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Introduction

The ultimate objective of research on injuries is to generate 
knowledge that could be used to reduce trauma and injuries 
worldwide. Knowledge is generated from interpreting and 
contextualizing information, while information, both qual-
itative and quantitative, comes from synthesizing data. The 
science of statistics provides researchers with the necessary 
tools to quantify the variability in the observations, as well 
as identify patterns and relationships in quantitative data.

Many folks think of statistical sciences as a branch of 
mathematical sciences. The science of statistics relies on 
mathematical sciences to handle quantitative data, but it is 
closer to philosophy in that it aims to understand nature 
and its processes, relationships, characteristics and patterns 
(see Figure 1). It postulates or hypothesizes these charac-
teristics, abstractly, theoretically, but then desires to verify 
if these postulates are true. Statistical science accepts that 
the truth can never be known with certainty. Thus, statis-
tical thinking differs conceptually from mathematical think-
ing by recognizing that there is inherent variability in 
nature, and that chance plays an important role in what is 
observed. Mathematics is a necessary tool for statistics, just 
like a hammer and a saw are necessary tools for a carpenter. 
However, the application of statistical thinking and methods 
helps researchers understand nature and its processes amidst 
uncertainty. Statistics focuses on quantifications or measure-
ments. Thus, four statistical quantification aspects must be 
considered - quantifying uncertainty or variability, quanti-
fying probability or chance, quantifying risk and exposure, 
and quantifying the strength of relationships – all of which 
are essential elements of injury prevention and control 
research (Bangdiwala & Banerjee Taylor, 2011).

Figure 1 summarizes the two main processes of the sci-
ence of statistics, sampling and inference. The trigger for 
these processes begins with a research question, a desire to 
describe a characteristic, pattern or relationship in some 
population of interest. The first statistical process is sam-
pling, whereby a subset from the population of interest 
(target population) is selected. The resulting sample is stud-
ied, and quantitative data are summarized (relevant ‘statis-
tics’ are calculated). The next step is the process of inference, 

whereby ‘educated guesses’ about the population character-
istics, patterns or relationships are made based on the 
observed statistics, including a quantification of the uncer-
tainty around them. Quantifications of characteristics, pat-
terns and relationships in the population are called 
parameters and labelled using Greek letters; the quantifica-
tions of characteristics, patterns and relationships in the 
sample are called statistics, or estimates of the parameters.

This manuscript presents statistical considerations for 
research that start with the specification of the research 
question, and end when the research question’s answer is 
presented to the relevant stakeholders. In the next section, 
we specifically address ‘translation’ of the research question 
specified in non-statistical terms into a statistical question. 
This leads to statistical aspects of study design, followed by 
a discussion of the statistical implications from how a study 
is conducted, to the statistical methodological choices for 
summarizing the data and interpreting the information in 
it. Finally, we conclude with methods for ‘back-translation’ 
of the statistical results to answer the research question, 
and presenting the results to the non-statistician stakeholders.

The research question

The research question is the foundation of any research 
endeavour; it guides the entire research process. Ideally, it 
is an important question to be answered, one that has not 
yet been answered. It should be clear, precise, and focussed. 
In clinical epidemiology, research questions for experimental 
study designs usually specify the PICOT(S) criteria (Thabane 
et  al., 2009), i.e. the Population being studied, the 
Intervention and Comparator arms, the Outcomes to be 
evaluated, and the Timelines and Setting of the study, so 
as to contextualize it.

The research question can be of different types, either 
exploratory (e.g. what factors are associated with a particular 
outcome Y?) or hypothesis-driven (e.g. is factor F associated 
with a particular outcome Y?). From a statistical perspective, 
exploratory research questions are ones that lead to descrip-
tive analyses, while hypothesis driven research questions 
lead to inferential analyses. Descriptive analyses involve 
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estimating parameters in the sample, providing a measure 
of the variability of the estimate (e.g. standard error), and 
providing bounds on the uncertainty around those estimates 
(e.g. confidence intervals, credible intervals). On the other 
hand, inferential analyses involve taking the information 
from the sample statistics to make probability statements 
about the population parameters. This is done either with 
procedures for formal testing of hypotheses, or with con-
struction of confidence intervals, the set of values of the 
parameter that one has confidence could be the true value 
in the population.

Whether exploratory or hypothesis-driven, the research 
question is ‘translated’ statistically to help design the study 
that will enable answering it. Exploratory research questions 
are ‘translated’ statistically usually into describing the dis-
tributional properties (behaviour) of a variable of interest, 
or more commonly, into looking at the association between 
variables, bivariately, or in multivariable regression models. 
Hypothesis-driven research questions lead to statistical tests 
of hypotheses.

For example, S. Paul and collaborators wanted to estimate 
the prevalence and describe the profile of unintentional 
injuries in children 1–5 years of age in rural India, and 
explore the potential predictors (Paul et  al., 2019) They 
explored the roles of parent supervisory behaviours and 
child injury risk-taking behaviours along with other factors 
using multivariable logistic regression models. Afukaar 
reviewed the hypothesis that speed is the main cause of 
road traffic crashes by examining the effectiveness of various 
speed control measures in Ghana (Afukaar, 2003). He con-
cluded that reducing vehicle speeds could be an effective 
intervention to reduce traffic crashes in low-income coun-
tries, if coupled with strict law enforcement of speed limits 
or the use of passive speed reduction measures.

There are various kinds of statistical hypotheses – dif-
ference (2-sided), superiority or inferiority (1-sided), equiv-
alence, non-inferiority. Table 1 lists example statistical 
hypotheses for comparing two groups A and B on the dis-
tribution of an outcome variable Y. Similarly, research 

questions dealing with association between two variables X 
and Y are presented in Table 2.

The statistical formulation of hypothesis testing follows 
the logic of ‘indirect proof ’, similar to the judicial system, 
where the hypothesis is called the claim (accusation = alter-
native hypothesis) and one initially assumes the status quo 
(innocence = null hypothesis). After a review of the evi-
dence, the result is either a decision in favour of the claim 
(guilty = reject the null hypothesis) or in favour of the status 
quo (not guilty = data are consistent with the null hypoth-
esis) (Bangdiwala, 1989).

An important aspect of formal hypothesis testing is the 
need to specify numeric thresholds on which to base the 
judgement of which hypothesis is more consistent with 
the observed data, the null or the alternative hypotheses. 
These thresholds are set by the investigator, not the stat-
istician, but they depend on the type of hypothesis, and 
they impact the necessary sample size for the study. If 
testing for a difference or for superiority, δ > 0 is the 
‘smallest clinically meaningful difference’ in the outcome 
that is considered important to detect, in the judgement 
of the investigators. If testing for non-inferiority, Δ > 0, 
is the ‘largest tolerable difference’ in the outcome, in the 
judgement of the investigator. If testing for equivalence, ε 
> 0 is the ‘largest tolerable margin of error’ in the out-
come, in the judgement of the investigator. As will be seen 
below, the smaller the difference between the alternative 
and the null hypothesis, the larger the necessary sample 
size. Conceptually, the thresholds are typically such that 
δ > Δ > ε > 0, so that sample sizes for equivalence hypoth-
eses are much larger than for non-inferiority hypotheses, 
which in turn are larger than for superiority (or difference) 
hypotheses.

Study design considerations

Once the research question is ‘translated’ statistically, the 
next step is to determine the type of study design that best 

Figure 1.  Schematic diagram of key statistical processes – sampling and inference.
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addresses the research question. Study designs can be either 
observational or experimental. Typical ones in the injury 
field are mainly observational, such as case-studies (e.g. 
biomechanics crash analysis), case-series (e.g. black-spot 
analyses), cross-sectional surveys, retrospective case-control 
studies, case-crossover studies, or prospective longitudinal 
cohort studies. Experimental studies are ones where the 
investigator manipulates some exposure (intervention) factor, 
and prospectively observes the outcome.

Selecting the individuals for a study is a crucial aspect 
of study design. In observational studies, the target popu-
lation is defined, and probability samples are drawn from 
it (see Figure 2). The sampling process aims to obtain a 
sample in an unbiased manner, and one that is ‘represen-
tative’ of the target population. Representative means that 
the actual sample obtained is similar to the population in 
all characteristics that are meaningful. Figure 2 illustrates 
the role of chance in the sampling process.

Samples should be obtained in an unbiased, objective 
manner, and be representative of the desired target popu-
lation. For objectivity, we rely on chance probability for 
selection – if equal for all (simple random sample), then 
chance determines who is in our sample. We may want to 
modify the selection probabilities in order to favour certain 
segments of the population (probability random sample), 
but chance is still deciding who is selected in the specific 
segments.

Figure 2 illustrates the concept of representativeness in 
samples, as well as the role of chance. In Population A, all 
individuals are exactly of the same size and pattern; i.e. 
there is no variability. A sample of size n = 1 is sufficient 
to get a representative sample of the population. In 
Population B, the distribution of size is 4/6 big, 2/6 small, 
while the distribution of pattern is 2/6 solid, 3/6 spotted, 

1/6 lined. If we take a random sample of size n = 3, there 

are C3
6 6

3 3
20= =

!
! !*

 equally likely random samples. Samples 

A, B, C, and D are four out of the possible 20 equally likely 
random samples one could get. Sample A is representative 
of size and of solid pattern, while Sample B is representative 
of solid pattern only. Sample C is representative of size and 
of solid pattern as well, while Sample D is not representative 
neither of size nor of any pattern. Note that Sample B covers 
all possible patterns, so one could say it has ‘good pattern 
coverage;’ but it is not representative of the distribution of 
patterns in the population. Similarly, Sample D has included 
all spotted individuals, so it has perfect inclusion of spotted 
individuals; but it is not representative of patterns. Since 
we only draw one random sample, chance decides which 
of the 20 possible samples we could have gotten, and we 
have to understand the possibility of it not being represen-
tative of what we may want it to be; that is the uncertainty 
from sampling one must deal with.

Representativeness is how similar the sample is to the 
target population, and chance alone may not work in reaching 
this goal, especially if sample size is low. Size matters, since 
the laws of probability help in large samples and not in small 
samples – bigger is better to improve the chances for repre-
sentativeness. Another way to do it is to stratify the selection 
so as to ensure representativeness in certain parameters (e.g. 
age group distribution, sex distribution, SES distribution.)

A sample needs to always be understood as a subset of 
the target population, and the fact that we have not observed 
the entire population gives rise to ‘sampling error’, a source 
of uncertainty in our results. We can minimize it by taking 
larger samples, but we can never eliminate it totally, unless 
we study the entire population. We must just be aware of 
it in our interpretation of results.

Table 1.  Hypothesis driven research questions and corresponding statistical hypotheses for formal testing when comparing two groups 
(A and B) with respect to outcome Y (assume higher values of Y are ‘better’).

Research question in layman’s terms Research question in statistical terms
What type of test 

is it called?
Corresponding null and 
alternative hypotheses

Are A and B different in Y? Is the distribution of Y in A different of the 
distribution of Y in B?

2-sided test of 
superiority

H0: YA – YB = 0 
H1: YA – YB = δ2s ≠ 0

Are A and B equal in Y? Is the distribution of Y in A equivalent to the 
distribution of Y in B?

Test of equivalence H0: |YA – YB| ≥ ε 
H1: |YA – YB| < ε

Is A better than B? 
[the complementary RQ ‘Is B better than A?’ is 
treated similarly]

Is the distribution of Y in A shifted positively 
from the distribution of Y in B?

1-sided test of 
superiority

H0: YA – YB = 0 
H1: YA – YB > δ1s > 0

Is A not worse than B? 
[the complementary RQ ‘Is B not worse than A?’ is 
treated similarly]

Is the distribution of Y in A not shifted to far 
negatively from the distribution of Y in B?

Test of 
non-inferiority

H0: YA – YB ≤ –Δ 
H1: YA – YB > –Δ, 
where Δ > 0

Table 2.  Hypothesis driven research questions and corresponding statistical hypotheses for formal testing of the association between 
variable X (exposure or independent variable) and Y (outcome or dependent variable).
Research question in 
layman’s terms Research question in statistical terms

What type of test is it 
called?

Corresponding null and alternative 
hypotheses

Are X and Y 
associated?

Are X and Y independent? Test of association H0: measure of association = 0 
H1: measure of association = ρ ≠ 0

Does X predict Y? Does knowing the value of X provide some 
information on the likely value of Y?

Test of association H0: measure of association = 0 
H1: measure of association = ρ ≠ 0

Does X cause Y? Do values of X determine the likely values of Y? Test of association H0: measure of association = 0 
H1: measure of association = ρ ≠ 0
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In experimental studies, the study participants are not 
selected through a random or chance-based probability sam-
pling process. Strict eligibility inclusion and exclusion cri-
teria define the target population, and eligible individuals 
that conveniently are approached and consent to participate 
are then recruited into the study. The process of allocating 
them to the various intervention arm is what now must be 
objective, unbiased and chance dependent. We use the same 
word ‘random’ for this process of randomization. Only with 
this process do we have the ‘statistical endorsement’ that 
the evaluation of the effectiveness of the interventions is 
valid. Similar to the sampling process in observational stud-
ies, the randomization process in experimental studies can 
be simple, stratified, cluster-based, multi-stage or complex.

Another important aspect of designing any study, is 
determining how many individuals to study. From a statis-
tical standpoint, the more people studied the better, since 
larger sample sizes have a better chance of being represen-
tative of the population. However, from a practical stand-
point, more people studied is most costly, so that some 
criteria are needed to decide the ‘necessary’ sample size. In 
exploratory research questions, the necessary sample size is 
the one that will give the investigator a desired precision 
for the estimated unknown population parameter, while in 
hypothesis driven research questions, the necessary sample 
size is the one that will give the investigator the desired 
power to reject the null hypothesis when the alternative 
hypothesis is the correct one.

There are several important considerations that enter 
into the calculations of necessary sample size when formally 

testing a hypothesis – (i) the highest probability of falsely 
rejecting the null hypothesis that the investigator is willing 
to tolerate (called the level of significance of a statistical 
test); (ii) the lowest probability of correctly rejecting the 
null hypothesis that the investigator wishes to have (called 
the power of a statistical test); (iii) the difference between 
the null and the alternative hypotheses values for the param-
eter of interest; and (iv) the variance of the statistic. 
Conceptually, these are related to the sample size n as 
follows:

	
n

desired power variability

desired significance d
testing =

( )( )
( ) iifference( )2

	

If the research question is not hypothesis-driven, the 
interest is in estimating rather than testing. In this case, 
the considerations that enter into the calculations for the 
necessary sample size are slightly different – (i) the desired 
confidence level for the uncertainty bounds around the 
estimate; (ii) the width of the confidence interval (i.e. the 
precision desired for the estimate); and (iii) the variance of 
the statistic.

	
n

desired confidence variability

width of confide
estimating =

( )( )
nnce interval( )2

	

Regardless of whether planning an observational or an 
experimental study, understanding the sources of variability 

Figure 2. D iagram to illustrate the role of chance when drawing a random sample from a population, and the concept of 
‘representativeness’.



International Journal of Injury Control and Safety Promotion 5

is crucial for controlling their impact on the study results. 
Recognizing the presence of variability is one of the key, 
fundamental concepts of the science of statistics. The term 
‘variable’ for measurements or assessments of factors, rec-
ognizes the inherent variability in them. If there is no vari-
ability in a process or in a group, there is no role for the 
science of statistics. If there is high variability (i.e. consid-
erable heterogeneity among the observations), it may not 
be possible to estimate a parameter with precision, or to 
quantify an association that is small, or to detect a mean-
ingful difference when comparing two or more groups. One 
can think of variability as the ‘noise’ in the system, and the 
measure of association or intervention effect as the ‘signal.’ 
If the noise is high, it is difficult to detect signals; they 
must be quite large in order to be detected. Conversely, if 
the variability is low, it is easier to detect signals, even 
low ones.

At the design stage, study investigators and statisticians 
jointly develop systems to minimize the variability in the 
study (see Table 3a). Criteria are set to homogenize as much 
as possible the characteristics of study participants, a com-
mon protocol is set so as to implement uniform procedures 
for all study and data related processes, training of staff 
and calibration of instrumentation is performed. All these 
processes are attempts to reduce the variability, increase 
precision of estimates and ensure high quality, accurate 
(unbiased) data.

Another important aspect of a study’s design is defining 
the variables to be measured/observed. The Haddon matrix 
(Haddon, 1970; Runyan, 1998) is a useful tool for identi-
fying potential risk factors to consider in a study of injuries, 
either as exposure factors, as potential confounders, or effect 
modifiers of the effects of interest. From a statistical stand-
point, the scale of measurement – whether on a continuous 
numeric scale, a numeric discrete count variable, an ordinal 
discrete scale, a nominal categorical scale, or a binary scale, 
will determine the behavior of the variable, and the possible 
distributional properties that may be relevant when analyz-
ing the data.

In all studies, there are many other measurable and 
unmeasurable factors that are not under the control of the 
investigator, and may introduce uncertainty in the study 
results. If measured, they can be controlled at the analysis 
stage using multivariable techniques. In experimental stud-
ies, the investigator has the possibility of controlling who 
receives what exposure, through the process of random 
allocation of the intervention, so that the key primary 
hypothesis-driven research question can be validly answered. 
If a large number of units/individuals are randomized, one 
can more-or-less safely assume that the other potential con-
founding variables are distributed similarly among the treat-
ment arms, and so they need not be adjusted for in the 
analyses.

La and collaborators estimated the prevalence and studied 
which factors may be associated with road traffic crashes 
among bus drivers in Hanoi, Vietnam (La et  al., 2013). 
They used multivariable logistic regression models to deter-
mine which factors assessed on bus drivers were related to 

the crash prevalence in their observational study. Wijlhuizen 
and collaborators conducted a multifactor community inter-
vention in The Netherlands to reduce falls in older persons 
(Wijlhuizen et  al., 2007). Because of differences in charac-
teristics of participants in the intervention and control com-
munities at baseline, they needed to use logistic regressions 
that included those variables in the models.

Study conduct

Once the sample is obtained, measurement of the variables 
(independent factors, outcomes) takes place. This is a feature 
of research that is usually not the purview of statisticians, 
but all statistical analyses will be impacted by the quality 
of this process. Biases can creep in in multiple ways. 
Self-selection bias as some individuals in the sample may 
be non-participants, or responder-bias from some individ-
uals choosing to not respond to particular questions. 
Measurement error from imprecision of the measurement 
tools, whether devices (e.g. uncalibrated laboratories; 
non-standardized weight scales) or psychological scales (e.g. 
inventories to measure depression) can be minimized by 
standardization of methods, calibration. and training of 
personnel. Interviewer bias or responder bias are other 
sources of uncertainty in the data.

As far as the investigators are concerned, the bulk of the 
work in a research study is the conduct of the study, i.e. 
the actual selection of study participants, following them, 
collecting the data, managing the data. These are essential 
and necessary steps, but ones in which the statistician takes 
a back seat. After being closely involved in the planning of 
the study, the actual conduct or execution is left to study 
investigators and study staff. The progress of all studies is 
monitored internally by the study investigators, and exper-
imental studies are often further monitored by external ‘data 
and safety monitoring committees.’ The statistician may be 
involved in preparing reports and presenting them to the 
monitors, but is not directly involved in the aspects of 
conducting the study. When the study is being conducted, 
investigators and statisticians are jointly involved in moni-
toring the study processes, to ensure that the study integrity 
is maintained as designed (see Table 3b).

The conduct of the study has major implications for the 
statistical analysis. The statistician depends on getting high 
quality data. If the data are collected with imprecision or 
inaccuracy, the resulting analyses will be imprecise and 
inaccurate. Imprecision implies higher variability (‘noise’), 
which makes it harder to detect important signals. 
Inaccuracy implies the data are biased, and methods to 
deal with it are quite cumbersome, including trying to 
measure the bias in order to correct/adjust for it in the 
analyses. A major challenge is incomplete and missing data, 
which not only reduce the number of observations, but can 
lead to potential biased results if missing in a non-random 
way (MNAR). The missingness mechanism is important, 
and the hope is that, if missing, it be missing completely 
at random (MCAR), or at least, missing at random (MAR). 
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Methods to complete the data, such as multiple imputation, 
may be necessary.

Study analysis

The role of statistics in the analysis stage of studies is well 
known. What is not well recognized is that there is not one 
and only one unique way to analyze data to answer the 
research question; there are many ways. Non-statisticians 
like to have ‘cookbooks’ of what analytical method to use 
for what situation. The methods provided in such cookbooks 
are usually the most common way, often due to historical 
or convenience reasons. What is important is to acknowl-
edge the possibility of alternative approaches to analysis, 
being transparent, and providing some justification for the 
method chosen.

All methods are based on several conditions being met, 
the ‘model assumptions’. ‘Model’ is a broad term, encom-
passing probability models (i.e. the shape and properties of 
the distribution of possible values of a variable and their 
likelihood in a population) and relationship models (e.g. 
regression models, classification models). No real data fits 
perfectly any model; it may approximately fit it. There are 
‘goodness of fit’ tests to assess whether a specific variable 
fits a certain type of probability model like the bell-shaped 
Gaussian distribution or the skewed exponential distribution, 
and there are methods to assess whether a particular rela-
tionship model fits the observed data well or not (e.g. anal-
yses of residuals).

All models are approximations (simplifications) of reality. 
A quote attributed to British statistician George E. P. Box 
is, ‘all models are wrong; but some are useful’ (Box, 1976). 
This highlights the fact that all models are approximations 
to reality. He is also attributed to saying that ‘there never 
was, or ever will be, an exactly normal distribution or an 
exact linear relationship’ (Box & Luceño, 1997).

The construction of the models needs to be transparent. 
There are many ways to build a model. If you ask two 
different statisticians to answer the same research question 
with the same data, you are likely to get at least five dif-
ferent models! Using Box’s criterion, all of them are wrong; 
hopefully one of those is more useful.

Models can be characterized as either explanatory (asso-
ciation models) or predictive models. Explanatory models 
are ones interested in identifying variables that have a sci-
entifically meaningful and statistically significant relationship 
with an outcome, and their focus is that the model ‘makes 
sense’. The goal in predictive models is to use the associa-
tions between predictors and the outcome variable to gen-
erate good predictions for future outcomes; i.e. predictive 
accuracy; their focus is on ‘good fit’ and less care is placed 
on the predictors, which may not have any theoretical value, 
nor statistical significance or scientific meaning.

All models are built with different criteria: parsimony, 
inclusivity, statistical ‘goodness of fit’ (focus on variance 
explained and significance testing criteria), or epidemiolog-
ical ‘understanding of the effect of the exposure’ (focus on 
modifiers or confounders of the relationship between 

Table 3a.  Statistical considerations of the design of observational and experimental studies.
Observational study Experimental study

Type of study •	 Retrospective, Cross-sectional; Prospective •	 Prospective
How to study •	 Broadly or narrowly focussed

•	 Unadjusted or adjusted models
•	 Parallel arms, factorial designs, cross-over designs
•	 Who will be aware of the treatment assignment (i.e. who are to 

be blinded/masked?)
Who to study •	 Eligibility criteria •	 Eligibility criteria
Number of individuals •	 Necessary sample size for adequate precision if 

research question is exploratory
•	 Necessary sample size for adequate power if 

research question is hypothesis driven

•	 Necessary sample size for adequate power since research question 
is hypothesis driven

Selection of study 
participants

•	 Sampling process (probability samples) •	 Recruitment process
•	 Process for allocation to intervention (randomization)

What to study •	 Estimation of distributional or association 
parameters

•	 Estimation of effect of different intervention and control arms

Selection of variables to 
study

•	 Relevant outcomes and exposure variables, and 
their definitions

•	 Possible confounders, mediators and moderators
•	 How to measure/assess variables
•	 How often to measure/assess variables

•	 Outcome variables – primary, secondary, tertiary – and their 
definitions

•	 Possible confounders and effect modifiers
•	 How to measure/assess variables
•	 How often to measure/assess variables

How to collect data •	 Primary or secondary data collection
•	 Data capture systems

•	 Primary or secondary data collection
•	 Data capture systems

How to manage data •	 Develop data management plan (DMP) 
– processing, editing, storage, back-up

•	 Develop data management plan (DMP) – processing, editing, 
storage, back-up

How to ensure study 
integrity

•	 Finalize the study protocol, manuals of 
operations

•	 Develop quality assurance plan (QAP) – staff 
training & certification, instrumentation 
calibration, internal data monitoring plan

•	 Consider external advisory/monitoring boards
•	 Receive approval from ethics boards

•	 Finalize and register the study protocol and draft statistical 
analysis plan (SAP)

•	 Finalize manual of operations
•	 Develop quality assurance plan (QAP) – staff training & 

certification, instrumentation calibration, internal data monitoring 
plan

•	 Establish an external Data and Safety Monitoring Board (DSMB)
•	 Develop the DSMB Charter, which states membership, their roles 

and responsibilities, frequency and content of meetings, and 
statistical analysis plans for interim analyses of safety and efficacy

•	 Receive approval from ethics boards
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exposure and outcome). The purpose may be to confirm 
contextual theories and thus focus on making sense of all 
variables, or in predictive accuracy and thus focus on ‘dis-
covering’ relationships.

Approaches to building models are guided by the criteria, 
and include ones that let the software think for you (e.g. 
‘stepwise’ – forward, backward, ‘all possible models’) or ones 
that involve the careful implementation of criteria by the 
investigator. Often, unfortunately, the model building 
approach is not pre-specified, and there is the danger of 
‘torturing the data so it confesses to what you want’, which 
recently is called ‘p-hacking’ (Streiner, 2018).

The clinical epidemiology approach to model building is 
focussed on the relationship between an exposure and the 
outcome, and considers including other variables that may 
modify or confound that relationship. Other approaches 
look at whether variables may moderate or mediate a 
hypothesized causal association. It is considered preferable 
that association models be constructed with the model 
builder ‘managing’ the process as opposed to letting the 
computer manage the process. The opposite is preferred for 
predictive models. In either case, one should explain the 
method of model building, i.e. be transparent of what was 
done. After any modelling exercise, one should verify the 
assumptions of your specific type of regression model, assess 
the goodness of the fit, and interpret the results.

One could also think of any statistical analysis as a 
painting; the study design is the canvas, the colours are 
the data, the brushes are the methods, the research question 
is what the artist was commissioned to do. The statistician 
has the ‘freedom’ of an artist, to answer the research ques-
tion applying the different methods of choice, with the 
data available. Modelling is an art, and all statisticians are 
artists.

The ‘freedom’ to analyze should not be abused. There 
are fundamental assumptions in most methods, that if sub-
stantially violated, will lead to misrepresentation of the data, 
incorrect results, and incorrect interpretations. If data are 
biased or inaccurate, the results of analyses will be biased 
or inaccurate. If data are of poor quality or imprecise, the 
results of the analyses may be inconclusive. If data are 
missing or incomplete, the results may be misleading. There 
are methods to try to overcome such problems with the 

data, but they are based on meeting other assumptions. 
Again, being transparent and acknowledging the statistical 
limitations in the data, but also in the methods chosen for 
analysis, is important.

Just like the research question determines the study 
design, the study design determines the analysis method. 
Most standard methods in statistical analysis depend on 
sampling processes or randomization processes that ensure 
the observations can be treated as ‘statistically independent,’ 
i.e. uncorrelated. However, some study designs – e.g. 
multi-stage sample surveys, clustered randomized trials, 
repeated measures longitudinal studies – produce hierarchi-
cal data, and such data are correlated. Figure 3 illustrates 
the impact of correlated hierarchical data on estimates and 
the uncertainty around them. In Figure 3a, we have 25 
observations from a random sample, and the odds of being 
solid versus lined is 1.08 (95% CI = 0.49, 2.37). In Figure 
3b–d, the total variability remains the same, but we assume 
that the 25 observations have come from random samples 
from 3 clusters. The odds of being solid versus lined is 
exactly the same in Figure 3b since the intracluster correla-
tion coefficient (ICC) is essentially zero; the differences 
among clusters is small; all the variability is within clusters. 
In Figure 3c, there are differences among clusters, and the 
ICC = 0.135. We note that the odds have changed to 1.02 
and the 95% CI (0.32, 3.28) is slightly wider. In Figure 3d, 
the differences among clusters are very large, the variability 
within clusters in diminished, and the ICC = 0.711 is quite 
large. The odds now are dramatically different (1.43) and 
the 95% CI is quite wide (0.05, 39.7). Thus, when the sam-
pling is hierarchical, one must not ignore the correlation 
structure among the observations (Fisher, 1919).

Interpretation and dissemination of study 
results

The role of the statistician does not end with the completion 
of the statistical analyses; it is critical in the interpretation 
of research results. It is quite common to leave the inter-
pretation of results to the non-statistician investigators. 
However, they may not be as familiar with the many 

Table 3b.  Statistical considerations for the conduct of observational and experimental studies.
Observational study Experimental study

Internal monitoring for study 
integrity

•	 Oversee interviewers, data collectors
•	 Consider re-training of staff, 

re-calibration of instrumentation
•	 Verify data completeness, timeliness, 

accuracy and precision
•	 Verify compliance of staff with study 

protocol
•	 Distributed and centralized statistical 

monitoring of data if a multicenter 
study

•	 Frequent and periodic reports to study 
sites and to study Steering Committee

•	 Oversee interviewers, data collectors
•	 Consider re-training of staff, re-calibration of instrumentation
•	 Verify data completeness, timeliness, accuracy and precision
•	 Verify compliance of staff with study protocol, focused on 

intervention dispensing
•	 Verify compliance with randomization procedures
•	 Verify adherence of participants with intervention regimens
•	 Verify whether blinding/masking is maintained as per protocol
•	 Monitor overall adverse event rates
•	 Distributed and centralized statistical monitoring of data if a 

multicenter study
•	 Frequent and periodic reports to study sites and to study 

Steering Committee
External monitoring for study 

integrity
•	 Optional •	 DSMB meetings
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Figure 3.  Illustration of the impact of ignoring the correlation among observations within clusters: (a) Random sample with OR = 
1.08 (95% CI 0.49–2.37); (b) Clustered random sample with ICC~0.000, OR = 1.08 (95% CI 0.49–2.37); (c) Clustered random sample 
with ICC = 0.135, OR = 1.02 (95% CI 0.32–3.28); (d) Clustered random sample with ICC = 0.711, OR = 1.43 (95% CI 0.05–39.7)..
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nuances of the methodologies, or of the impact of depar-
tures from model assumptions. For example, issues like the 
effect of influential observations, the potential for bias from 
incomplete or missing data, collinearity among independent 
variables in linear regression models, small frequency counts 
in categorical data may lead to imprecise estimates, and 
lack of model fit to parametric probability models. Some 
slight departures to model assumptions may be acceptable 
if the method is ‘robust’ or if the sample size is ‘sufficiently 
large.’ In the injury field, we commonly study the extreme 
situations, and this can lead to estimates affected by ‘regres-
sion to the mean.’ The statistician’s input is essential for 
proper interpretation of such ‘statistical limitations’ and their 
impact on study results.

The classic mistake of many investigators is their wrong 
interpretation of statistical significance as if it were the 
same as clinical importance or clinical meaningfulness. 
Significance and importance cannot be further from each 
other. As Figure 4 shows, statistically significance has to do 
only with whether the effect observed is likely or not to 
be due to chance.

Situations A-B-C in Figure 4 are ones with a meaningful 
or important difference of 10 units between group x and 
group y, but the only one statistically significant (at the 
0.05 level) is A. Situation B has just slightly smaller sample 
size while Situation C has slightly larger variability, leading 
to a probability that the observed difference is due to chance 
is >0.05, not statistically significant. Situations D-E-F are 
ones with a meaningless difference of 1 unit between group 
x and group y, but Situation E has a very large sample size 
and Situation F has very small variability, leading to a prob-
ability that the observed difference is due to chance to be 
<0.05, statistically significant. Note especially that lack of 
significance does not mean ‘no effect’ or ‘no difference;’ it 
simply means that the observed effect or difference is likely 
to be due to chance.

The concept of statistical significance and the calculation 
of a ‘P-value’ were introduced by Sir Ronald A. Fisher in 
the early years of the 20th century. Fisher viewed the 
P-value as an informal index of the discrepancy of the data 
with the assumed model (null hypothesis), and suggested 
the following interpretation for the P-value: ‘If P is between 
.1 and .9 there is certainly no reason to suspect the hypothesis 
tested. If it is below .02 it is strongly indicated that the 

hypothesis fails to account for the whole of the facts’ (Fisher, 
1925). As shown in Figure 5, Fisher interpreted the range 
of P-values between 0.02 and 0.10 as inconclusive, requiring 
additional data from observation or experimentation. He 
was asked to be more specific within this ‘grey zone,’ so in 
1926 he stated ‘The value for which P = 0.05, or 1 in 20, is 
1.96 or nearly 2; it is convenient to take this point as a 
limit in judging whether a deviation ought to be considered 
significant or not’ (Fisher, 1926). There were two important 
reasons it was convenient. First, in his work, he normally 
encountered the bell-shaped probability distribution of 
Gauss, for which 0.05 was close to covering points within 
± 2 standard deviations from the mean. Second, in the early 
years of the 20th century, the tabulations of probabilities 
of the most commonly used distributions (the standard 
Gauss Z distribution, Student’s t distribution, Fisher’s F 
distribution, and Pearson’s chi-squared distribution) had to 
be done by laborious hand calculations, so they only tab-
ulated the extreme portions of the distributions, for prob-
abilities 0.01, 0.02, 0.05, and 0.10. Thus, 0.05 was a 
convenient choice in the ‘grey zone’ (see Figure 5) as the 
cutpoint for whether the data are likely to be due to chance 
(not significant) or not likely to be due to chance 
(significant).

If the P-value for a particular test is large, then there is 
only one of three possibilities: there is too much uncertainty 
relative to the effect (large variability, small sample size, 
poor power); the study has some bias or confounding that 
is producing the result; or the data are consistent with the 
null hypothesis [‘what was observed possibly could be due 
to chance’]. On the other hand, if the P-value is small, then 
there is only one of three possibilities: a rare event has 
occurred (by chance); the study has some bias or confound-
ing that is producing the result; or there is strong evidence 
that the null hypothesis is probably not true and should 
reject it [‘what was observed is possibly not due to chance’].

The implications and recommendations should be log-
ical, based on the findings, and explained thoroughly, with 
appropriate caveats. There are important steps to follow in 
understanding the observed effects/results. First, do they 
make sense; i.e. do they agree with expected results, in 
direction and magnitude? If not, what may be wrong, the 
expectations, the study, the data, or the analyses? If they 
make sense, then ask if they are meaningful, important or 

Figure 4.  Hypothetical data example to illustrate the difference between interpretation of a difference as statistically significant as 
opposed to clinically important or meaningful.
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Figure 6.  Interpreting confidence intervals beyond simply assessing whether it is statistically significant.

relevant. If unimportant, no need to proceed. If important, 
one must then verify if the observed results could be due 
to some biases (e.g. selection, measurement, recall, analytic) 
or could it be explained by confounding. If such issues can 
be ruled out, only then one assesses if one can ignore the 
role of chance; i.e. test if ‘statistically significant.’

The use of P-values should be restricted to 
hypothesis-driven research questions that have been 
pre-specified prior to ‘playing around with the data.’ If the 
research question is exploratory, the statistically proper 
method for statistical inference is to provide the value of 
the estimated parameter or effect of interest in the sample, 
along with bounds of uncertainty around the estimate; a.k.a. 
a confidence interval.

Figure 6 illustrates the interpretation of confidence 
interval for 2-sided tests of superiority, tests for equiva-
lence and 1-sided tests of non-inferiority when a positive 
difference is considered better. Confidence intervals 
A-B-C-D illustrate the interpretation of 2-sided superiority 
hypotheses when a positive difference is considered better. 
A-B-C are all consistent with a 2-sided statistical test 
being significant since they do not contain 0, but only A 

can be interpreted has showing ‘clinical superiority’ since 
it does not contain the 1-sided clinical superiority thresh-
old, and B shows ‘clinical difference’ since it does not 
contain the 2-sided clinical difference threshold. Confidence 
intervals E-F illustrate the interpretation of testing for 
equivalence. Despite having a point estimate above 0, E 
is consistent with the null hypothesis of ‘not equivalent’ 
since part of the confidence interval is outside of the 
equivalence tolerance threshold. Hard to comprehend, but 
F would be consistent with significantly showing ‘equiv-
alence’ despite having a point estimate that is negative, 
simply because its limits are within the thresholds. Finally, 
confidence intervals G-H illustrate the interpretation of 
the 1-sided test of non-inferiority, where a positive dif-
ference is considered better. G is consistent with the 
hypothesis of not-inferior since despite the point estimate 
being negative, the lower limit of the G confidence interval 
is still above the non-inferiority limit -Δ. H is consistent 
with the hypothesis of inferiority since the lower limit of 
the H confidence interval is less than the non-inferiority 
limit -Δ.

Figure 5. T he P-value, an index measuring whether the data are compatible with the null hypothesis, as interpreted by Sir. Ronald 
A. Fisher.
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Concluding remarks

Statistical sciences help us in our desire to understand the 
various complex processes – biological, behavioural, psy-
chological, sociological, cognitive - in nature. What we 
observe is subject to multiple sources of variability (‘noise’), 
and statistical methods provide us the tools in our research 
to control or reduce the noise so that we can detect the 
‘signal amidst the noise’. We must accept we will never know 
the truth, but we can minimize the uncertainty by design, 
and quantify the remaining uncertainty in our analyses. 
Every analytic method involves a set of assumptions and 
simplifications that enable practicality for addressing the 
research question.

Variability in the processes under study is necessary for 
requiring the use of statistics. If there is no variability, the 
methods of statistics are not needed. If the signal is so 
much stronger than the noise, statistical arguments may not 
be needed except for the most sceptical to be convinced. 
The proper use of statistical methodology enables addressing 
the research question in a sound, defensible manner, one 
that accounts for the sources of variability in the observed 
data and provides an answer that accounts for its uncertainty.

In injury epidemiology we deal with understanding ‘rela-
tionships’ – we want them to be causal, but making the 
argument can be by design (e.g. randomization controlled 
trials) or by analysis (regression models). We start by getting 
a decent sample [representative, unbiased, of sufficient size, 
with coverage], get decent data [no measurement error, 
unbiased, no informative missing], do decent analyses 
[appropriate methods, assumptions satisfied], do proper 
interpretation [meaningfulness, direction and magnitude of 
effects], to then finally rule out the role of chance. Statistics 
is seen as helping in the final step, but the discipline of 
statistics is the science of dealing with uncertainty, and it 
comes in all stages, from design, to conduct, to analysis 
and interpretation.
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