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ABSTRACT 

In the field of computer vision, multi-class outdoor weather classification is a difficult task to 

perform due to diversity and lack of distinct weather characteristic or features.   This research 

proposed a novel framework for identifying different weather scenes from still images using 

heterogeneous ensemble methods. The approach was based on construction of unobstructed 

opaque cloud coverage (OCC) multi-class weather images; and the introduction of diversity 

concept called Selection Based on Accuracy Intuition and diversity (SAID) for the construction of 

stacked ensemble models. The stages involve the extraction of histogram of features from different 

weather scenes to determine their contribution to the overall performance of the experiment, 

training and validating the performance of the model. The blending and boosting of different 

weather features using stacked ensemble algorithms shows an average accuracy of over 90% in 

recognizing rainy still images and over 80% for sunny, sunrise and sunset still images. Similarly, 

the meta-learner of the stacked ensemble model performed better than the individual base learners 

of the model. The research presents academic and practitioners a new insight into diversity of 

heterogeneous stacked ensemble methods for solving the challenges of weather recognition from 

still images. 

 

Key words: Computer vision; Image classification; Stacking ensemble; ensemble diversity; 

weather identification; recognition; machine learning; image preprocessing; feature extraction; 

heterogenous concept  
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CHAPTER ONE 

INTRODUCTION 

1.0 BACKGROUND 

Weather is an essential component in human life. It determines how and where we live, what 

we eat and what we wear. In fact, it controls our time. Understanding different weather conditions 

is tantamount to taking control of our time and future. In fact, the knowledge of weather is of great 

importance to farmers, pilots, marine traffic marshals and so on.  

Recently, extreme weather conditions have led to natural disasters like floods, landslides, 

disruption in communication and transportation system, loss of properties, crop, livestock and 

damage of infrastructure and building (Fischer and Knutti, 2015). 

For years weather forecasting has been based on quantitative data collected through different 

instruments and tools. Generally, Sensors has been the major instrument or device used by 

meteorologists for weather observation and detection in most weather stations. However, these are 

to purchase and maintain especially for less developed nations costly (Lu, Lin, Jia, and Tang 2014). 

However, in this era of Internet of Things (IoT) using a digital camera like surveillance camera or 

phone camera connected to computer to observe our environment for weather recognition might 

be cost effective and produce an intelligent computer vision system. 

Several computer vision researches have been proposed to address this issue however, majority 

of the recognised researches on weather are postulated based on clear weather assumption 

(Nashashibi, Charette, and Lia 2010), such as driver assistance systems (Kurihata, Takahashi, Ide, 

Mekada, Murase, Tamatsu  and Miyahara, 1963), video surveillance (Woo, Jung, Kim, and Seo, 

2010) and robot navigation (Katsura, Miura, Hild, and Shirai 2003) which are high affected by the 

dynamic nature of weather. The bad weather conditions usually affect the quality of images or 
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videos, and it is necessary to use the weather information to correct the image/video processing 

algorithms to achieve better performance. 

 Weather classification from still images is usually time consuming, difficult and requires 

experience skills and knowledge to identify distinct weather features. The extant literature 

indicates that researchers have in the past used multiple kernel learning (MKL) to determine the 

optimal weather features combination for weather classification. This method discards features 

that are weak to contribute to the overall recognition. However, this research work addresses the 

problem of weather features combination and recognition using the state-of-art ensemble methods. 

 

1.2 PROBLEM STATEMENTS 

In general, sensors-based devices are used at weather stations by meteorologist to recognize 

different weather condition which is costly. However, with intelligent computer vision application 

using simple digital camera can reduces cost significantly. 

In a computer vision, multi-class outdoor weather classification also poses a difficult task to 

perform due to diversity and lack of distinct weather characteristic or features. This research also 

presents insight into diversity of ensemble heterogenous method for solving problems associated 

with weather recognition problem.                                                                                                                            

 

1.3. RESEARCH GOAL 

The main goal of this research is as follows: 

• Collect a dataset containing images showing different weather condition with their 

corresponding labels indicating the specific weather condition. 
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• to propose a novel framework for recognizing different weather condition through the eyes 

of digital cameras that can be used at weather stations for weather forecast.  

• Compare the proposed method with other well-known classification methods 

 

1.4. RESEARCH QUESTIONS 

Research questions are formulated to make the research problem tractable with limited scope, and 

to ensure that the resulting model is as useful as possible in real-world applications. The main 

research question is: 

How is an intelligent computer vision system developed that can accurately recognize different 

weather condition that can replace sensor devices? 

To answer the above research question, the following sub-questions were formulated to answer 

the questions. 

1. What multi-class weather dataset is available? 

2. How to select distinct weather features? 

3. What weather diversity method would be employed for better performance? 

4. What model would be employed for better performance 

These research questions will guide the background study, review of related literatures, research 

methodology and dataset collection methods.  
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1.5. RESEARCH ASSUMPTION 

Since there is no standard way of measuring diversity of ensemble models, the research will adopt 

10% accuracy difference between different classification models for selection models that will 

make up the ensemble method. 

 

1.6. RESEARCH LIMITATION 

This research work encountered similar challenges that are common to most computer vision 

research works such as 

a. Dataset Availability: Because there are few or no obstructive multi-class weather dataset, 

the dataset was manually collected online and annotated; and 

 

b. Computation Resource: The experiment will be performed on a laptop computer with 

configuration of intel Core i5, clock-speed of 1.2GHz and 8GB RAM. Therefore, high 

dimensional dataset images will be preprocessed to fixed dimension of 128 for each 

feature. 

 

1.7 RESEARCH METHODOLOGY 

The research methodology for this dissertation involves the following steps to be taken: 

a. Experiment/Coding environment setup: This stage involves identification and 

configuration of tools required to perform detail analysis that will answer the research 

questions in Section 1.4. 
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b. Dataset: This step involves the collection and preprocessing of images of different weather 

conditions. 

 

c. Feature Extraction: This involves the extraction distinct weather features for different 

weather conditions. 

 

d. Model Development: This stage focuses on the design and programming development of 

stacked ensemble algorithms that will be used for training and testing of the model 

performance. 

 

e. Analysis and Interpretation of result: This is last stage of the research which involves 

analysis and interpretation of model performance 

 

1.8 RESEARCH CONTRIBUTION 

Since the emergence of image classification, the challenge of selecting distinct weather features 

for effective recognition is still an open challenge that requires further attention. Hence, the 

contribution of this dissertation is aim at addressing this challenge, by proposing and empirically 

verifying alternatives that may be used to find distinct weather features for weather classification. 

The specific contribution and departure points from previous works are as follows: 

a. Alternative method of selecting distinct weather features; 

b. Weather Dataset: In the absent of public unobtrusive weather dataset, the dissertation work 

was able gather suitable weather images for classification task;  

c. Introduction of new concept to combination of base learners that is based on Selection 

Based on Accuracy and Intuition Diversity (SAID); and 
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d. The first application concept for stacked ensemble method for classification of weather 

from still images. 

 

1.9. DISSERTATION OUTLINE 

This dissertation consists of five chapters, which are closely linked to the research objectives 

discussed in Section 1.3. They are structured as follows: 

• Chapter 1: This presents the general overview of the dissertation by highlighting related 

research work and its shortcomings, the objectives or goals of the project and 

methodology that guides the implementation of this project. 

 

• Chapter 2: This chapter provides the background reviews or survey on the weather 

classification techniques and the reasons for image classification task. It also provides 

focus for the dissertation research by highlighting the current challenges faced by 

researchers in the task of weather classification techniques. This followed by background 

to the proposed ensemble stacked techniques.  

 

• Chapter 3: In this chapter, a background method of applying stacked ensemble method to 

the task of selecting distinct weather features, base learner diversity and meta-learner is 

formalized, a step-by-step method of setting-up experimental tools and configuration of 

the research proposed method. 

 

• Chapter 4: This chapter takes focuses on carrying out different experiment from pre-

processing of different weather images to feature extraction and selection, the measurement 
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for diversity of the base-learners and its influence on the overall experiment. Thereafter, 

the experiment results are discussed in detail. 

 

• Chapter 5: This is the last chapter of the dissertation where the research study is 

summarized, recommendation and concluded. The research limitation and future work 

were also highlighted. 
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CHAPTER TWO 

BACKGROUND AND RELATED STUDY 
 

2.0 CHAPTER OVERVIEW  

This chapter examine the past research works or studies relating to the subject matter of this 

dissertation work. The first part of the chapter focusses on the extant review of related literatures 

or past research works on weather recognition as presented in Section 2.1. In section 2.2 and 2.3, 

a discussion on ensemble method, the combination of algorithms, and its applications are given in 

an in-depth manner. Section 2.4 gives an outline of the specific ensemble method used for 

phenomenon under study. Lastly, a review of image processing techniques used in this research is 

analyzed. 

 

2.1 WEATHER RECOGNITION FROM STILL IMAGES 

Several researchers have attempted to classify different weather conditions from images or videos 

using different machine learning and image processing techniques. To review them, we start by 

examining the basic discriminative feature of different weather conditions that aid classification 

in still pictures and videos. 

Weather features is described as the atmospheric condition in terms of temperature, wind, 

cloud and precipitation. These characteristics which are exhibited by atmospheric condition makes 

weather features highly dynamic in nature causing diversity and lack of discriminate weather 

features.  

The visibility of weather conditions in an image depends on the background scene, 

illumination of the environment; and the camera intrinsic properties such as exposure time and 
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depth. For example, rain drops characteristics exhibit reflection and refraction of light towards the 

camera from the surroundings. This results into images or videos motion intensities when dropped 

at high velocities. The motion intensities rely on the background scene caused by the limited 

camera exposure. Thus, the size of the rain increases and then decreases with increase in brightness 

of the environment or surroundings and vice versa (Garg and Nayar 2005). 

To address issue pertaining this weather feature, several methods have been employed in 

the field of computer vision. The works of Derpanis, Lecce, Daniilidis, and Wildes (2012) 

employed structural information of image processing such as Scale Invariant Feature Transform 

(SIFT) or Histogram of Oriented Gradient (HOG) which are algorithm based on illumination-

invariant features to extract distinct weather features from images/videos. A study conducted by 

Bossu, Hautière, and Tarel, (2011) also used similar method but applied a mixture model of 

segmentation technique to separate the foreground from the background to obtain binary image 

which is used to show the effect of rain or snow in camera images. 

Meanwhile, authors such as Lu, Lin, Jia, and Tang (2014) researched on weather features 

by considering various common weather component (such as sky, shadow, reflection, contrast and 

haze) that occur every single day while authors, Zhang Z and Ma H,et al, (2016) went further to 

improve on the work of  Lu, Lin, Jia, and Tang (2014)  by developing a dictionary which focuses 

on learning features used to learn  and extract only the relevant features required for computer 

vision and image classification tasks. 

Research conducted by Mairal, Bach, and Ponce (2012) was based on image space and 

transformation matrix. This method builds a dictionary of map sparse features of image patched to 

intensity values of the output patches. On the other hand, Gao, Tsang, and Chia (2013) improved 
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the effectiveness of this method by employing some implicit features with a focus on mapping of 

high dimensional features in a sparse coding technique. 

In the field of computer vision and machine learning, most researchers have employed 

supervised method for classification of various weather conditions. In Roser M. and Moosmann 

F.  (June 2008), the authors used Support Vector Machine (SVM) to classify images taken by a 

driver support system in an open weather of heavy rain or light rain. The datasets of 500,000 

images showings expressway were collected from 150 video sequences. The features extracted 

from each image were minimum brightness, local contrast, hue, saturation and sharpness. The 

result showed that images of heavy rain have high classification accuracy than images of light rain. 

In another situation, Chen, Yang, and Lindner (2012) used SVM to classify multi-class 

weather feature vectors of sunshiny, cloudy and hazy. The fascinating part of this research work 

is the area of pre-processing segment that come first before the classification technique. In this 

technique, the sky portion is isolated from the weather images to prevent conflict with the non-sky 

features. After obtaining the sky features from the image, Multiple Kernel Learning (MKL) is used 

to select a subclass of the features from a feature class automatically. The dataset used for this 

work contains 1,000 images gathered from a specific location. 

Likewise, Yan X., Luo Y., and X. Zheng, (2009) researched on alternative method using 

AdaBoost to classify weather images obtained by mean of vehicular camera. This is an effective 

ensemble procedure often applied in pattern recognition; used to distinguish between sunny, rainy 

and cloudy weather conditions. The dataset used for this work was about 2,500 images extracted 

from videos camera attached to the moving vehicle on the street. The feature vector used composed 

of brightness, hue, gradient magnitude, saturation, and the average of grayscale values computed 

from several locations within the area of concerns. 
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In the work of Elhoseiny, Huang, and Elgammal, (2015), the authors used deep learning 

techniques to perform weather recognition task by slightly modifying AlexNet as suggested by 

Krizhevsky, Sutskever, and Hinton (2012). This was achieved using previous trained ImageNet 

model to classify weather images into sunny and cloudy images. The dataset of 14,000 sunny or 

cloudy weather images were used to retrain the classifier. The slightly modified AlexNet technique 

was compared to SVM classifier with same dataset. The result showed that the deep learning 

outperformed the SVM.  

Another deep learning method used to recognized extreme weather conditions (Zhu,  Zhuo,  

and Qu, 2016). The author used GoogleNet architecture of Szegedy, Liu, Jia, (2015) to classify 

four different weather conditions: sunny, fog, rainstorm and blizzard. Firstly, the author pre-trained 

the deep learning network on the dataset of ImageNet, after which fine turning was done on it with 

a previously collected dataset. The dataset used contained 17,000 images showing different 

complex weather scenes. 

 

2.2 ENSEMBLE METHODS 

         The primary concept of ensemble technique is to combine multiple classifier weights to 

obtain a better classifier that outperform every individual classifier that makes up the ensemble 

classifier as illustrated in Figure 2.1 in the work of Hansen and Salamon, (1990).  
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Figure 2.1: Ensemble classifier outperform every constituent classifier 

 (Source: Hansen and Salamon, 1990) 

 

According to Zhi-Hua and Zhou (2012) ensemble method is defined as committee-based learning 

or multiple classifier systems 

         Figure 2.2 depicts the most common ensemble architecture. An ensemble classifier 

composes of several learners called based leaners (such as logistic regression, Support Vector 

Machine or any other type of learning algorithms) and a combined learner. The method was 

originally designed to reduce variance thereby improving the accuracy of the base learners as 

advanced by Zhang C. and Ma Y., (2012). Most base learning algorithms have similar learning 

techniques leading to homogenous ensembles whereas when the based learning algorithms have 

different learning techniques and produces different errors, these are called heterogeneous 

ensemble. 
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Figure 2.2: Ensemble Architecture (Source: Zhi-Hua Zhou, 2012) 

        The main purpose is to reduce generalization error in the combined classifier compared to 

a single classifier. This method strengthens the weak base classifier in the overall system. The 

combination function of the combined classifier is usually integrated by majority voting for 

classification task or a weighted average for regression task.  For instance, research by Dietterich 

(2012) explained the three fundamental keys behind the exploitation of ensemble methods which 

are statistical, computational and representation. More so, the correlational strength method by 

Breiman L, (2001) and the decomposition of bias-variance technique in the earlier research by 

Kohavi and Wolpert, (1996) also explain why the ensemble method works.  

        The bias-variance-covariance decomposition by Breiman L, (2001) has been the major 

theory behind ensemble methods performance justification over its individual predictions. The 

keyword in this concept is diversity.  The method is applicable to both regression and classification 

task. The research work of Ren, Suganthan, and Srikanth, (2015) proves that ensemble model 

generates smaller mean square error when compared to the average square error of the individual 

models. The average square error is the main cause of ambiguity decomposition in a single dataset. 

However, with multiple datasets, the bias-variance covariance decomposition was illustrated by 

Brown and Wyatt, (2005) and Geman, Bienenstock, and Doursat, (1992) and the equations are 

illustrated from (2.1) to (2.4): 
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                       𝐸(𝑓 − 𝑡)2 = 𝑏𝑖𝑎𝑠2  +
1

𝑀
 𝑣𝑎𝑟 + (1 −

1

𝑀
) 𝑐𝑜𝑣𝑎𝑟                                               (2.1) 

                       𝑏𝑖𝑎𝑠 =
1

𝑀
 ∑ 𝐸({𝑓𝑖}  − 𝑡 )𝑖                                                                                     (2.2) 

                       𝑣𝑎𝑟 =
1

𝑀
 ∑ 𝐸(𝑓𝑖 − 𝐸{𝑓𝑖 })2

𝑖                                                                                  (2.3) 

                    𝑐𝑜𝑣𝑎𝑟 =
1

𝑀(𝑀+1)
∑ ∑  𝐸{(𝑓𝑖 − 𝐸{𝑓𝑖 })(𝑓𝑗 − 𝐸{𝑓𝑗 })} 𝑗≠𝑖𝑖                                        (2.4) 

 

           From the equations (2.1) to (2.4), variable 𝑡  is the unknown target and 𝑓𝑖   is the result 

from each classifier and 𝑀 is the total number of classifiers. The average bias component measures 

the average difference between the outcome of the combined classifier and the expected result. The 

second component is the combined classifier with average variability, and the last component is the 

covariance of an average pairwise. The generalization error depends on the three properties of the 

decomposition components which must balance against each other to obtain the best performance. 

The covariance between individual models will reduce the percentage variance in the overall 

system, such as increasing the number of models is proportional to increase in covariance while 

lead to reduction of variance in the overall ensemble method.  

            The research work of Pisetta (2003), and Zhang,  Ren, and Suganthan  (2014) resulted 

into an ensemble technique called bagging method. The method is noted for drastically reducing 

the variance of the combined classifiers while Breiman L, (2001) and Zhang and Suganthan, (2014) 

produced another ensemble method that boosts the weak classifiers by reducing bias and variance. 

Several research works have been done to prove the validity of using ensemble methods, such 

works are stochastic discrimination (Domingos, 2000), strength-correlation (Breiman, 2001) and 

margin theory (Kleinberg, 1990). All these works have shown that they can be alternatives to the 

decomposition of bias-variance-covariance (BVC) method (Schapire R. E.  and Freund Y., 1998).  
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          The accuracy of any ensemble methods primarily relies on the diversity of the individual 

classifiers that constitute the ensemble method. It is impossible that different classifiers provide 

same outputs although the inputs are same. Therefore, the error made by individual classifier in an 

ensemble method can be corrected by another classifier(s). However, there is no standard theory 

that explains the rate of diversity between the constituent of a combined base model that contributes 

to the overall accuracy of a meta-classifier of an ensemble method.  However, research by Freund 

and Schapire, (1996) classified the ensemble method diversity into “data diversity, parameter 

diversity and structural diversity” respectively. 

          Data Diversity involves partition of the original dataset into multiple sub-dataset to train 

different classifier. Ensemble methods that use data diversity in their model are AdaBoost (C. Zhang 

and J. Zhang, 2008), bootstrap aggregation (Ren, Zhang and Suganthan, 2016), random subspace 

(Breiman,1996 and. Ho, 1998), and Random Forest (Breiman, 1996).  

       The second group is the parameter diversity which generates different classifier outputs 

based on the use of different parameter settings. The use of the same training dataset on the same 

base classifier with different parameter settings may still result in varying output. 

       The last group is the structural diversity which is induced by having base classifiers with 

different structures, parameter settings and arrangement. This type of ensemble method is referred 

to as heterogeneous ensemble (Tan, Li, and  Qin, 2008). 

       Ensemble techniques application have been proven to be very effective in a wide spectrum 

of real-world problem domains. In an online competition in 2009, Ensemble method was used to 

improve Netflix1 prediction by 10% accuracy. This ensemble technique was based on user 

preferences to predict how a user will enjoy a suggested movie. 

1http://www.netflixprize.com/ 
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      In the field of computer vision, ensemble method has been used for object detection, 

recognition and tracking. Authors such as Viola and Jones,  (2001 and 2004) proposed a framework 

that combine AdaBoost with a cascade architecture for face detection in 0.067 seconds for a 384 x 

288 image;- the findings of the study revealed that this was fifteen times faster than the best face 

detectors, while detection accuracy was almost similar. 

       Another important role of the ensemble method in computer vision is pose-invariant face 

recognition (Huang, Zhou, Zhang, Chen 2000), particularly for identifying face with different 

varying degree of rotations. The main concept is to combine several neural networks specific views 

with a unique crafted module. This method outperforms conventional techniques by not requesting 

for pose information as input as compared with normal conventional method, instead with output 

pose-information. A similar technique was later employed by Li et al, (2002) for multi-view face 

detection. 

        For object tracking, Avidan, (2007) worked on ensemble tracking, which is an online 

ensemble classifier that differentiate between object and background. This method updates weak 

classifier constantly by adding or removing classifiers at any time. This method injects new 

information about the transformation in the background and the object appearance. This work 

demonstrates that ensemble tracking framework is highly efficient within a few frames per second 

without tuning into a variety of online video applications. 

       Furthermore, Corona, Giacinto, Mazzariello, Roli and Sansone, (2009) showed that 

ensemble method can be useful in computer security problems. Reason being multiple abstraction 

levels can be used to monitor each activity performed on computer systems, while the important 

information could be collected from multiple information sources. 



    

17 
 

        Ensemble method was also employed to detect intrusions (Giacinto, Roli, and Didaci 2003). 

The proposed method considered different types of input features and these were fed into different 

base learners and their combined outputs were used to make the final decision. Five-year laters, 

Giacinto , Perdisci, Rio and Roli (2008) built upon the previous work to develop a framework which 

can detect intrusion that has never been seen before. 

        In computer aided medical diagnosis, ensemble method can increase the rate of reliability 

of diagnosis. For instance, Zhou, Jiang, Yang, Chen (2002a) developed lung cancer cell 

identification using a two-layered ensemble architecture. The first layer dealt with mid cases and 

the prediction was based if only all the base learners agree; otherwise the case would move to the 

next layer to make for further analysis on other cancer cases fed as input. The second layer was 

designed to differentiate between cancer types. This method recorded high true-positive rate with a 

low false-negative recognition rate. 

       Linking with the previous paragraph, a study by Polikar, Topalis,  Parikh, Green, Frymiare, 

Kounios, Clair (2008) furthered the work of Zhou, Jiang, Yang, Chen (2002a) for early diagnosis 

of Alzheimer's disease by considering multiple data EEG (electroencephalogram) channel as 

against a single channel used by Zhou, Jiang, Yang, Chen (2002a). Each data source obtained from 

different electrodes, different stimuli response, and different frequency bands are trained by 

different base learners, and the final diagnosis result is based on the combined output from various 

sources. 

        In addition to the previous mentioned application of ensemble methods, these were also 

used in other domains such as detection of credit card fraud (Chan, Fan., Prodromidis , and Stolfo 

,1999 and Panigrahi, Kundu, Sural, and Majumdar, 2009),  fault diagnosis in aircraft engine 

(Goebel, Krok, Sutherland 2000, and Yan & Xue, 2008), bankruptcy prediction (West, Dellana., 
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and Qian 2005),species distributions forecasting (Ara ́ujo and New, 2007), forecasting of electric 

load system (Taylor and Buizza, 2002), artist and genre of music classification (Bergstra, 

Casagrande, Erhan, Eck, and Kegl., 2006), weather forecast (Maqsood et al., 2004; and Gneiting 

and Raftery, 2005), and  classification of protein structure (Tan et al., 2003, Shen and Chou, 2006). 

        In the next section, the discussion focuses more on key algorithms concept behind the 

construction of any ensemble methods. 

 

2.2.1 BOOTING 

      The booting algorithm is an algorithm that can convert weak learners to strong learners. The 

first booting algorithm was introduced by Schapire, (1990) to answer an important question posed 

by Kearns and Valiant, (1989) on whether problems for weak base learner and strong base learners 

are equal.  

     Five years later, Freund and Schapire (1996) proposed the AdaBoost algorithm. The main 

principle behind boosting algorithms is that it can correct the mistake made by a weak classifier. 

To achieve this, equal weight is assigned to each training set at the beginning, but in each iterative 

step, the weights of all incorrect classifiers will increase while the weights of correct classifiers 

reduce. As a result, the weaker base learner is compelled to focus on the incorrect data in the training 

set. By the end of the iteration, the classifiers are expected to complement one another. 

      Consider binary classification on class labeled as {-1, +1}, the algorithms assume training 

set consisting of m examples. The classification for the unseen data is made by voting on all the 

base learners or classifier {Ct}, each having a weight of αt. This is expressed mathematically as: 
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                        The second version of AdaBoost algorithm described by Freund and Schapire, 

(1996) perform similarly in the way or method in which binary classification task were done. 

However, if there are differences in multiclass classification problems, and it is expressed by the 

equation (2.6) as: 

 

 

 

The performance of boosting algorithms appears to increase for two main reasons: 

1. The meta or combine learner error on the training set is smaller when compared to 

individual base learners; and 

2. Likewise, the variance of the  meta or combined leaner is lower than the individual base 

leaners.  

     However, boosting has its own drawback as it is prone to overfitting according to 

Quinlan, (1996). A proposed solution to the overfitting challenges of boosting algorithms is to 

maintain a small number of iterations as possible. 

 

2.2.2 BAGGING 

    Bagging algorithm is a bootstrap and aggregation algorithm Breiman, (1996) that 

combines independent base leaners whose output errors are reduced drastically. For example, 

      (2.5) 

 

        (2.6) 
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Consider N samples size of a random generated training dataset, drawn with replacement. The 

output result may contain some subset of training set that is repeated multiple times while others 

may be left out. This algorithm utilizes the bootstrap distribution techniques for generating 

different bases leaners (Efron and Tibshi-rani, 1993). 

   To compensate for these repeated errors, Bagging algorithms employs popular 

aggregating strategies for the first learning algorithm output, that is, voting techniques for 

classification task, while the averaging method for regression. For example, to predict an unseen 

input in classification task, the input is fed into the base leaners, and the base learners’ output 

labels are collected, and voted for. The winning label becomes the final prediction. 

  Random Forest algorithms is an example of creative version of bagging that implements 

the research technique based on ensemble of trained decision trees (Kirchne et al, 2010). For an 

example, random forest can perform random selections of features subset as described by the 

works of Riddick, G. and Song, (2011) in random subspace models. 

 The works of Breiman (1996) proved that efficiency of bagging method on "erratic" 

learning algorithms when little changes in the training dataset result in large changes in final 

prediction. The out-of-bag examples method is used to measure the goodness of bagging base 

leaners, after which the general error caused by the ensemble method can be predicted. 

 

2.3 COMBINNING ALGORITHMS 

 The method of combining different learning algorithms may be divided into two main 

categories: combined base learning generally suitable for solving problems whose individual base 

learners do similar function but have different success rate. Nevertheless, such algorithms are 
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prone to outliers’ vulnerabilities and to erratic execution of algorithms. Whereas the meta-learning 

algorithms are more powerful but subtle to all the problems associated with the poor learning such 

as long training time, and over-fitting. 

The simple combining methods are explained below: 

• Uniform Voting: This method involves each base learning algorithms having equal 

weight. The prediction of the unlabeled input is performed by obtaining the class with the 

winning number of votes. This can be expressed mathematically as shown in equation (2.7) 

as: 

 

Where Mk is k learning algorithm, while PMk (y = c|x) is the probability of y is equal to 

chance of obtaining the value c given a positive input x. 

 

• Bayesian Combination: The Bayesian combination was proposed by Buntine (1990). The 

concept involves associating weight to each learning algorithm as the probability of the 

learning algorithm given a data set S. 

 

Also, Mk is the learning algorithms of probability P (Mk | S) given the training dataset S. 

The probability of P (Mk| S) relies on the learning algorithm’s outcomes, that is, Mk. 

 

• Naıve Bayes Method: This method extends Naive Bayes rule for combining one or more 

learning algorithms as illustrated in equation (2.9): 

(2.7) 

 

(2.8) 
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• Entropy Weighting: The main technique behind this combination method is to apportion 

weight to each learning algorithms which is inversely proportional to the entropy of its 

vector classification as shown in equation (2.10) to (2.11): 

 

Where: 

 

 

• Density-based Weighting: This method used various trained learning algorithm dataset 

obtained from different sources to assign weights to the learning algorithms. 

Mathematically, it is written as: 

 

 

 

 

2.3.1 BENEFITS OF COMBINNING LEARNING ALOGRITHMS 

Following the generation of ensemble base learners, ensemble methods try to find a way 

to combine the best base learners to accomplish a strong generalization capability. This 

combination performs an essential role in ensemble method. The works of Dietterich (2000) 

(2.9) 

 

(2.10) 

 

(2.11) 

 

             (2.12) 
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highlighted three fundamental benefits why the combination of ensemble method is so important. 

These are: 

• Statistical issues: When available hypothesis is too large to explore for inadequacy of 

training data, there may be several subsets of the available hypothesis might give the same 

result as the training dataset. Therefore, there is risk that the trained dataset chosen might 

not be able to predict the future of the unknown data set. Conversely, combining different 

available dataset reduces the risk of selecting the wrong hypothesis. 

 

• Computation issue: Learning algorithm often get stuck at the point of local optima, that 

is, finding the best hypothesis can be difficult with enough dataset. The solution is to run 

different hypothesis at different local search points from different starting points to reduce 

the risk of selecting an incorrect local minimum value. 

 

• Representational Issue: Representing unknown hypothesis in most machine learning 

algorithms is difficult as representing in the hypothesis space. Therefore, combining 

hypothesis might lead to expansion of space representation that learning algorithms might 

use to form a more precise estimate of the true unknown hypothesis. 

In summary, the highlighted issues in section 2.3.1 explain why most traditional learning 

algorithms fails High "variance" issue is suffered by learning algorithms as a result of statistical 

issues, while high computational "variance" is as a result of computational issues, whereas high 

"bias" in learning algorithms is caused by representational issue. Hence, combining various 
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learning algorithms, reduces variance as well as bias of learning algorithms (Xu et al., 1992, Bauer 

et al, 1999, Opitz et al, 1999). 

 

2.4 STACKED ENSEMBLE METHOD: 

  The works of Wolpert (1992), Breiman (1996), and Smyth and Wolpert (1998) shows that 

stacking is a technique where a combined learner is trained to combine different base learners. The 

base learning algorithms are referred to the first-level learners, while the combined learner is 

termed meta-learner or second-level learner. 

 The main concept is to use original training dataset to train the first level learners, these 

first level learners generates a new data set which is termed the new input features vector. The new 

features vector is mapped to the original data labels. These new features vector is used for training 

the meta-learner or second-level learner. Combining different first-level learners using different 

learning algorithms is what is called stacked ensembles. These are often heterogeneous in nature, 

though construction of homogeneous stacked ensembles is possible. 

 In another perspective, stacking is viewed as a generalize framework for many ensemble 

methods while in another manner as a specific combination of different learning algorithms. The 

author Breiman (1996), proves the success of stacked regression. He applied different sizes of 

regression trees as the first-level learners, that is, learners with different variables, and the meta-

learner’s output are based on non-negative co-efficient of least-square linear regression model. 

The non-negative constraint applied was found to be important to ensure the stacked ensemble 

method outperformed every individual first-level learner. 
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 In the classification task of stacked ensemble method of Wolpert (1992) proves that for 

any stacking algorithms, the first-level learners’ selection and the type of features vector produced 

for second-base learner are important.  

The authors Ting and Witten, (1999) suggested that class probability should be used as 

replacement for class label as features since this considers not only the predictions but also the 

confidence of the based learners. The authors also suggested the use of multi-response linear 

regression (MLR) as the second-level learning algorithm, which is also a type of the least square 

linear regression algorithm. In Seewald (2002), the author recommended that in MLR, diverse sets 

of features should be use for linear regression problems.  

 In 2003, stacking methods was compared to Bayesian Model Averaging (BMA) by Clarke, 

(2003). This method assigned different weights to different models based on posterior 

probabilities. The experimental results show that stacking method is more accurate than BMA, 

because BMA is subtle to model approximation error. 

 

2.5 LITERATURE RESEARCH GAP: 

Even though several research works have been done on weather classification, multi-class 

weather classification is still a difficult task to perform due to diversity and lack of distinct weather 

characteristic or features. Most of the researches were based on clear weather assumption which 

are high affected by the dynamic nature of weather.  (Nashashibi, Charette, and Lia 2010, Kurihata, 

Takahashi, Ide, Mekada, Murase, Tamatsu  and Miyahara, 1963, Woo, Jung, Kim, and Seo, 2010) 

,Katsura, Miura, Hild, and Shirai 2003). The bad weather conditions usually affect the quality of 

images or videos, and it is necessary to use the weather information to correct the image/video 

processing algorithms to achieve better performance. 
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       Weather classification from still images is usually time consuming, difficult and requires 

experience skills and knowledge to identify distinct weather features. The extant literature 

indicates that researchers have in the past used multiple kernel learning (MKL) to determine the 

optimal weather features combination for weather classification. This method discards features 

that are weak to contribute to the overall recognition. 

As of the time of writing this project, no stacked ensemble technique has been attempted to solve 

this issue. Hence, this research work addresses the problem of weather features combination and 

recognition using the state-of-art ensemble methods 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.0 CHAPTER OVERVIEW 

As stated in Chapter One, the aim of this research was to develop a novel framework that can 

differentiate between different weather images (such as rain, cloudy, sunrise and sunset). In 

particular, the focus of this research was analysing clear weather images. However, this task is 

challenging not only because of discriminate weather features in images but also because of a lack 

or few clear weather datasets with the required characteristics.   

In this chapter, Section 3.1 explains the experimental tools and configuration used to build the 

model while in Section 3.2 a description of how the training dataset for the model was acquired 

is presented. In Section 3.3, the proposed ensemble model and its training are described. 

Whereas the last Sections 3.4 explains how the research approach to diversity of stacked 

ensemble model was adopted.                                                                         

 

3.1 EXPERIMENTAL TOOLS AND CONFIGURATION SETUP 

This section explains the experimental tools and configuration used for the framework 

development. Each subsection explains the choice of the framework for the evaluated system and 

provides background information. 

Python programming language is the language of choice in this research work because of its large 

growing ecosystem for machine learning development. Furthermore, it was chosen because it is a 

multi-purpose programming language that can be used for quick prototyping in research and 
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development, and in production or commercial environment. The sections below discussed the 

python  library used and these are as followings: 

3.1.1 PILLOW 

Pillow popularly known as python image library (PIL) is an open source library for image 

processing. It is used for opening, manipulation and saving of image. In this dissertation, this 

library was used in conjunction with NumPy library for image processing. 

 

3.1.2 SCIPY 

SciPy is a mathematics, science and engineering python library that is needed for machine learning 

tasks. It is an add-on to Python repository. The ecosystem of SciPy is composed of different core 

modules that are important to machine learning development as highlighted below: 

• NumPy: The building block for SciPy that is used to work efficiently with 

array data; 

• Matplotlib: Python core module that is used to plot different kinds of graph 

and charts from data; and 

• Pandas: Is a tool for data structure and manipulation in order to perform 

repetitive task. 

 

3.1.3 SCIKIT-LEARN 

The Scikit-learn is a python developed through an open source library that can be used for rapid 

development and machine learning practice. The library is built or developed upon SciPy 

ecosystem. Therefore, it is required during scikit-learn installation. The name Scikit is an 

abbreviation for SciPy toolkit. The library focus is machine learning algorithms for achieving the 
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task of supervised and unsupervised learning. The library also provides API interface for related 

tasks such as data pre-processing, machine learning algorithms evaluation, and parameter 

optimisation. 

 

3.1.4 PICKLE 

Pickle is a python module that can take practically any python object and translate it to byte stream 

of string serialization. This concept is called "pickling" while the inverse operation of converting 

back to python object is called "unpickling". This module was used in this dissertation to store 

weather features for later re-use. 

 

3.1.5 SYSTEM CONFIGURATION 

The python programme and its machine learning ecosystem were installed on laptop with the 

following configuration: 

• Lenovo Core i5; 

• 1.8GHz CPU frequency;  

• 8GB system memory (RAM);  

• Hard-disk size of 512GB; and  

• Ubuntu 13.04 operating system (OS). 

 

3.2 MULTI-CLASS WEATHER DATASET (MWD) 

To train a meta-learner of a stacked ensemble algorithms for the task of classifying different 

weather conditions, an unobstructed weather recognition dataset had to be acquired first. Although 

there are a few or no unobstructed weather dataset that are freely available, none met the exact 
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requirements described in the paragraph below. Therefore, a new set of weather images had to be 

collected manually online. 

 

3.2.1 DESIGN OF THE DATASET 

There were several requirements for the images that would be used as stimuli for the data 

collection. Firstly, for the purpose of easy training and evaluation of stacked ensemble method that 

can distinguish between different weather conditions, the images had to meet some technical 

requirements namely: 

1. Images should be an outdoor weather image; 

2. The weather images should capture some portion of the sky; 

3. In order to have a good generalized model, the dataset should contain different 

distributions of same image scene that is exposed to different weather 

conditions; 

4. After this, we identified the images that meets the exact requirement, we 

manually annotate the images; and 

5. To this end, the collected dataset was organized into different categories 

required for classification task.  

For any outdoor weather image identification task, the sky is the most important weather feature 

because dynamic characteristics of different weather conditions are exhibited in the sky. On a 

sunny day, the sky appears to be blue in colour due to scattering of sunlight molecules as it passes 

through the atmosphere. On the other hand, a cloudy day exhibit most of weather dynamic nature 

which are defined by different intensity degree of opaque cloud coverage (OCC). Mostly sunny 

2
http://www.weather.gov/media/pah/ServiceGuide/A-forecast.pdf 
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and partly cloudy weather condition are defined to be between 25% and 50% OCC, partly sunny 

and mostly cloudy are between 51% and 87% OCC. Meanwhile overcast is at 88% OCC and above 

3.2.2 DATA COLLECTION 

Because there are few or no unobstructed weather recognition dataset, the research approaches 

multi-class weather recognition by first constructing dataset of unobstructed images of different 

weather conditions collected from internet sources such as google images, flickre, gettyimages, 

yahoo images. A total of 1125 weather images were manually collected and annotated as cloudy, 

sun rise, rainy and sunshine. The partial samples of the images collected are shown in Figure 3.1 

and the statistically distribution of Multi-class weather (MWD) dataset is shown in Table 3.1. 

Table 3.1:  The statistically distribution of MWD dataset 

 

 

 

 

(a) Cloudy Images 

    

 

(b) Rainy Images 

    

 

 Cloudy Sunshine Rainy Sunrise 

Number 300 235 215 357 
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(c) Sunshine Images 

    

 

                 (d) Sunrise Images 

    

 

 

Figure 3.1: Sample of Multi-class Image Dataset 

 

 

3.2.3 MULTI-CLASS WEATHER IMAGE PRE-PROCESSING 

In this research, before developing the model, the weather multi-class dataset obtained from 

different internet sources were carefully studied and analysed. The images were observed so that 

researcher would be in a position to have different properties such as: aspect ratio, intensity, 

dimensions. As a result, this prompted pre-processing stage of the experiment. The pre-processing 

step performed is as explained in the next section. 

 

3.2.3.1 IMAGE SCALING AND ASPECT RATIO 

One major constraint in building the learning model or algorithm for the task ahead was the need 

to resize the different sizes of the dataset images to uniform dimension of 300 by 245px while 

maintaining the aspect ratio of the images (i.e. the ratio of the height to the width of the image). 
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Ignoring the aspect ratio could lead to distortion and compression of images. In this research, the 

pre-processing was performed using the open source python library called Pillow described in 

section 3.1.1. This was used for reading all the images in the dataset directory, resizing and saving 

to the new required dimension into a new directory which becomes the new dataset. 

Generally, image pre-processing is essential to speed-up training and improve image features by 

removing unwanted falsification. 

 

 

3.3 EXPERIMENTAL ENSEMBLE METHOD  

In the review of related literature as presented in chapter 2, discussion of the effectiveness of 

ensemble method for solving different problems in different domains was outlined. In this section, 

we present the experiment overview of employed in this dissertation to solve the challenge of 

weather classification. 

The research introduces a new ensemble framework for identifying different weather scenes from 

single images as shown in Figure 3.2. Firstly, the framework involves extraction of multiple 

weather features from each image.  

The histogram features are Hue, Saturation and Value (HSV), Gradient, Contrast and Local Binary 

Pattern (LBP). Therefore, each of the feature vector dataset be denoted as   𝑓1, 𝑓2 ,………𝑓𝑛 

having an instance space 𝑥 ∈ 𝑋(𝑥1,𝑥2,………𝑥𝑛 ) and class label y ∈ 𝑌(𝑦1,𝑦2,………𝑦𝑛 ) . The 

total dataset 𝐷 can be express as {((𝑥1, 𝑦1), (𝑥2, 𝑦2) …... (𝑥𝑛, 𝑦𝑛)}. 

 Model combination and diversity for ensemble learning was based on SAID (Selection based on 

Accuracy Intuition and Diversity). The SAID resulted into two stacked ensemble learning 

algorithms with each of the features 𝑓 being learned by each of the stacked ensemble algorithms (𝐿 
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= 𝐿1 + 𝐿2 + ⋯...,+ 𝐿𝑚). In this case, the length (m) of the learning algorithm is equal to three (3) 

in both experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Flowchart of our proposed stacked ensemble 

method 
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The common non-linear algorithm which was considered for model selection is Random Forest 

Classifier, KNN, Radial base kernel function Support vector machine (RBF-SVM) and the Native 

Bayes method. This method is used to produce heterogeneous features which form the meta-dataset 

for the meta-classifier. The following section describes each step-in detail. 

For base learner for stacking method, the following four base learners were chosen because they 

exhibited different variety of biases. The base learns are: 

1. K-Nearest Neighbours: This is a clustering algorithm used in unsupervised 

learning for classification and regression problems; 

2. Support Vector Machine using radial base kernel: A supervised learning 

algorithms also used for classification and regression problems; 

3. Naive Bayes: Also, a supervised learning algorithm that is based on probability 

theory used for classification task; and 

4. Random Forest: This is a variant of ensemble method that is based on bootstrap 

aggregation or bagging. 

 

3.4 DESIGN OF DIVERSITY METHOD 

Diversity is an important factor that is linked to the success of any ensemble learning scheme. For 

the purpose of this study, diversity was considered at the based learners’ level to determine how 

the base learners were combined. This is based on training base learners on copies of the same 

multi-class weather training data set. The diversity method ensures that the optimal-hyper-

parameter (i.e. model selection) is selected for learning algorithms using a quantitative approach, 

which leads to the optimal performance of the individual base learners. The quantitative approach 

is based on experimental accuracy of base learners which are coined and referred to as Selection 
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Base on Intuition, Accuracy and Diversity (SAID). SAID uses a minimum 10% variance to 

between base learners to determine how base learners will be combined. 

 

3.5 FEATURE EXTRACTION AND FEATURE SELECTION 

For any successful pattern recognition problems, selecting the right features or interest point from 

images is very important particularly in distinguishing images of the same scene. Unfortunately, 

expressing weather features taken from the same scene under different weather conditions requires 

analysing several low-level image features.    

The general weather features involve extracting the characteristics exhibited by most weather 

condition which textures, colour and shape. For the purposes of this study, different python 

functions were written to extract 128 dimensions local binary pattern (LBP), 384 dimensions of 

Hue, Saturated and Value (HSV) (i.e. 128 dimensions of histogram of H, 128 dimensions of 

histogram of S and 128 dimensions of histogram of V), 128-dimensions of gradient magnitude and 

the 128 dimensions contrast features was computed using the equation 3.1 to form robust feature 

vectors. 

 

where  𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the intensities maximum and minimum value for each image in the dataset.  

Each of the extracted feature were saved with python pickle library described in section 3.1.4  

Heterogeneous ensemble selection method was also used. This method involved the use of 

different base selection methods to train different extracted weather features. The predicted output 

from each selector is a feature subset or a feature ranking. To obtain the final output feature, it was 

 (3.1) 
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imperative to combine all the weather feature subset obtained from the base selectors. This new 

feature from the base selectors is also saved for re-use with python pickle library.  

3.6 MODEL SELECTION 

Diversity is an important factor for obtaining accuracy of an ensemble method. Classifiers’ 

diversity leads to unrelated classification, which in turn improves classifiers performance. 

However, there is no standard theory that explains how individual models’ diversity contributes to 

the overall ensemble method performance. Therefore, classifiers selection is based on intuition, 

accuracy and diversity criteria. This method in the research under study is referred to as SAID. 

Based on intuitions, the selection was bench marked to a minimum of 10% accuracy difference 

between models. 

 

3.7 CONCLUSION 

This chapter highlighted the step-by-step procedures that chart the course of this research 

experiments in the following manner: 

1. Python is the programming language of choice for this research; 

2. Thus, the reasons for the use of different libraries and framework were explained; 

3. The research flowchart diagram of the methodology was also presented. This served as 

overall guide for each step taken along the experiment journey;  

4. The Multi-class Weather Dataset (MWD) criteria for weather image collection and 

categorization were presented; 

5. Thereafter, MWD were pre-processed to aid consistency in the dataset and to reduce 

experiment computation time. 
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6. From the MWD, different weather features were extracted and store in pickle format for 

later use in the experiment.  

7. Finally, the model selection technique which was based on SAID was employed for 

construction of the stacked ensemble method. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

4.0 CHAPTER OVERVIEW 

This chapter discussed the experimental results that were done to find the best ensemble 

architecture and the relevant parameters for constructing heterogenous stacking models to achieve 

the research goals described in section 1.4. Hence, Section 4.1 explains the results that governs the 

construction of the stacked ensemble algorithms or models, while Section 4.2 and 4.3 describe in 

detail how the results obtained for extracted features contributed to the overall identification of 

different still weather images. The final section compares the result of the meta-learners with the 

results of the individual algorithms that makes up of the stacked heterogenous model. 

 

4.1 RESULT OF BASE LEARNERS’ PERFORMANCE 

To construct a good performing stacked ensemble method, the base leaners must possess high 

diversity that leads to unrelated classification output.  The experimental understanding of these 

features’ contribution to the overall performance or accuracy of stacked/combined ensemble 

algorithm were based on the proposed SAID concept described in Section 3.6. 

To apply SAID technique, the combined weather features saved in pickle format in Section 3.5 

were extracted and trained with the four (4) different potential classifiers or base learning models 

which are K-nearest neighbourhood (KNN), Radial base kernel function Support vector machine 

(RBF-SVM), Native Bayes and Random Forest. This experiment was performed using the Sklearn 

library functions described in section 3.1 using cross validation fold setting of five (5). 

Using the percentage mean accuracy as metric for performance measurement, the results of these 

base learners are shown in Table 4.1 and Figure 4.1 
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Figure 4.1: Base learner results 

 

 

Table 4.1: Base learner results 

Method % Mean Accuracy 

KNN 58% (+/- 0.02) 

RBF-SVM 70% (+/- 0.01) 

Native Bayes 66% (+/- 0.02) 

Random Forest 84% (+/- 0.02) 

  

 

Referencing both Table 4.1 and Figure 4.1, the result shows that the Random Forest and RBF-

SVM were to the two best base models that contributed more while KNN contributed less to the 

overall performance of the meta-learner accuracy when used with MWD. 

The construction of the stacked models for the research experiments were predicate on SAID 

concept discussed in Section 3.4. This SAID concept led to construction of two stacked models 

experiment for weather recognition, namely: 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KNN

RBF-SVM

Native Bayes

Random Forest

% Accuracy
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• Experiment I: The base learners that constitute the stacked model are KNN, RBF-SVM 

and Random Forest with Gradient Boost as the meta-learner. 

• Experiment II: The second experiment-based learners for the stacked model are on KNN, 

Native Bayes and Random Forest. Also, with Gradient Boost as the meta-learner. 

 

4.2. RESULT AND DISCUSSION ON FEATURES PERFORMANCE 

The performance of any computer vision features plays an important role to the success of any 

classification task. Hence, in Section 3.5, different features that were extracted from multi-class 

weather dataset and stored in pickle format were unpickled and trained with the two constructed 

stacked models described in Section 4.1. Using the percentage mean metric as unit measurement. 

The experimental results of each feature performance contribution to the overall recognition rate 

are shown in the Figure 4.2 and Figure 4.3 respectively.  

 

Figure 4.2.  Experiment I - Percentage Feature Performance 
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Figure 4.3. Experiment II - Percentage Feature Performance. 

The Figure 4.2, which represented the experiment I, had most of the extracted weather features 

contributed over 60% to the overall performance of the meta-classifier except for the gradient 

feature whose result of performance is less than 50% contribution to the overall experiment 

performance.  

In the same vein, Figure 4.3 is the feature results graph that illustrates experiment II. This again 

clearly shows the poor performance of gradient feature when compared to other weather features 

that performed above 60%. It also noted that the contrast feature performed significantly well in 

this experiment, with contribution over 85%. 
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4.3 RESULT AND DISCUSSION ON WEATHER STILL IMAGES  

This section assesses the performance of the multi-class weather identification framework using 

two different stacked ensemble model combinations described in section 4.1 above. The diversity 

of the experiment was based on SAID. In both experiments, the cross-validation technique was 

used with random selection of 80% of MWD. The number fold is set to value of five (5) to be used 

by the stacked classifiers for dataset training and validation of each feature and the remaining 

dataset were used for testing the meta-classifier as illustrated in Figure 3.2. For the stacked 

classifier, the experiment parameters use the default Sklearn ensemble setting except for the 

number of estimators of Random Forest Classifier and Gradient Boot Classifier that were set to 

one hundred (100). The outputs of each stacked classifier produce heterogeneous features which 

are combined to form new dataset for the metaclassifier. 

The new dataset is used for training and validating the Gradient Boot meta-classifier before being 

tested by unseen dataset. To make the experimental result convincing, each experiment was 

repeated ten times and the percentage mean results for each experiment were recorded and 

tabulated as shown in table 4.2 and 4.3 

Table 4.2: Mean classification accuracy of SAID experiment I with MWD 

Dataset  Mean Accuracy (+/- Std) 

Cloudy 81.70% (+/- 2.21) 

Rainy 93.80% (+/- 2.57) 

Sunshine 88.20% (+/- 3.43) 

Sunrise 83.10% (+/- 3.70) 

 

Table 4.3: Mean classification accuracy of SAID experiment II with MWD 
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Table 4.2 shows the result of experiment I with average recognition rate of each still images of 

MWD greater than 80%. The rain still images were the most recognised images in the dataset.  

In the same manner, experiment II results illustrated in Table 4.3 also shows over 80% recognition 

rate for each of the still image of MWD. In both experiments, the rainy still images have the highest 

rate of recognition accuracy. 

 

4.4 RESULT AND DISCUSSION ON ALGORITHM COMPARISON 

In this section, the experiment validates the hypothesis that states that the meta-classifier or model 

yield better performance than the existing model by taking advantages of the weakness of its 

existence as described in section 2.4. Therefore, the stacked ensemble learning model based on 

SAID diversity performance were measured against its base learning models. The average 

percentage performances are shown in the Table 4.4: 

Table 4.4: Comparison of base learners with Ensemble Method based on SAID method 

Method Mean (+/- Std) 

KNN 58% (+/- 0.02) 

RBF-SVM 68% (+/- 0.01) 

Native Bayes 66% (+/- 0.02) 

Random Forest 80% (+/- 0.02) 

SAID Experiment I 85% (+/- 0.02) 

SAID Experiment II 86% (+/- 0.02) 

 

Dataset Mean Accuracy (+/- Std) 

Cloudy 81.50% (+/- 3.37) 

Rainy 95.20% (+/- 1.69) 

Sunshine 88.40% (+/- 2.12) 

Sunrise 81.70% (+/- 2.16) 
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The result of Table 4.4 shows that meta-learner of both experiments performed better than the base 

learners that made-up stacked ensemble method. This position was also supported by previous 

research works (Wolpert 1992, Breiman 1996, and Smyth and Wolpert 1998). 

 

4.5 CHAPTER SUMMARY 

The result of this study shows that, from the base model of the ensemble methods, the performance 

of the features was measured using percentage accuracy of each features in both experiment. 

Furthermore, the findings as highlighted in Figure 4.2 shows the percentage features performance 

for experiments based on SAID method I. Moreover, it can be observed that most of the features 

contributed to the overall classification of the gradient boost meta-classifier while Figure 4.4 

shows the percentage features performance for SAID method II. The memrging result also 

revealed that contrast and LBP performance contribute more towards the classification accuracy 

than the performance accuracy of method I while HSV perform equally well in both methods. 

However, the performance contribution of gradient magnitude to both method is low. It can be 

observed that SAID method II performs better than SAID method I based on large range of 

diversity. Meanwhile, Table 4.2 and Table 4.3 shows the average classification result of method I 

and II with MWD with cross-validation of 10 respectively. In both experiments, the result showed 

that rainy images have the highest average classification percentage of 93.80% in experiment I and 

95.20% in experiment II respectively. On the other hand, cloudy images revealed 88.20% in SAID 

method I and 88.40% in SAID method II. For sunrise, 83.10% and 81.70% average classification 

accuracy was achieved in method I and method II respectively, while in 81.70% and 81.50% 

average classification of cloudy images were correctly classified. Lastly, The base learning 

algorithm performance was compared to their combined algorithm based on SAID diversity 
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techinique. In Table 4.4, the results of the study shows that the combined algorithm based on SAID 

technique outperforming its constituent base learners.  

 

4.6 CONCLUSION 

This chapter explains the research experimental results and it’s significant in the following 

manner:  

a. The first step explained how the result of base learners impacted the construction of the 

stacked ensemble model. The model’s selection was based on the SAID technique 

explained 3.6. The result led to two construction of stacked ensemble models for this 

research work. 

b. Thereafter, the multi-class weather features performance was measured to determine the 

rate of their contribution to the overall experiment. It was seen that gradient feature had 

the lowest performance in both experiments. This implies that the feature contribution to 

the overall performance is the lowest while contrast features shows the reverse in 

experiment II.  

c. The multi-class weather still images recognition performance was measured based on the 

two constructed stacked ensemble models. The results show over 90% recognition rate 

for the rainy images while the others i.e. cloudy, sunny and sunrise shows over 80% 

recognition rate in both experiments respectively. 

d. Finally, we compared the result of the combine/meta-learner of the constructed stacked 

ensemble model with its base learners. The result shows that meta-learner outperformed 

its base learners in both experiments.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 

This chapter presents the summary of the work done to achieve the research goals/objectives, the 

limitations of the research and provide suggestion for future work. 

 

5.1 CONCLUSION 

The contribution of this research work was derived from the steps taken to answer the research 

question presented in Section 1.4 of Chapter One : How to develop an intelligent computer vision 

system that can accurately recognize different weather condition that can replace sensor devices? 

This work provide the following contribution:  

1. Dataset : Given the absence of multi-class weather dataset that could meet experimental 

requirements i.e. being formed from unobstructed opaque cloud coverage (OCC) weather 

images. An unobstructed OCC multi-class weather dataset was manually collected online 

and annotated and made public for use.  

 

2. SAID Diversity Concept: As established in Section 3.4, the diversity of any ensemble  

base learners is crucial to the successful of the meta-model. Since there was no established 

standard defined for diversity, This research developed a new concept for diversity called 

Selection Base on Intuition, Accuracy and Diversity (SAID). SAID uses a minimum 10% 

variance between base learners to determine how base learners will be combined. The 

concept result is promising. 
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3. Stacked Ensemble Model: Although the techniques of stacked ensemble principle has 

been around for decades, this research work presents the first application of  this technique 

to weather recognition from still images.  

Furthermore, when the result of the meta-learner of the constructed stacked ensemble 

model is compared with the individual base model’s result that makeup the stacked 

ensemble model. It was observed that the meta-learner outperformed its base-learners. 

In conclusion, the research presents academic and practitioners a new insight into diversity of 

heterogeneous stacked ensemble methods for solving the challenges of weather recognition from 

still images. 

 

5.2 RECOMMENDATION  

This section highlighted the challenges faced during the course of this research work and also 

provide suggestions on how to tackle such challenges in the future. 

 

5.2.1 LIMITATION OF THE STUDY 

This research work is not void of some limitations. Without a doubt, a few strategies that might 

have helped in getting better execution have not been attempted. For instance, in the study there 

was no use of any data geometric transformation  or segmentation techniques to our input. Toward 

the start of the investigation phase, an endeavor was made to apply data geometric transformation 

concept of extricating crops from the weather images; specifically 5 cropped images were mined 

and separated: the focal aspect of the image and the four(4) edges. In any case, during the training 

it was seen that this was not valueable and, moreover, it was observed to be causing overfitting 



    

49 
 

issues. As a result, this process of training was immediately halted because of  the enormous 

computation time it would have required for successful training of the model. Another justification 

for halting the training process was concluded because of the presence of such a large number of 

cropped sky images from the same images whose features might not contributes to the recognition 

or identification of the entire images during the validation phase. In any case, no further attempts 

were made once the working architecture was identified.  

Another impediment of this research work can be seen in the dataset. In reality, the dataset shows 

various deluding images that subscribes in bringing down the performance results; for example, 

vague labelled images, poor images quality, and dark images.  

 

5.2.2 RECOMMENDATION FOR FUTURE WORK  

In view of the result of this research work, we give suggestions for future work;  

We recommend improving the quality of images that made up the dataset,while on the other hand,  

neglecting those images that failed to offer any valuable information to the task but lend itself to 

noise properties. As observed during the cross-validation stage, the quality of the images 

contributes a lot to the final outcome, particularly when training and validating the set that are not 

evenly stable in connection with the distribution of different scenarios. Therefore, the approach of  

either manual or programmed (automatic) recognition of these weather images can be actualized. 

For example, with respect to the manual recognition, human engagement approach could be 

utlilized. Furthermore, internet surfers across the globe could be asked to recognize climate 

conditions among a category of available weather images or, given a climatic condition and a 

catalogs of different weather images, this could be asked to identifyapproached by distinguish from 
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the catalogs of different weather images the most representated of a particular climate to the least 

representated ones, in their view, the better representation of any given weather condition will 

presented. With the aid of programming, automation recognition approach utilized software driven 

programming language to eliminate dark and the non outdoor images or, through the techniques 

of OCR algorithms, to elimate images with text content.  

The further recommends that research should be carried out to see the performance effect of 

increasing the number of classes to be classified for this task.  For example, increasing the number 

of images per class in the dataset could lead to better model understanding of the class image. 

Hence, it is imagined that this could improve model performances because the method utilised 

iterative learning approach of understanding the class dataset, in the manner in which the class 

climatic structures  are represented, as a result, this would made classfication of weather images 

task easy and prevent the conflicting presence of too different characteristics that exhibits itself in 

more than one  weather conditions, as it happens with the no-rain class.  

Based on the findings of this study, It would be fascinating to explore a different kind of input 

source, for example, a video input will change image state to  dynamic state. In this manner, the 

dynamic of rain downpour could be better measured and likely more effectively detected.  

In conclusion, it might be helpful, for gaining an additional insight by considering feature 

visualization to see which features that can used to segregate between different classes.  
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Appendix A: Sample python source codes  

A1: Listing One- Image Downloading Script 

""" 

Filename: image_download.py 

 

Author: Gbeminiyi Ajayi 

 

Description: This script is generic for all image downloads across different platform. This requires 

python api module to work. The script below imports flickr python api developed by James Clarke 

used as interface binder to connect to flickr account. 

""" 
#import python modules 

import  flickr 

import  urllib, urlparse 

import  os, sys 

 

# obtain the commandline augment  

if len(sys.argv)>1: 

    tag = sys.argv[1] 

else: 

    print 'no tag specified' 

 

# downloading image data 

f = flickr.photos_search(tags=tag) 

urllist = [] #store a list of what was downloaded 

 

# downloading images 

for k in f: 

    url = k.getURL(size='Medium', urlType='source') 

    urllist.append(url) 

    image = urllib.URLopener() 

    image.retrieve(url, os.path.basename(urlparse.urlparse(url).path)) 

    print 'downloading:', url 
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A2: Listing: Image Resizing Script  

""" 

Filename: imresize.py 

 

Author: Gbeminiyi Ajayi 

 

Description: This script is part of the pre-processing stage of weather images by resizing different 

images into uniform image dimension of 300px x 240px.  

""" 

from PIL import Image 

import os,sys 

 

def imageResize(path,prefix='IMG'): 

    """Resize the image to 300 x 240 jpg and store them in a new 

directory""" 

 

    print "[*] Fetching jpg image from "+path 

    imList = [os.path.join(path,f) for f in os.listdir(path) if 

f.endswith('.jpg')] 

    i = 0 

    print "[+] Saving Images......." 

    for image in imList: 

        Image.open(image).resize((300,240)).save(image) 

        print "..."+image +" saved resized " 

        i+=1 

 

 

if __name__ == '__main__': 

    print '*******************************' 

    print 'Starting Image Resizing Script' 

    print '*******************************' 

    imageResize(sys.argv[1]) 
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A3: Listing Three: Feature Extraction Script 

""" 

Filename: wfeature.py 

 

Author: Gbeminiyi Ajayi 

 

Description: Pipeline functions for extracting different weather features from each image. The 

features are stored as object using python default library called pickle 

""" 

 
# initialising of python modules 

from PIL import Image, ImageEnhance 

from pylab import * 

from skimage import color, feature 

from scipy.ndimage import filters 

import sift, colorsys 

 

 

# function to extract HSV 

def extract_hsv_features(imList): 

    hfeatures = sfeatures = vfeatures = zeros([len(imList), 128]) 

    # assigning numerica label 0 - H, 1- S, V-2 

    h_labels = slabels = vlabels = zeros([len(imList), ]) 

    for i, im in enumerate(imList): 

        print "...processing ", im 

        im = color.rgb2hsv(array(Image.open(im))) 

        h, s, v = im[:,:,0], im[:,:,1], im[:,:,2] 

        H_hist, h1 = histogram(h.flatten(), bins=128, 

density=True) 

        hfeatures[i] = H_hist 

        h_labels[i] = 0 

        S_hist, h2 = histogram(s.flatten(), bins=128, 

density=True) 

        sfeatures[i] = S_hist 

        slabels[i] = 1 
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        V_hist, h3 = histogram(v.flatten(), bins=128, 

density=True) 

        vfeatures[i] = V_hist 

        vlabels[i] = 2 

        print " finished" 

 

    return hfeatures, sfeatures, vfeatures, h_labels, slabels, 

vlabels 

 

#function to extract  gradient functon based Sobex derivative 

def extract_gradient_features(imList): 

    # assign label 4 for gradient features 

    labels = zeros([len(imList), ]) 

    features = zeros([len(imList), 128]) 

    for i, im in enumerate(imList): 

        im = array(Image.open(im).convert("L")) 

        # print im.shape 

        # Sobel derivative filters 

        imx = zeros(im.shape) 

        filters.sobel(im, 1, imx) 

 

        imy = zeros(im.shape) 

        filters.sobel(im, 0, imy) 

 

        magnitude = sqrt(imx ** 2 + imy ** 2) 

        hist, _ = histogram(magnitude.flatten(), bins=128, 

density=True) 

        features[i] = hist 

        labels[i] = 3 

 

    return features, labels 

 

# function to extract SIFT features 

def extract_sift_features(imList): 

    # assign label 5 for each feature 
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    descriptor = [] 

 

    features = zeros([len(imList), 128]) 

    labels = zeros([len(imList), ]) 

    for i, feat in enumerate(imList): 

        sift.process_image(feat, feat[:-3]+'sift') 

        loc1, descr = sift.read_features_from_file(feat[:-

3]+'sift') 

        # hist, _ = histogram(descr.flatten(), bins=128, 

density=True) 

        # print descr.shape 

        descriptor.append(descr.flatten()) 

        # features[i] = hist 

        labels[i] = 4 

 

    return array(descriptor), labels 

 

 

# function to extract SIFT features 

def extract_contrast_features(imList): 

    # assign label 6 for each features 

    labels = zeros([len(imList), ]) 

    features = zeros([len(imList), 128]) 

    for i, img in enumerate(imList): 

        im = Image.open(img) 

        img = array(im) 

        # obtained max and min intensity 

        max = img.max() * 1.0 

        min = img.min() * 1.0 

 

        # compute the image contrast factor 

        factor = (max - min) / (max + min) 

 

        enhancer = ImageEnhance.Contrast(im) 

        im2 = enhancer.enhance(factor) 
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        hist, _ = histogram(im2, bins=128,  density=True) 

        features[i] = hist 

        labels[i] = 5 

 

    return features, labels 

 

 

#function to extract LBP 

def extract_lbp_features(imList, numPoint=24, radius=8, eps=1e7): 

    """ Extraction of local binary pattern with radius 8 x 8 

boxes division""" 

    features = zeros([len(imList), 128]) 

    labels = zeros([len(imList), ]) # assign 7 

    for i, im in enumerate(imList): 

        image = array(Image.open(im).convert("L")) 

        lbp = feature.local_binary_pattern(image, numPoint, 

radius, method='uniform') 

        hist, _ = histogram(lbp.flatten(),bins=128, density=True) 

        features[i] =hist 

        labels[i] = 6 

        # # normalise the histogram 

        # hist = hist.astype('float') 

        # hist /= (hist.sum() + eps) 

 

    return features, labels 
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A4. Listing Four: Feature Object Extractor 

""" 

Filename: extract.py 

 

Author: Gbeminiyi Ajayi 

 

Description: This script reference wfeature.py to extract all the weather features from reference 

dataset. The extracted features are saved as pickle object 

""" 

 
#import python modules 

import os, pickle 

from pylab import * 

import wfeatures as ft 

 

#specify path to the dataset 

path = "dataset2" 

 

#create image list and label from the images 

imlist =[os.path.join(path, f) for f in os.listdir(path) if 

f.endswith('.jpg')] 

labels = [im.split('/')[-1][:2] for im in imlist] 

 

 

print "Processing HSV features....." 

h, s, v, _, _, _ = ft.extract_hsv_features(imlist) 

 

print "Processing gradient features....." 

grad, _ = ft.extract_gradient_features(imlist) 

 

print "Processing SIFT features....." 

sf, _ = ft.extract_sift_features(imlist) 

 

print "Processing Contrast features....." 

contrast, _= ft.extract_contrast_features(imlist) 
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# 

print "Processing LBP features....." 

lbp, _ = ft.extract_lbp_features(imlist) 

 

#Save weather features as pickle object 

with open('features.pkl','wb') as f: 

    pickle.dump(h, f) 

    pickle.dump(s, f) 

    pickle.dump(v, f) 

    pickle.dump(grad, f) 

    pickle.dump(sf, f) 

    pickle.dump(contrast, f) 

    pickle.dump(lbp, f) 

    pickle.dump(labels, f) 

 

 

print "Features extracted and saved as features.pkl" 
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A5. Listing Five: Stacked Model Script 

""" 

Filename: stack.py 

 

Author: Gbeminiyi Ajayi 

 

Description: The script implements stacked ensemble method described in chapter three. This 

script imports all the base learners and the meta-classifier. The extracted features stored as object 

are referenced by importing into the memory for creating trained library for classification of 

weather images. The dataset was divided into dev and test. The dev dataset was training the 

heterogenous stack algorithm while the test is the unseen dataset. Finally, the script output result 

is as follows: 

1. Feature Performance, and  

2. Weather image classification. 

""" 

 
#import sklearn libraries and other custom modules  

from sklearn.cross_validation import StratifiedKFold 

from sklearn.svm import SVC 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn import metrics 

from sklearn.model_selection import cross_val_score, train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

from sklearn.ensemble import RandomForestClassifier, 

ExtraTreesClassifier, GradientBoostingClassifier, AdaBoostClassifier 

import matplotlib.pyplot as plt 

import numpy as np 

import pickle 

import itertools 

 

 

# creation of stacked classifier 

def stack_classifier(data, label): 

 

    X, y = data, label 

 

    # The DEV SET will be used for all training and validation 

purposes. 80% of the images were used . 

    # The TEST SET will never be used for training, it is the unseen 

test 

    dev_cut = len(y) * 4/5 

    X_dev = X[:dev_cut] 

    Y_dev = y[:dev_cut] 
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    X_test = X[dev_cut:] 

    Y_test = y[dev_cut:] 

 

    n_trees = 100 

    n_folds = 5 

 

 

    # Ready for cross validation 

    skf = list(StratifiedKFold(Y_dev, n_folds)) 

 

 

    # Our level 0 classifier i.e. Base learners 

    clfs = [ 

 

        RandomForestClassifier(n_estimators=n_trees, criterion='gini', 

n_jobs=-1), 

        # ExtraTreesClassifier(n_estimators=n_trees, criterion='gini', 

n_jobs=-1), 

        KNeighborsClassifier(n_neighbors=5), 

        SVC(kernel='rbf'), 

        # GaussianNB(), 

        # GradientBoostingClassifier(n_estimators=n_trees) 

 

    ] 

 

    # Pre-allocate the data 

    stack_train = np.zeros((X_dev.shape[0], len(clfs))) 

    stack_test = np.zeros((X_test.shape[0], len(clfs))) 

 

 

    # For each classifier, we train the number of fold times 

(=len(skf)) 

 

    for j, clf in enumerate(clfs): 

        print "Training classifier [%s]" %(j) 
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        stack_test_j = np.zeros((X_test.shape[0], len(skf))) 

        for i, (train_index, cv_index) in enumerate(skf): 

            print "Fold [%s]" %(i) 

 

            # This is the training and validation set 

            X_train = X_dev[train_index] 

            Y_train = Y_dev[train_index] 

 

            X_cv = X_dev[cv_index] 

            Y_cv = Y_dev[cv_index] 

 

            clf.fit(X_train, Y_train) 

 

            # This output will be the basis for our blended classifier 

to train against 

            # which is also the output of our classifier 

            stack_train[cv_index, j] = clf.predict(X_cv) 

            stack_test_j[:, i] = clf.predict(X_test) 

 

        # Get the mean predictions of the cross validation sets 

        stack_test[:, j] = stack_test_j.mean(1) 

 

    print 'Y_dev.shape = %s' %(Y_dev.shape) 

 

    return stack_train, stack_test, Y_dev, Y_test 

 

 

def plot_confusion_matrix(cm, classes, 

                          normalize=False, 

                          title='Confusion matrix', 

                          cmap=plt.cm.Blues): 

    """ 

    This function prints and plots the confusion matrix. 

    Normalization can be applied by setting `normalize=True`. 

    """ 
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    if normalize: 

        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

 

    print(cm) 

 

    plt.imshow(cm, interpolation='nearest', cmap=cmap) 

    plt.title(title) 

    plt.colorbar() 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    fmt = '.2f' if normalize else 'd' 

    thresh = cm.max() / 2. 

    for i, j in itertools.product(range(cm.shape[0]), 

range(cm.shape[1])): 

        plt.text(j, i, format(cm[i, j], fmt), 

                 horizontalalignment="center", 

                 color="white" if cm[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('Labels') 

    plt.xlabel('Predictions') 

 

 

 

def classifier (features, Y_dev, test, Y_test, 

weight=False,cnf_matrix=False, feature_name=None): 

    if cnf_matrix is True: 

        clf = GradientBoostingClassifier(n_estimators=100) 

        # clf = SVC(kernel='rbf') 
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    else: 

        clf = SVC(kernel='linear') 

 

 

    # train the classifier 

    clf.fit(features, Y_dev) 

     

    # xg_train = xgb.DMatrix(features, label=Y_dev) 

    # xg_test = xgb.DMatrix(test, label=Y_test) 

     

    # # setup parameter for the xgboost 

    # param = {} 

    # 

    # param['eta'] = 0.1 

    # param['max_depth'] = 6 

    # param['silent'] = 1 

    # param['nthread'] = 4 

    # param['num_class'] = 6 

    # 

    # watchlist = [(xg_train, 'train'), (xg_test, 'test')] 

    # num_round = 5 

     

    # clf = xgb.train(param,xg_train,num_round, watchlist) 

 

 

    # Predict now 

    Y_predict = clf.predict(test) 

    score = metrics.accuracy_score(Y_test, Y_predict) 

    if weight is True: 

        print "%s Weight = %s " % (feature_name, clf.coef_) 

        print "%s Accurary = %s" % (feature_name, score) 

 

    # Features Ranking 

    if cnf_matrix is True: 

        # Compute confusion matrix 
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        cnf_matrix = metrics.confusion_matrix(Y_test, Y_predict) 

        np.set_printoptions(precision=2) 

 

        # Plot normalized confusion matrix 

        plt.figure() 

        plot_confusion_matrix(cnf_matrix, classes=class_names, 

normalize=True, 

                              title='Confusion Matrix') 

        # plot_features(features) 

 

    else: 

        return score 

 

def plot_features(scores): 

    label = ('Hue', 'Saturation', 'Value', 'Gradient', 'LBP', 

'Contrast') 

    y_pos = np.arange(len(label)) 

    plt.figure() 

    plt.title('Feature Accuracy') 

    plt.bar(y_pos, scores, color='b', align='center', alpha=0.5) 

    plt.xticks(y_pos, label) 

    plt.ylabel(' Classification Accuracy') 

 

 

def other_method(X, y): 

    print "training lenght ", len(X) 

    print "label length ", len(y) 

 

    n_trees = 100 

    clfs = [ 

 

        KNeighborsClassifier(n_neighbors=5), 

        SVC(kernel='rbf'), 

        GaussianNB(), 
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        RandomForestClassifier(n_estimators=n_trees, criterion='gini', 

n_jobs=-1), 

        ExtraTreesClassifier(n_estimators=n_trees * 2, 

criterion='gini', n_jobs=-1), 

        # AdaBoostClassifier(n_estimators=n_trees) 

        GradientBoostingClassifier(n_estimators=n_trees) 

    ] 

 

 

    for clf, clf_label in zip(clfs,['KNN','SVM','Native Baye','Random 

Forest',' Extra Tree', 'Gradient Boost']): 

        # clf.fit(X_train, y_train) 

        # score = clf.score(X_test,y_test) 

        score = cross_val_score(clf, X=X, y=y, cv=5, 

scoring='accuracy') 

        print "%s Accuracy: %0.2f (%0.2f)" % (clf_label, score.mean(), 

score.std()) 

 

 

 

if __name__ == '__main__': 

 

    # extract features from the saved pickle data 

    with open('features2.pkl', 'rb') as f: 

        hfeatures = pickle.load(f) 

        sfeatures = pickle.load(f) 

        vfeatures = pickle.load(f) 

        gfeatures = pickle.load(f) 

        # sifeatures = pickle.load(f) 

        cfeatures = pickle.load(f) 

        lfeatures = pickle.load(f) 

        labels = pickle.load(f) 

 

    # convert label string to numeric 

    label_encoder = LabelEncoder() 



    

74 
 

    label_encoder.fit(labels) 

    labels = label_encoder.transform(labels) 

 

    original_features = 

np.concatenate((hfeatures,sfeatures,vfeatures,gfeatures,cfeatures,lfea

tures), axis=1) 

 

    class_names = label_encoder.classes_ 

 

    # Train each features 

    hue_stack_train, hue_stack_test, Y_dev, Y_test = 

stack_classifier(hfeatures, labels) 

    sat_stack_train, sat_stack_test, Y_dev, Y_test = 

stack_classifier(sfeatures, labels) 

    val_stack_train, val_stack_test, Y_dev, Y_test = 

stack_classifier(vfeatures, labels) 

    gra_stack_train, gra_stack_test, Y_dev, Y_test = 

stack_classifier(gfeatures, labels) 

    # sif_stack_train, sif_stack_test, Y_dev, Y_test = 

stack_classifier(sifeatures, labels) 

    con_stack_train, con_stack_test, Y_dev, Y_test = 

stack_classifier(cfeatures, labels) 

    lbp_stack_train, lbp_stack_test, Y_dev, Y_test = 

stack_classifier(lfeatures, labels) 

 

    # generate individual feature accuracy 

    hue = classifier(hue_stack_train, Y_dev, hue_stack_test,  Y_test, 

feature_name='Hue') 

    sat = classifier(sat_stack_train, Y_dev, sat_stack_test,  Y_test, 

feature_name='Saturation') 

    va = classifier(val_stack_train, Y_dev, val_stack_test,  Y_test, 

feature_name='Value') 

    gra = classifier(gra_stack_train, Y_dev, gra_stack_test,  Y_test, 

feature_name='Gradient') 
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    # classifier(sif_stack_train, Y_dev, sif_stack_test,  Y_test, 

feature_name='SIFT') 

    lbp = classifier(lbp_stack_train, Y_dev, lbp_stack_test,  Y_test, 

feature_name='LBP') 

    con = classifier(con_stack_train, Y_dev, con_stack_test,  Y_test, 

feature_name='Contrast') 

 

    # concatenate the stacked trained features and test features 

    features = np.concatenate((hue_stack_train, sat_stack_train, 

val_stack_train, gra_stack_train,  con_stack_train, lbp_stack_train), 

axis=1) 

 

    test = np.concatenate((hue_stack_test, sat_stack_test, 

val_stack_test, gra_stack_test, con_stack_test, lbp_stack_test), 

axis=1) 

 

 

    # start blending 

    classifier(features, Y_dev, test, Y_test, cnf_matrix=True, 

feature_name="Stacking") 

 

    other_method(original_features, labels) 

     

     

    plot_features([hue, sat, va, gra, lbp, con]) 

 

    plt.show() 

    # # Other methods 

    # # print len(labels) 

    # print len(features) 
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