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Abstract

The ring of real-valued continuous functions on a completely regular frame L is denoted by
RL. As usual, L denotes the Stone-Cech compactification of L. In the thesis we study ideals
of RL induced by sublocales of SL. We revisit the notion of purity in this ring and use it to
characterize basically disconnected frames. The socle of the ring RL is characterized as an ideal

induced by the sublocale of SL which is the join of all nowhere dense sublocales of SL.

A localic map f: L — M induces a ring homomorphism Rh: RM — RL by composition, where
h: M — L is the left adjoint of f. We explore how the sublocale-induced ideals travel along the

ring homomorphism Rh, to and fro, via expansion and contraction, respectively.

The socle of a ring is the sum of its minimal ideals. In the literature, the socle of RL has been
characterized in terms of atoms. Since atoms do not always exist in frames, it is better to
express the socle in terms of entities that exist in every frame. In the thesis we characterize the

socle as one of the types of ideals induced by sublocales.

A classical operator invented by Gillman, Henriksen and Jerison in 1954 is used to create a
homomorphism of quantales. The frames in which every cozero element is complemented (they
are called P-frames) are characterized in terms of some properties of this quantale homomorphism.
Also characterized within the category of quantales are localic analogues of the continuous maps

of R.G. Woods that characterize normality in the category of Tychonoff spaces.

Keywords Frame, locale, sublocale, ideal, quantale, ring of real-valued continuous functions.
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Chapter 1

Introduction and preliminaries

Then main aim in this chapter is to recall the concepts that will be central to the study in the
rest of the thesis. We however do not recall all the concepts here; others will be recalled as and

when needed. It is also here that we fix notation. Our references for frames are [29] and [35].

1.1 A brief history of ideals induced by sublocales

For a Tychonoff space X, the ideals O and M? associated with a point p € X are studied in
detail in the Gillman-Jerison text [24]. They appear to first have been considered by Gillman,

Henriksen and Jerison in [23].

In their study of functions with compact support in [28], Johnson and Mandelker generalized
these types of ideals so that they are indexed by all subsets (instead of just points, or singleton)
of BX. In [18], Dube extended the idea of Johnson and Mandelker to locales. With each
sublocale A of AL, he defined the ideals M* and O* by

M* ={a € RL|ACclg(rp(coza))}

and

OA = {Oé €RL | A Q intﬁL ClgL(T’L(COZ Oé))},

where r; denotes the right adjoint of the join map \/: L — L. He used these ideals mainly for
purposes of studying what he called P-sublocales, but he did not explore the properties of these
ideals that we do in the thesis.



1.2 Synopsis of the thesis

In Chapter 1 we recall most of the background material from frames and locales that we shall
need for the rest of the thesis. There are no proofs in this chapter because what appears in it is

already available in the literature. It is also in this chapter that we fix notation.

All our frames in the thesis are assumed to be completely regular, except in a few instances
where we explicitly state that complete regularity is not assumed. Similarly, all spaces are
Tychonoff, which is to say they are completely regular and Hausdorff. We start Chapter 2 by
recalling how the O- and M-ideals of the ring RL of real-valued continuous functions on a
frame L are defined. As done in the paper where these ideals were introduced, we use the same
notation O and M* as in spaces. There is no danger of confusion because the index (which is

the superscript, in this case) makes its clear where the ideal resides.

Although the ring C'(X) of real-valued continuous functions on a Tychonoff space X is isomorphic
to R(2(X)) via the isomorphism ¢y : C(X) — R(2(X)) that sends an f € C'(X) to the element
of R(Q(X)) that maps as f~1, it is not immediate what, for a subset A C 3X, the image of the
ideal of C'(X) associated with A looks like. In Chapter 2 we show how the O- and M-ideals of
C(X) are related to those of R(€2(X)) via this ring isomorphism. We also consider some basic

properties of these ideals.

Still within Chapter 2, we revisit purity of ideals of RL. It is apposite to mention that pure
ideals of RL were shown in [16] to be precisely the O-ideals associated with closed sublocales
of SL. Since different sublocales of SL can induce the same ideal, it does not mean that a
non-closed sublocale cannot induce a pure ideal. We characterize when an arbitrary sublocale
induces a pure ideal. A closed sublocale of L need not be closed in SL, and hence need not
induce a pure ideal. We characterize the fames L for which every closed sublocale of L induces
a pure ideal. The chapter closes with a characterization of basically disconnected frames via

purity.

In Chapter 3 we study how an ideal associated with a sublocale travels forwards and backwards
across a ring homomorphism induced by a localic map. More precisely, let f: L — M be a
localic map and let h: M — L be its left adjoint. Then, exactly as in spaces, f has a Stone
extension ff: L — BM. So, given a sublocale A of 5L, we have its direct image §f[A] which
is a sublocale of BM. Thus, we have the ideals O? and MPFA of RM. Oppositely, given a



sublocale B of SM, we have its pullback (8f)_;[B] which is a sublocale of 5L, and the ideals of
R L associated with this sublocale.

For the ring homomorphism Rh: RM — RL, we have the ideal Rh~'[O"] which we then
compare with the ideal O?/1Y and similarly for the M-ideals. On the other hand, we compare
the ideal O¥)-11B] to the ideal of RL generated by Rh[O®], and similarly for the M-ideals.
There are (somewhat) expected containments and some rather surprising inequalities. Regarding
equalities, the localic versions of functions that were introduced by R.G. Woods [41] in his study
of normality in Tychonoff spaces play a rather unexpected role. In this regard, we have actually
started the chapter by developing some results concerning such localic maps. In the last section

of the chapter, the localic results are interpreted in C'(X).

The main gist of Chapter 4 is about a new look at the socle of RL. Unlike in previous papers
such as Dube [15] where the socle of RL was first was studied, here we show that it equals the
sublocale-induced ideal ON4PH) | where Nd(BL) denotes the join of all nowhere dense sublocales
of SL. Thus characterized, it is then easy to give criteria, in terms of sublocales, of when the
socle is zero and also for when it is an essential ideal. The latter is best achieved by computing

its annihilator. It is for this reason that annihilation of ideals is treated first within the chapter.

In Chapter 5, we show how an operator that was introduced by Gillman, Henriksen and Jerison
in 1954 [23] can be used in our context to create a quantale homomorphism. To recall, for any

ideal I of C'(X), the authors of [23] set

A(I) =({elax Z(f) | f € I},

and use this merely as a notation of convenience. We show how to make a similarly defined
A, with domain the lattice of ideals of RL and codomain the frame S(SL)°P of sublocales of
BL a homomorphism of quantales. We study the ramifications of this, and, along the way,
characterize P-frames using an adjunction that arises from the quantale homomorphism. We
also characterize some of the localic versions Woods’” maps mentioned earlier within the category

of quantales.



1.3 Frames and their homomorphisms

A frame is a complete lattice L in which the infinite distributive law

a/\\/S:\/{a/\s | se S}
holds for every a € L and S C L. We denote the bottom element and the top element of L by

07, and 17, respectively. We drop the subscript if it is not necessary to specify the frame. If X
is a topological space, the frame of its open sets is denoted by Q(X).

A mapping h: M — L between frames is called a frame homomorphism if it preserves joins and
binary meets. In particular, frame homomorphisms preserve the top and the bottom elements.

The category of frames and their homomorphisms is denoted Frm.

Every frame homomorphism h: M — L has a right adjoint, which is a mapping h.: L — M
given by

ho(a) = \/{u € M | h(u) < a}.
The right adjoint is exactly the categorical right adjoint if A is viewed as a functor between

posets. It is thus uniquely determined by

hizx) <y <= = <hy).

Some of the properties of h, are:
e ) is surjective iff ho h, = idy, iff h, is injective.
e h is injective iff h, o h = id,, iff h, is surjective.
A frame homomorphism h: M — L is called dense if, for any a € M, the equality h(a) = 0
implies @ = 0. This is so precisely when h,(0) = 0.
The pseudocomplement of an element a € L is the element
a*:\/{xEL|a/\x:O}.

The unary operation (—)* satisfies several properties, including, for every a,b € L and any
family (a; | i € I) of elements of L:
a<b = b"<a, a<a™, (\/ai> = /\af.

An element a is said to be:



e reqular if a = a™*;
e complemented if a V a* = 1,

e dense if a* = 0.

If every element of L is complemented, then L is called a Boolean frame. Boolean frames are
precisely the complete Boolean algebras. It is easy to check that a frame is Boolean if and only

if each of its elements is regular.

An element a € L is rather below an element b € L, written a < b, if there exists an s € L

(called a separating element) such that
aNs=0 and sVb=1.

One checks routinely that a < b if and only if a* Vb = 1. If there is a sequence (z, | € QN[0, 1])
of elements of L, indexed by the rational numbers in the unit interval [0, 1], such that a = o,
b= x; and z, < x5 whenever r < s, then «a is said to be completely below b, written a << b. A
frame is regular (resp. completely regular) if each of its elements is the join of those that are
rather below (resp. completely below) it. Writing it out for the latter case, L is completely
regular if

Va € L, az\/{xéL\x%%a}.

All frames in this thesis are assumed to be completely regular unless if it is specifically stated
otherwise. Likewise, all topological spaces are Tychonoff unless stated otherwise. We write

CRFrm for the full subcategory of Frm consisting of completely regular frames.

A prime element of L is an element p < 1 such that x Ay < p implies z < p or y < p. We
denote by Pt(L) the set of prime elements of L. By the distributive law, p € Pt(L) if and only
if p<1andaxAy=pimpliesz =p or y = p. In regular frames, prime elements are precisely

the elements that are maximal strictly below the top. If X is Ti-space, then

Pt(Q(X)) = {X \ {z} |z € X}.



1.4 The ring RL and the cozero map

Good references for this subsection are [5] and [6]. See also [35, Chapter XIV]. The frame of
reals, denoted £(R), is the (completely regular) frame generated by the ordered pairs (p, q) of

rational numbers subject to the relations

(R1) (@) A(s,t) = (pVs,q A1)
(R2) (p,q) V (s,t) = (p,t) whenever p < s <qg<t
(R3) (p,q) = Vi(s,1) | p<s <t <q}

The ring RL has as its elements frame homomorphisms £(R) — L, with operations induced by
those of QQ as an (-ring. We denote the zero of this ring and its identity by 0 and 1, respectively.
For any Tychonoff space X, C'(X) = R(2(X)).

The cozero map of L is the mapping

coz: RL — L defined by coza =a(—,0)V a0, —),

where

(=0 =\V{p.0)[p<0} and (0,.-)=\/{(0.0) ¢ >0}
The assignment L +— RL is functorial. For any frame homomorphism h: M — L, the ring
homomorphism Rh: RM — RL is given by (Rh)(«) = h e «, and satisfies

coz ((Rh)(a)) = h(coz )

for every a € RM.

We catalogue in a proposition some of the properties of the cozero map that we shall freely use,

sometimes without comment. The proofs can be found in [4].
Proposition 1.4.1. The following hold for any o, 5 € RL.
(1) coza = coz(a?).

(2) coza =0 iff « = 0.



(3) cozf =1 4ff B is invertible in RL.
(4) coz(af) = coza A coz 5.
(5) coz(a+ B) < coza V coz 5.

(6) coz(a® + B?) = coza V coz 3.

An element ¢ € L is called a cozero element if ¢ = coz~y for some v € RL. The lattice of all
cozero elements of L is called the cozero part of L and is denoted by Coz L. It is closed under

finite meets and countable joins. Furthermore, if L is completely regular, then, for any a € L,
az\/{cECozL!cga}:\/{ceCozL]c%%a}.
Here are some characterizations of cozero elements sourced from [6, Proposition 1].
Proposition 1.4.2. The following are equivalent for any a € L.
(1) a € Coz L.
(2) There is a sequence (T, )nen in L such that x,, << a for every n and a =\/, x,.

(3) There is a sequence (an)nen @ L such that a, << an41 for every n and a =\/, a,.

The following properties of the completely below relation will be put to good use in many

instances. They are also sourced from [6].

Proposition 1.4.3. The following hold in any completely reqular frame L.

(1) If a << b, then there ezists ¢ € Coz L such that a << ¢ << b.

(2) If a =< b, then there ezists s € Coz L such that a A s =0 and sV b= 1.

1.5 The Stone-Cech Compactification

A frame L is compact if for every S C L with \/S = 1, there is a finite 7" C § with \/T = 1.
Compact completely regular frames form a coreflective subcategory KCRFrm of CRFrm.



The coreflection of L, denoted SL, is called the Stone-Cech compactification of L. One way of

constructing it, that we shall adopt throughout, is as follows.

An ideal I of Coz L is called completely regular if for every u € I there exists v € I such that
u << v. Then L is the lattice of all completely regular ideals of Coz L. The mapping

ju: BL— L defined by i (I) =\/I

is dense onto, and is the coreflection map to L from compact completely regular frames. Its

right adjoint, denoted 7, is given by

rp(a) ={ce€ CozL | c << a}.

Every element of L is expressible as a join (and, in fact, a union) of ideals of the form rp(a).

Namely,

I= \/T’L(U) = UT’L(U);

uel uel

the join coinciding with the union because it is a join of a directed collection. Some other

properties of the mapping r,: L — BL that we shall frequently use are:

(a) If a << b in L, then rp(a) << r(b) in SL.
(b) If anb=0, then r (aVb)=rr(a)Vryd).
(c) If ¢,d € Coz L, then rr(cV d) =rp(c) Vry(d).

(d) For any I € L, I* = r ((VI)*).

Every frame homomorphism h: M — L has the Stone extension, which is the unique frame

homomorphism fh: fM — [L making the diagram

aM —2 8L
M JL
M h L

commute. Its action on elements I of SM is given by
(Bh)(I) = {c € Coz L | ¢ < h(u) for some u € I}.

8



1.6 Sublocales and localic maps

A frame is also called a locale, especially when frame homomorphisms are not considered as
part of the discussion. Every frame is a Heyting algebra, with the Heyting implication explicitly
given by

a—>b:\/{m€L|a/\x§b}.

A sublocale of a frame L is a subset A C L such that

e for every AC S, ANA €S, and

o foreverya€ Land s€ S, a—s€S.

A sublocale is a frame in its own right, with meets (and hence the partial order) calculated in L.
The lattice of all sublocales of L is denoted by S(L). The meet in this lattice is intersection,
and the join of any collection {S; | € I} C S(L) is given by

\Z»/SZ: {/\M | M C US}

Partially ordered by inclusion, S(L) is a coframe, which is to say for any S € S(L) and any
family (S; | ¢ € I) of sublocales, the distributive law below holds:

Sv ASi= A\(SVS).

The smallest sublocale of L is {1}, and is usually denoted by O. It is called the void sublocale.
If T and S are sublocales, we say T" misses S, or T and S are disjoint, if SNT = O.

A sublocale of L is complemented if it has a complement in S(L). Complemented sublocales are

linear, meaning that if C' is a complemented sublocale, then

cn\/{Siliery=\/{Cns;|iel},

for any family (S; | @ € I) of sublocales. In fact, complemented sublocales are precisely the
linear ones. Unlike the lattice of subspaces of a topological space, S(L) is not always a Boolean
algebra. Thus, in general, not every sublocale has a complement. However, every sublocale S
has a supplement (which is dual to pseudocomplement in frames), denoted L ~. .S or S#  and
given by

LNS=({TeSI)|TvS=L}=\/{ReS(L)|RNS =0}

9



The open and the closed sublocales corresponding to each a € L are, respectively, the sublocales
op(a)={a—zxz|zell={zr|z=a—2} and ¢y (a)=ta={zrel|x>a}l.

We shall at times drop the subscript if there is only one frame under discussion. If a € Coz L,

we say o0(a) is a cozero-sublocale, and ¢(a) is a zero-sublocale.

Some of the properties of open and closed sublocales that we shall freely use are:
e 0(0)=c¢(1)=0 and o(l)=¢(0)=L.
e c(a) Co(b)iffavb=1.
e o(a) Cc(b)iffanb=0.
e o(a)No(b) =0(aAb) and c¢(a)Vc(b)=claAd).

V,o0(a;) = o<\/iai) and ()c(a;) = C(\/ﬂi)-

The closure of a sublocale S of L, denoted S or cly(S), and its interior, denoted S° or intp(S),

are the sublocales

5=fcla) | S C c(a)} = c(/\s) and  5° = \/{o(a) | o(a) C S} = o(/\(L N S)).

In particular, o(a) = ¢(a*) and ¢(a)° = o(a*). A sublocale S of L is dense if S = L. This is the
case if and only if the bottom element of S is the bottom element of L. Every frame has the

smallest dense sublocale, denoted B L, and called the Booleanization of L. As a set,
BL={acL|la=a"}={b"|be L},
and joins in BL are given by .
i/s ()"
for any S C BL. The mapping
br,: L - BL given by bp(z) =2z
is a dense onto frame homomorphism, whose right adjoint is the identical embedding BL — L.

A mapping f: L — M is called a localic map if for every a € L, b€ M, and S C L,

10



(L1) f(AS) = Af[S] (and, in particular, f(1) = 1),

(L2) f(f(b) = a) = b— f(a), and

(L3) f(a) =1 implies a = 1.

We shall write f*: M — L for the left adjoint of f. Of course, f* is a frame homomorphism,
and if h is a frame homomorphism, A, is a localic map. A localic map f: L — M gives rise to

two mappings

fl=]:8(L) = S(M)  and  fq[-]: S(M) = S(L)
given by
fIS1={f(@) |z €S} and [f,4[T]=\/{AeS(L)|AC fT]}

We have that f[—] preserves all joins, and f_;[—| preserves all meets (recall that they are

intersections) and all binary joins, which then makes the mapping
foal=]: S(M)°® — S(L)°P

a frame homomorphism whose right adjoint is the mapping f[—].

For any b € M,

faloa(0)] =0 (f7(b))  and  foifear(b)] = cr(f7(D))-

Remark 1.6.1. Finally, let us mention that we shall consistently write a frame homomorphism
as h: M — L, with M as domain and L as codomain. The reason is that in the Stone-Cech
compactification of L, the frame homomorphism j;: 5L — L (a mapping which plays a most
crucial role here) maps into L, and the corresponding localic map r: L — SL maps out of L.
Since most results we refer to in the literature have homomorphisms L — M, we trust that the

reader will note the swopping of the domain and codomain.

11



Chapter 2

Ideals induced by sublocales

Our aim in this chapter is to show how the ideals of C'(X) associated with subspaces of X are

related to those of RL associated with sublocales of SL.

This will be useful in subsequent chapters. We also present some basic properties of the latter

types of ideals, and undertake a detailed study of purity in the ring R L.

2.1 Relating the O- and M-ideals of C(X) to those of
R{UX))

In this section we recall the definitions of O- and M-ideals of C'(X), and relate them to those
of R(Q(X)). The ideal O is defined by

O = {f € O(X) | A Cintgxclagx Z(f)}.

These ideals are special cases of the ideals O?, for p € X, that are studied extensively in [24].

They were introduced in [28], where the authors also define the ideal
M* = {f € C(X) [ ACclgx Z(f)}.

It is easy to see that O* = ﬂpeAOp and M4 = ﬂpeAMp.

Taking a cue from this, in [18] the author defines for each sublocale A of SL the ideals O and

12



M* of RL by setting
O ={a € RL| ACintg car(rr(coza))}y = {a € RL| A C opr(rp(coza))}

and

M* ={a€RL|AC s (rr(coza))}.

It is clear that for any sublocale A of AL, O C M* = M Z, and for any sublocales A and B
of BL with A C B, OF C 0%, and similarly for the M-ideals. Furthermore, for any family
(Ax | k € K) of sublocales of 5L,

OViex™ = (O*  and  MVeext = (Y M™.
keK keK

Note that if A is a closed sublocale of 5L, say A = ¢g,(I) for some I € SL, then
O ={a e RL |coza € I} = coz []] and M* ={a € RL|ry(coza) C I}.

We comment that usage of the same symbols M and O in both C'(X) and RL will not lead to

confusion because the superscript will always make the context clear.

Recall that a point of a frame L is an element p such that p < 1 and whenever x A y < p then
x < pory<p. Wedenote by Pt(L) the set of all points of L. A one-point sublocale of L is
a sublocale of the form {p, 1} for some p € Pt(L). Let X be a Tychonoff space. We use the
notation of [35] that if A C X and z € X, then A denotes the sublocale of Q(X) induced by A,
and Z denotes the point X \ {z} of Q(X). Since Tychonoff spaces are sober and satisfy the
Tp-axiom, every spatial sublocale of (X)) is of the form A for some A C X. Furthermore, for

any A C X, A is the join of its one-point sublocales; that is,
A=\/{{i 1} |z € A}.
We recall from [5] that if X is a Tychonoff space, then the map

pox: C(X) = R(QX)) given by ox(f) = Qf)

is a ring isomorphism. For use below, we relate the O- and M-ideals of C'(X) to those of
R(2(X)) via this isomorphism. Usage of the same symbols in C'(X) and R(Q(X)) will not lead

to confusion because the superscript makes the context clear. We view X as a subspace of X
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and consider the identical embedding ix: X — SX. The right adjoint of the induced frame
homomorphism Q(ix): Q(5X) — QX maps thus:
Q(ZX>*(U> = 5X AN Clgx(X AN U)

Since Q(8X) is a compact regular frame, we can view the Stone-Cech compactification of the
frame Q(X) as being given by the dense-onto frame homomorphism Q(ix): Q(8X) — Q(X).

So, in the rz-notation for the right adjoint of SL — L, we have ro(x) = Q(ix)..

For any p € 3X, the one-point sublocale {p, 1} of Q(8.X) is the closed sublocale co(sx)(p), hence,
for any a € R(Q(X)),
ae MPY i Qix).(coza) C .

Lemma 2.1.1. For any p € 83X, ox|[M?] = MP1,

Proof. Let f € C(X), and note that coz(Q(f)) = f~(R~ {0}) = X \ Z(f). Thus, in view of
the definition of the ideal M?, we have

feM?r iff peclgxZ(f)
iff  BX N clgx Z(f) € BX ~ {p}
iff  Qix).(coz(px(f))) € P
iff  ox(f) € MY,

which proves the result. O

In [14, Lemma 5.3(2)] it is shown that, exactly as in C'(X), for any frame L, any o € RL, and
any p € Pt(BL), o € O%! if and only if ay = 0 for some v ¢ M ¥ We therefore have the
following corollary, because ¢x: C(X) — R(£2(X)) is an isomorphism.

Corollary 2.1.2. For any p € 5X, ¢x[O"] = o1}

Coming to ideals associated with subspaces, we have the following.

Corollary 2.1.3. For any A C BX, ox[M*] = M* and ox[04] = o”.

Proof. Since M =

MP? and since the set-function ¢x is a bijection, we have

peA
px[M?] = px [ﬂMﬂ = (ex[M?] = (MY = pVHRDREA) = pgd,
pEA pEA pEA
The other equality is shown similarly. ]
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2.2 Basic properties

The O-ideals and M-ideals come with a host of containments that always hold. For instance,

for any sublocale A of L and any sublocale S of L, we always have the containments
o‘*c M* o'cotco”, MY cmMm?
and, similarly,

Os C Mg, Og,is) COs C Oingyis), Ming,(s) C Mg,

which is achieved via the following definition. Please note the slight change in notation —

sublocales appearing as subscripts and not superscripts.

Definition 2.2.1. For any sublocale S of L, we define the ideals Og and M g of RL to be the
ideals Og = O™} and Mg = M"5,

In this section we explore a little more the consequences of requiring some containments that
always hold to be actually equalities. As has been demonstrated elsewhere (in spaces and in

locales), this is not a gratuitous exploration. For instance:

(a) In [33], Mandelker defines a subset A of 3X to be round in case O = M*, and then

develops an interesting theory around round subsets.

(b) In [18], Dube defines a closed sublocale A of L to be a P-sublocale if M 4 = O4. He
then goes on to show that for basically disconnected frames these P-sublocales have some

rather unexpected properties.

We shall see in the next section that the containment O+ C O is an equality precisely when
the ideal O* is pure. This however does not tell us about the localic properties of sublocales A

for which O* = 0%,

Observation 2.2.2. If U is an open sublocale of SL, then OV = oV = MV = MV,
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Proof. Pick I € SL such that U = o(I). Now, for any a € RL, we have

ac M°D it o(I) C ¢(rp(coza))
it I Arp(coza)=0s
ifft I Arp(coza) =0g
iff o(I™) C ¢(rp(coza))
iff o MU

which then says MY = MY, The rest follows because, for any open sublocale V' of SL,
OV = MV, as one checks easily. m

In part of the proof of the first proposition we shall use the fact that if I and J are elements of
BL with I < J, then \/I € J (see [14, p. 156]).

As we shall shortly see, this fails for open sublocales. Also, the O-version of the equivalence in
the preceding paragraph is false; only one implication holds. In the proof that follows, we shall
use the notion of P-element. To recall, an element a € L is called a P-element if the associated

closed sublocale is a P-sublocale.

Proposition 2.2.3. Let L be a completely reqular frame.

(a) If A is a closed sublocale of L with 0" = O, then A is reqular-closed. The converse
does not hold.

(b) If Ais a closed sublocale of L with O s = Oy, (a), then A is reqular-closed. The converse
does not hold.

c 15 an open sublocale o , then = OV iff U is a round sublocale o .
IfU blocale of BL, then OV = OV iff U d sublocale of BL

(d) If U is an open sublocale of L, then Oy = O, ) iff clp(U) is a P-sublocale of L.

Proof. (a) Pick I € BL with A = ¢g(I). Then A° = 05, ([*). Let ¢ € I**. Pick v € RL such
that ¢ = coz~. We show that v € O*". Since I* A I** = 0gy, and since rz(c) < I'™*, we have
I* Arp(c) = 0gp, which implies I* < rp(c¢*), and hence 01,(1*) C 01 (r.(c*)). This containment
implies v € O*°. Therefore, by hypothesis, v € O?, so that csr,(I) C 051 (r1(c*)), whence

re(e)*VI=rp(c)VI=1g,
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that is, r(c) < I, and hence ¢ € I because \/r1(c) = c¢. Therefore I** C I, and hence I = I**.

Therefore A is a regular-closed sublocale of SL.

(b) Pick a € L such that A = ¢(a). Let v € RL be such that cozy < a™*. We show that
¥ € Ohnt,(a)- Recall that intz(c(a)) = o(a*). Since cozy < a**, we have a* < (coz7)*, so
that o(a*) C o((cozv)*), implying v € Oin,(a). So, by hypothesis, v € Oy, which says
¢(a) C o((cozvy)*), so that a V (cozv)* = 1, and hence cozy < a. Thus, by complete regularity,

a** < a, and hence a = a**. This shows that A is regular-closed.

(c) Assume, first, that OV = OU. Then

OU — OU — MU — MU
which shows that U is a round sublocale of L. Conversely, if U is round, then o' =M U, and
S0,

OﬁgOU:MU:MU:Oﬁ,
proving the result.

(d) Assume, first, that Oy = O, (). Pick u € L such that U = oy (u), so that cl;(U) = ¢p(u*).
To show that cly (U) is a P-sublocale of L, it suffices to show that u* is a P-element of L. Consider
any ¢ € Coz L with ¢ < u*, and pick v € RL such that ¢ = coz~y. Then u < u*™* < (coz7)*,
and so or,(u) C or((cozy)*), which says v € O,, (), and so, by hypothesis, v € O, (,+). Thus,
cr(u*) Cop(c*), which implies ¢* V u* = 1, that is, ¢ < u*. Therefore u* is a P-element, and
hence cl;(U) is a P-sublocale of L.

Conversely, assume that cl;(U) is a P-sublocale of L, and consider any v € O,, (). Then
Oo.(w) € Oq((cory)*), and so u < (cozy)*, from which we get cozy < u*. Since u* is a P-
element as ¢z (u*) is a P-sublocale, we have cozy < u*, and so (coz~)* V u* = 1, which implies
cr(u*) C or((cozy)*), whence v € O, (y+). Therefore Oy C Og, (1), and hence Oy = Og, (1)

since the opposite inclusion always holds. [

Here is an example showing that the converse to part (a) of this proposition does not hold.

Example 2.2.4. Let L = Q(R), and consider the element a = (0,1) of L. Since a = a**,
rr(a) = rp(a*) = rp(a)**, and so the closed sublocale A = ¢z (rr(a)) of BL is a regular-closed.

Since every open set in R is a cozero-set, a € Coz L, and so there exists some o € RL such that
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a = coza. Now, a € O* since A° = 031(rz(a*)) = 051 (r1(coza)*). On the other hand, o ¢ O,
otherwise we would have cgp,(rr(a)) C ogr(rr(a*)), which would imply r1(a) V rp(a*) = 1az,

whence we would have aVa* = 1, which is false because a Va* = (0,1)U ((—00,0)U(0,00)) # R.

As an application, we have the following characterization of Boolean frames.

Corollary 2.2.5. The following are equivalent for a frame L.

(1) L is Boolean.
(2) O4 = O, (a) for every sublocale A of L.

(3) Oa = O, (a) for every closed sublocale A of L.

Proof. 1f L is Boolean, then every sublocale of L is open, and hence equals its interior. Therefore
(1) implies (2). It is trivial that (2) implies (3). If (3) holds, then the proposition says every
closed sublocale of L is regular-closed, which says a = a** for every a € L, and this is known to

be equivalent to L being Boolean. O]

In [9, Theorem 2.6], the author proves that if A is a closed subset of X, then the ideal M 4
is finitely generated if and only if A is open. We have the following similar result, but for the

ideal O”. Recall that r;, preserves disjoint binary joins.

Theorem 2.2.6. The following are equivalent for a closed sublocale A of BL.
(1) O% is finitely generated.
(2) O* is a principal ideal generated by an idempotent.
(3) A is open.

Proof. (1) = (3): Take I € BL such that A = ¢g;(I). Suppose that there are finitely many
elements ..., a, in RL such that O = (a4, ..., o). By [13, Lemma 4.4],

\/{coza |a € O} = \/{coz& |a eI} =cozay V-V coza,.
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Set ap = a2 +---+a?. Since ay € OA, we have cozag € I, and so, cozag = \/I € I. Since I is
a regular ideal of Coz L, there exists d € I such that coz ay << d. Since coz ag = \/I, we must

have d = coz ap. This certainly implies I = r(d), whence
IV I = TL(d) V TL(d*) = TL(d\/ d*) = 1,BL

because d V d* = 1. This proves that A is clopen.

(3) = (2): If A is clopen, there exists a complemented element [ of L such that A = ¢z (]).
Then I € Coz L, and so the element ¢ = \/I belongs to Coz L. Furthermore, ¢ is a complemented
element of L because frame homomorphisms send complemented elements to complemented
elements. By [16, Proposition 2.2], there is an idempotent v in RL such that ¢ = coz~y. We
show that O = (v). Since I < I, \/I € I, that is ¢ € I, and therefore v € O*. Now let
o € O4. Then coza € I, and so coza < cozy << coz 7, which means that « is a multiple of ~.

In all then, O = (7).

(2) = (1): This is trivial. O

Remark 2.2.7. The requirement that A be a closed sublocale cannot be relaxed. We shall see
in Lemma 4.2.2 of Chapter 4 that the ideal O* is the zero ideal precisely when A is a dense
sublocale. So, for instance, the ideal O®®) of R(Q(R)) is finitely generated, but B(Q(R)) is

not open.

Since M* = M* for any sublocale A of SL, and since, for any I € SL,

\/{coza o e MDY = \/ coz «

ael

also by [16, Proposition 2.2|, a proof as the foregoing one, with minor modification, enables us

to state the following.

Theorem 2.2.8. The following are equivalent for a sublocale A of SL.

(1) M* is finitely generated.
(2) M* is a principal ideal generated by an idempotent.

(3) A is open.
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2.3 Purity revisited

An ideal I of a ring A is pure (Johnstone [29] says “neat”) if for every u € I thereisa v € I
such that u = uv. We denote the set of all pure ideals of A by PId(A). In [29, Proposition
V. 2.8], Johnstone proves that PId(A) is a frame. The m-operator on the set of ideals of A is
defined by

ml ={u € I |u=uv for some v € I}.

If @ is an ideal of RL, then
m@Q = {a € RL | coza << coz~y for some v € Q},
and @ is pure if and only if m@ = @ [17, Corollary 3.3].

As the heading suggests, our aim in this section is to present further results concerning purity
in function rings. Among other things, we present a transparent description of pure ideals of
the subring R*L of RL consisting of bounded elements. A thorough search in the literature has

revealed that pure ideals of this subring have hitherto not been described.
For the record, in [16] the pure ideals of RL are fully described as
PId(RL) = {O” | A is a closed sublocale of 3L}.

Since for any I € AL and any o € RL, o € O%*D if and only if coz o € I, it is clear that the
mapping A — O is injective on closed sublocales of SL. It is however not necessarily injective
on all sublocales of SL (the reader may peak ahead to Lemma 4.2.2 to see that O is the zero
ideal for any dense sublocale A of SL). So it is possible for O to be pure even if A is not a
closed sublocale of SL.

The upcoming lemma characterizes when the ideals O? and M are pure. We will put it
to good use on a number of occasions. The characterization that O is pure if and only if

o* = OA, which we include as part of this lemma, is also observed in [19].

Lemma 2.3.1. If A is a sublocale of BL, then mO* = mM* = o". Hence, O is pure iff

o = OA, and M is pure iff M* = o*.
Proof. Since o’ C O* C M*, applying the m-operator and keeping in mind that o is pure

since A is a closed sublocale, we obtain

0" = mO* C mO* C mM™.
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Now let a € mM™*, and select v € M* with coza << coz~y. Then rp(coza) < r(coz7), so
that 77 (coza)* V r1(coz7y) = sz, and hence (in light of the fact that v € M* = MY

A - CBL(’/’L(COZ’Y>> C OBL(TL(COZOC)*)7

which implies o € OA, showing that mM* C OA, and hence we have the three claimed

equalities. The latter assertions follow from this. n

Localic characterizations of sublocales A of BL for which O* is pure follow. As in spaces, we

say a sublocale B is a neighborhood of a sublocale A if the interior of B contains A.

Theorem 2.3.2. The following are equivalent for a sublocale A of BL.
(1) O* is pure.
(2) Ewvery zero-sublocale of BL which is a neighborhood of A is also a neighborhood of A.

(3) Whenever A misses the closure of some cozero-sublocale of BL, then A also misses the

closure of that cozero-sublocale.

Proof. (2) < (3): This equivalence follows from the fact that, for any complemented sublocale
S of any frame M, int(M ~ S) = M ~ clS, as can be deduced from [21, Eq. (4.3)], and

zero-sublocales are exactly the complements of cozero-sublocales.

(1) = (2): Suppose that O is pure, so that O* = o4 by Lemma 2.3.1. Consider any
J € Coz(BL) with A C intgg cgr(J). Then A C og(J*). Since J € Coz(BL), \/J € Coz L.
Pick aw € RL such that \/J = coza. Then J* = rp(coza)*. Thus, A C 0sy(r(coza)*), which
implies o € O*, and hence o € O, by hypothesis, whence A C 0gr(rr(coza)*) = intgy car(J).
(2) = (1): Suppose that A has the hypothesized feature. To prove that O? is pure, we need
only show that O* C O*. Let @ € O*. Then A C 0pr(rr(coza)*). Put ¢ = coza, and find a

sequence (¢, )nen Of cozero elements of L such that ¢, << ¢, for every n, and ¢ =/ ¢,. Since

rr(¢) << 11 (Cpg1) for each n, the element J = J, r1(c,) is a cozero element of L with

r=r((\7)) = m((\n/cn)*) — rp(c").

Thus, A C op,(J*) = intgg cpr(J). Since cgr(J) is a zero-sublocale of SL, the hypothesis
implies that A C 0s1,(rz(coz a)*). Therefore v € O*, which establishes the desired containment.

Therefore O? is pure, by Lemma 2.3.1. O]
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Recall from [35, Proposition VI.2.2.1] that each spatial sublocale of a sober space is induced by a
subspace. Recall also that complemented sublocales of a spatial locale are spatial [35, Proposition
VI1.3.3]. Thus, zero-sublocales and cozero-sublocales of 5X are precisely the sublocales induced
by the zero-sets and cozero-sets of X, respectively. Since purity is preserved (and therefore

also reflected) by ring isomorphisms, we therefore have the following corollary.

Corollary 2.3.3. For a Tychonoff space X, the following are equivalent for a subset A of 5X.

(1) O% is pure.
(2) Every zero-set of BX which is a neighborhood of A is also a neighborhood of A.

(3) Whenever A misses the closure of some cozero-set of X, then A also misses the closure

of that cozero-set.

Let us pause for a moment for some bookkeeping. The ideals O and M* are indexed by
sublocales of L. So, when we do not view L as a sublocale of SL, then, strictly speaking, for a
sublocale S of L we cannot speak of O° or M. Tt is however desirable to have similar ideals
indexed by sublocales of L, in such a way that when we do view L as a sublocale of SL, so that

a sublocale of L is then a sublocale of L, then the two concepts agree.

A pleasant observation from [18] is that, for S a sublocale of L, the ideals Og and Mg can be

described solely in terms of L without invoking SL, as follows:

Os={aeRL|SCor((coza)")} and Mg={a€RL|SCcy(coza)}.

Now, viewing L as a sublocale of 8L, if S is a closed sublocale of L, it does not follow that S' is
a closed sublocale of SL. We can thus not simply deduce that the ideal Og is pure. We shall
see that if L is normal, then Og is pure for every closed sublocale S of L. This will be via a
characterization of the frames L for which Og is pure for each closed sublocale S of L. Towards
that end, let us say a frame L is coz-interpolative if whenever a cozero element of L is rather
below some element of L, then it is completely below that element. This strange-sounding
name is justified by the fact that the definition says if ¢ is a cozero element and ¢ < a, then the
relation < is interpolative between ¢ and a. Normal frames are coz-interpolative. Here is an

example of a non-normal coz-interpolative frame.
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Example 2.3.4. Let L be a non-normal basically disconnected frame (see, for instance, the
space described in [24, Problem 6Q)]). Then L is coz-interpolative. To verify this, consider any
¢ € Coz L and a € L with ¢ < a. Then ¢ < a. Since ¢** is complemented as L is basically

disconnected, we have ¢ < ¢** << a, as desired.

Before we proceed to the result for which we have introduced coz-interpolative frames, let us
observe that for F'-frames (recall from [4] that these are the frames L such that if a Ab =0 in
Coz L, then there exist u,v € Coz L such that u Vv =1 and a Au=bAv =0) the concept of

being coz-interpolative is expressible in terms of sublocales.

Theorem 2.3.5. Consider the following conditions on a frame L.

(1) L is coz-interpolative.

(2) Whenever a zero-sublocale Z of L is a neighborhood of a closed sublocale A of L, there is
a cozero-sublocale C of L such that AC C C Z.

Condition (1) implies condition (2), and the two conditions are equivalent if L is an F'-frame.

Proof. Suppose that L is coz-interpolative. Let Z be a zero-sublocale of L which is a neighbor-
hood of a closed sublocale A of L. Pick ¢ € Coz L and a € L with Z = ¢;(c) and A = ¢, (a).
Then ¢ (a) C intr(cr(c)), which says ¢ (a) C or(c*), so that ¢* V a = 1, and hence ¢ < a. Since
L is coz-interpolative, we therefore have ¢ << a. By [6, Corollary 3|, there is a cozero separating
element, that is, an s € Coz L such that cAs = 0 and sV a = 1. Thus, or(c)Nor(s) =0
and ¢z (a) C or(s). The former implies 07(s) C ¢, (c). Therefore the sublocale C' = 0.(s) is a

cozero-sublocale of L with A C C' C Z. Thus, condition (1) implies condition (2).

Now assume that L is an F-frame satisfying condition (2). Consider ¢ € Coz L and a € L with
¢ < a. Then ¢* Va = 1, which implies ¢z (a) C inty(cz(c)). Thus, ¢z (c) is a zero-sublocale which
is a neighborhood of the closed sublocale ¢ (a). By condition (2), there is a cozero element
d of L such that ¢;(a) C or(d) C cr(c). Consequently, a Vd =1 and d A ¢ = 0. Since ¢ and
d are cozero elements and L is an F-frame, there exist v and v in Coz L with vV v =1 and
cAu = 0= dAv. Therefore c is rather below v in the lattice Coz L, which, again by [6, Corollary
3], implies ¢ << v. We however have v < a because a Vd =1 and v A d = 0; so in all then

¢ << a, which proves that L is coz-interpolative. [
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Remark 2.3.6. Recall from [7] that a frame is called an Oz-frame if the pseudocomplement of
every cozero element is a cozero element. See also [25] for some interesting characterizations
of these frames. In terms of sublocales, L is an Oz-frame precisely when the interior of
every zero-sublocale is a cozero-sublocale. Therefore every Oz-frame satisfies condition (2) of

Theorem 2.3.5.

Now here is a characterization of the frames L for which every ideal of the form Og is pure for

every closed sublocale S of L.

Theorem 2.3.7. The ideal Op of RL is pure for every closed sublocale B of L iff L is

coz-interpolative.

Proof. Let a € L and o € RL. From the definition, we know that o € O%%"2(9) if and only if
coz o << a. On the other hand,

a €0 iff cp(a) Cop((coza)”)
iff aV(coza)* =1

iff coza < a.

Therefore O#:(2(@) C O, (a)- So, if L is coz-interpolative, then O°eLre(@) — O, (2), which

then proves that Opg is pure for every closed sublocale B of L.

Conversely, suppose that Op is pure for every closed sublocale B of L. Let a € L and ¢ € Coz L
be such that ¢ < a. Pick v € RL with cozy = ¢. Now, cozy < a implies v € O, () by the
calculation above. Since O, (o) = O™ (@] " and since our hypothesis says this ideal is pure, we
have O":le2 (@] — Qrelec(@)] by Lemma 2.3.1. Since Acz(a) = a, and since r, preserves meets, we

have Arp[c(a)] = rr(a), which then implies

rler(a)] = cgr(rr(a)).

Thus, v € O%L((@) which implies cozy << a; showing that L is coz-interpolative. n

Let us interpret this result in spaces. Recall that if X is a Tychonoff space, then for any
U,V € QX),U <V ifand only if U C V, and U << V if and only if there is a continuous
function f: X — [0,1] such that f(x) =0if x € U and f(x) =1 if x ¢ V. We therefore have

the following corollary.
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Corollary 2.3.8. The ideal O of C(X) is pure for every closed subset A of X iff whenever
the closure of a cozero-set of X is contained in some open subset of X, then the cozero-set and

the complement of that open set are completely separated.

Another immediate corollary to Theorem 2.3.7 is the following. Recall that a topological space

is normal if and only if the frame of its open subsets is normal.

Corollary 2.3.9. If L is normal frame, then Op s pure for every closed sublocale B of L. If

X is a normal space, then Op is pure for every closed subset B of X.

Recall that the subcategory of completely regular Lindelof frames resides coreflectively in
CRFrm [31]. A o-ideal of Coz L is a lattice ideal closed under countable joins. We denote by
AL the frame of o-ideals of Coz L. The mapping Ay, : AL — L that sends an ideal to its join is the
coreflection map to L from Lindel6f completely regular frames. It is a dense C-quotient map(see
[4] for the notion of C- and C*-quotients), and therefore the induced ring homomorphism
R(AL): R(AL) — RL is an isomorphism. Since regular Lindel6f frames are normal, the direct
images under this isomorphism of the pure ideals Op of R(AL), for B a closed sublocale of AL,
are pure ideals of RL. We wish to describe them in terms of the associated closed sublocales
of BL. We do so by first proving a more general result. Recall that a frame homomorphism
h: M — L is said to be coz-surjective if for every ¢ € Coz L there is a d € Coz M such that
h(d) = c.

Recall the Stone extension of a frame homomorphism from Section 1.5 of Chapter 1.

If h: M — L is a dense C*-quotient map, then h is an isomorphism [10, Corollary 2.2], and so

we have the commuting triangle

8L

M h L

where the morphism &y, is defined by ks = jaso (Bh) 71

For use in the upcoming proof, recall from the definition that if [ € SL and o € RL, then

a € 05 <— coza € I.
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Theorem 2.3.10. If h: M — L is a dense C'-quotient map out of a normal frame, then, for
any a € M,
— )sr((Bh)(ra(a))) — ycsr((krar)«(a))
(Rh) [OCM(G)] O o )

where kryr 1s as defined above.

Proof. The second claimed equality follows from the fact that

(kzar)s = (jar o (BR)™Y), = Bhory

because the right adjoint of an isomorphism is its inverse.

Now, to the first equality. For brevity, let us write I, = (8h)(ry(a)). We start by showing
that (RR)[O.,, @] € O%=U*). Let a € O,,(s). Then coza < a, which then implies coza << a
since M is normal. Thus, coza € ry(a). Since coz ((Rh)(a)) = h(coza), it follows that

(Rh)(a) € O%:U«) This proves that (Rh)[O.,, @] € OF:).

For the reverse inclusion, let us first show that for any u,v € Coz M,
h(u) =< h(v) = u=<w. (1)

Since h(u) and h(v) are cozero elements, we know from [6, Corollary 3| that there is a separating
cozero element s in L such that h(u) As =0 and sV h(v) = 1. Since h is a C-quotient map, it is
coz-surjective, and so there is a ¢ € Coz M with h(c) = s. Thus, h(u A ¢) =0 and h(cVv) =1,
which, by density and coz-codensity of h, implies u A ¢ = 0 and ¢V v = 1, so that u << v by 6,
Corollary 3] again.

Now, consider any v € O%tUa) Then cozvy € I,, and so there is a ¢ € Coz M such that ¢ << a
and cozy =< h(c). Since h is a C-quotient map, we can find 4 € RM such that ho7y = 7.
Then h(coz¥) << h(c), and so by (}), cozy << ¢, whence cozy < a, which is to say 7 € O,,(a)-
Since v = (Rh)(7), this shows that O%U+) C (Rh)[O,,,()], and we thus have the claimed
equality. [

Applied to A: AL — L, this theorem takes the form described in the following corollary. It is
not difficult to show that, putting M = AL, (kpa)«(J) = Uyeyre(u), for every J € AL.

Corollary 2.3.11. For any J € AL, R(A\L)[O,, ()] = O%* (UuEJ’"L(“)).

AL
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A more localic (as opposed to frame-theoretic) statement of Theorem 2.3.10 is worth recording.
Recall that a localic map f: L — M is called dense if its left adjoint f*: M — L is dense. Let
us say f is a localic C-embedding if f* is a C-quotient map. We mentioned above the Stone
extension of a frame homomorphism. Similarly, there is a Stone extension of a localic map (see,

for instance, [21]), also denoted Sf.

Corollary 2.3.12. If f: L — M is a dense localic C'-embedding with M normal, then
R(f)[04] = OFDwlAl — @0~ [rartal]

for any closed sublocale A of M.

Proof. Observe that if g: H — K is a localic isomorphism, then g_1[T| = ¢g_[T], for any
sublocale T" of K. So the second equality in the statement of the corollary holds because [ f is an

isomorphism. Now, pick @ € M such that A = ¢js(a). As observed in the proof of Theorem 2.3.7,

rulen(a)] = egnr(ru(a)), so

(Bf)alrmlenm(a)]] = (Bf)-1lesn (rar(@))] = cs((Bf)"(re(a))),

and hence the first equality in the statement of the corollary follows from Theorem 2.3.10

because (Bf)* = B(f*). ]

Let us go back to Theorem 2.3.7. It tells us that if L is coz-interpolative then each ideal of the
form Ogp, for B a closed sublocale of L, is pure. This, however, does not mean that all pure
ideals of RL for such a frame L are of this kind. For that to be the case, the frame needs to be

even more restricted, as the next theorem shows.

Theorem 2.3.13. PIA(RL) = {Og | B is a closed sublocale of L} iff L is compact.

Proof. Assume first that PId(RL) = {Op | B is a closed sublocale of L}. We prove that L is
compact by showing that the localic map r;: L — SL is an isomorphism. Since it is always
injective, we need only show that it is surjective. Consider any I € BL. Since O is pure,
the hypothesis furnishes an a € L such that O+ = O, (a)- Since O,y = O e @l and
since this ideal is pure, Lemma 2.3.1 ensures that O] — Otlr@l Byt now, as observed

in the proof of Theorem 2.3.7, r[c1.(a)] = ¢g1.(rr(a)); so we have O%t0) = Q%L (L@ whence
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¢s(I) = ¢gr(r(a)) because these sublocales are closed. Therefore I = r(a), which shows that

rr, is surjective, as desired.

Conversely, assume that L is compact. Then (since our frames are completely regular) L is
normal, and so, by Corollary 2.3.9, Op is a pure ideal of RL for each closed sublocale B of L.
On the other hand, if H is a pure ideal of RL then there is an I € AL such that H = O%t1).
Since L is compact, r: L — (L is surjective, and so there is an a € L such that I = rp(a).

Note, as well, that the surjectivity of r;, implies rz[cz(a)] = ¢gr(rr(a)). In consequence,

H = 0%:e@) — grelee@] — o

CL(a)a
which then proves that PIA(RL) = {Og | B is a closed sublocale of L}. O

Corollary 2.3.14. The pure ideals of C(X) are precisely the ideals Op for B a closed subset
of X iff X is compact.

We mentioned at the beginning of the section that one of our aims is to give a description of
pure ideals of R*L. We now embark on that, but first we recall some background.

As shown in [4], j.: L — L is C*-quotient map. Since jj, is dense, the ring homomorphism
R(jr): R(BL) — RL it induces is injective. Since it maps into R*L (as SL is compact), when

its codomain is restricted to R*L, we have the ring isomorphism
¢r: R(BL) = R*L  givenby  ¢r(f) =jre [.
Now, in view of this ring isomorphism,
PIA(R*L) = {¢.[J] | J € PIA(R(BL))}
because, clearly, an onto ring homomorphism sends pure ideals to pure ideals. We however seek
a more transparent description of pure ideals of R* L.

So far, given a frame L, we have dealt only with ideals of RL. To prove the next result, we
shall simultaneously deal with ideals of RL and of R(SL). To avoid possible confusion, we shall
use a different symbol for the O-ideals in R(SL). Also, we shall use notation that distinguishes
between the cozero maps, and write Coz: R(SL) — BL for the cozero map on R(SL). Although
this notation is identical to the one used for the cozero part of a frame, there is no danger of

ambiguity. For any sublocale A of SL, we set

Oa={feR(BL) | ACop((Coz [f))}
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For any f € R(SL), we have \/ Coz f = coz(jr o f). In part of the proof below we shall use the
fact that if I and J are elements of SL with I < J, then \/I € J (see [14, p. 156]).

Theorem 2.3.15. An ideal of R*L is pure iff it is of the form {a € R*L | coza € I} for some
I €pSL.

Proof. As already mentioned above, an onto ring homomorphism sends pure ideals to pure
ideals. So, if ¢y: A — B is a ring isomorphism, then the pure ideals of B are precisely the images
of the pure ideals of A under 1. Now, for the isomorphism ¢, : R(SL) — R*L mentioned above,

and taking into account the result in Theorem 2.3.13, we have
PIA(R*L) = {¢r[O¢,, (] | I € BL}.
We claim that, for any I € 5L,
O[Oy 0] ={a € R'L | coza € T}. (1)

To verify this, let f € O, (). Then ¢z (1) € 05((Coz f)*), which implies (Coz f)* V I = 14y,
and hence Coz f < I, whence \/ Coz f € I, that is, coz(¢r(f)) € I. Consequently, ¢ (f) is an
element of R*L whose cozero element belongs to I. This proves the inclusion C in (). For the
reverse inclusion, consider any a € R*L with coza € I. Let & be the function in R(SL) such

that j; c @ = a. Then & has the property that
Coza Crp, (\/ Coz 07) =rp(coza) < I

because id < h, o h for every frame homomorphism h, and whenever ¢ € I € (L, then
¢ << d for some d € I, so that rp(c) < rp(d) C I. Thus, (Coza)* VI = 1, which implies
csr.(1) C 0p(Coza)*, so that & € O, (). Since ¢r(&) = a, we have shown the inclusion 2
in (f). Since SL is compact, its pure ideals are precisely the ideals O 4, for A a closed sublocale
of BL, as shown in Theorem 2.3.13. The result therefore follows because ¢ : R(SL) — R*L is

an isomorphism. O

Let us restate this result differently using the language of contraction of ideals. Recall that if
¢: A — B is a ring homomorphism and [ is an ideal of B, then the ideal ¢~![I] of A is called

the contraction of I.
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Corollary 2.3.16. The pure ideals of R*L (resp. C*(X)) are precisely the contractions to R* L
(resp. C*(X)) of the pure ideals of RL (resp. C(X)).

Phrased this way, the reader may wonder if we could not have derived this by first arguing that,
in function rings, contractions of pure ideals are pure ideals. We could not because (even in

function rings) purity generally does not survive contraction, as the example below shows.

Example 2.3.17. Let L = Q(R), and put a = (0,1). Note that a = a**. Since every element
of L is a cozero element, there is an o« € RL such that coza = a. Denote by b: L — BL the
Booleanization map b(z) = 2**. Since b is dense, the ring homomorphism Rb: RL — R(BL)
is injective, and so its image is a function ring which is a subring of R(*8L). Let H be the
principal ideal of R(BL) generated by bo . Since BL is Boolean, and hence a P-frame, H is a
pure ideal in R(BL) by [11, Corollary 3.10]. We claim that the ideal (Rb)™'[H]| of RL is not
pure. If it were, then since a € (Rb)~![H], there would be an element v € (Rb)~![H] such that
coz v << coz~y. The relation v € (Rb)™![H]| implies bo~y € H, and hence b o v is a multiple of
beoa. Now, in light of the cozero element of a product being below the cozero element of each

factor, we would have
a << (cozy)™ = b(cozvy) = coz(bev) < coz(boa) = (coza)™ = a,

which would imply a << a, which is of course false.

2.4 Characterizing basic disconnectedness

In Theorem 2.3.7 we characterized the frames L for which Op is pure for every closed sublocale
B of L. It is thus natural to seek a “companion” characterization with open sublocales in the
place of closed ones. That will be the content of our next result. We shall approach it slightly

differently from the previous case.

In [1], there are characterizations of basically disconnected spaces X in terms properties of pure
ideals of C'(X). One such is that X is basically disconnected if and only if O* is a pure ideal of
C(X) for every subspace of A of 5X. Now, a topological space, when viewed as a frame, can
have more sublocales than subspaces. So it is reasonable to wonder if replacing “subspace” with

“sublocale” in the result of [1] just recited does not invalidate one of the implications.
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We shall see that it does not. This we shall actually do by characterizing basically disconnected
frames in several ways, including that L is basically disconnected if and only if O* is pure for
every sublocale of SL. One other characterization requires knowledge about the frame S.(L),

associated with any given frame L, defined in [36] by
S(L) ={S € S8(L)| S is a join of closed sublocales of L}.

Since our frames are completely regular (and hence fit), each member of S;(L) is actually a join
of complemented sublocales. Following Isbell [27], we shall thus say members of S.(L) are the
smooth sublocales. We must point out that in [27] this descriptor is used not only for the fit

case.

There are several characterizations of basically disconnected frames in [4] and [16]. The following
ones are new, and they both extend and supplement the spatial ones in [1]. Recall from [3,
Corollary to Lemma 1.9] that r preserves disjoint binary joins; that is, if a A b = 0, then

rr(aVb) =rp(a)VrL(b).

Theorem 2.4.1. The following conditions are equivalent for L.

(1) L is basically disconnected.

(2) O is pure for every sublocale A of BL.

(3) The intersection of any collection of pure ideals of RL is pure.
(4) O* is pure for every smooth sublocale A of L.

(5) O is pure for every open sublocale A of BL.

(6) Ol s pure for every a € L.

(7) 0° 2 () s pure for every ¢ € Coz L.

Proof. (1) = (2): Suppose that L is basically disconnected, and let A be a sublocale of SL. We
show that O C O”. Let v € O?. For brevity, write ¢ = coz. Then A C 0gr(rr(c*)). Since L

is basically disconnected, ¢* V ¢** = 1, and since ¢* A ¢** = 0, we have
ro(ct) Vrp(c™) =rp(c" V™) = 1g1.
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Consequently, ¢z (r.(c**)) C ogr(r(c*)), and hence

A C opp(ri(er)) = car(ri(c™)) C opr(rr(c’)) = opr(r(cozn)*),

which implies v € o*. Thus, 04 C OA, and therefore O* = OA7 showing that O is pure.

(2) = (3): Assume that (2) holds, and let {@Q,} be a family of pure ideals of RL. For each
index ), there is a closed sublocale K of SL such that Q) = O%*. This then implies

(@ =[10" =0V,
A A

showing that (1),Q, is pure in light of the hypothesis in (2).

(3) = (4): Assume that (3) holds. If A is smooth, then there is a collection {K,} of closed
sublocales of L such that A =\/, K. Thus, o' = N, O™*, which is an intersection of pure

ideals, and hence O* is pure.

(4) = (5): This holds because open sublocales in subfit frames (and hence in completely regular

frames) are smooth.
(5) = (6) = (7): These implications are trivial.

(7) = (1): Assume that (7) holds, and let ¢ € Coz L. Then the ideal Q%) is pure, by

hypothesis, and so
051 (rL(c)) — gosrlre(e”)) — esrlro(e™))

Take v € RL with ¢ = cozy. Then v € O°%*"(€)) wwhich then implies v € O™ The
latter says ¢ (1L (¢*)) C 0L (rr(c*)), which implies r1(¢**) V r(¢*) = 151, whence, on taking

joins, we obtain ¢** V ¢* = 1. Therefore L is basically disconnected. O

Corollary 2.4.2. The ideal Oy is pure for every open sublocale U of L iff L is basically

disconnected.

Proof. 1f L is basically disconnected, then, by the theorem above, Oy is pure for every open

sublocale U because Oy = O™V} and r;[U] is a sublocale of SL.
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Conversely, observe that for any a € L and v € RL,

Y€ Oy iff op(a) Cop((cozy)”)
iff a < (coz7)”*
iff rp(a) <rp(cozy)*
iff 0p1(r2(a)) C opr(rr(cozy)’)

ity e 0orrrL(@)

so that O,, () = 0L Tt therefore follows from the implication (6) = (1) in Theorem 2.4.1
that if Oy is pure for every open sublocale U of L then L is basically disconnected. O

We have deliberately understated the result in this corollary because we wanted to present it as
the “open analogue” of Theorem 2.3.7. A more comprehensive result characterizes basically
disconnected frames in terms of ideals associated with sublocales of L (and not of 5L as above)
as follows. The proof is a mere adaptation of the corresponding results in Theorem 2.4.1, and

we therefore omit it.

Corollary 2.4.3. The following are equivalent for L.

(1) L is basically disconnected.
(2) Og is pure for every sublocale of L.
(3) Og is pure for every S € Sc(L).

(4) Oy is pure for every open sublocale of U of L.
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Chapter 3

Pulling and pushing the

sublocale-induced ideals

A localic map f: L — M gives rise to a ring homomorphism Rh: RM — RL, where h is the
left adjoint of f. Our aim in this chapter is to study the contractions and extensions of the O-

and M-ideals along the induced ring homomorphism.

3.1 Indispensable localic maps

We are not using “indispensable” as a mathematical adjective describing localic maps with some
feature, but rather it has its everyday use, meaning that the localic maps we are presenting
here are indispensable for the work that lies ahead. So, this section is preparatory for the main
objective of pushing forward and pulling back ideals along ring homomorphisms induced by

localic maps. We introduce localic maps that will play a pivotal role in Sections 3.2 and 3.3.

To start, recall that in Chapter 1 we presented the Stone-Cech compactification in the category

CRFrm. The outlook in this chapter is more localic, so let us recall the Stone extension of a
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localic map f: L — M. It is the unique localic map Sf: fL — M that makes the diagram

8L R BM
TL M (311)
L L V'

commute. Of course, dually, for every frame homomorphism h: M — L there is a unique frame
homomorphism Sh: M — (L making a square in CRFrm (which appears Section 1.5 of
Chapter 1) similar to that in Diagram (3.1.1) commute. We recalled in Chapter 1 how the

frame homomorphism Sh maps. The localic map £ f maps as follows:

BAHT) = AT e BM | f2(1) C T},
It should be clear that if f is a localic map, then (8f)* = B(f*).

Direct calculation shows that for any frame homomorphism h: M — L and any a € M,

(Bh)(ry(a)) Crp(h(a)). (3.1.2)

In the next two sections we are going to encounter a number of cases where certain properties
are characterized by the containment in (3.1.2) being actually an equality, either for all elements

of M or all elements of some suitable subset of M.

Localic maps f: L — M with the property that (5f)*(ra(a)) = ro(f*(a)) for every a € M
have ancestry in classical topology. To recall, Woods [41] calls a surjective continuous map
k: X — Y an N-map if clgy k7 [F] = (k%) *clgy F] for every closed subset F' of Y, where
kP: BX — BY is the Stone extension of k. If the equality clgx k71[Z] = (k) ![clgy Z] holds
for each zero-set Z of Y, then Woods says the function k£ is a WN-map. We want to extend this

to localic maps, and relax the surjectivity constraint that Woods imposed.

Let f: L — M be a (not necessarily surjective) localic map. Consider Diagram (3.1.1) above,

and split it into the following wedges:

8L sL— . gm
L and M
L L V' M
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Let F' be a closed sublocale of M. Using the wedge on the left, pull /' back along f to obtain
the closed sublocale f_1[F] of L, and then push this closed sublocale upwards along r;, to obtain
the (not necessarily closed) sublocale r1[f_1[F]] of fL, and then (to keep things closed) take
the closure in SL to obtain clgy(rp[f-1[F]]). Now do similarly along the wedge on the right
(keeping things closed) to end up with (5f)_1[clgar(rar[F])]. We shall be concerned with several

cases where these two processes culminate in the same sublocale.

For a given localic map f: L — M, let us agree to call the equality

clar(rolf-1[Bl]) = (Bf)-1lclaa (rar[B])] (WE)

the Woods equality. We shall be interested in cases where (WE) holds for each sublocale in the

following classes of closed sublocales:

e K = {all closed sublocales};
e Z = {all zero-sublocales};

e C = {closures of cozero-sublocales}.

We are now going to define certain types of localic maps in terms of the Woods equality, and

give them names that accord with the ones Woods used in spaces.

Definition 3.1.1. We say a localic map f: L — M is:

(a) an N-map if its Woods equality holds for every sublocale in K;
(b) a WN-map if its Woods equality holds for every sublocale in Z; and

(c) a C-map if its Woods equality holds for every sublocale in C.

In calculations, it shall be useful to have characterizations of these maps in terms of elements.

For better visual clarity, we use the overline in the upcoming proof to denote closure.

Lemma 3.1.2. A localic map f: L — M 1is:
(a) an N-map iff (Bf*)(ru(a)) = ro(f*(a)) for every a € M.
(b) @ WN-map iff (Bf*)(ra(a)) =rn(f*(a)) for every a € Coz M.
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(¢) a C-map iff (Bf*)(ru(c?)) =r(f*(c*)) for every c € Coz M.

Proof. We prove only (a) as the other proofs are similar. Observe, first, that for any frame H

and any z € H,
rulen(r)] = con(ru(z))
because
Aralen(@)) = ru(Aen(2)) = ru()

Now let K = ¢j(a), for some a € M. Then

rolfailem(a)l] = rifear(f*(a)] = ear(ro(f7(a))),

and
(BF) -1 [rarlear@)]| = (BF)leaar(rar(@)] = can(BF)(rar (@),
Therefore the Woods equality holds for K if and only if (5f)*(ry(a)) = ro(f*(a)). O

This is as good a time as any to mention that frame homomorphisms with the properties
characterizing N-maps and WN-maps in Lemma 3.1.2 were considered in [12], but without the
motivation provided here. We retain the names they were given in that paper, and say a frame
homomorphism is an N-homomorphism if its right adjoint is an N-map, a WN-homomorphism

if its right adjoint is a WN-map, and a C-homomorphism if its right adjoint is a C-map.

For use in Section 3.4 where we will consider C'(X), let us extend Woods’ terminology and say
a continuous function f: X — Y is an N-map (resp, a WN-map) if it satisfies the conditions
of Woods, but without being necessarily surjective. We shall need to know that a continuous
function f: X — Y is an N-map (resp. WN-map, resp. C-map) if and only if the localic map it
induces is of the same type. This is not obvious, so we present a proof, but only for C-maps as

the other assertions can be proved similarly.

Given a Tychonoff space X, as in Chapter 2 we view X as a subspace of X, and consider
the identical embedding ix: X — $X. The right adjoint of the induced frame homomorphism
Qix): QLX) — QX maps thus:

Q(ZX>*(U> = 5X AN Clgx(X AN U)
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Again, it will be convenient to view the Stone-Cech compactification of the frame Q(X) to be
given by the dense-onto frame homomorphism Q(ix): Q(8X) — Q(X). So, as mentioned before,

in the rz-notation for the right adjoint of SL — L, we have ro(x) = Q(ix)..
A morphism f: X — Y in Tych gives rise to the digram

Q(Bf)

Q(BY) Q(BX)
Syt
Sy X) Sx (313)
B(Y)) BQ(X))

in CRFrm constructed as follows. For the upper trapezium, first use f: X — Y to form the
Tych-version of Diagram (3.1.1), and then apply to it the contravariant functor Q2: Tych —
CRFrm. For the lower trapezium, first apply 2 to f: X — Y, and then form the CRFrm-
version of Diagram (3.1.1). The triangles exist because, for any L € CRFrm, j,: L — L
is the coreflection map to L from compact completely regular frames. In fact, dx and &y are
isomorphisms, as is well known. Since the trapeziums and the triangles commute, and since
Ja(x) is a monomorphism because dense homomorphisms are monic in CRFrm, it follows that

the outer square commutes.
In the upcoming proof we shall twice use the set-theoretic fact that if g: A — B is a function

and S C B, then g7 '[B~\ S] = A~ g7 '[5].

Proposition 3.1.3. A continuous map is a C-map (resp. an N-map, resp. a WN-map) iff the

localic map it induces is a C-map (resp. an N-map, resp. a WN-map).

Proof. Let f: X — Y be a continuous map between Tychonoff spaces. By Lemma 3.1.2(c), it
suffices to show that f is a C-map if and only if Q(f): Q(Y) — Q(X) is a C-homomorphism.

Let C' be a cozero-set of Y, and set U =Y ~ cly C. Let us express the complements of the sets
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clgx[fHely C)] and (Bf) Hclgy (cly C)] in terms of induced frame homomorphisms.

BX N clgx[fcly C]] = BX N clgx fHY N U]
= BX N clax (X N f7HU))
= BX N clsx (X N (QN))(D))
= Q(x).((Q))(V)).

On the other hand,

BX N (BS) elay (cly O)) = (Bf)'BY N clay (Y N U))]
= Q(Bf)(Qiv).(U)).

Therefore
clox (7 ely C) = (Bf) " elgy (cly O)]  iff - Q(ix). ((UF))(V)) = QBF) (v ). (U)).

From the commutativity of Diagram (3.1.3) and the fact that x and dy are isomorphisms, we

have
Qix). = 0" o o), Qiy ) = 6y o rapy, Q(Bf) = 65" ° BAUS)) © oy,
and so, in light of the preceding calculation, the equality
Qix) (AMNV)) = QBS)(Qiv).(U))
is equivalent to the equality
(33 e mac) ) (UM@Y) = (53" BOAN) = by ) (Aiv ). (),
which, in turn, is equivalent to
rax) (AMNV)) = BOUS)) (raw)(U))
because dy o Q(iy ), = o). Since
{Y ~cly C'| Cis a cozero-set of Y} = {¢* | ¢ € Coz(QY))},
it then follows that f is a C-map if and only if Q(f) is a C-map. O
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The next type of localic maps that will play a role below are best defined in terms of their left
adjoints. Recall from [8] that a frame homomorphism h: M — L is said to be nearly open if
h(a*) = h(a)* for every a € L. We weaken this.

Definition 3.1.4. A frame homomorphism h: M — L is nearly coz-open if h(c*) = h(c)* for
every ¢ € Coz M. If the left adjoint of a localic map is nearly coz-open, we shall also say the

localic map itself is nearly coz-open.

This is a proper weakening of near openness, as the following example shows.

Example 3.1.5. For any frame L, denote by ¥,: L — S(L)°? the frame homomorphism given
by a — ¢p(a). Since, for any a € L, ¢;(a)* = or(a) in S(L)°P, it follows that ¥ (a*) = I (a)* if
and only if a is complemented. Therefore 9}, is nearly open if and only if L is Boolean. Recall
that a P-frame is one in which every cozero element is complemented. Therefore 1, is nearly
coz-open if and only if L is a P-frame. Thus, for any P-frame L which is not Boolean, 9, is a

nearly coz-open homomorphism which is not nearly open.

The following lemma will be used in the next section. Recall that if I € BL, then the

pseudocomplement of [ is given by [* = rp(a*) where a = \/I.

Lemma 3.1.6. If f: L — M is a localic map, then Bf is nearly coz-open iff f is a nearly

coz-open C-map.

Proof. We conduct the proof in CRFrm. So let h: M — L be a frame homomorphism, and
consider any I € SM. Since ji o Sh = ho jy, \/(Bh)(I) = h(VI), and so, setting a = \/1, we
have

(BR)(1)* =ri(h(a)’)  and  (BR)(I7) = (Bh)(ru(a®)). (3.1.4)

Now assume that h is a nearly coz-open C-homomorphism, and let I € Coz(3M). Put a = \/I.
Then a € Coz M, and so

(BR)(ra(a”)) = ri(h(a”)) = ri(h(a));

the first equality arising from h being a C-homomorphism, and the second because h is nearly

coz-open. In light of the equalities in (3.1.4), we therefore have that Sh is nearly coz-open.
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Conversely, assume that Sh is nearly coz-open. We show first that h is nearly coz-open. So, let
a € Coz M. By [6, Corollary 5], there is an I € Coz(SM) such that \/I = a. Since Sh is nearly
coz-open, (Sh)(1*) = (Bh)(I)*, which implies 1 (h(a)*) = (Bh)(ra(a*)), as observed in (3.1.4).
Taking joins, and invoking the equality jr o Bh = ho jy/, yields

ha) = \/ru(h(a)) = /(B0 (@) = h(\fru(@)) = ha),

which shows that h is nearly coz-open. Next, to show that h is a C-homomorphism, given
¢ € Coz M, we must show that (8h)(ry(c*)) = rp(h(c*)). But this follows as in the near

coz-openness case, with further utilization of the fact that h(c*) = h(c)*. O

Although we shall not need the following result, we present it because it gives a characterization
of nearly open maps that is not stated in [8]. In spaces, nearly open maps were defined by
Pték [39] by a condition equivalent to saying f: X — Y is nearly open if and only if for every

open set U C X, f[U] C int f[U].

Proposition 3.1.7. Suppose that f: L — M is a localic map, and write h for its left adjoint.

Then the following statements are equivalent.

(1) f is nearly open.

(2) For every open sublocale U of L, f[U] C int f[U].

(3) For every a € L, a < h(f(a*)*).

Proof. (2) < (3): Let us observe that, for any a € L,

Flor@] = ex (Aflor@)) = exr(( Aor(@))) = enr(F(a)),

and therefore int floz(a)] = op(f(a*)*). Since for any S € S(L) and T € S(M), f[S] C T if
and only if S C f_;[T], we therefore have

flor(a)] € int flop(a)] iff  or(a) C fafon(f(a"))]

This proves the equivalence of statements (2) and (3).
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(3) = (1): Assume that (3) holds. In accordance with the definition, we must show that h is
nearly open. Let b € M. Putting a = h(b)*, the foregoing equivalence says

h(b)* < h(f(h(b)™)).
Since b < f(h(b)) < f(h(b))*™, we have f(h(b)*)* < b*, and so
h(b)" < h(f(h(b)™)") < h(b"),

whence we deduce that h(b)* = h(b*). Therefore f is nearly open.

(1) = (3): Assume f is nearly open. We show that a < h(f(a*)*), for every a € L. Since h is
nearly open, h(f(a*)*) = h(f(a*))*, and so, in view of the fact that h(f(a*)) < a*, we have

a < a™ < h(f(a®))" = h(f(a®)"),
which then shows that (1) implies (3). O
In the proof of the implication (3) = (1), we chose a to be h(b)*. Now, if b € Coz M, it does not

follow that h(b)* € Coz L. Therefore when we refer to nearly coz-open maps, the corresponding

implication does not follow from this one. It still holds though, as we now show.

Proposition 3.1.8. The following are equivalent for any localic map f: L — M between

completely regular frames.

(1) f is nearly coz-open.

(2) For every cozero-sublocale C' of L, f[C] C int f[C].

(3) For every c € Coz L, ¢ < h(f(c*)*); where h denotes the left adjoint of f.

Proof. The equivalence of statements (2) and (3) and that statement (1) implies statement (3)

are proved as in the previous proposition.

(3) = (1): Let u € CozM. We must show that h(u)* < h(u*); and it is here that we use
complete regularity. Consider any ¢ € Coz L with ¢ < h(u)*. Then h(u)** < ¢*, and so

w < f(h(u) < f(h(u)™) < F(c),

42



which implies f(c*)* < u*, whence (by invoking the inequality ¢ < h(f(c¢*)*) which holds by the
current hypothesis) we obtain

¢ < h(f(e)) < h(u)

which implies h(u)* < h(u*), by complete regularity, and thence h(u)* = h(u*), as required [

3.2 Pulling back

Given a localic map f: L — M, we have the ring homomorphism R f*: RM — RL. So if A
is a sublocale of L, we have the ideal M 4 of RL which we can then pull back to the ideal
(Rf*)"'[M 4] of RM. We also have the ideal M 4 of RM. It turns out that these two ideals
coincide. To see this, note that if « € RM then

ae Mgy iff  f[A] Cep(coza)
iff ACf[cpm(coza)
i A Coy(f(coza))
iff  ACcep(coz(Rf*)(a))
ifft (Rf")(e) € M a
iff o€ (Rf)[Mal,

which then shows that M 4 = (Rf*) "' [M 4].

Now let S C L be a sublocale. We then have the ideals M) and (Rf*)"1[M*®] of RM.
Calculating as above, we have that for any o € RM,

ae ML i S C e ((BF)(rarlcoza))) (3.2.1)
while, on the other hand,
a€ (RfYMT]) if S Cepr(ro(f*(coza))). (3.2.2)
Now, since (Bf*)(ra(coza)) < rr(f*(coza)), as elements of BL, we have

¢or (ro(f*(coz))) C e ((BF*)(rar(coza))).
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Consequently, we deduce from (3.1.2) in Section 3.1 and (3.2.1) that

(Rf) M) € MEDIS,

It appears from (3.2.1) and (3.2.2) that this containment is an equality precisely when the
containment in (3.1.2) is an equality for every ¢ € Coz M, that is, precisely when f is a WN-map.
We show in the following theorem (which also includes the results we have just observed) that

this is indeed the case.

Theorem 3.2.1. Let f: L — M be a localic map, with left adjoint h.

(a) (Rh)™'[M 4] = M 4 for every sublocale A of L.
(b) (Rh)[M?) € MBI for every sublocale S of L.

(¢) The following are equivalent.

(i) MBI = (Rh)M?] for every sublocale S of GL.
(i) MBI = (RR)"1M?] for every closed sublocale U of BL.
(iii) f is WN-map.
Proof. Only (c) needs to be proved. It is trivial that condition (i) implies condition (ii). It
follows from the equivalences in (3.2.1) and (3.2.2) above that condition (iii) implies condition

(i). Now suppose that condition (ii) holds. Let a € Coz M, and choose o« € RM such that
coz o = a. Define the closed sublocale K of SL to be

K = CﬁL((ﬁh)(TM(COZ a))).

Then, by the equivalence in (3.2.1) above, @ € MWDl and hence a € (Rh)'[M*], by
hypothesis. Thus, by the equivalence in (3.2.2) above,

CﬂL((ﬁh)(TM(COZOz))) =K Q CﬂL(TLUL(COZCY)))

which implies 77, (h(coz ) < (Bh)(rp(coz «r)), and hence equality because the opposite inequality
always holds. Therefore (Bh)(ra(c)) = rr(h(c)) for every ¢ € Coz M, which shows that condition

(ii) implies condition (iii). O
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Next, we look at O-ideals. As in the previous case, we first prove a “containment result”, and

then characterise when it is an equality.

Theorem 3.2.2. Let f: L — M be a localic map, with left adjoint h.

(a) OB C (RR)"1O®] for every sublocale S of GL.
(b) The following are equivalent.

(i) OV = (Rh)~1[O%)] for every sublocale S of BL.
(ii) OPIUI = (Rh)~1[OV] for every open sublocale U of L.

(iii) Bf is nearly coz-open.
Proof. (a) Let o € RM, and, for brevity, put a = coza. Now, for any S € S(SL),

ac 0PI i (BF)[S] C opnr(ra(a®))
it S C(Bf)alogm(ram(a®))]
iff S Cos((Bh)(ru(a”))) since (8f)" = B(f*) = Bh.

On the other hand,

ac (Rh)7O® iff (Rh)(a) € O°
if S Q 05L (TL(COZ((Rh>(()é))*)
iff S - 05L(7’L(h(a)*)).

Now, since

(BR)(rm(a”)) < rp(h(a”)) < ri(h(a)),
we have ogr,((8h)(ra(a*))) C ogr(r(h(a)*)), which then shows that OISl C (Rh)~107).
(b) It is trivial that (i) implies (ii).
(i) = (iii): Suppose that OOV = (Rh)~1[OQY] for every open sublocale U of SL. By
Lemma 3.1.6, it suffices to show that f is a nearly coz-open C-map. Working with its left adjoint,

we prove first that h is nearly coz-open. Let ¢ € Coz M, and pick v € RM such that cozy = c.
Let U be the open sublocale U = ogy, (1, (h(c)*)) of BL. Then U = oa, (11 (coz(Rh)(v))*), which
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then says (Rh)(7) € OY, and hence v € (Rh)~'[OY]. By hypothesis, we then have v € QDU
and so (Bf)[U] C ogar(rar(c?)), whence

0ar (ro(h(c)*)) = U S (Bf)-alopm (ra ()] = 05 ((Bh)(rar(c?))).

From this, we deduce that

rr(h(e)”) € (Bh)(ru(c?)) € ro(h(c)), ()

which implies h(c)* < h(c*), and hence h(c)* = h(c*). Therefore h is nearly coz-open. Thus, the
containments in () are equalities, and so (Sh)(rg(u*)) = rp(h(u*)) for every u € Coz M, which
says f is a C-map by Lemma 3.1.2(c). It therefore follows from Lemma 3.1.6 that 3f is nearly

coZ-open.

(iii) = (i): Suppose that S f is nearly coz-open. Then, by Lemma 3.1.6, f is nearly coz-open
and is a C-map, which implies that, for any a € Coz M,

(Bh)(ra(a”)) = ri(h(a”)) = ri(h(a)”).

Therefore the equivalences in the proof of part (a) show that QP! = (Rh)=1[O®] for every
sublocale S of SL. O

From part (a) of this theorem we obtain the following corollary.

Corollary 3.2.3. For any localic map f: L — M, Osa C (Rf*)71[04] for every A € S(L).

Proof. Since Diagram (3.1.1) commutes, (5f)[rr[A]] = ru[f[A]]. So, by part (a) of Theo-
rem 3.2.2,

O = oAl — oBNlrLlAl C (Rf*)—l[OTL[A]] — (Rf*)_l[OA],
which proves the result. O

The localic maps for which this containment is always an equality are precisely the nearly

coz-open ones, as the following result shows.

Theorem 3.2.4. If f: L — M is localic map, with left adjoint h, then O 4 = (Rh)"'O4] for

every sublocale A of L iff f is nearly coz-open.
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Proof. Calculations similar to the ones above show that if a = coz «, then
o€ Of[A} iff AC OL(h(CL*)),
while, on the other hand,

a€ (Rh)HO, iff A Cop(h(a)).

Now, if f is nearly coz-open, then h(c*) = h(c)* for every ¢ € Coz M, so the observations
above show that Oy4) = (Rh)™'[04]. For the converse, assume that O = (Rf*)7'[O 4]
for every A € S(L), and let ¢ € Coz M. Since h(c*) < h(c)*, we need only show the opposite
inequality. Set A = or(h(c)*). Pick v € RM with ¢ = coz~y. Since coz(Rh(7)) = h(coz7), we
have (Rh)(y) € Ou, so that v € (Rh)"'[04], and hence v € Oy4j, by hypothesis. The latter
implies f[A] C op(c*), whence

or(h(e)") = A C falou(c)] = or(h(c)),

implying h(c)* < h(c*), thence equality. Therefore f is nearly coz-open. O

3.3 Pushing forward

In the previous section, given a localic map f: L — M, we started with a sublocale S of SL,
formed the ideal O° of RL, pulled it back along the ring homomorphism Rf*: RM — RL,
and then compared the resulting ideal with the one obtained by first pushing the sublocale S
along #f and then computing the ideal o LR

In this section we perform the “dual” process. Namely, we start with a sublocale T' of FM, pull
it back along 8f to form the ideal OPH-1T1 of RL. On the other hand, we push the ideal O
of RM forward along the ring homomorphism R f*: RM — RL to obtain the ideal generated
by the image (Rf*)[O"], and then compare the two ideals.

In what follows, we write (H) for the ideal generated by a set H. We recall from [14, Lemma
4.4] that if «y and § are elements of RL such that cozy << cozd, then 7 is a multiple of ¢.

Theorem 3.3.1. Let f: L — M be a localic map.

(a) (Rf*)[0OT])) € OBHT] for every sublocale T of BM.
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(b) ((Rf*[OX]) = OBNEL for every closed sublocale K of BM.

(c) ((Rf*)[Og]) € Of_ ), for every sublocale B of M.

Proof. (a) Let v € O, and put ¢ = coz~y. Write h for f*. Then T C o4y (73(coz)*), which

implies

(Bf)lT]

N

(Bf)-1lopar (rar(c™))]
051 ((BR) (ra(c"))
L(re

(

03 (h
031 TL(h
(c

N

(c*
)) since Bhory <rpoh
)
2((Rh)(7))")).

N

(r
()
()"

((

OBL(TL

Therefore (Rh)(y) € OPN=1B1 from which we deduce that (Rf*)[0”] € OPH-11T1 The result

—1[T7]

therefore follows because Q) is an ideal.

(b) Taking into cognisance the result in (a), we need only show that if K is a closed sublocale of

BM, then OVPH-1IEl C (Rf*)[OK]). Pick I € BM with K = cgp(I), so that
B

(BF)-1[K] = esn((BR)(D)).

Let o € QWK Then rp(coza) << (Bh)(I), which implies 71 (coz a)* V (8R)(I) = 141. Since

I =\/,errm(u), we therefore have

ri(coza)* VvV \/(ﬂh)(rM(u)) = lgg,

uel

and so, by compactness of 5L, there are finitely many elements uy, ..., u, in I such that

ri(coza)” Vv ((BR)(rar(un)) V -+ V (BR) (rar (ua) ) = Lo

Putting ¢ = uy V - -+ V u,, we have that ¢ € I and

rr(coza)* V (Bh)(ry(c)) = g

Therefore 7y (coza) << (Bh)(ru(c)). On applying the join map j.: 5L — L, we obtain
cora = jiu(ru(cora)) < (je.* (61) (re(h() = (k= jar) (rar()) = h(\/rar(©)) = h(e).
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Pick v € RM with coz~y = ¢. Then we have
coz v << h(coz~y) = coz((Rh)(7)),

which implies a is a multiple of (Rh)(7). But now v € O hecause cozy € I; so (Rh)(7) €
(Rh)[OX], which then implies & € ((Rh)[OX]). Therefore QP11 C ((R f*)[OX]), hence we
have equality by part (a).

(c) We use the result in (a). Since (Bf)cr, =ryro f, and since f[f_1[B]] C B, for any sublocale
B of M, we have

(BOIrLlf[Bll] = rulf[f-1[B]l] € ru[B],

which implies r.[f_1[B]] € (8f)—1[ru[B]], and hence Q¥H-1lrmlBll ¢ Qreli-Bll - By (a), we

therefore have
(Rf*)[OB] _ (Rf*)[OTM[B]] C O(/Bf)—l[T]vI[B]] C OTL[f—l[BH — Of,l[B}a
from which the result follows. O]

Part (b) of this theorem says the containment in part (a) is always an equality when restricted
to closed sublocales of fM. One may thus wonder if the containment in part (c) is always an
equality when restricted to closed sublocales of M. We shall see that it is not. In fact, when
M satisfies a certain property (we shall introduce it shortly) strictly weaker than normality,
we shall characterise the localic maps f: L — M for which the containment in part (c) is an

equality on closed sublocales of M.

As in [20], we say a frame M is coz-interpolative in case for any ¢ € Coz M and any m € M,
the relation ¢ < m implies ¢ << m. Every normal frame is coz-interpolative, but the frame of
open subsets of the space described in [24, Problem 6Q)] is non-normal and coz-interpolative, as

observed in [20].

In the proof of the next theorem we shall use the following result which appears as [12, Lemma

4.2]. We restate it using terminology introduced above.

Lemma 3.3.2. A frame homomorphism h: M — L is a K-homomorphism iff for every y € L
and a € M, y << h(a) implies y < h(s) for some s << a in M.
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Observe that the requirement that y < h(s) in this characterization can be replaced with
y =< h(s) because if y << h(a), we can interpolate to obtain z € L such that y << z << h(a),
and then apply the lemma to the relation z << h(a).

Theorem 3.3.3. If f: L — M is a localic map with M coz-interpolative, then ((Rf*)[Op]) =
Oy_ B for every closed sublocale B of M iff f is a K-map.

Proof. (=): Suppose that ((Rf*)[Og]) = O;_,p for every closed sublocale of B of M. We use
Lemma 3.3.2 to prove that f* is an K-homomorphism. Write h for f*, and consider any a € M
and y € L such that y << h(a). The hypothesis says Oy (c,;a)) = ((Rh)[Oc,(a)]); that is,
O, (h(a)) = ((RN)[O¢,,0)])- Pick ¢ € Coz L such that y << ¢ << h(a), and then choose v € RL
with cozy = ¢. Then v € O, (n(a)), and so there exist functions o, ..., a, in RM and functions

01,...,0p in O, (q) sSuch that
y=ay- (Rh)(61) + -+ an - (Rh)(0,).
Applying the cozero map coz: RL — L to this yields

¢ = cozy < coz((Rh)(61)) V-V coz((Rh)(d,))
= h(coz(d1)) V-V h(coz(dy,)).

Since each §; € O, @), we have coz(d;) < a, and hence coz(d;) << a because M is coz-
interpolative. So, putting d = coz(d1) V - -+ V coz(d, ), we have that d <<a and y < h(d). By

Lemma 3.3.2, this proves that h is an N-homomorphism, and hence f is an N-map.

(«<): Suppose that f is an N-map, and let B be a closed sublocale of M. As before, we write h in
place of f*. We know from Theorem 3.3.1(c) that ((Rh)[Og]) € Oy_ 5. To prove the reverse
inclusion, pick a € M such that B = ¢y/(a), and let @ € Oy_,15) = O, (h(a))- Then coza < h(a),
and hence coz a << h(a) because M is coz-interpolative. Since h is an N-homomorphism, we
can find d € Coz M such that d << a and coza << h(d). Take § € RM with cozd = d. Now,
coza << h(d) implies coza << coz((Rh)(§)), and so, by [14, Lemma 4.4], « is a multiple of

(Rh)(0). Since cozd << a, we have that 6 € O , and hence

(Rh)(0) € (Rh)[OB] € ((Rh)[OB]),
which then implies o € ((Rh)[Op]). Therefore O 15 C ((Rh)[Op]), and equality follows. [
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Regarding the M-ideals in this context of pushing forward, the types of calculations that we

have seen a number of times now yield the following.

Proposition 3.3.4. Let f: L — M be a localic map. Then:

(a) ((Rf*)[M4]) € My 1a) for every sublocale A of M.

(b) (Rf[MT)) € MBI for every sublocale T of BM iff f is a WN-map.

3.4 What happens in C(X)?

All the results in Sections 3.2 and 3.3 hold for C'(X), mutatis mutandis. We shall not state all
of them. Instead, we shall set up the tools for proving them and, as an illustration of how to

use the tools, prove just one deduced from each section.

In Chapter 2 we showed how to relate the O- and M-ideals of C(X) to those of R(£2(X)).
That will be used in Chapter 4. For recurrent purposes it is convenient to relate the two types

of ideals using the machinery developed in Diagram (3.1.3) in Section 3.1.

Using the notation of that diagram, we have that since dx: Q(5X) — [(2(X)) is a frame
isomorphism, it is also a localic isomorphism. The proofs of the next lemma and the two
corollaries following it are immediate from what we proved in Chapter 2 and the fact we have

just mentioned about dx.
Lemma 3.4.1. For any p € BX, px[MP] = MPx®:1}
Corollary 3.4.2. For any p € BX, ox[OF] = OPx®:1},

Corollary 3.4.3. For any A C X, <pX[MA] — MM g4 SOX[OA] — 0%

The following lemma will be needed below. Let f: X — Y be a continuous map and A C X.
As can be deduced from [35, Proposition VI.1.3.1],

—_— —~—

Pt(A) = {7 | z € A} hence Pt (f[A]) = {f(z) | z € A}.

As observed in [35, I1.2.4], if f: X — Y is a continuous map, then (Q(f)).(Z) = f(z) for every
reX.
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Lemma 3.4.4. If f: X — Y is a continuous function and A C X, then f[A] = (Q(f)).[A].

—_—

Proof. Since both f[A] and (Q(f)).[A] are spatial sublocales of Q(Y"), to show that they coincide
we need only show that they contain exactly the same points. But this is easy to deduce from

the little discussion immediately preceding the statement of the lemma. O]

Here is one more tool that we shall use. Let f: X — Y be a continuous map. Since Q(f) = f~!

and since (go k)™ ' =k~ og™! for any two composable functions, the square

c(Y) C(X)
RQY)) —2D R(0(X))

commutes in the category of rings, so that

px o C(f) =R(QAf))epy  andhence  C(f) " opx' =gy o (R(QUS)))

Since px is an isomorphism, we therefore have
C(/)™' =wy! e RN opx, (3.4.1)

Now here are the C'(X) versions of Theorem 3.2.1(b) and Theorem 3.2.2(a).

Corollary 3.4.5. If f: X — Y s a continuous function, then:

(a) C(f)"'[M*] € MPDA for every A C BX.

(b) OVBIIA C C(f)~1[0*] for every A C BX.

Proof. (a) Consider the frame homomorphism Q(f): Q(Y) — Q(X) and the sublocale dx[A] of
B(QX)). Since B(Q(f)) e by = dx o Q(Bf) from Diagram (3.1.3), we have (B(2(f)))«odx =
dy © (2(Bf))«, upon taking right adjoints and recalling that dx and Jy are isomorphisms.
Consequently, in light of Lemma 3.4.4,

B [0x[A]) = oy [0(51).1A]) = oy [5f[4]]
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We know from Theorem 3.2.1(b) that R(Q(f))~ [M**A] ¢ MB@UM-BxA g6 computing
C(f)~'[M*] via the equality in (3.4.2), we obtain
CONMA = oy [RIQ) ™ [iox [MA]]]
= oy [R(QH) [M‘SX[A]H by Corollary 3.4.3

1 _M(ﬁ(ﬂ(f)))*bx[fﬂ]}

— 90)_/1 -M(SY {m]}

— ! -SOY [M(ﬁf)[fﬂ” by Corollary 3.4.3
= MBI

which proves the result.

(b) Similar to that of part (a), except that we must invoke Theorem 3.2.2(a) in this case. [

Next, we prove the C'(X) version of Theorem 3.3.1. It is not hard to show that if K is a closed
subspace of X, then K is a closed sublocale of Q(X), and, in fact, K = cox)(X N K). In

consequence,

the closed sublocales of QU(X) are precisely the sublocales I?, for K a closed subspace
of X.

We shall need the following lemma. Since f_i[cpr(m)] = f~'[car(m)] for any localic map
f: L — M and m € M, we shall write the localic inverse image of closed sublocales as in the

latter case. This is to avoid ((Q(f)).)_1[—] in favour of (Q(f))1[—].

*

— —~—

Lemma 3.4.6. If f: X — Y is a continuous map, then (Q(f)); K] = f~1[K] for every closed
subset K of Y.

Proof. As in the case of images, it suffices to show that these two sublocales have the same

points. Observe that

(QUNTE] = QU)o (Y N K)] = cacx) (Y N K]) = cop (X N FHE]).
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Now, for any x € X,

T €cqu (X N K] iff X N {z} € o (X N fTHK])
iff X~ fUK]C X~ {z}
iff ze fK]

e~ —

if 7e fUK]

which proves that Pt ((Q(f));'[K]) = Pt (f~'[K]), whence the result follows by spatiality. [

Note that if f: L — M is a localic isomorphism, then f_;[—] is exactly the set-theoretic f~![—].

Corollary 3.4.7. If f: X — Y s a continuous map and K is a closed subset of Y, then
(C(NIOF]) = 0P

Proof. Consider the frame homomorphism Q(f): Q(Y) — Q(X) and the closed sublocale 0y [K]
of B(Q(Y)), and apply Theorem 3.3.1(b) to this data to obtain the equality

(R@(f) [0 F]) = o 15

The commutativity of the diagram above that led to equation (3.4.2) gives the equality R(Q(f)) =
@x°C(f)opy", and so, taking into account the fact that ¢y [OJY[E]} = O¥, by Corollary 3.4.3,

(R [0¥F]) = (ox [C() [0¥]]) = ox [(C(H) [0°T)]

the latter because px is an isomorphism (actually, being onto suffices). On the other hand,
from Diagram (3.1.3) we have 5(Q(f)) = dx o Q(Bf) o &', so that, upon taking right adjoints

and then localic inverse images (each of which reverses the order of composition), we have

BON o] = ax [ |67 [ovIR])]] = ox [(81) K] = ox [(85)7K]]

the last equality emanating from Lemma 3.4.6. Therefore, in light of Corollary 3.4.3,
OB B R) _ odx [6NTK] _ [O(Bf)*l[K]} .

Since @y is an isomorphism, it therefore follows that (C/(f)[O%]) = O 'K], O

Theorem 3.4.8. If f: X — Y is a continuous function, then:
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(a) C(f)"'[MS) € MPDBL for every S C X .

(b) OVBIBEI C C(f)~1O for every S C BX.

Proof. (a) Since f*(U) = f~V] for every V € Q(Y), and since (go k)™ = k1o g™! for any

two composable functions, the square

C(f)

C(Y) C(X)
RQY)) — L= R(Q(X))

commutes in the category of rings, so that
exoC(f)=Rf ooy  andhence  C(f) oy’ = pyte (RFF) .
Since px is an isomorphism, we therefore have
Cf) =y o (RF) " opx. (3.4.2)

Now consider the localic map f,: Q(X) — Q(Y) and the sublocale S of Q(3X). We know from
Theorem 3.2.1(b) that (Rf*)*l[Mg] C MBI So, computing C(f)~'[M?] via the equality
in (3.4.2), we obtain

C()M®] = oy [(Rf) ™ oa [M]

= oy [(Rf*) 7 [M?]] in light of Corollary 3.4.3
C 903_/1[M('8f*)[3}]

o (M0

= 801_/1 [M(ﬁff\)[/s}] by Lemma 3.4.4

= py’ [y [M BT by Corollary 3.4.3

= M BN

which proves the result.

(b) The proof of this part is similar, except that we must invoke Theorem 3.2.2(a) in this

case. O
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We now want to obtain some C'(X)-analogues of the other results from the previous sections.

For that we need to know how closed sublocales transfer from spaces to induced locales.

Lemma 3.4.9. Let K be a closed subspace of X. Then K is a closed sublocale of UX). In
fact, f? = CQ(X)(X N K)

Proof. Denote by h: Q(X) — Q(K) the induced frame homomorphism U — UNK. If U € Q(X),
let U™ denote the largest open set in X with U* N K = U N K. With this notation,

K={U"|UeQX)}.

The bottom element of K is h.(0qry) = 0%. Since K is closed, X \ K is open, and is the largest
open subset of X disjoint from K. Therefore 0z = X \ U. Consequently, K C cox) (X N K).
For the reverse inclusion, let U € co(x)(X N\ K). We argue that U = U*. Since U C U™, we show
that U CU. Let r e U*. f xr €e X N K, thenx € U. lfx € K, thenz ¢ U*NK =UNK; so
x € U. Thus, in either of the two exhaustive possibilities, we have x € U. Therefore U = U™,
showing that cox)(X ~ K) C K, and hence K = cox) (X N K). O

We deduce immediately from this lemma that

the closed sublocales of QU(X) are precisely the sublocales l?, for K a closed subspace
of X.

We can now apply this to obtain the C'(X)-version of Theorem 3.2.1(c). First though, given a
continuous function f: X — Y, let us express (Rf*)~! as a suitable composite as we did C'(f)~!
in equation (3.4.2) in the proof of Theorem 3.4.8. From the equality C(f) oy = oy o(Rf*) ™
we get

(RF) =gy eoCO(f) ooy

Theorem 3.4.10. The following are equivalent for a continuous function f: X — Y.

(1) C(f) " [M) = MBS for every subset S of BX.

(2) f is a WN-map.
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Proof. We show first that C(f)~' [M*] = MPDE] for every closed subset K of X if and only
if (Rf*)"1MF) = MBI for every closed sublocale F' of Q(3X).

Suppose, first, that (Rf*) " [MF] = MPUE for every closed sublocale F of Q(3X). Let K
be a closed subset of 5X. Then, by Lemma 3.4.9, K is a closed sublocale of Q(BX). So, by
hypothesis, and applying Corollary 3.4.3 and Lemma 3.4.4, we get

(Rf*)—l[SOX[MKH _ (Rf*)fl[Mf(] — M(/Bf*)[l?] — M(EJ?)[/K] — @Y[M(Bf)[K]L

which implies
oy (R ox [MX])) = MEDIK],

and hence C(f)~'[M¥] = MPDE in light of (3.4.2).

For the other way round, suppose that C(f)"'[M*] = M BAIE] for every closed subset K of
BX. Let S be a closed sublocale of Q(fX). Then, as observed above, S = K , for some closed
subset K of SX. Then, by hypothesis and the equality in (3.4.2),

Oy (RS ox [MX])) = MEDE,
Since px[M"] = M K _ pps , the foregoing equality implies
(Rf*)_l[MS] = goy[M(ﬁf)[K]] — pMBNIE] — pgBRIIE] M(Ef*)[S]’

which establishes the claim. O]
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Chapter 4

Annihilator ideals and the socle of RL

In [15], the author characterizes the socle (we will recall the definition shortly) of the ring RL
in terms of atoms of the frame L. In this chapter we propose to show that it is an O-ideal
associated with some rather special sublocale of SL. We will then characterize (again in terms
of sublocales) when it has certain algebraic properties. Towards that end, and also for other
purposes, we shall need to express annihilator ideals also as O-ideals. We shall then see that
for certain sublocales, the annihilator of an O-ideal associated with a sublocale is the O-ideal
associated with the supplement of that sublocale. A similar phenomenon occurs (and even more

frequently) for the M-ideals.

4.1 Annihilator ideals

Recall that the annihilator of a subset S of a ring A, denoted Ann(S), is the ideal
Ann(S) ={a € A |as =0 for every s € S}.

In [15, Lemma 3.1], it is shown that for any set S C RL, the annihilator of S is, in our present
notation,

Ann(S) = ML)

?

where a = \/{coza | @ € S}. In the same lemma it is shown that, in fact, the set of annihilator
ideals of RL is the collection
{M%L("‘L(b*)) |be L}
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We demonstrate that these ideals are precisely the ideals O°*t®) for b € L. Indeed, since
OY = MV for any open sublocale U of AL, and since M* = M* for any sublocale A of SL,

we have

Mesr (o) — posc(ri(®) — posc(ri(®) — osr(re(d))

Remark 4.1.1. In [32], the authors study rings (which they call AIP-rings) in which every
annihilator ideal is pure. Based on Theorem 2.4.1 and the foregoing discussion in this section,
we have that RL is an AIP-ring if and only if L is basically disconnected. Hence, also, C'(X) is
an AIP-ring if and only if X is basically disconnected.

Now, for any sublocale A of SL, AV A# = SL. This implies O N oY = 0% = {0}, and

similarly for M*. In consequence, we have that for any sublocale A of AL,
0" C Ann(O?) and M C Ann(M?).

Naturally, one wonders if these containments are actually not equalities. We will show that
for closed sublocales they are, but for open sublocales they generally are not. A sublocale is
reqular-open if it equals the interior of its closure. Regular-open sublocales of L are exactly the

sublocales oy (a), for a € BL.

Theorem 4.1.2. Let L be a completely reqular frame.

(a) For any closed sublocale A of BL, Ann(M?*) = M"Y and Ann(O?) = o
(b) If U is an open sublocale of BL, then Ann(MY) = MU iff U is reqular-open.

(¢) If U is an open sublocale of BL, then Ann(OY) = O"" only if U is reqular-open.

Proof. (a) Let A = cg1(I), for some I € BL. As shown in [13, Lemma 4.4],

\/{COZO‘ |ac MCBL(I)} - \/{coza la € OCBL(I)} = \/I;

and so
Ann(MA) = ADH(OA) — M‘ﬂL(rL(\/I)*) — MC[;L(I*).

On the other hand,
Mostd) — poscd) — MCBL(I*)’

99



which then proves that Ann(M?*) = M*" because A# = ogr(1).

For the other equality, since o C Ann(OA)7 we need only show the reverse containment. So

let @ € Ann(O?) = M) Then ¢zr,(I*) C ¢p1(r(coza)), which, on taking interiors, yields
0sr(1) S 0pr(I™) S 0pr(rr(coz a)”),

thus showing that o € O°**)_ that is, a € O*". Therefore Ann(0%) C OA#, and we have the

desired equality.

(b) Pick I € BL such that U = og(I). Then, using the result in part (a) and the fact that
M5 = M? for each sublocale S of BL, we obtain

Ann(MOﬂL(I)) — Ann(McﬂL(I*)) _ pAgosn) _ e

Consequently, Ann(MY) = MY” if and only if M U™ = presr@  which holds if and only
if g (I**) = ¢z (]), which, in turn, holds if and only if 7 = I**. This is so if and only if U is

regular-open.

(c) Choose I € SL such that U = 0s (/). Then
Ann(OY) = Ann(MVY) = Ann(M°sr Dy = ppose ™) — gosr™),

Now, if U is not regular open, then I < I'** as elements of SL. So there is an o € RL such
that coza € I** and coza ¢ I. The latter implies a ¢ 0%t that is, a ¢ O"". On the
other hand though, coza € I** implies that rp(coza) < I'™* so that I* < rp(coza)*, and
consequently og7(1*) C 01 (rp(coza)*), whence a € O°+") = Ann(QY). This proves that if
Ann(0OY) = OV then U is regular-open. O

The condition that U be regular-open is not sufficient for the annihilator of O to coincide with

OY”. Here is an example showing this.

Example 4.1.3. Let L = Q(R), and put a = (0,1). Then a = o™, and so the open sublocale
U = o0p.(rr(a)) of AL is regular-open. Since every element of L is a cozero element, there exists
some « € RL such that a = coza. Now, as shown in the course of the proof of item (c) in
the theorem above, Ann(OY) = 02" \which then shows that & € Ann(OY). On the
other hand though, a ¢ 0%t otherwise we would have coza € 77 (a), which would imply

a << a, which is false. This shows that Ann(O") # OU”.
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4.2 The socle

Recall that the socle of a ring A, denoted Soc(A), is the ideal of A generated by its minimal
ideals. If A has no minimal ideal, then Soc(A) is the zero ideal. The socle is also expressible as
an intersection of certain types of ideals. Recall that an ideal of a ring A is essential if it has
non-zero intersection with every non-zero ideal of A. If A has no non-zero nilpotent element
(for instance, if A = RL), then an ideal I of A is essential if and only if Ann(/) = {0}. It is
well known that

Soc(A) = ﬂ{E C A | E is an essential ideal of A}.

We mentioned at the beginning of the Chapter that one of our goals is to express the socle of
RL as an O-ideal. In preparation thereof, let us recall that a sublocale of a frame is said to
be nowhere dense [37] if it misses the smallest dense sublocale of the frame. Nowhere dense
sublocales have nowhere dense closure [37]. Observe that if A is nowhere dense, then A% is
dense; and conversely if A is complemented. Thus, a closed sublocale is nowhere dense if and

only if it is of the form ¢(a) for some dense element a.

Let us now introduce a sublocale that will play a crucial role in describing the socle. For any

frame M, denote by Nd(M) the sublocale
Nd(M) = \/{S € S(M) | S is nowhere dense}.

Since a sublocale is nowhere dense precisely when it misses the smallest dense sublocale, and

since the closure of a nowhere dense sublocale is nowhere dense, it is clear that
Nd(M) =M < BM = \/{CM<I) | z is a dense element of M }.

Now, recalling how joins of sublocales are computed, and keeping in mind that an element above

a dense one is dense, one checks quickly that, in terms of elements,

Nd(M) = {a € M | a is a meet of dense elements}.

We shall need the following notion which was introduced by Plewe [37]. A frame is dense in
itself if each of its Boolean sublocales has a dense supplement. As Plewe observed, a sober space
is dense in itself (in the usual topological sense of having no isolated point) precisely when the

frame of its open subsets is dense in itself. For our purposes, we need some characterizations
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that are established in [37]. We recite them in the upcoming proposition, and add new ones,

including one in terms of elements.

Proposition 4.2.1. [Plewe’s criteria] The following are equivalent for any frame M.

(1) M is dense in itself.

(2) M is covered by its nowhere dense sublocales. That is, Nd(M) = M.

(3) There exists a family of nowhere dense sublocales whose join is a dense sublocale of M.
(4) Ewvery non-void open sublocale of M meets some nowhere dense sublocale of M.

(5) There exists a family {a; | i € I} C M consisting of dense elements such that )\;,a; = 0.

Proof. The equivalence of the first three statements is part of [37, Proposition 5|. Statements
(2) and (5) are equivalent because (i) nowhere dense sublocales have nowhere dense closures, (ii)
a closed sublocale ¢yr(a) is nowhere dense if and only if @ is a dense element, and (iii) for any

{a;|i €I} C M, \/iCM(CLi) = M if and only if /\iai =0.

(3) & (4): A sublocale of a frame is dense if and only if it meets every non-void open sublocale
of the frame [21, Lemma 9.2]. Let {A) | A € A} be the set of all nowhere dense sublocales of M.

For any open sublocale U of M we have

UNNA(M) =Un\/4y=\/(UN Ay,

since complemented sublocales are linear. The equivalence under consideration follows from this

because Nd(M) is the join of all nowhere dense sublocales of M. ]

We shall be interested in characterizing when the socle of RL is the zero ideal, and when it is
an essential ideal. Because the socle will turn out to be an O-ideal, we first present criteria,
in terms of sublocales, for determining when an O-ideal is the zero ideal, and when it is an

essential ideal. These will actually be needed even in describing the socle as an O-ideal.

Lemma 4.2.2. The following are equivalent for any sublocale A of BL.

(1) O* is the zero ideal.
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(2) A is dense in BL.

(3) M* is the zero ideal.

Proof. (1) = (2): Assume that O” is the zero ideal. Then O is the zero ideal, which implies
Ann(O?) = RL. Since A is a closed sublocale of L, Theorem 4.1.2(a) tells us that O = RL.
Thus, 1 € O° L\A, which implies

5L AN 121 - OﬁL<7’L<COZ 1)*) = OBL<05L) = 0.
It follows from this that A = BL, and so A is dense in SL.

(2) = (3): If A is dense in AL, then M* = M* = M’ which is the zero ideal.

(3) = (1): This follows from the fact that O* C M. O

Before we move to the characterization of essential O-ideals, let us use this corollary to address a
natural question regarding the containment O C OA##, which always holds because A## C A.
If A is complemented, then this containment is actually an equality because then A = A##.

There are however instances when the containment is strict.

Example 4.2.3. Let X be any Tychonoff space which is dense in itself. Then 5X is dense in
itself. Put L = Q(X). Since SL = Q(BX), BL is dense in itself, and so B(BL)# = BL by one of
Plewe’s criteria. Therefore B(5L)## = O, and consequently O = {0} by Lemma 4.2.2.
On the other hand though, o™ — RL.

Lemma 4.2.4. The following are equivalent for a sublocale A of BL.
(1) O is essential.
(2) M* is essential.

(3) A is nowhere dense.

Proof. (1) = (2): This is so because O* C M,

(2) = (3): Assume that M* is essential. Then M is essential (as the two ideals are equal).
Since A is a closed sublocale, Theorem 4.1.2(a) gives Ann(M?) = M?"4_ The essentiality
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of M* then says MPA s the zero ideal, which, by Lemma 4.2.2, implies 3L ~. A is dense,

whence A is nowhere dense, and hence A is nowhere dense.

(3) = (1): Assume that A is nowhere dense. Then A is nowhere dense, and so SL . A is dense.
From Theorem 4.1.2(a), we have Ann(O%) = 0P, Since SL \ A is dense, Lemma 4.2.2 tells
us that O is the zero ideal, which then implies O" is essential. Therefore O” is essential

because O4 C 0. ]

Remark 4.2.5. In [22], the authors prove for C'(X) a result almost similar to Lemma 4.2.4,
but restricted to closed subspaces of X. Our result is thus certainly much sharper, even when
restricted to C'(X). Another comment is that their proof does not use annihilators, as ours

does, but instead uses a result attributed to McKnight in [9].

Let us digress slightly to compare the two previous lemmas. For complemented sublocales,
nowhere denseness is the antithesis of denseness, because the first concept says “interior is void”,
whilst the second says “closure is the whole thing”. In rings, there is a notion which is the
antithesis of essentiality of ideals. Namely, an ideal I of a ring A is said to be small if for any
ideal J of A, the equality I + J = A implies J = A. Compare with essentiality which says the
equality I N.J = {0} implies J = {0}.

Now the two previous lemmas say “nowhere denseness is to essentiality what denseness is to
being zero”. Considering what we have said in the preceding paragraph, perhaps one could have
expected nowhere denseness to be to essentiality what denseness is to smallness. Actually that
is exactly what we have because, as we show below, being zero in RL is precisely being small.

Thus, the two lemmas harmonize with the antitheses mentioned above.

That the only small ideal of RL is the zero ideal follows from the fact that in any ring an ideal
is small if and only if it is contained in the Jacobson radical of the ring, and the Jacobson
radical of RL is the zero ideal, as was shown by Ighedo in her PhD thesis [26, Remark 2.1.1].
Since her proof of this fact requires knowledge of maximal ideals of R L, we proffer the following

direct proof that “small = zero” in RL.

Proposition 4.2.6. The only small ideal of RL is the zero ideal.

Proof. Let I be a small ideal of RL. Let o € I, and consider any v € RL with cozy << coz a.
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Find o0 € RL such that

cozyANcozog =0 and cozoVcoza =1.

2 is invertible. Therefore

I+ (o) = RL. Since [ is small, (0) = RL, which implies cozo = 1, and hence v = 0. Since

Then, by the properties of the cozero map, vo = 0 and o? + «

coza = \[{coz T | cozT << coz~v}, by complete regularity, it follows that coza = 0, and hence

o = 0. Therefore I is the zero ideal. O]

This ends the digression, and we pick up the discussion on when the ideals associated with

sublocales of L are the zero ideal or essential ideals.

In Lemma 4.2.2 we saw that each of the ideals O and M* is the zero ideal if and only if A
is a dense sublocale of SL. In Lemma 4.2.4 we saw that the ideals O and M* are essential

precisely when A is a nowhere dense sublocale of A. Since, for any sublocale S of L, Og = O™

and Mg = M5 it follows that:

e cach of the ideals Og and Mg is the zero ideal if and only if r.[S] is a dense sublocale of

BL; and

e cach of the ideals Og and Mg is essential if and only if r1[S] is a nowhere dense sublocale
of BL.

We wish express these characterizations within L without invoking L. For that we need the
following lemma, which we prove more generally than is needed for current purposes. Recall
that if h: M — L is a dense onto frame homomorphism, then h,(b*) = h.(b)* for every b € L.
In Loc, this says if f: L — M is a dense one-one localic map, then f(a*) = f(a)* for every

a€ L.

Lemma 4.2.7. For any dense one-one localic map f: L — M, we have the following:

(a) S is dense in L iff f[S] is dense in M.

(b) S is nowhere dense in L iff f[S] is nowhere dense in BL.

Proof. (a) If S is dense in L, then 0, € S, and so f(0;) € f[S]. But f(05) = 0y since f is
dense, so f[S] is dense in M. Conversely, if f[S] is dense in M, then f(0r), which is the bottom
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of f[S] since f is dense, belongs to f[S], so that f(0.) = f(s), for some s € S. Since f is

one-one, this implies s = 0, showing that S is dense in L.
(b) Suppose that S is nowhere dense in L. Consider any m € f[A] N BM, so that m = f(a),
for some s € S, and m = b* for some b € M. Thus f(a) = b*, and hence (in light of f being
injective and f* commuting with pseudocomplementation),

s=["(f(a)) = f(b") = (f*(0)"
which implies s € SNBL, hence s = 1 since S is nowhere dense in L . Therefore m = f(s) = 1,
which proves that f[S] is nowhere dense in M.

Conversely, suppose f[A] is nowhere dense in M. Consider any s € SN B L. Then s = z* for
some z € L, which implies f(s) = f(z*) = f(x)*. Thus, f(s) € f[S]NBM = O, which implies
f(s) = 1u, and therefore s = 1 because f is one-one and f(1,) = 1,;. Therefore S is nowhere

dense in L. [

Corollary 4.2.8. For any sublocale S of L, we have the following,

(a) Og is the zero ideal iff Mg is the zero ideal iff S is dense in dense L.

(b) Og is essential iff Mg is essential iff S is nowhere dense in dense L.

We can now describe the socle of RL in the desired manner.

Theorem 4.2.9. Soc(RL) = ON4¥D),

Proof. Let {Ax | A € A} be the set of all nowhere dense sublocales of 5L, so that Nd(5L) =
V,Ax. Lemma 4.2.4 tells us that, for each A, O*" is an essential ideal, and hence, in light of

the socle being the intersection of all essential ideals,

Soc(RL) C (O™ = OVar = QN1
A

Now consider any essential ideal of I of RL, and denote by A(I) the closed sublocale of L
given by

A = e (\/{ri(eoza) [ a € 1),
As shown in the proof of [14, Proposition 5.2], 02" c 1 € MAD, Therefore M*Y) is an

essential ideal, implying that Ann(M A(I)) is the zero ideal, and hence O*® is an essential
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ideal because Ann(O*")) = Ann(M*D) as shown in the proof of Theorem 4.1.2. Thus, by
Lemma 4.2.4, there is an index )\ such that O** C I. Since the socle is the intersection of
all essential ideals, it follows from this that (,0"* C Soc(RL), and so we have the claimed

equality. O]

Since Nd(SL) is a join of closed sublocales, each of which is nowhere dense, the following

corollary follows from Theorem 2.4.1 and Lemmas 2.3.1 and 4.2.4.

Corollary 4.2.10. Soc(RL) is the intersection of all the pure essential ideals of RL. If L is
basically disconnected, then Soc(RL) is pure.

Let us now address the question of when the socle of RL is zero. Recall that one of Plewe’s
criteria says a frame M is dense in itself if and only if there is a family {A;} of nowhere dense
sublocales of M such that \/,A; is a dense sublocale of M. The following result therefore follows
from Lemma 4.2.2 and Theorem 4.2.9.

Corollary 4.2.11. Soc(RL) is zero iff SL is dense in itself.

Let us pause for a moment and interpret this result in C'(X). This is with the view to showing
some stark differences between the vanishing of the socle in classical function rings and its
vanishing in pointfree function rings. Recall that C(X) = R(Q(X)), 5(2(X)) = Q(8X), and X
is dense in itself if and only if SX is dense in itself. Since a sober space is dense in itself if and

only if the frame of its open sets is dense in itself [37], it follows that
Soc(C(X)) is zero iff fX is dense in itself iff X is dense in itself.

Corollary 4.2.11 tells us that, in frames, we do have the localic version of the first of these
equivalences. We shall see that one implication in the localic version of the other equivalence

fails.

If L is a dense sublocale of M, then BL = BM. Therefore, if A C L is a nowhere dense
sublocale of L, then A is a nowhere dense sublocale of M. Consequently, if L is dense in itself,
so that L is covered by its nowhere dense sublocales, then M has nowhere dense sublocales with

dense join, and so, by one of Plewe’s criteria, M is dense in itself. In particular,

if L is dense in itself, then BL is dense in itself,

67



and we can thus deduce from Corollary 4.2.11 the following result.

Corollary 4.2.12. If L is dense in itself, then Soc(RL) is zero. The converse fails.

Here is an example avouching that (unlike in classical function rings) if Soc(RL) is zero, it does
not follow that L is dense in itself. Recall that an element p of a frame L is called prime if
p<landz Ay <pimplies x < por y < p. The set of prime elements of L is denoted Pt(L).

In regular frames the primes are exactly the elements that are maximal strictly below the top.

Example 4.2.13. Let L be a Boolean frame with no primes (such as B(Q2(R))). Then of course
L is not dense in itself. We claim that SL is dense in itself. If 5L were not dense in itself, then
(being spatial) we would have a Tychonoff space X with an isolated point such that SL = Q(X).
Then there would exist p € Pt(SL) with p V p* = 1. We cannot have ji(p) = 1, as that would
imply jr(p*) = 0, whence we would have p* = 0 as j,, is dense, leading to p = 1. Therefore
jr(p) < 1, and since primes in regular frames are precisely the maximal elements, a simple
calculation would imply that j;(p) € Pt(L), which is a contradiction as L has no primes. Thus,
by Corollary 4.2.11, Soc(RL) is zero even though L is not dense in itself.

To close the discussion on the vanishing socle, let us briefly say a word on the discrepancy
between the behavior of dense subspaces vis-a-vis that of dense sublocales with regard to
inheritance of the dense-in-itself property. We have seen that a frame with a dense sublocale
that is dense in itself is itself dense in itself; however, a dense sublocale of a dense in itself
frame (even a spatial one, at that) is not necessarily dense in itself. We show that if we restrict
to smooth sublocales then the dense ones among them inherit the property of being dense in

oneself. We do not assume any separation axiom.

Proposition 4.2.14. A smooth dense sublocale of a dense-in-itself frame is dense in itself.

Proof. Let L C M be a smooth dense sublocale of a dense-in-itself frame M. Let (C; | i € I)
be a collection of complemented sublocales of M with L = \/,_;C;, and let (N; | j € J) be
the collection of all nowhere dense sublocales of M. Then M = \/,_;N; since M is dense in
itself. Since L is dense in M, BL = BM, and so for any nowhere dense sublocale N of M,
L N N is a nowhere dense sublocale of L. For each i € I, C; C vjeJNj7 and so, by linearity of

complemented sublocales,

jeJ jeJ
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Since each C; is contained in L, the collection {C; N N; | (i,7) € I x J} is a family of nowhere

dense sublocales of L, covering L. Therefore L is nowhere dense. O

Corollary 4.2.15. If L is a smooth sublocale of SL, then Soc(RL) is zero iff L is dense in
itself.

Now we turn to characterizing when the socle of RL is essential. Recall from [37] that Plewe
calls a frame scattered if every non-void closed sublocale contains a non-void open Boolean
sublocale. He observes that a sober space X is scattered if and only if the frame Q(X) is

scattered.

Corollary 4.2.16. The following statements about Soc(RL) are equivalent.

(1) Soc(RL) is essential.

(2) Nd(BL) is nowhere dense.

(3) B(BL) is complemented.

(4) BL has a largest nowhere dense sublocale.

(5) BL has a smallest dense open sublocale.

Proof. By Lemma 4.2.4 and the description of the socle in Theorem 4.2.9, Soc(RL) is essential
if and only if Nd(8L) is nowhere dense; which proves the equivalence of statements (1) and (2).

Since, for any frame M, Nd(M) = M ~ BM, we have

Nd(M) is nowhere dense  iff NA(M)NBM =0
iff (M~ BM)NBM =0

ifft  BM is complemented.

Therefore statements (2) and (3) are equivalent.

Since Nd(SL) is the join of all nowhere dense sublocales of 5L, it is clear that Nd(SL) is nowhere
dense if and only if it is the largest nowhere dense sublocale of SL. This proves the equivalence

of statements (2) and (4).
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Since the closure of any nowhere dense sublocale is nowhere dense, if Nd(SL) is nowhere dense,
then it is, in fact, a closed sublocale. But clearly, a frame has a largest (closed) nowhere dense
sublocale if and only if it has a smallest dense open sublocale. Thus, statements (4) and (5) are

equivalent. [

Remark 4.2.17. We feel compelled to mention that if a frame has a smallest dense open
sublocale, it does not mean that its smallest dense sublocale is open. Incidentally, Banaschewski
and Pultr prove in [8] that, for any frame L, B L is open if and only if L has an open Boolean
dense sublocale. Their proof is frame-theoretic. We offer the following localic one, which is
much shorter. If BL is open, then of course L has an open Boolean dense sublocale. Conversely,
suppose U is an open dense Boolean sublocale of L. Denote pseudocomplementation in U by
(—)7. The density of U implies that, for any v € U, v~ = u — Oy = v — 0y, = w*. Since U is
Boolean, u = ™~ = «*™*, which says U C *BL, and hence U = B L, implying that the smallest

dense sublocale is open.

In [37], Plewe proves that a frame is scattered if and only if every sublocale has a largest nowhere

dense sublocale. We therefore have the following corollary.

Corollary 4.2.18. If L is scattered, then Soc(RL) is an essential ideal. The converse fails.

Here is an example showing that the converse of the corollary does not hold.

Example 4.2.19. Let L = 3(Q(N)). Since N is locally compact, ©2(N) is an open sublocale of
L. Since Q(N) is a dense sublocale of L, BL = B(Q(N)) = Q(N), and so BL is a complemented
sublocale of L. Since L = L, it follows that ®B(8L) is a complemented sublocale of SL, and
so, by Corollary 4.2.16, Soc(RL) is an essential ideal of RL. But of course SL is not scattered
because fL = Q(PN), and SN is not scattered as SN \ N is a closed subspace with no isolated

point.

A few comments about the ideal Oyq(z) are in order. Emanating from Corollary 4.2.16 is the
natural question whether it is necessary and sufficient that the sublocale Nd(L) of L be nowhere
dense for Soc(RL) to be essential. We show that it is necessary. We need a lemma, which we

state more generally than is really needed for our purposes.

We recalled earlier that if f: L — M is a one-one dense localic map, then f(a*) = f(a)* for all

a€ L.
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Lemma 4.2.20. Let f: L — M be a dense surjective localic map.

(a) NA(L) C f2[Nd(M)].
(b) If M is scattered, then f_1[Nd(M)] = Nd(L).
(¢) If AC M is a nowhere dense sublocale, then f_1[A] is nowhere dense in L.

(d) If M is scattered and A is a sublocale of M such that f_,1[A] is nowhere dense in L, then

A is nowhere dense in M.

Proof. (a) Let a € Nd(L). Then, as observed earlier, a = A,q;, for some dense elements
a; € L. Therefore f(a) = A,f(a;), which implies f(a) € Nd(M) because (being dense and
surjective) f maps dense elements to dense elements. Thus, f[Nd(L)] € Nd(M), which implies
Nd(L) € f[Nd(M)].

(b) Let us recall that, as was observed by Plewe [38, p. 315], pullback along any localic map

with scattered codomain preserves all joins. Therefore, if M is scattered,

FAINAD] = Fo [\/{ear(m) | m s dense in M}
= \/{F-alear(m)] | m is dense in M}
= \/{ex(f*(m)) | m is dense in M}
C \/{cr(a) | a is dense in L} since f* preserves density

= Nd(L);

so that we have f_;[Nd(M)] = Nd(L), by part (a).

(c) Let A be a nowhere dense sublocale of M. Then ANBM = O, and consequently f_1[A] N
fo1[BM] = O. Observe that f[BL] C BM because if a € BL, then a = a**, which implies
f(a) = f(a*™) = f(a)*™* because f is dense and injective. Thus, BL C f_1[BM], and hence

FA[AJNBL C f[A]N f[BM] = O,

which says f_;[A] is nowhere dense.

(d) If M is scattered, then every sublocale of M is complemented [37]. Since localic preimage

functions preserve complements, and since A is complemented in M, f_;[A] is complemented in
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L, with (f_1[A])# = f_1[A#]. Therefore the hypothesis that f_;[A] is nowhere dense implies
that f_1[A#] is dense in L, and therefore 0 € f_;[A#], which, in light of f being dense, implies
0 = f(0) € A# thus showing that A% is a dense sublocale, and therefore A is nowhere dense

since A is complemented. n

Now, the localic map ry: L — L is dense and surjective, so this lemma applies to it. Applying

it, we obtain the following results.

Proposition 4.2.21. Let L be a completely reqular frame.

(a) Soc(RL) € Ona(r)-
(b) If Soc(RL) is essential, then Nd(L) is nowhere dense in L.

(c) If BL is scattered, then Soc(RL) is essential iff Nd(L) is nowhere dense iff L has a largest

nowhere dense sublocale.

Proof. (a) From the containment Nd(L) C (rz)_1[Nd(5L)], as per Lemma 4.2.20(a), we deduce
that r,[Nd(L)] € Nd(5L), and therefore

Soc(RL) = ONPL) C OmeNIE] = Oy ).

(b) If Soc(RL) is essential, then Nd(5L) is nowhere dense in SL by Corollary 4.2.16. By
Lemma 4.2.20(c), (r7)-1[Nd(5L)] is nowhere dense, and hence by Lemma 4.2.20(a), Nd(L) is

nowhere dense.

(c) Clearly, we need only prove the right-to-left implication in the first equivalence. So assume
that Nd(L) is nowhere dense. By Lemma 4.2.20(b), (rz)_1[Nd(8L)] = Nd(L), and so by
Lemma 4.2.20(d), Nd(SL) is nowhere dense, and so Soc(R L) is essential by Corollary 4.2.16. [

We conclude with following comments.

(a) It should be clear that if L is compact, then ONBL) — Onq(r)- The converse fails. Indeed,
for the frame L = Q(R) we have Nd(L) = L and Nd(8L) = L since L and SL are dense in
themselves, and so ON4PL) = Ona(r) = {0}.

(b) The containment, ONiBL) C Ona(r) can be proper. To see this, observe that, for any frame

M, Nd(M) = O if and only if M is Boolean. In particular, since M is compact, Nd(6M) = O
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precisely when M is a finite Boolean algebra. Now let L be the power set of any infinite set.
Then L is a Boolean frame, but SL is not Boolean, and so Nd(SL) # O. Since for any frame M
and A € S(BM), O = RM if and only if A = O, we have ONPL) £ RL. Since L is Boolean,
Nd(L) = O, and so Onq(r) = O° = RL. Therefore ON1PL) < Ona(r)-
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Chapter 5
Mapping ideals to sublocales

In this chapter we introduce a mapping from the lattice of ideals of RL into the lattice of
sublocales of L. We shall then examine some properties of this mapping. Its ancestry goes back
to the 1954 paper of Gillman, Henriksen and Jerison [23] in which they present a proof of the
theorem of Gelfand and Kolmogoroff that is about the bijection between the sets of maximal

ideals of the rings C'(X) and C*(X).

To recall, Gillman, Henriksen and Jerison introduced the notation A(I) as a shorthand for

associating an ideal I of C'(X) with the closed subset of fX given by

=(Nclsx Z(f) | f € I},

where Z(f) denotes the zero-set of f. Since its introduction, wherever A(/) has appeared
(sometimes written as 6(1)), it has just been a notation of convenience. In this chapter our aim
is to make A a homomorphism of the algebraic structures that are known as quantales that

were introduced by Mulvey [34].

5.1 Making A a quantale homomorphism

A quantale is a complete lattice () with an associative binary operation - such that

a-\/b—\/(a b;) and (\/b) \/b a)

el el el el
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for every a € @ and every family (b; | i € I) of elements of (). The quantale is commutative
ifa-b=20-a for all a,b € Q). Every frame is a commutative quantale if we take - to be A. A
quantale homomorphism is a mapping between quantales that preserves all joins and the binary
operation. As mentioned above, quantales were introduced by Mulvey [34] and are studied in

detail in [40].

Let us remind the reader that by “ring” we mean a commutative ring with identity. The lattice
Idl(A) of ideals of a ring A, partially ordered by inclusion, is complete, with sum for join. We
view it as a quantale with the binary operation given by the usual ideal product. That is, for

any ideals I and J of A,
I~J:{ZuivﬂnEN,uiG],vieJ}.
i=1

As usual, we simply write I.J for this product.

Definition 5.1.1. We define the map Ap: IdI(RL) — S(SL)°P by the equation

Ar(I) = (epr(ri(coza)) = cBL(\/rL(coz a)) - cﬁL(UrL@oza)).

acl ael acl

Observe that the join in the definition of A (7) is a union because it is directed. When we are
dealing with one frame, we shall suppress the subscript. We remark (for later use) that A is
surjective on closed sublocales. Indeed, if A is a closed sublocale of SL, say A = ¢z (J) for
some J € L, then the set Q = {a € RL | coza € J} is easily checked to be an ideal of RL
with A(Q) = A. We shall see in the following proposition that A need not be injective, but is

always injective on what Johnstone [29] calls “neat” ideals. Let us recall what they are.

An ideal I of a ring A is said to be neat if mI = I. Neat ideals are also called “pure”. In RL,
a € ml if and only if coz v << coz, for some vy € I. See [11, Lemma 3.4] for details.

In a number of instances we shall use [14, Lemma 4.4], which states that if v and ¢ belong to

RL and cozy << cozd, then v is a multiple of §.
Proposition 5.1.2. Let I and J be ideals of RL. Then:
(a) A(I) = A(mI).
(b) A(I) € A(J) implies mJ C ml.
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(c) A(I)=A(J) iff mI =mJ.

(d) A is injective on neat ideals.

Proof. (a) In view of the definition, it suffices to show that

UTL(Cozoz) = U r1(coz a).

ael aeml
The one containment is trivial because mI C I. If ¢ € {J,.,r(coza), then there is an ag € 1
such that ¢ € rp(coz ap), which says ¢ << coz ag. Pick v € RL with ¢ << cozy << coz ay. Then
~ is a multiple of g, and so v € I. From coz~vy << coz agy, we have that v € m/I, which then

implies ¢ € |J, e, 70(coz a); establishing the other containment. Therefore A(I) = A(mI).

(b) Suppose that A(I) C A(J). Let v € mJ and pick 7 € J such that cozy << coz 7. Therefore
c0zy € Upe rr(coza). From the containment A(Z) € A(J) we deduce that

U?“L(COZ a) C U?"L(COZ a).

acJ ael

Thus, there exists p € I such that cozvy << coz p, which implies v € mI. Therefore mJ C ml.
(c) The forward implication follows from (b), and the other follows from (a).

(d) This follows from (c) because an ideal @) of RL is neat if and only if Q = m@Q). O

It will be convenient to give the map A — O a name. So, let us do so.

Definition 5.1.3. We define the map ¥, : S(3L)°P — IdI(RL) by ¥ (A) = O*. When dealing

with one frame, we shall drop the subscript.

Recall that a P-frame is a completely regular frame in which every cozero element is comple-
mented. We are aiming for the first result announced in the abstract, which will culminate in
showing that we have an adjunction
A
IdI(RL) L S(BL)°P

)4

precisely when L is a P-frame. To recall, if X and Y are posets, two monotone functions
f: X =Y and g: Y — X are said to be in a Galois connection, with f on the left and g on
the right, written f - g, if

Vee X, VyeY, f(z)<y <= x<g(y).
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A useful characterization is that

fdg <= fog<idy and idx <g-of.

En route to the result we are aiming for, we establish some preliminary ones, including others
that are not really germane to the task at hand, but which we find to be noteworthy nevertheless.
One of the latter kind generalizes [9, Lemma 1.6], and significantly sharpens it because it also

mentions an instance (not observed in [9]) of when the converse holds.
Recall that a completely regular frame L is called an almost P-frame [4] if ¢ = ¢** for every

c € Coz L.

Proposition 5.1.4. Let L be a completely reqular frame.

(a) For any sublocale A of BL, A(O”) = A(O*) = A(MZ) = A.

(b) If A and B are sublocales of 5L with O C MP, then B C A. The converse holds if L is

an almost P-frame.

(¢) For any ideal I of RL, O*Y) = mI.

Proof. (a) Since A C ¢gr(rr(coz ) for every a € MA, and since O C 04 C M*, we have

ACA(MY) =AM C A(0%) C A(OY).
Consequently, we need only show that A(OZ) C A. Put H = \A, so that A = ¢g,(H). Now,
in light of the fact that
A(OZ) = gL U rp(coza) |,
ac0?*
it suffices to show that (J{rp(coza) | a € OcﬁL(H)} = H. But this is indeed so because, for any
vy € RL, v € O+ if and only if cozy € H, and H = |J{rp(coza) | coza € H}.

(b) If O* € M®, then, in light of the result in (a),

B = A(MP) = A(MP) € A(O?) = 4;

which proves the first part of (b). Next, assume that L is an almost P-frame and A and B
are sublocales of AL with B C A. We must show that O C MP?. Let a € O?. By definition,
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A Copp(rp(coza)*), which, on taking closures and noting that 7 (coz o)™ = rp(coz «) since L

is an almost P-frame, yields

B C A C op(rp(coza)*) = cap(rp(coza)*™) = cgp(rp(coza)),

which implies « € M B — MP. Therefore O* C M5,

(c) Since A(I) = ¢a(U,ep ri(coza)), for any v € RL we have

veO0*)  —  cozye U{TL(coza) |ael}
<= coz7vy << coza, forsome €l

— yeml,

which then proves the claim. [

We have the following application to C'(X). Recall that a Tychonoff space is called an almost
P-space if each of its Gs-sets has dense interior. These spaces were studied in detail by Levy [30].
A space X is an almost P-space if and only if (X)) is an almost P-frame. In [9, Lemma 1.6],
Dietrich shows that if, for subsets A and B of X, O* C M?, then B C A. We show that the

converse holds if X is an almost P-space. For that, we need a lemma.
Recall that complemented (and hence closed) sublocales of a spatial frame are spatial. Let K
be a closed subset of a Tychonoff space X. Since

Pt(K) = {w |we K} = {X ~ {w} |w e K} =Pt (coux) (X \ K)),
the latter by a simple calculation, it follows that K = co(x) (X N K) because both these sublocales
are spatial.

In what follows we use the overline for both the closure in spaces and locales. There will be no
danger of confusion. Observe from [35, Proposition VI.1.3.1] that if A and B are subsets of a
Tp-space (and hence of a Tychonoff space), then A C B if and only if ACB.

Lemma 5.1.5. If S is a subset of a Tychonoff space X, then § = §

Proof. By what we have just observed, it suffices to show that E = C(X) (X N g) Since § is
a closed sublocale of Q(X), there exists U € Q(X) such that S = co(x)(U). So we must show
that U = X . S. Since S C S, S C S, and since S is a closed sublocale, we have S C 5. This
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says co(x)(U) C cox) (X N S), which implies X .S C U. On the other hand, the containment
§§ S = )?:/U implies S € X \ U, so that U N S = 0, and hence U N S = 0 because an open
set misses a set if and only if it misses the closure of that set. Therefore U C X ~\. S, hence we

have the desired equality, whence the lemma follows. [

Corollary 5.1.6. Let X be an almost P-space and A and B subsets of X such that B C A.
Then O C MP.

Proof. By hypothesis, (X) is an almost P-frame and, for the sublocales A and B of QLX)
induced by A and B, we have § - j Thus, by Lemma 5.1.5, the sublocales A and B
of Q(BX) satisfy the containment B C A Proposition 5.1.4(b) implies 0% ¢ M*. TFrom
Corollary 2.1.3 we deduce that ¢x[O®] C px[M*], which implies OF C M* because px is a

ring isomorphism. O]

We are now ready to present the first main result in the chapter.

Theorem 5.1.7. Regarding the maps A: Idl(RL) — S(BL)® and ¥: S(BL)® — IdI(RL), we

have the following results.

(a) A is a quantale homomorphism and V preserves meets.

(b) A and ¥ are in a Galois connection, with A on the left, iff L is a P-frame.

Proof. (a) Let us show first that A preserves joins. Let {I} | k € K} C Idl(RL). We claim that

\/ ri(coza) = \/ (\/ rr(coz a)). (5.1.1)

acy Iy keK a€ly

For a fixed ky € K,
\/ rrcoza) < \/ ri(coza),

a€ly, a€d Ik

which yields the inequality > in (5.1.1). For the opposite inequality, let us keep in mind that

\/ ri(coza) = U ri(coz ).

aezkfk aEZka

If a cozero element ¢ belongs to this union, there is an ag in ), I such that ¢ € r(coz ay).

Therefore there are finitely many indices £y, ..., k, in K and elements ay, € Iy,, fort =1,...,n,
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such that ap = ax, + -+ + ay,,. Since r preserves finite joins of cozero elements, and since

coz g < coz(ag,) V - -+ V coz(ay, ), we have

ri(cozag) < rp(coz(ag,)) V- Vrp(coz(ay,)) < \/ ri(coz o),
anklk

which proves the desired inequality, and hence establishes the claimed equality. We argue from
this that A preserves joins. We need to keep in mind that joins in S(SL)°P are intersections.
Let {I; | k € K} CIdI(RL). Then.

1dI(RL)

A \/ I :A<zk:_fk> = cﬁL< \/ TL(Coza)>

keK Oéezklk

= c5L< \/ ( \/ r,(coz a)))

keK CMGIk

- m cBL( \/ r1(coz a))

keK acly

= (AT
keK
S(BL)r

=V A,

keK

which proves that A preserves joins.

Now we show that A preserves the binary product. Let I and J be ideals of RL. The product
A(I) - A(J) is the meet of these two sublocales taken in S(BL)°P, which is their join calculated
in S(BL). Therefore,

A(I)-A(J) = c5L<\/rL(coz a)) Y C5L<\/7’L(COZ7)>

ael yeJ
= ¢g1, \/TL(COZ a) A \/TL(COZ’V))
acl yeJ
= (gL, \/ (ri(coza) Arp(coz)) by the frame law
(ayy)EIXJT
= (gL \/ rr(coz(a))

(ayy)eIXJT
Now, if p € IJ, then p = ayv1 + - - - + apYp, for some finitely many elements o; € I and v; € J,

which then, by the properties of the cozero map and the fact that r; preserves finite joins of
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cozero elements, implies that

ri(cozp) < rp(coz(anm)) V- Vrp(coz(any,)) < \/ ri(coz(ay)).
(a,y)EIXJ

Consequently,

\/T’L(COZT> < \/ rr(coz(ay)) < \/TL(COZT),

TelJ (ayy)eIxJ TelJ
from which we deduce that A(1J) = A(I) - A(J). In all then, A is a quantale homomorphism.

Next, we show that W preserves meets. Undecorated joins of sublocales are understood to be

taken in S(SL). If {A; | k € K} C S(BL)P, then

S(BL)°P IdI(RL)
Ul A A =0Viert = (NOM = (T(A) = /\ U(Ap),
keK keK keK keK

which shows that W preserves meets.

(b) We comment first that the results in (a) tell us that both these maps are monotone, so it
does make sense to talk about them possibly being in a Galois connection. Proposition 5.1.4(a)
says A(U(A)) = A for every A € S(BL)°P. Since A < A in S(BL)°P, we therefore have
A oW <idggryr. Now recall from [11, Corollary 3.10]) that L is a P-frame if and only if every

ideal of RL is neat. Since an ideal I of RL is neat if and only if I = mlI, we have

L is a P-frame < [ Cml forevery [ € RL

<~ idIdl(RL) < WUoA.

It follows therefore that A is left adjoint to W if and only L is a P-frame. O]

We now wish to interpret this in C'(X). For that we need some background, sourced mainly

from [36]. Recall that for any frame L, the lattice

S(L)={S € S(L)| S is ajoin of closed sublocales}

is a frame, with partial order C and joins as in S(L). If L is subfit, then S;(L) is a Boolean
frame, with complements equal to supplements calculated in S(L). Furthermore, B(S(L)P),
the Booleanization of S(L)°P, is the Boolean frame S.(L)°. If Y is a T}-space and B(Y") denotes
the powerset of Y, then the map

Ty PY)P — S (Q(Y))P given by T—T
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is an isomorphism of Boolean algebras, and hence a frame isomorphism.

Next, any ring isomorphism ¢: A — B induces a quantale isomorphism ¢: Idl(A) — Idl(B)
given by I — ¢[I]. Recall the ring isomorphism px : C(X) — R(Q(X)) for any Tychonoff space
X, and, as in Section 2.1, view the Stone-Cech compactification of Q(X) as being given by the
dense-onto frame homomorphism Q(ix): Q(BX) — Q(X). We consequently have the map

Fx: 1dI(C(X)) = TAIR(QA(X))) = SQBX)) = S(AUBX)) — P(BX)™

given by the composite

Fx = 755 ° bsi@x)er © Aaix) ° Px-

Being a composite of quantale homomorphisms, the map Fx: Idl(C(X)) — B(SX)P is itself
a quantale homomorphism. We show that it is precisely the map of Gillman, Henriksen and

Jerison.

Proposition 5.1.8. Fx(I) = ({clgx Z(f) | f € I}, for every ideal I of C(X).

Proof. Since (Ag(x) e @x)(I) is a closed sublocale of Q(8X) for any ideal I of C(X), and since

the Booleanization map bssx))er sends every closed (actually, every complemented) sublocale

to itself, it suffices to show that
(TﬁX o FX) (I) = (AQ(X) o @()([)

To compute the sublocale on the left, recall that if K is a closed subset of Y then the induced
closed sublocale of Q(Y) is ¢y (Y \ K). Recall also from the discussion preceding Lemma 2.1.1
that, for any f € C'(X),

BX N clgx Z(f) = Qix)« (coz(o(f))) = racx) (coz(ex(f))).
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Thus,

(max o Fx)(I) = Fx(I) = ca(sx) (5}( <) elsx Z( f))
fel

= cagan (U (8 ~ clax 2(0))

fel

= CQ(8X) (UTQ(X)(COZ(‘PX(f)))>

fel

= CQ(BX) U ro(x)(coz a)
acpx (]

= Aq(x)(px[])
= (Aawx) 2 px) ),

whence the result follows. OJ

Given a Tychonoff space X, we have the maps

Fy: IdI(C(X)) = PBX)®  and  Gx: P(BX)® — 1dI(C(X))

given by Fx(I) = N{clgx Z(f) | f € I} and Gx(A) = O™*. Tt is clear that Gy preserves meets
because they are set-theoretic unions in PB(5X)° and intersections in Idl(C(X)).

The first part in the next corollary follows from Proposition 5.1.8 and the discussion preceding

it. We will deduce the second part from Theorem 5.1.7(b).

Corollary 5.1.9. For any Tychonoff space X, Fx is a quantale homomorphism and Gx preserves

meets. Furthermore, Fx 4 Gx iff X is a P-space.

Proof. We first argue that Fx 4 Gy if and only if Agx) 4 ¥o(x). As observed in the proof of
Theorem 517(12)), AQ(X) o \IJQ(X) S idS(Q(BX))Op? and so

Agx) Vo) iff IC 0”2 D for every I € IdI(R(Q(X))).

In our notation, [9, Lemma 1.6] says Fx(Gx(A)) = A for every A C 8X, so that Fx oGy <
idqg(ﬁx)op. ThUS,

Fx 41Gx iff JC O™ forevery J € IdI(C(X)).
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Now suppose that Agx) & Wacx), and let J be an ideal of C'(X). Then ¢x[J] is an ideal
of R(Q(X)), and therefore px[J] € O*20@xUD “which, in light of Corollary 2.1.3 and the
equality 75x o Fx = Ag(x) o px established in the proof of Proposition 5.1.8, implies

px[) € O Ex ) = OFx) — i [OF>(]

whence we get J C O™ thus proving that Fx 4 Gx. Conversely, suppose that Fx 4 Gy, and
let I be an ideal of R(2(X)). Since ¢x is a ring isomorphism, there exists an ideal J of C'(X)
such that I = ¢x(J). Then (as Fx 4 Gy), J € O™*Y) which implies

I — SOX(J) C oy |:OFX(J)] _ OF;\G) — O7sx(Fx(J) — glax)(exlI]) — OAQ(X)(I)7

whence AQ(X) . ‘IJQ(X).

Now, since X is a P-space precisely when Q(X) is a P-frame, it follows from Theorem 5.1.7(b)
that Fx 4 Gx if and only if X is a P-space. m

If f: L — M is a join-preserving map between complete lattices and f, denotes its right adjoint,
then for every b € M for which f~1(b) # (), the equality f(f.(b)) = b always holds. Now, since
A is surjective on closed sublocales, we know from Theorem 5.1.7(b) that if L is a P-frame,
then A,(A) = O* for every closed sublocale A of SL. Below we produce an explicit example

(necessarily in some frame L which is not a P-frame) of a closed sublocale A of SL for which

AL (A) £ 04,

Example 5.1.10. Let L = Q(R), and put a = (0,1). Since R is metrizable, every element of L
is a cozero element. Pick v € RL with cozy = a. Let A be the closed sublocale A = ¢z, (71 (a))
of BL. Then A(O*) = A by Proposition 5.1.4(a), and so, O* < A,(A). We now produce
an ideal J of RL with O* C J (proper containment) and A(J) = A. This will show that
A,(A) # O*. Let J = (7), the ideal generated by . Since, for any 7 € RL, cozT << cozy
implies 7 € (7), it is easy to see that \/, . ,rr(coza) = rp(a). Also, from what we observed
about the O-ideals associated with closed sublocales, we see that O = {a € RL | cozar =< a},

whence we deduce that v ¢ O because a is not complemented.

Naturally, one wonders if we can identify some class of closed sublocales A for which A, (A) = O™,
Rather unexpectedly, sublocales which are generalizations of P-sets are of this type. Taking

a cue from spaces, the author of [18] calls a closed sublocale a P-sublocale if it is interior to
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every zero-sublocale containing it. He then shows that a closed sublocale ¢z (a) of a frame L is a

P-sublocale if and only if every cozero element of L which is below a is actually rather below a.

In the proof of the next theorem we will use the fact that if / < J in gL, then \/I € J. For a
proof see the paragraph preceding [14, Example 4.11].

Theorem 5.1.11. If A is a join of P-sublocales of SL, then A, (A) = O”.

Proof. We prove this first for P-sublocales. So let B = ¢g.,(I) be a P-sublocale of SL. We are
going to show that for any ¢ € Coz L, the containment r,(c) C I implies ¢ € I. [Caution: r(c)
is not necessarily a cozero element of SL]. Find a sequence (¢,) in Coz L with ¢, << ¢, for
each n and \/, ¢, = c¢. Since r1(c,) =< rr(cny1) for each n, \/, yrr(cn) is a cozero element
of AL, and, furthermore, it is below I, and so \/, .y7z(cn) < I because ¢gz (1) is a P-sublocale.

Therefore (\/neNrL(cn)> V I =1g7. But now

(\/TL(Cn)>* = /\TL(cn)* _ /\NTL(C:L) = 7’L</\NC;’;> = TL((\/NCH>*) = TL(C*) — T’L(C)*7

neN neN ne ne ne

which then implies 7, (c) < I, and hence ¢ € I. Since A is surjective on closed sublocales,
A.(B) =) {J €ld(RL) | A(J) = B}.

Since A(O®) = B = B, O < A.(B). Consider any ideal J of RL with A(J) = B. Then,
from the definition, \/ . ,rz(coza) = I. Thus, if a € J, then rz(coza) C I, and thus by what
we proved above, coza € I, which implies & € OF. Therefore OF is the largest ideal of RL
mapped to B by A, hence A,(B) = OF.

Now suppose that A = \/,_, Ay, for some P-sublocales A, of L. Then

S(BL)°P IdI(RL)
keK keK kK ReK
which proves the result. -

5.2 Characterizing Woods’ WN-maps

Our goal in this section is, among other things, to use the material in the previous section to

characterize the WN-homomorphisms that we discussed in Chapter 3. Recall from [40, p. 25]

85



that if ¢: A — B is a ring homomorphism, then the map Idl(A) — Idl(B) given by I — (¢[1])
is a quantale homomorphism, where (—) denotes ideal-generation. Therefore the square in the
following theorem resides in the category of quantales.

Theorem 5.2.1. A frame homomorphism h: M — L is a WN-homomorphism iff the square

(RM)[=)

IdI(R M) IdI(RL)
A]W AL
S(BM)OP ((/gh)*)—l[f] S(/BL)OP

commutes.

Proof. Let I be an ideal of RM. Since for any ideal @ of RL, the join of the form \/ o7 (coza)

can be taken over any generating subset of (), we have

Ap((RRI)) =cor |\ relcozr)

TE(RA)[I]

On the other hand,

((BR).)-a[Ax(D)] = ((Bh).)-1 [cBM(\/Mcoza))]

ael

= ¢51 ((Bh) (\/TL(COZ oz)))

ael

- cBL<\/(Bh) (r1(coz oz))).

aecl
Therefore the square commutes if and only if
\/(Bh) (rp(coza)) = \/ rr(coz T) (5.2.1)
a€l T€(RR)[I]
for every ideal I of RM.
Now we suppose that the square commutes, and show that A is a WN-homomorphism. Let

¢ € Coz M, and take v € RM such that ¢ = coz~y. For I = (v), the left side of equation (5.2.1)
is (Bh)(ra(c)). Since Rh is a ring homomorphism, the ideal of RL generated by (Rh)[(7)]
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is the principal ideal ((Rh)(7)). Since coz((Rh)(7y)) = h(coz ), the right side of (5.2.1) with
I = (v) is r(h(c)), which then shows that h is a WN-homomorphism.

Conversely, suppose that h is a WN-homomorphism. Let I be an ideal of R M, and take any o € I.
Then (Bh)(ra(coza)) = rr(h(coza)). But h(coza) = coz((Rh)(a)), and (Rh)(a) € (Rh)[1];
so we deduce from this that the inequality < in equation (5.2.1) holds. On the other hand, let
7 € (Rh)[I]. Then there exists o € I such that 7 = (Rh)(«), hence coz T = h(coz «r), whence

ri(coz7) = rp(h(coza)) = (Bh)(ry(coza)),

since h is a WN-homomorphism. It follows from this that the other inequality also holds, and

so the square commutes. O]

The upper morphism in the square in Theorem 5.2.1 is extension of ideals, and the lower
morphism is localic inverse image. We can form a “dual” square, with contraction of ideals
replacing extension, and direct image replacing localic inverse image. We show below that the
resulting square always commutes, regardless of the homomorphism. In preparation for that, we

need to recall two concepts.

A frame homomorphism is said to be perfect if its right adjoint preserves directed joins. It is
well known that a frame homomorphism into a compact regular frame is perfect. Recall that
a localic map f: L — M is said to be closed if the induced direct-image map sends closed
sublocales to closed sublocales. This is so precisely when f[cy(a)] = ¢p(f(a)) for every a € L.

Any localic map with a compact regular domain is closed.

For use below, observe that since (8h)(ry(a)) < rp(h(a)) for any frame homomorphism

h: M — L and a € M, we have ry(a) < (Bh).(rp(h(a))).

Theorem 5.2.2. For any frame homomorphism h: M — L, the square

(R L) —E 7 qqiman
N AL (5.2.2)
S(BLY™ — - S(BM)

commutes.
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Proof. For any I € IdI(RL),

A ((Rh)MI)) = esnr \  ru(eozr) |,
T€(RA)~LI

and

(Bh)[AL(I)] = (Bh). [%’L(\/TL(COZCY))]

acl

= Cam ((ﬁh)*<\/m(coz a))) since (Sh),. is a closed map

acl

= cﬁM<\/(ﬁh)*(rL(coz a))) since Bh is perfect .

acl
Consequently, we shall be done if we can prove that, for any ideal I of RL,

\/ ry(cozT) = \/(ﬁh)*(m(coz a)).

T€(Rh)~1[I] acl

But now if 7 € (Rh)7![I], then (Rh)(7) € I and
(Bh)(rar(coz)) < rp(h(cozT)) = ri(coz(Rh)(T)),

so that if we set o = (Rh)(7), we have a € I and rys(coz7) < (Bh).(rr(coza)). We therefore

have the inequality

\/ ry(cozT) < V(ﬂh)*(m(coza)).

T€(RR)~1[I] acl
To establish the opposite inequality, let us note that from the equality (5h). o ry = 7o hy,
which always holds,

\/ (Bh).(rr(coza)) = \/rar(ha(coza)).

acl ael

Given «a € I, let ¢ € ry(hi(coza)), and pick 6 € RM such that ¢ << cozd << h.(coz ). Then
h(cozd) << h(h.(coz o)) < coz . This says coz ((Rh)(d)) << coz a, which implies (Rh)(8) is a
multiple of «, and hence § € (Rh)™[I]. Since ¢ € rys(cozd), we deduce that

rar(hy(cozar)) < \/ rar(coz ),
TE(RR)~1[1]

and, upon taking joins over all a € I, we get the desired inequality. This completes the proof. []
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5.3 The Lindelof analogue

The subcategory of CRFrm consisting of the compact objects is coreflective, with the coreflector
£: CRFrm — KCRFrm. The map A associates with each ideal of RL a sublocale of 5L
defined in terms of the right adjoint of the homomorphism j;: L — L. In the opposite
direction, W associates with each sublocale of SL an ideal of RL defined in terms of how it

relates to a certain open sublocale of SL.

Now, the subcategory of CRFrm consisting of the Lindelof objects is also coreflective, with
the coreflector \: CRFrm — KCRFrm which we will describe shortly. See [31] for details.
We wish to consider a map which associates with each ideal of RL a sublocale of AL defined
analogously to the compact case, but using the right adjoint of coreflection map Ay : AL — L to
L from Lindelof objects. In the opposite direction, we will associate with each sublocale of AL

an ideal of RL defined in terms of how it relates to a certain open sublocale of AL.

Turning to some background, the frame of o-ideals of Coz L is denoted by AL. It is a Lindelof
completely regular frame. The map A\j,: AL — L that sends a o-ideal to its join in L is a dense
surjective frame homomorphism, and it is the coreflection map to L from Lindel6f completely

regular frames. We denote its right adjoint by oy, and recall that, for any a € L,
or(a) ={ce CozL |c<a}.

Thus, if @ € Coz L, then gy (a) is the principal ideal of Coz L generated by a. Comparing g, to

rr,, we observe the parallelism:

TLiconr: CozL — BL is a lattice homomorphism, and op|co, 2 CozL — AL is a
o-frame homomorphism. In fact, or|co, 1+ Coz L — Coz(AL) is a o-frame isomor-

phism.

For any I € (L, let (I), denote the o-ideal of Coz L generated by I. Explicitly, for any
ce Coz L,

c € (I), iff there is a sequence (c,) in I such that c =/, cp.

We denote by k; the dense surjective frame homomorphism
kr: L — AL given by k(1) = (I),.
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It is not difficult to show that the composite

k}L >\L

AL L

GL
is the homomorphism j,: L — L, so that rp = (k). © o1, and hence kg o rp = o, since kyp, is
surjective. We will use this observation below.

The map V¥ in Section 5.1 is defined in terms of O-ideals, which themselves are defined in terms
of sublocales of SL. In order to have an analogy in terms of AL, we first define the following

ideals.

For any sublocale A of AL, the ideal N of RL is defined by
N4 ={aecRL|ACox(or((coza)))} ={a € RL|AC ox(or(coza)*)}.

One checks routinely that N* is indeed an ideal of RL. Actually, these N-ideals are some

special cases of O-ideals, as we show below.

Lemma 5.3.1. If h: M — L is a surjective frame homomorphism, A is a sublocale of L, and

a€ L, then A Cop(a) iff hi[A] C opr(hi(a)).

Proof. 1t suffices to show that ANc¢(a) = O if and only if h,[A] Ncr(he(a)) = O. But this

follows easily from the fact that h, is injective (as h is surjective) and h,(1) = 1. O

Proposition 5.3.2. For any sublocale A of \L, N4 = Q%)-4]

Proof. For any a« € RL,

ae N — A C oy(or(coza)?)
> (kp)«[A] C opr((kp)s(or(coza)*)) by Lemma 5.3.1
—  (kp)+[A] C o (rp(coza)¥) since (kr).o 0L =1L

— ac ot
which proves the proposition. [

This proposition says if we view AL as a sublocale of SL (which we can do by identifying AL
with its isomorphic copy (kr)«[AL]), then the N-ideals are exactly the O-ideals associated with
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sublocales of AL. Since the map A — O is not injective (indeed, for any dense sublocale D of
BL, OP is the zero ideal, as one checks readily), there is nothing a priori that says the sets of
O-ideals and N-ideals do not coincide. They however generally do not; and below we identify

the frames for which they do coincide.

Recall that a frame L is called pseudocompact if every element of RL is bounded, in the sense
of f-rings. There are several characterizations, such as L is pseudocompact if and only if AL
is compact [6, Proposition 2| if and only if SL = AL. The latter makes one implication in

Theorem 5.3.3 below unsurprising.

In the proof of the upcoming result we shall use the notion of codenseness. A frame homomorphism
is called codense if the top of its domain is the only elements it maps to the top. In the category
of regular frames, codense morphisms are exactly the injective ones. We shall also use the fact
(see, for instance, [17, Corollary 3.5]) that the neat ideals of RL are precisely the ideals O? for
A a closed sublocale of SL. The notation used in [17] is different though. Note, further, that if
A and B are closed sublocales of AL with O* = OF, then A = B.

Theorem 5.3.3. The O-ideals of RL are exactly the N -ideals iff L is pseudocompact.

Proof. 1f L is pseudocompact, then kr: L — AL is an isomorphism, as can be deduced from
the characterization of SL in [4, Corollary 8.2.7]. It then follows from Proposition 5.3.2 that
the sets of O-ideals and IN-ideals coincide.

Conversely, suppose that the sets of O-ideals and IN-ideals coincide. We prove that AL is
compact by showing that kr: SL — AL is codense. Consider then any I € SL with k(1) = 1,r.
By hypothesis, there is a sublocale A of AL such that O%*Y) = N4, Thus, by Proposition 5.3.2,
Ot — Okl which makes O*L-M g neat ideal of RL, and so by [19, Lemma 2.9],
O+l = Olor )+ which then implies clgy (kr).[A] = cgr.(I).

Now,

clan (k) [A] = e (A\(k2).14]) = ear (k). (A\4) ).

which then implies I = (kr).(/\A), and hence, in light of k; being surjective,

NA = kL<k:L (/\A>>_kL — 1.

This implies that I = 14y, as desired. So kp, is injective and hence is an isomorphism, making

AL compact, and hence L pseudocompact. [
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Now we define two maps I';: Idl(RL) — S(AL)? and @1 : S(AL)°® — IdI(RL) by adapting
the definitions of A and ¥. Namely, for any I € RL and A € S(\L)°P,

PL(I) = C\L (\/QL(COZ Oé)) and q)L(A) = NA.

ael

As usual, we will forget the subscripts when such selective amnesia leads to no harm.

Remark 5.3.4. A quick remark here may not come amiss. Unlike in the compact case, the join
in the definition of I' (1) cannot be replaced with a union even though it is directed. Indeed,
if ¢ € Coz L is not complemented, then, for the ideal I = {y € RL | cozy << ¢}, we have
c € \eror(coza) but ¢ ¢ |J, e 00(coza). Indeed, if the latter were false, there would exist
~v € RL such that ¢ < cozy << ¢, making ¢ complemented. To see the former, find a sequence
(¢n) of cozero elements of L with ¢, << ¢,4+1 for each n and ¢ =/ ¢,. Then choose, for each n,

Yn € RL with ¢, = coz(7,). Then each ~, belongs to I, whence the claimed membership holds.

The maps I' and A are connected through a frame homomorphism as follows.

Proposition 5.3.5. The triangle

/ \
S(BL)OP ((kL)+)-1[-]
commutes. That is, T = ((k1)+)_1]—] ° A.

Proof. For any I € IdI(RL),

((ke))a[=1eA) (D) = ((hr)) [%L (\/mcoza))]

acl

= oy | kL (\/rL(coza)>>

= o | ke (rr(coz a)))

acl

= ([ \/QL(cozoz))
acl

= F(])’
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which proves the result. [

This proposition yields a corollary that is a perfect analogue of Proposition 5.1.4(a). Recall
that in the S-case we have A(O?) = clgr, A for any sublocale A of SL. The A-case analogue of

this is precisely the following result.

Corollary 5.3.6. For any sublocale A of \L, T(N*) = cl,, A.

Proof. For brevity, we write x for the localic map (kr).. Now,
I(NY) = k. [A(NY)] by Proposition 5.3.5
= k|A0")] by Proposition 5.3.2
= k1] clgr k[A]] by Proposition 5.1.4(a)
- oA
= K_1 —CBL (K, </\A>>} since k is a localic map
- e (A)
= O\ (/\A) since kr, o (kr). = idyy as kp is onto

= Cl/\L A7

which proves the result. O

We saw in Proposition 5.1.4(c) that, for any ideal I of RL, O*Y) = mI; an ideal related to L

by the characterization
vyeml <= (Jael)(cozy << coza).

We shall see that we have an analogous situation in the A-case. Towards that end, we introduce

the following definition.

Definition 5.3.7. Given an ideal I of RL, we define the ideal sI of RL by

sl = {’y € RL | cozy << \/ coz(ay,) for some sequence () in I}.

n=1
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It is routine to check that s/ is indeed an ideal of RL. Furthermore, the condition defining s/ is
a “countable” version of the condition characterizing m/ because, by the properties of the cozero

map, v € ml if and only if cozy << coz(ay) V - - V coz(ay,) for some finite set {ay,...,an} C 1.

Here are some quick observations about the ideal s/.

Observation 5.3.8. For any ideal I of RL:
(a) sl is neat;
(b) mI C sI; and
(¢) mI = sI if and only if sI C I, since mI is the largest neat ideal of RL contained in I.

For use in the proof of the next lemma, let us recall that oy induces a o-frame isomorphism
0L Conr: Coz L — Coz(AL), as a consequence of which we have that, for any ¢,d € Coz L,

¢ << d if and only if gr(c) =< or(d).

Lemma 5.3.9. For any ideal I of RL, N") = sI. That is, ®(I'(I)) = sI.

Proof. Given v € RL, we have

ve N'D iff  T(I) C o (o (cozy)?)

iff oy (\/QL(COZ 06)) C ox(or(cozy)")

ael

iff  or(cozy)*V \/QL(COZ a) = 1.
acl

Since AL is Lindelof, this last statement holds if and only if there is a sequence () in I such

that -
or(cozvy)* Vv \/QL(Coz(an)) =1y

n=1

Now, since the restriction of oy, to Coz L is a o-frame homomorphism, since the rather below
relation coincides with the completely below relation in normal frames, and since AL is normal
(being a regular Lindelof frame), we have that v € NTU) if and only if there is a sequence (o)

in I such that

or(cozy) << or (\/ coz(ozn)> ,

n=1

which, in turn, holds if and only if cozy <<'\/, coz(a,). This proves the proposition. O
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Now, since A is a quantale homomorphism, and since I' is a composite of quantale homomor-
phisms (Proposition 5.3.5), it follows that I" is a quantale homomorphism. A calculation similar
to that which showed that W preserves meets shows that I' preserves meets. We now have the

following analogue Theorem 5.1.7(b).

Theorem 5.3.10. The following are equivalent for a completely reqular frame L.

(1) T 4.
(2) L is a P-frame.

(3) I C sl for every ideal I of RL.

Proof. (1) < (3): Since I'(W(A)) = clyz A for every sublocale A of AL (Corollary 5.3.6), so that
we always have I'o W < idg(xryer, [' 4 W if and only if I C W(I'(1)) for every ideal I of RL, that
is, if and only if I C sI for every I in light of Lemma 5.3.9. Therefore (1) and (3) are equivalent.

(3) = (2): Let ¢ € Coz L, and pick v € RL such that ¢ = coz~y. Let I be the principal ideal
(7). Since v € I, (3) says v € s, so there is a sequence (7,,) in I such that cozy <<'\/,, coz(v,).
Since each 7, is a multiple of 7, coz(v,) < coz+y , and so cozy << coz~y, which implies that ¢ is

complemented. Therefore L is a P-frame.

(2) = (3): If L is a P-frame, then every ideal of RL is neat. Hence, for any ideal I of RL,
I =mlI Csl. ]

Recall from [29, Lemma V 2.8] that an ideal I of a ring A is neat if and only if I.J = INJ, for every
ideal J of A. Thus, if L is a P-frame, then the quantale (IdI(RL),-,>") is exactly the frame
(IdI(RL),N,Y" ), which then makes the map A: Idl(RL) — S(BL)°" a frame homomorphism,
and hence I': Idl(RL) — S(AL)°? is a frame homomorphism by Proposition 5.3.5. Thus,
sl =T(I'(1)), for every I € IdI(RL), which makes the mapping / + sI a nucleus on Idl(RL).
We therefore have the following corollary to Theorem 5.3.10.

Corollary 5.3.11. If L is P-frame, then the set {sI | I € IdI(RL)} is a sublocale of IdI(RL).

Furthermore, it 1s dense.

Remark 5.3.12. It vexes us that we are unable to characterize the ideals I for which sI C I.

We should point out though that strongly divisible ideals, as defined by Azarpanah [2], are of
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this kind. To recall, an ideal I in a ring is called strongly divisible if for every sequence (u,,) in
I, there is an element u € I such that each u,, is a multiple of u. One checks easily that if I is a
strongly divisible ideal of RL, then sI C I. In C'(X), they include the maximal ideals M such
that C'(X)/M = R [2, Corollary 4.3].

We close by presenting analogues of Theorems 5.2.1 and 5.2.2. Each is about commutativity of
a certain square. In contrast with the §-case, we will show that the A-version of the square in
Theorem 5.2.1 always commutes.

Proposition 5.3.13. For any frame homomorphism h: M — L, the square

(RW)[=D

Id(RM) Id(RL)
Tar 'y
S()\M)Op (()‘h)*)fl[_} S(AL)OP

18 commutative.

Proof. A calculation analogous to that in the proof of Theorem 5.2.1 shows that the square

commutes if and only if for any ideal I of RM,

\/()\h)(gM(coza)): \/ or(coz ).

ael T€(RA)[I]

Since (Ah)(oL(c)) = or(h(c)) for every ¢ € CozM, it follows that the square in question

commutes if and only if

\/QL(h(coza)): \/ or(cozT).

ael TE(RR)(1]
But this last equation always holds because for any a € RL, the element 7 = (Rh)(«) belongs

to (Rh)[I] and h(coz ) = coz 7. Therefore the square above always commutes. O

The discrepancy between the two results can be explained as follows. A WN-homomorphism
h: M — L is defined by requiring the containment (8h)(ras(c)) C rp(h(c)) to be an equality for
every ¢ € Coz M. On the other hand, the corresponding containment (Ah)(oar(c)) € or(h(c)) is

always an equality. Viewed differently, as remarked earlier, gy, restricts to a o-frame isomorphism
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Coz L — Coz(AL), whereas 71, does not necessarily restrict to a o-frame isomorphism onto
Coz(BL).

Turning to the analogue of Theorem 5.2.2; let us write S: Frm — Frm for the functor that
sends L to S(L)°? and a morphism h: M — L to the morphism (h,)_1[—]: S(M)°? — S(L)°P

which we name S(h).

Proposition 5.3.14. For any frame homomorphism h: M — L, the square

1a(RL) —E T jqiran
Iy L
S(Lyr — ML sayer
15 commutative.
Proof. The square on the left of the diagrams
oM — 1 S(BM)» 22 S(5L)
ke kr S(kar) S(kL)
AM — 2 L SM)yr —2 gLy

is known to commute, and hence the one on the right also commutes. Now, in the diagram

(Rh)~'[-]

Id(R IdI(RL)

w
A

S(AL)™

FM l_‘L

M)
\ o

S(Ah)

S(AM)*P

the triangles commute by Proposition 5.3.5, the upper trapezoid commutes by Theorem 5.2.2,
and the lower trapezoid commutes, as just noted. So it follows that the outer square commutes,

which is precisely what we are supposed to prove. O

97



Bibliography

[1] E. Abu Osba, H. Al-Ezeh, The pure part of the ideals in C'(X), Math. J. Okayama Univ.
45 (2003), 73-82.

2] F. Azarpanah, Algebraic properties of some compact spaces, Real Anal. Exchange, 25
(1999/2000), 317-328.

[3] D. Baboolal, B. Banaschewski, Compactification and local connectedness of frames, J. Pure

Appl. Algebra 70 (1991), 3-16.

[4] R.N. Ball, J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissert. Math.
(Rozprawy Mat.), Vol. 412 (2002), 62pp.

[5] B. Banaschewski, The real numbers in pointfree topology, Textos de Matematica Série B,

No. 12, Departamento de Matematica da Universidade de Coimbra, 1997.

[6] B. Banaschewski, C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment.

Math. Univ. Carolin. 37 (1996), 577-587.

[7] B. Banaschewski, C. Gilmour, Oz revisited, In: Proceedings of the Conference Categorical
Methods in Algebra and Topology, (H. Herrlich and H.-E. Porst, eds.), Math. Arbeitspapiere
Nr. 54, pp. 19-23, Universitat Bremen, 2000.

[8] B. Banaschewski, A. Pultr, Booleanization, Cahiers Topologie Géom. Diff. Catég. 37 (1996),
41-60.

9] W.E. Dietrich, On the ideal structure of C(X), Trans. Amer. Math. Soc. 152 (1970), 61-77.

[10] T. Dube, Some notes on C- and C*-quotients of frames, Order 25 (2008), 369-375.

98



[11] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames,

Algebra Universalis 61 (2009), 115-138.

[12] T. Dube, Remote points and the like in pointfree topology, Acta Math. Hungar., 123 (2009),
203-222.

[13] T. Dube, Some algebraic characterizations of F-frames, Algebra Universalis, 62 ( 2009),
273-288.

[14] T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Universalis 60 (2009),
145-162.

[15] T. Dube, Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ.

Padova 123 (2010), 37-54.

[16] T. Dube, Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categor.
Struct. 18 (2010), 55-72.

[17] T. Dube, On the ideal of functions with compact support in pointfree function rings, Acta
Math. Hungar. 129 (2010), 205-226.

[18] T. Dube, Concerning P-sublocales and disconnectivity, Appl. Categ. Structures 27 (2019),
365-383.

[19] T. Dube, On the maximal regular ideal of pointfree function rings, and more, Topology

Appl. 273 (2020), 1-18.

[20] T. Dube, D.N. Stephen, On ideals of rings of continuous functions associated with sublocales,

Topology Appl. 284 (2020), 107360.

[21] M.J. Ferreira, J. Picado, S.M. Pinto, Remainders in pointfree topology, Topology Appl. 245
(2018), 21-45.

[22] M. Ghirati, A. Taherifar, Intersections of essential (resp. free) maximal ideals of C(X),
Topology Appl. 167 (2014), 62-68.

[23] L. Gillman, M. Henriksen, M. Jerison, On a theorem of Gelfand and Kolmogoroff concerning

mazimal ideals in rings of continuous functions, Proc. Amer. Math. Soc. 5, 447-455 (1954)

99



[24] L. Gillman, M. Jerison, Rings of continuous functions (Van Nostrand, New York, 1960).

[25] J. Gutiérrez Garcia, T. Kubiak, J. Picado, Perfectness in locales, Quaest. Math. 40, (2017),
507-518.

[26] O. Ighedo, Concerning ideals of pointfree function rings, PhD thesis, University of South
Africa, Pretoria, 2014.

[27] J. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.

[28] D.G. Johnson, M. Mandelker, Functions with pseudocompact support, Gen. Topology Appl.
3 (1973), 331-338.

[29] P.T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
[30] R. Levy, Almost-P-spaces, Can. J. Math. 29(2) (1977), 284-288.

[31] J. Madden, J. Vermeer, Lindeldf locales and realcompactness, Math. Proc. Camb. Phil. Soc.
99 (1986), 473-480.

[32] A. Majidinya, A. Mousavvi, K. Paykan, Rings in which the annihilator of an ideal is Pure,
Algebra Colloq. 22 (2015), 947-968.

[33] M. Mandelker, Round z-filters and round subsets of X, Israel J. Math. 7 (1969), 1-8.
[34] C.J. Mulvey, &, Suppl. Renc. Circ. Mat. Palermo Ser. IT 12 (1986), 99-104.

[35] J. Picado, A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics,
Springer/Basel 2012.

[36] J. Picado, A. Pultr, A. Tozzi, Joins of closed sublocales, Houst. J. Math. 45 (2019), 21-38.

[37] T. Plewe, Higher order dissolutions and Boolean coreflections of locales, J. Pure Appl.
Algebra 154 (2000), 273-293.

[38] T. Plewe, Sublocale lattices, J. Pure Appl. Algebra 168 (2002), 309-326.
[39] V. Ptak, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958),

41-74.

100



[40] K.I. Rosenthal, Quantales and their applications, Pitman Research Notes in Mathematics
Series, 234, John Wiley & Sons, New York, 1990.

[41] R.G. Woods, Maps that characterize normality properties and pseudocompactness, J. London
Math. Soc. 7 (1973), 453-461.

101



