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Abstract

In this time of global health issues, there are out there many viruses that are shaking the world, including the

chikungunya virus, human immunodeficiency virus, corona virus, ebola virus and zika virus.

A metapopulation model describing the spread of Ebola virus disease (EVD) between two patches is developed.

Disease susceptible individuals moving from one patch into the other patch, with entries into each of the patch

as population grow. Due to migration into the patch and birth, with assumption that birth rate and death rate

constant. We also considered movement between the infected individual, amongst patches. Ebola Virus Disease

(EVD), is a very contagious and highly infectious disease which spread is determined by the number of secondary

contacts of an infectious individual moving from one community to another. We show that the metapopulation

model is non-negative, providing condition for stability of the disease at disease free equilibrium (DFE). Which is

said to be linearly stable if R0 < 1 and unstable if R0 > 1.

We also developed and analyzed a metapopulation mathematical model of Zika Virus disease (ZVD) transmis-

sion dynamics in linked communities, with movement parameter related to the two patches. With assumption

that Zika infected individuals do not migrate, we express the reproduction number representing the biological

parameter involved in rate of secondary infection of Zika Virus Disease (ZVD) in both patches. Stability analysis

is performed after which we consider four preventive measures such as personal protective measures, use of indoor

residual spray, responsiveness to health guidelines and health awareness and the prevention of movement from

one infected community to another. Numerical simulations are performed and show compartment dynamics that

concur with the analysis.
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Chapter 1

Introduction

Ebola virus disease (EVD), which ravaged several countries of the world, especially in West Africa, though highly

contagious and noted for its high mortality rate since the initial discovery in 1976 by the medical researcher, Dr.

Peter Piotin in Zaire now Democratic Republic of Congo (DRC), Africa [Team, 2014] said that Ebola virus disease

(EVD) is not a death sentence because it can be treated. So also is Zika virus disease (ZVD), though not as deadly

as EVD is a vector borne disease with higher transmission occurrences from infected individual. ZVD in recent

years attracted global attention because of its effect among neonates in Brazil, other South American countries

and Europe [Ogunbanjo, 2016,?].

We focus this study on a mathematical model to study and investigate the effect of metapopulation in the

spread of EVD and ZVD noting the impact of movement of individuals from one population to another i.e the

effect of metapopulation and optimal control techniques i.e certain control measures on the proliferation dynamics

of the disease. This chapter is structured as follows: Background of the study, Relevant questions guiding the

research, Aim and objectives of the research, Motivation of the study and Mathematical preliminaries.
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1.1 Background of the study.

Mathematical Modelling has been a great tool in the hand of researchers and this tool have been used to make

unimaginable impact to the world at large. As such, mathematical modelling techniques have successfully helped

to check the rate of change of differences in natural occurrences, taking in mind relevant mathematical principles.

Recently the world recorded a great number of casualty as a result of the resurgence of Ebola virus disease (EVD)

outbreak in certain part of Africa, especially West Africa. EVD is a deadly disease in humans which have recorded

up to 90% rate of fatality. Ebola Virus which was formerly known and called Ebola haemorrhagic fever was first

noticed greatly in its appearance in 1976 where two reoccurring outbreaks of the virus occurred in two communities

of Nzara in Sudan and Yambuku, Democratic Republic of Congo [Tseng and Chan, 2015]. EVD outbreak was

a scary scene in West Africa from 2014 to 2016 and the fatality rate was very high. Zika virus disease is not as

deadly as Ebola virus disease, because of its mode of transmission in human is not as rapid as that of EVD. The

effect of Zika virus disease (ZVD), caused by a bite from the Aaedes Mosquitoes, was first noticed in the African

continent, found in a monkey in 1947 and later found to be prevalent in human in 1952 from some countries. The

outbreak of ZVD was reported in 2013 at the island Yap, in South America. EVD and ZVD have taken a whole

new dimension in terms of dangerousness, due to the effect of migration to and from prevalent communities. From

the data released by World Health Organisation (WHO) as of May 2016 data from respective governments, report

about 28,616 suspected cases of Ebola virus disease and 11,310 deaths from infected individuals [Organization

et al., 2014,Organization et al., 2016]. While on March 2016, a Zika virus disease outbreak reported 1,263 suspected

cases, EW21 and EW30, an estimated average suspected cases of about of 293 individual and confirmed cases of

more than 200 ZVD were recorded per week in South America [Duffy et al., 2009]. In the same vain, Javier 2015

reports record of about 1.5 million individual with ZVD in 2014. He also maintained that Brazil has seen more and

more new-born cases with microcephaly abnormal, exhibiting severe congenital condition associated with a small

head, irregular shaped and incomplete brain development. Consequently, successive governments in Africa and

South America have put up different policies to combat the ugly situation. Unfortunately, this had yielded little

result. Despite the fact that governments have been firing at full cylinders to put an end to EVD and ZVD, there

is a dearth of empirical research on mathematical modeling on the spread of EVD and ZVD in metapopulation

system. Against this background, this study will attempt to do a mathematical modeling of the metapopulation

dynamics of these hydra-headed diseases. The field of Mathematical Modeling has been a great tool in modeling

2



natural occurrences whereby mathematical assumptions are taken governed by known mathematical law, and used

to build research in the field of mathematical modeling where differential equations and integral equations are

used to describe many instances. Principles of stochastic processes have been employed to given results to real

life problems, where the probability space is considered Ω variables of the sample space are defined, as well as the

time t and the probability density function f(t).

1.2 Problem Statement

The literature on metapopulation modeling of diseases is robust, for instance, Jean Jules Tewa et al [Tewa

et al., 2012], examined the mathematical analysis of two patched disease model with reference to a tuberculosis

transmission. while, [Gould et al., 1985] examined the analysis of a multi-vector disease model without any

reference to a specific disease. In like manner [Hethcote, 1989], investigated the real-time forecast of global

epidemic spreading. These and many other studies were concerned with specific diseases other than EVD and

ZVD. To the best of our knowledge, research work on the recent spread of diseases in metapopulation systems

in Africa and South America has not been extensively explored in literature. The effect of migration, tourism,

asylum seekers as well as air and land travel of any kind have made the research on issues bothering the dynamics

of spread of disease in metapopulation systems of great research interest. Hence, this work will focus on effect of

migration and other travels on transmission dynamics of EVD and ZVD on linked communities. We seek to know

the influences of movement to and from different communities with prevalence of EVD and ZVD respectively.

This work also seek to formulate a metapopulation model, what are the equilibrium points of the model and

how can the possible impact of the key parameters of the model be investigated? Which seek to reduce such

transmission with optimal control strategies. Thereby, helping public health experts put up proper and adequate

measures. Hence, contribute its own quota to the existing body of knowledge in Mathematical Modeling of diseases

in metapopulation systems.

3



1.3 Research Aim and Objectives

1.3.1 Research aim

Our study is aimed at understanding transmission dynamics of Ebola virus disease (EVD) and Zika virus disease

(ZVD) in metapopulation systems, make analysis of the spread of the disease, the system of transmission in linked

communities, taking into account the migration of susceptible individual from one location to another, helping

to formulate a mathematical model of prediction and formulate adequate control measure in reducing the risk

attached to contracting the disease and making recommendation to avoid future occurrences.

1.3.2 Research objectives

To achieve this aim, the following objectives are set:

� Establishing a metapopulation mathematical model suitably representing the attribute of the diseases as

they manifest, putting in mind all constraints.

� Establishing metapopulation mathematical models, capable of analysing mode of transmission dynamics of

ZVD and EVD in relation to movement in and out of connected communities.

� Using epidemiological models to focus mainly on the transmission dynamics of these infections, so also

look at the trait dynamics from one community to the other community: genetic , cultural and addictive

characters. Each and every epidemiological units will be looked at to make proper and adequate model

assumption. In addition, collection of data will be very important as we will be looking at the irregularities

that may arise from wrong data interpretation and data analysis, Ellner et al(1995).

� Making use of results from previous research as a guide to the investigation which will be carried out on the

epidemic state and endemic state, to study the extent of the existence of a global equilibrium point for the

metapopulation and discuss its stability.

� Developing new numerical schemes, which will serve as tools to predict the movements from small patches

4



to larger patches of the matapopulation system, effectively, modeling the relationship of the sink and serve

sources.

� Formulating an optimal control model for EVD and ZVD respectively.The control variable for the EVD

u1 which is the fraction of susceptible human who do not travel from patch one to patch two adhering to

educational campaign at time t,u2 is the fraction of susceptible human who do not travel from two patch

to patch one adhering to educational campaign at time t, u3 is the controlled treatment, isolation and safe

burial of infected individuals as a means of controlling and preventing the spread at time t, and u4 is the

effectiveness of vaccine as well as other treatment at time t. The control variable for the ZVD are u1(t) which

is the personal preventive strategy and measures adopted to protect oneself from contracting ZVD such as

insect repellent or mosquito net to reduce the contacts between human, wearing of long sleeve clothing which

covers the body properly. Adequate use of insecticide spraying to kill mosquitoes is u2(t), u3(t) is the rate

of treatment of those infected with ZVD, u4(t) represents the efforts deployed to reduce the movement of

infected people from patch one to patch two through screening and testing. While u5(t) represent effective

health regulations approved by WHO and CDC as means of personal protection against the disease.

� Analyzing the optimal control for EVD and ZVD using Pontryagin’s Maximum Principle and Cost-effectiveness

Analysis.

1.3.3 Motivation for the study

Zika virus disease (ZVD) is one of health emergencies causing death globally but that can be treated using surgery.

Ebola virus disease (EVD) which has terminated human lives in west coast of Africa.

� This research is motivated as a form of search for mathematical solution to spread of diseases from one

geographical location to another. because of various type of travels. Finding a way to help reduce the effect

of disease transmission from a particular location to another.

� The need for our continuous research and findings on exploring new methods and techniques like those

related to the concept of differential equations and applying them specifically to epidemic models of current

diseases including Ebola and Zika.
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� Another motivation for this thesis is expressed by the necessity of using mathematical models of some real

life phenomena like those mentioned above, to establish broader outlooks on their evolution, so as to be able

to make wider recommendations and predictions.

� The desire of this research is to bring about a faster ways of predicting the spread of Ebola and Zika Viruses

in a metapopulation, to observe the necessary process and formulate new dynamics which will have a great

impact and help the concerned government and organisation responsible for health management to formulate

policies as a result this accomplishment.

� Another motivation to this work is taken by the need to use numerical models to investigate the rational

behind this epidemic, proffer adequate solution and add some new models to the existing ones which have

in the past served as tools used to predict and analyze epidemiological issues.

1.4 Mathematical Modeling

Concepts of Mathematical Modeling have been a great tool in the hand of researchers that has been used to

make unimaginable impact to the world at large. In the field, we apply mathematical modeling techniques to

check the rate of change in natural occurrences translating in appropriate differential equations, obeying relevant

mathematical principles. Mathematical modeling is the basic translation of real life and physical situation of

real world issues to mathematical equations, expressions and representations for proper mathematical analysis,

formulation and prediction which in turn help to give solution and better understanding to real life situations and

problems.

Mathematical models are formulated in different ways depending on the set objectives as well as the aim of

the model. Mathematical Models are linear or non linear, static or dynamic,deterministic or stochastic as well as

discrete or continuous. The nature of the problem will determine the type of model that will be appropriate for

use. While,defining all the arguments, prediction, observation and projection the proposed mathematical model

is aimed to achieve.

Mathematical models also make use of assumptions in order to avoid ambiguity, redundancy and unrealistic
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results because the mathematical models must be realistic and applicable to real life issues. Mathematical modeling

is applicable in predicting several sectors of modern technical and scientific world. Mathematical modeling has

been used successfully in meteorological sciences, physical sciences, social sciences: especially in mathematics of

finance, engineering and biological sciences. In biological sciences, mathematical modeling have been useful in its

application to the study of epidemic, spread of diseases, fisheries and aquatic and a whole lot of area of life. [Kapur,

1988] Sates that mathematical models depend on the fact that a mathematical modeler depends on real world

factors to formulate a model which tends to predict and formulate a possible solution to the real world problem.

1.5 Epidemiological preliminaries

Spread of diseases in history of humanity is dated as far back as 10BC [Frank MacFarlane Burnet et al., 1972].

Biblical, epidemic outbreak such as the Egyptian plaque which killed several animal as an outcome of unusual

large widespread of disease can also be seen as one of such older account. Such unusual deaths are caused by

the pathogens which are agents bacterial and virus. The pathogens are carried by the vectors which are capable

of transmitting and transferring the agents from one place to another at a particular rate without having any

negative or harmful effect in them, such agents are also the vector of such pathogenic substance.

Once the human population have a contact with the vector, the disease is hence transferred and begin to

manifest depending on individual systemic immune response. The way individuals react to disease differentiate

those who show symptoms symptomatic to those who do not show symptoms yet can transmit the infection

asymptomatic. Human are regarded as being susceptible to disease when they are prone to develop the disease

but are yet to be infected. The category is denoted by S. Exposed individuals are the collection of individuals

who have ingested the pathogen, have been infected but yet to show visible symptoms of such infection or disease.

The infected are the number of individuals in a population who are either symptomatic or asymptomatic, they

are denoted by I. Those who recovered are denoted by R, those who successfully recover from the infection either

naturally thanks to antibodies or by other treatment methods.

In epidemiology, diseases have different periods within which they manifest. That is known as the latent period

which is the period when the disease or infection haven’t manifested or when the individual infected haven’t
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become infectious. In measles it is within 10 days while it is 2 days for Influenza. The period is referred to as

the incubation period of the disease or infection. The infection period of the disease then comes up when the

infectives can transmit infection to either a susceptible host or vector at any contact, either by the bodily fluid,

blood contact and otherwise depending on the pathogenic characteristics of the infection at time t. Mean rate of

infection, the absolute mean number of persons the initial infected individual is prone to infect is called the basic

reproduction rate or standard reproduction number, denoted by R0.

The standard or basic reproduction number is very important and useful in the study of mathematical modeling

of infectious diseases. Generally, in mathematical modeling, it is known that when R0 < 1, the disease will die

out i:e the infection can not grow but on the other hand,when R0 > 1, then the infection grows and might lead to

an epidemic outbreak.

� Epidemic: An epidemic is a very serious outbreak of a disease. There could be epidemics of most common

infections like flu.

� Agent: These are the common pathogens that causes diseases such as Virus, Bacteria

� Vector: Organisms which are very active in the transmission of infectious agent from a host to another.

� Contact Rate: The rate of interactions of a particular community or population.

� Asymptomatic: The individual who does not in anyway show symptoms of the disease

� Susceptible: Those are the group of individuals who can develop the disease but are yet to be infected. They

are denoted by S

� Exposed: The class of the population who host the infection but has not yet began to be infectious, denoted

as E

� Infected: A member of the population such that having been infected is transmitting the infection to others.

Simply denoted as I

� Passive Immune: This is the class or member of the population such as pregnant women if when pregnant,

such woman is infected, but have some antibodies across the placenta that gives the baby passive immunity.

Denoted as M
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� Recovery: Members of the host population who were infected but having gone through some medication,

vaccines etc recovered and became normal. Denoted as R

� Models: Mathematical models are either Deterministic; current event depends on the past event as well as

the occurrence at a time t. Stochastic: do not depend on previous or future events, random time accounted

for at such instance. [Hethcote, 1989] introduced deterministic epidemiological models for infectious diseases

of three basic types,which have been extended to numerous mathematical models SI, SIR,SIRS, SIS, SEIR

and SEIRS used in the description of epidemiological transfer and transmission of disease dynamics. For the

purpose of this thesis, we will be using the SIR, SI and SEIR models to describe the Zika and Ebola disease

dynamics.

Basically in determining the mathematical model which will be used to model disease dynamics of a particular

disease a mathematical model considers the population size, the susceptible human or vector population, depending

of the disease dynamics, movement of individuals and the rate of interaction which determine the spread or

otherwise, the infection period, the mode of transmission of the disease, ecological and human effect, Immunity

of infected individuals as well as the incubation period of the disease are the very important criteria examined

before a mathematical model is used.

1.5.1 SIS model:

This model divides the disease compartment into the susceptible (S) and the infectives (I). The model is common

for diseases like malaria where infectives individuals do not have immunity and can return to be susceptible after

recovery. Which is the reason why the model is called the SIS model.(For more details check [Shuaib et al.,

2014, N̊asell, 1996,Luo and Tay, 2013]).

1.5.2 SIR model:

The SIR model compartment are subdivided as the susceptible (S), Infectives (I) and Recovered (R) class. The

model is commonly used for modeling infectious diseases like measles, rubella and mumps where after recovery,
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recovered individual are endowed with some sort of permanent immunity.(For more details see [Rachah and Torres,

2015,Weiss, 2013,Kibona and Yang, 2017]).

1.5.3 SEIRS model:

This epidemiological model describes a given disease dynamics with an exposed period where individuals may be

symptomatic ar asymptomatic. With total population subdivided into classes namely susceptible (S), Exposed

(E), Infectives (I) and Recovered (R). In this case, movement of individuals from each compartment occurs with

recovered individuals after losing their immunity returning back to being susceptible with time. (For more details

see [Ma, 2009,Melesse and Gumel, 2010,Wang, 2002]).

1.6 Ebola Virus Disease(EVD)

1.6.1 History

Ebola Virus Disease (EVD) is on record to be one of the most serious viral disease which is currently known in

the world today. EVD is very severe and fatal sickness known to human with fatality rate of about 90%.

Ebola virus disease became an epidemic and a global public health concern in 2013 when it became prevalent

in West Africa. EVD was first discovered in 1976 as a result of a disease in Sudan and in Yambuku, a small

village located near Ebola river in Democratic Republic of Congo where the disease name. Ebola virus disease

(EVD), was before then called Ebola haemorrhagic fever, which manifest primarily in human and primates. Ebola

Virus (EV) comes in six species, with four of the species very dominant in humans, namely: Zäire ebolavirus (ZE)

Sudan ebolavirus (SE), Tai Forest (TF) which was formerly known as Ebola Ivory Coast(EIC) and Bundibugyo

ebolavirus (BE).
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Figure 1.1: Ebola Virus Disease prevalence in Africa
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1.6.2 Transmission

Research has shown that EVD transferred to human when in contact with infected primates such as monkey,

apes and other wild animals like bats, who are considered as reservoir of the EVD. On the other hand, transfer

of EVD from one Human-to- another Human, is either through direct contact of infected persons, contact with

bodily fluids, blood, as well as body and organ secretions of an infected individuals. Improper disposal of dead

animals and humans play a majour role in the transmission of EVD, and had killed very many health officials

treating infected individuals. EVD is a deadly illness that often manifests with symptoms including fever, severe

headache, general body pain, muscles pains, soar throats and acute internal weakness. This is followed by several

organs damage eventually leading to death in the space of weeks when proper and adequate care are not given.

The incubation period of EVD is from 2 to 21 days depending on the individual and body immune system.

1.6.3 Treatment

EVD currently do not have a specific and particular drug health officials usually treat the symptoms as they

manifest in the infected individuals, giving fluids and other infusion to manage the infected individuals blood

pressure, sugar level, pains and diarrhea. The procedure of treatment begins with the blood sample of an infected

individual taken to laboratory for proper diagnosis. No anti retro-viral drug currently has been licensed by

the world health organization (WHO) and Centre for Disease Control (CDC). Recently, Recombinant vesicular

stomatitis virus–Zaire Ebola virus (rVSV-ZEBOV) vaccine for vaccinating adults was approved for medical use in

2019 by European Union (EU). The vaccine was also subjected to usage in the ÉQuateur province of DR Congo

in a 2018 [Cnops et al., 2015] and have been extensively used to vaccinate more than 90,000.
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1.7 Zika Virus Disease(ZVD)

1.7.1 History

ZVD is of the genus Flavivirus family [Daudens-Vaysse et al., 2016] with about 53 different species [Dick et al.,

1952]. ZVD is caused by mosquito that is very close and related phylogenetically to the already existing mosquito-

borne flaviviruses known by public health specialist Dengue Virus Disease (DVD), Yellow Fever Virus Disease

(YFVD) and West Nile Virus Disease (WNVD) [Gould et al., 1985].The virus which was first discovered in

Uganda over 70 years ago while some researcher where working on YFVD in a forest in Uganda, Africa. ZVD was

first found in a rhesus monkey but the disease was not reported in human until late 1951 in a study carried out in

Africa by Fagbemi a Nigerian Sero-epidemiologist and some other African researchers before the outbreak of ZVD

which occured in Yap Island [Fagbami, 1977] , Micronesia. Prior to that outbreak, only few occurrences of ZVD

had been recorded in Africa and Asia before the 2007 Yap Island outbreak. With epidemiological surveillance,

epidemiological and entomological studies carried out, ZVD is seen as a prevalent in travelers and migrants from

tropical countries to non tropical countries. This is a form of metapopulation, the main focus of this thesis.

However, the recent spread of ZVD in South America [Daudens-Vaysse et al., 2016] have led to concerns of public

health expert as well as mathematical epidemiologists looking at various possible ways to reduce the neonatal

problems in neonate born to ZVD infected mother [Chaikham and Sawangtong, 2017].

1.7.2 Transmission

ZVD is an arboviral disease which also manifests like a DVD-like infection is believed to be transmitted by the

Aedes mosquito which is the main vector. There are other mode of transmission of ZVD besides the mosquito

vector, transplacental transmission between an infected mother and the new born child is presently a global

concern on the rate of ZVD infection [Duffy et al., 2009]. ZVD can also be transmitted sexually [Kucharski et al.,

2016]. Safety guidelines for prevention of sexually transmission of ZVD by World Health Organization and other

public health organization. ZVD can also be transmitted through unscreened blood transfusion [Wagner et al.,

2019,Willyard, 2017].
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1.7.3 Treatment

Clinical observation shows that ZVD causes acute febrile sickness, about 25% of infected persons develop mild

and self-limited illnesses, with flu-like syndromes which occur with some slight fever, rash, headache, myalgia and

frequent vomiting [Chikaki and Ishikawa, 2009] . ZVD is an emerging infection, with no specified antiviral drug or

vaccine [Dick et al., 1952]. Because the ZVD manifest like DVD, the drugs and procedure used for the treatment

of DVD are used [Fauci and Morens, 2016,Chikaki and Ishikawa, 2009]. The prevention of ZVD is a deliberate

measure which include prevention of arboviral infection, using mosquito treated nets, wearing long gear covering

body. Efforts towards having a vaccine to prevent ZVD are currently ongoing [Barrett, 2018] pregnant women in

ZVD prone communities are advised to avoid crowded areas.

1.8 Metapopulation

A metapopulation is a concept that has been a very powerful demographical tool in analysis of ecological processes,

spatial processes and temporal processes. metapopulation is a constituent of spatially separated populations of

a group of the same species, either animals or organisms interacting at some level. [Vandermeer and Carvajal,

2001] gave a definition of metapopulation as “set of local populations within some larger area, where typically

migration from one local population to at least some other patches is possible” Metapopulation is also considered

to be a random walk which animals undergo within the range of their home. For the purpose of this thesis, we

define a slightly simpler version, as a cohort of local populations between which distributing, spreading of living

things or people over a wide area is possible. Especially within their natural habitat in form of a local population,

subcommunity or subpopulation. These are groups of such individuals inhabiting a particular habitat or a patch

and due to the common boundaries and nearness of some sort, share and interact with each other. The potential

population in each of the habitats and patches is very important because features of a metapopulation are the

critical habitat, how and where interactions occur within or outside, as events happen from one patch to another.

Metapopulation is a concept fondly used in conservation and pest management which is used to explain persistence

of species.

Metapopulation models often refereed to as patchy models considers the implicitly characteristics of both
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temporal and spatial subpopulations. The concept of metapopulation has been widely explored farther habitats

are considered because of various means of transportation, especially in humans [Heino and Hanski, 2001]. Air

travels, tourism, migration and so on, have made movement from one habitat to another easy. In these model we

are looking at local habitat patches which exist and there are interactions between the each of the communities,

what is the effect of such movements and interactions on the spread of diseases.

1.8.1 CoInfection

Coinfection occurs when an infected individual is diagonized simultaneously with multiple pathogen species. In

virology, coinfection of infected individuals includes simultaneous effect of a single cell by two or more virus or

bacterial particles. The most common coinfection globally is tuberculosis and HIV [Muthuri and Malonza, 2018].

For the purpose of this thesis, we are not considering coinfection of EVD and ZVD. ZVD and Chikungunya virus

disease (CVD) are flavivirus and alphavirus respectively, which are infectious RNA arboviruses transmitted to

humans by the bite of Aedesspecies mosquitoes [Fleming-Dutra et al., 2016,Sanchez-Vargas et al., 2004]. Making

coinfection of both ZVD and CVD possible in human. There is no evidence of coinfection of EVD and ZVD in

the literature.

1.9 Mathematical preliminaries

We discuss briefly essential principles of mathematical modeling used in this thesis. The concept of basic repro-

duction number, stability results for ordinary differential equation, bifurcation analysis, optimal control method,

the general optimal control problem, Pontryagin’s maximum principle, necessary and sufficient conditions of the

optimal control. Kermack-McKendrick, introduced the deterministic model for communicable diseases. Which is

a system of two differential equations:

S′ = −βSI

I ′ = (βS − α)I

R′ = αI
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the population under study is divided into three compartments: S,I, and R with the key value Threshold governing

the evaluation of the epidemic given by:

R0 =
βS

α

R0 defines the number of secondary infection after an interaction with the infectious case.

� when R0 < 1,in this case,is the rate the disease will decline and eventually die out.

� when R0 > 1,in this case,each existing infection causes more than one new infection. Such that(
dI

dt
> 0

)

extensions allow the model to take in some new parameters like birth, migration and death and some sort of

immunity, which is represented as:

dS

dt
= b0 + bSS + bII + bRR− λS −mSS

di

dt
+
di

da
= δ(a)λ(S + σR)− γ(a)i− µ(a)i−mi(a)i

I(t) =

∫ ∞

0
i(a, t)da

dR

dt
=

∫ ∞

0
(γ(a)i(a, t)da− σλR−mRR

where b0 is known as the rate of immigration of the susceptible population, bj is the birth rate and mj is the

mortality rate in a given state j. with infection pressure

λ =

∫ ∞

0
(β(a)i(a, t)da).

Kermack and McKendrick showed that stationary solution is attainable in an endemic state

Theorem 1.9.1. {Kermack-McKendrick} A general epidemic notation evolves according to the differential equa-

tions from initial values (S0, I0, 0), where S0 + I0 = N.

1. (Survival and Total Size). This is the entire sample scale, which is the population where infection ultimately

cases spreading, given a positive number S∞ of susceptible remains uninfected, and the total number R∞ of
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individual which ultimately infected are then removed equals to S0 + I0 − S∞. Then there exists the unique

root of the equation

N −R∞ = S0 + I0 −R∞ = S0e
−R0

ρ

where I0 < R∞ < S0 + I0, ρ = γ
β accumulatively are the relative removal rate.

2. (Threshold Theorem). In a given population, under which a given state is maintained, a majour outbreak

occurs if and only if dI
dx (0) > 0; this happens only if initial number of S − 0 > ϱ.

3. (Second Threshold Theorem) If S0 exceeds a given threshold ϱ by a small quantity ν while the initial number

of infectives I0 is small relatives ν, then the remaining number of susceptibles left in the population is

approximately ϱ − ν the level of susceptibles is to a certain point below the threshold as it originally was

above it:

Proof. Given the rate of transmission of the equations above

1

S

dS

dt
= −β

γ

dR

dt
= −1

ϱ

dR

dt

, from which we get

S(t) = S0e
−R(t)

ϱ

where R0 is equal to 0 as t→ ∞

Theorem 1.9.2. Let (S(t), I(t)) be a solution of the differential equation as defined above. If σ > 1 then D =

((S, 0) : 0 < S < 1) is an asymptotic stability region for the equilibrium point
(

1
σ ,

δ(σ−1)
λ

)
, where σ = λ

(γ+δ) If

σ < 1 D is an asymptotic stability region.

Theorem 1.9.3. Assume that P,Q ∈ R are continuously differentiable in an open connected region D, one the

solution path of

x′(t) = P (x, y)

y′(t) = Q(x, y)
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if there exists a continuous differentiable point in D such that:

∂

∂x
(BP ) +

∂

∂y
(BQ)

then, there are no closed paths in D

Proof. The Closed paths must contain at least one eliminate possibility, so that if R contains no closed paths in

D. Since no path leaves D, R is contained in D, by assumption

∂

∂x
(BP ) +

∂

∂y
(BQ)

has the same sign throughout D and Green’s theorem,

0 ̸=
∫ ∫

R

[
∂

∂x
(BP ) +

∂

∂y
(BQ)

]
dA = intΓ(BP )dy −BQdx

=

∫
Γ
B

(
dx

dt

dy

dt
− dy

dt

dx

dt

)
dt = 0

which is a contradiction.

1.9.1 Basic Reproduction Number

The basic reproduction number or basic reproduction ratio denoted by R0 is as the average number of persons

infected by an index infective individual in a population considering that all others are susceptible [ [Van den

Driessche and Watmough, 2002,Van den Driessche and Watmough, 2008] In this study, the reproduction number

is carefully thought out with the peculiarities of EVD and ZVD respectively. The movement within each patch

played a critical role in the maximum reproduction number Rmax which was adopted to represents average number

of secondary case resulting from the contact of the index case with susceptible individuals in each of the population.

The maximum reproduction number helps in determining whether or not a disease (Ebola and Zika) will spread

through in each of their separate metapopulation. The transmission and contagion effect of EVD and ZVD

will be reduced to zero as disease will be regarded to have died out of the each metapopulation, if Rmax < 1.

Whenever Rmax > 1, meaning each infected individual who is either infected with EVD or ZVD in their respective

metapopulation, infects more than one person as the case may be, such that EVD and ZVD disease persists in

the population.
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In doing this, we explore the non-negative next generation matrix to find the basic reproduction number, which

is the spectral radius of the next generation matrix. The next generation matrix technique which was studied

by Van dan Driessche and Watmough [van den Driessche and Watmough, 2002, van den Driessche, 2017] is a

general method for Rmax in cases where several classes of infections are involved. Basic reproduction number

cannot be determined from mathematical models alone considering the heterogeneous population especially with

spatial factors to be considered. Different stages of the disease are grouped on n compartments such that x =

(x1, x2, x3, ..., xn)
t for every xi ⩾ 0 indicating the number of individuals in each of the compartment depending on

the mathematical model. Let Xd be the set of all disease free state, that is Xd = x ⩾ 0 : xi = 0, i = 1, 2, 3, ...,m

where m is the number of disease free state in each of the population. Let Fi(x) be the appearance rate of new

arrival of infected individual in compartment i, V+
i is the rate of transfer of infected individuals into compartment

i, by all means considered, V −
i is the rate of transfer out of compartment i by other means as E0 and Z0 is the

Ebola free equilibrium and Zika free equilibrium respectively.

Considering a non-negative disease transmission model as state and a continuously differentiable function of

the system of equation:
dxi
dt

= Fi − Vi(x), i = 1, 2, 3, ..., n (1.9.1)

where n is the number of compartment in the population considered and Vi(x) = V−
i (x) − V+

i (x). If x0 is the

disease free equilibrium point as the derivatives of F and V represented by mxm matrices, then:

F and V matrices are computed such that F= Jacobian Matrix of F at disease free equilibrium
[∂Fi(x0)

∂xi

]
V= Jacobian Matrix of V at disease free equilibrium

[∂Vi(x0)
∂xi

]
with 1 ⩽ i ⩽ m

The matrices F contains trend of new infections while V contains the transfer of infection. The basic repro-

duction number R0 = ρ(FV −1) of the next generation matrix which is defined as FV −1 is the spectral radius or

the dominant eigenvalue of the next generation matrix.
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1.9.2 Stability Analysis

The stability analysis of any ordinary differential equation is very important as regards mathematical modeling.

Stability analysis of a dynamical system play a very important role, the stability and instability of the equilibra

determine these roles. Hence, it is very useful to be able to be able to classify equilibrium point based on its

stability.

Definition 1.9.1. A steady state x∗ is said to be Lyapunov stable if any trajectory stationary near x∗ remains

forever. In other words ∀ ϵ > 0, ∃ δ > 0 such that if ∥x(0)− x∗ < δ∥, then ∥x(0)− x∗∥ < ϵ

Definition 1.9.2. A steady state x∗ is said to be asymptotically stable if it is Lyapunov stable and all trajectory

converges to x∗. In other words ∀ ϵ > 0, ∃ δ > 0 such that if ∥x(0)− x∗ < δ∥, then lim
t→∞

∥x(0)− x∗∥ = 0

Theorem 1. Given the system ẋ = Ax, where A is the matrix of the linearized nonlinear system (1.5). Then,

� the equilibrium point, ẋ, is stable if all the eigenvalues of A have only imaginary parts.

� the equilibrium point, ẋ, is asymptotically stable if all the eigenvalues of A have negative real parts.

� the equilibrium point is unstable in all other cases.

Local stability:

Considering a system of an ordinary differential equation below:

dx

dt
= F (x) (1.9.2)

where x = (x1, x2, ..., xn)
T and F = (F1, F2, ..., Fn)

T where each Fi for every i = 1, 2, 3, ..., n is a continuous

function for Rn to R.

The equilibrium point for the above system (1.9.2) is found by setting dxi
dt = 0 for i = 1, 2, 3, ..., n which gives

Fi(x̄1, x̄2, x̄3, ..., x̄n) = 0
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for i ̸= 1, 2, 3, ..., n and x̄ = (x̄1, x̄2, x̄3, ..., x̄n)
T in Rn.

To determine the steady state solution (local stability) of the equilibrium point, we shift the origin to x̄ using

transformation;

Xi = xi − x̄i, i = 1, 2, 3, ..., n

neglecting higher order terms with this change of variable in equation (1.9.2) we have a linearized term below;

dX

dt
= AX.

Which is called the Jacobian matrix of the system (1.9.2) such that

A =
∂Fi

∂Xi

and

X = (X1, X2, X3, ..., Xn)
T

and the system (1.9.2 ) is said to be asymptotically stable for system (1.9.2).

Whenever the eigenvalues of the Jacobian matrix are will negative real parts, to ensure that the dynamic system

is linearly asymptotically stable at equilibrium point, the sign of the roots of the characteristics equation corre-

sponding to the Jacobian matrix are useful relying on verifiable mathematical assertions like the Routh Hurwitz

Criterion [Afanasiev et al., 2013] of stability. Which gives necessary and sufficient condition for a polynomial to

have all its roots negative real parts.

Routh Hurwitiz Criterion:

The Routh- Hurwitz stability criterion is a popular and well used mathematical analysis in control system which

gives necessary and sufficient condition to adequate establishment of stability of a linear dynamical system of a

differential equation.

The Routh test or Routh array as it is popularly called is an effective and efficient algorithm developed by

Edward John Routh in 1876. Edward who is an English mathematician used his array to check if all roots
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of a certain characteristics polynomial of a linear system do have negative real parts. While o the other hand,

another German Mathematician named Adolf Hurwitz in 1895 proposed after an independent research by arranging

coefficients of a polynomial into an array which he named the Hurwitz matrix.

Showing that the polynomial is stable if and only if it is clearly shown that the sequence of the eigenvalues of

it’s sub-matrices are non-negative. Both Edwards and Adolf’s procedures which are equivalent in determining the

determinant of a characteristic polynomial is popularly called the Routh-Hurwitz Criterion if and only if all the

elements of the first column be nonzero and have the same sign .

In the application of Routh-Hurwitz criterion,two special cases are considered, although they are not likely

to occur in applications. The first of this special case occurs when a coefficient in the first column is zero, in

calculation of the array. Second special case occurs when all coefficients in a row are zero when calculating the

array.

Routh-Hurwitz Theorem

Theorem 2. A Polynomial q(s) = q0s
n + q1s

n−1 + ...+ qnwhere (q1 ∈ R, q0 ̸= 0)is stable if and only if all n+ 1

elements of the first column of the routh table are nonzero and have same sign.

αn + a1α
n−1 + a2α

n−2 + ...+ an = 0 (1.9.3)

where a1, a2, a3, ..., an be n real numbers whose roots have negative real parts if and only if the values of the

determinants of the matrices are positive,

M1 =
(
u1

)
,M2 =

 u1 1

u3 u2

 ,M3 =


u1 1 0

u3 u2 u1

u5 u4 u3

 ,
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M4 =


u1 1 0 0

u3 u2 u1 1

u5 u4 u3 u2

u7 u6 u5 u4

 ,Mn =



u1 1 0 0 . 0

u3 u2 u1 1 . 0

u5 u4 u3 u2 . 0

u7 u6 u5 u4 . 0

. . . . . .

0 . . . . un



1st Dimension:

M1 =
(
u1

)
, u1 > 0

2nd Dimension:

q(s) = s2+a1s+a0 which have both roots in the open left plane of the characteristics equation q(s) = 0 is stable.

if and only if a1i > 0

3rd Dimension:

A third order polynomial q(s) = s3 + a2s
2 + a1s+ a0 has all roots in the open left plane if and only if a2, a0 are

positive and a2a1 > a0

4th Dimension:

Fourth order polynomial q(s) = S4 + a3s
3 + a2s

2 + a1s + a0 has all roots in the open left plane if and only if

a3a2, a1 are positive and a3a2a1 > a0
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nth Dimension:

Let,

q(s) = ans
n + an−1s

n−1 + an−2s
n−2 + ...+ a1s+ a0

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−2 an−4 an−6 . a0

an−1 an−3 an−5 an−7 . 0

bn−1 bn−3 bn−5 bn−7 . 0

cn−1 cn−3 cn−5 cn−7 . 0

. . . . . .

hn−1 . . . . sn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Number of roots of q(s) with positive real parts is equal to the number

of changes in sign of the first column of the Routh array.− 1
an−1

 an an−2

an−1 an−3


( For further reading on Routh-Hurwitz Criterion, check [Khatwani, 1981,Clark, 1992])

Central Manifold Theory:

The Central Manifold theorem is well stated and will be used to prove the local asymptotic stability of the endemic

equilibrium point.

Theorem 3. Consider the following system of ordinary differential equations with parameter τ

dx

dt
= f(x, τ), f : Rn × R → RandC2(Rn × R) (1.9.4)

Where 0 is an equilibrium point of the system i:e f(0, τ) ≡ 0∀τ and with the assumption that the following

holds:

1. A = Dxf(0, 0) =
∂fxi

∂xj(0,0)
is the linearization matrix of the system (1.9.5) around the equilibrium 0 and τ

evaluated at 0. Zero is a simple eigenvalue of A and the other eigenvalues of A have negative real parts.

2. Matrix A has a right eigenvector w and a left eigenvalue v(each corresponding to the zero eigenvalue); let
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fk be the kth component of f and

a =

n∑
i,j,k=1

wiwjvk
∂2fk
∂xi∂xj

(0, 0), b =

n∑
j,k=1

uivk
∂2fk
∂xi∂τ

(0, 0)

The local dynamics of the system around 0 is totally determined by the signs of a and b

i : a > 0, b > 0 when τ ≪ 1, 0 is locally asymptotically stable and ∃ a positive unstable equilibrium, when

0 < τ ≪ 1, 0 is unstable and there exist a negative, locally asymptotically stable equilibrium;

ii : a < 0, b < 0 when τ < 0, with |τ | ≪ 1, 0 is unstable; when 0 < τ ≪ 1 is locally asymptotically stable, and

∃ a positive unstable equilibrium.

iii a < 0, b < 0 when τ < 0 with |τ | ≪ 1, 0 is stable and positive unstable equilibrium appears;

iv a < 0, b > 0 when τ changes from negative to positive, 0 changes its stability from stable to unstable.

Corresponding a negative equilibrium becomes positive and locally asymptotically stable.

(For more details on Central Manifold Theorem, see [Mohammed et al., 2008,Renardy, 1992]).

Global stability:

To ensure the dynamic system is globally asymptotically stable at any region even if it is not close to the origin, the

comparison theorem that is the Castillo-Chavez et al [Castillo-Chavez et al., 2002] theorem as well as Lyapunov

Functions of the general linear forms have been very useful.

Theorem 4. The dynamical system of (1.9.2) written in the form X
′
(t) = F (X,Y ) Y

′
(t) = G(X,Y ), G(X, 0) = 0

where XRm
+ denotes the number of uninfected individuals and Y Rn

+ which denotes the number of infected individuals

including all other compartments.

The disease free equilibrium (DFE) of the mathematical modelM0 = (X0, 0) such that the following conditions

holds such that ForX
′
(t) = F (X0, 0) X0 is globally asymptotically stable

G(X,Y ) = AY − Ĝ(X,Y ), Ĝ(X,Y ) ⩾ 0
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for (X,Y )D where the system (1.9.2) satisfies the given condition if and only if the theorem holds.

Theorem 5. The fixed point of the DFE M0 = (X0, 0) is globally asymptotically stable for the system (1.9.2)

given R0 < 1 and the condition above is satisfied.

(For more details on Global Stability, see [Mei, 2013,Shu et al., 2020]).

1.9.3 Lyapunov Function

Lyapunov function have been a useful mathematical tool in population dynamics which was first constructed by

Volterra in 1920 for a predator-prey model. Provided the necessary and sufficient conditions are met the global

asymptotic stability follows directly from the LaSalles Invariance Principle [La Salle, 1976]. The dynamical system

given on an open set as defined above i.e Ω ⊂ R and x̄ ∈ Ω an equilibrium point. A function V ⊂ C(Ω,R) is

called a Lyapunov function provided

V̇ (x) = lim
h→0

V (x+ hf(x)V (x))

h
= ▽V (x).f(x) ≤ 0∀x ∈ D (1.9.5)

where V̇ (x) is the divided derivative of V in the direction of F .Additionally, V̇ (x̄) = 0 and V (x) > 0 ∀x ∈ D {x̄},

then V is a positively define Lyapunov function.

Applying chain rule on V (x(t)) given that x = x(t) is a solution of the dynamical function defined above.

Hence we have
dV (x(t))

dt
=

U∑
n=1

∂V (x(t))

∂xn
.
dxn(t)

dt
▽V.f(x)V̇ (x(t)) (1.9.6)

The equation reveals the reason why V̇ is sometimes called the trajectory inclined derivative, which gives infor-

mation about V without having prior information about their solutions

Theorem 6. If we can find a positive Lyapunov function V of the dynamical system differentiable on the neigh-

borhood of D with equilibrium point x̄, then x̄ can be said to be asymptotically stable if V̇ (x(t)) < 0, ∀ x ∈ D {x̄}

and asymptotically unstable if V̇ (x(t)) > 0, ∀ x ∈ D {x̄}

Theorem 7 (LaSalle’s Invariance Principle). Let V be a Lyapunov function of the system (1.9.2) defined on

D. We define S such that, S = x ∈ D̄Ω : V̇ (x) = 0. Let G be the largest invariant set in S. Every boundary of

trajectory for t ⩾ 0 for the system (1.9.2),which remain in D approaches the set S as t→ +∞
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(For more details on Lyapunov Function, see [Diehl et al., 2010,Rafikov et al., 2008]).

1.9.4 Sensitivity Analysis

Sensitivity Analysis is used to test the effectiveness of some properties on a given quantity of a model.

Definition 1.9.3. The absolute sensitivity coefficient of a quantity R with respect to a parameter x is defined as

the rate of change R with respect to x. It is denoted by ∂R
∂x

This sensitivity coefficient gives the information of increment or decrement as a parametric variable. The

sensitivity coefficient gives the effect of the sensitivity of the variable in the model and the influence of parameter

of the quantities R and x respectively.

Definition 1.9.4. The relative sensitivity coefficient (or normalized forward sensitivity index) of a quantity R

with respect to a parameter x is

Rx =
∂R

∂x
× x

R

The sensitivity analysis, is very useful in epidemiological modeling, which is used to investigate the effect of

parametric entries as it affects the number of secondary infections. (For more details on Sensitivity Analysis,

see [Saltelli, 2002,Christopher Frey and Patil, 2002]).

1.9.5 Bifurcation Analysis

In the study of dynamical system and its analysis, it have been seen that, there are various form of reaction and

changes regarding the behaviour of the system and adaptation to such changes. Mathematical examination of

such changes in qualitative behaviour of dynamical systems as its parameter passes through a critical value in

the system called a bifurcation point. This critical point is also known as Bifurcation Analysis. This changes

occur as responses in the behaviour of the dynamical system to for example the stability of an equilibrium point,

the appearance of periodic solutions which initially were not present due to changes in initial conditions as well

as parameter values in the model. Bifurcation can also occur in a dynamical system when certain parameters
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not included initial are added to the model. The parameters which are responsible for these sudden changes in

the system are known as bifurcation parameters [Ueta and Chen, 2000]. In mathematical epidemiology, the basic

reproduction number have been one of the bifurcation parameters known, when R0 = 1 direction of the bifurcation

can be determined either as a supercritical movement or a sub-critical movement. Which is an example of a local

bifurcation used in analysing changes in stability of equilibra as a model parameter varies with basic reproduction

number R0 being a key parameter in this regard.

Subcritical Bifurcation which is also called Backward Bifurcation (BB) whenever there is a coexistence between

an unstable endemic equilibrium and a stable disease-free equilibrium at R0 when such coexistence is less than

unity near the threshold R0 = 1. Conversely, a supercritical bifurcation also known as Forward Bifurcation (FB)

occurs only when a locally asymptotically stable positive equilibrium tends to appear at R0 slightly above unity.

Where Castillo-Chavez and Song [Mathematical Biosciences . . . , 2004] proposed a general center manifold theory

to determine the existence of forward and backward bifurcations in epidemiological models. (For more details on

Bifurcation Theorem, see [Ma, 2009,Melesse and Gumel, 2010,Wang, 2002]).

1.9.6 Optimal Control Analysis

Optimal control theory, a concept derived from the calculus of variation and optimality, is a mathematical tech-

nique which has proved very useful in decision making regarding complex biological situations where the behaviour

of a dynamical system is described by state variable(s) [Lenhart and Workman, 2007]. With the general knowledge

that there are possible ways of modifying and adjusting state variable(s) x when acted upon with suitable controls.

Which the dynamic of the system (state x) depends on which usually is the controlu [Okosun et al., 2013,Okosun

et al., 2017,Oke et al., 2018]. The control dynamics u is to effect either a minimization or maximization of the

given objective functional J(u(t), x(t), t) which attains the expected goal and required cost [Fleming and Lions,

2012]. The optimal solution which is desired is said to be achieved when the set goals are met. The functional

variables as well depends on the control and the state variables.

The Pontryagin Maximum Principle [Pontryagin et al., 1962] are one of the different methods used in calculating

optimal control dedicated to specific models. In its own case, it allows for the calculation of the control strategy

model of an ordinary differential system of equation with given constraints. With other powerful control techniques
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which are derived using partial differential equation and difference equation. Pontryagin et al., 1962 Optimal

control is very useful technique for mathematical epidemiology, it helps in controlling stability of a dynamical

system when proper control measure are added to the system. Application of controls in a system changes the

dynamical system from one position to a suitable position and controls helps in getting more valuable information

of the system and helps more in making better observation.

we consider an optimal control of the form

min
u

{ψ(tf , x(tf )) +
∫ tf

0
g0(t,x(t),u(t))dt}

when

f(x(t)) = [x1(t), x2(t), ..., xn(t)]
T∀Rn

is the control vector given f(u(t)) = [u1(t), ...., uuc(t)]
T∀Rm is the control vector.

The state and control vectors are governed by the dynamic system described by a set of first order differential

equation.
dx

dt
= f(t, x(t), u(t));x0 = x(0), 0 ≦ t ≦ tf (1.9.7)

The function

fh0 : T × Rn × RmRn

fg0 : T × Rn × RmRn

are continuously differentiable with respect to each component of x and u and piece-wise continuous with respect

to t.

1.9.7 Pontrayin’s Maximum Principle

The principle converts the maximization and minimization of the objective function J The converstion of maximum

and minimum of the objective functional J is carried out basically by Pontrayin Maximum principle, coupled with

the state variable into maximising or minimizing pointwisely with respect to the control and the Hamiltonian.
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In this thesis, an optimal control problem is formulated with the aim of minimizing the effect of transmission of

Zika virus disease and Ebola virus disease in a metapopulation system. We incorporate the model time dependent

control measures for preventing intervention of migrating individual to and from both patches . Then we applied

optimal control method using Pontrayin’s maximum principle to determine the sufficient condition for optimal

control of the Ebola virus and Zika virus respectively. Which may lead to further studies that is relevant to more

clinical research.

Theorem 8. If u∗(t) and x∗(t) are optimal problem (Equation) then ∃ a piece-wise differential adjoint variable

θ(t) such that

H(t, x(t), u(t), θ(t)) ≤ H(t, x∗(t), u∗(t), θ(t)) (1.9.8)

for all contents of u at each time t, where H is the Hamiltonian and is written as H = f(t, x(t), u(t)) +

θ(t)g(t, x(t), u(t)) and
λ(t)

dt
= −

∂H(t, x∗(t), u∗(t), θ(t)), θ(tf )

∂X
= 0

Necessary Condition

If u∗(t) and x∗(t) are optimal, then the following condition holds:

θ(t)

dt
= −∂H(t, x∗(t), u∗(t), θ(t))

∂X
, (1.9.9)

θ(tf ) = 0
∂H(t, x∗(t), u∗(H, θ(t)))

∂U
= 0

Sufficient Condition

If u∗(t) and θ(tf ) satisfies the following conditions:

θ(t)

dt
= −∂H(t, x∗(t), u∗(t), θ(t))

∂X
, (1.9.10)

θ(tf ) = 0
∂H(t, x∗(t), u∗(H, θ(t)))

∂U
= 0
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Then u∗(t) and x∗(t) are optimality value, where θ(t) which denotes the increase of the objective functional

and gives the shadow price or co-state variable due to a marginal increase of the state variable. This makes it easy

for policy makers and public health organization to generate direct contribution in the objective function and also

to control the variable which is represented by the terms f(t, x(t), u(t)) in the Hamiltonian. Which also can used

for variable change in order to generate some contribution to the objective function in the future as deemed fit by

experts. [Pontryagin et al., 1962,Kassa and Hove-Musekwa, 2014,Aweke and Kassa, 2015]
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Chapter 2

Literature Review

� Mathematical Epidemiology: Epidemiological models focuses mainly on the movement and the system which

the transmission of diseases takes, the dynamics of the transmission and the traits which are transmitted

from one place to another, from one community to another, from one state or province to another, from one

country to another. the study of epidemic was first carried out as early as in the days of the Prophets, as in

the Holy Bible, in the book of Exodus: it described the plague that the Almighty Jehovah God brought unto

the people of Egypt through the hands of Moses and the wise men of the land of Egypt where not able to

prevent the outbreak of the epidemic, which lead to the death of thousands, both animals and human alike.

Aristotle in 384BC gave discussion about some living creature as agent of diseases. Which was developed as

a theory in the 16th century. Leeuwenhoek(1723) with the use of enlarging instruments was able to see germs

and make physical expression. Physician and Medical laboratory scientist have contributed immensely to

the study of mathematical epidemiology. The general mechanism of the rate of spread of infection which are

mainly carried by the pathogens such as measles, influenza and Chicken pox. Which mainly are carried by

virus are very infectious. While the pathogens such are Gonorrhea, Tuberculosis are transmitted by bacteria

and are not viral infectious. The diseases like Malaria are carried vectors and agents who have been infected.

This diseases have form part of our daily living, whereby we have epidemic diseases which comes and cause

a lot of causality and the endemics diseases which is always present in a given community. Epidemiological

models are developed to as to formulate a mathematical model for the spread of the epidemic and are
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formulated to analysis the rate of interaction of such epidemic: taking information with relevant technique

and then use the information to formulate an hypothesis. Also in some case of Mathematics of Epidemic,

data are taken and are used for future prediction, if such case occurs in future. Mathematical modeling of

epidemic gives us the underlying facts which contributes and influences the spread of diseases and it also use

this same means to possible solutions given then parameters within reach. Kermack and McKenrick in 1927

formulated a straight forward and a simpler model that had similar behaviour to some observed epidemic.

McNeil in 1992 [McNeil and Khakee, 1992], modeled the the growth in Britain and China, while Anderson in

1982 [Anderson, 1982], modeled the population dynamics of infectious diseases and mathematical models on

sexually transmitted diseases was done by Blythe and Castillo-Chavez in 1990 [Brauer et al., 2012,Blythe and

Castillo-Chavez, 1990]. Mathematical Epidemiological models have been developed into ability to model in

various ways such as: Models with more compartments, Vertical and Vector Transmission, Non Homogeneous

and Age structured populations, Variable infectivity and Macroparasitic infections, and Stochastic Models

� Ebola Virus Disease (EVD); previously called Ebola haemorrhagic fever, causing severe, often fatal illnesses

in humans, as the virus which always remain potent, when usually transmitted to human whether living

or dead, wild animals alike, the EVD can be spread across human population through human to human

transmission. EVD comes with an average case fatality rate around 50%. The rate at which this fatality have

varied is between 25% to 90% in previous outbreaks. During the 2014-2016 EVD outbreak in West Africa,

which was on record as the largest and most complex Ebola outbreak since the discovery of the virus in

1976 [Team, 2014]. Recording far more cases of death in that single outbreak than all other previous incidence

combined. Spreading between countries and territories, starting in Guinea, with movement across land

boarders of neighbouring countries like Seria Leone and Liberia [Gire et al., 2014]. The Ebola haemerrhagic

fever, belongs to the family of filoviridae which are severe viral and fatal hemorrhagic disease usually coming

out with initial symptoms of fever, malaise, bleeding, shock, multi-organ system failure, reduction in sight

and neuro systemic pains. This ravaging Ebola Virus is a members of the filoviridae family(Filo Virus)

discussed, which is referred to as genus Ebola, together with the genus Marbug Virus and the Genus Gueva

Virus. Genus Ebola Virus is itself is subdivided into distinct species, namely: Bundibuggo , Zaire, Sudan,

Reston and Taii which are all (EVD). The Ebola virus can also be spread through indirect means of contact

with environments contaminated with such fluids. The rate at which the infected zone play a great role in the

amount of people affected with the disease when traveling in and out of the infected area is very high [Fulford
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et al., 2002]. The first human case of EVD believed to have lead to the current outbreak was the case of a two

year old boy who died on 6 December, 2013 in the village of Meliandon in Guinea. Leading to death of family

members who had close contact with the deceased, exhibiting symptoms consistent with Ebola infection.

Affecting individual who came in direct contact with infected environment, leading to spread of disease to

other villages, cities and countries through movement of infected people from one place to another. Example

is the case of the Liberian official Late Patrick Swayer [Garrett, 2015,Ambe and Kombe, 2019], who died

in Lagos, Nigeria. Which made the virus prevalent in Nigeria because of the first set of people that came

in contact with him. Which lead to the death of Dr Stella Emayo Adadavoh. Gire et al [Gire et al., 2014]

looked at clinical acts of Ebola virus Disease as it affected human at the Ngaliema Hospital in Zaire. In 1989

Sureau PH et al [Sureau, 1989] conducted medical and clinical observations of haemorrhagic manifestations

in Ebola haemorrhagic fever in Zaire. In 1995, EVD due to EBOV-Z reemerged in the DRC [Gulland, 2014]

caused an estimated 315 cases and 250 deaths, representing (CFR:81%) of cases that occurred during this

large epidemic. While in the 2008 Ebola outbreak, which occurred in Kasai Occidental Province of DRC

there were 32 recorded cases with 15 deaths (CFR: 47%) [Gire et al., 2014].

� Zika Virus Disease (ZVD), a viral infection of the family flavivindae (genus flavivirus) mosquito-borne

positive stranded RNA, causing massive health emergency, large-scale and unprecedented outbreak in the

North and South America [Boorman et al., 1956]. Historically, Zika Virus Disease (ZVD) was discovered

in the forest code named Zika forest of Uganda in 1947, ZVD was not prevalent for abut 60 years of the

first case found in the equatorial zone of Africa and Asia. ZVD, which often come with symptoms similar

to mild form of dengue fever with no specific treatment since the outbreak of ZVD in 2016. Which at

that time defiled basic care by medications or vaccines. Making ZVD a global menace to the world health

community and the research world. ZVD is usually seen to begin its spread from pregnant women to their

babies, leading to acute microcephaly, a severe brain malfunctions, coming with other child birth defects.

Zika Virus Disease (ZVD) is primarily spread by female mosquitos as stated by Hayes et al [Hayes, 2009] and

the virus is usually transmitted during sexual intercourse or during blood transfusion. During the quarterly

report of the Latin America and the Caribbian in 2015, which drew attention on the rapid spread of Zika in

countries like Barbados, Brazil, Bolivia, Colombia, The Dominican Republic, Ecuador, El Salvador, Haiti,

Honduras, Mexico, Panama, Paraguay, Pueto Rico and Venezuela the most hit. While in 2016, the number

of countries with ZVD infection increased to more than 50 countries, all experiencing transmission of ZVD
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within their respective local communities. The effect of this prompted the United States in January of

2016 to issue a travel guidance to countries affected with ZVD local transmission of active cases. They also

included guideline for pregnant woman, the use of enhanced precautions and considering postponing travel.

The first isolated issue of ZVD was recorded in 1947 after a research on a rhesus macque monkey placed

in a cage in the Zika forest of Uganda near the Lake Victoria, by the scientist of yellow fever research

institute [Musso et al., 2015]. A second case of isolation from the mosquito was discussed by Oehler E et al

in January, 1948 [Oehler et al., 2014]. The first true case of human infection of ZVD was identified by Fauci

AS et al [Fauci and Morens, 2016]. Not much of human infection was deducted or investigate for more than

40 years, but in 2007, there were reported cases of 15 confirmed ZVD cases in human from the continent of

Africa to southeast Asia, Rasmussen A. B et al [Rasmussen et al., 2016]. In 1954, ZVD was seen to occur

in eastern Nigeria where it was seen that the conditions and symptoms showing on three individual who

were observed. Where the patients with liver damage and serological studies showed a relationship between

jaundice and the development of virus [Rowthorn et al., 2009]. Jan C. et al in 1978 [JAN et al., 1935],

looked at the serological studies for arbvirus antibodies. Where they gave an analysis by taking samples

of potent serum specimen. They carried out this study on 1.279 human serum specimen collected from

adults in south-eastern part of Garbon from June to September 1975 during a multipurpose epidemiological

survey. The result of which showed positivity of more than 25% [Krauer et al., 2016]. In 2007, there

was a mild outbreak of ZVD characterized by rash on the Yap Island located in the south western pacific

Ocean [Sulania et al., 2016]. Which was first time that ZVD was discovered outside the continent of Africa

and Asia. This outbreak in April of 2007 was characterised by rash and the likes in Yap Island in the

Federated States of Micronesia [Johnson et al., 2005]. Where similar experiment as that which was carried

out in Garbon and Nigeria was carried out on random serum samples of selected men investigating RNA

of Zika, which is a flavivirus in the family of yellow fever, dengue,West Nie and Japanese encephalitic

Virus [Hayes, 2009, Solomon and Mallewa, 2001]. ZVD has spread in the Americas and the Caribbean,

following first detection in Brazil in May 2015. The risk of ZVD emergence in Europe increased as imported

cases are repeatedly reported. Together with Chikungunya Virus and Dengue Virus. In 2017, Baud D,

et al [Baud et al., 2017] showed through a research titled Zika, a new threat to human reproduction, that

followed by French Polynesia in 2013 and Brazil in 2015. the ZVD is mainly transmitted through aedes
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mosquito bites, but sexual and post-transfusion transmission which most times are not checked, have been

reported with symptoms like low grade fever, maculopopular rash, conjuctivitis, myalgia,arthralgia and

asthenia. Asymptomatic male-to-female transmission has also been described. Importantly, ZVD RNA can

prevent at least 6 months in Semen.

Mathematical modeling in epidemiology is concerned with describing the spread of diseases and its effect on

people which cut across discipline like Mathematics, Engineering, Philosophy, Biology, Economics and Sociology.

Which are used as tools to formulate and produce a better understood model which explains the spread of

infections and ways of controlling them. This have lead to several ground breaking research in mathematical

modeling and mathematical biology among them, we count the models of metapopulation and metacommunities.

Metapopulation models are defined as system of differential equations generated by discrete spatial models with

continuous time metapopulation models have been previously analyzed in numerous articles. This models compare

various models of incorporate spatial dynamics by modeling different population and checking their effects to

immediate environment. Fulford et al [Fulford et al., 2002], looked at the extreme individuals based models

which describe spatial structure within the location of territories The application of mathematics to the study of

infectious disease was initiated by Daniel Bernoulli in 1760. Which was necessary at that time because of the public

health demand, when there was an outburst of smallpox in his community. He proposed the first deterministic

model on pandemic of smallpox by introducing two systems of ordinary differential equations [Bernoulli and

Petropolitanae, 1760,Brauer et al., 2001,Brauer et al., 2019]. In 1906 Winchester Hammer postulated that the

possible course of an epidemic depends on the rate of contact between susceptible and infectious individuals,

which is regarded as secondary infection [Anderson, 1982, Chowell and Nishiura, 2014, Jones, 1884]. A notion

which became one of the most important concepts in mathematical epidemiology and mathematical modeling of

disease transmission dynamics. Also known as the mass-action principle, which states that the net rate of spread

of infection is assumed to be proportional to the product of the density of susceptible individual, multiplied by

the density of infectious individuals. Ross in 1911 in his own finding proposed a deterministic model for malaria

epidemic, where he showed that reducing the number of anopheles mosquitoes can eradicate malaria disease. In

1926 McKendrick developed a stochastic model for malaria epidemic, where he considered the case of recovery

and subdivided the population into compartments: Susceptible-Infected-Removed [Kermack and McKendrick,

1927]. The success of his studies was later in 1927 revisited by McKendrick and Kermack, when they collaborated
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and proposed a deterministic model. They proved that the population will be disease free when there is no

secondary infection between the infected individuals, and that the disease will invade the population when the

number secondary infection is more than one [Kermack and McKendrick, 1927]. An SIR model incorporating

births and deaths was formulated in 1929 by Soper [Soper, 1929] which was extended in 1932 by Kermack and

McKendrick [Kermack and McKendrick, 1927]. In view of this, very many mathematician took interest in building

mathematical models of epidemiology, demonstrating their properties and allowing for possible reduction of the

transmission dynamics of diseases. Building on the achievements of Kermack and McKendrick [Kermack and

McKendrick, 1927], mathematical modeling have been very useful in curbing spread of infectious diseases in

different population, communities around the globe. Helping Government as well as public health agencies make

proper health policies using compartmental models which are often described mathematical models. Researchers

have extensively studied compartmental models, showing the transmission dynamics and describing mechanism

behind the spread of infectious diseases. [Goufo et al., 2014] described a general SIR model with classical derivative

and generalized version using the beta-derivative, which enabled detailed study of the endemic equilibrium points.

With assumptions that all individuals were initially susceptible such that transmission disease dynamics was

governed by bilinear incidence based on mass action law. Also, Vargas-De-Leon (2011) [Vargas-De-León, 2011]

examined a SIS epidemic model which analysed stability of the steady states using Lyapunov function and the

model also established structure with standard incidence.

In another related work, [Liu, 2013] presented a SEIRS Mathematical model, with incorporation of media

coverage with random perturbation. Dealing with stability and boundedness of disease—free as well as endemic

equilibria of the deterministic model. Related to the above, Li et al (2006) [Li et al., 2006] also studied an SEIR

model with special emphasis on the different rate at which infected individuals are pushed in the latent (exposed),

infected and recovered period. With assumptions that individuals move into the susceptible and exposed classes

are constant. Castillo-Chavez and Feng [Mathematical Biosciences . . . , 2004,Brauer et al., 2019] in their several

works on mathematical models in epidemiology, proposed a SEIR model for TBD, establishing global stability

of the disease-free equilibrium. Which emphasizes the stability of disease in a broader region and existence

of a unique endemic equilibrium (EE) whenever basic reproduction number R0 > 1. Tchepmo Djomegni et

al [Tchepmo Djomegni et al., 2019] considered a mathematical model to understand the transmission dynamics of

HIV/AIDS in an environment, incorporating isolation of individuals by physical separation. [Adeniyi et al., 2020]
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in a SQIRE mathematic model presented a COVID-19 disease dynamics, with empirical data from the Nigeria

Centre for Disease Control (NCDC). With compartments for Quarantined humans, Infectious humans, Recovered

humans and Education compartment. [Yang and Xiao, 2010] considered a SIRV model including a vaccinated

compartment in which the analysis of the model shows that increasing the rate of vaccination aids eradication of

the disease. Literature surveyed beforehand involved the transmission dynamics of infectious diseases which are

contracted by susceptible individual, which is referred to as in-host. While diseases such as Dengue fever, Malaria

fever and Zika Virus always require host and vector compartment in the dynamics of the model. In view of this,

our Zika Virus disease model requires two interacting populations of both human host and mosquito vector for the

Zika Virus disease (ZVD) transmission dynamics. In May 2015,World Health Organization (WHO) in its report,

revealed the first local transmission of ZVD in the north east of Brazil [Daudens-Vaysse et al., 2016]. In which

by February 2016, suspected ZVD cases have been reported around 20 countries in and around Americas and

Southern America, with Brazilian Ministry of Health reporting an estimated cases of about 500,000 to 1,500,000

suspected ZVD occurrence[ [Organization et al., 2016, Daudens-Vaysse et al., 2016, Duffy et al., 2009]]. While

Ebola virus disease (EVD), which was declared an epidemic of Public Health Emergency of International Concern

(PHEIC) by World Health Organization(WHO) in August, 2014 [Organization et al., 2014] Mathematical models

for transmission dynamics of ZVD and EVD are useful in providing better insight into the behaviour of the

diseases. Which have great influenced public health awareness, helped in decision making processes regarding the

intervention strategies for preventing and adequate control strategies of EVD and ZVD.

Metapopulation represents one of the most recent development in the long- running ecological research on

population regulation. The metapopulation concept has been influential in the study of ecology. It assumes

that the rate of distribution of many species can be described as a system with a local community such that

rate at which the community interacts is checked to turnover a particular result which is checked and evaluated.

Matapopulation is also considered as a set of discrete populations of the same species, in the same general

geographical area, that may exchange individual through migration, dispersal or human-mediated movement.

The metapopulation concepts lends itself to modeling because its core dynamics of population. This model are

used to evaluate the condition of species habitat, the habitat management often includes controlling the rate

and pattern of habitat. Schtickzelle et al [Schieffelin et al., 2014], used a structured metapopulation model to

study effect of grazing on the bog fertility butterfly in south-eastern Belgium. In 2004 Julien Arino et al [Arino
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and Van den Driessche, 2003] developed a metapopulation model of the carnivorous land snail to control timber

harvest. In another related work, [Fulford et al., 2002] developed a SEIR Metapopulation Dynamics of an Infectious

Disease of Tuberculosis. The metapopulation mathematical model presented in this work is motivated from the

studies carried out by [Njagarah and Nyabadza, 2014] where they researched the transmission dynamics of a

metapopulation mathematics model for cholera between communities linked by migration in conjunction with

movement interaction of human in two populations.
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Chapter 3

Mathematical Model Formulation and

Analysis

This chapter is devoted to the formulation of the two metapopulation cases of Ebola model and Zika model as

well as their full descriptions with respect to flow diagrams, parameters and variables involved.

3.1 Ebola Model

Ebola virus disease (EVD) is a severe, often fatal illness in humans which manifest as the Ebola fever disease.

A virus which belongs to the family of filoviridae is known to be serious and deadly hemorrhagic disease which

shows symptoms of gastrointestinal disorder, excessive fever, bleeding and multiple organ failure [Dowell et al.,

1999,?]. EVD outbreaks have fatality rate of up to 90% [Dixon and Schafer, 2014]. Ebola first appeared in 1976 in

two simultaneous outbreaks,in Nzara, Sudan and in Yambuku, Democratic Republic of Congo [Team et al., 1978].

Sometimes in October of 2014, 244 out of 450 health care personnel died having been infected with Ebola [Rewar

and Mirdha, 2014].

The World Health Organisation (WHO) and respective governments reported a total of 28,616 suspected cases
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of EVD and 11,310 deaths from infected individuals [Schieffelin et al., 2014].The rate at which the infected zone

play a great role in the amount of people affected with the disease when traveling in and out of the infected area

is very high [Argueta and Wasem, 2016].

Believed that the first human case of EVD leading to the current outbreak was a two year old boy who died

on 6 december, 2013 in the village of Meliandon in Guinea, which lead to death of close members of his family

and symptoms consistent with Ebola infection was observed [Rewar and Mirdha, 2014,Heen, 2016]. Which also

affected people who came in direct contact with the infected environment and the disease was spread to other

villages, cities and countries through movement of infected people from one place to another. Example is the case

of the Liberian official late Patrick Swayer [Shuaib et al., 2014,Heen, 2016], who died in Lagos, Nigeria.

Mathematical modeling has been a great too in the hands of researchers in designing measures of prevention

and control of infectious diseases [Kermack and McKendrick, 1927,Brauer et al., 2001,Goufo and Maritz, 2015].

Mathematical modeling have been used to better understand the transmission mechanism of infectious diseases.

It has been able to predict the features that are dominant in the spread of diseases. The models helps in making

predictions with effect to manifestation of the disease, and such are used to formulate control strategies.

Metapopulation concept have served as a great tool in the analysis of dis-aggregated population [Arino and

Van den Driessche, 2003]. The models involves movement of individuals between communities which are connected.

For example, [Arino and Van den Driessche, 2003,Arino et al., 2005] developed a multi city epidemic model and a

multi-species epidemic model, where they check the effect of transmission of epidemic as relation to the patches and

several disease. [Wang and Zhao, 2004,Wang and Zhao, 2008] looked at the occurrence of disease transmission in

communities connected by migration, hoe disease dynamics in a patchy environment. [Salmani, 2005] [Goufo et al.,

2014] presented a fractional SEIR metapopulation model of the spread of measles with restriction to four patches.

This paper is motivated by an article on guardian print media published on 1st August, 2019 gave a report that

”Rwanda’s government briefly closed and then reopened part of a busy land border with the Democratic Republic

of the Congo on Thursday, prompting panic and confusion in both countries.” The re-emergence of Ebola virus

disease in Democratic Republic of Congo (DRC), which prompted other countries who share boarder with the

country to close down their boarders. We use a mathematical model to study the effect of movement of people

from one population to another with the effect of the Ebola virus disease (EVD) dynamics.
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3.2 Ebola Model Formation

We consider a SEIR metapopulation model, we consider two patches representing two communities connected by

the movement of individuals through means of transportation. In and Ebola virus disease transmission, which

have a latent state of few days, allowing individuals few day of movement before the disease sets to its full capacity

in the body system. We assume that it is only the healthy carrier who can move from one place to another, we

are looking at the movement between connected cities. In a case where an individual works in the city, but resides

outside the city.

The assumption is necessitated because an individual who is susceptible in a population can be infectious

in another population due to movement within the two populations. So also an infectious individual can move

within populations amidst the infectious class. Movement within the infected class may be more shorter time

than the time required for individual to move from one sub population into another. Transmission resulting from

individuals movement to and fro each patch is assumed to be very much likely, given the conditions that the bodily

fluid of a susceptible individual can be an easy means of how Ebola virus disease is easily spread. Transmission

is highly probably at entry points, in case of a migrated who is infected, bodily fluid of an infected person gives

a high risk of contamination.

In general transmission dynamics of Ebola heamealogious in humans is complex due to local and long range

movements of individuals. It is of note that movement between communities and population depends mainly on

the size of the population as well as the distance between these populations Such close contact with bodily fluids,

blood contact, contact with body organs of an infected individual or other bodily fluids of infected animals.

The model is formulated with a general population which is considered in two patches with reference to Ebola

virus disease transmission and the disease states of individuals in the system at time t. The compartments are

divided into classes of individuals in the population who are immunologically naive, they are the susceptible class

denoted by S. With the exposed individuals denoted by E, while the infected class is denoted by I and those

individuals who have recovered are denoted as R but with temporary immunity, because they are prone to getting

infected if they contract the disease again. We assume that the movement within patches are homogenous, we

also assume that the Ebola virus disease is highly infectious.
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The model explore the possibility of movement of susceptible individuals from one patch to another patch.

During which we assume that immigration of susceptible individuals can be the cause of infection because suscep-

tible individual might be infected which makes it possible that susceptible individuals in patch 1 can be infectious

in patch 2 at the rate ω1S1 while the susceptible individual can be infectious at the rate ω2S2 in the exposed class

of patch 1 moving onward to being infectious in patch 1. The rate at which new susceptible are recruited into the

system is at rates A1 and A2 for the first and second patch respectively.

Which can be as a means of new birth or immigration of a susceptible individual at time t. The movement

of infectious individual within the two patches are the typical individuals who show symptoms which play a very

important role in metapopulation model of Ebola virus disease since this class contributes to the transmission of

the disease. It is very important to note that the time which the virus will take in each and every individual’s

body before manifestation of its symptoms differs from an individual to another. The overall dynamics of the

population account for by the combined effects of two patches. We assumed that the recovered individuals might

die naturally at the rate µ1R1 and mu2R2 in the two patches respectively.

As a matter of fact, the effect of the disease would have taken a great toll on the physical well being of the

recovered individual, it is very unlikely that there will be movement between the two patches, because the recovered

individual will be confined in their patch having just recovered from a disease. The susceptible population is going

out following a possibility of natural death at rate µ1S1 and µ2S2 and they move from patch to patch at rate ω1S1

and ω2S2 respectively. The exposed compartment suffer natural death at rates µ1E and µ2E1 respectively with

respect to the rate of exposure and differentials in immunity. While infected compartment suffer natural death at

rate µ1I1 and µ2I2 respectively. They also suffer death due to the disease at rates δ1I1 and δ2I2 respectively.

So also the rate of transmission of disease within patches from one compartment to another is such that,

susceptible individuals becomes exposed at a rate βiSiIi where i = (1, 2) for both patches. The exposed individuals

becomes infective at rate κi where i = (1, 2) for both patches, while the infected individuals recover at rate αi for

both patches where i = (1, 2). Because of the recent resurgence of EVD in DRC and other neighbouring countries,

with possibility of EVD in individual who have previously recovered, we then used a as the rate at which recovered

individuals lose their assumed immunity and become suceptible again. . The diagram representing the flow of the

disease progression is given below :
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Figure 3.1: Schematic diagram of the disease dynamics

When we assume that the exposed period after the transmission of infection to susceptible individual before

transiting the infection is The initial conditions of the model are such that S1(0) > 0, E1(0) ⩾ 0 I1(0) ⩾ 0,

R1(0) ⩾ 0 for the first patch and S2(0) > 0, E2(0) ⩾ 0 I2(0) ⩾ 0, R2(0) ⩾ 0 for the second patch.

The sub-population are connected by migration of individuals from first community to the second and back.

A key issue of interest is the fact that disease can be in extinction in one sub-population and re-emerge in the

other. Which makes the rate of infection different between the subpopulation. The total population of the first

patch, namely N1 is the interaction of the sum of S1, E1, I1 and R1 in the system of equation(2.1) and the total

population of the second patch, namely N2 evolves around the sum of S2, E2, I2 and R2 in the system of equation

(3.2.1), considering the fact that sub-population are independent of other adjoining communities geographically
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because they are not connected,but migration and inter communal interaction allows for some sort of connection

then the development of the sub-population is given after showing the total meta-population dynamics.



dS1
dt = A1 − β1S1I1 − (µ1 + ω1)S1 + ω2S2 + aR1

dE1
dt = β1S1I1 − (κ1 + µ1)E1

dI1
dt = κ1E1 − (α1 + µ1 + τ1)I1

dR1
dt = α1I1 − µ1R1 − aR1

dS2
dt = A2 − β2S2I2 − (µ2 + ω2)S2 + ω1S1 + aR2

dE2
dt = β2S2I2 − (κ2 + µ2)E2

dI2
dt = κ2E2 − (α2 + µ2 + τ2)I2

dR2
dt = α2I2 − µ2R2 − aR2

(3.2.1)

3.2.1 Positivity and Boundedness of Ebola Model Solution

The system of equation (3.2.1) is a vector (multi-variables polynomial) function of class C∞ , by the Cauchy-

Piccard theorem [Wouk, 1963] there exists a unique (local) solution of the system (3.2.1). Which is on the premise

that for the rest of the analysis, we assume that the solution of (3.2.1) is non-negative. Ensuring non-negativity

of both populations at all time.
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Table 3.1: Description of State Variables and Parameters

State Variables Description

N1, N2 Total human population in patch one and two.

S1, S2 Susceptible population in patch one and two.

E1, E2 Exposed population in patch one and two.

I1, I2 Infected population in patch one and two.

R1, R2 Recovered population in patch one and two.

Parameters Description

A1, A2 Recruitment rate of human into patch 1 and patch 2 respectively.

µ1, µ2 Natural death rate of respective individuals in both patch 1 and patch 2.

α1, α2 Recovery rate for each patch respectively.

ω1, ω2 Movement of susceptible human population within both patches respectively.

a Rate at which Recovered Individuals becomes Susceptible for both patch.

β1, β2 Transmission probability of Susceptible Individual becomes infected with the virus.

τ1, τ2 Disease induced death rate of respective individuals in both patch 1 and patch 2.

κ1, κ2 Exposed individual becomes infected in both patch 1 and patch 2 at this rate.

3.2.2 Boundedness of Solution

Proposition 3.2.1. The functions S1, E1, I1, R1, S2, E2, I2, R2 solutions of the system (3.2.1) are bounded.

Proof. Consider total human population for both patches

NT = N1 +N2, (3.2.2)

where

N1 = S1 + E1 + I1 +R1, N2 = S2 + E2 + I2 +R2. (3.2.3)
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Differentiating (3.4.1) with respect to t and taking into account for (3.2.1), we get

N ′ = N
′
1 +N

′
2

= S
′
1 + E

′
1 + I

′
1 +R

′
1 + S

′
2 + E

′
2 + I

′
2 +R

′
2

= A1 +A2 − µ1(S1 + E1 + I1 +R1)− µ2(S2 + E2 + I2 +R2)− τ1I1 − τ2I2

= A1 +A2 − µ1N1 − µ2N2 − τ1I1 − τ2I2

≤ A1 +A2 − µT (N1 +N2)− τ1I1 − τ2I2

≤ A1 +A2 − µTNT − τ1I1 − τ2I2

≤ A1 +A2 − µTNT (since I1, I2 ≥ 0),

where µT ≤ min{µ1, µ2}. Solve the differential inequality, we get

NT (t) ≤
A1 +A2

µT
+

(
NT (0)−

A1 +A2

µT

)
e−µT t = NT (0)e

−µT t + (1− e−µT t)
A1 +A2

µT
.

If NT (0) ≤ A1+A2
µT

, then NT (t) ≤ A1+A2
µT

for all t > 0. However, if A1+A2
µT

< NT (0), then NT (t) ≤ NT (0) for all

t > 0. In either cases we always have

NT (t) ≤ max

(
NT (0),

A1 +A2

µT

)
for all t ≥ 0. This shows that the total human population NT is bounded.

Theorem 9. Given the model equation (3.2.1) which has a bounded positive solution on the biological feasible

region is positively invariant in region Ω defined by{
(S1, E1, I1, R1, S2, E2, I2, R2)ϵR

8
+ : N ⩽

A1 +A2

µn

}
with initial conditions S1(0) > 0, E1(0) ⩾ 0, I1(0) ⩾ 0, R1(0) ⩾ 0 and S2(0) > 0, E2(0) ⩾ 0I2(0) ⩾ 0, R2(0) ⩾ 0

Proof. Let the total population for both patches of the model be

NT (t) = N1(t) +N2(t) (3.2.4)

such that

N1(t) = S1 + E1 + I1 +R1
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N2 = (t)S2 + E2 + I2 +R2

Differentiating with respect to t

N
′
T (t) = N

′
1(t) +N

′
2(t) (3.2.5)

N
′
T (t) = S

′
1(t) + E

′
1(t) + I

′
1(t) +R

′
1(t) + S

′
2(t) + E

′
2(t) + I

′
2(t) +R

′
2(t)

N
′
T (t) = A1 − β1S1I1 − (µ1 +ω1)S1 +ω2S2 + aR1 + β1S1I1 − (κ1 +µ1)E1 + κ1E1 − (α1 +µ1 + τ1)I1 +α1I1 −µ1R1

−aR1+A2−β2S2I2−(µ2+ω2)S2+ω1S1+aR2+β2S2I2−(κ2+µ2)E2+κ2E2−(α2+µ2+τ2)I2+α2I2−µ2R2−aR2

N
′
T (t) = A1 − µ1S1 − µ1E1 − µ1I1 − µ1R1 +A2 − µ2S2 − µ2E2 − µ2I2 − µ2R2 − τ1I1 − τ2I2

N
′
T (t) = A1 − µ1(S1 + E1 + I1 +R1) +A2 − µ2(S2 + E2 + I2 +R2)− τ1I1 − τ2I2

∴= A1 +A2 − µ1(N1(t))− µ2(N2(t))− τ1I1 − τ2I2

making assumption that

µn = min{µ1, µ2}

N
′
T (t) = A1 +A2 − µn(N1(t) +N2(t))− τ1I1 − τ2I2 (3.2.6)

since τ1I1 and τ2I2 are non-negative reduces to

N
′
T (t) = A1 +A2 − µnNT (t)
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∴
dNt(t)

dt
+ µnNT (t) ≤ A1 +A2

d

dt
(eµn(t)NT (t)) ≤ (A1 +A2)e

µn(t)

Integrating with respect to t yields

Nn(t) ≤
(A1 +A2)

µn
+Ke−µn(t) (3.2.7)

taking the limit as t→ ∞

lim
t→∞

Nn(t) ≤
(A1 +A2)

µn

Thus

0 ≤ Nn(t) ≤ Nn(t) ≤
(A1 +A2)

µn

Lemma 1. The space of all possible states of the system of equation(3.2.1) is given by

Ω :=

{
(S1, E1, I1, R1, S2, E2, I2, R2)ϵR

8
+ : N ⩽

A1 +A2

µn

}
where µn = min{µ1, µ2}

3.2.3 Equilibrium points

The model has four equilibrium points: Ebola free equilibrium (EFE) E0 of both patches, endemic free equilibrium

in each of the patch E1 and E2 which are the boundary endemic equilibria and endemic equilibrium in both patches

E3 referred to as interior equilibrium all in the domain Ω as obtained from the system of equations (3.2.1). With

non negative initial conditions.

The equilibrium points of the system (3.2.1) are determined by solving the resulting equations in each patch

obtained by equating the derivatives of the system (3.2.1) to zero.
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Ebola Free Equilibrium point

E0 is the Ebola free equilibrium (EFE) which occurs when the both communities which are connected via immi-

gration do not have any case of Ebola Virus infection.

E0 = (So
1 , 0, 0, 0, S

o
2 , 0, 0, 0) ϵR

8
+. (3.2.8)

where

So
1 =

A1 µ2 +A1 ω2 +A2 ω2

µ1 µ2 + µ1 ω2 + µ2 ω1
, So

2 =
(µ2ω1 + ω1ω2)A1 + (ω1ω2 + µ1µ2 + µ2ω1 + µ1ω2)A2

µ1 µ22 + µ1µ2 ω2 + µ22 ω1 + µ2ω1ω2 + µ1µ2ω2 + µ1ω2
2

Ebola Free Endemic Equilibrum points

E1 is the Ebola free endemic equilibrium which occurs when Ebola is prevalent in the first patch but not present

in the second patch, which in turn makes recruitment of healthy individuals almost zero. Susceptible Individuals

will not migrate to the community that is Ebola prevalent or migration will be almost zero.

E1 = (S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, S

∗
2 , 0, 0, 0)ϵR

8
+. (3.2.9)

where

S∗
1 =

U3A1 + aα1I
∗
1

β1I∗1µ1
, S∗

2 =
A2

β2I∗2µ2

E∗
1 =

β1I
∗
1 (U3A1 + aα1I

∗
1 )

(β1I∗1 − µ1)U1
,

I∗1 =
κ1β1I

∗
1 (U3A1 + aα1I

∗
1 )

(β1I∗1 − µ1)U1U2

R∗
1 =

α1I
∗
1

U3
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U1 = (κ1 + µ1), U2 = (α1 + µ1 + τ1), U3 = (a+ µ1)

E2 is the Ebola free endemic equilibrium which occurs when Ebola is prevalent in the second patch but not present

in the first patch, which in turn makes recruitment of healthy individuals almost zero since susceptible individuals

will not migrate to the community that is Ebola prevalent or migration will be almost zero.

E2 = (S∗
1 , 0, 0, 0, S

∗
2 , E

∗
2 , I

∗
2 , R

∗
2)ϵR

8
+. (3.2.10)

where

S∗
1 =

A1

β1I∗1µ1
, S∗

2 =
U3A2 + bα2I

∗
2

β2I∗2µ2
,

E∗
2 =

β2I
∗
2 (U6A2 + bα2I

∗
2 )

(β2I∗2 − µ2)U2
,

I∗2 =
κ2β2I

∗
2 (U6A2 + bα2I

∗
2 )

(β2I∗2 − µ2)U2U5

R∗
2 =

α2I
∗
2

U6

U4 = (κ2 + µ2), U5 = (α2 + µ2 + τ2), U6 = (µ2 + b)

Ebola Endemic Equilibrum point

E3 is the Ebola endemic equilibrium (EEE) which occurs when Ebola is prevalent in the both patches, which in

turn makes recruitment of healthy individuals almost zero as well since susceptible individuals will not migrate to
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and from both communities that is Ebola prevalent and migration will be almost zero.

E3 = (S∗∗
1 , E

∗∗
1 , I

∗∗
1 , R

∗∗
1 , S

∗∗
2 , E

∗∗
2 , I

∗∗
2 , R

∗∗
2 )ϵR8

+. (3.2.11)

where

S∗∗
1 =

U6U3A1U4 + aα1I
∗
1U4U6 + U3ω2U6A2 + bU3ω2α2I

∗
2

U0U3U4U6 − U1U2U3U6

,

S∗∗
2 =

U7A2(U0U3U4U6 − U1U2U3U6) + bα2I
∗
2 (U0U3U4U6 − U1U2U3U6)

+ U7ω1(U3U4U6A1U4U6α1I
∗
1 + U3U6ω2A2 + bU3ω2I

∗
2 )

U4U7(U0U3U4U6 − U1U2U3U6)

E∗∗
1 =

β1I
∗
1 (U6U3A1U4 + aα1I

∗
1U4U6 + U3ω2U6A2 + bU3ω2α2I

∗
2 )

U1(U0U3U4U6 − U1U2U3U6)

E∗∗
2 =

β2I
∗
2

U7A2(U0U3U4U6 − U1U2U3U6) + bα2I
∗
2 (U0U3U4U6 − U1U2U3U6)

+ U7ω1(U3U4U6A1U4U6α1I
∗
1 + U3U6ω2A2 + bU3ω2I

∗
2 )


U4U5U7(U0U3U4U6 − U1U2U3U6)

I∗∗1 =
κ1β1I

∗
1 (U6U3A1U4 + aα1I

∗
1U4U6 + U3ω2U6A2 + bU3ω2α2I

∗
2 )

U1U2(U0U3U4U6 − U1U2U3U6)

I∗∗2 =

κ2β2I
∗
2

U7A2(U0U3U4U6 − U1U2U3U6) + bα2I
∗
2 (U0U3U4U6 − U1U2U3U6)

+ U7ω1(U3U4U6A1U4U6α1I
∗
1 + U3U6ω2A2 + bU3ω2I

∗
2 )


U4U5U6U7(U0U3U4U6 − U1U2U3U6)

R∗∗
1 =

α1I
∗
1

U3
, R∗∗

2 =
α2I

∗
2

U6
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For the disease free equilibrium, we assume that in both sub-populations, there are no infected individuals, neither

are there any one who is exposed. it is assumed that all the compartment are without the infection. Which reduces

the system of equations (3.2.1) to

dS1
dt

= A1 + ω2S2 − ω1S1 − µ1S1 (3.2.12)

dS2
dt

= A2 + ω1S1 − ω2S2 − µ2S2 (3.2.13)

Setting the right hand side (RHS) of equation (3.2.14) and (3.2.15) to zero and solving for the equilibrium points,

we obtain

So
1 =

ω2(A1 +A2) + µ2A1

ω1µ2 + µ1ω2 + µ1µ2
, So

2 =
(µ2ω1 + ω1ω2)A1 + (ω1ω2 + µ1µ2 + µ2ω1 + µ1ω2)A2

µ1 µ22 + µ1µ2 ω2 + µ22 ω1 + µ2ω1ω2 + µ1µ2ω2 + µ1ω2
2

Therefore, with non negative initial conditions

DFE(So
1 , E1, I1, R1, S

o
2 , E2, I2, R2) = (So

1 , 0, 0, 0, S
o
2 , 0, 0, 0) .

3.2.4 Basic Reproduction Number

To find R0 which is the basic reproduction number for this system, we use the next generation matrix described

by [Diekmann et al., 1990,Van den Driessche and Watmough, 2002, van den Driessche and Watmough, 2002] to

calculate the basic reproduction number of the system of equation (3.2.1) where we define matrices F and V the

inflow and outflow from the Exposed and Infectious compartments.

F =



0 β1S1 0 0

0 0 0 0

0 0 0 β2S2

0 0 0 0


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and

V =



c0 0 −δ2 0

−κ1 c1 0 0

−δ2 0 c2 0

0 0 −κ2 c3


where

c0 = (κ1 + µ1)c1 = (τ1 + α1 + µ1), c2 = (κ2 + µ2), c3 = τ2 + α2 + µ2

Where the largest eigenvalue and hence the spectral radius ρ(FV −1) is R0. Since the existence of infection is

isolated in respective community which is connected only through movement of individuals or migration, then the

communities specific reproduction numbers will be given below,

FV−1 =



β1S10κ1c2
c1(c0c2−µ1µ2)

β1S1

c1
β1S1κ1µ2

c1(c0c2−µ1µ2)
0

0 0 0 0

β2S2µ1κ2

c3(c0c2−µ1µ2)
0 β2S2c0κ2

c3(c0c2−µ1µ2)
β2S2

c3

0 0 0 0


where

c0 = (κ1 + µ1) , c1 = (τ1 + α1 + µ1) , c2 = (κ2 + µ2) c3 = (τ2 + α2 + µ2) .

With corresponding eigenvalues,

1

2

S1β1c2c3κ1 + S2β2c0c1κ2 +

√√√√√S1
2β1

2c2
2c3

2κ1
2 − 2S1S2β1β2c0c1c2c3κ1κ2

+ 4S1S2β1β2c1c3µ1µ2κ1κ2 + S20
2β2

2c0
2c1

2κ2
2

c1c3 (c0c2 − µ1µ2)

,

−1

2

S1β1c2c3κ1 + S2β2c0c1κ2 +

√√√√√S10
2β1

2c2
2c3

2κ1
2 − 2S1S2β1β2c0c1c2c3κ1κ2

+ 4S1S2β1β2c1c3µ1µ2κ1κ2 + S2
2β2

2c0
2c1

2κ2
2

c1c3 (c0c2 − µ1µ2)
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0, 0

such that

R0 =
1

2

S1β1c2c3κ1 + S2β2c0c1κ2 +

√√√√√S1
2β1

2c2
2c3

2κ1
2 − 2S1S2β1β2c0c1c2c3κ1κ2

+ 4S1S2β1β2c1c3µ1µ2κ1κ2 + S2
2β2

2c0
2c1

2κ2
2

c1c3 (c0c2 − µ1µ2)

is the basic reproduction number for the first and second patch.

3.2.5 Local Stability of the Ebola Free Equilibrium (EFE) E0

We will establish the local stability of the (EFE) in the theorem below

Theorem 10. The Ebola free equilibrium, (DFE) of the model system is locally asymptotically stable (LAS) if

R0 < 1

Proof. For the Ebola free equilibrium, the assumption that in both sub-populations, there are no infected indi-

vidual holds. Such that no one is infected in either of the compartments, reducing (3.2.1) to E0. We linearize the

system of equation (3.2.1), then we derive the Jacobian matrix J(E0) at E0, hence obtaining the characteristics

equation as follows:
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J(E0) =



U1 0 −β1S1 a ω2 0 0 0

0 U2 β1S1 0 0 0 0 0

0 κ1 U3 0 0 0 0 0

0 0 α1 U4 0 0 0 0

ω1 0 0 0 U5 0 −β2S2 b

0 0 0 0 0 U6 β2S20 0

0 0 0 0 0 κ2 U7 0

0 0 0 0 0 0 α2 U8


where

S1 =
ω2(A1 +A2) + µ2A1

ω1µ2 + µ1ω2 + µ1µ2
, S2 =

(µ2ω1 + ω1ω2)A1 + (ω1ω2 + µ1µ2 + µ2ω1 + µ1ω2)A2

µ1 µ22 + µ1µ2 ω2 + µ22 ω1 + µ2ω1ω2 + µ1µ2ω2 + µ1ω2
2

U1 = −µ1 − ω1, U2 = −κ1 − µ1

U3 = −α1 − µ1 − τ1, U4 = −a− µ1, U5 = −µ2 − ω2, U6 = −κ2 − µ2, U7 = −α2 − µ2 − τ2, U8 = −b− µ2

Then the characteristic equation at E0 of the linearised system of the model (3.2.1) is given below.

|J(E0)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1 − ψ 0 −β1S1 a ω2 0 0 0

0 U2 − ψ β1S1 0 0 0 0 0

0 κ1 U3 − ψ 0 0 0 0 0

0 0 α1 U4 − ψ 0 0 0 0

ω1 0 0 0 U5 − ψ 0 −β2S2 b

0 0 0 0 0 U6 − ψ β2S2 0

0 0 0 0 0 κ2 U7 − ψ 0

0 0 0 0 0 0 α2 U8 − ψ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

56



Thus, the determinant det(J− ψI) = 0 and the equivalent eigenvalues of the system (3.2.1) at (E0) is given by

ψ(1) = −µ2−ω2, ψ
(2) = −µ1−ω1, ψ

(3) = −κ2−µ2ψ(4) = −κ1−µ1, ψ(5) = −α2−µ2− τ2, ψ(6) = −α1−µ1− τ1,

ψ(7) = −b− µ2 and ψ(8) = −a− µ1

From the values of all the off-diagonal entries of |J(E0)| which are non-negative. Therefore, it is a Metzler

matrix. Based on the fact that Ω ⩾ 0, then the system (3.2.1), is positively invariant in R8
+, Implying that any

trajectory of the system (3.2.1), from an initial state in the positive orthant R8
+remains in R8

+ forever. Clearly

from the determinant of E0 we see that the reproduction number of both patches are seen

Which implies that the system (3.2.1) is said to be locally asymptotically stable(LAS) at (EFE). Which com-

pletes the proof.

The global stability of disease-free equilibrium will now be established.

3.2.6 Global Stability of the Ebola Free Equilibrium (EFE) E0

we then show that the disease free equilibrium is globally asymptotically stable;

Theorem 11. The disease free equilibrium (DFE) of the model system is globally asymptotically stable (GAS) if

R0 < 1

Proof. Define a Lyapunov function candidate as follows;

V = (E1, I1, E2, I2) =
A1

µ1
β1E1 + C0I1 +

A2

µ2
β2E2 + C1I2

Hence, A1
µ1
β1 > 0, A2

µ2
β2 > 0, C0 > 0, C1 > 0 which is positive. it is easy to see the DFE such that the Lyapunov

function of the system of equation (3.2.1) is satisfied. By Differentiating with respect to t, we have

V̇ =
A1

µ1
β1E

′
1 + C0

′ +
A2

µ2
β2E

′
2 + C1I

′
2

V̇ =
A1

µ1
β1 [β1S1I1 − (F0)E1] + C0 [κ1E1 − (F1)I1] +

A2

µ2
β2 [β2S2I2 − (F2)E2] + C1 [κ2E2 − (F3)I2]
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where F0 = (κ1 + µ1), F1 = (α1 + µ1 + τ1), F2 = (κ2 + µ2), F3 = (α2 + µ2 + τ2)

By expansion and collecting of like terms we have

V̇ =

[
C0κ1 −

A1β1F0

µ1

]
E1 +

[
A1β

2
1S1
µ1

− C0F1

]
I1 +

[
C1κ2 −

A2β2F2

µ2

]
E2 +

[
A2β

2
2S2
µ2

− C1F3

]
I2

At Ebola free Equilibrium, where

S1 =
ω2(A1 +A2) + µ2A1

ω1µ2 + µ1ω2 + µ1µ2
, S2 =

(µ2ω1 + ω1ω2)A1 + (ω1ω2 + µ1µ2 + µ2ω1 + µ1ω2)A2

µ1 µ22 + µ1µ2 ω2 + µ22 ω1 + µ2ω1ω2 + µ1µ2ω2 + µ1ω2
2

let

S1 =
m1

m2
, S2 =

m3

m4

above

∴

V̇ =

[
C0κ1 −

A1β1F0

µ1

]
E1 +

[
A1β

2
1m1

µ1m2
− C0F1

]
I1 +

[
C1κ2 −

A2β2F2

µ2

]
E2 +

[
A2β

2
2m3

µ2m4
− C1F3

]
I2

V̇ =

[
C0κ1 −

A1β1F0

µ1

]
E1 +

[
A1β

2
1m1

µ1m2
− C0F1

]
I1 +

[
C1κ2 −

A2β2F2

µ2

]
E2 +

[
A2β

2
2m3

µ2m4
− C1F3

]
I2

∴

V̇ = C0κ1

[
1− A1β1F0

C0κ1µ1

]
E1 + C0F1

[
A1β

2
1m1

C0F1µ1m2
− 1

]
I1 + C1κ2

[
1− A2β2F2

C1κ2µ2

]
E2 + C1F3

[
A2β

2
2m3

C1F3µ2m4
− 1

]
I2

rearranging

V̇ = C0κ1

[
1− A1β1F0

C0κ1µ1

]
E1 + C1κ2

[
1− A2β2F2

C1κ2µ2

]
E2 + C0F1

[
A1β

2
1m1

C0F1µ1m2
− 1

]
I1 + C1F3

[
A2β

2
2m3

C1F3µ2m4
− 1

]
I2

V̇ = C0C1κ1κ2C0C1F1F3

[
R2

0 − 1
]
E1E2I1I2 ≤ 0

if R0 ≤ 1 Hence the Ebola free equilibrium is globally asymptotically stable for R0 ≤ 1
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3.2.7 Local Stability of the Ebola Free Endemic Equilibrium (EFEE) E1 and E2

We will establish the local stability of the (EFEE) in the theorems below

Theorem 12. The Ebola free endemic equilibrium, (EFE) of the model system is locally asymptotically stable

(LAS) if R0 < 1

Proof. For Ebola free endemic equilibrium, we assume that in both sub-populations movement is low, i.e ω << 1.

Such that infection is not recorded in the second that because immigration is reduced but not totally canceled

i.e (I1 = 0, I2 ̸= 0). We linearize the system of equation (3.2.1),then we derive the Jacobian matrix J(E1) at E1,

hence obtaining the characteristics equation as follows:

J(E1) =



a11 0 −β1U3 a ω2 0 0 0

U2 β1 −κ1 − µ1 β1U3 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

ω1 0 0 0 −µ2 − ω2 0 −β2U4 b

0 0 0 0 0 −κ2 − µ2 β2U4 0

0 0 0 0 0 κ2 a77 0

0 0 0 0 0 0 α2 −b− µ2


where a11 = −U2 β1 − µ1 − ω1, a33 = −α1 − µ1 − τ1, a77 = −α2 − µ2 − τ2

U2 =
(β1 ((A1 +A2)ω2 +A1µ2)κ1 − (µ1 + κ1) (α1 + µ1 + τ1) ((µ2 + ω2)µ1 + µ2ω1)) (a+ µ1)

β1 (µ13 + (a+ τ1 + α1 + κ1)µ12 + ((a+ τ1 + α1)κ1 + a (τ1 + α1))µ1 + aτ1κ1) (µ2 + ω2)

U3 =
(µ1 + κ1) (α1 + µ1 + τ1)

β1κ1
,U4 =

(µ1 + κ1) (α1 + µ1 + τ1)ω1 +A2β1κ1
β1κ1 (µ2 + ω2)
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Using upper triangular matrix principle [Coelho and Milies, 1993] for the upper diagonal, then we have

J(E1) =



a11 0 −β1U3 a ω2 0 0 0

U2 β1 −κ1 − µ1 β1U3 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

0 0 0 0 −µ2 − ω2 0 −β2U4 b

0 0 0 0 0 −κ2 − µ2 β2U4 0

0 0 0 0 0 κ2 a77 0

0 0 0 0 0 0 α2 −b− µ2


The matrix J(E1) is an upper triangular matrix. Its eigenvalues are also eigenvalues of the upper triangular

matrices. The trace of E1 is given as: −U2 β1 − a− b− α1 − α2 − κ1 − κ2 − 4µ1 − 4µ2 − ω1 − ω2 − τ1 − τ2 ⩽ 0

As the eigenvalues of the det(J(E1)− ψI) = 0 gives:

ψ(1) = −µ2 − ω2, λ
(2) = −κ2 − µ2, λ

(3) = −κ1 − µ1, ψ
(4) = −α2 − µ2 − τ2, ψ

(5) = −α1 − µ1 − τ1

, ψ(6) = −b− µ2, ψ
(7) = −a− µ1, ψ

(8) = −U2 β1 − µ1 − ω1

Since the values of ψ(1) < 0, ψ(2) < 0 ψ(3), ψ(4), ψ(5) < 0, ψ(6) < 0, ψ(7) < 0 and λ(8) < 0 have no positive signs,

hence the equilibrium point R0 < 1, then E1 is asymptotically stable.

Theorem 13. The Ebola free endemic equilibrium, (EFEE) of the model system is locally asymptotically stable

(LAS) if R0 < 1

Proof. For the Ebola free endemic equilibrium, the assumption that in both sub-populations, there are infected

individual in patch one and no infections in second patch holds. Such that no one is infected in second compart-

ment, reducing (3.2.1) to E2 i.e (I1 ̸= 0, I2 = 0). We linearize the system of equation (3.2.1),then we derive the

Jacobian matrix J(E2) at E2, hence obtaining the characteristics equation as follows:

We form the Jacobian matrix of the system as follows
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J(E2) =



−µ1 − ω1 0 −M0 a ω2 0 0 0

0 −κ1 − µ1 M0 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

ω1 0 0 0 a55 0 −M1 b

0 0 0 0 U2 β2 −κ2 − µ2 M1 0

0 0 0 0 0 κ2 −a77 0

0 0 0 0 0 0 α2 −b− µ2


where a33 = −α1 − µ1 − τ1, a55 = −U2 β2 − µ2 − ω2, a77 = −α2 − µ2 − τ2

M1 =
(κ2+µ2)(α2+µ2+τ2)

κ2
, M0 =

β1((κ2+µ2)(α2+µ2+τ2)ω2+A1β2κ2)
(µ1+ω1)β2κ2

U2 =
(β1 ((A1 +A2)ω2 +A1µ2)κ1 − (µ1 + κ1) (α1 + µ1 + τ1) ((µ2 + ω2)µ1 + µ2ω1)) (a+ µ1)

β1 (µ13 + (a+ τ1 + α1 + κ1)µ12 + ((a+ τ1 + α1)κ1 + a (τ1 + α1))µ1 + aτ1κ1) (µ2 + ω2)

Using upper triangular matrix principle [Coelho and Milies, 1993] for the lower diagonal, then we have

J(E2) =



−µ1 − ω1 0 −M0 a ω2 0 0 0

0 −κ1 − µ1 M0 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

0 0 0 0 a55 0 −M1 b

0 0 0 0 U2 β2 −κ2 − µ2 M1 0

0 0 0 0 0 κ2 −a77 0

0 0 0 0 0 0 α2 −b− µ2


trace of

E2 −U2 β2 − a− b− α1 − α2 − κ1 − κ2 − 4µ1 − 4µ2 − ω1 − ω2 − τ1 − τ2 ⩽ 0
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The determinant

det(J(E2)− λI) = 0

gives:

ψ(1) = −µ1 − ω1, ψ
(2) = −κ2 − µ2, ψ

(3) = −κ1 − µ1ψ
(4) = −α2 − µ2 − τ2

,

ψ(5) = −α1 − µ1 − τ1ψ
(6) = −b− µ2, ψ

(7) = −a− µ1

and ψ(8) = −U2 β2 − µ2 − ω2

Since the values of ψ(1) < 0, ψ(2) < 0 ψ(3), ψ(4), ψ(5) < 0, ψ(6) < 0, ψ(7) < 0 and ψ(8) < 0 have no positive signs,

hence the equilibrium point R0 < 1, then E2 is asymptotically stable.

3.2.8 Local Stability of the Ebola Endemic Equilibrium (EEE) E3

we then show that the disease free equilibrium is globally asymptotically stable;

J(E3) =



a11 0 −M2 ω2 0 0 0

U4 β1 −κ1 − µ1 M2 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

ω1 0 0 0 a55 0 −M3 b

0 0 0 0 β2U5 −κ2 − µ2 M3 0

0 0 0 0 0 κ2 a77 0

0 0 0 0 0 0 α2 −b− µ2


where a11 = −U4 β1 − µ1 − ω1, a33 = −α1 − µ1 − τ1, a55 = −U5 β2 − µ2 − ω2, a77 = −α2 − µ2 − τ2
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U4 =

(A1β1β2κ1κ2 ((− (α1 + µ1 + τ1) (µ1 + ω1)β2 + ω2β1 (µ2 + τ2 + α2))κ1

− µ1β2 (α1 + µ1 + τ1) (µ1 + ω1)κ2 + ω2µ2β1κ1 (µ2 + τ2 + α2) (a+ µ1)

β1β2κ2 (µ13 + (a+ τ1 + α1 + κ1)µ12 + ((a+ τ1 + α1)κ1 + a (τ1 + α1))µ1 + aτ1κ1)

U5 =

(A2β1β2κ1κ2 + α1β2κ1κ2ω1 + α1β2κ2µ1ω1 (− (µ2 + κ2) (µ2 + τ2 + α2)

(µ2 + ω2)β1 + ω1β2κ2 (µ1 + τ1)κ1 + µ1ω1β2κ2 (µ1 + τ1) (b+ µ2)

β1β2κ1 (µ23 + (b+ τ2 + α2 + κ2)µ22 + ((b+ τ2 + α2)κ2 + b (τ2 + α2))µ2 + bτ2κ2)

M2 =
(µ1 + κ1) (α1 + µ1 + τ1)

β1κ1
,M3 =

(µ2 + κ2) (µ2 + τ2 + α2)

β2κ2

From the values of all the diagonal entries of |J(E3)| which are non-negative. We use the upper triangular matrix

principle [Coelho and Milies, 1993]. Therefore,based on the fact that the determinant det(J(E3) − ψI) = 0

becomes:

J(E3) =



a11 0 −M2 ω2 0 0 0

U4 β1 −κ1 − µ1 M2 0 0 0 0 0

0 κ1 a33 0 0 0 0 0

0 0 α1 −a− µ1 0 0 0 0

0 0 0 0 a55 0 −M3 b

0 0 0 0 β2U5 −κ2 − µ2 M3 0

0 0 0 0 0 0 a77 0

0 0 0 0 0 0 0 −b− µ2


Laving all the entries on the upper diagonal matrix. The trace of J(E3) is

−U4 β1 −U5 β2 − a− b− α1 − α2 − κ1 − κ2 − 4µ1 − 4µ2 − ω1 − ω2 − τ1 − τ2 ≤ 0

Where the eigenvalues of J(E3) are given as:

ψ(1) = −κ2 − µ2, ψ
(2) = −κ1 − µ1, ψ

(3) = −α2 − µ2 − τ2,
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ψ(4) = −α1 − µ1 − τ1, ψ
(5) = −b− µ2, ψ

(6) = −a− µ1, ψ
(7) = −U5 β2 − µ2 − ω2

and ψ(8) = −U4 β1 − µ1 − ω1

such that stability of E3 is clearly seen from the determinant of E3. If R0 > 1, then E3 has positive roots hence

E3 is unstable when R0 > 1. When R0 < 1

which shows that E3 have negative real parts and by rewriting the determinant of E3 ψ
(1) < 0, ψ(2) < 0, ψ(3) <

0, ψ(4) < 0, ψ(5) < 0, ψ(6) < 0, ψ(7) < 0 and ψ(8) < 0 are stable since the trace of E3 is negative and the eigenvalues

of E3 have constant sign. Thus, E3 is local asymptotically stable.

3.3 Zika Model

Zika Virus Disease (ZVD), a mosquito-borne positive stranded RNA Virus of the family (genus flavivirus) flavivin-

dae [Lindenbach et al., 2007], is now causing an unprecedented large-scale outbreak in th discovered in Uganda

in 1947, ZVD was confined for the first 60 years to the equatorial zone of Africa and Asia [Dick et al., 1952].

The first isolated issue of ZVD was recorded in April 1947 from a rhesus macque monkey placed in a case

in the Zika forest of Uganda near the Lake Victoria, by the scientist of yellow fever research institute [Dick

et al., 1952,Macnamara, 1954]. Zika is primarily spread by female aedes aegyptic mosquitos as by [Hayes, 2009],

and is usually transmitted during sexual intercourse or by blood transfusion [Foy et al., 2011]. In 1954, ZVD

was seen to occur in eastern Nigeria where it was seen that the conditions with it showing on three patients,

one by isolation of the virus and two by a rise in serum antibodies. Where the patients with liver damage

and serological studies showed a relationship between jaundice and the development of virus [Adekolu-John and

Fagbami, 1983,Macnamara, 1954,Fagbami, 1977].

The first true case of human infection of ZVD was identified by [Fauci and Morens, 2016]. Not much of human

infection was deducted or investigate for more than 40 years, but in 2007, there were reported cases of about 13

further confirmed human cases of ZVD from the continent of Africa to southeast Asia, [Fauci and Morens, 2016].

In 2007, ZVD caused an outbreak of relatively mild diseases characterized by rash, arthralgia and conjunctivitis

on Yap Island which is located in the south western percific Ocean. Jan C. et al in 1978, looked at the serological

studies for arbvirus antibodies. Where they gave an analysis by taking samples of potent serum specimen. They
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carried out this study on 1.279 human serum specimen collected from adults in south-eastern part of garbon from

June to September 1975 during a multipurpose epidemiological survey. The result of which showed positivity of

more than 25%.

Which was first time that ZVD was prevalently discovered outside the continent of Africa and Asia. This

outbreak in April, 2007 was characterised by rush, and the likes in Yap Island in the Federated States of Micronesia.

Where similar experiment as that which was carried out in Garbon and Nigeria was carried out on serum samples

from patients in the acute phase of illness contained RNA of Zika, a flavivirus in the family of yellow fever,

dengue,West Nie and Japanese encephalite Virus [Dick et al., 1952]. Following first detection of ZVD in Brazil

in May 2015, ZVD has spread in the Americas and the Caribbean, prompting series of health emergencies and

travel precautions from global health supervisory agencies and government. The risk of ZVD emergence in Europe

increased as imported cases are repeatedly reported, coming also with reports of Chikungunya Virus and Dengue

Virus. Which manifest with ZVD similar symptoms.

In 2017, Baud D, et all showed through a research titled Zika, a new threat to human reproduction, that

followed by French polynesia in 2013 and Brazil in 2015. the ZVD is mainly transmitted through aedes mosquitoe

bites, but sexual and post-transfusion transmission which most times are not checked, have been reported with

symptoms like low grade fever, maculopopular rash, conjuctivitis, myalgia,arthralgia and asthenia. Asymptomatic

male-to-female transmission has also been described. Importantly, ZVD RNA can prevent at least 6 months in

Semen. The need to increase discussion and research to improve understanding of the Zika virus disease dynamics

and transmission as well as movement of people from one place to another is very important and to develop

effective control and preventive strategies of the outbreak of ZVD

The recent ZVD outbreak in Brazil with close to two million estimated cases from early 2015 to early 2017

was received with global awareness and quick response by world health bodies. Because of the large number of

infections, rate of transmission and the sporadic increase in the number of reported case as well as the spread

of infection as well as the resultant death recorded. An which became a public health emergency as said raising

several governmental travel restriction as well as warning from the World Health Organization(WHO). As such,

the ZVD outbreak activated intervention and measures from both government, policy makers and scholars.

Various government through their respective Centre for Disease Control (CDC) and other global public health
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advocacy agencies activated series of emergency response by establishing management centres as well as issuing

travel guide, creating response teams, exposed individuals contact tracing, case management, public health aware-

ness, infection prevention and ZVD control practices. With very reasonable scholastic approach to the menace

from relevant medical research, public health advisory data and statistics as well as complimentary mathematical

models which helped in the understanding, modeling and predicting the disease transmission dynamics based

on relevant statistics, helping to shape policy makers. Because of the relevance and usefulness of mathematical

models, which play very critical roles in prevention and helping with adequate control measures for mitigating

infectious and non infectious diseases [Wang et al., 2019]. Kucharski, AJ [Kucharski et al., 2016] developed a

transmission dynamics of ZVD in island populations, giving a model analysis.

Also [Gao et al., 2016]in their research, considered the prevention and control of Zika as a mosquito-borne

and sexually transmitted disease, with a ZVD mathematical model with human and vector compartments, with

SEI for the structure of the mosquitoes and SEIR structure for humans, with an estimated reproduction number.

Also [Maxian et al., 2017] analyzed the disparity in cases male and female as well as age and sex structured ZVD

spread model. [Wang et al., 2019] considered a ZVD mathematical model, with spread to human from mosquito

bites and sexual contacts from human to human. With various protective and preventive control measures such

as the use of insecticide treated net, use of condoms, indoor spraying and treatment of infected individuals. With

the advocacy of health agencies and other control measures which have reduced sexual transmission of ZVD,

but the effect of migration and air travel has caused the transmission of ZVD from certain region to another

region. [Momoh and Fügenschuh, 2018] also considered the optimal control of ZVD dynamics, with four control

measures. In this paper, we consider the transmission dynamics of ZVD between linked communities, using

a metapopulation mathematical model to study the control of ZVD transmission dynamics in two connected

population. Studying the optimal control of ZV infection with five preventive measures which include responses

to public health instruction and guidelines on movement or migration to and from prevalent region, efforts deployed

to reduce on movement or migration of infected individuals to and from prevalent region, use of insecticide to kill

mosquitoes and personal hygiene such as wearing of protective gear.
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3.3.1 Zika Model Formation

We consider a SIR metapopulation model for human and SI model for mosquito. Two patches representing two

communities connected by the movement of individuals through means of transportation are considered, which

includes travel rates for the recovered as well. Each patch i is divided into three classes namely Susceptible host

Shi, Infected host Ihi and Recovered host Rhi, i = 1, 2. The total population of human at each patch at time t

is Nhi
= Shi

+ Ihi + Rhi. The vector (mosquito) population Nv is a stand alone, assuming that mosquito do not

have log travel in the air. It is divided into two classes namely susceptible vector Sv and Infected vector Iv. It

is assumed that infected mosquito with Zika Virus are infectious for life. Susceptible mosquito are recruited into

the patch i at a constant rate πhi and die naturally at a rate µhi. Susceptible host Shi becomes infected host at

rate βvihiShiIvi, where βvihi is the probability of transmission from infectious mosquito to susceptible humans.

Humans in both patches die naturally at rate µhi and those infected recover at rate αhi. Recovered can lose

their acquired immunity and become susceptible at rate σi. Susceptible mosquito Svi(t) are recruited at constant

rate πvi and naturally die at rate µvi. They can be infected by humans at a rate βhiviSviIhi, where βhivi is the

probability of transmission from infected human to susceptible mosquito. Infected mosquito die at rate µvi. We

also assume travel between patches at constant rate λi, and disease induced death at rate di. The mathematical

model describing the above scenario is given by the system of ordinary differential equations

dSh1
dt = πh1 − βv1h1Sh1 Iv1 − λ1Sh1 − µh1Sh1 + λ2Sh2 + σ1Rh1

dIh1
dt = βv1h1Sh1 Iv1 − (µh1 + d1 + α1)Ih1

dRh1
dt = α1Ih1 − µh1Rh1 − σ1Rh1

dSv1
dt = πv1 − µv1Sv1 − βh1v1Sv1Ih1

dIv1
dt = βh1v1Sv1Ih − µv1Iv1

dSh2
dt = πh2 − βv2h2Sh2 Iv2 − λ2Sh2 − µh2Sh2 + λ1Sh1 + σ2Rh2

dIh2
dt = βv2h2Sh2 Iv2 − (µh2 + d2 + α2)Ih2

dRh2
dt = α2Ih2 − µh2Rh2 − σ2Rh2

dSv2
dt = πv2 − µv2Sv2 − βh2v2Sv2Ih2

dIv2
dt = βh2v2Sv2Ih2 − µv2Iv2

(3.3.1)
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Figure 3.2: Schematic diagram of the disease dynamics

associated with the nonnegative initials conditions

Shi(0) = Shi(0), Ihi(0) = Ihi(0), Rhi(0) = Rhi0, Svi(0) = Shi(0), Ivi(0) = Ihi(0), i = 1, 2. (3.3.2)

The description of the variables and parameters employed in the above model is given in Table 3.2. In the analysis

of the above model, we set

c0 = µh2 + d2 + α2, c1 = µh2 + σ2, c2 = µh1 + d1 + α1, c3 = µh1 + σ1.

We would like to understand the disease dynamics within the population and investigate the optimal strategies

to reduce the spread of infection at low cost.

3.3.2 Positivity and Boundedness of Zika Model Solution

The system of equations (3.3.1) has an initial condition by
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Table 3.2: Description of State Variables and Parameters

State Variables Description

Nh1 , Nh2 Total human population in patch one and two.

Sh1 , Sh2 Susceptible human population in patch one and two.

Ih1 , Ih2 Infected human population in patch one and two.

Rh1 , Rh2 Recovered human population in patch one and two.

Nv1 , Nv2 Total vector population in patch one and two.

Sv1 , Sv2 Susceptible vector population in patch one and two.

Iv1 , Iv2 Infected vector population in patch one and two.

Parameters Description

πh , πv Recruitment rate of human and vector population respectively.

µh , µv Natural death rate of human and vector population respectively.

α Recovery rate.

λ Movement of susceptible human population.

σ Recovery rate of infected human .

βhv Transmission probability of Susceptible mosquito with infected humans.

βvh Transmission probability of Susceptible humans with infected mosquito.

d Possible disease induced death.

Lemma 2. If Sh1(0), Ih1(0), Rh1(0), Sv1(0), Iv1(0), Sh2(0), Ih2(0), Rh2(0),

Sv2(0) and Iv2(0) are non-negative, all variables Sh1(t), Ih1(t), Rh1(t), Sv1(t), Iv1(t), Sh2(t), Ih2(t), Rh2(t),

Sv2(t) and Iv2(t)are non-negative for all t > 0

Lemma 3. Given a closed set

Ω = {(Sh1 , Ih1 , Rh1 , Sv1 , Iv1 , Sh2 , Ih2 , Rh2 , Sv2 , Iv2) ∈ R10
+ : (Sh1 + Ih1 +Rh1 + Sh2 + Ih2 +Rh2) ≤

πh1 + πh2
µhuman

,

(Sv1 + Iv1 + Sv2 + Iv2) ≤
πv1 + πv2
µmosquitoes

}

Proof. Firstly, we prove the positivity of solutions of the Zika Virus model as follows: We note that the positivity
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of Sh1 , Rh1 and Sv1 depends on that of Ih1 in the first patch and the positivity of Sh2 , Rh2 and Sv2 depends on

that of Ih2 . From the second equation of (3.3.1), we have

dIh1
dt

= βv1h1Sh1 Iv1 − C0Ih1 (3.3.3)

where C0 = (µv1 + d1 + α1) The integrating factor of (3.3.3) is eC0t which when multiplied by (3.3.3) gives

eC0tdIh1
dt

+ C0e
C0tIh1 = βv1h1Sh1 Iv1 e

C0t

d

dt
(eC0t) = βv1h1Sh1 Iv1 e

C0t

Integrating both sides with respect to t yields

eC0tIh1 =

∫
βv1h1Sh1 Iv1 e

C0tdt+K1

Ih1 = K1e
C0t + eC0t

∫
βv1h1 e

C0tdt ≥ 0 (3.3.4)

as t→ ∞(t > 0) where K1 is a constant of integration.

From the third equation of (3.3.1) we have that

dRh1

dt
= C1Rh1 − α1Ih1 (3.3.5)

where C1 = (µh1 + σ1) Multiplying with the approximate integrating factor I.F eC1(t) hence we obtain

eC1(t)dRh1

dt
+ C1e

C1(t)Rh1 = α1Ih1 e
C1(t)

∴
d

dt
(eC1(t)Rh1 ) = α1Ih1 e

C1(t)

Integrating with respect to t

eC1(t)Rh1 −
∫
α1Ih1 e

C1(t)dt+K2

where k2 is a constant of integration.

Rh1 = K2e
−C1(t) + e−C1(t)

∫
α1Ih1 e

C1(t)dt ≥ 0fort ≥ 0 (3.3.6)

Now, for the first equation(3.3.1), I have that

dSh1
dt

+ (C2 + βv1h1 Iv1 ) = σ1Rh1 + λ2Sh2 (3.3.7)
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which can be expressed as
dSh1
dt

+ f(Iv1 )Sh1 = σ1Rh1 + λ2Sh2 (3.3.8)

where f(Iv1 ) = C2 + βv1h1 Ih1 and C2 = µh1 + λ1 Multiplying with the I.F e
∫ t
0 f(Iv1 )dIv1 gives

e
∫ t
0 f(Iv1 )dIv1 dSh1

dt
+ f(Iv1 )e

∫ t
0 f(Iv1 )dIv1Sh1 = (σ1Rh1 + λ2Sh2 )e

∫ t
0 f(Iv1 )dIv1

∴
d

dt
(e

∫ t
0 f(Iv1 )dIv1Sh1 ) = (σ1Rh1 + λ2Sh2 )e

∫ t
0 f(Iv1 )dIv1

Integrating with respect to t

e
∫ t
0 f(Iv1 )dIv1Sh1 = K3 +

∫ t

0
(σ1Rh1 + λ2Sh2 )e

∫ t
0 f(Iv1 )dIv1

Sh1 = K3e
−

∫ t
0 f(Iv1 )dIv1 + e−

∫ t
0 f(Iv1 )dIv1

∫ t

0
(σ1Rh1 + λ2Sh2 )e

∫ t
0 f(Iv1 )dIv1 ≥ 0 (3.3.9)

for t > 0 Considering the fifth equation of (3.3.1), we have

dIv1
dt

+ µv1 Iv1 = βh1v1Sv1 Ih1 (3.3.10)

The Integrating factor I.F is eµv1 (t) by multiplying through by the I.F results in

eµv1 (t)dIv1
dt

+ µv1 e
µv1 (t)Iv1 = βv1h1Sv1 Ih1 e

µv1 (t)

d

dt
(eµv1 (t)Iv1 ) = βv1h1Sv1 Ih1 e

µv1 (t)

Integrating with respect to t

eµv1 (t)Iv1 = K3 +

∫
βv1h1Sv1 Ih1 e

µv1 (t)

Thus,

Iv1 = K3e
−µv1 (t) + e−µv1 (t)

∫
βv1h1Sv1 Ih1 e

µv1 (t)dt ≥ 0, t ≥ 0 (3.3.11)

Further, from fourth equation of (3.3.1),

dSv1
dt

+ (βv1h1 Ih1 + µv1 )Iv1Sv1 = πv1

dSv1
dt

+ f(Iv1 )Sv1 = πv1 (3.3.12)
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where f(Iv1 ) = βv1h1 Ih1 + µv1 after expanding by the I.F e
∫ t
0 f(Iv1 )

d

dt
(e

∫ t
0 f(Iv1 )Sv1 ) = πv1 e

∫ t
0 f(Iv1 )dIh1 (3.3.13)

Integrating with respect to t

e
∫ t
0 f(Iv1 )Sv1 = K4 + πv1

∫
e
∫ t
0 f(Iv1 )dIh1 dt

Sv1 = K4e
−

∫ t
0 f(Iv1 ) + πv1 e

−
∫ t
0 f(Iv1 )

[ ∫
e
∫ t
0 f(Iv1 )dIh1

]
> 0 (3.3.14)

for t > 0 From the seventh equation of (1.1), we have

dIh2
dt

= βv2h2Sh2 Iv2 − C3Ih2 (3.3.15)

where C3 = (µv2 + d2 + α2) The integrating factor of (2.5) is eC3t which when multiplied by (2.5) gives

eC3tdIh2
dt

+ C3e
C3tIh2 = βv2h2Sh2 Iv2 e

C3t

d

dt
(eC3t) = βv2h2Sh2 Iv2 e

C3t

Integrating both sides with respect to t yields

eC3tIh2 =

∫
βv2h2Sh2 Iv2 e

C3tdt+K5

Ih2 = K5e
C3t + eC3t

∫
βv2h2 e

C3tdt ≥ 0 (3.3.16)

as t→ ∞(t > 0) where K5 is a constant of integration. From the eighth equation of (3.3.1) we have that

dRh2

dt
= C4Rh12 − α2Ih2 (3.3.17)

where C4 = (µh2 + σ2) Multiplying () with the approximate integrating factor I.F eC4(t) hence we obtain

eC4(t)dRh2

dt
+ C4e

C4(t)Rh2 = α2Ih2 e
C4(t)

∴
d

dt
(eC4(t)Rh2 ) = α2Ih2 e

C4(t)

Integrating with respect to t

eC4(t)Rh2 −
∫
α2Ih2 e

C4(t)dt+K6
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where k6 is a constant of integration.

Rh2 = K5e
−C4(t) + e−C4(t)

∫
α2Ih2 e

C4(t)dt ≥ 0fort ≥ 0 (3.3.18)

Now, for the fifth equation(3.3.1), I have that

dSh2
dt

+ (C5 + βv2h2 Iv2 ) = σ2Rh2 + λ1Sh1 (3.3.19)

which can be expressed as
dSh2
dt

+ f(Iv2 )Sh2 = σ2Rh2 + λ1Sh1 (3.3.20)

where f(Iv2 ) = C5 + βv2h2 Ih2 and C5 = µh2 + λ2 Multiplying with the I.F e
∫ t
0 f(Iv2 )dIv2 gives

e
∫ t
0 f(Iv2 )dIv2 dSh2

dt
+ f(Iv2 )e

∫ t
0 f(Iv2 )dIv2Sh2 = (σ2Rh2 + λ1Sh1 )e

∫ t
0 f(Iv2 )dIv2

∴
d

dt
(e

∫ t
0 f(Iv2 )dIv2Sh2 ) = (σ2Rh2 + λ1Sh1 )e

∫ t
0 f(Iv2 )dIv2

Integrating with respect to t

e
∫ t
0 f(Iv2 )dIv2Sh2 = K4 +

∫ t

0
(σ2Rh2 + λ1Sh1 )e

∫ t
0 f(Iv2 )dIv2

Sh2 = K5e
−

∫ t
0 f(Iv2 )dIv2 + e−

∫ t
0 f(Iv2 )dIv2

∫ t

0
(σ2Rh2 + λ1Sh1 )e

∫ t
0 f(Iv2 )dIv2 ≥ 0 (3.3.21)

for t > 0 Considering the tenth equation of (3.3.1), we have

dIv2
dt

+ µv2 Iv2 = βh2v2Sv2 Ih2 (3.3.22)

The Integrating factor I.F is eµv2 (t) by multiplying () through by the I.F results in

eµv2 (t)dIv2
dt

+ µv2 e
µv2 (t)Iv2 = βv2h2Sv2 Ih2 e

µv2 (t)

d

dt
(eµv2 (t)Iv2 ) = βv2h2Sv2 Ih2 e

µv2 (t)

Integrating with respect to t

eµv2 (t)Iv2 = K5 +

∫
βv2h2Sv2 Ih2 e

µv2 (t)

Thus,

Iv2 = K5e
−µv2 (t) + e−µv2 (t)

∫
βv2h2Sv2 Ih2 e

µv2 (t)dt ≥ 0, t ≥ 0 (3.3.23)
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Further, from ninth equation of (3.3.1),

dSv2
dt

+ (βv2h2 Ih2 + µv2 )Iv2Sv2 = πv2

dSv2
dt

+ g(Iv2 )Sv2 = πv2 (3.3.24)

where f(Iv2 ) = βv2h2 Ih2 + µv2 after expanding by the I.F e
∫ t
0 f(Iv2 )

d

dt
(e

∫ t
0 g(Iv2 )Sv2 ) = πv2 e

∫ t
0 f(Iv2 )dIh2 (3.3.25)

Integrating with respect to t

e
∫ t
0 g(Iv2 )Sv2 = K6 + πv2

∫
e
∫ t
0 f(Iv2 )dIh2 dt

Sv2 = K5e
−

∫ t
0 g(Iv2 ) + πv2 e

−
∫ t
0 g(Iv2 )

[ ∫
e
∫ t
0 g(Iv2 )dIh2

]
> 0 (3.3.26)

for t > 0

Thus, the solution

Sh1 , Ih1 , Rh1 , Sv1 Iv1 , Sh2 , Ih2 , Rh2Sv2

and Iv2 of the Zika model with initial conditions Sh1(0) = S0
h1 > 0, Ih1(0) = I0h1 ≥ 0, Rh1(0) = R0

h1 ≥ 0, Sv1(0) =

S0
v1 > 0, Iv1(0) = I0v1 ≥ 0, Sh2(0) = S0

h2 > 0, Ih2(0) = I0h2 ≥ 0, Rh2(0) = R0
h2 ≥ 0, Sv2(0) = S0

v2 > 0, Iv2(0) = I0h1 ≥

0 are positive for all t > 0 Hence the proof.

Let the total human population for both patches of the model be

Nh = Nh1 +Nh2 (3.3.27)

such that

Nh1 = Sh1 (t) + Ih1 (t) +Rh1 (t) (3.3.28)

Nh2 = Sh2 (t) + Ih2 (t) +Rh2 (t) (3.3.29)

Differentiating with respect to t

N
′
h = N

′
h1 +N

′
h2 (3.3.30)
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N
′
h = S

′
h1 (t) + I

′
h1 (t) +R

′
h1 (t) + S

′
h2 (t) + I

′
h2 (t)

N
′
h = πh1 − βv1h1Sh1 Iv1 − λ1Sh1 − µh1Sh1 + λ2Sh2

+σ1Rh1 + βv1h1Sh1 Iv1 − (µh1 + d1 + α1)Ih1 + α1Ih1 − µh1Rh1

−σ1Rh1 + πh2 − βv2h2Sh2 Iv2 − λ2Sh2 − µh2Sh2 + λ1Sh1

+σ2Rh2 + βv2h2Sh2 Iv2 − (µh2 + d2 + α2)Ih2 + α2Ih2 − µh2Rh2 − σ2Rh2

N
′
h = πh1 + πh2 − µh1 (Sh1 + Ih1 +Rh1 )− µh2 (Sh2 + Ih2 +Rh2 + d1Ih1 + d2Ih2 )

N
′
h = πh1 + πh2 − µh1Nh1 (t)− µh2Nh2 (t) + d1Ih1 + d2Ih2

With the assumption that, Let

µh = min{µh1 , µh2}

N
′
h(t) = πh1 + πh2 − µh(Nh1 (t) +Nh2 (t)) + d1Ih1 + d2Ih2

N
′
h(t) = πh1 + πh2 − µhNh(t) + d1Ih1 + d2Ih2 (3.3.31)

Since dIh1 (t) and dIh2 (t) are non-negative, then reduces to

N
′
h(t) ≤ πh1 + πh2 − µhNh(t)

75



Therefore,
dNh(t)

d(t)
+ µhNh(t) ≤ πh1 + πh2

Integrating with respect to t

Nh(t) ≤
(πh1 + πh2 )

µh
+Ke−µht (3.3.32)

Taking the limit as t→ ∞

lim
t→∞

Nh(t) ≤
(πh1 + πh2 )

µh
(3.3.33)

Thus

0 ≤ Nh(t) ≤
(πh1 + πh2 )

µh

Furthermore, let the total mosquito population for both patch be

Nv = Nv1 (t) +Nv2 (t) (3.3.34)

such that

Nv1 (t) = Sv1 (t) + Iv1 (t) (3.3.35)

Nv2 (t) = Sv2 (t) + Iv2 (t) (3.3.36)

Differentiating with respect to t

N
′
v = N

′
v1 +N

′
v2 (3.3.37)

= S
′
v1 (t) + I

′
v1 (t) + S

′
v2 (t) + I

′
v2 (t)

= πv1 − µv1Sv1 − βh1v1Sv1 Ih1 + βh1v1Sv1 Ih1 − µv1 Iv1 + πv2 − µv2Sv2

−βh2v2Sv2 Ih2 + βh2v2Sv2 Ih2 − µv2 Iv2

Therefore

N
′
v(t) = (πv1 + πv2 )− µv1 (Sv1 + Iv1 )− µv2 (Sv2 + Iv2 )
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Let,

µm = min{µv1 , µv2}

N
′
v(t) = (πv1 + πv2 )− µm(Nv1 (t) +Nv2 (t))

= (πv1 + πv2 )− µmNv (t)

dNv1 (t)

dt
+ µmNv (t) = (πv1 + πv2 ) (3.3.38)

Integrating with respect to t we have,

Nv(t) =
(πv1 + πv2 )

µm
+K5e−µm(t)

lim
t→∞

Nv(t) =
(πv1 + πv2 )

µm

3.4 Model Analysis

Since the right hand side of the system (3.3.1) is a vector (multi-variables polynomial) function of class C∞, by

the Cauchy-Piccard theorem [Wouk, 1963] the exists a unique (local) solution of the system (3.3.1). For the rest

of the analysis, we assume that the solution of (3.3.1) is nonnegative (to ensure a nonnegative population at all

time).

3.4.1 Boundedness of Solution

Proposition 3.4.1. The functions Sh1 , Ih1 , Rh1 , Sv1 , Iv1 , Sh2 , Ih2 , Rh2 , Sv2 , Iv2 solutions of the system (3.3.1) are

bounded.

Proof. Consider total human population for both patches

Nh = Nh1 +Nh2 , (3.4.1)
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where

Nh1 = Sh1 + Ih1 +Rh1 , Nh2 = Sh2 + Ih2 +Rh2 . (3.4.2)

Differentiating (3.4.1)) with respect to t and taking into account for (3.3.1), we get

N
′
h = N

′
h1 +N

′
h2

= S
′
h1 + I

′
h1 +R

′
h1 + S

′
h2 + I

′
h2 +Rh2

= πh1 + πh2 − µh1 (Sh1 + Ih1 +Rh1 )− µh2 (Sh2 + Ih2 +Rh2 )− d1Ih1 − d2Ih2

= πh1 + πh2 − µh1Nh1 − µh2Nh2 − d1Ih1 − d2Ih2

≤ πh1 + πh2 − µh(Nh1 +Nh2 )− d1Ih1 − d2Ih2

≤ πh1 + πh2 − µhNh − d1Ih1 − d2Ih2

≤ πh1 + πh2 − µhNh (since Ih1, Ih2 ≥ 0),

(3.4.3)

where µh ≤ min{µh1 , µh2}. Solve the differential inequality (3.4.3), we get

Nh(t) ≤
πh1 + πh2

µh
+

(
Nh(0)−

πh1 + πh2
µh

)
e−µht = Nh(0)e

−µht + (1− e−µht)
πh1 + πh2

µh
.

If Nh(0) ≤ πh1+πh2
µh

, then Nh(t) ≤ πh1+πh2
µh

for all t > 0. However, if πh1+πh2
µh

< Nh(0), then Nh(t) ≤ Nh(0) for

all t > 0. In either cases we always have Nh(t) ≤ max
(
Nh(0),

πh1+πh2
µh

)
for all t ≥ 0. This shows that the total

human population Nh is bounded.

In the same manner, we consider the total mosquito population for both patches

Nv = Nv1 +Nv2 , (3.4.4)

where

Nv1 = Sv1 + Iv1 , Nv2 = Sv2 + Iv2 . (3.4.5)

Differentiating (3.4.4) with respect to t and accounting for (3.3.1), we get

N
′
v = S

′
v1 + I

′
v1 + S

′
v2 + I

′
v2

= πv1 + πv2 − µv1 (Sv1 + Iv1 )− µv2 (Sv2 + Iv2 )

= πv1 + πv2 − µv1Nv1 − µv2Nv2

≤ πv1 + πv2 − µm(Nv1 +Nv2 )

≤ πv1 + πv2 − µmNv,

(3.4.6)
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where µm ≤ min{µv1 , µv2}. Therefore,

Nv(t) ≤
πv1 + πv2

µm
+

(
Nv(0)−

πv1 + πv2
µm

)
e−µmt, (3.4.7)

which is bounded above by max
(
Nv(0),

πv1+πv2
µm

)
.

Since the sub-populations are nonnegative et the total population is bounded, then they are bounded as well.

3.4.2 Equilibrium Point

There are four equilibrium points for the system (3.3.1):

(i) The Zika free Equilibrium (ZFE) Z0 which occurs when both communities (connected via immigration) do

no longer have a single case of Zika Virus infection. It is given by Z0 =
(
So
h1 , 0, 0, S

0
v1 , 0, Sh2o , 0, 0, So

v2 , 0
)
,

where

So
v1 =

πv1
µv1

, So
v2 =

πv2
µv2

, So
h1 =

πh1λ2 + πh1µh2 + πh2λ2
λ1µh2 + λ2µh1 + µh1µh2

, So
h2 =

λ1πh1 + λ1πh2 + µh1πh2
λ1µh2 + λ2µh1 + µh1µh2

.

(ii) The Zika free endemic equilibrium Z1 which occurs when Zika is prevalent in the first patch but not present

in the second patch. Assuming no immigration (i.e., λ1 = λ2 = 0), it is given by

Z1 = (S∗
h1 , I

∗
h1 , R

∗
h1 , S

∗
v1 I

∗
v1 , S

∗
h2 , 0, 0, S

∗
v2 , 0)

, where

S∗
v2 =

πv2
µv2

,

S∗
h2 =

πh2
µh2

,

I∗h1 =
c2c3µh1µ

1
v1 − βv1h1βh1v1πv1πh1 c3

(α1σ1 − c2c3)βv1h1βh1v1πv1 − c2c3µh1βh1v1

S∗
h1 =

c3πh1 + (σ1α1 − c2c3)

c3µh1
I∗h1 ,

R∗
h1 =

α1

c3
I∗h1 ,

I∗v1 =
βh1v1πv1 I

∗
h1

βh1v1 I
∗
h1 + µ2v1

,

S∗
v1 =

πv1 − µv1 I
∗
h1

µv1
.
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(iii) The Zika free endemic equilibrium Z2 which occurs when Zika is prevalent in the second patch but not present

in the first patch. Assuming no immigration, it is given by Z2 = (S∗
h1 , 0, 0, S

∗
v1 , 0, S

∗
h2 , I

∗
h2 , R

∗
h2 , S

∗
v2 , I

∗
v1 ),

where

S∗
v1 =

πv1
µv1

,

S∗
h1 =

πh1
µh1

,

I∗h2 =
c0c1µh2µ

2
v2 − βv2h2βh2v2πv2πh2 c1

(α2σ2 − c0c1)βv2h2βh2v2πv2 − c0c1µh2βh2v2

S∗
h2 =

c1πh2 + (σ2α2 − c0c1)

c1µh2
I∗h2 ,

R∗
h2 =

α2

c1
I∗h2 ,

I∗v2 =
βh2v2πv2 I

∗
h2

βh2v2 I
∗
h2 + µ2v2

,

S∗
v2 =

πv2 − µv2 I
∗
h2

µv2
.

(iv) The Zika Endemic Equilibrium (ZEE) Z3 which occurs when Zika is prevalent in both patches. It is given

by Z3 = (S∗∗
h1 , I

∗∗
h1 , R

∗∗
h1 , S

∗∗
v1 , I

∗∗
v1 , S

∗∗
h2 , I

∗∗
h2 , R

∗∗
h2 , S

∗∗
v2 , I

∗∗
v2 ), where

R∗∗
h1 =

α1

c3
I∗∗h1 , R

∗∗
h2 =

α2

c1
I∗∗h2 ,

S∗∗
v1 =

πv1
βh1v1 I

∗∗
h1 + µv1

,

S∗∗
v2 =

πv2
βh2v2 I

∗∗
h2 + µv2

I∗∗v1 =
πv1βh1v1 I

∗∗
h1

µv1 (βh1v1 I
∗∗
h1 + µv1 )

,

I∗∗v2 =
πv1βh2v2 I

∗∗
h2

µv2 (βh2v2 I
∗∗
h2 + µv2 )

S∗∗
h2 =

πh2
(µh2 + λ2 + βv2h2 I

∗∗
v2 )

+
λ1S

∗∗
h1

(µh2 + λ2 + βv2h2 I
∗∗
v2 )

+
σ2α2I

∗∗
h2

c1(µh2 + λ2 + βv2h2 I
∗∗
v2 )

,

I∗∗h1 =
βv1h1 I

∗∗
v1S

∗∗
h1

c2
, I∗∗h2 =

βv2h2 I
∗∗
v2S

∗∗
h2

c4
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S∗∗
h1 =

(µh1 + λ1 + βv1h1 I
∗∗
v1 )(µh1 + λ2 + βv2h2 I

∗∗
v2 )

(µh1 + λ1 + βv1h1 I
∗∗
v1 )(µh2 + λ2 + βv2h2 I

∗∗
v2 )− λ1λ2

(
πh1

µh1 + λ1 + βv1h1 I
∗∗
v1

+
λ2πh2

(µh1 + λ1 + βv1h1 I
∗∗
v2 )(µh2 + λ2 + βv2h2 I

∗∗
v2 )

+
σ1α1I

∗∗
h1

c3(µh1 + λ1 + βv1h1 I
∗∗
v1 )

+
λ2σ2α2I

∗∗
h2

c1(µh1 + λ1 + βv1h1 I
∗∗
v1 )(µh2 + λ2 + βv2h2 I

∗∗
v2 )

)
.

3.4.3 Basic Reproduction Number

We use the next generation matrix [Diekmann et al., 2010, van den Driessche, 2017] approach to find the basic

reproduction number of (3.3.1). The matrices for the newly infected and for transfer and death into the disease

compartments are respectively

F =



0 βv1h1 g1
g2

0 0

βh1v1πv1

µv1
0 0 0

0 0 0 βv2h2 g3
g4

0 0 βh2v2πv2

µv2
0


and

V =



µh1 + d1 + α1 0 0 0

0 µv1 0 0

0 0 µh2 + d2 + α2 0

0 0 0 µv2


,

where

g1 = πh1λ2 + πh1µh2 + πh2λ2, g2 = λ1µh2 + λ2µh1 + µh1µh2 ,

g3 = λ1πh1µh2 + λ1λ2πh1 + λ1λ2πh2 + πh2µh2µh1 + πh1λ1µh2 + πh2λ1µh1 ,

g4 = µh2
2µh1 + λ1µh2

2 + 2λ2µh2µh1 + λ1λ2µh2 + λ2
2µh1 .
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The next generation matrix FV−1 is

FV−1 =



0 βv1h1 g1
g2µv1

0 0

βh1v1πv1

µv1 (µh1+d1+α1)
0 0 0

0 0 0 βv2h2 g3
g4µv2

0 0 βh2v2πv2

µv2 (µh2+d2+α2)
0


and has four eigenvalues

λ(1) =

√
g4 (µh2 + d2 + α2)βv2h2 g3βh2v2πv2

g4 (µh2 + d2 + α2)µv2
, λ(2) = −

√
g4 (µh2 + d2 + α2)βv2h2 g3βh2v2πv2

g4 (µh2 + d2 + α2)µv2

λ(3) =

√
g2 (µh1 + d1 + α1)βh1v1πv1βv1h1 g1

g2 (µh1 + d1 + α1)µv1
, λ(4) = −

√
g2 (µh1 + d1 + α1)βh1v1πv1βv1h1 g1

g2 (µh1 + d1 + α1)µv1
.

Thus the basic reproduction number R0 which is the spectral radius ρ(FV−1 ) (dominant maximum eigenvalue) of

the next generation operator FV−1 is given by

R0 = max(R1 , R2 ),

where

R1 =
βh1v1

√
πv1 g1

µv1
√
g2 (µh1 + d1 + α1)

, R2 =
βh2v2

√
g3πv2

µv2
√
g4 (µh2 + d2 + α2)

.

We note that R1 and R2 are the basic reproduction number of Zika in patches 1 and 2 respectively. By definition,

the basic reproduction number is the average number of secondary infections caused by a single infected individual

during his entire period of infectiousness.

3.4.4 Stability Analysis

Theorem 3.4.2. The Zika free equilibrium Z0 is locally asymptotically stable when R0 < 1 and unstable when

R0 > 1.
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Proof. The Jacobian matrix evaluate at Z0 is given by

J(Z0) =



−λ1 − µh1 0 σ1 0 −βv1h1 g1
g2

λ2 0 0 0 0

0 −c2 0 0 βv1h1 g1
g2

0 0 0 0 0

0 α1 −c3 0 0 0 0 0 0 0

0 −βh1v1πv1

µv1
0 −µv1 0 0 0 0 0 0

0 βh1v1πv1

µv1
0 0 −µv1 0 0 0 0 0

λ1 0 0 0 0 −λ2 − µh2 0 σ2 0 −βv2h2 g3
g4

0 0 0 0 0 0 −c0 0 0 βv2h2 g3
g4

0 0 0 0 0 0 α2 −c4 0 0

0 0 0 0 0 0 −βh2v2πv2

µv2
0 −µv2 0

0 0 0 0 0 0 βh2v2πv2

µv2
0 0 −µv2


where c0 = (µh2 + d2 + α2), c2 = (µh1 + d1 + α1), c3 = (µh1 + σ1) and c4 = (µh2 + σ2). It eigenvalues are

λ(1) = −c3, λ(2) = −µv1, λ(3) = −c4, λ(4) = −µv2

λ(5) = −1

2

[
λ1 + µh1 + λ2 + µh2 +

√
(λ1 + µh1 − λ2 − µh2)2 + 4λ1λ2

]
λ(6) = −1

2

[
λ1 + µh1 + λ2 + µh2 −

√
(λ1 + µh1 − λ2 − µh2)2 + 4λ1λ2

]
λ(7) = −1

2

c2 + µv1 +

√
(c2 − µv1)2 +

4β2h1v1g1πv1
µv1g2


λ(8) = −1

2

c2 + µv1 −

√
(c2 − µv1)2 +

4β2h1v1g1πv1
µv1g2


λ(9) = −1

2

c0 + µv2 +

√
(c0 − µv2)2 +

4β2h2v2g3πv2
µv2g4


λ(10) = −1

2

c0 + µv2 −

√
(c0 − µv2)2 +

4β2h2v2g3πv2
µv2g4


We note that if λ(i) + λ(j) < 0 and λ(i)λ(j) > 0, then λ(i) and λ(j) are both negative. We have:

λ(5) + λ(6) = −(λ1 + µh1 + λ2 + µh2) < 0
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λ(5)λ(6) = (λ1 + µh1)(λ2 + µh2)− λ1λ2 = λ1µh2 + λ2µh1 + µh1µh2 > 0.

Likewise we have

λ(7) + λ(8) = −(c2 + µv1) < 0λ(7)λ(8) = c2µv1 −
β2h1v1g1πv1
µv1g2

= c2µv1(1−R2
1) = c2µv1(1 +R1)(1−R1),

and

λ(9) + λ(10) = −(c0 + µv2) < 0λ(9)λ(10) = c0µv2 −
β2h2v2g3πv2
µv2g4

= c0µv2(1−R2
2) = c0µv2(1 +R2)(1−R2).

If R1 > 1 or R2 > 1, then λ(7)λ(8) < 0 or λ(9)λ(10) < 0. As a result, at least two eigenvalues will have opposite

signs and the equilibrium point Z0 will be unstable. However, if both R1 < 1 (i.e., λ(7)λ(8) > 0) and R2 < 0 (i.e.,

λ(9)λ(10) > 0), then Z0 is stable.

Theorem 3.4.3. Zika free equilibrium Z0 is globally asymptotically stable when R0 < 1.

Proof. Define a Lyapunov function as follows:

L(Ih1 , Ih2 , Iv1 , Iv2 ) =
πv1βh1v1 Ih1

µv1
+ c2Iv1 +

πv2βh2v2 Ih2
µv2

+ c0Iv2

Differentiating with respect to t,

L
′
=
πv1βh1v1 I

′
h1

µv1
+ c2I

′
v1 +

πv2βh2v2 I
′
h2

µv2
+ c0I

′
v2

=
πv1βh1v1
µv1

[
βv1h1 Iv1Sh1 − c2Ih1

]
+ c2

[
βh1v1 Ih1Sv1 − µv1 Iv1

]
+
πv2βh2v2
µv2

[
βv2h2 Iv2Sh2 − c0Ih2

]
+ c0

[
βh2v2 Ih2Sv2 − µv2 Iv2

]
By expansion and collection of terms, we have

L
′
=

[
πv1βv1h1βh1v1Sh1

µv1
− c2µv1

]
Iv1 +

[
πv2βv2h2βh2v2Sh2

µv1
− c0µv2

]
Iv2

+

[
c2βh1v1Sv1 − c2πv1βh1v1

µv1

]
Ih1 +

[
c0βh2v2Sv2 − c0πv2βh2v2

µv2

]
Ih2
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At Zika free equilibrium, Sh1 = g1
g2
, Sh2 = g3

g4
such that,

L
′
=

[
πv1βv1h1βh1v1

µv1

g1
g2

− c2µv1

]
Iv1 +

[
πv2βv2h2βh2v2

µv1

g3
g4

− c0µv2

]
Iv2

+

[
c2βh1v1Sv1 − c2πv1βh1v1

µv1

]
Ih1 +

[
C0βh2v2Sv2 − c0πv2βh2v2

µv2

]
Ih2

Sv1 = Sv2 = 0 Then

L′ = c2µv1

[
πv1βv1h1βh1v1 g1

c2µ2v1 g2
− 1

]
Iv1 + c0µv2

[
πv2βv2h2βh2v2 g3

c0µ2v2 g4
− 1

]
Iv2 = c2µv1 (R

2
1 − 1)Iv1 + c0µv2 (R

2
2 − 1)Iv2

Thus L
′
< 0 if R1 < 1 and R2 < 1. Hence, Zika free equilibrium is globally asymptotically stable if R1 ⩽ 1 and

R2 ⩽ 1

From the above theorem, the stability Z0 indicates that the populations of both patches could be disease free

over time provided that each infected individual infects at most one susceptible (i.e., R1 < 1 and R2 < 1) during

his entire period of infectiousness.

Theorem 3.4.4. Zika free endemic equilibrium Z1 is locally asymptotically stable if R1 > 1 and R2 < 1, and

unstable if R1 < 1 or R2 > 1.

Proof. The Jacobian matrix evaluated at Z1 = (S∗
h1 , I

∗
h1 , R

∗
h1 , S

∗
v1 I

∗
v1 , S

∗
h2 , 0, 0, S

∗
v2 , 0) is given by

J(Z1) =



−βv1h1 I
∗
v1 − µh1 0 0 0 −βv1h1S

∗
h1 0 0 0 0 0

βv1h1 I
∗
v1 −c2 0 0 βv1h1S

∗
h1 0 0 0 0 0

0 α1 −c3 0 0 0 0 0 0 0

0 −βv1h1S
∗
v1 0 βv1h1 I

∗
h1 − µv1 0 0 0 0 0 0

0 βv1h1S
∗
v1 0 βv1h1 I

∗
h1 −µv1 0 0 0 0 0

0 0 0 0 0 −µh2 0 σ2 0 −βv2h2πh2
µh2

0 0 0 0 0 0 −c0 0 0 βv2h2πh2
µh2

0 0 0 0 0 0 α2 −c4 0 0

0 0 0 0 0 0 −βh2v2πv2
µv2

0 −µv2 0

0 0 0 0 0 0 βh2v2πv2
µv2

0 0 −µv2


.

85



The matrix J(Z1) is diagonal bloc matrix. Its eigenvalues are also eigenvalues of the bloc diagonal matrices. The

eigenvalue of the second bloc matrix

A2 =



−µh2 0 σ2 0 −βv2h2πh2
µh2

0 −c0 0 0 βv2h2πh2
µh2

0 α2 −c4 0 0

0 −βh2v2πv2

µv2
0 −µv2 0

0 βh2v2πv2

µv2
0 0 −µv2


are

λ(1) = −µh2 < 0, λ(2) = −c4 < 0, λ(3) = −1

2

[
c0 + µv2 +

√
(c0 − µv2)2 +

4β2h2v2π
2
v2

µ2v2

]

λ(4) = −1

2

[
c0 + µv2 −

√
(c0 − µv2)2 +

4β2h2v2π
2
v2

µ2v2

]
, λ(5) = −µv2 < 0.

with

λ(3) + λ(4) = −(c0 + µv2) < 0,

λ(3)λ(4) = c0µv2 −
β2h2v2πv2πh2
µv2µh2

= c0µv2(1−R2
2) (since λ1 = λ2 = 0 and R2 =

βh2v2πv2πh2
µ2v2µh2

)

= c0µv2(1 +R2)(1−R2).

If R2 > 1, then λ(3) and λ(4) have opposite signs and the equilibrium point Z1 is unstable. We assume now that

R2 < 1. Then λ(3) < 0 and λ(4) < 0. The eigenvalue of the first bloc matrix

A1 =



−βv1h1 I∗v1 − µh1 0 0 0 −βv1h1S∗
h1

βv1h1 I
∗
v1 −c2 0 0 βv1h1S

∗
h1

0 α1 −c3

0 −βv1h1S∗
v1 0 βv1h1 I

∗
h1 − µv1

0 βv1h1S
∗
v1 0 βv1h1 I

∗
h1 −µv1


cannot be obtained explicitly. The Routh Hurwitz criteria for stability shall be used to investigated the sign of

the eigenvalues of the matrix A1. The characteristic polynomial associated to A1 is given by

p(x) = −(x+ c3)(a4x
4 + a3x

3 + a2x
2 + a1x+ a0),
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where

a4 = 1, a3 = µv1 + d1 + c2 + βh1v1I
∗
v1 + µh1,

a1 = (βh1v1I
∗
h1 − µv1) (c2µv1 + βh1v1I

∗
v1(c2 + µv1)) + βh1v1I

∗
v1c2µv1 − β2h1v1S

∗
h1S

∗
v1(µv1 + µh1)

a2 = µv1 (βh1v1I
∗
h1 + βh1v1I

∗
v1 + µv1 + µh1 + c2) + (βh1v1I

∗
h1

+ µv1 (c2 + βh1v1I
∗
v1 + µh1) + βh1v1I

∗
v1c2 + µh1 − β2h1v1S

∗
h1S

∗
v1,

a0 = c2µv1 (βh1v1I
∗
v1 + µh1) (βh1v1I

∗
h1 + µv1)− β2h1v1S

∗
h1S

∗
v1µh1µv1.

It can be verified that a1 > 0, a2 > 0, a0 > 0, a1a2 > a0a3 and (a1a2 − a0a3)3 > a21a4 provided R1 > 1. Moreover,

if R1 < 1, then a0 < 0. By the Routh Hurwitz criteria for stability, the endemic equilibrium Z1is asymptotically

stable if R1 > 1 and R2 < 1, and unstable if R1 < 1 or R2 > 1.

The above theorem indicates the possibility of the disease to persist within the first community provided that

each single infected infects more than one susceptible (i.e., R1 > 1) of the community during his infectiousness

period, and to be overcome over time in the second community provided that each single infected infects less

than one (in average) susceptible (i.e., R2 < 1) of the community during his infectiousness period and there is no

migration (i.e., λ1 = λ2 = 0).

Theorem 3.4.5. Zika free endemic equilibrium Z2 is locally asymptotically stable if R1 < 1 and R2 > 1, and

unstable if R1 > 1 or R2 < 1.
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Proof. The Jacobian matrix evaluated at Z2 is given by

J(Z2) =



−µh1 0 σ1 0 −βv1h1πh1
µh1

0 0 0 0 0

0 −c2 0 0 βv1h1πh1
µh1

0 0 0 0 0

0 α1 −c3 0 0 0 0 0 0 0

0 −βh1v1πv1
µv1

0 −µv1 0 0 0 0 0 0

0 βh1v1πv1
µv1

0 0 −µv1 0 0 0 0 0

0 0 0 0 0 −βv2h2 Iv2 − µh2 0 0 0 −βv2h2Sh2

0 0 0 0 0 βv2h2 Iv2 −c0 0 0 βv2h2Sh2

0 0 0 0 0 0 α2 −c4 0 0

0 0 0 0 0 0 −βh2v2Sv2 0 −βh2v2 Ih2 − µv2 0

0 0 0 0 0 0 βh2v2Sv2 0 βh2v2 Ih2 −µv2



. (3.4.8)

The matrix J(Z2) is a diagonal bloc. Its eigenvalues are eigenvalues of the bloc diagonal matrices. The eigenvalue

of the first bloc matrix

B1 =



−µh1 0 σ1 0 −βv1h1πh1
µh1

0 −c2 0 0 βv1h1πh1
µh1

0 α1 −c3 0 0

0 −βh1v1πv1

µv1
0 −µv1 0

0 βh1v1πv1

µv1
0 0 −µv1


are

λ(1) = −µh1 < 0, λ(2) = −c3 < 0, λ(3) = −1

2

c2 + µv1 +

√
(c2 − µv1)2 +

4β2h1v1πv1πh1
µv1µh1

 ,
λ(4) = −1

2

c2 + µv1 −

√
(c2 − µv1)2 +

4β2h1v1πv1πh1
µv1µh1

 , λ(5) = −µv1 < 0.

with

λ(3) + λ(4) = −(c2 + µv1) < 0, λ(3)λ(4) = c1µv1 −
β2h1v1πv1πh1
µv1µh1

= c1µv1(1−R2
1) (since λ1 = λ2 = 0 and R1 =

βh1v1πv1πh1
µ2v1µh1

)

= c2µv1(1 +R1)(1−R1).

If R1 > 1, then λ(3) and λ(4) have opposite signs and the equilibrium point Z2 is unstable. We assume now that

R1 < 1. Then λ(3) < 0 and λ(4) < 0. In the same manner (as in Theorem 3.4.4), it can be shown using the Routh

Hurwitz criteria that all the eigenvalues of the first bloc matrix J(Z2) have negative real parts if R2 > 1, and

there is at least one positive real part eigenvalue of J(Z2) if R2 < 1.
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Likewise banning migration (i.e., λ1 = λ2 = 0) between the two communities, the above theorem indicates the

possibility of the disease to persist within the second community provided that each single infected infects more

than one susceptible (i.e., R2 > 1) of the community during his infectiousness period, and to be overcome over

time in the first community provided that each single infected infects less than one (in average) susceptible (i.e.,

R1 < 1) of the community during his infectiousness period.

3.5 Sensitivity Analysis

For the purpose of knowing the parametric data with higher influence on the metapopulation mathematical models,

we conducted sensitivity analysis to determine the parameter values and model robustness. In a bid to help us

determine the parameters that have a high impact on Ebola transmission dynamics in the EVD model and the

Zika transmission dynamics in the ZVD model and their respective reproduction number (Ri). In carrying out

the sensitivity analysis of the Ebola and Zika Metapopulation model, we employ normalised forward sensitivity

index of a variable to a parameter as described in Chitins et al [Chitnis et al., 2006]. Defined as the ratio of some

relative change in the variable to the relative change in the parametric values of the system. While the sensitivity

index is defined using partial derivatives when the variable is a differentiable function of the parameter.

Definition 3.5.1. The normalized forward-sensitivity index, of a variable R, to a parameter M, denoted by ΨR0
M

,which is defined as a ratio of the relative change in the variable to the relative change in the parameter

3.5.1 Sensitivity Analysis of Ebola

In order to determine the parameters or factors most essential in the transmission dynamics and spread of the

disease, we perform a sensitivity analysis of the formulated model (3.2.1) in the sense of Chitnis et al [Chitnis

et al., 2006] (2008). The sensitivity indices of the basic reproduction numberR0,for first and second patch to the

parameters of the Ebola model analysis (3.2.1) are computed as follows:
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ΨR0
α1

= α1
R0

× ∂R0
∂α1

= −0.00069

ΨR0
α2

= α2
R0

× ∂R0
∂α2

= −0.00098

ΨR0
ω1

= ω1
R0

× ∂R
∂ω1

= −0.499

ΨR0
ω2

= ω2
R0

× ∂R0
∂ω2

= −0.794

ΨR0
µ1

= µ1

R0
× ∂R0

∂µ1
= −0.50

ΨR0
µ2

= µ2

R0
× ∂R0

∂µ2
= −0.50

ΨR0
κ1

= κ1
R0

× ∂R0
∂κ1

= 0.371e− 5

ΨR0
κ2

= κ2
R0

× ∂R0
∂κ2

= 0.371e− 5

ΨR0
τ1 = τ1

R0
× ∂R0

∂τ1
= −0.00998

ΨR0
τ2

τ2
R0

× ∂R0
∂τ2

= −0.00967

ΨR0
β1

= β1

R0
× ∂R0

∂β1
=

(
(ω2A2+A1(µ2ω2))(κ2+µ2)(τ2+α2+µ2)κ1

µ1µ2+µ1ω2+µ2ω1

)
ΨR0

β2
= β2

R0
× ∂R0

∂β2
= 1.56

ΨR0
a = a

R0
× ∂R0

∂a = 0.435

ΨR0
A1

= A1
R0

× ∂R0
∂A1

= 0.0001276

ΨR0
A2

= A2
R0

× ∂R0
∂A2

= 0.000122

(3.5.1)

In a similar manner, we can obtain the sensitivity indices of the basic reproduction number,R0, to parameters

of the Zika model.

3.5.2 Sensitivity Analysis of Zika

In order to determine the parameters or factors most essential in the transmission dynamics and spread of the

disease, we perform a sensitivity analysis of the formulated model (3.5.1) in the sense of Chitnis et al [Chitnis

et al., 2006] Consequently, the sensitivity indices of the basic reproduction number R0, to the parameters of the

Zika model analysis (3.5.1) are computed as follows:
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ΨR0
α1

= α1
R0

× ∂R0
∂α1

= − R0
2(µh1+d1+α1)

= −0.24

ΨR0
α2

= α2
R0

× ∂R
∂α2

= − R1
2(µh1+d2+α2)

= −0.2477

ΨR0
πh1

= πh1
R0

× ∂R0
∂πh1

= 0.27

ΨR0
πh2

= πh2
R0

× ∂R0
∂πh2

= 0.25

ΨR0
µh1

= µh1
R0

× ∂R0
∂µh1

= −1
2

ΨR0
µh2

= µh2
R0

× ∂R0
∂µh2

= −1
2

ΨR0
λ1

= λ1
R0

× ∂R0
∂λ1

= 0.004

ΨR0
λ2

= λ2
R × ∂R

∂λ2
= 0.0047

ΨR0
σ1

= σ1
R0

× ∂R0
∂σ1

= 0

ΨR0
σ2

= σ2
R0

× ∂R0
∂σ2

= 0

ΨR0
µv1

= µv1

R0
× ∂R0

∂µv1
= −0.25

ΨR0
µv2

= µv2

R0
× ∂R0

∂µv2
= −0.35

ΨR0
βv1h1

=
βv1h1
R0

× ∂R0
∂βv1h1

= 0.27

ΨR0
βv2h2

=
βv2h2
R0

× ∂R0
∂βv2h2

= 0.27

ΨR0
βh1v1

=
βh1v1
R0

× ∂R0
∂βh1v1

= 0.25

ΨR0
βh2v2

=
βh2v2
R0

× ∂R0
∂βh2v2

= 0.25

ΨR0
πv1

= πv1
R0

× ∂R0
∂πv1

= 0.27

ΨR0
πv2

= πv2
R0

× ∂R0
∂πv2

= 0.25

(3.5.2)

It is established (from the above theorems) that the basis reproduction number plays an important role to un-

derstand the asymptotic disease dynamics within the population. The progression of the disease reduces as the

basic reproduction number decreases. Since ∂R1
∂βh1v1

= R1
βh1v1

> 0 and ∂R2
∂βh2v2

= R2
βh2v2

> 0, R1 (resp. R2) decreases as

βh1v1 (resp. βh2v2) decreases. Likewise,since ∂R1
∂α1

= − R1
2(µh1+d1+α1)

< 0 and ∂R2
∂α1

= − R2
2(µh2+d2+α2)

< 0, to reduce

R1 (resp. R2) one can increase the recovery rate α1 (resp. α2). To apply these strategies, We consider their

implementation cost. We will investigate the optimal value of parameters which ensures low infection and low
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cost.
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Chapter 4

Optimal Control Analysis and Its

Application

4.1 Introduction

Optimal control theory is a mathematical strategic tool used in decision making which includes an appropriate use

of several strategies while trying to reduce the occurrence of diseases in cost-effective ways. Optimal control theory

have previously being applied to diverse epidemiological problems [Wang and Zhao, 2004,Oke et al., 2018,Lenhart

and Workman, 2007]. [Lenhart and Workman, 2007] explored techniques for improving multi-dose drug schedules,

treatment times and drug toxicities in cancer chemotherapy. Also, [Bonyah et al., 2016] used the optimal control

theory strategy to investigate several optimal control strategies of of the spread of Ebola. With options of

controlling infection by vaccination of susceptible, education of individuals on healthy living and minimizing

exposed and infected. [Momoh and Fügenschuh, 2018] examined the possibility of implementing a combined

control strategies in order to determine the most cost-effective one. We however employ quadratic objective

function in measuring the control cost for Ebola Virus Disease treatment and Zika Virus Disease treatment. As

much as the possibility of individuals staying in their respective communities as a control strategy in reducing the

transmission of any of both disease in both patches. With great adherence to healthy Education and Governmental
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health policies.

4.2 Formulation of optimal control model for Ebola and Zika Virus Model

In the previous section, control options have been considered as constants. without much consideration on cost

associated with the implementation of the control Strategy. Hence, we formulate a corresponding optimal control

problem for the model in system (3.2.1) and (3.5.1) using strict adherence to no movement with both patch,

education, wearing long covering as protective gear for the Zika model and a healthy living and abstinence from

infected individual for the Ebola model to reduce prevalence and economic burdens. Similar technique have been

used successfully to determine the relevant control strategies with optimal cost in communities not linked together

as the case of a metapopulation [Kassa and Hove-Musekwa, 2014,Kumar and Srivastava, 2017]. We use a quadratic

term for the rate of application of a our control with the goal of minimizing the number of movement in and out

of both patches for both Ebola and Zika model.

4.2.1 Optimal Control for Ebola Disease Model

The introducing of control strategies on the rate of isolating the infected humans, maintenance of proper hygiene,

with effect of safety precaution and adherence to adequate campaigns from World Health Organization (WHO),

African Centre for Disease Control (ACDC) as well as other health organizations in Africa and across the globe

regarding Ebola virus infection. The control functions being employed, monitoring the effect of immigration

reduction or movement from one patch to another as an effect of educational campaigns and adherence to such

campaign. Because in case of Ebola and its spread, It is of great importance has to emphasize on educational

campaign because it is a fact that Ebola virus spreads through human-to-human transmission, which is not by close

and direct contact of which ever kind of an infected bodily fluids also via exposure to objects and contaminated

environment. Which makes controlled treatment, proper isolation and safe burial of infected individual of great

importance. Vaccination and Monitoring most infectious fluids are blood,
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dS1
dt = A1 − (1− u1)β1S1I1 − (µ1 + ω1)S1 + ω2S2 + aR1

dE1
dt = (1− u1)β1S1I1 − (δu3 + κ1 + µ1)E1

dI1
dt = (δu3 + κ1)E1 − (1− u4)(α1 + µ1 + τ1)I1

dR1
dt = (1− u4)(α1)I1 − µ1R1 − aR1

dS2
dt = A2 − (1− u2)β2S2I2 − (µ2 + ω2)S2 + ω1S1 + aR2

dE2
dt = (1− u2)β2S2I2 − (δu3 + κ2 + µ2)E2

dI2
dt = (δu3 + κ2)E2 − (1− u4)(α2 + µ2 + τ2)I2

dR2
dt = (1− u4)(α2)I2 − µ2R2 − aR2

(4.2.1)

where u1 is the fraction of susceptible human who do not travel from one patch to patch two adhering to educational

campaign at time t,u2 is the fraction of susceptible human who do not travel from two patch to patch one adhering

to educational campaign at time t, u3 is the controlled treatment, isolation and safe burial of infected individuals

as a means of controlling and preventing the spread at time t and u4 is the effectiveness of vaccine as well as other

treatment at time t. Hence, our goal is to minimize the number of infected individuals with Ebola virus while at

the same time keeping the cost of treatment very low.

To determine optimal control for the system (4.2.1) investigating the optimal efforts by defining the objective

functional

J(u1, u2, u3, u4) =

∫ T

0
[B1E1 +B2E2 +B3I1 +B4I2
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+
1

2

(
c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4

)
dt

with S1(0) ⩾ 0, E1(0) ⩾ 0, I1(0) ⩾ 0, R1(0) ⩾ 0, S2(0) ⩾ 0, E2(0) ⩾ 0, I2(0) ⩾ 0, R2(0) ⩾ 0. We assume cost

of treatments is nonlinear and objective functional takes a quadratic nature. The coefficients B1 and B2 are

balancing cost factors due to the size and importance of objective functional. Hence, we seek to find an optimal

control, u∗1, u
∗
2, u

∗
3 and u∗4 such that

J(u∗1, u
∗
2, u

∗
3,u

∗
4) = minJ(u1, u2, u3), (u1, u2, u3,u4) ∈ Ω (4.2.2)

subject to system (2.1), where Ω is a Lebesgue measurable function defined from [0, T ] to [0, 1]. Applying Pon-

tryagin’s Maximum Principle[ref]to solve optimal control problem satisfying necessary conditions corresponding

to the given state variables.

The Hamiltonian H from the objective functional (3.18) which is subject to system (2.1) is

H = B1E1 +B2E2 +B3I1 +B4I2 +
1

2

(
c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4

)
+ λS1

dS1
dt

+ λE1

dE1

dt
+ λI1

dI1
dt

+ λR1

dR1

dt
+ λS2

dS2
dt

+ λE2

dS2
dt

+ λI2
dI2
dt

+ λR2

dR2

dt
(4.2.3)

where λS1 , λE1 , λI1 , λR1 , λS2 , λE2 , λI2 , λR2 are adjoint variables which satisfy the adjoint system

H = B1E1 +B2E2 +B3I1 +B4I2 +
1

2

(
c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4

)
+λS1 [A1 − (1− u1)β1S1I1 − (µ1 + ω1)S1 + ω2S2 + aR1]

+λE1 [(1− u1)β1S1I1 − (δu3 + κ1 + µ1)E1]

+λI1 [(δu3 + κ1)E1 − (1− u4)(α1 + µ1 + τ1)I1]

+λR1 [(1− u4)(α1)I1 − µ1R1 − aR1]

+λS2 [A2 − (1− u2)β2S2I2 − (µ2 + ω2)S2 + ω1S1 + aR2]

+λE2 [(1− u2)β2S2I2 − (δu3 + κ2 + µ2)E2]

+λI2 [(δu3 + κ2)E2 − (1− u4)(α2 + µ2 + τ2)I2]

+λR2 [(1− u4)(α2)I2 − µ2R2 − aR2]

(4.2.4)
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We then have to determine the Adjoint Variables by partially differentiating the Hamiltonian with respect to each

of the state variables as given above

Theorem 14. To establish an optimal control set u1, u2, u3 and u4 that minimizes J over U , there are adjoint

variables, λS1 , λE1 , λI1 , λR1 , λS2 , λE2 , λI2 , λR2 satisfying

dλi
dt

= −∂H
∂i

and with transversality conditions λi(tf ) = 0, where,

i = S1, E1, I1, R1, S2, E2, I2, R2 (4.2.5)

Furthermore,

u∗1 = max

{
0,min

(
1,

−(λS1 + λE1 )β1S1I1
2c1

)}
(4.2.6)

u∗2 = max

{
0,min

(
1,
β2S2I2(−λS2 − λE2 )

2c2

)}
(4.2.7)

u∗3 = max

{
0,min

(
1,
δE1(λE1 − λI1 ) + δE2(λE2 − λI2 )

2c3

)}
(4.2.8)

u∗4 = max

{
0,min

(
1,
λR1α1I1 − λI1 (α1 + µ1 + τ1)I1 − λI2 (α2 + µ2 + τ2)I2 + λR2α2I2

2c4

)}
(4.2.9)

Proof. Suppose U∗ = (u∗1, u
∗
2, u

∗
3, u

∗
4) is an optimal control and S1, E1, I1, R1, S2, E2, I2, R2 are the corresponding

state solutions.Applying the Pontryagin’s Maximum Principle [Pontryagin, 1987] there exist adjoint variables

satisfying:
dλS1
dt

= − ∂H

∂S1
;
dλE1
dt

= − ∂H

∂E1
;
dλI1
dt

= −∂H
∂I1

;
dλR1

dt
= − ∂H

∂R1
;

dλS2
dt

= − ∂H

∂S2
;
dλE2
dt

= − ∂H

∂E2
;
dλI2
dt

= −∂H
∂I2

;
dλR2

dt
= − ∂H

∂R2
;

dλS1
dt

= − ∂H

∂S1
= −[λS1 (−(1− u1)β1I1 − (µ1 + ω1))] (4.2.10)

−λS1 [−(1− u1)β1I1 − (µ1 + ω1)]

dλE1
dt

= − ∂H

∂E1
= −[B1 − λE1 (δu3 + κ1 + µ1)] (4.2.11)

−B1 + λE1 (δu3 + κ1 + µ1)
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dλI1
dt

= −∂H
∂I1

= −[B3 − λI1 (1− u4)(α1 + µ1 + τ1)] (4.2.12)

−B3 + λI1 (1− u4)(α1 + µ1 + τ1)

dλR1

dt
= − ∂H

∂R1
= −λR1 (−µ1 − a) (4.2.13)

λR1 (µ1 + a)

dλS2
dt

= − ∂H

∂S2
= −[λS2 (−(1− u2)β1I2 − (µ2 + ω2))] (4.2.14)

−λS2 [−(1− u2)β2I2 − (µ2 + ω2)]

dλE2
dt

= − ∂H

∂E2
= −[B2 − λE2 (δu3 + κ2 + µ2)] (4.2.15)

−B2 + λE2 (δu3 + κ2 + µ2)

dλI2
dt

= −∂H
∂I2

= −[B4 − λI2 (1− u4)(α2 + µ2 + τ2)] (4.2.16)

−B4 + λI2 (1− u4)(α2 + µ2 + τ2)

dλR2

dt
= − ∂H

∂R2
= −λR2 (−µ2 − a) (4.2.17)

λR2 (µ2 + a)

4.2.2 Characterization

∂H

∂u1
= 2u1c1 + λS1β1S1I1

∂H

∂u1
= 0

2u1c1 = −λS1β1S1I1 − λE1β1S1I1

u∗1 =
−(λS1 + λE1 )β1S1I1

2c1

∂H

∂u2
= 2u2c2 + λS2β2S2I2 + λE2β2S2I2

∂H

∂u2
= 0

2u2c2 = −λS2β2S2I2 − λE2β2S2I2
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u∗2 =
β2S2I2(−λS2 − λE2 )

2c2

∂H

∂u3
= 2u3c3 + λE1 δE1 + λI1 δE1 − λE2 δE2 + λI2 δE2

∂H

∂u3
= 0

2u3c3 = λE1 δE1 − λI1 δE1 + λE2 δE2 − λI2 δE2

u∗3 =
δE1(λE1 − λI1 ) + δE2(λE2 − λI2 )

2c3

∂H

∂u4
= 2u4c4 + λI1 (α1 + µ1 + τ1)I1 − λR1α1I1 + λI2 (α2 + µ2 + τ2)I2 − λR2α2I2

∂H

∂u1
= 0

2u4c4 = λR1α1I1 − λI1 (α1 + µ1 + τ1)I1 − λI2 (α2 + µ2 + τ2)I2 + λR2α2I2

u∗4 =
λR1α1I1 − λI1 (α1 + µ1 + τ1)I1 − λI2 (α2 + µ2 + τ2)I2 + λR2α2I2

2c4

U∗
i =

 0 u1 ≤ 0

1 u1 ≥ 1

where i=1,2,3,4

U∗
1 = max

{
1, λR1α1I1−λI1 (α1+µ1+τ1)I1−λR2α2I2

2c4

}

4.2.3 Ebola Control Strategy

The strategy employed for the effective control of EVD is to combine the effects of adherence to no movement

restriction in both patches as well as the control treatment, which indeed aided the effect of the Virus in both

patches considered. From Figure 4, which shows the reduction in the Susceptible human in both patches as a

result of effective control to the movement within patches. The Strategy involving the use of no movement order

within u1(t) which is the fraction of susceptible human who do not travel from one patch to patch two adhering
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to educational campaign and u2(t) which is the fraction of susceptible human who do not travel from two patch

to patch one. Where , u1(t) = 0 while considering the second patch and u2(t) = 0 while considering the control

strategy for the fist patch which is seen in Figure(4.1-4.3) , we observe that the optimal strategy adopted resulted

in a drastic reduction in the susceptible individuals. Similarly, Figure 4.3 shows that the infected population

dropped with the control strategy from 100 to 70 in less than 10 days of the adherence of the strategy and further

reduction in the first 100 days.

4.3 Optimal Control Zika

With constant and adequate campaigns from WHO and health organizations in South America, Europe and across

the globe regarding Zika virus infection. We propose some control strategy considering the vector transmission

which seems prevalent than sexual transmission protection and abstinence possibly which seems to have reduced

due to adherence to the health advice of sexual. Five control parameters are introduced for constructing the

control model. The control variable u1(t) is the personal preventive strategy and measures adopted to protect

oneself from contracting ZVD such as insect repellent or mosquito net to reduce the contacts between human and

wearing of long sleeve clothing which covers the body properly. While u2(t) is the use of insecticide spraying to

kill mosquitoes. u3(t) is the rate of treatment of those infected with ZVD. u4(t) is the efforts deployed to reduce

the movement of infected people from patch one to patch two. Through screening and testing. While u5(t) is the

efforts deployed to reduce the movement of infected people from patch two to patch one. Through screening and

testing. Five control parameters are introduced to construct the control model:

� u1(t) for the personal preventive strategy from contracting ZVD (such as insect repellent, or mosquito net

and wearing of long sleeve clothing which covers the body properly)

� u2(t) to increase the death rate of mosquito (via insecticide spraying for instance), hence reduce contact

between susceptible host and mosquito

� u3(t) for recovered/treated infected host

� u4(t) for the efforts deployed to reduce the movement of infected people from patch one to patch two (through
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screening and testing)

� u5(t) for the efforts deployed to reduce the movement of infected people from patch two to patch one.

The model with control variables is given by

dSh1
dt = πh1 − µh1Sh1 − (1− u1)βv1h1Sh1 Iv1 − (1− u4)λ1Sh1 + (1− u5)λ2Sh2 + σ1Rh1

dIh1
dt = (1− u1)βv1h1Sh1 Iv1 − (µh1 + d1 + u3)Ih1

dRh1
dt = u3Ih1 − (µh1 + σ1)Rh1

dSv1
dt = πv1 − (1− u2)βh1v1Sv1 Ih1 − (µv1 + (u1 + u2)µmax1 )Sv1

dIv1
dt = (1− u2)βh1v1Sv1 Ih1 − (µv1 + (u1 + u2)µmax1 )Iv1

dSh2
dt = πh2 − µh2Sh2 − (1− u1)βv2h2Sh2 Iv2 + (1− u4)λ1Sh1 − (1− u5)λ2Sh2 + σ2Rh2

dIh2
dt = (1− u1)βv2h2Sh2 Iv2 − (µh2 + d2 + u3)Ih2

dRh2
dt = u3Ih2 − (µh2 + σ2)Rh2

dSv2
dt = πv2 − (1− u2)βh2v2Sv2 Ih2 − (µv2 + (u1 + u2)µmax2 )Sv2

dIv2
dt = (1− u2)βh2v2Sv2 Ih2 − (µv2 + (u1 + u2)µmax2 )Iv2 ,

(4.3.1)

with nonnegative initials conditions. Our aim is to investigate the optimal efforts needed to control the disease

dynamics and minimize the cost of implementing the controls u1, u2, u3, u4 and u5 over a finite time T . We

choose controls with quadratic cost and consider the objective functional (similarly with some authors in the

literature [Adams et al., 2004,De Souza et al., 2000,Lenhart and Yong, 1992,Kirschner et al., 1997])

J(u1, u2, u3, u4, u5) =

∫ T

0

[
A1Ih1 +A2Ih2 +A3Iv1 +A4Iv2 +

1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5

)]
dt,

(4.3.2)

where the coefficients A1, A2, A3 and A4 are balancing cost factors due to the size and w1, w2, w3, w4 and w5 are

positive weights. We seek to find an optimal control (u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) such that

J(u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) = min

Ω
J(u1, u2, u3, u4, u5) (4.3.3)

subject to system (4.3.1)), where Ω = {(u1, u2, u3, u4, u5)|ui : [0, T ] → [0, 1]measurable, i = 1, . . . , 5}. To solve the
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optimal control problem we apply the Pontryagin’s Maximum Principle [Pontryagin et al., 1962] which reduces to

minimizing the Hamiltonian pointwise with respect to the control variables. The Hamiltonian is given by

H = A1Ih1 +A2Ih2 +A3Iv1 +A4Iv2 +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5

)
+ θ1

dSh1
dt

+ θ2
dIh1
dt

+ θ3
dRh1

dt
+ θ4

dSv1
dt

+ θ5
dIv1
dt

+ θ6
dSh2
dt

+ θ7
dIh2
dt

+ θ8
dRh2

dt
+ θ9

dSv2
dt

+ θ10
dIv2
dt

.

(4.3.4)

that is,

H = A1Ih1 +A2Ih2 +A3Iv1 +A4Iv2 +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5

)
+ θ1 [πh1 − µh1Sh1 − (1− u1)βv1h1Sh1 Iv1 ] + θ2[(1− u1)βv1h1Sh1 Iv1 − (µh1 + d1 + u3)Ih1 ]

+ θ3[u3Ih1 − (µh1 + σ1)Rh1 ] + θ4[πv1 − (1− u2)βh1v1Sv1 Ih1 − (µv1 + (u1 + u2)µmax1 )S1]

+ θ5[(1− u2)βh1v1Sv1 Ih1 − (µv1 + (u1 + u2)µmax1 )Iv1 ]

+ θ6[πh2 − µh2Sh2 − (1− u1)βv2h2Sh2 Iv2 + (1− u4)λ1Sh1 − (1− u5)λ2Sh2 + σ2Rh2 ]

+ θ7[(1− u1)βv2h2Sh2 Iv2 − (µh2 + d2 + u3)Ih2 ] + θ8[u3Ih2 − (µh2 + σ2)Rh2 ]

+ θ9[πv2 − (1− u2)βh2v2Sv2 Ih2 − (µv2 + (u1 + u2)µmax2 )Sv2 ]

+ θ10[(1− u2)βh2v2Sv2 Ih2 − (µv2 + (u1 + u2)µmax2 )Iv2 ]

(4.3.5)

where θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10 are adjoint variables which satisfy the adjoint system

Hence, we determine the adjoint variables by partially differentiating the Hamiltonian with respect to each of

the state variables

Theorem 4.3.1. For an optimal control set u1, u2, u3, u4 and u5 that minimizes J over U , there are adjoint

variables, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10 satisfying

dθi
dt

= −∂H
∂i

and with transversality conditions θi(tf ) = 0, where,

i = Sh1 , Ih1 , Rh1 , Sv1 , Ih1 , Sh2 , Ih2 , Rh2 , Sv2 , Iv2 (4.3.6)
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Furthermore,

u∗1 = max

{
0,min


1,

θ2βv1h1Sh1 Iv1 + θ4 (µmax1Sv1 + βh1v1Sv1 Ih1 ) + θ5 (βh1v1Sv1 Ih1 + µmax1 Iv1

− θ1βv1h1Sh1 Iv1 − θ6βv2h2Sh2 Iv2

+ θ7βv2h2Sh2 Iv2 + θ9µmax2Sv2 + θ10µmax2 Iv2

2w1



}

(4.3.7)

u∗2 = max

{
0,min


1,

θ4µmax1Sv1 + θ5µmax1 Iv1

+ θ9(µmax2Sv2 − βh2v2Sv2 Ih2 )− θ10µmax2 Iv2

2w2


}

(4.3.8)

u∗3 = max

{
0,min

(
1,
θ2Ih1 − θ3Ih1 + θ7Ih2 − θ8Ih2

2w3

)}
(4.3.9)

u∗4 = max

{
0,min

(
1,
θ6λ1Sh1 − θ1Sh2

2w4

)}
(4.3.10)

u∗5 = max

{
0,min

(
1,
λ2Sh2 (θ1 − θ6)

2w5

)}
(4.3.11)

Proof. Suppose U∗ = (u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) is an optimal control and Sh1 , Ih1 , Rh1 , Sv1 , Ih1 , Sh2 , Ih2 , Rh2 , Sv2 , Iv2 are

the corresponding state solutions. Applying the Pontryagin’s Maximum Principle [Pontryagin, 1987] there exist

adjoint variables satisfying:

dθ1
dt

= − ∂H

∂Sh1
, θSh1

(tf ) = 0,
dθ2
dt

= − ∂H

∂Ih1
, θIh1 (tf ) = 0,

dθ3
dt

= − ∂H

∂Rh1
, θRh1

(tf ) = 0,
dθ4
dt

= − ∂H

∂Sv1
, θSv1 (tf ) = 0,

dθ5
dt

= − ∂H

∂Iv1
, θIv1 (tf ) = 0,

dθ6
dt

= − ∂H

∂Sh2
, θSh2

(tf ) = 0,
dθ7
dt

= − ∂H

∂Ih2
, θIh2 (tf ) = 0,

dθ8
dt

= − ∂H

∂Rh2
, θRh2

(tf ) = 0,
dθ9
dt

= − ∂H

∂Sv2
, θSv2 (tf ) = 0,

dθ10
dt

= − ∂H

∂Iv2
, θIv2 (tf ) = 0,

(4.3.12)
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with transversality conditions given as;

Sh1 = Ih1 = Rh1 = Sv1 = Ih1 = Sh2 = Ih2 = Rh2 = Sv2 = Iv2 = 0

We can determine the behaviour of the control by differentiating the Hamiltonian, H with respect to the controls

(u1, u2, u3, u4, u5) at a time t.On the interior of the control set, such that 0 < uj < 1 for all (j = 1, 2, 3, 4, 5), we

obtain

0 =
∂H

∂u1
= 2u1w1 + θ1βv1h1Sh1 Iv1 − θ2βv1h1Sh1 Iv1

− θ4µmax1 Iv1 + θ6βv2h2Sh2 Iv2 − θ7βv2h2Sh2 Iv2

− θ9µmax2Sv2 − θ10µmax2 Iv2 ,

0 =
∂H

∂u2
= 2w2u2 − θ4µmax1Sv1

− θ5µmax1 Iv1 + θ9µmax2Sv2 + θ9βh2v2Sv2 Ih2 − θ10µmax2 Iv2 ,

0 =
∂H

∂u3
= 2w3u3 − θ2Ih1 + θ3Ih1 − θ7Ih2 + θ8Ih2

0 =
∂H

∂u4
= 2w4u4 + θ1λ1Sh1 − θ6λ1Sh1

0 =
∂H

∂u5
= 2w5u5 − θ1λ2Sh2 + θ6λ2Sh2

. (4.3.13)

Therefore, we have that

dθ1
dt

= − ∂H

∂Sh1
;
dθ2
dt

= − ∂H

∂Ih1
;
dθ3
dt

= − ∂H

∂Rh1
;
dθ4
dt

= − ∂H

∂Sv1
;
dθ5
dt

= − ∂H

∂Iv1
;

dθ6
dt

= − ∂H

∂Sh2
;
dθ7
dt

= − ∂H

∂Ih2
;
dθ8
dt

= − ∂H

∂Rh2
;
dθ9
dt

= − ∂H

∂Sv2
;
dθ10
dt

= − ∂H

∂Iv2

dθ1
dt

= − ∂H

∂Sh1
= −[θ1(−µh1 − (1− u1)βv1h1 Iv1 − (1− u4)λ1) + θ2((1− u1)βv1h1 Iv1 ) + θ6((1− u4)λ1)] (4.3.14)

−[(−θ1µh1 − θ1(1− u1)βv1h1 Iv1 − θ1(1− u4)λ1) + θ2(1− u1)βv1h1 Iv1 + θ6(1− u4)λ1]

θ
′
1 = − ∂H

∂Sh1
= −θ1(−µh1 − (1− u1)βv1h1 Iv1 − (1− u4)λ1)− θ2(1− u1)βv1h1 Iv1 − θ6(1− u4)λ1

dθ2
dt

= − ∂H

∂Ih1
= −[A1 − θ2(µh1 + d1 + u3) + θ3u3 − θ4(1− u1)βh1v1Sv1 + θ5(1− u1)βh1v1Sv1 ] (4.3.15)

θ
′
2 = − ∂H

∂Ih1
= −A1 + θ2(µh1 + d1 + u3)− θ3u3 + θ4(1− u1)βh1v1Sv1 − θ5(1− u1)βh1v1Sv1
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dθ3
dt

= − ∂H

∂Rh1
= −[θ1σ1 − θ3c3] (4.3.16)

θ
′
3 = − ∂H

∂Rh1
= θ3c3 − θ1σ1

dθ4
dt

= − ∂H

∂Sv1
= −[−θ4(µv1 + (u1 + u2)µmax1)− (1− u1)βh1v1 Ih1 + θ5(1− u1)βh1v1 Ih1 ] (4.3.17)

θ
′
4 = − ∂H

∂Sv1
= θ4(µv1 + (u1 + u2)µmax1) + θ4(1− u1)βh1v1 Ih1 − θ5(1− u1)βh1v1 Ih1

dθ5
dt

= − ∂H

∂Iv1
= −[A3 − θ1(1− u1)βv1h1Sh1 + θ2(1− u1)βv1h1Sh1 − θ5(µv1 + (u1 + u2)µmax1)] (4.3.18)

θ
′
5 = − ∂H

∂Iv1
= −A3 + θ1(1− u1)βv1h1Sh1 − θ2(1− u1)βv1h1Sh1 + θ5(µv1 + (u1 + u2)µmax1)

dθ6
dt

= − ∂H

∂Sh2
= −[θ6(−µh2 − (1− u1)βv2h2 Iv2 − (1− u5)λ2) + θ7((1− u1)βv2h2 Iv2 ) + θ1((1− u5)λ2)] (4.3.19)

θ
′
1 = − ∂H

∂Sh1
= −θ1(1− u5)λ2 + θ6(µh2 + (1− u1)βv2h2 Iv2 + (1− u5)λ2)− θ7(1− u1)βv2h2 Iv2

dθ7
dt

= − ∂H

∂Ih2
= −[A2 − θ7(µh2 + d2 + u3) + θ8u3 − θ9(1− u2)βh2v2Sv2 + θ10(1− u2)βh2v2Sv2 ] (4.3.20)

θ
′
7 = − ∂H

∂Ih2
= −A2 + θ7(µh2 + d2 + u3)− θ8u3 + θ9(1− u2)βh2v2Sv2 − θ10(1− u2)βh2v2Sv2

dθ8
dt

= − ∂H

∂Rh2
= −[θ6σ2 − θ8c4] (4.3.21)

θ
′
8 = − ∂H

∂Rh2
= θ8c4 − θ6σ2

dθ9
dt

= − ∂H

∂Sv2
= −[−θ9(µv2 + (u1 + u2)µmax2)− (1− u2)βh2v2 Ih2 + θ10(1− u2)βh2v2 Ih2 ] (4.3.22)

θ
′
9 = − ∂H

∂Sv2
= θ9(µv2 + (u1 + u2)µmax2) + θ9(1− u2)βh2v2 Ih2 − θ10(1− u2)βh2v2 Ih2

dθ10
dt

= − ∂H

∂Iv2
= −[A4 − θ1(1− u1)βv2h2Sh2 + θ7(1− u1)βv2h2Sh2 − θ10(µv2 + (u1 + u2)µmax2)] (4.3.23)

θ
′
10 = − ∂H

∂Iv2
= −A4 + θ6(1− u1)βv2h2Sh2 − θ7(1− u1)βv2h2Sh2 + θ10(µv2 + (u1 + u2)µmax2)
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u∗1 =

θ2βv1h1Sh1 Iv1 + θ4 (µmax1Sv1 + βh1v1Sv1 Ih1 ) + θ5 (βh1v1Sv1 Ih1 + µmax1 Iv1

− θ1βv1h1Sh1 Iv1 − θ6βv2h2Sh2 Iv2

+ θ7βv2h2Sh2 Iv2 + θ9µmax2Sv2 + θ10µmax2 Iv2

2w1

u∗2 =

θ4µmax1Sv1 + θ5µmax1 Iv1

+ θ9(µmax2Sv2 − βh2v2Sv2 Ih2 )− θ10µmax2 Iv2

2w2

u∗3 =
θ2Ih1 − θ3Ih1 + θ7Ih2 − θ8Ih2

2w3
u∗4 =

θ6λ1Sh1 − θ1Sh2
2w4

u∗5 =
λ2Sh2 (θ1 − θ6)

2w5

u∗1 = max

{
0,min


1,

θ2βv1h1Sh1 Iv1 + θ4 (µmax1Sv1 + βh1v1Sv1 Ih1 ) + θ5 (βh1v1Sv1 Ih1 + µmax1 Iv1

− θ1βv1h1Sh1 Iv1 − θ6βv2h2Sh2 Iv2

+ θ7βv2h2Sh2 Iv2 + θ9µmax2Sv2 + θ10µmax2 Iv2

2w1



}

(4.3.24)

u∗2 = max

{
0,min


1,

θ4µmax1Sv1 + θ5µmax1 Iv1

+ θ9(µmax2Sv2 − βh2v2Sv2 Ih2 )− θ10µmax2 Iv2

2w2


}

(4.3.25)

u∗3 = max

{
0,min

(
1,
θ2Ih1 − θ3Ih1 + θ7Ih2 − θ8Ih2

2w3

)}
(4.3.26)

u∗4 = max

{
0,min

(
1,
θ6λ1Sh1 − θ1Sh2

2w4

)}
(4.3.27)

u∗5 = max

{
0,min

(
1,
λ2Sh2 (θ1 − θ6)

2w5

)}
(4.3.28)
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U∗
i =


0 u1 ≤ 0

ui 0 < u1 < 1

1 u1 ≥ 1

where i=1,2,3,4,5

U∗
1 = max

{
1, λ2Sh2 (θ1−θ6)

2w5

}

4.3.1 Zika Control Strategy

u1(t) for the personal preventive strategy from contracting ZVD (such as insect repellent, or mosquito net and

wearing of long sleeve clothing which covers the body properly)

u2(t) to increase the death rate of mosquito (via insecticide spraying for instance), hence reduce contact between

susceptible host and mosquito

u3(t) for recovered/treated infected host

u4(t) for the efforts deployed to reduce the movement of infected people from patch one to patch two (through

screening and testing)

u5(t) for the efforts deployed to reduce the movement of infected people from patch two to patch one. For our

Zika Virus model, We employed effective control strategy for the ZVD with combined effects of adherence to

the personal preventive strategy from contracting ZVD, to increase the death rate of mosquito and treatment

of infected host. While restriction of movement to and fro each patch is another control strategy, which indeed

aided the effect of the Virus in both patches considered. Figure (4.5 - 4.6), which shows the reduction in the

Susceptible human population in both patches as a result of effective control to the movement within patches.

while considering the control strategy for the first patch which is seen in Figure(4.5 - 4.6), we observe that the
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optimal strategy adopted resulted in a drastic reduction in the susceptible individuals. Similarly, Figure 4.6(a)

shows that the infected population dropped with the control strategy from 100 to 70 in less than 10 days of the

adherence of the strategy and further reduction in the first 100 days as well as the very drastic reduction in the

susceptible individuals in both patches as seen in Figure 4.5(a&b).
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(a) (b) (c)

(d)

Figure 4.1: Diagram depicting the Control Strategy Case of the persistence of Ebola virus disease in the infected

and recovered human population.
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(a) Susceptible population Sh1 (b) Susceptible population Sh2

Figure 4.2: Diagram depicting the Control Strategy Case of a Zika disease in Susceptible Class.
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(a) (b) (c)

(d)

Figure 4.3: Diagram depicting the Control Strategy Case of the persistence of Zika virus disease in the infected

and recovered human population .
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Chapter 5

Simulations and Discussion of Results

In order to understand the overall picture of the EVD and ZVD behaviours respectively, this chapter provides

numerical simulations of each of the formulated models using a Matlab software package and Maple software

package. The results of the simulations are discussed with the aid of figures as well as the implications of the

theoretical results obtained in Chapter 4.

5.0.1 EVD Numerical Simulation and Discussions

The Numerical model parameters of the Ebola virus disease (EVD) which have been well and widely used in

different existing literature’s where used peculiar to each metapopulation,
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(a) Endemic Free population

in patch1

[Endemic Free population in Patch2]

while others (EVD) model parameters were logically estimated for the purpose of illustrations of the model

analyses. Pictures of the dynamical behavior of EVD in the presence of movement of susceptible human from

one patch to another is given by the numerical simulations of the model (2.1).All the numerical simulations were
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(c) Exposed population

(d) Infected population

executed in MAPLE 18
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Table 5.1: Parameters value used in the EVD simulations

Parameters Value Reference

α1 0.176/yr [6]

α2 0.146/yr [6]

β1 1.7/yr Assumed

β2 1.8/yr Assumed

τ1 0.10/yr [24]

τ2 0.20/yr [24]

µ1 0.039/yr [24]

µ2 0.046/yr [24]

ω1 0.95/yr [50]

ω2 0.88/yr [50]

κ1 0.20 [57]

κ2 0.17 [57]

π1 0.013/yr Assumed

π2 0.023/yr Assumed

a 0.06/yr [54]

it is obvious that the the simulation gives approximation for solutions S1(t), E1(t), I1(t), R1(t), S2(t), E2(t), I2(t), R2(t), N1(t)andN2(t)

are presented in graphs respectively. In each case two different movement of susceptible individuals in both patches

are considered. It appears that numerical results show that the Ebola model (2.1)exhibits the traditional threshold

behaviour which get to reduce with time. We also considered for the non-incidence and transmission of the virus

in sub-population, showing the effect of the trajectory of EVD as it converges to the disease free equilibrium. We

also took note that the behaviour of the system remains similar for close values of the derivative parameter in

both patches.
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5.1 ZVD Simulations

In this section, we perform numerical simulations to illustrate the theoretical results in our Zika Metapopulation

Mathematical model analysis. We used the parameters values: [Srivastav et al., 2018] d1 = d2 = 0.05/day,

µh1 = 0.019896/yr, µv1 = 0.025312/yr, µh2 = 0.019897/yr, µv2 = 0.025312/yr .

We also assumed πh1 = 50/yr, πv1 = 70/yr, πh2 = 110/yr, πv2 = 75/yr, α1 = 0.013/yr, α2 = 0.023/yr,and

considered the initial conditions Sh1(0) = 1000, Ih1(0) = 50, Rh1(0) = 0, Sv1(0) = 4000, Iv1(0) = 80, Sh2(0) = 800,

Ih2(0) = 5, Rh2(0) = 2, Sv2(0) = 2500 and Iv2(0) = 50.

In Figure fig1, we assume a very low disease rate transmission. Even though movement is allowed between

patches (since λ1 ̸= 0 and λ2 ̸= 0), it is observed that the two patches will be disease free in less than a year. In

Figure fig2, we consider the case of high disease transmission rate in the first patch and low rate in the second

patch. It is observed when movement between patches is banned that the disease will become endemic in the first

patch (with an average of 575 secondary new infections per single infected) and will be overcome in the second

patch. Moreover, the infected population will be prevalent in the first patch. A similar (reverse) observation can

be seen in Figure fig3. We observe in Figure fig4 that the disease will become endemic in both patches when the

disease transmission rates are high (resulting to a minimum of 9879 secondary new infections per single infected).

5.2 Discussion of Results

The Zika model considered a two patch model for the transmission dynamics of Zika Virus with transmission

coefficient of susceptible mosquito with infected human and transmission coefficient of susceptible human with

infected mosquito with movement within the two patches were analyzed. For the model, It was found that the

basic reproduction ratio R1 ≤ 1 and R2 ≤ 1 for both patches gives a solution limits to the disease-free equilibrium.

We also presented scenarios of Zika-free endemic equilibrium where R1 ≤ 1 and R2 ≥ 1 or R1 ≥ 1 and R2 ≤ 1

depending on the patch that Zika is prevalent and the patch that movement is restricted. Meaning that the disease

persist within any of the community provided that each single infected infects more than one susceptible and the

scenario presented is subdued with time in any of the community provided that each single infected infects less
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than one susceptible on the average assuming there is no migration. The basic reproduction ratio in both patch

plays an important role in the determination to understand the disease dynamics with the population because they

are sensitive to the changes of mosquito related parameters, such as the coefficient of transmission between human

and mosquitoes. We formulated an optimal control problem of Zika virus infection in both patches.Figure (2a)

shows the combined variations in the susceptible human and vector in both patches with movement to and from

each patch. Figure (2b) shows the combined variational effect of Zika dynamics when the transmission coefficient

for susceptible vector and human as well as infected vector and human is so small, the infection reduces and goes

to 0 with time t.

Figure (3a & b) Shows the variation in the transmission dynamics showing the rate of coefficient of susceptible

mosquito with infected human as well as transmission coefficient of susceptible human with infected vector in both

patches. While Figure (3c&d)shows the variational increase in the transmission coefficient of infective human and

vector (Ih1andIv1 ) in patch 1 and the decrease in the transmission coefficient of infective human and vector

(Ih2andIv2 ) in patch 2.

Figure(4a) shows the variation in the Zika virus transmission coefficient of susceptible mosquito with infected

human and susceptible human with infected mosquito in both patches with significant decrease in the susceptible

human (Sh2 ) with time t due to the reduced rate of infected vector and no movement within both patches.

Figure(4b) shows the effect of the increased rate of transmission coefficient of susceptible human with infected

mosquito (βv2h2 ) and Figure (4c) the decrease in the transmission coefficient of susceptible mosquito with infected

human as well as transmission coefficient of susceptible human with infected vector going to 0 with time t. Figure

(5) Shows the variation in the infective human in both patches (Ih1andIh2 ) and Infective vector (Iv1andIv2 ) in

both patches, while there exist movement within both patches. with the increase in the rate of recovery in patches

1 compared to patch 2.
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Table 5.2: Parameters value used in the simulations

Parameters Value Reference

πh1 50/yr Assumed

πv1 70/yr Assumed

πh2 110/yr Assumed

πv2 75/yr Assumed

d1 0.05/day [9]

d2 0.05/day [9]

µh1 0.019896/yr [24]

µv1 0.025312/yr [24]

µh2 0.019897/yr [24]

µv2 0.025312/yr [24]

σ1 0.0005 [5]

σ1 0.017456 [5]

α1 0.013/yr Assumed

α2 0.023/yr Assumed

(e) Susceptible population (f) Infected population

Figure 5.1: Case of a Zika disease free population (βv1h1 = βh1v1 = βv2h2 = βh2v2 = 0.1/12000, λ1 = 0.5,

λ2 = 0.5001, R1 = 0.60447, R2 = 0.591132).
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(a) (b)

(c) (d)

Figure 5.2: Case of the persistence of Zika virus disease in the first population only (βv1h1 = βh1v1 = 0.1/10,

βv2h2 = βh2v2 = 0.1/12000, λ1 = λ2 = 0, R1 = 575.517, R2 = 0.695544).
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(a) (b)

(c)

Figure 5.3: Case of the persistence of Zika virus disease in the second population only (βv1h1 = βh1v1 = 0.1/12000,

βv2h2 = 0.1, βh2v2 = 0.1/8000, λ1 = λ2 = 0, R1 = 0.479597, R2 = 1.04332).

(a) (b)

Figure 5.4: Case of the persistence of Zika virus disease in both populations (βv1h1 = βh1v1 = βv2h2 = βh2v2 = 0.1,

λ1 = 0.5, λ2 = 0.5001, R1 = 10727.8, R2 = 9878.99).
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Chapter 6

Conclusion

In this study, we investigated the impact of metapopulation on disease transmission dynamics. We took critical

look at the effect of metapopulation on Ebola virus disease transmission dynamics in West Africa and the effect

of metapopulation on Zika virus disease transmission dynamics in South America. We determined an appropri-

ate optimal control strategy for disease transmission elimination or control. Also, we derived and analysed a

etapopulation deterministic model for both EVD and ZVD where we performed an optimal control analysis of the

metapopulation model. We began with historical background on both Ebola and Zika virus disease respectively in

Chapter 1 as well as explanation of basic mathematical tools used in mathematical modeling techniques. While in

Chapter 2, we discussed and reviewed literature on both Ebola disease model and Zika disease model, with special

interest on transmission of disease in linked communities. The formulation of both Ebola disease model and Zika

disease model was presented in Chapter 3, with qualitative analysis of the four compartment model for each of the

two patch considered for the EVD model and five compartment model for each of the two patch considered for the

ZVD model which are feasible epidemiologically and mathematically well-posed. We investigated the existence

and stability of both EVD and ZVD models with their peculiarities: like Ebola-free endemic equilibrium (EFEE)

and Zika-free endemic equilibrium (ZFEE) for each patch of both model, we also applied the next generation

matrix technique in deriving the invasion reproduction number Ri where i = 1, 2 for EVD and ZVD model. The

respective basic reproduction number was used to show that Ebola-free equilibrium (EFEE) and Zika-free equi-

librium (ZFEE) are locally asymptotically stable whenever Ri < 1 and unstable otherwise. However, the stability
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analysis of the model beyond small region near the equilibria was checked. We explored the global dynamical

behavior of the model around the equilibria. Also, a suitable Lyapunov function was constructed at both the

Ebola free equilibrium (EFE) and the Zika free equilibrium (ZFE) respectively to prove that the model is globally

asymptotically stable. A sensitivity analysis checking the effectiveness of parametric values was carried out with a

view to examining the factors most responsible for diseases transmission with both patch. In Chapter 4, Optimal

control strategy was carried out, where we seek strategy to reduced the effect of disease transmission within linked

communities for both metapopulation model respectively. For the Ebola Control we have namely,anti movement

within patches campaign for patch 1 u1(t) and u2(t) for patch 2. While u3(t) is the controlled treatment and u4(t)

is the adequate inoculation of vaccine. We established existence of an optimal control by applying the Pontrya-

gin’s Maximum Principle [Pontryagin, 1987]. Which we used to explain the essence of the control strategy [Wang

et al., 2019]. Furthermore, we saw the effectiveness of proper control strategy in the reduction of both disease as

the rate of transmission of disease reduced as shown in the Numerical simulations carried out with relevant data

relied upon from World health Ogranisation (WHO) and Centre for Disease Control (CDC). Thus we conclude

that with the increase fraction of vaccaination of the EVD as seen as a control strategy and proper adherence to

education and restriction of movement in and out of disease prevalent communities. Also it is easy to observe

the reproduction numbers Ri where i = 1, 2 for both patches and both disease dynamics can be reduced below

one by increasing the awareness in movement within patches for both disease dynamics. So also the numerical

simulation suggest that the rate of transmission of both EVD and ZVD be deceased as increases in this affects

the equilibrium level of both Model.

Future works

Further extensions to this work could be:

� To develop a fractional differential metapopulation model in disease transmission dynamics for linked com-

munities.

� To investigate the delay differential equation metapopulation model in disease transmission dynamics in

linked communities.
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� To develop and analyse sex-structured, age-structured and mother to child transmission dynamics of Zika

virus disease.

� To develop and analyse effect of metapopulation on transmission of disease in not linked, while considering

air travels and migration. Example is the recent COVID-19 pandemic.
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