (µ + ψ + φ)

and Kee is found using the following quartic polynomial given by

M(Kee) = a0K
ee4 + a1K

ee3 + a2K
ee2 + a3K

ee + a4 = 0 (3.54)

with

a0 = θ4δα1α5ν
2 > 0,

a1 = θ3ν2α1 [2δα5(α2 + α3)− βN2µψ] ,

a2 = θ2
[
δν2α1α5(2α2α3 + α2 + α3)− δνα5δεψ(Λ + γµ)− βN2µψν

2α1(α4 + α2 + α3)
]
,

a3 = θ
[
δν2α5α1α2α3(1 + α2 + α3) + βN2µψν(ψΛεσ − α1α2α3 + α4(α2α1 + α3α1))

]
,

a4 = δεψνσα2α5α3(Λ + γµ) [R0 − 1]− δν2α1α5α
2
2α

2
3

[
1− R0(Λ + γµ)

Λ

]
. (3.55)

From equation (3.55) (coefficient equations) it can be clearly seen that a0 > 0 always since all

parameters used in the model are positive. It can also be seen that coefficient a1 is positive

when 2δα5(α2 + α3) > βN2µψ and negative when 2δα5(α2 + α3) < βN2µψ which leaves us to

determine the signs for the remaining coefficients of interest. To do this, we use Descartes rule

of signs [40] for a quartic polynomial as shown in the Table 3.2.
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Table 3.2: Descartes table of signs

No. a0 a1 a2 a3 a4 Sign Changes Roots

1. + + + + + 0 0

2. + − + + + 2 0, 2

3. + − − + + 2 0, 2

4. + − − − + 2 0, 2

5. + − − − − 1 1

6. + + − + + 2 0, 2

7. + + − − + 2 0, 2

8. + + − − − 1 1

9. + + + − + 2 0, 2

10. + + + − − 1 1

11. + + + + − 1 1

12. + − + + − 3 1, 3

13. + − + − + 4 0, 4

14. + + − + − 3 1, 3

15. + − + − − 3 1, 3

16. + − − + − 3 1, 3

From the results from Table 3.2, we state the following lemma;

Lemma 4. The quartic polynomial M(Kee) = a0K
ee4 + a1K

ee3 + a2K
ee2 + a3K

ee + a4 has

1. one unique positive root provided that cases 5, 8, 10, 11 hold for the coefficients of interest.

2. more than one positive root provided that cases 1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 15, 16 hold for

the coefficients of interest.

3.4.4 The CTL activated reproduction number, RK .

There exists a CTL activated immune response reproduction number that indicates the number

of infected cells each immune cell can kill. Therefore, the greater the CTL reproduction number

the smaller the infected cell population. The mean lifetime of CTL cells for the model is given

by
1

ν
and when infection reaches a steady state of Ie2 the average amount of CTL produced

will be σIe2 . Based on model (3.2) (for σI2 − ν ≤ 0) the CTL immune response reproduction
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number is given by

RK =
σI2

ν
=

Λσψε(R0 − 1)(γµ+ Λ)

ν(µ+ ψ)(µ− rε)(ε+ µ)[R0γµ+ Λ(R0 − 1)]
. (3.56)

If RK > 1 then the CTL-active endemic equilibrium Ee2 exists. We state the following lemma;

Lemma 5. The conditions governing the CTL-inactive/ activated equilibrium are;

1. If R0 > 1 and RK < 1, then the CTL-inactive endemic equilibrium Ee1 is globally asymp-

totically stable.

2. If R0 > 1 and RK > 1, then the CTL-inactive endemic equilibrium Ee1 is unstable while

the CTL-active equilibrium Ee2 is globally asymptotically stable.

The CTL-inactive endemic equilibrium point, Ee1 , presents a situation where there is HPV

infection among cells but the innate immune response is not responsive, or may not be required,

or is suppressed [107], while the CTL-active endemic equilibrium, Ee2 , on the other hand is the

equilibrium where CTL response is prompted into action as it docks on to the infected cell and

kills it. It is important to establish the local and global stability of these points, however the

equilibrium point, Ee2 , is rather too complex as it contains a quartic polynomial that is rather

difficult to solve analytically. The global stability analysis will be presented using numerical

simulations.

3.4.5 Local stability analysis of the endemic equilibrium Ee1

We investigate the local stability of the endemic equilibrium Ee1 using the Center Manifold

theory [15]. This is to establish if there exists a forward bifurcation that implies the stability

of the endemic near R0 = 1.

Theorem 17. Model system (3.2) has a unique stable endemic equilibrium point given by Ee1
whenever R0 > 1 and is unstable otherwise.

Proof. To investigate the probable existence of a forward bifurcation and the local stability of
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the endemic equilibrium, Ee1 , let

ẋ1 = f1 = Λ + φx2 −
[

βx5

(γ + x1)
+ µ

]
x1,

ẋ2 = f2 =
βx5x1

(γ + x1)
− (µ+ ψ + φ)x2,

ẋ3 = f3 = ψx2 − (ε+ µ+ θx6)x3,

ẋ4 = f4 = εx3 + rεx4 − (µ+ θx6)x4,

ẋ5 = f5 = N2µ(x3 + x4)− δx5,

ẋ6 = f6 = σx4x6 − νx6,

(3.57)

where Ts = x1, L = x2, I1 = x3, I2 = x4, V = x5, K = x6. We consider the case where

the bifurcation parameter of interest is the transmission rate β = β∗ and solving for β∗ given

that R0 = 1 yields

1 =
βΛψN2µ(µ+ ε− rε)

δ(γµ+ Λ)(µ+ ψ + φ)(µ− rε)(ε+ µ)
,

β∗ =
δ(γµ+ Λ)(µ+ ψ + φ)(µ− rε)(ε+ µ)

ΛψN2µ(µ+ ε− rε)
. (3.58)

The Jacobian of model system (3.2) evaluated at the disease-free equilibrium and with β = β∗

is given by

J∗ =



−µ φ 0 0 −δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 −(µ+ ψ + φ)) 0 0
δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 ψ −(ε+ µ) 0 0 0

0 0 ε −(µ− rε) 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν



.

(3.59)
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It has been established in theorem (11) that the Jacobian matrix (3.59) evaluated at the disease-

free equilibrium has eigenvalues with negative real parts and it has a zero eigenvalue when

R0 = 1. Based on this, we can apply the Center Manifold Theorem [15] which is stated as

follows:

Theorem 18 (Center Manifold Theory,adopted from, Castillo Chavez and Song [15]). Consider

the following general system of ordinary differential equation equations with a parameter φ

dx

dt
= F (x, φ), F : Rn × R and F ∈ C2(Rn × R) (3.60)

where 0 is an equilibrium of the system that is f(0, φ) = 0 for all φ and assume that

A1: A = DxF (0, 0) =

(
∂f

i

∂xj
(0, 0)

)
is the linearisation of system (3.2) around the equilibrium

point with φ evaluated at 0.

A2: Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts.

A3: Matrix A has a right eigenvalue given by ω and a left eigenvalue given by v that correspond

to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkωiωj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkωi
∂2fk
∂xi∂φ

(0, 0).

(3.61)

The local dynamics of the system around 0 are totally governed by a and b.

i. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 ≤ φ � 1, 0 is unstable and there exists a negative and

locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 unstable; when 0 ≤ φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 ≤ φ� 1, 0 is stable, and a positive unstable

equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally

asymptotically stable.

Applying the Center Manifold Theorem to our model, we let W = (ω1, ω2, ω3, ω4, ω5, ω6) be the

right eigenvector associated with the zero eigenvector and V = (v1, v2, v3, v4, v5, v6) be the left
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eigenvector associated with the zero eigenvector. We multiply the Jacobian matrix (3.59) by

the right eigenvector as follows

−µ φ 0 0 −δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 −(µ+ ψ + φ) 0 0
δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 ψ −(ε+ µ) 0 0 0

0 0 ε −(µ− rε) 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν





ω1

ω2

ω3

ω4

ω5

ω6



=



0

0

0

0

0

0


(3.62)

This yields the following right eigenvectors

ω1 = − 1

µ
, ω2 =

1

(µ+ ψ)
, ω3 =

ψ

(ε+ µ)(µ+ ψ)
, ω4 =

εψ

(ε+ µ)(µ+ ψ)(µ− rε)
,

ω5 =
N2µψ(µ+ ε− rε)

δ(µ+ ψ)(µ+ ε)(µ− rε)
, ω6 = 0

(3.63)

and the left eigenvectors are found by



v1

v2

v3

v4

v5

v6



T


−µ 0 0 0 −δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 −(µ+ ψ + φ) 0 0
δ(µ+ ψ + φ)(µ− rε)(ε+ µ)

ψN2µ(µ+ ε− rε)
0

0 ψ −(ε+ µ) 0 0 0

0 0 ε −(µ− rε) 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν



=



0

0

0

0

0

0


(3.64)
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which yields the following left eigenvectors

v1 = 0, v2 = v2, v3 =
(µ+ ψ + φ)

ψ
v2, v4 =

(ε+ µ)(µ+ ψ + φ)

ψ(µ+ ε− rε)
v2,

v5 =
(ε+ µ)(µ+ ψ + φ)(µ− rε)

N2µψ(µ+ ε− rε)
v2, v6 = 0

(3.65)

where v2 is given by solving the equation V � W = 1 as follows

1 =
v2

(µ+ ψ)
+
v2(µ+ φ+ ψ)

(ε+ µ)(µ+ ψ)
+

ε(µ+ ψ + φ)v2

(µ+ ε− rε)(µ− rε)(µ+ ψ)
+

(µ+ ψ + φ)v2

δ(µ+ ψ)
,

so that

v2 =
δ(ε+ µ)(µ+ ψ)(µ− rε)(µ+ ε− rε)

δ(µ− rε)(µ+ ε− rε) [2µ+ ψ + ε+ φ] + (µ+ ψ + φ)(ε+ µ) [εδ + (µ+ ε− rε)(µ− rε)]
.

(3.66)

We observe that v2 > 0 provided that (µ − rε) > 0. The bifurcation coefficients a and b are

found as follows

a =
n∑

k,i,j=1

vkωiωj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkωi
∂2fk
∂xi∂β∗

(0, 0). (3.67)

The bifurcation coefficient a is evaluated at the disease-free equilibrium and upon substitution

of v2, ω1, ω5 we obtain

a = 2v2ω5ω1
∂2f2

∂x5∂x1

(0, 0) = 2v2ω5ω1
β∗µ2γ

(µγ + Λ)

=
−2v2µγ(µ+ ψ + φ)

Λ(µ+ ψ)
. (3.68)

Hence,

a =
−2µγ [δ(ε+ µ)(µ+ ψ)(µ− rε)(µ+ ε− rε)]

Λ [[δ(µ− rε)(µ+ ε− rε)] [2µ+ ψ + ε+ φ] + (µ+ ψ + φ)(ε+ µ) [εδ + (µ+ ε− rε)(µ− rε)]]
.

(3.69)

It can be seen that a < 0, provided that µ− rε > 0.

Finding b yields

b =
n∑

k,i=1

vkωi
∂2fk
∂xi∂β∗

(0, 0) = v2ω5
∂2f2

∂x5∂β∗
(0, 0) =

v2

β∗
. (3.70)
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Hence,

b =
δ(ε+ µ)(µ+ ψ)(µ− rε)(µ+ ε− rε)

β∗ [δ(µ− rε)(µ+ ε− rε) [2µ+ ψ + ε+ φ] + (µ+ ψ + φ)(ε+ µ) [εδ + (µ+ ε− rε)(µ− rε)]]
,

(3.71)

where β∗ > 0 and therefore b > 0 provided µ− rε > 0.

We state the following theorem,

Theorem 19. Model system (3.2) exhibits a unique locally asymptotically stable endemic equi-

librium provided that a < 0 and b > 0. When β∗ < 0, it implies that there is a negative endemic

equilibrium state and when β∗ > 0 a positive stable endemic equilibrium exists.

When a < 0 and b > 0, there exists a forward transcritical bifurcation that occurs at R0 = 1

as indicated in Figure (3.2). Such a bifurcation is one where there is an exchange of stability

between the disease-free equilibrium and endemic equilibrium states. It ensures that the en-

demic equilibrium is locally asymptotically stable whenever R0 > 1 but close to 1. Theorem

(19) explains that the control of HPV highly depends on the initial sizes of the sub-populations

of the model system (3.2). The bifurcation exhibited here is a forward transcritical bifurcation

and this means that the control of HPV does not necessarily depend on the number of people

that are initially infected but on a host of other possibilities. In such a case HPV can be

eradicated/eliminated from the body when R0 < 1 while it persists when R0 > 1. Figure 3.2

illustrates the forward bifurcation for model (3.2), for a < 0 and b > 0.
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Figure 3.2: Forward bifurcation plot for the dynamics of HPV in-host showing the relationship

between R0, given in equation (3.26) and the virus population endemic value, V e(t), obtained

in equation (3.52).

3.4.6 Global stability analysis of the endemic equilibrium

We prove mathematically that the endemic equilibrium is globally stable using the Lyapunov

function approach. In 1920 Volterra formulated the very first Lyapunov function for proving

the global stability analysis of a predator-prey model. Since then, the Lyapunov has proven to

be the most successful method used in proving global stability of an equilibrium state especially

the endemic equilibrium. The Lyapunov function however is not easily constructed as it requires

some level of mathematical skill and works by [25, 27] demonstrate such skills. Such a function

is said to be positive definite everywhere except at the endemic equilibrium where it is zero.

This leads to the following important definition of a positive definite function by Savari [83]

given below,

Definition 4. A real-valued continuously differentiable function f is said to be positive definite

on a neighbourhood of the origin D, if f(0) = 0 and f(x) > 0 for every non zero x ∈ D. [83]

The Lyapunov function has derivatives along the trajectories that are semi-negative definite

within the invariant set of the model under consideration. Provided that one is able to suc-
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cessfully construct a particular epidemic model, the global stability analysis of the equilibrium

points will follow directly from the LaSalle’s invariance principle which is given by the following

theorem,

Theorem 20. (LaSalle’s Invariant Principle [50]) Assuming that V is a Lyapunov function

for a model system governed by differential equations on G. Define S = {x ∈ G∩Ω : V̇ (x) = 0}

and let M be the largest invariant set in S, then every bounded trajectory of the system that

remains in G approaches the set M as t→ +∞.

The Lyapunov function method is explained as follows: Consider a system given by

dx

dt
= f(x), (3.72)

where in the case of model (3.2), f : Ω ⊆ R6
+ → R6

+ is continuous. We create a Lyapunov

function V on some G ⊆ Ω provided that

• V is continuous on G.

• V is not continuous at x̄ ∈ Ḡ (which is defined as the closure of G) such that lim
x→x̄

V (x) =

+∞(x ∈ G)

• V̇ = gradV · f ≤ 0 on G.

Based on the above explanation of what a Lyapunov function is, we construct a Lyapunov

function for model system (3.2) by stating the following theorem,

Theorem 21. The CTL-inactive endemic equilibrium, E1, is globally asymptotically stable pro-

vided that R0 > 1 and RK ≤ 1.

Proof. To prove theorem (20), we construct a simple Lyapunov function of the form

W(Ts, L, I1, I2, V,K) =

(
Ts − T es ln

Ts
T es

)
+ A

(
L− Le ln

L

Le

)
+B

(
I1 − Ie1 ln

I1

Ie1

)

+ C

(
I2 − Ie2 ln

I2

Ie2

)
+D

(
V − V e ln

V

V e

)
+ EK, (3.73)

where A,B,C,D,E are constants to be found. Taking the time derivative along the solutions

of model (3.2), we obtain

dW
dt

= Ṫs

(
1− T es

Ts

)
+ AL̇

(
1− Le

L

)
+Bİ1

(
1− Ie1

I1

)
+ Cİ2

(
1− Ie2

I2

)

+ DV̇

(
1− V e

V

)
+ EK̇ (3.74)

69



and by substitution of Ṫs, L̇, İ1, İ2, V̇ , K̇, we obtain

dW
dt

= =

(
Λ + φL−

(
βV

(γ + Ts)
+ µ

)
Ts

)(
1− T es

Ts

)
+ A

(
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L

)(
1− Le

L

)

+ B(ψL− (ε+ µ+ θK)I1)

(
1− I∗1

I1

)
+ C(εI1 + rεI2 − (µ+ θK)I2)

(
1− Ie2

I2

)

+ D(N2µ(I1 + I2)− δV )

(
1− V ∗

V

)
+ E(σI2K − νK). (3.75)

Expanding equation (3.75) yields

dW
dt

= Λ + φL−
(

βV

(γ + Ts)
+ µ

)
Ts −

T es
Ts

(Λ + φL) + T es

(
βV Ts

(γ + Ts)
+ µ

)
+ A

(
βV Ts

(γ + Ts)

)

− A(µ+ ψ + φ)L− ALe

L

βV Ts
(γ + Ts)

+ ALe(µ+ ψ + φ) +B(ψL− (ε+ µ+ θK)I1)

− BIe1
I1

ψL+BIe1(ε+ µ+ θK) + C(εI1 + rεI2 − (µ+ θK)I2)− CIe2
I2

εI1 − CIe2(rε− µ− θK)

+ D(N2µ(I1 + I2)− δV )− DV e

V
N2µ(I1 + I2) +DV eδ + EK(σI2 − ν). (3.76)

Cancelling out common terms and grouping terms without the subscript (e) simplifies to

dW
dt

= Λ− µTs −
T es
Ts

(Λ + φL) + T es

(
βV Ts

(γ + Ts)
+ µ

)
− ALe

L

βV Ts
(γ + Ts)

+ ALe(µ+ ψ + φ)−BθKI1

− BIe1
I1

ψL+BIe1(ε+ µ+ θK)− CIe2
I2

εI1 − CIe2(rε− µ− θK)−DδV − DV e

V
N2µ(I1 + I2)

+ DV eδ + EK(σI2 − ν) +
βV Ts

(γ + Ts)
(A− 1) + L(φ+Bψ − A(µ+ ψ + φ))

+ I1(Cε−B(ε+ µ) +N2µD) + I2(C(rε− µ) +N2µD) + I2K(Eσ − Cθ). (3.77)

To find the constants A,B,C,D,E, we let

(A− 1) = 0, (φ+Bψ − A(µ+ ψ + φ)) = 0, (C(rε− µ) +N2µD) = 0, (Eσ − Cθ) = 0,

and Cε−B(ε+ µ) +N2µD = 0. By simple calculation we obtain

A = 1, B =
(µ+ ψ)

ψ
, C =

(µ+ ψ)(µ+ ε)

ψ(µ+ ε− rε)
, D =

(µ+ ψ)(µ+ ε)(µ− rε)
N2µψ(µ+ ε− rε)

, E =
θ(µ+ ψ)(µ+ ε)

σψ(µ+ ε− rε)
.

At the endemic equilibrium, Ee1 , we obtain,

Λ = (µ+ ψ)Le + µT es ,
βV eT es

(γ + T es )
= (µ+ ψ + φ)Le, N2µ(Ie1 + Ie2) = δV e.
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By substitution into W ′ and by simplification, we obtain

dW
dt

≤ µT es

(
2− Ts

T es
− T es
Ts

)
+ (µ+ ψ)Le

(
2− T es

Ts
− Ie1L

LeI1

)
+ φLe

(
1− T esL

TsLe

)

+
V eδ(µ+ ψ)(µ+ ε)(µ− rε)

N2µψ(µ+ ε− rε)

(
1− V

V e

)
+

(µ+ ψ)Ie1θK

ψ

(
1− I1

Ie1

)
− (µ+ ψ)(µ+ ε)Ie2ε

ψ(µ+ ε− rε)

+
(µ+ ψ)(µ+ ε)(µ− rε)I2

ψ(µ+ ε− rε)
− (µ+ ψ)(µ+ ε)(µ− rε)V e

V ψ(µ+ ε− rε)
(I1 + I2) +

Kθν(µ+ ψ)(µ+ ε)

σψ(µ+ ε− rε)
(RK − 1)

≤ µT es

(
2− Ts

T es
− T es
Ts

)
+ (µ+ ψ)Le

(
2− T es

Ts
− Ie1L

LeI1

)
− (µ+ ψ)(µ+ ε)Ie2ε

ψ(µ+ ε− rε)

− (µ+ ψ)(µ+ ε)(µ− rε)V e

V ψ(µ+ ε− rε)
(I1 + I2) +

Kθν(µ+ ψ)(µ+ ε)

σψ(µ+ ε− rε)
(RK − 1). (3.78)

The arithmetic mean (AM) and geometric mean (GM) relationship states that

AM =
b1 + b2 + b3 + ......+ bn

n
≥
√
b1b2b3....bn = GM.

This is satisfied provided that the inequalities given by(
2− Ts

T es
− T es
Ts

)
≤ 0,

(
2− T es

Ts
− Ie1L

LeI1

)
≤ 0

hold. Therefore, when R0 > 1 and RK < 1 we notice that the inequality given by
dW
dt
≤ 0

holds. For
dW
dt

= 0, it means that Ts = T es , L = Le, I1 = Ie1 , I2 = Ie2 , V = V e, K = 0.

Hence, the largest invariant set for

(
(Ts, L, I1, I2, V,K)|dW

dt
= 0

)
is a singleton, E1. Therefore

by LaSalle’s invariant principle [50], we conclude that the CTL-inactive endemic equilibrium,

E1, is globally asymptotically stable provided that R0 > 1 and RK ≤ 1 . This concludes the

proof.

Theorem 22. The CTL-active endemic equilibrium, Ee2 , is globally asymptotically stable pro-

vided that R0 > 1 and RK ≥ 1.

Proof. We construct the following Lyapunov function to prove the global stability of the CTL-

active endemic equilibrium.

Q = Ts − T ∗s −
∫ Ts

T ∗
s

(µ+ ψ + φ)L∗(
βV ∗u

u+ γ

) du+ L− L∗ − L∗ ln
L

L∗
+

(µ+ ψ + φ)

ψ

[
I1 − I∗1 − I∗1 ln

I1

I∗1

]
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+
(ε+ µ)(µ+ ψ + φ)

εψ

[
I2 − I∗2 − I∗2 ln

I2

I∗2

]
+

(ε+ µ)(µ+ ψ + φ)(µ− rε)(1 + θK∗)

N2µεψ

×
[
V − V ∗ − V ∗ ln

V

V ∗

]
+
θ

σ

(
(µ+ ψ + φ)

ψ

)[
K −K∗ −K∗ ln

K

K∗

]
. (3.79)

Differentiating Q gives

Q′ = T ′s

[
1− (µ+ ψ + φ)L∗

(
Ts + γ

βV ∗Ts

)]
+ L′

[
1− L∗

L

]
+

(µ+ ψ + φ)

ψ

[
1− I∗1

I1

]
I ′1

+
(ε+ µ)(µ+ ψ + φ)

εψ

[
1− I∗2

I2

]
I ′2 +

(ε+ µ)(µ+ ψ + φ)(µ− rε)
N2µεψ

[1 + θK∗]

[
1− V ∗

V

]
V ′

+
θ

σ

(µ+ ψ + φ)

ψ

[
1− K∗

K

]
K ′. (3.80)

By substituting T ′s, L
′, I ′1, I

′
2, V

′, K ′, we obtain

Q′ =

[
1− (µ+ ψ + φ)L∗

(
Ts + γ

βV ∗Ts

)][
Λ + φL−

(
βV

(γ + Ts)
+ µ

)
Ts

]
+

[
1− L∗

L

]

×
[
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L

]
+

(µ+ ψ + φ)

ψ

[
1− I∗1

I1

]
[ψL− (ε+ µ+ θK)I1]

+
(ε+ µ)(µ+ ψ + φ)

εψ

[
1− I∗2

I2

]
[εI1 + rεI2 − (µ+ θK)I2] +

(ε+ µ)(µ+ ψ + φ)(µ− rε)
N2µεψ

× [1 + θK∗]

[
1− V ∗

V

]
[N2µ(I1 + I2)− δV ] +

θ

σ

(µ+ ψ + φ)

ψ

[
1− K∗

K

]
[σI2K − νK].

(3.81)

Recall that at the endemic equilibrium

Λ = (µ+ ψ)L∗ + µT ∗s , βV ∗T ∗s = (µ+ ψ + φ)L∗(γ + T ∗s ),
ψL∗

I∗1
=

(ε+ µ)

ψ
+
θK∗

ψ
,

72



and by expansion and simplification we obtain

Q′ = Λ + φL− βV Ts
(γ + Ts)

− µTs − (µ+ ψ + φ)L∗
(
Ts + γ

βV ∗Ts

)[
Λ + φL− βV Ts

(γ + Ts)
− µTs

]

+
βV Ts

(γ + Ts)
− βV L∗Ts
L(γ + Ts)

+ (µ+ ψ + φ)L∗ − (µ+ ψ + φ)(ε+ µ+ θK)

ψ
I1

− (µ+ ψ + φ)LI∗1
I1

+
(µ+ ψ + φ)(ε+ µ+ θK)I∗1

ψ
+

(ε+ µ)(µ+ ψ + φ)

εψ
[εI1 + rεI2 − (µ+ θK)I2]

− (ε+ µ)(µ+ ψ + φ)

εψ

[
εI1I

∗
2

I2

+ rεI∗2 − (µ+ θK)I∗2

]
+

(ε+ µ)(µ+ ψ + φ)(µ− rε)
N2µεψ

[1 + θK∗]

× [N2µ(I1 + I2)− δV ]− (ε+ µ)(µ+ ψ + φ)(µ− rε)
N2µεψ

[1 + θK∗]

[
N2µ(I1 + I2)V ∗

V
− δV ∗

]

+
θ

σ

(µ+ ψ + φ)

ψ
[σI2K − νK]− θ

σ

(µ+ ψ + φ)

ψ
[σI2K

∗ − νK∗]. (3.82)

For further simplification, we use the following substitution:

Λ− µTs = (µ+ ψ)L∗ + µT ∗s − µTs, βV ∗T ∗s = (µ+ ψ + φ)L∗(γ + T ∗s ), such that

Λ + φL− βV Ts
(γ + Ts)

− µTs − (µ+ ψ + φ)L∗
(
Ts + γ

βV ∗Ts

)[
Λ + φL− βV Ts

(γ + Ts)
− µTs

]

= (µ+ ψ)L∗ + µT ∗s − µTs + φL− βV Ts
(γ + Ts)

− (µ+ ψ + φ)L∗
(
Ts + γ

βV ∗Ts

)

×
[
(µ+ ψ)L∗ + µT ∗s − µTs + φL− βV Ts

(γ + Ts)

]

= µT ∗s

[
1− Ts

T ∗s
− T ∗s
Ts

(
Ts + γ

T ∗s + γ

)
+

(
Ts + γ

T ∗s + γ

)]
+ ((µ+ ψ)L∗ + φL)

[
1− T ∗s

Ts

]
− βV Ts

(Ts + γ)
,

(3.83)
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and

βV Ts
(γ + Ts)

− βV L∗Ts
L(γ + Ts)

+ (µ+ ψ + φ)L∗ =
βV Ts

(γ + Ts)
+

βV ∗T ∗s
(γ + T ∗s )

[
1− V

V ∗
L∗

L

]

=
βV Ts

(γ + Ts)
+ (µ+ ψ + φ)L∗

[
1− V

V ∗
L∗

L

]
,

φL

[
1− T ∗s

Ts

]
+ φL∗

[
1− V

V ∗
L∗

L

]
= φL∗

[
1− V

V ∗
L∗

L
− T ∗s
Ts

L

L∗

]
,

−(µ+ ψ + φ)(ε+ µ+ θK)

ψ
I1 −

(µ+ ψ + φ)LI∗1
I1

+
(µ+ ψ + φ)(ε+ µ+ θK)I∗1

ψ

=
(µ+ ψ + φ)(ε+ µ+ θK)

ψ
I∗1

[
1− I1

I∗1

]
= 0,

(ε+ µ)(µ+ ψ + φ)

εψ
[εI1 + rεI2 − (µ+ θK)I2]− (ε+ µ)(µ+ ψ + φ)

εψ

[
εI1I

∗
2

I2

+ rεI∗2 − (µ+ θK)I∗2

]

=
(ε+ µ)(µ+ ψ + φ)

ψ
I1

[
1− I∗2

I2

]
+

(ε+ µ)(µ+ ψ + φ)(µ+ θK)

εψ
[µ− rε+ θK]I∗2

[
1− I2

I∗2

]
= 0,

θν

σ

(µ+ ψ + φ)

ψ
I2 [K −K∗] +

θ(µ+ ψ + φ)

ψ
[K∗ −K] = 0.

(3.84)

Substituting (3.83) and (3.84) into Q′ and simplifying yields

Q′ = µT ∗s

[
1− Ts

T ∗s
− T ∗s
Ts

(
Ts + γ

T ∗s + γ

)
+

(
Ts + γ

T ∗s + γ

)]
+ (µ+ ψ)L∗

[
2− T ∗s

Ts
− V

V ∗
L∗

L
− LI∗1
I1L∗

]

+ φL∗
[
1 +

L

L∗
− L∗

L

V

V ∗
− L

L∗
T ∗s
Ts
− LI∗1
I1L∗

]
. (3.85)

Since the arithmetic mean is greater than the geometric mean, it follows that

1− Ts
T ∗s
− T ∗s
Ts

(
Ts + γ

T ∗s + γ

)
+

(
Ts + γ

T ∗s + γ

)
≤ 0, 2− T ∗s

Ts
− V

V ∗
L∗

L
− LI∗1
I1L∗

≤ 0
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and 1 +
L

L∗
− L

∗

L

V

V ∗
− L

L∗
T ∗s
Ts
− LI∗1
I1L∗

≤ 0, which means that Q′ ≤ 0, provided that Ts = T ∗s , L =

L∗, I1 = I∗1 , I2 = I∗2 , V = V ∗, K = K∗. Therefore, it follows by LaSalle’s invariance principle

[50] that the CTL-active endemic equilibrium is globally asymptotically stable. This completes

the proof.

3.5 Sensitivity analysis of the in-host HPV model

Sensitivity analysis is carried out to establish which control methods are effective in the reduc-

tion of the spread of HPV in-host. This analysis helps us to identify those particular parameters

that have an impact on R0. The best measure of sensitivity is the calculation of the elasticity

index otherwise known as the normalized sensitivity index and it is given by [7] as,

ΓR0
p =

∂R0

∂p
× p

R0

. (3.86)

where p is the parameter of interest in relation to the reproduction number R0. Using the pa-

rameters in Table 3.3, the following normalised sensitivity indices are calculated and tabulated,

ΓR0
β =

∂R0

∂β
× β

R0

= 1, ΓR0
N2

=
∂R0

∂N2

× N2

R0

= 1, ΓR0
δ =

∂R0

∂δ
× δ

R0

= −1, ΓR0
Λ =

∂R0

∂Λ
× Λ

R0

= 0.5714.

ΓR0
ψ =

∂R0

∂ψ
× ψ

R0

= 0.9558, ΓR0
φ =

∂R0

∂φ
× φ

R0

= −0.8850, ΓR0
µ =

∂R0

∂µ
× µ

R0

= −0.6613,

ΓR0
ε =

∂R0

∂ε
× ε

R0

= 0.0191, ΓR0
r =

∂R0

∂r
× r

R0

= 0.0145, ΓR0
γ =

∂R0

∂γ
× γ

R0

= −0.5714.

(3.87)

This leads to Table 3.4 that summarises the calculations above and displays the sensitivity

indices. The most sensitive parameters of the model are β,N2, ψ and δ. The results indicate

that a 10% increase on the transmission rate, β and the burst size, N2 will result in a 10%

increment in R0 while an increase by 10% of the natural viral death δ, will result in a decrease

in R0 by 10%. It can also be seen that an increase in the epithelial cell concentration by 5.7%

will consequently decrease R0 by 5.7% an increase in the mature rate of latently infected cells

by 9.5% will increase R0 by 10%. Oncogene expression, ε = 0.1, has little effect on R0 though

increasing its value also increases R0 and finally the transit-amplifying rate,r, has the least

significant effect on R0. These two parameters,ε and r are highly dependent on each other and

by this, we mean that the proliferation of I1 into I2 is dependent on the oncogene expression

rate. So, the higher the oncogene expression rate the more significant effect on R0.
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Table 3.3: Table of parameters.

Parameter Value Description Source

Λ 36000 cells per

ml per day

CD4+ Epithelial cell recruitment rate [63]

β 0.0067 virions

per day

HPV infection rate. [99]

δ 0.05 cells per day Virion death rate. Est.

µ 0.048 per day Cells death rate. [64]

N2 1000 virions per

cell

HPV burst size. [99]

θ 0.01 per day HPV clearance rate. [90]

γ 106 Epithelial cell concentration for infec-

tion half maximal.

[64]

ψ 0.03 Mature rate of latently infected cells. [40]

σ 0.001 cells per

ml

CTL expansion rate. Est.

ν 0.5 cells per ml CTL death rate. Est.

ε varied between

0− 1

Oncogene expression. [64]

r 0.01 Transit amplifying cells recruitment

rate.

[64]

φ 0.6 Natural clearance of HPV as a result of

healing of cells.

[40]

We also carried out sensitivity analysis using the partial rank correlation coefficient method

(PRCCs). The PRCC method we adopted is explained in Gomero [35]. The method tests each

parameter while holding other parameters at the median value and the results are ranked by

the amount of the effect on the outcome. The PRCCs and the corresponding p-values are com-

puted using the Rstudio package. Computed PRCC values were found to be bounded between

the closed interval [−1, 1] and due to this the sampling distribution of some of the parameters

of interest was skewed. to correct this the Fisher Transformation method as indicated in [56]

and given by

zscore =
1

2
ln

(
1 + ρ

1− ρ

)
(3.88)
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Table 3.4: Table of sensitivity indices for R0

Parameter Sensitivity Parameter Sensitivity

β 100% φ −88.5%

N2 100% µ −66.13%

δ −100% ε 1.9%

Λ 57.14 r 1.45%

ψ 95.58% γ −54.14%

where ρ is the computed Pearson correlation coefficient for each parameter. The Fisher transfor-

mation transforms the skewed distribution into a normal distribution. The P-values computed

from the Fisher transformation are adjusted using the False-Discovery-Rate (FDR) approach

by Benjamini and Hochberg outlined in [42]. The false discovery rate is defined as an expected

fraction of the false positives among all other positives that results in the rejection of the null

hypothesis [42]. The adjusted PRCC values and the corresponding P-values are given in Table

3.5. The PRCCs of parameters that are greater than zero are said to have a positive correlation

Table 3.5: Table of PRCC significance ( for FDR-adjusted P-values)

Parameter PRCC P-value Significant?

β 0.44956 0 True

Λ 0.01829 0.5653 False

µ −0.15806 9.06× 10−7 True

γ −0.15929 8.83× 10−7 True

ψ 0.64249 0 True

ε −0.02897 0.4530 False

r −0.02599 0.4598 False

φ −0.60327 0 True

δ −0.67998 0 True

N2 0.11319 5.04× 10−4 True

and so increasing such parameters will also increase R0. On the other hand, PRCCs that are

less than zero are said to have a negative correlation and increasing such parameters with a

negative PRCC will imply a decrease in R0. From the PRCC plots we establish the important

parameters of interest and therefore know what intervention methods to use to increase or

decrease the impact of these parameters. Figure 3.3 presents the PRCC plot for the basic HPV
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Figure 3.3: Sensitivity analysis of the basic reproduction number R0 given in equation (3.26),

for the basic HPV in-host model, with all other parameters as in Table 3.3.

model that exhibits the effect of the parameters on R0. The simulations indicate that param-

eters β, ψ have a positive correlation and increasing these parameters will effectively increase

R0, thus making the transmission rate and the mature rate of latently infected cells parameters

of biological interest. The transmission rate, β, can be reduced through intervention methods

such as the reduction of sexual partners [63] and condom use, while the mature rate of latently

infected cells, ψ, can be decreased through an increase in antibodies that target HPV (introduc-

tion of a vaccine). The parameters that have a negative correlation are, φ, δ, γ, µ and increasing

these parameters will effectively decrease R0. Of these parameters, the parameters that make

sense when it comes to decreasing R0 are the clearance rate, φ, and the rate of virion death,

δ, while increasing the epithelial cell concentration,γ, and the natural death rate, µ, might not

be biological feasible. So based on this we can suggest that to increase clearance of HPV, we

can find interventions such as the use of Virus-Like-Particle (VLP) vaccines such as Gardasil

that increase HPV antibody generation or other immune response boosting mechanisms against

HPV. The Monte Carlo simulations for the parameters with high PRCC magnitudes against

the reproduction number, R0, are presented in Figure 3.4.
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Figure 3.4: The Monte Carlo simulations for parameters with large PRCC magnitude, using

R0 given by equation (3.26) and its associated parameters. Parameters values used for the

simulations are taken from Table 3.3. The simulations performed are 1000 per run.

The Monte Carlo simulations indicate that the transmission rate, β, and the mature rate of

latently infected cells, ψ, have a positive correlation with the spread of HPV among cells and so

increasing these parameters consequently increases R0 as supported by the sensitivity indices

in Table 3.4. The virion death rate, δ, has a negative correlation with the spread of HPV

among cells and so increasing the virion death consequently decreases R0 as indicated by the

sensitivity indices in Table 3.4. The scatter plots also indicate that the natural clearance of

HPV, φ, within latently infected cells reduces the spread of HPV among cells.

In addition to the computation of the PRCC values and the corresponding P-values, we also

carried out a pairwise comparison of all the parameters whose P-values were less than 0.05,

as illustrated by [69, 43]. The results presented are for both the unadjusted P-values and

FDR-adjusted, presented in Table 3.7 and Table 3.6 respectively. The pairwise comparison

is performed on parameters whose P-value is less than 0.05 only. With the comparisons we

identify the parameters that have a higher promotion of the spread of HPV in-host. Table
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3.8 further indicates if the parameters are significantly different (“True”) or not significantly

different, (“False”). The comparison establishes if there are any significant differences between

the parameters that are being compared. It is observed that the effect of natural death of

epithelial cells and epithelial cell concentration is not significantly different while the rest of

the parameters are significantly different in relation to their influence on the spread of HPV

in-host.

Table 3.6: Pairwise PRCC Comparison for unadjusted P-values

β µ γ ψ φ δ N

β 0 0 6.023× 10−10 0 0 2.2× 10−16

µ 0.9976 0 0 0 1.284× 10−9

γ 0 0 0 1.078× 10−9

ψ 0 0 0

φ 0.003646 0

δ 0

N

Table 3.7: Pairwise PRCC Comparison for FDR-adjusted P-values

β µ γ ψ φ δ N

β 0 0 7.696× 10−10 0 0 2.914× 10−16

µ 0.9976 0 0 0 1.419× 10−9

γ 0 0 0 1.258× 10−9

ψ 0 0 0

φ 0.003828 0

δ 0

N
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Table 3.8: Are the parameters different after FDR adjustment?

β µ γ ψ φ δ N

β True True True True True True True

µ False True True True True

γ True True True True

ψ True True True

φ True True

δ True

N

3.6 Numerical Simulations

Numerical simulations presented show the infection dynamics of HPV in the presence of latency

and immune response. The simulations show the stability of the disease-free and endemic equi-

librium states which support the theoretical work done within this chapter. Parameter values

used in the simulations are taken from the literature and given in the Table 3.3. We first look

at the stability analysis of the disease-free equilibrium, E0. All simulations are run in Matlab.

Figure 3.5 indicates that the disease-free equilibrium given by E0 = (7.5 × 105, 0, 0, 0, 0, 0) is

globally asymptotically stable therefore supporting theorem (16). The figure indicates that the

infected classes will converge to zero over time while the healthy cells class Ts will converge to

7.5× 105 cells showing that the disease-free is stable when R0 = 0.1591 < 1.

The phase portraits for the disease-free equilibrium are given by Figure 3.6. The phase plots

support the stability of the disease-free equilibrium as it can be seen that Figure 3.6(a) indi-

cates that when HPV is introduced as a result of the abrasion of the epithelial cells, the healthy

cells Ts gradually decrease relative to the virus population increasing. This continues until the

virus reaches a viral load peak, then we suddenly observe a gradual decrease in the virus till it

reaches zero. Though R0 < 1 and RK < 1, the trend can be as a result of the immune system

which can suppress the viral load at some point within the infection provided there is some

detection of abnormal cell behaviour. The remaining phase plots, Figures 3.6(b-d) support the

existence of a globally asymptotically stable disease-free equilibrium provided that R0 < 1 and

RK < 1.
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Figure 3.5: In-host dynamics of the basic HPV model (3.2) for classes

Ts(t), L(t), I1(t), I2(t), V (t), K(t) and R0 = 0.1591 < 1, with ε = 0.01 and all other pa-

rameters taken from Table 3.3. The initial conditions used are Ts(0) = 105, L(0) = 0, I1(0) =

10, I2(0) = 5, V (0) = 0.01 and K(0) = 10.

The dynamics of the first endemic equilibrium point, Ee1 , also known as the CTL-inactive en-

demic equilibrium are given by the simulations in Figure 3.7. The simulations, Figure 3.7(a-d),

show the dynamics of HPV in the absence of CTL action as a probable result of immune response

evasion. The figures also indicate that in the absence of immune response, infected cells increase

while the susceptible healthy cells decrease to a minimal value. Figure 3.7 (b-e) specifically

shows some form of delay in the increase of infected cells and virus cells in the early days between

0− 150 days. This is due a delay in the maturation of latently infected cells. The simulations
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Figure 3.6: Phase plots for the in-host dynamics of the basic HPV model (3.2) for classes

Ts(t), L(t), I1(t), I2(t) versus HPV (V(t)) and R0 = 0.1591 < 1, with ε = 0.01, and all other

parameters as in Table 3.3.

indicate that classes Ts(t), L(t), I1(t), I2(t), V (t), K(t), converge to the CTL-inactive endemic

equilibrium given by Ee1 = (3.2× 104, 4.418× 105, 2.419× 104, 2.183× 105, 2.932× 108, 0) with

R0 = 13.8090 > 1 and RK = 0.0563 < 1. The simulations support theorem 22, which states

that the endemic equilibrium Ee1 is globally asymptotically stable when R0 > 1 and RK < 1.

The corresponding phase portraits for the endemic point, Ee1 are given in Figure 3.8. These

phase portraits for the case R0 = 13.809 > 1,RK = 0.0563 < 1, clearly indicate that upon

the introduction of HPV, healthy cells will gradually reduce as the viral load increases while

latently infected cells, infected cells and self-proliferating cells will gradually increase. This

will eventually prompt a situation where self-proliferating cells (I2) will exceed the number of

infected cells (I1) and this promotes the spread of the virus within the cells as long as there is

no immune response. Clearly, the phase portraits indicate that the endemic equilibrium point,

Ee1 , is globally asymptotically stable when R0 > 1,RK < 1. Figure 3.8 supports the existence

of the equilibrium point, Ee1 , and as HPV increases there is a decrease in susceptible epithelial

cells, an increase in: latently infected cells (L) , infected cells (I1) and self-proliferating cells

(I2). We observe that in the absence of CTL response there is a possibility of persistence of in-

fection as it becomes uncontrolled and exhibits a divergent behaviour as seen in Figure 3.8(a-d).

The next set of simulations present the dynamics of HPV in the presence of immune response
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Figure 3.7: In-host dynamics of the basic HPV model (3.2) in the absence of immune response

for classes Ts(t), L(t), I1(t), I2(t), V (t), K(t) and R0 = 13.8090 > 1,RK = 0.0563 < 1, with

parameters ε = 0.5, σ = 10−6 and all other parameters taken from the Table 3.3. Initial

conditions used are Ts(0) = 105, L(0) = 5 × 104, I1(0) = 3 × 104, I2(0) = 2 × 104, V (0) = 103

and K(0) = 100.
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Figure 3.8: Phase portraits for the in-host dynamics of the basic HPV model (3.2), in the

absence of immune response for classes Ts(t), L(t), I1(t), I2(t) and R0 = 13.809 > 1,RK =

0.0563 < 1, with ε = 0.5, and all other parameters as in Table 3.3.
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when R0 > 1,RK > 1. This is presented in Figure (3.9). The simulations in Figure 3.9(a-e)

show the dynamics of HPV in the presence of CTL action. The simulations indicate that in the

presence of immune response, susceptible healthy cells gradually decrease to a constant rate

that is higher than that of the case where there was no immune response (see Figure 3.7(a)).

This shows that in the presence of immune response we have more susceptible healthy cells due

to better viral clearance. We also note that due to healing of some latently infected cells, the

healthy cells do not approach zero rather they approach a constant value greater than zero,

due to replenishment of some cells.

The simulation dynamics compare the case where there is no CTL action (θ = 0) and the case

where there is CTL action (θ > 0). It can be seen that when there is CTL action the susceptible

epithelial cells reach an equilibrium value of 8.534× 104 up by 6.608× 104 cells from the CTL

inactive equilibrium of 1.926× 104 cells, about 77% increase. The infected equilibrium reduces

by 4.07 × 104 cells (about 9%) for the latently infected class, by 6, 69 × 103 (about 27%) for

the infected class I1 and by 2, 362 × 105 (about 83%) for the infected class I2. It can be seen

that the self-proliferating cells, I2 which are responsible for the activation of the CTL action

are marginally decreased when the CTL action is present. Similarly, we observe that in the

presence of CTL action the HPV viral load reduces by 2.3278 × 108 (78 %) which supports

the biological theory that the immune response plays a pivotal role in the reduction of HPV

infection. HPV will try to evade detection by the immune system by all means. The epider-

mal stroma junction is made up of T-cells, natural killer cells and B-cells. There are various

mechanisms that HPV will use to evade the immune response. Among them;

1. Hiding in the keratinocytes (cells that are already for programmed cell death). Then

the immune system can not detect abnormal cell death and, due to this, there are no

inflammatory responses created to alert the immune system of a possible attack.

2. HPV will remain in the epithelium and avoid the induction of viremia, abnormal cell

death or inflammation.

3. HPV will also evade the immune responses directly through the secretion of the E5 protein

which is responsible for the down-regulation of the MHC class molecules. The secretion

of the E5, E6 and E7 oncoproteins by high-risk HPV types will promote the success of

the immune response evasion by HPV.

The simulations support theorem 23 that states that the CTL-active endemic equilibrium, Ee2 , is
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Figure 3.9: In-host dynamics of the basic HPV model (3.2), in the presence of immune response

for classes Ts(t), L(t), I1(t), I2(t), K(t) and R0 = 22.6862 > 1,RK = 5.7251 > 1, with ε =

0.5, σ = 0.00001, varying CTL killing rate θ and all other parameters taken from Table 3.3.
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globally asymptotically stable when R0 > 1 and RK > 1. The simulations in Figure 3.9 clearly

show the effect of immune response evasion by HPV. The phase portraits for the endemic

equilibrium point, Ee2 , also indicate that the endemic equilibrium is globally asymptotically

stable and attracting as shown in Figure 3.10.
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Figure 3.10: Phase portraits for the in-host dynamics of the basic HPV model (3.2, in the

presence of immune response for classes Ts(t), L(t), I1(t), I2(t) and R0 = 22.6862 > 1,RK =

5.7251 > 1, with ε = 0.5, σ = 0.00001 and all other parameters are taken from Table 3.3.

Effects of oncogene expression on the dynamics of HPV infection

The effects of oncogene expression on the dynamics of the infected cells I1, self-proliferating

cells, I2 and HPV,V (t), for R0 > 1 as shown in Figure 3.11. Results indicated by the Figures

3.11(a-c) show that as oncogene expression increases, there is a decrease in I1 cells as these cells

begin to undergo cell proliferation and are converted to I2 cells which ,consequently, increases

I2 cells. It is interesting to note that when ε = 0, we have no I2 cells, rather there is a gradual

increase in I1 as indicated in Figure 3.11(a). In terms of HPV, V (t), we observe an increase in

the production of the virus by I1 and I2 cells as oncogene expression increases. As oncogene

expression increases, we also observe an increase in the production of the virus by I1 and I2

cells. Of interesting note is that, when ε = 0, we still have a production of the HPV virions.
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This is because, while there may be no proliferating cells I2, mature I1 cells may continue to

burst and release virions as a result of abnormal cell death, hence increasing the viral load.
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Figure 3.11: Dynamics of HPV infection for varying oncogene expression rates, Eps = ε and

R0 > 1, for the classes I1(t), I2(t), V (t) from model system (3.2) and all other parameters are

as in Table 3.3.

Dynamics of HPV in the presence of vaccination

We extend the basic HPV model (3.2) to include the inhibition of infection as a result of

vaccination. HPV vaccines are known to prevent HPV infection in sexually inactive or active

women. It is advisable that the vaccine be taken before an individual is sexually active for

better protection against certain high-risk HPV types. These vaccines are made up of virus-

like particles (VLPs) that offer safe protection against HPV [101]. The VLPs are not infectious

since they do not possess the viral DNA though they resemble the virus [101]. Their presence

within the body generates antibodies that fight the HPV infection and this achieves the purpose

of the vaccine. Currently, three vaccines are used to prevent HPV in women, that is, Gardasil,

Cervarix and Gardasil-9. Gardasil is a quadrivalent vaccine that protects against four HPV

strains (HPV 6,11,16,18), Cervarix is a bivalent vaccine, that protects against two HPV strains

(HPV 16,18) and Gardasil-9 is a vaccine that protects against nine HPV strains that is (HPV

6,11,16,18,31,33,45,52,58) [95]. At the moment, only the United States of America is currently
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using Gardasil-9 while other countries are using Gardasil and Cervarix [110]. In developing

countries especially those in Africa, the HPV vaccines are very expensive making them not

accessible to most women and girls. The HPV vaccines in use, unfortunately, do not offer

immunity against other sexually transmitted infections and they do not clear any prevailing

HPV infections within the body. Therefore, they are known as prophylactic vaccines [95]. The

current HPV vaccines are known to have a high efficacy towards persistent HPV infections, with

Gardasil-9 having the highest efficacy of nearly a hundred percent [72]. In terms of modelling

the dynamics of HPV in the presence of a vaccine, Smith? et al. [90] developed a model that

assessed the effects of vaccinating using Cervarix (for low-risk types) and Gardasil (for high-

risk types). Their model included the inhibition effects of the vaccine, modelled through an

inhibition parameter in the force of infection. The results of their study indicated that Cervarix

clears only low-risk types while Gardasil clears both low and high-risk types implying that, in

the presence of co-infection, Gardasil acts better at preventing HPV than Cervarix. Murall et

al. [64] in their work on HPV looked at the effects of vaccination by including a higher viral

clearance rate and a higher CTL proliferation rate. These increased effects were due to the

effects of an increase in antibodies as a result of the HPV vaccine. In our extended model,

we adopt the work done by Smith? et al. [90] and present the HPV vaccination model which

considers the effect of a quadrivalent vaccine such as Gardasil in the prevention of high-risk

HPV infections. The extended model assumes that the vaccine will inhibit the interaction

between the virus and the susceptible healthy target cells. Inhibition of the virus through the

vaccine will be through the inhibition parameter ηI , such that the term βV Ts is converted to

the term (1−ηI)βV Ts. We assume that the vaccine exhibits prophylactic behaviour. The model

also considers that ηI = 1 implies that there is complete inhibition of the virus by the vaccine

while when ηI = 0, inhibition fails [90]. Due to the introduction of the inhibition parameter,

ηI , the reproduction number R0 will be modified to become the control reproduction number,

Rc
0. The modified HPV vaccination model is given by the following differential equation system

T ′s = Λ + φL−
[

(1− ηI ]βV
(γ + Ts)

+ µ

]
Ts,

L′ =
(1− ηI)βV Ts

(γ + Ts)
− (µ+ ψ + φ)L,

I ′1 = ψL− (ε+ µ+ θK)I1,

I ′2 = εI1 + rεI2 − (µ+ θK)I2,

V ′ = N2µ(I1 + I2)− δV,

K ′ = σI2K − νK.

(3.89)
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The control reproduction number, Rc
0, for the model is given by

Rc
0 =

(1− ηI)βΛψN2µ(µ+ ε− rε)
δ(γµ+ Λ)(ψ + φ+ µ)(µ− rε)(ε+ µ)

, (3.90)

Sensitivity analysis of the vaccination model

We carry out sensitivity analysis of the parameters that affect the control reproduction number

Rc
0. We use the Latin Hypercube sampling technique to compute the PRCC values and their

corresponding P-values in Rstudio. Table 3.9 presents the PRCC values and the corresponding

P-values. The results indicate that parameters, β, ψ, φ, δ and ηI are the most influential.

Increasing or decreasing these parameters has a significant effect on the reproduction number

Rc
0.

Table 3.9: Table of PRCC significance ( for FDR-adjusted P-values)

Parameter PRCC P-value Significant?

β 0.3808 0 True

Λ 0.0528 0.1187 False

µ −0.1063 1.475× 10−3 True

γ −0.1012 2.229× 10−3 True

ψ 0.5646 0 True

ε −0.0403 0.2258 False

r −0.0335 0.2925 False

φ −0.5137 0 True

δ −0.5932 0 True

N2 0.0860 9.268× 10−3 True

ηI 0.4737 0 True

We also perform a pairwise comparison of the parameters that have P-values less that 0.05

and affect the reproduction number, Rc
0. From the comparisons it can be seen that the natural

death of epithelial cells are unrelated and not significantly different. The same applies to the

natural clearance of HPV infection and the vaccine inhibition rate. The rest of the parameters

are significantly different in relation to the spread of HPV in-host.

The tornado plot for the eleven parameters of the control reproduction number, Rc
0, is pre-

sented in Figure 3.12. The plot indicates that the important parameters that have a high
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Table 3.10: Pairwise PRCC Comparison for unadjusted P-values

β µ γ ψ φ δ N ηI

β 0 0 1.16× 10−7 0 0 1.076× 10−12 0

µ 0.9088 0 0 0 3.209× 10−5 0

γ 0 0 0 5.264× 10−5 0

ψ 0 0 0 0

φ 0.0107 0 0.2398

δ 0 0.000194

N 0

ηI

Table 3.11: Pairwise PRCC Comparison for FDR-adjusted P-values

β µ γ ψ φ δ N ηI

β 0 0 1.48× 10−7 0 0 1.44× 10−12 0

µ 0.9088 0 0 0 3.91× 10−5 0

γ 0 0 0 6.14× 10−5 0

ψ 0 0 0 0

φ 0.0116 0 0.2487

δ 0 0.0002173

N 0

ηI

Table 3.12: Are the parameters different after FDR adjustment?

β µ γ ψ φ δ N ηI

β True True True True True True True

µ False True True True True True

γ True True True True True

ψ True True True True

φ True True False

δ True True

N True

ηI
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correlation are : β, ψ, φ, δ, ηI . Of these, β, ψ, when increased will also increase the reproduc-

tion number and subsequently increase infection within cells. On the other hand parameters,

φ, δ, ηI , when increased will decrease the reproduction number and subsequently decrease the

spread of infection within cells. The introduction of the vaccine to the body increases the

immunity against HPV and hence reduces the spread of HPV infection within cells. Figure

Figure 3.12: Tornado plot for the eleven parameters of the control reproduction number Rc
0 for

the HPV in-host vaccination model,where ηI = vac and all other parameters as in Table 3.3.

3.13, presents the scatter plots for parameters that have significant PRCC values. To generate

these plots, Monte Carlo simulations for the parameters, β, ψ, ηI and φ, were performed us-

ing the Latin Hypercube sampling technique. In each simulation run a 1000 simulations were

randomly drawn for each parameter and the scatter plots were plotted in Matlab. The scatter

plot indicates that increasing parameters, β, and ψ will monotonically increase, Rc
0, therefore

increasing the spread of HPV infection in-host. On the other hand, increasing parameters,

ηI and φ will monotonically decrease, Rc
0, therefore decreasing the spread of infection in-host.

Vaccination is therefore considered an intervention method that is beneficial in the reduction

of the spread of HPV in-host.

So to investigate the effect of introducing the vaccine into the model, the numerical simu-

lations for the dynamics of HPV while varying the inhibition parameter are presented. The
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Figure 3.13: The Monte Carlo simulations for parameters with large PRCC magnitude and

P-values less than 0.05, using Rc
0, given by equation (3.9) and its associated parameters. Pa-

rameters values used for the simulations are taken from Table 3.3. The simulations performed

are 1000 per run.

simulations in Figure 3.14 show the dynamics of HPV in the presence of the HPV vaccine. Fig-

ure 3.14 (a-d) indicates that the lower the inhibition rate, ηI , the lower the number of healthy

susceptible cells and the higher the number of infected cells. The inhibition rate indicates

how efficacious the vaccine is. It can be seen that the higher the inhibition rate the higher

the reduction in new infections. As explained the HPV vaccine blocks new infections from

occurring and this increases the number of susceptible cells and reduces the number of infected

cells and HPV virions. It can also be seen that an efficacy rate of about 90% and above will

successfully reduce new HPV infection of target cells which means that a vaccine with that

level of efficacy will work effectively. This is important because currently HPV vaccines, such

as Gardasil, have a high efficacy and are also very expensive making it nearly impossible for

the ordinary woman to easily access them. From the simulations, it can be established that,

if we lower the efficacy rate to slightly above 85%, we can still achieve the blocking of new

HPV infections. We also present a contour plot that shows the effects of varying the vaccine

inhibition parameter versus the oncogene expression as indicated by Figure 3.15. The contour

plot shows that, to reduce R0 to below unity, we need to ensure that the vaccine inhibition
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Figure 3.14: Dynamics of HPV infection in the presence of vaccination, for varying inhibi-

tion rate ηI and for Rc
0 > 1 for Ts(t), I1(t), I2(t), V (t) from model system (3.2) and all other

parameters as in Table 3.3.

parameter is above 60%. The results also suggest that increasing the inhibition effect of the

vaccine will also greatly reduce R0 to below unity. The combination used (ηI vs ε ) was chosen

as a result of the fact that an increase in the oncogene expression consequently increases the

viral load and therefore a good vaccine must be able to inhibit such action. The biological

implication of this is that if ηI achieves this threshold value, then HPV can be contained. The

results support that Gardasil vaccine has above 90% ability to inhibit high-risk HPV types [72].

We also investigate the effect of inhibition for varying oncogene expression levels on the in-

fected classes I1 and I2 as demonstrated by the simulations in Figure 3.16. The simulations

presented in Figure 3.16 (a) indicate that, in the presence of low oncogene expression and low

inhibition effect, the endemic equilibrium remains stable and we notice that there are more I1

cells than I2 cells eventually. This is due to the low self proliferation of the I1 cells while the

inhibition effect of the vaccine is too low to affect the change of the equilibrium point. Figure

3.16 (b) indicates that the presence of high oncogene expression and low vaccine inhibition

effect will increase the self proliferation of I1 cells. Therefore, we observe an evident decline
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Figure 3.15: Contour plot for the vaccine inhibition rate, (η1) versus the oncogene expression

rate, (ε), in relation to the basic reproduction number, R0, given by equation (3.26) and all

other parameters are as in Table 3.3.

in the presence of I1 cells. The endemic equilibrium however due to this remains stable, as

indicated. Figure 3.16 (c) indicates that the presence of low oncogene expression and high in-

hibition effect causes the endemic equilibrium to become unstable, as both I1 and I2 are driven

to a disease-free equilibrium due to reduction of Rc
0 to below unity. We observe that a high

oncogene expression causes the transition of I1 to I2 to increase, such that we have more I2 cells

than I1 cells as indicated. Figure 3.16 (d) illustrates the dynamics of the I1 and I2 cells when

both the oncogene expression is high and the vaccine inhibition is high. The results indicate

that, though there is a distinct reduction of the I1 cells as a result of the high oncogene expres-

sion, both classes eventually reduce to zero. This makes the endemic equilibrium unstable and

reduces Rc
0 to below unity.
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Figure 3.16: Figure (a) illustrates the dynamics of HPV infection for low oncogene expression

ε = 0.1 and low vaccine inhibition ηI = 0.01. Figure (b) illustrates the dynamics of HPV

infection for high oncogene expression ε = 0.9 and low vaccine inhibition ηI = 0.01. Figure (c)

illustrates the dynamics of HPV infection for low oncogene expression ε = 0.1 and high vaccine

inhibition ηI = 0.9. Figure (d) illustrates the dynamics of HPV infection for high oncogene

expression ε = 0.9 and high vaccine inhibition ηI = 0.99. For all cases all other parameters are

as in Table 3.3.
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3.7 Discussion and conclusion of the chapter

This chapter looked at the overall dynamics of the basic HPV model in the presence of cell

proliferation and immune response. The local and global stability of the disease-free equilibrium

was analysed and it was established that the disease-free equilibrium was stable provided that

R0 < 1. The basic model also presented two important endemic equilibrium points, Ee1 and

Ee2 , where the first endemic equilibrium point, Ee1 , was found to be the CTL-inactive endemic

equilibrium while the second equilibrium point, Ee2 was found to be the CTL-activate endemic

equilibrium. Based on extensive research on the viral dynamics of HPV by authors such as

Stanley et al. [92] and Sasagawa et al. [82], the first equilibrium point presents the immune

evading behaviour of HPV. The stability of this particular equilibrium point was analysed and

it was established that a supercritical forward bifurcation existed using a method by Castillo

Chavez et al.[15]. A supercritical bifurcation ensures that the endemic equilibrium, Ee1 , is

locally asymptotically stable whenever R0 > 1 but close to 1. The global stability of Ee1 was

established using the Lyapunov function approach and it was concluded that the equilibrium

point is globally asymptotically stable. The second equilibrium point, Ee2 , for the model was

rather complex in nature as it was represented by a quartic polynomial. It was established that

there was at least one positive root implying that the endemic equilibrium point was biologically

feasible. From the CTL-inactivated endemic equilibrium, we were able to find a special immune

response specific reproduction number, RK which is also called the CTL reproduction number

for the model. The CTL-inactive equilibrium was found to be globally asymptotically stable

(implying immune evasion ), while when RK > 1 when R0 > 1 the CTL activated equilibrium,

Ee2 , was found to be globally asymptotically stable. A sensitivity analysis of parameters that

formR0 was performed and the important parameters that affect the reproduction number were

established. The PRCCs simulation established that the transmission rate and the mature

rate of latently HPV cells were the parameters that increase R0 when they are increased.

The clearance rate was the most important parameter that reduces R0 when increased. We

performed numerical simulations that elaborated the stability of the disease-free and endemic

equilibrium points for the model. Results obtained support the theoretical work on the stability

analysis of the disease-free and endemic equilibria for respective values of R0 and RK . We also

presented the extended basic model that included vaccination. In this particular model, we

assessed the inhibition effect of the HPV vaccine Gardasil and the simulations indicated that

for the vaccine to be efficient in preventing new infections it must have an efficacy of above 85%.

The contour plot presented indicated that the vaccination inhibition parameter should be above
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60% effective so that the reproduction number, R0, can be less than unity. The simulations also

showed the effects of the vaccine inhibition on the reduction of new infections in the presence of

some degree of oncogene expression. A high oncogene expression prompts the immune responses

into action due to the presence of unusual cell behaviour and this, coupled with the vaccine

effect can eventually promote the clearance of non-persistent infections. Although the immune

responses play an important role in the reduction of HPV infection in-host, the research clearly

shows that the action of the immune response alone is not sufficient and it is good to advocate

for a vaccine for use in countries that are lagging behind. It is envisaged that this work will

encourage governments in developing countries to adopt countrywide vaccination of women and

girls as a method of reducing the high-risk HPV strains and consequently reduce the cervical

cancer burden. In the next chapter, we present the HPV/HIV co-infection model and rigorously

analyse the local and global stabilities of the model.
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Chapter 4

The in-host HPV/HIV co-infection

model

4.1 Introduction

This chapter presents the HPV/HIV co-infection model in the presence of an immune response.

The local stability, global stability and numerical simulations for the co-infection dynamics are

analysed. We start by presenting the basic in-host model for HIV based on the work by [105]

4.2 The HIV model

We adopt and modify the HIV model by Perelson et al [105] because the model presents in-host

dynamics that are in line with our scope of work. The model has slight differences from the

model [99] as it incorporates latent HIV infection dynamics. HIV viral latency plays a major

role in the dynamics of HIV in-host. Due to latency virus, particles manage to evade the immune

response though inactively hiding within the genomes of resting CD4+ cells. This results in an

increase in difficulty in the elimination of HIV. It is in this regard that we incorporate latency

into the model as done by Wang et. al [105]. According to Wang et al.[105], incorporating

latency helps in avoiding the overestimation of infected cells. The model assumes the following;

Susceptible target cells denoted by Th, are recruited at a rate, s and die naturally at a rate, d1,

transmission of infection to healthy target cells is done at a rate, κ. A proportion, ρ, become

latently infected cells, Lh upon infection while, (1 − ρ), become actively infected cells, Ih.

We assume that latently infected cells eventually become actively infectious at a rate, ζ, and

the natural death of latently infected cells and actively infectious cells is given by d2 and d3
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respectively. An actively infectious cell is assumed to burst and release a total of N1 virions

within its entire lifetime and these virions Vh are assumed to degrade at rate c. The model flow

diagram for the HIV dynamics is given by

Figure 4.1: In-host dynamics of HIV

This leads to the following differential equations for the basic HIV model without treatment;

T ′h = s− κVhTh − d1Th,

L′h = ρκVhTh − (ζ + d2)Lh,

I ′h = (1− ρ)κVhTh + ζLh − d3Ih,

V ′h = N1d3Ih − cVh,

(4.1)

with initial conditions, Th(0) = Th0, Lh(0) = Lh0, Ih(0) = Ih0, Vh(0) = Vh0. The parameters used

in the model are summarized in Table 4.1.
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Table 4.1: Table of parameters for the HIV model with latency.

Parameter Description

Th Susceptible target cells

Lh Latently infected cells.

Ih Actively infected cells that are virus producing.

Vh HIV free virus particles .

s Healthy target cell recruitment rate.

κ HIV infection transmission rate.

d1, d2, d3 Natural death rates for Th, Lh, Ih respectively.

ρ Proportion of infections that result in latent infection .

ζ Progression rate of latently infected cells to the actively

infectious class Ih.

N1 Burst size for an HIV cell

c Natural death rate of the HIV virus.

4.2.1 Positivity and boundedness of solutions.

Theorem 23 (Positivity and boundedness of solutions for the HIV model.). For any non-

negative initial conditions given by (Th0, Lh0, Ih0, Vh0), model (4.1) has a unique solution and is

bounded for all t ≥ 0.

Proof. For model system (4.1) there exists a positively invariant set

Ω∗ = {Th(t), Lh(t), Ih(t), Vh(t) ∈ R4+
≥0 : 0 ≤ Th(t) + Lh(t) + Ih(t) ≤M,Vh(t) ≤M1} (4.2)

where M and M1 are to be established. Using the classical differential equations theory, model

(4.1) has a unique solution Th(t), Lh(t), Ih(t) and Vh(t) on t ∈ [0, tm), where 0 < tm <∞. Now

Th(t) is strictly positive ∀ t ∈ [0, tm). By contradiction let some t1 ∈ [0, tm), be the first time

such that T(t1) = 0 and T ′h(t1) ≤ 0. Using equation (1) from model (4.1) we have T ′h(t1) = s > 0,

this contradicts T ′h(t1) ≤ 0 and hence Th(t) > 0, ∀ t ∈ [0, tm). We also have

L′h|Lh=0 = ρκVhTh ≥ 0,

I ′h|Ih=0 = (1− ρ)κVhTh + ζLh ≥ 0,
(4.3)
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It can clearly be seen that Lh(t) ≥ 0 and Ih(t) ≥ 0, ∀ t[0, tm). Now from the fourth equation

we have

V ′h(t) = N1d3Ih − cVh

and hence solving the equation using the integrating factor approach yields

Vh(t) = ect
[∫ t

0

N1d3e
cuI(u)du+ Vh(0)

]
.

Hence Vh(t) ≥ 0 for all t ≥ 0 as long as Ih(t) ≥ 0. To prove the boundedness of solutions, we add

up the first three equations of model system (4.1) since they are the target cell compartments

as follows and obtain

X = Th(t) + Lh(t) + Ih(t). (4.4)

By substitution we obtain

Ẋ (t) = s− d1Th − d2Lh − d3Ih,

≤ s−QX (t), (4.5)

where Q = min{d1, d2, d3}. Using the integrating factor approach, we obtain

X (t) = X (0)e−Qt +
s

Q
(1− e−Qt)

≤ X (0)e−Qt +
s

Q
. (4.6)

Therefore, X = Th(t) + Lh(t) + Ih(t) is bounded and thus it follows that Th(t), Lh(t), Ih(t) are

also bounded. Using the same approach, it can be shown that Vh is also bounded since we

obtain by the integrating factor approach that;

Vh(t) ≤ Vh(0) +
N1d3

c
‖ Ih ‖∞ (4.7)

Hence, the proof for boundedness of the set

Ωh = {Th(t), Lh(t), Ih(t), Vh(t) ∈ R4+
≥0 : 0 ≤ Th(t) + Lh(t) + Ih(t) ≤M,Vh(t) ≤M1} (4.8)

where M =
s

Q
and M1 =

N1d3

c
‖ Ih ‖∞ is completed.

4.3 Equilibrium analysis for the HIV model

We present the equilibrium points for the HIV and the reproduction number.
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4.3.1 The disease-free equilibrium and Roh.

The disease-free equilibrium for the HIV model is given by

C0 =

(
s

d1

, 0, 0, 0

)
.

The reproduction number for the HIV model is found using the method by [98]. We only

consider the infected classes that is Lh(t), Ih(t) and Vh(t) in the computation of the reproduction

number, such that the F and V matrices are given by;

F =



0 0
sρκ

d1

0 0
s(1− ρ)κ

d1

0 0 0


,V =



(ζ + d2) 0 0

−ζ d3 0

0 −N1d3 c


, (4.9)

and therefore the spectral radius ρ(FV−1) is given by

R0h =
sκN1ζ

cd1(ζ + d2)
+
sκN1(1− ρ)d2

cd1(ζ + d2)

=
sκN1(ζ + d2(1− ρ))

cd1(ζ + d2)
(4.10)

It is important to note that when ρ = 0, we have an HIV model with no latent infection and

R0h =
sκN1

cd1

, which is the reproduction number for an HIV model without latency.

4.3.2 Endemic equilibrium point

The endemic equilibrium point, Ce, for the HIV model (4.1)

Ce = (T eh , L
e
h, I

e
h, V

e
h )

is found as follows;

T eh =
1

R0h

, Leh =
ρ(sR0h − d1)

R0h(ζ + d2)
, Ieh =

c(sR0h − d1)

N1d3κ
, V e

h =
(sR0h − d1)

κ
. (4.11)

We state the following lemma;

Lemma 6. The following conditions hold for the HIV model:
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1. The disease-free equilibrium point is globally asymptotically stable provided that R0h <

1and unstable otherwise.

2. The endemic equilibrium point for the HIV model is globally asymptotically stable provided

that R0h > 1 and unstable otherwise

Using Matlab, we simulate the dynamics of the HIV model presented in model system (4.1)

and show the stability of the disease-free and endemic equilibrium points. The simulations

that are carried out support the theoretical findings. The parameter values used are sourced

from literature and they are given by : s = 6.2 × 103 µl−1 per day [102], κ = 5 × 10−8 µl per

viron per day (Estimated), d1, d2, d3 = 0.01, 0.001, 1 respectively per day [105, 99], ζ = 0.1 per

day [105], ρ = 0.02 [105], N1 = [1000 − 1250] virions per cell[105, 3], c = [20 − 23] per day

[105, 3, 99]. Figure 4.2 presents the dynamics of the disease-free equilibrium point. Figure 4.2

Figure 4.2: In-host dynamics of the HIV model system (4.1) for classes Th(t), Lh(t), Ih(t), Vh(t),

R0h = 0.1348 < 1, and all other parameters as indicated and κ = 5 × 10−8. The dynamics

presented indicate that the disease-free equilibrium is stable provided R0h < 1.

supports the theoretical work on the HIV model with viral latency which states the disease-free

equilibrium is globally asymptotically stable provided that R0h < 1. As seen by Figure 4.2,

in the absence of infection, the healthy target cells will gradually increase up to a peak value

105



that is stable while the latently infected cells and actively cells gradually decrease to zero.

Due to a very low viral load the HIV virus will also gradually decline to zero. Hence, model

system (4.3) approaches the disease-free equilibrium point given by C0 = [6.191 × 105, 0, 0, 0].

The endemic equilibrium point, Ce, is simulated and shown in Figure 4.3. The simulations

indicate that when R0h > 1, the endemic equilibrium point is globally asymptotically stable

hereby supporting the theoretical work done on the model. As HIV is introduced into the

system, we observe that the susceptible population declines to a certain constant value while

the latently infected cells, Lh(t), gradually increase till they reach a peak constant value which

becomes stable. The infected cells will initially increase to a peak value between [0− 30] days

after which it becomes stable. This is due to an increase in the viral load at the beginning

of infection. We observe some oscillatory behaviour in all the classes between [35 − 50] days.

Thus, for R0h > 1, model system (4.3) approaches the endemic equilibrium point given by

Ce = [4.605× 105, 319.9, 1624, 7.075× 104].

Figure 4.3: In-host dynamics for the HIV model system (4.1), for classes,

Th(t), Lh(t), Ih(t), Vh(t), R0h = 1.3476 > 1 and all other parameters as indicated . The

dynamics presented indicate that the endemic equilibrium is stable provided R0h > 1.

In the next section, we extend the model to analyse the dynamics of the HPV/HIV co-infection

model.
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4.4 The HPV/HIV co-infection model

The co-infection dynamics of HIV/HPV remain poorly understood with not much mathemati-

cal modelling done so far. Normally, women who are HIV-positive are at risk of acquiring HPV

due to immunodeficiency as a result HIV. A mathematical model for the co-infection dynamics

of HIV/HPV based on the work done by Verma et al. [99] is developed. In their work, they

outline the role of HIV-1 tat protein in the proliferation of HPV infected cells. HIV weakens

the immune system and makes it easy for infections such as HPV to spread rapidly within cells.

This activates HIV to release tat protein which increases the production of HPV oncoproteins

E6 and E7. These oncoproteins are responsible for cell proliferation in infected HPV epithelial

cells and they promote persistence of HPV infection which is crucial in the development of

cancer cells. In the presence of immune suppression, latently infected HPV cells may be reacti-

vated into actively infected cells and also into cancer cells if not cleared by the immune system.

HIV-1 tat protein is a gene regulatory protein (a protein that normally influences the regions

of a DNA molecule that is transcribed by RNA during transcription). In other words, it is a

protein that enhances viral transcription and causes the disruption of epithelial tight junctions

making the entry of viruses such as HPV into the epithelium through abrasion very easy. Tat

protein is secreted from the intra-epithelial immune cells and it disrupts the epithelial tight

junctions that seal adjacent epithelial cells and restrict the easy flow of viruses such as HPV

[5, 97, 99].

HIV tat protein has been found to be an enhancer of the self proliferation of infected cells

and it has also been established as the main cause of the expression of HPV oncogenes E6 and

E7 in infected individuals [47] . Research affirms that individuals that are HIV-positive are at

a higher risk of acquiring HPV [47] as compared to HIV-negative individuals. This because the

E7 proteins released as a result of HPV 16/18 increase the permeability of the genital mucosa.

A mucosa is defined as a membrane that lines various parts of the body and it is made up

of epithelial cells which make it highly susceptible to HPV infection [44, 109]. Transmission

of HPV can occur through the oral mucosa, genital mucosa and the intestinal mucosa [47].

The study by Verma et al. looked at HIV/HPV co-infection dynamics within the oral mucosa

only, while in this particular research we consider the transmission dynamics within the genital

mucosa. The primary focus of our research is on heterogeneous sexual transmission of HPV.

Verma et al. studied how HIV influences HPV infection and but however did not consider how

HPV influences HIV infection. This is a subject for future research. The new model will take
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into account the role of both latent HIV and HPV infections as omitted by the work done by

Verma et al.. It is envisaged that the results of this particular model will yield interesting facts

about co-infection dynamics.

The total available susceptible epithelial cells are now assumed to be recruited at a rate,

Λ(1 + ηVh), as a result the presence of tat protein [28], where η is the effect of tat protein

secreted by an HIV virion, Vh. The model assumes that 0 ≤ η ≤ 1 such that when η = 0

the recruitment of susceptible cells remains Λ and when η = 1 there is an increase in the re-

cruitment of susceptible epithelial cells [99] . Tat protein initiates the disruption of epithelial

tight junctions and therefore causes I1 cells to proliferate faster into I2 cells. Thus, the model

equations for the co-infection model are presented as follows;

T ′h(t) = s− κVhTh − d1Th,

L′h(t) = ρκVhTh − (ζ + d2)Lh,

I ′h(t) = (1− ρ)κVhTh + ζLh − d3Ih,

V ′h(t) = N1d3Ih − cVh,

T ′s(t) = Λ(1 + ηVh) + φL−
[

βV

(γ + Ts)
+ µ

]
Ts,

L′(t) =
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L,

I ′1(t) = ψL− (ε+ µ+ θK)I1,

I ′2(t) = εI1 + rεI2 − (µ+ θK)I2,

V ′(t) = N2µ(I1 + I2)− δV,

K ′(t) = σI2K − νK,

(4.12)

with initial conditions given by, Th(0) = Th0, Lh(0) = Lh0, Ih(0) = Ih0, Vh(0) = Vh0, Ts(0) =

Ts0, L(0) = L0, I1(0) = I10, I2(0) = I20, V (0) = V0, K(0) = K0.
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4.5 Equilibrium points for the model

The co-infection model exhibits three equilibrium points: the disease-free equilibrium point

E0, the CTL-inactive endemic equilibrium point, E1, and the CTL-active endemic equilibrium

point, E2. In this particular model we are considering the case where an HIV-positive individual

develops HPV due to an increase in tat protein. This is because tat protein increases the

susceptibility of epithelial cells. So, the HIV equilibrium point is given by (T̄h, L̄h, Īh, V̄h),

where T̄h is the initial concentrations of CD4+ target cells, L̄h, are latently infected target

cells, Īh, are infected target cells and V̄h, is the concentration of HIV virions for an infected

individual who progresses to acquire HPV as a result of immune suppression. In this chapter,

the effect of tat protein is [presented by the term ηVh as indicated by Verma et al. [99], ηV̄h = 1

implies the doubling effect and ηV̄h = 2 implies a tripling effect and so on. This simplifies the

co-infection model to

T ′s(t) = Λ(1 + ηVh) + φL−
[

βV

(γ + Ts)
+ µ

]
Ts,

L′(t) =
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L,

I ′1(t) = ψL− (ε+ µ+ θK)I1,

I ′2(t) = εI1 + rεI2 − (µ+ θK)I2,

V ′(t) = N2µ(I1 + I2)− δV,

K ′(t) = σI2K − νK,

(4.13)

and yields a disease-free equilibrium given by

E0 =

(
Λ(1 + ηV̄h)

µ
, 0, 0, 0, 0, 0

)
. (4.14)

4.5.1 The basic reproduction number for the co-infection model

The reproduction number for model system (4.13) is found using the next generation approach

[98] and we only consider the infection and viral production classes such that the F and V are
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matrices are;

F =



0 0 0
Λ(1 + ηV̄h)β

(γµ+ Λ(1 + ηV̄h))

0 0 0 0

0 0 0 0

0 0 0 0



(4.15)

and

V =



(ψ + φ+ µ) 0 0 0

−ψ (ε+ µ) 0 0

0 −ε (µ− rε) 0

0 −N2µ −N2µ δ



(4.16)

and the inverse of V is given by

V−1 =



1

(ψ + φ+ µ)
0 0 0

ψ

(ε+ µ)(µ+ ψ + φ)

1

(ε+ µ)
0 0

q1
ε

(µ− rε)(ε+ µ)

1

µ− rε
0

q2 q3
N2µ

δ(µ− rε)
1

δ



(4.17)

where q1 =
εµ

(ε+ µ)(µ− rε)(µ+ ψ + φ)
, q2 =

N2µψ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)(µ+ ψ + φ)

and q3 =
N2µ(µ+ ε− rε)
δ(µ− rε)(ε+ µ)

.
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The reproduction number is the spectral radius of the product of (FV−1) where

FV−1 =



Λ(1 + ηV̄h)βq2

w1

Λ(1 + ηV̄h)βq3

w1

N2µΛ(1 + ηV̄h)β

δ(µ− rε)w1

Λ(1 + ηV̄h)β

δw1

0 0 0 0

0 0 0 0

0 0 0 0



(4.18)

with

w1 = (γµ+ Λ(1 + ηV̄ ∗)). (4.19)

The eigenvalues of the matrix (FV−1) are found to be

λi =

[
βN2µψΛ(1 + ηV̄h)(µ+ ε− rε)

δ(µ− rε)(µ+ ε)(µ+ ψ + φ)(Λ(1 + ηV̄h) + γµ)
, 0, 0, 0

]
(4.20)

for i = 1, 2, 3, 4. Therefore, the reproduction number for the HPV model in the presence of HIV

is given by

R0 =
βN2µψΛ(1 + ηV̄h)(µ+ ε− rε)

δ(µ− rε)(µ+ ε)(µ+ ψ + φ)
[
Λ(1 + ηV̄h) + γµ

] . (4.21)

As indicated in the work by Verma et al. the effects of tat vary from individual to individual

which also affects the dynamics of HPV in-host.

4.6 Local stability of the disease-free equilibrium point

To establish the stability of the disease-free equilibrium, E0, we state and prove the following

theorem;

Theorem 24. The disease-free equilibrium for the co-infection model system (4.13) is locally

asymptotically stable provided that R0 < 1 and unstable otherwise.

Proof. The Jacobian matrix for model (4.13) evaluated at the disease-free equilibrium is found
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to be;

J(E0) =



−µ φ 0 0 −p1 0

0 −p2 0 0 p1 0

0 ψ −p3 0 0 0

0 0 ε −p4 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν



, (4.22)

where p1 = − Λ(1 + ηV̄h)β

γµ+ Λ(1 + ηV̄h)
, p2 = (µ+ ψ + φ), p3 = (ε+ µ), p4 = (µ− rε).

To establish the local stability of the model system (4.13) we find the determinant and the

trace as follows;

Det J(E0) = −ν
[
N2µ

2ψp1(µ− rε) +N2µ
2ψp1ε− δµ(µ+ ψ + φ)(ε+ µ)(µ− rε)

]
,

= δµ(µ+ ψ + φ)(ε+ µ)(µ− rε) [1−R0] . (4.23)

If R0 < 1 then Det J(E0) > 0 and the trace of the Jacobian is given by

Trace J(E0) = −µ− (µ+ φ+ ψ)− (µ+ ε)− (µ− rε)− δ − ν < 0, (4.24)

since all parameters are positive and (µ − rε) > 0. Therefore, the disease-free equilibrium is

locally asymptotically stable when R0 < 1. This completes the proof.

4.7 Global stability analysis of the disease-free equilib-

rium for the co-infection model.

To ensure effective viral elimination for both HPV and HIV, we prove the global stability of

the disease-free equilibrium point, E0. We state and prove the following theorem.

Theorem 25. The disease-free equilibrium for the co-infection model (4.13) is globally asymp-

totically stable provided that R0 < 1.
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Proof. To prove the global stability of the co-infection model (4.13), we let X = Ts ∈ R be the

susceptible healthy epithelial cell population and Z = (L, I1, I2, V ) be the infected population.

We rewrite model system (4.13) as follows;

dX
dt

= F (X ,Z),

dZ
dt

= G(X ,Z), G(X , 0) = 0, (4.25)

where

F (X ,Z) = Λ(1 + ηV̄h) + φL−
[

βV

(γ + Ts)
+ µ

]
Ts,

G(X , Z) =



βV Ts
(γ + Ts)

− (µ+ ψ + φ)L,

ψL− (ε+ µ+ θK)I1,

εI1 + rεI2 − (µ+ θK)I2,

N2µ(I1 + I2)− δV



. (4.26)

The disease-free equilibrium point, for the system is given by U0 = (X ∗, 0) where

X ∗ =

(
Λ(1 + ηV̄h)

µ
, 0, 0, 0, 0, 0

)
.

So, it follows that
dX
dt
|Z=0 = Λ(1 + ηV̄h)− µX , (4.27)

this yields the equilibrium point, X ∗ =
Λ(1 + ηV̄h)

µ
, that is globally asymptotically stable.

Solving differential equation (4.27) yields

Ts(t) =
Λ(1 + ηV̄h)

µ
+

[
Ts(0)− Λ(1 + ηV̄h)

µ

]
exp−µt . (4.28)

It can be seen that as t→∞, Ts → X ∗. To guarantee global stability of model system (4.13),

we state the following three conditions

1. For
dX
dt

= F (X , 0), X ∗ is globally asymptotically stable,
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2. G(X ,Z) = AZ − Ĝ(X ,Z), Ĝ(X ,Z) ≥ 0 for (X ,Z) ∈ Ω,

3. A = DZG(X ∗, 0) is an M-matrix whose off diagonal elements are non-negative and Ω is

the region where the model is biologically feasible.

Based on these conditions, we linearise G(X ,Z) and obtain the following matrix

A =



−(µ+ φ+ ψ) 0 0
βΛ(1 + ηV̄h)

γµ+ Λ(1 + ηV̄h)

ψ −(ε+ µ) 0 0

0 ε −(µ− rε) 0

0 N2µ N2µ −δ



(4.29)

and

AZ =



βV Λ(1 + ηV̄h)

γµ+ Λ(1 + ηV̄h)
− (µ+ ψ + φ)L,

ψL− (ε+ µ)I1,

εI1 − (µ− rε)I2,

N2µ(I1 + I2)− δV

σI2K − νK.



(4.30)

and therefore

Ĝ(X ,Z) = AZ −G(X ,Z) =



βV γ(T ∗s0 − Ts)
(γ + T ∗s0)(γ + Ts)

,

θKI1,

θKI2,

0



. (4.31)
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Provided that I1 ≥ 0, I2 ≥ 0, K ≥ 0 and T ∗s0 ≥ Ts, it follows that Ĝ(X ,Z) ≥ 0. Then from

theorem (25), the disease-free equilibrium is globally asymptotically stable whenever R0 < 1.

This concludes the proof.

4.8 The endemic equilibrium points E1 and E2

The co-infection model has two endemic equilibrium points that is, the CTL-inactive equi-

librium, E1 and the CTL-active equilibrium point, E2. We define the CTL-inactive equi-

librium point, E1, as an equilibrium point where the immune response is absent and im-

mune evasion by HPV is successful and the CTL-active endemic equilibrium, E2, is where

the immune response is active. The HIV only model has an endemic equilibrium given by

(T eh = T̄h, L
e
h = L̄h, I

e = Īh, V
e
h = V̄h) and the equilibrium values are obtained from clinical trial

estimates, [99, 58]. We are interested in the effect of tat protein in the subsequent increase in

the number of susceptible epithelial cells and consequently its effect on the dynamics of HPV

in the presence of HIV. The CTL-inactive equilibrium point, E1, for the HPV model in the

presence of HIV is found to be

T es =
Λ

µ
−

Λ(1 + ηV̄h)(R0 − 1)
[
γµ+ Λ(1 + ηV̄h)

]
µA1

, Le =
Λ(1 + ηV̄h)(R0 − 1)(γµ+ Λ(1 + ηV̄h))

(µ+ ψ)A1

,

Ie1 =
Λ(1 + ηV̄h)ψ(R0 − 1)

[
γµ+ Λ(1 + ηV̄h)

]
(µ+ ψ)(ε+ µ)A1

, Ie2 =
Λ(1 + ηV̄h)ψε(R0 − 1)

[
γµ+ Λ(1 + ηV̄h)

]
(µ+ ψ)(µ− rε)(ε+ µ)A1

,

V e =
N2µψΛ(1 + ηV̄h)(µ+ ε− rε)[Λ(1 + ηV̄h) + γµ][1−R0]

δ(µ− rε)(µ+ ε)(µ+ ψ)A1

, Ke = 0,

(4.32)

where

A1 = [R0γµ+ Λ(1 + ηV̄h)(R0 − 1)],

R0 =
βN2µψΛ(1 + ηV̄h)(µ+ ε− rε)

δ(µ− rε)(µ+ ε)(µ+ ψ + φ)(Λ(1 + ηV̄h) + γµ)
. (4.33)
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The CTL-active endemic equilibrium point, E2, is found to be

T ees =
Λσεψ − νΦ0(Φ1 + θKee)(Φ2 + θKee)

σεψµ
,

Lee =
ν(Φ1 + θKee)(Φ2 + θKee)

σεψ
, Iee1 =

ν(Φ2 + θKee)

σε
, Iee2 =

ν

σ
,

V ee =
N2νµ(Φ4 + θKee)

δσε
, K = Kee,

(4.34)

where Kee is a solution of the quartic polynomial equation given by

f(K) = c0K
4 + c1K

3 + c2K
2 + c3K + c4 = 0, (4.35)

with

c0 = θ4δΦ0Φ3ν
2 > 0,

c1 = θ3
[
2δν2Φ0Φ3(Φ1 + Φ2)− δΦ0βN2µν

2
]
,

c2 = θ2

[
δΦ0ν

2Φ3(Φ2
1 + 4Φ1Φ2 + Φ2

2)− βµν2N2Φ0(Φ1 + Φ2 + Φ4),

− νψΦ3(δεσΛ + γµ)

]
,

c3 = θ

[
(Φ1 + Φ2)

(
2Φ0δν

2Φ3Φ1Φ2(−δεΛνσψΦ3 − βµν2N2Φ0Φ4

)
+ βµνN2(Λσψε− νΦ0Φ1Φ2)

]
− γµνψΦ3(Φ1 + Φ2),

c4 =

[
δνΦ1Φ2Φ3(Λεσψ + νΦ0Φ1Φ2) + Φ4βµνN2(Λεσψ − νΦ0φ1Φ2)

]

− γµνψΦ1Φ2,Φ3 (4.36)

and

Φ0 = (µ+ ψ), Φ1 = (ε+ µ), Φ2 = (µ− rε), Φ3 = (µ+ ψ + φ), Φ4 = (µ+ ε− rε), Φ5 = (1 + ηVh).

(4.37)
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The polynomial (4.35), is complex to solve and so we use the Descartes’ rule of signs to establish

the nature of the endemic equilibrium points. We state the following lemma

Lemma 7. The quartic polynomial function

f(K) = c0K
4 + c1K

3 + c2K
2 + c3K + c4 = 0

is subject to the following conditions;

1. It has only one unique positive root provided that either c0 > 0, c1 < 0, c2 < 0, c3 < 0 and

c4 < 0, or c0 > 0, c1 > 0, c2 < 0, c3 < 0 and c4 < 0, or c0 > 0, c1 > 0, c2 > 0, c3 < 0 and

c4 < 0, or c0 > 0, c1 > 0, c2 > 0, c3 > 0 and c4 < 0,

2. It has no positive roots provided that c0 > 0, c1 > 0, c2 > 0, c3 > 0 and c4 > 0,

3. More than one positive root otherwise.

4.8.1 The CTL reproduction number, R∗K , for the co-infection model

Due to the presence of immune response as a result of HPV infection, we calculate the CTL

reproduction number, R∗K , as follows;

R∗K =
σIe2
ν

=
σΛ(1 + ηV̄h)ψε(R0 − 1)

[
γµ+ Λ(1 + ηV̄h)

]
ν(µ+ ψ)(µ− rε)(ε+ µ)A1

, (4.38)

A1 = [R0γµ+ Λ(1 + ηV̄h)(R0 − 1)],

R0 =
βN2µψΛ(1 + ηV̄h)(µ+ ε− rε)

δ(µ− rε)(µ+ ε)(µ+ ψ + φ)(Λ(1 + ηV̄h) + γµ)
. (4.39)

From the computation of the CTL reproduction number for the co-infection model,
1

ν
, is the

average life of a CTL immune response cell and Ie2 is the number of infected cells at endemic

equilibrium E1. R∗K represents the average number of immune cells that are activated by each

I2 cell. We state the following conditions governing the CTL-inactivated/ activated endemic

equilibrium ;

1. If R0 > 1 and R∗K ≤ 1, then the CTL-inactivated endemic equilibrium point, E1, is

globally asymptotically stable.

2. If R0 > 1 and R∗K ≥ 1, then the CTL-inactivated endemic equilibrium point, E1, is

unstable while the CTL activated equilibrium E2 is globally asymptotically stable.

The stability of these endemic equilibrium points is proved in the following sections.
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4.9 Local stability of the endemic equilibrium point E1

In the presence of persistent HIV infection given by R0 > 1, we want to find out when the

CTL-inactive endemic equilibrium point, E1, is stable or unstable. To prove the local stability

of the endemic equilibrium point, E1, we use the bifurcation theory explained in chapter 3. We

state and prove the following theorem;

Theorem 26. Model system (4.13) has a stable unique CTL inactivated endemic equilibrium

point given by E1 whenever R0 > 1 and is unstable otherwise.

Proof. To establish the existence of a forward bifurcation, we use the Center Manifold theory

[15] outlined in chapter 3 and we re-define model system (4.13) as follows

ẋ1 = f1 = Λ(1 + ηV̄h) + φx2 −
[

βx5

(γ + x1)
+ µ

]
x1,

ẋ2 = f2 =
βx5x1

(γ + x1)
− (µ+ ψ + φ)x2,

ẋ3 = f3 = ψx2 − (ε+ µ+ θx6)x3,

ẋ4 = f4 = εx3 + rεx4 − (µ+ θx6)x4,

ẋ5 = f5 = N2µ(x3 + x4)− δx5,

ẋ6 = f6 = σx4x6 − νx6,

(4.40)

where Ts = x1, L = x2, I1 = x3, I2 = x4, V = x5, K = x6. We consider the case where the

bifurcation parameter of interest is the transmission rate β = β∗ and by solving for β∗ given

that R0 = 1 yields

β = β∗ =
δ(µ− rε)(µ+ ε)(µ+ ψ + φ)

[
γµ+ Λ(1 + ηV̄h)

]
N2µψΛ(1 + ηV̄h)(µ+ ε− rε)

. (4.41)
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The Jacobian for system (4.13) evaluated at the disease-free equilibrium is given

J(ER0=1) =



−µ φ 0 0 −p0 0

0 −p1 0 0 p0 0

0 ψ −p2 0 0 0

0 0 ε −p3 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν



, (4.42)

where p0 = − β∗Λ(1 + ηV̄h)

γµ+ Λ(1 + ηV̄h)
, p1 = (µ+ ψ + φ), p2 = (ε+ µ), p3 = (µ− rε) and β∗ is the

bifurcation parameter. Based on the local stability theorem in the Section (4.6) when R0 = 1,

the Jacobian, J(ER0=1) has a zero eigenvalue and all other eigenvalues have negative real parts

provided the conditions stated are met, so the Center Manifold theory can be applied. The

right eigenvalues for J(ER0=1) are given w = (ω1, ω2, ω3, ω4, ω5, ω6), where

ω1 = − 1

(µ+ ψ)
, ω2 =

1

ψ
, ω3 =

1

(µ− rε)
, ω4 =

1

ε
, ω5 =

(µ+ ψ + φ)(x∗1 + γ)

ψβ∗x∗1
, ω6 = 0,

(4.43)

and x∗1 =
Λ(1 + ηV̄h)

µ
. The left eigenvalues for J(ER0=1) are given by u = (u1, u2, u3, u4, u5, u6)

where

u1 = 0, u2 =
ψ

(µ+ ε− rε)(µ+ ψ + φ)
, u3 =

1

(µ+ ε− rε)
, u4 =

1

(ε+ µ)
,

u5 =
β∗ψx∗1

δ(γ + x∗1)(µ+ ψ + φ)(µ+ ε− rε)
, u6 = 0.

(4.44)

The associated bifurcation parameters for model system (4.13) are given by

a =
n∑

k,i,j=1

vkωiωj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkωi
∂2fk
∂xi∂φ

(0, 0).

(4.45)

Therefore, the non-zero partial derivatives for fi for i = 1, 2, .....6 are given by
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∂2f2

∂x1x5

=
∂2f2

∂x5x1

=
β∗γ

(γ + x∗1)2
,

∂2f2

∂x5β∗
=

∂2f2

∂β∗x5

=
x∗1

γ + x∗1
(4.46)

Computing the bifurcation coefficients a and b yields

a = − N2µψ

δ(µ+ ε)(µ− rε)(µ+ ψ + φ)(µ+ ψ)
< 0

b =
N2µψΛ(1 + ηV̄h)

δ(µ− rε)(µ+ ε)(µ+ φ+ ψ)
[
γµ+ Λ(1 + ηV̄h)

] > 0. (4.47)

We state the following theorem

Theorem 27. Provided that a < 0 and b > 0, the model system (4.13) will undergo a transcrit-

ical bifurcation at R0 = 1. The bifurcation exhibited is a forward transcritical bifurcation. In

such a bifurcation, the exchange of the disease-free and endemic equilibrium states guarantees

that the endemic equilibrium point, E1, is locally asymptotically stable when R0 > 1 but close

to 1.

Since it can be seen that a < 0 and b > 0, it is evident that a transcritical bifurcation exists

such that there is an exchange in stability when R∗0 > 1 but close to 1. This means that

when R∗0 ≤ 1, the disease-free equilibrium point is the only extremum that exists and is

globally asymptotically stable while when R∗0 > 1 but close to 1, the endemic equilibrium is

the only extremum that exists and is locally stable. Therefore the existence of a supercritical

bifurcation implies that reducing the reproduction number, R∗0 to below unity will lead to the

elimination of the endemic equilibrium state and give rise to the control of HPV in HIV-infected

individuals.

4.10 Global stability of the CTL-inactive endemic equi-

librium point E1

To prove global stability of the CTL-inactive endemic equilibrium for the co-infection model,

we state and prove the following theorem;

Theorem 28. The CTL-inactive endemic equilibrium point, E1, is globally asymptotically stable

provided that R∗0 > 1, R∗K ≤ 1 and unstable otherwise.
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Proof. To prove the global asymptotic stability of the endemic equilibrium, E1, we define a

Lyapunov function of the form

W = Ts − T es − T es ln
T es
Ts

+ L− Le − Le ln
Le

L
+ I1 − Ie1 − Ie1 ln

Ie1
I1

+ I2 − Ie2 − Ie2 ln
Ie2
I2

+ V − V e − V e ln
V e

V
+
θ

σ
K. (4.48)

Differentiating W yields

W ′ = T ′s(1−
T es
Ts

) + L′(1− Le

L
) + I ′1(1− Ie1

I1

) + I ′2(1− Ie2
I2

) + V ′(1− V e

V
) +

θ

σ
K ′. (4.49)

and by substitution of T ′s, L
′, I ′1, I

′
2, V

′, K ′ we obtain

W ′ =

[
Λ(1 + ηVh) + φL−

(
βV

(γ + Ts)
+ µ

)
Ts

](
1− T es

Ts

)
+

[
βV Ts

(γ + Ts)
− (µ+ ψ + φ)L

]

×
(

1− Le

L

)
+ [ψL− (ε+ µ+ θK)I1]

(
1− Ie1

I1

)
+ [εI1 + rεI2 − (µ+ θK)I2]

(
1− Ie2

I2

)

+ [N2µ(I1 + I2)− δV ]

(
1− V e

V

)
+
θ

σ
[σI2K − νK] .

= Λ(1 + ηVh) + φL− µTs −
Λ(1 + ηVh)T

e
s

Ts
− φLT es

Ts
+
βV T es
γ + Ts

+ µT es − (µ+ ψ + φ)L

− βV TsL
e

(γ + Ts)L
+ (µ+ ψ + φ)Le + ψL− (ε+ µ+ θK)− ψLIe1

I1

+ (ε+ µ+ θK)Ie1 + εI1 + rεI2

− (µ+ θK)I2 −
εI1I

e
2

I2

− rεIe2 + (µ+ θK)Ie2 +N2µ(I1 + I2)− δV − N − 2µ(I1 + I2)V e

V
+ δV e

+ θI2K −
θν

σ
. (4.50)

At the endemic equilibrium, we have

Λ(1 + ηVh) = µT es + (µ+ ψ)Le,

βV T es
γ + T es

= (µ+ ψ + φ)Le,

ψLe = (ε+ µ)Ie1 ,

εIe1 = (µ− rε)Ie2 ,

N2µ(Ie1 + Ie2) = δV e.

(4.51)
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We further obtain at the endemic equilibrium

W ′ = µT es + (µ+ ψ)Le + πL− µTs − (µT es + (µ+ ψ)Le)
T es
Ts
− φLT es

Ts
+
βV T es
γ + Ts

µT es − (µ+ ψ + φ)L

− βV TsL
e

(γ + Ts)L
+ (µ+ ψ + φ)Le + ψL− (µ+ ε+ θK)I1 −

ψLIe1
I1

+ (µ+ ε+ θK)Ie1 + εI1 + rεI2

− (µ+ θK)I2 −
εI1I

e
2

I2

− rεIe2 + (µ+ θK)Ie2 +N2µ(I1 + I2)− δV − N2µ(I1 + I2)V e

V

+ N2µ(Ie1 + Ie2) + θI2K −
θν

σ
. (4.52)

Collecting like terms and simplifying equation (4.52) yields

W ′ = µT es

[
2− Ts

T es
− T es
Ts

]
+ µLe

[
2− T es

Ts
− L

Le

]
+ ψLe

[
2− T es

Ts
− LIe1
LeI1

]

+ µIe2

[
1 +

Ie1
Ie2
− I1

Ie2
− I2

Ie2

]
+
βV T es
γ + Ts

[
1− TsL

e

T esL

]
+ εIe1

[
1− I1I

e
2

Ie1I2

]
+ rεIe2

[
1− I2

Ie2

]

+ N2(Ie1 + Ie2)

[
1− V

V e

]
+N2µ(I1 + I2)

[
1− V e

V

]
+ θK

[
Ie2 −

ν

σ

]
. (4.53)

Since the arithmetic mean is greater than the geometric mean it follows that

2− Ts
T es
− T es
Ts
≤ 0, 2− T es

Ts
− L

Le
≤ 0, 2− T es

Ts
− LIe1
LeI1

≤ 0

and for the CTL-inactive endemic equilibrium state we have R∗K < 1 whenever R0 > 1. Then

it means that the condition (Ie2 −
ν

σ
≤ 0) must be satisfied so that W ′ ≤ 0. We also note that

W ′ = 0 for Ts = T es , L = Le, I1 = Ie1 , I2 = Ie2 , V = V e, thus, the largest compact invariant set

{T es , Le, Ie1 , Ie2 , V e ∈ Ω :W ′ = 0} , is the singleton {E1} . Therefore by LaSalle’s invariance

principle [50], the CTL-inactive endemic equilibrium is globally asymptotically stable provided

that R∗0 > 1 and R∗K < 1. This completes the proof.

Stability analysis of the CTL-active equilibrium, E2, will be demonstrated using numerical

simulations.

4.11 Model extension

This work aims to model the dynamics of HIV/HPV co-infection in the presence of intervention

measures such as Combined Antiretroviral Therapy (cART) and HPV vaccination. The effect

of HPV vaccination in HIV-positive women remains an interesting area of research that has

little supporting data. HIV reduces the effectiveness of most vaccines and the HPV vaccine is
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among the list of such vaccines. Normally the initiation of cART/HAART in HIV-positive pa-

tients clears or reduces opportunistic infections that arise due to HIV infection. cART/HAART

has a marginally positive effect on the well-being of infected persons if administered early and

meticulously. Shretha et al. in a clinical trial established that cART/HAART does not have

an immediate effect on the reduction of HPV infections in 100 naive HIV-positive adolescents

[87], Fife et al. in a similar study also observed the effects of cART/HAART on HPV in HIV

naive patients over a period of 24 months and established that prevalence of high-risk HPV

decreased from 62% to 39% [30]. Other researches of similar nature that support the reduction

of HPV through long adherence to cART/HAART include that of Minkoff et al.[61], Adler et

al. [1] and Konopnicki et al. [48]. It has also been established through clinical trials that the

HPV vaccine favours HIV-positive women with low viral loads less than 50 copies/ml [48]. It is

therefore recommended that HIV-positive women who intend to take the HPV vaccine should

try to reduce their HIV viral load first through strict adherence to cART.

Lacey in his work on HPV vaccination in HIV infected individuals, reiterates that HIV re-

duces the effectiveness of the HPV vaccine while he proposes that more clinical trials need to

be done to ascertain the effectiveness of the HPV vaccine within HIV-positive women [51]. We

therefore, propose the following model extension that incorporates the role of cART/HAART

and the HPV vaccine in the reduction of HPV in women. The model takes into account the in-

hibition effect of cART/HAART through the reverse transcriptase and protease inhibitors and

also the effect of the inhibition through the HPV vaccine. We extend the model by Verma et al.

[99] to include the effects of HIV in the latently infected cells and the effects of the inhibition

of the HPV vaccine. These are effects that Verma et al. did not include in their model. We

therefore, introduce constant HIV treatment through the reverse transcriptase inhibitor (RTI)

parameter given by εR which is responsible for inhibiting the contact of an infected cell and

a susceptible healthy cell. It also inhibits the contact between HIV and a susceptible healthy

cells. The protease inhibitor (PI) given by εP , is responsible for preventing the bursting of an

infected cell or the production of virions. In the model, εR and εP are the drug efficacies that

come as a result of cART/HAART. We introduce the effects of the RTIs by converting the term

κVhTh to (1− εR)κVhTh where εR = 0 indicates no treatment effect and εR = 1 indicates that

the reverse transcriptase inhibitor has 100% efficacy. The PIs are introduced into the model

by converting the term N1d3Ih to N1d3(1 − εP )Ih, where εP = 0 indicates no treatment effect

and εP = 1 indicates that the protease inhibitor has 100% efficacy. Inhibition as a result of the

HPV vaccine Gardasil is modelled using the parameter, εI . As stated earlier the HPV vaccine
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does not clear existing infections but blocks new infections from occurring. Thus, the term
βV Ts
γ + Ts

is converted to
(1− εI)βV Ts

γ + Ts
. The extended model is given below;

T ′h(t) = s− (1− εR)κVhTh − d1Th,

L′h(t) = ρ(1− εR)κVhTh − (ζ + d2)Lh,

I ′h(t) = (1− ρ)(1− εR)κVhTh + ζLh − d3Ih,

V ′h(t) = N1d3(1− εP )Ih − cVh,

T ′s(t) = Λ(1 + ηV̄h) + φL−
(

(1− εI)βV
γ + Ts

+ µ

)
Ts,

L′(t) =
(1− εI)βV Ts

γ + Ts
− (µ+ ψ + φ)L,

I ′1(t) = ψL− (ε+ µ+ θK)I1,

I ′2 = εI1 + rεI2 − (µ+ θK)I2,

V ′(t) = N2µ(I1 + I2)− δV,

K ′(t) = σI2K − νK.

(4.54)

The control/effective reproduction number for model system (4.54) is given by

RT =
β(1− εI)(1− εR)(1− εP )N2µψΛ(1 + ηV̄h)(µ+ ε− rε)

δ(µ− rε)(µ+ ε)(µ+ ψ + φ)
[
Λ(1 + ηV̄h) + γµ

] . (4.55)

4.12 Numerical Simulations

The simulations presented consider the impact of vaccination of girls and women who are living

with HIV and undergoing cART/HAART. McClymont et al. [57] in their clinical trial looked

at the effects of vaccination on girls and women living with HIV and compared the results with

those of women living with HIV who had not been vaccinated. The clinical trial enrolled 479

participants of which only 279 participants were eligible for the study. These eligible partici-

pants were given more than one dose of the quadrivalent vaccine Gardasil. The study had 41.9%
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black participants, 36.2% white participants and 21.9% were participants from other races. The

participants had on average six (6) lifetime sexual partners and the average number of years

since diagnosis with HIV was found to be eight (8). The initial CD4+ T-cell count at the start

of the study was found to be 500 cells/mm3 while the HIV viral load suppression was less than

50 copies/ml. Only 10 participants had not started cART/HAART at the time of the clinical

trial while the rest were either on some regimen or had defaulted. 266 participants received

three doses of the vaccine, 7 received only two doses while 6 received only one dose. The results

obtained indicated that breakthrough infections were high among participants who originally

had high-risk HPV upon enrolment, followed by those who did not have high-risk HPV at

enrolment. These participants had received only one dose of the vaccine and had one follow-up

done throughout the study. It was also established that, though there were breakthrough in-

fections among those who had received three doses of the vaccine, these were lower than those

who had received one or two doses of the vaccine. So the study concluded that vaccine failure

was higher among women living with HIV as compared to those without HIV. However, vac-

cination also proved beneficial in the reduction of the rate of acquisition of new HPV infections.

There are also other follow up clinical trials that support the benefits of vaccination in women

living with HIV given by [51, 57, 58]. We present numerical simulations that model the dy-

namics of HPV in the presence of vaccination for women living with HIV. The numerical

simulations for the co-infection model will make use of the parameters sourced from literature

in Table 4.2. We make use of initial HIV concentrations as follows: T̄h = 5× 105 cells/ml [58],

L̄h = 237.62 cells/ml (calculated), Īh = 1.04×103 cells/ml (calculated), V̄h = 4.8×104 cells/ml

[99], κ = 5 × 10−8 virions per day (calculated) and s = 6.2 × 103 cells/ml/day (calculated),

where

L̄h =
ρκV̄hT̄h
ζ + d2

, Īh =
cV̄h
N1d3

, κ =
c(ζ + d2)

T̄hN1 [ζ + d2(1− ρ)]
, s = (κV̄h + d1)T̄h (4.56)

We present simulations that show the stability of the disease-free and endemic equilibrium

points for varying reproduction number values. We compare two scenarios, in the presence of

HIV (i.e there is the action of tat protein, η > 0 which means an increase in the susceptibility

of the epithelial cells within the genital mucosa) and in the absence of HIV (i.e there is no effect

of tat protein, η = 0.)
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Table 4.2: Table of parameters for the HIV/HPV co-infection model.

Parameter Value Description Source

s 6.2× 103/ml/day Recruitment rate of infected CD4+ target cells. Calculated

κ 5× 10−8 /ml/ day HIV transmission rate. Calculated

d1, d2, d3 [0.03,0.001,1]/ml/ day Natural death rate of susceptible, latently infected

and infected target cells.

[105],[99]

ζ 0.1 per ml per day Progression rate of latently infected cells to the

actively infected class.

[105]

ρ 0.02 per ml per day Proportion of infections that result in latent infec-

tions where 0 ≤ ρ ≤ 1.

[105]

N1 [1000-1250]/ml/day Burst size of an HIV cell. [105], [99]

c [20-23]/ml/day Natural death rate of the HIV virus. [105],

[99],[99]

η varied tat protein effect varied

Λ 36000 cells/ml/day CD4+ Epithelial cell recruitment rate [63]

β 0.0067 virions per day HPV infection rate. [99]

δ 0.05 cells per day Virion death rate. Est.

µ 0.048 per day Cells death rate. [64]

N2 1000 virions per cell HPV burst size. [99]

θ 0.01 per day HPV clearance rate. [90]

γ 106 Epithelial cell concentration for infection half max-

imal.

[64]

ψ 0.03 Mature rate of latently infected cells. [40]

σ 0.001 cells per ml CTL expansion rate. Est.

ν 0.5 cells per ml CTL death rate. Est.

ε varied between [0− 1] Oncogene expression. [64]

r 0.01 Transit amplifying cells recruitment rate. [64]

φ 0.6 Natural clearance of HPV as a result of healing of

cells.

[40]

εI varied HPV vaccine inhibition rate varied

ηP varied Protease inhibition rate varied

ηR varied Reverse transcriptase inhibition rate varied
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Figure 4.4: Dynamics of HIV/HPV co-infection model (4.13), showing the stability of the

disease-free equilibrium for R0 = 0.1553 < 1, (without HIV) and R0 = 0.2174 < 1 (with

HIV), where ‘without HIV’ is for η = 0 and“with HIV” is for η = 2.0833× 10−5 and with β =

0.00067, σ = 0.00001, ε = 0.01 and all other parameters are as in Table 4.2. Initial conditions

used are Ts(0) = 500000, L(0) = 100, I1(0) = 200, I2(0) = 100, V (0) = 100, K(0) = 1.

The simulations in Figure 4.4 support the theoretical work presented such that when R0 < 1

the model approaches the disease-free equilibrium despite the introduction of HPV for the

cases “without HIV” and “with HIV” . The model approaches the equilibrium points E0 =

(1.837 × 106, 0, 0, 0, 0, 0) for, η > 0 and E0 = (7.5 × 105, 0, 0, 0, 0, 0) for, η = 0. Figure 4.4 also

shows that in the presence of tat protein (η > 0) we have more susceptible cells , more latently

infected cells, more infected cells that progress into self-proliferating cells and also more of
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the virus as compared to the case where there is no tat protein (η = 0). The CTL-inactive

endemic equilibrium is presented in Figure 4.5. It can be seen that for R0 = 22.3414 > 1

and R∗K = 0.1957 < 1, the model approaches the first endemic equilibrium given by E1 =

(2.765×105, 1, 114×106, 5.76×105, 1.20×105, 6.68×108, 0). The results support the theoretical

work that the CTL-inactive endemic equilibrium is globally asymptotically stable provided that

R0 > 1 and R∗K < 1. The stability dynamics of the CTL-active equilibrium are presented in

Figure 4.5: Dynamics of HIV/HPV co-infection model (4.13), showing the stability of the CTL-

inactive endemic equilibrium point, E1, for R0 = 22.3414 > 1 and R∗K = 0.1957 < 1 and with

β = 0.067, σ = 0.000001, η = 2.0833E− 5 and all other parameters are as in Table 4.2. Initial

conditions are Ts(0) = 500000, L(0) = 100, I1(0) = 200, I2(0) = 100, V (0) = 100, K(0) = 150.

Figure 4.6. The simulations clearly support the theoretical work that the endemic equilibrium
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E2 is globally stable provided that R0 > 1 and R∗K > 1. The simulations also indicate that

within the period (0-100) days there is a delay in the blocking of new infections by the immune

response. So, we see an increase in the I2 cells and HPV within the period. Thereafter a

decline in the infected cells is observed after 100 days, as immune response is activated and

begins to dock and kill the infected cells. The simulation dynamics approach the equilibrium

point E2 = (3.45× 105, 1.403× 106, 4433, 5000, 9.064× 106, 40.3).

Figure 4.6: Dynamics of HIV/HPV co-infection model (4.13), showing the stability of the

CTL-active endemic equilibrium, E1, for R0 = 24.0351 > 1 and R∗K = 17.6668 > 1 and with

β = 0.0067, σ = 0.00001, η = 2.0833E − 5 and all other parameters are as in Table 4.2.

Initial conditions are Ts(0) = 500000, L(0) = 1000, I1(0) = 2000, I2(0) = 1000, V (0) =

1000, K(0) = 150.
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4.12.1 Simulating the effects of vaccination on the dynamics of HPV/HIV

co-infection

We further simulate the effect of HIV on HPV in the presence of vaccination. The main

assumption is that tat protein has a doubling effect on the susceptibility of epithelial cells as

indicated by the work by [99]. Therefore in all our simulations, we consider the cases ηV̄h = 0

(there is not tat protein effect) and ηV̄h = 1 (there is tat protein effect). The first set of

simulations in (Figure 4.7(a-e)) compare the following cases:

1. The case where there is HIV/HPV co-infection and no vaccination (i.e ηV̄h = 1 and

εI = 0).

2. The case where there is HIV/HPV co-infection and vaccination (i.e ηV̄h = 1 and εI =

0.90).

It is observed from the simulations that vaccination is beneficial in blocking new HPV infec-

tions even in the presence of HIV. There is a significant increase in susceptible cells and a

decline in the infected cells and the virus when the vaccine is 90% efficacious. The effects of tat

protein are evidently seen in the simulation because tat protein increases susceptibility of ep-

ithelial cells as mentioned in literature. Figure 4.7 supports that HIV promotes the persistence

of HPV as a result of immune suppression. The infected cell dynamics indicate that for the

HPV/HIV model the absence of vaccination evidently increases the number of infected cells I1

(blue dashed line) while the presence of vaccination results in a sharp reduction in I1 cells (red

dashed line). However, we notice that the I1 cells do not approach the disease-free equilibrium

becauseR0 > 1 and the HPV vaccine does not clear existing infections as indicated in literature.

The transit amplifying cells, I2, follow the behaviour of the I1 cells because they are formed

through the proliferation of I1 cells. So, in Figure 4.7(d) we observe that when there is

HPV/HIV co-infection in the absence of vaccination, we have more I2 cells because there is

increased self proliferation of cells due to immune suppression. When vaccination is introduced

we see a reduction of these cells. It is observed that vaccination is beneficial in the reduction

of new infections. The I2 cells approach some endemic equilibrium value eventually.

The dynamics of HPV in the presence of HIV is analysed in Figure 4.7 (e). It is observed

that in the absence of vaccination we have a sharp rise in HPV within the system due to a

production of more I1 and I2 cells as indicated by Figures 4.7(c) and (d). The results support
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Figure 4.7: Effects of vaccination on the HPV/HIV co-infection model (4.13) , for the cases (i)

ηV̄h = 1, εI = 0, (ii) ηV̄h = 1, εI = 0.90, where R0 > 1 and R∗K < 1 and all other parameters are

taken from Table 4.2. The initial conditions are Ts(0) = 1000, L(0) = 100, I1(0) = 200, I2(0) =

100, V (0) = 100, K(0) = 150.

that in the absence of vaccination HIV increases the chances of HPV viral burst and hence a

high viral load is observed. These dynamics change when vaccination is introduced into the

system as we see a distinct decline in HPV produced. For all simulations, we assume that t = 0

is the start of the vaccination. The simulations presented in Figure 4.7 help us to recommend

vaccination of women and girls living with HIV as a measure to reduce the high-risk HPV

burden as supported by literature. The only problem noted is that there is a need to use a
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vaccine that blocks a wide range of high-risk and low-risk types of HPV as this might be the

only factor that can cause vaccine failure.

From the clinical trial done by Konopnicki et al., it was observed that the occurrence of high-

risk HPV in HIV-positive women decreased with an increase in the CD4+ T-cell count [48].

The main possible reason for this was that the higher the CD4+ T-cell count, the healthier an

HIV-infected individual is. Also HPV need T-cells for B-cellactivation and anti-HPV antibody

production. According to HIV.org a healthy individual should have a CD4+ T-cell count within

the ranges of > 500 cells/µl, a chronic HIV patient has a CD4+ T cell count within the ranges

of < 500− > 200 cells/µl and an AIDS patient has a CD4+ T-cell count of < 200 cells/µl [96].

We use the data from the study by Konopnicki et al. to analyse, using the mathematical model,

the dynamics of HIV/HPV co-infection as the CD4+ T-cell count increases. We assume that

the healthy CD4+ T-cell count for the model is 8 × 105 cells/ml, the chronic HIV stages are

4× 105 cells/ml and 2.5× 105 cells/ml respectively and the chronic AIDS stage is 105 cells/ml.

The major assumption is that for the case where the CD4+ T cell count is > 500 cells/µl, we

assume that ηV̄h = 0, [99] because of the assumption that tat protein does not affect this stage.

All stages where the CD4+ T-cell count is such that < 500 cells/µl we consider the action of

tat protein to be such that ηV̄h = 1. The simulation dynamics are presented in Figure 4.8.

In Figure 4.8(a), we notice a rise in the number of I1 cells with a decrease in CD4+ T-cell

count for the first 50 days. Figure 4.8(b) supports the dynamics of Figure 4.8(a) since a rise

in the number of I1 cells as the CD4+ T-cell count decreases, also exacerbates the production

of I2 cells. Figure 4.8 (c) shows the dynamics of HPV with changes in the CD4+ T cell count

and the results indicate that, as the CD4+ T cell count increases, the HPV viral production

decreases. This can indicate that the healthier an HIV-infected individual is, the more the ac-

tion of the immune response against infections such as HPV. A distinct reduction in HPV viral

production is seen when the CD4+ T cell count is above 500 cells/µl. The effect of immune

response is also simulated and it is observed that, during the first 50 days, there is a delay in

the immune response due to probable immune evasion and because of this, we see a sharp rise

in infected cells and the HPV viral load in Figures 4.8(a-c). After 50 days the immune response

is activated, we notice a gradual reduction in the infected cells till they reach an equilibrium

value. The immune response is also influenced by the changes in the CD4+ T-cell counts, the

higher the CD4+ T-cell count the lower the immune response because there are fewer HPV

cells to trigger faster immune response.
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Figure 4.8: Dynamics of HPV/HIV co-infection model (4.13), for the cases (i) Th = 8 ×

105, ηV̄h = 0, (ii) Th = 4 × 105, ηV̄h = 1 (iii) Th = 2.5 × 105, ηV̄h = 1 (iv)Th = 105, ηV̄h = 1

with R0 > 1 and all other parameters are taken from Table 4.2.
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4.12.2 Modelling the effects of cART on HIV/HPV co-infection

The dynamics of introducing cART to the model are simulated. The main assumption made is

that all individuals are adherent to cART. This because adherence is important in the reduction

of HPV infection in HIV-positive women. Minkoff et al. in their work looked at the effects of

adherence to cART on the reduction of oncongenic HPV. The study enrolled 286 individuals

and considered adherence as following cART above 95% [61].

Figure 4.9: Dynamics of HIV/HPV co-infection model (4.13) in the presence of cART with

parameters from Table 4.2 and with “ineffective cART” with efficacies εP = 0, εR = 0.01 and

“effective cART” with efficacies εP = 0.5, εR = 0.95.

The study also looked at the effectiveness of the cART regiments and therefore classified treat-
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ment as “effective cART” and “ineffective cART”. The results the study showed that strict

effective adherence to cART reduced the HPV prevalence in women from 20% before cART

to 14% after the start of cART. It was also observed that ineffective cART had an increase in

HPV prevalence from 22% before cART initiation to 24% after initiation. Therefore, the study

concluded that only effective and adherent cART resulted in the reduction of HPV prevalence

in HIV-positive women [61]. Verma et al. further quantified “effectiveness” through setting

parameter values for the efficacy of HIV treatment at εPI = 0, εRT = 0.2 for “ineffective cART”

and εPI = 0.5, εRT = 0.95 for “effective” cART [99]. The results of this particular study vali-

dated the results by Minkoff et al. that cART helps in the reduction of HPV. Based on this we

model the effects of HPV/HIV co-infection in the presence of cART assuming that individuals

adhere to treatment[99]. The present model (4.13), presents the effects of latently infected cells

on the dynamics of HPV. Figure 4.9 presents the model dynamics for the infected classes and

HPV class in the presence of cART. The simulations are done for two cases: case 1, “ineffective

case” (εP = 0, εR = 0.01) and case 2 “effective case” ( εP = 0.5, εR = 0.95). The simulations

indicate that cART with adherence can reduce HPV prevalence significantly. This motivates

us to recommend the education of HIV-positive women and girls on the effects of adherence to

cART, in relation to the reduction of sexually transmitted infections such as HPV.

4.12.3 Discussion and conclusion on the chapter

In this chapter we formulated an HPV/HIV co-infection model adopted from the work by Verma

et al. [99]. The model looked at the effects of including the latent HIV and HPV classes. We

believe that the results presented are a better representation of the real situation. The local

and global stability analysis of the disease-free and endemic equilibrium points was presented

and analysed in depth. The model also exhibited two endemic equilibrium points, E1 and E2.

The first endemic equilibrium point, E1, represented the case where the immune response was

inactive and the second equilibrium point, E2, endemic equilibrium point represented the case

where the immune response was active. The local and global stability of the equilibrium points

was analysed and the conditions for stability and instability were established. It was established

that the stability of the equilibrium states was dependent on the reproduction number R0 and

the immune response reproduction number R∗K . Bifurcation analysis for the model was carried

out and it was established that the model exhibits a forward bifurcation whenever R0 > 1 but

close to 1. Sensitivity analysis using the normalized forward sensitivity index approach and the

PRCC approach was carried out to establish parameters that affect R0 and the results obtained
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indicated that parameters such as the transmission rate, β, had a positive correlation with R0.

Increasing the transmission rate meant an increase in R0. Numerical simulations carried out

modelled the dynamics of HIV/HPV co-infection in the presence of vaccination only and then

in the presence of cART/HAART. Results obtained indicated that anti-HPV vaccination of

HIV-infected individuals is beneficial in the reduction of the prevalence of HPV cases provided

that the efficacy of the vaccine is above 60%. Results also indicated that cART/HAART was

beneficial in the reduction of HPV infection, provided that there was treatment adherence.
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Chapter 5

Conclusion and recommendations

5.1 Conclusion

In this thesis, we used mathematical models to investigate the dynamics of HPV in the presence

of latent infection and immune response. Chapter one presented the general background to the

problem and our objectives for the study. It also gave a brief description of the virology of

HPV and the classifications of HPV. In chapter 2, we reviewed the basic model formulated by

Verma et al. [99] and from the review, we were able to formulate the HPV basic model with

adjustments and improvements. The basic HPV model formulated in chapter 3 incorporated

latency and immune response. The model was effectively analysed and it was established that

there were three equilibrium points of interest, that is the disease-free equilibrium, the CTL-

inactive equilibrium and the CTL-active equilibrium. It was also established two two associated

reproduction numbers: the basic reproduction number, R0 and the CTL-reproduction number,

RK , where the latter represented the number of infected cells each immune response cell can

address. The conditions for stability of the disease-free and endemic equilibrium were stated

based on R0 and RK . The local stability of the disease-free equilibrium was established using

the Routh Hurwitz criterion method. Bifurcation analysis using the Center Manifold theory

was carried out and it was established that the model exhibited a forward transcritical bifur-

cation indicating that the CTL-inactive endemic equilibrium was locally asymptotically stable

provided that R0 > 1, RK < 1. We formulated suitable Lyapunov functions to prove the global

stability of the two endemic equilibrium points. Sensitivity analysis for parameters that affect

R0 was done using the PRCC method by [35] and Tornado plots and the results indicated

that the transmission rate, β and the mature rate of latently infected cells, ψ, had a significant

effect on the reproduction number, R0. Reduction of these parameters significantly reduced R0.
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Numerical simulations presented supported the theoretical work presented. Parameter values

used were sourced from literature.

In numerical simulations, we considered the effects of oncogene expression on the dynamics

of HPV and established that, the higher the oncogene expression the higher the amplification

of infected cells into self-proliferating cells, and, consequently, the higher the production of

HPV. The simulations indicated that, though reduction of oncogene expression is key in the

reduction of infection, it is not sufficient. Due to this, we extended the model to incorporate

vaccination. The results of simulations from the vaccination model indicated that vaccination

is beneficial in the reduction of infections, especially if the efficacy of the vaccine is above 60%

as indicated by the contour plots presented. However, the most ideal efficacy of the vaccine

that gave a total clearance of infection was above 90%, as indicated by the simulations presented.

Chapter 4 presented the dynamics of HPV in the presence of HIV. A lot of clinical studies

have been carried out looking at these dynamics. We presented the co-infection model based

on the work by Verma et al.. A preliminary analysis of the model was done. The repro-

duction numbers for the model were the co-infection basic reproduction number, R0 and the

CTL-reproduction number R∗K . The model also exhibited three equilibrium points, that is, the

disease-free equilibrium, the CTL-inactive endemic equilibrium and the CTL-active endemic

equilibrium. The conditions for stability of these three equilibrium points based on R0 and R∗K
analysed and established. Bifurcation analysis indicated that there exists a forward transcritical

bifurcation indicating that the CTL-inactive endemic equilibrium point, E1, was locally asymp-

totically stable whenever R0 > but close to 1. The numerical simulations used parameters from

literature especially those from the clinical trials conducted on the HIV/HPV subject matter.

We established that HIV does have an effect on an increase in the transmission dynamics of

HPV due to the effect of tat protein supporting the work by Verma et al. [99]. However, vac-

cination was shown to be beneficial in the reduction of HPV infection in HIV-infected women

provided that it was above 90% efficacious. We also simulated the dynamics of the co-infection

model in the presence of antiretroviral therapy (HAART) and the results from the simulation

indicated that HAART is beneficial in the reduction of HPV infections provided that there is

adherence and the healthy CD4+ T-cell count is high.

In general, the study established that while immune response is important in the eradica-

tion of infections, it is not sufficient in the elimination and control of infections such as HPV.
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Other intervention methods need to be taken up to boost or complement the function of the

immune system. At the moment vaccination is the best intervention method that is used to

reduce HPV infection. However, in developing countries with poor economies, not all women

and girls can access the HPV vaccine because it is expensive. There is not enough education

on the importance of vaccination within such nations and therefore the high cervical cancer

prevalence in such regions. The researchers envisage that more can be done to enable the easy

access of HPV vaccines by women, girls and probably boys in developing countries that are

ravished by high HIV transmission.

5.2 Recommendations from the study

From the study we have the following recommendations;

• Early administration of the HPV prophylactic vaccine is recommended as it blocks the

acquisition and occurrence of HPV. It is in this regard that we also recommend that HPV

vaccination be made mandatory to reduce the prevalence of HPV.

• Vaccination of HIV positive women and girls should be encouraged as it reduces the

occurrence of HPV in immune compromised individuals.

• To reduce HPV infection among HIV infected women there is need for an effective use of

a combination of RTIs and PIs (cART) drugs as evidenced by the study presented.

• Adherence to cART among HIV-infected women needs to be carefully monitored and

cART to be initiated early to reduce HPV infections.

5.3 Future work on HPV in-host dynamics

Real-life infection dynamics in-host are more stochastic than deterministic, especially when

referring to dynamics of infections such as that of HPV. This is because of the random fluctua-

tions that occur during the interaction of cells and the virus. Stochastic model results tend to

be more useful as compared to deterministic model results because stochastic models produce

a distribution of possible outcomes while deterministic models provide single outcomes. In

relation to modelling stochasticity in-host several research papers have been produced on the

subject matter especially in line with HIV dynamics as indicated in [20, 112, 22, 85, 104, 54] just

to name a few. Latency is stochastic and the above studies present the perturbation dynamics
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of HIV in-host. However, the models presented did not look at the dynamics of infection in the

presence of cell proliferation and immune response which is an aspect we will consider in our

future work on the stochasticity of HPV.

Ryser et al. [80], in their work on HPV, outlined the importance of stochasticity on the

dynamics of HPV. They explained that clearance of HPV infection is highly dependent on an

alert immune response system but it is also important to consider the potential contribution of

“chance”. A lot of randomness surrounds cell dynamics of an infected epithelium and due to

this stochastic perturbations are assumed to occur within the basal layer and these contribute

to the clearance of new infections. Ryser et al. formulated a stochastic model that was based

on the theory of branching processes. The model was combined with mechanistic models that

used epidemiological data at population level and the results suggested that “chance” played

a critical role in the clearance of HPV [80]. The study further went on to reveal that within

immune-competent individuals, the immune response can clear about 20% of infections while

the rest 80% are taken care of by stochastic proliferation dynamics within the basal layer [80].

We propose for future research the creation of an in-host model for HPV with stochastic per-

turbations to ascertain the role of “chance” on the dynamics of HPV especially in HIV-positive

women and girls.

We also recommend the extension of the basic model to include the effect of antibodies on

the dynamics of HPV, so far the only consideration has been that of the antibodies induced

by the vaccine. So the modified model can, in addition to the CTLs, also include neutralising

antibodies. Finally the model can be extended to include optimal control strategies that can

effectively reduce the burden of HPV.
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[16] Chomiczewska, D., Trznadel-Budźko, E., Kaczorowska, A., and Rotsztejn,

H. The role of langerhans cells in the skin immune system. Polski merkuriusz lekarski:

organ Polskiego Towarzystwa Lekarskiego 26, 153 (2009), 173–177.

[17] Chow, L. T., Broker, T. R., and Steinberg, B. M. The natural history of human

papillomavirus infections of the mucosal epithelia. Apmis 118, 6-7 (2010), 422–449.

[18] Clifford, G. M., Goncalves, M. A. G., Franceschi, S., HPV, study group,

H., et al. Human papillomavirus types among women infected with HIV: a meta-

analysis. Aids 20, 18 (2006), 2337–2344.

142



[19] Cobo, F. Human papillomavirus infections: From the laboratory to clinical practice.

Elsevier, 2012.

[20] Conway, J. M., and Coombs, D. A stochastic model of latently infected cell reacti-

vation and viral blip generation in treated hiv patients. PLoS computational biology 7, 4

(2011), e1002033.

[21] Corey, L., Wald, A., Celum, C. L., and Quinn, T. C. The effects of herpes simplex

virus-2 on HIV-1 acquisition and transmission: a review of two overlapping epidemics.

JAIDS Journal of Acquired Immune Deficiency Syndromes 35, 5 (2004), 435–445.

[22] Dalal, N., Greenhalgh, D., and Mao, X. A stochastic model for internal HIV

dynamics. Journal of Mathematical Analysis and Applications 341, 2 (2008), 1084–1101.

[23] Derrick, W. 5.1. grossman. 1976. elementary differential equations with applications.

[24] Du, P. Human papillomavirus infection and cervical cancer in HIV+ women. In

HIV/AIDS-Associated Viral Oncogenesis. Springer, 2019, pp. 105–129.

[25] Elbasha, E. H. Impact of prophylactic vaccination against human papillomavirus in-

fection. Contemporary Mathematics 410 (2006), 113–128.

[26] Elbasha, E. H. Global stability of equilibria in a two-sex HPV vaccination model.

Bulletin of Mathematical Biology 70, 3 (2008), 894.

[27] Elbasha, E. H., Dasbach, E. J., and Insinga, R. P. Model for assessing human

papillomavirus vaccination strategies. Emerging infectious diseases 13, 1 (2007), 28.

[28] Erwin, S. H. Mathematical Models of Immune Responses to Infectious Diseases. PhD

thesis, Virginia Tech, 2017.

[29] Fedrizzi, E. N., Laureano, J. K., Schlup, C., Campos, M. O., and Menezes,

M. E. Human papillomavirus (HPV) infection in HIV positive women of florianópolis,
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