THE RIGHT SIZED COW FOR EMERGING AND COMMERCIAL BEEF FARMERS IN SEMI-ARID SOUTH AFRICA: CONNECTING BIOLOGICAL AND ECONOMIC EFFECIENCY

by

THEO MULLER VENTER

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject
AGRICULTURE
at the
UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: Prof M A ANTWI
Table of Contents
THE RIGHT SIZED COW FOR EMERGING AND COMMERCIAL BEEF FARMERS IN SEMI- ARID SOUTH AFRICA: CONNECTING BIOLOGICAL AND ECONOMIC EFFECIENCY i
Table of Contents ii
List of tables v
List of figures vii
Abbreviations viii
Abstract ix
Key Terms xi
Declaration xii
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 South African beef production 1
1.1.2 Commercial and Emerging Farmers in South Africa 1
1.1.3 Size of cattle 3
1.2 Research problem and motivation 4
1.3 Research questions 5
1.4 Research Aim 5
1.5 Objectives of the study 6
1.6 Hypotheses 6
1.7 Chapter arrangement 7
Chapter 2 Literature Review 9
2.1 Overview 9
2.2 Biological Efficiency 9
2.2.1 Introduction 9
2.2.2 Feed and energy requirements of cattle 10
2.2.3 Using energy to calculate animal numbers on a resource base 16
2.2.4 Effect of size on growth 19
2.2.5 Milk production potential 24
2.2.6 Effect of size on reproduction 25
2.2.7 Adaptation 27
2.2.8 The role of the bull 27
2.3 Micro / miniature cattle 28
2.4 Economic Efficiency 29
2.4. Factors influencing income 30
2.4.2 Factors influencing Expenses 32
2.4.3 Examples of case studies of economic efficiency 32
2.5 Chapter Summary 33
Chapter 3 Methodology 34
3.1 Methodology outline 34
3.2 Cattle type and sizes 34
3.3 Dry matter intake, gross energy and net energy 35
3.4 Determination of Energy for physiological functions 36
3.4.1 Energy requirements for Maintenance 36
3.4.2 Growth rates and Energy requirements for Growth 37
3.4.3 Energy requirements for Lactation 40
3.4.4 Energy requirements for foetal production 43
3.4.5 Growth and Total daily energy requirements per cow 44
3.5 Resource base 44
3.6 Production system 46
3.7 Stock flow 47
3.8 Production Budget 49
3.8.1 Income 49
3.8.2 Expenses 51
3.8.2.3 Dosing and vaccinations 52
3.9 Chapter Summary 55
Chapter 4 Results and Discussion 56
4.1 Growth and energy requirements of individual cows 56
4.1.1 \quad Growth of individual cows 56
4.1.2 Net Energy Requirements 57
4.2 Stock flow and herd composition 63
4.3 Composition of energy requirements of the herd 68
4.4 Production Budgets 69
4.4.1 Culls and weaners sold 69
4.4.2 Meat prices 69
4.4.3 Total Income 70
4.4.4 Bull replacements 70
4.4.5 Supplementary Licks 70
4.4.6 Dosing costs 70
4.4.7 Vaccination costs 70
4.4.8 Dips costs 71
4.4.9 Processing and veterinary costs 71
4.4.10 Total allocated costs 71
4.4.11 Margin above allocated costs 71
4.5 Chapter Summary 73
Chapter 5 Discussion and Scenarios 74
5.1 Introduction 74
5.2 Limitations of the base model 74
5.3 Scenarios 75
5.3.1 Scenario 1: Reproduction rates and profitability 76
5.3.2 Scenario 2: Maturity rates and early breeding 81
5.3.3 Scenario 3: Limited feed intake 87
5.4 Further consideration related to size 98
5.4.1 Adaptation 98
5.4.2 Facilities 98
5.4.3 Selection and genetic progress 99
5.5 Chapter Summary 99
Chapter 6 Conclusion and Recommendations 101
6.1 Conclusion 101
6.2 Recommendations for Emerging and Commercial Farmers 103
6.3 Chapter Summary 104
Bibliography 106

List of tables

Table 3.1: Beef Classification in South Africa 50
Table 3.2: Supplementary feed, dosing, vaccinations and dipping schedule and expenses 53
Table 4.1: Growth and NE requirements of small cattle for important life stages 59
Table 4.2: Growth and NE requirements of medium cattle for important life stages 60
Table 4.3: Growth and NE requirements of large cattle for important life stages 61
Table 4.4: Lifetime energy requirements of small, medium and large cows 63
Table 4.5: Stock flow for the herd of small cattle 65
Table 4.6: Stock flow for the herd of medium cattle 66
Table 4.7: Stock flow for the herd of large cattle 67
Table 4.8: The energy requirements of animal classes in the herds of small, medium and large cattle68
Table 4.9: Production budget for a herd of small, medium and large cattle 72
Table 5.1: Stock flow of the herd of medium cattle at a reproduction rate lowered to 85% of the base model 78
Table 5.2: Stock flow of the herd of large cattle at a reproduction rate lowered to 75% of the base model 79
Table 5.3: Production budget for different reproduction rates and equal profitability of small, medium and large cattle 80
Table 5.4: Stock flow of the herd of small cattle bred at 15 months 84
Table 5.5: Stock flow of the herd of medium cattle bred at 15 months 85
Table 5.6: Production budget for early bred small cattle with a FCC reproduction rate of 100%, early bred medium cattle with a FCC reproduction rate of 54% and large cattle as in the base model

Table 5.7: The results of limiting feed to $7,633 \mathrm{Mcal}$ during the growth stage of small, medium and large cattle.89

Table 5.8: Small, medium and large cows fed 90% of calculated NEm+g during the growth cycle 90
Table 5.9: Comparison between NEm requirements as calculated as LSU and by Lofgreen \& Garrett94
Table 5.10: Comparison between LSU and calculation recommended by NRC for NEm +g 97
Table 5.11: Comparison between LSU and calculation recommended by NRC for NEm+1 97
Table 5.12: Comparison between LSU and calculation recommended by NRC for NEm +y 97

List of figures

Figure 1.1: Classification of beef farmers in South Africa 2
Figure 4.1: Growth curves of small, medium and large cows using Brody's growth model 57
Figure 4.2: Net energy requirements of medium sized cow from birth to 1979 days 58
Figure 5.1: Net energy requirements of medium sized cow from birth to 1979 days when bred at 15
months
Figure 6.1: Monthly energy requirements of a herd of medium cattle 104

Abbreviations

ARC	Agricultural Research Council
BW	Body Weight
EQEBW	Equivalent Empty Body Weight
FCC	First calf cows
ICP	Inter Calving Period
LSU	Large Stock Unit
MC	Mature cows
NBRI	National Beef Recording and Improvement Scheme
NE $^{\text {NE }}$ g	Net Energy
NE $_{1}$	Net energy for growth
NE $_{m}$	Net energy for lactation
NE $_{t}$	Net energy for maintenance
NE $_{y}$	Total Net Energy
NRC $^{\text {RCC }}$	Net energy for production
RCC from MC	National Research Council
RE	Retained Cow Calves
SCC	Retained Cow Calves from Mature Cows
TCC	Second calf cows
	Third calf cows

Abstract

Cow size influences biological efficiency of individual animals, which influences herd composition and stock flow. This in turn influences the economic efficiency of the herd. This research followed the thread from animal size, to biological efficiency, to economic efficiency for beef cattle production under a typical production system in semi-arid South Africa. Cattle were grouped into three groups namely small, medium and large cattle, with mature weights of $300 \mathrm{~kg}, 450 \mathrm{~kg}$ and 600 kg respectively. The net energy requirements of individual cattle were calculated for maintenance, growth, lactation and foetal production, for each of the three sizes. Growth rates, milk yield, reproduction rates, and management practices were assumed from existing research. Next the stock flow for a herd of small, medium and large cattle were calculated from the above. Income and expenses as commonly used in the research area were calculated from the stock flow. Gross profit above allocated costs were subsequently calculated for the three herds under the above-mentioned conditions.

When assuming similar reproduction and growth rates for small, medium and large mature cattle, the following results were obtained: more heads of small cattle could be held on a set resource base, but the total live weight of a herd of large cattle that could be held on the same resource base was greater. This was mostly due to proportionately lower maintenance energy requirements in the herd of large cattle. In the simulation in this study, maintenance energy requirements for the herd of large cattle was 71.2%, compared to 72.0% for the herd of medium cattle and 73.1% for the herd of small cattle. Income from the herd of small cattle was the lowest, as less kilograms of beef were available to sell. Allocated costs for the herd of small cattle were the highest, due to a large number of expenses being charged per head of cattle. As a result, the herd of large cattle were more economically efficient than their smaller counterparts. Income above allocated costs for the herds of large, medium and small cattle were R1,182,865, R1,085,116 and R946,012 respectively.

Larger cattle generally have a lower reproduction rate under similar conditions. No equation exists that directly links size to reproduction rates, especially considering the vast number of variables that influences reproduction rates. However, in the form of scenarios, it could be calculated that, given a reproduction rate of 80% for mature small cattle, when reproduction rates of large cattle were 24.7% lower than that of small cattle and the reproduction rates of medium cattle were 15.4% lower than that of small cattle, the large and medium herds became less profitable than the small herd.

Smaller cattle mature faster than larger cattle which provides the opportunity for early breeding. When small cattle were bred early, at 15 months, at a calving rate of only 44.5% it was more profitable than when the same cows were bred at 24 months. When medium cattle were bred at 15 months, a calving rate of 37.0% was needed to be more profitable than when they were bred at 24 months. Even when the herd of small cattle were bred at 15 months with a reproduction rate of 100%, it could still not match the profitability of the herd of large cattle bred at 24 months given the reproduction rates of all other classes of animals were similar. When the herd of medium cattle were bred at 15 months, at a calving rate of 53.7%, it matched the profit of the herd of large cattle that were bred at 24 months, when the reproduction rates of other classes were equal.

Scenarios were considered were feed intake was limited. When feed was limited to a specific amount, smaller cattle were more biologically efficient and cattle with potential for small mature sizes would grow to a larger size than cattle with potential for medium and large mature sizes. When feed was limited by a factor of the calculated energy requirements of small, medium and large cattle, large cattle were more effective. This is because large cattle use proportionately less energy for maintenance, which allows more energy to be allocated to growth, lactation and foetal production. When energy was limited to an amount per unit of metabolic weight, small cattle were more efficient than medium and larger cattle in the growth and production phases. Small, medium and large cattle were equally efficient (or inefficient) in the maintenance and lactation phases. Energy requirements of cattle in South Africa are commonly calculated using the Large Stock Unit (LSU). The LSU typically overestimates energy requirements for cattle, except in the lactation phase. When using the LSU to match small, medium or large cattle to a resource base, the LSU overestimates energy requirements of large cattle proportionately more than that of small and medium cattle. This is excluding the lactation phase, where energy requirements for all three sizes are underestimated and that of large cattle underestimated proportionately more.

There are more considerations when matching cow size to managerial practices. A smaller body size is a natural adaptation to a semi-arid environment and this adaptation can be expressed in different ways. The number of animals on a resource base has implications on management practices. Having more heads of cattle on a resource base increases genetic variation of the herd, allowing for genetic progress to be made faster than in herd of fewer cattle.

Key Terms

Cattle size, cow size, biological efficiency, economic efficiency, metabolic weight, energy requirements of cattle, energy requirements for maintenance, energy requirements for growth, energy requirements for lactation, energy requirements for foetal production.

Declaration

I declare that THE RIGHT SIZED COW FOR EMERGING AND COMMERCIAL BEEF FARMERS IN SEMI-ARID SOUTH AFRICA is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.

I further declare that I have not previously submitted this work, or part of it, for examination at Unisa for another qualification or at any other higher education institution.

Name:	Theo Muller Venter
Student Number:	47713046
Degree:	M.Sc. Agriculture

2018, September 1st

Chapter 1 Introduction

1.1 Background

1.1.1 South African beef production

South Africa had around 13.8 million heads of cattle in 2012, of which 80% were for beef production. South Africa is not self-sufficient when it comes to beef production, as consumption exceeds production (Department of Agriculture, Forestry \& Fisheries, 2015). This makes South Africa a net importer of beef, meaning there is ample room to increase output and efficiency. A more efficient system can deliver higher output at similar or lower input. Improving biological efficiency of the national herd will go a long way towards increasing output and increasing profitability of individual farmers.

Most beef cattle in South Africa are managed under extensive conditions and utilises natural pasture. According to results of the National Cattle Survey undertaken in South Africa, with emphasis on beef, in 2003 around 75% of beef production systems were extensive (Scholtz et al., 2008).

Production systems in South Africa are generally classified according to the age at which animals are sold. The three most common systems in South Africa are the weaner, long yearling or tolly and the two-year or ox systems (Department of Agriculture and Rural development, 2016a). According to the survey by Scholtz et al (2008), 70% of all beef cattle that were slaughtered in the formal sector had been fattened in the feedlot. This means commercial farmers produce mainly for the feedlot.

The above-mentioned reports point out the large variance in beef production systems in South Africa. However, while there are many differences in production systems, it can be concluded that commercial farmers utilize a production system where animals are raised extensively, then sold to the feedlot for fattening, one very common system being a weaner system where animals are sold to the feedlot after they are weaned.

1.1.2 Commercial and Emerging Farmers in South Africa

There is great variation among ownership and management of the national herd. Despite the differences, these sectors can all gain from being more biological and economic efficient.

More than 44% of the total South African cattle herd is owned by emerging and subsistence farmers according to further results of the national cattle survey (Scholtz et al., 2008). Figure 1.1 shows the gene flow of South African beef and dual-purpose cattle

Figure 1.1: Classification of beef farmers in South Africa
(Scholtz et al., 2008)

According to the South African Beef Market Value Chain report, 60% of the SA cattle herd is owned by commercial farmers and 40% by emerging and communal farmers. This report divided beef producers into 3 groups (Department of Agriculture, Forestry \& Fisheries, 2015). Beef producers were classified as follows:

- Commercial farmers where production is high and comparable to developed countries.
- Emerging farmers where production is lower, but they could have the potential to commercialise.
- Communal or subsistence farmers where communal grazing is used for beef production.

Although there are slight variations in the way beef farmers are classified and grouped in previous research and reports, it is clear that the emerging sector makes up a substantial portion of the total herd. This sector has the most potential when it comes to improving efficiency, however there are many obstacles in this sector.

Herds are typically small, with an average herd size of only 19 heads of cattle in the emerging and communal sector, compared to 419 in the commercial sector. Animals are mainly kept for meat and cash (47%) and 15% was kept as an investment, one of the reasons being a lack of formal banking systems in some demographical areas. Animals were also kept for milk, cultural and ceremonial reasons, dowry and work. Uncontrolled breeding is still practiced in 63% of cases in the emerging sector (Scholtz et al., 2008).

There is a lack of access to structured markets in the emerging and communal sectors (Scholtz et al., 2008; Sikhweni \& Hassan, 2013). Cattle from the informal sector are seldom sold to feedlots, as they do not meet the requirements set by commercial feedlots. These cattle are mostly sold privately or at auctions. Despite little access to formal markets, the above-mentioned survey by Scholtz et al. found that this industry is in fact flourishing.

The lack of information in the emerging sector is a double-edged sword in many cases. One side is that information about the industry is highly variable and not readily available. The other side being the fact that these farmers themselves have little access to managerial information. The lack of information should be seen as the biggest constraint in the emerging sector (Department of Agriculture, 2006).

1.1.3 Size of cattle

More results from the National Cattle survey show that farmers put much consideration into size when selecting a bull. The survey listed several reasons for bull selection namely: performance, conformation, temperament, size, availability, colour and horns. Commercial farmers first consider performance, conformation and temperament, but 8.8% still predominantly select a bull based on size. Emerging farmers' main consideration was performance (30.3%) followed by size (23.5%). Thirty-three percent (33%) of communal farmers considered size to be the most important factor and as the author put it, still believe "bigger is better" (Scholtz et al., 2008).

Since mature size of cattle influences biological efficiency, it is essential to identify the right sized cow for the environment and management practices of South African beef farmers. Biological efficiency in turn influences economic efficiency and thus the right sized cow will be the most profitable cow.

1.2 Research problem and motivation

The goal of emerging and commercial farmers is to have a sustainable and profitable enterprise that supplies high quality animals and beef. These farmers are faced with making complex management decisions that could severely impact their efficiency. With rising input costs and in the face of climate change, the way forward for farmers is through becoming more efficient. One of these decisions is to select the right sized cow for their resource base. The right sized cow will be both biologically and economically efficient, allowing for sustainability and profitability. In this case biological efficiency means producing more kilograms of live animals per year, with similar or less inputs. In an extensive beef enterprise, the principal and often limiting input is the feed energy that is available from the farmer's resource base. Matching the right sized cow to the resource base will improve the biological efficiency of the herd, which in turn will improve economic efficiency of the enterprise.

Therefore, the research problem that has been identified, and that this research aims to fill, is how size influences biological efficiency of individual cows, the effect of biological efficiency of individual animals on the herd composition and stock flow on a specific resource base, the resulting income and expenditure of the herd under an extensive weaner production system in semi-arid South Africa, specifically in the North-West province, and finally the subsequent economic efficiency of a herd made up of these individual cows of different sizes.

Although the influence of cow size on efficiency is not a new topic, as more and research has been done on this topic, it calls for a complete assessment of efficiency of individual animals and the subsequent effect on the economic efficiency of a herd. Mature body size influence biological efficiency, and biological efficiency influences economic efficiency (Dickerson, 1978; DiCostanzo \& Meiske, 1994; Arango \& Van Vleck, 2002; Johnson et al., 2010), however there is not a direct correlation between size and economic efficiency with many more variables that needs to be taken into account along the way. Even though the biological efficiency of individual cows can be measured to some extent, the interaction between cow size, biological efficiency of individual animals and the profitability of a herd as a whole, has received less attention. Research suggests that the most efficient cow size is furthermore determined by the environment and production system in use (Morris \& Wilton, 1976; Dickerson, 1978; Arango \& Van Vleck, 2002). Moreover, previous studies have been mostly concerned with differences among breeds, with differences in size within one breed, studied less.

When the physiological functions of an individual cow are measured, in terms of feed requirements, reproduction rates, growth rates, milk yield, and calf size among others, it relates to the biological efficiency of the cow. Biological efficiency in terms of energy requirements for maintenance, growth, lactation and reproduction can by accurately calculated with existing numeric equations, given that the other variables that form part of these equations are known. Be that as it may, biological efficiency of individual animals is still a long stretch from economic efficiency of a herd under specific conditions and management practices. Knowing the biological efficiency of individual animals allows the calculation of herd composition and stock flow on a pre-determined resource base. Only once the stock flow for the herd is known, can the income and expenses of the herd be calculated. Income and expenses that are typical for the management practices in the research area should be considered. From the income and expenses the economic efficiency can be calculated. This means that there is a definite connection between the size of individual animals and the profitability of the herd as a whole, however this connection has not been evaluated fully, even more so for the conditions set out in this thesis.

1.3 Research questions

The study set out to answer the following research questions:

1. Does size influence biological efficiency of individual cows and in what way?
2. How does biological efficiency of different sized cows influence the herd composition and number of animals of different sizes a resource base can support?
3. How does herd composition and number of animals on a resource base affect profitability?
4. If the objective is economic efficiency, should emerging and commercial beef farmers in semiarid South Africa choose small, medium or large cows?
5. Under which situations will one sized cow be more economically efficient than another?

1.4 Research Aim

The main aim of the study was to determine the right sized cow for emerging and commercial beef farmers in semi-arid South Africa in terms of economic efficiency. Since commercial and emerging farmers aim to be profitable, the right sized cow will be the most economically efficient cow. However, the size of individual cows is not directly proportionate to the profitability of the enterprise. Therefore, the aim of this research was to connect the influence of size on biological efficiency of individual animals to the economic efficiency of a herd as a whole on a specific resource base in a semi-arid
environment and under management practices as typically used in a weaner production system in South Africa.

1.5 Objectives of the study

The main aim of the study was to determine which sized cow will be the most economically efficient. Therefore, the objectives of the study were to:

- determine how cow size affects the biological efficiency of individual cows
- calculate the biological efficiency of small, medium and large cows throughout their life cycles
- establish how the biological efficiency of individual cows influences the herd composition and stock flow on a set resource base
- calculate the income and expenditure resulting from the stock flow of a herd of small, medium and large cattle under typical management practices applied in the commercial and emerging sector
- determine the economic advantages of choosing a herd of small, medium or large cattle under the conditions and management practices described in the study
- compare the biological and economic efficiency of the herd of small, medium and large cattle
- determine how biological and subsequent economic efficiency is influenced by performance traits, such as reproduction rates, maturation rates and feed restrictions among the three sizes
- make practical recommendations to commercial and emerging farmers when selecting for cattle size
without changing from one breed to another, specific to an extensive weaner production system in the North-West province of South Africa.

1.6 Hypotheses

The hypotheses that the research set out to test were:

- The size of individual animals will influence biological efficiency of individual animals, especially in terms of feed requirements
- The biological efficiency of individual animals will impact the herd composition if a predetermined amount of feed energy is available
- The herd composition will determine income and expenditure of the herd, and thus the resulting profitability
- Therefore, profitability of an enterprise is affected by the size of individual animals and although animal size and profitability are not correlated, they are related. Thus, it stands to reason that one sized animal will be more profitable than another given certain set of conditions

1.7 Chapter arrangement

Chapter 1 presents an introduction to the study consisting of the background to the study in terms of South African beef production, commercial and emerging farmers in South Africa and the size of cattle. Thereafter the research motivation, research questions, aim and objectives of the study, hypotheses, and chapter arrangement are provided.

A review of previous literature in terms of biological efficiency and economic efficiency is done in Chapter 2. In the section on biological efficiency, feed and energy requirements of cattle is reviewed in depth, next the use of energy requirements to calculate cattle numbers on a resource base is discussed, followed by the effect of size on growth, milk production, reproduction and adaptation. The role of the bull is discussed next. An introduction on micro/miniature cattle is given. In the review of previous literature on economic efficiency, factors influencing income is discussed, followed by factors influencing expenses and finally examples of case studies are given. Finally, the chapter is summarized. Chapter 3 discusses the methodology behind this research. First the methodology outline is provided, followed by a discussion of cattle types and sizes. Next the correlation between dry matter intake, gross and net energy is discussed, followed by the section on the determination of energy requirements for physiological functions. The resource base and production system used in this thesis is defined next, followed by the calculation used for the stock flow, and the resulting production budget. The chapter is closed with a summary in terms of an overview of the methodology.

Chapter 4 provides the results of the study and discusses them. The results are given in terms of growth and energy requirements of individual cows, stock flow and herd composition, composition of energy requirements of the herd. This is followed by the production budgets that resulted from the study and a discussion thereof. Lastly, a chapter summary is provided.

The discussion and scenarios in chapter 5 is concerned with the limitations of the study, where qualitative data could not be numerically expressed. This chapter starts with an introduction, followed by an explanation of the limitations of the study. Next different scenarios are given based on assumptions on biological efficiencies of different sized cattle. Further considerations that farmers need to take before selecting the most suitable sized cow to their situation is discussed next. The chapter summary ends the chapter

Chapter 6 reaches a conclusion in terms of the results of the study and the considerations when selecting one sized cow over another. Finally, recommendations are made to commercial and emerging farmers, followed by the chapter summary. Finally, the bibliography and appendix A are provided.

Chapter 2 Literature Review

2.1 Overview

Previous literature points out that the most efficient cow size will depend on the production system and environment. What works for one production system might not necessarily work for another system as far as the right sized cow is concerned. Matching cow size to the environment, and management goals of the system will increase overall biological and economic efficiency.

Finding the right sized cow for the right production system is not an easy task. It is not always possible to isolate individual factors that are influenced by size. When considering the optimal cow size, both biological and economic efficiency need to be considered. Although they are not necessarily proportionate, they are definitely related.

This chapter first takes a look at biological efficiency among different sized animals, with special attention given to feed requirements. Economic efficiency is discussed next and the complex relationship between biological efficiency and economic efficiency is demonstrated.

The effect of cow size has been a topic of debate for more than a century, however as new information becomes available, the need to rethink what is already known becomes clear. Furthermore, there are still unexplored areas concerning size, especially within breed and where the cow herd is considered as to individual animals. This literature review aims to show the progress that has been made in this field, but more importantly to review some of the equations and calculations that can be used to determine the effect of cow size on energy requirements, growth, lactation and reproduction. This will form the starting point for the simulation study to determine the most economic efficient cow size.

2.2 Biological Efficiency

2.2.1 Introduction

There have been many different definitions for biological efficiency throughout the literature cited. Most of these definitions are concerned with getting a proportionally higher output from an input. In order to give a thorough review in terms of biological efficiency; feed energy, growth, reproduction,
lactation and environmental adaptation are considered. These measures of efficiency are interrelated but will be discussed separately as far as possible to show how they are affected by the mature size of cattle.

2.2.2 Feed and energy requirements of cattle

One of the most important inputs for a beef production enterprise is feed. Feed is also often the limiting factor when herd size is considered. A defined resource base can only provide a specific feed quantity (when environmental variations and management is removed from the equation). In turn, the feed quantity determines the number of animals the farm can support when little or no supplementary feed is procured. As is expected large cattle eat more than small cattle and thus, a resource base or farm can support a higher number of small cows and a lower number of large cows. Here, biological efficiency in terms of feed energy and conversion is concerned with the number of animals, of a specific weight, that a defined resource base can support.

Cattle partition feed in the following order: maintenance, growth, lactation and production (Johnson et al., 2010). Thus, since cows will first use feed for maintenance, in a situation where feed is unlimited or inexpensive, cows with a proportionately lower maintenance requirement will perform better biologically and economically in the growth, lactation and reproduction phases. Larger cows generally have proportionately lower maintenance requirements than smaller cows and often perform better in these environments. However, where feed is limited, smaller cows have been proven to be more efficient. In a comprehensive study done by T. Jenkins and C. Ferrell in 1994, the effect of varying dry matter intake (DMI) on 9 different breeds was recorded over a period of 5 years. Results from this study showed that smaller breeds and breeds with a lower genetic potential for growth and milk production (Red Poll, Angus and Pinzgauer) had higher conception and reproductive rates than larger breeds when feed was limited. Larger cows and cows with high genetic potential for growth and milk production were more efficient in an environment with high feed levels than smaller cows. All breeds displayed maximum efficiency where feed intake was not limited (Ferrell \& Jenkins, 1984; Jenkins \& Ferrell, 1994). Nearly all previous literature suggests larger cows have a lower reproduction rate than smaller cows under similar conditions. Even more so, when feed is restricted. In this case, reproduction rates of larger cows will drop comparatively more than their smaller counterparts, than in an environment with abundant feed (Jenkins \& Ferrell, 2002).

2.2.2.1 Feed energy for maintenance

The feed requirements of cattle purely for maintenance has a significant effect on the total feed requirements of the herd. A higher maintenance requirement directly translates into higher total feed requirements. Where individual cows are concerned, more than 50% of total feed energy intake by adult and market animals is used purely for maintenance (Dickerson, 1978). This leaves less than 50% for the growth, lactation and production phases. Where the total herd is considered, more than 70% of the energy requirements of the cow herd is used for maintenance and around 50% of the total energy can be allocated to cow maintenance (Ferrell \& Jenkins, 1984).

Maintenance requirements are, among other factors, influenced by the breed and size of cattle. However, if the effects of breed need to be omitted from the equation, it is done by comparing smaller cows and larger cows of the same breed. In this case, where the maintenance feed requirements within a specific breed is compared, the metabolic weight comes into play. Kleiber's law states that the metabolic rate of animals is directly proportionate to the animal's weight to the factor of 0.75 . This is also referred to as the animal's metabolic weight. It can be defined as metabolic weight $=$ live weight ${ }^{0.75}$ (Kleiber, 1932). The metabolic weight can be used to determine maintenance feed requirements, for example, if cow with a weight of 500 kg needs 15 kg of feed energy per day for maintenance, then a 1000 kg cow will need only 25 kg , and not 30 kg , calculated as $(1000 \div 500)^{0.75} \times 15 \mathrm{~kg}=25 \mathrm{~kg}$. The metabolic weight of animals forms the basis of nearly all other equations aimed at the prediction of maintenance feed requirements of different sized animals.

When measuring the maintenance feed requirements, different approaches have been taken. One well known method for determining maintenance energy requirements, as calculated by Lofgreen \& Garrett, is commonly referred to as the California Method (Lofgreen \& Garrett, 1968). This method is used to determine the retained energy or energy balance of the animal. They argued that the retained energy equals the net energy used for growth. Since growth can be measured, the retained energy can be computed. Therefore, since energy for maintenance and growth $\left(\mathrm{NE}_{\mathrm{m}+\mathrm{g}}\right)$ is equal to the sum of energy for maintenance $\left(\mathrm{NE}_{\mathrm{m}}\right)$ and energy for growth $\left(\mathrm{NE}_{g}\right)$, then if $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ and NE_{g} is known, then NE_{m} can be calculated. Further, the energy used for maintenance equals the energy used for heat production at zero feed intake. The results from the retained energy measurements were extrapolated to determine the heat production at zero feed intake and thus the energy requirements needed for maintenance. Results from the study showed daily Net Energy for Maintenance $\left(\mathrm{NE}_{\mathrm{m}}\right)$ to be

$$
\begin{equation*}
N E_{m}=0.077 / W^{0.75} \tag{Mcal}
\end{equation*}
$$

where W is the weight of the animal. This study was done using mostly growing steers and nonlactating, non-pregnant heifers of British breeds that were housed in a low stress environment. The National Research Council (2000) sites the work of Lofgreen \& Garrett and uses it as the starting point for their calculation of maintenance requirements. The NRC further notes that, since animal activity normally decreases when they are fed below maintenance, the model of Lofgreen \& Garrett already incorporates this into the calculation and adjustments for increased or decreased activity does not have to be made. However, this only applies to voluntary activity. If animals need to be herded across large areas or if animals have to walk large distances to their water source, different activity levels are not automatically compensated for.

2.2.2.2 Feed energy for growth

Growth has been defined as the deposit of tissue, mostly in the form of proteins which leads to an increase of skeletal, muscle and organ tissue in the animal. As the animal matures, total protein deposited will reach a plateau, with minor fluctuations (when animals are not grossly over- or under fed). Animal weights might thus fluctuate at maturity, mostly due to fat deposits. Often, mature weight is defined as the weight at which protein deposits level out. When the small fluctuations in mature weight is neglected, it is referred to as asymptotic weight.

As growth is defined as the deposit of tissue, it translates into the deposit of energy. When an animal is in the growth phase, the animal uses the net energy for growth and maintenance ($\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$). As mentioned in the previous section, Lofgreen \& Garrett showed that the net energy for growth can be isolated into net energy for maintenance $\left(\mathrm{NE}_{\mathrm{m}}\right)$ and net energy for growth $\left(\mathrm{NE}_{\mathrm{g}}\right)$ and that $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}=\mathrm{NE}_{\mathrm{m}}+\mathrm{NE} g$ (Lofgreen \& Garrett, 1968). This means if any two of the variables are known, the third can easily be calculated.

Since the energy deposited in the form of tissue, usually measured in weight, equals the net energy intake for gain, it means net energy for gain is a function of weight gain. Weight gain in turn is dependent on the current body weight and asymptotic weight of the animal, which means the three most important variables when calculating NE_{g} is body weight, asymptotic weight and weight gain.

Garret (Garrett, 1980) utilized comparative slaughter methods to determine the energy deposits for animals at different feed levels. British breeds and Charolais cattle were used and cattle were fed different diets. The energy deposits of the carcasses were measured to calculate the net energy for gain. The retained energy by bull calves were found to be 17% lower than that of heifers for the same growth rate, among British breeds. Animals that had hormonal growth implants had 4.5% lower retained energy needs for the same growth rate than those without. The results from the comparative slaughter trails led to the following equation for British steers (which had growth implants). Here retained energy (RE) equals NE_{g}.

$$
N E_{g}=R E=0.0635 * E B W^{0.75} * E W G^{1.097}(\mathrm{Mcal})
$$

and for heifers of British breeds (with growth implants)

$$
N E_{g}=R E=0.0783 * E B W^{0.75} * E W G^{1.119}(\text { Mcal })
$$

where $E B W$ is empty body weight and $E W G$ is empty body weight gain. Even though there are variations among breeds and animal class, this is the most comprehensive study that has been done to determine the net energy requirements for gains and has been adopted by many researchers and institutions to calculate energy requirements for growth.

Therefore, net energy requirements for growth are dependent on body weight, asymptotic weight and body weight gain. Larger cattle grow faster, as is discussed in section 2.4 , and thus both the body weight and body weight gain will be higher at any given day after conception for larger animals, until growth eventually stops. Simply put larger cattle grow faster but need more energy to do so, even if energy for maintenance is ignored.

2.2.2.3 Feed energy during pregnancy

It is generally accepted that the energy required during pregnancy is highly correlated to calf birth weight. This means that by assuming calf birth weight, energy requirements during pregnancy can be calculated. Ferrell et al. calculated the energy requirements of the gravid uterus in purebred Herefords (Ferrell et al., 1976). He found the relationship to be

$$
Y e=69.73 e^{(0.03233-0.0000275 t) t} \quad(\mathrm{kcal})
$$

Where $t=$ time of gestation. The above equation was formulated with a birth weight of 38.5 kg . From this equation, the NRC (2000) further developed a prediction of energy requirements for the gravid uterus as follows

$$
\begin{equation*}
Y e=\text { birth weight }(0.05855-0.0000996 t) e^{(0.03233-0.0000275 t) t} \tag{kcal}
\end{equation*}
$$

And building on the above equation, the NRC developed the below equation to estimate the net energy requirements during pregnancy as

$$
N E_{y}=0.576 \text { birth weight }(0.4504-0.000766 t) e^{(0.0233-0.0000275 t) t}
$$

Where t is the time after conception.

Some other factors that affect calf birth weight are the breed of both the cow and the bull, as well as the genotype - and logically the size of the bull and the cow, which is discussed further in section 2.3.

Interestingly, when observing from another angle, calf weight is not greatly influenced by nutritional over- or underfeeding of the dam within a wide range, for example the birth weight of calves did not vary greatly when the dam was within a condition score of 3.5 to 7 , unless they were greatly over- or underfed. This means that the cow will provide the foetus with sufficient energy even if it means giving up some of her own reserves. When this happens, instances of low rebreeding rates, dystocia and other reproductive problems were found to be more common (National Research Council, 2000). This is also in contrast to previous literature which states that cows will use energy firstly for maintenance and the for other biological functions.

2.2.2.4 Feed energy for lactation

Calculating the milk yield of beef cows are complicated by the fact that calves suckle on the mother and measuring the milk yield without disturbing the natural bond between mother and calf is not that simple. Furthermore, the genetic potential of the cow, age, breed, as well as the potential of the calf to consume milk, affect milk yield. The potential of the calf to consume milk is in turn influenced by the genetics (especially in the case of cross breeding), age, size and sex among others. This section is concerned with the relationship between feed requirements and lactation. The relationship between cow size and lactation is discussed in section 2.4. Since the two topics are interrelated they cannot be completely separated and some of the information might be repeated.

As the milk production potential of cows increase, so will their maintenance feed requirements (Jenkins \& Ferrell, 2002). Thus, a small cow with high milk production potential, needs more energy for maintenance than the same size cow with low milk production potential. Simply put, a cow that can produce more milk during lactation, eats more, whether it is lactating or not. This means when cows are not lactating, cows with a higher milk production potential will be less efficient in terms of NE_{m} requirements.

Some ways in which milk yield in beef cows has been measured is by hand milking or weighing the calf right before and right after suckling to determine the weight of the milk it consumed. This method where the calf is weighed before and after suckling is most commonly used and is known as the weigh-suckle-weigh method. Even if this method provides accurate information of the milk yield over time, it doesn't provide any information on the milk composition. The fat percentage, protein percentage, total non-fat solids and lactate are commonly used to describe the composition of milk. Even if the milk composition has been determined once, it still varies over time, even within one lactation. Milk composition is further influenced by breed, age and nutrition.

When milk yield is measured, it follows a general curve over the period of lactation. Jenkins and Farrell (Jenkins \& Ferrell, 1984) gathered milk yield and composition data from crossbred cows of Angus, Hereford, Charolais, Jersey and Simmental. Although there were differences among breeds, they predicted daily milk yields as

$$
Y_{n}=n / a e^{k n}
$$

where
Y_{n} is the daily milk yield (kg/day)
n is the time, in weeks, postpartum
a and k are solution parameters. Where a can be solved as $a=l /($ peak milk yield $* k * e)$ and $1 / k$ is the time of peak milk yield.

This equation can further be used to determine total milk yield over lactation of n weeks as
Total milk yield for n weeks $=-7 / a k *\left(n e^{-k n}+1 / k e^{-k n}-1 / k\right)$

The NRC cites previous research to show that peak milk yield occurs at around 8.5 weeks postpartum on average, which solves values for k in the above equation. This leaves two more variables to solve the equation, peak milk yield (from which a can be calculated) and time of lactation.

Now, although an equation has been formulated to calculate total milk yield, it still leaves the conversion from yield to energy. The energy content of the milk is equal to the net energy required for lactation. The energy content of milk is in turn influenced by the fat percentage, protein content, solids-not-fat (SNF) and lactate. The equation developed by Tyrrell and Reid (1964) was adopted by the NRC and states:

$$
E=(0.092 * \text { fat percent })+(0.049 * \text { SNF percent })-0.0569
$$

 producing one kilogram of milk. From previous research the NRC calculated the following mean values for beef cattle among a wide range of breeds; fat content at 4.03%, protein content at 3.38%, solids not fat, 8.31%, and lactose 4.75%. When these average values are plugged into above equations the net energy requirements of beef cattle can be estimated, and although there is large variation among breeds, the variation within breeds may be less. This leaves peak milk yield and length of lactation as the two unsolved variables, for which assumptions need to be made.

Where age is considered, milk yields from lactating 2-year old heifers were found to be 26% lower, and 3- year olds 12% lower than that of mature cows (National Research Council, 2000). This translates into a 26% and 12% lower net energy requirement during lactation.

So, to outline, cows with a higher milk production potential requires more energy for maintenance as well as during lactation but produces larger calves at weaning. Milk composition varies even within one lactation, but lactation curves follow a similar pattern irrespective of size. The energy required for milk production is equal to the energy content of the milk. This is not easily measured since milk compositions changes constantly. Equations are available for estimating total milk yield, based on peak milk yield.

2.2.3 Using energy to calculate animal numbers on a resource base

Different countries have adopted different definitions, terminology and calculations to convert different animals into a standard unit, including the Large Stock Unit (South Africa), the Animal Unit (USA),

Stock Unit (New Zealand) among others. Two of these definitions will be discussed, the Large Stock Unit and the Animal Unit

The most common conversion of animal size and class into a standard unit in South Africa is the Large Stock Unit. Initially the definition was broad, and the term used loosely, but in 1983 the South African Department of Agriculture gave a more concrete definition to the LSU. In a technical communication called Classification of livestock for realistic prediction of substitution values in terms of a biologically defined Large Stock Unit, the LSU was standardized and defined. These became more commonly known as the Meissner tables, after the author H.H. Meissner (1983). The LSU is defined as:
"the equivalent of a head of cattle with a mass of 450 kg which gains $500 \mathrm{~g} /$ day in mass on grass pasture with a mean digestible energy \% of 55 .

The following specifications also apply:

- Sufficient nitrogen for rumen fermentation and sufficient amino acids to allow for a gain of 500 g/day are supplied
- The temperature of the environment is in the thermoneutral zone of cattle
- Macro and trace minerals, water and any other nutritional elements not specified above are not limiting with respect to the life processes of the animal "

The above definition translates into a metabolizable energy requirement of $75 \mathrm{MJ} /$ day. LSU is often used to describe grazing capacity per hectare and both LSU/ha and ha/LSU is used to express the energy yields of a resource.

This technical communication used the unpublished work from Alderman \& Barber at the 6th Symposium on energy and metabolism, in Stuttgart, in Sept. 1973 to convert animals of different sizes and different classes into LSUs. The equations from Alderman \& Barber differ from that of Loffgreen \& Garrett (1968) and Garrett (1980) which were adopted the NRC. The differences are shown below:

Net energy requirements for maintenance:
Alderman \& Barber, Meissner:

$$
\begin{equation*}
F M=5.67+0.061 \mathrm{~W} \tag{MJ}
\end{equation*}
$$

Loffgreen and Garret, NRC:

$$
\begin{equation*}
N E_{m}=0.077 / W^{0.75} \tag{Mcal}
\end{equation*}
$$

where
$F M=$ net energy requirements for maintenance (MJ/day)
$N E_{m}=$ net energy requirements for maintenance (Mcal/day)
$W=$ body weight

Net energy requirements for growth:
Alderman \& Barber, Meissner:

$$
\begin{equation*}
S F=L W G(6,28+0,0188 W) / l-0,30 L W G \tag{MJ}
\end{equation*}
$$

Garrett, NRC:

$$
N E_{g}=0.0635 * E B W^{0.75} * E W G^{1.097} \quad(\text { Mcal })
$$

where
$S F=$ net energy requirements for growth (MJ/day)
$L W G=$ gain in live mass (kg/day)
$W=$ live mass
$N E_{g}=$ net energy requirements for growth (Mcal / day)
$E B W=$ Empty body weight (kg)
$E W G=$ Empty body weight gain (kg/day)
From the equation of Alderman \& Barber it is clear that they neglect the metabolic weight of the animal and assume that energy requirements are linear among different sizes. This is in contrast with most other research, and particularly Kleiber's law. The equation for weight gain by Garrett makes distinction between bull and heifer calves and also whether the calves has received hormonal implants.

There are also differences in the calculation of energy requirements during lactation and pregnancy adopted by Meissner and the NRC. This illustrates that, despite LSU being the most commonly used way to standardize animal size and class, it might be dated and could be reviewed. This receives further
attention in Chapter 5 where the calculations used in this research is compared to the calculations for a LSU.

Another common way used to convert animals of different sizes and classes into a standard unit is the Animal Unit. Although the term might be much older than the LSU, it came into being in a similar way, where the term was loosely used to describe a $1,000 \mathrm{lb}$ cow with a calf. The term was more comprehensively defined in 1974 by the Society of Range Management (1998). The definition is as follows:
> "one mature cow of about 1,000 pounds (450 kg), either dry or with calf up to 6 months of age, or their equivalent, consuming about 26 pounds (12 kg) of forage/day on an oven-dry basis"

The animal unit equivalent (AUE) sheds more light on the conversion of different animal classes to AU and is defined as follows:
"A number relating the forage dry matter intake (oven-dry basis) of a particular kind or class of animal relative to one $A U$. If intake is not known, it can be estimated from the ratio of the metabolic weight of the animal in question to the metabolic weight of one $A U$ (450 kg to the .75 power)"

Although this definition is broad and can be widely applied, it leaves a lot of room for misinterpretation. For example, the quality of the feed is not defined, nor the energy content. It bases the calculation of an animal unit purely on the dry matter intake (DMI). Animals of different sizes and different classes can thus be easily converted into an AU or AUE based on their total dry matter intake, but it does not clarify energy requirements.

The above illustrates the large variation in definitions, as well as the calculation, of a standard unit. Many more attempts have been made to properly define a standard animal unit, each with their advantages and disadvantages.

2.2.4 Effect of size on growth

When a farmer is in the business of selling beef, the goal is to produce more sellable product in as little time as possible, with the least amount of inputs. Here the size of the animal at different life stages needs to be considered. Growth is not constant and changes throughout an animal's life. Growth rate refers to the gain in weight, usually measured daily. It is different from maturation which refers to the
age at which animals reach certain life stages, for example age at puberty and age at maturity. This section will look at the weight at different life stages, the growth rate and maturation of animals of different sizes.

The growth rate of individual animals is influenced by, among others, genetics, the environment, sex, physiological status, maternal effects and management. Despite the variation in growth of individual animals, a similar pattern in growth curves are followed. Because of the low reproduction rate of cattle, growth is more important in cattle than most other meat animals and a faster maturing animal is a more effective animal, all other functions being equal (Arango \& Van Vleck, 2002).

The growth curve of nearly all animals follows a sigmoid shape from conception, when growth is slow, then enters a phase of rapid weight increase as the animal enters puberty and finally it slows down again and eventually even stops (except for fluctuations in mature weight) at maturity. Thus, weight gain increases up to a point and then starts to decrease. This is called the inflection point.

The idea of fitting growth curves to the growth of animals has come a long way. Growth curves are useful for predicting daily gain in animals and thus also the feed requirements during the growth stage. Several mathematical models have been developed to predict growth, among others, Brody's asymptotic growth curve, Gompertz, Logistic and von Bertalanffy models which follows a sigmoid shape with a fixed inflection point and Richards model which has a variable inflection point. Brody's growth model has been found to be a good fit for beef cattle after birth, despite not having an inflection point. Brody's model is commonly used when evaluating the growth of beef cattle. (Jhony et al., 2017). It is therefore discussed further.

Brody calculated growth as follows:

$$
W=A-B e^{-k t}
$$

where
$W=$ Weight at time t in kg
$A=$ growth limiting factor
$B=$ integration constant
$k=$ growth rate
$t=$ time in days

The growth limiting factor (A), usually refers to the mature weight of the animal, unless there are some other limiting factors. The intercept of the curve where $t=0$ is the integration constant (B). Since Brody's model only fits growth after the inflection, B is used to correct for the fact that there is no inflection point. As mentioned before, Brody's model describes the growth of beef cattle fittingly after birth. Thus, if the model is applied for an animal from birth, B will be calculated as follows:

$$
B=(A-\text { birth weight }) \div A
$$

where A is again the mature weight of the animal. For example, if a calf is born at 30 kg and expected to reach $600 \mathrm{~kg}, \mathrm{~B}=(600-30) \div 600=0.95$.

The significance of the growth rate, k, shows that growth declines at a constant rate. Because the growth rate declines, k is preceded by a minus. For example, if $k=10 \%$, and daily weight gain at time $t_{n}=100 \mathrm{~g}$, then daily weight gain at time $t_{n+1}=100 \mathrm{~g}-10 \%=90 \mathrm{~g}, t_{n+2}=90 \mathrm{~g}-10 \%=81 \mathrm{~g}, t_{n+3}=81 \mathrm{~g}-10 \%=72.9 \mathrm{~g}$, etc.

As far back as 1976 Morris \& Wilton already argued that bigger mature cattle are bigger through all life stages. In a review of biological efficiency, Morris \& Wilton also concluded that the weight of calves at weaning and at one year of age tended to increase as the weight of their dams increased, showing that larger cows raise larger calves. This means that if a cow is bigger than other cattle at maturity, it was also bigger at previous life stages, for example, birth, weaning and puberty. This has been demonstrated in numerous research where heavier mature weights were positively correlated to heavier weight at puberty and weaning (Morris \& Wilton, 1976; Fiss \& Wilton, 1993; Arango \& Van Vleck, 2002).

Growth rates are not to be confused with maturation rates. Maturation rates refers to the time for an animal to be able to perform certain physiological functions. A review of previous literature suggests that smaller animals mature faster. (Morris \& Wilton, 1976; Dickerson, 1978; Fiss \& Wilton, 1989; Arango \& Van Vleck, 2002). This means that smaller animals can be weaned sooner, will reach sexual and reproductive maturity, as well as marketable weight sooner. This suggest a positive correlation between maturing rates and biological efficiency.

One such a study was done at the Subtropical Agricultural Research Station, Brooksville, Florida, to show the effect of size on growth and maturity. Results support the argument that smaller mature cows
matured faster. When Brahman calves were grouped together as small, medium and large at puberty with weights of $679 \mathrm{lb}, 692 \mathrm{lb}$ and 756 lb . Heifers from the small, medium and large size groups reached puberty at 576 days, 623 days and 635 days respectively, confirming earlier maturity in smaller cows. In the same experiment Angus cattle were divided into two groups, one selected for large mature size and one selected for early maturity. Results showed that animals selected for large mature size reached puberty at 591 lb and 518 days, whereas the group selected for early maturity averaged 551 lb and 487 days at puberty (Warnick et al., 1991)

A similar study done at the same location, the Subtropical Agricultural Research Station in Brooksville, Florida yielded different results. The growth curves of small, medium and large framed Brahman cattle were compared (Menchaca et al., 1996). Animals were categorized according to hip height Animals were divided into 3 stages and separated by sex and results are discussed as such.

Stage one - birth to weaning:
Growth curves for medium and large framed animals were found to be similar but with the weight and weight gain of the large group always higher than that of the medium group. Both had inflection points at similar times (127 days for medium animals and 126 days for large animals). The weight of small framed animals was always lower than the other two groups, however the point of inflection was 5 and 6 days later than for the large and medium groups respectively. The decline in instantaneous weight gain after the point of inflection was also lower than the other two groups and it was in fact higher than the other two groups at the age of weaning. Males followed a similar growth pattern as females but were $9.4 \%, 6.1 \%$ and 7.6% larger respectively in each of the size groups.

Stage two - weaning to 20 months (males) and weaning to 32 months (females)
All three groups fitted a similar growth curves during stage 2, with instantaneous growth again lowest for small framed animals and highest for large frame animals. There were however large differences among the two sexes, with bulls from all groups growing at a faster rate than cows.

Stage three - 32 months to maturity (females only)
As expected cows from the large group was the heaviest and cows from the small group was the lightest at all times throughout stage 3. Instantaneous gain was higher for the large group at the start of stage three, showing a faster growth rate. Growth slowed, and weight plateaued sooner than the other groups. This in fact means larger cattle matured sooner.

The results from Menchaca is in contrast to other research that suggests smaller cows mature faster. It does however confirm that larger mature animals are larger at all life stages compared to smaller mature animals under similar conditions.

Jenkins \& Ferrell showed smaller cows are more efficient when the weight of calves weaned is compared to the weight of the dam at weaning. He compared the efficiency among 9 breeds as the weight of cows weaned per weight of cow exposed per weight of dry matter consumed. Smaller breeds (Red poll, Pinzgauer, Angus) were generally more efficient than large breeds (Charolais, Simmental, Gelbvieh) (Jenkins \& Ferrell, 2002)

Similar results were obtained in a 2016 experiment by Beck et al. (2016) the effect of mature body weight on cow and calf performance in the south-eastern United States was studied. They stocked 4ha parcels with large (571 kg) and small (463 kg) mature size cow-calf pairs of different, but mostly English breeds. In this experiment, for every 100 kg increase in cow weight, calf weight per 100 kg cow weight decreased by 6.7 kg , indicating higher weaning efficiency in smaller cows. This shows that despite calves from larger cows growing faster and weighing more at weaning, smaller cows actually weans a higher proportion of their own bodyweight (Beck et al., 2016).

In another case study by the University of Arkansas in 2006, Whitworth et al suggested that cow production efficiency (CPE) be used to measure efficiency, where CPE is defined as pounds of weaned calf divided by cow weight. In this study Bos indicus influenced females were bred with Beefmaster bulls. Cow weights and 205-day weaning weights were calculated from herd records over 5 years. Cows were divided into 3 groups according to CPE. The group averaging the highest $\mathrm{CPE}(0.4648)$ were also the smallest (averaging $1,223 \mathrm{lb}$), the middle CPE group (0.3986) weighed $1,292 \mathrm{lb}$ on average and the group with the lowest CPE (0.3276) were the largest (averaging $1,428 \mathrm{lb}$). First-calf heifers were excluded to adjust for future growth. This study thus concluded that smaller cows had a higher weaning biological efficiency (Whitworth et al., 2006).

When looking at the birth weight of cows of different ages, the calf of 2-year-old first time heifers were found to be 8% lower than that of comparable mature females. 3-year-old cows had 5% smaller calves and 4-year-old cows had 2% smaller calves than mature cows. Heifer calves were found to average 7% lighter than bull calves (National Research Council, 2000).

Morris \& Wilton concluded that selecting for a high daily gain will increase mature weight, since bigger cows grow faster. This also means that selecting for faster growing calves will lead to an increase in mature size. Since an increase in mature size might not be desirable, it should be used with caution as a selection criterion (Arango \& Van Vleck, 2002; Scasta et al., 2015; Morris \& Wilton, 1976).

To conclude, growth of all sized animals generally follows the same curve and Brody's equation has been proved a good fit. Larger mature cattle were also larger at previous life stages, where feed intake is not limited. As a result, larger cattle gain more weight at the same growth rate as smaller animals. Most research suggest that smaller cattle mature faster and it has been demonstrated in case studies, the exception being the work of Menchaca. Some research suggest smaller cows are more efficient when the size of calves weaned is compared to the size of the cow.

2.2.5 Milk production potential

As mentioned in previous sections, calves that end up being heavier at maturity, are heavier through all life stages. Since they are then also heavier from birth to weaning, they will need more energy than smaller calves during this life stage. Calves mainly get their energy requirement from their dams' milk. Thus, it only makes sense that larger cows will produce more milk during lactation.

When looking at it from another angle, cows with higher milk production produces heavier and faster growing calves. Jenkins \& Ferrell, Arango \&Van Vleck and Johnson sited previous literature to show that cows with higher lactation yields, wean heavier calves (Jenkins \& Ferrell, 2002; Arango \& Van Vleck, 2002; Johnson et al., 2010). Since these cows provide more milk to their offspring, their offspring uses the higher feed energy to grow faster.

The above research papers are more concerned with the performance of the calf than the size of the cow producing the milk. Much more research is concerned with the performance of dairy cows. Few research papers, however, actually compares the effects of beef cow size to milk production potential, particularly within a specific breed. Morris \& Wilton reviewed previous literature and the effect of size on milk production. Most literature cited by Morris \& Wilton related to dairy cows and results were mixed, however it mostly showed a higher milk production, but lower efficiency in milk production as size increased. (Morris \& Wilton, 1976).

In an experiment by Swanepoel \& Hoogenboezem, 493 Bonsmara cows were divided into two groups, one group had a short calving interval of less than 400 days, the other group had a calving interval of more than 400 days. There were obvious differences in size between the two groups, the first having an average size of 482 kg and the latter an average size of 513 kg . More relevant is the milk production of the first group that produced an average of $5.50 \mathrm{~L} /$ day compared to $8.26 \mathrm{~L} / \mathrm{day}$. Thus, although the goal of the research was to compare the differences in calving intervals, it does shed light on the relationship between milk production and size within a breed (Swanepoel \& Hoogenboezem, 1994).

As mentioned in section 2.2.2.4, lactation is influenced by milk production potential, age, breed, and importantly suckling potential of the calf. It can then be concluded, from available literature on the topic, that if the breed and age are similar for two cows, the one with the larger calf will produce more milk.

2.2.6 Effect of size on reproduction

One of the most important efficiency measures in both biological and economic terms is reproduction. Cows have a low rate of reproduction and high maintenance requirements. Should a cow fail to reproduce the economic effects are far worse than if a smaller calf were produced. Pregnancy rates and weaning percentage are two of the most noteworthy reproduction efficiency measures.

Larger sized animals have longer gestation and lactation periods (Dickerson, 1978; Fiss \& Wilton, 1989; Arango \& Van Vleck, 2002). The longer gestation periods mean animals have less time to recover after calving, before they are expected to reproduce in the next season. Failing to reproduce within a given breeding season means animals will be consuming energy for maintenance, without being productive. Another important consideration is that longer gestation and lactation periods increases the time before the calf can be weaned. This means in a weaner production system, more inputs consumed before an output is realised when the calf is sold, however a larger calf can be sold.

Longer reproduction periods for larger cows were confirmed by the study of Swanepoel \& Hoogenboezem, where Bonsmara cows were grouped as having a short inter calving period (<400 days) or a long inter calving period (>400 days). The group with the short ICP were significantly smaller at 482 kg compared to 513 kg for the long ICP. They also found a negative correlation between high preweaning growth (as was demonstrated for large cows) and fertility. Smaller cows had a longer lifetime fertility than larger cows (Swanepoel \& Hoogenboezem, 1994).

Similar results were obtained at the Subtropical Agricultural Research Station (STARS) in Brooksville, Florida when the effect of cow size on reproduction efficiency of Brahman cows was studied. Olsen presented some of the results and showed that overall reproductive efficiency was better for smaller sized cows. Animals were categorized according to hip height as small at 52 inches, medium at 54 inches and large at 55.5 inches. Heifers were bred for the first time at 2 years of age. Despite being bred at a relatively late age, there were still a notable difference in pregnancy rates, with 93.7% of small frame heifers falling pregnant, compared to 89.7% for medium frame and 86.9% for large frame heifers. Even more significant was the pregnancy rates when these heifers were re-bred at 3 years (while lactating). Only 34.5% from the large frame group fell pregnant, 51.8% from the medium frame group, where the small frame group had a pregnancy rate of 74.9%. Similar results were obtained for Angus cows at the same location (Olsen, 1993).

Stewart \& Martin also studied the effect of mature size on lifetime productivity of cows. As the weight of cows increased, they produced fewer calves throughout their lifetime. The average weaning weight of calves increased with the size of their dams, but total weight weaned throughout their lifetime decreased, although not significantly. This was due to a shorter productive lifetime in the herd, based on the culling criteria applied in the study (Stewart \& Martin, 1981).

Similar results were obtained by Taylor who found cows with higher lifetime fertility are smaller and calf earlier in the calving season. Mature size might be restricted by regular and early breeding, but smaller size is in fact a desirable trait for cattle under extensive conditions (Taylor, 2006). Taylor went on to show that smaller cows have lighter calves at weaning, however there were little difference between the yearling weight of small cows and larger cows. He argued that this is due to compensatory growth.

The above review mentions but a few studies that have shown that smaller cows have shorter ICP, higher reproductive rates and higher lifetime fertility. Since cows have a low rate of reproduction, a cow that fails to fall pregnant within a breeding season means a high input without realising an output. When a strict culling criterion is applied in terms of rebreeding rates, large cows will spend less time in the herd and need to be replaced often.

2.2.7 Adaptation

Larger body sizes are better adapted to cold environments and use abundant feed supply more efficiently. Larger animals have a smaller body surface to body volume ration than smaller cows, which partially explains better adaptation to cold climates. The larger surface area to body mass of smaller animals is more suited to warmer climates. Some research suggest smaller animals tend to be more efficient when feed supply is limited as in the case of dry climates (Dickerson, 1978; Arango \& Van Vleck, 2002; Jenkins \& Ferrell, 2002).

A study at the Matopos Research station in Zimbabwe showed that indigenous breeds (Sanga breeds) are more effective in terms of reproduction and cow efficiency than exotic breeds under a range system in semi-arid Zimbabwe. The author also noted that breeds which performed best under these conditions were also the smallest and that their size is in fact an adaptation to the environment (Moyoa et al., 1994)

A 2015 study in Wyoming researched the relationship between cow size and efficiency (calf weight to cow weight at weaning) in a semi-arid high elevation environment. Research was focused on the effect of drought or dry seasons on cow efficiency of different sizes. Cows from smaller breeds were always more efficient than those from larger breeds. Small cows in a dry year were still more efficient than large cows in a wet year. The experiment went on to show that smaller cows can lower their maintenance requirements in a dry year, and thus are more adaptable to dry seasons with less feed availability (Scasta et al., 2015).

Most research suggest that a smaller body size is an adaptation to semi-arid and hotter climates. This research is mostly concerned with the differences among breeds and not size differences within a specific breed. This suggests that smaller breeds could handle fluctuations in feed levels better than larger breeds, however the same might not hold true for small and large specimens of the same breed.

2.2.8 The role of the bull

Since an individual cow transfer her traits only to one calf per breeding season, the genetic contribution of an individual cow within a herd is small. Especially where cows are selected for traits with low heritability it would be much more effective to select an appropriate bull. Genetics of bulls in the herd make up 50% of the genetics of the offspring, so it is imperative to select a bull that match the selection objectives of the herd.

The lower maintenance requirements of smaller cows can to some extent be used to lower total maintenance requirements of a herd. Since a smaller female will have lower feed requirements, when she is crossbred with a large male, it will combine lower maintenance requirement with a higher growth rate in the offspring. For example, Dickerson argued that when a complementary crossbreeding program is used, the small size of females relative to the potential genetic size of their offspring will lower maintenance feed cost per kg of offspring marketed (Dickerson, 1978). However, if replacement animals are selected from the same herd, it will lead to an increase in mature size over time, since the larger size of the bull will be inherited by the offspring. There could also be a higher occurrence of dystocia.

Since mature weight is highly heritable, when mating a larger bull to the cow herd, it will lead to a gradual increase in the average size of the herd if replacement animals are held back from the same herd. Also, since larger animals have a faster growth rate as discussed in section 2.2.4, when selecting a young replacement bull based on a faster growth rate, it could also lead to an increase in animals' sizes.

2.3 Micro / miniature cattle

Micro or miniature cattle refer to very small sized cattle. Although there is no official definition for these cattle, this research will focus on the terms micro cattle and miniature cattle. These cattle are not smaller due to defects or genetic abnormalities, but are simply a smaller version of existing breeds or distinct breeds that were intentionally bred to be tiny (Boden, 2008; Gradwohl, 1997).

In 1993 the National Research Council published a report on micro livestock including micro cattle which was defined as cattle with a mature weight of about 300 kg or less. The International Miniature Cattle Breeder's Society uses the term miniature cattle. Miniature cattle are defined as cattle that measures 42 inches or less from the ground to the hook bone at three years of age (Gradwohl, 1997).

Micro cattle are easier to handle, more efficient under improper management, perform better in harsh conditions and have a high tolerance to disease. They perform better in hot conditions due to a higher surface area to body mass, they are easier to handle and have fewer problems when calving (National Research Council, 1991; Gradwohl, 1997). However smaller cattle have received less attention, mainly due to them not being as prestigious as larger breeds.

Miniature cattle have become the most widely used term to describe these smaller versions or smaller breeds (Boden, 2008). This term will be used to define these small cattle for the rest of this thesis.

Although miniature cattle are merely a smaller version of cattle, the reason they are discussed here is to acknowledge the existence of these animals and demonstrate that they are a palpable option should a farmer desire to utilize very small cattle. Another advantage is that more of these animals can be held on a small area, adding to genetic diversity within the herd.

2.4 Economic Efficiency

Economic efficiency in this case will be defined as the profit or loss of an enterprise. This could be due to a proportionally higher income compared to expenses, proportionally lower expenses than income or a combination of the aforementioned. Previous research has used area specific simulation studies and experiments to calculate economic efficiency. Furthermore, linear programming, probable production curves among other methods were used to predict the most profitable cow size. Since production systems, biological efficiency, markets, among others vary widely the individual factors that make up income and expenses will be discussed separately, as to one simulation study as a whole.

When the influence of body size on economics is to be studied, there are two important considerations: the economic efficiency of an individual cow, and the economic efficiency of the enterprise as a whole.

Body size doesn't necessarily directly impact economic efficiency, but due to the biological differences, variation in incomes and expenses are observed. Body size influence biological efficiency, and biological efficiency influences economic efficiency (Dickerson, 1978; DiCostanzo \& Meiske, 1994; Arango \& Van Vleck, 2002; Johnson et al., 2010). Although economic and biological efficiency are not directly proportionate, they are highly correlated, and a more biological efficient cow is normally also a more economically efficient cow.

Cattle has a low reproduction rate and a subsequent high maintenance cost. Since beef farmers are mainly in the business of selling kilograms of meat, actually having calves to sell every year is the most important consideration when it comes to income. The culling of cows and bulls also generate income; however, it is secondary to the income from calf sales. Variable expenses will vary with cow size and literature has proven it is lower for smaller cows when measured for individual cows. However, since a resource base can support more small cows, the variable expenses of the resource base as a whole need
to be considered. Fixed costs are those costs that do not vary as production levels increase or decreases. Therefore, in this case, fixed costs are defined as costs that remain the same, whether or not the resource base supports more small cows or less large cows. As it is not influenced by cow size, it will not receive much consideration in the literature review, or the rest of this research.

Previous research aimed at measuring economic efficiency has been done mostly at the hand of simulation studies and will be discussed in section 2.4.3.

2.4.1 Factors influencing income

Income in a weaner system is mainly generated from calf sales. Cows reproduce and produce calves which are to be sold at a certain age, for example at weaning. It has been shown that smaller cows produce smaller calves, thus generating a lower income per cycle or season. However, a set resource base can maintain more small cows, which complicates the equation. For the sake of argument, when differences in reproductive efficiency are ignored, there are still a huge number of variables to be taken into consideration.

2.4.1.1 Selling price

South Africa has a relatively simple meat classification system, based on the age and fat grade of the animal. Younger animals normally fetch a premium price, and the fat grade should match the requirements of the end consumer.

The end consumer is the one who chooses what they want to buy and the price they are willing to pay for it. They are thus indirectly involved in determining the price that the farmer will receive for their products. End producers prefer a good fat covering of the carcass, without it being overly fat. They will also pay more for a higher grade of beef. Animals slaughter at a lower age receives a higher grading and the number of incisors is the determiner for the age (Brody, 2017).

In the commercial sector, $65-70 \%$ of cattle slaughtered has spent some time in a feedlot (Department of Agriculture, Forestry \& Fisheries, 2015). The feedlot aims to satisfy the end customer's requirement and has control, to some extent, over the age and fat covering at which the animals are slaughtered. In a weaner system, weaners are sold to the feedlot, meaning the farmer and the feedlot comes to an agreement and the price is usually paid on a per kilogram basis. The feedlot might pay a premium for animals that suit their goals when supplying the end consumer.

The mature size of animals influences its rate of maturity and smaller animals will reach slaughter age sooner than large animals. Even if the rate of maturity is ignored, larger or smaller animals might be penalized, mainly because of two reasons:

1. The customer might prefer a specific size when purchasing their cuts in the butchery or supermarket (Brody, 2017)
2. The equipment for handling animals from when they are received in the feedlot, until they are sold to the end consumer might not accommodate small or large extremes falling outside of a certain range (Dickerson, 1978)

2.4.1.2 Number of animals sold

First consider individual cows. A larger calf will fetch a higher price than a small calf, where price premiums are ignored. Thus, a large cow producing a large calf each year will yield a higher income than a small cow producing a small calf each year. A cow producing no calf will yield no income unless it is culled. In fact, reproductive efficiency has been shown as the single most important measure of biological and economic efficiency (Jenkins \& Ferrell, 2002). Having one large cow thus generates a higher income than having one small cow. Furthermore, income is generated from cow and bull culls. The biological efficiency will largely determine which animals are culled, where reproduction might be the most important consideration once again. Again, ignoring biological efficiency and price premiums, culling a larger animal will yield a higher income than culling a smaller animal.

However, given a set resource base, more small cattle can be supported than large cattle. Furthermore, a herd consists of calves (from adult cows as well as cows that are still growing), growing cows, mature cows and bulls. Given the difference in energy requirements of the different classes of animas, combined with the differences in mature weight, maintenance requirements, growth rate, lactation yields, and sizes of calves weaned, the number of small animals as well as the composition of this herd will differ from the number of large animals and the composition the herd of large animals.

Consequently, knowing which sized individual animal generates the highest income, gives little clarity on which sized animal will generate the highest income in a herd. Therefore, the stock flow and inventory of a herd of different sized cattle must first be computed before any assumptions on income or profitability of a herd can be made.

2.4.2 Factors influencing Expenses

Johnson argued that adjusting the herd size according to metabolizable energy, or Kleiber's law, will not impact total fixed costs or total feed cost, but it will increase variable costs and lead to additional costs to increase inventory. To compensate for the higher costs, higher revenue should be generated from selling a larger number of smaller calves. She also noted that in an environment where feed availability varies, and supplementary feed may be scarce or expensive, larger cattle will have a lower reproduction rate and subsequent economic risk (Johnson et al., 2010). Some expenses are dependent on the size of animals or more specifically the total kilograms that will incur the expenses, for example supplementary licks and dosing. Other expenses are normally charged on a per head basis, for example veterinary costs and vaccinations.

As with income, it has been shown that an individual small cow has fewer expenses, where biological efficiency is ignored. However as with income, the number of animals and the composition of the herd will determine the total expenses.

2.4.3 Examples of case studies of economic efficiency

Doye evaluated the economic efficiency of medium sized ($1,100 \mathrm{lb}$) and large sized ($1,400 \mathrm{lb}$) cows in a whole farm model. Two pasture systems (native pasture and improved pasture) were used in the model. The pasture systems had a carrying capacity of 100 breeding cows and 4 bulls of medium size or a carrying capacity of 76 breeding cows and 3 bulls of large size. Income was higher for the larger cows in both systems; however, operating costs, including feeding costs, were proportionally higher for larger cows. This led to lower returns over all costs for bigger cows. Fixed costs were also higher per breeding female of the larger sized group, as total fixed costs were allocated to fewer females (Doye \& Lalman, 2011).

Bryant calculated economic efficiency of different sized cows on a resource base that can sustainably maintain 100 AU . He calculated a production revenue curve for small cows ($1,000 \mathrm{lb}$) and large cows $(1,200 \mathrm{lb})$ in three locations of the USA by averaging the prices for calves for the 10 years up to 2010. He assumed that cows wean 50% of their body size and have a 90% weaning rate regardless of size. According to his method 90 small calves (450-500lb) or 75 big calves (550-600lb) would be marketable per season. Even though the larger cows will produce slightly more pounds of calf for this resource
base, the smaller cow-calf operation will yield higher revenue because of higher prices offered per pound to smaller cows (Bryant et al., 2011).

There are a number of case studies that aimed to find the most profitable sized cow for the herd as a whole. In some cases, keeping a herd of small animals proved to be more profitable, where in others it did not, yet more case studies showed that economic efficiency might depend on the beef-to-feed price ratio (Morris \& Wilton, 1975; McMorris et al., 1986; Whitworth et al., 2006; Bryant et al., 2011; Doye \& Lalman, 2011). Results vary from one research area and production system to the next.

2.5 Chapter Summary

This chapter reviewed the effect of size on biological efficiency, with special consideration to feed intake requirements. Economic efficiency is dependent on biological efficiency however they are not directly correlated. The economic efficiency of individual cows tells us little about the economic efficiency of the herd as a total. Previous case studies to determine the most profitable cow size yielded varying results.

Chapter 3 Methodology

3.1 Methodology outline

First the type of cattle and sizes to be used in the simulation study was defined. Next the energy requirements and the calculation thereof were discussed. The energy requirements for individual animals for maintenance, growth, lactation and foetal production throughout their life stages were calculated. This was done for the life cycle of a cow of each of the three sizes. Next the resource base was defined in terms of available energy. An inventory and stock flow were simulated for a typical production system in semi-arid South Africa, by assuming productivity guidelines from previous literature. Inventory and energy requirements of animals were used to determine the number of animals the resource base can maintain. Thereafter a production budget for each of the three size groups was calculated to determine income, expenditure and ultimately profitability. The calculation described here will be referred to as the base model in other sections.

3.2 Cattle type and sizes

As far as possible, data was gathered for the commercial beef sector of South Africa. Information about this sector could be obtained from existing literature, mostly in the form of government publications. In some cases, information for the whole sector was unavailable. Around 16% of cattle absorbed into South African feedlots were Bonsmaras or Bonsmara crossbreds, the most numerous of all breeds. The seedstock industry also breeds predominantly Bonsmaras (Scholtz et al., 2008). In the case where there was no or little information available for a specific data set in the commercial sector, information from the Bonsmara breed was used. As mentioned in section 1.1.2, limited information is available for the emerging sector, however emerging farmers are defined as farmers that have the potential to commercialize. Therefore, the data as described above is also applicable to the emerging sector. This study looked at the differences in efficiency within a specific breed, thus comparisons were not made among different breeds. Animals were divided into 3 sizes according to mature weight,

- Small, with a mature weight of 300 kg
- Medium, with a mature weight of 450 kg
- Large, with a mature weight of 600 kg

Although a small size of 300kg might seem extreme, refer to the discussion of miniature cattle in Chapter 2. This shows that a mature size of 300 kg is not only a theoretical option, but animals of this size are actually available and can be used should the farmer desire.

3.3 Dry matter intake, gross energy and net energy

Dry matter intake (DMI) is commonly used to express the amount of feed an animal will eat. Feed is responsible for providing the animal with energy for maintenance, growth and other physiological functions.

Given a specific energy content of feed, DMI and the net energy utilized by the animal is highly correlated for animals of the same breed and physiological stage. In this study, net energy was set as the limiting factor for the number of animals to be kept on the resource base and is defined next.

Not all energy that is consumed by animals is utilized for maintenance, growth, lactation and production. The following energy values are commonly defined:

Gross Energy (E): The total energy in the feed consumed
Digestible energy (DE): E minus energy lost in faeces.

Metabolizable Energy (ME): E minus faecal energy, urinary energy and gaseous energy

ME can only be partitioned into Heat Energy (HE) and Retained Energy (RE), thus
$\mathrm{ME}=\mathrm{HE}+\mathrm{RE}$

A common misconception is that $\mathrm{ME}=\mathrm{HE}+\mathrm{NE}$, however, NE is actually the change in Retained Energy as a fraction of the change in Intake Energy. Net Energy and Retained Energy are very often equal and thus the misconception.

Net Energy $(N E)=\Delta R E / \Delta I n t a k e$ Energy $(I E)$

Total Net Energy $\left(\mathrm{NE}_{\mathrm{t}}\right)$ is the energy available to the animal for maintenance and physiological functions (growth, milk production, foetal production). The heat production at zero feed intake is equal to the animal's maintenance requirements.
$\mathrm{NE}_{\mathrm{t}}=$ Net Energy for maintenance $\left(\mathrm{NE}_{\mathrm{m}}\right)+$ Net Energy for growth $\left(\mathrm{NE}_{\mathrm{g}}\right)+$ Net Energy for lactation or milk production $\left(\mathrm{NE}_{\mathrm{l}}\right)+$ Net Energy for foetal growth $\left(\mathrm{NE}_{\mathrm{y}}\right)$

Now, as NE has been well defined, the NE for each animal of different sizes and physiological stage could be calculated. The NE will determine the number of animals (in different production stages) of different size that can be supported by the resource base.

3.4 Determination of Energy for physiological functions

This research aimed to use the equations prescribed in the seventh revised edition of Nutrient Requirements for Beef Cattle by the NRC for NE requirements as far as possible (National Research Council, 2000). As science has progressed, these equations have been refined and even complicated as new information and ways of measuring energy has become available. There are many variables that influence energy requirements for physiological functions other than body size, however many of these variables will not be affected by the size of the animals. Since animals within the same breed is compared, the effect of breed on energy requirements can be omitted. A further example is where energy requirements are influenced by the terrain (topography of the terrain, ambient temperature, etc.). Since the environment were the same for all animals, it would make calculation cumbersome and was therefore omitted. Thus, for the sake of simplicity, where an equation contained numerous variables that were constant or uninfluenced by the size of cattle, a simple version was used.

The energy requirements and calculations for the different physiological functions are discussed in detail in the following paragraphs.

3.4.1 Energy requirements for Maintenance

For the calculation in this study, the variables that influenced Net Energy for maintenance were taken as the animal's bodyweight and more specifically metabolic weight.

The controlled slaughter study by Lofgreen and Garrett, discussed in Chapter 2, estimated daily NE_{m}. The results from this study were adopted by the NRC. Currently the most widely used equation to calculate NE_{m} is

$$
\text { daily } N E_{m}=0.077 M \mathrm{cal} / B W^{0.75}
$$

where $B W$ is the body weight of the animal. This equation was also used in this study to calculate maintenance energy requirements.

Animals partition energy for maintenance before any of the other physiological phases, therefore energy requirements for maintenance are always applicable, irrespective of its life stage. (Lofgreen \& Garrett, 1968; National Research Council, 2000; Johnson et al., 2010)

Since body weight increases as animals grow, the NE_{m} changed daily. Another complicating matter was the effect of growth on BW, as is explained in the next section.

The maintenance requirements of bulls were assumed to be 15% higher, in line with the NRC's guidelines. In this study, it was assumed that all bulls on the resource base were already mature and their only energy requirement was for maintenance.

3.4.2 Growth rates and Energy requirements for Growth

For the calculation in this thesis, net energy for growth was influenced by the animal's body weight, daily weight gain and composition of weight gain. Daily weight gain was calculated using Brody's model and in turn influenced birth weight, growth rate, mature weight and time after birth.

Growth is defined as the increase of body size, in this case measured by mass, from birth to maturity. Growth is not linear. Animal growth normally follows a sigmoid shape curve from conception to maturity. Brody's growth curve has been found to be a good fit to beef cattle from the time after birth. Brody's model was thus used to calculate the daily gain of animals (Brody, 1945).

Note that there is a difference between daily gain and average daily gain (ADG). ADG is defined as the weight gain from one point in time to another point in time, divided by the number of days between these two points. ADG however fails to recognize that growth is not linear and accelerates and decelerates throughout the animal's life. ADG could thus be useful for rough calculations when net gains are measured over short periods. In this study daily gain was calculated every day and not as an average taken over a longer period of time.

Brody's growth model states:

$$
f(t)=A\left(1-B^{-k t}\right)
$$

where
$f(t)$ gives the expected weight of the animal at time $=t$
$A=$ asymptotic weight or average adult weight as $t \rightarrow \infty$
$B=$ the constant of integration, thus the inception point of the growth curve where $t=0$. In this case, $t=0$ when the calf is born
$k=$ growth rate
$t=$ time after t_{0} in days

The following values were used to calculate growth for the 3 animal sizes.
$\mathrm{A}=300 \mathrm{~kg}, 450 \mathrm{~kg}$ or 600 kg .
It was assumed that calves would weigh $6.67 \ldots \%$ of their dams' body weight, thus
$B=0.933 \ldots$

To calculate the growth rate, it was assumed that animals would reach 97.5% of mature weight after 51 months or 1552 days, when they were then classified as mature cows.

Thus, solving for k in $f(t)=A\left(1-B^{-k t}\right)$ yields
$\mathrm{k}=-\ln (\mathrm{A} /(\mathrm{A} * 0.975)-1) / 1552$ days
$\mathrm{k}=0.2361 \ldots \%$

Substituting the above values in Brody's model gave the daily weight gain, for each day after birth. This could then be used to determine NE_{g}.

The equation formulated by Garret and refined by the NRC were used to calculate the net energy requirements for growth. The equations are

$$
N E_{g}=R E=0.0635 * E B W^{0.75} * E B G^{1.097}(\text { Mcal })
$$

Where $E B W$ is Empty Body Weight and $E B G$ is Empty Body Gain (Garrett, 1980; National Research Council, 1984; National Research Council, 2000).

However, as animals grow, the composition of their RE differs. When energy intake is not limited animals will deposit retained energy mostly for protein while growing and proportionately more fat as the animal nears mature weight. This means if there are 3 animals all weighing 100 kg , and that will gain 1 kg within the next day, but that will have mature weights of 300 kg , 450 kg and 600 kg NEg will differ for each of the animals and will be $2.5 \mathrm{Mcal}, 1.8 \mathrm{Mcal}$ and 1.5 Mcal respectively. This is mainly due to the difference in composition of the gain made (fat vs protein). NE_{g} will thus logically also be influenced by the composition or marbling at mature weight. It was assumed that all three sizes had 28% body fat at maturity.

The above formula used to determine NE_{g} was formulated with an average mature weight of 478 kg . To compensate for the differences in composition of daily gain for animals which will have different mature weights, the NRC uses the following calculation.

First the current body weight of the animal is converted into the equivalent shrunk body weight by

$$
\begin{aligned}
& E Q S B W=S B W *(S R W / F S B W) \\
& E Q E B W=0.891 * E Q S B W \\
& E B G=0.965 * S W G \\
& N E_{g}=R E=0.0635 * E Q E B W^{0.75} * E B G^{1.097}
\end{aligned}
$$

Where

$E Q S B W=$ equivalent shrunk body weight
$S R W=$ Standard Reference Weight which refers to the 478 kg mature weight of the comparative slaughter experiments mentioned above.
$F S B W=$ Final Shrunk Body Weight, which in this case was taken as the mature weight of the animals, thus $300 \mathrm{~kg}, 450 \mathrm{~kg}$ and 600 kg for this study

```
EQEBW = Equivalent Empty Body Weight
\(E B G=\) Empty body weight gain
```

$S W G=$ Shrunk Body Weight Gain which in this case is the daily gain as computed using Brody's model as discussed in the previous paragraphs.

The above calculation which incorporates the standard reference weight thus caters for animals of any frame size. By using the standard reference weight, differences in composition of weight gain among different frame sizes is duly calculated. Furthermore, little difference was also found in growth rates of heifers and steers; thus, this assumption holds true if it is assumed steers are castrated shortly after birth. In this study, it was assumed that bull calves were castrated early and sold as weaners and all replacement breeding bulls were bought. Therefore, no differentiation was made between the growth of bull and cow calves.

To recap the calculation, Brody's model was used to calculate SWG for the first 1552 days for the animal after birth. SWG and the other variables were plugged into the equations of the NRC to determine NE_{g} for each day from $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, ., \mathrm{t}_{1552}$. Animals were classified as mature at 1553 days of age and their weight set at 100% of mature weight.

From chapter 2, smaller mature animals are smaller throughout all life stages. Also, calves from 2 year heifers and 3 year cows are 8% and 5% smaller than calves from mature cows. To calculate the growth of calves from first calf cows and second calf cows, the expected mature weight was set at 92% and 95% of the expected mature weight of calves from mature cows. The same method was used to calculate gain as described above, in this case with a lower expected mature weight.

3.4.3 Energy requirements for Lactation

Total lactation yield is influenced by peak milk production and length of lactation. Peak milk production is argued to be influenced by calf size and mature size. If calves are weaned at the same time, as is often the case, length of lactation is the same, irrespective of size. Energy requirements per kg of milk produced in turn is influenced by milk composition. By calculating the milk yield and the energy content of milk, NE_{1} could thus be calculated.

From the energy requirements for milk yield developed by Jenkins \& Ferrel (Jenkins \& Ferrell, 1984):

$$
Y_{n}=n / a e^{k n}
$$

Where
n is the time, in weeks, postpartum
$a=1 /($ peak milk yield $* \mathrm{k} * \mathrm{e})$
$k=1 /$ week of peak milk yield
By sighting previous research, the NRC concluded that peak milk yield occurred at 8.5 weeks on average. This was calculated over a wide range of beef cow breeds. Therefore

$$
k=1 / 8.5
$$

was taken for all sizes.
Research connecting the size of the cow to the peak milk yield is scarce and a direct correlation between cow size and peak milk yield has not been shown.

Maiwashe et al. measured the growth curve parameters for Bonsmara and Nguni cows (Maiwashe et al., 2013). Results also showed a peak milk yield of 8.5 weeks. Peak milk yield for Bonsmaras were 10 kg / day, however there is no mention of the size of the cows. From this, the peak milk yield for medium sized cows was taken as $10 \mathrm{~kg} / \mathrm{day}$. Much previous research does not directly correlate milk yield to size but stresses the suckling capability of the calf. The calf weight of small, medium and large frame cows were assumed to be $20 \mathrm{~kg}, 30 \mathrm{~kg}$ and 40 kg respectively. By assuming the metabolic weight and the net energy requirements of the calves are proportionate, the peak milk yield for small and large frame cows were calculated as follows:

$$
\begin{aligned}
M Y_{s} & =C W_{s}^{0.75} / C W_{m}^{0.75} * 10 \mathrm{~kg} / \text { day } \\
& =20^{0.75} / 30^{0.75} * 10 \mathrm{~kg} / \text { day } \\
& =7.38 \ldots \mathrm{~kg} / \text { day } \\
M Y_{l} & =C W_{l}^{0.75} / C W_{m}^{0.75} * 10 \mathrm{~kg} / \text { day } \\
& =40^{0.75} / 30^{0.75} * 10 \mathrm{~kg} / \text { day } \\
& =12.41 \ldots \mathrm{~kg} / \text { day }
\end{aligned}
$$

where
$M Y_{s}, M Y_{l}=$ Calculated peak milk yield for small and large cows respectively $C W_{s,} C W_{m} C W_{l}=$ The weight at birth for small, medium and large calves respectively

It was assumed that calves were weaned at 205 days. Thus, the lactation time was assumed to be 205 days. Weaner calves were sold 7 days later (10 days later for calves from heifers) at 7 months of age.

Furthermore, as recommended by the NRC, 2-year-old heifers produced 26% less milk and 3 -year-old cows produced 12% less milk respectively throughout the first and second lactations. The recommendation of the NRC was kept for consistency; however, it should be noted that they predict the calves of first calf cows to be merely 8%, and the calves of second calf cows to be 5% smaller than that of older cows. In this simulation study, cows were bred for the first time at 24 months and thus lactated at 3 years, therefore, milk production was set as 12% lower and calf birth weights at 8% lower for these first calf cows. For second calf cows, milk production was left unchanged from that of mature lactations, however, for consistency calves were expected to be 5\% lighter.

By substituting the above peak lactations and time of peak lactations, the milk yield for week n could be calculated. To calculate the daily yield, the equation was adapted to:

$$
Y_{t}=t / a e^{k t}
$$

Where
$t=n / 7$ and is thus the conversion from weeks (n) to days (t).

Now since the daily milk yield could be computed, the milk yield had to be converted into net energy requirements. The net energy requirements for lactation of the cow were taken as equal to the net energy content of the milk. The net energy content of the milk is determined by the milk composition. The NRC reviewed previous literature and recommends using a fat content of 4.0%, protein content of 3.4% and a SNF (solids non-fat) content of 8.3% for general calculations. These recommendations were also used in the calculation in this research.

From the equation developed by Tyrrell \& Reid (1964), the energy content of milk can be calculated as

$$
E=(0.092 * \text { fat percent })+(0.049 * \text { SNF percent })-0.0569
$$

From the above equation and recommendations of the NRC, the energy content of 1 kg of milk is calculated to be $0.7178 \mathrm{Mcal} / \mathrm{kg}$.

The above therefore allowed for the calculation of NE_{1} per day during lactation for cows from each of the three different size groups, including lower milk yield for first calf cows of all sizes.

3.4.4 Energy requirements for foetal production

This research calculated energy requirements during pregnancy using the gestation period and size of the calf at birth as variables. The size of the calf at birth was in turn influenced by the mature size.

As shown in Chapter 2, the NRC derived an equation for calculating the net energy requirements for gravid uterus from the work of Ferrel et al (1976). It is assumed that the net energy used for the gravid uterus equals the net energy of the gravid uterus. The net energy requirements during pregnancy is estimated by:

$$
N E_{y}=0.576 \text { birth weight }(0.4504-0.000766 t) e^{(0.03233-0.0000275 t) t} \quad \mathrm{kcal}
$$

where t is the time after conception. This leaves two variables unsolved, the birth weight of the calf and the total duration of pregnancy.

The Performance Information from Breeds Participating in the National Beef Recording and Improvement Scheme of South Africa was used to determine the average calf weight (Scholtz, 2010). Information available for the national seed stock showed the average calf birth weight was 35 kg and the average cow weight was 492 kg for the same period from 1999 to 2008. This gives an average of 6.7% of cow weight. The commercial average was 36 kg for calf birth weight and 518 kg cow weight for the same period, however data is only available for between 2 and 5 cows for the last 4 years, far too few to be accepted as representative of the total commercial sector. Therefore, information from the seed stock industry was used as a starting point. Calf birth weight is influenced by mature size. As discussed in Chapter 2, animals that turned out to be larger mature animals were larger at all life stages. It is thus safe to assume that larger cows gave birth to larger calves. For this simulation study, calf weight was assumed to be 6.67% of mature weight, giving approximate birth weights of $20 \mathrm{~kg}, 30 \mathrm{~kg}$ and 40 kg for calves from small, medium and large cows respectively.

As recommended by the NRC, calves from 2-year first calf cows were 8% lighter, and that of 3-year old second calf cows were 5% lighter than that of mature animals. No compensation was made for 4 -year old cows. From the literature review it is concluded that animals that were smaller at birth, were also smaller at other life stages. It was assumed that these calves remained 8% and 5% smaller than those from mature cow until they were all sold at 7 months of age.

The total duration of pregnancy was set at 283 for all three groups. As discussed in Chapter 2, it has been shown that smaller animals have a shorter gestation period. Results were mainly from measurements in controlled studies, and it is impossible to assume a specific day or number at which smaller cows will calf.

3.4.5 Growth and Total daily energy requirements per cow

By Using Brody's growth curve and the expected mature weight of animals, the exact weight for each animal for every single day from birth until one year after maturity was computed. Having the exact weight of each animal at each day available allowed for accurate energy requirement, inventory and income and expenditure calculations.

The total daily energy requirements $\left(\mathrm{NE}_{t}\right)$ is the sum of the net energy for maintenance $\left(\mathrm{NE}_{\mathrm{m}}\right)$, the net energy for growth $\left(\mathrm{NE}_{\mathrm{g}}\right)$, the net energy during lactation $\left(\mathrm{NE}_{1}\right)$ and the net energy during pregnancy $\left(\mathrm{NE}_{\mathrm{y}}\right)$ for each day. Thus

$$
N E_{t}=N E_{m}+N E_{g}+N E_{l}+N E_{y}
$$

As mentioned before the order in which energy is prioritised for physiological functions are also important. Literature suggests animals will always use energy for maintenance first. In the case were feed is limited animals will first compensate by failing to reproduce.

From the above it was thus possible to calculate the energy requirements for each individual animal for each of the physiological functions for every day it remained in the herd. A summary of the daily energy requirements for small, medium and large cows is given in table 4.1, 4.2 and 4.3 and the full results for energy requirements for each day from birth to 1 year after maturity for each of the three sizes is given in Appendix A.

3.5 Resource base

Due to the low rainfall in the semi-arid regions of South Africa, extensive cattle farming is the dominant practice. Approximately a quarter (24.6%) of South Africa's surface is classified as semi-arid with rainfall ranging between $400-600 \mathrm{~mm}$. The semi-arid regions of SA consist of mainly Savannah and grassland. Grassland can be divided into "sweet" and "sour" veld which refers to the palatability of the grass. Sweet veld retains its nutrients and palatability even in winter and animals will voluntarily graze
it throughout the year. Sweet veld occurs at high elevation and low rainfall as is found in the semi-arid regions (Suttie et al., 2005; Mucina \& Rutherford, 2006).

Grazing capacity in South Africa is usually expressed as ha/LSU. The LSU and the calculation thereof were discussed in chapter 2 and also receives more attention in Chapter 5. There is huge variation in grazing capacity in South Africa. The average grazing capacity of the grassland biome is 4-6ha/LSU and that of the Savannah biome 10-15ha/LSU (Avenant, 2016). At a lower grazing capacity, animals need to walk long distances to find grazing or water, they will need more energy over and above that needed for maintenance. However, whether the animal is big or small, the activity would be similar and therefore not influence the results of the study.

In this thesis one of the aims was to determine the number of animals of different sizes a set resource base can support. A well-defined resource base will have a specific amount of gross energy available annually. This energy is utilized by the animals and finally used for maintenance, growth, lactation and foetal production. More small animals and less large animals can be held on this resource base. It is accepted that different sizes of the same breed will be equally efficient in extracting net energy from gross energy. Net energy of the resource base is therefore used as the limiting factor in this study.

The amount of net energy of the sample resource base used in this study is solely used to find the ratio of small:medium:large animals that can be maintained on a resource base that supplies a set amount of energy. Therefore, in this case, any random amount of net energy could be chosen, since we are concerned with ratios and not specific numbers.

To add a comprehensible and easily calculatable value to the net energy available on the resource base, the net energy requirements of 500 non-pregnant non-lactating cows of 450 kg live weight at maintenance was used. That is without energy requirements for growth, pregnancy or lactation. From section 4.1,

$$
\begin{align*}
\text { Yearly } N E_{m} \quad & =0.077 * B W^{0.75} * 365 \tag{Mcal}\\
& =0.077 * 450^{0.75} * 365 \\
& =1,372,976 \tag{Mcal}
\end{align*}
$$

It was assumed that feed was available as required by the animals throughout the year. Thus, there were no periods were there was a feed shortage. This underlines the importance of grazing management. Since the semi-arid grasslands are made up of mainly sweet grass, which retains its nutrients well, feed availability can to some extent be controlled. This is done through rotational grazing and timing a breeding season to energy availability, among other management practices. As is normal in the semiarid North West and Freestate provinces, a protein lick was fed in the winter and a phosphate lick in summer.

3.6 Production system

A commonly used definition for a production system in South Africa, is where only the age at which animals are marketed is mentioned. The most popular systems are weaner, tolly, and ox -systems which refers to the age at which animals are sold. A weaner system is also commonly referred to as a cow-calf system. The KwaZulu-Natal department of agriculture and rural development guidelines to define a production system were used, where the following is defined (Department of Agriculture and Rural development, 2016a):

- Age, mass and class at which animals are sold
- The breeding, management and feeding systems

This study simulated a production system defined as follows:

- A weaner system was followed where weaners were sold at 7 months to the feedlot. Animals were sold at different weights. Culled cows and bulls were sold as class B2/3 and C2/3 meat as further described under section 7.1
- Natural mating was assumed. It was assumed that a breeding season was used, furthermore to simplify calculations, it was assumed that all cows that fell pregnant did so on the same day. The management system was defined as extensive as is most commonly applied in South Africa and also the research area. Animals were managed on savannah or grassland and grazed yearround with no supplementary feeding, however mineral licks were fed.
- Dosing and vaccinations were calculated in line with common practices in the North-West and Freestate Provinces

The production system determined the calculation of the inventory and the production budget.

3.7 Stock flow

Next a stock flow for each of the three size groups was computed, since individual animals required different amounts of energy for different physiological functions. The stock flow was calculated monthly, starting from January.

Animals were divided into 6 classes

- Mature cows (MC): Cows were classified as MC on 1553 days. These are cows that had 2 or more calves. MC were bred and fell pregnant on 23 December. Non- pregnant MC were culled on 30 April. Pregnant MC calved on 1 October.
- Second calf cows (SCC): Cows were classified as SCC at 1188 days of age. SCC are cows that had their first calf on 1 July and were rebred for the second time on 23 December at 1179 days and will yield their second calf on 1 October at 1461 days. Non-pregnant SCC were culled on 30 April
- First calf cows (FCC): Cows were classified as FCC at 823 days of age. FCC were bred for the first time on 22 September at 722 days or approximately 24 months. The ones that fell pregnant calved on 1 July at 1779 days or approximately 33 months. Non-pregnant FCC were culled on 31 January. FCC were rebred on 23 December at 1179.
- Retained cow calves (RCC): Heifers were classified as RCC at 458 days. These were heifers retained to replace the culls from the other cow groups. These animals were bred for the first time on 22 September at 722 days. These retained animals were retained only from MC and not FCC or SCC.
- Calves from MC, RCC from MC, calves from SCC and calves from FCC. Calves from MC and calves from SCC were born on 1 October, weaned 23 April at 205 days and sold on 30 April at 212 days. Calves from FCC were born on 1 July, weaned on 21 January at 205 days and sold on 31 January at 215 days. All calves from SCC and FCC were sold. Calves held back for replacement were only from MC and were named RCC from MC from month 7 to 15 and were named RCC from month 15 as described in the point above.
- Bulls. Bulls were assumed to be mature throughout their lifetime in the herd. The number of bulls was assumed to be 1:25 of all breedable cows at the highest quantity. Bulls were replaced at 20% and they were culled and replaced on 30 November after compensating for a loss due to mortality.

The most important variables that influenced the calculation of the stock flow was the calving rate of MC, calving rate of SCC, calving rate of FCC, and subsequent culling rate, the replacement rate of bulls and the death rates for the different animal classes.

Calving rates vary greatly throughout the whole beef sector in South Africa. The seed stock industry reports a calving percentage of around 76% for breeds that take part in performance recording. Commercial animals that take part in performance recording has a calving percentage of 83% but could be skewed by the low number of animals in the performance recording scheme. Some calving rate estimates are as low as 61% for the commercial sector and a mere 48% for the emerging sector (Scholtz et al., 2008; Scholtz, 2010). When it comes to the calving percentages of FCC, SCC and MC, there is little information available to differentiate among the 3 groups. The targets from the Department of Agriculture \& Rural Development (2016b) suggests farmers aim for a calving percentage of 90% for heifers bred at 2 years, 75% for first calf cows and 80% for mature cows and this was taken as the reproduction rates in the base model.

From the literature review, there is evidence that suggest smaller cows have a higher reproduction rate. Unfortunately, this qualitative data cannot be expressed numerically, therefore the same fertility rate was accepted for all sizes in the base model. Reproduction rate is arguably the most important biological efficiency measure and is therefore further discussed in Chapter 5.

Replacement cows came from the same herd. The same gestation length, of 283 days, was assumed for all cows. Lactation started on the day cows calved. Lactations lasted 205 days and ended on the 23 April for MC and SCC and on 21 January for FCC. Calves were sold at 7 months of age. Calves from MC and calves from SCC were sold on 30 April. Calves from FCC were sold on 31 January. A very strict culling criterion was followed, where all animals that didn't reproduce where culled. Pregnancy tests were done on 30 April for MC and SCC and on 31 January for FCC. Non-pregnant cows were immediately sold. A mortality rate of 1% was assumed for all animals except calves. The mortality rate of calves was set at 3%. Deaths were calculated monthly.

Using the above assumptions, the stock flows were calculated for herds of each of the three sizes. Next the energy requirements were matched to the stock flow. From the energy requirements of each class of animal and the stock flow the number of animals of each class was calculated. The total energy requirements per day across all animal classes could be calculated by multiplying the number of animals
of each class, with their daily energy requirements. The monthly energy requirements were the sum of the daily energy requirements for the month for each class of animal. The same calculation was used for each month for MC, SCC, FCC, RCC, Calves from MC, RCC from MC, Calves from SCC, Calves from FCC, and Bulls for a herd of small, medium and large cattle.

The energy requirements calculated for individual cows where done for cows that fell pregnant. Therefore, for MC, SCC and FCC that didn't gestate, the NEy needed during pregnancy was subtracted from the NE_{t} requirements, since they would not be consuming energy for foetal production. For example:

The NE_{t} for a pregnant mature cow was calculated for each day from birth throughout maturity, as described in section 3.4. From 1 January to 31 January, medium sized pregnant MC needed NE_{t} of 412.29 Mcal , (of which NE_{m} was $233.22 \mathrm{Mcal}, \mathrm{NE}_{\mathrm{g}}$ was $0, \mathrm{NE}_{1}$ was 178.54 Mcal , and NE_{y} was $0.53 \mathrm{Mcal})$. There were 171.9 MC on the resource base from 1 January to 31 January, meaning NE_{t} for January for this class would be $171.9 \mathrm{MC} * 412.29 \mathrm{Mcal}=70.851 \mathrm{Mcal}$ if all cows were pregnant. But, importantly, 34.4 of these cows did not fall pregnant and did not use NEy. This is NEy of $34.4 * 0.53=$ 18.08 Mcal not used. Therefore, the NE_{t} of medium MC for January was $71,851 \mathrm{Mcal}$. The NE_{m} for this class for January was also calculated as $233.22 \mathrm{Mcal} * 171.9 \mathrm{MC}=40,088.35 \mathrm{Mcal}$. NE_{1} was 178.54 Mcal * $171.9 \mathrm{MC}=30,690.46 \mathrm{Mcal}$. NEy was $0.53 *(171.9-34.4)=72.31 \mathrm{Mcal}$.

Using the above calculations, the number of animals in each class that the resource base could support was calculated. With the animal numbers, and the exact daily energy they need, the number of animals that could be supported by the resource base was calculated to match 1,372,976 Mcal. Animal numbers were not rounded to whole numbers, as this simulation study is concerned with accurate ratios among the different sized animals. Inventories are shown in table 4.4,4.5 and 4.6 for small, medium and large cattle respectively.

3.8 Production Budget

3.8.1 Income

Income is generated from calf sales and culls of female animals and bulls. Calves were sold at 7 months of age. FCC and SCC that failed to reproduce were culled at 28 months (on 31 January) and 43 months
(on 30 April) respectively. MC were also culled after pregnancy tests, on 30 April, but they were sold at various ages when failing to reproduce, averaging around 111 months.

The South African red meat classification system is mostly concerned with the age, measured by the number of permanent incisors, and the fatness. Animals are usually classified as follows:

Table 3.1: Beef Classification in South Africa
(Brody, 2017)

	Milk teeth	2 teeth	4 teeth	6 teeth	8 teeth	Fat grade
Grade	A - grade	AB - grade	B - grade	B - grade	C - grade	0- No fat 1- Very lean 2- Lean 3- Medium
Age	0-18 months	$18-24$ months	$24-36$ months	36-48 months	48 months or older	4- Fat 5- Slightly overfat 6- Excessively overfat

From the above, FCC that were culled were classified as B2/3 and SCC, MC and bulls that were culled were classified as $\mathrm{C} 2 / 3$. Prices for culls and weaners were obtained from the Red Meat Producers Association (RMPA) and ABSA. The RMPA publishes weekly prices and the average weekly price for 2017 for the above classes were taken. This gave a price of R40.48 and R39.18 per kilogram of slaughtered carcass for class B2/3 and C2/3 respectively. It was assumed that all animals of all classes yielded a carcass of 52% of body mass, which gave a live price of R21.05/kg and R20.38/kg for B2/3 and C2/3. The average weekly price published for weaners throughout 2017 was taken, giving a live price of R32.25/kg (Red Meat Producers Organization \& ABSA, 2018).

From the growth curve calculation discussed in section 3.4.2 the exact weight of each animal class for every single day from birth was known. Using this and the inventory calculation, the exact live kilograms of each animal of each class for each size that were sold could be obtained. By multiplying the live kilograms sold from each class sold with the price per kilogram as discussed above, the total income was calculated for the herds of small, medium and large cattle. To illustrate, consider the following example:

SCC were culled on 31 April and 11.99 medium SCC were culled. From the growth rate calculation, medium SCC weighed exactly 430.8 kg on 31 April. Therefore, a total of $5,163.31 \mathrm{~kg}$ were sold as medium SCC culls, at a price of R20.38/kg. This gave an income of R105,206.00 for medium SCC culls. The income from other classes were calculated similarly, for the herds of small, medium and large cattle.

3.8.2 Expenses

Except for bull replacements, other expenses were adapted from the production budgets of Senwes Agricultural Services for extensive beef production in the North-West and Freestate provinces (Senwes Agricultural Services, 2017). Where expenses were incurred on a per head basis, the number of animals was obtained from the calculated stock flow. Where expenses were incurred on a live weight basis, the number of animals of each class to which it applies, were obtained from the stock flow. The exact weight of the relevant animal was known from the growth rate calculation discussed in section 3.4.2. Thus, to get the total weight to which the expense applies, the relevant number of animals from the stock flow was multiplied by the exact weight of those animal for the day on which the expense was incurred.

3.8.2.1 Bull replacements

It was assumed that replacement bulls were bought at a higher price than bulls that were culled. To maintain a high calving percentage and improve the efficiency of the herd, a good bull is essential as the genetics from bulls make up 50% of the genetics of the progeny. When buying a bull, size influenced their choice by up to 9% of commercial farmers and 24% of emerging farmers (Scholtz et al., 2008). It can therefore be assumed that a larger bull will fetch a premium in terms of price. A practical rule that has been suggested is that the cost of a bull should be approximately 8 times the value of a weaner calf to be marketed to the feedlot or 5 times the price of a fattened cow (Bradfield, 2015). The price of a weaner calf was assumed to be R32.25/kg. Converting the price of eight weaners to one bull, gave a price of R112.00/kg for a bull and, R33,599, R50,398, R67,198 for a $300 \mathrm{~kg}, 450 \mathrm{~kg}$ and 600 kg bull respectively. When taking the price of 5 cows, it gave a slightly lower price of R101.88/kg bull. The ratio of 8 weaners to one bull was taken for calculations in this study.

3.8.2.2 Supplementary Licks

Animals were given licks to supplement vital nutrients needed. Animals received a protein supplement in winter and a phosphate supplement in summer.

The protein lick was given for 6 months through winter starting 1 May and a phosphate lick for 6 months through summer starting 1 November. Voermol's Premix 450 and Supefos were used in this research. The supplementary requirements of animals will vary according to size and physiological function. For instance, a lactating cow will also consume more feed and thus also more licks than a nonpregnant cow. Therefore, it was assumed that lick intake was directly equivalent to NE_{t} requirements. Since recommendations on licks normally provide a maximum intake per animal, this was matched to the maximum NE_{t} for any of the individual animals used in the aforementioned calculations. The maximum NE_{t} throughout the three cattle sizes throughout their lives was, as expected, from a large mature cow during peak lactation at 18.241 Mcal . This was matched to the maximum recommendation for Premix 450 and Superfos, which was 500 g and 240 g respectively. Using this as a starting point the amount of feed needed for all three production budgets could be determined. Therefore, when an animal's NE_{t} is 18.241 Mcal , it will require 500 g of Premix450. Therefore, if the large herd's total NE_{t} during winter is $590,599 \mathrm{Mcal}$, they will require 590,599 / $18.241 * 500 \mathrm{~g}=16,188,803 \mathrm{~g}$ of Premix 450 . Thus the calculation for winter licks were $500 \mathrm{~g} / 18.241 \mathrm{Mcal} * \mathrm{NE}_{\mathrm{t} \text { (small, medium and large) }}$ from 1 May to 31 October . A similar calculation was done for Superfos, where summer lick was calculated as 240 g / 18.241 Mcal $* \mathrm{NE}_{\mathrm{t}(\text { small, medium and large) }}$ from 1 November to 30 April.

3.8.2.3 Dosing and vaccinations

Dosing and vaccination programs, as prescribed by Senwes Agricultural (2017), were used and the motivation for the dosing and vaccinations are provided in table 3.2. Dosing was timed mainly according to recommendations of individual products. Products that recommended a schedule of 4-8 weeks before breeding were administered on 1 November for MC, SCC, FCC and bulls and 1 August (670 days) for RCC and when applicable to RCC from MC.

3.8.2.4 Dips

Animals were dipped to control external parasites. The dipping schedule and motivation is provided in table 3.2.

3.8.2.5 Prices of expenses

Product prices were obtained from different sources. Where products were sold in a variety of quantities, the price quoted for the largest quantity was used. Feed prices were obtained from Voermol's sales representative in the Potchefstroom/ Klerksdorp region. Prices for Vit-Aid, Bovitect III and Cattlemaster 4 were obtained from ANB Veterinary Wholesalers' online store (2018). The price for the Rift Valley Fever vaccine was obtained from ONB's sales representative. Prices for all other doses, vaccines and dips were obtained from Vet Products Online (2018). All product prices were inclusive of VAT. The information is provided in table 3.2.

Table 3.2: Supplementary feed, dosing, vaccinations and dipping schedule and expenses
(Personal collection from various sources)

Product	Manufacturer and reference	Motivation	Relevant Animals	Timing	Dosage	Price
Licks						
Voermol Premix 450	$\begin{aligned} & \hline \text { Voermol } \\ & (2018) \end{aligned}$	Protein Lick for Winter	All	$\begin{aligned} & 1 \text { May }-31 \\ & \text { Oct } \end{aligned}$	Max: 500 g / animal / day	$\begin{aligned} & \text { R205.05/ } \\ & 50 \mathrm{~kg} \end{aligned}$
Voermol Superfos	$\begin{aligned} & \hline \text { Voermol } \\ & (2018) \end{aligned}$	Phosphate Lick for summer	All	$\begin{aligned} & 1 \mathrm{Nov}-30 \\ & \text { Apr } \end{aligned}$	Max: 240g / animal / day	$\begin{aligned} & \text { R260.30 / } \\ & 50 \mathrm{~kg} \end{aligned}$
Dosing						
Tramisol Plus	Afrivet (2018)	Roundworm and Liver fluke	Bulls, MC, SCC, FCC, RCC, RCC from MC	1 Nov (All relevant animals)	$15 \mathrm{ml} / 50 \mathrm{~kg}$	$\begin{aligned} & \hline \text { R134.41 / } \\ & 200 \mathrm{ml} \end{aligned}$
Ex-A-Lint	$\begin{aligned} & \hline \text { MSD } \\ & (2018) \end{aligned}$	Milk Tapeworm	Calves	1 Jan, 1 Apr (Calves from MC and SCC) 1 Oct, 1 Jan (Calves from FCC)	$1 \mathrm{ml} / 4 \mathrm{~kg}$	$\begin{aligned} & \text { R1898.55 } \\ & \text { / } 51 \end{aligned}$
Valbazen	$\begin{aligned} & \text { Zoetis } \\ & \text { (2018) } \end{aligned}$	Roundworm and Milk Tapeworm	Bulls, MC, SCC, FCC, RCC, RCC from MC	1 May, 1 Nov (Bulls, MC, SCC, FCC) 1 Feb, 1 Aug (RCC, RCC from MC)	$1 \mathrm{ml} / 10 \mathrm{~kg}$	$\begin{aligned} & \text { R1999.40 } \\ & \text { / } 51 \end{aligned}$
Vit-Aid	$\begin{aligned} & \hline \text { Afrivet } \\ & \text { (2018) } \end{aligned}$	Vitamin A supplement	Bulls, MC, SCC, FCC, RCC, RCC from MC	1 Jul (All relevant animals)	1ml / 250kg	$\begin{aligned} & \hline \text { R208.28 / } \\ & 100 \mathrm{ml} \end{aligned}$
Multimin	Virbac (2018)	Trace Mineral Supplement	Bulls, MC, SCC, FCC, RCC, RCC from MC	1 Nov (Bulls, MC, SCC) 1 Aug (FCC,RCC, RCC from	$\begin{aligned} & 1 \mathrm{ml} / \\ & 100 \mathrm{~kg} 1 \end{aligned}$	$\begin{aligned} & \text { R1997.09 } \\ & \text { / 500ml } \end{aligned}$

				MC)		
Vaccinations						
Cattle Master 4	$\begin{aligned} & \hline \text { Zoetis } \\ & (2018) \end{aligned}$	Bovine Viral Diarrhea	Bulls, MC, SCC, FCC, RCC, RCC from MC	1 Nov (Bulls, MC, SCC, FCC) 1 Aug (RCC, RCC from MC)	$2 \mathrm{ml} /$ animal	R818.28 / 25 doses
Supavax ${ }^{\circledR}$ (MSD)	$\begin{aligned} & \hline \text { MSD } \\ & (2018) \end{aligned}$	Botulism, Anthrax, Blackquarter	All animals	1 Nov (Bulls, MC, SCC, FCC) 1 Aug (RCC and RCC from MC) 1 Jan, 1 Apr (Calves from MC and SCC) 1 Oct, 1 Jan (Calves from FCC)	$2 \mathrm{ml} /$ animal	R741.92 / 50 doses
Bovilis® S	$\begin{aligned} & \hline \text { MSD } \\ & (2018) \end{aligned}$	Paratyphoid (Inactivated)	Pregnant animals	$\begin{aligned} & 1 \mathrm{Aug} \\ & \text { (MC, SCC) } \\ & 1 \mathrm{May} \\ & \text { (FCC) } \end{aligned}$	$\begin{aligned} & 2 \mathrm{ml} / \\ & \text { animal } \end{aligned}$	$\begin{aligned} & \hline \text { R47.00 / } \\ & 10 \mathrm{ml} \end{aligned}$
RB-51	$\begin{aligned} & \text { MSD } \\ & \text { (2018) } \end{aligned}$	Brucella Abortus	Female animals before breeding	1 Nov (MC, SCC, FCC) 1 Aug (RCC)	$2 \mathrm{ml} /$ animal	$\begin{aligned} & \text { R1009.63 } \\ & \text { / } 25 \text { doses } \end{aligned}$
Bovi-Tect III	$\begin{aligned} & \text { MSD } \\ & (2018) \end{aligned}$	Pasteurella	Female animals	1Aug (All relevant animals)	$1 \mathrm{ml} /$ animal	$\begin{aligned} & \text { R1839.42 } \\ & \text { / 100ml } \end{aligned}$
Rift Valley Fever (OBP)	$\begin{aligned} & \hline \text { OBP } \\ & (2018) \end{aligned}$	Rift Valley Fever (Incativated)	Bulls, MC, SCC, FCC, RCC, RCC from MC	```1 Aug (all relevant animals)```	$\begin{aligned} & \hline 2 \mathrm{ml} / \\ & \text { animal } \end{aligned}$	$\begin{aligned} & \hline \text { R688.42 / } \\ & \text { 100ml } \end{aligned}$
Dip						
Drastic Deadline	Bayer (2018)	Ticks, Tsetse flies, Red Lice	All animals	1 Nov (All animals) 1 May (Bulls, MC, SCC, RCC, RCC from MC)	$5 \mathrm{ml} / 50 \mathrm{~kg}$	$\begin{aligned} & \text { R3250.50 } \\ & \text { / } 61 \end{aligned}$

3.8.2.6 Processing and veterinary costs

Retained cow calves were processed and given ear tags which incurred a direct cost of R70.00 per animal. Furthermore, veterinary visits and pregnancy tests was charged at R50.00 per animal. The number of animals that incurred a cost for veterinary services were calculated as

- Cows in the months they were culled (April and January)
- Calves in the months they were sold (April and January)
- Retained heifers in April
- Bulls in December

These costs per animal were taken from Senwes Agricultural Service's production budgets (2017).

3.9 Chapter Summary

This chapter detailed the research methodology that was followed to determine the research aim. The methodology is summarized as follows: NE_{t} requirements of individual animals of different sizes were calculated daily during all physiological life stages and physiological functions for each day from birth to maturity. Maintenance requirements for bulls of different sizes were calculated. A stock flow was calculated by assuming a production schedule and calving percentages, death rates and replacement rates. The net energy requirements were matched to the stock flow to get a total annual net energy requirement of $1,372,976 \mathrm{Mcal}$ for the herd. This provided the exact number of animals and their exact weights for each day throughout the year. This stock flow was then used to calculate income and expenditure.

Chapter 4 Results and Discussion

4.1 Growth and energy requirements of individual cows

4.1.1 Growth of individual cows

Growth curves among the three sizes (small, medium and large) were shaped similar when using Brody's model and assuming a fixed date of maturity, in this case 1552 days. Although obvious, it further illustrates that larger cattle are larger throughout all life stages, as also stipulated by numerous other researchers including Morris \& Wilton (1976); Fiss \& Wilton (1993); and Arango \& Van Vleck (2002).

This model yielded a slightly higher growth rate than that reported for cattle that took part in the National Beef Recording and Improvement scheme (NBRI) in South Africa (Scholtz, 2010). The weight of seed stock animals that participated in the recording scheme at different stages from 1999 to 2008 as a percentage of mature weight, is compared to the current study. The average mature cow weight reported in the NBRI was 492 kg . Weight at birth was 7.1% (35 kg), weight at 205 days was 43.7% (215 kg), and at 540 days was $67.1 \% ~(330 \mathrm{~kg}$) of mature weight.

From the calculations in the base model of this study, and referring to medium cows with a mature weight of 450 kg , weight at birth was set at $6.67 \% ~(30 \mathrm{~kg})$, weight at 205 days was $42.5 \% ~(191 \mathrm{~kg})$ and 540 days was 73.9% (333 kg) of mature weight. Although a slightly higher growth rate was obtained in this model, than reported in the NBRI, keep in mind that in this model, feed was not limited at any stage of growth or production. When feed is limited or fluctuate, it retards growth.

The literature review showed small cattle have a faster growth and maturity rate than large cattle. Maturity rates is therefore discussed further in Chapter 5, section 5.3.2, by means of comparisons to this model and special reference to figure 4.1.

Figure 4.1: Growth curves of small, medium and large cows using Brody's growth model

4.1.2 Net Energy Requirements

The Net Energy calculation illustrated the high maintenance requirements of cattle. Figure 4.2 shows the NE requirements for a medium sized cow from birth to 1917 days, equal to one year after being classified as mature. As is obvious from the figure, more than 70% of energy requirements goes to maintenance, with much less energy spent on growth, production and lactation. Smaller cows used a slightly larger portion (71.8\%) of NE_{t} for NE_{m} than medium (71.1\%) and large cows (70.8\%) did.

Figure 4.2: Net energy requirements of medium sized cow from birth to 1979 days

As expected, smaller cows require less energy throughout all life stages than large cows, however the energy requirement is not proportionately less. There are differences in the composition of energy for maintenance, growth, lactation and production. The full results of the calculation for daily energy requirements as discussed in Chapter 3 is given in appendix A. A summary of NE requirements is given in table 4.1, 4.2 and 4.3 for small, medium and large cattle at the most important life stages, measured from birth. As is clear from table 4.1 to $4.3 \mathrm{NE}_{\mathrm{t}}$ is less for smaller cows at any specific point, however two observations can be made: 1) NE_{t} for small cows are not proportionately less in terms of weigh and 2) the composition of NE_{t} differs among the 3 sizes. Since the proportion and composition of NE_{t} differs at each point in time for the different sized cows, it is more practical to compare the proportions and compositions of NE over longer life stages, as is discussed in the following paragraphs.

Table 4.1: Growth and NE requirements of small cattle for important life stages

		t Birth	t Gesta tion	t Lacta tion	weight	$\begin{array}{c\|} \hline \% \text { of } \\ \text { Mature } \\ \text { Weight } \\ \hline \end{array}$	Daily Gain	Daily milk yield	NE m	NE g	NE 1	NE y	NE t
Weight at birth					20.0								
Birth	01-Oct	1			20.7	7\%	0.660		0.746	0.483			1.229
Calves are weaned	23-Apr	205			127.4	42\%	0.408		2.920	1.115			4.035
Calves are Sold	30-Apr	212			130.2	43\%	0.401		2.969	1.113			4.081
First Breeding	22-Sep	722	1		249.1	83\%	0.120		4.828	0.483		0.005	5.316
FCC are culled	31-Jan	853	132		262.6	88\%	0.088		5.023	0.358		0.164	5.545
First Calving. First Lactation starts.	01-Jul	1004	283	1	273.8	91\%	0.062	0.29	5.183	0.250	0.209	2.575	8.217
Second breeding	23-Dec	1179	1	176	282.7	94\%	0.041	2.71	5.308	0.163	1.946	0.005	7.422
First Calves are weaned	21-Jan	1208	30	205	283.8	95\%	0.038	1.94	5.325	0.151	1.392	0.012	6.880
First Calves are sold	31-Jan	1218	40		284.2	95\%	0.037		5.330	0.148		0.016	5.494
SCC are Culled	30-Apr	1307	129		287.2	96\%	0.030		5.372	0.118		0.158	5.648
Second Calving. Second lactation starts	01-Oct	1461	283	1	291.1	97\%	0.021	0.33	5.427	0.080	0.238	2.659	8.404
Mature Breeding	23-Dec	1544	1	84	292.7	98\%	0.017	6.90	5.449	0.065	4.953	0.005	10.472
Classified as mature	01-Jan	1553	10	93	300.0			6.57	5.550		4.714	0.007	10.271
2nd lactation ends	23-Apr	1665	122	205	300.0			2.20	5.550		1.582	0.141	7.273
Calves are weaned, MC are Culled	30-Apr	1672	129		300.0				5.550			0.166	5.716
Mature Calving. Mature Lactation	01-Oct	1826	283	1	300.0			0.33	5.550		0.238	2.799	8.587
Repetition of Mature Cycle Starts	31-Dec	1917	9	92	300.0			6.61	5.550		4.742	0.007	10.300

Table 4.2: Growth and NE requirements of medium cattle for important life stages

		$\begin{gathered} \mathrm{t} \\ \text { Birth } \end{gathered}$	t Gesta tion	t Lacta tion	weight	\% of Mature Weight	Daily Gain	Daily milk yield	NE m	NE g	NE 1	NE y	NE t
Weight at birth					30.0								
Birth	01-Oct	1			31.0	7\%	0.990		1.011	0.754			1.765
Calves are weaned	23-Apr	205			191.1	42\%	0.612		3.958	1.739			5.697
Calves are Sold	30-Apr	212			195.4	43\%	0.602		4.024	1.736			5.760
First Breeding	22-Sep	722	1		373.6	83\%	0.181		6.543	0.754		0.007	7.304
FCC are culled	31-Jan	853	132		393.9	88\%	0.133		6.808	0.559		0.245	7.612
First Calving. First Lactation starts.	01-Jul	1004	283	1	410.7	91\%	0.093	0.40	7.025	0.390	0.284	3.862	11.561
Second breeding	23-Dec	1179	1	176	424.0	94\%	0.061	3.67	7.195	0.254	2.637	0.008	10.094
First Calves are weaned	21-Jan	1208	30	205	425.7	95\%	0.057	2.63	7.217	0.236	1.887	0.019	9.359
First Calves are sold	31-Jan	1218	40		426.3	95\%	0.056		7.224	0.230		0.025	7.480
SCC are Culled	30-Apr	1307	129		430.8	96\%	0.045		7.281	0.184		0.249	7.714
Second Calving. Second lactation starts	01-Oct	1461	283	1	436.7	97\%	0.032	0.45	7.355	0.125	0.322	4.198	12.001
Mature Breeding	23-Dec	1544	1	84	439.0	98\%	0.026	9.35	7.385	0.101	6.713	0.008	14.208
Classified as mature	01-Jan	1553	10	93	450.0			8.90	7.523		6.389	0.011	13.923
2nd lactation ends	23-Apr	1665	122	205	450.0			2.99	7.523		2.144	0.212	9.879
Calves are weaned, MC are Culled	30-Apr	1672	129		450.0				7.523			0.249	7.772
Mature Calving. Mature Lactation	01-Oct	1826	283	1	450.0			0.45	7.523		0.322	4.198	12.044
Repetition of Mature Cycle Starts	31-Dec	1917	9	92	450.0			8.95	7.523		6.428	0.010	13.961

Table 4.3: Growth and NE requirements of large cattle for important life stages

		$\begin{gathered} \mathrm{t} \\ \text { Birth } \end{gathered}$	t Gesta tion	t Lacta tion	weight	\% of Mature Weight	Daily Gain	Daily milk yield	NE m	NE g	NE 1	NE y	NE t
Weight at birth					40.0								
Birth	01-Oct	1			41.3	7\%	1.320		1.255	1.033			2.288
Calves are weaned	23-Apr	205			254.8	42\%	0.816		4.911	2.384			7.295
Calves are Sold	30-Apr	212			260.5	43\%	0.802		4.993	2.380			7.373
First Breeding	22-Sep	722	1		498.1	83\%	0.241		8.119	1.033		0.010	9.162
FCC are culled	31-Jan	853	132		525.2	88\%	0.177		8.448	0.766		0.327	9.541
First Calving. First Lactation starts.	01-Jul	1004	283	1	547.6	91\%	0.124	0.49	8.717	0.535	0.352	5.150	14.754
Second breeding	23-Dec	1179	1	176	565.4	94\%	0.082	4.56	8.928	0.348	3.272	0.011	12.559
First Calves are weaned	21-Jan	1208	30	205	567.7	95\%	0.076	3.26	8.955	0.324	2.341	0.025	11.645
First Calves are sold	31-Jan	1218	40		568.4	95\%	0.075		8.964	0.316		0.034	9.313
SCC are Culled	30-Apr	1307	129		574.4	96\%	0.061		9.034	0.253		0.332	9.619
Second Calving. Second lactation starts	01-Oct	1461	283	1	582.2	97\%	0.042	0.56	9.126	0.171	0.400	5.598	15.296
Mature Breeding	23-Dec	1544	1	84	585.4	98\%	0.035	11.60	9.164	0.139	8.330	0.011	17.643
Classified as mature	01-Jan	1553	10	93	600.0			11.04	9.335		7.928	0.014	17.277
2nd lactation ends	23-Apr	1665	122	205	600.0			3.71	9.335		2.660	0.282	12.277
Calves are weaned, MC are Culled	30-Apr	1672	129		600.0				9.335			0.332	9.667
Mature Calving. Mature Lactation	01-Oct	1826	283	1	600.0			0.56	9.335		0.400	5.598	15.333
Repetition of Mature Cycle Starts	31-Dec	1917	9	92	600.0			11.11	9.335		7.976	0.014	17.324

In this model, mature cows were culled at 19% and a death rate of 1% was assumed, meaning cows stayed in the herd for an average of 5 years after being classified as mature. Cows that reproduced as FCC, as well as SCC were retained. This means if a FCC or SCC was not culled before reaching maturity, they would spend a total of 3377 days in the herd and produce a calf seven times throughout their time in the herd. The net energy requirements of cows that remained in the herd for 3377 days are shown below in table 4.4 and divided into the period where animals were growing (1-1152 days) and the period where animals were mature (1153-3377 days).

When NE_{t} requirements among the three sizes are compared, small cows had a proportionately higher energy requirement. Small cows were half the size (50\%) of large cows but required 58% as much NE_{t} as large cows ($23,669 \mathrm{Mcal}$ to $40,553 \mathrm{Mcal}$). Similarly, small cows were only 67% the size of medium cows but required $73 \% \mathrm{NE}_{\mathrm{t}}$ of medium cows ($32,423 \mathrm{Mcal}$). This is mostly due to smaller cows having a proportionately higher energy requirement for maintenance as described by Kleiber's Law (Kleiber, 1932). In fact, NE_{m} of small cows (16, 999Mcal) were 59% that of large cows $(23,041 \mathrm{Mcal})$ and 74% of medium cows ($28,590 \mathrm{Mcal}$), despite being only 50% and 67% in weight of large and medium cows. This illustrates that small cows will be less efficient when cows are non-lactating and non-pregnant, however their efficiency moves closer to that of larger cows when other physiological functions come into play and NE_{m} makes up a smaller portion of NE_{t}.

When the composition of NE_{t} is observed, the NE_{m} of small cows were higher as a percentage of NE_{t}. From birth to 1552 days of age, small cows utilised more than three quarters of net energy solely for maintenance. Larger calves, which grew faster, used a larger proportion of total energy for growth (10.8%), than small (8.8%) and medium calves (9.9%). Similar results were reported by Carpenter (1971). As mature cows, a slightly lower proportion of NE_{t} is used for NE_{m}, with around a quarter of NE_{t} used for $\mathrm{NE}_{1 .}$ Arango (2002) reported NE_{m} of adult cows as being more than 50% of NE_{t}. Lifetime NE_{m} were 71.8% for small cows, higher than that of medium (71.1\%) and large cows (70.5\%), consistent with previous research (National Research Council, 2000; Jenkins \& Ferrell, 2002)

It can be concluded that, in the base model simulation where growth rates and reproductions rates were similar for small, medium and large cows, small cows were the least efficient in terms of NE_{t} requirements. Similar results were reported by Dickerson (1978), Farrell \& Jenkins (1984) and Arango (Arango \& Van Vleck, 2002) among others. The work of Farrell \& Jenkins however
compared differences among breeds and not the effects within one breed. Growth and reproduction have been shown to have significant influence on efficiency. Because similar growth and reproduction rates were assumed in the base model, which might not always be the case, it is revisited in chapter 5 .

Table 4.4: Lifetime energy requirements of small, medium and large cows

			wing anim			ture anim		To	time in h	
			to 1552			nature cy		bir	to 3377	
		Small	Medium	Large	Small	Medium	Large	Small	Medium	Large
NE requirements	NE m	6,870	9,311	11,554	2,026	2,746	3,407	16,999	23,041	28,590
(Mcal)	NE g	793	1,237	1,696	-	-	-	793	1,237	1,696
	NE 1	1,042	1,412	1,752	736	997	1,238	4,721	6,399	7,940
	NE y	315	484	646	168	252	336	1,155	1,746	2,328
	NE t	9,019	12,445	15,647	2,930	3,996	4,981	23,669	32,423	40,553
	NE m	76.2\%	74.8\%	73.8\%	69.1\%	68.7\%	68.4\%	71.8\%	71.1\%	70.5\%
(\% of NE t)	NE g	8.8\%	9.9\%	10.8\%	0.0\%	0.0\%	0.0\%	3.3\%	3.8\%	4.2\%
	NE 1	11.6\%	11.3\%	11.2\%	25.1\%	25.0\%	24.8\%	19.9\%	19.7\%	19.6\%
	NE y	3.5\%	3.9\%	4.1\%	5.7\%	6.3\%	6.8\%	4.9\%	5.4\%	5.7\%
	NE t	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

4.2 Stock flow and herd composition

As expected, more small cows could be kept on the resource base. The net energy requirements, reproduction rates and death rates influenced the herd composition and the number of animals that could be kept on the resource base. Furthermore, as different classes of animals within the same size group used energy differently the composition of the small, medium and large herds were also different. As on January $1^{\text {st }}$, when animals were recategorized into different groups, the resource base could support 236.6 small mature cows, 171.9 medium mature cows or 136.9 large mature cows. Enough replacements were bred to replace culled and deceased mature cows and thus herd numbers were similar at the start and end of every year. The stock flow is an intermediary step between biological and economic efficiency and in fact serves to illustrate the
ratios of small to medium to large cattle that can be maintained by the same resource base. From the stock flow the number of animals that were sold, either as culls or weaners could be calculated. Furthermore, the number of animals that will incur an expense could be obtained from the stock flow. Where income or expenses were incurred on a weight basis, the relevant number of animals were obtained from the stock flow, and then multiplied with the exact weight of those animals on the day of the income or expense. The weight of these animals is known from the growth rate calculation discussed in section 3.4.2 and subsequent results in section 4.1.1. The stock flows are self-explanatory, and they are provided in table 4.5 to 4.7.

Table 4.5: Stock flow for the herd of small cattle

SMALL CATTLE														
		Jan		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MC		236.6	236.6	236.4	236.2	236.0	188.6	188.5	188.3	188.2	188.0	187.8	187.7	187.5
Pregnant MC	Calving\%	80\%	189.3	189.1	188.9	188.8	188.6	188.5	188.3	188.2	188.0			150.0
Open MC			47.3	47.3	47.2	47.2								37.5
Deaths	Death\%	1\%	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Culls		19\%				47.2								
SCC			66.2	66.1	66.1	66.0	49.5	49.4	49.4	49.4	49.3	49.3	49.2	49.2
Pregnant SCC	Calving\%	75\%	49.7	49.6	49.6	49.5	49.5	49.4	49.4	49.4	49.3			39.4
Open SCC			16.6	16.5	16.5	16.5								9.8
Deaths	Death\%	1%	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls						16.5								
FCC			74.3	66.8	66.8	66.7	66.6	66.6	66.5	66.5	66.4	66.4	66.3	66.3
Pregnant FCC	Calving\%	90\%	66.9	66.8	66.8	66.7	66.6	66.6						49.7
Open FCC			7.4											16.6
Deaths	Death\%	1%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Culls			7.4											
RCC			75.0	75.0	74.9	74.9	74.8	74.7	74.7	74.6	74.5	74.5	74.4	74.4
Pregnant RCC											67.1	67.0	67.0	66.9
Open RCC											7.5	7.4	7.4	7.4
Deaths	Death\%	1%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Calves from MC			186.6	186.1	185.7	185.2						188.0	187.5	187.1
Deaths	Death\%	3\%	0.5	0.5	0.5	0.5						0.5	0.5	0.5
Calves sold from MC						108.4								
RCC from MC						76.7	76.6	76.4	76.2	76.0	75.8	75.6	75.4	75.2
Deaths	Death\%	3\%				0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Calves from SCC			49.0	48.8	48.7	48.6						49.3	49.2	49.1
Deaths	Death\%	3%	0.1	0.1	0.1	0.1						0.1	0.1	0.1
Calves sold from SCC						48.5								
Calves from FCC			65.6	-					66.6	66.4	66.3	66.1	65.9	65.8
Deaths	Death\%	3\%	0.2						0.2	0.2	0.2	0.2	0.2	0.2
Calves sold from FCC			65.4											
Bulls			15.1	15.1	15.1	15.1	15.1	15.1	15.0	15.0	15.0	15.0	15.0	15.1
Deaths	Death\%	1%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls													2.9	
Purchased	Replace\%	20\%											3.0	

Table 4.6: Stock flow for the herd of medium cattle

		MEDIUM CATTLE												
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MC		171.9	171.9	171.7	171.6	171.5	137.1	136.9	136.8	136.7	136.6	136.5	136.4	136.3
Pregnant MC	Calving\%	80\%	137.5	137.4	137.3	137.2	137.1	136.9	136.8	136.7	136.6			109.0
Open MC			34.4	34.3	34.3	34.3								27.3
Deaths	Death\%	1\%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Culls		19\%				34.3								
SCC			48.1	48.1	48.0	48.0	36.0	35.9	35.9	35.9	35.8	35.8	35.8	35.7
Pregnant SCC	Calving\%	75\%	36.1	36.0	36.0	36.0	36.0	35.9	35.9	35.9	35.8			28.6
Open SCC			12.0	12.0	12.0	12.0								7.1
Deaths	Death\%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls						12.0								
FCC			54.0	48.5	48.5	48.5	48.4	48.4	48.3	48.3	48.3	48.2	48.2	48.1
Pregnant FCC	Calving\%	90\%	48.6	48.5	48.5	48.5	48.4	48.4						36.1
Open FCC			5.4											12.0
Deaths	Death\%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls			5.4											
RCC			54.5	54.5	54.4	54.4	54.3	54.3	54.3	54.2	54.2	54.1	54.1	54.0
Pregnant RCC											48.7	48.7	48.7	48.6
Open RCC											5.4	5.4	5.4	5.4
Deaths	Death\%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calves from MC			135.6	135.2	134.9	134.6						136.6	136.3	135.9
Deaths	Death\%	3\%	0.3	0.3	0.3	0.3						0.3	0.3	0.3
Calves sold from MC						78.8								
RCC from MC						55.8	55.6	55.5	55.3	55.2	55.1	54.9	54.8	54.7
Deaths	Death\%	3\%				0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Calves from SCC			35.6	35.5	35.4	35.3						35.8	35.7	35.7
Deaths	Death\%	3\%	0.1	0.1	0.1	0.1						0.1	0.1	0.1
Calves sold from SCC						35.2								
Calves from FCC			47.7	-					48.4	48.3	48.1	48.0	47.9	47.8
Deaths	Death\%	3\%	0.1						0.1	0.1	0.1	0.1	0.1	0.1
Calves sold from FCC			47.5											
Bulls			11.0	11.0	11.0	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9	11.0
Deaths	Death\%	1%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls													2.1	
Purchased	Replace\%	20\%											2.2	

Table 4.7: Stock flow for the herd of large cattle

4.3 Composition of energy requirements of the herd

The NE_{t} of individual animals of each of the different classes were used to calculate the total number of small, medium and large cows that can be maintained on a resource base in terms of total net energy. The NE_{t} of the three herds will thus be equal and was set at $1,372,976 \mathrm{Mcal}$. There were however differences in the composition of the NE_{t} of the herds. From section.4.1.2, small cows use a larger portion of their NE_{t} for maintenance. From the inventories in section 4.2, the composition of the 3 herds were also different. This meant that total energy compositions of the herds differed. Where individual cows were concerned, small, medium and large cows used $71.8 \%, 71.1 \%$ and 70.5% of NE_{t} for NE_{m}, these numbers are even larger for the herds as a whole, at $73.1 \%, 72.0 \%$ and 71.2% for the herd of small, medium and large cattle respectively. This is mainly due to the fact that growing animals use a larger proportion of NE_{t} for NE_{m} than productive mature animals, as well as the fact that bulls have to be maintained on the resource base. NE_{m} of the productive cow herd (MC, SCC and FCC) amounted to $70.2 \%, 69.6 \%$ and 69.3% for the herds of small, medium and large cattle when calculated as a portion of the total NE_{t} of the herds. Similar results were obtained by Ferrell \& Jenkins (1984).

Table 4.8: The energy requirements of animal classes in the herds of small, medium and large cattle

Herd Energy Composition	SMALL		MEDIUM		LARGE	
Mature Cows: NE m	413,135	30.1%	406,870	29.6%	402,129	29.3%
Mature cows: NE 1	154,729	11.3%	152,383	11.1%	150,607	11.0%
Mature cows: NE y	31,646	2.3%	34,491	2.5%	36,631	2.7%
Mature cows: NE t	599,510	43.7%	593,744	43.2%	589,367	42.9%
Second Calf Cows: NE m	107,864	7.9%	106,228	7.7%	104,990	7.6%
Second Calf Cows: NE g	2,157	0.2%	2,445	0.2%	2,670	0.2%
Second Calf Cows: NE 1	21,591	1.6%	21,263	1.5%	21,016	1.5%
Second Calf Cows: NE y	7,887	0.6%	9,049	0.7%	9,610	0.7%
Second Calf Cows: NE t	139,499	10.2%	138,985	10.1%	138,286	10.1%
First Calf Cows: NE m	126,800	9.2%	124,877	9.1%	123,422	9.0%
First Calf Cows: NE g	6,329	0.5%	7,174	0.5%	7,835	0.6%
First Calf Cows: NE 1	40,813	3.0%	40,194	2.9%	39,725	2.9%
First Calf Cows: NE y	10,127	0.7%	11,038	0.8%	11,723	0.9%
First Calf Cows: NE t	184,069	13.4%	183,283	13.3%	182,706	13.3%
Retained Cow Calves: NE m	126,442	9.2%	124,525	9.1%	123,074	9.0%
Retained Cow Calves: NE g	16,027	1.2%	18,168	1.3%	19,842	1.4%
Retained Cow Calves: NE y	188	0.0%	205	0.0%	218	0.0%
	142,658	10.4%	142,899	10.4%	143,134	10.4%
Retained Cow Calves: NE t	14,982	5.8%	78,769	5.7%	77,852	5.7%
Calves from MCs: NE m	79,982	43,034	3.1%	46,997	3.4%	
Calves from MCs: NE g	37,961	2.8%	43,	65,835	4.8%	
RCC from MC: NE m	67,637	4.9%	66,611	4.9%	1.7%	
RCC from MC: NE g	18,444	1.3%	20,909	1.5%	22,835	19,653
Calves from SCC: NE m	20,191	1.5%	19,885	1.4%	1.4%	

Calves from SCC: NE g	9,059	0.7%	10,269	0.7%	11,215	0.8%
Calves from FCC: NE m	27,165	2.0%	26,753	1.9%	26,442	1.9%
Calves from FCC: NE g	11,715	0.9%	13,280	1.0%	14,503	1.1%
All calves: NE t	272,156	19.8%	279,512	20.4%	285,333	20.8%
Bulls: NE m	35,085	2.6%	34,553	2.5%	34,151	2.5%
Bulls: NE t	35,085	2.6%	34,553	2.5%	34,151	2.5%
Total Herd: NE m	$\mathbf{1 , 0 0 4 , 3 0 3}$	$\mathbf{7 3 . 1 \%}$	$\mathbf{9 8 9 , 0 7 3}$	$\mathbf{7 2 . 0 \%}$	$\mathbf{9 7 7 , 5 4 8}$	$\mathbf{7 1 . 2 \%}$
Total Herd: NE g	$\mathbf{1 0 1 , 6 9 2}$	$\mathbf{7 . 4 \%}$	$\mathbf{1 1 5 , 2 8 0}$	$\mathbf{8 . 4 \%}$	$\mathbf{1 2 5 , 8 9 8}$	$\mathbf{9 . 2 \%}$
Total Herd: NE l	$\mathbf{2 1 7 , 1 3 3}$	$\mathbf{1 5 . 8 \%}$	$\mathbf{2 1 3 , 8 4 0}$	$\mathbf{1 5 . 6 \%}$	$\mathbf{2 1 1 , 3 4 8}$	$\mathbf{1 5 . 4 \%}$
Total Herd: NE y	$\mathbf{4 9 , 8 4 9}$	$\mathbf{3 . 6 \%}$	$\mathbf{5 4 , 7 8 3}$	$\mathbf{4 . 0 \%}$	$\mathbf{5 8 , 1 8 2}$	$\mathbf{4 . 2 \%}$
Total Herd: NE t	$\mathbf{1 , 3 7 2 , 9 7 6}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{1 , 3 7 2 , 9 7 6}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{1 , 3 7 2 , 9 7 6}$	$\mathbf{1 0 0 . 0 \%}$

4.4 Production Budgets

4.4.1 Culls and weaners sold

The herd of small cattle yielded more heads of weaners (222.34) to be sold to the feedlot, than the herd of medium (161.56) and large (128.68) cattle, however the herd of small cattle yielded less kilograms $(28,034 \mathrm{~kg})$ than the herd of medium $(30,554 \mathrm{~kg})$ and large $(32,450 \mathrm{~kg})$ cattle. Cow and bull culls from the herd of small cattle yielded less kilograms ($19,747 \mathrm{~kg}$ C2/3 and $1,950 \mathrm{~kg}$ B2/3) than the herd of medium ($21,522 \mathrm{~kg} \mathrm{C} 2 / 3$ and $2,125 \mathrm{~kg} \mathrm{~B} 2 / 3$) and large ($22,858 \mathrm{~kg} \mathrm{C} 2 / 3$ and $28,33 \mathrm{~kg}$ B2/3) cattle. The work of Doye \& Lalman (2011) also found that a herd of large cattle will yield less weaners and culls, but more kg to be sold, when the same reproduction rate is assumed.

4.4.2 Meat prices

There were little fluctuations in meat prices throughout the year with relative standard deviation at $6.9 \%, 7.0 \%$ and 11% for class B2/3, C2/3 and weaners respectively. Prices did however have a declining trend over the year. This meant there would be little advantage in trying to sell animals at one time rather than another. The price per kilogram live weight for class B2/3 was $\mathrm{R} 21.05 / \mathrm{kg}$ and for $\mathrm{C} 2 / 3$ animals it was $\mathrm{R} 20.38 / \mathrm{kg}$ irrespective of the size of the animal. Weaners were sold at a live weight price of $\mathrm{R} 32.25 / \mathrm{kg}$ irrespective of the size of the weaner.

Income was calculated on a per kilogram basis. There were no premiums or penalties for small or large cows. Dickerson (1978) referred to the automation of beef processing and housing and predicted price penalties for either too small or too large animals. The work of Bryant (2011) showed stockyards in the USA payed a premium for smaller cattle and the work of Doye \& Lalman (2011) also assumed a higher price for smaller calves.

4.4.3 Total Income

With no premiums or penalties for cattle of different sizes, the herd of small cattle yielded the lowest income. This is as a result of fewer kilograms of marketable meat to be sold from this herd, which in turn is partly as a result of higher NE_{m} needs. Total income from the herd of small cattle was $\mathrm{R} 1,347,373.98$, compared to $\mathrm{R} 1,468,502.53$ and $\mathrm{R} 1,571,754.71$ for the herds of medium and large cattle respectively.

4.4.4 Bull replacements

The herd of small, medium and large cattle had to replace 3.0, 2.2 and 1.8 bulls annually, however when it is expressed in kg , the herd of small cattle replaced 907.7 kg , the herd of medium cattle 989.32 kg and the herd of large cattle $1,050.70 \mathrm{~kg}$. Since the replacement costs of bulls were calculated on a per kilogram basis, replacement costs were the lowest for the herd of small cattle and highest for the herd of large cattle.

4.4.5 Supplementary Licks

Licks were calculated from the NE_{t} of the herd and thus there were only slight variations in the amounts and resulting costs of licks. This small disparity came as a result of variations in the herd composition during the months were winter licks and summer licks were fed. The herd of small cattle required slightly less winter licks, but slightly more summer licks than the herds of medium and large cattle. The resulting variation was almost negligible with total cost of licks of R119,864.15, R119,935.24 and R119,980.22 for the herds of small, medium and large cattle.

4.4.6 Dosing costs

All dosing recommendations were administered per live kg and dosing costs were thus dependant on the total live kilograms of the animals that received the dosing, rather than the number of animals. In all instances the herd of small cattle had the fewest kilograms and the herd of large cattle had the most kilograms for which the dosing was administered. This resulted in the lowest total dosing cost for the small herd ($\mathrm{R} 46,291.75$) followed by the herd of medium cattle (R50,453.36) and the herd of large cattle (R53,583.93).

4.4.7 Vaccination costs

Vaccinations were done on a per head basis. As expected there were more small animals that received vaccinations than medium or large animals. This resulted in a much higher cost for
vaccinations in the herd of small cattle ($\mathrm{R} 73,678.45$), compared to the herd of medium (R53,534.75) and large (R42,642.38) cattle.

4.4.8 Dips costs

Dips were administered on a per kilogram basis which resulted in a lower cost for the herd of small cattle (R14,213.39) than the herd of medium (R15,491.17) and large (R16,452.37) cattle.

4.4.9 Processing and veterinary costs

Processing and veterinary costs were charged on a per head basis resulting in a much higher cost of R45,654.43 for the herd of small cattle, R33,172.50 for the herd of medium cattle and R23,313.79 for the herd of large cattle.

4.4.10 Total allocated costs

Total allocated costs were in point of fact the highest for the herd of small cattle at R401,362.47, followed by the herd of medium cattle at R383,386.56. The allocated costs to the herd of large cattle was the lowest at R376,756.53. This came as a result of various costs being charged on a per head basis, as was the case in vaccinations, processing and veterinary costs. The work of Dickerson (1978) and Johnson et al. (2010) among others, also stipulated that switching from a herd of large cows to small cows will increase variable costs.

4.4.11 Margin above allocated costs

The herd of large cattle proved to be the most economically efficient in this model, exhibiting a higher income as well as lower allocated costs. The gross profit above allocated costs were 9% higher for the herd of large cattle (R1,182,864.73) than the herd of medium cattle (R1,085,115.97) and 25% higher than the herd of small cattle (R946,011.50). The full production budgets are provided in table 4.9.

Table 4.9: Production budget for a herd of small, medium and large cattle

4.5 Chapter Summary

Large cattle proved to be more biologically efficient in the base model. This resulted in large cattle also being more economically efficient. Large cattle yielded a higher profit above allocated costs than smaller animals, due to a combination of more sellable product as well as lower allocated costs. Lower allocated costs were because of fewer heads of cattle on the resource base. Grazing management will play an all-important role if the higher profit from large cows are to be realised. It should be kept in mind that similar reproduction rates and growth rates were assumed for the base model. Reproduction rates have been argued to be the most important efficiency measure, therefore large cattle will only be more efficient if they can maintain a comparatively high reproduction rate compared to smaller cattle.

Chapter 5 Discussion and Scenarios

5.1 Introduction

Although large cattle have been shown to be the most economically efficient in the base model, there are further considerations that need to be taken into account. This chapter will discuss situations that could not be expressed in the base model as described in chapter 3, but which are vital when the efficiency of different sized animals is concerned. Whereas it was not numerically possible to make assumptions about these situations, they can be represented by means of scenarios. This section serves as an introduction to the above-mentioned problem. Next, the limitations of the base model are illustrated, thereafter different situations are discussed and calculated.

A resounding theme from previous research is that the most efficient cow size will depend on the management system and the environment. From the literature review, larger cattle perform better where feed intake is not limited. The base model simulation used in this research showed similar results. From the calculation in this research it was possible to accurately show the differences in efficiency of cattle of different sizes throughout their productive life in the herd, given assumptions made on previous research. Being able to actually calculate efficiency in order to support previous findings was a large step towards finding the right sized cow for a prespecified environment and management system. There were however some limitations to the base model, as discussed in the next section.

5.2 Limitations of the base model

Numeric equations for feed efficiency exist and has been proved in previous research. The simulation model in this study coincided with much of the previous research on the topic. There were, nevertheless, other biological functions influenced by size which could not be expressed numerically. The most important was differences in reproduction rates of different sized animals. Previous literature showed smaller cattle will have higher reproduction rates under similar conditions. This, however, could not be expressed in a numeric equation, and even less so for the specific environment of the research area.

From the literature review, qualitative information shows differences in many biological functions between different sized animals. To illustrate the complexity of the conversion of qualitative information to quantitative data, consider the following example regarding maturity rates: Although it
can be safely assumed that smaller cattle mature faster, it is not possible to numerically express this difference based on size. For example, even if it is assumed that a 450 kg cow of a certain breed will take exactly 1553 days to maturity, then it has been proven that a 300 kg cow will mature earlier, but it cannot, without a doubt, be calculated how many days earlier it will mature. Even though there have been case studies to determine age at maturity, they are very specific to a breed, their environment, management and other factors that might influence maturity. An even more complicated issue is the reproduction rate of different sized animals. There are countless variables that influence an animal's reproduction, and many of these are directly or indirectly related to the animal's size.

The literature review provided several factors that are influenced by size that could not be numerically expressed. Some important considerations from the literature review are:

- Larger cattle had lower reproductive rates than smaller cattle
- Smaller cattle mature faster than larger cattle
- Larger cattle are more efficient where feed is not limited. Smaller cattle are more efficient where feed is limited

Most of the above conclusions from previous literature were obtained from specific case studies or experiments and the results could not directly be transferred to this model. Since the above-mentioned biological factors will have a significant effect on herd dynamics and thus also economic efficiency it is discussed further by means of scenarios.

5.3 Scenarios

Despite the absence of quantitative numeric equations applicable to this study area, it was still possible to approach the efficiency measures from a different angle. Using the base model, where feed intake was not limited, and various physiological functions were assumed similar (for example reproduction rates), economic efficiency was calculated. In the following scenarios, the calculations that were used specifically for each scenario are explained, otherwise calculations were similar to those discussed in chapter 3.

Once more, using reproduction rates as an example, it has been proved that larger cows have lower reproduction rates than smaller cattle under similar conditions. The reproduction rate at which larger cattle become less efficient than smaller cattle could, nonetheless, be calculated. When using the base
model as described in chapter 3, it was possible to measure the threshold in terms of reproduction rates where large cattle will become less profitable than small cattle, all else being equal. This is discussed next.

5.3.1 Scenario 1: Reproduction rates and profitability

Reproduction rates are an expression of many different internal and external factors, among others nutrition, fertility of the cow and bull, recovery period after calving, environmental factors, management and diseases. Previous case studies showed that if cattle are raised in similar conditions and under similar management practices, larger cows exhibited a lower reproduction rate than smaller cattle. This is largely due to biological functions being faster in smaller animals. Smaller animals mature faster, have shorter gestation periods and can be weaned earlier, as was discussed in chapter 2 . This is a case where it is not possible to attach a numeric value to reproduction rates for small, medium or large cattle based on their size, but it is safe to assume it will be higher for small cows than for medium or large cows. When reproduction rates are higher, feed efficiency and profitability increases. In fact, Dickerson (Dickerson, 1978) observed the following
"Increasing N (reproduction rates) reduces female replacement, maintenance feed and fixed costs * in almost direct proportions to $1 / N$, including the fixed cost of pregnancy and lactation status."
*Note that fixed costs here refer to the fixed cost of keeping a female animal, not the fixed costs of the resource base as defined in chapter 3 .

So, given the fact that smaller cattle have higher reproduction rates and larger cattle have lower reproduction rates, it could be determined at which rate one size will become more profitable than another. As reproduction is arguably the most important biological and economic efficiency measure, it is discussed further by means of a scenario. For this scenario the following is applicable:

- The goal of this scenario was to measure the reproduction rates at which medium and large cattle will become less profitable than small cattle
- Reproduction rates for small cattle were unchanged from the base model at 80% for MC, 75% for SCC and 90% for FCC
- Other biological measures were unchanged from the base model
- A change in reproduction rates led to a change in the stock flow and it was adjusted consequently. This is summarized in table 5.1 and 5.2
- A change in the stock flow resulted in a change to both income and expense. Expenses and their timing were adjusted accordingly. The resulting production budgets are given in table 5.3
- Reproduction rates of medium and large cattle were lowered until the subsequent production budgets yielded the same gross profit margin above allocated costs as the base model for small cattle

From the results, when reproduction rates of medium cattle were 84.59% that of small cattle, both sizes were equally profitable. Therefore, at reproduction rates of lower than 67.67% for mature cows, 63.44% for SCC and 76.13% for FCC, medium cattle will be less profitable than small cattle. When reproduction rates of large cattle were 75.35% that of small cattle, they were equally profitable. Therefore, at reproduction rates of lower than 60.28% for MC, 56.51% for SCC and 67.81% for FCC, large cattle will be less profitable than small cattle. The stock flow with the lower reproduction rates are given in table 5.1 for medium cattle and table 5.2 for large cattle.

Consistent with the base model, this model followed a very strict culling criterion, where all cows that failed to fall pregnant were culled. Consequently, at lower reproduction rates, income from cow culls where much higher, at R744,600.81 for medium cows and R968,449.96 for large cows, compared to only R425,819.79 for small cows with an unchanged reproduction rate. The budget with the change in reproduction rates is given in table 5.3.

Table 5.1: Stock flow of the herd of medium cattle at a reproduction rate lowered to 85% of the base model

		MEDIUM CATTLE -Reproduction rate of 84.59% of base model												
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MCs		123.9	123.9	123.8	123.7	123.6	83.5	83.5	83.4	83.3	83.3	83.2	83.1	83.1
Pregnant MCs	Calving \%	67.67\%	83.8	83.8	83.7	83.6	83.5	83.5	83.4	83.3	83.3			56.2
Open MCs			40.0	40.0	40.0	39.9								26.9
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Culls		31%				39.9								
SCC			65.0	65.0	64.9	64.9	41.1	41.1	41.1	41.0	41.0	40.9	40.9	40.9
Pregnant SCC	Calving \%	63.44\%	41.3	41.2	41.2	41.2	41.1	41.1	41.1	41.0	41.0			27.7
Open SCC			23.8	23.8	23.7	23.7								13.2
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls						23.7								
FCC			86.3	65.6	65.6	65.5	65.5	65.4	65.4	65.3	65.2	65.2	65.1	65.1
Pregnant FCC	Calving \%	76.13\%	65.7	65.6	65.6	65.5	65.5	65.4						41.3
Open FCC			20.6											23.8
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Culls			20.6											
RCC			87.1	87.1	87.0	86.9	86.9	86.8	86.7	86.6	86.6	86.5	86.4	86.4
Pregnant RCC											65.9	65.8	65.8	65.7
Open RCC											20.7	20.6	20.6	20.6
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Calves from MCs			82.6	82.4	82.2	82.0						83.3	83.1	82.9
Deaths	Death \%	3\%	0.2	0.2	0.2	0.2						0.2	0.2	0.2
Calves sold from MCs						(7.1)								
RCC from MCs						89.1	88.9	88.7	88.5	88.2	88.0	87.8	87.6	87.4
Deaths	Death \%	3\%				0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Calves from SCC			40.7	40.6	40.5	40.4						41.0	40.9	40.8
Deaths	Death \%	3\%	0.1	0.1	0.1	0.1						0.1	0.1	0.1
Calves sold from SCC						40.3								
Calves from FCC			64.4	-					65.4	65.2	65.1	64.9	64.8	64.6
Deaths	Death \%	3\%	0.2						0.2	0.2	0.2	0.2	0.2	0.2
Calves sold from FCC			64.3											
Bulls			11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.1
Deaths	Death \%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls													2.1	
Purchased	Replace\%	20\%											2.2	

Table 5.2: Stock flow of the herd of large cattle at a reproduction rate lowered to 75% of the base model

		LARGE CATTLE - reproduction rate of 75.35% of base model												
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MCs		78.7	78.7	78.6	78.6	78.5	47.3	47.2	47.2	47.2	47.1	47.1	47.0	47.0
Pregnant MCs	Calving \%	60.28\%	47.4	47.4	47.4	47.3	47.3	47.2	47.2	47.2	47.1			28.3
Open MCs			31.3	31.2	31.2	31.2								18.7
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls		39%				31.2								
SCC			56.7	56.6	56.6	56.5	31.9	31.9	31.9	31.8	31.8	31.8	31.8	31.7
Pregnant SCC	Calving \%	56.51\%	32.0	32.0	32.0	31.9	31.9	31.9	31.9	31.8	31.8			19.1
Open SCC			24.6	24.6	24.6	24.6								12.6
Deaths	Death \%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls						24.6								
FCC			84.4	57.2	57.1	57.1	57.0	57.0	56.9	56.9	56.9	56.8	56.8	56.7
Pregnant FCC	Calving \%	67.81\%	57.2	57.2	57.1	57.1	57.0	57.0						32.0
Open FCC			27.2											24.7
Deaths	Death \%	1\%	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls			27.1											
RCC			85.3	85.2	85.1	85.0	85.0	84.9	84.8	84.8	84.7	84.6	84.5	84.5
Pregnant RCC											57.4	57.4	57.3	57.3
Open RCC											27.3	27.2	27.2	27.2
Deaths	Death \%	1\%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Calves from MCs			46.8	46.6	46.5	46.4						47.1	47.0	46.9
Deaths	Death \%	3\%	0.1	0.1	0.1	0.1						0.1	0.1	0.1
Calves sold from MCs						(40.8)								
RCC from MCs						87.2	87.0	86.8	86.5	86.3	86.1	85.9	85.7	85.5
Deaths	Death \%	3%				0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Calves from SCC			31.6	31.5	31.4	31.3						31.8	31.7	31.6
Deaths	Death \%	3\%	0.1	0.1	0.1	0.1						0.1	0.1	0.1
Calves sold from SCC						31.3								
Calves from FCC				-					57.0	56.9	56.7	56.6	56.4	56.3
Deaths	Death \%	3\%	0.1						0.1	0.1	0.1	0.1	0.1	0.1
Calves sold from FCC			56.0											
Bulls			8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
Deaths	Death \%	1\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Culls													1.7	
Purchased	Replace\%	20\%											1.8	

Table 5.3: Production budget for different reproduction rates and equal profitability of small, medium and large cattle

5.3.2 Scenario 2: Maturity rates and early breeding

It has been proved that smaller cows mature earlier. Again, at this stage, there is no equation to determine how much earlier a smaller cow will mature, that can be computed from their size. To illustrate, take the work of Warnick et al. (1991) for example. In their case study, they measured the age of puberty of Brahman cows. Cows were grouped according to frame size. Small frame cows reached puberty at 576 days (and 679 lb or 308 kg), medium frame cows at 623 days (and 692 lb or 314 kg) and large frame cows at 635 days (and 756 lb or 363 kg). Now, despite these numbers being exact for that specific case study, it cannot be applied across the board to all breeds, environments and management practices. Even in that experiment, age at puberty differed from one year to another, within one breed and from one breed to another, and in the words of the author "there is substantial variation in age and weight at puberty, both within and across breeds". With the information available currently it is thus impossible to attach a numeric value to the age at which a smaller cow will reach puberty, compared to a larger cow. However, the fact that smaller animals mature faster cannot be ignored as it will have a significant effect on biological and economic efficiency. This section thus looks at a scenario where it is assumed that small and medium cows, as defined in chapter 3, can be bred earlier than large cows and the resulting effect on the economic efficiency is described.

The common rule of thumb is that when cows have reached at least 65% of their mature body weight, they can be bred for the first time. In the base model of this study, where feed was not restricted, animals reached 67.7% of their mature body weight at 15 months. However, they were bred at 722 days at 83% of mature weight. This is illustrated clearly in figure 4.1 and shows that early breeding is a definite consideration, especially when feed is well managed. As in the previous scenario, profitability is used to measure whether breeding cows early is more profitable and if so, what level of reproduction will make it so.

For this scenario, the following is applicable:

- The goal was to find the early calving percentage needed by small and medium cows that were bred early that would match the profit of large cows bred later as in the base model
- Small and medium cows were bred for the first time at 449 days (on 23 December) and those that fell pregnant calved at 731 days (on 1 October). The timing of first breeding for large cows was unchanged from the base model
- Early breeding resulted in a change in energy requirements throughout the lifetime of the cow, mostly due to an extra calf being produced earlier in the cow's life. As an illustration, the net energy requirements of a medium cow bred at 15 months is given in figure 5.1 . This should be directly compared to figure 4.2 where the net energy requirements of a medium cow bred at 24 months is given
- The changes in NE requirements led to a change in stock flow. Cows were bred three times before reaching maturity and were classified as FCC, SCC and TCC. Since these changes led to a significant change in stock flows, the stock flows for small and medium cattle bred at 15 months are given in table 5.4 and 5.5
- The change in inventory led to both a higher income and expenditure. Income and expenditure were calculated as described in chapter 3, however the timing of the expenses was adapted to fit an early breeding management system. Refer to table 5.6 for the resulting production budgets
- There were no changes made to the inventory or budget of large cattle

Results from this scenario showed that even if small cows had an unrealistic calving rate of 100% for the first breeding, they were still less profitable than large cows bred later as in the base model. Nonetheless, profit was far higher (R1,101,901.45) than when bred at 24 months ($946,011.50$), but it could still not match the profit made by large cattle bred at 24 months of age.

When medium frame cows were able to maintain a calving rate of 53.70% for the first calving, they were able to match the profit of large cattle bred at 24 months. By assuming an early calving rate of 53.70%, it resulted in higher expenses for the herd, however income was proportionately higher. In other words, medium cattle bred at 15 months, with a calving rate of 53.70% for first calf cows, was equally profitable compared to large cattle bred at 24 months with a calving rate of 90% for first calf cow.

The gross profit above allocated cost for small cows with a 100% calving rate for early calving, medium cows with a 53.70% calving rate for early calving and large cattle with no change to the base model is given in table 5.6.

It should be noted that, when small cows were bred at 15 months, only 44.54% of cows needed to fall pregnant to be more profitable than when the same cows were bred at 24 months and 90% fell pregnant (with reproduction rates of all other classes being equal). A calving rate of merely 37.00% for cows bred at 15 months was more profitable than a calving rate of 90% for later bred
cows, for the herd of medium cattle. This means that if breeding at 15 months is possible, it will be more profitable than breeding at 24 months, even if FCC have a very low reproduction rate.

Figure 5.1: Net energy requirements of medium sized cow from birth to 1979 days when bred at 15 months

Table 5.4: Stock flow of the herd of small cattle bred at 15 months

Table 5.5: Stock flow of the herd of medium cattle bred at 15 months

Table 5.6: Production budget for early bred small cattle with a FCC reproduction rate of 100%, early bred medium cattle with a FCC reproduction rate of 54% and large cattle as in the base model

Income Cattle Sales	Price / kg		SMALL CATTLE		MEDUM CATTLE			LARGE CATTLE		
			100\% early calving rate		$\mathbf{5 3 . 7 \%}$ early calving rate			As in base model		
			Total kg		Total kg			Total kg		
Culled Mature Cows	Class C2/3	R 20.38	12,708.80	R 258,950.82	13,122.79	R	267,386.12	16,375.52		333,662.74
Culled TCC	Class C2/3	R 20.38	3,191.86	R 65,036.30	3,295.83	R	67,154.85			
Culled SCC	Class C2/ 3	R 20.38	5,045.82	R 102,812.10	5,210.19	R	106,161.19	5,483.68		111,733.90
Culled FCC	Class B2/3	R 21.05	0.00	R 0.00	15,365.04	R	323,431.44	2,256.60		47,501.11
Live weaners sold	Weaners	R 32.25	32,983.39	R1,063,574.09	25,062.17	R	808,148.24	32,450.18		,046,380.28
Culled Bulls	Class C2/3	R 20.38	957.01	R 19,499.76	1,142.58	R	23,280.88	998.41	R	20,343.23
Total income from cattle sales		R1,509,873.07				R 1,595,562.73				,559,621.26
Expenses										
Bull Purchases		R 112.00	1,007.14	R 112,795.48	1,202.43	R	134,667.23	1,050.70	R	117,674.51
Licks		Price / kg	Total kg		Total kg			Total kg		
Winter Licks		R 4.10	14,515.27	R 59,527.14	15,389.58	R	63,112.67	16,188.80	R	66,390.28
Summer Licks		R 5.21	10,854.52	R 56,508.63	10,677.51	R	55,587.10	10,293.88	R	53,589.94
Dosing		Price / ml	Total kg		Total kg			Total kg		
Roundworm and Liver Fluke	$15 \mathrm{ml} / 50 \mathrm{~kg}$	R 0.67	117,719.50	R 23,734.02	135,275.64	R	27,273.60	146,997.06	R	29,636.81
Milk Tapeworm	$1 \mathrm{ml} / 4 \mathrm{~kg}$	R 0.38	64,247.26	R 6,098.83	66,340.11	R	6,297.50	65,555.31	R	6,223.00
Roundworm and Milk Tapeworm	$1 \mathrm{ml} / 10 \mathrm{~kg}$	R 0.40	218,747.76	R 8,747.29	235,192.35	R	9,404.87	270,238.72	R	10,806.31
Vitamin A	$1 \mathrm{ml} / 250 \mathrm{~kg}$	R 2.08	108,579.44	R $\quad 904.60$	122,629.28	R	1,021.65	140,622.32	R	1,171.55
Trace Minerals	$1 \mathrm{ml} / 100 \mathrm{~kg}$	R 3.99	117,719.50	R 4,701.93	135,275.64	R	5,403.15	143,865.82	R	5,746.26
Vaccinacions		Price / ml	Total animals		Total animals			Total animals		
BVD	$2 \mathrm{ml} /$ animal	R 16.37	436.75	R 14,295.33	347.69	R	11,380.21	271.33	R	8,881.11
Botulism, Anthrax, Blackquarter	$2 \mathrm{ml} /$ animal	R 7.42	1,117.98	R 16,589.02	816.63	R	12,117.54	619.18	R	9,187.62
Paratyphoid (Inactivated)	$2 \mathrm{ml} /$ animal	R 20.34	344.76	R 14,023.37	237.33	R	9,653.45	176.04	R	7,160.50
Brucella Abortus	$2 \mathrm{ml} /$ animal	R 20.19	420.12	R 16,966.51	334.45	R	13,506.77	218.68	R	8,831.49
Pasteurella	$1 \mathrm{ml} /$ animal	R 18.39	421.55	R 7,754.09	335.78	R	6,176.33	263.10	R	4,839.48
Rift Valley Fever (Incativated)	$2 \mathrm{ml} /$ animal	R 6.88	438.22	R 6,033.66	349.05	R	4,805.82	271.80	R	3,742.19
Dips		Price / ml	Total kg		Total kg			Total kg		
Ticks,Tsetse flies, Red lice	$5 \mathrm{ml} / 50 \mathrm{~kg}$	R 0.54	$242,372.50$	R 13,130.53	273,799.04	R	14,833.06	303,689.43	R	16,452.37
Other Costs		Price / animal	Total animals		Total animals			Total animals		
Processing		R 70.00	77.56	R 5,429.47	99.44	R	6,960.69	44.42	R	3,109.32
Veterinary Services		R 52.61	774.22	R 40,731.73	579.67	R	30,496.38	443.14	R	23,313.79
Allocated Costs				R 407,971.62		R	412,698.00			376,756.53
Gross Profit above allocated costs				R1,101,901.45		R	1,182,864.73			,182,864.73

5.3.3 Scenario 3: Limited feed intake

5.3.3.1 Preface

Cattle need energy to complete physiological functions. The energy requirements of these physiological functions have been discussed and was calculated in this study. When feed is limited, the animal will lack the energy needed to complete these functions, meaning they will be negatively affected. When animals are fed below energy requirements, reproduction rates drop, growth rates are reduced and even maturity rates are slowed. Low reproduction rates as a result of underfeeding has been well documented. The NRC cites previous work by Rege et al which reported a severe case in Nigeria where White Fulani cattle were grossly underfed, resulting in such slow maturity rates that these cattle calved for the first time as late as 7 years (2000). Reduced energy intake also affects the performance of bulls. As is the case with female animals, when young bulls were fed below energy requirements stunted growth and delayed puberty were observed. Where energy availability was only moderately limited, and not for prolonged periods, it had little influence on the mating behaviour, semen production or semen quality of the bull. In more severe cases, where energy requirements of bulls were not matched over long periods, it led to a reduction in sperm production as well as sperm quality. In other reported cases, reduced nutrition even led to a reduction in scrotum size, which is commonly used as a measurement of fertility. Therefore, when the energy requirements of bulls were not met, it impacted the performance of the total herd. (National Research Council, 2000)

Cattle perform best at rates where feed is not limited (National Research Council, 2000; Jenkins \& Ferrell, 2002). Feed requirements and feed availability might not always be matched perfectly, but despite the mismatch, some inherent mechanisms in cattle exists that reduces the impact. Research by the NRC showed that when cows were over or underfed while pregnant, within a wide range (a body condition score of between 3.5 to 7), it did not affect the weight of the calf significantly. Thus, cows can forgo some of their own energy requirements, and in the form of tissue loss, compensate for energy requirements for growth of the foetus. However, when they were grossly underfed, it resulted in calving problems, lower calf birth weight and growth, as well as low rebreeding rates. Another case where cattle can manage feed fluctuations is a phenomenon called compensatory growth. When cattle have lost body tissue and are at a low body condition score, they are able to increase feed intake and weight gain once feed becomes readily available. This has been observed in growing cattle which were reported to increase growth rates, as well as mature cattle (National Research Council, 2000).

Previous literature argue that energy will primarily be allocated to NE_{m}. The order of energy allocation is as follows, first NE_{m}, then NE_{g}, then NE_{1}, then NE_{y}. As Johnson et al (2010) described it, "Essentially, a cow takes care of herself, then the calf on the ground, then the calf to come."

This was assumed as the rule of thumb for the consequent paragraphs.

Previous research argued that smaller cattle do better in conditions where feed are limited. In most of these researches, feed was limited to an amount per metabolic weight of the animals, as in the highly regarded work of Jenkins and Farrell (1994). The following scenario will take a look at 4 ways in which feed can be limited:

1. feed is limited to a specific quantity per animal, regardless of animal size
2. the calculated energy requirements of small, medium and large cattle are considered and then reduced by a percentage
3. feed is limited as a proportion of metabolic weight
4. feed is made available according to LSU

The above is discussed at the hand of examples and from the calculations as described in chapter 3.

5.3.3.2 Feed is limited to a specific amount

This section looks at the scenario where feed is limited to a specific amount per animal. Although it is logical that larger animals eat more, it illustrates the effect of, for example, having 100 large cattle or 100 small cattle on the same resource base.

Since all cattle start out as small calves, the effect of feeding a calf with large expected mature size the same amount of feed as a calf with a small expected mature size is of interest. The following scenario illustrates the effect.

As a simple argument consider the growth stage as defined in chapter 3, where animals will reach 97.5% of maturity at 1552 days. To simplify, only growth and maintenance are considered here. If calves have unlimited access to feed energy, the $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ requirements will be $7,663 \mathrm{Mcal}$, $10,548 \mathrm{Mcal}$ and $13,249 \mathrm{Mcal}$ respectively for a small, medium and large calf. Now if feed were limited to a specific amount, smaller animals prove to be more efficient and actually grow to a larger size. For example, if feed is limited to $7,663 \mathrm{Mcal}$ for each of the three calves, the
following can be argued. The small calf's growth and maintenance will be unaffected. The medium and large calves will grow up to a point, after which the remaining energy is used purely for maintenance requirements from this point onwards to 1552 days (if feed availability could be planned in such a way). If this is the case, medium calves will grow up to a weight of 257 kg then stop growing and use the remaining energy to maintain this weight. Large calves will grow up to a weight of 252 kg and then use the remaining energy for maintenance. This is summarized in table 5.7.

Table 5.7: The results of limiting feed to $7,633 \mathrm{Mcal}$ during the growth stage of small, medium and large cattle

7,663Mcal in total available for 1552 days			
Size	Small	Medium	Large
Final Weight	293 kg	257 kg	252 kg
$\%$ of mature mass	97.5%	57.1%	42.1%
NE_{m}	6870 Mcal	7151 Mcal	7255 Mcal
$\mathrm{NE}_{\mathrm{m}} / \mathrm{NE}_{\mathrm{m}+\mathrm{g}}$	89.7%	93.3%	94.6%

Since medium and large cows grow faster than small cows, they will reach a heavier weight sooner and need to use more energy for maintenance over this period. In this example, feed requirements of small cattle were in fact not limited but it illustrates the result of limiting available energy to a specific amount. Even where the amount of available energy was lowered further, smaller cattle were found to be more efficient during the growth stage.

If feed were to be limited to a specific amount per animal during the lactation or reproduction phases, small cattle would again outperform their larger counterparts. Reference should be made to Table 4.4 that shows the energy requirements of small, medium and large cattle throughout their lifetime. If the net energy requirement of a mature cycle is considered, small, medium and large cows will need a total of $2,930 \mathrm{Mcal}, 3,996 \mathrm{Mcal}$ and $4,981 \mathrm{Mcal}$ per year respectively. If feed were limited to for example, $4,645 \mathrm{Mcal}$ per animal, large cows' reproduction rates would be negatively affected, where small and medium cows still had surplus feed available. If feed were limited to 2,930Mcal smaller cows would be able execute their physiological functions normally, but medium cows would probably not reproduce, and lactation would be hindered, whereas large cows would likely not reproduce, lactate properly or even maintain their current weight. Similarly, at lower feed amounts, small cows would be the most effective, although physiological functions would be negatively influenced.

Although the above results are to be expected, it illustrates the importance of matching cow size to the available feed resources. It also shows that understocking is far more effective than overstocking. Since cows use such a small amount of NE_{t} for reproduction, overstocking by only 4.9\% (for small cows) to 5.7% (for large cows) could wreak havoc on reproduction, especially when available energy is limited during the breeding season.

5.3.3.3 Feed is limited as a percentage of the total required

This section takes a look at efficiency of different sizes when available energy is reduced by a percentage of their calculated energy requirements. This is comparable to a situation where feed becomes unavailable due to for example a drought, however, importantly, animals were matched to their resource base before feed became limited.

First consider the growth stage. Once more, to simplify, only maintenance and growth is considered. Limiting $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ by even a small amount will negatively influence growth, irrelevant of the animal's size. Furthermore, NE_{g} were $10.3 \%, 11.7 \%$ and 12.8% of $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ respectively for small, medium and large cows. The preceding percentages were calculated for the total growth cycle from 1 to 1552 days, therefore growth will still take place up to a point, if $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ was limit over the total cycle.

For example, consider were $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ is limited by 10% throughout the cycle. A small cow will grow to a weight of 234 kg or 78.1% of its mature weight, a medium calf to 353 kg or 78.5% of its mature weight and a large calf to 473 kg or 78.9% of its mature weight. Results are summarized in table 5.8

Table 5.8: Small, medium and large cows fed 90% of calculated NEm +g during the growth cycle

Calves fed 90\% of calculated $\mathbf{N E}_{\mathrm{m}+\mathrm{g}}$ during the growth cycle			
Size	Small	Medium	Large
Final Weight	234 kg	353 kg	473 kg
$\%$ of mature mass	78.1%	78.5%	78.9%
NE_{m}	6337 Mcal	8613 Mcal	10712 Mcal
$\mathrm{NE}_{\mathrm{m}} /\left(\mathrm{NE}_{\mathrm{m}+\mathrm{g}} \times 90 \%\right)$	91.9%	90.7%	89.8%

This shows that when feed is limited by a percentage of $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$, larger cows will have an advantage over smaller cows, this is mainly because of proportionately higher maintenance requirements by smaller cows as explained by metabolic weights.

Next consider the mature cycle. From table 4.4, small cows used a total of $2,930 \mathrm{Mcal}$ to go through a mature cycle unhindered and 5.7% of NE_{t} was used for reproduction. Medium cows used $3,996 \mathrm{Mcal}$ throughout a mature cycle and 6.3% of NE_{t} was used for reproduction. Large cows used $4,981 \mathrm{Mcal}$ and 6.8% thereof was allocated to reproduction. As an example, if an individual cow was fed at 6% below their energy requirements, a small cow will most likely not reproduce in this cycle. In the case of medium and large cows, some, although very few, might still fall pregnant. The same can be argued for the lactation phase, from the assumption that mature cows will use energy for maintenance, then lactation and then reproduction. Table 4.4 illustrates the percentages used for maintenance, lactation and reproduction for each cow size in a mature cycle clearly and the threshold at which these functions will be adversely affected can be directly read from this table. The timing of the feed limitation should also be considered.

The above illustrates that larger cows will be more efficient than small cows when feed is limited as a percentage of the calculated requirements, since they use a proportionately lower percentage of NE_{t} for NE_{m} than smaller cows.

5.3.3.4 Feed is limited to an amount per metabolic weigh

This section is concerned with the efficiency of different sized animals, when feed is limited by some factor of metabolic weight. This relates to Kleiber's law as discussed in chapter 2 and the metabolic weight of animals.

When an animal's only physiological function is maintenance, as is the case in a mature nonpregnant, non-lactating cow, their energy requirements are a function of metabolic weight. The equation of Lofgreen and Garrett (1968) is commonly accepted as the calculation of NE_{m} and states,

$$
N E_{m}=0.077 W^{0.75}
$$

In fact, with reference to table 4.4, when energy requirements for maintenance for the 3 sizes are considered, it is clear that they are a function of metabolic weight, throughout the growth and mature stage. This means limiting NE_{m} according to metabolic weight will have a similar effect on the three sizes.

Next, consider energy requirements for growth throughout the first 1552 days as described in chapter 3. The equation used was

$$
N E_{g}=0.0635 * E Q E B W^{0.75} * E B G^{1.097}
$$

Yet, this is not a direct function of metabolic weight. From the description in section 4.2 of chapter 3, the composition of gain differs among the different sizes, therefore body weights were first converted into EQEBW. Furthermore, daily gain of large animals is higher than that of small animals and the composition of gain is also different. This translates into NE_{g} not being a pure function of metabolic weight. In fact, larger animals use proportionately more energy for gain as a function of metabolic weight.

As an example, were only NE_{g} is considered throughout the animal's lifetime; limiting energy to a portion of metabolic weight yields the following:

$$
\begin{array}{ll}
\mathrm{NE}_{\text {gsmall }} \quad=793 \mathrm{Mcal} & \\
& =793 / 300^{0.75} \\
\mathrm{NE}_{\text {gsmall }} \text { per unit of metabolic weight } & =11.00 \mathrm{Mcal} \\
& \\
\mathrm{NE}_{\text {gmedium }} \quad=1237 \mathrm{Mcal} & \\
\mathrm{NE}_{\text {gmeduim }} \text { per unit of metabolic weight } & =12.66 \mathrm{Mcal} \\
\mathrm{NE}_{\text {glarge }} \quad=1696 \mathrm{Mcal} & \\
\mathrm{NE}_{\text {glarge }} \text { per unit of metabolic weight } & =13.99 \mathrm{Mcal}
\end{array}
$$

From the above, small cattle use less energy for growth per unit of metabolic weight, and will have the advantage when NE_{g} is limited to a unit of metabolic weight.

Where lactation is concerned, energy requirements are calculated from milk yield. As described in chapter 3, it was assumed that milk yield is in fact a function of the calf's suckling ability and that the calf's suckling ability is a function of its metabolic weight. Therefore, when NE_{1} is limited according to metabolic weight, it can be concluded that it will impact the three sizes equally.

The energy used for production is equal to the energy of the gravid uterus. From the calculations in chapter 3, this is not a function of metabolic weight. Again, with special reference to table 4.4, when the lifetime NE_{y} of the three sizes are compared, the following can be calculated:

$$
\begin{aligned}
& \mathrm{NE}_{\text {ysmall }} \quad=1155 \mathrm{Mcal} \\
& \mathrm{NE}_{\text {ysmall }} \text { per unit of metabolic weight }
\end{aligned} \quad=16.02 \mathrm{Mcal} \text { }
$$

$$
\begin{array}{ll}
\mathrm{NE}_{\text {ymedium }} \quad=1746 \mathrm{Mcal} \\
& \\
\mathrm{NE}_{\text {ymeduim }} \text { per unit of metabolic weight } & =17.87 \mathrm{Mcal} \\
\mathrm{NE}_{\text {ylarge }} \quad=2328 \mathrm{Mcal} & \\
\mathrm{NE}_{\text {ylarge }} \text { per unit of metabolic weight } & =19.20 \mathrm{Mcal}
\end{array}
$$

Thus, small cattle use proportionately less NE_{y} as a unit of metabolic weight. When limiting NE_{y} as a unit of metabolic weight, small cows should thus be more efficient than medium or large cows.

From the above, when considering the NE_{t} of the three sizes, and feed is limited to an amount per unit of metabolic weight, small cattle will be more efficient, due to being more efficient in the growth and production stages. Therefore, when feed is limited to a unit of metabolic weight, large cattle will be the first to have an energy deficiency and when taking into consideration that energy will be partitioned to production lastly, will likely have lower reproduction rates. In this case, small cows will be more efficient, which will be expressed as a comparatively higher reproduction rate.

The highly cited work of Jenkins \& Ferrell (1994), concluded that smaller cattle are more efficient when fed as a portion of metabolic weight. Here, the above calculation not only confirms the work of Jenkins \& Ferrell, but also provides the reason for it. Although Jenkins \& Farrell's research studied the difference among different breeds, the same argument is valid within a breed.

5.3.3.5 Feed is matched to LSU requirements

As discussed in Chapter 2, the LSU is the most commonly used system in South Africa to define animal feed requirements. In this section, a further comparison was made between the LSU and the calculation in this study. It also determined whether using LSU will be advantageous to one size above another.

In this section all energy requirements were converted to Mcal for consistency with the rest of the study, whereas the original technical communication about LSU used MJ.

First consider maintenance. As discussed in Chapter 2, animals' maintenance requirement is a function of metabolic weight and this was illustrated by Kleiber (1932) . The most commonly
used equation, which was also adopted by the NRC, is that of Lofgreen \& Garrett (1968) where NE_{m} is calculated as a function of metabolic weight. The LSU does however, not consider metabolic weight of animals but is only a function of weight. With reference to the so-called Meissner tables (Meissner, 1983), first consider energy requirements for maintenance, in other words, with zero daily gain. The two equations are as follows:

LSU: $\quad N E_{m}=1.354+0.0146 W \quad$ (converted to Mcal)
Lofgreen \& Garrett: $\quad N E_{m}=0.077 W^{0.75} \quad$ (Mcal)
For each of the 3 sizes the LSU overestimates net energy requirements for maintenance, compared to the equation of Lofgreen \& Garrett. Furthermore, since the LSU doesn't consider metabolic weight, maintenance requirements of small cattle are overestimated proportionately less than that of large cattle. A summary of the differences is shown in table 5.9.

Table 5.9: Comparison between NEm requirements as calculated as LSU and by Lofgreen \& Garrett

Mature size	300kg	450kg	$\mathbf{6 0 0 k g}$
LSU NE $_{\mathrm{m}}($ Mcal $)$	6.0	8.3	10.6
Lofgreen \& Garrett NE			
(Mcal)	5.6	7.5	9.3
Difference between LSU and Lofgreen \& Garrett	7.8%	9.5%	12.0%

Next consider growth. Meissner argued that when an animal is growing, it will be a function of weight gain and current body weight. Therefore, it was assumed that NEg is linear and only depends on these two variables. The equation to determine NEg as calculated for a LSU is:

$$
N E_{g}=L W G(1.500+0.0045 W) /(0.2388-0.0717 L W G) \quad(\text { converted to Mcal })
$$

where $\mathrm{LWG}=$ Live Weight Gain

This is very different from the equation used by the NRC, where there are many more variables that influence the equation. The equation is:

$$
\begin{equation*}
N E_{g}=0.0635 * E B W^{0.75} * E B G^{1.097} \tag{Mcal}
\end{equation*}
$$

This equation recognizes that NE_{g} has to consider mature weight and also that the composition of gain changes over time. This calculation was described fully in chapter 3. When the LSU equivalent for a growing animal is compared to the calculation in this study, results vary, mostly due to changes in composition in weight gain and thus energy requirements for weight gain.

Mostly the LSU equivalent overestimates $\mathrm{NE}_{\mathrm{m}+\mathrm{g},}$, except for small cattle at heavier weights. This means that when using LSU for calculating $\mathrm{NE}_{\mathrm{m}+\mathrm{g}}$ for growing cattle, large cattle will once more be at an advantage. A comparison of the two equations for animals of different sizes is given in table 5.10.

When lactation is considered, Meissner referred specifically to dairy cows and not beef cows. Nevertheless, this is commonly used to determine LSU for beef cows as well. The equation given for LSU is for the combination of maintenance and lactation ($\mathrm{NE}_{\mathrm{m}+1}$). Inconsistent with maintenance and growth equations for LSU , this equation for $\mathrm{NE}_{\mathrm{m}+1}$ considers metabolic weight. The equation is given as:

$$
N E_{m+l}=\left(3054 P+W^{0.75}(0.6 *(481+2.1 P))\right) / 238.846 \quad(\text { converted to Mcal })
$$

The equation used by NRC separates NE_{m} and NE_{1}, however the combined equation will be given here for comparison:

$$
N E_{m+l}=N E_{m}+N E_{l}=0.077 W 0.75+0.7178 P \quad(\text { Mcal })
$$

where $P=$ daily milk yield in kg
Both equations assume a fat content of 4%. When the computed results of the two equations are compared, the LSU calculation will underestimate $\mathrm{NE}_{\mathrm{m}+1}$ requirements for all sizes compared to the calculation used in this study. The LSU equation will underestimate $\mathrm{NE}_{\mathrm{m}+1}$ for small cows proportionately less, thus small cows will be at an advantage, or at a lesser disadvantage, when LSU is used to match lactating cows to their energy requirements. Table 5.11 gives a comparison of results from the two equations for a milk yield of $5 \mathrm{~kg}, 10 \mathrm{~kg}$ and 15 kg a day.

When energy requirements according to LSU is considered during foetal production, only approximate values were expressed for pregnant cows. No mention was made of the stage of pregnancy. Three different sized mature cows in calf were provided in the Meissner tables, $500 \mathrm{~kg}, 525 \mathrm{~kg}$ and 550 kg and they were called small, medium and large framed respectively. This makes a fair comparison between the values given as LSU and the equations used in this study difficult. Therefore, for this comparison, the following was assumed, to be consistent with the calculations in this study. Calf size was taken as 6.67% of mature weight. $\mathrm{NE}_{\mathrm{m}+\mathrm{y}}$ was calculated for the last day (day 283) of pregnancy, which is when NE_{y} is the highest. Regardless, when these calculations were compared, the LSU will overestimate the energy requirements needed for
$\mathrm{NE}_{\mathrm{m}+\mathrm{y}}$ significantly. Once more, energy requirements for large cattle were proportionately overestimated more, giving them an advantage over their smaller counterparts. A comparison of the calculations for $\mathrm{NE}_{\mathrm{m}+\mathrm{y}}$ for mature cows of $500 \mathrm{~kg}, 525 \mathrm{~kg}$ and 550 kg are given in table 5.12.

From the above, for the animal sizes used in this study, the LSU will mostly overestimate the amount of energy animals require for maintenance, growth and foetal production, except for later growth stages of small cattle. The LSU overestimates the energy needed for large cattle proportionately more than for other sizes in the beforementioned physiological functions. This is mostly to metabolic weight not being included in the calculations. As a result, when different sized animals are matched to a resource base according to LSU, large cattle will have the advantages over smaller cattle. For the lactation phase, the LSU underestimates energy requirements. The LSU underestimates energy requirements of large cattle during the lactation phase proportionately more than for smaller sizes, resulting in large lactating cattle being at a disadvantage if they were matched to a resource base according to LSU.

Table 5.10: Comparison between LSU and calculation recommended by NRC for NEm +g

Current cattle weight, gaining 500g per day	100 kg current weight	150 kg current weight	200 kg current weight	$250 \mathrm{~kg}$ current weight	300kg current weight	350kg current weight	400 kg current weight	450 kg current weight	500 kg current weightn	550 kg current weight	600 kg current weight
LSU NEm+g, 500g daily gain (Mcal)	4.16	5.06	5.97	6.88	7.79	8.67	9.58	10.49	11.39	12.30	13.18
NRC NEm+g, 300kg mature size, 500g daily gain (Mcal)	3.60	4.88	6.05	7.15	8.20	N/A	N/A	N/A	N/A	N/A	N/A
NRC NEm+g, 450kg mature size, 500g daily gain (Mcal)	3.29	4.46	5.54	6.55	7.50	8.42	9.31	10.17	N/A	N/A	N/A
NRC NEm+g, 600kg mature size, 500g daily gain (Mcal)	3.13	4.24	5.26	6.21	7.13	8.00	8.84	9.66	10.45	11.23	11.98
Difference: LSU and NRC for 300kg mature size	13.4\%	3.7\%	-1.3\%	-4.0\%	-5.3\%						
Difference: LSU and NRC for 450kg mature size	20.8\%	11.9\%	7.3\%	4.8\%	3.6\%	2.8\%	2.8\%	3.0\%			
Difference: LSU and NRC for 600kg mature size	24.8\%	16.3\%	12.0\%	9.7\%	8.5\%	7.7\%	7.7\%	7.9\%	8.3\%	8.7\%	9.1\%

Table 5.11: Comparison between LSU and calculation recommended by NRC for NEm+1

Daily milk yield	$5 \mathrm{~kg} /$ day			$10 \mathrm{~kg} / \mathrm{day}$			15kg/day		
Cow weight	300g	450kg	600 kg	300g	450kg	600 kg	300g	450kg	600kg
LSU NEm+1 (Mcal)	8.38	10.05	11.58	12.29	14.02	15.60	16.28	18.06	19.70
NRC NEm+1 (Mcal)	9.14	11.11	12.92	12.73	14.70	16.51	16.32	18.29	20.10
Difference: LSU and NRC	-9.1\%	-10.6\%	-11.6\%	-3.6\%	-4.9\%	-5.9\%	-0.2\%	-1.3\%	-2.1\%

Table 5.12: Comparison between LSU and calculation recommended by NRC for NEm+y

Cow size	$\mathbf{5 0 0 k g}$	$\mathbf{5 2 5 k g}$	$\mathbf{5 5 0 k g}$
Calf size at $\mathbf{6 . 6 7 \%}$ of mature weight for NRC equation	$\mathbf{3 3 k g}$	$\mathbf{3 5 k g}$	$\mathbf{3 7 k g}$
LSU NEm+y, unspecified stage of pregnancy (Mcal)	19.64	21.62	23.61
NRC NEm+y, last day of pregnancy (Mcal)	12.81	13.35	13.88
Difference: LSU and NRC	35%	38%	41%

5.4 Further consideration related to size

5.4.1 Adaptation

A smaller body size has been proven as an adaptation to warmer climates and some associated diseases and parasites, as well as an environment where feed availability fluctuates. This was discussed in chapter 2 . One such adaptation is that a smaller body size gives a larger surface area to body weight. This results in an animal being able to handle extreme heat better than larger cattle with a smaller surface area to body weight. More of these adaptations can be expressed in a number of ways, including reproduction rates, mortality rates and growth rates. Some research even suggests that smaller breeds can lower their maintenance requirements compared to larger breeds (Scasta et al., 2015). Most of these adaptations are breed specific. When selecting for size within one breed, it is important to first determine if the breed is suited to the environment and then determine the most efficient size.

5.4.2 Facilities

One of the findings that echoes through previous literature is that the most efficient cow size will depend, among others, on the management practices. This includes the handling of cattle. When handling of cattle is concerned, the following should be considered.

Firstly, handling facilities might be suited to one size above another. For example, consider a pressure chute. If cattle are sufficiently small, they might be able to turn around in the pressure chute, whereas extremely large cattle might have difficulty moving through a small chute. Another example is head clamps that might only function within a size range. Therefore, infrastructure that aids in the handling of cattle, might only be effective within a size range and changing from one size to another (even unintentionally by means of selection criteria) could lead to costs for modifying handling equipment.

In the case where a minimum of handling facilities is used, small cattle are easier to handle. Although different breeds have differences in temperament, this research is concerned with differences within a specific breed. Thus, handling a small cow, is easier than handling a large cow, within a specific breed. However, a further consideration is the number of cattle that needs to be handled. Despite smaller cattle being easier to handle, from the model used in this study, 73% more small cattle (766) and 25% more medium cattle (556) than large cattle (443) requires veterinary services. Not only does this increase costs but is also more time consuming. This leads to higher labour costs and/or opportunity costs.

5.4.3 Selection and genetic progress

Having more cattle on a set resource base has the advantage of more genetic variation. In the model constructed for this research, in the case of small cattle, farmers had 185.2 (72.8% more than large cattle) calves to choose from for replacements, compared to 134.6 (25.5% more than large cattle) for medium cattle and 107.2 for large cattle. When a farmer is thus selecting for a specific trait, there will likely be more individual small cows that express this trait. The following equation is commonly used to determine genetic progress when selecting for a certain trait. It is customarily known as the breeder's equation.

$$
R=S x h^{2} / L
$$

$R=$ response to selection,
$S=$ is the genetic variation of the trait from the mean of the population
$h=$ the heritability of the trait which is selected for
and $L=$ the length of cycle interval

The larger the herd, the more genetic variation there is likely to be in the group. This would increase genetic variation in the herd of small cattle, and a herd of small cattle can thus make faster genetic gain than a herd of large cattle. Also, from a practical point of view, when a farmer has some flexibility in replacement rates, he will have more individual small cows to choose from, even if genetic variation among the three herds are similar.

Since it can be accepted that smaller cattle mature faster, the generation interval can be shortened for smaller cattle. In the management model as described in chapter 3, controlled breeding was applied and a cycle was typically 1 year, so similar intervals were assumed for different sized animals. However, if smaller cattle are bred earlier, the cycle interval will be shortened. When uncontrolled breeding is applied, smaller animals will naturally express shorter generation intervals, however the disadvantages of uncontrolled breeding might outweigh the advantages of shortening the generation interval.

5.5 Chapter Summary

This chapter looked at qualitative data that could not be quantified numerically but will be significantly influenced by the size of cattle. This was done by means of scenarios and examples to express the
relationship between size, biological efficiency, economic efficiency and other management practices. Although the impact of animal size on some of these efficiency measures could not be calculated, they are easily measured. From previous on-farm records, a farmer will be able to use the calculations described above to determine the most efficient cattle size for their resource base.

Chapter 6 Conclusion and Recommendations

6.1 Conclusion

Cattle size influences biological efficiency, biological efficiency influences economic efficiency however there are many more variables that influence biological and economic efficiency other than size, that needs to be considered. Furthermore, the efficiency of individual animals are not directly proportionate to the efficiency of the herd, however the efficiency of individual animals determines the efficiency of the total herd.

Growth rates, lactations yield, and calf sizes were assumed by reviewing previous literature and consequently net energy requirements for individual animals of each of the three sizes were calculated for four biological functions, maintenance, growth, lactation and calf production throughout their lifetime in the herd. Cattle are in fact very inefficient when using energy for production. For breeding cows, throughout their lifetime, more than 70% of energy requirements was allocated to maintenance. When the total herd was considered, again more than 70% of total energy was allocated to maintenance. Small cows were the least efficient and used 71.8% of total energy for maintenance, compared to 71.1% for medium cattle and 70.5% for large cattle. A stock flow was created using recommended reproduction, death and cull rates, for a weaner production system. The net energy requirements of individual animals, of the three different sizes, were matched to the stock flow to determine the number of each class of animal a set resource base was able to support. The herd of small cattle proved to make the least efficient use of feed, with net energy requirements for maintenance at 73.1% of total net energy requirements, compared to 72.0% for the herd of medium cattle and 71.2% for the herd of large cattle. From the stock flow and inventory for each size, income and expenditure were calculated to determine which size would be the most profitable. The herd of large cattle yielded the highest income, mostly due to having lower maintenance requirements, and the resource base being able to support more kilograms of cattle in the large herd. Smaller cattle had the highest expenditure, due to expenses charged on a "per head" basis, as was the case for vaccinations, veterinary and processing costs. As a result, large cattle proved to be the most profitable.

The above results were made by assuming similar reproduction rates for small, medium and large cattle. Smaller cows have been proven to have a higher reproduction rate than larger cattle, although there is not a numerical equation to calculate the difference between reproduction rates of small cows and large cows under similar conditions. Therefore, the reproduction rates at which medium and large cattle would become less profitable than small cattle were calculated in a scenario. When the reproduction rate of small mature cows was 80%, medium cattle would be less profitable at reproduction rates of 68% for mature cows and large cattle would be less profitable at reproduction rates of 60% for mature cows.

Smaller cattle have been proven to mature faster than larger cattle. Again, there is no numerical equation to calculate how much faster a small cow will mature than a large cow. The possibility of early breeding of small and medium cattle were calculated in a scenario. Results showed that even at very low reproduction rates for FCC (45% for small cattle and 38% for medium cattle) early breeding is more profitable than late breeding. Profitability from the herd of small cattle, that were bred early could still not match the profitability of the herd of large cattle bred late, even if FCC reproduced at 100%. Profitability from the herd of medium cattle, that were bred early matched the profitability of the herd of large cattle that were bred late when FCC reproduced at 54%.

Further scenarios were calculated where available feed energy was not matched to cattle's energy requirements. Results varied as to the most efficient cow size were feed is limited. It did however illustrate that even slightly overstocking a resource base would negatively impact reproduction, then lactation and then growth. It is more profitable to slightly understock a resource base, than to overstock. Further results showed that using the LSU to match animals to the resource base would in most cases overestimate energy requirements, and be advantageous to larger cattle, except in the lactation phase. More current and accurate equations exist to calculate the energy requirements of cattle than the LSU.

There are more considerations the farmer needs to take into account to find the right sized cow for their situation, including adaptation, infrastructure, and selection goals. Nonetheless, biological and economic efficiency is at the heart of finding the right sized cow for their individual enterprise.

6.2 Recommendations for Emerging and Commercial Farmers

All cattle sizes are at their most efficient when feed intake is not limited. There is very little leeway where energy requirements for reproduction is concerned, with only between 4.9% to 5.7% of energy used for reproduction. Furthermore, energy for reproduction will be allocated after energy requirements of other physiological functions have been met. Consequently, even slightly overstocking a resource base could drastically reduce reproduction, and slightly understocking a resource base might be more profitable than overstocking. Grazing management is vital. Energy requirements of the herd can be accurately calculated and should be matched to a grazing plan. This is especially noteworthy to emerging and communal farmers, where there is a tendency to severely overstock a resource base.

The energy requirements of the total herd can be calculated accurately to intervals as small as a day. For more practical considerations, the monthly energy requirements of the herd can be calculated. This means, under proper grazing management, the energy requirements of the herd can largely by matched to feed availability throughout the season. As an example, the monthly energy requirements of a herd of medium cattle is given in figure 6.1. Matching energy requirements to feed availability can only be done with rotational grazing and when utilizing breeding seasons. 98% of communal and 63% of emerging farmers use uncontrolled breeding (Scholtz et al., 2008). Continuous grazing is also commonly reported for communal and emerging farmers and is discouraged. When cattle are grazed continuously, fluctuations in feed availability due to natural processes becomes accentuated. For example, in the summer rainfall areas of South Africa, grass enters a stage of dormancy or very slow growth during winter times. When cattle are grazed continuously, there will be a shortage of feed and feed energy during winter months.

Figure 6.1: Monthly energy requirements of a herd of medium cattle (Personal collection)

When high reproduction rates can be maintained for larger cattle, they are more biologically and economically efficient than smaller cattle, however when reproduction rates of larger cattle are significantly lower than that of smaller cattle they will become less profitable. Reproduction rates for different sized animals can easily be measured on the farm. Farmers should select the size of their cattle accordingly.

Smaller cattle mature earlier than larger cattle, and early breeding should be considered. The profitability of a herd can be increased with early breeding, even at low reproduction rates. When growing animals' energy intake is limited it will lead to stunted growth and a delay in puberty. Therefore, early breeding is only a viable option when growing cattle has sufficient access to energy.

Farmers should consider using the recommendations of the NRC (2000) to calculate the energy requirements of cattle, rather than LSU (Meissner, 1983). The equations recommended by the NRC can be used to calculate energy requirements of individual animals, as well as the herd, accurately.

6.3 Chapter Summary

The aim of this research was to determine the most efficient cow size for emerging and commercial beef farmers in semi-arid South Africa. This chapter gave a conclusion of the study. It summarized
the research mythology, research results and different scenarios that were obtained from the study. Ultimately, recommendations were given for farmers who wish to become more economically efficient by utilizing the right sized cow for their individual needs. Recommendations were provided in a practical manner and should be used by farmers who wishes to increase their profitability.

Bibliography

Afrivet, Cattle Products. 2018, http://www.afrivet.co.za/QuickNav_CattleProducts.php\#VitaminsMinerals_Anchor.

ANB Veterinary Wholesalers, 2018, http://shop.anbvet.co.za/Main.asp?D=\{8E1896F9-E32E-45D8-BB92-B5A646447FC1\}\&PageType=ProductList\&CategoryID=31.

Arango, J.A. \& Van Vleck, L.D., 2002. Size of beef cows: early ideas, new developments. Genetics and Molecular Research. 1, 51-63.

Avenant, P., 2016. Long Term Grazing Capacity norms for South Africa. Department: Agriculture, Forestry and Fisheries Republic of South Africa.

Bayer, Drastic Deadline. 2018,
https://animalhealth.bayer.co.za/scripts/pages/en/livestock/cattle/drastic_deadline.php.
Beck, P.A., Stewart, C.B., Gadberry, M.S., Haque, M. \& Biermacher, J., 2016. Effect of mature body weight and stocking rate on cow and calf performance, cow herd efficiency, and economics in the south eastern United States. J.Anim.Sci. 94, 1689-1702.

Boden, D.W.R., 2008. Miniature Cattle: For Real, for Pets, for Production. Journal of Agricultural and Food Information. 9.

Bradfield, M., 2015. Hoeveel kos 'n goeie bul? Landbouweekblad. 9 Oct, 54.
Brody, S., 1945. Bioenergetics and growth; with special reference to the efficiency complex in domestic animals. Reinhold, Oxford, England. xii, 1023 pp.

Brody, S., 2017. Understanding the red meat classification system. Farmer's Weekly.
Bryant, K.J., Montgomery, T.G., Whitworth, W.A. \& Stark, J.C.R., 2011. Economically Efficient Cow Size Selection Using the Product/Product Model.

Carpenter, J.A.J., 1971. An Evaluation of Mature Size in Beef Cattle and its Relationship to Production Efficiency. Ph.D. thesis, Texas A\&M University, United States, Texas.

Department of Agriculture, 2006. South African Country Report on Farm Animal Genetic Resources.

Department of Agriculture and Rural development, Beef Production: The Basics. Beef Production Systems. 2017.

Department of Agriculture and Rural development, Beef Production: The Basics. Useful Statistics. 2017.

Department of Agriculture, Forestry \& Fisheries, 2015. A Profile of the South African Beef Market Value Chain 2014. Department: Agriculture, Forestry and Fisheries, South Africa.

Dickerson, G.E., 1978. Animal size and efficiency: basic concepts. Anim.Prod. 27, 367-379.
DiCostanzo, A. \& Meiske, J.C., 1994. Optimizing cow size and efficiency to maximize profitability, 1-14.

Doye, D. \& Lalman, D., 2011. Selected Papers: SAEA 2011 Annual Meetings. Journal of Agricultural and Applied Economics. 43, 457-472.

Ferrell, C.L. \& Jenkins, T.G., 1984. Energy utilization by mature, nonpregnant, nonlactating cows of different types. Journal of animal science. 58, 234-243.

Ferrell, C.L., Garrett, W.N. \& Hinman, N., 1976. Growth, Development and Composition of the Udder and Gravid Uterus of Beef Heifers during Pregnancy. J.Anim.Sci. 42, 1477-1489.

Fiss, C.F. \& Wilton, J.W., 1989. Effects of breeding system, cow weight and milk yield on reproductive performance in beef cattle. Journal of animal science. 67, 1714-1721.

Fiss, C.F. \& Wilton, J.W., 1993. Contribution of breed, cow weight, and milk yield to the preweaning, feedlot, and carcass traits of calves in three beef breeding systems. J.Anim.Sci. 71, 2874-84.

Garrett, W.N., 1980. Energy utilization by growing cattle as determined in 72 comparative slaughter experiments. Energy metabolism. Studies in the agricultural and food sciences., 3-7.

Gradwohl, R., What are miniature cattle? 2016, http://www.minicattle.com/what.html.
Jenkins, T.G. \& Ferrell, C.E., 2002. Beef cow efficiency-Revisited.
Jenkins, T.G. \& Ferrell, C.L., 1994. Productivity through weaning of nine breeds of cattle under varying feed availabilities: I. Initial evaluation. J.Anim.Sci. 72, 2787-97.

Jenkins, T.G. \& Ferrell, C.L., 1984. A note on lactation curves of crossbred cows. Animal Science. 39, 479-482.

Jhony, T.T., GalvÃ£o, A.C. \& Weber da, S.R., 2017. Comparing non-linear mathematical models to describe growth of different animals. Acta Scientiarum.Animal Sciences. 39, 73-81.

Johnson, J.J., Radakovich, J.D. \& Dunn, B.H., 2010. Producing Right Sized Cows Cow Size and Efficiency: Solving the Puzzle. NCBA Cattlemen's College.

Kleiber, M., 1932. Body size and metabolism. Hilgardia. 6, 315-353.
Lofgreen, G.P. \& Garrett, W.N., 1968. A System for Expressing Net Energy Requirements and Feed Values for Growing and Finishing Beef Cattle. J.Anim.Sci. 27, 793-806.

Maiwashe, A., Nengovhela, N.B., Nephawe, K.A., Sebei, J., Netshilema, T., Mashaba, H.D., Nesengani, L. \& Norris, D., 2013. Estimates of lactation curve parameters for Bonsmara and Nguni cattle using the weigh-suckle-weigh technique. S.Afr.J.Anim.Sci. 43, s12-s16.

McMorris, M.R., Wilton, J.W. \& Pfeiffer, W.C., 1986. Breeding System, Cow Weight and Milk Yield Effects on Various Economic Variables in Beef Production1,2. 63, 1373-1383.

Meissner, H.H., 1983. Classification of livestock for realistic prediction of substitution values in terms of a biologically defined Large Stock Unit. Republic of South Africa, Dept. of Agriculture. 44 pp.

Menchaca, M.A., Chase, C.C., Olson, T.A. \& Hammond, A.C., 1996. Evaluation of growth curves of Brahman cattle of various frame sizes. J.Anim.Sci. 74, 2140-2151.

Morris, C.A. \& Wilton, J.W., 1975. Influence of mature cow weight on economic efficiency in beef cattle production. Canadian journal of animal science., 233-250.

Morris, C.A. \& Wilton, J.W., 1976. Influence of body size on the biological efficiency of cows: A review. Canadian Journal of Animal Science. 56, 613-613-647.

Moyoa, S., Swanepoel, F.J.C. \& Rege, J.E.O., 1994. Evaluation of indigenous, exotic and crossbred cattle for beef production in a semi-arid environment
Australian Society of Animal Production. 21, 204-206.
MSD, Species | Cattle. 2018, http://www.msd-animal-health.co.za/species/cattle.aspx.
Mucina, L. \& Rutherford, M.C., 2006. The vegetation of South Africa, Lesotho and Swaziland / Ladislav Mucina and Michael C. Rutherford (editors). South African National Biodiversity Institute. 807 pp.

National Research Council, 1984. Nutrient Requirements of Beef Cattle. The National Academies Press, Washington, DC.

National Research Council, 1991. Micro livestock: little-known small animals with a promising economic future / Board on Science and Technology for International Development. Washington, D.C: National Academy Press, 1991.xvii, 449 pp., 2-xvii, 449.

National Research Council, 2000. Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000. The National Academies Press, Washington, DC.

OBP, Products. 2018, https://www.obpvaccines.co.za/products.
Olsen, T.A., 1993. Reproductive Efficiency of Cows of Different Sizes.
Red Meat Producers Organization \& ABSA, ABSA Weekly Prices. 2018, http://www.rpo.co.za/information-centre/absa/weekly-prices/.

Scasta, J.D., Henderson, L. \& Smith, T., 2015. Drought effect on weaning weight and efficiency relative to cow size in semiarid rangeland. J.Anim.Sci. 93, 5829-5839.

Scholtz, M.M., Bester, J., Mamabolo, J.M. \& Ramsay, K.A., 2008. Results of the national cattle survey undertaken in South Africa, with emphasis on beef. Applied Animal Husbandry \& Rural Development. 1.

Scholtz, M.M., 2010. Beef Breeding in South Africa. 2nd ed. Agricultural Research Council. 296 pp.

Senwes Agricultural Services, 2017. Inkomste-koste-ontleding vir: Vleisbeeste - Ekstensiewe speenkalfstelsel vir die 2017-2018 seisoen (Noordwes en Vrystaatstreek). Senwes Agricultural Services.

Sikhweni, N.P. \& Hassan, R., 2013. Opportunities and challenges facing small-scale cattle farmers living adjacent to Kruger National Park, Limpopo Province.

Society of Range Management, 1998. Glossary of terms used in range management, fourth edition. Edited by the Glossary Update Task Group, Thomas E. Bedell, Chairman.

Stewart, T.S. \& Martin, T.G., 1981. Mature weight, maturation rate, maternal performance and their interrelationships in purebred and crossbred cows of Angus and Milking Shorthorn parentage. Journal of animal science. 52, 51-56.

Suttie, J.M., Reynolds, S.G. \& Batello, C., 2005. Grasslands of the World. Food and Agricultural Organization of the United Nations, Rome.

Swanepoel, F. \& Hoogenboezem, J., 1994. Interrelationship among cow size, lifetime cow fertility, milk production and pre-weaning calf growth in sub-tropically adapted beef cattle. 20.

Taylor, G.J., 2006. Factors affecting the production and reproduction performance of tropically adapted beef cattle in southern Africa, University of Pretoria, South Africa.

Tyrrell, H.F. \& Reid, J.T., 1964. Prediction of the Energy Value of Cow's Milk ${ }^{1,2}$. J.Dairy Sci. 48, 1215-1223.

Vet Products Online, Cattle Products. 2018, https://www.vetproductsonline.co.za/site/menu/products_species/cattle.

Virbac, Multimin. 2018, https://za.virbac.com/home/farmer/products/multimin-se-cs.html.
Voermol, Our Products. 2018, http://voermol.co.za.dedi406.flk1.host-h.net/en/products/.
Warnick, A., Olson, T., Senseman, K., Hammond, A. \& Adams, E., 1991. Puberty traits in Angus, Brahman, Hereford and Senepol heifers in central Florida.

Whitworth, W., Stark Jr, C. \& Montgomery, T., 2006. A case study of the cow size and production efficiency relationship. Arkansas Animal Science Research Reports RS-545.Univ.of Arkansas, Fayetteville, 178-181.

Zoetis SA, Beef and Feedlot. 2018, https://www.zoetis.co.za/products/beef-and-feedlot/index.aspx.

Appendix A: Growth and Net Energy Requirements of different sized cattle
SMALL (300 kg) MATURE COW
$\begin{array}{lll} & & \text { oill } \\ \text { ofre }\end{array} \begin{gathered}\text { Daily }\end{gathered} \begin{gathered}\text { Daily } \\ \text { mik } \\ \text { Gain }\end{gathered}$ Weigh 20.0
20.7

01-Oct	1
02-Oct	2
03-Oct	3
04-Oct	4
05-Oct	5
06-Oct	6
07-Oct	7
08-Oct	8
09-Oct	9
10-Oct	10
11-Oct	11
12-Oct	12
13-Oct	13
14-Oct	14
15-Oct	15
16-Oct	16
17-Oct	17
18-Oct	18
19-Oct	19
20-Oct	20
21-Oct	21
22-Oct	22
23-Oct	23
24-Oct	24
25-Oct	25
26-Oct	26
27-Oct	27
28-Oct	28
29-Oct	29
30-Oct	30
31-Oct	31
01-Nov	32
02-Nov	33
03-Nov	34
04-Nov	35
05-Nov	36
06-Nov	37
07-Nov	38
08-Nov	39
09-Nov	40
10-Nov	41
11-Nov	42
12-Nov	43
13-Nov	44
14-Nov	45
15-Nov	46
16-Nov	47
17-Nov	48
18-Nov	49
19-Nov	50
20-Nov	51
21-Nov	52
22-Nov	53
23-Nov	54
24-Nov	55
25-Nov	56
26-Nov	57
27-Nov	58
28-Nov	59

7\%	0.660	0.746	0.483	1.229
7\%	0.659	0.764	0.493	1.257
7\%	0.657	0.782	0.503	1.285
8\%	0.656	0.799	0.513	1.312
8\%	0.654	0.816	0.523	1.339
8\%	0.652	0.833	0.533	1.366
8\%	0.651	0.850	0.542	1.392
8\%	0.649	0.867	0.551	1.418
9\%	0.648	0.884	0.560	1.444
9\%	0.646	0.900	0.569	1.469
9\%	0.645	0.917	0.578	1.495
9\%	0.643	0.933	0.587	1.520
9\%	0.642	0.949	0.595	1.544
10\%	0.640	0.965	0.604	1.569
10\%	0.639	0.981	0.612	1.593
10\%	0.637	0.996	0.620	1.617
10\%	0.636	1.012	0.629	1.640
11\%	0.634	1.027	0.636	1.664
11\%	0.633	1.043	0.644	1.687
11\%	0.631	1.058	0.652	1.710
11\%	0.630	1.073	0.660	1.733
11\%	0.628	1.088	0.667	1.755
12\%	0.627	1.103	0.675	1.778
12\%	0.625	1.118	0.682	1.800
12\%	0.624	1.133	0.689	1.822
12\%	0.622	1.147	0.696	1.844
12\%	0.621	1.162	0.703	1.865
13\%	0.619	1.176	0.710	1.886
13\%	0.618	1.191	0.717	1.908
13\%	0.616	1.205	0.724	1.929
13\%	0.615	1.219	0.730	1.949
13\%	0.614	1.233	0.737	1.970
14\%	0.612	1.247	0.743	1.990
14\%	0.611	1.261	0.750	2.011
14\%	0.609	1.275	0.756	2.031
14\%	0.608	1.289	0.762	2.051
14\%	0.606	1.302	0.768	2.070
15\%	0.605	1.316	0.774	2.090
15\%	0.604	1.329	0.780	2.109
15\%	0.602	1.343	0.786	2.129
15\%	0.601	1.356	0.792	2.148
15\%	0.599	1.370	0.797	2.167
16\%	0.598	1.383	0.803	2.186
16\%	0.596	1.396	0.808	2.204
16\%	0.595	1.409	0.814	2.223
16\%	0.594	1.422	0.819	2.241
16\%	0.592	1.435	0.825	2.259
17\%	0.591	1.448	0.830	2.278
17\%	0.589	1.460	0.835	2.295
17\%	0.588	1.473	0.840	2.313
17\%	0.587	1.486	0.845	2.331
17\%	0.585	1.498	0.850	2.348
18\%	0.584	1.511	0.855	2.366
18\%	0.583	1.523	0.860	2.383
18\%	0.581	1.536	0.864	2.400
18\%	0.580	1.548	0.869	2.417
18\%	0.578	1.560	0.874	2.434
19\%	0.577	1.573	0.878	2.451
19\%	0.576	1.585	0.883	2.468

MEDIUM (450kg) MATURE COW

Et we weight

30.0
31.0 30.0
31.0

30.0					
31.0	7\%	0.990	1.011	0.754	1.765
32.0	7\%	0.988	1.035	0.770	1.805
33.0	7\%	0.986	1.059	0.785	1.845
33.9	8\%	0.983	1.083	0.801	1.884
34.9	8\%	0.981	1.106	0.816	1.922
35.9	8\%	0.979	1.129	0.831	1.960
36.9	8\%	0.976	1.152	0.846	1.998
37.9	8\%	0.974	1.175	0.860	2.035
38.8	9\%	0.972	1.198	0.874	2.072
39.8	9\%	0.969	1.220	0.888	2.108
40.8	9\%	0.967	1.242	0.902	2.144
41.7	9\%	0.965	1.264	0.916	2.180
42.7	9\%	0.963	1.286	0.929	2.215
43.7	10\%	0.960	1.308	0.942	2.250
44.6	10\%	0.958	1.329	0.955	2.284
45.6	10\%	0.956	1.350	0.968	2.318
46.5	10\%	0.954	1.372	0.981	2.352
47.5	11\%	0.951	1.393	0.993	2.386
48.4	11\%	0.949	1.413	1.005	2.419
49.4	11\%	0.947	1.434	1.017	2.451
50.3	11\%	0.945	1.455	1.029	2.484
51.3	11\%	0.942	1.475	1.041	2.516
52.2	12\%	0.940	1.495	1.052	2.548
53.1	12\%	0.938	1.515	1.064	2.579
54.1	12\%	0.936	1.535	1.075	2.610
55.0	12\%	0.934	1.555	1.086	2.641
55.9	12\%	0.931	1.575	1.097	2.672
56.9	13\%	0.929	1.594	1.108	2.702
57.8	13\%	0.927	1.614	1.119	2.732
58.7	13\%	0.925	1.633	1.129	2.762
59.6	13\%	0.923	1.652	1.139	2.792
60.6	13\%	0.920	1.672	1.149	2.821
61.5	14\%	0.918	1.691	1.160	2.850
62.4	14\%	0.916	1.709	1.169	2.879
63.3	14\%	0.914	1.728	1.179	2.907
64.2	14\%	0.912	1.747	1.189	2.936
65.1	14\%	0.910	1.765	1.198	2.964
66.0	15\%	0.907	1.784	1.208	2.991
66.9	15\%	0.905	1.802	1.217	3.019
67.8	15\%	0.903	1.820	1.226	3.046
68.7	15\%	0.901	1.838	1.235	3.073
69.6	15\%	0.899	1.856	1.244	3.100
70.5	16\%	0.897	1.874	1.253	3.127
71.4	16\%	0.895	1.892	1.261	3.153
72.3	16\%	0.893	1.910	1.270	3.179
73.2	16\%	0.890	1.927	1.278	3.205
74.1	16\%	0.888	1.945	1.286	3.231
75.0	17\%	0.886	1.962	1.295	3.257
75.9	17\%	0.884	1.980	1.303	3.282
76.8	17\%	0.882	1.997	1.311	3.307
77.6	17\%	0.880	2.014	1.318	3.332
78.5	17\%	0.878	2.031	1.326	3.357
79.4	18\%	0.876	2.048	1.334	3.382
80.3	18\%	0.874	2.065	1.341	3.406
81.1	18\%	0.872	2.082	1.349	3.430
82.0	18\%	0.870	2.098	1.356	3.454
82.9	18\%	0.868	2.115	1.363	3.478
83.7	19\%	0.866	2.132	1.370	3.502
84.6	19\%	0.864	2.148	1.377	3.525

\% of Daily Daily aight $\begin{gathered}\text { Daily } \\ \text { Gain }\end{gathered} \begin{gathered}\text { milk } \\ \text { yield }\end{gathered}$
$\begin{array}{ll}2.148 & 1.377\end{array}$

4.0
42.6
4.0
45.3
46.6
47.9
49.2
50.5
51.8
53.1
54.4
55.6
56.9
58.2
59.5
60.8
62.0
63.3
64.6
65.8
67.1
68.3
69.6
70.8
72.1
73.3
74.6
75.8
77.1
78.3
79.5
80.7
82.0
83.2
84.4
85.6
86.8
88.0
89.3
90.5
91.7
92.9
94.1
95.2
96.4
97.6
98.8
100.0
101.2
102.3
103.5
104.7
105.9
107.0
108.2
109.3
110.5
111.7
112.8

	12-Apr	194	122.9	41\%	0.419	2.842	1.116	3.958	184.3	41\%	0.628	3.852	1.741	5.593	245.8	41\%	0.837	4.779	2.387	7.167
	13-Apr	195	123.3	41\%	0.418	2.849	1.116	3.965	184.9	41\%	0.626	3.862	1.741	5.603	246.6	41\%	0.835	4.791	2.387	7.179
	14-Apr	196	123.7	41\%	0.417	2.856	1.116	3.972	185.6	41\%	0.625	3.871	1.741	5.612	247.4	41\%	0.833	4.804	2.387	7.191
	15-Apr	197	124.1	41\%	0.416	2.863	1.116	3.979	186.2	41\%	0.623	3.881	1.741	5.622	248.3	41\%	0.831	4.816	2.387	7.203
	16-Apr	198	124.5	42\%	0.415	2.871	1.116	3.986	186.8	42\%	0.622	3.891	1.741	5.632	249.1	42\%	0.829	4.828	2.387	7.215
	17-Apr	199	125.0	42\%	0.414	2.878	1.116	3.993	187.4	42\%	0.621	3.901	1.741	5.641	249.9	42\%	0.827	4.840	2.386	7.226
	18-Apr	200	125.4	42\%	0.413	2.885	1.116	4.000	188.1	42\%	0.619	3.910	1.740	5.651	250.7	42\%	0.825	4.852	2.386	7.238
	19-Apr	201	125.8	42\%	0.412	2.892	1.115	4.007	188.7	42\%	0.618	3.920	1.740	5.660	251.6	42\%	0.823	4.864	2.386	7.250
	20-Apr	202	126.2	42\%	0.411	2.899	1.115	4.014	189.3	42\%	0.616	3.929	1.740	5.669	252.4	42\%	0.822	4.876	2.386	7.261
	${ }^{21-A p r}$	203	126.6	42\%	0.410	2.906	1.115	4.021	189.9	42\%	0.615	3.939	1.740	5.679	253.2	42\%	0.820	4.888	2.385	7.273
	22 -Apr	204	127.0	42\%	0.409	2.913	1.115	4.028	190.5	42\%	0.613	3.949	1.739	5.688	254.0	42\%	0.818	4.899	2.385	7.284
Calves are weaned	23 -Apr	205	127.4	42\%	0.408	2.920	1.115	4.035	191.1	42\%	0.612	3.958	1.739	5.697	254.8	42\%	0.816	4.911	2.384	7.295
	24-Apr	206	127.8	43\%	0.407	2.927	1.114	4.042	191.7	43\%	0.610	3.968	1.739	5.706	255.6	43\%	0.814	4.923	2.384	7.307
	$25-\mathrm{Apr}$	207	128.2	43\%	0.406	2.934	1.114	4.048	192.3	43\%	0.609	3.977	1.738	5.715	256.5	43\%	0.812	4.935	2.383	7.318
	26-Apr	208	128.6	43\%	0.405	2.941	1.114	4.055	193.0	43\%	0.607	3.986	1.738	5.724	257.3	43\%	0.810	4.946	2.383	7.329
	27-Apr	209	129.0	43\%	0.404	2.948	1.114	4.062	193.6	43\%	0.606	3.996	1.738	5.733	258.1	43\%	0.808	4.958	2.382	7.340
	28 -Apr	210	129.4	43\%	0.403	2.955	1.113	4.068	194.2	43\%	0.605	4.005	1.737	5.742	258.9	43\%	0.806	4.970	2.382	7.351
	29-Apr	211	129.8	43\%	0.402	2.962	1.113	4.075	194.8	43\%	0.603	4.014	1.737	5.751	259.7	43\%	0.804	4.981	2.381	7.362
Calves are Sold	30-Apr	212	130.2	43\%	0.401	2.969	1.113	4.081	195.4	43\%	0.602	4.024	1.736	5.760	260.5	43\%	0.802	4.993	2.380	7.373
	01-May	213	130.6	44\%	0.400	2.976	1.112	4.088	196.0	44\%	0.600	4.033	1.736	5.769	261.3	44\%	0.800	5.004	2.380	7.384
	02-May	214	131.0	44\%	0.399	2.982	1.112	4.094	196.6	44\%	0.599	4.042	1.735	5.777	262.1	44\%	0.799	5.016	2.379	7.395
	03 -May	215	131.4	44\%	0.398	2.989	1.112	4.101	197.2	44\%	0.598	4.051	1.735	5.786	262.9	44\%	0.797	5.027	2.378	7.405
	04-May	216	131.8	44\%	0.397	2.996	1.111	4.107	197.8	44\%	0.596	4.061	1.734	5.795	263.7	44\%	0.795	5.038	2.377	7.416
	05-May	217	132.2	44\%	0.396	3.003	1.111	4.114	198.4	44\%	0.595	4.070	1.733	5.803	264.5	44\%	0.793	5.050	2.377	7.427
	06-May	218	132.6	44\%	0.396	3.009	1.111	4.120	198.9	44\%	0.593	4.079	1.733	5.812	265.3	44\%	0.791	5.061	2.376	7.437
	07-May	219	133.0	44\%	0.395	3.016	1.110	4.126	199.5	44\%	0.592	4.088	1.732	5.820	266.1	44\%	0.789	5.072	2.375	7.447
	08-May	220	133.4	44\%	0.394	3.023	1.110	4.133	200.1	44\%	0.591	4.097	1.732	5.829	266.8	44\%	0.787	5.084	2.374	7.458
	09-May	221	133.8	45\%	0.393	3.029	1.109	4.139	200.7	45\%	0.589	4.106	1.731	5.837	267.6	45\%	0.786	5.095	2.373	7.468
	10-May	222	134.2	45\%	0.392	3.036	1.109	4.145	201.3	45\%	0.588	4.115	1.730	5.845	268.4	45\%	0.784	5.106	2.372	7.478
	11-May	223	134.6	45\%	0.391	3.043	1.109	4.151	201.9	45\%	0.586	4.124	1.730	5.854	269.2	45\%	0.782	5.117	2.371	7.489
	12-May	224	135.0	45\%	0.390	3.049	1.108	4.157	202.5	45\%	0.585	4.133	1.729	5.862	270.0	45\%	0.780	5.128	2.370	7.499
	13-May	225	135.4	45\%	0.389	3.056	1.108	4.164	203.1	45\%	0.584	4.142	1.728	5.870	270.8	45\%	0.778	5.139	2.369	7.509
	14-May	226	135.8	45\%	0.388	3.063	1.107	4.170	203.6	45\%	0.582	4.151	1.727	5.878	271.5	45\%	0.776	5.151	2.368	7.519
	15-May	227	136.2	45\%	0.387	3.069	1.107	4.176	204.2	45\%	0.581	4.160	1.726	5.886	272.3	45\%	0.774	5.162	2.367	7.529
	16-May	228	136.5	46\%	0.386	3.076	1.106	4.182	204.8	46\%	0.579	4.169	1.726	5.894	273.1	46\%	0.773	5.173	2.366	7.539
	17-May	229	136.9	46\%	0.385	3.082	1.106	4.188	205.4	46\%	0.578	4.177	1.725	5.902	273.8	46\%	0.771	5.183	2.365	7.548
	18-May	230	137.3	46\%	0.384	3.089	1.105	4.194	206.0	46\%	0.577	4.186	1.724	5.910	274.6	46\%	0.769	5.194	2.364	7.558
	19-May	231	137.7	46\%	0.384	3.095	1.104	4.200	206.5	46\%	0.575	4.195	1.723	5.918	275.4	46\%	0.767	5.205	2.363	7.568
	20-May	232	138.1	46\%	0.383	3.102	1.104	4.205	207.1	46\%	0.574	4.204	1.722	5.926	276.1	46\%	0.765	5.216	2.361	7.577
	21-May	233	138.5	46\%	0.382	3.108	1.103	4.211	207.7	46\%	0.573	4.213	1.721	5.934	276.9	46\%	0.764	5.227	2.360	7.587
	22-May	234	138.8	46\%	0.381	3.114	1.103	4.217	208.3	46\%	0.571	4.221	1.720	5.942	277.7	46\%	0.762	5.238	2.359	7.597
	23-May	235	139.2	46\%	0.380	3.121	1.102	4.223	208.8	46\%	0.570	4.230	1.720	5.949	278.4	46\%	0.760	5.248	2.358	7.606
	24-May	236	139.6	47\%	0.379	3.127	1.102	4.229	209.4	47\%	0.569	4.238	1.719	5.957	279.2	47\%	0.758	5.259	2.356	7.615
	25-May	237	140.0	47\%	0.378	3.133	1.101	4.234	210.0	47\%	0.567	4.247	1.718	5.965	279.9	47\%	0.756	5.270	2.355	7.625
	26-May	238	140.4	47\%	0.377	3.140	1.100	4.240	210.5	47\%	0.566	4.256	1.717	5.972	280.7	47\%	0.755	5.280	2.354	7.634
	27-May	239	140.7	47\%	0.376	3.146	1.100	4.246	211.1	47\%	0.565	4.264	1.716	5.980	281.5	47\%	0.753	5.291	2.352	7.643
	28-May	240	141.1	47\%	0.376	3.152	1.099	4.251	211.7	47\%	0.563	4.273	1.715	5.987	282.2	47\%	0.751	5.302	2.351	7.653
	29-May	241	141.5	47\%	0.375	3.159	1.098	4.257	212.2	47\%	0.562	4.281	1.714	5.995	283.0	47\%	0.749	5.312	2.350	7.662
	30-May	242	141.9	47\%	0.374	3.165	1.098	4.263	212.8	47\%	0.561	4.290	1.713	6.002	283.7	47\%	0.748	5.323	2.348	7.671
	31-May	243	142.2	47\%	0.373	3.171	1.097	4.268	213.3	47\%	0.559	4.298	1.712	6.010	284.4	47\%	0.746	5.333	2.347	7.680
	$01-J u n$	244	142.6	48\%	0.372	3.177	1.096	4.274	213.9	48\%	0.558	4.307	1.710	6.017	285.2	48\%	0.744	5.344	2.345	7.689
	02 -Jun	245	143.0	48\%	0.371	3.184	1.096	4.279	214.5	48\%	0.557	4.315	1.709	6.024	285.9	48\%	0.742	5.354	2.344	7.698
	03 -Jun	246	143.3	48\%	0.370	3.190	1.095	4.285	215.0	48\%	0.555	4.323	1.708	6.032	286.7	48\%	0.740	5.365	2.342	7.707
	04 -Jun	247	143.7	48\%	0.369	3.196	1.094	4.290	215.6	48\%	0.554	4.332	1.707	6.039	287.4	48\%	0.739	5.375	2.341	7.715
	05 -Jun	248	144.1	48\%	0.369	3.202	1.093	4.296	216.1	48\%	0.553	4.340	1.706	6.046	288.2	48\%	0.737	5.385	2.339	7.724
	06 -Jun	249	144.4	48\%	0.368	3.208	1.093	4.301	216.7	48\%	0.551	4.348	1.705	6.053	288.9	48\%	0.735	5.396	2.337	7.733
	07 -Jun	250	144.8	48\%	0.367	3.214	1.092	4.306	217.2	48\%	0.550	4.357	1.704	6.060	289.6	48\%	0.734	5.406	2.336	7.742
	08 -Jun	251	145.2	48\%	0.366	3.220	1.091	4.312	217.8	48\%	0.549	4.365	1.702	6.067	290.4	48\%	0.732	5.416	2.334	7.750
	09 -Jun	252	145.5	49\%	0.365	3.226	1.090	4.317	218.3	49\%	0.548	4.373	1.701	6.074	291.1	49\%	0.730	5.426	2.333	7.759
	10-Jun	253	145.9	49\%	0.364	3.233	1.090	4.322	218.9	49\%	0.546	4.381	1.700	6.081	291.8	49\%	0.728	5.436	2.331	7.767
	11-Jun	254	146.3	49\%	0.363	3.239	1.089	4.327	219.4	49\%	0.545	4.390	1.699	6.088	292.5	49\%	0.727	5.447	2.329	7.776
	12-Jun	255	146.6	49\%	0.362	3.245	1.088	4.333	219.9	49\%	0.544	4.398	1.698	6.095	293.3	49\%	0.725	5.457	2.327	7.784
	13 -Jun	256	147.0	49\%	0.362	3.251	1.087	4.338	220.5	49\%	0.542	4.406	1.696	6.102	294.0	49\%	0.723	5.467	2.326	7.793
	14 -Jun	257	147.4	49\%	0.361	3.257	1.086	4.343	221.0	49\%	0.541	4.414	1.695	6.109	294.7	49\%	0.722	5.477	2.324	7.801
	15-Jun	258	147.7	49\%	${ }^{0.360}$	3.263	1.086	4.348	221.6	49\%	0.540	4.422	1.694	6.116	295.4	49\%	0.720	5.487	2.322	7.809
	16-Jun	259	148.1	49\%	0.359	3.268	1.085	4.353	222.1	49\%	0.539	4.430	1.692	6.123	296.1	49\%	0.718	5.497	2.320	7.817
	17-Jun	260	148.4	49\%	0.358	3.274	1.084	4.358	222.6	49\%	0.537	4.438	1.691	6.129	296.9	49\%	0.716	5.507	2.319	7.826

$\begin{array}{lll}170.6 & 57 \% & 0.306\end{array}$
$\begin{array}{ll}3.635 & 1.01\end{array}$

4.446	1.690			
4.454	1.688			
4.462	1.687			
4.470	1.686			
4.478	1.684			
4.486	1.683			
4.494	1.682			
4.502	1.680			
4.509	1.679			
4.517	1.677			
4.525	1.676			
4.533	1.674			
4.540	1.673			
4.548	1.671			
4.556	1.670			
4.564	1.668			
4.571	1.667			
4.579	1.665			
4.586	1.664			
4.594	1.662			
4.662	1.661			
4.609	1.659			
4.617	1.657			
4.624	1.656			
4.632	1.654			
4.639	1.653			
4.646	1.651			
4.654	1.649			
4.661	1.648			
4.669	1.646			
4.676	1.644			
4.683	1.643			
4.690	1.641			
4.968	1.639			
4.705	1.637			
4.712	1.636			
4.779	1.634			
4.727	1.632			
4.734	1.631			
4.741	1.629			
4.778	1.627			
4.755	1.625			
4.762	1.623			
4.769	1.622			
4.776	1.660			
4.783	1.618			
4.790	1.616			
4.797	1.614			
4.864	1.613			
4.811	1.611			
4.818	1.609			
4.825	1.607			
4.832	1.605			
4.839	1.603			
4.846	1.601			
4.853	1.599			
4.860	1.598			
4.866	1.596			
4.873	1.594			
4.880	1.592			
4.887	1.590			
4.893	1.588			
4.900	1.586			
4.907	1.584			
4.993	1.582			
4.920	1.580			
4.927	1.578			
			4.446	1.690
:---	:---			
4.454	1.688			
4.462	1.687			
4.470	1.686			
4.478	1.684			
4.486	1.683			
4.494	1.682			
4.502	1.680			
4.509	1.679			
4.517	1.677			
4.525	1.676			
4.533	1.674			
4.540	1.673			
4.548	1.671			
4.556	1.670			
4.564	1.668			
4.571	1.667			
4.579	1.665			
4.586	1.664			
4.594	1.662			
4.602	1.661			
4.609	1.659			
4.617	1.657			
4.624	1.656			
4.632	1.654			
4.639	1.653			
4.646	1.651			
4.654	1.649			
4.661	1.648			
4.669	1.646			
4.676	1.644			
4.683	1.643			
4.690	1.641			
4.698	1.639			
4.705	1.637			
4.712	1.636			
4.719	1.634			
4.727	1.632			
4.734	1.631			
4.741	1.629			
4.748	1.627			
4.755	1.625			
4.762	1.623			
4.769	1.622			
4.776	1.620			
4.783	1.618			
4.790	1.616			
4.797	1.614			
4.804	1.613			
4.811	1.611			
4.818	1.609			
4.825	1.607			
4.832	1.605			
4.839	1.603			
4.846	1.601			
4.853	1.599			
4.860	1.598			
4.866	1.596			
4.873	1.594			
4.880	1.592			
4.887	1.590			
4.893	1.588			
4.900	1.586			
4.907	1.584			
4.913	1.582			
4.920	1.580			
4.927	1.578			

1.578

 N | 5.517 |
| :--- |
| 5.527 |
| 5.537 |
| 5.546 |
| 5.556 |
| 5.566 |
| 5.576 |
| 5.586 |
| 5.595 |
| 5.605 |
| 5.615 |
| 5.624 |
| 5.634 |
| 5.643 |
| 5.653 |
| 5.662 |
| 5.672 |
| 5.681 |
| 5.691 |
| 5.700 |
| 5.710 |
| 5.719 |
| 5.728 |
| 5.738 |
| 5.747 |
| 5.756 |
| 5.765 |
| 5.774 |
| 5.784 |
| 5.793 |
| 5.802 |
| 5.811 |
| 5.820 |
| 5.829 |
| 5.838 |
| 5.847 |
| 5.856 |
| 5.865 |
| 5.874 |
| 5.883 |
| 5.892 |
| 5.900 |
| 5.909 |
| 5.918 |
| 5.927 |
| 5.935 |
| 5.944 |
| 5.953 |
| 5.961 |
| 5.970 |
| 5.979 |
| 5.987 |
| 5.996 |
| 6.004 |
| 6.013 |
| 6.021 |
| 6.030 |
| 6.038 |
| 6.047 |
| 6.055 |
| 6.063 |
| 6.072 |
| 6.080 |
| 6.088 |
| 6.096 |
| 6.105 |
| 6.113 |

∞

$\begin{array}{lll}189.5 & 63 \% & 0.261\end{array}$
$\begin{array}{ll}3.929 & 0.922 \\ 3.933 & 0.920\end{array}$
 1.57
1.574
1.572
1.570
1.568
1.566
1.564
1.562
1.560
1.558
1.556
1.554
1.552
1.550
1.548
1.546
1.544
1.542
1.540
1.538
1.536
1.534
1.531
1.529
1.527
1.525
1.523
1.521
1.519
1.517
1.515
1.512
1.510
1.508
1.506
1.504
1.502
1.500
1.497
1.495
1.493
1.491
1.489
1.48
1.484
1.482
1.480
1.478
1.476
1.473
1.471
1.469
1.46
1.46
1.462
1.46
1.458
1.45
1.45
1.45
1.449
1.447
1.44
1.443
1.440
1.438
1.436
$\begin{array}{ll}5.326 & 1.438 \\ 5.331 & 1.436\end{array}$

 \begin{tabular}{l}
0.610

0.69

0.607

0.606

0.604

0.63

0.602

0.600

0.599

0.597

0.596

0.595

0.593

0.592

0.590

0.589

0.588

0.586

0.585

0.583

0.582

0.581

0.579

0.578

0.577

0.575

0.574

0.573

0.571

0.570

0.568

0.567

0.566

0.564

0.563

0.562

0.560

0.59

0.558

0.557

0.555

0.554

0.553

0.551

0.550

0.549

0.547

0.546

0.545

0.544

0.542

0.541

0.540

0.538

0.537

0.536

0.535

0.533

0.532

0.531

0.530

0.528

0.527

0.526

0.525

0.523

0.522

\hline

6.121

6.129

6.137

6.146

6.154

6.162

6.170

6.178

6.186

6.194

6.202

6.210

6.218

6.226

6.234

6.241

6.249

6.257

6.265

6.273

6.280

6.288

6.296

6.304

6.311

6.319

6.326

6.334

6.342

6.349

6.357

6.364

6.372

6.379

6.387

6.394

6.402

6.409

6.416

6.424

6.431

6.438

6.446

6.453

6.460

6.467

6.475

6.482

6.489

6.496

6.503

6.510

6.518

6.525

6.532

6.539

6.546

6.553

6.560

6.567

6.574

6.581

6.587

6.594

6.601

6.608

6.615

\hline
\end{tabular}

189.8	63%	0.260		3.937

- o o o o o o o o o					
	成				

6.62	1.96
6.629	1.962
635	1.959
642	1.956
649	1.95
6.656	
6.662	
6.669	
6.676	
6.682	
6.695	
6.702	
6.709	
6.715	
6.722	
6.728	
6.735	1.91
6.741	1.91
6.748	1.907
6.754	1.90
6.761	1.90
6.767	1.89
7 74	
6.780	1.89
6.786	
6.793	
6.799	
6.805	
6.812	
6.818	
6.82	
6.83	
6.83	
6.84	
6.84	1.85
6.855	
6.861	
6.86	
6.874	
6.892	1.83
6.898	1.83
6.910	
	1.810
6.946	1.80
6.952	. 8
6.958	1.8
6.964	1.
6.970	1.7
6.976	1.7
6.982	1.78
6.987	1.78
6.993	1.7
999	1.77
005	1.7
7.011	1.7
7.016	1.76
7.022	.
. 028	

12-Mar

7.039
7.045
7.051
7.056
7.062
7.068
7.073
7.079
7.084
7.090
7.095
7.101
7.107
7.112
7.118
7.123
7.128
7.134
7.139
7.145
7.150
7.156
7.161
7.166
7.172
7.177
7.182
7.188
7.193
7.198
7.204
7.209
7.214
7.219
7.224
7.230
7.235
7.240
7.245
7.250
7.255
7.261
7.266
7.271
7.276
7.281
7.286
7.291
7.296
7.301
7.306
7.311
7.316
7.321
7.326
7.331
7.336
7.341
7.346
7.351
7.355
7.360
7.365
7.370
7.375
7.380
7.384

$7.384 \quad 1.5$
439

> $\begin{array}{lll}19.9 & 73 \% & 0.189\end{array}$ $\begin{array}{lll}219.9 & 73 \% & 0.189 \\ 220.1 & 73 \% & 0.189\end{array}$ $\begin{array}{lll}220.2 & 73 \% & 0.188 \\ 220.4 & 73 \% & 0.188\end{array}$ $\begin{array}{lll}220.6 & 73 \% & 0.188 \\ 74 \% & 0.188\end{array}$ \begin{tabular}{lll}
220.8 \& 74% \& 0.187

\hline

 $221.0 \quad 74 \% \quad 0.187$ $221.2 \quad 74 \% \quad 0.18$ $221.4 \quad 74 \% \quad 0.18$ $\begin{array}{lll}221.6 & 74 \% & 0.185 \\ 221.7 & 74 \% & 0.185\end{array}$ $\begin{array}{lll}221.9 & 74 \% & 0.185\end{array}$

222.1 \& 74% \& 0.18

\hline 24% \& 0.184

 $\begin{array}{lll}222.3 & 74 \% & 0.184 \\ 222.5 & 74 \% & 0.183\end{array}$

7 \& 74% \& 0.183

74% \& 0.18

\hline
\end{tabular} $\begin{array}{lll}222.8 & 74 \% & 0.18 \\ 223.0 & 74 \% & 0.18\end{array}$ $\begin{array}{lll}223.2 & 74 \% & 0.1 \\ 223.4 & 74 \% & 0.1\end{array}$ $\begin{array}{lll}223.4 & 74 \% & 0.181 \\ 223.6 & 75 \% & 0.18\end{array}$ $\begin{array}{lll}223.7 & 75 \% & 0.18 \\ 223.9 & 75 \% & 0.18\end{array}$ $\begin{array}{lll}224.1 & 75 \% & 0 . \\ 224.3 & 75 \% & 0 .\end{array}$ $\begin{array}{lll}224.5 & 75 \% & 0.17 \\ 224.6 & 75 \% & 0\end{array}$ $\begin{array}{lll}224.6 & 75 \% & 0.178 \\ 224.8 & 75 \% & 0.17\end{array}$ $\begin{array}{lll}225.0 & 75 \% & 0.117 \\ 225.2 & 75 \% & 0.177\end{array}$ $\begin{array}{lll}225.3 & 75 \% \\ 225.5 & 75 \% \\ & 75 \%\end{array}$ $\begin{array}{lll}225.9 & 75 \% & 0.175 \\ 2650 & 75 \% & 0.175\end{array}$ $\begin{array}{lll}226.0 & 75 \% & 0.175 \\ 226.2 & 75 \% & 0.174\end{array}$ $\begin{array}{ll}226.4 & 75 \% \\ 226.6 & 76 \%\end{array}$ $\begin{array}{lll}226.7 & 76 \% & 0 . \\ 226.9 & 76 \% & 0.17\end{array}$ $\begin{array}{ll}4.394 & 0.725 \\ 4.397 & 0.723 \\ 4.999 & 0.722 \\ 4.402 & 0.721 \\ 4.405 & 0.719 \\ 4.408 & 0.718 \\ 4.411 & 0.716 \\ 4.413 & 0.715 \\ 4.416 & 0.714 \\ 4.419 & 0.712 \\ 4.422 & 0.711 \\ 4.425 & 0.709 \\ 4.427 & 0.708 \\ 4.430 & 0.707 \\ 4.333 & 0.705 \\ 4.436 & 0.704 \\ 4.438 & 0.702 \\ 4.41 & 0.701 \\ 4.444 & 0.700 \\ 4.446 & 0.698 \\ 4.449 & 0.697 \\ 4.452 & 0.695 \\ 4.455 & 0.694 \\ 4.457 & 0.693 \\ 4.460 & 0.691 \\ 4.463 & 0.690 \\ 4.465 & 0.689 \\ 4.468 & 0.687 \\ 4.471 & 0.686 \\ 4.473 & 0.684 \\ 4.476 & 0.683 \\ 4.478 & 0.682 \\ 4.481 & 0.680 \\ 4.444 & 0.679 \\ 4.486 & 0.678 \\ 4.489 & 0.676 \\ 4.491 & 0.675 \\ 4.444 & 0.674 \\ 4.497 & 0.672 \\ 4.499 & 0.671 \\ 4.502 & 0.670 \\ 4.504 & 0.668 \\ 4.507 & 0.667 \\ 4.509 & 0.665 \\ 4.512 & 0.664 \\ 4.55 & 0.663 \\ 4.517 & 0.661 \\ 4.520 & 0.660 \\ 4.522 & 0.659 \\ 4.555 & 0.657 \\ 4.527 & 0.656 \\ 4.530 & 0.655 \\ 4.532 & 0.653 \\ 4.355 & 0.652 \\ 4.537 & 0.651 \\ 4.540 & 0.649 \\ 4.542 & 0.648 \\ 4.545 & 0.647 \\ 4.547 & 0.645 \\ 4.549 & 0.644 \\ 4.552 & 0.643 \\ 4.554 & 0.641 \\ 4.557 & 0.640 \\ 4.559 & 0.639 \\ 4.562 & 0.638 \\ 4.564 & 0.636 \\ 4.566 & 0.635 \\ & \end{array}$

 $\begin{array}{ll}73 \% & 0.380 \\ 73 \% & 0.379 \\ 73 \% & 0.378 \\ 73 \% & 0.377 \\ 73 \% & 0.376 \\ 74 \% & 0.375 \\ 74 \% & 0.374 \\ 74 \% & 0.373 \\ 74 \% & 0.373 \\ 74 \% & 0.372 \\ 74 \% & 0.371 \\ 74 \% & 0.370 \\ 74 \% & 0.369 \\ 74 \% & 0.368 \\ 74 \% & 0.367 \\ 74 \% & 0.366 \\ 74 \% & 0.366 \\ 74 \% & 0.365 \\ 74 \% & 0.364 \\ 74 \% & 0.363 \\ 74 \% & 0.362 \\ 75 \% & 0.361 \\ 75 \% & 0.360 \\ 75 \% & 0.360 \\ 75 \% & 0.359 \\ 75 \% & 0.358 \\ 75 \% & 0.357 \\ 75 \% & 0.356 \\ 75 \% & 0.355 \\ 75 \% & 0.355 \\ 75 \% & 0.354 \\ 75 \% & 0.353 \\ 75 \% & 0.352 \\ 75 \% & 0.351 \\ 75 \% & 0.350 \\ 75 \% & 0.350 \\ 75 \% & 0.349 \\ 75 \% & 0.348 \\ 76 \% & 0.347 \\ 76 \% & 0.346 \\ 76 \% & 0.345 \\ 76 \% & 0.345 \\ 76 \% & 0.344 \\ 76 \% & 0.343 \\ 76 \% & 0.342 \\ 76 \% & 0.341 \\ 76 \% & 0.341 \\ 76 \% & 0.340 \\ 76 \% & 0.339 \\ 76 \% & 0.338 \\ 76 \% & 0.337 \\ 76 \% & 0.337 \\ 76 \% & 0.336 \\ 76 \% & 0.335 \\ 76 \% & 0.334 \\ 76 \% & 0.333 \\ 77 \% & 0.333 \\ 77 \% & 0.332 \\ 77 \% & 0.331 \\ 77 \% & 0.330 \\ 77 \% & 0.330 \\ 77 \% & 0.329 \\ 77 \% & 0.328 \\ 77 \% & 0.327 \\ 77 \% & 0.326 \\ 77 \% & 0.326 \\ 77 \% & 0.325 \\ & \end{array}$ | 7.389 |
| :--- |
| 7.394 |
| 7.399 |
| 7.404 |
| 7.408 |
| 7.413 |
| 7.418 |
| 7.422 |
| 7.427 |
| 7.432 |
| 7.436 |
| 7.441 |
| 7.446 |
| 7.450 |
| 7.455 |
| 7.460 |
| 7.464 |
| 7.469 |
| 7.473 |
| 7.478 |
| 7.483 |
| 7.487 |
| 7.492 |
| 7.496 |
| 7.501 |
| 7.505 |
| 7.510 |
| 7.514 |
| 7.518 |
| 7.523 |
| 7.527 |
| 7.532 |
| 7.536 |
| 7.541 |
| 7.545 |
| 7.549 |
| 7.554 |
| 7.558 |
| 7.562 |
| 7.567 |
| 7.571 |
| 7.575 |
| 7.580 |
| 7.584 |
| 7.588 |
| 7.593 |
| 7.597 |
| 7.601 |
| 7.605 |
| 7.610 |
| 7.614 |
| 7.618 |
| 7.622 |
| 7.626 |
| 7.630 |
| 7.735 |
| 7.639 |
| 7.643 |
| 7.647 |
| 7.651 |
| 7.655 |
| 7.659 |
| 7.663 |
| 7.668 |
| 7.672 |
| 7.676 |
| 7.680 |

8.940
8.941

4.569	0.634
4.571	0.632
4.574	0.631
4.576	0.630
4.578	0.628
4.581	0.627
4.583	0.626
4.585	0.624
4.588	0.623
4.590	0.622
4.592	0.621
4.595	0.619
4.597	0.618
4.599	0.617
4.602	0.615
4.604	0.614
4.606	0.613
4.609	0.612
4.611	0.610
4.613	0.609
4.616	0.608
4.618	0.606
4.620	0.605
4.622	0.604
4.625	0.603
4.627	0.601
4.629	0.600
4.631	0.599
4.634	0.598
4.636	0.596
4.638	0.595
4.640	0.594
4.642	0.593
4.645	0.591
4.647	0.590
4.649	0.589
4.651	0.588
4.653	0.586
4.656	0.585
4.658	0.584
4.660	0.583
4.662	0.581
4.664	0.580
4.666	0.579
4.669	0.578
4.671	0.576
4.673	0.575
4.675	0.574
4.677	0.573
4.679	0.572
4.681	0.570
4.683	0.569
4.686	0.568
4.688	0.567
4.690	0.565
4.692	0.564
4.694	0.563
4.696	0.562
4.698	0.561
4.700	0.559
4.702	0.558
4.704	0.557
4.706	0.556
4.708	0.555
4.710	0.553
4.712	0.552
4.714	0.551

77%
77%
77%
77%
77%
77%
77%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
78%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%

0.323
0.323
0.322
0.321
0.320
0.320
0.319
0.318
0.317
0.317
0.316
0.315
0.314
0.314
0.313
0.312
0.311
0.311
0.310
0.309
0.308
0.308
0.307
0.306
0.306
0.305
0.304
0.303
0.303
0.302
0.301
0.301
0.300
0.299
0.298
0.298
0.297
0.296
0.296
0.295
0.294
0.294
0.293
0.292
0.291
0.291
0.290
0.289
0.289
0.288
0.287
0.287
0.286
0.285
0.285
0.284
0.283
0.283
0.282
0.281
0.281
0.280
0.279
0.279
0.278

0.277 \begin{tabular}{l}
7.684

7.688

7.692

7.696

7.700

7.704

7.708

7.712

7.716

7.720

7.724

7.727

7.731

7.735

7.739

7.743

7.747

7.751

7.755

7.759

7.762

7.766

7.770

7.774

7.778

7.781

7.785

7.789

7.793

7.796

7.800

7.804

7.808

7.811

7.815

7.819

7.822

7.826

7.830

7.833

7.837

7.841

7.844

7.848

7.852

7.855

7.859

7.862

7.866

7.870

7.873

7.877

7.880

7.884

7.887

7.891

7.894

7.898

7.901

7.905

7.908

7.912

7.915

7.919

7.922

7.925

7.929

\hline

1.355

1.352

1.350

1.347

1.344

1.341

1.339

1.336

1.333

1.330

1.327

1.325

1.322

1.319

1.316

1.314

1.311

1.308

1.306

1.303

1.300

1.297

1.295

1.292

1.299

1.286

1.284

1.281

1.278

1.276

1.273

1.270

1.268

1.265

1.262

1.260

1.257

1.254

1.252

1.249

1.246

1.244

1.241

1.238

1.236

1.233

1.231

1.228

1.225

1.223

1.220

1.217

1.251

1.212

1.210

1.207

1.204

1.202

1.199

1.197

1.194

1.192

1.189

1.186

11.184

1.181

1.179

\hline
\end{tabular}

	06-Dec	797	76	257.3	86\%	0.101	4.947	0.408	0.041	5.396	386.0	86\%	0.151	6.705	0.636	0.062	7.404	514.7	86\%	0.202	8.320	0.872	0.083	9.275
	07-Dec	798	77	257.4	86\%	0.101	4.949	0.407	0.042	5.398	386.1	86\%	0.151	6.707	0.635	0.064	7.406	514.9	86\%	0.201	8.323	0.870	0.085	9.278
	08 -Dec	799	78	257.5	86\%	0.100	4.950	0.406	0.044	5.400	386.3	86\%	0.151	6.709	0.633	0.065	7.408	515.1	86\%	0.201	8.325	0.868	0.087	9.280
	09-Dec	800	79	257.6	86\%	0.100	4.952	0.405	0.045	5.401	386.5	86\%	0.150	6.711	0.632	0.067	7.410	515.3	86\%	0.200	8.328	0.866	0.090	9.283
	10-Dec	801	80	257.7	86\%	0.100	4.953	0.404	0.046	5.403	386.6	86\%	0.150	6.713	0.630	0.069	7.412	515.5	86\%	0.200	8.330	0.864	0.092	9.286
	11-Dec	802	81	257.8	86\%	0.100	4.954	0.403	0.047	5.405	386.7	86\%	0.149	6.715	0.629	0.071	7.415	515.7	86\%	0.199	8.332	0.862	0.094	9.289
	12-Dec	803	82	257.9	86\%	0.099	4.956	0.402	0.048	5.406	386.9	86\%	0.149	6.717	0.627	0.073	7.417	515.9	86\%	0.199	8.335	0.860	0.097	9.292
	13-Dec	804	83	258.0	86\%	0.099	4.957	0.401	0.050	5.408	387.0	86\%	0.149	6.719	0.626	0.074	7.420	516.1	86\%	0.198	8.337	0.858	0.099	9.295
	14-Dec	805	84	258.1	86\%	0.099	4.959	0.400	0.051	5.410	387.2	86\%	0.148	6.721	0.624	0.076	7.422	516.3	86\%	0.198	8.340	0.856	0.102	9.298
	15-Dec	806	85	258.2	86\%	0.099	4.960	0.399	0.052	5.412	387.3	86\%	0.148	6.723	0.623	0.078	7.424	516.5	86\%	0.197	8.342	0.854	0.105	9.301
	16-Dec	807	86	258.3	86\%	0.098	4.962	0.398	0.054	5.414	387.5	86\%	0.148	6.725	0.622	0.080	7.427	516.7	86\%	0.197	8.344	0.852	0.107	9.304
	17-Dec	808	87	258.4	86\%	0.098	4.963	0.397	0.055	5.415	387.6	86\%	0.147	6.727	0.620	0.083	7.430	516.9	86\%	0.197	8.347	0.850	0.110	9.307
	18-Dec	809	88	258.5	86\%	0.098	4.964	0.397	0.056	5.417	387.8	86\%	0.147	6.729	0.619	0.085	7.432	517.0	86\%	0.196	8.349	0.848	0.113	9.310
	19-Dec	810	89	258.6	86\%	0.098	4.966	0.396	0.058	5.419	387.9	86\%	0.147	6.731	0.617	0.087	7.435	517.2	86\%	0.196	8.351	0.846	0.116	9.314
	20-Dec	811	90	258.7	86\%	0.098	4.967	0.395	0.059	5.421	388.1	86\%	0.146	6.733	0.616	0.089	7.438	517.4	86\%	0.195	8.354	0.844	0.119	9.317
	21-Dec	812	91	258.8	86\%	0.097	4.969	0.394	0.061	5.423	388.2	86\%	0.146	6.734	0.614	0.091	7.440	517.6	86\%	0.195	8.356	0.842	0.122	9.320
	22-Dec	813	92	258.9	86\%	0.097	4.970	0.393	0.062	5.425	388.4	86\%	0.146	6.736	0.613	0.094	7.443	517.8	86\%	0.194	8.359	0.841	0.125	9.324
	$23-\mathrm{Dec}$	814	93	259.0	86\%	0.097	4.971	0.392	0.064	5.427	388.5	86\%	0.145	6.738	0.612	0.096	7.446	518.0	86\%	0.194	8.361	0.839	0.128	9.328
	24-Dec	815	94	259.1	86\%	0.097	4.973	0.391	0.066	5.430	388.7	86\%	0.145	6.740	0.610	0.099	7.449	518.2	86\%	0.193	8.363	0.837	0.131	9.331
	25-Dec	816	95	259.2	86\%	0.096	4.974	0.390	0.067	5.432	388.8	86\%	0.145	6.742	0.609	0.101	7.452	518.4	86\%	0.193	8.366	0.835	0.135	9.335
	26-Dec	817	96	259.3	86\%	0.096	4.976	0.389	0.069	5.434	389.0	86\%	0.144	6.744	0.607	0.104	7.455	518.6	86\%	0.192	8.368	0.833	0.138	9.339
	27-Dec	818	97	259.4	86\%	0.096	4.977	0.388	0.071	5.436	389.1	86\%	0.144	6.746	0.606	0.106	7.458	518.8	86\%	0.192	8.370	0.831	0.142	9.343
	28-Dec	819	98	259.5	86\%	0.096	4.978	0.388	0.073	5.438	389.2	86\%	0.144	6.748	0.605	0.109	7.461	519.0	86\%	0.191	8.373	0.829	0.145	9.347
	29-Dec	820	99	259.6	87\%	0.096	4.980	0.387	0.074	5.441	389.4	87\%	0.143	6.750	0.603	0.112	7.464	519.2	87\%	0.191	8.375	0.827	0.149	9.351
	$30-\mathrm{Dec}$	821	100	259.7	87\%	0.095	4.981	0.386	0.076	5.443	389.5	87\%	0.143	6.751	0.602	0.114	7.468	519.4	87\%	0.191	8.377	0.825	0.153	9.355
	31-Dec	822	101	259.8	87\%	0.095	4.982	0.385	0.078	5.445	389.7	87\%	0.143	6.753	0.600	0.117	7.471	519.6	87\%	0.190	8.379	0.823	0.156	9.359
	$01-\mathrm{Jan}$	823	102	259.9	87\%	0.095	4.984	0.384	0.080	5.448	389.8	87\%	0.142	6.755	0.599	0.120	7.474	519.7	87\%	0.190	8.382	0.821	0.160	9.363
	02 -Jan	824	103	260.0	87\%	0.095	4.985	0.383	0.082	5.450	390.0	87\%	0.142	6.757	0.598	0.123	7.478	519.9	87\%	0.189	8.384	0.819	0.164	9.368
	$03-\mathrm{Jan}$	825	104	260.1	87\%	0.094	4.987	0.382	0.084	5.453	390.1	87\%	0.142	6.759	0.596	0.126	7.481	520.1	87\%	0.189	8.386	0.818	0.168	9.372
	04-Jan	826	105	260.2	87\%	0.094	4.988	0.381	0.086	5.455	390.2	87\%	0.141	6.761	0.595	0.129	7.485	520.3	87\%	0.188	8.389	0.816	0.173	9.377
	$05-\mathrm{Jan}$	827	106	260.2	87\%	0.094	4.989	0.380	0.088	5.458	390.4	87\%	0.141	6.762	0.594	0.133	7.489	520.5	87\%	0.188	8.391	0.814	0.177	9.381
	06-Jan	828	107	260.3	87\%	0.094	4.991	0.380	0.091	5.461	390.5	87\%	0.141	6.764	0.592	0.136	7.492	520.7	87\%	0.187	8.393	0.812	0.181	9.386
	07-Jan	829	108	260.4	87\%	0.094	4.992	0.379	0.093	5.463	390.7	87\%	0.140	6.766	0.591	0.139	7.496	520.9	87\%	0.187	8.395	0.810	0.186	9.391
	$08-\mathrm{Jan}$	830	109	260.5	87\%	0.093	4.993	0.378	0.095	5.466	390.8	87\%	0.140	6.768	0.589	0.143	7.500	521.1	87\%	0.187	8.398	0.808	0.190	9.396
	09-Jan	831	110	260.6	87\%	0.093	4.995	0.377	0.097	5.469	390.9	87\%	0.140	6.770	0.588	0.146	7.504	521.2	87\%	0.186	8.400	0.806	0.195	9.401
	10-Jan	832	111	260.7	87\%	0.093	4.996	0.376	0.100	5.472	391.1	87\%	0.139	6.771	0.587	0.150	7.508	521.4	87\%	0.186	8.402	0.804	0.200	9.406
	11-Jan	833	112	260.8	87\%	0.093	4.997	0.375	0.102	5.475	391.2	87\%	0.139	6.773	0.585	0.153	7.512	521.6	87\%	0.185	8.404	0.802	0.205	9.411
	12-Jan	834	113	260.9	87\%	0.092	4.999	0.374	0.105	5.478	391.4	87\%	0.139	6.775	0.584	0.157	7.516	521.8	87\%	0.185	8.407	0.801	0.210	9.417
	13-Jan	835	114	261.0	87\%	0.092	5.000	0.373	0.107	5.481	391.5	87\%	0.138	6.777	0.583	0.161	7.520	522.0	87\%	0.184	8.409	0.799	0.215	9.422
	14-Jan	836	115	261.1	87\%	0.092	5.001	0.373	0.110	5.484	391.6	87\%	0.138	6.779	0.581	0.165	7.525	522.2	87\%	0.184	8.411	0.797	0.220	9.428
	15-Jan	837	116	261.2	87\%	0.092	5.003	0.372	0.113	5.487	391.8	87\%	0.138	6.780	0.580	0.169	7.529	522.4	87\%	0.184	8.413	0.795	0.225	9.433
	16-Jan	838	117	261.3	87\%	0.092	5.004	0.371	0.115	5.490	391.9	87\%	0.137	6.782	0.579	0.173	7.534	522.5	87\%	0.183	8.415	0.793	0.231	9.439
	17-Jan	839	118	261.4	87\%	0.091	5.005	0.370	0.118	5.493	392.0	87\%	0.137	6.784	0.577	0.177	7.538	522.7	87\%	0.183	8.418	0.791	0.236	9.445
	18-Jan	840	119	261.5	87\%	0.091	5.006	0.369	0.121	5.496	392.2	87\%	0.137	6.786	0.576	0.181	7.543	522.9	87\%	0.182	8.420	0.790	0.242	9.451
	19-Jan	841	120	261.5	87\%	0.091	5.008	0.368	0.124	5.500	392.3	87\%	0.136	6.788	0.575	0.186	7.548	523.1	87\%	0.182	8.422	0.788	0.248	9.457
	20-Jan	842	121	261.6	87\%	0.091	5.009	0.367	0.127	5.503	392.4	87\%	0.136	6.789	0.573	0.190	7.553	523.3	87\%	0.181	8.424	0.786	0.253	9.464
	21-Jan	843	122	261.7	87\%	0.090	5.010	0.367	0.130	5.507	392.6	87\%	0.136	6.791	0.572	0.195	7.558	523.4	87\%	0.181	8.426	0.784	0.259	9.470
	22-Jan	844	123	261.8	87\%	0.090	5.012	0.366	0.133	5.510	392.7	87\%	0.135	6.793	0.571	0.199	7.563	523.6	87\%	0.180	8.429	0.782	0.266	9.476
	23-Jan	845	124	261.9	87\%	0.090	5.013	0.365	0.136	5.514	392.9	87\%	0.135	6.795	0.569	0.204	7.568	523.8	87\%	0.180	8.431	0.780	0.272	9.483
	24-Jan	846	125	262.0	87\%	0.090	5.014	0.364	0.139	5.517	393.0	87\%	0.135	6.796	0.568	0.209	7.573	524.0	87\%	0.180	8.433	0.779	0.278	9.490
	$25-\mathrm{Jan}$	847	126	262.1	87\%	0.090	5.016	0.363	0.142	5.521	393.1	87\%	0.134	6.798	0.567	0.214	7.578	524.2	87\%	0.179	8.435	0.777	0.285	9.497
	26-Jan	848	127	262.2	87\%	0.089	5.017	0.362	0.146	5.525	393.3	87\%	0.134	6.800	0.565	0.219	7.584	524.3	87\%	0.179	8.437	0.775	0.292	9.504
	27-Jan	849	128	262.3	87\%	0.089	5.018	0.361	0.149	5.529	393.4	87\%	0.134	6.802	0.564	0.224	7.589	524.5	87\%	0.178	8.439	0.773	0.298	9.511
	28 -Jan	850	129	262.4	87\%	0.089	5.019	0.361	0.153	5.533	393.5	87\%	0.133	6.803	0.563	0.229	7.595	524.7	87\%	0.178	8.442	0.771	0.305	9.518
	29-Jan	851	130	262.4	87\%	0.089	5.021	0.360	0.156	5.537	393.7	87\%	0.133	6.805	0.561	0.234	7.601	524.9	87\%	0.178	8.444	0.770	0.312	9.526
	30-Jan	852	131	262.5	88\%	0.089	5.022	0.359	0.160	5.541	393.8	88\%	0.133	6.807	0.560	0.240	7.607	525.1	88\%	0.177	8.446	0.768	0.320	9.533
Heifers are culled	31-Jan	853	132	262.6	88\%	0.088	5.023	0.358	0.164	5.545	393.9	88\%	0.133	6.808	0.559	0.245	7.612	525.2	88\%	0.177	8.448	0.766	0.327	9.541
	01-Feb	854	133	262.7	88\%	0.088	5.024	0.357	0.167	5.549	394.1	88\%	0.132	6.810	0.557	0.251	7.619	525.4	88\%	0.176	8.450	0.764	0.335	9.549
	02 -Feb	855	134	262.8	88\%	0.088	5.026	0.356	0.171	5.553	394.2	88\%	0.132	6.812	0.556	0.257	7.625	525.6	88\%	0.176	8.452	0.762	0.342	9.557
	03-Feb	856	135	262.9	88\%	0.088	5.027	0.356	0.175	5.558	394.3	88\%	0.132	6.814	0.555	0.263	7.631	525.8	88\%	0.175	8.454	0.761	0.350	9.565
	04-Feb	857	136	263.0	88\%	0.088	5.028	0.355	0.179	5.562	394.5	88\%	0.131	6.815	0.553	0.269	7.637	525.9	88\%	0.175	8.456	0.759	0.358	9.574
	$05-\mathrm{Feb}$	858	137	263.1	88\%	0.087	5.030	0.354	0.183	5.567	394.6	88\%	0.131	6.817	0.552	0.275	7.644	526.1	88\%	0.175	8.459	0.757	0.367	9.582
	06 -Feb	859	138	263.1	88\%	0.087	5.031	0.353	0.187	5.571	394.7	88\%	0.131	6.819	0.551	0.281	7.651	526.3	88\%	0.174	8.461	0.755	0.375	9.591
	07-Feb	860	139	263.2	88\%	0.087	5.032	0.352	0.192	5.576	394.8	88\%	0.130	6.820	0.550	0.288	7.657	526.5	88\%	0.174	8.463	0.753	0.383	9.600
	08-Feb	861	140	263.3	88\%	0.087	5.033	0.351	0.196	5.581	395.0	88\%	0.130	6.822	0.548	0.294	7.664	526.6	88\%	0.173	8.465	0.752	0.392	9.609
	09 -Feb	862	141	263.4	88\%	0.086	5.034	0.351	0.200	5.586	395.1	88\%	0.130	6.824	0.547	0.301	7.671	526.8	88\%	0.173	8.467	0.750	0.401	9.618
	10-Feb	863	142	263.5	88\%	0.086	5.036	0.350	0.205	5.590	395.2	88\%	0.129	6.825	0.546	0.308	7.679	527.0	88\%	0.173	8.469	0.748	0.410	9.627

$\begin{array}{ll}5.111 & 0.299 \\ 5.112 & 0.299\end{array}$

会会

$\begin{array}{ll}1.621 & 10.858 \\ 1.651 & 10.887\end{array}$ $\begin{array}{ll}1.681 & 10.918\end{array}$ $\begin{array}{ll}1.711 & 10.948 \\ 1.742 & 10.980\end{array}$ $\begin{array}{ll}1.742 & 10.980 \\ 1.774 & 1.1011\end{array}$ $1.806 \quad 11.043$ $\begin{array}{ll}1.838 & 11.076\end{array}$ $1.871 \quad 11.109$ $\begin{array}{ll}1.904 & 11.142 \\ 1.938 & 1.176\end{array}$ $\begin{array}{ll}1.938 & 11.176 \\ 1.972 & 11.211\end{array}$ $2.006 \quad 11.24$ $\begin{array}{ll}2.041 & 11.28 \\ 2.077 & 1131\end{array}$ $\begin{array}{lll}2.077 & 11.317 \\ 2.113 & 11.353\end{array}$ $\begin{array}{ll}2.113 & 11.353 \\ 2.150 & 11.390 \\ 2.187 & 11.427\end{array}$ $\begin{array}{ll}2.187 & 11.427 \\ 2.224 & 11.465\end{array}$ $2.263 \quad 11.50$ $\begin{array}{ll}2.301 & 11.542 \\ 2.340 & 11.58 \\ 2\end{array}$ $2.380 \quad 11.621$ $\begin{array}{ll}2.420 & 11.662 \\ 2.461 & 11.703\end{array}$ 2.50211 .744 $\begin{array}{ll}2.544 & 11.786 \\ 2.586 & 11.828 \\ 2.629 & 1.871\end{array}$ $\begin{array}{ll}2.629 & 11.871 \\ 2.672 & 11.915\end{array}$ $\begin{array}{ll}2.716 & 11.959 \\ 2760 & 12.004\end{array}$ $2.805 \quad 12.049$ $2.851 \quad 12.095$ | 2.859 | 12.141 |
| :--- | :--- |
| 2.894 | | $\begin{array}{ll}2.944 & 12.188 \\ 2.991 & 12.235\end{array}$ $3.039 \quad 12.283$ $\begin{array}{lll}3.087 & 12.332 \\ 3.136 & 12.381\end{array}$ $\begin{array}{ll}3.185 & 12.430 \\ 3.235 & 12.481 \\ 3.26 & 1.232\end{array}$ $\begin{array}{lll}3.286 & 12.532\end{array}$ $\begin{array}{ll}3.337 & 12.583 \\ 3.389 & 12.635\end{array}$ $\begin{array}{ll}3.441 & 12.687 \\ 3.494 & 12.741\end{array}$ $3.548 \quad 12.794$ $\begin{array}{ll}3.602 & 12.849 \\ 3.657 & 12.904\end{array}$ $3.712 \quad 12.95$ $\begin{array}{ll}3.768 & 13.015 \\ 3.824 & 13.072\end{array}$ $\begin{array}{ll}3.824 & 13.072 \\ 3.881 & 13.129\end{array}$ $\begin{array}{lll}3.881 & 13.129 \\ 3.939 & 13.187\end{array}$ $\begin{array}{lll}3.997 & 13.246\end{array}$ $4.116 \quad 13.364$ $4.176 \quad 13.425$ $4.237 \quad 13.486$ $\begin{array}{ll}4.298 & 13.547 \\ 4.360 & 13.092\end{array}$ $\begin{array}{lll}4.360 & 13.609 \\ 4.422 & 13.672\end{array}$ $\begin{array}{lll}4.485 & 13.735 \\ 4.549 & 13.799\end{array}$ $\begin{array}{ll}4.614 & 13.864 \\ 4.678 & 13.929\end{array}$

	25-Jun	998	277		273.5	91\%	0.063		5.178	0.254		2.372	7.803	410.2	91\%	0.094		7.018	0.396		3.558	10.972	546.9	91\%	0.125		8.708	0.542		4.744	13.995
	26-Jun	999	278		273.5	91\%	0.063		5.179	0.253		2.405	7.837	410.3	91\%	0.094		7.019	0.395		3.608	11.022	547.0	91\%	0.125		8.710	0.541		4.810	14.061
	27-Jun	1000	279		273.6	91\%	0.062		5.180	0.252		2.438	7.870	410.4	91\%	0.094		7.021	0.394		3.658	11.072	547.2	91\%	0.125		8.711	0.540		4.877	14.128
	28 -Jun	1001	280		273.6	91\%	0.062		5.181	0.252		2.472	7.904	410.5	91\%	0.093		7.022	0.393		3.708	11.123	547.3	91\%	0.125		8.713	0.538		4.944	14.195
	29 -Jun	1002	281		273.7	91\%	0.062		5.181	0.251		2.506	7.939	410.6	91\%	0.093		7.023	0.392		3.759	11.174	547.4	91\%	0.124		8.714	0.537		5.012	14.263
	30-Jun	1003	282		273.8	91\%	0.062		5.182	0.251		2.540	7.973	410.6	91\%	0.093		7.024	0.391		3.811	11.226	547.5	91\%	0.124		8.716	0.536		5.081	14.332
First Calving. First Lactation starts.	01-Jul	1004	283	1	273.8	91\%	0.062	0.29	5.183	0.250	0.209	2.575	8.217	410.7	91\%	0.093	0.40	7.025	0.390	0.284	3.862	11.561	547.6	91\%	0.124	0.49	8.717	0.535	0.352	5.150	14.754
	02 -Jul	1005		2	273.9	91\%	0.062	0.57	5.184	0.249	0.412		5.845	410.8	91\%	0.093	0.78	7.026	0.389	0.558		7.973	547.8	91\%	0.123	0.96	8.718	0.533	0.692		9.944
	03 -Jul	1006		3	273.9	91\%	0.062	0.85	5.185	0.249	0.607		6.041	410.9	91\%	0.092	1.15	7.028	0.388	0.823		8.239	547.9	91\%	0.123	1.42	8.720	0.532	1.021		10.273
	04-Jul	1007		4	274.0	91\%	0.061	1.11	5.186	0.248	0.796		6.230	411.0	91\%	0.092	1.50	7.029	0.387	1.079		8.495	548.0	91\%	0.123	1.87	8.721	0.531	1.339		10.591
	05 -Jul	1008		5	274.1	91\%	0.061	1.36	5.187	0.247	0.979		6.413	411.1	91\%	0.092	1.85	7.030	0.386	1.327		8.743	548.1	91\%	0.123	2.29	8.723	0.529	1.646		10.898
	06-Jul	1009		6	274.1	91\%	0.061	1.61	5.188	0.247	1.155		6.589	411.2	91\%	0.092	2.18	7.031	0.385	1.565		8.982	548.3	91\%	0.122	2.71	8.724	0.528	1.942		11.195
	07-Jul	1010		7	274.2	91\%	0.061	1.85	5.188	0.246	1.325		6.760	411.3	91\%	0.091	2.50	7.032	0.384	1.796		9.212	548.4	91\%	0.122	3.10	8.726	0.527	2.228		11.481
	08 -Jul	1011		8	274.3	91\%	0.061	2.07	5.189	0.246	1.489		6.924	411.4	91\%	0.091	2.81	7.034	0.383	2.018		9.435	548.5	91\%	0.122	3.49	8.727	0.526	2.504		11.757
	09-Jul	1012		9	274.3	91\%	0.061	2.29	5.190	0.245	1.647		7.082	411.5	91\%	0.091	3.11	7.035	0.382	2.233		9.650	548.6	91\%	0.121	3.86	8.729	0.524	2.770		12.023
	$10-\mathrm{Jul}$	1013		10	274.4	91\%	0.061	2.51	5.191	0.245	1.800		7.235	411.6	91\%	0.091	3.40	7.036	0.381	2.439		9.857	548.8	91\%	0.121	4.22	8.730	0.523	3.027		12.280
	11-Jul	1014		11	274.4	91\%	0.060	2.71	5.192	0.244	1.947		7.382	411.7	91\%	0.091	3.68	7.037	0.381	2.639		10.056	548.9	91\%	0.121	4.56	8.732	0.522	3.274		12.527
	12 -Jul	1015		12	274.5	91\%	0.060	2.91	5.193	0.243	2.088		7.524	411.7	91\%	0.090	3.94	7.038	0.380	2.830		10.248	549.0	91\%	0.121	4.89	8.733	0.520	3.512		12.766
	13-Jul	1016		13	274.6	92\%	0.060	3.10	5.194	0.243	2.225		7.661	411.8	92\%	0.090	4.20	7.039	0.379	3.015		10.433	549.1	92\%	0.120	5.21	8.734	0.519	3.741		12.995
	14-Jul	1017		14	274.6	92\%	0.060	3.28	5.194	0.242	2.356		7.792	411.9	92\%	0.090	4.45	7.041	0.378	3.193		10.611	549.2	92\%	0.120	5.52	8.736	0.518	3.962		13.216
	15-Jul	1018		15	274.7	92\%	0.060	3.46	5.195	0.242	2.482		7.919	412.0	92\%	0.090	4.69	7.042	0.377	3.364		10.783	549.4	92\%	0.120	5.82	8.737	0.517	4.174		13.428
	16-Jul	1019		16	274.7	92\%	0.060	3.63	5.196	0.241	2.603		8.040	412.1	92\%	0.090	4.92	7.043	0.376	3.529		10.947	549.5	92\%	0.119	6.10	8.739	0.515	4.378		13.632
	17-Jul	1020		17	274.8	92\%	0.060	3.79	5.197	0.240	2.720		8.157	412.2	92\%	0.089	5.14	7.044	0.375	3.687		11.106	549.6	92\%	0.119	6.37	8.740	0.514	4.574		13.829
	18-Jul	1021		18	274.9	92\%	0.059	3.95	5.198	0.240	2.832		8.270	412.3	92\%	0.089	5.35	7.045	0.374	3.838		11.258	549.7	92\%	0.119	6.64	8.742	0.513	4.763		14.017
	19-Jul	1022		19	274.9	92\%	0.059	4.10	5.199	0.239	2.939		8.377	412.4	92\%	0.089	5.55	7.046	0.373	3.984		11.404	549.8	92\%	0.119	6.89	8.743	0.512	4.944		14.198
	$20-\mathrm{Jul}$	1023		20	275.0	92\%	0.059	4.24	5.199	0.239	3.043		8.481	412.5	92\%	0.089	5.75	7.047	0.372	4.124		11.544	549.9	92\%	0.118	7.13	8.744	0.510	5.117		14.372
	${ }^{21-J u l}$	1024		21	275.0	92\%	0.059	4.38	5.200	0.238	3.141		8.580	412.5	92\%	0.089	5.93	7.048	0.371	4.258		11.678	550.1	92\%	0.118	7.36	8.746	0.509	5.283		14.538
	22 -Jul	1025		22	275.1	92\%	0.059	4.51	5.201	0.237	3.236		8.675	412.6	92\%	0.088	6.11	7.050	0.371	4.386		11.807	550.2	92\%	0.118	7.58	8.747	0.508	5.443		14.698
	${ }^{23-\mathrm{Jul}}$	1026		23	275.1	92\%	0.059	4.63	5.202	0.237	3.327		8.766	412.7	92\%	0.088	6.28	7.051	0.370	4.509		11.930	550.3	92\%	0.117	7.79	8.749	0.507	5.595		14.851
	24 -Jul	1027		24	275.2	92\%	0.059	4.76	5.203	0.236	3.414		8.853	412.8	92\%	0.088	6.45	7.052	0.369	4.627		12.048	550.4	92\%	0.117	8.00	8.750	0.506	5.741		14.997
	25 -Jul	1028		25	275.3	92\%	0.058	4.87	5.204	0.236	3.497		8.936	412.9	92\%	0.088	6.60	7.053	0.368	4.739		12.160	550.5	92\%	0.117	8.19	8.751	0.504	5.881		15.136
	26 -Jul	1029		26	275.3	92\%	0.058	4.98	5.204	0.235	3.576		9.016	413.0	92\%	0.087	6.75	7.054	0.367	4.847		12.268	550.6	92\%	0.117	8.38	8.753	0.503	6.014		15.270
	27-Jul	1030		27	275.4	92\%	0.058	5.09	5.205	0.235	3.652		9.092	413.1	92\%	0.087	6.90	7.055	0.366	4.949		12.371	550.8	92\%	0.116	8.56	8.754	0.502	6.141		15.397
	28 -Jul	1031		28	275.4	92\%	0.058	5.19	5.206	0.234	3.724		9.164	413.2	92\%	0.087	7.03	7.056	0.365	5.047		12.469	550.9	92\%	0.116	8.72	8.756	0.501	6.263		15.519
	29-Jul	1032		29	275.5	92\%	0.058	5.28	5.207	0.233	3.792		9.233	413.2	92\%	0.087	7.16	7.057	0.364	5.140		12.562	551.0	92\%	0.116	8.89	8.757	0.499	6.378		15.635
	30-Jul	1033		30	275.6	92\%	0.058	5.37	5.208	0.233	3.858		9.298	413.3	92\%	0.087	7.28	7.059	0.363	5.229		12.651	551.1	92\%	0.116	9.04	8.758	0.498	6.488		15.745
	31-Jul	1034		31	275.6	92\%	0.058	5.46	5.209	0.232	3.920		9.361	413.4	92\%	0.086	7.40	7.060	0.363	5.313		12.735	551.2	92\%	0.115	9.18	8.760	0.497	6.593		15.849
	01-Aug	1035		32	275.7	92\%	0.057	5.54	5.209	0.232	3.979		9.420	413.5	92\%	0.086	7.51	7.061	0.362	5.393		12.816	551.3	92\%	0.115	9.32	8.761	0.496	6.692		15.949
	02-Aug	1036		33	275.7	92\%	0.057	5.62	5.210	0.231	4.035		9.476	413.6	92\%	0.086	7.62	7.062	0.361	5.469		12.892	551.5	92\%	0.115	9.45	8.762	0.495	6.786		16.043
	03-Aug	1037		34	275.8	92\%	0.057	5.70	5.211	0.231	4.088		9.530	413.7	92\%	0.086	7.72	7.063	0.360	5.541		12.964	551.6	92\%	0.114	9.58	8.764	0.493	6.875		16.132
	04-Aug	1038		35	275.8	92\%	0.057	5.76	5.212	0.230	4.138		9.580	413.8	92\%	0.086	7.81	7.064	0.359	5.609		13.032	551.7	92\%	0.114	9.70	8.765	0.492	6.959		16.217
	05-Aug	1039		36	275.9	92\%	0.057	5.83	5.213	0.230	4.185		9.627	413.9	92\%	0.085	7.90	7.065	0.358	5.673		13.096	551.8	92\%	0.114	9.81	8.767	0.491	7.039		16.296
	06-Aug	1040		37	276.0	92\%	0.057	5.89	5.213	0.229	4.230		9.672	413.9	92\%	0.085	7.99	7.066	0.357	5.733		13.157	551.9	92\%	0.114	9.91	8.768	0.490	7.114		16.372
	07-Aug	1041		38	276.0	92\%	0.057	5.95	5.214	0.228	4.272		9.714	414.0	92\%	0.085	8.07	7.067	0.356	5.790		13.214	552.0	92\%	0.113	10.01	8.769	0.489	7.184		16.442
	08-Aug	1042		39	276.1	92\%	0.057	6.01	5.215	0.228	4.311		9.754	414.1	92\%	0.085	8.14	7.068	0.356	5.843		13.267	552.1	92\%	0.113	10.10	8.771	0.487	7.251		16.509
	09-Aug	1043		40	276.1	92\%	0.056	6.06	5.216	0.227	4.348		9.791	414.2	92\%	0.085	8.21	7.070	0.355	5.893		13.318	552.3	92\%	0.113	10.19	8.772	0.486	7.312		16.571
	10-Aug	1044		41	276.2	92\%	0.056	6.11	5.217	0.227	4.382		9.826	414.3	92\%	0.084	8.28	7.071	0.354	5.940		13.364	552.4	92\%	0.113	10.27	8.773	0.485	7.370		16.629
	11-Aug	1045		42	276.2	92\%	0.056	6.15	5.217	0.226	4.415		9.858	414.4	92\%	0.084	8.34	7.072	0.353	5.983		13.408	552.5	92\%	0.112	10.34	8.775	0.484	7.424		16.683
	12-Aug	1046		43	276.3	92\%	0.056	6.19	5.218	0.226	4.444		9.888	414.4	92\%	0.084	8.39	7.073	0.352	6.024		13.449	552.6	92\%	0.112	10.41	8.776	0.483	7.474		16.733
	13-Aug	1047		44	276.4	92\%	0.056	6.23	5.219	0.225	4.472		9.916	414.5	92\%	0.084	8.44	7.074	0.351	6.061		13.486	552.7	92\%	0.112	10.48	8.777	0.482	7.521		16.780
	14-Aug	1048		45	276.4	92\%	0.056	6.27	5.220	0.225	4.497		9.942	414.6	92\%	0.084	8.49	7.075	0.350	6.096		13.521	552.8	92\%	0.112	10.54	8.779	0.480	7.563		16.822
	15-Aug	1049		46	276.5	92\%	0.056	6.30	5.221	0.224	4.521		9.965	414.7	92\%	0.083	8.54	7.076	0.349	6.127		13.553	552.9	92\%	0.111	10.59	8.780	0.479	7.603		16.862
	16-Aug	1050		47	276.5	92\%	0.055	6.33	5.221	0.223	4.542		9.987	414.8	92\%	0.083	8.58	7.077	0.349	6.156		13.582	553.0	92\%	0.111	10.64	8.781	0.478	7.639		16.898
	17-Aug	1051		48	276.6	92\%	0.055	6.35	5.222	0.223	4.561		10.006	414.9	92\%	0.083	8.61	7.078	0.348	6.182		13.608	553.1	92\%	0.111	10.69	8.783	0.477	7.671		16.930
	18-Aug	1052		49	276.6	92\%	0.055	6.38	5.223	0.222	4.579		10.024	414.9	92\%	0.083	8.65	7.079	0.347	6.206		13.632	553.3	92\%	0.110	10.73	8.784	0.476	7.700		16.960
	19-Aug	1053		50	276.7	92\%	0.055	6.40	5.224	0.222	4.594		10.040	415.0	92\%	0.083	8.68	7.080	0.346	6.227		13.653	553.4	92\%	0.110	10.76	8.785	0.475	7.727		16.986
	20-Aug	1054		51	276.7	92\%	0.055	6.42	5.224	0.221	4.608		10.054	415.1	92\%	0.082	8.70	7.081	0.345	6.246		13.672	553.5	92\%	0.110	10.80	8.787	0.473	7.750		17.010
	21-Aug	1055		52	276.8	92\%	0.055	6.44	5.225	0.221	4.620		10.066	415.2	92\%	0.082	8.72	7.082	0.344	6.262		13.689	553.6	92\%	0.110	10.82	8.788	0.472	7.770		17.030
	22-Aug	1056		53	276.8	92\%	0.055	6.45	5.226	0.220	4.630		10.077	415.3	92\%	0.082	8.74	7.083	0.344	6.276		13.703	553.7	92\%	0.109	10.85	8.789	0.471	7.787		17.048
	23-Aug	1057		54	276.9	92\%	0.055	6.46	5.227	0.220	4.639		10.086	415.4	92\%	0.082	8.76	7.084	0.343	6.288		13.715	553.8	92\%	0.109	10.87	8.790	0.470	7.802		17.062
	24-Aug	1058		55	277.0	92\%	0.054	6.47	5.228	0.219	4.646		10.093	415.4	92\%	0.082	8.77	7.085	0.342	6.298		13.725	553.9	92\%	0.109	10.89	8.792	0.469	7.814		17.075
	25-Aug	1059		56	277.0	92\%	0.054	6.48	5.228	0.219	4.652		10.099	415.5	92\%	0.081	8.78	7.087	0.341	6.305		13.733	554.0	92\%	0.109	10.90	8.793	0.468	7.824		17.084
	26-Aug	1060		57	277.1	92\%	0.054	6.49	5.229	0.218	4.656		10.103	415.6	92\%	0.081	8.79	7.088	0.340	6.311		13.739	554.1	92\%	0.108	10.91	8.794	0.466	7.831		17.091
	27-Aug	1061		58	277.1	92\%	0.054	6.49	5.230	0.218	4.659		10.106	415.7	92\%	0.081	8.80	7.089	0.339	6.315		13.743	554.2	92\%	0.108	10.92	8.796	0.465	7.835		17.096
	28-Aug	1062		59	277.2	92\%	0.054	6.49	5.231	0.217	4.660		10.108	415.8	92\%	0.081	8.80	7.090	0.339	6.316		13.745	554.3	92\%	0.108	10.92	8.797	0.464	7.837		17.099
	29-Aug	1063		60	277.2	92\%	0.054	6.49	5.231	0.216	4.660		10.108	415.8	92\%	0.081	8.80	7.091	0.338	6.316		13.745	554.5	92\%	0.108	10.92	8.798	0.463	7.837		17.099
	30-Aug	1064		61	277.3	92\%	0.054	6.49	5.232	0.216	4.659		10.107	415.9	92\%	0.081	8.80	7.092	0.337	6.315		13.743	554.6	92\%	0.107	10.92	8.799	0.462	7.835		17.097

 | 0 | 92% | 0.08 |
| :--- | :--- | :--- | $92 \% \quad 0.080$ 0.080

0.080
 7.093
7.094
7.095
7.096
7.097
7.098
7.099
7.100
7.101
7.102
7.103
7.104
7.105
7.106
7.107
7.108
7.109
7.110
7.111
7.112
7.113
7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.121
7.122
7.123
7.124
7.125
7.126
7.127
7.128
7.129
7.130
7.131
7.132
7.133
7.134
7.135
7.136
7.136
7.137
7.138
7

	06-Nov	1132		129	280.7	94\%	0.046	4.38	5.280	0.183	3.142		8.605	421.0	94\%	0.069	5.93	7.156	0.285	4.259		11.700	561.3	94\%	0.091	7.36	8.879	0.391	5.284		14.555
	07-Nov	1133		130	280.7	94\%	0.046	4.34	5.280	0.182	3.114		8.576	421.0	94\%	0.068	5.88	7.157	0.284	4.220		11.662	561.4	94\%	0.091	7.30	8.881	0.390	5.236		14.507
	08 -Nov	1134		131	280.7	94\%	0.046	4.30	5.281	0.182	3.085		8.548	421.1	94\%	0.068	5.83	7.158	0.284	4.182		11.623	561.5	94\%	0.091	7.23	8.882	0.389	5.189		14.459
	09 -Nov	1135		132	280.8	94\%	0.045	4.26	5.282	0.181	3.057		8.520	421.2	94\%	0.068	5.77	7.159	0.283	4.143		11.585	561.6	94\%	0.091	7.16	8.883	0.388	5.141		14.412
	$10-\mathrm{Nov}$	1136		133	280.8	94\%	0.045	4.22	5.282	0.181	3.029		8.492	421.2	94\%	0.068	5.72	7.160	0.282	4.105		11.547	561.7	94\%	0.091	7.10	8.884	0.387	5.094		14.365
	11-Nov	1137		134	280.9	94\%	0.045	4.18	5.283	0.180	3.001		8.464	421.3	94\%	0.068	5.67	7.161	0.282	4.067		11.509	561.8	94\%	0.090	7.03	8.885	0.386	5.047		14.318
	12-Nov	1138		135	280.9	94\%	0.045	4.14	5.284	0.180	2.973		8.436	421.4	94\%	0.068	5.61	7.161	0.281	4.029		11.472	561.8	94\%	0.090	6.97	8.886	0.385	5.000		14.271
	13 -Nov	1139		136	281.0	94\%	0.045	4.10	5.284	0.180	2.945		8.409	421.5	94\%	0.067	5.56	7.162	0.280	3.991		11.434	561.9	94\%	0.090	6.90	8.887	0.384	4.953		14.224
	14-Nov	1140		137	281.0	94\%	0.045	4.06	5.285	0.179	2.917		8.381	421.5	94\%	0.067	5.51	7.163	0.280	3.954		11.396	562.0	94\%	0.090	6.83	8.888	0.383	4.906		14.17
	15-Nov	1141		138	281.1	94\%	0.045	4.03	5.286	0.179	2.889		8.354	421.6	94\%	0.067	5.46	7.164	0.279	3.916		11.359	562.1	94\%	0.090	6.77	8.889	0.382	4.859		14.131
	16-Nov	1142		139	281.1	94\%	0.045	3.99	5.286	0.178	2.862		8.326	421.7	94\%	0.067	5.40	7.165	0.278	3.879		11.322	562.2	94\%	0.089	6.71	8.890	0.381	4.813		14.085
	17-Nov	1143		140	281.1	94\%	0.045	3.95	5.287	0.178	2.834		8.299	421.7	94\%	0.067	5.35	7.166	0.277	3.842		11.285	562.3	94\%	0.089	6.64	8.891	0.380	4.767		14.038
	18-Nov	1144		141	281.2	94\%	0.044	3.91	5.287	0.177	2.807		8.272	421.8	94\%	0.067	5.30	7.167	0.277	3.805		11.248	562.4	94\%	0.089	6.58	8.892	0.379	4.721		13.993
	19 -Nov	1145		142	281.2	94\%	0.044	3.87	5.288	0.177	2.780		8.245	421.9	94\%	0.067	5.25	7.167	0.276	3.768		11.211	562.5	94\%	0.089	6.51	8.893	0.379	4.675		13.947
	20-Nov	1146		143	281.3	94\%	0.044	3.83	5.289	0.177	2.753		8.218	421.9	94\%	0.066	5.20	7.168	0.275	3.731		11.175	562.6	94\%	0.088	6.45	8.894	0.378	4.630		13.902
	21-Nov	1147		144	281.3	94\%	0.044	3.80	5.289	0.176	2.726		8.191	422.0	94\%	0.066	5.15	7.169	0.275	3.695		11.138	562.6	94\%	0.088	6.39	8.895	0.377	4.584		13.856
	22-Nov	1148		145	281.4	94\%	0.044	3.76	5.290	0.176	2.699		8.165	422.1	94\%	0.066	5.10	7.170	0.274	3.658		11.102	562.7	94\%	0.088	6.32	8.896	0.376	4.539		13.811
	23 -Nov	1149		146	281.4	94\%	0.044	3.72	5.291	0.175	2.672		8.138	422.1	94\%	0.066	5.05	7.171	0.273	3.622		11.066	562.8	94\%	0.088	6.26	8.898	0.375	4.494		13.767
	24-Nov	1150		147	281.5	94\%	0.044	3.69	5.291	0.175	2.646		8.112	422.2	94\%	0.066	5.00	7.172	0.273	3.586		11.030	562.9	94\%	0.088	6.20	8.899	0.374	4.450		13.722
	25 -Nov	1151		148	281.5	94\%	0.044	3.65	5.292	0.174	2.619		8.085	422.2	94\%	0.066	4.95	7.172	0.272	3.550		10.995	563.0	94\%	0.087	6.14	8.900	0.373	4.405		13.678
	26-Nov	1152		149	281.5	94\%	0.044	3.61	5.292	0.174	2.593		8.059	422.3	94\%	0.065	4.90	7.173	0.271	3.515		10.959	563.1	94\%	0.087	6.08	8.901	0.372	4.361		13.634
	27-Nov	1153		150	281.6	94\%	0.044	3.58	5.293	0.173	2.567		8.033	422.4	94\%	0.065	4.85	7.174	0.271	3.479		10.924	563.2	94\%	0.087	6.01	8.902	0.371	4.317		13.590
	28-Nov	1154		151	281.6	94\%	0.043	3.54	5.294	0.173	2.541		8.008	422.4	94\%	0.065	4.80	7.175	0.270	3.444		10.889	563.3	94\%	0.087	5.95	8.903	0.370	4.274		13.546
	29-Nov	1155		152	281.7	94\%	0.043	3.50	5.294	0.173	2.515		7.982	422.5	94\%	0.065	4.75	7.176	0.269	3.409		10.854	563.3	94\%	0.087	5.89	8.904	0.369	4.230		13.503
	30-Nov	1156		153	281.7	94\%	0.043	3.47	5.295	0.172	2.490		7.957	422.6	94\%	0.065	4.70	7.177	0.269	3.374		10.820	563.4	94\%	0.086	5.83	8.905	0.368	4.187		13.460
	01-Dec	1157		154	281.8	94\%	0.043	3.43	5.295	0.172	2.464		7.931	422.6	94\%	0.065	4.65	7.177	0.268	3.340		10.785	563.5	94\%	0.086	5.77	8.906	0.367	4.144		13.417
	02-Dec	1158		155	281.8	94\%	0.043	3.40	5.296	0.171	2.439		7.906	422.7	94\%	0.065	4.61	7.178	0.267	3.306		10.751	563.6	94\%	0.086	5.71	8.907	0.367	4.102		13.375
	$03-$ Dec	1159		156	281.8	94\%	0.043	3.36	5.297	0.171	2.414		7.881	422.8	94\%	0.064	4.56	7.179	0.267	3.271		10.717	563.7	94\%	0.086	5.66	8.908	0.366	4.059		13.333
	04-Dec	1160		157	281.9	94\%	0.043	3.33	5.297	0.171	2.389		7.856	422.8	94\%	0.064	4.51	7.180	0.266	3.238		10.683	563.8	94\%	0.086	5.60	8.909	0.365	4.017		13.291
	05-Dec	1161		158	281.9	94\%	0.043	3.29	5.298	0.170	2.364		7.832	422.9	94\%	0.064	4.46	7.181	0.265	3.204		10.650	563.9	94\%	0.085	5.54	8.910	0.364	3.975		13.249
	06-Dec	1162		159	282.0	94\%	0.043	3.26	5.298	0.170	2.339		7.807	423.0	94\%	0.064	4.42	7.182	0.265	3.170		10.617	563.9	94\%	0.085	5.48	8.911	0.363	3.934		13.208
	07-Dec	1163		160	282.0	94\%	0.043	3.22	5.299	0.169	2.315		7.783	423.0	94\%	0.064	4.37	7.182	0.264	3.137		10.584	564.0	94\%	0.085	5.42	8.912	0.362	3.893		13.166
	08 -Dec	1164		161	282.1	94\%	0.042	3.19	5.300	0.169	2.290		7.759	423.1	94\%	0.064	4.32	7.183	0.263	3.104		10.551	564.1	94\%	0.085	5.37	8.913	0.361	3.852		13.126
	09-Dec	1165		162	282.1	94\%	0.042	3.16	5.300	0.168	2.266		7.735	423.2	94\%	0.063	4.28	7.184	0.263	3.071		10.518	564.2	94\%	0.085	5.31	8.914	0.360	3.811		13.085
	10-Dec	1166		163	282.1	94\%	0.042	3.12	5.301	0.168	2.242		7.711	423.2	94\%	0.063	4.23	7.185	0.262	3.039		10.486	564.3	94\%	0.084	5.25	8.915	0.359	3.771		13.045
	11-Dec	1167		164	282.2	94\%	0.042	3.09	5.301	0.168	2.218		7.687	423.3	94\%	0.063	4.19	7.186	0.261	3.006		10.454	564.4	94\%	0.084	5.20	8.916	0.358	3.730		13.005
	12-Dec	1168		165	282.2	94\%	0.042	3.06	5.302	0.167	2.194		7.664	423.3	94\%	0.063	4.14	7.186	0.261	2.974		10.422	564.5	94\%	0.084	5.14	8.917	0.358	3.691		12.965
	13-Dec	1169		166	282.3	94\%	0.042	3.02	5.303	0.167	2.171		7.640	423.4	94\%	0.063	4.10	7.187	0.260	2.943		10.390	564.5	94\%	0.084	5.09	8.918	0.357	3.651		12.926
	14-Dec	1170		167	282.3	94\%	0.042	2.99	5.303	0.166	2.148		7.617	423.5	94\%	0.063	4.06	7.188	0.260	2.911		10.358	564.6	94\%	0.084	5.03	8.919	0.356	3.612		12.887
	15-Dec	1171		168	282.4	94\%	0.042	2.96	5.304	0.166	2.125		7.594	423.5	94\%	0.063	4.01	7.189	0.259	2.880		10.327	564.7	94\%	0.083	4.98	8.920	0.355	3.573		12.848
	16-Dec	1172		169	282.4	94\%	0.042	2.93	5.304	0.166	2.102		7.571	423.6	94\%	0.062	3.97	7.190	0.258	2.848		10.296	564.8	94\%	0.083	4.92	8.921	0.354	3.534		12.809
	17-Dec	1173		170	282.4	94\%	0.042	2.90	5.305	0.165	2.079		7.549	423.7	94\%	0.062	3.93	7.190	0.258	2.818		10.265	564.9	94\%	0.083	4.87	8.922	0.353	3.496		12.771
	18-Dec	1174		171	282.5	94\%	0.041	2.86	5.306	0.165	2.056		7.526	423.7	94\%	0.062	3.88	7.191	0.257	2.787		10.235	565.0	94\%	0.083	4.82	8.923	0.352	3.458		12.733
	19-Dec	1175		172	282.5	94\%	0.041	2.83	5.306	0.164	2.034		7.504	423.8	94\%	0.062	3.84	7.192	0.256	2.756		10.205	565.0	94\%	0.083	4.76	8.924	0.351	3.420		12.695
	20-Dec	1176		173	282.6	94\%	0.041	2.80	5.307	0.164	2.011		7.482	423.8	94\%	0.062	3.80	7.193	0.256	2.726		10.175	565.1	94\%	0.082	4.71	8.925	0.351	3.383		12.658
	21-Dec	1177		174	282.6	94\%	0.041	2.77	5.307	0.163	1.989		7.460	423.9	94\%	0.062	3.76	7.193	0.255	2.696		10.145	565.2	94\%	0.082	4.66	8.926	0.350	3.346		12.621
	22-Dec	1178		175	282.6	94\%	0.041	2.74	5.308	0.163	1.967		7.438	424.0	94\%	0.062	3.72	7.194	0.254	2.667		10.115	565.3	94\%	0.082	4.61	8.927	0.349	3.309		12.584
Second breeding	23 -Dec	1179	1	176	282.7	94\%	0.041	2.71	5.308	0.163	1.946	0.005	7.422	424.0	94\%	0.061	3.67	7.195	0.254	2.637	0.008	10.094	565.4	94\%	0.082	4.56	8.928	0.348	3.272	0.011	12.559
	24-Dec	1180	2	177	282.7	94\%	0.041	2.68	5.309	0.162	1.924	0.005	7.401	424.1	94\%	0.061	3.63	7.196	0.253	2.608	0.008	10.065	565.4	94\%	0.082	4.51	8.929	0.347	3.236	0.011	12.523
	$25-$ Dec	1181	3	178	282.8	94\%	0.041	2.65	5.310	0.162	1.903	0.005	7.380	424.1	94\%	0.061	3.59	7.197	0.253	2.579	0.009	10.037	565.5	94\%	0.081	4.46	8.930	0.346	3.200	0.011	12.487
	26-Dec	1182	4	179	282.8	94\%	0.041	2.62	5.310	0.161	1.882	0.006	7.359	424.2	94\%	0.061	3.55	7.197	0.252	2.550	0.009	10.008	565.6	94\%	0.081	4.41	8.931	0.345	3.164	0.012	12.452
	27-Dec	1183	5	180	282.8	94\%	0.041	2.59	5.311	0.161	1.861	0.006	7.338	424.3	94\%	0.061	3.51	7.198	0.251	2.522	0.009	9.980	565.7	94\%	0.081	4.36	8.932	0.345	3.129	0.012	12.417
	28-Dec	1184	6	181	282.9	94\%	0.040	2.56	5.311	0.161	1.840	0.006	7.318	424.3	94\%	0.061	3.47	7.199	0.251	2.494	0.009	9.952	565.8	94\%	0.081	4.31	8.932	0.344	3.094	0.012	12.383
	29-Dec	1185	7	182	282.9	94\%	0.040	2.53	5.312	0.160	1.819	0.006	7.297	424.4	94\%	0.061	3.43	7.200	0.250	2.465	0.010	9.925	565.9	94\%	0.081	4.26	8.933	0.343	3.059	0.013	12.348
	30-Dec	1186	8	183	283.0	94\%	0.040	2.51	5.312	0.160	1.799	0.006	7.277	424.4	94\%	0.060	3.40	7.200	0.249	2.438	0.010	9.898	565.9	94\%	0.081	4.21	8.934	0.342	3.025	0.013	12.314
	31-Dec	1187	9	184	283.0	94\%	0.040	2.48	5.313	0.159	1.778	0.006	7.257	424.5	94\%	0.060	3.36	7.201	0.249	2.410	0.010	9.870	566.0	94\%	0.080	4.17	8.935	0.341	2.991	0.014	12.281
	01-Jan	1188	10	185	283.0	94\%	0.040	2.45	5.314	0.159	1.758	0.007	7.237	424.6	94\%	0.060	3.32	7.202	0.248	2.383	0.011	9.844	566.1	94\%	0.080	4.12	8.936	0.340	2.957	0.014	12.247
	02 -Jan	1189	11	186	283.1	94\%	0.040	2.42	5.314	0.159	1.738	0.007	7.218	424.6	94\%	0.060	3.28	7.203	0.248	2.356	0.011	9.817	566.2	94\%	0.080	4.07	8.937	0.339	2.923	0.014	12.214
	$03-\mathrm{Jan}$	1190	12	187	283.1	94\%	0.040	2.39	5.315	0.158	1.718	0.007	7.198	424.7	94\%	0.060	3.24	7.204	0.247	2.329	0.011	9.791	566.3	94\%	0.080	4.03	8.938	0.339	2.890	0.015	12.182
	04-Jan	1191	13	188	283.2	94\%	0.040	2.37	5.315	0.158	1.699	0.007	7.179	424.7	94\%	0.060	3.21	7.204	0.246	2.302	0.012	9.765	566.3	94\%	0.080	3.98	8.939	0.338	2.857	0.015	12.149
	$05-\mathrm{Jan}$	1192	14	189	283.2	94\%	0.040	2.34	5.316	0.158	1.679	0.008	7.160	424.8	94\%	0.060	3.17	7.205	0.246	2.276	0.012	9.739	566.4	94\%	0.079	3.93	8.940	0.337	2.824	0.016	12.117
	$06-\mathrm{Jan}$	1193	15	190	283.2	94\%	0.040	2.31	5.316	0.157	1.660	0.008	7.141	424.9	94\%	0.059	3.13	7.206	0.245	2.250	0.012	9.713	566.5	94\%	0.079	3.89	8.941	0.336	2.792	0.016	12.085
	07-Jan	1194	16	191	283.3	94\%	0.040	2.29	5.317	0.157	1.641	0.008	7.123	424.9	94\%	0.059	3.10	7.207	0.245	2.224	0.013	9.688	566.6	94\%	0.079	3.84	8.942	0.335	2.760	0.017	12.054
	$08-\mathrm{Jan}$	1195	17	192	283.3	94\%	0.039	2.26	5.317	0.156	1.622	0.008	7.104	425.0	94\%	0.059	3.06	7.207	0.244	2.199	0.013	9.663	566.6	94\%	0.079	3.80	8.943	0.334	2.728	0.017	12.023
	09-Jan	1196	18	193	283.4	94\%	0.039	2.23	5.318	0.156	1.603	0.008	7.086	425.0	94\%	0.059	3.03	7.208	0.243	2.173	0.013	9.638	566.7	94\%	0.079	3.76	8.944	0.334	2.697	0.018	11.992
	10-Jan	1197	19	194	283.4	94\%	0.039	2.21	5.319	0.156	1.585	0.009	7.068	425.1	94\%	0.059	2.99	7.209	0.243	2.148	0.014	9.613	566.8	94\%	0.078	3.71	8.945	0.333	2.665	0.018	11.961
	11-Jan	1198	20	195	283.4	94\%	0.039	2.18	5.319	0.155	1.566	0.009	7.050	425.2	94\%	0.059	2.96	7.210	0.242	2.123	0.014	9.589	566.9	94\%	0.078	3.67	8.946	0.332	2.634	0.019	11.931

	12-Jan	1199	21	196	283.5	94\%	0.039	2.16	5.320	0.155	1.548	0.009	7.032	425.2	94\%	0.059	2.92	7.210	0.242	2.098	0.015	9.565	567.0	94\%	0.078	3.63	8.947	0.331	2.604	0.019	11.901
	13-Jan	1200	22	197	283.5	95\%	0.039	2.13	5.320	0.154	1.530	0.010	7.014	425.3	95\%	0.058	2.89	7.211	0.241	2.074	0.015	9.541	567.0	95\%	0.078	3.59	8.947	0.330	2.573	0.020	11.871
	14-Jan	1201	23	198	283.6	95\%	0.039	2.11	5.321	0.154	1.512	0.010	6.997	425.3	95\%	0.058	2.86	7.212	0.240	2.050	0.016	9.517	567.1	95\%	0.078	3.54	8.948	0.329	2.543	0.021	11.842
	15-Jan	1202	24	199	283.6	95\%	0.039	2.08	5.321	0.154	1.495	0.010	6.980	425.4	95\%	0.058	2.82	7.213	0.240	2.026	0.016	9.494	567.2	95\%	0.078	3.50	8.949	0.329	2.514	0.021	11.813
	16-Jan	1203	25	200	283.6	95\%	0.039	2.06	5.322	0.153	1.477	0.010	6.963	425.5	95\%	0.058	2.79	7.213	0.239	2.002	0.016	9.471	567.3	95\%	0.077	3.46	8.950	0.328	2.484	0.022	11.784
	17-Jan	1204	26	201	283.7	95\%	0.039	2.03	5.322	0.153	1.460	0.011	6.946	425.5	95\%	0.058	2.76	7.214	0.239	1.979	0.017	9.448	567.4	95\%	0.077	3.42	8.951	0.327	2.455	0.023	11.756
	18 -Jan	1205	27	202	283.7	95\%	0.038	2.01	5.323	0.152	1.443	0.011	6.929	425.6	95\%	0.058	2.72	7.215	0.238	1.955	0.017	9.425	567.4	95\%	0.077	3.38	8.952	0.326	2.426	0.023	11.728
	19-Jan	1206	28	203	283.8	95\%	0.038	1.99	5.323	0.152	1.426	0.011	6.912	425.6	95\%	0.058	2.69	7.215	0.237	1.932	0.018	9.403	567.5	95\%	0.077	3.34	8.953	0.325	2.397	0.024	11.700
	$20-\mathrm{Jan}$	1207	29	204	283.8	95\%	0.038	1.96	5.324	0.152	1.409	0.012	6.896	425.7	95\%	0.057	2.66	7.216	0.237	1.909	0.018	9.381	567.6	95\%	0.077	3.30	8.954	0.325	2.369	0.025	11.672
First Calves are weaned	21-Jan	1208	30	205	283.8	95\%	0.038	1.94	5.325	0.151	1.392	0.012	6.880	425.7	95\%	0.057	2.63	7.217	0.236	1.887	0.019	9.359	567.7	95\%	0.076	3.26	8.955	0.324	2.341	0.025	11.645
	22-Jan	1209	31		283.9	95\%	0.038		5.325	0.151		0.012	5.488	425.8	95\%	0.057		7.218	0.236		0.020	7.473	567.7	95\%	0.076		8.956	0.323		0.026	9.305
	23 -Jan	1210	32		283.9	95\%	0.038		5.326	0.151		0.013	5.489	425.9	95\%	0.057		7.218	0.235		0.020	7.473	567.8	95\%	0.076		8.957	0.322		0.027	9.306
	24-Jan	1211	33		283.9	95\%	0.038		5.326	0.150		0.013	5.490	425.9	95\%	0.057		7.219	0.234		0.021	7.474	567.9	95\%	0.076		8.957	0.321		0.028	9.306
	$25-J a n$	1212	34		284.0	95\%	0.038		5.327	0.150		0.014	5.490	426.0	95\%	0.057		7.220	0.234		0.021	7.475	568.0	95\%	0.076		8.958	0.321		0.028	9.307
	26-Jan	1213	35		284.0	95\%	0.038		5.327	0.149		0.014	5.491	426.0	95\%	0.057		7.221	0.233		0.022	7.476	568.0	95\%	0.076		8.959	0.320		0.029	9.308
	27 -Jan	1214	36		284.1	95\%	0.038		5.328	0.149		0.014	5.491	426.1	95\%	0.057		7.221	0.233		0.023	7.476	568.1	95\%	0.075		8.960	0.319		0.030	9.309
	28 -Jan	1215	37		284.1	95\%	0.038		5.328	0.149		0.015	5.492	426.1	95\%	0.056		7.222	0.232		0.023	7.477	568.2	95\%	0.075		8.961	0.318		0.031	9.310
	29-Jan	1216	38		284.1	95\%	0.038		5.329	0.148		0.015	5.492	426.2	95\%	0.056		7.223	0.231		0.024	7.478	568.3	95\%	0.075		8.962	0.317		0.032	9.311
	30-Jan	1217	39		284.2	95\%	0.037		5.329	0.148		0.016	5.493	426.3	95\%	0.056		7.223	0.231		0.025	7.479	568.3	95\%	0.075		8.963	0.317		0.033	9.312
First Calves are sold	31-Jan	1218	40		284.2	95\%	0.037		5.330	0.148		0.016	5.494	426.3	95\%	0.056		7.224	0.230		0.025	7.480	568.4	95\%	0.075		8.964	0.316		0.034	9.313
	01-Feb	1219	41		284.2	95\%	0.037		5.330	0.147		0.016	5.494	426.4	95\%	0.056		7.225	0.230		0.026	7.481	568.5	95\%	0.074		8.965	0.315		0.035	9.314
	02 -Feb	1220	42		284.3	95\%	0.037		5.331	0.147		0.017	5.495	426.4	95\%	0.056		7.226	0.229		0.027	7.481	568.6	95\%	0.074		8.965	0.314		0.036	9.315
	03 -Feb	1221	43		284.3	95\%	0.037		5.331	0.147		0.017	5.495	426.5	95\%	0.056		7.226	0.229		0.028	7.482	568.6	95\%	0.074		8.966	0.313		0.037	9.317
	04-Feb	1222	44		284.4	95\%	0.037		5.332	0.146		0.018	5.496	426.5	95\%	0.055		7.227	0.228		0.028	7.483	568.7	95\%	0.074		8.967	0.313		0.038	9.318
	05 -Feb	1223	45		284.4	95\%	0.037		5.332	0.146		0.018	5.497	426.6	95\%	0.055		7.228	0.227		0.029	7.484	568.8	95\%	0.074		8.968	0.312		0.039	9.319
	$06-\mathrm{Feb}$	1224	46		284.4	95\%	0.037		5.333	0.145		0.019	5.497	426.6	95\%	0.055		7.228	0.227		0.030	7.485	568.9	95\%	0.074		8.969	0.311		0.040	9.320
	$07-\mathrm{Feb}$	1225	47		284.5	95\%	0.037		5.333	0.145		0.020	5.498	426.7	95\%	0.055		7.229	0.226		0.031	7.486	568.9	95\%	0.073		8.970	0.310		0.041	9.321
	08 -Feb	1226	48		284.5	95\%	0.037		5.334	0.145		0.020	5.499	426.8	95\%	0.055		7.230	0.226		0.032	7.487	569.0	95\%	0.073		8.971	0.310		0.042	9.323
	09 -Feb	1227	49		284.5	95\%	0.037		5.335	0.144		0.021	5.500	426.8	95\%	0.055		7.230	0.225		0.033	7.488	569.1	95\%	0.073		8.972	0.309		0.043	9.324
	10-Feb	1228	50		284.6	95\%	0.036		5.335	0.144		0.021	5.500	426.9	95\%	0.055		7.231	0.225		0.033	7.489	569.1	95\%	0.073		8.972	0.308		0.045	9.325
	11-Feb	1229	51		284.6	95\%	0.036		5.336	0.144		0.022	5.501	426.9	95\%	0.055		7.232	0.224		0.034	7.490	569.2	95\%	0.073		8.973	0.307		0.046	9.326
	12-Feb	1230	52		284.6	95\%	0.036		5.336	0.143		0.022	5.502	427.0	95\%	0.054		7.233	0.224		0.035	7.491	569.3	95\%	0.073		8.974	0.307		0.047	9.328
	13-Feb	1231	53		284.7	95\%	0.036		5.337	0.143		0.023	5.503	427.0	95\%	0.054		7.233	0.223		0.036	7.493	569.4	95\%	0.072		8.975	0.306		0.048	9.329
	14-Feb	1232	54		284.7	95\%	0.036		5.337	0.143		0.024	5.503	427.1	95\%	0.054		7.234	0.222		0.037	7.494	569.4	95\%	0.072		8.976	0.305		0.050	9.331
	15 -Feb	1233	55		284.8	95\%	0.036		5.338	0.142		0.024	5.504	427.1	95\%	0.054		7.235	0.222		0.038	7.495	569.5	95\%	0.072		8.977	0.304		0.051	9.332
	16-Feb	1234	56		284.8	95\%	0.036		5.338	0.142		0.025	5.505	427.2	95\%	0.054		7.235	0.221		0.039	7.496	569.6	95\%	0.072		8.978	0.303		0.053	9.334
	17 -Feb	1235	57		284.8	95\%	0.036		5.339	0.142		0.026	5.506	427.2	95\%	0.054		7.236	0.221		0.041	7.497	569.7	95\%	0.072		8.978	0.303		0.054	9.335
	18-Feb	1236	58		284.9	95\%	0.036		5.339	0.141		0.026	5.507	427.3	95\%	0.054		7.237	0.220		0.042	7.499	569.7	95\%	0.072		8.979	0.302		0.056	9.337
	19-Feb	1237	59		284.9	95\%	0.036		5.340	0.141		0.027	5.508	427.3	95\%	0.054		7.237	0.220		0.043	7.500	569.8	95\%	0.071		8.980	0.301		0.057	9.338
	$20-\mathrm{Feb}$	1238	60		284.9	95\%	0.036		5.340	0.140		0.028	5.508	427.4	95\%	0.053		7.238	0.219		0.044	7.501	569.9	95\%	0.071		8.981	0.300		0.059	9.340
	21-Feb	1239	61		285.0	95\%	0.036		5.341	0.140		0.029	5.509	427.5	95\%	0.053		7.239	0.219		0.045	7.503	569.9	95\%	0.071		8.982	0.300		0.060	9.342
	22-Feb	1240	62		285.0	95\%	0.035		5.341	0.140		0.029	5.510	427.5	95\%	0.053		7.239	0.218		0.046	7.504	570.0	95\%	0.071		8.983	0.299		0.062	9.344
	23 -Feb	1241	63		285.0	95\%	0.035		5.342	0.139		0.030	5.511	427.6	95\%	0.053		7.240	0.218		0.048	7.505	570.1	95\%	0.071		8.983	0.298		0.064	9.345
	24-Feb	1242	64		285.1	95\%	0.035		5.342	0.139		0.031	5.512	427.6	95\%	0.053		7.241	0.217		0.049	7.507	570.2	95\%	0.071		8.984	0.297		0.065	9.347
	25 -Feb	1243	65		285.1	95\%	0.035		5.343	0.139		0.032	5.513	427.7	95\%	0.053		7.241	0.216		0.050	7.508	570.2	95\%	0.070		8.985	0.297		0.067	9.349
	26-Feb	1244	66		285.1	95\%	0.035		5.343	0.138		0.033	5.514	427.7	95\%	0.053		7.242	0.216		0.052	7.510	570.3	95\%	0.070		8.986	0.296		0.069	9.351
	27 -Feb	1245	67		285.2	95\%	0.035		5.344	0.138		0.034	5.515	427.8	95\%	0.053		7.243	0.215		0.053	7.511	570.4	95\%	0.070		8.987	0.295		0.071	9.353
	28-Feb	1246	68		285.2	95\%	0.035		5.344	0.138		0.035	5.516	427.8	95\%	0.052		7.243	0.215		0.055	7.513	570.4	95\%	0.070		8.988	0.295		0.073	9.355
	01-Mar	1247	69		285.3	95\%	0.035		5.345	0.137		0.036	5.517	427.9	95\%	0.052		7.244	0.214		0.056	7.514	570.5	95\%	0.070		8.988	0.294		0.075	9.357
	02-Mar	1248	70		285.3	95\%	0.035		5.345	0.137		0.036	5.519	427.9	95\%	0.052		7.245	0.214		0.058	7.516	570.6	95\%	0.070		8.989	0.293		0.077	9.359
	03-Mar	1249	71		285.3	95\%	0.035		5.346	0.137		0.037	5.520	428.0	95\%	0.052		7.245	0.213		0.059	7.518	570.6	95\%	0.069		8.990	0.292		0.079	9.361
	04-Mar	1250	72		285.4	95\%	0.035		5.346	0.136		0.038	5.521	428.0	95\%	0.052		7.246	0.213		0.061	7.519	570.7	95\%	0.069		8.991	0.292		0.081	9.363
	05-Mar	1251	73		285.4	95\%	0.035		5.346	0.136		0.039	5.522	428.1	95\%	0.052		7.247	0.212		0.062	7.521	570.8	95\%	0.069		8.992	0.291		0.083	9.366
	06-Mar	1252	74		285.4	95\%	0.034		5.347	0.136		0.041	5.523	428.1	95\%	0.052		7.247	0.212		0.064	7.523	570.8	95\%	0.069		8.993	0.290		0.085	9.368
	07-Mar	1253	75		285.5	95\%	0.034		5.347	0.135		0.042	5.524	428.2	95\%	0.052		7.248	0.211		0.066	7.525	570.9	95\%	0.069		8.993	0.289		0.088	9.370
	08-Mar	1254	76		285.5	95\%	0.034		5.348	0.135		0.043	5.526	428.2	95\%	0.051		7.249	0.211		0.067	7.527	571.0	95\%	0.069		8.994	0.289		0.090	9.373
	09-Mar	1255	77		285.5	95\%	0.034		5.348	0.135		0.044	5.527	428.3	95\%	0.051		7.249	0.210		0.069	7.529	571.1	95\%	0.068		8.995	0.288		0.092	9.375
	10-Mar	1256	78		285.6	95\%	0.034		5.349	0.134		0.045	5.528	428.3	95\%	0.051		7.250	0.210		0.071	7.531	571.1	95\%	0.068		8.996	0.287		0.095	9.378
	11-Mar	1257	79		285.6	95\%	0.034		5.349	0.134		0.046	5.530	428.4	95\%	0.051		7.251	0.209		0.073	7.533	571.2	95\%	0.068		8.997	0.287		0.097	9.380
	12-Mar	1258	80		285.6	95\%	0.034		5.350	0.134		0.047	5.531	428.4	95\%	0.051		7.251	0.208		0.075	7.535	571.3	95\%	0.068		8.997	0.286		0.100	9.383
	13-Mar	1259	81		285.7	95\%	0.034		5.350	0.133		0.049	5.532	428.5	95\%	0.051		7.252	0.208		0.077	7.537	571.3	95\%	0.068		8.998	0.285		0.102	9.386
	14-Mar	1260	82		285.7	95\%	0.034		5.351	0.133		0.050	5.534	428.5	95\%	0.051		7.253	0.207		0.079	7.539	571.4	95\%	0.068		8.999	0.284		0.105	9.389
	15-Mar	1261	83		285.7	95\%	0.034		5.351	0.133		0.051	5.535	428.6	95\%	0.051		7.253	0.207		0.081	7.541	571.5	95\%	0.067		9.000	0.284		0.108	9.391
	16-Mar	1262	84		285.8	95\%	0.034		5.352	0.132		0.053	5.537	428.6	95\%	0.050		7.254	0.206		0.083	7.543	571.5	95\%	0.067		9.001	0.283		0.111	9.394
	17-Mar	1263	85		285.8	95\%	0.034		5.352	0.132		0.054	5.538	428.7	95\%	0.050		7.254	0.206		0.085	7.546	571.6	95\%	0.067		9.001	0.282		0.114	9.397
	18-Mar	1264	86		285.8	95\%	0.033		5.353	0.132		0.055	5.540	428.7	95\%	0.050		7.255	0.205		0.087	7.548	571.7	95\%	0.067		9.002	0.282		0.117	9.400
	19-Mar	1265	87		285.9	95\%	0.033		5.353	0.131		0.057	5.541	428.8	95\%	0.050		7.256	0.205		0.090	7.550	571.7	95\%	0.067		9.003	0.281		0.120	9.403

	20-Mar	1266	88	285.9	95\%	0.033	5.354	0.131	0.058	5.543	428.8	95\%	0.050	7.256	0.204	0.092	7.553	571.8	95\%	0.067	9.004	0.280	0.123	9.407
	21-Mar	1267	89	285.9	95\%	0.033	5.354	0.131	0.060	5.545	428.9	95\%	0.050	7.257	0.204	0.094	7.555	571.9	95\%	0.066	9.004	0.279	0.126	9.410
	22-Mar	1268	90	286.0	95\%	0.033	5.355	0.130	0.061	5.546	428.9	95\%	0.050	7.258	0.203	0.097	7.558	571.9	95\%	0.066	9.005	0.279	0.129	9.413
	23-Mar	1269	91	286.0	95\%	0.033	5.355	0.130	0.063	5.548	429.0	95\%	0.050	7.258	0.203	0.099	7.560	572.0	95\%	0.066	9.006	0.278	0.132	9.417
	24-Mar	1270	92	286.0	95\%	0.033	5.355	0.130	0.064	5.550	429.0	95\%	0.050	7.259	0.202	0.102	7.563	572.1	95\%	0.066	9.007	0.277	0.136	9.420
	25-Mar	1271	93	286.1	95\%	0.033	5.356	0.129	0.066	5.551	429.1	95\%	0.049	7.259	0.202	0.104	7.566	572.1	95\%	0.066	9.008	0.277	0.139	9.424
	26-Mar	1272	94	286.1	95\%	0.033	5.356	0.129	0.068	5.553	429.1	95\%	0.049	7.260	0.201	0.107	7.568	572.2	95\%	0.066	9.008	0.276	0.143	9.427
	27-Mar	1273	95	286.1	95\%	0.033	5.357	0.129	0.070	5.555	429.2	95\%	0.049	7.261	0.201	0.110	7.571	572.3	95\%	0.066	9.009	0.275	0.146	9.431
	28-Mar	1274	96	286.2	95\%	0.033	5.357	0.128	0.071	5.557	429.2	95\%	0.049	7.261	0.200	0.113	7.574	572.3	95\%	0.065	9.010	0.275	0.150	9.435
	29-Mar	1275	97	286.2	95\%	0.033	5.358	0.128	0.073	5.559	429.3	95\%	0.049	7.262	0.200	0.115	7.577	572.4	95\%	0.065	9.011	0.274	0.154	9.439
	30-Mar	1276	98	286.2	95\%	0.033	5.358	0.128	0.075	5.561	429.3	95\%	0.049	7.263	0.199	0.118	7.580	572.5	95\%	0.065	9.011	0.273	0.158	9.443
	31-Mar	1277	99	286.3	95\%	0.032	5.359	0.127	0.077	5.563	429.4	95\%	0.049	7.263	0.199	0.121	7.583	572.5	95\%	0.065	9.012	0.273	0.162	9.447
	$01-\mathrm{Apr}$	1278	100	286.3	95\%	0.032	5.359	0.127	0.079	5.565	429.4	95\%	0.049	7.264	0.198	0.124	7.587	572.6	95\%	0.065	9.013	0.272	0.166	9.451
	02 -Apr	1279	101	286.3	95\%	0.032	5.360	0.127	0.081	5.567	429.5	95\%	0.048	7.264	0.198	0.128	7.590	572.6	95\%	0.065	9.014	0.271	0.170	9.455
	03 -Apr	1280	102	286.4	95\%	0.032	5.360	0.126	0.083	5.569	429.5	95\%	0.048	7.265	0.197	0.131	7.593	572.7	95\%	0.064	9.015	0.271	0.174	9.459
	04-Apr	1281	103	286.4	95\%	0.032	5.361	0.126	0.085	5.572	429.6	95\%	0.048	7.266	0.197	0.134	7.596	572.8	95\%	0.064	9.015	0.270	0.179	9.464
	$05-\mathrm{Apr}$	1282	104	286.4	95\%	0.032	5.361	0.126	0.087	5.574	429.6	95\%	0.048	7.266	0.196	0.137	7.600	572.8	95\%	0.064	9.016	0.269	0.183	9.468
	$06-\mathrm{Apr}$	1283	105	286.5	95\%	0.032	5.361	0.126	0.089	5.576	429.7	95\%	0.048	7.267	0.196	0.141	7.603	572.9	95\%	0.064	9.017	0.268	0.188	9.473
	$07-\mathrm{Apr}$	1284	106	286.5	95\%	0.032	5.362	0.125	0.091	5.578	429.7	95\%	0.048	7.267	0.195	0.144	7.607	573.0	95\%	0.064	9.018	0.268	0.192	9.478
	08 -Apr	1285	107	286.5	96\%	0.032	5.362	0.125	0.094	5.581	429.8	96\%	0.048	7.268	0.195	0.148	7.611	573.0	96\%	0.064	9.018	0.267	0.197	9.482
	$09-\mathrm{Apr}$	1286	108	286.5	96\%	0.032	5.363	0.125	0.096	5.583	429.8	96\%	0.048	7.269	0.194	0.151	7.614	573.1	96\%	0.064	9.019	0.266	0.202	9.487
	10-Apr	1287	109	286.6	96\%	0.032	5.363	0.124	0.098	5.586	429.9	96\%	0.048	7.269	0.194	0.155	7.618	573.2	96\%	0.063	9.020	0.266	0.207	9.492
	11-Apr	1288	110	286.6	96\%	0.032	5.364	0.124	0.101	5.588	429.9	96\%	0.047	7.270	0.193	0.159	7.622	573.2	96\%	0.063	9.021	0.265	0.212	9.498
	$12-\mathrm{Apr}$	1289	111	286.6	96\%	0.032	5.364	0.124	0.103	5.591	430.0	96\%	0.047	7.271	0.193	0.163	7.626	573.3	96\%	0.063	9.021	0.264	0.217	9.503
	$13-\mathrm{Apr}$	1290	112	286.7	96\%	0.031	5.365	0.123	0.106	5.593	430.0	96\%	0.047	7.271	0.192	0.167	7.630	573.3	96\%	0.063	9.022	0.264	0.222	9.508
	14-Apr	1291	113	286.7	96\%	0.031	5.365	0.123	0.108	5.596	430.1	96\%	0.047	7.272	0.192	0.171	7.634	573.4	96\%	0.063	9.023	0.263	0.228	9.514
	15-Apr	1292	114	286.7	96\%	0.031	5.365	0.123	0.111	5.599	430.1	96\%	0.047	7.272	0.191	0.175	7.639	573.5	96\%	0.063	9.024	0.262	0.233	9.519
	16-Apr	1293	115	286.8	96\%	0.031	5.366	0.122	0.113	5.602	430.2	96\%	0.047	7.273	0.191	0.179	7.643	573.5	96\%	0.063	9.024	0.262	0.239	9.525
	17-Apr	1294	116	286.8	96\%	0.031	5.366	0.122	0.116	5.605	430.2	96\%	0.047	7.273	0.190	0.184	7.648	573.6	96\%	0.062	9.025	0.261	0.245	9.531
	18-Apr	1295	117	286.8	96\%	0.031	5.367	0.122	0.119	5.608	430.2	96\%	0.047	7.274	0.190	0.188	7.652	573.7	96\%	0.062	9.026	0.261	0.251	9.537
	19-Apr	1296	118	286.9	96\%	0.031	5.367	0.121	0.122	5.611	430.3	96\%	0.047	7.275	0.190	0.192	7.657	573.7	96\%	0.062	9.026	0.260	0.257	9.543
	$20-\mathrm{Apr}$	1297	119	286.9	96\%	0.031	5.368	0.121	0.125	5.614	430.3	96\%	0.046	7.275	0.189	0.197	7.661	573.8	96\%	0.062	9.027	0.259	0.263	9.549
	21-Apr	1298	120	286.9	96\%	0.031	5.368	0.121	0.128	5.617	430.4	96\%	0.046	7.276	0.189	0.202	7.666	573.8	96\%	0.062	9.028	0.259	0.269	9.556
	22 -Apr	1299	121	287.0	96\%	0.031	5.368	0.121	0.131	5.620	430.4	96\%	0.046	7.276	0.188	0.207	7.671	573.9	96\%	0.062	9.029	0.258	0.275	9.562
	23 -Apr	1300	122	287.0	96\%	0.031	5.369	0.120	0.134	5.623	430.5	96\%	0.046	7.277	0.188	0.212	7.676	574.0	96\%	0.062	9.029	0.257	0.282	9.569
	$24-\mathrm{Apr}$	1301	123	287.0	96\%	0.031	5.369	0.120	0.137	5.626	430.5	96\%	0.046	7.278	0.187	0.217	7.681	574.0	96\%	0.061	9.030	0.257	0.289	9.575
	$25-\mathrm{Apr}$	1302	124	287.0	96\%	0.031	5.370	0.120	0.140	5.630	430.6	96\%	0.046	7.278	0.187	0.222	7.687	574.1	96\%	0.061	9.031	0.256	0.296	9.582
	$26-\mathrm{Apr}$	1303	125	287.1	96\%	0.031	5.370	0.119	0.144	5.633	430.6	96\%	0.046	7.279	0.186	0.227	7.692	574.2	96\%	0.061	9.032	0.255	0.303	9.589
	27-Apr	1304	126	287.1	96\%	0.030	5.371	0.119	0.147	5.637	430.7	96\%	0.046	7.279	0.186	0.232	7.697	574.2	96\%	0.061	9.032	0.255	0.310	9.597
	28 -Apr	1305	127	287.1	96\%	0.030	5.371	0.119	0.151	5.640	430.7	96\%	0.046	7.280	0.185	0.238	7.703	574.3	96\%	0.061	9.033	0.254	0.317	9.604
	29-Apr	1306	128	287.2	96\%	0.030	5.371	0.118	0.154	5.644	430.8	96\%	0.045	7.281	0.185	0.243	7.709	574.3	96\%	0.061	9.034	0.253	0.324	9.611
First Calf Cows are Culled	30-Apr	1307	129	287.2	96\%	0.030	5.372	0.118	0.158	5.648	430.8	96\%	0.045	7.281	0.184	0.249	7.714	574.4	96\%	0.061	9.034	0.253	0.332	9.619
	01-May	1308	130	287.2	96\%	0.030	5.372	0.118	0.161	5.652	430.8	96\%	0.045	7.282	0.184	0.255	7.720	574.5	96\%	0.060	9.035	0.252	0.340	9.627
	02-May	1309	131	287.3	96\%	0.030	5.373	0.118	0.165	5.655	430.9	96\%	0.045	7.282	0.183	0.261	7.726	574.5	96\%	0.060	9.036	0.252	0.348	9.635
	03 -May	1310	132	287.3	96\%	0.030	5.373	0.117	0.169	5.659	430.9	96\%	0.045	7.283	0.183	0.267	7.732	574.6	96\%	0.060	9.037	0.251	0.356	9.643
	04-May	1311	133	287.3	96\%	0.030	5.374	0.117	0.173	5.663	431.0	96\%	0.045	7.283	0.183	0.273	7.739	574.6	96\%	0.060	9.037	0.250	0.364	9.651
	05 -May	1312	134	287.3	96\%	0.030	5.374	0.117	0.177	5.667	431.0	96\%	0.045	7.284	0.182	0.279	7.745	574.7	96\%	0.060	9.038	0.250	0.372	9.660
	06 -May	1313	135	287.4	96\%	0.030	5.374	0.116	0.181	5.672	431.1	96\%	0.045	7.285	0.182	0.286	7.752	574.8	96\%	0.060	9.039	0.249	0.381	9.668
	07-May	1314	136	287.4	96\%	0.030	5.375	0.116	0.185	5.676	431.1	96\%	0.045	7.285	0.181	0.292	7.758	574.8	96\%	0.060	9.039	0.248	0.389	9.677
	08-May	1315	137	287.4	96\%	0.030	5.375	0.116	0.189	5.680	431.2	96\%	0.045	7.286	0.181	0.299	7.765	574.9	96\%	0.059	9.040	0.248	0.398	9.686
	09-May	1316	138	287.5	96\%	0.030	5.376	0.116	0.194	5.685	431.2	96\%	0.044	7.286	0.180	0.306	7.772	574.9	96\%	0.059	9.041	0.247	0.407	9.695
	10-May	1317	139	287.5	96\%	0.030	5.376	0.115	0.198	5.689	431.2	96\%	0.044	7.287	0.180	0.313	7.779	575.0	96\%	0.059	9.041	0.247	0.417	9.705
	11-May	1318	140	287.5	96\%	0.029	5.376	0.115	0.202	5.694	431.3	96\%	0.044	7.287	0.179	0.320	7.786	575.1	96\%	0.059	9.042	0.246	0.426	9.714
	12-May	1319	141	287.6	96\%	0.029	5.377	0.115	0.207	5.699	431.3	96\%	0.044	7.288	0.179	0.327	7.794	575.1	96\%	0.059	9.043	0.245	0.436	9.724
	13-May	1320	142	287.6	96\%	0.029	5.377	0.114	0.212	5.703	431.4	96\%	0.044	7.288	0.178	0.334	7.801	575.2	96\%	0.059	9.044	0.245	0.446	9.734
	14-May	1321	143	287.6	96\%	0.029	5.378	0.114	0.216	5.708	431.4	96\%	0.044	7.289	0.178	0.342	7.809	575.2	96\%	0.059	9.044	0.244	0.456	9.744
	15-May	1322	144	287.6	96\%	0.029	5.378	0.114	0.221	5.713	431.5	96\%	0.044	7.290	0.178	0.349	7.817	575.3	96\%	0.058	9.045	0.243	0.466	9.754
	16-May	1323	145	287.7	96\%	0.029	5.379	0.114	0.226	5.718	431.5	96\%	0.044	7.290	0.177	0.357	7.824	575.3	96\%	0.058	9.046	0.243	0.476	9.765
	17-May	1324	146	287.7	96\%	0.029	5.379	0.113	0.231	5.723	431.6	96\%	0.044	7.291	0.177	0.365	7.833	575.4	96\%	0.058	9.046	0.242	0.487	9.775
	18-May	1325	147	287.7	96\%	0.029	5.379	0.113	0.236	5.729	431.6	96\%	0.043	7.291	0.176	0.373	7.841	575.5	96\%	0.058	9.047	0.242	0.498	9.786
	19-May	1326	148	287.8	96\%	0.029	5.380	0.113	0.242	5.734	431.6	96\%	0.043	7.292	0.176	0.382	7.849	575.5	96\%	0.058	9.048	0.241	0.509	9.798
	20-May	1327	149	287.8	96\%	0.029	5.380	0.112	0.247	5.740	431.7	96\%	0.043	7.292	0.175	0.390	7.858	575.6	96\%	0.058	9.048	0.240	0.520	9.809
	21-May	1328	150	287.8	96\%	0.029	5.381	0.112	0.252	5.745	431.7	96\%	0.043	7.293	0.175	0.399	7.866	575.6	96\%	0.058	9.049	0.240	0.532	9.820
	22-May	1329	151	287.8	96\%	0.029	5.381	0.112	0.258	5.751	431.8	96\%	0.043	7.293	0.174	0.407	7.875	575.7	96\%	0.057	9.050	0.239	0.543	9.832
	23-May	1330	152	287.9	96\%	0.029	5.381	0.112	0.264	5.757	431.8	96\%	0.043	7.294	0.174	0.416	7.884	575.8	96\%	0.057	9.050	0.239	0.555	9.844
	24-May	1331	153	287.9	96\%	0.029	5.382	0.111	0.269	5.763	431.9	96\%	0.043	7.294	0.174	0.426	7.894	575.8	96\%	0.057	9.051	0.238	0.567	9.856
	25-May	1332	154	287.9	96\%	0.029	5.382	0.111	0.275	5.769	431.9	96\%	0.043	7.295	0.173	0.435	7.903	575.9	96\%	0.057	9.052	0.237	0.580	9.869

26-May	1333	55
27-May	1334	156
28-May	1335	157
29-May	1336	158
30-May	1337	159
31-May	1338	160
$01-$ Jun	1339	161
02 -Jun	1340	162
03 -Jun	1341	163
04-Jun	1342	164
$05-J u n$	1343	165
06 -Jun	1344	166
07-Jun	1345	167
08-Jun	1346	168
$09-\mathrm{Jun}$	1347	169
10-Jun	1348	170
11-Jun	1349	171
12-Jun	1350	172
13-Jun	1351	173
14-Jun	1352	174
15 -Jun	1353	175
16-Jun	1354	176
17-Jun	1355	177
18 -Jun	1356	178
19-Jun	1357	179
$20-\mathrm{Jun}$	1358	180
21-Jun	1359	181
22 -Jun	1360	182
$23-\mathrm{Jun}$	1361	183
24-Jun	1362	184
$25-\mathrm{Jun}$	1363	185
26-Jun	1364	186
27 -Jun	1365	187
28 -Jun	1366	188
29-Jun	1367	18
30-Jun	1368	190
$01-\mathrm{Jul}$	1369	191
02 -Jul	1370	192
03-Jul	1371	193
04-Jul	1372	19
$05-\mathrm{Jul}$	1373	195
06-Jul	1374	196
07-Jul	1375	197
08-Jul	1376	198
09-Jul	1377	199
10-Jul	1378	20
11-Jul	1379	20
12-Jul	1380	202
13 -Jul	1381	203
14-Jul	1382	20
$15-\mathrm{Jul}$	1383	205
$16-\mathrm{Jul}$	1384	206
17-Jul	1385	207
$18-\mathrm{Jul}$	1386	208
19-Jul	1387	209
20-Jul	1388	210
21-Jul	1389	211
22 -Jul	1390	212
23 -Jul	1391	213
24-Jul	1392	21
25 -Jul	1393	215
26-Jul	1394	216
27 -Jul	1395	217
28 -Jul	1396	218
29-Jul	1397	219
30-Jul	1398	220
31-Jul	1399	22

	01-Aug	1400	222		289.7	97\%	0.024		5.407	0.093		1.036	6.537	434.6	97\%	0.036		7.329	0.146		1.636	9.110	579.4	97\%	0.049		9.094	0.200		2.181	11.475
	02-Aug	1401	223		289.7	97\%	0.024		5.408	0.093		1.054	6.555	434.6	97\%	0.036		7.329	0.146		1.664	9.139	579.5	97\%	0.048		9.094	0.199		2.219	11.513
	03-Aug	1402	224		289.8	97\%	0.024		5.408	0.093		1.072	6.573	434.7	97\%	0.036		7.330	0.145		1.693	9.168	579.5	97\%	0.048		9.095	0.199		2.258	11.552
	04-Aug	1403	225		289.8	97\%	0.024		5.408	0.093		1.091	6.592	434.7	97\%	0.036		7.330	0.145		1.723	9.198	579.6	97\%	0.048		9.096	0.198		2.29	11.591
	05-Aug	1404	226		289.8	97\%	0.024		5.409	0.093		1.110	6.611	434.7	97\%	0.036		7.331	0.144		1.753	9.228	579.6	97\%	0.048		9.096	0.198		2.337	11.631
	06-Aug	1405	227		289.8	97\%	0.024		5.409	0.092		1.129	6.630	434.8	97\%	0.036		7.331	0.144		1.783	9.258	579.7	97\%	0.048		9.097	0.197		2.377	11.671
	07-Aug	1406	228		289.9	97\%	0.024		5.409	0.092		1.149	6.650	434.8	97\%	0.036		7.332	0.144		1.813	9.289	579.7	97\%	0.048		9.097	0.197		2.418	11.712
	08-Aug	1407	229		289.9	97\%	0.024		5.410	0.092		1.168	6.670	434.8	97\%	0.036		7.332	0.143		1.844	9.320	579.8	97\%	0.048		9.098	0.196		2.459	11.754
	09-Aug	1408	230		289.9	97\%	0.024		5.410	0.092		1.188	6.690	434.9	97\%	0.036		7.333	0.143		1.876	9.352	579.8	97\%	0.048		9.098	0.196		2.501	11.796
	10-Aug	1409	231		289.9	97\%	0.024		5.410	0.091		1.208	6.710	434.9	97\%	0.036		7.333	0.143		1.908	9.384	579.9	97\%	0.048		9.099	0.195		2.544	11.838
	11-Aug	1410	232		290.0	97\%	0.024		5.411	0.091		1.229	6.731	434.9	97\%	0.036		7.334	0.142		1.940	9.416	579.9	97\%	0.047		9.100	0.195		2.587	11.881
	12-Aug	1411	233		290.0	97\%	0.024		5.411	0.091		1.249	6.751	435.0	97\%	0.036		7.334	0.142		1.973	9.449	580.0	97\%	0.047		9.100	0.195		2.631	11.925
	13-Aug	1412	234		290.0	97\%	0.024		5.411	0.091		1.270	6.772	435.0	97\%	0.035		7.334	0.142		2.006	9.482	580.0	97\%	0.047		9.101	0.194		2.675	11.969
	14-Aug	1413	235		290.0	97\%	0.024		5.412	0.090		1.292	6.794	435.0	97\%	0.035		7.335	0.141		2.040	9.516	580.1	97\%	0.047		9.101	0.194		2.720	12.014
	15-Aug	1414	236		290.1	97\%	0.024		5.412	0.090		1.313	6.815	435.1	97\%	0.035		7.335	0.141		2.074	9.550	580.1	97\%	0.047		9.102	0.193		2.765	12.060
	16-Aug	1415	237		290.1	97\%	0.023		5.412	0.090		1.335	6.837	435.1	97\%	0.035		7.336	0.140		2.108	9.584	580.2	97\%	0.047		9.102	0.193		2.811	12.106
	17-Aug	1416	238		290.1	97\%	0.023		5.413	0.090		1.357	6.860	435.2	97\%	0.035		7.336	0.140		2.143	9.619	580.2	97\%	0.047		9.103	0.192		2.857	12.152
	18-Aug	1417	239		290.1	97\%	0.023		5.413	0.090		1.380	6.882	435.2	97\%	0.035		7.337	0.140		2.178	9.655	580.3	97\%	0.047		9.103	0.192		2.904	12.199
	19-Aug	1418	240		290.1	97\%	0.023		5.413	0.089		1.402	6.905	435.2	97\%	0.035		7.337	0.139		2.214	9.691	580.3	97\%	0.047		9.104	0.191		2.952	12.247
	20-Aug	1419	241		290.2	97\%	0.023		5.414	0.089		1.425	6.928	435.3	97\%	0.035		7.338	0.139		2.250	9.727	580.3	97\%	0.046		9.104	0.191		3.000	12.296
	21-Aug	1420	242		290.2	97\%	0.023		5.414	0.089		1.448	6.951	435.3	97\%	0.035		7.338	0.139		2.287	9.764	580.4	97\%	0.046		9.105	0.190		3.049	12.344
	22-Aug	1421	243		290.2	97\%	0.023		5.414	0.089		1.472	6.975	435.3	97\%	0.035		7.338	0.138		2.324	9.801	580.4	97\%	0.046		9.106	0.190		3.099	12.394
	23-Aug	1422	244		290.2	97\%	0.023		5.415	0.088		1.496	6.999	435.4	97\%	0.035		7.339	0.138		2.362	9.838	580.5	97\%	0.046		9.106	0.189		3.149	12.444
	24-Aug	1423	245		290.3	97\%	0.023		5.415	0.088		1.520	7.023	435.4	97\%	0.035		7.339	0.138		2.400	9.877	580.5	97\%	0.046		9.107	0.189		3.200	12.495
	25-Aug	1424	246		290.3	97\%	0.023		5.415	0.088		1.544	7.047	435.4	97\%	0.034		7.340	0.137		2.438	9.915	580.6	97\%	0.046		9.107	0.188		3.251	12.546
	26-Aug	1425	247		290.3	97\%	0.023		5.415	0.088		1.569	7.072	435.5	97\%	0.034		7.340	0.137		2.477	9.954	580.6	97\%	0.046		9.108	0.188		3.303	12.598
	27-Aug	1426	248		290.3	97\%	0.023		5.416	0.088		1.594	7.097	435.5	97\%	0.034		7.341	0.137		2.516	9.994	580.7	97\%	0.046		9.108	0.187		3.355	12.651
	28-Aug	1427	249		290.4	97\%	0.023		5.416	0.087		1.619	7.122	435.5	97\%	0.034		7.341	0.136		2.556	10.034	580.7	97\%	0.046		9.109	0.187		3.408	12.704
	29-Aug	1428	250		290.4	97\%	0.023		5.416	0.087		1.645	7.148	435.6	97\%	0.034		7.341	0.136		2.597	10.074	580.8	97\%	0.045		9.109	0.186		3.462	12.758
	30-Aug	1429	251		290.4	97\%	0.023		5.417	0.087		1.670	7.174	435.6	97\%	0.034		7.342	0.136		2.637	10.115	580.8	97\%	0.045		9.110	0.186		3.517	12.812
	31-Aug	1430	252		290.4	97\%	0.023		5.417	0.087		1.697	7.200	435.6	97\%	0.034		7.342	0.135		2.679	10.156	580.8	97\%	0.045		9.110	0.185		3.572	12.867
	01-Sep	1431	253		290.4	97\%	0.023		5.417	0.086		1.723	7.227	435.7	97\%	0.034		7.343	0.135		2.720	10.198	580.9	97\%	0.045		9.111	0.185		3.627	12.923
	02-Sep	1432	254		290.5	97\%	0.023		5.418	0.086		1.750	7.254	435.7	97\%	0.034		7.343	0.135		2.763	10.240	580.9	97\%	0.045		9.111	0.184		3.684	12.980
	03 -Sep	1433	255		290.5	97\%	0.022		5.418	0.086		1.777	7.281	435.7	97\%	0.034		7.344	0.134		2.805	10.283	581.0	97\%	0.045		9.112	0.184		3.741	13.036
	$04-\mathrm{Sep}$	1434	256		290.5	97\%	0.022		5.418	0.086		1.804	7.308	435.8	97\%	0.034		7.344	0.134		2.849	10.326	581.0	97\%	0.045		9.113	0.184		3.798	13.094
	$05-\mathrm{Sep}$	1435	257		290.5	97\%	0.022		5.419	0.086		1.832	7.336	435.8	97\%	0.034		7.344	0.134		2.892	10.370	581.1	97\%	0.045		9.113	0.183		3.856	13.152
	06 -Sep	1436	258		290.6	97\%	0.022		5.419	0.085		1.860	7.364	435.8	97\%	0.033		7.345	0.133		2.936	10.414	581.1	97\%	0.045		9.114	0.183		3.915	13.211
	$07-\mathrm{Sep}$	1437	259		290.6	97\%	0.022		5.419	0.085		1.888	7.392	435.9	97\%	0.033		7.345	0.133		2.981	10.459	581.2	97\%	0.045		9.114	0.182		3.975	13.271
	08 -Sep	1438	260		290.6	97\%	0.022		5.420	0.085		1.916	7.421	435.9	97\%	0.033		7.346	0.133		3.026	10.504	581.2	97\%	0.044		9.115	0.182		4.035	13.331
	09 -Sep	1439	261		290.6	97\%	0.022		5.420	0.085		1.945	7.450	435.9	97\%	0.033		7.346	0.132		3.072	10.550	581.3	97\%	0.044		9.115	0.181		4.095	13.392
	10-Sep	1440	262		290.6	97\%	0.022		5.420	0.084		1.975	7.479	436.0	97\%	0.033		7.347	0.132		3.118	10.596	581.3	97\%	0.044		9.116	0.181		4.157	13.453
	11-Sep	1441	263		290.7	97\%	0.022		5.421	0.084		2.004	7.509	436.0	97\%	0.033		7.347	0.131		3.164	10.643	581.3	97\%	0.044		9.116	0.180		4.219	13.515
	12-Sep	1442	264		290.7	97\%	0.022		5.421	0.084		2.034	7.539	436.0	97\%	0.033		7.347	0.131		3.211	10.690	581.4	97\%	0.044		9.117	0.180		4.282	13.578
	13-Sep	1443	265		290.7	97\%	0.022		5.421	0.084		2.064	7.569	436.1	97\%	0.033		7.348	0.131		3.259	10.737	581.4	97\%	0.044		9.117	0.179		4.345	13.642
	14-Sep	1444	266		290.7	97\%	0.022		5.421	0.084		2.094	7.599	436.1	97\%	0.033		7.348	0.131		3.307	10.786	581.5	97\%	0.044		9.118	0.179		4.409	13.706
	15-Sep	1445	267		290.8	97\%	0.022		5.422	0.083		2.125	7.630	436.1	97\%	0.033		7.349	0.130		3.355	10.834	581.5	97\%	0.044		9.118	0.178		4.474	13.770
	16-Sep	1446	268		290.8	97\%	0.022		5.422	0.083		2.156	7.661	436.2	97\%	0.033		7.349	0.130		3.404	10.883	581.6	97\%	0.044		9.119	0.178		4.539	13.836
	17-Sep	1447	269		290.8	97\%	0.022		5.422	0.083		2.187	7.693	436.2	97\%	0.033		7.349	0.130		3.454	10.933	581.6	97\%	0.043		9.119	0.178		4.605	13.902
	18-Sep	1448	270		290.8	97\%	0.022		5.423	0.083		2.219	7.725	436.2	97\%	0.033		7.350	0.129		3.504	10.983	581.6	97\%	0.043		9.120	0.177		4.672	13.969
	19-Sep	1449	271		290.8	97\%	0.022		5.423	0.083		2.251	7.757	436.3	97\%	0.032		7.350	0.129		3.554	11.033	581.7	97\%	0.043		9.120	0.177		4.739	14.036
	20-Sep	1450	272		290.9	97\%	0.022		5.423	0.082		2.283	7.789	436.3	97\%	0.032		7.351	0.129		3.605	11.084	581.7	97\%	0.043		9.121	0.176		4.807	14.104
	21-Sep	1451	273		290.9	97\%	0.022		5.424	0.082		2.316	7.822	436.3	97\%	0.032		7.351	0.128		3.657	11.136	581.8	97\%	0.043		9.121	0.176		4.876	14.173
	22-Sep	1452	274		290.9	97\%	0.021		5.424	0.082		2.349	7.855	436.4	97\%	0.032		7.352	0.128		3.709	11.188	581.8	97\%	0.043		9.122	0.175		4.945	14.242
	23 -Sep	1453	275		290.9	97\%	0.021		5.424	0.082		2.382	7.888	436.4	97\%	0.032		7.352	0.128		3.761	11.241	581.9	97\%	0.043		9.122	0.175		5.015	14.312
	24-Sep	1454	276		291.0	97\%	0.021		5.424	0.082		2.416	7.922	436.4	97\%	0.032		7.352	0.127		3.814	11.294	581.9	97\%	0.043		9.123	0.174		5.085	14.383
	$25-\mathrm{Sep}$	1455	277		291.0	97\%	0.021		5.425	0.081		2.449	7.955	436.5	97\%	0.032		7.353	0.127		3.867	11.347	581.9	97\%	0.043		9.123	0.174		5.157	14.454
	26-Sep	1456	278		291.0	97\%	0.021		5.425	0.081		2.484	7.990	436.5	97\%	0.032		7.353	0.127		3.921	11.401	582.0	97\%	0.043		9.124	0.174		5.228	14.526
	27 -Sep	1457	279		291.0	97\%	0.021		5.425	0.081		2.518	8.024	436.5	97\%	0.032		7.354	0.126		3.976	11.456	582.0	97\%	0.042		9.124	0.173		5.301	14.598
	28-Sep	1458	280		291.0	97\%	0.021		5.426	0.081		2.553	8.059	436.6	97\%	0.032		7.354	0.126		4.031	11.511	582.1	97\%	0.042		9.125	0.173		5.374	14.672
	29-Sep	1459	281		291.1	97\%	0.021		5.426	0.081		2.588	8.094	436.6	97\%	0.032		7.354	0.126		4.086	11.566	582.1	97\%	0.042		9.125	0.172		5.448	14.746
	30-Sep	1460	282		291.1	97\%	0.021		5.426	0.080		2.623	8.130	436.6	97\%	0.032		7.355	0.125		4.142	11.622	582.2	97\%	0.042		9.126	0.172		5.523	14.820
Second Calving. Second Lactation starts	01-Oct	1461	283	1	291.1	97\%	0.021	0.33	5.427	0.080	0.238	2.659	8.404	436.7	97\%	0.032	0.45	7.355	0.125	0.322	4.198	12.001	582.2	97\%	0.042	0.56	9.126	0.171	0.400	5.598	15.296
	02-Oct	1462		2	291.1	97\%	0.021	0.65	5.427	0.080	0.468		5.975	436.7	97\%	0.031	0.88	7.356	0.125	0.634		8.114	582.2	97\%	0.042	1.10	9.127	0.171	0.787		10.085
	03-Oct	1463		3	291.1	97\%	0.021	0.96	5.427	0.080	0.690		6.197	436.7	97\%	0.031	1.30	7.356	0.124	0.935		8.416	582.3	97\%	0.042	1.62	9.127	0.171	1.161		10.458
	04-Oct	1464		4	291.2	97\%	0.021	1.26	5.427	0.080	0.905		6.412	436.7	97\%	0.031	1.71	7.356	0.124	1.226		8.707	582.3	97\%	0.042	2.12	9.128	0.170	1.522		10.820
	05-Oct	1465		5	291.2	97\%	0.021	1.55	5.428	0.079	1.112		6.619	436.8	97\%	0.031	2.10	7.357	0.124	1.507		8.988	582.4	97\%	0.042	2.61	9.128	0.170	1.871		11.168
	06-Oct	1466		6	291.2	97\%	0.021	1.83	5.428	0.079	1.312		6.820	436.8	97\%	0.031	2.48	7.357	0.123	1.779		9.259	582.4	97\%	0.042	3.07	9.129	0.169	2.207		11.505

07-Oct	1467
08-Oct	1468
$09-\mathrm{Oct}$	1469
10-Oct	1470
$11-\mathrm{Oct}$	1471
12-Oct	1472
13-Oct	1473
14 -Oct	1474
-Oct	1475
-Oct	1476
17-Oct	1477
18-Oct	1478
19-Oct	1479
-Oct	1480
21-Oct	1481
22 -Oct	148
$23-\mathrm{ct}$	1483
24-Oct	1484
25-Oct	885
26-Oct	886
27-Oct	1487
$28-\mathrm{Oct}$	88
29-Oct	1489
30-Oct	1490
31-Oct	1491
01-Nov	1492
02-Nov	1493
03-Nov	1494
04-Nov	1495
05-Nov	1496
06-Nov	1497
07-Nov	1498
08 -Nov	1499
09-Nov	1500
10-Nov	1501
11-Nov	1502
12-Nov	1503
13-Nov	1504
14-Nov	1505
15-Nov	1506
16-Nov	1507
17-Nov	1508
18-Nov	1509
19-Nov	1510
20-Nov	1511
21-Nov	1512
22-Nov	1513
23-Nov	1514
--Nov	1515
-Nov	15
26-Nov	151
27-Nov	1518
28 -Nov	1519
29-Nov	1520
30-Nov	1521
01-Dec	1522
02-Dec	1523
03-Dec	1524
04-Dec	1525
$05-\mathrm{Dec}$	1526
06-Dec	1527
07-Dec	1528
08-Dec	1529
09-Dec	1530
10-Dec	1531
11-Dec	1532
12-Dec	1533

$\begin{array}{ll}7 & 291.2 \\ 8 & 291.2\end{array}$

	29.2	97%	0.021	2.36	5.429	0.079

$\begin{array}{llllllll}9 & 291.3 & 97 \% & 0.021 & 2.61 & 5.429 & 0.079 & 1.692 \\ 10 & 291.3 & 970 & 0.021 & 2.85 & 5.429 & 0.078 & 1.872\end{array}$
$\begin{array}{llllllll}10 & 291.3 & 97 \% & 0.021 & 2.85 & 5.429 & 0.078 & 2.045 \\ 11 & 2913 & 97 \% & 0.021 & 3.08 & 5.429 & 0.078 & 2.212\end{array}$
$\begin{array}{llllllll}11 & 291.3 & 97 \% & 0.021 & 3.08 & 5.429 & 0.078 & 2.212 \\ 12 & 2913 & 97 \% & 0.020 & 3.31 & 5.430 & 0.078 & 2.373\end{array}$
$\begin{array}{llllllll}12 & 291.3 & 97 \% & 0.020 & 3.31 & 5.430 & 0.078 & 2.373 \\ 13 & 291.3 & 97 \% & 0.020 & 3.52 & 5.430 & 0.078 & 2.528\end{array}$
$\begin{array}{llllllll}13 & 291.3 & 97 \% & 0.020 & 3.52 & 5.430 & 0.078 & 2.528 \\ 14 & 291.4 & 97 \% & 0.020 & 3.73 & 5.430 & 0.078 & 2.677\end{array}$
$\begin{array}{llllllll}14 & 291.4 & 97 \% & 0.020 & 3.73 & 5.430 & 0.078 & 2.677 \\ 15 & 291.4 & 97 \% & 0.020 & 3.93 & 5.431 & 0.077 & 2.820\end{array}$
$\begin{array}{llllllll}15 & 291.4 & 97 \% & 0.020 & 3.93 & 5.431 & 0.077 & 2.820 \\ 16 & 291.4 & 97 \% & 0.020 & 4.12 & 5.431 & 0.077 & 2.958\end{array}$
$\begin{array}{llllllll}16 & 291.4 & 97 \% & 0.020 & 4.12 & 5.431 & 0.077 & 2.958 \\ 17 & 291.4 & 97 \% & 0.020 & 4.31 & 5.431 & 0.077 & 3.091\end{array}$
$\begin{array}{llllllll}17 & 291.4 & 97 \% & 0.020 & 4.31 & 5.431 & 0.077 & 3.091 \\ 18 & 291.5 & 97 \% & 0.020 & 4.48 & 5.431 & 0.077 & 3.218 \\ 19 & 29.5 & 97 \% & 0.020 & 4.5 & 5.432 & 0.077 & 3.345\end{array}$
$\begin{array}{llllllll}18 & 291.5 & 97 \% & 0.020 & 4.48 & 5.431 & 0.077 & 3.218 \\ 19 & 291.5 & 97 \% & 0.020 & 4.65 & 5.432 & 0.077 & 3.340 \\ 20 & 291.5 & 97 \% & 0.020 & 4.82 & 5.432 & 0.076 & 3.457\end{array}$

19	291.5	97%	0.020	4.65	5.432	0.077	3.340
20	291.5	97%	0.020	4.82	5.432	0.076	3.457

$\begin{array}{lllllll}291.5 & 97 \% & 0.020 & 4.97 & 5.432 & 0.076 & 3.57 \\ 291.5 & 97 \% & 0.020 & 5.12 & 5.433 & 0.076 & 3.678\end{array}$
$\begin{array}{lllllll}291.5 & 97 \% & 0.020 & 5.12 & 5.433 & 0.076 & 3.678 \\ 291.6 & 97 \% & 0.020 & 5.27 & 5.433 & 0.076 & 3.781\end{array}$ $\begin{array}{llllllll}24 & 291.6 & 97 \% & 0.020 & 5.27 & 5.433 & 0.076 & 3.781 \\ 24 & 291.6 & 97 \% & 0.020 & 5.40 & 5.433 & 0.076 & 3.879\end{array}$ $\begin{array}{llllllll}25 & 291.6 & 97 \% & 0.020 & 5.54 & 5.433 & 0.075 & 3.974 \\ 26 & 291.6 & 97 \% & 0.020 & 5.66 & 5.434 & 0.075 & 4.064\end{array}$ $\begin{array}{llllllll}26 & 291.6 & 97 \% & 0.020 & 5.66 & 5.434 & 0.075 & 4.064 \\ 27 & 291.6 & 97 \% & 0.020 & 5.78 & 5.434 & 0.075 & 4.150\end{array}$ $\begin{array}{llllllll}27 & 291.6 & 97 \% & 0.020 & 5.78 & 5.434 & 0.075 & 4.150 \\ 28 & 291.6 & 97 \% & 0.020 & 5.90 & 5.434 & 0.075 & 4.232\end{array}$ $\begin{array}{llllllll}28 & 291.6 & 97 \% & 0.020 & 5.90 & 5.434 & 0.075 & 4.232 \\ 29 & 291.7 & 97 \% & 0.020 & 6.00 & 5.434 & 0.075 & 4.310\end{array}$ $\begin{array}{lllllllll}29 & 291.7 & 97 \% & 0.020 & 6.00 & 5.434 & 0.075 & 4.310 \\ 30 & 291.7 & 97 \% & 0.020 & 6.11 & 5.435 & 0.074 & 4.384 \\ 31 & 2917 & 97 \% & 0.020 & 6.21 & 5.435 & 0.074 & 4.455\end{array}$ $\begin{array}{llllllll}31 & 291.7 & 97 \% & 0.020 & 6.21 & 5.435 & 0.074 & 4.455 \\ 32 & 291.7 & 97 \% & 0.020 & 6.30 & 5.435 & 0.074 & 4.522\end{array}$ $\begin{array}{llllllll}32 & 291.7 & 97 \% & 0.020 & 6.30 & 5.435 & 0.074 & 4.522 \\ 33 & 291.7 & 97 \% & 0.020 & 6.39 & 5.436 & 0.074 & 4.585\end{array}$ $\begin{array}{lllllllll}34 & 291.8 & 97 \% & 0.019 & 6.47 & 5.436 & 0.074 & 4.645 \\ 35 & 291.8 & 97 \% & 0.019 & 6.55 & 5.436 & 0.073 & 4.702\end{array}$ $\begin{array}{lllllllll}35 & 2911.8 & 97 \% & 0.019 & 6.55 & 5.436 & 0.073 & 4.702 \\ 36 & 291.8 & 97 \% & 0.019 & 6.63 & 5.436 & 0.073 & 4.756\end{array}$ $\begin{array}{llllllll}37 & 29.8 & 97 \% & 0.019 & 6.63 & 5.436 & 0.073 & 4.756 \\ 37 & 291.8 & 97 \% & 0.019 & 6.70 & 5.437 & 0.073 & 4.807\end{array}$ $\begin{array}{llllllll}38 & 291.8 & 97 \% & 0.019 & 6.76 & 5.437 & 0.073 & 4.854 \\ 39 & 291.9 & & 0.857\end{array}$ $\begin{array}{llllllll}39 & 291.9 & 97 \% & 0.019 & 6.83 & 5.437 & 0.073 & 4.899 \\ 40 & 291.9 & 97 \% & 0.019 & 6.88 & 5.437 & 0.073 & 4 .\end{array}$ $\begin{array}{llllllll}40 & 291.9 & 97 \% & 0.019 & 6.88 & 5.437 & 0.073 & 4.941 \\ 41 & 291.9 & 97 \% & 0.019 & 6.94 & 5.438 & 0.072 & 4 .\end{array}$ $\begin{array}{llllllll}41 & 291.9 & 97 \% & 0.019 & 6.94 & 5.438 & 0.072 & 4.980 \\ 42 & 291.9 & 97 \% & 0.019 & 6.99 & 5.438 & 0.072 & 5.017\end{array}$ $\begin{array}{llllllll}42 & 291.9 & 97 \% & 0.019 & 6.99 & 5.438 & 0.072 & 5.017 \\ 43 & 291.9 & 97 \% & 0.019 & 7.04 & 5.438 & 0.072 & 5.050\end{array}$ $\begin{array}{lllllllll}44 & 292.0 & 97 \% & 0.019 & 7.08 & 5.439 & 0.072 & 5.050 \\ 45 & 2020 & 97 \% & 0.019 & 7.12 & 5.439 & 0.072 & 5.11\end{array}$ $\begin{array}{llllllll}45 & 292.0 & 97 \% & 0.019 & 7.12 & 5.439 & 0.072 & 5.111 \\ 46 & 292.0 & 97 \% & 0.019 & 7.16 & 5.439 & 0.071 & 5.137\end{array}$ $\begin{array}{llllllll}46 & 292.0 & 97 \% & 0.019 & 7.16 & 5.439 & 0.071 & 5.137 \\ 47 & 292.0 & 97 \% & 0.019 & 7.19 & 5.439 & 0.071 & 5.161 \\ 48 & 292.0 & 97 \% & 0.019 & 7.22 & 5.440 & 0.071 & 5.183\end{array}$ $\begin{array}{lllllllll}48 & 292.0 & 97 \% & 0.019 & 7.22 & 5.440 & 0.071 & 5.183 \\ 49 & 292.1 & 97 \% & 0.019 & 7.25 & 5.440 & 0.071 & 5.203\end{array}$ $\begin{array}{llllllll}49 & 292.1 & 97 \% & 0.019 & 7.25 & 5.440 & 0.071 & 5.203 \\ 50 & 292.1 & 97 \% & 0.019 & 7.27 & 5.440 & 0.071 & 5.221 \\ 51 & 202.1 & 97 \% & 0.9 & 7.31 & 5.41 & 0.07 & 5.25\end{array}$ $\begin{array}{llllllll}52 & 292.1 & 97 \% & 0.019 & 7.30 & 5.440 & 0.071 & 5.236 \\ 53 & 292.1 & 97 \% & 0.019 & 7.31 & 5.441 & 0.070 & 5.250\end{array}$ $\begin{array}{llllllll}53 & 292.1 & 97 \% & 0.019 & 7.33 & 5.441 & 0.070 & 5.250 \\ 54 & 292.1 & 97 \% & 0.019 & 7.34 & 5.41 & 0.070 & 5.262\end{array}$ $\begin{array}{lllllllll}54 & 292.1 & 97 \% & 0.019 & 7.34 & 5.441 & 0.070 & 5.272 \\ 55 & 292.2 & 97 \% & 0.019 & 7.36 & 5.441 & 0.070 & 5.28\end{array}$ $\begin{array}{llllllll}55 & 292.2 & 97 \% & 0.019 & 7.34 & 5.441 & 0.070 & 5.272 \\ 56 & 292.2 & 97 \% & 0.018 & 7.36 & 5.42 & 0.070 & 5.280 \\ & & \end{array}$ $\begin{array}{llllllll}56 & 292.2 & 97 \% & 0.018 & 7.36 & 5.442 & 0.070 & 5.286 \\ 57 & 292.2 & 97 \% & 0.018 & 7.37 & 5.442 & 0.070 & 5.291\end{array}$ $\begin{array}{llllllll}58 & 292.2 & 97 \% & 0.018 & 7.38 & 5.442 & 0.070 & 5.291 \\ 59 & 292.2 & 97 \% & 0.018 & 7.38 & 5.442 & 0.069 & 5.294 \\ 5\end{array}$ $\begin{array}{llllllll}58 & 292.2 & 97 \% & 0.018 & 7.38 & 5.442 & 0.069 & 5.294 \\ 59 & 292.29 & 0.069 & 5.296 \\ 60 & 292.3 & 97 \% & 0.018 & 7.38 & 5.443 & 0.069 & 5.296\end{array}$ $\begin{array}{llllllll}61 & 292.3 & 97 \% & 0.018 & 7.38 & 5.443 & 0.069 & 5.296 \\ & 292.3 & 97 \% & 0.018 & 7.38 & 5.443 & 0.069 & 5.294\end{array}$ $\begin{array}{lllllllll}62 & 292.3 & 97 \% & 0.018 & 7.38 & 5.443 & 0.069 & 5.294 \\ 63 & 292.3 & 97 \% & 0.018 & 7.37 & 5.443 & 0.069 & 5.291 \\ 64 & 2923 & & 7 \% & 0.018 & 7.36 & 5.443 & 0.068 & 5.281\end{array}$
 $\begin{array}{llllllll}65 & 292.3 & 97 \% & 0.018 & 7.36 & 5.444 & 0.068 & 5.281 \\ 66 & 292.4 & 970 & 0.018 & 7.35 & 5.444 & 0.068 & 5.275\end{array}$ $\begin{array}{lllllllll}65 & 292.3 & 97 \% & 0.018 & 7.35 & 5.444 & 0.068 & 5.275 \\ 66 & 292.4 & 97 \% & 0.018 & 7.34 & 5.444 & 0.068 & 5.266 \\ 67 & 202.4 & 97 \% & 0.018 & 7.3 & 5.45 & 0.068 & 5.247\end{array}$ $\begin{array}{llllllll}66 & 292.4 & 97 \% & 0.018 & 7.34 & 5.444 & 0.068 & 5.266 \\ 67 & 292.4 & 97 \% & 0.018 & 7.32 & 5.444 & 0.068 & 5.257 \\ 68 & 292.4 & 970 & 0.018 & 7.31 & 5.445 & 0.068 & 5.247\end{array}$ $\begin{array}{llllllll}68 & 292.4 & 97 \% & 0.018 & 7.31 & 5.445 & 0.068 & 5.247 \\ 69 & 292.4 & 97 \% & 0.018 & 7.29 & 5.445 & 0.067 & 5.235\end{array}$ $\begin{array}{lllllllll}69 & 292.4 & 97 \% & 0.018 & 7.29 & 5.445 & 0.067 & 5.235 \\ 70 & 292.4 & 97 \% & 0.018 & 7.28 & 5.445 & 0.067 & 5.222 \\ 71 & 292.5 & 97 \% & 0.018 & 7.26 & 5.445 & 0.067 & 5.29\end{array}$ $\begin{array}{llllllll}71 & 292.5 & 97 \% & 0.018 & 7.28 & 5.445 & 0.067 & 5.222 \\ 72 & 29.5 & 97 \% & 0.018 & 7.24 & 5.446 & 0.067 & 5.209 \\ 7 & 29.067 & 5.194\end{array}$ $\begin{array}{llllllll}73 & 292.5 & 97 \% & 0.018 & 7.24 & 5.446 & 0.067 & 5.194 \\ 73 & 292.5 & 97 \% & 0.018 & 7.21 & 5.446 & 0.067 & 5.178\end{array}$

	13-Dec	1534		74	292.5	98\%	0.018	7.19	5.446	0.067	5.162		10.675	438.8	98\%	0.027	9.75	7.382	0.104	6.997		14.482	585.0	98\%	0.035	12.09	9.159	0.142	8.681		17.983
	14-Dec	1535		75	292.5	98\%	0.018	7.17	5.446	0.066	5.145		10.657	438.8	98\%	0.026	9.71	7.382	0.104	6.973		14.459	585.1	98\%	0.035	12.05	9.160	0.142	8.652		17.954
	15-Dec	1536		76	292.5	98\%	0.018	7.14	5.447	0.066	5.126		10.639	438.8	98\%	0.026	9.68	7.382	0.103	6.948		14.434	585.1	98\%	0.035	12.01	9.160	0.142	8.621		17.923
	16-Dec	1537		77	292.6	98\%	0.018	7.11	5.447	0.066	5.107		10.620	438.8	98\%	0.026	9.64	7.383	0.103	6.922		14.408	585.1	98\%	0.035	11.97	9.161	0.141	8.589		17.891
	17-Dec	1538		78	292.6	98\%	0.018	7.09	5.447	0.066	5.087		10.600	438.9	98\%	0.026	9.61	7.383	0.103	6.895		14.381	585.2	98\%	0.035	11.92	9.161	0.141	8.556		17.858
	18-Dec	1539		79	292.6	98\%	0.017	7.06	5.447	0.066	5.067		10.580	438.9	98\%	0.026	9.57	7.383	0.103	6.867		14.353	585.2	98\%	0.035	11.87	9.161	0.141	8.521		17.823
	19-Dec	1540		80	292.6	98\%	0.017	7.03	5.448	0.066	5.045		10.558	438.9	98\%	0.026	9.53	7.384	0.102	6.838		14.324	585.2	98\%	0.035	11.82	9.162	0.140	8.485		17.787
	20-Dec	1541		81	292.6	98\%	0.017	7.00	5.448	0.065	5.023		10.536	438.9	98\%	0.026	9.49	7.384	0.102	6.808		14.295	585.3	98\%	0.035	11.77	9.162	0.140	8.448		17.750
	21-Dec	1542		82	292.6	98\%	0.017	6.97	5.448	0.065	5.000		10.514	439.0	98\%	0.026	9.44	7.384	0.102	6.778		14.264	585.3	98\%	0.035	11.72	9.163	0.140	8.410		17.712
	22-Dec	1543		83	292.7	98\%	0.017	6.93	5.448	0.065	4.977		10.490	439.0	98\%	0.026	9.40	7.385	0.101	6.746		14.232	585.3	98\%	0.035	11.66	9.163	0.139	8.370		17.673
Mature Breeding	23-Dec	1544	1	84	292.7	98\%	0.017	6.90	5.449	0.065	4.953	0.005	10.472	439.0	98\%	0.026	9.35	7.385	0.101	6.713	0.008	14.208	585.4	98\%	0.035	11.60	9.164	0.139	8.330	0.011	17.643
	24-Dec	1545	2	85	292.7	98\%	0.017	6.87	5.449	0.065	4.928	0.006	10.448	439.1	98\%	0.026	9.31	7.385	0.101	6.680	0.008	14.175	585.4	98\%	0.035	11.55	9.164	0.138	8.289	0.011	17.602
	$25-\mathrm{Dec}$	1546	3	86	292.7	98\%	0.017	6.83	5.449	0.065	4.903	0.006	10.423	439.1	98\%	0.026	9.26	7.386	0.101	6.646	0.009	14.141	585.4	98\%	0.034	11.49	9.164	0.138	8.246	0.011	17.560
	26-Dec	1547	4	87	292.7	98\%	0.017	6.80	5.449	0.064	4.878	0.006	10.397	439.1	98\%	0.026	9.21	7.386	0.100	6.611	0.009	14.107	585.5	98\%	0.034	11.43	9.165	0.138	8.203	0.012	17.517
	27-Dec	1548	5	88	292.8	98\%	0.017	6.76	5.450	0.064	4.852	0.006	10.371	439.1	98\%	0.026	9.16	7.386	0.100	6.576	0.009	14.071	585.5	98\%	0.034	11.37	9.165	0.137	8.159	0.012	17.474
	$28-\mathrm{Dec}$	1549	6	89	292.8	98\%	0.017	6.72	5.450	0.064	4.825	0.006	10.345	439.2	98\%	0.026	9.11	7.387	0.100	6.540	0.009	14.036	585.5	98\%	0.034	11.30	9.166	0.137	8.114	0.012	17.429
	29-Dec	1550	7	90	292.8	98\%	0.017	6.68	5.450	0.064	4.798	0.006	10.318	439.2	98\%	0.026	9.06	7.387	0.100	6.503	0.010	13.999	585.6	98\%	0.034	11.24	9.166	0.137	8.069	0.013	17.384
	30-Dec	1551	8	91	292.8	98\%	0.017	6.65	5.450	0.064	4.770	0.007	10.291	439.2	98\%	0.026	9.01	7.387	0.099	6.466	0.010	13.962	585.6	98\%	0.034	11.18	9.166	0.136	8.023	0.013	17.338
	31-Dec	1552	9	92	292.8	98\%	0.017	6.61	5.451	0.064	4.742	0.007	10.263	439.2	98\%	0.025	8.95	7.388	0.099	6.428	0.010	13.925	585.6	98\%	0.034	11.11	9.167	0.136	7.976	0.014	17.292
Classified as mature	01-Jan	1553	10	93	300.0	100\%		6.57	5.550		4.714	0.007	10.271	450.0	100\%		8.90	7.523		6.389	0.011	13.923	600.0	100\%		11.04	9.335		7.928	0.014	17.277
	02 -Jan	1554	11	94	300.0			6.53	5.550		4.685	0.007	10.243	450.0			8.85	7.523		6.350	0.011	13.884	600.0			10.98	9.335		7.880	0.014	17.229
	03 -Jan	1555	12	95	300.0			6.49	5.550		4.656	0.007	10.214	450.0			8.79	7.523		6.311	0.011	13.845	600.0			10.91	9.335		7.831	0.015	17.180
	04-Jan	1556	13	96	300.0			6.45	5.550		4.627	0.008	10.185	450.0			8.74	7.523		6.271	0.012	13.806	600.0			10.84	9.335		7.781	0.015	17.131
	$05-\mathrm{Jan}$	1557	14	97	300.0			6.40	5.550		4.597	0.008	10.155	450.0			8.68	7.523		6.231	0.012	13.766	600.0			10.77	9.335		7.731	0.016	17.082
	06-Jan	1558	15	98	300.0			6.36	5.550		4.567	0.008	10.126	450.0			8.62	7.523		6.190	0.012	13.726	600.0			10.70	9.335		7.681	0.016	17.032
	07-Jan	1559	16	99	300.0			6.32	5.550		4.537	0.008	10.096	450.0			8.57	7.523		6.149	0.013	13.685	600.0			10.63	9.335		7.630	0.017	16.981
	08 -Jan	1560	17	100	300.0			6.28	5.550		4.506	0.009	10.065	450.0			8.51	7.523		6.108	0.013	13.644	600.0			10.56	9.335		7.578	0.017	16.931
	09-Jan	1561	18	101	300.0			6.23	5.550		4.475	0.009	10.035	450.0			8.45	7.523		6.066	0.013	13.602	600.0			10.49	9.335		7.527	0.018	16.879
	$10-\mathrm{Jan}$	1562	19	102	300.0			6.19	5.550		4.444	0.009	10.004	450.0			8.39	7.523		6.024	0.014	13.561	600.0			10.41	9.335		7.474	0.018	16.828
	11-Jan	1563	20	103	300.0			6.15	5.550		4.413	0.009	9.973	450.0			8.33	7.523		5.982	0.014	13.519	600.0			10.34	9.335		7.422	0.019	16.776
	12-Jan	1564	21	104	300.0			6.10	5.550		4.382	0.010	9.942	450.0			8.27	7.523		5.939	0.015	13.477	600.0			10.27	9.335		7.369	0.019	16.723
	13 -Jan	1565	22	105	300.0			6.06	5.550		4.350	0.010	9.911	450.0			8.21	7.523		5.896	0.015	13.434	600.0			10.19	9.335		7.316	0.020	16.671
	14-Jan	1566	23	106	300.0			6.02	5.550		4.318	0.010	9.879	450.0			8.15	7.523		5.853	0.016	13.392	600.0			10.12	9.335		7.263	0.021	16.618
	15-Jan	1567	24	107	300.0			5.97	5.550		4.286	0.011	9.848	450.0			8.09	7.523		5.810	0.016	13.349	600.0			10.04	9.335		7.209	0.021	16.565
	$16-\mathrm{Jan}$	1568	25	108	300.0			5.93	5.550		4.254	0.011	9.816	450.0			8.03	7.523		5.766	0.016	13.306	600.0			9.97	9.335		7.155	0.022	16.512
	17-Jan	1569	26	109	300.0			5.88	5.550		4.222	0.011	9.784	450.0			7.97	7.523		5.723	0.017	13.263	600.0			9.89	9.335		7.101	0.023	16.458
	18-Jan	1570	27	110	300.0			5.84	5.550		4.190	0.012	9.752	450.0			7.91	7.523		5.679	0.017	13.220	600.0			9.82	9.335		7.047	0.023	16.405
	19-Jan	1571	28	111	300.0			5.79	5.550		4.158	0.012	9.720	450.0			7.85	7.523		5.635	0.018	13.176	600.0			9.74	9.335		6.992	0.024	16.351
	$20-\mathrm{Jan}$	1572	29	112	300.0			5.75	5.550		4.125	0.012	9.688	450.0			7.79	7.523		5.591	0.018	13.133	600.0			9.67	9.335		6.938	0.025	16.297
	21-Jan	1573	30	113	300.0			5.70	5.550		4.093	0.013	9.656	450.0			7.73	7.523		5.547	0.019	13.089	600.0			9.59	9.335		6.883	0.025	16.243
	22-Jan	1574	31	114	300.0			5.66	5.550		4.060	0.013	9.624	450.0			7.67	7.523		5.503	0.020	13.046	600.0			9.51	9.335		6.828	0.026	16.189
	23 -Jan	1575	32	115	300.0			5.61	5.550		4.027	0.013	9.591	450.0			7.60	7.523		5.459	0.020	13.002	600.0			9.44	9.335		6.773	0.027	16.135
	24-Jan	1576	33	116	300.0			5.57	5.550		3.995	0.014	9.559	450.0			7.54	7.523		5.414	0.021	12.958	600.0			9.36	9.335		6.718	0.028	16.081
	$25-J a n$	1577	34	117	300.0			5.52	5.550		3.962	0.014	9.527	450.0			7.48	7.523		5.370	0.021	12.915	600.0			9.28	9.335		6.663	0.028	16.026
	26-Jan	1578	35	118	300.0			5.47	5.550		3.929	0.015	9.494	450.0			7.42	7.523		5.326	0.022	12.871	600.0			9.21	9.335		6.608	0.029	15.972
	27 -Jan	1579	36	119	300.0			5.43	5.550		3.896	0.015	9.462	450.0			7.36	7.523		5.281	0.023	12.827	600.0			9.13	9.335		6.553	0.030	15.918
	28 -Jan	1580	37	120	300.0			5.38	5.550		3.864	0.015	9.430	450.0			7.30	7.523		5.237	0.023	12.783	600.0			9.05	9.335		6.498	0.031	15.864
	$29-\mathrm{Jan}$	1581	38	121	300.0			5.34	5.550		3.831	0.016	9.397	450.0			7.23	7.523		5.193	0.024	12.740	600.0			8.98	9.335		6.443	0.032	15.810
	30-Jan	1582	39	122	300.0			5.29	5.550		3.798	0.016	9.365	450.0			7.17	7.523		5.148	0.025	12.696	600.0			8.90	9.335		6.388	0.033	15.755
	31-Jan	1583	40	123	300.0			5.25	5.550		3.766	0.017	9.333	450.0			7.11	7.523		5.104	0.025	12.652	600.0			8.82	9.335		6.333	0.034	15.701
	01-Feb	1584	41	124	300.0			5.20	5.550		3.733	0.017	9.301	450.0			7.05	7.523		5.060	0.026	12.609	600.0			8.75	9.335		6.278	0.035	15.647
	02 -Feb	1585	42	125	300.0			5.16	5.550		3.700	0.018	9.269	450.0			6.99	7.523		5.015	0.027	12.565	600.0			8.67	9.335		6.223	0.036	15.594
	03 -Feb	1586	43	126	300.0			5.11	5.550		3.668	0.018	9.237	450.0			6.93	7.523		4.971	0.028	12.522	600.0			8.59	9.335		6.168	0.037	15.540
	$04-\mathrm{Feb}$	1587	44	127	300.0			5.06	5.550		3.635	0.019	9.205	450.0			6.86	7.523		4.927	0.028	12.479	600.0			8.52	9.335		6.114	0.038	15.486
	$05-\mathrm{Feb}$	1588	45	128	300.0			5.02	5.550		3.603	0.019	9.173	450.0			6.80	7.523		4.883	0.029	12.436	600.0			8.44	9.335		6.059	0.039	15.433
	$06-\mathrm{Feb}$	1589	46	129	300.0			4.97	5.550		3.570	0.020	9.141	450.0			6.74	7.523		4.839	0.030	12.392	600.0			8.37	9.335		6.005	0.040	15.379
	07-Feb	1590	47	130	300.0			4.93	5.550		3.538	0.021	9.109	450.0			6.68	7.523		4.796	0.031	12.350	600.0			8.29	9.335		5.950	0.041	15.326
	08-Feb	1591	48	131	300.0			4.88	5.550		3.506	0.021	9.078	450.0			6.62	7.523		4.752	0.032	12.307	600.0			8.21	9.335		5.896	0.042	15.273
	09 -Feb	1592	49	132	300.0			4.84	5.550		3.474	0.022	9.046	450.0			6.56	7.523		4.708	0.033	12.264	600.0			8.14	9.335		5.842	0.043	15.220
	10-Feb	1593	50	133	300.0			4.79	5.550		3.442	0.022	9.015	450.0			6.50	7.523		4.665	0.033	12.222	600.0			8.06	9.335		5.788	0.045	15.168
	11-Feb	1594	51	134	300.0			4.75	5.550		3.410	0.023	8.983	450.0			6.44	7.523		4.622	0.034	12.179	600.0			7.99	9.335		5.735	0.046	15.115
	12-Feb	1595	52	135	300.0			4.71	5.550		3.378	0.024	8.952	450.0			6.38	7.523		4.579	0.035	12.137	600.0			7.91	9.335		5.681	0.047	15.063
	13-Feb	1596	53	136	300.0			4.66	5.550		3.346	0.024	8.921	450.0			6.32	7.523		4.536	0.036	12.095	600.0			7.84	9.335		5.628	0.048	15.011
	14-Feb	1597	54	137	300.0			4.62	5.550		3.315	0.025	8.890	450.0			6.26	7.523		4.493	0.037	12.053	600.0			7.77	9.335		5.575	0.050	14.959
	15-Feb	1598	55	138	300.0			4.57	5.550		3.283	0.026	8.859	450.0			6.20	7.523		4.450	0.038	12.012	600.0			7.69	9.335		5.522	0.051	14.908
	16-Feb	1599	56	139	300.0			4.53	5.550		3.252	0.026	8.829	450.0			6.14	7.523		4.408	0.039	11.970	600.0			7.62	9.335		5.469	0.053	14.857
	17-Feb	1600	57	140	300.0			4.49	5.550		3.221	0.027	8.798	450.0			6.08	7.523		4.366	0.041	11.929	600.0			7.55	9.335		5.417	0.054	14.806

	18-Feb	1601	58	141	300.0	4.44	5.550	3.190	0.028	8.768	450.0	6.02	7.523	4.323	0.042	11.888	600.0	7.47	9.335	5.365	0.056	14.755
	19 -Feb	1602	59	142	300.0	4.40	5.550	3.159	0.029	8.738	450.0	5.96	7.523	4.282	0.043	11.848	600.0	7.40	9.335	5.313	0.057	14.705
	20 -Feb	1603	60	143	300.0	4.36	5.550	3.128	0.029	8.708	450.0	5.91	7.523	4.240	0.044	11.807	600.0	7.33	9.335	5.261	0.059	14.654
	21-Feb	1604	61	144	300.0	4.32	5.550	3.097	0.030	8.678	450.0	5.85	7.523	4.198	0.045	11.767	600.0	7.26	9.335	5.209	0.060	14.604
	22-Feb	1605	62	145	300.0	4.27	5.550	3.067	0.031	8.649	450.0	5.79	7.523	4.157	0.046	11.727	600.0	7.19	9.335	5.158	0.062	14.555
	23 -Feb	1606	63	146	300.0	4.23	5.550	3.037	0.032	8.619	450.0	5.73	7.523	4.116	0.048	11.687	600.0	7.11	9.335	5.107	0.064	14.506
	24-Feb	1607	64	147	300.0	4.19	5.550	3.007	0.033	8.590	450.0	5.68	7.523	4.075	0.049	11.647	600.0	7.04	9.335	5.056	0.065	14.457
	25 -Feb	1608	65	148	300.0	4.15	5.550	2.977	0.034	8.561	450.0	5.62	7.523	4.034	0.050	11.608	600.0	6.97	9.335	5.006	0.067	14.408
	26-Feb	1609	66	149	300.0	4.11	5.550	2.947	0.035	8.532	450.0	5.56	7.523	3.994	0.052	11.569	600.0	6.90	9.335	4.956	0.069	14.360
	27-Feb	1610	67	150	300.0	4.06	5.550	2.917	0.035	8.503	450.0	5.51	7.523	3.954	0.053	11.530	600.0	6.83	9.335	4.906	0.071	14.312
	28 -Feb	1611	68	151	300.0	4.02	5.550	2.888	0.036	8.474	450.0	5.45	7.523	3.914	0.055	11.492	600.0	6.77	9.335	4.856	0.073	14.264
	01-Mar	1612	69	152	300.0	3.98	5.550	2.858	0.037	8.446	450.0	5.40	7.523	3.874	0.056	11.453	600.0	6.70	9.335	4.807	0.075	14.217
	02-Mar	1613	70	153	300.0	3.94	5.550	2.829	0.038	8.418	450.0	5.34	7.523	3.835	0.058	11.415	600.0	6.63	9.335	4.758	0.077	14.170
	03-Mar	1614	71	154	300.0	3.90	5.550	2.800	0.039	8.390	450.0	5.29	7.523	3.795	0.059	11.378	600.0	6.56	9.335	4.709	0.079	14.123
	04-Mar	1615	72	155	300.0	3.86	5.550	2.771	0.040	8.362	450.0	5.23	7.523	3.756	0.061	11.340	600.0	6.49	9.335	4.661	0.081	14.077
	05-Mar	1616	73	156	300.0	3.82	5.550	2.743	0.042	8.335	450.0	5.18	7.523	3.718	0.062	11.303	600.0	6.43	9.335	4.613	0.083	14.031
	06-Mar	1617	74	157	300.0	3.78	5.550	2.714	0.043	8.307	450.0	5.13	7.523	3.679	0.064	11.266	600.0	6.36	9.335	4.565	0.085	13.985
	07-Mar	1618	75	158	300.0	3.74	5.550	2.686	0.044	8.280	450.0	5.07	7.523	3.641	0.066	11.230	600.0	6.29	9.335	4.517	0.088	13.940
	08-Mar	1619	76	159	300.0	3.70	5.550	2.658	0.045	8.253	450.0	5.02	7.523	3.603	0.067	11.193	600.0	6.23	9.335	4.470	0.090	13.895
	09-Mar	1620	77	160	300.0	3.66	5.550	2.630	0.046	8.227	450.0	4.97	7.523	3.565	0.069	11.157	600.0	6.16	9.335	4.423	0.092	13.851
	10-Mar	1621	78	161	300.0	3.63	5.550	2.602	0.047	8.200	450.0	4.91	7.523	3.527	0.071	11.122	600.0	6.10	9.335	4.377	0.095	13.806
	11-Mar	1622	79	162	300.0	3.59	5.550	2.575	0.049	8.174	450.0	4.86	7.523	3.490	0.073	11.086	600.0	6.03	9.335	4.331	0.097	13.763
	12-Mar	1623	80	163	300.0	3.55	5.550	2.548	0.050	8.148	450.0	4.81	7.523	3.453	0.075	11.051	600.0	5.97	9.335	4.285	0.100	13.719
	13-Mar	1624	81	164	300.0	3.51	5.550	2.521	0.051	8.122	450.0	4.76	7.523	3.416	0.077	11.016	600.0	5.91	9.335	4.239	0.102	13.676
	14-Mar	1625	82	165	300.0	3.47	5.550	2.494	0.053	8.097	450.0	4.71	7.523	3.380	0.079	10.982	600.0	5.84	9.335	4.194	0.105	13.634
	15-Mar	1626	83	166	300.0	3.44	5.550	2.467	0.054	8.071	450.0	4.66	7.523	3.344	0.081	10.948	600.0	5.78	9.335	4.149	0.108	13.592
	16-Mar	1627	84	167	300.0	3.40	5.550	2.441	0.055	8.046	450.0	4.61	7.523	3.308	0.083	10.914	600.0	5.72	9.335	4.104	0.111	13.550
	17-Mar	1628	85	168	300.0	3.36	5.550	2.414	0.057	8.022	450.0	4.56	7.523	3.272	0.085	10.881	600.0	5.66	9.335	4.060	0.114	13.509
	18-Mar	1629	86	169	300.0	3.33	5.550	2.388	0.058	7.997	450.0	4.51	7.523	3.237	0.087	10.847	600.0	5.60	9.335	4.016	0.117	13.468
	19-Mar	1630	87	170	300.0	3.29	5.550	2.362	0.060	7.973	450.0	4.46	7.523	3.202	0.090	10.815	600.0	5.53	9.335	3.973	0.120	13.427
	20-Mar	1631	88	171	300.0	3.26	5.550	2.337	0.061	7.948	450.0	4.41	7.523	3.167	0.092	10.782	600.0	5.47	9.335	3.930	0.123	13.387
	21-Mar	1632	89	172	300.0	3.22	5.550	2.311	0.063	7.924	450.0	4.36	7.523	3.132	0.094	10.750	600.0	5.41	9.335	3.887	0.126	13.347
	22-Mar	1633	90	173	300.0	3.18	5.550	2.286	0.065	7.901	450.0	4.32	7.523	3.098	0.097	10.718	600.0	5.36	9.335	3.844	0.129	13.308
	23-Mar	1634	91	174	300.0	3.15	5.550	2.261	0.066	7.877	450.0	4.27	7.523	3.064	0.099	10.686	600.0	5.30	9.335	3.802	0.132	13.269
	24-Mar	1635	92	175	300.0	3.11	5.550	2.236	0.068	7.854	450.0	4.22	7.523	3.030	0.102	10.655	600.0	5.24	9.335	3.760	0.136	13.231
	25-Mar	1636	93	176	300.0	3.08	5.550	2.211	0.070	7.831	450.0	4.17	7.523	2.997	0.104	10.624	600.0	5.18	9.335	3.718	0.139	13.192
	26-Mar	1637	94	177	300.0	3.05	5.550	2.187	0.071	7.808	450.0	4.13	7.523	2.964	0.107	10.594	600.0	5.12	9.335	3.677	0.143	13.155
	27-Mar	1638	95	178	300.0	3.01	5.550	2.162	0.073	7.786	450.0	4.08	7.523	2.931	0.110	10.564	600.0	5.07	9.335	3.636	0.146	13.118
	28-Mar	1639	96	179	300.0	2.98	5.550	2.138	0.075	7.764	450.0	4.04	7.523	2.898	0.113	10.534	600.0	5.01	9.335	3.596	0.150	13.081
	29-Mar	1640	97	180	300.0	2.95	5.550	2.114	0.077	7.742	450.0	3.99	7.523	2.866	0.115	10.504	600.0	4.95	9.335	3.556	0.154	13.044
	30-Mar	1641	98	181	300.0	2.91	5.550	2.091	0.079	7.720	450.0	3.95	7.523	2.834	0.118	10.475	600.0	4.90	9.335	3.516	0.158	13.008
	31-Mar	1642	99	182	300.0	2.88	5.550	2.067	0.081	7.698	450.0	3.90	7.523	2.802	0.121	10.446	600.0	4.84	9.335	3.476	0.162	12.973
	01-Apr	1643	100	183	300.0	2.85	5.550	2.044	0.083	7.677	450.0	3.86	7.523	2.770	0.124	10.418	600.0	4.79	9.335	3.437	0.166	12.938
	02-Apr	1644	101	184	300.0	2.82	5.550	2.021	0.085	7.656	450.0	3.82	7.523	2.739	0.128	10.390	600.0	4.73	9.335	3.398	0.170	12.903
	03-Apr	1645	102	185	300.0	2.78	5.550	1.998	0.087	7.635	450.0	3.77	7.523	2.708	0.131	10.362	600.0	4.68	9.335	3.360	0.174	12.869
	04-Apr	1646	103	186	300.0	2.75	5.550	1.975	0.089	7.615	450.0	3.73	7.523	2.677	0.134	10.334	600.0	4.63	9.335	3.322	0.179	12.835
	$05-\mathrm{Apr}$	1647	104	187	300.0	2.72	5.550	1.953	0.092	7.595	450.0	3.69	7.523	2.647	0.137	10.307	600.0	4.58	9.335	3.284	0.183	12.802
	06-Apr	1648	105	188	300.0	2.69	5.550	1.930	0.094	7.575	450.0	3.65	7.523	2.616	0.141	10.280	600.0	4.52	9.335	3.247	0.188	12.769
	07-Apr	1649	106	189	300.0	2.66	5.550	1.908	0.096	7.555	450.0	3.60	7.523	2.587	0.144	10.254	600.0	4.47	9.335	3.209	0.192	12.736
	08-Apr	1650	107	190	300.0	2.63	5.550	1.886	0.099	7.535	450.0	3.56	7.523	2.557	0.148	10.228	600.0	4.42	9.335	3.173	0.197	12.704
	09-Apr	1651	108	191	300.0	2.60	5.550	1.865	0.101	7.516	450.0	3.52	7.523	2.528	0.151	10.202	600.0	4.37	9.335	3.136	0.202	12.673
	10-Apr	1652	109	192	300.0	2.57	5.550	1.843	0.103	7.497	450.0	3.48	7.523	2.498	0.155	10.177	600.0	4.32	9.335	3.100	0.207	12.642
	11-Apr	1653	110	193	300.0	2.54	5.550	1.822	0.106	7.478	450.0	3.44	7.523	2.470	0.159	10.152	600.0	4.27	9.335	3.064	0.212	12.611
	12-Apr	1654	111	194	300.0	2.51	5.550	1.801	0.109	7.460	450.0	3.40	7.523	2.441	0.163	10.127	600.0	4.22	9.335	3.029	0.217	12.581
	13-Apr	1655	112	195	300.0	2.48	5.550	1.780	0.111	7.442	450.0	3.36	7.523	2.413	0.167	10.103	600.0	4.17	9.335	2.994	0.222	12.551
	14-Apr	1656	113	196	300.0	2.45	5.550	1.759	0.114	7.424	450.0	3.32	7.523	2.385	0.171	10.079	600.0	4.12	9.335	2.959	0.228	12.521
	15-Apr	1657	114	197	300.0	2.42	5.550	1.739	0.117	7.406	450.0	3.28	7.523	2.357	0.175	10.055	600.0	4.07	9.335	2.924	0.233	12.492
	16-Apr	1658	115	198	300.0	2.39	5.550	1.719	0.119	7.389	450.0	3.25	7.523	2.329	0.179	10.032	600.0	4.03	9.335	2.890	0.239	12.464
	17-Apr	1659	116	199	300.0	2.37	5.550	1.698	0.122	7.371	450.0	3.21	7.523	2.302	0.184	10.009	600.0	3.98	9.335	2.856	0.245	12.436
	18-Apr	1660	117	200	300.0	2.34	5.550	1.679	0.125	7.354	450.0	3.17	7.523	2.275	0.188	9.986	600.0	3.93	9.335	2.823	0.251	12.408
	19-Apr	1661	118	201	300.0	2.31	5.550	1.659	0.128	7.338	450.0	3.13	7.523	2.248	0.192	9.964	600.0	3.89	9.335	2.790	0.257	12.381
	20-Apr	1662	119	202	300.0	2.28	5.550	1.639	0.131	7.321	450.0	3.10	7.523	2.222	0.197	9.942	600.0	3.84	9.335	2.757	0.263	12.354
	21-Apr	1663	120	203	300.0	2.26	5.550	1.620	0.135	7.305	450.0	3.06	7.523	2.196	0.202	9.921	600.0	3.80	9.335	2.724	0.269	12.328
	22-Apr	1664	121	204	300.0	2.23	5.550	1.601	0.138	7.289	450.0	3.02	7.523	2.170	0.207	9.899	600.0	3.75	9.335	2.692	0.275	12.302
2nd lactation ends	23-Apr	1665	122	205	300.0	2.20	5.550	1.582	0.141	7.273	450.0	2.99	7.523	2.144	0.212	9.879	600.0	3.71	9.335	2.660	0.282	12.277
	24-Apr	1666	123		300.0		5.550		0.144	5.695	450.0		7.523		0.217	7.740	600.0		9.335		0.289	9.624
	25-Apr	1667	124		300.0		5.550		0.148	5.698	450.0		7.523		0.222	7.745	600.0		9.335		0.296	9.630

	26-Apr	1668	125	300.0	5.550	0.151	5.702	450.0	7.523	0.227	7.750	600.0	9.335	0.303	9.637
	27-Apr	1669	126	300.0	5.550	0.155	5.705	450.0	7.523	0.232	7.755	600.0	9.335	0.310	9.644
	28-Apr	1670	127	300.0	5.550	0.158	5.709	450.0	7.523	0.238	7.761	600.0	9.335	0.317	9.652
	29-Apr	1671	128	300.0	5.550	0.162	5.713	450.0	7.523	0.243	7.766	600.0	9.335	0.324	9.659
Calves are weaned. Mature Cows are Culled	30-Apr	1672	129	300.0	5.550	0.166	5.716	450.0	7.523	0.249	7.772	600.0	9.335	0.332	9.667
	01-May	1673	130	300.0	5.550	0.170	5.720	450.0	7.523	0.255	7.778	600.0	9.335	0.340	9.674
	02-May	1674	131	300.0	5.550	0.174	5.724	450.0	7.523	0.261	7.784	600.0	9.335	0.348	9.682
	03-May	1675	132	300.0	5.550	0.178	5.728	450.0	7.523	0.267	7.790	600.0	9.335	0.356	9.690
	04-May	1676	133	300.0	5.550	0.182	5.732	450.0	7.523	0.273	7.796	600.0	9.335	0.364	9.699
	05-May	1677	134	300.0	5.550	0.186	5.737	450.0	7.523	0.279	7.802	600.0	9.335	0.372	9.707
	06-May	1678	135	300.0	5.550	0.190	5.741	450.0	7.523	0.286	7.809	600.0	9.335	0.381	9.716
	07-May	1679	136	300.0	5.550	0.195	5.745	450.0	7.523	0.292	7.815	600.0	9.335	0.389	9.724
	08-May	1680	137	300.0	5.550	0.199	5.750	450.0	7.523	0.299	7.822	600.0	9.335	0.398	9.733
	09 -May	1681	138	300.0	5.550	0.204	5.754	450.0	7.523	0.306	7.829	600.0	9.335	0.407	9.742
	10-May	1682	139	300.0	5.550	0.208	5.759	450.0	7.523	0.313	7.836	600.0	9.335	0.417	9.752
	11-May	1683	140	300.0	5.550	0.213	5.764	450.0	7.523	0.320	7.843	600.0	9.335	0.426	9.761
	12-May	1684	141	300.0	5.550	0.218	5.768	450.0	7.523	0.327	7.850	600.0	9.335	0.436	9.771
	13-May	1685	142	300.0	5.550	0.223	5.773	450.0	7.523	0.334	7.857	600.0	9.335	0.446	9.780
	14-May	1686	143	300.0	5.550	0.228	5.778	450.0	7.523	0.342	7.865	600.0	9.335	0.456	9.790
	15-May	1687	144	300.0	5.550	0.233	5.783	450.0	7.523	0.349	7.873	600.0	9.335	0.466	9.801
	16-May	1688	145	300.0	5.550	0.238	5.789	450.0	7.523	0.357	7.880	600.0	9.335	0.476	9.811
	17-May	1689	146	300.0	5.550	0.243	5.794	450.0	7.523	0.365	7.888	600.0	9.335	0.487	9.822
	18-May	1690	147	300.0	5.550	0.249	5.799	450.0	7.523	0.373	7.897	600.0	9.335	0.498	9.833
	19-May	1691	148	300.0	5.550	0.254	5.805	450.0	7.523	0.382	7.905	600.0	9.335	0.509	9.844
	20-May	1692	149	300.0	5.550	0.260	5.811	450.0	7.523	0.390	7.913	600.0	9.335	0.520	9.855
	21-May	1693	150	300.0	5.550	0.266	5.816	450.0	7.523	0.399	7.922	600.0	9.335	0.532	9.866
	22-May	1694	151	300.0	5.550	0.272	5.822	450.0	7.523	0.407	7.931	600.0	9.335	0.543	9.878
	23-May	1695	152	300.0	5.550	0.278	5.828	450.0	7.523	0.416	7.940	600.0	9.335	0.555	9.890
	24-May	1696	153	300.0	5.550	0.284	5.834	450.0	7.523	0.426	7.949	600.0	9.335	0.567	9.902
	25-May	1697	154	300.0	5.550	0.290	5.840	450.0	7.523	0.435	7.958	600.0	9.335	0.580	9.915
	26-May	1698	155	300.0	5.550	0.296	5.847	450.0	7.523	0.444	7.967	600.0	9.335	0.592	9.927
	27-May	1699	156	300.0	5.550	0.303	5.853	450.0	7.523	0.454	7.977	600.0	9.335	0.605	9.940
	28-May	1700	157	300.0	5.550	0.309	5.860	450.0	7.523	0.464	7.987	600.0	9.335	0.618	9.953
	29-May	1701	158	300.0	5.550	0.316	5.866	450.0	7.523	0.474	7.997	600.0	9.335	0.632	9.966
	30-May	1702	159	300.0	5.550	0.323	5.873	450.0	7.523	0.484	8.007	600.0	9.335	0.645	9.980
	31-May	1703	160	300.0	5.550	0.330	5.880	450.0	7.523	0.494	8.017	600.0	9.335	0.659	9.994
	$01-\mathrm{Jun}$	1704	161	300.0	5.550	0.337	5.887	450.0	7.523	0.505	8.028	600.0	9.335	0.673	10.008
	02 -Jun	1705	162	300.0	5.550	0.344	5.894	450.0	7.523	0.516	8.039	600.0	9.335	0.688	10.022
	03 -Jun	1706	163	300.0	5.550	0.351	5.902	450.0	7.523	0.527	8.050	600.0	9.335	0.702	10.037
	04-Jun	1707	164	300.0	5.550	0.359	5.909	450.0	7.523	0.538	8.061	600.0	9.335	0.717	10.052
	05 -Jun	1708	165	300.0	5.550	0.366	5.917	450.0	7.523	0.549	8.072	600.0	9.335	0.732	10.067
	06-Jun	1709	166	300.0	5.550	0.374	5.924	450.0	7.523	0.561	8.084	600.0	9.335	0.748	10.082
	07-Jun	1710	167	300.0	5.550	0.382	5.932	450.0	7.523	0.572	8.096	600.0	9.335	0.763	10.098
	08 -Jun	1711	168	300.0	5.550	0.390	5.940	450.0	7.523	0.584	8.108	600.0	9.335	0.779	10.114
	09 -Jun	1712	169	300.0	5.550	0.398	5.948	450.0	7.523	0.597	8.120	600.0	9.335	0.796	10.130
	10-Jun	1713	170	300.0	5.550	0.406	5.957	450.0	7.523	0.609	8.132	600.0	9.335	0.812	10.147
	11-Jun	1714	171	300.0	5.550	0.415	5.965	450.0	7.523	0.622	8.145	600.0	9.335	0.829	10.164
	12-Jun	1715	172	300.0	5.550	0.423	5.974	450.0	7.523	0.635	8.158	600.0	9.335	0.846	10.181
	13-Jun	1716	173	300.0	5.550	0.432	5.982	450.0	7.523	0.648	8.171	600.0	9.335	0.864	10.198
	14-Jun	1717	174	300.0	5.550	0.441	5.991	450.0	7.523	0.661	8.184	600.0	9.335	0.881	10.216
	15-Jun	1718	175	300.0	5.550	0.450	6.000	450.0	7.523	0.675	8.198	600.0	9.335	0.900	10.234
	16-Jun	1719	176	300.0	5.550	0.459	6.009	450.0	7.523	0.688	8.212	600.0	9.335	0.918	10.253
	17-Jun	1720	177	300.0	5.550	0.468	6.019	450.0	7.523	0.703	8.226	600.0	9.335	0.937	10.271
	18 -Jun	1721	178	300.0	5.550	0.478	6.028	450.0	7.523	0.717	8.240	600.0	9.335	0.956	10.291
	19-Jun	1722	179	300.0	5.550	0.488	6.038	450.0	7.523	0.731	8.254	600.0	9.335	0.975	10.310
	$20-\mathrm{Jun}$	1723	180	300.0	5.550	0.497	6.048	450.0	7.523	0.746	8.269	600.0	9.335	0.995	10.330
	21-Jun	1724	181	300.0	5.550	0.507	6.058	450.0	7.523	0.761	8.284	600.0	9.335	1.015	10.350
	22-Jun	1725	182	300.0	5.550	0.518	6.068	450.0	7.523	0.776	8.300	600.0	9.335	1.035	10.370
	23-Jun	1726	183	300.0	5.550	0.528	6.078	450.0	7.523	0.792	8.315	600.0	9.335	1.056	10.391
	24-Jun	1727	184	300.0	5.550	0.539	6.089	450.0	7.523	0.808	8.331	600.0	9.335	1.077	10.412
	25-Jun	1728	185	300.0	5.550	0.549	6.100	450.0	7.523	0.824	8.347	600.0	9.335	1.098	10.433
	26-Jun	1729	186	300.0	5.550	0.560	6.111	450.0	7.523	0.840	8.363	600.0	9.335	1.120	10.455
	27-Jun	1730	187	300.0	5.550	0.571	6.122	450.0	7.523	0.857	8.380	600.0	9.335	1.142	10.477
	28-Jun	1731	188	300.0	5.550	0.582	6.133	450.0	7.523	0.874	8.397	600.0	9.335	1.165	10.500
	29-Jun	1732	189	300.0	5.550	0.594	6.144	450.0	7.523	0.891	8.414	600.0	9.335	1.188	10.523
	30-Jun	1733	190	300.0	5.550	0.606	6.156	450.0	7.523	0.908	8.431	600.0	9.335	1.211	10.546
	$01-$-ul	1734	191	300.0	5.550	0.617	6.168	450.0	7.523	0.926	8.449	600.0	9.335	1.235	10.570

	07-Sep	1802	259		300.0		5.550		1.987	7.538	450.0		7.523		2.981	10.504	600.0		9.335		3.975	13.309
	08-Sep	1803	260		300.0		5.550		2.017	7.568	450.0		7.523		3.026	10.549	600.0		9.335		4.035	13.369
	09-Sep	1804	261		300.0		5.550		2.048	7.598	450.0		7.523		3.072	10.595	600.0		9.335		4.095	13.430
	10-Sep	1805	262		300.0		5.550		2.078	7.629	450.0		7.523		3.118	10.641	600.0		9.335		4.157	13.492
	11-Sep	1806	263		300.0		5.550		2.109	7.660	450.0		7.523		3.164	10.687	600.0		9.335		4.219	13.554
	12-Sep	1807	264		300.0		5.550		2.141	7.691	450.0		7.523		3.211	10.734	600.0		9.335		4.282	13.616
	13-Sep	1808	265		300.0		5.550		2.173	7.723	450.0		7.523		3.259	10.782	600.0		9.335		4.345	13.680
	14-Sep	1809	266		300.0		5.550		2.205	7.755	450.0		7.523		3.307	10.830	600.0		9.335		4.409	13.744
	$15-\mathrm{Sep}$	1810	267		300.0		5.550		2.237	7.787	450.0		7.523		3.355	10.878	600.0		9.335		4.474	13.808
	16-Sep	1811	268		300.0		5.550		2.270	7.820	450.0		7.523		3.404	10.927	600.0		9.335		4.539	13.874
	17-Sep	1812	269		300.0		5.550		2.303	7.853	450.0		7.523		3.454	10.977	600.0		9.335		4.605	13.940
	18-Sep	1813	270		300.0		5.550		2.336	7.886	450.0		7.523		3.504	11.027	600.0		9.335		4.672	14.006
	19-Sep	1814	271		300.0		5.550		2.369	7.920	450.0		7.523		3.554	11.077	600.0		9.335		4.739	14.074
	20-Sep	1815	272		300.0		5.550		2.403	7.954	450.0		7.523		3.605	11.128	600.0		9.335		4.807	14.142
	21-Sep	1816	273		300.0		5.550		2.438	7.988	450.0		7.523		3.657	11.180	600.0		9.335		4.876	14.210
	22-Sep	1817	274		300.0		5.550		2.472	8.023	450.0		7.523		3.709	11.232	600.0		9.335		4.945	14.280
	23-Sep	1818	275		300.0		5.550		2.507	8.058	450.0		7.523		3.761	11.284	600.0		9.335		5.015	14.350
	24-Sep	1819	276		300.0		5.550		2.543	8.093	450.0		7.523		3.814	11.337	600.0		9.335		5.085	14.420
	25 -Sep	1820	277		300.0		5.550		2.578	8.129	450.0		7.523		3.867	11.391	600.0		9.335		5.157	14.491
	26-Sep	1821	278		300.0		5.550		2.614	8.165	450.0		7.523		3.921	11.445	600.0		9.335		5.228	14.563
	27-Sep	1822	279		300.0		5.550		2.651	8.201	450.0		7.523		3.976	11.499	600.0		9.335		5.301	14.636
	28-Sep	1823	280		300.0		5.550		2.687	8.238	450.0		7.523		4.031	11.554	600.0		9.335		5.374	14.709
	29-Sep	1824	281		300.0		5.550		2.724	8.275	450.0		7.523		4.086	11.609	600.0		9.335		5.448	14.783
	30-Sep	1825	282		300.0		5.550		2.761	8.312	450.0		7.523		4.142	11.665	600.0		9.335		5.523	14.857
Mature Calving. Mature Lactation	$01-$ Oct	1826	283	1	300.0	0.33	5.550	0.238	2.799	8.587	450.0	0.45	7.523	0.322	4.198	12.044	600.0	0.56	9.335	0.400	5.598	15.333
	02-Oct	1827		2	300.0	0.65	5.550	0.468		6.018	450.0	0.88	7.523	0.634		8.157	600.0	1.10	9.335	0.787		10.122
	03-Oct	1828		3	300.0	0.96	5.550	0.690		6.241	450.0	1.30	7.523	0.935		8.459	600.0	1.62	9.335	1.161		10.495
	04-Oct	1829		4	300.0	1.26	5.550	0.905		6.455	450.0	1.71	7.523	1.226		8.750	600.0	2.12	9.335	1.522		10.857
	05-Oct	1830		5	300.0	1.55	5.550	1.112		6.663	450.0	2.10	7.523	1.507		9.031	600.0	2.61	9.335	1.871		11.205
	06-Oct	1831		6	300.0	1.83	5.550	1.312		6.863	450.0	2.48	7.523	1.779		9.302	600.0	3.07	9.335	2.207		11.542
	07-Oct	1832		7	300.0	2.10	5.550	1.506		7.056	450.0	2.84	7.523	2.041		9.564	600.0	3.53	9.335	2.532		11.867
	08 -Oct	1833		8	300.0	2.36	5.550	1.692		7.243	450.0	3.20	7.523	2.293		9.817	600.0	3.96	9.335	2.846		12.180
	09-Oct	1834		9	300.0	2.61	5.550	1.872		7.422	450.0	3.53	7.523	2.537		10.060	600.0	4.39	9.335	3.148		12.483
	10-Oct	1835		10	300.0	2.85	5.550	2.045		7.596	450.0	3.86	7.523	2.772		10.295	600.0	4.79	9.335	3.439		12.774
	11-Oct	1836		11	300.0	3.08	5.550	2.212		7.763	450.0	4.18	7.523	2.998		10.522	600.0	5.18	9.335	3.720		13.055
	$12-\mathrm{Oct}$	1837		12	300.0	3.31	5.550	2.373		7.924	450.0	4.48	7.523	3.216		10.740	600.0	5.56	9.335	3.991		13.326
	13-Oct	1838		13	300.0	3.52	5.550	2.528		8.078	450.0	4.77	7.523	3.426		10.950	600.0	5.92	9.335	4.251		13.586
	14-Oct	1839		14	300.0	3.73	5.550	2.677		8.228	450.0	5.05	7.523	3.628		11.152	600.0	6.27	9.335	4.502		13.837
	15-Oct	1840		15	300.0	3.93	5.550	2.820		8.371	450.0	5.33	7.523	3.823		11.346	600.0	6.61	9.335	4.743		14.078
	$16-\mathrm{Oct}$	1841		16	300.0	4.12	5.550	2.958		8.509	450.0	5.59	7.523	4.010		11.533	600.0	6.93	9.335	4.975		14.310
	$17-$ Oct	1842		17	300.0	4.31	5.550	3.091		8.641	450.0	5.84	7.523	4.189		11.712	600.0	7.24	9.335	5.198		14.533
	18 -Oct	1843		18	300.0	4.48	5.550	3.218		8.769	450.0	6.08	7.523	4.362		11.885	600.0	7.54	9.335	5.412		14.747
	$19-\mathrm{Oct}$	1844		19	300.0	4.65	5.550	3.340		8.891	450.0	6.31	7.523	4.527		12.051	600.0	7.83	9.335	5.618		14.952
	$20-\mathrm{Oct}$	1845		20	300.0	4.82	5.550	3.457		9.008	450.0	6.53	7.523	4.686		12.209	600.0	8.10	9.335	5.815		15.150
	21-Oct	1846		21	300.0	4.97	5.550	3.570		9.120	450.0	6.74	7.523	4.839		12.362	600.0	8.36	9.335	6.004		15.339
	22 -Oct	1847		22	300.0	5.12	5.550	3.678		9.228	450.0	6.94	7.523	4.985		12.508	600.0	8.62	9.335	6.185		15.520
	23 -Oct	1848		23	300.0	5.27	5.550	3.781		9.331	450.0	7.14	7.523	5.124		12.647	600.0	8.86	9.335	6.358		15.693
	24-Oct	1849		24	300.0	5.40	5.550	3.879		9.430	450.0	7.33	7.523	5.258		12.781	600.0	9.09	9.335	6.524		15.859
	$25-\mathrm{Oct}$	1850		25	300.0	5.54	5.550	3.974		9.524	450.0	7.50	7.523	5.386		12.909	600.0	9.31	9.335	6.683		16.017
	$26-$ Oct	1851		26	300.0	5.66	5.550	4.064		9.614	450.0	7.67	7.523	5.508		13.031	600.0	9.52	9.335	6.834		16.169
	27-Oct	1852		27	300.0	5.78	5.550	4.150		9.700	450.0	7.84	7.523	5.624		13.147	600.0	9.72	9.335	6.979		16.313
	$28-\mathrm{Oct}$	1853		28	300.0	5.90	5.550	4.232		9.782	450.0	7.99	7.523	5.735		13.259	600.0	9.91	9.335	7.117		16.451
	$29-\mathrm{Oct}$	1854		29	300.0	6.00	5.550	4.310		9.860	450.0	8.14	7.523	5.841		13.364	600.0	10.10	9.335	7.248		16.583
	30-Oct	1855		30	300.0	6.11	5.550	4.384		9.934	450.0	8.28	7.523	5.942		13.465	600.0	10.27	9.335	7.373		16.708
	31-Oct	1856		31	300.0	6.21	5.550	4.455		10.005	450.0	8.41	7.523	6.038		13.561	600.0	10.44	9.335	7.492		16.826
	01-Nov	1857		32	300.0	6.30	5.550	4.522		10.072	450.0	8.54	7.523	6.129		13.652	600.0	10.59	9.335	7.604		16.939
	02 -Nov	1858		33	300.0	6.39	5.550	4.585		10.136	450.0	8.66	7.523	6.215		13.738	600.0	10.74	9.335	7.711		17.046
	03-Nov	1859		34	300.0	6.47	5.550	4.645		10.196	450.0	8.77	7.523	6.296		13.820	600.0	10.88	9.335	7.813		17.147
	04-Nov	1860		35	300.0	6.55	5.550	4.702		10.253	450.0	8.88	7.523	6.374		13.897	600.0	11.02	9.335	7.908		17.243
	05-Nov	1861		36	300.0	6.63	5.550	4.756		10.307	450.0	8.98	7.523	6.446		13.970	600.0	11.14	9.335	7.999		17.334
	06-Nov	1862		37	300.0	6.70	5.550	4.807		10.357	450.0	9.08	7.523	6.515		14.038	600.0	11.26	9.335	8.084		17.419
	07-Nov	1863		38	300.0	6.76	5.550	4.854		10.405	450.0	9.17	7.523	6.580		14.103	600.0	11.37	9.335	8.164		17.499
	08-Nov	1864		39	300.0	6.83	5.550	4.899		10.450	450.0	9.25	7.523	6.640		14.163	600.0	11.48	9.335	8.239		17.574
	09 -Nov	1865		40	300.0	6.88	5.550	4.941		10.491	450.0	9.33	7.523	6.697		14.220	600.0	11.58	9.335	8.310		17.644
	10-Nov	1866		41	300.0	6.94	5.550	4.980		10.531	450.0	9.40	7.523	6.750		14.273	600.0	11.67	9.335	8.375		17.710
	11-Nov	1867		42	300.0	6.99	5.550	5.017		10.567	450.0	9.47	7.523	6.799		14.323	600.0	11.75	9.335	8.437		17.771
	12-Nov	1868		43	300.0	7.04	5.550	5.050		10.601	450.0	9.54	7.523	6.845		14.368	600.0	11.83	9.335	8.494		17.828

	13-Nov	1869		44	300.0	7.08	5.550	5.082		10.632	450.0	9.60	7.523	6.888		14.411	600.0	11.91	9.335	8.546		17.881
	14-Nov	1870		45	300.0	7.12	5.550	5.111		10.661	450.0	9.65	7.523	6.927		14.450	600.0	11.97	9.335	8.595		17.930
	15-Nov	1871		46	300.0	7.16	5.550	5.137		10.688	450.0	9.70	7.523	6.963		14.486	600.0	12.04	9.335	8.639		17.974
	16-Nov	1872		47	300.0	7.19	5.550	5.161		10.712	450.0	9.75	7.523	6.996		14.519	600.0	12.09	9.335	8.680		18.015
	17-Nov	1873		48	300.0	7.22	5.550	5.183		10.734	450.0	9.79	7.523	7.025		14.548	600.0	12.14	9.335	8.717		18.052
	18-Nov	1874		49	300.0	7.25	5.550	5.203		10.754	450.0	9.82	7.523	7.052		14.575	600.0	12.19	9.335	8.750		18.085
	19-Nov	1875		50	300.0	7.27	5.550	5.221		10.771	450.0	9.86	7.523	7.076		14.599	600.0	12.23	9.335	8.780		18.115
	20-Nov	1876		51	300.0	7.30	5.550	5.236		10.787	450.0	9.89	7.523	7.097		14.621	600.0	12.27	9.335	8.806		18.141
	21-Nov	1877		52	300.0	7.31	5.550	5.250		10.801	450.0	9.91	7.523	7.116		14.639	600.0	12.30	9.335	8.830		18.164
	22-Nov	1878		53	300.0	7.33	5.550	5.262		10.812	450.0	9.94	7.523	7.132		14.655	600.0	12.33	9.335	8.849		18.184
	23-Nov	1879		54	300.0	7.34	5.550	5.272		10.822	450.0	9.95	7.523	7.145		14.669	600.0	12.35	9.335	8.866		18.201
	24-Nov	1880		55	300.0	7.36	5.550	5.280		10.830	450.0	9.97	7.523	7.156		14.680	600.0	12.37	9.335	8.880		18.214
	25 -Nov	1881		56	300.0	7.36	5.550	5.286		10.837	450.0	9.98	7.523	7.165		14.688	600.0	12.39	9.335	8.890		18.225
	26-Nov	1882		57	300.0	7.37	5.550	5.291		10.842	450.0	9.99	7.523	7.171		14.695	600.0	12.40	9.335	8.898		18.233
	27-Nov	1883		58	300.0	7.38	5.550	5.294		10.845	450.0	10.00	7.523	7.176		14.699	600.0	12.40	9.335	8.904		18.238
	28 -Nov	1884		59	300.0	7.38	5.550	5.296		10.846	450.0	10.00	7.523	7.178		14.701	600.0	12.41	9.335	8.906		18.241
	29-Nov	1885		60	300.0	7.38	5.550	5.296		10.846	450.0	10.00	7.523	7.178		14.701	600.0	12.41	9.335	8.906		18.241
	30-Nov	1886		61	300.0	7.38	5.550	5.294		10.845	450.0	10.00	7.523	7.176		14.699	600.0	12.40	${ }^{9.335}$	8.904		18.239
	01-Dec	1887		62	300.0	7.37	5.550	5.291		10.842	450.0	9.99	7.523	7.172		14.695	600.0	12.40	9.335	8.899		18.234
	02-Dec	1888		63	300.0	7.37	5.550	5.287		10.838	450.0	9.98	7.523	7.166		14.689	600.0	12.39	9.335	8.892		18.226
	$03-\mathrm{Dec}$	1889		64	300.0	7.36	5.550	5.281		10.832	450.0	9.97	7.523	7.158		14.682	600.0	12.37	9.335	8.882		18.217
	04-Dec	1890		65	300.0	7.35	5.550	5.275		10.825	450.0	9.96	7.523	7.149		14.672	600.0	12.36	9.335	8.871		18.206
	$05-\mathrm{Dec}$	1891		66	300.0	7.34	5.550	5.266		10.817	450.0	9.94	7.523	7.138		14.661	600.0	12.34	9.335	8.857		18.192
	06-Dec	1892		67	300.0	7.32	5.550	5.257		10.808	450.0	9.93	7.523	7.126		14.649	600.0	12.32	${ }^{9.335}$	8.841		18.176
	07-Dec	1893		68	300.0	7.31	5.550	5.247		10.797	450.0	9.91	7.523	7.111		14.635	600.0	12.29	9.335	8.824		18.159
	08-Dec	1894		69	300.0	7.29	5.550	5.235		10.786	450.0	9.89	7.523	7.096		14.619	600.0	12.27	9.335	8.804		18.139
	$09-\mathrm{Dec}$	1895		70	300.0	7.28	5.550	5.222		10.773	450.0	9.86	7.523	7.079		14.602	600.0	12.24	9.335	8.783		18.118
	10-Dec	1896		71	300.0	7.26	5.550	5.209		10.759	450.0	9.84	7.523	7.060		14.583	600.0	12.20	9.335	8.760		18.095
	11-Dec	1897		72	300.0	7.24	5.550	5.194		10.745	450.0	9.81	7.523	7.040		14.563	600.0	12.17	9.335	8.735		18.070
	12-Dec	1898		73	300.0	7.21	5.550	5.178		10.729	450.0	9.78	7.523	7.019		14.542	600.0	12.13	${ }^{9.335}$	8.709		18.044
	$13-\mathrm{Dec}$	1899		74	300.0	7.19	5.550	5.162		10.712	450.0	9.75	7.523	6.997		14.520	600.0	12.09	9.335	8.681		18.016
	14-Dec	1900		75	300.0	7.17	5.550	5.145		10.695	450.0	9.71	7.523	6.973		14.496	600.0	12.05	9.335	8.652		17.987
	15-Dec	1901		76	300.0	7.14	5.550	5.126		10.677	450.0	9.68	7.523	6.948		14.471	600.0	12.01	9.335	8.621		17.956
	16-Dec	1902		77	300.0	7.11	5.550	5.107		10.658	450.0	9.64	7.523	6.922		14.445	600.0	11.97	9.335	8.589		17.924
	17-Dec	1903		78	300.0	7.09	5.550	5.087		10.638	450.0	9.61	7.523	6.895		14.418	600.0	11.92	9.335	8.556		17.890
	$18-\mathrm{Dec}$	1904		79	300.0	7.06	5.550	5.067		10.617	450.0	9.57	7.523	6.867		14.390	600.0	11.87	${ }^{9.335}$	8.521		17.856
	$19-\mathrm{Dec}$	1905		80	300.0	7.03	5.550	5.045		10.596	450.0	9.53	7.523	6.838		14.361	600.0	11.82	9.335	8.485		17.820
	20-Dec	1906		81	300.0	7.00	5.550	5.023		10.574	450.0	9.49	7.523	6.808		14.332	600.0	11.77	9.335	8.448		17.783
	21-Dec	1907		82	300.0	6.97	5.550	5.000		10.551	450.0	9.44	7.523	6.778		14.301	600.0	11.72	9.335	8.410		17.744
	$22-\mathrm{Dec}$	1908		83	300.0	6.93	5.550	4.977		10.527	450.0	9.40	7.523	6.746		14.269	600.0	11.66	9.335	8.370		17.705
	23-Dec	1909	1	84	300.0	6.90	5.550	4.953	0.005	10.509	450.0	9.35	7.523	6.713	0.008	14.245	600.0	11.60	9.335	8.330	0.011	17.675
	24-Dec	1910	,	85	300.0	6.87	5.550	4.928	0.006	10.484	450.0	9.31	7.523	6.680	0.008	14.211	600.0	11.55	${ }^{9.335}$	8.289	0.011	17.634
	25-Dec	1911	3	86	300.0	6.83	5.550	4.903	0.006	10.460	450.0	9.26	7.523	6.646	0.009	14.178	600.0	11.49	9.335	8.246	0.011	17.593
	26-Dec	1912	4	87	300.0	6.80	5.550	4.878	0.006	10.434	450.0	9.21	7.523	6.611	0.009	14.143	600.0	11.43	9.335	8.203	0.012	17.550
	27 -Dec	1913	5	88	300.0	6.76	5.550	4.852	0.006	10.408	450.0	9.16	7.523	6.576	0.009	14.108	600.0	11.37	9.335	8.159	0.012	17.506
	$28-\mathrm{Dec}$	1914	6	89	300.0	6.72	5.550	4.825	0.006	10.382	450.0	9.11	7.523	6.540	0.009	14.072	600.0	11.30	9.335	8.114	0.012	17.462
	29-Dec	1915	7	90	300.0	6.68	5.550	4.798	0.006	10.355	450.0	9.06	7.523	6.503	0.010	14.036	600.0	11.24	9.335	8.069	0.013	17.416
	$30-\mathrm{Dec}$	1916		91	300.0	6.65	5.550	4.770	0.007	10.327	450.0	9.01	7.523	6.466	0.010	13.999	600.0	11.18	9.335	8.023	0.013	17.371
Repetition of Mature Cycle	31-Dec	1917	9	92	300.0	6.61	5.550	4.742	0.007	10.300	450.0	8.95	7.523	6.428	0.010	13.961	600.0	11.11	9.335	7.976	0.014	17.324

