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SUMMARY 

This study sought to (a) investigate the effect of Van Hiele theory-based 

instruction on Grade 11 students’ geometric proofs learning achievement, (b) 

explore students’ views on their geometry learning experiences, and (c) develop 

a framework for better teaching and learning of Grade 11 Euclidean geometry 

theorems and non-routine geometric proofs. The study is based on Van Hiele’s 

theory of geometric thinking. The research involved a convenience sample of 186 

Grade 11 students from four matched secondary schools in the Capricorn district 

of Limpopo province, South Africa. The study employed a sequential explanatory 

mixed-methods design, which combined quantitative and qualitative data 

collection methods. In the quantitative phase, a non-equivalent groups quasi-

experiment was conducted. A Geometry Proof Test was used to assess students’ 

geometric proof construction abilities before and after the teaching experiment. 

Data analysis using non-parametric analysis of covariance revealed that students 

from the experimental group of schools performed significantly better than their 

counterparts from control group schools. In the qualitative phase, data were 

collected using focus group discussions and students’ diary records. Results 

revealed that the experimental group students had positive views on their 

geometry learning experiences, whereas students from the control group of 

schools expressed negative views towards the teaching of Euclidean geometry 

and geometric proofs in their mathematics classes. Based on the quantitative and 

qualitative data findings, it was concluded that in addition to organizing instruction 

according to the Van Hiele theory, teachers should listen to students’ voices and 

adjust their pedagogical practices to meet the expectations of a diverse group of 

students in the mathematics class. A framework for better teaching and learning 

of Grade 11 Euclidean geometry theorems and non-routine geometric proofs was 

thus developed, integrating students’ views and Van Hiele theory-based 

instruction. The study recommends that teachers should adopt the modified Van 

Hiele theory-based framework to enhance students’ mastery of non-routine 

geometric proofs in secondary schools.  

Keywords: Van Hiele theory, Van Hiele theory-based instruction, conventional 

teaching approaches, Euclidean geometry, non-routine geometric proof, 

learning achievement, students’ views  
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CHAPTER 1 

INTRODUCTION 

1.1 Background to the study 

High school Euclidean geometry is the area of mathematics that offers 

students a natural place to learn mathematical proofs (Mwadzaangati, 2019). 

Other areas of mathematics taught in the South African secondary school 

mathematics curriculum, such as functions and algebra, number patterns, 

financial mathematics, calculus, probability and statistics, trigonometry, and 

analytical geometry, offer students limited opportunities to learn proofs 

(Shongwe, 2019).  

Euclidean proofs offer students the opportunity to gain life skills such as 

visualization, deductive reasoning, logical argument, problem-solving, and critical 

thinking (Oflaz, Bulut, & Akcakin, 2016). Besides, proofs are used for verification, 

explanation, discovery, communication, systematization, aesthetic, and transfer 

purposes (Hemmi, 2010). Those who support the inclusion of Euclidean 

geometry in the secondary school mathematics curriculum argue that it helps to 

prepare students for careers in science, technology, engineering, and 

mathematics (STEM) that are undeniably important to economic growth (see 

Ndlovu & Mji, 2012). 

However, despite numerous justifications for including Euclidean 

geometry and geometric proofs in secondary school mathematics curricula, the 

teaching and learning of this topic in South Africa has historically been 

problematic (see De Villiers & Heideman, 2014; Naidoo & Kapofu, 2020; Siyepu, 

2014). Results from the Trends in International Mathematics and Science Study 

(TIMSS) of 2006 showed that geometry was the area of mathematics where the 

performance of South African students was dismal (Ndlovu & Mji, 2012). A follow-

up study attributed the poor performance to poor teaching (Bowie, 2009). It was 

reported that educators had limited knowledge of Euclidean geometry content 

and the methodology of teaching it (Ntuli, 2014). This led politicians to suggest 

that Euclidean geometry should not be compulsory. As a result, the Revised 

National Curriculum Statement (RNCS) which came into effect in 2006 relegated 

Euclidean geometry to an optional paper – Mathematics Paper 3 (Naidoo, 2013).  
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Years later, researchers in South African universities reported that the 

exclusion of Euclidean geometry from the mainstream mathematics curriculum 

had increased the gap between secondary school and tertiary mathematics, for 

students enrolled in science and engineering programmes (Hlalele, 2020; 

Mouton, Louw & Strydom, 2012; Padayachee, Boshoff, Olivier & Harding, 2011; 

Wolmarans, Smit, Collier-Reed & Leather, 2010). A study carried out by 

Engelbrecht, Harding and Phiri (2010) found the 2009 cohort of first-year 

university mathematics students “weaker than their predecessors” (p. 3). This 

was the first group of students to write a Grade 12 mathematics examination that 

excluded Euclidean geometry. A similar study by the mathematics department of 

the University of the Witwatersrand showed a thirty-seven percent drop in the 

June mathematics pass rate for first-year students in 2009 (Blaine, 2009). These 

findings were consistent with trends observed at other universities in South 

Africa, namely the University of Cape Town, the University of Stellenbosch, the 

University of Pretoria, the North-West University, the University of KwaZulu-

Natal, and the Nelson Mandela Metropolitan University (Blaine, 2009). It was 

argued that the lack of mathematical skills of the students was a consequence of 

Euclidean geometry which was no longer taught in all schools (Blaine, 2009). 

In January 2012, the South African Department of Basic Education (DBE) 

introduced the Curriculum and Assessment Policy Statement (CAPS), which 

reintroduced Euclidean geometry and geometric proofs back into the mainstream 

mathematics curriculum (Alex & Mammen, 2014). Although the decision to make 

Euclidean geometry compulsory is commendable, the South African Democratic 

Teachers’ Union (SADTU) and the National Professional Teachers’ Organization 

of South Africa (NAPTOSA) shared the view that educators were not ready for 

the change, citing lack of adequate in-service teacher training prior to 

implementation (Ntuli, 2014). Evidence to support this position was found in 

surveys conducted by Olivier (2013; 2014) in two provinces in South Africa. In 

the 2013 survey, the teachers agreed that the CAPS training they received was 

inadequate for them to teach Euclidean geometry with confidence. In the follow-

up survey, sixty-percent of the participants indicated that they were not 

comfortable with Euclidean geometry (Olivier, 2014).  

South African educators wonder why geometry was brought back into the 

mainstream mathematics curriculum when the problems that led to its exclusion 
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in the previous curriculum have not yet been fully addressed (Ndlovu, 2013). 

Even those with previous experience in teaching geometry still find it difficult to 

successfully teach most of their students (Ngirishi & Bansilal, 2019; Shange, 

2016; Tachie, 2020). Govender (2014) maintains that the return of Euclidean 

geometry “has created a large amount of anxiety on the ground for both teachers 

and students” (p. 4). Some of the educators who are expected to teach Euclidean 

geometry under the CAPS have no previous contact with the topic (Tachie, 

2020). The situation is aggravated by a lack of support from the subject advisors. 

Bradley and Scheiber (2010) noted that the subject advisors seem to lack 

adequate knowledge and skills needed to help teachers improve. 

Given this orientation, one might reasonably wonder what the situation is 

in South African mathematics classrooms during Euclidean geometry lessons. 

Anecdotal evidence from discussions with fellow teachers during mathematics 

workshops in the province of Limpopo indicates that the main concern of the 

teachers is not about the content of Euclidean geometry. Instead, the biggest 

challenge is how to teach Euclidean geometry and geometric proofs in a way that 

ensures success for most students. This challenge was also reported in Malawi 

(see Mwadzaangati, 2019).  

Mathematics educators may be willing to try out new ways of teaching 

Euclidean geometry and geometric proofs, but strong empirical evidence of 

successful teaching approaches is limited. It remains unclear what kind of 

teaching approaches could improve students’ mathematical reasoning and proof 

skills in Euclidean geometry lessons (Jones, Fujita, & Kunimune, 2012; Miyazaki, 

et al., 2019).  Teachers should therefore continue to look for ways to effectively 

teach Euclidean geometry proofs in a way that enhances the learning 

achievement of most students in the mathematics class.  

1.2 Statement of the problem 

Ideally, students are expected to graduate from secondary school with the 

ability to construct and write geometric proofs (Amidu & Nyarko, 2019; Dhlamini 

& De Villiers, 2013; Luneta, 2014; Salifu, Yakubu, & Ibrahim, 2018). This would 

ensure a smooth transition from high school to university mathematics. However, 

evidence from the National Senior Certificate (NSC) examination reports 

indicates that questions that require candidates to construct and write non-routine 
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multi-step geometric proofs are poorly answered, and some candidates do not 

even try to answer the proof questions (see Department of Basic Education, 

2015, 2016a, 2017, 2018, 2019, 2020;  Hlalele, 2020). The weak performance of 

high school students on Euclidean geometry proofs is not unique to South Africa. 

Similar findings have been reported in Zimbabwe (Mukamba & Makamure, 2020), 

America (Oueini, 2019), Nigeria (Adeniji, Ameen, Dambatta, & Orilonise, 2018), 

Ghana (Armah, Cofie, & Okpoti, 2018), Namibia (Kanandjebo & Ngololo, 2017), 

Saudi Arabia (Al-Khateeb, 2016), Jordan (Tahani, 2016), Malawi (Mwadzaangati, 

2015, 2019), Japan (Jones et al., 2012; Miyazaki, et al., 2019), and Turkey 

(Köǧce, Aydιn, & Yιldιz, 2010).  

It is evident from these reports that teaching Euclidean geometry proofs in 

secondary schools is problematic. If this situation remains unattended at the high 

school level, universities will have to put up with students who come to university 

without the necessary mathematical skills. This would mean that universities will 

have to continue to bear the burden of offering bridging courses and extended 

programmes to underprepared students. This has been found to put a strain on 

the already stretched financial and human resources of universities as students 

take longer to graduate (Atuahene & Russell, 2016; Council on Higher Education, 

2013). As a result, the central concern of this study is: How can Grade 11 

Mathematics teachers organize teaching and learning activities to enhance 

students’ geometric proofs learning achievement?  

Many studies have highlighted students’ difficulties with mathematical 

proofs (see for example Harel & Fuller, 2009; Harel & Sowder, 2007; Selden & 

Selden, 2007; Stylianides & Stylianides, 2009). However, there has been limited 

research on how teachers can enhance students’ geometric proofs learning 

achievement (Miyazaki, et al., 2019). As a result, most teachers lack the 

pedagogical knowledge to teach Euclidean geometry proofs effectively (Cirillo & 

Hummer, 2019; Mwadzaangati, 2015, 2019; Tachie, 2020). This is an area which 

still needs further investigation.  

1.3 Research questions 

The following questions will be addressed: 

1) Does teaching and learning Euclidean geometry theorems and non-routine 

geometric proofs through Van Hiele theory-based instruction have any 
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statistically significant effect on Grade 11 students’ geometric proofs 

learning achievement? 

2) What are students’ views on (a) the Van Hiele theory-based approach, and 

(b) conventional approach to teaching and learning Grade 11 Euclidean 

geometry theorems and non-routine geometric proofs? 

1.4 Research objectives 

The following objectives were set: 

1) To implement Van Hiele theory-based instruction in the teaching of Grade 

11 Euclidean geometry theorems and non-routine geometric proofs; 

2) To test the effect of Van Hiele theory-based instruction on Grade 11 

students’ geometric proofs learning achievement; 

3) To explore students’ views on (a) the Van Hiele theory-based approach, and 

(b) conventional approach to teaching and learning Grade 11 Euclidean 

geometry theorems and non-routine geometric proofs; 

4) To develop a framework for better teaching and learning of Grade 11 

Euclidean geometry theorems and non-routine geometric proofs, integrating 

the views expressed by the students. 

1.5 Significance of the study 

It is anticipated that the findings of this study will benefit the following 

sectors of society: 

1.5.1 Secondary school students 

The direct beneficiaries of the findings of this research are students who 

have difficulties in understanding geometric proofs in secondary schools in South 

Africa. An improvement in strategies for teaching proofs paves the way for better 

student achievement, increases students’ access to critical careers, such as 

mathematics, science, and technology, and ultimately their chances of survival 

and prosperity in the society. 

1.5.2 Secondary school mathematics teachers 

This study seeks to address the pedagogical concern of teachers about 

how to teach Euclidean geometry proofs in a way that ensures success for most 

of their students. In the absence of adequate pre- and in-service teacher training 
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and development programmes, the results of this study may help teachers to 

discover how they can turn students’ difficulties into opportunities to improve their 

pedagogical practices. The findings of this study may lead to changes in the 

approaches used by teachers to teach geometric proofs in countries where 

students do not perform well on the mathematical aspect of proof.  

1.5.3 Curriculum advisers 

Mathematics curriculum advisors will be guided on the kind of expertise 

they should acquire for them to be able to support teachers effectively and 

adequately in schools. Knowledge of mathematics content alone is not enough 

(Shulman, 1986).  

1.5.4 Textbook publishers 

Since textbooks are the only teaching resource available to teachers in 

many disadvantaged schools, the results of this study will provide suggestions 

for improving the sequencing and presentation of Euclidean geometry and 

geometry proof content and activities in textbooks for the benefit of the students. 

1.6 Operational definitions of key terms 

The following are definitions of terms as used in this study: 

1.6.1 Van Hiele theory  

Van Hiele theory is a model of geometric teaching and learning developed 

in the Netherlands by Pierre van Hiele and his wife Dina van Hiele-Geldof. The 

Van Hiele theory states that geometric thinking progresses through five 

hierarchical levels. To succeed at level (𝑛), students must first master the 

geometric knowledge of level (𝑛 − 1). To facilitate movement between levels, the 

Van Hiele theory proposes that teaching and learning at each level should be 

sequenced as follows: information→guided orientation→explicitation→free 

orientation→integration (see the theoretical framework in Chapter 2 for further 

details). 

1.6.2 Van Hiele theory-based instruction 

Van Hiele theory-based instruction is a teaching approach developed by 

the researcher for purposes of teaching Euclidean geometry proofs. The 
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approach is derived and adapted from some of the characteristics of the Van 

Hiele theory of geometrical thought. The Van Hiele theory states that students 

are less likely to succeed at level (𝑛) if they have not mastered level (𝑛 − 1). In 

the context of the present study, this means that students cannot master 

Euclidean geometry proofs if they are unable to identify shapes, properties, 

relationships, and patterns. Implementing Van Hiele theory-based instruction 

would therefore require the teacher to first check whether students have 

mastered the prior knowledge of Euclidean geometry from lower grades (Grades 

8-10) prior to introducing Grade 11 work. This is followed by remedial lessons 

designed to bridge any identified learning gaps. Another important aspect of the 

Van Hieles’ theory is that students should engage in some guided exploration 

activities in which relationships and patterns are established before deductive 

proof is introduced. Teaching and learning activities are organized in accordance 

with the proposed sequence of the Van Hieles: information→guided 

exploration→explicitation→free orientation→integration.  

1.6.3 Conventional teaching approaches 

Conventional teaching approaches in the context of this study are teaching 

methods in which geometric knowledge is presented to students in the form of a 

lecture or by ‘chalk and talk’ or simply following the order of presentation set out 

in the textbook. The teacher holds the power and the responsibility over learning. 

Students who are slow to understand are left unattended. The coverage of the 

syllabus is more important than addressing students’ needs. Teachers and 

textbooks are considered the only sources of knowledge. Students are perceived 

to have little or nothing to contribute, and student engagement is minimal. 

Students are left with no option except to memorize what they are taught and try 

to reproduce it in tests and examinations.  

1.6.4 Euclidean geometry 

Euclidean geometry is an aspect of mathematics that deals with properties 

and relationships of shapes, points, lines, angles, and positions, based on 

Euclid’s definitions and assumptions. 

1.6.5 Non-routine geometric proof  

A non-routine geometric proof is a logical chain of reasoning that 
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establishes the truth of a geometric statement using definitions, self-evident 

statements (axioms), and theorems. 

1.6.6 Learning achievement 

In this study, learning achievement refers to the level of student success 

in constructing and writing non-routine Euclidean geometry proofs, that is 

expressed in the form of scores obtained in a geometry proof test. In South Africa, 

students’ learning achievement is ranked and reported according to the following 

criteria: 0−29 percent [Level 1−Not achieved], 30−39 percent [Level 

2−Elementary achievement], 40−49 percent [Level 3−Moderate achievement], 

50−59 percent [Level 4−Adequate achievement], 60−69 percent [Level 

5−Substantial achievement], 70−79 percent [Level 6−Meritorious achievement], 

80−100 percent [Level 7−Outstanding achievement] (Department of Basic 

Education, 2011).  

It is important to note that an adequate level of learning achievement 

begins at 50%. Consequently, any student who scores below 50% is considered 

to have underperformed.  

1.6.7 Student views   

Student views as used in this study refer to what students say or report on 

their experience in teaching and learning Euclidean geometry theorems and non-

routine geometric proofs.  

1.7 The delimitation of the study 

This study was confined to secondary schools in two townships (namely 

Mankweng and Seshego) in the Capricorn district of the province of Limpopo in 

South Africa. Four conveniently selected secondary schools (two in each 

township) participated in this study. A total of 186 Grade 11 students and two 

Grade 11 mathematics teachers participated in the study.  

The study focused on the teaching of Grade 11 Euclidean geometry 

theorems and non-routine geometric proofs in selected schools. Therefore, the 

study does not cover all the learning concepts of Euclidean geometry. It also does 

not extend to all grades of the school system. The variables of interest were (a) 

students’ geometric proofs learning achievement, and (b) students’ views on 

teaching approaches used in their Euclidean geometry lessons. The purpose of 
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the study was to evaluate the impact of Van Hiele theory-based instruction and 

conventional instruction on these variables.  

The choice of methods was influenced by the theoretical viewpoint of 

pragmatism. A sequential explanatory mixed-methods design was adopted which 

combines quantitative and qualitative data collection methods in two different 

phases. The quantitative phase employed a non-equivalent groups quasi-

experiment. The researcher implemented Van Hiele theory-based instruction in 

two secondary schools in Seshego township, while two Grade 11 mathematics 

teachers in two secondary schools in Mankweng township presented Euclidean 

geometry lessons in their usual way. The teaching experiment was completed in 

four weeks.  

Quantitative data were obtained using a geometry proof test that was 

administered before and after the experiment, and data were analysed using non-

parametric analysis of covariance (ANCOVA). During the qualitative phase, data 

were collected using diaries and focus group interviews, and analysed using 

computer-assisted qualitative data analysis software (CAQDAS) called 

MAXQDA. The quantitative and qualitative data were presented and analysed in 

two separate chapters. The main findings from the quantitative and qualitative 

data analysis are summarized in the discussion chapter. 

1.8 Organization of the thesis 

Chapter 1 briefly outlined the background to the study. The research 

problem and the importance of the study were presented. The research questions 

were stated and operational definitions of key terms were provided. The scope 

of the study was defined. Chapter 2 reviews literature on the teaching of 

geometric proofs from the Greek era to the twenty-first century. The knowledge 

gap is identified and a theoretical foundation for the study is proposed. Chapter 

3 outlines the research methodology, from research design through sampling 

techniques to data collection and analysis. Chapter 4 presents the quantitative 

and qualitative data collected during the study. The findings are discussed in 

Chapter 5 and the research questions are addressed. The implications of the 

findings of the research are also explored in Chapter 5. Chapter 6 summarizes 

and concludes the study with recommendations and suggestions for future 

research. The constraints of the study are identified.  
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

2.1 Introduction 

This chapter is divided into two parts. Part One reviews literature on the 

following aspects: the evolution of geometric proofs; the importance of teaching 

and learning geometric proofs in high school; difficulties in learning and teaching 

geometric proofs; the teaching and learning of geometry and geometric proofs in 

South Africa; possible teaching strategies to improve students’ geometric proofs 

learning achievement; emerging issues; and students’ views. Part Two outlines 

the Van Hiele theory of geometric thinking, together with its implications for the 

teaching and learning of geometric proofs. A review of previous studies on Van 

Hiele theory-based instruction is presented to identify the research gap for the 

current study. A summary of the chapter is given in the final analysis.  

PART ONE 

2.2 The evolution of geometric proofs 

Before the advent of classical Greece, mathematics was used in regions 

such as China, Mesopotamia, Egypt, and Southern India, primarily as a 

computational tool for addressing practical problems in surveying, accounting, 

and trade (Eves, 1990). Emphasis was placed on the results of the calculations, 

and there was no attempt to explain the validity of the results. In sharp contrast, 

ancient Greek mathematicians sought to demonstrate the truth of mathematical 

propositions through verbal explanations and constructions (Bramlet & Drake, 

2013a). Knowing how something works was not enough for the Greeks. It was 

important to know why it worked. As a result, the Greek mathematicians 

transformed empirical mathematics into a demonstrative science based on 

deductive reasoning (Bramlet & Drake, 2013a). The Greeks emphasized that 

geometric facts should be determined by deduction, not by empirical methods 

(Stylianou et al., 2009). This was the beginning of the idea of proof.  

It is unfortunate that most of the mathematical knowledge discovered in 

the Greek era has been lost due to impermanence of the media on which it was 
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recorded (Shives, 2012). However, two of the early influential Greek 

mathematicians whose contributions to the evolution of geometric proofs are still 

found in modern records are: Thales of Miletus (624 – 546 BC), and Euclid of 

Alexandria (323 – 283 BC). Thales and Euclid are considered fathers of plane 

geometry (Finashin, 2015). Their individual contributions to the development of 

geometric proofs are set out in the following discussion.  

2.2.1 Thales of Miletus (624 – 546 BC) 

Thales of Miletus (624 – 546 BC), one of the seven great men of ancient 

Greece (Burton, 2007), was the first mathematician to use deductive reasoning 

in mathematics (Bramlet & Drake, 2013a). Thales used known geometrical facts 

to discover new geometric truths. This method is referred to as the deductive 

approach and was Thales’ greatest contribution to the evolution of geometric 

proofs. Thales is praised for his discovery of five geometric propositions: (1) the 

diameter of a circle divides the circle into two equal segments, (2) angles in a 

triangle opposite two equal sides are equal, (3) vertically opposite angles are 

equal, (4) the angle subtended by a diameter in a circle is a right angle (Thales 

Theorem), and (5) triangles are congruent if they have two angles and one side 

in each that are respectively equal (Page, 2007). With these discoveries, the 

foundation for the learning of Euclidean proofs were developed for future 

mathematics students (Bramlet & Drake, 2013a). 

The evolution of geometric proof in ancient Greece reached its peak with 

the work of another famous Greek mathematician: Euclid of Alexandria. The 

following section summarizes Euclid’s contribution to geometry.  

2.2.2 Euclid of Alexandria (323 – 283 BC) 

Around the third century Before Christ (BC), Euclid of Alexandria produced 

a famous book called the Elements (Stylianou et al., 2009). In the Elements, 

Euclid contributed to the evolution of geometric proofs by organizing known 

geometrical knowledge on points, lines, and circles, into definitions, assumptions, 

and axioms (Bramlet & Drake, 2013a). As a result, Euclid’s definitions, 

assumptions, and axioms gave rise to the need for improvements in the art of 

proving geometric propositions. Although the Greek mathematicians continued 

to justify their mathematical discoveries by construction and verbal explanations 
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due to the lack of symbolic notation), every step of the proving process had to be 

justified using Euclid’s definitions, assumptions, or axioms (Bramlet & Drake, 

2013a). This set a new standard for geometry rigour (Harel & Sowder, 2007). As 

a result, the deductive approach characterized formal mathematics training in the 

post-Greek era (Stylianou et al., 2009). Plato’s School of Philosophy was one of 

the first higher education institutions to emphasize training in deductive reasoning 

and proof for the Greek citizens. It is recorded in history that it was written on the 

entrance to Plato’s School: “Let no one ignorant of geometry enter here!” (Anglin, 

1994, p. 57). Thus, deductive reasoning skills were required for admission to 

Plato’s School. Therefore, the call by modern universities to include geometry 

and proof in the secondary school mathematics curriculum is no surprise.  

The next critical phase in the evolution of geometric proofs was the 

Renaissance period. 

2.2.3 The Renaissance  

The Renaissance was the period in European history that came shortly 

after the Middle Ages. This spanned the fourteenth to the seventeenth centuries 

and linked the Middle Ages with the Modern World (Palmer, Colton, & Kramer, 

2013). This period was marked by a minor development in the theory of geometric 

proofs and an increase of interest in other areas of mathematics. 

The inability of the Greek mathematicians to construct symbolic notation 

to promote the documentation of their mathematical discoveries led to the 

collapse of the Greek mathematics (Turchin, 1977). The Greek mathematicians 

focused on verbal proofs and proof by construction, which meant that their 

mathematics was limited to a small range of mathematical aspects (Bramlet & 

Drake, 2013a). The desire of European mathematicians to explore new 

mathematical concepts contributed to a change in focus from geometry to other 

areas of mathematics, such as calculus and algebra. As a result, deductive 

reasoning and proof became less important. According to Bramlet and Drake’s 

(2013a) historical study, mathematicians of the Renaissance period (such as 

Johannes Kepler, Regiomontanus, Leonardo da Vinci, Nicolas Copernicus, Luca 

Pacioli, Thomas Harriot, and René Descartes) relied more on mathematical 

experience than on deductive reasoning. New mathematical findings were 

verified through empirical investigation and mathematical induction. However, 
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such methods of justifying mathematical propositions were later found to be 

flawed and inadequate. For example, the fact that a statement is true in several 

cases does not automatically mean that it is universally valid. For this reason, 

much of the mathematical findings of the Renaissance era could not be trusted 

and had to be revisited (Bramlet & Drake, 2013a). This is because empirical 

claims are not recognized as proof (Stylianides & Stylianides, 2009). It was 

therefore important to validate the new developments in mathematics by means 

of robust proof.  

2.2.4 The advent of symbolic notation 

The nineteenth century recorded the biggest developments in 

mathematics since the beginning of the Greek period (Bramlet & Drake, 2013a). 

The quest for new mathematical knowledge drove European mathematicians to 

build a symbolic notation system to make mathematical computations simpler 

(Palmer et al., 2013). The invention of modern algebraic notation is attributed to 

Francois Viete, the French mathematician. He took the mathematics of ancient 

Greece and wrote it in a symbolic note (Palmer et al., 2013). This became an 

essential part in the evolution of deductive reasoning and geometric proof. 

Geometric proofs became easier to explain (Bramlet & Drake, 2013a). New 

interest in proofs led to a return of mathematics to the study of Euclid’s axioms.  

2.2.5 The beginning of teaching Euclidean geometry proofs in secondary 

school 

The nineteenth century marked the beginning of formal teaching and 

learning of deductive proof in schools (Stylianou et al., 2009). In America, 

geometry skills were required for admission to universities (Barbin & Menghini, 

2014) starting in 1844 (Furr, 1996). Learning proof became important in high 

school mathematics, as recommended by the Committee of Ten. This was a 

group of teachers and members of higher education institutions appointed to 

investigate the relationship between secondary school curriculum and university 

admission criteria (Stylianou et al., 2009). The Committee agreed that high 

school mathematics would train students in deductive reasoning. It was important 

not only to prepare students for university or college, but also to prepare them for 

their general well-being in society. The Committee defined geometry as the best 
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place for students to learn reasoning and proof skills (Herbst, 2002). Since then, 

Euclidean proofs have been part of high school mathematics curricula in many 

countries.  

Herbst (2002) identified three periods of geometric proof instruction since 

the time when high schools started teaching it. These are (1) the era of text, (2) 

the era of originals, and (3) the era of exercise.  

2.2.5.1 The era of text 

The era of text was the first period of geometric proof instruction in 

American high schools. Students were supposed to read, memorize, and 

reproduce long and complex paragraphs of geometric proofs in their textbooks 

(Adams, 2010). Teachers and textbooks did not give any detail on the method of 

proving. As a result, many students faced difficulties in memorizing the long and 

complex paragraphs of geometric proof texts (Herbst, 2002). It was noted that 

the replication of long paragraphs of geometric proofs without justification was of 

no benefit to the students. The Committee of Ten concluded that there was a 

need for pedagogical improvements to make geometric proof meaningful to 

students. This gave rise to the era of originals in which students began to learn 

how to construct proofs for geometric propositions.  

2.2.5.2 The era of originals 

In the era of originals, geometry instruction started to move away from the 

tendency to simply replicate proof texts (Herbst, 2002). In addition to the 

reproduction of textbook proofs, students were given the opportunity to construct 

their own proofs of ‘original’ geometric propositions (Subramanian, 2005). 

Geometry textbooks for this period included a long list of questions on originals. 

It was hoped that doing these exercises would develop students’ ability to reason 

for themselves and gain more geometric knowledge (Adams, 2010; Herbst, 2002; 

Subramanian, 2005). However, it was found that it was difficult for many students 

to prove the originals (Adams, 2010) and something different was needed.  

Textbooks were revised to include more detailed visual aid diagrams and 

hints to help students construct proofs (Adams, 2010). In addition, a new practice 

of writing proofs emerged in which each statement had to be justified by a reason 

(Subramanian, 2005). Teachers were required to follow the same approach when 
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presenting proofs to their students (Herbst, 2002). A mathematics conference 

was held to discuss possible instructional adaptations to enhance students’ ability 

to construct proofs during the era of originals. It was recommended that informal 

geometry (also known as concrete geometry) be introduced at primary school 

level with the hope that, by the time the students went to high school, they would 

know the basic geometrical facts needed to construct proofs (Herbst, 2002).  

Further changes to support students’ performance in proofs were seen in 

the twentieth century, in the period characterized as the era of exercise (Herbst, 

2002).  

2.2.5.3 The era of exercise 

The Committee of Ten recommended that textbooks should provide 

detailed information on methods and strategies for doing proofs (Adams, 2010; 

Herbst, 2002; Subramanian, 2005). In 1913, Arthur Schultze and Frank 

Sevenoak (Herbst, 2002) introduced a remarkable improvement in the format of 

writing geometric proofs. Schultze and Sevenoak invented the two columns 

format of writing geometric proofs, with statements on one side, and reasons on 

the other side (Herbst, 2002). Every statement in the proof had to be based on a 

definition, a theorem, an axiom, or a previously defined proposition (Schultze & 

Sevenoak, 1913). This made it easier for teachers to assess the work of their 

students (Subramanian, 2005). Teachers were expected to provide students with 

frequent drills until they ‘understood’ the theorems (Adams, 2010). This method 

of constructing geometric proofs by writing a logical sequence of statements 

justified with reasons is what came to be known as formal proof.  

However, despite increasing efforts to support students’ capacity to 

construct proofs, the lack of success on the part of students remained a matter 

of concern. It is still a matter of concern.  

2.3 The teaching of Euclidean geometry and geometric proofs 

in South Africa  

Formal mathematics education in South Africa started in the early 1950s, 

when the apartheid government came to power (Khuzwayo, 2005). The Bantu 

Education Act of 1953 implemented a colonial education system that restricted 

access to mathematics education for many Black South African children in South 
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Africa (Osayimwense, 2017). Schools for Whites were well-resourced with well-

trained mathematics teachers, while schools for Black South Africans were 

under-resourced with poorly-trained mathematics teachers (McKeever, 2017). 

Most Black South African schools did not offer mathematics and science up to 

Grade 12 due to lack of qualified mathematics teachers (Gallo, 2020). This 

means that many Black South African students were denied access to Euclidean 

geometry and geometric proofs. As a result, many Black South African students 

did not have the opportunity to exercise deductive reasoning, creativity and 

critical thinking that characterize geometry at upper secondary school level.  

The Bantu Education system prepared Black South African students for 

low-wage unskilled and semi-skilled labour, while their white counterparts were 

being groomed for high-salary careers (McKeever, 2017). Knowledge of 

mathematics was thus seen as unnecessary for Black South African children 

(Hayley, 2009). Most qualified high school mathematics teachers were Whites 

who taught mathematics in Afrikaans and English, making it difficult for the Black 

South African students to succeed in the subject because they had completed 

their primary education using their native languages (Gallo, 2020). Secondary 

school mathematics was therefore taught “as an abstract, meaningless subject, 

only to be memorized” (Khuzwayo, 2005, p. 310-311). Black South African 

students were taught to be recipients of mathematical ideas, and the active 

participation of students was not significant (Khuzwayo, 2005). The lack of 

academic success of Black South African students in mathematics was blamed 

on their race and culture, which were deemed inferior to that of their White peers 

(see Van den Berg, 1978). 

To justify their apartheid mathematics education policies, Afrikaner 

academics could carry out mathematics education research on Black South 

African students, while African Black academics were prohibited from conducting 

similar studies on White students (Osayimwense, 2017). Groenewald’s (1976) 

research reported that Black South African students are far behind white students 

in terms of visual perception, geometric figure analysis and interpretation, and 

general arithmetic skills. This view is controversial, because it seems to suggest 

that Black South African students are naturally unable to learn geometry 

concepts. The results of the Groenewald (1976) study were subsequently 

questioned by the Mathematics Commission set up by the People’s Education 
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for People’s Power (PEPP) movement in the 1980s to examine the state of 

education in South Africa (Khuzwayo, 2005).  

The Mathematics Commission argued that mathematics is a human 

invention and can therefore be manipulated by people to meet their needs at any 

time. The Mathematics Commission tried to develop new mathematics curricula 

to resolve the disparities in mathematics education, but this was rejected by the 

apartheid government (Khuzwayo, 2005). Unjust educational policies, such as 

the use of Afrikaans as a medium of instruction and unequal access to 

educational opportunities, culminated in the Soweto uprising, which saw the 

death of many young people as African Black students began mass 

demonstrations calling for better education (Gallo, 2020). The period between 

1985 and 1990 was characterized by discussions on reforms, and the state of 

education in South Africa (Khuzwayo, 2005). The democratically elected South 

African government that came to power in 1994, embarked on a radical reform 

of the education system to address the inequalities of the past (Osayimwense, 

2017).  

In the post-apartheid era, all South African students, regardless of race, 

had unlimited access to learning mathematics (see Sehoole & Adeyemo, 2016). 

All students now had the opportunity to learn Euclidean geometry up to Grade 

12. Other key post-apartheid education reforms included: the dissolution of ‘white 

school’ and ‘black school’ policies; the construction of new schools; the allocation 

of resources to mathematics and science in historically disadvantaged 

communities; and the development of a new school curriculum focused on a 

student-centred outcomes-based approach to education (Osayimwense, 2017). 

According to the Department of Education (2003), the aim of Outcomes-

Based Education (OBE) was to allow students to achieve their full potential 

through an activity-based student-centred approach to education. The approach 

was based on the principle of democracy. One of the crucial outcomes of 

mathematics education stated in the National Curriculum Statement (NCS) of 

2003 was to enable students to “solve problems and make decisions using critical 

and creative thinking” (Department of Education, 2003, p. 2). This was opposed 

to passively learning mathematics, as was the case in the apartheid period. 

However, although the theory behind OBE was strong, there were 

problems with its implementation. Many teachers did not understand what it 
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meant to teach the OBE way due to lack of training (Ramoroka, 2006). As a 

result, mathematics teachers continued to teach Euclidean geometry and 

geometric proofs using direct instruction (Kutama, 2002). This comes as no 

surprise, given that the same poorly trained black teachers who taught 

mathematics in the apartheid education system, using the conventional 

approach, were expected to follow a radically different approach to mathematics 

education in the post-apartheid era.    

In 2006, Euclidean geometry was removed from the mainstream 

mathematics curriculum, after a series of poor mathematics results (Bowie, 2009; 

Ntuli, 2014). It was noted that educators had limited content and pedagogical 

knowledge to effectively teach the topic. Kearsley (2010) concluded that South 

Africa erred by making Euclidean geometry non-compulsory because the skills 

gained through solving Euclidean geometry problems are not only essential in 

engineering and science, but also important in the lives of the citizens of the 

country.  

A study by Engelbrecht et al. (2010) found that the 2009 group of 

university entrants (the first group to write a Grade 12 Mathematics Examination 

that excluded Euclidean geometry) were weaker than their predecessors in terms 

of their mathematical skills and knowledge. Another study at the University of 

Witwatersrand also reported a decrease in the performance of first-year students 

in the June 2009 mathematics pass rate (Blaine, 2009). Similar patterns were 

reported at other universities across South Africa. Mathematics education 

experts attributed the drop in the mathematics performance of first-year university 

students to the removal of Euclidean geometry from the secondary school 

mathematics curriculum (Mouton et al., 2012; Padayachee et al., 2011; 

Wolmarans et al., 2010). 

In January 2012, South Africa launched a revised version of the NCS: The 

Curriculum and Assessment Policy Statement (CAPS). As part of its ongoing 

curriculum transformations and in keeping with international trends in 

mathematics education, South Africa reintroduced Euclidean geometry and proof 

into the mainstream mathematics curriculum. In the Mathematics CAPS for 

Further Education and Training (FET) (Grades 10-12), it is now compulsory for 

all South African mathematics students to learn proofs of Euclidean geometry 

theorems and riders. This move has been widely applauded by experts in 
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mathematics education, as it is expected to bridge the skills gap between 

secondary school and university, particularly for students who plan to study 

STEM programmes.  

However, the return of Euclidean geometry and proof in South Africa’s 

mainstream mathematics “puts educators and teacher educators in a challenge 

similar to that of the past” (Ndlovu, 2013, p. 277). Some of the educators who are 

now supposed to teach Euclidean geometry in the CAPS did not do any 

Euclidean geometry during their years at high school, college or university 

(Govender, 2014). Others are victims of inadequate teacher training under the 

apartheid system. Apartheid teacher education did not have uniform 

requirements to provide guidance on what students in the different teacher 

training colleges had to learn (Diko, 2013). Given this orientation, it is clear that 

even the most experienced mathematics teachers face challenges in 

implementing the CAPS. Current developments in mathematics education 

require educators to shift from traditional teacher-centred approaches to new 

teaching strategies based on constructivist theories of teaching and learning, and 

inclusive education ideologies (Dube, 2016). It has been noted that many 

teachers are not fully equipped with the skills required to cope with these shifts 

(Dube, 2016). Educators need clear guidance and support to move from 

conventional instruction to modern research-based teaching approaches.    

While South Africa’s DBE has made substantial efforts to upgrade 

teachers’ knowledge of Euclidean geometry content through in-service training, 

not all of the concerns of the teacher have been fully addressed (Ndlovu, 2013). 

To effectively teach Euclidean geometry and proof, teachers need not just the 

content knowledge, but also pedagogical knowledge for teaching the geometry 

content. A survey by Olivier (2013) involving 150 in-service mathematics 

teachers in two South African provinces, seeking their views on the Mathematics 

CAPS training they had received, found that: “teachers expressed uncertainty 

about how to implement the expected CAPS amendments in the classroom” (p. 

20). In certain cases, the CAPS training facilitators themselves appeared to lack 

the expertise and skills required to help teachers improve.   

Part of the amendments to the FET (Grades 10-12) mathematics 

curriculum is the reinstatement of proofs of Euclidean theorems and riders. 

Analysis of the 2014−2019 Grade 12 Mathematics Paper 2 examination results 
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showed that the majority of students were unable to construct and write 

geometric proofs, many of whom did not even attempt these questions 

(Department of Basic Education, 2015, 2016a, 2017,2018,2019, 2020). This 

points to the view that finding ways to teach geometric proofs in a way that 

ensures success for the majority of the students is a big challenge to most 

teachers.  

In South Africa, the teaching of Euclidean geometry has suffered in the 

past due to the teachers’ lack of content and pedagogical knowledge (see 

Govender, 2014; Mosia, 2016; Tachie, 2020). Unless measures are taken to find 

better approaches to teaching it, there is danger of a return to the situation of the 

past. The Mathematics CAPS for Grades 10-12 only clarifies the order and 

pacing of topics but does not suggest how the topics should be taught (Bowie et 

al., 2014). In the CAPS document (see Department of Basic Education, 2011), 

Grade 11 Euclidean geometry is scheduled for Term 3, and is allocated a period 

of three weeks. Students are supposed to know seven theorems of the geometry 

of circles, and use the theorems and their converses to prove riders. In addition 

to listing the theorems to be learnt at the Grade 11 level, the Mathematics CAPS 

gives examples of the riders that students should be able to solve when they 

complete the chapter. The Mathematics CAPS does not, however, provide any 

guidelines to address teachers’ pedagogical concerns. It is up to individual 

teachers to determine how they should teach the topic. 

Inadequate support from the subject advisors aggravates the plight of the 

teachers. Dube (2016) concluded that training on pedagogical content 

knowledge is what South African mathematics teachers need to improve the 

quality of mathematics teaching in schools. The lack of pedagogical knowledge 

for teaching geometric proofs in the context of South Africa has led teachers to 

teach according to the textbook (McIntyre, 2007; Mthembu, 2007; Naidoo & 

Kapofu, 2020). Teachers continue to present proofs as ready-made 

mathematical ideas, and students are expected to memorize theorems and 

reproduce them in examinations without understanding (De Villiers & Heideman, 

2014; Shongwe, 2019). Teachers seem to have no idea how to guide students 

to successfully construct and write Euclidean geometry proofs with 

understanding.  

For many South African students who go to upper secondary school 
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underprepared for formal geometry (Alex & Mammen, 2014), conventional 

teaching is unlikely to meet their needs (Abakpa & Iji, 2011). It only stifles 

understanding and alienates students from mathematics (Ndlovu & Mji, 2012). 

The findings of the 2014−2019 NSC Mathematics Paper 2 diagnostic reports 

suggest that conventional teaching approaches have failed to improve students’ 

geometric proofs learning achievement (see Department of Basic Education, 

2015, 2016a, 2017, 2018, 2019, 2020).  

South African mathematics teachers may be willing to try out new 

approaches to teaching geometric proofs, but there is not enough empirical 

evidence of instructional practices that could enhance students’ geometric proofs 

learning achievement (Stylianides & Stylianides, 2017). Developing teaching 

approaches that foster a solid understanding of Euclidean theorems and proofs 

rather than rote learning is therefore one of the biggest challenges facing 

mathematics teachers in the twenty-first century mathematics classroom. To 

devote their time to addressing this problem, South African mathematics teachers 

need to understand why knowledge of Euclidean geometry proofs is 

indispensable for secondary school students.  

The next section emphasizes why geometric proofs should be part of 

secondary school mathematics curricula.  

2.4 Reasons for teaching geometric proofs in secondary 

school 

One of the reasons for teaching geometric proofs in secondary school is 

to prepare students for their tertiary studies (Adams, 2010). By studying 

geometric proofs students sharpen their abstract, logical reasoning, and spatial 

skills. These skills are required for admission into science-based careers such as 

civil and mechanical engineering, astronomy, construction, architecture, geology, 

masonry, cartography, and computer graphics (Abdullah & Zakaria, 2013; Alex 

& Mammen, 2014; Luneta, 2015; Sunzuma, Masocha, & Zezekwa, 2013). 

Enhancing students’ geometric proofs learning achievement may in turn increase 

their chances of gaining entrance into science-based fields of study.  

Learning proofs is important for all students to develop ordered thinking 

skills (Adams, 2010). The ability to criticize the work of others, to engage in 

debate, and to make logical arguments are skills used in everyday life. Through 
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doing proofs students become critical thinkers who can build and validate their 

own knowledge and not rely on their teachers or textbooks (Bramlet & Drake, 

2013b). In addition, students who cannot prove simply follow procedures and 

copy examples without reasoning (Bramlet & Drake, 2013b). Proof is therefore 

needed to make learning meaningful and prevent rote learning (Aylar & Sahiner, 

2013).  

Proof enhances students’ general mathematical abilities (Stylianides, 

Stylianides, & Philippou, 2007; Thompson, Senk, & Johnson, 2012). In doing 

proof, students are equipped with tools, processes, and problem-solving 

techniques (Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 

2012), and their understanding in other mathematical aspects is greatly 

influenced by their ability to prove (Gunhan, 2014). Students who have learnt 

proofs may use their proof skills to check whether their answers are correct – not 

only in geometry but also in other mathematical aspects such as trigonometry, 

calculus, and algebra. By doing so, students can notice and correct their own 

mistakes and thereby improve their overall mathematics performance.  

Hemmi (2010) identified seven functions of proofs within mathematics: 

conviction, explanation, communication, systematization, intellectual challenge, 

transfer, and aesthetic. These functions of proofs also support the need to teach 

geometric proofs in high school. Proofs may be used to determine whether an 

assertion is true or false (Stylianides & Stylianides, 2009). This is the conviction 

function of proof and sets out the criteria for accepting or rejecting the 

mathematical claims. Mathematicians go beyond just establishing the truth of a 

mathematical statement by also explaining why the statement is valid. This, 

according to Cirillo (2009), is the main function of proof and helps to persuade 

the students rather than force the results upon them. Proofs are also used to 

communicate mathematical ideas (Zaslavsky et al., 2012) and provide a means 

to challenge students’ intellectual capabilities. The skills and techniques that 

students acquire in doing proofs can be transferred to solving other mathematics 

problems. Mathematical proofs demonstrate the beauty of mathematics. Hemmi 

referred to this as the aesthetic function of proof.  

According to Zaslavsky et al. (2012) Euclidean geometry is possibly the 

first place where students learn the skill of proving in the secondary school 

mathematics curriculum. In the twentieth century, attempts to introduce formal 
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proofs outside geometry were unsuccessful (Stylianou et al., 2009). Based on 

the multiple roles of proof, many countries have placed more emphasis on the 

teaching and learning of Euclidean geometry and proof in schools (see for 

example Cirillo & Herbst, 2012; Stylianides et al., 2007; Weber & Alcock, 2009). 

However, this recommendation presents challenges to the teachers and the 

students in the mathematics classroom (Knuth, Choppin, & Bieda, 2009).  

The next section discusses the difficulties faced by teachers and students 

in teaching and learning geometric proofs. 

2.5 Difficulties with learning and teaching geometric proofs 

The current emphasis on teaching and learning Euclidean geometry and 

proofs in secondary mathematics places greater demands on both the educators 

and the students. Available literature suggests that both teachers and students 

have difficulties in teaching and learning geometric proofs.  

2.5.1 Students 

Chief examiners’ reports from across many parts of the world suggest that 

most secondary school students, including high performing ones, have difficulties 

with geometric proofs. In South Africa, the 2014-2019 examiners’ reports on the 

performance of candidates per subject in the NSC examinations revealed that 

questions that required candidates to construct and write geometric proofs were 

not well answered (see Department of Basic Education, 2015, 2016a, 2017, 

2018, 2019, 2020). In Malawi, Chief examiners’ reports released by the Malawi 

National Examination Board for the period 2008-2013 concluded that “students 

fail mathematics mainly due to poor performance in geometric proof questions” 

(Mwadzaangati, 2015, p. 3308). Similar findings were reported in West African 

countries (see West African Examination Council, 2009, 2010, 2011).  

Several empirical studies from America, England, Germany, Turkey, and 

Japan have also shown that most students in secondary schools do not know 

how to construct and write formal proofs (see for example Healy & Hoyles, 2000; 

Köǧce et al., 2010; Recio & Godino, 2001; Reiss et al., 2001; Weber & Alcock, 

2009). Thus, the problem of students’ inability to construct geometric proofs is 

not unique to South African mathematics education. Researchers agree that 

constructing and writing a mathematical proof is a complicated skill for students 
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(see for example Harel & Sowder, 2007; Heinze & Reiss, 2009; Stylianides & 

Stylianides, 2009; Thompson et al., 2012).  

When developing strategies to improve students’ geometric proofs 

learning achievement, it is important to consider the complexity of the challenges 

that students encounter before proposing potential ways to alleviate them 

(Selden & Selden, 2007). The main problems faced by students in the 

construction and writing of geometric proofs have been thoroughly investigated. 

These include (a) not knowing how to begin proof, (b) not being able to organize 

their reasoning in a logical sequence or to give reasons for their conclusions, (c) 

lack of prerequisite skills and conceptual understanding, (d) inability to use 

correct mathematical language and notation, (e) giving up too soon, (f) relying on 

empirical arguments rather than deductive reasoning, (g) failure to see the need 

for proof, and (h) low levels of cognitive development (see Fabiyi, 2017; Harel & 

Fuller, 2009; Harel & Sowder, 2007; Healy & Hoyles, 2000; Naidoo & Kapofu, 

2020; Ngirishi & Bansilal, 2019; Selden & Selden, 2007; Stylianides & 

Stylianides, 2009). Although literature is replete with information on the kind of 

difficulties that students face in learning proof, little is known about potential ways 

to mitigate them.  

The present study considers that the difficulties of students with geometric 

proofs indicate the existence of teaching practices that need to be improved. 

While there are various factors that contribute to students’ mathematics 

achievement, it is widely accepted that what happens inside the classroom is the 

most important factor (Arnold & Bartlett, 2010; Barwell, Barton, & Setati, 2007). 

It is therefore important to explore the difficulties faced by teachers in teaching 

geometric proofs.  

2.5.2 Teachers 

Several reports from various countries around the world have identified 

the use of conventional teaching approaches as the main reason for students’ 

difficulties with geometric proofs (see Bramlet & Drake, 2013b; Harel & Fuller, 

2009; Mwadzaangati, 2015, 2019; Selden & Selden, 2007; Siyepu, 2014; West 

African Examination Council, 2009, 2010, 2011). Many teachers lack the 

pedagogical content knowledge required to teach the mathematical aspect of 

proof (Harel & Sowder, 2007; Blanton, Stylianou, & David, 2009; Ndlovu & Mji, 
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2012). Chief examiners’ reports from South Africa, Malawi, Ghana, and Nigeria 

attribute the failure of students to construct and write geometric proofs to the 

teachers’ lack of pedagogical knowledge (Department of Basic Education, 2015, 

2016a, 2017, 2018, 2019, 2020; Mwadzaangati, 2015, 2019; West African 

Examination Council, 2009, 2010, 2011).  

Current teaching of geometry concepts in many classroom settings is still 

oriented towards teacher-centred approaches (Abdullah & Zakaria, 2013; 

Mwadzaangati, 2019). Euclidean geometry lessons are still characterized by the 

traditional approach where teachers copy theorems and proofs from the textbook 

onto the chalkboard, and students in turn, copy the completed theorems and 

proofs into their notebooks (see Mthethwa, Bayaga, Bossé, & Williams, 2020; 

Tachie, 2020). Students are then expected to memorize the proofs and 

reproduce them in class exercises and tests without adequate comprehension 

(De Villiers & Heideman, 2014; Shongwe, 2019). This is how some of the 

teachers themselves have been taught during their high school years (Bramlet & 

Drake, 2013b; Gallo, 2020).  

Future mathematicians, engineers, architects, and scientists are being lost 

in the school system due to the use of conventional methods of teaching that do 

not facilitate student engagement, creative and critical thinking, and deductive 

reasoning. There is therefore a great need to explore alternative approaches to 

teaching Euclidean theorems and proofs that would enhance the learning 

achievement of most students in Euclidean geometry.  

The next section reviews the findings of available studies that looked at 

ways to promote the teaching and learning of geometric proofs in secondary 

schools. 

2.6 Strategies to improve students’ geometric proofs learning 

achievement  

Numerous studies have explored students’ difficulties with proofs (see 

Fabiyi, 2017; Harel & Sowder, 2007; Healy & Hoyles, 2000; Heinze & Reiss, 

2009; Inglis & Alcock, 2012; Moore, 1994; Naidoo & Kapofu, 2020; Ngirishi & 

Bansilal, 2019; Stylianides & Stylianides, 2009), but only a few studies have 

concentrated on finding ways to improve students’ geometric proofs learning 

achievement. Instructional strategies that were found to improve students’ ability 
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to construct geometric proofs include: the reading and colouring strategy (Cheng 

& Lin, 2006), the heuristic worked-out examples (Reiss, Heinze, Renkl & Groẞ, 

2008), and the step-by-step unrolled strategy (Cheng & Lin, 2009).   

2.6.1 Reading and colouring strategy: teaching experiment in Taiwan 

Cheng and Lin (2006) investigated the effect of the reading and colouring 

strategy in helping incomplete provers to complete their geometric proofs. The 

incomplete provers were eight Grade 9 Taiwanese students identified from two 

classes. These students had learnt formal proofs in regular teaching but missed 

one necessary step in constructing multi-step geometric proofs.  

A one-group pre-test/post-test quasi-experimental design was employed. 

The intervention involved the teacher demonstrating the reading and colouring 

strategy for about ten minutes. The strategy involved reading the question, 

representing given conditions on the given geometric figure using coloured pens,  

and writing the intermediary conclusions next to the diagram. Congruent 

elements were marked using the same colour. The students then completed 

proof tasks individually using the same items as in the pre-test. The proof tasks 

consisted of 22 items in which students’ solutions were unacceptable in the pre-

test. Results indicated that the reading and colouring strategy was effective as 

the students managed to construct correct proofs in 15 of 22 items. In a delayed 

post-test administered two months later, the incomplete provers’ performance 

improved in 23 of 24 items.  

It was concluded that the reading and colouring strategy helped the 

students to retrieve appropriate theorems and axioms for reasoning, and to 

reduce cognitive load when organizing the proof steps into a sequence (Cheng 

& Lin, 2006). Colouring kept “all information visible and operative” (Cheng & Lin, 

2006, p. 295). However, it was observed that the reading and colouring strategy 

was not effective in cases where colouring caused visual disturbance. The study 

is also criticized for engaging a small number of participants. Future research 

could investigate the effectiveness of the reading and colouring strategy with 

larger samples of students.  

Cheng and Lin (2007) conducted a follow-up study to their previous 

research. This time, they investigated the effectiveness and limitations of the 

reading and colouring strategy in whole-class regular teaching of multi-step 
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geometric proofs. The study employed a two-groups pre-test/post-test quasi-

experimental design. Sixty-four Grade 9 students from two classes in the same 

school were involved. Each class had 32 students. One class formed the 

treatment group and the other class constituted the control group. The two 

classes showed no significant difference in their pre-test average scores.The 

treatment group were taught using the reading and colouring strategy for a period 

of five weeks. This involved demonstration by the teacher and imitation by the 

students. The students in the control group were taught the conventional way. 

Four multi-step geometric proof questions were administered before and after the 

teaching experiment. Post-test results indicated that the students in the treatment 

group performed significantly better than the control group students, producing 

60.6% of acceptable proofs compared to 30.3% for the control group (Cheng & 

Lin, 2007).  

It was concluded that the reading and colouring strategy can be utilized in 

regular whole-class teaching. However, it was found to be “less effective to non-

hypothetical bridging students”, hence of little benefit to below-average students 

(Cheng & Lin, 2007, p. 113). Non-hypothetical bridging students are those that 

are not able to construct intermediary conclusions in a multi-step geometric proof. 

Approximately 40% of the students were unable to construct even one correct 

proof (Heinze, Cheng, Ufer, Lin, & Reiss, 2008).  

2.6.2 Heuristic worked-out examples: teaching experiment in Germany 

Reiss, Heinze, Renkl and Groẞ (2008) investigated the effect of using 

heuristic worked-out examples on students’ geometric reasoning and proof 

competencies. Unlike the reading and colouring strategy which sought to 

enhance students’ hypothetical bridging abilities, heuristic worked-out examples 

sought to give students a complete model of the proving process from the 

premise to the conclusion (Heinze et al., 2008). The heuristic worked-out 

examples approach was an extension of the classical worked-out examples 

approach, which consisted of a problem and the steps to its solution. Learning 

from heuristic worked-out examples meant that students had to understand how 

the proof was generated and why it worked.  

The study involved 243 Grade 8 students from a secondary school in 

Germany. One hundred and fifty students from six classes constituted the 
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treatment group and the remaining 93 students from four classrooms formed the 

control group. The two groups showed no significant difference in their pre-test 

performance. The teaching experiment began after all students had attended 

regular teaching and completed the geometry chapter. The treatment group 

worked with self-explaining heuristic worked-out examples for five lessons while 

control group students continued to have lessons on proof in the way they were 

usually taught by their teachers. Both groups wrote a post-test on geometric 

reasoning and proof. 

The findings showed that students who were taught using heuristic 

worked-out examples performed substantially better than students who received 

regular instruction (Heinze et al., 2008). It was concluded that the heuristic 

worked-out examples approach was more effective than conventional teaching. 

Further analysis indicated that the heuristic worked-out examples favoured low 

and average achievers but did not have a major effect on high achievers. This 

was because the strategy emphasized aspects that the high achievers were 

already familiar with (Cheng & Lin, 2009). The strength of the heuristic worked-

out examples approach lies in scaffolding learning by providing important 

geometry knowledge required by students. This allows students to focus more 

on the proving process than the recall of geometric facts (Heinze et al., 2008).  

2.6.3 Step-by-step unrolled strategy: teaching experiment in Taiwan 

Cheng and Lin (2009) conducted another study to test the effect of the 

step-by-step unrolled strategy on below-average students’ performance on multi-

step geometric proofs. A one-group pre-test/post-test quasi-experimental study 

was conducted. The study involved 11 students identified as below-average from 

five Grade 9 classes in Taiwan, based on their pre-test results. The students 

attended extra classes for a period of six weeks after regular lessons. The 

teaching experiment covered four geometry aspects: triangles, quadrilaterals, 

congruency, and parallel lines.  

The step-by-step unrolled strategy divided the complex procedures of the 

proving process into small units of guided step-by-step reasoning activities 

(Cheng & Lin, 2009). The proof task was presented to the students in a ‘covered’ 

form. The first condition was unrolled, and students had to deduce what should 

be true based on the given condition. The second step was unrolled, and again 
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students were asked to conclude what should be true based on the condition 

provided. The procedure was continued in the same way until the final step. It 

was hypothesized that the step-by-step unrolled strategy would help below- 

average students to develop hypothetical bridging skills. Both computational and 

narrative proof tasks were used.  

A computational proof task is one that “asks students to find out the 

assigned measure(s) of configuration under given conditions” (Cheng & Lin, 

2009, p. 125). The process of proving a computational proof task may look like 

number calculation. Figure 2.1 shows a typical example of a computational proof 

task:  

 

Figure 2.1: A typical example of a computational proof task 

A narrative proof may take the form of a two-column proof or a descriptive 

format. A narrative proof differs from a computational proof in that it requires 

students to clearly express their reasoning from the premise to the conclusion, 

using appropriate theorems and axioms (Cheng & Lin, 2009).  

Post-test results showed that the step-by-step unrolled strategy helped 

nine of the eleven students to successfully answer computational proof 

questions. However, it was found to be ineffective in solving multi-step narrative 

proofs.   

2.7 Emerging issues  

Experts in mathematics education agree that proof is an integral 

component of high school mathematics curricula. It is recommended that proof 

should be taught at all grade levels (see for example Cirillo & Herbst, 2012; 

Given that AC = CB and AĈD = 80° , show that AB̂C = 40° 
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Stylianou et al., 2009; Weber & Alcock, 2009). However, the teaching and 

learning of Euclidean geometry proofs seems to be a challenge in many 

mathematics classrooms around the world. Many secondary school students 

perform poorly on geometric proof questions in tests and examinations (see 

Achor & Imoko, 2012; Department of Basic Education, 2015, 2016a, 2017, 2018, 

2019, 2020; Mwadzaangati, 2015, 2019; West African Examination Council, 

2009, 2010, 2011). 

While students’ difficulties with geometric proofs have been well 

researched (see for example Fabiyi, 2017; Harel & Sowder, 2007; Healy & 

Hoyles, 2000; Heinze & Reiss, 2009; Inglis & Alcock, 2012; Moore, 1994; Naidoo 

& Kapofu, 2020; Ngirishi & Bansilal, 2019; Recio & Godino, 2001; Stylianides & 

Stylianides, 2009), knowledge of the kind of instruction that would address 

students’ geometric proof learning difficulties is still limited. Students’ difficulties 

in learning Euclidean proofs have been attributed to poor quality of teaching in 

the mathematics classroom (Mwadzaangati, 2019). Conventional teaching 

approaches, predominantly dominated by teachers, have been found to be 

inadequate in meeting the learning needs of most students in Euclidean 

geometry. Empirical investigations undertaken to date, have not closed all the 

knowledge gaps.  

The reading-and-colouring strategy developed by Cheng and Lin (2006) 

in Taiwan only benefited incomplete provers; those that were already able to 

construct intermediary steps but missed one necessary step in a multi-step 

geometric proof. The strategy had no positive effect on the performance of non-

hypothetical bridging students; those who were unable to construct intermediary 

steps from the premise to the conclusion. The heuristic worked-out examples 

strategy developed by Reiss et al. (2008) in Germany benefited low and average 

achieving students and had no significant effect on high achievers. The step-by-

step unrolled strategy developed by Cheng and Lin (2009) in Taiwan with below-

average students was only effective in solving computational proofs. It was found 

to be ineffective in solving multi-step narrative proofs.  

These strategies addressed the learning needs of certain students leaving 

out others. Contemporary theories of mathematics education advocate the 

development of teaching approaches that are inclusive in nature, with no child 

being left behind (see Department of Basic Education, 2011). To this end, 
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teachers should develop teaching approaches that cater for students’ diverse 

needs and at the same time address barriers to learning in regular classroom 

instruction (Dube, 2016). How to teach Euclidean geometry proofs in a way that 

is understood by most students, including those who lack the requisite geometry 

knowledge, is therefore subject to further investigation as the available studies 

have not fully addressed this challenge. To achieve success in this regard, the 

present study posits that, (1) geometry teaching and learning theories should be 

revisited, and (2) the students themselves should be allowed to give input on the 

teaching and learning process.  

2.8 Students’ views on their learning experiences 

Efforts to find ways to improve students’ geometric proofs learning 

achievement in secondary schools are less likely to succeed if the students’ 

opinions are not considered. According to the United Nations Convention on the 

Rights of the Child (UNCRC), students should be consulted on matters that affect 

their lives (Abrahams & Matthews, 2011), and that includes their education. 

Arnot, McIntyre, Peddar, and Reay (2004) argue that students have the capacity 

to give “insightful and constructive” comments on their learning experiences in 

schools (p. 4). Students’ perspectives on their learning experiences may be used 

to understand their attitudes towards the subject, and to structure future lessons 

in such a way as to maximize student academic, social, and emotional benefits 

(Borthwick, 2011). Capturing students’ views on their teaching and learning 

experiences in mathematics should therefore be given priority in education. 

The next section discusses the theory that influenced this research. 

PART TWO 

2.9 Theoretical framework of the study 

One of the necessary conditions for successful teaching of mathematics 

is to understand the theoretical models that explain how students learn certain 

mathematical aspects. Educational researchers agree that theory informs 

practice (see Silver & Herbst, 2007; Skott, 2009). The most successful 

educational experiments are not random, but based on principles of multiple 

learning theories (Chung, 2001). With several studies documenting low 

achievement levels of most students in mathematics, it is critical that we revisit 
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and reflect upon theories of learning mathematics “to identify what we may be 

missing” (Lundell & Higbee, 2001, p. 11).  

The present study seeks to implement and test the effect of Van Hiele 

theory-based instruction on Grade 11 students’ geometric proofs learning 

achievement. The research further explores students’ views on the Van Hiele 

theory-based approach and the conventional approach to teaching Grade 11   

Euclidean theorems and non-routine geometric proofs. The study draws its 

theoretical underpinnings from the geometry learning theory developed by the 

Van Hiele couple, which is one of the most detailed models for understanding 

students’ geometric thought (Abdullah & Zakaria, 2013). The Van Hiele theory 

provides a framework that could help teachers to design appropriate instruction 

to facilitate students’ learning of Euclidean geometry concepts. The theory was 

developed by Pierre Marie van Hiele and his wife Dina van Hiele-Geldof. It 

originated from the couple’s doctoral dissertations completed in 1957 at the 

University of Utrecht in the Netherlands (Fuys, Geddes, & Tischler, 1988). 

Like the Van Hiele couple, many mathematics teachers in the twenty-first 

century are frustrated by the large number of students who find it difficult to 

understand Euclidean geometry concepts (Kutama, 2002). Pierre Marie van 

Hiele’s thesis explained why students experienced difficulties in learning 

geometry. Dina van Hiele-Geldof investigated the sequencing of the geometry 

content and learning activities for the development of students’ understanding 

(De Villiers, 2010). Revisiting the Van Hiele theory may help to explain why 

students have difficulties with geometric proofs and provide insight into how to 

organize learning and teaching activities to improve students’ geometric proofs 

learning achievement. If teachers would understand why students have problems 

with Euclidean geometry proofs, they would be able to suggest possible ways to 

intervene.  

2.9.1 The Van Hiele theory 

The Van Hieles were concerned that so many of their middle-grades 

students had difficulties in learning geometry (see Van Hiele, 1984; Van Hiele-

Geldof, 1984). They concluded that high school geometry was too complicated 

for most of the students to fully comprehend (Malloy, 2002). The Van Hieles 

theorized that students had problems with secondary school geometry because 
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they had not had enough previous geometry learning experiences at a lower level 

(Cirillo, 2009). This idea led them to investigate the prerequisite skills that 

students need to succeed in deductive reasoning. 

On careful observation of their students’ work, the Van Hieles concluded 

that students’ geometric thinking seemed to progress through a sequence of five 

hierarchical levels (Van Hiele, 1984), each having its own unique characteristics 

which should be of interest to the mathematics teacher. Originally, the Van Hiele 

levels were numbered 0 to 4. It was Wirszup (1976) who changed the numbering 

so that Level 0 became Level 1 and Level 4 became Level 5. As a result, the Van 

Hiele levels are numbered and named differently by different researchers. The 

present study utilizes the original numbering of the Van Hiele levels, that is 0 to 

4. 

2.9.1.1 The Van Hiele levels of geometric thinking  

2.9.1.1.1 Level 0:  

This is the initial stage or basic level, labelled by some as visualization and 

others as recognition. Students who operate at this level can only identify 

geometric shapes (such as triangles, rectangles, and squares) by their 

appearance (Crowley, 1987). This is typical of students in pre-school up to Grade 

2 (Malloy, 2002).  

2.9.1.1.2 Level 1:  

This is labelled by some as analysis and others as descriptive. At this level, 

students can now identify geometric shapes by their properties but cannot see 

how the shapes are interrelated and still cannot understand definitions (Crowley,  

1987; Shaughnessy & Burger, 1985; Rahim, 2014). For example, the fact that a 

square is a rectangle is not yet understood. This is typical of students in Grades 

2 to 5 (Malloy, 2002).  

2.9.1.1.3 Level 2:  

This is labelled by some as informal deduction and others as ordering. 

Students who have attained this level can now classify geometric shapes based 

on their properties. The concept of class inclusion is now understood and 

definitions become meaningful (Rahim, 2014). The square can now be 

recognized as a rectangle. However, formal reasoning is not yet understood (Van 
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Hiele, 1984). This is typical of students in Grades 5 to 8 (Malloy, 2002).  

2.9.1.1.4 Level 3: 

This is labelled as deduction (Crowley, 1987; Malloy, 2002). This is the 

level at which students can now construct proofs using the deductive approach 

since they now understand definitions, theorems, converses, and axioms 

(Crowley, 1987; Shaughnessy & Burger, 1985; Rahim, 2014). Students can now 

establish the connection among networks of theorems (Fuys et al., 1988). This is 

typical of students in upper secondary school (Malloy, 2002).  

2.9.1.1.5 Level 4: 

This stage is labelled as rigour. Students at this stage understand the 

relationships between different axiomatic systems, and can compare, analyse 

and create proofs in non-Euclidean geometries (Crowley, 1987; Rahim, 2014; 

Shaughnessy & Burger, 1985). This is typical of students at college or university.  

2.9.1.2 Properties of the Van Hiele levels 

According to the Van Hieles, students have to pass through all the levels 

without skipping any one of them. In order to succeed at level (𝑛), students 

should first master level (𝑛 − 1). This is described as the property of fixed 

sequence (Usiskin, 1982). Each level is characterized by its own language and 

symbols. This is called the property of distinction (Fuys et al., 1988). For example, 

the fact that a square is a rectangle does not make sense to students at the 

visualization and analysis levels, but the same language makes sense to 

students at the informal deduction level. The property of adjacency implies that 

what was intrinsic at level(𝑛) will become extrinsic at level (𝑛 − 1) (Van Hiele, 

1984). For example, at Level 0 (visualization), students can only identify 

geometric shapes by looking at the physical appearance and they are not aware 

that those shapes possess properties. Students will start to recognize properties 

of shapes when they reach the analysis level (Level 1).  

As Van Hiele (1984) put it: “Two people who reason at two different levels 

cannot understand each other” (p. 250). This is described as the property of 

separation and it sheds light on why the majority of secondary school students 

have difficulties with Euclidean geometry proofs. Some teachers present 

Euclidean geometry at a level higher than that of the student (Van Hiele-Geldof, 
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1984; Van Hiele, 1984). This is typical of what happens in upper secondary 

school (Grades 10-12) where teachers move straight into deductive reasoning 

and proof, assuming that students have mastered the geometry concepts of the 

lower grades. This results in a mismatch between the level of teaching and the 

students’ levels of understanding. The lesson becomes a monologue, instead of 

a dialogue. To effectively teach geometry, there is need for teachers to align their 

teaching with students’ current Van Hiele levels (Fuys et al., 1988). The Van 

Hieles cautioned against forcing students to a particular level when they are not 

ready, as this will result in students simply imitating the teacher’s work without 

proper understanding (Van Hiele-Geldof, 1984). My experience of teaching 

Euclidean geometry affirms that students tend to memorize proofs of theorems, 

thus creating the impression that they have understood when, in fact, nothing has 

been learnt. For this reason, the focus of the present study is on the ability of the 

students to prove riders (non-routine geometric proofs) and not theorems, whose 

proofs can be  memorized.  

How teachers teach has more influence on students’ achievement than 

students’ biological maturation. This is described as the property of attainment 

(Usiskin, 1982). Some teaching methods can accelerate progress, while others 

can cause delays in learning development (Crowley, 1987). To facilitate 

movement between levels, the Van Hieles proposed that geometry instruction 

should be structured according to the learning phase framework, the details of 

which are outlined in the next section. 

2.9.1.3 Van Hiele phases of teaching and learning 

The Van Hieles proposed a sequence of five learning phases to help 

students attain a particular Van Hiele level. These are, inquiry→guided 

orientation→explicitation→free orientation→integration (Van Hiele, 1984). As 

summarized by Abdullah and Zakaria (2013), the inquiry phase involves teacher-

student conversation to establish students’ prior knowledge on the topic and to 

help students recognize the direction the lesson will take. In the guided 

orientation phase, students explore the topic and make discoveries through 

guided lesson activities. Explicitation offers students an opportunity to express 

and exchange ideas based on what they have observed in the second phase. 

The free orientation phase engages students in solving open-ended and more 
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complex tasks, for example, multi-step geometry tasks that can be solved in more 

than one way. In the last phase (integration), students synthesize and summarize 

what they have learnt in order to develop a new network of relations. After going 

through all five of these phases,  the student then attains a new level of geometric 

thinking (Van Hiele, 1984). 

2.9.2 Implications of Van Hiele theory for teaching geometric proofs 

If the Van Hiele theory is right, students going to upper secondary school 

should at least have achieved Level 2 (informal deduction) for them to be ready 

for Level 3 (deduction). This is the ideal situation. However, the situation 

prevailing in many mathematics classrooms is far from ideal. The method of 

geometry teaching that has been found to be prevalent in many classrooms is 

characterized by “checking homework, followed by teacher lecture and 

demonstration, followed in turn by student practice in a sequence of classroom 

instructional activities” (Sanni, 2007, p. 39). As a result of such teaching 

practices, most students leave secondary school with inadequate deductive 

reasoning and proof skills (Wang, 2009).  

The Van Hiele theory gives insight into how teachers can effectively teach 

geometric proofs in classrooms where students’ difficulties with proof have been 

noticed. Knowledge of the Van Hiele theory is important to the teaching of 

geometric proofs (Cirillo, 2009). If the Van Hiele theory is valid, students will not 

understand geometric proofs if they have not mastered lower-level geometry 

concepts such as properties of shapes and definitions. Attempting to teach 

geometry proof to students who have not mastered the prior knowledge is likely 

to cause confusion between the teacher and the students. The implication for 

teaching geometric proof is that the mathematics teacher should first establish 

students’ current levels of geometric thinking to see if they are ready to learn 

proofs. If students are not ready, then the teacher should try to make up for the 

learning deficits to bring the students up to standard before introducing formal 

proofs. New geometry knowledge should be built upon students’ existing 

knowledge schema. Disregarding students’ current levels of geometric 

understanding may result in students memorizing facts and imitating the teacher 

without understanding.  

If the Van Hieles’ property of attainment is valid, then the fact that most 
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students come to secondary school not ready to learn geometric proofs should 

therefore not be used as an excuse when those students leave secondary school 

with weak deductive reasoning skills. It is how the teachers design and organize 

their teaching that determines whether the students will master deductive 

reasoning and proof skills. According to Noraini (2005), geometry cannot be 

taught like any other mathematics topic. For this reason, it is difficult for many 

mathematics teachers to plan activities that can enhance students’ 

understanding of geometry concepts (Choi-Koh, 2000).  

The Van Hiele teaching phases provide guidelines on how to design and 

organize instruction in a way that enhances students’ understanding of geometry 

concepts at any level, which by implication include geometric proofs. The guided 

orientation phase suggests that teachers should allow students to explore and 

discover the properties of geometric shapes before they begin to solve complex 

tasks, such as proving theorems and riders. The implication here is that the 

teaching of geometric proofs should be preceded by investigative geometry in 

which the students reinvent geometry theorems and discover the facts by 

themselves rather than being told by the teacher. Educational psychologists have 

found that learning by discovery ensures higher levels of knowledge retention 

and promotes students’ autonomy and independence (Bruner, 1960). This is also 

supported by Abdullah and Zakaria (2012), who concluded that geometry 

instruction should prioritize practical investigation, conjecturing, argumentation, 

and creative thinking.  

The Van Hiele explicitation phase suggests that students should be given 

an opportunity to state the geometry theorems themselves using their own 

language, based on what they learnt during the exploration phase. The teacher 

is there to assist with the appropriate terminology. This is diametrically opposed 

to conventional teaching approaches, where the teacher writes theorems on the 

chalkboard, asks students to copy them into their notebooks, and to memorize 

the theorems.  

The free orientation phase suggests that students should be given a 

chance to find their own ways to prove riders instead of limiting them to the 

techniques of the textbook or those known by the teacher. In sharp contrast, 

conventional teaching of geometric proofs is characterized by teacher 

demonstration, followed by students’ practice. The danger here is that proving a 
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geometric rider is not procedural, and hence the steps followed by the teacher in 

proving one rider on the chalkboard may not be applicable in proving the next 

rider. This can be frustrating to students who rely on their teacher for methods of 

solution. Proofs of geometric riders are unique and require students to fully 

understand the relevant geometric theorems, axioms, and definitions. The 

present study argues that the use of Van Hiele theory-based instruction ensures 

that students have complete acquisition of the relevant theorems and axioms 

during the guided exploration and explicitation phases, prior to the complex task 

of constructing and writing proofs.  

The integration phase suggests that students should be allowed to share 

their proof strategies. In the process, students will discover that the process of 

proving riders can be done in multiple ways and this enriches their repertoire of 

solution strategies and problem-solving skills.  

Several countries have carried out further research on the Van Hiele 

theory and subsequently realigned their geometry curriculum based on 

recommendations from their studies. The next section presents a review of the 

available studies on the Van Hiele theory.  

2.9.3 Previous studies on the Van Hiele theory 

Following the Van Hieles’ findings, there has been a proliferation of 

research (a) to test the validity of the Van Hiele model and its assumptions, (b) 

to determine the Van Hiele levels of the students and teachers, and (c) to 

develop, implement and evaluate teaching experiments based on the Van Hiele 

model (Pusey, 2003).  

2.9.3.1 Validating the Van Hiele theory  

Usiskin (1982) conducted a study to find out if students’ Van Hiele levels 

at the beginning of a one-year geometry course could be used to predict their 

end of year performance in geometry. The study involved 2699 Grade 10 

students selected from thirteen high schools in America. A pre-test/post-test 

design was utilized and students’ Van Hiele levels were assessed using a 

multiple-choice test. The results indicated a moderately strong correlation (𝑟 =

.64) between students’ scores at the beginning of the year and their scores at the 

end of the year. Most of the students operated at Level 0 (visualization) and Level 
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1 (analysis), and hence were not prepared for formal deductive geometry. These 

results confirmed the hierarchical levels of geometric thought of the Van Hieles. 

However, some students were found to oscillate between levels, making it difficult 

to categorize them.   

Mayberry (1983) carried out a study to validate aspects of the Van Hiele 

theory. Nineteen student teachers from Georgia College in America were 

interviewed. The interview was based on seven common geometric concepts: 

parallel lines, right angles, squares, isosceles triangles, circles, congruence and 

similarity. An analysis of participants’ responses showed that most of them were 

not ready for formal deductive geometry, operating at levels 0 or 1. Guttman’s 

scalogram analysis of results confirmed  the view that the Van Hiele levels form 

a hierarchy. Another interesting finding that emerged from Mayberry’s study was 

that participants were found to operate at different levels on different geometry 

concepts (Mayberry, 1983). This result was confirmed by Gutiérrez, Jaime and 

Fortuny (1991) in a study involving 50 Spanish students, 41 of whom were 

student teachers in their third year of teacher training, and 9 were Grade 8  

students. Based on their findings, Gutiérrez et al. (1991) concluded that it is 

possible for students to develop two consecutive Van Hiele levels at the same 

time. Thus, the view that the Van Hiele levels are discrete was refuted.  

Senk (1989) investigated whether students’ Van Hiele levels could predict 

their degree of success in proof writing. A sample of 241 American secondary 

school students were involved. The pre-test/post-test design was employed. 

Usiskin’s (1982) multiple-choice test was used to assess the students’ Van Hiele 

levels at the beginning of the geometry course. A proof test that consisted of 6 

items was developed and administered as post-test. The results showed a 

moderately strong positive correlation between the students’ pre-test and post-

test scores. An analysis of variance (ANOVA) performed on the students’ 

average post-test scores at different Van Hiele levels indicated a statistically 

significant difference (𝑝 < 0.01), with students whose Van Hiele levels were at 2 

or 3 scoring higher that those at levels 0 or 1. These findings support the Van 

Hieles’ assertion that students cannot succeed at level (𝑛) if they have not 

mastered level (𝑛 − 1). Senk (1989) concluded that there is a dire need for a 

strong geometry curriculum at lower school levels to ensure students success in 



 

40 
 

high school geometry.  

Mason (1995) reported results from a study involving 120 academically 

gifted students who had not yet started learning formal geometry. The students 

were selected from Grade 6-8 classes in 50 school different districts in America. 

The students completed a multiple-choice geometry test and 64 of them were 

interviewed using Mayberry’s (1983) interview protocol. Analysis of students’ 

responses confirmed that the Van Hiele levels are hierarchical. Interestingly, 

35.8% of the gifted students skipped levels and the younger students attained 

significantly higher Van Hiele levels than the older ones (Mason, 1997). This  

corroborates the Van Hieles’ assertion that achievement of higher Van Hiele 

levels does not dependent on age.   

Based on the preceding literature, it can be concluded that the Van Hiele 

levels provide a valid way to categorize students’ achievement in Euclidean 

geometry. The hierarchical nature of the Van Hiele levels was confirmed 

(Usiskin,1982; Senk,1989), whereas any discreteness of the Van Hiele levels 

was refuted (Gutiérrez et al., 1991).   

2.9.3.2 Assessing students’ Van Hiele levels 

Several studies have assessed students’ Van Hiele levels in many 

countries around the world. Feza and Webb (2005) investigated whether Grade 

7 students met the requirements for geometry as stated in the RNCS. A sample 

of thirty Grade 7 students was selected from six previously disadvantaged 

primary schools in the Eastern Cape Province, South Africa. Data were collected 

using on-site observation of students, semi-structured interviews and video 

recordings. The results indicated that 10 students (33.33%) were at Level 0, 15 

(50%) were between Levels 0 and 1, and only five students (16.67%) showed 

complete acquisition of Level 1, whereas the curriculum required them to be at 

Van Hiele Level 2 (informal deduction). Clearly, these students would go to 

secondary school underprepared. They are at risk of failing high school geometry 

unless secondary school teachers find pedagogical strategies to provide 

meaningful learning experiences that match the particular level of geometric 

thinking of such students.  

Atebe (2008) investigated the Van Hiele levels of high school students 

from South Africa and Nigeria. The students were selected from the FET Band 
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(Grades 10-12). Initially, 144 students (72 from each country) were selected 

using purposive and stratified sampling techniques. However, five students (four 

from Nigeria and one from South Africa) withdrew their participation and only 139 

students were involved in the final analysis. Data were collected using pen-and-

paper tests, interviews and classroom video recordings. An analysis of results 

indicated that of the 68 students from Nigeria, 36 (53%) were at Level 0 

(visualization), 15 (22%) were at Level 1 (analysis), 16 (24%) at Level 2 (informal 

deduction), and 1 (1%) at Level 3 (deduction). In the South African subsample 

29 students (41%) were at Level 0, 16 (22%) operated at Level 1, 17 (24%) at 

Level 2, 2 (3%) at Level 3, 4 (6%) at Level 4, and 3 (4%) could not be classified. 

These results show that the greater number of the students were at Level 0, 

which means they were not ready to learn Euclidean geometry proofs (Atebe, 

2008). The results are also consistent with previous findings by Feza and Webb 

(2005).  

Alex and Mammen (2012) conducted a study to assess Grade 10 

students’ Van Hiele levels. The study involved 191 Grade 10 students from five 

secondary schools in Eastern Cape, South Africa. Purposive sampling was used 

to select the five schools that participated in the study. A multiple-choice test 

based on the properties of triangles and quadrilaterals was administered to the 

participants. The study found that 48% of the students operated at Level 0, 29% 

were at Level 1, 14% at Level 2, and 9% at Level 3. Thus, most of the students 

were not prepared for higher-grade Euclidean geometry, which involves proof 

and deductive reasoning. These findings were consistent with earlier studies by 

Usiskin (1982), Feza and Webb (2005), and Atebe (2008).  

Van Putten, Howie and Gerrit (2010) investigated the Van Hiele levels of 

32 third-year student teachers at the University of Pretoria in South Africa. The 

students’ Van Hiele levels were assessed using multiple-choice test items as well 

as open-ended proof questions. The results of the study indicated that more than 

50% of the students operated at Level 0. Even the geometry module offered to 

the students “did not bring about a sufficient improvement in their level of 

understanding for these students to be able to teach geometry adequately” (Van 

Putten, Howie & Gerrit, 2010, p. 22).  

Luneta (2014) assessed the Van Hiele levels of a group of 128 first-year 

students at the University of Johannesburg in South Africa. Data were collected 
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using questionnaires and interviews. The study revealed that most students had 

weak knowledge of basic geometry, with 78% of them efficiently functional at 

Level 1. To be effective and efficient in teaching geometry in the classroom, 

teachers should be at Level 4 (rigour). It is a pity that many teachers enter the 

teaching field ill-equipped (Van Putten et al., 2010). This is a matter of serious 

concern.  

The preceding literature shows that students are trapped in a vicious circle 

of poor geometrical skills and understanding. Students leave primary school 

operating at lower Van Hiele levels than the standard set by their curriculum. 

They go to secondary school underprepared, which reduces their chances of 

success in higher-grade Euclidean geometry. The kind of teaching offered in 

many secondary schools appears not to meet the learning needs of these  

students. As a result, the students exit secondary school with deficiencies in their 

geometry knowledge. Studies involving pre-service mathematics teachers have 

shown that they, too, leave university with weak  geometrical skills and 

understanding, and enter the profession ill-prepared. If the Van Hiele levels of 

the teachers are lower than the levels expected of their students, then the 

teachers will not be able to guide the students in the mathematics classroom 

(Van Putten et al., 2010). It is an incontestable fact that this situation is 

undesirable for any education system, and therefore requires immediate 

attention.   

Reports indicating that the majority of students are operating at lower Van 

Hiele levels than the levels set by their mathematics curriculum are not unique to 

America, South Africa and Nigeria. Similar findings were reported in Lesotho 

(Evbuomwan, 2013), Malaysia (Abdullah & Zakaria, 2013; Meng & Idris, 2012), 

Turkey (Bal, 2014), Czech Republic (Haviger & Vojkůvková, 2015), Slovenia 

(Škrbec & Čadež, 2015), Ghana (Baffoe & Mereku, 2010), Yemen, Morocco, 

Kuwait, Tunisia, Georgia, Honduras, Oman, Saudi Arabia, Indonesia, Qatar and 

Botswana (Mullis, Martin, Foy, & Arora, 2012). There is no doubt that the problem 

appears to be in most countries around the world. It would be interesting to learn 

how some countries have tried to resolve the crisis. The next section highlights 

the findings from some of the key empirical studies on possible interventions and 

the extent to which the interventions have been effective. 
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2.9.3.3 Interventions based on the Van Hiele model  

Several studies have tested the effect of interventions based on the Van 

Hiele model with students in different grades, and focusing on different concepts 

of Euclidean geometry. 

Parsons, Stack and Breen (1998) investigated the effect of computer-

based guided instruction using a software application called Windows TM 

Geometry. The study was carried out in America with a sample of eleven Grade 

8 students. The objective of the study was to determine if Windows TM Geometry 

could improve the students’ understanding of geometric concepts and definitions, 

and help them achieve Van Hiele Level 2 (informal deduction). The software 

(Windows TM Geometry) “is composed of online self-help tutorials to guide the 

geometry student through over 55 subject areas using over 700 practice 

problems” (Parsons et al., 1998, p. 82). The study employed a one-group pre-

test/post-test quasi-experimental design. Participants completed three tests 

before and after the experiment. The tests were categorized as: Van Hiele 

Geometry Test, Entering Geometry Test, and Geometry Vocabulary Test. Pre-

test results indicated that two students were below Level 0 (visualization), five 

were at Level 0, and four were at Level 1 (analysis). A one-tailed 𝑡-test for non-

independent samples was performed to compare the students’ pre-test/post-test 

scores on the Van Hiele Geometry Test. The results showed a statistically 

significant increase in students’ scores. Most of the students had moved to Level 

2 (informal deduction). It was concluded that the treatment (Windows TM 

Geometry) had a positive impact on students’ levels of geometric thinking. 

However, further analysis of students’ pre-test/post-test scores on the 

Entering Geometry Test (which excluded proofs), and the Geometry Vocabulary 

Test using the two-tailed 𝑡-test showed a non-significant outcome. It was 

concluded that computer-assisted instruction was not effective in developing the 

terminology of geometry. These findings support the view that even though 

technology is widely known to enhance teaching and learning, it has its own 

limitations and therefore should be used to complement and not to replace the 

teacher. It is the teacher’s responsibility to help students use appropriate 

geometric language (Howse & Howse, 2015; Van Hiele, 1984). Parsons et al.’s 

(1998) study has been criticized for using a small sample (𝑛 = 11). The fact that 
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there was no control group also makes the results weak and unreliable. The study 

could therefore be replicated with a larger sample and a control group.  

Liu (2005) tested the effectiveness of Van Hiele-based instruction in 

learning one Euclidean geometry theorem which states that: the angle subtended 

by an arc at the centre of a circle is twice the size of the angle subtended by the 

same arc at the circumference. The study employed a pre-test/post-test quasi-

experimental design with a sample of 132 Form 3 (Grade 10) students from a 

Chinese school in Hong Kong. Sixty-five students from two classes made up the 

experimental group, and 67 students from the other two classes represented the 

control group. The Van Hiele Geometry Test (a multiple-choice test developed 

by Usiskin ,1982)  was used as a pre-test.  

The experimental group students were taught by the researcher. The 

treatment comprised four consecutive lessons, each lasting 50 minutes. 

Teaching materials in the form of worksheets on concepts related to the circle 

were developed using the first three levels of the Van Hiele model. Teaching was 

organized according to the Van Hiele teaching phases. In the initial  stage, 

students were asked to sort circle diagrams based on similar characteristics. In 

the second stage, students used their own words to name angles in given circles. 

In stage 3, students were asked to measure two angles in a given diagram and 

establish the relationship between them. In the fourth stage, students gave 

feedback on their findings. The teacher assisted the students by introducing the 

relevant terminology. In stage 5, students worked on open-ended questions. In 

stage 6, the teacher used a proof method to consolidate students’ understanding 

of the theorem. In the last stage (integration), students reviewed and summarized 

what they had learnt in previous stages.  

The control group students were taught by another teacher using the 

traditional method. The teacher distributed worksheets on concepts relating to 

circles. The teacher then directly presented the theorem to the students, and told 

them to memorize it. The teacher then demonstrated the proof of the theorem 

from the textbook to help students see why it was true. A few examples from the 

textbook were given to demonstrate how the theorem is applied, and students 

copied the examples into their notebooks for future reference. Students were 

then assigned questions for practice in class and at home. Lessons were 

presented “according to the textbook without any teacher’s personal and private 
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instructional method” (Liu, 2005, p. 25).  

The Van Hiele Geometry Test was used to assess students’ post-

treatment levels of geometric thinking. This was coupled with a paper-and- pencil 

written quiz consisting of 11 questions marked out of 50. The written quiz 

comprised items that focused on the learnt theorem of the circle. Analysis of post-

test scores showed a non-significant difference between the experimental and 

control groups’ Van Hiele levels. This came as no surprise because the 

treatments given to both groups were not based on the geometry concepts 

examined in the Van Hiele Geometry Test. Data from the written quiz showed 

that, on average, the treatment group scored higher than the control group. 

However, the fact that the participants were drawn from  the same school is a 

threat to the validity of the findings due to the possibility of contamination. The 

study could therefore be replicated with the experimental and control groups from 

separate  schools. 

Meng (2009) investigated whether Van Hiele phase-based instruction 

changed students’ Van Hiele levels in learning Solid Geometry, focusing on 

cubes and cuboids. The study utilized the case study research design with a 

purposive sample of six Form One (Grade 8) students from a secondary school 

in Malaysia. Students were interviewed prior to treatment to assess their initial 

Van Hiele levels. The students’ initial Van Hiele levels ranged from Level 0 to 

Level 2. The students were then taught about the properties of the solid shapes 

using Van Hieles’ phase-based instruction together with the Geometer’s 

Sketchpad (GSP). The treatment involved seven sessions, each lasting 40 

minutes. Fourteen GSP activities were developed and used in the lessons. A 

post-interview was conducted to assess change in the students’ Van Hiele levels 

after treatment. Results showed an increase in some students’ Van Hiele levels 

and no change in others. However, these findings cannot be reliable due to the 

small number of participants (𝑛 = 6) and the absence of a control group. The 

study could therefore be replicated with a larger sample and a control group.  

Abdullah and Zakaria (2013), conducted a quasi-experiment to assess the 

effect of Van Hiele phase-based learning on Form Two (Grade 9) students’ 

achievement in learning about the properties of quadrilaterals. The study involved 

two teachers and ninety-four students from a school in Malaysia. The students 

were split equally into two groups. One group constituted the experimental group 
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and the other group formed the control group. The Van Hiele Geometry Test was 

administered to students in the two groups before and after the treatment. The 

treatment for the experimental group involved sequencing learning activities 

according to the Van Hiele phases of learning, and exploring the properties of 

quadrilaterals and their relationships using the GSP. The control group students 

were taught using traditional methods. An analysis of results using Wilcoxon 𝑡-

test showed a significant difference between the two groups’ post-treatment 

scores on the Van Hiele Geometry Test.  

Interviews were conducted to further explore the nature of the differences 

in the Van Hiele levels of the students. An analysis of interview data revealed 

that before the treatment, both groups showed complete acquisition of Level 0 

(visualization), low acquisition of Level 1 (analysis), and no acquisition of Level 2 

(informal deduction) (Abdullah & Zakaria, 2013). After the treatment, most of the 

students in the control group only improved from Level 0 to Level 1. None of them 

acquired Level 2 (informal deduction). In the experimental group, only one 

student did not achieve the informal deduction level. The rest of the students 

showed complete mastery of Levels 0, 1 and 2. It was therefore concluded that 

Van Hiele’s phase-based learning could be utilized to improve students’ levels of 

geometric thinking.  

Siew, Chong, and Abdullah (2013) implemented Van Hiele’s phase-based 

learning with 221 Grade 3 students from a primary school in Malaysia. The study 

employed a one-group pre-test/post-test quasi-experimental design. The focus 

of the study was on learning two-dimensional shapes and symmetry. As part of 

the treatment, the students worked with tangrams for a period of three hours. The 

Chinese tangram is a puzzle that consist of seven pieces of geometric shapes: 

“a square, a parallelogram, two big right triangles, a medium sized right triangle 

and two small right triangles” (Siew et al., 2013, p. 102). A multiple-choice 

geometry test on two-dimensional shapes and symmetry was administered to the 

Grade 3 students before and after the experiment. Data were analysed using a 

paired samples t-test and results indicated that there was a statistically significant 

difference in the average pre-test and post-test scores. The students’ Van Hiele 

levels improved from visualization (Level 0) to analysis (Level 1). Further analysis 

of pre-test and post-test average scores using multivariate analysis of variance 

(MANOVA) revealed that below-average students showed the greatest 
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improvement compared to the average and above-average students. However, 

the study also suffers from internal validity issues. The absence of a control group 

means that maturation and history effects could possibly have influenced the 

outcome.  

In South Africa, Alex and Mammen (2016) implemented van Hiele theory-

based instruction in Grade 10, focusing on geometry concepts related to triangles 

and quadrilaterals. The study employed a pre-test/post-test quasi-experimental 

design with a sample of 359 Grade 10 students from five schools in Mthatha 

district, Eastern Cape Province. A total of 195 Grade 10 students formed the 

experimental group and the remaining 164 constituted the control group. Van 

Hiele theory-based instruction was implemented in the experimental group while 

conventional methods were being using in the control group. A multiple-choice 

test was administered to the experimental and control groups before and after 

five weeks of teaching. An analysis of results using the paired-samples t-test 

indicated a statistically significant difference in the mean scores of the two 

groups, in favour of the experimental group. There were more students in the 

experimental group than in the control group, who had moved from visualization 

(Level 0) to analysis (Level 1) and informal deduction (Level 2). It was concluded 

that van Hiele-based instruction was more effective than traditional methods in   

learning geometry concepts related to triangles and quadrilaterals.  

Other studies that have implemented the Van Hiele phase-based 

instruction with control groups include those by Tay (2003) (Malaysia), Shi-Pui 

and Ka-Luen (2009) (China). Tay (2003) implemented the Van Hiele phase-

based instruction in Form One, using manipulative materials. Shi-Pui and Ka-

Luen (2009) used the Van Hiele-based instruction in the learning of Solid 

Geometry. In both studies, students who were taught using Van Hiele-based 

instruction performed better than those who received regular instruction.  

Based on the preceding review, Van Hiele-based instruction integrated 

with the use of manipulative materials seems to give students better opportunities 

to learn geometry concepts than conventional instruction. The review of available 

literature shows that the effectiveness of Van Hiele-based instruction has been 

tested in the teaching and learning of the following geometry aspects: properties 

of triangles and quadrilaterals (Abdullah & Zakaria, 2013; Alex & Mammen, 

2016), two-dimensional shapes and symmetry (Siew et al., 2013), solid geometry 
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(Meng, 2009; Shi-Pui & Ka-Luen, 2009), and one circle geometry theorem (Liu, 

2005). Most of these studies sought to develop students’ geometric thinking at 

primary and junior secondary school levels, except studies by Liu (2005), and 

Alex and Mammen (2016) that involved Grade 10 students. Thus, much attention 

has been given to the development of visualization (Level 0), analysis (Level 1) 

and informal deduction (Level 2).  

The present study adds to previous findings by implementing Van Hiele 

theory-based instruction in the teaching and learning of deductive reasoning and 

proof at Grade 11 level, focusing on non-routine geometric proofs (riders).  

2.10 Chapter summary and conclusion  

There is consensus among mathematics education experts in the twenty-

first century that the aspect of deductive reasoning and proof should remain part 

of the mathematics curriculum that is taught in secondary schools because of its 

multiple functions. However, knowledge of how to design and organize instruction 

to effectively teach geometric proofs in diverse learning environments with 

students of various cultural backgrounds is scarce. The history of the teaching of 

Euclidean geometry from the Greek Era to the twenty-first century indicates that 

teaching deductive reasoning and proof has been a daunting task for 

mathematics teachers. The nature of Euclidean geometry proof itself has 

developed from basic constructions and empirical demonstrations to writing a 

series of deductive reasoning steps justified by Euclidean theorems, converses, 

axioms, and definitions. How these theorems, converses, axioms, and definitions 

are presented to students is likely to determine their chances of success in writing 

the Euclidean proofs.  

Teachers, both seasoned and inexperienced, have acknowledged that 

they do not have sufficient pedagogical expertise to improve the reasoning and 

proof skills of the students in Euclidean geometry (see Olivier, 2013, 2014). This 

has resulted in the continued use of conventional instruction in the teaching and 

learning of Euclidean theorems and proofs. Students are left with no choice but 

to memorize theorems, converses, axioms, and definitions, and reproduce these 

facts in tests and examinations without proper understanding. Many secondary 

school students have developed a negative attitude towards Euclidean geometry 

and proof because they do not understand the topic. An analysis of students’ 
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mathematics performance in school leaving examinations in various countries 

shows that many candidates are not even attempting questions on non-routine 

geometric proofs (see Department of Basic Education, 2015; Mwadzaangati, 

2015, 2019; West African Examination Council, 2009, 2010, 2011).  

There have been complaints from universities that students leave 

secondary school with weak reasoning and spatial skills, making it difficult for 

them to understand university mathematics. There is therefore a serious need for 

mathematics teachers at lower levels to do things differently. While it is important 

for primary school teachers to ensure that students acquire the basics of 

Euclidean geometry before they go to secondary schools, it is equally important 

for secondary school mathematics teachers to ensure that students go to college 

or university with adequate reasoning and deductive skills. Teachers at both 

primary and secondary school levels need to implement new teaching 

approaches to replace those that promote rote learning (Jones & Rodd, 2001). 

Cheng and Lin (2006, 2009) developed two strategies to improve Grade 9 

students’ geometric proof competencies in Taiwan. The reading and colouring 

strategy was found to work best with incomplete provers, and the step-by-step 

unrolled strategy was effective in solving computational proofs. The heuristic 

worked-out examples developed by Reiss et al. (2008) improved the geometric 

proof competencies of below-average Grade 8 students in Germany. However, 

this does not necessarily mean that the same results will be obtained when these 

strategies are applied elsewhere due to differences in learning environments and 

cultural backgrounds. It is also not known whether these strategies work across 

all grade levels.  

One of the limitations of the strategies developed by Cheng and Lin (2006, 

2009), and Reiss et al. (2008), is that they used students from the same school 

and that makes their findings unreliable.  In addition, the strategies they 

developed benefited some students, while others were left out. Contemporary 

perspectives on mathematics education support an inclusive approach to 

teaching that leaves no child behind. How to develop such teaching approaches 

is still open to further inquiry.   

According to the Van Hiele model of geometric thought, students who go 

to Grade 11 are expected to have achieved the level of informal deduction for 

them to be ready for formal deduction (abstract reasoning and proof). Studies 
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that have assessed students’ Van Hiele levels have widely reported that students 

across all grade levels are operating at lower-than-expected Van Hiele levels 

(see Alex & Mammen, 2016; Abdullah & Zakaria, 2013; Atebe, 2008; De Villiers, 

2010; Feza & Webb, 2005). That is, students go to Grade 11 not having mastered 

the informal deduction level, a prerequisite for success in learning proofs. This 

makes it difficult for the teachers to teach formal deduction. The traditional 

approach to teaching Euclidean theorems and proofs has been found to 

ineffective (Abakpa & Iji, 2011) and alternative teaching approaches are required.  

Several researchers suggest that the teaching of proof should be 

preceded by classroom activities in which students explore, observe, formulate, 

and test conjectures (Blanton et al., 2009; Cassim, 2006; Harel & Fuller, 2009) 

to discover for themselves the origins of concepts and theorems (Kutama, 2002). 

This is in line with constructivist learning theories, which propose that students 

should be given the opportunity to develop their own knowledge by engaging with 

teaching and learning resources, their peers, and their teachers (Abdelfatah, 

2010). However, available Grade 11 Mathematics textbooks and policy 

documents do not provide guidance to teachers on how to organize teaching and 

learning activities for better understanding of Euclidean geometry proofs by all 

the students in the mathematics class. Subject advisors, who should be the 

experts in the field, have been found to lack the necessary expertise to provide 

the guidance that the teachers require to improve their teaching. Even the 

geometry modules offered to pre-service teachers at university have been found 

to be insufficient in preparing the teachers for the challenges of the classroom 

(see Van Putten et al., 2010). The situation is frustrating to both the teachers and 

the students. 

The present study seeks to resolve the challenge faced by Grade 11 

mathematics teachers teaching Euclidean geometry proofs to students who 

operate at lower-than- expected Van Hiele levels. The next section presents the 

methods used in this research.   
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Introduction 

The main objective of any research is to answer questions. The 

methodology of the study is therefore chosen based on the research questions 

(Plano Clark & Badiee, 2010). This chapter presents the methodology employed 

to address the research questions formulated in Chapter 1 (see section 1.3). The 

research design that was utilized in the study is described, and the justification 

for the chosen research design is given. The sampling procedures that were used 

in the study are outlined, and how data collection instruments were developed is 

explained. An account is given of how issues of the reliability and validity of data 

collection instruments were dealt with. Data collection and analysis procedures 

are discussed and ethical issues are addressed.  

Prior to the discussion on the research design and methods used in the 

study, it is advisable that researchers should declare their philosophical 

assumptions (see Mackenzie & Knipe, 2006). The discussion that follows outlines 

the study’s philosophical assumptions.  

3.2 Research paradigm 

In addition to the nature of the research questions, the choice of research 

methodology is also influenced by the individual researcher’s ontological and 

epistemological assumptions (Lindsay, 2010). The term ontology refers to a 

person’s view of the nature of knowledge, and epistemology is concerned with 

how knowledge is acquired (Scotland, 2012). The research paradigm defines the 

ontological and epistemological assumptions upon which a study is premised 

(Mertens, 2005; Neuman, 2006). It influences what we study, and how we study 

and interpret the research findings (see Mollard, 2014).  

Human and social science research in the twentieth century was largely 

influenced by positivism, a research paradigm which underpins quantitative 

methodology (Tuli, 2010). Proponents of positivism contend that knowledge is 

that which can be objectively measured through empirical observations and 

manipulation of individual behaviour in an experiment. The purpose of research 
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in the positivist paradigm is to test hypotheses in order to establish universal laws 

“to predict general patterns of human activity” (Tuli, 2010, p. 100). Human and 

social science researchers working from this perspective may collect data using 

quasi-experiments and cognitive tests (Mackenzie & Knipe, 2006). Admittedly, 

mathematics education requires rigorous inquiry to yield valid, reliable, and 

generalizable knowledge. However, research in the twenty-first century 

acknowledges that reality in social and human science research cannot be 

established using quantitative methodology alone (McGregor & Murnane, 2010).  

Experiments involving human beings differ from laboratory-based 

experiments with chemicals and inanimate objects. Human beings have attitudes 

and feelings that cannot be quantitatively measured, yet are important in 

understanding social phenomena (Mertens, 2010). In their attempts to develop 

better approaches to teaching mathematics, reseachers should not ignore the 

student’s voice. By paying attention to students’ views, mathematics teachers 

could receive critical feedback to enhance students’ achievement (Bansilal, 

James, & Naidoo, 2010). It is for this reason that the qualitative/constructivist 

methodology was incorporated into the present study to capture the voices and 

concerns of the students. 

Both quantitative and qualitative research methodologies have strengths 

and weaknesses. Quantitative methods are well suited to measuring the 

magnitude of effect but cannot address the ‘why’ and ‘how’ questions (Buckley, 

2015). Qualitative methods are helpful in explaining why and how certain factors 

in the teaching experiment or treatment administered to the participants 

contributed to the change in the observed phenomena (Buckley, 2015). However, 

findings from qualitative research cannot be generalized beyond the local 

participants since the results are normally based on small non-random samples 

(Johnson & Onwuegbuzie, 2004). Positivist and constructivist research methods 

are clearly complementary. For this reason, the present research adopted the 

pragmatist paradigm in a mixed-methods design to offset the limitations of mono-

methods (see Ross & Onwuegbuzie (2012). 

3.2.1 Pragmatism 

Pragmatism is a philosophical movement that originated in the United 

States of America in the nineteenth century (West, 2012). It emerged as a third 
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philosophical movement that sought to end the paradigm wars between 

positivists and constructivists.  

The pragmatic approach to research advocates the use of any methods, 

techniques, and procedures from both positivist and constructivist methodologies 

in a single study, if it suits the research problem (Feilzer, 2010). The pragmatist 

knowledge claims are drawn from both the objective world of the positivists and 

the subjective world of constructivists. Thus, pragmatists’ ontological 

assumptions are non-dualist. All that matters is what works best to address the 

purpose of the study (Tashakkori & Teddlie, 2009). Most importantly, the 

research questions are the driving force in the choice of research methods 

(Onwuegbuzie & Leech, 2005; Saunders, Lewis, & Thornhill, 2012). 

The research questions of this research warranted the use of a sequential 

explanatory mixed-methods research design. The discussion that follows 

elaborates on this design.  

3.3 The sequential explanatory mixed-methods research 

design 

The sequential explanatory mixed-methods research design is a product 

of the pragmatist research philosophy. It integrates quantitative and qualitative 

methods at different phases of the study (Terrell, 2012). The sequential 

explanatory mixed-methods design employed in this research was made up of 

two phases. In the initial phase, quantitative data were collected using a quasi-

experiment to objectively test the effect Van Hiele theory-based instruction on 

students’ geometric proofs learning achievement. In the second phase, 

qualitative data were collected to explore students’ views on the approaches 

used in the experimental and control groups. The results from the two phases 

were linked in the discussion chapter, which led to the development of a 

framework for better teaching and learning of Grade 11 Euclidean theorems and 

proofs.  

Research in mathematics education has been criticized for piling up 

statistical data in the form of averages, standard deviations and t-tests, leaving 

many vital questions unanswered (Ross & Onwuegbuzie, 2012). It is therefore 

not surprising that there are increasing calls to incorporate qualitative data in 

mathematics education research to augment statistical analyses (Ross & 
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Onwuegbuzie, 2012). By utilizing the sequential explanatory mixed-methods 

design, this study used the qualitative data to further explore the findings from 

the quasi-experiment, as recommended by Smith (2012). The qualitative data 

helped to explain why the variables in the quasi-experiment were significant or 

non-significant predictors of students’ achievement (Ivankova, Creswell, & Stick, 

2006). It enhanced the validity of the findings obtained in the quasi-experiment 

(see Shah & Al-Bargi, 2013). It also helped to uncover additional information 

which would not be possible using quantitative methods alone (Creswell, 2009). 

The dominant less-dominant QUANTITATIVE→qualitative (QUAN→qual) 

sequential explanatory mixed-methods design was utilized. A visual model of 

QUAN→qual sequential explanatory design is presented in Figure 3.1. The 

QUAN is capitalized to show that it was given more weight than the qual (Harwell, 

2011):  

 

Figure 3.1: Sequential explanatory mixed methods design 

Source: Creswell and Plano Clark (2007, p. 73) 

3.3.1 Quantitative phase: non-equivalent groups quasi-experiment 

It is unacceptable and unethical to randomly assign school children to 

experimental conditions (Fife-Schaw, 2012). For this reason, the study utilized 

the non-equivalent groups quasi-experimental design which utilizes intact groups 

of students. The quasi-experiment is not a true experiment in the sense that 

participants are not randomly assigned to the treatment and control conditions 

(Harris, et al., 2006). However, it is similar to a true experiment because it is used 

to determine if the treatment has an effect on the variables of interest. The term 

‘non-equivalent’ simply means that the groups are likely to differ in some ways 

due to the presence of confounding variables. The visual model of the non-

equivalent groups design is shown in Figure 3.2: 
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Notes. NR = Non-random assignment; O = Observation/measurement; 
  X = treatment  

Figure 3.2: Non-equivalent groups design 

The symbol 𝑂1 denotes the pre-test and 𝑂2 denotes the post-test. The non-

random assignment of participants into the treatment and control groups comes 

with other variables besides the treatment, which may influence the results of the 

experiment. Such variables are called confounders. The pre-test (𝑂1) was used 

to assess differences in performance between the treatment and control groups 

prior to administering treatment (𝑋). A significant difference in the average pre-

test scores between the two groups is a potential confounder (Gliner, Morgan, & 

Leech, 2009) which poses a threat to the internal validity of the research findings 

(Bell, 2010). The pre-test scores were therefore used as a covariate in the 

statistical analysis of results. Other measures that were taken to minimize the 

influence of confounding variables will be explained in section 3.4.4.  

To address the first research question, the following hypotheses were 

tested at the 5% level of significance: 

Null hypothesis (𝐇𝟎): Van Hiele theory-based instruction has no significant 

effect on Grade 11 students’ geometric proofs learning achievement.  

Alternative hypothesis (𝐇𝟏): Van Hiele theory-based instruction has a 

statistically significant effect on Grade 11 students’ geometric proofs learning 

achievement. 

 

3.3.2 Qualitative phase 

The qualitative phase sought to gather data to answer research questions 

concerning students’ views, attitudes, and feelings about (a) Van Hiele theory-

based instruction and (b) conventional teaching. Diaries and focus groups were 

NR    (Experimental)       O1               X                 O2

NR    (Control)                O1                                 O2

    𝐻1: 𝜇𝑣𝑎𝑛  𝐻𝑖𝑒𝑙𝑒  𝑡ℎ𝑒𝑜𝑟𝑦  - 𝑏𝑎𝑠𝑒𝑑  𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ≠ 𝜇𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙  𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛  
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utilized. The qualitative data helped to build a holistic snapshot of the research 

topic.  

3.3.2.1 Diaries 

Diaries can be defined as documents created and maintained by individual 

people who record events, thoughts, feelings, attitudes and views on personal 

observations and experiences over time (Bytheway, 2012; Duke, 2012). Some 

researchers call them journals (Yi, 2008). While the researcher could have used 

lesson observation instead of diaries, it was not possible for the 

teacher/researcher to observe Euclidean geometry lessons in the control group 

schools and at the same time implement the proposed treatment in the 

experimental group. Besides, observing the same teachers daily for a longer 

period for purposes of research is burdensome and may cause discomfort to the 

teachers. It also has the potential to bias findings (Sheble & Wildemuth, 2009). 

For these reasons, students’ diaries were found to be a suitable replacement for 

lengthy researcher observations (see Duke, 2012).  

Data collected using the diary method is likely to be accurate because it is 

captured at or shortly after the occurrence of the event (Woll, 2013). Diaries have 

less recall errors compared to questionnaires and interviews that capture events 

long after they have occurred (Sheble & Wildemuth, 2009). In education, 

students’ diaries are a source of valuable information that teachers may use to 

design effective lessons (Yi, 2008). However, diaries should not be used as the 

only data collection method in research (Woll, 2013). They should be combined 

with other data collection methods such as interviews in order to enrich the 

research findings or as a form of triangulation (Sheble & Wildemuth, 2009).  

3.3.2.2 Focus groups 

Focus groups are small groups of participants that are brought together 

by a trained facilitator or interviewer to discuss a topic (see Baral, Uprety, & 

Lamichhane, 2016; Bedford & Burgess, 2001; Wong, 2008). The environment in 

which the discussions are held should be “non-threatening” (Krueger & Casey, 

2009, p. 2) to allow participants to express themselves freely without fear. There 

is variability in what researchers recommend as the optimum size for a focus 

group. The size of the group should therefore be decided by the individual 
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researcher. What is important is to maximize participation and  to reach data 

saturation. However, Adler and Clark (2008), recommend groups ranging from 

three to twelve participants.  

Focus groups can be used to explore participants’ experiences, attitudes, 

perceptions, beliefs, opinions, and ideas on a given topic (Denscombe, 2007; 

Dilshad & Latif, 2013; Knight, 2012; Leung & Ratnapalan, 2009; Pearson & 

Vossler, 2016; Villard, 2003; Wong, 2008). In a mixed-methods design, focus 

groups help to shed more light on issues that emerged in the quantitative data 

analysis (Centers for Disease Control and Prevention, 2008; Freitas, Oliveira, & 

Jenkins, 1998). Focus group findings can also be used as supplementary data 

“to validate the findings of quantitative research” (Dilshad & Latif, 2013, p. 193). 

Knight (2012) concurs with Villard (2003) that focus groups are most productive 

when used to evaluate the success of teaching experiments. In education, focus 

group can help teachers to evaluate the effectiveness of their teaching. Such 

knowledge is key to the design, redesign and refinement of our pedagogical 

practices (see Office of Quality Improvement, 1999).  

The advantages of the focus group technique are that: it is relatively 

inexpensive compared to individual interviews, and it allows the researcher to 

collect a large amount of information within a short timeframe (Baral et al., 2016; 

Krueger & Casey, 2009; Freitas et al., 1998). The focus group technique has high 

face validity (Pearson & Vossler, 2016) and participants are more likely to give 

honest responses (Leung & Ratnapalan, 2009). Unlike multiple personal 

interviews, focus groups provide opportunities for interactions among 

participants, which creates more valuable data. However, despite these various 

benefits, the focus group data collection technique has several noteworthy 

limitations.  

The focus group discussion may be hijacked by outspoken individuals who 

have the potential to sway and supress important individual opinions (Health 

Promotion Unit, 2007; Leung & Ratnapalan, 2009; Wong, 2008). Some 

participants may talk over each other, thereby making it difficult to transcribe the 

data (Wilkinson, 2008). If a bigger number of participants are engaged, it may 

reduce participation opportunities for some members (Pearson & Vossler, 2016) 

and increase the danger of participants breaching confidentiality agreements 

(McParland & Flowers, 2012). In addition, focus group findings are not 



 

58 
 

transferable to the larger population since participants are non-randomly selected 

(Leung & Ratnapalan, 2009). 

Despite the disadvantages enumerated in the preceding discussion, focus 

groups were favoured ahead of other survey methods such as questionnaires 

and individual interviews. This is because focus groups can produce an 

appropriate amount of rich and valuable information using fewer resources (in 

terms of time and money) than multiple individual interviews and questionnaires 

(Office of Quality Improvement, 1999). Focus group interviews were used to 

explore students’ views on Van Hiele theory-based instruction and conventional 

approaches to teaching and learning Grade 11 Euclidean geometry theorems 

and proofs. The intention was to supplement the findings obtained in the 

quantitative phase. It was assumed that high school students are old enough to 

engage in thoughtful analysis “especially on matters that clearly affect them” 

(Jackson & Davis, 2000, p. 145). Whitney (2005) adds that students “are experts 

about their schools and have definite opinions about what works well and what 

could be improved” (p. 3).  

In the next section, the sampling procedures followed in this research are 

elaborated on.  

3.4 Sampling 

Since it is not always feasible for the researcher to include all units of the 

population of interest, it is recommended that the researcher should select some 

units of the larger population to participate in the study. 

3.4.1 The target population  

The larger group of people to which findings may be generalized is the 

target population (Fritz & Morgan, 2010). The targeted population in this research 

was the cohort of 2016 Grade 11 Mathematics students who were attending 

school in the townships of Limpopo province, South Africa. The researcher chose 

Grade 11 because this is the level at which most of the Euclidean geometry 

theorems and challenging riders are introduced, based on the South African 

CAPS (see Department of Basic Education, 2011). Limpopo was targeted 

because of having a consistent record of underperformance in the Grade 12 NSC 

examinations (see Department of Basic Education, 2016a). Township secondary 
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schools were of interest to the researcher because this is where most students 

attend school. These schools have adequate classrooms, well-furnished 

computer laboratories and libraries, adequate teaching and learning resources, 

electricity, and water supply, but they still perform far below provincial and 

national targets (see Dhlamini, 2012).  

3.4.2 The sampling frame 

The sampling frame is part of the targeted group that contains the units 

the researcher can choose from (Luks & Bailey, 2011). The 2016 Grade 11 

Mathematics students and teachers from Mankweng and Seshego township 

schools in the Capricorn district of Limpopo province in South Africa, constituted 

the sampling frame for this research. The townships of Mankweng and Seshego 

were targeted because of their proximity to the City of Polokwane (provincial 

capital of the province of Limpopo), which makes them easily accessible. 

3.4.3 The study sample 

The research sample consisted of 186 Grade 11 Mathematics students 

from four public secondary schools. Of these, 82 students from two secondary 

schools in Seshego township constituted the experimental group. The remaining 

104 students from two secondary schools in Mankweng township formed the 

control group. A total of twenty-four students (6 per school) were recruited to keep 

diaries and participate in focus group discussions.  

3.4.4 Sampling techniques  

Schools were selected using the convenience sampling technique. Thus, 

selection was non-random and based on what was readily available (Fritz & 

Morgan, 2010). This is a common practice in educational research and other 

naturalistic studies (Dhlamini, 2012). The two schools from Mankweng township 

were matched with two similar schools from Seshego township using the Grade 

12 Mathematics results for 2015 and the 2016 Schools’ Master List data available 

on the South African Department of Basic Education Website (see Department 

of Basic Education, 2016b). Two Grade 11 mathematics students, one from 

Mankweng township and the other from Seshego township, were invited to a 

neutral venue to assign the schools to experimental and control groups. Using 

the lottery method, Mankweng schools were assigned to the control group while 
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the Seshego schools were assigned to the experimental group.   

The selected secondary schools were public no-fee schools in two 

townships of the same district. The four schools were categorized as Quintile 3 

schools according to the government funding system for South African schools. 

The quintile funding system as described in the 2000 National Norms and 

Standards for School Funding (NNSSF) divides schools into five categories 

(quintiles), according to their socio-economic status (SES) or levels of poverty in 

the communities around them (Dieltiens & Motala, 2014). The quintile system 

ensures that the most disadvantaged schools receive the biggest share of the 

NNSSF. The communities’ poverty scores are calculated using data compiled by 

Statistics South Africa (StatsSA). Quintiles 1 to 3 schools are in low SES areas 

characterized by low income, low education levels and a high unemployment rate 

and are regarded as the neediest schools. Such schools were “declared no-fee 

schools as of 2014” (Longueira, 2016, p. 48). Quintiles 4 and 5 schools are in 

high SES areas characterized by high income, high education levels and a low 

unemployment rate. These are fee-paying schools. Accordingly, schools in 

Quintiles 1 to 3 receive more NNSSF than their counterparts in Quintiles 4 and 

5. Schools in the same quintile receive the same NNSSF allocation per student 

and thus are treated equally. The norms and standards funds are used by 

schools to buy learner and teacher support materials (LTSM) and pay for other 

utility bills.  

In addition to being in similar low socio-economic environments and 

receiving the same NNSSF allocation per student, the selected schools were also 

part of the National School Nutrition Programme (NSNP), which targets Quintiles 

1 to 3. The NSNP is an intervention programme that aims to reduce the impact 

of poverty on educational attainment (Rendall-Mkosi, Wenhold, & Sibanda, 

2013). The schools had large student enrolments, ranging from 704 to 1265. All 

four selected schools had access to safe drinking water, electricity, a library, and 

a computer laboratory with a fixed projector.  

An equally significant common characteristic of the selected schools was 

that the most experienced mathematics educators (college-trained) were 

responsible for teaching mathematics in the upper classes, while the newly 

qualified mathematics teachers (university-trained) were entrusted with lower 

grade mathematics. The schools from Mankweng were coded C1 and C2. These 
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were the control group schools. In the same way, the schools from Seshego were 

coded E1 and E2. These were the experimental group schools. The townships 

are approximately one hundred and seventy-seven kilometres apart. Thus, 

chances of data contamination were reduced. Data contamination could have 

occurred if students from the two townships shared notes and learning 

experiences (see Hutchison & Styles, 2010). This could lead to a wrong 

conclusion in the testing of hypotheses (Keogh-Brown et al., 2007). 

Teacher X at school C1 and Teacher Y at school C2 were both college-

trained, with their highest teaching qualification being a Secondary Teacher’s 

Diploma (STD). The teachers indicated that mathematics was one of their major 

subjects at college. The two teachers were permanently employed by the 

Limpopo Provincial Department of Basic Education. Both teachers had more than 

15 years of experience teaching mathematics. Both teachers had taught 

Euclidean geometry in the old syllabus until it was scrapped out of the NCS in 

2006. The two teachers participated in the Mathematics CAPS training 

workshops organized by the Limpopo Department of Basic Education in 2012. 

These teachers taught the 2014 and 2015 cohorts of Grade 12 students in their 

respective schools. Grade 12 students in 2014 and 2015 were the first two groups 

to write a Mathematics Paper 2 national examination which included Euclidean 

geometry in the CAPS. Their respective schools (School C1 and School C2) 

reported a Mathematics pass rate of less than 50 percent in the 2014 and 2015 

NSC examinations (see section 4.2.2 of Chapter 4).  

 Self-selection, a type of convenience sampling method in which students 

volunteered to keep diaries and participate in focus group discussions, was used. 

It was assumed that self-selected participants would have a greater commitment 

and willingness to participate in the study than those recruited by persuasion. 

White (2006) argued that self-selected individuals “will be highly motivated and 

have strong opinions on the topic” (p. 188). The self-selection sampling technique 

also helped to avoid the potential risk of non-attendance and zero participation. 

Students at each school were informed about the topic of discussion, the time, 

and the venue for the focus group meetings (Office of Quality Improvement, 

1999). Students were also told that they would be expected to keep diaries and 

record their learning experiences for the duration of the Euclidean geometry 

topic. Twenty-four students, six from each school, were recruited, resulting in four 
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focus groups. Each focus group had three males and three females to ensure 

inclusiveness and gender balance. Two focus groups were made up of students 

from control group schools, and the other two groups were formed by students 

from experimental group schools. Thus, each school had its own focus group. 

Based on the advice given by Breen (2006), focus groups that are used to explore 

learning experiences should be made up of students who have had similar 

learning experiences.  

3.5 Instrumentation 

A geometry proof test, diaries, and focus group discussion guide were 

used to collect data in this research.  

3.5.1 Geometry proof test 

A geometry proof test which consisted of four long and open-ended proof 

questions was developed by the researcher to measure students’ geometric 

proofs learning achievement before and after the teaching experiment. Each 

question was split into two, three or four parts to cater for the multiple 

intelligences of the students (see Appendix I). Selection of test items was 

informed by (1) the focus of the study, (2) Bloom’s taxonomy, and (3) the South 

African Mathematics CAPS for the FET Band. The focus of this research was on 

proving riders and as such, all questions were proof questions. In keeping with 

Bloom’s taxonomy, the proof questions set required students to recall geometric 

facts (Knowledge), demonstrate understanding (Comprehension), use problem-

solving skills (Application), identify patterns, and organize ideas (Analysis), 

combine ideas (Synthesis), and make judgments (Evaluation). Questions were 

confined to the theorems and axioms prescribed for Grade 11 students in the 

CAPS. However, some questions required students to apply knowledge acquired 

in lower grades. The proof questions could be solved in multiple ways.  

3.5.1.1 Validity and reliability of the geometry proof test  

The validity of a test is the extent to which it measures exactly what it 

seeks to measure (see Heale & Twycross, 2015). A test is reliable or consistent 

if the same or similar results are obtainable when the test is re-administered to 

the same participants under the same conditions.  

The initial draft of the geometry proof test had twelve proof items. The total 
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mark allocation was 60 and the duration allowed was one hour. To ensure that 

the geometry proof test was valid, it was first developed using the guidelines 

outlined in section 3.5.1. The initial draft of the test was reviewed by the 

researcher’s peers who were Grade 11 Mathematics teachers. The initial draft of 

the test was then revised based on the peer review comments. The revised test 

was emailed to a purposive sample of seven mathematics experts for validation. 

According to Zamanzadeh et al. (2015), at least five raters are recommended to 

avoid agreement due to chance. The sample consisted of four professors and 

three doctors of mathematics education from various universities in South Africa. 

These were identified by viewing their profiles from the universities’ websites. 

The seven mathematics experts were requested to judge the relevance 

and clarity of the proof items using a 4-point ordinal scale. The criteria that guided 

the experts in scoring the test items were adapted from Yaghmaie (2003) and 

Zamanzadeh et al. (2015) (see Table 3.1):  

                    Table 3.1: Criteria for rating test items 

Note. Adapted from Yaghmaie (2003, p. 26) and Zamanzadeh et al. (2015, p. 168) 

A test validation instrument developed by the researcher using the criteria 

in Table 3.1 was sent to the raters together with the geometry proof test (see 

Appendix J). The average rating score for each item was obtained by adding the 
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two scores (relevance score + clarity score) and dividing the result by two. The 

resultant average scores per item per rater were recorded as shown in Table 3.2.  

The widely used technique for calculating item content validity index (I-CVI) using 

multi-rater agreement simply divides the number of raters who scored 3′s and 4′s 

for an item by the total number of raters in the panel (see Waltz & Bausell ,1983). 

This would give a CVI of 1.00 for all test items in Table 3.2 except 4.1 (0.86). 

Table 3.2: Experts’ final average rating scores per item 

 

Notes. 4 = very relevant and very clear; 3 = relevant and clear; 2 = item needs some 
revision; 1 = irrelevant 

It is important to note, however, that techniques for calculating CVI by 

dichotomizing ratings are criticized for inflating the CVI values due to their failure 

to control for chance agreement (see Polit, Beck, & Owen, 2007). In view of this 

criticism, the researcher opted to use a modified kappa statistic (𝑘∗) which 

adjusts each item content validity index for chance agreement. To obtain 𝑘∗ for 

each test item, the probability of chance agreement (𝑝𝑐) was calculated using the 

formula: 

 

Item 
Expert raters and ratings 

1 2 3 4 5 6 7 

1.0 4 4 4 4 4 4 4 

2.1 4 4 4 4 4 4 4 

2.2 4 4 4 4 4 4 4 

2.3 4 4 4 4 3 4 3 

2.4 4 4 4 4 4 4 4 

3.1 4 4 3 4 4 4 4 

3.2 4 4 3 4 4 4 4 

3.3 4 4 3 4 4 4 4 

4.1 4 1 4 4 4 4 4 

4.2 4 4 4 4 4 4 4 

4.3 4 3 4 4 4 4 4 

4.4 3 4 4 4 4 4 4 
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where 𝑝𝑐: probability of chance agreement; 𝑁: number of raters; 𝐴: number of 

raters who gave the item a rating of either 3 or 4. 

The modified kappa statistic (𝑘∗) for each item was then computed using 

the formula: 

 

where 𝑘∗: modified kappa value; 𝐼– 𝐶𝑉𝐼: item content validity index;  

𝑝𝑐: probability of chance agreement 

The item content validity indices (𝐼 − 𝐶𝑉𝐼) and modified kappa values (𝑘∗) 

obtained for each item are shown in Table 3.3. The overall content validity index 

of the test is the scale-level content validity index (𝑆 − 𝐶𝑉𝐼). This was obtained 

by calculating the average of the item modified kappa values (Polit et al., 2007). 

The overall content validity index of the test instrument (𝑆 − 𝐶𝑉𝐼) was 0.99 (see 

Table 3.3), which is greater than the least acceptable standard of 0.9 (see Waltz, 

Strickland & Lenz (2005).  

Table 3.3: Item content validity indices and the modified kappa values 

 

Notes. 𝐼 − 𝐶𝑉𝐼 = item level content validity index; 𝑝𝑐 = probability of chance agreement; 

𝑘∗ = kappa value representing agreement on item relevance. 𝑆 − 𝐶𝑉𝐼/𝐴𝑣𝑒 = scale-level 
content validity index, averaging method  

𝑘∗ =
[𝐼– 𝐶𝑉𝐼] − 𝑝𝑐

1 − 𝑝𝑐
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The results in Table 3.3 show that there was perfect agreement on item 

relevance in 11 out of 12 test items. It is important to note that adjustment for 

chance agreement had no effect on the modified kappa values in these cases 

(see Table 3.3). Adjustment for chance agreement lowered the validity index of 

item 4.1 by a margin of 0.01. One expert thought item 4.1 was irrelevant (see 

Figure 3.3). According to Waltz and Bausell (1983), a test item is accepted if its 

validity index is greater or equal to 0.79, otherwise it will be discarded (see also 

Polit et al., 2007; Zamanzadeh et al., 2015). Based on the validity indices in Table 

3.3, all test items were therefore judged to be valid assessments of students’ 

proof construction abilities. The validation form that was used by the experts to 

rate the items provided space for the raters to make suggestions for additions, 

deletions, and modifications of the test items to improve the instrument’s face 

validity (see Appendix J). The raters’ comments that necessitated further 

changes to the proof test are captured here: 

 

Figure 3.3: Mathematics experts’ comments 

Based on the comments in Figure 3.3, items 4.4 (allocated 5 marks) and 

4.1 (allocated 1 mark) were deleted from the test. Mark allocation for Question 

4.3 was maintained since it did not differ significantly from the 2 marks suggested 

 

Comment 1: 

Proving for a cyclic quad is duplicated (2.1 & 4.4) thus it needs to be revised. All 
other items are Ok for Grade 11 Euclidean Geometry.  

Comment 2: 

… I think  Question 4.1 is unnecessary – it does not need to be proved, since it is 
a direct corollary from a theorem. Learners need to implicitly use it in other 
questions. Question 4.3 can be 2 marks (not that difficult to prove).  

Comment 3:   

In the instructions for Question 3 the phrase “AB∥MP” is so packed together and 
may affect the readability of your instructions. You may need to loosen up this 
phrase. We are not sure how this phrase could influence your participants’ 
comprehension of the instructions and related diagram. One way to address this 
challenge could be to write the middle part " ∥ " in italics as “// “and also to insert 
spaces between the 3 components of the word/phrase, thus making it look like: 
“AB // MP “.  

Comment 4: 

The marks that awarded for each of the questions and sub-questions were fair 
and realistic. The exception in my view is 3.2, which could be answered in just 
two steps. Seven (7) marks might perhaps be decreased to just 4/5 marks.  
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by one of the experts. The remaining two items of Question 4 (4.2 & 4.3) were 

renumbered 4.1 and 4.2 respectively. Question 3 was modified by replacing 

‘AB ‖ MP’ with ‘AB is parallel to MP’. Mark allocation for Question 3.2 was reduced 

from 7 marks to just 3 marks. The final version of the proof test now had 10 items, 

two less than the initial draft. All the remaining items had a validity index of 1.00, 

which represents perfect inter-rater agreement on relevance. Total mark 

allocation was now 50, ten less than the initial mark allocation. The time allocation 

of one hour was maintained.  

The reliability of the revised proof test instrument was measured through 

the test-retest criterion. A conveniently selected sample of 27 Grade 11 students 

from a school outside the targeted research area wrote the same test twice. The 

second test was written two weeks after the first test. The reliability of the test 

was established by computing Pearson’s correlation coefficient (𝑟) in the 

Statistical Package for Social Sciences (SPSS) Version 24. Table 3.4 shows the 

SPSS output for Pearson’s correlation coefficient (𝑟), and its level of significance.  

Table 3.4: Reliability statistics of the geometry proof test 

 

Note. **Correlation is significant at the .01 level (2- tailed) 

The results in Table 3.4 indicate that there was a statistically significant 

strong positive correlation (𝑟 = .824, 𝑝 = .000) between Time 1 and Time 2 

scores on the geometry test. The recommended minimum acceptable value for 

test-retest reliability coefficient is .70 (Paiva, et al., 2014). The Pearson’s 

correlation coefficient value (𝑟 = .824) in Table 3.4 falls above this minimum 

 

Correlations 

 Time 1 Time 2 

Time 1 

Pearson Correlation       1 .824** 

Sig. (2- tailed)  .000 

N    27   27 

Time 2 

Pearson Correlation   .824**    1 

Sig. (2- tailed) .000  

N    27 27 
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reliability threshold. It was therefore concluded that the revised geometry proof 

test was reliable.  

3.5.2 Focus group discussion guide  

A focus group discussion guide (see Appendix M) was used to collect 

qualitative data to answer the second research question.  The focus group 

discussion guide helps the moderator to facilitate the discussion in a 

standardized and structured way (Kuhn, 2016). It contains the key questions to 

be asked and their sequence. It helps to ensure that the focus group discussion 

stays on track and that all important areas of the research question(s) are 

addressed (Reid & Mash, 2014). 

The researcher followed the recommendations by Krueger (2002) and 

Kuhn (2016) to design the focus group discussion guide used in this research. 

According to Krueger (2002) and Kuhn (2016), a typical focus group discussion 

guide should contain:  

A Preliminary Section with labels for date, time, location, type of group, 

selection criteria used to recruit the participants, and number of participants 

present. 

The Opening Section, which includes welcome and opening remarks; 

highlighting the purpose of the discussion; addressing issues of anonymity and 

confidentiality of responses; laying down the ground rules and expectations; 

announcing the estimated duration of the discussion; engaging in warm-up 

activity in which participants introduce themselves to the group. 

The Question Section, which includes three categories of questions which 

are time-framed:  

1) Engagement questions to get participants to talk to each other and to feel 

comfortable, and to build rapport. 

2) Exploration questions which are questions focusing on the topic of 

discussion. 

3) Exit questions which are follow-up questions to determine if there is 

anything else related to the topic that needs to be discussed.  

The Closing Section, which includes wrapping up loose ends, giving 

participants an opportunity for final thoughts and comments, thanking 

participants for their input, and informing them of how the data will be used.  
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A key component of the focus group discussion guide is the Question 

Section. The quality of the data collected using focus group discussions depends 

on the quality of the questions asked by the facilitator (Center for Innovation in 

Research and Teaching, n.d.). As suggested by Lachapelle and Mastel (2017), 

focus group questions should be framed based on the following traits: behaviour, 

opinion, feelings, and sensory experiences. Questions on behaviour “focus on 

what a person has done or is doing” (Lachapelle & Mastel, 2017, p. 2). Exploring 

respondents’ opinions involves asking about what they think on the issue being 

discussed. Questions about feelings seek to elicit respondents’ emotional 

responses to the issue being discussed. Questions seeking information about 

what respondents have seen, touched and heard fall under sensory experience-

type questions. Figure 3.4 shows the steps followed by the researcher to develop 

appropriate questions for the focus group discussion. These steps were adapted 

from National Oceanic and Atmospheric Administration (2015, p. 5-6):  

 

Figure 3.4: Steps followed when developing focus group questions 

The reason for conducting focus group discussions was to explore 

students’ experiences, perceptions, attitudes, beliefs, feelings and opinions on 

how Euclidean geometry theorems and proofs were taught in their mathematics 

classrooms. A consideration of the research goals was therefore essential to 

guide the researcher in developing relevant focus group questions. Generating a 

preliminary list was just a matter of brainstorming and writing all questions that 

came to mind, knowing that these questions would later be edited and reduced 

to a smaller number. Questions were developed under three categories: (1) 
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engagement questions, (2) exploration questions, and (3) exit questions. Ding 

(2014) clarifies what each of these question categories entails. Engagement 

questions are questions asked simply to get participants talking, relaxed and 

comfortable. They are sometimes referred to as ice-breakers (ETR, 2013). 

Exploration questions are questions which form the core or heart of the 

discussion. These are open-ended questions that seek to collect more specific 

data on the topic of discussion. Three to five questions under the exploration 

category are regarded as adequate (Ding, 2014). The exit questions are used to 

check if there is any key information that has been left out but that participants 

think is worth discussing. 

The wording of the focus group questions was guided by several 

authorities. Good questions should be clear, open-ended, short, non-threatening, 

and one-dimensional (asking only about one clear idea) (Krueger & Casey, 

2009). Open-ended questions do not constrain respondents to a limited range of 

options as is the case with closed questions. Based on the advice given by 

Krueger and Casey (2009), the following types of questions were avoided: 

dichotomous, leading, double-barrelled, value-laden, and ‘why’ questions.  

The dichotomous type of questions require a simple ‘yes’ or ‘no’ response. 

These questions limit conversation and may lead to ambiguous responses 

(Canavor, 2006). Leading questions seem to give direction towards a particular 

response and hence may bias the results (Krosnick & Presser, 2009). Double-

barrelled questions are questions that touch on two different issues. Such 

questions should be avoided because they may confuse respondents and also 

make responses hard to interpret (Krosnick & Presser, 2009). Double-barrelled 

questions are best separated into two parts. Value-laden questions are those that 

include emotionally charged words (for example blame, demand, unhelpful, force 

and unreasonable). Such questions indicate the interviewer’s strong personal 

views on the issue being discussed and hence “can induce reactivity”, which 

skews participants’ reponses (Haslam & McGarty, 2014, p. 410). Lastly, ‘why’ 

questions were excluded because they “put participants on the spot, restrict the 

range of answers, and can inadvertently make someone feel defensive” 

(Canavor, 2006, p. 52).  

Using the ideas in the preceding discussion, a preliminary list with ten 

questions (one engagement question, eight exploration questions, and one exit 
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question) was developed by the researcher. Feedback on these potential 

questions was obtained from fellow postgraduate students and other experts 

(doctors and professors) in Mathematics Education. Based on their advice, three 

exploration questions were removed from the list as they were regarded as 

unnecessary. In addition, the wording in some questions was revised. The 

remaining seven questions were then entered into a focus group discussion 

guide draft. The developed focus group script was pre-tested by the selected 

facilitator on a group of Grade 11 students who were not part of this research. 

Various authorities have highlighted the value of pre-testing data collection 

instruments before a full-scale study. Pre-testing helps to notice weaknesses in 

the research instrument and to identify areas in need of further adjustments 

(Dikko, 2016). In the case of a focus group discussion, pre-testing serves to:  

• highlight unclear and unnecessary questions (Calitz, 2005).  

• determine whether the proposed duration of the discussion is acceptable  

(Dikko, 2016).  

• give the facilitator an opportunity to improve questioning technique (Dikko, 

2016). 

• determine whether questions are enough to measure all the necessary 

concepts (Berg, 2012).  

• improve quality, and add value and credibility to the study (Aitken, 

Gallagher, & Madronio, 2003; Van Wijk, 2013).  

No further changes were made to the focus group discussion guide  after 

the pre-testing exercise. All questions were clearly understood by the pilot group 

and met the requirements of the study. Based on the pretesting outcomes, it was 

estimated that the focus group discussion would take between one and a half to 

two hours.  

3.5.3 Diary guide  

A diary guide (see Appendix E) was developed by the researcher using 

guidelines from available literature. In the first part of the diary guide, the 

researcher clarified the purpose of the diary as suggested by Duke (2012) and 

Rausch (2014). Second, issues of anonymity and confidentiality were addressed 

to gain the trust of the participants (see section 3.8.1.2). Third, clear written 

instructions were given on the variables of interest that the diarists should write 
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about (Bytheway, 2012; Rausch, 2014) and when the diary entries should be 

recorded. Providing information on the variables of interest was essential to 

relieve diarists of the burden of deciding what to include in the diary. On the part 

of the researcher, this was crucial to ensure that the research objectives would 

be addressed. Finally, an example of a completed diary entry (on a different topic 

from the one being investigated) was attached to the diary guide. This was 

important to guide diarists on the amount and type of data to be recorded (Duke, 

2012).  

While imposing the structure of the diary entry page by restricting entries 

to precategorized spaces makes it easier to complete the diary and analyse the 

data, it has the disadvantage that it limits the  diarist to recording  only that which 

can be slotted into the spaces provided. For this reason, there were no 

restrictions on the amount of information diarists could write per each variable of 

interest. Each diary was a small portable notebook made up of 192 pages. Daily 

entries were allowed to overflow to the next page when necessary. 

Establishing a good rapport with participants is vital before data collection 

commences (Rausch, 2014). To this end, the researcher made multiple visits to 

the research sites prior to data collection and interacted with participants formally 

and informally to gain their trust. During this period, the researcher informed the 

Grade 11 students in the selected schools of the upcoming research activities.  

In the next section, the data collection procedures employed in the study 

are explained.  

3.6 Data collection 

The data used in this research was collected through the administration of 

pre-tests and post-tests, students’ diaries, and focus group discussions. Data 

collection commenced after the relevant ethical issues had been addressed (see 

section 3.8).  

3.6.1 Pre-test administration  

The geometry proof test developed in section 3.5.1 was administered to 

both the experimental and control groups in Term 3, just before Euclidean 

geometry was introduced. According to the South African Mathematics CAPS, 

Grade 11 Euclidean geometry should be taught in Term 3 (see Department of 
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Basic Education, 2011, p. 19). The choice to collect data during this period was 

therefore in accordance with policy. Four research assistants (2 males and 2 

females) who were unemployed university graduates known to the researcher 

were hired to help administer the pre-test and post-test in participating schools. 

The research assistants were trained by the researcher for one day prior to the 

field work.  

The teacher/researcher and research assistants visited the participating 

schools a week before the pre-test was administered to make prior arrangements 

with school principals, Grade 11 Mathematics teachers and their students. We 

asked for a list of Grade 11 Mathematics students at each school. This was used 

to generate codes to replace students’ actual names to guarantee anonymity. 

The first student on the list of experimental group school E1 was coded E 1001, 

the second E 1002, and so on. Similarly, the first and second students on the list 

of experimental group school E2 were coded E 2001 and E 2002 respectively. In 

the same way, C 1001 and C 2001 represented the first student from control 

group schools C1 and C2 respectively. Pre-test answer sheets were coded in 

advance. Each research assistant was allocated a school to work with in 

administering the pre-test. The answer sheets and coding were verified by the 

teacher/researcher before packaging. The packaging of test papers and answer 

sheets was done by the researcher and the research assistants had no access 

to the test papers prior to the pre-test. The research assistants were trained on 

how to deal with irregularities and were also requested to be scrupulous in 

administering the pre-test.  

The pre-test papers and answer sheets were delivered by the 

teacher/researcher to principals of participating schools a day before the set date. 

The school principals were requested to only release the test material to the 

research assistants on the set date and at the appropriate time. To ensure parity 

of test conditions, the pre-test was administered across the four school on the 

same day, starting and ending at the same time. Students’ pre-test scripts and 

all test papers were collected by the research assistants and were submitted to 

the researcher. Some students refused to write the pre-test and that was 

respected without seeking reasons, as stipulated in their consent forms. The 

scripts were marked by a hired marker, with more than five years of experience 

in marking Grade 12 national examinations. The marker was not part of the 
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research team that helped to administer the pre-test and post-test in participating 

schools.  

3.6.2 Treatment 

The teacher/researcher implemented Van Hiele theory-based instruction 

in the treatment schools while students in the control schools were taught by their 

teachers using their usual approaches. It was not possible for the researcher to 

teach both groups because the selected experimental and control schools were 

in separate areas, far from each other. However, the researcher and the two 

teachers who were responsible for the Grade 11 mathematics classes in the 

control schools were all guided by the same CAPS document and the same work 

schedules provided by the provincial DBE.  

The CAPS document set out the Euclidean theorems that needed to be 

covered (see Appendix O) and the work schedules set out the time-frame in 

which the content of the topic should be covered (see Appendix P). Grade 11 

Euclidean geometry is allocated three weeks in the CAPS (see Appendix O), but 

it was allocated four weeks in the work schedules sent to schools by the DBE 

(see Appendix P). We therefore agreed to cover the content in four weeks’ time.  

Mathematics teachers in the Capricorn district have been provided with 

ready-made lessons plans by the subject advisers to reduce the everyday burden 

of drawing up lessons plans. The lesson plans included full descriptions of 

teaching methods that teachers could use, and suggested activities for 

introduction, main body, and the closing of lessons (see Appendix Q). Although 

many teachers find these ready-made lessons to be convenient and simple to 

use due to their comprehensive nature, I found them rigid and insensitive to the 

needs of the students in the mathematics classroom. I used these lessons plans 

in 2015, and most of my students failed to understand the content of Euclidean 

geometry. I therefore decided to do things differently and try to implement a 

modified version of the Van Hiele theory-based approach to teaching Euclidean 

geometry theorems and proofs. 

3.6.2.1 Van Hiele theory-based instruction 

Figure 3.5 shows the geometry teaching and learning model designed by 

the researcher, incorporating the Van Hieles’ assertions:  
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Figure 3.5: Proposed Van Hiele theory-based approach to teaching 
geometric proofs 

The proposed Van Hiele theory-based approach to teaching Euclidean 

geometry proofs starts with informal deduction activities (Stage 1) before formal 

proofs (Stage 2). In the informal deduction stage, students engage in 

investigation activities using protractor, compass, ruler, paper-and-pencil or GSP 

with ready-made sketches to establish patterns and relationships in given 

geometric shapes. In other words, they ‘reinvent’ theorems and axioms. The GSP 

allows students to observe several examples of geometric shapes quickly without 

having to draw a separate figure each time as is the case with paper-and-pencil 

activities (Gray (2008). However, the use of GSP depends on the availability of 

computers and GSP software in classrooms, whereas paper-and-pencil 

investigation activities can be used in any school environment.  

The South African Mathematics CAPS for the FET Band states that Grade 

11 students should investigate before they prove theorems and riders (see 

Department of Basic Education, 2011, p. 14). This is consistent with the Van 

Van Hiele Theory-Based Instruction 
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Hiele theory which suggests that deductive reasoning (formal proof) should be 

preceded by informal deduction (investigative geometry). However, the CAPS 

document does not provide further details on what teachers and students should 

do as part of the investigation. It is left to the individual teachers to decide on the 

kind of investigation activities to do with their students.  

The teacher/researcher examined the Grade 11 Mathematics textbooks 

commonly used in South African schools, namely, Classroom Mathematics, 

Platinum Mathematics, Study and Master, and Everything Mathematics 

(Siyavula). Only the Siyavula Grade 11 Mathematics textbook suggested paper-

and-pencil investigation activities for four of the seven prescribed circle geometry 

theorems. The other theorems are just stated, proved, and applied without first 

being investigated. The paper-and-pencil investigation activities suggested in the 

Siyavula Grade 11 Mathematics textbook require thorough preparation and good 

time management on the part of the teacher. In South Africa, public schools 

administer common assessment tasks every quarter. Students in the same 

district write the same tests on set dates during the year. This pressurizes 

teachers to cover the prescribed syllabus content within the specified period. As 

a result, most teachers would skip the ‘time-consuming’ paper-and-pencil 

investigation activities and move straight to proving theorems and solving riders. 

To engage the experimental group students in investigation activities without 

consuming much time, the teacher/researcher replaced the traditional paper-

and-pencil activities suggested in some of the Grade 11 Mathematics textbooks 

with similar activities in the GSP.  

In both stages (Stage 1 and Stage 2) of the treatment, teaching and 

learning activities were sequenced according to the Van Hiele phases (see 

Figure 3.5). Bridging of learning gaps was done at every teaching and learning 

phase. The arrows in Figure 3.5 point either way, indicating that the movement 

from one phase/stage to the other is not rigid. That is, the model is flexible, 

allowing the teacher to go back to the previous phase/stage whenever it is 

necessary. The full details of how the proposed model was implemented are 

presented in the next sections. 

3.6.2.1.1 Topic introduction [Lesson 1]  

In Lesson 1, the topic was introduced by means of giving students a brief 
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history of the origins of Euclidean geometry. This was done using a Power Point 

presentation. An old image of Euclid was displayed on screen and students were 

asked to guess whose image it was. It was amazing to hear some students 

saying: “Euclidean!”. The teacher/researcher then moved to the next slide where 

the names of the old man (Euclid) and his contributions to geometry were 

displayed. Students then noticed that the old man was named Euclid, not 

Euclidean. The teacher/researcher explained that the naming of the topic 

Euclidean geometry is in honour of Euclid and his contribution to geometry.  

We then discussed the importance of studying Euclidean geometry and 

the role it plays in human life. The teacher/researcher displayed a list of careers 

in which knowledge of Euclidean geometry is critical such as architecture, aircraft 

designing, landscaping, automotive designing, cartography, engineering, and 

law. The teacher/researcher then explained why Euclidean geometry was 

brought back into South African mathematics education. Using physical 

structures in the classroom such as tables, chairs, roof trusses, cabinets, and 

windows, the teacher/researcher helped students to see that geometry is around 

us.  

To conclude the introduction, the teacher/researcher displayed a bicycle 

on screen. Students had to identify the different shapes they saw in the bicycle 

structure (for example, triangles, quadrilaterals, and circles). The 

teacher/researcher explained that triangles were dealt with in Grades 8 and 9, 

quadrilaterals in Grade 10, and that Grade 11 Euclidean geometry deals with 

circles. The teacher/researcher conscientized students of the fact that for them 

to succeed in Grade 11 Euclidean geometry, they needed to recall work covered 

in lower grades. Students were informed that in the next lesson, they would write 

a revision task based on the Euclidean geometry concepts they learnt in the lower 

grades (Grades 8-10).  

3.6.2.1.2 Assessing prior knowledge [Lesson 2]  

A prior knowledge assessment test was administered to the experimental 

group students on Day 2 (see Appendix F) to identify areas of deficiency and to 

determine an appropriate level at which to start teaching. The test was also given 

to teachers in the control group. However, the researcher did not tell the teachers 

in the control group how to use it, as it would interfere with their conventional way 
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of teaching Euclidean geometry. The assessment was only compulsory for 

students in the experimental group since it was part of the treatment procedures.  

The Van Hieles highlighted that inadequate prior knowledge may impede 

current teaching and learning of Euclidean geometry if learning gaps are not 

addressed. This is because the teacher would teach at a level higher than the 

students’ actual knowledge base. The Van Hieles referred to this as a mismatch 

between instruction and learning. Therefore, assessment of prior knowledge 

helped the teacher/researcher to adapt teaching to the level of the students, and 

to ensure that new knowledge was built on students’ existing knowledge 

frameworks.  

The prior knowledge assessment test comprised four questions on the 

Euclidean geometry concepts learnt in lower grades (Grades 8-10). These 

included, the geometry of straight lines, properties of two-dimensional shapes, 

proving congruency, and similarity. The test was written under strict examination 

conditions. Students’ scripts were marked by the teacher/researcher, and areas 

of deficiency were identified by means of a test item analysis (see Appendix G). 

Test items with a high frequency of incorrect responses indicated areas where 

some students had serious deficiencies. The related geometry aspects together 

with the students concerned were identified for reteaching. 

It is important to note here that the prior knowledge assessment test was 

completely different from the geometry proof test that was used to assess 

students’ geometric proofs learning achievement before and after treatment.  

3.6.2.1.3 Bridging learning gaps [Lesson 3]  

The geometry aspects of co-interior angles, angles around a point and the 

exterior angle of a triangle (taught in Grades 8 and 9), had the highest frequency 

of incorrect responses (see Appendix G). Undoubtedly, these concepts are 

invaluable to proving riders. The fact that a greater number of Grade 11 students 

could not correctly answer some of the Euclidean geometry questions based on 

Grade 8 and 9 work is consistent with previous studies that found students to 

function below the expected levels of geometric thought (see section 2.9.3.2 in 

Chapter 2). Lesson 3 was devoted to giving students feedback on their test 

performance and to reteach areas of learning deficiency. However, not all 

learning deficiencies could be addressed in one day. It is for this reason that the 
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bridging of learning gaps was incorporated into all phases of teaching and 

learning in the Van Hiele theory-based instruction. Where more than 50% of the 

students were found to have challenges with a geometry aspect, bridging lessons 

involved the whole class. Otherwise, only students at risk were targeted.  

3.6.2.1.4 Stage 1: Informal deduction 

At the level of informal deduction, students should be able to recognize 

properties of geometric shapes, and describe the relationships among them. To 

help students attain this level, the teacher/researcher organized lessons 

according to the Van Hieles’ teaching phases: information↔guided orientation ↔ 

explicitation↔ free orientation ↔ integration. The arrows between the phases 

point either way to allow oscillation between phases when necessary.  

This section presents a full account of how the phases were implemented 

at the level of informal deduction.  

3.6.2.1.4.1 Phase 1: Information [Lessons 4-5]  

The Van Hieles’ information phase is a two-way teacher-student 

interaction that seeks to give students an idea of the upcoming lessons. Ausubel 

(1960) contends that a preview of the upcoming content is essential when the 

new knowledge to be learnt is unfamiliar to the student. This serves to link new 

knowledge with the student’s existing knowledge framework. It also helps 

teachers to discover what prior knowledge their students have about the topic. 

Lesson 4 and Lesson 5 were reserved for these purposes.  

In Lesson 4 we discussed the circle and its component parts. Diagrams 

showing the different parts of a circle were projected onto a whiteboard (see 

Figure 3.6). Students were tasked to name the parts marked using letters of the 

alphabet, and to explain the given terms using their own words. The role of the 

teacher was simply to guide, correct, and add more details where necessary. 

Definitions of terms were negotiated and not imposed on the students. This is 

consistent with other contemporary views of mathematics education that put the 

student at the forefront of learning (see Dennick, 2012). 
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Figure 3.6: Parts of a Circle 

In Lesson 5, we started with a recap of work done in the previous lesson 

on the circle and its component parts. The teacher/researcher then displayed 

fifteen diagrams related to the theorems and axioms students were going to 

explore in the next learning phase. The diagrams were projected onto a 

whiteboard one at a time using a Power Point presentation and students 

described what they saw in each case (see Figure 3.7). Feedback was given to 

students on the explanations that were expected in each of the diagrams in 

Figure 3.7:  

1. Name the parts labelled A – K 

   

   

   
2. Explain the following terms using your own words: 

a) Circumference 
b) Radius 
c) Diameter 
d) Chord 
e) Segment 
f) Tangent 
g) Secant 
h) Arc 

 

A

B C

D

E

F

G
H
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K

J
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Figure 3.7: Diagrams on Grade 11 Euclidean geometry theorems 

and axioms 

 

 

Diagram 1 Diagram 2 Diagram 3 

   

Diagram 4 Diagram 5 Diagram 6 

 
 

 

Diagram 7 Diagram 8 Diagram 9 
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Notes: 

 

One of the challenges that hinder students’ progress in learning Euclidean 

geometry identified in literature is the inability to use appropriate geometry 

language. The Van Hiele theory points out that the teacher should help students 

to use the appropriate geometric terminology. To this end, the teacher had to 

supplement students’ vocabulary with the following geometry terminology: angles 

subtended by the same arc; angles subtended by the same chord; angles in the 

same segment; angles subtended by equal chords; cyclic quadrilateral; interior 

opposite angle; and angle in the alternate segment. Students were exposed to 

the new terminology after they had used their own words to describe what they 

had observed in each diagram. This is in line with the long-standing educational 

practice of starting with what students know and progressing to the new 

knowledge. The geometry terminology that students acquired in this phase were 

needed to accurately report their findings in the next learning phase: the guided 

orientation phase.  

Diagram 1: Line OB is drawn from the centre of the circle perpendicular to chord 
AC. 

Diagram 2: Line OB is drawn from the centre of the circle to the midpoint of chord 
AC. 

Diagram 3: AÔB lies at the centre of the circle. AĈB lies at the circumference of the 

circle. Both AÔC and AB̂C are subtended by the same arc AB. 
Diagram 4: AÔB lies at the centre of the circle. AĈB lies at the circumference of the 

circle. Both angles are subtended by the same arc AB. 
Diagram 5: AÔB lies at the centre of the circle. AĈB lies at the circumference of the 

circle. 
Diagram 6: Diameter AB subtends angle AĈB at the circumference of the circle. 

The angle at the centre, that is AÔB, is a straight angle. 
Diagram 7: AB̂C and AD̂C are angles at the circumference of the circle. The two 

angles are subtended by the same arc AC. 
Diagram 8: AB̂C and AD̂C are subtended by the same chord AC and lie on the same 

side of the chord. They are in the same segment. 
Diagram 9: AB̂D and CB̂D are subtended by equal chords. 
Diagram 10: DEFG is a cyclic quadrilateral. All four vertices of the quadrilateral lie on 

the circumference of the circle. Ê and Ĝ are opposite angles of cyclic 

quadrilateral DEFG. The same holds true for D̂ and F̂. 
Diagram 11: HÊF is the exterior angle of cyclic quadrilateral DEFG; Ĝ is the interior 

opposite angle. 
Diagram 12: AB and BC are two tangents drawn from the same point outside the 

circle. 
Diagram 13: DB̂C lies between tangent AC and chord DB. BÊD lies in the alternate 

segment. 
Diagram 14: Tangent AB meets radius OC at point C. 
Diagram 15: Tangent AB meets diameter DC at point C. 
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3.6.2.1.4.2 Phase 2: Guided orientation [Lessons 6-12] 

According to the South African Mathematics CAPS for Grades 10-12, 

Grade 11 students should investigate seven theorems of the geometry of circles 

(Department of Basic Education, 2011). In this research, investigation activities 

were carried out in the experimental schools’ computer laboratories. The selected 

schools had at least twenty functional desktop computers. Permission was 

sought from the school principals to install the GSP in the schools’ computer 

laboratories. The school principals had no idea of what GSP is all about and the 

researcher had to first demonstrate how it works to the schools’ Information 

Technology (IT) committee members. After the demonstration exercise, the IT 

committee members in both schools approved the installation of the GSP in their 

computer laboratories.  

A total of seven lessons were devoted to investigating Grade 11 circle 

geometry theorems using predesigned GSP sketches. In Lesson 6, students 

received training on how to use the GSP tools to measure angles and lengths, 

drag points, resize geometric shapes, animate, add text, and save their work. In 

Lesson 7 we did GSP activities 1a and 1b shown in Figures 3.8 and 3.9. Each 

activity had clear instructions guiding students on how to explore the given sketch 

diagram.  

 

Figure 3.8: GSP Activity 1a: Line from centre perpendicular to chord 

Activity 1a in Figure 3.8 helped students to discover that if the angle 

between line AC and chord BD is 90°, the lengths of line segments BC and CD 

remain equal even when point D is dragged to a new position. The GSP results 

that were obtained in Activity 1a are displayed on the right side of the circle in 
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Figure 3.8. The conjecture was developed by the students themselves through 

observing their GSP results.  

The teacher/researcher swapped instructions 1 and 2 in Figure 3.8 and 

asked students to redo the activity. Students discovered that if BC is equal to CD, 

then AC is perpendicular to BD. The teacher/researcher asked students to 

explain the difference between the following results: 

Result 1: If 𝐴𝐶 ⊥ 𝐵𝐷, then 𝐵𝐶 = 𝐶𝐷. 

Result 2: If 𝐵𝐶 = 𝐶𝐷, then 𝐴𝐶 ⊥ 𝐵𝐷. 

Students were able to notice that Result 2 comes from reversing the order of 

statements in Result 1. The teacher/researcher used these findings to introduce 

the term converse.  

Using another predesigned GSP sketch, students were asked to 

investigate what happens when point C changes position. They used the 

‘Animate Point’ tool in GSP. Activity 1b in Figure 3.9 helped students to discover 

that if BC ≠ CD, then the angle between line segment AC and chord BD is no 

longer a right angle; conversely, if the angle between line segment AC and chord 

BD is not a right angle, then BC ≠ CD. The teacher/researcher emphasized that: 

if it is not given that BC = CD, students should not assume that AC ⊥ BD. Similarly, 

if it is not given that AC ⊥ BD, then we should not assume that BC = CD. 

 

Figure 3.9: GSP Activity 1b: Line from centre to chord 



 

85 
 

In Lesson 8, students investigated the relationship between the angle 

subtended by an arc at the centre of the circle and the angle subtended by the 

same arc at the circumference of the circle. Figure 3.10 shows the GSP activity 

that was assigned to students and sample results: 

Figure 3.10: GSP Activity 2: Angle at the centre and angle at the 
circumference 

Activity 2 helped students to discover that the measure of the angle subtended 

by an arc at the centre of the circle is twice the measure of the angle subtended 

by the same arc at the circumference of the circle. Thus, 𝐵𝐶̂𝐷 = 2. 𝐵𝐴̂𝐷, which 

comes from manipulating the third statement under the GSP results displayed on 

the right side of the circle in Figure 3.10.  

Students were informed that the relationship established in Figure 3.10 

appears in three other versions. The teacher/researcher drew students’ attention 

to the three other variations of the angle at the centre and angle at the 

circumference relationship. Using predesigned GSP sketches (see Figure 3.11), 

students were instructed to measure the size of 𝐵𝐶̂𝐷 and 𝐵𝐴̂𝐷 in each of the 

three given sketches. The results were consistent with what they discovered 

earlier on in Figure 3.10. 



 

86 
 

 

Figure 3.11: Variations of angle at the centre and angle at the 
circumference 

In Lesson 9, students were assigned two GSP tasks. Activity 3 guided 

students towards discovering that the angle subtended by a diameter at the 

circumference of the circle measures 90° (see Figure 3.12).  

 

Figure 3.12: GSP Activity 3: Angle in a semi-circle 

By dragging points B, C, F and E to new positions, students were able to explore 

multiple cases of angles subtended by a diameter. Of significance here is the fact 

that the angle measurements remain unchanged.  

In Activity 4, students investigated what happens when we add opposite 

angles in a cyclic quadrilateral. Figure 3.13 shows the GSP sketch that students 

used and the results they obtained: 
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Figure 3.13: GSP Activity 4: Opposite angles of a cyclic quadrilateral 

From the activity in Figure 3.13, students noticed that grabbing the figure 

by point B or D and resizing it resulted in the measurements of BÂD and BĈD 

changing, but the sum remained 180°. The teacher/researcher emphasized that 

angles that add up to 180° are called supplementary angles. For consolidation 

purposes, students were requested to investigate if the results obtained were 

valid for B̂ and D̂.  

In Lesson 10, students were given three GSP activities: Activity 5 and 

Activities 6a and 6b. Activity 5 guided students towards establishing the 

relationship between the exterior angle of a cyclic quadrilateral and the interior 

opposite angle. Figure 3.14 shows the GSP predesigned sketch that was used 

and a sample of results obtained. 

 

Figure 3.14: GSP Activity 5: Exterior angle of a cyclic quadrilateral 
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Students were further instructed to drag point B or E along the 

circumference of the figure and observe what happens to the results. Students 

noticed that the conjecture remained valid even when the vertices were shifted 

along the circumference. Activities 6a and 6b (see Figures 3.15 and 3.16) guided 

students to establish the relationship between angles subtended by the same 

arc/chord. Figure 3.15 shows angles subtended by the same arc whereas Figure 

3.16 shows angles subtended by the same chord.  

 

Figure 3.15: GSP Activity 6a: Angles subtended by the same arc 

 

Figure 3.16: GSP Activity 6b: Angles subtended by the same chord 

Figure 3.16 was an extended version of Figure 3.15. This was necessary 

to help students see that the angles are equal only if they lie on the same side of 

the chord. All five angles in Figure 3.16 are subtended by the same chord but 

only those that lie on the same side of the chord have the same value. It is 
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therefore not enough to just say: ‘Angles subtended by the same chord are 

equal’.  

In Lesson 11, students were assigned two GSP activities: Activity 7 and 

Activity 8. In Activity 7, they investigated the relationship between the tangent 

and the radius. Figure 3.17 shows the instructions given and the results obtained:  

 

Figure 3.17: GSP Activity 7: Tangent and radius relationship 

Activity 7 guided students to discover that the tangent and the radius meet at an 

angle of 90°; that is, they are perpendicular to each other. Dragging point B and 

resizing the figure had no effect on the results.  

In Activity 8, students investigated the relationship between two tangents 

drawn from the same point outside a circle. Figure 3.18 shows the GSP 

predesigned sketch used together with the instructions that guided the students:  

 

Figure 3.18: GSP Activity 8: Tangents from same point outside a circle 

The results helped students to discover that two tangents drawn from the 

same point outside a circle are equal in length. Dragging the figure by point D 

and resizing it yielded similar results.  



 

90 
 

Lesson 12 marked the end of the guided orientation phase with two GSP 

activities: Activity 9 and Activity 10. Activity 9 guided students towards 

discovering that equal chords subtend equal angles. Figure 3.19 shows the GSP 

sketch used and the instructions given.  

 

Figure 3.19: GSP Activity 9: Angles subtended by equal chords 

In the last GSP activity, students investigated the relationship between the 

angle between a tangent and a chord at the point of contact and the angle 

subtended by the same chord in the alternate segment. Figure 3.20 shows the 

GSP sketch used and the results obtained.  

 

Figure 3.20: GSP Activity 10: Tangent and chord relationship 

Transforming the figure by dragging point D towards point C or point A only 

changed the magnitude of the angle measurement but the initial observation 

remained unchanged.  

Each of the GSP activities presented here was followed by Van Hiele’s 

explicitation, free orientation and integration phases:  
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3.6.2.1.4.3 Phase 3: Explicitation [Lessons 7-12] 

In each GSP activity, students explained in their own words what they had 

learnt about the given geometrical figure. The teacher/researcher acted merely 

as a facilitator, assisting students to use the relevant geometry terminology, and 

redirecting their thoughts when necessary.  

3.6.2.1.4.4 Phase 4: Free orientation [Lessons 7-12] 

In addition to the guided exploration activities, students were given ten 

minutes in each lesson to further explore similar GSP sketches without any given 

instructions and with no interference from the teacher.  

3.6.2.1.4.5 Phase 5: Integration [Lessons 7-12] 

In the integration phase, we discussed findings from the guided and free 

orientation activities to synthesize results and summarize the observed patterns 

and relationships of each of the investigated geometric figures. This marked the 

end of each lesson. The teacher/researcher highlighted the fact that observing 

the same pattern in several cases (a process called induction), does not 

guarantee that the observed pattern is valid in all cases. There could be a single 

case (known as a counter-example) among the cases not investigated in which 

the observed pattern would not be true. Therefore, there was need to validate 

results obtained from the GSP investigations through formal proofs. 

Stage 1 (informal deduction) sought to give students an opportunity to 

establish patterns and relationships in geometric figures through practical 

investigations and the inductive process, before formal proofs. Based on the Van 

Hiele theory, this is a pivotal part of Euclidean geometry teaching and learning 

which provides the scaffolding needed for students to succeed in formal 

deduction. In Stage 2, the teacher/researcher introduced the idea of formal 

proofs. The sequence of instruction still followed the Van Hieles’ teaching and 

learning phases. In Part 1, we dealt with proofs of theorems and in Part 2, we 

focused on the main aspect of this research: proving non-routine geometric 

proofs (riders).  

3.6.2.1.5 Stage 2: Formal deduction Part 1-Proving theorems 

In the first lesson of Stage 2 [Lesson 13], the teacher/researcher 

highlighted that empirical investigations are not proofs. Students were informed 
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that the conjectures arrived at in Stage 1 through a series of observations may 

or may not always be true. Mathematical examples were given to emphasize the 

fact that the inductive process is vulnerable to counter-examples. For instance, 

the fact that, 12 − 1 + 41 = 41, 22 − 2 + 41 = 43,  32 − 3 + 41 = 47, and 42 − 4 +

41 = 53, are prime numbers does not necessarily prove that 𝑛2 − 𝑛 + 41 is a 

prime number for all 𝑛 ∈ ℕ. This pattern is not true for 𝑛 = 41. That is, 412 − 41 +

41 = 1681 is not a prime number. Other real-life examples were given. The 

teacher/researcher further explained that mathematicians use the inductive 

process to develop mathematical ideas (hypotheses), which are then validated 

through formal deduction. We therefore needed to formally prove the conjectures 

obtained in Stage 1.  

We defined a formal geometric proof as a logical argument or chain of 

reasoning that establishes the truth of a geometric statement using definitions, 

theorems, and axioms. The terms axiom and theorem were clarified. The 

importance of learning Euclidean geometry proofs was discussed.  

We then devoted the next seven lessons to proving the conjectures we 

obtained in Stage 1.  

3.6.2.1.5.1 Information phase [Lesson 14]  

The teacher/researcher emphasized that a conjecture becomes a theorem 

only if we prove that it is always valid, by making use of generally accepted 

statements, axioms, and theorems. Accordingly, we continued to refer to our 

GSP conclusions as conjectures and only changed this terminology after we had 

formally proved them. The teacher/researcher also stressed that the approach 

used to check if the conjectures are always true (deductive reasoning) differs 

from that which we employed previously to generate conjectures (induction).  

Six GSP sketches were projected onto a whiteboard (see Figure 3.21). 

Students were asked to complete the statement of the conjecture and state what 

is given and what needed to be proved in each diagram. They did this activity in 

small groups. This was a form of prior knowledge assessment to gauge students’ 

mastery of work done in the informal deduction stage. At the same time, it was 

intended to give students information about the upcoming geometry lessons. In 

keeping with the Van Hiele theory, the information phase was not a spoon-

feeding exercise. Feedback on each diagram was only given after students had 
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presented their group findings (see Figure 3.21).  

Figure 3.21: GSP Sketches and related conjectures 
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3.6.2.1.5.2 Guided orientation phase [Lessons 15-20] 

The Van Hiele theory does not specify how the phases of learning can be 

implemented in teaching proofs. It only indicates that for students to successfully 

achieve any level of geometric thought, learning activities should be organized 

according to the five learning phases. By demonstrating how the Van Hiele 

phases could be utilized in teaching geometric proofs, this research makes a 

significant contribution to existing knowledge on Van Hiele theory-based 

instruction.  

In the guided orientation phase, the teacher/researcher employed Cheng 

and Lin’s (2009) step-by-step unrolled strategy to help students prove the 

conjectures established in Stage 1. Students were requested to sit in groups of 

three or four. Each group was given a diagram sheet with the step-by-step 

guiding questions (see Figure 3.22): 

 

Figure 3.22: The step-by-step unrolled strategy 

Similar guided orientation proof activities were prepared for the other 

conjectures.  

3.6.2.1.5.3 Explicitation phase [Lessons 15-20] 

In the explicitation phase, groups took turns to report their findings and 

justify their conclusions. Students were given time to criticize each other’s work. 
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This was intended to ensure that all conclusions made and the reasons given to 

support those conclusions are valid and generally accepted. The 

teacher/researcher explained that in the absence of further criticisms, the logical 

series of conclusions or statements students made would constitute a proof if 

they are supported by valid reasons. The final and unanimously agreed upon 

version of the proof of the conjecture was written on the chalkboard and the 

conjecture was restated as a theorem.  

3.6.2.1.5.4 Free orientation phase [Lessons 15-20] 

In the free orientation phase, students were assigned more complex 

geometry problems that required them to apply the learnt theorems. Students 

solved problems in groups, without receiving any guidance from the teacher.  

3.6.2.1.5.5 Integration phase [Lessons 15-20] 

During the integration phase, we discussed students’ different solutions to 

problems assigned to them during the free orientation phase. The intention here 

was to reconcile students’ solution methods into an integrated body of acceptable 

geometry solutions.  

In Lesson 20, students were informed that we would prove riders in the 

next lessons. Some students wondered what proving a rider is all about. Instead 

of telling them what this involves, the teacher/researcher tasked the students to 

go and find out what proving geometric riders entails.  

3.6.2.1.6 Stage 2: Formal deduction Part 2 – Proving riders 

The focus of this research was on proving geometric riders. This is a more 

complex and more challenging activity than proving geometric theorems. Proofs 

of geometry theorems are procedural and routine and students can easily 

memorize the proofs and reproduce them in tests or examinations without 

understanding. Proofs of riders, by contrast, are non-procedural and non-routine. 

They require students to apply their reasoning, analytical, and problem-solving 

skills. Thus, proving geometric riders has more educational benefits than proving 

geometric theorems. For this reason, this research examined students’ proof 

competencies on riders and not theorems.  

The teacher/researcher hypothesized that two factors, (a) prior learning, 

particularly the learning of theorems, axioms, definitions, and properties of 
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geometric shapes, and (b) organization of teaching and learning activities, would 

affect the students’ progress in proving riders. This was informed by the Van 

Hiele theory. As a result, the teacher/researcher first had to take students through 

a variety of informal deduction activities before the learning of rider-proof.  

The next section explains how the Van Hiele phases of geometry 

instruction were implemented in the teaching and learning of rider-proof.  

3.6.2.1.6.1 Information phase [Lessons 21-24] 

The purpose of the information phase was to establish what students knew 

about the topic and to give them an idea of what they were going to learn about 

in the coming lessons. In Lesson 21, students were requested to report back on 

the task assigned to them in the previous lesson. Some students responded by 

showing the teacher/researcher examples of riders in their mathematics 

textbook. Others mentioned that proving riders involves writing on one side, a 

series of statements that are supported by reasons written in short form (in 

brackets) on the other side. Some indicated that the process of proving riders 

appears to be difficult because they did not see any numbers to work with. It was 

encouraging to notice that the students wanted to know more about the process 

of proving riders. Students were commended for their efforts to get an idea of 

what a rider-proof entails. 

The teacher/researcher explained that the process of proving riders differs 

from the approach used to establish conjectures during the GSP investigations. 

In the GSP investigations, we arrived at general conclusions based on 

observations of patterns and using numerical values in a few cases, in which we 

were not sure if our conclusions were true for all other cases. Students were 

informed that in the process of proving riders, we argue from the general to the 

particular case. The teacher/researcher further emphasized that proofs do not 

necessarily have to be written in a two-column format as reflected in the students’ 

mathematics textbook. Students were informed that the idea of writing geometric 

proofs in two columns was developed by teachers to make the teaching, learning, 

and marking of geometric proofs easier. However, that is not the only way in 

which geometric proofs can be presented. Students were made aware that there 

is nothing wrong with writing a proof in paragraph form if all the necessary details 

are included. The teacher/researcher informed students that writing reasons in a 
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short form is just a way to save time and is therefore not compulsory.  

Students were informed that proving riders involves analysing the given 

information, drawing intermediary conclusions, and determining the step-by-step 

path that can be followed to arrive at the required conclusion. Each statement or 

claim that we make in the bridging process must be supported or justified using 

previously accepted statements which may be in the form of theorems and their 

converses, axioms, definitions, or properties of geometric figures. To mark the 

end of the lesson, students were tasked to go and write down all the theorems, 

converses, axioms, and properties of geometric figures that had been learnt so 

far, including those established in lower grades. In addition to listing theorems 

and their converses, axioms and properties of geometric figures, students were 

requested to classify the information under the following headings: lines, 

triangles, quadrilaterals, and circles.  

In Lesson 22, the teacher/researcher divided the chalkboard into four 

parts, and wrote the headings: Lines, Triangles, Circles, and Quadrilaterals. 

Students took turns to write all their findings on the chalkboard, under the 

appropriate headings. We then discussed the students’ findings as a class and 

mistakes were corrected. It was encouraging to note that students could write 

down most of the theorems and axioms about lines, triangles, quadrilaterals, and 

circles without the teacher’s assistance. The teacher/researcher only assisted 

with the converses (where they existed) and a few other theorems and axioms 

which students had omitted. Students were then requested to copy the final list 

of theorems, converses, axioms, and properties of geometric figures into their 

notebooks. As part of their homework, students were tasked to go and write down 

the short versions of all the theorems, converses, axioms, and properties of lines, 

triangles, and quadrilaterals.  

In Lesson 23, students took turns to write the short versions of the 

theorems, converses, axioms, and properties of geometric figures in the spaces 

provided on the chalkboard. The rest of the class were told to reserve their 

comments until the end of the activity. When all the items were completed, we 

then engaged in a class discussion to rectify mistakes and reinforce correct 

answers. To conclude the lesson, students were given a copy of acceptable 

reasons extracted from the Grade 12 Mathematics Examination Guideline to 

paste into the back of their notebooks. The teacher/researcher highlighted that 
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the theorems, converses, axioms, and properties of geometric figures would be 

used to justify our statements/claims when proving riders. Students were 

informed that the next lesson would focus on forms of logic and properties of 

equality, which are essential in proving riders. Students were tasked to go and 

do some research on the transitive, substitution, addition, subtraction, reflexive, 

and symmetric properties of equality. The teacher/researcher advised students 

to use internet sources since some of this information may not be available in 

their mathematics textbooks.  

In Lesson 24, the teacher/researcher divided the chalkboard into six parts 

with the following headings: transitive property, substitution property, addition 

property, subtraction property, reflexive property, and symmetric property, 

respectively. Students were given time to write down their findings in the spaces 

provided on the chalkboard. It was encouraging to notice that students filled all 

the spaces for the six properties. In writing down their findings, students used 

small letters. For instance, under the transitive property, they wrote: If 𝑎 = 𝑏 and 

𝑏 = 𝑐, then 𝑎 = 𝑐. Indeed, that is exactly what the transitive property says. The 

teacher/researcher commended students for their effort, and explained that 

properties of equality are useful not only in Euclidean geometry but also in 

algebra. Students were informed that there are more than six properties of 

equality. However, only those that were essential for proving riders were selected 

here. Other properties of equality include the multiplication property and the 

division property. These were mentioned in passing. Students were asked to go 

and learn more about these additional properties for enrichment purposes only.  

Students were informed that in the coming lessons, they would be using 

the properties of equality to prove equality of angles and sides in given geometric 

figures. For this reason, the teacher/researcher suggested making amendments 

to the properties of equality that students had presented. For example, instead 

of writing: If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐, we wrote: If 𝐴̂ = 𝐵̂ and 𝐵̂ = 𝐶̂, then 𝐴̂ =

𝐶̂ and extended the result to equality of sides. That is: if 𝐴𝐵 = 𝐶𝐷 and 𝐶𝐷 = 𝐸𝐹, 

then 𝐴𝐵 = 𝐸𝐹. Students were requested to copy the information in Figure 3.23 

into their notebooks: 
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Figure 3.23: Properties of equality in Euclidean geometry 

The teacher/researcher explained that the properties of equality are 

essential when combining statements in a rider-proof. The reflexive property is 

useful when proving congruence of triangles. The symmetric property simply 

reminds us that proving 𝐴̂ = 𝐵̂ is the same as proving 𝐵̂ = 𝐴̂. This informs us that 

we can work the proof from left to right or vice versa, which is an essential skill 

when proving riders. To conclude the information phase, students were given a 

few tips on how to prove riders more easily. These were developed from the 

suggestions by Ryan (2016):  

Some Useful Tips to Solve Riders in Euclidean geometry: 

• State exactly what must be proved. 

• Write down all the given facts. Mark or indicate the given facts on the figure. 

If no diagram is provided, draw your own. 

• Think what other facts can be drawn from the given information. Recall all 

the information (theorems, converses, axioms, definitions, and properties of 

geometric figures) that is related to the given facts. 

• Try to apply the properties of equality to bridge your proof steps.  

• If you get stuck, start from the other end of the proof, and work backwards 

(backward mapping). 

 

Transitive Property:       If Â = B̂    and B̂ = Ĉ, then Â = Ĉ. 

                                 If AB = CD and CD = EF, then AB = EF. 

Substitution Property:   If Â = B̂ and Â = C,̂ then B̂ = C.̂ 

                                 If Â + B̂ = Ĉ and D̂ + B̂ = Ĉ,  

                                 then Â + B̂ = D̂ + B.̂ 

Addition Property:         If Â = D̂, then Â + B̂ = D̂ + B̂. 

Subtraction Property:    If Â + B̂ = D̂ + B̂, then Â = D̂. 

Reflexive Property:        Â = Â.  

                                 AB = AB. 

Symmetric property:      If Â = B̂, then B̂ = Â.  

                                 Similarly, if AB = CD, then CD = AB. 
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• If you still cannot see the proof, then you need to read the given information 

again to make sure you have used all the givens. Examiners rarely include 

irrelevant information in a question.  

• Remember key words such as tangent, diameter, cyclic quadrilateral, 

parallel, perpendicular, midpoint and bisector. Use the mnemonic DR-CPT 

(DOCTOR CAPE TOWN) to remind yourself of some of these key words:  

D-Diameter 

R-Radius 

C-Cyclic quadrilateral; Centre; Chord 

P-Parallel; Perpendicular 

T-Tangent 

These words suggest certain theorems and facts that could be useful in 

proving riders. 

• Some questions may require you to make constructions to generate 

additional information. 

• Look for congruent triangles and remember that congruent parts of 

congruent triangles are congruent. For example, if ∆𝐴𝐵𝐶 ≡ ∆𝐷𝐸𝐹, then we 

can make any of the following conclusions: 

𝐴𝐵 = 𝐷𝐸, 𝐵𝐶 = 𝐸𝐹, 𝐴𝐶 = 𝐷𝐹 and 𝐴̂ = 𝐷̂, 𝐵̂ = 𝐸,̂ 𝐶̂ = 𝐹.̂  

• Look for isosceles triangles and remember to use the ‘if-sides-then-angles’ 

or ‘if-angles-then-sides’ theorems. 

• Look for parallel lines and if you find any, then think of the parallel-line 

theorems. 

• Look for radii and remember that all radii of a circle are equal in length.  

• Every single step in your chain of reasoning must be clearly expressed even 

if it appears to be obvious.  

• Remember that diagrams are not necessarily drawn to scale. Therefore, you 

should not assume that two angles or two sides are equal just because they 

look equal. 

• Never give up! Write down whatever you understand. Writing one step 

triggers another.  

These tips were printed out and distributed to all students in the 

experimental group. Students were requested to paste the information into the 
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back of their mathematics notebooks. Students were informed that in the next 

lesson they would start proving riders.  

3.6.2.1.6.2 Guided orientation [Lessons 25-27]  

Van Hiele’s guided orientation phase involves students exploring the topic 

and making discoveries through guided lesson activities. The teacher/researcher 

prepared activities to guide students through diagram analysis, the labelling/ 

colouring strategy, and the proof construction process.  

1) Diagram analysis 

In Lesson 25, students were requested to sit in groups of three or four. 

The rider problem in Figure 3.24 was projected onto a whiteboard. Hard copies 

of the same rider were also distributed to each student. Students were given ten 

minutes to read the given information and analyse the given diagram. A list of 

guiding questions was handed out to each group to facilitate the analysis: 

 

Figure 3.24: A typical rider for Grade 11 students 

Guiding questions:  

• Using ‘DOCTOR CAPE TOWN’ (DR-CPT), identify key elements in the 

given information.  

• If EC is a diameter of circle DEC, what can you conclude about D̂3? 

Motivate your answer.  

• If D̂3 = 90° and B̂ = 90°, what conclusion can be drawn about quadrilateral 

ABCD? Give a reason for your answer.  
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• If ABCD is a cyclic quadrilateral, identify angles that are equal to 𝐶̂1, 𝐶̂2, 𝐶̂3, 𝐵̂1 

and 𝐴̂1, giving reasons for your answers.  

• If BD is a tangent to circle DEC at point D, then 𝐷̂1 = ____ and 𝐷̂4 = _____  

• Lisa claims that D̂2 = D̂4. Is her claim valid? Explain.  

• Groups were then given time to present their findings to the class. We then 

had a class discussion to rectify mistakes and consolidate correct 

responses.  

2) The labelling/colouring strategy 

Proving geometric riders is a complex task that places high demands on 

the student’s working memory. Some students may be overwhelmed by the task 

and may give up in frustration. Labelling/colouring helps to reduce the amount of 

mental effort that students use to prove the rider. To conclude our diagram 

analysis lesson, students were requested to mark, label, or colour all equal 

angles in the same way using coloured pencils or markers. After students had 

attempted the task, the diagram in Figure 3.25 was displayed on screen for 

purposes of feedback and for students to see how the labelling could be done:  

 

Figure 3.25: An example of the labelling or colouring strategy 

Students were requested to keep their labelled diagrams safe for use in 

the next lesson.  
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3) Proof construction 

In Lesson 26, the teacher/researcher reiterated that proving riders 

involves building a step-by-step argument using previously known facts in the 

form of theorems, axioms, or definitions, to arrive at the given conclusion. 

Students were reminded that they could write proofs using the two-column format 

or in the form of a paragraph. However, to avoid omitting crucial steps, they were 

encouraged to use the two-column method. To begin the proof construction 

process, students were given a task in which they constructed proofs of the riders 

in Figure 3.24 by filling in the missing statements and reasons (see Figure 3.26):  

 

Figure 3.26: Proof construction task (1) 

Students could refer to the properties of equality and list of theorems, 

axioms, and acceptable reasons recorded in their notebooks. This was a form of 

scaffolding learning. Students did this activity in groups and were given time to 

report back on their findings. We had a class discussion to iron out errors and 

misconceptions. 

 

Proof Construction Activity 1: 

Fill in the missing statements and reasons to complete the proofs: 
 (a) Required to prove: ABCD is a cyclic quadrilateral  

       𝐷̂3 = 90°  (.........................................................................) 
       𝐵̂1 + 𝐵̂2 = .............. (Given) 

       𝐷̂3 = 𝐵̂1 + 𝐵̂2 (.................................................................) 
       ∴ 𝐴𝐵𝐶𝐷 is a cyclic quadrilateral (....................................................) 
 

(b) Required to prove: 𝐴̂1 = 𝐸̂ 
       ABCD is a cyclic quadrilateral (................................................) 

       ∴ 𝐴̂1 = ................( ∠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑒𝑔. )  
       𝐷̂1 = 𝐸̂ (..............................................................................) 

       ∴ 𝐴̂1 = 𝐸̂ (...............................................................) 

 

(c) Required to prove: ∆𝐵𝐷𝐴 is isosceles 

      𝐷̂2 = 𝐷̂4 (.....................................................................) 

      𝐷̂4 = .............  (tan-chord theorem) 

      ∴ 𝐷̂2 = .................(𝐵𝑜𝑡ℎ =  𝐷̂4) 

      𝐶̂3 = 𝐴̂1 + 𝐴̂2 (..............................................................................) 

      ∴  𝐷̂2 = 𝐴̂1 + 𝐴̂2  (........................................................................) 
      ∴ ∆𝐵𝐷𝐴 is isosceles (.................................................................) 
 

(d) Required to prove: 𝐶̂2 = 𝐶̂3 

      𝐶̂2 = 𝐷̂2 (..............................................................................) 

      𝐷̂2 = .......... (𝑣𝑒𝑟𝑡. 𝑜𝑝𝑝 ∠𝑠 =)  

      ∴ 𝐶̂2 = ........... ( 𝐵𝑜𝑡ℎ = 𝐷̂2 ) 
      𝐷̂2 = 𝐶̂3 (.......................................................................) 

      ∴ 𝐶̂2 =  𝐶̂3 (....................................................................) 
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In Lesson 27, students were requested to sit in small groups. They were 

given another proof construction task which required them to sort given 

statements and reasons into meaningful proofs (see Figure 3.27):  

 
Figure 3.27: Proof construction task (2) 

 

In the accompanying figure, two circles intersect at F and D. 

 

𝐵𝑇 is a tangent to the smaller circle at 𝐹. Straight line 𝐴𝐸 is drawn such that  
𝐹𝐷 = 𝐹𝐸.  𝐶𝐸 is a straight line and chords 𝐴𝐶 and 𝐵𝐹 intersect at 𝐾. Prove that: 

(a) 𝐵𝑇 ‖ 𝐶𝐸    
(b) 𝐵𝐶𝐸𝐹 is a parallelogram    

(c) 𝐴𝐶 = 𝐵𝐹     
                        (Source: Department of Basic Education, 2011b, p. 36) 
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(Department of Basic Education, 2011, p. 36) 

Arrange the following statements and reasons into meaningful proofs 

Statements Reasons 

(a)                     ∴ BT // CE [Both equal to 𝐷̂2] 

                             D̂2 = Ê [tan chord theorem] 

                           ∴  F̂4 = Ê [∠s opp equal sides] 

                             F̂4 = D̂2 [alt ∠s =] 

(b)                 ∴ FE // CB [proved] 

                      BF//CE [tan chord theorem]  

                      BCEF is a parallelogram  [Both equal to 𝐷̂2] 

                            D̂2 = B̂ [opp sides of quad are //]  

                      ∴ F̂4 = B̂ [ext ∠ of a cyclic quad]  

                      F̂4 = D̂2 [corresp ∠s =] 

(c)                 AC = BF [sides opp equal ∠𝑠] 

                    ∴  AC = CE    [opp sides of a // m] 

                     D̂2 = Â [∠𝑠 opp equal sides] 

                     CE = BF [Both equal to 𝐷̂2] 

                         ∴ Ê = Â [ext ∠ of a cyclic quad]  

                          Ê = D̂2 [Both = CE]  
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Students were given thirty minutes to complete the task. Diagram sheets 

were provided for students to practise the colouring/labelling strategy. Group 

leaders were given time to write their findings on the chalkboard. We then had a 

class discussion to rectify wrong proofs and reinforce the correct ones. The 

teacher/researcher emphasized that there is no single correct way to prove multi-

step geometric riders. As part of their homework, students were tasked to go and 

try to find alternative ways to prove the riders in Figure 3.27. This was meant to 

help students see that the process of proving a rider does not follow a fixed 

sequence.  

In Lesson 28, students were given time to report back on their homework 

activity. Mistakes were rectified and correct proofs were reinforced. We then 

proceeded to our last proof construction task in which students had to identify 

and correct errors and misconceptions in the given proofs. Students were asked 

to sit in small groups and the task in Figure 3.28 was distributed to all students.  

 

Figure 3.28: Proof construction task (3) 
 

PA and PC are tangents to the circle at A and C. AD ‖ PC, and PD 
cuts the circle at B. CB is produced to meet AP at F. AB, AC and 
DC are drawn. 

 

Prove that:  

(a) AC bisects PÂD          

(b) B̂1 = B̂3         

(c) AP̂C = AB̂D        
Source: (Phillips, Basson, & Botha, 2012, p. 241) 
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The following proof solutions contain numerous errors and 

misconceptions. Identify what is wrong in each case. Then write down the 

corrected proofs:  

 

 

Proof attempt 1:  

(a) Required to prove: AC bisects PÂD 

PA = PC (Given) [Line 1] 

Â3+4 = Ĉ1 + Ĉ2 (∠s opp equal sides) [Line 2] 

Ĉ1 + Ĉ2 = Â2  (corresp.∠s; AD ‖ PC) [Line 3] 

∴ Â3+4 = Â2 (Both = Ĉ1 + Ĉ2 ) [Line 4] 

∴ AC bisects PÂD [Line 5] 

 
Proof attempt 2:  

(a) Required to prove: AC bisects PÂD 

Â3 + Â4 = Ĉ3  (alt ∠s; AP ‖ CD) [Line 1] 

Ĉ3 = Ĉ1 + Ĉ2   AC bisects PĈD   [Line 2] 

∴ Â3 + Â4 = Ĉ1 + Ĉ2  Both = Ĉ3  [Line 3] 

Ĉ1 + Ĉ2 = Â2(alt ∠s; PC ‖AD) [Line 4] 

∴ Â3 + Â4 = Â2 (Both = Ĉ1 + Ĉ2) [Line 5] 

∴ AC bisects PÂD [Line 6] 

 

Proof attempt 3:  

(a) Required to prove: AC bisects PÂD 

Â2 = Ĉ4 (tan chord theorem) [Line 1] 

Ĉ4 = Ĉ1 + Ĉ2(vert. opp ∠s) [Line 2] 

∴ Â2 = Ĉ1 + Ĉ2 (Both = Ĉ4) [Line 3] 

PA = PC (tans from same pt) [Line 4] 

Ĉ1 + Ĉ2 = Â3 + Â4 (∠s opp equal sides) [Line 5] 

∴ Â2 = Â3 + Â4(Both = Ĉ1 + Ĉ2) [Line 6] 

∴ AC bisects PÂD [Line 7] 
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Proof attempt 1:  

(b) Required to prove: B̂1 = B̂3 

B̂1 = Â2 (∠s in the same seg)   [Line 1] 

Â2 = D̂1 + D̂2  (∠s opp equal sides)  [Line 2] 

∴ B̂1 = D̂1 + D̂2(Both = Â2)   [Line 3] 

D̂1 + D̂2 = B̂3  (tan − chord theorem)  [Line 4] 

∴ B̂1 = B̂3 (D̂1 + D̂2)   [Line 5] 

 

Proof attempt 1:  

(c) Required to prove: AP̂C = AB̂D 

AP̂C = D̂1 + D̂2(opp ∠s of a ‖m) [Line 1] 

D̂1 + D̂2 = Â1(alt ∠s; AP ∥ CD)  [Line 2] 

∴ AP̂C = Â1(Both = D̂1 + D̂2)   [Line 3] 

Â1 = B̂2(tan − chord theorem)  [Line 4] 

∴ AP̂C = B̂2 = AB̂D (Both = Â1)   [Line 5] 

 

Proof attempt 2:  

(b) Required to prove: B̂1 = B̂3 

B̂1 = B̂4  ( vert. opp ∠s) [Line 1] 

B̂4 = B̂3 (∆BPF ≡ ∆BAF)  [Line 2] 

∴ B̂1 = B̂3(Both = B̂4)   [Line 3] 

 

Proof attempt 3:  

(b) Required to prove: B̂1 = B̂3 

B̂1 = B̂3  ( vert. opp ∠s) [Line 1] 
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Each group was given time to report back on the errors and 

misconceptions they had found in each proof attempt. Students were also 

requested to write the corrected proofs on the chalkboard. The rest of the class 

could comment on each report to indicate whether they agreed or disagreed with 

it, or to add or subtract from what was presented. The teacher/researcher 

facilitated the discussion and finally concluded on the group findings.  

3.6.2.1.6.3 Explicitation [Lesson 29] 

In the explicitation phase, students were given the opportunity to verbally 

express and exchange their views about the proving process, based on what they 

had observed and learnt in the guided orientation phase. Students were then 

informed that in the coming lessons they would be proving riders without the 

Proof attempt 2:  

(c) Required to prove: AP̂C = AB̂D 

AP̂C = Ĉ4 (Corresp.∠s; AP ∥ CD)  [Line 1] 

Ĉ4 = B̂1 (tan−chord  theorem)  [Line 2] 

∴ AP̂C = B̂1(Both = Ĉ4)  [Line 3] 

B̂1 = B̂2 (∆BCD ≡ ∆BAD)  [Line 4] 

∴ AP̂C = B̂2 = AB̂D (Both = B̂1)  [Line 5] 

 

Proof attempt 3:  

(c) Required to prove: AP̂C = AB̂D 

AB̂D = Ĉ3 (∠s in the same seg)  [Line 1] 

Ĉ3 = D̂1 + D̂2(∠s opp equal sides)  [Line 2] 

∴ AB̂D = D̂1 + D̂2 (Both = Ĉ3)  [Line 3] 

D̂1 + D̂2 = AP̂C (opp ∠s of a ∥ m)  [Line 4] 

∴ AB̂D = AP̂C (Both =  D̂1 + D̂2)  [Line 5] 
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teacher/researcher’s guidance.  

3.6.2.1.6.4 Free orientation [Lessons 30-33] 

In the free orientation phase, students were given multi-step proof tasks 

to work on (see Worksheets 1-8 in Appendix H). Students worked independently 

of the teacher/researcher, hence the term ‘free orientation’. They could work 

individually, in pairs, or in groups according to their preferences.  

3.6.2.1.6.5 Integration [Lessons 30-33] 

The integration phase was merged with the free orientation phase. 

Towards the end of each free orientation activity, we spared time to review the 

different approaches students had used to prove the given riders. Correct 

approaches were reinforced and wrong ones were corrected. The 

teacher/researcher presented alternative proofs to supplement what the students 

had presented in some cases. It was emphasized that geometric riders can be 

proved in multiple ways and that there is no fixed starting point in writing a rider-

proof. What is important is to present a logical series of deductive statements 

justified by acceptable reasons. The teacher/researcher also stressed the 

essentiality of diagram analysis and the colouring/labelling technique before 

proving riders. Common errors and misconceptions were highlighted.  

In the last few minutes of Lesson 33, the teacher/researcher announced 

the date for writing the post-test and the students were encouraged to prepare 

adequately for the test.  

3.6.2.2 Conventional teaching 

Students in the control group schools were taught by their mathematics 

teachers. A profile of the Euclidean geometry lessons delivered in the control 

schools is presented in Appendix Q. It is important to note that the same teaching 

methods (telling, explanation, question and answer, and illustration) are 

suggested in all Euclidean geometry lessons (see Appendix Q). Conventional 

teaching in the context of this research therefore refers to teaching by using the 

usual methods.  

Based on peer observation and a review of the available literature, 

Euclidean geometry lessons in many classrooms are characterized by teachers 

copying theorems and proofs from the textbook onto the chalkboard, and 



 

110 
 

students copying theorems and proofs into their notebooks. Teachers employing 

conventional methods in teaching Euclidean geometry move straight into proof 

and assume students have mastered the necessary prerequisites (such as 

definitions and properties of geometric figures) from lower grades. Students are 

not given an opportunity to investigate, observe and discover geometry theorems 

and axioms for themselves. Definitions, theorems, axioms, properties of 

geometric figures, and proofs are presented as ready-made ideas to be 

memorized by the students. The mathematics teacher and the mathematics 

textbook are regarded as the only sources of Euclidean geometry knowledge. 

Students who fail to understand the geometry presented by these two sources 

are considered unable to learn geometry.  

Despite such teaching practices being widely criticized, their popularity 

remains high. The reasons why teachers continue to utilize traditional 

approaches in teaching Euclidean geometry were highlighted in Chapter 2 of this 

report. 

3.6.3 Post-test administration  

The post-test was written on a Friday of the fourth week in the third quarter 

of the year according to the South African school calendar. The 

teacher/researcher prepared the answer sheets for the post-test with the help of 

the research assistants. The coding system used in the pre-test was maintained. 

The only difference was that the answer sheets were labelled ‘post’. The answer 

sheets and coding were checked by the teacher/researcher before packaging. 

Packaging of test papers and answer sheets was done by the 

teacher/researcher. The research assistants had no access to the test papers 

prior to the date set for writing the post-test to prevent leakage of test papers and 

to protect the integrity and credibility of the post-test results. The post-test papers 

and answer sheets were delivered by the researcher to principals of participating 

schools the day before the date set for writing the test to prevent unnecessary 

delays on the day of writing the test. The research assistants were again 

reminded to invigilate scrupulously. The school principals were requested to only 

release the test material to the research assistants on the set date and at the 

appropriate time. To ensure equality of test conditions between the experimental 

and control group schools, the post-test was written on the same day at all four 
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schools, also starting and ending at the same time. Students’ post-test scripts 

and all test papers were collected, packed, and sealed by the research assistants 

and submitted to the teacher/researcher on the day the test was written.  

The post-test scripts were marked by the same person who marked the 

pre-test scripts to ensure consistent marking. The recording of marks was done 

by the research assistants and verified by the teacher/researcher. The marker 

and the research assistants were remunerated for their services.  

3.6.4 Diaries 

The teacher/researcher met with the selected diarists during the first week 

of the third term (in the month of July of the year 2016), to discuss how the diary 

was to be completed. Each diarist was given a portable notebook to use as a 

diary. In addition, each diarist received a diary guide that outlined the purpose of 

the diary, variables of interest, issues of anonymity and confidentiality, and when 

the diary was to be completed. The teacher/researcher explained all the details 

of the diary guide and diarists could ask questions where they needed further 

clarity.  

The teacher/researcher communicated with the diarists on a weekly basis 

to check on their progress and to encourage them to keep recording. Diaries were 

collected on the day that the students wrote the post-test.  

3.6.5 Focus group discussions  

Focus group discussions took place a week after post-test administration. 

Selected participants were informed in advance about the purpose, venue, date, 

and time of the focus group discussions. To avoid interfering with teaching and 

learning time, discussions were held after school hours at a local community hall 

that serves the township in which the schools are located. The 

teacher/researcher arranged transport to carry the participants from school to the 

venue. Food and refreshments were provided for the participants. A professional 

interviewer (with a Bachelor of Arts degree in English and Communication) was 

hired to facilitate the focus group discussions. The facilitator was first introduced 

to the students during the treatment period and had made several visits to the 

participating schools to create a good relationship with the students. The 

discussions lasted between one and half to two hours. The teacher/researcher 
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stayed out of the discussions to avoid biased responses especially with the 

experimental group’s students. The discussions were captured using a digital 

audio recorder. The teacher/researcher arranged transport to carry students to 

their respective homes after the discussions.  

3.7 Data analysis 

The research questions were answered by collecting and analysing both 

quantitative and qualitative data. 

3.7.1 Quantitative data analysis  

This study’s quantitative phase explored the effect of Van Hiele theory-

based instruction on the achievement of Grade 11 students in constructing non-

routine geometric proofs. The study hypothesized that using Van Hiele theory-

based instruction would have a statistically significant effect on the achievement 

of Grade 11 students. The hypothesis was tested using non-parametric analysis 

of covariance, taking pre-test score as a covariate. Initially, parametric analysis 

of covariance (ANCOVA) was identified as a suitable statistical tool for analysis 

of quantitative data in this study. ANCOVA assumes homogeneity of error 

variance and homogeneity of regression slopes across control and treatment 

groups. ANCOVA also assumes normality of the data. Due to violations of the 

assumption of normality and the assumption of equal error variances, non-

parametric ANCOVA was used instead.  

In non-parametric ANCOVA, non-parametric regression curves between 

the covariate and the dependent variable are fitted across control and treatment 

groups. A test for the difference in curves between control and treatment groups 

is performed. Non-parametric regression curves are plotted using two 

alternatives: 

1) using smoothing models, and 

2) using locally-weighted smoothing models.  

A smoothing model based non-parametric regression curve is fitted using 

the “sm” package in R application. This package fits smoothing curves to both 

control and treatment groups using a smooth curve developed based on the 

smoothing parameter specified by alpha =
2𝑟

𝑛
, where 𝑟 is the range of the data 

and 𝑛 is the sample size (Bowman & Azzalini, 1997). Alternatively, locally-
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weighted smoothing model based non-parametric curves are fitted and tested 

using ‘fANCOVA’ package in R. The package ‘fANCOVA’ includes a set of R-

functions to perform non-parametric ANCOVA for regression curves or surfaces.  

In this study, non-parametric regression curves were fitted in R using both 

the smoothing model and the locally-weighted polynomial smoother. Three 

different methods for testing the equality or parallelism of non-parametric curves 

are available in ‘fANCOVA’: (1) based on an ANOVA-type statistic, (2) based on 

L-2 distance, and (3) based on variance estimators. The equality of the non-

parametric curves was tested using an ANOVA-type statistic. If the 𝑝-value is 

below or equal to .05, the null hypothesis of no substantial difference in non-

parametric curves between the control and treatment groups must be dismissed.  

The testing of the significance of the null hypothesis alone is not sufficient 

and does little to advance scientific knowledge (Sun, Pan, & Wang, 2010). On 

the one hand, obtaining a statistically significant result does not automatically 

mean that findings are practically significant. On the other hand, obtaining a non-

significant finding does not necessarily mean that results are not important. A 

statistically insignificant finding with a substantial effect size can be obtained (see 

for example Kirk, 1996). Concluding that findings are not practically meaningful 

based solely on lack of statistical significance could therefore be a big mistake. 

That is why it is highly recommended to measure the magnitude of the treatment 

effect for both significant and non-significant findings to help readers understand 

the practical significance of the results (Lakens, 2013; Lipsey et al., 2012; Sun et 

al., 2010). 

In this research, partial eta-squared  𝜂𝑝
2  was used as an effect size 

measure. Partial eta-squared indicates the percentage of variance in the 

dependent variable that can be attributed to the independent variable while 

controlling for effects that are not accounted for by the model (such as individual 

differences and error). Partial 𝜂2 is the commonly published estimation of the 

effect size in educational research for ANOVA-type studies (Hampton, 2012). 

This is so because it can easily be calculated from the information provided by 

SPSS. Partial eta-squared statistic is calculated as follows:  
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where: 𝑆𝑆𝑡𝑟𝑒𝑎𝑡 = sum of squares for treatment  

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = sum of squares for error term associated with the treatment  

As a rule of thumb, partial eta-squared effect size values are interpreted 

as small (.01 ≤ ηp
2 < .06), medium (.06 ≤ ηp

2 < .14), and large (ηp
2 ≥ .14) 

(Richardson, 2011). 

3.7.2 Qualitative data analysis 

Focus group discussions were conducted by the hired interviewer and 

were recorded using a digital audio recorder. The teacher/researcher transcribed 

the audio recordings of focus group discussions and the moderator audited them. 

Focus group data were coded using Computer Assisted Qualitative Data Analysis 

Software (CAQDAS), and diary information was coded through snapshots. 

3.7.2.1 Transcribing focus group discussion audio recordings 

The audio recordings were transferred from the digital recorder to the 

researcher’s laptop. A folder with the name ‘Focus group discussions’ was 

created for the audio files. The audio files were named FG discussion C1, FG 

discussion C2, FG discussion E1 and FG discussion E2, to represent the 

participating schools, C1, C2, E1 and E2, respectively. Transcribing is a process 

of transforming audio data into textual data. Although there is no specific protocol 

for transcribing audio data, the present research followed guidelines suggested 

by McLellan, MacQueen, and Neidig (2003) to generate transcripts that are 

systematic and consistent. This is essential if the findings are to be credible. 

The introductory and warm-up sections of the focus group discussions 

were excluded from the transcription because they were not needed for the data 

analysis. The process of transcribing started with the researcher listening to the 

audio several times before typing. The audio recordings were then transcribed 

verbatim (that is, exactly as said by the participants), including the filler words (for 

example, uhm, uh, like, eh), grammatical errors, mispronounced words, 

vernacular language, slang, word repetitions, and misused words. In cases 
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where the researcher could not hear what was said by the speaker, the phrase 

‘inaudible segment’ was typed in square brackets, together with a time stamp. 

Where two speakers spoke at the same time, making it impossible to decipher 

what was said by each speaker, the phrase ‘cross talk’ was placed in square 

brackets as suggested by McLellan et al. (2003). The participants actual names 

were replaced by pseudonyms.  

A section break was inserted after each speaker’s contribution to meet the 

requirements for qualitative data analysis with MAXQDA (see section 3.7.2.2). 

Each transcript was reviewed for accuracy by checking the transcript against the 

audio three times (McLellan et al., 2003). Transcription errors were corrected. 

The final scripts were saved in Rich Text Format (RTF), which makes it easier to 

import the documents into MAXQDA. The transcripts were coded FG C1, FG C2,  

FG E1 and FG E2, to represent focus group discussions with participants from 

schools C1, C2, E1 and E2, respectively. The files were saved in a folder named 

Focus group discussion transcripts.  

3.7.2.2 Coding focus group discussion transcripts with MAXQDA 

Coding is the process of assigning labels to the information that answers 

the research question(s) (Bazeley & Jackson, 2013). The coded data may be a 

single word, a phrase, a full sentence, a picture, or an entire page of text 

(Saldaña, 2013). Saldaña (2013) adds that there is no perfect way of coding 

qualitative data, because research questions are unique to context. It is a matter 

of choosing the right instrument for the right job, a characteristic of the pragmatist 

paradigm.  

 Coding of focus group discussion data was done using software known as 

MAXQDA, Version 2018. MAXQDA is a software package developed by a 

company called VERBI GmbH, based in Berlin, Germany. The program offers 

tools for importing documents, coding, categorizing text segments, and retrieving 

the coded segments. MAXQDA’s user interface has four basic windows:  

1) Document System window,  

2) Code System window,  

3) Document Browser window, and 

4) Retrieved Segments window (see Figure 3.29): 
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Figure 3.29: A snapshot of MAXQDA’s user interface 

The transcripts of the focus group discussions were imported into the 

Document System window using the Import feature of MAXQDA. Nodes or 

‘containers’ for saving coded text segments were created and displayed in the 

Code System window. The labels for the experimental group data containers 

were: experimental group views and thoughts, experimental group feelings and 

emotions, experimental group attitudes, and experimental group likes and 

dislikes. Similarly, the labels for the control group data containers were: control 

group views and thoughts, control group feelings and emotions, control group 

attitudes, and control group likes and dislikes. These categories were based on 

the questions posed during discussions of the focus groups. 

To open the transcript of the first focus group discussion, simply double- 

click it in the Document System where the file was imported and stored. The 

document is then shown in the Document Browser window where relevant 

information can be coded. MAXQDA automatically assigns paragraph position 

numbers to both the moderator’s and participants’ contributions. It is for this 

reason that a section break was inserted after every speaker’s contribution during 

formatting of the focus group discussion transcripts. To code a word, phrase, 

 4  2 

 1  3 



 

117 
 

single or multiple sentences, the researcher could simply highlight the segment 

of text to be coded in the Document Browser window or drag and drop it into the 

appropriate node or category created in the Code System window. The same 

procedure was followed to code relevant information in the four focus group 

transcripts. To retrieve coded text segments in a document, right-click 

respectively on the document and code names in the Document System and 

Code System. The coded segments will then be shown in the Retrieved 

Segments window to view. The retrieved segments were then exported to a word 

processor and saved as a document in the rich text format.  

3.7.2.3 Coding diary records  

Preparation of diary text for analysis started with numbering the pages in 

participants’ diaries. The researcher then scanned all the pages of each 

participant’s diary and saved each diary as a separate portable document format 

(PDF) file. The files were then saved in two separate folders labelled 

‘experimental group participant diaries’ and ‘control group participant diaries’. As 

was the case with focus group discussion transcripts, an a priori coding system 

was used to code the diary data. An a priori coding system uses pre-determined 

labels or categories to code the data (Saldaña, 2013). The researcher created a 

new Word document to save the coded segments of the participants’ diary 

records.  

Categories for coding relevant diary information were created in the Word 

document based on the guidelines given to diarists in their diary guide. 

Experimental group diary data were categorized as follows: experimental group 

diarists’ views on lesson presentation, experimental group diarists’ feelings and 

emotions, and experimental group diarists’ reports of good and bad teaching 

practices. Similarly, control group diary data were coded as: control group 

diarists’ views on lesson presentation, control group diarists’ feelings and 

emotions, and control group diarists’ reports of good and bad teaching practices. 

Coding of diary data was therefore a matter of taking a snapshot of the relevant 

text in each PDF diary document and pasting it under the appropriate category 

in the Word document file. The researcher then typed the identity of the diarist 

and the page number next to each coded segment. 
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3.7.2.4 Analysing coded segments   

Data from focus group were categorized based on the main questions that 

were asked during the focus group discussions. Likewise, the diary data were 

categorized according to the guidelines provided to diarists in the diary guide. 

The categorized data were then compared to find similarities and differences in 

the views of the participants on the use of Van Hiele theory-based instruction and 

conventional approaches in the teaching and learning of Grade 11 Euclidean 

geometry and proof. Specific quotations from the focus group conversations and 

text section excerpts from the diaries of participants were presented, 

summarized, and discussed to answer the qualitative research questions.  

3.7.2.5 Trustworthiness 

In quantitative research, validity, reliability, and generalizability make up 

the scientific trinity that is used to evaluate the rigour of the study. However, these 

terms do not fit well with qualitative research (Noble & Smith, 2015). 

Trustworthiness is the term used in qualitative research to judge the rigour of the 

study (see Rolfe, 2006). Trustworthiness refers to the researcher’s degree of 

confidence in the credibility, transferability, dependability, and confirmability of 

the qualitative research findings (Andrew & Halcomb, 2009). Maintaining 

trustworthiness in qualitative research is essential to enable readers to accept or 

refute the results.  

Credibility refers to the veracity of the findings. Transferability/applicability 

is the extent to which results can be extended to other similar situations and 

environments, or with other classes (Ziyani, King, & Ehlers, 2004). 

Dependability/consistency is concerned with the stability of results over time 

(Bitsch, 2005). Results are consistent or dependable if, given the same raw data, 

other researchers would arrive at the same interpretations and conclusions. 

Confirmability/neutrality gives the reader the assurance that the qualitative data 

and its interpretation accurately reflect the views given by the participants and 

are not influenced by the personal interests, motivations, and perspectives of the 

researcher (Moon, Brewer, Januchowski-Hartley, Adams, & Blackman, 2016; 

Korstjens & Moser, 2018). 

Several steps were taken to enhance the credibility of the data from focus 

group discussions. An outsider was hired to facilitate discussions. This was done 
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to avoid the presence of the researcher biasing students’ responses since the 

researcher was involved in administering treatment in the experimental group 

schools. The chosen facilitator entered the field a month before the focus group 

discussions were conducted to build a good relationship with the students. 

Prolonged engagement in the research site helps to gain the trust of the 

participants (Anney, 2014; Onwuegbuzie & Leech, 2007). As rapport increases, 

informants are more likely to disclose sensitive information and give honest 

responses (Krefting, 1991).  

In addition, the credibility of focus group discussion data was enhanced 

by using triangulation. Triangulation refers to the use of multiple methods, 

researchers, and approaches to investigate the same phenomenon (Korstjens & 

Moser, 2018). Triangulation may also take the form of data collection at different 

times, places and people (Nokleby, 2011). In this research, data were gathered 

at different times and locations from four different focus groups. The data from 

focus group discussions were compared to what participants reported in their 

diaries. This was a methodological type of triangulation.  

In a naturalistic inquiry, it is often not desirable to show that results are 

transferable to other contexts (Shenton, 2004). However, in the event that some 

readers and researchers may be interested in extrapolating the qualitative 

findings of this research to other contexts, a detailed description of the 

methodology, the context of the study, the research site, the sample and the 

sampling techniques used have been provided in earlier sections of this chapter. 

The dependability of focus group discussions and diary data was 

enhanced by giving a concise and transparent overview of the qualitative 

research process from preparation, through the development of the focus group 

and diary guides to reporting results (see Noble & Smith, 2015). This is intended 

to make sure that an independent researcher can replicate the study and arrive 

at similar findings. The review of qualitative data findings by fellow postgraduate 

students and postgraduate supervisors at seminars and conferences also helped 

to ensure that the study complied with appropriate standards. 

 The findings of the qualitative research were made available to the 

students who participated in the qualitative study to confirm that their views were 

correctly expressed (see Holloway & Wheeler, 2010; Saldaña, 2013; Thomas & 

Magilvy, 2011). The researcher used quotations from the transcribed text and 
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diaries of participants to show the link between the data and the findings (Elo, et 

al., 2014). However, care was taken to avoid overuse of the quotations as this 

has the potential to weaken the analysis (Graneheim & Lundman, 2004). The 

interview transcripts are attached to this report (see Appendix N). The audio 

recordings of focus group discussions, and the diaries of the participants were 

stored in a safe place.    

3.8 Ethical issues 

Research ethics refers to a system of morality that regulates the actions 

and decisions of the researcher during the study, starting from the conception of 

a research topic to the dissemination of research findings (Fouka & Mantzorou, 

2011). Research ethics enable the researcher to behave in the correct and 

appropriate manner (Govil, 2013). To this end, the researcher took several steps 

to ensure this work complied with acceptable ethical standards. 

The researcher made sure, in the initial phase, that this research was not 

a duplication of what was already done elsewhere by reading extensively around 

the research subject to define the research gap. The research proposal, together 

with the data collection tools, was then submitted to the Research Ethics 

Committee of the University of South Africa and ethical clearance was granted 

(see Appendix A1). Permission was also obtained from the Limpopo Department 

of Basic Education to engage public schools in this research. The authorization 

was granted (see Appendix A2).  

Further ethical considerations that were made apply to the participants, 

fellow researchers, recipients of the results of educational research, and those 

who contributed directly and indirectly to this study. The following section 

provides the details.  

3.8.1 Participants 

 Study participants are individuals or groups of individuals who engage 

directly or indirectly in the study process (Govil, 2013). This study involved school 

principals, Grade 11 students, mathematics teachers, parents, research 

assistants and mathematics education specialists. They were all entitled to four 

categories of rights: the right to informed consent, the right to anonymity and 

confidentiality, the right to benefit and not be harmed, and the right to privacy 
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(Lincoln, 2009; Ramrathan, Le Grange, & Shawa, 2017).  

3.8.1.1 Informed consent 

Informed consent means that the participants decide to participate willingly 

in the study and fully understand the demands and inconveniences associated 

with their participation. The researcher approached the sampled schools and 

obtained informed consent from the participants. The consent forms set out the 

research purpose, the associated procedures, the benefits of participation, and 

the demands involved (see Appendix B). Participants were told that they were 

free to refuse to participate without penalties. It was further clarified that they had 

the right to withdraw from the study at any time without giving any reasons. Those 

who opted out of the study were not forced to stay.  

3.8.1.2 Anonymity and confidentiality 

Participants were informed that their identities would not be disclosed 

when the research findings are reported. To guarantee anonymity, codes and 

pseudonyms were used to cover up real names. During the focus group 

discussions, the participants were not forced to answer the questions. Some of 

the participants decided not to return their diaries and their confidentiality was 

respected. Participants were informed that the raw data collected from them in 

this research would be kept in a secure place and treated with the utmost 

confidentiality. 

3.8.1.3 Beneficence and nonmaleficence 

Beneficence and nonmaleficence are concepts that are widely used in the 

health and nursing department but are also applicable to educational research. 

The concepts of beneficence and nonmaleficence recommend, respectively, that 

the researcher should optimize gains and reduce harm to the participants (Fouka 

& Mantzorou, 2011).  

The research was conducted under normal teaching conditions in the 

natural school environment. Random selection was avoided because it would 

have caused discomfort to the students. Instead, the intact classes were used. 

Students in the control group schools were taught the usual way by their 

teachers. The teaching approach adopted by the researcher in the experimental 

group had no record of causing any harm or discomfort to the students. The topic 
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taught at the time of the experiment was in accordance with the work schedule 

provided to schools by the Department of Basic Education.  

Students who participated in focus group discussions were provided with 

food and the researcher organized transport to take them home after the group 

discussions. Students were also provided with diaries and pens and did not have 

to use their own resources for this research. The tools used to collect data were 

pre-tested on a small sample of participants prior to their use in the full-scale 

study. Mistakes and ambiguity in data collection tools were addressed.  

3.8.1.4 Privacy 

Protecting the right to privacy means respecting the autonomy of the 

participants to restrict access to their personal data and opinions (see Alderson 

& Morrow, 2011). Privacy is violated when the opinions and personal information 

of the participants are exchanged without their permission or consent (Fouka & 

Mantzorou, 2011).  

Participants were fully informed about the investigation. The methods, 

sampling techniques, data collection tools, and procedures were discussed with 

the participants prior to their implementation. The researcher mentioned the 

people who would be allowed access to the raw data and explained the issues 

of data use, data storage and destruction (see The Norwegian National Research 

Ethics Committee, 2019). Participants were then asked to sign consent forms to 

indicate that they agreed to share their personal information and opinions with 

the researcher. 

3.8.2 Fellow researchers 

 This study involved a review of the work of other researchers. Care was 

taken to ensure that all the work cited was properly referred to. The originality of 

this report was checked by Turnitin to ensure that the acceptable standards were 

met.  

3.8.3 Users of educational research 

 The potential users of the findings of this research are mathematics 

teachers, textbook publishers, policy makers, subject advisors, pre-service 

teacher educators, and other educational researchers. The researcher is 

responsible for making these people aware of the findings of the research. 



 

123 
 

Following the guidance given by Govil (2013), this report is written in a clear 

manner, free from technical jargon to be understood by all interested users. The 

research findings are not prescriptive but suggestive. The report is written in a 

professional manner that does not harm others’ feelings. The context of the 

study, the extent to which results can be generalized and the limitations of the 

study are clearly explained. The results of the study will eventually be published 

in an international academic journal. Copies of this report will be submitted to the 

Department of Basic Education of the Province of Limpopo and to the Library of 

the University of South Africa.    

3.8.4 Contributors to the study 

 All persons who contributed directly or indirectly to this research were duly 

acknowledged in the preliminary pages of this report (see Acknowledgements).  

3.9 Chapter summary and conclusion  

This chapter dealt with the methodology of the study. The epistemological 

and ontological assumptions of the study were revealed. The design adopted in 

the study was explained and justified. Sampling procedures and data collection 

methods were outlined and issues relating to the reliability and validity of the 

geometry test instrument were addressed. The development of tools for 

collecting qualitative data was explained. In addition, the chapter outlined the 

treatment procedures for the experimental and control groups. The procedures 

for data collection and analysis were described and the trustworthiness of 

qualitative data was discussed. Finally, the ethical principles which regulated the 

conduct of the researcher were explained.  

The results of the geometry tests, the diary entries and the focus group 

discussions are presented in the next chapter.  
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CHAPTER 4 

QUANTITATIVE AND QUALITATIVE DATA FINDINGS 

4.1 Introduction 

As discussed in Chapter 3, the design of this study used quantitative and 

qualitative methods in two separate phases of the study. Phase One involved the 

collection and analysis of quantitative (QUAN) data to answer the first question 

in the study: 

1) Does teaching and learning Euclidean geometry theorems and non-routine 

geometric proofs through Van Hiele theory-based instruction have any 

statistically significant effect on Grade 11 students’ geometric proofs 

learning achievement? 

Phase Two involved the collection and analysis of qualitative (qual) data 

to answer the second question in the study: 

2) What are students’ views on (a) the Van Hiele theory-based approach, and 

(b) the conventional approach to teaching and learning Grade 11 Euclidean 

geometry theorems and non-routine geometric proofs? 

The data is therefore presented in this chapter following the QUAN-qual 

sequence. In other words, quantitative data is presented and analysed first, and 

qualitative data is presented and analysed second. The results of the quantitative 

and qualitative data analyses will be linked in Chapter 5 and their implications for 

classroom practice will be discussed. 

4.2 Phase One: Quantitative data findings 

In this phase, students’ test scores are analysed using procedures 

outlined in Chapter 3. The analysis starts with testing the data for any violation of 

major assumptions for parametric statistics. These include: testing for 

homogeneity of regression slopes, testing for assumption of normality, and 

testing for homogeneity of error variances. Based on the results of these tests, 

an appropriate statistical test is then selected to determine whether there is a 

statistically significant difference in students’ post-test scores due to treatment 

effects.  

However, it is important to include data on the background characteristics 
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of the study sample. This serves to provide readers with information on the type 

of participants involved in the study; to clarify to whom the study findings are 

applicable; to shed light on the generalizability of the findings and possible 

limitations; and to allow future replication of the study. To this end, a summary of 

the background characteristics of the participants is presented in the next section.  

4.2.1 Background characteristics of the students in the study 

Table 4.1 shows that 14 percent (26 out of 186) of the participants were 

repeating Grade 11. These students were being taught Grade 11 Euclidean 

geometry and geometric proofs for the second time. Nineteen (19) of the 

repeaters were in the control group and seven (7) in the experimental group. Fifty 

percent of the students reported living with both parents, while the remaining fifty 

percent lived with either a guardian or a single parent. Most of the students (103 

out of 186) reported living with parents/guardians who had tertiary (college or 

university) qualifications. Fifty-one were in the control group, while the remaining 

52 were in the experimental group. The impact of parents’ education levels on 

children’s academic achievement is a well-researched subject (see for example 

Chevalier, Harmon, Sullivan, & Walker, 2013; Khan, Iqbal, & Tasneem, 2016; 

Pufall et al., 2016). Fortunately, the experimental and control groups had about 

the same number of students whose parents had completed tertiary education. 

Thus, the possible impact of parental education levels on the achievement of 

students in the geometry test was probably spread evenly between the two 

groups.  

One hundred and eleven (59.7%) of the 186 participants indicated that 

their parents or guardians were employed. The rest categorized their parents as 

either unemployed (28%) or self-employed (12.4%). Most of the parents (117 out 

of 186) were earning an average income and sixty-six (66) students classified 

their family income as low. This may explain why only 4.3% (8 out of 186) of the 

parents could afford to hire a private mathematics tutor for their children. One 

hundred and twenty-eight (128) of the 186 students had no access to a computer 

at home. Since most of the parents or guardians of the participants were 

employed, they would probably come home late and tired. As a result, few would 

have spared time helping their children with school work. It can therefore be 

concluded that most of the students in the sample depended solely on their 
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school teachers for assistance in mathematics. Thus, what happens inside the 

classroom is a key determinant of student achievement in mathematics in these 

environments (see Arnold & Bartlett, 2010). The data in Table 4.1 was collected 

using the research tool in Appendix D:  

Table 4.1: Background characteristics of student participants 

 

In addition to obtaining the background characteristics of the student 

participants, it was also considered necessary examine the performance record 

of the participating schools based on the 2015 Grade 12 Mathematics results. 

The next section is about this aspect.  
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4.2.2 Participating schools’ 2015 Grade 12 Mathematics results  

The common feature that made the selected schools suitable for 

participating in this study was that they performed below 50 percent in the 2015 

Grade 12 Mathematics results (see Table 4.2). This was the second group of 

students to write the Mathematics Paper 2 examination, which included 

Euclidean geometry in the CAPS. The findings from the data obtained using the 

research tool in Appendix C are summarized in Table 4.2:  

Table 4.2: Participating schools’ 2015 Grade 12 Mathematics results 

In 2013, before Euclidean geometry was made compulsory in the Grade 

12 Mathematics examination, the Mathematics pass rates for C1, C2, E1 and E2 

were 45.1%, 51.4%, 85.7% and 62.5% respectively. Comparing these results 

with the 2015 performance shows a significant drop in performance across all 

four schools, with E1 and E2 having sharper declines. Based on this analysis, it 

was assumed that the return of Euclidean geometry had contributed to the 

decline in the Mathematics pass rates of the four schools. Unless teachers try 

something different, the negative impact of Euclidean geometry on student 

mathematics outcomes could be seen for many years to come.  

 To address the first question in this study, a quasi-experiment was 

conducted with Grade 11 students in their natural school settings to test whether 

the proposed Van Hiele theory-based instruction had a statistically significant 

effect on students’ geometric proofs learning achievement. Descriptive statistics 

for study variables are given in the following section.  

4.2.3 Descriptive statistics 

Table 4.3 shows that 55.9% (104 out of 186) of the participants were in 

the control group, while 44.1% were in the treatment group. The results show that 
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64.5% of the students (120 out of 186) were females. Their ages ranged from 16 

to 21 with an average age of 17.19 years (SD = 1.116). Pre-test scores ranged 

between 0 and 36 with a mean of 3.30 (SD = 5.923). Post-test scores ranged 

from 0 to 100 with a mean of 29.99 (SD = 30.815). There was a huge gap 

between the pre-test and post-test average scores, showing the possible effects 

of the teaching approaches used. The standard deviation for the post-test scores 

was higher than the standard deviation for the pre-test scores. This indicates that 

post-test scores were more scattered than pre-test scores.  

Table 4.3: Descriptive statistics 

 

4.2.4 Parametric analysis of covariance (ANCOVA)  

In this study, randomization of students into control and experimental 

groups was not possible. Convenience sampling was therefore used. This 

brought with it some confounding variables that had the potential to skew results 

if not controlled. The measures outlined in section 3.4.4 of Chapter 3 were a form 

of experimental control of confounding factors. In this chapter, analysis of 

covariance is used as an additional measure to control for pre-treatment 
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performance differences. This is a form of statistical control of potential 

confounders. 

ANCOVA is an extension of the ANOVA to include a covariate. Like 

analysis of variance, ANCOVA is used to test whether there is a significant 

difference in group means between two or more independent groups on a 

dependent variable. The only difference is that analysis of covariance tests for 

differences in group means after adjusting for the covariate. A covariate is a third 

variable that is included in the statistical analysis because it is believed to have 

the potential to affect results. In this study, differences in students’ performance 

prior to treatment were believed to be potential confounders in the outcomes of 

the post-test. For this reason, the pre-test score was used as a covariate.  

Parametric ANCOVA assumes homogeneity of regression slopes, 

normality of data, and homogeneity of error variance. If these assumptions are 

not met, the non-parametric ANCOVA must be used. To test for these 

assumptions, data were entered in SPSS Version 24 with pre-test as covariate, 

post-test as dependent variable, and group as a fixed factor. The results of the 

analysis are presented in the next sections.  

4.2.4.1 Testing the assumption of homogeneity of regression slopes  

The test for homogeneity of regression slopes is carried out using test for 

significance of interaction term of pre-test and group. If the 𝑝-value for the 

interaction term is less than .05, we reject the null hypothesis of no significant 

difference and conclude that there is a significant interaction between the 

covariate (pre-test) and the independent variable (group). This would suggest 

that the researcher is unable to proceed with the parametric ANCOVA.  

By default, SPSS does not include an interaction term between the 

covariate and independent variable in its general linear model. Therefore, the 

researcher had to request SPSS to include the group*pre-test interaction term in 

its model. The SPSS output for homogeneity of regression slopes is shown in the 

table for Tests of Between-Subjects Effects (see Table 4.4):  
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Table 4.4: SPSS output for homogeneity of regression slopes 

 

No significant effect of interaction term was reported, 𝐹 (1,182) = .456, 𝑝 = 

.500. This result supports assumption of homogeneity of regression slopes and 

suggests that parametric ANCOVA could be an appropriate statistic to analyse 

the main effects of the study. However, there are still other main assumptions to 

be tested.  

4.2.4.2 Testing the assumption of normality 

One of the main assumptions of parametric statistics is that sample means 

are normally distributed across independent samples. In the present study, the 

normality of post-test scores was checked by testing the normality of within-group 

residuals and the normality of standardized residuals of the overall model. A 𝑝-

value less than .05 would mean that the assumption of normality is violated. To 

proceed with parametric ANCOVA in this case would require the dependent 

variable (post-test) to be transformed using one of the many options available to 

coax non-normal data into normality, such as the arithmetic, square root, inverse, 

box-cox, or log transformations. The main disadvantage of these data 

transformations is that the originality of the data is lost, which may lead to an 

incorrect interpretation of results. Therefore, a better choice would be to abandon 
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parametric ANCOVA in favour of non-parametric ANCOVA, which does not 

assume data normality.  

Tables 4.5 and 4.6 show the output of the SPSS for the normality of within-

groups residuals and the normality of the residuals of the overall model 

respectively:  

Table 4.5: SPSS output for normality of group residuals 

Notes. 0 = Control group, 1 = Experimental group 

Based on the Shapiro-Wilk’s normality test, both groups have violated the 

assumption of normality of within-group residuals (𝑝 < .05).   

Table 4.6: SPSS output for normality of the overall model 

 

Table 4.6 shows a severe deviation from normality in the standardized 

residuals for the overall model, as assessed by Shapiro-Wilk’s test (𝑝 < .001). 

This suggests that parametric ANCOVA may not be an appropriate statistic for 

the analysis of the data in this study. However, there is still another key 

assumption that needs to be tested. 
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4.2.4.3 Testing for homogeneity of error variance: Levene’s test 

The Levene’s test may be used when dealing with non-normal 

distributions to determine the equality of error variances across groups. The 

following hypotheses were tested:   

𝐻0: Error variances of post-test scores are equal across the two groups 

𝐻1: Error variances of post-test scores differ across the two groups 

If the 𝑝-value in the Levene’s test output is less than .05, the null 

hypothesis is rejected. This would be a violation of the assumption that error 

variances are homogeneous. Otherwise, we will not reject the null hypothesis 

and conclude that post-test score error variances are homogeneous across the 

two groups. Table 4.7 displays the outcome of the Levene’s test:  

Table 4.7: SPSS output for Levene’s Test 

 

The results of Levene’s test indicate that the null hypothesis of equal error 

variances of post-test scores across the two groups must be rejected at .05 level 

of significance (𝐹 (1, 184) = 96.619, 𝑝 =.000). Therefore, the assumption of equal 

error variances across groups is violated.  

Field (2013) recommends that Levene’s test results should be double-

checked by calculating the variance ratio. This is because the Levene’s test is 

not necessarily the best statistical measure to determine whether variances are 

uneven enough to cause serious problems (Field, 2013). The variance ratio is 

determined by dividing the larger variance by the smaller variance. If the 

calculated variance ratio is greater than 2, then the variances are heterogeneous. 

The variance ratio for the post-test data was 641.76/124.17= 5.17, which is more 

than twice the expected ratio. This confirms that the Levene’s test outcome is 

valid.  
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Based on these results, the researcher was unable to proceed with 

parametric ANCOVA. The non-parametric ANCOVA test statistic was used 

instead.  

4.2.5 Non-parametric analysis of covariance 

Parametric tests, on the one hand, assume that every continuous 

distribution follows a normal distribution and that the sample variances are 

homogeneous. Non-parametric tests, on the other hand, do not depend on any 

assumptions. While parametric tests have more statistical power than non-

parametric tests, non-parametric tests are more robust than parametric tests. 

Robustness refers to the ability to withstand adverse statistical conditions such 

as the existence of outliers or violations of normality and homogeneity 

assumptions. In this study, the researcher had to compromise statistical power 

to gain robustness due to significant departures from normality and homogeneity 

of variance assumptions. 

First, the collected quantitative data were prepared in Excel using the 

Comma-Separated Values (CSV) format. Accordingly, the prepared data file was 

saved as a ‘csv’ file. Non-parametric ANCOVA was performed on the data using 

the ‘sm’ and ‘fANCOVA’ packages built under R package version 3.4.4. The R 

codes used to do the analysis are found in Appendix K and the output is found in 

Appendix L. The acronym ‘sm’ refers to smoothing methods for non-parametric 

regression. The ‘sm. ancova’ function in R is used to fit a set of non-parametric 

regression curves with one or more covariates (see Bowman & Azzalini, 1997). 

The resulting curves are then compared graphically and statistically in a 

hypothesis test.  

Figure 4.1 shows the smoothing model based non-parametric regression 

curves for the control and the treatment pre-test/post-test scores using the ‘sm. 

ancova’ function in R. The green coloured curve represents the fitted values at 

each observed covariate for the treatment group, while the red curve shows the 

fitted values at each observed covariate for the control group. The shaded region 

represents the band of separation between the fitted non-parametric curves for 

the control and treatment groups (see Figure 4.1). 
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Note: 0 = Control group; 1 = Treatment group 

Figure 4.1: Non-parametric smoothing curves for control and treatment 
groups 

The ANCOVA test based on the smoothing model showed a significant 

difference in non-parametric regression curves between the control and the 

treatment groups (ℎ = 2.26, 𝑝 = .000), at the 5% level of significance (see 

Appendix L for the output in R).  

Further analysis of the data was done using the ‘loess’ function in the 

‘fANCOVA’ package in R. LOESS stands for locally estimated scatterplot 

smoothing. It is the most flexible robust method of fitting a non-parametric model 

to the data because it is resistant to outliers and does not make any initial 

assumptions about the relationship among variables of interest (Cleveland, 

1979). LOESS allows the relationship among variables to be determined by the 

data itself. Just like the ‘sm. ancova’ function, ‘loess. ancova’ fits smooth curves 

to the data using automatically selected local smoothing parameters. There are 

two methods for selecting smoothing parameters: AICc (bias-corrected Akaike 

Information Criterion) and GCV (Generalized Cross Validation) statistic. The 
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AICc smoothing parameter was automatically selected (see Appendix L). Figure 

4.2 shows the LOESS curves fitted to the control and treatment group data. By 

visual inspection, the distribution of the LOESS curves indicates that the 

treatment group had higher scores than the control group.  

 

Note. Group 1 = Control group; Group 2 = Treatment group 

Figure 4.2: LOESS curves for treatment and control groups 

Descriptive statistics produced by the ‘loess. ancova’ function in fANCOVA 

package had the estimate of intercept as 17.0987. This is the estimate of the 

median score for the control group. The estimated median score for the treatment 

group was 49.288 points higher than for the control group (see Appendix L for 

the output in R).  

The ANCOVA test for significant difference in the two LOESS curves was 

carried out using function ‘T.aov’ in the fANCOVA package. As highlighted in 

Chapter 3, there are three methods available in fANCOVA to test the equality or 

parallelism of non-parametric curves. The function ‘T.aov’ is used to test the 
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equality of non-parametric regression curves based on an ANOVA-type statistic. 

The results obtained from running ‘T.aov’ in R indicated that the null hypothesis 

of no significant difference in non-parametric curves between control and 

treatment groups must be rejected (𝑇 = 595.9, 𝑝 = .005, 𝜂𝑝
2 = .684), at the 5% 

level of significance (see Appendix L for the output in R). 

Taken together, the non-parametric ANCOVA findings, based on both the 

smoothing model and the locally weighted polynomial smoothing model, showed 

that there was a significant difference in post-test scores between the control and 

the treatment groups in favour of the treatment group. Specifically, post-test 

results were substantially higher in the treatment group relative to the control 

group. It was therefore concluded that the Van Hiele theory-based instruction had 

a greater positive impact on the students’ geometric proofs learning achievement 

than the conventional teaching approach.  

To address the second question in this study, participants’ diary records 

and focus group discussion data are analysed in the next section.  

4.3 Phase Two: Qualitative data findings 

Qualitative data were collected from the experimental and control group 

participants using focus group discussions and participant diaries. The aim was 

to explore more explanations that could add to the quantitative findings of Phase 

One of this study.  

4.3.1 Focus group discussions 

A total of four focus group discussions were held. Two of the group 

conversations were held with participants from the control schools, while the 

other two involved participants from the experimental schools. Initially, a total of 

24 Grade 11 students, six from each school, were recruited to participate in the 

focus group discussions. However, eight of them decided to withdraw and only 

16 participants participated. Each group consisted of members of both gender 

and had three to six participants. Table 4.8 shows the actual number of 

participants per focus group: 
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Table 4.8: Composition of student participants in each focus group 

 

Table 4.8 indicates that of the 16 participants, nine were from the control 

group schools, and seven were from the experimental group schools. A possible 

reason for better interview attendance in the control group than in the 

experimental group could be that maybe students in the control group had more 

urgent concerns to raise than those in the experimental group. Differences in the 

number of participants across the four groups were not a matter of concern to the 

researcher since the purpose of the interviews was not to quantify responses but 

to examine the views of the participants on their Euclidean geometry and 

geometry proof learning experiences. 

After introductions, the focus group discussions started with participants 

responding to warm-up and engagement questions, just to get them to speak and 

make them feel relaxed and familiar with the atmosphere (see Appendix M). 

During the focus group interviews, the main questions posed by the moderator 

were:  

• What do you think about the way Euclidean geometry and geometric proofs 

were taught in your mathematics classroom? 

• How do you feel about the way Euclidean geometry and geometric proofs 

were taught in your mathematics classroom? 

• What do you like or dislike about the way Euclidean geometry and 

geometric proofs were taught in your mathematics classroom? 
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• Can you describe your attitude towards Euclidean geometry and geometric 

proofs? 

• What did the teacher do that you think contributed to your attitude towards 

Euclidean geometry and geometric proofs? 

Participants’ responses to these questions were recorded, transcribed 

(see Appendix N) and coded using procedures outlined in Chapter 3. This section 

summarizes what the participants said in their responses. A few selected 

quotations are included to capture the essence of what was said and give readers 

an idea of how the participants responded.  

4.3.1.1 Students’ Euclidean geometry experiences verbalized  

Focus group participants in the experimental group schools generally 

acknowledged that Euclidean geometry was well taught in their mathematics 

class: 

“I think they taught us in a good way. If I was going to rate, I would 
rate 10 over 10 because I understood everything about Euclidean 
geometry and geometric proofs. And now I have more knowledge, 
oh, yah”      
(O, FG E1, Position: 10 – 10) 

“… from my point of view, I think Euclidean geometry was taught 
very well in our mathematics class as we were able to solve the 
riders”      
(Ha, FG E2, Position: 12 – 12) 

“I think the way they taught us Euclidean geometry was very good 
and explicit because at one point they would give activities. They 
would leave us for like one hour … we will try to figure out how to 
come up with solutions, …that made us be a bit witty…because 
well they don’t really give us answers to this question at first. They 
leave us then we will be able to discuss it with others, …” 
(T, FG E1, Position: 14 – 14) 

Focus group participants from the control group schools, on the other 

hand, raised several concerns about how Euclidean geometry and geometric 

proofs were taught in their mathematics classes. Participants from school C1 

shared the opinion that Euclidean geometry was not properly introduced. They 

frequently mentioned that key terms, such as chord and diameter, were not 

explained before theorems were introduced. One participant cited this as the 

reason students had difficulties with proofs:  
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“… in our school, when we were taught first time, our teacher didn’t 
uh… He didn’t polish that a chord is what? What is a diameter? 
Where do we use it? … He wanted to introduce Theorem 1 without 
introducing the first things of geometry. That’s why geometry gave 
us problems when coming to the proofs”  
(Mp, FG C1, Position: 13 – 13) 

In agreement, participant Bo added: 

“Eh Sir, the way our teacher introduced this geometry, he didn’t 
explain what is this … inclusive [Euclidean] what what geometry? 
He didn’t explain to us what kind of geometry is it and he didn’t 
teach us how to prove it … and how some lines are called such as 
chord and what what is it a diameter, he just went straight to those 
theorems”      
(Bo, FG C1, Position: 21 – 21) 

“Eh, Sir, I think the teacher did some confusion at the first of this 
geometry...”     
(Bo, FG C1, Position: 49 – 49) 

Participant Mp articulated her view in the following way: 

“… our teacher thought that because we started doing geometry … 
at those lowest grades, I think it’s Grade 9 or Grade 10, so he 
thought maybe we know, what is chord, what is diameter, that’s 
why he didn’t think of touching those things …only to find that even 
in the past we didn’t even understand” 
(Mp, FG C1, Position: 23 – 23) 

Focus group participants from school C2 mentioned that learning 

Euclidean geometry was challenging for them because their teacher rushed 

through the chapter and skipped certain sections:  

“Some of us we find it difficult to understand because they are trying 
to cover the syllabus” 
(L, FG C2, Position: 45 – 45) 

“I remember there was this time Sir was going … somewhere else 
then he asked me to teach theorem 3, 4 and 5. So, he never came 
back to those theorems and show them to the whole class. I just 
took a book and then I write what’s on the book and then I sat down” 
(N, FG C2, Position: 27 – 27) 

“They skipped other chapters [sections] of Euclidean geometry” 
(Ho, FG C2, Position: 19 – 19) 

“… just like the last theorems like theorem 6 and 7, … when we 
were doing geometry, we didn’t do them”  
(Ho, FG C2, Position: 23 – 23) 

“… they did not teach us riders at all! They just teach us how the 
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theorems (are) proved — proven, but riders they didn’t even touch 
them” (Th, FG C2, Position: 25 – 25) 
 

The main point emerging from these responses is that participants were 

dissatisfied with the way Euclidean geometry was taught in their mathematics 

class. Responses such as “they did not teach us riders at all” could explain why 

some control group participants got zero percent in the post-test. The view that 

the teacher in school C2 skipped riders is a possible topic for future study. It is 

worth knowing whether this was due to time constraints or lack of subject 

knowledge. 

The next section describes how participants felt about the way Euclidean 

geometry and geometric proofs were taught in their mathematics class.  

4.3.1.2 Students’ feelings and emotions 

Focus group participants in the experimental group schools indicated 

that they felt good about the way Euclidean geometry and geometric proofs 

were taught in their mathematics class: 

“I feel very good about it because eh, as they taught us, we were 
not only like listening to the teacher alone, we were giving our own 
thoughts, and our own like views from what we think about them… 
I feel good about it because we were able to do like things that I 
never thought I can do in my life… Firstly, when they introduced us 
to this topic of Euclidean geometry, I thought it was a difficult part 
but as I got to explore like as they were teaching us about it I was 
able to be free around my mates and then I succeeded, even now 
I am not like that perfect but I can do most of the things. Yah, I feel 
good because it brought a good experience … in my life” 
(Mo, FG E2, Position: 16 – 16) 

“I felt privileged to have been taught Euclidean geometry in this 
maths class because that GSP (Geometer’s Sketchpad) theorems 
really works like, really helped me to be more interested in 
Euclidean geometry because those things I was doing them myself 
practically not just theoretically” 
(Ch, FG E2, Position: 18 – 18) 

“I feel good…because they teach us how to solve problems not only 
in the mathematics class but then in real life…” 
(T, FG E1, Position: 18 – 18) 

Participant Na in focus group E1 explained how her feelings changed from 

‘bad at first’ to ‘good now’:  

“I felt really bad at first because I had no idea what Euclidean 
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geometry was all about this year because we were doing something 
that we had never done before but then as time went on, I started 
feeling good because I was able to solve and come up with 
solutions. And it felt like I was being put on a test like as a challenge 
to test how far I can go or I can push myself or how I am willing to 
do things. So yah, I really feel good now…” 
(Na, FG E1, Position: 16 – 16) 

On the basis of these responses, it can be noted that focus group 

participants from experimental group schools derived positive feelings from the 

following aspects: active involvement in the learning process; expressing their 

own views and opinions about what is taught; exploring geometry concepts freely 

in the presence of their classmates; achieving what they thought they could not 

achieve; learning Euclidean geometry concepts practically, not just theoretically, 

and finally; seeing the relation between the concepts of Euclidean geometry and 

real life.  

In contrast, many focus group participants from the control group schools 

shared negative feelings about how Euclidean geometry and geometric proofs 

were taught in their mathematics class. Participants from school C2 indicated that 

they felt bad about the way they were taught:  

“Sir, I don’t feel good because I don’t know some of the theorems 
and there is a need whereby, I have to know especially riders. And 
riders have a lot of marks whereby when I can understand all of the 
theorems then I will be able to get the marks that are there” 
(Te, FG C2, Position: 31 – 31) 

“I feel bad because they did not teach us riders. Many question 
papers come with lots of riders. I can’t write something that I don’t 
know that’s why we lose marks at geometry” 
(Th, FG C2, Position: 41 – 41) 

“I also feel bad because eh, some of us learners we prefer that eh, 
teachers should teach us and then that’s where we get to 
understand the concepts and then when going home, we just revise 
and practise that” 
(N, FG C2, Position: 43 – 43) 

“It is heart-breaking when I look at the question paper, I see a lot of 
marks but eish! I can’t reach them because I don’t have that 
knowledge” 
(Te, FG C2, Position: 65 – 65)  

Focus group participants at school C1 spoke about feeling confused:  

“I feel confused because when our teacher teaches us, we 
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understand but when we get home, nothing! Like, we don’t 
understand anything because the teacher is no more there” 
(Mp, FG C1, Position: 29 – 29) 

“I feel like this geometry is understandable but our teacher didn’t be 
specific on that geometry, that’s why we are a little bit confused” 
(Bo, FG C1, Position: 31 – 31) 

Generally, it can be seen from the above statements that focus group 

participants in the control group schools were not satisfied with the teaching of 

Euclidean geometry and geometric proofs in their mathematics class. The 

participants were aware that geometry riders constitute a lot of marks in their test 

papers, but were disappointed that they did not have the skills required to 

successfully answer certain questions. For several of these participants, their 

mathematics teachers contributed to their negative feelings. 

To gain more insight into participants’ views and emotions, focus group 

members from both experimental and control group schools were asked to 

describe what they liked or did not like about how Euclidean geometry and 

geometric proofs were taught in their mathematics class. Participants discussed 

a range of teaching and learning experiences that they thought had the greatest 

impact on their perceptions and feelings. The next section describes the most 

striking responses that emerged from the group discussions.  

4.3.1.3 Teaching strategies favoured and unfavoured by students 

When prompted to discuss what they liked and did not like about how 

Euclidean geometry and geometric proofs were taught in their mathematics 

class, focus group participants from the experimental group schools mentioned 

several pedagogical practices they perceived to have had the greatest influence 

on their views and feelings. These included among other things: the use of 

Geometer’s Sketchpad to investigate theorems; teaching at a slow pace; active 

engagement of all students in the class; and a free learning environment where 

making mistakes and giving wrong answers was part of the learning process. The 

responses of the participants representing these ideas included the following: 

“Eh, that part when we were taught in our maths class when we 
were using computers using the GSP software, I think when we 
were taught Euclidean geometry using that software was really 
good for us as learners because it wasn’t like reading those 
theorems in a book. We were actually seeing them first-hand. We 
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were actually measuring those angles. In our books those things 
are not drawn to scale, you just read them and all you do is just 
memorise but that GSP software you can see them straight and 
you can measure those angles, the sides, you can see what exactly 
they are talking about”   
(Ch, FG E2, Position: 14 – 14) 

“What I like about the way we were taught is uh, our teacher was 
not in a hurry. He was patient and if a learner didn’t understand he 
could explain more and give more examples” 
(O, FG E1, Position: 24 – 24) 

 “…what I like was that everybody was able to participate in the 
lesson because Sir wrote statements on the chalkboard and 
everyone had a right or freedom to go there and fill the correct 
reason for that particular statement so the class was alive … we 
were jumping up and down, back and forth to the chalkboard…yah, 
I liked everything about how Euclidean geometry was taught”  
(Na, FG E1, Position: 22 – 22) 

Participant T reiterated:  

“Well, what I like is the participation of everyone. That was on 
another level because well, we understood what Euclidean 
geometry was all about. In that way we were able to participate like 
all the time. We were even fighting over the chalk at times. That is 
what I liked”      
(T, FG E1, Position: 26 – 26) 

 
Reporting on the kind of learning environment that prevailed in their class 

during Euclidean geometry and geometry proof lessons, focus group participants 

stated: 

“…the teacher made us to be free in class. He taught us in a way 
whereby like he was not that strict like all the time…he encouraged 
us to work in pairs so that we can help each other and he did not 
discourage us in any way or make me or make them feel 
uncomfortable in a way whereby we cannot even raise our hands 
…Even in the end we were fighting to write on the chalkboard…”  
(Mo, FG E2, Position: 26 – 26) 

 “…what Sir did to make us feel comfortable was…telling us that no 
one is right and nobody is wrong. So, whenever you feel like 
answering you must do so even if you do not feel like your answer 
is right…”      
(Na, FG E1, Position: 36 – 36) 
 

Participant T added: 

“He is always free with us... So, that is what I like about him. He’s 
always a free man… most of us are not afraid to go towards him 
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and say this is the problem that I came across, so how can I try to 
solve this particular problem”   
(T, FG E1, Position: 38 – 38) 
 

While focus group participants from the experimental group schools liked 

several teaching and learning practices that had been implemented in their 

mathematics class, responses from focus group participants in the control group 

schools indicated that they did not like the way Euclidean geometry and 

geometric proofs were taught in their classes. Most participants from the C2 

control group who contributed to the third discussion question responded in their 

vernacular language (see FG C2, Appendix N). However, only translated 

versions of their responses are presented here. The main issues posed by the 

participants included: teachers who teach at a fast pace to cover the syllabus; 

teachers who miss certain parts of Euclidean geometry; teachers who are 

impatient and insensitive to the needs of slow learners; and teachers who 

discourage learners. Participants commented as follows: 

“I didn’t like the way they taught us because ... they are fast and 
didn’t think that we have slow learners” 
(Th, FG C2, Position: 47 – 47) 

“I don’t like it because they summarize those chapters and when 
they summarize those chapters some of the things of Euclidean 
geometry…decrease our marks. When we go and say you did not 
teach us this, they say we must go and study and then we can’t go 
and study for ourselves, it’s them who are supposed to teach us 
those things”     
(Ho, FG C2, Position: 51 – 51)  

“Uhm, eish! Sometimes… when we approach him and explain that 
Sir here, we don’t understand, he tells us that he has another class 
to attend”      
(Th, FG C2, Position: 71 – 71)  

“… when we tell him that we don’t understand, then he says he has 
to finish the syllabus… so that when we write exams, we will not tell 
him that we didn’t do this and that…he says he can’t be stuck on 
Euclidean geometry forever. He has to move on to other chapters” 
(Co, FG C2, Position: 73 – 73) 

“…when we seek help from him, he shows us that attitude of saying 
‘I taught you this in class’ … He is impatient with us” 
(Ho, FG C2, Position: 75 – 75) 

“They should stop using words of discouraging learners in class. 
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They love to discourage learners. … they tell us that I cannot pass. 
If they tell me that I cannot pass I will stop coming to school. 
Because I don’t see the difference!” 
(Ho, FG C2, Position: 89 – 89) 

“And they should stop their habit of say maybe if you want to …ask 
a question, they say you did this last year and something that we 
did only once and we don’t understand it. We need more knowledge 
to understand but they say you did it...” 
(L, FG C2, Position: 95 – 95)  

“The teachers are failing us…they forget that we are slow, that’s 
why we ask but then the teachers are impatient with us” 
(Co, FG C2, Position: 97 – 97) 

Participants Ko and Bo from focus group C1 did not like the fact that the 

proving process seemed to be long and complicated when their teacher showed 

them how to prove the geometry riders: 

“I dislike that geometry proofs…were long, they didn’t shorten them, 
so they were difficult”    
(Ko, FG C1, Position: 35 – 35)  

“… what I didn’t like is that the provings (proofs) of this geometry 
Sir were long when our teacher taught us how to prove them. That’s 
why we were a little bit confused in the maths class”  
(Bo, FG C1, Position: 37 – 37)  

Participant Mp, also a member of the C1 focus group, stated that when 

the teacher taught other mathematics topics, she understood well but when the 

teacher taught Euclidean geometry, the teacher changed his attitude:  

“…mostly when he teaches geometry, he changes his attitude but 
when he teaches other topics like Trigonometry, I understand very 
well”       
(Mp, FG C1, Position: 51 – 51) 
 

In another response to the same question, participant Mp stated:  

“what I dislike is that,…you may see something that you don’t 
understand on that circle, then you don’t know how to ask a 
question, plus, it’s in front of other learners, so you don’t know if I 
am going to say it right or if Sir or Mam is going to understand what 
I am saying…So, this is one of the things that are killing us because 
we don’t know how to express the questions or yah, or ask the 
questions”      
(Mp, FG C1, Position: 33 – 33) 
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The above responses describe a learning environment where students 

were not free to express themselves. The student was afraid to ask questions 

about anything she did not understand, because she did not know how her peers 

and her teacher were going to respond. It appears that the learning environment 

at control school C1 inhibited the participation of all students.  

During the final part of the focus group discussions, participants were 

asked to describe their attitude towards Euclidean geometry and geometric 

proofs. Participants were also asked to identify pedagogical practices that 

contributed to their attitude towards Euclidean geometry and geometric proofs. 

Several valuable and insightful responses were provided, the details of which are 

presented in the next section.  

4.3.1.4 Students’ attitudes 

Many focus group participants from the experimental group schools 

reported that their attitude towards Euclidean geometry and geometric proofs had 

changed from negative to positive due to the influence of the treatment:  

“…my attitude was negative because I didn’t know like (how) to 
solve Euclidean geometry (problems). I didn’t know what Euclidean 
geometry is all about. So, when our teacher taught us, my attitude 
changed to being positive”    
(O, FG E1, Position: 30 – 30) 

“…at first, I was being negative about myself like how am I going to 
solve these things…then, as I got to explore…solving riders in 
many different ways… then that … just got me a positive attitude 
because now I am able to do many things of geometry” 
(Mo, FG E2, Position: 22 – 22) 

“Right now, my attitude is not the way it was before. It is more than 
positive”      
(T, FG E1, Position: 28 – 28) 

“My attitude at first was not good because I felt like Euclidean 
geometry was gonna defeat me because it’s something I …never 
did before. But as time went on my attitude started to change… 
Then I started improving and started feeling better about myself…”  
(Na, FG E1, Position: 32 – 32) 

Participant Na briefly described her post-treatment attitude towards 

Euclidean geometry in the following statement:  

“I can now tackle Euclidean geometry questions on my own and get 
them right… my skills have also improved. I am able to interpret 
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diagrams more accurately and apply the knowledge that I have 
acquired in previous days. Yes, so Euclidean geometry is not 
actually a difficult thing. It just needs a person to be determined and 
…to be focused all the time”  
(Na, FG E1, Position: 4 – 4) 

While the focus group participants from the experimental schools reported 

a positive change in their attitude towards Euclidean geometry and geometric 

proofs, the responses provided by the focus group participants from the control 

group schools were mostly negative. Dominant responses that emerged from 

discussions with control group participants included:  

“…I have a bad attitude towards Euclidean geometry because I only 
understand few theorems, theorem 1, 2, maybe 3, but the rest — 
ai!”       
(N, FG C2, Position: 55 – 55) 

“…I have a bad attitude because when I try it at home, I find it very 
difficult…I give up!”    
(L, FG C2, Position: 57 – 57) 

“I have a bad attitude because I got some theorems but to prove 
that theorem 6 and 7 and riders, I don’t get it because is difficult” 
(Co, FG C2, Position: 63 – 63) 

“I have a bad attitude towards geometry because I find it difficult to 
understand what is being taught” 
(Mp, FG C1, Position: 39 – 39) 

When asked to shed light on the pedagogical practices they thought 

influenced their attitudes, participants in the focus groups reiterated points raised 

in previous sections. For experimental group participants, one of the factors that 

influenced their attitude towards geometry and geometric proofs was a learning 

atmosphere in which they were actively involved, relaxed and free to explore 

geometry concepts practically and not just theoretically, and were taught by a 

teacher who was not in a rush.  

Contrary to these reports, focus group participants from the control group 

schools attributed their negative attitude towards Euclidean geometry and 

geometric proofs to teachers who did not introduce the topic properly, teachers 

who rushed through the topic to cover the syllabus, teachers who did not have 

time to address the needs of the students, and teachers who demoralized 

students through negative verbal comments – all of which led to the failure of the 

students to understand Euclidean geometry.  
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It is clear from the preceding presentation that a large amount of 

qualitative data was gathered through focus group discussions with the 

experimental and control group participants. Although the data provided in this 

section may be enough to answer the research questions, it is a good practice in 

research to use more than one approach to gather data on the same subject. 

This is intended to guarantee the validity of the study findings. To this end, 

participants’ diary entries were also analysed to seek convergence with the 

findings of the focus group discussions.  

4.3.2 Students’ diary records 

Of the 24 diaries issued to participants, a total of 10 diaries were 

completed and returned to the researcher. Five diaries were from the 

experimental group participants, and the other five came from the control group 

participants. At the beginning of the treatment, diarists were provided with a diary 

guide to help them record the necessary information based on their learning 

experience (see Appendix E). In completing their diaries, diarists were expected 

to include the following aspects: a brief description of how the lesson was 

presented, their thoughts and feelings about the presentation, what they liked or 

did not like about the presentation, and, finally, whether the lesson was 

understood. A lot of information was recorded in the diaries. However, not every 

piece of information is worthy of being cited and analysed here. Only segments 

containing the most important textual data will be extracted and analysed in this 

section.  

As indicated in section 4.3.1.1, the focus group participants from the 

control group schools felt that one of the reasons why they had challenges with 

Euclidean geometry proofs was because the topic was not properly introduced. 

Participants from control group school C1 stated that the teacher went straight to 

the first theorem, without explaining the topic and its terminology (see section 

4.3.1.1). It is therefore important to start the analysis of diary entries by looking 

at how Euclidean geometry was introduced in both experimental and control 

group schools to verify the students’ claims. In the experimental group schools 

where Van Hiele theory-based instruction was implemented by the researcher, 

Day 1 of the teaching experiment was used to provide students with general 

information on the topic, its origin, its relevance to students and its contribution 
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to human life. Figure 4.3 shows a diary entry by participant Mo reflecting on her 

learning experiences on Day 1:  

 

Figure 4.3: Day 1 diary entry by experimental group student Mo 

According to participant Mo, the introduction to Euclidean geometry left 

her ‘feeling positive’ and the student wanted to learn more about the topic.  

Another diarist from experimental group school E2 wrote: 

 

p. 2 

p. 1 
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Figure 4.4: Day 1 diary entry by experimental group student Kg 

As part of her Day 1 learning experience, participant Kg said she was 

surprised to know that Euclidean geometry is useful in our everyday lives. She 

concluded her diary entry by stating that she would use Euclidean geometry 

knowledge in her life to understand and solve problems in the physical world. 

It can be seen from the preceding diary record that providing students with 

a brief history of Euclidean geometry, showing them why they should study it, 

and how it relates to their everyday lives, is an important starting point for 

arousing students’ interest in the topic.  

 

 

 

 

p. 1 

p. 2 

p. 1 
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On the other hand, an analysis of Day 1 entries by control group diarists 

supports what participants said in the focus group discussions, namely that their 

teacher(s) went straight to prove the first theorem. Figure 4.5 captures Day 1 

diary entry by participant Ko from control group C1: 

 

Figure 4.5: Day 1 diary entry by control group student Ko 

According to participant Ko from control group C1, Day 1’s Euclidean 

geometry lesson was great except that the teacher was fast in presenting the 

lesson. Findings from the focus group discussions with control group participants 

revealed that some students (who identified themselves as being ‘slow’) were left 

behind by their teacher, who moved fast to cover the syllabus. However, it is 

worth noting that there are students who thrive under such conditions, 

particularly, those that are exceptionally gifted. It is therefore not surprising that 

in his Day 1 diary entry, participant Ko described the lesson as being ‘great’ 

although the teacher moved at a quick pace. As teachers teach at a fast pace, 

they meet the needs of the gifted students, but disadvantage the average and 

below-average students.  

In the experimental group of schools, Day 2 was used to assess students 

on Grade 8-10 Euclidean geometry concepts to identify learning gaps that 
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needed to be bridged. Figure 4.6 shows what some students wrote in their 

diaries:  

 

Figure 4.6: Day 2 diary entries by experimental group students 

Participant T acknowledged that the revision of Grade 8-10 work on 

Euclidean geometry was helpful, and participant Kg added that this was done to 

test whether they still understood previously learnt geometry concepts.  

Despite differences in how Euclidean geometry was introduced to the 

experimental and control group students, it all seemed to set off in earnest. The 

next section contains descriptions of how the teachers’ lesson presentations 

were judged by the students in subsequent lessons.  

4.3.2.1 Experimental group students’ diary reports on lesson presentation 

Figure 4.7 summarizes lesson evaluations by the experimental group 

students on different days of the teaching experiment. An analysis of the 

students’ diary reports shows results that are consistent with what was reported 

in the focus group discussions. Phrases such as ‘presented wonderfully’, 

‘presented excellently’, ‘very nice’ and ‘very good’, were used by the students to 

evaluate their learning experiences in the experimental group schools. These 

words suggest that the experimental group participants had positive views on the 

T, p. 2 

Kg, p. 3 
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proposed Van Hiele theory-based approach to teaching Euclidean geometry and 

geometric proofs. 

 

 

Figure 4.7: Experimental group students’ views on lesson presentation 

Although students in the experimental group schools wrote positively 

about their learning experiences, it is important to see how their peers in the 

control group schools evaluated their Euclidean geometry lessons. 

4.3.2.2 Control group students’ diary reports on lesson presentation 

In focus group discussions, participants from the control group schools 

mentioned that their teachers were too fast, teaching to cover the syllabus, and 

skipping certain sections of geometry in the process. Students also complained 

that the teacher did not pay attention to them when they needed help. Figure 4.8 

shows the text segments extracted from the students’ diary entries:

Kg, Day 2, p. 3 

Mo, Day 4, p. 6 

Na, Day 5, p. 8 

O, Day 8, p. 9 
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  Figure 4.8: Control group students’ diary reports on lesson presentations
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Based on the control group participants’ diary records, Day 1’s lesson at 

school C1 was presented well and students looked forward to the next lessons. 

However, things turned bad starting from Day 2. Participant Bo wrote: 

“He taught us like we are at university. We needed him to take us 
slow…”  
(Bo, Day 2 diary entry, p. 4) 

These words clearly indicate that the teacher was using the lecture 

method and moving at a fast pace. The issue of teachers teaching at a fast pace 

and leaving many students behind was also mentioned by control group 

participants in focus group discussions. Participant Bo goes on to record that if 

this kind of teaching continues, then students will fail mathematics and bring 

school results down.  

On Day 2, Participant Ko found the lesson difficult to understand because 

the teacher did not explain what an exterior angle is. In focus group discussions 

with the control group participants, some students indicated that they struggled 

to understand Euclidean geometry concepts because their teacher did not 

explain the meaning of some key words. Thus, the views expressed by the 

control group participants in the focus group discussions are consistent with what 

they wrote in their diaries.  

On Day 3, participant Ko noted that the presentation was confusing 

because the diagram used by the teacher was not drawn correctly. On Day 4, 

participant Mp also wrote that the lesson was confusing because it was not well 

presented. On Day 5 and Day 6 the lessons seemed to be worse than the 

previous presentations. This is evident from the quotations below:  

“I did not understand anything from the beginning to the end…”  
(Mp, Day 5 diary entry, p. 9)  

“The lesson was presented bad and we didn’t understand 
anything… I thought the lesson will be presented in [a] different way 
which I will understand” 
(Bo, Day 6 diary entry, p. 11) 

Although the first lesson was positively rated by control group students at 

school C1, subsequent lessons were negatively rated as the presentations did 

not meet the needs of the students. The statement by student Bo: “I thought the 

lesson will be presented in [a] different way which I will understand” is a call for 

a pedagogical shift in current teaching practices.  
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In addition to keeping a record of their views and thoughts on how 

Euclidean geometry lessons were presented in their mathematics classes, 

participants were also asked to record their feelings and emotions based on their 

learning experiences. The following section presents an analysis of the 

experimental and control group students’ records of their feelings about the 

teaching of Euclidean geometry and geometric proofs in their mathematics 

classes. 

4.3.2.3 Experimental and control group students’ feelings and emotions 

on lesson presentations  

In the focus group discussions, the experimental group participants 

expressed positive feelings about the Van Hiele theory-based approach to 

teaching Euclidean geometry and geometric proofs in their mathematics classes. 

The phrases in Figure 4.9 were extracted from the experimental group’s diary 

records and are evidence of participants’ positive feelings about their Euclidean 

geometry and geometry proof learning experiences:  

 

Figure 4.9: Experimental group students’ records of their feelings and 
emotions on lesson presentations 
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Based on the words and phrases used by the experimental group 

participants to describe their feelings, it can be concluded that participants 

enjoyed learning Euclidean geometry and geometric proofs through the Van 

Hiele theory-based approach.  

On the other hand, control group participants expressed negative feelings 

about how Euclidean geometry and geometric proofs were taught in their classes. 

Figure 4.10 shows the words and phrases taken from the students’ diaries:   

Figure 4.10: Control group students’ records of their feelings and 
emotions on lesson presentations 

The words ‘bored’, ‘angry’, ‘confused’, ‘down’ and ‘unhappy’ are reflective 

of participants’ dissatisfaction with the way particular Euclidean geometry lessons 

were presented in the control group schools. These results are consistent with 

findings from the focus group discussions with the control group participants. If 

students are not happy with how mathematics teachers teach, then it is 

imperative that teachers try to adjust their teaching to meet the needs of the 

students.  

In addition to recording their thoughts and feelings about their Euclidean 
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geometry and geometry proof learning experiences, students were also asked to 

indicate what they liked or did not like about the presentation of each lesson. This 

information is of value to teachers as it helps them to know the kind of 

pedagogical practices that they should maintain or those that need to be 

changed. The next section presents the students’ diary records of what they liked 

or did not like about their learning experiences.  

4.3.2.4 Experimental and control group students’ diary reports of good 

and bad teaching and learning practices 

An analysis of the diary entries referred to in section 4.3.2.3 led to the 

conclusion that the experimental group participants were happy with the Van 

Hiele theory-based approach to teaching Euclidean geometry and geometric 

proofs implemented in their mathematics classes. On the other hand, control 

group participants expressed feelings of dissatisfaction with the way Euclidean 

geometry and geometric proofs were taught in their classes. It is worth exploring 

the aspects of the teaching approach used in the geometry class that led to 

positive and negative feelings among students. This kind of information helps to 

guide teachers in realigning their teaching practices to meet the needs of the 

students.  

In the focus group discussions, the experimental group participants 

reported that they enjoyed the use of the Geometer’s Sketchpad to practically 

investigate theorems. They mentioned that the teacher was not in a hurry and 

the learning environment was free and relaxed. Focus group participants also 

reported that they enjoyed the active participation of all students in the classroom 

and working in groups. However, these reports summarized the wide range of 

teaching and learning experiences they encountered during the teaching 

experiment. An analysis of students’ records of their day-to-day learning 

experiences could provide more detail to validate and supplement what they said 

during the focus group discussions. 

Figure 4.11 shows the text segments extracted from Kg’s diary. Teaching 

practices that had a positive impact on student Kg included: using a variety of 

teaching techniques, being calm and not in a hurry, showing students multiple 

ways to prove riders, and making students aware of the uses of Euclidean 

geometry in everyday life.  
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Figure 4.11: Student Kg’s views on the teaching and learning process 

Student Na (see Figure 4.12) from experimental group school E1 enjoyed 
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being taught by a teacher who treated students fairly and allowed students to 

express themselves freely. The student wrote that using the GSP made geometry 

fun and easy. She enjoyed being taught by a patient teacher; one who ensured 

that all students moved at the same pace.  

 

 

p. 8 
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Figure 4.12: Student Na’s views on the teaching and learning process 

Student Na liked being actively involved in the teaching and learning 

process. She acknowledged that the teacher did not mind staying behind to 

clarify and reteach some concepts. Based on how she experienced the teaching 

and learning process, student Na concluded that the teacher knew how students’ 

minds work.  

Student O from school E2 enjoyed working collaboratively with 

classmates, discussing and reasoning on the answers. She wrote in her diary 

that the teacher explained all the terminology of the topic. Student O added that 

the teacher responded to questions asked by the students ‘in a good way’. Figure 

p. 10-11 

p. 17 
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4.13 shows student O’s diary reports on the kind of teaching and learning 

practices that inspired her most:  

 

Figure 4.13: Student O’s views on the teaching and learning process 

Other teaching and learning practices that experimental group students 

liked included: the teacher giving them room to express their own opinions and 

suggestions on the solutions to the geometry problems; encouraging student-to-

student interaction; using worked-out examples (modelling the proof process); 

and the teacher showing them multiple solution strategies. Figure 4.14 shows 

student Mo’s diary reports on her experience of the teaching and learning 

process at school E1: 

Day 1, p. 1 

Day 5, p. 6 

Day 8, p. 9 

Day 9, p. 10 
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Figure 4.14: Student Mo’s views on the teaching and learning process 

While the experimental group students enjoyed their experience of the 

teaching and learning process during the teaching experiment, the same cannot 

be said for their counterparts in the control group. The reasons why control group 

students were not satisfied with the way Euclidean geometry and geometric 

proofs were taught in their classes were given in section 4.3.2.2. These included: 

teaching at a pace that is too fast for the students; using the lecture method; not 

explaining key terms; not varying teaching approaches; and diagrams not 

precisely drawn. Concerns such as teachers rushing through the topic and not 
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explaining the key terms were also raised by control group students in the focus 

group discussions. Thus, the views recorded by the students in their diaries 

corresponded with what they reported in the focus group discussions. The review 

of students’ diary entries was therefore essential not only for the purpose of 

triangulation, but also to seek additional views that might have been omitted in 

the discussions with participants. The diaries and the focus group discussions 

therefore complemented each other.  

A summary of the chapter is provided in the following section.  

4.4 Summary of the chapter 

This chapter was divided into two phases: Phase One and Phase Two. In 

Phase One, the researcher presented and analysed numerical data to test 

whether the proposed Van Hiele theory-based instruction had a statistically 

significant effect on students’ geometric proofs learning achievement. The results 

showed a statistically significant difference in the experimental and control group 

students’ geometric proofs learning achievement.  

In Phase Two, the researcher investigated the views of the students on 

the Van Hiele theory-based approach, and the conventional approach to teaching 

and learning Grade 11 Euclidean geometry theorems and proofs in their 

mathematics classrooms. Analysis of students’ diary records and focus group 

transcripts revealed contrasting views about the approaches used to teach 

Euclidean geometry theorems and proofs in the experimental and control group 

schools. Experimental group students shared positive views about their learning 

experiences, while control groups students reported negative views on the same 

phenomena. The results of the qualitative analyses were consistent with the 

quantitative findings in the sense that students who shared negative views had 

attained lower test scores in the quasi-experiment while those who expressed 

positive views had obtained higher test scores.  

The next chapter combines the quantitative and qualitative findings to 

develop a framework for better teaching and learning of Grade 11 Euclidean 

geometry theorems and proofs. The implications of the findings of the research 

for classroom practice will be highlighted.  
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CHAPTER 5 

DISCUSSION OF FINDINGS 

5.1 Introduction 

This chapter provides a review and discussion of the findings of the study. 

The results of the analysis carried out in Chapter 4 are correlated and contrasted 

with previous studies and their contribution to existing knowledge is highlighted. 

The implications of the research results for instructional practice are discussed, 

and a framework for better teaching and learning of Euclidean geometry and 

geometric proofs is suggested. Finally, a summary of the chapter is given.  

5.2 Key findings 

The main findings from this study are:  

• The Van Hiele theory-based instruction had a significant effect on Grade 11 

students’ geometric proofs learning achievement. Students’ views on their 

geometry learning experiences led the teacher/researcher to discover that 

implementing Van Hiele theory-based instruction is not just a matter of 

sequencing learning activities according to the Van Hiele theory. There are 

additional human elements involved. Based on this finding, the initially 

proposed Van Hiele theory-based model is modified by the researcher into a 

comprehensive framework for better teaching and learning of Grade 11 

Euclidean geometry theorems and proofs. This is the major contribution of 

the present study to existing knowledge. Figure 5.1 shows the constituents 

of the modified Van Hiele theory-based framework for better teaching and 

learning of Grade 11 Euclidean geometry theorems and proofs. The 

framework is made up of two arms: teacher support elements on the left 

arm, and the sequence of teaching and learning activities (Van Hiele theory-

based instruction) on the right arm. Teacher support elements originated 

from the views shared by both the experimental and the control group of 

students who participated in the teaching experiment:  
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Figure 5.1: A modified Van Hiele theory-based framework for teaching and 
learning Grade 11 Euclidean theorems and proofs 

The teacher support elements are tied to every learning stage in the 

sequence of teaching and learning activities to show that they are applicable to 

all levels. The teacher support elements act as the ‘heart’ and the sequencing of 
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learning activities is the ‘body’. If the ‘heart’ fails, then the ‘body’ is dead. The 

arrows in between the different levels in the sequence of learning activities point 

either way to indicate that the movement between levels is flexible. Thus, the 

teacher has the freedom to go back to previous learning activities if the situation 

demands such action. For example, if students are struggling with formal 

deduction because they missed some theorem or axiom during the informal 

deduction stage, the teacher should take students back to the practical 

investigation activities to review the theorem or axiom in question. This consumes 

a lot of time, of course, but the benefits are worth it. Also, Vygotsky’s (1978) Zone 

of Proximal Development (ZPD) theory supports the idea of directing instruction 

at the student’s current level of understanding.  

• ANCOVA test of equality of non-parametric regression curves fitted for the 

experimental and control groups using the smoothing model indicated a 

statistically significant difference in the performance of the two groups (ℎ =

2.26, 𝑝 = .000). Further analysis of post-test percentage scores using non-

parametric ANCOVA based on the locally weighted polynomial smoothing 

model confirmed that indeed there was a statistically significant difference in 

students’ performance between the experimental and control groups (𝑇 =

595.9, 𝑝 = .005, 𝜂𝑝
2 = .684). Visual inspection of smooth curves fitted for the 

experimental and control groups using the bias-corrected Akaike Information 

Criterion (AICc) revealed that the experimental group had higher post-test 

scores than the control group.  

• An analysis of qualitative data from focus group discussions and students’ 

diary records revealed that experimental group students had positive views 

on their geometry learning experiences:  

 Students reported that being informed about the history of Euclidean 

geometry, its role in human life, and how it relates to the physical world, 

inspired them to want to learn more about Euclidean geometry. 

 Students enjoyed the explicit instruction of the vocabulary of Euclidean 

geometry.  

 Students mentioned that practical investigation activities using the 

Geometer’s Sketchpad helped them see the origins of the theorems and 

axioms for themselves, rather than memorizing from the textbook. 
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 Students were impressed by the fact that the teacher was always ready 

and able to help them when they needed his attention. They mentioned 

that the teacher did not mind staying behind to support students after 

normal teaching hours.  

 The students acknowledged that the teacher knew how students’ minds 

work, and varied teaching strategies to help students understand 

geometry concepts.  

 Students appreciated being taught by a teacher who was calm, patient 

and not in a hurry. When they asked questions, the teacher responded in 

a positive way.  

 Students mentioned that they could express themselves freely in class 

without fear of being judged by their peers or the teacher. 

 Students enjoyed being actively involved in the learning process, taking 

turns to solve geometry riders on the chalkboard, in front of their 

classmates.  

 Working in pairs and in groups, sharing multiple solution methods and 

correcting each other’s mistakes in a constructive way, contributed to 

students’ positive feelings. 

• Students who were taught by their teachers in the regular (conventional) 

way revealed negative views on how Euclidean theorems and proofs were 

taught in their mathematics classrooms: 

 Students stated that the teacher was teaching to cover the syllabus 

instead of teaching to enhance students’ learning achievement. 

 Students were not satisfied that the teacher(s) skipped certain sections 

of Euclidean geometry and proof.  

 Students were not happy that the teacher moved straight into formal 

proofs without first checking if students had mastered what one student 

referred to as the ‘first things of geometry’. 

 Students complained that the teacher did not clarify the terminology of 

Euclidean geometry.  

 Students who were slow to grasp the content of Euclidean geometry did 

not receive support and extra help from their teacher when they needed 

it.  
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Taken together, these findings seem to suggest that the implementation 

of Van Hiele theory-based instruction offers a better service to students than 

traditional/conventional approaches to geometric proof instruction. However, 

there are specific characteristics of the teacher that are central to the effective 

implementation of the Van Hiele theory-based instruction. The identification of 

teacher-related characteristics that support the implementation of Van Hiele 

theory-based instruction is a key contribution of this study to previous research.  

The findings of this research are explored in detail in the following 

sections.  

5.2.1 Van Hiele theory-based instruction and students’ geometric proofs 

learning achievement 

A comparison of students’ post-test scores on the Geometry Proof Test 

using non-parametric ANCOVA based on the locally-weighted polynomial 

smoothing model, showed a statistically significant difference in student 

performance between the experimental and control groups (𝑇 = 595.9, 𝑝 =

.005, 𝜂𝑝
2 = .684). LOESS curves for the experimental and control groups showed 

that the experimental group had significantly higher post-test scores compared 

to the control group (see section 4.2.5 in Chapter 4). The estimated median score 

for the experimental group was 49.288 points greater than that of the control 

group. It was concluded that Van Hiele theory-based instruction had a statistically 

significant positive impact on students’ geometric proofs learning achievement. 

The hypothesis of the study was therefore supported. These findings provide a 

response to the first research question, and are consistent with previous research 

on the impact of Van Hiele theory-based instruction on the levels of geometric 

thought among students.  

Although several studies have tested the effect of Van Hiele theory-based 

instruction on students’ understanding of geometry concepts, none of the studies 

found in literature have implemented Van Hiele theory-based instruction in 

teaching geometric proofs to students who go to upper secondary school 

underprepared. Abdullah and Zakaria (2013), and Alex and Mammen (2016), 

implemented Van Hiele theory-based instruction in Grades 9 and 10, focusing on 

the properties of triangles and quadrilaterals. Siew, Chong, and Abdullah (2013) 

applied Van Hiele phase-based instruction at Grade 3 level, focusing on the 
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concept of symmetry of two-dimensional shapes. Meng (2009) and Shi-Pui and 

Ka-Luen (2009) implemented Van Hiele phase-based instruction in solid 

geometry. Liu (2005) implemented Van Hiele-based instruction in teaching one 

of the circle geometry theorems. These studies concentrated on developing 

students’ geometric knowledge and skills at elementary and junior levels. Much 

attention has been directed towards developing students’ visual, analytical, and 

informal deduction skills, and less attention has been paid to developing students’ 

geometric proofs learning achievement.  

A small number of studies that sought to address challenges with teaching 

geometric proofs were found in literature. These included: the reading and 

colouring strategy, a teaching experiment with Grade 9 students in Taiwan by 

Cheng and Lin (2006); the heuristic worked-out examples, a teaching experiment 

with Grade 8 students in Germany by Reiss, Heinze and Groß (2008); and, the 

step-by-step unrolled strategy, a teaching experiment with Grade 9 students in 

Taiwan by Cheng and Lin (2009) (see section 2.6 for details). However, none of 

these studies implemented Van Hiele theory-based instruction.  

With several studies indicating that upper secondary school students 

cannot do geometric proofs because they do not have the requisite knowledge 

of geometry, the results of this study suggest that it is possible to support these 

students to catch up and master geometric proofs. Most students are victims of 

bad teaching in the past. As shown by the findings of this study, these students 

can still make significant progress within a short timeframe, provided they are 

given the right instruction. This is confirmed by Gutiérrez et al. (1991), who found 

that a student can master two Van Hiele levels simultaneously. The key point 

here is that students who go to a certain grade level with huge gaps in their 

geometry knowledge and skills should not be ignored. Mathematics teachers 

should view this as a challenge to improve their teaching skills.  

Assessing the efficacy of teaching methods based on quantitative data 

analysis alone is a common weakness found in previous studies on Van Hiele 

theory-based instruction. This research supplements previous findings on Van 

Hiele theory-based instruction by asking students to provide feedback on the 

effectiveness of the method. The current study argued that verbal and written 

views by students on their geometry teaching and learning experiences could 

provide useful knowledge that could be used to restructure future Euclidean 
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geometry lessons for better learning. In many countries, including South Africa, 

the practice of requesting students to evaluate teaching is only common at 

universities and colleges. Yet, students’ ratings of their classroom learning 

experience have been found helpful even at primary school level (see for 

example Borthwick, 2011).  

In Chapter 4, students’ verbal and written views on their geometry learning 

experiences were presented. The main ideas emerging from students’ views will 

be discussed in the next section.  

5.2.2 Students’ views on their geometry learning experiences  

Qualitative data were collected from experimental and control group 

students through focus group discussions and diary records. During focus group 

discussions, the experimental group students frequently used the word ‘good’ to 

rate how they were taught, and to describe their feelings about Euclidean 

geometry (see sections 4.3.1.1 & 4.3.1.2 in Chapter 4). Students also reported 

that their attitude towards Euclidean geometry and geometric proofs had 

changed from being negative to being positive because of their learning 

experiences (see section 4.3.1.4). An analysis of the experimental group of 

students’ diary records revealed similar views to those expressed in the focus 

group discussions. In their diaries, the experimental group students reflected on 

how geometry lessons were presented in their mathematics class using phrases 

such as ‘very nice’, ‘presented wonderfully’ and ‘presented excellently’ (see 

section 4.3.2.1). In describing their feelings and emotions about how geometry 

lessons were presented in their classes, students wrote down words such as 

‘enjoyed’, ‘happy’, and ‘motivated’ (see section 4.3.2.3). Thus, in addition to 

increasing students’ achievement scores, the Van Hiele theory-based instruction 

made students feel happy and positive about learning Euclidean geometry and 

proof.  

In contrast, the word ‘bad’ was frequently used by the control group 

students to describe their geometry learning experiences, feelings and attitudes 

towards Euclidean geometry and geometric proofs (see sections 4.3.1.1, 4.3.1.2 

& 4.3.1.4). Diary entries by the control group students revealed that students 

were dissatisfied with the way Euclidean geometry and geometric proofs were 

taught in their mathematics classes. In their views on lesson presentation, 
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students wrote words such as ‘bored’, ‘unhappy’, ‘angry’, ‘down’ and ‘confused’ 

to describe their feelings and emotions during lessons (see section 4.3.2.3). 

Thus, views from the control group students indicate that conventional 

approaches to teaching Euclidean geometry and geometric proofs impact 

negatively on students’ feelings and attitudes towards the topic. 

Evidence emerging from the field of neuroscience suggests that emotion 

and student achievement are inextricably connected. The emotions students feel 

due to their learning experiences may act as a rudder that guides future learning 

(Hinton, Fischer, & Glennon, 2012). Positive or good emotions make students 

want to be more involved in future learning activities, while negative or bad 

emotions may cause students to gravitate away from learning situations. To sum 

up, Hinton et al. (2012) concluded that it is common for people to want to be 

involved in situations that give rise to positive emotions and avoid conditions that 

lead to negative emotions.  

However, simply knowing that Van Hiele theory-based instruction 

generates positive feelings and attitudes towards Euclidean geometry and 

geometric proofs is not enough to help teachers improve their teaching of the 

topic. One of the reasons teachers stick to old ways of teaching despite being 

increasingly called upon to try new teaching approaches is the lack of clarity on 

the new proposals. Teachers need to know what exactly causes Van Hiele 

theory-based instruction to work so well, and what exactly makes conventional 

instruction ineffective in teaching Euclidean geometry. The present study 

considers that it is the students who can provide an objective report on these 

issues. In marketing research, manufacturers ask consumers of their products 

whether they are satisfied with the product, and how they would like the product 

to be improved. Based on the consumers’ responses, manufacturers then know 

exactly what kind of product the consumers would want and can therefore 

incorporate the consumers’ views in the manufacturing of their new products. 

Similarly, in education, the students are the ‘consumers’, teachers are the 

‘manufacturers’, and the way teachers teach is the ‘product’ that students are 

going to ‘consume’. The voices of the students are crucial to fully meet the needs 

of the students.  

When the experimental group students rated the Van Hiele theory-based 

instruction, they specified exactly which learning experiences had a substantial 
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influence on their views, feelings, and attitudes. On the other hand, the control 

group students also identified the learning experiences that accounted for their 

dissatisfaction. A critical review of the learning experiences that the experimental 

and control group students rated as ‘good’ and as ‘bad’ could be insightful in 

developing a framework for better teaching and learning of Euclidean geometry 

and geometric proofs in secondary schools. The most striking views that students 

expressed in focus group discussions and wrote down in their diaries are 

discussed in the next sections under the following headings:  

1) Topic introduction; 

2) Pace of teaching; 

3) Terminology of Euclidean geometry; 

4) Teacher support; 

5) Pedagogical content knowledge and child psychology; 

6) Collaborative learning; 

7) Students’ self-efficacy; 

8) Practical investigation activities; 

9) Student engagement and active participation; and 

10)  Equity and social justice.  

5.2.2.1 Topic introduction 

The experimental group of students reported that they enjoyed learning 

about the history of Euclidean geometry, why they should study it, and its 

practical use in their daily lives (see Figures 4.3 & 4.4). Student Kg from 

experimental school E2 recorded that she was surprised to discover that 

Euclidean geometry is useful in human life, and that it exists in the physical world 

(see Figure 4.4). She wrote in her diary that she had ‘always wanted to be like 

one of the greatest scientists and mathematicians’. She added that she was 

going to train her mind to ‘think critically, reason logically, to understand and solve 

problems in the physical world and make a difference’ (see Figure 4.4). In another 

reflection on the introductory lesson, student Mo from the experimental group 

wrote: ‘it left me feeling positive about learning more’. It can be inferred from 

these findings that the way in which Euclidean geometry was introduced in the 

experimental group’s geometry lessons stimulated the interest of the students in 

the topic. While there is no single best way to introduce a topic in mathematics, 
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researchers agree that the introduction should capture students’ interest, make 

them see the purpose of learning the content, and convince them that they are 

going to benefit (Fisher & Frey, 2011).  

In the control group schools, students indicated that their teachers did not 

explain what Euclidean geometry is all about. Instead, they just went straight into 

proving the first theorem without explaining the terminology of the topic (see 

section 4.3.1.1). This is typical of conventional teaching practices. Student Mp 

from school C1 cited this kind of teaching as the reason behind most students’ 

difficulties with geometric proofs. The control group students did not like the way 

Euclidean geometry was introduced in their mathematics classes. The only thing 

that inspired the control group of students to want to learn Euclidean geometry 

was the fact that it is allocated more marks in the question paper than any other 

mathematics topic in CAPS (see section 4.3.1.2). 

5.2.2.2 Pace of teaching, time allocation and syllabus coverage 

Students in the control group reported that they could not keep pace with 

their mathematics teachers, who moved fast to cover the syllabus before 

students wrote the common assessment tasks that are set at district level (see 

sections 4.3.1.1, 4.3.1.3 & 4.3.2.2). In one of the control group schools, students 

pointed out that the teacher skipped certain sections of Euclidean geometry in 

the process of rushing to finish the syllabus (see section 4.3.1.1). The students 

indicated that they expected their mathematics teachers to be slow and give them 

more time because they are ‘slow learners’ (see section 4.3.1.3). In a study of 

the impact of instructional time on student performance, Cottaneo, Oggenfus and 

Wolfer (2016) concluded that the average and below-average students require 

more teaching time to achieve the same results as the above- average students.  

Ramesh (2017) describes the implementation of a fast pace of teaching 

to cover the syllabus as an ‘irregularity’ that has been shown to have detrimental 

effects on student achievement (p. 14). Evidence in support of this position can 

be found in the post-test results of the control group students (see section 4.2.5). 

While syllabus coverage is important in view of the practice of common 

assessments in South Africa, teachers should remember that an ideal 

mathematics class is diverse, with a few students at the top, the majority being 

in the average and below-average categories. Against this background, a fast 
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pace of teaching would serve the interests of a few students at the top only, and 

disadvantage most of the students in the lower categories. This creates inequality 

of learning opportunities for the students in the mathematics class, and the net 

effect is that most students would be left behind. Ramesh (2017) concluded that 

the real measure of students’ learning outcomes “is not what teachers cover, it is 

about what students discover” (p. 17).  

While students in the control group were frustrated at being left behind by 

their teachers, experimental group students enjoyed being taught by a teacher 

who ‘was not in a hurry’ (see sections 4.3.1.3 & 4.3.2.4). Students in the 

experimental group indicated that they were given enough time to figure out 

solutions to geometry problems and discuss questions with their classmates (see 

section 4.3.1.1). In a diary entry, student Na from the experimental group liked 

the fact that the teacher made sure that students ‘are on the same page and 

moving at the same pace all the time’ (see Figure 4.10). This result is in line with 

twenty-first century views on education which advocate a ‘No Child Left Behind’ 

kind of teaching approach (see United States Department of Education, Office of 

the Deputy Secretary, 2004).  

5.2.2.3 The terminology of Euclidean geometry 

Another pedagogical aspect that students mentioned in both the 

experimental and control groups relates to the terminology of Euclidean 

geometry. Student O from the experimental group stated that: ‘The teacher was 

explaining each and every terminology’ of Euclidean geometry (see Figure 4.11). 

Students from control group C1, on the other hand, pointed out that the teacher 

did not explain the meaning of words such as chord and diameter, which are 

basic terms in Euclidean geometry (see section 4.3.1.1). Student Mp identified 

this as one of the reasons why they had difficulties with geometric proofs.  

In South Africa and many other African countries, English is the language 

of teaching and learning. Yet, for most of the students, English is not their native 

language. As a result, many of the students are likely to encounter linguistic 

problems in mathematics (Meiers & Trevitt, 2010). Studies carried out by Ercikan, 

et al. (2015) in Australia, England, America and Canada, found a strong 

correlation between language mastery and student achievement in mathematics. 

Smith (2017) and Van der Walt (2009), agree with Ercikan et al. (2015) that 
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knowledge of mathematical vocabulary influences students’ mathematics 

attainment. Mastering mathematical vocabulary helps students to understand 

what is required to solve mathematics problems. The lack of understanding of 

the mathematical terminology, on the other hand, restricts students’ access to 

mathematical ideas (Craig & Morgan, 2012; Prediger & Schüler-Meyer, 2017; 

Riccomini, Smith, Hughes, & Fries, 2015; Van der Walt, Maree, & Ellis, 2008).  

In recognition of these views, researchers suggest that mathematical 

vocabulary should be explicitly taught (see for example Bay-Williams & Livers, 

2009; Marzano, 2004; Sonbul & Schmitt, 2010), to help students gain 

mathematical proficiency (Riccomini et al., 2015). The explicit teaching of new 

words in mathematics takes away from the students the burden of guessing the 

meaning of foreign terms, so that they can concentrate more on application 

(Riccomini, et al., 2015). This reduces cognitive overload, particularly for the 

average and below-average students.  

5.2.2.4 Teacher support 

Students in the experimental group acknowledged the support they 

received from their teacher. They mentioned that the teacher ‘was patient and if 

a learner didn’t understand he could explain more and give more examples’ (O, 

FG E1, Position: 24-24). Student T from experimental group E1 reported that the 

teacher was ‘always free’ to the extent that the students were ‘not afraid to go 

towards him and say, this is the problem I came across, so how can I try to solve 

this particular problem’ (T, FG E1, Position: 38-38). A similar view was shared by 

student Na in her diary reports (see Figure 4.10): ‘When you don’t understand, 

Sir doesn’t mind clarifying the problem.’ Student Na added that the teacher did 

not mind ‘staying behind and explaining what he had taught again’. Student O 

reported that the teacher responded to students’ questions ‘in a good way’ (see 

Figure 4.11).  

On the contrary, statements made by students from the control group 

seem to suggest lack of teacher support in the control group mathematics 

classrooms. When control group students approached their teachers to seek help 

on what they had not understood in class, they received responses such as: ‘I 

taught you this in class’, and ‘...you did this last year’ (see section 4.3.1.1). 

Student Th from control group C2 cited an instance when he approached the 



 

177 
 

teacher for help and the teacher told them that he had another class to attend to 

(see section 4.3.1.1). Student Co, from the same control group also reported that 

when she asked for help on Euclidean geometry problems, the teacher told her 

that he had to move on to other chapters and could not stick to Euclidean 

geometry forever (see section 4.3.1.1).  

Teacher support is defined as the degree to which students believe their 

teacher is willing to assist them in times of need (Patrick, Ryan, & Kaplan, 2007). 

A research conducted by Yu (2015) involving Grade 9 students found that 

teacher support had an indirect effect on student achievement in mathematics by 

improving their self-efficacy in mathematics. Martin and Dowson (2009) suggest 

that students who see their teachers as supportive and caring feel emotionally 

relaxed and motivated to take part in challenging classroom learning activities. In 

other related studies, teacher support was found to lead to increased class 

attendance (Klem & Connell, 2004), reduced disruptive behaviour, and improved 

student academic performance (Patrick et al., 2007). The findings of this research 

are consistent with these previous studies in the sense that students who found 

their teacher to be caring and supportive had higher test scores than those who 

found their teacher to be uncaring and unhelpful.  

5.2.2.5 Pedagogical content knowledge and child psychology 

In their diary reports, students in the experimental group expressed views 

related to the teacher’s pedagogical content knowledge. Student Kg recorded 

that: ‘The teacher always find a way to make us understand, the teacher always 

uses different techniques which helps me to understand a lot.’ Student Na added: 

‘Sir really knows how the students’ minds work and his strategy and efforts really 

work... We really need more people like him in other departments.’ These views 

give credence to the philosophy of differentiated instruction (see for example 

Avgousti, 2017). An ideal mathematics class is made up of students of mixed 

ability. Therefore, a ‘one-size-fits-all’ approach would not meet the learning needs 

of some students. Through a variety of teaching methods, teachers can appeal 

to students of varying abilities.  

Knowing how students’ minds work is an aspect of child psychology that 

is part of the Van Hieles’ theory. Knowledge of the Van Hiele theory helped the 

teacher/researcher to organize instruction to match students’ current levels of 
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geometric thought in the experimental school mathematics classroom. Effective 

teachers use students’ thinking as a starting point for planning and “a resource 

for further learning” (Anthony & Walshaw, 2009, p. 11). 

In the control group schools, where the geometry lessons seemed to be 

driven by the desire to finish the syllabus, students shared contrasting views to 

those expressed by the experimental group students. Statements such as ‘I did 

not understand anything from the beginning to the end...’, and ‘I thought the 

lesson will be presented in [a] different way which I will understand’ in Figure 4.6 

(see section 4.3.2.2) clearly indicate that conventional instruction did not meet 

the learning needs of some students.  

5.2.2.6 Cooperative learning 

When asked to indicate what they liked about the way Euclidean geometry 

and geometric proofs were taught in their mathematics class, students in the 

experimental group identified collaborative learning as one of the most striking 

features of their geometry learning experiences. This is evident in student O’s 

diary record (see Figure 4.11):  

‘I enjoyed the maths class because we were working together and 
we were not judging each other’ 
‘I enjoyed because we were discussing and making each learner 
talk. It was really fun and all thanks to our teacher’  
‘...discussing help[ed] me to talk for myself because we were 
arguing about the answers’ 
 

Collaborative learning is widely reported in literature and has been found 

to have significant benefits for mathematics students. A study by Nannyonjo 

(2007) found that students who worked collaboratively achieved better marks 

than those who worked individually. In another study, students who engaged in 

daily mathematics discussions were found to score higher marks in mathematics 

than those who had little or no discussion at all (Arends, Winaar, & Mosimege, 

2017). As students learn a new mathematics topic, they need time to share 

solution strategies with their classmates, explain and defend their ideas or 

opinions, and consolidate their understanding (Lee, 2006). In addition, group 

work gives students the opportunity to make mistakes and be corrected by their 

peers (Fisher & Frey, 2011).  

The findings here give weight to social constructivism, which claims that 
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knowledge is socially constructed (see Westbrook et al., 2013).  

5.2.2.7 Students’ self-efficacies  

As a result of their learning experience, students in the experimental group 

seemed to have high confidence in solving Euclidean geometry problems. This 

is evident in the statements below:  

‘I can now tackle Euclidean geometry questions on my own and get 
them right...my skills have also improved. I am able to interpret 
diagrams more accurately and apply the knowledge I have acquired 
in previous days. Yes, so Euclidean geometry is not actually a 
difficult thing.’  
(Na, FG E1, Position: 4-4) 

‘...we were able to do...things that I never thought I can do in my 
life... I am not (like) perfect but I can do most of the things.’  
(Mo, FG E2, Position: 16- 16) 

In contrast, students from the control group schools seemed to have low 

self-confidence. The following statements attest to this: 

‘...when I look at the question paper, I see a lot of marks but I can’t 
reach them because I don’t have that knowledge.’ 
(Te, FG C2, Position: 65 – 65) 

‘...when I try it at home, I find it difficult, ... I give up!’ 
(L, FG C2, Position: 57 – 57) 

It can be seen from the above statements that students in the experimental 

group of schools believed they had the potential to solve geometry problems 

correctly, whereas their counterparts in the control group schools doubted their 

abilities. These findings suggest that Van Hiele theory-based instruction can be 

used to improve student confidence in Euclidean geometry. Students’ levels of 

confidence on their ability to solve mathematical problems are referred to as their 

mathematics self-efficacies (see for example Zarch & Kadivar, 2006).  

Research has since found a close connection between students’ self 

efficacies and their mathematics performance. Students who believe that they 

can solve mathematics problems are highly motivated (Wang, 2013), work harder 

(Siegle & McCoach, 2007), and do not give up so easily when they face 

challenging mathematics problems (Bandura, 1977; Bouffard-Bouchard, Parent, 

& Larivee, 1991; Collins, 1982; Prabawanto, 2018). These attributes, in turn, lead 

to increased academic achievement (Bonnie & Lawes, 2016). On the other hand, 
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students with low self-efficacy were found to have low levels of motivation and 

reduced commitment (Pajares, 1996; Zarch & Kadivar, 2006), leading to low 

academic achievement (Bonnie & Lawes, 2016).  

Thus, the high sense of self-efficacy evident in the experimental group 

students’ views correlates with the high scores that they obtained in the post-test. 

Similarly, the low self-efficacy reflected in statements made by the control group 

students corresponds with their low marks in the post-test. These findings 

authenticate previously established knowledge regarding the relationship 

between the self-efficacy levels of the students and their mathematics 

achievement. Studies have also indicated that students’ beliefs about their ability 

to perform a mathematical task have an effect on their future decisions (Bandura, 

1986). For instance, if students believe that they can prove Euclidean geometry 

riders, then they are likely to attempt such questions in their mathematics 

examination, whereas those who believe that they cannot prove riders will avoid 

such questions. However, an empirical study by Harlow, Burkholder, and Morrow 

(2002) established that students’ beliefs about their mathematical abilities are 

malleable and can be influenced by using appropriate teaching and learning 

approaches. Van Hiele theory-based instruction appears to be one such teaching 

approach, because it led students who initially had low self-confidence to have a 

better sense of  self-efficacy.  

5.2.2.8 Practical investigation activities 

Another aspect of Van Hiele theory-based instruction that students placed 

at the top of their list of the most influential learning experiences was the use of 

hands-on investigation activities using the GSP. This was succinctly captured by 

student Ch from experimental school E2 (see section 4.3.1.2):  

‘I felt privileged to have been taught Euclidean geometry in this 
maths class because that GSP...helped me to be more interested 
in Euclidean geometry because those things I was doing them 
myself practically, not just theoretically’  
‘I think when we were taught Euclidean geometry using that 
software was really good for us as learners because it wasn’t like 
reading those theorems in a book. We were actually seeing them 
first-hand’  
 

The views expressed by student Ch reinforce previously established 

knowledge on the role of practical work in mathematics education. Besides 
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building students’ interest in Euclidean geometry, practical activities offer 

students an opportunity to experiment, establish patterns, verify ideas, and 

reinvent theorems (Abdullah & Zakaria, 2012; Nath & Binny, 2018). Student Ch’s 

views support the theory of multiple intelligences, which notes that students 

embody various types of minds and thus learn, recall, act and understand 

differently (Gardner, 1991). Van Hiele theory-based instruction seems to be 

ideally suited for students with different intelligences than traditional instruction.  

5.2.2.9 Student engagement and active participation  

Student engagement was also identified to have positively influenced 

students’ feelings and attitudes towards Euclidean geometry and geometric 

proofs in the experimental group of schools. The following statements 

corroborate this: 

“...what I like was that everyone was able to participate in the 
lesson...so the class was alive...we were jumping up and down, 
back and forth to the chalkboard...”  
(Na, FG E1, Position 22-22) 

“...we were able to participate like all the time. We were even 
fighting over the chalk at times. That is what I liked” 
(T, FG E1, Position 26-26)  

“I liked how active we were by running back and forth to the board. 
It was amazing! I liked the experience, as it made me feel alive”  
(Student Na’s diary report, see Figure 4.10) 

The foregoing statements show that students in the experimental 

mathematics class enjoyed being actively involved and taking charge of the 

lessons. Thus, Van Hiele theory-based instruction is a student-centred teaching 

and learning approach. The views expressed by students here validate 

widespread calls for mathematics lessons to heighten student engagement. The 

benefits of engaging students in the learning process are commonly documented 

in literature. These include: increasing student satisfaction, reducing the feeling 

of being in isolation, motivating students to learn, and improving student 

performance (Martin & Bolliger, 2018). Toor and Mgombelo (2017) add that 

“engaging students in the learning process increases their attention and focus”, 

which in turn helps to minimize disruptive behaviour in the classroom (p. 3005).  
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5.2.2.10 Equity and social justice 

Another outstanding view that can be drawn from students’ views relates 

to students’ rights in the mathematics classroom. In a diary report, student Na 

from experimental school E1 loved the fact that students were ‘given freedom of 

expression and equal treatment’ (Student Na diary report, see Figure 4.10). A 

similar view was expressed by student Mo in a focus group discussion when she 

mentioned that the teacher made students ‘to be free in class’ (see section 

4.3.1.3). Student Mo added: ‘The teacher even gave us a chance to give our own 

suggestions and opinions’. Every student enjoyed the right to participation. This 

is evident in the statement: ‘... everyone had a right or freedom to go there and 

fill the correct reason for that particular statement ...’ (Student Na, FG E1, 

Position: 22-22, see section 4.3.1.3). Experimental group students were made 

aware that giving wrong answers is acceptable and is part of learning. The 

teacher told students that ‘no one is right and nobody is wrong.... So, when you 

feel like answering, you must do so even if you do not feel like your answer is 

right...’ (Student Na, FG E1, Position: 36-36, see section 4.3.1.3). Another 

important aspect of the mathematics classroom culture in the experimental group 

was respect for each other. This was captured by student O in her diary report: 

‘... we were not judging each other’ (see Figure 4.11). 

 Twenty-first century mathematics education strives to foster equality in 

the mathematics classroom. Creating an equitable mathematics learning 

environment demands that the teacher observes the rights of the students. These 

include, among other things, the right to voice their opinions and to be heard 

(Kalinec-Craig, 2017); the right to make mistakes, share those mistakes with 

other students or the teacher, without being undermined (Steuer & Dresel, 2013); 

the right to be respected by other students and the teacher (Kazemi, 2018); the 

right to equal treatment; the right to ask questions and seek clarity where they do 

not understand (Davis, 2008); and the right to ask for extra help (Davis, 2008). 

The findings discussed in the preceding paragraph seem to align quite well with 

the proposed bill of rights for mathematics students. Van theory-based instruction 

thus offers all students in the mathematics classroom equal opportunities for 

learning. 

The views expressed by students in the control group, by contrast, reflect 
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a learning environment that is insensitive to the rights of students. The teachers 

were unwilling to attend to students’ requests for help with concepts they did not 

understand in class (see section 4.3.1.1 & 4.3.1.3). Teachers gave petty reasons 

to dodge the students who needed extra help. These kinds of teaching and 

learning experiences have led many students in many secondary schools to 

disengage from mathematics (Wright, 2016). How then should mathematics 

teachers teach Grade 11 Euclidean geometry theorems and proofs to enhance 

students’ achievement?  

5.2.3 A framework for better teaching and learning of Grade 11 Euclidean 

theorems and proofs 

In section 5.2.1, the statistical significance of the proposed Van Hiele 

theory-based model of instruction was discussed. The main idea emerging from 

the discussion is that Van Hiele theory-based instruction enhances students’ 

geometric proofs learning achievement. This was found to be consistent with 

previous research on Van Hiele theory-based instruction. A review of the views 

of the experimental group of students on their experience in the geometry 

teaching and learning process clearly shows that the implementation of Van Hiele 

theory-based instruction is not just a matter of designing and presenting 

geometry lessons in accordance with the Van Hiele theory. There are additional 

elements of teacher characteristics that complement the Van Hiele teaching 

model (see Figure 5.1). This gave birth to a revised model for teaching Grade 11 

Euclidean theorems and proofs. Figure 5.1 presented earlier (see section 5.2) 

showed the revised teaching framework that merges Van Hiele theory-based 

instruction with students’ positive views into a comprehensive model. No other 

study was found in literature to have uncovered the elements of humanity that 

complement Van Hiele theory-based instruction. This is what makes the present 

study important and significant.  

A key aspect of the modified Van Hiele theory-based framework for 

teaching Euclidean geometry theorems and proofs is the understanding that 

students are social beings whose opinions and input on their learning 

experiences should be listened to by those seeking ways to improve the 

academic achievement of the students. By deliberately pursuing students’ 

expectations in the teaching and learning of Grade 11 Euclidean geometry and 
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proof, the factors that hinder students’ progress are exposed, and possible 

interventions can thus be developed based on context. This view is supported by 

the Professional Educator Standards Board (2009). The implications of the 

proposed framework for classroom practice will be discussed in more detail in 

section 5.3.1. 

5.3 Implications of findings for educational practice, 

professional and curriculum development  

The findings emerging from the preceding discussion have implications for 

classroom practice, teacher professional development, curriculum design, 

implementation, and evaluation.  

5.3.1 Implications for teaching Euclidean theorems and proofs in 

secondary schools 

Chief examiners’ reports in many countries lament students’ inability to 

construct non-routine multi-step geometric proofs in national mathematics 

examinations (Department of Education, 2015, 2016a, 2017, 2018, 2019, 2020; 

Mwadzangaati, 2015, 2019; West African Examination Council, 2009, 2010, 

2011). The problem is attributed to teachers’ lack of pedagogical knowledge for 

teaching this aspect of mathematics (see Mwadzangaati, 2015, 2019; West 

African Examination Council, 2009, 2010, 2011). Teachers in upper secondary 

school who are responsible for teaching Euclidean geometry proofs allege that 

students have difficulty with geometric proofs because they come to upper 

grades not adequately prepared for formal deduction. This observation is 

supported by numerous studies that have assessed students’ Van Hiele levels at 

different grade levels and found that students are operating at much lower Van 

Hiele levels than expected (see Abdullah & Zakaria, 2013; Alex & Mammen, 

2012, 2016; Atebe, 2008; De Villiers, 2010; Feza & Webb, 2005). Instead of 

facing the challenge, many high school mathematics teachers have left the 

problem unattended, and the spill-over effects have been noticed at universities 

and colleges (see for example Van Putten et al., 2010; Luneta, 2014).  

While upper secondary school mathematics teachers cannot be blamed 

for the fact that students come to their classes with deficiencies in their geometry 

knowledge, teachers should accept the blame for students who leave their 
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classes not having mastered the geometry knowledge and skills of that grade 

level. The findings of this study provide empirical evidence that, despite students 

going to upper secondary school underprepared, it is still possible to help these 

students achieve the expected levels of geometric thought, including formal 

deduction.  

Mathematics teachers should acknowledge that teaching Euclidean 

geometry and geometric proofs is not like teaching any other mathematics topic. 

Geometry requires the teacher to have special pedagogical knowledge and skills. 

First, it is imperative for every geometry teacher to know about the Van Hiele 

theory, which explains how students’ geometric thinking progresses from one 

level to the other. This has implications for the professional development of pre-

and in-service mathematics teachers which will be discussed later in a separate 

section. The Van Hiele theory informs geometry teachers on how to organize and 

sequence teaching and learning activities within and between lessons to enhance 

students’ understanding of geometry concepts. 

Due to their lack of progress and based on their past learning experiences, 

many students go to upper secondary school with negative beliefs, feelings, and 

attitudes towards Euclidean geometry and geometric proofs. Moving straight into 

proving theorems and riders only serves to worsen the anxiety that these 

students already feel from their past learning experiences. The findings of this 

study indicate that the way the teacher introduces Euclidean geometry in the 

mathematics classroom matters. The study recommends that, in the introductory 

lesson, the teacher should give students a brief history of the origin of Euclidean 

geometry, explain why it is important for them to study the topic, and show them 

how geometry is connected to human life. This helps to arouse students’ interest 

in learning more about Euclidean geometry. 

To successfully teach geometric proofs in upper secondary school, 

mathematics teachers should embrace the fact that many students coming to 

their classes might not have acquired the prerequisite geometry knowledge and 

skills required to master formal proof. This could be due to poor teaching in the 

past, or simply because the students are slow to understand. Given this situation, 

upper secondary school teachers should avoid moving straight into proving 

geometry theorems and riders. The findings of this study suggest that upper 

secondary school geometry teachers should start by administering an informal 
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test to assess students’ understanding of the geometry knowledge and skills 

covered in lower grades. Test item analysis should be carried out to identify areas 

of deficiency and students who need regular support. The teacher should then 

reteach the geometry concepts that most students could not answer correctly in 

the test. Students at risk should be placed on a continuous remedial programme 

for the duration of the topic. This will demand that teachers increase their contact 

time with students. Mathematics teachers who want to see all their students 

succeed in learning geometry should be prepared to go the extra mile. To 

emphasize the importance of bridging learning gaps, the Van Hiele theory 

cautions teachers against forcing students to learn advanced geometry concepts 

when they are not ready, as this leads students to simply imitate the teacher 

without understanding (Van Hiele-Geldof, 1984). Enough time should therefore 

be spent on developing a proper foundation before formal deduction begins.  

The terminology of Euclidean geometry should be explicitly taught. This 

includes key terms such as diameter, chord, tangent, secant, radius, cyclic 

quadrilateral, circumference, perpendicular, parallel, interior angle, and exterior 

angle. Proving geometry riders requires students to first read and understand the 

given information, which will facilitate their analysis of the given geometric 

figures. Therefore, mastery of the terminology of Euclidean geometry is key to 

accurate diagram analysis. If students do not understand the vocabulary of 

Euclidean geometry, certainly, they will face challenges with geometric proofs as 

was the case with control group students.  

The Van Hiele theory states that students cannot achieve level (𝑛) if they 

have not mastered level (𝑛 − 1). This means that students cannot master formal 

proofs if they have not achieved informal deduction skills. The South African 

mathematics syllabus for Grade 11 in the CAPS states that students should first 

investigate theorems before they start learning formal proofs (see Department of 

Basic Education, 2011). This is consistent with the Van Hiele theory. However, a 

review of literature on the implemented curriculum shows that many teachers do 

not engage students in investigation activities before they introduce proofs. 

Geometry lessons are still characterized by students copying theorems from the 

chalkboard or textbook into their notebooks without understanding. The teachers 

themselves seem to follow the order of activities presented in their mathematics 

textbooks. Knowledge of geometry theorems and axioms lays the foundation for 
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proving geometry riders. If students do not have a clear understanding of the 

geometry theorems and axioms, then they would not be able to prove geometry 

riders. 

This study suggests that engaging students in investigation activities 

before proof should not be a matter of choice but compulsory in the teaching of 

Euclidean geometry. The use of the Geometer’s Sketchpad and ready-made 

GSP sketches to reinvent geometry theorems and axioms made geometry 

lessons more interesting, fun, and enjoyable for students in the experimental 

group. The GSP, through its click, drag and measure tools, allows students to 

explore numerous properties in geometric figures within a short space of time. 

The GSP also allows students to rotate and resize geometric figures to new 

positions, which enables students to see variations of the same theorem. The 

experimental group of students stated that they enjoyed learning geometry 

practically and seeing the results for themselves, as opposed to reading and 

memorizing theorems from the textbooks. Students also mentioned that they 

could remember most of the theorems and axioms without being reminded by the 

teacher. This provided the scaffolding that most students needed to have access 

to non-routine geometric proofs. It is also highly strongly recommended that 

mathematics teachers use technology and dynamic geometry applications (such 

as the GSP, GeoGebra and Dr Geo) to teach Euclidean geometry. The challenge 

here is that not every mathematics teacher is competent in the use of technology 

and dynamic geometry applications in the mathematics classroom. This has 

implications for the professional development of both pre-and in-service 

mathematics teachers. 

There is no point in mathematics teachers to rush to cover the syllabus, 

leaving the students behind. Given that most students seem to have difficulty in 

understanding geometry concepts, a fast pace of teaching results in what the 

Van Hiele theory refers to as a mismatch between what is taught and the level of 

understanding of the students. The lesson becomes a monologue instead of it 

being a dialogue between the teacher and the students. The net result is that 

most students would not achieve the desired level of performance, as was the 

case with control group students in this study. That would be frustrating for both 

the mathematics teacher and the students. Findings from the present study have 

revealed that geometry students prefer to be taught by a teacher who is not in a 
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hurry; one who is sensitive to the needs of the students. Students have a right to 

say they do not understand and teachers should listen, slow down the pace of 

teaching, and change their teaching approach if necessary. Teaching geometry 

is not about how much content the teacher covers in a specified timeframe; it is 

about how much geometry knowledge students gain from what is taught. 

Therefore, the pace of teaching should be regulated by students’ understanding. 

The process of proving geometry riders is a complex activity that should 

be explicitly taught. Mathematics teachers should not expect students to master 

the proving process on their own. Students in the control group lamented the lack 

of teacher guidance on how to prove geometry riders. Teachers should 

demonstrate the proving process, starting with diagram analysis, through 

hypothetical bridging steps, to the conclusion. This is a form of scaffolding to help 

students move from their current levels of performance to realizing their full 

potential through adult guidance. This is in line with Vygotsky (1978), who asserts 

that students learn by following adults’ examples, and gradually become 

independent problem solvers. As the students gain experience in proving 

geometry riders, teacher assistance can gradually be withdrawn to allow students 

to freely explore solution methods without teacher interference. During the early 

stages of formal deduction activities, teachers should provide students with all 

the information they need to successfully prove geometry riders. This includes 

properties of equality (see Figure 3.23), a list of acceptable reasons as stipulated 

in the mathematics examination guideline, and tips to solve Euclidean geometry 

riders. This is important to reduce cognitive overload, particularly for below- 

average and average students.  

As students explore their own solution methods, they should be allowed 

to discuss ideas with their classmates and their teacher. The teacher should 

create a learning environment in which students are able to share their opinions 

without being judged. It is their constitutional right to exercise freedom of 

expression. Teachers should make it known to students that incorrect responses 

are acceptable and form part of the learning process. Students should be 

encouraged to work collaboratively in pairs or in groups to correct each other’s 

mistakes. This is consistent with the social constructivist learning theories. 

Working in groups offers students an opportunity to share their solution strategies 

and, in the process, students discover that geometry riders can be proved in 
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multiple ways. Realizing that there are many ways to prove a rider boosted 

experimental group students’ self-efficacy levels. 

Finally, students should on a regular basis be given a chance to evaluate 

how teachers teach Euclidean geometry lessons. This should be done 

anonymously to ensure that students give honest and unbiased responses. 

Feedback from the students should then be used to guide lesson planning and 

presentation in subsequent lessons. A student’s performance in Euclidean 

geometry and geometric proofs is not a product only of that student’s cognitive 

abilities. There are other human elements that contribute significantly towards 

the student’s academic development. The affective domain which deals with 

attitudes, feelings, emotions, values, and levels of appreciation, motivation, and 

enthusiasm, is a critical component of the geometry teaching and learning 

process. These attributes can only be assessed through listening to the student’s 

voice. Many intervention programmes implemented in schools are imposed on 

the students from above, without incorporating the students’ views. It is strongly 

recommended, based on the findings of this study, that students should have a 

voice in the design, implementation, and evaluation of the mathematics 

curriculum. Students are social beings who cannot be manipulated like objects in 

a laboratory experiment. The geometry teacher should therefore be patient, calm, 

approachable, helpful, and sensitive to students’ perspectives.  

The next section sets out the implications of the findings of the study for 

the professional development of teachers.  

5.3.2 Implications for teacher professional development 

In many countries, the underperformance of students in Euclidean 

geometry and geometric proofs has been attributed to the lack of pedagogical 

knowledge for teaching this topic (see Bramlet & Drake, 2013b; Mwadzaangati, 

2015, 2019; Selden & Selden, 2007; West African Examination Council, 2009, 

2010, 2011). Teaching is a dynamic art. The way teachers were trained to teach 

Euclidean geometry many years ago may be outdated in modern mathematics 

education. The findings of this study suggest that in-service mathematics 

teachers should receive fresh training on ‘how to teach’ Euclidean geometry and 

geometric proofs in a way that accommodates all students in the mathematics 

classroom. This should be facilitated by subject specialists with adequate content 
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and pedagogical knowledge in Euclidean geometry. The training should include 

all mathematics teachers from primary to secondary school. To evaluate the 

effectiveness of the training programme, teachers should be assessed and 

certificates of competence should be issued at the end of the training programme. 

Based on my experiences as a mathematics teacher in the context of the 

study, the existing training programmes do not include mechanisms for 

evaluating the effectiveness of the programme. Teachers just sign attendance 

registers and go back to their respective schools. To be effective teachers of 

Euclidean geometry, teachers should function at a higher Van Hiele level than 

the students they teach. Assessing the teachers’ levels of competence after 

training is therefore important to monitor progress and identify those who need 

further support. In addition, the teachers’ pedagogical knowledge for teaching 

Euclidean geometry should be continually updated to align with new research 

evidence. To this end, in-service teacher training should be a continuous and not 

just a one-off event.  

While many geometry teachers may be aware of the Van Hiele theory and 

its application in teaching and learning Euclidean geometry, results of this study, 

coupled with evidence from the field of neuroscience (see Hinton et al.,2012), 

indicate that emotional support and teacher sensitivity to students’ needs are 

indispensable partners in the implementation of Van Hiele theory-based 

instruction. The behaviour of the teachers in the control group schools led to the 

negative feelings and attitudes of the students towards Euclidean geometry and 

geometric proofs. The views expressed by the control group of students indicated 

that the teachers lacked the expertise to handle the emotions of the students. It 

is therefore recommended that geometry teachers be trained on how to manage 

the emotional domain of students to create a positive classroom climate that 

encourages geometry learning for all students regardless of their cognitive 

abilities. The Department of Basic Education should consider engaging 

neuroscientists to facilitate teacher training in managing the emotional aspects 

of the students.  

Mathematics teachers themselves should not wait for the DBE to organize 

training for them to improve students’ achievement in Euclidean geometry. It is 

the responsibility of every mathematics teacher to continue to engage in research 

to find new and innovative approaches to teaching Euclidean geometry and 
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geometric proofs. It should be noted, however, that research is not a cheap 

exercise. The Department should therefore provide financial assistance to 

teachers who wish to engage in research targeted at enhancing the teaching of 

mathematics in schools. In addition, mathematics teachers should be provided 

with platforms to easily share their research findings.  

One of the reasons teachers continue to use traditional teaching 

approaches is that research-based evidence of new teaching approaches does 

not reach them. A lot of research-based evidence that can guide teachers to 

effectively teach mathematics is available, but probably in places that are not 

easily accessible to many teachers. The Department of Basic Education should 

therefore provide sponsorship for mathematics teachers to publish their 

research-based evidence of effective teaching practices in journals and teacher 

magazines, which should then be distributed to all mathematics teachers in 

schools. Arranging teacher discussion forums and conferences would also go a 

long way towards helping to disseminate information that can guide mathematics 

teachers to improve their teaching. 

There is no doubt that modern economies are driven by technology. To 

survive in the coming years, mathematics teachers (young and old, novice and 

experienced) should learn how to integrate technology not only in Euclidean 

geometry lessons, but also in the teaching of other mathematics topics. The 

findings of this study indicate that the use of dynamic geometry applications in 

geometry instruction has a beneficial impact on the emotional and cognitive 

domains of students. It is therefore crucial for every geometry teacher to learn 

how to integrate dynamic geometry applications into geometry lessons. 

Universities should integrate this into their pre-service mathematics teacher 

education programmes. Similar training programmes should also be organized 

for in-service mathematics teachers.  

The mathematics teachers themselves should take teacher professional 

development seriously and positively. While experienced teachers are leaders in 

teaching practice, they should be willing to adopt new research-based teaching 

approaches. Some of the mathematics teaching practices used in the past are 

no longer effective and applicable to modern mathematics education. Therefore, 

mathematics teachers should be encouraged to upgrade their teaching 

qualifications. Efficient mathematics teachers are lifelong learners. 
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5.3.3 Implications for curriculum design, implementation, and evaluation  

The opinions expressed by the students in the control groups indicate that 

the design of the geometry curriculum, as well as its implementation and 

evaluation, appear to be in a state of disharmony.  

The geometry curriculum in the South African CAPS was imposed on 

teachers and students from above. The teachers and students were not involved 

in the design process. Studies conducted after CAPS training workshops for 

mathematics teachers revealed that many teachers are still not comfortable 

teaching Euclidean geometry (see Olivier, 2014). In one of the control group 

schools, the students reported that the teacher changed his attitude and behaved 

differently when teaching Euclidean geometry. In the other control group school, 

the students mentioned that certain sections of Euclidean geometry were 

skipped. This shows that the implementation of the geometry curriculum poses 

serious challenges for some teachers.  

In addition, the practice of administering common tests during the year 

pressurizes teachers to rush through the syllabus, trying to cover all the 

prescribed geometry content before the dates set for the writing of the tests. 

Students in one of the control group schools told their teacher that the pace of 

teaching was too fast for them, but the teacher did not listen to their call to slow 

down. Instead, a negative response was given. At the end of it all, students may 

fail to answer geometry questions in the common tests and everyone (students, 

teachers, and curriculum designers) will be frustrated.  

Students attribute their failure to understand Euclidean geometry and 

geometric proofs to poor teaching by their teachers. On the other hand, 

mathematics teachers defend themselves by saying that they covered the 

prescribed geometry content before the test was written. Teachers blame the 

students for not practising enough. At the end of each school term, mark 

schedules are submitted to the district, provincial and national government for 

analysis. Underperforming schools are identified and the principals of those 

schools are called to meetings with circuit managers, district directors, heads of 

departments and the Member of the Executive Council for education. There is 

nobody representing students’ voices in these meetings, yet the students are the 

principal stakeholders in the education system.  
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While curriculum design is primarily influenced by the needs of the 

economy, the views of the teachers and the students are vital. In other words, 

mathematics teachers and students should be involved in the design of the 

mathematics curriculum to ensure its smooth implementation. For example, 

students indicated that the time allocated to Euclidean geometry was not enough 

for them to master all the geometry concepts in their syllabus. This suggests that 

designers of the mathematics curriculum should consider increasing the time 

allocated to Euclidean geometry in the CAPS. In surveys conducted after 

Mathematics CAPS training workshops, some teachers revealed a low level of 

confidence in the teaching Euclidean geometry. This suggests to the curriculum 

designers that teachers should be thoroughly trained well in advance of the 

implementation of any new curriculum. In addition, curriculum design is not a one-

off event. The designers of the mathematics curriculum should continuously 

adapt the curriculum to meet the needs of the teachers and the students. Unless 

the three parties realize that they need each other to survive, mathematics 

education in many countries is bound to fail. 

Geometry teachers should be informed that the implementation of the 

geometry curriculum is not a matter of following the sequence of activities 

presented in the students’ mathematics textbooks. Teachers are not supposed 

to be slaves to the textbook. Instead, they should be guided by their pedagogical 

knowledge of teaching geometry, recent research-based evidence, and the 

situation on the ground. To support teachers in the implementation of the 

mathematics curriculum, curriculum designers should provide guidance manuals 

for teachers on the various approaches that can be used to teach Euclidean 

geometry and other mathematics topics. These manuals should be updated 

continuously to keep pace with new research evidence.  

Textbook publishers should revise textbook material to ensure that 

textbook content is consistent with new developments in mathematics education. 

The results of this study suggest that Grade 11 Mathematics textbooks should 

include investigation activities in which students can rediscover geometry 

theorems and axioms before they learn formal proofs. Mathematics textbooks 

should also guide teachers on how they can integrate technology in their 

geometry lessons. In addition, publishers may also include at the beginning of 

the chapter a brief history of Euclidean geometry, why students should study it, 
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its role in human life, and a list of professions that use geometry knowledge and 

skills. This would help students to see the relevance of learning the topic. One 

student in the experimental group reported that she was surprised to learn that 

Euclidean geometry is useful in human life, and she became interested in 

learning more about the topic.  

5.4 Summary of the chapter 

This chapter discussed in more detail the results presented in Chapter 4. 

The main ideas that emerged from the discussion are that: Van Hiele theory-

based instruction is more effective than conventional instruction in developing 

students’ geometric proofs learning achievement. In addition, the implementation 

of Van Hiele theory-based instruction is not just about the organization of 

instruction according to the Van Hieles’ proposals; the mathematics teacher 

should be responsive to the students’ contextual needs.  

The geometry teacher should be aware that students are social beings 

with feelings, emotions, attitudes, values, and beliefs, all of which have the 

potential to skew academic performance. The teacher’s behaviour should 

therefore promote the development of positive feelings, attitudes, and beliefs 

about Euclidean geometry and geometric proofs. By listening to the students’ 

voice, the geometry teacher should be able to adapt his or her teaching to meet 

the learning needs of a diverse group of students in the mathematics class. 

Students have the right to inform the teacher that they do not understand. They 

have the right to be actively engaged in the lesson, and not to be treated as empty 

containers. They have the right to tell the geometry teacher that the pace of 

teaching is too fast for them to understand what is being taught. They also have 

the right to evaluate the way they are taught and the geometry teacher should 

not feel offended by the students’ feedback. Instead, the geometry teacher 

should observe all these students’ rights and react positively.  

Assessing students’ prior knowledge and bridging learning gaps play a 

key role in developing students’ understanding of geometry concepts. Providing 

students with information on the history of Euclidean geometry, its role in human 

life, its relationship with the physical world, and the various careers in which 

geometry knowledge and skills are applied, captures the attention of the 

students, and motivates them to want to learn more about the topic. Explaining 
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the terminology of Euclidean geometry is also important, keeping in mind that 

most students learn geometry through the medium of English as a Second 

Language (ESL).  

Practical investigation activities using dynamic geometry software not only 

motivate students, but also provide the necessary scaffolding that students need 

to master formal proofs. Geometry teachers should also learn how to integrate 

technology into their geometry lessons. Efficient geometry teachers do not rely 

solely on their experience, but always try new teaching approaches to enhance 

the academic achievement of students.  

The in-service training of mathematics teachers should take place well in 

advance of the implementation of a new mathematics curriculum and should not 

be run concurrently with its implementation. The teachers and the students 

should also be involved in the process of curriculum development to ensure that 

their views are represented. This will go a long way towards closing the gaps 

between the intended curriculum and the implemented curriculum.  

In the next chapter, the researcher gives readers a complete overview of 

the entire project. The limitations of the study will be highlighted and suggestions 

will be made for future research.  
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

This study was prompted by several reports of secondary school students not 

performing well on the mathematical aspect of geometric proofs in national 

examinations across several countries. To address the problem, the following 

objectives were set in Chapter 1:  

1) To implement Van Hiele theory-based instruction in the teaching of Grade 11 

Euclidean geometry theorems and non-routine geometric proofs; 

2) To test the effect of Van Hiele theory-based instruction on Grade 11 students’ 

geometric proofs learning achievement; 

3) To explore students’ views on (a) the Van Hiele theory-based approach, and 

(b) conventional approach to teaching and learning Grade 11 Euclidean 

geometry theorems and non-routine geometric proofs; 

4) To develop a framework for better teaching and learning of Grade 11 

Euclidean geometry theorems and non-routine geometric proofs, integrating 

the views expressed by the students. 

Chapter 2 presented a review of literature available on the evolution of 

Euclidean geometry proofs to understand the developments that have taken 

place in geometry instruction to date. The challenges faced by teachers and 

students in the teaching and learning of Euclidean geometry proofs were 

described. The Van Hiele theory and its implications for teaching and learning 

Euclidean geometry and proof were reviewed. The gap in knowledge that this 

research intended to fill was identified. Chapter 3 provided the details of how the 

Van Hiele theory-based instruction was implemented. Thus, the first objective 

was achieved. Chapter 4 summarized the quantitative and qualitative data that 

were obtained to address the second and the third objectives. In Chapter 5, the 

findings of the quantitative and qualitative data analyses were examined and 

discussed to address the fourth objective. The implications of the findings for 

classroom practice, teacher professional development, curriculum design, 

implementation, and evaluation were also outlined. This chapter presents a 

snapshot of the key points that emerged from Chapter 5 in response to the 
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research questions. Finally, the shortcomings of the study are highlighted and 

suggestions for future research are proposed.  

6.2 Summary of research findings 

The following research questions were framed in Chapter 1: 

1)  Does teaching and learning Euclidean geometry theorems and non-

routine geometric proofs through Van Hiele theory-based instruction have 

any statistically significant effect on Grade 11 students’ geometric proofs 

learning achievement? 

2)  What are students’ views on (a) the Van Hiele theory-based approach, 

and (b) conventional approach to teaching and learning Grade 11 

Euclidean geometry theorems and non-routine geometric proofs? 

In section 5.2.1 it was concluded that Van Hiele theory-based instruction 

had a statistically significant positive effect on students’ geometric proofs learning 

achievement (𝑝 < .05). Thus, the first research question was answered. Section 

5.2.2 discussed students’ views on the teaching and learning of Euclidean 

geometry and geometric proofs in their mathematics classes. The discussion 

alluded to the view that the experimental group of students had positive views 

towards Van Hiele theory-based instruction (see section 5.2.2 for details). On the 

other hand, students who had received conventional instruction gave negative 

reports about their geometry learning experiences (see section 5.2.2 for details). 

Thus, the second research question was answered.  

It was concluded that, in addition to organizing teaching and learning 

activities according to the Van Hieles’ recommendations, teachers should pay 

attention to the students’ voices and adjust their teaching accordingly. The 

human elements that are pivotal to the successful implementation of Van Hiele 

theory-based instruction were identified from the students’ views. Based on the 

findings from section 5.2.1 and section 5.2.2, a framework for better teaching and 

learning of Grade 11 Euclidean geometry theorems and proofs was developed 

(see section 5.2.3 and Figure 5.1 for details). 

6.3 Limitations of the study 

Like any other research, the present study has its own limitations. 

Identifying the possible shortcomings of the research is important for 
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contextualizing the findings and facilitate their interpretation by the reader.  

The major limitation of this study was the non-random allocation of 

participants into treatment and control groups. Consequently, the findings cannot 

be extended beyond the geographical scope of study (see section 1.7). This 

research was limited to only four township secondary schools in the same district 

in the Limpopo province, South Africa, due to time and financial constraints. 

Therefore, the results of the study should be interpreted in this regard.  

Also, only one focus group discussion was conducted per school due to 

time and financial resource restrictions. Engaging more than one focus group per 

school could have captured a bigger variety of responses that could have 

enriched the qualitative data findings. Besides, involving a larger sample of 

schools from different districts across the country could enhance the 

generalizability of findings and yield more definitive treatment effects. 

While the teacher/researcher implemented Van Hiele theory-based 

instruction in both experimental schools, students in the control group schools 

were taught by different teachers, leading to variations in the way conventional 

instruction was implemented. This was not accounted for in the data analysis. 

Although, the teachers used the same lesson plans, it was not possible for the 

researcher to regulate teaching in the control group schools to make sure that 

teachers teach Euclidean geometry according to the lesson plans. Thus, what 

constituted conventional instruction in control group schools could be more 

complex than the definition presented in this study. 

The study is limited to the teaching and learning of Euclidean geometry 

and geometric proofs at Grade 11 level in South Africa. The interpretation of the 

findings of the study should therefore be confined to the teaching and learning of 

Grade 11 Euclidean geometry and geometric proofs. The researcher believes, 

however, that the findings of the study may be relevant to the teaching of Grade 

10 and Grade 12 Euclidean geometry and geometric proofs, although this is 

subject to investigation.  

Finally, the teaching experiment was implemented in a period of four 

weeks. Given that students are going to upper secondary schools with a huge 

backlog in their geometry knowledge and skills, a period of four weeks may be 

inadequate to evaluate the effectiveness of the treatment. A longitudinal study 

may give a clearer picture of the treatment effects. However, that would require 
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a bigger budget.  

6.4 Recommendations for future research  

Based on the limitations identified in the preceding section, it is 

recommended that future research should: 

• Replicate the study with a larger sample of schools from different districts 

across the country. This would entail the training of teachers who would be 

able to implement the proposed treatment in experimental group schools, as 

it  would be impractical for one teacher to implement the treatment in a 

number of schools every day.  

• Implement the suggested framework for teaching and learning Grade 11 

Euclidean geometry  in a longitudinal study to achieve conclusive results.  

• Extend the study to Grade 10 and 12 students. 
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APPENDIX B: LETTERS OF PERMISSION AND CONSENT 

B 1: LETTER TO THE DISTRICT SENIOR MANAGER 

 

Enquiries : Mr Eric Machisi 
Cell  : 0721474618 
Work  : 015 223 6592 
E-mail  : 47021136@mylife.unisa.ac.za 

 
1034 Zone 8 
Seshego 
0699 

4 July 2016 

The District Senior Manager 
Limpopo Department of Education 
Capricorn Polokwane District 
Private Bag X 9711 
Polokwane 
0700 

 

Dear Sir/Madam 
 

REQUEST FOR PERMISSION TO CONDUCT RESEARCH IN SCHOOLS 

My name is Eric Machisi. I am a Mathematics Education student at the 
University of South Africa (UNISA). The research I wish to conduct for my 
doctoral thesis involves exploring the effects of van Hiele theory-based 
instruction on Grade 11 learners’ achievement in constructing geometric 
proofs. This project will be conducted under the supervision of Professor Nosisi 
Nellie Feza of the Institute for Science and Technology Education (ISTE) 
(UNISA).  
 
I am hereby seeking your permission to approach a number of township 
secondary schools in the Capricorn Polokwane District to provide participants 
for this project.  
 
Attached herewith is a copy of the University of South Africa ethical clearance 
certificate, the project information statement together with copies of the consent 
and assent forms to be used in the study. 
 
Upon completion of the study, I undertake to provide the Department of Basic 
Education with a bound copy of the full research report. For any further 
information, please feel free to contact me on 072 147 4618 or e-mail at  
47021136@mylife.unisa.ac.za 
 
Thank you for your time and consideration in this matter. Hoping to hear from 
you soon  
 

Yours faithfully 

 
Eric Machisi 
University of South Africa Student 
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For the attention of the District Senior Manager: 

PROJECT INFORMATION STATEMENT 

PROJECT TITLE: 

THE EFFECT OF VAN HIELE THEORY-BASED INSTRUCTION ON GRADE 11 

LEARNERS’ ACHIEVEMENT IN CONSTRUCTING GEOMETRIC PROOFS 

The objectives of the study are: 

▪ To design and implement Van Hiele theory-based instruction in the teaching of 

geometric proofs in township secondary schools; 

▪ To measure the impact of Van Hiele theory-based instruction on learners’ 

achievement and compare it with that of conventional instruction in the teaching of 

geometric proofs; 

▪ To investigate learners’ views on the implementation of Van Hiele theory-based 

instruction in the teaching of geometry and proofs; 

▪ To investigate learners’ views on the use of conventional approaches in the teaching 

of geometry and proofs. 

Significance of the study 

The study is significant in the following ways: 

▪ It seeks to find ways to obviate learners’ difficulties with geometric proofs, and hence 

enhance learners’ overall mathematics achievement. 

▪ It addresses educators’ pedagogical concern of how to teach geometric proofs in a 

manner that guarantees success for the majority if not all their learners. 

▪ It makes a call for a pedagogical shift in current approaches to teaching 

mathematics, particularly the teaching of geometric proofs in the Curriculum and 

Assessment Policy Statement (CAPS). 

▪ It provides valuable first-hand information on real matters of the classroom and 

forms a basis for making recommendations to the Department of Basic Education 

(DBE) on the kind of teacher development and support programmes they should 

consider implementing in schools.  

Benefits of the research to participating schools 

▪ The study will help debunk the perception among many educators that most learners 

cannot prove geometric riders. 

▪ The study is likely to change learners’ perception that proving geometric riders is a 

difficult mathematical aspect. 

▪ The study acts as a remedial programme for learners who have difficulty in 

understanding geometric proofs. 

▪ The study may help educators discover how they can turn learners’ difficulties into 

opportunities to improve the quality of teaching.  
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The research plan and method 

A convenience sample of four secondary schools from two townships in Capricorn 

district will participate in the study. Two schools from one township will constitute the 

experimental group whereas the other two schools from another township will form the 

control group. The researcher will implement Van Hiele theory-based instruction in the 

experimental group schools while learners in the control group schools will be taught by 

their educators as usual. The programme is expected to run for a period of four weeks 

during the third quarter of the year 2016. Data will be collected through administering 

pre-tests and post-tests in both experimental and control group schools. A few selected 

learners from both townships will participate in focus group discussions to elicit their 

views on the methods of instruction used in their classes during the teaching and 

learning of geometry and proofs. Permission will be sought from the learners and their 

parents prior to their participation in the research. Only those who consent and whose 

parents consent will participate. Mathematics educators and subject advisers will be 

requested to validate the geometry achievement test instrument before implementation. 

Their participation will also be based on informed consent. All information collected will 

be treated in the strictest confidence and will be used only for purposes of the study. 

Neither the school nor individual learners will be identifiable in any reports that are 

written. Participants may withdraw from the study at any time with no penalty. The role 

of the school is voluntary and the school principal may decide to withdraw the school’s 

participation at any time. There are no known risks to participation in this study. 

Recording devices will be used only in recording focus group discussions and no 

identifying information will be collected. If a learner requires support because of their 

participation in this research, steps will be taken to accommodate this.  

Schools’ involvement 

Once I have received permission to approach learners to participate in the study, I will:  

▪ Obtain informed consent from participants.  

▪ Arrange for informed consent to be obtained from participants’ parents.  

▪ Arrange time with participants for data collection  

Thank you for taking your time to read this information.  

Eric Machisi     Professor Nosisi Nellie Feza  
Primary Researcher                           Supervisor 
University of South Africa                   University of South Africa 
                                                           418 Robert Sobukhwe Building 
                                                           Nana Sita Street 
                                                           Pretoria 
                                                           Tel: 012 337 6168 
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B 2: LETTER TO PRINCIPALS OF PARTICIPATING SCHOOLS 

 

 
 

Enquiries : Mr. Eric Machisi 
Cell  : 0721474618 
Work  : 015 223 6592 
E-mail  : 47021136@mylife.unisa.ac.za 

 
1034 Zone 8 
SESHEGO 
0742 
 
5 July 2016 

 

Dear Principal 

REQUEST FOR PERMISSION TO CONDUCT RESEARCH IN YOUR 
SCHOOL 

My name is Eric Machisi. I am a Mathematics Education student at the 
University of South Africa (UNISA). The research I wish to conduct for my 
doctoral thesis involves exploring the effects of van Hiele theory-based 
instruction on Grade 11 learners’ achievement in constructing geometric 
proofs. This project will be conducted under the supervision of Professor Nosisi 
Nellie Feza of the Institute for Science and Technology Education (ISTE) 
(UNISA).  
 
I am hereby seeking permission to use your school as a research site for the 
study which involves working with Grade 11 mathematics learners and their 
educators. I would be grateful to receive your support in this regard.  
 
I have sought and gained permission from the District Senior Manager to 
involve Grade 11 mathematics learners and educators in my research. I 
guarantee total confidentiality of all information collected in my research. 
Neither the school nor the individual learners and educators will be identifiable 
in any reports that will be written. I will only report information that is in the 
public domain and within the law.  
 
Please find attached herewith this letter, a copy of the project information 
statement outlining the details of the study, the School Principal Consent form, 
the District Senior Manager approval letter and the University of South Africa 
Ethical Clearance Certificate. Please also note that the participation of your 
school is voluntary and that you are free to withdraw from the study at any 
stage.  
 
For any further information, please feel free to contact me on 072 147 4618 or 
e-mail at 47021136@mylife.unisa.ac.za 
 
Thank you for your time and consideration in this matter. Hoping to hear from 
you soon  
 
 
Yours faithfully 
 
Eric Machisi 
University of South Africa Student 
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For the attention of the School Principal: 

PROJECT INFORMATION STATEMENT 

PROJECT TITLE: 

THE EFFECT OF VAN HIELE THEORY-BASED INSTRUCTION ON GRADE 11 

LEARNERS’ ACHIEVEMENT IN CONSTRUCTING GEOMETRIC PROOFS 

Objectives of the research 

The objectives of the study are: 

▪ To design and implement Van Hiele theory-based instruction in the teaching of 

geometric proofs in township secondary schools; 

▪ To measure the impact of Van Hiele theory-based instruction on learners’ 

achievement and compare it with that of conventional instruction in the teaching of 

geometric proofs; 

▪ To investigate learners’ views on the implementation of Van Hiele theory-based 

instruction in the teaching of geometry and proofs; 

▪ To investigate learners’ views on the use of conventional approaches in the teaching 

of geometry and proofs. 

Significance of the study 

The study is significant in the following ways: 

▪ It seeks to find ways to obviate learners’ difficulties with geometric proofs and hence, 

enhance learners’ overall mathematics achievement. 

▪ It addresses educators’ pedagogical concern of how to teach geometric proofs in a 

manner that guarantees success for the majority if not all their learners. 

▪ It makes a call for a pedagogical shift in current approaches to teaching 

mathematics, particularly the teaching of geometric proofs in the Curriculum and 

Assessment Policy Statement (CAPS). 

▪ It provides valuable first-hand information on real matters of the classroom and 

forms a basis for making recommendations to the Department of Basic Education 

(DBE) on the kind of teacher development and support programmes they should 

consider implementing in schools.  

Benefits of the research to participating schools 

▪ The study will help debunk the perception among many educators that most learners 

cannot prove geometric riders. 

▪ The study is likely to change learners’ perception that proving geometric riders is a 

difficult mathematical aspect. 

▪ The study acts as a remedial programme for learners who have difficulty in 

understanding geometric proofs. 

▪ The study may help educators discover how they can turn learners’ difficulties into 

opportunities to improve the quality of teaching.  
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The research plan and method 

A convenience sample of four secondary schools from two townships in Capricorn 

district will participate in the study. Two schools from one township will constitute the 

experimental group whereas the other two schools from another township will form the 

control group. The researcher will implement Van Hiele theory-based instruction in the 

experimental group schools while learners in the control group schools will be taught by 

their educators as usual. The programme is expected to run for a period of four weeks 

during the third quarter of the year 2016. Data will be collected through administering 

pre-tests and post-tests in both experimental and control group schools. A few selected 

learners from both townships will participate in focus group discussions to elicit their 

views on the methods of instruction used in their classes during the teaching and 

learning of geometry and proofs. Permission will be sought from the learners and their 

parents prior to their participation in the research. Only those who consent and whose 

parents consent will participate. Mathematics educators and subject advisers will be 

requested to validate the geometry achievement test instrument before implementation. 

Their participation is also based on informed consent. All information collected will be 

treated in the strictest confidence and will be used only for purposes of the study. Neither 

the school nor individual learners will be identifiable in any reports that are written. 

Participants may withdraw from the study at any time with no penalty. The role of the 

school is voluntary and the school principal may decide to withdraw the school’s 

participation at any time. There are no known risks to participation in this study. 

Recording devices will be used only in recording focus group discussions and no 

identifying information will be collected. If a learner requires support because of their 

participation in this research, steps will be taken to accommodate this.  

Schools’ involvement 

Once I have received permission to approach learners to participate in the study, I will:  

▪ Obtain informed consent from participants.  

▪ Arrange for informed consent to be obtained from participants’ parents.  

▪ Arrange time with participants for data collection.  

Thank you for taking your time to read this information.  

Eric Machisi     Professor Nosisi Nellie Feza  
Primary Researcher                           Supervisor  
University of South Africa                   University of South Africa 
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School Principal Consent Form 

I give permission to Eric Machisi to invite Grade 11 mathematics learners and 

educators in this school to participate in investigating the effect of van Hiele 

theory-based instruction on grade 11 learners’ achievement in constructing 

geometric proofs. 

I have read the Project Information Statement explaining the purpose of the 

research and understand that:  

 The role of the school is voluntary. 

 I may decide to withdraw the school’s participation at any time.  

 Grade 11 mathematics learners and educators will be invited to 

participate and that permission will be sought from them and also from 

learners’ parents. 

 Only learners who consent and whose parents consent will participate 

in this research. 

 All information obtained will be treated in strictest confidence.  

 The school, learners’ and educators’ names will not be used and 

individual learners and educators will not be identifiable in any reports 

about the study.  

 There are no known risks to participation in this study. 

 The school will not be identifiable in any reports about the study.  

 Participants may withdraw from the study at any time without penalty. 

 A report of findings will be made available to the school.  

 I may seek further information on the project from the researcher on 

072 147 4618 or e-mail at 47021136@mylife.unisa.ac.za  

 

    _____________________     __________________ 

    School Principal’s Signature                                 Date 
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B 3: LETTER TO PARENTS/GUARDIANS 

 
 
 

Enquiries : Mr Eric Machisi 
Cell  : 0721474618 
Work  : 015 223 6592 
E-mail  : 47021136@mylife.unisa.ac.za 
 
1034 Zone 8 
SESHEGO 
0742 

18 July 2016 

Dear Parent/Guardian 

REQUEST FOR YOUR CHILD TO PARTICIPATE IN A RESEARCH 
PROJECT 

My name is Eric Machisi. I am a Mathematics Education student at the 
University of South Africa (UNISA). I am delighted to take this opportunity to 
seek your permission to involve your child in my research project entitled “The 
effects of van Hiele theory-based instruction on grade 11 learners’ achievement 
in constructing geometric proofs”. I am undertaking this study as part of my 
doctoral research at the University of South Africa. The purpose of the study is 
to find ways that can enhance learners’ achievement in constructing geometric 
proofs.  

If you allow your child to participate, I shall request your child to attend 
geometry lessons and write a pre-and post-test to check progress. The study 
will take place during regular school activities. The tests results will only be 
used for research purposes and will not count towards your child’s term mark. 
There is also a possibility that your child might be interviewed at the end of the 
project. The purpose of the interview will be to investigate learners’ perceptions 
and emotions on the method of instruction used in their classes in the teaching 
and learning of geometry and proofs. The project is expected to last for a period 
of four weeks. The data generated in this project will help to find ways to provide 
better mathematics education to your child. 

All information that is collected in this study will be treated with utmost 
confidentiality and will be used for research purposes only. No identifying 
information will be used throughout the study, that is, your child’s name and the 
name of his/her school will not be disclosed in any written report on this study. 
There are no foreseeable risks to your child by participating in this study.  

Please note that your child’s participation in this study is voluntary. You are free 
to refuse permission for your child to take part in this project and I guarantee 
that your refusal will not affect your child in any way. Your child will still have all 
the benefits that would be otherwise available to learners at the school. Your 
child may stop participating at any time they wish, for any or no reason without 
losing any of their rights. Participation in this study will involve no costs to your 
child and your child will not be paid for participating in this study.  

In addition to your permission, your child will also be requested to agree or 
refuse to participate in the study by signing an assent form. If your child does 
not wish to participate in the study, he or she will not be included and there will 
be no penalty. The information gathered from your child’s participation will be 
stored safely in a lockable room and on a password locked computer for five 
years after the study. Thereafter, the records will be destroyed.  
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Please sign the consent form on the next page, indicating whether I may or 
may not involve your child in this project. If you have any questions or issues 
for clarity, please do not hesitate to contact me or my study supervisor, 
Professor Nosisi Nellie Feza, Institute for Science and Technology Education 
(ISTE), University of South Africa (UNISA). My contact number is 072 147 4618 
and my e-mail is 47021136@mylife.unisa.ac.za. The e-mail of my supervisor 
is fezann@unisa.ac.za.  

Thank you for taking your time to read this letter. 

Yours faithfully 

Eric Machisi 
University of South Africa Student 
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Parental Consent form 

I, the parent/legal guardian of …………………………………………, 

acknowledge that I have read and understood the information provided above. 

The nature and purpose of the study has been explained to me and I have been 

given an opportunity to ask questions and my questions have been adequately 

answered. If I have additional questions, I know the person I should contact. I 

will receive a copy of this parental consent form after I sign it. 

Please tick  ✓  the appropriate category. Then sign and have your child return 

the slip.  

Thank you in advance!  

 

              Yes, you may involve my child in your research.  

 

               No, please do not involve my child in your research. 

 

                       ---------------------------------------------------------------   --------------- 
                       Parent / Legal Guardian’s Name & Signature               Date  
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B 4: LETTER REQUESTING WRITTEN CONSENT/ASSENT FROM 

LEARNERS TO PARTICIPATE IN THE STUDY 

Enquiries : Mr Eric Machisi 
Cell  : 0721474618 
Work  : 015 223 6592 
E-mail  : 47021136@mylife.unisa.ac.za 
 
1034 Zone 8 
SESHEGO 
0742 

19 July 2016 

Dear Learner 

My name is Eric Machisi. I am a doing a research on the teaching and learning 

of geometric proofs in secondary schools as part of my studies at the University 

of South Africa (UNISA). Your principal has given me permission to conduct 

this study at your school. I am delighted to invite you to participate in my study. 

I am doing this study to find ways that your teachers may use to help you 

understand geometric proofs better. This will help you and many other learners 

of your age in different schools. 

If you decide to participate in this study, I will ask you to write a pre-and post-

test on geometric proofs learnt in Grade 11. Your names will not appear on the 

answer sheets and the marks obtained will not count or contribute towards your 

marks at school. The results will be used for the purpose of research only and 

will be withheld until the study is over. I will not share the test results with your 

educators or parents. At the end of the program I might request you to attend 

a focus group discussion that will take about one - and - half to two hours. The 

discussion will be tape recorded and the researcher may wish to quote from 

the discussion in reporting the study’s results. Your name will not be revealed 

in any publications resulting from this study.  

You may discuss anything in this letter with your parents, friends or anyone 

else you feel comfortable talking to before you decide whether or not you want 

to participate in the study. You do not have to decide immediately. If there are 

any words or issues that you may want me to explain more about, I will be 

readily available at any time. Please note that you do not have to be in this 

research if you do want to be involved. The choice to participate is yours. You 

do not have to decide immediately. Give yourself time to think about it. If you 

choose to participate, you may stop taking part at any time and I guarantee that 

nothing undesirable will happen to you.    
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This study is considered safe and free from any harm to participants. If anything 

unusual happens to you in the course of the study, I would need to know. Feel 

free to contact me anytime with your questions or concerns. You will not be 

paid for taking part in this study. I will not tell people that you are in this research 

and I will not share any information about the study with anyone except my 

supervisor, Professor Nosisi Nellie Feza. Information collected from this study 

will be kept confidential. Throughout the study, participants will be identified by 

codes instead of names. The results of the study will be presented to the 

University of South Africa for academic purposes and later published in order 

that interested people may learn from the research. When the research is done, 

I will let you know what I have discovered and learnt from the study by making 

available a written report about the research results.  

If you have any questions, you may ask them now or later, even when the study 

has started. If you wish to ask questions later, you may talk to me or have your 

parents or another adult to call me at 072 147 4618 or e-mail at:  

 47021136@mylife.unisa.ac.za.   

Please sign the attached consent/assent form to indicate whether or not you 

agree to participate in the study. Do not sign the form until you have all your 

questions answered and have understood the contents of this letter. 

Thank you for taking your time to read this letter. 

Eric Machisi 

University of South Africa Student 
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Consent / Assent form 

I have accurately read and understood this letter which asks me to participate 

in a study at our school. I have had the opportunity to ask questions and I am 

happy with the answers I have been given. I know that I can ask questions later 

if I have them. 

I understand that taking part in this research is voluntary (my choice) and that 

I may withdraw from the study at any time for any or no reason. I understand 

that if I withdraw from the study at any time, this will not affect me in any way. 

I understand that my participation in this study is confidential and that no 

material that could identify me will be used in any reports on this study. I had 

time to consider whether or not I should take part in this study and I know who 

to contact if I have questions about the study. 

I agree / do not agree [**strike out one**] to take part in this study. 

 

------------------------------- ----------------------------  ----------------- 
Learner’s name (print) Learner’s signature       Date 
 
 
 
 
-------------------------------- ---------------------------   ----------------- 
Witness’s name (print) Witness’ signature         Date 
 
*Witness must be over 18 years and present when signed 
 
 
 
-------------------------------- ---------------------------  ------------------------ 
Parent/Legal guardian’s      Parent/Legal guardian’s               Date 
name                                     signature  
                            



 

242 
 

 
 
 
 

 

Interview Consent / Assent and confidentiality Agreement 

 
 
I, …………………………………………………., grant consent/assent that 

information I share during the interview discussions may be used by the 

researcher, Eric Machisi, for research purposes. I am aware that the interview 

discussion will be digitally recorded and grant consent/assent for these 

recordings, provided that my privacy will be protected. I undertake not to 

divulge any information that is shared in the interview discussions with the 

researcher to any other person in order to maintain confidentiality 

 

Participant’s Name (Please Print) : …………………………………………… 

  
Participant’s signature           : ………………………………….............. 
 
 
Researcher’s Name (Please Print) : …………………………………………... 
 
 
Researcher’s Signature          : …………………………………………… 

 
 

Date                : …………………………………………... 
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B 5: LETTER TO MATHEMATICS EXPERTS 

 

 
 

 
Enquiries : Mr Eric Machisi 
Cell  : 0721474618 
Work  : 015 223 6592 
E-mail  : 47021136@mylife.unisa.ac.za 
 
1034 Zone 8 
Seshego 
0742 

8 July 2016 

Dear Esteemed Mathematics Expert 

REQUEST FOR ASSISTANCE IN VALIDATING A GRADE 11 GEOMETRIC 
PROOF TEST  

My name is Eric Machisi. I am a Mathematics education student at the 

University of South Africa (UNISA). The research I wish to conduct for my 

doctoral thesis involves exploring the effects of van Hiele theory-based 

instruction on learners’ achievement in constructing geometric proofs. The 

study involves collecting data from learners through administering a geometry 

test to grade 11 learners. It is a requirement that the test instrument must be 

validated before it is administered to participants. I am therefore requesting you 

to assist in validating the test items based on relevance and clarity.  

 

Attached to this letter is a copy of the geometry test and the validation form you 

may use if you are willing to take part in the study. Please note that participation 

is voluntary and hence you are free to choose not to take part should you wish 

to do so. I guarantee total confidentiality of all information collected in my 

research and no names or identifiable information will be used in any reports 

that will be written.  

  
For any further information, please feel free to contact me on 072 147 4618 or 
e-mail at 47021136@mylife.unisa.ac.za 
 
Thank you for your time and consideration in this matter.  
 
Yours faithfully 
 
Eric Machisi 
University of South Africa Student 
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APPENDIX C: SCHOOL AND TEACHER PROFILE 

 

 

 

SCHOOL AND TEACHER PROFILE FORM 

INSTRUCTIONS:  
 You are kindly requested to complete both section A and section 

B of this form 
 If possible, please respond to all items 
 The information collected here will constitute the data for the 

present study 
 Your responses will be treated with utmost confidentiality and 

anonymity is guaranteed  

SECTION A: SCHOOL PROFILE 

TYPE OF SCHOOL: (Indicate with X) Public  

Independent  

FEE OR NO FEE SCHOOL: (Indicate with X) Fee receiving 
school 

 

No fee receiving 
school 

 

LOCATION OF THE SCHOOL: (Indicate with X) Township  

Rural  

SCHOOL FACILITIES: (Indicate with X) YES NO 

 Computer laboratory/laptops   

Overhead data projector   

Interactive geometry software   

School library   

Science laboratory   

If your school has the above facilities, are they functional? (Indicate with X) 

  YES NO 

Computer laboratory   

Overhead projector   

Interactive geometry software   

School library   

Science laboratory   

GRADE 12 MATHEMATICS RESULTS FOR THE PAST TWO YEARS 

  Number Wrote % Achieved 

2013   

2014   

2015   

2016 SCHOOL ENROLMENT  

Overall School Enrolment   

Number of Grade 11 learners doing Mathematics  
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SECTION B: EDUCATOR PROFILE 

 AGE  

GENDER: (Mark with “X”) Male  

 Female  

POPULATION GROUP: (Mark with “X”) 

Black  Coloured  Indian  White  Other  

HIGHEST PROFESSIONAL QUALIFICATION: (Mark with “X”) 

Certificate  Diploma  Degree  Honours   

Masters  Doctorate  Other  Specify  

TEACHING EXPERIENCE IN EDUCATION: (Mark with “X”)  

 0 -1 year   

1-5 years  

5 -10 years  

10-15 years  

More than 15 years  

EMPLOYMENT STATUS: (Mark with “X”) 
 Temporary  

Permanent  

EMPLOYING BODY: (Mark with “X”)  
 Provincial Department of Education  

School Governing Body   

WHICH GRADES ARE YOU CURRENTLY TEACHING AT SCHOOL?  
(Mark with “X”) 

 GRADES  

8  

9  

10  

11  

12  

ARE YOU CURRENTLY TEACHING THE SUBJECT(S) IN WHICH YOU 
SPECIALISED IN YOUR PROFESSIONAL QUALIFICATIONS? (Mark with “X”)  
 YES  

NO  

If your answer is “No”, please indicate the reason(s) from the list below: 

There was no other teacher to teach this subject  

Redeployment and Rationalisation  

Left the teaching profession for some time and re-entered at a later 
stage 

 

This was the only subject left at the school  

Phasing out of other subjects  

Other (please specify below)  



 

246 
 

APPENDIX D: LEARNER PROFILE 

LEARNER’S BACKGROUND CHARACTERISTICS 

 
LEARNER CODE 

 
 

 

AGE   GENDER: (Mark with “X”) 

 Male  

Female  

GRADE REPETITION: (Mark with “X”) 

Repeater   Non-repeater   

 

HOME LANGUAGE: (Mark with “X”) 

Afrikaans  English  Sepedi  Sotho   

Venda  Tswana  Tsonga  Zulu  

Xhosa  Ndebele  Swati  Other  

 

LOCATION OF RESIDENCE: (Mark with “X”) 

Village  Informal settlement  Township   

 

PARENTAGE: (Mark with “X”)  

Living with both parents  Living with single parent  

No parents/living with guardian or siblings   

 

PARENT/ GUARDIAN HIGHEST LEVEL OF EDUCATION: (Mark with “X”) 

Mother Less than grade 12  Grade 12  More than grade 12  

Father Less than grade 12  Grade 12  More than grade 12  

Guardian Less than grade 12  Grade 12  More than grade 12  

 

EMPLOYMENT STATUS OF PARENT(S)/GUARDIAN: (Mark with “X”)  

Parent(s)/guardian employed      

Parent(s)/guardian self-employed      

Parent(s)/guardian unemployed      

 

FAMILY INCOME STATUS: (Mark with “X”) 

Low   Average   High  

 

HOME FACILITIES: (Mark with “X”)  

Have access to a computer  Do not have access to a computer   

Have a private mathematics tutor  Do not have a private mathematics tutor  
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APPENDIX E: DIARY GUIDE 

Purpose of the research 

This study explores the effect(s) of teaching approaches used in the mathematics 

classroom on Grade 11 students’ learning achievement. The study also explores 

students’ views on their Euclidean geometry learning experiences.  

Purpose of the diary 

Your diary will provide me with important information about your day-to-day learning 

experiences during Euclidean geometry lessons and how your experiences affected 

your attitudes, views, and emotions about the topic. This information will help me to 

develop questions for group discussions with you at a later stage of the research.  

Privacy and confidentiality  

Please do not write your names, the name of your school or mathematics teacher in 

your diary. The information collected from your diaries will be used for academic 

purposes only. Your name, school and mathematics teacher’s names will not be used 

in reporting the findings of the study. Your diaries will be kept in a secure place and 

treated with utmost confidentiality.  

Guidelines for diary completion 

Thank you for agreeing to keep a diary of your day-to-day teaching and learning 

experiences for the period that Euclidean geometry will be taught at your school. It 

would be helpful if you could make entries into your diary daily. However, I do not want 

this to be a tiresome task. Please try to make entries into the diary every evening. If 

you feel that you do not have enough time to make your diary entry on the day that the 

lesson was taught, it is still fine if you do it a day after. I have tried to make the diary as 

easy as possible to complete and please feel free to contact me on 072 147 4618 or 

email at 47021136@mylife.unisa.ac.za for assistance with any issues that may arise 

in completing your diaries.  

In completing your diary, please try to include the following: 

▪ the date 

▪ lesson topic  

▪ a description of how the lesson was presented by the teacher 

▪ your thoughts and feelings/emotions about the way the lesson was presented [Try 

to evaluate or judge the lesson presentation] 

▪ what you liked or disliked, enjoyed or did not enjoy about the presentation 

▪ Do you believe the way the teacher taught the lesson helped you to understand 

the topic?  
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If there are any other experiences that you would like to write about which are not 

indicated here, please feel free to include them in your diary. You are encouraged to 

write your diary in English and please do not worry about grammar or spelling errors. 

You and your diary entries will remain anonymous. Your diary consists of 192 A-5 

pages and therefore there are no restrictions on the amount of information you can 

record. Daily diary entries can overflow to the next page when necessary. 

Thank you so much for taking your time and effort to complete the diary. Please do not 

hesitate to contact me for any assistance you may require to complete your diary. 

Eric Machisi  

[Researcher and University of South Africa Student]  
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APPENDIX F: PRIOR KNOWLEDGE ASSESSMENT TASK AND 

MARKING GUIDE 

 

  

 

 

 

 

 

 

 

 

 

 

MARKS: 40      TIME: 1 HOUR 

 

INSTRUCTIONS AND INFORMATION: 

Read the instructions carefully before answering the questions: 

1. This question paper consists of 3 long questions. 

2. Answer ALL questions. 

3. Write your answers in the spaces provided. 

4. Write neatly and legibly. 

5. Diagrams are NOT necessarily drawn to scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRADE 11 EUCLIDEAN GEOMETRY READINESS 

TEST 

(Informal Assessment Based on Grade 8 -10 Work) 

 

 

 

 

 

LEARNER’S CODE: ________________ 
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 1. Study the diagram below and answer the questions that follow: 

  

 

 Name an angle that is: Answers 

(a) Vertically opposite to 𝒆 (1) 

(b) Vertically opposite to 𝒇 (1) 

(c) Alternate to 𝒃 (1) 

(d) Alternate to 𝒂 (1) 

(e) Corresponding to 𝒚 (1) 

(f) Corresponding to 𝒄 (1) 

(g) Co-interior to 𝒓 (1) 

(h) Co-interior to 𝒑 (1) 
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   2. Fill in the missing information 

(a) 

 

Statement: 𝑥 + 𝑦 = ___________________________  
Reason: ______________________________ 
(2) 

(b)  

 

Statement: 𝑚 + 𝑛 + 𝑜 = ______________________ 
Reason: ___________________________ (2) 

(c)  

 

Statement: 𝑡 = _____________________________ 
Reason: _________________________     (2) 

(d)  

 

Statement: 𝑣 + 𝑢 + 𝑤 = _______________________ 
Reason: ___________________________ (2) 

(e) 

 

If 𝐴𝐵 = 𝐴𝐶, then _______________________  
Reason: ___________________________ (2) 

(f)  
 

If 𝐵̂ = 𝐶̂, then 
____________________________ 
Reason: _____________________________  

                                                                 (2) 
 

(g) 
 

Statement: ∆𝐴𝐵𝐶 ≡ ∆𝐷𝐸𝐹 
Reason: __________________________ (1) 

(h) 

 

Statement: ∆𝐴𝐵𝐶 ≡ ∆𝐷𝐸𝐹 
Reason: __________________________ (1) 

(i) 
 

 

Statement: ∆𝐴𝐵𝐶 ≡ ∆𝐷𝐸𝐹 
Reason: __________________________ (1) 

(j) 
 

Statement: Â1 = Â2  
Reason: __________________________ (1) 
 

           

  

 

yx

t

s

r

wv

u

CB

A

FE

D

C
B

A

FE

D

CB

A

21

21 D
B

C

A
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3. Study the following sketches 

(a) 

Prove that: ∆𝐾𝐿𝑀 ≡ ∆𝐾𝑁𝑀        (4) 

Statement Reason 

  

  

  

  

    

(b) 

 

 Prove that: B̂1 = B̂2         (4) 

 

  

2

1
M

N

L

K

2

1 C

D

A

B
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Statement Reason 

  

  

  

  

  

 

(c) In the sketch, 𝐴𝐵//𝑃𝑄 

 

Show that: ∆𝐴𝐵𝐶 ///∆𝑃𝑄𝐶        (4) 

Statement Reason 
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(d) In the sketch, AB // CD. 

  

Prove that: ∆ABO /// ∆DCO       (4) 

Statement Reason 

  

  

  

  

 

GRAND TOTAL: 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1
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MARKING GUIDE  

1(a) p  ✓ answer 

 (b) a  ✓ answer 

(c) p  ✓ answer 

(d) M ✓ answer 

 (e) x  ✓ answer 

(f) r  ✓ answer 

(g) m  ✓ answer 

(h) y  ✓ answer 

   

2(a) x + y = 180° (∠s on a str. line) ✓S ✓R 

(b) m+ n + o = 360° (∠s round a pt 𝐎𝐑 ∠s in a rev) ✓S ✓R 

(c) t = r + s (ext ∠ of a ∆) ✓S ✓R 

(d) v + u + w = 180° (sum of ∠s in ∆) ✓S ✓R 

(e) B̂ = Ĉ (∠s opp equal sides) ✓S ✓R 

(f) AB = AC (sides opp equal ∠s) ✓S ✓R 

(g) SSS ✓R  

(h) SAS ✓R 

(i) RHS ✓R 

(j) ∆ABC ≡ ∆ABD OR ≡ ∆s ✓R 

   

3(a)  Statement Reason  

 KL = KN Given  ✓S & R 

 K̂1 = K̂2 Given  ✓S & R 

 KM = KM Common ✓S & R 

 ∴ ∆KLM ≡ ∆KNM SAS ✓R 

   

(b)  Statement Reason  

 Â = D̂ Both = 90° ✓S & R 

 BC = BC Common ✓S & R 

 BA = BD Given ✓S & R 

 ∴ ∆BAC ≡ ∆BDC RHS ✓S & R 

 ∴ B̂1 = B̂2 
 

∆BAC ≡ ∆BDC or ≡ ∆s  

   

(c)  Statement Reason  

 Â = P̂2 Corresp ∠𝑠; AB // PQ ✓S & R 

 B̂ = Q̂2 Corresp ∠𝑠; AB // PQ ✓S & R 

 Ĉ = Ĉ Common ✓S & R 

 ∆ABC ///∆PQC  AAA / ∠∠∠ ✓S & R 

   

(d)  Statement Reason  

 Â = D̂ alt ∠s; AB // CD ✓S & R 

 B̂ = Ĉ alt ∠s; AB // CD ✓S & R 

 Ô1 = Ô2 Vert opp ∠𝑠 = ✓S & R 

 ∆ABO /// ∆DCO AAA / ∠∠∠ ✓S & R 
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APPENDIX G: TEST ITEM ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Aspect Number of incorrect responses 

1 (a) Vertically opposite angles  

1 (b) Vertically opposite angles  

1 (c) Alternating angles  

1 (d) Alternating angles  

1 (e) Corresponding angles  

1 (f) Corresponding angles  

1 (g) Co-interior angles  

1 (h) Co-interior angles  

2 (a) Angles on a straight line  

2 (b) Angles around a point  

2 (c) Exterior angle of a triangle  

2 (d) Angles of a triangle  

2 (e) Properties of an isosceles 

triangle 
 

2 (f) Properties of an isosceles 

triangle 
 

2 (g) Congruency  

2 (h) Congruency  

2 (i) Congruency  

3 (a) Proof (congruency)  

3 (b) Proof (congruency)  

3 (c) Proof (similarity)  

3 (d) Proof (similarity)  
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APPENDIX H: WORKSHEETS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Worksheet 1 [Classwork] 

In the accompanying figure, BD is a diameter of the circle. E is the centre of the circle. 

AB and AC are tangents to the circle. AE ‖ CD. AE intersects BC at F and CE is drawn.  

 

Prove that: 
(a) EBAC is a cyclic quadrilateral   (6) 

(b) AE bisects BÊC   (7) 
(c) EB is a tangent to circle AFB   (6) 

[19 marks] 
(Eadie & Lampe, 2013, p. 9.26) 
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A
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Worksheet 2 [Homework] 

In the diagram below, PQ is a tangent to the circle at Q. PRS is a secant of circle 
RSQWT. RW cuts SQ at K and QT at L. PS ‖ QT. RS = TW. 

 

 

Prove that: 
(a) KQ is a tangent to circle LQW   (6) 

(b) R̂1 = L̂3   (7) 
(c) PRKQ is a cyclic quadrilateral                                                                            (10) 

[23 marks] 
(Eadie & Lampe, 2013, p. 9.26) 
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Worksheet 3 [Classwork] 

TA is a tangent to the circle PRT. M is the midpoint of chord PT. O is the centre of the 
circle. PR is produced to intersect with TA at A and TA Ʇ PA. T and R are joined. OR 
and OT are radii. 

 

Prove that: 
(a) MTAR is a cyclic quadrilateral   (5) 
(b) PR = RT   (6) 

(c) TR bisects PT̂A   (6) 

(d) T̂2 =
1

2
Ô1    (5) 

[22 marks] 
(Phillips, Basson, & Botha, 2012, p.241) 
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Worksheet 4 [Homework] 

AC is a diameter of the circle centre B. FED is a tangent to the circle at E. BG ⊥  EC . 
BG produced meets FE produced at D. DC is drawn.  

 

 

Prove that: 
(a) BG ‖ AE    (5) 
(b) BCDE is a cyclic quadrilateral   (6) 
(c) DC is a tangent to circle EAC   (10) 
(d) DC is a tangent to circle BCG   (10) 

[31 marks] 
(Phillips, Basson, & Botha, 2012, p.244) 
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 Worksheet 5 [Classwork] 

In the diagram, EA is a tangent to circle ABCD at A. AC is a tangent to circle CDFG at 

C. CE and AG intersect at D. 

 

 
Prove that: 

(a) BG ‖ AE         (6) 

(b) AE is a tangent to circle FED       (6) 

(c) AB = AC         (6) 

      
[18 marks] 

 
(Department of Basic Education, 2013, p. 12) 
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Worksheet 6 [Homework] 

Two circles intersect at B and C. ADG, FEG and ABF are straight lines.  

 

 

 

Prove that DCEG is a cyclic quadrilateral   (6 marks) 

 (Limpopo Department of Education, 2014, p. 11) 
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 Worksheet 7 [Classwork] 

Given circle centre O with diameter AOD and chord CD ⊥  AB.  

 

 

Prove that: 

(a) BĈO = DĈO   (6) 

(b) BÊD = 2AD̂G   (6) 
(c) ODEF is a cyclic quadrilateral   (9) 

                                                                                                               [21 marks] 
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 Worksheet 8 [Homework] 

TD is a tangent to circle RSPD. RS and DP produced meet at W. KST is a straight 

line. Ŝ4 = Ŝ2. DR ‖ PS.  

 

 

Prove that: 
(a) SWTD is a cyclic quadrilateral   (5) 
(b) TS is a tangent to circle RSPD   (7) 
(c) TW ‖ PS   (6) 

[14 marks] 

 (Limpopo Department of Education, 2013, p. 8)
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APPENDIX I: GEOMETRY PROOF TEST AND MARKING GUIDE 

 

 

 

 

    

INSTRUCTIONS AND INFORMATION  

This question paper consists of 4 long questions 

1. Answer ALL questions 

2. Write neatly and legibly 

3. Diagrams are NOT necessarily drawn to scale 

4. Number your answers correctly according to the numbering system 

used in this question paper.  

 

 

 

 

 

 

 

 

 

 

GRADE 11 EUCLIDEAN GEOMETRY TEST 

(PROVING RIDERS) 

MARKS: 50  TIME ALLOWED:  1 HOUR 
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QUESTION 1 

O is the Centre of the circle, AC is produced to D, and CD = CB.   

Prove that Ô1 = 4D̂       [8 marks] 

QUESTION 2 

Diameter AB is produced to C. CE is a tangent to the circle at E. AE is 

produced to D, and DC ⊥ AC. 
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Prove that: 

(2.1) BEDC is a cyclic quadrilateral      (4) 

(2.2) D̂1 = Â        (5) 

(2.3) CE = CD        (7)  

(2.4) B̂1 = B̂3        (6)     

          [22 marks] 

QUESTION 3 

AB is a tangent to a circle LMNP. AB is parallel to MP. 

 

Prove that: 

(3.1) LM = LP                             (6) 

(3.2) LN bisects MN̂P      (3) 

(3.3) LM is a tangent to circle MNQ     (4)  

          [13 marks] 
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QUESTION 4 

In the diagram, 𝑂 is the centre of the circle. ABCD ⊥ at P  

 

Prove that: 

(4.1) B̂1 = B̂2       (4) 

(4.2) Ê = 2B̂1       (3) 

 [7 marks] 

GRAND TOTAL: 50 

Thank you for your participation! 
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MARKING GUIDE 

1. CD = CB (given)  

 ∴ D̂ = B̂2 (∠s opp equal sides) ✓ S ✓ R 

 Ĉ1 = B̂2 + D̂ (ext. ∠ of a ∆) ✓ S ✓ R 

 ∴  Ĉ1 = 2D̂ (B̂2 = D̂) ✓ S 

 Ô1 = 2Ĉ1 (∠ at centre = 2. ∠ at cirumference) ✓ S ✓ R 

 ∴ Ô1 = 2(2D̂) 

 = 4D̂ 

✓ S 

   (8) 

2.1 Ê3 = 90° (∠ in semi − circle) ✓S ✓R 

 Ĉ = 90° (given)  

 ∴ Ê3 = Ĉ (Both = 90°) ✓S 

 ∴ BEDC is a cyclic quadrilateral   

 (ext ∠ = int opp ∠) OR (converse ext ∠ of a cyclic quad) ✓R 

  (4) 

2.2 D̂1 = Ê2 (∠s in the same seg. 
OR ∠s subtended by the same chord) 

✓S ✓R 

 Ê2 = Â (tan chord theorem) ✓S ✓ R 

 ∴ D̂1 = Â (Both = Ê2) ✓R 

  (5) 

2.3 D̂ = B̂1 (ext ∠ of a cyclic quad) ✓S ✓ R 

 B̂1 = Ê4 (tan chord theorem) ✓S ✓R 

 Ê4 = Ê1 (vert opp ∠s) ✓S ✓ R 

 ∴ D̂ = Ê1  

 ∴ CE = CD (sides opp. equal ∠s) ✓R 

  (7) 

2.4 B̂3 = Ê1 (∠s in the same seg) ✓S ✓R 

 Ê1 = Ê4 (vert opp ∠s )/proved ✓ S/R 

 ∴ B̂3 = Ê4 (both = Ê1) ✓ S/R 

 But Ê4 = B̂1 (tan chord theorem/proved) ✓S/R 

 ∴ B̂3 = B̂1 (both = Ê4) ✓R 

 OR (6) 

 B̂1 = D̂ (ext. ∠of a cyclic quad) ✓S ✓R 

 D̂ = Ê1 (∠s opp. equal sides; CE = CD) ✓S ✓R 

 ∴ B̂1 = Ê1 (both = D̂)  

 Ê1 = B̂3 (∠s in the same seg) ✓S ✓R 

 ∴ B̂1 = B̂3 (both = Ê1)  

  (22) 

3.1 L̂3 = M̂1 (alt ∠s; AB ∥ MP) ✓S ✓R 

 L̂3 = P̂1 (tan chord theorem) ✓S ✓R 

 M̂1 = P̂1 (both = L̂3) ✓S/R 

 ∴ 𝑳𝑴 = 𝑳𝑷 (sides opp. equal sides) ✓R 

 
 

(6) 

 OR  

 L̂4 = P̂1 (alt ∠s; AB ∥ MP) ✓S ✓R 

 L̂4 = M̂1 (tan chord theorem) ✓S ✓R 

 ∴ P̂1 = M̂1 (both = L̂4) ✓S/R 

 ∴ LM = LP (sides opp. equal angles) ✓R 

  (6) 
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3.2 LM = LP (proved) ✓S/R 

 ∴ N̂1 = N̂2 (Equal chords; equal ∠s) ✓S ✓R 

 OR  

 N̂1 = P̂1 (∠s in the same seg) ✓S/R 

 P̂1 = M̂1 (proved)  

 ∴ N̂1 = M̂1 (both = P̂1)  

 But M̂1 = N̂2 (∠s in the same seg) ✓S/R 

 ∴ N̂1 = N̂2 (both = M̂1) ✓S/R 

 ∴ LN bisects MN̂P  

 
 

(3) 

 OR  

 L̂3 = N̂1 (tan chord theorem)  

 L̂3 = M̂1 (alt ∠s; AB ∥ MP)  

 ∴ N̂1 = M̂1 (both = L̂3) ✓S/R 

 But M̂1 = N̂2 (∠s in the same seg) ✓S/R 

 ∴ N̂1 = N̂2 (both = M̂1) ✓S/R 

 ∴ LN bisects MN̂P (3) 

 OR  

 L̂4 = N̂2 (tan chord theorem)  

 L̂4 = P̂1 (alt ∠s; AB ∥ MP)  

  ∴ N̂2 = P̂1(both = L̂4) ✓S/R 

 But P̂1 = N̂1(∠s in the same seg) ✓S/R 

 ∴  N̂1 = N̂2 (both = P̂1) ✓S/R 

 ⟹ LN bisects MN̂P  

  (3) 

3.3 M̂1 = P̂1 (proved) ✓ S/R 

 ∴ N̂1 = P̂1 (proved) ✓ S/R 

 ∴ M̂1 = N̂1 (both = P̂1) ✓ S/R 

 LM is a tangent to circle MNQ 
(∠ between line and chord)𝐎𝐑 (converse tan chord theorem) 

✓ R 

 
 

(4) 

 OR  

 L̂3 = M̂1 (alt ∠s; AB ∥ MP) ✓ S/R 

 L̂3 = N̂1 (tan chord theorem) ✓ S/R 

 ∴ M̂1 = N̂1 (both = L̂3) ✓ S/R 

 ⟹ LM is a tangent to circle MNQ  

 (∠ between line and chord)OR (converse tan chord theorem) ✓ R 

  (4) 

4.1 CP = DP(⊥  line from centre to chord bisects chord) ✓ S/R 

 P̂1 = P̂2 (both = 90°) ✓ S/R 

 BP is common ✓ S 

 ∴ ∆𝐵𝐶𝑃 ≡ ∆𝐵𝐷𝑃 (𝑆𝐴𝑆)  ✓ S/R 

 ∴ B̂1 = B̂3 (∆𝐵𝐶𝑃 ≡ ∆𝐵𝐷𝑃)  

  (4) 

4.2 Ê = B̂1 + B̂2 (∠s in the same seg) ✓S ✓R 

 But B̂1 = B̂2 (proved) ✓S/R 

 ∴  Ê = B̂1 + B̂1 = 2B̂1  

   (3) 
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APPENDIX J: TEST VALIDATION FORM 

You are kindly requested to provide feedback on the validity of each test item by inserting a cross (X) in the appropriate spaces. 

Your feedback is highly valued and greatly appreciated. 

 

 

                                   Item                                                              
Criteria 

1 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 4.2 4.3 4.4 

            

Relevance             

1 = not relevant             

2 = item needs some revision             

3 = relevant but needs minor revision             

4 = very relevant             

Clarity             

1 = not clear             

2 = item needs some revision             

3 = clear but needs minor revision             

4 = very clear             

Total Rating Score Per Item             

Average Rating Score Per Item             
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**You may provide comments and suggestions for improvements here: 

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………......

............................................................................................................................................................................................................

............................................................................................................................................................................................................

............................................................................................................................................................................................................

............................................................................................................................................................................................................

............................................................................................................................................................................................................

............................................................................................................................................................................................................ 

Signature: ____________________                                                                                  Date: _____________________ 
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APPENDIX K: ‘sm’ ANCOVA AND fANCOVA CODES IN ‘R’ PACKAGE 

 

 

 

 

 

 

 

 

 

 

 

 

> rm(list=ls()) 

> dat=read.csv(file.choose(),header=T) 

> library(sm) 

> library(fANCOVA) 

> attach(dat) 

> names(dat) 

> with(dat,ancova.np<-sm.ancova(Prescore,Postscore,Group,model="equal")) 

> sm.ancova(x=Prescore,y=Postscore,group=Group,model="equal") 

> loess.ancova(Prescore,Postscore,Group,degree=2,criterion=c("aicc","gcv"), 

+ family=c("gaussian","symmetric"),method=c("Speckman","Backfitting"), 

+ iter=10,tol=0.01,user.span=NULL,plot=T) 

> T.aov(Prescore,Postscore,Group,B=200,degree=1,criterion=c("aicc","gcv"), 

+ family=c("gaussian","symmetric"),tstat=c("DN","YB"), 

+ user.span=NULL) 
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APPENDIX L: ‘sm’ ANCOVA AND fANCOVA OUTPUT IN ‘R’ 

PACKAGE 

 

 

 

 

 

> rm(list=ls()) 
> dat=read.csv(file.choose(),header=T) 
> library(sm) 
Package 'sm', version 2.2-5.6: type help(sm) for summary information 
Warning message: 
package ‘sm’ was built under R version 3.4.4  
> library(fANCOVA) 
fANCOVA 0.5-1 loaded 
Warning message: 
package ‘fANCOVA’ was built under R version 3.4.4  
> attach(dat) 
> names(dat) 
[1] "Student.ID" "Group"      "Age"        "Gender"     "Prescore"   
[6] "Postscore"  "X"          "X.1"        
> with(dat,ancova.np<-sm.ancova(Prescore,Postscore,Group,model="equal")) 
Test of equality :  h =  2.26096    p-value =  0  
> sm.ancova(x=Prescore,y=Postscore,group=Group,model="equal") 

Test of equality:  h = 2.26096    p-value = 0  

> loess.ancova(Prescore,Postscore,Group,degree=2,criterion=c("aicc","gcv"), 
+ family=c("gaussian","symmetric"),method=c("Speckman","Backfitting"), 
+ iter=10,tol=0.01,user.span=NULL,plot=T) 
$linear.fit 
                [,1] 

(Intercept) 17.09871 

group1      49.28838 

$smooth.fit 
Call: 
loess(formula = lm.res ~ x, span = span1, degree = degree, family = family) 
Number of Observations: 186  
Equivalent Number of Parameters: 4.86  
Residual Standard Error: 16.85  
There were 50 or more warnings (use warnings() to see the first 50) 
> T.aov(Prescore,Postscore,Group,B=200,degree=1,criterion=c("aicc","gcv"), 
+ family=c("gaussian","symmetric"),tstat=c("DN","YB"), 
+ user.span=NULL) 
Test the equality of curves based on an ANOVA-type statistic 
Comparing 2 nonparametric regression curves  
Local polynomial regression with automatic smoothing parameter selection via AICC is used for curve 
fitting.  
Wide-bootstrap algorithm is applied to obtain the null distribution.  
Null hypothesis: there is no difference between the 2 curves. 

T = 595.9     p-value = 0.004975  

There were 50 or more warnings (use warnings() to see the first 50) 
> 
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             APPENDIX M: FOCUS GROUP DISCUSSION GUIDE 

Preliminary Section [For internal use only] 

 

Date  

Time  

Location  

Type of group  

Selection criteria  

Number of participants present  

Number of male participants present  

Number of female participants present  

 

Focus Group Script:  

Opening Section 

Introduction: 

Hello everybody! Welcome and thank you for volunteering to participate in this focus 

group discussion. We know that you have your own business to do and we greatly 

appreciate that you have sacrificed your time to be with us today. My name is [insert 

moderator’s name here] and assisting me is [insert note-taker’s name here]. We are 

conducting discussion groups with Grade 11 learners like yourselves from different 

secondary schools in Capricorn district, on behalf of Mr Eric Machisi, who is a student 

with the University of South Africa. The purpose of the discussion is to get your views 

on the way Euclidean geometry was taught in your mathematics classrooms. Your 

feedback is very important to us as it will guide researchers in developing ways to 

improve the quality of teaching and learning of Euclidean geometry in schools.  

My role as a facilitator will be to guide the discussion by asking you several open 

questions that each one of who can respond to. [Insert note-taker’s name here] will 

observe, take notes, and record an audio of the conversation. We are recording the 

conversation because we do not want to miss any of your comments. This is only for 

purpose of the research. The recorded information will be transcribed, summarized, and 

combined with information recorded in focus group discussions conducted elsewhere. I 

would like to assure you that whatever you say in this discussion will be anonymous. 

This means that no names or personal information will be used in our final report. The 

final report will be published by the University of South Africa for interested parties to 
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read. 

Before we start, I want everyone to know that there are no right or wrong answers to 

the questions asked in this discussion, only differing views. Both positive and negative 

views are important to us. So, please feel free to be honest and to share all your 

views with us even if they differ from what others have said. You do not have to agree 

with the views of other participants in the group. We encourage everyone to 

participate and you do not have to speak in any order. However, the most important rule 

we should observe is that only one person speaks at a time. We may be tempted to 

interrupt when someone is talking but please let us wait until they have finished. Please 

be reminded that information provided in this room must be kept confidential. This 

means that you should not tell anyone what was said by others here today. We would 

greatly appreciate it if members respect each other’s privacy by not discussing the 

comments of other group members when you leave this room. Remember the golden 

rule: Treat others in the same way you would want them to treat you. Do you have any 

questions before we get started? [answers]. Please, let us switch off our cell phones 

or simply put them on silent mode to avoid disturbances when we get started. If you must 

respond to a call, please do so as quietly as possible and re-join us as quickly as 

possible. Once again, thank you very much for your cooperation. Our discussion will take 

no more than two hours. Without further delays, let us get started.  

Warm-up: 

Let us start by getting to know each other. Please tell us: (1) your first name; and (2) 

an activity you like to do in your spare time (Point to someone to start; randomly select 

people to demonstrate that people do not talk in sequence).  

 

Question Section 

 

(a) Engagement: Ask a general question to get participants talking to each other, to 

make them feel comfortable, and to build rapport 

• When you think of Euclidean geometry, what comes to your mind? Please talk to each 

other. You have five minutes to do that.  

• Ok, our five minutes has elapsed. I would love to hear your different views. Anyone of 

you can be first to tell us his or her response (Give all participants who want to say 

something time to speak, and remember to say ‘thank you’ after each speaker)  
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Thank you very much for all your contributions. It was quite interesting to hear your 

different views. Now, let us proceed to our next set of questions.  

 

(b) Exploration: Ask specific questions focusing on the topic of discussion 

• What do you think about the way Euclidean geometry and geometric proofs were taught 

in your mathematics classroom?  

• How do you feel about the way Euclidean geometry and geometric proofs were taught 

in your mathematics classroom? 

• What do you like or dislike about the way Euclidean geometry and geometric proofs were 

taught in your mathematics classroom? 

• Can you describe your attitude towards Euclidean geometry and geometric proofs? 

• What did the teacher do that you think contributed to your attitude towards Euclidean 

geometry and geometric proofs? 

  

(c) Exit: Ask a follow-up question to determine if there is anything else related to the 

topic that needs to be discussed  

 

Before we end the discussion, is there anything you wanted to add that you did not get 

a chance to bring up earlier? (Give participants time to speak).  

 

Closure 

Thank you so much for your time and sharing your opinions and emotions with us. Your 

feedback will be valuable to our research and this has been a very successful discussion. 

We hope you found this discussion interesting. If there is anything you are unhappy with 

or wish to complain about, please feel free to talk to me at the following number: 072 147 

4618. I see our time is up and we have come to the end of our discussions. Once again, 

thank you very much for your participation. As you walk out, please collect your food and 

gift from the people seated next to the exit. 

I wish you all a safe journey on your way back home.  

Good bye!  
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APPENDIX N: FOCUS GROUP DISCUSSION TRANSCRIPTS 

N 1: EXPERIMENTAL GROUP TRANSCRIPT − FG E1 

Moderator: When you think of Euclidean geometry, what comes to your mind? 

Please talk to each other. You have five minutes to do that (Pause). 

  

Moderator: Alright, eh, thank you so much for your multiple contributions as you were 

discussing but now, I would love to hear your different views in terms of 

whenever you think of Euclidean geometry, what comes to your mind. I 

want to hear your views personally. Let’s start with eh Na! 

 

Na: Eh, so when I heard of Euclidean geometry, I thought of quadrilaterals 

but in turned out that Euclidean geometry was all about all shapes, 

including circles, and other quadrilaterals. So, what came to my mind 

when I saw that we are going to solve Euclidean geometry about circles 

I thought eh it was difficult because I have never done anything like that 

before. So I didn’t believe myself at first and I had already gave up saying 

I will never get this right but then as Sir continued to teach us and as he 

unpacked the whole topic, then it became a lot more easier for me to 

understand it and I am quite happy to say that I have improved and I can 

now tackle Euclidean geometry questions on my own and get them right. 

And also, my skills have also improved. I am able to interpret diagrams 

more accurately and apply the knowledge that I have acquired in previous 

days. Yes, so Euclidean geometry is not actually a difficult thing. It just 

needs a person to be determined and to — yes, to be focused all the time. 

 

Moderator: Thank you Na. Uhm, T!  

 

T: Ok, when I think of Euclidean geometry right, uhm, I have always loved 

this part of Euclidean geometry in Mathematics. Like in Mathematics as 

a whole, I have always loved Euclidean geometry. Uhm, what I like about 

Euclidean geometry or what I have been in love about it is because they 

give you things and then they ask you questions based on that thing. So, 

if you are able to interpret it then it won’t be a very tough situation for you 

to come up with solutions. So, whenever I think of Euclidean geometry, 

or whenever I hear of Euclidean geometry, I have always become happy 

you know, because this is the part of mathematics that I love the most 

and I am very good at it. So, it is not really a barrier to me to solve 

Euclidean geometry problems. To come up with solutions is not really 

hard to me. 

 

Moderator: Thank you so much, T. Uhm, O!  

 

O: When I think of Euclidean geometry, firstly, I didn’t know how to solve 

theorems (riders) and it was difficult for me. But since our teacher taught 

us how to prove and solve, so, I started liking how to solve theorems 

(riders). And when I think of Euclidean geometry, I become happy 

because I was not working alone. We were working in pairs, and that 

made us know more or have more knowledge about Euclidean geometry.  
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Moderator: Thank you O. Eh, thank you so much all of you for your contributions. It 

was quite interesting to hear your different views. Let us now proceed to 

our next set of questions. We are going to explore the first question: What 

do you think about the way Euclidean geometry and geometric 

proofs were taught in your mathematics classroom? O!  

 

O:  I think they taught us in a good way. If I was going to rate, I would rate 10 

over 10 because I understood everything about Euclidean geometry and 

geometric proofs. And now I have more knowledge, oh, yah.  

 

Moderator:  Thank you O!  

 

Na: Ok, I think it was taught exceptionally well because we were doing each 

theorem individually every day and then after doing the theorem, we were 

given an activity to do. So, uhm, that made us like gain more knowledge 

and have experience on how to solve certain riders. So, yah we became 

very familiar with the whole topic. So, I think yah Euclidean geometry was 

taught very, very well.  

 

Moderator: Thank you Na!  

 

T: Eh, I think the way they taught us Euclidean geometry was very good and 

explicit because at one point they would give activities. They would leave 

us for like one hour thirty minutes or so. So, we will try to figure out how 

to come up with solutions, how to solve this problem, and then that made 

us be a little bit witty than before because well they don’t really give us 

answers to this question at first. They leave us then we will be able to 

discuss it with others, then, yah that is how it was done.  

 

Moderator:  Thank you T for your view. Eh, let’s move to the next one! How do you 

feel about the way Euclidean geometry and geometric proofs were 

taught in your mathematics classroom? How do you feel? Uhm, Na!  

 

Na: Uhm, I felt really bad at first because I had no idea what Euclidean 

geometry was all about this year because we were doing something that 

we had never done before but then as time went on, I started feeling good 

because I was able to solve and come up with solutions. And it felt like I 

was being put on a test like as a challenge to test how far I can go or I 

can push myself or how I am willing to do things. So yah, I really feel good 

now about Euclidean geometry.  

 

Moderator: Thank you very much Na. Anyone else who wants to — Uhm, T!  

T: Uhm, I feel good about Euclidean geometry because they teach us how 

to solve problems not only in the mathematics class but then in real life 

because you will be able to solve problems in different perspectives. 

Then, that is what is happening in real life because we come across many 

problems in our daily lives. With Euclidean geometry we are now able to 

come up with solutions to solve this and that.  

 

Moderator:  Thank you T. O, do you have something?  
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O: Yes! What I like about Euclidean geometry is that you can solve many 

problems with many solutions and the other thing is uhm working with our 

teacher made us know more about theorems. That’s what I like and the 

last thing I like is we were working in pairs and we showed each other, 

which one is right and which one is wrong. Then after that our Sir came 

and showed us which is wrong and what is right. Yah.  

 

Moderator: Thank you O! Let’s move on to our third question: What do you like or 

dislike about the way Euclidean geometry and geometric proofs 

were taught in your mathematics classroom? Uhm, Na! 

 

Na: Ok, uhm, what I like was that everybody was able to participate in the 

lesson because sir wrote statements on the chalkboard and everyone had 

a right or freedom to go there and fill the correct reason for that particular 

statement so the class was alive so yah we were jumping up and down, 

back and forth to the chalkboard just to — yah, I liked everything about 

how Euclidean geometry was taught.  

 

Moderator: Thank you Na. Uhm, O! 

 

O: What I like about the way we were taught is uh, our teacher was not in a 

hurry. He was patient and if a learner didn’t understand he could explain 

more and give more examples. So that’s what I like about the way we 

were taught. 

  

Moderator: Thank you O. Uhm, T! 

 

T: Well, what I like is the participation of everyone. That was on another level 

because well, we understood what Euclidean geometry was all about. In 

that way we were able to participate like all the time. We were even 

fighting over the chalk at times. That is what I liked.  

 

Moderator: Thank you T. Eh, let’s quickly move on to our fourth question. Can you 

describe your attitude towards Euclidean geometry and geometric 

proofs? Uhm, T!  

 

T: Ok, my attitude has always been positive towards Euclidean geometry. 

But now I think it grew remarkably on another level. Right now, my attitude 

is not the way it was before. It is more than positive you know.  

 

Moderator: Thank you T. Uhm, O!  

 

O: Firstly, I didn’t like, uhm, my attitude was negative because I didn’t know 

like (how) to solve Euclidean geometry. I didn’t know what Euclidean 

geometry is all about. So, when our teacher taught us, my attitude 

changed to being positive. So, now I know more about solving problems 

and Euclidean geometry. So, I would say, and since my attitude changed, 

uhm, I think I would have more knowledge or work more in order to have 

better attitude. 

 

Moderator: Thank you O! Uhm, Na! 
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Na: My attitude at first was not good because I felt like Euclidean geometry 

was gonna defeat me because it’s something I have never did (done) 

before. But as time went on my attitude started to change because I told 

myself that I would not be defeated by a bunch of diagrams with 

complicated lines. Then I started improving and started feeling better 

about myself and now I view Euclidean geometry as something that eh, I 

can take as a — like —. 

  

Moderator:  Thank you Na! This leads us to our last question. What did your teacher 
do that you think contributed to your attitude towards Euclidean 
geometry and geometric proofs? Uhm, O! 

  

O: Our teacher made me love the way we solve and he taught us and 

explained each and every theorem, not being in a hurry. And the other 

thing is he made us comfortable to talk to him in order to solve, and — 

yes.  

 
T: Uhm, one thing I like about Sir is that he doesn’t really tell you that this 

answer is wrong because he knows that if he do (does) so he will take 

your confidence down. So, he is free. He always free with us. You will be 

free to talk to him even it doesn’t involve mathematics things. So, that is 

what I like about him. He’s always a free man. You don’t, like most of us 

are not afraid to go towards him and say this is the problem that I came 

across, so how can I try to solve this particular problem. So, you are 

always free to go to Sir and that is what I like him. 

  

Moderator: Thank you T. Before we end the discussion, is there anything you wanted 

to add that you did not get a chance to bring it up earlier on? (Pause) 

Alright, thank you so much for your time and sharing your opinions and 

emotions with us. Your feedback would be a valuable asset to our 

research and this has been a very successful discussion. We hope you 

found this discussion interesting. If there is anything you are unhappy with 

or wish to complain about please feel free to talk to me at the following 

number, 072 147 4618. I see your time is up and we have to come to the 

end of this discussion. Once again thank you so much for your 

participation. I wish you all a safe journey back home. Goodbye!   
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N 2: EXPERIMENTAL GROUP DISCUSSION TRANSCRIPT− FG E2 

Moderator:  When you think of Euclidean geometry what comes to your mind? 

Please talk to each other. You have five minutes to do this (Pause). 

 

Moderator: Ok, your five minutes has elapsed. I would love to hear your different 

views. Anyone can first tell us what his/her response or views on what 

you were discussing. 

 

Mo: From what we were talking about mostly we talked about circles and 

quads, tangents and chords. So, from my view like Euclidean geometry 

ye e dirang ke rena (the one that we are doing) is mostly about circles, 

yah.  

 

Moderator: Ok, thank you very much for all your contributions. Anyone else who 

wants to voice out?  

 

Kg: What does the question say? 

 

Moderator: The question is, uhm, when you think of Euclidean geometry, what comes 

in your mind? 

Kg: Solving problems. Ah, well Euclidean geometry needs someone who can 

think like critically so because solving riders is hard, like you have to think 

to solve it.  

Moderator: Ok, thank you Kg for input. Do we anyone else? (pause) Uhm, it is quite 

interesting to hear your different views. Now, let us proceed to our next 

set of questions. We are going to exploration. What do you think about 

the way Euclidean geometry and geometric proofs were taught in 

your mathematics classroom? Mo!  

 

Mo: Uhm, from what I think like, firstly I didn’t know how to solve like to prove 

using a laptop or computer. But as — when we went into our classroom 

and Sir taught us about it, then I was so impressed and got more like 

interested on knowing how to solve these problems. And I think the way 

that they teach and mostly like be ba re dumelela re rena like re fa di 

views tša rena (they allowed us like to give our own views). And, it’s good, 

yah!  

  

Moderator: Ok, thank you Mo! Anyone else who wants to — yes, Ha!  

       

Ha: Uhm, from my point of view I think Euclidean geometry was taught very 

well in our mathematics class as we were able to solve the riders and how 

to prove our shapes. Then we were able to know how to solve these types 

of questions so that when we know that these types are going to appear 

on question papers then we know how to answer them. So, yah I think 

Euclidean geometry was taught very well as we were able to understand 

how Euclidean geometry was able to — be confined (??).  

 

Moderator: Thank you Ha! Another one who is interested in the question? Yes, Ch!  
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Ch: Eh, that part when we were taught in our maths class when we were using 

computers using the GSP software, I think when we were taught 

Euclidean geometry using that software was really good for us as learners 

because it wasn’t like reading those theorems in a book. We were actually 

seeing them first-hand. We were actually measuring those angles. In our 

books those things are not drawn to scale, you just read them and all you 

do is just memorise but  that GSP software you can see them 

straight and you can measure those angles, the sides, you can see what 

exactly they are talking about. 

  

Moderator: Ok, thank you Ch! Uhm, how do you feel about the way Euclidean 

geometry and geometric proofs were taught in your mathematics 

classroom? Mo!  

 

Mo: I feel very good about it because eh, as they taught us, we were not only 

like listening to the teacher alone, we were giving our own thoughts, and 

our own like views from what we think about them. And then I feel good, 

yah, I feel good about it because we were able to do like things that I 

never thought I can do in my life. Like, I never thought, sa mathomo 

(firstly), eish! Firstly, when they introduced us to this topic ya (of) 

Euclidean geometry, I thought it was a difficult part but as I got to explore 

like ge ba re ruta ka tšona (as they were teaching us about it) I was able 

to be free around my mates and then ka kgona, le gona jwatše (I was 

able, even now) I am not like that perfect but I can do most of the things. 

Yah, I feel good because e tlišise (it brought) a good experience like mo 

bophelong ba ka (in my life).        

     

Moderator: Thank you Mo! Anyone else? Yes, Ch!  

 

Ch: I felt privileged to have been taught Euclidean geometry in this maths 

class because that GSP theorems (software) really works like, really 

helped me to be more interested in Euclidean geometry because those 

things I was doing them myself practically not just theoretically. 

 

Moderator: Thank you Ch! What do you like or dislike about the way Euclidean 

geometry and geometric proofs were taught in your mathematics 

classroom? Uhm, Kg!  

 

Kg: Actually, I love everything that was taught because it helped me to train 

my mind, and to think critically, and to reason logically. It helped me to 

understand and solve problems in the physical world and it made me to 

gain life skills like being able to explain, being able to convince, being 

able to verify, communicate and to prove.  

 

Moderator: Thank you Kg! Anyone who wants to add? Ok, can you describe your 

attitude towards Euclidean geometry and geometric proofs? Uhm, 

Mo!  

 

Mo: My attitude towards Euclidean geometry and geometric proofs like at first, 

I was being negative about myself like how am I going to solve these 

things, they are so difficult. And then, as I got to explore and then gwa ba 
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le di (there were these) different parts tša go solver di (of solving) riders 

in many different ways, like eish, from what they taught us, they said that 

mathematics you can solve things like in many ways and then that thing 

just got me a positive attitude because now ke kgona go dira dilo tše dintši 

tša (I am able to do many things of ) geometry. 

 

Moderator: Thank you Mo! Uhm, let’s move on to our last question. What did the 

teacher do that you think contributed to your attitude towards 

Euclidean geometry and geometric proofs? Ha!  

 

Ha: The teacher made these types of geometry to make them more easier 

because the way he proved them on the board, made it look so easy that 

it had to make us make it look so easy. So, that’s why the teacher had to 

make everything easier for us to not get anything less unspeakable (??).  

 

Moderator: Thank you Ha. Mo!  

 

Mo: Eh, the teacher made us to be free in class. He taught us in a way 

whereby like he was not that strict like all the time. He made things look 

easier like our theorem statements, he called it a bible so when I think of 

solving and coming up with reasons I just think of Ok, in the bible there is 

this reason, and then I can solve. Like he didn’t deny any of our answers. 

He let us be free and he even taught us like he encouraged us to work in 

pairs so that we can help each other and he did not discourage us in any 

way or make me or make them feel uncomfortable in a way whereby we 

cannot even raise our hands being afraid to say that the answer is wrong 

or is right. In our last part when we were no longer working with GSP and 

computer, he allowed us to write on the chalkboard. Even in the end we 

were fighting to write on the chalkboard and being able to be enlightened 

and free and making jokes, yes, yah. 

 

Moderator: Thank you Mo. Before we end the discussion, is there anything you 

wanted to add that you did not get a chance to bring it up earlier on? 

(Pause) Ok, seems like we brought forth all the relevant information. 

Uhm, in closure, thank you so much for your time and sharing your 

opinions and emotions with us. Your feedback will be a valuable asset to 

our research and this has been a very successful discussion. We hope 

you found this discussion interesting. If there is anything you are unhappy 

with or wish to complain about please feel free to talk to me at the 

following number 072 147 4618. I see our time is up and we have to come 

to the end of the discussion. Once again thank very much for your 

participation. I wish you all a safe journey on your way back home. 

Goodbye!        
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N 3: CONTROL GROUP DISCUSSION TRANSCRIPT − FG C1 

Moderator: Ok guys I think you had enough time to talk about the question, now let’s 
share your views. Any person can start first. 

 
Mp:  Ok, uhm, please repeat the question  
  
Moderator: The question says: When you think of Euclidean geometry what 

comes to your mind? 
 
Mp: Ok, I think it is a circle, a circle that has a point at the centre. So that’s 

what I think of Euclidean geometry 
 
Moderator: Ok, let’s hear from others if you have anything else to say. 
 
Ko: When I think of Euclidean geometry I think of a circle with a centre, and a 

circle which has lines on it.  
 
Moderator: Ok, that’s Ko’s contribution. Bo what do you have to say? 
 
Bo: Eh, on my view sir about this geometry, I think it’s a circle which has 

angles inside it and which includes some chords and diameters. 
 
Moderator: Ok, thank you very much for your contribution let’s move on to the next 

question. The next question is like this: What do you think about the 
way Euclidean geometry and geometric proofs were taught in your 
mathematics classroom at your school? Any person can speak first. 
You can give yourself time to think if you feel like you need to think about 
the question. Remember there are no right or wrong answers. Whatever 
you say is acceptable. It is your own view and that’s what we are 
interested in. 

  
Mp:  Uhm I think uh, how the proofs were introduced, am I right? 
 
Moderator: Yes.  
 
Mp: Ok, and then, uh, in our school, when we were taught first time, our 

teacher didn’t uh - didn’t uh — what can I say? Ase a pholiše (didn’t 
polish), ase a pholiše gore (didn’t polish that) a chord is what? What is a 
diameter? Re e-user ko kae? (Where do we use it?) These opposite 
angles and what what interior angles, — so he didn’t even uh, what can I 
say? He wasn’t so specific on that. He just, ne a, ke tla reng? (he was, 
what can I say?) He wanted to introduce Theorem 1 without introducing 
the first things of geometry. That’s why geometry ere file bothata (gave 
us problems) when coming to the proofs.  

 
Moderator: Thank you very much for your contribution Mp. Anything else that you 

have to say from the other members of the panel? 
 
Ko: Eh, I think that [cross talk] I think that Euclidean geometry before the 

teacher teaches us — he or she should explain some of the words that 
cannot be understandable. 

 
Moderator: Ok, you can proceed. 
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Ko: But geometry was great, he introduced it very well — and it’s 
understandable. 

 Moderator: Ok, Bo do you have anything to say? 
 
Bo: Eh, when we talking about this geometry sir, I think the teacher should 

have some discussion with other teachers so that they can bring their 
views and share those views on how they will teach the student about this 
geometry so that the learners can understand that geometry.  

 
Moderator: So, when you look at how the teacher presented the geometry and the 

proofs at your school, what do you think about the way that it was 
presented?  

 
Bo: Eh Sir, the way our teacher introduced this geometry, he didn’t explain 

what is this inclu —what what, is it inclusive [Euclidean] what what 
geometry? He didn’t explain to us what kind of geometry is it and he didn’t 
teach us how to prove it and how some lines are called such as chord 
and what what…is it a diameter, he just went straight to those theorems.  

  
Moderator: Thank you very much for your contribution guys, Mp do you have 

something else to say? 
 
Mp: Yes, I think the reason why geometry it is so difficult at first, it is because 

our teacher thought that because we started doing geometry at grade— 
at those lowest grades, I think it’s grade 9 or grade 10, so he thought 
maybe we know, what is chord, what is diameter, that’s why he didn’t 
think of touching those things like — kudu (much) — [cross talk] and only 
to find that le gona ko morago (even in the past) we didn’t even 
understand.  

 
Moderator: That’s interesting. Thank you very much. Let’s move on to our next 

question. How do you feel about the way Euclidean geometry and 
geometric proofs were taught in your mathematics classroom? 
Remember any one of us can speak first. 

 
Ko:  The question?  
 
Moderator: How do you feel about the way Euclidean geometry and geometric proofs 

were taught in your mathematics classroom?  
 
Ko: Uhm, I feel like some of the proofs were difficult but when we go through 

them, the teacher teaches us how to prove them, he made them easier. 
 
Moderator: Ok, let’s hear from others. How do you feel about the way Euclidean 

geometry and geometric proofs were taught in your mathematics 
classroom? 

 
Mp: I feel confused because when our teacher teaches us, we understand but 

when we get home, nothing! Like, we don’t understand anything because 
the teacher is no more there. 

  
Moderator: Interesting contribution! Bo, do you have anything to say? 



 

287 
 

Bo: Yes, on my feeling sir, eh, I feel like this geometry is understandable but 
our teacher didn’t be specific on that geometry, that’s why we are a little 
bit confused.  

 
Moderator: Ok, thank you very much for your contribution to this question. Let’s move 

on to our next question. Our next question says: What do you like or 
dislike about the way geometry and geometric proofs were taught in 
your mathematics classroom? 

 
Mp: Uhm, what I dislike is that, uhm, you can, I mean like o kano bona (you 

may see) something that you don’t understand on that circle, then you 
don’t know how to ask a question, plus, it’s in front of other learners, so 
you don’t know if I am going to say it right or if sir or mam is going to 
understand what I am saying because I don’t understand and I am trying 
to be understandable. So, I am not sure if sir or mam will understand. So, 
this is one of the things that are killing us because we don’t know how to 
express the questions or yah, or ask the questions. 

 
Moderator: Ok, thank you for your contribution, let me repeat the question before we 

hear views from other members of our group. The question says: What 
do you like or dislike about the way that geometry or geometric proofs 
were taught in your classroom? 

 
Ko: uhm, I dislike that geometric proofs like they were long, they didn’t shorten 

them, so they were difficult.  
 
Moderator: Ok, Bo do you have anything to say? 
 
Bo: Yes, what I like about this geometry sir is that some of those theorems 

are just simple and what I didn’t like is that the provings of this geometry 
sir were long when our teacher taught us how to prove them. That’s why 
we were a little bit confused in the maths class.  

 
Moderator: Ok, thank you very much guys for your contributions on this question. Let 

us move on to the next question, which is the second last question. It 
says: Can you describe your attitude towards geometry and 
geometric proofs? Any one of us can speak first.  

 
Mp: I have a bad attitude towards geometry because I find it difficult to 

understand what is being taught.  
 
Moderator: Thank you very much Mp for your contribution, let’s hear from the other 

members of the panel. What do you have to say on this one?  
 
Ko:  I had a bad attitude before understanding Euclidean geometry but now I 

understand it better so my attitude is good on it. 
 
Moderator: Thank you very much for your contribution. Bo, do you have anything to 

say? 
 
Bo: Yes, eh, my attitude was bad at the first of the introduction of this 

geometry but at least our teacher tried to explain how to prove and how 
to —eh— to do what, eh, ah! 

 
Moderator: You can use your mother tongue if you want to express yourself clearly. 
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Bo: Eh, how to express those equations sir! And, now it’s better that we 
understand that geometry and my attitude is very well.  

 
Moderator: Ok, thank you very much for your contributions now let’s come to the last 

question. The last question says: What did the teacher do that you 
think contributed to your attitude towards geometry and geometric 
proofs?  

 
Ko: Uhm, I think at the first time he didn’t introduce the Euclidean geometry 

well, so it gave me a bad attitude but when times goes on [cross talk] — 
my attitude changed.  

 
Moderator: Ok, let’s hear from the other members of the panel.  
 
Bo: Eh, Sir, I think the teacher did some confusion at the first of this geometry 

but when we were busy with eh, [cross talk] with this topic sir, he tried to 
explain to us what is this geometry all about and at least my attitude was 
good than at the first of this topic sir.  

  
Moderator: Ok, thank you very much. Mp, do you have anything to contribute?  
 
Mp: Yes, I don’t really blame the teacher. I blame myself for not concentrating 

at first because I knew that I didn’t understand geometry very well but I 
didn’t pay attention to that. So, yes, I know that I don’t understand 
geometry very well. So, my teacher didn’t do anything but mostly when 
he teaches geometry, he changes his attitude but when he teaches other 
topics like trigonometry I understand very well and—yes. 

 
Moderator: That’s interesting! Thank you very much for your contributions to these 

questions. Maybe before we end the discussion, is there anything else 
that you wanted to add which you did not have a chance to bring forward 
earlier on with regards to the teaching of geometry at your school?  

 
Mp: Sir, I think that we must have enough time to focus on geometry since 

geometry is a problem to many students. I think that we are not the only 
ones that have a problem with geometry. Almost half a school we have a 
problem with geometry so I think they must focus a lot maybe we can 
have maybe studies after school to focus on geometry because geometry 
has more marks. 

 
Moderator:  Yah it’s true [cross talk]. 
 
Mp: He must make sure that maybe at least when he knocks off— maybe we 

understood something and he is sure that we did understand that —
maybe giving us a task nyana (small task) or a test or something just to 
prove that we did understand. 

 
Moderator: Yes, thank you very much for your contribution. Guys do you have 

anything else to add to our discussion which you think we did not talk 
about. You have nothing to add. Ok, thank you very much for your time 
and sharing your opinions and emotions with me and then I think your 
feedback is going to be valuable in my research and I am happy that our 
discussion was very successful and interesting. If there is anything else 
that you are unhappy with or wish to complain about you can contact me 
at my number. And then our time I think is up and we have come to the 
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end of our discussion and once again thank you very much for your 
participation. I wish you all a safe journey on your way back.  
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N 4: CONTROL GROUP DISCUSSION TRANSCRIPT − FG C2 

Moderator: Ok, my first question is: When you think of Euclidean geometry, what 
comes to your mind? And please when you want to say something just 
indicate by raising your hand so that we don’t have two people speaking 
at the same time. Th! 

 
Th:  Uhm, I’m thinking, uhm — theorems!  

Moderator:  Ok, yah just say whatever you think.  
 
Th:  I’m thinking about theorems. Yah, I’m thinking about theorems.  
   
Moderator:  Thank you. Te!  
 
Te:  I am thinking about shapes.  
 
Moderator:  Ok, thank you. Anybody else? N! 
 
N:  I think of theorems which shall be proven either wrong or right. 
 
Moderator: Ok, thank you. Anybody else who has anything to say? Ho!  
 
Ho:   [Inaudible segment, 22 seconds of interview missing, 01:10 — 01:32]  
 
Moderator:  Ok, I am encouraging you to speak a bit louder so that your voice can be 

audibly recorded. Now, let’s move on to our next question. My next 
question is like this, it says: What do you think about the way 
Euclidean geometry and geometric proofs were taught in your 
mathematics classroom? Yes, C! 

 
Co:   It was just difficult. 
 
Moderator: Ok, N! 
 

N:  Eh, I think, oh, I know, the teacher was a good teacher, uhm — and if a 
learner, one or two, he or she doesn’t understand, uhm, it was a bit 
difficult for the learner to go and approach the teacher. Eh — O fela pelo 
nyana (S/he is a bit impatient)  

 
Moderator: Ok, thank you very much for your contribution. Anybody else with 

anything to say? Th! 
 

Th: Eh, Sometimes the teachers were, eh, when it comes to teaching all the 
— eh, go teacher’a di chapter ka moka (teaching all the chapters), they 
didn’t do that. They skipped others.  

 
Moderator: Ok, anybody else with anything to add? Ho! 
 

Ho: Uhm, I agree that eh — the two speakers were right that eh, Euclidean 
geometry is hard, yeah, it’s hard. They skipped other chapters of 
Euclidean geometry [Inaudible segment, 16 seconds of interview missing, 
04:14 — 04:30] 
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Moderator: Ok are you able to give examples of the information that you think was 
skipped by the teacher? 

 
Ho:  Eh, examples?  
 
Moderator: I mean, can you just elaborate when you say the teacher was skipping 

some of the things in Euclidean geometry? Specify what kind of concepts 
did the teacher skip? 

  
Ho: Eh, just like the last theorems like theorem 6 and 7, sometimes in question 

papers they set them but when we were doing geometry, we didn’t do 
them.  

 
Moderator: Ok, Th! 
 

Th: Uhm, eh, they did not teach us riders at all! They just teach us how the 
theorems (are) proved — proven but riders they didn’t even touch them.  

 
Moderator:  Ok, thank you very much for your contribution. N! 
 

N: I remember there was this time sir was going to — where was he going? 
Somewhere else then he asked me to teach theorem 3,4 and 5. So, he 
never came back to those theorems and show them to the whole class. I 
just took a book and then I write what’s on the book and then I sat down. 

Moderator: Ok, and when the teacher came back, the teacher did not explain [cross 
talk]  

  
N: No! He said I wrote the theorems on the board so everyone should go 

and study them. 
 
Moderator: Ok, thank you so much for your contributions to that question, let’s move 

on to our next question. The next question says: How do you feel about 
the way Euclidean geometry and geometric proofs were taught in 
your mathematics classroom? Yes, Te! 

 
Te:  Uhm, Sir, I don’t feel good because I don’t know some of the theorems 

and there is a need whereby I have to know especially riders and riders 
have a lot of marks whereby when I can understand all of the theorems 
then I will be able to get the marks that are there. 

 
Moderator: Yes, Ho! Do you have anything to say?  
 

Ho: Yes, I feel good because I write my notes at home. When I come to school 
on Monday, I get to understand [Inaudible segment, 2 seconds of 
interview missing, 07:35—07:37] 

Moderator: Ok, Co!   
 

Co: I feel bad because some of us we don’t write notes ko gae (at home). We 
just copy what the teachers teach us then we can go home and study.  

 
Moderator: Ok, L! 
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L: I feel bad because there are some theorems neh, uhm — Sir, nka adder’a 
Sepedi nyana? (can I add a bit of Sepedi?)  

Moderator: Ok. You are allowed to do that.  
 

L:  Like you should know some theorems neh, in order to do tsela tsa (those 
ones of) riders. Yah, there are some I don’t know. So, and then ka moka 
dilo tsela ko nale tse dingwe a ke di fihleleli (Everything put together, there 
are certain things I cannot reach).  

 
Moderator:  Ok, Th! 

Th: I feel bad because they did not teach us riders. Many question papers 
come with lots of riders. I can’t write something that I don’t know that’s 
why we lose marks at geometry. 

Moderator:  Yes, I agree with you. N! 
 

N: I also feel bad because eh, some of us learners we prefer gore (that) eh, 
teachers should teach us and then that’s where we get to understand the 
concepts and then when going home, we just revise and practise that.  

 
Moderator: Ok, L, you want to add something? 
 

L: Yah, eh [Inaudible segment] go nale, nka reng syllabus, so they are trying 
gore ba tsamaiše syllabus. So, there are some things they need in order 
gore ba phuše syllabus. Go swanetše gore syllabus ya, I mean chapter 
ya di theorems ebe le nako e ntši because for some of us we find it difficult 
gore re understande because ba phuša syllabus. 
(Yah, eh [Inaudible segment] there is, what can I say, a syllabus, so they 
are trying to cover the syllabus. So, there are some things they need in 
order to cover the syllabus. There is need for the syllabus, I mean chapter 
of theorems to be given a lot of time because for some of us we find it 
difficult to understand because they are trying to cover the syllabus) 

Moderator: OK, thank you very much for your contribution to that question. Let’s 
move on to the next question. The next question says: What do you like 
or dislike about the way Euclidean geometry and geometric proofs 
were taught in your mathematics classroom? Th! 

 
Th: I didn’t like the way they taught us because of they are fast and didn’t 

think that we have slow learners. They can’t catch all the things that the 
teacher says because of fast [Inaudible segment, 4 seconds of interview 
missing, 10:36 — 10:40] so that they want to finish the chapter.  

 
Moderator: Ok, thank you very much for your contribution. Anybody else with 

anything to add? N! 
 

N:  I feel good because uhm, Sir a re rutang, like ge a ruta, wa kwagala, wa 
kwisisega and then nna, ge ke sa e kwisisi botse ke taba ya gore o busy 
o kitimisa di chapter 
(Sir who teaches us, like when he teaches, he is understandable and then 
what I don’t understand is why he is busy chasing after the chapters).  

 
Moderator: Ok, Ho!   
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Ho: I don’t like it because they summarize those chapters and when they 
summarize those chapters some of the things of Euclidean geometry 
[inaudible segment] they decrease our marks. When we go and say you 
did not teach us this, they say we must go and study and then we can’t 
go and study for ourselves, it’s them who are supposed to teach us those 
things.  

 
Moderator:  Yes, that’s a very important point. Anything else that you want to add? 

Te! 
 

Te: Euclidean geometry I like it because e nale a lot of marks tše eleng gore 
di ka go thuša gore ophase maths and le gona gape, I don’t like it ge 
mathitšhere ba sa re direle gore re be good ka yona because ge re kaba 
good ka yona kemo retlo kgona go phasa maths botse because etshwere 
di maraka tše dintši ka gare ga question paper. 
(Euclidean geometry I like it because it has a lot of marks that can help 
you to pass maths. And also, I don’t like it when teachers do not make us 
to be good at it because if we can be good at it then we will be able to 
pass maths well because it has a lot of marks in the question paper) 

 
Moderator: Ok, thank you very much for your contribution. Do you have anything else 

to add? Ok, let’s move on to our next question. The next question says: 
Can you describe your attitude towards Euclidean geometry and 
geometric proofs? N! 

 
N: I could say that I have a bad attitude towards Euclidean geometry 

because I only understand few theorems: theorem 1, 2, maybe 3, but the 
rest — ai! [Laughter] [cross talk] [Inaudible segment, 12 seconds of 
interview missing, 13:17 — 13:29]  

 
Moderator: Ok, L! Do you want to say something?   
 

L:  Yah, Le nna I have a bad attitude because when I try it at home, I find it 
very difficult, that I am trying to concentrate, like — I give up! Yah (laughs)  

  
Moderator:  Ok, Ho! 
 

Ho: Nna, I have a good attitude because now I understand geometry. Much 
of it I understand so I have a good attitude.  

 
Moderator: Ok, Th!    
  

Th: I have both good and bad. Let me start with good. I know all the theorems 
and then I can’t prove riders, yah. 

 
Moderator: Co!   
 

Co:  I have a bad attitude because I got some theorems but to prove that 
theorem 6 and 7 and riders, I don’t get it because is difficult. 

 
Moderator: Th!  
 

Te:  Nna sir, attitude yaka e bad. Ebolaiša pelo ge ke lebeletse mo question 
paper ka o re ke bona di maraka tše dintši mara eish! Ake kgone go di 
fihlelela ka ore akena knowledge yela  
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(Sir, my attitude is bad. It’s heart breaking, when I look at the question 
paper, I see a lot of marks, but eish! I cannot reach them because I don’t 
have the required knowledge)  

 
Moderator:  That’s interesting! L do you want to add some more? 
 

L:  Yes, I do have a bad attitude neh but I really love Euclidean geometry it’s 
because like those things you can feel like you see them. Like the 
answers are on the question paper but you can’t prove them — and then 
you lose marks. 

 
Moderator:  Yah, I understand you. Alright, thank you very much for your contributions 

to that question. Let’s move on to our last question and the last question 
says: What did the teacher do that you think contributed to the 
attitude you have towards Euclidean geometry and geometric 
proofs? 

 
N: As I have indicated gore o fela pelo, so go boima, bothata gore o 

mmobotse gore sir ke kgopela o nthuse ka this and that. Otla go botsa 
gore tsamaya kantle, otla bona gore otšwa jwang.  

 
Moderator:  Uhm, that’s interesting! Th!  
 

Th: Uhm, eish! go nale nako ye ngwe akere … re kgona gore a ruta a le busy, 
ge re molata re mohlalusetša problem gore sir kamo a re kwešiši a re 
botse gore yena o nale class ye aswanetše gore a e attende [Inaudible 
segment, 2 seconds of interview missing, 16:35 — 16:37]. 

Moderator: Ok, I get your point. Co! 
  

Co:  Eh, go boima because ge re mmotsa gore a re kwešiši then o re botsa 
gore oswanetše afetše syllabus [Inaudible segment] gore ye re tlo ngwala 
re seke ra mmotsa gore ase re dire eng nyana, eng nyana because o re 
yena aka se stucke mo Euclidean geometry forever. O swanetse a fetele 
go di chapter tse dingwe. 

 
Moderator: I get your point! Anything else that you want to add? Ho!  
 

Ho: Eh, go boima because ge re nyaka help mo yena go nale nako ye ngwe 
o re fa attitude yela ya gore o re rutile yona ka classeng [Inaudible 
segment, 17:31 — 17:39]. O re felela di pelo.  

 
Moderator:  Ok, thank you very much for your contributions to our last question and 

then is there anything else that maybe you need to add to our discussion 
which I have not asked about? Ho! 

 
Ho:  Ke nale suggestion, bona ba go romela di schedules ba swanetše ba fe 

Euclidean geometry nako e enough gore re kgone go di tshwara ka moka 
[Inaudible segment] ga ba sa lebelela gore nako ye bare file ke e nyane 
gore bare rute geometry ka yona.  

 
Moderator:  That’s an interesting contribution! Th your hand was up!  
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Th: Nna ke nagana gore eh sometimes le dikolo they must eh maybe 
increase mathematics time. Just like geometry needs more time, ga e 
nyake nako nyana. 

  
Moderator: Ok, I get your point. Te! 
 

Te:  Lenna Sir ke kwana le bona ka gore geometry ge re sa efe nako, failing 
rate ya Maths ka classeng e ba yegolo, e ba entši. 

 
Moderator:  That’s a very important contribution. Anything else that you want to add 

from the girls? L! 
 

L: Lenna I want to repeat taba ye kgale a e bolela. Like ba swanetše ba e 
fe nako Euclidean geometry because redira theorem 1, then tomorrow re 
dira theorem 2, ke nako e nyane. A kere re swanetše re be le nako ya 
gore re kgone go practiser re bone gore this theorem re a e understander 
so we can go to another one. So bona ba re bea pressure. Re ka se dire 
dilo tše pedi ka nako e tee. 

 
Moderator: Ok, that’s a very important contribution. N!  
 

N:  Nna ke suggester’a gore, tše tša goswana le maths le physics a di 
swanela go ba after break. Because after break, re boa re khutshe ba 
bangwe ba robala. So ge ba ka di bea mathomong tše tša go swana le 
geometry — let’s come to the problem! Because re tlabe re le fresh. 
[Inaudible segment, 8 seconds of interview missing, 20:30—20:38] Ba 
feteša di chapter banna! Di theorem tše di re bolaile banna!  

Moderator: Ok, L!  
 

L:  Like they should teach us slow because re nale some learners ba slow. 
There are some of those learners ba leka go ditshwara pele then ke mo 
ba tlo kgona go di kwešiša. So, uhm, the teachers ge re fihla go geometry, 
ba be patient le rena ba seke ba re ‘Ai mara ba e tseba monna!’ Ba e 
kwešiša?  

 
Moderator:  Yes, I understand you. Ho!  
 

Ho:  Ba swanetše ba tlogele mantšu a bona ka mo classeng a go discourager 
bana ba sekolo. Ba rata go discourager bana ba sekolo. [Inaudible 
segment] ba re botsa gore nna nkase phase. Ge ba re botša gore nna 
nkase phase, nna nkase tle sekolong. Go no tshwana!  

 
Moderator:  I understand you. N! 
 

N:  I also want to add onto L’s point. Even though the teachers ba sa re rute 
slow but then if wena o okwa gore ase o kgotsofale that’s when o ka 
emelela wa ya go teacher’a wa mmotsa and a go fe nako ya gore o 
kwešiše because go ngwala rena at the end of the day. 

 
Moderator:  Ok, Th! 
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Th: Nna, ke ema le H. Nto ye ba swanetše ba e dire ke go re ba seke bare 

ge o fihla go meneer o mmotšisa gore maneer mo ake kwešiši ano fihla 
o wena a re tsamaya o nyaka lentšu la gore eng end, otla kgona o boa 
go nna. Otla bona gore eh! Ya re bolaya nto yeo!  

 
Moderator:  I understand you. Ke a go kwešiša. L! 
 

L: And bastope nto ya bona ya gore maybe if you want to ask, obotšiše 
question neh, ba re o e dirile last year and nto yela ya gore o e dirile ka 
tee fela and we don’t understand it. We need more knowledge to 
understand but they say you did it L.  

 

Moderator: I get your point. Co!  
  

Co: Mathitshere ba re flopisa because most of the time ge ngwana wa sekolo 
a sa kwešiši ko klaseng, like if ge a re ba repeater and then ge a 
botšisetsa gore o e dirile last year, what’s the use ya gore a botšiše gape 
because nto yela o e dirile last year ba sa diri selo? Like ba rebala gore 
re tshwara slow, that’s why re botšiša but then mathitshere ale a re felela 
pelo.  

  

Moderator: Guys, thank you very much for your contributions. Is there anyone else 
who wants to add something?  
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(Department of Basic Education, 2011, p. 34-36) 
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APPENDIX P: 2016 GRADE 11 MATHEMATICS WORK SCHEDULE 
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               APPENDIX Q: PROFILE OF EUCLIDEAN GEOMETRY LESSONS TAUGHT IN THE CONTROL SCHOOLS 
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