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  Summary  

Multivariate longitudinal ordinal data are collected for studying the dependence between 

multivariate ordinal outcomes, the changes over time and associated determinant factors. This 

emanates from the interdependence of the three dimensions of household food security statuses, 

the stability of these dimensions over time and the additional contribution of covariates on the 

dependence structure.  

It is generally known that the random effect models have a lack of population-averaged 

interpretation for non-normally distributed outcomes in analysing ordinal data. In this thesis, we 

propose an alternative model for analysing multivariate longitudinal ordinal data with application 

to the household food insecurity by developing a pair copula construction (PCC) and cumulative 

logit marginal distributions-based model using the full maximum likelihood estimation (MLE) 

method. The simplified log-likelihood function of the D-vine pair copula multivariate discrete 

random variables was obtained with its parameters estimated.  

Data were collected from 646 households living in selected rural Woredas of South Wollo Zone 

of the Amhara Regional State, Ethiopia from June 2014 to June 2015 three times at six months 

interval. Multistage cluster sampling was employed to select representative Woredas and 

households. The household food security status was determined using both the quartile score and 

composite index. Three distinct pair copula models with cumulative logit version were employed 

for multivariate, longitudinal and multivariate longitudinal ordinal data applicable for household 

food security.  

The first model was employed to assess the dependence between food security dimensions and 

their corresponding determinant factors simultaneously. The copula parameter of this model 

indicated that household food security dimensions have significant and positive pairwise 

dependence. The marginal parameters showed that smaller land size, shortage of rainfall, 

cultivating once a year, and the presence of disease were positively associated with chronic to 

mild food insecurity in all dimensions. Moreover, cold agro-ecology and market price increase 

were associated with household food insecurity at availability and accessibility dimensions. 

The second model was used to assess the stability of household food security over time and the 

determinant factors. The copula parameter revealed that individual household food security 
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status is not stable over time. Moreover, the marginal parameter indicated that presence of crop 

disease, market price increase and medium agro-ecology were the significant recurrent factors 

for households to have chronic to mild food insecurity throughout the study period. One-time 

cultivation per year was the temporal significant factor for household food insecurity. 

The third model was developed for measuring the dependence between the three dimensions, 

namely, their stability over time, the effects of the covariates both on the dependence structure, 

and stability over time simultaneously. The copula parameter of the population-average 

cumulative logit model revealed that food security dimensions were positively dependent to each 

other and the individual household food security status is not stable over time.  

The marginal parameter of this model provided that lower agro-ecology, shortage of rainfall, 

presence of cultivation disease, increased market price, use of pesticides, cultivating smaller 

types of cereal crops, and cultivating once per year were positively affects the household food in-

security in availability dimension. On the other hand, lower agro-ecology, increased market 

price, herbing small amount of livestock, hot agro-ecology and small farmland size positively 

affect the household food insecurity in the accessibility dimension. Furthermore, households 

headed by wife, divorced/widowed marital status of the household head, shortage of rainfall, and 

small farmland size positively affect the household food in-security in utilisation dimension.  

This model provided a population-average interpretation with acceptable computational 

challenges in multivariate longitudinal ordinal data analysis. The study suggests that food 

security situation analysis is a multidimensional so that over-sighting the three dimensions over 

time simultaneously provides detail household food security situation than the single dimension. 

The pair copula population-average cumulative logit model addressed all the food security 

dimensions simultaneously, and the model found computationally effective. Therefore, we 

suggest this model to apply for other application areas for not extremely large number of 

outcomes and covariates.   

Keywords:  

Food insecurity; chronically food in-secured; composite food index; multivariate ordinal 

outcomes; longitudinal ordinal outcomes; multivariate longitudinal ordinal outcomes; marginal 

model; cumulative logit, pair copula; full maximum likelihood 
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Chapter One 

 Introduction  

This study attempted to fill the methodological gap of jointly modelling the stability and 

determinants of the household food security for each dimension using multivariate longitudinal 

ordinal outcome. Since, multivariate joint modelling has a pretty advantage over separate 

modelling because it has relative efficiency to estimate the model and provide a powerful test of 

significance than the univariate (Gueorguieva, 2001; Molenberghs and Verbeke, 2006). 

Among previous studies for multivariate longitudinal ordinal outcomes, the majority of them 

were concentrated around random effect models. Among these,  random effect models in the 

context of item response theory (Liu, 2008, Liu and Hedeker, 2006),  random effect models in 

the context of latent variable model (Cagnone et al., 2009),  random effect models using subject-

specific model (random intercept models) (Choi, 2012, Verbeke et al., 2014) and  random effects 

models by introducing a continuous distributed random variable underneath the ordinal 

outcomes, some form of latent variable models (Laffont et al., 2014) were employed so far.  

However, the random effect models have lack of a population-averaged interpretation for non-

normally distributed outcomes and some computational challenges (Abegaz et al., 2015, 

Nooraeea, 2015).  

Despite numerous studies on multivariate longitudinal outcomes, relatively little research has 

been conducted on the marginal models for ordinal outcomes on the context of population 

average. Among these, Generalized Estimating Equation (GEE) was one of the most popular 

models. GEE was proposed for binary outcome  and continuous outcome (Rochon, 1996). 

Furthermore, Gray and Brookmeyer (2000) proposed multivariate longitudinal models for 

continuous and discrete/time-to-event response variables using GEE. Another marginal model 

tailoring GEE was proposed for measuring multicity measured ordinal outcomes (Huang et al., 

2002). Even though GEE is popular and provided consistent estimators for the regression 

parameters in the population-average interpretation; when the focus of the analysis includes 

certain aspects of the association structure, the construction of the joint model using GEE 

becomes more complex as it implies making assumptions about the within-outcome, the 

between-outcome, and the cross outcome association, and inferences of interest can be very 
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sensitive with respect to the assumptions made (Verbeke et al., 2014). Moreover, GEE cannot 

incorporate the contribution of determinants of the outcome in determining the dependence 

between outcomes since it measures it using a working correlation independent of the 

determinants. 

Another alternative model that helps for parameter estimation for non-normally distributed 

continuous or categorical data was the quasi least squares (Chaganty and Naik, 2002). A 

marginalised bivariate model using Kronecker product (KP) covariance structure was also 

proposed to handle two longitudinal ordinal outcomes (Lee et al., 2013). Marginal models using 

maximum likelihood estimation (MLE) on the context of multivariate  t-copula were developed 

for multivariate longitudinal regression model for ordinal responses (Abegaz et al., 2015). The 

computation of the probability mass function for a discrete multivariate copula including 

multivariate t-copula requires 2m for evaluation while the pair-copula construction (PCC) 

method reduces the computation challenge of discrete multivariate copulas which requires only 

the evaluation of 2m (m − 1) bivariate copula functions (Lennon, 2016, Nicklas, 2013; 

Panagiotelis et al., 2012, Stöber et al., 2015).  

In the context of PCC, a general framework for modelling multivariate repeated measurements 

using PCC (Shi and Yang, 2016, Shi and Zhao, 2018) and copula-based GLMM models by 

combining random-effects models and the D-vine copulas (Zhang et al., 2019) have been 

proposed for investigating multivariate longitudinal data with mixed-types of responses. All 

these copula-based models have yet not implemented in multivariate longitudinal ordinal 

outcomes.  

Hence, the current study further attempted to resolve both the population-average interpretations 

in the random effect models and computational challenges of the multivariate copulas using pair 

copula construction for multivariate longitudinal ordinal data. Furthermore, pair copula 

construction requires the determination of the appropriate marginal distributions based on the 

nature of the outcomes (Aas et al., 2009, Czado, 2010, Nelsen, 2007, Panagiotelis et al., 2012). 

Since the responses of the current study variables are ordinal, the natural choices for ordinal data 

are cumulative logit or probit models. Hence, we selected cumulative logit model since the scale 

of the logistic is greater than the normal and this made the interpretation easier for logistic 

version and popular in many fields (Choi, 2012). In this thesis, the pair copula construction and 
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cumulative logit marginal distributions are incorporated for the development of multivariate 

longitudinal ordinal model using the full maximum likelihood estimation (MLE) method in 

particular for the current application data.  

The research problem informing this thesis lies in that, reviewed literature demonstrates that 

multivariate longitudinal ordinal outcomes both in the random effect and population-average 

have some limitations in providing the appropriate interpretations or computational challenges. 

The random effects model lacks the population-average interpretation and the population-

average models are limited in number and have computational challenges. As a result, analysing 

multivariate longitudinal ordinal outcomes need improvement with the hope of incorporating the 

population-average interpretation that can resolve computational challenges. Furthermore, 

literature demonstrates that food security experts do not amply utilize the rigour of statistics. 

Despite the availability of robust statistical tools that have the rigour to satisfy the quest for 

assessing the stability and determinants of food insecurity, existing analysis of survey data 

heavily depend on the rudimentary, exploratory or descriptive statistics that lack depth. As a 

result, modelling stability and determinants of food insecurity analysis lack the efficiency of 

scientifically established evidence.  

This thesis is, therefore, aimed at achieving the following main objectives: 

1. To develop population-average multivariate longitudinal ordinal models using Pair 

Copula Construction, with application to household food insecurity; and  

2. To jointly model the stability and determinants of household food insecurity using 

multivariate longitudinal ordinal model approach.  

Furthermore, this thesis is, therefore, aimed at achieving the following specific objectives in line 

with the main objectives:  

1. To jointly model the household food security determinants for the three food security 

dimensions and the dependence between them using Pair Copula Construction based 

Multivariate Ordinal data analysis; 

2. To jointly determine household food security dependence between successive time 

periods and respective determinants using Pair Copula Construction based Longitudinal 

Ordinal data analysis; 
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3. To develop population-average based Pair Copula Construction models for Multivariate 

Longitudinal Ordinal Data;   

4. To apply the population-average based Pair Copula Construction for jointly modelling 

the stability and determinants of household food insecurity for each dimension; and  

5. To assess food security situation in selected Woredas of South Wollo Zone, Amhara 

Region, Ethiopia.  

In this light, the study sought an answer to three specific questions: 

1. Does the Pair Copula Construction approach alleviate the lack of the population-average 

interpretation of the random effect models in modelling multivariate longitudinal ordinal 

outcomes? 

2.  Does the Pair Copula Construction approach alleviate the existing computational 

challenges of population-average marginal multivariate copula models in modelling 

multivariate longitudinal ordinal outcomes? 

3. Does the population-average based pair copula construction of the multivariate 

longitudinal ordinal model fits for modelling the stability and determinants of household 

food insecurity?  

To provide answers to these questions, this thesis aims at exploring the rigour of models that 

help in resolving the population-average interpretation of the random effect models and the 

computational challenges of the multivariate copula models in the population-average version in 

modelling multivariate longitudinal ordinal outcomes. By doing so, the study hopes to strengthen 

the theory of statistics in alleviating the aforementioned limitations and enlarge statistical 

methods in capturing the complete information of the multivariate longitudinal ordinal data 

analysis. Moreover, this thesis aims at exploring the rigour of models that may help in predicting 

the determinants of household food insecurity for each dimension simultaneously, generating 

indices for the dependence of the dimensions, and the stability of the three dimensions over time.  

By so doing, the study hopes to strengthen food security monitoring, evaluation and reporting 

systems toward more robust, statistics-based predictive analysis. The usual analysis approaches 

often shy away from such approaches in a misconception that statistical methods are complicated 

and user-unfriendly. The study specifically taps into recent work in constructing jointly 

estimating the stability and determinants for each dimension.  
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Household food security becomes the multifaceted problems with multidimensional serious 

impacts since 1970 (Abafita and Kim, 2014). The widest acceptable definition of food security 

states that the existence of food security occurs when “all people, at all times, have physical, 

social and economic access to sufficient, safe and nutritious food that meets their dietary needs 

and food preferences for an active and healthy life”(Pinstrup-Andersen, 2009). This definition 

consists of four important interlinked dimensions, namely; physical availability of food, 

economic and physical access to food, food utilisation and stability of the other three dimensions 

over time (Abafita and Kim, 2014, FAO., 2014, Napoli et al., 2011). Moreover, the usual 

category of household food security levels “food secured” or “food in-secured” were further 

disaggregated into “severe food in-secured”, “moderately food in-secured”, “mildly food in-

secured” and “food secured” (Capaldo et al., 2010, Hunnes, 2013). Hence, the first three food 

security dimensions take these categories to classify food security status of the households.  

Modelling the determinants of household food security should be assessed using the first three 

dimensions simultaneously over time to oversee the entire household food security situation and 

the stability over time (Capaldo et al., 2010, FAO, 2008). Knowing that the levels of food 

insecurity are ordinal in their nature (Magaña-Lemus et al., 2016) and hence modelling of food 

insecurity is the question of ordinal data analysis and each dimension can be considered as a 

response factor which have ordinal outcomes. Therefore, the methodological issue of food 

insecurity is the generalization of developing multivariate longitudinal ordinal data analysis. 

Furthermore, each of the dimensions has non-normal correlation to each other. Hence, 

identifying the determinant of one or two of the dimensions will not reflect the entire food 

security situation (FAO, 2008, FAO., 2014).  

Numerous studies were conducted on household food security determinants separately for each 

dimension or in a composite index (Abafita and Kim, 2014, Aspelund, 2002, Birhane et al., 

2014, Endale et al., 2014, Etana and Tolossa, 2017, Méthot and Bennett, 2018, Moroda et al., 

2018, Motbainor et al., 2016, Ngema et al., 2018).  However, the findings have been quite mixed 

and conflicting. This is owing to some of the food access proxy indicators which have served as 

food availability proxy indicators and vice versa. Similarly, some of food access proxy indicators 

have served for utilisation proxy indicators. This implies that understanding several concepts 

associated with the definition of food security are necessary before examining the determinants 
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of food security. Moreover, despite the fact that FAO recommended that the food security 

dimensions has been addressed simultaneously, there is no work conducted on the subject that 

can accommodate the determinants for each dimension jointly as well as the stability and 

determinants for each dimension over time jointly in a single model. 

Longitudinal food security household survey was conducted in selected rural Woredas of the 

South Wollo Zone of Amhara regional state in Ethiopia to illustrate the PCC model in 

multivariate longitudinal ordinal data.  Ethiopia is one of the poorest countries in the world, and 

about 90% of the populations live in the rural areas. The problem of food insecurity has 

continued to persist in many rural households of the country. The seriousness of the problem 

varies from one area to another depending on the state of the natural resources and the extent of 

development of these resources (Asmamaw et al., 2015, Endalew et al., 2015). Rural food 

insecurity is one of the defining features of rural poverty, particularly in the moisture-deficit 

northeast highland plateaus and some pastoral areas of Ethiopian(Agidew and Singh, 2018). The 

study area, the South Wollo Zone, is among these areas, which is mostly affected by food 

insecurity (Agidew and Singh, 2018, Asmamaw et al., 2015).  

Numerous studies have been conducted in Ethiopia regarding the subject of food security with 

different results with particular recommendations, and various measures have been taken 

(Abafita and Kim, 2014, Abdu et al., 2018, Abegaz, 2017, Agidew and Singh, 2018, Ahmed et 

al., 2017, Asmamaw et al., 2015, Assefa, 2015, Bashir and Schilizzi, 2012, Birhane et al., 2014, 

Castro, 2000, Endale et al., 2014, Endalew et al., 2015, Etana and Tolossa, 2017, Moroda et al., 

2018, Motbainor et al., 2016, Negatu, 2004, Nigussie and Alemayehu, 2013, Shone et al., 2017). 

However, only two studies have been conducted for the last 15 years in South Wollo Zone in 

particular in Tewuledery (Agidew and Singh, 2018) and Sayint (Asmamaw et al., 2015) 

Woredas. These studies did not reflect the entire food security situation of the zone and they are 

concerned only on the food access dimension.   

On the other hand, studies conducted by (Castro, 2000, Negatu, 2004) covered the overall 

situation of the zone. However, the studies were conducted about 15 years ago, in which the 

level of food security and the economy as a whole are very different from this time. Many socio-

economic factors have been changed in the South Wollo Zone and the country too. Therefore, it 

is important to update the stability and determinants of household food security or insecurity 
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situation incorporating all potential factors in the recent models.  In this regard, our model is 

more robust than the previous which will lead to a more accurate result.  

This thesis consists of seven chapters including this chapter as it is organized in the following 

chapters. Chapter 2 provides the review of food security concepts, definition, measuring 

methods, and determinant factors. The statistical models that can serve for multivariate, 

longitudinal and multivariate longitudinal ordinal outcomes are also discussed. In Chapter 3, we 

describe the data used for this thesis including source and type of data, sample size and sampling 

procedures, data collection procedures and methods and food security measuring methods.  

The methods employed for modelling the determinant factors of food security are discussed in 

Chapter 4. In this chapter, we presented a pair copula construction based marginal cumulative 

logit model for multivariate, longitudinal and multivariate longitudinal outcomes to estimate the 

dependence between the ordinal outcomes and their respective determinants. We developed 

algorithm to select appropriate bivariate copula families to represent the dependence measures in 

the model. 

In Chapter 5, we presented the analysis household data using the methods presented in Chapter 

4. It consists of the findings of the pair copula construction-based multivariate ordinal 

cumulative logit model for assessing the dependence between food availability, accessibility and 

utilisation, and their respective determinants. It also presents the findings of the pair copula 

construction-based longitudinal ordinal cumulative logit model for assessing the dependence 

between food security status of households in the three rounds and the respective determinants. 

Lastly, the findings of the new population-average pair copula construction approach for 

multivariate longitudinal ordinal data to measure the dependence between food security 

dimensions, the stability over time and the respective determinants simultaneously are presented.  

In Chapter 6, we present the discussion for the findings presented in Chapter 5. In Chapter 7, we 

present the contribution of this thesis for statistical methods and future works for further 

developments. We ended the thesis with the questionnaire, simplification of the full maximum 

likelihood and log-likelihood functions of the developed models as appendices.  
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Chapter Two 

 Literature Review 

 

The issue of food security can be addressed using either of the three models including 

multivariate ordinal models, longitudinal ordinal models and multivariate longitudinal models. 

The statistical models employed so far for multivariate ordinal outcomes, longitudinal ordinal 

outcomes and multivariate longitudinal ordinal outcomes were reviewed as follows.  

 Multivariate Ordinal Models  

Among different previous studies for multivariate ordinal data, (Gange, 1994) developed 

Generalized Estimating Equations (GEE) methods for correlated ordinal responses which 

extends the model developed by (Liang and Zeger, 1986) for correlated binary data. GEE method 

is still the applied model with different versions.  

On the other hand for performing multivariate ordinal data analysis, Structural Equation 

Modelling (SEM) with two stage methodology Maximum Pairwise Likelihood (MPL) - 

Generalized Least Squares (GLS) method was developed (Liu, 2007). Large sample simulation 

studies of this method showed that the parameter and standard error estimates, and the test 

statistics are acceptable. However, standard error formulae underestimate empirical variability 

for small sample size less than 200. 

Moreover, a multivariate non-linear model for ordinal responses was also developed (Aspelund, 

2002). In this model, a linear- by-linear log linear model with independent estimation approach 

(IEA) along robust standard errors was used. IEA performed well if only the marginal parameter 

estimates were of interest.  

Multivariate ordered probit model with pairwise likelihood inference was employed for 

multivariate ordinal responses in the continuous latent variable model (Kenne Pagui and Canale, 

2016). The model was applied in PLordprod R package and found that the model reduced the 

computational problems related to the calculation of a q dimensional integral for each single 
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likelihood using full likelihood. However, the model is unable to compute both the mean of the 

latent variables and the first threshold.  

The composite likelihood methods with a latent variable specification were also applied using 

both the probit and the logit link functions for multivariate ordinal regression model (Hirk et al., 

2018). The model was executed in mnormt R package; both link functions resulted into recovery 

for high correlation parameters whereas for low correlation both of the link functions were not 

recovered.  

In line with the existing methods, copulas have been popular tools for modelling multivariate 

outcomes since copulas have several attractive properties. The first attractive properties of 

copulas are allowing us to construct separately the dependence structure from the joint 

dependence structure and the marginal probabilities. The second properties are invariant, under 

continuous and increasing transformations. The third one is, unlike correlation, they do not 

require elliptically distributed for the marginals. Lastly, they can be used to measure tail 

dependences of the joint distribution (Syring, 2013) . “A copula is a function which joins a 

multivariate distribution function to its one-dimensional marginal distribution functions (Nelsen, 

2007).” With a closed form, MLE is straightforward for copula functions. For m-dimensional 

data, the probability mass function can be computed using 2m finite differences of the copula 

function. As a result, the approach is computationally intensive, and becomes infeasible for high 

dimensional problems (Panagiotelis et al., 2012).  

Another extension of copulas that have attractive properties for discrete data have been 

developed. This extension is called elliptical copulas, in particular Gaussian copulas that can 

capture both positive and negative dependence under closed marginalization. As many elliptical 

copulas, including the Gaussian copula, cannot be written down in closed form, MLE through 

taking finite differences is not a feasible option (Panagiotelis et al., 2012). In a similar vein, to 

estimate models based on Gaussian copulas, Bayesian methods have been used (Pitt et al., 2006). 

In general, both Frequentist and Bayesian techniques discussed above are computationally 

intensive, and may not be applied easily to higher dimensions (Panagiotelis et al., 2012). 

Among copula methods applied for multivariate ordinal data, a multivariate ordered logit 

regression with the notion of multivariate copula was modelled (Dardanoni and Forcina, 2008). 
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This model describes how the joint distribution of a set of ordinal response variables depends on 

exogenous regressors. The nature of the main properties of the marginal parameterization and the 

global interaction copula was found to be nonparametric. The model was found to be an efficient 

model for estimation purpose for small response variables.  

In response to these challenges, a pair-copula construction (PCC) method has been developed for 

multivariate copulas using only bivariate copulas. PCC was originally developed for continuous 

random variables and then extended for discrete random variables (Panagiotelis et al., 2012, 

Syring, 2013). The advantages of this approach are one PCC provide a highly flexible framework 

for constructing copulas exhibiting a wide range of dependence characteristics. Second, the 

computation of the probability mass function for a discrete PCC only requires the evaluation of 

2m (m − 1) bivariate copula functions, whereas the multivariate copulas requires 2m for 

evaluation. As a result, MLE is feasible even for higher (Panagiotelis et al., 2012).  

 Longitudinal Ordinal Models  

GLM extended to the longitudinal setting in two types of generalizations includes subject-

specific and marginal models (Fitzmaurice et al., 2009; Koper and Manseau, 2009).  The subject-

specific models are the class of generalised linear mixed models (GLMM) that consider the 

association between ordinal outcomes within a subject by treating some of the model parameters 

as random variables. Maximum likelihood (ML) estimation method is commonly used to 

compute the fixed and random effect parameters. The consequence of random effect in 

longitudinal ordinal outcome is that the association is always positive and interpretations of the 

fixed parameter estimates for the population of subjects are not straightforward (Fitzmaurice et 

al., 2009). 

Among different previous studies for analysing clustered data with ordinal responses in the 

GLLM classes, mixed-effect model was introduced for the first time by (Harville and Mee, 

1984). The estimates of the random effects were approximated by Taylor series expression. This 

was also advanced for parameter estimation purpose through numerical quadrature method with 

one random effect by (Jansen, 1990).  

The marginal model (population-average) interpretation is not obvious owing to the complication 

of integrating out the random effects since generally assumed as normally distributed. To 
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overcome these issues, different random effect models were proposed. The random effect model 

that captured the limitation in marginal model was developed which is the mean response 

depends only on the fixed-effect and not the individual effect with complex correlation structure 

(Tutz and Hennevogl, 1996).  Furthermore, a maximum likelihood utilizing quasi-Newton 

algorithms with Monte Carlo integration of the random effects was developed for the random 

effects of the longitudinal ordinal data (Lee, 2008). The model can be executable in any software 

which have independence proportional odds model (IPOM). However, the models were 

particularly useful in longitudinal analyses with a moderate to large number of repeated 

measurements per subject.  

In contrast with GLMMs, marginal models consider the association between ordinal outcomes at 

population level. In the class of marginal models, Fitzmaurice and Laird (1993) developed a 

marginal model or population-averaged model with maximum likelihood (ML) approach for 

repeated ordinal responses that captured only the mean response effects on the particular 

specified predictors of interest but not on the individual effects (Fitzmaurice and Laird, 1993). 

Since ML approach for fitting marginal model is awkward, GEE was developed as alternative 

method for the first time in place to fit marginal model through cumulative logit (Lipsitz et al., 

1994). GEE provides consistent estimators for the regression parameters when the model has 

been correctly specified even if it has the limitation of treating the association structure as 

nuisance parameters. Moreover, GEE2 was also developed for modelling the association 

structure using global odds ratio, while in marginal model, it is considered as a nuisance 

(Heagerty and Zeger, 1996). However, the interpretation of the association structure is difficult 

for ordinal outcomes because GEE2 does not lead to a multivariate distribution for the ordinal 

outcomes and thus complicates the interpretation of association structures. On the contrary, to 

improve of the existing models during the century, Perin (2009) developed a model called 

“alternate formulation of alternating logistic regressions model” using orthogonalised residuals 

to consider the association structure in marginal models for longitudinal ordinal data.  Similarly, 

an alternative logistic regression (ALR) was proposed to provide insight and some advantages in 

the marginal model estimated via GEE and subject-specific models estimated via GLMMs 

(Bhatnagar et al., 2015). The model was executed in SAS/STAT version 9.3 and the model 

behaved similarly to marginal models estimated via GEE for mean effects. However, it was 

difficult to ascribe clustering to the correct level, particularly for ALRs.  
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To improve the association structure different forms of GEE have been proposed. Of these 

among the recent one, local odds ratios parameterization structure executed in multgee R 

package (Touloumis et al., 2013) and weighted score methods executed in weighted Scores R 

package (Nikoloulopoulos, 2017) are found. The latter allowed latent correlation structure for the 

selection of the correlation structure not restricted to an exchangeable or unstructured one and 

reduces the computational challenge for large dimensions.  

Alternatively, Nooraee et al., (2016) developed an approximate marginal logistic distribution 

model for the analysis of longitudinal ordinal data that can accommodate majority of the 

limitations in the existing models.  The model was executed in existing packages in R and 

provided comparable interpretation with GEE. Moreover, the model can be applied without 

having to use additional analysis such as multiple imputation over the other methods (GEE) if 

incomplete outcome data fulfils the ignobility assumptions and sample size are not too small 

(n>=100). However, the model expected to be sensitive to strong deviations from the 

multivariate t-distribution for latent variables for estimation of the correlation coefficient.  

In line with the existing methods, among recently developed models for modelling repeated or 

longitudinal outcomes, the most popular tools are copula. A copula model with bivariate copula 

function was one of the presented model-to-model repeated ordered categorical data 

(Vandenhende and Lambert, 2000). In this model, the standard cumulative regression models 

were used to model the marginal distributions and the copula function was used to model the 

dependence between repeated responses. Even though, the copula models addressed both the 

marginal parameters and association structures in repeated ordinal data as well, it might not be 

suitable to quantify dependence over the bounds. 

Another extension of copulas that have attractive properties for longitudinal ordinal data has 

been developed. This extension is the multivariate ordered probit model on the basis of 

multivariate copula representation for obtaining the maximum likelihood estimates of the 

parameters of longitudinal ordinal model (Kurada, 2011). The model was executed in Mprobit 

package in R software and the result showed that the model was computationally challenging to 

implement it. 
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In response to these challenges, a pair-copula construction (PCC) method has been developed for 

multivariate copulas using only bivariate copulas. PCC was originally developed for continuous 

random variables and then extended for discrete random variables (Panagiotelis et al., 2012, 

Syring, 2013). The advantages of this approach are one PCC provides a highly flexible 

framework for constructing copulas exhibiting a wide range of dependence characteristics. 

Moreover, the computation of the probability mass function for a discrete PCC only requires the 

evaluation of 2m (m − 1) bivariate copula functions whereas the multivariate copulas requires 2m 

for evaluation. As a result, MLE is feasible even for higher and it was executed in R software  

(Panagiotelis et al., 2012). 

 Multivariate Longitudinal Ordinal Models   

The statistical analysis of multivariate longitudinal ordinal data for assessing the changes across 

time can be addressed either by reducing the dimension of the multivariate longitudinal data to 

univariate longitudinal data using some kind of summary measures, or jointly addressing the 

associations/dependencies across multivariate covariates and the changes across time points. A 

statistical review for the first part was produced in different literatures; Verbeke et al., 2014). 

Several approaches for jointly modelling multivariate longitudinal data have been proposed in 

the statistical literature that includes three main classes. These are the subject- specific (random 

effect) models, the marginal (population-average) models and full specification of the 

multivariate distribution for the outcomes (Copula models).  

Among previous studies for multivariate longitudinal ordinal outcomes, majorities of them were 

concentrated around random effect models. One approach of this model in the context of item 

response theory that can handles three-level multivariate ordinal outcomes in longitudinal 

settings and can accommodates multiple random subject effects was developed using iterative 

Fisher scoring solution for estimating all required parameters and their corresponding standard 

errors (Liu, 2008; Liu and Hedeker, 2006). The model was implemented in the GAUSS language 

(GAUSS 3.6). Another approach for this random effect models in the context of latent variable 

model was also developed to account for the correlation between the time points using item-

specific random effects with a full information MLE method (Cagnone et al., 2009). A 

FORTRAN program was written to implement the model. The models can be extended in many 

different directions but more difficult to be implemented computationally.  
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Similarly, in the setting of random effect models, another model was also developed using 

subject-specific model (random intercept models) for the longitudinal part and conditioning these 

random effect models to account for the repeated independent cross-sectional outcomes. One 

extension of this model was also developed that can generate multivariate correlated random 

effects across the repeated cross-sectional outcomes from the subject-specific random effects 

model which varies across  each cross-sectional outcome (Choi, 2012, Verbeke et al., 2014). 

Furthermore, another extension of random effects models was developed to relax the 

independence assumption on the conditional distribution given random effects by introducing 

some type of latent variable models (Laffont et al., 2014). The model was implemented in R 

package with probit mixed effects model with a latent variable interpretation. The authors 

pointed out that the model worked well for their application data even if the probit model offers 

less flexibility than other (logistic) models, requiring only a limited number of parameters to be 

estimated. Therefore, extensions of the model can be considered to accommodate more complex 

situations.   

Even though random effect models have provided many advantages especially to compute 

correlations among outcomes through random effects, they have lack of a population-averaged 

interpretation for normally distributed outcomes and some computational challenges (Abegaz et 

al., 2015, Nooraeea, 2015).  

In line with random effect models, very little marginal models were developed for multivariate 

longitudinal categorical or ordinal outcomes with the hope to resolve the limitation of 

population-average interpretation in random effects models. One of the alternative model that 

helps for parameter estimation for non-normally distributed continuous or categorical data was 

the quasi least squares (Chaganty and Naik, 2002). Other marginal model approaches that 

tailoring GEE was proposed for measuring multicity measured ordinal outcomes (Huang et al., 

2002) since GEE was implemented for binary and time-to event outcomes  through combining 

two GEE models for the two outcomes, using an autoregressive-type working correlation matrix 

for the intra- and inter-outcome dependence over time (Rochon, 1996). Furthermore, Gray and 

Brookmeyer (2000) proposed multivariate longitudinal models for continuous and discrete/time-

to-event response variables using GEE approach the popular population-average interpretation 

model. GEE approach still has limitation in modelling multivariate longitudinal outcomes since 
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it treats association as nuisance and measures it using working correlation. Another marginalised 

bivariate model using Kronecker product (KP) covariance structure to capture the correlation 

between processes at a given time and the correlation within a process over time (serial 

correlation) for bivariate longitudinal ordinal data was employed (Lee et al., 2013). The model 

was implemented in R package but limited for only two longitudinal ordinal outcomes. 

On the other hand, alternative model in the marginal models using the MLE method on the 

context of multivariate  t-copula was developed for multivariate longitudinal regression model 

for ordinal responses, through a computationally efficient Monte Carlo EM approach (Abegaz et 

al., 2015). The computation of the probability mass function for a discrete multivariate copulas 

including multivariate t-copula require 2m for evaluation (Panagiotelis et al., 2012).  

In the third classes of modelling multivariate longitudinal outcomes, the full specification of the 

multivariate distribution for the outcomes was implemented specially using multivariate copula 

models. A general framework for modelling multivariate repeated measurements was also 

proposed for mixed type of outcomes (Shi and Yang, 2016; Shi and Zhao, 2018). The 

longitudinal observation of each response was separately modelled using pair copula 

constructions with a D-vine structure. Then the multiple D-vines were then joined by a 

multivariate copula. The model was executed in R package using zero inflated Poisson 

regression and sequential approach was used for inference purpose.  

In line with the existing PCC models, copula-based GLMM models have been proposed for 

investigating multivariate longitudinal data with mixed-types of responses by combining 

random-effects models and the D-vine copulas (Zhang et al., 2019). The D-vine copula measured 

the correlation between multiple responses measured at a given time point. Furthermore, the non-

parametric maximum likelihood method was used instead of specifying the random effects 

distribution. The model was executed in R package using c continuous and binary outcomes and 

the result showed that the non-parametric models were more efficient and flexible than the usual 

Gaussian models. However, the model converged slowly when the number of mass points K is 

large. All the copula-based model reviewed so far have not yet been implemented in multivariate 

longitudinal ordinal outcomes.  
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Hence, modelling multivariate longitudinal ordinal outcomes using pair copula construction will 

reduce the computational challenges of the probability mass function evaluation. Therefore, this 

model can resolve both the population-average interpretations in the random effect models and 

computational challenges of the multivariate copulas.  

All the literatures reviewed herewith for multivariate, longitudinal and multivariate longitudinal 

ordinal models did not mean they are part of the analysis. However, we tried to show the 

evolution of the multivariate longitudinal ordinal model developmental process until the recent 

year. The thesis established itself on the implementation of the PCC model for multivariate 

longitudinal ordinal outcomes for jointly assessing the stability over time, the dependence 

between ordinal outcomes and the determinants for each ordinal outcome at the same time.  

 

Since 1970 food insecurity has brought multifaceted problems with multidimensional serious 

impacts and became the first debating issue on the development that concerns the whole of 

mankind (Abafita and Kim, 2014). Since then, the issue of food security has discussed and 

diversified immensely worldwide. The widest acceptable definition of food security was also 

acquired during the World Food Submit (WFS) held in 1996, which states that the existence of 

food security occurs when “all people, at all times, have physical, social and economic access to 

sufficient, safe and nutritious food that meets their dietary needs and food preferences for an 

active and healthy life”(Pinstrup-Andersen, 2009).  

This definition consists of four important interlinked dimensions, namely, physical availability of 

food, economic and physical access to food, food utilisation and stability of the other three 

dimensions over time (Abafita and Kim, 2014, FAO, 2014, Napoli et al., 2011). Therefore, the 

function of food unavailability, food inaccessibility, inadequate utilized food and instability of 

food availability, accessibility and utilisation over time at household level, resulted in household 

food insecurity (Etana and Tolossa, 2017).  

Physical availability of food: The availability refers to the physical existence of food. It 

addresses the “supply side” of food security and be it from own production or on the markets so 

that the supply is adequate, of appropriate quality, varied and contributes to a healthy diet. On 

national level, it is a combination of domestic food production, commercial food imports and 
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exports, food aid, and domestic food stocks. Moreover, on household level, it could be from own 

production or bought from the local markets (Godfray et al., 2010). Different scholars employed 

different types of methods to measure availability dimension of household food security status. 

Various studies conducted by FAO used ‘‘dietary energy intake” as a measure food security in-

terms of food availability (Coates, 2013). Moreover, the “Months of Adequate Household Food 

Provisioning (MAHFP)” has served as a measure of household food security status in-terms of 

availability dimension (Carletto et al., 2013, Moroda et al., 2018). On the other hand, both the 

total annual household production of corn and bean; and the total annual corn and bean 

consumption per capita have served as a measure of household food security status of the 

availability dimension (Coates, 2013, Méthot and Bennett, 2018).  

Economic and physical access to food: The presence of food availability in the community 

does not mean that the household accessed the food so that the accessibility is the demand side of 

food security. The accessibility refers to the purchasing power of a household/individual, 

infrastructure and existing food price at national or regional level (FAO., 2014, Pinstrup-

Andersen, 2009). The affordability of the food available at the region or community was 

evaluated by economic access to food and the deliverability of the available food to all people 

who need it was also captured by physical accessibility to food (Assefa, 2015). In general, access 

is ensured when all households and all individuals within those households have sufficient 

resources to obtain appropriate foods for a nutritious diet because an adequate supply of food 

(food production and availability) at the national or international level does not in itself 

guarantee household level food security (Assefa, 2015, Carletto et al., 2013, FAO., 2014, 

Hunnes, 2013). Various indicators of food access were employed to measure the status of food 

security including, the annual net household income (Méthot and Bennett, 2018); the Household 

Food Insecurity Access Scale (HFIAS) (Carletto et al., 2013, Coates, 2013, Etana and Tolossa, 

2017, Méthot and Bennett, 2018, Moroda et al., 2018); the Household Hunger Scale (HHS) 

(Ballard et al., 2011, Méthot and Bennett, 2018); the Months of Adequate Home Food 

Provisioning (MAHFP) (Bilinsky and Swindale, 2007, Méthot and Bennett, 2018) and the 

Household Dietary Diversity Score (HDDS) (Méthot and Bennett, 2018, Swindale and Bilinsky, 

2007).  
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Food Utilisation: Proper utilisation of food is very important because the availability and 

accessibility of food do not reflect the appropriate food security situation (Assefa, 2015). 

Utilisation is commonly understood as the way the body makes the most of various nutrients in 

the food (FAO., 2014).  It is directly linked to a safe and adequate diet, water availability and 

quality, sanitation systems, and is influenced by water-borne, food-borne, vector-borne, and 

other infectious diseases (Hunnes, 2013, Pinstrup-Andersen, 2009). In addition, sufficient energy 

and nutrient intake by individuals is the result of good care and feeding practices, food 

preparation, and diversity of the diet and intra-household distribution of food (FAO, 2008, 

Hunnes, 2013, Pinstrup-Andersen, 2009). In general, it is socio-economic and biological aspects 

of food. The composite score of the “Household Dietary Diversity Score (HDDS)” and the 

facilities in-terms of access and use of water supply, sanitation, and hygiene (WASH) were 

suggested as a measure of food security indicators in the dimension of utilisation (Carletto et al., 

2013, Moroda et al., 2018). On the other hand, Consumption Score (FCS) was employed as a 

measure of food utilisation dimension (Méthot and Bennett, 2018).  

Stability: Stability depends on local and regional food production (food availability) and on the 

reliability and price of food imports (food access) (Cohen and Garrett, 2010, Hunnes, 2013). On 

the other hand even if one’s food intake is adequate today, one is still considered to be food 

insecure if she has inadequate access to food on a periodic basis, risking a deterioration of your 

nutritional status (Hunnes, 2013). Therefore, stability depends on the availability, access and 

utilisation dimensions of food security (FAO., 2014).  

 

Different types of food security measurements were employed for different purposes. We 

reviewed recently employed food security measurements and the corresponding statistical 

models employed to determine associated factors of food security. The most used food security 

measuring tool and statistical models to determine its associated factors are “Household Food 

Insecurity Access scale (HFIAS)” and multivariable logistic regression model, respectively. 

HFIAS is used to assess the household food security status in-terms of food access (accessibility 

dimension) and effects to action since 2007 (Coates, 2013).   
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Several studies were conducted in Ethiopia that revealed different factors affecting household 

food (in)-security status using HFIAS and multivariable logistic regression model. First we 

reviewed the recent studies implemented using both of the two methods together and continues 

for other methods. All the researches reviewed herewith in this thesis that were measured by 

HFIAS method assessed the household food security access dimension. The study conducted in 

Addis Ababa by (Birhane et al., 2014) showed that lower monthly income of the household, 

household headed by uneducated household heads, daily labourers, and government employees 

were more likely to have higher food insecurity whereas households living in government rental 

houses were less likely to be food in-secured.  

A community based cross-sectional study conducted in Farta District, Northwest Ethiopia 

indicated that households headed by females, lack of education, large family size, few or absence 

of livestock, absence of income from off-farm activities, lack of irrigation and lack of perennial 

income were identified as associated factors for food insecurity (Endale et al., 2014). Similarly, 

(Motbainor et al., 2016) conducted a community based comparative cross-sectional study in east 

and west Gojjam zones of Amhara Region and the results revealed that five or above family size, 

non-merchant women, household monthly income less than 560 ETB, illiterate mothers, rural 

residential area, highland agro-ecology and lack of livestock were positively affects household 

food insecurity. Moreover, (Shone et al., 2017) conducted a community-based cross-sectional 

study in West Abaya District, Southern Ethiopia and the results indicated that households headed 

by female, households headed by persons aged >65 years, households with larger family size and 

owning smaller farm land were increased the risk of being food in-secured.   

On the other hand, the study conducted in Addis Ababa and Arisi Zone of Oromia Region by 

(Etana and Tolossa, 2017) showed that lower education status, poor economic status, 

unemployment status and study sites provided a statistical significant effect for households to be 

food in-secured. As studied by (Tantu et al., 2017) in Wolaita Sodo Town, the result indicted that 

single household head, greater than two dependent members, households headed with daily 

labourers, lower monthly income and low monthly food expenditure have positive and 

significant relationship with food insecurity. Moreover, (Abegaz, 2017) analysed the pooled data 

of the sixth and seventh round of the Ethiopian Rural Household Survey (ERHS) using binary 

multivariable logistic regression model revealed that rain shock, lack of off-farm income, and 
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region of the households were negatively associated with food security. Moreover, as studied by 

(Abdu et al., 2018) in Assayita district in Afar region through multivariate regression models 

revealed that age, parity, and having >2 children below five years of age were statistically 

associated variables with household food insecurity.  

The “Household Dietary Diversity Score (HDDS)” was also used to determine food security 

status as proxy indicator. (Moroda et al., 2018) conducted a study in Ethiopia using logistic 

regression models. They found that low educational status, small farmland size, small total 

annual income, far distance from health facilities, access to irrigable land, far distance to road 

transport, far distance to input/output markets, frequent drought and the in-availability of 

supporting organizations were positively associated with household food in-security situation in 

the utilisation dimension. This paper addressed both the determinants of household food 

accessibility and utilisation dimensions. Moreover, a study conducted in South Africa by (Ngema 

et al., 2018) using binary logistic regression revealed that education, and receiving infrastructural 

support (irrigation), positively influenced the food security status of households. However, 

household income and access to credit showed a negative correlation. The work addressed the 

general outlook of food security. It does not indicate which food security dimension was 

addressed.  

The “coping strategies index” has served as a means of proxy variable to measure food security 

status. (Napier et al., 2018) conducted a study in Durban, South Africa using logistic regression 

model. They found that larger household size, households spending between R700 and R900 on 

food monthly and households purchasing food from street vendors or informal community shops 

were indicators of food in-security. 

The “calorie intake” tool was also employed in Pakistan as a proxy food security indicator as 

conducted by (Ahmed et al., 2017) using binary logistic regression model. The results showed 

that family size, monthly income, food prices, health expenses, the market accessibility factors 

(road distance and transportation cost) and debt were identified as the main factors influencing 

the food security status of rural households. This work provided an input in the household food 

availability dimension.  
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The study conducted in the Sekyere-Afram Plains District of Ghana using both “USDA 

Household Food Security Scale” and a binary logit model revealed that households headed by 

unmarried people, large household size, small farm size, absence of off-farm income generating 

activities and farmers without access to credit were identified that leads households to be food 

in-secured (Mensah et al., 2013; Zeray, 2017). The work of Mensah et al. (2013) addressed the 

deteminats of food security intermis of household food access. Similarly, (Kelly and Pemberton, 

2016) conducted  a study in eastern rural area of Grand Bahama Island with the same procedure 

revealed that higher educational level of household head, high monthly income, and access to 

community gardens were statistically significant predictors for food security. 

 Habyarimana (2015) conducted a study in Rural Households in Rwanda using “Food 

Consumption Groups Score” and probit model. The study revealed that rural households headed 

by females, large household size, limited household's farm animal, and small household asset 

index, were significant variables for household food security.  Moreover, the study also found 

that limited household food acquisition level, large household food acquisition problem, small 

amount of household spending level, small amount of monthly food expenditure, small percent 

of land suitability per cell, large amount of soil erosion index per village, reduced coping 

strategy index and being membership to agricultural cooperative were significant variable for 

household food in-security (Habyarimana, 2015). This research addressed the determinants for 

household food accessibility dimension.   

The study was conducted to determine predictors of household food security in-terms of food 

access in  Mexico using the “Mexican Food Security Scale” and Ordered probit model (Magaña-

Lemus et al., 2016). They indicated that households include those with younger, less-educated 

household heads, headed by single, widowed or divorced women, with disabled household 

members, with native language speakers, with children, as well as rural and lower-income 

households were more likely to be food insecure.  

Bashir and Schilizzi (2012) conducted a meta-analysis that showed education level, household 

head’s age, input availability, technology adoption, farm size, land quality, price of inputs, and 

credit were associated with household food security of the availability dimension. On the 

contrary, income, distribution of income within the household, household size, total earning 

members, and family structure were associated with the access dimension of household food 
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security. Moreover, gender and expenditure on food and health are considered as determinants of 

utilisation aspect. 

The studies reviewed so far addressed a single dimension among the four dimensions of 

household food security. The next review intended on the composite multidimensional index of 

food security. The most known composite index of food security analysis was principal 

component analysis index (PCAI). Abafita and Kim (2014) employed PCAI to compute the 

composite food security index of food availability, accessibility and utilisation in Ethiopia. An 

instrumental variable (IV) regression models using 2-Stages Least Square (2SLS) was applied to 

select the significant predictors and the findings indicated that participation in off-farm activities, 

education of the household head, household size, livestock possession, rainfall index, fertilizer 

use and per capita consumption expenditure were statistically significant determinants with 

positive impact on household food security. On the contrary, remittance and credit access had a 

negative and statistically significant impact on household food security (Abafita and Kim, 2014).  

Similarly, (Mbolanyi et al., 2017) followed the procedure of (Abafita and Kim, 2014) for the 

study conducted in rangeland area of Uganda using Ordinary least square (OLS) and the result 

indicated that age of the household head, male household head, On-Farm Income and household 

head level of education (second degree or above) positively affected the food security of 

households.  On the other hand, as studied by (Wineman, 2016) in rural Zambia on three food 

security components of the households (food quantity, food quality and food stability) using 

multinomial logistic regression. The author found that both rainfall and temperature have a 

significant impact on a household’s food security score.  

The situation of food security is very difficult as it is the result of complex interaction between 

numerous variables. For instance, some of the food access proxy indicators have served as food 

availability proxy indicators and vice versa. Similarly, some of food access proxy indicators have 

served for utilisation proxy indicators. This implies that understanding several concepts 

associated with the definition of food security are necessary before examining the determinants 

of food security.  

The composite multidimensional index of food security conducted so far did not consider the 

contribution of each dimension for the determination of household food security status. 
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Similarly, previous studies did not address the associated determinate factors for each dimension 

at a time in a single model. The dependence between the dimensions and the respective 

predictors for each dimension did not undertake in a single model simultaneously.  

These gaps can be seen in three ways taking all the dimensions together. First, the dependence 

between food availability, accessibility and utilisation and the predictors for each dimension can 

be addressed in the statistical models of multivariate ordinal data analysis. Second, the stability 

of the composite multidimensional index of food security of the three dimensions can be 

addressed using the statistical models of longitudinal ordinal data analysis. Lastly, the stability of 

the three food security dimensions over time and predictors for each dimension can be addressed 

using multivariate longitudinal ordinal data analysis.  
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Chapter Three 

 Data 

 

This study was conducted in South Wollo Zone, one of the 11 zones in the Amhara Region State 

of Ethiopia. South Wollo is located in the North East of Ethiopia with latitude and longitude of 

11°07'59.99" N 39°37'59.99" E. Dessie is the capital of the zone which is 401 kilometres away 

from the capital city of Ethiopia, Addis Ababa. South Wollo has a population of 2,518,862, of 

whom 50.4% and 49.6% are women and men, respectively. The largest ethnic group of the zone 

was Amhara which accounted for 99.33% of the total population. Moreover, 70.89% of the 

population subscribe to Muslim religion, and 28.8% were practising Ethiopian Orthodox 

Christianity (CSA, 2007).  

South Wollo has 18 rural Woredas and two urban Woredas. Each Woreda has Kebeles which is a 

smallest unit in the administration of the zone. The target group for the thesis is households who 

are farmers living in the rural Woredas. This choice will minimise the error which will come 

from the heterogeneity lifestyle of the households because the living style and sources of food 

security dimensions are the same.  

 

The quantitative data collection instrument was developed through extensive review of similar 

literatures and recent studies (Ballard et al., 2011; Bashir and Schilizzi, 2012; Carletto et al., 

2013; Castro, 2000; Coates, 2013; Cohen and Garrett, 2010; Godfray et al., 2010; Hunnes, 2013; 

Napoli et al., 2011; Negatu, 2004; Ryu and Bartfeld, 2012; Biesalski et al., 2017; de Bruin and 

Gresse, 2018).  Data were collected by using semi-structured questionnaire, which allowed study 

participants to express more additional information and their opinions.  

 The questionnaire has five parts; the first part covers area identification, the second covers 

demographic and socio-economic characteristics of the households, the third part covers farming 

activities in relation to agriculture activities, environmental and climate change conditions. The 

fourth part intended on the information related to food security status of the households in each 

https://en.wikipedia.org/wiki/Zones_of_Ethiopia
https://en.wikipedia.org/wiki/Amhara_Region
https://en.wikipedia.org/wiki/Ethiopia
https://en.wikipedia.org/wiki/Ethiopian_Orthodox_Christianity
https://en.wikipedia.org/wiki/Ethiopian_Orthodox_Christianity
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dimension includes Availability, accessibility, utilisation, and the stability of the three 

dimensions over time. The availability dimension questions were customised from several 

researchers (Carletto et al., 2013, Coates, 2013, Godfray et al., 2010). The questions for 

accessibility used in this study was the Household Food Insecurity Access Scale (HFIAS) 

(Swindale and Bilinsky, 2007). The utilisation tool was obtained from (Carletto et al., 2013, 

Faber et al., 2009).  The last part covers the copying strategy that the households applied to 

overcome the hardship and crises of food security. The questionnaire is first prepared in English 

and then translated into Amharic (local language of the respondent’s) attached in appendix I. 

 

Administratively, Ethiopia is divided into 11 regions. Subsequently, regions are divided into 

zones. Similarly, zones are further divided into Woredas, the smaller administrative unit. Each 

Woredas is further subdivided into the lowest administrative unit called Kebele. For the current 

study, South Wollo zone from Amhara region was selected. In this area, the food security 

situation has yet not been updated for the last 15 years after (Castro, 2000, Negatu, 2004). South 

Wollo zone has 18 and 2 rural and urban Woredas, respectively. The rural Woredas are assumed 

to have uniform agro-ecological and homogenous in cultivation strategies. Hence, three-stage 

sampling procedure is the ideal sampling methods. This implied that sample of primary units 

(Woredas) were selected from the total rural Woredas of south Wollo Zone, then sample of 

secondary units (Kebeles) were chosen from each of the selected primary units (Woredas) and 

finally, sample of tertiary units (households) were chosen from each selected secondary unit 

(Kebeles). Hence, three rural Woredas were determined as optimal sample size using the 

ordinary cluster sampling formula as   

𝑚 =
(𝑍𝛼/2+𝑍𝛽)

2
𝑀𝑉2

(𝑍𝛼/2+𝑍𝛽)
2
𝑉2+(𝑀−1)𝑑2

=
(1.96+0.84)2(18)(0.001)

(1.96+.84)2(0.001)+(18−1)(0.05)2
= 2.867 ≈ 3. 

Where (𝑍0.05/2 + 𝑍0.2)
2

= (1.96 + 0.84)2 at 5% level of significant and 80% power, 𝑀 = 18 is 

the number of rural Woredas in South Wollo zone, 𝑑 is the degree of precision and taken to be 

0.05  and  𝑉2 = 0.001 is the ratio of the variance of the error term and the variance of the food 

security proportion 𝑃 = 0.60 of the study conducted in Guraghe zone, Southern Ethiopia 

(Nigussie and Alemayehu, 2013).  
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 These three Woredas were selected using simple random sampling (in particular lottery method) 

from 18 rural Woredas. Using the same fashion, a total of six Kebeles, 2 for each were selected 

from the selected Woredas. The sampling procedure conducted in this research was a three-stage 

sampling design. Woredas, Kebeles and households were the first, second and the third stage of 

sampling, respectively.  

Hence, there were three sample units in the first stage, and six in the second stage. For the third 

stage, a complete list of household heads was obtained in each of the six selected Kebeles from 

agriculture agent office of each Kebele. The determined sample was proportionally allocated for 

each Woreda and then Kebele. Based on the allocated sample size, households included in the 

sample were selected using systematic random sampling technique from those representative 

Kebeles. Then a list of names of the sampled households was prepared for each Kebele.  

 

Sample size determination is a very crucial task because a huge sample costs money and a small 

sample reduces the power of estimation. Hence, during the determination of required sample size 

issues/points one has to consider are objective of the research, design of the research, cost 

constraint, degree of precision required for generalization, etc. Based the above information, 

several sample size calculation formulas were developed that conform to different research 

situations. Accordingly, the sample size determination formula  
2

)1(
2

d

ppZ
n

−
= (Cochran, 2007) 

is adopted for this study since the target population is reasonably large. Where Z is the upper 

 points of standard normal distribution with =0.05 significance level, which is =1.96. 

The degree of precision d is taken to be 0.05. The parameter p represents proportion of food 

security of household. P=0.60 is used in this study obtained from previous study in rural areas of 

Guraghe Zone, Southern Ethiopia (Nigussie and Alemayehu, 2013). Accordingly, the sample 

size using the given formula becomes n=369.  Five percent of the sample size, which is 19, is 

added to the determined sample size 369 to compensate for non-response rate and the sample 

size becomes 388. Since the sampling design is multistage, 1.75 times of the sample size should 

be taken to compensate the design effect. Therefore, the required sample size for the study 

becomes n = 646. Next, based on these 646 farmer households, the following sample size 

2


 Z
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allocations were employed based on proportional allocation for the selected districts and then to 

Kebeles as presented in Table 3.1.  

Table 3. 1 Sample size allocations for the selected Woredas and then to selected Kebeles 

with-in the respected Woredas 

 

 Woredas  

Total farmer 

households  

Allocated 

Sample size   

 

Kebeles  

Total farmer 

households  

Allocated 

Sample size   

 

Kutaber   

 

27, 443 

 

210 

Alansha (03) 1245 139 

Beshilo (06) 639 71 

 

Kalu   

 

31,693 

 

235 

Kedida (07) 706 89 

Degan (019) 1150 146 

 

Tehuledere  

 

27, 241 

 

201 

Bededo (01) 1973 108 

Jari (017) 1692 93 

Total  87, 377 646  7405 646 

 

The data collection process has three phases. Each phase has similar procedures to be 

undertaken. Data collection was carried out using trained data collectors and data collection 

supervisors under the direct supervision of the researcher who worked closely with them. All the 

data collectors and data collection supervisors were trained on sample design, survey technique, 

survey instruments, and confidentiality protocol both for the pre-test and main data collection. 

This was necessary to ensure a common understanding of the whole survey in order to reduce 

interviewer biases as much as possible. Both data collectors and data collection supervisors were 

agricultural extension workers with a minimum of diploma for data collectors and Bachelor of 

Science for supervisors who speak English and local language Amharic. 

Before administering the questionnaires, the questionnaires were pre and pilot tested for the 

purpose of insuring the questions were clear and understood by the study participants. The pilot 

test fieldwork was conducted over half a day in one Kebele which is out of the selected Kebeles 

from 50 household heads. The pilot test field staff and the investigator made thorough 
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discussions. After a while, based on lessons drawn from the pilot test exercise, the questionnaires 

were modified. 

During the data collection, the data collectors approached the sampled household heads and 

requested their willingness to be take part of the study before starting the interview. Only 

consented household heads were interviewed face-to-face that took place usually outside of the 

house in the compound. But if the head was not present or available, then the spouse or an adult 

household member aged 18 or more and live more than six months with the family to be 

considered as a member of that household was interviewed with the same fashion as the 

household head. Once data collection ended, the data collectors told the study participants before 

leaving about the second phase data collection as they will come after six-month interval. The 

third phase data collection proceeded like phases one and two. Each interview lasted on average 

30 to 45 minutes. The surveys were carried out in a local language of the household head.  

The supervisors were in charge verifying everyday what each data collectors had done (how the 

questionnaire was filled in, omission and coherence of answers, and sometimes assisted in 

interviews). This was very important because enumerators could quickly rectify any mistake that 

had occurred by going back to the households to verify the information from their subjects when 

it was necessary. The team (data collectors and supervisors) met the principal investigator every 

morning for field feedback and every two days for logistical support. The data collection lasted 

for 30 working days (exclusion of Sunday) and each interviewer had to administer seven to eight 

questionnaires per day.  

The identification code was prepared for each household head participated in the study. An 

appointment abstraction form was also prepared to trace the name of the household heads and the 

study participation code that serves for the six-month follow-up data collection process (for the 

second and third round data collection processes). Once the data collection process is 

accomplished, the follow-up appointment abstraction form detached from the data collection 

questionnaire and placed in the separate place to secure confidentiality issues. 

 

The current study was employed the longitudinal data collection approach. Three rounds of data 

collection were employed at six months interval. The main harvest season in most of the study 
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locations is during the months of June and July. The first round of data collection that assessed 

the food security experience for the last 12 months was carried out on June, 2014. The second-

round data collection that assessed the last six months food security experiences was carried out 

on December, 2014. Lastly, the third round of data collection that assessed the last 6 months 

food security experiences was employed on June, 2015.   

 

In this thesis, different household food security measuring methods were employed with the hope 

to have single index for availability, accessibility and utilisation. Moreover, a composite index 

was also employed to assess the stability of household food security status over time.  

Measuring Household Food Security Status of the Availability Dimension 

Different scholars or organisations employed different methods and food security classification 

for this dimension. The “Dietary Energy Intake” method is used to determine food security status 

as food secured or in-secured (Coates, 2013, FAO., 2014). The “Months of Adequate Household 

Food Provisioning (MAHFP)” is used also to determine least food insecure, moderately food and 

most food insecure (Carletto et al., 2013, Moroda et al., 2018). The median score is used to 

determine food security status, those below median score as food in-secured and above median 

score as food secured (Kisi et al., 2018). Based on the recommendation obtained from (Capaldo 

et al., 2010), we expanded the work of Kisi (Kisi et al., 2018) using the quarter score approach to 

determine food security as “food secured”, “mildly food in-secured”, “moderately food in-

secured” and “severe food in-secured as follows. 

Food availability at household level depends on own production or bought from the local 

markets (Godfray et al., 2010).  Coates (2013) used the total annual household production and 

consumption of corn and bean per capita as a proxy measure of household food security status 

for the availability dimension.    

In the study area, foods like prepared from cereal crops, fruit and vegetables, milk and milk 

products, and meat and meat products are more or less consumed from their own production or 

from the local market. Moreover, food availability depends on foods provided by food aid 

organisations. Twelve (12) questions were developed to assess the availability of the above food 
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groups from their own production and/or from local markets; and from food aid organisations to 

measure the household food security status in terms of availability. We created a summative 

scale using these questions and each answer was recoded as 1, 2, 3 and 4 where 1 stands for the 

response “enough of the kinds of food we want to eat”, 2 for “enough but not always the kinds of 

food we want”, 3 for “sometimes not enough to eat” and 4 for “often not enough to eat”.   

Screening questions were used before asking the availability of food groups from their own 

production. If a household is not produce a particular food group or some of them, he or she does 

not ask about the availability of food group from own production. Similarly, a household obtains 

“enough of the kinds of food he or want to eat” from own production is not asked about the 

availability of that food group from local market. This implies that the number of question for 

each household may not be equal and may be less than 12 for some of them.  

Based on the above criteria, the item responses were summed to compute the score of household 

food security status ranging between 12 and 48 points for those asked all of the 12 questions. 

This range divided into four equal parts based on quartile score. The scores fall in the range 12-

20 grouped as “food secured”, 21-29 as “mildly food in-secured”, 30-38 “moderately food in-

secured” and 39-48 as “chronically food in-secured”. Similarly, for those asked 11 questions, the 

range is 11 and 44 points, for those asked 10 questions, the range is 10 and 40 points and so on 

for the other households asked less than 10 questions. The quartile square is applied for each 

range to determine the household food security status.   

Measuring Household Food Security Status of the Accessibility Dimension 

Majority of food security studies relayed the Household Food Insecurity Access Scale (HFIAS) 

for measuring household food security access status. Hence, we followed this scale for this thesis 

to assess the household food insecurity status in terms of accessibility. The module consists of 

nine items that measure the severity of a wide range of food hardships over the past 12 months. 

The status of the households was classified into four as availability based on the criteria given in 

the module. The cut-off points that serve to place households in a unique category of food 

security status is given in Table 3.2. 
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Table 3. 2: Cut-off points for household access scale 

 

Questions  

Frequencies 

Rare Sometimes Often 

1    

2    

3    

4    

5    

6    

7    

8    

9    

              Food secure                                                      Moderately food insecure  

                          Mildly food insecure                                             Chronically food insecure 

 

Measuring Household Food Security Status of the Utilisation Dimension 

The composite score of the “Household Dietary Diversity Score (HDDS)” and the facilities in-

terms of access and use of water supply, sanitation, and hygiene (WASH) were suggested as a 

measure using the three food security categories in this dimension (Carletto et al., 2013, Moroda 

et al., 2018). The DDS score was used to determine food security based on the median score 

those below the median score classified as food in-secured and above median as food secured 

(Faber et al., 2009). Based on the recommendation obtained from Capaldo et al. (Capaldo et al., 

2010), we expanded the work of Faber et al. (Faber et al., 2009) using the quarter score approach 

to determine food security as “food secured”, “mildly food in-secured”, “moderately food in-

secured”, and “severe food in-secured” as follows.  

Utilisation is directly linked with safe and adequate diet; and access and use of water supply, 

sanitation, and hygiene (WASH). “Household Dietary Diversity Score (HDDS)”, which is an 

assessment of 12 food groups, can measure the safe and adequate diet. As a result, we developed 
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19 questions that can address these issues and each answer was recoded as 0 (no) and 1(yes). The 

first 12 questions were the HDDS component and the last seven were the WASH component.  

As in food availability, the item responses in utilisation were summed to compute the score of 

household food security status ranging between 0 and 19 points. The scores fall in the range 15-

19 classified as “food secured”, 10-14 as “mildly food in-secured”, 5-9 as “moderately food in-

secured”, and 0-4 as “chronically food in-secured”. 

Composite Food Security Index (CFSI) 

The main objective of computing composite index was to determine the stability of household 

food security over the successive time periods. Three rounds of data collections were made. In 

each round, the household food security was measured for each dimension. To determine the 

stability of household food security status over time the food security measure in each round 

should be combined into one. We call this a composite food security index. Therefore, the 

following approach was made to compute the composite food security index.  

In each of the data collection phase, there are three food security measures that have four levels 

namely “food secured”, “mildly food in-secured”, “moderately food in-secured”, and 

“chronically food in-secured”.  

We created a summative scale using the three measures of phase one and each answer was 

recoded as 1, 2, 3 and 4 where 1 stands for the response “chronically food in-secured”, 2  for 

“moderately food in-secured”, 3 for “mildly food in-secured” and 4 for “food secured”. The item 

responses were summed to compute the score of household food security status ranging between 

3 and 12 points. This range divided into four equal parts based on quartile score. The scores fall 

in the range 3-5 grouped as “chronically food in-secured”, 6-7 as “moderately food in-secured”, 

8-9 as “mildly food in-secured”, and 10-12 as “food secured”. The same procedure was made for 

phase two and three to compute the combined food security status of the household. The 

framework of this computation displayed in the following diagram.  
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Figure 3. 1: Framework of food security of the household at three follow-up time points 

at six-month interval 

 

Some of the determinant variables for food security are clarified as follows: Shortage of rain fall 

is described by the length that the rain rains; Shortage of rainfall happens if the rain stops too late 

and/or too early.  Since the amount of rainfall depends on the nature of cultivable land, some 

type of land may need a high amount of rainfall or some of the lands will need few amount of 

rainfall. Hence, the farmers can declare the amount of rainfall happened in their village as per 

their type of cultivable land.  

The crops/vegetables disease can be described as any type of disease reported considered as 

crops/vegetables disease occurred in that area. The type of weather conditions in the study area 

(Hot, Medium and Cold) was replaced by type of agro-ecology of the study site. 

Cultivation season is the amount of cultivation season per year in their majority cultivable land 

(one time, two or more time per year). Moreover, the cultivable land of the study sites 

categorised as less than or equal to half hectare and above half hectare. Since majority of the 
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farmers in the study site have less than half hectare cultivable land. Majority of other previous 

studies categorized as we have conducted.  

Fertility of cultivable land is categorised as fertile, medium fertile, and less fertile. The concept 

of this question was to assess the fertility of majority of cultivable land. The fertility depends on 

the nature of the land that cultivated in the rainy season or not, resist during the dry season and 

the amount cultivated from that specific cultivable land. Moreover, the data collectors and 

supervisors were diploma and BSc in agricultural science, respectively; working around the 

farmers elaborated the categories in detail during data collection.  
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Chapter Four 

 Methodology  

 

For the long period of time, statisticians have been searching models that serve for measuring 

relationships or associations both in the continuous and discrete analogs of multivariate 

distribution. Mainly measuring relationships revolved on the continuous analogs whereas 

association on the discrete using bivariate and tri-variate distribution functions with given 

univariate margins. Sklar (1959), who develops new class of functions called copulas, gave the 

concept of univariate margins for this case. The word copula originates from the Latin word 

copulare, which means a link or connect or join. It was used by Sklar (1959) in the theorem for 

the first time in a mathematical or a statistical context to describe multivariate distribution 

functions that are constructed by joining together one-dimensional distribution functions (Sklar, 

1959).  

For the first time, copula was introduced to Encyclopaedia of Statistical Sciences in 1997 by 

(Fisher, 1997). Fisher introduced the interest of copula to statisticians on the concept of 

probability and statistics in this Encyclopaedia for two main reasons. The first reason is to 

measure scale free dependence and the second reason is to construct the starting point of 

bivariate distributions families (as cited by Nelson, 2007). “Copulas are multivariate distribution 

functions whose one-dimensional margins are uniform on the interval (0, 1)”.   

Various advancements of the copula functions have been introduced since its introduction for 

many applications, especially, multivariate distributions. One of the recently developed copulas 

for cascading the multivariate distribution into bivariate distribution with the great accuracy and 

efficiency is the pair copula construction (PCC). Pair copula construction was first introduced for 

continuous margins (Aas et al., 2009), then extended for discrete margins (Panagiotelis et al., 

2012). The current focus is the applicability of pair copula construction on multivariate 

longitudinal ordinal outcomes with the hope of measuring the dependency between longitudinal 

ordinal outcomes. This thesis further concerned itself on the implementation of PCC for 

multivariate longitudinal ordinal outcomes using the frequentist paradigm because the Bayesian 
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paradigm requires intensive work in selecting the appropriate prior distribution for the marginal 

model especially in ordinal outcomes setting.   

In sum, this chapter addresses the basics of copula theory, the application of pair copula 

construction for multivariate ordinal outcomes, for longitudinal ordinal outcomes, and for 

multivariate longitudinal ordinal outcomes. The chapter also addresses parameter estimation of 

all the three models stated above.  

 

 Definition and Properties of Copula Theory  

Definition 4.1: A multivariate distribution function with uniformly distributed margins that 

satisfies the following properties is called an m- dimensional copula C: [0, 1]𝑚 → [0, 1].  

i. For every u in [0, 1] 

a. ( ) 0.,..,, 21 =muuuC , if any 0=iu  

b. ( ) 1.,..,, 21 =muuuC , if any 1=iu  

ii. For any ).,..,,( 21 maaa  and 
m

mbbb ]1,0[).,..,,( 21   if jj ba  , then

0]),[.,..],,[( 111  mmm baUbaUP , we have  
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and 𝑈𝑗 are the random numbers which have uniform margins. 

The first property expresses the requirement of uniform marginal distributions whereas the 

second property expresses the rectangle inequality. A copula characterizes through these two 

properties; meaning that if a function C is fulfilled then it is a copula. 

Sklar’s theorem summarized the importance of copula in the study of multivariate distribution 

functions. The theorem shows how the copula coupled the univariate marginal distributions to 

construct multivariate distributions.  

jiji buauwhere == 2,1, ,
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Theorem 4.1-Sklar (1959): For m-dimensional random variables ).,..,,( 21 myyy with 

corresponding margin )(.,..),(),( 2211 mm yFyFyF , their joint distribution function 

).,.,.,( 21 myyyF can be expressed in-terms of an m-copula C functions as follows; 

))(.,..),(),(().,..,( 221121 mmm yFyFyFCyyyF = .                                              (4.1) 

If all )( jj yF are continuous then unique function C is defined, if not, C is uniquely defined 

within the product of the regions )(...)( 11 mm yRanFyRanF  , where )( ii yRanF is the range of 

the ith distribution function.    

Equation (4.1) gives an expression for joint distribution functions in terms of a copula and 

univariate distribution functions. But (4.1) can be inverted to express copulas in terms of a joint 

distribution function and the “inverses” of the margins. However, if a margin is not strictly 

increasing, then it does not possess an inverse in the usual sense. Therefore, we can use “quasi-

inverses” of distribution functions.  

Corollary 4.1: Let F be an m-dimensional joint distribution function with margins mFFF .,..,, 21 , 

C  be an m-copula and let )1(−F be the ith quasi-inverses of F . Then for any u in domain of C , 

))(.,..),(().,..,(
)1(

1

)1(

11 mmm uFuFCuuC
−−

= .         (4.2) 

This corollary is the unique copula satisfying equation (4.1). Given marginal and joint 

cumulative distribution functions, the above result allows the direct construction of a copula. 

In copula theory, there are special dependence structure functions. These are the “Frechet-

Hoeffding upper bound M named the comonotonicity copula”, the “Frechet-Hoeffding lower 

bound W named the countermonotonicity copula”, and the “independence copula Π” (Nicklas, 

2013). There expressions are given below respectively.   

)...,,min()...,,()...,,( mimimi uuuuCuuM ==

)0,1...,max()...,,()...,,( +−++== muuuuCuuW mimimi


=

==
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imimi uuuCuu
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)...,,()...,,(  .  
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Note that in arbitrary dimensions, M and Π are copulas whereas W is a copula only in the 

bivariate dimensions. Any copula functions are bounded point-wise by the Frechet-Hoeffding 

bounds.  

Proposition 4.1 For every u ∈ [0, 1]m in any copula function C, the following expression holds. 

)...,,()...,,()...,,( mimimi uuMuuCuuW =         (4.3) 

In copula theories whenever M, Π, and W are copulas, they have a special interpretation as stated 

in detail in (Nelsen, 2007).  

 Copula Density  

The multivariate density )...,,,( 21 myyyf  for the continuous case can be obtained through 

both sides’ differentiation of equation 4.1 using the chain rule, we have  

)(...)())(...,),(),(()...,,,( 11221121 mmmmm yfyfyFyFyFcyyyf =         (4.4) 

where )(...)( 11 mm yfyf  are the marginal density of the jth margin and c(.), known as the copula 

density, is the copula function differentiated with respect to each of its arguments.  

Even if the copula function is not unique for discrete margins, parametric copulas may still be 

used to model the dependence between discrete data which provides some evidence that discrete 

data inherit dependence properties from a parametric copula like the continuous case. In contrast 

with the continuous case, the probability mass function (pmf) for discrete data can be evaluated 

by taking differences of the copula function. Without loss of generality assuming Y ∈ Nm (where 

N is the set of natural numbers), the probability mass function of Y is given (Panagiotelis et al., 

2012, Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015);  
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Equation (4.5) is the special class of copula distribution called multivariate copula function for 

discrete data, which requires 2m evaluations of the pmf.  

Alternately, the pmf for some copula functions that do not have a closed form can be evaluated 

by integration over a rectangle. Hence, the probability mass function of the Gaussian copula with 

discrete margins can be expressed as; 

,...,,);...,,(...)...,,( 1111

1

1



+

−

+

−

===
m

m

mmmmm ddyYyYP









       (4.6)   

where )(.,)(.,)),1((: 1 −== −−

mmjjj andyYp   respectively denote the cdf 

and probability density function of an m-dimensional normal distribution with mean 0 and 

variance matrix given by the correlation matrix Γ (Panagiotelis et al., 2012).  

Both the multivariate and Gaussian copulas remain a highly challenging computational problem, 

especially for higher dimensions. Furthermore, this computational challenge was resolved 

through the introduction of vines pair copula construction (PCC) which requires 2m(m-1) 

evaluation of the pmf less demanding than 2m of the former one (Panagiotelis et al., 2012, Huynh 

et al., 2014, Sirisrisakulchai and Sriboonchitta, 2014). This is a copula-based framework that 

effectively simplifies the computational cost of evaluating the pmf and also a large range of 

dependence characteristics can be modelled. PCC will be discussed in detail later on section 

4.2.3.3. 

 Families of Copulas  

Several scholars in their literature have carried out the construction of copula families and their 

properties. Here, we present few of the most popular in the literature and use for our purpose as 

follows:  

 Elliptical Copulas 

Copulas developed from elliptical distributions are elliptical copulas. The elliptical copulas can 

be used to create new multivariate distribution functions by combining arbitrary margins. The 
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Gaussian and the t-copulas are the most commonly used elliptical copulas. The properties of 

these copulas were presented below one by one.  

Gaussian Copulas 

Let the distribution function of the multivariate normal distribution with zero mean and 

correlation matrix P is denoted by Φ1... m and the univariate standard normal distribution is by Φ.  

Then the m-dimensional Gaussian copula is defined by 

))(.,..),(().,..,(
)1(

1

)1(

1.,..,11 mmmm

Ga uuuuC
−−

=         (4.7) 

Even if we can express Gaussian copula as an integral, it does not have simple closed form 

(Nicklas, 2013).  In two dimensions, given that the covariance matrix is non-singular, we get 
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  (4.8) 

The dependence structure can be extracted from the multivariate normal distribution through this 

Gaussian copula. We can obtain the independence copula from Gaussian copula if mIP = . 

Similarly, the comonotonicity copula can be also obtained if P is an m×m matrix consisting 

entirely of ones. In two dimensions, the Gaussian copula with ρ = −1 is equal to the 

countermonotonicity copula. Hence, at least in two dimensions, the dependence structure that 

interpolates between perfect positive and negative dependence can be thought as dependence in 

the Gaussian copula. 
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The t copula  

Let the distribution function of the m-dimensional t distribution with ν degrees of freedom, zero 

mean vector and correlation matrix P denoted by 𝑡𝑣,1,2,…,𝑚 and the univariate t distribution by 𝑡𝑣.  

Then the m-dimensional t copula is defined by 

)),(.,..),(().,..,( 1

1

1

.,..,1,1 mvvmvm

t

v ututtuuC −−=        (4.9) 

In t copula, there is an additional parameter v (degrees of freedom) (Nicklas, 2013). Owing to 

this parameter t, copula becomes more suitable for financial application. This parameter controls 

the dependence of the extreme events meaning that both extreme positive and extreme negative 

events can be modelled equivalently.  

Like the Gaussian copula, we can express t copula as an integral, and does not have simple 

closed form.  In two dimensions, the t copula with ν degrees of freedom has the following form: 
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            (4.10) 

As in the case of the Gaussian copula, the comonotonicity copula can be obtained if P is an m×m 

matrix of ones. However, in contrast to the Gaussian copula, we do not obtain the independence 

copula from t copula if mIP = . This is because uncorrelated multivariate t-distributed random 

variables are not necessarily independent. 

 Archimedean Copulas 

Among the copula families in parametric dependence modelling, the most popular on is the class 

of Archimedean copula.  Elliptical copulas have the advantage that simulating from them is easy. 

However, they often do not have closed-form representations and they are all radially symmetric. 

All Archimedean copulas are flexible in the types of dependence structures they can model, and 

have closed-form expressions. Unlike the previously described copulas, Archimedean copulas 

are not derived using marginal distributions and Sklar’s theorem, though they are still easy to 

construct. The uniqueness of Archimedean copulas are defined by a generating function denoted 
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by (Nicklas, 2013). Under a continuous, strictly decreasing, and convex function from I to [0, ∞] of 

 with 0)1( = , then the Archimedean copula is given by  

))(),((),( ]1[ vuvuC  −=     (4.11) 

where ]1[−  is the pseudo-inverse of  : 
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     (4.12) 

Since an Archimedean copula can be generated by any continuous, strictly decreasing, convex 

function, a huge number of Archimedean copulas have the ability to model a wide range of 

dependence structures. For a complete summary of families of one parameter, Archimedean 

copulas, refer to (Nelsen, 2007). Moreover, hereunder we give the generator and the selected 

bivariate one parametric Archimedean copula functions that we used only for our purpose in this 

study.   

Clayton copula (Clayton, 1978): given that the copula parameter }0{\],1[ − , the Clayton 

copula is given by  

( ) 
1

1),(
−−− −+= vuvuC  , with generator ).1(

1
)( −= −


 tt  

For 0= , we set =C (Nicklas, 2013).  

Gumbel copula (Gumbel, 1960): For the copula parameter θ ∈ [1, ∞), the Gumbel copula is 

defined as  

( ) ( )( ) 







−+−−= 

1

)log()log(exp),( vuvuC ,  

With generator ( ) )log()( tt −=
(Nicklas, 2013). 
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Frank copula (Frank, 1979): For the copula parameter θ ∈ (−∞, ∞)\ {θ}(Aas et al.) the Frank 

copula is defined as 
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Again, we set C = Π for θ = 0(Nicklas, 2013). 

Ali-Mikhail-Haq Copula (Ali et al., 1978): For copula parameter θ ∈ [−1, 1], The Ali-Mikhail-

Haq is defined as  

)1)(1(1
),(

vu

uv
vuC

−−−
=


 

with generator ttt /)]1(1ln[)( −−= 
 

Note: Among the 22 Archimedean copulas, AMH copula is the only copula whose parameter 

lies on [-1, 1] and measures both, positive and negative, dependence. 

 Pair Copula Construction  

Another family of copula called a pair-copula construction (PCC) was developed using only 

bivariate copulas to construct a general construction method for multivariate copulas. The classes 

of multivariate copulas that we have discussed so far are limited in modelling various 

dependence structures. Among the flexible multivariate dependence structures which are needed 

especially in financial applications were the centre of the distribution and the tails (the upper and 

lower tail) dependence parameters. The application of copula for modelling purpose has been 

applied to many areas including actuarial sciences, finance, neuroscience, and weather research 

as cited in Kim et al., (2013). Among the copula-based models which are parametric copula 

families, elliptical and Archimedean copulas were commonly applicable for the application areas 

stated above. These families are limited in some aspect like tail dependence and dependence 
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flexibility. For instance, from elliptical copulas, the Gaussian copula allows for an arbitrary 

correlation matrix with zero tail dependence while the tail dependence parameter from the 

multivariate t-copula were driven from only a single degree of freedom parameter (Fang et al., 

2002, Frahm et al., 2003).  

Besides to fill the gaps of elliptical copulas, Archimedean copula classes, namely, fully and 

partially nested Archimedean copulas, Hierarchical Archimedean copulas and Multivariate 

Archimedean copulas were considered by several researchers (Joe, 1997, Nelsen, 2007, Savu and 

Trede, 2006, Schirmacher and Schirmacher, 2008). However, these extensions require additional 

parameter restrictions. These additional parameters reduced the flexibility of the extended copula 

functions for modelling dependence structures. To overcome the limitations of existing copula-

based models, a vine copula-based model has been developed. This vine is called pair-copulas. 

This copula-based model can express a multivariate copula by using a cascade of bivariate 

copulas.  

The first pair-copula construction of a multivariate copula for the continuous data were 

introduced by Joe (1996) in terms of distribution functions while Bedford and Cooke (2001; 

2002) expressed these constructions in terms of densities and graphical way involving a 

sequence of nested trees, which they called regular vines. The two popular subclasses of PCC 

models, which are called Drawable vines, or D-vines and Canonical vines or C-vines were also 

identified by Bedford and Cooke. Aas et al. (2009) and Czado (2010) also conducted different 

extensions in the continuous data. Even though Genest and Neslehova (2007) provided some 

evidence that discrete data inherit dependence properties from a parametric copula in a similar 

way to the continuous case, Panagiotelis et al. (2012) provided different PCC models for discrete 

data. 

To overcome these problems, pair copula have been developed first by (Joe, 1996) and extended 

by different scholars like (Aas et al., 2009, Bedford and Cooke, 2001, Bedford and Cooke, 2002, 

Czado, 2010) for continuous data and for discrete data (Panagiotelis et al., 2012). One of the 

contributions of Pair Copula Constructions (PCCs) in the construction of multivariate copula was 

to provide a highly flexible framework for constructing copulas exhibiting a wide range of 

dependence characteristics. This flexibility arises since any combination of bivariate copulas can 
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be used to construct PCC models (Czado, 2010).  Since PCC is the concern of the current study, 

details of PCC is presented in the coming consecutive topics in sections 4.3, 4.4 and 4.5.   

 Dependency Measures   

For understanding complicated dependence structure, measures of dependence are the most 

commonly used instruments. Among commonly used measures of dependence, the most popular 

is Pearson’s correlation coefficient. Under strictly increasing linear transformations, Pearson’s 

correlation coefficient is invariant but not under non-linear transformations. It is also defined 

only for pairs of random variables with finite variances, but this can bring problems when 

working with heavy-tailed distributions. Therefore, measuring dependence by standard 

correlation is adequate in the context of multivariate elliptical distributions. There are increasing 

proportions of nonlinear risks like the non-normal behaviour of most financial time series. As a 

result, other tools are needed since estimates of risk dependence via linear correlation neglects 

nonlinearities and leads in most cases to underestimation of the global risk. Since copula is often 

the key issue for numerous models in relation to the above limitations, it is very important to find 

the copula that describes the complete dependence structure. For detail on these, we refer to 

several researchers (Fan, 2009, Genest and Nešlehová, 2007, Nelsen, 2007, Pirktl, 2007, Nicklas, 

2013).  

Since the copula functions are invariant under strictly increasing transformations, it makes sense 

to consider dependence measures which are also invariant under such transformations. Kendall’s 

tau and Spearman’s rho are the most widely known scale-invariant measures of association. Both 

measure the form of dependence known as concordance. 

 Measure of Concordance 

Pair of random variables is said to be concordant, if large values of variable is associated with 

large values of the other variable and small values of one with small values of the other.  On the 

other hand it is discordant, if large values of one variable are associated with small values of the 

other. A more formal definition is the following:  
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Definition: Consider, ( )
ji xx ,  and ( )

ji yy ,  two observations from a pair random vectors (X, Y). 

We say that ( )
ji xx ,  and ( )

ji yy , are concordant if 0))(( −− jiji yyxx and discordant if

0))(( −− jiji yyxx .  

Definition:  Kendall’s tau for the pair random vectors (X, Y) and whose copula C is given by 

1),(),(4

0) )y-)(yx-((-0) > )y-)(yx-((

2]1,0[

jijjij

−=

=

 vudCvuC

xPxP ii

 

Hence Kendall’s tau is the probability of concordance minus the probability of discordance 

(Nelsen, 2007). 

Definition:  Spearman’s rho for the random vector (X, Y) and the copula C is given by 

.3v)C(u,12

0) )y-)(yx-((-0) > )y-)(yx-((3),(

1

0

1

0

jijjij

−=

=

  dudv

xPxPYX ii

 

Kendall’s tau and Spearman’s rho have many common properties. They can measure the degree 

of monotonic dependence between random variables. Both are taking values in [-1, 1] which 

measures symmetric dependence. They have the value 1 when X and Y are “comonotonic” and 

have -1 when they are “countermonotonic”, the value [-1, 1] does not necessarily imply that all 

those values can actually be obtained by a particular copula.  

 Tail Dependence 

The idea of Kendall’s tau and Spearman’s rho is to measure the dependence of the copula on the 

event space (0, 1) (Nicklas, 2013). On the contrary, there are cases that measure the dependence 

between the variables in the upper tail or the lower tail of the bivariate distributions. This is 

called tail dependence, which measures the dependence of extreme events. Nelson (2007) defines 

tail dependence for a copula as follows. A random variable X and Y have marginal distribution 

functions )(xFX , )( yFY  and the copula function C, the lower tail dependence coefficient is given 

by 
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and dependence coefficient for the upper tail is given by   
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Note that C has lower tail dependence if )1,0(L and no lower tail dependence if 0=L . 

Similarly, C has upper tail dependence if )1,0(U and no upper tail dependence if 0=U .  

 Dependencies Characteristics of Bivariate Copula Families 

Previous sections have introduced Kendall’s tau as a measure of dependence. The parameters of 

the copula and their values of Kendall’s tau have determined relationships as presented in Table 

4.1. The table also includes both the upper and lower tail dependence properties for each copula 

family. 

The upper or lower tail dependence cannot be treated in the Gaussian as well as in the Frank 

copula. Nevertheless, the t copula treats both cases and it is represented by LU  =  . On the other 

hand the Clayton can be used to model lower tail dependence whereas the Gumbel copula for 

upper tail dependence. 
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Table 4. 1: Kendall’s tau, upper and lower tail dependence for bivariate copula families 

(Dissmann, 2010). 

Copula  Kendall’s tau Upper tail 

dependence  

Lower tail 

dependence 
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This section provides pair copula-based cumulative logit model for jointly modelling the 

dependence between availability, accessibility and utilisation of food security dimensions and 

their respective determinants. The quartile score computed for each dimension categorized the 

food security status for each dimension as “severe food in-secured”, “mildly food in-secured”, 

“moderately food in-secured”, and “food secured”. This computation resulted in three ordinal 

dependent variables, namely, availability, accessibility and utilisation. Therefore, for assessing 

and interpreting food security status and determinant factors, a well-defined conceptual 

framework is crucial. As a result, modelling the determinant factors of household food insecurity 

is the case of modelling multivariate ordinal data that can consider the dependency between the 

dimensions.  
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A pair copula construction approach was proposed to determine both the dependence between 

food security dimensions and their respective associated factors simultaneously. A nice feature 

of the PCC approach in this setting is measuring the dependency of the food security dimensions 

using the copula parameter and the associated determinant factors of household food security for 

each dimension using the parameters of the marginal distributions. The pair copula construction 

approach with D-vine is attractive since it allows pairwise positive dependence structures as the 

presented conceptual framework by FAO (2008) and has closed form cumulative distribution 

function (cdf). Moreover, no other copula family has both these properties. FAO (2008) indicates 

that availability contributes to accessibility, accessibility contributes to utilisation and given that 

accessibility, availability contributes to utilisation; this is what a D-vine assumes in PCC.  

This section demonstrates how to model and estimate dependence and marginal parameters from 

multivariate ordinal data using pair copula constructions via ordinal logistic regression to our 

motivating problem. This thesis did not evaluate the performance of this approach through 

simulation studies because it was evaluated via Bernoulli and Poisson discrete distributions by 

(Panagiotelis et al., 2012) and found to be a good model. They have also implemented the model 

for longitudinal ordinal data via probit model. However, the scale of the logistic is greater than 

the normal and this made the interpretation easier for logistic version and popular in many fields 

(Choi, 2012). As far as the researcher review of literature is concerned, no work has been 

conducted on the ordinal logistic version so far. Hence this section concerned on implementing 

the developed discrete PCC model via ordinal logistic regression for modelling household food 

insecurity determinants.  

Since the current study concerns on discrete aspect in particular multivariate ordinal data, we 

now briefly review some key concepts for vine PCCs in the continuous case before introducing 

discrete vine PCCs. The aim here is to highlight some important distinctions in modelling 

discrete and continuous data via a copula approach, and to provide background for the 

introduction of discrete D-vine PCC presented in detail in section 4.3.2.  

 PCCs in the Continuous Case 

For a vector )...,,( 1 mYYY =  of continuous random variables with joint density function

)...,,( 1 myyf , a PCC is derived by starting with the following decomposition  
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)()......,,|()...,,|()...,,( 32...,,3|221...,,2|11 mmmmmmm yfyyyfyyyfyyf =                 (4.13) 

Recalling equation (2.4), we can simplify the bivariate case to 

)()())(),((),( 2211211221 yfyfyFyFcyyf =                                 (4.14)  

where .)(.,12c  is the appropriate pair-copula density for the pair of transformed variables 

)()( 2211 yFandyF .  

Any transformation using the factorization of Equation (4.13) and Equation (4.14) different 

decomposition can be constructed. For example, the 3-dimensional case decomposition results in  

)()|(),|(),,( 33323|23213,2|13213,2,1 yfyyfyyyfyyyf =        (4.15) 

Basic calculations give the conditional density of 32 YandY  
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Similarly,  
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Using Equation (4.15), (4.16) and (4.17), the following decomposition is appears    
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yfyfyfyFyFc

yfyFyFcyyFyyFcyyyf =
               (4.18) 
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This example illustrates the construction of a 3-dimensional density using the bivariate copula 

and the corresponding marginal distributions. Any other factor in Equation (4.13), the same 

procedure is possible using the general formula letting hV be any scalar element of V and hV\ its 

complement, with 
jY not an element of V  (Panagiotelis et al., 2012, Nicklas, 2013, 

Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015); 

hjhhhjhhj

hh

hhhjhhhjhhj

j

VYVVVYVVY

VV

VVVYVVVYVVY

VY

fFFc

f

ffFFc
f

||||

|

|||||

||||,

|

|||||,

|

),(

.),(

=

=

      (4.19) 

where  
hhj VVYc
||, denotes the pair copula density describing the dependence between  

jY and   hV

conditional on 
hh vV || = .  If we assume that the conditional copulas depend on the conditioning set 

only through their arguments, the decomposition in Equation (4.19) can motivate a statistical 

model. Typically, parametric bivariate copulas such as among the Archimedean families 

(Clayton, Gumbel & Frank) and elliptical families (Gaussian and Student t) copulas can be 

chosen to model the pair copulas.  

The arguments of the pair copulas are conditional distribution functions and can be evaluated 

using the following expression given by Joe (1996) and cited in (Panagiotelis et al., 2012, 

Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015); 

  )|(
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|||||,

|,|
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|||

|

hjVV

hjVVhjVYVVY

hhjVVY
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hh

hhhjhhj
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=

.               (4.20) 

To compute the density of a PCC, one can be found the algorithms that recursively compute PCC 

density (Aas et al., 2009).  

 In conclusion, under appropriate regularity conditions, a multivariate density can be expressed 

as a product of m*(m − 1)/2 bivariate copulas, acting recursively on several different conditional 

probability distributions using expression (4.19). This leads to a large number of possible pair-

copulas constructions. To organize all possible decompositions, a graphical model called a 

regular vine has been introduced by Bedford and Cooke (2002).  Regular vine decompositions 
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are concentrated only on the D-vines and C-vines, the special cases of regular vines. Each vine 

gives a specific way of decomposing the density. These models can be specified as a nested set 

of trees.  

Vines of Continuous Case  

A vine is characterized by 1−m trees denoted 
jT for 1...,,1 −= mj . The thj tree is made up of 

nodes, denoted 
jN and edges which join these nodes, denoted

jE (Panagiotelis et al., 2012, 

Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015). “A regular vine tree 

is called D-vine tree if each node in T −1 has at most 2 edges whereas C-vine tree if each tree 
jT  

has a unique node with jm − edges.” The node with 1−m edges in tree 1T  is called the root. 

Figure 4.1 shows a D-vine decomposition for a 5-dimensional density function and Figure 4.2 

shows a canonical-vine (Panagiotelis et al., 2012). 

In Figure 4.1, in the first tree of a D-vine, the edges simply join adjacent nodes yielding

 453423121 45,34,23,12 ccccE ===== . The edges on the first tree become the nodes on the 

second tree and in general
jj EN =+1
. The edges of trees 12 ...,, −mTT  also connect adjacent nodes. 

Any element shared by two nodes will be in the conditioning set of the edge joining them. For 

example, the edge joining node 12 and 23 is 13|2 while the edge joining 24|3 and 35|4 will be 

25|34 (Panagiotelis et al., 2012). 

The pair copulas that make up the corresponding PCC are simply indicated by the edges of the 

entire vine }...,,{ 11 −mEE , so that the density for a 5-dimensional PCC is given by 

234|1534|2523|144|353|242|1345342312

5

1

51 ..........)()...,,( ccccccccccyfyyf
k

kk 







= 

=

 

where the arguments of the pair copulas and density functions have been dropped for ease of 

notation.  

 

 



 

53 | P a g e  

© Yimam JA, UNISA 2019 

               12                        23                     34                   45                          T1 

                          

                         13|2                       24|3                 35|4                                               T2 

 

                                    14|23                          25|34                                                  T3 

 

                                                       15|234                                                                 T4 

Figure 4. 1: A D-vine tree representation for m = 5.   

The density )...,,( 1 myyf corresponding to a D-vine may be written using a general formula as 
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(4.21) 

where index j identifies the trees, while i runs over the edges in each tree. In a D-vine, no node in 

any tree 
jT is connected to more than two edges.  

 

Figure 4. 2: A C-vine tree representation for m = 5.  

1 5 4 3 2 

12 45 34 23 

13|2 35|4 24|3 

14|23 25|34 
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Similarly, in Figure 4.2, in the first tree of a C-vine, the edges simply join adjacent nodes 

yielding  15,14,13,121 =E . The edges on the first tree become the nodes on the second tree and 

in general
jj EN =+1
. The edges of trees 12 ...,, −mTT  also connect adjacent nodes. Any element 

shared by two nodes will be in the conditioning set of the edge joining them. For example, the 

edge joining node 12 and 13 is 23|1, while the edge joining 23|1 and 25|1, will be 35|12. The pair 

copulas that make up the corresponding PCC are simply indicated by the edges of the entire vine

}...,,{ 11 −mEE , so that the density for a 5-dimensional PCC is given by 

123|4512|3512|344|251|241|2315141312

5

1

51 ..........)()...,,( ccccccccccyfyyf
k

kk 







= 

=

 

where the arguments of the pair copulas and density functions have been dropped for ease of 

notation. As a D-vine, a canonical vine for m-dimensional density is given by 
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=
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k yyyFyyyFcyf

     

(4.22) 

where index 𝑗 identifies the trees, while 𝑖 runs over the edges in each tree. In a canonical vine, 

each tree 𝑇𝑗 has a unique node that is connected to 𝑛 − 𝑗 edges. 

Regular Vine Parameter Estimation  

For estimation of regular vine, different scholars proposed non-standard methods and standard 

estimation methods. Stepwise and MLE, Inference Function for Margins (IFM) and Stepwise 

Semi-parametric Estimator (SSP) are the common standard estimation methods. MLE were 

considered for the first time by several researchers (Aas et al., 2009) IFM by (Joe, 1996), and  

SSP were by (Haff, 2012). These methods were designed for continuous data. However, we will 

not discuss here in detail since the current concern is on the discrete data. One can refer the 

references cited here for more detail. Just we now go to the PCC in discrete data. 
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 PCCs in the Discrete Case 

In the following sections, we are going to introduce vine PCCs for discrete margins that can be 

applicable for ordinal data. First, the discrete analogues to some important equations introduced 

in Section 4.3.2.1. Second, we discuss the D-vine decomposition with an illustration in full detail 

using 3-dimensional vine because the D-vine has certain advantages in applications where some 

intuitive ordering of the margins can be made and that it gives flexible models with parameters 

that can be estimated in a computationally and statistically efficient manner (Panagiotelis et al., 

2012). Third, we discuss the selection of pair copula families of the D-vine and the parameter 

estimation.  

 Discrete PCCs  

The aim here is to decompose a general multivariate probability mass function (pmf) into 

bivariate pair copula building blocks like continuous data. The joint pmf can be decomposed into 

a product of conditional probabilities using equation (4.13) for m discrete random variables 

mYYY ...,,, 21 as  

).Pr(...

)...,,|Pr()...,,|Pr()...,,Pr( 3322221111

mm

mmmmmm

yY

yYyYyYyYyYyYyYyY

=

=========

       (4.23) 

Now, this expression has terms of the form )|Pr( || jjjj yYyY == where jY| is the vector of 

random variables mYYY ...,,, 21  excluding jY and jy| is the same vector for the realized values of 

the random variables. Choosing another element from the vector of random variables, we can 

rewrite the discrete joint probability in a similar fashion to the continuous case as following: 

)|(

)|,Pr(
)|Pr(

,|,|

,|,|

||

hjhjhh

hjhjhhjj

jjjj
yYyYp

yYyYyY
yYyY

==

===
===                 (4.24) 

Now, recalling the probability mass function and the multivariate copula function for discrete 

data in Equation (4.5), the bivariate conditional probability in the numerator can be expressed in 

terms of a copula giving  
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(4.25)

 

The arguments in equation (4.25) of the copula functions are evaluated using the following 

(Panagiotelis et al., 2012, Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 

2015); 
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==

−−

=

   (4.26) 

This vine PCC has nice feature than multivariate and Gaussian copulas functions in evaluating 

the probability mass function because the PCC requires )1(2 −mm  evaluations whereas the 

multivariate and Gaussian copulas require m2  evaluations (Panagiotelis et al., 2012).  

 D-vine in Discrete Data 

For illustration purposes, we present in detail the 3-dimensional case for instance in the food 

security data, 𝑌1 = Availability, 𝑌2 = Accessibility and 𝑌3 = Utilisation. Therefore, 

)Pr()|Pr(),|Pr(

),,Pr(

222233332211

332211

yYyYyYyYyYyY

yYyYyY

=======

===
(4.27) 

Utilizing Equation (4.25) the right hand side of the first conditional probability can be rewritten 

as:  



 

57 | P a g e  

© Yimam JA, UNISA 2019 

)|Pr(

))|(),|(()1(

),|Pr(

2233

1,0 1,0

2332|32112|12|13

332211

1 3

31

yYyY

yiyFyiyFC

yYyYyY

i i

ii

==

−−−

=

===

 
= =

+

         

(4.28) 

Similarly, utilizing Equation (4.25), the first argument of the copula function in the numerator of 

Equation (3.16) is given by; 

)Pr(

))1(),(())(),((
)|(

22

22111122211112
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yiyF

=
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=− ,    (4.29) 

and the second argument can be expressed as 
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=
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By cancelling terms and substituting, the probability mass function of the full expression for the 

3-dimensional discrete D-vine is given by  
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(4.31)

 

Somewhat confusing to write the general D-vine structure; however, the general dimension 

algorithm for computing the probability mass function of a D-vine was outlined by Panagiotelis 

et al. (2012).  It is evident both from this algorithm and the 3-dimensional example above that 

each bivariate pair copula only needs to be evaluated 4 times, specifically 
hjhj YYYC

.|. |  must be 

evaluated at (Panagiotelis et al., 2012, Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, 

Stöber et al., 2015); 
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))|(),|(( .||.|| .|.|\ hjhYYhjjYY yyFyyF
hjhhjj

,   ))|(),|1(( .||.|| .|.|\ hjhYYhjjYY yyFyyF
hjhhjj

− ,

))|1(),|(( .||.|| .|.|\ hjhYYhjjYY yyFyyF
hjhhjj

−  and ))|1(),|1(( .||.|| .|.|\ hjhYYhjjYY yyFyyF
hjhhjj

−− .   

In general, the evaluation of the probability mass function requires 2m(m − 1) evaluations of 

bivariate copula functions, even though the continuous vine PCC is composed of only m(m−1)/2 

pair copulas. These vine PCCs have still greater potential in high-dimensional settings since the 

computational burden of evaluating the pmf in the elliptical copulas is 2m. As pointed out by 

Panagiotelis et al. (2012) among the major advantage of D-vine PCCs, a wide variety of 

dependence structures can be modelled by selecting different copula families as building blocks. 

Gaussian, t, Clayton, Frank and Gumbel copulas are the commonly used parametric copula 

families as building blocks.  

The marginal probabilities can be modelled by logistic, probit or Poisson models. If the discrete 

data have binary outcomes, binary logistic or probit models can be used, if ordinal, ordinal 

logistic or probit and if counted, Poisson regression model can be used. For the current study 

since the data are ordinal, cumulative logit model is used. A detail of the cumulative logit model 

is given below.  

The marginal distribution of ordinal data via cumulative logistic regression model for single 

ordinal response variable Y that has C categories and labelled .1...,,2,1 −C  is given by (Agresti, 

2010); 

.1...,,2,1,
)exp(1

)exp(

)Pr(1

)Pr(
)Pr(

−=
++

+
=

−


=

Cj

jY

jY
jY

j

j




      (4.32) 

This is the cumulative probabilities that an observation fall in category j or below, for C 

categories. Each of the cumulative logits is an ordinary binary logit indicating the probability of 

an outcome falling into either the first 1... j categories or the j+ 1..., C categories. Similarly, j

the intercept for each cumulative probability of the c category and column vector ß of parameters 

that describes the effects of the explanatory variables (Agresti, 2010).  



 

59 | P a g e  

© Yimam JA, UNISA 2019 

Hence, the arguments in equation (4.31) can take the marginal distribution function given in 

equation (4.32). Moreover, the joint probability mass function in question (4.27) is expressed in 

terms of the pair copula functions and ordinal marginal distributions. The newly constructed joint 

probability mass function can be called pair copula-based multivariate cumulative logit model. 

Finally, this function can be estimated using the appropriate parameter estimation technique and 

appropriate bivariate copula families as building blocks (Panagiotelis et al., 2012, Nicklas, 2013, 

Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015). 

4.3.2.2.1 Selection of Pair Copula Families and Parameter Estimation of the  D-Vine 

Before parameter estimations of the pair copula construction model, determining the order of the 

D-vine and selection of appropriate bivariate copula families for the model is the first task to be 

done.   

For the structure of R-vine copula extensive works of several researchers (Aas et al., 2009, 

Czado et al., 2013, Dissmann et al., 2013, Sutkoff, 2014) were conducted. In particular, “the 

order in the trees corresponding to a D-vine copula Aas et. al (2009) put the strongest bivariate 

dependencies in the first tree of the D-vine tree specification. Strongest bivariate dependencies 

within the copula distribution might be measured by Kendall’s τ or the tail dependence 

coefficient λ, which is a function of the chosen bivariate copula”. For the current study on food 

security, the conceptual framework for food security dimension is given by FAO (2008) like 

Availability-Accessibility-Utilisation. We can use this order for the structure of D-vine for 

inference purposes.  

Now the bivariate Copula Families of the vine distribution can be selected since the order of the 

D-vine tree specification is chosen. This part can be discussed as follows.  

i. Selection of Pair Copula Families 

Accordingly, as described above, we need to select a copula family for every pair of variables. 

Commonly used copula families that we consider in the later applications are Gaussian (N), t, 

Clayton (C), Gumbel (G) and Frank (F). The Clayton and Gumbel copulas are applicable only to 

model positive dependence. Hence, in case of negative dependence (i.e. negative values for 

Kendall’s tau) we can reduce them. Further, if the degree of freedom of the MLE is higher than 

30, we will not use a t copula. 
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After reducing the possible options further, we can decide which copula fits “best”. To select 

jointly the vine structure and best fit copula families, (Panagiotelis et al., 2015) have developed 

an algorithm through adaptation from the algorithm developed for continuous data by Dissmann 

et al. (2013). We also customized this algorithm for our purpose to decide best fit copula families 

only as presented in Algorism I. 

Algorithm I 

Consider discrete random variables 𝑌 = 𝑌1, 𝑌2, 𝑌3, … . , 𝑌𝑚 with known marginal distribution 

functions 𝐹𝑗(. ) , the steps to select copula families is as follows. 

1. Generate the `pseudo data'𝑢𝑖𝑗
+ : = 𝐹𝑗(𝑦𝑖𝑗) and 𝑢𝑖𝑗

+ : = 𝐹𝑗(𝑦𝑖𝑗 − 1) for 𝑗 = 1, 2, … ,𝑚 and 𝑖 =

1, 2, … , 𝑛, where 𝑦𝑖𝑗the value of the response for the jth  margin and the ith observation. 

2. Consider a pair of two margins 𝐼1 𝑎𝑛𝑑 𝐼2 ∁ {1, 2, … ,𝑚} 

i. Fit the copula 𝐶𝜃𝑟
 using the pseudo data for the margins  𝐼1 𝑎𝑛𝑑 𝐼2 for each bivariate 

copula families as follows  

𝜃𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟)                              (4.33) 

             Where, 

        𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟) = ∑ln (𝐶𝜃𝑟

(𝑢𝑖𝐼1
+

𝑛

𝑖=1

, 𝑢𝑖𝐼2
+ ) − 𝐶𝜃𝑟

(𝑢𝑖𝐼1
+ , 𝑢𝑖𝐼2

− ) − 𝐶𝜃𝑟
(𝑢𝑖𝐼1

− , 𝑢𝑖𝐼2
+ ) +  𝐶𝜃𝑟

(𝑢𝑖𝐼1
− , 𝑢𝑖𝐼2

− ) 

ii. Compute a modified Akaike Information Criterion (AIC), that removes the effect of the 

margins, given by 

𝑚𝐴𝐼𝐶𝑟 = −2𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟) − 𝑙𝑛𝐿𝐼1

𝑟 − 𝑙𝑛𝐿𝐼2
𝑟 + 2𝑞𝑟                                                   (4.34) 

Where 𝑞𝑟 is the dimension of𝜃𝑟,𝑙𝑛𝐿𝐼1
𝑟 = ∑ ln (𝑛

𝑖=1 𝑢𝑖𝐼1
+ − 𝑢𝑖𝐼1

− ), 

𝑛𝐿𝐼2
𝑟 = ∑ln (

𝑛

𝑖=1

𝑢𝑖𝐼2
+ − 𝑢𝑖𝐼2

− ).  

A smaller mAIC value indicates a better parametric model. 

iii. Compute new pseudo data for tree 2 means that conditional pseudo data as given by  

𝑢𝑖,ℎ1|ℎ2

+ : = 𝐹ℎ1|ℎ2
(𝑦𝑖ℎ1|𝑦𝑖ℎ2), 𝑢𝑖,ℎ1|ℎ2

− : = 𝐹ℎ1|ℎ2
(𝑦𝑖ℎ1 − 1|𝑦𝑖ℎ2), 

𝑢𝑖,ℎ1|ℎ2

+ : = 𝐹ℎ2|ℎ1
(𝑦𝑖ℎ2|𝑦𝑖ℎ1),  𝑢𝑖,ℎ2−1|ℎ1

+ : = 𝐹ℎ2|ℎ1
(𝑦𝑖ℎ2|𝑦𝑖ℎ1), 
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3. Repeat step 2 for all pairs of the new pseudo data and corresponding pair copulas. Also 

compute new pseudo data in a similar fashion as step 2(iii). 

4. Iterate to select the pair copulas. 

Once the copula families selected for each edges and consecutive trees, the next step is parameter 

estimation. 

ii. Parameter Estimation  

For estimation of regular vine, stepwise and MLE were consider for the first time by Aas et al. 

(2009), Inference function for margins (IFM) by Joe (1996) and Stepwise semiparametric 

estimator (SSP) were by Haff (2013) in the continuous margins. Similarly, Panagiotelis et al. 

(2012) conducted MLE and IFM for the discrete margins. 

a. Maximum Likelihood (ML) Estimator 

Since the 3 dimensional D-vine is derived, hence the log-likelihood function of a 3 dimensional 

D-vine is given by    
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Here ),,( 321  = and ),,( 2|132312  = where the marginal and copula parameters 

respectively. Then, the ML estimator 
ML̂ is obtained by maximizing the above log-likelihood 

function over all parameters,  and , simultaneously.  

For the general case, let the model for the jth margin imply a marginal distribution function

);( jijij yF  , where 
j are the marginal parameters and the subscript i denotes that we observe a 

sample )...,,,( 21
= imiii yyyy  for i = 1, 2, ..., n. Similarly, the copula parameters for m-

dimensional dependence were given by 1...,,1|, −+++ jiijii . Then, the ML estimator 
ML̂ is obtained by 

maximizing the log-likelihood function over all parameters, j and 1...,,1|, −+++ jiijii , simultaneously.  
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In this optimization, good starting values are required. Starting values for the marginal 

parameters are obtained by following the first step of the IFM approach (will be discussed next 

to this). Moreover, starting values for the copula parameters can be found by computing 

empirical Kendall’s τ of bivariate copula function of the first tree which act as ‘pseudo’ data and 

then transformed back to the copula parameter using a known Bijection. 

b. Inference Function for Margins (IFM) Estimator 

Consider equation (3.18) the 3-dimensional marginal distribution and the general case, in the 

first step, maximum likelihood estimates of the marginal parameters
IFM̂  are estimated for all 

one at a time, ignoring dependence with the other margins. The resulting estimates 
IFM̂  are 

plugged into the arguments of the marginal in the bivariate copula functions to estimate the pair 

copula parameter
IFM̂ . In the second step, the copula parameters are estimated by maximum 

likelihood using
IFM̂ as an argument of the marginal (Panagiotelis et al., 2012, Nicklas, 2013, 

Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 2015).  

Panagiotelis et al. (2012) point out that joint ML estimates are generally of a higher quality than 

IFM, but only slightly so. On the other hand, IFM estimation is simpler and faster, particularly 

for more complicated marginal models. Hence, in the current study, the marginal models are 

only three; joint MLE can be implemented with the cumulative logit margin as discussed above. 

 

In repeated or longitudinal outcomes, the dependency among outcomes must be accounted for in 

order to make valid inference. In this study, the households were surveyed three times at six-

month interval for each of the three dimensions. A composite food security index that has four 

levels was computed from these three dimensions for each of the three round of data collection. 

The levels are “sever food in-secured”, “mildly food in-secured”, “moderately food in-secured” 

and “food secured” for each round of data. Therefore, three composite food security indexes 

were obtained from the three phases of data collection, resulted in longitudinal ordinal outcomes. 

Hence, in this regard, modelling the household food security status is the case of modelling 
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longitudinal ordinal data that can take into consideration the dependency between consecutive 

time points.  

In modelling the stability and the determinants of household food insecurity, a PCC model was 

proposed. A nice feature of the PCC approach in this setting is measuring the dependency of the 

consecutive food security status of the households using the copula parameter and the respective 

associated determinants using the parameters of the marginal distributions. The dependences of 

the consecutive food security statuses are one-dimensional. Hence, the pair copula construction 

approach with D-vine is attractive since it allows pairwise positive dependence structures and 

has closed form cumulative distribution function (cdf), no other copula family has both these 

properties.  

This section demonstrated how to model and estimate dependence and marginal parameters from 

longitudinal ordinal data using pair copula constructions via ordinal logistic regression to our 

motivating problem. The thesis did not evaluate the performance of this approach through 

simulation studies because it was evaluated via Bernoulli and Poisson discrete distributions by 

(Panagiotelis et al., 2012) and found to be a good model. They have also implemented the model 

for longitudinal ordinal data via probit model. However, the scale of the logistic is greater than 

the normal and this made the interpretation easier for logistic version and popular in many fields 

(Choi, 2012). As far as the researcher review of literature is concerned, no work has been 

conducted on the ordinal logistic version so far. Hence, this thesis in this section implemented 

the developed discrete PCC model via ordinal logistic regression for modelling the stability and 

determinants of household food insecurity status. 

Since the current study concerns on discrete aspect in particular longitudinal ordinal data, first 

we briefly review some key concepts for vine PCCs in the continuous longitudinal cases before 

introducing discrete vine PCCs for longitudinal ordinal margins. 

  Pair Copula Construction for Longitudinal Continuous Data 

A continues univariate random variable repeatedly measured for 𝑇 time points given by

)...,,( 1 TYYY = , the joint density function )...,,( 1 Tyyf  is decomposed as follows; 
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In the Sklar’s theorem the conditional bivariate densities, 𝑓(𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦1) in equation 

(4.36) for 𝑡 > 𝑠 is given by  
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where )|()|( •••• Fandf denotes the conditional density and cumulative density functions, 

respectively and t and s be any arbitrary distinct indices.  

By setting s=1, the bivariate conditional density in equation (4.37) yields the following 

decomposition, 

      
)...,,|())...,,|(),...,,|(()...,,|( 2121212...,,2,1|1,11 yyyfyyyFyyyFcyyyf tttsttttttt −−−−−− =
.  (4.38) 

Repeatedly, setting s = 2, 3, …, t-1, the conditional density in (4.3)  leads the following 

conditional density decomposition,   
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(4.39) 

Replacing equation (4.39) in equation (4.36), then the joint distribution function becomes 
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=          (4.40) 

Equation (4.40) is a product of  𝑇(𝑇 − 1)/2 bivariate pair copula densities and 𝑇 marginal 

densities (Ruscone and Osmetti, 2017, Smith et al., 2010). This leads to a large number of 

possible pair-copulas constructions. To organize all possible decompositions, a graphical model 

called a regular vine has been introduced by (Bedford and Cooke, 2002). Regular vine 

decompositions are concentrated only on the D-vines and C-vines, the special cases of regular 
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vines. Equation (4.40) can be recognized as D-vine model. Detail of D-vine construction was 

displayed earlier in section 4.3.1.   

D-Vine Parameter Estimation  

For estimation of regular vine, different scholars proposed non-standard methods and standard 

estimation methods. Stepwise and MLE (MLE), Inference Function for Margins (IFM) and 

Stepwise Semi-parametric Estimator (SSP) are the common standard estimation methods. MLE 

were considered for the first time by (Aas et al., 2009), IFM by (Joe, 1996), and  SSP were by 

(Haff, 2012). These methods are designed for continuous data. We will not discuss here in detail 

since the current concern is on the discrete data. One can refer the referees cited here for more 

detail. Just we now go to the PCC in discrete data. 

 Pair Copula Construction for Longitudinal Discrete Data 

The aim here is to decompose the probability mass function (pmf) of longitudinal discrete data 

into bivariate pair copula building blocks like the decomposition of longitudinal continuous data. 

For 𝑇 time ordered discrete random variables given by 𝑌1, 𝑌2, … , 𝑌𝑇, the joint pmf can be 

decomposed into a product of conditional probabilities as  

  )41.4().Pr(*)...,,|Pr(

)Pr(...)...,,|Pr()...,,|Pr()...,,Pr(

11

2

1111

11112211111111

yYyYyYyY
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ttttttttTT
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=
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Now, the expression 𝑃𝑟(𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1, 𝑌𝑡−2, = 𝑦𝑡−2, … , 𝑌1 = 𝑦1) can be written as the 

form 𝑃𝑟(𝑌𝑡 = 𝑦𝑡|𝑌|𝑡 = 𝑦|𝑡), where 𝑌|𝑡 is the vector of random variables 𝑌1, 𝑌2, … , 𝑌𝑇 excluding 𝑌𝑡 

and 𝑦|𝑡 is the same vector for the realized values of the random variables. Choosing another 

element s from the vector of random variables, we can rewrite the discrete joint probability as 

following: 
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Recalling equation (4.5), the bivariate conditional probability in the numerator of equation (4.42) 

can be expressed in terms of a copula giving,
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            (4.43) 

Inserting equation (4.43) in equation (4.41), now we get the following decomposed joint 

probability mass function for longitudinal discrete data.  
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Equation (4.44) can be recognized as general D-vine pair copula construction model. This vine 

PCC requires )1(2 −TT  evaluations for evaluating the probability mass function whereas the 

multivariate and Gaussian copulas require T2  evaluations (Panagiotelis et al., 2012).  

For illustration purposes, we present in detail the 3-dimensional longitudinal case. Therefore,  
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     (4.45) 

Utilizing Equation (4.43) the conditional probability, 𝑃𝑟(𝑌3 = 𝑦3|𝑌1 = 𝑦1, 𝑌2 = 𝑦2) can be 

rewritten as: 
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      (4.46) 

Similarly utilizing Equation (4.8), the first argument of the copula function in the numerator of 

Equation (4.45),  𝐹(𝑦1 − 𝑖1|𝑦2) is given by  
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   And the second argument, )|( 233 yiyF − can be expressed as    
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By cancelling similar terms and substituting, the probability mass function of the full expression 

for the 3-dimensional longitudinal discrete D-vine is given by 
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(4.50) 

Equation (4.50) is a D-vine model for 3-dimentional longitudinal discrete case. It is evident from 

the 3-dimensional example above that each bivariate pair copula only needs to be evaluated four 

times, specifically 
stst YYYC

.|. |  must be evaluated at    

))|(),|(( .|.| stsstt yyFyyF , ))|(),|1(( .|.| stsstt yyFyyF − , ))|1(),|(( .|.| stsstt yyFyyF −  and 

))|1(),|1(( .|.| stsstt yyFyyF −− .   

In general, the evaluation of the probability mass function requires 2T(T − 1) evaluations of 

bivariate copula functions, even though the continuous vine PCC is composed of only T(T−1)/2 

pair copulas. These vine PCCs have still greater potential in high-dimensional settings since the 

computational burden of evaluating the pmf in the elliptical copulas is 2T. As pointed out by 

Panagiotelis et al. (2012) among the major advantage of D-vine PCCs, a wide variety of 

dependence structures can be modelled by selecting different copula families as building blocks. 

Among these, Gaussian, t, AMH Clayton, Frank and Gumbel copulas are the commonly used 

parametric copula families as building blocks.  

The marginal probabilities in equation (4.50) can be modelled either of among discrete 

probability distributions.  For the current study, since the data are ordinal, cumulative logit 

model is used. Details of the cumulative logit model were given in equation (4.32).  
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Hence, the arguments in equation (4.44 or 4.50) can take the marginal distribution function given 

in equation (4.32). Moreover, the joint probability mass function in question (4.45) is expressed 

in terms of the pair copula functions and ordinal marginal distributions. The newly constructed 

joint probability mass function can be called pair copula-based longitudinal cumulative logit 

model. Finally, this function can be estimated using the appropriate parameter estimation 

technique and appropriate bivariate copula families as building blocks.  

 Selection of Pair Copula Families and Parameter Estimation of the D-Vine 

Before the estimation of the parameters for the pair copula construction model determining the 

order of the D vine and choose appropriate bivariate copula families for the model is the first 

task to be done.   

For the structure of R-vine, copula extensive approaches were reviewed in chapter three of this 

paper. Moreover, the current study concerned on time ordered or longitudinal case, the time 

order by itself can be taken as D-vine structure for inference purposes being stars from newest to 

the oldest.  Now the bivariate Copula Families of the vine distribution can be selected since the 

order of the D-vine tree specification is chosen. This part can be discussed as follows.  

 Selection of Pair Copula Families 

Accordingly as described above, we need to select a copula family for every pair of variables. 

Commonly used copula families that we consider in the later applications are Gaussian (N), Ali-

Mikhail-Haq (AMH), Clayton (C), Gumbel (G) and Frank (F). The Clayton and Gumbel copulas 

are applicable only to model positive dependence. Hence, in case of negative dependence (i.e., 

negative values for Kendall’s tau), we can reduce them. Further, if the degree of freedom of the 

MLE is higher than 30, we will not use a t copula. 

After reducing the possible options further, we can decide which copula fits “best”. To select 

jointly the vine structure and best fit copula families, (Panagiotelis et al., 2015) have developed 

an algorithm through adaptation from the algorithm developed for continuous data by Dissmann 

et al. (2013). We also customized this algorithm for our purpose to decide best fit copula families 

only as presented in Algorism II of this chapter. 
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Algorithm II 

Consider 𝑇 time ordered discrete random variables 𝑌 = 𝑌1, 𝑌2, 𝑌3, … . , 𝑌𝑇 with known marginal 

distribution functions 𝐹𝑡(. ) , the steps to select copula families is as follows. 

1. Generate the `pseudo data'  𝑢𝑖𝑡
+: = 𝐹𝑡(𝑦𝑖𝑡) and 𝑢𝑖𝑡

+ : = 𝐹𝑡(𝑦𝑖𝑡 − 1) for 𝑡 = 1, 2, … , 𝑇 and 𝑖 =

1, 2, … , 𝑛, where 𝑦𝑖𝑡 the value of the response for the tth  time ordered margin and the ith 

observation. 

2. Consider a pair of two time ordered margins 𝐼1 𝑎𝑛𝑑 𝐼2 ∁ {1, 2, … , 𝑇} 

i. Fit the copula 𝐶𝜃𝑟
 using the pseudo data for the margins  𝐼1 𝑎𝑛𝑑 𝐼2 for each bivariate 

copula families as follows:  

𝜃𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟)                                   (4.51)   

            Where, 

                   𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟) = ∑ ln (𝐶𝜃𝑟

(𝑢𝑖𝐼1
+𝑛

𝑖=1 , 𝑢𝑖𝐼2
+ ) − 𝐶𝜃𝑟

(𝑢𝑖𝐼1
+ , 𝑢𝑖𝐼2

− ) − 𝐶𝜃𝑟
(𝑢𝑖𝐼1

− , 𝑢𝑖𝐼2
+ ) +

                              𝐶𝜃𝑟
(𝑢𝑖𝐼1

− , 𝑢𝑖𝐼2
− )) 

ii. Compute a modified Akaike Information Criterion (AIC), that removes the effect of the 

margins, given by 

        𝑚𝐴𝐼𝐶𝑟 = −2𝑙𝑛𝐿𝐼1,𝐼2
𝑟 (𝜃𝑟) − 𝑙𝑛𝐿𝐼1

𝑟 − 𝑙𝑛𝐿𝐼2
𝑟 + 2𝑞𝑟                                     (4.52) 

Where 𝑞𝑟 is the dimension of  𝜃𝑟,𝑙𝑛𝐿𝐼1
𝑟 = ∑ ln (𝑛

𝑖=1 𝑢𝑖𝐼1
+ − 𝑢𝑖𝐼1

− ),                                        

                 𝑙𝑛𝐿𝐼2
𝑟 = ∑ ln (𝑛

𝑖=1 𝑢𝑖𝐼2
+ − 𝑢𝑖𝐼2

− ).   

A smaller mAIC value indicates a better parametric model. 

iii. Compute new pseudo data for tree 2 means that conditional pseudo data as given by  

      𝑢𝑖,ℎ1|ℎ2

+ : = 𝐹ℎ1|ℎ2
(𝑦𝑖ℎ1|𝑦𝑖ℎ2), 𝑢𝑖,ℎ1|ℎ2

− : = 𝐹ℎ1|ℎ2
(𝑦𝑖ℎ1 − 1|𝑦𝑖ℎ2), 

      𝑢𝑖,ℎ1|ℎ2

+ : = 𝐹ℎ2|ℎ1
(𝑦𝑖ℎ2|𝑦𝑖ℎ1),  𝑢𝑖,ℎ2−1|ℎ1

+ : = 𝐹ℎ2|ℎ1
(𝑦𝑖ℎ2|𝑦𝑖ℎ1), 

3. Repeat step 2 for all pairs of the new pseudo data and corresponding pair copulas. Also 

compute new pseudo data in a similar fashion as step 2(iii). 

4. Iterate to select the pair copulas. 

Once the copula families selected for each edges and consecutive trees, the next step is parameter 

estimation.  
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 Parameter Estimation  

For estimation of regular vine, details of different estimation techniques were assessed in 

Chapter 3. Here, we only concerned on MLE that will be applied for this application area.  

Since the 3-dimensional D-vine is derived, hence the log-likelihood function of a 3 dimensional 

D-vine is given by    
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Here ),,( 321  = and ),,( 2|132312  = where the marginal and copula parameters 

respectively. Then, the ML estimator ML̂ is obtained by maximizing the above log-likelihood 

function over all parameters,  and , simultaneously.  

For the general case, let the model for the tth time ordered margin imply a marginal distribution 

function );( titit yF  , where t are the marginal parameters and the subscript i denotes that we 

observe a sample )...,,,( 21
= iTiii yyyy  for i = 1, 2, ..., n. Similarly, the copula parameters for t-

dimensional dependence are given by 1...,,1|, −+++ tiitii . Then, the ML estimator ML̂ is obtained by 

maximizing the log-likelihood function over all parameters, t and 1...,,1|, −+++ tiitii , simultaneously.  

In this optimization, good starting values are required. Starting values for the marginal 

parameters are obtained by maximum likelihood estimates of the marginal parameters estimated 

for all one at a time. And starting values for the copula parameters can be found by computing 

empirical Kendall’s τ of bivariate copula function of the first tree which act as ‘pseudo’ data and 

then transformed back to the copula parameter using a known Bijection. 

 

In many fields of specializations including clinical trials, medicine, public health, social sciences, 

education, economics, psychometric and pharmacokinetics, multiple outcomes measured 
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repeatedly over time from the same sets of study participants to analyse the changes over time, 

resulting in multivariate longitudinal data. The statistical analysis of this type of data are for 

studying changes across time by reducing the dimension of the multivariate longitudinal data to 

univariate longitudinal data using some kind of summary measures (Asar and İlk, 2014, Laffont 

et al., 2014), or jointly addressing the associations/dependencies across multivariate covariates 

and  the changes across time points (Abegaz et al., 2015, Jiang, 2012, Verbeke et al., 2017). In 

multivariate longitudinal outcomes, the dependence among outcomes and changes over time 

must be accounted for in order to make valid inference. Our motivated example was household 

food security which has similar feature with multivariate longitudinal outcomes.  

As we have discussed so far in the previous section of this chapter, the availability, accessibility 

and utilisation dimensions took ordinal levels based on the quartile score. For incorporating the 

fourth dimension, the stability of the three dimensions over time, the dimensions were repeatedly 

measured three times at six months interval. Hence, three longitudinal ordinal outcomes were 

obtained, resulting in multivariate longitudinal ordinal outcomes. The dimensions have pair-wise 

dependence between them at the same time point and each have dependence between 

consecutive time points (Capaldo et al., 2010, FAO, 2008). Therefore, modelling the stability 

and determinants of household food insecurity is the case of modelling multivariate longitudinal 

ordinal data that can consider the dependence between the dimensions and the dependence of 

each dimension between consecutive time points.  

In modelling the stability and determinants of each household food security dimensions, the PCC 

model was proposed. A nice feature of the PCC approach in this setting is measuring the 

dependency of the three dimensions using the copula parameters, the parameter of the 

consecutive food security status of the households and the associated determinants of household 

food security for each dimension using the parameters of the marginal distributions. Hence, the 

pair copula construction approach with D-vine is attractive since it allows pairwise positive 

dependence structures and has closed form cumulative distribution function (cdf), no other 

copula family has both these properties.  

In sum, this section proposes a model for estimating dependence and marginal parameters from 

multivariate longitudinal ordinal data using pair copula constructions via marginal model of the 

longitudinal ordinal logistic regression to our motivating problem. The performance of pair 
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copula construction for discrete data was evaluated via Bernoulli and Poisson discrete 

distributions by (Panagiotelis et al., 2012) and found to be a good model. In our work, we follow 

their approach of constructing pair copula construction to model multivariate longitudinal ordinal 

data. As far as the researcher review of literature is concerned, no work has been conducted on 

multivariate longitudinal ordinal outcomes in the ordinal logistic version so far using pair copula 

construction. Hence, this study is concerned on implementing the developed discrete PCC model 

via marginal model of ordinal logistic regression for modelling household food insecurity status 

and determinant factors.  

Even thought our aim is concerned on multivariate longitudinal ordinal data, let us review the 

continuous case and will continue to discrete one. 

 Pair Copula Construction for Multivariate Longitudinal Continuous Data 

Consider an M-dimension multivariate continues random variables repeatedly measured for 𝑇 

time points of the 𝑖𝑡ℎ individual given by 𝑌𝑗𝑖 = (𝑌𝑗𝑖1, 𝑌𝑗𝑖2, … , 𝑌𝑗𝑖𝑇) where 𝑗 = 1, 2, … ,𝑀 𝑎𝑛𝑑 𝑖 =

1, 2, … , 𝑛. Smith (2015) re-ordered the observations of the multivariate series into the univariate 

outcomes of dimensions 𝑁 = 𝑇 ∗ 𝑛 given by 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑀), where 𝑌1 = (𝑦11, 𝑦21, … , 𝑦𝑁1)
′,

𝑌2 = (𝑦12, 𝑦22, … , 𝑦𝑁2)
′𝑎𝑛𝑑 𝑌𝑀 = (𝑦1𝑚, 𝑦2𝑚, . , 𝑦𝑁𝑚)′ (Smith, 2015). 

Hence, the joint density function 𝑓(𝑦1, 𝑦2, … , 𝑦𝑚) is decomposed as follows: 

)()......,,|()...,,|()...,,( 32...,,3|221...,,2|11 mmmmmmm yfyyyfyyyfyyf = .                   (4.56) 

Recalling equations (4.4 and 4.12), we can simplify the bivariate case to 

)()())(),((),( 2211211221 yfyfyFyFcyyf =                               (4.57) 

where .)(.,12c  is the appropriate pair-copula density for the pair of transformed variables

)()( 2211 yFandyF .  

Any transformation using the factorization of Equation (4.56), Equation (4.57) and Equation 

(4.4) different decomposition can be constructed. For example, the 3-dimensional case 

decomposition results in  

)()|(),|(),,( 33323|23213,2|13213,2,1 yfyyfyyyfyyyf =
      (4.58) 
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Using the Sklar’s theorem, the conditional density of 𝑌2 𝑎𝑛𝑑 𝑌3 in equation (4.58) is given by: 
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),(
)|(
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33223223

33
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yyf
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=

==

.     (4.59) 

Similarly,  
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yfyFyFcyyFyyFc

yyfyyFyyFc

=

=
                (4.60)  

Using Equation (4.58), (4.59) and (4.60), the following decomposition appears    

).(.)(.)(.))(),((

).())(),(()).|(),|((),,(

1122333223

112112232|3212|12|133213,2,1

yfyfyfyFyFc

yfyFyFcyyFyyFcyyyf =

                (4.61) 

This example illustrates the construction of a 3-dimensional density using the bivariate copula 

and the corresponding marginal distributions.  

Similarly, for any other factor in Equation (4.56), the same procedure is possible using the 

general formula as follows: 

𝑓𝑖|𝑗𝑘(𝑦𝑖|𝑦𝑗,𝑘) = 𝑐𝑗𝑘|𝑘 (𝐹𝑖|𝑘(𝑦𝑖|𝑦𝑘), 𝐹𝑖|𝑘(𝑦𝑖|𝑦𝑘)) 𝑓𝑖|𝑘(𝑦𝑖|𝑦𝑘),                             ( 4.62) 

where k can be empty, a single index or multiple indices (Lennon, 2016).  

For instance, the joint density of a four-dimension varieties can be decomposed into bivariate 

pair copulas using (4.62) as,  

𝑓(𝑦1, 𝑦2, 𝑦3 , 𝑦4) = 𝑓4|321(𝑦4|𝑦3, 𝑦2, 𝑦1)𝑓3|21(𝑦3|𝑦2, 𝑦1)𝑓2|1(𝑦2|𝑦1)𝑓1(𝑦1), 

                                              = 𝑐14|23𝑓4|23(𝑦4|𝑦2, 𝑦3). 𝑐13|2𝑓3|2(𝑦3|𝑦2). 𝑐12𝑓2(𝑦2)𝑓1(𝑦1), 
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                                              = 𝑐14|23𝑐24|3𝑓4|2(𝑦4|𝑦2)𝑐13|2𝑐23𝑓3(𝑦3)𝑐12𝑓2(𝑦2)𝑓1(𝑦1), 

                                              = 𝑐14|23𝑐24|3𝑐24𝑓4(𝑦4)𝑐13|2𝑐23𝑓3(𝑦3)𝑐12𝑓2(𝑦2)𝑓1(𝑦1), 

                                              = 𝑐14|23𝑐13|2𝑐24|3𝑐34𝑐23𝑐12𝑓4(𝑦4)𝑓3(𝑦3)𝑓2(𝑦2)𝑓1(𝑦1),             (4.63) 

Hence, the decomposition in (4.63) can be written with full expression as:  

𝑓(𝑦1, 𝑦2, 𝑦3 , 𝑦4) = 𝑐12(𝐹1(𝑦1), 𝐹2(𝑦2))𝑐23(𝐹2(𝑦2), 𝐹3(𝑦3))𝑐34(𝐹3(𝑦3), 𝐹4(𝑦4)) 

                                          × 𝑐13|2 (𝐹1|2(𝑦1|𝑦2), 𝐹3|2(𝑦3|𝑦2)) 𝑐14|2(𝐹1|2(𝑦1|𝑦2), 𝐹4|2(𝑦4|𝑦2)) 

                                           × 𝑐34|12 (𝐹3|12(𝑦3|𝑦1, 𝑦2), 𝐹4|12(𝑦4|𝑦1, 𝑦2)) 𝑓4(𝑦4)𝑓3(𝑦3)𝑓2(𝑦2)𝑓1(𝑦1) 

Hence, based on the general form of equation 4.62, the decomposition of 𝑓(𝑦1, 𝑦2, … , 𝑦𝑚) 

according to the D-vine pair copula construction can be written as  
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Equation (4.64) is a product of  𝑚 ∗ (𝑚 − 1)/2 bivariate pair copula densities and m marginal 

densities (Aas et al., 2009, Czado, 2010, Lennon, 2016, Ruscone and Osmetti, 2017, Smith et al., 

2010, Smith, 2015). This leads to a large number of possible pair-copulas constructions. To 

organize all possible decompositions, a graphical model called a regular vine has been 

introduced by (Bedford and Cooke, 2002). Regular vine decompositions are concentrated only 

on the D-vines and C-vines, the special cases of regular vines. Detail of D-vine construction was 

displayed earlier in section 4.2.3.  

 

D-Vine Parameter Estimation  

For estimation of regular vine, different scholars proposed non-standard methods and standard 

estimation methods. Stepwise and MLE, IFM and SSP are the common standard estimation 

methods. MLE were considered for the first time by (Aas et al., 2009), IFM by (Joe, 1996), and  

SSP were by (Haff, 2012). These methods are designed for continuous data. We will not discuss 

here in detail since the current concern is on the discrete data. One can refer the references cited 

here for more detail. Just we now go to the PCC in discrete data. 
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 Pair Copula Construction for Multivariate Longitudinal Discrete Data 

Like the continuous case, consider an M-dimension multivariate discrete random variable 

repeatedly measured for 𝑇 time points of the 𝑖𝑡ℎ individual given by 𝑌𝑗𝑖 = (𝑌𝑗𝑖1, 𝑌𝑗𝑖2, … , 𝑌𝑗𝑖𝑇) 

where 𝑗 = 1, 2, … ,𝑀 𝑎𝑛𝑑 𝑖 = 1, 2, … , 𝑛. We re-ordered the observations of the multivariate 

series into the univariate outcomes of dimensions 𝑁 = 𝑇 ∗ 𝑛 given by 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑀), where 

𝑌1 = (𝑦11, 𝑦21, … , 𝑦𝑁1)
′, 𝑌2 = (𝑦12, 𝑦22, … , 𝑦𝑁2)

′𝑎𝑛𝑑 𝑌𝑀 = (𝑦1𝑚, 𝑦2𝑚, . , 𝑦𝑁𝑚)′.  

Hence, the joint probability mass function 𝑃𝑟(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚) is decomposed as 

follows: 

Pr(𝑌1, 𝑌2, … , 𝑌𝑚) = Pr(𝑌1 = 𝑦1|𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚) × Pr(𝑌2 = 𝑦2|𝑌3 = 𝑦3, … , 𝑌𝑚 = 𝑦𝑚) 

                                        × …× Pr(𝑌𝑚 = 𝑦𝑚)                                                                                 (4.65) 

The bivariate cumulative distribution function of (𝑌1, 𝑌2) is given by the standard notation as 

𝐹𝑖𝑗(𝑦𝑖, 𝑦𝑗) = Pr (𝑌𝑖 ≤ 𝑦𝑖, 𝑌𝑗 ≤ 𝑦𝑗)       (4.66) 

Similarly, the conditional cumulative distribution is given as follows:  

𝐹𝑖𝑗|𝑘(𝑦𝑖, 𝑦𝑗|𝑦𝑘) = Pr (𝑌𝑖 ≤ 𝑦𝑖, 𝑌𝑗 ≤ 𝑦𝑗|𝑌𝑘 = 𝑦𝑘)                                              

(4.67) 

The expression in equation (4.65) has terms of the form )|Pr( || jjjj yYyY == where jY| is the 

vector of random variables mYYY ...,,, 21  excluding jY and jy| is the same vector for the realized 

values of the random variables. Choosing another element ℎ from the vector of random 

variables, we can re-write the discrete joint probability in a similar fashion to the continuous case 

as following: 

)|Pr(

)|,Pr(
)|Pr(

,|,|

,|,|

||

hjhjhh

hjhjhhjj

jjjj
yYyY

yYyYyY
yYyY

==

===
===                           (4.68) 

Now, recalling the probability mass function and the multivariate copula function for discrete 

data in Equation (4.5), the bivariate conditional probability in the numerator can be expressed in 

terms of a copula giving  
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(4.69)

 

The arguments in equation (4.69) of the copula functions are evaluated using the following 

(Nicklas, 2013, Panagiotelis et al., 2012, Sirisrisakulchai and Sriboonchitta, 2014, Stöber et al., 

2015);  

)|Pr(/

))]|1(),|((
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.||.|||.

.||.|||.|.|
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yyFyyFC

yyFyyFCyyyF

hjhhjjhjhj

hjhhjjhjhjhjhj

==

−−

=

   (4.70) 

This vine PCC has nice feature than multivariate as well as Gaussian copulas functions in 

evaluating the probability mass function because the PCC requires )1(2 −mm  evaluations 

whereas the multivariate and Gaussian copulas require m2  evaluations (Panagiotelis et al., 

2012).  

 D vine in Multivariate Longitudinal Discrete Data 

For illustration purposes, we present in detail the 3-dimensional case. Therefore,  

)Pr()|Pr(),|Pr(

),,Pr(

222233332211

332211

yYyYyYyYyYyY

yYyYyY

=======

===

           

(4.71) 

Utilizing Equation (4.71) the right-hand side of the first conditional probability can be rewritten 

as:  
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          (4.72) 

Similarly utilizing Equation (4.69), the first argument of the copula function in the numerator of 

Equation (4.72) is given by 
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22111122211112
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=− ,  (4.73) 

and the second argument can be expressed as 
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By cancelling terms and substituting, the probability mass function of the full expression for the 

3-dimensional discrete D-vine is given by  
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(4.75) 

Somewhat confusing to write the general D-vine structure; however, the general dimension 

algorithm for computing the probability mass function of a D-vine was outlined by Panagiotelis 

et al. (2012).  It is evident both from this algorithm and the 3-dimensional example above that 

each bivariate pair copula only needs to be evaluated 4 times, specifically 
hjhj YYYC

.|. |  must be 

evaluated (Panagiotelis et al., 2012, Nicklas, 2013, Sirisrisakulchai and Sriboonchitta, 2014, 

Stöber et al., 2015); 

))|(),|(( .||.|| .|.|\ hjhYYhjjYY yyFyyF
hjhhjj
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− ,
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In general, evaluation of the probability mass function requires 2m(m − 1) evaluations of 

bivariate copula functions, even though the continuous vine PCC is composed of only m(m−1)/2 

pair copulas. These vine PCCs have still greater potential in high-dimensional settings since the 

computational burden of evaluating the pmf in the elliptical copulas is 2m. As pointed out by 

Panagiotelis et al. (2012) among the major advantage of D-vine PCCs, a wide variety of 

dependence structures can be modelled by selecting different copula families as building blocks. 

Among these, Gaussian, t, AMH, Clayton, Frank and Gumbel copulas are the commonly used 

parametric copula families as building blocks.  

The marginal probabilities in equation (4.75) can be modelled either of among discrete 

probability distributions. For the current study since the data are multivariate longitudinal ordinal 

data, the marginal model for univariate longitudinal ordinal data via cumulative logit model is 

used. Details of this model are given below.  

Marginal Model of longitudinal ordinal outcomes  

Let 𝑌 denotes ordinal response variable observed over 𝑇 time points such that the response 

variable has C categories and labelled (1,2, … , 𝐶 − 1) and 𝑌𝑖𝑡 is the 𝑖𝑡ℎ individual at time 𝑡 for 

𝑖 = 1, 2, … , 𝑛  and 𝑡 = 1, 2, … , 𝑇. The marginal model for univariate longitudinal ordinal 

outcome via the cumulative logit model is given by:  

        𝑙𝑜𝑔𝑖𝑡𝑃(𝑌𝑖𝑡 ≤ 𝑐|𝑋, 𝛼𝑐, 𝛽) = 𝛼𝑐 + 𝑋′𝛽 𝑓𝑜𝑟 𝑐 = 1, 2, … , 𝐶 − 1                               (4.76) 

where 𝑋 is a vector of fixed or time varying covariates and 𝛽 is a vector of unknown regression 

coefficients (Abegaz et al., 2015).  Equation 4.76 implies  

       𝑙𝑜𝑔𝑖𝑡𝑷(𝑌𝑖𝑡 ≤ 𝑐|𝑋, 𝛼𝑐, 𝛽) =  
exp(𝛼𝑐 + 𝑋′𝛽)

1 + exp(𝛼𝑐 + 𝑋′𝛽)
−

exp(𝛼𝑐−1 + 𝑋′𝛽)

1 + exp(𝛼𝑐−1 + 𝑋′𝛽)
                       (4.77) 

Equation 4.76 or 4.77 is the marginal model of the proportional odds univariate ordinal logistic 

regression model. The parameters of this model are obtained by maximizing the likelihood 

function defined in 4.77. The regression coefficients in this model have simple interpretations in 

the population-average interpretation fashion in-terms of odds ratios. Equation (4.77) serves for 
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the pair copula construction as a marginal distribution of the multivariate longitudinal ordinal 

cumulative logistic regression model.  

Hence, the arguments in equation (4.75) can take the marginal distribution function given in 

equation (4.77). Moreover, the joint probability mass function in question (4.71) is expressed in 

terms of the pair copula functions and longitudinal ordinal marginal distributions. The newly 

constructed joint probability mass function can be called pair copula based multivariate 

longitudinal (marginal) cumulative logit model. Finally, this function can be estimated using the 

appropriate parameter estimation technique and appropriate bivariate copula families as building 

blocks. 

 Selection of Pair Copula Families  

Before parameter estimations of the pair copula construction model, determining the order of the 

D-vine and the appropriate bivariate copula families are required. For the current study on food 

security, the conceptual framework for food security dimensions is given by FAO (2008) like 

Availability-Accessibility-Utilisation as it was discussed in section 4.3 of this thesis. We can use 

this order for the structure of D-vine for inference purpose. The difference in this chapter is that 

each dimension of food security consists of 𝑁 = 𝑇 ∗ 𝑛 length of dataset. However, in section 4.3 

the length of each dimension was only 𝑛, where 𝑇 𝑎𝑛𝑑 𝑛 are the number of data collection 

phases and sample size, respectively. The reason that the length of the dataset became 𝑁 = 𝑇 ∗ 𝑛 

was because of reordering the multivariate time series based on the time order into one vector for 

each dimension.  

The next step was selection of bivariate copula families of the vine distribution using the D-vine 

for every pair of variables. In Chapter 3, we customized the algorithm (Algorism I) developed 

for discrete pair copula bivariate copula family selection by Panagiotelis et al. (2015). We 

followed the same fashion of this algorithm for this chapter.  For this chapter we have used 

marginal model via cumulative logit model to compute the “Pseudo” data. However, in Chapter 

3, we have used simply cumulative logit model. “Pseudo” data were computed from the marginal 

model via cumulative logit model using Algorithm I to select appropriate bivariate pair families 

that fit the model best which have the smallest modified Akaike Information Criterion (mAIC).   
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 Parameter Estimation of the D-Vine 

For estimation of regular vine, details of different estimation techniques were assessed in 

Chapter 3. Here, we only concerned on MLE that will be applied for this application area.  

Since the 3-dimensional D-vine is derived, hence the log-likelihood function of a 3-dimensional 

D-vine is given by    
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Here ),,( 321  = and ),,( 2|132312  = where the marginal and copula parameters 

respectively. Then, the ML estimator ML̂ is obtained by maximizing the above log-likelihood 

function over all parameters,  and , simultaneously.  

For the general case, let the model for the jth margin of the tth time order imply a marginal 

distribution function 𝐹𝑖𝑗(𝑦𝑖𝑗, 𝛽𝑗), where 𝛽𝑗 are the marginal parameters and the subscript 𝑖 

denotes that we observe a sample 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑀)′ for 𝑖 = 1, 2, … , 𝑇 ∗ 𝑛. Similarly, the 

copula parameters for M-dimensional dependence are given by 𝜃𝑖,𝑖+𝑗|𝑖+1,… ,𝑖+𝑚−1. Then, the ML 

estimator ML̂ is obtained by maximizing the log-likelihood function over all parameters, 𝛽𝑗 

and 𝜃𝑖,𝑖+𝑗|𝑖+1,… ,𝑖+𝑚−1, simultaneously.  

In this optimization, good starting values are required. Starting values for the marginal 

parameters are obtained by maximum likelihood estimates of the marginal parameters estimated 

from the marginal model via cumulative logit model for all dimensions. In addition, starting 

values for the copula parameters can be found by computing empirical Kendall’s τ of bivariate 

copula function of the first tree which act as ‘pseudo’ data and then transformed back to the 

copula parameter using a known Bijection like we have computed for sections 4.3 and 4.4. 
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“VineCopula” R package was used to compute the modified Akaike Information Criterion 

(mAIC) for selecting the best fitted bivariate copula families (Schepsmeier et al., 2015). Since 

the package did not include for t-bivariate copula owing to computational challenges, the t-

copula is not proposed as a candidate in this thesis.   

An “Alabama” R package was implemented to jointly estimate the marginal and copula 

parameters and their respective standard errors. Alabama is Augmented Lagrangian 

Minimization Algorithm for optimising smooth nonlinear objective functions with constraints. It 

allows both for Linear or nonlinear equality and inequality constraints (Varadhan and 

Grothendieck, 2011). It optimises using the nonlinear optimization with constraints. The package 

addressed this issue using “auglag” optimization. We wrote our own R code using “auglag” 

optimisation R package to estimate the parameters of the copula and the marginal distribution 

functions. Details of the R code were displayed in Appendix C I-III for all the three models, 

respectively. 

 

Variables that had p-value less than 0.2 in the preliminary analysis of the univariate analysis 

were incorporated for the final model of the univariate model. The significant variables in the 

final model were selected using forward wald method with significance level of 0.05. Variables 

that were significance with 0.05 p-values were incorporated for the multivariate, longitudinal and 

multivariate longitudinal ordinal models.  

All statistical significant variables in each of the marginal model via the cumulative logit model 

were incorporated in the model for each dimension that hopes to be helpful as additional 

information with the existing knowledge in this area. In some of the tables of the result section, 

the blank space indicated that particular variable was not statistically significant for that 

dimension in the marginal model and hence that particular variable was not included only for 

that particular dimension during the estimation of the final joint model. 
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Chapter Five 

 Analysis of the Household Food Data 

 

Internal consistency of the data collection instrument for household food security in terms of the 

three dimensions was assessed using Cronbach’s Alpha. The Cronbach’s Alpha value computed 

as 0.735 which is in the acceptable internal consistence level since it is above 0.7. The 

Cronbach’s Alpha value of a particular item deleted was assessed for each item. The detail 

summary statistics was displayed in appendix B.  

 

Three phases of data collection were conducted from the same household head at six months 

interval. The study included a total of 630 households after the removal of 2.5 % (16) of the 

respondents because they have dropped out at least one of the data collection phases. Since the 

study was longitudinal and have both time varying and fixed covariates, for the time varying 

variables we used all responses from the three follow-up interviews and arranged the data into a 

vector according to the time points while for fixed covariates we used the response of one time 

point. The summary statistics is displayed in Tables 5.1 and 5.2 for the fixed and time-varying 

covariates, respectively.  

Household Head Characteristics  

Table 5.1 showed that husbands headed majorities of the household heads (more than 85%). 

Almost 69% of the households did not have formal education of which 38% were unable to read 

and write and 31% can read and write. Only 31% of the household heads attended formal 

education of which 6% was secondary school or above completion. Two thirds of the household 

heads were married and living together. Twelve percent of them were cohabitating but not 

married and 7% were widowed.  

Table 5.1 also showed majorities of the households consisted of four to six family members 

which accounts 65% of the total respondents. Nineteen percent of the respondents had more than 

six family members whereas 18% of them have less than four family members.  



 

83 | P a g e  

© Yimam JA, UNISA 2019 

Table 5. 1: Summary measures of non-time varying variables of the households 

Variables  Frequency Percent 

Household Head (HH)     

  Husband 548 86.9 

  Wife 71 11.3 

  Son/daughter 11 1.7 

Highest level of education attained by HH      

  Unable to read and write 241 38.2 

  Can read and write 192 30.5 

  Regular Primary education (1-8) 157 24.9 

  Secondary education and above 40 6.4 

HH current marital status      

  Never married 13 2 

  Cohabiting 74 11.7 

  Married 475 75.4 

  Divorced 23 3.7 

  Widowed 45 7.2 

Family Size of HH   

 Three and Less 110 17.5 

 Four to Six 400 63.5 

 Seven and Above 120 19.0 

Study Site      

  Kutaber 204 32.5 

  Kalu 234 37.2 

  Tehuledere 192 30.5 

Total farmland size in Hectare     

  <=0.5 Hectare 383 60.8 

  > 0.5 Hectare 247 39.2 
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Table 5. 1: Summary measure of non-time varying variables of the households … continued   

Variables  Frequency   Percent  

Quality or fertility of land ploughed      

  Fertile 75 11.9 

  Medium fertile 422 66.9 

  Less fertile 133 21 

HH Income Source   

 Only Farming 261 41.4 

 Both Farming and Off-farming 369 58.6 

Types of Cereal Crops Cultivated   

 One type 169 26.8 

 two type 187 29.7 

 Three and more types 274 43.5 

Types of livestock   

 One and less type 156 24.8 

 Two to Three types 275 43.7 

 Four or more types 198 31.5 

Agro-ecology of study site   

 Hot (Kolla) 146 23.2 

 Medium (Weinadega) 340 54.0 

 Cold (Dega) 144 22.9 

Income Source of the Household  

As Table 5.1 showed, 44% of the households obtained their income from farming only whereas 

59% of them practice off-farming activities to get their income. About 73% of the households 

had harvested more than one type of cereal crops. In addition to farming, the households 

participated in different agricultural activities, among these two thirds of the households 

participated in more than one type of livestock activities. 
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Land Size and Fertility Characteristics 

Based on the information in Table 5.1, around 60% of the households ploughed not greater than 

0.5 hectares and 67% of them had medium fertile land for cultivation purposes. Only 11% 

households had fertile land for plough and 21% less fertile. Among the total households in this 

sample, 74% of them cultivated once per year whereas 26% of them cultivated twice or triple per 

year.   

Table 5. 2: Summary measures of the time-varying variables of the households  

 

Characteristic variables  

Data collection phases 

Phase one Phase two Phase three 

Frequency Percent Frequency Percent Frequency Percent 

Shortage of rainfall       

No 117 18.6 378 60.0 92 14.6 

Yes 513 81.4 252 40.0 538 85.4 

Crop Disease          

No 422 67.0 328 52.1 421 66.8 

Yes 208 33.0 302 47.9 209 33.2 

Increase in market price         

No 385 61.1 476 75.6 452 71.7 

Yes 245 38.9 154 24.4 178 28.3 

Use of Pesticides         

No 501 79.5 332 52.7 501 79.5 

Yes 129 20.5 298 47.3 129 20.5 

Presence of Pests         

No 259 41.1 239 37.9 285 45.2 

Yes 371 58.9 391 62.1 345 54.8 

Agro-Ecology of the Study Site 

The study was conducted in three selected South Wollo Zone Woredas, namely, Kutaber, Kalu 

and Tehuledere. As Table 5.1 revealed that around 33, 37 and 31 percent of the households were 

from Kutaber, Kalu and Tehuledere Woredas respectively. Moreover, almost half (54%) of the 
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study areas have medium (Weinadega) agro-ecology and the rest proportion was covered by hot 

(Kola) and cold (Dega) agro-ecology with almost equal proportion.  

Time-Varying Characteristics 

Table 5.2 shows the distribution of some of the time-varying covariates during the three-phase 

data collection. Based on Table 5.2, the presence of rainfall, disease of the cultivation, presence 

of market price increase, use of pesticides, and presence of pests vary with time in the study area. 

More than 80% of rainfall shortage was observed in the first and third phases, and smallest 40% 

during the second phase.   

Moreover, Table 5.2 showed that 48% of cultivation disease was reported in the second phase 

but 33% each in the first and third phase. The highest market price increase was observed in 

phase one followed by phase three and two, 39%, 28%, and 24% respectively.  The presence of 

pests had highest proportion in phase two followed by phase one and three, 62, 59 and 55 

percent, respectively. 

 

The household food security status was computed for each dimension at each data collection 

phase using the quartile score as presented in Table 5.3. Table 5.3 showed that food secured 

households was smaller in phase three for food availability and utilisation dimensions than 

phases one and two.  Conversely, the proportion of food secured households was higher in phase 

three for accessibility dimension than the other phases.  

Based on the information in Table 5.3, the proportion of chronically food in-secured households 

decreased from 19% to 2% and from 3% to 0% in accessibility and utilisation dimensions 

respectively when one goes from phases one and two to phase three. However, in availability 

dimension, the proportion of chronically food in-secured was almost similarly distributed 

between the three data collection phases.  

Table 5.3 also showed the highest proportion of mildly food in-secured (60%) was found in food 

utilisation during the third phase followed by 42% in accessibility. The highest proportion (51%) 

and (50%) of moderately food in-secured households were observed in utilisation of phase one 

and two respectively followed by 45% in availability of phase three.  
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Furthermore, the household food security status was determined using the composite index 

method combining the household food security status of the three data collection phases into 

one vector for each dimension. The result of this computation was summarized in Table 5.4.  

Table 5. 3: Household food security statuses of the three food security dimensions in all 

data collection rounds (f stands for frequency and % for percent) 

  

Food 

Security 

Dimensions  

 

Household food security 

Status  

Data collection phases 

Phase I Phase II Phase III 

f % F % F % 

 

Availability   

Chronically food in-secured  32 5.1 33 5.2 41 6.5 

Moderately food in-secured 215 34.1 218 34.6 284 45.1 

Mildly food in-secured 254 40.3 254 40.3 209 33.2 

Food secured 129 20.5 125 19.8 96 15.2 

Total 630 100.0 630 100.0 630 100.0 

 

Accessibility   

Chronically food in-secured  119 18.9 118 18.7 14 2.2 

Moderately food in-secured 219 34.8 216 34.3 230 36.5 

Mildly food in-secured 222 35.2 223 35.4 263 41.7 

Food secured 70 11.1 73 11.6 123 19.5 

Total 630 100.0 630 100.0 630 100.0 

 

Utilisation   

Chronically food in-secured  20 3.2 20 3.2 1 .2 

Moderately food in-secured 318 50.5 314 49.8 228 36.2 

Mildly food in-secured 213 33.8 216 34.3 379 60.2 

Food secured 79 12.5 80 12.7 22 3.5 

Total 630 100.0 630 100.0 630 100.0 

Based on the composite index summary statistics presented in Table 5.4, the highest proportion 

of chronically food in-secured was observed in accessibility dimension (13.3%) followed by in 

availability and utilisation (5.6% and 2.2%) respectively. Similarly, in-terms of moderately food 

in-secured and mildly food in-secured classification, the highest proportion were observed in 

utilisation followed by availability and then accessibility. Moreover, the highest proportion of 
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food secured households was observed in availability followed by accessibility and then 

utilisation. 

Table 5. 4: The Composite Food Security Status of households in the three data collection rounds 

   

 Food security status  

Availability   Accessibility   Utilisation   

Frequency  Percent  Frequency  Percent  Frequency  Percent  

Chronically food in-secured  106 5.6 251 13.3 41 2.2 

Moderately food in-secured 717 37.9 665 35.2 860 45.5 

Mildly food in-secured 717 37.9 708 37.5 808 42.8 

Food secured 350 18.5 266 14.1 181 9.6 

Total  1890 100.0 1890 100.0 1890 100.0 

 

 Kendall's tau Correlation Coefficient  

The bivariate correlation coefficients between the food security dimensions were computed 

through the non-parametric correlations called “Kendall's tau_b” using the raw discrete food 

security data and presented in Table 5.5.  

Similarly, the Kendall’s tau was also computed from the pseudo data of food security dimensions 

(Availability, Accessibility and Utilisation) using cumulative logit marginal distributions as 

presented in Table 5.6 and this result is further used for preliminary analysis to select appropriate 

copula families for the copula cumulative logit model.   

Table 5. 5: Nonparametric correlation coefficients and their significant α values in 

brackets of the household food security status of the dimensions 

  Availability   Accessibility   Utilisation   

Availability   1 -0.051 (0.128) .092 (0.011) 

Accessibility   
 

1 -.199 (.000) 

Utilisation   
  

1 
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Based on the results in Table 5.5 and 5.6, one can observe that almost all similar and consistent 

results were found and conclude that food utilisation had positive and significant correlation with 

food availability but negative with accessibility.  

Table 5. 6: The Kendall’s tau for the pseudo data computed from the cumulative logit 

marginal distribution for the application data availability, accessibility and utilisation.  

Dimensions  Availability Accessibility Utilisation 

Availability 1.000000 -0.05132 0.091865 

Accessibility  -0.05132 1.000000 -0.19932 

Utilisation  0.091865 -0.19932 1.000000 

 PCC Selection  

The preliminary analysis computed in Table 5.7 reduces the number of bivariate copula families 

and the result showed that the Clayton and Gumbel copulas are not applicable for measuring the 

dependence between availability, accessibility and accessibility and utilisation because their 

Kendall’s tau showed negative dependence.  

For those satisfied the preliminary analysis, Algorithm I was employed and their corresponding 

modified Akaike Information Criterion (mAIC) were computed as presented in Table 5.7. The 

D-vine structure of household food security in the first tree was (availability, accessibility) and 

(accessibility, utilisation). Similarly, in the second tree the structure is (availability | accessibility 

and utilisation | accessibility). From Table 5.7, one can deduce that the best fitted copula families 

on the first tree were AMH for edge 1 since the mAIC is smaller than the other copula families. 

However, for edge 2 the Gaussian and Frank copulas have negligible mAIC difference between 

them.  As a result, we set additional criterion in-terms of parsimonious that the model provides. 

The Gaussian copula models are a natural choice for integer-valued covariates with interpretable 

parameters (Lennon, 2016). A Frank copula can capture a wide range of dependence including 

positive and negative dependence and belong to the Archimedean family with a closed form of 

distribution functions and benefits of easy computation (Yang et al., 2020). Frank bivariate 

copula is the ideal candidate in this study. Hence, AMH and Frank copula families were selected 

as best fit bivariate copula that serves for parameter estimation in the full maximum likelihood 

parameter estimation for the corresponding vine structure they fitted best.  
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Table 5. 7: The summary of copula families by applying Algorithm 1 to the data and estimating 

modified Akaike Information Criterion (mAIC) to select the best fit copula families. 

 

Copula 

Modified Akaki Information Criterion (mAIC) 

Av, Ac Ac, Ut Av |Ac, Ut |Ac 

Gaussian  4736.193 4465.663 4281.878 

Clayton  NA NA 4290.001 

Gumbel NA NA 4281.459 

Frank 4736.951 4465.641 4280.713 

AMH 4736.076 4469.087 4282.067 

Independent  4739.37 4498.055 4285.219 

where Av = Availability, Ac = Accessibility and Ut = Utilisation 

 Estimation of the Copula and Marginal Parameters  

Table 5.7 showed the dependence between availability and accessibility was expressed by AMH 

copula. On the other hand, Frank expressed the dependence between accessibility and utilisation 

dimensions. Similarly, like the pervious one the dependence between availability given 

accessibility and utilisation given accessibility was also expressed by Frank copula. Here, the 

conditioning of accessibility is assumed to be not affecting the dependence between availability 

and utilisation.  

Our main purpose in this chapter was to estimate jointly the dependence between food security 

dimensions and their corresponding predictor factors at household level.  We applied MLE using 

the selected bivariate copula families and the cumulative logit marginal distribution functions. 

Derivation of the likelihood and log-likelihood function was made as well (see Appendix B I).  

We wrote our own R code using “auglag” optimization R package to estimate the parameters of 

the copula and the marginal distribution functions. Details of the R code were displayed in 

Appendix C I. The estimated values of the parameters and the corresponding standard errors for 

the copula functions were displayed in Table 5.8 and for marginal distributions in Table 5.9.  
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Copula Parameter 

Table 5.8 summarizes the results of the estimated dependence parameters of the selected 

bivariate copula families. The result showed positive dependence was observed between all 

dimensions of household food security statuses. AMH copula measures the dependence between 

availability and accessibility household food security status, Frank measures the accessibility and 

utilisation and Frank availability and utilisation given that the accessibility dimension has been 

happened and found that positive dependence was observed. Moreover, these dependences were 

observed as statistically significant.  

Table 5. 8: The estimates of dependence parameters using the selected pair copula for the 

application data of multivariate ordinal household food security status. 

Tree  Copula 

family  

Estimated 

Parameter  

Estimated SE   Bijection tau  

I AMH  0.999 0.2612 0.3333267 

Frank  1.4053 0.2425 0.1531605 

II Frank 1.18358 0.3152 0.1297094 

Marginal Parameter 

Several variables were incorporated in the model that hopes to be helpful as additional 

information with the existing knowledge in this area. Among the incorporated variables, the 

presence of crops/vegetables/fruits disease, shortage of rainfall, cultivating once a year and small 

land size cultivated were identified the potential statistically significant variables that lead the 

household to be chronically, mildly and moderately food in-secured in all dimensions.  

On the other hand, Table 5.9 showed that study site contributes on the status of household food 

insecurity in availability and utilisation dimensions. Moreover, cold (dega) agro-ecology leads 

household to be chronically, mildly, and moderately food in-secured in availability and 

accessibility dimensions. Similarly, the presence of market price increase and household head 

headed by son/daughter were more likely to be chronically, mildly and moderately food in-

secured than headed by husband at availability and utilisation dimensions respectively. 
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Table 5. 9: Summary results of pair copula based cumulative logit model parameters 

estimates for the household food security data. 

.    Availability Accessibility Utilisation 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

 

Intercept  

1|2 -4.3413* 1.123 -4.6699* 1.085 -1.58125 1.189 

2|3 -1.4085 1.105 -2.6982* 1.075 2.16749 1.198 

3|4 0.901668 1.104 -0.61065 1.070 4.2333* 1.202 

Household Head (HH)       

Husband -0.41414 .608 -0.64717 .594 -1.2361* .606 

Wife -0.69952 .638 -0.73125 .621 -0.9262 .633 

Sibling              

Education Level (HH)              

Regularly educated -0.16271 .184 -0.16329 .176 -0.17596 .185 

Regularly uneducated        

Marital Status (HH)             

Never married or Cohabiting -1.0803* .370 0.67283* .253 -0.56257 .367 

Married -0.14025 .315 0.380646 .301 -0.3404 .310 

Divorced or Widowed             

Study Site (Woredas)             

Kutaber -1.2178* .476 -0.13779 .457 1.04154* .427 

Tehuledere -0.39089 .452 0.183894 .437 0.81636* .408 

Kalu       

Land  Size Cultivated       

Less than 0.5 Hectare 0.45521* .161 0.06726* .029 0.24435* .110 

Above 0.5 Hectare             

Land Fertility              

Fertile -0.49066 .311 -0.0784 .297 -0.58645 .322 

Medium fertile -0.4183 .208 -0.07936 .197 -0.08722 .205 

Less fertile             

  * indicates significant at 5% level of significance 



 

93 | P a g e  

© Yimam JA, UNISA 2019 

Table 5.9 continued……………. (* indicates significant at 5% level of significance) 

  Availability Accessibility Utilisation 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

Cultivate time              

Yearly 0.94121* .438 -1.3246* .427 1.3303* .496 

Biannual and more             

Shortage of Rainfall              

Yes 0.64373* .235 0.56948* .225 0.34071* .144 

No             

Crops/Vegetables Disease              

Yes  1.6343* .187 0.20649* .068 0.24712* .076 

No             

Market Price Increase              

Yes -0.5452* .171 0.217151 .163 -0.06202 .172 

No             

Agro-ecology of study site              

Cold (Dega) -1.5768* .356 -0.8357* .337 -0.04717 .351 

Medium (Wenadega) -1.1473* .285 -0.48742 .271 0.08621 .282 

Hot (Kolla)             

 Effects of PCC on the Univariate Cumulative Logit Model 

To assess the effect of the PCC model on the usual univariate cumulative logit model, the 

univariate estimates for each dimension was displayed in Table 5.10. The following comparisons 

were made between the marginal parameters of the PCC-Based cumulative logit model presented 

in Table 5.9 and univariate cumulative logit model presented in Table 5.10. The PCC- based 

cumulative logit model identified more significant determinants for households to be food in-

secured in all of the three dimensions over the univariate cumulative logit model.  

In availability dimension, both PCC and univariate cumulative logit models identified marital 

status classified under never married or cohabitated, study site, small cultivable land, shortage of 
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rainfall, presences of crop disease, presences of market price increase, and clod agro-ecology as 

positive predictors for households to be severe to mildly food in-secured compared with their 

counterparts. In addition to these determinants, the PCC model identified medium agro-ecology 

and yearly once cultivation season as positive predictors for household to be food in-secured. 

Conversely, the univariate model identified less fertile cultivable land as positive predictor for 

food insecurity.  

A yearly based cultivation of agricultural activities and cold agro-ecology were the determinants 

of household food insecurity in the accessibility dimension both in the PCC and univariate 

cumulative logit model. However, the PCC model identified additional determinants for 

households to be food in-secured include never married or cohabitated household headed, small 

cultivable land, shortage of rainfall, and occurrences of crop disease.  

The study site, small cultivable land and yearly once cultivation activities were identified as 

significant determents for households to be severe to mildly food in-secured in the utilisation 

dimension both in the two models. Like accessibility dimension, the PCC identified marital 

status grouped under never married or cohabitated and occurrences of cultivation diseases as 

additional determinants for households to be food in-secured.   

The majority of the estimates obtained through PCC model were overestimated in availability 

and accessibility dimension. However, in utilisation dimension, the PCC model underestimated 

almost all of the determinants of household food insecurity. Since PCC identified more 

significant determinants in all of the three food security dimensions, interpretation and 

discussion of determinants were made using the estimates of the PCC model throughout this 

topic.   
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Table 5. 10:  Summary results of the univariate cumulative logit model parameters 

estimates for the household food security data. 

.    Availability Accessibility Utilisation 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

 

Intercept  

1|2 -5.861*  .810 -1.037 .761   -6.562*   0.893 

2|3 -3.057*   .785 0.763 .763 -2.793*   0.837 

3|4 -0.696 .774 2.842* .768 -0.896   0.833  

Household Head (HH)       

Husband -.514 .590 -0.865     .584 -1.065    .615 

Wife -.698 .619 -0.751 .611 0.908        645 

Sibling              

Education Level (HH)              

Regularly uneducated  .192 .183   0.242 .177 0.112      .185 

Regularly educated        

Marital Status (HH)             

      Never married or Cohabiting -1.090* .374 0.647 .359 -0.544 .370 

      Married -.231 .311 0.185 .299 -0.184 .313 

      Divorced or Widowed  .     

Study Site (Woredas)       

Kutaber -1.258* .467 -0.223       .447 1.117*      .532 

Kalu -.445 .443 0.058   .426 -0.910 .508 

Tehuledere       

Land  Size Cultivated       

Less than 0.5 Hectare .432* .161 -0.050 .154 0.349* .161 

Above 0.5 Hectare       

Land Fertility        

Fertile -.492 .307 -0.086     .309 -0.582     .316 

Medium fertile -.503* .210 -0.267      .200 0.066      .203 

Less fertile             

* indicates significant at 5% level of significance 
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Table 5.10 continued……………. (* indicates significant at 5% level of significance) 

  Availability Accessibility Utilisation 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

Cultivate time              

Yearly .850 .432 -1.586* 0.421 1.542* 0.495 

Biannual and more  .     

Shortage of Rainfall        

Yes .586* .232   0.388  0.227 0.492* 0.241 

No       

Crop/vegetable Disease        

Yes  1.650* .187 0.159      0.170 0.290      0.174 

No       

Market Price Increase        

Yes -.578* .174 0.132 0.165 -0.010 0.170 

No       

Agro-ecology of study site        

Cold (Dega) 1.622* .235 0.920*     0.340 -0.012 0.354 

Medium (Wenadeg) .4308 .360 0.331  0.214 0.158      0.224 

Hot (Kolla)             

 

 Kendall's tau Correlation Coefficient  

The bivariate correlation coefficients between the successive time point’s food security statuses 

were computed through the non-parametric correlations called “Kendall's tau_b” using the raw 

discrete food security data and presented in Table 5.11.   

The Kendall’s tau was computed from the pseudo data of food security statuses of the three-

phase using cumulative logit marginal distributions as presented in Table 5.12 and this result 
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further used for preliminary analysis to select appropriate copula families for the copula 

cumulative logit model.   

Table 5. 11: Nonparametric correlation coefficients of the household food security states 

of the three data collection phases 

   Phase I Phase II Phase III 

Phase I 1 .486** .214** 

Phase II .486** 1 .253** 

Phase III .214** .253** 1 

** indicates significant at 0.01 level of significance. 

Table 5. 12: The Kendall’s tau for the pseudo data computed from the cumulative logit marginal 

distribution for the application of three-phase longitudinal data.  

  Phase I Phase II Phase III 

Phase I 1.000 0.487 0.211 

Phase II 0.487 1.000 .250 

Phase III 0.211 .250 1.000 

Based on the results in Tables 5.11 and 5.12, one can observe that similar and consistent results 

were found, and it can be said that positive and significant correlation were observed between the 

successive food security phases. 

  PCC Selection  

The preliminary analysis computed in Table 5.12 showed that the Kendall’s tau of the pseudo 

data computed from the cumulative logit model was positively correlated. The correlation 

between successive time points of food security status was positive so that all bivariate copula 

families listed in this thesis can be the candidate for measuring the dependence between 

successive food security statuses of household. Algorithm II was used to select the best fit 

bivariate copula for this application data. For the time being, for minimizing computational 

challenges, t copula is not used. The result of pair copula selection process is presented in Table 
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5.13. Algorithm II was employed and their corresponding modified Akaike Information Criterion 

(mAIC) were computed as presented in Table 5.13. 

Table 5. 13; Summary of copula families by applying Algorithm II to the data and estimated 

modified Akaike Information Criterion (mAIC) to select the best fit copula families.  

 

Copula 

Modified Akaike Information Criterion (mAIC) 

(𝑌1, 𝑌2)  (𝑌2, 𝑌3) (𝑌1|𝑌2, 𝑌3|𝑌2) 

Gaussian  4011.59 4140.945 3720.277 

Clayton  4098.848 4140.945 3721.848 

Gumbel 3995.368 4132.143 3715.798 

Frank 4009.531 4158.39 3720.474 

AMH 4227.585 4180.113 3720.715 

Independent  4406.431 4213.82 3733.431 

Where; 𝑌1= household food security status at the first 12 months considered as   

         baseline food security status  

            𝑌2= household food security status at the middle six months 

        𝑌3= household food security status at the last six months 

The D-vine structure of the longitudinal household food security status in the first tree was (𝑌1, 

𝑌2) and (𝑌2, 𝑌3). Similarly, in the second tree the structure is (𝑌1|𝑌2, 𝑌3|𝑌2). From Table 5.13, one 

can deduce that the best fitted copula families on the first tree were Clayton and Gumbel for edge 

1 and 2 respectively while the second tree has AMH copula family since the mAIC is smaller 

than the other copula families. Hence, Clayton, Gumbel and AMH copula families were selected 

as best fit bivariate copula that serves for parameter estimation in the full maximum likelihood 

parameter estimation for the corresponding vine structure they fitted best. 

 Estimation of the Copula and Marginal Parameters  

The best fitted bivariate copulas were selected using Algorithm II as presented in Table 5.13. 

Gumbel bivariate copula was selected to measure the dependence between first and second 

household food security status, and second and third phase. Similarly, it was also selected for the 
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first and the third phase given that the second household food security status. The corresponding 

marginal distribution for the application data was cumulative logit model.   

The main purpose of this study was to address the dependence of household food security status 

over time and their corresponding predictor factors at household level. MLE approach was used 

to compute jointly the dependence parameters using the selected bivariate copula families and 

the marginal parameters using cumulative logit model. Derivation of the likelihood and log-

likelihood function was made and presented in Appendix B II.  

We wrote our own R code using “auglag” optimization R package to estimate the parameters of 

the copula and the marginal distribution functions. Details of the R code were displayed in 

Appendix B II. The estimated values of the parameters and the corresponding standard errors 

both for the copula and marginal distributions were displayed in Table 5.14 and 5.15 

respectively.   

Copula Parameter 

Table 5.14 summarizes the results of the estimated dependence parameters of the selected 

bivariate copula families. The result shows positive dependence was observed between all phases 

of household food security statuses. Gumbel copula measures the pairwise dependence between 

all of the three phases of the individual household food security status.  Moreover, these 

dependences were observed as statistically significant. As a result, this leads to the conclusion 

that individual household food security status varies with time. Therefore, the household food 

security status in the study area is not stable over time. 

Table 5. 14: The estimates of dependence parameters using the selected pair copula for 

the application data of longitudinal household food security status. 

Tree  Copula 

family  

Estimated 

Parameter  

Estimated SE   Bijection tau  

I Gumbel              1.2511 0.4452 0.2007034 

Gumbel  1.1987 0.4625 0.1657629 

II Gumbel 1.057081 0.4531 0.0539987 
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Table 5. 15: Summary results of the marginal parameters of pair copula based 

longitudinal cumulative logit model for the household food security data.  

    𝒀𝟏 𝒀𝟐 𝒀𝟑 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

  1|2 -2.55073 0.601 -2.1034 0.59882 -3.24248 0.6156 

Intercept 2|3 0.166815 0.583 -0.06289 0.58211 -0.15301 0.57222 

  3|4 2.93809 0.599 3.29915 0.60151 2.42231 0.57948 

Times of cultivate within a year           

  Yearly 0.018707 0.186 -0.5623* 0.1868 -0.01574 0.18434 

  Biannual and more             

Crop disease              

  Yes 0.748778* 0.177 0.596795* 0.17873 0.731031* 0.17284 

  No             

Increase in market price             

  Yes -0.33019* 0.169 -0.61814* 0.16923 -0.53993* 0.16799 

  No             

Weathering condition of the village           

  Cold (Dega) 0.21021 0.212 -0.04505 0.16923 -0.4704 0.21033 

  Medium (Weinadega) 0.761084* 0.293 0.557457* 0.2133 -0.70407* 0.28844 

  Hot (Kolla)             

Availability of rain             

  Little -0.39891 0.533 -0.40582 0.53077 0.446841 0.52183 

  Enough -0.53664 0.544 -0.73143 0.54211 0.960943 0.53419 

  High             

Marginal Parameter  

Five time-vary covariates were included in this study to assess the effect of these variables on the 

household food security status over time. Summary statistics were computed in Table 5.15. The 

result shows a statistically significant difference in the marginal parameter between the presence 

and the absence of crop disease, the presence of market price increase and not, and  hot 

weathering condition and medium weathering condition in all time points of the household food 
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security status. Areas where crop disease happened are more likely to lead households to be 

chronically, moderately and mildly food in-secured than areas not crop disease happened. In 

addition, hot weather conditions are more likely to lead households to be chronically, moderately 

and mildly food in-secured than medium weather conditions in all time points. Likewise, 

increased market price is another factor to lead households chronically, moderately and mildly 

food in-secured than stable market price in all phases household data.   

Moreover, households cultivating once a year are more likely chronically, moderately and mildly 

food in-secured than those cultivating two or more time a year in the second phase of household 

data. In contrast, in this study, the only time-varying covariate that did not affect the household 

food security status in all time points was availability of rainfall. 

 Effects of PCC Model on the Univariate Cumulative Logit   

To compare the effects of PCC model on the cumulative logit model in fitting longitudinal 

ordinal data, the finding of both the PCC model and univariate model in the cumulative version 

were presented in Table 5.15 and 5.16 respectively. Both the PCC and univariate models 

identified the presence of cultivation disease and cold agro-ecology as positive and significant 

determinants for households to be food in-secured in the first round. Furthermore, the PCC 

model identified the presence of market price as determinant of household food insecurity. 

Likewise, both models identified cultivation once a year, crop disease and cold agro-ecology 

determinants for households to be food in-secured in the second round. Moreover, the PCC 

model identified the presence of market price as determinant of household food insecurity. 

In the third round, the univariate model identified one more predictor for household food 

insecurity than the PCC model. Crop disease, market price increase and hot and medium agro-

ecology were identified as predictors of household food insecurity through both the PCC and 

univariate models. The PCC model drops the yearly once cultivation season while it was 

significant in the univariate model.  
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Table 5. 16:  Summary results of the marginal parameters of the univariate cumulative 

logit model for the household food security data  

    𝒀𝟏 𝒀𝟐 𝒀𝟑 

Variable  Categories  Estimates  S.E  Estimates  S.E Estimates  S.E 

  1|2 -3.328*   0.628 -1.594*   0.410 -4.677*   0.699 

Intercept 2|3 -0.717   0.606 0.962*   0.394 -1.442*   0.653 

  3|4 2.122* 0.613 3.792*  0.426 1.098   0.652 

Times of cultivate within a year           

  Yearly 0.284      0.193 -0.423*     0.178 0.789*    0.176 

  Biannual and more 
 

      
 

  

Crop disease              

  Yes 1.033* 0.177 0.426*     0.190 0.989*      0.199 

  No 
 

  
 

      

Increase in market price             

  Yes -0.257 0.169 -0.213      0.201 -0.830*     0.195 

  No             

Agro-Ecology of Study Site           

  Cold (Dega) 0.901*      0.300 0.277     0.266 -0.620*      0.226 

  Medium (Weinadega) 0.088 0.208 0.433     0.222 -0.668*      0.289 

  Hot (Kolla)             

Availability of rain             

  Little -0.657    0.551 1.448*      0.414 -0.150     0.613 

  Enough -0.537 0.544 0.573      0.306 0.310    0.601 

  High             

In all of the significant determinants in the availability dimension, the PCC model 

underestimated the parameters of the marginal model. In the accessibility dimension, 50% of the 

predictors were overestimated and the rest of them were underestimated. Similarly, in the 

utilisation dimension, some of the significant predictors were overestimated and some of them 

were underestimated. The interpretation and discussion of the finding were made using the 

finding of the PCC model.   
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 Kendall's tau Correlation Coefficient  

The bivariate correlation coefficients between the successive food security dimensions for the 

combined data were computed through the non-parametric correlations called “Kendall's tau_b” 

using the raw discrete food security data and presented in Table 5.17.  

The Kendall’s tau was also computed from the pseudo data of food security statuses of the three 

dimensions using marginal model of the cumulative logit marginal distributions presented in 

section 4.5 equation (4.77) as presented in Table 5.18. This result is further used for preliminary 

analysis to select appropriate copula families for the copula marginal model via cumulative logit 

model.   

Table 5. 17:  Nonparametric correlation coefficients of the household food security states 

of the three combined dimensions 

 
Availability   Accessibility   Utilisation   

Availability   1 0.0234(0.24) 082** (0.000) 

Accessibility   0.0234(0.24) 1 -.096** (0.000) 

Utilisation   082** (0.000) -.096** (0.000) 1 

** indicates significant at 0.01 level of significance. 

Table 5. 18: The Kendall’s tau for the pseudo data computed from the marginal model of 

the cumulative logit marginal distribution for the multivariate longitudinal data.  

  Availability   Accessibility   Utilisation   

Availability   1.00000000   0.02336231   0.08231387 

Accessibility   0.02336231   1.00000000   -0.09637995 

Utilisation   0.08231387 -0.09637995   1.00000000   

Based on the results in Tables 5.17 and 5.18, one can observe that similar and consistent results 

were found.  It can be said that negative and significant correlation was observed between food 



 

104 | P a g e  

© Yimam JA, UNISA 2019 

access and utilisation. In contrast, positive but not statistically significant correlation was 

observed between food access and availability.  

 PCC Selection  

The preliminary analysis computed in Table 5.18 reduces the number of bivariate copula families 

and the result showed that the Clayton and Gumbel copulas are not applicable for measuring the 

dependence between accessibility and utilisation because their Kendall’s tau shows negative 

dependence. Moreover, the Archimedean and AMH copulas are preferable for longitudinal data 

to incorporate determinant factors in the sense that the dataset is large. Hence, we removed the 

Gaussian and t copula from the lists of bivariate copulas. For those that satisfied the preliminary 

analysis, Algorithm I was employed and their corresponding modified Akaike Information 

Criterion (mAIC) were computed as presented in Table 5.19.  

Table 5. 19: Summary of copula families using Algorithm I to the data and estimated 

modified Akaike Information Criterion (mAIC) to select the best fit copula families.  

 

Bivariate Copula 

Modified Akaike Information Criterion (mAIC) 

(𝑌1, 𝑌2)  (𝑌2, 𝑌3) (𝑌1|𝑌2, 𝑌3|𝑌2) 

Clayton  14115.8 NA NA 

Gumbel 14121.48 NA NA 

Frank 14117.95 13078.27 12667.74 

AMH 14117.78 13077.34 12668.16 

Independent  14119.07 13100.01 12663.28 

where 𝑌1 = Availability, 𝑌2  = Accessibility and 𝑌3  = Utilisation 

The D-vine structure of household food security in the first tree was (availability (𝑌1), 

accessibility(𝑌2)) and (accessibility (𝑌2), utilisation (𝑌3)). Similarly, in the second tree, the 

structure is (𝑌1|𝑌2  and 𝑌3|𝑌2).  The bivariate correlation between 𝑌1|𝑌2  and 𝑌3|𝑌2 was computed 

as negative. Hence, the Clayton and Gumbel copulas are not still applicable for measuring the 

dependence between them. From Table 5.19, one can deduce that the best fitted copula families 

on the first tree were Clayton and AMH for edge 1 and 2 respectively while the second tree has 

independent copula family since the mAIC is smaller than the other copula families. Hence, 
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Clayton, AMH and Independent copula families were selected as best fit bivariate copula that 

serves for parameter estimation in the full maximum likelihood parameter estimation for the 

corresponding vine structure they fitted best. 

 Estimation of the Copula and Marginal Parameters  

The best fitted bivariate copulas were selected using Algorithm I as presented in Table 5.19. 

Clayton bivariate copula was selected to measure the dependence of household food security 

statuses between availability and accessibility dimensions. Similarly, to measure between 

accessibility and utilisation, AMH was selected. Moreover, independent copula was for 

availability and utilisation given that accessibility household food security status has already 

appeared. The corresponding marginal distribution for the application data was marginal model 

via cumulative logit model.   

The likelihood function was computed using these selected bivariate copula families and the 

marginal distribution. MLE approach was used to jointly compute the dependence parameters 

using the selected bivariate copula families and the marginal parameters using marginal model of 

the cumulative logit model. Derivation of the likelihood and log-likelihood function was 

computed and presented in Appendix B III.  

We wrote an R code using “auglag” optimization R package to estimate the parameters of the 

copula and the marginal distribution functions. Detail of the R code is displayed in Appendix C 

III.  The estimated values of the parameters and the corresponding standard errors both for the 

copula and marginal distributions were shown in Table 5.20 and 5.21 respectively.   

Copula Parameter 

Table 5.20 summarises the results of the estimated dependence parameters of the selected 

bivariate copula families. Clayton copula measures the dependence between availability and 

accessibility household food security status, AMH copula measures the accessibility and the 

utilisation and independent the availability and the utilisation given that accessibility happened 

and found that positive dependence were observed. Moreover, these dependences were observed 

as statistically significant. This leads to the conclusion that household food security status 

dependences to each other.  
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Table 5. 20: The estimates of dependence parameters using the selected pair copula for 

the application data of multivariate longitudinal household food security data. 

Tree  Copula 

family  

Estimated 

Parameter  

Estimated SE   Bijection tau  

I Clayton  1.5 0.6351 0.4285714 

AMH 0.99999 0.3811 0.3333267 

II Independent     

Marginal Parameter 

All statistically significant variables in each of the marginal model via the cumulative logit 

model were incorporated in the model for each dimension that hopes to be helpful as additional 

information with the existing knowledge in this area. Summary statistics of the final model is 

displayed in Table 5.21. In Table 5.21, the blank space indicated that particular variable was not 

statistically significant for that dimension in the marginal model and hence, that particular 

variable was not included only for that particular dimension during the estimation of the final 

joint model.  

Among the variables incorporated in the model, the follow-up time point and total farmland size 

in hectare were identified as the potential statistically significant variables for the household food 

in-security status in all dimensions. In each dimension, household food security status varies 

with time. Therefore, the household food security status in each dimension in the study area is 

not stable over time. Small land size ploughed (<= 0.5 hectare) is more likely to lead households 

to be chronically, moderately and mildly food in-secured than those ploughed greater than 0.5 

hectare.  
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Table 5. 21: Summary results of pair copula based marginal model via cumulative logit 

model parameters estimates for the household food security data.  

 

Variable  

  

Categories  

Availability Accessibility Utilisation 

Estimates  S.E  Estimates  S.E Estimates  S.E 

  1|2 -4.10884 0.244 -2.76063 .585 -5.02558 .626 

Intercept  2|3 -1.06692 0.221 -0.60402 .583 -1.06226 .606 

  3|4 1.20519 0.221 1.56259 .583 1.33108 .606 

Time 0.127028 0.01 0.043073 .009 0.101924 .009 

Household Head (HH)             

  Husband     -1.06369 .564 -1.095 .590 

  Wife     -1.19779 .575 -1.41323 .598 

  Son/daughter             

Marital Status (HH)             

  Never married/Cohabiting -0.33469 0.16     -0.42594 .199 

  Married -0.30143 0.146     0.03492 .189 

  Divorced/Widowed             

Study Site (Woredas)             

  Kutaber -0.98267 0.131 0.24066 .124     

  Tehuledere -1.36491 0.133 -0.46358 .123     

  Kalu             

Total farmland size in Hectare             

  <=0.5 Hectare 0.39055 0.092 0.276432 .087 0.362342 .091 

  > 0.5 Hectare             

Types of Cereal Crops cultivated             

  One type 0.355914 0.129       

  two type 0.452018 0.116       

  Three and more types             

Time of cultivate within a year       

 Yearly -0.71082 0.117     

 Biannual and more         
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Table 5.21 Summary results of pair copula based marginal model via cumulative logit 

model parameters estimates for the household food security data … continued  

 

Variable  

  

Categories  

Availability Accessibility Utilisation 

Estimates  S.E  Estimates  S.E Estimates  S.E 

Types of livestock             

  One and less type     0.29618 .121     

  Two to Three types     0.118352 .104     

  Four or more types             

Presence of Pests           

  Yes         -0.17848 .092 

  No             

Shortage of rainfall             

  Yes 0.33973 0.1 
  

0.444659 .098 

  No             

Crop Disease              

  Yes 1.00354 0.103         

  No             

Increase in market price             

  Yes 0.47612 0.102 0.239897 .097 -0.148 .099 

  No             

Use of Pesticides             

  Yes 0.838011 0.113         

  No             

Agro-Ecology of Study Site              

  Hot (Kolla)     -0.74647 .179     

  Medium (Weinadega)     -0.59454 .125     

  Cold (Dega)             

Similarly, among the fixed covariates, study site was identified as a significant influencing 

variable for household food security status both in availability and accessibility dimensions. 

Households cultivated less than three types of cereal crops and cultivating once a year were more 

likely to be chronically, moderately and mildly food in-secured than those who cultivated more 
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than two types and two or more times per year in availability dimension respectively. Moreover, 

households headed by women who have widowed or divorced marital status are more likely to 

be chronically, moderately and mildly food in-secured than headed by son/daughter and never 

married or cohabiting in utilisation dimensions.  

On the other hand, among time varying covariates, the shortage of rainfall is identified as 

significant variables that lead households to be chronically, moderately and mildly food in-

secured both in availability and utilisation dimensions in all aggregated time points. Areas used 

pesticides, market price increase and crop disease happened are more likely to lead households to 

be chronically, moderately and mildly food in-secured than areas not used pesticides and crop 

disease happened in availability dimension in all time points. Similarly, hot (Kolla) or medium 

(Weinadega) agro-ecology, less than two types of livestock and stability of market price are 

more likely to lead households to be chronically, moderately and mildly food in-secured than 

cold (Dega), more than three types of livestock and the absence of market price increase in 

accessibility dimension in all aggregated time points. 

 Effects of PCC Model on the Univariate Marginal Cumulative Logit Model  

 The univariate and PCC population-average cumulative logit model identified almost equal 

significant predictors for household food insecurity in the availability and accessibility 

dimensions. However, in the utilisation dimension, the univariate model identified more 

significant predictors for household food insecurity over the PCC model. For comparison 

purpose, the univariate marginal model outputs both for fixed and time varying covariates were 

displayed in Table 5.22. Similarly, the PCC population-average cumulative model outputs both 

for fixed and time-varying covariates were presented as well in Tables 5.21.  
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Table 5. 22: Summary results of the univariate marginal model via cumulative logit 

model parameters estimates for the household food security data. 

 

Variable  

  

Categories  

Availability Accessibility Utilisation 

Estimates  S.E  Estimates  S.E Estimates  S.E 

  1|2 -3.923* 0.235 -2.827* .575 -5.392* .675 

Intercept  2|3 -1.054*    0.209 -0.929 .572 -1.571* .656 

  3|4 1.182*    0.210  1.006 .571 0.853 .656 

Time -0.063*    0.010 0.073 .009 0.039* .009 

Household Head (HH)             

  Husband     -1.095 .552 -1.228 .638 

  Wife     -1.207* .564 -1.429* .645 

  Son/daughter             

Marital Status (HH)             

  Never married/Cohabiting -0.412*    0.158     -0.539* .203 

  Married -0.337 *   0.144     -0.056 .193 

  Divorced/Widowed 
 

          

Study Site (Woredas)             

  Kutaber -0.804* 0.139 0.268* .124     

  Kalu -1.070* 0.141 0.442* .123     

  Tehuledere             

Total farmland size in Hectare             

  <=0.5 Hectare -0.414*    0.091 0.250* .088 -0.332 .091 

  > 0.5 Hectare             

Types of Cereal Crops cultivated             

  One type 0.539* 0.123       

  two type 0.670* 0.110       

  Three and more types             

Time of cultivate within a year       

 Yearly -0.209 0.110     

 Biannual and more         

*significant at 5% level of significance  
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Table 5.22 Summary results of the univariate marginal model via cumulative logit model 

parameters estimates for the household food security data …Continued  

 

Variable  

  

Categories  

Availability Accessibility Utilisation 

Estimates  S.E  Estimates  S.E Estimates  S.E 

Types of livestock             

  One and less type     0.294* .121     

  Two to Three types     0.091 .104     

  Four or more types             

Presence of Pests           

  Yes         -0.341* .091 

  No             

Shortage of rainfall             

  Yes 0.323* 0.10 
  

0.362* .092 

  No             

Disease of cultivation              

  Yes 1.060* 0.104         

  No             

Increase in market price             

  Yes 0.651* 0.101 0.274 .097 -0.363* .099 

  No             

Use of Pesticides             

  Yes 0.898* 0.114         

  No             

Weathering condition of the cite              

  Hot (Kolla)     -0.766* .177     

  Medium (Weinadega)     -0.634* .125     

  Cold (Dega)             

*significant at 5% level of significance  
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Based on the finding presented in Tables 5.21 and 5.22, among the fixed covariates, the PCC 

population-average cumulative model identified a yearly once cultivation activity was the 

positive determinant for households to be severe to mildly food in-secured compared with 

counterparts while it was not significant in the univariate model in the availability dimension. 

Conversely, the univariate model identified the marital status of the household head and types of 

household head as a predictor for household food insecurity in availability and accessibility 

dimensions respectively while the PCC model has dropped them out.  

The PCC model underestimated the almost all significant predictors of household food insecurity 

in the availability dimension. On the other hand, the PCC model overestimated in almost all 

significant predictors of household food insecurity in the accessibility dimension. Similarly, the 

PCC model in the utilisation dimension dropped out predictors like presences of pests and 

market price increase while these were significant determinants for household food insecurity in 

the univariate population-average cumulative model. The PCC model overestimated all of the 

significant predictors in the utilisation dimensions. The interpretation and discussions for the 

finding were intended on the findings of the PCC population-based cumulative logit model. 
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Chapter Six  

 Discussions   

In this study, pair copula construction (PCC) approach was implemented for analysing 

multivariate, longitudinal and multivariate longitudinal ordinal data applied to household food 

insecurity collected from selected Woredas of South Wollo Zone. The practical implementation 

of PCC model for the three types of data was separately discussed in the subsequent sections.  

 

In this section, we applied a pair copula construction based cumulative logit regression model to 

jointly determine the dependence between the three food security dimensions and the respective 

determinants (Olaomi and Yimam, 2019). Prior to the application, we conducted selection of 

appropriate bivariate copula families that best fit to examine the dependence of food security 

dimensions and estimate their corresponding parameter using the pseudo data. For this purpose, 

the algorithm relevant for bivariate copula selection was developed. Among the candidate 

bivariate copula families, the Frank copula selected as best fitted to express the dependence 

between accessibility and utilisation, and availability | accessibility and utilisation | accessibility. 

Moreover, AMH copula was the best fit for measuring the dependence of availability and 

accessibility. Furthermore, the cumulative logit model was used as marginal distribution to 

estimate the marginal parameters. Finally, full MLE method was implemented for jointly 

estimate the dependence between the three dimensions and their respective determinants.  

Overall, this model provided a very good description of the data and estimated all the 

dependence parameter and marginal parameters as needed. The nice feature of this model in this 

setting was that it allows for the estimation of the effect of the covariates both on the marginal 

parameters and on the dependence of the outcomes over the other multivariate ordinal models. 

This model depicted clearly the effects of the covariates on the dependence parameter of the 

three dimensions. The Kendall’s tau for the pseudo data computed from the cumulative logit and 

Bijection tau computed from the copula parameter showed large difference. The Bijection tau 

was computed from the copula parameter, which was estimated incorporating the effect of 

covariates in the model. The Bijection tau more relied with the literature in the food security 
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analysis. Furthermore, to assess the effects of PCC model on the cumulative logit model, the 

univariate cumulative logit estimates were also fitted for each dimension. The PCC model 

identified additional significant determinants of household food insecurity in all dimensions. On 

the other hand, the PCC model overestimated majority determinants of household food insecurity 

in availability and accessibility dimensions while underestimated in the utilisation dimension.  

In PCC, the copula parameters captured the pair-wise non-normal relation between the food 

security dimensions. Food availability, accessibility and utilisation have pair-wise positive 

relationship. Moreover, the D-vine PCC determined the direction of the relationship as 

availability contributes to accessibility, accessibility contributes to utilisation and given that 

accessibility, availability contributes to utilisation. This finding is consistent with the framework 

developed by FAO (FAO, 2008). The finding implies that the households being food secured in 

availability dimension, the likelihood of food insecurity trap declines in food accessibility and 

then in utilisation dimensions. Likewise, the households that are food secured in accessibility 

dimension, the likelihood of food insecurity trap declines in food utilisation dimension.  

Determinants of Availability: The findings of marginal parameters revealed that households 

with higher agro-ecology (study site), less ploughed land, shortage of rainfall, cultivating once a 

year, market price increases, hot agro-ecology and presence of disease on the cultivated land 

were more likely to be chronically to mildly food in-secured. In contrast, households headed by 

divorced or widowed marital status were less likely to be chronically to mildly food in-secured 

(Olaomi and Yimam, 2019).   

The study site with lower agro-ecology has positive effects on food in-security compared with 

the study site with higher agro-ecology. This finding may relate with hot agro-ecology of the 

study site because one of the factors that positively affect food insecurity was hot agro-ecology. 

This finding is consistent with the result of meta-analysis conducted in Ethiopia by (Bashir and 

Schilizzi, 2012). Similarly, a household with small land ownership is more likely to be food in-

secured and this finding consistent with the study conducted in Ethiopia by (Bashir and Schilizzi, 

2012). Households’ agricultural activities have also a positive effect on the households’ food 

insecurity status. Households cultivated agricultural produced once on the yearly base were more 

likely to be food in-secured than those obtained twice or more per year.  
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Among climate change related factors, the availability of limited amount of annual rainfall has 

positive effect on the household food insecurity. A similar finding was observed in a research 

conducted in Ethiopia by (Abegaz, 2017). Moreover, recurrent disease that occurred on the 

cultivated land was positively affects the household food insecurity status. Market price increase 

is also another factor that positively influences the status of household food insecurity. This 

finding is similar with findings in the meta-analysis conducted by (Bashir and Schilizzi, 2012) in 

Ethiopia and a research conducted by (Ahmed et al., 2017) in Pakistan.  

Moreover, among household characteristics household headed by never married or cohabiting 

marital status were less likely to be food in-secured compared to households headed by divorced 

or widowed.  

Determinants of Accessibility: The findings of the marginal parameter of the pair copula based 

cumulative logit model revealed that households headed by never married or cohabiting marital 

status, small farmland size, shortage of rain fall, cultivating once a year, hot weathering 

condition and presence of disease on the cultivated land contribute to making the households to 

be chronically to mildly food in-secured.  

Among demographic factors for household food insecurity status, households with never married 

or cohabiting were more likely food in-secured compared with divorced or widowed households. 

This finding is in contrast with finding in availability dimension of this study. On the other hand 

this finding is similar with the finding pointed out by Mensah et al. (2013) in Sekyere-Afram 

Plains District of Ghana. However, the finding by (Magaña-Lemus et al., 2016) in Mexico 

household headed by single, widowed or divorced women were more likely to be food in-

secured compared with the married one.  

Moreover, the amount of land ownership has effects on the household food security status. 

Households with small farmland size were more likely to be food in-secured than who have large 

farm size. The results of this study provides consistent result with the finding in some part of 

Ethiopia by (Astemir, 2015), (Shone et al., 2017), (Feyisa, 2018) and (Moroda et al., 2018) and 

in part of Ghana by Mensah et al. (2013). Similarly, agricultural activities have also a positive 

effect on the households’ food insecurity status. Households those harvested once yearly were 

more likely to be food in-secured than those harvested twice or more per year.  

file:///F:/Food_Paper/Discussion%20and%20Conclusions)_New.docx%23_ENREF_68
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On the other hand, among climate change and environmental factors, the availability of limited 

amount of annual rainfall has a positive effect on the household food insecurity and this result 

resonates with finding in the research conducted by (Abafita and Kim, 2014) and (Abegaz, 2017) 

in Ethiopia and in rural Zambia by (Wineman, 2016). Households living in hot agro-ecology 

were more exposed to chronic to moderate food in-secured compared with households living in 

cold agro-ecology. Moreover, recurrent disease occurred on the cultivated land was also 

positively affects the household food insecurity status.  

Determinants of Utilisation: The marginal estimates of the pair copula based cumulative logit 

model of the utilisation dimensions revealed that household headed by sibling, higher agro-

ecology (study site), small farmland size, shortage of rainfall, cultivating once a year, and 

presence of disease on the cultivated land were positively affect households to be chronically to 

mildly food in-secured.  

Among the demographic variables statistically significant factors for food insecurity status is the 

household headed by siblings. Households headed by siblings were more likely to be food in-

secured than headed by husbands. Households living in higher agro-ecology environment were 

more likely to be food insecurity than living in lower agro-ecology environment. This finding is 

in contrast with the finding in the availability dimension of this study. Moreover, households that 

cultivated large farmland size have the potential to be food secured than cultivated small 

farmland size. This is because households have the potential to harvested different food groups 

by their own other than purchase from the local market. This finding is in line with the finding 

carried out by (Moroda et al., 2018) in Ethiopia. Households cultivating once per year were more 

likely to be food in-secured than cultivated twice or more per year.  

Among climate change and environmental variables, household obtained small amount of annual 

rainfall were more likely to be food in-secured. This finding is consistent with the finding carried 

out by (Moroda et al., 2018) in Ethiopia. Moreover, recurrent disease that occurred on the 

cultivated land was also positively affects the household food insecurity status. This finding is 

also harmony with the finds by (Abegaz, 2017).    
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Among the variables incorporated in the final model, four of them were obtained as common 

determinant factors for all of the three food insecurity dimensions. These are small farmland size, 

shortage of annual rainfall, cultivating once a year and presence of disease on the cultivated land.  

 

In this section, we applied a pair copula construction based cumulative logit regression model to 

jointly determine the stability of household food security over time and the respective 

determinants (Olaomi and Yimam, 2019). Prior to the application, we conducted the selection of 

appropriate bivariate copula families that best fits to examine the dependence of food security 

statuses over time and estimate their corresponding parameters using the pseudo data. For this 

purpose, the algorithm relevant for bivariate copula selection was developed. Among the 

bivariate copula families, the Gumbel copula selected as best fitted to express the dependence 

between the first and second, the second and the third time points. Moreover, the Gumbel copula 

was the best fit for measuring the dependence of first and third phase food security status given 

that the second phase has already happened. Furthermore, the cumulative logit model was used 

as marginal distribution to estimate the marginal parameters. Finally, full MLE method was 

implemented for jointly estimate the dependence between the three consecutive time point 

household food security status and their respective determinants.  

Overall, this model provided a very good description of the data and estimated all the 

dependence parameter and marginal parameter as needed. The PCC model estimated the 

dependence between food security status among the successive time points and the effects of the 

time varying covariates on the dependence of food security statuses using the estimated bivariate 

copula parameters and the effect of the time varying covariates on each food security status of 

the successive time points using the estimated parameter of the cumulative logit model. The nice 

feature of this model in this setting was that it allows estimation of the effect of the covariates 

both on the marginal parameters and on the dependence of the outcomes over the other 

longitudinal ordinal models. On the top of this, the model depicted also the recurrent covariates 

that affect the household food security status over time the other longitudinal ordinal models did 

not have. Furthermore, to assess the effects of PCC model on the cumulative logit model, the 

univariate cumulative logit estimates was also fitted for each time points. The PCC model 
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identified additional significant determinants of household food insecurity in the first and second 

rounds. The univariate model identified more significant predictors than the PCC model in third 

rounds. Moreover, the PCC model underestimated majority of determinants of household food 

insecurity in the first round. In the second and third rounds in some of the predictors, the PCC 

model underestimated and in some of them overestimated.  

The findings in the copula parameter showed that there were statistically significant differences 

between the pair-wise dependence in all successive time points. The copula parameters showed 

positive dependence between successive time points. In the longitudinal analysis, positive 

correlation is expected between successive time points of the individual response. This model is 

concordant with the expectation of longitudinal analysis. Again, in the longitudinal analysis, 

strong correlation resulted in stability over time. Likewise, large dependence copula parameter 

resulted in strong correlation and subsequently stability over time. Therefore, the current study 

indicates that significant but small dependence parameter leads to instability over time. Hence, 

the individual household food security status is not stable over time. This means that household 

food security status varied from time-to-time.  

The findings in the marginal parameter showed that presence of crop disease, market price 

increase and medium (Weinadega) agro-ecology were significant and recurrent factors for 

households to be chronically to mildly food in-secured. The findings of this study indicate that 

availability of adequate amount of annual rainfall is crucial for household food security. This 

finding is consistent with the study conducted in Ethiopia by (Abafita and Kim, 2014) and 

(Mbolanyi et al., 2017) and in Uganda by (Mbolanyi et al., 2017). An increase of market price 

positively influences the status of household food insecurity. This finding resonates with the 

finding conducted in Pakistan by (Ahmed et al., 2017) and a meta-analysis in Ethiopia by (Bashir 

and Schilizzi, 2012). Moreover, the fluctuation of agro-ecology over time affects the status of 

household food security status. The finding is similar with finding conducted Ethiopia by 

(Mbolanyi et al., 2017). 

One-time cultivation per year is the significant covariate that leads households to be chronically 

to mildly food in-secured in the second time points compared with those cultivated more than 

one cultivation season. For the time being, in this study, the availability of rainfall was not 

significant factor for household food security.  
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In this study, the pair copula construction approach was extended for multivariate longitudinal 

ordinal data via the marginal model of the cumulative logit model. Marginal model is one of the 

statistical models commonly used in the univariate longitudinal ordinal data analysis using the 

cumulative logit version. Therefore, we proposed population-average based PCC model for 

multivariate longitudinal ordinal data. This model has the potential to accommodate jointly the 

dependence between multivariate ordinal outcomes, the covariate and follow-up time effects of 

the ordinal outcomes both on the dependence measures and the marginal probabilities. However, 

previous recent works on this area lacked to accommodate the aforementioned important 

information jointly in a single model (Abegaz et al., 2015, Laffont et al., 2014). Our model filed 

the population-average gap of the random effect models developed by (Laffont et al., 2014) and 

the computational challenge of population-average multivariate t-copula models developed by 

(Abegaz et al., 2015). Furthermore, the additional nice feature of this model is it allows 

estimation of the effect of the covariates and follow-up time points both on the marginal 

parameters and the dependency of the outcomes and allows estimation of the dependence 

between multivariate ordinal outcomes.  

Our model was applied in household food security data. The dependence between food security 

status among the three dimensions and the effects of the covariates and time components on the 

dependence of food security status of the three dimensions was computed using the estimated 

bivariate copula parameters while the effect of the covariates and the follow-up time components 

on each food security dimension status was computed using the estimated parameter of the 

marginal model of the cumulative logit model.  

Prior to the application, we conducted the selection of appropriate bivariate copula families that 

fit best to examine the dependence of food security statuses over time in each of the three 

dimensions and estimate their corresponding parameter using the pseudo data. For this purpose, 

the Algorithm relevant for bivariate copula selection was developed. Among the bivariate copula 

families, the Clayton copula selected as best to express the dependence between the availability 

and accessibility, the AMH copula for measuring the dependence of accessibility and utilisation 

food security status in all of the aggregated time points for the particular application data. 
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Moreover, the independent copula was the best fit for measuring the dependence of availability 

and utilisation food security status given that the accessibility dimension has already conducted. 

Based on the selected bivariate copula families, we fitted the pair copula multivariate 

longitudinal cumulative logit model to our data. Moreover, we focused on estimation of the 

dependence between food security dimensions using the copula parameter, the stability over time 

using the significance of the time component and their predictor variables using the marginal 

distribution parameters of the marginal model. Ten covariates for availability, seven for 

accessibility and eight for utilisation were incorporated in this model, which are significant at 5 

percent significance level in the marginal model. The full MLE method was employed to 

estimate both the copula and marginal parameters simultaneously.   

In line with the PCC estimation, the univariate population based cumulative logit was fitted for 

each dimension to see the effect of the PCC model on the univariate one. Both the univariate and 

PCC population-average cumulative logit model identified almost equal significant predictors for 

household food insecurity in the availability and accessibility dimensions. However, in the 

utilisation dimension, the univariate model identified more significant predictors for household 

food insecurity over the PCC model. The PCC model underestimated almost all the significant 

predictors of household food insecurity in the availability dimension. The PCC model 

overestimated almost all of the significant predictors in the accessibility and utilisation 

dimensions. 

The findings of the copula parameter showed that the copula parameters captured the pair-wise 

dependence between the food security dimensions. Food availability, accessibility and utilisation 

have pair-wise positive dependence. Moreover, the D-vine PCC determined the direction of the 

relationship as availability contributes to accessibility, accessibility contributes to utilisation and 

given that accessibility, availability contributes to utilisation. This finding is consistent with the 

framework developed by FAO (FAO, 2008). The finding implies that the households being food 

secured in availability, the likelihood of food insecurity trap declines in food accessibility and 

then in utilisation. Likewise, the households being food secured in accessibility, the likelihood of 

food insecurity trap declines in food utilisation. Hence, food security dimension specific 

intervention might reduce the likelihood of food insecurity at household level. 
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Determinants of availability: The marginal estimate of the population-average cumulative 

model in the pair copula-based model carried out so far produced different significant associated 

determinant factors for household food security status in the availability dimension. The finding 

of this study revealed that the household food security status changes over time. Likewise, 

population-average household food security status is not stable over time.  Similarly, the finding 

showed that lower agro-ecology, shortage of rainfall, the presence of cultivation disease, 

increased market price, use of pesticides, cultivating smaller types of cereal crops and cultivating 

once per year positively affect the household food in-security (Olaomi and Yimam, 2019).  

Households living in lower agro-ecology are more likely to be chronically to mildly food in-

secured compared with living in higher agro-ecology. In contrast, the findings were observed in 

the research conducted by (Motbainor et al., 2016) in Ethiopia. Moreover, households who 

ploughed smaller farmland size (less or equal to half hectare) were more likely to be chronically 

to mildly food in-secured than ploughed greater than half hectare. (Bashir and Schilizzi, 2012) 

identified similar findings in their meta-analysis in Ethiopia. Harvesting different types of cereal 

crops also affects the status of household food security. Households harvesting fewer types of 

cereal crops (less than three types) were more likely chronically to mildly food in-secured than 

harvesting three or more types. Moreover, households living in a village that has one period of 

cultivation season were more suspected to be food in-secured than cultivating two or more times 

in one-year period.  

 Among the time varying covariates, during the three consecutive follow-up interviews, the 

presence of small amount of annual rainfall positively affects household food insecurity status. 

This finding resonates with that of the studies conducted by (Wineman, 2016) in rural Zambia 

and in Ethiopia by (Abafita and Kim, 2014) and (Abegaz, 2017). Similarly, the instability of 

market price positively affects the household food insecurity status and the finding is similar 

with finding in Pakistan carried out by (Ahmed et al., 2017). Moreover, households affected by 

cultivation disease and used pesticides were more likely to be food in-secured compared with 

those not affected by cultivation disease and not used pesticide. This is owing to either the 

disease destroying much number of products or the households may have invested much amount 

of money for pesticides. This automatically leads the households to be food in-secured.  
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Determinants of accessibility: The marginal estimate of the population-average cumulative 

model in the pair copula-based model carried out so far produced different significant associated 

determinant factors for household food security status in the accessibility dimension. The finding 

of this study revealed that the household food security status changes over time. Likewise, 

population-average household food security status is not stable over time.  Similarly, the finding 

showed that lower agro-ecology, increased market price, herbing small number of livestock, hot 

agro-ecology and small farmland size positively affected the household food in-security (Olaomi 

and Yimam, 2019).  

Like in the availability dimensions, households living in lower agro-ecology are more likely to 

be chronically to mildly food in-secured compared with those living in medium agro-ecology. 

This is may be owing to hot agro-ecology of the study site because cold agro-ecology is one of 

the factors that positively affect household food insecurity status. In contrast, the findings were 

observed in the research conducted by (Motbainor et al., 2016) in Ethiopia. Moreover, 

households which ploughed smaller farmland size (less or equal to half hectare) were more likely 

to be chronically to mildly food in-secured than ploughed greater than half hectare. (Bashir and 

Schilizzi, 2012) and (Shone et al., 2017) in Ethiopia and (Mensah et al., 2013) in Pakistan 

identified similar findings. Households herding fewer types of livestock (less than two types) 

were more likely to be chronically to mildly food in-secured than herding two or more types. 

(Motbainor et al., 2016) and (Habyarimana, 2015) also discovered similar findings in Ethiopia 

and in Rwanda respectively.   

Among the time varying covariates, during the three consecutive follow-up interviews, the 

presence of small amount of annual rainfall positively affects household food insecurity status. 

Similar findings were observed in Ethiopia conducted by (Abafita and Kim, 2014), (Abegaz, 

2017) and (Agidew and Singh, 2018) and also in rural Zambia by (Wineman, 2016). Similarly, 

the instability of market price positively affects the household food insecurity status and the 

finding is similar with finding of a study conducted in Pakistan carried out by (Ahmed et al., 

2017).  

Determinants of utilisation: Like in availability and accessibility, the marginal estimate of the 

population-average cumulative model in the pair copula-based model carried out so far produced 

different significant associated determinant factors for household food security status in the 
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utilisation dimension. The findings of this study revealed that the household food security status 

changes over time. Likewise, population-average household food security status is not stable 

over time. Similarly, the results showed that households headed by a woman, divorced/widowed 

marital status of the household head, shortage of rainfall and small farmland size positively 

affected the household food in-security.  

The findings suggested that households headed by women positively affect the utilisation food 

insecurity status of households. Moreover, divorced/widowed households were more likely food 

in-secured compared to single or cohabitation household. On the other hand, households which 

ploughed smaller farmland size (less or equal to half hectare) were more likely to be chronically 

to mildly food in-secured than those that ploughed greater than half hectare. The finding is 

similar to (Moroda et al., 2018) study conducted in Ethiopia is similar with the current study.  

Among the time varying covariates, during the three consecutive follow-up interviews, the 

presence of small amount of annual rainfall positively affects household food insecurity status. 

Similar findings were observed in Ethiopia conducted by (Abafita and Kim, 2014) and (Abegaz, 

2017) and also in rural Zambia by (Wineman, 2016). 

This study revealed the determinants for all of the three dimensions and tried to compare with the 

work of the others. However, owing to lack of available literature in the availability and 

utilisation dimensions for some of the determinants the current study limited to compare with 

other works.  

 

Household food security dimensions are correlated to each other. This implies that for the 

households being food secured in availability, the likelihood of food insecurity trap declines in 

food accessibility and then in utilisation. Likewise, the households being food secured in 

accessibility, the likelihood of food insecurity trap declines in food utilisation. This type of 

modelling assists the food aid agents, planners or policy makers that in which dimension a 

household is highly affected and which dimension let household’s food in-secured. This implies 

food security dimension specific intervention might reduce the likelihood of food insecurity at 

household level.  
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Hot agro-ecology areas were highly vulnerable to food insecurity. This implies that agro-ecology 

or area specific intervention could alleviate the risk of food in-secured in the rural households. 

This suggests that adaption strategies like harvest in hot agro-ecology. In response to this 

strategy, farmers can use seeds that are resistant to short rain fall season and conserves water in a 

hot area to increase the productivity.   

Small cultivable land size increases the likelihood of households being food in-secured. This 

implies that households with large land ownership could produce more food or may generate 

income from it to purchase food for consumption. Hence, alternative income generating 

mechanism should be set for rural households to reduce the pressure of cultivable land in 

addition to encourage maximum yield from a given holdings through investing in land 

improvements and soil conservation. Alternatively, to increase cultivable land size, a strong 

policy intervention may be needed to relocate the population where settlement is densely 

populated to the sites where it is not. This enables, at least some group, to share from land 

holdings and any entitlements to resources which can lead to ensuring food security.  

The number of cultivation season increases on the yearly base, the likelihood of households 

being food in-secured trap declines. This implies that households cultivating two or three times 

per year could produce more food or getting more income to purchase food for consumption than 

cultivation once per year. Hence, ways should be sought through promoting irrigation activity in 

order to increase cultivation season.  

Households which experienced lower rainfall level were more likely to remain food in-secured. 

The majority of the Ethiopian rural households are rain-dependent for their agricultural 

production, resulting in persistent food insecurity. Hence, careful promotion of investment in 

infrastructure to support irrigation and water resources development is one aspect worth 

considering. On the other hand, climatic adaption strategies should be insight like selecting 

appropriate crop varieties that can be planted in low amount of rainfall.  

Crop disease positively affects the household food insecurity status. Hence, the development 

agents (DAs) working in the area should provide immediate response either by providing 

medicines or consulting the community for alleviating the problem in the early stage. The 
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government should also advance the agricultural strategies in a way that provides immediate 

responses for this and other related agricultural problems.  

The price of food increases, purchasing power goes down, dietary quality and total energy intake 

are reduced, the likelihood of household being food in-secured increased. Hence, strong market 

price policy to make stable the market price as well as increase the supply of food for 

consumption is worth considering.   

More livestock was kept by households that were more food secured. As the households’ 

livestock possessions were increased, their food security status would inevitably also respond 

positive. More importantly, livestock possession enables the households to be food secure either 

through the income earned or by direct consumption. This implies that the availability of greater 

number of livestock permit households enhances their economic wellbeing in general and their 

food entitlement in particular. Hence, careful promotion of investment in livestock project 

supported by scientific methods is one aspect worth considering.  
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Chapter Seven 

 Conclusions, Recommendations and Future Works  

 

The pair copula based multivariate ordinal model with the cumulative logit version successfully 

captured the non-normal relationship between ordinal outcomes and their respective 

determinants simultaneously. Allowing the estimation of the effect of the covariates both on the 

marginal parameters and on the non-normal correlation of the ordinal outcomes strengthens the 

estimation performance of this model over previous multivariate ordinal models. The copula 

parameters in the food security data revealed that pair-wise positive dependence was observed 

between food availability, accessibility and utilisation dimensions. The marginal parameters of 

this model depicted that small cultivable land, shortage of rainfall, cultivating once a year and 

presence crop disease were positively influences household food insecurity in all the three 

dimensions. Moreover, lower agro-ecology and market price increase positively affects 

household food insecurity in availability dimension. Similarly, hot agro-ecology positively 

affects household food security in accessibility. Moreover, lower agro-ecology positively affects 

household food security in utilisation.  

A pair copula based longitudinal ordinal model with cumulative logit version jointly estimated 

the stability of ordinal outcome over time and the respective determinants. The result of the 

copula parameter in this model pointed out the food security status at household level is not 

stable over time. Estimating determinants for each longitudinal ordinal outcome broadens the 

inclusion of recurrent determinants over the longitudinal periods does the previous longitudinal 

models lacked. The marginal parameters of this model revealed that the presence of crop disease, 

market price increase, and medium (Weinadega) agro-ecology were significant and recurrent 

factors for households’ food insecurity over the three time periods.  

Population-average based pair copula multivariate longitudinal ordinal model with cumulative 

logit version jointly estimated the dependence between multivariate ordinal outcomes, and the 

covariate and follow-up time effects of the ordinal outcomes both on the dependence measures 

and the marginal probabilities using the full MLE method. This model successfully reduced the 

population-average lack of the random effects model and the computational challenge of the 
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multivariate copula models of the multivariate longitudinal ordinal data analysis. This study 

provides a good measure of dependence between food security dimensions using the copula 

parameter and also the stability over time and the determinants of household food using the 

marginal model parameters for all dimensions simultaneously. The findings of the copula 

parameter showed that positive and statistically significant dependence were observed between 

availability and accessibility and accessibility and utilisation. The marginal model of the 

cumulative logit model was used to measure the parameters of the marginal distributions. The 

findings of the model reveal that household food security was unstable over time for each 

dimension. Small land size and shortage of rainfall were the common predictors of household 

food insecurity in all dimensions. Moreover, lower agro-ecology and instability of market price 

were the common predictors of household food insecurity in availability and accessibility 

dimensions.  

 

Food security dimensions depended to each other. The rap of one dimension affects the other 

dimensions. Therefore, it is critically important to consider the common factors to provide 

immediate intervention for severely food in-secured households. Moreover, great attention also 

required to lookup which dimension is leading households to food in-secured.  

Households’ food security status either in the individual food security dimensions or in the 

composite food security is not stable over time. So great attention is required for granting 

households to be food secured taking valuable intervention for the identified recurrent 

determinants as well as other climate change and environment factors. Moreover, climatic 

adaption strategies should be insight like selecting appropriate crop varieties that can be resistant 

to short rain fall season and conserves water in a hot area to increase the productivity.  

Likewise, systematic investment in infrastructure to support irrigation and water resources 

development to increase cultivation season and alternative income generating mechanism to 

reduce the pressure of cultivable land from a given holdings through investing in land 

improvements and soil conservation are critical viewpoints to reduce the likelihood of food 

insecurity at household level.   
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The government should design strong market price policy to make stable the market price as well 

as increase the supply of food for consumption; careful promotion of investment in livestock 

project supported by scientific methods; and advance the agricultural strategies in a way that 

provides immediate responses for crop disease.  

The pair copula based multivariate and longitudinal ordinal model provided easily interpretable 

and understandable outputs. Therefore, we suggest the model for any multivariate and 

longitudinal discrete data analysis.  

The population-average based pair copula multivariate longitudinal ordinal model addressed all 

of the food security dimensions simultaneously and the model found computationally effective 

for not large set of data. Therefore, we suggest this model to apply for other application areas for 

not extremely large number of outcomes and covariates.   

 

In this thesis, the applied pair copula model for multivariate longitudinal ordinal data used a 

three-stage sampling procedure to get the application data. In three-stage sampling, each random 

selection may introduce a random effect. It is due to the contributions of the different stages to 

the variance of an estimator. However, the current model didn’t take into account this during 

parameter estimation.   

The second limitation is, in the notion of the concept of food security we used three round data 

collection to address the stability of the other three dimensions over time. Three rounds of data 

may not be providing a realistic estimator to oversee the entire stability.  It would have been 

great if measurements were obtained for three to five seasons. However, we believe that some 

kind of longitudinal data is better than cross-sectional data to study the household food security 

situation. 

The study tried to address all the four food security dimensions. Due to limited data at the 

national level to address all the dimensions, the study forced to conduct primary data from 

selected Woredas of one region of Amhara, Ethiopia. Hence the study did not represent the food 

security situation of the Amhara region. 
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The pair copula-based regression models have applied throughout this thesis allowed specifying 

the effect of covariates of the marginal distributions on the dependence and marginal structure. 

We proposed a population-average based pair copula construction models for multivariate 

longitudinal ordinal outcomes using marginal model of the cumulative logit marginal 

distribution. Although we feel that our contribution is a major step forward in the modeling of 

multivariate longitudinal ordinal outcomes via pair copula construction, we discuss three 

important open questions in more detail. 

The first open question is in the multivariate longitudinal ordinal outcomes, we have M ordinal 

outcomes repeatedly measured T times. During our model development we re-ordered the 

observations of the multivariate series into the univariate outcomes of dimensions 𝑁 = 𝑇∗𝑀 

given by 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑀), where 𝑌1 = (𝑦11, 𝑦21, … , 𝑦𝑁1)
′, 𝑌2 = (𝑦12, 𝑦22, … , 𝑦𝑁2)

′𝑎𝑛𝑑 𝑌𝑀 =

(𝑦1𝑚, 𝑦2𝑚, . , 𝑦𝑁𝑚)′. As a result, the joint probability mass function 𝑃𝑟(𝑌1 = 𝑦1, 𝑌2 =

𝑦2, … , 𝑌𝑚 = 𝑦𝑚) is decomposed as follows: 

Pr(𝑌1, 𝑌2, … , 𝑌𝑚) = Pr(𝑌1 = 𝑦1|𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚) × Pr(𝑌2 = 𝑦2|𝑌3 = 𝑦3, … , 𝑌𝑚 = 𝑦𝑚) ×

…× Pr(𝑌𝑚 = 𝑦𝑚).  

The parameters of the joint distribution of the entire dependence were estimated by a D-vine 

copula of dimension T ∗ M. This model reduced the multivariate longitudinal dimensions into a 

univariate longitudinal series based on the time point for each multivariate ordinal outcome. This 

model loses the dependence between successive time points and the effect of covariates on the 

dependence measure of the successive time point outcomes. This is not the issue of population-

average longitudinal data analysis but for other applications to consider the individual change 

over time one can extend this model for multivariate longitudinal data (T repeated observations 

of M dimensional vectors for the sample of n subjects) by using a different D-vine copula 

approach as follows.  

𝒀 = (𝒀𝟏, 𝒀𝟐, … , 𝒀𝑴), where 𝒀𝟏 = (𝑌1, 𝑌2, … , 𝑌𝑇), 𝒀𝟐 = (𝑌1, 𝑌2, … , 𝑌𝑀), … , 𝒀𝑴 = (𝑌1, 𝑌2, … , 𝑌𝑇), 

  𝑌1 = (𝑦11, 𝑦21, … , 𝑦𝑡1)
′, 𝑌2 = (𝑦12, 𝑦22, … , 𝑦𝑡2)

′𝑎𝑛𝑑 𝑌𝑀 = (𝑦1𝑚, 𝑦2𝑚, . , 𝑦𝑡𝑚)′.  
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Hence, the joint probability mass function 𝑃𝑟(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑚 = 𝑦𝑚) is decomposed as 

follows. 

𝑷𝒓(𝒀𝟏 = 𝒚𝟏, 𝒀𝟐 = 𝒚𝟐, … , 𝒀𝑴 = 𝒚𝒎) = 𝑷𝒓(𝒀𝟏 = 𝒚𝟏| 𝒀𝟐 = 𝒚𝟐, … , 𝒀𝑴 = 𝒚𝒎) × 𝑷𝒓(𝒀𝟐 =

𝒚𝟐| 𝒀𝑴 = 𝒚𝒎) × …× 𝑷𝒓(𝒀𝑴 = 𝒚𝒎).  

Taking the above expression into account one can apply the usual pair copula construction. This 

extension can consider three different levels of analysis. At first, a pair copula describes the 

relations of the responses observed at a specific time. Second each longitudinal series, 

corresponding to a given response over time, is modeled separately using a pair copula 

decomposition to relate the distributions of the variables describing the observation given in 

different times. Finally, the marginal distribution relates the associated factors for each responses 

and longitudinal time components.  

The second open question is extending our model in in a Bayesian framework. Since the 

Bayesian approaches have many advantages in modeling multivariate as well as multivariate 

longitudinal outcomes, we believe that there may be significant advantages to estimating our 

model in a Bayesian framework. Furthermore, the modular nature of the MCMC in the Gibbs 

sampler may facilitate the development of more advanced multivariate longitudinal models. 

However, the Bayesian approach requires a good proposal of prior information or distribution for 

the marginal distribution during the construction of PCC. This implies that the selection of prior 

distribution in the ordinal outcomes setting requires intensive work. As a result, this thesis is 

concerned itself on the implementation of the PCC through the Frequentist paradigm and the 

likelihood for our PCC is fast to compute. However, in the presence of proper prior distribution, 

we believe that joint estimation of marginal and copula parameters for multivariate longitudinal 

ordinal model could be easier to develop in a Bayesian context.  

The third open question of this thesis is considering non-ignorable missing values in the analysis 

of multivariate longitudinal outcomes via PCC. In the univariate longitudinal context, Cui et al., 

(2016) implemented the Peter and Clark (PC) algorithm for both the discrete and continuous data 

assumed to be drawn from a Gaussian copula models. Furthermore, Cui et al., (2019) extended 

the Gaussian copula models to Copula PC algorithm for incomplete data for mixed data with 

missing values. Likewise, Gomes et al. (2019) further extended Gaussian copula for non-
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Gaussian responses that are missing not at random using copula selection models. This implies 

that in the univariate case, intensive works have been conducted in the copula context for 

discrete data. However, in the multivariate longitudinal discrete context, since PCC models in 

multivariate longitudinal data analysis are in the growing stage, it needs further research to 

handle missing-ness. In our PCC model we did not consider handling missing data since we were 

considering compensation of none-response rate and the missing-ness in our data were less than 

the none-response rate considered during sample size determination. However, we believe that 

considering PCC models in the multivariate longitudinal ordinal outcomes that can treat non-

ignorable missing data could provide valid estimates both in the marginal and copula estimates 

of the final model extending one of the above methods that was implemented in the univariate 

case.   
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Appendices 

Appendix A: Questionnaires  

UNIVERSITY OF SOUTH AFRICA 

COLLEGE OF SCIENCE, ENGINEERING AND TECHNOLOGY 

Department of Statistics  

Household Questionnaire for Modelling the Stability and Determinants of Household Food 

Insecurity, February, 2014-2015 

Introduction and Consent  

My name is___________ and I am attending post graduate class at University of South Africa 

(UNISA).  We are conducting an assessment on modelling the determinant factors of household 

food insecurity using longitudinal multivariate ordinal logistic regression model. I would like to 

ask you some questions about you, your household, risks you face relating to food you are 

engaged in. The questionnaire usually takes between 20 -25 minutes to complete.   

Whatever information you provide will be kept strictly confidential and will not be shown to 

other persons.  Participation in this assessment is voluntary and you can choose not to answer 

any individual questions or all of the questions.  However, we hope that you will participate fully 

in this assessment since your views are important. 

Do you have any questions about the survey?  May I begin the interview now?  

 

VERBAL CONSENT GIVEN TO INTERVIEW, CHECK BOX  

Interview Information 

Date of interview: (dd/mm/yyyy) ____/_____/______ 

Interviewer's name__________________________Signature__________________ 

Name of supervisor__________________________Signature__________________ 

Questionnaire ID: ____________________________ 
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1. Area Identification 

No  Question Response 

1.1  Woreda ____________________ 

1.2 Kebele ____________________ 

1.3 Got __________________ 

1.4 Household ID _____________________ 

2. Demographic and Socioeconomic Characteristics 

No  Question Response Skip 

2.1 Respondent  1. Household head 

2. Housewife 

3. Son/daughter 

4. Other  

 

2.2 Age of the respondent in years ___________________  

2.3 Age of the household head in years ___________________  

2.4 Sex of respondent   1. Male 

2. Female 

 

2.5 Sex of the household head  1. Male 

2. Female 

 

2.6 Who is the household head? 1. Husband  

2. Wife 

3. Son/daughter 

4. Other (specify)--------- 

 

2.7 Family size __________________  

2.8 Number of under 5 Children              __________________  

2.9 Whom do the household head live with? 1. Alone  

2. Spouse/partner 

3. Parents 

4. Relatives 

5. Others (specify)-------------- 

 

 

 

 

 

2.10 What is the highest level of education of the 1. Unable to read and write  
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household head attained? 2. Can read and write 

3. Regular Primary education (1-8) 

4. General secondary education (9-10)  

5. Preparatory education (11-12) 

6.  TVET 

7. College /university education 

 

2.11 What is current marital status of the 

household’s head?  

1. Never married 

2. Cohabiting 

3. Married 

4. Divorced 

5. Widowed 

 

 

 

 

 

2.12 What is the household head current occupation? 

(Select that all apply) 

1. Student 

2. Unemployed 

3. Professional employment 

4. Self employed 

5. Domestic worker 

6. Casual worker 

7. Housewife  

8. Other (Specify)------------------ 

 

 

 

 

 

 

 

 

3. Economic and Income Related Questions  

3.1  Main source of household income  

(Select that all apply) 

1. Farming 

2. Herding  

3. Merchant 

4. Daily labourer 

5. Other (specify)-------------- 

 

3.9 

3.10 

3.12 

 

3.2  How much is your total farmland size? Land size in  

1. Hectares ___________ 

2. Timad    _____________ 

3. Gasha    ______________ 

4. Other     ___________ 
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3.3  Slope of your land 1. Plain  

2. Hilly  

3. Steep 

 

3.4 How do you perceive the quality or fertility of your 

land? 

 

1. Fertile   

2. Medium fertile 

3.  Less fertile  

4. Poor  

 

3.5 How many times do you cultivate within a year? 

 

1. Yearly 

2. Biannual  

3. Three-times 

 

3.6 What type of the following cereals did you harvest 

during the last 12 months?  

(Select that all apply) 

1. Barely 

2. Millet 

3. Wheat 

4. Sorghum 

5. Teff 

6. Bean 

7. Pea  

8. Others specify --------- 

 

 

 

 

 

 

 

 

3.7 What are the main problems for farmers’ incomes 

in your village? 

(Select that all apply) 

 

1. Pests 

2. Rainfall shortage 

3. Disease  

4. Lack of improved agricultural 

product input 

5. Households head death 

6. Excessive temperature 

7. Excess rainfall 

8. Increase in market price  

9. Fall in market price 

10. Property loss  

11.  Other specify  --------------------- 

 

 

 

 

 

 

 

 

 

 

 

3.8 Have you used any of the following agricultural 1. Chemical fertilizer  
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technologies during the last 12 months production 

season? 

(Select that all apply) 

2. Pesticides 

3. Improved seeds 

4. Farm credit 

5. Access to irrigation water 

6. Nothing 

7. Compost  

8. Others Specify ------------------ 

3.9 What type of livestock do you have? 

(Select that all apply)  

1. Ox                     6.  Donkey 

2. Cow                   7.  Mule 

3. Sheep                 8. Camel  

4. Goat                   9.  Chicken   

5. Horse                10.  Other    

                          (Specify)------ 

 

3.10 The weathering condition of your village?  1. Hot (Kolla) 

2. Medium (Wenadega) 

3. Cold (Dega) 

 

3.11 How was the availability of rain on your village 

since last year? 

 

1. Very high  

2. High  

3. Enough  

4. Little  

5. Very little    

6. Too much  

7. Too little 

8.  Other specify _____________ 

 

3.12 Which season is the main production season in your 

village? 

(Select that all apply) 

1. Winter (Dec-Feb) 

2. Summer (Jun-Aug) 

3. Autumn (March-May) 

4. Spring (Sep-Nov)  

 

 

 

3.13 Member in the household contributing financially 

to incomes  

 

______________ 

 

3.14 Number of persons contributing financially to   
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incomes ________________ 

3.15 Average monthly income of your family  

 

1. Less than 500 

2. 500-1500 

3. 1501-2500 

4. 2501-3000 

5. 3001-4800 

6. 4801-5000 

7. Greater than 5001(Specify) ------ 

 

 

 

 

 

 

 

4. Household Food Insecurity Availability, Access and Utilisation Scale tool  

A. Household Food Insecurity Utilisation Scale Tool 

4.1 In the past [24 hours], did you or any household member ate CEREAL CROPS (bread, 

noodles, biscuits, cookies or any other foods made from millet, sorghum, maize, rice, 

wheat other locally available grains) 

1. Yes 

2. No  

4.2 In the past [24 hours], did you or any household member ate VITAMIN A RICH 

VEGETABLES AND FRUITS (carrots, squash, sweet potatoes, ripe mangoes, 

papayas or other locally available vitamin A-rich fruits or vegetables) 

1. Yes 

2. No 

4.3 In the past [24 hours], did you or any household member ate MEAT (beef, pork, lamb, 

goat, rabbit, wild game, chicken, duck, or other birds, liver, kidney, heart or other 

organ meats or blood-based foods) 

1. Yes 

2. No  

4.4 In the past [24 hours], did you or any household member ate EGGS 1. Yes 

2. No  

4.5 In the past [24 hours], did you or any household member ate FISH (fresh or dried fish 

or shellfish) 

1. Yes 

2. No  

4.6 In the past [24 hours], did you or any household member ate LEGUMES, NUTS AND 

SEEDS (beans, peas, lentils, nuts, seeds or foods made from these) 

1. Yes 

2. No 

4.7 In the past [24 hours], did you or any household member ate MILK AND MILK 

PRODUCTS (milk, cheese, yogurt or other milk products) 

1. Yes 

2. No  

4.8 In the past [24 hours], did you or any household member ate OILS AND FATS (oil, 

fats or butter added to food or used for cooking) 

1. Yes  

2. No  

4.9 In the past [24 hours], did you or any household member ate SWEETS (sugar, honey, 

sweetened soda or sugary foods such as chocolates, sweets or candies) 

1. Yes 

2. No  
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4.10 Did your households get enough and safe drinking water? 1. Yes 

2. No 

4.11 Did bone problem happen among your under five families?  

 

1. Yes 

2. No 

4.12 Did diarrhoea disease mostly happen among your under five families?  

 

1. Yes 

2. No 

4.13 Did anaemia disease happen among your under five families?  

 

1. Yes 

2. No 

4.14 Did pregnant woman take balanced diet food than the other family members?  

 

1. Yes 

2. No 

4.15 Did breast feeding woman take balanced diet food than the other family members?  

 

1. Yes 

2. No 

4.16 Did you prepare appropriate place for dusts?  

 

1. Yes 

2. No 

4.17 Does someone among your family members who didn’t eat food that others ate it?  

 

1. Ye 

2. No 

4.18 Has someone who can eat raw food (raw meat, milk and others) among your family 

members?  

 

1. Yes 

2. No 

4.19 Do you toilet? 

 

1. Yes 

2. No 

B. Household Food Insecurity Availability Scale tool 

4.20 Have you plough land for cereal crops? 

 

1. Yes 

2. No 

 

4.21   If yes for 4.20, which of these 

statements best describes any cereal 

crops eaten in your household in the last 

12 months through your own 

production? 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

  4.23 

4.22 Which of these statements best 

describes that you usually able to buy all 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 
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of the cereal crops that you need for you 

and your family from the local market 

of your village or surrounding? 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

4.23 Have you plough land for fruits? 

 

1. Yes 

2. No 

 

4.24 If yes for 4.23, which of these 

statements best describes any fresh fruit 

eaten in your household in the last 12 

months through your own production? 

Interviewer: Do not include juice or fruit 

that is frozen or canned. 

1. Enough of the kinds of fruit we want to eat 

2. Enough but not always the kinds of fruit we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

  4.26 

4.25 Which of these statements best 

describes that you usually able to buy all 

of the fruit that you need for you and 

your family from the local market of 

your village or surrounding?  

1. Enough of the kinds of fruit we want to eat 

2. Enough but not always the kinds of fruit we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

 

4.26 Have you plough land for vegetables? 

 

1. Yes 

2. No 

 

4.27 If yes for 4.26, which of these 

statements best describes any vegetables 

eaten in your household in the last 12 

months through your own production? 

1. Enough of the kinds of vegetables we want 

to eat 

2. Enough but not always the kinds of 

vegetables we want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

  4.27 

4.28 Which of these statements best 

describes that you usually able to buy all 

of the vegetables that you need for you 

and your family from the local market 

of your village or surrounding? 

1. Enough of the kinds of vegetables we want 

to eat 

2. Enough but not always the kinds of 

vegetables we want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

 

4.29 Have you animals that produces milk?  1. Yes  
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2. No 

4.30  If yes for 4.29, which of these 

statements best describes any milk 

products eaten in your household in the 

last 12 months through your own 

production? 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

4.32 

4.31  Which of these statements best 

describes that you usually able to buy all 

of the milk products that you need for 

you and your family from the local 

market of your village or surrounding? 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

 

4.32 Have you animals that produces milk?  1. Yes 

2. No 

 

4.33 Which of these statements best 

describes any meat products eaten in 

your household in the last 12 months 

through your own production? 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

4.35 

4.34 Which of these statements best 

describes that you usually able to buy all 

of the meat products that you need for 

you and your family from the local 

market of your village or surrounding? 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

 

4.35 Which of these statements best 

describes the kind of foods eaten in your 

household in the last 12 months through  

food aid in your village 

1. Enough of the kinds of food we want to eat 

2. Enough but not always the kinds of food we 

want 

3. Sometimes not enough to eat 

4. Often not enough to eat 

5. Not aided  

 

4.36 Which of these statements best 

describes the kind of water used in your 

1. Efficient water we want to use 

2. Efficient but not always the kinds of water 
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household in the last 12 months in your 

village?  

we want 

3. Sometimes not efficient to use 

4. Often not efficient to use 

C. Household Food Insecurity Access Scale tool 

4.37  What best describes the food consumed in 

the household during the past 12 

months.(due to lack of money to buy food) 

 

1. Always enough of what wanted 

2. Enough but not always what wanted 

3. Sometimes not enough food 

4. Often not enough food 

4.38 In past 12 months were you and your 

household members worried that your 

food would run out before you had money 

to buy more? 

1. No  

2. Yes 

*No follow up question on frequency 

4.39 In past 12 months did you have to eat the 

same food daily because you did not have 

money to buy other food? 

1. No  

2. Yes 

*No follow up question on frequency 

4.40 In the past 12 months have you or any 

other adult in your household eaten less 

food than you wanted to because you did 

not have enough money to buy food? 

 

1. No  

2. Yes             How often? 

1. More than half the time 

2. Less than half the time but more than 30 days 

3. Less than 30 days but more than 10 days 

4. Less than 10 days 

4.41 Did you or another adult in your 

household skip meals during the past 12 

months because you did not have enough 

money to buy food? 

 

1. No  

2. Yes             How often? 

1. More than half the time 

2. Less than half the time but more than 30 days 

3. Less than 30 days but more than 10 days 

4. Less than 10 days 

4.42 Did you or another adult in your 

household stop eating for an entire day 

(during the past 12 months) because you 

did not have enough money to buy food? 

1. No  

2. Yes             How often? 

1. Less than half the time but more than 30 days 

2. Less than 30 days but more than 10 days 
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 3. Less than 10 days 

4.43 In the past 12 months, did you or anyone 

in the household borrow money for food 

from friends or relatives? 

1. No  

2. Yes             How often? 

1. Less than half the time but more than 30 days 

2. Less than 30 days but more than 10 days 

3. Less than 10 days 

4.44 In the past 12 months, did you or anyone 

in the household buy food on a credit 

account or credit card? 

1. No  

2. Yes             How often? 

1. Less than half the time but more than 30 days 

2. Less than 30 days but more than 10 days 

3. Less than 10 days 

5 Household Food Insecurity Coping Mechanisms  

5.1  Since crises, how did you 

overcome the food 

shortage? 

(Select  that all apply) 

 

1. Eating less/skipping meals 

2. Eating food less preferred 

3. Food or cash aid 

4. Migrating household head to other villages 

5. Migrating the younger household members to town 

6. Selling assets 

7. Eating wild food 

8. Selling trees  

9. Gardening (to grow food, mainly vegetables and green leaves) 

10. Trade (commercial activities) 

11. Little crafts 

12. Small livestock raising 

13. Other/specify -------------------------------- 

5.2 Did anyone in the family 

benefit from food aid 

rations in the last one year? 

(Select  that all apply) 

1. Yes, emergency food rations 

2. Yes, safety net food rations 

3. No 

4. Other (specify)……………. 

5.3  If you are safety net user 

have you graduate now? 

1. Yes  

2. No 

3. No safety net user 
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Appendix B: Internal consistence analysis of the data collection tools.  

Items  Scale Mean 

if Item 

Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

Any household member ate CEREAL CROPS 61.00 74.572 .114 .737 

Any household member ate VITAMIN A RICH 

VEGETABLES AND FRUITS 

60.26 72.642 .243 .731 

Any household member ate MEAT 60.12 74.049 .115 .735 

Any household member ate EGGS 60.13 73.863 .116 .735 

Any household member ate FISH 60.05 74.678 .112 .737 

Any household member ate LEGUMES, NUTS 

AND SEEDS 

60.85 73.268 .173 .733 

Any household member ate MILK AND MILK 

PRODUCTS 

60.31 72.401 .257 .730 

Any household member ate OILS AND FATS 60.73 72.182 .278 .729 

Any household member ate SWEETS 60.66 71.920 .294 .728 

Did your households get enough and safe 

drinking water 

60.70 73.010 .166 .733 

Any cereal crops eaten in your household in the 

last 12 months through your own production 

58.90 67.433 .360 .721 

You are usually able to buy all of the cereal crops 

that you need for you and your family from the 

local market 

60.46 71.192 .183 .732 

Any fresh fruit eaten in your household in the last 

12 months through your own production 

57.53 67.432 .365 .720 

You are usually able to buy all of the fruit that 

you need for you and your family from the local 

market 

59.60 67.093 .298 .726 

Any vegetables eaten in your household in the 

last 12 months through your own production 

57.78 65.426 .417 .715 
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You are usually able to buy all of the vegetables 

that you need for you and your family from the 

local market 

60.11 67.892 .303 .725 

Any milk products eaten in your household in the 

last 12 months through your own production 

58.24 66.221 .350 .721 

You are usually able to buy all of the milk 

products that you need for you and your family 

from the local market 

59.53 66.916 .297 .726 

Any meat products eaten in your household in the 

last 12 months through your own production 

58.02 68.625 .305 .725 

You are usually able to buy all of the meat 

products that you need for you and your family 

from the local market 

60.08 70.398 .147 .738 

The kind of water used in your household in the 

last 12 months in your village 

60.22 71.127 .145 .736 

Food consumed in the household during the past 

12 months. (due to lack of money to buy food) 

59.11 66.207 .515 .711 

You and your household members worried that 

your food would run out before you had money to 

buy more 

60.18 71.795 .431 .726 

You have to eat the same food daily because you 

did not have money to buy other food 

60.51 72.332 .233 .730 

You or any other adult in your household eaten 

less food than you wanted to because you did not 

have enough money to buy food 

59.59 64.010 .372 .720 

You or another adult in your household skip 

meals during the past 12 months because you did 

not have enough money to buy food 

60.36 68.241 .307 .725 
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You or another adult in your household stop 

eating for an entire day (during the past 12 

months) because you did not have enough money 

to buy food 

60.94 73.694 .108 .735 

You or anyone in the household borrow money 

for food from friends or relatives 

60.37 67.808 .290 .726 

You or anyone in the household buy food on a 

credit account or credit card 

60.49 68.342 .262 .728 

Cronbach's Alpha .735 



 

137 | P a g e  
 

Appendix C: The joint probability distribution based on the  D-vine pair copula was displayed as follows.  
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Among the six proposed bivariate copula functions, AMH bivariate copula was selected for )( 11 yF and )( 22 yF , Frank for )( 22 yF  and

)( 33 yF , and Frank for )|( 212|1 yyF and )|( 232|3 yyF . Hence the simplified joint probability distribution based on the D pair copula was 

displayed as follows.  

when 01 =i  and 03 =i , 

𝐶12
𝐴𝑀𝐻++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = 𝐹1(𝑦1) ∗ 𝐹2(𝑦2)/(1−𝜃12(1 − 𝐹1(𝑦1)) ∗ (1 − 𝐹2(𝑦2))) 

𝐶12
𝐴𝑀𝐻+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = 𝐹1(𝑦1) ∗ 𝐹2(𝑦2 − 1)/(1−𝜃12(1 − 𝐹1(𝑦1)) ∗ (1 − 𝐹2(𝑦2 − 1))) 

𝐶23
𝐹𝑟++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
((exp (−𝜃23𝐹2(𝑦2)) − 1)(exp (−𝜃23𝐹3(𝑦3)) − 1))

exp(−𝜃23) − 1
) 

𝐶23
𝐹𝑟−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
(exp (−𝜃23𝐹2(𝑦2 − 1)) − 1)(exp (−𝜃23𝐹3(𝑦3)) − 1)

exp(−𝜃23) − 1
) 

𝐶13|2
𝐹𝑟00

= −1
𝜃13|2

⁄ 𝑙𝑜𝑔

(

  
 

1 +

(exp (−𝜃13|2 (
𝐶12

𝐴𝑀𝐻++
− 𝐶12

𝐴𝑀𝐻+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1) (exp (−𝜃13|2 (

𝐶23
𝐹𝑟++

− 𝐶23
𝐹𝑟−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1)

exp(−𝜃13|2) − 1

)

  
 

 

 

when 11 =i  and 03 =i
 

𝐶12
𝐴𝑀𝐻−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = 𝐹1(𝑦1 − 1) ∗ 𝐹2(𝑦2)/(1−𝜃12(1 − 𝐹1(𝑦1 − 1)) ∗ (1 − 𝐹2(𝑦2))) 
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𝐶12
𝐴𝑀𝐻−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = 𝐹1(𝑦1 − 1) ∗ 𝐹2(𝑦2 − 1)/(1−𝜃12(1 − 𝐹1(𝑦1 − 1)) ∗ (1 − 𝐹2(𝑦2 − 1))) 

𝐶23
𝐹𝑟++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
((exp (−𝜃23𝐹2(𝑦2)) − 1)(exp (−𝜃23𝐹3(𝑦3)) − 1))

exp(−𝜃23) − 1
) 

𝐶23
𝐹𝑟−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
(exp (−𝜃23𝐹2(𝑦2 − 1)) − 1)(exp (−𝜃23𝐹3(𝑦3)) − 1)

exp(−𝜃23) − 1
) 

𝐶13|2
𝐹𝑟10

= −1
𝜃13|2

⁄ 𝑙𝑜𝑔

(

  
 

1 +

(exp (−𝜃13|2 (
𝐶12

𝐴𝑀𝐻−+
− 𝐶12

𝐴𝑀𝐻−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1) (exp (−𝜃13|2 (

𝐶23
𝐹𝑟++

− 𝐶23
𝐹𝑟−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1)

exp(−𝜃13|2) − 1

)

  
 

 

when 01 =i  and 13 =i
 

𝐶12
𝐴𝑀𝐻++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = 𝐹1(𝑦1) ∗ 𝐹2(𝑦2)/(1−𝜃12(1 − 𝐹1(𝑦1)) ∗ (1 − 𝐹2(𝑦2))) 

𝐶12
𝐴𝑀𝐻+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = 𝐹1(𝑦1) ∗ 𝐹2(𝑦2 − 1)/(1−𝜃12(1 − 𝐹1(𝑦1)) ∗ (1 − 𝐹2(𝑦2 − 1))) 

𝐶23
𝐹𝑟+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
((exp (−𝜃23𝐹2(𝑦2)) − 1)(exp (−𝜃23𝐹3(𝑦3 − 1)) − 1))

exp(−𝜃23) − 1
) 

𝐶23
𝐹𝑟−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
(exp (−𝜃23𝐹2(𝑦2 − 1)) − 1)(exp (−𝜃23𝐹3(𝑦3 − 1)) − 1)

exp(−𝜃23) − 1
) 

𝐶13|2
𝐹𝑟01

= −1
𝜃13|2

⁄ 𝑙𝑜𝑔

(

  
 

1 +

(exp (−𝜃13|2 (
𝐶12

𝐴𝑀𝐻++
− 𝐶12

𝐴𝑀𝐻+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1) (exp (−𝜃13|2 (

𝐶23
𝐹𝑟+−

− 𝐶23
𝐹𝑟−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1)

exp(−𝜃13|2) − 1

)

  
 

 

when 11 =i  and 13 =i , 
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𝐶12
𝐴𝑀𝐻−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = 𝐹1(𝑦1 − 1) ∗ 𝐹2(𝑦2)/(1−𝜃12(1 − 𝐹1(𝑦1 − 1)) ∗ (1 − 𝐹2(𝑦2))) 

𝐶12
𝐴𝑀𝐻−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = 𝐹1(𝑦1 − 1) ∗ 𝐹2(𝑦2 − 1)/(1−𝜃12(1 − 𝐹1(𝑦1 − 1)) ∗ (1 − 𝐹2(𝑦2 − 1))) 

𝐶23
𝐹𝑟+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
((exp (−𝜃23𝐹2(𝑦2)) − 1)(exp (−𝜃23𝐹3(𝑦3 − 1)) − 1))

exp(−𝜃23) − 1
) 

𝐶23
𝐹𝑟−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = −1
𝜃23

⁄ 𝑙𝑜𝑔 (1 +
(exp (−𝜃23𝐹2(𝑦2 − 1)) − 1)(exp (−𝜃23𝐹3(𝑦3 − 1)) − 1)

exp(−𝜃23) − 1
) 

𝐶13|2
𝐹𝑟11

= −1
𝜃13|2

⁄ 𝑙𝑜𝑔

(

  
 

1 +

(exp (−𝜃13|2 (
𝐶12

𝐴𝑀𝐻−+
− 𝐶12

𝐴𝑀𝐻−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1) (exp (−𝜃13|2 (

𝐶23
𝐹𝑟+−

− 𝐶23
𝐹𝑟−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)) − 1)

exp(−𝜃13|2) − 1

)

  
 

 

Hence, 

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, 𝑌3 = 𝑦3) = (𝐶13|2
𝐹𝑟00

− 𝐶13|2
𝐹𝑟01

− 𝐶13|2
𝐹𝑟10

+ 𝐶13|2
𝐹𝑟11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)] 

As a result, the likelihood function is  

L(𝑐, 𝛽, 𝜃|𝑋) = ∏∏∏[(𝐶13|2
𝐹𝑟00

− 𝐶13|2
𝐹𝑟01

− 𝐶13|2
𝐹𝑟10

+ 𝐶13|2
𝐹𝑟11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)]]

𝐽−1

𝑗=1

𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗𝑇

𝑡=1

𝑛

𝑖=1

 

The log-likelihood is  

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

∗

𝑇

𝑡=1

𝑙𝑜𝑔 ((𝐶13|2
𝐹𝑟00

− 𝐶13|2
𝐹𝑟01

− 𝐶13|2
𝐹𝑟10

+ 𝐶13|2
𝐹𝑟11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)])

𝑛

𝑖=1

 

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

𝑇

𝑡=1

∗ {𝑙𝑜𝑔(𝐶13|2
𝐹𝑟00

− 𝐶13|2
𝐹𝑟01

− 𝐶13|2
𝐹𝑟10

+ 𝐶13|2
𝐹𝑟11

) + 𝑙𝑜𝑔( 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1))}

𝑛

𝑖=1
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I. The steps possessed to simplify and obtain the log-likelihood maximum likelihood for the D- vine longitudinal discrete random 

variables application to household food security. 

The joint probability distribution of longitudinal ordinal data based on the D pair copula was displayed as follows.  
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Among the six proposed bivariate copula functions, Gumbel copula was selected for )( 11 yF and )( 22 yF , Gumbel for )( 22 yF  and 

)( 33 yF , and Gumbel for  )|( 212|1 yyF and )|( 232|3 yyF . Hence the simplified joint probability distribution given by 

when 01 =i  and 03 =i , 

𝐶12
𝐺𝑢++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶12
𝐺𝑢+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶23
𝐺𝑢++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶23
𝐺𝑢−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶13|2
𝐺𝑢00

= 𝑒𝑥𝑝

[
 
 
 
 

−((−𝑙𝑜𝑔 (
𝐶12

𝐺𝑢++
− 𝐶12

𝐺𝑢+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

+ (−𝑙𝑜𝑔 (
𝐶23

𝐺𝑢++
− 𝐶23

𝐺𝑢−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

)

1
𝜃13|2

⁄

]
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when 11 =i  and 03 =i
 

𝐶12
𝐺𝑢−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1 − 1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶12
𝐺𝑢−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹1(𝑦1 − 1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶23
𝐺𝑢++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶23
𝐺𝑢−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶13|2
𝐺𝑢10

= 𝑒𝑥𝑝

[
 
 
 
 

−((−𝑙𝑜𝑔 (
𝐶12

𝐺𝑢−+
− 𝐶12

𝐺𝑢−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

+ (−𝑙𝑜𝑔 (
𝐶23

𝐺𝑢++
− 𝐶23

𝐺𝑢−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

)

1
𝜃13|2

⁄

]
 
 
 
 

 

when 01 =i  and 13 =i
 

𝐶12
𝐺𝑢++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶12
𝐺𝑢+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶23
𝐺𝑢+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3 − 1)))
𝜃23

)

1
𝜃23

⁄

] 
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𝐶23
𝐺𝑢−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3 − 1)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶13|2
𝐺𝑢01

= 𝑒𝑥𝑝

[
 
 
 
 

−((−𝑙𝑜𝑔 (
𝐶12

𝐺𝑢++
− 𝐶12

𝐺𝑢+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

+ (−𝑙𝑜𝑔 (
𝐶23

𝐺𝑢+−
− 𝐶23

𝐺𝑢−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

)

1
𝜃13|2

⁄

]
 
 
 
 

 

when 11 =i  and 13 =i , 

𝐶12
𝐺𝑢−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹1(𝑦1 − 1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶12
𝐺𝑢−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹1(𝑦1 − 1)))
𝜃12

+ (−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃12

)

1
𝜃12

⁄

] 

𝐶23
𝐺𝑢+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = 𝑒𝑥𝑝 [− ((−𝑙𝑜𝑔(𝐹2(𝑦2)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3 − 1)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶23
𝐺𝑢−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = 𝑒𝑥𝑝 [−((−𝑙𝑜𝑔(𝐹2(𝑦2 − 1)))
𝜃23

+ (−𝑙𝑜𝑔(𝐹3(𝑦3 − 1)))
𝜃23

)

1
𝜃23

⁄

] 

𝐶13|2
𝐺𝑢11

= 𝑒𝑥𝑝

[
 
 
 
 

−((−𝑙𝑜𝑔 (
𝐶12

𝐺𝑢−+
− 𝐶12

𝐺𝑢−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

+ (−𝑙𝑜𝑔 (
𝐶23

𝐺𝑢+−
− 𝐶23

𝐺𝑢−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
))

𝜃13|2

)

1
𝜃13|2

⁄

]
 
 
 
 

 

Hence, 

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, 𝑌3 = 𝑦3) = (𝐶13|2
𝐺𝑢00

− 𝐶13|2
𝐺𝑢01

− 𝐶13|2
𝐺𝑢10

+ 𝐶13|2
𝐺𝑢11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)] 

As a result, the likelihood function is  
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L(𝑐, 𝛽, 𝜃|𝑋) = ∏∏∏[(𝐶13|2
𝐺𝑢00

− 𝐶13|2
𝐺𝑢01

− 𝐶13|2
𝐺𝑢10

+ 𝐶13|2
𝐺𝑢11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)]]

𝐽−1

𝑗=1

𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗𝑇

𝑡=1

𝑛

𝑖=1

 

The log-likelihood is  

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

∗

𝑇

𝑡=1

𝑙𝑜𝑔 ((𝐶13|2
𝐺𝑢00

− 𝐶13|2
𝐺𝑢01

− 𝐶13|2
𝐺𝑢10

+ 𝐶13|2
𝐺𝑢11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)])

𝑛

𝑖=1

 

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

𝑇

𝑡=1

∗ {𝑙𝑜𝑔(𝐶13|2
𝐺𝑢00

− 𝐶13|2
𝐺𝑢01

− 𝐶13|2
𝐺𝑢10

+ 𝐶13|2
𝐺𝑢11

) + 𝑙𝑜𝑔( 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1))}

𝑛

𝑖=1

 

II. The steps possessed to simplify and obtain the log-likelihood maximum likelihood for the D- vine multivariate longitudinal 

discrete random variables application to household food security.  

M-dimensional multivariate discrete random variables were observed repeatedly for 𝑇 time points and re-ordered the observations of 

the multivariate series into the univariate outcomes of dimensions 𝑁 = 𝑇 ∗ 𝑛 given by 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑀), where 𝑌1 =

(𝑦11, 𝑦21, … , 𝑦𝑁1)
′, 𝑌2 = (𝑦12, 𝑦22, … , 𝑦𝑁2)

′𝑎𝑛𝑑 𝑌𝑀 = (𝑦1𝑚, 𝑦2𝑚, . , 𝑦𝑁𝑚)′. The joint probability distribution of multivariate 

longitudinal ordinal data based on the D pair copula was displayed as follows.  
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Among the six proposed bivariate copula functions, Clayton (Cl) copula was selected for )( 11 yF and )( 22 yF , AMH for )( 22 yF  and

)( 33 yF , and Independent for )|( 212|1 yyF and )|( 232|3 yyF . Hence the simplified joint probability distribution given by 

when 01 =i  and 03 =i , 

𝐶12
𝐶𝑙++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = ((𝐹1(𝑦1))
−𝜃12

+ (𝐹2(𝑦2))
−𝜃12

− 1)
−1

𝜃12
⁄
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𝐶12
𝐶𝑙+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = ((𝐹1(𝑦1))
−𝜃12

+ (𝐹2(𝑦2 − 1))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶23
𝐴𝑀𝐻++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = 𝐹2(𝑦2) ∗ 𝐹2(𝑦3)/(1−𝜃23(1 − 𝐹2(𝑦2)) ∗ (1 − 𝐹3(𝑦3))) 

𝐶23
𝐴𝑀𝐻−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = 𝐹2(𝑦2 − 1) ∗ 𝐹2(𝑦3)/(1−𝜃23(1 − 𝐹2(𝑦2 − 1)) ∗ (1 − 𝐹3(𝑦3))) 

𝐶13|2
𝐼𝑛𝑑00

= (
𝐶12

𝐶𝑙++
− 𝐶12

𝐶𝑙+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)(

𝐶23
𝐴𝑀𝐻++

− 𝐶23
𝐴𝑀𝐻−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
) 

when 11 =i  and 03 =i
 

𝐶12
𝐶𝑙−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = ((𝐹1(𝑦1 − 1))
−𝜃12

+ (𝐹2(𝑦2))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶12
𝐶𝑙−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = ((𝐹1(𝑦1 − 1))
−𝜃12

+ (𝐹2(𝑦2 − 1))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶23
𝐴𝑀𝐻++

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3)) = 𝐹2(𝑦2) ∗ 𝐹2(𝑦3)/(1−𝜃23(1 − 𝐹2(𝑦2)) ∗ (1 − 𝐹3(𝑦3))) 

𝐶23
𝐴𝑀𝐻−+

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3)) = 𝐹2(𝑦2 − 1) ∗ 𝐹2(𝑦3)/(1−𝜃23(1 − 𝐹2(𝑦2 − 1)) ∗ (1 − 𝐹3(𝑦3))) 

𝐶13|2
𝐼𝑛𝑑10

= (
𝐶12

𝐶𝑙−+
− 𝐶12

𝐶𝑙−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)(

𝐶23
𝐴𝑀𝐻++

− 𝐶23
𝐴𝑀𝐻−+

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
) 

when 01 =i  and 13 =i
 

𝐶12
𝐶𝑙++

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2)) = ((𝐹1(𝑦1))
−𝜃12

+ (𝐹2(𝑦2))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶12
𝐶𝑙+−

= 𝐶12(𝐹1(𝑦1), 𝐹2(𝑦2 − 1)) = ((𝐹1(𝑦1))
−𝜃12

+ (𝐹2(𝑦2 − 1))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶23
𝐴𝑀𝐻+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = 𝐹2(𝑦2) ∗ 𝐹2(𝑦3 − 1)/(1−𝜃23(1 − 𝐹2(𝑦2)) ∗ (1 − 𝐹3(𝑦3 − 1))) 

𝐶23
𝐴𝑀𝐻−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = 𝐹2(𝑦2 − 1) ∗ 𝐹2(𝑦3 − 1)/(1−𝜃23(1 − 𝐹2(𝑦2 − 1)) ∗ (1 − 𝐹3(𝑦3 − 1))) 

𝐶13|2
𝐼𝑛𝑑01

= (
𝐶12

𝐶𝑙++
− 𝐶12

𝐶𝑙+−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)(

𝐶23
𝐴𝑀𝐻+−

− 𝐶23
𝐴𝑀𝐻−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
) 
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when 11 =i  and 13 =i , 

𝐶12
𝐶𝑙−+

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2)) = ((𝐹1(𝑦1 − 1))
−𝜃12

+ (𝐹2(𝑦2))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶12
𝐶𝑙−−

= 𝐶12(𝐹1(𝑦1 − 1), 𝐹2(𝑦2 − 1)) = ((𝐹1(𝑦1 − 1))
−𝜃12

+ (𝐹2(𝑦2 − 1))
−𝜃12

− 1)
−1

𝜃12
⁄

 

𝐶23
𝐴𝑀𝐻+−

= 𝐶23(𝐹2(𝑦2), 𝐹3(𝑦3 − 1)) = 𝐹2(𝑦2) ∗ 𝐹2(𝑦3 − 1)/(1−𝜃23(1 − 𝐹2(𝑦2)) ∗ (1 − 𝐹3(𝑦3 − 1))) 

𝐶23
𝐴𝑀𝐻−−

= 𝐶23(𝐹2(𝑦2 − 1), 𝐹3(𝑦3 − 1)) = 𝐹2(𝑦2 − 1) ∗ 𝐹2(𝑦3 − 1)/(1−𝜃23(1 − 𝐹2(𝑦2 − 1)) ∗ (1 − 𝐹3(𝑦3 − 1))) 

𝐶13|2
𝐼𝑛𝑑11

= (
𝐶12

𝐶𝑙−+
− 𝐶12

𝐶𝑙−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
)(

𝐶23
𝐴𝑀𝐻+−

− 𝐶23
𝐴𝑀𝐻−−

 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)
) 

Hence, 

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, 𝑌3 = 𝑦3) = (𝐶13|2
𝐼𝑛𝑑00

− 𝐶13|2
𝐼𝑛𝑑01

− 𝐶13|2
𝐼𝑛𝑑10

+ 𝐶13|2
𝐼𝑛𝑑11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)] 

As a result, the likelihood function is  

L(𝑐, 𝛽, 𝜃|𝑋) = ∏∏∏[(𝐶13|2
𝐼𝑛𝑑00

− 𝐶13|2
𝐼𝑛𝑑01

− 𝐶13|2
𝐼𝑛𝑑10

+ 𝐶13|2
𝐼𝑛𝑑11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)]]

𝐽−1

𝑗=1

𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗𝑇

𝑡=1

𝑛

𝑖=1

 

The log-likelihood is  

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

∗

𝑇

𝑡=1

𝑙𝑜𝑔 ((𝐶13|2
𝐼𝑛𝑑00

− 𝐶13|2
𝐼𝑛𝑑01

− 𝐶13|2
𝐼𝑛𝑑10

+ 𝐶13|2
𝐼𝑛𝑑11

)[ 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1)])

𝑛

𝑖=1

 

l(𝑐, 𝛽, 𝜃|𝑋) = ∑∑∑𝑦1𝑖𝑗𝑦2𝑖𝑗𝑦3𝑖𝑗

𝐽−1

𝑗=1

𝑇

𝑡=1

∗ {𝑙𝑜𝑔(𝐶13|2
𝐼𝑛𝑑00

− 𝐶13|2
𝐼𝑛𝑑01

− 𝐶13|2
𝐼𝑛𝑑10

+ 𝐶13|2
𝐼𝑛𝑑11

) + 𝑙𝑜𝑔( 𝐹2(𝑦2) −  𝐹2(𝑦2 − 1))}

𝑛

𝑖=1
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Appendix D: R codes for the log-likelihood D-vines 

I. The R code to estimate the parameters for the simplified log-likelihood function in 

Appendix B I.  

# Import the Food security data and Pre-processing ## 

### X are Covariates for All Dimensions ## 

### Dep is Dependent variables ## 

 

library(Alabama) 

  

X<-read.table(file.choose(), header=TRUE, sep=",") 

Dep<-read.table(file.choose(), header=TRUE, sep=",") 

Y<-Dep$Y1 

Z<-Dep$Y2 

W<-Dep$Y3 

y1<-ifelse(Y==1,1,0) 

y2<-ifelse(Y==2,1,0) 

y3<-ifelse(Y==3,1,0) 

y4<-ifelse(Y==4,1,0) 

z1<-ifelse(Z==1,1,0) 

z2<-ifelse(Z==2,1,0) 

z3<-ifelse(Z==3,1,0) 

z4<-ifelse(Z==4,1,0) 

w1<-ifelse(W==1,1,0) 

w2<-ifelse(W==2,1,0) 

w3<-ifelse(W==3,1,0) 

w4<-ifelse(W==4,1,0) 

X=as.vector(X) 

G=function(z) 

{ 

G=exp(z)/(1+exp(z)) 
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return(G) 

} 

 

g=function(z)  

{ 

g=exp(z)/(1+exp(z))^2 

return(g) 

} 

### Cumulative logit multivariate Ordinal longitudinal Model ### 

alpha1<-vector(length=3,mode="numeric") 

alpha1[1]<-0 

alpha2<-vector(length=3,mode="numeric") 

alpha2[1]<-0 

alpha3<-vector(length=3,mode="numeric") 

alpha3[1]<-0 

beta<-vector(length=16,mode="numeric")  ### coefficients for Availability covariates ###  

gamma<-vector(length=16,mode="numeric")  ### coefficients for Accessibility covariates ### 

zeta<-vector(length=6,mode="numeric")   ### coefficients for Utilisation covariates ### 

r1<-vector(length=1,mode="numeric")     ### PCC parameter for Availability and Accessibility 

### 

r2<-vector(length=1,mode="numeric")     ### PCC parameter for Accessibility and Utilisation 

### 

r3<-vector(length=1,mode="numeric")     ### PCC parameter for Availability|Accessibility and 

Utilisation|Accessibility ### 

par<-vector(length=60,mode="numeric") 

 

logL.cum <-function(par) 

{ 

comp1<-comp2<-comp3<-comp4<-vector(length=dim(X)[1],mode="numeric") 

z10<-z11<-z12<-z13<-z14<-z20<-z21<-z22<-z23<-z24<-z30<-z31<-z32<-z33<-z34<-

vector(length=dim(X)[1],mode="numeric") 
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AMH_11<-AMH_21<-AMH_31<-AMH_41<-AMH_12<-AMH_22<-AMH_32<-AMH_42<-

AMH_13<-AMH_23<-AMH_33<-AMH_43<-AMH_14<-AMH_24<-AMH_34<-AMH_44<-

vector(length=dim(X)[1],mode="numeric") 

Fr_001<-Fr_101<-Fr_011<-Fr_111<- Fr_002<-Fr_102<-Fr_012<-Fr_112<-Fr_003<-Fr_103<-

Fr_013<-Fr_113<-Fr_004<-Fr_104<-Fr_014<-Fr_114<-

vector(length=dim(X)[1],mode="numeric") 

Fr_11<-Fr_21<-Fr_31<-Fr_41<-Fr_12<-Fr_22<-Fr_32<-Fr_42<-Fr_13<-Fr_23<-Fr_33<-

Fr_43<-Fr_14<-Fr_24<-Fr_34<-Fr_44<-vector(length=dim(X)[1],mode="numeric") 

f1<-f2<-f3<-f4<-vector(length=dim(X)[1],mode="numeric") 

alpha1<-par[1:3]; alpha2<-par[4:6]; alpha3<-par[7:9]; beta<-par[10:25]; gamma<-par[26:41]; 

zeta<-par[42:57]; r1<-par[58]; r2<-par[59]; r3<-par[60]  

for (ii in 1: dim(X)[1]) 

{ 

z10[ii]<--Inf+sum(beta*X[ii,]) 

z11[ii]<-alpha1[1]+sum(beta*X[ii,]) 

z12[ii]<-alpha1[2]+sum(beta*X[ii,]) 

z13[ii]<-alpha1[3]+sum(beta*X[ii,]) 

z14[ii]<-100+sum(beta*X[ii,]) 

z20[ii]<--Inf+sum(gamma*X[ii,]) 

z21[ii]<-alpha2[1]+sum(gamma*X[ii,]) 

z22[ii]<-alpha2[2]+sum(gamma*X[ii,]) 

z23[ii]<-alpha2[3]+sum(gamma*X[ii,]) 

z24[ii]<-100+sum(gamma*X[ii,]) 

z30[ii]<--Inf+sum(zeta*X[ii,]) 

z31[ii]<-alpha3[1]+sum(zeta*X[ii,]) 

z32[ii]<-alpha3[2]+sum(zeta*X[ii,]) 

z33[ii]<-alpha3[3]+sum(zeta*X[ii,]) 

z34[ii]<-100+sum(zeta*X[ii,]) 

}  

 

d<-data.frame(z10, z11, z12, z13, z14) 
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z<-data.frame(z20, z21, z22, z23, z24) 

w<-data.frame(z30, z31, z32, z33, z34) 

 

AHM_11<-(G(d[,2])*G(z[,2]))/(1-r1*(1-G(d[,2]))*(1-G(z[,2]))) 

AHM_21<-(G(d[,2])*G(z[,1]))/(1-r1*(1-G(d[,2]))*(1-G(z[,1]))) 

AHM_31<-(G(d[,1])*G(z[,2]))/(1-r1*(1-G(d[,1]))*(1-G(z[,2])))  

AHM_41<-(G(d[,1])*G(z[,1]))/(1-r1*(1-G(d[,1]))*(1-G(z[,1]))) 

 

Fr_11<-(-1/r2)*log(1+((exp(-r2*G(z[,2]))-1)*(exp(-r2*G(w[,2]))-1)/(exp(-r2)-1))) 

Fr_21<-(-1/r2)*log(1+((exp(-r2*G(z[,1]))-1)*(exp(-r2*G(w[,2]))-1)/(exp(-r2)-1))) 

Fr_31<-(-1/r2)*log(1+((exp(-r2*G(z[,2]))-1)*(exp(-r2*G(w[,1]))-1)/(exp(-r2)-1))) 

Fr_41<-(-1/r2)*log(1+((exp(-r2*G(z[,1]))-1)*(exp(-r2*G(w[,1]))-1)/(exp(-r2)-1))) 

 

f2<-G(z[,2])-G(z[,1]) 

 

Fr_001<-(-1/r3)*log(1+((exp(-r3*(AHM_11 - AHM_21)/f2)-1)*(exp(-r3*(Fr_11 - Fr_21)/f2)-

1)/(exp(-r3)-1))) 

Fr_101<-(-1/r3)*log(1+((exp(-r3*(AHM_31 - AHM_41)/f2)-1)*(exp(-r3*(Fr_11 - Fr_21)/f2)-

1)/(exp(-r3)-1))) 

Fr_011<-(-1/r3)*log(1+((exp(-r3*(AHM_11 - AHM_21)/f2)-1)*(exp(-r3*(Fr_31 - Fr_41)/f2)-

1)/(exp(-r3)-1))) 

Fr_111<-(-1/r3)*log(1+((exp(-r3*(AHM_31 - AHM_41)/f2)-1)*(exp(-r3*(Fr_31 - Fr_41)/f2)-

1)/(exp(-r3)-1))) 

 

comp1<-y1*z1*w1*log((Fr_001 - Fr_101 - Fr_011 + Fr_111)*f2) 

 

AHM_12<-(G(d[,3])*G(z[,3]))/(1-r1*(1-G(d[,3]))*(1-G(z[,3]))) 

AHM_22<-(G(d[,3])*G(z[,2]))/(1-r1*(1-G(d[,3]))*(1-G(z[,2]))) 

AHM_32<-(G(d[,2])*G(z[,3]))/(1-r1*(1-G(d[,2]))*(1-G(z[,3])))  

AHM_42<-(G(d[,2])*G(z[,2]))/(1-r1*(1-G(d[,2]))*(1-G(z[,2]))) 
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Fr_12<-(-1/r2)*log(1+((exp(-r2*G(z[,3]))-1)*(exp(-r2*G(w[,3]))-1)/(exp(-r2)-1))) 

Fr_22<-(-1/r2)*log(1+((exp(-r2*G(z[,2]))-1)*(exp(-r2*G(w[,3]))-1)/(exp(-r2)-1))) 

Fr_32<-(-1/r2)*log(1+((exp(-r2*G(z[,3]))-1)*(exp(-r2*G(w[,2]))-1)/(exp(-r2)-1))) 

Fr_42<-(-1/r2)*log(1+((exp(-r2*G(z[,2]))-1)*(exp(-r2*G(w[,2]))-1)/(exp(-r2)-1))) 

 

f3<-G(z[,3])-G(z[,2]) 

 

Fr_002<-(-1/r3)*log(1+((exp(-r3*(AHM_12 - AHM_22)/f3)-1)*(exp(-r3*(Fr_12 - Fr_22)/f3)-

1)/(exp(-r3)-1))) 

Fr_102<-(-1/r3)*log(1+((exp(-r3*(AHM_32 - AHM_42)/f3)-1)*(exp(-r3*(Fr_12 - Fr_22)/f3)-

1)/(exp(-r3)-1))) 

Fr_012<-(-1/r3)*log(1+((exp(-r3*(AHM_12 - AHM_22)/f3)-1)*(exp(-r3*(Fr_32 - Fr_42)/f3)-

1)/(exp(-r3)-1))) 

Fr_112<-(-1/r3)*log(1+((exp(-r3*(AHM_32 - AHM_42)/f3)-1)*(exp(-r3*(Fr_32 - Fr_42)/f3)-

1)/(exp(-r3)-1))) 

 

comp2<-y2*z2*w2*log((Fr_002 - Fr_102 - Fr_012 + Fr_112)*f3) 

 

AHM_13<-(G(d[,4])*G(z[,4]))/(1-r1*(1-G(d[,4]))*(1-G(z[,4]))) 

AHM_23<-(G(d[,4])*G(z[,3]))/(1-r1*(1-G(d[,4]))*(1-G(z[,3]))) 

AHM_33<-(G(d[,3])*G(z[,4]))/(1-r1*(1-G(d[,3]))*(1-G(z[,4])))  

AHM_43<-(G(d[,3])*G(z[,3]))/(1-r1*(1-G(d[,3]))*(1-G(z[,3]))) 

 

Fr_13<-(-1/r2)*log(1+((exp(-r2*G(z[,4]))-1)*(exp(-r2*G(w[,4]))-1)/(exp(-r2)-1))) 

Fr_23<-(-1/r2)*log(1+((exp(-r2*G(z[,3]))-1)*(exp(-r2*G(w[,4]))-1)/(exp(-r2)-1))) 

Fr_33<-(-1/r2)*log(1+((exp(-r2*G(z[,4]))-1)*(exp(-r2*G(w[,3]))-1)/(exp(-r2)-1))) 

Fr_43<-(-1/r2)*log(1+((exp(-r2*G(z[,3]))-1)*(exp(-r2*G(w[,3]))-1)/(exp(-r2)-1))) 

 

f4<-G(z[,4])-G(z[,3]) 
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Fr_003<-(-1/r3)*log(1+((exp(-r3*(AHM_13 - AHM_23)/f4)-1)*(exp(-r3*(Fr_13 - Fr_23)/f4)-

1)/(exp(-r3)-1))) 

Fr_103<-(-1/r3)*log(1+((exp(-r3*(AHM_33 - AHM_43)/f4)-1)*(exp(-r3*(Fr_13 - Fr_23)/f4)-

1)/(exp(-r3)-1))) 

Fr_013<-(-1/r3)*log(1+((exp(-r3*(AHM_13 - AHM_23)/f4)-1)*(exp(-r3*(Fr_33 - Fr_43)/f4)-

1)/(exp(-r3)-1))) 

Fr_113<-(-1/r3)*log(1+((exp(-r3*(AHM_33 - AHM_43)/f4)-1)*(exp(-r3*(Fr_33 - Fr_43)/f4)-

1)/(exp(-r3)-1))) 

 

comp3<-y3*z3*w3*log((Fr_003 - Fr_103 - Fr_013 + Fr_113)*f4) 

 

AHM_14<-(G(d[,5])*G(z[,5]))/(1-r1*(1-G(d[,5]))*(1-G(z[,5]))) 

AHM_24<-(G(d[,5])*G(z[,4]))/(1-r1*(1-G(d[,5]))*(1-G(z[,4]))) 

AHM_34<-(G(d[,4])*G(z[,5]))/(1-r1*(1-G(d[,4]))*(1-G(z[,5])))  

AHM_44<-(G(d[,4])*G(z[,4]))/(1-r1*(1-G(d[,4]))*(1-G(z[,4]))) 

 

Fr_14<-(-1/r2)*log(1+((exp(-r2*G(z[,5]))-1)*(exp(-r2*G(w[,5]))-1)/(exp(-r2)-1))) 

Fr_24<-(-1/r2)*log(1+((exp(-r2*G(z[,4]))-1)*(exp(-r2*G(w[,5]))-1)/(exp(-r2)-1))) 

Fr_34<-(-1/r2)*log(1+((exp(-r2*G(z[,5]))-1)*(exp(-r2*G(w[,4]))-1)/(exp(-r2)-1))) 

Fr_44<-(-1/r2)*log(1+((exp(-r2*G(z[,4]))-1)*(exp(-r2*G(w[,4]))-1)/(exp(-r2)-1))) 

 

f5<-G(z[,5])-G(z[,4]) 

 

Fr_004<-(-1/r3)*log(1+((exp(-r3*(AHM_14 - AHM_24)/f5)-1)*(exp(-r3*(Fr_14 - Fr_24)/f5)-

1)/(exp(-r3)-1))) 

Fr_104<-(-1/r3)*log(1+((exp(-r3*(AHM_34 - AHM_44)/f5)-1)*(exp(-r3*(Fr_14 - Fr_24)/f5)-

1)/(exp(-r3)-1))) 

Fr_014<-(-1/r3)*log(1+((exp(-r3*(AHM_14 - AHM_24)/f5)-1)*(exp(-r3*(Fr_34 - Fr_44)/f5)-

1)/(exp(-r3)-1))) 

Fr_114<-(-1/r3)*log(1+((exp(-r3*(AHM_34 - AHM_44)/f5)-1)*(exp(-r3*(Fr_34 - Fr_44)/f5)-

1)/(exp(-r3)-1))) 
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comp4<-y4*z4*w4*log((Fr_004 - Fr_104 - Fr_014 + Fr_114)*f5) 

 

-sum(comp1+comp2+comp3+comp4) 

} 

hin<-function(par) 

{ 

alpha<-par[1:9] 

h<-rep(NA,1) 

h[1]<-alpha1[2]-alpha[1] 

h[2]<-alpha1[3]-alpha1[2] 

h[3]<-alpha2[2]-alpha2[1] 

h[4]<-alpha2[3]-alpha2[2] 

h[5]<-alpha3[2]-alpha3[1] 

h[6]<-alpha3[3]-alpha3[2] 

h 

} 

hin.jac<-function(par){ 

alpha<-par[1:9] 

j<-matrix(NA,6, length(par)) 

j[1,]<-

c(1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 

j[2,]<-

c(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 

j[3,]<-

c(0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 
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j[4,]<-

c(0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 

j[5,]<-

c(0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 

j[6,]<-

c(0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0) 

j 

} 

par<-c(-4.331,-1.526,0.834,-4.685,-2.885,-.806,-1.526,2.243,4.140,-0.514,-0.698,-0.192,-1.09,-

0.231,-1.258,-0.445,0.432,-0.492,-0.503,0.85,0.586,1.65,-0.578,-1.622,-1.191,-.865,-.751,-

.242,.647,.185,-.223,.058,-.050,-.086,-.267,-1.586,.388,.159,.132,-.920,-.589,-1.065,-.908,-.111,-

.544,-.184,1.117,.910,.349,-.582,.066,1.542,.492,.290,.010,.012,.169, 0.5, 1.5, 1.2) 

fit.cum<- auglag(par, logL.cum , hin = hin, hin.jac = hin.jac) 

s.e<- sqrt(diag(solve(fit.cum$hessian))) 

II. The R code to estimate the parameters for the simplified log-likelihood function in 

Appendix B II.  

library(alabama) 

X<-read.table(file.choose(), header=TRUE, sep=",") 

Dep<-read.table(file.choose(), header=TRUE, sep=",") 

Y<-Dep$Y1 

Z<-Dep$Y2 

W<-Dep$Y3 

 

y1<-ifelse(Y==1,1,0) 

y2<-ifelse(Y==2,1,0) 

y3<-ifelse(Y==3,1,0) 

y4<-ifelse(Y==4,1,0) 
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z1<-ifelse(Z==1,1,0) 

z2<-ifelse(Z==2,1,0) 

z3<-ifelse(Z==3,1,0) 

z4<-ifelse(Z==4,1,0) 

w1<-ifelse(W==1,1,0) 

w2<-ifelse(W==2,1,0) 

w3<-ifelse(W==3,1,0) 

w4<-ifelse(W==4,1,0) 

 

X=as.vector(X) 

 

G=function(z) 

{ 

G=exp(z)/(1+exp(z)) 

return(G) 

} 

 

g=function(z)  

{ 

g=exp(z)/(1+exp(z))^2 

return(g) 

} 

 

### Cumulative logit Ordinal Model ### 

alpha1<-vector(length=3,mode="numeric") 

alpha1[1]<-0 

alpha2<-vector(length=3,mode="numeric") 

alpha2[1]<-0 

alpha3<-vector(length=3,mode="numeric") 

alpha3[1]<-0 
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beta<-vector(length=7,mode="numeric") 

gamma<-vector(length=7,mode="numeric") 

zeta<-vector(length=7,mode="numeric") 

r1<-vector(length=1,mode="numeric") 

r2<-vector(length=1,mode="numeric") 

r3<-vector(length=1,mode="numeric") 

 

par<-vector(length=33,mode="numeric") 

 

logL.cum <-function(par) 

{ 

comp1<-comp2<-comp3<-comp4<-vector(length=dim(X)[1],mode="numeric") 

z10<-z11<-z12<-z13<-z14<-z20<-z21<-z22<-z23<-z24<-z30<-z31<-z32<-z33<-z34<-

vector(length=dim(X)[1],mode="numeric") 

 

Gu_11<-Ga_21<-Ga_31<-Ga_41<-Ga_12<-Ga_22<-Ga_32<-Ga_42<-Ga_13<-Ga_23<-

Ga_33<-Ga_43<-Ga_14<-Ga_24<-Ga_34<-Ga_44<-vector(length=dim(X)[1],mode="numeric") 

Gu_11<-Gu_21<-Gu_31<-Gu_41<-Gu_12<-Gu_22<-Gu_32<-Gu_42<-Gu_13<-Gu_23<-

Gu_33<-Gu_43<-Gu_14<-Gu_24<-Gu_34<-Gu_44<-

vector(length=dim(X)[1],mode="numeric") 

Ga_001<-Ga_011<-Ga_101<-Ga_111<-Ga_002<-Ga_012<-Ga_102<-Ga_112<-Ga_003<-

Ga_013<-Ga_103<-Ga_113<-Ga_004<-Ga_014<-Ga_104<-Ga_114<-

vector(length=dim(X)[1],mode="numeric") 

Gu_001<-Gu_011<-Gu_101<-Gu_111<-Gu_002<-Gu_012<-Gu_102<-Gu_112<-Gu_003<-

Gu_013<-Gu_103<-Gu_113<-Gu_004<-Gu_014<-Gu_104<-Gu_114<-

vector(length=dim(X)[1],mode="numeric") 

 

f1<-f2<-f3<-f4<-vector(length=dim(X)[1],mode="numeric") 

alpha1<-par[1:3]; alpha2<-par[4:6]; alpha3<-par[7:9]; beta<-par[10:16]; gamma<-par[17:23]; 

zeta<-par[24:30]; r1<-par[31]; r2<-par[32]; r3<-par[33]  

 



 

157 | P a g e  
 

for (ii in 1: dim(X)[1]) 

{ 

z10[ii]<--Inf+sum(beta*X[ii,]) 

z11[ii]<-alpha1[1]+sum(beta*X[ii,]) 

z12[ii]<-alpha1[2]+sum(beta*X[ii,]) 

z13[ii]<-alpha1[3]+sum(beta*X[ii,]) 

z14[ii]<-100+sum(beta*X[ii,]) 

 

z20[ii]<--Inf+sum(gamma*X[ii,]) 

z21[ii]<-alpha2[1]+sum(gamma*X[ii,]) 

z22[ii]<-alpha2[2]+sum(gamma*X[ii,]) 

z23[ii]<-alpha2[3]+sum(gamma*X[ii,]) 

z24[ii]<-100+sum(gamma*X[ii,]) 

 

z30[ii]<--Inf+sum(zeta*X[ii,]) 

z31[ii]<-alpha3[1]+sum(zeta*X[ii,]) 

z32[ii]<-alpha3[2]+sum(zeta*X[ii,]) 

z33[ii]<-alpha3[3]+sum(zeta*X[ii,]) 

z34[ii]<-100+sum(zeta*X[ii,]) 

 

} 

d<-data.frame(z10, z11, z12, z13, z14) 

z<-data.frame(z20, z21, z22, z23, z24) 

w<-data.frame(z30, z31, z32, z33, z34) 

 

Ga_11<-exp(-((-log(G(d[,2])))^r1 + (-log(G(z[,2])))^r1)^1/r1) 

Ga_21<-exp(-((-log(G(d[,2])))^r1 + (-log(G(z[,1])))^r1)^1/r1) 

Ga_31<-exp(-((-log(G(d[,1])))^r1 + (-log(G(z[,2])))^r1)^1/r1) 

Ga_41<-exp(-((-log(G(d[,1])))^r1 + (-log(G(z[,1])))^r1)^1/r1) 

 

Gu_11<-exp(-((-log(G(z[,2])))^r2 + (-log(G(w[,2])))^r2)^1/r2) 
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Gu_21<-exp(-((-log(G(z[,1])))^r2 + (-log(G(w[,2])))^r2)^1/r2) 

Gu_31<-exp(-((-log(G(z[,2])))^r2 + (-log(G(w[,1])))^r2)^1/r2) 

Gu_41<-exp(-((-log(G(z[,1])))^r2 + (-log(G(w[,1])))^r2)^1/r2) 

f2<-G(z[,2])-G(z[,1]) 

 

Ga_001<-exp(-((-log((Ga_11 - Ga_21)/f2))^r3 + (-log((Gu_11 - Gu_21)/f2))^r3)^1/r3) 

Ga_101<-exp(-((-log((Ga_11 - Ga_21)/f2))^r3 + (-log((Gu_31 - Gu_41)/f2))^r3)^1/r3) 

Ga_011<-exp(-((-log((Ga_31 - Ga_41)/f2))^r3 + (-log((Gu_11 - Gu_21)/f2))^r3)^1/r3) 

Ga_111<-exp(-((-log((Ga_31 - Ga_41)/f2))^r3 + (-log((Gu_31 - Gu_41)/f2))^r3)^1/r3) 

 

comp1<-y1*z1*w1*log((Ga_001 - Ga_101 - Ga_011 + Ga_111)*f2) 

 

 

Ga_12<-exp(-((-log(G(d[,3])))^r1 + (-log(G(z[,3])))^r1)^1/r1) 

Ga_22<-exp(-((-log(G(d[,3])))^r1 + (-log(G(z[,2])))^r1)^1/r1) 

Ga_32<-exp(-((-log(G(d[,2])))^r1 + (-log(G(z[,3])))^r1)^1/r1) 

Ga_42<-exp(-((-log(G(d[,2])))^r1 + (-log(G(z[,2])))^r1)^1/r1) 

 

Gu_12<-exp(-((-log(G(z[,3])))^r2 + (-log(G(w[,3])))^r2)^1/r2) 

Gu_22<-exp(-((-log(G(z[,2])))^r2 + (-log(G(w[,3])))^r2)^1/r2) 

Gu_32<-exp(-((-log(G(z[,3])))^r2 + (-log(G(w[,2])))^r2)^1/r2) 

Gu_42<-exp(-((-log(G(z[,2])))^r2 + (-log(G(w[,2])))^r2)^1/r2) 

 

f3<-G(z[,3])-G(z[,2]) 

 

Ga_002<-exp(-((-log((Ga_12 - Ga_22)/f3))^r3 + (-log((Gu_12 - Gu_22)/f3))^r3)^1/r3) 

Ga_102<-exp(-((-log((Ga_12 - Ga_22)/f3))^r3 + (-log((Gu_32 - Gu_42)/f3))^r3)^1/r3) 

Ga_012<-exp(-((-log((Ga_32 - Ga_42)/f3))^r3 + (-log((Gu_12 - Gu_22)/f3))^r3)^1/r3) 

Ga_112<-exp(-((-log((Ga_32 - Ga_42)/f3))^r3 + (-log((Gu_32 - Gu_42)/f3))^r3)^1/r3) 

 

comp2<-y2*z2*w2*log((Ga_002 - Ga_102 - Ga_012 + Ga_112)*f3) 
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Ga_13<-exp(-((-log(G(d[,4])))^r1 + (-log(G(z[,4])))^r1)^1/r1) 

Ga_23<-exp(-((-log(G(d[,4])))^r1 + (-log(G(z[,3])))^r1)^1/r1) 

Ga_33<-exp(-((-log(G(d[,3])))^r1 + (-log(G(z[,4])))^r1)^1/r1) 

Ga_43<-exp(-((-log(G(d[,3])))^r1 + (-log(G(z[,3])))^r1)^1/r1) 

 

Gu_13<-exp(-((-log(G(z[,4])))^r2 + (-log(G(w[,4])))^r2)^1/r2) 

Gu_23<-exp(-((-log(G(z[,3])))^r2 + (-log(G(w[,4])))^r2)^1/r2) 

Gu_33<-exp(-((-log(G(z[,4])))^r2 + (-log(G(w[,3])))^r2)^1/r2) 

Gu_43<-exp(-((-log(G(z[,3])))^r2 + (-log(G(w[,3])))^r2)^1/r2) 

 

f4<-G(z[,4])-G(z[,3]) 

 

Ga_003<-exp(-((-log((Ga_13 - Ga_23)/f4))^r3 + (-log((Gu_13 - Gu_23)/f4))^r3)^1/r3) 

Ga_103<-exp(-((-log((Ga_13 - Ga_23)/f4))^r3 + (-log((Gu_33 - Gu_43)/f4))^r3)^1/r3) 

Ga_013<-exp(-((-log((Ga_33 - Ga_43)/f4))^r3 + (-log((Gu_13 - Gu_23)/f4))^r3)^1/r3) 

Ga_113<-exp(-((-log((Ga_33 - Ga_43)/f4))^r3 + (-log((Gu_33 - Gu_43)/f4))^r3)^1/r3) 

 

comp3<-y3*z3*w3*log((Ga_003 - Ga_103 - Ga_013 + Ga_113)*f4) 

 

Ga_14<-exp(-((-log(G(d[,5])))^r1 + (-log(G(z[,5])))^r1)^1/r1) 

Ga_24<-exp(-((-log(G(d[,5])))^r1 + (-log(G(z[,4])))^r1)^1/r1) 

Ga_34<-exp(-((-log(G(d[,4])))^r1 + (-log(G(z[,5])))^r1)^1/r1) 

Ga_44<-exp(-((-log(G(d[,4])))^r1 + (-log(G(z[,4])))^r1)^1/r1) 

 

Gu_14<-exp(-((-log(G(z[,5])))^r2 + (-log(G(w[,5])))^r2)^1/r2) 

Gu_24<-exp(-((-log(G(z[,4])))^r2 + (-log(G(w[,5])))^r2)^1/r2) 

Gu_34<-exp(-((-log(G(z[,5])))^r2 + (-log(G(w[,4])))^r2)^1/r2) 

Gu_44<-exp(-((-log(G(z[,4])))^r2 + (-log(G(w[,4])))^r2)^1/r2) 

 

f5<-G(z[,5])-G(z[,4]) 



 

160 | P a g e  
 

Ga_004<-exp(-((-log((Ga_14 - Ga_24)/f5))^r3 + (-log((Gu_14 - Gu_24)/f5))^r3)^1/r3) 

Ga_104<-exp(-((-log((Ga_14 - Ga_24)/f5))^r3 + (-log((Gu_34 - Gu_44)/f5))^r3)^1/r3) 

Ga_014<-exp(-((-log((Ga_34 - Ga_44)/f5))^r3 + (-log((Gu_14 - Gu_24)/f5))^r3)^1/r3) 

Ga_114<-exp(-((-log((Ga_34 - Ga_44)/f5))^r3 + (-log((Gu_34 - Gu_44)/f5))^r3)^1/r3) 

 

comp4<-y4*z4*w4*log((Ga_004 - Ga_104 - Ga_014 + Ga_114)*f5) 

 

-sum(comp1+comp2+comp3+comp4) 

} 

hin<-function(par) 

{ 

alpha<-par[1:9] 

h<-rep(NA,1) 

h[1]<-alpha1[2]-alpha[1] 

h[2]<-alpha1[3]-alpha1[2] 

h[3]<-alpha2[2]-alpha2[1] 

h[4]<-alpha2[3]-alpha2[2] 

h[5]<-alpha3[2]-alpha3[1] 

h[6]<-alpha3[3]-alpha3[2] 

h} 

hin.jac<-function(par){ 

alpha<-par[1:9] 

j<-matrix(NA,6, length(par)) 

j[1,]<-c(1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[2,]<-c(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[3,]<-c(0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[4,]<-c(0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[5,]<-c(0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[6,]<-c(0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j 

} 
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par<-c(-2.515, .104, 2.926, -2.157, .444, 3.298, -3.366, -.244, 2.113, .259, .990, -.222, .299, .905, 

-.360, -.363, .258, 1.103, -.215, .405, .927, .003, -.186, .022, .896, -.577, -.456, -.717, .412, .984, 

1.1, 1.1, 1.1)  

fit.cum<- auglag(par, logL.cum , hin = hin, hin.jac = hin.jac) 

s.e<- sqrt(diag(solve(fit.cum$hessian))) 

 

III. Code to estimate the parameters for the simplified log-likelihood function in Appendix B 

III.  

# Import the Food security data and Preprocessing ## 

### X1 are Covariates for Availability Dimension ## 

### X2 are Covariates for Accessibility Dimension ## 

### X3 are Covariates for Utilisation Dimension ## 

### Dep are Dependent variables ## 

 

library(alabama) 

  

X1<-read.table(file.choose(), header=TRUE, sep=",") 

X2<-read.table(file.choose(), header=TRUE, sep=",") 

X3<-read.table(file.choose(), header=TRUE, sep=",") 

Dep<-read.table(file.choose(), header=TRUE, sep=",") 

Y<-Dep$Y1 

Z<-Dep$Y2 

W<-Dep$Y3 

y1<-ifelse(Y==1,1,0) 

y2<-ifelse(Y==2,1,0) 

y3<-ifelse(Y==3,1,0) 

y4<-ifelse(Y==4,1,0) 

z1<-ifelse(Z==1,1,0) 

z2<-ifelse(Z==2,1,0) 

z3<-ifelse(Z==3,1,0) 
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z4<-ifelse(Z==4,1,0) 

w1<-ifelse(W==1,1,0) 

w2<-ifelse(W==2,1,0) 

w3<-ifelse(W==3,1,0) 

w4<-ifelse(W==4,1,0) 

X1=as.vector(X1) 

X2=as.vector(X2) 

X3=as.vector(X3) 

G=function(z) 

{ 

G=exp(z)/(1+exp(z)) 

return(G) 

} 

 

g=function(z)  

{ 

g=exp(z)/(1+exp(z))^2 

return(g) 

} 

### Cumulative logit multivariate Ordinal longitudinal Model ### 

alpha1<-vector(length=3,mode="numeric") 

alpha1[1]<-0 

alpha2<-vector(length=3,mode="numeric") 

alpha2[1]<-0 

alpha3<-vector(length=3,mode="numeric") 

alpha3[1]<-0 

beta<-vector(length=13,mode="numeric")  ### coefficients for Availability covariates ###  

gamma<-vector(length=11,mode="numeric")  ### coefficients for Accessibility covariates ### 

zeta<-vector(length=9,mode="numeric")   ### coefficients for Utilisation covariates ### 

r1<-vector(length=1,mode="numeric")     ### PCC parameter for Availability and Accessibility 

### 
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r2<-vector(length=1,mode="numeric")     ### PCC parameter for Accessibility and Utilisation 

### 

par<-vector(length=44,mode="numeric") 

 

logL.cum <-function(par) 

{ 

comp1<-comp2<-comp3<-comp4<-vector(length=dim(X1)[1],mode="numeric") 

z10<-z11<-z12<-z13<-z14<-z20<-z21<-z22<-z23<-z24<-z30<-z31<-z32<-z33<-z34<-

vector(length=dim(X1)[1],mode="numeric") 

Cl_11<- Cl_21<- Cl_31<- Cl_41<-Cl_11<- Cl_21<- Cl_31<- Cl_41<-Cl_11<- Cl_21<- Cl_31<- 

Cl_41<-Cl_11<- Cl_21<- Cl_31<- Cl_41<-vector(length=dim(X1)[1],mode="numeric") 

AMH_11<-AMH_21<-AMH_31<-AMH_41<-AMH_12<-AMH_22<-AMH_32<-AMH_42<-

AMH_13<-AMH_23<-AMH_33<-AMH_43<-AMH_14<-AMH_24<-AMH_34<-AMH_44<-

vector(length=dim(X1)[1],mode="numeric") 

IND_001<-IND_101<-IND_011<-IND_111<-IND_002<-IND_102<-IND_012<-IND_112<-

IND_003<-IND_103<-IND_013<-IND_113<-IND_004<-IND_104<-IND_014<-IND_114<-

vector(length=dim(X1)[1],mode="numeric") 

f1<-f2<-f3<-f4<-vector(length=dim(X1)[1],mode="numeric") 

alpha1<-par[1:3]; alpha2<-par[4:6]; alpha3<-par[7:9]; beta<-par[10:22]; gamma<-par[23:33]; 

zeta<-par[34:42]; r1<-par[44]; r2<-par[44]  

for (ii in 1: dim(X1)[1]) 

{ 

z10[ii]<--Inf+sum(beta*X1[ii,]) 

z11[ii]<-alpha1[1]+sum(beta*X1[ii,]) 

z12[ii]<-alpha1[2]+sum(beta*X1[ii,]) 

z13[ii]<-alpha1[3]+sum(beta*X1[ii,]) 

z14[ii]<-100+sum(beta*X1[ii,]) 

z20[ii]<--Inf+sum(gamma*X2[ii,]) 

z21[ii]<-alpha2[1]+sum(gamma*X2[ii,]) 

z22[ii]<-alpha2[2]+sum(gamma*X2[ii,]) 

z23[ii]<-alpha2[3]+sum(gamma*X2[ii,]) 
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z24[ii]<-100+sum(gamma*X2[ii,]) 

z30[ii]<--Inf+sum(zeta*X3[ii,]) 

z31[ii]<-alpha3[1]+sum(zeta*X3[ii,]) 

z32[ii]<-alpha3[2]+sum(zeta*X3[ii,]) 

z33[ii]<-alpha3[3]+sum(zeta*X3[ii,]) 

z34[ii]<-100+sum(zeta*X3[ii,]) 

}  

 

d<-data.frame(z10, z11, z12, z13, z14) 

z<-data.frame(z20, z21, z22, z23, z24) 

w<-data.frame(z30, z31, z32, z33, z34) 

 

Cl_11<-((G(d[,2]))^(-r1) + (G(z[,2]))^(-r1) - 1)^(-1/r1) 

Cl_21<-((G(d[,2]))^(-r1) + (G(z[,1]))^(-r1) - 1)^(-1/r1) 

Cl_31<-((G(d[,1]))^(-r1) + (G(z[,2]))^(-r1) - 1)^(-1/r1) 

Cl_41<-((G(d[,1]))^(-r1) + (G(z[,1]))^(-r1) - 1)^(-1/r1) 

 

AMH_11<-(G(z[,2])*G(w[,2]))/((1-r2*(1-G(z[,2]))*(1-G(w[,2])))) 

AMH_21<-(G(z[,1])*G(w[,2]))/((1-r2*(1-G(z[,1]))*(1-G(w[,2])))) 

AMH_31<-(G(z[,2])*G(w[,1]))/((1-r2*(1-G(z[,2]))*(1-G(w[,1])))) 

AMH_41<-(G(z[,1])*G(w[,1]))/((1-r2*(1-G(z[,1]))*(1-G(w[,1])))) 

 

f2<-G(z[,2])-G(z[,1]) 

IND_001<-((AMH_11-AMH_21)/f2)*((Cl_11-Cl_21)/f2) 

IND_101<-((AMH_31-AMH_41)/f2)*((Cl_11-Cl_21)/f2) 

IND_011<-((AMH_11-AMH_21)/f2)*((Cl_31-Cl_41)/f2)  

IND_111<-((AMH_31-AMH_41)/f2)*((Cl_31-Cl_41)/f2) 

 

comp1<-y1*z1*w1*log((IND_001 - IND_101 - IND_011 + IND_111)*f2) 

 

Cl_12<-((G(d[,3]))^(-r1) + (G(z[,3]))^(-r1) - 1)^(-1/r1) 
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Cl_22<-((G(d[,3]))^(-r1) + (G(z[,2]))^(-r1) - 1)^(-1/r1) 

Cl_32<-((G(d[,2]))^(-r1) + (G(z[,3]))^(-r1) - 1)^(-1/r1) 

Cl_42<-((G(d[,2]))^(-r1) + (G(z[,2]))^(-r1) - 1)^(-1/r1) 

 

AMH_12<-(G(z[,3])*G(w[,3]))/((1-r2*(1-G(z[,3]))*(1-G(w[,3])))) 

AMH_22<-(G(z[,2])*G(w[,3]))/((1-r2*(1-G(z[,2]))*(1-G(w[,3])))) 

AMH_32<-(G(z[,3])*G(w[,2]))/((1-r2*(1-G(z[,3]))*(1-G(w[,2])))) 

AMH_42<-(G(z[,2])*G(w[,2]))/((1-r2*(1-G(z[,2]))*(1-G(w[,2])))) 

 

f3<-G(z[,3])-G(z[,2]) 

IND_002<-((AMH_12-AMH_22)/f3)*((Cl_12-Cl_22)/f3) 

IND_102<-((AMH_32-AMH_42)/f3)*((Cl_12-Cl_22)/f3) 

IND_012<-((AMH_12-AMH_22)/f3)*((Cl_32-Cl_42)/f3) 

IND_112<-((AMH_32-AMH_42)/f3)*((Cl_32-Cl_42)/f3) 

 

comp2<-y2*z2*w2*log((IND_002 - IND_102 - IND_012 + IND_112)*f3) 

 

Cl_13<-((G(d[,4]))^(-r1) + (G(z[,4]))^(-r1) - 1)^(-1/r1) 

Cl_23<-((G(d[,4]))^(-r1) + (G(z[,3]))^(-r1) - 1)^(-1/r1) 

Cl_33<-((G(d[,3]))^(-r1) + (G(z[,4]))^(-r1) - 1)^(-1/r1) 

Cl_43<-((G(d[,3]))^(-r1) + (G(z[,3]))^(-r1) - 1)^(-1/r1) 

 

AMH_13<-(G(z[,4])*G(w[,4]))/((1-r2*(1-G(z[,4]))*(1-G(w[,4])))) 

AMH_23<-(G(z[,3])*G(w[,4]))/((1-r2*(1-G(z[,3]))*(1-G(w[,4])))) 

AMH_33<-(G(z[,4])*G(w[,3]))/((1-r2*(1-G(z[,4]))*(1-G(w[,3])))) 

AMH_43<-(G(z[,3])*G(w[,3]))/((1-r2*(1-G(z[,3]))*(1-G(w[,3])))) 

 

f4<-G(z[,4])-G(z[,3]) 

IND_003<-((AMH_13-AMH_23)/f4)*((Cl_13-Cl_23)/f4) 

IND_103<-((AMH_33-AMH_43)/f4)*((Cl_13-Cl_23)/f4) 

IND_013<-((AMH_13-AMH_23)/f4)*((Cl_33-Cl_43)/f4) 
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IND_113<-((AMH_33-AMH_43)/f4)*((Cl_33-Cl_43)/f4) 

 

comp3<-y3*z3*w3*log((IND_003 - IND_103 - IND_013 + IND_113)*f4) 

 

 

Cl_14<-((G(d[,5]))^(-r1) + (G(z[,5]))^(-r1) - 1)^(-1/r1) 

Cl_24<-((G(d[,5]))^(-r1) + (G(z[,4]))^(-r1) - 1)^(-1/r1) 

Cl_34<-((G(d[,4]))^(-r1) + (G(z[,5]))^(-r1) - 1)^(-1/r1) 

Cl_44<-((G(d[,4]))^(-r1) + (G(z[,4]))^(-r1) - 1)^(-1/r1) 

 

AMH_14<-(G(z[,5])*G(w[,5]))/((1-r2*(1-G(z[,5]))*(1-G(w[,5])))) 

AMH_24<-(G(z[,4])*G(w[,5]))/((1-r2*(1-G(z[,4]))*(1-G(w[,5])))) 

AMH_34<-(G(z[,5])*G(w[,4]))/((1-r2*(1-G(z[,5]))*(1-G(w[,4])))) 

AMH_44<-(G(z[,4])*G(w[,4]))/((1-r2*(1-G(z[,4]))*(1-G(w[,4])))) 

 

f5<-G(z[,5])-G(z[,4]) 

IND_004<-((AMH_14-AMH_24)/f5)*((Cl_14-Cl_24)/f5) 

IND_104<-((AMH_34-AMH_44)/f5)*((Cl_14-Cl_24)/f5) 

IND_014<-((AMH_14-AMH_24)/f5)*((Cl_34-Cl_44)/f5)  

IND_114<-((AMH_34-AMH_44)/f5)*((Cl_34-Cl_44)/f5) 

 

comp4<-y4*z4*w4*log((IND_004 - IND_104 - IND_014 + IND_114)*f5) 

 

-sum(comp1+comp2+comp3+comp4) 

} 

 

hin<-function(par) 

{ 

alpha<-par[1:9] 

h<-rep(NA,1) 

h[1]<-alpha1[2]-alpha[1] 
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h[2]<-alpha1[3]-alpha1[2] 

h[3]<-alpha2[2]-alpha2[1] 

h[4]<-alpha2[3]-alpha2[2] 

h[5]<-alpha3[2]-alpha3[1] 

h[6]<-alpha3[3]-alpha3[2] 

h 

} 

hin.jac<-function(par) 

{ 

alpha<-par[1:9] 

j<-matrix(NA,9, length(par)) 

j[1,]<-c(1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[2,]<-c(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[3,]<-c(0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[4,]<-c(0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[5,]<-c(0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j[6,]<-c(0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

j 

} 

par<-c(-4.066, -1.203, 1.072, -2.577, -.679, 1.256, -5.060, -1.239, 1.185, -.060, -.409, -.385, -

1.137, -1.443, .380, -.730, .279, .458, .265, 1.064, -.680, .834, .073, -1.095, -1.207, .268, .442, 

.250, .274, .294, .091, -.766, -.634, .039, -.539, -.056, -1.278, -1.429, .332, -.341, .362, -.363, 1.5, 

0.5) 

fit.cum<- auglag(par, logL.cum , hin = hin, hin.jac = hin.jac) 

s.e<- sqrt(diag(solve(fit.cum$hessian))) 

 

 

 

 

 



 

168 | P a g e  
 

Appendix E: Plagiarism Report  

 



 

169 | P a g e  
 

 

 

 

 

 



 

170 | P a g e  
 

Appendix F: Ethical Clearance Approval  

 



 

171 | P a g e  
 

 



 

172 | P a g e  
 

Appendix F: Language editing certificate 

         7542 Galangal Street 

        Lotus Gardens 

        Pretoria 

        0008 

        07 January 2021    

TO WHOM IT MAY CONCERN  

This certificate serves to confirm that I have edited JA Yimam’s thesis entitled, Modelling the 
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