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Abstract

The ring of real-valued continuous functions on a completely regular frame L is denoted by

RL. As usual, βL denotes the Stone-Čech compactification of L. In the thesis we study ideals

of RL induced by sublocales of βL. We revisit the notion of purity in this ring and use it to

characterize basically disconnected frames. The socle of the ring RL is characterized as an ideal

induced by the sublocale of βL which is the join of all nowhere dense sublocales of βL.

A localic map f : L→M induces a ring homomorphism Rh : RM → RL by composition, where

h : M → L is the left adjoint of f . We explore how the sublocale-induced ideals travel along the

ring homomorphism Rh, to and fro, via expansion and contraction, respectively.

The socle of a ring is the sum of its minimal ideals. In the literature, the socle of RL has been

characterized in terms of atoms. Since atoms do not always exist in frames, it is better to

express the socle in terms of entities that exist in every frame. In the thesis we characterize the

socle as one of the types of ideals induced by sublocales.

A classical operator invented by Gillman, Henriksen and Jerison in 1954 is used to create a

homomorphism of quantales. The frames in which every cozero element is complemented (they

are called P -frames) are characterized in terms of some properties of this quantale homomorphism.

Also characterized within the category of quantales are localic analogues of the continuous maps

of R.G. Woods that characterize normality in the category of Tychonoff spaces.

Keywords Frame, locale, sublocale, ideal, quantale, ring of real-valued continuous functions.
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Chapter 1

Introduction and preliminaries

Then main aim in this chapter is to recall the concepts that will be central to the study in the

rest of the thesis. We however do not recall all the concepts here; others will be recalled as and

when needed. It is also here that we fix notation. Our references for frames are [29] and [35].

1.1 A brief history of ideals induced by sublocales

For a Tychonoff space X, the ideals Op and M p associated with a point p ∈ βX are studied in

detail in the Gillman-Jerison text [24]. They appear to first have been considered by Gillman,

Henriksen and Jerison in [23].

In their study of functions with compact support in [28], Johnson and Mandelker generalized

these types of ideals so that they are indexed by all subsets (instead of just points, or singleton)

of βX. In [18], Dube extended the idea of Johnson and Mandelker to locales. With each

sublocale A of βL, he defined the ideals MA and OA by

MA = {α ∈ RL | A ⊆ clβL(rL(cozα))}

and

OA = {α ∈ RL | A ⊆ intβL clβL(rL(cozα))},

where rL denotes the right adjoint of the join map
∨
: βL→ L. He used these ideals mainly for

purposes of studying what he called P -sublocales, but he did not explore the properties of these

ideals that we do in the thesis.
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1.2 Synopsis of the thesis

In Chapter 1 we recall most of the background material from frames and locales that we shall

need for the rest of the thesis. There are no proofs in this chapter because what appears in it is

already available in the literature. It is also in this chapter that we fix notation.

All our frames in the thesis are assumed to be completely regular, except in a few instances

where we explicitly state that complete regularity is not assumed. Similarly, all spaces are

Tychonoff, which is to say they are completely regular and Hausdorff. We start Chapter 2 by

recalling how the O- and M -ideals of the ring RL of real-valued continuous functions on a

frame L are defined. As done in the paper where these ideals were introduced, we use the same

notation OA and MA as in spaces. There is no danger of confusion because the index (which is

the superscript, in this case) makes its clear where the ideal resides.

Although the ring C(X) of real-valued continuous functions on a Tychonoff space X is isomorphic

to R(Ω(X)) via the isomorphism φX : C(X) → R(Ω(X)) that sends an f ∈ C(X) to the element

of R(Ω(X)) that maps as f−1, it is not immediate what, for a subset A ⊆ βX, the image of the

ideal of C(X) associated with A looks like. In Chapter 2 we show how the O- and M -ideals of

C(X) are related to those of R(Ω(X)) via this ring isomorphism. We also consider some basic

properties of these ideals.

Still within Chapter 2, we revisit purity of ideals of RL. It is apposite to mention that pure

ideals of RL were shown in [16] to be precisely the O-ideals associated with closed sublocales

of βL. Since different sublocales of βL can induce the same ideal, it does not mean that a

non-closed sublocale cannot induce a pure ideal. We characterize when an arbitrary sublocale

induces a pure ideal. A closed sublocale of L need not be closed in βL, and hence need not

induce a pure ideal. We characterize the fames L for which every closed sublocale of L induces

a pure ideal. The chapter closes with a characterization of basically disconnected frames via

purity.

In Chapter 3 we study how an ideal associated with a sublocale travels forwards and backwards

across a ring homomorphism induced by a localic map. More precisely, let f : L → M be a

localic map and let h : M → L be its left adjoint. Then, exactly as in spaces, f has a Stone

extension βf : βL→ βM . So, given a sublocale A of βL, we have its direct image βf [A] which

is a sublocale of βM . Thus, we have the ideals Oβf [A] and Mβf [A] of RM . Oppositely, given a

2



sublocale B of βM , we have its pullback (βf)−1[B] which is a sublocale of βL, and the ideals of

RL associated with this sublocale.

For the ring homomorphism Rh : RM → RL, we have the ideal Rh−1[OA] which we then

compare with the ideal Oβf [A], and similarly for the M -ideals. On the other hand, we compare

the ideal O(βf)−1[B] to the ideal of RL generated by Rh[OB], and similarly for the M -ideals.

There are (somewhat) expected containments and some rather surprising inequalities. Regarding

equalities, the localic versions of functions that were introduced by R.G. Woods [41] in his study

of normality in Tychonoff spaces play a rather unexpected role. In this regard, we have actually

started the chapter by developing some results concerning such localic maps. In the last section

of the chapter, the localic results are interpreted in C(X).

The main gist of Chapter 4 is about a new look at the socle of RL. Unlike in previous papers

such as Dube [15] where the socle of RL was first was studied, here we show that it equals the

sublocale-induced ideal ONd(βL), where Nd(βL) denotes the join of all nowhere dense sublocales

of βL. Thus characterized, it is then easy to give criteria, in terms of sublocales, of when the

socle is zero and also for when it is an essential ideal. The latter is best achieved by computing

its annihilator. It is for this reason that annihilation of ideals is treated first within the chapter.

In Chapter 5, we show how an operator that was introduced by Gillman, Henriksen and Jerison

in 1954 [23] can be used in our context to create a quantale homomorphism. To recall, for any

ideal I of C(X), the authors of [23] set

∆(I) =
⋂

{clβX Z(f) | f ∈ I},

and use this merely as a notation of convenience. We show how to make a similarly defined

∆, with domain the lattice of ideals of RL and codomain the frame S(βL)op of sublocales of

βL a homomorphism of quantales. We study the ramifications of this, and, along the way,

characterize P -frames using an adjunction that arises from the quantale homomorphism. We

also characterize some of the localic versions Woods’ maps mentioned earlier within the category

of quantales.

3



1.3 Frames and their homomorphisms

A frame is a complete lattice L in which the infinite distributive law

a ∧
∨
S =

∨
{a ∧ s | s ∈ S}

holds for every a ∈ L and S ⊆ L. We denote the bottom element and the top element of L by

0L and 1L, respectively. We drop the subscript if it is not necessary to specify the frame. If X

is a topological space, the frame of its open sets is denoted by Ω(X).

A mapping h : M → L between frames is called a frame homomorphism if it preserves joins and

binary meets. In particular, frame homomorphisms preserve the top and the bottom elements.

The category of frames and their homomorphisms is denoted Frm.

Every frame homomorphism h : M → L has a right adjoint, which is a mapping h∗ : L → M

given by

h∗(a) =
∨

{u ∈M | h(u) ≤ a}.

The right adjoint is exactly the categorical right adjoint if h is viewed as a functor between

posets. It is thus uniquely determined by

h(x) ≤ y ⇐⇒ x ≤ h∗(y).

Some of the properties of h∗ are:

� h is surjective iff h ◦ h∗ = idL iff h∗ is injective.

� h is injective iff h∗ ◦ h = idM iff h∗ is surjective.

A frame homomorphism h : M → L is called dense if, for any a ∈ M , the equality h(a) = 0

implies a = 0. This is so precisely when h∗(0) = 0.

The pseudocomplement of an element a ∈ L is the element

a∗ =
∨

{x ∈ L | a ∧ x = 0}.

The unary operation (−)∗ satisfies several properties, including, for every a, b ∈ L and any

family (ai | i ∈ I) of elements of L:

a ≤ b =⇒ b∗ ≤ a, a ≤ a∗∗,
(∨

i

ai

)∗
=
∧
i

a∗i .

An element a is said to be:
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� regular if a = a∗∗;

� complemented if a ∨ a∗ = 1;

� dense if a∗ = 0.

If every element of L is complemented, then L is called a Boolean frame. Boolean frames are

precisely the complete Boolean algebras. It is easy to check that a frame is Boolean if and only

if each of its elements is regular.

An element a ∈ L is rather below an element b ∈ L, written a ≺ b, if there exists an s ∈ L

(called a separating element) such that

a ∧ s = 0 and s ∨ b = 1.

One checks routinely that a ≺ b if and only if a∗∨b = 1. If there is a sequence (xr | r ∈ Q∩ [0, 1])

of elements of L, indexed by the rational numbers in the unit interval [0, 1], such that a = x0,

b = x1 and xr ≺ xs whenever r < s, then a is said to be completely below b, written a ≺≺ b. A

frame is regular (resp. completely regular) if each of its elements is the join of those that are

rather below (resp. completely below) it. Writing it out for the latter case, L is completely

regular if

∀a ∈ L, a =
∨

{x ∈ L | x ≺≺ a}.

All frames in this thesis are assumed to be completely regular unless if it is specifically stated

otherwise. Likewise, all topological spaces are Tychonoff unless stated otherwise. We write

CRFrm for the full subcategory of Frm consisting of completely regular frames.

A prime element of L is an element p < 1 such that x ∧ y ≤ p implies x ≤ p or y ≤ p. We

denote by Pt(L) the set of prime elements of L. By the distributive law, p ∈ Pt(L) if and only

if p < 1 and x ∧ y = p implies x = p or y = p. In regular frames, prime elements are precisely

the elements that are maximal strictly below the top. If X is T1-space, then

Pt(Ω(X)) =
{
X ∖ {x} | x ∈ X

}
.
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1.4 The ring RL and the cozero map

Good references for this subsection are [5] and [6]. See also [35, Chapter XIV]. The frame of

reals, denoted L(R), is the (completely regular) frame generated by the ordered pairs (p, q) of

rational numbers subject to the relations

(R1) (p, q) ∧ (s, t) = (p ∨ s, q ∧ t)

(R2) (p, q) ∨ (s, t) = (p, t) whenever p ≤ s < q ≤ t

(R3) (p, q) =
∨
{(s, t) | p < s < t < q}

(R4) 1L(R) =
∨
{(p, q) | p, q ∈ Q}.

The ring RL has as its elements frame homomorphisms L(R) → L, with operations induced by

those of Q as an ℓ-ring. We denote the zero of this ring and its identity by 0 and 1, respectively.

For any Tychonoff space X, C(X) ∼= R(Ω(X)).

The cozero map of L is the mapping

coz : RL→ L defined by cozα = α(−, 0) ∨ α(0,−),

where

(−, 0) =
∨

{(p, 0) | p < 0} and (0,−) =
∨

{(0, q) | q > 0}.

The assignment L 7→ RL is functorial. For any frame homomorphism h : M → L, the ring

homomorphism Rh : RM → RL is given by (Rh)(α) = h ◦ α, and satisfies

coz
(
(Rh)(α)

)
= h(cozα)

for every α ∈ RM .

We catalogue in a proposition some of the properties of the cozero map that we shall freely use,

sometimes without comment. The proofs can be found in [4].

Proposition 1.4.1. The following hold for any α, β ∈ RL.

(1) cozα = coz(α2).

(2) cozα = 0 iff α = 0.
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(3) coz β = 1 iff β is invertible in RL.

(4) coz(αβ) = cozα ∧ coz β.

(5) coz(α + β) ≤ cozα ∨ coz β.

(6) coz(α2 + β2) = cozα ∨ coz β.

An element c ∈ L is called a cozero element if c = coz γ for some γ ∈ RL. The lattice of all

cozero elements of L is called the cozero part of L and is denoted by CozL. It is closed under

finite meets and countable joins. Furthermore, if L is completely regular, then, for any a ∈ L,

a =
∨

{c ∈ CozL | c ≤ a} =
∨

{c ∈ CozL | c ≺≺ a}.

Here are some characterizations of cozero elements sourced from [6, Proposition 1].

Proposition 1.4.2. The following are equivalent for any a ∈ L.

(1) a ∈ CozL.

(2) There is a sequence (xn)n∈N in L such that xn ≺≺ a for every n and a =
∨

nxn.

(3) There is a sequence (an)n∈N in L such that an ≺≺ an+1 for every n and a =
∨

nan.

The following properties of the completely below relation will be put to good use in many

instances. They are also sourced from [6].

Proposition 1.4.3. The following hold in any completely regular frame L.

(1) If a ≺≺ b, then there exists c ∈ CozL such that a ≺≺ c ≺≺ b.

(2) If a ≺≺ b, then there exists s ∈ CozL such that a ∧ s = 0 and s ∨ b = 1.

1.5 The Stone-Čech Compactification

A frame L is compact if for every S ⊆ L with
∨
S = 1, there is a finite T ⊆ S with

∨
T = 1.

Compact completely regular frames form a coreflective subcategory KCRFrm of CRFrm.
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The coreflection of L, denoted βL, is called the Stone-Čech compactification of L. One way of

constructing it, that we shall adopt throughout, is as follows.

An ideal I of CozL is called completely regular if for every u ∈ I there exists v ∈ I such that

u ≺≺ v. Then βL is the lattice of all completely regular ideals of CozL. The mapping

jL : βL→ L defined by jL(I) =
∨
I

is dense onto, and is the coreflection map to L from compact completely regular frames. Its

right adjoint, denoted rL, is given by

rL(a) = {c ∈ CozL | c ≺≺ a}.

Every element of βL is expressible as a join (and, in fact, a union) of ideals of the form rL(a).

Namely,

I =
∨
u∈I

rL(u) =
⋃
u∈I

rL(u);

the join coinciding with the union because it is a join of a directed collection. Some other

properties of the mapping rL : L→ βL that we shall frequently use are:

(a) If a ≺≺ b in L, then rL(a) ≺≺ rL(b) in βL.

(b) If a ∧ b = 0, then rL(a ∨ b) = rL(a) ∨ rL(b).

(c) If c, d ∈ CozL, then rL(c ∨ d) = rL(c) ∨ rL(d).

(d) For any I ∈ βL, I∗ = rL((
∨
I)∗).

Every frame homomorphism h : M → L has the Stone extension, which is the unique frame

homomorphism βh : βM → βL making the diagram

βM

jM

��

βh // βL

jL

��
M

h // L

commute. Its action on elements I of βM is given by

(βh)(I) = {c ∈ CozL | c ≤ h(u) for some u ∈ I}.

8



1.6 Sublocales and localic maps

A frame is also called a locale, especially when frame homomorphisms are not considered as

part of the discussion. Every frame is a Heyting algebra, with the Heyting implication explicitly

given by

a→ b =
∨

{x ∈ L | a ∧ x ≤ b}.

A sublocale of a frame L is a subset A ⊆ L such that

� for every A ⊆ S,
∧
A ∈ S, and

� for every a ∈ L and s ∈ S, a→ s ∈ S.

A sublocale is a frame in its own right, with meets (and hence the partial order) calculated in L.

The lattice of all sublocales of L is denoted by S(L). The meet in this lattice is intersection,

and the join of any collection {Si | i ∈ I} ⊆ S(L) is given by∨
i

Si =
{∧

M |M ⊆
⋃
i

Si

}
.

Partially ordered by inclusion, S(L) is a coframe, which is to say for any S ∈ S(L) and any

family (Si | i ∈ I) of sublocales, the distributive law below holds:

S ∨
∧
i

Si =
∧
i

(S ∨ Si).

The smallest sublocale of L is {1}, and is usually denoted by O. It is called the void sublocale.

If T and S are sublocales, we say T misses S, or T and S are disjoint, if S ∩ T = O.

A sublocale of L is complemented if it has a complement in S(L). Complemented sublocales are

linear, meaning that if C is a complemented sublocale, then

C ∩
∨

{Si | i ∈ I} =
∨

{C ∩ Si | i ∈ I},

for any family (Si | i ∈ I) of sublocales. In fact, complemented sublocales are precisely the

linear ones. Unlike the lattice of subspaces of a topological space, S(L) is not always a Boolean

algebra. Thus, in general, not every sublocale has a complement. However, every sublocale S

has a supplement (which is dual to pseudocomplement in frames), denoted L∖ S or S#, and

given by

L∖ S =
⋂

{T ∈ S(L) | T ∨ S = L} =
∨

{R ∈ S(L) | R ∩ S = O}.

9



The open and the closed sublocales corresponding to each a ∈ L are, respectively, the sublocales

oL(a) = {a→ x | x ∈ L} = {x | x = a→ x} and cL(a) = ↑a = {x ∈ L | x ≥ a}.

We shall at times drop the subscript if there is only one frame under discussion. If a ∈ CozL,

we say o(a) is a cozero-sublocale, and c(a) is a zero-sublocale.

Some of the properties of open and closed sublocales that we shall freely use are:

� o(0) = c(1) = O and o(1) = c(0) = L.

� c(a) ⊆ o(b) iff a ∨ b = 1.

� o(a) ⊆ c(b) iff a ∧ b = 0.

� o(a) ∩ o(b) = o(a ∧ b) and c(a) ∨ c(b) = c(a ∧ b).

�

∨
io(ai) = o

(∨
iai

)
and

⋂
ic(ai) = c

(∨
iai

)
.

The closure of a sublocale S of L, denoted S or clL(S), and its interior, denoted S◦ or intL(S),

are the sublocales

S =
⋂

{c(a) | S ⊆ c(a)} = c
(∧

S
)

and S◦ =
∨

{o(a) | o(a) ⊆ S} = o
(∧

(L∖ S)
)
.

In particular, o(a) = c(a∗) and c(a)◦ = o(a∗). A sublocale S of L is dense if S = L. This is the

case if and only if the bottom element of S is the bottom element of L. Every frame has the

smallest dense sublocale, denoted BL, and called the Booleanization of L. As a set,

BL = {a ∈ L | a = a∗∗} = {b∗ | b ∈ L},

and joins in BL are given by
BL∨
S =

(∨
S
)∗∗

for any S ⊆ BL. The mapping

bL : L→ BL given by bL(x) = x∗∗

is a dense onto frame homomorphism, whose right adjoint is the identical embedding BL↣ L.

A mapping f : L→M is called a localic map if for every a ∈ L, b ∈M , and S ⊆ L,

10



(L1) f(
∧
S) =

∧
f [S] (and, in particular, f(1) = 1),

(L2) f(f ∗(b) → a) = b→ f(a), and

(L3) f(a) = 1 implies a = 1.

We shall write f ∗ : M → L for the left adjoint of f . Of course, f ∗ is a frame homomorphism,

and if h is a frame homomorphism, h∗ is a localic map. A localic map f : L→M gives rise to

two mappings

f [−] : S(L) → S(M) and f−1[−] : S(M) → S(L)

given by

f [S] = {f(x) | x ∈ S} and f−1[T ] =
∨

{A ∈ S(L) | A ⊆ f−1[T ]}.

We have that f [−] preserves all joins, and f−1[−] preserves all meets (recall that they are

intersections) and all binary joins, which then makes the mapping

f−1[−] : S(M)op → S(L)op

a frame homomorphism whose right adjoint is the mapping f [−].

For any b ∈M ,

f−1[oM(b)] = oL(f
∗(b)) and f−1[cM(b)] = cL(f

∗(b)).

Remark 1.6.1. Finally, let us mention that we shall consistently write a frame homomorphism

as h : M → L, with M as domain and L as codomain. The reason is that in the Stone-Čech

compactification of L, the frame homomorphism jL : βL→ L (a mapping which plays a most

crucial role here) maps into L, and the corresponding localic map rL : L→ βL maps out of L.

Since most results we refer to in the literature have homomorphisms L→M , we trust that the

reader will note the swopping of the domain and codomain.

11



Chapter 2

Ideals induced by sublocales

Our aim in this chapter is to show how the ideals of C(X) associated with subspaces of βX are

related to those of RL associated with sublocales of βL.

This will be useful in subsequent chapters. We also present some basic properties of the latter

types of ideals, and undertake a detailed study of purity in the ring RL.

2.1 Relating the O- and M-ideals of C(X) to those of

R(Ω(X))

In this section we recall the definitions of O- and M -ideals of C(X), and relate them to those

of R(Ω(X)). The ideal OA is defined by

OA = {f ∈ C(X) | A ⊆ intβX clβX Z(f)}.

These ideals are special cases of the ideals Op, for p ∈ βX, that are studied extensively in [24].

They were introduced in [28], where the authors also define the ideal

MA = {f ∈ C(X) | A ⊆ clβX Z(f)}.

It is easy to see that OA =
⋂

p∈AO
p and MA =

⋂
p∈AM

p.

Taking a cue from this, in [18] the author defines for each sublocale A of βL the ideals OA and

12



MA of RL by setting

OA = {α ∈ RL | A ⊆ intβL cβL(rL(cozα))} = {α ∈ RL | A ⊆ oβL(rL(cozα)
∗)}

and

MA = {α ∈ RL | A ⊆ cβL(rL(cozα))}.

It is clear that for any sublocale A of βL, OA ⊆ MA = MA, and for any sublocales A and B

of βL with A ⊆ B, OB ⊆ OA, and similarly for the M -ideals. Furthermore, for any family

(Ak | k ∈ K) of sublocales of βL,

O
∨

k∈KAk =
⋂
k∈K

OAk and M
∨

k∈KAk =
⋂
k∈K

MAk .

Note that if A is a closed sublocale of βL, say A = cβL(I) for some I ∈ βL, then

OA = {α ∈ RL | cozα ∈ I} = coz−1[I] and MA = {α ∈ RL | rL(cozα) ⊆ I}.

We comment that usage of the same symbols M and O in both C(X) and RL will not lead to

confusion because the superscript will always make the context clear.

Recall that a point of a frame L is an element p such that p < 1 and whenever x ∧ y ≤ p then

x ≤ p or y ≤ p. We denote by Pt(L) the set of all points of L. A one-point sublocale of L is

a sublocale of the form {p, 1} for some p ∈ Pt(L). Let X be a Tychonoff space. We use the

notation of [35] that if A ⊆ X and x ∈ X, then Ã denotes the sublocale of Ω(X) induced by A,

and x̃ denotes the point X ∖ {x} of Ω(X). Since Tychonoff spaces are sober and satisfy the

TD-axiom, every spatial sublocale of Ω(X) is of the form Ã for some A ⊆ X. Furthermore, for

any A ⊆ X, Ã is the join of its one-point sublocales; that is,

Ã =
∨

{{x̃, 1} | x ∈ A}.

We recall from [5] that if X is a Tychonoff space, then the map

φX : C(X) → R(Ω(X)) given by φX(f) = Ω(f)

is a ring isomorphism. For use below, we relate the O- and M -ideals of C(X) to those of

R(Ω(X)) via this isomorphism. Usage of the same symbols in C(X) and R(Ω(X)) will not lead

to confusion because the superscript makes the context clear. We view X as a subspace of βX

13



and consider the identical embedding iX : X → βX. The right adjoint of the induced frame

homomorphism Ω(iX) : Ω(βX) → ΩX maps thus:

Ω(iX)∗(U) = βX ∖ clβX(X ∖ U).

Since Ω(βX) is a compact regular frame, we can view the Stone-Čech compactification of the

frame Ω(X) as being given by the dense-onto frame homomorphism Ω(iX) : Ω(βX) → Ω(X).

So, in the rL-notation for the right adjoint of βL→ L, we have rΩ(X) = Ω(iX)∗.

For any p ∈ βX, the one-point sublocale {p̃, 1} of Ω(βX) is the closed sublocale cΩ(βX)(p̃), hence,

for any α ∈ R(Ω(X)),

α ∈ M {p̃,1} iff Ω(iX)∗(cozα) ⊆ p̃.

Lemma 2.1.1. For any p ∈ βX, φX [M
p] = M {p̃,1}.

Proof. Let f ∈ C(X), and note that coz(Ω(f)) = f−1(R∖ {0}) = X ∖ Z(f). Thus, in view of

the definition of the ideal M p, we have

f ∈ M p iff p ∈ clβX Z(f)

iff βX ∖ clβX Z(f) ⊆ βX ∖ {p}

iff Ω(iX)∗(coz(φX(f))) ⊆ p̃

iff φX(f) ∈ M {p̃,1},

which proves the result.

In [14, Lemma 5.3(2)] it is shown that, exactly as in C(X), for any frame L, any α ∈ RL, and
any p ∈ Pt(βL), α ∈ O{p,1} if and only if αγ = 0 for some γ /∈ M {p,1}. We therefore have the

following corollary, because φX : C(X) → R(Ω(X)) is an isomorphism.

Corollary 2.1.2. For any p ∈ βX, φX [O
p] = O{p̃,1}.

Coming to ideals associated with subspaces, we have the following.

Corollary 2.1.3. For any A ⊆ βX, φX [M
A] = M Ã and φX [O

A] = OÃ.

Proof. Since MA =
⋂

p∈AM
p, and since the set-function φX is a bijection, we have

φX [M
A] = φX

[⋂
p∈A

M p
]
=
⋂
p∈A

φX [M
p] =

⋂
p∈A

M {p̃,1} = M
∨
{{p̃,1}|p∈A} = M Ã.

The other equality is shown similarly.
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2.2 Basic properties

The O-ideals and M -ideals come with a host of containments that always hold. For instance,

for any sublocale A of βL and any sublocale S of L, we always have the containments

OA ⊆ MA, OĀ ⊆ OA ⊆ OA◦
, MA◦ ⊆ MA

and, similarly,

OS ⊆ MS, OclL(S) ⊆ OS ⊆ OintL(S), M intL(S) ⊆ MS,

which is achieved via the following definition. Please note the slight change in notation –

sublocales appearing as subscripts and not superscripts.

Definition 2.2.1. For any sublocale S of L, we define the ideals OS and MS of RL to be the

ideals OS = OrL[S] and MS = M rL[S].

In this section we explore a little more the consequences of requiring some containments that

always hold to be actually equalities. As has been demonstrated elsewhere (in spaces and in

locales), this is not a gratuitous exploration. For instance:

(a) In [33], Mandelker defines a subset A of βX to be round in case OA = MA, and then

develops an interesting theory around round subsets.

(b) In [18], Dube defines a closed sublocale A of L to be a P -sublocale if MA = OA. He

then goes on to show that for basically disconnected frames these P -sublocales have some

rather unexpected properties.

We shall see in the next section that the containment OĀ ⊆ OA is an equality precisely when

the ideal OA is pure. This however does not tell us about the localic properties of sublocales A

for which OA = OĀ.

Observation 2.2.2. If U is an open sublocale of βL, then OU = OU
◦
= MU

◦
= MU .

15



Proof. Pick I ∈ βL such that U = o(I). Now, for any α ∈ RL, we have

α ∈ M o(I) iff o(I) ⊆ c(rL(cozα))

iff I ∧ rL(cozα) = 0βL

iff I∗∗ ∧ rL(cozα) = 0βL

iff o(I∗∗) ⊆ c(rL(cozα))

iff α ∈ M o(I∗∗),

which then says MU = MU
◦
. The rest follows because, for any open sublocale V of βL,

OV = MV , as one checks easily.

In part of the proof of the first proposition we shall use the fact that if I and J are elements of

βL with I ≺ J , then
∨
I ∈ J (see [14, p. 156]).

As we shall shortly see, this fails for open sublocales. Also, the O-version of the equivalence in

the preceding paragraph is false; only one implication holds. In the proof that follows, we shall

use the notion of P -element. To recall, an element a ∈ L is called a P -element if the associated

closed sublocale is a P -sublocale.

Proposition 2.2.3. Let L be a completely regular frame.

(a) If A is a closed sublocale of βL with OA = OA◦
, then A is regular-closed. The converse

does not hold.

(b) If A is a closed sublocale of L with OA = OintL(A), then A is regular-closed. The converse

does not hold.

(c) If U is an open sublocale of βL, then OU = OU iff U is a round sublocale of βL.

(d) If U is an open sublocale of L, then OU = OclL(U) iff clL(U) is a P -sublocale of L.

Proof. (a) Pick I ∈ βL with A = cβL(I). Then A
◦ = oβL(I

∗). Let c ∈ I∗∗. Pick γ ∈ RL such

that c = coz γ. We show that γ ∈ OA◦
. Since I∗ ∧ I∗∗ = 0βL and since rL(c) ≤ I∗∗, we have

I∗ ∧ rL(c) = 0βL, which implies I∗ ≤ rL(c
∗), and hence oβL(I

∗) ⊆ oβL(rL(c
∗)). This containment

implies γ ∈ OA◦
. Therefore, by hypothesis, γ ∈ OA, so that cβL(I) ⊆ oβL(rL(c

∗)), whence

rL(c)
∗ ∨ I = rL(c

∗) ∨ I = 1βL,
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that is, rL(c) ≺ I, and hence c ∈ I because
∨
rL(c) = c. Therefore I∗∗ ⊆ I, and hence I = I∗∗.

Therefore A is a regular-closed sublocale of βL.

(b) Pick a ∈ L such that A = c(a). Let γ ∈ RL be such that coz γ ≤ a∗∗. We show that

γ ∈ OintL(A). Recall that intL(c(a)) = o(a∗). Since coz γ ≤ a∗∗, we have a∗ ≤ (coz γ)∗, so

that o(a∗) ⊆ o((coz γ)∗), implying γ ∈ OintL(A). So, by hypothesis, γ ∈ Oc(a), which says

c(a) ⊆ o((coz γ)∗), so that a ∨ (coz γ)∗ = 1, and hence coz γ ≤ a. Thus, by complete regularity,

a∗∗ ≤ a, and hence a = a∗∗. This shows that A is regular-closed.

(c) Assume, first, that OU = OU . Then

OU = OU = MU = MU ,

which shows that U is a round sublocale of βL. Conversely, if U is round, then OU = MU , and

so,

OU ⊆ OU = MU = MU = OU ,

proving the result.

(d) Assume, first, that OU = OclL(U). Pick u ∈ L such that U = oL(u), so that clL(U) = cL(u
∗).

To show that clL(U) is a P -sublocale of L, it suffices to show that u∗ is a P -element of L. Consider

any c ∈ CozL with c ≤ u∗, and pick γ ∈ RL such that c = coz γ. Then u ≤ u∗∗ ≤ (coz γ)∗,

and so oL(u) ⊆ oL((coz γ)
∗), which says γ ∈ OoL(u), and so, by hypothesis, γ ∈ OcL(u∗). Thus,

cL(u
∗) ⊆ oL(c

∗), which implies c∗ ∨ u∗ = 1, that is, c ≺ u∗. Therefore u∗ is a P -element, and

hence clL(U) is a P -sublocale of L.

Conversely, assume that clL(U) is a P -sublocale of L, and consider any γ ∈ OoL(u). Then

OoL(u) ⊆ OoL((coz γ)∗), and so u ≤ (coz γ)∗, from which we get coz γ ≤ u∗. Since u∗ is a P -

element as cL(u
∗) is a P -sublocale, we have coz γ ≺ u∗, and so (coz γ)∗ ∨ u∗ = 1, which implies

cL(u
∗) ⊆ oL((coz γ)

∗), whence γ ∈ OcL(u∗). Therefore OU ⊆ OclL(U), and hence OU = OclL(U)

since the opposite inclusion always holds.

Here is an example showing that the converse to part (a) of this proposition does not hold.

Example 2.2.4. Let L = Ω(R), and consider the element a = (0, 1) of L. Since a = a∗∗,

rL(a) = rL(a
∗∗) = rL(a)

∗∗, and so the closed sublocale A = cβL(rL(a)) of βL is a regular-closed.

Since every open set in R is a cozero-set, a ∈ CozL, and so there exists some α ∈ RL such that
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a = cozα. Now, α ∈ OA◦
since A◦ = oβL(rL(a

∗)) = oβL(rL(cozα)
∗). On the other hand, α /∈ OA,

otherwise we would have cβL(rL(a)) ⊆ oβL(rL(a
∗)), which would imply rL(a) ∨ rL(a∗) = 1βL,

whence we would have a∨a∗ = 1, which is false because a∨a∗ = (0, 1)∪
(
(−∞, 0)∪ (0,∞)

)
≠ R.

As an application, we have the following characterization of Boolean frames.

Corollary 2.2.5. The following are equivalent for a frame L.

(1) L is Boolean.

(2) OA = OintL(A) for every sublocale A of L.

(3) OA = OintL(A) for every closed sublocale A of L.

Proof. If L is Boolean, then every sublocale of L is open, and hence equals its interior. Therefore

(1) implies (2). It is trivial that (2) implies (3). If (3) holds, then the proposition says every

closed sublocale of L is regular-closed, which says a = a∗∗ for every a ∈ L, and this is known to

be equivalent to L being Boolean.

In [9, Theorem 2.6], the author proves that if A is a closed subset of βX, then the ideal MA

is finitely generated if and only if A is open. We have the following similar result, but for the

ideal OA. Recall that rL preserves disjoint binary joins.

Theorem 2.2.6. The following are equivalent for a closed sublocale A of βL.

(1) OA is finitely generated.

(2) OA is a principal ideal generated by an idempotent.

(3) A is open.

Proof. (1) ⇒ (3): Take I ∈ βL such that A = cβL(I). Suppose that there are finitely many

elements α1, . . . , αn in RL such that OA = ⟨α1, . . . , αn⟩. By [13, Lemma 4.4],∨
{cozα | α ∈ OA} =

∨
{cozα | α ∈ I} = cozα1 ∨ · · · ∨ cozαn.
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Set α0 = α2
1 + · · ·+ α2

n. Since α0 ∈ OA, we have cozα0 ∈ I, and so, cozα0 =
∨
I ∈ I. Since I is

a regular ideal of CozL, there exists d ∈ I such that cozα0 ≺≺ d. Since cozα0 =
∨
I, we must

have d = cozα0. This certainly implies I = rL(d), whence

I ∨ I∗ = rL(d) ∨ rL(d∗) = rL(d ∨ d∗) = 1βL

because d ∨ d∗ = 1. This proves that A is clopen.

(3) ⇒ (2): If A is clopen, there exists a complemented element I of βL such that A = cβL(I).

Then I ∈ Coz βL, and so the element c =
∨
I belongs to CozL. Furthermore, c is a complemented

element of L because frame homomorphisms send complemented elements to complemented

elements. By [16, Proposition 2.2], there is an idempotent γ in RL such that c = coz γ. We

show that OA = ⟨γ⟩. Since I ≺ I,
∨
I ∈ I, that is c ∈ I, and therefore γ ∈ OA. Now let

α ∈ OA. Then cozα ∈ I, and so cozα ≤ coz γ ≺≺ coz γ, which means that α is a multiple of γ.

In all then, OA = ⟨γ⟩.

(2) ⇒ (1): This is trivial.

Remark 2.2.7. The requirement that A be a closed sublocale cannot be relaxed. We shall see

in Lemma 4.2.2 of Chapter 4 that the ideal OA is the zero ideal precisely when A is a dense

sublocale. So, for instance, the ideal OB(Ω(R)) of R(Ω(R)) is finitely generated, but B(Ω(R)) is

not open.

Since MA = M Ā for any sublocale A of βL, and since, for any I ∈ βL,∨
{cozα | α ∈ M cβL(I)} =

∨
α∈I

cozα

also by [16, Proposition 2.2], a proof as the foregoing one, with minor modification, enables us

to state the following.

Theorem 2.2.8. The following are equivalent for a sublocale A of βL.

(1) MA is finitely generated.

(2) MA is a principal ideal generated by an idempotent.

(3) Ā is open.
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2.3 Purity revisited

An ideal I of a ring A is pure (Johnstone [29] says “neat”) if for every u ∈ I there is a v ∈ I

such that u = uv. We denote the set of all pure ideals of A by PId(A). In [29, Proposition

V. 2.8], Johnstone proves that PId(A) is a frame. The m-operator on the set of ideals of A is

defined by

mI = {u ∈ I | u = uv for some v ∈ I}.

If Q is an ideal of RL, then

mQ = {α ∈ RL | cozα ≺≺ coz γ for some γ ∈ Q},

and Q is pure if and only if mQ = Q [17, Corollary 3.3].

As the heading suggests, our aim in this section is to present further results concerning purity

in function rings. Among other things, we present a transparent description of pure ideals of

the subring R∗L of RL consisting of bounded elements. A thorough search in the literature has

revealed that pure ideals of this subring have hitherto not been described.

For the record, in [16] the pure ideals of RL are fully described as

PId(RL) = {OA | A is a closed sublocale of βL}.

Since for any I ∈ βL and any α ∈ RL, α ∈ OcβL(I) if and only if cozα ∈ I, it is clear that the

mapping A 7→ OA is injective on closed sublocales of βL. It is however not necessarily injective

on all sublocales of βL (the reader may peak ahead to Lemma 4.2.2 to see that OA is the zero

ideal for any dense sublocale A of βL). So it is possible for OA to be pure even if A is not a

closed sublocale of βL.

The upcoming lemma characterizes when the ideals OA and MA are pure. We will put it

to good use on a number of occasions. The characterization that OA is pure if and only if

OA = OĀ, which we include as part of this lemma, is also observed in [19].

Lemma 2.3.1. If A is a sublocale of βL, then mOA = mMA = OĀ. Hence, OA is pure iff

OA = OĀ, and MA is pure iff MA = OĀ.

Proof. Since OĀ ⊆ OA ⊆ MA, applying the m-operator and keeping in mind that OĀ is pure

since Ā is a closed sublocale, we obtain

OĀ = mOĀ ⊆ mOA ⊆ mMA.
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Now let α ∈ mMA, and select γ ∈ MA with cozα ≺≺ coz γ. Then rL(cozα) ≺ rL(coz γ), so

that rL(cozα)
∗ ∨ rL(coz γ) = 1βL, and hence (in light of the fact that γ ∈ MA = M Ā)

Ā ⊆ cβL(rL(coz γ)) ⊆ oβL(rL(cozα)
∗),

which implies α ∈ OĀ, showing that mMA ⊆ OĀ, and hence we have the three claimed

equalities. The latter assertions follow from this.

Localic characterizations of sublocales A of βL for which OA is pure follow. As in spaces, we

say a sublocale B is a neighborhood of a sublocale A if the interior of B contains A.

Theorem 2.3.2. The following are equivalent for a sublocale A of βL.

(1) OA is pure.

(2) Every zero-sublocale of βL which is a neighborhood of A is also a neighborhood of Ā.

(3) Whenever A misses the closure of some cozero-sublocale of βL, then Ā also misses the

closure of that cozero-sublocale.

Proof. (2) ⇔ (3): This equivalence follows from the fact that, for any complemented sublocale

S of any frame M , int(M ∖ S) = M ∖ clS, as can be deduced from [21, Eq. (4.3)], and

zero-sublocales are exactly the complements of cozero-sublocales.

(1) ⇒ (2): Suppose that OA is pure, so that OA = OĀ by Lemma 2.3.1. Consider any

J ∈ Coz(βL) with A ⊆ intβL cβL(J). Then A ⊆ oβL(J
∗). Since J ∈ Coz(βL),

∨
J ∈ CozL.

Pick α ∈ RL such that
∨
J = cozα. Then J∗ = rL(cozα)

∗. Thus, A ⊆ oβL(rL(cozα)
∗), which

implies α ∈ OA, and hence α ∈ OĀ, by hypothesis, whence Ā ⊆ oβL(rL(cozα)
∗) = intβL cβL(J).

(2) ⇒ (1): Suppose that A has the hypothesized feature. To prove that OA is pure, we need

only show that OA ⊆ OĀ. Let α ∈ OA. Then A ⊆ oβL(rL(cozα)
∗). Put c = cozα, and find a

sequence (cn)n∈N of cozero elements of L such that cn ≺≺ cn+1 for every n, and c =
∨

ncn. Since

rL(cn) ≺≺ rL(cn+1) for each n, the element J =
⋃

nrL(cn) is a cozero element of βL with

J∗ = rL

((∨
J
)∗)

= rL

((∨
n

cn

)∗)
= rL(c

∗).

Thus, A ⊆ oβL(J
∗) = intβL cβL(J). Since cβL(J) is a zero-sublocale of βL, the hypothesis

implies that Ā ⊆ oβL(rL(cozα)
∗). Therefore α ∈ OĀ, which establishes the desired containment.

Therefore OA is pure, by Lemma 2.3.1.
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Recall from [35, Proposition VI.2.2.1] that each spatial sublocale of a sober space is induced by a

subspace. Recall also that complemented sublocales of a spatial locale are spatial [35, Proposition

VI.3.3]. Thus, zero-sublocales and cozero-sublocales of βX are precisely the sublocales induced

by the zero-sets and cozero-sets of βX, respectively. Since purity is preserved (and therefore

also reflected) by ring isomorphisms, we therefore have the following corollary.

Corollary 2.3.3. For a Tychonoff space X, the following are equivalent for a subset A of βX.

(1) OA is pure.

(2) Every zero-set of βX which is a neighborhood of A is also a neighborhood of Ā.

(3) Whenever A misses the closure of some cozero-set of βX, then Ā also misses the closure

of that cozero-set.

Let us pause for a moment for some bookkeeping. The ideals OA and MA are indexed by

sublocales of βL. So, when we do not view L as a sublocale of βL, then, strictly speaking, for a

sublocale S of L we cannot speak of OS or MS. It is however desirable to have similar ideals

indexed by sublocales of L, in such a way that when we do view L as a sublocale of βL, so that

a sublocale of L is then a sublocale of βL, then the two concepts agree.

A pleasant observation from [18] is that, for S a sublocale of L, the ideals OS and MS can be

described solely in terms of L without invoking βL, as follows:

OS = {α ∈ RL | S ⊆ oL((cozα)
∗)} and MS = {α ∈ RL | S ⊆ cL(cozα)}.

Now, viewing L as a sublocale of βL, if S is a closed sublocale of L, it does not follow that S is

a closed sublocale of βL. We can thus not simply deduce that the ideal OS is pure. We shall

see that if L is normal, then OS is pure for every closed sublocale S of L. This will be via a

characterization of the frames L for which OS is pure for each closed sublocale S of L. Towards

that end, let us say a frame L is coz-interpolative if whenever a cozero element of L is rather

below some element of L, then it is completely below that element. This strange-sounding

name is justified by the fact that the definition says if c is a cozero element and c ≺ a, then the

relation ≺ is interpolative between c and a. Normal frames are coz-interpolative. Here is an

example of a non-normal coz-interpolative frame.
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Example 2.3.4. Let L be a non-normal basically disconnected frame (see, for instance, the

space described in [24, Problem 6Q]). Then L is coz-interpolative. To verify this, consider any

c ∈ CozL and a ∈ L with c ≺ a. Then c∗∗ ≺ a. Since c∗∗ is complemented as L is basically

disconnected, we have c ≤ c∗∗ ≺≺ a, as desired.

Before we proceed to the result for which we have introduced coz-interpolative frames, let us

observe that for F -frames (recall from [4] that these are the frames L such that if a ∧ b = 0 in

CozL, then there exist u, v ∈ CozL such that u ∨ v = 1 and a ∧ u = b ∧ v = 0) the concept of

being coz-interpolative is expressible in terms of sublocales.

Theorem 2.3.5. Consider the following conditions on a frame L.

(1) L is coz-interpolative.

(2) Whenever a zero-sublocale Z of L is a neighborhood of a closed sublocale A of L, there is

a cozero-sublocale C of L such that A ⊆ C ⊆ Z.

Condition (1) implies condition (2), and the two conditions are equivalent if L is an F -frame.

Proof. Suppose that L is coz-interpolative. Let Z be a zero-sublocale of L which is a neighbor-

hood of a closed sublocale A of L. Pick c ∈ CozL and a ∈ L with Z = cL(c) and A = cL(a).

Then cL(a) ⊆ intL(cL(c)), which says cL(a) ⊆ oL(c
∗), so that c∗ ∨ a = 1, and hence c ≺ a. Since

L is coz-interpolative, we therefore have c ≺≺ a. By [6, Corollary 3], there is a cozero separating

element, that is, an s ∈ CozL such that c ∧ s = 0 and s ∨ a = 1. Thus, oL(c) ∩ oL(s) = O

and cL(a) ⊆ oL(s). The former implies oL(s) ⊆ cL(c). Therefore the sublocale C = oL(s) is a

cozero-sublocale of L with A ⊆ C ⊆ Z. Thus, condition (1) implies condition (2).

Now assume that L is an F -frame satisfying condition (2). Consider c ∈ CozL and a ∈ L with

c ≺ a. Then c∗ ∨ a = 1, which implies cL(a) ⊆ intL(cL(c)). Thus, cL(c) is a zero-sublocale which

is a neighborhood of the closed sublocale cL(a). By condition (2), there is a cozero element

d of L such that cL(a) ⊆ oL(d) ⊆ cL(c). Consequently, a ∨ d = 1 and d ∧ c = 0. Since c and

d are cozero elements and L is an F -frame, there exist u and v in CozL with u ∨ v = 1 and

c∧u = 0 = d∧v. Therefore c is rather below v in the lattice CozL, which, again by [6, Corollary

3], implies c ≺≺ v. We however have v ≤ a because a ∨ d = 1 and v ∧ d = 0; so in all then

c ≺≺ a, which proves that L is coz-interpolative.
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Remark 2.3.6. Recall from [7] that a frame is called an Oz-frame if the pseudocomplement of

every cozero element is a cozero element. See also [25] for some interesting characterizations

of these frames. In terms of sublocales, L is an Oz-frame precisely when the interior of

every zero-sublocale is a cozero-sublocale. Therefore every Oz-frame satisfies condition (2) of

Theorem 2.3.5.

Now here is a characterization of the frames L for which every ideal of the form OS is pure for

every closed sublocale S of L.

Theorem 2.3.7. The ideal OB of RL is pure for every closed sublocale B of L iff L is

coz-interpolative.

Proof. Let a ∈ L and α ∈ RL. From the definition, we know that α ∈ OcβL(rL(a)) if and only if

cozα ≺≺ a. On the other hand,

α ∈ OcL(a) iff cL(a) ⊆ oL((cozα)
∗)

iff a ∨ (cozα)∗ = 1

iff cozα ≺ a.

Therefore OcβL(rL(a)) ⊆ OcL(a). So, if L is coz-interpolative, then OcβL(rL(a)) = OcL(a), which

then proves that OB is pure for every closed sublocale B of L.

Conversely, suppose that OB is pure for every closed sublocale B of L. Let a ∈ L and c ∈ CozL

be such that c ≺ a. Pick γ ∈ RL with coz γ = c. Now, coz γ ≺ a implies γ ∈ OcL(a) by the

calculation above. Since OcL(a) = OrL[cL(a)], and since our hypothesis says this ideal is pure, we

have OrL[cL(a)] = OrL[cL(a)] by Lemma 2.3.1. Since
∧
cL(a) = a, and since rL preserves meets, we

have
∧
rL[cL(a)] = rL(a), which then implies

rL[cL(a)] = cβL(rL(a)).

Thus, γ ∈ OcβL(rL(a)), which implies coz γ ≺≺ a; showing that L is coz-interpolative.

Let us interpret this result in spaces. Recall that if X is a Tychonoff space, then for any

U, V ∈ Ω(X), U ≺ V if and only if U ⊆ V , and U ≺≺ V if and only if there is a continuous

function f : X → [0, 1] such that f(x) = 0 if x ∈ U and f(x) = 1 if x /∈ V . We therefore have

the following corollary.
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Corollary 2.3.8. The ideal OA of C(X) is pure for every closed subset A of X iff whenever

the closure of a cozero-set of X is contained in some open subset of X, then the cozero-set and

the complement of that open set are completely separated.

Another immediate corollary to Theorem 2.3.7 is the following. Recall that a topological space

is normal if and only if the frame of its open subsets is normal.

Corollary 2.3.9. If L is normal frame, then OB is pure for every closed sublocale B of L. If

X is a normal space, then OB is pure for every closed subset B of X.

Recall that the subcategory of completely regular Lindelöf frames resides coreflectively in

CRFrm [31]. A σ-ideal of CozL is a lattice ideal closed under countable joins. We denote by

λL the frame of σ-ideals of CozL. The mapping λL : λL→ L that sends an ideal to its join is the

coreflection map to L from Lindelöf completely regular frames. It is a dense C-quotient map(see

[4] for the notion of C- and C∗-quotients), and therefore the induced ring homomorphism

R(λL) : R(λL) → RL is an isomorphism. Since regular Lindelöf frames are normal, the direct

images under this isomorphism of the pure ideals OB of R(λL), for B a closed sublocale of λL,

are pure ideals of RL. We wish to describe them in terms of the associated closed sublocales

of βL. We do so by first proving a more general result. Recall that a frame homomorphism

h : M → L is said to be coz-surjective if for every c ∈ CozL there is a d ∈ CozM such that

h(d) = c.

Recall the Stone extension of a frame homomorphism from Section 1.5 of Chapter 1.

If h : M → L is a dense C∗-quotient map, then βh is an isomorphism [10, Corollary 2.2], and so

we have the commuting triangle

βL

kLM

~~

jL

  
M

h // L

where the morphism kLM is defined by kLM = jM ◦ (βh)−1.

For use in the upcoming proof, recall from the definition that if I ∈ βL and α ∈ RL, then

α ∈ OcβL(I) ⇐⇒ cozα ∈ I.
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Theorem 2.3.10. If h : M → L is a dense C-quotient map out of a normal frame, then, for

any a ∈M ,

(Rh)[OcM (a)] = OcβL((βh)(rM (a))) = OcβL((kLM )∗(a)),

where kLM is as defined above.

Proof. The second claimed equality follows from the fact that

(kLM)∗ =
(
jM ◦ (βh)−1

)
∗ = βh ◦ rM

because the right adjoint of an isomorphism is its inverse.

Now, to the first equality. For brevity, let us write Ia = (βh)(rM(a)). We start by showing

that (Rh)[OcM (a)] ⊆ OcβL(Ia). Let α ∈ OcM (a). Then cozα ≺ a, which then implies cozα ≺≺ a

since M is normal. Thus, cozα ∈ rM(a). Since coz
(
(Rh)(α)

)
= h(cozα), it follows that

(Rh)(α) ∈ OcβL(Ia). This proves that (Rh)[OcM (a)] ⊆ OcβL(Ia).

For the reverse inclusion, let us first show that for any u, v ∈ CozM ,

h(u) ≺≺ h(v) =⇒ u ≺≺ v. (†)

Since h(u) and h(v) are cozero elements, we know from [6, Corollary 3] that there is a separating

cozero element s in L such that h(u)∧ s = 0 and s∨h(v) = 1. Since h is a C-quotient map, it is

coz-surjective, and so there is a c ∈ CozM with h(c) = s. Thus, h(u ∧ c) = 0 and h(c ∨ v) = 1,

which, by density and coz-codensity of h, implies u ∧ c = 0 and c ∨ v = 1, so that u ≺≺ v by [6,

Corollary 3] again.

Now, consider any γ ∈ OcβL(Ia). Then coz γ ∈ Ia, and so there is a c ∈ CozM such that c ≺≺ a

and coz γ ≺≺ h(c). Since h is a C-quotient map, we can find γ̃ ∈ RM such that h ◦ γ̃ = γ.

Then h(coz γ̃) ≺≺ h(c), and so by (†), coz γ̃ ≺≺ c, whence coz γ̃ ≺ a, which is to say γ̃ ∈ OcM (a).

Since γ = (Rh)(γ̃), this shows that OcβL(Ia) ⊆ (Rh)[OcM (a)], and we thus have the claimed

equality.

Applied to λL : λL→ L, this theorem takes the form described in the following corollary. It is

not difficult to show that, putting M = λL, (kLM)∗(J) =
⋃

u∈JrL(u), for every J ∈ λL.

Corollary 2.3.11. For any J ∈ λL, R(λL)[OcλL(J)] = OcβL

(⋃
u∈JrL(u)

)
.
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A more localic (as opposed to frame-theoretic) statement of Theorem 2.3.10 is worth recording.

Recall that a localic map f : L→M is called dense if its left adjoint f ∗ : M → L is dense. Let

us say f is a localic C-embedding if f ∗ is a C-quotient map. We mentioned above the Stone

extension of a frame homomorphism. Similarly, there is a Stone extension of a localic map (see,

for instance, [21]), also denoted βf .

Corollary 2.3.12. If f : L→M is a dense localic C-embedding with M normal, then

R(f ∗)[OA] = O(βf)−1[rM [A]] = O(βf)−1

[
rM [A]

]
,

for any closed sublocale A of M .

Proof. Observe that if g : H → K is a localic isomorphism, then g−1[T ] = g−1[T ], for any

sublocale T of K. So the second equality in the statement of the corollary holds because βf is an

isomorphism. Now, pick a ∈M such that A = cM (a). As observed in the proof of Theorem 2.3.7,

rM [cM(a)] = cβM(rM(a)), so

(βf)−1[rM [cM(a)]] = (βf)−1[cβM(rM(a))] = cβL((βf)
∗(rL(a))),

and hence the first equality in the statement of the corollary follows from Theorem 2.3.10

because (βf)∗ = β(f ∗).

Let us go back to Theorem 2.3.7. It tells us that if L is coz-interpolative then each ideal of the

form OB, for B a closed sublocale of L, is pure. This, however, does not mean that all pure

ideals of RL for such a frame L are of this kind. For that to be the case, the frame needs to be

even more restricted, as the next theorem shows.

Theorem 2.3.13. PId(RL) = {OB | B is a closed sublocale of L} iff L is compact.

Proof. Assume first that PId(RL) = {OB | B is a closed sublocale of L}. We prove that L is

compact by showing that the localic map rL : L → βL is an isomorphism. Since it is always

injective, we need only show that it is surjective. Consider any I ∈ βL. Since OcβL(I) is pure,

the hypothesis furnishes an a ∈ L such that OcβL(I) = OcL(a). Since OcL(a) = OrL[cL(a)], and

since this ideal is pure, Lemma 2.3.1 ensures that OrL[cL(a)] = OrL[cL(a)]. But now, as observed

in the proof of Theorem 2.3.7, rL[cL(a)] = cβL(rL(a)); so we have OcβL(I) = OcβL(rL(a)), whence
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cβL(I) = cβL(rL(a)) because these sublocales are closed. Therefore I = rL(a), which shows that

rL is surjective, as desired.

Conversely, assume that L is compact. Then (since our frames are completely regular) L is

normal, and so, by Corollary 2.3.9, OB is a pure ideal of RL for each closed sublocale B of L.

On the other hand, if H is a pure ideal of RL then there is an I ∈ βL such that H = OcβL(I).

Since L is compact, rL : L → βL is surjective, and so there is an a ∈ L such that I = rL(a).

Note, as well, that the surjectivity of rL implies rL[cL(a)] = cβL(rL(a)). In consequence,

H = OcβL(rL(a)) = OrL[cL(a)] = OcL(a),

which then proves that PId(RL) = {OB | B is a closed sublocale of L}.

Corollary 2.3.14. The pure ideals of C(X) are precisely the ideals OB for B a closed subset

of X iff X is compact.

We mentioned at the beginning of the section that one of our aims is to give a description of

pure ideals of R∗L. We now embark on that, but first we recall some background.

As shown in [4], jL : βL → L is C∗-quotient map. Since jL is dense, the ring homomorphism

R(jL) : R(βL) → RL it induces is injective. Since it maps into R∗L (as βL is compact), when

its codomain is restricted to R∗L, we have the ring isomorphism

ϕL : R(βL) → R∗L given by ϕL(f) = jL ◦ f.

Now, in view of this ring isomorphism,

PId(R∗L) = {ϕL[J ] | J ∈ PId(R(βL))}

because, clearly, an onto ring homomorphism sends pure ideals to pure ideals. We however seek

a more transparent description of pure ideals of R∗L.

So far, given a frame L, we have dealt only with ideals of RL. To prove the next result, we

shall simultaneously deal with ideals of RL and of R(βL). To avoid possible confusion, we shall

use a different symbol for the O-ideals in R(βL). Also, we shall use notation that distinguishes

between the cozero maps, and write Coz: R(βL) → βL for the cozero map on R(βL). Although

this notation is identical to the one used for the cozero part of a frame, there is no danger of

ambiguity. For any sublocale A of βL, we set

OA = {f ∈ R(βL) | A ⊆ oβL((Coz f)
∗)}.
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For any f ∈ R(βL), we have
∨

Coz f = coz(jL ◦ f). In part of the proof below we shall use the

fact that if I and J are elements of βL with I ≺ J , then
∨
I ∈ J (see [14, p. 156]).

Theorem 2.3.15. An ideal of R∗L is pure iff it is of the form {α ∈ R∗L | cozα ∈ I} for some

I ∈ βL.

Proof. As already mentioned above, an onto ring homomorphism sends pure ideals to pure

ideals. So, if ψ : A→ B is a ring isomorphism, then the pure ideals of B are precisely the images

of the pure ideals of A under ψ. Now, for the isomorphism ϕL : R(βL) → R∗L mentioned above,

and taking into account the result in Theorem 2.3.13, we have

PId(R∗L) = {ϕL[OcβL(I)] | I ∈ βL}.

We claim that, for any I ∈ βL,

ϕL[OcβL(I)] = {α ∈ R∗L | cozα ∈ I}. (‡)

To verify this, let f ∈ OcβL(I). Then cβL(I) ⊆ oβL((Coz f)
∗), which implies (Coz f)∗ ∨ I = 1βL,

and hence Coz f ≺ I, whence
∨

Coz f ∈ I, that is, coz(ϕL(f)) ∈ I. Consequently, ϕL(f) is an

element of R∗L whose cozero element belongs to I. This proves the inclusion ⊆ in (‡). For the
reverse inclusion, consider any α ∈ R∗L with cozα ∈ I. Let α̃ be the function in R(βL) such

that jL ◦ α̃ = α. Then α̃ has the property that

Coz α̃ ⊆ rL

(∨
Coz α̃

)
= rL(cozα) ≺ I

because id ≤ h∗ ◦ h for every frame homomorphism h, and whenever c ∈ I ∈ βL, then

c ≺≺ d for some d ∈ I, so that rL(c) ≺ rL(d) ⊆ I. Thus, (Coz α̃)∗ ∨ I = 1βL, which implies

cβL(I) ⊆ oβL(Coz α̃)
∗, so that α̃ ∈ OcβL(I). Since ϕL(α̃) = α, we have shown the inclusion ⊇

in (‡). Since βL is compact, its pure ideals are precisely the ideals OA, for A a closed sublocale

of βL, as shown in Theorem 2.3.13. The result therefore follows because ϕL : R(βL) → R∗L is

an isomorphism.

Let us restate this result differently using the language of contraction of ideals. Recall that if

ϕ : A→ B is a ring homomorphism and I is an ideal of B, then the ideal ϕ−1[I] of A is called

the contraction of I.
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Corollary 2.3.16. The pure ideals of R∗L (resp. C∗(X)) are precisely the contractions to R∗L

(resp. C∗(X)) of the pure ideals of RL (resp. C(X)).

Phrased this way, the reader may wonder if we could not have derived this by first arguing that,

in function rings, contractions of pure ideals are pure ideals. We could not because (even in

function rings) purity generally does not survive contraction, as the example below shows.

Example 2.3.17. Let L = Ω(R), and put a = (0, 1). Note that a = a∗∗. Since every element

of L is a cozero element, there is an α ∈ RL such that cozα = a. Denote by b : L → BL the

Booleanization map b(x) = x∗∗. Since b is dense, the ring homomorphism Rb : RL→ R(BL)

is injective, and so its image is a function ring which is a subring of R(BL). Let H be the

principal ideal of R(BL) generated by b ◦ α. Since BL is Boolean, and hence a P -frame, H is a

pure ideal in R(BL) by [11, Corollary 3.10]. We claim that the ideal (Rb)−1[H] of RL is not

pure. If it were, then since α ∈ (Rb)−1[H], there would be an element γ ∈ (Rb)−1[H] such that

cozα ≺≺ coz γ. The relation γ ∈ (Rb)−1[H] implies b ◦ γ ∈ H, and hence b ◦ γ is a multiple of

b ◦ α. Now, in light of the cozero element of a product being below the cozero element of each

factor, we would have

a ≺≺ (coz γ)∗∗ = b(coz γ) = coz(b ◦ γ) ≤ coz(b ◦ α) = (cozα)∗∗ = a,

which would imply a ≺≺ a, which is of course false.

2.4 Characterizing basic disconnectedness

In Theorem 2.3.7 we characterized the frames L for which OB is pure for every closed sublocale

B of L. It is thus natural to seek a “companion” characterization with open sublocales in the

place of closed ones. That will be the content of our next result. We shall approach it slightly

differently from the previous case.

In [1], there are characterizations of basically disconnected spaces X in terms properties of pure

ideals of C(X). One such is that X is basically disconnected if and only if OA is a pure ideal of

C(X) for every subspace of A of βX. Now, a topological space, when viewed as a frame, can

have more sublocales than subspaces. So it is reasonable to wonder if replacing “subspace” with

“sublocale” in the result of [1] just recited does not invalidate one of the implications.
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We shall see that it does not. This we shall actually do by characterizing basically disconnected

frames in several ways, including that L is basically disconnected if and only if OA is pure for

every sublocale of βL. One other characterization requires knowledge about the frame Sc(L),

associated with any given frame L, defined in [36] by

Sc(L) = {S ∈ S(L) | S is a join of closed sublocales of L}.

Since our frames are completely regular (and hence fit), each member of Sc(L) is actually a join

of complemented sublocales. Following Isbell [27], we shall thus say members of Sc(L) are the

smooth sublocales. We must point out that in [27] this descriptor is used not only for the fit

case.

There are several characterizations of basically disconnected frames in [4] and [16]. The following

ones are new, and they both extend and supplement the spatial ones in [1]. Recall from [3,

Corollary to Lemma 1.9] that rL preserves disjoint binary joins; that is, if a ∧ b = 0, then

rL(a ∨ b) = rL(a) ∨ rL(b).

Theorem 2.4.1. The following conditions are equivalent for L.

(1) L is basically disconnected.

(2) OA is pure for every sublocale A of βL.

(3) The intersection of any collection of pure ideals of RL is pure.

(4) OA is pure for every smooth sublocale A of βL.

(5) OA is pure for every open sublocale A of βL.

(6) OoβL(rL(a)) is pure for every a ∈ L.

(7) OoβL(rL(c
∗)) is pure for every c ∈ CozL.

Proof. (1) ⇒ (2): Suppose that L is basically disconnected, and let A be a sublocale of βL. We

show that OA ⊆ OĀ. Let γ ∈ OA. For brevity, write c = coz γ. Then A ⊆ oβL(rL(c
∗)). Since L

is basically disconnected, c∗ ∨ c∗∗ = 1, and since c∗ ∧ c∗∗ = 0, we have

rL(c
∗) ∨ rL(c∗∗) = rL(c

∗ ∨ c∗∗) = 1βL.
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Consequently, cβL(rL(c
∗∗)) ⊆ oβL(rL(c

∗)), and hence

Ā ⊆ oβL(rL(c∗)) = cβL(rL(c
∗∗)) ⊆ oβL(rL(c

∗)) = oβL(rL(coz γ)
∗),

which implies γ ∈ OĀ. Thus, OA ⊆ OĀ, and therefore OA = OĀ, showing that OA is pure.

(2) ⇒ (3): Assume that (2) holds, and let {Qλ} be a family of pure ideals of RL. For each

index λ, there is a closed sublocale Kλ of βL such that Qλ = OKλ . This then implies⋂
λ

Qλ =
⋂
λ

OKλ = O
∨

λ Kλ ,

showing that
⋂

λQλ is pure in light of the hypothesis in (2).

(3) ⇒ (4): Assume that (3) holds. If A is smooth, then there is a collection {Kλ} of closed

sublocales of βL such that A =
∨

λKλ. Thus, O
A =

⋂
λO

Kλ , which is an intersection of pure

ideals, and hence OA is pure.

(4) ⇒ (5): This holds because open sublocales in subfit frames (and hence in completely regular

frames) are smooth.

(5) ⇒ (6) ⇒ (7): These implications are trivial.

(7) ⇒ (1): Assume that (7) holds, and let c ∈ CozL. Then the ideal OoβL(rL(c
∗)) is pure, by

hypothesis, and so

OoβL(rL(c
∗)) = OoβL(rL(c∗)) = OcβL(rL(c

∗∗)).

Take γ ∈ RL with c = coz γ. Then γ ∈ OoβL(rL(c
∗)), which then implies γ ∈ OcβL(rL(c

∗∗)). The

latter says cβL(rL(c
∗∗)) ⊆ oβL(rL(c

∗)), which implies rL(c
∗∗) ∨ rL(c∗) = 1βL, whence, on taking

joins, we obtain c∗∗ ∨ c∗ = 1. Therefore L is basically disconnected.

Corollary 2.4.2. The ideal OU is pure for every open sublocale U of L iff L is basically

disconnected.

Proof. If L is basically disconnected, then, by the theorem above, OU is pure for every open

sublocale U because OU = OrL[U ], and rL[U ] is a sublocale of βL.
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Conversely, observe that for any a ∈ L and γ ∈ RL,

γ ∈ OoL(a) iff oL(a) ⊆ oL((coz γ)
∗)

iff a ≤ (coz γ)∗

iff rL(a) ≤ rL(coz γ)
∗

iff oβL(rL(a)) ⊆ oβL(rL(coz γ)
∗)

iff γ ∈ OoβL(rL(a)),

so that OoL(a) = OoβL(rL(a)). It therefore follows from the implication (6) ⇒ (1) in Theorem 2.4.1

that if OU is pure for every open sublocale U of L then L is basically disconnected.

We have deliberately understated the result in this corollary because we wanted to present it as

the “open analogue” of Theorem 2.3.7. A more comprehensive result characterizes basically

disconnected frames in terms of ideals associated with sublocales of L (and not of βL as above)

as follows. The proof is a mere adaptation of the corresponding results in Theorem 2.4.1, and

we therefore omit it.

Corollary 2.4.3. The following are equivalent for L.

(1) L is basically disconnected.

(2) OS is pure for every sublocale of L.

(3) OS is pure for every S ∈ Sc(L).

(4) OU is pure for every open sublocale of U of L.
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Chapter 3

Pulling and pushing the

sublocale-induced ideals

A localic map f : L→M gives rise to a ring homomorphism Rh : RM → RL, where h is the

left adjoint of f . Our aim in this chapter is to study the contractions and extensions of the O-

and M -ideals along the induced ring homomorphism.

3.1 Indispensable localic maps

We are not using “indispensable” as a mathematical adjective describing localic maps with some

feature, but rather it has its everyday use, meaning that the localic maps we are presenting

here are indispensable for the work that lies ahead. So, this section is preparatory for the main

objective of pushing forward and pulling back ideals along ring homomorphisms induced by

localic maps. We introduce localic maps that will play a pivotal role in Sections 3.2 and 3.3.

To start, recall that in Chapter 1 we presented the Stone-Čech compactification in the category

CRFrm. The outlook in this chapter is more localic, so let us recall the Stone extension of a
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localic map f : L→M . It is the unique localic map βf : βL→ βM that makes the diagram

βL
βf // βM

L

rL

OO

f //M

rM

OO

(3.1.1)

commute. Of course, dually, for every frame homomorphism h : M → L there is a unique frame

homomorphism βh : βM → βL making a square in CRFrm (which appears Section 1.5 of

Chapter 1) similar to that in Diagram (3.1.1) commute. We recalled in Chapter 1 how the

frame homomorphism βh maps. The localic map βf maps as follows:

(βf)(J) =
∨

{I ∈ βM | f ∗[I] ⊆ J}.

It should be clear that if f is a localic map, then (βf)∗ = β(f ∗).

Direct calculation shows that for any frame homomorphism h : M → L and any a ∈M ,

(βh)(rM(a)) ⊆ rL(h(a)). (3.1.2)

In the next two sections we are going to encounter a number of cases where certain properties

are characterized by the containment in (3.1.2) being actually an equality, either for all elements

of M or all elements of some suitable subset of M .

Localic maps f : L → M with the property that (βf)∗(rM(a)) = rL(f
∗(a)) for every a ∈ M

have ancestry in classical topology. To recall, Woods [41] calls a surjective continuous map

k : X → Y an N-map if clβX k
−1[F ] = (kβ)−1[clβY F ] for every closed subset F of Y , where

kβ : βX → βY is the Stone extension of k. If the equality clβX k
−1[Z] = (kβ)−1[clβY Z] holds

for each zero-set Z of Y , then Woods says the function k is a WN-map. We want to extend this

to localic maps, and relax the surjectivity constraint that Woods imposed.

Let f : L→M be a (not necessarily surjective) localic map. Consider Diagram (3.1.1) above,

and split it into the following wedges:

βL βL
βf // βM

and

L

rL

OO

f //M M

rM

OO
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Let F be a closed sublocale of M . Using the wedge on the left, pull F back along f to obtain

the closed sublocale f−1[F ] of L, and then push this closed sublocale upwards along rL to obtain

the (not necessarily closed) sublocale rL[f−1[F ]] of βL, and then (to keep things closed) take

the closure in βL to obtain clβL(rL[f−1[F ]]). Now do similarly along the wedge on the right

(keeping things closed) to end up with (βf)−1[clβM (rM [F ])]. We shall be concerned with several

cases where these two processes culminate in the same sublocale.

For a given localic map f : L→M , let us agree to call the equality

clβL(rL[f−1[B]]) = (βf)−1[clβM(rM [B])] (WE)

the Woods equality. We shall be interested in cases where (WE) holds for each sublocale in the

following classes of closed sublocales:

� K = {all closed sublocales};

� Z = {all zero-sublocales};

� C = {closures of cozero-sublocales}.

We are now going to define certain types of localic maps in terms of the Woods equality, and

give them names that accord with the ones Woods used in spaces.

Definition 3.1.1. We say a localic map f : L→M is:

(a) an N-map if its Woods equality holds for every sublocale in K;

(b) a WN-map if its Woods equality holds for every sublocale in Z; and

(c) a C-map if its Woods equality holds for every sublocale in C.

In calculations, it shall be useful to have characterizations of these maps in terms of elements.

For better visual clarity, we use the overline in the upcoming proof to denote closure.

Lemma 3.1.2. A localic map f : L→M is:

(a) an N-map iff (βf ∗)(rM(a)) = rL(f
∗(a)) for every a ∈M .

(b) a WN-map iff (βf ∗)(rM(a)) = rL(f
∗(a)) for every a ∈ CozM .
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(c) a C-map iff (βf ∗)(rM(c∗)) = rL(f
∗(c∗)) for every c ∈ CozM .

Proof. We prove only (a) as the other proofs are similar. Observe, first, that for any frame H

and any x ∈ H,

rH [cH(x)] = cβH(rH(x))

because ∧
rH [cH(x)] = rH

(∧
cH(x)

)
= rH(x).

Now let K = cM(a), for some a ∈M . Then

rL[f−1[cM(a)]] = rL[cM(f ∗(a))] = cβL(rL(f
∗(a))),

and

(βf)−1

[
rM [cM(a)]

]
= (βf)−1[cβM(rM(a))] = cβL

(
(βf ∗)(rM(a)).

Therefore the Woods equality holds for K if and only if (βf)∗(rM(a)) = rL(f
∗(a)).

This is as good a time as any to mention that frame homomorphisms with the properties

characterizing N-maps and WN-maps in Lemma 3.1.2 were considered in [12], but without the

motivation provided here. We retain the names they were given in that paper, and say a frame

homomorphism is an N-homomorphism if its right adjoint is an N-map, a WN-homomorphism

if its right adjoint is a WN-map, and a C-homomorphism if its right adjoint is a C-map.

For use in Section 3.4 where we will consider C(X), let us extend Woods’ terminology and say

a continuous function f : X → Y is an N-map (resp, a WN -map) if it satisfies the conditions

of Woods, but without being necessarily surjective. We shall need to know that a continuous

function f : X → Y is an N-map (resp. WN-map, resp. C-map) if and only if the localic map it

induces is of the same type. This is not obvious, so we present a proof, but only for C-maps as

the other assertions can be proved similarly.

Given a Tychonoff space X, as in Chapter 2 we view X as a subspace of βX, and consider

the identical embedding iX : X → βX. The right adjoint of the induced frame homomorphism

Ω(iX) : Ω(βX) → ΩX maps thus:

Ω(iX)∗(U) = βX ∖ clβX(X ∖ U).
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Again, it will be convenient to view the Stone-Čech compactification of the frame Ω(X) to be

given by the dense-onto frame homomorphism Ω(iX) : Ω(βX) → Ω(X). So, as mentioned before,

in the rL-notation for the right adjoint of βL→ L, we have rΩ(X) = Ω(iX)∗.

A morphism f : X → Y in Tych gives rise to the digram

Ω(βY )
Ω(βf) //

δY

��

Ω(iY )

!!

Ω(βX)

δX

��

Ω(iX)

||
Ω(Y )

Ω(f) // Ω(X)

β(Ω(Y ))

jΩ(Y )

==

β(Ω(f)) // β(Ω(X))

jΩ(X)

bb
(3.1.3)

in CRFrm constructed as follows. For the upper trapezium, first use f : X → Y to form the

Tych-version of Diagram (3.1.1), and then apply to it the contravariant functor Ω: Tych →
CRFrm. For the lower trapezium, first apply Ω to f : X → Y , and then form the CRFrm-

version of Diagram (3.1.1). The triangles exist because, for any L ∈ CRFrm, jL : βL → L

is the coreflection map to L from compact completely regular frames. In fact, δX and δY are

isomorphisms, as is well known. Since the trapeziums and the triangles commute, and since

jΩ(X) is a monomorphism because dense homomorphisms are monic in CRFrm, it follows that

the outer square commutes.

In the upcoming proof we shall twice use the set-theoretic fact that if g : A→ B is a function

and S ⊆ B, then g−1[B ∖ S] = A∖ g−1[S].

Proposition 3.1.3. A continuous map is a C-map (resp. an N-map, resp. a WN-map) iff the

localic map it induces is a C-map (resp. an N-map, resp. a WN-map).

Proof. Let f : X → Y be a continuous map between Tychonoff spaces. By Lemma 3.1.2(c), it

suffices to show that f is a C-map if and only if Ω(f) : Ω(Y ) → Ω(X) is a C-homomorphism.

Let C be a cozero-set of Y , and set U = Y ∖ clY C. Let us express the complements of the sets
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clβX [f
−1[clY C]] and (βf)−1[clβY (clY C)] in terms of induced frame homomorphisms.

βX ∖ clβX [f
−1[clY C]] = βX ∖ clβX f

−1[Y ∖ U ]

= βX ∖ clβX(X ∖ f−1[U ])

= βX ∖ clβX
(
X ∖ (Ω(f))(U)

)
= Ω(iX)∗((Ω(f))(U)).

On the other hand,

βX ∖ (βf)−1[clβY (clY C)] = (βf)−1[βY ∖ clβY (Y ∖ U)]

= Ω(βf)
(
Ω(iY )∗(U)

)
.

Therefore

clβX(f
−1[clY C]) = (βf)−1[clβY (clY C)] iff Ω(iX)∗

(
(Ω(f))(U)

)
= Ω(βf)

(
Ω(iY )∗(U)

)
.

From the commutativity of Diagram (3.1.3) and the fact that δX and δY are isomorphisms, we

have

Ω(iX)∗ = δ−1
X

◦ rΩ(X), Ω(iY )∗ = δ−1
Y

◦ rΩ(Y ), Ω(βf) = δ−1
X

◦ β(Ω(f)) ◦ δY ,

and so, in light of the preceding calculation, the equality

Ω(iX)∗
(
(Ω(f))(U)

)
= Ω(βf)

(
Ω(iY )∗(U)

)
is equivalent to the equality(

δ−1
X

◦ rΩ(X)

)(
(Ω(f))(U)

)
=
(
δ−1
X

◦ β(Ω(f)) ◦ δY

)(
Ω(iY )∗(U)

)
,

which, in turn, is equivalent to

rΩ(X)

(
(Ω(f))(U)

)
= β(Ω(f))(rΩ(Y )(U))

because δY ◦ Ω(iY )∗ = rΩ(Y ). Since

{Y ∖ clY C | C is a cozero-set of Y } = {c∗ | c ∈ Coz(Ω(Y ))},

it then follows that f is a C-map if and only if Ω(f) is a C-map.
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The next type of localic maps that will play a role below are best defined in terms of their left

adjoints. Recall from [8] that a frame homomorphism h : M → L is said to be nearly open if

h(a∗) = h(a)∗ for every a ∈ L. We weaken this.

Definition 3.1.4. A frame homomorphism h : M → L is nearly coz-open if h(c∗) = h(c)∗ for

every c ∈ CozM . If the left adjoint of a localic map is nearly coz-open, we shall also say the

localic map itself is nearly coz-open.

This is a proper weakening of near openness, as the following example shows.

Example 3.1.5. For any frame L, denote by ϑL : L→ S(L)op the frame homomorphism given

by a 7→ cL(a). Since, for any a ∈ L, cL(a)
∗ = oL(a) in S(L)op, it follows that ϑL(a

∗) = ϑL(a)
∗ if

and only if a is complemented. Therefore ϑL is nearly open if and only if L is Boolean. Recall

that a P -frame is one in which every cozero element is complemented. Therefore ϑL is nearly

coz-open if and only if L is a P -frame. Thus, for any P -frame L which is not Boolean, ϑL is a

nearly coz-open homomorphism which is not nearly open.

The following lemma will be used in the next section. Recall that if I ∈ βL, then the

pseudocomplement of I is given by I∗ = rL(a
∗) where a =

∨
I.

Lemma 3.1.6. If f : L → M is a localic map, then βf is nearly coz-open iff f is a nearly

coz-open C-map.

Proof. We conduct the proof in CRFrm. So let h : M → L be a frame homomorphism, and

consider any I ∈ βM . Since jL ◦ βh = h ◦ jM ,
∨
(βh)(I) = h

(∨
I
)
, and so, setting a =

∨
I, we

have

(βh)(I)∗ = rL(h(a)
∗) and (βh)(I∗) = (βh)(rM(a∗)). (3.1.4)

Now assume that h is a nearly coz-open C-homomorphism, and let I ∈ Coz(βM). Put a =
∨
I.

Then a ∈ CozM , and so

(βh)(rM(a∗)) = rL(h(a
∗)) = rL(h(a)

∗);

the first equality arising from h being a C-homomorphism, and the second because h is nearly

coz-open. In light of the equalities in (3.1.4), we therefore have that βh is nearly coz-open.
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Conversely, assume that βh is nearly coz-open. We show first that h is nearly coz-open. So, let

a ∈ CozM . By [6, Corollary 5], there is an I ∈ Coz(βM) such that
∨
I = a. Since βh is nearly

coz-open, (βh)(I∗) = (βh)(I)∗, which implies rL(h(a)
∗) = (βh)(rM(a∗)), as observed in (3.1.4).

Taking joins, and invoking the equality jL ◦ βh = h ◦ jM , yields

h(a)∗ =
∨
rL(h(a)

∗) =
∨

(βh)(rM(a∗)) = h
(∨

rM(a∗)
)
= h(a∗),

which shows that h is nearly coz-open. Next, to show that h is a C-homomorphism, given

c ∈ CozM , we must show that (βh)(rM(c∗)) = rL(h(c
∗)). But this follows as in the near

coz-openness case, with further utilization of the fact that h(c∗) = h(c)∗.

Although we shall not need the following result, we present it because it gives a characterization

of nearly open maps that is not stated in [8]. In spaces, nearly open maps were defined by

Pták [39] by a condition equivalent to saying f : X → Y is nearly open if and only if for every

open set U ⊆ X, f [U ] ⊆ int f [U ].

Proposition 3.1.7. Suppose that f : L→M is a localic map, and write h for its left adjoint.

Then the following statements are equivalent.

(1) f is nearly open.

(2) For every open sublocale U of L, f [U ] ⊆ int f [U ].

(3) For every a ∈ L, a ≤ h(f(a∗)∗).

Proof. (2) ⇔ (3): Let us observe that, for any a ∈ L,

f [oL(a)] = cM

(∧
f [oL(a)]

)
= cM

(
f
(∧

oL(a)
))

= cM(f(a∗)),

and therefore int f [oL(a)] = oM(f(a∗)∗). Since for any S ∈ S(L) and T ∈ S(M), f [S] ⊆ T if

and only if S ⊆ f−1[T ], we therefore have

f [oL(a)] ⊆ int f [oL(a)] iff oL(a) ⊆ f−1[oM(f(a∗)∗)]

iff oL(a) ⊆ oL
(
h(f(a∗)∗)

)
iff a ≤ h(f(a∗)∗).

This proves the equivalence of statements (2) and (3).

41



(3) ⇒ (1): Assume that (3) holds. In accordance with the definition, we must show that h is

nearly open. Let b ∈M . Putting a = h(b)∗, the foregoing equivalence says

h(b)∗ ≤ h(f(h(b)∗∗)∗).

Since b ≤ f(h(b)) ≤ f(h(b))∗∗, we have f(h(b)∗∗)∗ ≤ b∗, and so

h(b)∗ ≤ h(f(h(b)∗∗)∗) ≤ h(b∗),

whence we deduce that h(b)∗ = h(b∗). Therefore f is nearly open.

(1) ⇒ (3): Assume f is nearly open. We show that a ≤ h(f(a∗)∗), for every a ∈ L. Since h is

nearly open, h(f(a∗)∗) = h(f(a∗))∗, and so, in view of the fact that h(f(a∗)) ≤ a∗, we have

a ≤ a∗∗ ≤ h(f(a∗))∗ = h(f(a∗)∗),

which then shows that (1) implies (3).

In the proof of the implication (3) ⇒ (1), we chose a to be h(b)∗. Now, if b ∈ CozM , it does not

follow that h(b)∗ ∈ CozL. Therefore when we refer to nearly coz-open maps, the corresponding

implication does not follow from this one. It still holds though, as we now show.

Proposition 3.1.8. The following are equivalent for any localic map f : L → M between

completely regular frames.

(1) f is nearly coz-open.

(2) For every cozero-sublocale C of L, f [C] ⊆ int f [C].

(3) For every c ∈ CozL, c ≤ h(f(c∗)∗); where h denotes the left adjoint of f .

Proof. The equivalence of statements (2) and (3) and that statement (1) implies statement (3)

are proved as in the previous proposition.

(3) ⇒ (1): Let u ∈ CozM . We must show that h(u)∗ ≤ h(u∗); and it is here that we use

complete regularity. Consider any c ∈ CozL with c ≤ h(u)∗. Then h(u)∗∗ ≤ c∗, and so

u ≤ f(h(u)) ≤ f(h(u)∗∗) ≤ f(c∗),
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which implies f(c∗)∗ ≤ u∗, whence (by invoking the inequality c ≤ h(f(c∗)∗) which holds by the

current hypothesis) we obtain

c ≤ h(f(c∗)∗) ≤ h(u∗)

which implies h(u)∗ ≤ h(u∗), by complete regularity, and thence h(u)∗ = h(u∗), as required

3.2 Pulling back

Given a localic map f : L → M , we have the ring homomorphism Rf ∗ : RM → RL. So if A

is a sublocale of L, we have the ideal MA of RL which we can then pull back to the ideal

(Rf ∗)−1[MA] of RM . We also have the ideal M f [A] of RM . It turns out that these two ideals

coincide. To see this, note that if α ∈ RM then

α ∈ M f [A] iff f [A] ⊆ cM(cozα)

iff A ⊆ f−1[cM(cozα)]

iff A ⊆ cL(f
∗(cozα))

iff A ⊆ cL(coz(Rf ∗)(α))

iff (Rf ∗)(α) ∈ MA

iff α ∈ (Rf ∗)−1[MA],

which then shows that M f [A] = (Rf ∗)−1[MA].

Now let S ⊆ βL be a sublocale. We then have the ideals M (βf)[S] and (Rf ∗)−1[MS] of RM .

Calculating as above, we have that for any α ∈ RM ,

α ∈ M (βf)[S] iff S ⊆ cβL
(
(βf ∗)(rM(cozα))

)
(3.2.1)

while, on the other hand,

α ∈ (Rf ∗)−1[MS] iff S ⊆ cβL
(
rL(f

∗(cozα))
)
. (3.2.2)

Now, since (βf ∗)(rM(cozα)) ≤ rL(f
∗(cozα)), as elements of βL, we have

cβL
(
rL(f

∗(cozα))
)
⊆ cβL

(
(βf ∗)(rM(cozα))

)
.
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Consequently, we deduce from (3.1.2) in Section 3.1 and (3.2.1) that

(Rf ∗)−1[MS] ⊆ M (βf)[S].

It appears from (3.2.1) and (3.2.2) that this containment is an equality precisely when the

containment in (3.1.2) is an equality for every c ∈ CozM , that is, precisely when f is a WN-map.

We show in the following theorem (which also includes the results we have just observed) that

this is indeed the case.

Theorem 3.2.1. Let f : L→M be a localic map, with left adjoint h.

(a) (Rh)−1[MA] = M f [A] for every sublocale A of L.

(b) (Rh)−1[MS] ⊆ M (βf)[S] for every sublocale S of βL.

(c) The following are equivalent.

(i) M (βf)[S] = (Rh)−1[MS] for every sublocale S of βL.

(ii) M (βf)[S] = (Rh)−1[MS] for every closed sublocale U of βL.

(iii) f is WN-map.

Proof. Only (c) needs to be proved. It is trivial that condition (i) implies condition (ii). It

follows from the equivalences in (3.2.1) and (3.2.2) above that condition (iii) implies condition

(i). Now suppose that condition (ii) holds. Let a ∈ CozM , and choose α ∈ RM such that

cozα = a. Define the closed sublocale K of βL to be

K = cβL
(
(βh)(rM(cozα))

)
.

Then, by the equivalence in (3.2.1) above, α ∈ M (βf)[K], and hence α ∈ (Rh)−1[MK ], by

hypothesis. Thus, by the equivalence in (3.2.2) above,

cβL
(
(βh)(rM(cozα))

)
= K ⊆ cβL

(
rL(h(cozα))

)
which implies rL(h(cozα)) ≤ (βh)(rM (cozα)), and hence equality because the opposite inequality

always holds. Therefore (βh)(rM (c)) = rL(h(c)) for every c ∈ CozM , which shows that condition

(ii) implies condition (iii).
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Next, we look at O-ideals. As in the previous case, we first prove a “containment result”, and

then characterise when it is an equality.

Theorem 3.2.2. Let f : L→M be a localic map, with left adjoint h.

(a) O(βf)[S] ⊆ (Rh)−1[OS] for every sublocale S of βL.

(b) The following are equivalent.

(i) O(βf)[S] = (Rh)−1[OS] for every sublocale S of βL.

(ii) O(βf)[U ] = (Rh)−1[OU ] for every open sublocale U of βL.

(iii) βf is nearly coz-open.

Proof. (a) Let α ∈ RM , and, for brevity, put a = cozα. Now, for any S ∈ S(βL),

α ∈ O(βf)[S] iff (βf)[S] ⊆ oβM(rM(a∗))

iff S ⊆ (βf)−1[oβM(rM(a∗))]

iff S ⊆ oβL
(
(βh)(rM(a∗))

)
since (βf)∗ = β(f ∗) = βh.

On the other hand,

α ∈ (Rh)−1[OS] iff (Rh)(α) ∈ OS

iff S ⊆ oβL
(
rL(coz((Rh)(α))∗

)
iff S ⊆ oβL(rL(h(a)

∗)).

Now, since

(βh)(rM(a∗)) ≤ rL(h(a
∗)) ≤ rL(h(a)

∗),

we have oβL
(
(βh)(rM(a∗))

)
⊆ oβL

(
rL(h(a)

∗)
)
, which then shows that O(βf)[S] ⊆ (Rh)−1[OS].

(b) It is trivial that (i) implies (ii).

(ii) ⇒ (iii): Suppose that O(βf)[U ] = (Rh)−1[OU ] for every open sublocale U of βL. By

Lemma 3.1.6, it suffices to show that f is a nearly coz-open C-map. Working with its left adjoint,

we prove first that h is nearly coz-open. Let c ∈ CozM , and pick γ ∈ RM such that coz γ = c.

Let U be the open sublocale U = oβL
(
rL(h(c)

∗)
)
of βL. Then U = oβL

(
rL(coz(Rh)(γ))∗

)
, which
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then says (Rh)(γ) ∈ OU , and hence γ ∈ (Rh)−1[OU ]. By hypothesis, we then have γ ∈ O(βf)[U ],

and so (βf)[U ] ⊆ oβM
(
rM(c∗)

)
, whence

oβL
(
rL(h(c)

∗)
)
= U ⊆ (βf)−1[oβM

(
rM(c∗)

)
] = oβL

(
(βh)(rM(c∗))

)
.

From this, we deduce that

rL(h(c)
∗) ⊆ (βh)(rM(c∗)) ⊆ rL(h(c

∗)), (†)

which implies h(c)∗ ≤ h(c∗), and hence h(c)∗ = h(c∗). Therefore h is nearly coz-open. Thus, the

containments in (†) are equalities, and so (βh)(rL(u
∗)) = rL(h(u

∗)) for every u ∈ CozM , which

says f is a C-map by Lemma 3.1.2(c). It therefore follows from Lemma 3.1.6 that βf is nearly

coz-open.

(iii) ⇒ (i): Suppose that βf is nearly coz-open. Then, by Lemma 3.1.6, f is nearly coz-open

and is a C-map, which implies that, for any a ∈ CozM ,

(βh)(rM(a∗)) = rL(h(a
∗)) = rL(h(a)

∗).

Therefore the equivalences in the proof of part (a) show that O(βf)[S] = (Rh)−1[OS] for every

sublocale S of βL.

From part (a) of this theorem we obtain the following corollary.

Corollary 3.2.3. For any localic map f : L→M , Of [A] ⊆ (Rf ∗)−1[OA] for every A ∈ S(L).

Proof. Since Diagram (3.1.1) commutes, (βf)[rL[A]] = rM [f [A]]. So, by part (a) of Theo-

rem 3.2.2,

Of [A] = OrM [f [A]] = O(βf)[rL[A]] ⊆ (Rf ∗)−1[OrL[A]] = (Rf ∗)−1[OA],

which proves the result.

The localic maps for which this containment is always an equality are precisely the nearly

coz-open ones, as the following result shows.

Theorem 3.2.4. If f : L→M is localic map, with left adjoint h, then Of [A] = (Rh)−1[OA] for

every sublocale A of L iff f is nearly coz-open.
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Proof. Calculations similar to the ones above show that if a = cozα, then

α ∈ Of [A] iff A ⊆ oL(h(a
∗)),

while, on the other hand,

α ∈ (Rh)−1[OA] iff A ⊆ oL(h(a)
∗).

Now, if f is nearly coz-open, then h(c∗) = h(c)∗ for every c ∈ CozM , so the observations

above show that Of [A] = (Rh)−1[OA]. For the converse, assume that Of [A] = (Rf ∗)−1[OA]

for every A ∈ S(L), and let c ∈ CozM . Since h(c∗) ≤ h(c)∗, we need only show the opposite

inequality. Set A = oL(h(c)
∗). Pick γ ∈ RM with c = coz γ. Since coz(Rh(γ)) = h(coz γ), we

have (Rh)(γ) ∈ OA, so that γ ∈ (Rh)−1[OA], and hence γ ∈ Of [A], by hypothesis. The latter

implies f [A] ⊆ oM(c∗), whence

oL(h(c)
∗) = A ⊆ f−1[oM(c∗)] = oL(h(c

∗)),

implying h(c)∗ ≤ h(c∗), thence equality. Therefore f is nearly coz-open.

3.3 Pushing forward

In the previous section, given a localic map f : L → M , we started with a sublocale S of βL,

formed the ideal OS of RL, pulled it back along the ring homomorphism Rf ∗ : RM → RL,
and then compared the resulting ideal with the one obtained by first pushing the sublocale S

along βf and then computing the ideal O(βf)[S].

In this section we perform the “dual” process. Namely, we start with a sublocale T of βM , pull

it back along βf to form the ideal O(βf)−1[T ] of RL. On the other hand, we push the ideal OT

of RM forward along the ring homomorphism Rf ∗ : RM → RL to obtain the ideal generated

by the image (Rf ∗)[OT ], and then compare the two ideals.

In what follows, we write ⟨H⟩ for the ideal generated by a set H. We recall from [14, Lemma

4.4] that if γ and δ are elements of RL such that coz γ ≺≺ coz δ, then γ is a multiple of δ.

Theorem 3.3.1. Let f : L→M be a localic map.

(a) ⟨(Rf ∗)[OT ]⟩ ⊆ O(βf)−1[T ], for every sublocale T of βM .

47



(b) ⟨(Rf ∗)[OK ]⟩ = O(βf)−1[K], for every closed sublocale K of βM .

(c) ⟨(Rf ∗)[OB]⟩ ⊆ Of−1[B], for every sublocale B of M .

Proof. (a) Let γ ∈ OT , and put c = coz γ. Write h for f ∗. Then T ⊆ oβM(rM(coz γ)∗), which

implies

(βf)−1[T ] ⊆ (βf)−1[oβM
(
rM(c∗)

)
]

= oβL
(
(βh)(rM(c∗)

)
⊆ oβL

(
rL(h(c

∗))
)

since βh ◦ rM ≤ rL ◦ h

⊆ oβL
(
rL(h(c)

∗)
)

= oβL
(
rL(coz((Rh)(γ))∗)

)
.

Therefore (Rh)(γ) ∈ O(βf)−1[B], from which we deduce that (Rf ∗)[OT ] ⊆ O(βf)−1[T ]. The result

therefore follows because O(βf)−1[T ] is an ideal.

(b) Taking into cognisance the result in (a), we need only show that if K is a closed sublocale of

βM , then O(βf)−1[K] ⊆ ⟨(Rf ∗)[OK ]⟩. Pick I ∈ βM with K = cβM(I), so that

(βf)−1[K] = cβL((βh)(I)).

Let α ∈ O(βf)−1[K]. Then rL(cozα) ≺≺ (βh)(I), which implies rL(cozα)
∗ ∨ (βh)(I) = 1βL. Since

I =
∨

u∈IrM(u), we therefore have

rL(cozα)
∗ ∨
∨
u∈I

(βh)(rM(u)) = 1βL,

and so, by compactness of βL, there are finitely many elements u1, . . . , un in I such that

rL(cozα)
∗ ∨
(
(βh)(rM(u1)) ∨ · · · ∨ (βh)(rM(un))

)
= 1βL.

Putting c = u1 ∨ · · · ∨ un, we have that c ∈ I and

rL(cozα)
∗ ∨ (βh)(rM(c)) = 1βL.

Therefore rL(cozα) ≺≺ (βh)(rM(c)). On applying the join map jL : βL→ L, we obtain

cozα = jL(rL(cozα)) ≺≺
(
jL ◦ (βh)

)
(rL(h(c))) = (h ◦ jM)(rM(c)) = h

(∨
rM(c)

)
= h(c).
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Pick γ ∈ RM with coz γ = c. Then we have

cozα ≺≺ h(coz γ) = coz((Rh)(γ)),

which implies α is a multiple of (Rh)(γ). But now γ ∈ OcβM (I) because coz γ ∈ I; so (Rh)(γ) ∈
(Rh)[OK ], which then implies α ∈ ⟨(Rh)[OK ]⟩. Therefore O(βf)−1[K] ⊆ ⟨(Rf ∗)[OK ]⟩, hence we

have equality by part (a).

(c) We use the result in (a). Since (βf) ◦ rL = rM ◦ f , and since f [f−1[B]] ⊆ B, for any sublocale

B of M , we have

(βf)[rL[f−1[B]]] = rM [f [f−1[B]]] ⊆ rM [B],

which implies rL[f−1[B]] ⊆ (βf)−1[rM [B]], and hence O(βf)−1[rM [B]] ⊆ OrL[f−1[B]]. By (a), we

therefore have

(Rf ∗)[OB] = (Rf ∗)[OrM [B]] ⊆ O(βf)−1[rM [B]] ⊆ OrL[f−1[B]] = Of−1[B],

from which the result follows.

Part (b) of this theorem says the containment in part (a) is always an equality when restricted

to closed sublocales of βM . One may thus wonder if the containment in part (c) is always an

equality when restricted to closed sublocales of M . We shall see that it is not. In fact, when

M satisfies a certain property (we shall introduce it shortly) strictly weaker than normality,

we shall characterise the localic maps f : L → M for which the containment in part (c) is an

equality on closed sublocales of M .

As in [20], we say a frame M is coz-interpolative in case for any c ∈ CozM and any m ∈ M ,

the relation c ≺ m implies c ≺≺ m. Every normal frame is coz-interpolative, but the frame of

open subsets of the space described in [24, Problem 6Q] is non-normal and coz-interpolative, as

observed in [20].

In the proof of the next theorem we shall use the following result which appears as [12, Lemma

4.2]. We restate it using terminology introduced above.

Lemma 3.3.2. A frame homomorphism h : M → L is a K-homomorphism iff for every y ∈ L

and a ∈M , y ≺≺ h(a) implies y ≤ h(s) for some s ≺≺ a in M .
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Observe that the requirement that y ≤ h(s) in this characterization can be replaced with

y ≺≺ h(s) because if y ≺≺ h(a), we can interpolate to obtain z ∈ L such that y ≺≺ z ≺≺ h(a),

and then apply the lemma to the relation z ≺≺ h(a).

Theorem 3.3.3. If f : L→M is a localic map with M coz-interpolative, then ⟨(Rf ∗)[OB]⟩ =
Of−1[B] for every closed sublocale B of M iff f is a K-map.

Proof. (⇒): Suppose that ⟨(Rf ∗)[OB]⟩ = Of−1[B] for every closed sublocale of B of M . We use

Lemma 3.3.2 to prove that f ∗ is an K-homomorphism. Write h for f ∗, and consider any a ∈M

and y ∈ L such that y ≺≺ h(a). The hypothesis says Of−1[cM (a)] = ⟨(Rh)[OcM (a)]⟩; that is,

OcL(h(a)) = ⟨(Rh)[OcM (a)]⟩. Pick c ∈ CozL such that y ≺≺ c ≺≺ h(a), and then choose γ ∈ RL
with coz γ = c. Then γ ∈ OcL(h(a)), and so there exist functions α1, . . . , αn in RM and functions

δ1, . . . , δn in OcM (a) such that

γ = α1 · (Rh)(δ1) + · · ·+ αn · (Rh)(δn).

Applying the cozero map coz : RL→ L to this yields

c = coz γ ≤ coz((Rh)(δ1)) ∨ · · · ∨ coz((Rh)(δn))

= h(coz(δ1)) ∨ · · · ∨ h(coz(δn)).

Since each δi ∈ OcM (a), we have coz(δi) ≺ a, and hence coz(δi) ≺≺ a because M is coz-

interpolative. So, putting d = coz(δ1) ∨ · · · ∨ coz(δn), we have that d ≺≺a and y ≤ h(d). By

Lemma 3.3.2, this proves that h is an N-homomorphism, and hence f is an N-map.

(⇐): Suppose that f is an N-map, and let B be a closed sublocale ofM . As before, we write h in

place of f ∗. We know from Theorem 3.3.1(c) that ⟨(Rh)[OB]⟩ ⊆ Of−1[B]. To prove the reverse

inclusion, pick a ∈M such that B = cM (a), and let α ∈ Of−1[B] = OcL(h(a)). Then cozα ≺ h(a),

and hence cozα ≺≺ h(a) because M is coz-interpolative. Since h is an N-homomorphism, we

can find d ∈ CozM such that d ≺≺ a and cozα ≺≺ h(d). Take δ ∈ RM with coz δ = d. Now,

cozα ≺≺ h(d) implies cozα ≺≺ coz((Rh)(δ)), and so, by [14, Lemma 4.4], α is a multiple of

(Rh)(δ). Since coz δ ≺≺ a, we have that δ ∈ OcM (a), and hence

(Rh)(δ) ∈ (Rh)[OB] ⊆ ⟨(Rh)[OB]⟩,

which then implies α ∈ ⟨(Rh)[OB]⟩. Therefore Of−1[B] ⊆ ⟨(Rh)[OB]⟩, and equality follows.
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Regarding the M -ideals in this context of pushing forward, the types of calculations that we

have seen a number of times now yield the following.

Proposition 3.3.4. Let f : L→M be a localic map. Then:

(a) ⟨(Rf ∗)[MA]⟩ ⊆ M f−1[A] for every sublocale A of M .

(b) ⟨(Rf ∗)[MT ]⟩ ⊆ M (βf)−1[T ] for every sublocale T of βM iff f is a WN-map.

3.4 What happens in C(X)?

All the results in Sections 3.2 and 3.3 hold for C(X), mutatis mutandis. We shall not state all

of them. Instead, we shall set up the tools for proving them and, as an illustration of how to

use the tools, prove just one deduced from each section.

In Chapter 2 we showed how to relate the O- and M -ideals of C(X) to those of R(Ω(X)).

That will be used in Chapter 4. For recurrent purposes it is convenient to relate the two types

of ideals using the machinery developed in Diagram (3.1.3) in Section 3.1.

Using the notation of that diagram, we have that since δX : Ω(βX) → β(Ω(X)) is a frame

isomorphism, it is also a localic isomorphism. The proofs of the next lemma and the two

corollaries following it are immediate from what we proved in Chapter 2 and the fact we have

just mentioned about δX .

Lemma 3.4.1. For any p ∈ βX, φX [M
p] = M {δX(p̃),1}.

Corollary 3.4.2. For any p ∈ βX, φX [O
p] = O{δX(p̃),1}.

Corollary 3.4.3. For any A ⊆ βX, φX [M
A] = M δX [Ã] and φX [O

A] = OδX [Ã].

The following lemma will be needed below. Let f : X → Y be a continuous map and A ⊆ X.

As can be deduced from [35, Proposition VI.1.3.1],

Pt(Ã) = {x̃ | x ∈ A} hence Pt
(
f̃ [A]

)
= {f̃(x) | x ∈ A}.

As observed in [35, II.2.4], if f : X → Y is a continuous map, then (Ω(f))∗(x̃) = f̃(x) for every

x ∈ X.
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Lemma 3.4.4. If f : X → Y is a continuous function and A ⊆ X, then f̃ [A] = (Ω(f))∗[Ã].

Proof. Since both f̃ [A] and (Ω(f))∗[Ã] are spatial sublocales of Ω(Y ), to show that they coincide

we need only show that they contain exactly the same points. But this is easy to deduce from

the little discussion immediately preceding the statement of the lemma.

Here is one more tool that we shall use. Let f : X → Y be a continuous map. Since Ω(f) = f−1

and since (g ◦ k)−1 = k−1 ◦ g−1 for any two composable functions, the square

C(Y )

φY

��

C(f) // C(X)

φX

��
R(Ω(Y ))

R(Ω(f)) //R(Ω(X))

commutes in the category of rings, so that

φX ◦ C(f) = R(Ω(f)) ◦ φY and hence C(f)−1 ◦ φ−1
X = φ−1

Y
◦ (R(Ω(f)))−1.

Since φX is an isomorphism, we therefore have

C(f)−1 = φ−1
Y

◦ R(Ω(f))−1 ◦ φX . (3.4.1)

Now here are the C(X) versions of Theorem 3.2.1(b) and Theorem 3.2.2(a).

Corollary 3.4.5. If f : X → Y is a continuous function, then:

(a) C(f)−1[MA] ⊆ M (βf)[A] for every A ⊆ βX.

(b) O(βf)[A] ⊆ C(f)−1[OA] for every A ⊆ βX.

Proof. (a) Consider the frame homomorphism Ω(f) : Ω(Y ) → Ω(X) and the sublocale δX [Ã] of

β(Ω(X)). Since β(Ω(f)) ◦ δY = δX ◦ Ω(βf) from Diagram (3.1.3), we have (β(Ω(f)))∗ ◦ δX =

δY ◦ (Ω(βf))∗, upon taking right adjoints and recalling that δX and δY are isomorphisms.

Consequently, in light of Lemma 3.4.4,

β(Ω(f))∗[δX [Ã]] = δY [Ω(βf)∗[Ã]] = δY

[
β̃f [A]

]
.
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We know from Theorem 3.2.1(b) that R(Ω(f))−1[M δX [Ã]] ⊆ M (β(Ω(f)))∗[δX [Ã]]. So, computing

C(f)−1[MA] via the equality in (3.4.2), we obtain

C(f)−1[MA] = φ−1
Y

[
R(Ω(f))−1

[
φX

[
MA

]]]
= φ−1

Y

[
R(Ω(f))−1

[
M δX [Ã]

]]
by Corollary 3.4.3

⊆ φ−1
Y

[
M (β(Ω(f)))∗[δX [Ã]]

]
= φ−1

Y

[
M

δY

[
β̃f [A]

]]
= φ−1

Y

[
φY

[
M (βf)[A]

]]
by Corollary 3.4.3

= M (βf)[A],

which proves the result.

(b) Similar to that of part (a), except that we must invoke Theorem 3.2.2(a) in this case.

Next, we prove the C(X) version of Theorem 3.3.1. It is not hard to show that if K is a closed

subspace of X, then K̃ is a closed sublocale of Ω(X), and, in fact, K̃ = cΩ(X)(X ∖ K). In

consequence,

the closed sublocales of Ω(X) are precisely the sublocales K̃, for K a closed subspace

of X.

We shall need the following lemma. Since f−1[cM(m)] = f−1[cM(m)] for any localic map

f : L→M and m ∈M , we shall write the localic inverse image of closed sublocales as in the

latter case. This is to avoid ((Ω(f))∗)−1[−] in favour of (Ω(f))−1
∗ [−].

Lemma 3.4.6. If f : X → Y is a continuous map, then (Ω(f))−1
∗ [K̃] = f̃−1[K] for every closed

subset K of Y .

Proof. As in the case of images, it suffices to show that these two sublocales have the same

points. Observe that

(Ω(f))−1
∗ [K̃] = (Ω(f))−1

∗
[
cΩ(Y )(Y ∖K)

]
= cΩ(X)

(
f−1[Y ∖K]

)
= cΩ(X)

(
X ∖ f−1[K]

)
.
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Now, for any x ∈ X,

x̃ ∈ cΩ(X)

(
X ∖ f−1[K]

)
iff X ∖ {x} ∈ cΩ(X)

(
X ∖ f−1[K]

)
iff X ∖ f−1[K] ⊆ X ∖ {x}

iff x ∈ f−1[K]

iff x̃ ∈ f̃−1[K],

which proves that Pt
(
(Ω(f))−1

∗ [K̃]
)
= Pt

(
f̃−1[K]

)
, whence the result follows by spatiality.

Note that if f : L→M is a localic isomorphism, then f−1[−] is exactly the set-theoretic f−1[−].

Corollary 3.4.7. If f : X → Y is a continuous map and K is a closed subset of βY , then

⟨C(f)[OK ]⟩ = O(βf)−1[K].

Proof. Consider the frame homomorphism Ω(f) : Ω(Y ) → Ω(X) and the closed sublocale δY [K̃]

of β(Ω(Y )), and apply Theorem 3.3.1(b) to this data to obtain the equality〈
R(Ω(f))

[
OδY [K̃]

]〉
= O(β(Ω(f)))−1

∗ [δY [K̃]].

The commutativity of the diagram above that led to equation (3.4.2) gives the equalityR(Ω(f)) =

φX ◦C(f) ◦φ−1
Y , and so, taking into account the fact that φ−1

Y

[
OδY [K̃]

]
= OK , by Corollary 3.4.3,〈

R(Ω(f))
[
OδY [K̃]

]〉
=
〈
φX

[
C(f)

[
OK
]]〉

= φX

[〈
C(f)

[
OK
]〉]

;

the latter because φX is an isomorphism (actually, being onto suffices). On the other hand,

from Diagram (3.1.3) we have β(Ω(f)) = δX ◦ Ω(βf) ◦ δ−1
Y , so that, upon taking right adjoints

and then localic inverse images (each of which reverses the order of composition), we have

(β(Ω(f)))−1
∗

[
δY [K̃]

]
= δX

[
(Ω(βf))−1

∗

[
δ−1
Y

[
δY [K̃]

]]]
= δX

[
(Ω(βf))−1

∗ [K̃]
]
= δX

[
˜(βf)−1[K]

]
;

the last equality emanating from Lemma 3.4.6. Therefore, in light of Corollary 3.4.3,

O(β(Ω(f)))−1
∗ [δY [K̃]] = O

δX

[
˜(βf)−1[K]

]
= φX

[
O(βf)−1[K]

]
.

Since φX is an isomorphism, it therefore follows that ⟨C(f)[OK ]⟩ = O(βf)−1[K].

Theorem 3.4.8. If f : X → Y is a continuous function, then:

54



(a) C(f)−1[MS] ⊆ M (βf)[S] for every S ⊆ βX.

(b) O(βf)[S] ⊆ C(f)−1[OS for every S ⊆ βX.

Proof. (a) Since f ∗(U) = f−1[V ] for every V ∈ Ω(Y ), and since (g ◦ k)−1 = k−1 ◦ g−1 for any

two composable functions, the square

C(Y )

φY

��

C(f) // C(X)

φX

��
R(Ω(Y ))

Rf∗
//R(Ω(X))

commutes in the category of rings, so that

φX ◦ C(f) = Rf ∗ ◦ φY and hence C(f)−1 ◦ φ−1
X = φ−1

Y
◦ (Rf ∗)−1.

Since φX is an isomorphism, we therefore have

C(f)−1 = φ−1
Y

◦ (Rf ∗)−1 ◦ φX . (3.4.2)

Now consider the localic map f∗ : Ω(X) → Ω(Y ) and the sublocale S̃ of Ω(βX). We know from

Theorem 3.2.1(b) that (Rf ∗)−1[M S̃] ⊆ M (βf∗)[S̃]. So, computing C(f)−1[MS] via the equality

in (3.4.2), we obtain

C(f)−1[MS] = φ−1
Y [(Rf ∗)−1[φM [MS]]

= φ−1
Y [(Rf ∗)−1[M S̃]] in light of Corollary 3.4.3

⊆ φ−1
Y [M (βf∗)[S̃]]

= φ−1
Y [M (βf)∗[S̃]]

= φ−1
Y [M

˜(βf)[S]] by Lemma 3.4.4

= φ−1
Y [φY [M

(βf)[S]]] by Corollary 3.4.3

= M (βf)[S],

which proves the result.

(b) The proof of this part is similar, except that we must invoke Theorem 3.2.2(a) in this

case.
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We now want to obtain some C(X)-analogues of the other results from the previous sections.

For that we need to know how closed sublocales transfer from spaces to induced locales.

Lemma 3.4.9. Let K be a closed subspace of X. Then K̃ is a closed sublocale of Ω(X). In

fact, K̃ = cΩ(X)(X ∖K).

Proof. Denote by h : Ω(X) → Ω(K) the induced frame homomorphism U 7→ U∩K. If U ∈ Ω(X),

let U⋉ denote the largest open set in X with U⋉ ∩K = U ∩K. With this notation,

K̃ = {U⋉ | U ∈ Ω(X)}.

The bottom element of K̃ is h∗(0Ω(K)) = ∅⋉. Since K is closed, X∖K is open, and is the largest

open subset of X disjoint from K. Therefore 0K̃ = X ∖ U . Consequently, K̃ ⊆ cΩ(X)(X ∖K).

For the reverse inclusion, let U ∈ cΩ(X)(X∖K). We argue that U = U⋉. Since U ⊆ U⋉, we show

that U⋉ ⊆ U . Let x ∈ U⋉. If x ∈ X ∖K, then x ∈ U . If x ∈ K, then x ∈ U⋉ ∩K = U ∩K; so

x ∈ U . Thus, in either of the two exhaustive possibilities, we have x ∈ U . Therefore U = U⋉,

showing that cΩ(X)(X ∖K) ⊆ K̃, and hence K̃ = cΩ(X)(X ∖K).

We deduce immediately from this lemma that

the closed sublocales of Ω(X) are precisely the sublocales K̃, for K a closed subspace

of X.

We can now apply this to obtain the C(X)-version of Theorem 3.2.1(c). First though, given a

continuous function f : X → Y , let us express (Rf ∗)−1 as a suitable composite as we did C(f)−1

in equation (3.4.2) in the proof of Theorem 3.4.8. From the equality C(f)−1 ◦φ−1
X = φ−1

Y
◦(Rf ∗)−1

we get

(Rf ∗)−1 = φY ◦ C(f)−1 ◦ φ−1
X .

Theorem 3.4.10. The following are equivalent for a continuous function f : X → Y .

(1) C(f)−1[MS] = M (βf)[S], for every subset S of βX.

(2) f is a WN-map.
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Proof. We show first that C(f)−1[MK ] = M (βf)[K] for every closed subset K of βX if and only

if (Rf ∗)−1[MF ] = M (βf∗)[F ] for every closed sublocale F of Ω(βX).

Suppose, first, that (Rf ∗)−1[MF ] = M (βf∗)[F ] for every closed sublocale F of Ω(βX). Let K

be a closed subset of βX. Then, by Lemma 3.4.9, K̃ is a closed sublocale of Ω(βX). So, by

hypothesis, and applying Corollary 3.4.3 and Lemma 3.4.4, we get

(Rf ∗)−1[φX [M
K ]] = (Rf ∗)−1[M K̃ ] = M (βf∗)[K̃] = M

˜(βf)[K] = φY [M
(βf)[K]],

which implies

φ−1
Y [(Rf ∗)−1[φX [M

K ]]] = M (βf)[K],

and hence C(f)−1[MK ] = M (βf)[K], in light of (3.4.2).

For the other way round, suppose that C(f)−1[MK ] = M (βf)[K], for every closed subset K of

βX. Let S be a closed sublocale of Ω(βX). Then, as observed above, S = K̃, for some closed

subset K of βX. Then, by hypothesis and the equality in (3.4.2),

φ−1
Y [(Rf ∗)−1[φX [M

K ]]] = M (βf)[K].

Since φX [M
K ] = M K̃ = MS, the foregoing equality implies

(Rf ∗)−1[MS] = φY [M
(βf)[K]] = M

˜(βf)[K] = M (βf∗)[K̃] = M (βf∗)[S],

which establishes the claim.
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Chapter 4

Annihilator ideals and the socle of RL

In [15], the author characterizes the socle (we will recall the definition shortly) of the ring RL
in terms of atoms of the frame L. In this chapter we propose to show that it is an O-ideal

associated with some rather special sublocale of βL. We will then characterize (again in terms

of sublocales) when it has certain algebraic properties. Towards that end, and also for other

purposes, we shall need to express annihilator ideals also as O-ideals. We shall then see that

for certain sublocales, the annihilator of an O-ideal associated with a sublocale is the O-ideal

associated with the supplement of that sublocale. A similar phenomenon occurs (and even more

frequently) for the M -ideals.

4.1 Annihilator ideals

Recall that the annihilator of a subset S of a ring A, denoted Ann(S), is the ideal

Ann(S) = {a ∈ A | as = 0 for every s ∈ S}.

In [15, Lemma 3.1], it is shown that for any set S ⊆ RL, the annihilator of S is, in our present

notation,

Ann(S) = M cβL(rL(a
∗)),

where a =
∨
{cozα | α ∈ S}. In the same lemma it is shown that, in fact, the set of annihilator

ideals of RL is the collection

{M cβL(rL(b
∗)) | b ∈ L}.
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We demonstrate that these ideals are precisely the ideals OoβL(rL(b)), for b ∈ L. Indeed, since

OU = MU for any open sublocale U of βL, and since MA = M Ā for any sublocale A of βL,

we have

M cβL(rL(b
∗)) = M oβL(rL(b)) = M oβL(rL(b)) = OoβL(rL(b)).

Remark 4.1.1. In [32], the authors study rings (which they call AIP-rings) in which every

annihilator ideal is pure. Based on Theorem 2.4.1 and the foregoing discussion in this section,

we have that RL is an AIP-ring if and only if L is basically disconnected. Hence, also, C(X) is

an AIP-ring if and only if X is basically disconnected.

Now, for any sublocale A of βL, A ∨ A# = βL. This implies OA ∩OA#

= OβL = {0}, and
similarly for MA. In consequence, we have that for any sublocale A of βL,

OA# ⊆ Ann(OA) and MA# ⊆ Ann(MA).

Naturally, one wonders if these containments are actually not equalities. We will show that

for closed sublocales they are, but for open sublocales they generally are not. A sublocale is

regular-open if it equals the interior of its closure. Regular-open sublocales of L are exactly the

sublocales oL(a), for a ∈ BL.

Theorem 4.1.2. Let L be a completely regular frame.

(a) For any closed sublocale A of βL, Ann(MA) = MA#

and Ann(OA) = OA#

.

(b) If U is an open sublocale of βL, then Ann(MU) = MU#

iff U is regular-open.

(c) If U is an open sublocale of βL, then Ann(OU) = OU#

only if U is regular-open.

Proof. (a) Let A = cβL(I), for some I ∈ βL. As shown in [13, Lemma 4.4],∨{
cozα | α ∈ M cβL(I)

}
=
∨{

cozα | α ∈ OcβL(I)
}
=
∨
I;

and so

Ann(MA) = Ann(OA) = M cβL(rL(
∨
I)∗) = M cβL(I

∗).

On the other hand,

M oβL(I) = M oβL(I) = M cβL(I
∗),
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which then proves that Ann(MA) = MA#

because A# = oβL(I).

For the other equality, since OA# ⊆ Ann(OA), we need only show the reverse containment. So

let α ∈ Ann(OA) = M cβL(I
∗). Then cβL(I

∗) ⊆ cβL(rL(cozα)), which, on taking interiors, yields

oβL(I) ⊆ oβL(I
∗∗) ⊆ oβL(rL(cozα)

∗),

thus showing that α ∈ OoβL(I), that is, α ∈ OA#

. Therefore Ann(OA) ⊆ OA#

, and we have the

desired equality.

(b) Pick I ∈ βL such that U = oβL(I). Then, using the result in part (a) and the fact that

MS = MS for each sublocale S of βL, we obtain

Ann(M oβL(I)) = Ann(M cβL(I
∗)) = M oβL(I

∗) = M cβL(I
∗∗).

Consequently, Ann(MU) = MU#

if and only if M cβL(I
∗∗) = M cβL(I), which holds if and only

if cβL(I
∗∗) = cβL(I), which, in turn, holds if and only if I = I∗∗. This is so if and only if U is

regular-open.

(c) Choose I ∈ βL such that U = oβL(I). Then

Ann(OU) = Ann(MU) = Ann(M oβL(I)) = M oβL(I
∗) = OoβL(I

∗).

Now, if U is not regular open, then I < I∗∗ as elements of βL. So there is an α ∈ RL such

that cozα ∈ I∗∗ and cozα /∈ I. The latter implies α /∈ OcβL(I), that is, α /∈ OU#

. On the

other hand though, cozα ∈ I∗∗ implies that rL(cozα) ≤ I∗∗, so that I∗ ≤ rL(cozα)
∗, and

consequently oβL(I
∗) ⊆ oβL(rL(cozα)

∗), whence α ∈ OoβL(I
∗) = Ann(OU). This proves that if

Ann(OU) = OU#

, then U is regular-open.

The condition that U be regular-open is not sufficient for the annihilator of OU to coincide with

OU#

. Here is an example showing this.

Example 4.1.3. Let L = Ω(R), and put a = (0, 1). Then a = a∗∗, and so the open sublocale

U = oβL(rL(a)) of βL is regular-open. Since every element of L is a cozero element, there exists

some α ∈ RL such that a = cozα. Now, as shown in the course of the proof of item (c) in

the theorem above, Ann(OU) = OoβL(rL(a)
∗), which then shows that α ∈ Ann(OU). On the

other hand though, α /∈ OcβL(rL(a)), otherwise we would have cozα ∈ rL(a), which would imply

a ≺≺ a, which is false. This shows that Ann(OU) ̸= OU#

.
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4.2 The socle

Recall that the socle of a ring A, denoted Soc(A), is the ideal of A generated by its minimal

ideals. If A has no minimal ideal, then Soc(A) is the zero ideal. The socle is also expressible as

an intersection of certain types of ideals. Recall that an ideal of a ring A is essential if it has

non-zero intersection with every non-zero ideal of A. If A has no non-zero nilpotent element

(for instance, if A = RL), then an ideal I of A is essential if and only if Ann(I) = {0}. It is

well known that

Soc(A) =
⋂

{E ⊆ A | E is an essential ideal of A}.

We mentioned at the beginning of the Chapter that one of our goals is to express the socle of

RL as an O-ideal. In preparation thereof, let us recall that a sublocale of a frame is said to

be nowhere dense [37] if it misses the smallest dense sublocale of the frame. Nowhere dense

sublocales have nowhere dense closure [37]. Observe that if A is nowhere dense, then A# is

dense; and conversely if A is complemented. Thus, a closed sublocale is nowhere dense if and

only if it is of the form c(a) for some dense element a.

Let us now introduce a sublocale that will play a crucial role in describing the socle. For any

frame M , denote by Nd(M) the sublocale

Nd(M) =
∨

{S ∈ S(M) | S is nowhere dense}.

Since a sublocale is nowhere dense precisely when it misses the smallest dense sublocale, and

since the closure of a nowhere dense sublocale is nowhere dense, it is clear that

Nd(M) =M ∖BM =
∨

{cM(x) | x is a dense element of M}.

Now, recalling how joins of sublocales are computed, and keeping in mind that an element above

a dense one is dense, one checks quickly that, in terms of elements,

Nd(M) = {a ∈M | a is a meet of dense elements}.

We shall need the following notion which was introduced by Plewe [37]. A frame is dense in

itself if each of its Boolean sublocales has a dense supplement. As Plewe observed, a sober space

is dense in itself (in the usual topological sense of having no isolated point) precisely when the

frame of its open subsets is dense in itself. For our purposes, we need some characterizations
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that are established in [37]. We recite them in the upcoming proposition, and add new ones,

including one in terms of elements.

Proposition 4.2.1. [Plewe’s criteria] The following are equivalent for any frame M .

(1) M is dense in itself.

(2) M is covered by its nowhere dense sublocales. That is, Nd(M) =M .

(3) There exists a family of nowhere dense sublocales whose join is a dense sublocale of M .

(4) Every non-void open sublocale of M meets some nowhere dense sublocale of M .

(5) There exists a family {ai | i ∈ I} ⊆M consisting of dense elements such that
∧

iai = 0.

Proof. The equivalence of the first three statements is part of [37, Proposition 5]. Statements

(2) and (5) are equivalent because (i) nowhere dense sublocales have nowhere dense closures, (ii)

a closed sublocale cM(a) is nowhere dense if and only if a is a dense element, and (iii) for any

{ai | i ∈ I} ⊆M ,
∨

icM(ai) =M if and only if
∧

iai = 0.

(3) ⇔ (4): A sublocale of a frame is dense if and only if it meets every non-void open sublocale

of the frame [21, Lemma 9.2]. Let {Aλ | λ ∈ Λ} be the set of all nowhere dense sublocales of M .

For any open sublocale U of M we have

U ∩ Nd(M) = U ∩
∨
λ

Aλ =
∨
λ

(U ∩ Aλ),

since complemented sublocales are linear. The equivalence under consideration follows from this

because Nd(M) is the join of all nowhere dense sublocales of M .

We shall be interested in characterizing when the socle of RL is the zero ideal, and when it is

an essential ideal. Because the socle will turn out to be an O-ideal, we first present criteria,

in terms of sublocales, for determining when an O-ideal is the zero ideal, and when it is an

essential ideal. These will actually be needed even in describing the socle as an O-ideal.

Lemma 4.2.2. The following are equivalent for any sublocale A of βL.

(1) OA is the zero ideal.
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(2) A is dense in βL.

(3) MA is the zero ideal.

Proof. (1) ⇒ (2): Assume that OA is the zero ideal. Then OĀ is the zero ideal, which implies

Ann(OĀ) = RL. Since Ā is a closed sublocale of βL, Theorem 4.1.2(a) tells us thatOβL∖Ā = RL.
Thus, 1 ∈ OβL∖Ā, which implies

βL∖ Ā ⊆ oβL(rL(coz1)
∗) = oβL(0βL) = O.

It follows from this that Ā = βL, and so A is dense in βL.

(2) ⇒ (3): If A is dense in βL, then MA = M Ā = MβL, which is the zero ideal.

(3) ⇒ (1): This follows from the fact that OA ⊆ MA.

Before we move to the characterization of essential O-ideals, let us use this corollary to address a

natural question regarding the containment OA ⊆ OA##

, which always holds because A## ⊆ A.

If A is complemented, then this containment is actually an equality because then A = A##.

There are however instances when the containment is strict.

Example 4.2.3. Let X be any Tychonoff space which is dense in itself. Then βX is dense in

itself. Put L = Ω(X). Since βL ∼= Ω(βX), βL is dense in itself, and so B(βL)# = βL by one of

Plewe’s criteria. Therefore B(βL)## = O, and consequently OB(βL) = {0} by Lemma 4.2.2.

On the other hand though, OB(βL)##

= RL.

Lemma 4.2.4. The following are equivalent for a sublocale A of βL.

(1) OA is essential.

(2) MA is essential.

(3) A is nowhere dense.

Proof. (1) ⇒ (2): This is so because OA ⊆ MA.

(2) ⇒ (3): Assume that MA is essential. Then M Ā is essential (as the two ideals are equal).

Since Ā is a closed sublocale, Theorem 4.1.2(a) gives Ann(M Ā) = MβL∖Ā. The essentiality
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of M Ā then says MβL∖Ā is the zero ideal, which, by Lemma 4.2.2, implies βL ∖ Ā is dense,

whence Ā is nowhere dense, and hence A is nowhere dense.

(3) ⇒ (1): Assume that A is nowhere dense. Then Ā is nowhere dense, and so βL∖ Ā is dense.

From Theorem 4.1.2(a), we have Ann(OĀ) = OβL∖Ā. Since βL∖ Ā is dense, Lemma 4.2.2 tells

us that OβL∖Ā is the zero ideal, which then implies OĀ is essential. Therefore OA is essential

because OĀ ⊆ OA.

Remark 4.2.5. In [22], the authors prove for C(X) a result almost similar to Lemma 4.2.4,

but restricted to closed subspaces of βX. Our result is thus certainly much sharper, even when

restricted to C(X). Another comment is that their proof does not use annihilators, as ours

does, but instead uses a result attributed to McKnight in [9].

Let us digress slightly to compare the two previous lemmas. For complemented sublocales,

nowhere denseness is the antithesis of denseness, because the first concept says “interior is void”,

whilst the second says “closure is the whole thing”. In rings, there is a notion which is the

antithesis of essentiality of ideals. Namely, an ideal I of a ring A is said to be small if for any

ideal J of A, the equality I + J = A implies J = A. Compare with essentiality which says the

equality I ∩ J = {0} implies J = {0}.

Now the two previous lemmas say “nowhere denseness is to essentiality what denseness is to

being zero”. Considering what we have said in the preceding paragraph, perhaps one could have

expected nowhere denseness to be to essentiality what denseness is to smallness. Actually that

is exactly what we have because, as we show below, being zero in RL is precisely being small.

Thus, the two lemmas harmonize with the antitheses mentioned above.

That the only small ideal of RL is the zero ideal follows from the fact that in any ring an ideal

is small if and only if it is contained in the Jacobson radical of the ring, and the Jacobson

radical of RL is the zero ideal, as was shown by Ighedo in her PhD thesis [26, Remark 2.1.1].

Since her proof of this fact requires knowledge of maximal ideals of RL, we proffer the following
direct proof that “small ≡ zero” in RL.

Proposition 4.2.6. The only small ideal of RL is the zero ideal.

Proof. Let I be a small ideal of RL. Let α ∈ I, and consider any γ ∈ RL with coz γ ≺≺ cozα.
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Find σ ∈ RL such that

coz γ ∧ cozσ = 0 and cozσ ∨ cozα = 1.

Then, by the properties of the cozero map, γσ = 0 and σ2 + α2 is invertible. Therefore

I + ⟨σ⟩ = RL. Since I is small, ⟨σ⟩ = RL, which implies cozσ = 1, and hence γ = 0. Since

cozα =
∨
{coz τ | coz τ ≺≺ coz γ}, by complete regularity, it follows that cozα = 0, and hence

α = 0. Therefore I is the zero ideal.

This ends the digression, and we pick up the discussion on when the ideals associated with

sublocales of L are the zero ideal or essential ideals.

In Lemma 4.2.2 we saw that each of the ideals OA and MA is the zero ideal if and only if A

is a dense sublocale of βL. In Lemma 4.2.4 we saw that the ideals OA and MA are essential

precisely when A is a nowhere dense sublocale of A. Since, for any sublocale S of L, OS = OrL[S]

and MS = M rL[S], it follows that:

� each of the ideals OS and MS is the zero ideal if and only if rL[S] is a dense sublocale of

βL; and

� each of the ideals OS and MS is essential if and only if rL[S] is a nowhere dense sublocale

of βL.

We wish express these characterizations within L without invoking βL. For that we need the

following lemma, which we prove more generally than is needed for current purposes. Recall

that if h : M → L is a dense onto frame homomorphism, then h∗(b
∗) = h∗(b)

∗ for every b ∈ L.

In Loc, this says if f : L → M is a dense one-one localic map, then f(a∗) = f(a)∗ for every

a ∈ L.

Lemma 4.2.7. For any dense one-one localic map f : L→M , we have the following:

(a) S is dense in L iff f [S] is dense in M .

(b) S is nowhere dense in L iff f [S] is nowhere dense in βL.

Proof. (a) If S is dense in L, then 0L ∈ S, and so f(0L) ∈ f [S]. But f(0L) = 0M since f is

dense, so f [S] is dense in M . Conversely, if f [S] is dense in M , then f(0L), which is the bottom
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of f [S] since f is dense, belongs to f [S], so that f(0L) = f(s), for some s ∈ S. Since f is

one-one, this implies s = 0L, showing that S is dense in L.

(b) Suppose that S is nowhere dense in L. Consider any m ∈ f [A] ∩BM , so that m = f(a),

for some s ∈ S, and m = b∗ for some b ∈ M . Thus f(a) = b∗, and hence (in light of f being

injective and f ∗ commuting with pseudocomplementation),

s = f ∗(f(a)) = f ∗(b∗) = (f ∗(b))∗

which implies s ∈ S ∩BL, hence s = 1 since S is nowhere dense in L . Therefore m = f(s) = 1,

which proves that f [S] is nowhere dense in M .

Conversely, suppose f [A] is nowhere dense in M . Consider any s ∈ S ∩BL. Then s = x∗ for

some x ∈ L, which implies f(s) = f(x∗) = f(x)∗. Thus, f(s) ∈ f [S] ∩BM = O, which implies

f(s) = 1M , and therefore s = 1L because f is one-one and f(1L) = 1M . Therefore S is nowhere

dense in L.

Corollary 4.2.8. For any sublocale S of L, we have the following,

(a) OS is the zero ideal iff MS is the zero ideal iff S is dense in dense L.

(b) OS is essential iff MS is essential iff S is nowhere dense in dense L.

We can now describe the socle of RL in the desired manner.

Theorem 4.2.9. Soc(RL) = ONd(βL).

Proof. Let {Aλ | λ ∈ Λ} be the set of all nowhere dense sublocales of βL, so that Nd(βL) =∨
λAλ. Lemma 4.2.4 tells us that, for each λ, OAλ is an essential ideal, and hence, in light of

the socle being the intersection of all essential ideals,

Soc(RL) ⊆
⋂
λ

OAλ = O
∨

λ Aλ = ONd(βL).

Now consider any essential ideal of I of RL, and denote by ∆(I) the closed sublocale of βL

given by

∆(I) = cβL

(∨
{rL(cozα) | α ∈ I}

)
.

As shown in the proof of [14, Proposition 5.2], O∆(I) ⊆ I ⊆ M∆(I). Therefore M∆(I) is an

essential ideal, implying that Ann(M∆(I)) is the zero ideal, and hence O∆(I) is an essential
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ideal because Ann(O∆(I)) = Ann(M∆(I)), as shown in the proof of Theorem 4.1.2. Thus, by

Lemma 4.2.4, there is an index λ0 such that OAλ0 ⊆ I. Since the socle is the intersection of

all essential ideals, it follows from this that
⋂

λO
Aλ ⊆ Soc(RL), and so we have the claimed

equality.

Since Nd(βL) is a join of closed sublocales, each of which is nowhere dense, the following

corollary follows from Theorem 2.4.1 and Lemmas 2.3.1 and 4.2.4.

Corollary 4.2.10. Soc(RL) is the intersection of all the pure essential ideals of RL. If L is

basically disconnected, then Soc(RL) is pure.

Let us now address the question of when the socle of RL is zero. Recall that one of Plewe’s

criteria says a frame M is dense in itself if and only if there is a family {Ai} of nowhere dense

sublocales of M such that
∨

iAi is a dense sublocale of M . The following result therefore follows

from Lemma 4.2.2 and Theorem 4.2.9.

Corollary 4.2.11. Soc(RL) is zero iff βL is dense in itself.

Let us pause for a moment and interpret this result in C(X). This is with the view to showing

some stark differences between the vanishing of the socle in classical function rings and its

vanishing in pointfree function rings. Recall that C(X) ∼= R(Ω(X)), β(Ω(X)) ∼= Ω(βX), and X

is dense in itself if and only if βX is dense in itself. Since a sober space is dense in itself if and

only if the frame of its open sets is dense in itself [37], it follows that

Soc(C(X)) is zero iff βX is dense in itself iff X is dense in itself.

Corollary 4.2.11 tells us that, in frames, we do have the localic version of the first of these

equivalences. We shall see that one implication in the localic version of the other equivalence

fails.

If L is a dense sublocale of M , then BL = BM . Therefore, if A ⊆ L is a nowhere dense

sublocale of L, then A is a nowhere dense sublocale of M . Consequently, if L is dense in itself,

so that L is covered by its nowhere dense sublocales, then M has nowhere dense sublocales with

dense join, and so, by one of Plewe’s criteria, M is dense in itself. In particular,

if L is dense in itself, then βL is dense in itself,
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and we can thus deduce from Corollary 4.2.11 the following result.

Corollary 4.2.12. If L is dense in itself, then Soc(RL) is zero. The converse fails.

Here is an example avouching that (unlike in classical function rings) if Soc(RL) is zero, it does
not follow that L is dense in itself. Recall that an element p of a frame L is called prime if

p < 1 and x ∧ y ≤ p implies x ≤ p or y ≤ p. The set of prime elements of L is denoted Pt(L).

In regular frames the primes are exactly the elements that are maximal strictly below the top.

Example 4.2.13. Let L be a Boolean frame with no primes (such as B(Ω(R))). Then of course

L is not dense in itself. We claim that βL is dense in itself. If βL were not dense in itself, then

(being spatial) we would have a Tychonoff space X with an isolated point such that βL ∼= Ω(X).

Then there would exist p ∈ Pt(βL) with p ∨ p∗ = 1. We cannot have jL(p) = 1, as that would

imply jL(p
∗) = 0, whence we would have p∗ = 0 as jL is dense, leading to p = 1. Therefore

jL(p) < 1, and since primes in regular frames are precisely the maximal elements, a simple

calculation would imply that jL(p) ∈ Pt(L), which is a contradiction as L has no primes. Thus,

by Corollary 4.2.11, Soc(RL) is zero even though L is not dense in itself.

To close the discussion on the vanishing socle, let us briefly say a word on the discrepancy

between the behavior of dense subspaces vis-à-vis that of dense sublocales with regard to

inheritance of the dense-in-itself property. We have seen that a frame with a dense sublocale

that is dense in itself is itself dense in itself; however, a dense sublocale of a dense in itself

frame (even a spatial one, at that) is not necessarily dense in itself. We show that if we restrict

to smooth sublocales then the dense ones among them inherit the property of being dense in

oneself. We do not assume any separation axiom.

Proposition 4.2.14. A smooth dense sublocale of a dense-in-itself frame is dense in itself.

Proof. Let L ⊆ M be a smooth dense sublocale of a dense-in-itself frame M . Let (Ci | i ∈ I)

be a collection of complemented sublocales of M with L =
∨

i∈ICi, and let (Nj | j ∈ J) be

the collection of all nowhere dense sublocales of M . Then M =
∨

j∈JNj since M is dense in

itself. Since L is dense in M , BL = BM , and so for any nowhere dense sublocale N of M ,

L ∩N is a nowhere dense sublocale of L. For each i ∈ I, Ci ⊆
∨

j∈JNj, and so, by linearity of

complemented sublocales,

Ci = Ci ∩
∨
j∈J

Nj =
∨
j∈J

(Ci ∩Nj).
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Since each Ci is contained in L, the collection {Ci ∩Nj | (i, j) ∈ I × J} is a family of nowhere

dense sublocales of L, covering L. Therefore L is nowhere dense.

Corollary 4.2.15. If L is a smooth sublocale of βL, then Soc(RL) is zero iff L is dense in

itself.

Now we turn to characterizing when the socle of RL is essential. Recall from [37] that Plewe

calls a frame scattered if every non-void closed sublocale contains a non-void open Boolean

sublocale. He observes that a sober space X is scattered if and only if the frame Ω(X) is

scattered.

Corollary 4.2.16. The following statements about Soc(RL) are equivalent.

(1) Soc(RL) is essential.

(2) Nd(βL) is nowhere dense.

(3) B(βL) is complemented.

(4) βL has a largest nowhere dense sublocale.

(5) βL has a smallest dense open sublocale.

Proof. By Lemma 4.2.4 and the description of the socle in Theorem 4.2.9, Soc(RL) is essential
if and only if Nd(βL) is nowhere dense; which proves the equivalence of statements (1) and (2).

Since, for any frame M , Nd(M) =M ∖BM , we have

Nd(M) is nowhere dense iff Nd(M) ∩BM = O

iff (M ∖BM) ∩BM = O

iff BM is complemented.

Therefore statements (2) and (3) are equivalent.

Since Nd(βL) is the join of all nowhere dense sublocales of βL, it is clear that Nd(βL) is nowhere

dense if and only if it is the largest nowhere dense sublocale of βL. This proves the equivalence

of statements (2) and (4).
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Since the closure of any nowhere dense sublocale is nowhere dense, if Nd(βL) is nowhere dense,

then it is, in fact, a closed sublocale. But clearly, a frame has a largest (closed) nowhere dense

sublocale if and only if it has a smallest dense open sublocale. Thus, statements (4) and (5) are

equivalent.

Remark 4.2.17. We feel compelled to mention that if a frame has a smallest dense open

sublocale, it does not mean that its smallest dense sublocale is open. Incidentally, Banaschewski

and Pultr prove in [8] that, for any frame L, BL is open if and only if L has an open Boolean

dense sublocale. Their proof is frame-theoretic. We offer the following localic one, which is

much shorter. If BL is open, then of course L has an open Boolean dense sublocale. Conversely,

suppose U is an open dense Boolean sublocale of L. Denote pseudocomplementation in U by

(−)¬. The density of U implies that, for any u ∈ U , u¬ = u→ 0U = u→ 0L = u∗. Since U is

Boolean, u = u¬¬ = u∗∗, which says U ⊆ BL, and hence U = BL, implying that the smallest

dense sublocale is open.

In [37], Plewe proves that a frame is scattered if and only if every sublocale has a largest nowhere

dense sublocale. We therefore have the following corollary.

Corollary 4.2.18. If βL is scattered, then Soc(RL) is an essential ideal. The converse fails.

Here is an example showing that the converse of the corollary does not hold.

Example 4.2.19. Let L = β(Ω(N)). Since N is locally compact, Ω(N) is an open sublocale of

L. Since Ω(N) is a dense sublocale of L, BL = B(Ω(N)) = Ω(N), and so BL is a complemented

sublocale of L. Since βL ∼= L, it follows that B(βL) is a complemented sublocale of βL, and

so, by Corollary 4.2.16, Soc(RL) is an essential ideal of RL. But of course βL is not scattered

because βL ∼= Ω(βN), and βN is not scattered as βN∖ N is a closed subspace with no isolated

point.

A few comments about the ideal ONd(L) are in order. Emanating from Corollary 4.2.16 is the

natural question whether it is necessary and sufficient that the sublocale Nd(L) of L be nowhere

dense for Soc(RL) to be essential. We show that it is necessary. We need a lemma, which we

state more generally than is really needed for our purposes.

We recalled earlier that if f : L→M is a one-one dense localic map, then f(a∗) = f(a)∗ for all

a ∈ L.
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Lemma 4.2.20. Let f : L→M be a dense surjective localic map.

(a) Nd(L) ⊆ f−1[Nd(M)].

(b) If M is scattered, then f−1[Nd(M)] = Nd(L).

(c) If A ⊆M is a nowhere dense sublocale, then f−1[A] is nowhere dense in L.

(d) If M is scattered and A is a sublocale of M such that f−1[A] is nowhere dense in L, then

A is nowhere dense in M .

Proof. (a) Let a ∈ Nd(L). Then, as observed earlier, a =
∧

iai, for some dense elements

ai ∈ L. Therefore f(a) =
∧

if(ai), which implies f(a) ∈ Nd(M) because (being dense and

surjective) f maps dense elements to dense elements. Thus, f [Nd(L)] ⊆ Nd(M), which implies

Nd(L) ⊆ f−1[Nd(M)].

(b) Let us recall that, as was observed by Plewe [38, p. 315], pullback along any localic map

with scattered codomain preserves all joins. Therefore, if M is scattered,

f−1[Nd(M)] = f−1

[∨
{cM(m) | m is dense in M}

]
=
∨

{f−1[cM(m)] | m is dense in M}

=
∨

{cL(f ∗(m)) | m is dense in M}

⊆
∨

{cL(a) | a is dense in L} since f ∗ preserves density

= Nd(L);

so that we have f−1[Nd(M)] = Nd(L), by part (a).

(c) Let A be a nowhere dense sublocale of M . Then A ∩BM = O, and consequently f−1[A] ∩
f−1[BM ] = O. Observe that f [BL] ⊆ BM because if a ∈ BL, then a = a∗∗, which implies

f(a) = f(a∗∗) = f(a)∗∗ because f is dense and injective. Thus, BL ⊆ f−1[BM ], and hence

f−1[A] ∩BL ⊆ f−1[A] ∩ f−1[BM ] = O,

which says f−1[A] is nowhere dense.

(d) If M is scattered, then every sublocale of M is complemented [37]. Since localic preimage

functions preserve complements, and since A is complemented in M , f−1[A] is complemented in
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L, with (f−1[A])
# = f−1[A

#]. Therefore the hypothesis that f−1[A] is nowhere dense implies

that f−1[A
#] is dense in L, and therefore 0 ∈ f−1[A

#], which, in light of f being dense, implies

0 = f(0) ∈ A#, thus showing that A# is a dense sublocale, and therefore A is nowhere dense

since A is complemented.

Now, the localic map rL : L→ βL is dense and surjective, so this lemma applies to it. Applying

it, we obtain the following results.

Proposition 4.2.21. Let L be a completely regular frame.

(a) Soc(RL) ⊆ ONd(L).

(b) If Soc(RL) is essential, then Nd(L) is nowhere dense in L.

(c) If βL is scattered, then Soc(RL) is essential iff Nd(L) is nowhere dense iff L has a largest

nowhere dense sublocale.

Proof. (a) From the containment Nd(L) ⊆ (rL)−1[Nd(βL)], as per Lemma 4.2.20(a), we deduce

that rL[Nd(L)] ⊆ Nd(βL), and therefore

Soc(RL) = ONd(βL) ⊆ OrL[Nd(L)] = ONd(L).

(b) If Soc(RL) is essential, then Nd(βL) is nowhere dense in βL by Corollary 4.2.16. By

Lemma 4.2.20(c), (rL)−1[Nd(βL)] is nowhere dense, and hence by Lemma 4.2.20(a), Nd(L) is

nowhere dense.

(c) Clearly, we need only prove the right-to-left implication in the first equivalence. So assume

that Nd(L) is nowhere dense. By Lemma 4.2.20(b), (rL)−1[Nd(βL)] = Nd(L), and so by

Lemma 4.2.20(d), Nd(βL) is nowhere dense, and so Soc(RL) is essential by Corollary 4.2.16.

We conclude with following comments.

(a) It should be clear that if L is compact, then ONd(βL) = ONd(L). The converse fails. Indeed,

for the frame L = Ω(R) we have Nd(L) = L and Nd(βL) = βL since L and βL are dense in

themselves, and so ONd(βL) = ONd(L) = {0}.

(b) The containment ONd(βL) ⊆ ONd(L) can be proper. To see this, observe that, for any frame

M , Nd(M) = O if and only if M is Boolean. In particular, since βM is compact, Nd(βM) = O
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precisely when M is a finite Boolean algebra. Now let L be the power set of any infinite set.

Then L is a Boolean frame, but βL is not Boolean, and so Nd(βL) ̸= O. Since for any frame M

and A ∈ S(βM), OA = RM if and only if A = O, we have ONd(βL) ≠ RL. Since L is Boolean,

Nd(L) = O, and so ONd(L) = OO = RL. Therefore ONd(βL) ⊂ ONd(L).

73



Chapter 5

Mapping ideals to sublocales

In this chapter we introduce a mapping from the lattice of ideals of RL into the lattice of

sublocales of L. We shall then examine some properties of this mapping. Its ancestry goes back

to the 1954 paper of Gillman, Henriksen and Jerison [23] in which they present a proof of the

theorem of Gelfand and Kolmogoroff that is about the bijection between the sets of maximal

ideals of the rings C(X) and C∗(X).

To recall, Gillman, Henriksen and Jerison introduced the notation ∆(I) as a shorthand for

associating an ideal I of C(X) with the closed subset of βX given by

∆(I) =
⋂

{clβX Z(f) | f ∈ I},

where Z(f) denotes the zero-set of f . Since its introduction, wherever ∆(I) has appeared

(sometimes written as θ(I)), it has just been a notation of convenience. In this chapter our aim

is to make ∆ a homomorphism of the algebraic structures that are known as quantales that

were introduced by Mulvey [34].

5.1 Making ∆ a quantale homomorphism

A quantale is a complete lattice Q with an associative binary operation · such that

a ·
∨
i∈I

bi =
∨
i∈I

(a · bi) and
(∨
i∈I

bi

)
· a =

∨
i∈I

(bi · a)
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for every a ∈ Q and every family (bi | i ∈ I) of elements of Q. The quantale is commutative

if a · b = b · a for all a, b ∈ Q. Every frame is a commutative quantale if we take · to be ∧. A
quantale homomorphism is a mapping between quantales that preserves all joins and the binary

operation. As mentioned above, quantales were introduced by Mulvey [34] and are studied in

detail in [40].

Let us remind the reader that by “ring” we mean a commutative ring with identity. The lattice

Idl(A) of ideals of a ring A, partially ordered by inclusion, is complete, with sum for join. We

view it as a quantale with the binary operation given by the usual ideal product. That is, for

any ideals I and J of A,

I · J =

{
n∑

i=1

uivi | n ∈ N, ui ∈ I, vi ∈ J

}
.

As usual, we simply write IJ for this product.

Definition 5.1.1. We define the map ∆L : Idl(RL) → S(βL)op by the equation

∆L(I) =
⋂
α∈I

cβL(rL(cozα)) = cβL

(∨
α∈I

rL(cozα)
)
= cβL

(⋃
α∈I

rL(cozα)
)
.

Observe that the join in the definition of ∆L(I) is a union because it is directed. When we are

dealing with one frame, we shall suppress the subscript. We remark (for later use) that ∆ is

surjective on closed sublocales. Indeed, if A is a closed sublocale of βL, say A = cβL(J) for

some J ∈ βL, then the set Q = {α ∈ RL | cozα ∈ J} is easily checked to be an ideal of RL
with ∆(Q) = A. We shall see in the following proposition that ∆ need not be injective, but is

always injective on what Johnstone [29] calls “neat” ideals. Let us recall what they are.

An ideal I of a ring A is said to be neat if mI = I. Neat ideals are also called “pure”. In RL,
α ∈ mI if and only if cozα ≺≺ coz γ, for some γ ∈ I. See [11, Lemma 3.4] for details.

In a number of instances we shall use [14, Lemma 4.4], which states that if γ and δ belong to

RL and coz γ ≺≺ coz δ, then γ is a multiple of δ.

Proposition 5.1.2. Let I and J be ideals of RL. Then:

(a) ∆(I) = ∆(mI).

(b) ∆(I) ⊆ ∆(J) implies mJ ⊆ mI.
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(c) ∆(I) = ∆(J) iff mI = mJ .

(d) ∆ is injective on neat ideals.

Proof. (a) In view of the definition, it suffices to show that⋃
α∈I

rL(cozα) =
⋃

α∈mI

rL(cozα).

The one containment is trivial because mI ⊆ I. If c ∈
⋃

α∈IrL(cozα), then there is an α0 ∈ I

such that c ∈ rL(cozα0), which says c ≺≺ cozα0. Pick γ ∈ RL with c ≺≺ coz γ ≺≺ cozα0. Then

γ is a multiple of α0, and so γ ∈ I. From coz γ ≺≺ cozα0, we have that γ ∈ mI, which then

implies c ∈
⋃

α∈mIrL(cozα); establishing the other containment. Therefore ∆(I) = ∆(mI).

(b) Suppose that ∆(I) ⊆ ∆(J). Let γ ∈ mJ and pick τ ∈ J such that coz γ ≺≺ coz τ . Therefore

coz γ ∈
⋃

α∈JrL(cozα). From the containment ∆(I) ⊆ ∆(J) we deduce that⋃
α∈J

rL(cozα) ⊆
⋃
α∈I

rL(cozα).

Thus, there exists ρ ∈ I such that coz γ ≺≺ coz ρ, which implies γ ∈ mI. Therefore mJ ⊆ mI.

(c) The forward implication follows from (b), and the other follows from (a).

(d) This follows from (c) because an ideal Q of RL is neat if and only if Q = mQ.

It will be convenient to give the map A 7→ OA a name. So, let us do so.

Definition 5.1.3. We define the map ΨL : S(βL)op → Idl(RL) by ΨL(A) = OA. When dealing

with one frame, we shall drop the subscript.

Recall that a P -frame is a completely regular frame in which every cozero element is comple-

mented. We are aiming for the first result announced in the abstract, which will culminate in

showing that we have an adjunction

Idl(RL)
∆
⊥

// S(βL)op
Ψ

oo

precisely when L is a P -frame. To recall, if X and Y are posets, two monotone functions

f : X → Y and g : Y → X are said to be in a Galois connection, with f on the left and g on

the right, written f ⊣ g, if

∀x ∈ X, ∀y ∈ Y, f(x) ≤ y ⇐⇒ x ≤ g(y).
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A useful characterization is that

f ⊣ g ⇐⇒ f ◦ g ≤ idY and idX ≤ g ◦ f.

En route to the result we are aiming for, we establish some preliminary ones, including others

that are not really germane to the task at hand, but which we find to be noteworthy nevertheless.

One of the latter kind generalizes [9, Lemma 1.6], and significantly sharpens it because it also

mentions an instance (not observed in [9]) of when the converse holds.

Recall that a completely regular frame L is called an almost P -frame [4] if c = c∗∗ for every

c ∈ CozL.

Proposition 5.1.4. Let L be a completely regular frame.

(a) For any sublocale A of βL, ∆
(
OA
)
= ∆

(
OA
)
= ∆

(
MA

)
= A.

(b) If A and B are sublocales of βL with OA ⊆ MB, then B ⊆ A. The converse holds if L is

an almost P -frame.

(c) For any ideal I of RL, O∆(I) = mI.

Proof. (a) Since A ⊆ cβL(rL(cozα)) for every α ∈ M Ā, and since OĀ ⊆ OA ⊆ MA, we have

A ⊆ ∆
(
M Ā

)
= ∆

(
MA

)
⊆ ∆

(
OA
)
⊆ ∆

(
OA
)
.

Consequently, we need only show that ∆
(
OA
)
⊆ A. Put H =

∧
A, so that A = cβL(H). Now,

in light of the fact that

∆
(
OA
)
= cβL

 ⋃
α∈OA

rL(cozα)

 ,

it suffices to show that
⋃{

rL(cozα) | α ∈ OcβL(H)
}
= H. But this is indeed so because, for any

γ ∈ RL, γ ∈ OcβL(H) if and only if coz γ ∈ H, and H =
⋃
{rL(cozα) | cozα ∈ H}.

(b) If OA ⊆ MB, then, in light of the result in (a),

B = ∆(MB) = ∆(MB) ⊆ ∆(OA) = A;

which proves the first part of (b). Next, assume that L is an almost P -frame and A and B

are sublocales of βL with B ⊆ A. We must show that OA ⊆ MB. Let α ∈ OA. By definition,
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A ⊆ oβL(rL(cozα)
∗), which, on taking closures and noting that rL(cozα)

∗∗ = rL(cozα) since L

is an almost P -frame, yields

B ⊆ A ⊆ oβL(rL(cozα)∗) = cβL(rL(cozα)
∗∗) = cβL(rL(cozα)),

which implies α ∈ MB = MB. Therefore OA ⊆ MB.

(c) Since ∆(I) = cβL
(⋃

α∈I rL(cozα)
)
, for any γ ∈ RL we have

γ ∈ O∆(I) ⇐⇒ coz γ ∈
⋃

{rL(cozα) | α ∈ I}

⇐⇒ coz γ ≺≺ cozα, for some α ∈ I

⇐⇒ γ ∈ mI,

which then proves the claim.

We have the following application to C(X). Recall that a Tychonoff space is called an almost

P -space if each of its Gδ-sets has dense interior. These spaces were studied in detail by Levy [30].

A space X is an almost P -space if and only if Ω(X) is an almost P -frame. In [9, Lemma 1.6],

Dietrich shows that if, for subsets A and B of βX, OA ⊆ MB, then B ⊆ A. We show that the

converse holds if X is an almost P -space. For that, we need a lemma.

Recall that complemented (and hence closed) sublocales of a spatial frame are spatial. Let K

be a closed subset of a Tychonoff space X. Since

Pt(K̃) = {w̃ | w ∈ K} =
{
X ∖ {w} | w ∈ K

}
= Pt

(
cΩ(X)(X ∖K)

)
,

the latter by a simple calculation, it follows that K̃ = cΩ(X)(X∖K) because both these sublocales

are spatial.

In what follows we use the overline for both the closure in spaces and locales. There will be no

danger of confusion. Observe from [35, Proposition VI.1.3.1] that if A and B are subsets of a

TD-space (and hence of a Tychonoff space), then A ⊆ B if and only if Ã ⊆ B̃.

Lemma 5.1.5. If S is a subset of a Tychonoff space X, then S̃ = S̃.

Proof. By what we have just observed, it suffices to show that S̃ = cΩ(X)

(
X ∖ S

)
. Since S̃ is

a closed sublocale of Ω(X), there exists U ∈ Ω(X) such that S̃ = cΩ(X)(U). So we must show

that U = X ∖ S. Since S ⊆ S, S̃ ⊆ S̃, and since S̃ is a closed sublocale, we have S̃ ⊆ S̃. This
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says cΩ(X)(U) ⊆ cΩ(X)(X ∖ S), which implies X ∖ S ⊆ U . On the other hand, the containment

S̃ ⊆ S̃ = X̃ ∖ U implies S ⊆ X ∖ U , so that U ∩ S = ∅, and hence U ∩ S = ∅ because an open

set misses a set if and only if it misses the closure of that set. Therefore U ⊆ X ∖ S, hence we

have the desired equality, whence the lemma follows.

Corollary 5.1.6. Let X be an almost P -space and A and B subsets of βX such that B ⊆ A.

Then OA ⊆ MB.

Proof. By hypothesis, Ω(X) is an almost P -frame and, for the sublocales Ã and B̃ of Ω(βX)

induced by A and B, we have B̃ ⊆ Ã. Thus, by Lemma 5.1.5, the sublocales Ã and B̃

of Ω(βX) satisfy the containment B̃ ⊆ Ã. Proposition 5.1.4(b) implies OB̃ ⊆ M Ã. From

Corollary 2.1.3 we deduce that φX [O
B] ⊆ φX [M

A], which implies OB ⊆ MA because φX is a

ring isomorphism.

We are now ready to present the first main result in the chapter.

Theorem 5.1.7. Regarding the maps ∆: Idl(RL) → S(βL)op and Ψ: S(βL)op → Idl(RL), we
have the following results.

(a) ∆ is a quantale homomorphism and Ψ preserves meets.

(b) ∆ and Ψ are in a Galois connection, with ∆ on the left, iff L is a P -frame.

Proof. (a) Let us show first that ∆ preserves joins. Let {Ik | k ∈ K} ⊆ Idl(RL). We claim that∨
α∈

∑
kIk

rL(cozα) =
∨
k∈K

(∨
α∈Ik

rL(cozα)
)
. (5.1.1)

For a fixed k0 ∈ K, ∨
α∈Ik0

rL(cozα) ≤
∨

α∈
∑

kIk

rL(cozα),

which yields the inequality ≥ in (5.1.1). For the opposite inequality, let us keep in mind that∨
α∈

∑
kIk

rL(cozα) =
⋃

α∈
∑

kIk

rL(cozα).

If a cozero element c belongs to this union, there is an α0 in
∑

kIk such that c ∈ rL(cozα0).

Therefore there are finitely many indices k1, . . . , kn in K and elements αki ∈ Iki , for i = 1, . . . , n,
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such that α0 = αk1 + · · · + αkn . Since rL preserves finite joins of cozero elements, and since

cozα0 ≤ coz(αk1) ∨ · · · ∨ coz(αkn), we have

rL(cozα0) ≤ rL(coz(αk1)) ∨ · · · ∨ rL(coz(αkn)) ≤
∨

α∈
∑

kIk

rL(cozα),

which proves the desired inequality, and hence establishes the claimed equality. We argue from

this that ∆ preserves joins. We need to keep in mind that joins in S(βL)op are intersections.

Let {Ik | k ∈ K} ⊆ Idl(RL). Then.

∆

Idl(RL)∨
k∈K

Ik

 = ∆
(∑

k

Ik

)
= cβL

( ∨
α∈

∑
kIk

rL(cozα)
)

= cβL

(∨
k∈K

(∨
α∈Ik

rL(cozα)
))

=
⋂
k∈K

cβL

(∨
α∈Ik

rL(cozα)
)

=
⋂
k∈K

∆(Ik)

=

S(βL)op∨
k∈K

∆(Ik),

which proves that ∆ preserves joins.

Now we show that ∆ preserves the binary product. Let I and J be ideals of RL. The product

∆(I) ·∆(J) is the meet of these two sublocales taken in S(βL)op, which is their join calculated

in S(βL). Therefore,

∆(I) ·∆(J) = cβL

(∨
α∈I

rL(cozα)
)
∨ cβL

(∨
γ∈J

rL(coz γ)
)

= cβL

(∨
α∈I

rL(cozα) ∧
∨
γ∈J

rL(coz γ)

)

= cβL

 ∨
(α,γ)∈I×J

(
rL(cozα) ∧ rL(coz γ)

) by the frame law

= cβL

 ∨
(α,γ)∈I×J

rL(coz(αγ))

 .

Now, if ρ ∈ IJ , then ρ = α1γ1 + · · ·+ αnγn, for some finitely many elements αi ∈ I and γi ∈ J ,

which then, by the properties of the cozero map and the fact that rL preserves finite joins of
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cozero elements, implies that

rL(coz ρ) ≤ rL
(
coz(α1γ1)

)
∨ · · · ∨ rL

(
coz(αnγn)

)
≤

∨
(α,γ)∈I×J

rL(coz(αγ)).

Consequently, ∨
τ∈IJ

rL(coz τ) ≤
∨

(α,γ)∈I×J

rL(coz(αγ)) ≤
∨
τ∈IJ

rL(coz τ),

from which we deduce that ∆(IJ) = ∆(I) ·∆(J). In all then, ∆ is a quantale homomorphism.

Next, we show that Ψ preserves meets. Undecorated joins of sublocales are understood to be

taken in S(βL). If {Ak | k ∈ K} ⊆ S(βL)op, then

Ψ

S(βL)op∧
k∈K

Ak

 = O
∨

k∈KAk =
⋂
k∈K

OAk =
⋂
k∈K

Ψ(Ak) =

Idl(RL)∧
k∈K

Ψ(Ak),

which shows that Ψ preserves meets.

(b) We comment first that the results in (a) tell us that both these maps are monotone, so it

does make sense to talk about them possibly being in a Galois connection. Proposition 5.1.4(a)

says ∆(Ψ(A)) = Ā for every A ∈ S(βL)op. Since Ā ≤ A in S(βL)op, we therefore have

∆ ◦ Ψ ≤ idS(βL)op . Now recall from [11, Corollary 3.10]) that L is a P -frame if and only if every

ideal of RL is neat. Since an ideal I of RL is neat if and only if I = mI, we have

L is a P -frame ⇐⇒ I ⊆ mI for every I ∈ RL

⇐⇒ idIdl(RL) ≤ Ψ ◦ ∆.

It follows therefore that ∆ is left adjoint to Ψ if and only L is a P -frame.

We now wish to interpret this in C(X). For that we need some background, sourced mainly

from [36]. Recall that for any frame L, the lattice

Sc(L) = {S ∈ S(L) | S is a join of closed sublocales}

is a frame, with partial order ⊆ and joins as in S(L). If L is subfit, then Sc(L) is a Boolean

frame, with complements equal to supplements calculated in S(L). Furthermore, B(S(L)op),
the Booleanization of S(L)op, is the Boolean frame Sc(L)

op. If Y is a T1-space and P(Y ) denotes

the powerset of Y , then the map

τY : P(Y )op → Sc(Ω(Y ))op given by T 7→ T̃
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is an isomorphism of Boolean algebras, and hence a frame isomorphism.

Next, any ring isomorphism ϕ : A → B induces a quantale isomorphism ϕ̂ : Idl(A) → Idl(B)

given by I 7→ ϕ[I]. Recall the ring isomorphism φX : C(X) → R(Ω(X)) for any Tychonoff space

X, and, as in Section 2.1, view the Stone-Čech compactification of Ω(X) as being given by the

dense-onto frame homomorphism Ω(iX) : Ω(βX) → Ω(X). We consequently have the map

FX : Idl(C(X)) → Idl(R(Ω(X))) → S(Ω(βX))op → Sc(Ω(βX))op → P(βX)op

given by the composite

FX = τ−1
βX

◦ bS(Ω(βX))op ◦ ∆Ω(X) ◦ φ̂X .

Being a composite of quantale homomorphisms, the map FX : Idl(C(X)) → P(βX)op is itself

a quantale homomorphism. We show that it is precisely the map of Gillman, Henriksen and

Jerison.

Proposition 5.1.8. FX(I) =
⋂
{clβX Z(f) | f ∈ I}, for every ideal I of C(X).

Proof. Since
(
∆Ω(X) ◦ φ̂X

)
(I) is a closed sublocale of Ω(βX) for any ideal I of C(X), and since

the Booleanization map bS(Ω(βX))op sends every closed (actually, every complemented) sublocale

to itself, it suffices to show that

(
τβX ◦ FX

)
(I) =

(
∆Ω(X) ◦ φ̂X

)
(I).

To compute the sublocale on the left, recall that if K is a closed subset of Y then the induced

closed sublocale of Ω(Y ) is cΩ(Y )(Y ∖K). Recall also from the discussion preceding Lemma 2.1.1

that, for any f ∈ C(X),

βX ∖ clβX Z(f) = Ω(iX)∗
(
coz(φ(f))

)
= rΩ(X)

(
coz(φX(f))

)
.
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Thus, (
τβX ◦ FX

)
(I) = F̃X(I) = cΩ(βX)

(
βX ∖

⋂
f∈I

clβX Z(f)
)

= cΩ(βX)

(⋃
f∈I

(
βX ∖ clβX Z(f)

))
= cΩ(βX)

(⋃
f∈I

rΩ(X)

(
coz(φX(f))

))

= cΩ(βX)

 ⋃
α∈φX [I]

rΩ(X)(cozα)


= ∆Ω(X)(φX [I])

=
(
∆Ω(X) ◦ φ̂X

)
(I),

whence the result follows.

Given a Tychonoff space X, we have the maps

FX : Idl(C(X)) → P(βX)op and GX : P(βX)op → Idl(C(X))

given by FX(I) =
⋂
{clβX Z(f) | f ∈ I} and GX(A) = OA. It is clear that GX preserves meets

because they are set-theoretic unions in P(βX)op and intersections in Idl(C(X)).

The first part in the next corollary follows from Proposition 5.1.8 and the discussion preceding

it. We will deduce the second part from Theorem 5.1.7(b).

Corollary 5.1.9. For any Tychonoff space X, FX is a quantale homomorphism and GX preserves

meets. Furthermore, FX ⊣ GX iff X is a P -space.

Proof. We first argue that FX ⊣ GX if and only if ∆Ω(X) ⊣ ΨΩ(X). As observed in the proof of

Theorem 5.1.7(b), ∆Ω(X) ◦ ΨΩ(X) ≤ idS(Ω(βX))op , and so

∆Ω(X) ⊣ ΨΩ(X) iff I ⊆ O∆Ω(X)(I) for every I ∈ Idl(R(Ω(X))).

In our notation, [9, Lemma 1.6] says FX(GX(A)) = A for every A ⊆ βX, so that FX ◦ GX ≤
idP(βX)op . Thus,

FX ⊣ GX iff J ⊆ OFX(J) for every J ∈ Idl(C(X)).
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Now suppose that ∆Ω(X) ⊣ ΨΩ(X), and let J be an ideal of C(X). Then φX [J ] is an ideal

of R(Ω(X)), and therefore φX [J ] ⊆ O∆Ω(X)(φX [J ]), which, in light of Corollary 2.1.3 and the

equality τβX ◦ FX = ∆Ω(X) ◦ φ̂X established in the proof of Proposition 5.1.8, implies

φX [J ] ⊆ OτβX(FX(J)) = OF̃X(J) = φX

[
OFX(J)

]
,

whence we get J ⊆ OFX(J), thus proving that FX ⊣ GX . Conversely, suppose that FX ⊣ GX , and

let I be an ideal of R(Ω(X)). Since φX is a ring isomorphism, there exists an ideal J of C(X)

such that I = φX(J). Then (as FX ⊣ GX), J ⊆ OFX(J), which implies

I = φX(J) ⊆ φX

[
OFX(J)

]
= OF̃X(J) = OτβX(FX(J)) = O∆Ω(X)(φX [J ]) = O∆Ω(X)(I),

whence ∆Ω(X) ⊣ ΨΩ(X).

Now, since X is a P -space precisely when Ω(X) is a P -frame, it follows from Theorem 5.1.7(b)

that FX ⊣ GX if and only if X is a P -space.

If f : L→M is a join-preserving map between complete lattices and f∗ denotes its right adjoint,

then for every b ∈M for which f−1(b) ̸= ∅, the equality f(f∗(b)) = b always holds. Now, since

∆ is surjective on closed sublocales, we know from Theorem 5.1.7(b) that if L is a P -frame,

then ∆∗(A) = OA for every closed sublocale A of βL. Below we produce an explicit example

(necessarily in some frame L which is not a P -frame) of a closed sublocale A of βL for which

∆∗(A) ̸= OA.

Example 5.1.10. Let L = Ω(R), and put a = (0, 1). Since R is metrizable, every element of L

is a cozero element. Pick γ ∈ RL with coz γ = a. Let A be the closed sublocale A = cβL(rL(a))

of βL. Then ∆(OA) = A by Proposition 5.1.4(a), and so, OA ≤ ∆∗(A). We now produce

an ideal J of RL with OA ⊂ J (proper containment) and ∆(J) = A. This will show that

∆∗(A) ̸= OA. Let J = ⟨γ⟩, the ideal generated by γ. Since, for any τ ∈ RL, coz τ ≺≺ coz γ

implies τ ∈ ⟨γ⟩, it is easy to see that
∨

α∈JrL(cozα) = rL(a). Also, from what we observed

about the O-ideals associated with closed sublocales, we see that OA = {α ∈ RL | cozα ≺≺ a},
whence we deduce that γ /∈ OA because a is not complemented.

Naturally, one wonders if we can identify some class of closed sublocales A for which ∆∗(A) = OA.

Rather unexpectedly, sublocales which are generalizations of P -sets are of this type. Taking

a cue from spaces, the author of [18] calls a closed sublocale a P -sublocale if it is interior to
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every zero-sublocale containing it. He then shows that a closed sublocale cL(a) of a frame L is a

P -sublocale if and only if every cozero element of L which is below a is actually rather below a.

In the proof of the next theorem we will use the fact that if I ≺ J in βL, then
∨
I ∈ J . For a

proof see the paragraph preceding [14, Example 4.11].

Theorem 5.1.11. If A is a join of P -sublocales of βL, then ∆∗(A) = OA.

Proof. We prove this first for P -sublocales. So let B = cβL(I) be a P -sublocale of βL. We are

going to show that for any c ∈ CozL, the containment rL(c) ⊆ I implies c ∈ I. [Caution: rL(c)

is not necessarily a cozero element of βL]. Find a sequence (cn) in CozL with cn ≺≺ cn+1 for

each n and
∨

n∈Ncn = c. Since rL(cn) ≺≺ rL(cn+1) for each n,
∨

n∈NrL(cn) is a cozero element

of βL, and, furthermore, it is below I, and so
∨

n∈NrL(cn) ≺ I because cβL(I) is a P -sublocale.

Therefore
(∨

n∈NrL(cn)
)∗

∨ I = 1βL. But now(∨
n∈N

rL(cn)
)∗

=
∧
n∈N

rL(cn)
∗ =

∧
n∈N

rL(c
∗
n) = rL

(∧
n∈N

c∗n

)
= rL

((∨
n∈N

cn

)∗)
= rL(c

∗) = rL(c)
∗,

which then implies rL(c) ≺ I, and hence c ∈ I. Since ∆ is surjective on closed sublocales,

∆∗(B) =
∑

{J ∈ Idl(RL) | ∆(J) = B}.

Since ∆(OB) = B = B, OB ≤ ∆∗(B). Consider any ideal J of RL with ∆(J) = B. Then,

from the definition,
∨

α∈JrL(cozα) = I. Thus, if α ∈ J , then rL(cozα) ⊆ I, and thus by what

we proved above, cozα ∈ I, which implies α ∈ OB. Therefore OB is the largest ideal of RL
mapped to B by ∆, hence ∆∗(B) = OB.

Now suppose that A =
∨

k∈KAk, for some P -sublocales Ak of βL. Then

∆∗

(∨
k∈K

Ak

)
= ∆∗

S(βL)op∧
k∈K

Ak

 =

Idl(RL)∧
k∈K

∆∗(Ak) =
⋂
k∈K

OAk = O
∨

k∈KAk = OA,

which proves the result.

5.2 Characterizing Woods’ WN-maps

Our goal in this section is, among other things, to use the material in the previous section to

characterize the WN-homomorphisms that we discussed in Chapter 3. Recall from [40, p. 25]
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that if ϕ : A→ B is a ring homomorphism, then the map Idl(A) → Idl(B) given by I 7→ ⟨ϕ[I]⟩
is a quantale homomorphism, where ⟨−⟩ denotes ideal-generation. Therefore the square in the

following theorem resides in the category of quantales.

Theorem 5.2.1. A frame homomorphism h : M → L is a WN-homomorphism iff the square

Idl(RM)

∆M

��

⟨(Rh)[−]⟩ // Idl(RL)

∆L

��
S(βM)op

((βh)∗)−1[−] // S(βL)op

commutes.

Proof. Let I be an ideal of RM . Since for any ideal Q of RL, the join of the form
∨

α∈QrL(cozα)

can be taken over any generating subset of Q, we have

∆L(⟨(Rh[I])⟩) = cβL

 ∨
τ∈(Rh)[I]

rL(coz τ)

 .

On the other hand,

((βh)∗)−1[∆M(I)] = ((βh)∗)−1

[
cβM

(∨
α∈I

rL(cozα)
)]

= cβL

(
(βh)

(∨
α∈I

rL(cozα)
))

= cβL

(∨
α∈I

(βh)
(
rL(cozα)

))
.

Therefore the square commutes if and only if∨
α∈I

(βh)
(
rM(cozα)

)
=

∨
τ∈(Rh)[I]

rL(coz τ) (5.2.1)

for every ideal I of RM .

Now we suppose that the square commutes, and show that h is a WN-homomorphism. Let

c ∈ CozM , and take γ ∈ RM such that c = coz γ. For I = ⟨γ⟩, the left side of equation (5.2.1)

is (βh)(rM(c)). Since Rh is a ring homomorphism, the ideal of RL generated by (Rh)[⟨γ⟩]
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is the principal ideal ⟨(Rh)(γ)⟩. Since coz((Rh)(γ)) = h(coz γ), the right side of (5.2.1) with

I = ⟨γ⟩ is rL(h(c)), which then shows that h is a WN-homomorphism.

Conversely, suppose that h is a WN-homomorphism. Let I be an ideal ofRM , and take any α ∈ I.

Then (βh)(rM(cozα)) = rL(h(cozα)). But h(cozα) = coz((Rh)(α)), and (Rh)(α) ∈ (Rh)[I];
so we deduce from this that the inequality ≤ in equation (5.2.1) holds. On the other hand, let

τ ∈ (Rh)[I]. Then there exists α ∈ I such that τ = (Rh)(α), hence coz τ = h(cozα), whence

rL(coz τ) = rL(h(cozα)) = (βh)(rM(cozα)),

since h is a WN-homomorphism. It follows from this that the other inequality also holds, and

so the square commutes.

The upper morphism in the square in Theorem 5.2.1 is extension of ideals, and the lower

morphism is localic inverse image. We can form a “dual” square, with contraction of ideals

replacing extension, and direct image replacing localic inverse image. We show below that the

resulting square always commutes, regardless of the homomorphism. In preparation for that, we

need to recall two concepts.

A frame homomorphism is said to be perfect if its right adjoint preserves directed joins. It is

well known that a frame homomorphism into a compact regular frame is perfect. Recall that

a localic map f : L → M is said to be closed if the induced direct-image map sends closed

sublocales to closed sublocales. This is so precisely when f [cL(a)] = cM(f(a)) for every a ∈ L.

Any localic map with a compact regular domain is closed.

For use below, observe that since (βh)(rM(a)) ≤ rL(h(a)) for any frame homomorphism

h : M → L and a ∈M , we have rM(a) ≤ (βh)∗(rL(h(a))).

Theorem 5.2.2. For any frame homomorphism h : M → L, the square

Idl(RL)

∆L

��

(Rh)−1[−] // Idl(RM)

∆M

��
S(βL)op (βh)∗[−] // S(βM)op

(5.2.2)

commutes.
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Proof. For any I ∈ Idl(RL),

∆M((Rh)−1[I]) = cβM

 ∨
τ∈(Rh)−1[I]

rM(coz τ)

 ,

and

(βh∗)[∆L(I)] = (βh)∗

[
cβL

(∨
α∈I

rL(cozα)
)]

= cβM

(
(βh)∗

(∨
α∈I

rL(cozα)
))

since (βh)∗ is a closed map

= cβM

(∨
α∈I

(βh)∗
(
rL(cozα)

))
since βh is perfect .

Consequently, we shall be done if we can prove that, for any ideal I of RL,∨
τ∈(Rh)−1[I]

rM(coz τ) =
∨
α∈I

(βh)∗
(
rL(cozα)

)
.

But now if τ ∈ (Rh)−1[I], then (Rh)(τ) ∈ I and

(βh)(rM(coz τ)) ≤ rL(h(coz τ)) = rL(coz(Rh)(τ)),

so that if we set α = (Rh)(τ), we have α ∈ I and rM(coz τ) ≤ (βh)∗(rL(cozα)). We therefore

have the inequality ∨
τ∈(Rh)−1[I]

rM(coz τ) ≤
∨
α∈I

(βh)∗
(
rL(cozα)

)
.

To establish the opposite inequality, let us note that from the equality (βh)∗ ◦ rL = rM ◦ h∗,

which always holds, ∨
α∈I

(βh)∗
(
rL(cozα)

)
=
∨
α∈I

rM(h∗(cozα)).

Given α ∈ I, let c ∈ rM(h∗(cozα)), and pick δ ∈ RM such that c ≺≺ coz δ ≺≺ h∗(cozα). Then

h(coz δ) ≺≺ h(h∗(cozα)) ≤ cozα. This says coz
(
(Rh)(δ)

)
≺≺ cozα, which implies (Rh)(δ) is a

multiple of α, and hence δ ∈ (Rh)−1[I]. Since c ∈ rM(coz δ), we deduce that

rM(h∗(cozα)) ≤
∨

τ∈(Rh)−1[I]

rM(coz τ),

and, upon taking joins over all α ∈ I, we get the desired inequality. This completes the proof.
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5.3 The Lindelöf analogue

The subcategory of CRFrm consisting of the compact objects is coreflective, with the coreflector

β : CRFrm → KCRFrm. The map ∆ associates with each ideal of RL a sublocale of βL

defined in terms of the right adjoint of the homomorphism jL : βL → L. In the opposite

direction, Ψ associates with each sublocale of βL an ideal of RL defined in terms of how it

relates to a certain open sublocale of βL.

Now, the subcategory of CRFrm consisting of the Lindelöf objects is also coreflective, with

the coreflector λ : CRFrm → KCRFrm which we will describe shortly. See [31] for details.

We wish to consider a map which associates with each ideal of RL a sublocale of λL defined

analogously to the compact case, but using the right adjoint of coreflection map λL : λL→ L to

L from Lindelöf objects. In the opposite direction, we will associate with each sublocale of λL

an ideal of RL defined in terms of how it relates to a certain open sublocale of λL.

Turning to some background, the frame of σ-ideals of CozL is denoted by λL. It is a Lindelöf

completely regular frame. The map λL : λL→ L that sends a σ-ideal to its join in L is a dense

surjective frame homomorphism, and it is the coreflection map to L from Lindelöf completely

regular frames. We denote its right adjoint by ϱL, and recall that, for any a ∈ L,

ϱL(a) = {c ∈ CozL | c ≤ a}.

Thus, if a ∈ CozL, then ϱL(a) is the principal ideal of CozL generated by a. Comparing ϱL to

rL, we observe the parallelism:

rL|CozL : CozL → βL is a lattice homomorphism, and ϱL|CozL : CozL → λL is a

σ-frame homomorphism. In fact, ϱL|CozL : CozL→ Coz(λL) is a σ-frame isomor-

phism.

For any I ∈ βL, let ⟨I⟩σ denote the σ-ideal of CozL generated by I. Explicitly, for any

c ∈ CozL,

c ∈ ⟨I⟩σ iff there is a sequence (cn) in I such that c =
∨

ncn.

We denote by kL the dense surjective frame homomorphism

kL : βL→ λL given by kL(I) = ⟨I⟩σ.
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It is not difficult to show that the composite

βL
kL // λL

λL // L

is the homomorphism jL : βL→ L, so that rL = (kL)∗ ◦ ϱL, and hence kL ◦ rL = ϱL since kL is

surjective. We will use this observation below.

The map Ψ in Section 5.1 is defined in terms of O-ideals, which themselves are defined in terms

of sublocales of βL. In order to have an analogy in terms of λL, we first define the following

ideals.

For any sublocale A of λL, the ideal NA of RL is defined by

NA = {α ∈ RL | A ⊆ oλL(ϱL((cozα)
∗))} = {α ∈ RL | A ⊆ oλL(ϱL(cozα)

∗)}.

One checks routinely that NA is indeed an ideal of RL. Actually, these N -ideals are some

special cases of O-ideals, as we show below.

Lemma 5.3.1. If h : M → L is a surjective frame homomorphism, A is a sublocale of L, and

a ∈ L, then A ⊆ oL(a) iff h∗[A] ⊆ oM(h∗(a)).

Proof. It suffices to show that A ∩ cL(a) = O if and only if h∗[A] ∩ cL(h∗(a)) = O. But this

follows easily from the fact that h∗ is injective (as h is surjective) and h∗(1) = 1.

Proposition 5.3.2. For any sublocale A of λL, NA = O(kL)∗[A].

Proof. For any α ∈ RL,

α ∈ NA ⇐⇒ A ⊆ oλL(ϱL(cozα)
∗)

⇐⇒ (kL)∗[A] ⊆ oβL
(
(kL)∗(ϱL(cozα)

∗)
)

by Lemma 5.3.1

⇐⇒ (kL)∗[A] ⊆ oβL
(
rL(cozα)

∗) since (kL)∗ ◦ ϱL = rL

⇐⇒ α ∈ O(kL)∗[A],

which proves the proposition.

This proposition says if we view λL as a sublocale of βL (which we can do by identifying λL

with its isomorphic copy (kL)∗[λL]), then the N -ideals are exactly the O-ideals associated with
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sublocales of λL. Since the map A 7→ OA is not injective (indeed, for any dense sublocale D of

βL, OD is the zero ideal, as one checks readily), there is nothing a priori that says the sets of

O-ideals and N -ideals do not coincide. They however generally do not; and below we identify

the frames for which they do coincide.

Recall that a frame L is called pseudocompact if every element of RL is bounded, in the sense

of f -rings. There are several characterizations, such as L is pseudocompact if and only if λL

is compact [6, Proposition 2] if and only if βL ∼= λL. The latter makes one implication in

Theorem 5.3.3 below unsurprising.

In the proof of the upcoming result we shall use the notion of codenseness. A frame homomorphism

is called codense if the top of its domain is the only elements it maps to the top. In the category

of regular frames, codense morphisms are exactly the injective ones. We shall also use the fact

(see, for instance, [17, Corollary 3.5]) that the neat ideals of RL are precisely the ideals OA for

A a closed sublocale of βL. The notation used in [17] is different though. Note, further, that if

A and B are closed sublocales of βL with OA = OB, then A = B.

Theorem 5.3.3. The O-ideals of RL are exactly the N -ideals iff L is pseudocompact.

Proof. If L is pseudocompact, then kL : βL→ λL is an isomorphism, as can be deduced from

the characterization of βL in [4, Corollary 8.2.7]. It then follows from Proposition 5.3.2 that

the sets of O-ideals and N -ideals coincide.

Conversely, suppose that the sets of O-ideals and N -ideals coincide. We prove that λL is

compact by showing that kL : βL→ λL is codense. Consider then any I ∈ βL with kL(I) = 1λL.

By hypothesis, there is a sublocale A of λL such that OcβL(I) = NA. Thus, by Proposition 5.3.2,

OcβL(I) = O(kL)∗[A], which makes O(kL)∗[A] a neat ideal of RL, and so by [19, Lemma 2.9],

O(kL)∗[A] = OclβL(kL)∗[A], which then implies clβL(kL)∗[A] = cβL(I).

Now,

clβL(kL)∗[A] = cβL

(∧
(kL)∗[A]

)
= cβL

(
(kL)∗

(∧
A
))
,

which then implies I = (kL)∗(
∧
A), and hence, in light of kL being surjective,∧

A = kL

(
(kL)∗

(∧
A
))

= kL(I) = 1λL.

This implies that I = 1βL, as desired. So kL is injective and hence is an isomorphism, making

λL compact, and hence L pseudocompact.
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Now we define two maps ΓL : Idl(RL) → S(λL)op and ΦL : S(λL)op → Idl(RL) by adapting

the definitions of ∆ and Ψ. Namely, for any I ∈ RL and A ∈ S(λL)op,

ΓL(I) = cλL

(∨
α∈I

ϱL(cozα)

)
and ΦL(A) = NA.

As usual, we will forget the subscripts when such selective amnesia leads to no harm.

Remark 5.3.4. A quick remark here may not come amiss. Unlike in the compact case, the join

in the definition of ΓL(I) cannot be replaced with a union even though it is directed. Indeed,

if c ∈ CozL is not complemented, then, for the ideal I = {γ ∈ RL | coz γ ≺≺ c}, we have

c ∈
∨

α∈IϱL(cozα) but c /∈
⋃

α∈IϱL(cozα). Indeed, if the latter were false, there would exist

γ ∈ RL such that c ≤ coz γ ≺≺ c, making c complemented. To see the former, find a sequence

(cn) of cozero elements of L with cn ≺≺ cn+1 for each n and c =
∨

ncn. Then choose, for each n,

γn ∈ RL with cn = coz(γn). Then each γn belongs to I, whence the claimed membership holds.

The maps Γ and ∆ are connected through a frame homomorphism as follows.

Proposition 5.3.5. The triangle

Idl(RL)

∆

yy

Γ

%%
S(βL)op ((kL)∗)−1[−] // S(λL)op

commutes. That is, Γ = ((kL)∗)−1[−] ◦ ∆.

Proof. For any I ∈ Idl(RL),(
((kL)∗)−1[−] ◦ ∆

)
(I) = ((kL)∗)−1

[
cβL

(∨
α∈I

rL(cozα)

)]

= cλL

(
kL

(∨
α∈I

rL(cozα)

))

= cλL

(∨
α∈I

kL (rL(cozα))

)

= cλL

(∨
α∈I

ϱL(cozα)

)
= Γ(I),
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which proves the result.

This proposition yields a corollary that is a perfect analogue of Proposition 5.1.4(a). Recall

that in the β-case we have ∆(OA) = clβLA for any sublocale A of βL. The λ-case analogue of

this is precisely the following result.

Corollary 5.3.6. For any sublocale A of λL, Γ(NA) = clλLA.

Proof. For brevity, we write κ for the localic map (kL)∗. Now,

Γ(NA) = κ−1

[
∆
(
NA

)]
by Proposition 5.3.5

= κ−1

[
∆
(
Oκ[A]

)]
by Proposition 5.3.2

= κ−1

[
clβL κ[A]

]
by Proposition 5.1.4(a)

= κ−1

[
cβL

(∧
κ[A]

)]
= κ−1

[
cβL

(
κ
(∧

A
))]

since κ is a localic map

= cλL

(
kL

(
κ
(∧

A
)))

= cλL

(∧
A
)

since kL ◦ (kL)∗ = idλL as kL is onto

= clλLA,

which proves the result.

We saw in Proposition 5.1.4(c) that, for any ideal I of RL, O∆(I) = mI; an ideal related to L

by the characterization

γ ∈ mI ⇐⇒ (∃α ∈ I)(coz γ ≺≺ cozα).

We shall see that we have an analogous situation in the λ-case. Towards that end, we introduce

the following definition.

Definition 5.3.7. Given an ideal I of RL, we define the ideal sI of RL by

sI =
{
γ ∈ RL | coz γ ≺≺

∞∨
n=1

coz(αn) for some sequence (αn) in I
}
.
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It is routine to check that sI is indeed an ideal of RL. Furthermore, the condition defining sI is

a “countable” version of the condition characterizing mI because, by the properties of the cozero

map, γ ∈ mI if and only if coz γ ≺≺ coz(α1)∨ · · · ∨ coz(αn) for some finite set {α1, . . . , αn} ⊆ I.

Here are some quick observations about the ideal sI.

Observation 5.3.8. For any ideal I of RL:

(a) sI is neat;

(b) mI ⊆ sI; and

(c) mI = sI if and only if sI ⊆ I, since mI is the largest neat ideal of RL contained in I.

For use in the proof of the next lemma, let us recall that ϱL induces a σ-frame isomorphism

ϱL|CozL : CozL → Coz(λL), as a consequence of which we have that, for any c, d ∈ CozL,

c ≺≺ d if and only if ϱL(c) ≺≺ ϱL(d).

Lemma 5.3.9. For any ideal I of RL, NΓ(I) = sI. That is, Φ(Γ(I)) = sI.

Proof. Given γ ∈ RL, we have

γ ∈ NΓ(I) iff Γ(I) ⊆ oλL(ϱL(coz γ)
∗)

iff cλL

(∨
α∈I

ϱL(cozα)

)
⊆ oλL(ϱL(coz γ)

∗)

iff ϱL(coz γ)
∗ ∨

∨
α∈I

ϱL(cozα) = 1λL.

Since λL is Lindelöf, this last statement holds if and only if there is a sequence (αn) in I such

that

ϱL(coz γ)
∗ ∨

∞∨
n=1

ϱL(coz(αn)) = 1λL.

Now, since the restriction of ϱL to CozL is a σ-frame homomorphism, since the rather below

relation coincides with the completely below relation in normal frames, and since λL is normal

(being a regular Lindelöf frame), we have that γ ∈ NΓ(I) if and only if there is a sequence (αn)

in I such that

ϱL(coz γ) ≺≺ ϱL

(
∞∨
n=1

coz(αn)

)
,

which, in turn, holds if and only if coz γ ≺≺
∨

n coz(αn). This proves the proposition.
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Now, since ∆ is a quantale homomorphism, and since Γ is a composite of quantale homomor-

phisms (Proposition 5.3.5), it follows that Γ is a quantale homomorphism. A calculation similar

to that which showed that Ψ preserves meets shows that Γ preserves meets. We now have the

following analogue Theorem 5.1.7(b).

Theorem 5.3.10. The following are equivalent for a completely regular frame L.

(1) Γ ⊣ Ψ.

(2) L is a P -frame.

(3) I ⊆ sI for every ideal I of RL.

Proof. (1) ⇔ (3): Since Γ(Ψ(A)) = clλLA for every sublocale A of λL (Corollary 5.3.6), so that

we always have Γ ◦ Ψ ≤ idS(λL)op , Γ ⊣ Ψ if and only if I ⊆ Ψ(Γ(I)) for every ideal I of RL, that
is, if and only if I ⊆ sI for every I in light of Lemma 5.3.9. Therefore (1) and (3) are equivalent.

(3) ⇒ (2): Let c ∈ CozL, and pick γ ∈ RL such that c = coz γ. Let I be the principal ideal

⟨γ⟩. Since γ ∈ I, (3) says γ ∈ sI, so there is a sequence (γn) in I such that coz γ ≺≺
∨

n coz(γn).

Since each γn is a multiple of γ, coz(γn) ≤ coz γ , and so coz γ ≺≺ coz γ, which implies that c is

complemented. Therefore L is a P -frame.

(2) ⇒ (3): If L is a P -frame, then every ideal of RL is neat. Hence, for any ideal I of RL,
I = mI ⊆ sI.

Recall from [29, Lemma V 2.8] that an ideal I of a ring A is neat if and only if IJ = I∩J , for every
ideal J of A. Thus, if L is a P -frame, then the quantale

(
Idl(RL), ·,

∑)
is exactly the frame(

Idl(RL),∩,
∑)

, which then makes the map ∆: Idl(RL) → S(βL)op a frame homomorphism,

and hence Γ: Idl(RL) → S(λL)op is a frame homomorphism by Proposition 5.3.5. Thus,

sI = Γ∗(Γ(I)), for every I ∈ Idl(RL), which makes the mapping I 7→ sI a nucleus on Idl(RL).
We therefore have the following corollary to Theorem 5.3.10.

Corollary 5.3.11. If L is P -frame, then the set {sI | I ∈ Idl(RL)} is a sublocale of Idl(RL).
Furthermore, it is dense.

Remark 5.3.12. It vexes us that we are unable to characterize the ideals I for which sI ⊆ I.

We should point out though that strongly divisible ideals, as defined by Azarpanah [2], are of
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this kind. To recall, an ideal I in a ring is called strongly divisible if for every sequence (un) in

I, there is an element u ∈ I such that each un is a multiple of u. One checks easily that if I is a

strongly divisible ideal of RL, then sI ⊆ I. In C(X), they include the maximal ideals M such

that C(X)/M ∼= R [2, Corollary 4.3].

We close by presenting analogues of Theorems 5.2.1 and 5.2.2. Each is about commutativity of

a certain square. In contrast with the β-case, we will show that the λ-version of the square in

Theorem 5.2.1 always commutes.

Proposition 5.3.13. For any frame homomorphism h : M → L, the square

Idl(RM)

ΓM

��

⟨(Rh)[−]⟩ // Idl(RL)

ΓL

��
S(λM)op

((λh)∗)−1[−] // S(λL)op

is commutative.

Proof. A calculation analogous to that in the proof of Theorem 5.2.1 shows that the square

commutes if and only if for any ideal I of RM ,∨
α∈I

(λh)
(
ϱM(cozα)

)
=

∨
τ∈(Rh)[I]

ϱL(coz τ).

Since (λh)
(
ϱL(c)

)
= ϱL(h(c)) for every c ∈ CozM , it follows that the square in question

commutes if and only if ∨
α∈I

ϱL(h(cozα)) =
∨

τ∈(Rh)[I]

ϱL(coz τ).

But this last equation always holds because for any α ∈ RL, the element τ = (Rh)(α) belongs
to (Rh)[I] and h(cozα) = coz τ . Therefore the square above always commutes.

The discrepancy between the two results can be explained as follows. A WN-homomorphism

h : M → L is defined by requiring the containment (βh)(rM (c)) ⊆ rL(h(c)) to be an equality for

every c ∈ CozM . On the other hand, the corresponding containment (λh)(ϱM (c)) ⊆ ϱL(h(c)) is

always an equality. Viewed differently, as remarked earlier, ϱL restricts to a σ-frame isomorphism
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CozL → Coz(λL), whereas rL does not necessarily restrict to a σ-frame isomorphism onto

Coz(βL).

Turning to the analogue of Theorem 5.2.2, let us write S : Frm → Frm for the functor that

sends L to S(L)op and a morphism h : M → L to the morphism (h∗)−1[−] : S(M)op → S(L)op,
which we name S(h).

Proposition 5.3.14. For any frame homomorphism h : M → L, the square

Idl(RL)

ΓL

��

(Rh)−1[−] // Idl(RM)

ΓM

��
S(λL)op (λh)∗[−] // S(λM)op

is commutative.

Proof. The square on the left of the diagrams

βM
βh //

kM

��

βL

kL

��

S(βM)op
S(βh) //

S(kM )

��

S(βL)op

S(kL)

��
λM

λh // λL S(λM)op
S(λh) // S(λL)op

is known to commute, and hence the one on the right also commutes. Now, in the diagram

Idl(RM)
(Rh)−1[−] //

ΓM

��

∆M

##

Idl(RL)

ΓL

��

∆L

||
S(βM)op

S(βh) //

S(kM )

{{

S(βL)op

S(kL)

""
S(λM)op

S(λh) // S(λL)op

the triangles commute by Proposition 5.3.5, the upper trapezoid commutes by Theorem 5.2.2,

and the lower trapezoid commutes, as just noted. So it follows that the outer square commutes,

which is precisely what we are supposed to prove.
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