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ABSTRACT  

The PID controller is regarded as a dependable and reliable controller for process industry 

systems. Many researchers have devoted time and attention to PID controller tuning and they 

all agree that PID controllers are very important for control systems. A PID equation is very 

sensitive; its parameters must always be varied following the specific application to increase 

performance, such as by increasing the system’s responsiveness. PID controllers still have 

many problems despite their importance for control systems in industries. The problem of big 

overshoot on the conventional gain tuning is one of the serious problems. Researchers use the 

PSO algorithm to try and overcome those problems. The tuning of the MIMO PID controller 

based on the PSO algorithm shows many disadvantages such as high-quality control with a 

short settle time, steady-state error, and periodical step response. The traditional PSO algorithm 

is very sensitive and it sometimes affects the quality of good PID controller tuning. 

This research has proposed a new equation for improving the PSO algorithm. The proposed 

algorithm is the combination of linearly decreasing inertia weight and chaotic inertia weight, 

after which a control factor was introduced as an exponential factor. This was very useful for 

simulations as it is adjustable. The Matlab simulation results of the experiments show that the 

new proposed equation converges faster and it gives the best fitness compared to linear inertia 

weight and oscillating inertia weight and other old equations. The MIMO PID controller system 

that consists of four plants was tuned based on the new proposed equation for the PSO 

algorithm (LCPSO). The optimized results show the best rise time, settling time, time delays, 

and steady-state compared to the systems that are tuned using the old equations. The 

exploration was directed at considering the impact of using the PSO calculation as an 

instrument for MIMO PID tuning. The results obtained in the examination reveal that the PSO 

tuning output improved reactions and can be applied to various system models in the measure 

control industry. The results for the MIMO PID controller tuned using PSO were assessed 

using integral square error (ISE), integral absolute error (IAE), and the integral of time 

expanded by absolute error (ITAE). The five well-known benchmark functions were also used 

to endorse the feasibility of the improved PSO and excellent results in terms of convergence 

and best fitness were attained. 

Keywords: particle swarm optimization, proportional-integral-derivative, local extreme, 

globally optimal, convergence, inertia weight, integral square error, integral absolute error.  
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CHAPTER 1: INTRODUCTION 

1.1 STUDY BACKGROUND 

The improvement of the economy, the increasing of goods production, the increasing of goods 

distribution, the electricity production and distribution are every country’s ideal achievement, 

therefore industrial good control system that can control multi-input multi-output system is 

essential in recent years as most industries need more than one system to run at the same time. 

The PID controller is seen as the most significant control arrangement in many industries and 

companies. Various modern systems are controlled using PID regulators and most 

organizations and firms need more than one system simultaneously. In such cases, MIMO PID 

control tuning is used. The greatest advantage of PID regulators is their extraordinary execution 

in a wide variety of working conditions, their useful straightforwardness, and their valuable 

ease. This enables engineers to work with them in a reasonably clear way. It also has a 

commonality for scientists and professionals working with the systems of control organizations 

and firms (Pillay and Govender, 2007). Notwithstanding its broad use, one of its weaknesses 

and essential deficiencies is that there is no viable tuning technique for this sort of regulator. 

Researchers have suggested a few PID tuning techniques for the tuning of PID controllers 

(Biswas et al., 2014).  

The customary PID tuning procedures include Ziegler-Nichols and Cohen-Coon, of which the 

Ziegler-Nichols system may be the most notable strategy (Mallick & Khan, 2011). This tuning 

approach works splendidly. Nevertheless, it does not always give incredible tuning and all-in-

all conveys a significant overshoot. Consequently, this methodology normally needs retuning 

before mechanical cycles. To refresh the limits of ordinary PID limit tuning systems, a couple 

of fair methods of reasoning have been recommended to improve the PID tuning, for example, 

those using a generic algorithm (GA), evolutionary programming (EP), and PSO. The PID 

regulator is seen as the dependable and strong regulator for industry systems (Pungot, 2015). 

Various algorithms have been applied to PID and various speculative theoretical and 

application results have been accomplished. To tune PID controllers, various strategies have 

been proposed, but there are still issues with using the MIMO PID controller since they give 

high motions and oscillations in step response reaction, particularly for the plants with solid 

nonlinear elements. Other than the traditional tuning strategies, there are some advanced tuning 

techniques that use astute methods.  
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The PID controller was first presented in the early 1900s (O'Dwyer, 2005). The history of 

controller improvements can be traced back to 1788 to the work of James Watt to supply his 

steam motor. In 1791, de Prony made improvements to the control system, as did Throop in 

1857 and Maxwell in 1868. In 1911, Sperry started using the primary PID controller that was 

used as a ship control system (O'Dwyer, 2005). It is simple to understand PID control tuning, 

it gives good performance most of the time, and the characteristics allow engineers to operate 

in a straightforward manner. Single-input single-output (SISO) PID control is used in practice 

by many industries. They tune three parameters and achieve logical good performances that 

are well understood, and PID tuning rules are well known. However, due to the need to control 

many systems at the same time, MIMO PID systems were introduced. These systems have 

become the most frequent design for the MIMO PID system. The first approach for a MIMO 

PID is to use a single-input single-output PID controller for MIMO plants; it has been used for 

many years. These PID controllers can be tuned one at a time using traditional PID tuning rules 

and are one of the disadvantages (Dharan, et al., 2017). The multi-loop SISO PID is most 

frequently used for the plants that are not connected and in these contexts, it works well. 

The SISO PID design is less complicated than the MIMO PID design, which is time-

consuming. The other approach is to design one MIMO PID controller to control multi-input 

multi-output systems. With this method, it is possible to specify a simpler structure that uses 

all sensors. Tuning a MIMO PID controller requires three matrices or more. The number of 

inputs multiplied by the number of outputs. All this is a challenge and it is almost impossible 

to tune a MIMO PID controller by hand. Therefore, it is essential to develop a tuning method, 

hence the improvement of PSO and the tuning of the MIMO PID controller is pursued in this 

research. 

PSO is one of the uncomplicated adaptive optimization algorithms. However, it also has its 

disadvantages, such as premature convergence, it is difficulty to get the globally optimal 

solution and it easily falls into local extremes. Optimization was first implemented in the 1940s 

when the British military experienced issues with distributing few and limited assets for fighter 

airplanes, submarines, and other used hardware equipment (Kennedy et al., 2001). Researchers 

produced a diverse solutions for the issues over the decades. Various optimization strategies 

have been implemented for taking care of different issues in recent years. Non-conventional 

improvement techniques were introduced in recent years. They are also known as modern 

methods and are ground-breaking and famous for taking care of difficult issues. These 
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strategies incorporate genetic algorithms, neural systems, particle swarm improvement 

calculation, fuzzy optimization, and artificial immune systems. The PSO algorithm (PSO) is a 

population-based random pattern search algorithm. The PSO algorithm was introduced in 1995 

by Kennedy and Eberhart and its fundamental conceptual idea was initially inspired by 

observing the social behavior of animals, for example, bird flocking, fish schooling, and other 

animals that behave in a similar manner (Shi and Eberhart, 2001). Although PSO has many 

advantages such as its simplicity and ability to optimize step responses, there are disadvantages, 

for example, premature convergence, and it easily falls into local extremes. 

1.2 PROBLEM STATEMENT   

Despite the PID controller having many functions, including error calculation, speed 

regulation, control temperature, and pressure (Dharan, et al., 2017). PID controller has some 

drawbacks. In spite of PID controller being encountered in our everyday lives as a society, it 

still has a serious problem like big overshoot on the conventional gain tuning and oscillation 

of step response in the system, due to high-quality control with a short settle time, steady-state 

error, and a periodical step response (Taeib et al., 2013). Despite the use of the PSO algorithm 

to optimize PID controller tuning, the traditional PSO algorithm is very sensitive and it 

sometimes affects the quality of good PID controller tuning (Neto et al., 2017). PSO is having 

the disadvantage problem of falling into local extreme values, the issue of not obtaining a 

globally optimal solution, and the problem of finding the best fitness (Biswas et al., 2014). 

This research is having two main objectives, the first is to improve particle swarm optimization 

(PSO) to minimize the above-mentioned drawbacks. The second objective is to tune MIMO 

PID systems using the proposed improved PSO to minimize PID controller mentioned 

disadvantages. 

1.3 RESEARCH OBJECTIVES  

• The objective of the research is to improve the PSO algorithm in order to address its 

disadvantages, such as falling into a local extreme value, the issue of not obtaining a 

globally optimal solution and the problem of finding the best fitness. 

• Another main objective of this research is to tune MIMO PID controller systems using 

the improved PSO to solve the problem of high oscillations in a step response 

characteristics. 
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1.4 RESEARCH QUESTIONS 

• How can one improve the particle swarm optimization to solve the problem of easily 

falling into local extreme values to reach a globally optimal solution and to get the best 

fitness? 

• How can one minimize the difference between the specified required values and 

tuning outputs obtained values of rise time, settling time, and time delays of step 

response in a system when tuning a MIMO PID controller? 

1.5 BENEFITS OF THE STUDY 

The study aims to improve the efficiency of a control system by tuning it well, minimizing the 

process variability, increasing efficiency, reducing energy costs, and maximizing production 

rates. The well-tuned MIMO PID controller based on PSO to control the MIMO system will 

increase production and distribution as many systems are tuned at the same time. Using best 

practices for controller tuning can help deliver value to the business quickly and accurately 

without guesswork. The controller will check the equipment, demonstrate the process 

dynamics, characterize the process needed, pick the right tuning, simulate the output results, 

and then monitor the results. Once all control systems work effectively, more electricity will 

be generated to meet the demands, more goods will be produced, and more minerals will be 

mined and transported, therefore an effective system means fast service delivery for society. 

Controller tuning refers to the selection of tuning parameters to ensure the best response from 

the controller so that it gives accurate results.  

If we take the example of a car’s cruise control, it uses PID to control the cruising system, and 

if a MIMO PID controller can be used in a car, the car will be able to control many functions 

at the same time. In South Africa we are faced with serious electricity production problems. 

ESKOM, the national electricity provider, is failing to produce enough power to supply the 

country. One of the main issues is a slow control system. An effective MIMO system will help 

to increase production to the point where we will have enough power. Big industries, nationally 

and internationally, are faced with the same issues with their control systems, and a well-tuned 

MIMO system can help to address most companies’ issues. Other advantages of well-tuned 

MIMO systems include that PID is not based on a mathematical model of a system. It is also 

not heavily equipment dependent and is therefore simple to introduce, it can be well executed 

on modest equipment. A PID regulator, once planned, does not need a talented workforce to 

adjust. It is easier to put into practice (only with straightforward conditions), it uses fewer 
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assets, it is easier to tune by basic experimentation, and it has a better reaction to unmeasured 

unsettling influences. Model-based regulators recuperate from unmeasured aggravations with 

just one essential kind of activity, while PID has the corresponding and subsidiary activities 

that promptly follow up on an obscure unsettling influence. 

1.6 LIMITATIONS AND HYPOTHESIS 

Limitations 

This research will be limited to… 

• The study of PSO algorithm systems, background, advantages, and disadvantages. 

• The study of PID controller’s background, advantages and disadvantages. 

• The Ziegler-Nichols method is briefly discussed for comparison 

• The improvement of PSO based on the combination of inertia weights 

• Comparing improved PSO with traditional PSO 

• Tuning MIMO PID using improved PSO. 

• The approval of best fitness and convergence by utilizing standard benchmark test 

function ( Ackley function, Rastrigin function, Schwefel function, Cigar work, sphere 

function, and the Booth function). 

• The MIMO PID controller tuned using PSO assessed using integral square error (ISE), 

integral absolute error (IAE), and the integral of time expanded by absolute error 

(ITAE). 

• The use of MATLAB programming language. 

 

Hypothesis  

The efficiency of a control system, minimization of process variability, reducing energy costs, 

maximizing production rates and increasing distribution rate will be achieved with a well-tuned 

MIMO PID controller based on PSO. The unsteadiness of the voltage to the end-users impacts 

the capacity to the load not to be steady due to oscillations of step response of the system. The 

direct proportionality between the power and the voltage. Source instability causes harm, 

breakdown and wasteful activity to the load. In the event that the voltage is balanced, the 

capacity to the load will be steady and the load won't encounter breakdowns and will work 

effectively. This can be improved by limiting both voltage droops and oscillation of systems. 

The MIMO PID controller tuned based on PSO can help to improve speed, effectiveness and 

reliable convergence to the optimization problem. 
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1.7 METHODOLOGY AND RESEACH DESIGN 

This research consists of theoretical research and a software simulation/experimental research 

process based on a broad literature review. A quantitative method is used because of its focus 

on target estimations and the numerical examination of information accumulated through 

different trials and re-enactments or by using prior information of measurements using 

computational systems. Therefore, this research additionally includes sorting, investigating and 

correlating quantifiable information. Mathematical correlations of information are conducted 

and the outcomes are put together with respect to information examinations. The examination 

additionally includes hypothesis testing and scientific assessment dependent on information 

investigation through based on the outcomes of the data gathering procedures. The research 

problem is of specialized technical nature and accordingly falls into the science and design 

engineering field. This makes the quantitative examination method a reasonable strategy for 

this exploration. Within the quantitative method, a deductive methodology is used in light of 

its concern with creating speculation based on existing hypotheses and planning exploration 

methodologies to test the theory. This examination includes speculation dependent on actual 

physical laws and known realities. The simulations are used to affirm the above technique. Test 

recreations are dependent on objective fact of acquired outcomes in view of the perception of 

results, and the speculation of the theory is either affirmed or dismissed. 

 

1.8  DISSERTATION OVERVIEW 

This dissertation has five chapters that all relate to the research objectives. The chapters give a 

point-by-point outline of the research problem and a literature review of all related topics that 

used to improve the methods to solve the problem. 

Chapter 1: Introduction 

This chapter presents the study background, offers a problem statement, states the research 

question, objectives, study benefits, study limitations, and hypothesis, and discusses the 

research methodology of this research. 
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Chapter 2: Literature study 

This chapter offers the literature review to explore a PID controller. It also considers POS. 

Thereafter, the chapter details the history of PID and PSO, and give an overview of the Ziegler-

Nichols method.  

Chapter 3: Particle Swarm Optimization Improvement. 

Chapter 3 presents a new proposed equation for the improvement of the PSO algorithm. The 

proposed algorithm is based on the combination of linearly decreasing inertia weight and 

chaotic inertia weight, and the introduction of the control factor as an exponential. The 

following benchmark functions were used to endorse the feasibility of the improved PSO: the 

Ackley function, Rastrigin function, Schwefel function, Cigar work, sphere function, and the 

Booth function. Matlab is used to obtain the simulation results. 

 

Chapter 4: MIMO Proportional-Integral-Derivative tuning based on PSO 

This chapter presents the MIMO PID controller tuned based on a newly proposed PSO 

algorithm. The MIMO PID controller tuned using PSO was assessed using integral square error 

(ISE), integral absolute error (IAE), and the integral of time expanded by absolute error (ITAE). 

The following pairing methods were used for research modeling: 1-1/2-2 controller pairing and 

1-2/2-1 controller pairing and MATLAB tool is utilized for simulation. 

 

Chapter 5: Conclusion and future work 

The study concludes with recommendations and conclusion. This last chapter gives a summary 

of study, recommendations for future work, and the conclusion of the research. The references 

used and the appendices are presented immediately after Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter gives an overview of previous studies on PID controllers, Ziegler-Nichols and 

Cohen-Coon and PSO. It reviews several hypothetical subtleties related to PID controller 

tuning and its problems. The chapter further gives theories contributing to the proposed study 

by reviewing PSO improvement and its challenges. The chapter endeavours to detail each 

investigation and hypothesis to gain a better understanding of the research. 

2.1 PID CONTROL OVERVIEW  

The PID regulator is seen as the most significant control arrangement in many industries and 

companies. Various modern systems are controlled using PID regulators and most 

organizations and firms need more than one system simultaneously. In such cases MIMO PID 

control tuning is used. The greatest advantage of PID regulators is their extraordinary execution 

in a wide variety of working conditions, their useful straightforwardness, and their valuable 

ease. This enables engineers to work with them in a reasonably clear way. It also has 

commonality for scientists and professionals working with the systems of control organizations 

and firms (Pillay and Govender, 2007). Notwithstanding its broad use, one of its principle 

weaknesses and essential deficiencies is that there is no viable tuning technique for this sort of 

regulator. Researchers have suggested a few PID tuning techniques for the tuning of PID 

controllers. The customary PID tuning procedures include Ziegler-Nichols and Cohen-Coon, 

of which the Ziegler-Nichols system may be the most notable strategy. This tuning approach 

works splendidly. Nevertheless, it does not always give incredible tuning and all-in-all conveys 

a significant overshoot. Consequently, this methodology normally needs retuning before 

mechanical cycles.  

To refresh the limits of ordinary PID limit tuning systems, a couple of fair methods of reasoning 

have been recommended to improve the PID tuning, for example those using a generic 

algorithm (GA), evolutionary programming (EP), and PSO. The PID regulator is seen as the 

dependable and strong regulator for industry systems. Various algorithms have been applied to 

PID and various speculative theoretical and application results have been accomplished. To 

tune PID controllers, various strategies have been proposed, but there are still a few issues with 

using the MIMO PID controller since they give high motions and oscillations in step response 

reaction, particularly for the plants with solid nonlinear elements. Other than the traditional 

tuning strategies, there are some advanced tuning techniques that use astute methods. In this 

exploration the MIMO PID controller is tuned based on PSO. The principal point of the final 
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project was to improve the PSO streamlining to limit the issue of falling into local extreme 

values and not acquiring all global optimal solutions around ideal arrangement. In this research 

the improved PSO was used to tune MIMO PID systems to limit the oscillation of step response 

and to make a system increasingly proficient. The practical simulation was produced using 

Matlab and the outcomes are shown as graphs and tables. The following pairing methods were 

used: 1-1/2-2 and 1-2/2-1 controller pairing.  

2.1.1 PROPORTIONAL CONTROL 

The promotional controller or P-regulator is the most fundamental regulator. It is easy to use 

and simple to tune. 

Figure 2.1: Closed-loop feedback 

The shut circle move capacity of this control system has the additional capacity where G(s) is 

the exchange capacity of the procedure, R(s) and C(s) speak to the information and yield of the 

procedure individually and the blunder signal E(s).The activity of the corresponding controller 

for the most part brings about a balance, for example the contrast between the ideal yield and 

the genuine yield of the system for forms that do not have any characteristic incorporating 

properties. Under these conditions the consistent state mistake for the control system can be 

determined using the last worth hypothesis. Relative control is regularly joined with vital 

control so as to dispense with balance while applying the littler estimations of the increase K. 

A run of the mill case of system reaction using just corresponding control is represented in 

Figure below (Pillay, 2008).  
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Figure 2.2: Varying control systems (Pillay, 2008) 

2.1.2 INTEGRAL CONTROL 

The deficiency of the corresponding regulator for a sort 0 system is that the consistent state 

blunder is not actually zero. This is remedied by using an ideal vital integral compensator. 

Since the essential yield will become ever bigger with even the smallest DC blunder, any 

fundamental increase will kill consistent state blunder. This single bit of leeway is the reason 

why PI (corresponding in addition to fundamental) control is frequently favoured over P just 

control. A compensator that uses unadulterated incorporation to improve the consistent state 

mistake is seen as an ideal basic compensator. The ideal compensator must be developed with 

dynamic parts, which on account of electric networks require the use of dynamic intensifiers 

and some of the time extra force sources. An inactive compensator is more affordable to 

actualize. For this situation the consistent state blunder is not heading for zero as in situations 

where ideal remuneration is used. Consistent state blunder can be eliminated essentially by 

adding an unadulterated coordination to the regulator or plant in a fell framework. This will 

obviously change the system type from a sort 0 to a sort 1. The difficulty that may arise is that 

adding this unadulterated incorporation will likewise change the transient reaction qualities of 

the system.  

Corresponding activity becomes effective as an error not quite the same as zero occurs. In the 

event that the relative addition is adequately high, it will drive the error more towards zero. 



11 
 

Essential control achieves a similar control impact as relative control, but with a very high 

addition. This outcome in the balance disposing of property of indispensable activity, which 

can be delineated by applying the last worth hypothesis to the control structure of Figure 2.13.

 

Figure 2.3: Integral control 

The control effects of the basic activity are shown in Figure 2.14. With respect to Figure 2.14, 

the corresponding addition is kept steady ( Kc =1 ) and the necessary time is changed in 

accordance with the impact of the vital time consistency. 

Figure 2.4: Varying integral action 

The basic time (Ti) steady is changed within the range Ti =[1,2,5,∞]. This is the situation when 

Ti=∞ compares to unadulterated corresponding control and is indistinguishable from K=1 in 

Figure 2.14, where the consistent state error is halved. The consistent state error is expelled 

when Ti has limited worth. For large estimations of the mix time steady, the reaction 

continuously moves towards the setpoint. For little estimations of Ti, the reaction is quicker, 

yet oscillatory.  
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2.1.3 DERIVATIVE CONTROL 

On the off chance that a system has zero consistent state error, for example type 1 or more 

prominent, or an adequate level of consistent state error, the originator might have to improve 

the transient reaction of the framework. The plan objective here is to decrease settling time and 

accomplish an attractive percentage overshoot. This can be done by using ideal subsidiary 

remuneration. The term ideal alludes to the way an unadulterated separation is applied to the 

forward way. The ideal relative besides a subsidiary PD regulator uses dynamic segments in 

its acknowledgment, and the upsides and downsides of planning and assembling the system are 

like those of the past dynamic PI organization. The transient reaction of a framework can be 

picked by choosing the necessary shut circle shaft areas on the s-plane. In the event that these 

post areas are not effectively on the root locus of the framework, the framework root locus 

should be reshaped to incorporate these posts. One approach to achieve this is to add a zero to 

the forward transfer function (Youney, 2007). Figure 2.15 shows the PD controller. 

 

Figure 2.5: Derivative control 

2.1.4 PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROLLERS  

PID regulators are the most frequently used type of regulator for mechanical applications. They 

are basic and show vigorous execution over a wide range of working conditions. In the 

nonattendance of the total information on the cycle, these sorts of regulators are the most 

proficient with making decisions. The three primary boundaries included are proportional (P), 

integral (I) and derivative (D). The relative part is responsible for following the ideal set-point, 
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while the necessary and subsidiary part represents the amassing of past errors and the pace of 

progress of errors in the process separately. Figure 2.16 shows the PID controller. 

 

Figure 2.6: PID controller(Mallick & Khan, 2011) 

2.2 PID CONTROLLERS TUNING 

Tuning a PID regulator means that its different boundaries and parameters are tuned to 

accomplish a streamlined estimation of the ideal reaction. The fundamental necessities of the 

output will be the wanted ascent time, top time and overshoot. Various processes have unique 

prerequisites for these boundaries, which can be accomplished by tuning the PID parameters. 

In the event that the system can be disconnected, the tuning technique includes an examination 

of the step input reaction of the framework to get diverse PID parameters. Yet, in a great 

number of the modern applications, the framework should be online, and tuning is 

accomplished physically. This requires experienced personnel and there is a consistent 

vulnerability because of human error. Another technique for tuning is the Ziegler-Nichols 

method. While this technique is useful for online counts, it includes some experimentation, 

which is not attractive (Mallick & Khan, 2011). 

2.2.1 THE ZIEGLER-NICHOLS AND COHEN-COON METHODS FOR TUNING 

One of the first tuning procedures was proposed by Ziegler and Nichols in 1942. They proposed 

the shut circle (or extreme affectability) strategy and the open-circle (or cycle response bend) 

technique. The ZN tuning rules have the disadvantage that it uses inadequate cycle data to 

decide the tuning boundaries (Pillay 2008). This causes system performances that are not robust 

(Åström & Hägglund, 2004). The Ziegler-Nichols tuning technique depends on the assurance 
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of cycles’ intrinsic qualities, for example, the process gain (Kp), measure time consistency (Tp) 

and measure dead time (Lp). These attributes are used to decide the regulator tuning 

parameters. Despite the fact that the Ziegler-Nichols strategies endeavour to yield ideal 

settings, the just basis expressed is that the reaction has a rot proportion of a quarter (Ziegler 

and Nichols, 1942). 

                   (2.1) 

                   (2.2) 

2.2.1.1 ZN CLOSED-LOOP TUNING 

This closed-loop tuning technique was introduced by Ziegler and Nichols around the same time 

as their open-loop strategy. It is sometimes referred to as the frequency reaction technique. 

This strategy is also founded on specific qualities of the cycle elements. Their plan of this 

strategy depends on knowledge of where the Nyquist bend of the process transfer function G(s) 

converges with the negative genuine pivot. The method portrays two parameters, Critical Gain 

Ku and Critical Period Pu, in view of this point, which Ziegler and Nichols named extreme 

increase and extreme period. The technique for deciding these boundaries is as follows: 

Associate the regulator with the plant, turn off the necessary control, for example set Ti = ∞, 

and turn off the subordinate control by setting Td=0. Begin raising the addition Kc until the 

cycle begins to waver. The addition where this happens is Ku and the time of the motions will 

be Pu. Ziegler and Nichols devised straightforward recipes that relate Ku and Pu to Kc, Ti, and 

Td for a P, PI, and PID regulator (Youney, 2007) as shown in Table 2.1 below. 

Table 2.1: Ziegler-Nichols closed-loop tuning parameter 
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2.2.1.2 ZN OPEN-LOOP TUNING 

In 1942 Ziegler and Nichols inferred their first technique for PID tuning through exact testing. 

This strategy depends on the plant response to a stage input and is described by two parameters. 

The technique is regularly alluded to as the open-loop, or step response tuning strategy. The 

boundaries time constant Tp and delay time Lp are controlled by applying a unit step capacity 

to the cycle. This is a cycle with an integrator and a period delay, where b=a/L. Alluding to 

Figure 4.1, the point where the slant of the progression reaction is greatest is first decided, and 

the digression is drawn at that point. The convergence of this digression and the vertical pivot 

at Td=0  and Ti=∞ gives the boundaries Tp and Lp. Ziegler and Nichols inferred PID 

boundaries as P and PI as elements of Tp and Lp. The outcomes are given in Table 2.2 below. 

Table 2.2: Ziegler-Nichols open-loop tuning parameter 
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2.2.2 COHEN-COON METHOD FOR TUNING 

The ZN strategy was intended for a process that cannot control itself. Offering a self-

guideline, Cohen-Coon (CC) presented the self-guideline list or controllability proportion 

given in Table 2.3 below. 

Table 2.3: Cohen-Coon tuning open-loop tuning parameter 

 

A great advantage of the open-circle technique is that it is faster and only requires a phase 

change to be applied to choose to separate the pertinent data for choosing the tuning boundaries. 

The procedure does have disadvantages, namely:  

• The "S-shaped" measure reaction curve and its appearance point are difficult to 

recognize when the assessment is loud, and  

• A great proportion of bumble can be brought into the tuning figure if the reason for 

sound is not settled exactly (Lipták, 1995).  

2.2.3 ROOT LOCUS METHODS   

The exchange capacity of a PID controller is characterized as follows:  

                (2.3) 

The control parameters are resolved by the accompanying strategy: 
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• Build up a lot of wanted transient and consistent state error particulars dependent on 

the application and the basic system type (number of open circle posts situated at the 

starting point).  

• From these determinations, decide a conjugate pair of shut circle prevailing shafts and 

meet these details.  

• Compute from the consistent state error detail.  

• Assess the joined system move work at the predominant post and set it equivalent to 

zero to explain for the estimations of  and .  

                (2.4) 

              (2.5) 

A case of this structure strategy is introduced in the following segment. Common PID 

calculations that structure the structure squares of controllers have been addressed. The control 

activities of relative, fundamental and subsidiary terms and a portion of their unfriendly effects 

have also been explored. The relative controller gives a remedial activity that corresponds to 

the size of the blunder and affects the speed of a system's reaction; fundamental control gives 

restorative activity relative to the time necessary for the error is available for the whole term of 

the error; the subsidiary controller gives a remedial activity relative to the time subordinate of 

the blunder sign and reacts to the rate at which the blunder is evolving. The effects of procedure 

elements on controller tuning are visited in the following section. 

2.2.4 PSO TUNED PID CONTROL 

Many researchers have devoted time and attention to PID controller tuning and they all agree 

that PID controllers are very important for control systems. These researchers have suggested 

many improvements, changes, and conclusions. PID has many functions, including error 

calculation, speed regulation, control temperature, and pressure. It is always attempting to 

reduce error over time by adjusting control variables. We encounter it every day in our lives as 

a society, one of the everyday examples is a car’s cruise control. External influences like 

gradients can affect the car’s speed and its velocity, but it restores the actual velocity to the 

required velocity in the best way without overshoot or delays. PID controllers are used in every 

place where there are control systems and power systems reasons. A PID equation is very 
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sensitive; its parameters must always be varied following the specific application to increase 

performance, such as by increasing the system’s responsiveness (Anthony, 2014). PID 

controllers still have many problems despite its importance for control systems in industry. The 

problem of big overshoot on the conventional gain tuning is one of the serious problems. 

Researchers use the PSO algorithm to try and overcome that problem, and their results show 

the advantages of PID tuning based on PSO optimization. Due to high-quality control with a 

short settle time, steady-state error, and a periodical step response, the PSO algorithm can 

minimize the error between the actual output and the desired output. The traditional PSO 

algorithm is very sensitive and it sometimes affects the quality of good PID controller tuning. 

The following equation was presented from the first research:  

Traditional PSO equation: 

𝑉𝑖𝑑(𝑠 + 1) = 𝜔𝑉𝑖𝑑(𝑠) + 𝑐1𝑟1(𝑃𝑖𝑑(𝑠) − 𝑋𝑖𝑑(𝑠)) + 𝑐2𝑟2(𝑃𝑖𝑑(𝑠) − 𝑋𝑖𝑑(𝑠))                       (2.6) 

𝑋𝑖𝑑(𝑠 + 1) =  𝑋𝑖𝑑(𝑘) + 𝑉𝑖𝑑(𝑘 + 1)                                                             (2.7) 

The following is an improved velocity equation:  

𝑉𝑖𝑑(𝑠 + 1) = 𝒳(𝑉𝑖𝑑(𝑠) + 𝑟1𝑐1(𝑃𝑖𝑑(𝑠) − 𝑋𝑖𝑑(𝑠)) + 𝑟2𝑐2 (𝑃𝑔𝑑(𝑠) − 𝑋𝑖𝑑(𝑠)))                         (2.8) 

where construction coefficient X is expressed as: 

𝒳 =  
2

|2−𝑙−√(𝑙2−4𝑙)|
                    (2.9) 

and the fitness function is: 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑
1

1+𝜃𝑗(𝑘)

𝑛
𝑗=1                  (2.10) 

Researchers suggested chaos particle swarm optimization (CPSO) to overcome the problem 

output (Adel & Abdelkader, 2013). Other research addressed the issue of overshooting when 

conventional gain tuning was used. These researchers also used PSO for tuning MIMO PID 

controller systems. Their result was positive and they had better results for PSO-based tuning. 

Particles update their positions and velocities to obtain great fitness values after any iteration. 

These equations below were used: 
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     𝑉𝑝𝑑
𝑡+1 = 𝜔𝑉𝑝𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑝𝑑
𝑡 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑡𝑑

𝑘                    (2.11) 

     𝑋𝑝𝑑
𝑡+1 =  𝑋𝑝𝑑

𝑡 +  𝑉𝑝𝑑
𝑡+1                 (2.12) 

where t is number of iterations, pbest is the particle, gbest is the group, r1 and r2 are random 

numbers with interval 0,1, ω is the inertia weight and c1 and c2 are positive constants. The 

following table presents the simulation results, showing overshoot, rise time and setting time.  

  

Table 2.4: Simulation results (Taeib, Moez & Chaari, 2013) 

 

The Z-N tuning showed high tuning, high rise time and high settling time compared to PSO 

tuning (Taeib, et al, 2013). The design of PID systems using PSO was proposed, a simulation 

was conducted, and then conclusions were made that PID controllers tuned based on PSO is 

more efficient and it offers high level of automation (Biswas et al., 2014). Other researchers 

redo the PID controller for robotic manipulator design with the aim to improve the systems. 

They also use PSO for better result. The integral time-weighted absolute error (ITAE) is given 

by: 

   𝐼𝑇𝐴𝐸𝜓 =  ∫ 𝑡
𝑡𝑓

𝑡0
|𝜓(𝑡)|𝑑𝑡.                (2.13) 

Djaneye-Boundjou et al. (2016) tackled PID control tuning problems by using a previously 

developed stable PSO. Other researchers propose an efficient approach for tuning controllers 

for MIMO systems. The criticism channel gives execution that compromises quick shut circle 

elements and control signal reach. Suitable tuning of the channel's parameters is essential to 

accomplish ideal execution. MIMO systems tuning requires multi-target execution. In their 
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exploration, researchers propose a fluffy-based feedback channel configuration tuned with 

MOPSO to eliminate these bottlenecks. The MOPSO approach was approved using a twin rotor 

MIMO system. A multi-objective PSO is a transformative heuristic that duplicates the social 

conduct of fledgling amassing, fish tutoring, and other gathering creatures. PSO starts populace 

of particles haphazardly in space with molecules, speaking to a possible arrangement. Every 

molecule has a bunch of boundaries and moves haphazardly in a multi-dimensional space 

looking for ideal arrangement. The speed of every molecule in space plays a great part in 

focusing on the best up-and-comer arrangement. Likewise, speed and position changes for 

molecules depend on the encounters picked up from their own speed, area, and neighbouring 

particles. Systems are assessed using a profoundly nonlinear unequalled system with 

emphatically coupled elements. The power of the regulator was inspected by forcing 

vulnerabilities in the TRMS boundaries. They are used in cycles whose element models can be 

portrayed as first or second-request systems. The transfer function Gc (s) of single loop PID 

controllers has the following form: 

𝐺𝑐(𝑠) =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 +

𝐾𝐼

𝑠
+ 𝐾𝐷𝑠                         (2.14) 

TRMS was picked to assess the exhibition of versatile control since it has a place with the class 

of unequalled systems with exceptionally forceful model nonlinearity and coupled elements 

(Hashim, et al., 2017). Other researchers propose a new control scheme of PSO for tuning a 

PID controller. The characteristics of MIMO TRMS are high order non-linearity, significant 

cross-coupling and inaccessibility for its states and output for measurements. The PSO 

algorithm was successfully implemented to address this problem. The simulated results of the 

developed PID controller for a twin rotor system demonstrate its effectiveness. Satisfactory 

results were anticipated in the experimental as well as in the simulation results, proving that a 

PID controller based on PSO performs better than the other conventional controllers.  

The optimal values obtained from simulations were applied in the experiment with the twin 

rotor MIMO system. The results of the experiment describe the performance indices of system 

response, adopting each of the controllers in terms of percentage overshoot, settling time, rise 

time, and steady state errors, along with each controller’s gain values. The MIMO system’s 

problem characteristics are high order non-linearity, significant cross-coupling and 

inaccessibility of some of its states and output for measurements. The proposed PSO-tuned 

controller shows better performance criteria compared to the Ziegler-Nichols tuned controller 
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(El-Sayed, Ahmed & Mohamed, 2009). The Ziegler- Nichols technique (ZN) is the most 

familiar tuning strategy, introduced by Ziegler and Nichols (ZN) in 1942. They proposed the 

close-loop strategy and the open-loop strategy. The ZN tuning rules has the weakness of using 

inadequate procedure data to decide the tuning parameter. This hindrance prompts system 

exhibitions that have performance with poor robustness. The Ziegler-Nichols tuning technique 

depends on the assurance of a procedure’s inborn attributes, for example, the procedure pick 

up (p K), process time consistent (p T) and process dead time (p L). These attributes are used 

to decide the controller tuning parameters. In spite of the fact that the Ziegler-Nichols 

techniques endeavour to yield ideal settings, the main concern expressed is that the reaction 

has a rot proportion of quarter. This is seen as a deficiency on the grounds that a controller 

tuned with this standard may not be at its ideal setting. Other researcher show that the 

application of the MIMO systems strategy to the heater arrangement of a PID benchmark issue 

exhibits the viability of the outlined technique, where the plan method is completed with the 

state space implementations, which is advantageous particularly in managing information 

dealing with (MIMO) systems (Ochi, & Yokoyama, 2012). 

 

Figure 2.7: Demonstration of SISO and MIMO 

Yamada and Hagiwarn redesigned and modified the PID controller with the aim to get a close 

loop system for their PID controller. They show examples to illustrate the effectiveness of the 

proposed method (Hagiwara & Yamada, 2008). Other researchers aimed to control quad rotor 

attitude. The PSO algorithm is presented using an enhanced stochastic variation system strategy 

to upgrade the effectiveness of the fuzzy PID controller. The simulation results suggest that the 

proposed controller truly gives the best execution in sparing the settling time, dependability, 

strength, and less wavering is achieved (Chiou et al., 2016).  
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  𝐾(𝑠) = 𝐾𝑝 +
𝐾𝐼

𝑠
+ 𝐾𝐷s                                (2.15) 

 𝐾𝑝 = [
𝑘𝑝11 … 𝑘𝑝1𝑛1

𝑘𝑝𝑛01
… 𝑘𝑝𝑛0𝑛𝑖

]                           (2.16) 

A PID controller K(s) is expected to accomplish the the following: 1. The apparent shut circle 

system is asymptotically consistent, and 2. The energetic constancy execution satisfies the 

going with dissimilarity g1 ≤1. There are various execution or execution measures for creating 

or outlining controllers, for example, the basic of incomparable bungle (IAE), the essential of 

squared-botch (ISE), or central of time-weighted-squared-bumble (ITSE). Problems with the 

IAE and ISE models include that they may achieve a reaction with reasonably little overshoot 

and have a long settling time since they measure all errors and check all bungles reliably as 

time goes on. Regardless of the way in which the ITSE execution premise can beat this burden, 

it cannot guarantee steadfastness. The IAE, ISE and ITSE execution norms are depicted as 

follows: 

 𝐼𝐴𝐸 = ∫ |𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0

∞

0
                     (2.17) 

 𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0
                (2.18) 

 𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
∞

0
                           (2.19) 

Zamani and Karimi (2009) propose two cost capacities to outline a MIMO system. The 

execution of the proposed strategy is greatly improved according to their results (Zamani & 

Karimi, 2009). They evaluated the performance of a composite control system with PSO and 

HDE, using an integral square error (ISE), integral absolute error (IAE) and integral of time 

multiplied by absolute error (ITAE). Their results show that PSO is the best compared with the 

Ziegler-Nichols methods. An examination of the PSO-based PID (PSO-PID) execution and the 

ZN-PID was used in their explorative research. The outcomes demonstrate that the PID tuning 

based on PSO is an improved approach (Solihin, Tack & Kean, 2011). PID is the most favoured 

controller for many reasons, including its straightforward algorithm, capacity to adjust to an 

extensive variety of uses where it can guarantee brilliant control exhibitions.  

PSO requires crude scientific and mathematical administrators, which makes it worthwhile in 

terms of accessibility to bigger memory and higher speed. It has effectively been connected to 

a wide assortment of issues, for example neural systems, auxiliary advancement, shared 
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topology improvement, and fluffy systems. In this case the analyst had to enhance the PSO and 

the expectation was to expand social weight while latency weight diminishes. For their 

situation, little social weight influenced the universal best position to have a minor effect on 

the speed refreshing. Toward the finish of the run, the extensive social weight guarantees the 

best particles data influence. The simulation results are shown in the tables and graph below. 

Table 2.5: PID parameters (Kaya, 2014) 

 

Table 2.6: Step response performance for PID controller (Kaya, 2014) 
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FIGURE 2.8: Comparison of step response for PID controller (Kaya, 2014) 

Simulation results proved that PSO tuning is better than Z-N (Kaya, 2014). PSO has parameters 

that affect its best performance, some of them less of an effect and some have more of an effect. 

The parameters include the swarm size/number of particles, velocity components, number of 

iterations, neighbourhood size, inertia weight, acceleration coefficients, velocity clamping, and 

velocity constriction. There are parameters in PSO estimation that may affect its execution. For 

any given improvement issue, some of the parameter's characteristics and choices will have an 

impact on the capability of the PSO methodology, and distinctive parameters have next to zero 

effect. The fundamental PSO parameters incorporate the take after swarm size or number of 

particles, speed segments, number of emphases, neighbourhoods measure, latency weight and 

increasing speed coefficients. Likewise, PSO is additionally affected by inertia weight, speed 

cinching, and speed narrowing and these parameters are examined in this exploration. This 

examination offers the general flowchart for the PSO method where the accompanying 

advances are checked and adjusted if there is a need to do so. Particles have arbitrary place, 

speed, and wellness esteem. The momentum seeking point is set to the individual best. The 

best-assessed estimation of individual best is set to worldwide best and the operator number 

with the best esteem will be put away. With the calculation and assessment of wellness work, 

the wellness work is ascertained. In the event that the esteem is superior to the current 

individual best esteem, the individual best will be supplanted by the present esteem (Pillay, 

2008).  
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Neighbourhood topologies that get a legitimate exchange between investigation and misuse is 

a critical and productive technique that is broadly used as part of numerous calculations for 

every particle. Less association happens when the areas in the swarm are few. The smaller the 

neighbourhood, the slower the joining will be, in spite of the fact that it might enhance the 

nature of arrangements. For bigger neighbourhoods, the meeting will be quicker, however, 

there is a chance that occasional joining happens beforehand. The answer for this issue will be 

that the pursuit procedure will begin with smaller neighbourhood sizes and after that the 

estimate for smaller neighbourhoods is expanded over the long run. The worldwide best PSO 

is where the situation of each particle is influenced by the best-fit particle in the swarm. The 

individual best position has a similarity with the situation in space where the particle had the 

most diminutive motivator as controlled by the objective work of a minimization issue. In 

addition, the position yielding the most decreased motivator among all the individual bests is 

known as the overall best position. 

The nearby best particle swarm advancement technique is affected by checking its 

neighbourhood for every particle. The nearby learning in nature is shown by social data traded 

inside the area of the particle. For this situation, the speed of the particle will be computed. The 

quantity of particles in the swarm essentially influences the run-time of the calculation. In this 

way a harmony between the assortment of more particles and the speed of fewer particles must 

be found. Another essential factor in the joining rate of the calculation is the most extreme 

speed parameter (max V). This parameter confines the most extreme bounce that a particle can 

have in one stage, subsequently an expansive incentive for this parameter will bring about 

motion. However, a small esteem could cause the particle to be caught inside neighbourhood 

minima. Issues of swarm size is tended to in this examination (Pillay, 2008). The number of 

cycles to get a conventional result is furthermore issue subordinate. A too low number of cycles 

may stop the hunt methodology carelessly, while excessively generous emphases have the 

consequence of unnecessary included computational multifaceted nature and a need for extra 

time. A need to adjust various emphases is vital for this exploration.  

Speed segments are essential for refreshing the particle's speed. There are three terms for the 

particle's speed under the given conditions. This segment is an energy that avoids huge 

alterations in the course of the particles. It is predispositioned towards the present increasing 

speed coefficients. The increasing speed coefficients together with the arbitrary qualities keep 

up the stochastic impact of the psychological and social segments of the particle's speed 
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individually. The study shows how much certainty a particle has in itself, while demonstrating 

how much certainty a particle has in its neighbourhood. The inactivity weight supplants by 

modifying the impact of the past speeds. For instance, it controls the energy of the particle by 

measuring the commitment of past speed, and latency weight will be increased by the speed at 

the past time step, therefore in the worldwide best PSO the speed condition of the particle with 

idleness weight will change. >>>Speed clipping encourages particles to remain inside the limit 

and to make sensibly stride estimate keeping in mind the end goal to go over the inquiry space. 

Narrowing Coefficient, this development coefficient present another parameter known as the 

choking factor. The narrowing coefficient was created by Clerc. it is vital in control the 

investigation and misuse exchange off, to guarantee meeting conduct, and furthermore to reject 

the idleness weight and the most extreme speed  Correlation of enhanced PSO with the 

customary PSO, after all enhancements then the enhanced PSO will be contrasted with the 

customary PSO. The Benchmarks capacity will be utilized for Comparison ( Pillay, 2008). The 

GA is a usually utilized developmental calculation and has been chosen for correlation with 

the PSO in this examination. Particle swarm enhancement is like the Genetic Algorithm. The 

Genetic Algorithm has been well known in the enterprises on account of its capacity y to 

comprehends, simplicity of usage and its capacity to fathom profoundly non-direct, blended 

whole number enhancement issues that are run of the mill of complex designing systems ( 

Kachitvichyanukul, 2012). Other researchers in their research focus particle Swarm 

Optimization (PSO) based calculation is proposed for the advancement optimization of a PID 

controller. It is discovered that the system having the controller that is planned utilizing PSO 

method is stronger and shows better unsettling influence dismissal contrasted with the other 

procedure (Vincent & Nersisson, 2017). In 1900 numerous instrument organizations created 

programmed controller for the control procedure and for assembling businesses incorporates 

metals, mash, paper, stumble, control age, synthetic substances, refining and numerous more 

organizations. In 1907 C.J. Tagliabue Co did the principal establishment of the pneumatic 

programmed on-off systemtemperature and electrical controller in New York, in 1925-1935, 

75000 programmed controllers was sold in the USA. They were just three kinds of programmed 

controller in early long stretches of improvement in particular: electrical hand-off with solenoid 

worked valve-on-off, electrical transfer with engine worked valve-drifting (vital) control, 

Pneumatic hand-off with a stomach valve (P activity 1% - 5% PB). In 1920 Morris E. Leeds 

got a first patent for a pneumatic PI controller. The primary genuine PID-type controller in 

Control Engineering was produced by Elmer Sperry in 1911. The principal hypothetical 

investigation of a PID controller was distributed by Nicolas Minorsky in 1922, and it was 
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additionally connected to the programmed directing of boats. In 1935 S.D. Mitereff he was first 

to give the time area conditions of controllers and described them as P, PI, PD and so on in 

1934 Albert Callander distributed an inward Imperial Chemical Industries in England report 

called "Starter notes in programmed control". In 1936 and 1937 paper, Callander and co-

creators proposed graphs to permit tuning of PI and PID  

controllers for a scope of procedures with a deferral. In 1942 Ziegler and Nichols presented 

experimentation tuning strategy, this technique is the outstanding and the most generally 

utilized strategy for tuning of PID controllers is otherwise called consistent cycling or extreme 

pick-up tuning technique (O'Dwyer, 2005). In 1953 Cohen-Coon presented tuning decides that 

is second in popularity.it was eleven years after Ziegler and Nichols distributed was distributed 

when Cohen and Coon distributed their tuning method. Cohen-Coon tuning systems are suited 

to more broad extent of procedures. The Ziegler-Nichols rules function admirably just on forms 

where the dead time is not as much as a large portion of the length of the time consistent. In 

1959 Bailey Meter presented the main strong state electronic controller. In 1964 Taylor 

Instruments shows presented first single-circle advanced controller. In 1969 Honeywell 

presents their Vutronik procedure controller line with subsidiary activity ascertained from the 

negative of the procedure variable as opposed to specifically from the mistake. The main 

bundled computerize PI and PID was presented in 1976 by Rochester Instrument Systems 

presents Media. Throughout the years more strategies have been presented, including Tyreus-

Luyben technique, damped wavering strategy, C-H-R strategy, Fertik technique, IMC 

technique, Minimum mistake criteria Method, AMIGO Method, Lambda Tuning Method and 

Internal Model Control Method, their methodology are like  Ziegler– Nichol’s technique, yet 

the last controller settings are distinctive for a few techniques. At that point in 1992 Ciancone 

and Marline technique was created, this strategy enabled utilization of charts to fulfill the 

control objective. Numerous analysts center around various info different yield MIMO PID 

control systems Because more procedures are multi-input multi-output (MIMO) systems which 

require multi-input multi-output (MIMO) PID control methods to enhance their execution. As 

we probably are aware, MIMO PID controller configuration has created over various years. In 

1986, Luyben proposed a straightforward tuning technique for PID controllers in MIMO 

systems. (O'Dwyer, 2005). 

The systems can be paired using different way, in the below figures they is a 1-1/2-2 controller 

pairing and 1-2/2-1 controller pairing  
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FIGURE 2.9: 1-1/2-2 controller pairing (https//chemengr.ucb.edu/ch18-1-25-05) 

 

FIGURE 2.10: 1-2/2-1 controller pairing (https//chemengr.ucb.edu/ch18-1-25-05) 

 

FIGURE 2.11: 3x3 controller pairing (Devikumari &Vijayan, 2015) 
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2.3 PSO OVERVIEW 

The PSO algorithm uses the populace-based stochastic improvement calculation that was first 

discovered by Eberhart and Kennedy (1995). The social conduct of birds rushing for the same 

destination is what propelled the discovery. Reynolds mimicked the flying creatures for visual 

PC recreation purposes, seeing that the group gives off an impression of being under focal 

control. Reynolds continued to demonstrate this using three straightforward guidelines, in 

particular crash shirking, speed coordinating and herd cantering. Using these standards 

Reynolds indicated how the conduct of every specialist inside the group can be displayed with 

basic vectors. This trademark is one of the essential ideas of PSO. Boyd and Recharson (1985) 

inspected the dynamic procedure of people and built up the idea of individual learning and 

culture transmission. As per their assessment, individuals use two significant sorts of data in 

dynamic procedures, in particular their own understanding and other individuals’ encounters. 

The first entails that they have attempted the decisions and realized which state has been 

exceptional up until now, and they realize how great it was. The second entails that they know 

about how different operators around them have performed. At the end of the day, they know 

which decisions their neighbours have experienced as positive up until now and how positive 

the best example of the decision was. Every specialist's choices depend on his own 

understanding and others' arrangement. This brand name is another fundamental thought of 

PSO. Eberhart and Kennedy (1995) joined these musings, which resulted in the improvement 

of their PSO methodology and their clear speed and position computations that mimic standard 

multitude direct. In PSO, a great deal of self-created experts insert in the structure space 

towards the ideal plan over different cycles. Each administrator has a memory of its best 

position and the multitude's best plan. PSO resembles EC systems. It very well may be said 

that the two strategies are people-based and each individual is evaluated by a foreordained 

health work. The huge difference is that PSO is affected by the propagation of social lead rather 

than normal choice (Shi and Eberhart, 2001). The pseudo-code for confining particle speed is 

as follows (Kennedy et al., 2001):  

                                                            (2.20) 

 

                                                            (2.21) 

If v k+1>Vmax    then v k +1 = Vmax    

Else if  v k+1>-Vmax   then v k +1 = -Vmax    
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The best methodology for the remainder of the flock is to discover the nourishment is following 

Bird An and looking through its neighbouring region. The speed demonstrates the headings of 

the considerable number of particles in the following cycle. The nearby most popular position 

is the best arrangement that has been accomplished by every particle up until this point. The 

worldwide most popular position is the best arrangement among all the accomplished 

arrangements. The idleness speed part, nearby most popular position part, and worldwide most 

popular position and some portion of the speed mirror the participation and rivalry instrument 

in PSO. The speeding up factors handle the progression sizes of the particles in the following 

cycle. On the off chance that the quickening factors are excessively few, the particles might 

not have enough speed to arrive at the objective areas. On the off chance that the speeding up 

factors are too large, the particles may fly over the ideal worth. The fitting choice of increasing 

speed elements could abstain from catching into nearby insignificant neighbourhood and lessen 

the calculation time. The PSO calculation created by Kennedy and Eberhart was motivated by 

a reproduction of the unpredictable flight examples of a group of birds. Their underlying 

reproductions developed into a straightforward streamlining calculation that shows complex 

conduct. The PSO calculation comprises of an assortment of specialists, alluded to as particles, 

where every particle speaks to an applicant answer for the present enhancement issue. Every 

particle holds three snippets of data, to be specific its ebb and flow position, ebb and flow 

speed, and the best position it includes discovered inside the inquiry space. 

2.4 CONCLUSION 

This chapter has briefly given an overview and definition and explained the difficulties 

experienced with tuning a PID controller. It also delineated various strategies used to tune a 

PID. The section additionally laid out research recently done on PSO and the Ziegler-Nichols 

technique. It additionally featured segments that are critical to obtain PSO improvement and 

the advancement of PID tuning. The next section apply theories, contributions, speculations 

and commitment studied to obtain improved PSO. 
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CHAPTER 3 

3. PARTICLE SWARM OPTIMIZATION IMPROVEMENT 

In this chapter, a new PSO equation is proposed by combining two types of inertia weights. To 

find a solution for above-mentioned disadvantages, the linear decreasing inertia weight is 

combined with the chaotic inertia weight. The control factor is introduced as an exponential 

function. This research focuses on trying to minimize that negative influence on optimization 

strategies. An improved solution, namely the linearly chaotic particle swarm optimization 

(LCPSO) has been proposed to improve the speed of premature convergence. The improved 

equation is responding positively by getting the globally optimal solutions and fixing the 

problem of falling into local extremes. Combining the linear decreasing inertia weight and 

chaotic inertia weight has produced the best results as the two-inertia weight has difference 

properties have proven to be the best inertia weight strategy.  

The newly proposed equation was tested by solving the six well-known benchmark function 

problems and offering recommended solutions. The PSO optimization strategy is not 

dependent on any gradient data or angle data of the problem to be solved or the work to be 

enhance and optimized. It uses simple mathematical calculations and is less expensive, quicker, 

more efficient and progressively productive compared to other optimization methods. 

Moreover, there are fewer parameters to modify and adjust in PSO. That is the reason that the 

PSO algorithm is widely used to solve optimization problems. The particle swarm optimization 

equations are shown below. 

𝑉𝑖𝑑 = 𝑉𝑖𝑑 + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟2(𝑃𝑖𝑑 − 𝑋𝑖𝑑)                        (3.1) 

𝑋𝑖𝑑 =  𝑋𝑖𝑑 +  𝑉𝑖𝑑                           (3.2) 

Inertia weight is one of the very significant parameters for PSO and it plays a vital role during 

the procedures of providing balanced best fitness. The first PSO algorithm that was discovered 

by Eberhart and Kennedy in 1995 has no inertia weight. Then in 1998 Shi and Eberhart 

introduced PSO with inertia weight. Presently there are many different types of inertia weight 

concepts that have been introduced over the years, including chaotic inertia weight, random 

inertia weight strategy and linearly decreasing strategy, but the first inertia weight concept to 

be introduced was constant inertia weight. 
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The linearly decreasing inertia weight [3] is 

𝑤𝑙 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
∗ 𝑡                         (3.3) 

The chaotic inertia weight [4] is 

𝑤𝑐 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝐼𝑚𝑎𝑥−𝐼

𝐼_𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛 𝑧              (3.4) 

𝑧 = 4𝑧(1 − 𝑧)                  (3.5) 

If the inertia weight is introduced in (1), the equation becomes: 

𝑉𝑖𝑑 = 𝑤𝑉𝑖𝑑 + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟2(𝑃𝑖𝑑 − 𝑋𝑖𝑑)                               (3.6) 

3.1 IMPROVED PARTICLE SWARM OPTIMIZATION 

The improvement of PSO in this research is based on inertia weight. There are many types of 

inertia weight. In this research two of these inertia weights are combined and the control factor 

ɸ is introduced as an exponential function. Linearly decreasing inertia weight and chaotic 

inertia weight were chosen for the proposed new equation to improve PSO. According to past 

research the above inertia weight strategies are counted as two of the best in terms of less or 

no errors and best fitness solutions. The linear decreasing inertia weight can improve the 

convergence speed and chaotic inertia weight can enhance the ability to jump out of the local 

optima. The experiments, comparisons and conclusions of previous researchers state that 

chaotic inertia weight is the best strategy for better accuracy and the linear inertia weight 

strategy is best for better efficiency. 

Linear Decreasing Inertia Weight 

𝑤𝑙 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝐼_𝑚𝑎𝑥
∗ 𝑡                  (3.7) 

Chaotic inertia weight 

𝑤𝑐 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝐼𝑚𝑎𝑥−𝐼

𝐼_𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛 𝑧               (3.8) 

(8) z is logistic mapping 
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Improvement of inertia weight 

In the basic PSO, control parameters have a great impact on optimizing tuning systems, but if 

not executed properly the particles cannot converge and they become unstable and as a result 

the optimal solution of optimization problems cannot be obtained. The control system 

parameters are mostly chosen based on the researcher’s proven theory and practical and 

experience or experiments from engineers. The linearly chaotic inertia weight strategy is 

introduced on this research to improve the parameters and improve the ability of PSO to give 

the best fitness with less errors. Two combined inertia weight are chosen for this research based 

on the outcomes of past writers. They state that linearly and chaotic are counted as the best 

inertia weight so far and this proposed equation is not difficult to understand.   

The first step is to combine two inertia weights: 

𝑤 = 𝑤𝑐 + 𝑤𝑙                        (3.9) 

𝑤 =  [𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝐼_𝑚𝑎𝑥
𝑡] + [(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝐼𝑚𝑎𝑥−𝐼

𝐼𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛 𝑍]                                        

(3.10) 

The next step is finding a common lowest denominator for each equation: 

𝑤 = [
𝐼𝑚𝑎𝑥∗𝑤𝑚𝑎𝑥−(𝑤_𝑚𝑎𝑥−𝑤_𝑚𝑖𝑛)𝑡

𝐼_𝑚𝑎𝑥
+

(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)∗𝐼𝑚𝑎𝑥−𝐼+𝐼_𝑚𝑎𝑥∗𝑤𝑚𝑖𝑛 𝑍

𝐼_𝑚𝑎𝑥
]                    (3.11)                                        

The next step is finding the lowest common denominator for the whole equation: 

𝑤 =
𝐼𝑚𝑎𝑥∗𝑤𝑚𝑎𝑥−(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)𝑡+(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)∗𝐼𝑚𝑎𝑥−𝐼+𝐼𝑚𝑎𝑥∗𝑤𝑚𝑖𝑛 𝑍

𝐼_𝑚𝑎𝑥
              (3.12) 

The control factor is ɸ 

The next step is to introduce a control factor that will help to control the output fitness by 

varying it into the suitable values. The control factor symbol is ɸ for this research. The control 

factor is added as the exponential function, therefore: 

𝑤 becomes 𝑤ɸ and for the purpose of shortening the equation we let   𝑤_𝑚𝑎𝑥   be equal to 𝑤1  

and 𝑤_𝑚𝑖𝑛 be equal to 𝑤2 

Then the equation (3.12) becomes the equation (3.13): 
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𝑤ɸ = [
𝐼𝑚𝑎𝑥∗𝑤1−(𝑤1−𝑤2)𝑡+(𝑤1−𝑤2)∗𝐼𝑚𝑎𝑥−𝐼+𝐼𝑚𝑎𝑥∗𝑤2 𝑍

𝐼_𝑚𝑎𝑥
]

ɸ

                          (3.13) 

When simplifying the equation (3.13), one comes to: 

𝑤ɸ = [
𝐼𝑚𝑎𝑥(2𝑤1−𝑤2𝑍)−(𝑤1−𝑤2)𝑡−𝐼(𝑤1−𝑤2)

𝐼_𝑚𝑎𝑥
]

ɸ

                        (3.14) 

Then the equation (3.1) becomes the equation (3.15): 

𝑉𝑖𝑑 = 𝑤ɸ𝑉𝑖𝑑 + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟2(𝑃𝑖𝑑 − 𝑋𝑖𝑑)             (3.15) 

The proposed new equation was used in simulations on Matlab to check the fitness, then 

conclusion and recommendations are made based on the results. 

The proposed equation is named as follows: LCPSO 

3.2 METHODOLOGY 

The simulation for this research was taken using the MATLAB tool, they were repeated 30 

times for each equation. They are two traditional/ old equation use in this study and one new 

proposed equation. Results are shown in table 3.1 to table 3.6. The following steps were 

followed for simulation to test the new proposed equation of modified inertia weight using 

benchmark functions: Ackley, Rastrigin, Schwefel, Cigar, Rosenbrock, Sphere and Booth. 

The Proposed equation and the old traditional equation were tested using the following PSO 

parameters: c1 = c2 = 1.9- 2.2 (learner factor), Wmax = 1, Wmin = 0, I_max = 50, N=2 (number 

of dimensions), M=50 (number of particles). The varying parameters: Xmax = [30; 30], Xmin 

= [-30; -30] (boundary).  

The results of all the above-mentioned benchmark functions during the test for the new 

equation of inertia weight were then compared with the results that were obtained on the old 

equations. Analytical data and time intricate were determined. 
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3.3 SIMULATION 

The Table 3.1  shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate to 

zero. 

Table 3.1: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving the Ackley benchmark as a problem 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

Ackley 

Benchmark 

function 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

2.811𝑒−10 1.349𝑒−09 6.590𝑒−08 

2.248𝑒−10 1.959𝑒−09 4.384𝑒−08 

1.102𝑒−10 2.517𝑒−09 5.732𝑒−08 

4.093𝑒−10 4.790𝑒−09 1.804𝑒−08 

3.404𝑒−11 9.552𝑒−09 1.039𝑒−09 

4.666𝑒−11 6.009𝑒−09 2.344𝑒−09 

1.201𝑒−11 1.435𝑒−09 6.460𝑒−09 

1.477𝑒−11 4.228𝑒−09 2.234𝑒−09 

1.022𝑒−11 2.121𝑒−09 8.345𝑒−09 

2.500𝑒−11 9.651𝑒−09 2.443𝑒−09 

2.444𝑒−10 8.987𝑒−09 4.898𝑒−09 

2.226𝑒−11 7.004𝑒−09 4.223𝑒−09 

1.479𝑒−11 7.785𝑒−09 1.099𝑒−09 

2.641𝑒−10 6.002𝑒−09 1.343𝑒−09 

4.763𝑒−10 1.333𝑒−09 1.559𝑒−09 

9.326𝑒−10 0.224𝑒−09 3.347𝑒−09 

8.443𝑒−10 0.094𝑒−09 7.560𝑒−09 

1.435𝑒−10 1.764𝑒−09 3.323𝑒−08 

4.596𝑒−10 1.904𝑒−09 6.654𝑒−08 

4.783𝑒−10 4.731𝑒−09 5.089𝑒−08 

2.308𝑒−10 4.550𝑒−09 9.003𝑒−08 

1.393𝑒−10 3.667𝑒−09 3.332𝑒−08 

Ackley 

Benchmark 

function 

 

Traditional PSO 

 

0.00064 

 

0.00092 

 

0.0265 

 

0.00224 

 

0.00735 

 

0.0841 
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The Table 3.2 shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate 

to zero. 

Table 3.2: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving Cigar benchmark as a problem. 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

Cigar 

Benchmark 

function 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

 4.307𝑒−17 2.702𝑒−15 2.004𝑒−14 

2.684𝑒−17 1.379𝑒−15 2.004𝑒−14 

2.666𝑒−16 2.841𝑒−15 4.380𝑒−14 

4.378𝑒−17 1.168𝑒−15 1.333𝑒−14 

1.434𝑒−17 2.227𝑒−15 1.162𝑒−14 

3.456𝑒−17 2.002𝑒−15 3.336𝑒−13 

2.235𝑒−17 4.890𝑒−15 6.400𝑒−13 

1.444𝑒−16 3.443𝑒−15 2.259𝑒−14 

0.045𝑒−16 0.247𝑒−15 9.900𝑒−14 

8.566𝑒−16 4.909𝑒−15 3.433𝑒−13 

4.455𝑒−17 1.230𝑒−15 5.339𝑒−13 

3.327𝑒−16 1.556𝑒−15 5.688𝑒−13 

2.407𝑒−18 2.568𝑒−15 4.988𝑒−13 

4.561𝑒−17 2.337𝑒−15 2.515𝑒−13 

6.572𝑒−16 3.234𝑒−15 4.009𝑒−14 

      0.566𝑒−16 0.707𝑒−15 3.557𝑒−14 

8.773𝑒−17 2.434𝑒−15 6.089𝑒−14 

2.446𝑒−16 1.200𝑒−15 0.004𝑒−13 

4.006𝑒−16 2.340𝑒−15 8.400𝑒−13 

9.753𝑒−17 8.967𝑒−15 7.886𝑒−14 

3.008𝑒−20 5.256𝑒−15 0.193𝑒−13 

1.333𝑒−18 9.028𝑒−15 3.202𝑒−13 

Cigar 

Benchmark 

function 

 

Traditional PSO  

0.00549 0.00823 0.0834 

0.00694 0.00847 0.096 
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The Table 3.3 shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate to 

zero. 

Table 3.3: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving Booth benchmark as a problem 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

 

Booth 

Benchmark 

function  

 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

2.533𝑒−14 1.126𝑒−11 1.500𝑒−08 

4.218𝑒−14 3.381𝑒−11 3.004𝑒−08 

4.983𝑒−14 3.313𝑒−11 5.232𝑒−08 

6.723𝑒−14 2.941𝑒−10 1.890𝑒−08 

1.485𝑒−14 1.693𝑒−11 1.045𝑒−09 

7.006𝑒−14 0.608𝑒−10 2.367𝑒−09 

1.221 𝑒−14 0.565𝑒−11 6.422𝑒−09 

5.212𝑒−14 0.259𝑒−11 2.376𝑒−09 

2.908𝑒−14 5.231𝑒−11 8.389𝑒−09 

2.340𝑒−14 9.571𝑒−11 2.465𝑒−09 

2.349𝑒−14 4.207𝑒−11 4.890𝑒−09 

9.657𝑒−14 4.067𝑒−11 4.244𝑒−09 

1.479𝑒−14 3.115𝑒−10 1.007𝑒−09 

9.608𝑒−14 1.902𝑒−11 1.380𝑒−09 

4.003𝑒−14 1.399𝑒−11 1.993𝑒−09 

8.378𝑒−14 1.203𝑒−11 3.395𝑒−09 

8.123𝑒−14 1.033𝑒−11 7.588𝑒−09 

8.421𝑒−14 5.214𝑒−11 3.900𝑒−08 

4.533𝑒−14 5.004𝑒−11 6.602𝑒−08 

4.234𝑒−14 5.790𝑒−11 5.077𝑒−08 

7.708𝑒−14 5.440𝑒−10 9.074𝑒−08 

9.309𝑒−14 4.680𝑒−10 3.376𝑒−08 

Booth 

Benchmark 

function 

 

Traditional PSO 

0.00059 0.00829 0,0543 

0.00014 
0.00243 0.03430 
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The Table 3.4 shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate to 

zero. 

Table 3.4: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving Rastrigin benchmark as a problem. 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

 

Rastrigin 

Benchmark 

function  

 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

3.535𝑒−14 3.986𝑒−12 2.240𝑒−11 

5.319𝑒−14 1.466𝑒−12 2.365𝑒−11 

1.421𝑒−14 1.016𝑒−13 2.388𝑒−11 

7.105𝑒−14 5.187𝑒−11 2.786𝑒−10 

2.487𝑒−14 7.673𝑒−11 1.214𝑒−11 

7.055𝑒−14 3.469𝑒−11 0.897𝑒−10 

1.921 𝑒−14 3.521𝑒−13 0.099𝑒−11 

1.913𝑒−14 4.334𝑒−13 0.200𝑒−11 

1.806𝑒−14 5.900𝑒−13 1.988𝑒−11 

4.747𝑒−14 6.889𝑒−11 1.890𝑒−11 

4.147𝑒−14 7.254𝑒−11 1.266𝑒−11 

4.234𝑒−14 3.211𝑒−11 9.325𝑒−11 

9.575𝑒−14 3.190𝑒−12 9.111𝑒−10 

9.056𝑒−14 2.578𝑒−12 8.657𝑒−11 

0.945𝑒−14 2.457𝑒−11 1.990𝑒−11 

8.711𝑒−14 1.278𝑒−11 8.290𝑒−11 

8.212𝑒−14 4.907𝑒−11 7.077𝑒−11 

9.089𝑒−14 7.167𝑒−12 5.657𝑒−11 

9.090𝑒−14 8.122𝑒−12 5.213𝑒−11 

1.177𝑒−14 7.435𝑒−12 6.435𝑒−11 

1.432𝑒−14 6.564𝑒−12 6.466𝑒−10 

1.267𝑒−14 1.554𝑒−12 3.006𝑒−10 

 

Rastrigin 

Benchmark 

function 

 

Traditional PSO 

0.00349 0.00735 0,0471 

0.00447 0.00794 0.0822 

 

 



39 
 

The Table 3.5 shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate to 

zero. 

 Table 3.5: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving Sphere benchmark as a problem. 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

Sphere 

Benchmark 

function 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

3.027𝑒−20 3.735𝑒−17       3.903𝑒−15 

4.406𝑒−20  2.356𝑒−17  1.205𝑒−15  

1.317𝑒−20  4.573𝑒−17  2.003𝑒−15  

2.011𝑒−20  2.444𝑒−17  9.233𝑒−15  

3.404𝑒−20  5.744𝑒−17  3.772𝑒−15  

4.666𝑒−20  6.554𝑒−17  2.366𝑒−15  

1.201𝑒−19  9.645𝑒−17  6.430𝑒−15 

1.477𝑒−20  8.778𝑒−17  2.489𝑒−15  

1.022𝑒−20  4.321𝑒−17  8.980𝑒−15  

2.500𝑒−20  5.311𝑒−17  2.433𝑒−16  

2.444𝑒−20  5.527𝑒−17  4.668𝑒−15  

2.226𝑒−20  5.574𝑒−17  4.683𝑒−15  

1.479𝑒−20  6.055𝑒−17  1.098𝑒−15  

2.641𝑒−20  2.432𝑒−18  1.113𝑒−15  

4.763𝑒−20  2.273𝑒−17 1.019𝑒−15  

9.326𝑒−20  1.034𝑒−17  3.777𝑒−15  

8.443𝑒−20  3.334𝑒−17  7.889𝑒−15  

1.435𝑒−20  6.734𝑒−17  3.804𝑒−15  

4.596𝑒−20  2.334𝑒−17  6.922𝑒−15  

4.783𝑒−20  5.711𝑒−17  5.676𝑒−15  

2.308𝑒−20  3.930𝑒−17  9.173𝑒−17  

1.393𝑒−20  6.637𝑒−18  3.562𝑒−15  

Sphere 

Benchmark 

function 

 

Traditional PSO 

0.00029 0.0005 0.047 

0.00014 
0.03430 0.554 
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The Table 3.6 shows the Matlab simulation results of best fitness for the new proposed PSO 

equation and the results of the old traditional PSO. The comparison shows that the new 

proposed equation is having the best results for best fitness. The ideal fitness is approximate to 

zero. 

Table 3.6: Comparison between results for the new proposed PSO equation and the 

results for traditional PSO equation, solving Schweffel benchmark as a problem. 

Problem Method Best  Mean Worst 

 

 

 

 

 

 

 

 

 

 

Schweffel 

Benchmark 

function 

 

 

 

 

 

 

 

 

 

 

New Proposed PSO 

(LCPSO) 

4.188𝑒−10  2.022𝑒−09 0.879𝑒−08 

7.223𝑒−10  2.976𝑒−09  0.097𝑒−08  

3.325𝑒−10  2.457𝑒−09  4.576𝑒−08  

2.009𝑒−10  4.332𝑒−09  4.845𝑒−08  

1.877𝑒−11  4.369𝑒−09  1.009𝑒−09 

4.439𝑒−11  6.088𝑒−09  1.223𝑒−09  

 2.280𝑒−11  6.670𝑒−09  6.998𝑒−09 

2.477𝑒−11  6.007𝑒−09  6.290𝑒−09  

2.787𝑒−11  2.789𝑒−09  6.513𝑒−09  

2.008𝑒−11  0.424𝑒−09  0.089𝑒−09  

2.213𝑒−10  0.900𝑒−09  0.501𝑒−09  

2.235𝑒−11  1.187𝑒−09  0.651𝑒−09  

4.909𝑒−11  7.541𝑒−09  8.078𝑒−09  

4.320𝑒−10  7.087𝑒−09  9.457𝑒−09  

5.554𝑒−10  7.343𝑒−09 9.511𝑒−09  

9.543𝑒−10  0.679𝑒−09  5.320𝑒−09  

9.898𝑒−10  0.127𝑒−09  4.871𝑒−09  

9.990𝑒−10        0.763𝑒−09  4.300𝑒−08  

0.346𝑒−10  0.332𝑒−09        6.124𝑒−08  

4.345𝑒−10  1.788𝑒−09  5.0453𝑒−08  

0.212𝑒−10  1.436𝑒−09  3.990𝑒−08  

5.345𝑒−10  1.655𝑒−09  3.256𝑒−08  

Schweffel 

Benchmark 

function 

 

Traditional PSO 

0.00149 0.00735 0.0339 

0.000294 
0.00847 0.5572 
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The figure 3.1 shows the best fitness for new proposed equation solving the Ackley problem, 

it shows very good solution.   

 

Figure 3.1: Ackley best fitness 

 

The figure 3.2 shows the best fitness for new proposed equation solving the Booth problem, it 

shows very good solution.   

 

Figure 3.2: Booth best fitness 

 

The figure 3.3 shows the best fitness for new proposed equation solving the Cider problem, it 

shows very good solution.   
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Figure 3.3: Cider best fitness 

 

The figure 3.4 shows the best fitness for new proposed equation solving the Cider problem, it 

shows very good solution. 

 

Figure 3.4: Cider best fitness 

The figure 3.5 shows the best fitness for new proposed equation solving the Schweffell 

problem, it shows very good solution.   

 

Figure 3.5: Schweffel best fitness 
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The figure 3.6 shows the best fitness for new proposed equation solving the Sphere problem, 

it shows very good solution. 

 

Figure 3.6: Sphere best fitness  

The figure 3.7 shows the Ackley benchmark function in the form of 2 dimension for new 

proposed equation, it shows very good Ackley shape. 

 

Figure 3.7: Ackley function in 2 dimensions 

 

The figure 3.8 shows the Booth benchmark function in the form of 2 dimension for new 

proposed equation, it shows very good booth shape. 
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Figure 3.8: Booth function in 2 dimensions 

The figure 3.9 shows the Ciger benchmark function in the form of 2 dimension for new 

proposed equation, it shows very good Ciger shape. 

 

 

Figure 3.9: Cigar function in 2 dimensions 

 

The figure 3.10 shows the Rastrigin benchmark function in the form of 2 dimension for new 

proposed equation, it shows very good Rastrigin shape. 
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Figure 3.10: Rastrigin function in 2 dimensions 

 

The figure 3.11 shows the Schweffel benchmark function in the form of 2 dimension for new 

proposed equation, it shows very good Schweffel shape. 

 

 

Figure 3.11: Schweffel function in 2 dimensions 

3.4 RESULTS AND DISCUSSION 

The target of the exploration was to improve the PSO calculation to address its inconveniences, 

for example, falling into nearby limit esteem, the issue of not getting an around the world ideal 

arrangement, and the issue of tracking down the best fitness. The new PSO condition was made 

by joining two inertia weights, specifically linear decreasing inertia weight and chaotic inertia 

weight. After the blend of the two latency loads, the control factor was consolidated to help 

control the yield wellness by fluctuating it into reasonable qualities. The control factor symbol 

is ɸ for this research. The control factor was added as the exponential function capacity. In this 

exploration numerous computations were done, an examination of the result was done and 
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numerous re-enactments were finished utilizing the programming language called Matlab. 

Eight distinctive notable benchmark issues were embraced as a testing issue for this 

examination to see the impact that the proposed equation for inertia weight has on the PSO 

execution. The benchmark capacities were the Ackley, the Rastrigin, the Schweffel, the Cigar, 

the Sphere, and the Booth function, and this benchmark was tried during the reproductions 

utilizing Matlab. The outcomes are shown in Tables 3.1 to 3.6, and Figure 3.1 to 3.11. The 

wellness of the new proposed condition PSO calculation meets quicker and it has higher 

precision. The tables and diagrams likewise show the correlation between the new proposed 

condition and the old condition. The ideal best fit is zero. It tends to be noticed that the 

outcomes for the new proposed PSO condition are near zero contrasted with the outcomes for 

the old traditional PSO condition as shown in the tables and diagrams referenced previously. 

3.5 CONCLUSION 

This research proposes a new equation for the PSO algorithm. The proposed algorithm is the 

combination of linearly decreasing inertia weight and chaotic inertia weight, after which a 

control factor was introduced as an exponential factor. It was very useful for simulations as it 

is adjustable. The Matlab simulation results of the experiments show that the new proposed 

equation converges faster and it gives the best fitness compared to linear inertia weight and 

oscillating inertia weight. 

CHAPTER 4 

4 MIMO PROPORTIONAL-INTEGRAL-DERIVATIVE TUNING BASED ON PSO 

This chapter proposes a new type of MIMO PID controller tuning based on the improved PSO 

(LCPSO) that was developed using the linearly decreasing inertia weight combined with the 

chaotic inertia weight. A control factor was introduced as an exponential function. In this 

research the proposed improved PSO is then used to optimize the PID to minimize the rise 

time, settling time, time delays, steady state error, and the big overshoot when tuning the 

MIMO PID controller. The systems performance using experimental trial and error method is 

not efficient, so in this research the systems are improved to be more efficient. The results for 

MIMO PID-based improved PSO (LCPSO) tuning is then compared with the results of PID 

without optimization methods. 

4.1 PARTICLE SWARM OPTIMIZATION 
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The PSO optimization technique is not dependent on any information data or angle data of the 

issue to be addressed or the work to be improved and upgraded. It uses numerical computations. 

PSO is more affordable or moderate, speedier, increasingly proficient and dynamically 

beneficial compared to other enhancement techniques. There are very few parameters to change 

and modify in the PSO. Despite numerous benefits, the PSO has it hindrances, it effectively 

falls into nearby outrageous value and it cannot reach a universal ideal optimal solution. The 

PSO equations are demonstrated as follows. 

𝑉𝑖𝑑 = 𝑉𝑖𝑑 + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟2(𝑃𝑖𝑑 − 𝑋𝑖𝑑)                          (4.1) 

𝑋𝑖𝑑 =  𝑋𝑖𝑑 +  𝑉𝑖𝑑                                 (4.2) 

The PSO parameters used in this examination included: C1- learning factor 1, C2 - global factor 

2, Wmax - maximum weight, Wmin - minimum weight, Imax - maximum iteration, N - number 

of iterations, M - number of particles, Run – number of test time, Xmax – boundary, Z- logistic 

mapping, Xmin – boundary, ɸ - control factor, and w- inertia weight. 
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Figure 4.1: PSO initialization 

Inertia weight is among the boundaries for PSO that influence the imperative basic action 

during system adjustment. The principal PSO strategy that was founded in 1995 had no inertia 

weight. In 1998 PSO with the inertia weight was introduced. In recent years there have been 

many different types of PSOs with different parameters. 

The introduction of the control factor ɸ was explained in Chapter 3, as was the detailed step-

by-step calculation towards equation 5.  
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Then the new proposed equation for inertia weight is as follows: 

𝑤ɸ = [
𝐼_𝑚𝑎𝑥∗𝑤1−(𝑤1−𝑤2)𝑡+(𝑤1−𝑤2)∗𝐼𝑚𝑎𝑥−𝐼+𝐼_𝑚𝑎𝑥∗𝑤2 𝑍

𝐼_𝑚𝑎𝑥
]

ɸ

                           (4. 3) 

Simplifying the equation (4.3) results in equation (4.4) 

𝑤ɸ = [
𝐼_𝑚𝑎𝑥(2𝑤1−𝑤2𝑍)−(𝑤1−𝑤2)𝑡−𝐼(𝑤1−𝑤2)

𝐼_𝑚𝑎𝑥
]

ɸ

                           (4.4) 

Then equation (4.1) becomes equation (4.5) 

𝑉𝑖𝑑 = 𝑤ɸ𝑉𝑖𝑑 + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑) + 𝑐2𝑟2(𝑃𝑖𝑑 − 𝑋𝑖𝑑)                           (4.5) 

The new implemented equation is then used to tune the MIMO PID1 and PID2 parameters 

using Matlab.   

4.2 TUNING OF MIMO PID CONTROLLER SYSTEM BASED ON  LCPSO 

The transfer function design for the MIMO system is as follows:  

 

Figure 4.2: MIMO PID control system based on PSO 

In Figure 4.2, 𝑉1  and 𝑉2  are inputs and 𝐻1  and 𝐻2 are outputs, 𝐺𝑐(𝑠) is the first PID 1 and 

𝐺𝑐1(𝑠) is the second PID 2, and the optimization algorithm LCPSO is P. the sub-plant A is 

𝐺11 , sub-plant B is 𝐺12 , sub-plant C is 𝐺21 , sub-plant D is 𝐺22  

The equations from Figure 4.2 are as follows: 
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𝐺(𝑠) is the transfer function matrix for the plant and is written as follows: 

𝐺(𝑠) = [
𝐺11(𝑠)        𝐺12(𝑠)

𝐺21(𝑠)       𝐺22(𝑠)
]                                                             (4.6) 

The equations for PID controllers 𝐺𝑐1(𝑠) and 𝐺𝑐2(𝑠) are as follows: 

PID 1 

𝐺𝑐1 = 𝐾𝑝1(1 +  
1

𝐾𝑖1𝑠
+ 𝐾𝑑1𝑠)                              (4.7) 

PID 2 

𝐺𝑐2 = 𝐾𝑝2(1 +  
1

𝐾𝑖2𝑠
+ 𝐾𝑑2𝑠)                              (4.8) 

The equation for a close loop showing the feedback is 

𝐻1(𝑠) =
𝐺𝐶1𝐺11

1+𝐺𝐶1𝐺11
𝑉1(𝑠) 𝐻1(𝑠) =

𝐺𝐶2𝐺12

1+𝐺𝐶2𝐺12
𝑉2(𝑠)                              (4.9)                         

𝐻2(𝑠) =
𝐺𝐶1𝐺21

1+𝐺𝐶1𝐺12
𝑉1(𝑠) 𝐻2(𝑠) =

𝐺𝐶2𝐺22

1+𝐺𝐶2𝐺22
𝑉2(𝑠)                                             (4.10) 

𝐺𝑐(𝑠) is the transfer function matrix for 𝐺𝑐1(𝑠) and 𝐺𝑐2(𝑠). 

𝐺𝑐(𝑠) = [
𝐺𝑐1(𝑠)     0

0   𝐺𝑐2(𝑠) 
]                                       (4.11) 

𝐻(𝑠)

𝑉(𝑠)
= 𝐺𝑐(𝑠)𝐺(𝑠)                            (4.12) 

𝐻(𝑠)

𝑉(𝑠)
=[

𝐺𝑐1(𝑠) 0

0 𝐺𝑐2(𝑠) 
] [

𝐺11(𝑠) 𝐺12(𝑠)

𝐺21(𝑠) 𝐺22(𝑠)
]                                      (4.13) 

These tuning methods for the MIMO PID controllers lead to setting the values of the P, I, and 

D parameters. The tuning of the PID controller is done by adjusting the gains of the Kp, Ki, 

and Kd parameters. The required performance specifications such as stability margins, dynamic 

response for both transient and steady state are incurred by the best set of parameters. There 

are many criteria that can be used to find the best response of the control system. 

The integral of absolute error (IAE) is written as:  
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𝐼𝐴𝐸 = ∫ |𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡
∞

0
= ∫ |𝑒(𝑡)|𝑑𝑡

∞

0
                         (4.14) 

The integral of square of error (ISE) can be written as:  

𝐼𝑆𝐸 = ∫ 𝑒2∞

0
(t)dt                           (4.15) 

The integral of time multiplied by square of error (ITSE) is written as:  

𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
∞

0
                            (4.16) 

Integral of time multiplied by the absolute of error (ITAE) can be given by:  

𝐼𝑇𝐴𝐸 = ∫ 𝑡𝑣(𝑡)𝑑𝑡
∞

0
                            (4.17) 

The outcomes demonstrate the PID tuning based on PSO to be an improved approach (16). PID 

is the most favoured controller for many reasons, including its straightforward algorithm and 

its capacity to adjust to and extensive variety of uses where it can guarantee brilliant control 

exhibitions the micro processing that has been done has highlighted PID controllers, for 

example, programmed automatic tuning, pick up planning and nonstop adjustment. PSO 

requires crude scientific and mathematical administrators, which makes it worthwhile as far as 

the accessibility of bigger memory and higher speed. It has effectively been connected to a 

wide assortment of issues, for example neural systems, auxiliary advancement, share topology 

improvement, and fluffy systems. When enhancing the PSO, the expectation is to make social 

weight expanded while latency weight diminishes. Little social weight influences the 

worldwide best position to have a minor effect on the speed refreshing. In this research the 

MIMO PID controller tuning is based on the LCPSO. 

4.3 METHODOLOGY 

This chapter explains the step by step of tuning the MIMO PID controller. The system with 

two loops, four plants, and two PIDs was designed in the tool called Simulink as shown in 

figure 4.4. The PSO was coded on the tool called Matlab, then the Simulink was then called 

from Matlab as the function using sim (). The process was repeated multiple times and results 

are presented in the form of tables. 
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The steps below were followed to tune a MIMO PID controller based on the new proposed 

equation for PSO. The process of calling the Simulink on Matlab using the sim command was 

used in this research 

Stage 1: The PSO parameters were as follows: C1 = C2 = 1.9-2.2, Wmax = 1, Wmin = 0, 

I_max = 50, N = 2, M =50. The changing parameters were: Xmax = [30; 30], Xmin = [-30; - 

30] and ɸ =-10  

Stage 2: Initialize the particle position and velocity. 

Stage 3: Call the function and select the particles’ singular best value for every generation.  

Stage 4: Select the particles’ global best. The particles close to the objective among all the 

particles, is acquired by contrasting and comparing all the individual best qualities.  

Stage 5: Update pbest, gbest in the speed per second and acquire the new velocity.  

Stage 6: Find the best optimal arrangement with a minimum ISE, IAE, ITAE and ITSE from 

the refreshed new speed and position scientific information and time unpredictable is resolved. 

Call Simulink model using Sim() function. 
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Figure 4.3: Flowchart for PSO-PID system 

4.4 SIMULATION 

𝐺(𝑠) is the given matrix for sub-system A, sub-system B, sub-system C and sub-system D, 

which were used for Matlab simulations. 

𝐺(𝑠) =[

1

𝑠2+20𝑠+15

1

𝑠2+21𝑠+17
1

𝑠2+25𝑠+19

1

𝑠2+28𝑠+21

]                                                                      (4.18) 

In the following equation 𝐻(𝑠) is the output and 𝑉(𝑠) is the input of the system in Figure 4.3.  

𝐻1 = (𝐾𝑝 (1 +  
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) + 𝑃) [

1

𝑠2+20𝑠+15
𝑉1(𝑠) + (

1

𝑠2+21𝑠+21
𝑉2(𝑠)]                   (4.19) 
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𝐻2 = (𝐾𝑝1 (1 +  
1

𝑇𝑖1𝑠
+ 𝑇𝑑1𝑠) + 𝑃) [

1

𝑠2+25𝑠+19
𝑉1(𝑠) + (

1

𝑠2+28𝑠+21
𝑉2(𝑠)]                         (4.20) 

The system in figure 4.5 were used for Matlab simulation 

The model was designed using the Simulink with PID1 and PID2 and four plants. There were 

two loops for the model, loop 1 and loop 2. The model is called on the Matlab using the sim() 

function. The below table gives the Matlab simulation results for step response, showing 

overshoot, rise time, settling time and steady state, 

Figure 4.4: Simulink model for MIMO 

Figure 4.5: Simulink model for PID1 
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Figure 4.6: Simulink model for PID2 

Table 4.1  shows the results for tuned PID1 parameters Kp, Ki and Kd. The model was designed 

using the Simulink with PID1 and PID2 and four plants. There were two loops for the model, 

loop 1 and loop 2. The model is called on the Matlab using the sim() function. Below table 4.1 

gives the Matlab simulation results for the MIMO PID controller based on improved PSO. 

parameters. 

Table 4.1: Controller parameters for PID1 tuning based on the new proposed PSO 

(LCPSO).  

Parameters  Tuned values 

(First run) 

Tuned values 

(Second run) 

Tuned values 

(Third run) 

Tuned values 

(Fourth run) 

Average 

values 

𝐾𝑝 33.6248 37.7335 49.9390 41.9334 40.8077 

𝐾𝑖    22.3180 20.3240 7.3421 5.3474 13.8329 

𝐾𝑑     0.0612 0.07120 1.1505 1.0195 0.5756 

 

 

 

Table 4.2  shows the results for tuned PID2 parameters Kp1, Ki1 and Kd1. The model was 

designed using the Simulink with PID1 and PID2 and four plants. There were two loops for 
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the model, loop 1 and loop 2. The model is called on the Matlab using the sim() function. Below 

table 4.1 gives the Matlab simulation results for the MIMO PID controller based on improved 

PSO. parameters. 

Table 4.2: Controller parameters for PID2 tuning based on the new proposed PSO 

(LCPSO).  

Parameters 

(PID)  

Tuned values 

(First run) 

Tuned values 

(Second run) 

Tuned values 

(Third run) 

Tuned values 

(Fourth run) 

Average 

values 

𝐾𝑝1 52.22 45.96 43.60 41.97 45.9375 

𝐾𝑖1    9.31 8.35 8.21 7.91 8.4452 

𝐾𝑑1     0.45 1.56 0.5 1.77 1.0744 

 

The Table 4.3 gives the Matlab simulation results for step response, showing overshoot, rise 

time, settling time and steady-state. 

Table 4.3: Simulation results for PID and the PID-LCPSO for output 1 

Tuning Method PID PID-LCPSO 

Overshoot (%) 5.02 0.12 

Rise Time 2.41 0.15 

Settling time 4.33 0.227 

steady state  0.91 1 
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The Table 4.4 gives the Matlab simulation results for step response, showing overshoot, rise 

time, settling time and steady state. 

Table 4.4: Simulation results for PID and the PID-LCPSO for output 1 

Tuning Method PID PID-LCPSO 

Overshoot (%) 4.25 0.00 

Rise Time 2.38 0.175 

Settling time 4.27 0.288 

steady state 0.98 1 

The Table 4.5 gives the Matlab simulation results for step response, showing overshoot, rise 

time, settling time and steady state. 

Table 4.5: Simulation results for PID and the PID-LCPSO for output 2 

Tuning Method PID PID-LCPSO 

Overshoot (%) 2.1440 0.00 

Rise Time 0.4509 0.141 

Settling time 0.6166 0.364 

steady state 0.99 1 
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The Table 4.6 gives the Matlab simulation results for step response, showing overshoot, rise 

time, settling time and steady state. 

Table 4.6: Simulation results for PID and the PID-LCPSO for output 2 

Tuning Method PID PID-LCPSO 

Overshoot (%) 3.40 0.022 

Rise Time 2.59 0.188 

Settling time 4.33 0.238 

steady state 0.97 1 

 

The  figure 4.7 present the results from Matlab, showing the results for systems without a PID. 

They give the results of PID controller tuning without any optimization method and it also 

shows PID controller systems tuning based on PSO. It should be noted that the results show a 

great difference in terms of overshooting, rise time, settling time and steady state error. 

 

Figure 4.7: System step response result for PID tuning based on LCPSO optimization 
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The  figure 4.8 present the results from Matlab, showing the results for systems without a PID. 

They give the results of PID controller tuning without any optimization method and it also 

shows PID controller systems tuning based on PSO. It should be noted that the results show a 

great difference in terms of overshooting, rise time, settling time and steady state error. 

 

Figure 4.8: System step response result for PID tuning based on LCPSO optimization 

The  figure 4.9 present the results from Matlab, showing the results for systems without a PID. 

They give the results of PID controller tuning without any optimization method and it also 

shows PID controller systems tuning based on PSO. It should be noted that the results show a 

great difference in terms of overshooting, rise time, settling time and steady state error. 

 

Figure 4.9: Showing MIMO PID tuning in progress. One output is stable and the other is 

still searching for best results. 
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The  figure 4.10 present the results from Matlab, showing the results for systems without a 

PID. They give the results of PID controller tuning without any optimization method and it 

also shows PID controller systems tuning based on PSO. It should be noted that the results 

show a great difference in terms of overshooting, rise time, settling time and steady state error. 

 

Figure 4.10: Output step response results 

 

4.5 RESULTS AND DISCUSSION 

The new proposed equation achieved in chapter 3 was utilized to achieve the next main 

objective. The objective for this chapter was to tune MIMO PID controller systems using the 

improved PSO in order to solve the problem of high oscillations in a step response 

characteristic such as rise time, settling time, time delays, steady-state error, and big overshoot. 

The combination of the Matlab code and the Simulink model was used to tune the PID 

controller parameters. Figure 4.4 shows the Simulink model that was created using the Matlab 

file. The new improved PSO was used to tune the parameters of the PIDs. Tables 4.1 to 4.6 

show the results for the PID1 controller and the PID2 controller’s tuned parameters. The two 

PIDs are used to optimize the four different plants that make one system. It is evident that the 

rise time, settling time, time delays, and steady-state error are minimized when tuning the 

MIMO PID controller based on the new proposed LCPSO algorithm. The results are also 

displayed in Figures 4.7 to 4.10, where the curves and graphs show the better outcome curve.  
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4.6 CONCLUSION 

In this research, the MIMO PID controller was tuned based on a newly proposed PSO 

algorithm. The newly proposed PSO is based on combined inertia weight. The optimized 

Matlab results less rise time, settling time, time delays and no steady state error. The 

comparison between PID-LCPSO execution and the PID is presented in the tables to show the 

advantage of PID tuning using a LCPSO-based improvement approach.
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CHAPTER 5 

5.1 RESULTS AND DISCUSSION 

The objective of the research was to improve the PSO algorithm to address its disadvantages, 

such as falling into local extreme value, the issue of not obtaining a globally optimal solution 

and the problem of finding the best fit. The new PSO equation was created by combining two 

inertia weights, namely linear decreasing inertia weight and chaotic inertia weight. After the 

combination of the two inertia weights, the control factor was incorporated to help control the 

output fitness by varying it into the suitable values. The control factor symbol is ɸ for this 

research. The control factor was added as the exponential function. In this research many 

calculations were done, a comparison of result was done and many simulations were done using 

the programming language called Matlab. Eight different well-known benchmark problems 

were adopted as a testing problem for this research to see the influence that the proposed 

equation for inertia weight has on the PSO performance. The benchmark functions were the 

Ackley function, the Rastrigin function, the Schweffel function, the Cigar function, the sphere 

function, and the Booth function and this benchmark was tested during the simulations using 

Matlab. The results are shown in Tables 3.1 to 3.6, and Figure 3.1 to 3.11. The fitness of the 

new proposed equation PSO algorithm converges faster and it has a higher accuracy. The tables 

and graphs also show the comparison of the new proposed equation and the old equation. The 

ideal best fit is zero. It can be noted that the results for new proposed PSO equation are very 

close to zero compared to the results for old PSO equation as displayed in the tables and graphs 

mentioned above. 

Another main objective of this research was to tune MIMO PID controller systems using the 

improved PSO in order to solve the problem of high oscillations in a step response 

characteristic such as rise time, settling time, time delays, steady state error and big overshoot. 

The combination of the Matlab code and the Simulink model was used to tune the PID 

controller parameters. Figure 4.4 shows the Simulink model that was created using the Matlab 

file. The new improved PSO was used to tune the parameters of the PIDs. Tables 4.1 to 4.6 

show the results for the PID1 controller and the PID2 controller’s tuned parameters. The two 

PIDs are used to optimize the four different plants that make one system. It is evident that the 

rise time, settling time, time delays and steady state error are minimized when tuning the 

MIMO PID controller based on new proposed LCPSO algorithm. The results are also displayed 

in Figure 4.7 to 4.10, where the curves and graphs show the better outcome curve.  
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5.2 CONCLUSION  

This research has proposed a new equation for a PSO algorithm. The proposed algorithm is the 

combination of linearly decreasing inertia weight and chaotic inertia weight, after which a 

control factor was introduced as an exponential factor. This was very useful for simulations as 

it is adjustable. The Matlab simulation results of the experiments show that the new proposed 

equation converges faster and it gives the best fit compared to linear inertia weight and 

oscillating inertia weight and other old equations. The MIMO PID controller system that 

consists of four plants was tuned based on the new proposed equation for the PSO algorithm 

(LCPSO). The optimized results show less rise time, settling time, time delays and steady state 

compared to the systems that are tuned using the old equations. The exploration was directed 

at considering the impact of using the PSO calculation as an instrument for MIMO PID tuning. 

The results obtained in the examination reveal that the PSO tuning output improved reactions 

and can be applied to various system models in the measure control industry. 

5.3 FUTURE WORK 

More study can be done to improve the optimization algorithm, for example, the combination 

of Particle swarm optimization, the generic algorithm, differential evolution, and other machine 

learning based on multi-objective evolution algorithm to autotune the parameters of even 

bigger systems. Moreover, Research can also be done in order to apply new ideas found in 

other areas of science or technologies to optimize the performance, minimize the cost or reduce 

the time related to the accomplishment of optimal solutions. It can be advantageous to 

interchange the different abilities of the PSO, generic algorithm, and differential evolution to 

improve proficiency and searchability in other to tune more complicated control systems. 
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APPENDICES 

 

APPENDIX A 

MATLAB CODES 

PSO  CODE 

 

tic     

    clear all; 

    clc; 

  

    c1=2;                       %%%%%%%% Learning factor  

    c2=2;                       %%%%%%%% Golbal Learning 

factor  

    W_max=1;                    %%%%%%%% Maximum weight 

    W_min=0;                    %%%%%%%% Minimum weight 

    I_max=1;                    %%%%%%%% Maximum iteration 

    N=6;                        %%%%%%%% Numer of 

dimension 

    M=50;                       %%%%%%%% Number of 

Particle 

    Run=1;                      %%%%%%%% The number of 

test time 

    X_max= [100,30,2,100];      %%%%%%%% Boundary 

    X_min= [0,0,0,0,0,0];       %%%%%%%% Boundary 

    V_max=1; 

    Z=0.75; 

    I=5; 

    Func=@matlab_sim_project; 

  

    for r=1:Run 

        % Initialize 

        for c=1:M 

             for y=1:N 
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                 x(c,y)=X_min(y)+rand()*(X_max(y)-

X_min(y)); 

                 s(c,y)=rand()*(X_max(y)-X_min(y)); 

             end 

             Fit(c,:)=Func(x(c,:)); 

             Pb(c,:)=x(c,:);         

        end 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%global 

best 

        

        [gb1,ind1]=sort(Fit); 

        Gb=x(ind1(1,1),:); 

         

        for t=1:I_max  

             

            t=t+1;  

     

            for c=1:M 

                 

Update the Pb 

                 

                 

                if Func(x(c,:))<Fit(c) 

                   Fit(c)=Func(x(c,:)); 

                   Pb(c,:)=x(c,:); 

                end 

                 

Update the Gb 

                 

                 

                if Func(Gb)>Fit(c)        

                   Gb=Pb(c,:); 
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                end 

                 

Update the velocity 

Calculate the weighting function 

                 

                n=-10;      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%control factor 

                w=[[I_max*(2*W_max-W_min*Z)-(W_max-

W_min)*t-I*(W_max-W_min)]/I_max]^n; 

                 

                s(c,:)=w*s(c,:)+c1*rand*(Pb(c,:)-

x(c,:))+c2*rand*(Gb-x(c,:)); 

                 

                 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Check the velocity 

                 

                for y=1:N 

                    if s(c,y)>V_max 

                       s(c,y)=V_max; 

                    elseif s(c,y)<-V_max 

                       s(c,y)=-V_max; 

                    end 

                end 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Update the position 

                 

                 

                x(c,:)=x(c,:)+s(c,:); 

  

            end 
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            Y=Func(Gb); 

            % Plot, just for look 

            figure(1); 

            plot(t,Y); 

            xlabel('Iteration'); 

            ylabel('Fitness'); 

            title(sprintf('Cider Best Fitness: %.15f',Y)); 

            grid on; 

            hold on; 

             

         

   dt=0.01; 

tf=20; 

t=(0:dt:tf)'; 

D=numel(t); 

y=zeros(D,7); 

for y=1:2 

    x=[zeros(y+1,1);1]; 

    for k=1:D 

  

        x=2*x; 

        y(k,y)=x(1); 

    end 

end 

plot(t,y,'Linewidth',2); 

grid on 

title('ITAE Step Response');legend('OUTPUT 1','OUTPUT 

2');figure;  

hold 

%} 

  

        end 

        figure(2); 

        PlotC(); 
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        hold on; 

        scatter3(Gb(1),Gb(2),Y,'fill','ro'); 

        hold off; 

    end 

    toc 

  

 

 

 

 

 

BENCHMARK 

 

Sphere function 

function y = Sphere (x) 

     

      n = 2; 

      sp = 0; 

     

       

      for i = 1:n 

          sp = sp + x(i)^2; 

          

      end 

       

      y = sp; 

 

 

 

function PlotS() 

  

[X,Y] = m(-110:0:10,-110:0:10); 

N = size(X,1); 
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for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = Sphere(z); 

    end 

end 

  

figure(2); 

mesh(X,Y,Z); 

title('Sphere Function in 2 dimension'); 

axis([-5.5 5.5 -5.5 5.5 0 9]); 

  

end 

 

 

 

[X,Y] = meshgrid(-10:0.03:10,-10:0.03:10); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = Sphere(z); 

    end 

end 

  

figure(2); 

mesh(X,Y,Z); 

title('Sphere Function in 2 dimension'); 

axis([-5.5 5.5 -5.5 5.5 0 9]); 

  

Schweffel function 
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function varargout = schweffel(X) 

% Schweffel function 

    % if no input is given, return dimensions, bounds and 

minimum 

    if (nargin == 0) 

        varargout{1} = 2;  % # dims 

        varargout{2} = [-500 -500]; % LB 

        varargout{3} = [+500 +500]; % UB 

        varargout{4} = [4.209687467626741e+002    

4.209687464869218e+002]; % solution 

        varargout{5} = -8.379657745448676e+002; % function 

value at solution 

  

    % otherwise, output function value 

    else 

  

        % keep all values in the search domain 

        X(X < -500) = inf;  X(X > 500) = inf; 

  

        % split input vector X into x1, x2 

        if size(X, 1) == 2 

            x1 = X(1, :);        x2 = X(2, :); 

        else 

            x1 = X(:, 1);        x2 = X(:, 2); 

        end 

  

        % output function value 

        varargout{1} = -x1.*sin(sqrt(abs(x1))) -

x2.*sin(sqrt(abs(x2))); 

    end 

  

end 
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function y = schwef(x) 

  

%  

n = 2; 

s = 0; 

p = 0; 

  

for i = 1:n 

    s = s + abs(x(i)); 

    p = p + abs(x(i)); 

end 

  

y = s + p; 

  

end 

 

function Plotschw() 

  

[X,Y] = meshgrid(-100:100,-100:100); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) =schweffel1  (z); 

    end 

end 

  

mesh(X,Y,Z); 

title('Schweffel1 Function in 2 dimension'); 

  

end 
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Rastrigi Function  

 

% Rastrigin's Function 

 

    function y = Rastrigin (X) 

    

    A = 10; 

    n = 2; 

    m = 0; 

     

    for i = 1:n 

        m = m + X(i)^2 - A*cos(2*pi*X(i)); 

    end 

     

    y = 10*n + m;    

     

end 

 

 

function varargout = rastrigin(X) 

% Rastrigin function 

  

  

  

    % if no input is given, return dimensions, bounds and 

minimum 

    if (nargin == 0) 

        varargout{1} = 2;  % # dims 

        varargout{2} = [-5.12, -5.12]; % LB 

        varargout{3} = [+5.12, +5.12]; % UB 

        varargout{4} = [0, 0]; % solution 

        varargout{5} = 0; % function value at solution 

  

    % otherwise, output function value 
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    else 

  

        % keep all values in the search domain 

        X(X < -5.12) = inf;   X(X > 5.12) = inf; 

  

        % split input vector X into x1, x2 

        if size(X, 1) == 2 

            x1 = X(1, :);        x2 = X(2, :); 

        else 

            x1 = X(:, 1);        x2 = X(:, 2); 

        end 

  

        % output function value 

        varargout{1} = x1.^2 + x2.^2 - 10*cos(2*pi*x1) - 

10*cos(2*pi*x2) + 20; 

  

    end 

  

end 

 

function PlotR() 

  

[X,Y] = meshgrid(-100:100,-100:100); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) =Rastrigin (z); 

    end 

end 

  

mesh(X,Y,Z); 

title('Rastrigin Function in 2 dimension'); 
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end 

 

Cigar function 

 

function val=cigar(x) 

val=x(1)^2; 

n=size(x,2); 

for i=2:n 

    val=val+(10^4)*x(i)^2; 

end 

%x from [-5 5] 

 

 

 

function PlotC() 

  

[X,Y] = meshgrid(-100:100,-100:100); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = Cigar (z); 

    end 

end 

  

mesh(X,Y,Z); 

title('Cigar Function in 2 dimension'); 

  

end 
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Booth function 

 

function varargout = booth(X) 

% Booth function 

 

  

    % if no input is given, return dimensions, bounds and 

minimum 

    if (nargin == 0) 

        varargout{1} = 2;  % # dims 

        varargout{2} = [-10, -10]; % LB 

        varargout{3} = [+10, +10]; % UB 

        varargout{4} = [1, 3]; % solution 

        varargout{5} = 0; % function value at solution 

  

    % otherwise, output function value 

    else 

  

        % keep values in the search interval 

        X(X < -10) = inf;     X(X > 10) = inf; 

  

        % split input vector X into x1, x2 

        if size(X, 1) == 2 

            x1 = X(1, :);        x2 = X(2, :); 

        else 

            x1 = X(:, 1);        x2 = X(:, 2); 

        end 

  

        % output function value 

        varargout{1} = (x1 + 2*x2 - 7).^2 + (2*x1 + x2 - 

5).^2; 

  

    end 
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function Plotbooth() 

  

[X,Y] = meshgrid(-100:100,-100:100); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = booth (z); 

    end 

end 

  

mesh(X,Y,Z); 

title('Booth Function in 2 dimension'); 

  

end 

 

 

Ackley function 

 

function varargout = ackley(X) 

% Ackley funcion 

% 

%    

    if (nargin == 0) 

        varargout{1} = 2;  % # dims 

        varargout{2} = [-35, -35]; % LB 

        varargout{3} = [+35, +35]; % UB 

        varargout{4} = [3, 0.5]; % solution 

        varargout{5} = 0; % function value at solution 

  

    % otherwise, output function value 

    else 
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        % Keep all values in the search domain 

 

        X(X < -35) = inf;   X(X > 35) = inf; 

  

        % split input vector X into x1, x2 

        if size(X, 1) == 2 

            x1 = X(1, :);        x2 = X(2, :); 

        else 

            x1 = X(:, 1);        x2 = X(:, 2); 

        end 

  

        % output function value 

        varargout{1} = 20*(1 - exp(-0.2*sqrt(0.5*(x1.^2 + 

x2.^2))))... 

            - exp(0.5*(cos(2*pi*x1) + cos(2*pi*x2))) + 

exp(1); 

  

    end 

  

end 

 

 

 

function y = Ackley(x) 

      n=2; 

      sum1 = 0; 

      sum2 = 0; 

       

      for i = 1:n 

          sum1 = sum1 + x(i)^2; 

          sum2 = sum2 + cos((2*pi) * x(i)); 

      end 
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      y = 20 + exp(1)-20*exp(-0.2*sqrt(1/n*sum1))-

exp(1/n*sum2); 

       

end 

 

 

 

function PlotA() 

  

[X,Y] = meshgrid(-32.768:0.03:32.768,-32.768:0.03:32.768); 

N = size(X,1); 

  

for i = 1:N 

    for j = 1:N 

        z = [X(i,j),Y(i,j)]; 

        Z(i,j) = Ackley(z); 

    end 

end 

  

mesh(X,Y,Z); 

title('Ackley Function in 2 dimension'); 

  

end 
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APPENDIX B 

 

 

PID CODE 

function y = matlab_sim_project(K) 

% clc  

% clear all 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% define model 

Ts = 0.01; 

J  = 0.01; 

b  = 0.1; 

Ke = 0.01; 

Kt = 0.01; 

R  = 1; 

L = 1; 

tFinal        = 30; 

tStepMax      = 0.05; 

theta0        = 3*pi/180; 

thethaDot0    = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 Kp  = K(1) 

 Ki  = K(2) 

 Kd  = K(3) 

 Kp1 = K(4) 

 Ki1 = K(5) 

 Kd1 = K(6) 

  

K =[211 13 1 199 10 1]; 

assignin('base','K',K); 

global Kp 

global Ki 

global Kd 

global Kp1 
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global Ki1 

global Kd1 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Run the Simulink 

model using sim command  

options = simset('SrcWorkspace','current'); 

sim('SimModel.slx',[],options) 

%sim('SimModel') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% extract the data 

generated bythe similink model 

t        = simX.Time; 

t1       = simX1.Time; 

theta    = simX.Data(:,1); 

theta1   = simX1.Data(:,1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

y= 0:pi/100:2*pi; 

open_system('SimModel')                        %optional 

  

[tout,xout,yout]=sim('SIMPID2',[0 10],options); 

plot(yout(1:end,1)) 

Y = simX(length(simX)); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   plot 

  

  

%figure 

plot(t,theta,'LineWidth',2,'MarkerSize',14) 

drawnow 

hold on 

plot(t1,theta1,'LineWidth',2,'MarkerSize',14) 

drawnow 

xlabel('t (seconds)') 

ylabel('x') 

grid on 
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title('Step response') 

legend('output','output1') 

end 

  

function E=itaecost(p,dt,tf) 

i=numel(p); 

A=[zeros(i,1) eye(i);-1 -p]; 

B=[zeros(i,1);1]; 

A=expm([A B;zeros(1,i+2)]*dt); 

x=[zeros(i+1,1);1]; 

E=0; 

for t=0:dt:tf 

    tdt=t*dt; 

    x=A*x; 

    e=1-x(1); 

    E=E+abs(e)*tdt;  

  

end 

end 
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OTHER PID CODE 

function [J,J1] = PID_problem(contr) 

  

s = tf('s'); 

  

% % G11= 1/(s^2 + 20*s + 15); 

% % G12= 1/(s^2 + 25*s +17); 

% % G21= 1/(s^2 + 21*s +16); 

% % G22= 1/(s^2 + 25*s +21); 

  

%pid controllers 

K = contr(1) + contr(2)/s + contr(3)*s/(1+.001*s); 

K1 = contr(4) + contr(5)/s + contr(6)*s/(1+.001*s); 

  

G=feedback(G11); 

Loop = series(K,G); 

ClosedLoop = feedback(Loop,1); 

%step(feedback(G*K,1)); 

%K = Kp + Ki/s + Kd * s; 

  

G1=feedback(G12,G22); 

Loop1 = series(K1,G1); 

ClosedLoop1 = feedback(Loop1,1); 

%step(feedback(G1*K,1)); 

dt = 0.01; 

t = 0:dt:1; 
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%step(sys); 

  

t = 0:dt:20; 

[y,t] = step(ClosedLoop,t); 

CTRLtf = K/(1+K*G); 

u = lsim(CTRLtf,1-y,t); 

  

 

[y1,t] = step(ClosedLoop1,t); 

CTRLtf1 = K1/(1+K1*G1); 

u1 = lsim(CTRLtf1,1-y1,t); 

Q = 1; 

R = .001; 

 

%e = 1 - step(feedback(G*K,1),t); 

%J=sum(t'.*abs(e)*dt); 

J = dt*sum(Q*(1-y(:)).^2+R*u(:).^2) 

J1 = dt*sum(Q*(1-y1(:)).^2+R*u1(:).^2) 

[y,t] = step(ClosedLoop,t); 

[y1,t] = step(ClosedLoop1,t); 

  

plot(t,y,'LineWidth',2,'color','r') 

drawnow 

  

Kp=contr(1) 

Kd=contr(2) 

end 
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ETHICAL CLEARANCE 
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