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ABSTRACT 

 

The implications of comminution practices on the planning of a typical 

open pit mine was investigated in this study by means of computer 

simulation. The objective was to assess the effects of mining costs as well 

as processing costs on the production plan of a typical open pit mine. 

For the purpose of the research, MineLib, an open library of ore body 

models was consulted. This led to the selection of a copper-gold ore body 

named “Newman1” for use in the strategic mine optimisation. Various 

scenarios were considered in order to highlight the contribution of 

comminution costs to the mine plan. In all the simulated scenarios, the 

objective function was to maximise the Net Present Value (NPV). And in 

terms of simulation setup, the comminution costs and cut-off grades were 

systematically varied from 70 % to 140 %. It was hence possible to 

investigate their effects on the NPV of the Newman1 ore body using 

SimSched, a freeware for mine optimisation and planning. 

Results showed that there is a great opportunity to increase the NPV of 

the Newman1 block model by adjusting the contribution of processing 

costs in general and comminution costs in particular. This can be 

achieved for instance by controlling the policy of cut-off grades, lowering 

production costs, and increasing throughput. 
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Chapter 1 Introduction 

 

1.1 Background 

Comminution is one of the most important phases in the extraction and 

processing of mineral ores. The verb “to comminute” means to reduce to 

minute particles (Soanes and Hawker, 2005). Comminution is therefore a 

generic term that refers to the reduction in rock size. In underground and 

surface mining operations, comminution or size reduction is required to 

expose valuable minerals from the rock and enable their easy recovery 

(Moema et al., 2009). 

Concordant studies have shown that comminution alone represents 50 

– 70 % of the processing costs (Musingwini, 2016; Daniel and Lewis-

Gray, 2011; Ballantyne and Powell, 2014). As such, an opportunity exists 

to systematically investigate the effects of comminution costs on a 

typical surface mining operation. 

Three broad comminution stages are available to the mineral processing 

industry: blasting, crushing, and milling. Since much energy is used 

during comminution, enormous cost savings can be obtained through 

improved comminution practices. 

Several comminution techniques have been used with varied degrees of 

success. However, the economic implications of choosing a particular 

comminution strategy on mine planning are yet to be explored. Indeed, 

mine planning involves determining the maximum profitable excavation 

sequence throughout the lifespan of the mine. It is proposed in this 

research work to consider a computer-based block model of a mine for 

simulation. The ore body model was selected from MineLib, a database 

of publicly available block models. The amount of ore contained in each 

discretized block of the selected ore body was characterized in terms of 

waste and total mineable tonnage. Mining and processing costs were 

then accounted for in the estimation of the expected profit of individual 
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blocks. For this, the relative proportion of processing costs was varied 

to mimic the contribution of comminution costs to the profitability of the 

generic open pit mining project. The findings led to a better appreciation 

of the comminution-mining interrelation from the point of view of mine 

planning. The findings finally had the potential to influence how ore bodies 

are evaluated for effective and profitable mineral exploitation. 

 

1.2 Problem statement 

Comminution is an essential step to the liberation and recovery of minerals. 

However, an enormous amount of energy is expended especially when 

milling is involved. This is because existing milling technologies waste 

energy as a result of the unnecessary and unavoidable over-grinding of 

material. This in turn has a bearing on the economics and the effectiveness 

of downstream processes (Hlabangana et al., 2016). 

Khumalo (2007) reported that comminution is responsible for roughly 50 % 

of the total energy of a mineral processing plant. When considered as part 

of the entire mine production chain, comminution accounts for up to 70 % 

of the total operational costs (Radziszewski, 2013; Nadolski et al., 2014). 

Here, the mine production chain is considered to entail mining, 

comminution, and concentration. 

Now consider this, the decision to mine a block and send it the comminution 

plant instead of the tailings dam is dictated by the economic value of the 

mined block. However, the value of the block is dependent on the 

operational costs incurred along the chain. These costs then affect the mine 

production plan as it seeks to optimize the sequence of extraction of waste 

and ore mined out over time. Ultimately, the net value of the ore body over 

the entire span of the mine may be reduced. The problem is that little has 

been done to explore the contribution of comminution costs to open pit mine 

optimization (Napier, 2015); hence, the present research study. 

 



3 
 

1.3 Objectives and purpose of the research study 

The purpose of this dissertation is: 

 To optimize the proportional influence of mining and processing 

costs on the production plan of an open pit mine. 

 Explore the relationship between processing costs and 

specifically comminution costs on the anticipated net profit value 

of the ore body. 

 To determine the contribution of reduced comminution costs to 

open pit mine plan and the associated implications in terms of 

comminution practice. 

 

1.4 Outline of the dissertation 

The present dissertation is organised as follows: 

Chapter 2 provides a literature review on the principles of and relevant 

research done on open pit mine optimisation. It also presents the impact 

comminution has on the overall costs of the mine. It further looks at the 

Lerchs-Grossman algorithm used in pit optimization. 

Chapter 3 discusses how the procedure adopted in the collection of data for 

pit optimization. It also presents SimSched Direct Block Scheduler, the 

software used for mine optimization. Finally, simulation scenarios and 

optimization are presented in the chapter. 

Chapter 4 presents the results generated from the simulation work. These 

results are then made sense of in Chapter 5. Finally, a summary of the 

findings from this research dissertation is covered in Chapter 6. In addition 

to this, concluding remarks and suggestions for future work are made. 
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Chapter 2 Literature review 

 

2.1 Introduction 

Open pit mining is well established in shallow and intermediate ore bodies 

where it is considered to be the most economic compared to underground 

mining methods. The economics of open pit mining is governed by several 

factors such as the flexibility and safety of the operation, mining costs, 

processing costs, and the price of minerals and metals. The uncertainty 

attached with commodity prices for instance affects the sustainability of the 

mining project as well as the confidence with which optimal operating 

conditions can be reached. The problem is exacerbated by the fixed market 

price of minerals and metals. Several studies have argued that mining 

operations can only control operational and processing costs but not 

economic factors such as metal price (e.g. Asad, 2005; Asad and Topal, 

2011; Ramazan and Dimitrakopoulos, 2013). Although these studies have 

explored the possibility controlling the major economic factors, but still, their 

rendition revolved around mining and processing costs. 

Studies by King (2011) and Ataei et al. (2008) are interesting in that they 

report the processing costs to be the most important economic factor of an 

open pit operation. The processing costs in these studies include crushing, 

grinding, and concentration/segregation. 

In the mining industry, crushing and milling are collectively referred to as 

comminution. This is despite the fact that the comminution or size reduction 

of rock essentially commences with blasting. That is why in this dissertation, 

the term “comminution” is used to mean the reduction of the size of blasted 

rock fragments by crushing and/or milling with the view to liberating the 

mineral of interest from the unwanted fraction (Wills and Finch, 2015). 

The level of size reduction required of a comminution operation is dictated 

by the demand and specifications of the market or by the requirement of 

subsequent separation stages to be undergone. However, comminution 
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alone is responsible for 30 – 70% of the total operational costs of typical 

mining operations (Radziszewski, 2013; Nadolski et al., 2014). Because of 

this, comminution has drawn a lot of research initiatives designed to reduce 

processing costs and energy consumption. A detailed review of various 

factors contributing to the poor efficiency of comminution operations is 

documented in this chapter. This is followed by a description of open pit 

mine planning. Finally, algorithms and tools used for the optimization of the 

net profit value of ore bodies exploited by open pit mining are reviewed. 

 

2.2 Comminution 

Comminution operations entails the reduction of rock fragments as large as 

1 meter or larger to particles as small as 25 microns (Powell et al., 2011). 

Unfortunately, a large fraction of energy needed is wasted in the process. 

For example, approximately 11 % of the energy available is actually utilized 

for the comminution by milling of particles from 20 mm to 100 microns 

(Powell et al., 2011; Tromans and Meech, 2002). A large fraction of the 

world electric power usage is attributed to this inefficient and costly method 

(Roth and Ambs, 2004). In 1981, comminution was estimated to amount to 

about 2 % of the entire electric usage of power in the United States of 

America. This has since increased (Kawatra et al., 2005). So, improvements 

however minute may imply significant economic savings not only for the 

comminution process itself but also for the mine production chain. 

Some facts are self-evident; first, commodity prices fluctuate erratically and 

are driven by the market. Second, large high-grade and easy-to-process-

ore deposits are uncommon. Last, energy conservation is a matter of civil 

and often national strategic interest. However, mineral processors adapt to 

the changing economic environment by specifically adjusting operating 

conditions at the comminution stage. The challenge is that in current low-

grade mining operations, the magnitude of consumables and energy used 

is substantial, especially around the comminution section (Abouzeid and 

Fuerstenau, 2009; Charles and Gallagher, 1982). Appropriate design of the 
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comminution circuit is therefore critical, particularly for large-scale hard-rock 

mining projects. Numerous options can be resorted to when such a circuit 

is designed. Some design strategies rely on long-established technologies 

while others are based on more recent advancement. And in some cases, 

technologies available have been improved from the experience of current 

mining ventures (Barratt and Sherman, 2002; Labys and Thomas, 1975). 

In the next subsections, the fundamental concepts and commonly used 

technologies in comminution operations are succinctly reviewed. This 

background knowledge generally guides the selection of appropriate 

configuration of comminution circuits and associated equipment. A 

description is also made of supporting theories behind drilling and blasting 

with the understanding that these activities are ahead of comminution. 

 

2.2.1 Fundamental concepts 

The meaning of the verb comminute in the dictionary is to reduce to minute 

particles (Soanes and Hawker, 2005). In the mining and mineral processing 

industry, the term comminution applies primarily to crushing and grinding 

even though the size reduction of rocks begins with blasting (Rosario, 

2010). 

Comminution is an important stage in the processing of minerals as it is 

necessary to release the valuable minerals from the gangue. The breakage 

action can also be regarded in the light of a new surface of mineral particles 

being formed. For metallurgical extraction processes such as leaching and 

flotation, growing the mineral surface is important. 

Comminution encompasses physical methods of reducing the ore/rock to 

the desired size with the view to releasing mineral species without altering 

the physical and chemical equities of the rock. 

There exist many techniques of comminution. Figure 2.1 illustrates a typical 

circuit entailing a sequence of the following comminution equipment: a 

gyratory crusher, a cone crusher, a semi-autogenous (SAG) mill, and a ball 
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mill. The comminution circuit typically reduces the size of rock in stages from 

approximately 1 m to below 0.5 mm. 

 

Figure 2.1 A basic flowsheet of an ordinary comminution circuit (Rosario et 

al., 2009) 

Crushing is generally done by impacting or compressing the run-of-mine 

rock against heavy-duty metallic plates. SAG milling on the other hand takes 

advantage of the presence of lumps of rock that tumble inside the cylindrical 

rotary vessel and break rock particles by abrasion, attrition, and impact. The 

product from the SAG mill is subsequently broken inside a ball mill. The 

latter uses spherical steel balls as grinding media that subsequently 

pulverise the material to less than 0.5 mm. 

Comminution circuits are always built around comminution equipment and 

size classifiers as exemplified in Figure 2.1. Size classifiers are a family of 

equipment aimed at separating particle fragments based on their size. This 

ensures that particles ready to move to the next stage are not unnecessarily 

crushed or milled further thereby wasting energy. The separation of coarse 

particles is done using vibrating screens. In Figure 2.1 for example, the SAG 

mill discharge is processed through a screen so that the oversize fraction is 

sent back to the pebble crusher. For smaller particles as is characteristic of 

the ball mill discharge, hydrocyclones are most commonly used. 
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The comminution circuit in Figure 2.1 would be used to break a run-of-mine 

ore and release or liberate mineral particles from the rock matrix containing 

them. The crushing section would be run dry whereas SAG and ball milling 

would typically be done wet. The addition of water improves the efficiency 

of comminution while ensuring that the slurried material easily flow through 

the tumbling mills. The final product coming out of the circuit makes its way 

what is known as concentration or mineral upgrading. Concentration 

basically separate liberated mineral particles from the gangue. Flotation, 

leaching, gravity separation are some concentration operations that can be 

used for the purpose. The choice of concentration depends on the nature 

and type of orebody being mined. 

An important point to make is that comminution circuits are the bottleneck 

of any mineral processing plant. This is because comminution circuits define 

the throughput and efficiency of the plant. In addition to this, the objective 

of comminution circuits is to maximize throughput while producing a 

targeted size distribution. If the material is hard, this typically means that 

throughput must be limited to generate the targeted particle size. This is 

done by adjusting parameters such as the classification cut-off size, the 

volume of grinding media in the mill, and the rotational speed of tumbling 

mills. 

 

2.2.2 Drilling and blasting 

The production of run-of-mine rock to be fed into a comminution circuit 

hinges on drilling and blasting of the rock mass. The purpose of rock drilling 

is to open holes within the rock mass with appropriate distribution and 

geometry. Rock drilling is done nowadays with the assistance of rotary-

percussive mechanical rockdrills echoing hand-boring where a hammer 

batters the chisel and rolls it into the pit. Drilled holes are charged with 

explosives and a designed sequence is performed by detonating the holes 

(Jimeno et al., 1995). The detonation is aimed at causing cracks in the 

surrounding rock fragmenting the rock while making exploitation possible. 
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It is evident that the goal of blasting is to achieve ample fragmentation cost-

effectively and safely. Fragmentation should produce a large volume of 

broken fragments of rock of average size without excessive dust or fine 

content. This enables the operation to dig out (i.e. load and remove) a 

planned volume of rock from within specified limits. 

From a principle point of view, mining explosives or fracture explosives 

produce a high-intensity shock movement and a large volume of gas upon 

explosion. The gas expands rapidly within the confined cavity of the drill 

hole. It then travels through small cracks present in the rock and produces 

new fractures thereby breaking the rock. 

The first development of mining explosives was gunpowder (or black 

powder). It is a low-powered product that is still used in specific situations 

such as the processing of dimensional stones. Next, Nitro-Glycerine-based 

explosives became prevalent in mining for around eight years until the early 

twentieth century (Persson et al., 1993). Despite being kept in controlled 

environments, Nitro-Glycerine (NG) items were inherently unstable and 

dangerous to use, especially with age and when exposed to the sun and 

heat. NG-based goods have been almost entirely replaced by products such 

as emulsions, micro balloons, tiny glass, or plastic spheres that absorb 

oxygen and sensitize the substance in the blend. They are routinely 

prepared in modern practice only when they are charged through a hole and 

are non-explosive before the moment (Persson et al., 1993). 

Ammonium Nitrate Fuel Oil (ANFO) is the most widely used mining 

explosive worldwide. ANFO and occasionally called ANFEX (fuel explosive) 

is a mixture of ammonium nitrate with petrol typically integrated with almost 

6 % diesel as an oxidizing driver (ammonium nitrate blasting agent). It is 

economical and easy to manufacture, ship, and maintain. 

Density, initiation sensitivity, water resistance, and velocity of detonation are 

the properties of interest used in the selection of fracture explosives. The 

velocity of detonation or VOD is the velocity at which an explosion spreads 

along a hole. In the functioning of explosives, VOD plays a key role of 
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facilitating detonation. ANFO for example has a VOD of approximately 

4 400 m/s under ideal conditions. This explosion wave is generated by an 

accessory known as a detonator. As shown in Figure 2.2, a shock tube is 

fitted through the detonator for safety and efficiency purposes. The shock 

tube also ensures good initiation, precise timing while the many detonators 

buried in each drill hole are typically set off by a single electric detonator 

(Hummel and McCann, 2011). 

 

Figure 2.2 A typical detonator (Adapted from Pande et al., 2015) 

Drilling and blasting can be argued to be the first stage of comminution in 

the mine value chain. This is because the primary focus of blasting in the 

past was to enable the excavation equipment to dig the blasted rock 

effectively while keeping the number of oversize chunks (or boulders) 

created at the lowest possible. Now, the impact of blasting on subsequent 

operations is receiving much attention in recent years. These operations 

(i.e. milling and crushing) are presented next. 

 

2.2.3 Crushing and milling 

Depending on the school of thought, the blasted rock fragmented are 

subjected to the first (or second) stage of comminution, that is, primary 

crushing. 
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From the 1920s to the 1950s, many comminution circuits were devised as 

a sequence of stages of crushing, succeeded by rod milling and finally by 

ball milling. During the 1960s, the usage of rod mills failed as ball mills of 

greater diameter for processing coarser feeds became available. The 

decade also saw the arrival of mills for Autogenous Grinding (AG) and Semi-

Autogenous Grinding (SAG). Large-diameter AG and SAG mills often 

coupled with ball mills then became the standard comminution circuit in the 

early 1970s. Even though power consumption was generally higher, the 

simplicity of the SAG/Ball mill circuit or SAB circuit, the low number of 

components, and the small footprint made the complete economics of the 

circuit greater than that of the three-stage crushing configuration (Wills and 

Finch, 2015). Over the next several decades, SAG-based circuits opened 

the way to high-tonnage and low-grade operations typical of the base metal 

industry (Rose et al., 2015). The adoption of large tumbling mills extended 

in such a way that most Greenfield mining ventures or those expanding from 

the early 1980s to the early 2000s have nominated circuit configurations 

that include AG/SAG mills (Barratt and Sherman, 2002). It is in this light that 

three generic types of tumbling mills are presented in the subsequent 

paragraphs: ball mill, AG mill, and SAG mill. 

Tumbling mills are the most widely used comminution technology in the 

mining industry. A tumbling mill is a drum that rotates about it longitudinal 

axis. The rotary motion lifts the load made of large particles and grinding 

media that then drops in a cascading and cataracting motion. The falling 

fraction impacts particles in the lower region of the load and breaks large 

solid particles into small-sized particles. Depending on the design of the 

tumbling mill, the type and volume of grinding media used (i.e. steel balls or 

rock lumps), the mill is known as ball mill, autogenous mill, or semi-

autogenous mill. 

Ball mills rely exclusively on grinding balls to effect comminution with bed of 

balls making up as much as 45 % of the internal volume of the cylindrical 

drum. SAG mills use 8 % to 21 % of the volume of the mill while AG mills 

only use the rock for grinding. 
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It should be stated that two factors have encouraged the departure from 

SAB circuits especially in hard-ore operations. The first is the pressing need 

to decrease energy consumption herded not only through economics, but 

also through civic attention to climate change. The second factor is the 

appearance of High-Pressure Grinding Rolls (HPGR). As their manufacturer 

developed roll-wear safety systems to deal with abrasive and hard ores, this 

comminution technology became attractive (Casteel, 2006). Furthermore, 

HPGR mills are more energy-efficient than conventional mills as they deliver 

greater unit throughput at higher reduction ratio (Valery and Jankovic, 

2002). 

The HPGR mill is a system built around a pair of counter-rotating and high 

compression milling rolls riding on a robust lip. In the frame is a single 

immovable roll while the other can drift on rails using pneumo-hydraulic 

springs. The feed is provided to the opening between the rolls and is 

crushed by the inter-particle breakage mechanism (see Figure 2.3). 

 

Figure 2.3 HPGR design principle (Morley, 2010) 

The operating pressure varies usually from 50 to 150 bars but can exceed 

180 bars. This pressure creates compression forces of up to 25 000 kN for 

the largest devices. 
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The main catalyst for the use of HPGR mill in hard-rock comminution is its 

energy efficiency compared to conventional mills and crushers. In addition 

to this, benchmarked against SAB circuits, HPGR-based circuits provide 

significant reductions in the grinding media consumption and associated 

costs (Morley, 2010; Saramak, 2011; Daniel and Morrell, 2004; von 

Michaelis, 2005). 

The latest wave of technological development in comminution is what is 

known as stirred milling. Stirred milling technology was introduced in 1950s 

but has penetrated the mining industry only in the last few decades. There 

exist various types of stirred milling machines on the market covering 

applications in primary and secondary milling as well as regrinding. Stirred 

mills exhibit high energy efficiency especially in fine grinding; however, 

encouraging results are being reported also in the coarser grinding range 

(Valery and Jankovic, 2002). 

The economics and design of comminution circuits are primarily influenced, 

by tumbling mills, i.e. SAG, AG and ball mills. This is because tumbling mills 

are energy-inefficient and energy-intensive. They account for up to 80 % of 

the total energy consumption of the processing plant (Abouzeid and 

Fuerstenau, 2009; Fuerstenau and Abouzeid, 2002). Efforts for gradual 

step-changes have given rise to the idea of combining HPGR and stirred 

mills in one flowsheet (Valery and Jankovic, 2002). This paved the way for 

future energy-conscious comminution circuits. An opportunity to evaluate 

the stirred/HPGR milling circuit and understand its potential benefits is being 

explored at the mill testing facility of the Norman B. Keevil Institute of Mining 

Engineering, University of British Columbia. Concurrently, a joint stirred and 

HPGR milling circuit is being investigated with the two machines operated 

outside their commonly accepted operating conditions. Irrespective of what 

the future holds, Drozdiak (2011) has been able to prove that an HPGR-

stirred mill circuit is theoretically feasible. The researcher also showed that 

the circuit has promising advantages over both the standard crushing/ball 

milling circuit and the HPGR/ball mill circuit. Finally, the performance of the 

current SAG and Ball milling circuit closed with a Cone Crusher (or SABC 



14 
 

circuit) at the Huckleberry Mine was compared to two alternative circuits. 

The idea was to see whether the new HPGR/stirred mill circuit arrangement 

could achieve energy savings. Great strides were hence made in the quest 

for more energy-efficient comminution circuits (Wang et al., 2013). 

 

2.2.4 Comminution economics 

In the USA, 39 % of the energy due to mining activities is used for 

processing operations, of which 75 % is accounted for by comminution. This 

figure is also likely to apply to most mining countries (Tromans, 2008). One 

of the reason for this is that comminution is energy-extensive and inherently 

inefficient (Austin, 1984; Fuerstenau and Abouzeid, 2002; Hukki, 1975). The 

state of affairs is pronounced in large hard-rock mines. Indeed, tremendous 

quantities of energy are expended on comminution operations alone. And 

while energy and costs associated with crushing is not negligible, milling in 

general is responsible for half of the figures. 

There is substantial evidence that suggests that blasting can be used to 

incur major cost savings around comminution circuits (e.g. Eloranta, 1995; 

Paley and Kojovic, 2001). One may postulate that crushing and grinding 

performance can be influenced by the size distribution of blasted fragments 

and the internal softening of individual fragments. There may therefore be 

room for improvement when comminution circuits are aligned with blasting 

practices. A direct consequence of this would be greater mineral liberation 

and enhanced downstream recovery. 

There have been reports on the research and implementation of drill-to-mill 

ventures. In the majority of these studies, there is evidence that drilling-and-

blasting staff ought to be weary of the effects of blasting practices on the 

economics of comminution. To achieve the best cost of service, blasting 

engineers need to work closely with process engineers. This will ensure that 

the greatest possible savings in energy are incurred at the comminution 

stages (Tromans, 2008). 
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Other benefits of improved blasting-to-comminution include increased 

productivity in crushing and grinding, more undersized material that 

bypasses the crushing stages, reduced consumable wear in crushing, 

grinding, loading, and hauling, increased shovel production and less energy 

expenditure in loading, and ability to use lightweight truck boxes to haul 

more uniformly sized blasted fragments. 

It can therefore be argued from the above that the configuration of 

comminution circuits and smarter blasting practices have the potential to 

improve the contribution of comminution to plant economics. Most 

importantly, even if not all energy savings in crushing and grinding are 

realized, substantial cost savings are still possible. 

 

2.3 Open-pit mine planning 

The pioneering work of Lerchs and Grossmann (1965) epitomises a precise 

and computationally tractable network-based technique for cracking the 

ultimate pit limit problem. The work was extended later by Hochbaum (2001) 

as well as Chandran and Hochbaum (2009) amongst others. 

The key to the ultimate pit limit problem is to determine the economic 

enclosure of profitable blocks given constraints of pit slopes. Time is 

disregarded from the point of view of the production scheduling and the 

expected revenue from the extraction of a block. 

Fundamentals underpinning open-pit mine planning are reviewed in this 

section. They are to lay the foundation of the Lerchs-Grossman algorithm 

covered in the next section. 

 

2.3.1 Geometrical definitions of the pit 

The different mineral deposits mined by open-pit techniques today vary 

considerably in scale, shape, orientation, and depth. There are several 

geometry-based planning and design considerations essential to different 
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topographies. Figure 2.4 is a graphical rendering of the earth’s surface 

before and after the construction of the open pit mine. 

 

Figure 2.4 Simple open-pit mine geometry (Adapted from Hustrulid et al., 

2013) 

It can be seen from Figure 2.4 that the ore body is mined from the top down 

in a sequence of horizontal levels of the same width or benches. Mining 

begins with the top bench, and after a sufficient floor area has been 

uncovered the next layer of mining begins. The method continues until the 

height of the bottom bench is achieved, and the final pit outline is reached. 

A path or ramp must be built to reach various benches as shown in the 

bottom drawing of Figure 2.4. The width and slope of the ramp depend on 

the type of lauding and hauling equipment used. 

Stable pit slopes must be planned and maintained throughout the 

construction and operation of the pit. The angle of the pit slope is a critical 

geometric parameter with an important techno-economic influence. Open-

pit mining is highly mechanized. Each mining machine has a geometry 

linked to its physical size and space needed for efficient operation (Hustrulid 
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et al., 2013). The following sections address the geometrical aspects 

involved in the planning and construction of open pit mines. 

 

2.3.1.1 Bench geometry 

The key extraction feature in open pit mining is the bench. A bench is a 

narrow strip of land cut to the side of an open pit mine. These step-like zones 

are built along the walls of the open pit mine for access and mining 

(Jackson, 1997). Each bench has a higher and lower surface separated by 

a distance H equal to the height of the bench. Visible sub-vertical surfaces 

are referred to as bench faces. They are defined by the angle of the toe, the 

crest, and the angle of the face. The latter is the average angle of the face 

with the horizontal angle (refer to Figure 2.5). 

 

Figure 2.5 Benches showing various components (Jackson, 1997) 

The angle of the bench face can vary considerably with the characteristics 

of the rock, the orientation of the face, and the blasting practices. In most 

hard rock pits, it ranges from around 55 to 80. The typical initial design 

estimate could be 65. However, this value must be used with caution as 

the angle of the bench face can have an immense impact on the overall 

angle of the pit slope (Hustrulid et al., 2013). Usually, bench faces are mined 
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as sharply as possible, at a 45 maximum angle. However, there is a certain 

amount of back-break due to several reasons. This is known as the distance 

between the actual bench crest and the designed crest. 

The visible bench on the lower surface is called the bench floor. The width 

of the bench is the distance between the crest and the toe measured along 

the upper surface. The bank width is the horizontal projection of the face of 

the bench. There are a variety of types of benches. A working bench is one 

in the process of being mined. The width to be separated from the operating 

bench is called a break. 

Below are steps to be considered when defining the geometry of the bench: 

 Properties of the deposit determines a particular geometrical method 

and production approach. These include grade distribution, total 

tonnes, and value of the deposit. 

 The production approach that will lead to regular ore-waste 

production rates, selective mining and blending criteria, and 

workplaces. 

 Production requirements guiding the specifications of the equipment 

to be used and associated operation geometry. 

 Consequences regarding stripping ratios, processing and mining 

costs including the assessment of slope stability features and the 

suitable geometry to support the operation. 

 

2.3.1.2 Access to the ore 

In order to gain initial access to the orebody, the covering vegetation and 

overburden must be removed. A vertical digging face must be established 

in the orebody before the main production can commence. Furthermore, a 

ramp must be created to permit truck and loader access. A drop cut is used 

to create the vertical breaking face and the ramp access concurrently. 

Because vertical blast holes are being fired without a vertical free face, the 

blast conditions are highly constrained. Rock movement is primarily 
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vertically upwards with a very limited sideways motion. To establish 

adequate digging conditions, the blast holes are typically very closely 

spaced. 

Geometric considerations regarding ore access indicate the following: 

 There can be substantial volumes associated with the main ramp 

system. 

 The setting of the ramp varies with time. 

 In the higher levels of the pit, the ramp is underlain by waste while 

the lower ranges are underlain by mineral. 

 Cash flow considerations are significantly affected by ramp timing. 

 The stripping ratio, the percent extraction, and the overall extraction 

are greatly affected by the haul road geometry (road width and road 

grade). 

 

2.3.2 Orebody modelling 

There exist various definitions of orebodies. They may be classified into 

three distinct components: 

1. The physical geometry of the geological units hosting the orebody. 

2. The attributes of all material to be mined characterised in terms of 

assays and geo-mechanical properties of all material to be mined. 

3. The economic value model of the mineral deposit. 

The aim of orebody modelling is to determine the value of the mineral 

deposit and the potential of making a return by analysing the values of 

grade, tonnage, and other designated geological entities (SME, 2005). 

Although the description can be brief and compact, determining the value of 

an underground resource requires a great deal of work. The final orebody 

model should provide information on the physical, technological (reliability 

of projected mineral beneficiation and mine production operations), and 

economic properties of the resource (Kennedy, 1990). 
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Orebody modelling is aimed at reproducing the reality of the mineral deposit 

as closely as possible using available data. The challenge with the exercise 

is that underground deposits are intangible entities whose forms, 

compositions of quality, and quantity are not always well understood. The 

goal of geological investigations and explorations is to classify all these 

unknowns. Topographic and lithological data are collected at the beginning 

of the process and a database is created. Variations in degree, thickness 

and depth, overload structure, ore volume, form and extension, footwall, and 

hanging wall properties are calculated by the various geometric approaches 

used in this database. Both numerical calculations and visual aids help to 

bring out an orebody model (Singer and Menzie, 2010). 

Orebody modelling techniques can be categorized broadly into three forms: 

mathematical, geostatistical, and traditional. Most of these techniques are 

used as software packages in one form or another providing high speed 

computation through the vast number of blocks making up the model 

(Erarslan, 2012). 

The most tangible data to describe the location, form, quality, and quantity 

of the ore is the centre of the drill hole. Indeed, that is where one gets as 

much information regarding the ore in that particular drill hole. Global 

Positioning System (GPS) data is also used in drawing topographic maps, 

surfaces and subterranean maps such as thickness and grade contours. 

When topographic coordinates are combined with stratigraphic information, 

a three-dimensional data set is then obtained. In the end, after extensive 

mathematical processing, a three-dimensional orebody model can be 

generated (Hustrulid and Kuchta, 2006). The model describes the physical 

orebody as well as the distribution of various attributes key to the future 

economic valuation of the deposit. The design of the mine and the 

production schedule can now follow from the physical structure, and the 

quality composition of the model of the ore deposit (Hartman, 1992). 

Three-dimensional components x, y, z (easting, northing, altitude/elevation) 

comprise survey data and allow surface modelling. Drill hole data containing 
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depth and layer data helps to explain how the geological structure is in the 

three dimensional space (Torries, 1998). Drill holes often contain the ore 

grade or calorific value data. A three-dimensional orebody model provides 

a geological understanding of stratigraphical layers (Nieuwland, 2003). 

Several methods have been proposed in recent decades to address 

challenges relating to geological modelling (Agoston, 2005). This is because 

geological modelling attempts to estimate unknown values with limited data 

at hand. In Figure 2.6, a universal work plan and flowchart for computer-

aided orebody modelling are shown. 

 

Figure 2.6 Computer-aided orebody modelling work flowchart 
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Once the ore deposit is modelled visually and numerically following the 

workflow in Figure 2.6, the design and production schedule of the mine can 

follow. At this point, engineering economics and optimization principles are 

contemplated. Here, optimization and simulation techniques such as graph 

theory, linear and target programming, dynamic programming, mixed 

integer programming, moving cones, genetic algorithm, and network 

analysis are considered (Erarslan and Celebi, 2001). 

Graph theory applied to mine planning is introduced in the next section in 

what is known as the Lerchs-Grossman algorithm. It is the most widely used 

optimization and simulation technique. 

 

2.4 Lerchs-Grossman algorithm 

In surface mining projects, successful open pit design and output scheduling 

(OPOPS) are crucial. The consequences of pit design, mine scheduling, 

and associated forecasts have a significant influence on the management 

of cash flow. Modern OPOPS is based on the well-known Lerchs-Grossman 

algorithm implemented as the nested Lerchs-Grossman algorithm (Lerchs 

and Grossman, 1965; Whittle, 1988 & 1997; Whittle and Rozman, 1991). 

Given a set of geological, technical, and mining considerations, the Lerchs-

Grossman algorithm offers an optimal scenario of how an orebody should 

be best mined economically. This optimal environment is susceptible to the 

uncertainties associated with the optimization process input and the 

uncertainties of the following (Refsgaard et al., 2007): 

1. Orebody model and associated inconsistency of in-situ grade and 

distribution of material form. 

2. Technical specifications such as excavation capacity and slope 

angles. 

3. Capital and operational expenditures and the commodity prices. 

Various problems of uncertainty and risk involved in OPOPS have been 

raised in the past years (e.g. Ravenscroft, 1992; Onur and Dowd, 1993; 
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Halatchev and Moustakerov, 1994; Dowd, 1994; Rossi and Van Brunt, 

1997). Orebody models and their geological attributes are the main source 

of uncertainty and risk. In most cases, sensitivity to grade variability or metal 

values is analysed with global changes that cannot account for the critical 

regional block grade variability. Be that as it may, the Lerchs-Grossman 

algorithm still find use in mining practice. It is succinctly presented in the 

subsequent sections. 

 

2.4.1 Pit optimization – Definition 

For a given set of economic parameters, pit optimization is used to define 

the most profitable pit shells (or nested pit shells). What is economically 

mineable from a given deposit is determined by the final pit limits. It 

determines which blocks are to be mined and which ones are to be left 

unmined. The economic block model is developed first from the geological 

grade model to classify the blocks to be mined. This is achieved by 

assuming, at present economic parameters, output and process costs and 

commodity prices. The economic parameters include the prices of metals, 

the recovery of processes, and operating costs. 

Each positive block is tested by using the economic block values to decide 

if its value will compensate for the overburden removal. The estimation is 

based on the breakeven calculation that tests whether the undiscounted 

income earned from a given ore block will pay for the undiscounted cost of 

waste block mining. This research is carried out using computer programs 

that implement either the “cone mining” technique or the Lerchs-Grossman 

algorithm (Lerchs and Grossmann 1964; Zhao and Kim, 1992). 

The Lerchs-Grossmann (LG) algorithm ensures the optimality of 

determining pit limits that maximize the undiscounted profit whereas the 

routine of cone mining is heuristic and can yield sub-optimal results. The 

determination as to what should be mined within the final pit limits is time-

dependent and the correct outcome must take into account the 
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understanding of the time when a specific block will be mined and how long 

the waste needs to be extracted. 

Achireko (1998) identified some of the factors that can lead to poor 

predictive ability of the pit optimization process. For example, the 

optimization process can produce large pits with a long mine life. 

Fluctuations in metal prices will inevitably have unpredictable bearing on the 

optimised solution. In another instance, pit optimization can be done at the 

beginning of the feasibility project when detailed operation costs are not 

available yet. As a result of this, rough estimates are made for future costing 

with unintended future consequences. Operating costs can also change 

with time when the initial optimization is based on current information. 

Another interesting example is that smaller pits are made up of smaller tasks 

that may have different running costs than the optimization assumed. 

Similarly, larger pits might have different operating costs and throughput 

rates than anticipated in the optimization. Finally, pit optimization is 

generally constructed on the assumption of fixed metal price, fixed cut-off 

grade for the life of the mine (The cut-off grade is the grade that is used 

during scheduling to distinguish between ore and waste; Dagdelen, 1992), 

and operating costs adjusted with the depth of the pit. However, the 

metallurgical response of the plant changes with the ore type being mined. 

And despite all the above, the pit optimization is a modelled solution to the 

complex problem of the ultimate pit limit problem. It should be taken in this 

light as it provides great insight into the mining problem. 

 

2.4.2 Optimization of the net present value 

A geologic block model is the starting point of any open-pit mine planning. 

From the model, a determination needs to be made as to whether or not a 

given block should be mined, when this should be done, and whether the 

block should be sent to the processing plant or the tailings dam. 
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The combined response to the above questions determines the annual 

progression of the pit surface, and the annual cash flows over the life of the 

mine to be generated. The solution to the scheduling problem depends on 

the attributes associated with individual blocks. In addition to determining 

the cash flows for that year, the decision about which blocks should be 

mined in a given year and how they should be processed (i.e. leaching, 

comminution, or waste) also influences future annual schedules. The 

scrutiny of pit limits that maximize Net Present Value (NPV) requires that in 

defining the mining sequence of blocks during the life of the mine, the time 

value of the money should be taken into account. This is because the NPV 

of the mine is not be maximized by the pit limit that maximize the 

undiscounted income for a given project. The intermediate pits leading to 

the ultimate pit limit are calculated as part of the planning and scheduling 

process to see how the pit surface changes over time. The method used in 

current software packages to generate nested pits is to gradually vary costs, 

cut-off grades, or product prices from a low value to a high value. For 

example, by varying the product price from a low value to a high value, many 

pits can be produced by increasing the size and decreasing the average 

value per ton of ore in the pit (Dagdelen, 1992 & 2001). 

Note that the cut-off grade that maximizes the NPV of the cash flows is a 

function of limitations on mining, milling, and refining capacity as well as the 

distribution of grades within the deposit. An algorithm for the calculation of 

cut-off grades that optimize the NPV of a project subject to limitations on 

mine, mill, and refinery capability was proposed by Lane (1964). During the 

initial years of the deposit, the cut-off grade method that results in a higher 

NPV for a given project is used. This gradually decreases to a break-even 

cut-off grade as the deposit grows depending on the distribution of the 

deposit by grade. Different computer packages have been produced using 

the Lane algorithm (Lane, 1988; Dagdelen 1992; Whittle, 1999). Their 

implementation to determine the optimal cut-off grade strategy has led to 

significant improvements in the NPV of mining projects. 
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2.4.3 Limitations of the Lerchs and Grossmann algorithm 

The greatest limitation of the LG algorithm reside in the difficulty of 

numerically implementing the method without simplifying assumptions, the 

complexity in incorporating variable pit slopes, and the extended computing 

times required to converge to a feasible solution. 

 

2.5 Effects of operational costs on mine optimization 

Comminution alone is responsible for 30 – 70 % of the total operational 

costs of typical mining operations (Radziszewski, 2013; Nadolski et al., 

2014). This has consequently drawn most of the initiatives designed to 

reduce processing costs and energy consumption in the mining industry. 

Various factors contribute to the poor efficiency of comminution operations 

which in turn affect the solution to the mine optimization problem. 

Worldwide economic crises and uncertainties in the mining sector have 

forced engineers and researchers to look for ways of compressing overall 

mining costs. One can consider that the costs associated with blasting and 

drilling operations contribute about 15 % of the overall costs of mining hard-

rock deposits (Božić, 1998; Gokhal, 2010; Palangio et al., 2005). By 

increasing the volume of explosives per ton of rock to be blasted, it is 

possible to drastically cut down on the processing costs. This increases the 

blasting and drilling costs but with a benefit on the comminution side that 

outweighs the initial costs of using more explosives (Božić, 1998; Eloranta, 

1995; Napier-Munn, 2015; Paley and Kojovic, 2001; Workman and Eloranta, 

2003). High-intensity blasting, however, needs to be done to maintain good 

fragmentation while ensuring safe wall control (Gokhal, 2010; Olofsson, 

1988). 

It is important to point out that cost savings have seldom been considered 

through optimizing drill and blast geometric parameters. Indeed, the cost of 

fragmenting a piece of in situ rock is influenced by several factors. These 

include but are not limited to blast geometric parameters and patterns, 
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density and type of explosives, and the geological nature of the rock 

formation. But the latest research show that the type and amount of 

explosives used per ton of rock have the greatest potential for cost-effective 

mining and comminution (Mulenga and Mwashi, 2018; Napier-Munn, 2015; 

Paley and Kojovic, 2001; Workman and Eloranta, 2003). 

Finally, as can be calculated in terms of environmental and fragmentation 

issues, the real cost of damaged blasting can be many times the cost of the 

blast itself. Examination of various activities indicates that while mine blasts 

normally fragment rock to be treated by the mining process, optimum 

fragmentation is possible to increase efficiency and reduce the cost of all 

downstream processes (Božić, 1998). 

 

2.6 Concluding summary 

From the literature review conducted so far, it is evident that open pit mines 

have been striving to find a way to deal with the economics of their 

operation. They have identified comminution circuits as the bottleneck that 

can lead to reduced operational costs when tuned with energy-intensive 

blasting. Other comminution technologies such as high-pressure grinding 

roller and stirred mills also have a potential to result in cost-effective circuits 

compared to classical semi-autogenous and ball milling circuits. All these 

cost saving strategies may positively affect the economics of the mining 

project. However, this is yet to be investigated in detail. It is against this 

background that the present dissertation attempts to establish the extent to 

which reduced comminution costs may impact open pit mine planning. The 

Net Present Value is used as the guiding criterion while optimisation is also 

done on the undiscounted profits as would normally do mine planners. In 

the end, the simulation work is expected to shed some light on the effects 

of comminution practices on open pit mine planning. 
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Chapter 3 Simulation tool and data collection programme 

 

This chapter describes the techniques employed to collect the data for 

analysis in line with the objectives set out for the research dissertation. The 

methodology adopted in this study revolves around computer simulation 

work (Goddard and Melville, 2001). This was used to investigate the effects 

of variable comminution costs on mine planning. 

 

3.1 Introduction 

Finding the best long-term production scheduling is important in open pit 

mining projects. Ordinarily, it should result in maximized NPV under several 

operational constraints. The issue is that solving the open pit optimization 

problem does not always lead to the optimal solution (Osanloo et al., 2008). 

This impasse can simply be described in these terms: First, until the block 

values are known, the pit outline with the highest value cannot be 

determined. Second, until the mining sequence is determined, the block 

values are not known. And last, until the pit outline is available, the mining 

sequence cannot be determined. 

Several simulation packages have been put forward for the optimization of 

open pit mining. In general, most packages are proprietary with varying 

licensing options while few are freely available. It is in the second group that 

SimSched Direct Block Scheduler (DBS) falls under and is used for this 

research. The dataset descriptive of the orebody model is also publically 

available through the MineLib database. This database contains block 

models for use in studying open pit mining problems (Espinoza et al., 2013). 

In this research work, a small academic dataset named Newman1 is 

extracted from the MineLib database. The Newman1 block model is fed into 

SimSched DBS and set up to be solved using the optimization problem 

paradigm. SimSched DBS then iteratively computes the pit optimization 

problem under various combinations of mining and processing costs. 
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Two optimization approaches are considered in this work. The first relies on 

the stepwise approach based on the LG algorithm (Caccetta and Hill, 2003). 

A series of nested pits are produced this way followed by the application of 

a scheduling algorithm to subsets of the block. The second strategy is based 

on direct block preparation. Here, the idea is to solve linear optimization 

problems for a given extraction period under slope and mining constraints. 

 

3.2 SimSched, the Direct Block Scheduler 

SimSched DBS is a plugin of the Stanford Geostatistical Modelling Software 

(SGeMS). Currently in a beta stage, SimSched DBS is computer software 

hosted by MiningMath and used for pit optimisation (Chaves et al., 2020). 

Upon assigning extraction periods and destinations to blocks, SimSched 

DBS can perform NPV maximization for mine scheduling purposes. Here, 

the NPV maximization problem is considered under constraints of milling 

capacity and time value of money amongst others. 

As a freeware, SimSched DBS enables one to do pit optimization, pushback 

design, and scheduling simultaneously in a single process. Moreover, the 

flexibility of the mixed-integer programming algorithms deployed as part of 

the freeware allows for the addition of blending restrictions and constraints 

relating to excavation hours, metal production, and average haul distance. 

Another key aspect of SimSched DBS is that it incorporates surfaces to 

generate scheduling plans as geometric parameters. In other words, it is 

possible to set minimum values not only for the bottom mining widths but 

also for a range of vertical rates of advance. Importing surfaces for a custom 

geometric restriction of the pit is also possible. SimSched DBS allows the 

use of stockpiles, multiple destination routes, variable slope angle, and 

block-by-block recovery at the processing plant. SimSched DBS can finally 

determine the global optimal mine scheduling in a single step. 
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3.2.1 Definition of the mine project 

Current practices in open pit mine planning normally challenge the planners 

and managers to make strategic decisions at different stages of the project. 

The ultimate goal of these decisions is to achieve the best long-term 

production scheduling. This section presents the basics of the software 

used in this study for mine planning. The NPV is used as an index to show 

the optimized extraction of the commodity. 

Simulations are carried out using the SimSched DBS software. Once 

SimSched DBS has opened, the SGeMS window developed by Advanced 

Resources and Risk Technology (ar2tech) pops up as shown in Figure 3.1. 

SGeMS is an open-source programming language that is used for solving 

problems involving spatially dependent variables. 

 

Figure 3.1 SGeMS by ar2tech interface 

SimSched DBS tools are now available under MiningMath as depicted in 

Figure 3.1. After running the SimSched DBS, a new window pops up as 

shown in Figure 3.2. It has a green panel on the left-hand side of the screen 

where several operations can be invoked. For example, a model in a CSV 

format can be imported to start a new job. Next to the green panel is a pane 

displaying previously saved jobs; one can also save or remove jobs done in 



31 
 

the pane. Other operations include opening a scenario that one had worked 

on before, exporting the model into a single file for easy transfer, and license 

details about the software version. An extensive library and instruction 

manual on the use of SimSched is also available with illustrative examples. 

 

Figure 3.2 Main window for SimSched DBS under MiningMath 

At this stage, the data that is in CSV format can be imported into SimSched 

DBS to start the process of mine scheduling. 

 

3.2.2 Block model of the mine project 

It should be recalled in Figure 3.2 that the Import Model option under the 

green panel is to be used to import block models of the project. Only a block 

model that is in line with the minimum requirements and specifications of 

the software discussed in Figure 3.2 can be successfully imported. By 

clicking on Import Model, a new window similar to Figure 3.3 appears listing 

all block models available for importing. 

The SimSched DBS software has the flexibility of importing different block 

models of one or different projects at the same time. Figure 3.3 shows that 
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the file name input field is shown in red, indicating a mandatory field while 

the Newman1 block model highlighted in blue is the one being imported. 

 

Figure 3.3 Importing a CSV model 

After completing all steps required in Figure 3.3, the name of the first 

simulation scenario of the Newman1 model can be entered. Upon clicking 

the Next button, the window in Figure 3.4 appears with all the statistics 

pertaining to the imported block model. It can now be seen that the 

characteristics of the Newman1 model downloaded from the MineLib 

database are summarised in terms of the following: 

 Minimum and maximum values of X, Y, and Z indices 

 Minimum and maximum grades of copper (Cu) 

 Minimum and maximum grades of gold (Au) 

 Minimum and maximum values of ore density (t/m³) 

 The minimum and maximum value of the economic value process 

 The minimum and maximum value of economic value waste 
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Figure 3.4 Data validation for NewMan1 

Each field is linked to a financial value (Economic Value Waste/Process). 

Each block value should be accounted for by the linked field as a function 

of its terminus, grades, recovery, mining costs, transport, treatment, and 

sale price. The subsequent formulas demonstrate exactly how the value of 

a block is determined: 

𝐵𝑙𝑜𝑐𝑘 𝑇𝑜𝑛𝑛𝑒𝑠=𝐵𝑙𝑜𝑐𝑘 𝑉𝑜𝑙𝑢𝑚𝑒 ∗𝐵𝑙𝑜𝑐𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦     (3.1) 

𝑇𝑜𝑛𝑛𝑒𝑠 𝐶𝑢 = 𝐵𝑙𝑜𝑐𝑘 𝑇𝑜𝑛𝑛𝑒𝑠∗𝐺𝑟𝑎𝑑𝑒 𝐶𝑢/100    (3.2) 

𝑀𝑎𝑠𝑠 Co = 𝐵𝑙𝑜𝑐𝑘 𝑇𝑜𝑛𝑛𝑒𝑠∗𝐺𝑟𝑎𝑑𝑒 Co     (3.3) 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑉𝑎𝑙𝑢𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = (𝑇𝑜𝑛𝑛𝑒𝑠 𝐶𝑢∗𝑅𝑒𝑐𝑜𝑣 𝐶𝑢∗(𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 

𝐶𝑢−𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝐶𝑢))+(𝑀𝑎𝑠𝑠 Co∗𝑅𝑒𝑐𝑜𝑣 Co∗(𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 Co−𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 

Co))−(𝐵𝑙𝑜𝑐𝑘 𝑇𝑜𝑛𝑛𝑒𝑠∗(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡+𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡))  (3.4) 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑉𝑎𝑙𝑢𝑒 𝑊𝑎𝑠𝑡𝑒 =− 𝐵𝑙𝑜𝑐𝑘 𝑇𝑜𝑛𝑛𝑒𝑠∗𝑀𝑖𝑛𝑖𝑛𝑔 Cost   (3.5) 

After data validation, pressing the Next button prompts the form in Figure 

3.5 showing different field types. The form in Figure 3.5 displays a preview 

of the imported block model and two header rows. The top header row has 

various field types, and the bottom one shows the headers of the CSV file. 
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Figure 3.5 A form showing various field types 

Now that the CSV file is imported, the additional data relating to the 

dimensions and grade units of the imported blocks can be defined. Grade 

units are imported from the same initial CSV file as illustrated in Figure 3.6 

with the grades in copper and gold of individual blocks. Note here that 

copper grade is in % while gold grade is in ppm (equivalent to g/t). 

 

Figure 3.6 Grade units and block dimensions 
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After filling in the required fields with the number of blocks, block 

dimensions, and the origin (see left-hand side of Figure 3.6), the options 

View Model is enabled. The required fields are derived by analysing the raw 

data. Before proceeding with the direct block scheduling (DBS), the 

imported model can be viewed by clicking on View Model. When this is 

done, MiningMath closes while the preview is made available on the 

SGeMS interface as shown in Figure 3.7. 

 

Figure 3.7 Typical SGeMS display of a block model. 

 

3.2.3 Optimization and planning of open pit mines in SimSched DBS 

For any mining enterprise, the preparation of output for long-term planning 

is an essential activity. Mining blocks must be prepared for extraction over 

several years and individually allocated a destination. This is done to 

optimize the net present value of the open pit project subject to capacity and 

organizational limitations. Optimization is then carried out by generating 

nested pits using the LG algorithm. Here, DBS is considered with the 

understanding that individual blocks are selected for extraction and 

destinations are allocated for certain periods (Morales et al., 2015). 
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Operational parameters associated with the mine scheduling problem are 

non-linear in nature. This non-linearity results in cumbersome computations 

and increased processing time for the solution to convergence (Osanloo et 

al., 2008). In this regard, SimSched DBS deploys a Linear Programming 

(LP) engine that linearizes parameters thereby accelerating the search. 

Mathematically, the objective function used for the purpose is written as: 

𝑚𝑎𝑥 ∑ ∑ ∑ 𝜗𝑏𝑡𝑑𝑦𝑏𝑡𝑑 𝜖 𝐷𝑡 𝜖𝑇 𝑏 𝜖 𝐵        (3.6) 

Where b ε B: a setting of all blocks b 

t ε T:  a set of periods inside the horizon 

d ε D: a set of all destinations d 

𝜗: discounted value linked with the final destination of a block b in 

period t 

y: 1 if block b is mined in period t, 0 otherwise. 

Depending on the application, the objective function in Equation (3.6) is 

subjected to constraints of slope, process recoveries, and time amongst 

others. Generically, these constraints can be represented as follows: 

∑ 𝑐𝑏𝑦𝑏𝑡 ≤  𝐶̅
𝑏 𝜖 𝐵          (3.7) 

Where 𝑐 and 𝐶̅ are the consumption of resource associated with the 

extraction of block and minimum (maximum) resource bound in any period 

(tons) respectively. 

Figure 3.8 shows the process taken by SimSched DBS to iteratively solve 

the optimization problem. The first step in the process is linearization. The 

linearization process is evoked to transform the operational parameters into 

linear constraints. At this point, SimSched DBS executes the model and 

checks its feasibility. Should the solution not be feasible, Equations (3.6) 

and (3.7) are revisited by applying simplifying assumptions to the problem. 

On the other hand, should the solution be feasible, SimSched DBS will run 

the optimization procedure until the NPV is maximized; then, the solution is 

stored for later use. 
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Figure 3.8 Mine scheduling problem 

 

3.2.4 Optimization report 

SimSched DBS can generate a capability report directly into Microsoft® 

Excel® and an optimized block and surface pit in SGeMS for the Newman1 

block model. The reports will clearly show the number of periods for the 

optimized pit as well as the output metal and input grade for Cu and Au 

respectively at various periods. The number of tons for each period of both 

minerals is also calculated and rendered as part of the optimization report. 

 

3.3 Definition of the ore body model 

Several comminution techniques and circuit designs have been used in 

industry with varying degrees of success (Tromans, 2008). However, the 

economic implications of the choice of a particular comminution strategy on 

mine planning are still yet to be explored. This is because the primary 

objective of mine planning is to select the maximum profitable excavation 

sequence throughout the lifespan of the mine irrespective of the costs 

incurred. 
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From the point of view of this study, the Newman1 block model is considered 

for simulation whereby comminution and processing costs are varied while 

corresponding mine plans are generated. The Newman1 block model was 

selected because of the scale of analysis required of the research work. The 

block model consists of 1 060 standard blocks. Attributes such as rock type, 

tonnage, ore grade, and economic values are available as part of the 

dataset. Once the user defines the mining and processing costs, the 

destination of each block can be determined (i.e. waste dump or processing 

plant). This is where the concept of cut-off grade discussed next is required. 

 

3.3.1 Cut-off grade 

Grade is a factor used to define the value of a rock block (Hall, 2014). The 

word “rock” refers to the total material that is mined until it is divided into ore 

and waste fractions. The term “ore” is defined as the mineralized material 

that is extracted for treatment. The concept of cut-off grade is used to 

differentiate between ore and waste (Lane, 1988; Rendu, 2008). The point 

of departure in the categorization of material in an open pit mine is the 

following mathematical expression (Hall, 2012): 

Rock = ore (treated or stockpiled) + waste = total material moved (3.8) 

Note that the components of Equation (3.8) are the main drivers of mining 

and processing costs accounted for in mine planning (Hall, 2014). Defining 

the cut-off grade therefore has a bearing on the mining and processing costs 

as well as on the economics of the mine plan. A high cut-off grade amplifies 

the NPV but shortens the life of the mine. 

 

3.3.2 Types of cut-off grade 

There are two groups of cut-off grades in open-pit mining: internal and 

external cut-off grade (Baird and Satchwell, 2001). The difference between 

the two is that the internal cut-off grade is applied after pit streamlining for 

blocks that are in the ideal pit to characterize mineral reserves. This type of 
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cut-off grade classifies material as ore or waste. It finds application in the 

SimSched DBS software. The external cut-off grade, on the other hand, is 

applied during pit streamlining to recognize blocks that create income and 

characterize a definitive pit. Blocks beneath the external cut-off grade are 

treated as waste. When the pit optimization is done, and a plan is created, 

post-pit enhancement is completed to enhance the life of the mine extraction 

technique of the asset inside the planned pit. 

 

3.3.3 Break-even cut-off grade 

This is the grade whose income covers all cash-dependent expenses 

including fixed and variable expenses, corporate and mining assessments, 

and other allocated capital uses (Pasieka and Sotirow, 1985). Dagdelen and 

Kawahata (2007) describe the monetary break-even cut-off grade as the 

grade which can be used to distinguish the metal from the squander. It is 

managed by comparing the incentive at the plant to the incentive at the 

dump. This break-even cut-off grade is generally used to determine the last 

pit limits. The same is true of the initial investment point in the life of a mine 

where the working expenses are equal to the estimate of the item sold. 

 

3.3.4 Minimum (marginal) cut-off grade 

The marginal cut-off grade is what meets just the variable working costs 

(prohibiting assigned managerial and other fixed working and capital 

expenses). It is utilized to decide the lowest evaluation that could be mined 

without misfortunes if there is no other mineralized material accessible for 

the predefined ability to create a positive net income (Pasieka and Sotirow, 

1985). This grade is utilized to isolate the metal from squandering inside the 

ideal pit limit. 
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3.3.5 Cut-off grades for polymetallic deposits 

Polymetallic deposits are mineral existences that contain more than one 

metal of financial worth (Rendu, 2008). Estimating the cut-off grade in this 

case should account for the contribution of every metal to the income. 

The cut-off grade of a multi-mineral ore deposit can be completed using 

parametric cut-off grades. This intrinsically means that for a deposit like 

Newman1 with copper being the fundamental mineral and gold the by-

product, the grade can be stated in terms of copper equivalent as follows: 

𝐂𝐮 𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 𝐆𝐫𝐚𝐝𝐞 =Grade𝐶𝑢 + 

 
𝐺𝑟𝑎𝑑𝑒𝐴𝑢 ∗ (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑢∗(𝑃𝑟𝑖𝑐𝑒𝐴𝑢−𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝐴𝑢)− 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝐴𝑢)

Recovery𝐶𝑢∗(Price𝐶𝑢−Selling Cost𝐶𝑢)−Element Processing Cost𝐶𝑢 
  (3.9) 

From the estimate in Equation (3.9), a single parametric cut-off grade can 

now be applied to copper and gold simultaneously. This cut-off grade is 

used both to assess the final pit and to decide whether to process or discard 

a certain tonnage of material. 

 

3.4 Design and programme of simulation work 

This section explains the approach that was employed for the simulation 

work. Geotechnical parameters, assumptions for pit optimization, and 

simulation scenarios considered amongst others are presented. The 

information was used to set up SimSched DBS so that the NPV of the 

Newman1 model could be maximized. 

 

3.4.1 Definition of geotechnical parameters of the pit 

The final slopes of an open pit mine are usually excavated to the steepest 

possible angle of about 45 – 50. This is to reduce the volume of waste 

rock that must be extracted before the ore is retrieved. However, open pit 

mining is a complex, risky and capital-intensive operation that may extend 

over many years (Lerchs and Grossmann, 1964). 
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The potentially hazardous nature of the operation needs to be considered 

when defining a safe and economic pit design. The main challenge resides 

in the variability of the soil conditions and excavation methods in use on site. 

This makes it difficult to come up with a single solution for the geotechnical 

design and operation of any mine to the point that detailed site-specific 

enquiry are resorted to instead. To stay within the scope of this research, 

key assumptions are made around the pit wall design and the life of mine. 

Before mining begins, an appropriate geometry of the excavation design on 

which the overall mine plan is based should be created. The slopes of the 

mine are then cut to the steepest and safest angle so as to reduce the 

volume of waste rock to be excavated when an ore is recovered (Hoek and 

Bray, 1981). While economics generally guide the choice of the slope angle, 

the need for wide benches on which mining equipment can move freely 

impose a limit on how steep one can go (Steward and Kennedy, 1971). The 

stability of the individual bench is controlled by the local geological 

conditions, the overall shape of the field, groundwater conditions and the 

excavation technique used. These controlling factors vary for different 

mining situations (Hoek and Bray, 1981). 

For the purpose of this research study and considering the fact that blocks 

forming the Newman1 model are cubical, it was decided to set the slope 

angle at the value of 45. The sequence for pit wall design can now be 

illustrated in Figures 3.9 – 3.11 using the floating cone method (i.e. LG 

method) applied in two dimensions (Lerchs and Grossman, 1964). 

 

Figure 3.9 Example of a block model 
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The cone is floated from left to right along the top row of blocks in the 

segment. Where there is a positive square it is eliminated/mined. Seeing 

that the top row has no positive block, the negative blocks are then be 

removed to get access to the second row as shown in Figure 3.10. 

 

Figure 3.10 Mined blocks 

Figure 3.10 shows the mined blocks from the first row to the second. To get 

the positive block, one starts from the left and searches for the positive 

block. If the total number of blocks falling inside the cone is positive, the 

blocks are mined. Note that the floating cone has a slope of 45 which 

implies that access to a block in the second row requires the removal of 3 

blocks in the first row. In a three-dimensional system, the concepts can be 

extended to the removal of five blocks above the targeted block below. 

These geotechnical constraints are handled by SimSched DBS with ease. 

From Figure 3.10, the floating cone process is followed until the bottom row 

and no more blocks can be removed; this is shown in Figure 3.11. 

 

Figure 3.11 Final pit 
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At this point, the last positive block cannot be mined which leads to the final 

pit design. The profitability of the mined area can be found by adding the 

values of the blocks have been removed. The values of the blocks are 

determined as follows: 

Block Value for both the Ore 

𝐵𝑉 = (𝑃 − 𝑠) ∗ 𝑔𝐵 ∗ 𝑦 − 𝑐 − 𝑚       (3.10) 

Block Value for both waste 

𝐵𝑉 =  −𝑚           (3.11) 

Where P = Price; s = Sales cost; c = Processing cost; y = Recovery; m = 

Mining cost; 𝑔𝐵 = Block grade; and BV = Block Value. 

From the final pit design, the overall stripping ratio can also be determined 

as the number ratio of positive blocks to negative blocks. 

Finally, the value of a systematic approach to the planning and design of 

pits using sound geotechnical engineering methods cannot be over-

emphasized. Indeed, open pit mines need to be operated in an integrated 

manner, safely and economically. Pit construction should be done at a 

minimum unit cost and under acceptable social and legal constraints (DME, 

1999). This is to ensure that the operation is maintained for the longest time 

at a profit. Known as the life of mine, the time duration of the operation is 

mostly influenced by the mining rates, the production processes, the 

production dump as well as the size, shape, and orientation of the 

excavation. The effects of mining and processing costs on the life of mine 

are reported upon later in Chapter 4. 

 

3.4.2 Assumptions for pit optimization 

Open-pit mining can be argued to be superior to underground mining in 

terms of ore recovery, production power, grade control, and dilution losses. 

With that in mind, the following heuristic assumptions were made: 
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 Dimensions of the blocks are 30 x 30 m with a bench slope of 45 

 Density is 2.75 t/m³ which is fairly used in this field. 

 Discount rate 10 %. 

 Recovery for Cu and Au process are 0.88 and 0.60 respectively. 

 Process 1 is 30 000 000 tons and Dump 1 is 50 000 000 tons with a 

total of 80 000 000 tons each period. 

 All other limitations and constraints are inherently taken into account 

when executing the algorithm for pit limit optimization. 

 

3.4.3 Mining and processing costs 

In order to explore the influence of processing costs and specifically 

comminution costs on the anticipated net profit value of the ore body, the 

following scenarios were considered based on existing literature (Božić, 

1998; Gokhal, 2010; Palangio et al., 2005): 

 Mining costs are allowed to fluctuate from 70 % to 140 % of the 

baseline mining costs so that the NPV is evaluated. 

 Similarly, processing costs are varied from 70 % to 140 % while the 

strategy on cut-off grade is appraised. 

SimSched DBS is used to simulate the proportional influence of mining 

costs as well as processing costs on the production plan of the typical open 

pit mine built around the Newman1 deposit. The simulation scenarios are 

optimised in terms of the NPV of the mining projects generated. 

 

3.4.4 Simulations scenarios considered 

As the deposit selected for the purpose of this study, the Newman1 block 

model has 1 060 blocks, 3 922 rules of precedence, and 6 time periods. 

When loading the block model information into SimSched DBS, one can 

view the 3D rendering of the model as shown in Figure 3.12. 
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Figure 3.12 Block Model of the Newman1 ore body extracted from MineLib 

Login parameters that SimSched DBS requires as input data are a valued 

block model that considers at least two economic destinations for process 

and disassembles, using Equations (3.4) and (3.5). 

Calculations are performed for each block considering assumptions on input 

data as well as on mining and processing costs presented in Sections 3.3 

and 3.4.3. In addition to this, the economic and geometric parameters that 

remain fixed are listed below. They were included in setting up the 

simulation models: 

 A fixed cost of mining is considered 1.5 USD/t. 

 A rehandling cost of 0.8 USD/t. 

 The discount rate is considered 10 % annual. 

 A minimum mined width of 50 m and bottom width of 100 m. 

 A maximum vertical rate of advance of 150 m. 

 Slope angles, metallurgical recovery, as well as the laws (Au / ppm) 

are coded in each block. 

SimSched DBS was used to obtain the production plan of various scenarios 

for later analysis. For this research study, a matrix was made with different 

periods to get the optimal production rate. Mining and processing costs are 

systematically varied from 70 % to 140 % while the NPV was estimated in 
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each case. Below are two examples of ultimate pits produced under two 

different scenarios. They are interpreted in detail later in Chapter 5. 

 

Figure 3.13 Block model of fixed data and assumptions made 

 

Figure 3.14 Block model of assumptions made with variation of data 
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3.5 Limitations of the work and challenges encountered 

This research work is limited to the simulation of the Newman1 model. The 

Direct Block Scheduling engine of the SimSched freeware was used for the 

purpose. The engine relied on the Linear Programming engine that works 

only on linearized versions of all mining and processing parameters of the 

optimization model. This slightly erodes the value of the final solution of the 

pit optimization problem. 

Notwithstanding the above, the chapter described the techniques employed 

to collect the data for analysis in line with the objectives set out for the 

research dissertation. SimSched DBS as the simulation tool considered in 

this study was described in detail while all assumptions made were 

explained. The next chapter presents the results of the simulation work; 

then, the relevant findings are made sense of in Chapter 5. 
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Chapter 4 Strategic mine planning under comminution 

constraints 

 

4.1 Introduction 

In this chapter, output data collected from the simulation work covered in 

Chapter 3 are analysed. The key objective is to evaluate the influence of 

mining costs as well as processing costs on the production plan of a typical 

open pit mine. The motivation for the scenario analysis is to whether there 

is a benefit in implementing cost savings on comminution operations from 

the point of view of strategic mine planning. Subsequent to this, the 

implications of cost savings on the cut-off grade are also explored. All the 

above is tested the Newman1 block model, a copper-gold deposit hosted 

on the MineLib electronic database. 

 

4.2 Determination of the break-even cut-off grade 

The break-even cut-off grade was previously defined in Section 3.3.3. 

Based on the supporting Equation (3.9), it is possible to obtain an estimate 

of the break-even cut-off grade applicable to the Newman1 block model. 

However, it is imperative to clarify the costs used in the calculations of the 

break-even cut-off (Hall, 2014). This is summarized in Table 4.1. 

Table 4.1 Assumptions on prices and costs used in estimating the break-

even cut-off grade 

Description Symbol Units Value 

Dilution D %  

Processing cost H USD/t milled 43.87 

Unit time costs F USD/t milled 37.53 

Copper recovery Y % 95 

Cu metal exchange Pcu USD/t metal 9 000 

Selling cost per tonne Kcu USD/t metal sold 495.88 
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Element processing 

cost – Copper 

Hcu USD/t Copper 

contained in feed 

671.35 

 

The break-even cut-off grade, COG, applicable to both copper and gold 

present in the Newman1 deposit can be expressed as follows: 

𝐶𝑂𝐺 =  
𝑑∗(ℎ+𝑓)

(𝑦∗(𝑝𝑐𝑢−𝑘𝑐𝑢)−ℎ𝑐𝑢)
        (4.1) 

Therefore, 𝐶𝑂𝐺 =  
43.87+37.53

( 95∗(9000−495.88)−671.35
= 1 % 

The break-even cut-off grade in this production process is 1 % which 

includes the contribution of gold to the revenue. Anything beneath the cut-

off grade is regarded as waste. Figure 4.1 illustrates the discarded material 

below the cut-off grade. 

 

Figure 4.1 Correlation between mine production and cut-off grade (van 

Daalen, 2012) 

Based on the data generated with the SimSched DBS software, it was 

estimated that 24 494,758 tons of the material is of grade below 1.0 %. This 

represents 41% of the mineralized material going to the dump site. 
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4.3 NPV-based optimization 

Having defined the cut-off grade and tonnage of valuable material to be 

mined in Section 4.2, the next course of action was to determine the best 

mining sequence that will incur maximum NPV. 

The simulation data resulting from the pit optimization is listed in Table 4.2 

with period represents the full year of exploitation from the commencement 

of the project. 

Grades associated with copper are noted to be higher relative to the gold 

ones. This is mostly because of the way that NPV considers the influence 

of the two metals in the optimization cycle (Mugwagwa, 2017). 

Table 4.2 Profile of the production schedule over the life of mine 

 

The average copper grade is low in the initial two years in light of the limited 

access to enough uncovered high-grade blocks. This indeed can be 

attributed to the need for the initial stripping of the overburden material. 

Once, the first layer of mineralized ore is uncovered, copper grade ascends 

between Year 3 and Year 10. Afterwards, a drop in average grade is 

recorded; then, an erratic fluctuation around an average grade of 0.45 % is 

observed until the exhaustion of the deposit. 

Another note is that the stripping ratio is high when exploitation starts 

because of quickened squander stripping to uncover high value ore 

PERIOD TONNAGE_kt Output_Metal_CU_kt Input_Grade_CU_% Output_Metal_AU_kg Input_Grade_AU_ppm

1 58147,32 173,56 0,298 49502,96 0,851

2 57788,8 222,05 0,384 39767,12 0,688

3 59519,44 338,64 0,569 40498,36 0,68

4 59781,33 301,68 0,505 32731,96 0,548

5 59829,88 424,94 0,71 35917,75 0,6

6 14567,42 131,2 0,901 7830,27 0,538

7 59998,93 395,97 0,66 29409,84 0,49

8 22476,99 148,48 0,661 10981,51 0,489

9 40555,45 266,61 0,657 21375,17 0,527

10 1706,95 3,54 0,208 559,85 0,328

11 21137,09 118,68 0,561 10333,57 0,489

12 14380,49 84,98 0,591 8809,82 0,613

13 20264,3 113,79 0,562 9800,95 0,484

14 13753,34 80,38 0,584 6251,32 0,455

15 336,4 0,96 0,286 79,17 0,235

16 52030,55 337,27 0,648 25102,36 0,482

17 1871,48 6,33 0,338 455,81 0,244

18 58520,53 329,65 0,563 22229,19 0,38

19 59041,8 331,7 0,562 22785,13 0,386

20 43237,95 216,76 0,501 15815,75 0,366

21 14563,98 64,22 0,441 6451,9 0,443

AVERAGE 34929,07 194,83 0,53 18889,99 0,49
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domains. This results in reduced cash outflow that steadily expands the 

NPV of the project thereafter. 

 

Figure 4.2 Variation of copper grades over the life of the mine 

A look at the gold grade in Figure 4.3 shows a slowly declining trend 

throughout the life of a mine. This may be attributed to the fact that gold is 

more of a by-product of copper than anything. Its inclusion is therefore a 

source of additional revenue. 

 

Figure 4.3 Variation of gold grades over the life of the mine 
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The declining trend of gold grade observed in Figure 4.3 is also indicative 

of the intrinsic nature of the mineralization of the Newman1 deposit. By 

analysing individual blocks, it seems that high-gold-grade blocks tend to 

contain less or no copper. However, the goal is to improve copper yield 

since copper-bearing rock is regarded as the primary source of revenue. 

So, any attempt to increase the grade of gold in the mix has a weakening 

impact on the copper grade. Scheduling would therefore target copper-

bearing blocks regardless of whether gold is present even at a lower grade 

or not. Metal yield follows similar trends and distributions as grade over the 

life of mine as shown in Figure 4.4. 

 

Figure 4.4 Cu and Au metal outputs over the life of the mine 

The steady increase in copper metal yield in the first five years is evident. 

As explained earlier, this is brought about by waste stripping. Gold yield 

tends to follow a similar pattern to copper yield from Year 5. 

It should be noted that the mine production process and the production 

dump process run concurrently. The first chain accommodates the valuable 

fraction of the deposit to be processed while the second takes care of the 

valueless fraction of grades below cut-off. The outcome of the production 

dump is shown in Table 4.3. This material cannot pay for itself. 
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Table 4.3 Production destined for the dump site 

 

Both Cu and Au grades going to the production dump are significantly small 

compared to the mine production (see Figure 4.5). They is not expected to 

produce any metal at a profit; that is why, metal outputs are at zero. 

 

Figure 4.5 Cu and Au grades sent to the dump site 

In terms of NPV, it can be seen that Figure 4.6 tends to closely follow the 

trend of gold in Figure 4.4. Although gold is regarded as a by-product, its 

PERIOD TONNAGE_kt Output_Metal_CU_kt Input_Grade_CU_% Output_Metal_AU_kg Input_Grade_AU_ppm

1 26824,98 0 0,038 0 0,067

2 25932,52 0 0,056 0 0,098

3 25472,53 0 0,05 0 0,08

4 25469,7 0 0,061 0 0,08

5 25614,69 0 0,033 0 0,035

6 25819,67 0 0,027 0 0,03

7 22243 0 0,055 0 0,058

8 23018,81 0 0,03 0 0,029

9 27700,58 0 0,046 0 0,037

10 25447,56 0 0,009 0 0,015

11 25339,1 0 0,014 0 0,012

12 25257,73 0 0,025 0 0,024

13 25189,67 0 0,028 0 0,02

14 25376,02 0 0,023 0 0,021

15 26206,99 0 0,005 0 0,003

16 24235,83 0 0,025 0 0,02

17 25364,73 0 0,015 0 0,012

18 24991,43 0 0,027 0 0,018

19 25256,79 0 0,059 0 0,039

20 24242,25 0 0,056 0 0,032

21 9385,34 0 0,09 0 0,072

AVERAGE 24494,7581 0 0,036761905 0 0,038190476
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contribution to the revenues may be non-negligible probably because it is a 

highly priced precious metal. 

 

Figure 4.6 Net present value over the life of the mine 

Low NPVs and losses are recorded from the tenth year onward while early 

years are profitable with the highest net present value being 112 000 000 

USD. Figure 4.7 also shows the cumulative NPV for the life of the mine. 

 

Figure 4.7 Cumulative NPV over the life of the mine 
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The cumulative NPV accelerate in the early years and slows down from 

Year 10. This flattens towards the end of life of the mine to a total NPV of 

slightly above 700 000 000 USD. 

 

4.4 Optimization based on SimSched DBS 

The total NPV of 700 000 000 USD in Figure 4.7 was accumulated over a 

period of 21 years. It would be argued that the NPV was produced following 

the “optimized” mine production schedule generated with the help of the 

SimSched DBS algorithm. The implications of this NPV-based optimization 

plan are analysed in this section. 

 

4.4.1 Parameters and assumptions 

Initial input parameters and supporting assumptions made for simulation 

were covered in Chapter 3. However, the following should be recalled from 

Figure 4.8: density = 2.75 t/m³; discount rate = 10 %; slope angle = 45; 

fixed mining and rehandling costs are at 1.5 USD and 0.8 USD respectively. 

 

Figure 4.8 SimSched DBS setup 
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Figure 4.9 Synopsis of parameter setup in SimSched DBS 

 

4.4.2 Production rates from optimized SimSched DBS plan 

It is necessary to do an inventory of the volume of material to be excavated 

over time in line with the 21-year optimized mine plan. Based on the data 

generated in SimSched DBS, Table 4.4 was produced to that effect. 

Table 4.4 SimSched total production over the life of a mine 

Period Production (mt) Period Production (mt) 

1 84,97229932 12 39,63822484 

2 83,72131937 13 45,45397088 

3 84,99196960 14 39,12935921 

4 85,25102855 15 26,54338944 

5 85,44456346 16 76,26637722 

6 40,38709120 17 27,23620416 

7 82,24192678 18 83,51195584 

8 45,49580435 19 84,29858816 

9 68,25602656 20 67,48019520 
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10 27,15451471 21 23,94932352 

11 46,47618977   

 

The tonnage of exploited high-grade ore from the beginning to Year 5 is 

between 83 Mt and 86 Mt. Metal yield is also high during this period. 

However, between Year 10 and Year 15, SimSched DBS estimates a drop 

in production as reported in Figure 4.10; this is partly due to the production 

capacity being fully utilized with a mix of high- and low-grade ore. 

 

Figure 4.10 Total tonnage of ore produced over the life of the mine 

The recuperation of metals at the low tonnages recorded between Year 10 

and Year 15 may probably not encourage the selective mining of high-grade 

ore. Further research should be initiated to investigate the effect of low 

tonnages on metal recuperation. Grades over the life of mine are generally 

high while economic block are still available. Once the pit nears exhaustion, 

stockpile recovery begins with a steady drop in grades until closure. 

It is important to state that SimSched DBS also optimizes the net return of 

the smelter. This is seen in the monetary value of individual blocks in the 

orebody model. In the first quarter of the life of the mine, the revenue is 

optimized by booking the ideal grade of copper. Midway through the life of 
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the mine, low-grade blocks become more accessible which bring about a 

decrease in net smelter return. Conversely, the decrease is compensated 

by the excavation of gold-rich blocks planned for the later years. So, even 

though SimSched DBS optimizes the NPV by globally considering copper 

and gold content, block values are biased towards gold due to its higher 

selling price. As a result of this, the “competing” commodities accrue a high 

net smelter return than initially anticipated. One thing is sure, the pursuit of 

high-value blocks in the early years of the mining project necessitates high 

stockpiling capacity. The recovery of the extracted ore in the stockpiles may 

only begin once the deposit is exhausted. At this point in time, the head 

grade to the plant starts to drop and leads to the subsequent decline in metal 

production. When this strategy is compared to one driven by the net return 

of the smelter, it appears that stockpiling incurs an initial margin on the NPV 

until Year 9 (see Figure 4.7). Ultimately, the overall cumulative NPV is the 

same as illustrated in Figure 4.11. Also note the slight discrepancies not 

exceeding 10 % in NPV over time between Figure 4.7 and Figure 4.11 but 

the same lifespan of the mine (i.e. 21 years). 

 

Figure 4.11 Cumulative NPV 
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It is clear from comparing Figures 4.7 and 4.11 that different strategies may 

actually affect the distribution of NPV over the life of the mine with varying 

benefits. 

When imposing the stockpiling strategy in Figure 4.11, SimSched DBs 

generates the optimized production plan reported in Table 4.5. 

Table 4.5 Life of mine schedule obtained from SimSched DBS 

 

It can be seen from Table 4.5 that the mine has great metal yield for quite a 

long while. Production optimized on cut-off grade is at its greatest during the 

first 5 years with plant throughput around 60 000 kt. This performance 

becomes difficult to maintain thereafter declining to below 30 000 kt in 

several time periods. The reason for this behaviour is that SimSched DBS 

does not complete optimization based on the grade of a block but on its 

recoverable value. That is why the final product follows a declining cut-off 

grade strategy. So, even though the value of recoverable copper is the 

parameter guiding the optimization, the grades are eventually streamlined. 

 

PERIOD Waste Mined (kt) Processed tons (kt) TCu (%) TAu (ppm) Cu Produced (kt) Au Produced (Kg)

1 26824,98 58147,32 0,298 0,851 173,56 49502,96

2 25932,52 57788,8 0,384 0,688 222,05 39767,12

3 25472,53 59519,44 0,569 0,68 338,64 40498,36

4 25469,7 59781,33 0,505 0,548 301,68 32731,96

5 25614,69 59829,88 0,71 0,6 424,94 35917,75

6 25819,67 14567,42 0,901 0,538 131,2 7830,27

7 22243 59998,93 0,66 0,49 395,97 29409,84

8 23018,81 22476,99 0,661 0,489 148,48 10981,51

9 27700,58 40555,45 0,657 0,527 266,61 21375,17

10 25447,56 1706,95 0,208 0,328 3,54 559,85

11 25339,1 21137,09 0,561 0,489 118,68 10333,57

12 25257,73 14380,49 0,591 0,613 84,98 8809,82

13 25189,67 20264,3 0,562 0,484 113,79 9800,95

14 25376,02 13753,34 0,584 0,455 80,38 6251,32

15 26206,99 336,4 0,286 0,235 0,96 79,17

16 24235,83 52030,55 0,648 0,482 337,27 25102,36

17 25364,73 1871,48 0,338 0,244 6,33 455,81

18 24991,43 58520,53 0,563 0,38 329,65 22229,19

19 25256,79 59041,8 0,562 0,386 331,7 22785,13

20 24242,25 43237,95 0,501 0,366 216,76 15815,75

21 9385,34 14563,98 0,441 0,443 64,22 6451,9

AVERAGE 24494,7581 34929,07 0,53 0,49 194,83 18889,99
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4.5 Significance of the findings 

Cut-off grade optimization involves the excavation of blocks with the highest 

recoverable values at the beginning of the mine life. This method is 

accomplished by rapidly mining and stockpiling low-value blocks for later 

processing. This enables the unearthing of high-value blocks that are then 

fed to the processing plant. Plant throughput is maintained at a high level 

so that the initial loan on the investment is repaid earlier. The consequence 

of this strategy is that metal yield diminishes to uneconomic levels with time 

until the deposit is exhausted. 

The alternative to optimization centred on cut-off grade is to maximize the 

NPV of the deposit. In the case of this dissertation, the Newman1 block 

model was used for the purpose. The simulation results covered in this 

chapter showed that there is a prospect for improved NPV when cut-off 

grade is optimized. Indeed, it appears that the two optimization schemes 

correlate as evidenced by concordant trends in Figures 4.7 and 4.11. A 

detailed study is needed in order to gain a better understanding of this 

correlation. Suffice it to say that there seems to be a benefit in stockpiling 

low-grade blocks to be later fed to the plant instead of relying on blending. 

In summary, of the optimization scenarios simulated, it has been shown that 

the break-even cut-off grade is key to determining the life of a mine. 

However, considerations of the smelter may have a negative impact on the 

overall cumulative NPV. That is the reason why SimSched DBS tends to 

favour the production of more metal in the early stages of mine life. This can 

potential lead to a build-up of waste material as a result of stripping. 

Having established the above as the baseline, the next chapter explores the 

effects of mining and processing costs on the mine plan. 
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Chapter 5 Effects of comminution costs on mine planning 

 

5.1 Introduction 

In the previous chapter, a baseline was established for the Newman1 block 

model in terms of achievable NPV and throughput. A mine plan stemming 

from the effort was generated for predefined break-even cut-off grade. This 

made it possible to estimate for example the tonnages to be mined and 

associated grades of copper and gold over the life of mine. 

The optimized mine schedule produced in Chapter 4 is now revisited in this 

chapter. The idea is to test scenarios whereby the proportion of processing 

costs relative to mining costs is varied. In doing so, insights on the 

contribution of comminution costs to mine planning is gained. Ultimately, the 

findings can be used to guide comminution practice in the context of mine 

planning in line with the objectives set out in Section 1.3 for this research. 

 

5.2 Comparison of scenarios 

A detailed description of the varied comparison scenarios is outlined in this 

Section. The discussion is documented in chronological order as stated in 

the introduction of the chapter. 

 

5.2.1 Comparison of cut-off grade policy 

A comprehensive comparison on the average and the input grade of both 

Au (Gold) and Cu (Copper) is shown in Figure 5.1. The maximum break-

even cut-off grade of the given metals (Au and Cu) is about 1.0 % over a 

period of 21 years. It should also be indicated that the duration of the 

distribution curves is mostly controlled by the added stockpiles which in turn 

increases the metal availability. The break-even cut-off grade of 1.0 % 

shows that the input grade for Cu and Au are beneath the cut-off grade. This 

means that metals with grade beneath the cut-off grade go to the production 
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dump and considered to be waste rock. The average grade shows the 

Copper and Gold is above the cut-off grade. In this regard, the two ore 

grades allow mining activities to progress profitably. However, in case the 

average grades are lower than the required cut-off grade, such ore is not 

economical to be mined forcing the mine to run at a loss. It makes sense to 

rather operate at a positive cash-flow to justify the mining business. 

 

Figure 5.1 Cut-off grade policy 

Also note that both SimSched DBS and NPV give a twenty-one-year life of 

mine at a break-even cut-off grade of 1 %. The current existence of mine 

cut-off grade policy gives a clear existence of mine of around 21 years. 

 

5.2.2 Comparison of mined tonnages 

Figure 5.2 shows that the NPV is most notable during the start of mine life. 

The NPV is also in line with the target of the cut-off grade optimization since 

it is above zero tonne. It decreases to a value below zero on the tenth year 

and gradually decreases towards the end of life of mine. Scheduled 

optimization in NPV does not lead to high grading; hence, the decrease in 

the NPV throughout the life of the mine. 
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Production tonnage follows the same trend as that of the SimSched 

production total. However, production tonnage is low while the SimSched 

production is high because of optimization. The treatment of higher-grade 

ore from the beginning to year five is high and as a result metal yield 

becomes high. SimSched DBS shows an optimistic production however, 

during the years ten to fifteen the metal output is low. The production 

capacity is fully utilized with a mixture of high- and low-grade ore. 

 

Figure 5.2 Comparison of mined tonnages 

The stripping backlog is clear in all the situations for the first quarter (5 

years) of the life of mine except for the NPV which decreases (lowest being 

below 0) and increases throughout the life of mine. A small change in cut-

off grade results would result in a huge tonnage loss. SimSched production 

is higher, and that shows that optimization is at maximum. The current 

existence of mine and the break-even cut-off grade policy both allow a five-

year mining (stripping) life. 

 

5.2.3 Life of a mine for copper and gold production 

Copper production in Figure 5.3 shows that the output metal is generally 

high at the beginning of the life of mine due to SimSched optimization. The 
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copper production gradually decreases until the end of the life of mine. 

NPVs have demonstrated a negative effect whereby a portion of the metal 

in the current pit is not financial to mine. The break-even cut-off grade 

produces copper comparable metal which is a blend of copper and gold. 

Break-even cut-off policy gives a high copper output which is relative to the 

NPV and a lower gold output because it is a by-product in the process. 

 

Figure 5.3 Life of a mine copper production, the NPV and metal output 
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Figure 5.4 Life of a mine gold production, the NPV and metal output 

With reference to Figures 5.3 and 5.4, it has been observed that the NPV 

was ranging from 90.00 to 120.00 Million USD during the first five years. It 

is anticipated that the NPV distribution in the first five years was mainly 

affected by break-even cut-off grade policy, these results also correlate very 

well with previous studies. Mugwagwa (2017) for instance pointed out that 

the market price affects the NPV of copper since the break-even cut-off 

policy gives a high copper output than that of gold as gold is the by-product. 

 

5.2.4 NPV variation for the life of mine 

All the scenarios investigated show a decrease in NPV throughout the life 

of the mine. The decrease in NPV is brought about by the declining metal 

yield. Figure 5.5 shows that the diagram for SimSched gives a lopsided 

decrease in NPV contrasted with the current existence of mine. The current 

existence of mine gives the most elevated NPV in the principal quarter 

before bringing down the remainder of the diagrams. This is brought about 

by the imperfect stripping to clear the waste mining accumulation. There is 

hence a need to smoothen this by the cut-off grade strategy from SimSched 

DBS and that plainly shows in the initial 5 years of the life of mine. 
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A correlation of the NPV from the researched scenarios gives the outcomes 

that appeared in Figure 5.5. The current existence of mine arrangement was 

required to give the most elevated NPV since it consolidates extra metal 

from the stockpiles. Nonetheless, this is not the situation because of 

deferred money inflows and higher money outflows brought about by 

increased stripping in the prior years of the mine life. 

 

Figure 5.5 Net present value 

The NPVs give the most noteworthy NPV because of deferred money 

outflows by diminished mining toward the start of the life of the mine as 

appeared in Figure 5.5. SimSched NPV is the highest because it has been 

based on optimization principles. The cut-off grade optimization based on 

recoverable value tends to high-grade the block model. This then sterilizes 

a portion of the lower-grade metal. The monstrous stripping and stockpiling 

towards the start of the life mine negatively affect the mine life because of 

higher money surges brought about by early stripping and re-handle from 

the reserves. 
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5.2.5 Overall tonnes mined 

Figure 5.6 shows that optimization in SimSched yielded great results in the 

first five years (highest tonnage being over 60 000 kt). The equivalent 

optimized grade follows the decreasing cut-off grade, which results in higher 

metal yield in the first five years. This is also in line with the optimization of 

the cut-off grade and value of the mine. The policy to accelerate the mining 

rate to get the higher-grade ore for NPV optimization also influences the 

decision. There is a massive drop in tonnage mined in the sixth year which 

then went up quickly (From 60 000 kt to 14 000 kt and 60 000 kt). During 

the tenth year to year fifteen, there is more waste mined than the actual 

payable ore and the increase in payable ore increased until the end of the 

life of the mine. This also marks the beginning of the decline in grade and 

hence the subsequent decline in metal production. 

 

Figure 5.6 Overall tonnes mined 

Figure 5.7 shows the tonnes mined as shown on SimSched. Red blocks 

represent high-grade ore, while blue represents waste mined. 
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Figure 5.7 Grade variation of tonnes mined rendered in SimSched DBS 

 

5.3 Analysis of the effects of processing and mining costs 

5.3.1 Effect of processing costs on the cut-off grade 

With reference to Figure 5.8, it should be stated that the processing costs 

are varied between 70 % and 140 % from the baseline. The effects are then 

recorded in terms of the cut-off grade. There is a small increase between 

70 % and 75 % of the processing costs. However, the pattern of the graph 

shown in Figure 5.8 shows that the increase in processing costs results in 

the increases of the cut-off grade. 
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Figure 5.8 Copper grade of mined ore as a function of processing costs 

The increase in cut-off grade reduces the metal output of the orebody as 

illustrated in Figure 5.9. Figure 5.9 shows a decreasing pattern in the metal 

output as the processing costs increase. The increase is very minimal 

between 80 % and 95 % of the processing costs and shows a significant 

increase from 100 % to 140 % of the processing costs. 

 

Figure 5.9 Metal output from mined ore as a function of processing costs 
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The decrease in metal output proves that there is a decrease in ore reserves 

presented for treatment as there is also an increase in the cut-off grade as 

shown in Figure 5.9 above. 

 

Figure 5.10 Ore reserves as a function of processing costs 

 

5.3.2 Effect of mining costs on the NPV 

Figure 5.11 denotes the distribution of mining cots with NPV in percentage. 

The general distribution of the curves revealed that NPV values ranging 

between 72.1 to 112.1 Million USD are estimated, with the mining cost 

ranging from 70 % to 140 %. It is also observed that the majority of the NPV 

are scattered across 79 % to 80 %, this is influenced by cut-off grade 

optimization. 

Based on Figure 5.11, it is observed that from 70 % to 85 % of the mining 

cost the NPV shows a gradual decrease, it is anticipated that the gradual 

decrease might have been influenced by the extraction ratio. Furthermore, 

the distribution has shown some rapid increase in the NPV as the 

distribution approaches a mining cost of approximately 91.2 %. For the 
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remaining part, the distribution shows a variation that alternates between 70 

% and 90 %. 

 

Figure 5.11 Variation of the NPV ore with mining costs 

There is an inverse proportion between the NPV and the mining costs during 

the 70 % and 85 % variations. Results moreover show a dominant pattern 

of stability in the NPV from 100 % to 140 % of the mining costs variation. 

 

5.3.3 Effect of the discount rate on the NPV 

Shifting the discount rate has no impact on the cut-off grade and that is the 

explanation it has not differed because it follows the same trend. The 

discount rate is utilized on the benefit after all the allowances are made. For 

this situation, the limiting rate is not being treated as an expense and it has 

no part in cut-off grade optimization. However, the NPV decreases with an 

increase in the discount rate. 

Figure 5.12 shows that all graphs for various scenarios with discount rate 

values above 10 % are below the base value graph as selected in 

SimSched. This analysis shows that trying to recover capital by increasing 

the discount rate does not work for the Newman1 block model. The total 
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NPV additionally diminishes when the discount rate is increased. High 

discount rates negatively affect the estimation of the block model. 

 

Figure 5.12 Effects of the discount rate on the NPV over the mine life 

Indeed, the distribution of NPV variation with several discount rates has 

shown that the distribution is not neutral throughout, there is an increase, 

decrease distribution observed along the curves (see Figure 5.12). All the 

curves follow the same pattern as that of the 10 % discount rate (Base 

curve). The more the discount rate, the lower the NPV variation. 

 

5.3.4 Effect of variation on the copper price 

The dissemination of the minable grade in the orebody is such that 

individual patterns are not noticeable. The pattern is visible on the minable 

grade at every rate change in cost. As the copper cost is increased the 

grade diminishes. Thus, a portion of the lower grade material that is 

uneconomic to extract at the lower cost becomes economic and brings 

down the grade of the mineral accessible for mining which increases the 

reserves. An increase in price advantages more ore for processing. The 

increased copper output with a price increase indicates increased cash 

inflows and hence an increase in NPV. 
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Figure 5.13 Effects of variations on commodity price on the average grade 

of the optimally mined ore 

 

5.4 Concluding remarks 

Of the explored scenarios, it has been demonstrated that the break-even 

cut-off grade gives a long-term life of mine with high metal yield. SimSched 

DBS advances the production of more metal in the first five years of the life 

of mine and that shows that more profit can be made during the life of a 

mine. The outcomes have demonstrated that mining costs have no impact 

on the preparing of cut-off grade. However, the increase in metal value 

brings down the cut-off grade and vice versa. 
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Chapter 6 Conclusions and recommendations 

 

6.1 Introduction 

The integration and impact of comminution costs on open pit mine planning 

has been investigated in this dissertation. Based on the literature review 

covered, it was established that comminution alone accounts for 30 – 70% 

of the overall operational costs of a mining project. This has subsequently 

drawn research into ways of reducing associated processing costs. On one 

front, energy-efficient technologies are being developed while on another 

innovative processing circuits are seeing the light. The present dissertation 

attempted to approach the problem differently. Indeed, it explored the 

effects of processing and mining costs on an open pit mine plan. 

Simulations were employed to generate production schedules from the 

block model of a copper-gold deposit. Mine planning was done with the help 

of SimSched Direct Block Scheduler (DBS), a freely download software for 

pit optimisation. The optimisation algorithm behind SimSched DBS is 

essentially based on the seminal work of Lerchs and Grossman (1965). 

Various scenarios were considered as part of the simulation work. 

The orebody modelling theory is used to determine the value of the mineral 

deposit and the potential of making a return by a prospective venture by 

analysing the values of grade, tonnage. 

Simulation results of various scenarios with assumed constraints are 

executed in Chapter 4. Pit optimization was carried out using SimSched 

DBS and satisfactory results in line with the objectives of this study are 

acquired. The analysis presented is predicated on the assumption that is 

relevant to the current mining laws. 
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6.2 Concluding remarks 

The mine life schedule created with the help of SimSched DBS for the 

Newman1 block model provided an optimized cut-off grade. Planned mining 

times are shown in different colours in Figure 3.13. 

Waste stripping schedules by cut-off grade optimization showed that high-

grade ore will be usable from the beginning of the first year of the mine 

existence. All the methods used to produce the cut-off grade policy in this 

study have shown that high-grade minerals can be used in the early years 

of mine existence. 

There is a great opportunity to boost the NPV of the Newman1 block model. 

This can be achieved by improving the cut-off grade. This is demonstrated 

by the comparison of the NPV from the current life of mine provided by the 

various scenarios in Figure 5.5. 

High impacts of copper and gold prices on block values can cause high 

grading. This is demonstrated by a lower grade material that is no longer 

economical to process because it makes maximum use of plant capacity 

with less metal production. NPVs are not as aggressive as SimSched DBS 

in optimizing metal production, thus giving a smoother schedule. 

Copper clarifies the optimization process; however, it may not be suitable 

for more economic study. 

The break-even cut-off grade has the lowest NPV rating. This means that 

operating a mine at break-even cut-off grade does not completely maximize 

the value of the operation. As such, this cut-off grade policy can only be 

used as a quick estimate. 

The possibilities of improving the NPV from that based on SimSched DBS 

is very high. This can be achieved by concentrating on important input 

parameters, such as lowering production costs, increasing throughput, and 

improving the policy of cut-off grades. 
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6.3 Recommendations for future work 

Controlling the mining rate in the early years of mine life in SimSched DBS 

is very important as it avoids large cash outflows at the beginning of the life 

of mine. In the first five years, the scheduled mining rate is extremely high. 

As a result, this generates a lot of capital in the extracted ore, which is not 

in line with the time value of the money. Maximizing cash inflows and 

suspending cash outflows as often as possible without losing the credibility 

of the business by optimizing the NPV is essential. The mining rate can be 

reduced at the commencement of the life of the mine can be achieved by 

suspending cash outflows. The NPV from SimSched DBS could have been 

much higher with a reduced mining rate. 

There are several calculations beyond the SimSched DBS program. 

SimSched DBS would automatically create economic block values to make 

the software more user-friendly. This would make the optimization runs 

even faster from a human point of view. There is a need for SimSched DBS 

to update the coordinates of the block model to the indices without the 

operator having to do it manually. The goal is to eliminate human error as 

much as possible. 

Optimization of block economic value appeared to have a high-grade effect 

on the Newman1 orebody. The by-product, which is gold, has a higher unit 

price relative to the main product, which is copper. This led to the addition 

of copper grade blocks below the break-even cut-off grade. This leads to 

the scheduling of very low grades which may not be feasible for metal 

recovery in the factory. Integrating a way to avoid uneconomically low-grade 

mining can help to avoid this. 
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