

FORMAL METHODS ADOPTION IN THE COMMERCIAL WORLD

by

Aifheli Nemathaga

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject of

Computing

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: Prof. John Andrew van der Poll

October 2020

ii

ABSTRACT

There have been numerous studies on formal methods but little utilisation of formal methods

in the commercial world. This can be attributed to many factors, such as that few specialists

know how to use formal methods. Moreover, the use of mathematical notation leads to the

perception that formal methods are difficult. Formal methods can be described as system

design methods by which complex computer systems are built using mathematical notation

and logic.

Formal methods have been used in the software development world since 1940, that is to

say, from the earliest stage of computer development. To date, there has been a slow

adoption of formal methods, which are mostly used for mission-critical projects in, for

example, the military and the aviation industry. Researchers worldwide are conducting

studies on formal methods, but the research mostly deals with path planning and control and

not the runtime verification of autonomous systems.

The main focus of this dissertation is the question of how to increase the pace at which

formal methods are adopted in the business or commercial world. As part of this dissertation,

a framework was developed to facilitate the use of formal methods in the commercial world.

The framework mainly focuses on education, support tools, buy-in and remuneration. The

framework was validated using a case study to illustrate its practicality. This dissertation also

focuses on different types of formal methods and how they are used, as well as the link

between formal methods and other software development techniques.

An ERP system specification is presented in both natural language (informal) and formal

notation, which demonstrates how a formal specification can be derived from an informal

specification using the enhanced established strategy for constructing a Z specification as a

guideline. Success stories of companies that are applying formal methods in the commercial

world are also presented.

Keywords: commercial software, enterprise resource planning (ERP), first-order logic,

formal methods (FMs), formal specification, formal verification, set theory, TLA+, UML, Z,

Zermelo-Fraenkel.

iii

MANWELEDZO

Ho no vha na ngudo nnzhi nga ha malugana na Maitele a u khwinisa Sisiṱeme dzine dza

konḓa fhedzi hu na u shumiswa huṱuku kha maitele a u khwinisa sisiṱeme dzine dza konḓa kha

mbambadzo. Hezwi zwi nga bveledzwa nga zwiṱaluli zwo vhalaho, u fana na vhomakone vha

si vhanzhi vha ḓivha maitele a u khwinisa sisiṱeme dzine dza konḓa. U ḓadzisa kha

zwenezwo, u shumisa ha dzi zwiga zwa mbalo na zwone zwi siya zwi tshi nga maitele a u

khwinisa sisiṱeme dzine dza konḓa a ya konḓa Maitele a u khwinisa sisiṱeme dzine dza konḓa

a nga ṱalutshedzwa sa maitele o tou u itelwaho sisiṱeme ane a shumisa zwiga zwa mbalo na

kuhumbulele u fhaṱa sisiṱeme ine ya konḓa ya khomphyutha. Maitele a u khwinisa sisiṱeme

dzine dza konḓa o shumiswa kha mveledziso ya sofuthuwee u bva 1940, nga tshifhinga tsha

ḽiga ḽa u thoma tsha mveledziso ya khomphyutha, U swika zwino, hu na u shumiswa huṱuku ha

maitele a u khwinisa sisiṱeme dzine dza konḓa, ane a shumiswa nga maanḓa kha thandela

dza sisiṱeme dza ndeme. Vhaṱoḓisisi vhanzhi ḽifhasini ḽoṱhe vha khou ita ngudo dza nga ha

maitele a u khwinisa sisiṱeme dzine dza konḓa, fhedzi vhanzhi vha kha u pulana na u langula

nḓila hu si khwaṱhisedzo ya kushumele kwa netiweke.

Ṱhoḓisiso iyi yo sedzesa zwihulwane kha uri hu nga engedziwa hani kushumisele kwa maitele

a u khwinisa sisiṱeme dzine dza konḓa kha vhubindudzi kana mbambadzo. Sa tshipiḓa tsha

ṱhoḓisiso iyi ho bveledzwa furemiweke u leludza u shumiswa ha maitele a u khwinisa sisiṱeme

dzine dza konḓa kha mbambadzo. Furemiweke yo sedzesa nga maanḓa kha pfunzo,

zwishumiswa zwa u tikedza, thendelano na miholo. Furemiweke i ḓo khwaṱhisedzwa hu tshi

shumiwa ngudo u sumbedza khonadzeo yayo. Ṱhoḓisiso iyi i ḓo dovha ya sedza dziṅwe

tshaka dzo fhambanaho dza maitele a u khwinisa sisiṱeme dzine dza konḓa na uri dzo

shumisiswa hani, na vhuṱumani vhukati ha dziṅwe thekhiniki dza mveledziso ya sofuthuwee na

maitele a u khwinisa sisiṱeme dzine dza konḓa.

Sisiṱeme yo tiwaho ya ERP I ḓo kumedzwa nga vhuvhili ha nyambo luambo lwa vhathu (lu si

lwa tshiofisi) na zwiga zwa tshiofisi, zwine zwa sumbedzisa uri u tiwa ha tshiofisi hu nga bvisa

hani kha u tiwa hune ha si vhe ha tshiofisi hu tshi khou endedzwa nga Tshiṱirathedzhi tsha u

Khwinisa tsho Bveledziswaho u fhaṱa Z yo tiwaho. Ṱhoḓisiso iyi i dovha ya sumbedza mvelelo

dza vhuḓi dza khamphani dzi no khou shumisa maitele a u khwinisa sisiṱeme dzine dza konḓa.

Maipfi a ndeme: Sofuthuwee ya Mbambadzo, U langula na u ṱanganyisa zwipiḓa zwa ndeme

zwa bindu (ERP), Zwiga zwa kuhumbulele zwo khethekanaho, Maitele a u khwinisa Sisiṱeme

dzine dza konḓa (FMs), U tiwa ha Tshiofisi, Khwaṱhisedzo ya Tshiofisi, thyeori ya ngudo dza

sethe, TLA+, UML, Z, Zermelo-Fraenkel.

iv

OPSOMMING

Vele studies is al oor formele metodes gedoen, maar formele metodes word slegs in ’n

beperkte mate in die kommersiële wêreld aangewend. Dít kan aan vele faktore toegeskryf

word, soos dat min spesialiste weet hoe om formele metodes te gebruik. Verder lei die gebruik

van wiskundige notasie tot die persepsie dat formele metodes moeilik is. Formele metodes

kan beskryf word as stelselontwerpmetodes wat die gebruik van wiskundige notasie en logika

behels en wat toegepas word om komplekse rekenaarstelsels mee te bou.

Formele metodes word sedert 1940 in die wêreld van programmatuurontwikkeling, met ander

woorde, vanaf die vroegste stadium van rekenaarontwikkeling gebruik. Tot op hede was daar

’n geleidelike aanvaarding van formele metodes, wat meestal vir missiekritieke projekte in,

byvoorbeeld, die weermag en die lugvaartbedryf gebruik word. Navorsers wêreldwyd doen

navorsing oor formele metodes, maar dit handel hoofsaaklik oor roetebeplanning en -beheer

en nie die looptydverifikasie van outonome stelsels nie.

Die hooffokus van hierdie verhandeling is die vraag oor hoe die pas waarteen formele

metodes in die sake- of kommersiële wêreld aanvaar word, bespoedig kan word. ’n Raamwerk

is as deel van die verhandeling ontwikkel ten einde die gebruik van formele metodes in die

kommersiële wêreld aan te help. Die raamwerk fokus hoofsaaklik op onderwys,

ondersteuningsmiddele, inkoop (buy-in) en vergoeding. Die geldigheid van die raamwerk is

met behulp van ’n gevallestudie wat die praktiese uitvoerbaarheid daarvan illustreer, bepaal.

Die verhandeling fokus ook op verskillende tipes formele metodes en hoe hulle gebruik word,

asook die verwantskap tussen formele metodes en ander programmatuurontwikkelings-

tegnieke.

’n ERP-stelselspesifikasie word in beide natuurlike (informele) taal en formele notasie

aangebied, wat illustreer hoe ’n formele spesifikasie vanuit ’n informele spesifikasie afgelei kan

word deur die verbeterde gevestigde strategie vir die opstel van ’n Z-spesifikasie as riglyn te

gebruik. Verder word suksesverhale van maatskappye wat formele metodes suksesvol in die

kommersiële wêreld aanwend, aangebied.

Sleutelwoorde: eersteorde-logika, formele metodes (FMs), formele spesifikasie, formele

verifikasie, kommersiële programmatuur, ondernemingshulpbronbeplanning (ERP), TLA+,

UML, versamelingsleer, Z, Zermelo-Fraenkel.

v

Table of Contents

Chapter 1 Introduction ... 1-1

1.1 Introduction ... 1-1

1.2 FMs Overview and Context ... 1-1

1.3 Research Focus .. 1-3

1.4 Problem Statement ... 1-3

1.5 Research Questions .. 1-4

1.6 The Scope... 1-4

1.7 Delineations and limitations ... 1-5

1.8 Research Objectives ... 1-5

1.9 Dissertation Layout ... 1-6

1.9.1 The list of chapters ... 1-6

1.9.2 The relationship between chapters .. 1-8

1.10 Summary... 1-9

Chapter 2 Literature Survey ... 2-10

2.1 Chapter Layout ... 2-10

2.2 Introduction ... 2-11

2.3 What is an Enterprise Resource Planning (ERP) System? .. 2-11

2.4 ERP Modules .. 2-13

2.5 Challenges of implementing and using an ERP system... 2-15

2.6 What are Formal Methods? ... 2-17

2.7 Common types of software failures ... 2-20

2.8 Differences between formal and informal (natural language) specifications..................... 2-22

2.9 The Z Specification Language ... 2-26

2.9.1 Some of the tools that are used for Z specification ... 2-29

2.9.2 Established Strategy .. 2-29

2.9.3 Enhanced Established Strategy ... 2-31

2.10 Formal Methods Myths .. 2-32

2.11 Disadvantages of formal methods ... 2-34

2.12 Slow Adoption of FMs in the Commercial World .. 2-35

2.13 Challenges with Current Development Processes ... 2-38

2.14 How formal Methods can help alleviate some of the current problems 2-41

2.15 Formal Methods in Practice ... 2-42

2.16 Summary... 2-47

Chapter 3 Informal, Semi-Formal and Formal Specification ... 3-48

vi

3.1 Chapter Layout ... 3-48

3.2 Introduction ... 3-49

3.3 Requirements Specifications ... 3-49

3.4 Case study .. 3-52

3.4.1 General ERP informal requirements ... 3-52

3.4.2 HR Module Requirements ... 3-52

3.4.3 Unified Modelling Language ... 3-54

3.4.4 Leave Application Process.. 3-54

3.4.5 High-level process description ... 3-56

3.4.6 Use Case Diagram ... 3-57

3.4.7 Use Case Model Description .. 3-60

3.5 Formal Specification in Z ... 3-61

3.5.1 Set Theory ... 3-62

3.6 Purchasing module formal requirements specification ... 3-66

3.6.1 A Formal Specification ... 3-70

3.6.2 Specifying Operations.. 3-73

3.7 Preliminary Framework ... 3-83

3.8 Summary .. 3-85

Chapter 4 Research Methodology ... 4-87

4.1 Chapter Layout ... 4-87

4.2 Introduction ... 4-88

4.3 Research Onion .. 4-88

4.4 Research Process Diagram .. 4-93

4.5 Summary .. 4-95

Chapter 5 FMs Adoption Framework .. 5-96

5.1 Chapter Layout ... 5-96

5.2 Introduction ... 5-97

5.3 Adoption Framework ... 5-97

5.4 Adoption Framework Diagram ... 5-101

5.5 Summary .. 5-104

Chapter 6 Framework validation .. 6-105

6.1 Chapter Layout ... 6-105

6.2 Introduction ... 6-106

6.3 Adoption Framework Validation ... 6-106

6.3.1 Case Study .. 6-107

vii

6.3.2 Formal Methods Adoption Framework Validation ... 6-107

6.4 Summary .. 6-113

Chapter 7 Conclusion and future work.. 7-114

7.1 Chapter Layout ... 7-114

7.2 Introduction ... 7-115

7.3 Research Questions and Findings .. 7-115

7.4 Research Summary .. 7-119

7.5 Future Work .. 7-120

References .. 7-122

Appendix A. Traditional Waterfall .. 7-135

Appendix B. Summary of mathematical notations .. 7-136

Appendix C. Software development processes ... 7-138

Appendix D. Framework .. 7-140

Appendix E. Z Specification .. 7-142

Appendix F. Ethical Clearance ... 7-149

Appendix G. Permission to Submit .. 7-152

Appendix H. Language Editing Certificate .. 7-153

Appendix I. Turnitin Report ... 7-155

Appendix J. Adoption of Formal Methods in the Commercial World .. 7-156

Index ... 7-168

viii

List of Figures

Figure 1-1 Dissertation Layout 1-8

Figure 2-1 Gartner ERP Quadrant 2-16

Figure 2-2 Waterfall Model 2-18

Figure 2-3 Introduction, detection and costs of errors in the design trajectory 2-20

Figure 2-4 Formal specification languages 2-23

Figure 2-5 Schema 2-27

Figure 3-1 Chapter Layout 3-48

Figure 3-2 Formal specification in the software process 3-50

Figure 3-3 Software development costs with formal specification 3-51

Figure 3-4 Leave Application Process Diagram 3-54

Figure 3-5 Use Case Diagram 3-59

Figure 3-6 Venn diagram 3-63

Figure 3-7 USE Case Diagram Inventory System 3-68

Figure 3-8 Class Diagram Inventory System 3-69

Figure 3-9 Preliminary Framework 3-83

Figure 4-1 Chapter Layout 4-87

Figure 4-2 Onion Diagram 4-89

Figure 4-3 Research Diagram 4-93

Figure 5-1 Chapter Layout 5-96

Figure 5-2 Adoption Framework Diagram 5-101

Figure 6-1 Chapter Layout 6-105

Figure 6-2 Adoption Framework Diagram 6-106

Figure 7-1 Chapter Layout 7-114

ix

List of Tables

Table 1 Terms, Acronyms and Pseudo Acronyms xii

Table 2-1 Differences between formal and informal specifications 2-23

Table 2-2 Strengths and Weakness of Different SDLC 2-41

Table 3-1 Leave Application Requirements 3-53

Table 3-2 Process Description 3-57

Table 3-3 Use Case Description 3-61

Table 3-4 Procurement Module Requirements 3-67

Table 5-1 Formal Methods Adoption Framework 5-100

x

Publication

The following publication emanated from the research described in this dissertation.

• Nemathaga, A. and Van der Poll, J. A. (2019) ‘Adoption of Formal Methods in the

Commercial World’, in the Eighth International Conference on Advances in Computing,

Communication and Information Technology CCIT. Birmingham City University,

Birmingham, United Kingdom: Institute of Research Engineers and Doctors., pp. 75–84. doi:

10.15224/978-1-63248-169-6-12.

This paper appears in Appendix J.

xi

Acronyms and Pseudo Acronyms

Term Description

ACP Algebra of Communicating Processes

ASCII American Standard Code for Information

Interchange

ASM The Abstract State Machine

BPMN Business Process Model and Notation

BRS Business Requirement Specification

CICS Customer Information Control System

CISR Centre for Information Systems Research

CSP Communication Sequential Process

ERP Enterprise Resource Planning

ES Established Strategy

FMs Formal Methods

FRS Functional Requirements Specification

GUI Graphical User Interface

HCI Human-Computer Interaction

HR Human Resource

IIBA International Institute of Business Analysis

IT Information Technology

NL Natural Language

ROI Return on Investment

RQs Research Questions

xii

Term Description

SDLC Software Development Life Cycle

UML Unified Modelling Language

VDM Vienna Development Method

ZF Zermelo-Fraenkel

Table 1 Terms, Acronyms and Pseudo Acronyms

xiii

xiv

Acknowledgements

I would like to extend gratitude to my supervisor Prof. John Andrew van der Poll for his

assistance, guidance and support throughout my Master’s degree.

I would also like to thank the University of South Africa and the School of Computing (SOC)

for providing me with an opportunity to pursue my studies further and also offering me

financial assistance.

Finally, I would like to thank my son Musiiwa (aged 4), my sisters Mulalo, Adziambei and

Humbulani, for always giving me support and pushing me not to give up. I dedicate this work

to my late mother, Mrs TC Nemathaga (1950 – 2015).

xv

Dedication

This dissertation is dedicated to my late mother, Mrs T.C. Nemathaga (1950 - 2015), and my

four-year-old son, Musiiwa Nemathaga.

1-1

Chapter 1 Introduction

1.1 Introduction

This dissertation investigates the feasibility of using formal methods in commercial

software development, where in addition to presenting findings, it defines and

develops a framework to facilitate the use of FMs in commercial software

development. This research focuses on the Enterprise Resource Planning (ERP)

system, where a small formal methods specification is written, specifying an ERP

system requirements. The adoption of a formal methods framework is validated

using a case study to illustrate its practicality.

This chapter gives an introduction as to what formal methods are, and the brief

history behind them. The chapter furthermore explains the research focus and also

gives the problem statement as to what the research is trying to solve. A list of

research questions that will assist in solving the problem is provided. The scope and

the research objective is explained. Lastly, the list of the chapters for the rest of the

dissertation and the research layout is presented.

1.2 FMs Overview and Context

The advancement of hardware during the past 30 years has led to the creation of

large and complex systems. The growing technologies range from mobile devices,

industrial machinery and automobiles. These systems require fast processing in

order for hardware and software to work together to perform complex tasks (Xilinx,

2012). The lines of codes have increased from 1 to 40 million lines in software and

are still increasing. As these systems grow, designers and engineers face many

challenges. These systems are designed, enhanced and modified often during their

lifetime. Software development is time-consuming and costly, and research has

shown that most software does not meet users’ needs, and gets delivered out of

budget (Bourque and Fairley, 2014). This also applies to ERP systems, that is, ERP

project implementation is mostly unsuccessful, or implemented out of timelines, with

higher costs (Suryalena, 2013). With such challenges in mind, many software

development techniques have been developed to try to overcome them.

Formal methods have shown to be one of the auspicious techniques used to

1-2

potentially overcome some of the above challenges. There are numerous benefits of

using formal methods. Formal methods have also been shown to reduce the

number of defects in software development (Adesina-Ojo, Van Der Poll and Venter,

2011). In the software development world, there is always a search to find better

ways of developing software that is free from error and delivered within timelines, on

budget. This led to the development of various frameworks and methodologies of

developing software. The most famous and widely used is the traditional waterfall

methodology, which proposes that software has to be developed using a stepwise

approach, i.e. requirements, design, implementation, verification, and maintenance

(Royce, 1970). Each stage must be finalised prior to starting the next. The waterfall

methodology is one of the oldest models still in use today (Palmquist et al., 2013).

Yet, many of the waterfall projects are delivered out of budget, with many defects

and the end-product usually does not present the real needs of the user (Pressman,

2009). Furthermore, ERP system project implementation failure can also be

attributed from two aspects; these are organisational aspects and technological

aspects.

There is an increased uptake of the Agile methodology in the commercial world,

where software is developed incrementally, and in rapid cycles. Agile’s main

objective is to deliver value to the customer by means of working software (Beck et

al., 2001; Palmquist et al., 2013). Agile is guided by a manifesto stating the

principles that ought to be followed when using Agile. That said, Agile has many

disadvantages, such as a lack of documentation, and the project may easily go off

track if the customer’s requirements are not understood. The aforementioned formal

methods can be incorporated into any stage or phase of the Software Development

Life Cycle (SDLC) and have proven to reduce the count of errors (George &

Vaughn, 2003; Srihasha & Reddy 2015).

Software testing has traditionally been the only technique that has been used and is

still been used to find defects. Testing code is not an effective way of finding subtle

bugs/error in design. The use of formal methods helps to reduce errors early on in

software development, thereby saving on the cost of software projects. Formal

methods are categorised in two main groups: i.e. 1) pure mathematics, this is

challenging and is mostly not used in the real world; and 2) software engineering,

which focuses on creating increasingly better software (Kneuper, 1997; Van der

Poll, 2010).

Formal methods use discrete mathematics and logic to verify and analyse models at

1-3

any stage of the development process (Woodcock et al., 2009). The most significant

part of the development process is to understand the needs of the user.

Furthermore, according to George and Vaughn (2003), formal methods are useful

when gathering, articulating, and representing requirements. This, then, assists the

programmer in developing a system that meets the user’s needs.

A formal specification can be written in a state-based technique, which involves the

creation of state machine specifications, simulation proofs, and abstract functions.

During the implementation level, formal methods are used to verify code by

attempting to prove theorems (proof obligations) about the implementation. Some

tools used for formal methods can automatically generate compilable code e.g., B-

method (Ilić, 2007). The clarity, completeness and consistency of a formal

specification facilitate the derivation of test cases (Tretmans and Belinfante, 1999).

As part of this research, a formal specification will be documented using the Z

notation, which is a formal specification language.

1.3 Research Focus

The core emphasis of this study is on the adoption of formal methods in business or

the commercial world, placing more emphasis on the ERP system. This research

will investigate, through the use of document analysis, the companies that are using

formal methods and the benefits they realised from formal methods. The recurring

failures of the commercial systems will also be investigated. In addition, the

research will also analyse the scholarly literature on these aspects and

subsequently, shall look at ways to facilitate the adoption of formal methods in the

commercial world.

1.4 Problem Statement

The use of traditional software development processes is widespread in the

commercial world. The most common is the waterfall model where software

development is done in sequences, namely:

1) Requirements elicitation;

2) System design;

3) Implementation (coding);

4) Verification (testing); and

5) Post-delivery maintenance.

1-4

As mentioned above, a new technique that is starting to gain fame in the software

development industry is the Agile method. Agile aims to continuously deliver value

to the customer. Despite these advances, the software is still delivered late, out of

budget, and with a considerable number of defects (Bourque and Fairley, 2014).

Using FMs in software development stages can arguably yield many benefits when

it comes to software quality. One of the key benefits of utilising FMs is that it

alleviates the problem of ambiguity, where formal methods give a full understanding

of requirements and software design (George and Vaughn, 2003; Gilliam, Powell

and Bishop, 2005). This leads to the reduction of defects in requirements and

design and testing becomes easier. That said, there remain several challenges with

using formal methods, such as expense, time, and the extensive training required,

as few developers and engineers know how to use it (Spichkova, 2012a).

Given the benefits and advantages of FMs, there appears to be a slight

commercialisation of FMs, but the use of FMs remains mostly in universities and

mission-critical projects (Di Vito, 2014). Hence, the problem addressed in this

research is the slow adoption of formal methods in the commercial world.

1.5 Research Questions

From the above problem statement, we formulate the following research questions

(RQs):

1. What makes Formal Methods projects successful?

1.1. To what extent can FMs improve on the quality of ERP development?

2. Why is there a slow adoption of formal method in the commercial

world/Business?

2.1. What is the status quo of the use of FMs in the commercial world/Business?

3. What can be done to increase the adoption of Formal Methods in the

commercial world/Business?

1.6 The Scope

The field of formal methods is broad, with numerous challenges that still require

further research and clarification. Formal methods can be useful in the SDLC,

where, as interest in the use of formal methods continues to grow, a considerable

number of researches (Woodcock et al., 2009) are been carried out on each type of

1-5

formal method.

This research will mostly be theoretical in nature, focusing on the formal

specification phase of formal methods usage, consequently, the scope of the

research includes:

• the utilisation of FMs in business;

• formal methods specification;

• reason for slow adoption;

• myths around formal methods;

• ERP System formalisation; and

• a mechanism to facilitate the adoption of FMs in the commercial software

world.

1.7 Delineations and limitations

The following lie outside of the scope of this research:

No code will be generated as part of this research. With no code there will be no

working software and testing will not be conducted. As indicated above, this

research is mainly theoretical in nature. No prototype of the ERP system will be

produced based on Formal Methods specification outlined in the coming chapters.

1.8 Research Objectives

Since this research aims to investigate the reasons for the slow adoption of formal

methods in business, followed by recommending measures to alleviate such

challenge, our objectives are to:

1) determine the failures of current commercial software development;

2) assess literature pertaining to formal methods to determine what makes FMs

projects successful;

3) determine the status quo of the use of FMs in the commercial

world/Business through literature review;

4) determine the reasons for the slow adoption of FMs in the commercial

world/Business; and

5) develop a framework to facilitate the adoption of FMs in the commercial

world/Business.

o Validate the framework using a case study.

1-6

1.9 Dissertation Layout

The following section will present the dissertation layout by explaining the number of

chapters and the summary discussion of what each chapter entails.

1.9.1 The list of chapters

The following section will discuss the chapters contained in this dissertation:

Chapter 2 Literature Survey

Chapter 2 details the ERP system, in terms of what an ERP system is, and what

modules are an ERP system comprise of. In addition, the challenges that arise

when implementing an ERP system within the organisation are discussed. Chapter

2 then touches on formal methods putting more emphasis on the Z specification

language. Furthermore, the chapter will explain the differences between informal

and formal methods in tabular form. Types of formal languages are identified, and

the minimal description of Z notion is conversed. Myths around formal methods are

identified. Lastly, Chapter 2 will focus on the reasons why there is slow adoption,

suggesting the ways to hasten the adoption of formal methods in the commercial

world. To close off the chapter, practical examples of the use of formal methods in

the commercial world are discussed.

Chapter 3 Informal, Semi-Formal and Formal Specification

Chapter 3 documents ERP specification in an informal way/natural language, semi-

formal and the formal way. This is structured by providing a case study first,

followed by the specification. Parts of the informal specification are discussed i.e., a

UML process diagram, use case diagram, and the details of the process and use

case diagram in a tabular format. Before writing a formal specification, a brief

introduction to mathematical set theory is presented. The last section of this chapter

is the formal specification using the Z notation on the purchasing module of the

ERP. To close off the chapter, a preliminary framework is presented.

Chapter 4 Research Methodology

This chapter explains the research philosophies used for this paper and the reason

why a certain philosophy is followed. This is described using Saunders et al.s

(2015) Research Onion. Each step of the diagram is explained, and a reason is

provided if relevant to the research or not. Furthermore, this paper expands deeper

into the research methodology incorporated, as well as data collection methods

used.

1-7

Chapter 5 Adoption Framework

Chapter 5 presents a framework regarding how to accelerate the adoption of formal

methods. The conceptual framework is named the Formal Methods Adoption

Framework. Each element of the adoption framework is discussed in a tabular

format and lastly, a framework diagram will be presented. The framework is linked

to the propositions presented throughout the dissertation.

Chapter 6 Framework Validation

This chapter validates the framework otherwise putting the framework in practice.

The validation is in the form of a case study. From the case study, an explanation of

how each step of the conceptual framework will be implemented is presented.

Chapter 7 Conclusion and Future Work

This chapter completes the research. It achieves this by giving the summary of the

findings and how they relate or answers the research questions. It further explains

the shortcomings of this research. Lastly, it details the future contributions still

required to be done on this topic.

1-8

1.9.2 The relationship between chapters

The following diagram illustrates the research layout, i.e. how the research is

structured. The diagram also shows the main parts of each chapter.

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 1-1 Dissertation Layout

1-9

1.10 Summary

This first chapter’s goal was to set the scene for the dissertation. It gave an

overview of what this research is aiming to archive. This chapter also gave an

introduction of what formal methods are, and the brief history behind them. The

research scope and problem statement, that is, why formal methods in the

commercial world are infrequently used. The research questions to help solve this

problem were listed. Furthermore, the research objective and the dissertation layout

were presented.

The next chapter will discuss aspects around ERP systems, in terms of what an

ERP system is, and what modules an ERP system comprises. In addition, the

challenges that arise when implementing an ERP system within the organisation are

discussed. Chapter 2 then expands on formal methods, putting emphasis on Z-

specification language. In conclusion Chapter 2 will address the reasons why there

is slow adoption and suggest ways to fasten the adoption of formal methods in the

commercial world.

2-10

Chapter 2 Literature Survey

2.1 Chapter Layout

The below diagram shows where we are in this dissertation, the green boxes

highlight the sections of Chapter 2, i.e. ERP Systems and the Formal Method Z.

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 2-1 Dissertation Layout

2-11

2.2 Introduction

The previous chapter presented an overview of what formal methods are and the

history behind FMs. Furthermore, Chapter One explains the focus of the research,

in terms of the problem that the dissertation is trying to solve. The research

questions that will assist in solving the problem are listed, as well as the scope and

the objectives for the research. Lastly, a research layout and a brief description of

each chapter is presented.

This chapter will discuss the ERP system, in terms of what is an ERP system and

what modules an ERP system comprises. In addition, the challenges that arise

when implementing an ERP system within the organisation are discussed. This

chapter then touches on formal methods, placing more emphasis on the Z-

specification language. Furthermore, the chapter explains the differences between

informal and formal methods in tabular form. Types of formal language are

identified, and the minimal description of Z notion is discussed. Myths around formal

methods are identified. Lastly, the chapter focuses on the reasons why there is slow

adoption and suggests the ways to fasten the adoption of formal methods in the

commercial world. To close off the chapter, practical examples where formal

methods are used in the commercial world receives a discussion.

2.3 What is an Enterprise Resource Planning (ERP)

System?

This research will place focus on formal methods for the specific system which is

ERP. This part of this chapter will explain what the ERP system is, and the next

chapter will focus on writing a formal specification for an ERP System.

Enterprise Resource Planning (ERP) software is defined as a combined software

programmes clustered into standard functional modules i.e., Procurement, human

resources, finance, contract management etc. developed by a vendor or in-house

(Shehab et al., 2012), involving “One database, one application and a unified

interface across the entire enterprise” (Babu and Bezawada, 2012). Some ERP

systems can be purchased off the shelf, then customised to meet specific customer

needs. ERP systems assist businesses in performing their daily operations, which

can bring massive benefits to the organisation. But, with these benefits, ERP project

implementation is mostly unsuccessful, or implemented out of timelines, and with

2-12

higher costs (Suryalena, 2013).

Failure of ERP project implementation can be attributed to different factors, such as

unclear requirements, project managers focusing on the financial aspect of the

business and neglecting other parts of the project, and lack of proper software

development processes in place to manage the projects, to name a few. Most of the

time, the success of the project is attributed to delivering the project on time and

within budget, where the tendency exists to forget the users of the system and the

smooth transition from the previous process to the new one (Markus, Tanis and Van

Fenema, 2000). The use of formal methods will help alleviate most of the problems

when implementing an ERP system within the organisation.

The successful implementation of ERP systems can be grouped into two aspects,

that is, the organisation and the Technological part. According to Sangster et al.

(2016a) organisation aspects can be:

• effective organisational change;

• user involvement and participation on the project; and

• trust between partners or stakeholders.

Examples of technological aspects:

• an acceptable implementations strategy;

• avoid too much customisation; and

• the right version of the ERP system and the correct knowledge of the legacy

system.

The next section will present an ERP architectural diagram showing different

modules linking to one database.

2-13

2.4 ERP Modules

The following ERP architecture diagram presents some of the main modules that

are contained in the ERP system:

ERP Data Base

Finance Procurement

Contracts Human Resource

• Account Receivable
• Account Payables
• General Ledger
• Budgeting

• Employee Leave
• Payroll
• Employee Management
• Recruitment
• Performance appraisal

• Contract Update
• Expiry Period
• Notification

• Inventory
• Order Processing
• Supplier management
• Warehouse management
• Scheduling

Figure 2-2 ERP Architecture (Kilic, Zaim and Delen, 2015)

Below we present a brief description of ERP modules and how they benefit the

organisation. The main idea behind ERP is to provide the right information to the

right people at the right time. This improves organisation performance significantly.

Other important aspects of ERP include that it is linked to the organisational

strategy, the organisation structure, processes, and IT systems (Subramoniam et

al., 2009). The first module to be discussed will be the financial module.

Finance is critical to the organisation, and it impacts almost every part of it. This

can be from sales to procurement and human resources. The information produced

by the financial module helps the decision-makers to formulate strategies to gain a

competitive advantage over other organisations. The most common functionalities

2-14

of the finance modules are financial accounting (GL- General Ledger, Accounts

receivables and payables); investment management (budgeting, controlling); and

treasury.

Procurement as a module deals with the purchasing of materials for internal use or

resale within the organisation. Procurement mostly involves a workflow build to

automatically evaluate a supplier and measure the inventory at hand. Lastly, most

purchasing modules are integrated to invoice verification. Gao, Zhang and Wang

(2008) call the procurement module the internet procurement.

Human resource (HR) This module is used by the human resource department to

manage human resources or employees within the organisation. Part of the function

of the HR module is to manage employee information, such as names, contact

details, and location. HR module is also used for the recruitment process of the new

employee. The payroll system also resides under the HR module, which assists in

managing employee salaries and payslips. Employees can also use the HR module

for leave applications and to perform performance reviews alongside with their

managers. Some HR modules have time & attendance component embedded in

them (Cardoso, Bostrom and Sheth, 2004).

The Contract Management module is used to manage contracts within the

organisation. This can refer to suppliers/vendor contracts, or clients’ contracts. This

module has information about the contract, such as the start and expiry date of the

contract. The contracts are linked to the materials or services that the supplier sells

to the organisation. In a large organisation, this module benefits a great deal, as the

organisation can have thousands of contracts with different suppliers which

becomes a nightmare to manage manually.

Implementing ERP modules within the organisation can be challenging, where many

aspects of the project can go wrong. When using traditional methods, such as

waterfall, the cost of the project can increase significantly. From the requirements

stage to the implementation stage, the costs of fixing errors/defects rise. Today’s

ERP systems are mostly web-based, meaning that they can be easily accessible

from different devices and in different locations (Subramoniam et al., 2009). In

around the year 2000, the Gartner group presented a new terminology ERP II to

name the latest upgrades in the ERP systems. ERP II is otherwise known as the

next generation ERP (Subramoniam et al., 2009). The key modification from ERP to

ERPII is that the latter is more web-friendly, and it allows for a wider integration

between department and industries (Felderer et al., 2016).

2-15

2.5 Challenges of implementing and using an ERP

system

Large organisation system integration can be difficult or incompatible, and this will

also require the process of re-engineering and change to organisational culture

(Bernroider, Wong and Lai, 2014). The impact on the small and medium enterprise

may be minimal, as they are more flexible, and a change management process may

run smoothly.

Off-the-shelf ERP systems offer generic requirements, and this leads to more

customisation to meet organisation-specific requirements. Customisation is costly,

time-consuming, and can become very challenging when implementing ERP

upgrades (Kwahk and Ahn, 2010).

In terms of the costs, the EPR system requires a high upfront investment fee, and it

proves challenging to recognise the ROI (Return On Investment), as it is a long-term

undertaking. Furthermore, the maintenance and user support fees are very high,

which leads most companies to opt-out of having an ERP system (Elbertsen and

Reekum, 2008).

However, the benefits of having a working ERP system implemented within the

organisation outweigh the challenges of implementing ERP systems (Equey et al.,

2008).

According to Pang (2016), from Gartner, the top 5 most used off-the-shelf ERP

systems are:

• SAP

• Microsoft Dynamics AX

• Sage X3

• Infor

• Oracle

Gartner further provides an ERP Quadrant showing the most-used ERP system in

terms of market share and revenue:

2-16

Figure 2-1 Gartner ERP Quadrant (Softwareshortlist, 2015)

Asgar and King (2016) propose a bipartite graph approach, which is a lightweight

formalisation to map the requirements of legacy and new off-the-shelf ERP system.

In a traditional software implementation process, ERP implementation is comprised

of the following stages: FGA (Fit Gap Analysis), which involves ascertaining

customisation requirement and business process requirements; thereafter, design

and development; which follows data migration from the old system to the new

system; then, testing, and lastly user training and deploying the system to live

environment (Asgar and King, 2016). In an Agile methodology, these steps occur

incrementally, and in an iterative manner.

2-17

Incorporating formal methods during requirements specification, analysis and

design contribute significantly towards the success of ERP implementation. This

allows for the early detection of errors during the documentation stage.

The aforementioned presents what ERP systems are, the following section will

discuss formal methods, and the next chapter will formularise ERP requirements.

2.6 What are Formal Methods?

The push to use formal methods in business has been the main focus of

researchers and practitioners for some time now. Even with the benefits of a

reduction in defective software and production of systems within timelines, formal

methods adoption by the business world is slow (Iddiqui, Akhter and Ian, 2014).

Formal methods are defined as a system design method that uses mathematical

notation and logic to build computer systems (Bourque and Fairley, 2014).

According to Lockhart, Purdy and Wilsey (2014), the use of mathematical-based

modelling makes system behaviour more logical. Formal methods can be useful in

the development process when verifying and clarifying the requirements (Crepaldi,

2005). Formal methods assist in clarifying customer requirements, removing

ambiguity, incompleteness and inconsistency, and lastly facilitating the

communication of requirements and design. According to Van der Poll (2010), a

formal requirement specification may be amenable to programmed analysis and

reasoning.

The following diagram shows the traditional methods of the software development

process. The most famous and widely used module is the traditional waterfall

model. This model was presented by Royce (1970). This is a document-driven

approach, where when each phase is completed, a document needs to be

produced. This is otherwise known as a plan-focused process, where in practice,

you plan and schedule all the process actions before work can begin on them.

2-18

Figure 2-2 Waterfall Model (Crepaldi, 2005)

The stages of the waterfall model are:

1. Requirement analysis and definitions: at this stage requirements are elicited

and defined by consulting affect stakeholders or system users. This can be

done using various techniques, such as interviews, focus groups, documents

analysis, prototyping, or observations. These requirements are written and

agreed to on the requirement specification document. Requirements should

have the following “SMART” characteristics: Specific, Measurable,

Attainable, Realisable, and Traceable (Nathan and Scobell, 2012).

2. System and software design: at this stage a technical document or system

design document is produced. The document allocates requirements written

in stage one to the hardware or the system and also creates a system

architecture. Formal methods can be very useful at the stage.

3. Implementation and unit testing: at this stage, the actual coding using

various languages such as C#, C, Java starts, and the testing proceeds.

After each module or unit is produced, the unit gets tested. This can either

be by testers, or the coders themselves. Most of the errors can be injected at

this stage as a result of incorrect requirements and the design document

(Schach, 2011).

2-19

4. Integration and system testing: all the developed software units are

integrated or put together to formulate the final system. After integration, the

software is tested to make sure that everything works. Different types of test

are conducted such as system testing, regression testing, and UAT with the

owner of the system or the software (Crepaldi, 2005).

5. Operation and maintenance: the system is delivered to the owner and then

maintained. Maintenance includes correcting errors not previously

discovered, as well as doing system upgrades. Change requests also form

part of maintenance. The system can be maintained over a period of time,

as per the agreement after which it can be decommissioned or retired

(Suryn, 2014).

At each stage, a document is produced and approved (signed-off). In reality, all

these steps overlap with one another and there are minimal iterations within the

stages. Sommerville (2005) suggest this model ought to be used when

requirements are well understood, and they might not change drastically.

The amended version of the waterfall model involves formal system development,

which is part of formal methods. The system specification is developed using

mathematical models, the mathematical model can be transformed into executable

code (Crepaldi, 2005).

The following graph (diagram) shows the numbers of bugs or errors that are

introduced/ inserted during each stage of software development, where the graph

further illustrates the costs of fixing these errors in each stage.

2-20

Figure 2-3 Introduction, detection and costs of errors in the design trajectory (Atlee
et al., 2013)

The graph reveals that fewer errors are detected from the analysis phase to the

coding phase, where more errors appear as the result of the incorrect analysis, or

not understanding the requirements correctly.

The cost of correcting the errors increases with each phase, mostly during system

testing and designer test phase. It is easier to correct the requirements on the

document than to fix a system that is already implemented. Formal methods

emphasise that more time ought to be spent on the requirements phase or the

analysis phase by developing the formal specification, which will help minimise the

costs of fixing errors at a later stage.

2.7 Common types of software failures

Process failure is caused by poor project management during the software

development process, a lack of communication, and the choice of the software

development methodology that does not suit the project. An example of this type of

failure is the crash of Korean Airlines Flight 801 into a hillside, resulting in 228

fatalities, due to the modification of the flight system, which could not calculate the

2-21

required radius of 55 nautical miles or 102 kilometres. This can be attributed to

negligence (Ogheneovo, 2014).

Real-Time Anomalies: refers to a software bug. An example of this is a Russian

spacecraft that had a software error, which caused it to land 300 miles of the target

also causing causalities.

Accuracy: this applies mainly in calculations, loss of accuracy when converting an

integer to float, or the division of two integers, which ought to result in an integer,

not a decimal. This can results in an error if error handling is not done properly. An

example is a Patriot Missile that experienced a software precision error causing it to

miss its target.

Abstraction: refers to a lack of data abstraction, which causes defects in a given

code or system. Abstraction mechanisms are required so as to ensure the proper

running of the system (Charette, 2005). An example of this is the software

incorrectly reading the year between 99 and 00, where software algorithm interprets

the year 2000 as the year 1900.

Constraint: an example of constraint failure is a buffer overflow and stray pointer.

New languages such as C# and Java have a mechanism to do constraint lookup on

data types, which helps with data type violation. Another method is the use of

Sandbox (Ogheneovo, 2014).

Reuse: this involves using existing software components to develop new software.

(Crepaldi, 2005). This is done in order to improve the maintainability and quality of

the system, and also to reduce development timelines and the costs. When reusing

artefacts that already have defects, the defects automatically filter down to the new

system. Proper testing is required before reusing artefacts.

Logic: These are flaws in logic processing or incorrect workflows. An example is an

upgrade in the AT&T system of 1990. The upgrade caused a switch to result in

errors that caused the routing of traffic to other switches. The switch was sending

“out of service” message, which caused other switches to crash. Upon investigation,

it was discovered that the failure was as a result of a missing break statement in

code. 60 million in revenue was lost was a result of this.

Faulty code: this refers to a code that is poorly written, which can be easily hacked

2-22

and which may cause runtime errors.

Operator errors: as caused by the users of the software. This can be due to user not

knowing how to use the system, or insufficient training as to how to operate the

system (Schach, 2011). This results in the user injecting errors into the system.

Boca, Siddiqi and Bowen (2010) categorise the general type of faults encountered

on the systems in the following ways:

• the delivered system does not meet the customer’s requirements;

• incorrect design i.e., by the solution architecture; or

• faults in implementation or coding.

Further examples

In mission-critical systems, early detection of errors and subsequent correction of

such errors are paramount. Intel® lost almost $500 million while trying to fix error on

their Pentium chip which was already produced in mass numbers (Kaivola, 2011).

Five billion dollars was used to fix a problem with a flight system in June 1996 in the

Ariane 5 rocket Ariane where, about 40 seconds after take-off, the rocket launcher

shut down, and lost control due to system failure, causing buffer overflow (Lions,

1996; Crepaldi, 2005).

2.8 Differences between formal and informal (natural

language) specifications

Informal (Natural Language
Processing)

Formal Methods

Each stakeholder has its own
interpretation of the requirements

A complete and comprehensive
view of system requirements

More errors and if not correct can result in
high project costs

Less error and blunders in the
document

Uses a combination of graphics and
semiformal notations

Uses mathematical notation

No need for mathematics just knowledge
on the software engineering domain

They need someone to be
mathematically literate

They leave space for inconsistency and
ambiguity

Provides conciseness, clarity and
unambiguity

2-23

They ideal for eliciting requirements
Allows the engineer to produce high-
quality systems

 Table 2-1 Differences between formal and informal specifications (Ilić,
2007)

Both formal notation and natural language processing (NLP) can result in a vague

understanding of the system (Li et al., 2015). All this depends on the engineer or the

developer understanding what to build, irrespective of the language used on the

specification. It is possible to learn the formal language, but it takes time, and is also

costly, being dependent on the user’s willingness to learn the language.

Figure 2-4 shows the types of formal methods. They are grouped into two, viz.

algebraic- and model-based specification styles.

Figure 2-4 Formal specification languages (Crepaldi, 2005)

Figure 2-4 also shows the inventor of a certain formal language. From the above

figure, we observe that most of the languages were developed in the 1980s.

The two main types of formal specification techniques are algebraic (also called

property-oriented) and model-oriented.

Property-oriented: algebraic i.e., established on equational axioms, or axiomatic

founded on first-order logic used to specify system properties in a declarative-

methods style.

Model-oriented or model-based: firstly, a system abstract model is specified where,

on the abstract model, “states” are created which are the static properties of the

system using mathematical set theory. Next, first-order logic is used to construct

operations on those states. From Figure 2-4, examples of model-based languages

are Z, VDM, and B.

 Sequential Concurrent

Algebric
Larch (Guttag, et al., 1993) Lotos (Bolognesi and Brinksma, 1987),

OBJ (Futatsugi, el al., 1985)

Model-based

Z (Spivey, 1992)

CSP (Hoere, 1985)

VDM (Jones, 1980) Petri Nets (Peterson, 1981)

B (Wordsworth, 1996)

2-24

The two techniques do share a common aspect, namely, they both use

mathematical notations, which is first-order predicate logic used to define how the

system ought to behave and also to share static properties with each other

(Crepaldi, 2005).

Below are examples of model-based techniques, the most prominent being the Z

specification language.

• Abstract State Machines – The Abstract State Machine (ASM) proposition

implies that any algorithm can be modelled by an appropriate ASM (Börger

Egon and Stärk Robert, 2003). ASM bridges the gap between the two ends

of system development, viz. human understanding, and the formulation of

real-world problems, by deploying an algorithmic solution through executing-

code machines on changing platform. When compared to UML, ASM claims

to have a simple scientific background, which adds more precision to the

realism of the method.

• B-Method – B is a formal method for the development of programme code

from a specification in the Abstract Machine Notation (Cansell and Méry,

2003). B can be considered to be a formal method that covers the entire

SDLC from requirements, system design, implementation, and post-delivery

maintenance. B can be written using the B-Tool interpreter, which helps with

identifying syntax errors. B has been used in many mission-critical systems,

such as train control systems, and smart cards.

• Z – A specification language used for describing computer-based systems;

based on set theory, and first-order predicate logic (Banerjee, Sarkar and

Debnath, 2016). B – Method is more similar to Z, as it was developed after

Z, and stems from Z. It will be discussed in detail in the next section of this

chapter.

Process-based – the most commonly used and successful process-based formal

method language is CSP and ACP. This type of formal methods allows engineers to

specify systems that are running concurrently, and at the same time integrated to

one other, by sharing information (Hoare, 2015). ACP and CSP use an axiomatic

algebra approach to give a formal definition to various operators of the system. ACP

essentially uses an axiomatic, algebraic method to the formal classification of its

several operators.

2-25

Axiomatic – Axiomatic systems can be used together with logically derived

theorems. Mathematical set theory has been around for a very long time. Enderton

(1977) indicates George Cantor as the father of set theory. Gottlob Frege further

published a book around 1893 and 1903 demonstrating how mathematics can be

developed from the philosophies of set theory. ZFC is a formalisation of set theory.

The formal methods categories summarised above, and the type of languages

associated are not exhaustive, but this research employs the model-based

language Z.

In addition, there are semi-formal specification languages. A widely used semi-

formal specification language amenable to formalisation is UML (Unified Modelling

Language). Ma (2008) proposed that more focus ought to be directed to class

constructs by considering case studies by means of which to achieve the

formalisation of UML. There has been a lot of work on formalising UML using

variants of description logics.

The practice of FMs is made up of a number of components and activities i.e.,

formal specification, formal proofs, model checking, and abstraction. The

construction of a formal specification involves translating natural language,

Diagrams, tables etc. to a mathematical specification, and this includes a

description of high-level behaviour and the properties of the system. Formal

specifications have various types or forms, such as a model-oriented system, which

refers to the construction of system behaviour using models i.e. state charts, sets

etc.

The next activity in the use of FMs is conducting formal proofs, considered to be

one of the most essential parts of a formal specification. Formal proofs are

constructed as a sequence of small steps, each of which is justified using a small

set of inference rules. Proofs can either be done manually or automated (Schneider,

2004).

Some formal methods involve model checking, which is a technique based on

constructing a fixed model of software and verifying that the desired property

speaks to that model. The main disadvantage of model checking is that it involves

many processes. Baier and Katoen have noted that “any verification using model-

based techniques is only as good as the model of the system.” (Laroussinie, 2010,

2-26

p.8). Fisher (2011) and Schneider (2004) both agree that formal verification provides

a way of possibly knowing the perfection of a system in all possible conditions.

Formal verification also offers an alternate to assure that the software is fully free of

errors e.g the use of Armada tool for verification (Lorch et al., 2020). In summary,

model checking refers to using some software to automatically check that the

software satisfies its specification.

Lastly, we have abstraction, which involves the use of smaller models to represent a

programme. When constructing a specification, obtaining the correct level of

abstraction is very significant. Using smaller models allows the designer to focus on

the most important characteristics and fundamental properties (Fisher, 2011).

Schneider (2004) indicates that more time is spent on design simulation, where the

defects found in the later stages of the design results in a high cost of the redesign,

leading to delays in marketing time. The idea with formal methods is to spend more

time in the specification phase to get it correct, thereby leading to the reduction of

time spent on the design and the actual coding. Given the aforementioned, the final

product ought to be correct.

Z specification language will constitute a fundamental part of this research and is

discussed next.

2.9 The Z Specification Language

The Z language was established in late 1970 at Oxford University by the

Programming Research Group, otherwise known as the PRG. Banerjee, Sarkar,

and Debnath (2016, p4.) write that the “Z-notation based on the formal specification

of a component model has been proposed to develop a component model formally”.

Z is based on first-order logic and a strongly-typed fragment of Zermelo-Fraenkel

set theory, and embodies numerous rich notations. Using a formal specification

language such as Z, software systems can be designed with minor uncertainties

(Hussain, Dunne and Rasool, 2013). Type checkers and Latex style files for writing

Z notations have been developed, as Z is written mostly in non-ASCII mathematical

symbols.

A Z specification comprises of schemas and is accompanied by narrative text. A

schema is an organising unit to hold logically associated mathematical notation.

Formal methods comprise of the following logical operators:

2-27

• ¬ negation

• ∧ conjunction

• ∨ disjunction

• ⇒ implication (note: not →)

• ⇔ equivalence (note: not ↔)

Schema Example

 SchemaName

Declarations

Predicate1; …; Predicaten

Figure 2-5 Schema

The schema usually divided into two parts i.e.:

• Part One: where the variables (components/declarations) and the types are

presented; and

• Part two: predicating constraints assigned to the values of the

variables/components.

The following are advantages of Z as a choice of a formal specification language:

(Hussain, Dunne and Rasool, 2013)

• the use of Schemas makes Z easy to read;

• a well-written Z specification can be used as a manual for the system;

• the flexibility to model a specification can lead directly to the code;

• a large class of structural models can be described in Z without higher-order

features, and can, therefore, be analysed efficiently; and

• independent (e.g. error) conditions can be added later.

Spivey (2010) added that using formal notation helps in understanding how the

system will operate, and it allows the designer more choices about the design of the

system. The omitted parts of the specification become easy to identify, and the

overall document quality is increased.

Z has some disadvantages, however (Adesina-Ojo, 2011; Dongmo, 2016):

• for complex software that generates a big specification, it may be hard to

produce a number of state and operation schemas;

• Z fails to provide for grouping of operations on a particular state;

2-28

• some classes of the system are still difficult to specify;

• there are not many industrial tools that can be used to write and verify a

specification;

• it becomes difficult to manage and group schema structures for large

systems when using Z; and

• Z does not clearly handle exception handling.

If only mathematics is only used, the formal specification will become hard to

manage and difficult to read it, therefore Z specification is written in conjunction with

natural prose. For example, when formal methods are removed from the

specification, the specification ought to remain readable and understandable. Z

specification describes the “what” meaning, that is, what the system does, and not

how it does it. The final design of the specification can be executable by the

computers in some instances, it is also designed to be readable and understandable

by the humans. Z is also guided by renowned pseudo-algorithm called Established

Strategy, which assists when writing a Z specification (Van der Poll and Kotzé,

2005)

Z specification can be written or produced using various methods e.g., functional

style, but the most commonly used and efficient way is the use of model or state

approach. The steps in writing the Z, involve where an engineer starts by

introducing basic sets. These basic sets will not include the details initially but will

be defined at a later stage. To make the specification more readable, additional

operators are introduced. The next step is to define an abstract state. The abstract

state is defined by sets, functions, relations and sequences.

When building the abstract state, an initial state is specified, where the state will

change depending on system operation, which will be the before state and the after

state. Depending on the system operations the after state can be the same as that

before the state. Predicates define what each operation should do, which includes

the inputs and the outputs of that operation. Operators may include preconditions,

where the responsibility is on the programmer to make sure that those pass before

the operation can be executed.

The last step is to validate and verify the design, which is achieved by doing a state

and prove the theorem of the system. The process assists in finding errors in the

design before the system is actually implemented. Formal specification work as a

reference point for all the aspects of the software process that is for eliciting the

requirements, the implementation of those requirements, testing of the system, and

2-29

developing instruction manuals of the system (Bowen, 2016). With the

aforementioned, the specification must be validated or tested in order to ensure that

there are minimal errors, which also affect the other parts of the software process.

The specification can be large, which can be difficult to read, and so to overcome

this problem, a specification is decomposed into smaller components by the use of

schemas (see above figure). Z can be used with other formal languages such as

CSP. Work has been done to combine Z with CSP (Benjamin, 1990). VDM

specification language is regarded as the direct competitor of Z (Alagar and

Periyasamy, 2011). The two are based on first-order predicate logic.

In industry or the commercial world, companies like IBM are known to have utilised

Z specifications. According to Bowen (2016), the IBM Customer Information Control

System (CICS) had about 2000 pages of Z specification and the designs, with

around 37000 lines of code. That said, more work still needs to be done for Z to be

made commercially acceptable.

2.9.1 Some of the tools that are used for Z specification

Tool support assists a great deal when developing a Z specification. What makes Z

more advantageous than other languages is that Z has a couple of tools to write the

specification (Dongmo and van der Poll, 2010).

• CadiZ created by Toyn and McDermid (1995) for formal reasoning

• The Community Z Tools (CZT) by Malik and Utting (Malik and Utting, 2005)

(http://czt.sourceforge.net/)

• Fuzz Mike Spivey’s type checker for Z

(http://spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z)

2.9.2 Established Strategy

There are also well-established strategies for documenting a Z-specification such as

ES (Established Strategy). Van der Poll and Kotze (2005) also propose an

enhanced established strategy for writing a Z specification. As high-level steps on

how to write a Z specification are explained above, I proceed to discuss details of

the Established Strategy. Wordsworth (1999) provided a great deal of input when it

came to the Established Strategy. ES embodies the following sequence of steps:

1. Identify and define basic types and global constants and also describe them

2-30

in a natural language:

An example of basic types for an ERP system purchasing module which is

discussed in detail in the following chapter would be:

[STRING, AMOUNT, DATE]

[PRODUCT, ORDER, ITEM, CUSTOMER]

2. Then, present the abstract space, the basic types and constants defined

above.

3. Provide the current state of the software and also demonstrate that it exists.

An example of a current state of the product schema for the purchasing

module is given below.

Requirements statement: “Specify a system that allows a user to view a

product that is already in the system, as well as the quantity and the price of

each product.”

The below schema represents products that already exist in the system:

 Product

products: ℙ PRODUCT

prodName: PRODUCT ⤔STRING

prodPrice: PRODUCT ⇸AMOUNT

proQuantity: PRODUCT ⇸ℕ

dom prodName = products

dom prodPrice = products

dom proQuantity = products

The above schema shows the product that is already created in the system, the

schema shows the product name, the price of the product and the number or

quantity of the same product in the system.

4. Start with a partial definition of each operation and give a short natural

language description of it.

An example of an operation schema for ERP purchasing model is specified

in schema CreateProduct below:

2-31

 CreateProduct

ΔProduct

prd?:PRODUCT

nme?: STRING

pr?: AMOUNT

qnty?: ℕ

prd? ∉ products (5)

products ′ = products ∪ {prd?}

prodName′ = prodName ∪ {prd? ↦ nme?} (6)

prodPrice′ = prodPrice ∪ { prd? ↦ pr?} (6)

prodQuantity′ = prodQuantity ∪ { prd? ↦ qnty?}

5. Determine/Calculate the precondition of operation on the state.

6. Inputs, outputs and correct operation precondition of all operations are

tabled.

7. Specify all the schemas that produce an error condition.

8. Use calculus Z schema to make partial operation totals.

9. Assist the reader of the specification by providing additional information e.g.,

a summary of an operation.

The steps guide the designer or analyst when documenting a Z specification. This

sets a standard as to how to write a Z specification. The limitation of Established

Strategy (ES) is that it does not provide any guidance about the schema content

and the interaction between various operations making up a specification (Van der

Poll and Kotze’, 2005) The Established Strategy is also not integrated to other well-

known design principles and it doesn’t take into account some of the Human-

Computer Interaction (HCI) principles. ES breaks the rule of visibility from HCI,

which instruct: “make things visible to the client”.

2.9.3 Enhanced Established Strategy

Van der Poll and Kotze (2005) propose the following steps in order to enhance the

Established Strategy:

1. Describe overall global basic types and constants. Encompass all types of

which the output is produced to allow for undefined output. Explain in a form

of natural language all the types. The improvement compared to the

previous strategy is to add all types in the first step.

2. Show the abstract state space, using the constants and basic types stated

2-32

above. This step is the same as the previous strategy.

3. Provide an initial state of the system and demonstrate that such a state can

be achieved.

4. Show the environment, again using the above constants and basic types

(van der Poll and Kotze added an extra component to the environment).

5. Give a definition of each system operations.

6. Define the precondition of each system operation on the state and prove that

precondition is explicit in the operations.

7. Stipulate an undo equivalent for every robust operation that changes the

state.

8. Stipulate the control module which shows when each user-level operation

(which is also a robust operation) is invoked.

9. Specify a table displaying all the robust operations with their inputs, outputs,

preconditions for correct operation and error cases.

10. Give more information that will help the reader of the specification.

The enhanced Established strategy was used as a guideline when writing a formal

specification in the next chapter.

It becomes a challenge using Z to integrate parts of a different system for a different

organisation. One organisation may have written all their requirements in MS-word

processor and the other company using Z tool LaTeX. The backlog arises when you

ask another company to learn Z, and how to use the tools which, in turn, increases

the costs of the project (Bowen and Hinchey, 2012).

2.10 Formal Methods Myths

It is not guaranteed that formal methods produce error-free systems, yet many

studies have revealed that using formal methods in software development using an

object-oriented design has many benefits (Iddiqui, Akhter and Ian, 2014). Even

when formal methods have proved to be beneficial in complex mission-critical

projects, software engineers are still sceptical about the use of formal methods.

Most engineers view formal methods as a mechanism that is practically both hard to

understand and to utilise (Spichkova, 2012a). In line with this, there are so many

myths around formal methods.

2-33

Hall (1990) published the seven famous myths of formal methods, the biggest myth

being that the use of formal methods can assure that the resultant software is

perfect, i.e., that it will be without any errors.

Hall (2007) identified and discussed seven myths of FMs, where Jaspan et al.

(2009), revisited and discussed these:

1. formal methods give assurance that the system is perfect: using formal

methods guarantees that the software is free from defects. Formal methods

can only reduce the number of defects, but doesn’t guarantee a perfect

system;

2. formal methods are about proving that programmes are correct: the

verification of software properties is that the final product will work perfectly;

3. only critical systems benefit from the use of FMs: this is because of the

difficulty of use of FMs and has led to the belief that they can only be used

for mission-critical systems. However, formal methods can be used in the

development of any system;

4. they use difficult mathematics: FMs are based on mathematics which is the

reason why most engineers view them as difficult. According to studies by

Hall (1990) at Praxis, they found that the discrete mathematics of software

specifications can easily be mastered and used;

5. they escalate the costs of software development. The cost of using formal

methods can be high but it does help reduce the cost that will be spent on

post-delivery maintenance (Sommerville, 2016);

6. they are incomprehensible to clients because of the use of mathematical

notation on formal methods clients may find it difficult to read the

specification. But formal methods are made up of additional components that

can easily be read by clients (Sommerville, 2016); and

7. nobody utilises them in real-world projects: It is viewed that formal methods

are only used for academic studies, yet IBM’s CICS project (Bowen, 2016)

shows FMs are utilised in real-world applications.

In reality, formal methods are not perfect and do not guarantee software that is free

from defects. The use of mathematical notation does not help either when it comes

to people actually using them for commercial software.

2-34

2.11 Disadvantages of formal methods

Formal methods use mathematical notation, which is viewed as difficult to learn, and

also makes it difficult for a client to read and understand a given specification. The

specification themselves can become intricate, and hard to practise. This statement

is backed up by Hall (2007), who states that “this is clearly a challenge: current

formal notations are notoriously opaque, and formal methods tools are almost all

hard to use.” Parnas (2010) added that the models are often more difficult to read

and write than to read and write the code itself.

According to Hall (2007), formal methods are only applied in critical parts of the

systems and are not applied in fast-moving software, such as websites. In fast-

moving software, failures are tolerated and even expected. It also becomes difficult

to describe the GUI of the system, as they are focused more on the system

operations than on the graphic. Furthermore, formal methods are perceived as

causing delays in the development process. Alsmadi (2017) added that the other

factor that makes GUI designers avoid using formal methods is that GUI

specifications are difficult to formalise or prove. However, in recent years,

frameworks have been developed to try and produce GUI formal specifications.

As mentioned throughout this dissertation, the notations are not standardised and

the tools to support formal methods are not readily available. Formal methods are a

small part of the solution of system development problems, used in order to realise

the full value of formal method they needed to be integrated into bigger software

process.

Liu et al. (1995) mention that there is a big gap between real-world and formalism,

that transforming clients requirements from informal requirements to formal

requirements requires serious clarification of the problem. There is no accepted

principle or guidance of eliciting client requirements, and how to specify them using

formal specification language. The specification may be accurate, but not correct

according to users’ requirements.

In big systems, the formal specification becomes hard to read, write, and most

importantly, to be understood by the developers or engineers. Formal methods also

become challenging when integrating with current software development techniques

(Gabbar, 2006).

2-35

2.12 Slow Adoption of FMs in the Commercial World

Most software development companies do not consider it cost-effective to apply

formal methods in their software development processes (Crepaldi, 2005). One of

the stumbling blocks in the use of FMs in the commercial world is that of perception

that formalisation is difficult, and the creation of formal methods is error-prone and

time-consuming (Atlee et al., 2013). Hall (2007) differs with this, asserting that

formal methods are based on mathematical notation, which is the reason they are

perceived as difficult; however, in reality, the notation can be easily learned and

used. Bowen (2016) added that it is easier to learn notation than learning a new

programming language.

Another reason for slow adoption is that most engineers’ views of formal methods

as a mechanism that is practically hard to understand and utilise (Spichkova,

2012a). The commercial world or businesses are of the view that the use of FMs

can increase the costs of software development due to the level of training that is

needed. Education plays a major role in an individual developing and designing the

systems, where in addition, management needs to be educated if they are to

successfully apply formal methods within their organisations (Bjørner and Havelund,

2014).

PROPOSITION (PROP) 1: Education plays a major role in formal methods

adoption. This includes educating from the high school level to the university

level as well as organisational training in the use of formal methods. Such

education plays a pivotal role in the adoption framework.

As more software development processes gain popularity, for example, the Agile

methodology, there is the view that formal methods do not support other software

development processes. According to Dongmo (2011), formal methods can be

beneficial in every step of the software development life cycle, as they help in

alleviating incomplete and unrealistic requirements at the beginning of the

development process, leading to the production of a high-quality product with fewer

defects.

Lack of easy step-by-step guidelines regarding how to use formal methods also

contributes to the slow adoption. Many developers view formal methods as limited

to academic projects for tertiary education. Bowen and Hinche (1995) felt that

standards, tools, and education would “make or break” industrial adoption, while

2-36

Glass (1996) saw a chasm between academics who “see formal methods as

inevitable”.

Most traditional software development techniques are established, and proper

standards have been set. Tools supporting those techniques are widely accepted

and used in business. On the other hand, formal methods appear to have

inadequate tool support. Certain formal methods tools do not work suitably with the

development/programming tools. Formal methods tools are also not seen as being

user-friendly.

When compared to traditional techniques, there are many certifications that one can

acquire and many institutions offering training around those techniques. According

to a study done by Davis et al. (2013) slow formal methods adoption may also be

attributed to certification authorities not having enough education regarding how to

appraise formal methods artefacts, and they are not highly informed of formal

methods benefits and underlying techniques.

PROP 1.1 In addition to the above proposition, formal certificates and

diplomas in formal methods ought to be created and awarded to those who

qualify. Certification authorities should be well-informed about the benefits of

formal methods.

Normally, when developing a system for clients, users review and sign off the

requirements specification i.e., Business Requirement Specification (BRS) or

Functional Requirement Specification (FRS). The review is to make sure that all

user requirements are included in the specification. The specification can then be

used to bill an external client, where, for an internal client, an agreement could

confirm that the stated requirements will be developed (see Figure 2 discussion

above). Clients find it difficult to review formal specifications due to the

mathematical notations used, this results in project delays.

There is also a psychological and human resource factor with the slow adoption in

business. Within the organisation or business, some people just do not like

formalisms; the same applies to formal methods as some engineers especially

those who are already working in an agile environment, will be more reluctant to use

formal methods. In business, the development of some projects are relatively fast,

so there is little time to conduct a proper formal analysis. Nowadays, individuals

change positions frequently, for example, from a software engineer to a manager, or

2-37

changing companies. This results in having to upskill new employee, which is time-

consuming.

PROP 2: Buy-in from all the business stakeholders is necessary for FM

adoption. Getting Top-level management to agree to and accept the use of

formal methods may well result in the whole organisation adopting formal

methods.

There are many misunderstandings with formal methods, leading to slow adoption

in business. Businesses view formal methods as a technique that places too much

emphasis on the theory, rather than real-world applications of FMs. Another huge

misconception is that if an FM is used, then there is no need for testing. This ties in

with one of the seven myths, where the use of a formal method does not guarantee

that the resulting software or system is perfect.

Sommerville (2005) also indicated four reasons why there is a slow adoption from

the commercial world:

1. the utilisation of other system engineering techniques i.e., configuration

management and structured techniques has improved software quality;

2. software these days is developed and delivered fast the main focus is time

to market than quality, where some customers will accept software with

some errors if it can be delivered rapidly. Rapid software delivery does not

work well with formal methods;

3. the narrow scope of formal methods does not cater for user interface design

and user interaction.

4. Lastly, developing formal specifications for system upgrade becomes a time

consuming and costly process in which the commercial world is not willing to

entertain.

PROP 3: Widely accepted principles and guidelines on FMs can improve the

adoption thereof. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities.

2-38

2.13 Challenges with Current Development Processes

There is a continuous development of software engineering techniques, tools and

methods, as the problems relating to software development have been around since

the start of computer systems (Crepaldi, 2005). We will first give a brief description

of various types of software development process. A summary table of each

development process, along with its strengths and weaknesses, will be presented.

Table 2-2 was adopted from Schach (2011) Object-Oriented and Classical Software

Engineering 8th Edition book.

Waterfall life-cycle model: presented by Royce (1970). This is a document-driven

approach, where each phase is completed, and a document needs to be produced.

Working software is produced later on in the life cycle. This is the most widely used

model. It comprises of the following steps: 1) requirements; 2) analysis; 3) design;

4) implementation; 5) post-delivery maintenance; 6) retirement.

Evolution-tree model: the sequence of the steps that need to be followed or

executed when producing or maintaining software. The evolution-tree model can

also be considered a simplified version of the waterfall model but is closely related

to the iterative-and-incremental model. In this model, engineers view the

development of software as a maintenance process, constructed on the tree of

decisions. Made at different times within the development process, these decisions

are influenced by a change requirements or a change request as they are issued

(Tomer and Schach, 2002).

Iterative-and-incremental in the real software development world, the analysis

phase is spread though out the life cycle and is not done in a single step. The basic

software development is iterative, meaning software gets developed in increments.

Iteration and incrementation are used together, and there is no one “requirements

phase” or “design phase”, but there are multiple occurrences of each phase.

Rapid-prototyping life cycle: to build a rapid prototype and allow clients to interact

with rapid prototypes. Then, a requirement specification document is written once

the client is happy with the porotype. This improves confidence that the product will

meet client requirements. Also, this model allows the design team to gain an

understanding from a rapid prototype.

2-39

Open-source life cycle-model: has two informal phases, where firstly one

developer will build a first version of the system and makes it accessible via the

internet or forums, whereupon volunteers can build onto it. The software can then

be moved to the second phase, which is post-delivery maintenance. In an open-

source project, there are usually no specifications and no design. Code is made

available for anyone.

Synchronise-and-stabilise life-cycle model: developed by Microsoft, where

requirements are elicited with a potential customer, after which the specification is

written. After the specification, they then divide the project into builds. At the end of

each the day, the team synchronise (test and debug), and at the end of the build,

they stabilise (freeze the build).

Spiral life-cycle model: if all risks cannot be mitigated, the project is instantly

cancelled. Developers must be trained in risk analysis. Based on the distinctive risk

patterns of a given project, the spiral model guides a team to adopt components of

one or more development process models, such as incremental, waterfall, or rapid

prototyping (Boehm and Turne, 2015).

Agile processes: governed by the agile manifesto. The common practice of this

model is the daily meetings. The main focus is delivering working software over

documentation, fast response to requirements changes, and as well as customer

collaboration i.e., business stakeholders and coders collaborate on a daily basis for

the entire project. The most efficient and effective method of exchanging information

to and within a development team is by face-to-face discussion (Beck et al., 2001).

Some Agile models use scrums. Scrum depends on self-organizing, cross-

functional team system features are delivered according to sprints.

The following table summarises the strengths and weaknesses of each model.

https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Software_prototyping#Evolutionary_prototyping
https://en.wikipedia.org/wiki/Software_prototyping#Evolutionary_prototyping

2-40

Life Cycle Strengths Weaknesses

Evolution-tree model

• Closely models real-world
software production.

• Equivalent to the
iterative- and-incremental
mode.

Proper planning is required.

Iterative-and-incremental
life cycle

Closely models real-world
software production underlies
the unified process.

• It requires decent planning
and design

• The total costs can be
higher than the waterfall
model

• Needs a clear and
comprehensive description
of the entire system before
it can be broken down and
built incrementally

Code-and-fix life-cycle
model

Fine for short programmes
that require no maintenance

Totally unsatisfactory for
nontrivial programmes

Waterfall life-cycle model
Disciplined approach
document-driven

• Delivered product may not
meet the client’s needs

• The client is unlikely to
understand the technicality
of documents

• No working software is
developed until the late
during the development
cycle

Rapid-prototyping life
cycle

• Ensures that the
delivered product meets
the client’s needs.

• Design team gains insight
from rapid prototype.

Not yet proven (beyond all
doubt).

Open-source life-cycle
model

Has worked extremely well in
a small number of instances

Limited applicability, usually
doesn’t work

Synchronize-and-stabilize
life- cycle model

• Future users’ needs are
met.

• Ensures that components
can be integrated
successfully.

Has not been widely used
other than at Microsoft.

Spiral life-cycle model Risk driven

• Can be used for only large-
scale, in-house products.

• Developers have to be
competent in risk analysis
and risk resolution.

Agile processes

• Works well when the
client’s requirements are
vague.

• Visibility of project details
increased.

• Increased team
productivity.

• Ability to adjust to

• Appears to work on only
small-scale projects.

• No emphasis on solution
design and documentation.

• The project can easily go
off track.

2-41

Life Cycle Strengths Weaknesses

changes.

• Ability to scale.

Table 2-2 Strengths and Weakness of Different SDLCs

Source: Schach (2011) Object-Oriented and Classical Software Engineering

2.14 How formal Methods can help alleviate some of the

current problems

Real-world software development projects do not really follow a step-by-step

process i.e., from analysis, to design and implementation. There is always an

overlap when it comes to these steps.

It is difficult to get the customer requirements right and to complete at first hand.

This impacts negatively on other phases of software development, as their artefacts

are based on requirements. For example, the design document will be wrong if the

requirements are not captured correctly. A formal specification can overcome this,

as it allows the engineers to rigorously analyse the requirements and detail

properties about the system. This reduces errors and oversight of the requirements.

With the traditional waterfall, one step needs to be completed before moving to the

next. In the process of waiting for one step to be finished, the technology is also

changing. By the time the project is finished, the technology is already outdated. A

design document can be produced from the formal specification, producing two

specs at the same time. Sommerville (2005) proposes that there is the possibility of

automating the formal specification, such that the code can be produced from it. By

having a formal requirement specification, which can also work as a design

document, formal methods can fast track the development of those artefacts.

If there is a change in one stage, for example, requirements document, this can also

impact subsequent stages such as the design, leading to project delay and an

increase in cost. If formal methods are used, they result in minimal changes in the

requirement, due to how much of the work has been done in the specification stage.

The formal specification also guides the tester in identifying the correct test cases.

Test cases can be written directly for the formal specification. This reduces time and

costs. Several techniques for stimulating Z utilises Prolog, with two main methods,

viz. programme synthesis, and structure simulation (Dongmo, 2016).

2-42

The Standish report in Hastie and Wojewoda (2015) indicated that only 29% of the

projects in a traditional software process are delivered successfully. The other 52%

of the projects are either delivered late, or they do not meet customer requirements.

Lastly, 19% of the projects are projects that have either failed or discontinued. By

critically analysing the requirements with formal methods and reducing requirements

ambiguity, this has the chance of increasing the percentage of projects delivered

that meets the client’s requirements.

2.15 Formal Methods in Practice

Since the development of formal methods in the 1980s, their adoption or use within

the business arena is slow (Davis et al., 2013). However, the following software and

hardware giants are known to be using formal methods:

• Amazon;

• Intel;

• NATS;

• Xilinx; and

• NASA.

Other companies known to also use FMs are: Qualcomm, Nvidia, Cisco, Broadcom,

Samsung, Mediatek, AMD, and Huawei. Google and Microsoft’s main focus was

software, but they are starting to develop their own hardware, and they are also

adopting formal methods (Cousineau et al., 2012). Start-ups are slowly picking up

formal methods as this provide a good return on investment (ROI) with clean code,

meaning that less money is spent on rectifying defects.

Next, we elaborate on the successful use of FMs by the mentioned companies.

INTEL

Intel’s core business is hardware, where for hardware to work, the following needs

to be developed: Microcode, Firmware, Protocols, and Software. In almost all the

products, Intel experience problems with the diversity of verification (Fix, 2008).

According to Harrison (2010), Intel developed various solutions trying to solve

verification problems. Their solutions include propositional tautology/equivalence

checking (FEV), symbolic simulation, symbolic trajectory evaluation (STE), and

temporal logic model checking.

2-43

Intel experienced numerous problems with their products, the most challenging was

a physical problem with the overheating of their Chips, and the FDIV bug, which

could be solved through the use of FMs. Intel invested over $147 million to cover

the cost incurred from chip overheating and the verification problems that led to the

improvements of FMs within Intel. Intel has realised numerous benefits with using

formal methods, and they continue to use them on many projects (Harrison, 2003,

2010).

AMAZON

Amazon is an online shopping giant that utilises formal methods. Amazon is the

largest internet-based retail business in the world by sales and market

capitalisation. According to Newcombe (2013), Amazon’s software engineers

started using formal methods, mainly for formal specification and model checking in

2011. Their main aim was to solve design problems in their critical systems.

Amazon tried to use different techniques in order to minimise defects in their system

but still discovered many defects hiding in their critical systems. Some of the

techniques tried were code reviews, static code analysis, and traditional testing, e.g.

stress testing. The main reason for failure in these techniques was human error.

To solve the above challenges, Amazon embarked on the use of FMs. They did not

develop their own FM software but looked for an off-the-shelf Method, which would

yield high returns on investment. They started using a formal methods specification

language called TLA+ created on predicates and basic set-theory. TLA+ falls under

the Axiomatic type of formal methods (Cousineau et al., 2012). Most engineers

within Amazon were familiar with TLA+, which was a major advantage, as they did

not have to spend money and time training their staff. The main benefit of TLA+ is

that it describes the preferred correctness (the what, business/user requirements,

etc.), of the system, and the design of the system (how, functionality) (Newcombe et

al., 2015).

Amazon adopted the use of TLA+ on 10 large complex systems, and in every

system, they have realised many benefits. Amazon was able to discover defects

that they were unable to find beforehand, as well as gain a thorough understanding

of the system that enabled them to make huge performance optimisations, without

sacrificing correctness. The buy-in from senior management and the technical team

leaders helped to speed up the adoption of formal methods within Amazon, in which

some team members taking up to 3 weeks to learn TLA+ from scratch (Newcombe

2-44

et al., 2015).

Formal methods have been a big success at Amazon. They have assisted in

preventing serious bugs before the system goes to production, and they have

helped to increase productivity and innovation.

XILINX

Xilinx has also adopted FMs to improve the communication between its software

and hardware. Xilinx is an American company that develops, designs, and sells

programmable logic products. These include software design tools, integrated

circuits, design services etc.

Xilinx, together with the University of Kaiserslautern and One-pin Solution,

partnered on a project to investigate how to apply formal techniques to the

verification of a Xilinx soft IP core product that is comprised of firmware and

hardware components (Xilinx, 2012). They found out that it was possible to capture

the interaction of firmware and hardware in a scalable formal-verification

environment. This joint venture between business and academia was based on a

type of formal method called interval property checking.

IPC falls under bounded model checking, which is a Model-based category of formal

methods, limiting the scope of properties to a number of clock cycles, using Bo

Boolean satisfiability (SAT) solvers to perform the actual model checking. IPC

differs from other models by allowing the window of clock cycles over which a

property may be asserted to start at a random point in time. The use of formal

methods brought numerous benefits within Xilinx, and has also increased

confidence in the functional correctness of their SEM core, and has Xilinx’s

continued commitment to quality IP distribution (Xilinx, 2012).

NATS

NATS is a UK-based company, which specialises in air navigation software.

According to Carlier, Dubois, and Gotlieb (2012), NATS handled 2.2 million flights in

2009, covering the UK and eastern North Atlantic. NATS has developed a tool

called iFacts (interim Future Area Control Tools Support), which provides controllers

with a set of tools that enables them to increase the amount of air traffic they can

handle. iFacts also has the following capabilities: prediction, deviation alerts, and

conflict detection.

2-45

When developing iFacts, NATS adopted the use of FMs. The system was

developed using Z for functional specification, Maths for algorithm specification,

State tables for HMI specification, and the rest was natural language, which is an

informal technique. As this system was deemed critical, and people’s lives would

depend on in it, the system had to be set up in such a way that it works correctly,

and without any uncertainty.

To successfully implement this system, NATS had to send its engineers to a three-

day course for Z notation reader training, where they trained about 75 specialists on

how to read Z. They then also enrolled some engineers on another 3-day course on

how to write Z, in total about 11 engineers. It took about three months for the

engineers to be fluent in Z while on the job, and about one week for readers whilst

on the job.

NATS managed to deliver the iFacts system on time, with minimal defects. The use

of formal methods increased productivity within NATS. The investment in training

assisted training the staff leading to the success of the project.

NASA

NASA is also a major advocate of FMs. NASA has written guides and standards for

system development. They recommend the use of formal methods during all stages

of the SDLC, but mostly on the formal specification for requirements (Zhang, 2009).

In this regard, one should note the 5th commandment of FMs, namely, “thou shalt

not abandon thy traditional development methods” (Bowen and Hinchey, 2012).

Other Earlier Successful use of Formal Methods

The companies discussed above manage to successfully use formal methods in

their software development. Subsequently, they realised good return on investment,

where the number of defects has been reduced significantly, and the systems or

products work with minimal ambiguity. Pressman (2009) states that the sooner a

defect is found and corrected during development, the cheaper it is to resolve. See

Figure 2-3 above.

Other places where formal methods have been implemented successfully includes

railway signalling systems (Dehbonei and Mejia, 2012), spacecraft systems

(Easterbrook, Lutz and Covington, 1998), and medical control systems (Jacky,

2004), They have also been used for software tool specification (Fenton and Neil,

2-46

2000), the specification of part of IBM’s CICS system (Wordsworth, 1999).

CICS (Customer Information Control System) was developed using Z, and it was

reported that there was about 40% drop in estimated faults, where likewise, the cost

of the project has been reduced significantly (Fisher, 1990). Z was also used in

specifying the Inmos T800 Floating Point Transputer system, which reduced project

cost, as well as the delivery of good quality software (Bowen, 1996). In France, the

B-method was used to develop a Paris Metro System (Lamsweerde, 2000).

From the aforementioned, we can see that formal methods show success in the

past, where it has also shown success in the present day with companies like

Amazon and Intel. FMs remains a viable method for correct software development.

The above discussions lead to the following proposition:

PROP 4: Tools that are readily available and up to date with the latest

technology should facilitate the adoption of FMs. Such tools ought to be

integrated with the requirements management software and standard

software programming tools e.g., MS Visual Studio.

And a refinement of Prop 3 above:

• PROP 3.1: Widely accepted principles and guidelines on FMs can improve

the adoption thereof. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities. Publications of formal methods successes in terms of cost

savings in projects, clear specifications produced, and the overall final

product delivered with fewer defects will raise much interest needed for the

adoption of FMs. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities.

2-47

2.16 Summary

Chapter 2 discussed the ERP system in terms of what it is, and what modules ERP

comprises. In addition, the challenges that arise when implementing an ERP system

within the organisation were discussed. Chapter 2 then touched on formal methods,

placing more emphasis on the Z specification language. Furthermore, the chapter

explained the differences between informal and formal methods in a tabular form.

Types of formal languages were identified, and the minimal description of Z notion

discussed. Myths around formal methods were identified. Lastly, the chapter

focused on the reasons why there is slow adoption and suggested ways to fasten

the adoption of formal methods in the commercial world. To conclude the chapter,

practical examples where formal methods were used in the commercial world

received discussion.

From the chapter discussion, we can conclude that formal methods remain a viable

software development method to deliver software with fewer errors. They have been

successful in the past and remain successful in the present day.

The next chapter focuses on the formal specification of an ERP system, using Z.

Case studies will be given and then the specification is written informally using

natural language and formally using Z. For Z, each schema is given accompanied

by a discussion of what it means. At the end of the chapter, a preliminary framework

is presented and explained.

3-48

Chapter 3 Informal, Semi-Formal and

Formal Specification

3.1 Chapter Layout

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 3-1 Chapter Layout

3-49

3.2 Introduction

The previous chapter introduced ERP systems, as well as formal methods. Various

modules and the challenges of implementing ERP systems within the organisation

were discussed. The chapter then introduces formal methods by placing more

emphasis on the Z-specification language. Other types of formal language were

identified, and the minimal description of Z notion was discussed. The reasons why

there is a slow adoption in business are discussed, where some of the reasons are

the expense, as well as being viewed as difficult to understand, due to mathematical

notation. Furthermore, it analysed the problem with the current software

development life cycle, and how formal methods can resolve those problems. The

last two sections of Chapter 2 details preliminary suggestions that were made on

the ways to increase the use of formal methods in business, and lastly, the cases

where formal methods have been applied successfully in business, in such cases as

Amazon, Intel, and NASA.

Chapter 3 will document ERP specification in an informal way and a formal way.

This will be structured by providing a case study first, followed by the specification.

Parts of the informal specification will be discussed i.e., a UML process diagram,

use case diagram, and the details of the process and use case diagram in a tabular

format. Before writing a formal specification, a brief introduction to mathematical set

theory is presented. The last section of this chapter presents a formal specification

in Z for the purchasing module of the ERP. To close off the chapter, a preliminary

framework is presented.

3.3 Requirements Specifications

Formal methods specification is linked to design in many ways. From the

specification itself, a design can be derived. The development of the specification is

an incremental process, this requires the engineer or the writer of the specification

to make detail system analysis, that in most cases will uncover errors and

discrepancies in the informal requirements specification. Using FMs allows a

software engineer to ask questions that may be postponed until the implementation

phase (Krause et al., 2012; Wing, 1990). The below diagram shows the relationship

between formal specification and other artefacts of the development process:

3-50

Figure 3-2 Formal specification in the software process (Sommerville, 2016)

From the diagram, we observe that the specification and the design can be carried

out in parallel. The user requirement definition is written in natural language, which

also feeds into other artefacts of the formal methods development process. System

requirement specification can then be developed along with system modelling. The

formal specification feeds into the system modelling and the high-level design.

According to Hall (2007), the prevalent argument of using formal methods is error

findings at an early stage of software development. The major cost of developing

formal specification is the time required for engineers to understand system

requirements, decide on the appropriate method to specification and developing a

formal model of the system (Crepaldi, 2005). The reduction of the costs happens in

the later stages of system development. This results in less work in correcting

requirements, and less error correction when it comes to system testing. The

following graphs represent the cost of software when informal methods are used,

and the costs when formal methods are used.

3-51

Figure 3-3 Software development costs with formal specification (Crepaldi, 2005)

Figure 3-3 shows the costs of the system development process. The first three bars

of the graph show traditional development process costs and the last three bars

show when FMs are used. When using traditional methods, about 50% of the costs

are attributed to the validation of the development cost. Furthermore, the design and

implementation costs are double the cost of the specification itself. When FMs are

incorporated into the software process, the formal specification costs and the

implementation and design costs are almost similar, while the validation costs have

been reduced significantly. The graph shows the total costs of the software

development process while using formal methods is less when compared to

traditional methods.

Davis (2013), mentions the essential properties of specification document, which

are: correctness, completeness; unambiguous meaning (there must be no

interpretation); precision i.e., it should have only the necessary information;

verifiable and traceable in a way that it should be tested and all the requirements

must be linked to other components of the system; the specification document

should be independent of design; consistency should exist, where there ought not to

be conflicting features, and it ought not be comprised of irrelevant features; where

the last property is annotated (this applies mostly when using the Z specification).

Next, I introduce aspects around ERPs through a case study.

3-52

3.4 Case study

The following case study is written based on the experience of the researcher and

the company names are made up for illustration purposes.

A company (#Parts) in Johannesburg South Africa wants to implement an ERP

system. The company is a manufacturing factory which produces car parts for sale.

These parts are then sold to different car dealer and service stations around the

country. #Parts has around 50 employees. Currently, it is a manual and

cumbersome process when employees apply for leave. Files and paper trays get

lost within the company, it is also difficult to track which employee applied for leave,

and which leave was approved. Reporting becomes tedious, and leave balance is

not tracked properly.

The management board resolved to implement a mini-ERP system, mainly on the

HR module. They have decided to start with the leave application feature. A

member of management suggested that they use formal methods for this project, in

order to minimise system errors and project delivery timelines.

3.4.1 General ERP informal requirements

In this section, requirements will be presented in an informal way, viz. natural

language. The requirements relate to the company above in the case study (above

requirements definition). The focus will be on the HR module of the ERP system,

specifically on the employee leave functionality. The informal requirements will be

tabulated.

3.4.2 HR Module Requirements

The below table list the informal requirements of the ERP system. These

requirements are for the HR module focusing on employee leave.

Requirements No Description

1 Users must be able to capture employee

information.

The following information must be captured:

• Name and Surname

• Designation

• Contact details

3-53

Requirements No Description

• Date of birth

2 Users must be able to apply for leave.

The following details the type of leave a

user can apply for:

• Annual leave

• Sick leave

• Family responsibility leave

• Study leave

• Maternity leave

3 Leave application must be approved by a

manager.

4 User must be able to view leave balances.

5 User must be able to view and download a

payslip.

6 User must have the ability to capture

performance reviews.

7 The system must keep track of time and

attendance of an employee.

8 All training planned and attended by an

employee must be recorded on the system.

Table 3-1 Leave Application Requirements (synthesised by the researcher)

Above are the HR requirements in natural language, which is English. The listed

requirements can be interpreted in different ways and can cause a great deal of

confusion and ambiguity. IIBA (2012) states that requirements must be SMART,

meaning that a requirement must be Specific, Measurable, Attainable (which is it

should be achievable and actionable), a requirement must be Realistic, and lastly, a

requirement must be time-bound (which is Traceable and Timely).

To clarify requirements in a traditional software development model, business

processes are developed or mapped. For this dissertation, I use an example of a

leave application business process. This a UML diagram mapped using BPMN

(Business Process Mapping Notation), defined as follows: “Unified modelling

language (UML) is a graphical language used to stipulate, virtualise and document

the properties of software” (Coates, 2012).

3-54

3.4.3 Unified Modelling Language

UML stands for unified modelling language, which can be described as an object

modelling language that unitises several diagrams to model a system. These

illustrations can be used at different stages or sections of the specification to

present the system components (Ma, 2008). UML also has a formal component,

called Object Constraint Language, which defines the rules that ought to apply to

UML. UML is considered easy to use and supports numerous development methods

(Sengupta and Bhattacharya, 2006). UML can define the following type of (Scott,

2000).

• Use case diagrams (see Figure 3-7 USE Case Diagram Inventory System)

• Process diagrams (see

• Figure 3-4 Leave Application Process Diagram (synthesised by the researcher))

• Class diagrams (see Figure 3-8 Class Diagram Inventory System)

• Sequence diagrams

• Deployment diagrams

• Statechart diagrams

• Collaboration diagrams

A leave application process is depicted below.

3.4.4 Leave Application Process

Le
av

e
A

p
p

lic
at

io
n

 P
ro

ce
ss

Em
p

lo
ye

e
ER

P

M
an

ag
er

1. Access Leave
Application screen

2. Display Leave
Screen

3. Capture Leave
details

4. Submit Leave

5. Notify Manager
of Captured Leave

6. Determine Leave
Action

7. Approve leave

8. Reject Leave

9. Notify Employee
of the result

Leave Required

End

Figure 3-4 Leave Application Process Diagram (synthesised by the researcher)

The above process diagram shows the steps that need to be followed when an

3-55

employee is applying for leave. The diagram shows all the actors that are impacted

by this process i.e., employee, the ERP system, and the manager who does the

application rejection and approval. The next table explains each process step in

detail.

The above process diagram is composed of the following notations.

Swim lane

T
it

le

E
m

p
lo

ye
e

A Swim lane displays a role that is responsible for performing a specific task

Start

Leave Required
 The start represents the trigger to the process.

Task

1. Access Leave
Application screen

 The Task represents the actions that need to be taken by a specific

role.

OR

OR/ executive symbol represents what tasks must be performed after a

decision has been made.

End

End

 End symbol represents the final step of the process or the end of the

process

One mistake that is linked with the business processes is that business tends to

3-56

automate old, mostly ineffective processes, which as a result do not see any

improvement. Hammer (2003) encourages that in order to archive real

organisational improvement, technology must be used to redesign business

processes.

3.4.5 High-level process description

Process Description

Actors The actors of this process

• Employee

• Manager

• ERP system

Business
Rules

• Sick leave can be backdated

• Leave must be approved within 3 days of

application

• Application is allowed to go to negative days

of up to 3 days.

Step Description

1.

Access Leave Application Screen – the employee

navigates to the leave application screen on the ERP

system.

2.
Display Leave Screen - the system displays the leave

application screen.

3.
Capture Leave Details - employee selects the leave type

they wish to apply for, also the “start date” and “end date”.

4.
Submits Leave – employee submits the leave to the

manager for the manager’s approval.

5.

Notify Manager of Captured Leave - the ERP system

notifies the manager of employee’s leave, this can be in

the form of an email.

6.
Determine Leave Action – the manager can determine

whether to accept or reject leave.

7. Approve Leave – Manager approves employee’s leave.

8. Reject Leave – Manager rejects employee’s leave.

9.

Notify Employee of the Result – the system notifies

employee on the status of the leave.

If approved, an employee will receive an email informing

3-57

him/her of approval,

Else if Rejected, the employee also receives a notification.

Table 3-2 Process Description (synthesised by the researcher)

The above table explains the steps of the business process as mapped. The table

also includes the business rules applicable to applying for leave on an HR system.

IIBA (2015, p.33), defines “business process an activity or set of activities that will

accomplish a specific organizational [sic] goal”. It’s also a simplified view of the

organisation.

3.4.6 Use Case Diagram

A Use case diagram can be defined as a graphical presentation of how the system

operates, as well as the actors who interact with the system. Use cases are part of

Functional Requirement Specification (FRS), which describe what the system

should do. Use cases are limited to functionality that is externally visible to the user

of the system (Kotonya and Sommerville, 1998). Use cases are also inadequate

when describing non-functional requirements (Sengupta and Bhattacharya, 2006).

Non-functional requirements are qualities that are important to the system, not the

behaviour of the system, and these include usability, reliability, scalability etc.

(Nathan and Scobell, 2012).

When modelling a use case, the following activities are recommended. Firstly, it is

necessary to identify the actors who are going to interact with the system, after

which, you are required to identify individual use cases. Lastly, the relationship

between the actor and the use case is indicated. A use case diagram and the above

business process are mapped using Unified Modelling Language (UML). Use cases

are written in natural language, which makes them easy to understand, and

acceptable to a customer, as opposed to formal methods. However, because they

are written in natural language, they are open to interpretation and

misunderstanding. Use cases can also be incorporated into other aspects of

software developed, such as costs estimating, project planning, and user manuals.

The below diagram is the Use Case Diagram of the HR Module within the ERP

system, the component presented is of leave application.

A use case diagram has the following components (Moremedi and van der Poll,

3-58

2013, 2019):

• Actors (stick man) – represent a role that interacts with the software. This

can be other software or an actual person.

Observation: The researcher recommends that "stick man" could in future versions of UML be

replaced by a gender-neutral figure.

• Use case – is an oval shape that represents functions of the software.

• Lines – indicates the relationship between actors and use cases.

The following diagram presents a use case diagram. It indicates the employee will

interact with the system. The Use Case diagram shows that the employee can log-in

to the system, apply for leave and the manager can approve and reject the leave.

3-59

Top Package::Employee

HR Module

Log In

Apply for Leave

Approve Leave

Top Package::Manager

Reject Leave

Figure 3-5 Use Case Diagram

The above use case diagram shows all the functionality that the employee and the

manager can perform on the system. The use case is further described in a table

format below.

3-60

3.4.7 Use Case Model Description

Table 3-3 gives a description as to how the user and system interact when applying

for leave. The table first defines the pre-condition and the post-condition of the use

case. Business rules are also documented. The table expands more on the process

diagram, and the requirements table above by showing how the requirement will be

fulfilled.

UC - 01 Apply for leave

Brief
Description

Begins once a user wishes to apply for leave

Involves the user capturing and submitting leave

application

Concludes once When an application notification

has been sent to the manager

Preconditions User is authorised to apply for leave online

Post-
conditions

• Application successful or unsuccessful

• Application notification sent to manager

Actors Primary

• Employee

Business
Rules

• User must be able to check leave balance

• User must be allowed to go negative three

days

• User must be able to perform a backdated

leave application.

Triggers • The employee wishes to apply for leave

Flow of Events

Basic Flow

User Action HR System Response

1. Access the leave
application screen.

Displays the leave
application screen.

2. Select the leave

application

dropdown list.

▪ Displays the types of
leave

o Sick

o Annual

o Family
responsibility

o Maternity leave

3. Choose the type of
leave

None

4. Enter “Start Date” Calculate the number of

3-61

and “End Date” days

5. Submit Leave Validate the type of leave
and the number of days
entered.

If leave balance is negative
5 follow Step 7

If leave balance is correct
follow Step 6

6. None Display leave application
sent to manager message
for approval

Alternate Flows

Application Unsuccessful

User Action PRMS Response

7. None Display leave application

unsuccessful message

8. None Enable the new button in

the edit panel

Table 3-3 Use Case Description (synthesised by the researcher)

Figure 3-5 Use Case Diagram shows the interaction between the employee and the

system when applying for leave. Table 3-2 then gave a detail description of the

diagram. For this dissertation only, leave application will be shown as a use case.

Next, the formal specification will be presented for the purchasing model of the ERP

system.

3.5 Formal Specification in Z

The Z specification will be guided by the Enhanced Established Strategy, as

outlined in the previews chapter. The principles suggested by Kotze and Van Der

Poll (2005) will also be incorporated where possible in the construction of the

specification document. This specification will describe what the system must do,

not how it is going to do it. The specification will work as a single point of reference

for the requirements analyst, programmer/developer, the tester and trainer or a

person who will write the system manual (Spivey, 2010). It should also be noted that

Z is not suitable when specifying synchronized operations; Z is most suited for

sequential operations (Boca, Siddiqi and Bowen, 2010).

For one to be able to write a Z specification, they need to have knowledge about set

theory. The section below will give a high-level explanation of the set theory.

3-62

3.5.1 Set Theory

Mathematical set theory notion has existed for a very long time. Enderton (1977)

regards George Cantor as the father of set theory. Gottlob Frege further published a

book around 1893 and 1903 demonstrating how maths can be created from the

values of the set theory. Then, Russell’s paradox was created from Gottlob Frege’s

set theory i.e.,

A = {x | x ∉ x}

This reads as follows: Set A is defined as the set of all elements x, such that x is not

an element of itself. There is an inherent contradiction in that A contains itself,

where, if this is true, then by the description it is not a member of A. Conversely, if A

does not contain itself, then by description, it is a member of A.

In 1908, Zermelo Ernst suggested the structure of axioms for set theory. This

gained many critics in the mathematics world. Abraham Fraenkel added to this work

by introducing the replacement axioms. A total of 10 set theory axioms where

developed, and became known as the Zermelo-Fraenkel axioms (Enderton, 1977).

Below, we briefly present some introductory set-theoretic ideas.

Sets

A set can be described as a container, where the items inside the container are

called elements. Furthermore, a set X is a (finite or infinite) unordered assembly of

mathematical objects called elements of the set.

Example

Consider the set S = {1, 2, 3, 4, 5}, a subset of integers which is the default set for

our discussion that follows.

We can say 1 is an element of A, i.e.:

1 ∈ A

From the definition of S, we can also say that 5 ∈ S, which reads: 5 is an element of

S. From the definition of S, we also conclude that any number that is not in the set

(container) is not an element of S, e.g. 6 is not an element of S, i.e. 6 ∉ S.

Infinite set

3-63

To show infinite set in set-theoretic list notation, one uses 3 dots:

S1 = {1, 2, 3, 4, 5, ...}

We can use a variable to definite the scope of a set. For example, for the finite

subset S = {1, 2, 3, 4, 5} of S1 above we could write S1 in set-builder notation as

(Enderton, 1977):

S = {x | x > 0 and x < 6}

The above reads as: “S is the set of all ‘x’ such that x is greater than 0 and less than

6”. Naturally, the advantage is that this allows you to scale with relative ease.

Empty Set

The empty set is a set that has no elements in it, also known as the “Null Set”. An

empty set is traditionally represented by the symbol Ø or simply {}.

(∃x) (∀y) (y ∉ x) – ZF Empty set axiom

Also, Empty Set = {}.

Universal Set

A universal set is a set that contains all possible elements from a designated

domain. Traditionally it is symbolised as U. It is easily understood or explained using

the Venn-diagram notation. John Venn developed Venn diagrams in 1880 to show

logical statements, and the relationships between sets (Bottoni and Fish, 2011).

Below is an example of a Venn diagram.

Figure 3-6 Venn diagram

Source: Drawing area-proportional Venn and Euler Diagrams (Chow and Ruskey,

2004).

Natural numbers (non-negative integers): These are the everyday numbers we

3-64

use to count, and they are represented as:

ℕ = {0, 1, 2, 3 ,4, 5, …}

Integers: These include the natural numbers as well as negative numbers; in list

notation, we could write the set of integers as:

ℤ = {… ,-3, -2, -1, 0, 1, 2, 3, …}

Fractions: These are part of the set of rational numbers and they are represented

by ℚ. Real Numbers indicated by ℝ include the rational numbers and the set of

Irrational numbers indicated by 𝕝.

Binary Union is denoted by ∪. Generally, set-theoretic union is first specified in

simple terms for 2 sets (Enderton, 1977), and then it is specified for the distributed

case. From the above Venn diagram, we can define set C to be a union of A and b,

i.e. C = A ∪ B. In natural language the set C may also be described as “A or B”.

Binary Intersection of A and B includes any values that are contained in both sets

and is presented as follows:

A ∩ B

In natural language, binary intersection can be described as “A and B”.

The difference between A and B can be described as the values that are in set A

but not in set B. The difference is presented as:

A – B

SUMMARY EXAMPLES

Suppose A = {1, 3, 5, 7, 9, 11} and B = {3, 4, 5, 6, 7}

Then

o The union of A and B: A ∪ B = {1, 3, 4, 5, 6, 7, 9, 11}

o The intersection of A and B: A ∩ B = {3, 5, 7}

o The difference A – B = {1, 9, 11}

Subsets

Suppose A = {a, b, c, d, e} and B = {a, b, c}

We denote a subset as B ⊆ A reading as B is a subset of A. We can also say B is a

proper subset of A, denoted by B ⊂ A – meaning every element of B is also an

element of A, but A contains more elements than B. In a non-typed set theory, a set

3-65

can also be an element of another set, mixed with other elements that are

(traditionally) not viewed as sets, for example:

Suppose A = {1, 2, 3, {3}, 4, 5}

Then we have:

o {3} ∈ A,

o {3} ⊆ A, and

o {3} ⊂ A.

Infinity: In 1923, Von Neumann proposed that an infinite set contains a mapping

from the set of natural numbers to the elements of the set, i.e. the set contains an

infinite number of elements (Nerode and Shore, 1997).

Further discussion of infinity is beyond the scope of this dissertation.

Power Set: A power set of a set A, denoted by ℙ(A) is defined as the set of all the

subsets of the given set, e.g.:

If A = {a, b, c}, then ℙ (A) = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

The cardinality (indicated by ||) of a set is the number of distinct elements in the set

(elements in a set are not duplicated).

Examples

If A = {a, b, c, d, e}, then

Cardinality of A is 5: |A| = 5

If B = {a, a, f, f, f}

No duplicates the cardinality of B is 2: |B| = 2

If D = {∅, {∅}}

|D| = 2

F = {n | n ∈ ℤ}

|F| is infinite

Regularity: Every non-empty set A has at least one element disjoint from A

(Enderton, 1977). (∀A) (A ≠ Ø → (∃x) (x ∈ A ∧ x n A = Ø)) The axiom limits set

theory to sets in which the elements of a set must be identified. Some of the

consequences of this axiom are (Enderton, 1977; Nerode and Shore, 1997): “No set

can be a member of itself, there exist no sets x and y such that x ∈ y and y ∈ x,

3-66

There exists no infinite descending sequence of sets e.g. … ∈ f(2) ∈ f(1) ∈ f(0),

where f is a function with the domain of the natural numbers.”

Proof of the above three properties lies outside the scope of this research. Further

details are available in Enderton (1977).

A choice function is a function f, distinct on the assembly X of non-empty sets, in a

way that for each set A in X, f(A) is an element of A. With this concept, the axiom

can be stated:

Axiom of Choice — For each set X of nonempty sets, there exists a choice
function f demarcated on X.

Formally, it may be expressed as follows:

(∀A) (∀x) (x ∈ A → x ≠ Ø) → (∃f) (func(f) ∧ dom (f) = A ∧ (∀x)(x ∈ A → f(x) ∈ x)))

Limitations

It becomes challenging to create an automated theorem prover for ZF (Zermelo-

Fraenkel) set theory (Steyn and Van der Poll, 2007). However, two prominent

software specification languages, B and Z are based on ZF, regardless of ZF having

an infinite axiomatisation. In the software industry, the limitations of (automated)

proving theorem become challenging when working with set-theoretic proofs arising

from a formal specification.

Next, the Z specification language is presented on the strength of a case study.

3.6 Purchasing module formal requirements specification

For the Z specification, this dissertation will focus on the purchasing model

discussed next as adopted from Steyn and van der Poll’s (2007) work – Validating

Reasoning Heuristics Using Next-Generation Theorem-Provers.

The procurement model, also known as the purchasing model, enables capturing of

orders, and processing of orders. The purchasing model can also be expanded to

other functionalities of order fulfilment, such as stock, financial, customer

information, and reporting. The scope of this will be limited to order placing and

processing. Rules will be provided in tabular format.

https://en.wikipedia.org/wiki/Choice_function

3-67

No Description

1 User must log-into the system first before they can perform any

tasks

2 The system must be able to keep track of stock for several

products

3 The product should have a name, price, and quantity of

available stock recorded on the system.

4 Each product must have a unique name.

5 User should be able to update products name, price and

quantity of stock on hand.

6 User should also be able to delete products.

7 The system should have the ability to produce a list of all

products that are below the threshold.

8 The system should allow for the capturing of orders.

9 Once a new order for a specific product is captured, it will stay

on the “pending” status.

10 All orders on the pending status can be deleted, once deleted

the status should change to “Cancelled”.

11 The quantity of an order should always be more than one.

12 The record of the quantity, price, and product name order must

be kept.

13 All orders with the pending status should be processed if there

is enough stock to hand.

14 Once the order is processed, the status should change to

“processed”, and the quantity should decrease with the same

number of products are ordered.

15 Customer information needs to be stored and linked to the

order. Information includes the name, address and phone

number must be stored.

16 One customer can have multiple orders.

Table 3-4 Procurement Module Requirements (Steyn and Van der Poll, 2007)

Next, a UML use-case diagram of the process is presented.

3-68

Use Case Diagram

User

Log-In

Update Product

Create Oders

Monitor Stock

Update Customer

Inventory Management System

Figure 3-7 USE Case Diagram Inventory System

The above use case diagram represents the interactions between the user and the

system, which is all the functionality that the user can perform within the inventory

management system. In the diagram above, we can see that in order for a user to

perform any inventory functionality, the user must be logged onto the system. Once

the user is successfully logged onto the system, the user can update products and

update customer information. This also includes creating the customer, monitor

stock and create orders. The diagram is derived from the natural language

requirements listed procurement module requirement table. From the use case

3-69

diagram, we can easily produce a UML class diagram.

Class Diagram

The below class diagram presents the main classes of the inventory management

system i.e., Customer, Product, Order, User and item. The class diagram can be

transformed to Z specification by the use of schemas.

+LogoIn()
+UpdateAcc()

-UserID
-Username
-Password

User

+Update()
+Reduce()

-Name
-Price
-Quantity

Product

+Cancel()
+Process()
+Createitem()
+UpdateItem()
+DeleteItem()

-Date
-Status

Order

+Create()
+Cancel()

Orders

+Create()
+Delete()
+Update()
+SelectBelow()

Products

+Update()

-Price
-Quantity

Item

1
-Orders*

-Order1

-Item*

1

-Product *

*

-Item

1

0..1

1..*

0..1

1..*

Manages Stock

Gets Product >

+Update()

-address
-phone

Customer1

-Orders

*

Figure 3-8 Class Diagram Inventory System (synthesised by the researcher)

Schach (2011) defines the class diagram as a method of determining entity classes

and attributes relating to them. Furthermore, the class diagram defines the methods

of the relating class and variables (Coates, 2012). This diagram is utilised mostly

early, during the analysis stage of the software development process.

3-70

A formal specification in Z of the above system is developed next. For the purposes

of this dissertation, some details are omitted from the specification, the reason being

that its purpose is to illustrate the use of Z in developing a formal-methods adoption

framework in the commercial world.

3.6.1 A Formal Specification

As mentioned previously, Z specification works with schemas when specifying

requirements. Firstly, we will start by creating a schema for products. This

specification will follow an established strategy for writing Z specification.

As per the (enhanced) Established Strategy for constructing a Z specification, basic

(given) set are defined first.

Given Sets (basic Types)

From the requirements, the following basic sets are defined for the specification

(basic types usually take singular denotations, e.g. USER instead of USERS).

[STRING, AMOUNT, DATE]

[USER, PRODUCT, ORDER, CUSTOMER]

STATUS: = pending | cancelled | processed

The above set of basic types will be augmented with feedback to the user of the

system later in the specification (refer schema ProductAlreadyExists towards the

end of this specification). The following terms are used in the specification and the

below describes what each term stands for:

Next, a state space for the User entity is defined.

User

 User

users: ℙ USER

userName: USER ⤔ STRING

userPassword: USER ⤔ VARCHAR

dom userName = users

dom userPassword = users

The above schema represents users that are maintained by the system. The

schema further associates the password with the user. Schema Log-in towards the

3-71

end of this specification specifies an appropriate log-in operation for a user.

Product

Bellow schema defines products for the system.

 Product

products: ℙ PRODUCT

prodName: PRODUCT ⤔ STRING

prodPrice: PRODUCT ⇸ AMOUNT

prodQuantity: PRODUCT ⇸ ℕ

dom prodName = products

dom prodPrice = products

dom prodQuantity = products

Schema summary

Component products represent the set of characteristics of all the existing products

in the system.

• prodPrice: PRODUCT ⇸ AMOUNT is a component of the state is declared

partial function notation (⇸).

• prodName: PRODUCT ⤔STRING: Since the rules state that no two products

can have the same name, a partial injective function is used to declare

product names.

• The domains are specified in the predicate section of the schema. For this

requirement, each attribute of the product should equal the identities

collection. i.e.

dom prodName = products

dom prodPrice = products

dom prodQuantity = products

Customer

Before creating an order schema, a customer schema must be specified. A

customer is linked to an order, viz.

3-72

 Customer

customers: ℙ CUSTOMER

custAddress: CUSTOMER ⇸ STRING

custPhone: CUSTOMER ⇸ STRING

dom custAddress = customers

dom custPhone = customers

Schema summary

• customers: ℙ CUSTOMER represents all existing customers in the system.

• custAddress: CUSTOMER ⇸ STRING and custPhone: CUSTOMER

⇸STRING are partial function information about customers with respect to

addresses and phone numbers.

Order

With existing products identified in the previous schema, there should be

information maintained on existing orders in the system.

 Order

order: ℙ ORDER

orderDate: ORDR ⇸DATE

orderStatus: ORDR ⇸STATUS

orderCustomer: ORDR ⇸CUSTOMER

dom orderDate = order

dom orderStatus = order

dom orderCustomer = order

Schema summary

• ℙ ORDERS represent components of all the existing products in the system.

• orderDate: ORDR ⇸ DATE is an attribute to the order with respect to the

date of the order and it is declared using partial function notation (⇸).

• orderStatus: ORDR ⇸ STATUS is also an attribute which indicates the order

status i.e., pending, processed, or cancelled.

• orderCustomer: ORDER ⇸CUSTOMER this represents the customer that

has placed the orders. Each order must be linked to a customer.

The domains are specified in the predicate section of the schema. For this

requirement, each attribute of the orders should equal the identities collection. i.e.,

3-73

dom orderDate = order

dom orderStatus = order

dom orderCustomer = order

3.6.2 Specifying Operations

Operations in Z represent dynamic aspects of the specification, this usually includes

create, read, update, and delete operations.

Create Product Operation

A product is created through the following schema.

 CreateProduct

ΔProduct

prduct?: PRODUCT

nme?: STRING

prce?: AMOUNT

qntity?: ℕ

prduct? ∉ products

products′ = products ∪ {prduct?}

prodName′ = prodName ∪ {prduct? ↦ nme?}

prodPrice′ = prodPrice ∪ {prduct? ↦ prce?}

prodQuantity′ = prodQuantity ∪ {prduct? ↦ qntity?}

When you observe the above schemas, the first necessity when creating operations

is to declare the status of the state space, Product in this case. The schema states

the state for Product is changed (or might change), owing to the operations

specified, hence ΔProduct.

On the operations side, first is precondition stating a new product to be added is not

in the database. The next predicates involving products, prodNme, prodPrce and

prodQntity specify appropriate after states of the database components as

indicated.

Create Order

The below schema specifies the placing of an order. Order status and date are

specified and the person placing the order is captured.

3-74

 CreateOrder

ΔOrder

date?: DATE

customer?: CUSTOMER

ordr!: ORDER

order! ∉ orders

ordr′ = orders ∪ {ordr!}

orderDate′ = orderDate ∪ {ordr! ↦date?}

orderStatus′ = orderStatus ∪ {ordr! ↦ pending}

orderCustomer′ = orderCustomer {ordr! ↦ customer?}

Once the order has been created successfully, the next step is to process the order.

The first part is to declare the order schema so as to ensure that create order and

order schemas are linked. This also indicates that the state of the order may

change, due to operations specified.

The first precondition states that this is a new order and it’s not in the system. The

next predicates involving ordr!, orderDate, orderStatus and orderCustomer maintain

the date, status and customer information of the new order being placed. Note also

that the system generates a new order number, hence the output symbol decoration

of order, namely, ordr!

Create Customer

Naturally, new customers can also be added to the system. The Customer schema

specified above serves to show all available customers in the system. It is also

known as a static schema, similar to a UML class diagram.

The following schemas add a dynamic nature to the Customer specification and

indicate their link via the ΔCustomer notation. The first schema adds a new

customer to the system.

3-75

 CreateCustomer

ΔCustomer

customer?: CUSTOMER

address?: STRING

phone?: STRING

customer? ∉ customers

customers′ = customers ∪ {customer?}

custAddress′ = custAddress ∪ {customer? ↦ address?}

custPhone′ = custPhone ∪ {customer? ↦ phone?}

On the operations side, first is the usual a precondition, stating that the customer

about to be created must not be in the system. The next predicates specify after

states for components customers, custAddress and custPhone as indicated.

Process Order

The following schema is for processing an order that was newly created or an order

in the pending status.

3-76

 ProcessOrder

ΔOrder

ΔProduct

ΞCustomer (* Yet, a real-life system would maintain some customer information *)

product? : PRODUCT

ordr?: ORDER

ordr? ∈ orders ∧ product? ∈ products

(* Valid pending order and product stock available *)

orderStatus(ordr?) = pending ∧ prodQuantity(product?) > 0

(* Components that remain invariant *)

orders′ = orders

orderDate′ = orderDate

orderCustomer′ = orderCustomer

products′ = products

prodName′ = prodName

prodPrice′ = prodPrice

(* New status of order *)

orderStatus′ = orderStatus ⊕ {ordr? ↦ processed}

(* New quantity of product *)

prodQuantity′ = prodQuantity ⊕

 {(product? ↦ prodQuantity(product?)) – orderQuantity(ordr?)}

As per Z’s schema inclusion, the process order schema includes three other

schemas, namely, Order, Product and Customer. In addition, it also indicates that

the states of Order and Product may change. For reasons of simplicity the state of

Customer remains invariant – in a real-life system, some change in the customer-

order relationship would be specified. The schema also input the new order identity

(ordr?: ORDER), and product? : PRODUCT.

The schema validates that the order has been placed for a valid customer and the

order status is pending when created. The schema specifies that before the value of

the number of the specific product is positive, and that some components remain

invariant as indicated. Should all predicates (precondition) hold, the after state of the

status is specified accordingly and the product quantity on hand will be reduced by

the quantity of the order.

Note also that standard Z has no notion of documentation of technical content in a

3-77

schema. Any documentation to a schema is stated as (English) prose in the

discussion that follows a schema.

Update product

The next requirements on the order management module are that users should be

able to update and delete products in the system. On the order side, users should

be able to cancel the order that is not yet processed. The update, delete and cancel

operations adjust the entity value on the system, either to be more (acquire) or less

(sell-off or write-off).

The following schema specifies the update operation:

 UpdateProduct

ΔProduct

product?: PRODUCT

nme?: STRING

prce?: AMOUNT

qntity?: ℕ

product? ∈ products

prodName′ = prodName ⊕ {product? ↦ nme?}

prodPrice′ = prodPrice ⊕ {product? ↦ prce?}

(* Abstracting away from order-product relationship in schema ProcessOrder

above *)

prodQuantity′ = prodQuantityy ⊕ {product? ↦ qntity?}

Because we are updating the product, we first start by inserting the product schema

on the UpdateProduct schema. Then, the first predicate validates that the product to

be updated must exist in the system. Consequently, there is a remapping of

prodName, prodPrice and prodQuantity functions to link them with the new name,

price, and quantity values respectively of the existing product. The relevant Z

operation for this purpose is denoted by the ⊕ relational override notation.

Delete product

This operation removes a product from the system.

3-78

 DeleteProduct

ΔProduct

product?: PRODUCT

product? ∈ products

products′ = products ∖ {product?}

prodName′ = {product?} ⩤ prodName

prodPrice′ = {product?} ⩤ prodPrice

prodQuantity′ = {product?} ⩤ prodQuantity

The Product schema is included in DeleteProduct schema and indicates a possible

state change. The precondition product? ∈ products state that the product that is

going to be deleted exists in the database (an appropriate error condition could be

generated otherwise).

The specification indicates appropriate after states of components prodName,

prodPrice and prodQuantity. This is archived by eradicating the state of the product

that is about to be deleted (product?). The predicates are denoted by the symbol, ⩤

called domain subtraction.

Cancel Order

Referring back to the natural-language requirement stated earlier, the order can be

cancelled only if it is still in the pending status. This can be archived by the following

schema.

 CancelOrder

ΔOrder′

ordr?: ORDER

ordr? ∈ orders

orderStatus(ordr?) = pending

orderDate′ = orderDate

orderStatus′ = orderStatus ⊕ {ordr? ↦ cancelled}

orderCustomer′ = orderCustomer

Firstly, the order has to exist in the system for it to be cancelled. The next predicate

checks the status of the order to be cancelled. The order is subsequently cancelled.

For the purposes of this specification, the orderDate and the customer involved in

the order are not affected.

3-79

Enquiry Operation

As an illustration, we specify a simple enquiry on the system. Only one report will be

specified for this dissertation.

 SelectProductsBelowThreshold

ΞProduct

quantity?: ℕ

products!: ℙ PRODUCT

products!= {p: products | prodQuantity(p) < quantity?}

The above schema selects all the products that are below a certain threshold,

hence any orders for these would be affected. By adding more rules in the schema,

users can be notified once the product is below the specified threshold.

The above schema will select all the products that are below-set threshold.

Total Operation

Lastly, total operations that cater for partial (correct) operations above, as well as

cases where the preconditions do not hold can be specified for the order system.

To cater for total operations, one has to define success schemas, as well as

schemas for error conditions. I give one example of these below.

Operation success

Success

result!: REPORT

result!: = success

The above schema presents the results of successful inputs when creating a

product. If the precondition holds, the final outcome will be successful.

Below is an error schema for an attempt at creating a product that already exists.

3-80

Error condition

 ProductAlreadyExists

ΞProduct

prduct?: PRODUCT

result!: REPORT

prduct? ∈ products

result!: = product_already_exists

Once error conditions are added, the specifier should augment the data type

definitions given earlier as follows (basic type REPORT added):

[STRING, AMOUNT, DATE]

[USER, PRODUCT, ORDER, CUSTOMER, REPORT]

STATUS: = pending | cancelled | processed

Using Z’s schema calculus, a robust operation RobustCreateProduct for creating a

product can be specified:

RobustCreateProduct ≙ (CreateProduct ∧ Success) ∨ ProductAlreadyExists

In expanded form, RobustCreateProduct will check for both success and error

conditions.

3-81

 RobustCreateProduct

ΔProduct

product?: PRODUCT

name?: STRING

price?: AMOUNT

quantity?: ℕ

result! : REPORT

(product? ∉ products ∧

 products′ = products ∪ {product?} ∧

 prodName′ = prodName ∪ {product? ↦ name?} ∧

 prodPrice′ = prodPrice ∪ {product? ↦ price?} ∧

 prodQuantity′ = prodQuantity ∪ {product? ↦ quantity?}) ∧

 result! = success)

 ∨

(product? ∈ products ∧

 products′ = products ∧

 prodName′ = prodName ∧

 prodPrice′ = prodPrice ∧

 prodQuantity′ = prodQuantity ∧

 result! = product_already_exists)

As indicated at the beginning of the specification an operation to log a user onto the

system can be defined:

Log-in

 Log-in

ΔUser

username?, password?: User

r! : RESULT

If username? ↦ password? ∈ User

 r! = Success

Else

 r! = Failed

The above schema represents the login requirement (authentication). It checks

whether the captured username and the password (both input to the specification)

pair matches, and if they match, the user will be logged in successfully onto the

system and perform stock management functions as specified earlier. If the

username and password pair do not match, the result is a fail and the user cannot

perform any functionality within the system.

3-82

Note that although Z is an abstract specification language, it allows for procedural

constructs like “If” and “Else”.

System

The full state of the procurement system can be defined through schema inclusion

as indicated below. For this dissertation, the full Z specification was not written for

this system. Potter, Sinclair and Till (1990) state that it is convenient to draw a

schema demonstrating the whole system state. Therefore, the system state of this

system is:

 System

User

Product

Order

Customer

Discussion of Specification

A Z specification was created for the order management part of the procurement

module. The first schemas are the static schemas, which present the users,

products, customers and the orders that are to be maintained for the system.

The next part of the specification defined the operations to be performed on the

above static components. These are to create and maintain customers, products

and orders; and allow a user to log onto the system. Various operation schemas for

these were defined above. The operations defined were partial, in the cases at hand

where the precondition was satisfied in each case, i.e. for a correct, intended

version of the operation. Following that, one example each of success and an error

schema was defined and it was indicated how these could be combined to define a

robust operation, namely, RobustCreateProduct. Lastly, a schema (System above)

was defined that includes the static specifications of the entities.

Following the specification above the last proposition can be defined.

PROP 5: Using the Z notation as an entry language ought to facilitate the

adoption of formal methods. Z is believed to be easy to learn and apply.

Only basic mathematical set theory and 1st-order logic are required.

3-83

Following the preceding discussions in this chapter the following, preliminary formal-

methods adoption framework emerges.

3.7 Preliminary Framework

Quickening the Adoption of FM in Business

The literature review and the propositions made throughout the dissertation lead to

the development of the Preliminary Framework. The researcher has categorised

ways that may assist in quickening the adoption of formal methods under four

headings namely education, remuneration, open-source and support tools. Each

element is explained further below.

Education

Open source

Support Tools

Remuneration

Figure 3-9 Preliminary Framework

3-84

Education

Arguably the most prominent issue in the adoption of any technology is knowledge

on the technology, in this case, FMs. Baier and Katoen (2010) state that “FMs

should be part of the education of every computer scientist and software engineer,

just as the appropriate branch of applied maths is a necessary part of the education

of all other engineers.” Parnas (2010) has suggested that students ought to be

taught only detailed programming, rather than any other factors of the software

development process, such as methods and design principles. The researcher

views this statement as treacherous, as it ignores other aspects of the software

development process and gives the impression that the success of a software

project is achieved by coding and debugging.

To facilitate the adoption of formal methods in the commercial world, formal

methods ought to be introduced as part of the syllabus as early as high school

computer education. The introduction of formal methods into high school and

undergraduate education ensures that the new generation of engineers are aware

of it, and hopefully know how to use it. Books need to be written about formal

methods, and these writings ought to be easily accessible. Proper FM certification

needs to established and awarded to individuals who qualify to use formal methods.

Remuneration

Good compensation to FM specialists will also attract more people to join the formal

methods field. It should also motivate students and people already in the computer

science industry to obtain certification. Established professional societies (e.g. the

IEEE) can provide standardised teachings in the use and practical application of

formal methods. To get the necessary buy-in from engineers, training or awareness

of formal methods should be provided as a top-down approach i.e., from top

management to senior managers, then analysts, and then developers. Almost all

the companies in today’s world are concerned with cutting cost, and that’s what top

management understands as a priority. Hard evidence of cost-saving, reduction in

development time, and the improved quality of the resultant system when using

FMs, ought to be made available to the portfolio and programme managers.

Open-source

Encouragement for the use of FM on open source software can fasten the adoption

in business. Internet communities or blogs should be formed, where people can

discuss issues, challenges and success stories about the use of formal methods.

3-85

Software users need to have some knowledge about formal methods, for example,

how and when to apply FMs.

The benefits of formal methods need to be presented and made public. This can be

achieved via the use of weekly newsletters or research websites such as Gartner,

publishing stories of companies that have successfully developed and implemented

systems using formal methods. In South Africa, we have an institute called the CSIR

(Council for Scientific and Industrial Research), which is a leading technology

research organisation in the country. This institute can be used to promote formal

methods.

Support tools

FMs tools should be user-friendly, and ought to allow for the easy integration into

current development environments such as the .NET framework and Linux

development frameworks. It should also be possible to integrate FM artefacts and

techniques with existing SDLCs. As more and more computer devices are mobile

e.g., smartphones and tablets, more apps for these devices should utilise some

form of formalisation. FM tools should have more automation, and also automated

test generation. Lastly, formal methods ought to facilitate clear estimations as to

how long it will take to perform analyses. Van der Poll (2010, p. 48) states that “it

must be possible to regularly measure the progress made by formal technique

during development”, hence dynamic measurements ought to be possible.

3.8 Summary

This chapter discussed formal methods using an application from the ERP system

domain. An explanation was presented on what ERP systems are and the types of

modules found in ERPs i.e., procurement, human resource, finance, etc. Each

module was briefly discussed. A graphical comparison of Software development

costs when using informal- or semi-formal methods vs using formal methods was

presented and explained.

A short case study was specified in UML and the class diagram was transformed

into the state spaces of a number of entities, followed by some operations

(schemas) on these. An informal specification was written based on the HR module,

requirements listed in a natural language, then a process was mapped on the

employee leave application. A use case diagram was developed, and the details

around the use case explained.

3-86

Before specifying a formal specification, basic mathematical set theory was

discussed and a high-level explanation of a Venn diagram was given. For the formal

specification, an ordering (procurement) system was chosen. Schemas were

specified in terms of a number of state spaces; and updating, read, and deletion

schemas, following the enhanced established strategy for constructing a Z

specification. A summary of the formal specification was given. Lastly, to close off

the chapter, a preliminary framework was presented aimed at fastening the adoption

of formal methods in the commercial world.

From Chapter 3 we can conclude that using formal methods in terms of the Z

notation can assist in clearly specifying requirements. Teaching Z as a formal

method entry language can assist in the uptake. Some background in discrete

mathematics would assist in learning formal methods.

The next chapter will look at the research methodology followed in this dissertation.

This is explained by using Saunders et al.’s (2015) research onion. Data collection

methods used in the research will be discussed.

4-87

Chapter 4 Research Methodology

4.1 Chapter Layout

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 4-1 Chapter Layout

4-88

4.2 Introduction

The previous chapter discussed formal methods in the ERPs system. It also

described a brief case study on the ERP system, where informal requirements were

elicited from the case study and transformed into formal requirements. The last

chapter started by explaining what ERP systems are, and the types of modules in

ERP systems, namely, a procurement module, a human resource module, a finance

module, and the contract management module. Each module was briefly discussed.

A graphical comparison of Software development costs when using informal

methods vs. using formal methods was presented and explained. The informal

specification was then written based on the HR module, requirements listed in a

natural language, and a process mapped on employee leave application. A use

case diagram was developed, and the details around the use case explained.

Before specifying a Z specification, set theory fundamentals were discussed. Lastly,

the essentials of a Z specification on the procurement module was specified.

Chapter 4 presents and discusses the rationale for the chosen research

methodology. The chapter will make use of the research Onion diagram developed

by Saunders et al (2015). Each item will be explained in the diagram, in terms of

how it relates to this dissertation. Furthermore, this chapter will expand deeper into

the methodology as well as data collection methods used to gather relevant

information in order to contribute to this field.

4.3 Research Onion

Before I present the Research Onion, I would like to give a brief definition of the

operational concept of research used here. One of the reasons why research can

be conducted is to obtain new knowledge or information and to contribute new

findings to the body of knowledge (Oates, 2006). Rajasekar et. al. (2016b) further

listed what research can enable one to archive:

• finding new facts;

• devising a solution to either scientific, technological and social problems;

• verifying those findings; and

• lastly, developing theories, tools and ideas to solve present problems.

Next is the presentation of the Research Onion Diagram. This diagram is adopted

from Saunders et al. (2015):

4-89

Figure 4-2 Onion Diagram (Saunders et al., 2015)

Saunders et al.’s (2015) research onion (Figure 4-2, synthesised from their 2009

version) is utilised by analysis starting from the outer layers, to the inner layers. At

each layer, the researcher explains whether it is applicable to the research or not.

The onion discusses the three philosophical categories of epistemology, ontology,

and axiology. These philosophies are important, as they guide the researcher in

planning and conducting the research itself.

Epistemology: mostly used in scientific research as it focuses on facts and

information that can be proved without any contestation or influences of the situation

and someone’s opinions. The researcher aims at distinguishing true knowledge

from factual knowledge, as achieved by arduous testing (Norris, 2005).

Epistemology is often thought of “knowing what it is that you know”.

Ontology: how society view reality, as opposed to reality itself, and how our views

influence people’s behaviours. It also assists in knowing how society influences our

settings (Saunders and Lewis, 2015). An ontology is often viewed as a set of

concepts and categories in a domain (e.g. a subject area), indicating their properties

4-90

and relationships among them.

Axiology: values and ethics. This philosophy allows researchers to comprehend

how their views and values influence the collection and analysis of the research.

This research will be guided by the axiology philosophy, as it is mostly theoretical in

nature. Even though we are considering mathematical notation, no actual

experiments will be conducted to prove or reject a hypothesis.

Layer 1: Philosophical stances

The Onion is divided into six layers. The outer layer, which is layer one, is called the

philosophical stance. The philosophical stance will guide the researcher as to how

to ultimately gather and analyse data in order to formulate relevant findings. The

first layer encompasses objectivism, which distinguishes that social occurrences,

and their connotations, which occur separately to that of social actors.

Constructivism is the reverse of objectivism, where social actors create social

phenomena. Positivism is a philosophical paradigm with two assumptions i.e., our

world is ordered and regular, not random, and we can investigate it objectively.

Gieryn and Giddens (2006) state that positivism makes the assumption that reality

is known, and is also focused on finding facts, using techniques, and gaining

knowledge to solve a problem.

Realism is similar to positivism, in the sense that its processes and belief that social

reality and the researcher are independent of one another, and so will not create

biased results. Interpretivism speaks to methods highlighting the meaningful nature

of people's involvement in cultural and social life. Oates (1998) defines interpretive

research in Computing or Information Systems as the way of understanding the

social context of information systems i.e., the influence that the social setting has on

the development of information systems by people. According to pragmatism, both

objectivism and constructivism are the correct ways to conduct research.

This research is guided by positivism philosophical stance as we try to find how to

increase the adoption rate of formal methods in the commercial world. This is the

study of people concerning how they can easily adopt a new way of work. Also, the

study and use of FMs embody mathematical aspects reminiscent of positivism.

Layer 2: Approaches

Layer 2 approaches have two components, namely the deductive and the inductive.

4-91

The difference between deductive and inductive reasoning is that in deductive

reasoning, before starting the research, the researcher begins with a question or a

statement that the researcher aims to answer, and in so doing aims to prove a

theory, or validate a framework, model, etc. Inductive reasoning refers to when

there is little to no research that exists on a given topic, where the researcher is

aiming to create own theory or develop a framework, model, etc. (Smith, 2017). This

research has a mix of both, where it is initially inductive, as the researcher will build

a framework to address the slow adoption of formal methods. This research is also

deductive in nature, as it tries to answer the question as to why there is slow

adoption of formal methods in the commercial world, and how can we increase the

adoption of formal methods. In essence, therefore, the researcher will validate the

framework developed in this work.

Layer 3: Strategies

Layer 3 refers to the research strategies, that is, the methods that will be used to

collect and analyse data for the research. This can be an experiment, survey, case

studies, action research, grounded theory, ethnography, and archival research.

Most of the research in this dissertation was done using the journals of the work that

has already on this topic. Case studies on the companies that have successfully

implemented systems using formal methods have been considered in Chapter 2.

In detail, the following strategy was used:

• Documents of work that has been already done on formal methods were

collected and studied. Documents pertaining to the myths and the different

types of formal methods were used as input to this dissertation;

• Case studies relating to formal methods were scrutinised and conclusions

drawn from them. Case studies of companies using formal methods in their

software projects were also used as input to this research; and

• Internet (scholar’s sites) was used most of the time to gather the documents

and e-journals. Mainly scholarly sources were used.

Layer 4: Choices

At this layer, a researcher decides whether to use quantitative or qualitative

research or both. The layer encompasses the following: A mono-method research

refers to when one of the data collection methods is used, which can be quantitative

4-92

or qualitative. Mixed methods research refers to using both quantitative and

qualitative research methods. Lastly, multi-methods refers to when the researcher

chooses to use quantitative data and qualitative data, but the researcher’s viewpoint

is embedded in one or the other (Andrew and Halcomb, 2009).

Multi-methods apply to this research, where most parts are qualitative, studying

documents, cases studies, and internet journals. A modicum of quantitative

research was done when considering the discrete mathematics and logic aspects of

FMs. (Note that while quantitative work usually involves just (real) numbers, the

researcher views specifics embedded in FMs as being quantitative) comparing the

costs of using formal methods vs the costs of using semi- or informal methods. Most

of the focus was placed on qualitative research. According to Hamilton-Smith

(2001), a goal is to deliver answers to questions that are asked frequently in a given

research scenario, by using already-defined steps to obtain the answers to the

questions. Qualitative research pursues hard evidence and provides new findings to

the research and the body of knowledge. It should be noted that one of the

shortcomings of a qualitative methodology is that it may lack a generalisation of the

findings (Oates, 2006).

Layer 5: Time Horizons

Generally, there are only two-time horizons, viz. cross-sectional and longitudinal.

Both time horizons can use qualitative or quantitative research or both where the

difference is that cross-sectional research is for the shorter term, or short period of

time and the longitudinal is for the longer term. Adoption of formal methods in the

commercial world research is to be completed in the medium term, which opted the

researcher to use a cross-sectional time horizon.

Layer 6: Techniques and procedures

This is usually the final aspect of the research to consider, in which the researcher

needs to make sense of all the data collected and makes a decision as to what

works best and what doesn’t work. All the decisions made at this stage must be

adequate, with all the layers that are philosophies, philosophical stances, strategies,

choices, and time-horizons. Analyses and conclusions following the data collection

will detail the outcomes of the research.

The research process followed in this dissertation is depicted in Figure 4-3 below

and discussed thereafter.

4-93

4.4 Research Process Diagram

Scholarly List
Author’s

Experience

Final Framework

Preliminary Framework

Inductive

Deductive by
Validation

Figure 4-3 Research Diagram (Synthesised by the researcher)

Scholarly List

At first, the researcher looked at the current documentation of formal methods. The

documentation as mentioned above are comprised of online journals, printed books,

and online books, and the PhD theses and MSc dissertations written by other

students on this topic. References and acknowledgements have been cited for

documentation used. Information on the ERP system introduced earlier is based

mostly on scholarly papers.

4-94

Author’s Experience

The author’s experience was also taken into consideration when conducting this

research. The author works as a business analyst with about six years’ experience

in the IT field, exposed to telecommunication, insurance, and software-specific

industries, involving requirements elicitation, process engineering, optimisation,

testing and product development. Throughout my six years of experience, I haven’t

encountered a company using formal methods, or even used them in my workplace.

Learning about formal methods helped me to garner another view of the software

development process. My experience has influenced the development of the

framework on the adoption of formal methods in the commercial world.

Scholarly lists and the author’s experience is inductive in nature. Inductive refers to

when there is little to no research that exists on a topic, where the researcher is

aiming to create their own theory. Developing one’s own preliminary framework is

inductive, that is, part of the layer 2 approaches on the onion diagram (refer above).

Preliminary framework

A literature review along with industry experience served as an input to the

preliminary framework. As indicated, the preliminary framework is comprised of

education, which refers to educating software engineers/specialists about formal

methods at the early stages, where remuneration also forms part of the framework,

meaning that if software engineers are encouraged to use formal methods, they

ought to receive high(er) remuneration. The open-source software that has been

developed using formal methods will also make formal methods fashionable. Lastly,

in terms of the preliminary framework, support tools that improve on the user

experience (UX), i.e. easy to use and understand should be developed and made

available.

Deductive, for this research, aims to validate/justify and further enhance the

preliminary framework aimed at fastening the adoption of formal methods in the

commercial world. An improved formal-methods adoption framework will be

presented in the next chapter.

Final framework

The final framework was then produced, incorporating all the tasks on the

4-95

methodology i.e., scholarly works, author’s experience, and the preliminary

framework. The final framework has some additional items, e.g. buy-in from top-

management within the companies. Publications of formal methods ought to be

made available via blogs, newsletters, the world wide web, etc. and lastly, the

results on the use of formal methods ought to be made available, whether it is a

positive or a negative result. Qualitative propositions were stated in earlier chapters,

assisting in the drawing up of the final framework which is presented in the next

chapter.

The final framework is presented in Chapter 5 which follows next, and it is

subsequently validated through a case study in Chapter 6. All these assisted in

placing the formal methods adoption framework into a practical context.

4.5 Summary

Chapter 4 focused on the research philosophies followed in this dissertation, and

the motivation as to why they were followed. The research onion diagram developed

by Saunders et al. (2015) was used as the main reference. Each element on the

diagram was explained in terms of how it relates to this dissertation, if not, then why.

Furthermore, the chapter expanded deeper into the methods used to gather

relevant information for this study. A research diagram was also presented.

The following chapter will develop a proposed framework aimed at increasing the

adoption and use of FMs in the commercial domain. The proposed framework will

be based on the findings of this dissertation and the work that has been done in this

field by other researchers. The framework is presented in a tabular format, along

with the diagram.

5-96

Chapter 5 FMs Adoption Framework

5.1 Chapter Layout

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 5-1 Chapter Layout

5-97

5.2 Introduction

The previous chapter focused on the research philosophies followed in this

dissertation and the motives for choosing a certain methodology. The previous

chapter also made use of the research onion diagram developed by Saunders et al.

(2015). Each aspect of the diagram was explained, particularly in terms of how it

relates to this dissertation. Furthermore, the previous chapter details the

methodology, as well as data collection methods used to gather relevant

information. Lastly, the validity and reliability of the project were noted.

This chapter proposes a framework that the researcher hopes will aid in increasing

the adoption of formal methods in the commercial world. The proposed framework

will be based on the findings of this dissertation and the work that has been done on

this field by other researchers.

5.3 Adoption Framework

A framework can be defined as a skeleton or a basic structure of the underlying

system (Egon and Robert, 2003). This can be edited as required by deleting or

adding items. From a software perspective, it can be defined as a set of functions

within a system, and how they interconnect.

The following is the list of propositions formulated throughout the dissertation in

earlier chapters. The propositions led to the development of the Formal Methods

Adoption Framework:

PROPOSITION (PROP) 1: Education plays a major role in formal methods

adoption. This includes educating from the high school level to the university

level as well as organisational training in the use of formal methods. Such

education plays a pivotal role in the adoption framework.

PROP 1.1: In addition to the above proposition, formal certificates and

diplomas in formal methods ought to be created and awarded to those who

qualify. Certification authorities should be well informed about the benefits of

formal methods.

PROP 2: Buy-in from all the business stakeholders is necessary for FM

adoption. Getting Top-level management to agree to and accept the use of

5-98

formal methods may well result in the whole organisation adopting formal

methods.

PROP 3: Widely accepted principles and guidelines on FMs can improve the

adoption thereof. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities.

PROP 3.1: Widely accepted principles and guidelines on FMs can improve

the adoption thereof. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities. Publications of formal methods successes in terms of cost

savings in projects, clear specifications produced, and the overall final

product delivered with fewer defects will raise much interest needed for the

adoption of FMs. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities.

PROP 4: Tools that are readily available and up to date with the latest

technology should facilitate the adoption of FMs. Such tools ought to be

integrated with the requirements management software and standard

software programming tools e.g., MS Visual Studio.

PROP 5: Using the Z notation as an entry language ought to facilitate the

adoption of formal methods. Z is believed to be easy to learn and apply.

Only basic mathematical set theory and 1st-order logic are required.

5-99

Table 5-1 summarises the components of the proposed FMs adoption framework:

Element Description

EDUCATION

Software engineering education in the early stage

Introduction to formal methods for the first-year
university students

Universal formal methods standards

University accreditation specifically on formal
methods

Set theory basics at an early stage of educations
systems

Step-by-step guide on transforming informal
requirement to the formal specification

Knowledge sharing and common terminology

BUY-IN

Public sector using formal methods for their
systems

Enterprise top management buy-in

Project manager and senior manager buy-in

Training companies

IT community buy-in

Formal method language e.g. Z

REMUNERATION FM specialist salaries, scare skill

ENVIRONMENT

IT environments where FMs are going to be utilised

Tools to write a formal specification

Integration of MS office to formal specification

languages

Open-source tools

A collaborative environment for formal methods

specialist to meet

Built the right attitude within teams, team buildings

SUPPORT TOOLS LaTeX, Alloy, Rodin/Event-B tool

5-100

Element Description

PUBLICATIONS

Successful use of formal methods should be

published daily, or as often as is feasible

Forums i.e., internet new letters of formal methods

Encourage the use of formal methods on open

source systems

Library catalogue on formal methods

RESULTS

Positive and negative results should be made

available

Description of each successful components of the

system built using formal methods

System developed using formal methods used in

the real business environment

Positive and negative results should be made

available

 Table 5-1 Formal Methods Adoption Framework

5-101

5.4 Adoption Framework Diagram

The formal-methods adoption framework proposed in this dissertation is given in

Figure 5-2. It is envisaged that all the steps can be performed in parallel. The larger

boxes (EDUCATION, PUBLICATION, RESULTS) indicate that the more we focus on that

step the higher the probability that the adoption will be a success.

E
D
U
C
A
T
I
O
n

Buy-in

Environment

Remuneration

Support Tools

P
U
B
L
I
C
A
T
I
O
N
S

R
E
S
U
L
T
s

P1

P1

P2

P4 P4

P3
P3.1

P3.1

P3, P3.1

P1, P1.1

Z NotationP1, P1.1 P5

Figure 5-2 Adoption Framework Diagram

Each component of the framework is discussed below. Components will be

discussed in the following order: EDUCATION, BUY-IN, REMUNERATION,

ENVIRONMENTS, SUPPORT TOOLS, PUBLICATION, and RESULTS. Each component

makes reference to the Z notation; therefore, Z will not be discussed separately.

Examples of Z specification documents appear in earlier chapters.

EDUCATION: forms a foundation to allow for the adoption of FMs in the commercial

world. Without proper education and transfer of skills to the new upcoming

engineers, the current state of formal methods would, arguably, stagnate. As

observed in Table 5-1 above, education should take place from an early level, as far

5-102

back as high school, where a basic introduction is made to formal methods and then

to the university level where first-year computer science and software engineering

students will be learning about formal methods as a module by itself. Education will

also cover the challenge of not having common terminology in formal methods.

People who qualify or pass this course ought to be recognised by awarding proper

accreditation. The Z notation is relatively easy to teach and learn, as it requires

basic mathematical knowledge. Students and IT professionals might start by

learning Z, and they can peruse other formal specification languages when they get

more conversant with the FMs arena.

BUY-IN: simply refers to people embracing the idea of using formal methods within

their organisations. Buy-in is needed from top management right through to the

project manager, and the engineers. Public enterprises buy-in is also important to

utilise formal methods in the development of their systems. Furthermore, buy-in

from companies that provide IT training courses and the IT community in general,

will have a huge impact on formal-methods adoption. Established professional

societies (e.g. the IEEE) can provide standardised FM teachings in the use and

practical application of formal methods. To secure the necessary buy-in from

engineers, training or awareness of formal methods should be provided following a

top-down approach i.e., from top management to senior managers, followed by

analysts, and then developers. With Z as a recommended formal-method language

for this research, top management needs to understand the benefits that Z brings,

where it is taken as easy to comprehend, and also flexible enough to model a

specification that leads to correct code, and so forth. Because most people are

familiar with Z syntax and semantics, Z is the most-used formal specification

language (Bowen, 2016).

REMUNERATION: Attractive compensation for FM specialists will also attract more

professionals to join the formal methods field. It will motivate students and people

already in the computer science industry to gain certification. Almost all the

companies in today’s world are concerned with cutting costs, which top

management understand as a priority. Hard evidence of cost-saving, reduction in

development time, and the improved quality of the resultant system when using

FMs, ought to be made available to the portfolio and programme managers.

ENVIRONMENT: where formal methods are used. The environment encompasses the

proper tools to utilise formal methods. Current software engineering tools ought to

be integrated with formal-methods tools to allow a smooth transition to FMs usage.

5-103

Teams working on formal methods must have the right mindsets and attitudes,

which can also be influenced by the environment in which they work.

Encouragement of the use of formal methods in open-source software will bring

about new ideas and lead to a positive perception of formal methods among

practitioners and managers (refer buy-in of management above).

SUPPORT TOOLS: FMs tools ought to be user-friendly and should allow for easy

integration into the current development environment, such as the .NET framework

and Linux development frameworks. It should also be possible to integrate FM

artefacts and techniques to an existing SDLC. As more and more computer devices

are mobile e.g., smartphones and tablets, more apps for these devices should

utilise some form of formalisation. FM tools should have more automation, and also

automated test generation. Lastly, formal methods should facilitate clear estimations

regarding how long it will take to perform analyses. Van der Poll (2010) states that

“it must be possible to continuously measure the progress archived by formal

technique during software development”.

PUBLICATION: Accounts of the successful use of formal methods should be

published regularly. This can be made available via internet newsletters, fora, blogs,

and public libraries (Library catalogue on formal methods). As we can see from the

framework in Figure 5-2, buy-in and environments feed into publication. Positive

buy-in and a conducive environment should lead to the successful implementation

of formal methods, which ought to be publicised. In South Africa, we have an

institute called the CSIR (Council for Scientific and Industrial Research), which is a

leading technology research organisation in the country. This institute can be used

to promote formal methods. The Framework should also be made part of a Formal

Methods Body of Knowledge (FMBOK).

RESULTS: After all the steps are followed; positive results should emerge. Even

negative results should be made known and lessons learned. Results ought to lead

to the development of the systems using formal methods in the practical world.

Each successful component should be described and how success was achieved.

Results to be documented in a library of re-usable best practices.

5-104

5.5 Summary

Chapter 5 presented a framework for the adoption of FMs in the commercial world.

The framework highlighted 5 important factors, viz. EDUCATION, BUY-IN,

REMUNERATIONS, ENVIRONMENT, TOOL SUPPORT, PUBLICATIONS, and RESULTS. Each

factor is also explained in a tabular format above. All of these factors can be

executed in parallel, in order to achieve the desired results. A detailed description is

also made in a paragraph format. Should the framework be followed and applied

practically there ought to be positive changes in the use of FMs. The commercial

sector will start to adopt and use formal methods thereby also realising the benefits.

This will take time but is possible.

The succeeding chapter will validate the framework, otherwise putting the

framework into practice. The validation will be in the form of a case study. From the

case study, an explanation is presented on how each step of the conceptual

framework could be implemented.

6-105

Chapter 6 Framework validation

6.1 Chapter Layout

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 6-1 Chapter Layout

6-106

6.2 Introduction

Previous chapters have explained what formal methods are; the benefits of formal

methods; and the research methodologies used to compile this research.

Throughout the dissertation, propositions were identified which led to the

development of the Formal Methods Adoption Framework. Each step of the

framework was explained, also indicating how it is going to increase the adoption of

formal methods in the commercial world if followed properly.

Chapter 6 will validate the framework otherwise putting the framework in practice.

The validation will be in the form of a case study. From the case study, we

explained how each step of the conceptual framework will be implemented.

6.3 Adoption Framework Validation

The diagram below is the formal methods adoption framework, which was

presented in the previous chapter.

E
D
U
C
A
T
I
O
n

Buy-in

Environment

Remuneration

Support Tools

P
U
B
L
I
C
A
T
I
O
N
S

R
E
S
U
L
T
s

P1

P1

P2

P4 P4

P3
P3.1

P3.1

P3, P3.1

P1, P1.1

Z NotationP1, P1.1 P5

Figure 6-2 Adoption Framework Diagram

6-107

Next, I shall conduct a validation of the Figure 6-2 framework on the strength of

challenges of a case described next.

6.3.1 Case Study

The South African government is planning to implement an ERP system in some of

its key departments. The implementation will be done over a period of years. The

government is also in the process of cutting costs and is running under a limited

budget. One of the top IT officials suggests that the implementation should include

formalisation in order to reduce defects and produce a system that will meet the

actual departmental requirements.

There is a shortage of formal methods specialists in South Africa and this has

attributed to one of the challenges to the government. Some officials within the

government are not buying into the idea of using formal methods to implement an

ERP system. In addition to that, not too much information is available in the public

domain addressing formal methods; most of the information available is dated and

mostly talking about critical systems implementation such as aviation, health

systems, and nuclear power plants. Most of the information is from America or the

European countries; little to nothing is available from the African countries. The

government decided to embark on investing in the education system from the

secondary level in order to increase the uptake of formal methods.

Limited off-the-shelf tools to write formal specifications prove to be a challenge

coupled with a non-conducive environment, which formal methods are to be used in.

Integration between current development methods and formal methods is limited.

The government decided to use the formal methods adoption framework in order to

increase the uptake of formal methods and successfully implement the ERP system

within various departments.

Notes: Case Study synthesised by the researcher.

6.3.2 Formal Methods Adoption Framework Validation

Validation of the formal methods Adoption framework will be linked to the

propositions made throughout this dissertation. Each element of the framework will

be validated using the above case study, and the importance of each element will

be given a percentage, determined qualitatively. The percentage is based on how

6-108

much influence the element has towards the adoption of formal methods.

EDUCATION: Education ought to be the pillar of all professions and disciplines.

Government develop a policy of implementing formal methods in the current

educational system. The policy can be defined as an individual decision, or a

collective decision, which will give direction when making future decisions or guide

the implementation of the previous decision (Ruano, 2013).

Currently, the following subjects are offered in South Africa schools: languages,

mathematics; natural science; life orientation; economic and management sciences;

and technology (Republic of South Africa: Department of Higher Education and

Training, 2015). As part of technology, a chapter dedicated to formal methods

should be introduced. Grade Eight introduces the topic of formal methods and the

benefits of using them. Grade Nine to 10 explores greater depths in terms of

different languages of formal methods, and how to write them. In Grades 11 to 12,

students should be taught how to apply formal methods in practice. After students

complete Grade 12, those who choose to pursue a career in computer science and

information technology will have a university course dedicated to Formal Methods.

Each university can choose the formal languages they would like to teach or focus

upon. At the third-year level, the focus should be on the practicality of formal

methods, training students in the commercial world how to apply them. Education is

linked to the following proposition 1 and the associated corollary proposition 1.1:

Proposition (Prop) 1: Education plays a major role in the adoption of formal

methods. This includes educating from the high school level to the university

level, as well as organisational training in formal methods. Such education

plays a pivotal role in the adoption framework.

Prop 1.1: In addition to the above proposition, formal certificates and

diplomas in formal methods ought to be created and awarded to those who

qualify. Certification authorities should be well informed about the benefits of

formal methods.

BUY-IN: Buy-in can be described as the acceptance of and commitment to a specific

concept or course of action. Some of the students delivered from the education

system will become managers or influential people within the commercial world.

6-109

Their previous knowledge of formal methods will aid in the adoption of formal

methods in the said environment. The concept should filter throughout

organisations, and importantly, their IT departments. Buy-in should be from the

formal-methods language used and the type of formal techniques adopted.

All government departments implementing the ERP system ought to buy-in to the

idea of using formal methods. Management plays a significant role when it comes

into influencing change within the department or the organisation. The relevant

Government department head will have to go through workshops and high-level

training to fully comprehend the benefits of formal methods. Some of the roles that

management play pertain to planning, staffing, motivating staff, and implementing

change (Partridge and Mintzberg, 2006). Buy-in is linked to the following

proposition:

Prop 2: Buy-in from all the business stakeholders is necessary for FMs

adoption. Getting top-level management to agree and accept the use of

formal methods may well result in the whole organisation adopting formal

methods.

Z NOTATION: Z is the recommended language in this dissertation, owing to its

simplicity terms of mathematical set theory and logic and its numerous benefits

mentioned throughout this dissertation. Z can be the language of choice to

implement the ERP system in government departments. The framework does,

however, cater for other formal specification languages. Z learnt from the time of

high school education, and throughout university education, will produce a system

of high quality with fewer defects as argued in this dissertation. Cost-saving can be

achieved due to less re-testing required and defects corrected after implementation.

All involved stakeholder in terms of the system requirements will need to have some

sort of knowledge around the Z notation. Proposition 6 holds in this regard:

PROP 5: Using the Z notation as an entry language ought to facilitate the

adoption of formal methods. Z is believed to be easy to learn and apply.

Only basic mathematical set theory and 1st-order logic are required.

The government will have to run training workshops for all the shareholders

interfacing with this project. The government can outsource the training of

stakeholders. Training can be at a high-level for any stakeholder who does not

6-110

directly implement the project and at a detailed level for all the software engineers

and IT staff who are directly responsible for implementing the system. The Z

notation is closely linked to support tools and environmental elements. The following

proposition holds in this regard:

PROP 4: Tools that are readily available and up to date with the latest

technology should facilitate the adoption of FMs. Such tools ought to be

integrated with the requirements management software and standard

software programming tools e.g., MS Visual Studio.

ENVIRONMENTS: Environments conducive to the use of formal methods should be

created. This can be in the form of the organisation’s culture of accepting formal

methods. Organisational change can be achieved by receptive formal methods

training throughout the affected departments. Integration of the current software

development life cycle (SDLC) with formal methods will be required. Formal

methods can be applied at any stage of SDLC i.e., from requirement analysis to

testing (Pandey and Batra, 2013).

For the government to achieve the above, specialists should be hired for integration

and training should be provided throughout for all affected stakeholders. Tools

should be available to these environments to produce formal specifications. The

environment also involves the psychological aspect of software development. The

government should create the right attitude within the team to successfully

implement the ERP system. By this, education, buy-in including any FMs technique,

would have aided in getting the environments right for the use of formal methods.

Proposition 4 also relates to aspects of the environment in which a system (e.g. an

ERP system) is developed.

REMUNERATION: Following the above recommendations, a well-educated formal-

methods specialist would be available by now. Some should hold special formal-

methods certifications, awarded by accredited bodies. All stakeholders who

successfully completed their training ought to be awarded certificates. High

remuneration will attract such a specialist to take on this job. South Africa, and as

well as Africa more broadly would then have a number of formal-methods

specialists. Remuneration can also motivate formal-methods specialists to do better

and to encourage others to join. Remuneration also encourages people to stay

within the origination for longer periods of time otherwise known as staff retention.

6-111

The government should attract well qualified FMs specialists on a permanent basis,

or even outsource them. The government should also cater for incentives for

example bonuses, extra leave days, pay increases etc. to managers that

continuously promote formal methods.

At a more indirect level, proposition 2 may facilitate aspects around remuneration:

PROP 2: Buy-in from all the business stakeholders is necessary for FMs

adoption. Getting top-level management to agree and accept the use of

formal methods may well result in the whole organisation adopting formal

methods.

SUPPORT TOOLS: Acquiring of tools to aid in using formal methods should be high on

the agenda. The government should get the tools that are user-friendly and will

(relatively) easily integrate into existing development frameworks such as the .NET

framework and the Linux development framework. Tools should allow for

automation and facilitate testing and code execution. Part of the support tools will

have been introduced as part of the education system. Training provided for the Z

notation will also include how to use the support tools. ERP implementation ought to

have eased out by now, where there is an increase in the adoption of formal

methods in the business world.

Proposition 4 directly support aspects around the use of tools:

PROP 4: Tools that are readily available and up to date with the latest

technology should facilitate the adoption of FMs. Such tools ought to be

integrated with the requirements management software and standard

software programming tools such as MS Visual Studio.

PUBLICATIONS: The use of publications can be viewed as a process of broadcasting

information. The accomplishment of the implementation of the ERP system will be

published on the web and public institutions including public libraries. Information

will be made accessible to people interested in formal methods, as well as those

who would like to become skilled in the use of formal methods. The information will

include the lessons learned from the project, the failures and the successes.

Implementation ought to be done within a reasonable timeline and within budget.

University catalogues will include aspects and publications on formal methods.

6-112

To protect the vulnerability of the system and cyber-attacks, sensitive information

will be available to those who qualify. The ERP system holds too much information

and data where, if all information is made public, the government might lose money

and credibility, owing to hackers gaining access to the system and committing a

crime. Proposition 5 holds with respect to publications.

Proposition 3.1 supports the publication and related ideas:

• PROP 3.1: Widely accepted principles and guidelines on FMs can improve

the adoption thereof. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities. Publications of formal methods successes in terms of cost

savings in projects, clear specifications produced, and the overall final

product delivered with fewer defects will raise much interest needed for the

adoption of FMs. Practical, real-world examples of FMs successes and

failures must be published in the software engineering and management

communities.

RESULTS: Documentation on the results of the entire project, both positive and

negative should be produced. Results should be continuously monitored, even while

the system is operational. The results element is shown as the last part of the

framework, but the results should be noted for all stages/steps of the framework i.e.,

from education through to publications.

These results will be published in peer-reviewed conference proceedings, journals,

libraries, and all other public literature catalogues. Such results will be analysed in

order to improve the framework. System performance when it’s live/in production

and put under stress will be made part of the results.

As with documentation, results pertain to PROP 3.1.

By following all the steps of the framework, either sequentially or in parallel, the

government will have implemented the ERP system successfully, on time, and

within budget. This will also encourage other stakeholders in the private sector or

public sector to adopt formal methods.

6-113

6.4 Summary

This chapter validated formal method adoption framework using a case study. The

framework was placed in practice and each step/element explained in terms of how

it would be implemented.

To conclude the chapter, each step is important in order to achieve successful

implementation of systems using formal methods. Education takes greater

precedence over other aspects, as it is the foundation of any successful project.

The next chapter will present conclusions, as well as the research findings.

Research questions listed in the introduction chapter will be revisited, and an

explanation as to how they have been covered and answered throughout the

dissertation will be provided. Possible future work in the formal methods field will be

suggested.

7-114

Chapter 7 Conclusion and future work

7.1 Chapter Layout

Introduction

ERP SYSTEMS

Formal Method Z

Formal, Informal And
Semi-Formal
Specification

Research
Methodology

Adoption Framework

Conclusion and Future
works

Literature
Survey

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 1

 Framework Validation

Chapter 6

Figure 7-1 Chapter Layout

7-115

7.2 Introduction

The previous chapter validated the formal-methods adoption framework using a

case study. The framework was placed in a practical case, and each element

explained in terms of how it will be implemented. It is anticipated that the framework

would facilitate the successful implementation of an ERP system within the

government departments.

Chapter 7 revisits the research questions in Chapter One and clarifies how they

were answered throughout this dissertation. The chapter also presents the

conclusions from the work reported on in this dissertation, as well as the possible

future work that may be required in this field.

7.3 Research Questions and Findings

This dissertation has been assessed based on the key formal methods issue,

namely the slow adoption of formal methods in the business world. To that extent,

the dissertation aimed to develop a mechanism (Framework) that would increase

the rate of formal methods adoption if followed. The type of formal language in this

research is Z, discussed in earlier chapters. Throughout the dissertation, qualitative

propositions were stated which led to the formation of the Formal Methods Adoption

Framework. Below is the first question that was raised at the beginning of the

research:

RQ 1: What makes formal methods projects successful?

This question aims to discover characteristics that make projects that are completed

with the use of formal methods successful. This with the hope that successful

formal-methods projects will help to inspire businesses that are considering formal

methods to adopt and actually use them. Chapter Two has explained what formal

methods are, giving an example of companies that have successfully implemented

formal methods in their projects. Amazon, the giant online retail store, started using

formal methods in 2011, focusing mainly on formal specification and model

checking. They have achieved numerous successes and have managed to reduce

the number of defects in their critical systems. INTEL also adopted formal methods

when they experience problems with their computer chips overheating. This lead to

the company saving over 100 million in costs, which they would have otherwise

incurred did they not use formal methods. More successful use of formal methods in

7-116

business is detailed in Chapter 2.

Arguably, the most important characteristic that makes a formal-methods project

successful is that it allows the engineers to rigorously analyse the requirements and

write properties about the system. This reduces errors and oversight of the natural

language or semi-formal requirements. Formal methods can be costly upfront but

the return on investment (ROI) is realised in the long run as less money is spent on

correcting errors in the requirements and specification phases. The costs of using

formal methods vs. informal methods are also backed up by Figure 3-3 presented in

Chapter 3. Design documents can also be produced from the formal specification,

as well as test cases. For example, when there is a change in requirements, this will

have a minimal impact if formal specifications are used.

The success of every project relies on the people working on it. Having people that

have the knowledge and right attitude makes formal methods projects more

successful. Buy-in from the team is also important, where people may differ when it

comes to the methods chosen, but where compromises are often necessary, so

long as there is agreement on a final decision this can result in the success of a

team. This is also supported by the formal methods adoption framework, where

education, buy-in, support, and other elements are equally important in the

successful implementation of software, using formal methods.

RQ 1.1 To what extent can FMs improve on the quality of ERP

development?

The chosen system for this research is the ERP system, due to its criticality

within the business. Each organisation has some sort of an ERP system,

where they can either be utilising all the modules or some of the modules.

Chapter 2 explained what ERP systems are, and the failures to implement

them. Chapter 3 then presented a mix of the natural language specification

and the semi-formal specification (UML state diagram) of the ERP system.

Thereafter, Chapter 3 formalised the ERP system using Z. As an illustration,

operations not explicitly shown in the UML were specified in Z.

All the reasons mentioned in the research question one will significantly

improve the quality of ERP development and implementation as all the

requirements will be clearly understood. This is further demonstrated in

Chapter 6 in the form of a case study, where the government is

7-117

implementing ERP systems within its departments.

RQ 2: Why is there a slow adoption of formal method in the commercial

world/business?

Chapter 2 presented the reasons for the slow adoption of formal methods in the

commercial world. Because formal methods rely extensively on mathematical

notation, this creates the perception that they are difficult to learn and difficult to

use. The aforementioned is demonstrated in Chapter 3, where a Z specification is

produced for the purchasing module of the ERP system. Schemas for products,

orders, customers, and the state of the schemas are presented using set theory and

logic. As we saw from the Z specification, for one to be able to read or write it

(specify), one must have some knowledge in mathematics and formal logic (Steyn

and Van der Poll, 2007). Numerous mathematical notations are used, for example,

ℙ, ⊕, ∪, ∩, etc.

Businesses also view the use of formal methods as expensive, as they require an

initial investment in the beginning by providing training to the engineers, where the

tools to support formal methods are not readily available, making it hard to adopt

formal methods in business. Most software vendors do not want to invest in formal

methods tools since the market for them is too small, and due to little industrial use

of these tools (compared to traditional software development tools), the demand for

formal methods remains low (Garavel and Graf, 2013). Currently, formal methods

are not integrated into the whole design flow, neither the tools that are currently

used.

Most engineers view formal methods as a mechanism that in practice is hard to

understand and utilise (Spichkova, 2012b). Most traditional software development

techniques are reasonably well-established, and proper standards have been set.

Tools supporting those techniques are widely accepted and used in business.

Chapter 5 presented the adoption framework, which also recommends that support

tools ought to be easily accessible, and the environments to utilise those tools.

To the best of the knowledge of the researcher, no formal accreditation bodies for

formal methods, such as IIBA for business analytics and formal methods are active,

as they are largely limited to academic projects. With practical examples elaborated

7-118

ion n Chapter 2 and Chapter 6, businesses still have the perception that there are

not enough practical examples to convince them to adopt Formal Methods.

Currently, there is no catalogue of formal methods courses, training, books, and

other educational resources (Bourque and Fairley, 2014). Common terminology

across all formal methods and language classification is still a challenge, similar to

which formal technique to use when. Some formal methods researchers are

hesitant to take part in the development of real-world systems. The reasons might

be they are wary of failures and the pressure that comes with developing systems in

the commercial world. In Chapter 5, the adoption framework recommends that the

results of successful projects be made public.

RQ 2.1: What is the status quo of the use of FMs in the commercial

world/business?

Currently, there is little to no use of formal methods in business. Many

engineers working for large corporations within the IT division have little

knowledge to, no knowledge at all of FMs. The aforementioned is still a

trend, despite all the benefits and successes presented in this dissertation,

and many other research papers and publications.

The famous advocate of formal methods, Hall (2007, p. 5) stated “I am an

enthusiast for formal methods, and I can show that they offer clear benefits.

However, these benefits are not automatic — they depend on intelligent

application of methods where they can add value.” Naturally, the use of

intelligent FMs tools will go a great distance in support of Hall’s advocacy.

The business world is profit driven, and they do not have the appetite to

invest in formal methods. As indicated, formal methods are still viewed as

difficult to use and companies see little reason to invest in them. Chapter 2

also helps to answer this question by mentioning various examples or

scenarios in business. It seems as if this status quo towards formal methods

is not going to change anytime soon. Yet, a comprehensive industry survey

would shed more light on the use of FMs in the South African software

industry. This can be part of future work (refer below).

RQ3: What can be done to increase the adoption of formal methods in the

commercial world/Business?

7-119

The use of formal methods remains mainly on research, where the research

community needs to make formal methods more practical and easier to use.

Knowledge is needed to facilitate an increase in the use of formal methods. Baier

and Katoen (2010) state that “FMs should be part of the education of every

computer scientist and software engineer, just as the appropriate branch of applied

maths is a necessary part of the education of all other engineers.” Formal methods

should also be introduced as part of the syllabus as early as high school to students

interested in learning software engineering. Proper FMs certification needs to be

established and awarded to individuals who qualify to use formal methods. This is

demonstrated in Chapter 5, where education is vital.

Adequate remuneration for the formal methods specialist will hopefully increase the

number of engineers who might be interested in studying them. Also, formal

accreditation in formal methods needs to be established. The benefits of formal

methods and any successful formal method project ought to be presented and

made public. This can be achieved via the use of weekly newsletters, or research

websites such as Gartner, publishing stories of companies that have successfully

developed and implemented systems using formal methods.

Proper tools for formal methods should be produced, i.e. tools checking the syntax

and automatic provers. Ideally, a tool able to automatically produce code from the

formal specification will increase the confidence from business as well as engineers.

Chapter 5 presented a formal-methods framework to be adopted and widely

accepted by the software engineering community and business alike. A research

paper about the formal-methods adoption framework was written and published in

an IRED conference (Nemathaga and Van der Poll, 2019). As indicated, it is hoped

that the said framework will over time increase the adoption of formal methods in

business. Formal methods should also be classified based on their tools and

language, where relationships among formal methods need to be established and

readily available.

7.4 Research Summary

This research examined the reasons why there is slow adoption of formal methods

in the business/commercial world. The research further investigated what can

possibly be done to fasten the adoption of formal methods within the business or the

commercial world. This led to the development of the Formal Methods Adoption

Framework. The Framework was validated and put into practice using the case

7-120

study. The choice of the system for this research is the ERP system, due to its

criticality within the business or commercial world. This research also made

reference to the businesses/companies that have successfully use formal methods

as part of their software development process.

With modern day technology, more and more businesses are becoming reliant on IT

solutions to automate their business processes. The development of software that is

free from errors, or at least highly dependable is desirable (Fisher, 2011).

Sommerville (2005) also states that modern systems have complex requirements,

ensuring the successful completion of the project within timeline and on budget,

where correct software engineering practices ought to be adhered to at all times.

When compared to conventional design methods formal methods allow for the

development of high-end systems, using (discrete) mathematics, resulting in a final

system with a reduced number of errors. The current process of quality assurance

or testing only reveals current errors on the system but does not show that there are

no errors (absence of errors) in the system (Boca, Siddiqi and Bowen, 2010).

Formal methods have shown themselves to be beneficial, but still, there is a slow

adoption in the commercial world. Formal methods are still viewed as difficult to use

owing to the underlying mathematical formalism. There are many myths that

surround the use of formal methods, such that they guarantee a perfect system.

More research needs to be undertaken (refer Section 7.5 below) and will require the

involvement of both the public and private sector to promote the use of formal

methods. Formal methods education should be introduced at the early stages of the

education system, where the benefits of formal methods ought to be made public for

the commercial world so as to be able to access this information.

7.5 Future Work

This dissertation does not solve all the problems around formal methods, which

methods have been around for years, and this dissertation focuses on what can be

done to increase the usage of formal methods in the commercial world. The

research in this dissertation is interpretive in nature and is mostly based on

scholarly works and industrial reports that have already been done on this topic i.e.,

books, e-journals, case studies, and work interviews.

Future work in this area could be pursued along a number of avenues.

7-121

Common terminology needs to be developed across the formal methods field. This

needs to be widely accepted and standardised. The issue of formal-methods tools

has been cited by most researchers, where tools need to be developed, especially

user-friendly automatic provers to establish properties and consequences of a

formal specification. Tools that are already developed are either not user-friendly, or

do not perform all the required functionality to produce correct formal specifications.

These tools need to be integrated into current development frameworks, such as

.NET and JAVA, to name a few. Automatic conversion of first-order logic statements

to a full Z specification needs to be investigated. Tools need to be classified and

demos of the tools in a form of videos, also indicating the strength of it in practice

must be made available.

The formal-methods adoption framework was developed and validated, both via

qualitative means. It is vital that the framework should be further validated by

exercising it in one or more companies in the industry to determine its scalability,

and it should also be validated through quantitative (statistical) means, aimed at

deriving a model from the framework. More practical examples are needed,

specifying the advantages and disadvantages of different design methodologies.

Other aspects to be further researched include:

• Validation of a formal specification by executing the specification or

simulating it to show its behaviour. Some work on this has been done, e.g.

running a Z specification in Prolog, yet it’s a tedious process.

• Integration of formal notations with more widely used notations such as use-

case diagrams, UML class diagrams, collaboration diagrams, etc.

• Automation of formal descriptions so as to generate test cases and even

code/scripts. The automatic transformation of a formal specification into a

high-level language, coupled with proof obligations to be discharged at each

transformation iteration needs further research.

A comprehensive industry survey ought to be done on the use of FMs in the SA

software industry.

7-122

References

Adesina-Ojo, A. A., Van Der Poll, J. A. and Venter, L. M. (2011). Towards the formalisation of

object-oriented methodologies. SAICSIT 2011: ACM International Conference Proceeding

Series, University of South Africa, Pretoria. [Online]. Available at:

doi:10.1145/2072221.2072252.

Alagar, V. S. and Periyasamy, K. (2011). Specification of Software Systems, Texts in Computer

Science. London : Springer London. [Online]. Available at: doi:10.1007/978-0-85729-277-3.

Alsmadi, I. (2017). Using formal method for gui model verification. (January 2008), Yarmouk

University.

Andrew, S. and Halcomb, E. J. (2009). Mixed Methods Research for Nursing and the Health

Sciences. Andrew, S. and Halcomb, E. J. (Eds). Oxford, UK : Wiley-Blackwell. [Online].

Available at: doi:10.1002/9781444316490.

Asgar, T. S. and King, T. M. (2016). Formalizing Requirements in ERP Software

Implementations. Lecture Notes on Software Engineering, 4 (1), pp.34–40. [Online]. Available

at: doi:10.7763/lnse.2016.v4.220.

Atlee, J. M., Beidu, S., Day, N. A., Faghih, F. and Shaker, P. (2013). Recommendations for

improving the usability of formal methods for product lines. In: 2013 1st FME Workshop on

Formal Methods in Software Engineering, FormaliSE 2013 - Proceedings. 2013. pp.43–49.

[Online]. Available at: doi:10.1109/FormaliSE.2013.6612276.

Babu, K. V. S. . and Bezawada, M. (2012). Enterprise Resource Planning. SSRN. [Online].

Available at: doi:10.2139/ssrn.2142346.

Banerjee, P., Sarkar, A. and Debnath, N. C. (2016). Modeling component interaction: Z -

Notation based approach. In: 2015 International Conference on Computing, Management and

Telecommunications, ComManTel 2015. 2016. [Online]. Available at:

doi:10.1109/ComManTel.2015.7394261.

Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001). Manifesto for Agile Software

Development. [Online]. Available at: http://agilemanifesto.org/.

Benjamin, M. (1990). A Message Passing System. An example of combining CSP and Z. In:

pp.221–228. [Online]. Available at: doi:10.1007/978-1-4471-3877-8_15.

7-123

Bernroider, E. W. N., Wong, C. W. Y. and Lai, K. hung. (2014). From dynamic capabilities to

ERP enabled business improvements: The mediating effect of the implementation project.

International Journal of Project Management. [Online]. Available at:

doi:10.1016/j.ijproman.2013.05.006.

Bjørner, D. and Havelund, K. (2014). 40 Years of Formal Methods. In: Springer, Cham. pp.42–

61. [Online]. Available at: doi:10.1007/978-3-319-06410-9_4.

Boca, P., Siddiqi, J. I. and Bowen, J. P. (2010). Formal Methods: State of the Art and New

Directions. 1st ed. Boca, P., Bowen, J. P. and Siddiqi, J. (Eds). London : Springer London.

[Online]. Available at: doi:10.1007/978-1-84882-736-3.

Boehm, B. and Turne, R. (2015). The incremental commitment spiral model (ICSM): principles

and practices for successful systems and software. In Proceedings of the 2015 International

Conference on Software and System Process (ICSSP 2015). ACM, New York, NY, USA, 175-

176. [Online]. Available at: doi:DOI=http://dx.doi.org/10.1145/2785592.2785619.

Börger Egon and Stärk Robert. (2003). Abstract State Machines. Springer-Verlag Berlin

Heidelberg, p.437. [Online]. Available at: doi:10.1007/978-3-642-18216-7.

Bottoni, P. and Fish, A. (2011). Policy specifications with Timed Spider Diagrams. In:

Proceedings - 2011 IEEE Symposium on Visual Languages and Human Centric Computing,

VL/HCC 2011. 2011. pp.95–98. [Online]. Available at: doi:10.1109/VLHCC.2011.6070385.

Bourque, P. and Fairley, R. E. (2014). SWEBOK v.3 - Guide to the Software Engineering - Body

of Knowledge. [Online]. Available at: doi:10.1234/12345678.

Bowen, J. P. (1996). Formal Specification and Documentation using Z: A Case Study Approach.

Citeseer. [Online]. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8627&rep=rep1&type=pdf.

Bowen, J. P. (2016). The Z Notation: Whence the Cause and Whither the Course? In: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). 9506. Springer, Cham. pp.103–151. [Online]. Available at:

doi:10.1007/978-3-319-29628-9_3.

Bowen, J. P. and Hinchey, M. G. (1995). Ten commandments of formal methods. Computer, 28

(4), pp.56–63. [Online]. Available at: doi:10.1109/2.375178.

Bowen, J. P. and Hinchey, M. (2012). Ten commandments of formal methods… Ten years on.

In: Conquering Complexity. pp.237–251. [Online]. Available at: doi:10.1007/978-1-4471-2297-

7-124

5_11.

Cansell, D. and Méry, D. (2003). Foundations of the B method. Computing and Informatics, 22

(3–4), pp.221–256. [Online]. Available at: https://cai.type.sk/content/2003/3-4/foundations-of-

the-b-method/.

Cardoso, J., Bostrom, R. P. and Sheth, A. (2004). Workflow Management Systems and ERP

Systems: Differences, Commonalities, and Applications. Information Technology and

Management. [Online]. Available at: doi:10.1023/b:item.0000031584.14039.99.

Carlier, M., Dubois, C. and Gotlieb, A. (2012). FM 2012: Formal Methods, Lecture Notes in

Computer Science. Giannakopoulou, D. and Méry, D. (Eds). Berlin, Heidelberg : Springer Berlin

Heidelberg. [Online]. Available at: doi:10.1007/978-3-642-32759-9.

Charette, R. N. (2005). Why Software Fails. IEEE Spectrum, 42 (9), pp.42–49. [Online].

Available at: doi:10.1109/MSPEC.2005.1502528.

Chow, S. and Ruskey, F. (2004). Drawing Area-Proportional Venn and Euler Diagrams. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). 2912. Springer, Berlin, Heidelberg. pp.466–477. [Online].

Available at: doi:10.1007/978-3-540-24595-7_44.

Coates, C. (2012). UML 2 Class Diagram Tutorial. Sparx Systems.

Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D. and Vanzetto, H. (2012). TLA +

proofs. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). 7436 LNCS. 2012. pp.147–154. [Online].

Available at: doi:10.1007/978-3-642-32759-9_14.

Crepaldi, G. (2005). Ninth Edition of the G.B. Morgagni Awards Program. [Online]. Available at:

doi:10.1111/j.1365-2362.2005.01463.x.

Davis, J. A., Clark, M., Cofer, D., Fifarek, A., Hinchman, J., Hoffman, J., Hulbert, B., Miller, S. P.

and Wagner, L. (2013). Study on the barriers to the industrial adoption of formal methods. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). 2013. [Online]. Available at: doi:10.1007/978-3-642-

41010-9_5.

Dehbonei, B. and Mejia, F. (2012). Formal methods in the railways signalling industry. [Online].

Available at: doi:10.1007/3-540-58555-9_84.

Di Vito, B. (2014). Digital Avionics Handbook, Third Edition. Spitzer, C., Ferrell, U. and Ferrell,

7-125

T. (Eds). CRC Press. [Online]. Available at: doi:10.1201/b17545.

Dongmo, C. (2016). FORMALISING NON-FUNCTIONAL REQUIREMENTS EMBEDDED IN

USER REQUIREMENTS NOTATION (URN) MODELS. PhD Thesis, University of South Africa.

[Online]. Available at: http://hdl.handle.net/10500/23395.

Dongmo, C. and van der Poll, J. A. (2010). A four-way framework for validating a specification.

In: Proceedings of the 2010 Annual Research Conference of the South African Institute of

Computer Scientists and Information Technologists on - SAICSIT ’10. 2010. New York, New

York, USA : ACM Press. pp.48–57. [Online]. Available at: doi:10.1145/1899503.1899509.

Dongmo, C. and van der Poll, J. A. (2011). Evaluating software specifications by comparison.

In: Proceedings of the South African Institute of Computer Scientists and Information

Technologists Conference on Knowledge, Innovation and Leadership in a Diverse,

Multidisciplinary Environment - SAICSIT ’11. 2011. New York, New York, USA : ACM Press.

p.87. [Online]. Available at: doi:10.1145/2072221.2072232.

Easterbrook, S., Lutz, R. and Covington, R. (1998). Experiences using lightweight formal

methods for requirements modeling. IEEE Transactions on Software Engineering. [Online].

Available at: doi:10.1109/32.663994.

Elbertsen, L. and Reekum, R. Van. (2008). To ERP or not to ERP? Factors influencing the

adoption decision. International Journal of Management and Enterprise Development. [Online].

Available at: doi:10.1504/IJMED.2008.017434.

Enderton, H. B. (1977). Elements of Set Theory. Information Storage and Retrieval, 58 (303),

p.279. [Online]. Available at: doi:10.2307/2282754.

Equey, C., Kusters, R. J., Varone, S. and Montandon, N. (2008). Empirical study of ERP

systems implementation costs in Swiss SMES. International Conference on Enterprise

Information Systems (ICEIS 2008), pp.143–148. [Online]. Available at:

http://campus.hesge.ch/equeyc/doc/ERP/ERP_impl_costs_swiss.pdf.

Felderer, M., Piazolo, F., Ortner, W., Brehm, L. and Hof, H. J. (2016). Innovations in enterprise

information systems management and engineering: 4th international conference, ERP Future

2015 - research munich, Germany, November 16-17, 2015 revised papers. In: Lecture Notes in

Business Information Processing. 245. 2016. [Online]. Available at: doi:10.1007/978-3-319-

32799-0.

Fenton, N. E. and Neil, M. (2000). Software metrics. In: Proceedings of the conference on The

future of Software engineering - ICSE ’00. 2000. New York, New York, USA : ACM Press.

7-126

pp.357–370. [Online]. Available at: doi:10.1145/336512.336588.

Fisher, D. W. (1990). The Human Genome—No Less! Hospital Practice, 25 (2), pp.13–13.

[Online]. Available at: doi:10.1080/21548331.1990.11703905.

Fisher, M. (2011). An Introduction to Practical Formal Methods Using Temporal Logic. [Online].

Available at: doi:10.1002/9781119991472.

Fix, L. (2008). Fifteen years of formal property verification in intel. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). 5000 LNCS. 2008. pp.139–144. [Online]. Available at:

doi:10.1007/978-3-540-69850-0_8.

Gabbar, H. A. (2006). Modern formal methods and applications. [Online]. Available at:

doi:10.1007/1-4020-4223-X.

Gao, J., Zhang, L. and Wang, Z. (2008). Decision support in procuring requirements for ERP

software. In: Proceedings of the 9th International Conference for Young Computer Scientists,

ICYCS 2008. 2008. pp.1126–1131. [Online]. Available at: doi:10.1109/ICYCS.2008.158.

Garavel, H. and Graf, S. (2013). Formal Methods for Safe and Secure Computer Systems.

Federal Office for Information Security. [Online]. Available at:

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_method

s_study_875/formal_methods_study_875.pdf?__blob=publicationFile&v=2.

George, V. and Vaughn, R. (2003). Application of lightweight formal methods in requirement

engineering. Crosstalk. The Journal of Defence Software Engineering.

Gieryn, T. F. and Giddens, A. (2006). Positivism and Sociology. Contemporary Sociology, 5 (5),

p.665. [Online]. Available at: doi:10.2307/2063389.

Gilliam, D. P., Powell, J. D. and Bishop, M. (2005). Application of lightweight formal methods to

software security. In: Proceedings of the Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, WETICE. 2005. [Online]. Available at: doi:10.1109/WETICE.2005.19.

Glass, R. L. . (1996). Formal Methods are a Surrogate for a More Serious Software Concern.

IEEE Computer, 29 (4), p.19.

Hall, A. (2007). Realising the benefits of formal methods. In: Journal of Universal Computer

Science. 13 (5). Springer, Berlin, Heidelberg. pp.669–678. [Online]. Available at:

doi:10.1007/11576280_1.

7-127

Hamilton-Smith, E. (2001). Book Review: Doing Qualitative Research: A Practical Handbook.

Sociological Research Online, 5 (4), pp.131–132. [Online]. Available at:

doi:10.1177/136078040100500415.

Hammer Michael. (2003). Reengineering Work: Don’t Automate, Obliterate. Harvard BUsiness

Review, (July-August), pp.1–19. [Online]. Available at: https://hbr.org/1990/07/reengineering-

work-dont-automate-obliterate.

Harrison, J. (2003). Formal verification at Intel. In: 18th Annual IEEE Symposium of Logic in

Computer Science, 2003. Proceedings. 2003. IEEE Comput. Soc. pp.45–54. [Online]. Available

at: doi:10.1109/LICS.2003.1210044.

Harrison, J. (2010). Formal Methods at Intel — An Overview. Symposium A Quarterly Journal In

Modern Foreign Literatures, 2010 (April), pp.0–10.

Hastie, S. and Wojewoda, S. (2015). Standish Group 2015 Chaos Report - Q&A with Jennifer

Lynch. Http://Www.Infoq.Com/Articles/Standish-Chaos-2015, pp.1–9. [Online]. Available at:

http://www.infoq.com/articles/standish-chaos-2015.

Hussain, S., Dunne, P. and Rasool, G. (2013). Formal Specification of Security Properties using

Z Notation. Research Journal of Applied Sciences, Engineering and Technology, 5 (19),

pp.4664–4670. [Online]. Available at: doi:10.19026/rjaset.5.4298.

Iddiqui, M. U. A. J. S., Akhter, M. S. and Ian, N. A. A. L. I. M. (2014). a Comparative Analysis of

Conventional Software Development Approaches Vs . Formal Methods in Call Distribution

Systems. Vawkum Transaction on Computer Sciences.

IIBA. (2015). BABOK. Toronto, Ontario, Canada .

Ilić, D. (2007). Deriving formal specifications from informal requirements. In: Proceedings -

International Computer Software and Applications Conference. 2007. [Online]. Available at:

doi:10.1109/COMPSAC.2007.104.

Jacky, J. (2004). Formal specification for a clinical cyclotron control system. ACM SIGSOFT

Software Engineering Notes, 15 (4), pp.45–54. [Online]. Available at: doi:10.1145/99571.99814.

Jaspan, C., Keeling, M., Maccherone, L., Zenarosa, G. L. and Shaw, M. (2009). Software

Mythbusters Explore Formal Methods. IEEE Software, 26 (6), pp.60–63. [Online]. Available at:

doi:10.1109/MS.2009.188.

Kaivola, R. (2011). Intel ® Core TM i7 processor execution engine validation in a functional

language based formal framework. In: Lecture Notes in Computer Science (including subseries

7-128

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6539 LNCS. 2011.

p.1. [Online]. Available at: doi:10.1007/978-3-642-18378-2_1.

Karibskii, A. V. (1991). Managing the development of large-scale systems. Mathematics and

Computers in Simulation, 33 (4), pp.287–293. [Online]. Available at: doi:10.1016/0378-

4754(91)90107-E.

Kilic, H. S., Zaim, S. and Delen, D. (2015). Selecting ‘the best’ ERP system for SMEs using a

combination of ANP and PROMETHEE methods. Expert Systems with Applications, 42 (5),

pp.2343–2352. [Online]. Available at: doi:10.1016/j.eswa.2014.10.034.

Kneuper, R. (1997). Limits of formal methods. Formal Aspects of Computing, 9 (4), pp.379–394.

[Online]. Available at: doi:10.1007/BF01211297.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering : Processes and

Techniques. Star, p.294. [Online]. Available at: http://www.amazon.com/Requirements-

Engineering-Processes-Techniques-Worldwide/dp/0471972088.

Krause, J., Hintze, E., Magnus, S. and Diedrich, C. (2012). Model Based Specification,

Verification, and Test Generation for a Safety Fieldbus Profile. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). 7612 LNCS. Springer, Berlin, Heidelberg. pp.87–98. [Online]. Available at:

doi:10.1007/978-3-642-33678-2_8.

Kwahk, K. Y. and Ahn, H. (2010). Moderating effects of localization differences on ERP use: A

socio-technical systems perspective. Computers in Human Behavior, 26 (2), pp.186–198.

[Online]. Available at: doi:10.1016/j.chb.2009.10.006.

Lalena, J. N., Cushing, B. L., Falster, A. U., Simmons, W. B., Seip, C. T., Carpenter, E. E.,

O’Connor, C. J. and Wiley, J. B. (1998). A Multistep Topotactic Route to the New Mixed-

Valence Titanate, Na(2)(-)(x)()(+)(y)()Ca(x)()(/2)La(2)Ti(3)O(10). Electron Localization Effects in

a Triple-Layered Perovskite. Inorganic chemistry, 37 (18), pp.4484–4485. [Online]. Available at:

doi:10.1021/ic980611g.

Lorch, J. R., Chen, Y., Kapritsos, M., Parno, B., Qadeer, S., Sharma, U., Wilcox, J. R. and

Zhao, X. (2020). Armada: low-effort verification of high-performance concurrent programs. In:

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation. 11 June 2020. New York, NY, USA : ACM. pp.197–210. [Online]. Available at:

doi:10.1145/3385412.3385971.

Laroussinie, F. (2010). CHRISTEL BAIER AND JOOST-PIETER KATOEN * Principles of Model

7-129

Checking. MIT Press (May 2008). * ISBN: 978-0-262-02649-9. 44.95. 975 pp. Hardcover. The

Computer Journal, 53 (5), pp.615–616. [Online]. Available at: doi:10.1093/comjnl/bxp025.

Li, F.-L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L. and Mylopoulos, J. (2015). From

Stakeholder Requirements to Formal Specifications Through Refinement. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). 9013. pp.164–180. [Online]. Available at: doi:10.1007/978-3-319-

16101-3_11.

Lions, J. L. (1996). Ariane 5 Flight 501 Failure. Report by the Inquiry Board Paris, 19 (July), p.1.

[Online]. Available at: http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf.

Liu, S. and Adams, R. (1995). Limitations of Formal Methods and An Approach to Improvement.

Faculty of Information Sciences Hiroshima City University, pp.498–507. [Online]. Available at:

doi:10.1109/APSEC.1995.496999.

Liu, S., Stavridou, V. and Dutertre, B. (1995). The practice of formal methods in safety-critical

systems. The Journal of Systems and Software, 28 (1), pp.77–87. [Online]. Available at:

doi:10.1016/0164-1212(94)00082-X.

Lockhart, J., Purdy, C. and Wilsey, P. (2014). Formal methods for safety critical system

specification. In: 2014 IEEE 57th International Midwest Symposium on Circuits and Systems

(MWSCAS). August 2014. IEEE. pp.201–204. [Online]. Available at:

doi:10.1109/MWSCAS.2014.6908387.

Lorch, J. R., Chen, Y., Kapritsos, M., Parno, B., Qadeer, S., Sharma, U., Wilcox, J. R. and

Zhao, X. (2020). Armada: low-effort verification of high-performance concurrent programs. In:

2020. [Online]. Available at: doi:10.1145/3385412.3385971.

Ma, Z. M. (2008). Fuzzy Conceptual Information Modeling in UML Data Model. In: 2008

International Symposium on Computer Science and Computational Technology. 2. 2008. IEEE.

pp.331–334. [Online]. Available at: doi:10.1109/ISCSCT.2008.353.

Malik, P. and Utting, M. (2005). CZT: A Framework for Z Tools. In: Lecture Notes in Computer

Science. 3455. Springer, Berlin, Heidelberg. pp.65–84. [Online]. Available at:

doi:10.1007/11415787_5.

Markus, M. L., Tanis, C. and Van Fenema, P. C. (2000). Multisite ERP implementations.

Communications of the ACM, 43 (4), pp.42–46. [Online]. Available at:

doi:10.1145/332051.332068.

7-130

Moremedi, K. and van der Poll, J. A. (2013). Transforming Formal Specification Constructs into

Diagrammatic Notations. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8216 LNCS. Springer,

Berlin, Heidelberg. pp.212–224. [Online]. Available at: doi:10.1007/978-3-642-41366-7_18.

Moremedi, K. and van der Poll, J.A. (2019). Towards a Comparative Evaluation of Text-Based

Specification Formalisms and Diagrammatic Notations, International Journal of Data Mining,

Modelling and Management (IJDMMM), 11(3), pp. 259 – 283, Inderscience Enterprises Ltd.

Nathan, A. J. and Scobell, A. (2012). How China sees America. [Online]. Available at:

doi:10.1017/CBO9781107415324.004.

Nemathaga, A. and van der Poll, J. A. (2019). Adoption of Formal Methods in the Commercial

World. In: Eighth International Conference on Advances in Computing, Communication and

Information Technology CCIT. 2019. Birmingham City University, Birmingham, United Kingdom

: Institute of Research Engineers and Doctors. pp.75–84. [Online]. Available at:

doi:10.15224/978-1-63248-169-6-12.

Nerode, A. and Shore, R. A. (1997). Introduction. In: Logic for Applications. New York, NY :

Springer New York. pp.1–5. [Online]. Available at: doi:10.1007/978-1-4612-0649-1_1.

Newcombe, C., Rath, T., Zhang, F., Munteanu, B. and al, et. (2013). Use of Formal Methods at

Amazon Web Services. Research.Microsoft.Com. [Online]. Available at:

http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-

amazon.pdf%5Cnpapers2://publication/uuid/7887148C-66F4-4995-A00E-401C20C7F57D.

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M. and Deardeuff, M. (2015). How

Amazon web services uses formal methods. Communications of the ACM, 58 (4), pp.66–73.

[Online]. Available at: doi:10.1145/2699417.

Norris, C. (2005). Epistemology. London: Continuum.

Oates, B. J. (2006). Research Information Systems and Computing. London : SAGE

Publications Ltd.

Ogheneovo, E. E. (2014). Software Dysfunction: Why Do Software Fail? Journal of Computer

and Communications, 02 (06), pp.25–35. [Online]. Available at: doi:10.4236/jcc.2014.26004.

Pagliari, C. (2007). Design and evaluation in eHealth: challenges and implications for an

interdisciplinary field. Journal of medical Internet research, 9 (2), IEEE., p.e15. [Online].

Available at: doi:10.2196/jmir.9.2.e15.

7-131

Palmquist, M. S., Lapham, M. A., Miller, S., Chick, T. and Ozkaya, I. (2013). Parallel Worlds:

Agile and Waterfall Differences and Similarities. Software Engineering Institute. [Online].

Available at: doi:CMU/SEI-2013-TN-021.

Pandey, K.S. (2016a). Research Methodology. In: JISTEM Journal of Information Systems and

Technology Management. 6 (2). pp.111–127. [Online]. Available at: doi:10.1007/978-81-322-

2785-4_4.

Pandey, K.S. and Batra, M. (2013). Formal Methods in Requirements Phase of SDLC.

International Journal of Computer Applications, 70 (13), pp.7–14. [Online]. Available at:

doi:10.5120/12020-8017.

Pandey, K. N. (2016b). Research Methodology. In: Studies in Systems, Decision and Control.

Springer, New Delhi. pp.111–127. [Online]. Available at: doi:10.1007/978-81-322-2785-4_4.

Pang, A. (2016). Top 10 ERP Software Vendors and Market Forecast 2015-2020. [Online].

Available at: https://www.appsruntheworld.com/top-10-erp-software-vendors-and-market-

forecast-2015-2020/.

Parnas, D. L. (2010). Really rethinking ‘formal methods’. Computer, 43 (1), pp.28–34. [Online].

Available at: doi:10.1109/MC.2010.22.

Partridge, B. E. and Mintzberg, H. (2006). The Nature of Managerial Work. Operational

Research Quarterly (1970-1977). [Online]. Available at: doi:10.2307/3007945.

Pressman, R. S. (2009). Software Engineering A Practitioner’s Approach 7th Ed - Roger S.

Pressman. [Online]. Available at: doi:10.1017/CBO9781107415324.004.

Republic of South Africa: Department of Higher Education and Training. (2015). Summary for

Policymakers. In: Intergovernmental Panel on Climate Change (Ed). Climate Change 2013 -

The Physical Science Basis. Cambridge : Cambridge University Press. pp.1–30. [Online].

Available at: doi:10.1017/CBO9781107415324.004.

Royce, D. W. W. (1970). Managing the Development of large Software Systems. [Online].

Available at: doi:1016/0378-4754(91)90107-E.

Ruano, L. (2013). The Europeanization of national foreign policies towards Latin America.

Ruano, L. (Ed). Routledge. [Online]. Available at: doi:10.4324/9780203100899.

Saunders and Lewis. (2014). Choosing a research design (Part 1): Philosophies and

approaches. [Online]. Available at: http://futureideas.eu/wp-content/uploads/2014/01/Figure-5-

IT-SERVICES-OFFFFSHORING-IN-MOROCCO.jpg.

7-132

Saunders, M.N. K., Lewis, P., Thornhill, A. and Bristow, A. (2015). Understanding research

philosophy and approaches to theory development. In: Saunders, Mark N. K.; Lewis, Philip and

Thornhill, Adrian eds. Research Methods for Business Students. Harlow: Pearson Education,

pp. 122–161.

Schach, S. . (2011). Object-Oriented & Classical Software Engineering. [Online]. Available at:

doi:10.1036/0072554509.

Schneider, K. (2004). Verification of Reactive Systems: Formal Methods and Algorithms.

Springer Science & Business Media. [Online]. Available at:

http://books.google.com/books?hl=en&lr=&id=Z92bL1VrD_sC&pgis=1.

Scott, T. (2000). ML tutorial. Journal of Computing Sciences in Colleges, 16 (1), p.249.

Sengupta, S. and Bhattacharya, S. (2006). Formalization of UML use case diagram-a Z notation

based approach. In: 2006 International Conference on Computing & Informatics. June 2006.

IEEE. pp.1–6. [Online]. Available at: doi:10.1109/ICOCI.2006.5276507.

Shehab, E. M., Sharp, M. W., Supramaniam, L. and Spedding, T. A. (2012). Enterprise

resource planning. Business Process Management Journal, 10 (4), pp.359–386. [Online].

Available at: doi:10.1108/14637150410548056.

Softwareshortlist. (2015). Gartner’s mid-market ERP Magic Quadrant: Which vendors shine? | A

free ERP article from Software Shortlist. [Online]. Available at:

http://www.softwareshortlist.com/erp/articles/gartners-mid-market-erp-magic-quadrant-which-

vendors-shine/.

Sommerville, I. (2016). Software engineering (10th edition). Addison-Wesley Publishing

Company.

Spichkova, M. (2012a). Human factors of formal methods. In: Proceedings of the IADIS

International Conference Interfaces and Human Computer Interaction 2012, IHCI 2012,

Proceedings of the IADIS International Conference Game and Entertainment Technologies

2012. 2012. Garching, Germany . pp.307–310.

Spichkova, M. (2012b). Human factors of formal methods. In: Proceedings of the IADIS

International Conference Interfaces and Human Computer Interaction 2012, IHCI 2012,

Proceedings of the IADIS International Conference Game and Entertainment Technologies

2012. 2012.

Spivey, J. M. (2010). An introduction to Z and formal specifications. Software Engineering

http://oro.open.ac.uk/view/person/ab36678.html

7-133

Journal, 4 (1), p.40. [Online]. Available at: doi:10.1049/sej.1989.0006.

Srihasha, A. V and Reddy, A. R. M. (2015). Modest Formalization of Software Design Patterns.

IJLRET.

Steyn, P. S. and Van Der Poll, J. A. (2007). Validating Reasoning Heuristics Using Next-

Generation Theorem-Provers. In: Proceedings of the 5th International Workshop on Modelling,

Simulation, Verification and Validation of Enterprise Information Systems. 2007. SciTePress -

Science and and Technology Publications. pp.43–52. [Online]. Available at:

doi:10.5220/0002425900430052.

Subramoniam, S., Nizar, H. M., Krishnankutty, K. V. and Gopalakrishnan, N. K. (2009). ERP II:

Next generation ERP. Riyadh Community College. [Online]. Available at:

http://repository.ksu.edu.sa/jspui/handle/123456789/6421.

Suryalena. (2013). Enterprise resource planning (erp). Jurnal Aplikasi Bisnis, 3, pp.145–154.

Suryn, W. (2014). Software Quality Engineering. Suryn, W. (Ed). Hoboken, NJ, USA : John

Wiley & Sons, Inc. [Online]. Available at: doi:10.1002/9781118830208.

Tomer, A. and Schach, S. R. (2002). The evolution tree: a maintenance-oriented software

development model. In: Proceedings of the Fourth European Conference on Software

Maintenance and Reengineering. 2002. IEEE Comput. Soc. pp.209–214. [Online]. Available at:

doi:10.1109/CSMR.2000.827329.

Toyn, I. and McDermid, J. A. (1995). CADi: An architecture for Z tools and its implementation.

Software: Practice and Experience, 25 (3), pp.305–330. [Online]. Available at:

doi:10.1002/spe.4380250306.

Tretmans, J. and Belinfante, A. (1999). Automatic Testing with Formal Methods. Centre for

Telematics and Information Technology (CTIT).

Van der Poll, J. A. (2010). Formal methods in software development: A road less travelled.

South African Computer Journal, 45. [Online]. Available at: doi:10.18489/sacj.v45i0.33.

Van der Poll, J. A. and Kotze’, P. (2005). Enhancing the Established Strategy for Constructing a

Z Specification. School of Computing,University of South Africa, 0003, (35), pp.118–131.

Van Lamsweerde, A. (2000). Formal specification. In: Proceedings of the conference on The

future of Software engineering - ICSE ’00. 2000. New York, New York, USA : ACM Press.

pp.147–159. [Online]. Available at: doi:10.1145/336512.336546.

7-134

Wing, J. M. (1990). A Specifier???s Introduction to Formal Methods. Computer, 23 (9), pp.8–22.

[Online]. Available at: doi:10.1109/2.58215.

Woodcock, J., Larsen, P. G., Bicarregui, J. and Fitzgerald, J. (2009). Formal methods: Practice

and experience. ACM Comput. Surv., 41 (4), pp.1–36. [Online]. Available at:

doi:10.1145/1592434.1592436.

Wordsworth, J. B. (1999). Getting the best from formal methods. IBM United Kingdom

Laboratories. [Online]. Available at: doi:10.1016/S0950-5849(99)00078-6.

Xilinx. (2012). Xilinx unveils the vivado design suite for the next decade of ’all programmable’

devices. Xcell journal, 79 (79), p.7.

Zhang, H. (2009). An investigation of the relationships between lines of code and defects. In:

2009 IEEE International Conference on Software Maintenance. Proceedings - Ieee International

Conference on Software Maintenance. 3. September 2009. IEEE. pp.274–283. [Online].

Available at: doi:10.1109/ICSM.2009.5306304.

7-135

Appendix A. Traditional Waterfall

Traditional Waterfall development process

Source: Royce (1991), “Managing the development of large software systems”. Proc. IEEE
WESCON,

7-136

Appendix B. Summary of

mathematical notations

7-137

7-138

Appendix C. Software development

processes

C1: Formal Methods Development Process

The process of software development using Formal Methods. Adopted from Liu and

Adams (1995).

7-139

C2: Spiral Model

Spiral model (Pagliari, 2007)

7-140

Appendix D. Framework

D1: Preliminary Framework

7-141

D2: Adoption Framework

E
D
U
C
A
T
I
O
n

Buy-in

Environment

Remuneration

Support Tools

P
U
B
L
I
C
A
T
I
O
N
S

R
E
S
U
L
T
s

P1

P1

P2

P4 P4

P3
P3.1

P3.1

P3, P3.1

P1, P1.1

Z NotationP1, P1.1 P5

7-142

Appendix E. Z Specification

Z Specification Purchasing Module

E.1 Basic Types

[STRING, AMOUNT, DATE]

[USER, PRODUCT, ORDER, ITEM, CUSTOMER]

STATUS:= pending| cancelled| processed

E.2 USER

User

users: ℙ USER

userName: USER ⤔ STRING

userPassword: USER ⤔ VARCHAR

dom userName = users

dom userPassword = users

E.3 Log-in

 Log-in

ΔUser

username?, password?: User

r! : RESULT

If username? ↦ password? ∈ User

 r! = Success

Else

 r! = Failed

7-143

E.4 Product

 Product

products: ℙ PRODUCT

prodName: PRODUCT ⤔ STRING

prodPrice: PRODUCT ⇸ AMOUNT

prodQuantity: PRODUCT ⇸ ℕ

dom prodName = products

dom prodPrice = products

dom proQuantity = products

E.5 Customer

 Customer

customers: ℙ CUSTOMER

custAddress: CUSTOMER ⇸ STRING

custPhone: CUSTOMER ⇸ STRING

dom custAddress = customers

dom custPhone = customers

E.6 Order

 Order

order: ℙ ORDER

orderDate: ORDR ⇸DATE

orderStatus: ORDR ⇸STATUS

orderCustomer: ORDR ⇸CUSTOMER

dom orderDate = order

dom orderStatus = order

dom orderCustomer = order

7-144

E.7 Create Product Operation

Create Product Operation

 CreateProduct

ΔProduct

prduct?: PRODUCT

nme?: STRING

prce?: AMOUNT

qntity?: ℕ

prduct? ∉ products

products′ = products ∪ {prduct?}

prodName′ = prodName ∪ {prduct? ↦ nme?}

prodPrice′ = prodPrice ∪ {prduct? ↦ prce?}

prodQuantity′ = prodQuantity ∪ {prduct? ↦ qntity?}

E.8 Create Order

 CreateOrder

ΔOrder

date?: DATE

customer?: CUSTOMER

ordr!: ORDER

order! ∉ orders

ordr′ = orders ∪ {ordr!}

orderDate′ = orderDate ∪ {ordr! ↦date?}

orderStatus′ = orderStatus ∪ {ordr! ↦ pending}

orderCustomer′ = orderCustomer {ordr! ↦ customer?}

7-145

E.9 Create Customer

 CreateCustomer

ΔCustomer

customer?: CUSTOMER

address?: STRING

phone?: STRING

customer? ∉ customers

customers′ = customers ∪ {customer?}

custAddress′ = custAddress ∪ {customer? ↦ address?}

custPhone′ = custPhone ∪ {customer? ↦ phone?}

E.10 Process Order

 ProcessOrder

ΔOrder

ΔProduct

ΞCustomer (* Yet, a real-life system would maintain some customer information *)

product? : PRODUCT

ordr?: ORDER

ordr? ∈ orders ∧ product? ∈ products

(* Valid pending order and product stock available *)

orderStatus(ordr?) = pending ∧ prodQuantity(product?) > 0

(* Components that remain invariant *)

orders′ = orders

orderDate′ = orderDate

orderCustomer′ = orderCustomer

products′ = products

prodName′ = prodName

prodPrice′ = prodPrice

(* New status of order *)

orderStatus′ = orderStatus ⊕ {ordr? ↦ processed}

(* New quantity of product *)

prodQuantity′ = prodQuantity ⊕

 {(product? ↦ prodQuantity(product?)) – orderQuantity(ordr?)}

7-146

E.11 Update Product

 UpdateProduct

ΔProduct

product?: PRODUCT

nme?: STRING

prce?: AMOUNT

qntity?: ℕ

product? ∈ products

prodName′ = prodName ⊕ {product? ↦ nme?}

prodPrice′ = prodPrice ⊕ {product? ↦ prce?}

(* Abstracting away from order-product relationship in schema ProcessOrder

above *)

prodQuantity′ = prodQuantityy ⊕ {product? ↦ qntity?}

E.12 Delete Product

 DeleteProduct

ΔProduct

product?: PRODUCT

product? ∈ products

products′ = products ∖ {product?}

prodName′ = {product?} ⩤ prodName

prodPrice′ = {product?} ⩤ prodPrice

prodQuantity′ = {product?} ⩤ prodQuantity

E.13 Cancel Order

 CancelOrder

ΔOrder′

ordr?: ORDER

ordr? ∈ orders

orderStatus(ordr?) = pending

orderDate′ = orderDate

orderStatus′ = orderStatus ⊕ {ordr? ↦ cancelled}

orderCustomer′ = orderCustomer

7-147

E.14 Enquiry Operation

 SelectProductsBelowThreshold

ΞProduct

quantity?: ℕ

products!: ℙ PRODUCT

products!= {p: products | prodQuantity(p) < quantity?}

E.15 Operation success

Success

result!: REPORT

result!: = success

E.16 Error condition

 ProductAlreadyExists

ΞProduct

prduct?: PRODUCT

result!: REPORT

prduct? ∈ products

result!: = product_already_exists

7-148

E.17 Report

 RCreateProduct

ΔProduct

product?:PRODUCT

name?: STRING

price?: AMOUNT

quantity?: ℕ

results! : REPORT

(product?∉ known ∧

 Product ′ = product ∪ {name? ↦ price? } ∧

 result! = ok) ∨

(name? ∈ known ∧

 product′ = product ∧

 result! = already_ known)

E.18 System

 System

User

Product

Order

Customer

7-149

Appendix F. Ethical Clearance

The following ethical clearance certificate was obtained as part of non-human subjects

research.

7-150

7-151

7-152

Appendix G. Permission to Submit

7-153

Appendix H. Language Editing

Certificate

This dissertation has been professionally language edited as indicated below.

7-154

7-155

Appendix I. Turnitin Report

NOTE: A research paper by Nemathaga, A. and van der Poll, J. A. (2019) Adoption of Formal

Methods in the Commercial World published as a Master’s degree requirement appears in the

Eighth International Conference on Advances in Computing, Communication and Information

Technology (CCIT 2019). This resulted in the Turnitin report similarity index of 30%. The work is

by the researcher (14%) and was not plagiarised in any way. The University discourages the

removal of previously published works by candidates from the Turnitin repository. The full paper

appears in Appendix J.

7-156

Appendix J. Adoption of Formal

Methods in the Commercial World

The following publication emanated from the research described in this dissertation.

• Nemathaga, A. and van der Poll, J. A. (2019) ‘Adoption of Formal Methods in the

Commercial World’, in Eighth International Conference on Advances in Computing,

Communication and Information Technology CCIT. Birmingham City University,

Birmingham, United Kingdom: Institute of Research Engineers and Doctors., pp. 75–84.

doi: 10.15224/978-1-63248-169-6-12.

7-157

7-158

7-159

7-160

7-161

7-162

7-163

7-164

7-165

7-166

7-167

7-168

Index

ERP Architecture, 2-13

Gartner ERP Quadrant, 2-16

Waterfall Model, 2-18

Introduction, Detection and

Costs of Errors, 2-20

Formal specification languages,

2-23

Schema, 2-27

Product Schema

UML

Process diagram3-54

Use Case Diagram 3-59,

3-68

Class diagram 3-68

Venn diagram, 3-63

Framework, 3-83, 5-101, 5-99

Onion Diagram 4-89

Research Diagram 4-93

Case study 3-52

Schema 2-27

Definitions and Acronyms xii

Differences between formal and

informal specification 2-23

Strengths and weakness SDLC

2-41

Requirement list 3-53,

Process description 3-57

Use case description 3-61

Z 2-26

Set Theory 3-62

Operations

DeleteProduct 3-78

CancelOrder 3-78

CreateCustomer 3-75

CreateOrder 3-74

DeleteProduct 3-78

ProcessOrder 3-76

RobustCreateProduct 3-81

ProductAlreadyExists 3-80

Create Product 3-73

UpdateProduct 3-77

Axiom of Choice 3-66

Empty Set

Fractions: These 3-64

Integers) 3-64

Binary Intersection 3-64

The cardinality 3-65

Natural numbers 3-63

Infinity 3-65

Binary Union 3-64

Regularity: 3-65

The difference 3-64

Subsets

Regularity: 3-65

