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Abstract 

Health condition of a river is a necessity for the sustainability of aquatic ecosystems. River 

health status of the Nzhelele River was assessed through the use of water quality, 

macroinvertebrate taxa composition and aquatic habitat conditions.  The study was conducted 

along the Nzhelele River in Limpopo Province of South Africa where the river transcends six 

tribal villages. The objectives were to assess water quality conditions in order to determine the 

magnitude of pollution impact, to correlate species diversity and water quality parameters, to 

measure the size of degraded areas with respect to species richness and to develop a model for 

managing river health condition of the Nzhelele River. Data were collected monthly between 

February and December 2016 (early autumn to mid-summer). Macroinvertebrates were 

sampled where water samples were collected to ensure that the relationship between water 

quality and macroinvertebrates was adequately correlated. Water quality parameters that were 

analysed were pH, stream temperature, river velocity, conductivity, Dissolved Oxygen, Total 

Dissolved Solids, nitrates, nitrites and chlorine. Assessment of habitat conditions was done 

through the assessment of habitat and riparian zone integrity. One-way ANOVA was used to 

determine if there were significant differences between the six sampling areas in terms of water 

quality and aquatic species composition. Principal Correspondence Analysis (PCA) was used 

to correlate water quality and macroinvertebrate data.  

The results indicated that water quality parameters significantly differed among the six 

sampling sites and that also explained the variations in diversity of macroinvertebrates that 

were sampled from the six sampling sites. Pollution tolerant organisms constituted a total of 

46.7% and the remaining 53.3% represented pollution sensitive organisms. PCA results 

showed positive and negative correlations between macroinvertebrates and water quality 

parameters to indicate variations in the levels of pollution along the Nzhelele River. Habitat 

integrity results indicated that the Musekwa sampling site was the most degraded and had lower 

species diversity. The Ratio of Ephemeroptera, Plecoptera and Trichoptera (EPT) and 

Chironomidae Abundances should be reviewed to read as Ratio of EPT and Chironomidae-

Thiaridae Abundances in order to strengthen the study of the relationship between pollution 

tolerant and pollution sensitive organisms.      
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CHAPTER ONE: INTRODUCTION 

1.1 Background to the problem 

Rivers and their adjacent lands serve as habitats for a variety of organisms. These organisms 

tend to survive in a particular state of a river. The organisms suffer when the state of a river is 

altered naturally or through anthropogenic activities. Assessing and understanding the impacts 

of human activities on aquatic ecosystems has long been a focus of ecologists, water resource 

managers and fisheries scientists (Kwak and Freeman, 2010). According to Kwak and Freeman 

(2010), ecological integrity is the synopsis of chemical, physical and biological integrity. 

Dlamini (2009) has observed that the consequences of anthropogenic water-use activities and 

land-use management are becoming noticeable on the environment. According to Van Ael et 

al. (2011), pressure on the biological community of an aquatic environment is a result of 

pollution, habitat deterioration, spatial isolation, and the spreading of invasive species. Aquatic 

ecosystem biodiversity requires specific chemical and physical environmental conditions for 

survival. Physical habitat and water quality are strongly related to aquatic species composition 

and distribution, and as such, become a measure of river health status (DEAT, 2007). River 

health conditions and the sustainability of aquatic ecosystems are a good measure of the 

presence and concentration of a variety of pollutants, as well as the degraded or altered 

environments (DWAF, 1997). Roux (2000) defined ecosystem health as the ability of an 

ecosystem to support and maintain a balanced, integrated and adaptive community of 

organisms having a diversity of species, composition and functional organisation comparable 

to that of the natural habitats of the region.   

 

Moiseenko et al. (2008) stated that many groups of organisms can be used as indicators of 

environmental and ecological change, even though fish are good indicators of aquatic 

environmental change and ecosystem health. Gyedu-Ababio and van Wyk (2004) have 

similarly argued that the overall ecological integrity of a river is reflected by biological 

communities through the integration of the effects of different stressors over time. Flautt (2007) 

argued that the main focus should particularly be on Ephemeroptera (E), Tricoptera (T), and 

Plecoptera (P) orders because of their sensitivity to stream conditions and viability to act as 

stream health indicators. Yeom and Adams (2007) noted that a class of environmental health 

indicators that has grown rapidly in use over the past two decades is multimetric indices. 
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Angermeier and Davideanu (2004) noted that these indices integrate information on several 

attributes of a biotic community into a number that is scaled to reflect ecological health. An 

example of an integrative index at the organism level is the health assessment index (HAI), 

which is a quantitative methodology that allows statistical comparisons of fish health among 

data sets and evaluates the general health status of individuals within a population (Kleynhans 

et al., 2008).  

 

Miserendino et al. (2011) asserted that all over the world the ecological integrity of river 

systems is being endangered by land use changes. These changes are brought about by 

urbanisation, agriculture, pasture conversion, deforestation, and the replacement of native 

species by exotic ones with commercial value. This represents a real threat to biodiversity and 

conservation of lotic ecosystems (Miserendino et al., 2012). More often, habitat valuation 

processes are mostly used to inform decisions about which lands to conserve because 

ecological risk assessment has been criticised for ignoring habitat range limitations of a site as 

well as spatial patterns in habitat quality (Efroymson et al., 2008).  

 

The quality of the environmental conditions is also a determining factor in macroinvertebrate 

assemblages in any river. Yamada et al. (2014) have indicated that faunal communities 

inhabiting plant leaves and rhizomes (macro-and-microinvertebrates), the quantity and quality 

of environmental variations as well as the dynamics of the spatial distribution patterns of the 

vegetation determine the dynamics of species diversity, functional diversity and composition 

of the faunal communities. Miserendino et al. (2012) have also indicated that extensive damage 

on riparian and aquatic habitats can adversely affect fish and macroinvertebrate communities. 

Suspended particulate matter (SPM) has been found to have a range of detrimental effects on 

water resource (Bilotta et al., 2012).  

 

Varnosfaderany et al. (2010) stated that the use of macroinvertebrate communities as 

bioindicators for assessment of water quality has more advantages than those based on diatoms, 

fish, riparian and aquatic vegetation. This is because freshwater macroinvertebrate species vary 

in their sensitivity to organic pollution (Czerniawska-Kusza, 2005). Habitat alteration has been 

seen as a factor contributing to biodiversity loss at the global scale (Almeida et al., 2013) such 

as loss of adaptive capacity to natural environmental fluctuation causing changes in community 

structure and function, resulting from suboptimal and more homogenous abiotic environments 
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(Perez-Quintero, 2007). Almeida et al. (2013) stated that near-bed hydraulic variables are the 

key factors to analyse spatial distribution patterns of macrobenthos.  

 

According to Giordani et al. (2009), several indicators are available for assessing trophic status 

and quality aquatic ecosystems and their evolution under different anthropogenic pressures and 

inherent threats. Xu et al. (1999) argued that more environmental managers consider the 

protection of ecosystem health as a new goal of environmental management. Aquatic 

macroinvertebrates are some of the most important organism groups selected to evaluate the 

integrity of biological communities the ecological status assessment process (Alvarez-Cabria, 

2010).  

However, there are various models that have been used to estimate the rate of pollution in water 

bodies, the rate of aquatic environmental deterioration and the resident time of pollutants in 

rivers and streams. Many of these models have helped in the management of rivers around the 

world even though some models do not offer tangible solutions to the real-world situations. 

The most common water quality parameters according to Kney and Brandes (2007) include 

dissolved oxygen, temperature, pH, turbidity, temperature, nutrients, specific conductivity, 

alkalinity, hardness and bacteria. Davies and Day (1998) have identified the same parameters, 

but added that velocity and discharge of the water are also important.  Seasonal variations in 

river flow and changes in habitat structure control the turbulence and mixing of rivers which 

control the concentration of pollutants in a river. Common physical aquatic factors that control 

the response of a river to pollutant input include the size, shape, depth, temperature conditions 

(degree of stratification), and the hydrological regime.  

 

1.2 Statement of the problem 

The Nzhelele River supports a variety of aquatic life forms ranging from unicellular to 

multicellular organisms. The biodiversity of these organisms has largely been threatened by 

the modification and dramatic changes in their habitats, through the utilization of rivers, 

indirect and direct deposition of toxic substances, and human use of the adjacent riparian and 

aquatic ecosystems. Subsistence and commercial agricultural activities seem to be the most 

common threats to the survival of most aquatic species along the Nzhelele River. The existence 

of subsistence and commercial farming, as well as settlements along the river have accelerated 

the rate of physical habitat deterioration, river eutrophication and altered aquatic species 
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composition, biological productivity and the biological cycling of nutrient elements in many 

parts of the Nzhelele River. The problem is further worsened by other human activities such as 

water and sand harvesting for domestic purposes and inconsistent local management strategies.  

 

1.3 Justification of the research 

According to Narangarvuu et al. (2014), the overall quality of aquatic ecosystems is affected 

by land uses through the inadequate and improper use which lead to changes in channel 

structure, water quality and habitat and these changes pose threats to aquatic biological 

diversity. Understanding and prediction of the rate of species deterioration due to water quality 

and physical habitat changes is crucial for the management of water bodies and the preservation 

of aquatic biota. Previous studies put much emphasis on the management of water quality to 

protect human health, but recent emerging focus has been on management of water quality for 

aquatic ecosystems (Gyedu-Ababio and van Wyk, 2004). A study of the impact of water quality 

and physical habitat changes on aquatic biodiversity is important for determining the actual 

causes of aquatic species deterioration in different segments of a river characterised by different 

physical properties such as land-uses, gradient, discharge, turbulence and habitat 

characteristics (vegetated, rocky, sandy or muddy). This study examined how taxa composition 

changes with changes in the level of pollution and the magnitude of physical habitat 

modification or destruction. The study of river water quality and habitat conditions also helps 

in understanding the actual factors that affect aquatic species composition. This study therefore 

led to the development of the river water quality management model in order to help conserve 

the already threatened riverine ecosystems. It was therefore crucial to investigate the status of 

the Nzhelele River health by measuring and estimating water quality, macroinvertebrate 

diversity and habitat condition. This will generally improve developmental projects planning, 

river management planning and general environmental management.   

 

1.4 Aim and objectives 

1.4.1 Aim 

The aim of the study was to assess the river health condition by using water quality, aquatic 

macroinvertebrate composition and aquatic habitat conditions. 
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1.4.2 Objectives 

i. To assess water quality conditions in order to determine the magnitude of pollution 

impact. 

ii. To correlate aquatic macroinvertebrate taxa diversity and water quality parameters. 

iii. To measure the size of degraded area with respect to macroinvertebrate richness. 

iv. To develop a model for managing river health conditions for the Nzhelele River that 

can be applied to other rivers in the region. 

1.4.3 Research questions 

i. How can the current water quality condition help in determining the magnitude of 

pollution impact? 

ii. How can correlation of species diversity and water quality show the river health 

condition of the Nzhelele River? 

iii. How does species diversity change with the scale of degraded aquatic area? 

iv. Which model will best be applicable to the Nzhelele River in order to conserve aquatic 

biota? 

 

1.6 Description of the study area 

The Nzhelele River forms the main watercourse in the Limpopo Province of South Africa 

(Figure 1.1). The the catchment area of the Nzhelele River covers 2,436 square kilometers 

(DWAF, 2004).  It runs through the Nzhelele Valley that is situated between Soutpansberg 

Mountains. The Nzhelele Valley lies between the Soutpansberg mountain ranges, roughly 

along latitudes 22º 20′ S and 23º 05′ S and longitudes 29º 45′ E and 30º 25′ E at an elevation of 

approximately 903 m above mean sea level. The valley is approximately 60 km East of Louis 

Trichardt and approximately 30 km west of Sibasa (Mathada, 2010). The Nzhelele River drains 

the north-eastern part of the Limpopo Water Management Area (WMA) (Figure 1.1) and flows 

into the Limpopo River (DWAF, 2003).  
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Figure 1.1 The Nzhelele River System and surrounding villages 

 

1.6.1 Climate  

The climate of the Nzhelele Valley is semi-arid and becomes arid eastward to the Kruger 

National Park (Mudau, 2002). Climate also plays an important role in determining the amount 

of rainfall necessary to trigger stream flow during wet and dry seasons. The amount of rainfall 

also controls the rate of surface erosion. Due to the east-west orientation of the Soutpansberg, 

the study area experiences orographic rainfall (Kabanda, 2003). 

Temperatures vary dramatically according to topography and seasonal conditions. The summer 

months are warm, with temperatures ranging from 16-40°C. Winter temperatures are mild, 

ranging from 12-22°C. Minimum winter temperatures seldom drop below freezing point 

(Kabanda, 2003).  

According to Maluleke (2003), rainfall is seasonal and is higher during the rainy season starting 

from October to March and its distribution is highly influenced by topography. The dry seasons 

are experienced between April and September (Kabanda, 2004). The peak rainfall months are 
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in January and February. Average annual rainfall ranges from less than 300mm on the low - 

lying plains to more than 1800mm in the Soutpansberg mountainous areas. Rainfall is 

important in determining the mean surface flows of rivers, hence the mixing of pollutants in 

water.   

 

1.6.2 Vegetation 

The study area is characterised by the Central Bushveld and Mopane Bushveld vegetation units 

of the Savanna Biome (DEDET, 2009). The subtropical moist thicket, open savanna sandveld, 

mist belt bush and arid mountain bushveld form the main vegetation variations of the study 

area (Mucina and Rutherford, 2006). 

 

1.6.3 Soils and geology 

The area comprises red or brown shale, tuff, basalt, sandstone and quartzite, conglomerate and 

siltstone of the Soutpansberg Group of the Nzhelele Formations. Rocky areas with 

miscellaneous soils are a characteristic of the area with dystrophic to mesotrophic and sandy 

to sandy loamy soils. Common soil forms also include the Glenrosa and Mispah. The rate of 

erosion ranges from low to moderate (Mucina and Rutherford, 2006).  

 

1.6.4 Hydrology and drainage 

The Nzhelele dam and the Nzhelele reservoir form the major hydrological forms of the study 

area. These two water bodies are located in the eastern part of the Nzhelele Nature Reserve. 

The capacity of the Nzhelele dam is 51.2 million m3 and its operation and management are the 

responsibility of the Department of Water Affairs. Its main water users are farmers and their 

utilization of the dam affects its water quality downstream of the dam (Cook, 2013).  

1.7 Research design 

Figure 1.2 shows the research design which was followed when collecting data on water 

quality, species diversity and physical habitat conditions. The design of the research approach 

can be summarised as follows:  
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Figure 1.2 Research framework for collection of primary data 

 

Field observation 

Observation (identification of stream segments, land use and land cover, physical 

habitat condition, morphological characteristics of the river) 

Literature review (concepts, themes, research methodologies) 

Development of research aim, objectives and hypothesis 

 

Data collection 

Water quality parameters 

Physical: pH, temperature, TDS.  

Chemical: Biochemical Oxygen Demand, 

Total nitrogen, Total phosphorus.  

Aquatic biota sampling 

Aquatic macroinvertebrates richness 

measurements 

(Collected at specified intervals along the 

sampled river segments) 

Data analysis and interpretation (discussion) 

Analysis of water quality parameters, macroinvertebrates diversity, habitat condition as 

multivariate data. Presentation of data using one way ANOVA.    

Development of river health monitoring model 

Compare results (water quality parameters) with aquatic biota data to establish the relationship 

between their concentration and species richness 

Physical habitat condition 

Degree of habitat degradation, discharge, velocity 

(Assessed at specified intervals along the selected river segments) 
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From Figure 1.2 the first step is observations, followed by the review of literature and the types 

of data and their collection. The approach is quantitative as most of the raw data were collected 

from the field and analysed. 

1.8 Chapter breakdown 

Chapter one: Comprises of the introduction and background to the problem, statement 

problem, justification, description of the study area aim and objectives, as well as research 

hypotheses. 

Chapter two: Review of literature from past and current studies, research methodologies and 

management strategies.  

Chapter three: Outlines research methodology. This chapter covers data collection methods 

on water quality parameters, aquatic macroinvertebrates diversity, and physical habitat 

characteristics, as well as data analytical methods.  

Chapter four: Presentation and discussion of the findings.  

Chapter five: Summary, conclusions, recommendations, water quality model development.   
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review of literature on the impacts of altered aquatic habitat and water 

quality on macro-invertebrate communities. Different methods that have been used to study 

macro-invertebrate assemblages in aquatic environments have are discussed in this chapter. 

Different arguments have been put forward regarding the causes of reduction in macro-

invertebrate composition and in this chapter these causes and their impact on macro-

invertebrate composition or assemblages have been discussed. 

2.2 Indicators of river health  

According to Pinto and Maheshwari (2014) the majority of river systems of developed and 

developing countries are faced with the problem of becoming irreversibly degraded. They 

further argued that the difficulty in developing comprehensive methodologies for river health 

assessment that could be applied to the world river system is created by enormous geographical 

differences, catchment characteristics and habitat-specific species attributed to river systems. 

Rowe (2014) observed that the response of macroinvertebrates to cumulative anthropogenic 

effects such as pollution, hydrological changes and changes in riparian vegetation has made 

macro-invertebrates suitable bioindicators of river health. Stark et al. (2001) also indicated that 

macroinvertebrate bioassessments are favoured because they are found in almost all freshwater 

environments and are relatively easy to collect and identify. Linares et al. (2013) further argued 

that existing the conditions of the environment such as hydraulic stress, temperature and the 

chemistry of water have been known to influence the abundance of aquatic invertebrates.  

Huang et al. (2010) have argued that the health of stream ecosystems on many occasions 

indicates the aquatic biodiversity and also shows how streams are affected by water pollution 

due to alterations in land use practices of the terrestrial ecosystem which are affected by the 

natural geographic characteristics of the watershed. They further argued that the overall 

ecological integrity is reflected by resident biological communities which integrate the effects 

of a variety of stressors and provide a broad measure for their combined impacts. Therefore, 

the biotic approach of using aquatic assemblages of organisms such as phytoplankton, 

zooplankton, periphytic algae, macrozoobenthos, fish and bacterioplankton has been a 

common practice to monitor water quality for directly assessing the overall health of marine, 

coastal and estuaries, stream or lake ecosystems in relation to water pollution (Huang et al., 
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2010). This means that aquatic species diversity depends on several factors such as water 

quality and physical habitat conditions which are a good measure of stream health. Miserendino 

et al. (2012) noted that fish and macroinvertebrate communities are affected by the extensive 

destruction of aquatic and riparian habitats.  

Testi et al. (2012) note that the environmental quality of river ecosystems can be indirectly 

measured by river health indicators focusing on a variety of habitat components. Testi et al. 

(2009) observed that plants and animals are used as biological elements in many aquatic 

ecosystems to assess environmental quality based on their integration with chemical, physical, 

geomorphological and anthropogenic factors. Meng et al. (2009) argue that the common 

biological indicators of stream pollution include fish, plankton and benthic macroinvertebrates. 

Since a river is a complex ecosystem, the use of a single factor such as biological index for 

assessing river health would be unable to show a river regime (An et al. 2002). Roux (2000) 

had earlier made a similar observation that the advantages of integrated assessment methods 

based on multi-index are that the character of a river ecosystem can be generally reflected under 

the disturbance from human activities and it is helpful to reveal the inner relationships among 

different indices. Therefore, finding a proper multi-metric system for assessing river health 

based on the characteristics of a river basin is a necessity since different ecosystem structures 

and functions result from changes in land-use.  

Yaping and Zongren (2012) stated that assessment of water quality involves the use of chemical 

energy, biological diversity, and others involve nutrient parameters of total nitrogen (TN) and 

total phosphorus (TP), temperatures, pH, biological oxygen demand (BOD), chemical oxygen 

demand (COD) and coliform. Astaraie-Imani et al. (2012) are of the view that the future of 

water quality of urban catchments is affected by climate change and urbanisation. Water quality 

deterioration is still common due to regular discharges of non-point sources (NPS) pollution 

into the water bodies (Lai et al. 2011). Irrigation return flows often carry NPS into receiving 

aquatic bodies. However, deterioration of water quality, according to Ouyang et al. (2010), 

results from NPD pollution of suspended solids (SS), nutrients, pesticides, fertilisers and a 

variety of sources of inorganic and organic matters which lead to the loading of water bodies.  

Nikolaidis et al. (2006) also noted that knowledge of transportation of pollutants into aquatic 

bodies is key to the management of NPS pollutant loads into water bodies. Wu and Chen (2013) 

assert that the aquatic ecosystem and water quality security are threatened by surface water 

impairment as a result of point source (PS) and NPS pollution. Municipal sewage discharges 

and industrial wastewater loads are common Point Source pollution problems. Soko and 
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Gyedu-Ababio (2015) have emphasised that substantial decrease in the quality of aquatic 

ecosystem surface water is a consequence of anthropogenic activities. These anthropogenic 

activities result from industry, urbanisation, agriculture, mining, afforestation, accidental 

freshwater pollution and the generation of power. Johnson and Ringler (2014) have pointed out 

that environmental factors such as dissolved oxygen, temperature and vegetation protection 

affect aquatic biota in addition to point source channel pollution.  

The increasing impact of human activities on the fluvial system has led to the development of 

monitoring programs and bioassessment techniques for the detection and accounting for 

various effects in freshwater ecosystems (Alvarez-Cabria, et al., 2010). According to Erba et 

al. (2015), freshwater ecosystems have been subjected to a variety of human stressors including 

hydrogeomorphological alterations, accumulation of organic compounds and other 

contaminants. Alvarez-Cabria et al. (2010) have provided reasons for the use of 

macroinvertebrates as a biomonitoring tool thus: 

 They are good indicators of numerous anthropogenic pressures such as water pollution 

and hydrological and geomorphological changes; 

 They are widely distributed, and  

 They provide cost-efficient results.  

Bonada et al. (2006) have similarly argued that macroinvertebrates can be used across aquatic 

ecosystems owing to their large-scale capability. Gray and Delaney (2008) believed that 

riverine studies adopt the application of biological indices and diversity to measure the impact 

of pollutants through the use of macroinvertebrate communities which act as indicators of 

ecosystem health. However, Sidagyte et al. (2013) stated that macroinvertebrate metrics that 

have been developed to detect organic pollution which leads to depletion of oxygen in lotic 

systems may not be applicable to stagnant (lentic) waters. Leunda et al. (2009) have however, 

identified four key reasons for using benthic macroinvertebrate communities and biological 

indices for the assessment of water quality, namely:  

 Sampling macroinvertebrates (qualitatively or semi-quantitatively) is relatively easy.  

 A range of identification keys is available.   

 The tolerance to pollution of many macroinvertebrate taxa is well-documented allowing 

biological indices to be developed, and  

 The types of sampled macroinvertebrate communities integrate the state of the 

environment over preceding months.  
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Walters et al. (2009) further stated that indicators of stream health (biotic integrity) and stream 

stressors (sedimentation and water quality) have also become important tools for determining 

the mechanisms of impacts and for assessing stream condition. They further argued that 

responses of benthic macroinvertebrate assemblages to aquatic pollution are manifested by 

reduction in richness and diversity and increased abundance of organisms that are tolerant to 

urbanised streams. However, Simaika and Samways (2011) argued that a good biological 

indicator reflects the state of the environment, which also represents the impact of 

environmental change at various scales and is a beneficial substitute or umbrella of other taxa. 

They further stated that bioindicators can be used to measure three indicator categories, namely, 

biological diversity, environmental and ecological characteristics. For example, several aquatic 

plant bioassessment methods were developed through the use miscellaneous aspects of plant 

and vegetation attributes, through the consideration of the richness and abundance of species 

assemblages, vegetation structure species attributes and functional groups and the application 

of macrophytes species as trophic status indicators (Aguiar et al., 2011).  

 

According to Varnosfaderany et al. (2010), the use of macroinvertebrates as bioindicators for 

assessing water quality has more advantages than those based on aquatic and riparian 

vegetation, diatoms, and fishes. This is because freshwater macroinvertebrates sensitivity to 

organic pollution differs and their occurrence and absence in aquatic environments helps to 

make inferences about pollution loads in water. Nguyen et al. (2014) indicated that the use of 

macroinvertebrates to assess water quality has been in practice for many years. According to 

Gabriels et al. (2010), evaluation based on the occurrence of species permits the detection of 

pollution in water. Gergel et al. (2002) have noted that since the diverse nature of biological, 

chemical, geophysical and hydrological components needs to be addressed during water quality 

assessment it becomes a challenge to detect human impacts on riverine ecosystems.  Higher 

levels of nutrients in a stream are expected to accelerate primary productivity (Pearson et al., 

1998). According to Pearson et al.  (1998), this effect on the fauna frequently seems to be on 

the increase albeit with variable effects on diversity and composition.  

Bird et al. (2014) stated that in South Africa, the South African Scoring System Version 5 

(SASS 5) is a bioassessment procedure used to assess water quality in rivers. However, the 

SASS 5 is not applicable to lentic environments (Bird et al., 2014). In South Africa, pollution 

sensitivity or tolerance levels for aquatic macroinvertebrate taxa ranges from 1 to 15, where 1 
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indicates tolerance to organic pollution and 15 intolerance to pollution (Gordon et al., 2015). 

The SASS metrics comprise the SASS score, which is the total of sensitivity ratings of those 

taxa sampled at site, the number of taxa (NOT) and lastly, the average score per taxon (ASPT) 

which is the SASS score divided by the NOT (Dickens and Graham, 2002; Fourie et al., 2014). 

2.3 Causes of water quality degradation  

2.3.1 Livestock practices 

According to Miller et al. (2011), riparian zone soils, aquatic life, riparian wildlife, water 

quality, stream channel morphology, interim and bank vegetation are negatively affected by 

access of livestock to riparian zones. The deterioration in water quality due to livestock is 

caused by direct faecal release into water bodies, runoff of faecal matter from adjacent lands, 

increased streambank erosion as a result of cattle shearing and the resuspension of river 

sediments as a result of cattle trampling (Miller et al., 2011). This explains why Gyawali et al. 

(2013) argue that riparian buffers, particularly undisturbed vegetated riparian zones adjacent 

to rivers might have the ability to mitigate nutrients and sediment from surface and 

groundwater flow through deposition, absorption and denitrification. They further argued that 

riparian buffer zones are good filters of sediment, nutrients and pesticides which enter water 

bodies from agricultural and urban lands. However, Miller et al. (2010) have noted that stream 

bank fencing shields cattle from streams and riparian zones and this improves riparian health 

and water quality. Exclusion of livestock from riparian zones through fencing comes with a 

variety of benefits such as increase in growth and vigour of riparian vegetation, reduced bare 

ground exposure, shift plant communities and favour increase in willow shrubs or cotton-wood 

trees. Stream bank fencing, according to Ranganath et al. (2009), may also lead to changes in 

the physical characteristics of streams such as stream bank erosion while overhanging banks, 

river depth and channel particle size and riffle substrate may also increase. 

 

2.3.2 Stream modification 

Kwak and Freeman (2010) noted that the ultimate factor that affects the ecological integrity of 

aquatic ecosystems is human intervention. In a research undertaken by Miserendino et al. 

(2011) it was realised that extensive removal of the basin vegetation has altered flow 

characteristics, the amount of sediment introduced to stream systems, decreased infiltration and 

an increase surface runoff. They further argued that channelization and realignment of rivers 
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produce substrate modification and description of the riffle or pool sequence that determine the 

diversity of aquatic habitats for species such as fish and invertebrates. The current and historical 

modifications of surface and subsurface water systems and land uses impact on downstream 

receiving water systems and threaten ecology (D’Ambrosio et al., 2014). Miserendino et al. 

(2011) also argued that further modification of the landscape habitats through fragmentation of 

uninterrupted riparian corridors and natural forests leads to habitat loss and an increase in 

isolation, decreasing colonisation and reduction in biodiversity. According to Carlisle et al. 

(2014), the most prevalent form of streamflow alteration is depletion through damming. 

Lessard and Hayes (2003), have observed that aquatic macroinvertebrates are affected by 

habitat changes caused by dams and always show shifts in community composition below 

dams. Lessard and Hayes (2003) argued that impoundment through dams can change numerous 

physical and chemical factors such as dissolved oxygen, stream substrate and water 

temperature. 

Large dams alter the physical structure of rivers leading to changes in flow, water temperature 

and sediment regime which ultimately lead to degradation of freshwater ecosystems worldwide 

(Olden and Naiman, 2010). These changes in the physical template of dams lead to changes in 

riverine food webs, reduced biodiversity of algae, macroinvertebrates and fishes, and the 

extirpation of native species and facilitation of invasion by non-native species (Kelly et al., 

2013). Changes in abundance and distribution of macroinvertebrate assemblages below dams 

are linked to shifts in temperature and flow regimes (Kelly et al., 2013). Dewson et al. (2007b) 

have observed that sensitive ETP and other native macroinvertebrate taxa are obliterated from 

streams with depleted or reduced flows. Van Vliet et al. (2013) have similarly observed that 

changes in stream flow through channelization or damming affect temperature of water, 

especially during warm, dry periods characterised by low river flows.    

Almeida et al. (2013) argued that alteration of habitats is a major factor contributing to loss of 

biodiversity at the global scale. Postel and Carpenter (1997) have noted that many species are 

defined by specific temperature, water quality and other needs that determine their survival in 

any given river system. According to Wang et al. (2011), the construction of dikes, weirs and 

dams obstructs dispersal and migration routes of organisms and changes natural flow regimes, 

leading to the disturbance of refugees and trophic resources necessary for fauna, leading to the 

decrease in heterogeneity of the abiotic environment. They further argued that the regulation 

of flow may lead to loss of adaptive capacity to natural environmental fluctuations causing 

changes in function and structure of community, resulting from suboptimal and less 
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heterogeneous abiotic environments. Lind et al. (2006) noted that physical characteristics at 

the microhabitat scale are often used to show changes between benthic macroinvertebrate 

assemblages under flow regimes. According to Postel and Carpenter (1997), the creation of a 

stable habitat by aquatic ecosystems depends on the dynamism of connectivity between water 

and land, physical processes (water and sediment flows), and a number of biophysical 

conditions (water quality, temperature and food webs relationships). They further contended 

that the supply of habitat for fish and other aquatic organisms is greatly affected by the volume, 

timing and quality of water that flows in its natural channel.  

 

2.3.3 Land use and land cover changes 

An interesting observation by Zhou et al. (2012) is that the quality of rivers and water flows of 

aquatic ecosystems is influenced by anthropogenic activities such as land use and land cover 

changes. Taylor et al. (2013) argued that the natural flow regimes of rivers have been found to 

be affected by their socio-economic uses which affect the ecosystem services. The land-use 

and land cover changes of rivers, according to Taylor et al. (2013), have the ability to modify 

geomorphological features and intensify the pollution sources. They also argued that there is a 

strong correlation between land-use and land cover changes and water chemistry parameters, 

biodiversity of freshwater fish and macroinvertebrates and the concentration of metal sediment. 

The conversion of land from forestry to agriculture or riparian buffer rehabilitation can show 

cascades of effects that impact on the physical-chemistry of streams or biota at different spatial 

scales (Minaya et al., 2013). Agricultural activities such as forest harvesting cause a wide range 

of disturbances to adjacent streams, including changes in water quality, nutrient input, 

hydrology, habitat structure, food sources and channel morphology (Reid et al., 2010). 

According to Fahey et al. (2004), harvesting of overstorey riparian vegetation along stream 

banks leads to alteration of thermal regimes, increased autochthonous production and reduced 

allochtonous regime inputs. Impoundment, irrigation, diversion and groundwater extraction are 

associated with reduced stream flow in all regions of the world and these negatively impact on 

macroinvertebrate communities (Mackie et al., 2013). 

Burcher et al. (2007) have observed that discharge of solute and seston load are a result of land 

use and landscape physiography at catchment-scale, but sediment, stream hydraulics, light and 

organic inputs are often in response to reach-scale geomorphology, conditions of the riparian 

zone and roughly land use. Erba et al. (2015) argued that changes in physical features of 
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hydrological regimes of lotic environments through the clearing of riparian vegetation, opening 

of canopy, changing the timing, amount and inputs of water, organic matter and light are 

strongly linked to urbanisation. The removal of riparian canopy in agricultural and urban 

developments is a common mode of land-use which influences river ecosystem by altering 

hydrological regimes and creating resistant areas and increasing the input of sediments, nutrient 

loads and other pollutants (Narangarvuu et al., 2014).  McCord et al. (2007) asserted that the 

clearing of riparian zones along rivers has the ability to alter river ecosystems functioning and 

disruption of fluxes of organic matter and energy. This can affect river biota directly and 

indirectly. 

Wu and Liu (2012) have noted that the subsequent nutrient losses from agricultural fields into 

stream water and estuaries have led to eutrophication of many coastal and freshwater 

ecosystems worldwide. According to Meck et al. (2009), the excessive growth of bulrush in 

streams indicates high levels of phosphates which usually leads to stream eutrophication. This 

creates a choking aquatic ecosystem, reduction in light intensity and extreme fluctutations in 

oxygen, reduced habitat diversity and ultimately reduced invertebrate and and increased fish 

mortality in streams.  According to Kney and Brandes (2007), high electrical conductivity, 

results from the high concentration of dissolved ions which give water elevated electrical 

conductivity. Iron, manganese and inorganic salts lead to elevated electrical conductivity 

(Meck et al., 2009). 

 

2.3.4 Flow characteristics 

According to Eady (2011), stream flow is considered the primary driver of aquatic faunal 

distribution as it affects the biota in a variety of ways. Flow variability is one of the most 

important determinants of the ecological processes that control patterns of diversity and the 

disturbance of species in riverine ecosystems (Rocha et al., 2012). They further stated that the 

intermittence of flow allows for the coexistence of competing species and fragments the habitat 

temporally.  According to Choudhury et al. (2014), macrophytes and stream flows play crucial 

roles in determining macroinvertebrate assemblages. However, Verdonschot et al. (2012) have 

noted that the positive correlation between macroinvertebrate abundances and flow velocity 

and macrophytes cover. Walker et al. (2013) further stated that high macroinvertebrate 

abundances are associated with plants that are characterised by finely dissected leaves and 
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intricate branching. This means that stream flow velocity has the ability to indirectly influence 

the macroinvertebrate community by shaping the morphology of macroinvertebrates.   

According to Erba et al. (2006), local scale macroinvertebrate communities are influenced by 

factors such as bank morphology, Froude number and Reynolds number, velocity, habitat types 

such as organic debris and leaf litter, periphyton abundance, riparian vegetation type, wood 

depth, percent sand and percent silt, substrate size, organic compounds and the degree of bank 

modification. D’Ambrosio et al. (2014) argued that straightened trapezoidal channels lead to 

increased sedimentation and these channels often lose their habitat structure and complexity 

that supports diverse aquatic biota. Dewson et al. (2007a) also stated that river discharge 

controls the volume of an aquatic habitat, variability conditions and stream connectivity that 

affect the aquatic biota distribution, density and life history patterns. According to Rolls et al. 

(2012), a 30% decline in average annual streamflow leads approximately 5.7% decline in 

macroinvertebrate taxa. According to Dewson et al. (2007a), macroinvertebrate assemblages 

do not show significant changes in reaches characterised by reduced flows. Taxa composition 

is also known to drop during low flows and declining water quality (Sheldon and Fellows, 

2010), and the reduction in the available aquatic habitat. 

 

2.3.5 Benthic habitat characteristics 

According to Pan et al. (2015), in organic-rich silt bottom of eutrophicated rivers physico-

chemical variables of water and substrate, as well as pollution are key factors structuring 

macroinvertebrate assemblages. Pan et al. (2015) further stated that sandy substrate is the 

poorest substrate for macroinvertebrates. This means that the macroinvertebrate assemblages 

will be lower where the substrate is sand. Pan et al. (2015) have argued that by improving 

habitat quality there is provision for superior living conditions, supporting higher abundances 

of inhabitants or dwellers. Macroinvertebrate assemblages are also said to be influenced by 

water velocity, substrate size, bank morphology and others (Allan and Castillo, 2007). Rezende 

et al. (2014) have similarly argued that substrate composition, input of detritus, and canopy 

cover make up the three major variables that account for the diversity of macroinvertebrate 

communities in lotic environments. According to Molokwu et al. (2014), substrate material can 

be a very important determining factor because some macroinvertebrates obtain nutrients from 

the substrate itself, utilise it for physical support and feed on deposited sediments that cover 

the substrate. Verdonschot et al. (2012) have similarly argued that in freshwater ecosystems 
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habitat structure is the key determining factor for the occurrence and distribution of 

macroinvertebrates. They further argued that in lentic waters macrophytes provide habitat for 

macroinvertebrates. This might be true for extremely slow moving waters. According to Morse 

et al. (2007), since most aquatic macroinvertebrates inhabit benthic habitats for at least part of 

their life, relatively immobile and very sensitive, any disturbances in their environment may 

cause them to disappear or reduce diversity.  

Rubach et al. (2011) have noted that biological tracts of macroinvertebrates respond 

specifically to certain sources of anthropogenic stressors resulting from effluents, sewage, land 

uses, and the periodic exposure to agricultural pesticides. Anthropogenic activities such as 

deforestation, construction, irrigation, urbanisation, drainage of wetlands and pollution have 

direct impacts on aquatic habitats (Al-Shami et al., 2011).  Zhang et al. (2010) observed that 

hydrological conditions such as discharge and water disturbances always play roles in aquatic 

ecosystems. They argued that dramatic changes in environmental parameters such as oxygen 

conditions, light penetration, water flow, thermal structure and nutrient gradients are a result 

of high discharge of pollutants into receiving water bodies.  

Lamouroux et al. (2004) have noted the correlation between macroinvertebrate traits (body 

form, feeding habitats, maximum size, mode of attachment to substrate, reproduction, lifespan 

and strategies of dissemination) and microhabitat variables (substrate, flow or trophic 

condition). This means that the number of macroinvertebrate assemblages of a river is 

determined by the physical integrity. Biesel et al. (2000) noted that there is a correlation 

between generalist species and unstable sites, but specialist species tend to favour more stable 

sites. Reid et al. (2010) noted that heterogeneous riverbeds reflect a higher variety of species 

than homogeneous beds, which are home to only one or two species. Species richness tends to 

be higher in patchy and heterogeneous environments because these habitats are characterised 

by diversity in substrate sizes and a greater number of niches. Sullivan et al. (2004) noted that 

there was a correlation between the percentage of macroinvertebrate community comprising 

the sensitive Ephemeroptera, Plecoptera and Trichoptera taxa and more stable habitats that 

were characterised by better geomorphic conditions and better quality habitats. However, some 

studies showed little correlation between heterogeneity of the physical environment and biotic 

assemblages (Sullivan et al. (2004). This means that macroinvertebrate assemblages respond 

to environmental conditions and they therefore integrate chemical, physical and biological 

aspects of ecosystems (Ligeiro et al., 2013). Therefore, resident freshwater communities are 

determined by the physical structure and architectural complexity of their habitats (Walker et 
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al., 2013). This view is purported by Warfe and Barmuta (2004) who argued that the diversity 

and abundance of macroinvertebrates increases with an increase in the density of vegetation 

biomass.   

Pan et al. (2015) argued that natural habitat conditions (substrate size, flow velocity, and bank 

morphology) regulate macroinvertebrate assemblages. This condition occurs where rivers are 

minimally impacted by human interference (Brooks et al., 2005). Problems associated with 

rivers affected by human interference such as flow regime changes as a result of dam 

construction and the impact on macroinvertebrates have been well documented (Ajuzie, 2012). 

According to Hilderbrand et al. (2005), the diversity and dynamics of the structure of aquatic 

habitats is the basis for biodiversity of river ecosystems. Cullum et al. (2008) have indicated 

that a system characterised by poor physical structure has a higher probability of creating a 

highly disturbed ecosystem. According to Reid et al. (2010), physical heterogeneity of a river 

results from geomorphic processes such as erosion, deposition, sediment sorting, hydraulic 

variability along with vegetation interaction. Heterogeneity is defined as variability in a process 

or pattern over space and time.  Functional habitats are therefore structural components of the 

aquatic substrate and vegetation objectively identified as distinct by the macroinvertebrate 

assemblages which they embrace (Reid et al., 2010).  

 

According to Pearson et al. (1998), changes in the dynamics of sediments can be one of the 

most detrimental impacts on stream ecosystems because of their effects on habitat, on 

ecological processes and on animals’ survival. High sediments are likely to affect aquatic 

communities in many ways, like blanketing the substrate, reducing light penetration, thus 

limiting primary production, reducing oxygen concentrations and reducing the number of 

macroinvertebrates (Pearson et al., 1998). Rowe (2014) has shown that fast moving river water 

improves aeration and increases concentration of dissolved oxygen. 

Kwak and Freeman (2010) have summarised the role of biological and physical factors which 

determine the integrity of aquatic ecosystems and how these variables are affected by human 

activities (Figure 2.1).  
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Figure 2.1 Biological and physical factors that affect aquatic ecological integrity (Kwak 

and Freeman, 2010) 

 

2.4.1 pH 

Rowe (2014) noted that the analysis of macroinvertebrates to assess stream health is often 

complemented by measurements of stream temperature, pH, turbidity, river velocity and stream 

flow. For example, there is a strong correlation between water temperature and water quality 

because the temperature of water always influences the amount of dissolved oxygen in water, 

photosynthetic rates and the aquatic organisms metabolic rate (USEPA, 2003).  

The pH of freshwater ecosystems affects the physiological functions of both aquatic flora and 

fauna (USEPA, 2003). According to latter, a pH range of 6.4-8.0 tends to favour most aquatic 
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organisms. According to the DWAF (1996), most surface waters have a pH range of 4 and 11. 

DWAF (1996) further stated that most South African freshwater systems have a pH range of 

between 6 and 8 because they are well buffered and more or less neutral. According to Primbas 

(2005), each macroinvertebrate possesses its own pollution tolerance and pollution in water is 

often measured by pH, nitrate and phosphate concentrations. Macroinvertebrates that have low 

pollution tolerance include mayflies, water pennies and stoneflies. Moderately pollution 

tolerant macroinvertebrates include dragonflies, crane flies and damselflies. High pollution 

tolerant macroinvertebrates include black flies, aquatic worms and midges (Primbas, 2005). 

According to Vogel (2005), a pH value of less than 4 in river water signifies the absence of 

Plecoptera species. Heteropterans are associated with a positive relationship of pH tolerance 

(Vogel, 2005). 

The pattern of the diversity of macroinvertebrate family and of the abundance of 

Ephemeroptera, Plecoptera and Trichoptera (EPT) families is mostly structured by geographic 

characteristics and hydrology (Rolls et al., 2012). According to Tripole et al. (2008), acid 

formation in water due to low pH leads to various adverse effects on the benthic 

macroinvertebrate community. The lower pH values of less than 5.5 in aquatic environments 

leads to the exclusion of some macroinvertebrates (Tripole et al., 2008). However, Ernst et al. 

(2008) have stated that acidified reaches have fewer EPT taxa and fewer EPT individuals. 

Therefore, midge larvae which are tolerant to acidified conditions become dominant organisms. 

Plecoptera are less dominant in acidified water. The quality and quantity of biofilms decrease 

under acidic conditions and this will also limit the diversity or abundance of macroinvertebrate 

scrapers that feed on biofilms (Ernst et al., 2008). According to Gaskill (2014), in order to 

maintain macroinvertebrate richness, it is important to improve the productivity and habitat 

structure of aquatic ecosystems by controlling pH not to drop significantly to create acidic 

conditions. Gaskill (2014) argued that as sensitive taxa (Trichoptera and Ephemeroptera) 

decline more pollution tolerant taxa increase in abundance to replace them. This has a potential 

to disrupt the upper levels of the food chain.  
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2.4 Water quality parameters 

2.4.2 Turbidity 

Dunlop et al. (2005) defined turbidity as “a measure of water clarity or cloudiness and it is 

defined further as the optical property of a liquid that causes light to be scattered and absorbed 

rather than transmitted in straight lines”. Turbidity measures environmental health and 

indicates the occurrence of dissolved or suspended material, which also include organic matter, 

clay, silt, microscopic organisms, organic acids and dyes (USEPA, 2014). High turbidity is a 

result soil erosion, discharge of wastewater, urban runoff, or excessive growth of algae 

(USEPA, 2014). Stream velocity and the volume of flow can be affected by weather conditions, 

seasonality, water abstraction for irrigation or industrial use and the presence of dams (Walk 

et al., 1997). Stream velocity and turbidity are known to shape the ecosystem of streams (Walk 

et al., 1997). Velocity and flow rate impact on sedimentation in a river because fast-flowing 

rivers or streams carry suspended sediments for longer distances while slow-moving rivers are 

characterised by rapid settlement of sediments on the river bed or bottom (Rowe, 2014).  

 

According to Dunlop et al. (2005), total dissolved solids (TDS) and total suspended solids 

(TSS) contribute to the measure of turbidity. Lower biomass and productivity downstream of 

the dams are associated with higher turbidity which leads to degraded food sources in aquatic 

environments. Filter feeders such as freshwater bivalves are affected by higher turbidity. The 

composition of benthic zone species is affected by increased turbidity and sediment deposition 

(Dunlop et al., 2005).  

Schwartz et al. (2008) have argued that the impact of turbidity on aquatic life is controlled by 

duration, frequency and turbidity level. According to Borok (2014), turbidity is correlated 

through stream discharge, and also corresponds to storm events that carry and transport 

abundant sediments. Borok (2014) further noted that turbidity turns to be lower in dams 

because of direct input of clear water from tributaries and settling of solids due to reduced 

water mobility. In an interesting observation Kefford et al. (2010) noted that suspended 

sediments have less biological effect compared to the effects of deposited sediments. Borok 

(2014) further stated that turbidity is increased by anthropogenic inputs, erosion, inputs of 

turbid water and resuspension. Scherr et al. (2011) indicated that macroinvertebrate health is 

affected when turbidity values range from 4 to 10 NTU. Hubler (2002) noted a negative 

correlation between turbidity and macroinvertebrate density and diversity. Scherr et al. (2011) 
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have also noted a negative correlation between high turbidity values and decreasing number of 

sediment-sensitive macroinvertebrates. Borok (2014) argued that reduced primary productivity 

such as benthic algal production and the presence and growth of various macrophytes are a 

result of increased turbidity in water bodies such as streams, estuaries and lakes. Reduction in 

food availability for primary consumers due to elevated turbidity in streams limits primary 

productivity while turbidity and suspended sediments promote the drifting of 

macroinvertebrates due to clogging of benthic habitat (Borok, 2014).  

 

2.4.3 Dissolved oxygen 

According to Alexander et al. (2007), high dissolved oxygen levels are associated with the 

occurrence of caddisflies, riffle beetles, mayflies and stoneflies. These organisms prefer riffles 

which are characterised by cold temperatures and swift moving currents which increase 

dissolved oxygen in lotic waters (Molles, 2005). According to Molles (2005), warmer water 

temperature is associated with less dissolved oxygen. Leeches and aquatic worms are 

macroinvertebrates that are very tolerant to pollution, hence they do not require high dissolved 

oxygen levels (Alexander et al., 2007). According to Connolly et al., (2004), the availability 

of oxygen influences the composition of freshwater communities and it critically affects the 

distribution of numerous organisms. The variation in the levels of oxygen in water differ 

spatially and temporally because of photosynthesis by plants, respiration by organisms and 

atmospheric loses and gains, change in pressure and temperature and groundwater inflow 

(Dodds, 2002). Oxygen level below 2 mg/L has the ability to decrease the fitness and survival 

chances of numerous aquatic invertebrates. For example, caddisfly larvae are characterised by 

restricted locomotion and are therefore vulnerable to decreased oxygen levels in water (Dodds, 

2002). 

 

According to Nkwoji (2014) very low oxygen concentration occurs at the muddy bottom which 

serves as the habitat of the benthic organisms. Nkwoji (2014) also noted that increased 

biological productivity due to decomposition and biodegradation result in hypoxia. The senile 

nature of benthic macroinvertebrates makes them vulnerable to impacts of low dissolved 

oxygen (Nkwoji (2014). Dissolved oxygen concentration in water bodies characterised by 

dense macrophytes beds tends to be high during the day when photosynthesis is active and 

becomes lower at night when respiration is a dominant process (Teixeira et al., 2014). 



25 
 

Fluctuation in oxygen levels depends on plant architecture and stand size and density of plants, 

because they affect oxygen movement in water through water circulation and atmospheric 

exchange (Bunch et al., 2010). According to Fischer et al. (2012), plant structure influences 

macroinvertebrate composition through food availability and refuge efficacy against predation. 

Numerous physical and chemical characteristics influence aquatic fauna and interact with 

dissolved oxygen (DO) dynamics by determining the composition of aquatic communities 

(Teixeira et al., 2014).  

 

2.4.4 Total Dissolved Solids (TSS) 

Prolonged exposure to high concentrations of TSS alters the community structure of 

macroinvertebrates. Gordon et al. (2015) noted that accelerated loss Ephemeroptera and 

Trichoptera is caused by high TSS concentrations in water. Suspended solids trap heat from 

the sun, which causes an increase in water temperature and subsequent decrease in the levels 

of dissolved oxygen (Frondorf, 2001). According to Frondorf (2001), cloudy appearance in 

water occurs when TSS levels are between 40-80 mg/L, but when TSS levels are over 150 

mg/L the water appears dirty (MIDEQ, 2000).  According to Xu et al. (2014), poor water 

quality rich in pollutants threatens many aquatic species by reducing biodiversity to only 

pollution tolerant species. Pollution leads to low levels of dissolved oxygen in water. Nadushan 

and Ramezani (2011) noted that extremely high percentages of Olichaeta, Arachnida, and 

Gastropoda are a result of organic pollution contamination. Xu et al. (2014) have also noted 

that five biological indices: taxa richness (S), density (D), total Biological Monitoring Water 

Quality (t-BMWQ) score, average BMWQ score (a-BMWQ), and the family biotic index (FBI) 

are used for biological assessment of water quality.  

 

2.4.5 Water temperature 

Water temperature is a major factor in the distribution, abundance and richness of aquatic 

organisms along the gradients in latitude and altitude (Li et al., 2012a). Variation in climatic 

variables influences the concentration of TDS, nutrient concentrations, stream channel 

morphology, habitat stability, as well as connectivity of water bodies, and these will ultimately 

affect the community composition (Li et al., 2012b). According to Rivers-Moore et al. (2008), 

water temperature is a major species pattern driver in aquatic ecosystems. Ngodhe et al. (2014) 

have noted that water temperature, discharge, DO, pH, nutrients and specific conductivity are 
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the main physico-chemical factors that affect aquatic environments. Water temperature and DO 

levels usually fluctuate seasonally and aid in the structuring of benthic communities, which 

vary from species to species (Shieh and Young, 2000). Increase in water temperature lowers 

the solubility of oxygen and vice versa. Rowe (2014) similarly argued that temperatures outside 

of the species’ optimal range may stress or kill individuals. However, Ngodhe et al. (2014) 

argue that physico-chemical parameters of macroinvertebrates, high water temperature, pH, 

DO, Biological Oxygen Demand (BOD) and total nitrogen (TN) directly influence the 

composition and low abundance of macroinvertebrates. Species diversity dominance and 

richness are negatively influenced by low TN, high water temperature, low DO and high BOD. 

The temperatures of inland waters in South Africa generally range from 5 - 30˚C (DWAF, 

2006). Flautt (2007) stated that water temperatures above 20°C and as high as 26°C can render 

some species extinct.   

 

2.4.6 Nitrites 

Kocour Kroupova et al. (2018) stated that the occurrence of nitrites in natural waters usually 

accompany nitrates and ammoniacal nitrogen forms, but is found in low concentrations. Nordin 

and Pommen (2009) stated that nitrite concentration for freshwater aquatic life is 0.02 mg. L 

and the maximum concentration is 0.060. mg.L. Corriveau (2010) noted that nitrite 

concentration in natural waters can reach levels that range from tenths up to 1 mg. L NO-
2. 

Elevated nitrite concentration is a characteristic of intensive commercial farming, aquarium 

fish farming or other aquatic organism farming (Buric et al., 2016). Kalogianni et al. (2017) 

have also noted that he substantial increase in nitrite concentration is associated with organic 

matter respiration.  

 

2.4.7 Nitrates 

Enrichment and eutrophication of nitrate in water bodies are cause for concern because high 

concentrations of nitrogen lead to periodic phytoplankton blooms and changes in the natural 

trophic balance. Eutrophication by nitrogen occurs when its concentration ranges from 2.5 to 

10 mg. L (DWAF, 1996). Water pollution by total nitrogen (TN) and total phosphorus (TP) 

affects the macroinvertebrate fauna the same way deforestation causes reduction in taxa 

richness by simplifying the insect community composition without changes in abundances 

(Couceiro et al., 2006).  
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2.4.8 Chlorine  

High levels of chlorine in water are indicated by the absence or a decrease in macroinvertebrate 

levels (Kohli, 2012). Chlorine is usually used as poisoning to harvest large numbers of adult 

Macrobrachium (freshwater prawn) for commercial purposes and the use of chlorine, 

insecticides and traditional toxins for fish harvesting have been reported in Africa (Greathouse 

et al., 2005). Chlorine is known to impair water quality because of its ability to react with 

organic matter in aquatic environments leading to the formation of toxic disinfection by-

products (State of California, 2006). Chlorine is known to be toxic to aquatic organisms and 

increases human health risk because its ability to produce hazardous disinfection by-products 

(USEPA, 2014). Sorokin et al. (2007) reported that 70% of chlorine in water will be present as 

HOCL at pH of 7 and a temperature of 25°C, but 80% will be present as OCL- at a pH of 8. 

The effect of chlorine has been reported by the USEPA (2008) to be a challenge because it 

causes sublethal damage when concentrations are very low, making it difficult to detect its 

presence through conventional methods.  Costa et al. (2017) also noted the toxic effects of 

residual chlorine on aquatic life (fish and macroinvertebrates).  According to Rowe (2014) the 

survival of aquatic plants and inhibition of aquatic physiological processes takes place when 

total residual chlorine reaches concentrations of 1,000 ug/L or less for periods of one hour or 

less. 

2.5 International research 

An integrated approach to assess river health of the Liao River was used by Meng et al. (2009) 

by studying water quality, aquatic life and physical habitat. Twenty-five sampling sites were 

used to assess health conditions of Liao River, with water quality index, biotic index and 

physical habitat quality index. Cluster analysis method was used for water quality indices and 

it showed that sites that were heavily polluted along Liao River were located at the estuary and 

mainstream. Attached algae and benthic invertebrates were surveyed. The result showed that 

the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) were 

degrading due to degrading chemical and physical water properties. Physiochemical 

parameters of BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, 

were analysed statistically using principal component analysis (PCA) and correlation analysis. 

The statistical results were combined with integrated assessing water quality index, combining 

faecal coliform count, attached algae diversity, B-IBI and physical habitat quality score. From 
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the findings of the study it was possible to develop a comprehensive integrated assessing 

system of river ecological health. Based on the systematic assessment, the assessed sites were 

categorized into 9 “healthy” and “sub-healthy” sites and 8 “sub-sick” and “sick” sites. Data 

analysis also revealed the correlation between water quality conditions and the impact on 

aquatic life. The results also revealed that water quality and physical habitat quality indices 

played crucial roles in river ecosystem health. Out of 17 studied sites 9 sites were categorized 

into healthy and sub-healthy levels. Eight sites with heavy organic and trophic pollution were 

at sub-sick and sick levels. 

 

Huang et al. (2010) studied key environmental factors that affect the ecosystem health of 

streams in Dianchi Lake Watershed (DLW) in China. Streams in a lake watershed were 

considered to be important landscape corridors linking the lake and terrestrial ecosystems. Field 

surveys were conducted during July and August of 2009 to collect data on periphytic algal and 

macrozoobenthic biodiversity, and the monthly monitoring of water temperature, pH, TSS, 

DO, TN, TP, NH3N, NO3N, CODMn, BOD, TOC, and the heavy metals Zn (II), Cd (II), Pb (II), 

Cu (II), and Cr (VI) was done from January to December 2009. Field surveys were carried out 

in 29 streams flowing into Dianchi Lake. Factor analysis and canonical correspondence 

analysis were used as multivariate statistical techniques to analyse the structure of the aquatic 

community in relation to aquatic environmental factors in order to provide controlling 

objectives for integrated watershed management and improvement of stream rehabilitation in 

the DLW. The results showed that the structure of the macrozoobenthic communities and 

periphytic were dominated by pollution-tolerant organisms such as bacillariophytes Navicula 

and the annelids Tubificidae respectively, while TN, NH3N and TP were found to be key 

aquatic environmental factors affecting the ecosystem health of streams in the DLW. 

 

Miserendino et al. (2011) assessed the effects of land use on water quality, in-stream habitat, 

riparian ecosystem and biodiversity in Pantagonian northwest streams. The hypothesis for their 

study was that greater intensity of land-use will have negative effects on water quality, stream 

habitat and biodiversity. To test their hypothesis, they assessed benthic macro-invertebrates, 

riparian and littoral invertebrates, fish and birds from the riparian corridor and environmental 

variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed 

native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 

macroinvertebrate organisms, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird 

species, and 15 aquatic plant species, were recorded from all study sites. Urban land-use was 
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associated with most significant changes in streams by impacting on physical features, 

conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and 

managed native forest sites showed an intermediate situation. The disturbed sites were 

characterised by highest values of fish and bird abundance and diversity.  The opportunistic 

behaviour by studied communities was highlighted by communities which took advantage of 

increased trophic resources of their environments. Non-managed native forest sites were 

characterised by higher integrity of ecological conditions and great biodiversity of benthic 

communities. Macroinvertebrate metrics that reflected good water quality were positively 

correlated with forest land cover and negatively correlated with urban and pasture land cover. 

Macroinvertebrates were found to be good indicators of land-use impact and water quality 

conditions as well as useful tools to detect early disturbances in streams. The greater ability of 

fish and birds to disperse and move quickly from disturbed environments always reflect 

changes at a higher scale. 

 

Li et al. (2012b) conducted another study on the relationship of land-use and land cover on 

water quality on the Liao River Basin in China. A total of 76 sampling sites were selected in 

the Liao River basin (21.9×104km2). During the period of 2009-2010, 42 water samples were 

collected in 2009 and 58 were collected in 2010. Physical-chemical variables were analysed to 

investigate their spatial-temporal variability, in particular the relationship with land use or 

cover. Their results indicated that physical and chemical properties showed obvious spatial 

heterogeneity in the Liao River basin. Taizi River and Hun River are located in the southeast 

of the basin. The water quality for two sub-basins: water quality in upstream is better than that 

in downstream. Water quality level in downstream was classified into IV-V. There were no 

obvious features in the East Liao River basin, water quality in downstream was classified into 

III level. West Liao River ran for many years, water quality was classified into IV. Big Liao 

River basin was located in the middle and east of the Liao River basin. Water quality was 

classified into V. Correlation and regression analysis indicated that BOD5, COD, sediment, 

hardness and nitrate–nitrogen, total dissolved particulates (TDP) were significantly related to 

land use for forest and agriculture. 

 

Testi et al. (2012) conducted a study on the characterisation of river habitat quality using plant 

and animal bio-indicators on the Tirino River in Italy. The aim of this study was to compare 

the five independently derived indices in order to stress their differences and similarities in the 

two river environmental compartments – aquatic and terrestrial. 14 sampling sites along the 
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Tirino River and two on the Pescara River (just off the confluence of the two rivers) were 

surveyed for the three biotic components of the ecosystem. Vegetation was surveyed by 

rectangular plots (20m wide) in two parallel belts: water and shore; aquatic macro-invertebrates 

were collected according to the extended biotic index standard method, and edaphic micro-

arthropods were extracted in soil sampling according to the index of soil biological quality 

(QBS-ar) standard method. There was a very good agreement among the indices and Nonmetric 

Multi-Dimensional Scaling (NMDS) carried out on species, distinguishing an upper course 

with good environmental quality and a lower part of the riverine system with lower 

environmental quality. This division corresponds to the CORINE Land Cover class of the sites. 

Mann–Whitney test showed that ordination of sites was differentiated more by terrestrial than 

aquatic indices. Agreement among indices and species ordination highlighted the fact that 

bioindicators were related to habitat quality as a result of the multiple ecosystem interactions 

among the biotic components of the ecosystem. 

 

Belmar et al. (2013) studied the effects of flow regime alteration on fluvial habitats and riparian 

quality in a semi-arid Mediterranean basin. The relationships between flow regime and fluvial 

and riparian habitats were studied at reference and hydrologically altered sites for each of the 

four types. Flow regime alteration was assessed using two procedures: (1) an indirect index, 

derived from variables associated with the main hydrologic pressures in the basin, and (2) 

reference and altered flow series analyses using the Indicators of Hydrologic Alteration (IHA) 

and the Indicators of Hydrologic Alteration in Rivers (IAHRIS). Habitats were characterized 

using the River Habitat Survey (RHS) and its derived Habitat Quality Assessment (HQA) 

score, whereas riparian condition was assessed using the Riparian Quality Index (RQI) and an 

inventory of riparian native or exotic species. Flow stability and magnitude were identified as 

the main hydrologic drivers of the stream habitats in the Segura Basin. With the indirect 

alteration index, main stems presented the highest degree of hydrologic alteration, which 

resulted in larger channel dimensions and less macrophytes and mesohabitats. However, 

according to the hydrologic analyses, the seasonal streams presented the greatest alteration, 

which was supported by the numerous changes in habitat features. These changes were 

associated with a larger proportion of uniform bank top vegetation as well as reduced riparian 

native plant richness and mesohabitat density. 
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Strauch et al. (2009) conducted a study on the impact of livestock management on water quality 

and stream bank structure in a semi-arid ecosystem of Zimbabwe. In their study, they examined 

riparian ecosystem structure and water quality to compare the environmental impact of this 

management to nearby communal lands during a drought. The results demonstrated that 

concentrating livestock on ephemeral stream standing pools resulted in reduced water quality 

and altered riparian ecosystem structure. These results were not significantly different from 

what was observed when wildlife utilized similar water resources without livestock influence. 

They concluded that when water is scarce, such as during extreme droughts, livestock usage of 

surface water resources must be weighed against community water needs.  

 

Miller et al., (2010) conducted a study on the influence of stream bank fencing with some cattle 

crossing on riparian health and water quality of the Lower Little Bow River in Southern 

Alberta, Canada. They conducted a four-year study (2004–2007) on a fenced 800-m reach of 

the river. Their hypothesis was that riparian health would be improved by streambank fencing, 

and that cattle exclusion would prevent water pollution within the fenced reach. Physical, 

chemical, and microbiological variables in the river were determined throughout the four years, 

and water quality variables at the upstream (control) and downstream (BMP-impact) sites 

during the post-BMP phase were evaluated using a paired t-test. The overall health of the 

riparian area, based on a visual assessment of vegetative, soils, and hydrologic features, was 

improved from a score of 65% (healthy but with problems) for pre-BMP phase in 2001 to 81% 

(healthy) for post-BMP phase in 2005. The majority of water quality variables were not 

significantly (P > 0.10) different at the downstream and upstream sites during stream bank 

fencing. The evidence from their study indicated that streambank fencing improved the riparian 

health, and that the BMP prevented the majority of water quality variables from increasing 

downstream. 

 

2 .6 Southern Africa 

2.6.1 South Africa 

In South Africa, the South African Scoring System (SASS) is currently used for assessment of 

river health looking at the resident aquatic biota as well as water quality. The SASS was 

developed by Chutter (1998) but was later modified by Dickens and Graham (2002) as Version 

5 and it is now generally used for Biological Monitoring Working Party (BMWP) (Bere and 
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Nyamupingidza, 2014; Gordon et al., 2015). In the SASS macroinvertebrates are assigned 

pollution tolerance level from 1 to 15, where 1 indicates highly tolerant to pollution and 15 

indicates non tolerance to pollution. The results are later expressed as index score and average 

score per recorded taxon (ASPT) (Fourie et al., 2014). The DWAF (2008) provided a summary 

of the relationship (Figure 2.2) between important biological indicators and how they describe 

the condition of the environment. From Figure 2.2 solid lines indicate a strong relationship 

between parameters while broken lines show a weak relationship. An interesting point is that 

there is a strong relationship between invertebrates, fish, habitat integrity and ecosystem 

function and integrity. All the indices that have been mentioned in Figure 2.2 are used to assess 

river health in South Africa. According to DWAF (2008) the minimum suit to be used for River 

Health Program includes macroinvertebrates, fish, riparian vegetation and habitat integrity. 

These variables were considered for the assessment of the Nzhelele River health status except 

the fish variable because the state of the river at that time did not support fish due to the low 

water quantities. 

 

Figure 2.2 Relationship between biological factors (DWAF, 2008) 

 

Rivers-Moore and Jewitt (2007) conducted another study on adaptive management and water 

temperature variability within a South African river system. Results showed that under broad 
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scenarios of a 10% reduction in mean daily flow rates, or a 1°C increase in mean daily air 

temperatures, system variability was likely to increase relative to reference conditions. 

 

Oberholster et al. (2010) studied the relationship between water quality and phytoplankton 

community within Lake Loskop during the late summer and autumn of 2008 to evaluate the 

impacts of acid mine drainage and high nutrient concentrations. The high nutrient 

concentrations (nitrogen: 17 mg.L and orthophosphate: 0.7 mg .L) during the mid-summer peak 

of rainy season were associated with the development of a bloom of the Microcystis species. 

Water quality data associated with the development of the Microcystis bloom suggested that 

the aquatic system of Lake Loskop had entered an alternate, hypertrophic regime. This change 

overshadowed the adverse effects of high concentrations of heavy metals, ion and low pH. 

High pH values were also recorded. The response of phytoplankton bioassays on integrated 

water samples from different sampling sites provided potential answers to the reasons for the 

absence of the algal group, Chlorophyceae in the phytoplankton community structure in the 

riverine zone of the lake.  

Slaughter (2011) modelled the relationship between flow and water quality in South African 

Rivers. His study area was the Buffalo and Bloukrans Rivers and the QUAL2K model was 

used to assess water quality of the two rivers. Flow and water quality were investigated using 

the Department of Water Affairs (DWA) historical monitoring data. All data sets were 

collected when there was very little flow in the Buffalo and Bloukrans Rivers. Water quality 

of the point sources identified varied dramatically for some parameters. Nitrate concentrations 

in the King Williams Town waste water treatment works (WWTW) and Zwelitsha WWTW 

varied dramatically over the three sampling dates and dissolved oxygen (DO) varied greatly at 

the Zwelitsha WWTW over three sampling sites. The QUAL2K model appeared to have 

estimated DO and nitrate concentrations fairly accurately, with the model closing matching the 

first confirmation data set. It was suggested that the QUAL2K model is unlikely to be used 

routinely in South Africa to manage water resources because of the complexity of the model 

and high data requirements.  
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CHAPTER THREE: RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter provides an overview of the methods that were used to collect data from the 

selected areas along the Nzhelele River. All data collection and analysis methods have been 

explained in this chapter. Sampling sites and sampling protocols have also been described 

thoroughly in this chapter. All instruments and units of measurements have also been described. 

The data that was collected included data on macroinvertebrates, water quality parameters and 

stream habitat integrity. The data was collected from six sampling sites named Dopeni, 

Fondwe, Maangani, Mphaila, Musekwa and Pfumbada. All these sampling sites were located 

upstream of the Nzhelele Dam. A brief description of these sampling sites as also been provided 

in this chapter.  

 

3.2 Research design  

The study adopted a mixed method-study approach because it was partly experimental, 

descriptive and correlational. This is because habitat evaluation was described based on 

observation over a period of 4 months (March to June, 2016). The relationships between 

macroinvertebrate communities, physico-chemical properties of water and habitat quality and 

habitat conditions as well as water quality parameters made the study correlational. The 

experimental approach involved the analysis of water samples while the identification of 

macroinvertebrates at family level was also descriptive.  

3.3 Data collection 

3.3.1 Field observation 

Before the actual data collection in the field was undertaken, a reconnaissance survey was 

conducted between December 2014 and February 2015. The purpose of the field observation 

was to identify areas where data could be collected and also to conduct a general assessment 

of the environmental conditions and settings of the study area. This was done in order to 

identify suitable sampling sites from where data would be collected. Sampling points were 

identified and their locations were saved into a Trimble Juno SB GPS. Six sampling sites were 



35 
 

identified based on their uniqueness and physical characteristics. The six sites were identified 

as Fondwe, Dopeni, Ha-Mphaila, Pfumbada, Maangani and Musekwa (Figure 3.1).  

 

Figure 3.1 Sampling sites along the Nzhelele River 

Fondwe lies at 22° 55’ 26” S and 30° 15’ 55” E. The sampling site has been named Fondwe 

because it lies very close to the village called Fondwe. It lies approximately 4.65 km upstream 

of the Dopeni sampling site. The sampling area is characterised by low flow, highly vegetated 

with stones making up the riverbed in some areas. The area is characterised by loose rocky bed 

characterised by riffles while in some areas the river is characterised by alcove conditions. It 

lies downstream of the Komatiland Plantation (pine trees) with some visible land-use activities 

such as subsistence farming in its vicinity. However, at certain points of the river community 

members use the river for laundry. Its flow runs from east to west. This sampling area lies 

downstream of the point where the river has its source. Its location downstream of the 

Komatiland Plantation (forestry) suggests that activities from the plantation and subsistence 

farming may lead to increased levels of nutrients and other organic material that might lead to 

cultural eutrophication. The average width of a river at Fondwe was 6.4 meters.  
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Dopeni lies at 22° 55’ 06” S and 30° 13’ 15” E. It lies at the foot of Dopeni and Mandala 

villages and the Nzhelele River  lows parallel to a number of subsistence farms belonging to 

the local community members. The sampling site lies approximately 4.65 km downstream of 

Fondwe sampling site and approximately 7.75 km upstream of Mphaila sampling site. The 

average width of the river at this sampling site was 8.6m. The Nzhelele River at this point flows 

parallel to the R523 road. Many cultural activities like sand mining, washing, brick making and 

baptism take place along this section of the river. The riverbed is largely sandy with noticeable 

stone bed along some sections of the river. Solid waste disposal was evident along some parts 

of the river. The banks are permanently covered with thick grass of Trianda themeda which 

acts as a buffer to surface erosion from the mainland. This section of the river flows in a 

westerly direction. Flow was generally lower at the time of research. The site was chosen 

because there were many cultural activities taking place and assessing the overall river health 

at this point was of prime importance.  

Mphaila sampling site lies at 22° 53’ 49” S and 30° 09’ 45” E. The sampling site lies just 

immediately to the north-east of Ha-Mphaila village. Current developments indicate that the 

area has been earmarked for cultural activities such as subsistence farming. Some sections 

adjacent to the river have been fenced while other areas have been cleared for future human 

activities. The river bed is characterised by loose rocks while the river banks are characterised 

by tall grass. Tall trees provide shade to large parts of the river and flow is moderately low. 

This section of the river also runs from east to west. The presence of modified banks next to 

the bridge, agricultural activities and irrigation pipes made the site to be a priority for assessing 

overall river health. The average width at this sampling site was 12m. 

Pfumbada lies at 22° 51’ 54” S and 30° 04’ 06” E. This section of the Nzhelele River lies to 

the northeast of the Pfumbada village and the river flows from east to west. This sampling site 

lies approximately 10.85 km downstream of Mphaila sampling area. There were no visible land 

use activities at the sampling site except for cattle grazing and washing by local community 

members. Some parts of the river banks lacked vegetation while others were covered by grass 

and small shrubs. It was characterised by small rocks that covered larger section of the riverbed 

at some points. At some points the banks had been steeply carved by water and were 

inaccessible to livestock and humans. Flow was extremely low along the river. At this point 

the river meanders to create changes in velocity and bank structure. The average width of the 

river at this sampling site was 7.9m.  
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Maangani lies immediately to the east of Maangani village at 22° 49’ 22” S and 30° 03’ 19” 

E. It lies approximately 5.43 km downstream of Pfumbada sampling site. Its average width was 

26.4m. This section of the river flows from south to north and the riverbed is a stepped solid 

rocky surface that stretches from one side of the bank to the other.  The banks are vegetated 

and are very steep. Vegetation along the banks includes trees, grass and shrubs. Flow is 

moderately low. Washing or laundry and agricultural activities seemed to be dominant in the 

area and pipes for drawing water from the river were also visible. This section of the river is 

rich in algae that hinders the visibility of some parts of the riverbed.  

Musekwa lies at 22° 47’ 14” S and 30° 04’ 38” E. It lies approximately 4.65 km downstream 

of Maangani sampling site. The average width of the river at this side was measured as 11.5m. 

The riverbed is composed of gravel and sand with numerous subsistence farming plots along 

the river. Water extraction pipes are visible in some parts of the river and livestock watering is 

intense. This sampling site lies approximately 200 m from the Musekwa village. The river 

banks are gentle and cover is not continuous. This section of the river lies approximately 500m 

from the Nzhelele Dam. Its flow is north-easterly and flow is also low at this section of the 

Nzhelele River.  

  

3.3.2 Primary data collection 

Data for different water parameters was collected monthly between February and December of 

2016. The length of the river between the sampling areas was 33.3 km. Data that were collected 

in situ along the Nzhelele River included water quality parameters such as pH, water 

temperature, electric conductivity (EC), TDS, stream velocity and dissolved oxygen. Water 

samples were also collected for analysis of nitrates, nitrites and chlorine. Field survey also 

included the collection of macroinvertebrates and habitat integrity evaluation. Data could not 

be collected and interpreted seasonally because there were very few macroinvertebrates that 

were collected each day of the month per sampling site because some seasons (winter and 

spring) were characterised by extremely low water and few patches of water due to 2015/2016 

drought.  

 

Data were collected monthly during the months of February and December of 2016 (early 

autumn to early-summer) because this was the period when rainfall was at its lowest and allows 
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macroinvertebrates to settle in a river. Data could not be collected during the rainy season from 

January to February because some of the macroinvertebrates that would have been sampled 

could have been those which were washed from upstream and not belonging to the area. This 

could have made the results not to be representative of the macroinvertebrate assemblages of 

sampled sites because samples would have included macroinvertebrates that have been brought 

into the sampled site by river runoff. According to the DNR (2000), fall or autumn sampling 

allows for easy detection of the extent of organic enrichment problems which are associated 

with low dissolved oxygen (DO). This is why the sampling was done between autumn and 

early-summer. Akaahan (2014) also noted that macroinvertebrate diversity is higher during dry 

season because of low wash-off effects. Therefore, it was considered appropriate to collect data 

when rainfall was lower or absent. Again, the sampling period was kept as short as possible 

because there was a gradual decrease in river water quantity and flow due to the effect of 2015/ 

2016 drought. Hill et al. (2016) have confirmed through their study that sampling in autumn 

had greater macroinvertebrate richness than in spring and summer. Therefore, it was absolutely 

necessary to keep the sampling period shorter because by November 2016 most sections along 

the river had begun to decrease in flow velocities due to 2015/2016 drought.  

 

3.3.2.1 Macroinvertebrate sampling 

A 40 cm D-frame kick net with mesh size of 500 microns was used to sample 

macroinvertebrates. Stark et al. (2001) have recommended a 500 microns net size because it is 

sufficient for most biomonitoring purposes. Samples were collected from each sampling site at 

an interval of 10 metres within a reach of 150 metres for each sampling site. This 10m interval 

points along a 150m reach from each sampling site were referred to as sampling points. This 

means that all six sampling sites that were chosen were sampled fifteen times at an interval of 

10m. This means that all the six chosen sampling sites were sampled 90 times per visit. 

Sampling sites were visited once per month from February to November 2016. The 

macroinvertebrates were sampled between 10H00 and 16H00 on sunny days when biological 

activity was very high.  

The macroinvertebrates were sampled within an area of 2 m2 at each interval point across the 

river, but care was taken not to sample outside the selected area. The sampling points were 

carefully marked off with four rods that covered an area of 1 m x 2 m and samples were 

collected in each area for a maximum of 2 minutes. This was done to avoid catching 
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macroinvertebrates that could have floated from upstream into the sampling points. A stop 

watch was used to regulate time during sampling. The D-net was placed downstream of the 

river flow to collect samples that were dispatched from river surface through kicking the 

bottom and small rocks.  

Kick-sampling method (Dickens and Graham, 2002) was used only where the riverbed was 

lightly disturbed upstream and macroinvertebrates were collected using the D-net. This was 

done to release some of the macroinvertebrates that could have hidden beneath the rocks. This 

method was used in areas where riffles were present. In areas containing aquatic plants 

sampling was done by carefully shifting vegetation and scooping the area.  

The samples were then emptied into a clean tray with clean water for easy separation from 

grass, leaves and twigs. After separation was done the macroinvertebrates were stored in a l.5 

litre plastic container containing 70% ethanol. The ethanol was used to conserve the 

macroinvertebrate for longer periods. All containers were clearly marked to avoid mixing the 

samples. The labelling on the containers included information such as name of the site, sample 

month and habitat type (e.g. riffle, alcove).  

The macroinvertebrates were later identified in the laboratory to family level to categorise them 

in terms of pollution tolerance levels and the total numbers for all organisms per sampling area 

were then recorded. A magnifying glass was also used to identify some of the 

macroinvertebrates that were difficult to identify through a naked eye. Such macroinvertebrates 

included the tiny larvae and nymphs. Samples were stored for a period of two weeks before 

sorting. Abundance measures were done during the sorting process in order to determine the 

total number of macroinvertebrates per sampling site. Abundance measures were considered 

in terms of Percent Contribution of Dominant Family because the sampled macroinvertebrates 

that were collected seasonally were very few and the use of other indices such as EPT Index or 

Ratio of EPT and Chironomidae Abundances would have been inefficient in this study 

The pollution tolerance levels of the sampled macroinvertebrates were interpreted based on the 

guidelines provided by Gerber and Gabriel (2002) as follows:  

 1-5: Highly tolerant to pollution 

 6-10: Moderately tolerant to pollution 

 11-15: Very low tolerance to pollution 
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The pollution tolerance score was provided by a line graph which indicated the actual pollution 

tolerance level for each organism. Figure 3.2 shows the tolerance scale similar to the one 

provided by Gerber and Gabriel (2002):  

      1                 5                10               15 

                                                              Pollution tolerance level       

Figure 3.2 Pollution tolerance levels 

The pollution tolerance levels were also confirmed or verified from the South African Scoring 

System Version 5 (SASSV5) protocol as described by Dickens and Graham (2002).  

 

3.3.2.2 Water quality parameters 

Water samples were collected at the same 15 sampling points where macroinvertebrate samples 

were collected. This was done in order to ensure that the water quality parameters that were 

measured were representative of the points where macroinvertebrates were collected. Water 

samples were collected the very same day that macroinvertebrate sampling was done. Samples 

were collected in 500ml glass bottles that were prewashed with hydrochloric acid and stored 

for a day before collection of water samples. The samples were collected for the analysis of 

nitrates, nitrites and chlorine. Other water quality parameters that were measured in situ 

included pH, water temperature, conductivity, river velocity and dissolved oxygen. Water 

temperature, pH, conductivity and Total dissolved solids (TDS) were measured using the hand-

held multi-parameter metre. The probe of the instrument was submerged under water and 

readings were recorded only after the readings on the instrument had stopped counting. 

Readings were then recorded in a fieldwork book and later exported to excel spreadsheet for 

analysis.  

pH was measured on a scale of 1 to 14 where 7 represented neutral and any value less than 

seven was considered acidic and values above 7 were considered alkaline. Stream 

temperature was measured in degrees Celsius (°C). Temperature was also measured between 

10H00 and 16H00.  Electrical conductivity (EC) was measured in µm/cm. TDS was measured 

in mg/l. Dissolved oxygen was measured as percentage of air saturation using Jenway 970 DO2 

meter. Dissolved oxygen was measured in the morning between 05H30 and 06H00 as required 

by guidelines set out by DWAF (1996). This was done in order to obtain the correct oxygen 
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concentration as it decreases as temperature increases. Therefore, measurements were done 

before sunrise before biological activity became intense.  

To measure other water quality parameters (nitrates, nitrites and chlorine) samples were 

immediately transported to the University of Venda laboratory (Department of Ecology and 

Resource Management) for further analysis using the Metrohom 850 Chromatograph that was 

equipped with two columns namely Metrosep A Supp 5-100/4.0 with flow rate of 0.7 mL/min 

and Metrosep C4-250/4.0 with low rates were and 0.9 mL/min for anion and cation, 

respectively. For the analysis of anions carbonate eluent was used and for the cations, 

dipiclonic acid eluent was used. Prior to analysis, the column was equilibrated for 60 

minutes. Other water quality parameters such sulphates and phosphates were not measured 

because there were no visible effluent discharges from commercial agriculture and mining 

activities along the Nzhelele River where samples were collected.  

For sample preparation four (4) stands of 1ppm, 5ppm, 10ppm and 20ppm were prepared by 

appropriate dilutions from 1000 ppm multi-component standard of analytical grade using ultra-

pure water (18.2 MΩ/cm). All samples were filtered through 0.25 syringe filter before analysis.  

 

3.3.2.3 Environmental data 

For measurement of environmental data such as river velocity and discharge a Model FP 111 

flow probe that measured velocity and depth was used. Stream velocity was measured in m.s-

1. In order to be precise about discharge, velocity measurements across the river were measured 

at an interval of 50 centimetres (cm). This means that depths across the river were measured at 

an interval of 50 cm using centimetres as units of measurement. The measurements were later 

converted to metres. To calculate discharge, depth measurements were multiplied by width (50 

cm = 0.5 m) and discharge for every point at an interval of 50cm (0.5m) was then recorded in 

a fieldwork sheet. This means that the cross-sectional area for each 50cm interval was 

calculated and the velocity at that point was also measured. The individual discharges per cross-

sectional area across the river were then added together to give the average discharge of the 

river at a selected point at intervals of 10m. This means that discharge and velocity records 

were also measured fifteen times at an interval of 10 metres to cover the total length of 150 m 

per sampling site. Velocity and discharge were measured at the same points were 

macroinvertebrate and water samples were collected.   
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The degree of environmental degradation along the Nzhelele River was interpreted based on 

Index of Habitat Integrity as defined by Kleynhans et al. (2008). Since the river traversed a 

number of villages it was not surprising that many sections of the river were characterised by 

cultural activities such as subsistence farming, livestock watering, water extractions and ritual 

activities. These activities seemed to have had direct and indirect impact on the habitat quality 

and therefore accounted for macroinvertebrate assemblages at any given time. For example, 

Van Rensburg (2012) has observed that the presence of bridges increases the rate of riverbed 

erosion. The Index of Habitat Integrity, as proposed by Kleynhans et al. (2008) takes the quality 

of instream and riparian habitat index values into consideration (Table 3.1).  Criteria that were 

used to assess habitat integrity of the selected points of the Nzhelele River were based on the 

following table adapted from Kleynhans (1996) (Table 3.1).  

 

Table 3.1 Criteria used in the assessment of habitat integrity (Kleynhans, 1996) 

Criterion Relevance 

Water abstraction Measurement of direct impacts on the type of habitat, 

riparian vegetation, size, abundance, water flows, bed, water 

quality and channel characteristics.  

Flow modification Focuses on the impacts of water abstraction and regulations 

through impoundments, which lead to alterations in 

temporal and spatial flow characteristics (duration and 

season of low flows, reduction of heterogeneous habitats 

and water.  

Bed modification Regarded to be the result of increased sediment input from 

the catchment or decreased ability for sediment transport in 

a river (Gordon et al., 1992). Indicators of sedimentation 

include catchment and bank erosion. Deliberate streambed 

alteration results from removal of rapids for navigation 

(Hilden & Rapport, 1993). 

Channel modification Caused by changes in river flow which lead to changes in 

channel characteristics. This leads to alteration of marginal 

instream and riparian habitat. It is also caused by deliberate 

modification of channel to improve river. 

Water quality modification This results from point and diffuse point sources such as 

human settlements, agricultural activities and industrial 

activities.  Water quality modification is also worsened by a 

decrease in the volume of water due to low or no flow 

conditions. 
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Criterion Relevance 

Inundation This is caused by obstruction of aquatic fauna movement or 

migration which affects water quality and sediment 

movement. Destruction of rapids, riparian zone habitat and 

ripples also lead to inundation (Gordon et al., 1992). 

Exotic macrophytes This depends on the type of invasive species and the 

magnitude of infestation. Obstruction of flow due to habitat 

alteration may impact on water quality.  

Exotic aquatic fauna The disturbance of the stream bottom during feeding may 

influence the water quality and increase turbidity. Depends 

on the type of invasive species and their nature of 

disturbance. Streambed disturbance during feeding may also 

influence water quality of a stream and increased turbidity.   

Solid waste disposal This results from direct anthropogenic impact may lead to 

structural changes in habitats. Solid waste disposal also 

manifests the misuse and mismanagement of the river. 

Indigenous vegetation 

removal 

This involves the impairment of vegetation as the buffer 

zone which prevents sediment movement and other 

catchment runoff products into the river (Gordon et al., 

1992). Involves physical eradication of vegetation due to 

fuelwood collection, farming purposes and overgrazing. 

Exotic vegetation 

encroachment 

This excludes the encroachment of natural vegetation into 

riparian zones due vigorous growth leading to instability of 

banks and reduction in the buffering function of the riparian 

zone. This leads the reduction in the diversity of the riparian 

zone habitat. A change in the input of allochtonous organic 

matter input will also occur.  

Bank erosion Decreased bank stability leads to river sedimentation and 

possible river bank collapse. This will result in loss or 

modification of both instream and riparian habitats. 

Accelerated erosion can result from removal of natural 

vegetation, exotic vegetation encroachment or overgrazing.   
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Descriptive class that were used to assess modifications to habitat integrity were also adapted 

from Kleynhans et al. (2008) (Table 3.2):   

 

 Table 3.2 Descriptive classes for the assessment of modifications to habitat integrity 

(Kleynhans et al., 2008) 

Impact class Description Score 

None No noticeable impact or modification that can be located to have 

discernible impact on habitat size, quality, variability and size. 

0 

Small/ 

Minimal 

The modification exists in very few localities and there is very 

small impact on habitat size, quality, variability and diversity. 

1-5 

Moderate The modifications exist at very few localities and there is limited 

impact on habitat size, quality, variability and diversity.  

6-10 

Large The modification is largely present, but does not cover large 

areas. There are however, noticeable detrimental impacts on 

habitat size, quality, variability and diversity 

11-15 

Serious  The modification occurs frequently and covers large areas.  

There are noticeable detrimental impacts over a large area on 

habitat size, quality, variability and diversity 

16-20 

Critical There is high intensity modification. There are noticeable 

detrimental impacts over the entire area on habitat size, quality, 

variability and diversity.  

21-25 

 

3.4 Data analysis 

Descriptive statistics and Principal Component Analysis (PCA) were used to analyse data from 

the field. Data for macroinvertebrates per sample area were firstly depicted at abundance levels 

using line and bar graphs while stream temperature, pH, conductivity, nitrates, nitrites, 

chlorines and environmental data were also compared per sample area. All physico-chemical 

parameters were compared with the South African Target Water Quality Range (TWQR) as 

defined by water quality guidelines by DWAF  (1996).  

 

To compare the diversity of species across all six sampling areas the Simpson Diversity Index 

was used. The diversity index was calculated based on the following formula: 
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Simpson Diversity Index (D) = 1 - ∑n(n-1)            

          N(N-1)  

Where   ∑ = sum of (total)  

n = the number of individuals of each different species   

N = the total number of individuals of all the species 

Diversity index was considered important because it gives more weight to the dominant species 

while considering that rare or few species will not affect the diversity that is being measured. 

It was therefore important to compare the six areas because even if an area had more species 

than others that did not mean that such an area was diverse. Therefore, only the diversity index 

such as the Simpson’s Diversity Index could show such a diversity among the six sampling 

areas in addition to the abundance values that were obtained directly from the field.  

PCA was used to analyse all the results from all sampling sites. This was done in order to 

determine the relationship between measured variables. This is because PCA helps to identify 

patterns of data by showing relationships between them and how they similar to one another. 

It also helps to determine whether variables are correlated and whether the correlation is weak 

or strong. Therefore, PCA shows strength of relationships between variables where +1 

indicates perfect positive linear relationship and -1 indicates perfect negative linear relationship 

and zero (0) indicates existence of no relationship between variables. With PCA the 

dimensionality of data is reduced to create new sets of data called principal components. Smith 

(2002) defined PCA as a way to identify patterns in data in order to identify similarities and 

differences in data. PCA covers standard deviation, covariance and eigenvectors in data set 

(Karamizadeh et al., 2013). Biplots were used to show the relationship between water quality 

parameters and sampling sites. This was done to establish whether the relationships between 

water quality parameters and sampling sites were uniform and strong or whether the 

relationships differed from one sampling site to another.        

3.4.1 ANOVA analysis 

One way ANOVA was used to analyse the effects of aquatic substrate on different types of 

macroinvertebrates. The ANOVA was used to show the differences between the means of the 

macroinvertebrate from different sampling sites and differences between water quality 

parameters amongst the six sampling sites. This is because substrate characteristics of the 

sampling sites differed and therefore, the water quality parameters and macroinvertebrates 
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abundances will be affected by substrate characteristics and the types of land uses. Therefore, 

F-tables were used to test hypotheses about different groups from the study sampling sites. The 

macroinvertebrates were collected under different habitat conditions due to substrate 

characteristics. The hypotheses to be tested were as follows:  

The first null hypothesis stated that there was no difference between the six sampling 

sites in terms of macroinvertebrate abundances: 

 H0: µ1= µ2 = µ3 = µ4 = µ5 = µ6 = µ 

The alternative hypothesis stated that there were significant differences in abundance 

values of the six sites 

 H1: not H0 

The second null hypothesis stated that there was no difference between the values of 

water quality parameters from the six sampling sites:  

 H0: µ1= µ2 = µ3 = µ4 = µ5 = µ6 = µ 

The alternative hypothesis stated that there were significant differences amongst the 

values of the water quality parameters from the six sampling sites 

 H1: not H0 

The level of significance for the two tests was chosen as α = .005 

The degrees of freedom were determined as follows: 

 dfbetw = k – 1, where k represented number of columns in a data set.  

dfbetw was calculated when comparing the means of a set of k groups. This means that 

the between-comparison was done for k groups.  

dfwith = n – k, where n represented the total number of scores of all the groups together.  

 

This was done to evaluate the degrees of freedom of the within-comparison by assessing the 

degrees of freedom of each single group and added them all.  
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The critical value (Fcrit) was determined after calculating the degrees of freedom and was 

determined from the F-Table.  

 

The summary of the ANOVA was summarised in a table of results as follows:  

Source of 

variation 

Degrees of 

freedom 

Sums of 

Squares 

Mean Squares F 

Between group 

or treatment 

dfbetw = k - 1 SSbetw SSbetw 

k - 1 

MSbetw ÷ MSwith 

= Fobs 

Within groups 

or error 

dfwith = n – k SSwith SSwith 

n - k 

Total Dftot = n – 1 SStot  

 

Where SSwith  represents the sum of squared deviations within groups and SSbetw represents the 

sum of squared deviations between group means.  

MS represents Mean Squares for each group (between and within groups). These were 

determined by diving each SS by its degrees of freedom. These were determined as follows: 

 MSwith = SSwith ÷ dfwith 

 MSbetw = SSbetw ÷ dfbetw 

The F-ratio (Fobs) was determined by dividing MSbetw by MSwith. 

Conclusions of the F-tests were based on the following rule: 

 If p-value < significance value (0.05), then the null hypothesis (H0) is rejected.  

 If p-value ≥ significance value (0.05), then the H0 is not rejected. 
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CHAPTER FOUR: DATA PRESENTATION AND DISCUSSION 

4.1 Introduction 

This chapter presents data on the abundance of macroinvertebrates and relationships between 

macroinvertebrate abundance and the selected water quality parameters. Relationship between 

macroinvertebrate abundance and physico-chemical properties of water has been analysed 

using one-way ANOVA. Abundance values per sampling site were compared and conclusions 

were drawn from the interpretation of abundance and ANOVA results. Biplots were used to 

show the relationships between water quality parameters and resident macroinvertebrates. 

Biplots were also used to show the relationships between water quality parameters and 

sampling points from six sampling sites.    

4.2 Macroinvertebrate family abundance 

Table 4.1 shows abundance values of the macroinvertebrates from the six sampling sites, 

namely, Dopeni, Fondwe, Maangani, Mphaila, Musekwa and Pfumbada.  The results show that 

all six sampling sites had eight (8) orders with nine (9) different families of macroinvertebrates 

that were sampled. The total number of macroinvertebrates across all six sampling sites was 

674. Maangani had the highest number of macroinvertebrates (178) while Musekwa recorded 

the lowest number of macroinvertebrates of 72. The family Thiaridae (193) were the most 

abundant and were found in all areas except Mphaila. This family recorded the highest 

abundance value of 76 at Maangani. The presence of the family Thiaridae indicated polluted 

environments because this family of macroinvertebrates are highly tolerant to pollution.  

Table 4.1 Macroinvertebrate abundances (totals) from sampling sites (Field data, 2016) 

Family Dopeni Fondwe Maangani Mphaila Musekwa Pfumbada Total  

Aeshnidae 29 25 35 28 18 30 165 

Chironomidae 0 17 0 6 0 9 32 

Coenagrionidae 0 30 28 0 0 0 58 

Ecnomidae 0 0 0 17 0 0 17 

Elmidae 24 0 0 13 11 7 55 

Heptageniidae 30 0 30 41 0 21 122 

Nepidae 0 6 9 0 0 7 22 

Potamonautidae 0 0 0 0 10 0 10 

Thiaridae 21 25 76 0 33 38 193 

Total  104 103 178 105 72 112 674 
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The family Aeshnidae (Odonata) (165), which included dragonfly and damselfly nymphs were 

common across all sampling sites, with Maangani recording the highest abundance value of 35 

and Mphaila the lowest abundance value of 18. Based on the South African Scoring Systems 

5 (SASS5) as depicted by Dickens and Graham (2002), Aeshnidae are moderately tolerant to 

pollution. This means that they survive in moderately polluted water of lotic environments. The 

pollution tolerance level that was based on the SASS5 according to Gerber and Gabriel (2002) 

was found to be 8, which was described by SASS5 as moderately tolerant to pollution. This 

means that some sections of the Nzhelele River were moderately polluted. However, this 

condition was likely to change from one season to another due to changes in environmental 

conditions. Table 4.2 below shows different macroinvertebrate families and their pollution 

tolerance levels that were based on the SASS5.  

Table 4.2 Pollution tolerance level of sampled macroinvertebrate (Field data, 2016) 

Family name Order/ Class Abundance 

values 

Percent 

(%) 

Pollution tolerance level 

Aeshnidae Odonata 165 24.5 Moderately tolerant (8) 

Chironomidae Diptera 32 4.7 Highly tolerant (2) 

Coenagrionidae Odonata 58 8.6 Highly tolerant (4) 

Ecnomidae Trichoptera 17 2.5 Moderately tolerant (8) 

Elmidae Coleoptera 55 8.2 Moderately tolerant (8) 

Heptageniidae Ephemeroptera 122 18.1 Low tolerance (13) 

Nepidae Hemiptera 22 3.3 Highly tolerant (3) 

Potamonautidae Decapoda 10 1.5 Highly tolerant (3) 

Thiaridae Gastropoda class 193 28.6 Highly tolerant (3) 

Total  674 100  

 

The family Heptageniidae (Ephemeroptera) (122) were also common across all sampling sites 

except at Fondwe and Musekwa. However, the family Heptageniidae were found to be many 

at Mphaila with an abundance value of 41 (Table 4.1). Mphaila also recorded a total of 105 

macroinvertebrates, which was the third highest value after Maangani (178) and Pfumbada 

(112). However, the Heptageniidae was the dominant macroinvertebrate family at Mphaila. 

The tolerance level of Heptageniidae was found to be low with a score of 13. This implies that 

during the time of sampling some sections of the Nzhelele River had lower pollution levels and 

supported macroinvertebrates that did not tolerate pollution such as flat headed mayfly nymphs. 
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Unlike the Aeshnidae family that constituted 24% of the total sampled macroinvertebrates, 

Heptageniidae constituted 18% of the total sampled macroinvertebrates.   

The lowest abundance values for all sampled macroinvertebrates were for the Potamonautidae 

(Decapoda) (10) and were recorded at Musekwa. The family Potamonautidae (crabs) have a 

pollution tolerance level of 3, indicating that they are highly tolerant to pollution. Musekwa 

also recorded the lowest macroinvertebrate abundance value of 72 compared to all other 

sampling sites. Table 4.2 above shows that Potamonautidae are highly tolerant to pollution. 

Their presence signified a polluted stream with low water quality conditions. The family 

Potamonautidae only constituted 1.5% of the total sampled macroinvertebrates. The Musekwa 

sampling site was characterised by high human activity such as laundry, water abstraction and 

livestock watering. This might be a factor towards polluted water which favoured the presence 

of Potamonautidae. Thiaridae (Gastropoda) (193) were also found at Musekwa sampling site 

and this family of macroinvertebrates favours polluted waters, and their pollution tolerance 

level is higher (3). The presence of Chironomidae, Coenagrionidae, Nepidae, Potamonautidae 

and Thiaridae families would mean that the river is polluted as these families are highly tolerant 

to pollution. Thiaridae recorded the highest number of all sampled macroinvertebrates from all 

six sampling sites.  

Family Nepidae (Hemiptera) (water scorpions) were only found at Fondwe (6), Maangani (9) 

and Pfumbada (7). This family of aquatic insects is highly tolerant to pollution with a pollution 

tolerance score of 3. However, Nepidae accounted for just 3% of the total sampled 

macroinvertebrates. The total number of sampled Nepidae (water scorpions) was 22 from all 

six sampling areas.  

The family Ecnomidae (Trichoptera) (caddisflies) were only found at Mphaila with an 

abundance value of 17. The pollution tolerance level for this family is 8 which means that they 

are moderately tolerant to pollution. The presence of caddisflies indicated that some sections 

of the river at the point where they were collected were moderately polluted.  The family  

Potamonautidae was also restricted to Musekwa area. However, their presence also indicated 

that some sections of the river were polluted because Potamonautidae family can tolerate 

polluted environments (Table 4.2).  
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The family Chironomidae (Diptera) and Coenagrionidae (Odonata) accounted for 4.7% and 

8.6% respectively of the total number of all sampled macroinvertebrates. The two families are 

highly tolerant to pollution with pollution tolerance score of 2 and 4 respectively. The family 

Chironomidae (midges) was found at Fondwe, Mphaila and Pfumbada while the family 

Coenagrionidae (damselflies) existed at Fondwe and Maangani. Jacob et al. (2017) indicated 

that few Coenagrionidae organisms exist in excellent water quality bodies compared to medium 

and good water quality conditions. Since the water quality at Mphaila might be characterised 

as excellent due to the high number of pollution-intolerant families the existence of 

Coenagrionidae was therefore possible but their abundance was lower indicating their low 

tolerance to excellent water conditions. The family Elmidae, which are moderately tolerant to 

pollution were found in all sampling areas except Fondwe and Maangani and they constituted 

8.2% of the total number of sampled macroinvertebrates. Generally, pollution tolerant 

organisms constituted 46.7% of the total sampled macroinvertebrates. The remaining 53.3% 

was for pollution intolerant (18.1%) and moderately tolerant (35.2%) organisms. It could 

therefore be concluded that pollution intolerant organisms constituted 53.3% of the total 

number of sampled macroinvertebrates across the six sampling sites.  

4.3 Macroinvertebrate abundances (totals) per sampling site 

4.3.1 Dopeni 

Table 4.3 below shows percentages of abundance values of macroinvertebrates per sampling 

site. From Table 4.2 above, of the total number of macroinvertebrates that were sampled from 

the Dopeni site, only the Heptageniidae family (29%) was found to be intolerant to pollution. 

Their tolerance level to pollution is 13. Macroinvertebrate families that were found to be 

somewhat tolerant or moderately tolerant to pollution included both Aeshnidae (28%) and the 

Elmidae (23%) families respectively. This means that approximately half (51%) of the total 

macroinvertebrates sampled from the Dopeni site were moderately tolerant to water pollution, 

with only the family Thiaridae (20%) being highly tolerant to pollution. The total percentage 

of organisms that were moderately tolerant and intolerant to pollution at Dopeni site was 80%. 

This means that the river water at Dopeni did not support the majority of pollution tolerant 

organisms. This shows that the river water was moderately polluted, hence the higher 

percentage of pollution intolerant organisms that made up a total of 80%. This suggested that 

the existence of agricultural fields along the Nzhelele River at Dopeni area did not significantly 

impact on the water quality of the river. However, since the samples were collected during low 
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rainfall season direct impacts could not be directly reflected by the resident macroinvertebrates. 

Odume (2013) has indicated that organic inputs from agriculture often lead to depletion of 

oxygen which impacts on diversity of EPT group. However, the absence of other EPT 

organisms could be attributed to the flow conditions of the river at the time of sampling but not 

to agricultural fields. This explains why only Heptageniidae (Ephemeroptera) which is 

sensitive to pollution, existed at Dopeni site.  An interesting observation by Keke et al. (2017) 

was that the occurrence of Coleoptera, Plecoptera, Trichoptera, Anisoptera and Odonata in 

aquatic environments showed that the river water quality was good. For Dopeni, Odonata 

(Aeshnidae) and Coleoptera (Elmidae) were present in addition to Ephemeroptera 

(Heptagennidae) an indication of good river water conditions at Dopeni which allowed the 

survival of pollution intolerant organisms.    

  

Table 4.3 Abundance of macroinvertebrates per sampling area (Field data, 2016) 

 Abundance values and percentage (%) per sampling area  

Family(Tolerance 

level) 

Dopeni 

 

Fondwe  Maangani  Mphaila 

 

Musekwa 

 

Pfumbada 

 

Total  

Aeshnidae (8) 29 (28) 25 (24) 35 (20) 28 (27) 18 (25) 30 (27) 165 

Chironomidae (2) 0 17 (17) 0 6 (6) 0 9 (8) 32 

Coenagrionidae 

(4) 

0 30 (29) 28 (16) 0 0 0 58 

Ecnomidae (8) 0 0 0 17 (16) 0 0 17 

Elmidae (8) 24 (23) 0 0 13 (12) 11 (15) 7 (6) 55 

Heptageniidae 

(13) 

30 (29) 0 30 (17) 41 (39) 0 21 (19) 122 

Nepidae (3) 0 6 (6) 9 (5) 0 0 7 (6) 22 

Potamonautidae 

(3) 0 0 0 

0 10 (14) 0 10 

Thiaridae (3) 21 (20) 25 (24) 76 (42) 0 33 (46) 38 (34) 193 

Total  104 

(100) 

103 

(100) 

178 (100) 105 72 (100) 112 (100) 674 

Tolerance level 1-5 = Highly 

tolerant 

6-10 = Moderately 

tolerant 

11-15 Very low tolerance 

 

4.3.2 Fondwe 

Fondwe area had a total of 103 macroinvertebrates that were sampled. Of the 103 

macroinvertebrates 76% were found to be tolerant to pollution except the Aeshnidae family 
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(24%) which was moderately tolerant to pollution. There were no EPT organisms that were 

intolerant to pollution. These families were Chironomidae, with tolerance level of 2, 

Coenagrionidae (4) and Thiaridae (3). The presence of organisms highly tolerant to pollution 

indicated that the river at Fondwe was polluted. This might be due to the presence of 

agricultural fields adjacent to the river and the frequent use of the river for laundry and livestock 

watering. Figure 4.1 below shows the location of typical agricultural fields along the Nzhelele 

River at Fondwe. Activities along the Nzhelele River at Fondwe were highly associated with 

cultural eutrophication and only pollution tolerant organisms were present. From Figure 4.1 

below it can be observed that the river bank had been modified to prevent bank erosion and the 

slippage of agricultural soil directly into the river.  However, utilisation of the river for laundry, 

car washes and agriculture could be the possible causes of higher abundance values of pollution 

tolerant organisms. For example, Morrison and Bohlen (2010) have noted that Diptera 

organisms such as Chironomids tend to increase in numbers when vegetation is cleared or 

clipped for purposes of livestock grazing. Since some sections of the river at Fondwe lacked 

vegetation it might be argued that they partly contributed to the occurrence of Chironomids.  

 

Figure 4.1 Location of an agricultural field at Fondwe (Field data, 2016) 
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4.3.3 Maangani 

Sixty-three (63%) percent of macroinvertebrates sampled at Maangani were highly tolerant to 

pollution with tolerance levels of 3 and 4 and these were Coenagrionidae (Odonata), Nepidae 

(Hemiptera)  and Thiaridae  (Gastropoda) families. Only the Heptageniidae family is sensitive 

to pollution, but constituted only 17% of the total macroinvertebrates that were sampled at 

Maangani. Aeshnidae which were moderately tolerant to pollution made up the remaining 20% 

of the sampled macroinvertebrates at Maangani. This means that some sections of the river at 

Maangani were not polluted, hence the existence of Heptageniidae family. This was because 

some sections of the river were inaccessible due to the presence of steep banks that prevented 

livestock and humans from accessing the river. However, the presence of pollution tolerant 

organisms might be explained by the close proximity of the Maangani settlement to the river, 

which was approximately 50 m from the river banks. Just like at Fondwe, residents at Maangani 

utilise the Nzhelele River water for laundry and agricultural irrigation and there was evidence 

of water extraction from the river to adjacent agricultural fields. This explains the presence of 

algae along some parts of the river at Maangani where samples were collected.  Chironomid 

larvae and Tubifex tend to increase in abundance due to organic inputs which deprive the 

aquatic environments of dissolved oxygen but high organic enrichment (Mustapha and 

Yakubu, 2015). For example, Egler et al.(2012) cited nitrogen concentrations as the 

determining factors in the decline of macroinvertebrate diversity. Since many agricultural 

activities are associated with organic inputs it is not surprising that algal blooms were visible 

at Maangani. However, algae has been known to be source of food for macroinvertebrates, 

including pollution sensitive organisms such as the family Heptageniidae. This explains the 

presence of these organisms in an area dominated by agricultural activities (Griffin et al., 2015) 

which are associated with pollution tolerant organisms that make up 63% of the total number 

of macroinvertebrates sampled at Maangani.  

 

4.3.4 Mphaila 

Fifty-five percent (55%) of the macroinvertebrates sampled at Mphaila were moderately 

tolerant to pollution and these included Aeshnidae, Ecnomidae and Elmidae families. Their 

pollution tolerance level is 8. Only the family Coenagrionidae (6%) were highly tolerant to 

pollution with the tolerance level of 2. Thirty-nine percent (39%) of the remaining 

macroinvertebrates (Family Heptageniidae) were highly sensitive to pollution. This means that 

the river at Mphaila was less polluted compared to all other five sites due to a higher number 
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of pollution intolerant organisms. The pollution level at Mphaila could have been due to the 

lack of anthropogenic activities at the points where samples were collected. Signs of future 

development in the form of fencing off areas earmarked for new agricultural fields show that 

the area will in the near future drastically change its current status. Intensive land uses, more 

often lead to alteration of the watershed functionality which leads to alteration of stream system 

(Currinder, 2017). Once anthropogenic impacts such as intense subsistence farming and water 

abstraction become intense at Mphaila site changes in stream functionality will be inevitable. 

These changes will automatically alter macroinvertebrate assemblages because even trophic 

levels would have also changed. The current composition of 94% of pollution intolerant 

families (Aeshnidae, Ecnomidae, Elmidae and Heptageniidae) suggested that the Mphaila area 

was still minimally or moderately polluted. Therefore, Mphaila site was found to be the least 

polluted sampling site along the Nzhelele River where the river transcends villages. This was 

evident from the number of pollution tolerant organisms that constituted just 6% of the 

macroinvertebrates sampled from Mphaila sampling site.  

 

4.3.5 Musekwa 

Musekwa had the lowest abundance values of macroinvertebrates (72) and 60% of them were 

found to be highly tolerant to pollution. These were the families Potamonautidae (14%) and 

Thiaridae (46%) with tolerance level of 3. The dominance of the Thiaridae family organisms 

could be attributed to the fact that these organisms are known for their ability to colonise 

quickly and survive under a variety of habitats due to their strong and thick shells (Strzelec and 

Królczyk, 2004; Flores and Zafaralla, 2012). The remaining 40% of the macroinvertebrates at 

Musekwa were moderately tolerant to pollution and these included Aeshnidae (25%) and 

Elmidae (15%) families. The absence of pollution intolerant organisms showed that the water 

quality of the river at Musekwa had deteriorated to a point where EPT groups were eliminated 

or could not colonise the area. This might be due to the intense utilisation of the river for water 

abstractions, laundry, livestock watering and the proximity of the Musekwa village and 

agricultural fields to the river. Just like at Maangani, residents of the Musekwa village also 

used the river as a waste dumping area. However, the utilisation of the river for laundry, 

bathing, livestock watering and location of agricultural fields along the river could have 

degraded the water quality and favoured pollution tolerant organisms such as the family 

Thiaridae. Musekwa was the only area with a highly degraded environment where large parts 

of the river lacked vegetation and agricultural fields have replaced some of the adjacent riparian 
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vegetation. Figure 4.2 below shows some of the activities along the Nzhelele River at Musekwa 

site. From Figure 4.2 below it can be seen that the location of the subsistence agricultural field 

is very close or is at the margin of the formally inundated area. This suggests that agricultural 

inputs might be intense, depending on the type of fertilisers used by local subsistence farmers. 

The utilisation of the river for laundry, livestock watering and grazing, as well as water 

abstraction suggests further anthropogenic impacts at the Musekwa sampling site.  From Figure 

4.2 below it could also be seen that river flow was at its lowest, suggesting the absence of the 

Heptageniidae because these organisms are a characteristic of a mobile water body (Flores and 

Zafaralla, 2012). 

 

Figure 4.2 Activities along the Nzhelele River at Musekwa (Field data, 2016) 

 

Just like Dopeni and Fondwe, Musekwa water quality seemed to have been altered by intense 

agricultural activities and the frequent utilisation of the river by community members. Given 

the absence of steep river banks and heavy utilisation, pollution is inevitable at Musekwa. 

Higher abundance values for the families Potamonautidae (Decapoda) and Thiaridae 

(Gastropoda) suggested that eutrophication was relatively high compared to the Mphaila 

sampling site. Low flows at the time of sampling could have also accounted for higher numbers 

of pollution tolerant organisms and a decline in the family Heptageniidae because these 

organisms are a characteristic of flowing water (Gillespie et al., 2015; White et al., 2017).  
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4.3.6 Pfumbada 

Of the 112 macroinvertebrates sampled from the Pfumbada site 48% were highly tolerant to 

pollution and these were Chironomidae, Nepidae and Thiaridae families. Their tolerance level 

ranged from 2 to 3. Thirty-three percent (33%) were found to be moderately tolerant to 

pollution and these included Aeshnidae and Elmidae families with a tolerance range of 8. The 

remaining 19% consisted of Heptageniidae family were found to be sensitive to pollution. From 

the information contained in Table 4.2 above, the majority of sampled macroinvertebrates at 

Pfumbada were highly tolerant to pollution.  Just like Dopeni, Musekwa, Maangani and 

Fondwe, Pfumbada site was utilised by local residents for laundry, water extraction and 

livestock watering. As it has been stated earlier, these activities are known to be the leading 

causes of cultural eutrophication which limits the diversity of pollution intolerant organisms.  

 

Figure 4.3 below shows the percentage of all macroinvertebrates from the six sampled areas, 

whereby a total of 674 macroinvertebrates was recorded. From Figure 4.3 below, it is clear that 

organisms that were sensitive to pollution made up a total of 18% (Family Heptageniidae) 

across all six sampling sites. A total of 47.5% of the sampled macroinvertebrates were highly 

tolerant to pollution and these included Chironomidae, Coenagrionidae, Nepidae and Thiaridae 

families. However, 34.5% of the remaining macroinvertebrates were moderately tolerant to 

pollution and these included Aeshidae, Ecnomidae and, Elmidae families.  The family 

Thiaridae (29%) were found to be the dominant organisms that were highly tolerant to pollution 

while the family Aeshnidae (24%) were the most dominant organisms that were moderately 

tolerant to pollution. A total of 82% had a tolerance range of moderately tolerant to highly 

tolerant. This means that the pollution status of the Nzhelele River ranged from moderate to 

severe, with few sections of the river that were not polluted or insignificant to allow the survival 

of pollution intolerant organisms such as Heptageniidae.   

 

As long as people utilise the Nzhelele River the water bodies will continue to be polluted. 

However, Helson and Williams (2013) reported that the presence of the orders Ephemeroptera 

(flat-headed mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), (EPT) indicates 

good water quality. This is why these orders have been used as indicators of water quality. 

From the results of the study, only Ephemeroptera and Trichoptera organisms were found from 

some of the sampling sites. No Plecoptera organism was found from any of the six sampling 

sites. The results indicated that both Ephemeroptera (Family Heptageniidae) and Trichoptera 
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(Ecnomidae) organisms made up a total of 20.5% of the total number of sampled 

macroinvertebrates from the six sites. However, the Trichoptera were restricted to Mphaila site, 

while Ephemeroptera family (Heptageniidae) were found at four sites, namely Dopeni, 

Maangani, Mphaila and Pfumbada. This says a lot about the river conditions at Fondwe and 

Musekwa because of the dominance of pollution tolerant organisms which made up a total of 

76% (Fondwe) and 60% for the Musekwa sampling sites. Conditions at Fondwe and Musekwa 

could have been exacerbated by intense anthropogenic activities along the river.  

 

 

Figure 4.3 Percentage of macroinvertebrate families from six sampling sites (Field data 

2016)  

 

The diversity of macroinvertebrates per site was calculated to acertain whether the sites were 

evenly distributed in terms of macroinvertebrate composition. The Simpson Diversity Index 

was used. Table 4.4 below shows the diversity results. Interestingly, Maangani had the highest 

number (abundance) (178) but was not the most diverse sampling site.  The calculated results 

indicated that Fondwe, despite recording an abundance value of 103 it was found to be the most 

diverse of all the sampling sites. However, the diversity indices indicated that all sites were 

more diverse but Fondwe recorded a higher diversity value of 0.78, followed by Pfumbada 

(0.77), Dopeni (0.75), Mphaila (0.74) and Maangani (0.73). Musekwa was the least diverse of 

all the six sampling sites with a diversity index of 0.69.  
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Table 4.4: The diversity results for the six sampling sites (Field data, 2016) 

Family Dopeni n-

1 

n(n-

1) 

Fondwe n-

1 

n(n-

1) 

Maangani n-

1 

n(n-

1) 

Aeshnidae 29 28 812 25 24 600 35 34 1190 

Chironomidae 0 -1 0 17 16 272 0 -1 0 

Coenagrionidae 0 -1 0 30 29 870 28 27 756 

Ecnomidae 0 -1 0 0 -1 0 0 -1 0 

Elmidae 24 23 552 0 -1 0 0 -1 0 

Heptageniidae 30 29 870 0 -1 0 30 29 870 

Nepidae 0 -1 0 6 5 30 9 8 72 

Potamonautidae 0 -1 0 0 -1 0 0 -1 0 

Thiaridae 21 20 420 25 24 600 76 75 5700 

Total  104  2654 103  2372 178  8588 

          

Family Mphaila n-

1 

n(n-

1) 

Musekwa n-

1 

n(n-

1) 

Pfumbada n-

1 

n(n-

1) 

Aeshnidae 28 27 756 18 17 306 30 29 870 

Chironomidae 6 5 30 0 -1 0 9 8 72 

Coenagrionidae 0 -1 0 0 -1 0 0 -1 0 

Ecnomidae 17 16 272 0 -1 0 0 -1 0 

Elmidae 13 12 156 11 10 110 7 6 42 

Heptageniidae 41 40 1640 0 -1 0 21 20 420 

Nepidae 0 -1 0 0 -1 0 7 6 42 

Potamonautidae 0 -1 0 10 9 90 0 -1 0 

Thiaridae 0 -1 0 33 32 1056 38 37 1406 

Total  105  2854 72  1562 112  2852 

 

(Dopeni) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 2654 ÷ 10712, D= 1- 

0,25, D= 0.75 

(Fondwe) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 2372 ÷ 10506, D= 1- 

0,22, D= 0.78 

(Maangani) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 8588 ÷ 31506, D= 

1- 0,27, D= 0.73 

(Mphaila) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 2854 ÷ 10920, D= 1- 

0,26, D= 0.74 

(Musekwa) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 1562 ÷ 5112, D= 1- 

0,31, D= 0.69 

(Pfumbada) Simpson Diversity Index (D) = 1 - ∑n(n-1) ÷ N(N-1), D= 1- 2852 ÷ 12432, D= 

1- 0,23, D= 0.77 
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4.4 ANOVA results 

4.4.1 Macroinvertebrate abundance  

The ANOVA results presented and discussed in this section showed that the degree of 

variations of physico-chemical properties of water did not have significant difference between 

their averages. It was hypothesised that the sampling sites or groups did not differ in their 

physico-chemical properties which also affected macroinvertebrate composition. Table 4.5 

below, (F-table) shows ANOVA results for macroinvertebrates from Dopeni, Fondwe, 

Maangani, Mphaila, Musekwa and Pfumbada sampling sites. 

 

Table 4.5 ANOVA results for macroinvertebrate abundance (Field data, 2016)  

Family groups     

Groups Count Sum Average Variance 

Dopeni 4 104 26 18 

Fondwe 5 103 20,6 88,3 

Maangani 5 178 35,6 607,3 

Mphaila 5 105 21 188,5 

Musekwa 4 72 18 112,6667 

Pfumbada 6 112 18,66667 174,6667 

F-table       

Source of 

Variation SS df MS F p-value F crit 

Between Groups 1089,577 5 217,9154 1,043801 0,416154 2,64 

Within Groups 4801,733 23 208,771    

Total 5891,31 28         

 

From the F-table results it can be concluded that there was no significant difference between 

the six sampling sites in terms of macroinvertebrate abundances. However, Maangani area had 

a slightly higher average of 35.6. Since the critical value (2.64) was greater than the Fobs (1.04) 

the null hypothesis stated in Chapter 3 was not rejected. Again, the p-value was also more than 

the significance level (0.05) and therefore the H0 hypothesis was not rejected. There was no 

significant difference between the means of the groups for the macroinvertebrates from the six 

areas. The groups contained a more or less equal number of species. The diversity of organisms 

could have been affected by the low flows at the time of sampling due to the 2015/2016 

drought. Since water was scanty and flows were low the diversity of macroinvertebrates was 

also low. Only nine (9) families were sampled.  The diversity of macroinvertebrates at the time 

of sampling could have been affected by the aquatic conditions. Again, low flows could have 

made conditions impossible for other groups of macroinvertebrates to survive. Rolls et al. 
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(2012) stated that richness and diversity of macroinvertebrates shows a decline when periods 

of low flows are extended for longer periods. The same can be concluded about 

macroinvertebrate diversity along the Nzhelele River in the sense that the 2015/2016 drought 

could have impacted negatively on macroinvertebrate richness by altering river flows.  

 

4.4.2 River velocity  

Table 4.6 below shows ANOVA results for river velocity from six sampling sites. It was 

hypothesised that there was no significant difference between physico-chemical properties of 

water from six different sites of the Nzhelele River. Therefore, it was expected that there would 

be no significant difference in velocity data between the studied sites. Table 4.6 below shows 

that slow velocity rates varied from one area to another and ranged from an average of 0.11 to 

0.42 m. s-1. 

 

Table 4.6 River velocity data (Field data, 2016) 

Groups Count Sum Average Variance     

Dopeni 17 2,13 0,125294 0,000926     

Fondwe 13 1,44 0,110769 0,000358     

Maangani 47 20,02 0,425957 0,041064     

Mphaila 24 2,88 0,12 0,001487     

Musekwa 23 7,47 0,324783 0,007662     

Pfumbada 16 2,74 0,17125 0,012745     

       

F-table             

Source of Variation SS df MS F p-value F crit 

Between Groups 2,584843 5 0,516969 30,09292 

2,08E-

20 2,281814 

Within Groups 2,301997 134 0,017179       

              

Total 4,88684 139         

 

Results from the F-table above indicated that the p-value was greater than the significance 

value (0.05). This means that the null hypothesis for velocity data was not rejected and that 

there was no significant difference in velocity rates between the six sites. This means that the 

low velocity of the river reduced the turbulent flow which was important in the distribution and 

mixing of pollutants along the Nzhelele River. Pollutants usually have enough resident time in 

streams with low velocities as was the case with the Nzhelele River. This also explains why 

pollution tolerant organisms were in abundance across all sampling sites. The velocity data 
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from the ANOVA table suggested that the Nzhelele River at the time of sampling was 

characterised by velocities which had an impact on macroinvertebrate communities. The lowest 

average river velocity was recorded at Fondwe (0.11 m.s-1) and the highest was recorded at 

Maangani (0.42 m.s-1). According to the DWAF (2007), river velocities for different 

macroinvertebrates range from very slow to moderately fast.  Different macroinvertebrate 

communities prefer certain flow velocities of the river for their survival (DWAF, 2007). The 

families Elmidae, Coenagrionidae, Potamonautidae and Heptageniidae survive under 

moderately fast streams ranging from 0.3 to 0.6 m.s-1. However, Ephemeroptera (mayflies) are 

also known to occur in both fast and slow moving water bodies (Bauernfeind and Soldán, 2012, 

Vilenica et al., 2017). This explains their occurrence in four out of six sampling sites (Dopeni, 

Maangani, Mphaila, and Pfumbada).  Organisms that prefer low river velocities are the families 

Ecnomidae and Chironomidae (0.1-0.3 m.s-1) while the families Nepidae and Thiaridae (highly 

tolerant to pollution) are found along streams characterised by very slow velocities (<0.1 m.s-

1). Of the six sampling sites, Fondwe (0.11 m.s-1), Mphaila (0.12 m.s-1), Dopeni (0.13 m.s-1) 

and Pfumbada (0.17 m.s-1) were characterised by slow flow conditions. Musekwa (0.33 m.s-1) 

and Maangani (0.43 m.s-1) were characterised by moderately fast flows. This explains the 

absence of the Family Chironomidae with the highest pollution tolerance level of 2 at Maangani 

and Musekwa. This family of macroinvertebrates are found in rivers characterised by low 

velocities. Even though the Nepidae and Thiaridae families are found in very low flow 

velocities their abundance values indicate that they were sampled in pools which were 

dominant along all sampling points because they were found to exist even at Maangani and 

Musekwa. The Nepidae family was absent from Musekwa. However, there was no sampling 

site which had an average of below 0.1 m.s-1.  

Macroinvertebrates that tolerated moderately fast conditions (Maangani and Musekwa) 

included the Elmidae, Coenagrionidae, Potamonautidae and Heptageniidae families. Family 

Elmidae was found at Musekwa, but not at Maangani. Family Coenagrionidae was found at 

Maangani but absent at Musekwa. Family Potamonautidae was found at Musekwa. Family 

Heptageniidae was found at Maangani but absent at Musekwa.  

According to DWAF (2007), the families Ecnomidae and Chironomidae are found in rivers 

characterised by slow velocities of 0.1 to 0.3m.s-1. All studied areas except Musekwa and 

Maangani had slow velocities. Chironomids were found at Fondwe, Mphaila and Pfumbada 

while the family Ecnomidae was found at Mphaila only. From the results above, it can be 

concluded that river velocities were low along many sections of the river because no sampling 



63 
 

site recorded velocities above 0.6 m.s-1 (very fast). Due to low river velocities it was not 

surprising that 46.7% of the sampled macroinvertebrates (Families Chironomidae, 

Coenagrionidae, Potamonautidae and Thiaridae) were highly tolerant to pollution while 35.2% 

(Aeshnidae, Ecnomidae and Elmidae) where moderately tolerant to pollution and the remaining 

18.1% (Family Heptageniidae) were sensitive to pollution. This means that the majority of 

pollution tolerant organisms could be related to low stream velocities which are associated with 

increased deposition and poor self-cleaning capability.   

 

4.4.3 Dissolved Oxygen data 

Table 4.7 below shows dissolved oxygen results from the six sites along the Nzhelele River. 

However, the same could be said about the dissolved oxygen results from the F-table (Table 

4.7). From Table 4.7 Fcrit (2.32) is less than the Fobs (2.41). The average dissolved oxygen 

content of the Nzhelele River at Dopeni was 59% and the highest average recorded was 65% 

(Musekwa). The degree of impairment in aquatic organisms due to DO levels becomes acute 

at concentrations of 27 to 35% at temperature regimes of 10 to 23ºC (Ausseil, 2013). According 

to Ausseil (2013), impairment becomes slight at DO concentrations ranging from 53 to 70% 

and there is no impairment at values above 70%. The oxygen concentration indicated that it 

was capable of slight impairment on macroinvertebrates since it ranged from 58.53 and 

65.06%. The lower concentrations at Mphaila could be explained by the presence of high 

densities of submerged and marginal aquatic vegetation which use up ogygen during 

photosynthesis.  Low concentrations at Mphaila also favoured the presence of Aeshnidae and 

Chironomids which were capable of surviving under low DO concentrations. However, 

Connolly et al. (2004) have noted that macroinvertebrates such as mayflies (Family 

Heptageniidae) cannot survive between the ranges of 15 and 48% saturation. Since the average 

was higher than this range it explained the presence of mayflies along some sections of the 

river. The presence of the Family Heptageniidae in four of the six sampled sites (Dopeni, 

Maangani, Mphaila and Pfumbada) suggested that DO did not impact negatively on 

macroinvertebrates but other factors did. Hypoxia has been negatively correlated with mayflies 

and the current oxygen concentration along the Nzhelele River was still within the required 

range for the survival of a variety of macroinvertebrates. From the ANOVA results, the p-value 

was less than the significance value (0.05) which meant that there was significant difference in 

DO concentrations across the six sampling sites. Therefore, the null hypothesis stated in 

Chapter 3 that stated that there was no difference between the six sampling sites in terms of 
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macroinvertebrate abundances, was rejected since there was a significant difference in the 

averages of dissolved oxygen concentration across the six sampling areas.  

 

Table 4.7 Dissolved oxygen (Field data, 2016) 

  Groups Count Sum Average Variance 

Dopeni 15 892 59,46667 101,6952 

Fondwe 15 960 64 75,28571 

Maangani 15 912 60,8 40,88571 

Mphaila 15 878 58,53333 18,26667 

Musekwa 15 976 65,06667 5,209524 

Pfumbada 15 930 62 0,714286 

 

F-table       

Source of 

Variation SS df MS F P-value F crit 

Between Groups 487,8222 5 97,56444 2,418382 0,042401 2,323126 

Within Groups 3388,8 84 40,34286    

Total 3876,622 89         

 

4.4.4 Chlorine  

The average chlorine concentration of water ranged between 11.9 to 14.18 µg/l of Total 

Residual Chlorine (TRC). The Acute Effect Value (AEV), according the South African Water 

Quality Guidelines for Aquatic Ecosystems (DWAF, 1996), is 5µg/l, but the proposed Target 

Water Quality Range (TWQR) by DWAF (1996) is 0.2 µg/l TRC.  DWAF (1996) further 

suggested that 90% of all chlorine readings at study sites should be within the TWQR but all 

readings should fall below the Chronic Effect Value (CEV) of 0.35 µg/l TRC. The chlorine 

concentration was very high and it was found to be an important determinant of the type of 

macroinvertebrates that were found to be present in the river. It was similarly observed by 

Bradley et al. (2002) that organisms that were sensitive to pollution (Heptageniidae) decreased 

in abundance in areas of high chlorine concentrations while those that were highly tolerant to 

pollution survived and increased in abundance. In the case of the Nzhelele River the highest 

chlorine concentration average was found at Dopeni (14.18 µg/l) (Figure 4.4) and the lowest 

concentrations were experienced at Maangani (11.97 µg/l). All chlorine values from all 

sampling sites were above the suggested CEV of 0.35 µg/l and the AEV of 5µg/l. Table 4.8 

below shows the chlorine information of river water from all six sampling sites. From the F-

table results it was clear that there was difference between groups in terms of chlorine 

concentration and this also determined the composition of macroinvertebrates. However, from 
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the ANOVA table, (Table 4.5) above, it could be concluded that chlorine concentrations 

differed significantly from one area to another. However, the concentration was also higher 

than the AEV of 5 µg/l indicating elevated concentration values. Since chlorine is known to 

negatively affect mayflies (Clements and Kotalik, 2016), it was true with the Nzhelele River 

since these organisms accounted for 18.1% of the total sampled macroinvertebrates. They were 

the third largest groups after the families Thiaridae (28.6%) and Aeshnidae (24.5%) suggesting 

the impact of chlorine on these families. Interestingly, the highest abundance value of 

macroinvertebrates at Dopeni, which recorded the highest average value of 14.18 µg/l, was for 

the family Heptageniidae (29%). This value was higher than all abundance values for other 

taxa recorded at Dopeni.  This could have been due to variation in chlorine concentration along 

sampling points of Mphaila site. Therefore, the causes and effects of chlorine on mayflies and 

other macroinvertebrates, depending on its form, needs to be further investigated. For example, 

Williams et al.  (2003) have observed that free forms of chlorine are more lethal to aquatic life 

if chlorine is in the form of hypochlorous acid (HOCl) or hypochlorite ion (OCl-). Therefore, 

the null hypothesis that there is no significant difference between water quality parameters of 

different sampling sites was not rejected, since the p-value (2.32) was greater than the 

significance value of 0.05. However, it is worth noting that the concentration of chlorine from 

all sampling sites was approximately over three times the AEV of 5µg/l suggesting a decline 

in macroinvertebrate family diversity and abundance. This explains why the six sampling areas 

had a total of 647 macroinvertebrates that were sampled in a period of 10 months. Since 

chlorine is known to affect mayflies its concentrations explains why mayflies constituted only 

18.1% of the total macroinvertebrates that were sampled from the six sampling sites.  

 

Table 4.8 Chlorine data (Field data, 2016) 

Groups Count Sum Average Variance   

Dopeni 15 212,788 14,18587 0,080606   

Fondwe 15 208,04 13,86933 0,109278   

Maangani 15 179,69 11,97933 0,233292   

Mphaila 15 181,894 12,12627 2,254763   

Musekwa 15 202,789 13,51927 0,362611   

Pfumbada 15 189,174 12,6116 0,148066   

       F-table       

Source of Variation SS df MS F P-value F crit 

Between Groups 65,60257 5 13,12051 24,68879 3,25E-15 2,323126 

Within Groups 44,64064 84 0,531436    

Total 110,2432 89         
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Figure 4.4 Chlorine concentration average per sampling area (Field data, 2016) 

 

Even though chlorine concentrations are associated with macroinvertebrate diversity, an 

important point to note was the one raised by Williams et al. (2003) that the effect of chlorine 

on macroinvertebrates depends on the various forms of chlorine in water. This explains why 

high values above TWQR value did show significant impact on mayflies (Family 

Heptageniidae) since they are known to be sensitive to elevated chlorine levels. Therefore, all 

forms of chlorine should be defined to determine how various forms of chlorine impact on 

macroinvertebrate assemblages.  

 

 4.4.5 Nitrite (NO-
2) 

Table 4.9 below shows ANOVA results for nitrates from the six sampling sites. From Table 

4.9 below it can be noted that nitrite concentration ranged from 0.26 to 0.28 mg/L. According 

to Nordin and Pommen (2009), the 30 day the maximum nitrite concentration for protecting 

aquatic life is 0.060 mg/L if  chloride is more than 10 mg/L. High nitrite concentrations in 

aquatic environments are common in rivers that are intensively used for farming of commercial 

and aquarium fish because these activities are associated with ineffective biological filtering 

processes (Kocour-Kroupová et al., 2016).The average nitrite concentrations for the six 

sampling sites were lethal to macroinvertebrates because the averages for the six sites fell 

above 0.060 mg L-1, suggesting elevated concentrations. Willingham et al. (2016) notes that 

nitrite toxicity displays a wide range of tolerance with Diptera families which survive at 
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concentrations of 123 mg/l. Willingham further argued that even if the exposure has been 

prolonged, Diptera families (chironomids) can still survive nitrite concentration ranges of 

between 0.25 and 2.4 mg/l. This shows that nitrite concentrations at given locations along the 

Nzhelele River seemed to have played an important role in the diversity and abundance of 

macroinvertebrates. Potamonautidae appeared to have been negatively affected by higher 

values of nitrites since they are well known for their sensitivity to higher nitrite values. 

Potamonautidae were recorded at Musekwa sampling site which recorded the highest nitrite 

concentration of 0.28 mg.L. High nitrite concentrations impact on oxygen transport in 

crustaceans than fish and Thiaridae (Kocour-Kroupová et al., 2016). This explains the 

abundance of Thiaridae in five of the six sampling sites.  

From the p-value (0.02) it was concluded that there was a significant difference in the nitrite 

averages of the six sampling sites. The null hypothesis formulated in Chapter 3, that there was 

no significant difference in the physico-chemical properties of water from the six sampling 

areas was therefore rejected. Since the p-value was less than the significance value (0.05) there 

were strong reasons to reject the null hypothesis. The Fobs (2.82) was also greater than the Fcrit 

(2.32) which also made it possible to reject the null hypothesis. 

 

Table 4.9 Nitrite data (Field data, 2016) 

NO3      
Groups Count Sum Average Variance   

Dopeni 15 4,011 0,2674 5,2E-05   
Fondwe 15 4,047 0,2698 1,76E-05   
Maangani 15 4,109 0,273933 3,22E-05   
Mphaila 15 4,062 0,2708 0,000219   
Musekwa 15 4,257 0,2838 0,000701   
Pfumbada 15 4,002 0,2668 0,000237   
F-table       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 0,002961 5 0,000592 2,823328 0,020917 2,323126 

Within Groups 0,01762 84 0,00021    
Total 0,020581 89         

 

From the ANOVA results of all physico-chemical properties of water, it can be concluded that 

in seven out of nine instances, the p-value was higher than the significance value. This meant 
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that the null hypothesis in many instances was not rejected and that there was no significant 

difference between the six studied sites in terms of physico-chemical properties of water. 

Although there was no significant difference between macroinvertebrate abundance from the 

six studied sites the diversity could be explained by a host of different factors, including the 

general set up or the environmental conditions of the study area, such as the nature of the slope 

and the degree of human impact.   

 

4.4.6 Nitrate (NO-
3) 

Table 4.10 below shows nitrate concentration from the sampling sites. The average nitrate 

concentration ranged from 18.7 to 28.2 ppm.  According to Nordin and Pommen (2009), in 

order to protect freshwater aquatic life the average concentration of nitrate is 3.0 mg.L and the 

maximum concentration is 32 mg.L. However, oligotrophic conditions are considered to have 

nitrate concentrations of less than 0.5 mg L-1 (Mwangi, 2014). However, the acute trigger value 

of 20 mg/L and the chronic trigger value of 1.0 mg/L, 1.7 mg/L, and 2.4 mg/L have been 

recommended for ecosystem protection levels of above 80% (Hickey and Martin, 2009). Since 

nitrate is considered to be less toxic than nitrite due to its limited uptake (McGurk et al., 2006), 

its toxicity from the Nzhelele River was therefore negligible. However, the occurrence of algal 

growth at Maangani could be strongly associated with increased levels of nitrate at certain 

points along the river. This also explains the high values (42%) of occurrence of Thiaridae 

from this sampling site which tolerate more polluted environments. Pfumbada recorded the 

highest nitrate concentration average and was also the second sampling site after Maangani to 

have recorded high macroinvertebrate abundance values. Niyogi et al. (2007) have similarly 

observed that macroinvertebrate density increases when nutrient concentrations and fine 

sediments in a river are high. Some river sections at Maangani had algae blooms to indicate 

that the river was loaded with nutrients. This also explains why Maangani recorded the highest 

number (178) of macroinvertebrates than other sampling sites. This also explains why 63% of 

the macroinvertebrates sampled at Maangani were highly tolerant to pollution while only 17% 

were very sensitive to pollution. The remaining 20% was moderately tolerant to pollution. In 

total, Maangani had 37% of organisms that were intolerant to pollution. It could be argued that 

nitrite concentration was positively correlated with higher abundance values of pollution 

tolerant macroinvertebrates Therefore, the role of nitrate in the determination of 

macroinvertebrate communities was found to be minimal because of its average concentration 

values of below maximum of 32 mg.L and it has been considered less toxic than nitrite. An 
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interesting observation by Guevara-Mora et al. (2017) was that the concentration of nitrogen 

and phosphorus in water bodies does not always lead to drastic environmental conditions, but 

McKinney (2012) have stated that elevated nitrates in streams have effects on some aquatic 

invertebrates. There was no significant difference in nitrate concentration between the 

sampling sites. This difference might be caused by the location of subsistence agricultural 

fields along the river and the utilisation of the river for various purposes. The presence of algae 

at Maangani area indicated a problem of cultural eutrophication. From the F-table, since the p-

value was greater than significance value (0.05) the null hypothesis was therefore accepted 

because there was no significant difference in the concentration of nitrites from the sampling 

sites.  

 

Table 4.10 Nitrate data (Field data, 2016) 

NO3-      

Groups Count Sum Average Variance   

Dopeni 15 281,64 18,776 0,073183   

Fondwe 15 306,26 20,41733 2,553535   

Maangani 15 310,57 20,70467 0,571627   

Mphaila 15 291,618 19,4412 2,639219   

Musekwa 15 282,421 18,82807 2,961959   

Pfumbada 15 423,913 28,26087 36,66884   

       F-table       

Source of Variation SS df MS F P-value F crit 

Between Groups 978,1453 5 195,6291 25,81519 1,08E-15 2,323126 

Within Groups 636,557 84 7,57806    

Total 1614,702 89         

 

4.4.7 Water temperature 

Table 4.11 below shows water temperature ranges from the study sites. The average 

temperature from the six sampling sites ranged from 16.15 to 20.9°C. Temperature ranges 

differed from one area to another. Temperature has been identified as one of parameters that 

affects the distribution and abundance of macroinvertebrate communities. According to Eady 

(2011), some macroinvertebrates such as Hydrophilinae, Chironomidae, Veliidae families and 

others tend to increase in abundance between winter and autumn while other families such as 

Chironomidae and Coenagrionidae are found throughout all seasons. The findings indicate that 

stream temperature played a significant role on the abundance of other macroinvertebrates. 

Since the samples were collected between February and December of 2016 when the 
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temperatures ranged from less favourable to favourable due to seasonal changes, it was not 

surprising that only 9 different families of macroinvertebrate were sampled across all six areas. 

From the observation by Eady (2011) it could be concluded that more families of 

macroinvertebrates could have been sampled if sampling was done in late spring and summer. 

A finding by Grab (2014) showed that abundance of macroinvertebrate families, especially 

Family Heptageniidae, decreased with decreasing temperature. The lower diversity or 

abundance of the Heptageniidae family along the Nzhelele River could be attributed to the time 

of sampling. While temperature could be directly linked to the abundance of pollution 

intolerant organisms such as Heptageniidae, it might have also determined the abundance of 

this family along the Nzhelele River. The average temperature at Dopeni was 18.11 ºC, and 

this was the sampling area which hosted 80% of pollution intolerant organisms (Families 

Ashnidae, Elmidae and Heptageniidae). The Family Heptageniidae (Ephemeroptera) were 

found to be the most abundant at Dopeni, suggesting that they survive well at these 

temperatures. Ausseil (2013) posited that Ephemeroptera and Plecoptera are sensitive to 

increased temperature ranges. This explains the dominance of the Family Heptageniidae (29%) 

at Dopeni sampling site. However, a higher value for Heptageniidae was recorded at Mphaila 

which recorded 6% of pollution tolerant organisms (6%) (Family Chironomidae). The Family 

Heptageniidae constituted (39%) of the total number of macroinvertebrates sampled at 

Mphaila. The average temperature for this sampling area was 18.74 ºC which resembled the 

Dopeni average temperature. Fondwe recorded the lowest average temperature of 16.15 ºC and 

it was characterised by 76% of pollution tolerant families Thiaridae, Chironomidae, 

Coenagrionidae and Nepidae. All of these organisms tolerate temperature ranges of 8-30 ºC 

with the Nepidae, Heptagennidae and Ecnomidae families reflecting a drop in diversity at 

temperatures below 12 ºC and above 25 ºC (Dallas, 2009). It was however, surprising to find 

the occurrence of the Family Heptageniidae at Maangani which recorded an average 

temperature of 21.72 ºC.  

At a maximum temperature of 21.5 ºC Ephemeroptera starts to decline in diversity and 

abundance (Ausseil, 2013). Ephemeroptera was absent at Musekwa sampling site which 

recorded an average temperature of 22 ºC, suggesting the order sensitivity to elevated 

temperatures. Since Musekwa had numerous indigenous agricultural fields next to the river it 

was not surprising for the area to have higher temperature averages because of lack of 

vegetation along the banks of the river as well as the continuous utilisation of the river for 

various purposes. Deborde et al. (2016) noted that warmer temperatures due to decreased 
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riparian vegetation cover are a characteristics of agricultural and mixed areas. It was also not 

surprising to find the Family Aeshnidae (Odonata) across the six sampling sites and also being 

the second highest group after the Family Thiaridae (Gastropoda) because these organisms 

together with Coleoptera, Diptera and Hemiptera families are less affected by significant 

changes in temperature (Fulan et al., 2011). The results from the F-table suggested that the null 

hypothesis was accepted since the p-value was greater than the significance value (0.05). It was 

therefore concluded that there was no significant difference between temperature averages 

across the six sampled sites along the Nzhelele River. 

 

Table 4.11 Water temperature data (Field data, 2016) 

Temperature       

Groups Count Sum Average Variance   

Dopeni 15 271,7 18,11333 0,006952   

Fondwe 15 242,3 16,15333 0,041238   

Maangani 15 325,8 21,72 0,087429   

Mphaila 15 281,1 18,74 1,106857   

Musekwa 15 330 22 0,371429   

Pfumbada 15 314,17 20,94467 0,363841   

       F-table       

Source of 

Variation SS df MS F 

P-

value F crit 

Between 

Groups 403,3645 5 80,67291 244,742 

1,64E-

48 2,323126 

Within Groups 27,68844 84 0,329624    

Total 431,053 89         

 

4.4.8 pH 

Table 4.12 below shows the pH range of the Nzhelele River at six different sites. The average 

pH values ranged from 7.04 to 8.62. According to Balachandran et al. (2012), the pH of natural 

waters ranges from 6 to 8.5 and values above 7 are considered alkaline and indicate the 

presence of CO2 and more organic matter content.  Figure 4.12 below shows pH range across 

the six sampled sites. From Figure 4.5 it can be seen that the pH of all studied areas was 

between 6 and 8.5, which is conducive for the survival of many macroinvertebrates. At this pH 

range it can be concluded that many macroinvertebrate families survive because their 

abundance depends on the pH values of water. Tripole et al. (2008) have indicated that the 

Family Aeshnidae have a pH tolerance range of between 6.7 and 8.9. This explains their 
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abundance and occurrence across all sampled sites. However, the Elmidae and Chironomidae 

families have been found to have a pH tolerance range of 3.6-9.5. These families have a broader 

pH tolerance range than other families. The pH range falls between 6 and 9 and at this range 

many macroinvertebrates survive, even though ranges for the Elmidae and Chinoromidae 

families are lower than 6. This means that these two families can survive under saline 

environments.   According to USEPA (1997), most macroinvertebrates survive at a pH range 

of 6.5-8.0.  Maangani, Musekwa and Pfumbada recorded pH averages that were slightly 

alkaline, ranging from 7.89 to 8.62. It was not surprising that the Family Thiaridae recorded 

the higher abundance values for each of the three sampling sites, an indication that these 

organisms thrive well under alkaline aquatic conditions. A similar observation was made by 

Sharma, et al. (2013) who noted in their study that alkaline conditions favour abundance of 

molluscan populations. The same was true for Maangani, Musekwa and Pfumbada. Mphaila, 

which also recorded an alkaline pH of 7.73 but did not record the presence of a single Gastropod 

specimen. Dopeni and Fondwe, with pH values of 7.04 and 7.03 respectively recorded low 

abundance values of the Family Thiaridae of below 25. From the ANOVA results, the null 

hypothesis that there was no significant difference between physico-chemical properties of 

water between six areas was accepted. This was because the p-value was greater than the 

significance value (0.05). 

 

Table 4.12 pH data (Field data, 2016) 

Groups Count Sum pH range Variance   

Dopeni 15 105,64 7,042667 0,019135   

Fondwe 15 105,59 7,039333 0,058721   

Maangani 15 129,37 8,624667 0,003284   

Mphaila 15 116,04 7,736 0,123783   

Musekwa 15 118,42 7,894667 0,08127   

Pfumbada 15 124,39 8,292667 0,047435   

       F-table       

Source of 

Variation SS df MS F 

P-

value F crit 

Between Groups 31,24806 5 6,249613 112,3938 

1,08E-

35 2,323126 

Within Groups 4,670787 84 0,055605    

Total 35,91885 89         

 



73 
 

Dopeni and Fondwe had lower pH values than other study areas. The pH values for the two 

areas are in the region of 7, which is considered neutral. However, the pH from six study sites 

fall within the acceptable ranges of 3.6 and 9.5 which is suitable for many types of 

macroinvertebrates.   

 

 

Figure 4.5 pH range per sampling point per sampling site (Field data, 2016) 

 

An interesting observation by Hussain (2012) was that values below 5 and greater than 9 are 

regarded as lethal or harmful to macroinvertebrates. Since pH range across all six sampling 

sites fell between 6 and 9, it was evident that these ranges were suitable for the existence of a 

variety of macroinvertebrates. The nine (9) families could have not been directly influenced by 

pH but water temperature because sampling was done between February and November of 

2016 when temperatures differed seasonally. However, seasonal variations in water 

temperature and pH was not considered in this study but averages for the sampled periods were 

considered. Since the average pH ranges fell within the suitable limits for macroinvertebrate 

survival it can therefore be asserted that pH did not negatively impact on macroinvertebrate 

diversity. Since samples were collected during the dry season due to drought it was not 

surprising that no extreme values were recorded. Souto et al. (2011) noted that lower pH values 

are a characteristic of dry seasons while high DO and conductivity values are common during 

the rainy season. This explains the relatively lower TDS and conductivity values which were a 

result of the 2015/ 2016 drought period.  
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4.4.9 Total Dissolved Solids (TDS) 

Tables 4.13 and 4.14 below show TDS and electric conductivity data from the six sampling 

sites along the Nzhelele River. The two variables are considered the same hence they have been 

interpreted simultaneously. The average TDS values ranged from 74.37 (Fondwe) to 549.93 

mg.L (Pfumbada). High conductivity and TDS readings are often associated with nutrient 

inputs from agricultural fields (Al-Shami et al., 2011; Piggott et al., 2012). TDS measurements 

were considered because it has been noted that spatial distribution of macroinvertebrates is 

sometimes a function of the TDS. Timpano et al. (2010) note that elevated levels of TDS are 

known to be stressors for aquatic life. However, Olson and Hawkins (2017) have noted that 

several genera of Plecoptera and Trichoptera are not strongly affected by TDS concentrations. 

A study by Timpano et al. (2010) showed that mayfly taxa (Ephemeroptera) abundance did not 

respond to an increase in TDS. This suggests that elevated TDS affects mayfly richness but not 

overall order abundance (Green et al., 2000; Pond, 2004; Pond et al., 2008; Timpano et al., 

2010).  

 

Maangani, Musekwa and Pfumbada recorded higher TDS averages than all other sampled sites. 

Interestingly, Pfumbada recorded 48% of pollution tolerant organisms, suggesting that the 

higher TDS values did not adversely affect pollution intolerant organisms. It was therefore, not 

surprising that Elmidae were common at Dopeni, Mphaila, Musekwa and Pfumbada because 

these sampling sites recorded TDS averages of 100,87 µS.cm-1 and above. Mazzoni et al.  

(2014) reported that Elmidae and Simuliidae families  are associated with higher conductivities 

in the region of 100 µS.cm-1. The same is true with these four sampling areas. The Family 

Elmidae were absent at Fondwe and Maangani sampling sites, with TDS averages of 74.37 and 

476.06 µS.cm-1 respectively. Even though Maangani recorded a higher TDS value the absence 

of this family suggested that other environmental variables could have accounted for their 

absence.  Again, the presence of the Family Chironomidae at Mphaila and Pfumbada was 

strongly linked to high TDS values but their absence at Maangani could have been the effect 

of other environmental variables. This is because organisms such as gastropod, Family 

Baetidae, Chironomidae and Culicidae are to known perform better at higher TDS ranges of 

above 300 µS.cm-1 (Olson and Hawkins, 2017). The higher percentage of the Family Thiaridae 

(Gastropoda) at Maangani, Musekwa and Pfumbada sampling sites suggested that these 

organisms tolerated higher TDS concentrations and a wide range of environmental parameters 

and survived in many environments as noted by Adeogun and Fafione (2011). Flores and 

Zafaralla (2012) also noted that freshwater gastropods are organisms that are tolerant of habitat 
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diversity and variability, enabling them to colonise habitats quickly. Mphaila was the only 

sampling area where the Family Thiaridae was not recorded even though a higher TDS average 

of 304 µS.cm-1 was recorded. Even though the Family Ecnomidae (Trichoptera) are known to 

be the least affected by variations in the concentration of TDS (Kefford et al., 2010) their 

presence in only one sampling area suggested that other environmental variables were 

responsible for their absence. From the ANOVA results, the null hypothesis was accepted since 

the p-value was greater than the significance value (0.05) and the results from the ANOVA 

table indicated that there was no significant difference in the TDS concentration averages from 

the six sampling sites.  

 

Table 4.13 TDS data (Field data, 2016) 

TDS             

Groups Count Sum Average Variance     

Dopeni 15 1513,1 100,8733 0,126381     

Fondwe 15 1115,6 74,37333 0,01781     

Maaangani 15 7141 476,0667 21,92381     

Mphaila 15 4560 304 15255,14     

Musekwa 15 6915 461 5,428571     

Pfumbada 15 8249 549,9333 691,4952     

F-table             

Source of 

Variation SS df MS F 

P-

value F crit 

Between 

Groups 3080335 5 616066,9 231,3992 

1,47E-

47 2,323126 

Within Groups 223637,9 84 2662,356       

Total 3303972 89         

Table 4.14 Electric conductivity data (Field data 2016) 

Conductivity      
Groups Count Sum Average Variance   

Dopeni 15 2530 168,6667 0,238095   
Fondwe 15 1861,6 124,1067 0,174952   
Maangani 15 11913 794,2 56,74286   
Mphaila 15 7873 524,8667 65753,41   
Musekwa 15 11521 768,0667 32,06667   
Pfumbada 15 13674 911,6 2725,114   

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 8480418 5 1696084 148,4153 

3,69E-

40 2,323126 

Within Groups 959948,4 84 11427,96    
Total 9440366 89         
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4.5 Environmental degradation 

The degree of environmental degradation along the Nzhelele River was based on Index of 

Habitat Integrity as defined by Kleynhans et al. (2008). Since the river and its immediate 

environment were being utilised for various purposes such as settlement, agriculture, water 

extraction, laundry, and livestock watering, it was therefore necessary to study the habitat 

integrity in order to determine its influence on water quality and macroinvertebrate 

composition. For example, degraded environments are associated with pollution tolerant 

organisms. Table 4. 15 below shows the results of an assessment of modification of instream 

habitat integrity from the six studied sites (Dopeni, Fondwe, Maangani, Phaila, Musekwa and 

Pfumbada). The degree of impact has been shown in the third column of Table 4.15 below 

while the second column provided a brief description of the assessment results. The criteria 

used to assess modification of instream habitat has been provided in the first column.  

 

Table 4.15 Assessment of modification of instream habitat integrity (Field data, 2016) 

Criterion Assessment per sampling area Modification 

impact class 

and score 

Water 

abstraction 

Dopeni: Characterised by many agricultural fields along 

the stream. Water extraction pipes and water collection 

activities via trucks and vehicles were present along the 

river.  

Fondwe: Agricultural fields were present and water 

extraction furrows were also present.  

Maangani: Few but small agricultural fields were present. 

Water extraction furrows along the river were present 

Mphaila: New small subsistence agricultural fields were 

developing. No visible water extraction activities along the 

river.  

Musekwa: Many agricultural fields were present and 

water abstraction activities through generators, channels 

and pipes were present. Evidence of water collection 

activities through vehicles was also present.  

Pfumbada: Water extraction through generators was 

evident due to presence of agricultural fields. Water 

collection activities via vehicles and wheelbarrows were 

also present.   

 

Serious (16-20) 

 

 

 

Moderate (6-10) 

 

Moderate (6-10) 

 

 

None (0) 

 

 

 

Critical (21-25) 

 

 

 

 

Serious (16-20) 
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Criterion Assessment per sampling area Modification 

impact class 

and score 

Flow 

modification 

Dopeni: Water channels were present.   

Fondwe: Water extraction furrows were present but very 

few. 

Maangani: Big water extraction furrows were present.  

Mphaila: No modifications were observed.  

Musekwa:  Presence of water channels. 

Pfumbada: Channel straightening at some sections was 

evident.  

Large (11-15) 

Small/ Minimal  

(1-5) 

 

Large (11-15) 

 

None (0) 

Serious (16-20) 

Moderate (11-

15) 

 

Bed 

modification 

Dopeni: Sedimentation and sand extraction were evident 

along some sections of the river.  

Fondwe: Sediment transport was curtailed along some 

points due to reduced river velocity. No sand extractions 

activities were observed.  

Maangani: Sedimentation occurred along some sections 

of the river due to reduced river velocity.  

No sand extraction activities were observed.  

Mphaila: No bed modifications were observed.  

 

Musekwa: Sand extraction activities were high.  

Pfumbada: Sedimentation present along some sections of 

the river due to reduced river velocity. 

 

Serious (16-20) 

 

Small/ Minimal  

(1-5) 

 

Small/ Minimal 

(1-5) 

 

Small/ Minimal  

(1-5) 

Large (11-15) 

Small/ Minimal  

(1-5) 

 

Channel 

modification 

Dopeni: Presence of stream straightening channels 

Fondwe: No visible channel modification but banks at one 

point were deliberately carved to be steep next to the 

agricultural field. . 

Maangani: Small artificial channels were observed. .  

Mphaila: River bed reinforced with cement where river 

crosses a bridge. 

Musekwa: Channel straightening ridges were observed. 

Small artificial channels were also observed.  

Pfumbada: Channel straightening ridges were observed 

Large (11-15) 

Small/ Minimal  

(1-5) 

 

Large (11-15) 

 

Small/ Minimal  

(1-5) 

Serious (16-20) 

 

 

Moderate (11-

15) 
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Criterion Assessment per sampling area Modification 

impact class 

and score 

Water 

quality 

modification 

Dopeni: Too many agricultural fields were present to 

impact on water quality. 

Fondwe: Presence of agricultural fields and river 

utilisation for laundry and livestock watering suggests 

impact on water quality.  

Maangani: Evidence of river utilisation, proximity of the 

settlement of Maangani, water extraction presence of 

agricultural fields and livestock watering suggest an 

impact on water quality.  

Mphaila: Very few agricultural fields suggest minimal 

impact on water quality.  

Musekwa: Presence of many subsistence agricultural 

fields, water extraction, river utilisation for laundry and 

livestock watering suggest impact on water quality.  

Pfumbada: Presence of subsistence agricultural fields and 

river utilisation for laundry and livestock watering suggest 

impact on water quality.  

Moderate (6-10) 

 

Moderate (6-10) 

 

 

Moderate (6-10) 

 

 

 

Small/ Minimal  

(1-5) 

Large (11-15) 

 

 

 

(Moderate) (6-

10) 

Inundation Inundation is caused by the presence of bridges at Dopeni, 

Fondwe, Mphaila, Musekwa and Pfumbada.  

 

Small/ Minimal  

(1-5) for all 

areas. 

None (0) 

Exotic 

macrophytes 

No exotic macrophytes were observed from all six areas.  None (0) 

Exotic 

aquatic 

fauna 

No exotic aquatic fauna were observed in all areas.  None (0) 

Solid waste 

disposal 

Dopeni: Illegal solid waste dumping occurs along the river 

where sand mining is also active.  

Fondwe: Solid waste disposal occurs along some parts of 

the river but very minimal.  

Maangani: Solid waste disposal is present along the 

stream.  

Mphaila: There was no evidence of solid waste disposal.  

Musekwa: Solid waste disposal is present along various 

parts of the river.  

Pfumbada: There were no visible signs of solid waste 

disposal. 

Serious (16-20) 

 

Small/ Minimal  

(1-5) 

Small/ Minimal  

(1-5) 

None (0) 

 

Serious (16-20) 

 

None (0) 
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4.5.1 Water abstraction 

From the results in Table 4.15 above, water abstraction activities at Dopeni were found to be 

serious or intensive, with a rating of 16-20. Several activities such as water collection, laundry 

activities, livestock watering, water extraction via pipes and dirt roads across the river create 

water quality challenges at certain points or sections of the river. The same results or 

observations were recorded at Pfumbada. The rate of water extraction was serious due to 

proximity of agricultural fields and livestock watering. The existence of generators and 

extraction pipes indicates the seriousness of extraction activities. This poses a serious challenge 

on the quality of water and the resident macroinvertebrates in some sections of the river. Water 

abstraction activities can be directly linked to point source pollution. This also explains why 

Pfumbada had pollution tolerant families (Chironomidae, Nepidae and Thiaridae), making a 

total of 48% of all macroinvertebrates that were sampled at Pfumbada site. However, since 

water abstraction cannot always be linked with water pollution some abstraction activities were 

carried out in areas where macroinvertebrates were not sampled. Interestingly, the activities 

around the Dopeni sampling site might not have impacted on the abundance of pollution 

intolerant organisms because the percentage of macroinvertebrates that were intolerant to 

pollution was found to be 80%, with only the Family Thiaridae  (pollution tolerant) making the 

remaining 20%.  

However, Musekwa’s situation was found to be critical because of the high rate of water 

abstraction to nearby indigenous agricultural fields. This could have been created by the 

proximity of Musekwa village to the river, which was approximately 150 m. The situation was 

so critical that the area was dominated by the majority of pollution tolerant macroinvertebrate 

families (Potamonautidae and Thiaridae). Musekwa also recorded the lowest number of 

macroinvertebrates than all other sites. Pollution tolerant organisms constituted 60% of the 

total number of macroinvertebrates that were sampled from this site. The extremely low flows, 

due to previous droughts of 2015/ 2016 were suspected to have been exacerbated by excessive 

water abstraction. Musekwa and Dopeni were found to be the only villages with many 

agricultural fields close to the river. Conditions of water abstraction at Maangani and Fondwe 

were found to be moderate (11-15). Even though the two sites were characterised by low flows 

the rate of water abstraction was considered moderate due to fewer agricultural fields compared 

to Musekwa. However, the composition of pollution tolerant organisms at these two sites was 

found to be 63 and 76% respectively. Mphaila did not have any water abstraction activities and 
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even the agricultural fields that were present were still new because they existed in areas which 

never existed during field observation in 2015.  

 

4.5.2 Flow modification 

The severity of flow modification was found to be serious at Musekwa. The river flow was 

modified through the creation of water channelling ridges to channel water to subsistence 

agricultural fields. It is the only site with many agricultural fields that lie adjacent to the 

Nzhelele River. Modification might have directly affected macroinvertebrate composition 

along the river. This is because many sections of the river from all sampled sites were 

characterised by very slow to slow velocities. This explains the presence of organisms that 

favoured slow velocity conditions such as Ecnomidae (Trichoptera), Chironomidae (Diptera), 

Nepidae (Hemiptera) and Thiaridae (Gastropoda) families. Even though the Family 

Chironomidae were associated with low river velocities, an interesting observation by Everaert 

et al. (2014) was that Chironomids also existed in fast flowing waters making it difficult to 

correlate them with environmental variables. Changes to river channels will also change flow 

characteristics which changes macroinvertebrate composition. For example, Thirion (2016) has 

noted that runs develop into riffles when conditions are changed to low flows. This supports 

the view that macroinvertebrate richness and diversity decrease with low flows (Rolls et al., 

2012). Musekwa site had 60% of macroinvertebrates that were highly tolerant to pollution 

(Families Thiaridae and Potamonautidae) while the remaining 40% were moderately tolerant 

to pollution (Families Aeshnidae and Elmidae). It was not surprising that the Family 

Heptageniidae and other ETP groups were missing from Musekwa site because these 

organisms are known to be dominant in moderately fast moving waters (Thirion, 2007). This 

shows that continuous and prolonged utilisation of the river will change its water quality so 

much so that it favours pollution tolerant organisms. The site lacked a single organism from 

the Order Ephemeroptera such as Family Heptageniidae. The level of modification of the river 

at Dopeni and Maangani were considered large because like with Musekwa, the two areas were 

characterised by the presence of channelling ridges but at a smaller scale compared to Musekwa 

site. Fondwe site was considered to have a small modification problem because flow 

modification was confined to one area along the entire sampled site. Mphaila was found to be 

the only area without any modification to the flow characteristics of the river. It is not surprising 

that this area has the highest number of pollution intolerant organisms (Family Heptageniidae). 

Only 6% of the total number of macroinvertebrates was highly tolerant to pollution. Any 
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changes to flow characteristics of the river will ultimately alter aquatic diversity, including 

macroinvertebrates. Caletkova et al. (2012) have noted that extremely low flows are associated 

with a loss in aquatic habitat, which leads to decreased biological diversity. The same was true 

with the Musekwa site.  

 

4.5.3 Bed modification  

Dopeni site was found to have a serious bed modification problem due to activities such as 

sand mining and the creation of short-cut dirt roads across the river. In some areas where 

samples were collected it was evident that the riverbed was modified through the creation of 

artificial riffles which were built by the assemblage of rocks on the river bed. In some places 

dirt roads which were created through rocks altered the riverbed and flow characteristics at that 

particular sampling points. This changed runs into riffles and determined the resident 

macroinvertebrate such as pollution intolerant families Aeshnidae, Elmidae and Heptageniidae. 

This suggested that bed modifications created turbulent conditions which minimised the effects 

of pollutants, hence the dominance of pollution intolerant organisms at Dopeni sampling site. 

The Family Thiaridae also existed because they are known to master a variety of environments. 

At Musekwa, the bed modification was considered to be large. The only cause of bed 

modification was sand mining by the local community. In areas where sand was excessively 

mined the runs became pools and at some sampling points the velocities were significantly 

reduced. Just like Maangani, Musekwa village was found to be closer (approximately 150 m) 

to the Nzhelele River. This means that in years to come the level of bed modification will 

change from large to critical. Interestingly, bed modification at Fondwe, Maangani, Mphaila 

and Pfumbada was considered to be small or minimal due to river sedimentation at some points 

which was caused by reduction in river velocity. The only noticeable bed modification at 

Mphaila was the cement river bed that was built during the construction of a bridge in order to 

curb surface erosion in the vicinity of the bridge to prevent it from collapsing. Generally the 

degree of bed modification from all the studied sites was on average small (minimal) but this 

poses future threats to the hydrodynamics of the river as long as the river is continuously 

utilised by members of the community. The reduction in flow velocities impacts on the 

distribution or presence of macroinvertebrates. For example, Pan et al. (2015) have noted that 

rivers with stable and heterogeneous habitats favour the assemblages of benthic taxa and the 

existence of cobbles create a variety of habitats that favour a variety of macroinvertebrates. 

Duan et al. (2011) have similarly noted that the presence of many cobbles in a river increases 
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the attachment area for benthic macroinvertebrates such as Heptageniidae (Ephemeroptera), 

Elmidae (Coleotera), Potamonautidae (Decapoda), Aeshnidae (Odonata) and Ecnomidae 

(Trichoptera). However, cobbles substrate was observed at Fondwe, Mphaila and Pfumbada. 

Bedrock streams like at Maangani, support macroinvertebrates such as Heptageniidae 

(Ephemeroptera), Chironomidae (Diptera), Elmidae (Trichoptera) and Ecnomidae 

(Trichoptera) (DWAF, 2007; Duan et al., 2011). An interesting observation was that from the 

above listed macroinvertebrates many were absent from the substrates that were listed to favour 

them. For example, at Maangani, only the Family Heptagennidae was among the listed group 

of organisms that favours bedrock streams. Duan et al. (2011) have noted that streambeds of 

degraded rivers have substratum made of cobbles, gravel and sand and these rivers are more 

often unstable. This situation was observed at Dopeni and Musekwa. The state of the river is 

well reflected by the abundance values at Musekwa. Musekwa recorded the lowest abundance 

values (72) to show the severity of a degrading stream. These types of substrates often support 

families such as Heptageniidae (Ephemeroptera), Chironomidae (Diptera), Ecnomidae 

(Trichoptera) and Elmidae (Coleoptera). From the listed macroinvertebrates only families 

Elmidae and Heptageniidae existed at Dopeni. The Elmidae family was recorded at Musekwa 

site only.  

 

4.5.4 Channel modification 

The degree of channel modification has been likened to the degree of flow modification. The 

situation at Musekwa was considered serious due to the existence of numerous artificial 

channel ridges along the river. However, the situation at Pfumbada was considered moderate 

because water channelling through artificial ridges was confined to fewer areas. However, at 

Dopeni and Maangani the degree of channel modification was considered large due to the 

existence of numerous channelling ridges. The situation at Fondwe and Mphaila was 

considered small because channel modification was confined to one specific area along the 

river. For example, at Mphaila, the bank was fortified with rocks to minimise mass wasting 

along the banks. This was meant to reduce lateral erosion of the river at that point. At Fondwe, 

the bank at one point was steeply carved to prevent water from flooding the adjacent 

agricultural field. Alouch (2012) has indicated that channelization of rivers leads to a decrease 

in aquatic habitat. Alouch (2012) further argued that channelization creates peak stream flow 

and leads to reduced benthic substrate heterogeneity. Channelization therefore, reduces habitat 

size quality and the abundance of the resident macroinvertebrates. The same was true with the 
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Musekwa site where channel modification was serious. This means that the connectivity of the 

river had been disturbed and formerly inundated areas became dry, leading to a reduction in 

macroinvertebrate habitat and abundance. An interesting observation by Hill et al. (2016) was 

that channelization, flow regulation and embankment disconnect floodplains from rivers. 

Floodplains, according to Gerken (2015), are considered to be biologically diverse habitats and 

have many ecological benefits such as retention of important nutrients for macroinvertebrates 

and other aquatic biota. The low water quantities and low flow regimes along the river at 

Musekwa cut water from reaching the floodplains making it impossible for floodplains to 

provide nutrients to macroinvertebrates during flooding or flash floods. However, channel 

modification at Musekwa and Pfumbada showed signs of aquatic habitat fragmentation. This 

seemed to have been exacerbated by low flows and low water quantities. The formerly 

inundated riverbeds have become isolated islands in a river. These isolated fragments now 

serve the adjacent water with nutrients that are precipitated on them, which are a good source 

of macroinvertebrates and pollution intolerant taxa such as Heptageniidae.  The creation of 

isolated pools in a river due to drought changes lotic conditions into lentic conditions and this 

leads to the absence of EPT groups and Family Simuliidae, but Heteroptera and Odonata 

increase in numbers (Bogan et al., 2013; Barrios, 2015). This explains the omnipresence of the 

Family Aeshnidae (Odonata) at all sampling sites. However, the Family Coenagrionidae 

(Odonata) were found in extremely flowing sections of Nzhelele River even though they are 

known to proliferate in moderately fast waters (Thirion, 2007). This makes the reliance on 

water velocities to categorise macroinvertebrate assemblages problematic.  

 

4.5.5 Water quality modification  

The deterioration of water quality at Dopeni, Fondwe Maangani and Pfumbada were 

considered to be moderate despite the fact that Dopeni had large scale water abstraction 

activities. Dopeni, Maangani, Mphaila and Pfumbada had the Ephemeroptera family  

(Heptageniidae) which were highly intolerant to pollution, suggesting that some sections of the 

river along these sampling sites were not severely affected by water abstraction activities. The 

deterioration of water quality at Mphaila was found to be small because the area had the highest 

number of Ephemeroptera (Family Heptageniidae) specimen. The presence of these organisms 

signified conditions of good water quality. This was because the current agricultural fields 

along the area where samples were collected were zoned after the 2015 field observation. As a 

result, the impact of agriculture had not fully manifested itself. The water quality condition at 
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Musekwa was found to be of serious concern and this was evident in the number of pollution 

tolerant organisms which constituted 60% of the total number of macroinvertebrates sampled 

at Musekwa. The remaining 40% were moderately tolerant to pollution. Not a single pollution 

intolerant organism (EPT) was found at Musekwa, suggesting that the situation needs 

immediate attention. This suggests that agricultural activities along the river contributed to the 

types of resident macroinvertebrates due to changes in water quality. Pracheil (2010) has 

indicated that land-use for agricultural purposes has been associated with a decline in the 

quality of water, biological diversity and the complexity or heterogeneity of the aquatic 

habitats.  

Agricultural development leads to clearing of vegetation and increased runoff into the river. 

Litvan et al. (2008) noted that sediments that are deposited into the riverine ecosystems due to 

surface runoff often cover rocky substrates and these substrates form habitats for 

macroinvertebrate families such as Heptageniidae (Ephemeroptera), Potamonautidae 

(Decapoda), Aeshnidae (Odonata) and Ecnomidae (Trichoptera) (DWAF, 2007). According to 

Litvan et al. (2008) these substrates reduce in diversity meaning that the diversity of the 

macroinvertebrates that depend on each substrate will decline in abundance. Interesting, the 

Chironomidae family  which are known to prefer and survive under degraded or polluted 

environments were restricted to Fondwe, Mphaila and Pfumbada, but were absent from 

Musekwa area which was characterised by numerous indigenous agricultural fields. This was 

not surprising because, Chironomids survive in a variety of environmental conditions and are 

tolerant to disturbance (Mereta et al. (2013). This makes them to have weak association with 

environmental variables (Everaert et al., 2014). Adeogun and Fafione (2011) noted that 

Chironomids survive in polluted environments because they possess haemoglobin, a pigment 

which transports dissolved oxygen, enabling them to proliferate and colonise effectively. 

Maangani, which had the highest abundance values (178) (Table 4.1, 4.3 above) than all other 

sampling sites did not record a single Chironomid specimen. This sampling site had 63% of 

pollution tolerant families (Thiaridae, Nepidae and Coenagrionidae). This can be assumed that 

the water quality had been altered because this was the only area where algae was observed. 

The existence of algae however, did not inhibit the occurrence of the Family Heptageniidae 

because it has been noted earlier in this chapter that agricultural inputs favour a variety of 

aquatic insects.     
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4.5.6 Inundation 

Inundation was caused by the presence of bridges in all sampled sites. The degree of inundation 

in all areas was found to be small because inundation occurred only at sampling sites where 

bridges existed. Inundation often leads to sediment deposition at sampling points where the 

cemented bottom which acts as a small levee, is slightly raised under the bridge. This is the 

area where a run is converted into a riffle due to flow disturbance. Lind et al. (2006) have noted 

that once flow regimes have been changed by anthropogenic activities water quality and 

macroinvertebrate communities decline.  However, the degree of inundation in all studied sites 

was considered not to have had considerable impact on the diversity of macroinvertebrates. 

This is because each site had a single bridge and due to low flow regimes as a result of the 

2015/ 2016 drought there was no considerable inundation of high impact observed. The only 

minor change was that at the point of contact with the bridge bottom the runs were converted 

to riffles and the impact was however very small or insignificant.  

 

4.5.7 Exotic macrophytes and aquatic fauna 

No exotic macrophytes and exotic fauna were observed in all the six sites. Even though the 

Nzhelele River is known to have been invaded by invasive species such as Lantana camara 

there were no exotic macrophyte species from all sampled sites. This means that the problem 

of invasion by exotic macrophytes and aquatic fauna was absent from the six sampling sites.  

4.5.8 Solid waste disposal 

The problem of solid waste disposal was found to be serious at Dopeni and Musekwa. There 

was a large volume of solid waste along the Nzhelele River at Dopeni, even along the riparian 

zones. Residues from agricultural fields and domestic waste were evident along the river at 

Musekwa. The situation was considered serious due to the volumes of visible solid waste. 

Fondwe and Maagnani had minimal solid waste disposal problems. Solid waste was scanty and 

occurred in one point along the sampling points and this explains why it was considered small. 

However, the situation at Mphaila was different because there was no evidence of solid waste 

in areas where samples were collected. However, the amount of solid waste seemed to have 

had an impact on water quality and macroinvertebrate composition at Musekwa which was 

characterise by low abundance values. Despite Dopeni having a serious solid waste disposal 

problem along the river, many pollution intolerant organisms were sampled from this site. It 

could be argued that the severity of impact of solid waste depends on its nature, volume and 
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decomposition, explaining less impact at Dopeni. The direct impact will therefore not be 

immediately manifested.   

Table 4. 16 below also shows the results of an assessment of modification of riparian zone 

habitat integrity from the six studied sites of Dopeni, Fondwe, Maangani, Mphaila, Musekwa 

and Pfumbada. Riparian zone habitat is important in providing marginal vegetation as habitat 

for other organisms that require riparian zone for reproduction and feeding. Riparian zone 

habitat also provides shelter for other macroinvertebrates. The alteration or modification of 

riparian zones would mean a direct impact on the river water quality and the organisms found 

in a river. It was necessary to assess habitat integrity because degradation of streams due to 

modification in the pattern of land use is reflected in changes in flows, river water temperature, 

bank erosion and deposition of silt (Cordero-Rivera et al. (2017). Assessing riparian zone 

modification helped to determine the severity or magnitude of change in physical parameters. 

 

Table 4.16 Assessment of modification of riparian zone habitat integrity (Field data, 2016) 

Criterion Assessment per sampling area Modification 

impact class and 

score 

Indigenous 

vegetation 

removal 

Dopeni: Riparian vegetation removal is evident 

along various parts of the river due to sand mining, 

water extraction and large agricultural fields.  

Fondwe: Some parts along the river lack vegetation 

due to the presence of agricultural fields. 

Maangani: Few areas have minimal vegetation 

removal. 

Mphaila: Removal of indigenous vegetation is 

evident along the banks of the river where a bridge 

is present. Development of new agricultural fields 

along the river has also led to the removal of 

vegetation.  

Musekwa: Large parts of the indigenous vegetation 

along the river have been replaced by agricultural 

fields.  

Pfumbada: Few sections of the river along the 

banks lack indigenous vegetation due to paths 

created by water abstraction and agricultural fields.  

Serious (16-20) 

 

 

Moderate (11-15) 

 

Small/ Minimal  

(1-5) 

Small/ Minimal  

(1-5) 

 

 

 

Serious (16-20) 

 

 

Moderate (11-15) 
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Criterion Assessment per sampling area Modification 

impact class and 

score 

Exotic 

vegetation 

encroachment 

Dopeni: Very few or limited sections of the river 

have Opuntia engelmannii (small round-leafed 

prickly pear) 

Fondwe: Presence of Lantana camara and Opuntia 

engelmannii in some limited areas.   

Maagnani: No exotic vegetation encroachment was 

recorded or observed.  

Mphaila: No exotic vegetation encroachment was 

recorded or observed.  

Musekwa: Presence of Lantana camara and 

Opuntia species (Opuntia engelmannii) along the 

riparian zone. 

Pfumbada: No exotic vegetation was observed. 

Small/ Minimal  

(1-5) 

 

Small/ Minimal  

(1-5) 

None (0) 

 

None(0) 

 

Small/ Minimal  

(1-5) 

 

None (0) 

Bank erosion Dopeni: Due to reduced water quantity and low 

stream velocity there was no evidence of active bank 

erosion. 

Fondwe: Minimal bank erosion occurs where the 

river becomes narrow.  

Maangani: Bank erosion is evident along some 

parts of the river bank but is very minimal.  

Mphaila: Bank erosion minimal where the river 

meanders along agricultural fields.  

Musekwa: No observable bank erosion.  

Pfumbada: Bank erosion is minimal where the river 

meanders.  

Small/ Minimal  

(1-5) 

 

Small/ Minimal  

(1-5) 

Small/ Minimal  

(1-5) 

Small/ Minimal  

(1-5) 

None (0) 

Small/ Minimal  

(1-5) 

Channel 

modification 

Dopeni: excavated banks increased river width at 

some sampling points. 

Fondwe: Excavation of banks was evident at some 

sampling points 

Maangani: No visible channel modification.  

Mphaila: Banks have been reinforced by rocks at 

sampling points were bridges were present. 

Musekwa: Banks have been excavated to widen the 

river at some sampling points. Artificial ridges have 

been erected to channel water at some points.  

Pfumbada: Construction of ridges at some 

sampling points to straighten the channel was 

evident. 

Moderate (6-10) 

 

Small/ Minimal  

(1-5) 

None (0) 

Small/ Minimal  

(1-5) 

Moderate (6-10) 

 

 

Moderate (6-10) 
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Criterion Assessment per sampling area Modification 

impact class and 

score 

Water 

abstraction 

Dopeni: Water abstraction for indigenous 

agricultural irrigation happens along the banks. . 

Fondwe: Water collected through small pipes.  

Maangani: Water is collected through small pipes 

and furrows. 

Mphaila: Water collection points were not 

observed.  

Musekwa: Abstraction takes place through 

generators, vehicles and pipes.  

Pfumbada: Water abstraction happens through 

pipes and channel modification.  

Serious (16-20) 

 

Moderate (6-10) 

Moderate (6-10) 

 

Small/ Minimal  

(1-5) 

Critical (21-25) 

 

Large (11-15) 

 

Inundation Inundation is caused by the presence of bridges at 

Dopeni, Fondwe, Mphaila, Musekwa and 

Pfumbada.  

Small/ Minimal  

(1-5)for all areas. 

None (0) 

Flow 

modification 

Dopeni: Water channels are present and they alter 

river flow and create low flows. 

Fondwe: Channelling furrows are present and the 

affect river flow.  

Maangani: Furrows to extract water change river 

direction resulting in low flows 

Mphaila: No flow modification was observed. 

Musekwa: River channelling and ridges created low 

flows and pools.  

Pfumbada: Presence of water channelling affected 

flow changed flow regimes to low flows.  

Large  (11-15) 

 

Small/ Minimal  

(1-5) 

Large (1-5) 

 

None (0) 

Serious (16-20) 

 

Moderate (6-10) 

 

Water quality Dopeni: Non-point and point source pollution from 

neighbouring agricultural fields, laundry activities 

and livestock watering was observed.  

Fondwe: Non-point and point source pollution from 

neighbouring agricultural fields and laundry 

activities were observed. 

Maangani: Point source pollution from laundry 

activities was observed.  

Mphaila: No form of pollution was observed. 

Musekwa: Point source pollution from laundry 

activities, water abstraction and livestock watering 

was observed.  

Pfumbada: Point source pollution from agricultural 

fields.  

Moderate (6-10) 

 

 

Moderate (6-10) 

 

 

Moderate (6-10) 

 

Small/ Minimal  

(1-5) 

Large (11-15) 

 

 

(Moderate) (6-10) 
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4.5.9 Indigenous vegetation removal 

The extent of indigenous vegetation removal along the riparian zones differed from one place 

to another. The assessment results indicated that the state of vegetation removal at Dopeni and 

Musekwa was serious. Musekwa and Dopeni are characterised by indigenous agricultural fields 

along the river and a vast amount of vegetation, including the riparian vegetation have been 

removed. The absence of riparian vegetation means that the river’s capacity to filter pollutants 

has been reduced. Claeson et al. (2014) observed that riparian vegetation produces detritus that 

serves as source of energy for aquatic ecosystems. Changes in the riparian plant communities 

will therefore alter macroinvertebrate composition along a river. Cohen et al. (2012) found that 

changes in the composition of riparian plants can alter aquatic food webs when inputs from 

detritus differ in intrinsic properties.  The conditions at Musekwa were manifested by the lack 

of pollution intolerant organisms such as the Family Heptageniidae but conditions at Dopeni 

were not as serious as at Musekwa area. This might have been the result of lack of vegetation 

and extremely gently sloping landscaping connecting the river which could have accelerated 

the deposition of pollutants and sediments into the river. Hepp et al. (2010) have noted that the 

removal of riparian vegetation eliminates the natural protection mechanisms of rivers against 

erosion, increased sediment inputs and other pollutants. This can be seen by the presence of 

the Family Heptageniidae (29%) and organisms that were moderately tolerant to pollution 

which constituted a total of 51%. The remaining 20% were pollution tolerant organisms of 

Thiaridae family. Bruno et al. (2014) have argued that riparian ecosystems are important in 

determining the structure and functioning of aquatic organisms. The extent of indigenous 

riparian removal at Fondwe and Pfumbada was considered moderate as removal was not 

continuous along the river just like at Dopeni and Musekwa. The situation at Fondwe and 

Pfumbada could have been regarded as critical if the area did not have some vegetated corridors 

along some parts of the river. Even though the conditions at Fondwe and Pfumbada were 

considered moderate, Fondwe recorded the highest number (76%) of pollution tolerant families 

Chironomidae (Diptera), Coenagrionidae (Odonata), Nepidae (Hemiptera) and Thiaridae 

(Gastropoda). The remaining 24% were moderately tolerant to pollution, suggesting the 

absence of pollution intolerant organisms like the Order Ephemeroptera. However, conditions 

at Pfumbada showed that the presence of vegetation at some points along the river allowed for 

the existence of the pollution intolerant families such as Heptageniidae, Aeshnidae and 

Elmidae.  
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Maangani and Mphaila had a minimal vegetation removal problem and the extent of indigenous 

vegetation removal was considered small. However, even though the extent of removal was 

small at Maangani many pollution tolerant organisms (63%) were recorded while Mphaila had 

the lowest number of pollution tolerant organisms (6%). It can therefore be argued that 

conditions at Maangani resulted from the direct input of pollutants from adjacent agricultural 

fields and sand mining. Maangani was the only sampling site where the river was wider due to 

the presence of trees along numerous sections of the banks. Hussain (2012) indicated that rivers 

that are characterised by forests along their riparian corridors tend to be two and half times 

wider than rivers with deforested riparian zones like Musekwa which was characterised by a 

flat terrain but narrow water channel.  

 

4.5.10 Exotic vegetation encroachment  

The extent of exotic vegetation encroachment was considered small in the three sites of Dopeni, 

Fondwe and Musekwa. The other three sites where samples were collected had no exotic 

vegetation. There were no exotic vegetation observations at Maangani, Mphaila and Pfumbada 

at sampling points where sampling was conducted. The presence of Opuntia species (Opuntia 

engelmannii) (small round-leafed prickly pear), Lantana camara (tick-berry) and Dodonaea 

angustifolia (sand olive) at Dopeni, Fondwe and Musekwa indicated that these species could 

have colonised the areas after the clearing of riparian zone and the adjacent land for agriculture. 

McNeish et al.  (2017) similarly observed that the invasion of riparian zones by invasive 

species leads to near-monocultures along river systems and often enables opportunistic species 

to colonise some sections of the river and the ecological functions of the riparian zone at the 

point where invasive biota are recorded are partly disturbed or altered.  

The role of indigenous vegetation such as the provision of shade and organic matter has been 

altered by the presence of this invasive biota. Stockan and Fielding (2013) have noted that 

riparian vegetation often provides shading to adjacent water bodies and reduce the proliferation 

of algae. This was evident at Maangani where algal bloom was observed along the sections 

parallel to the agricultural fields while on the eastern part of the river banks where dense trees 

were present algal blooms were not observed. No other site recorded the presence of algal 

blooms except Maangani. Cordero-Rivera et al. (2017) have noted that the presence of 

Eucalyptus trees leads to the reduction of macroinvertebrates in streams characterised by small 

forests. However, the diversity of macroinvertebrates at Dopeni, Fondwe and Musekwa has not 
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been directly linked to the effects of invasive biota but rather, the water quantity, quality and 

flow regimes of the 2015/2016 drought. This was because the density of these invasive species 

from the three places was considered too low to have a significant impact on the stream 

functioning. The main threats were flow regimes, water quantity, quality, and land-use 

activities along the river. However, the presence of these alien species was directly linked to 

agricultural activities along the river. Turpie et al. (2008) have indicated that the alien plants 

that have invaded the Cape fynbos originated from commercial plantations and woodlots on 

farms. It can therefore be argued that there is a strong link or relationship between invasive 

alien plants and anthropogenic activities such as agriculture. The low flows at Musekwa, the 

presence of Lantana camara and Opuntia species, as well as low macroinvertebrates 

abundance values were complex to understand but the impact of very few alien species could 

not have not accounted for such low macroinvertebrate diversity.  Figure 4.6 below shows 

Opuntia species that was found to be common along the riparian zones and adjacent landscapes 

of the Dopeni, Fondwe and Musekwa.  

 

 

Figure 4.6 Opuntia engelmannii (Prickly pear) that was found to be common at Dopeni, 

Fondwe and Musekwa (Field data: 2016)     
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4.5.11 Bank erosion 

There were no visible signs of active bank erosion at Musekwa because the site was 

characterised by a flat terrain (Figure 4.7 below). However, bank erosion in the other five sites 

(Fondwe, Maangani, Mphaila Musekwa, and Pfumbada) was very minimal due to the low flow 

nature of the stream. The river water was at its lowest and only small areas along the river 

suffered bank erosion which was generally associated with sedimentation in the river. Lack of 

erosive power led to poor bank erosion. The situation at Fondwe, where an agricultural field 

was located at the meander belt meant that should the river receive water inputs from 

precipitation bank erosion would be severe and more sediments and increased cultural 

eutrophication will take place. Channel instability and bank erosion are directly influenced by 

deforestation and agricultural land use patterns (Simpson et al., 2014). Once riparian vegetation 

has been removed for agricultural purposes, bank stability becomes weakened, making the river 

to be unstable. Sullivan et al. (2004) noted that unstable rivers more often change their course 

of flow by metres per annum and create new channels. Such streams are characterised by bed 

degradation, channel widening and platform adjustment process (Sullivan et al., 2004). The 

degraded beds were only observed at Musekwa and Dopeni, with Musekwa having a wider 

channel but low water quantity. Maangani’s wetted perimeter was greater than in all studied 

sites. Sites that suffered minimal bank erosion were Fondwe, Maangani, Mphaila and 

Pfumbada. Even though there was no evidence of bank erosion at Musekwa due to its flat 

terrain, it can be concluded that the water surface area was very low, leading to a reduction in 

aquatic habitat heterogeneity.  Mukundan et al. (2010) have noted that bank erosion leads to a 

reduction in the physical and biological functions of streams. This could not be true for six 

studied areas which had minimal bank erosion. The effect of bank erosion from the six 

sampling sites was considered to be insignificant because there was no evidence of active bank 

erosion at the time of sampling due to reduced river flow.  

 

  



93 
 

 

Figure 4.7 Flat terrain and reduced river flow of the Nzhelele River at Musekwa (Field 

data: 2016) 

 

4.5.12 Channel modification 

At Dopeni the river had been widened along the banks where soil extraction for brick-making 

activities was visible. The excavated banks increased river width and bank calving at some 

sampling points. Bank calving increases river sedimentation that leads to bed modification. 

This will ultimately lead to decreased flow velocity. However, the impact of bank erosion is 

still very small due to low flows that were experienced during drought. At Fondwe, excavation 

along the riparian zones where marginal vegetation plays an important role in the supply of 

litter to macroinvertebrates occured in only two areas. However, serious modification of the 

channel could have negative impact on river dynamics and macroinvertebrate composition. 

The same problem has been observed at Musekwa but the excavation problem occurs in 

numerous places along the river. The presence of ridges and furrows for channelling river water 

away from the river also exacerbated the low flow conditions at Musekwa. 

Channel straightening at Pfumbada also impacted on riparian zone because fragmented or 

isolated ridges impact on the dynamics of the river and the assemblages of aquatic biota. The 

erection of dams, levees and river channelization change the timing, magnitude, and the 
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duration of high flows, and the reduction and elimination of floodplain connectivity in large 

rivers (Hill et al. (2016). This situation leads to a decline in the number of native species and 

the reduction in macroinvertebrate organisms (Poff and Zimmerman, 2010). However, even 

though channel straightening at Pfumbada was found to be moderate it seemed not to have 

affected species diversity because Pfumbada recorded the second highest diversity index of 

0.77 after Fondwe (0.78) (Table 4.4 above).  However, at Mphaila, the replacement of bank 

soil with rocks increased risks of mass wasting should the river overflow its banks and  once 

rocks settle at the bottom they are likely to change river flow from runs to riffles. This will also 

change macroinvertebrate assemblages at that point where the area would be characterised by 

organisms that favour riffles such as the families Heptageniidae (Ephemeroptera), Elmidae 

(Coleoptera), Potamonautidae (Decapoda), Aeshnidae (Odonata) and Ecnomidae 

(Trichoptera). This is because the rocks are likely to trap sediments, pollutants and other debris 

that will change the composition of the macroinvertebrate at that particular point along the 

river. Reduction in floodplain connectivity like at Musekwa and Pfumbada due to 

channelization was moderate but the loss in connectivity meant that the diversity of adjacent 

habitat was curtailed. Even though channelization was also moderate at Dopeni there was no 

evidence of channel modification impacting on macroinvertebrates and water quality because 

Dopeni recorded 20% of pollution tolerant organisms (Family Thiaridae). The Potamonautidae 

family of Musekwa site was restricted to sampling points that were close to river banks, riparian 

vegetation and small rocky substrate.   

 

4.5.13 Water abstraction 

At Dopeni, Fondwe, Maangani, Musekwa and Pfumbada water abstraction through pipes 

affected the riparian conditions. No water collection points were observed at Mphaila. The 

abstraction of water through pipes affects the riparian zone because of continuous disturbances 

along places where furrows and water pipes were located. The plastic water pipes are likely to 

create small channels that carry runoff water into the stream causing further sedimentation. 

This will also affect the composition of macroinvertebrates at the point. It has been noted earlier 

that sedimentation will lead to aggradation of the river covering bedrock or cobbles and change 

flow regimes from riffles to runs. The removal of vegetation during pipe and channel creation 

for water abstractions will gradually worsen the sedimentation problem along the Nzhelele 

River. Hepp et al. (2010) indicated that the practice of removing vegetation for agricultural 

developments leads to the weakening of the stream capacity to shield itself from erosion by 



95 
 

surface runoff, thereby leading to the problem of increased sedimentation, nutrients and 

pollutants. This will also affect the composition of the resident macroinvertebrates.  However, 

even though other sampling sites had high abundance values for pollution intolerant organisms 

it suggested that the effects of agricultural practices alone were not manifested by the resident 

macroinvertebrates. This also suggested that even though agricultural fields were not located 

far from the river, the types of fertilisers or the lack of use of fertilisers led to the good water 

conditions at certain sampling points along the river. This meant that indigenous agriculture 

could not have been the only causes of water quality deterioration at the six sampling sites. 

Alternatively, the utilisation of fertilisers might be limited to cause substantial impact on 

macroinvertebrate communities. Cortelezzi et al. (2015) noted that the effects of fertilizers on 

macroinvertebrates require a continuous period of three years for the impacts to be noticeable. 

This is not noticeable at the six sampling sites.  

 

4.5.14 Inundation 

Inundation is caused by the presence of bridges at Dopeni, Fondwe, Mphaila, Musekwa and 

Pfumbada. Inundation at the places where rivers crossed over the cemented or artificial rock 

layer seemed to have caused changes in the flow mechanisms of a river. At Mphaila, the 

narrowed bottom of the bridge will exacerbate inundation during floods and lateral cutting will 

be severe and followed by bank collapse and sedimentation at those points. At the points of 

inundation bank collapse will eradicate riparian vegetation and the removal of vegetation will 

automatically change river dynamics and macroinvertebrate assemblages. The impact of 

inundation was discussed under section 4.5.6. However, no inundation problems were observed 

along the riparian zones due to low water quantity at the time of sampling.  

 

4.5.15 Flow modification 

The presence of water channels at Dopeni, Fondwe, Maangani Musekwa and Pfumbada 

modified the flow characteristics of the river. No modification was observed at Mphaila. The 

presence of artificial channels can lead to reduced or increased river velocities. Increased low 

flows as a result of flow modification will lead to sedimentation due to reduced sediment-

carrying capacity of the river. Flow modification can increase bank erosion during floods which 

will also remove marginal vegetation which will accelerate the rate of bank collapse and 
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sedimentation. This will ultimately have a direct impact on macroinvertebrate communities. 

Belmar et al. (2013) have noted that flow regulations and land use changes lead to 

hydromorphological alteration of rivers and this often leads to the modification of freshwater 

biological communities like macroinvertebrates. Growns et al. (2017) have noted that rivers 

with reduced flow increase siltation of the stream bed. For example, the low flows at Musekwa 

could have accounted for the existence of the substrate characterised by sand and gravel. 

Brooks et al. (2011) also noted that changes in river flow change macroinvertebrate 

assemblages and their trait structure. The situation at the five sampled sites might lead to these 

problems in the near future and the composition of macroinvertebrates will completely change 

from what it is currently. 

 

4.5.16   Water quality 

Point-source pollution from laundry activities and livestock watering were observed at Dopeni, 

Fondwe, Maangani, Musekwa and Pfumbada. No observable forms of pollution were recorded 

at Mphaila. Pollution from agriculture will alter riparian biota such as the proliferation of 

invasive plant communities. The presence of Oputia species, Lantana camara and sand olive 

(Dodonaea angustifolia) is a clear indication of agricultural activities. The proliferation of this 

alien biota will alter the types of macroinvertebrates in the river. This means that the type of 

detritus that comes from these alien plant species will require specific macroinvertebrates that 

will feed on this new form of dead organic matter. This will mean that a new group of 

macroinvertebrates will have to replace the resident ones that do not feed on litter from these 

invasive plant species. Polluted waters, especially with low pH are associated with pollution 

tolerant organism. For example, Ernst et al. (2008) have noted that streams that have elevated 

levels of acidity have fewer EPT taxa while the Family Chironomidae (Diptera) that tolerate 

pollution become the dominant organisms. Interestingly, all average pH values recorded from 

the six sampling sites ranged from neutral to alkaline. The neutral values for Fondwe seemed 

to have allowed for the higher abundance values of Diptera (Chironomids) compared to 

Mphaila and Pfumbada which had higher average pH values of 7.7 and 8.29 respectively. These 

two areas recorded lower abundance values of chironomid organisms of 6 and 9. Three 

sampling sites (Dopeni, Maangani and Musekwa) did not record a single chironomid specimen. 

The water quality of the studied areas could have been altered by low flows at the time of 

sampling, but could also change after water input from rains. Riparian communities seemed 

not to have directly impacted on water quality of the river, even though sites such as Dopeni, 
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Fondwe, Maangani and Musekwa where characterised by the presence of solid waste disposal 

along riparian and aquatic zones.  

 

4.6 Principal Component analysis 

Figure 4.8 below shows correlation between sampling sites and macroinvertebrates. The first 

principal component (P1) accounted for 42.08% of variance in the data while the second 

component  (P2) accounted for 28.85% variance. The combination of the two components 

explained 70.94% of the variation in macroinvertebrate composition among the six sampling 

sites. Maangani, Fondwe and Pfumbada were positively defined by the families Aeshnidae 

(Odonata), Nepidae (Hemiptera), Chironomidae (Diptera), Coenagrionidae (Odonata) and 

Thiaridae (Gastropoda) with the first component, but these sampling sites were negatively 

correlated with Potamonautidae (Decapoda), Elmidae (Coleoptera), Ecnomidae (Trichoptera) 

and Heptageniidae (Ephemeroptera) which positively defined Mphaila and Dopeni with the 

second principal component. Musekwa had a negative value for the Family Potamonautidae 

suggesting a degraded sampling site since they are strongly linked to polluted environments. 

These families are highly tolerant to pollution with a tolerance level of 3. It can therefore, be 

asserted that the water quality at Musekwa was degraded. This is because Musekwa area 

constituted 60% of pollution tolerant organisms families while the remaining 40% represented 

pollution intolerant organisms (Table 4.1, 4.3).  

From Figure 4.8 below, just like Musekwa, Fondwe area was strongly defined by the presence 

of Coenagrionidae (Odonata), Thiaridae (Gastropoda) and Chironomidae (Diptera) families. 

All these families of macroinvertebrates are highly tolerant to pollution, with a pollution 

tolerance range of 2 to 4. These include organisms such as midges, damselflies and snails. 

Therefore, a strong association of pollution tolerant organisms with Fondwe suggests that the 

river water during the time of sampling did not favour the presence of ETP groups which 

indicate good water quality.  
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Figure 4.8 Relationship between macroinvertebrate families and sample sites (Source: 

Field data, 2016) 

Pfumbada and Maangani formed a group of sampling sites characterised by the families 

Aeshnidae (Odonata) and Nepidae (Hemiptera), but were not strongly linked to the family 

Potamonautidae. Nepidae families, however, showed higher values of representation with the 

first principal component. Only Family Nepidae were found to be highly tolerant to pollution 

at Maangani and Pfumbada. While the Family Aeshnidae are moderately tolerant to pollution, 

Nepidae families are highly tolerant. Therefore, the moderately and highly polluted water 

bodies along the Nzhelele River defined these two sampling sites.  

Dopeni and Mphaila were well defined by the pollution intolerant organisms which 

characterised all other four (4) sampling sites of Fondwe, Maangani, Musekwa and Pfumbada. 

These two areas were well represented by Ecnomidae (Trichoptera), Elmidae (Coleoptera) and 

Heptageniidae (Ephemeroptera) families  which are pollution intolerant, suggesting a generally 

good water quality from these sites. This includes caddisflies, riffle beetles and flat-headed 

mayflies. These groups strongly define the water quality of the two sites as ranging from 

moderately polluted to non-polluted. This is because these families tolerate moderately 

polluted (Ecnomidae and Elmidae) and non-polluted waters (Heptageniidae). However, at 
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Dopeni and Mphaila, Heptageniidae (pollution intolerant) was the dominant family with higher 

abundance values (Table 4.1, 4.3 above) than Ecnomidae and Elmidae families (moderately 

tolerant to pollution). The ephemeropteran families  are well-represented with the second 

principal component to show their strong correlation with the two sampling sites. This is a 

strong indication of the least polluted water condition from these two sampling sites. The 

percentage of all pollution intolerant organisms from Dopeni and Maangani was 80% and 94% 

(Table 4.3 above) respectively indicating good water condition.  

 

Figure 4.9 below shows relationships between sampling sites and physico-chemical properties 

of water along the Nzhelele River. In Figure 4.9 below, the first principal component (P1) 

accounted for 59.85% of variation while the second component (P2) accounted for 19.45% of 

variance. Therefore, the first two components accounted for 79.30% of variation in water 

quality parameters among the six sampling areas. Dopeni and Mphaila were poorly represented 

by nitrates, DO, temperature, TDS, conductivity, discharge, pH and nitrites, suggesting good 

water conditions. These sites were strongly defined by the presence of pollution intolerant 

organisms and were negatively influenced by pollution tolerant families such as 

Coenagrionimidae, Nepidae, Chironomidae, and Potamonautidae (Figure 4.8, Table 4.3 

above). However, Dopeni, Fondwe and Mphaila had a strong positive influence of chlorine, 

with the first principal component which accounted for 59.85% of variation in the data, but 

chlorine negatively defined Maangani, Musekwa and Pfumbada with the first principal 

component. Maangani, Musekwa and Pfumbada were positively defined by DO, nitrate, 

temperature, TDS, discharge, pH and nitrites with the first principal component. These 

correlations define the water quality of these sites which was degraded and supported the 

majority of pollution tolerant families (Table 4.1, 4.3 above). Maangani recorded 63% of 

pollution tolerant organisms, while Musekwa recorded 60% of pollution tolerant organisms. 

Interestingly, Pfumbada recorded 48% of pollution tolerant organisms suggesting that the water 

quality condition was moderately degraded. This could be true because this sampling site had 

the second highest diversity index value of 0.77, which was the second highest after Fondwe 

(0.78).  
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Figure 4.9 Relationship between water quality parameters and sampling sites (Source: 

Field data, 2016) 

 

Pfumbada and Maangani which were associated with pollution tolerant Nepidae family and 

pollution intolerant Aeshnidae family was well-defined by the presence of nitrates, pH, river 

discharge, conductivity and TDS which were all positively correlated with these two sampling 

sites with the first principal component (P1). Nitrates, for example, can be a source of polluted 

water and increased temperature. Musekwa, which was well-defined by the Family 

Potamonautidae (highly tolerant to pollution) was strongly defined by DO, temperature and 

nitrites. High DO concentrations (Table 4.7) along the Musekwa sampling site also suggested 

that the sampling site had less anaerobic microbial activity due to lower abundance values of 

macroinvertebrates (Table 4.1 and 4.3) that were sampled at the site. Musekwa sampling site 

was also located along many indigenous agricultural fields which were characterised by heavy 

utilisation of the river such as water abstraction, laundry and agricultural irrigation. This 

explains low abundance values and diversity of macroinvertebrates. From Tables 4.10 and 4.14 

below, it can be seen that Musekwa recorded the highest temperature and nitrate averages, 

suggesting nutrient input from adjacent subsistence agricultural fields. This explains a lower 

diversity index value of 0.69 compared to other sites.  
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Fondwe was not well represented by all other water quality parameters except chlorine. This 

sampling site was positively defined by Chironomidae, Coenagrionidae and Thiaridae families 

(Figure 4.8 above). The presence of chlorine in water is known to be negative on pollution 

intolerant organisms which show a decline when chlorine concentrations increase (Bradley et 

al., 2002). The average chlorine concentration at Fondwe was the second highest (13, 86 mg/L), 

suggesting that its concentration along most sampling points was relatively higher. This 

explains the high percentage (76%) of pollution tolerant families (Chironomidae, 

Coenagrionidae, Nepidae, and Thiaridae) and total absence of pollution intolerant families 

(EPT group), suggesting a negative association of chlorine with these families. Chlorine has 

influenced the absence of EPT group at Fondwe. 

From Figure 4.9 above, it is evident that Musekwa was well represented by DO with the second 

principal component while Pfumbada and Maangani were positively defined by pH, discharge 

and nitrite with the first principal component. The positive correlation of nitrite and the two 

sampling sites could be explained by the higher abundance values of macroinvertebrates from 

these two sites. Maangani and Pfumbada recorded nitrite averages of 20.70 and 28.38 mg/L 

respectively and they happened to be the only two sampling sites with higher abundance values 

of macroinvertebrates. 

The presence of macroinvertebrates from all sampling sites was also strongly associated with 

the physico-chemical properties of water at the time of sampling. This also means that these 

physico-chemical properties strongly defined the presence of macroinvertebrates at each 

sampling point of the sampling sites. Therefore, physico-chemical properties strongly defined 

the presence of the families of macroinvertebrates present in water and the presence of 

Ecnomidae, Elmidae and Heptagennidae families from Dopeni and Mphaila was a good 

indication of non-polluted or moderately-polluted aquatic environment. These two sampling 

sites were negatively correlated with parameters such as nitrates, temperature and TDS with 

the first principal component. These two sampling areas were characterised by the majority of 

pollution intolerant organisms, suggesting that these areas had the least polluted environments 

compared to the other four (Fondwe, Maangani, Musekwa and Pfumbada). Mphaila recorded 

the highest percentage (94%) of pollution intolerant families, while Dopeni recorded the second 

highest (80%).  
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When 15 sampling points from each sampling site were compared with regards to 

macroinvertebrates an interesting observation was that each site was defined by its own distinct 

family of macroinvertebrates. Figures 4.10a-f below depict the relationships between sampling 

points and macroinvertebrates per sampling site. Figures 4.10a-f below show these 

relationships from six sampling sites in alphabetical order as Dopeni (Figure 4.10a), Fondwe 

(Figure 4.10b), Maangani (Figure 4.10c), Mphaila (Figure 4.10d), Musekwa (Figure 4.10e) and 

Pfumbada (Figure 4.10f).  

 

Figure 4.10a below shows the relationships for the Dopeni site. From Figure 4.10a the first two 

principal components accounted for 71.08% of variation in data from Dopeni, with the first 

principal component (P1) accounting for 45.53% of the variation and the second component 

(P2) accounting for 25.55% of variance. Four sampling points were strongly defined by the 

presence of Thiaridae and Heptageniidae families. Seven sampling points (S1, S3, S6, S9, S12, 

S13 and S15) had a strong positive correlation with the Family Aeshnidae (Odonata), 

Heptageniidae (Ephemeroptera), and Thiaridae (Gastropoda) families with the first principal 

component, but negatively correlated with the Family Elmidae. Sampling points S4, S5, S10 

and S14 were positively correlated with Family Elmidae but S2, S6, S8 and S11 had negative 

values for their representation, suggesting that they were poor performers in macroinvertebrate 

composition. The low abundance values of macroinvertebrates from these sampling points 

could have been attributed to extremely low flows at the time of sampling. Sampling point 12 

(S12) was positively defined by Family Heptageniidae, suggesting that this sampling point was 

not polluted. However, only three sampling points (S1, S13 and S15) from Dopeni were 

positively associated with the Family Aeshnidae, suggesting that water quality at these sites 

was moderately or less polluted. 
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Figure 4.10a,b Correlation between sampling points and macroinvertebrate families for Dopeni (a) and Fondwe (b) 
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Figure 4.10c,d Correlation between sampling points and macroinvertebrate families for Maangani (b) and Mphaila (c) 
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Figure 4.10e, f  Correlation between sampling points and macroinvertebrate families for Musekwa (e) and Pfumbada (f) 
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However, the distribution of macroinvertebrates along the sampling points was related to the 

water quality of sites at the time of sampling because these variables change from time to time. 

Therefore, the macroinvertebrates sampled from each sampling point were directly related to 

the condition of the river at a particular point in time. This means that if samples were collected 

daily for 52 weeks at the same spots it would have been easy to identify macroinvertebrates 

that would have colonised certain areas through drifting or other forms of movement, especially 

those that could colonise an area through drifting such as the Chironomidae family. Graca et 

al. (2004) have noted that colonisation of new substratum takes place through drifting 

mechanism rather than by active movement of organisms within the substratum. Since 

chironomids, which were a characteristic of Fondwe, Mphaila and Pfumbada,  possess the 

ability to move by drifting, their occurrence in some parts of the river along the Nzhelele River 

suggests that some locations were colonised through this mechanism. This explains their 

occurrence at Mphaila which was characterised by 94% of pollution intolerant taxa. Again, it 

has been noted by Lencioni et al. (2012) that chironomids also survive under pristine aquatic 

conditions, suggesting their presence at the Mphaila sampling site. 

 

For Fondwe (Figure 4.10b), the first two principal components accounted for 60.41% of 

variance with the first component (P1) accounting for 38.86% of variation while the second 

principal component (P2) had 21.55% variance. Five sampling points (S3, S8, S10, S12 and 

S13) were positively correlated with Thiaridae, Coenagrionidae, Nepidae and Chironomidae 

families with the first principal component but negatively correlated with the family Aeshnidae. 

This suggests that very few sampling points at Fondwe were positively defined by pollution 

sensitive organisms. This means that the water quality at Fondwe was degraded. This explained 

a composition of 76% of pollution tolerant organisms that were sampled at Fondwe. Three 

sampling points (S5, S11 and S15) recorded negative values for the Family Aeshnidae but the 

remaining seven sampling points (S1, S2, S4, S6, S7, S9, and S14) were positively correlated 

with Aeshnidae but negatively correlated with the Thiaridae, Coenagrionidae, Chironomidae 

and Nepidae families with the first principal component. This correlation defines the water 

quality of these sampling points as being less polluted. From Figure 4.8, it can be seen that 

Fondwe was positively correlated with the Chironomidae, Coenagrionidae and Thiaridae 

families. These are all pollution tolerant organisms and this explained 76% of pollution tolerant 

organisms found at Fondwe sampling site. Three other sites (S3, S8 and S13) were well 

represented by three pollution tolerant families (Chironomidae, Coenagrionidae and Nepidae). 

The results indicated that the level of pollution differs significantly from one sampling point to 
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another, suggesting that changes in the level of pollution along the river at Fondwe occurred 

over short distances since these points were 10 m apart over a distance of 150 m.  

 

For Maangani (Figure 4.10c), the first principal component (P1) accounted for 30.49% of 

variation in data and 25.45% for the second component (P2). From Figure 4.10c eight (8) 

sampling points (S1, S2. S4, S5, S9, S10, S14 and S15) were positively correlated with the 

Aeshnidae, Thiaridae, Nepidae and Heptageniidae families with the first principal component 

but negatively correlated with Coenagrionidae. Sampling points S6, S8, and S13 were 

positively defined by pollution tolerant family Coenagrionidae with the second principal 

component. This meant that these sites were more polluted than S1, S2, S9, S10 and S15 which 

were defined by families Aeshnidae and Heptageniidae respectively. This suggested that 

sampling points at Maangani differed in the level of pollution. Interestingly, Family 

Heptageniidae (Ephemeroptera) which is known to be highly intolerant to pollution was also 

represented at Maangani with percentage value of 17% of all sampled macroinvertebrates 

(Table 4.3). However, a higher percentage (63%) of pollution tolerant organisms at Maangani 

suggested that other sites were degraded and were able to host many pollution tolerant 

organisms. Four sampling sites (S3, S7, S11, S12) were poor performers in the composition of 

macroinvertebrates. Four other sites (S1, S9, S10, S15) (lower right) were well represented by 

pollution intolerant Heptageniidae family. Four other sites (S2, S4, S5, S14) were well defined 

by the families Aeshnidae, Nepidae and Thiaridae. However, Aeshnidae were poorly 

represented due to the position in the graph. The remaining three (3) sampling points were 

positively correlated with pollution tolerant Coenagrionidae family.  

 

At Mphaila (Figure 4.10d), the first two principal components accounted for 58.20%  of 

variation with the first principal component accounting for 31.62% of variation in the data and 

the second component 26.58% of variance. For Mphaila site, Heptageniidae, Ecnomidae, 

Aeshnidae, Elmidae and Chironomidae families were positively correlated with seven (7) 

sampling points (S1, S7, S8, S12, S13, S14 and S15) with the first principal component. Even 

though the represented organisms from the seven sampling points suggested non-polluted or 

moderately polluted environments the presence of chironomids suggested that it was 

omnipresent in all types of water ranging from polluted to less polluted environments. Mazzoni 

et al. (2014) have noted in their study, that the Family Chironomidae occurred from clean to 
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critically polluted sites and it was often absent from degraded environments. This explains their 

occurrence at Mphaila site which was characterised by good water quality. Even though the 

Family Chironomidae are pollution tolerant, the total reliance on these organisms to assess 

water quality should be approached with caution. Their presence at Mphaila suggested that the 

water condition was of good quality since 94% of organisms at Mphaila were pollution 

intolerant. Interestingly, at Mphaila a total of 8 samplinng points out of fifteen (15) had poor 

representation of macroinvertebrates suggesting lower abundance values of 

macroinvertebrates. Four sampling points (S1, S7, S8 and S15) represented Family 

Chironomidae (pollution tolerant) and Family Elmidae (moderately tolerant) well. S1 had good 

representation of these macroinvertebrates given its position in the graph. The remaining three 

(3) sampling points (S12, S13,S14) were good performers in the composition of Aeshnidae, 

Ecnomidae and Heptageniidae families with the tolerance levels ranging from moderate to non-

tolerant suggesting good water quality.  

 

From the Musekwa sampling site (Figure 4.10e) the first two principal components showed 

64.37% of variation in data and the first component (P1) accounted for 38.89% of variation of 

data from different sampling points while the second principal component (P2)  accounted for 

29.48% of the variation. The Aeshnidae, Elmidae Thiaridae, and Potamonautidae families 

positively defined six sampling points (S1, S2, S6, S8, S13 and S15) with the first principal 

component. The remaining nine (9) sampling points were negatively correlated with the 

Aeshnidae, Elmidae, Potamonautidae and Thiaridae families with the first principal 

component. For Musekwa, 9 out of 15 sampling points were poor performers in 

macroinvertebrates composition. Only two sampling points (S1and S6) performed well in the 

representation of Elmidae and Potamonautidae families with S1 showing the best 

representation of macroinvertebrates. The remaining four sampling points (S2, S8, S13, and 

S15) were best performers in the representation of Aeshnidae and Thiaridae families. These 

sampling points can be assumed to be moderately polluted and highly polluted because of their 

resident macroinvertebrates at the time of sampling. It can be concluded that the pollution 

levels along any river differed from one point to another and this could depend on the activities 

and environmental characteristics at the time of sampling.   

At Pfumbada (Figure 4.10f), the first two principal components accounted for 56.97% of 

variation with the first principal component (P1) accounting for 34.46% of variation in the data 
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and the second component (P2) 22. 50% of variance. Eight (8) sampling points (S1, S5, S6, 

S10, S11, S12, S14 and S15) were positively correlated with the Nepidae, Heptageniidae, 

Elmidae and Chironomidae families with the first principal component but were negatively 

correlated with Aeshnidae and Thiaridae families. The results show that there is a balance in 

the assemblages of pollution tolerant and pollution intolerant organisms. The remaining seven 

sampling points (S2, S3, S4, S7, S8, S9 and S13) were positively defined by Aeshnidae and 

Thiaridae families with the second principal component suggesting variations in the level of 

pollution at these sampling points. Two sampling points (S2, S4) recorded negative values for 

the Family Thiaridae (pollution tolerant) but were poorly represented by other five families 

that were also a distinguishing characteristic of Pfumbada sampling area. Five sampling points 

were a good representation of Chironomidae (pollution tolerant) and Elmidae (moderately 

tolerant) families. Only S14 had a good representation of both Chironomidae and Elmidae, but 

Elmidae were the least represented in all five sampling points. The families Nepidae (pollution 

tolerant) and Heptageniidae (pollution intolerant) were well represented by three sampling 

points with S15 having the best representation of Heptageniidae while S1and S6 had the best 

representation of Nepidae families. The Family Aeshnidae (moderately tolerant) was best 

represented by five sampling points with S7 and S13 showing good representation of 

Aeshnidae. Heptageniidae had the highest positive coefficient (0.794) with the first principal 

component, suggesting that this family was well represented at Pfumbada. Family Aeshnidae 

(Odonata) were found to be common across all sampling sites suggesting that they too, like 

chironomids which were found in both degraded and non-degraded environments can adapt in 

a variety of aquatic environments. Family Aeshnidae are known to use a wide range of habitats 

from stagnant to flowing water (Gupta and Veeneela, 2016). This explains their occurrence in 

all six sampling sites.  

 

Figure 4.11 below shows the relationships of water quality parameters and sampling points 

from the six sampling sites of Dopeni, Fondwe, Maangani, Mphaila, Musekwa and Pfumbada.  

Figures 4.11a-f show physico-chemical property representations per sampling point from six 

sampling sites.  

From Figure 4.11a (Dopeni) the first two principal components accounted for 47.85% of 

variation in data, with the first component (P1) accounting for 25.19% and the second 

component (P2) 22.66%. Eight sampling points (S2, S4, S8, S9, S11, S12, S13, and S14) were 

positively correlated with pH, discharge, conductivity, temperature, TDS and nitrites with the 
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first principal component but negatively correlated with DO, nitrates and chlorine. This 

correlation explains more about the water quality status which is in good condition since low 

dissolved oxygen content, nitrates and chlorine are associated with degraded environments. 

This explains why only 20% of pollution tolerant organisms were found at Dopeni (Tables 4.2 

and 4.3).  From Figure 4.11a below, only S9 and S12 were positively correlated with both 

Heptageniidae and Thiaridae families (Figure 4.10a) suggesting that Thiaridae family exists in 

all types of polluted and non-polluted waters. The diversity, distribution and persistence of 

molluscs such as Family Thiaridae in all types of freshwater is very common (Contreras-

Arquieta, 1998; Flores and Zaffaralla, 2012; Sharma, et al., 2013). The other six sampling 

points were correlated with pollution intolerant organisms with S2, S8 and S11 being 

negatively correlated with Thiaridae family with the first principal component. The remaining 

seven sampling points (S1, S3, S5, S6, S7, S10 and S15) were positively defined by DO and 

nitrates and chlorine suggesting that these sites were partly degraded or degraded and these 

were the sampling points that could have accounted for the existence of Aeshnidae, Elmidae, 

Heptageniidae and Thiaridae families. For example, Sharma et al. (2013) have noted in their 

study that the chloride content of water favours the survival of molluscs. Sampling points S5, 

S6, S7 and S10 were negatively correlated with chlorine suggesting that the chlorine did not 

have significant impact on the assemblages of macroinvertebrates from these sampling points. 

For example, from Figure 4.10a S5, S6 and S10 were positively correlated with Elmidae with 

the second principal component and S7 was positively correlated with Thiaridae families 

respectively with the first principal component.  Only two sampling points (S13 and S14) were 

positively correlated with discharge, pH, conductivity and temperature. These sampling points 

were positively correlated with Elmidae and Aeshnidae families in Figure 4.10a suggesting 

moderately good water quality from these two sampling points. Six sampling points (S2, S4, 

S8, S9, S11 and S12) were positively correlated with TDS and NO2. These sampling points 

were positively correlated with Aeshnidae, Heptageniidae and Thiaridae families (Figure 

4.10a) with the first principal component suggesting good and poor water quality. Despite the 

occurrence of many subsistence agricultural fields, sand mining and livestock watering, Dopeni 

recorded the second highest percentage (80%) of pollution intolerant organisms while Mphaila 

recorded the highest percentage of 94%. These included organisms that were moderately 

tolerant to pollution.  

 

From Figure 4.11b (p.111) (Fondwe), the first two principal components accounted for 50.11% 

of variation in data with the first component (P1) accounting for 27.63% and the second 
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component (P2) 22.48%. From Figure 4.11b seven sampling points (S1, S4, S5, S6, S12, S14 

and S15) were positively correlated with conductivity and temperature with the first principal 

component. Since these sampling points were strongly defined by temperature and conductivity 

it means they were defined by good water quality since they were negatively correlated with 

chlorine, discharge DO, nitrites, nitrates, pH and TDS. These sites were also positively 

correlated with the Family Aeshnidae (moderately tolerant) in Figure 4.10b with the second 

principal component. Therefore, this supports the view that these sampling points were 

characterised by good water quality, suggesting that they were characterised by temperature 

and conductivity regimes that allowed the proliferation of Aeshnidae family. An important 

point to note is that Aeshnidae are known to use a wide range of flowing and stagnant water 

bodies (Gupta and Veeneela, 2016). Therefore, their occurrence in stagnant water bodies means 

that they can also survive under slightly elevated temperature regimes, which is a characteristic 

of stagnant water, depending on its size and depth. Sampling points S7, S8, S9, S10, S11 and 

S13 were positively correlated with chlorine, discharge, DO, and nitrite,  nitrates, pH and TDS 

with the second principal component but negatively correlated with conductivity and 

temperature. S7 and S9 were positively correlated with the Family Aeshnidae (Figure 4.10b) 

with the second principal component suggesting good water quality. Sampling sites S8, S10 

and S13 were positively correlated with Chironomidae, Coenagrionidae, Nepidae and 

Thiaridae families with the first principal component (Figure 4.10b). These sites could be 

described as degraded sampling points given the macroinvertebrates that defined them during 

sampling. Three (3) sampling points (S4, S5, and S12) were positively correlated with 

conductivity and temperature but negatively correlated with nitrate, pH and TDS. This suggests 

good water quality since sampling point S12 was positively defined by the Family 

Heptageniidae while S4 and S5 were negatively correlated with Chironomidae (which occur in 

both polluted and non-polluted water) with the first principal component (Figure 4.10b). Only 

two sampling points were negatively defined by NO3, pH and TDS, suggesting that they were 

characterised by pollution tolerant organisms as depicted by Figure 4.10b. Six (6) sampling 

sites (S7, S8, S9, S10, S11, and S13) had a good representation of Cl, DO, NO2, and river 

discharge. However, sampling points S8, S10, and S13 were positively correlated with 

pollution tolerant families Chironomidae, Coenagrionidae, Nepidae and Thiaridae. This 

suggests that these organisms survive in aquatic environments characterised by reduced flows 

since Fondwe had an average river velocity of 0.11 m.s-1. The presence of chlorine at Fondwe 

also explains the absence of the Family Heptageniidae (Ephemeroptera) because these 

organism are known to be sensitive to the presence of chlorine (Bradley et al., 2002). However, 
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the presence of chlorine at other sampling points did not impact on the presence of mayflies 

(Family Heptageniidae) which were present at Dopeni, Maangani, Mphaila and Pfumbada.  

Four sampling points (S1, S6, S14, S16) were defined by lower values of nitrite, DO, discharge 

and chlorine suggesting minimal pollution condition. These were sampling points that were 

negatively defined by Chironomidae, Coenagrionidae and Nepidae families (Figure 4.10b).
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Figures 4.11a,b Correlation between sampling points and water quality parameters for Dopeni (a) and Fondwe (b)  
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Figures 4.11c,d Correlation between sampling points and water quality parameters for Maangani (c) and Mphaila (d) 
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Figures 4.11a,b Correlation between sampling points and water quality parameters for Musekwa (e) and Pfumbada (f) 
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Figure 4.11c shows the first two principal components for Maangani which accounted for 

47.60% of variation in the data with the first component (P1) accounting for 27.99% of 

variation and the second component (P2) accounting for 19.61% of variance. Six sampling 

points (S1, S2, S3, S8, S12, and S13) were positively correlated with conductivity (TDS), 

chlorine and DO with the first principal component but were negatively defined by 

temperature, pH nitrites, nitrate and discharge. For example, in Figure 4.10c S1 and S2 were 

positively correlated with Aeshnidae and Heptageniidae, suggesting good water quality for 

these two sampling points. This explains the low quality water conditions for some of these six 

sampling points because other sampling points were correlated with Coenagrionidae which are 

associated with stressed or polluted habitats. Pollock (2012) observed that high TDS values 

indicate a stream that is stressed, suggesting stressed sampling points. Olson and Hawkins 

(2017) have observed that the Family Chironomidae and Order Gastropoda perform poorer 

under EC values of between 150 and 300 µS cm-1. This was true with regard to Maangani 

which had higher abundance value of the Family Thiaridae (76) and a higher EC value of 794.2 

µS.cm-1 (Figure 4.14) which was higher than 150 and 300 µS.cm-1. This explained why 

Thiaridae were the most abundant family at Maangani. The remaining nine (9) sampling points 

were positively correlated with temperature, pH nitrites, nitrate and discharge but negatively 

defined by TDS DO and chlorine with the first principal component. Two sampling points (S2, 

S8) were positively defined by chlorine with S2 strongly defined by chlorine. DO (poorly 

represented), conductivity and TDS (well represented) were associated with four sites (S1, S3, 

S12, S13).  However, S3 and S12 had poor representation of macroinvertebrates while S13 was 

strongly linked to the Family Coenagrionidae (Figure 4.10c). S1 was however, strongly linked 

to the Family Heptageniidae (Figure 4.10c). Discharge and nitrates were well represented by 

four sampling points (S5, S6, S7, S15). S7 had a weak representation of all types of water 

parameters, while S5 and S6 (Figure 4.10c) were associated with pollution tolerant families 

Thiaridae, Nepidae and Coenagrionidae respectively. These two sampling points were strongly 

linked to nitrates and discharge, suggesting poor water quality.   

 

At Mphaila (Figure 4.11d above) the first two principal components accounted for 62.17% of 

the variation in data. Only four sampling points (S2, S3, S4 and S15) were positively linked to 

temperature, conductivity, TDS, NO2 and NO3 with the first principal component (P1).  The 

high positive values for temperature, TDS and conductivity suggested good aquatic 

environment for the survival of pollution intolerant organisms. Almost all sampling points at 

Mphaila were associated with pollution intolerant organisms (Figure 4.10d). For example, the 
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average temperature at Mphaila area was 18.74ºC which is good for the persistence and 

diversity of Aeshnidae, Chironomidae, Ecnomidae, Elmidae and Heptageniidae families. 

However, Chironomidae are known to persist throughout all seasons (Eady, 2011). This 

explains their presence at Mphaila even though they constituted 6% of the total number of 

macroinvertebrates from this sampling area. The remaining eleven sampling points were 

negatively correlated with temperature, conductivity, nitrites, nitrates and TDS, with the first 

principal component. Of the eleven sampling points, five (S4, S8, S9, S11, and S12) were 

positively defined by discharge with the second principal component. The average river 

velocity at Mphaila was 0.12 m.s-1 but the area had a higher biodiversity index (0.74) than 

Musekwa which was characterised by higher velocities but lower biodiversity index value 

(0.69). Therefore, it can be argued that river velocity did not encourage pollution tolerant 

organisms at Mphaila. It can also be argued that due to the minimal utilisation of the river 

where samples were collected the occurrence of pollution intolerant organisms indicated a good 

aquatic environment. However, six of the eleven sampling points were negatively defined by 

chlorine, pH and DO, suggesting stressed habitats. However, only S1 was defined by 

chironomids (Figure 4.10d), suggesting that all the other sampling points were characterised 

by pollution intolerant organisms. This explains the 94% occurrence of pollution intolerant 

organisms from Mphaila (Table 4.3). Mphaila was the only sampling site which lacked 

noticeable active indigenous agricultural fields. It means that subsistence agriculture along 

sections of the Nzhelele River for the other sampling sites contributed to the high abundance 

values of pollution tolerant organisms.  

 

For Musekwa (Figure 4.11e above), the first two principal components accounted for 57.37% 

of variation in water quality data among the sampling points. The first principal component 

(P1) accounted for 38.85% of variation and the second component (P2) accounted for 18.49% 

of variance. Ten sampling points (S4, S5, S6, S7, S8, S9, S12, S13, S14 and S15) were 

positively correlated with NO3, NO2, discharge, chlorine and temperature with the first 

principal component. The occurrence of chlorine, nitrates and nitrites is an indication of a 

stressed environment. These ten sampling points were negatively correlated with conductivity, 

DO, pH and TDS with the first principal component. However, from Figure 4.10e sites S4, S5, 

S7, S9, S10, S12 and S14 were negatively correlated with the Aeshnidae, Elmidae, 

Potamonautidae and Thiaridae families with the first principal component. This might have 

been due to lower diversity and abundance of macroinvertebrates from Musekwa. Sampling 

points S1 and S3 were negatively defined by TDS while S2, S10 and S11 were positively 
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defined by conductivity, DO and pH with the second principal component, but were negatively 

correlated with temperature and chlorine, suggesting polluted environments. For example, S2 

was positively correlated with Thiaridae with the first principal component (Figure 4.10e), 

suggesting a stressed habitat. Musekwa was the only sampling site that did not contain a single 

EPT organism, suggesting adverse aquatic conditions for this sampling area. The total absence 

of these taxa suggested that Musekwa was the most degraded of all sampling sites. The Family 

Aeshnidae, was surprisingly found in all studied sites. Therefore, their occurrence at Musekwa 

suggests that they too survive in all types of water.  

 

At Pfumbada (Figure 4.11f above) the first two principal components accounted for 59.03% of 

variation in water quality data. The first principal component (P1) accounted for 39.73% of 

variation while the second component (P2) accounted for 19.31% of variance. Six sampling 

points (S2, S3, S5, S7, S12, and s13) were positively correlated with nitrates (NO3), chlorine, 

TDS, conductivity, temperature and discharge with the first principal component. This 

suggested a moderately and highly polluted habitats for these six sampling points. These sites 

were negatively correlated with DO, pH, nitrites (NO2) with the first principal component. 

Sampling point S1, S10 and S15 were negatively correlated with nitrites, with the second 

principal component, suggesting non-polluted environments. Sampling points S2, S10 and S11 

were positively defined by DO, conductivity and pH with the second principal component. At 

Pfumbada, the average values for these parameters were 62% saturation for DO, higher 

conductivity value of 911µm.S-1 and a pH of 8.29. Surprisingly, high conductivity values and 

pH did not affect the occurrence of the Family Heptageniidae. However, the Thiaridae (34%) 

and Aeshnidae (27%) families recorded the highest abundance values indicating their tolerance 

to high conductivity and alkaline conditions. This explains the occurrence of the Aeshnidae 

family in all six sampling sites. An interesting observation was that Pfumbada recorded a higher 

percentage (52%) of pollution intolerant organisms and a low percentage (48%) of pollution 

tolerant organisms.  This means that despite continuous river utilisation pollution intolerant 

organisms dominated the Pfumbada sampling sites, indicating minimal anthropogenic impacts. 

This finding further highlights the use of the Chironomidae and Thiaridae families as reliable 

indicators of poor water quality only.  
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CHAPTER FIVE: SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

 

5.1 Introduction  

This chapter provides summary, conclusions and recommendations drawn from the findings of 

the results from the six sampling sites of the Nzhelele River. Conclusions and 

recommendations are therefore, based on the findings of research. The summary of the findings 

include findings on water quality parameters per sampling site, sampling points and 

macroinvertebrate assemblages. The summary of the ANOVA and PCA results have also been 

provided. However, the conclusions and recommendations are expected to guide future 

researches and provide suggestions regarding the use of biomonitoring indices and 

macroinvertebrate taxa to assess aquatic ecosystem health. Suggestions for future research have 

been highlighted in this chapter in order to improve on the findings of present research because 

approaches to studying change in river health status change when more and more data is being 

collected to supplement the existing knowledge from current and past researches. It is 

necessary to continuously monitor river health status to ensure that conditions in a river do not 

deteriorate to an extent of inhibiting aquatic ecosystem functioning. It is also important to keep 

on designing improved biomonitoring tools. The current use of approaches such as SASS5, 

Percent Contribution of Mayflies, Ratio of Ephemeroptera, Plecoptera, Trichoptera (EPT) and 

Chironomidae Abundance, EPT Index and Percent Contribution of Dominant Family which 

was used in this study still have challenges of justifying the co-existence with other family 

groups. A more improved biomonitoring approach which strongly addresses land use-

macroinvertebrate relationships is necessary.  

 

5.2 Summary and conclusions 

The conclusions have been based on the findings derived from the objectives. The first 

objective was to assess water quality conditions in order to determine the magnitude of 

pollution impact. The results from ANOVA suggested that the water quality parameters 

significantly differed from one sampling site to another and this explained variations in the 

diversity and types of macroinvertebrates that were found in each sampling site. There were no 

significant differences in chlorine, temperature, pH, river velocity, nitrate and nitrites from all 

studied sites except in the case of DO and TDS where ANOVA results indicated that significant 
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differences occurred amongst the six studied sites.  Based on the differences in water quality 

parameters the results indicated that pollution tolerant organisms constituted a total of 46.7% 

while pollution intolerant families constituted 53.3% of the total macroinvertebrates from the 

six sampling sites. Of the 53.3% only 18.1% had low tolerance to pollution while the remaining 

35.2% were moderately tolerant to pollution, suggesting that large sections of the river were 

polluted and moderately polluted.  

The occurrence of organisms that were moderately tolerant to pollution could serve as an early 

warning system of a continuously degrading stream. The low percentage of pollution sensitive 

families raises an alarm regarding the river health status of the Nzhelele River. River velocities 

ranged from slow (0.11 m.s-1) to moderately fast (0.43 m.s-1). Dopeni, Fondwe, Mphaila and 

Pfumbada were characterised by low flows ranging from 0.11 to 0.17 m.s-1 and these low 

velocities favoured the occurrence of the Ecnomidae and Chironomidae families. However, 

these organisms were absent from Dopeni, but present at Fondwe, Mphaila and Pfumbada. 

Musekwa and Maangani were characterised by moderately fast waters with velocities ranging 

from 0.33 to 0.43 m.s-1. These velocities favoured the occurrence of Elmidae, Coenagrionidae, 

Potamonautidae and Heptageniidae families. However, Maangani only recorded the families 

Coenagrionidae and Heptageniidae, while Musekwa recorded Elmidae and Potamonautidae 

families. These families were also found at slow velocity sampling sites of Dopeni, Fondwe, 

Mphaila and Pfumbada. The Family Coenagrionidae had the highest abundance values at 

Fondwe, suggesting that the site was more degraded. The Family Elmidae was also recorded 

at Dopeni, Mphaila and Pfumbada. Heptageniidae were present at Dopeni and they were the 

most abundant organisms. At Mphaila, the family Heptageniidae was also the most abundant 

macroinvertebrate family. Fondwe, Mphaila and Pfumbada were characterised by chironomids 

which are a characteristic of fast flowing rivers and poor water quality yet they were found to 

occur also in slow flowing river sections of Nzhelele River. From the results it could be 

concluded that river velocity could not be directly linked to macroinvertebrate assemblages 

along the Nzhelele River. River velocity, therefore, was not a primary determinant of the 

macroinvertebrate assemblages from the six sampling sites. Of the six sampling sites, the 

Fondwe site had the highest percentage (76%) of pollution tolerant organisms suggesting that 

it was the most polluted sampling site because it also did not record a single EPT organism. 

The pollution tolerant organisms at Fondwe could not be directly linked to the upstream 

location of Komatiland Plantation (commercial forestry) because the anthropogenic activities 



119 
 

along the river were so intense that they were directly linked to the condition of the river at the 

time of sampling.  

The concentration of dissolved oxygen (DO) from the six sampling sites ranged from 58.53% 

to 65.06%. This meant that the magnitude of impairment due to DO was found to be slight 

because its range fell within the impairment range of 53 to 70% as stipulated by Ausseil (2013). 

DO seemed not to have directly affected macroinvertebrate composition because Musekwa site 

had an average concentration of 65% but it recorded lower abundance values while Mphaila 

site had a lower concentration value of 58.53% but recorded higher abundance values than 

Musekwa site and also recorded more sensitive organisms than all other sampling sites. 

However, it could still be argued that DO concentration at Musekwa site was higher than at 

Mphaila site because more macroinvertebrates would mean more oxygen demand for Mphaila 

site. Therefore, the Family Chironomidae for Mphaila site could not be interpreted as 

representing pollution tolerant organisms or a stressed stream because this family is known to 

inhabit all types of water (Adeogun and Fafione, 2011; Everaert et al., 2014). Given their 

pollution tolerance level of 2, chironomids were therefore found not to be reliable organisms 

to be used as indicators of non-degraded streams because they were well represented at Fondwe 

which recorded 76% of pollution tolerant organisms. Dopeni was also the least polluted site 

because it recorded 20% of organisms (Family Thiaridae) that were highly tolerant to pollution.    

Averages for chlorine were higher than the Target Water Quality Range (TWQR) of 0.2 mg/L 

and also above the CEV of 0.35 mg/L, as well as the AEV. However, the chlorine concentration 

could be directly linked to the impact on EPT assemblages (Ecnomidae and Heptageniidae 

families) at Fondwe than in other sampling sites. This was evident in the abundance of mayflies 

at Dopeni, Maangani, Mphaila and Pfumbada sites because mayflies are known to be sensitive 

to increased chlorine concentrations (Williams et al., 2003).  Therefore, it can be concluded 

that chlorine concentration should always be described in its actual form which was not the 

case in this study. If the form of chlorine had been expressed as either chloride then its role in 

the determination of macroinvertebrate assemblages could have been argued differently. 

Again, the use of macroinvertebrates at family level restricted the full investigation into the 

role of chlorine on macroinvertebrates at species level. However, in this study its concentration 

could be directly linked to a decrease in the abundance of mayflies (Ephemeroptera).   

Nitrate concentration was found not to be lethal because it was positively associated with 

higher abundance values of macroinvertebrates. Maangani recorded a higher average of 20.70 
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mg/L and the highest number of sampled macroinvertebrates, including pollution sensitive 

Heptageniidae. Pfumbada recorded the highest average of 28.38 mg/L and also recorded the 

second highest total number of macroinvertebrates. It can be concluded that higher abundance 

values of macroinvertebrates were associated with higher concentrations of nitrates. Higher 

nitrate values seemed not to have severely affected Heptageniidae organisms since they were 

found at Maangani and Pfumbada which were dominated by pollution tolerant organisms. 

Nitrate impact was also considered insignificant because all values across the six sampling sites 

were below the suggested maximum value of 32 mg/L NO3. Therefore, nitrate seemed to have 

had little role in the diversity of macroinvertebrates along the Nzhelele River. However, the 

higher nitrite values seemed to have had impact on diversity of Potanaumotidae because they 

were recorded at Musekwa site (10) only which had a slightly higher average concentration of 

0.28 mg/L NO2. This is because crustaceans are known to be more sensitive to elevated nitrites 

than the gastropod family.  

The pH seemed to have favoured the Family Thiaridae abundance because it was positively 

correlated with Maangani, Musekwa and Pfumbada with the first principal component (Figure 

4.10).  This, therefore means that Thiaridae abundance will increase with increasing alkalinity. 

Just like with pH and nitrate, elevated TDS readings for Maangani, Musekwa and Pfumbada 

seemed to have also favoured the occurrence of Thiaridae family because these three areas 

recorded the highest abundance values for this family.  

Mphaila recorded only 6% of pollution tolerant organisms suggesting that this sampling site 

was the least polluted of the six sampling sites because the area also recorded the highest 

percentage of Heptageniidae (Ephemeroptera) (39%). The results for Dopeni also suggested 

that the area was moderately polluted since it recorded the highest number of organisms that 

were moderately tolerant and sensitive to pollution. Only 20% were pollution tolerant. 

Interestingly, Dopeni and Mphaila were positively correlated with pollution intolerant families 

such as Ecnomidae (Figure 4.8), Elmidae and Heptageniidae. Maangani recorded the highest 

number of pollution tolerant organisms of 63%, suggesting a degraded or stressed environment. 

A higher number of pollution tolerant families associated with Maangani were Chironomidae, 

Coenagrionidae, Nepidae and Thiaridae families, suggesting a polluted sampling site. 

Musekwa had the lowest count of macroinvertebrates but also recorded 60% of pollution 

tolerant organisms. This also suggested a degraded aquatic environment. Pfumbada registered 

48% of pollution tolerant organisms suggesting a moderately polluted environment with some 

sections being pristine due to the abundance of Heptageniidae (19%) as the third highest count 



121 
 

of macroinvertebrates at this sampling site. Fondwe was found to be the most polluted sampling 

site because it registered 76% of pollution tolerant organisms. These were Chironomidae, 

Coenagrionidae, Nepidae and Thiaridae families. Fondwe site was characterised by laundry 

activities and subsistence agriculture. These could have altered the water quality to favour more 

pollution tolerant organisms. The presence of agricultural fields along Dopeni site suggested 

minimal anthropogenic impact. Mphaila lacked active agricultural activities and other 

anthropogenic activities such as water abstraction, making it the least polluted sampling site. 

Maangani and Musekwa were characterised by anthropogenic activities such as subsistence 

agriculture, water abstraction, laundry and livestock watering. This explains the high number 

of pollution tolerant organisms from these sites.  Pfumbada site had very few subsistence 

agricultural fields, though water abstraction and laundry activities were intensive. This suggests 

that these activities account for the poor water quality of this site, hence the resident 

macroinvertebrates.  

From the results on water quality, it could therefore be argued that the Nzhelele River is 

somewhat polluted due to the low percentage of pollution sensitive families (Family 

Heptageniidae) even though the percentage of pollution intolerant families such as 

Heptageniidae and Ecnomidae was only 18.1%. The remaining organisms were moderately 

tolerant to pollution with many EPT families missing from Nzhelele River. The land-use 

activities and utilisation of the river seemed to have deteriorated the river water quality because 

the Mphaila site which was not characterised by active agricultural practices recorded a higher 

percentage of pollution intolerant organisms. The level of pollution has been manifested by the 

resident macroinvertebrates of the sampling sites. In areas of active indigenous agriculture and 

heavy river utilisation the resident macroinvertebrates were found to be pollution tolerant. 

Musekwa, which was characterised by heavy river utilisation yielded lower abundance values 

of macroinvertebrates and it was found to be the least diverse sampling site.  

 

The second objective was to correlate species diversity and water quality parameters. The PCA 

data showed positive and negative correlations between macroinvertebrates and water quality 

parameters. The number of macroinvertebrates that were sampled from the six sites was 

generally low but the macroinvertebrates were a true representation of the conditions of the 

river at the time of sampling. Even though it can be argued that more taxa and water quality 

parameters were needed to show a true composition of the macroinvertebrate groups to 
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represent the river health, the available sampled macroinvertebrates and water quality 

parameters were able to reflect the condition of the river for each sampled site. Species 

correlation indicated that pollution tolerant organisms were positively correlated with 

parameters such as pH, low DO levels, chlorine and elevated TDS. Temperature, nitrate and 

river velocity seemed to have had no effect on the composition of macroinvertebrates. 

However, some macroinvertebrates such as the families Chironomidae, Thiaridae and 

Heptageniidae, seemed to have occurred in many sampling points while the Family Aeshnidae 

were common across all sampling sites indicating another family group which survives under 

different types of water bodies. From the results, it could be argued that Chironomidae and 

Thiaridae families cannot be regarded as trustworthy water quality indicators because they 

occurred in both polluted and non-polluted waters. Therefore, their use as reliable water quality 

indicators becomes more and more confusing and the precision of the findings regarding the 

quality of water is therefore minimised. The omnipresence of the Family Thiaridae in all 

seasons suggests that they tolerate a variety of aquatic habitats that differ in pollution levels. 

Therefore, their use in assessing river health should be approached with caution. The Family 

Aeshnidae was found in all sampling sites indicating its tolerance to a variety of environmental 

conditions. They are also known to tolerate changes in water temperature (Fulan et al., 2011). 

A more rigorous study and review of the use of the Family Aeshnidae as indicators of fair water 

quality is necessary.  

The presence of chironomids at Mphaila cannot be assumed to represent a stressed habitat or a 

degraded habitat because they too, like the Family Thiaridae, inhabit polluted and non-polluted 

environments. Their use as water quality indicators also needs to be approached with caution. 

Their ability to drift to nearby locations or habitats in water gives them the advantage of 

inhabiting all types of aquatic environments. Therefore, their existence in water bodies cannot 

always be associated with polluted or degraded environments. The challenge which therefore 

arises is whether  to regard them as representatives of polluted environments or whether their 

coexistence with other organisms should be re-examined. The examination should also detect 

whether they occur by chance or their coexistence with pollution intolerant species is 

significant at all times.  

Even though low abundance values were recorded from the six sampling sites it was interesting 

to observe that the macroinvertebrates that were sampled  were a reflection of the land use 

activities along the river even though the existence of Chironomidae, Thiaridae and 

Heptageniidae families should always be interpreted with care. However, the 
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macroinvertebrates that were sampled were a true representation of the health status of the 

environment from where they were harvested. However, a new approach to bioassessment is 

necessary taking into consideration the land-use types, seasonality, river velocity, resident 

macroinvertebrates and agricultural inputs. These variables should altogether form the basis 

for an improved biomonitoring tool.  

The results on habitat integrity suggested that the level of modification of the river and riparian 

zones differ from one sampling site to another, with Musekwa being characterised by a highly 

degraded environment. The habitat integrity for each sampling site corresponded with the 

diversity and types of macroinvertebrates that were sampled from each site. Musekwa was 

found to be the most degraded site as it was found to have lower species diversity and lower 

abundance values. Musekwa, Dopeni and Fondwe were the only sites that were characterised 

by invasive plants, suggesting the direct impact of land use along the river. Mphaila site was 

found to be the least degraded and recorded the lowest percentage (6%) of organisms that were 

highly tolerant to pollution. The land-use activities also seemed to have played a role in the 

level of degradation of the Nzhelele, with Mphaila being the least degraded because of lack of 

active indigenous agricultural activities and river utilisation for various purposes. Conditions 

at Mphaila could change in the near future due to the presence of areas that have been 

demarcated for future agricultural practices. The existence of human-made buffers in the form 

of a fence, and the partial clearing of trees along the river is an indication of future agricultural 

activities because agricultural fields along the river were a prominent feature from all other 

sampling sites.  

Habitat integrity assessment indicated that water abstraction activities were serious at Dopeni 

and Pfumbada, but critical at Musekwa. These activities put pressure on water bodies especially 

during low rainfall periods or drought. This explains why flows were critically low during the 

time of sampling which were also compounded by the 2015/2016 drought events. Continued 

uncontrolled water abstraction activities will lead to the end of or permanent change of the 

Nzhelele river system and aquatic biota will be confined to species that survive under degraded 

environments such as Chironomidae and Thiaridae.  

Modification of flow was found to be serious at Musekwa due to the existence of water 

extraction pipes and channelization which led to altered flow velocities. However, Musekwa 

and Maangani recorded higher velocities of 0, 32 and 0.42 m.s-1. Generally, modification of 

flow was found to be minimal at Fondwe. There was no evidence of flow modification at 



124 
 

Mphaila, while it was considered large at Maaangani and Dopeni. This explains more about 

the level of habitat deterioration which will in future alter macroinvertebrate composition. 

However, modification of flow at Dopeni favoured the abundance of pollution intolerant 

macroinvertebrates which constituted 80% of the total sampled macroinvertebrates at Dopeni.  

Bed modification was generally minimal because it was only serious and large at Dopeni and 

Musekwa respectively. The same was true with channel modification where it was found to be 

serious at Musekwa, but large at Dopeni and Maangani.  

Water quality modification across the six sampling sites ranged from minimal to moderate, 

suggesting that the effect of indigenous agricultural activities and other activities did not 

severely affect the quality of water. Inundation was found to be minimal except at Pfumbada, 

suggesting insignificant impact of this activity. No exotic aquatic fauna and macrophytes were 

recorded across the six sampling sites.  

 

Solid waste disposal was only serious at Dopeni and Musekwa and minimal at other sites, but 

absent at Mphaila. Solid waste for Dopeni and Musekwa could be explained from the location 

of the river near the villages which encouraged illegal solid waste disposal. The extent of 

indigenous vegetation removal for agricultural purposes was also serious at Dopeni and 

Musekwa, suggesting direct impacts on stream shading effects and water temperatures. 

Musekwa recorded the highest temperature, averaging of 22ºC and it also did not record a 

single EPT organism, suggesting a direct impact of temperature on macroinvertebrate 

assemblages at Musekwa. According to Ausseil (2013) mayflies (Ephemeroptera) start to 

decline at temperatures above 21.5ºC. Exotic vegetation encroachment was generally minimal 

at Dopeni, Fondwe and Musekwa suggesting minimal impact of these species along the river. 

The other three sites (Maangani, Mphaila and Pfumbada) did not record a single exotic 

vegetation species. This means that the environmental problems associated with exotic species 

is still at a lower phase and will manifest itself fully if no remedial actions are taken in time 

before these species could fully colonise a vast area along the river, leading to drastic changes 

in water quality and macroinvertebrate assemblages.  

Bank erosion was found to be absent at Mphaila, but minimal in all other sampling sites, 

suggesting that this process has been minimised or halted by extremely low flows. This means 

that it is a periodic or ephemeral problem. From the habitat integrity assessment it can be 

concluded that the only area which experienced a high degree of modification was Musekwa, 

while Dopeni and Maangani were progressively being degraded and, may soon reach a critical 
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stage of habitat modification. Generally, the results of the assessment of the habitat integrity 

showed that all the six sampled sites were experiencing continued modification that differed in 

scale and magnitude. Due to different land use activities along the river as well as their different 

magnitude of impact it was not surprising to discover that macroinvertebrate assemblages were 

characterised by the severity of impacts along the Nzhelele River. Therefore, 

macroinvertebrates need to be studied through a biomonitoring tool or approach that 

extensively highlights or fuses land use activities and biomonitoring.  

 

In order to improve biomonitoring approach a framework has therefore been proposed as the 

last objective for guiding researchers and conservationists for improving biotic integrity. The 

framework has taken into consideration the use of different biomonitoring approaches which 

are guided by the habitat integrity of lotic environments. Integration of these variables is 

important because a generic approach to biomonitoring often encounters some limitations and 

confusion regarding the use of certain macroinvertebrate families. This framework does not 

necessarily replace the existing approaches or protocols to macroinvertebrate sampling for 

biotic integrity studies but attempts to strengthen the existing biomonitoring tools. The 

integration of habitat integrity assessment approach and land use activities approach will 

strengthen the current biomonitoring approaches. The inclusion of land use assessment and 

habitat integrity prior to macroinvertebrate sampling is considered important because these 

parameters will guide a researcher or conservationists on the type of biomonitoring approach 

to be used instead of a combination of a variety of approaches. It is from the results of these 

two parameters that a researcher will know which appropriate biomonitoring tool to use so that 

it does not always depend on the preferred approach by the researcher but rather, on the habitat 

integrity and land use assessment outcomes. Soko and Gyedu-Ababio (2015) have also argued 

that in order to protect the needs of the environment there is a need to develop tools that can 

monitor environmental conditions as well as setting ecological objectives that will ensure that 

there is proper and sustainable management of the resource. For the purpose of this study it 

was therefore, necessary to propose a framework for biomonitoring in subtropical regions. 

Figure 5.1 represents a proposed framework for biomonitoring and indicates the use of habitat 

integrity results and land-use approaches to determine the appropriate biomonitoring tool to be 

chosen when conducting research.  

The main reason for starting with land use assessment is the fact that once land-uses have been 

identified, habitat integrity can thus be easily studied, guided by the type of land-use. It is easy 

to assess the integrity of habitat before the actual sampling process because the known 
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condition of the aquatic environment will aid the researcher to select an index for studying the 

resident macroinvertebrates.  It is of no use to use the Percent Contribution of Mayflies or EPT 

index in a highly degraded stream because the results will always reflect low EPT values. The 

habitat integrity results will categorise the levels of pollution of the river or a stream and once 

a stream or river has been found to be degraded the Percent Contribution of Dominant Family 

together with Simpson’s Diversity Index or Shannon-Weiner Diversity Index and Evenness 

would be appropriate for research. Proposed indices (Percent Contribution of Chironomidae, 

Thiaridae and Heptageniidae), and Ratio of EPT and Chironomidae-Thiaridae Abundaces were 

found to be a necessity because they define the relationship between pollution tolerant and 

pollution-intolerant organisms. These will help to determine whether the co-existence of 

certain macroinvertebrates of a particular tolerance level occurs by chance or their existence is 

significant.  

The second index was just the addition of the Family Thiaridae as it tends to survive a variety 

of aquatic environments under higher alkalinity, pH and temperature. This proposed framework 

is suitable for subtropical streams which are characterised by higher biodiversity of 

macroinvertebrates. The Percent Contribution of Chironomidae, Thiaridae and Heptageniidae 

families has been considered important because the abundances of these families could be 

compared under different water bodies characterised by different levels of pollution. 

Conclusions about river health could be drawn from comparisons of these organisms. This will 

therefore, assist to review the use of Chironomidae and Thiaridae families as indicators of poor 

water quality.  

 

The approaches in Figure 5.1 will determine the abundance values of pollution tolerant 

organisms even though there will be pollution intolerant organisms, the assumption being that 

they will automatically be lower in abundance. Having used the Percent Contribution of 

Dominant Family like in this study, it is easy to compare the diversity of these organisms in 

terms of locations or sampling points along a river or stream. For moderately polluted and non-

polluted streams any index of biodiversity is suitable given the fact that for a moderately 

polluted stream it is possible to find a higher abundance value for EPT and Chironomidae 

which colonise any type of lotic environments. The ratio of EPT and Chironomidae will be 

easily compared. The biotic indices under degraded streams make it easier to identify and sort 

sampled macroinvertebrates according to Percent Contribution of Dominant Family. Even 

though family level is used for these degraded streams each family could also be identified at 

species level or trait characteristics as suggested by other authors such as Odume (2014).  
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Figure 5.1 Schematic representation of biomonitoring framework for different types 

levels of degradation of rivers 
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5.3 Limitation of the study 

This study was conducted during unfavourable conditions of drought that had significant 

impact on the abundance values of macroinvertebrates and some physico-chemical properties 

of water. The abundance values were lower and the number of families found across all six 

sampling sites were only nine, suggesting that species diversity of macroinvertebrates was 

directly influenced by these conditions. The study also covered areas where the Nzhelele River 

transcends rural villages and subsistence farms. Only the Fondwe site was located immediately 

downstream of commercial agriculture of Komatiland Plantation characterised by blue gum 

tree plantations. Therefore, the direct impact of commercial agriculture in this study could not 

be fully assessed. The other limitation was that the use of Percent Contribution of Dominant 

Family did not break down family levels down to species or trait characteristics of the sampled 

organisms to determine the response of different species of macroinvertebrates to pollution 

levels in the river. Since family level approach gives a generic approach to responses of a 

dominant group of organisms to pollution it cannot provide differences in tolerance levels of 

individual species belonging to the same family. However, the approach showed the dominant 

families per sampling site. Therefore, the results of this study indicate river water quality and 

habitat integrity in terms of dominant family according to tolerance levels to pollution. 

Therefore, based on these limitations the following recommendations are made for further 

future research purposes.  The other limitation of the study is the water quality study which did 

not test other parameters such as phosphates, sulphates and potassium to see how they also had 

direct  link to macroinvertebrate diversity and river health even in the absence of noticeable 

effluent discharges.  

5.4 Recommendations 

 There is a strong need to review biomonitoring approaches because the levels of 

pollution in a river can be determined before sampling of macroinvertebrate 

communities. Future biomonitoring approaches should begin by assessing land uses 

and habitat integrity before applying the SASS5 protocol for macroinvertebrate 

sampling.  

 The hydrological characteristics of a river should be considered before the actual 

macroinvertebrate sampling and there should be a strict protocol adopted for each 

section of a stream with distinct hydrological characteristics and habitat integrity. This 

calls for frequent review of the SASS5.  
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 The SASS5 protocol should be reviewed and should consider setting minimum 

standards for studying both degraded and non-degraded lotic environments such as the 

required minimum number of organisms per type of hydrological characteristics, such 

as low flows or moderately fast flows, etc. The habitat conditions can be assessed 

through conducting Habitat Integrity Assessment prior to the application of SASS5. 

This approach will assist in guiding a researcher on the appropriate biotic index to be 

used for each type of lotic environment.  

 Since it is possible to sample macroinvertebrates in any lotic environment such as fast 

and slow flowing rivers, degraded and non-degraded streams, there should be strict 

protocols regarding the procedures for sampling these types of lotic environments.  

 Trait and species level approach should also be incorporated into the SASS5 protocol 

since they clearly define the state of the river and tolerance levels of the resident 

macroinvertebrates.  

 Percent Contribution of Thiaridae, Chironomidae and Heptageniidae should be added 

to the current list of biotic indices since the occurrence of these groups of 

macroinvertebrates is on many occasions present in all types of waters. Under the 

proposed framework this proposed biotic index could be used under degraded and non-

degraded rivers, including the moderately degraded rivers. This will also assist in 

reviewing the roles or importance of these groups in assessing river health status.  

 Ratio of EPT and Chironomidae Abundances should be reviewed to read as Ratio of 

EPT and Chironomidae-Thiaridae Abundances. This is a good measure of EPT against 

common pollution families since they exist under various water conditions. The results 

from this study have shown that Thiaridae exist in all types of water and for the purpose 

of improved biotic indices these families should be added to Ratio of EPT and 

Chironomidae Abunances. The proposed ratio will strengthen the use of EPT and 

masters of the environments (Chironomidae and Thiaridae families) to effectively make 

conclusions about river water quality.  

 There is also need to review the use of the Family Aeshnidae because it has been found 

to occur in all types of aquatic environments. Their occurrence in all six sampling sites 

suggests that they are capable of inhabiting different types water bodies and their 

tolerance level needs to be reviewed.  

 To minimise river pollution, local authorities should consider coming up with effective 

water supply strategies that will limit water abstraction rates from the rivers. There is 
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need for proper Environmental Impact Assessment (EIA) which will assist local 

authorities when zoning areas for agriculture and businesses in rural areas. This means 

that agricultural practices should be forbidden along riparian zones of all rivers.  

 Regional Planning should consider rezoning subsistence agricultural fields since their 

current location seem to be directly linked to the Nzhelele River degradation.  

 Subsistence farmers should also be educated on how to utilise natural resources 

sustainably, while being  encouraged to  improve their rural livelihood.  This could be 

done through Adult Basic Education and Training which was introduced in the early 

1990s in South Africa. 
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