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Abstract.  

Can WhatsApp be used as an educational computer system? This question had 

not been answered conclusively by current research and was a global imperative 

for the computers and education research and practice communities given that 

over a quarter of the entire world’s population used WhatsApp. To advance the 

field, educational theory and practice and to give meaning to WhatsApp in edu-

cation, empirical quantitative evidence was gathered with a questionnaire to 

measure mobile collaborative learning on WhatsApp. The results indicated that 

increased collaboration on WhatsApp improved academic achievement and im-

proving other key aspects such as active learning, trust, support, formality, inter-

action and interdependence enhanced collaboration and, in turn, improved aca-

demic achievement. The study advanced educational computer theory and mobile 

collaborative learning theory and provided evidence-based learning design 

guidelines for incorporating WhatsApp into learning programs for improved ac-

ademic achievement. 

Keywords: Cooperative/collaborative learning, Mobile learning, Post-second-

ary education, Social Media, 21st century abilities 

1 Introduction 

The study asked the question, can WhatsApp be used as an educational computer sys-

tem? This question was significant and relevant to educators and domain researchers 

globally, since there were about two billion active WhatsApp users globally as at Oc-

tober 2020, which made WhatsApp most widespread social media application behind 

Facebook and YouTube [1] and accounted for over a quarter of the entire world’s pop-

ulation. This included students throughout the global tertiary education community and 

offered educators worldwide a free-to-use computer system with a large student user 

base that was already familiar with the application.  

To this end, theory development by the research community is necessary to inform 

educational practice about the design, not specifically WhatsApp software design but 

educational program and activity design on WhatsApp, and use decisions required for 

realizing an effective WhatsApp educational computer system. 
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Recent research has begun to develop such theory, but to date it remains ambivalent, 

as is evident in contrasting research reporting that WhatsApp may improve learning [2–

4] and WhatsApp may not [5–7]. Thus, conducting scientific research on and develop-

ing theory relating to WhatsApp and academic achievement was essential for advancing 

the field of computers and education and its sub-fields of social media and academic 

achievement, mobile collaborative learning (MCL) and mobile learning (m-learning). 

Furthermore, the study builds requisite meaning among the international research and 

education communities, where evidence-based knowledge is produced on the relation-

ships between technological progress and educational goals. Following a positivistic 

epistemology, the study develops original knowledge to answer the research question 

by gathering quantitative data using a questionnaire from relevant students. 

The study advances current research. It addresses questions about the role of social 

media in supporting academic goals and responds to the requests for new research on 

the use of social media applications and their impact on academic achievement [8], it 

explores situated social media practices contextualized within a specific social media 

platform [9], it sets out to test whether generalized findings about social media and 

academic performance hold for WhatsApp [10] and it investigates MCL using 

WhatsApp [11, 12]. 

This section stated the study’s problem, question and objective and explained its 

significance and contribution to the research field, educational practice and theory ad-

vancement. Following is the rigorous instrument development process and initial struc-

tural model. Section Three details the rigorous empirical method for answering the re-

search question and provides guidance for replication studies. Section Four presents the 

study’s results and explores their implications. Section Five clarifies the study’s contri-

bution to theory progression, exposes the study’s limitations and offers opportunities 

for further advancement of the field. 

2 Theoretical framework 

Without there being any prior research on the specific constructs and their interrelation-

ships, theoretical framework, involved in MCL on WhatsApp and academic achieve-

ment, the study proceeded to review and evaluate instruments in the literature that 

measured collaboration from various fields and perspectives. Those that had high reli-

ability, applicability and construct validity were retained and input into the instrument 

development process, which was guided by the MacKenzie et al. [13] scale develop-

ment framework. The process resulted in a theoretical framework of ten constructs ap-

plicable to the research problem with six measurement items per construct and an initial 

structural model (see Fig. 1) [14]. The ten constructs were Active Learning (AL), Sup-

port (S), Interdependence (ID), Interaction (IA), Formality (F), Sense of Community 

(SC), Trust (T), Information Exchange (IE), Collaboration (C) and self-reported Aca-

demic Achievement (AA). 
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The study defined each of the constructs as follows. Support (S) is the level of learn-

ing-related assistance and help that is provided to a student by other students on 

WhatsApp. Interaction (IA) is the level of learning-related engagement and reciprocal 

action, such as sharing, discussing, meeting and chatting, between two or more students 

on WhatsApp. Sense of Community (SC) is the level of belonging to a WhatsApp learn-

ing-related group having common goals, needs and interests. Information Exchange 

(IE) is the level of learning-related information exchanged during learning on 

WhatsApp. Interdependence (ID) is the level of condition or contingency on other stu-

dents for learning on WhatsApp. Active Learning (AL) is the level of WhatsApp learn-

ing activities involving meaningful and applied learning activities and is contrasted 

with passive learning. Formality (F) is the level of serious and academically correct 

learning-related engagement on WhatsApp between students by virtue of their language 

in contrast to relaxed and casual engagement. Trust (T) is the level of confidence that a 

student has in other students when learning on WhatsApp. Collaboration (C) is the level 

of contributing and working jointly on WhatsApp to attain shared learning goals. Aca-

demic Achievement (AA) is typically measured by actual student grades obtained from 

writing a test or examination [15]. However, the study could not obtain access to actual 

grade information for each of the respondents and therefore defined Academic 

Achievement (AA) as the level of a student’s self-reported academic achievement. 

Fig. 1. Initial measurement and structural model. 

Since there was no knowledge or theoretical framework available in the literature 

that specified how these constructs interrelated and it was clear from the literature eval-

uation that these were key constructs involved in collaboration and collaboration on 

WhatsApp, the study, at this point, hypothesized that Collaboration (C) influences self-

reported Academic Achievement (AA) and the other eight constructs influence Collab-

oration (C). These hypotheses are described in the study’s initial structural model (see 

Fig. 1). 
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3 Method 

3.1 Strategy and sampling 

The study followed a rigorous positivistic research pattern where primary empirical 

quantitative data was collected using a questionnaire [16]. The data was gathered from 

students in two English medium tertiary education institutions located in the Free State 

province in South Africa. Judgement/purposive sampling was used to select respond-

ents that matched the profile required to address the research problem [17]. The re-

spondents included undergraduate (first- to third-year level) and honours (fourth-year 

level) students. The sampled students provided relevant data from both academic and 

vocational qualifications and many different qualification types for breadth of student 

characteristics and representativeness.  

Before any data was collected, written permission was obtained from each of the 

institutions, ethical clearance was obtained from the researchers’ university and each 

respondent was required to acknowledge informed consent before submitting their 

questionnaire responses.  

Data collection for the main study began in late April 2020 and ended in mid-Octo-

ber 2020 with 393 completed and usable responses from the anonymous Google Forms 

online questionnaire. 393 responses were considered adequate to address the research 

problem using structural equation modelling (SEM) since at least two-hundred re-

sponses is generally considered enough for effective SEM analysis [18]. 

4 Results and discussion 

4.1 Reliability 

To test the questionnaire’s reliability, a pilot study was conducted in early April 2020 

with data from sixteen representative students. The data was analyzed with JASP’s sin-

gle-test reliability analysis. JASP was a free multi-platform open-source statistics pack-

age implemented in R and a series of R packages and developed and continually up-

dated by researchers at the University of Amsterdam [19]. Subsequently, questionnaire 

items were amended and/or dropped, which resulted in improved Cronbach's alpha val-

ues and acceptable reliability of the final set of questionnaire items [20]. Thereafter, the 

main study was conducted and the Cronbach’s alpha values for each construct based on 

the main study data are provided in Table 1. 

Table 1. Cronbach’s alpha reliability analysis – main study. 

Construct Cronbach Alpha 

(AA) Academic Achievement 0.946 

(S) Support 0.927 

(IE) Information Exchange 0.925 
(SC) Sense of Community 0.923 

(C) Collaboration 0.914 

(AL) Active Learning 0.899 
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Construct Cronbach Alpha 

(T) Trust 0.888 

(IA) Interaction 0.884 
(F) Formality 0.862 

(ID) Interdependence 0.821 

4.2 Data handling 

Once the main study data had been collected, data cleaning was performed to identify 

and address any errors or inconsistencies due to corrupted data or inaccurate data entry. 

The only changes that were made to the data were in the respondent characteristics 

section of the questionnaire. These changes included correcting misspelled home lan-

guages, modifying the spelling and descriptions of qualifications, and similar. All 

changes maintained the original meaning of the data. Once cleaned, the data was im-

ported into JASP for all subsequent statistical analyses. 

4.3 Respondent characteristics 

Almost two-thirds of the students were female, most students were between the ages of 

19 and 24 years old, most of the respondents spoke Sesotho and isiZulu, over eighty 

percent were registered for bachelor’s degrees with a comparatively even distribution 

across first to fourth year course levels and over a third spent from one to five hours 

per week on WhatsApp learning with other students. In addition, most students used 

smartphones at home to learn on WhatsApp and the most frequent barriers to learning 

on WhatsApp were the cost of data, places with no signal for internet connectivity, 

places without electrical plug points for charging their devices and places without freely 

available Wi-Fi hotspots. 

4.4 Exploratory factor analysis (EFA) 

Exploratory factor analysis (EFA) is a statistical technique for exploring the underlying 

factor structure in a data set and was used to demonstrate whether the items in the ques-

tionnaire loaded onto the research model constructs [21] and to assess construct, con-

vergent, discriminant and face validity [22]. 

Prior to conducting the EFA, a Kaiser-Meyer-Olkin (KMO) test was performed to 

assess the data set’s suitability for EFA. The overall KMO value calculated was 0.95, 

which demonstrated strong correlation among the items and justified proceeding with 

the EFA. 

Initially, Principal Component Analysis (PCA) was run with varimax rotation, since 

it is a widely used variable-reduction technique that results in a concise number of prin-

cipal components with eigenvalues above one [23] and that represent the majority of 

the variance within the data set [21]. The outcome was nine principal components (see 

Table 2). 
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Table 2. Principal component characteristics. 

No. Eigenvalue  Proportion var.  Cumulative  

PC1  
 

18.037  
 

0.451  
 

0.451  
 

PC2  
 

2.619  
 

0.065  
 

0.516  
 

PC3  
 

2.107  
 

0.053  
 

0.569  
 

PC4  
 

1.772  
 

0.044  
 

0.613  
 

PC5  
 

1.538  
 

0.038  
 

0.652  
 

PC6  
 

1.351  
 

0.034  
 

0.686  
 

PC7  
 

1.270  
 

0.032  
 

0.717  
 

PC8  
 

1.064  
 

0.027  
 

0.744  
 

PC9  
 

1.016  
 

0.025  
 

0.769  
 

The PCA indicated that only nine principal components accounted for most of the 

variance in the data, instead of the expected ten per the initial measurement and struc-

tural model. In addition, the PCA calculated the loadings of each questionnaire item 

onto the nine principal components. A factor loading of above 0.4 is generally regarded 

as a good loading [24], so loadings less than or equal to 0.4 were excluded from the 

analysis. Based on the PCA, it was decided to drop the construct Sense of Community 

(SC) as it was evident that all four items relating to SC loaded onto both components 

PC1 and PC4. However, PC1 also had all four items relating to the construct Support 

(S) loaded onto it, but with higher loadings than any of the SC items and PC4 also had 

all four items relating to the construct Active Learning (AL) loaded onto it, but with 

higher loadings than any of the SC items. This indicated that the SC items and SC 

construct could be removed since they did not load uniquely and had weaker loadings 

than the other construct items that loaded onto PC1 and PC4. The construct Sense of 

Community (SC) was removed from the initial measurement and structural model and 

all data relating to the four Sense of Community (SC) items were excluded from further 

analyses [24]. 

Thereafter, the often preferred EFA method called Principal Axis Factoring (PAF) 

[21] with varimax rotation and loadings above 0.4 was conducted based on nine factors 

indicated during PCA. The PAF demonstrated that each construct’s set of four ques-

tionnaire items loaded onto a separate factor, which provided support for using the nine-

construct model for the subsequent analyses. 

4.5 Analysis of variance (ANOVA) 

4.5.1 Objectives and requirements 

To determine if there were any significant systematic variances present in any of the 

respondent characteristics, such as age or course level, ANOVA was run [25]. Signifi-

cant systematic variances can provide valuable insights and potentially inform educa-

tors about how to structure their teaching with WhatsApp. 

Homogeneity of variance is an important assumption of ANOVA, which was deter-

mined with Levene’s tests. If the p-value for this test was greater than or equal to 0.05 

(p ≥ 0.05), there was no violation of the homogeneity of variance assumption. However, 
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where p < 0.05, there was a violation, and ANOVA was not conducted because any 

interpretation could be misleading. 

In addition, ANOVA is an omnibus test that simultaneously tests all possible com-

parisons to assess whether a statistically significant difference exists amongst any 

groups, but it cannot specify which groups differ. Specifying the groups that are signif-

icantly different required the Tukey's post hoc test, which necessitates a greater differ-

ence to establish significance since it controls for Type I errors or a true null hypothesis 

being rejected. 

4.5.2 Gender, age range, home language, qualification, course level and 

hours on WhatsApp every week learning 

Focusing on the gender of the respondents, the Levene’s test indicated that ANOVA 

could proceed for constructs IA, S, ID, T, AL, IE, C and AA (p ≥ 0.05). However, the 

ANOVA produced no significant differences on any construct for gender (p ≥ 0.05). 

Notably, since the respondents entered either male or female only for gender, an inde-

pendent samples t-test could have been conducted for each construct to determine any 

significant differences. This was done for completeness, and the t-tests confirmed no 

significant differences for gender (p ≥ 0.05). 

Regarding the age range of the respondents, the Levene’s test indicated that ANOVA 

could proceed for constructs IA, S, ID, T, AL, F, IE C and AA (p ≥ 0.05) and the 

ANOVA indicated that there were significant differences (p < 0.05) on the constructs 

IA, T, AL, IE and C only.  

For construct IA, T and AL, Tukey’s test showed that there were significant differ-

ences (p < 0.05) between the groups 19 to 24 years old and 35 to 39 years old and 

between the groups 25 to 29 years old and 35 to 39 years old, which suggests that the 

35 to 39 years old age group interacted, trusted and actively learned less on WhatsApp 

than the younger groups as was evident by their lower mean score for these constructs.  

For construct IE, Tukey’s test showed a significant difference (p < 0.05) between the 

groups 25 to 29 years old and 35 to 39 years old, which suggests that the 35 to 39 years 

old age group exchanged less information on WhatsApp than the younger group as was 

evident by their lower mean score for the IE construct.  

However, for construct C, Tukey’s test showed no significant differences between 

any of the groups (p ≥ 0.05). Overall, the ANOVA suggests that the 35 to 39 years old 

age group, who represented less than 1% of the respondents, may have trusted less on 

WhatsApp and interacted, actively learnt and exchanged less information than some of 

the younger groups. Notably, this age group could be at any course level, from first year 

to fourth year, so these results are independent of the course level findings. 

For the home language of the respondents, the Levene’s test indicated that ANOVA 

could proceed for constructs IA, S, T, AL, F, IE, C and AA (p ≥ 0.05). Subsequently, 

the ANOVA indicated that there was a significant difference (p < 0.05) on the construct 

AA only and Tukey’s test showed a significant difference between the language groups 

Sesotho sa Leboa and Setswana only for this construct (p < 0.05). While it was not clear 

why there was a significant difference on academic achievement specifically between 
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these two languages and none of the other languages, the descriptive statistics showed 

that Sesotho sa Leboa had a mean of 10.82 and a standard deviation of 4.81 and 

Setswana had a mean of 18.10 and a standard deviation of 2.38. Nevertheless, these 

two languages accounted for only 5.3% of the respondents and further studies with 

much larger samples of these specific language speakers would be required to investi-

gate whether this finding was valid across their broad populations. 

In terms of the qualifications, the Levene’s test indicated that ANOVA could pro-

ceed for constructs IE, C and AA (p ≥ 0.05). However, the ANOVA indicated that there 

were significant differences (p < 0.05) on the constructs IE and AA only and Tukey’s 

test showed significant differences for the construct IE only (p < 0.05).  

Tukey’s test showed significant differences for the construct IE between each of the 

qualifications Bachelor of Science (BSc), Bachelor of Education (BEd), Bachelor of 

Social Sciences (BSocSci), Bachelor of Arts (BA), Postgraduate Certificate in Educa-

tion (FET) (PGCE) and the group Various other bachelor’s and honours degrees, diplo-

mas and certificates (VoDDC). This may be suggestive of information volume differ-

ences between the more traditional bachelor’s degrees and the various other bachelor’s 

and honours degrees, diplomas and certificates, since the VoDDC group had a lower 

mean score on information exchange. 

With reference to course level, the Levene’s test indicated that ANOVA could pro-

ceed for constructs IA, S, ID, AL, IE and C (p ≥ 0.05). The ANOVA indicated that 

there were significant differences (p < 0.05) on the constructs IA, S, IE and C only and 

Tukey’s test agreed on those four constructs (p < 0.05).  

For the IA and IE constructs, Tukey’s test showed a significant difference between 

first-year level and third-year level, with third-year level having a higher mean con-

struct score. For the S construct Tukey’s test showed significant differences first-year 

level and third-year level and between third-year level and fourth-year level, with third-

year level having the highest mean construct score. 

For the C construct Tukey’s test showed significant differences between first-year 

level and third-year level, between first-year level and fourth-year level and between 

second-year level and third-year level, with third-year level having the highest mean 

construct score followed by the second-year level then the fourth-year level and finally 

the first-year level. These results suggest that the more advanced third-year students, 

who represented almost a third of the respondents, made more use of WhatsApp to 

interact, support, exchange information and collaborate. 

In relation to the hours spent on WhatsApp every week learning, the Levene’s test 

indicated that ANOVA could proceed for constructs IA, ID, F, IE, C and AA (p ≥ 0.05). 

ANOVA indicated that there were significant differences (p < 0.05) on the constructs 

IA, ID, F, IE and C only and Tukey’s test agreed (p < 0.05).  

Tukey’s test showed significant differences for the constructs IA and ID between 

group 0 – <1 hour and group 10 - <20 hours and between group 0 – <1 hour and group 

40+ hours, with the group 0 – <1 hour having the highest mean construct score. 
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For the construct F, Tukey’s test showed significant differences between group 0 – 

<1 hour and group 20 - <40 hours and between group 0 – <1 hour and group 40+ hours, 

with the group 0 – <1 hour having the highest mean construct score. 

For the construct IE, Tukey’s test showed significant differences between group 0 – 

<1 hour and each of groups 1 – <5 hours, 5 – <10 hours, 10 - <20 hours, 20 - <40 hours 

and 40+ hours, with the group 0 – <1 hour having the highest mean construct score. 

In addition, for the construct C, Tukey’s test showed significant differences between 

group 0 – <1 hour and each of groups 5 – <10 hours, 10 - <20 hours, 20 - <40 hours 

and 40+ hours, with the group 0 – <1 hour having the highest mean construct score. 

These results suggest that the students who spend between 0 – <1 hour on WhatsApp 

every week learning, experience the most interaction, information exchange, collabo-

ration, formality and interdependence. 

4.6 Structural equation modeling (SEM) 

4.6.1 Objectives and software 

To test and evaluate the research model hypotheses, measure the relationships 

amongst the constructs and answer the research question, SEM was conducted. The 

SEM was processed in JASP, whose SEM module was based on the lavaan package in 

R [26, 27], which was a free open-source commercial-quality statistical package for 

latent variable modeling. 

4.6.2 Initial SEM structural model specification 

The initial SEM structural model was specified using the following hypothesized inter-

relationships and processed using the maximum likelihood (ML) method: Trust (T), 

Interaction (IA), Interdependence (ID), Support (S), Information Exchange (IE), For-

mality (F) and Active Learning (AL) influences Collaboration (C) and Collaboration 

(C) influences Academic Achievement (AA). 

However, the χ2 (absolute/predictive fit Chi-square), RMSEA (root mean square er-

ror of approximation) and TLI (Tucker-Lewis index) or NNFI (non-normed fit index) 

model fit indices (MFIs) were not at acceptable levels and MFIs are necessary to sup-

port claims that the theoretical and structural relations adequately agree with the ob-

served data [28]. Thus, the SEM structural model required re-specification. 

4.6.3 Re-specified SEM structural model 

Re-specification of the SEM structural model was done to achieve acceptable MFIs and 

to ensure that the interrelationships between Active Learning (AL), Formality (F), In-

teraction (IA), Support (S), Information Exchange (IE), Trust (T) and Interdependence 

(ID) were measured.  

The re-specification was guided by the modification indices calculated in JASP. 

Modification indices indicate whether changes such as adding paths to the SEM struc-

tural model would result in improvements and is the Chi-square (χ2) value by which the 
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model fit would improve if the changes were made [29]. Table 3 provides the model fit 

indices for the re-specified SEM structural model. 

Table 3. Re-specified SEM structural model - MFIs. 

MFI Recommended limit Calculated value Acceptable fit? 

χ2 (absolute/predictive fit Chi-
square) 

≤ 3.0 2.905 Yes 

SRMR (standardized root 

mean square residual) 
≤ 0.8 0.045 Yes 

RMSEA (root mean square er-

ror of approximation) 

< 0.06 to 0.08 with 

confidence interval 

0.070 (90% confi-

dence interval = 

0.045-0.095) 

Yes 

CFI (comparative fit index) ≥ 0.95 0.984 Yes 

TLI (Tucker-Lewis index) or 

NNFI (non-normed fit index) 

≥ 0.95 can be 0 > TLI 

> 1 for acceptance 
0.961 Yes 

Given the many significant relationships in the re-specified SEM structural model, 

it is split into two diagrams also for visual ease, namely Diagram One and Diagram 

Two. Diagram One is presented in Fig. 2 and shows how the other constructs influence 

Collaboration (C) and how Collaboration (C) influences Academic Achievement (AA). 

Fig. 2 excludes the interrelationships among the constructs Active Learning (AL), For-

mality (F), Interaction (IA), Support (S), Information Exchange (IE), Trust (T) and In-

terdependence (ID). Diagram One suggests that Collaboration (C) had a strong positive 

influence on Academic Achievement (AA), Active Learning (AL) had a moderate pos-

itive influence on Collaboration (C) and the other constructs with solid lines had weak 

positive influences on Collaboration (C). 

 
Fig. 2. Re-specified SEM structural model – Diagram One. 

Diagram Two is presented in Fig. 3 and shows the influences amongst the constructs 

Active Learning (AL), Formality (F), Interaction (IA), Support (S), Information Ex-

change (IE), Trust (T) and Interdependence (ID). Diagram Two highlights that Formal-

ity (F) and especially Trust (T) were antecedent constructs that positively influenced 

the other constructs, while not influencing each other. This could be due to Trust (T) 
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and Formality (F) being constructs relating to necessary mental dispositions, in contrast 

to Active Learning (AL), Interaction (IA), Support (S) and Information Exchange (IE) 

that relate to subsequent actions. Diagram Two suggests that Trust (T) had a moderate 

to strong positive influence on Active Learning (AL), Interaction (IA), Support (S), 

Information Exchange (IE) and Interdependence (ID) while Formality (F) had a weak 

positive influence on Active Learning (AL) and Interdependence (ID). Thus, Trust (T) 

appeared to be an important requirement for all the constructs, while increased Formal-

ity (F) may be required for Active Learning (AL) and Interdependence (ID). 

Support (S) did not influence any other constructs but was moderately positively 

influenced by Trust (T), Information Exchange (IE) and Interaction (IA), and weakly 

positively influenced by Active Learning (AL). 

Active Learning (AL) had weak relationships with all the other constructs, except 

Trust (T), and was either influenced by or influencing them. Interaction (IA) had weak 

positive influences on Active Learning (AL), Support (S) and Information Exchange 

(IE), Information Exchange (IE) had a weak positive influence on Support (S) and In-

terdependence (ID) had a weak positive influence on Active Learning (AL).  

Diagram Two supports the study’s literature analysis and synthesis which indicated 

that these constructs were associated with collaboration. While the interrelationships 

exposed by the re-specified SEM structural model appear complex, they were theoret-

ically justifiable both at face value and in terms of the literature and construct defini-

tions. The SEM provided evidence of the important constructs and their interrelation-

ships when learning with WhatsApp. 

 
Fig. 3. Re-specified SEM structural model – Diagram Two. 

SEM provided an efficient method for specifying and analyzing the interrelation-

ships among the constructs and tested the hypothesized relationships. In particular, it 

was evident that collaboration had a strong positive influence on self-reported academic 

achievement, active learning a moderate positive influence on collaboration and trust a 

moderate to strong influence on all associated aspects including active learning. 
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5 Conclusion 

The study provided empirical evidence that WhatsApp can be used as an educational 

computer system, which answers an important global question and advances theory and 

educational practice, especially given the size of the WhatsApp user base and its avail-

ability worldwide in educational institutions.  

The evidence that collaboration on WhatsApp improves academic achievement pro-

gresses and corroborates recent studies reporting that WhatsApp may improve learning 

[2–4]. Furthermore, in light of contrasting studies that WhatsApp may not improve 

learning [5–7], the study exposes a replicable, measurable and quantifiable epistemol-

ogy for knowing key constructs and their interrelationships, the theory, involved in 

learning on WhatsApp. In addition, the study furthers understanding about how to de-

sign learning with WhatsApp for improved learning.  

The study moves forward current research, theory and practice by responding to the 

request for new research on the use of social media applications and their impact on 

academic achievement [8], explored situated social media practices contextualized 

within a specific social media platform, namely WhatsApp [9], tested whether general-

ized findings about social media and academic performance hold for WhatsApp [10] 

and investigated MCL using WhatsApp [11, 12]. 

For teaching practice, the findings extend our comprehension of the key elements 

involved in learning on WhatsApp and provide insights into how these elements should 

be designed to produce an educational computer system and improve academic 

achievement. It would be important to design learning activities for a high level of col-

laboration on WhatsApp since there is a positive relationship between collaboration and 

academic achievement. Then, the design should consider the development and mainte-

nance of trust and formality during learning activities on WhatsApp as these aspects 

are indicated as essential for improving active learning, support, interaction and inter-

dependence, all of which influence collaboration. In addition, learning design should 

include specific activities that require students to actively learn, support one another, 

interact and foster interdependence as these would enhance collaboration and, in turn, 

improve academic achievement. Furthermore, educators should design learning activi-

ties differently for different course levels so that first- and second-year level students 

are encouraged more to interact, support, exchange information and collaborate during 

their learning activities, as third year students appear to require less encouragement. 

Also, it may be necessary to provide additional support to older students in the 35 to 39 

years old age group, who may not trust learning activities on WhatsApp and interact, 

actively learn and exchanged less information than the younger groups. Interestingly, 

learning programs making use of WhatsApp should design for short periods on 

WhatsApp only, such as an hour per week, as these time periods appear to be the most 

constructive with high levels of interaction, information exchange, formality, interde-

pendence and collaboration. 

The study did have limitations, which expose new research opportunities. A limita-

tion relates to the study’s sampling method which, while rigorous, relevant and 
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efficient, may constrain generalizability. Future studies could test and advance the the-

ory developed in the study in and across different country, cultural, language and urban 

contexts. In addition, the study’s data was gathered from respondents at one point in 

time, a cross-sectional study, and studying these phenomena on a longitudinal basis 

could expose new knowledge about the interactions amongst the research constructs 

and discover new patterns of student learning behavior. 
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