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Abstract
In this contribution the sinc basis functions are used to numerically solve the
Schrödinger equation in one and two dimensions for a number of potentials.
The calculations are done using the Python and Numpy modules. Conver-
gence is found to be fast for the harmonic oscillator. For the Morse potential
it agrees with the theoretically expected behaviour. In the two dimensional
case code optimization leads to a large speed-up. We also present the results
of calculations for the ground state energy of the hydrogen molecular ion em-
ploying Sinc functions as a basis set. Modifications are required to make the
basis functions suitable for calculating the ground state energy of the hydro-
gen molecular ion with the application of the cusp factor formalism . Finally
the resulting energies are investigated as a function of the number of basis
functions and double-logarithmic fits are performed.

Key Terms:
Sinc functions, Numerical Methods, Python, Numpy, Scipy, Morse potential,
Eigenvalue Problem, Computational Physics, Cusp Factor, Hydrogen Molec-
ular Ion, Least Square Fits.
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Our world consists of many particles interacting with one another while
some do not. To accurately and adequately describe these interacting sys-
tems requires the inclusion of a potential [1]. These interacting systems can
be considered as governed by the laws of quantum mechanics [2]. The in-
teracting systems could be atomic systems, molecular systems, or nuclear
systems [2]. Inside these quantum mechanical systems, particles are mov-
ing and interacting with each other. Physicists and engineers describe the
properties and behaviour of the interacting quantum systems by the wave
function, which defines the state of the system at each position and time.

The Schrödinger equation is one of the fundamental equations of physics
for describing quantum mechanical behaviour. In quantum mechanics, the
Schrödinger equation is an essential and powerful tool for investigating and
understanding quantum processes. The quantum processes within the sys-
tems are described by the Schrödinger equation which determines the wave
function Ψ(x, t) [3].

The numerical methods for solving the full range of partial and ordinary dif-
ferential equations are of interest to scientists and engineers. This is because
in science and engineering, differential equations occur very often. To solve
these differential equations, both linear and non-linear, many different meth-
ods have to be employed. Numerical methods have proven to be of great
importance to get accurate solutions [4, 5].

Sinc functions as a basis set have been used extensively for obtaining the
approximate solutions of ordinary differential equations, partial differential
equations and integral equations [6, 7]. The sinc numerical method is easily
implemented and the results obtained are quite accurate [8, 9]. The approx-
imation by sinc functions takes care of singularities in problems [10]. The
sinc methods are less prone to common instability problems compared to
other numerical methods due to their rapid convergence [10]. It has been
shown that sinc numerical methods are distinguished by exponentially de-
caying errors [11, 12]; they have convergence rates of O(exp(−k

√
N)) with

some k > 0, [13] where N is the number of nodes or basis functions used in
the methods.
Many engineers, mathematicians and physicists, handling an infinitely long
discrete signal, or differential equations have employed the sinc method in
order to analyse and solve these equations [4, 8].

Different numerical techniques have been employed to solve the differential
equations governing few-body quantum mechanical systems such as the Eu-
ler method, (both implicit and explicit) [14, 15, 16], the Numerov algorithm
[17], the Chebyshev collocation method [18], and the Runge-Kutta methods
[16]. The Euler method is only of first order, and thus while consistent, it has
a slow convergence rate [15, 16]. The Runge-Kutta methods are of limited use
on an irregular grid [16]. Also most numerical approximation procedures,
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such as interpolation, quadrature, finite difference approximation, finite ele-
ment methods and variational methods are based on exact relationships that
polynomials satisfy [13]. These procedures generally do very well in a region
where the function to be approximated is analytic, and perform poorly in a
region of a singularity of the function [13]. Some of these above-mentioned
methods employed to solve the differential equations of quantum mechani-
cal systems have instability problems and are usually truncated before they
are treated numerically [19, 10], leading to loss of accuracy.
Even though the Chebyshev method provides a robust, efficient and accurate
tool for the calculation of three dimensional nuclear wave functions [17], it is
polynomially based because it is defined over bounded domains [11].

The above has led to more investigations of other numerical methods for the
solutions of quantum mechanical problems. The robustness, efficiency and
accuracy of the solutions will definitely depend on the choice of the basis
function [19]. Hence this work on solving the differential equations in quan-
tum mechanics using the sinc basis functions is of relevance.
In this thesis, we will apply the sinc basis functions method to a variety of
quantum mechanical problems in one and two dimensions. The results ob-
tained as well as the efficiency are compared to a known numerical method.
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Differential equations appear in many areas of science and technology, pre-
cisely whenever a deterministic relation involving some continuously vary-
ing quantities [20], and their rates of change in the space and/or time (ex-
pressed as derivatives) is known or postulated. They are widely used in
pure and applied mathematics, physics, and engineering. All of these dis-
ciplines are interested in the properties of differential equations of various
types. Pure mathematics focuses on the existence and uniqueness of solu-
tions [21], while applied mathematics emphasizes the rigorous justification
of the methods for approximating solutions.
Differential equations play an important role in investigations of virtually ev-
ery physical, technical, or biological process, from celestial motion to bridge
design, and to interactions between neurons [22]. Differential equations such
as those used to solve real-life problems may not necessarily be directly solv-
able [23] since they do not have closed form solutions. Instead, such solutions
can be approximated using numerical methods. The sinc method is an attrac-
tive alternative for numerical solutions to the problems with no closed form
[19]. Differential equations of quantum mechanical systems modelled by the
Schrödinger equation can be solved exactly for some types of potentials giv-
ing a detailed account of interactions in the quantum systems[2]. Atomic,
molecular and nuclear systems are examples of quantum mechanical sys-
tems [2], which are described by the Schroedinger equation.

Theoretical studies of quantum mechanical systems are based on the solu-
tion of the few-body Schrödinger equation for the systems in question [2].
Investigations of these quantum systems are based on those solutions which
depend on [2] the potentials associated with the interactions in the quan-
tum systems. Subsequently, only numerical solutions are the appropriate
techniques for the differential equations of the systems. The solutions to
these quantum mechanics problems use approximation methods [24]. Just
as stated by Zettili [24], most problems encountered in quantum mechan-
ics cannot be solved exactly hence one resorts to approximation methods for
their solutions.

The sinc method has been studied extensively [8] and is said to be a highly
efficient numerical technique [9], especially with problems having singular
solutions and independent of boundary conditions. The sinc method, based
on the sinc functions, has been found to be among the few reliable meth-
ods for obtaining numerical solutions [8], combining convolution with the
boundary integral equation (IE) approach, and it brings about exponentially
fast convergence for solutions of differential equations [25]. In other words,
the sinc method approximation yields both an effective and rapidly conver-
gent scheme for solving those problems, and so circumvents the instability
problems that one typically encounters in some other methods [19]. Many
researchers have come to the realization that the sinc function plays an im-
portant role in many areas of science and its application.
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2.1 Background on Sinc Function

The sinc function is a sine wave multiplied by 1/x. The sinc method is con-
nected to a family of approximation formulas [26]. It is widely used in var-
ious fields of numerical analysis [10] such as interpolation, quadrature, ap-
proximation of transforms, the solution of integral equations, ordinary dif-
ferential equations(ODE), and partial differential equations(PDE) [10, 6]. The
sinc function method has been used for solving a wide range of linear and
non-linear problems which emanate from scientific and engineering applica-
tions [10], like oceanographic problems with boundary layers [27], astrophys-
ical equations, heat distribution, and two-point boundary value problems.
Volterra’s population model, Hallen’s integral equation, third-order bound-
ary value problems, and systems of second-order boundary value problems
are other applications of the sinc method [10]. The sinc method has also been
applied to elasto-plastic problems [28], fourth-order boundary value prob-
lems, the inverse problem, integro-differential equations [6, 29], and optimal
control [10].

The sinc function dates back to the works of Whittaker [30], Lund [7], and
Stenger [26]. Many more related works have been carried out by other re-
searchers such as Chen Li [4], Mehdi [8], Sugihara [12] and Abbas [10]. Whit-
taker happened to be the first to make a connection with analytic functions,
where the sinc expansion was being used, together with the cardinal func-
tion C( f , h), while Stenger and his school developed different sinc numerical
methods for solving differential equations [12]. The term sinc was introduced
by Phillip M. Woodward in his 1952 paper "Information theory and inverse
probability in telecommunication" [31], and also in his 1953 book "Probability
and Information Theory with Applications to Radar" [32], in which he said
the function "occurs so often in Fourier analysis and its applications that it
definitely seems to merit some notation of its own".

Recent developments have established that the sinc numerical methods can

achieve convergence rates of O( exp(−k∗N)
log N ) [12] with some k∗ > 0 for a smaller

but still practically meaningful class of problems, and that these convergence
rates are best possible. Here N is the number of nodes or basis functions used
in the methods.
In the solution of inverse problems, the sinc methods have been employed
as forward solvers [9]. At the same time, solving the problems with non-
homogeneous mixed boundary conditions directly seems to be difficult using
the sinc method [4].
Derivations of sinc approximations are usually done using complex vari-
ables, while some are done using Fourier Transforms. Sinc approximations
have been derived, for a finite interval (a,b), and the semi-finite interval
(0, ∞), the whole real line (−∞, ∞) and generally over arcs in the complex
plane [25].
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The sinc function is used with the variational method [33] which is often
discretized in a grid in order to make it applicable. Using these grids or
stepsize methods for the solution of differential equation are currently re-
garded as one of the most powerful tools of the numerical methods for solv-
ing Schroedinger equation both for the time independent and time depen-
dent systems [34]. It provides the necessary accuracy and computational ef-
ficiency when compared with the traditional variational techniques [34].
Presently, the sinc functions are widely used for getting the approximate so-
lution of ODEs, PDEs and integral equations [35, 7]. It is frequently used in
Fourier analysis, which is a good technique for solving differential equations.
It has a smoothing effect on Fourier analysis in order to improve convergence
[33], and also handles the Gibbs’ phenomenon, which is the tendency of a
truncated function or series to display oscillations near points of discontinu-
ity. Therefore this smoothing effect of the sinc functions helps the truncated
series to improve convergence [34, 33].

2.2 Properties of Sinc Function

We will concentrate on the properties of the sinc function that are useful to
our study of solving the Schrödinger equation. More detailed properties of
the sinc function can be found in [11, 7, 25].
The sinc function is defined as

sinc(x) =
sin(πx)

πx
, (2.1)

and satisfies the following properties:∫ ∞

−∞
sinc(x) dx = 1, (2.2)

∫ ∞

−∞
sinc2(x) dx = 1. (2.3)
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Another useful relation is, that the sinc function is the Fourier transform of
the rectangular function or pulse with no scaling. It is used when reconstruct-
ing a continuous band-limited signal from uniformly spaced samples of that
signal [35]. Thus we have

rect(t) =
{

1, -1/2 ≤ t ≤ 1/2;
0, |t| > 1

2 .
(2.4)

∫ ∞

−∞
rect(t)e−iπ f t f t =

sin(π f )
π f

= sinc(f). (2.5)

The sinc function is analytic everywhere, even in the complex plane and
hence an entire function.
For h > 0, and k = 0,±1,±2, ...., the translated sinc functions with evenly
spaced nodes, are given by [13, 12]

S(k, h)(x) = sinc
(
(x− kh)

h

)
=

{
sin π

h (x−kh)
π
h (x−kh) , x 6= kh;

1, x = kh.
(2.6)

The translated sinc functions form an interpolatory set of functions, i.e,

S(k, h)(jh) = δkj =

{
1, k = j,
0, k 6= j. (2.7)

Here k and j belong to Z.
A function f (x) which is analytic on a rectangular strip centered on the real
axis can be approximated in terms of sinc functions as [26, 36]

f (x) =
∞

∑
−∞

f (kh)Sk(h, x). (2.8)

If a function f (x) is defined on the real axis, then for h > 0 the series

C( f , h)(x) =
∞

∑
k=−∞

f (kh)sinc
(
(x− kh)

h

)
, (2.9)

which can also be written as

C( f , h)(x) =
∞

∑
k=−∞

f (kh)S(k, h)(x), (2.10)

is called the Whittaker Cardinal expression [30] of f whenever this series
converges for h > 0, where h is the stepsize.
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3.1 The Variational Method

The variational method begins by evaluating the expectation value of the
Hamiltonian and norm of the wave function.
Time -independent Schrödinger equation is

Hψ = Eψ, (3.1)

where H is the Hamiltonian, and E is the total energy of the system, which
is dependent on the wave function of the system. The variational principle
states [37] that the ground-state energy, E0, is always less than or equal to
the expectation value of H calculated with the trial wave function. We can
express the wave function, even though unknown, as an infinite linear com-
bination of basis functions [37];

ψ=

∞

∑
i=−∞

cn
i S(k, h), (3.2)

where S is the basis functions and ci is the weighted coefficients.

3.2 The Basis Functions

For the remainder of this document the one dimensional basis functions are

si(x) =
1√
h

sin(π( x
h − i))

π( x
h − i)

, (3.3)

where h is the distance between zeroes of the transformed sinc functions, and
i is the index running in principle over all integer values from −∞ to ∞. The
first factor on the right hand side provides for normalization. However, for
our calculations we have to restrict this index to a range from −n to n. We
then define

f j(x) = s−n+j−1(x), (3.4)

with
j = 1, 2, ....2n + 1, (3.5)

as a basis with N = 2n + 1 members. The choice of n which is equivalent to
a cut-off at xmax = + nh and xmin = −nh, influences the accuracy of the result.
It should be noted, that the above basis set is approximate because of the
finite step width h and the cut-off at ±xmax.
We express the wave function as a finite linear combination of basis func-
tions.
Thus the numerical ansatz for the wave function of the ν-th state becomes

ψν(x) =
N=2n+1

∑
i=1

cν
i fi(x), (3.6)



Chapter 3. Numerical Methods 12

where cν
i are the coefficients and f j are the sinc basis functions.

3.2.1 Expectation values and Kinetic matrix elements kij

The I-D Schrödinger equation for this is given by

(3.7)

{
− d2

dx2 + V(x)
}

ψν(x) = eνψν(x). (3.8)

This is solved via the variational method [37], leading to the eigenvalue prob-
lem

Huν = eνuν, (3.9)

where uv is the vector of expansion coefficients,

with
hij = kij + vij , (3.10)

hij =
∫
[ f
′
i (x) f

′
j (x) + fi(x)V(x) f j(x)]dx = kij + vij (3.11)

where hij is the matrix elements of H, kij are the elements of kinetic energy
matrix while vij are the elements of potential matrix.

Analytical evaluation of the first term kij in hij can be carried out using the
Fourier expansion of the sinc function and the Parseval theorem with the
following result

kij =

{
π2

3h2 i = j;
(−1)|i−j| 1

h2
2
|i−j|2 i 6= j.

(3.12)

The second term vij is evaluated numerically via repeated Gauss-Legendre
integration [38, 39, 40] as described in the following below.

3.2.2 Evaluation of Potential matrix elements vij

It is convenient to use Gauss-Legendre integration for each interval of width
h since the basis functions vanish at known points. Thus we obtain

vij =
n

∑
k=−n

NGL

∑
l=1

hwl fi(kh + hxl)V(kh + hxl) f j(kh + hxl), (3.13)

where xl and wl are the Gauss-Legendre points and weights on the unit in-
terval.
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Rewriting Eq (3.13), we can suitably define global points ym and weights um
such that

vij =
N×NGL

∑
m=1

um fi(ym)V(ym) f j(ym), (3.14)

where
ym = kh + hxl, (3.15)

and
um = hwl, (3.16)

with

k = −n +

[
m− 1
NGL

]
, (3.17)

and here the brackets [] refer to the integer part of what is between them.

Eq (3.14) is much more suitable for numerical purposes since it can be evalu-
ated efficiently as a scalar product of vectors.
For this integration we used NGL = 10 points and weights in each interval,
resulting in a total number of Integration points of 20n.

3.3 Programming languages and libraries used

To perform the above calculations we use Python [41], Numpy [42], Scipy
[43] and Matplotlib [44]. All the source code used is given in Chapter 6.



14

Chapter 4

Applications and Discussion



Chapter 4. Applications and Discussion 15

4.1 Numerical Results for One Dimension

4.1.1 The harmonic oscillator

For testing purposes we first considered the harmonic oscillator. The quan-
tum harmonic oscillator is of unique importance in quantum mechanics, since
it is one of the few problems that can be solved both in closed form, and in
approximations.
The Hamiltonian for the harmonic oscillator is given by:

H = − d2

dx2 + x2. (4.1)

The energy eigenvalues Eν of the quantum harmonic oscillator are

Eν = 2ν + 1, ν ≥ 0. (4.2)

This means that energy eigenvalues are all odd numbers 1, 3, 5, 7. Please
note, that these eigenvalues obtained are twice the standard values for the
harmonic oscillator due to the definition of H, i.e. no factor of 1/2.

4.1.2 Numerical calculations for harmonic oscillator

Employing the Python [41, 43] code with the numerical extension Numpy
[42] listed in section 6.1, and using the sinc basis functions for xmax = 8, the
numerical results shown in the table below were obtained. Here, E0, E1, E2
and E3 are the energies of the ground state, first excited state, second state,
and third excited states respectively. The known lowest eigenvalues 1, 3, 5, 7
are obtained very accurately. Convergence is very fast as function of n.

TABLE 4.1: Results of Numerical Calculations for 1-D Har-
monic Oscillator; n, h and xmax;

n h E0 E1 E2 E3

8 1.0000 1.00013274618 3.00388708934 5.01965658349 7.1426916954
9 0.8889 1.00001043728 3.00040366538 5.00262094231 7.026576271
10 0.8000 1.00000059941 3.00002946274 5.00023921435 7.00326643666
11 0.7273 1.00000002524 3.00000153079 5.00001518651 7.00026666304
12 0.6667 1.00000000078 3.00000005692 5.00000067774 7.00001475924
13 0.6154 1.00000000002 3.00000000152 5.00000002142 7.00000056346
14 0.5714 1.00000000000 3.00000000003 5.00000000048 7.000000015
15 0.5333 1.00000000000 3.00000000000 5.00000000001 7.00000000028
16 0.5000 1.00000000000 3.00000000000 5.00000000000 7.00000000000
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4.1.3 Morse Potential

The Morse potential is used to model the vibrational excitations of a chemical
bond for diatomic molecules.
The potential energy of this diatomic molecule is described by the Morse
potential as [45]

V(x) = D(e−2x/a − 2e−x/a). (4.3)

The Hamiltonian is

H =
p2

2µ
+ D

(
e−2x/a − 2e−x/a

)
, (4.4)

where x = length of chemical bond, reduced mass µ=1/2, and D = measure
of strength of chemical bond. For h̄ = 1 and a = 1, the eigenvalues Eν of H
are given by [45]

Eν = −D
{

1− 1√
D

(
ν +

1
2

)}2

, ν ≥ 0 . (4.5)

for ν such that the curly bracket is positive.

4.1.4 Numerical calculations for Morse Potential

Employing the Python code [41, 42, 43] listed in section 6.2, for the sinc basis
functions for xmax = nh = 15, and D = 9 using Numpy, we calculated the
three lowest eigenvalues.

E0 is the ground state energy level, E1 is first excited state, and E2 is the
second excited state. The results obtained are shown in the table below.

TABLE 4.2: Results of Numerical Calculations for 1-D Morse
Potential; n, h and xmax, E0, E1 and E2 with D = 9;

n h E0 E1 E2

10 1.5000 −3.76038976403 −0.250055663018 0.0733336499528
15 1.0000 −5.61144760855 −1.35904155742 0.00106155076298
16 0.9375 −5.78207245684 −1.54867449554 −0.0242262756023
17 0.88235 −5.9116427122 −1.70946234508 −0.0551345268337
18 0.83333 −6.00860002465 −1.84134344147 −0.0879500590189
19 0.78947 −6.08010573628 −1.94651057482 −0.119474470539
20 0.7500 −6.13196406853 −2.02827460821 −0.148096434547
22 0.68182 −6.19502991317 −2.13662852199 −0.192096781641
25 0.6000 −6.23360618925 −2.21183371107 −0.228296935064
27 0.55555 −6.24283368003 −2.23225185845 −0.239467707444
30 0.5000 −6.24797717715 −2.24473113548 −0.246788915935
50 0.3000 −6.25000348798 −2.25000886772 −0.249990616734

For the ν-th eigenpair resulting from calculation we expect from the theo-
retical convergence studies [13] the following to hold for the νth eigenvalue
resulting from the calculations as function of n.

Eν(N) = Eν + bν exp(−cν

√
N) , (4.6)
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FIGURE 4.1: Convergence for ground state of Morse potential

where N indicates the number of basis functions.

For a constant xmax = 15, a Gnuplot was used both for creating the figures as
well as fitting the results to the expected convergence behaviour. The fits are
done in terms of

√
N. On the following two pages, plots for ground state and

first excited state are shown. From figure 4.1 and figure 4.2 it is evident, that
the eigenvalues agree reasonably well with the fits to equation (4.6).

4.1.5 Discussion on one-dimensional results

The calculation for harmonic oscillator was very fast. Convergence for the
ground state energy is obtained when n = 14, h = 0.5714 and E0 = 1.00000000000.
The first excited state energy level converges at n = 15, h = 0.5333 and
E1 = 3.00000000000. Similarly we have convergence for the second and
third excited states when n = 16, h = 0.5000, i.e. E2 = 5.00000000000 and
E3 = 7.00000000000.

For the Morse potential, the error of eigenvalues showed good agreement
with the theoretically expected behaviour. The ground state energy con-
verged to E0 = −6.25, while the first excited state converged to E1 = −2.25.
These two values are in agreement with the theoretical prediction.
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FIGURE 4.2: Convergence for first excited state of Morse poten-
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4.2 Two-Dimensional Schrödinger equation

The 2-D Schrödinger equation is given by

Hψi(x, y) = Eiψi(x, y). (4.7)

To simplify the calculation we assume that the distance between nodes of our
basis functions is the same in both dimensions, i.e.

h = hx = hy. (4.8)

Therefore, the basis functions used in x and y are identical, the domain of ex-
pansion is [−xmax, xmax]× [−xmax, xmax], and the total number of basis func-
tions becomes N2.
In two dimensions the Hamiltonian is given by

H = T + V = − ∂2

∂x2 −
∂2

∂y2 + V(x, y). (4.9)

Evaluation of the matrix elements of the Hamiltonian, then proceeds analyt-
ically for the kinetic energy term and numerically for the potential energy
term in a similar fashion as in one dimension. It should be noted, that the
numerical integration requires much more CPU time, since there are now
4n2N2

GL integration points. Applying the variational principle, the two di-
mensional Schrödinger equation was solved numerically by expanding the
wave function ψ(x, y) in terms of products of one dimensional basis func-
tions, i.e.

ψ(x, y) = ∑ cαgα(x, y) . (4.10)
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Here the two dimensional basis functions are

gα(x, y) = fi(α)(x) f j(α)(y) (4.11)

where iα and jα are the suitably defined functions of α.

The wave function in terms of the two dimensional basis functions is

ψ(x, y) = ∑ cα fi(α)(x) f j(α)(y) (4.12)

and the matrix elements of the Hamiltonian, H, are given by

hαβ =

〈
gα(x, y)

∣∣∣−∇2 + V(x, y)
∣∣∣ gβ(x, y)

〉
. (4.13)

The eigenvalue problem will then be

Huν = λνuν, (4.14)

with

hαβ =
∫ ∫

gα(x, y)
(
−∇2 + V(x, y)

)
gβ(x, y)dxdy, (4.15)

hαβ =
∫ ∫

gα(x, y)
(
− ∂2

∂x2 −
∂2

∂y2 + V(x, y)
)

gβ(x, y)dxdy, (4.16)

hαβ = tαβ + vαβ. (4.17)

tαβ =
∫ ∫

gα(x, y)
(
− ∂2

∂x2 −
∂2

∂y2

)
gβ(x, y)dxdy, (4.18)

vαβ =
∫ ∫

gα(x, y)V(x, y)gβ(x, y)dxdy, (4.19)

tαβ = t(x)
αβ + t(y)αβ . (4.20)

Substituting Eq (4.11) into Eq (4.18) gives;

t(x)
αβ =

∫ ∫
fi(α)(x)

(
− ∂2

∂x2

)
fi(β)(x) f j(α)(y) f j(β)(y)dxdy, (4.21)

t(x)
αβ =

∫
dx fi(α)(x)

(
− ∂2

∂x2

)
fi(β)(x)

∫
dy f j(α)(y) f j(β)(y), (4.22)

t(x)
αβ = ki(α)i(β)

∫
f j(α)(y) f j(β)(y)dy, (4.23)

t(x)
αβ = ki(α)i(β)δj(α)j(β). (4.24)

Similarly the t(y)αβ is obtained as:
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t(y)αβ =
∫

dx fi(α)(x) fi(β)(x)
∫

dy f j(α)(y)
(
− ∂2

∂y2

)
f j(β)(y), (4.25)

t(y)αβ = δi(α)i(β)k j(α)j(β). (4.26)

The detailed matrices are given by:

t(x)
αβ = ki(α)i(β)δj(α)j(β), (4.27)

t(y)αβ = δi(α)i(β)k j(α)j(β), (4.28)

vαβ =
∫ ∫

fi(α)(x) f j(α)(y)V(x, y) fi(β)(x) f j(β)(y)dxdy. (4.29)

In the above potential energy equation vαβ is a true double integral which
can be evaluated using two dimensional Gauss-Legendre integration.

4.2.1 Numerical results for two dimensions

Numerical Calculations were done for the two dimensional harmonic oscil-
lator, for different parameters such as for xmax = ymax = 8, and for 10 Gauss-
Legendre points. The Python code employed is listed in section 6.3.

In table 4.3, E0, E1, · · ·, E5 are the eigen energies obtained via the calculations.

TABLE 4.3: Results of numerical calculations for 2-D harmonic
oscillator;

n h E0 E1 E2 E3 E4 E5
4 2.0000 2.303871 5.385916 5.385916 8.096441 8.152794 8.442909
5 1.6000 2.080862 4.473939 4.473939 6.858751 6.998085 7.023671
6 1.3333 2.016334 4.131066 4.131066 6.243554 6.363701 6.369892
7 1.1429 2.002428 4.027192 4.027192 6.051474 6.099747 6.100884
8 1.0000 2.000262 4.003994 4.003994 6.007651 6.019370 6.019519
9 0.8889 2.000021 4.000412 4.000412 6.000794 6.002584 6.002597
10 0.8000 2.000001 4.000030 4.000030 6.000058 6.000236 6.000237
11 0.7273 2.000000 4.000002 4.000002 6.000003 6.000015 6.000015
12 0.6667 2.000000 4.000000 4.000000 6.000000 6.000000 6.000000
13 0.6154 2.000000 4.000000 4.000000 6.000000 6.000000 6.000000
14 0.5714 2.000000 4.000000 4.000000 6.000000 6.000000 6.000000
15 0.5333 2.000000 4.000000 4.000000 6.000000 6.000000 6.000000
16 0.5000 2.000000 4.000000 4.000000 6.000000 6.000000 6.000000

We can see from the above table 4.3, that as n increases, h decreases, and the
energy levels also decrease, until convergence is achieved. When n = 12
and h = 0.6667, convergence was achieved for ground state energy level,
E0 = 2.000000. Also, we observed convergence for E1 and E2 when n = 13
and h = 0.6154, while the eigenvalue = 4.000000. Finally, when n = 14 and
h = 0.5714, convergence was achieved for E3, E4 and E5 with eigenvalue =
6.000000.
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Considering the fully converged results in the last line of the above table we
recover both the eigenvalues 2, 4 and 6 and the degeneracies 1, 2 and 3 for the
2-D harmonic oscillator. Please note again that our energies are twice those
known for 2-D harmonic oscillator.

TABLE 4.4: Parameters of numerical calculations for harmonic
oscillator for 10 Gauss-Legendre points,

.

n h Neig Nint Tbf Tvmat TEVP
4 2.0000 81 6400 2.1270 0.0648 0.0044
5 1.6000 121 10000 5.0457 0.2248 0.0123
6 1.3333 169 14400 10.2311 0.6282 0.0420
7 1.1429 225 19600 18.5929 1.4714 0.1197
8 1.0000 289 25600 31.1685 3.1726 0.1915
9 0.8889 361 32400 48.4563 6.2601 0.3513
10 0.8000 441 40000 73.5441 11.5954 0.6294
11 0.7273 529 48400 109.2896 20.1906 1.0501
12 0.6667 625 57600 154.8675 33.5829 1.7290
13 0.6154 729 67600 211.3824 53.5678 2.6635
14 0.5714 841 78400 279.7736 82.5839 3.9894
15 0.5333 961 90000 389.9374 123.8101 5.9517
16 0.5000 1089 102400 476.6943 181.5246 8.5615

In Table 4.4, we define the following parameters;
Neig is the dimension of the eigenvalue problem.
Nint is the number of integration points.
Tbf is the time for calculating the basis functions.
Tvmat is the time for calculations of potential matrices.
TEVP is the time for calculating the eigenvalue problems.

TABLE 4.5: Results of numerical calculations for harmonic os-
cillator for 10 Gauss-Legendre points, after code optimization;

n h Neig Nint Tbf Tvmat TEVP E0 E1 E2 E3
4 2.0000 81 6400 0.0323 0.0672 0.0046 2.303871 5.385916 5.385916 8.096441
5 1.6000 121 10000 0.0603 0.2237 0.0132 2.080862 4.473939 4.473939 6.858751
6 1.3333 169 14400 0.1003 0.6186 0.0440 2.016334 4.131066 4.131066 6.243554
7 1.1429 225 19600 0.1613 1.4806 0.0969 2.002425 4.027162 4.027162 6.051418
8 1.0000 289 25600 0.2341 3.1731 0.1933 2.000262 4.003994 4.003994 6.007651
9 0.8889 361 32400 0.3343 6.2837 0.3545 2.000021 4.000412 4.000412 6.000794
10 0.8000 441 40000 0.4597 11.5784 0.6382 2.000001 4.000030 4.000030 6.000058
11 0.7273 529 48400 0.6081 20.1427 1.0403 2.000000 4.000002 4.000002 6.000003
12 0.6667 625 57600 0.8030 33.3005 1.6976 2.000000 4.000000 4.000000 6.000000
13 0.6154 729 67600 1.0367 53.4464 2.6106 2.000000 4.000000 4.000000 6.000000
14 0.5714 841 78400 1.3088 82.2574 3.9483 2.000000 4.000000 4.000000 6.000000
15 0.5333 961 90000 1.6377 122.7418 5.8455 2.000000 4.000000 4.000000 6.000000
16 0.5000 1089 102400 2.0274 180.1188 9.2350 2.000000 4.000000 4.000000 6.000000

Tables 4.5 and 4.6, show the effects of using 10 and 4 Gauss- Legendre inte-
gration points. We observed that the 4 Gauss-Legendre integration points re-
duced the number of integration points, time taken for the calculations of the
basis functions, time for the calculation of the potential matrices and finally
the time for the calculation of the eigenvalue problems, while maintaining
the accuracy of the fast convergence of the energy levels.
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TABLE 4.6: Results of numerical calculations for harmonic os-
cillator for 4 Gauss-Legendre points, after code optimization

n h Neig Nint Tbf Tvmat TEVP E0 E1 E2 E3
4 2.0000 81 1024 0.0377 0.0121 0.0182 2.303268 5.386119 5.386119 8.092750
5 1.6000 121 1600 0.0240 0.0361 0.0126 2.080690 4.474059 4.474059 6.859193
6 1.3333 169 2304 0.0405 0.1016 0.0441 2.016295 4.131116 4.131116 6.243699
7 1.1429 225 3136 0.0626 0.2395 0.0954 2.002419 4.027176 4.027176 6.051453
8 1.0000 289 4096 0.0934 0.5131 0.1923 2.000261 4.003997 4.003997 6.007657
9 0.8889 361 5184 0.1260 1.0041 0.3553 2.000021 4.000412 4.000412 6.000795
10 0.8000 441 6400 0.1699 1.8476 0.6252 2.000001 4.000030 4.000030 6.000058
11 0.7273 529 7744 0.2202 3.2080 1.0613 2.000000 4.000002 4.000002 6.000003
12 0.6667 625 9216 0.2857 5.3602 1.7419 2.000000 4.000000 4.000000 6.000000
13 0.6154 729 10816 0.3621 8.4907 2.6021 2.000000 4.000000 4.000000 6.000000
14 0.5714 841 12544 0.4483 13.1560 4.0709 2.000000 4.000000 4.000000 6.000000
15 0.5333 961 14400 0.5563 19.5872 5.8239 2.000000 4.000000 4.000000 6.000000
16 0.5000 1089 16384 0.6818 28.7472 8.5508 2.000000 4.000000 4.000000 6.000000

4.2.2 Discussion on two dimensional harmonic oscillator re-
sults

In general, there is fast convergence of the energy levels. From the results
of our calculations in table 4.3 we observe that the ground state energy, E0
converged to 2.000000 when n = 12 and h = 0.6667. The first excited state
energy, E1 and second excited state energy E2 converged to 4.000000 when
n = 13 and h = 0.6154. This is a degeneracy in the energy levels. Similarly,
E3, E4 and E5 converged to 6.000000 when n = 14 and h = 0.5714. It shows
another degeneracy in the energy levels.

We observed that a lot of time was taken for the evaluation of the basis func-
tions after all the parameters were considered. The two dimensional Python
and Numpy code was accelerated via unrolling of a large loop, i.e. split-
ting the large loop into two small loops for code optimization in order for
evaluations to be faster. The time used for evaluating the basis functions is
now reduced. The time for evaluating the potential energy matrices remains
almost the same.

We see that when 4 Gauss-Legendre integration points were used, the time
taken by the calculations process was reduced drastically, while the energy
values remain the same. We can opt for 4 Gauss-Legendre integration points
in order to reduce the CPU time taken.
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4.2.3 Comparison of the sinc function and finite element method
(FEM) results for 1-D harmonic oscillator

We compare the results of the calculations for the energy eigenvalues for the
quantum mechanical simple harmonic oscillator using FEM [46] and the sinc
function.

TABLE 4.7: Results of Numerical Calculations for Quantum
Mechanics for 1-D Harmonic Oscillator, using Sinc function and

FEM with linear interpolation [46] functions

Energy level Energy Obtained with Sinc Function Energy obtained with FEM Exact Eigenvalue
E0 1.00000000000 1.00693 1.00000000000
E1 3.00000000000 3.03439 3.00000000000
E2 5.00000000000 5.08875 3.00000000000
E3 7.00000000000 7.16942 7.00000000000

TABLE 4.8: Results of Numerical Calculations for Quantum
Mechanics for 1-D Harmonic Oscillator, using Sinc function and
FEM using Hermite interpolation with two nodes [46] of three

degrees of freedom

Energy level Energy Obtained with Sinc Function Energy obtained with FEM Exact Eigenvalue
E0 1.00000000000 1.000000 1.00000000000
E1 3.00000000000 3.000000 3.00000000000
E2 5.00000000000 5.000000 3.00000000000
E3 7.00000000000 7.000001 7.00000000000

The numerical calculations obtained using the sinc basis functions and the
finite element method (FEM) as shown in tables 4.7 and 4.8. It is obvious
from the results that the sinc basis set has an edge over the finite element
method (FEM).
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4.3 Hydrogen Molecular Ion, H+
2

The use of a basis set in molecular calculations [47] is becoming common in
recent years. We now proceed to test the accuracy of the sinc basis functions
for calculating of the ground state energy of H+

2 . The volume element in
these coordinates is defined by

dV = ρdρdφdz. (4.30)

The two dimensional wave function for the hydrogen molecular ion in the
ground state is

ψ = ψ(ρ, z). (4.31)

The wave function of the ground state depends on ρ and z, but not on ϕ, be-
cause separation of variables yields a differential equation in ϕ, whose lowest
eigenvalue is zero.
The Hamiltonian is given by

H = −1
ρ

∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂z2 + V(ρ, z), (4.32)

V(ρ, z) = − 2√
ρ2 + (z + 1)2

− 2√
ρ2 + (z− 1)2

. (4.33)

4.3.1 Symmetrical Sinc function basis set

The ground state wave function ψ of the hydrogen molecular ion satisfies the
boundary condition

∂ψ(0, z)
∂ρ

= 0 . (4.34)

This can be shown by expanding the wave function in powers of ρ for ρ→ 0.
We now also extend ψ to negative values of ρ, yielding a function even with
respect to ρ = 0. It should be noted, that ρ is now just a variable but not a
radius.
For simplicity we first consider a one-dimensional function φ(ρ) on the inter-
val [0, xmax] under the boundary condition

∂φ

∂ρ
= 0 at ρ = 0 . (4.35)

The basis functions on the interval [−xmax, xmax] used in this thesis are

f j(x) = s−n+j−1(x), j = 1, · · · , 2n + 1 . (4.36)

with
si(x) =

1√
h

sinc(x− ih), i = −n, · · · , n . (4.37)
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In order to satisfy the boundary condition at ρ = 0 another set of basis func-
tions is required whose derivative vanishes at ρ = 0. It is evident, that the
derivative of the basis functions whose maxima lie on the right hand side of
zero does not vanish. Thus another basis set is needed. The elements of this
basis set are obtained by combining those f j, whose origins are at ρ = ±ih
and including the function fn+1, whose derivative at the origin vanishes, to
yield a basis set gj of n + 1 elements.
Denoting the expansion coefficients of a function F in the basis f j by ci and
those in the symmetrized basis set gj by di we have

c = Dd, (4.38)

with D shown below for n = 4

D =



0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

In general the matrix has dimensions (N2, N1) and it is used to get the func-
tion f to satisfy the non-symmetric boundary condition.
With N1 = n + 1 and N2 = 2n + 1 and those elements dij that satisfy i + j =
n + 2 or i− j = n are unity.

In order to simplify the calculation of matrix elements as required for the
variational method we use Eq (4.38) to obtain

〈gi|A|gj〉 = ∑
kl

dik〈 fk|A| fl〉dl j, (4.39)

for an operator A. The functions gi and gj are the symmetrized basis func-
tions.
Here the scalar product 〈a|A|b〉 is an abbreviation for∫ xmax

0
ρa(ρ)Ab(ρ)dρ , (4.40)

since we are using cylindrical coordinates.
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We will now expand the ground state wave function in terms of products of
sinc functions fi in z and the functions gj derived above, i.e.

ψ(ρ, z) = ∑
a

caFa(ρ, z), (4.41)

with
Fa(ρ, z) = gi(a)(ρ) f j(a)(z), (4.42)

and certain suitably defined i(a) and j(a).

To facilitate the evaluation of matrix elements with respect to the product
basis we define

C = 1
⊗

D ,

where
⊗

stands for the tensor product between two matrices. Using this
definition the matrix elements of an operator B which depends both on ρ
and z can be written as

〈Fa|B|Fb〉 = ∑
kl

cak〈Gk|B|Gl〉clb. (4.43)

Here the basis Ga is defined by

Ga = fk(a)(ρ) fl(a)(z), (4.44)

with suitably defined functions k(a) and l(a) and the scalar products are de-
fined with respect to the domain [0, xmax]× [−xmax, xmax]. Thus this product
basis combines the sinc functions in both ρ and z.

The variational principle is applied, the two dimensional Schrödinger equa-
tion is solved numerically by expanding the wave function ψ(ρ, z) in terms
of products of one dimensional basis functions that constitute a new basis set
defined by using thus

ψ(ρ, z) = ∑ cαgiα(ρ) f jα(z) , (4.45)

are the matrix elements of the basis functions. Thus we define Qα in equation
on line below as thus; Qα = gi(α)(ρ) f j(α)(z).

The Hamiltonian matrix becomes

hαβ =
∫ ∫

Qα(ρ, z)
(
−1

ρ

∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂z2 + V(ρ, z)
)

Qβ(ρ, z)ρdρdz. (4.46)

Some of the integrals resulting from the above equation cannot be evaluated
analytically and the overlap integrals are not diagonal. Therefore the struc-
ture of hαβ is more complex than for the isotropic harmonic oscillator. This
matrix is the sum of kinetic and potential energy matrices, which are defined
by
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hαβ = tαβ + Vαβ, (4.47)

Vαβ=
∫ ∫

Qα(ρ,z)V(ρ,z)Qβ(ρ,z)ρdρdz, (4.48)

tαβ =
∫ ∫

Qα(ρ, z)
(
−1

ρ

∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂z2

)
Qβ(ρ, z)ρdρdz. (4.49)

Substituting the expressions for the basis functions, we have

Vαβ =
∫ ∫

gi(α)(ρ) f j(α)(z)V(ρ, z)gi(β)(ρ) f j(β)(z)ρdρdz. (4.50)

tαβ =
∫ ∫

gi(α)(ρ) f j(α)(z)
(
−1

ρ

∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂z2

)
gi(β)(ρ) f j(β)(z)ρdρdz. (4.51)

tαβ =
∫ zmax

−zmax

∫ ρmax

0

∂gi(α)(ρ)

∂ρ

∂gi(β)(ρ)

∂ρ
f j(α)(z) f j(β)(z)ρdρdz (4.52)

+
∫ zmax

−zmax

∫ ρmax

0
gi(α)(ρ)gi(β)(ρ)

∂ f j(α)(z)
∂z

∂ f j(β)(z)
∂z

ρdρdz.

In contrast to the two dimensional harmonic oscillator the potential matrix
cannot be simplified further and it reads,

Vαβ =
∫ zmax

−zmax

∫ ρmax

0
gi(α)(ρ) f j(α)(z)

(
−2√

ρ2 + (z + 1)2

)
gi(β)(ρ) f j(β)(z)ρdρdz

+
∫ zmax

−zmax

∫ ρmax

0
gi(α)(ρ) f j(α)(z)

(
−2√

ρ2 + (z− 1)2

)
gi(β)(ρ) f j(β)(z)ρdρdz.

The evaluation of the above potential matrix vαβ thus requires a true dou-
ble integral which can be evaluated using two dimensional Gauss-Legendre
integration.

4.3.2 Cusp factor ansatz

The Hydrogen molecular ion, H+
2 , poses a challenge when solving the Schrödinger

equation, using the sinc basis functions in cylindrical coordinates. The result-
ing eigenvalues show no convergence, since the ground state wave function
exhibits a cusp [48] at the coordinates of the nuclei. In order to overcome this
problem, we write the wave function as a product [47, 49] of a cusp factor F
and a function φ, i.e.

ψ(r) = F(r)φ(r). (4.53)
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The suitable choice of F must achieve the required cusp behaviour. In this
the Hamiltonian for a molecule with Na nuclei at Ri, i = 1, ..., Na the ansatz ij

F(r) = 1 +
Na

∑
i=1

ciexp(−2Ziri), (4.54)

with

ri = |r− Ri|. (4.55)

For F to satisfy the cusp conditions at all the nuclei, we require

lim
ri→0

d̄F̄
dri

= −ZiF(Ri), (4.56)

leading to a linear system of equations of the form

Ac = 1, (4.57)

with

aij =
Na

∑
j=1

[
δij − (1− δij)exp(−2Zi|Ri − Rj|)

]
, (4.58)

from which the coefficients ci are obtained.
The above product ansatz is substituted into the Schrödinger equation to ob-
tain the expectation value of the Hamiltonian as

〈h〉 =
∫

[∇(Fφ).∇(Fφ) + FφVFφ] d3r. (4.59)

Using integration by parts we can simplify the above to

〈h〉 =
∫ [

F2|∇φ|2 + F2W(r)φ2
]

d3r, (4.60)

where

Wr = V(r)− ∇
2F
F

. (4.61)

Thus the sinc basis functions technique is applied as usual starting from the
Hamiltonian 〈h〉 expression, under the normalization condition;

〈Fφ|Fφ〉 = 1, (4.62)

〈ψ|ψ〉 =
∫

F2φ2d3r. (4.63)

Expanding φi in terms of our chosen sinc basis functions fi,

φi(r) = ∑
i

ci
jfj(r), (4.64)
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the vectors of the expansion coefficients for the orbitals φ satisfy the general-
ized eigenvalue problem

H(vi) = eiUvi, (4.65)

where the elements of the matrices above are given by

hαβ =
∫
∇ fα.∇ fβF2ρdρdz +

∫
fαW fβF2ρdρdz, (4.66)

uαβ =
∫

fα fβF2ρdρdz. (4.67)

The kinetic matrices are given by

tαβ =
∫
∇ fα.∇ fβF2ρdρdz, (4.68)

while the potential matrices are given as

Vαβ =
∫

fαW fβF2ρdρdz. (4.69)
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4.3.3 Numerical calculations for hydrogen molecular ion

The properly defined and symmetrized sinc basis functions were used to
solve the Schrödinger equation, employing the Python code as listed in sec-
tion 6.4. Due to the slow convergence rate, a cusp factor was incorporated
into the Python code to obtain convergence. Numerical calculations were
done using 6 Gauss-Legendre points.

TABLE 4.9: Ground State Energy for Hydrogen Molecular ion
H+

2 for 6 Gauss-Legendre points;

n, xmax 8 9 10 11

6 −2.18872648 −2.17524035 −2.15527998 −2.12653719
7 −2.19949231 −2.19141089 −2.18023681 −2.16627527
8 −2.20343190 −2.19988067 −2.19342910 −2.18387560
9 −2.20475349 −2.20333783 −2.20017701 −2.19492593
10 −2.20500928 −2.20462627 −2.20376415 −2.20041787
11 −2.20527325 −2.20499988 −2.20451046 −2.20320160
12 −2.20514592 −2.20517149 −2.20499862 −2.20440769
14 −2.20523021 −2.20519125 −2.20527236 −2.20501570
16 −2.20526185 −2.20523723 −2.20526246 −2.20517891
18 −2.20525576 −2.20526165 −2.2052487 −2.20528852
20 −2.20525665 −2.20526009 −2.20526160 −2.20525917
21 −2.20527435 −2.20526499 −2.20526058 −2.20525889
22 −2.20526327 −2.20526561 −2.20526514 −2.20526157
24 −2.20526752 −2.20527148 −2.20527585 −2.20526825
26 −2.20526600 −2.20526787 −2.20527008 −2.20527292
27 −2.20527050 −2.20526740 −2.20526671 −2.20526312
28 −2.20526565 −2.20526715 −2.20526555 −2.20525896
30 −2.20526705 −2.20526766 −2.20526730 −2.20526399
32 −2.20526826 −2.20526630 −2.20526826 −2.20526716

n is the number of intervals; and h = xmax/n
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4.3.4 Results for the hydrogen molecular ion

Using the sinc basis functions to calculate the ground state energy of the
molecule H+

2 , employing Python and Numpy, the resulting eigenvalues show
no convergence.
As we introduce the cusp factor at the coordinates of the nuclei, fast conver-
gence of En is achieved, provided n is restricted to be a multiple of xmax. Prop-
erly symmetrized sinc basis functions were used to solve the Schrödinger
equation. Since the memory requirements of the calculations exceeded those
provided by a laptop, the calculations had to be performed serially on a HPC
Cluster with Intel-Xeon-2.60GHz processors.

4.3.5 Results of hydrogen molecular ion (H+
2 ) for different

multiple values of xmax

TABLE 4.10: Results of numerical calculations for H+
2 for

xmax = 8;

n En Teig TCPU

8 −2.2034319021 0.0381 7.80012 ×100

16 −2.2052618504 0.5150 2.05465 ×103

24 −2.2052675161 4.9273 2.35813 ×104

32 −2.2052682560 24.7067 1.14732 ×105

TABLE 4.11: Results of numerical calculations for H+
2 for

xmax = 9;

n En Teig TCPU

9 −2.2033378271 0.1292 1.96519 ×101

18 −2.2052616520 1.0058 1.49664 ×103

27 −2.2052674016 9.6054 1.43385 ×104

36 −2.2052681547 48.0883 2.36921 ×105

En is the ground state energy for n interval. Teig is the time for the evaluation
of the eigenvalues. TCPU is the CPU time taken for the system calculation
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TABLE 4.12: Results of numerical calculations for H+
2 for

xmax = 10;

n En Teig TCPU

10 −2.2032641495 0.1435 4.06690 ×101

20 −2.2052616023 1.7179 3.34859 ×103

30 −2.2052673892 16.7811 3.13161 ×104

40 −2.2052681480 92.3637 4.42660 ×105

TABLE 4.13: Results of numerical calculations for H+
2 for

xmax = 11,

n En Teig TCPU

11 −2.2032016043 0.0893 7.47470 ×101

22 −2.2052615698 2.8618 4.41524 ×103

33 −2.2052673873 28.7552 6.86511 ×104

44 −2.2052681474 163.7395 8.64033 ×105

4.3.6 Least square fits for H+
2 energies

Defining
∆En = En − Egs ,

making the ansatz

∆En =

(
1
n

)a
exp(b) ,

and taking the logarithm of both sides we obtain with x = log 1/n,
y = log ∆En,
the equation of a straight line

y = ax + b . (4.70)

The Python code employed with the numerical extension Numpy is listed in
section 6.5.
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FIGURE 4.3: Least Squares Fit of log(∆En) versus log(1/n) for
xmax = 8

TABLE 4.14: Parameters obtained from Least Squares Fits for
H+

2 ;

xmax a b

8 6.667 7.233
9 6.422 7.449
10 6.433 8.182
11 6.454 8.873
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FIGURE 4.4: Least Squares Fit of log(∆En) versus log(1/n) for
xmax = 9

FIGURE 4.5: Least Squares Fit of log(∆En) versus log(1/n) for
xmax = 10
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FIGURE 4.6: Least Squares Fit of log(∆En) versus log(1/n) for
xmax = 11

4.3.7 Discussion on Convergence of H+
2

The least square fits to y = ax + b were performed for xmax = 8,9,10 and 11.
We plotted y = log(En − Egs) = log∆En versus x = log(1/n) and the data
points were nearly on a straight line, as seen in Figures 4.3− 4.6.
The double-logarithmic least squares fits of ∆En versus 1/n were done to ob-
tain the values of a and b as shown in the table 4.14

The parameters resulting from least squares fits of log(∆En) versus log(1/n)
are shown above in Table 4.14:
From this table it is evident, that the convergence order is at least 6.
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Chapter 5

Conclusions
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In this thesis, it has been demonstrated that using sinc basis functions the
convergence of the energy levels of ground state, first, second and third ex-
cited states for the one dimensional quantum harmonic oscillator was very
fast. When comparing the results obtained for the numerical calculations of
the sinc functions and the finite element method (FEM) [46] it is evident that
the sinc basis set has an edge over the finite element method.

For the two dimensional harmonic oscillator, we also observed fast conver-
gence to the theoretical values, also including the degeneracies.

For the Morse Potential the energy error of the eigenvalues was in good
agreement with the theoretically expected behaviour and the eigenvalues
converged to the theoretically expected values.

For the hydrogen molecular ion, H+
2 , it was shown that using a Cusp fac-

tor at the location of the nuclei resulted in fast convergence. With respect
to x = 1/n the order of convergence is approximately 6. With respect to
x = 1/N where N is the number of degrees of freedom the convergence
order is approximately 3. For comparison we consider the finite element cal-
culation by Braun [49] where a convergence order of approximately 4 was
obtained.

All the codes used were written in Python, with the numerical extension
Numpy and Scipy modules. In future, additional applications should be
found to observe how the sinc basis functions will perform on other systems.
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Chapter 6

Python Source Code

6.1 Solve 1-D Schrödinger Harmonic Oscillator

Solve1dSchroedingerHOUsingSinc.py
from numpy import *
from numpy . polynomial . legendre import leggauss
import sys
import time
xg ,wg=leggauss ( 2 0 )
xg = 0 . 5 * ( xg +1)
wg= 0 . 5 *wg
def V( x ) :

# r e t u r n −2* exp ( −2* x * x )
return x * x
# r e t u r n D* ( exp ( −2* x ) − 2* exp ( −x ) )

h , n=map( eval , sys . argv [ 1 : 3 ] )
nf =1.0/ s q r t ( h )
xmin=−n*h
xmax=n*h
print xmin , xmax
ndof =2*n+1
def s ( x , i ) :

t =pi * ( x/h− i )
i f t ==0:

return nf *1
e lse :

return nf * s in ( t )/ t
def f ( x , k ) :

i =k−n
return s ( x , i )

import pylab
x i = l i n s p a c e ( xmin , xmax , 2 0 0 * ndof +1)
s i =array ( [ s ( x , 0 ) for x in x i ] )
pylab . p l o t ( xi , s i , "−" )
pylab . gr id ( )
pylab . s a v e f i g ( " s0 . png " )
pylab . c l o s e ( )
f i =array ( [ f ( x , n ) for x in x i ] )
pylab . p l o t ( xi , f i , "−" )
pylab . gr id ( )
pylab . s a v e f i g ( " fn . png " )
pylab . c l o s e ( )
# ####
yi = [ ]
wi = [ ]
for k in range ( ndof − 1 ) :

tmpy= l i s t ( ( k−n ) * h+h* xg )
tmpw= l i s t ( h*wg)
yi+=tmpy
wi+=tmpw

yi=array ( y i )
wi=array ( wi )
f i _ a t y i = [ ]
for i in range ( ndof ) :
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tmp=[ f ( y , i ) for y in yi ]
f i _ a t y i . append ( tmp )

f i _ a t y i =array ( f i _ a t y i )
v i _ a t y i =array ( [V( y ) for y in yi ] )
vw=diag ( v i _ a t y i * wi )
t1=time . time ( )
vmat=dot ( f i _ a t y i , dot (vw, f i _ a t y i . T ) )
t2=time . time ( )
# p r i n t t2 −t1
kmat=zeros ( ( ndof , ndof ) , "d" )
for i in range ( ndof ) :

for j in range ( ndof ) :
i f i == j :

kmat [ i , i ]= pi **2/3 .0/ h * * 2
e lse :

d=abs ( i − j )
kmat [ i , j ] = ( − 1 ) * * d * ( 2 . 0 / d* * 2 ) / h * * 2

#hmat=kmat+vmat
hmat=kmat+vmat
evals , evecs= l i n a l g . e ig ( hmat )
from operator import i t e m g e t t e r
tmp=zip ( evals , evecs . T ) # i m p o r t a n t t o use T r a n s p o s e h e r e !
tmp1=sorted ( tmp , key= i t e m g e t t e r ( 0 ) )
eva l s =[tmp1 [ i ] [ 0 ] for i in range ( ndof ) ]
evecs =[tmp1 [ i ] [ 1 ] for i in range ( ndof ) ]
print eva ls [ : 4 ]
evec2=evecs [ 2 ]
C="""
d e f wave0 ( x ) :

tmp=0
f o r i in range ( ndo f ) :

tmp=tmp+ e v e c 2 [ i ] * f ( x , i )
r e t u r n tmp

xp= l i n s p a c e ( −5 ,5 ,1001)
wave i= a r r a y ( [ wave0 ( x ) f o r x in xp ] )
waveana=exp ( − xp * xp / 2 . 0 ) / p i * * 0 . 2 5
# p y l a b . p l o t ( xp , wavei −waveana ," −")
p y l a b . p l o t ( xp , wavei ," −")
p y l a b . g r i d ( )
p y l a b . s a v e f i g (" wave0 . png ")
p y l a b . c l o s e ( ) """
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6.2 Solve 1-D Schrödinger Morse Potential

Solve1dSchroedingerMorsePotUsingSinc.py
from numpy import *
from numpy . polynomial . legendre import leggauss
import sys
import time
xg ,wg=leggauss ( 2 0 )
xg = 0 . 5 * ( xg +1)
wg= 0 . 5 *wg
def V( x ) :

# r e t u r n −2* exp ( −2* x * x )
# r e t u r n x * x
return D* ( exp ( −2* x ) − 2* exp( −x ) )

h , n ,D=map( eval , sys . argv [ 1 : 4 ] )
nf =1.0/ s q r t ( h )
xmin=−n*h
xmax=n*h
print xmin , xmax
ndof =2*n+1
def s ( x , i ) :

t =pi * ( x/h− i )
i f t ==0:

return nf *1
e lse :

return nf * s in ( t )/ t
def f ( x , k ) :

i =k−n
return s ( x , i )

import pylab
x i = l i n s p a c e ( xmin , xmax , 2 0 0 * ndof +1)
s i =array ( [ s ( x , 0 ) for x in x i ] )
pylab . p l o t ( xi , s i , "−" )
pylab . gr id ( )
pylab . s a v e f i g ( " s0 . png " )
pylab . c l o s e ( )
f i =array ( [ f ( x , n ) for x in x i ] )
pylab . p l o t ( xi , f i , "−" )
pylab . gr id ( )
pylab . s a v e f i g ( " fn . png " )
pylab . c l o s e ( )
# ####
yi = [ ]
wi = [ ]
for k in range ( ndof − 1 ) :

tmpy= l i s t ( ( k−n ) * h+h* xg )
tmpw= l i s t ( h*wg)
yi+=tmpy
wi+=tmpw

yi=array ( y i )
wi=array ( wi )
f i _ a t y i = [ ]
for i in range ( ndof ) :

tmp=[ f ( y , i ) for y in yi ]
f i _ a t y i . append ( tmp )

f i _ a t y i =array ( f i _ a t y i )
v i _ a t y i =array ( [V( y ) for y in yi ] )
vw=diag ( v i _ a t y i * wi )
t1=time . time ( )
vmat=dot ( f i _ a t y i , dot (vw, f i _ a t y i . T ) )
t2=time . time ( )
# p r i n t t2 −t1
kmat=zeros ( ( ndof , ndof ) , "d" )
for i in range ( ndof ) :

for j in range ( ndof ) :
i f i == j :

kmat [ i , i ]= pi **2/3 .0/ h * * 2
e lse :

d=abs ( i − j )
kmat [ i , j ] = ( − 1 ) * * d * ( 2 . 0 / d* * 2 ) / h * * 2
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#hmat=kmat+vmat
hmat=kmat+vmat
evals , evecs= l i n a l g . e ig ( hmat )
from operator import i t e m g e t t e r
tmp=zip ( evals , evecs . T ) # i m p o r t a n t t o use T r a n s p o s e h e r e !
tmp1=sorted ( tmp , key= i t e m g e t t e r ( 0 ) )
eva l s =[tmp1 [ i ] [ 0 ] for i in range ( ndof ) ]
evecs =[tmp1 [ i ] [ 1 ] for i in range ( ndof ) ]
print eva ls [ : 4 ]
C="""
e v e c 2 = e v e c s [ 2 ]
d e f wave0 ( x ) :

tmp=0
f o r i in range ( ndo f ) :

tmp=tmp+ e v e c 2 [ i ] * f ( x , i )
r e t u r n tmp

xp= l i n s p a c e ( −5 ,5 ,1001)
wave i= a r r a y ( [ wave0 ( x ) f o r x in xp ] )
waveana=exp ( − xp * xp / 2 . 0 ) / p i * * 0 . 2 5
# p y l a b . p l o t ( xp , wavei −waveana ," −")
p y l a b . p l o t ( xp , wavei ," −")
p y l a b . g r i d ( )
p y l a b . s a v e f i g (" wave0 . png ")
p y l a b . c l o s e ( ) """
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6.3 Solve 2-D Schrödinger Harmonic Oscillator

Solve22dSchroedingerUsingSinc.py
from numpy import *
from numpy . polynomial . legendre import leggauss
import sys
from time import time
xg ,wg=leggauss ( 1 0 )
xg = 0 . 5 * ( xg +1)
wg= 0 . 5 *wg
def V( x , y ) :

# r e t u r n −2* exp ( −2* x * x )
return x * x + y * y

h ,N=map( eval , sys . argv [ 1 : 3 ] )
nf =1.0/ s q r t ( h )
nf2 = nf * * 2
xmin=−N*h
xmax=N*h
ymin=−N*h
ymax=N*h
# p r i n t xmin , xmax , ymin , ymax
ndof =2*N+1
ndof2=ndof * * 2

def s i n c ( t ) :
i f t ==0:

return nf
e lse :

return nf * s in ( t )/ t
def s ( x , y , i , j ) :

tx=pi * ( x/h− i )
ty=pi * ( y/h− j )
return s i n c ( tx ) * s i n c ( ty )

def f ( x , y , k ) :
ik=k % ndof
j k =k // ndof
return s ( x , y , ik −N, jk −N)

# d e f f ( x , y ) :
# r e t u r n s i n ( x ) * c o s ( 2 * y )
# x i = l i n s p a c e ( −4 ,4 ,101 )
# f o r x in x i :
# f o r y in x i :
# p r i n t x , y , f ( x , y , ndo f * * 2 / 2 )
# p r i n t
#C="""
C1="""
d e f p s i ( x , y ) :

f o r tmps in range ( ( ndo f ) * * 2 )
tmp=tmp+ c i ( i ) , f ( x , y , i )
r e t u r n tmp"""

yi = [ ]
wi = [ ]
for k in range ( ndof − 1 ) :

tmpy= l i s t ( ( k−N) * h+h* xg )
tmpw= l i s t ( h*wg)
yi+=tmpy
wi+=tmpw

yi=array ( y i )
wi=array ( wi )
n in t=len ( wi )
n int2=nint * * 2
t1=time ( )
q=0
uq= [ ]
vq = [ ]
rq = [ ]
for i in range ( n in t ) :

for j in range ( n in t ) :
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uq . append ( yi [ i ] )
vq . append ( yi [ j ] )
rq . append ( wi [ i ] * wi [ j ] )
q=q+1

uq=array ( uq )
vq=array ( vq )
rq=array ( rq )
t2=time ( )
print " time to c r e a t e 2d i n t gr id=" , t2 −t1
f i _ a t y i =zeros ( [ ndof2 , n int2 ] )
print ndof2
print nint2
t1=time ( )
tx=zeros ( n in t )
ty=zeros ( n in t )
for k in range ( ndof2 ) : # a l p h a in t h e s i s

# f o r q in range ( n i n t 2 ) :
# # p r i n t k , q
# f i _ a t y i [ k , q ]= f ( uq [ q ] , vq [ q ] , k )
ik=k % ndof # a d j u s t t o a r r a y s s t a r t i n g a t 1
j k =k // ndof #
for i in range ( n in t ) :

tx [ i ]= pi * ( y i [ i ]/h−( ik −N) )
for j in range ( n in t ) :

ty [ j ]= pi * ( y i [ j ]/h−( jk −N) )
s t x =array ( [ s i n c ( t ) for t in tx ] )
s ty=array ( [ s i n c ( t ) for t in ty ] )
tmp=outer ( stx , s ty )
tmp . shape=nint2
f i _ a t y i [ k]=tmp . copy ( )

t2=time ( )
print " time to evaluate a l l 2d b a s i s f u n c t i o n s a t a l l i n t e g r a t i o n points=" , t2 −t1
t1=time ( )
v i _ a t y i =array ( [V( xx , yy ) for ( xx , yy ) in zip ( uq , vq ) ] )
d= v i _ a t y i * rq
t2=time ( )
print " time to evaluate p o t e n t i a l a t a l l i n t points=" , t2 −t1
t1=time ( )
tmpmat=(d* f i _ a t y i ) . T
vmat=dot ( f i _ a t y i , tmpmat )
t2=time ( )
print " time to evaluate product of three matr ices giving vmat=" , t2 −t1
t1=time ( )
tx=zeros ( ( ndof2 , ndof2 ) )
ty=zeros ( ( ndof2 , ndof2 ) )
t t o t =zeros ( ( ndof2 , ndof2 ) )
kmat=zeros ( ( ndof , ndof ) , "d" )
for i in range ( ndof ) :

for j in range ( ndof ) :
i f i == j :

kmat [ i , i ]= pi **2/3 .0/ h * * 2
e lse :

d=abs ( i − j )
kmat [ i , j ] = ( − 1 ) * * d * ( 2 . 0 / d* * 2 ) / h * * 2

for i a in range ( ndof ) :
for ib in range ( ndof ) :

for j in range ( ndof ) :
k=ndof * i a + j
l =ndof * ib + j
tx [ k , l ]=kmat [ ia , ib ]

for i in range ( ndof ) :
for j a in range ( ndof ) :

for j b in range ( ndof ) :
k=ndof * i + j a
l =ndof * i + j b
ty [ k , l ]=kmat [ ja , j b ]

t t o t =tx+ty
t2=time ( )
print " time to c a l c u l a t e matrix f o r k i n e t i c energy=" , t2 −t1
hmat= t t o t +vmat
t1=time ( )
evals , evecs= l i n a l g . e ig ( hmat )
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t 2=time ( )
print " time to solve eigenvalue problem=" , t2 −t1
eva l s . s o r t ( )
print eva ls [ : 1 0 ]

c="""
from o p e r a t o r i mp or t i t e m g e t t e r
tmp= z i p ( e v a l s , e v e c s . T)# i m p o r t a n t t o use T r a n s p o s e h e r e !
tmp1= s o r t e d ( tmp , key= i t e m g e t t e r ( 0 ) )
e v a l s =[ tmp1 [ i ] [ 0 ] f o r i in range ( ndo f ) ]
e v e c s =[ tmp1 [ i ] [ 1 ] f o r i in range ( ndo f ) ]
p r i n t e v a l s [ : 4 ]
e v e c 0 = e v e c s [ 0 ]
d e f wave0 ( x ) :

tmp=0
f o r i in range ( ndo f ) :

tmp=tmp+ e v e c 0 [ i ] * f ( x , i )
r e t u r n tmp

xp= l i n s p a c e ( −5 ,5 ,1001)
wave i=a b s ( a r r a y ( [ wave0 ( x ) f o r x in xp ] ) )
waveana=exp ( − xp * xp / 2 . 0 ) / p i * * 0 . 2 5 """
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6.4 Solve H+
2 with Cusp Function

SolveH2CuspFunc26March2020.py
from numpy import *
from numpy . polynomial . legendre import leggauss
from sc ipy . l i n a l g import eig , eigh
import pylab
import sys
from time import time
from CuspPotFact import cuspPotWfFact
xg ,wg=leggauss ( 6 )
xg = 0 . 5 * ( xg +1)
wg= 0 . 5 *wg
e =0.0
NA=2 # f i x e d number o f atoms
ZI = [ 1 , 1 ]
RI =[ array ( [ 0 , 0 , − 1 ] ) , array ( [ 0 , 0 , 1 ] ) ] # numpy a r r a y s f o r n u c l e i
pote f f , wf1 , c i =cuspPotWfFact (NA, ZI , RI )
def wf ( rho , z ) :

return wf1 ( rho , 0 . 0 , z )
# d e f wf ( rho , z ) :
# r e t u r n 1 . 0
def V( rho , z ) :

# r e t u r n rho * rho+z * z
return p o t e f f ( rho , 0 . 0 , z )

xmax ,N=map( eval , sys . argv [ 1 : 3 ] )
h=xmax/(N* 1 . 0 )
nf =1.0/ s q r t ( h )
nf2 = nf * * 2
xmin=0
#xmax=N* hn
ymin=−xmax
ymax=xmax
# p r i n t xmin , xmax , ymin , ymax
ndofrho = N+1
ndofrho1 =2*N+1
ndofz =2*N+1
ndof2=ndofz * ndofrho
ndof21=ndofz * ndofrho1
def s i n c ( t ) :

i f t ==0:
return nf

e lse :
return nf * s in ( t )/ t

def dsinc ( t ) :
i f t ==0:

return 0 . 0
e lse :

return nf * pi/h * ( cos ( t )/ t −s i n ( t )/ t * * 2 )

def s ( x , y , i , j ) :
tx=pi * ( x/h− i )
ty=pi * ( y/h− j )
return s i n c ( tx ) * s i n c ( ty )

def f ( x , y , k ) :
ik=k % ndofrho1
j k =k // ndofrho1
return s ( x , y , ik −N, jk −N)

# d e f i n e d e r i v a t i v e o f 1D rho and z f u n c t i o n s
def frho ( rho , i ) :

t =pi * ( rho/h− i +N)
return s i n c ( t )

def dfrho ( rho , i ) : # changed t o c o v e r i n t e r v a l −N* h t o N* h
return dsinc ( pi * ( rho/h− i +N) )

N1=N+1 # d imens i on o f f i n a l b a s i s s e t
N2=2*N+1 # d imens i on o f i n i t i a l b a s i s s e t
D=zeros ( ( N2, N1 ) )
for i in range (N1− 1 ) :
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D[ i ,N− i ] = 1 . 0
for i in range ( 0 ,N1 ) :

D[ i +N, i ] = 1 . 0
# ######
yirho = [ ]
wirho = [ ]
for k in range ( ndofrho − 1 ) :

tmpy= l i s t ( k *h+h* xg )
tmpw= l i s t ( h*wg)
yirho+=tmpy
wirho+=tmpw

yirho=array ( yirho )
wirho=array ( wirho )
nintrho=len ( wirho )
print " nintrho=" , nintrho
yiz = [ ]
wiz = [ ]
for k in range ( ndofz − 1 ) :

tmpy= l i s t ( ( k−N) * h+h* xg )
tmpw= l i s t ( h*wg)
yiz+=tmpy
wiz+=tmpw

yiz=array ( yiz )
wiz=array ( wiz )
n intz=len ( wiz )
# p r i n t " y i z =" , y i z
print " n intz=" , n intz
nint2=nintrho * nintz
print " n int2=" , n int2
t1=time ( )
q=0
###
uq = [ ]
vq = [ ]
rq = [ ]
for i in range ( nintrho ) :

for j in range ( n intz ) :
uq . append ( yirho [ i ] )
vq . append ( yiz [ j ] )
rq . append ( wirho [ i ] * wiz [ j ] )
q=q+1

uq=array ( uq )
vq=array ( vq )
rq=array ( rq )
t2=time ( )
print " time to c r e a t e 2d i n t gr id=" , t2 −t1
f i _ a t y i =zeros ( [ ndof21 , n int2 ] )
t1=time ( )
tx=zeros ( nintrho )
ty=zeros ( n intz )
for k in range ( ndof21 ) :

ik=k % ndofrho1
j k =k // ndofrho1
for i in range ( nintrho ) :

tx [ i ]= pi * ( yirho [ i ]/h−( ik −N) )
for j in range ( n intz ) :

ty [ j ]= pi * ( y iz [ j ]/h−( jk −N) )
s t x =array ( [ s i n c ( t ) for t in tx ] )
s ty=array ( [ s i n c ( t ) for t in ty ] )
tmp=outer ( stx , s ty )
tmp . shape=nint2
f i _ a t y i [ k]=tmp . copy ( )

t2=time ( )
print " time to evaluate a l l 2d b a s i s f u n c t i o n s a t a l l i n t e g r a t i o n points=" , t2 −t1
t1=time ( )
v i _ a t y i =array ( [ xx *wf ( xx , yy ) *V( xx , yy ) for ( xx , yy ) in zip ( uq , vq ) ] )
d= v i _ a t y i * rq
t2=time ( )
D2=kron ( i d e n t i t y ( ndofz ) ,D)
print " time to evaluate p o t e n t i a l a t a l l i n t points=" , t2 −t1
t1=time ( )
tmpmat=dot (D2 . T , d* f i _ a t y i ) . T
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vmat=dot ( dot (D2 . T , f i _ a t y i ) , tmpmat )
t2=time ( )
print " time to evaluate product of three matr ices giving vmat=" , t2 −t1
# c o d e f o r umatrho
## c o d e kmatrho
t 1=time ( )
wf_atyi=array ( [ xx *wf ( xx , yy ) for ( xx , yy ) in zip ( uq , vq ) ] )
d=wf_atyi * rq
t2=time ( )
print " time to evaluate weight funct ion at a l l i n t points=" , t2 −t1
t1=time ( )
tmpmat=dot (D2 . T , d* f i _ a t y i ) . T
umat=dot ( dot (D2 . T , f i _ a t y i ) , tmpmat )
t2=time ( )
print " time to evaluate product of three matr ices giving umat=" , t2 −t1
# ##########################
d r h o f i _ a t y i =zeros ( [ ndof21 , n int2 ] )
t1=time ( )
tx=zeros ( nintrho )
ty=zeros ( n intz )
for k in range ( ndof21 ) :

ik=k % ndofrho1
j k =k // ndofrho1
for i in range ( nintrho ) :

tx [ i ]= pi * ( yirho [ i ]/h−( ik −N) )
for j in range ( n intz ) :

ty [ j ]= pi * ( y iz [ j ]/h−( jk −N) )
dstx=array ( [ dsinc ( t ) for t in tx ] )
s ty=array ( [ s i n c ( t ) for t in ty ] )
tmp=outer ( dstx , s ty )
tmp . shape=nint2
d r h o f i _ a t y i [ k]=tmp . copy ( )

t2=time ( )
print " time to evaluate a l l 2d b a s i s f u n c t i o n s f o r k i n e t i c energy in rho at a l l i n t e g r a t i o n points=" , t2 −t1
d z f i _ a t y i =zeros ( [ ndof21 , n int2 ] )
t1=time ( )
tx=zeros ( nintrho )
ty=zeros ( n intz )
for k in range ( ndof21 ) :

ik=k % ndofrho1
j k =k // ndofrho1
for i in range ( nintrho ) :

tx [ i ]= pi * ( yirho [ i ]/h−( ik −N) )
for j in range ( n intz ) :

ty [ j ]= pi * ( y iz [ j ]/h−( jk −N) )
s t x =array ( [ s i n c ( t ) for t in tx ] )
dsty=array ( [ dsinc ( t ) for t in ty ] )
tmp=outer ( stx , dsty )
tmp . shape=nint2
d z f i _ a t y i [ k]=tmp . copy ( )

t2=time ( )
print " time to evaluate a l l 2d b a s i s f u n c t i o n s f o r k i n e t i c energy in z a t a l l i n t e g r a t i o n points=" , t2 −t1

t1=time ( )
# ###############
tmpmat=dot (D2 . T , d* d r h o f i _ a t y i ) . T
kmat_rho=dot ( dot (D2 . T , d r h o f i _ a t y i ) , tmpmat )
t2=time ( )
print " time to evaluate product of three matr ices giving kmat_rho=" , t2 −t1
t1=time ( )
# ###############
tmpmat=dot (D2 . T , d* d z f i _ a t y i ) . T
kmat_z=dot ( dot (D2 . T , d z f i _ a t y i ) , tmpmat )
t2=time ( )
print " time to evaluate product of three matr ices giving kmat_z=" , t2 −t1
kmattot=kmat_rho+kmat_z
print " time to c a l c u l a t e matrix f o r k i n e t i c energy=" , t2 −t1
hmat=kmattot+vmat
neig=hmat . shape [ 0 ]
print " neig=" , neig
t1=time ( )
evals , evecs=eigh ( hmat , umat )
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t 2=time ( )
print " time to solve eigenvalue problem=" , t2 −t1
eva l s . s o r t ( )
print eva ls [ : 4 ]
WF="""
# now p l o t w a v e f u n c t i o n o f GS
ev0= e v e c s [ : , 0 ]
d e f waveFun ( rho , z ) :

f i o f r z = z e r o s ( ndo f21 )
f o r k in range ( ndo f21 ) :

f i o f r z [ k ]= f ( rho , z , k )
f i 1 = d o t (D2 . T , f i o f r z )
r e t u r n d o t ( ev0 , f i 1 )

p f =open (" p l o t . d a t " ,"w")
r h o i = l i n s p a c e ( 0 . 0 , 2 . 0 , 4 1 )
z i = l i n s p a c e ( 0 . , 2 . , 4 1 )
f o r rho in r h o i :

f o r z in z i :
# a n a f = 1 . 0 / p i * * 0 . 7 5 * exp ( − 0 . 5 * ( rho * rho+z * z ) )
numf=waveFun ( rho , z )
p r i n t >> pf , z , rho , numf * s q r t ( wf ( rho , z ) ) # , numf− a n a f

p r i n t >> p f
p f . c l o s e ( )
z i 1 d = l i n s p a c e ( 0 . , 2 , 1 0 0 1 )
p f 1 =open (" p l o t 1 . d a t " ,"w")
f o r z in z i 1 d :

p r i n t >> pf1 , z , waveFun ( 0 . 0 , z )
p f 1 . c l o s e ( ) """
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6.5 Least Square Fits for H+
2

LeastSquareFitH2.py
# ! / usr / b in / env python3
from numpy import *
from sc ipy import optimize
import pylab
l s q =optimize . l e a s t _ s q u a r e s
import sys
###

# Here you need t o i n s e r t t h e c o d e t h a t r e a d s t h e f i l e and c a l c u l a t e s t h e a r r a y s x i and y i
E0= −2.2052684289898
from numpy import *
import pylab
import sys
F i t F i l e =sys . argv [ 1 ]
data= l o a d t x t ( F i t F i l e )
# D e l t a E= a * ( 1 / n)^ b
# l o g ( D e l t a E)= l o g a+b * l o g ( 1 / n )
x i =log ( 1 . / data [ : , 0 ] )
y i=log ( data [ : , 1 ] − E0 )
xmin= x i [ −1] −0.1
#xmax= x i [ 0 ] + 0 . 1
# p y l a b . x l im ( xmin , xmax )
# p y l a b . p l o t ( xi , y i , " x " )
# p y l a b . x l a b e l ( r ’ $ l o g ( 1 / n ) $ ’ )
# p y l a b . y l a b e l ( r ’ $ l o g ( E_n−E_{\rm gs } ) $ ’ )
# p y l a b . s a v e f i g (" PlotEofNu8 . png " , d p i =600)

# Here t h e d e f i n i t i o n o f x i and y i i n c l u d e s t h e a r r a y
###
nx=len ( x i )
def fun ( x ) :

r=zeros ( nx )
for i in range ( nx ) :

r [ i ]= yi [ i ] −( x [ 0 ] * x i [ i ]+ x [ 1 ] )
return r

tmp= l s q ( fun , [ 5 . 0 , 0 . 5 ] [ : ] )
a , b=tmp [ " x " ]
print ( a , b )
def f ( x ) :

return a * x+b
xmin= x i [ −1] −0.1
xmax= x i [ 0 ] + 0 . 1
pylab . xlim ( xmin , xmax )
xp= l i n s p a c e ( xmin , xmax , 4 0 1 )
fp= f ( xp )
pylab . p l o t ( xp , fp , "−" )
pylab . p l o t ( xi , yi , " x " )
pylab . x l a b e l ( r ’ $\log (1/n ) $ ’ )
pylab . y l a b e l ( r ’ $\log \Delta E_n$ ’ )
pylab . s a v e f i g ( " P l o t E o f N f i t 8 . png " , dpi =600)

# #########
# Here l a s t 4 l i n e s o f your python c o d e with t h e l o g a r i t h m u s must go
# ########
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